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Abstract

In this dissertation, a surface integral equation formulation is developed for

low-frequency problems by generalizing the existing augmented electric field

integral equation from the perfect electric conductors to the dielectrics and

general conductors. Detailed discussions of the basis functions and the pre-

conditioner are provided for the dielectric problems, and a novel integration

scheme for the evaluations of the matrix elements in the conductor problem

is proposed.

Then a broadband multilevel fast multipole algorithm (FMA) using a hy-

bridization of the multipole and plane wave expansions is introduced. This

high-accuracy algorithm is error controllable and stable at low frequencies. It

reduces to the conventional diagonal FMA at higher frequencies. Therefore

it can be regarded as a generalization of the dense FMA at low frequencies

and the diagonal FMA at higher frequencies.

Finally, the computational electromagnetic techniques are applied to the

calculations of the Casimir force. The application of the integral equation

method in Casimir force calculation is briefly reviewed and we proposed an

efficient computing scheme using the randomized singular value decomposi-

tion and the hybrid FMA. As a result, the efficiency can be greatly enhanced

for large problems.
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Chapter 1

Introduction

1.1 Computational Electromagnetics

Solving Maxwell’s equations with computer programs has rapidly developed,

due to boosted developments of computer hardware. This subject is termed

“computational electromagnetics” (CEM) and CEM tools have found a large

number of applications in engineering designs and academic research. These

applications include studies of the electromagnetic (EM) wave propagation

in large environments, such as in the earth’s atmosphere or even toward the

universe. The EM phenomena in tiny structures, such as EM waves in pho-

tonic crystals and integrated circuits, is also in the scope of CEM. The wide

range of applications of CEM is largely due to the rich physics of the Maxwell

equations at different scales. At large length scales, when the wavelength is

much smaller than the objects of interest, Maxwell’s equations reveal the

ray physics. At medium length scales, when the wavelength is comparable

to the objects, wave physics dominates. At small length scales, when the

wavelength is much larger, circuit physics becomes important. The physics

of Maxwell’s equations is so rich and the applications of the electromagnetics

are so wide that solving Maxwell’s equations has become an important topic

of research.

Maxwell’s equations can be approximated by Kirchhoff’s laws at small

length scales and it can be reduced to the lens maker’s formula at large length

scales. Some problems can be solved analytically with approximations. At

medium length scales, when wave physics becomes rich, Maxwell’s equations

can only be solved for limited special boundary conditions. Solving them

using numerical methods will be a good alternative.

In CEM, many methods are developed to solve Maxwell’s equations nu-

merically. They can be categorized into two classes: the time domain meth-
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ods and the frequency domain methods. In the time domain methods, the

most popular and earliest developed method is the finite difference time do-

main (FDTD) method [1]. Recently the time domain finite element (TDFE)

and time domain integral equation (TDIE) methods have become interest-

ing research areas. These methods have their counterparts in the frequency

domain: the finite difference frequency domain (FDFD) method, the finite

element method (FEM) [2] and the method of moments (MoM) [3] or the in-

tegral equation (IE) method. These methods have their own advantages and

disadvantages. A good understanding and the applications of these methods

will be beneficial in efficiently solving EM problems.

1.2 Surface Integral Equation and Fast Multipole

Algorithm

There are two popular kinds of integral equations: the volume integral equa-

tion (VIE) and the surface integral equation (SIE). The volume of the struc-

ture is discretized into small volumetric simplexes in VIE and the simplexes

are mutually coupled through the Green’s function. Therefore, this method

can be easily adopted to treat inhomogeneous media. In the SIE, only the

surface is discretized and the coupling is through the same Green’s function

as the VIE. Since the unknowns only reside on the surface of the structure

in this method, the computational cost is greatly reduced. The limitation of

this method is that it is only capable of simulating homogeneous objects.

Due to the fast algorithm used in the VIE and SIE, integral equation meth-

ods have become very popular in solving EM problems, such as scattering

problems, circuit interconnect and packaging problems, etc. The radar cross

section (RCS) or the scattering cross section (SCS), and the near field can be

efficiently simulated in the scattering problems. The linear circuit equivalent

parameters, such as the S parameters, can also be efficiently found. In this

method, the EM problem is converted into a matrix equation:

A · I = V (1.1)

where A is called the system matrix, I is the surface unknown vector to be

solved and V is the excitation vector. The matrix A can be constructed
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using the subspace projection method by projecting the unknown into a lin-

ear summation of the basis functions and then testing the integral equation

using the dual basis functions. The most popular basis function is the Rao-

Wilton-Glisson (RWG) basis function [4], since it is simple and divergence-

conforming, which is required by the physical properties of the current un-

known. Other more complicated but useful divergence-conforming basis func-

tions, the Wilton-Chen basis function [5] and the Buffa-Christiansen (BC)

basis function [6], served as the dual basis function for testing. Other ba-

sis functions, such as the loop-tree basis function [7, 8] were also studied to

eliminate the low-frequency breakdown issues.

The construction of the matrix A also depends on the integral equation.

A few integral equation formulations can be found. The simplest formu-

lation is the electric field integral equation (EFIE) and the magnetic field

integral equation (MFIE). These formulations suffer from internal resonance

issues at high frequencies. A combined formulation, called the combined

field integral equation (CFIE) [9] was proposed to overcome the problems.

The formulations, such as Poggio-Miller-Chang-Harrington-Wu-Tsai (PM-

CHWT) [10, 11] and Müller’s formulations [12] are the alternatives to CFIE.

At low frequencies, the internal resonance is no longer a problem, but EFIE

suffers from the low-frequency breakdown. It has been extensively studied

to eliminate this problem [13, 14] for the perfect electric conductor (PEC).

In this dissertation, a formulation is proposed to overcome this problem for

the dielectrics and general conductors with finite conductivities.

To solve the equation in (1.1), a direct solver is possible if the matrix

size is small. As the size of the matrix becomes larger, the iterative solver

will become more efficient to reduce the computational cost from O(N3) to

O(N2). In an iterative solver, only the matrix vector product (MVP) of A · I
is required for a number of times. As the matrix size becomes even larger,

filling and storing the matrix A become too time and memory consuming.

A compressed storage of A using the fast multipole algorithm (FMA) can be

used to accelerate the MVP from O(N2) to O(N logN) or O(N) and save

the memory storage from O(N2) to O(N). Therefore, FMA becomes widely

used to accelerate MVP in the integral equations.

The FMA is used to accelerate A · I. The physical interpretation of A · I
is the summation of the field radiated by the source at location i with the

current amplitude Ii, where i refers to the index of the source. The key reason
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that the FMA can be used to accelerate the MVP is because the sources

can be grouped to become a new source. Then the far field pattern can be

represented by the radiation of the new source. This new source can be, either

represented as a summation of a few multipoles at one location, or represented

as a summation of plane waves in all directions. These two approaches are

termed the multipole expansion or the plane wave expansion. Still there

are some limitations in these expansions. The multipole expansion becomes

inefficient at high frequencies since the grouping is through a dense matrix

and the matrix size becomes increasingly large. The plane wave expansion

fails to capture the evanescent waves and it is unstable at low frequencies.

A broadband FMA will be extremely useful in the simulations of the multi-

scale problems using integral equation. In this dissertation, we will introduce

a hybridization of the multipole and plane wave expansions for broadband

simulation using FMA.

1.3 Casimir Force Calculations Using Surface Integral

Equation

The Casimir force has become an interesting research topic since the highly

accurate experimental validations [15, 16]. This tiny force, which arises from

the zero point energy of the vacuum, can be potentially useful in the appli-

cations of the microelectromechanical systems (MEMS). As a result, it has

strongly motivated the theoretical studies of the Casimir force using different

approaches.

The first introduction of the Casimir force by Casimir in 1948 [17] sug-

gested that the force is due to the change of zero-point energy in the vacuum.

In this approach, calculations of the free-space modes energy are required.

Although the total energy is divergent, it can be correctly regulated. A simi-

lar approach is to use the scattering matrices to solve this problem [18]. The

argument principle method [19] and the path integral method [20] can be

used to arrive at the same expression of the Casimir force.

A more general approach was proposed by Liftshitz [21] to calculate the

Casimir force between dielectric objects at finite temperature. This approach

is based on the fluctuation-dissipation theorem [22, 23] and uses the Maxwell

stress tensor to calculate the force.
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Both of the above two approaches utilize the Green’s function of the envi-

ronment. Therefore, the computational techniques in the integral equation

can be applied in the calculations of the Casimir force. For example, using

the argument principle, the Casimir force is directly related to the impedance

matrix in the SIE. We will follow this relation, and propose a fast computing

scheme.

1.4 An Overview of the Dissertation

Several aspects of the integral equation method in computational electro-

magnetics and physics are studied in this dissertation.

In Chapter 2, a low-frequency stable SIE method for dielectrics, termed

enhanced augmented electric field integral equation (E-AEFIE), is presented.

Motivated by the AEFIE formulation for the perfect electric conductor (PEC),

the internal and external problems are both augmented with the current

continuity equation and re-normalized to eliminate the low-frequency break-

down. A few aspects of this method are studied.

In Chapter 3, E-AEFIE is generalized to conductor problems. The con-

ductive region is simulated as a lossy dispersive medium using a full wave

solver. We investigate the evaluations of the integrals of Green’s function

in lossy media. After comparisons with some other integration methods, we

propose a new method to evaluate such integrals. This method turns out to

improve the accuracy and efficiency. Moreover, the proposed formulation can

be regarded as a generalized impedance boundary condition. It is then used

to solve numerical examples of complex circuit structures to demonstrate the

accuracy and its capabilities.

In Chapter 4, we propose a broadband multilevel fast multiple algorithm

(MLFMA) using a hybridization of the plane wave and the multipole expan-

sions of the Green’s function in the analysis of three-dimensional multi-scale

electromagnetic problems. The diagonal plane wave expansion is used for

low-order harmonics, which captures most of the propagating spectrums,

while the dense multipole expansion is used for high-order harmonics, which

captures most of the evanescent spectrums. By analyzing the errors and

accordingly choosing the numbers of harmonics, the method is free of the

low-frequency breakdown and remains accurate at arbitrary low frequencies.
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Meanwhile, the method reduces to the conventional diagonal FMA as the fre-

quency increases. Therefore, it can be regarded as the generalization of the

conventional dense and diagonal FMAs. Numerical studies in this chapter

show that very high accuracies can be achieved using the method.

In Chapter 5, we review the calculations of the Casimir force using the SIE.

The Casimir force between two objects is expressed in term of the trace of a

matrix, which is directly related to the matrices in the SIE. The Casimir force

equation is derived using the argument principle and a fast calculation scheme

is proposed using the randomized singular value decompositions. Since this

scheme relies on fast computations of the MVP in the SIE, we generalize

the hybrid FMA in Chapter 4 to the imaginary frequencies. As a result, a

complexity of O(N) can be achieved in this fast scheme. Finally, we validate

the method and demonstrate the accuracy of the fast scheme with some

numerical examples.

We finally draw the conclusions in Chapter 6 and propose some possible

future work.
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Chapter 2

An Enhanced Augmented Electric Field
Integral Equation for Dielectric Objects

2.1 Introduction

Among many of the numerical approaches to solve electromagnetic (EM)

problems, the surface integral equation (SIE) method is an efficient one.

The time domain methods, such as the finite different time domain (FDTD)

[1] and the finite element time domain (FETD) [2] methods, require dis-

cretization of the volume and time marching, which are usually numerically

expensive. The finite element method (FEM) and the volume integral equa-

tion (VIE) method [3] can also be used to solve EM problems accurately in

the frequency domain. However, they require uniform volumetric meshes,

which are more difficult to generate than the surface meshes, especially for

complicated and multi-scale structures. Meanwhile, the number of unknowns

increases dramatically for volume problems compared to surface problems.

The SIE method is based on the surface meshes. Therefore, the number of

unknowns is manageable even for very large problems. Although the resul-

tant system matrices are dense since the matrix elements are related to the

Green’s function, fast algorithms to accelerate the matrix vector product can

be adopted to reduce the computational costs in iterative solvers.

In many circuit applications, low-frequency (long wavelength) stable EM

solvers are urgently required for both perfect electric conductor (PEC) and

dielectric structures. However, there is a well-known low-frequency break-

down problem for SIE and FEM. Much effort has been made to tackle this

problem. For SIE, the loop-tree decomposition [7, 8, 24] was proposed to

perform the quasi Helmheltz decomposition. Hence, after proper normaliza-

tions [24], the solenoidal and irrotational currents can be accurately solved

at low frequencies. Similar methodology, namely the tree-cotree splitting

[25], was applied to the finite element method (FEM). These two methods
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introduce basis functions that conform with the properties of the fields or

the equivalent currents. Then the representations of the currents and fields

become more precise. However, searching for the corresponding loop-tree

basis functions can be very expensive, especially for complicated structures

with multiple connections.

The augmented electric integral equation (A-EFIE), obtained by augment-

ing the EFIE with the current continuity equation, offers an elegant way to

re-normalize the EFIE without the need for loop-tree decomposition. As a

result, it eliminates the low-frequency breakdown [14, 26] without increas-

ing the computational cost since the additional cost arise from matrices of

high sparsity. Although there exists an inaccuracy issue with A-EFIE for ca-

pacitive and scattering problems at extremely low frequencies, the enhanced

A-EFIE with the perturbation method serves as the remedy [27, 28].

As for the dielectrics, there are some well-established and widely used

formulations suitable for problems at mid frequencies, such as the combined

field integral equations (CFIE) [9], Poggio-Miller-Chang-Harrington-Wu-Tsai

(PMCHWT) [10, 11] and Müller’s formulations [12]. These formulations are

the weighted summations of electric field integral equations (EFIE) and mag-

netic field integral equations (MFIE) for the internal and external regions.

These formulations avoid the internal resonance problem by effectively shift-

ing the internal resonance frequency to a complex number. For low-frequency

applications, since the wavelength is usually much larger than the structure

size, the internal resonance phenomenon is absent. Therefore, there is no

need to apply the summations of EFIE and MFIE for low-frequency dielec-

tric problems. Instead, only the EFIE or MFIE is required. To avoid the

introduction of the magnetic field excitations and fictitious magnetic charges,

the augmentation technique is applied to EFIE.

A previous work [29] introduces both current and charge in the EFIE and

MFIE and formulates a frequency stable integral equation for conductive and

dielectric objects. In this formulation, the hyper-singular integral operator

can be re-balanced by normalizations by the introduction of charges. It has

been demonstrated that this formulation is stable down to the static limit.

However, it introduces the magnetic charges and the magnetic field excita-

tions are required, while the A-EFIE formulation does not require MFIE.

In this chapter, the A-EFIE formulations are applied to the dielectric ob-

jects in the internal and external regions. The original unknown surface elec-
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tric current is converted to two sets of unknowns: the electric current and

charge. After proper re-normalizations, a better conditioned matrix system

can be formed. To further reduce the condition number and better represent

the electric and magnetic currents, the Chen-Wilton [5, 30] or a similar al-

ternative Buffa-Christiansen (BC) basis function [6, 31] can be introduced.

In this chapter the BC basis function is chosen as it is widely accepted and

used in the EM community. Using this basis function to expand the magnetic

current, the system matrix becomes well-conditioned. For problems with a

large number of unknowns, the mixed-form fast multipole algorithm (FMA)

[32] together with the pre-conditioner is integrated with this formulation for

accelerated computations.

This chapter is organized as such: Section 2.2 summarizes the existing for-

mulations of A-EFIE for PEC. Section 2.3 introduces the new A-EFIE for-

mulation for dielectric objects. The choices of the testing and basis functions

are discussed. Meanwhile, to accelerate the computations, the integrations

of the mixed-form FMA and the pre-conditioner are briefly introduced. This

A-EFIE solver for dielectrics is further validated with numerical results in

Section 2.4. The improvement of the condition numbers and the convergence

are also presented.

2.2 A-EFIE Formulation for PEC

In this section, the A-EFIE formulation for PEC is reviewed. This work

has been extensively studied in [14, 26] and its treatment is similar to [29]

except that MFIE is not required. For PEC structures, only the external

problem needs to be solved by invoking the extinction theorem [33]. To

solve the external electric field integral equation (EFIE) with low-frequency

stability, the augmentation technique is adopted. By adding the current

continuity equation into the formulation, we can re-normalize the equations

to overcome the low-frequency breakdown.

2.2.1 Motivations of A-EFIE

The EFIE formulation is widely used for PEC problems. It, however, breaks

down for low-frequency problems. The reason is due to the imbalance in the
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two operators in the EFIE equation:

iωµ

(∫
S′
dr′g(r, r′) +

∫
S′
dr′
∇∇
k2

g(r, r′)

)
· J(r′) = −Einc(r) (2.1)

The ratio of the frequency scalings in the first and second operators in (2.1)

is O((kL)2), where L is the effective length of the object. For low-frequency

(electrically small) problems, kL→ 0, the two operators are poorly balanced.

It is to be noted that there is a large null space of the divergence-free current

in the second operator. Since∫
S′
dr′∇∇g(r, r′) · J(r′) =

∫
S′
dr′∇g(r, r′)∇′ · J(r′) (2.2)

For small k, the second term (2.1) swamps the first term due to the computa-

tional precision. Therefore the vector potential contribution in the first term

of (2.1) are not well captured. Also due to that the second term dominates

and the null space of the divergence operator in it, the problem becomes

very difficult to solve. A-EFIE serves as a remedy for this by introducing the

current continuity equation into the formulation. Then a re-balance of the

two operators can be achieved.

2.2.2 A-EFIE Formulation for PEC

By introducing the current continuity equation and re-balancing the two

operators in (2.1), we have:

µr

∫
S′
dr′g(r, r′) · J̃(r) + ε−1

∫
S′
dr′∇g(r, r′)ρ̃(r′) = −Einc

η0

(2.3)

and the normalized current continuity equation is:

∇′ · J̃(r′) + k2
0ρ̃(r′) = 0 (2.4)

where the current and charge are normalized as J̃ = ik0J and ρ̃ = c0ρ. This

treatment is equivalent to introducing the normal electric field component as

the unknown [29]. Note that the frequency scalings of the two operators in

(2.3) are O(1) while the unknowns are normalized with the frequency. Using
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the standard Galerkin’s method, (2.3) and (2.4) can be discretized as:[
V D

T ·P
D k2

0I

]
·
[
J̃

ρ̃

]
=

[
−η−1

0 b

0

]
(2.5)

where D is the matrix form of divergence operator, and I is the identity

matrix. The other matrix elements are defined as:

[
V
]
mn

= µr

∫
S

drΛm(r) ·
∫
S′
dr′g(r, r′)Λn(r′) (2.6)

[
P
]
mn

= ε−1
r

∫
S

drhm(r)

∫
S′
dr′g(r, r′)hn(r′) (2.7)

bm =

∫
S

drΛm(r) · Einc(r) (2.8)

where Λ is the normalized RWG basis function and h is the pulse basis

function.

2.2.3 A-EFIE and EFIE

Since A-EFIE is based on EFIE, A-EFIE can be reduced to EFIE in the

matrix form. Using the factorization and inversion of a 2× 2 block matrix:[
A U

V D

]−1

=

[
I 0

−D
−1

V I

]
·
[
B
−1

0

0 D
−1

]
·
[

I −UD
−1

0 I

]
(2.9)

where B is the Schur complement matrix defined as:

B = A−UD
−1

V (2.10)

The inverse of the A-EFIE matrix can then be written as:[
V D

T ·P
D k2

0I

]−1

=

[
I 0

− 1
k20

D I

]
·(V − 1

k20
D
T ·P ·D

)−1

0

0 1
k20

I

 · [I − 1
k20

D
T
P

0 I

]
(2.11)
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Applying this inverse to (2.5), we find:

ik0J =

(
V − 1

k2
0

D
T ·P ·D

)−1

· (−η−1
0 b) (2.12)

c0ρ =
i

k0

D · ik0J (2.13)

where (2.12) is equivalent to EFIE and (2.13) is equivalent to the current

continuity equation. Therefore, solving A-EFIE can be reduced to finding J

from EFIE and then using (2.13) to find ρ.

A further step to avoid the rank deficiency of the matrix in (2.5) at the

static limit is to apply the charge neutrality. In electro-static case, distribu-

tion of charges on PEC surface produces zero field inside the PEC given that

there are no external excitations. This will give rise to a null space of the

matrix (2.5) when k0 → 0. By assuming that the structure is neutral, i.e.∑
i ρi = 0, this null space can be removed. More mathematical discussion of

this issue can be found in [26]. Therefore, a reduced charge formulation can

be written as: [
V D

T ·P ·B
F ·D k2

0I

]
·
[

J̃

ρ̃r

]
=

[
−η−1

0 b

0

]
(2.14)

where ρ̃r has one element less than ρ̃. Matrices B and F are used for charge

neutrality constraints.

2.3 A-EFIE Formulation for Dielectrics

The A-EFIE formulation can be extended to dielectrics. When the object

becomes penetrable, both the internal and external problems need to be

solved. In this section, the equations for the two regions can be formulated

with the extinction theorem. Then the augmentation technique can be ap-

plied to the L operator to eliminate the low-frequency breakdown. The K
matrix,1 however, is ill-conditioned if the divergence conforming RWG basis

function is used as the testing and basis function. The choice of the testing

and basis functions for K is discussed to produce a well-conditioned matrix.

1We will use matrix to mean the matrix form or representation of an operator.
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A preconditioner is also presented here.

2.3.1 A-EFIE Formulation for Dielectrics

By introducing the equivalent magnetic current on the surface, the two EFIEs

are:

Lext(r, r′) · J(r′) + Kext(r, r′) · M(r′) − 1

2
n̂ × M(r) = −Einc(r) (2.15)

Lint(r, r′) · J(r′) + Kint(r, r′) · M(r′) +
1

2
n̂ × M(r) = 0 (2.16)

where the subscripts “ext” and “int” refer to the external and internal oper-

ators with the corresponding Green’s function. The expression of K operator

is the principal value integral:

K(r, r′) ·M(r′) = −
∫
S′
dr′∇′g(r, r′)×M(r′) (2.17)

where the first term is the residue term and the second is the principal

value integral term. The signs of the n̂× I terms differ in (2.15) and (2.16)

due to different signs of residual values for the external and internal regions

problems. Expanding the electric and magnetic currents J and M with

basis functions ΛJ and ΛM , testing the equations with T and applying the

augmentation technique with the reduced unknowns ρr, we arrive at the

matrix equation:

Vext −1
2
n̂× I + Kext D

T ·Pext ·B
Vint

1
2
n̂× I + Kint D

T ·Pint ·B
F ·D 0 k2

0Ir

 ·
 ik0J

η−1
0 M

c0ρr

 =

−η
−1
0 b

0

0

 (2.18)

where the matrix elements are:

[
V
]
mn

= µr

∫
S

drTm(r) ·
∫
S′
edr′g(r, r′)ΛJ

n(r′) (2.19)

[
K
]
mn

=

∫
S

drTm(r) · −
∫
S′
dr′∇′g(r, r′)×ΛM

n (r′) (2.20)
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[
P
]
mn

= ε−1
r

∫
S

dr∇ ·Tm(r)

∫
S′
dr′g(r, r′)∇′ ·ΛJ

n(r′) (2.21)

[
n̂× I

]
mn

=

∫
S

drTm(r) ·
(
n̂(r)×ΛM

n (r)
)

(2.22)

Other matrices and vectors are defined in the same way as those in (2.5).

Note that the testing and basis functions are not specified yet.

2.3.2 Testing and Basis Functions

Equation (2.18) solves the external and internal problems using A-EFIE.

It provides an elegant way to solve dielectric problems at low frequencies.

However, if the testing and basis functions are not chosen appropriately, the

system matrix is ill-conditioned and the problem is still unsolvable. A few

requirements need to be satisfied in order to produce a well-tested, well-

conditioned system matrix. First, the basis functions to expand the elec-

tric and magnetic currents should be divergence-conforming. Other non-

divergence conforming basis functions will produce fictitious line charges

[30]. Second, the external and internal A-EFIEs should be tested with di-

vergence conforming basis functions. This is because the dual space of the

curl-conforming electric field is the divergence-conforming function space [34]

[31].

T ‐

T +

V‐V+

Figure 2.1: RWG divergence conforming basis function on two triangle
patches. The triangles T+ and T− are the positive charge and negative

charge patches; V+ and V− are the vertices of the patches.

The widely used RWG basis function, as shown in Figure 2.1, can be
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normalized. The definition and the divergence of this function are:

Λ(r′) =

 1
2A+ (r′ −V+) if r′ ∈ T+

− 1
2A−

(r′ −V−) if r′ ∈ T−
(2.23)

∇ ·Λ(r′) = h(r′) =

 1
A+ if r′ ∈ T+

− 1
A−

if r′ ∈ T−
(2.24)

where the divergence of it is the pulse basis function h.

Apparently, this basis function is divergence conforming and suitable to be

used as the testing and basis function. This is why the RWG basis function is

widely applied to EFIE and A-EFIE for PEC effectively. Therefore, we can

use the RWG basis function to test the external and internal A-EFIE and to

expand the electric current in (2.18). This will give rise to well-conditioned

matrices V and P. However, there is a testing problem if the magnetic

current is also expanded with the RWG function.

One can write down the matrix element related to the magnetic current

M in (2.20) more explicitly:[
±1

2
n̂× I + K

]
mn

= ±1

2

∫
S

drTm(r) ·
(
n̂×ΛM

n (r)
)

+

∫
S

drTm(r) · −
∫
S′
dr′∇′g(r, r′)×ΛM

n (r′) (2.25)

If T(r) = Λ(r) and ΛM(r) = Λ(r), i.e. both the testing and basis functions

are the RWG basis function, one can observe that the first term in (2.25)

vanishes because Λ(r) · (n̂×Λ(r)) = 0. The second term will be very small

if S and S ′ are very close to each other on a smooth surface. As a result,

the diagonal terms of the matrix [K]nn ≈ 0. The matrix element [K]mn

represents the amplitude of field radiated from n-th patch to m-th patch. It

should be a large scalar number when S and S ′ are close. This contradiction

reveals that using the RWG as the testing and basis function produces a

poorly tested and ill-conditioned matrix K.

This testing issue is solved by keeping the RWG as the testing function

and introducing another divergence-conforming basis function, denoted as Γ,
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to represent the equivalent magnetic current M:

T = Λ, ΛM = Γ (2.26)

In order to maximize Λm(r) ·(n̂× Γn(r)), the function Γ(r) should be almost

orthogonal to Λ(r) [35]. Many efforts have been made to use n̂ × Λ in the

MFIE formulation, although it produces fictitious line current since it is not

divergence conforming. Other types of dual basis functions, such as Chen-

Wilton basis function [5] and Buffa-Christiansen (BC) basis function [6, 31],

can also be used. In this chapter, we use the BC basis function, as shown

in Figure 2.2. It is divergence-conforming and it is almost orthogonal to the

RWG basis function. As a result, the fictitious line current is avoided and

the resulting K is a diagonally dominant and well-conditioned matrix.

Figure 2.2: Buffa-Christiansen (BC) [6] divergence conforming, quasi curl
conforming basis function on a barycentric mesh. The shaded region is the

domain of the basis function of the reference edge (in red). The arrows
indicate the directions and the amplitudes. Note that the Chen-Wilton

basis function [5] is also an alternative.

In summary, the RWG basis function Λ is used as the testing function of

the equations and the basis function of J, while the BC basis function is used

to expand M. In this manner, the matrices V, P, and K are all well-tested

and the system matrix is well-conditioned.
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2.3.3 Preconditioner for Dielectric Formulation

The problem in (2.5) and (2.18) are classified as the generalized saddle point

problem [36, 37]. A preconditioner is generally needed as the convergence

rate is not satisfactory when the iterative solver is adopted for a large-scale

problem. A right preconditioner is employed for this solver. Motivated by the

work in [36, 37], we propose a preconditioning matrix by using a factorization

of a block matrix:[
A U

V D

]
=

[
I 0

VA
−1

I

]
·
[
A 0

0 D−VA
−1

U

]
·
[

I A
−1

U

0 I

]
(2.27)

In (2.18), the inverse of the system matrix can be factorized as:

M
−1

=

[
I −α−1β

0 I

]
·
[
α−1 0

0 ∆
−1

]
·
[

I 0

γ ·α−1 I

]

=

[
α−1 0

0 0

]
+

[
−α−1 · β

I

]
·∆−1 ·

[
−γ · α−1 I

]
(2.28)

where

α =

[
Vext Kext

Vint Kint

]
(2.29)

β =

[
D
T ·Pext ·B

D
T ·Pint ·B

]
(2.30)

γ =
[
F ·D 0

]
(2.31)

and ∆ is the Schur complement matrix:

∆ = k2
0Ir − γ ·α−1 · β (2.32)

Since the matrices α, β and ∆ are dense, and a preconditioner only re-

quires an approximation of the inverse of the system matrix, we use the
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diagonal terms to construct the preconditioner:

α =

[[
Vext

]
diag

[
Kext

]
diag[

Vint

]
diag

[
Kint

]
diag

]
(2.33)

β =

[
D
T ·
[
Pext

]
diag
·B

D
T ·
[
Pint

]
diag
·B

]
(2.34)

Then the inverse of α can be obtained analytically as α is a 2 × 2 block

matrix with each block as a diagonal matrix. After these treatments, M
−1

is

decomposed into sparse matrix multiplications and a summation. One can

solve ∆ ·y′ = x′ with the multifrontal method to achieve the product of ∆
−1

and x′. The size of the matrix that needs to be solved numerically is reduced

from 2e+p to p, where e and p are the numbers of the edges and the patches

respectively. Meanwhile, the number of non-zero elements is reduced. Then

the numerical solution for y′ in ∆ · y′ = x′ becomes more efficient.

2.3.4 Mixed-Form Fast Multipole Algorithm

In order to tackle multi-scale EM problems with a large number of unknowns,

an iterative solver with an accelerated matrix vector product is preferred

over direct solvers. Meanwhile, both the low-frequency and mid-frequency

physics should be captured accurately because multi-scale structures involve

very small details and relatively large geometries. A fast algorithm, termed

mixed-form fast multipole algorithm [32], is adopted. This algorithm is based

on fast multipole algorithm (FMA) and combines the multipole and plane

wave expansions of EM wave adaptively. When the box sizes at low levels

of an octree are small compared to the wavelength (for example, smaller

than 0.1 wavelengths), EM waves are aggregated, translated and disaggre-

gated by multipoles to capture the low-frequency physics. As the box sizes

in higher levels are comparable to the wavelength, the multipole expansions

are converted to the plane wave representations to capture the wave physics.

Therefore, both the small-scale and large-scale parts can be accelerated ac-

curately and efficiently. As for the computational cost, if only multipole

expansions are used, the computational cost of the matrix vector product is

reduced from O(N2) to O(N). If both the multipole and plane wave expan-

sions are involved, the cost is reduced to O(N logN). However, to capture
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the wave physics, the use of plane wave expansion is warranted.

In the matrix equation (2.18), the matrix vector products related to the

dense matrices V, K, and P can be accelerated with the mixed-form FMA,

for both external and internal regions. Other matrices, D, F, B, and Ir, are

highly sparse and the computational cost is O(N). Therefore, the overall

cost of the matrix vector product is either O(N logN) or O(N), depending

on the expansions of the waves and the frequency.

With the mixed-form FMA, problems with over 1 million unknowns can

be solved with an affordable computational expense, as shall be shown in

Section 2.4.

2.4 Numerical Results

In this section, some numerical validations of this method are presented.

Using only the method of moment (MoM), the condition numbers of three

sets of meshes are studied. Then the convergence histories with and without

the proposed preconditioner are compared to show the effectiveness of this

preconditioner. After that, scattering problems are solved and compared

with Mie series and other numerical solvers, which show that accurate results

can be obtained. Moreover, a lossy material problem is presented using this

method. Finally, some other numerical examples with a large number of

unknowns and their computational costs are presented.

2.4.1 Condition Number of the System Matrix

The matrix elements of the system matrix in (2.18) can be filled using MoM.

Then the condition numbers of the system matrices at various frequencies

are computed for three sets of meshes (A, B and C) of a 1 m sphere with

relative permittivity εr = 2.0. Table 2.1 shows the numbers of the edges and

triangles for the meshes.

By sweeping the frequencies from 3 × 10−3 to 3 × 108 Hz, the condition

numbers are recorded. Figure 2.3 shows the condition numbers as a function

of frequency. It is apparent that the system matrices have a constant con-

dition number at low frequencies. This is because the frequency-dependent

parameters of the operators L, K, and P have been moved to the unknowns,
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Table 2.1: Geometry information of the meshes.

Mesh ID Number of Edges Number of Triangles
Mesh A 954 636
Mesh B 2196 1464
Mesh C 4014 2676
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Figure 2.3: The condition numbers of the system matrices as frequency
varies for three sets of meshes.

instead of the matrix elements. Therefore, a relatively small condition num-

ber and a fast convergence rate are guaranteed for low-frequency problems.

As the mesh becomes denser, the condition number of the system matrix

increases due to the spectrum of the L operator [34].

2.4.2 Convergence History

For large-scale problems, an iterative solve is usually used to replace the

direct solver, such as LU decomposition. The computational cost will be

reduced from N3 to N2. Two kinds of iterative solvers, GMRES [38] and

BiCGSTAB [39], are applied to solve the scattering problem of a sphere (mesh

A) excited by the plane wave at 10 Hz. The restart number of the GMRES

solver is set to 30 and GMRES-30 is used to denote this configuration.

The convergence histories using these two iterative solvers are recorded
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Figure 2.4: A comparison of the convergence histories of the GMRES-30
solver with and without the preconditioner for mesh C.
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Figure 2.5: A comparison of the convergence histories of the BiCGSTAB
solver with and without the preconditioner for mesh C.

with and without the proposed pre-conditioner in (2.28). Figures 2.4 and

2.5 show the recorded convergence histories of mesh C. Both comparisons

illustrate a superior convergence performance with the preconditioner. Us-

ing the preconditioner, both iterative solvers converge to a relative error

of 10−6 within 23 iterations, while it takes over 120 iterations without the
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Table 2.2: Numbers of iterations with and without the preconditioner using
GMRES and BiCGSTAB.

Number of Iterations
(with Preconditioning)

Number of Iterations
(without Preconditioning)

Mesh
ID

GMRES-30 BiCGSTAB GMRES-30 BiCGSTAB

Mesh A 23 15 160 124
Mesh B 28 19 230 164
Mesh C 34 24 470 285

preconditioner. It is also validated by numerical experiments, as shown in

Table 2.2, that for a simple structure like a sphere, with the preconditioning,

the number of iterations stays rather stable as the mesh density increases.

However, without preconditioning, dramatic increase in the numbers of iter-

ations is observed. The conditioned and unconditioned system converge to

the same solution, as can be observed from Figure 2.6: the error is about

O(105) smaller than the amplitude of the solution.

2.4.3 Scattering

To validate the accuracy of this formulation, sphere and cube scattering sim-

ulations with the mixed-form FMA accelerations are performed. Both the

plane wave and the point source are used as the excitation source. Radar

cross section (RCS) and near field are computed for the plane-wave excita-

tion. Both results are compared with the corresponding Mie series.

A sphere of 1 m radius and relative permittivity εr = 11.7 (silicon) is

located at the origin. It is discretized into 35,136 edges and 23,424 trian-

gles. Therefore the total number of unknowns is 93,695. The plane wave is

propagating in the z direction and polarized in the x direction. The RCS is

computed on the E-plane (xz plane) and H-plane (yz plane).

GMRES-30 is chosen for this simulation. The relative error tolerance is

set to 10−4. Figure 2.7 shows the simulation and Mie series comparisons at

the E and H planes when excited by the plane wave at 30 Hz. A cube of 1

m3 volume with relative permittivity εr = 12.9 (GaAs) is simulated as well.

There are 12,885 edges and 8,590 triangles in the mesh. Figure 2.8 shows

the comparisons of RCSs at 100 MHz using the A-EFIE solver for dielectrics
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Figure 2.6: A comparison of the solutions to the preconditioned and
unpreconditioned systems.

and the finite element boundary integral (FEBI) solver [40] . Obviously, the

comparisons to analytical solutions and FEBI show a good accuracy of this

formulation.
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Figure 2.7: A comparison of the simulated RCS and the Mie series results
on the electric field plane (E plane) and the magnetic field plane (H plane).
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Figure 2.8: A comparison of the simulated RCS and FEBI results at 100
MHz for a cube.

Both simulation results in Figures 2.7 and 2.8 match well with the Mie

series and other numerical solvers, validating the accuracy of this formulation

at mid and low frequencies. It is to be noted that if the frequency approaches

zero, there exists a low-frequency inaccuracy issue. This problem can be

remedied by the perturbation theory as discussed in [28].

Table 2.3: Computational costs of the periodic-structure problems.
(Simulations are performed on a computer with 6-core Intel Xeon CPU

with 2.30 GHz clock and 64 GB RAM.)

Mesh ID Mesh D Mesh E Mesh F Mesh G
Total Number of Unknowns 317,999 549,503 872,591 1,302,527
Total Number of Iterations 22 23 23 23

Total Iteration Time (s) 476.0 714.0 1870 3024
Time per Iteration (s) 20.7 31.0 81.3 131.5

Peak Memory Usage (GB) 5.3 10.1 11.8 15.6

2.4.4 Periodic Array Scattering

Periodic arrays are also simulated to validate the large-scale stability of this

solver. Multiple copies of spheres with 10 µm radius are aligned periodically

in x, y, and z directions. The period is 30 µm in each direction. Four

sets of meshes, namely D (5 × 5 × 5 elements), E (6 × 6 × 6 elements), F
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(7×7×7 elements) and G (8×8×8 elements) are simulated at the frequency

of 300 GHz under the illumination of the plane wave. Table 2.3 shows the

computational cost of iterative solver with the mixed form FMA acceleration

for each problem. It is seen that problems with over 1 million unknowns can

be solved with reasonable computational costs.

Figure 2.9 shows the electric charge distributions when the periodic array

D is illuminated by the plane wave with x polarization at 300 GHz. It is

observed that the charge distributions of the small spheres of 10 µm radius

look like electric dipoles, which is consistent with the expectation and physics

of small particle scattering.

Figure 2.9: The electric charge distribution on mesh D, excited by a plane
wave at 300 GHz.

2.4.5 Lossy Plasmonic Material

This method can be used for conductive and plasmonic materials if the mate-

rial is not extremely lossy. Otherwise, special treatments of the lossy kernel

integrations are required [41]. Simulations of two closely spaced spheres are

performed to demonstrate the near field coupling of gold particles. The com-

plex permittivity of gold at optical frequency is obtained from the Brendel-

Bormann model [42], for example, εr = −5.33 + 1.97i at 550 nm. In order
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that this simulations is performed at long wavelength regime, the diameters

of the two spheres are 15 nm and they are spaced 1.5 nm away from each

other. A near field profile on z = 0 plane is shown in Figure 2.10. Note that

the total field inside the gold sphere is set to zeros. One can observe that

the dipole-dipole coupling between the two gold particles greatly enhances

the field at the gap region. This solver will be potentially useful to study

plasmonic resonance.

Figure 2.10: The total near field profile of the two gold spheres at
wavelength λ = 550 nm.

2.5 Conclusion

The new A-EFIE formulation for dielectrics is fully developed in this chapter.

The original A-EFIE for PEC is utilized for the external region. For the

internal region, a similar technique is applied. From the BC and Chen-

Wilton basis functions, we choose to use the BC basis function. Then a well-

conditioned system matrix can be formulated. The accuracy of this method

is validated with the comparisons to the Mie series and other numerical

solutions. The proposed pre-conditioning scheme also proves to be effective

and efficient by the numerical results. With the simulations of the periodic

spherical arrays, it can be seen that this is an efficient method for problems

with over 1 million unknowns. With the simulations of the nano-particles,

we demonstrate that this method can be potentially useful for lossy materials

simulations and the study of plasmonic resonance.
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Chapter 3

The Enhanced Augmented Electric Field
Integral Equation for Conductive Structures

3.1 Introduction

Computational electromagnetics (CEM) has been widely used in the simula-

tions of circuit interconnect problems. As the operation frequency increases,

there are needs for CEM tools to capture the low-frequency physics (of which

some CEM methods fail to capture), as well as the wave physics (of which

conventional quasi-static methods fail to capture). To satisfy this broadband

stability requirement, some methods [7, 8, 24, 25, 14] have been developed

for perfect electric conductor (PEC) structures. In these methods, the low-

frequency issues in the integral equation method and finite element method

are well addressed. Among these methods, we are particularly interested in

the augmented electric field integral equation (A-EFIE) since at low- and

mid-frequencies, this method is accurate and stable [14], and no loop-tree

decomposition is required.

As the fine details get increasingly smaller in many circuit interconnect

and nanotechnology applications, the skin effects become an important is-

sue. Therefore, approximating good conductors as PEC is no longer valid.

A simple remedy is to use the Leontovich boundary condition [43], which is

also known as the impedance boundary condition (IBC) [44]. In this approx-

imation model, the equivalent electric and magnetic currents are orthogonal

to each other and related by the surface impedance of the conductor. As a

result, the magnetic current can be expressed in terms of the electric cur-

rent and the pertinent matrix equation becomes simple. Some research has

been done to formulate the IBC solvers [45, 46, 47] with different combina-

tions of the electric field integral equation (EFIE) and magnetic field integral

equation (MFIE). A combination of the Rao-Wilton-Glisson (RWG) basis

function [4] and the Buffa-Christiansen basis functions [6], which is widely
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used in the Calderón pre-conditioners [31, 48], were also used to formulate

IBC solvers. But the study of the application of IBC to the AEFIE has

not been reported. Although the IBC approximation has proved effective in

the high-frequency regime for good conductors, it becomes inaccurate as the

skin depth becomes comparable to the size of the structures, especially in

low-frequency applications and for small scale problems.

When the skin depth becomes large, the localized IBC is not sufficient to

describe the relationship between the electric and magnetic currents. Instead,

a global IBC is required. A global surface impedance (GSI) [49] for the

partial-element equivalent circuit (PEEC) method was proposed to address

this issue in conductors. This method models the cross section using finite

differences to find the global relationship between the electric and magnetic

currents. Therefore, this method is especially useful for structures with fixed

cross section. For arbitrary structures, however, the computational cost will

increase. This method is useful when the skin depth is compared to the

wavelength and the loop-tree decomposition [7, 8] is employed to overcome

the low-frequency breakdown. However, the cases of arbitrary large skin

depth were not discussed.

Another rigorous full wave approach was proposed in [50]. The inter-

nal problem is solved with MFIE and a matrix is generated to represent

the coupling between the electric and magnetic currents. However, the ill-

conditioned issue [34, 51] persists: the basis function and the testing function

are not orthogonal to each other for the MFIE operator, which gives rise to

an ill-conditioned matrix. Meanwhile, in [50], the low-frequency issue has

not been addressed.

Another low-frequency stable formulation [29] can be used to solve dielec-

tric and conductor problems. Alternatively, we can also solve the highly

conductive materials as dispersive media using the AEFIE method for di-

electrics [52, 53]. In this chapter, we will first briefly introduce the for-

mulation of this method. The augmentation technique is applied and the

low-frequency breakdown is properly solved. We then derive a new set of

equations to evaluate the integrals of Green’s function in lossy media. These

equations are motivated by a simple approximation method for Green’s func-

tion in very lossy media. As a result, this method is very accurate in the

evaluation of these integrals. Then we will show that this method can be

regarded as a generalized impedance boundary condition method, since it
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reduces to an IBC formulation if the electric and magnetic currents are as-

sumed coupled locally. Then this method is accelerated with the mixed-form

fast multipole algorithm (FMA) [32], and a preconditioner suitable for saddle

point problems [36]. Finally some numerical examples are presented to vali-

date the method, as well as demonstrating its capabilities of solving complex

problems with a large number of unknowns.

3.2 Methods

To solve the conductor problems, we adopt the formulation from our pre-

vious work: the AEFIE for dielectrics [52]. We will first briefly introduce

the formulation in this section. However, there are some concerns regarding

solving conductors as dispersive dielectric media using this method. First,

the evaluations of the integrals associated with the fast oscillatory and de-

caying Green’s function, which appears in the case of conductors, become

inaccurate using the conventional singularity subtraction method [54, 55]. A

more robust method is proposed to overcome this difficulty. Second, we will

study how this formulation converges to the impedance boundary condition

(IBC) approximation and perfect electric conductor (PEC) cases as the con-

ductivity increases. Then this method will be a general formulation valid

from dielectrics to conductors.

3.2.1 Formulation

The formulation for general dielectrics was presented in [52]. The matrix

equation is:

Vext −1
2
n̂× I + Kext D

T ·Pext ·B
Vint

1
2
n̂× I + Kint D

T ·Pint ·B
F ·D 0 k2

0Ir

 ·
 ik0J

η−1
0 M

c0ρr

 =

−η
−1
0 b

0

0

 (3.1)

where the matrix elements are:

[
V
]
mn

= µr

∫
S

drTm(r) ·
∫
S′
dr′gi(r, r

′)ΛJ
n(r′) (3.2)

29



[
K
]
mn

=

∫
S

drTm(r) · −
∫
S′
dr′∇′gi(r, r′)×ΛM

n (r′) (3.3)

[
P
]
mn

= ε−1
r

∫
S

dr∇ ·Tm(r)

∫
S′
dr′gi(r, r

′)∇′ ·ΛJ
n(r′) (3.4)

[
n̂× I

]
mn

=

∫
S

drTm(r) ·
(
n̂(r)×ΛM

n (r)
)

(3.5)

[b]m =

∫
S′
drTm(r) · Einc(r) (3.6)

and D is the matrix representation of the divergence operator, B is a matrix

that maps from the reduced charge unknowns ρr to the conventional charge

unknowns ρ, F is the reverse mapping matrix [14], and gi(r, r
′) is the Green’s

function, where the subscript i can be ext or int to represent the external

or internal regions, T(r) is the testing function, Λ(r) is the basis function

while the superscript J and M are used to denote the basis function for the

electric current and the magnetic current.

The inner integral in (3.3) is the principal value integral, while the resid-

ual part is absorbed into the identity term, by assuming that the surface is

smooth. In summary, the RWG basis function [4] is used as the testing func-

tion and basis function for J and the Buffa-Christiansen (BC) basis function

[6] is used as the basis function for M. More detailed discussions can be

found in [52].

The matrix equation in (3.1) can be extended to solving conductor prob-

lems, by solving the internal problem as lossy dielectrics. In the next subsec-

tions, we will investigate the evaluations of the inner integrals in the matrix

elements (3.2)–(3.4).

3.2.2 Integral Evaluations

The first equation in (3.1) is the integral equation in the external region,

which is usually dielectric with little or no losses. The integrals in this region

can be accurately calculated using the conventional singularity subtraction

method. The second equation in (3.1) represents the integral equation inside

the object medium. For conductors, assuming non-magnetic, the complex
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wave number k is:

k = ω
√
εµ = k0

√
ε′r + i

σ

ωε0
= k′ + ik′′ (3.7)

If ε′r � σ
ωε0

, k′ ≈ k′′ and k′ ≈ k0

√
σ

2ωε0
.

Then in (3.2)–(3.4), the Green’s function becomes:

g(r, r′) =
1

4πR
eik
′Re−k

′′R (3.8)

where R = |r− r′|. This represents a fast oscillatory and decaying function.

To evaluate the integrals in (3.2)–(3.4) and the subsequent calculations

of the field from J and M, we emphasize on the evaluations of the inner

integral. They are of the form:

I1 =

∫
S′
dr′

eikR

4πR
(3.9)

I2 =

∫
S′
dr′

eikR

4πR
(r′ − q) (3.10)

I3 =

∫
S′
dr′∇

(
eikR

4πR

)
(3.11)

I4 =

∫
S′
dr′∇

(
eikR

4πR

)
× (r′ − q) (3.12)

where q is usually a vertex of the triangle S ′.

3.2.2.1 Conventional Singularity Subtraction

One way to evaluate these is to use the conventional singularity subtraction

method [54, 55]. The singular parts are extracted and evaluated analytically.

The non-singular parts are calculated numerically using quadratures. How-

ever, as will be shown later in Figure 3.2, this approach gives rise to large

errors if the material is highly lossy. This is due to that the singular terms are

not the major contributions to the integrals (3.9)–(3.12), and the evaluations

of the non-singular parts are inaccurate.
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3.2.2.2 Circle Approximation

We can investigate the major contributions to the integrals by making some

assumptions: Assuming that the observation point r lies on the source trian-

gle and k′′ is large compared to the inverse of the triangle size, the integral

domain S ′ can be approximated by a circular domain C ′, which is centered

at r and has a radius of R, i.e.∫
S′
dr′g(r, r′) ≈

∫
C′
dr′g(r, r′) (3.13)

Therefore k′′R→∞, eikR → 0 and∫
C′
dr′g(r, r′) = 2π

∫ R

0

dρρ
eikρ

4πρ
=

i

2k
(3.14)

Similarly, another integral can be approximated as:∫
C′
dr′g(r, r′)(r′ − q) = 2π

∫ R

0

dρρ
eikρ

4πρ
(r′ − q)

=
i

2k
(r− q)

(3.15)

Under the conditions that the observation point r lies inside the source trian-

gle S ′, equations (3.14) and (3.15) can be used to approximate the integrals

I1, I2 in (3.9) and (3.10). By analyzing the residual parts on a smooth sur-

face, the normal component of I3 and the tangential component of I4 can be

found to be:

∓ 1

2
n̂ and ∓ 1

2
n̂× (r− q) (3.16)

When r is on the side which n̂ is pointing to, the negative sign is chosen;

otherwise, the positive sign is chosen.

Although this method is simple, there are some obvious drawbacks. First,

the observation point r has to be chosen on the triangle. Second, the imag-

inary part of the wave number must be very large. This is not the general

case for our problem.

However, this method provides some insight regarding the integrals for

conductive materials. If r resides on the source plane, as the conductivity

increases, the integral of the forms (3.9)–(3.12) should converge to (3.14)–

(3.16). In other words, (3.14)–(3.16) are the major contributions to the
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integrals for conductive materials.

3.2.2.3 Line Integral Method

A line integral result [50] was derived to evaluate the integrals in (3.9)–

(3.12). This method turns out to be efficient and accurate for both lossless

and lossy media. In this method, the surface integral is converted into three

line integrals by coordinate transformations, as derived in [50]. Therefore,

this method is denoted as the line integral method.

However, there are still some singularities in the expression of the line

integrals, which affect the accuracy of the numerical integration. Also it is

not very clear why it is especially useful for integrals of Green’s function in

lossy media.

3.2.2.4 Modified Integral Method

The line integral method can be further simplified to remove the singularities.

As a result, the convergence of the numerical integration is accelerated and

the method becomes more efficient. Meanwhile, after the modifications, it

captures the results in the circle approximation method. The terms in (3.14)–

(3.16) can be extracted. Some extra terms, which act as the corrections to

eqrefeq::approx1–(3.16), can be evaluated numerically using the quadrature

rules. For (3.9), there is a simple expression, as derived in the Appendix A:

I1 =
i

4πk
(I0 − Iα) (3.17)

where

I0 =
3∑

i=1,hi 6=0

∫ θ+i

θ−i

dθeikd (3.18)

Iα =
3∑

i=1,hi 6=0

∫ θ+i

θ−i

dθeikR(θ) (3.19)

Defining some intermediate integrals, such as Iβ, I⊥ and I‖, we can re-write

(3.10)–(3.12) as:

I2 = (r0 − q)I1 +
1

4π
Iβ (3.20)
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I3 =
1

4π

(
I⊥ − I‖

)
(3.21)

I4 =
1

4π
I⊥ × (r0 − q) +

1

4π
(r− q)× I‖ (3.22)

where Iβ, I⊥ and I‖ are defined as:

Iβ =

∫
S′
dr′

eikR

R
ρ(r′) (3.23)

I⊥ = d

∫
S′
dr′

ikR− 1

R3
eikR (3.24)

I‖ =

∫
S′
dr′

ikR− 1

R3
eikRρ(r′) (3.25)

ρ(r′) = r′ − r0, d = r− r0 = ±dn̂ (3.26)

where r0 is the projection of r on the source triangle.

First, in this modified method, some singularities, which appear in the

original line integral method, are removed. For example, in [50], Iα is written

as:

Iα =
3∑
i=1

∫ x+i

x−i

dx
hi

h2
i + x2

eik
√
h2i+d

2+x2 (3.27)

When hi → 0, there is a singularity in the integrand. Then the integrand is

no longer a smooth function and numerical integration could be problematic.

After transforming the integration from x in (3.27) to the angular integral in

(3.19), the singularity is removed.

A comparison of the convergence using different number of quadrature

points in the line integral method and modified method is shown in Figure

3.1. We can observe that using the modified integral method, the values of the

integral converge faster and therefore fewer quadrature points are required,

especially when one of the hi is small. This is because the singularity in

(3.27) is removed in (3.19).
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Figure 3.1: The results of I1 and I2 evaluated with different number of
quadrature points. In this example, the coordinates (in mm) of the triangle
vertices are (0, 0, 0), (0, 1, 0) and (1, 0, 0). The coordinates (in mm) of the

observation point r are (0.49, 0.5, 0.0). The conductivity is 106 S/m and the
frequency is 30 MHz. Top: the amplitude and phase of I1. Bottom: the

amplitude and phase of the y component of I2.

Second, the results can be reduced to those of the circle approximation

method. Note that I0 can be simplified to be a constant, depending on the

location of the projection point r0.
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• If r0 is inside the triangle, I0 = 2πeikd.

• If r0 is on the boundary of the triangle, I0 = πeikd.

• If r0 is outside the triangle, I0 = 0.

When k′′ becomes very large, the integrals (3.19) and (3.23) (see (A.17) in

Appendix A) reduce to zero. Then I1 = i
4πk
I0 and I2 = i

4πk
I0(r0− q), which

are equivalent to (3.14) and (3.15) by assuming d = 0 and r0 on the triangle,

i.e. I0 = 2π. Similarly, (3.25) (see (A.19) in Appendix A) and the first term

in (A.8) are reduced to zero, leaving I3 = ∓ 1
4π
I0n̂ and I4 = ∓ 1

4π
I0n̂×(r0−q),

which are equivalent to (3.16). Therefore, the above integrals of I1, I2, I3

and I4 are reduced to the results of the circle approximation method, if the

observation point r resides on the triangle (d = 0 and r = r0) and the

material is very lossy (k′′ →∞).

To validate the accuracy of the methods, we compare the amplitudes of Ia

using different methods, as shown in Figure 3.2. For low frequencies, k′′ is

small, the singularity subtraction can be used as the benchmark. The results

of the modified method match well with those of the singularity subtraction,

as well as those of the quadrature points methods. The circle approxima-

tion method becomes inaccurate since it is only valid for large k′′. As the

frequency and k′′ increase, the circle approximation can be used as the bench-

mark. The results of the modified method match well with those of the circle

approximation method for k′′h > 10, and the singularity subtraction method

becomes inaccurate in such a regime. For extremely large k′′, the results

using the quadratures start to deviate from the correct results, as the num-

ber of quadrature point decreases. This is due to the difficulties to capture

the I0 term using numerical integration. Therefore, from low to high k′′, the

modified method always gives rise to the accurate results.

In summary, we proposed a robust and accurate method to calculate the

integrals in the method of moments. The singularity is removed from the

original line integral method to improve the accuracy and it can be seen that

this method is equivalent to the simple circle approximation for highly lossy

materials. This method is especially suitable for conductor problems, since

it captures the losses well and converges faster than the line integral method.
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Figure 3.2: A comparison of the amplitude of Ia using different methods:
integrating using 50, 150 and 800 thousand quadrature points, the

singularity subtraction method, the circle approximation method, and the
modified integral method with ten quadratures. The medium is copper
with σ = 5.8× 107 S/m. The frequency is swept from DC to 40 GHz.

3.2.3 PEC and IBC Approximations

As a general method for dielectrics and conductors, this method will converge

to the AEFIE for PEC [14] if the conductivity is infinite. This can be easily

seen from the equations for the matrix elements in (3.2)–(3.5) for the internal

region: If σ →∞, then k′ →∞ and k′′ →∞, the matrix element for V, K,

and P are reduced to zeros, leaving only the identity matrix blocks. Since

the identity matrix block is non-singular, the magnetic current should always

be zero. Then (3.1) is reduced to the AEFIE equation for PEC.

When the conductivity is extremely large, but still finite, the formulation

can be reduced to an IBC formulation. For materials with large conductiv-

ities, the circle approximation will give a good approximation of the matrix

element in (3.1) for the internal problem. The off-diagonal matrix elements

in V, K, and P can be assumed to be zero due to the loss of the Green’s
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function. Therefore,

[
Vint

]
mm
≈ µr

i

2k
〈Tm,Λ

J
m〉 (3.28)

[
n̂× I

]
mm
≈ 〈Tm, n̂×ΛM

m 〉 (3.29)[
Pint

]
mm
≈ ε−1

r

i

2k
〈∇ ·Tm,∇ ·ΛJ

m〉 (3.30)[
Kint

]
mm

= 0 (3.31)

where

〈f, g〉 =

∫
S

drf(r) · g(r) (3.32)

Noticing that εr = k2

k20
and k has large real and imaginary parts in the con-

ductor, we can conclude that
[
Vint

]
mm
�
[
Pint

]
mm

. Therefore, by assuming

µr = 1, the second equation in (3.1) becomes:

〈Tm,
i

k
· ik0J + n̂× 1

η0

M〉 = 0 (3.33)

This equation is equivalent to the simple expression of IBC:

ηJ = n̂×M (3.34)

The above discussions reveal that the proposed method can be regarded as

a generalized impedance boundary condition method [50, 56]. When the

conductivity is extremely large, the formulation is reduced to the IBC for-

mulation similar to [46], where dual basis functions are used to represent the

electric and magnetic currents. As the conductivity decreases, the coupling

between the electric and magnetic current becomes global, as the matrices

for the internal problem become denser.

3.3 Numerical Results

In this section, we first validate the results using two simple examples: a

scattering problem with far field compared to the Mie series, and a skin

depth simulation in a simple transmission line problem. Then by adopting

a suitable fast solver and a pre-conditioner, this method is used to simulate
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complex circuit structures.

3.3.1 Validation

3.3.1.1 Scattering of a Conducting Sphere

A 1 m sphere with εr = 1.5 and µr = 1 is illuminated by a plane wave at

200 MHz. The average size of mesh elements is h = 0.11 m. In order to

validate the accuracy of the proposed method from dielectrics to conductors,

we choose a few values of conductivity: σ = 103 S/m (skin depth δs ≈
0.001 m), σ = 10 S/m (δs ≈ 0.011 m), σ = 0.1 S/m (δs ≈ 0.12 m), σ =

0.01 S/m (δs ≈ 0.68 m), and σ = 0.001 S/m (δs ≈ 6.5 m). The far field is

calculated and compared to the Mie series. As shown in the first figure in

Figure 3.3, all the simulation results match well with the Mie series from fully

penetrable regime (σ = 0.001 S/m) to nearly the PEC regime (σ = 103 S/m).

For σ > 103 S/m, the RCS curves will be very similar to the PEC curve. To

compared with the IBC solutions, the far field for these conductivities are

calculated using IBC Mie series. As shown in the second figure in Figure 3.3,

the IBC solution starts to deviate from the Mie series if σ < 0.1 S/m (or

δs > h). This can be obviously seen from the plots of σ = 0.01 S/m and σ =

0.001 S/m. This example validates the accuracy of the far field calculations

for the dielectric to conductive objects using the proposed method.

3.3.1.2 Skin Depth in a Transmission Line

A simple transmission line model with circular cross-sections is excited by

a delta-gap source at the port, as in Figure 3.4. The conductivity of the

material is set to be σ = 107 S/m. Assuming that the electric current flowing

inside the conductor is proportional to the electric field, we can visualize

the skin depth inside the conductor. The electric field at the cross section

with x = 50 µm is evaluated at different frequencies. As can be seen from

Figure 3.4, at 0.8 GHz the current is fully developed inside the conductors,

while as frequency increases to 6 GHz, the current concentrates near the

surface of the conductor. The observed skin depth roughly agrees with the

calculated skin depth on a planar surface. But the observed skin depth is
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different conductivities using the proposed method and the IBC Mie series.

The solid lines represent the Mie series and the dots represent the
simulated field and the IBC Mie series. The different colors of lines and

dots represent the different conductivities used for the simulations.
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slightly larger than the calculation. For example, the observed skin depth is

2.35 µm and the calculated skin depth on a planar surface is 2.05 µm. These

differences are due to the geometry effects.

3.3.2 Large-Scale Simulations

In order to solve large and complex problems using this method, a multipole

based fast algorithm [57, 58, 59, 60] can be used to accelerate the matrix vec-

tor product. Since the problems we are interested in are mid-size structures

with some fine details (small element sizes compared to the wavelength), the

fast algorithm needs to be accurate and robust for such cases. Therefore,

we choose to use the mixed-form fast multipole algorithm (FMA) [32]. In

this method, the multipoles are used to expand waves at lower level (smaller

boxes), and the plane waves are used to expand waves at higher level (boxes

size larger than 0.15 wavelength). A transition between the two can be per-

formed efficiently as the box size reaches a critical point. For the internal

problem, due to the high conductivities of the examples, only the near inter-

actions of the elements are needed and FMA is not in use. This is because

the Green’s function decays exponentially with e−k
′′R. Then the errors for

dropping the far interaction contributions can be bounded by controlling

the leafy level box size in FMA for a large k′′d, where d denotes the leafy

level box size. A systematic consideration can be found in [61]. Therefore,

sparse matrices are sufficient to store these matrix elements. These matrix

elements can be calculated accurately using the modified method proposed

in this chapter. Otherwise, large errors in the matrix elements will give rise

to failure to convergence or meaningless results.

Moreover, a pre-conditioner is used for the simulations. The form of the

pre-conditioner matrix is the same as that for the dielectrics in [52]. It has

been shown that the pre-conditioner accelerates the convergence greatly for

dielectrics. In the case of lossy media, the matrices for the internal problem

can be regarded as a sparse version of dielectrics, since the Green’s function

decays out quickly at large distances. As a saddle point problem [36, 37],

similar to the problem in [52], this problem can be accelerated with the same

form of the pre-conditioner.

With these techniques, we can simulate complex circuit structures. Three
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Figure 3.4: Simulation results of a transmission line (TL). Top: the TL
model with a excitation port. Bottom: the normalized current flowing at
the cross section of the TL at different frequencies showing skin effects.
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of these structures, from simpler to more complex, are presented in this

section.

3.3.2.1 Two-Layer Circuit Board I

A two-layer circuit board, with a differential trace and ground pads connected

to a ground plane by vias, is simulated, as in Figure 3.5. The metal layers

are assumed to be copper (σ = 5.8× 107 S/m). The background is assumed

to have a relative permittivity of 3.4 and a loss tangent of 0.02. Each layer

of copper is 15 µm thick and the distance between the copper layers is about

30 µm. The total number of unknowns of the structure is about 83,000.

The circuit is excited by a delta-gap source at the ports from 1 GHz to

36 GHz. Then the scattering matrix can be found for this frequency range.

The scattering parameters S12 at these frequencies are plotted in Figure 3.5.

Figure 3.5: Simulation results of the circuit board I. Top: the current
distribution at 8 GHz. Middle: scattering parameters S12 in dB. Bottom:

the real and imaginary parts of the scattering parameters S12.
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3.3.2.2 Two-Layer Circuit Board II

Another more complex two-layer circuit board, similar to circuit board I but

larger in size, is simulated as shown in Figure 3.6. The metal and background

materials are the same as those for circuit board I. The thickness of the metal

layers and the distance between the layers are also the same as for circuit

board I. The scattering parameters S12 are plotted from 1 GHz to 12 GHz.

The total number of unknowns is around 480,000.

Figure 3.6: Simulation results of the circuit board II. Top: the current
distribution at 10 GHz. Middle: the real and imaginary parts of the

scattering parameters S12. Bottom: the phase of the scattering parameters
S12.

3.3.2.3 Four-Layer Circuit Board III

In the last part, we demonstrate a larger and more complex example, with

over 2 million unknowns and a lot of fine details, as shown in Figure 3.7.

Each layer is still assumed to be copper, and the background material is

the same as that in the circuit boards I and II. The top two layers and the
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bottom two layers are close to each other (with 30 µm gap). But as typical

for organic package substrates, there is a large gap (about 750 µm) between

the top and bottom parts. A current distribution at 2 GHz of the simulation

is shown in Figure 3.7. In this case, the iterative solver requires 130 steps to

converge to the solution with a tolerance of 10−2.

Figure 3.7: The current distribution of the circuit board III at 2 GHz.

The above three examples demonstrate the usage of this method to solve

multi-scale problems with a large number of unknowns. In the demonstrated

examples, the fine details in the structures are much smaller than the wave-

length while the size of the geometry is comparable to the wavelength. By

using the proposed method, the multi-scale nature of the problem is well ad-

dressed by the use of the mixed-form FMA and the proposed pre-conditioner.

Therefore, such problems with a large number of unknowns can be efficiently

solved using this method.

3.4 Conclusion

In this chapter, we demonstrate a generalization of the AEFIE for dielectrics

for solving lossy conductor problems. We proposed a novel and accurate

way to evaluate the integrals of Green’s function in lossy media. This ap-

proach is motivated by the simple circle approximation. It is shown that the

proposed method is equivalent to the IBC approximation if the electric and

magnetic current are only locally coupled. Therefore, it can be regarded as

a generalized impedance boundary condition method. Finally, some simple
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numerical examples are first demonstrated to validate the accuracy of the

method. Then some circuit structures are simulated as a demonstration of

the capability of the method for large and complex models.
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Chapter 4

A Broadband Multilevel Fast Multipole
Method Using Plane Wave and Multipole

Hybridization

4.1 Introduction

The fast multipole algorithm (FMA) has been extensively studied for more

than twenty years since its first application in the calculations of the Coulomb

interactions between charged particles [62, 63]. Later this method was ex-

tended to solving the Helmholtz equation in electrodynamic problems [64]

and solving the scattering problem using the integral equation [65, 66]. One

of the most important applications of FMA is to accelerate the matrix-

vector products in the integral equation formulations for electromagnetic

(EM) problems in a multilevel manner [67, 68, 59]. The complexity can be

reduced, for example in the surface integral equation (SIE), from O(N2) to

O(N) in static and quasi-static cases and to O(N logN) in dynamic cases

[57].

The acceleration by FMA is so remarkable that it has aroused plenty of in-

terests in improving the efficiencies and the accuracies in broadband applica-

tions. To achieve this goal, three kinds of expansions of the Green’s function

were proposed under the framework of the FMA: the multipole expansion,

the plane wave expansion and the exponential expansion (also known as the

inhomogeneous plane wave expansion or the spectral representation). The

precursory work [63] was based on the multipole expansion, in which the

translation matrices are dense. The technique of “point-and-shoot” can be

applied to reduce the dense matrices into sparse ones. This approach is par-

ticularly efficient and accurate for static and quasi-static EM problems and

this method is also known as the low-frequency FMA (LF-FMA) or the dense

FMA. For electrodynamic problems, the plane wave expansion was later in-

troduced in [64] and succinctly re-derived in [69] to diagonalize the transla-

tion matrices. The efficiency was further improved by successfully applying
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the Lagrange interpolation [70], which allows for more efficient samplings at

different levels in MLFMA. Other interpolation methods based on the fast

Fourier transform were also studied [71]. This class of FMA schemes is also

known as the mid-frequency FMA or the diagonal FMA. In the exponential

expansion, the Green’s function is explicitly split into the propagating and

evanescent spectra [72]. However, the convergence to the Green’s function

is highly directional, especially at low frequencies. At wave-physics frequen-

cies, a steepest descent path for the integrations can be found to achieve

an optimal convergence. This approach is termed the fast inhomogeneous

plane wave algorithm (FIPWA) [73]. At low frequencies, one can separately

consider six translation directions [74] or design a complex integral path to

capture the deep evanescent wave accurately [75].

The multipole expansion is inefficient at high frequencies since the trans-

lation matrices are dense and a large number of harmonics is required. The

plane wave expansion, on the other hand, suffers from the low-frequency

breakdown due to its failure to capture the evanescent waves. The expo-

nential expansion also requires different treatments at different frequency

regimes. The emerging multi-scale problems [14, 76, 52, 77, 78] call for a

broadband FMA with good accuracies.

A mixed-form FMA was proposed in [32] for broadband simulations. The

multipole expansion is used at the low-frequency regime and the plane wave

expansion is used at the higher-frequency regime. A transformer is employed

to convert between the multipole and the plane wave expansions. An ac-

curacy level of 10−2 can be achieved using a small number of harmonics.

Recently, an enhanced mixed-form FMA with the rotation technique was

proposed to improve the accuracy in the transformation region [79]. Such a

treatment makes the algorithm error controllable in broadband applications.

Another broadband FMA with a new mixed form was proposed in [80].

This method uses the multipole expansion at extremely low frequencies, the

exponential expansion at middle frequencies, and the plane wave expansion

at higher frequencies. High accuracy can be achieved at all frequencies using

this scheme.

A non-directional plane wave algorithm was then proposed [81]. The con-

ventional plane-wave expansion was studied first in ẑ direction and an optimal

integral path was found to make it low-frequency stable. Then a QR-based

method was applied to allow translations in other directions. High accuracy
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can be achieved and the direction dependence issue was eliminated compared

to exponential expansions.

In a recent work, a broadband MLFMA based on the approximated diag-

onalization of the Green’s function was proposed [82]. The formula is based

on the plane wave expansion with the approximations of the Bessel function

and the Hankel function of the first kind. Using this method, an accuracy of

10−2 can be achieved at low frequencies.

In this chapter, we propose a novel hybrid FMA. As opposed to using

different expansions at different frequency regimes, the multipole and the

plane wave expansions are used simultaneously. The plane wave expansion

factorized the low-order harmonics and the multipole expansion captures the

high-order harmonics to better control the accuracy. The rotation technique

is then used to improve the efficiency in the multipole expansion. At low

frequencies, the number of harmonics represented by the plane wave has to

be small and well controlled to avoid the low-frequency breakdown. As the

frequency increases, the number of plane wave harmonics increases, and this

method will eventually reduce to the conventional diagonal FMA at higher

frequencies. The algorithm is therefore stable at all frequencies. The error

can be controlled up to 10−8 and the method is particularly useful when high

accuracies are required.

The chapter is organized as follows: in Section 4.2, we review the neces-

sary background of the dense FMA and the diagonal FMA, followed by the

formulation of the proposed hybrid FMA. The error analysis is performed to

control the accuracy and the rotation technique is briefly introduced for effi-

ciency improvements. In Section 4.3, we present the simulation errors of the

algorithm for the worst cases and some general application cases. Then the

algorithm is applied to an integral equation formulation to solve EM scatter-

ing problems at a very low frequency and a higher frequency for numerical

validations. We finally draw a conclusion in Section 4.4.

4.2 Methods

In this section, we propose the formulation for the hybrid FMA. Brief reviews

of the diagonal plane wave expansion and the dense multipole expansion

are given, followed by the derivations of the proposed method and some
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numerical details.

4.2.1 Reviews of the Conventional FMA

In this section, we briefly review the diagonal FMA using plane waves and the

dense FMA using multipoles. The reviews and the discussions will motivate

the novel hybridization scheme in this chapter.

4.2.1.1 The Diagonal FMA Using Plane Waves

The diagonal FMA utilizes the addition theorem, in which the scalar Green’s

function is expressed as:

eikrij

rij
= ik

∞∑
l=0

(−1)l(2l + 1)jl(kd)h
(1)
l (krmn)Pl(d̂ · r̂mn) (4.1)

where the vectors are defined as: rij = ri − rj, d = rim + rnj and d < rmn.

The functions jl, h
(1)
l and Pl are the spherical Bessel function, spherical

Hankel function of the first kind and the Legendre polynomial of the order l

respectively. The plane wave expansion is realized by using:

jl(kd)Pl(d̂ · r̂mn) =
1

4πil

∫
d2k̂eik·dPl(k̂ · r̂mn) (4.2)

Truncating the summation in (4.1) to a finite number L and swapping the or-

ders of the summation and the integral, the Green’s function is approximated

as:
eikrij

rij
≈ ik

∫
d2k̂eik·rim · α(L−, rmn) · eik·rnj (4.3)

where

α(L−, rmn) =
1

4π

L∑
l=0

il(2l + 1)h
(1)
l (krmn)Pl(k̂ · r̂mn) (4.4)

With the interpolation techniques [70, 71], a complexity of O(N logN) can

be achieved at mid frequencies.

The factorization of the Green’s function in (4.3) becomes inaccurate at

low frequencies due to two major reasons. First, as k → 0, h
(1)
l (krmn) →

(krmn)−(l+1). The higher-order terms swamp the contributions from the low-

order terms in the summation in (4.4). Second, the plane wave representa-
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tions of the spherical Bessel function in (4.2) becomes numerical unstable.

This is because the integrand at the right-hand side of (4.2) is of the am-

plitude O(1), while at the left-hand side, jl(kd) → (kd)l and becomes ex-

ponentially small with respect to l at low frequencies. Cancellations at the

right-hand side become increasingly difficult to converge to the small value

at the left-hand side.

The failures at low frequencies in (4.3) can be physically interpreted as the

difficulties in capturing the evanescent waves using the plane wave expansion.

These evanescent waves, at low frequencies, are encapsulated largely in the

higher-order terms at the right-hand side of (4.1). The higher-order terms

become fast oscillatory in the angular direction since Pl(d̂ · r̂mn) becomes

more oscillatory for higher orders. Therefore they become faster decaying

in the radial direction. However, the low-order terms, which captures most

of the propagating waves, can still be represented by plane waves at low

frequencies. In order to capture the evanescent waves accurately, the dense

FMA can be used.

4.2.1.2 The Dense FMA Using Multipoles

The low-frequency-stable dense-matrix multipole expansions of the Green’s

function is [13]:

eikrij

rij
= ikβ(rip) · β(rpm) ·α(rmn) · β(rnq) · β(rqj) (4.5)

The right-hand side of (4.5), from right to left, reads radiation pattern β(rqj),

aggregation β(rnq), translation α(rmn), disaggregation β(rpm) and receiving

pattern β(rip). The matrix elements are indexed by the orders of the spher-

ical harmonics L = (l,m). The explicit expressions of the elements in β and

α are:

βL′,L(r′′) =
l+l′∑

l′′=|l−l′|

4πi(l
′+l′′−l)AL,L′,L′′ · Yl′′,m−m′(θ′′, φ′′)jl′′(kr′′) (4.6)

αL′,L(r′′) =
l+l′∑

l′′=|l−l′|

4πi(l
′+l′′−l)AL,L′,L′′ · Yl′′,m−m′(θ′′, φ′′)h(1)

l′′ (kr′′) (4.7)
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where AL,L′,L′′ is the Gaunt coefficient, which is non-zero only when l+ l′+ l′′

is even [33, pp. 591-596]. The radiation pattern is a column vector with

l = m = 0 and the receiving pattern is a row vector with l′ = m′ = 0.

Equation (4.5) denotes a two-level FMA. It can be easily generalized to

multilevel by further factorizing the radiation and receiving patterns:

β(rip) = β(ris) · β(rsp) (4.8)

β(rqj) = β(rqt) · β(rtj) (4.9)

These factorizations will be useful in the multilevel generalizations of the

hybrid scheme.

The dense FMA involves the products of dense matrices and vectors. It

becomes computationally inefficient at high frequencies when the sizes of the

matrices increase due to the needs of more multipole harmonics. The evanes-

cent waves at low frequencies can be well captured by accurately calculating

the high-order harmonics. Hence it can be used for the Green’s function

factorization with high accuracies.

4.2.2 A Review of the Diagonal FMA Using Inhomogeneous
Plane Waves

To have a complete review of the conventional expansion of FMA, we will re-

view the diagonal fast inhomogeneous plane wave algorithm (FIPWA). Since

this method relies on the choices of the integration path, we will discuss the

extensions of this method to a general complex wave number k in this section.

4.2.2.1 Derivation of the Fast Inhomogeneous Plane Wave Algorithm

In FIPWA, the Green’s function is factorized with the plane waves by lever-

aging the Weyl identity [33]:

eikr

r
= i

∫ ∞
0

dkρ
kρ
kz
J0(kρρ)eikz |z| (4.10)
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where the Bessel function of 0-th order J0(kρρ) can be represented with plane

waves in the cylindrical coordinate:

J0(kρρ) =
1

2π

∫ 2π

0

dφeikρρ cos(φ−β) (4.11)

and the angle β is arbitrary.

Plugging (4.11) into (4.10), the plane wave expansion of the Green’s func-

tion is:
eikr

r
=

i

2π

∫ 2π

0

dφ

∫ ∞
0

dkρ
kρ
kz
eikρρ cos(φ−β)+ikz |z| (4.12)

Apparently, for z > 0, the exponent of the integrand in (4.12) becomes

ikρρ cos(φ − β) + ikzz = ik · r. The vector k is defined with the amplitude

k and the angles in the spherical coordinate (θ, φ). The vector r is defined

with the cylindrical coordinate vector ρ = (ρ, β) and z. The inner integral in

(4.12) is over kρ, and it can be converted to an integral over complex angle

γ with the following change of variables:

kρ = k sin γ kz = k cos γ (4.13)

Then the inhomogeneous plane wave expansion becomes:

eikr

r
=
ik

2π

∫ 2π

0

dφ

∫
SIP

dγ sin γeikρ cos(φ−β) sin γ+ik|z| cos γ (4.14)

The integration path of γ is the Sommerfeld integration path (SIP) deter-

mined by (4.13). The SIP depends on the amplitude and phase of k when k

is complex. In Figure 4.1, the SIPs can be found for a fixed |k| with varying

phase angle of complex wave number k. The integral path parallel to the

real axis captures the propagation waves and the integral path parallel to

the imaginary axis captures the evanescent waves.
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Sommerfeld Integration Path (SIP)

Figure 4.1: The SIPs for different angles of k with fixed amplitude |k|.

We define the integration of interest, the inner integral in (4.14), as:

I(φ) =

∫
SIP

dγ sin γeikρ cos(φ−β) sin γ+ik|z| cos γ (4.15)

The convergence rate along SIP is slow. We need to find the steepest descent

path (SDP) by studying:

I(φ) =

∫
SIP

dγf(γ)eh(γ) (4.16)

where

f(γ) = sin γ h(γ) = ik(ρ cos(φ− β) sin γ + |z| cos γ) (4.17)

The function h(γ) is a phase of plane wave k in the direction of r. The vector

k = (k, γ, φ) in the spherical coordinate, and r = (ρ, β, |z|) is the cylindrical

coordinate:

ik·r = i(k sin γ cosφ, k sin γ sinφ, k cos γ)·(ρ cos β, ρ sin β, |z|) = h(γ) (4.18)

Since:

h(γ) = ikA cos(γ − γ0) (4.19)
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where:

A =
√
ρ2 cos2(φ− β) + z2 γ0 = tan−1

(
ρ cos(φ− β)

|z|

)
(4.20)

The stationary point of h(γ) is γ0 with h′(γ0) = 0. The SDP requires:< [h(γ)− h(γ0)] ≤ 0

= [h(γ)− h(γ0)] = 0
(4.21)

By letting γ = γR+ iγI and k = kR+ ikI for a general complex wave number:

< [h(γ)− h(γ0)] = kR sin(γR−γ0) sinh γI−kI cos(γR−γ0) cosh γI+kI (4.22)

= [h(γ)− h(γ0)] = kR cos(γR−γ0) cosh γI−kI sin(γR−γ0) sinh γI+kR (4.23)

-0.5 -0.25 0 0.25 0.5
[ ]
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k = 2

Steepest Descent Path (SDP)

Figure 4.2: The SDPs for different angles of k with fixed amplitude |k| and
γ0 = π

4
.

According to (4.21) - (4.23), the SDPs for a general complex k can be

found as in Figure 4.2. When kR 6= 0 and kI = 0, the SDP satisfies:

cos(γR − γ0) cosh γI = 1 (4.24)
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When kR = 0 and kI 6= 0, the SDP satisfies:

sin(γR − γ0) sinh γI = 0 (4.25)

Along the path γR = γ0,

< [h(γ)− h(γ0)] = kI(1− cosh γI) ≤ 0 (4.26)

which gives the SDP. Along the path γI = 0,

< [h(γ)− h(γ0)] = kI(1− cos(γR − γ0)) ≥ 0 (4.27)

which gives the exponential growth path away from γ0.

In order to convert the integral along SIP into an integral partially along

the SDP, we change the integration path from the SDP to the modified-SDP

(m-SDP) by adding the path along the real axis from 0 to γ0 and taking the

lower half of the SDP, as shown in Figure 4.3.

0 0.1 0.2 0.3 0.4 0.5
[ ]

6

5

4

3

2

1

0

[
]

k = 0k = 6k = 3k = 2

Modified SDP

Figure 4.3: The modified SDPs (m-SDPs) for different angles of k with
fixed amplitude |k| and γ0 = 0.

Then: ∫
SIP

=

∫
m-SDP

(4.28)
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where

m-SDP = Γ1

⋃
Γ2, Γ1 = [0, γ0], Γ2 = [γ0 − i0, γ0 − i∞] (4.29)

The Green’s function expansion becomes:

e−kIr

r
=
−kI
2π

∫ 2π

0

dφ

∫
m-SDP

dγ sin γeh(γ) (4.30)

=
−kI
2π

∫ 2π

0

dφI(φ) (4.31)

and

I(φ) = I1(φ) + I2(φ) =

∫
Γ1+Γ2

dγ sin γeh(γ) (4.32)

where h(γ) = −kIA cos(γ − γ0) and

I1(φ) =

∫
Γ1

sin γeh(γ) =

∫ γ0

0

dγ sin γe−kIA cos(γ−γ0) (4.33)

I1(φ) gives a real number.

I2(φ) =

∫
Γ2

dγ sin γeh(γ) (4.34)

=− i
∫ +∞

0

dγI sin(γ0 − iγI)e−kIA cosh γI (4.35)

=− cos γ0

∫ ∞
0

dγI sinh γIe
−kIA cosh γI (4.36)

− i sin γ0

∫ ∞
0

dγI cosh γIe
−kIA cosh γI (4.37)

One trick can be used for imaginary wave number: since the left-hand side

of (4.31) is purely real, the right-hand side of (4.31) should be purely real.

Therefore, the imaginary part of the φ integral of I2(φ) should vanish, i.e.∫ 2π

0

dπ sin γ0

∫ ∞
0

dγi cosh γie
−kIA cosh γI = 0 (4.38)

Then ∫ 2π

0

dφ (I1(φ) + I2(φ)) =

∫ 2π

0

dφ (I1(φ) + I3(φ)) (4.39)
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where

I3(φ) = cos γ0

∫ ∞
0

dγI sinh γIe
−kIA cosh γI = cos γ0

∫ ∞
0

d cosh γIe
−kIA cosh γI

(4.40)

Observing that the integrand of I1 decays exponentially with a decay rate

of −kI cos(γ − γ0), the evanescent depth is of the same order of 2π
kI

. We call

it the shallow evanescent wave. For I2 and I3, the decay rate is −kI cosh γI ,

which is much faster than that of I1. We can call it the deep evanescent

wave.

The numerical evaluation of I1 is usually not a problem. However, I3 is

problematic for numerically evaluations: the infinite integral from 0 → ∞
can be truncated to 0→ γt such that the remainder is small.

Since the remainder is:∫ ∞
γt

d cosh γIe
−kIA cosh γI =

e−kIA cosh t

kIA
(4.41)

Assuming kIA ∼ kIa, γt can be determined with a given tolerance ε:

γt = cosh−1

(
− log(kIa) + log ε

kIa

)
(4.42)

when kIa is small, γt needs to be chosen large, while when kIa is large, γt

may not even be required since the I3 integral is smaller than ε.

Therefore the deep evanescent wave is difficult to evaluate for low-frequency

problems. The unit-less parameter a is a function of the transition distance

and the wavelength. In a typical FMM oct-tree structure, the value of a in

a level will be doubled in its parent level. Therefore, the quadrature point of

γI in (4.40) is difficult to choose.

The difficulties of choosing the quadrature points of γ is due to that the

integrand in (4.14) is nonlinear function of γ.

Recall that in (4.11):

J0(kρ sin γ) =
1

2π

∫ 2π

0

dφeikρ sin γ cos(φ−β) (4.43)

where the angle β is arbitrary and can even be a function of γ. We can
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change the variables, such that:

β = φr + β′ (4.44)

With β′ defined as:

cos β′ =
1

sin γ
sin β′ =

i cos γ

sin γ
(4.45)

Now β′ is a complex number function of γ.

sin γ cos(φ− β) = cos(φ− φr) + i sin(φ− β) cos γ (4.46)

And (4.43) becomes:

J0(kρ sin γ) =
1

2π

∫ 2π

0

dφeikρ cos(φ−φr)−kρ sin(φ−φr) cos γ (4.47)

With this new expression of J0(kρ sin γ), the Green’s function can then be

written as:

eikr

r
=
ik

2π

∫
Γ

dγ sin γ

∫ 2π

0

dφeikρ cos(φ−φr)−kρ sin(φ−φr) cos γ+ikz cos γ (4.48)

We can define the ordinary vectors in Cartesian coordinate as:

kc =

k cosφ

k sinφ

0

 ρc =

ρ cosφr

ρ sinφr

0

 (4.49)

and

ke =

 ik sinφ

−ik cosφ

k

 r =

ρ cosφr

ρ sinφr

z

 (4.50)

The expansion of the Green’s function then becomes:

eikr

r
=
ik

2π

∫
Γ

dγ sin γ

∫ 2π

0

dφeikc·ρceike·r cos γ (4.51)
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4.2.3 Formulation of the Hybrid FMA

From the discussions in Sections 4.2.1.1 and 4.2.1.2, it is clear that the diago-

nal plane wave expansion of FMA failed to capture the high-order harmonics

at low frequencies and the dense multipole expansion is inefficient as the fre-

quency increases. We proposed a novel hybrid scheme such that the low-order

harmonics are factorized with the plane wave and the high-order harmonics

are factorized with the multipole. By splitting the order l into two parts, the

Green’s function is then written as:

eikrij

rij
≈ ik

L0∑
l=0

Ipw
l + ik

Lm∑
l=L0+1

Imp
l (4.52)

where “pw” stands for plane wave and “mp” stands for multipole. The plane

wave contributions to the Green’s function can be written in the same manner

of (4.3):
L0∑
l=0

Ipw
l = ik

∫
d2k̂eik·rim · α(L0, rmn) · eik·rnj (4.53)

The maximum order L0 for the plane waves needs to be carefully determined

so that the algorithm does not breakdown at low frequencies. The second

term in (4.52) includes higher-order contributions up to the order Lm, which

should be determined to bound the error.

The higher-order contributions can be represented by the multipole ex-

pansion. The multipole representations can be derived by studying the con-

nections between (4.1) and (4.5). In the addition theorem (4.1), high-order

contributions are:

Lm∑
l=L0+1

(−1)l(2l + 1)jl(kd)h
(1)
l (krmn)Pl(d̂ · r̂mn) (4.54)

Applying the addition theorem for the Legendre polynomials:

Pl(d̂ · r̂mn) =
4π

2l + 1

l∑
m=−l

Ylm(θd, φd) · Y ∗lm(θmn, φmn) (4.55)
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Equation (4.54) becomes:

Lm∑
l=L0+1

Imp
l =

L0<l≤Lm∑
l,m

4π(−1)ljl(kd)Ylm(θd, φd)

·h(1)
l (kD)Y ∗lm(θmn, φmn)

(4.56)

Letting d = rim + rnj, we have [33, pp. 594]:

jl(kd)Ylm(θd, φd) =
∑
l′m′

Yl′m′(θim, φim)jl′(krim)·∑
l′′

4πil
′+l′′−lYl′′,m−m′(θnj, φnj)jl′′(krnj)AL,L′,L′′

(4.57)

By changing of variables m′′ = m′ −m, the summation of m is transformed

into the summation of m′′. Changing the orders of the summations and

applying the conjugate relation of the spherical harmonics:

Y ∗lm(θ, φ) = (−1)mYl,−m(θ, φ) (4.58)

Equations (4.56) can be written as follows in (4.59).

Lm∑
l=L0+1

Imp
l =

∑
l′m′

∑
l′′m′′

2
√
πYl′m′(θim, φim)jl′(krim)︸ ︷︷ ︸

receiving pattern element

·

2
√
π(−1)l

′′
Y ∗l′′m′′(θnj, φnj)jl′′(krnj)︸ ︷︷ ︸

radiation pattern element

·

Lm∑
l=L0+1

4πil
′+l−l′′Yl,m′′−m′(θmn, φmn)h

(1)
l (krmn)(−1)m

′AL,L′,L′′︸ ︷︷ ︸
translation element

(4.59)

In (4.59), the first two brackets are the elements of the receiving pattern and

the radiation pattern as defined in (4.6). Also noticing that:

AL′′,L′,L = (−1)m
′AL,L′,L′′ (4.60)

the third bracket is similar to the element of the translation matrix defined

in (4.7). Therefore, we can write the high-order contributions in terms of the
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multipole expansion as:

L∑
l=L0+1

Imp
l = β(rim) · α̃(L+

0 , rmn) · β(rnj) (4.61)

Since l is bounded within [L0+1, Lm], the matrix element of α̃(rmn) is slightly

modified from (4.7) as:

α̃L′,L(L+
0 , r

′′) =
Lm∑

l′′=L0+1

4πi(l
′+l′′−l)AL,L′,L′′ ·

Yl′′,m−m′(θ
′′, φ′′)h

(1)
l′′ (kr′′)

(4.62)

The matrix elements of β are the same as defined in (4.6).

Two ways can now be used to determine the size of β by comparing the

upper bounds of the summation in (4.7) and (4.62). The more accurate

approach is to let Lβ, the maximum harmonic order of β, be Lm. Another

more efficient approach is by letting Lβ = dLm/2e, where d·e denotes the

ceiling function. Then the order of β is reduced by half and the size of the

matrices β is significantly reduced compared to the first approach.

eikrij

rij
≈ ik

∫
d2k̂eik·rim · α(L−0 , rmn) · eik·rnj︸ ︷︷ ︸

plane wave expansion

+ ik

(
β(rim) · α̃(L+

0 , rmn) · β(rnj)

)
︸ ︷︷ ︸

multipole expansion

(4.63)

ε(L0) =

∣∣∣∣∣1−
∫
d2k̂eik·rim · α(L−0 , rmn) · eik·rnj∑L0

l=0(−1)l(2l + 1)jl(kd)h
(1)
l (krmn)Pl(d̂ · r̂mn)

∣∣∣∣∣ (4.64)

where d = rim + rnj.

With (4.52), (4.53) and (4.61), the hybrid FMA can be formulated as in

(4.63). It can be easily generalized to multilevel by further factorizing the

plane wave in the plane wave expansion term and leveraging (4.8) and (4.9)

in the multipole expansion term. The radiation pattern, receiving pattern,

aggregation and disaggregation are still the same as the conventional diagonal

and dense FMA. The order splitting appears only in the translations α, which
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facilitates the implementations with an existing FMA code. The splitting

boundary L0 and the truncated order Lm are then to be determined to achieve

a target accuracy.

4.2.4 Determining L0 and Lm

The splitting boundary L0 is used to avoid the low-frequency breakdown of

the plane wave expansion such that the numerical error defined in (4.64) is

bounded. As k becomes smaller, the error becomes increasingly large for a

large L0. The numerical reasons for this are due to the small values of jl and

large values of h
(1)
l , as discussed in Section 4.2.1.1. One way to determine

L0 is to avoid the amplitude of the left-hand side in (4.2) from dropping

below the numerical noise N . The reason that L0 is not determined the by

the value of h
(1)
l is because the argument of jl is smaller than the argument

of h
(1)
l . Therefore jl decays faster than hl growth with respect to l. The

numerical stability (4.2) becomes more significant.

Since |Pl(d̂ · D̂)| ∼ O(1), we can let:

L0 = max{l : |jl(ka)| > N} (4.65)

where k is the wave number and a is the oct-tree box size. For double-

precision floating numbers, N can be as low as 2.2 × 10−16. However, the

aggregation and disaggregation distance can be small compared to a, which

makes it difficult to estimate the numerical error analytically at this stage.

Instead, we performed a numerical test for a proper choice of N . Five hun-

dred points are randomly drawn from two z-axis aligned boxes (the box

length a = 1 m and center-to-center distance rmn = 2 m) respectively. These

500 × 500 combinations of points are used as the source and field points

to validate the results. The summation at the right-hand side of (4.64) is

calculated analytically and the integral is computed with the numerical inte-

gration. The value of ka is swept from 10−6 to 10−1 for different values of N .

The statistical mean relative errors are plotted in Figure 4.4 for N = 10−10.

We can see that the maximum mean error is 1.12× 10−5. Then the bounded

relative errors are collected for different values of N and are plotted in Figure

4.5.
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Figure 4.4: The mean relative error versus ka at the low-frequency regime
with L0 determined by (4.65) for points randomly chosen from the two

boxes. The numerical noise N = 10−10.
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source-field points versus the numerical noise N . The integral on the Ewald
sphere is evaluated using nθ = L0 + 2 quadrature point in θ direction and

nφ = 2(nθ + 1) in φ direction.
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Apparently N should be chosen larger than 10−13 to achieve an estimable

error, since the error decreases linearly with N in the log-space. Figure 4.5

can then be used to determine N for a given accuracy level ε:

N ≈ C

ε
(4.66)

where C is a small constant, which highly depends on the samplings of the

quadrature points in the integral in (4.64). In our case, C = 10−15. Together

with (4.65) and (4.66), L0 can be found.

The truncate number Lm is determined to bound the error of the approx-

imation in the Green’s function in (4.63). Since the error of the plane wave

expansion can be bounded by the determination of L0, and the multipole ex-

pansion is proven equivalent to the addition theorem in (4.59), the problem

reduces to the determination of truncation number in the addition theorem

in (4.1). The relative error can be estimated as [81]:

ε ≈ nka(2Lm + 3)
∣∣∣jLm+1(kd)h

(1)
Lm+1(nka)

∣∣∣ (4.67)

where N = n− 1 is the number of buffer boxes. In the worse case scenario,

d =
√

3a. It should be noted that (4.67) provides a loose bound of the error

since the Legendre polynomial is dropped from the addition theorem in (4.1)

and the cancellations of the higher-order terms are not considered.

At low frequencies (ka < 1), (4.67) reduces to the static approximation

equation [63, 32]:

Lm =
d0

log(na/d)
− 1 (4.68)

where d0 = log(1/ε) and Lm becomes a constant of ka.

At higher frequencies (ka � 1), (4.67) reduces to the excess bandwidth

equation [57, Ch. 3, pp. 86-88]:

Lm = kd+ 1.8d
2
3
0 (kd)

1
3 (4.69)

Therefore, with (4.67) to (4.69), the truncate number Lm can be determined

given a target accuracy ε.
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4.2.5 Multilevel and Multi-Scale Considerations

For a multi-scale problem, ka covers a wide range at different levels of the oct-

tree. As ka increases, more plane wave modes will be used in the factorization

of the Green’s function. At the low-frequency regime, Lm keeps a constant

of ka and it increases in higher-frequency regimes.

Given a target accuracy ε, one can use (4.65) and (4.66) to find L0 and

use (4.67)-(4.69) to find Lm for all ka. We can find a box size aT , at which

L0 = Lm. This is the transition box between the hybrid FMA and the

conventional plane wave FMA. A hybridization of the multipole and plane

wave expansions are used for a < aT , while only the plane wave expansion is

used for a > aT .

In Table 4.1, some values of kaT are shown for different accuracy levels and

different numbers of buffer boxes. In this case, Lm is determined with d = a.

Although it is not the worst case, it suffices to control the errors for engineer-

ing applications without increasing the computational costs significantly, as

will be shown in Section 4.3.2 and Table 4.3.

Table 4.1: A table of the transition box sizes (kaT ), the number of modes
(Lm and L0) and the number of harmonics of β (Lβ = dLm/2e).

Accuracy ε N kaT Lm & L0 Lβ

1e-3
1 0.90 11 6

2 0.15 7 4

1e-4
1 2.21 14 7

2 0.57 9 5

1e-5
1 5.23 19 10

2 1.37 11 6

1e-6
1 10.59 26 13

2 3.61 15 8
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4.2.6 Rotation for Multipole Expansions

It is apparent that, in order to achieve a high accuracy, many multipole

harmonics are needed, especially at low frequencies when L0 is small. A

rotation technique can be applied to reduce the number of operations from

L4
m to L3

m [79].

In this technique, the translation matrices α and β are factorized using

the sparse rotation matrices D
T

and D, such that:

τ (r) = D
T

(θ, φ) · τ (ẑrz) ·D(θ, φ) (4.70)

where τ can be β or α̃. As a result, the matrices for z direction translation

become block-diagonal and the computational cost is reduced. This tech-

nique is incorporated in the proposed method. More details can be found in

[57, Ch. 5, pp. 184-189].

4.3 Numerical Results

In this section, we first demonstrate the accuracy of the proposed method us-

ing point-to-point testing for the single-level worse case and some multi-level

application cases. Then this method is applied to the A-EFIE formulation

to solve electromagnetic scattering problems.

4.3.1 Single-Level Worst Case

When the field and source points are located at the corners to the cube boxes,

as shown in Figure 4.6, the error is maximized. The distance D is related

to the number of buffer boxes. The worse simulation errors of these source-

field points are found for a range of frequencies, from ka = 10−6 (very low

frequency) to ka = 1 (middle frequency). In this case, the truncate number

Lm is determined with d =
√

3a together with the number of buffer boxes

N .

In Figure 4.7, the worst relative errors with one buffer box, D = 2a, are

plotted for accuracy levels from 10−4.5 to 10−3. The simulation errors are

very closed to the target accuracies. In Figure 4.8, the results with two

buffer boxes, D = 3a, are plotted for accuracy levels from 10−8 to 10−5.
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Figure 4.6: The worst case for single-level FMA calculations.

Compared to the case of the two buffer boxes, it requires a large Lm to

achieve a high accuracy when there is only one buffer box. Therefore, it is

more practical to set the target accuracy lower when only one buffer box is

in use. Both simulation results demonstrate that the accuracies can be well

controlled using the proposed method.

4.3.2 Multilevel Application Cases

We further apply the method to multilevel simulations. One of the 85, 000

nodes on a sphere surface (radius = 1 m) is used as the source point and

others are used as the field points. The exact scalar Green’s functions are

compared with the simulated Green’s function using the proposed multilevel

hybrid FMA.

Since this setup does not necessarily include the worse case, we use d =√
2a and d = a to determine the truncating number Lm respectively. In these

two cases, the maximum and the mean relative errors are tabulated in Table

4.2 and Table 4.3.

Table 4.2 shows that with d =
√

2a and the target accuracy level of ε =

10−8, even the maximum relative error is bounded near ε, and the mean

error is well below it. In Table 4.3, a lower accuracy ε = 10−5 and d = a are

applied in the simulations. Although the maximum error is larger than ε, the

mean error is bounded below the target, which makes it applicable for most

engineering applications. From Tables 4.2 and 4.3, the simulation results

demonstrate that the errors are stable and well-controlled in the multilevel

simulations.
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Figure 4.7: The simulated worst-case relative errors with one buffer box
(D = 2a) and the target accuracies of 10−3, 10−3.5, 10−4, and 10−4.5.
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Figure 4.8: The simulated worst-case relative errors with two buffer boxes
(D = 3a) and the target accuracies of 10−5, 10−6, 10−7, and 10−8.

It should be noted that the choice of d depends on the simulated structures

and the oct-tree structures. However, from the numerical experiments, a

choice of d =
√

2a mostly suffices to bound the error closed to the target

accuracy.
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Table 4.2: Multilevel simulation errors using d =
√

2a at kr = 10−3 with
the target accuracy ε = 10−8.

ε Levels Maximum Error Mean Error

1e-8

1 1.22012543e-08 8.97415766e-12

2 1.60838463e-08 9.54411259e-12

3 1.60838259e-08 9.55155468e-12

4 1.60838271e-08 9.62308788e-12

5 1.60838198e-08 9.60763710e-12

Table 4.3: Multilevel simulation errors using d = a at kr = 10−3 with the
target accuracy ε = 10−5.

ε Levels Maximum Error Mean Error

1e-5

1 3.65159596e-4 8.55934601e-06

2 6.26361657e-4 8.16650990e-06

3 6.26361306e-4 8.36854264e-06

4 6.26361948e-4 8.40962606e-06

5 6.26361887e-4 8.41638564e-06

4.3.3 Spherical Scattering Validations

We further integrate the hybrid FMM into the augmented electric field in-

tegral equation solver [14], a surface integral equation solver suitable for

low-frequency applications. Sphere (r = 1 m) scattering problems are solved

with plane wave excitations. There are over 8,400 triangle panels and 12,000

edges on the surface of the sphere. The oct-tree level is set to be 4 and there

is one buffer box. The maximum number of harmonics is determined with

d =
√

2a. The GMRES solver is used as the iterative solver and the tolerance

is set to be equal to the accuracy level of the FMA solver.

Figure 4.9 shows the RCS simulations, the Mie series solutions and the

surface current distribution at 1 kHz with an accuracy level of ε = 10−6.

The currents are solved accurately and the RCS simulations match well with

the Mie series at very low frequencies. Figure 4.10 shows the matched RCS

simulations and the surface current distribution at 0.6 GHz with an accuracy

level of ε = 10−4. These results show that the scattering problems can be

70



solved accurately using the proposed hybrid FMA.
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Figure 4.9: The simulated RCS compared with the Mie series solutions and
the surface current distribution at 1 kHz for a 1 m sphere.
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4.4 Conclusions

In this chapter, we propose a novel hybrid FMA for broadband electromag-

netic simulations. The method takes advantage of the developments in dense

and diagonal FMA. Both the multipole and plane wave expansions are used

in multi-scale problems. The accuracy can be well controlled and very high

accuracy can be achieved. Numerical results are used to validate the accuracy

of the method.
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Chapter 5

Efficient Calculations of the Casimir Force
Using the Surface Integral Equation

5.1 Introduction

The Casimir force is an attractive force between two neutral perfect conduct-

ing plates, derived by Casimir in 1948 [17]:

F = − π2h̄c

240d4
(5.1)

The relation in (5.1) between the attractive force F and the distance d was

derived by considering the zero-point electromagnetic energy between the

two plates. Then this energy is compared to the electromagnetic energy of

free space. Finally the variations of the energy give rise to the attractive

force. This can be interpretated as due to the electromagnetic fluctuation of

vaccum at zero temperature. The fluctuation induces the polarizations on

neutral particals, and therefore induces the force between the particals.

As opposed to the predictions of zero force between neutral particles in

classical electromagnetics, this weak attractive force arises as a result of the

zero-point energy in vacuum: ∑
ω

1

2
h̄ω (5.2)

Casimir was first motivated by the calculations of the retarded van der

Waals force [83]. One kind of the van der Waals force arises between two

polarized particles. The force is attractive because two aligned dipoles of op-

posite polarity have minimum energy. This interaction is also known as the

Keesom interaction. Another kind of van der Waals interaction, known as

the Debye interaction, appears when a polarized particle induces the dipole

moment on another neutral, non-polarized particle. A more general consid-

eration of the van der Waals interaction is the interaction between two non-

73



polarized particles. London in 1930 [84] introduced a quantum-mechanical

derivation of the interaction energy between two identical non-polarized par-

ticles as:

V (d) ∝ d−6 (5.3)

Casimir’s colleagues (see [83]) suggested, from the results of the experiments,

that London’s consideration of the force does not consider the retardation

effects. The interacting energy should fall more rapidly than d−6 by consid-

ering the retardation effects. Then in [83], Casimir and Polder calculated the

interaction energy between two particles by using the perturbation theory

and considering the finite speed of light. They found the retarded van der

Waals energy to be:

V (d) =
23h̄c

4πd7
α2 (5.4)

where α is the polarizability of the particles.

A major problem of generalizing the above equation to macroscopic struc-

tures is that the retarded van der Waals force is non-additive. This difficulty

led Casimir to calculate the force between macroscopic structures by con-

sidering the zero-point energy of the electromagnetic energy, as introduced

earlier.

Lifshitz in 1956 [21] introduced a more general theory of the van der Waals

force for dielectric materials at finite temperature. Lifshitz considered two

dielectric half spaces separated by vacuum. The electromagnetic fluctuations

in the three regions are generated by the Lagevin-like sources, namely fluc-

tuating electric and magnetic polarizations. The polarizations are correlated

locally in r and the correlations are determined by the imaginary part of εr.

This is the result of the fluctuation-dissipation theorem [22, 23]. With this

relation, one can use the Maxwell stress tensor to calculate the force. Since

the fluctuating field is confined by the boundary condition, the force in turn

is related to the imaginary part of the dyadic Green’s function. Finally Lif-

shitz arrived at the same equation as Casimir’s results at the perfect electric

conductor limit.

Recent progress in the experiments [15, 16] of Casimir force measurement

has stimulated the calculations of Casimir force for arbitrary structures be-

yond the proximity force approximation (PFA) (see Appendix B for some

simple examples of PFA). Since PFA is only valid for very narrow gaps,

more general methods to calculate the Casimir force is needed for arbitrary
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structures. By considering the EM interaction between compact objects, a

scattering approach was proposed [18] and as a result, the Casimir energy

can be expressed in terms of scattering matrices. Another similar approach

was taken using the path integral [20] and the source of the Casimir force can

be interpreted as due to the fluctuation surface currents. Both of the above

two approaches arrive at the same equation that we will derived in Section

5.2.

5.2 Methods

The Casimir force can be derived in various ways. The two major starting

points are using the Maxwell stress tensor and the calculation of the varia-

tions of the zero-point energy of the system. We will follow the procedure

of the second approach. Then we can take the derivative to get the Casimir

force.

5.2.1 Derivations of the Casimir Energy and Force

If we are interested in the zero-point energy of a two-object system Sd, with

a distance d between the objects. The zero-point energy of the system, as a

function of d is:

E(d) =
1

2

∑
ωd

h̄ωd (5.5)

where ωd is the angular frequency of the resonance modes of the system.

These ωd of physical interests lie on the real half-plane.

Apparently the energy defined in (5.5) diverges since there is no high fre-

quency cutoff. We can regularized the energy by subtracting it with E(∞),

which is the zero-point energy of the system S∞ when the two objects are

infinitely far apart. Then the regulated Casimir energy is:

E =
h̄

2

(∑
ωd

ωd −
∑
ω∞

ω∞

)
(5.6)

The resonance frequencies ωd and ω∞ can be calculated using classical elec-

tromagnetics. Instead of calculating each ωd or ω∞, which is very difficult,

one can convert the summation into an integral on complex plane using
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the argument principle, first introduced in [19], and extensively studied in

[85, 86, 87]. We briefly outline the procedures here.

According to the argument principle, for an analytic function f(ω), if f(ω0)

gives zero and f(ωp) gives poles, then

1

2πi

∮
C

dωφ(ω)
d

dω
log f(ω) =

∑
zeros

φ(ω0)−
∑
poles

φ(ωp) (5.7)

Let φ(ω) = ω and use integration by parts for the integral, we have:

i

2π

∮
C

dω log f(ω) =
∑
zeros

ω0 −
∑
poles

ωp (5.8)

Then it becomes natural to use the impedance matrix to construct f(ω).

Notice that the determinant of the impedance matrix of the system Sd is zero

at the resonance frequencies, due to the rank deficiency of the matrix, i.e.

det Md(ωd) = 0 (5.9)

The inverse of the determinant of the impedance matrix of the system S∞
gives poles at its resonance frequencies, i.e.

1

det M∞(ω∞)
→ pole (5.10)

One constructs f(ω) as:

f(ω) =
det Md(ω)

det M∞(ω)
(5.11)

Plugging (5.9), (5.10) and (5.11) into (5.8), the expression of the Casimir

energy is:

E =
h̄

2

(∑
ωd

ωd −
∑
ω∞

ω∞

)
=
ih̄

4π

∮
C

dω log
det Md(ω)

det M∞(ω)
(5.12)

We then need to choose the contour of C to simplify the expression in (5.12).

Notice that the resonance frequencies of interests are on the right half-plane.

Furthermore due to causality, the poles of the dyadic Green’s function lie in

the lower half-plane. If the contour C is chosen as in Figure 5.1, all the zeros

76



Re[ω]

Im[ω]

C

C∞

Figure 5.1: The integration contour C.

and poles of f(ω) in (5.11) are captured.

The integral along C∞ does not contribute to the Casimir force. One

way to argue that is to use Jordan’s lemma, although it is not obvious that

log f(ω) is of the form of g(ω)eiaω. However, when ω →∞, Md(ω) no longer

depend on d. Therefore, the integral along C∞ will give rise to a constant

contribution to the energy, which is meaningless and irrelevant to the force.

Therefore, the contour integral in (5.12) is reduced to the integral along the

path C in Figure 5.1. By changing of variable ω = icξ, the Casimir energy

can be written as:

E =
h̄c

4π

∫ ∞
−∞

dξ log
det Md(icξ)

det M∞(icξ)
(5.13)

=
h̄c

2π

∫ ∞
0

dξ log
det Md(icξ)

det M∞(icξ)
(5.14)

Finally the expression of the Casimir energy is given in (5.14), the equation

of the Casimir force F = − ∂
∂r
E(d) is:

F = − h̄c
2π

∫ ∞
0

dξtr

(
M
−1

d (icξ) · ∂
∂d

Md(icξ)

)
(5.15)
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5.2.2 The Casimir Energy and Force Representations Using
the Surface Integral Equation

In the calculations of the Casimir energy and force, the matrices Md and

M∞ need to satisfy:

det Md(ωd) = 0 (5.16)

1

det M∞(ω∞)
→ pole (5.17)

where ωd and ω∞ lie on the right-lower complex plane of ω. Equations (5.16)

and (5.17) imply that ωd and ω∞ are the resonance frequencies of the system

Sd and S∞ respectively. Therefore, we can use the impedance matrices in the

surface integral equation (SIE) of the systems Sd and S∞ for Md and M∞.

The impedance matrix maps the surface equivalent currents on the surfaces

to cancel the incident fields. For perfect electric conductors (PEC):

M · J = Einc (5.18)

where M can be Md or M∞. The impedance matrix in the electric field

integral equation (EFIE) formulation can be used for Md and M∞.

For dielectrics:

Md ·
[

J

M

]
=

[
Einc

Hinc

]
(5.19)

The impedance matrix of in the Poggio-Miller-Chang-Harrington-Wu-Tsai

(PMCHWT) formulation can be used.

For a two-object system, the impedance matrix can be written in a general

2× 2 form as:

Md(icξ) =

[
O11(icξ) O12(icξ)

OT12(icξ) O22(icξ)

]
(5.20)

where Oij(icξ) is the interaction matrix between objects i and j evaluated

at the imaginary frequency icξ, and we have used the symmetry property

of O12 and O21. Using the Kramers-Kronig relationship, one can find the

permittivity ε to be real at imaginary frequencies:

ε(iξ)− ε(∞) =
2

π

∫ ∞
0

dω′
ω′=[ε(ω′)− ε(∞)]

ω′2 + ξ2
(5.21)

Therefore, the matrix elements of Oij(icξ) are also real.
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In (5.15), the derivative is taken with respect to the relative distance of

the two objects, i.e.

∂

∂d
Md(icξ) =

[
0 ∂

∂d
O12(icξ)

∂
∂d
OT12(icξ) 0

]
(5.22)

The expressions of the Casimir energy and force in (5.14) and (5.15) are then

represented by the impedance matrices in the SIE.

5.2.3 Numerical Implementations

The calculations of the Casimir energy involve evaluations of the log deter-

minants of the matrices at imaginary frequencies and the calculations of the

Casimir force involve evaluations of the traces. The expressions are:

E =
h̄c

2π

∫ ∞
0

dξ
(
log det Md(icξ)− log det M∞(icξ)

)
(5.23)

and

F = − h̄c
2π

∫ ∞
0

dξtr

(
M
−1

d (icξ) · ∂
∂d

Md(icξ)

)
(5.24)

which are identical to the equations in (5.14) and (5.15) but the matrices Md

and M∞ are now constructed using the SIE.

First from the definition that ω = icξ, ξ has the same unit of the wave

number. The important contributions to the Casmir energy and force are

from those ξ ∈ (0, τ), where τ depends on the size of the structure l due

to that the Green’s function at imaginary frequencies decays as e−ξl

l
. We

first normalize ξ by letting ξ = 2π
l
ξ̃, where c is the speed of light, l is the

approximate size of the structure and ξ̃ is a unit-less parameter. The integrals

then becomes:

I =
h̄c

2π

∫ ∞
0

dξf(icξ) =
h̄c

l

∫ ∞
0

dξ̃f(i
2πc

l
ξ̃) (5.25)

where f(icξ) can be the kernel of the Casimir energy of Casimir force in

(5.23) and (5.24).

Then we can convert the integral from ξ̃ ∈ (0,∞) to t ∈ (0, 1) by change
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of variables:

ξ̃ =
t

1− t or t =
ξ̃

1 + ξ̃
(5.26)

Hence dξ̃ = dt 1
(1−t)2 , the integral (5.25) becomes:

I =
h̄c

l

∫ 1

0

dt
1

(1− t)2
f

(
i

2πct

l(1− t)

)
(5.27)

Finally the integrals can be evaluated numerically using the Gauss-Legendre

quadrature, such that:

I =
h̄c

l

N∑
j=1

wj
(1− tj)2

f

(
i

2πctj
l(1− tj)

)
=
h̄c

l

N∑
j=1

w̃jf(it̃j) (5.28)

where the integral is converted to a finite summation with the quadrature

points tj and the corresponding weighting wj. The rest of the problem is to

evaluate the kernel function f(it̃j), which can be represented as the log de-

terminants or the traces of the SIE matrices. For small matrices, they can be

computed efficiently using the direct methods. However, As the matrix size

becomes larger, the evaluation using direct methods becomes very inefficient.

We will propose a fast computing scheme to calculate the Casimir force.

5.2.4 A Fast Computing Scheme

To calculate the Casimir force using (5.15), one needs to perform a matrix

inverse of an N × N matrix M
−1

, which is of O(N3) CPU complexity and

O(N2) memory usage. As N gets large, such numerical costs are no longer

reasonable. In this section, we will use the randomized SVD to reduce the size

of the right matrix and then use the fast multipole algorithm to effectively

perform the “inverse” of the left matrix.

When the two objects are farther apart from each other, the matrix at

the right-hand side of (5.15), ∂
∂d

Md, is rank deficient. This is because the

Green’s function is a low-pass filter. When the distance between the two

objects is sufficiently large, some evanescent waves from one object will vanish

before reaching the other object. Therefore the far-field representation of the

Green’s function matrices can be largely compressed.

We can use the randomized SVD [88] to find a low-rank approximation for
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∂
∂d

Md, i.e.
∂

∂d
Md︸ ︷︷ ︸

N×N

≈ U︸︷︷︸
N×k

· Σ︸︷︷︸
k×k

· VT︸︷︷︸
k×N

(5.29)

where the sizes of U,Σ and V
T

are N ×k, k×k and k×N respectively, and

the singular value matrix Σ is diagonal. In the randomized SVD algorithm

[88], the dominant computational cost is from the product of the matrix
∂
∂d

Md and a random matrix (size: N × k). The total computational cost

of the randomized SVD is O(4kT + 2k2N), where T is the flops count of a

matrix vector product.

Therefore, in order to calculate:

M
−1

d ·
∂

∂d
Md (5.30)

we propose the following procedures:

1. Compute the randomized SVD of ∂
∂d

Md:

∂

∂d
Md ≈ U ·Σ ·VT

(5.31)

Assuming that the matrix vector product ∂
∂d

Md ·v, where v is a vector,

is performed using FMA with a cost of O(N logN), the leading order

computational complexity is O(kN logN + k2N).

2. Solving matrix equation with multiple right-hand sides:

X = M
−1

d ·U → Md ·X = U (5.32)

This requires solving Md · x = u for k times. The computational

complexity of this procedure can be reduced to O(kN log(N)) if the

fast multipole algorithm is used.

3. Compute dense-diagonal matrix products:

Y = X ·Σ (5.33)

This procedure is O(kN) complexity since Σ is diagonal.
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4. Compute the trace:

tr
[
Y ·VT

]
=

N∑
i

k∑
j

yij · vij (5.34)

This procedure is O(kN) complexity.

Therefore, the leading order total computational complexity is determined

by the procedures 1 and 2, with the total complexities of O(kN log(N)).

Large-scale computations of Casimir force using the above scheme can be

achieved if a broadband FMA can be generalized to imaginary frequencies.

5.2.5 Imaginary Hybrid Fast Multipole Algorithm

We can extend the hybrid FMA in Chapter 4 from real frequencies to imag-

inary frequencies to meet the requirements of efficient evaluations of the

matrix-vector products in the calculations of the Casimir force. Another rea-

son for choosing the hybrid FMA is that a broadband stability is required

in this problem, since in (5.15), an integral over frequencies from 0 to ∞ is

required.

The conventional dense and diagonal FMA suffer from the efficiency prob-

lem and the accuracy problem at low frequencies and high frequencies respec-

tively. The mixed form FMA [32] and the approximated diagonal FMA can

be used [82], however, the methods are less accurate than the hybrid FMA.

We will then generalize the FMA from real frequencies to purely imaginary

frequencies, which is effectively changing the wave number k to iκ, where κ

is a real number.

5.2.5.1 Generalization of the diagonal FMA

The diagonal FMA ultilizes the addition theorem (same as (4.1) in Chapter

4):

eikrij

rij
= ik

∞∑
l=0

(−1)l(2l + 1)jl(kd)h
(1)
l (krmn)Pl(d̂ · r̂mn) (5.35)
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and the plane wave representation of the spherical Bessel function (same as

(4.2) in Chapter 4):

jl(kd)Pl(d̂ · r̂mn) =
1

4πil

∫
d2k̂eik·dPl(k̂ · r̂mn) (5.36)

At imaginary frequencies, when k = iκ, we change the spherical Bessel

function jl into the modified spherical Bessel function of the first kind il,

with the relation:

jl(kx) = ilil(κx) (5.37)

and change the spherical Hankel function of the first kind h
(1)
l to the modified

spherical Bessel function of the second kind kl, with the relation:

h(1)
n (kx) = −i−lkl(κx) (5.38)

Therefore, (5.35) becomes:

e−κrij

rij
= κ

∞∑
l=0

(−1)l(2l + 1)il(κd)kl(κrmn)Pl(d̂ · r̂mn) (5.39)

and (5.36) becomes:

il(κd)Pl(d̂ · r̂mn) =
1

4π
(−1)l

∫
d2κ̂e−κ·dPl(κ̂ · r̂mn) (5.40)

From (5.39) and (5.40), we have the plane wave representation of the Green’s

function:
e−κrij

rij
=

∫
d2κ̂e−κ·rim · α(L,κ, rmn) · e−κ·rnj (5.41)

where

α(L,κ, rmn) =
κ

4π

L∑
l=0

(2l + 1)kl(κrmn)Pl(κ̂ · rmn) (5.42)

The equations (5.41) and (5.42) provide the plane wave expansions of the

Green’s function in FMA for large κ. As κ becomes extremely large, the

Green’s function decays and vanishes, it is not necessary to calculate the

matrix elements.
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5.2.5.2 Generalization of the dense FMA

The building blocks of the dense FMA at real frequencies can be found in

[33, pp. 594]. The spherical waves are defined as:

Ψlm(k, r) ≡ Ylm(θ, φ)jl(kr) (5.43)

Φlm(k, r) ≡ Ylm(θ, φ)h
(1)
l (kr) (5.44)

The spherical waves can be represented by a summation of the spherical

waves at a different location using the following equations:

Φlm(k, r) =
∑
l′m′

Φl′m′(k, r
′) · βl′m′,lm(k, r′′), r′ > r′′ (5.45)

Φlm(k, r) =
∑
l′m′

Ψl′m′(k, r
′) · αl′m′,lm(k, r′′), r′ < r′′ (5.46)

Ψlm(k, r) =
∑
l′m′

Ψl′m′(k, r
′) · βl′m′,lm(k, r′′), ∀ r′, r′′ (5.47)

where r′ + r′′ = r and expressions for β and α are:

βl′m′,lm(k, r′′) =
∑
l′′

4πi(l
′+l′′−l)Ψl′′,m−m′(k, r

′′)AL,L′,L′′ (5.48)

αl′m′,lm(k, r′′) =
∑
l′′

4πi(l
′+l′′−l)Φl′′,m−m′(k, r

′′)AL,L′,L′′ (5.49)

where AL,L′,L′′ is the Gaunt coefficient, and it is nonzero only when l+ l′+ l′′

is even. We then can proceed to generalize the wave number k to be an

imaginary number.

With (5.37) and (5.38), we can re-define the spherical waves at the imagi-

nary wave numbers in (5.43) and (5.44) as:

Ψ̃lm(κ, r) ≡ Ylm(θ, φ)il(κr) = i−lΨlm(k, r) (5.50)

Φ̃lm(κ, r) ≡ (−1)lYlm(θ, φ)kl(κr) = −i−lΦlm(k, r) (5.51)

Therefore, by plugging (5.50) and (5.51) into (5.45) (5.46) and (5.47), we

have the spherical wave addition theorem in compact forms:

Φ̃lm(κ, r) =
∑
l′m′

Φ̃l′m′(κ, r
′) · βl′m′,lm(κ, r′′), r′ > r′′ (5.52)
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Φ̃lm(κ, r) =
∑
l′m′

Ψ̃l′m′(κ, r
′) · αl′m′,lm(κ, r′′), r′ < r′′ (5.53)

Ψ̃lm(κ, r) =
∑
l′m′

Ψ̃l′m′(κ, r
′) · βl′m′,lm(κ, r′′), ∀ r′, r′′ (5.54)

where the translation matrix elements are re-defined as (note that they are

different from the definitions of β and α at real frequencies):

βl′m′,lm(κ, r′′) =
∑
l′′

4π(−1)l
′+l′′−lΨ̃l′′,m−m′(κ, r

′′)AL,L′,L′′ (5.55)

αl′m′,lm(κ, r′′) =
∑
l′′

4π(−1)l
′+l′′−lΦ̃l′′,m−m′(κ, r

′′)AL,L′,L′′ (5.56)

As a result, the Green’s function can be written in the multipole expansion

in the same way for the real frequencies, as:

eikrij

rij
= κβ(κ, rim) ·α(κ, rmn) · β(κ, rnj) (5.57)

By further factorizing the matrix α(κ, rmn) as:

α(κ, rmn) = β(κ, rmp) ·α(κ, rpq) · β(κ, rqn) (5.58)

The Green’s function is written in a form of multilevel FMA:

eikrij

rij
= κβ(κ, rim) · β(κ, rmp) ·α(κ, rpq) · β(κ, rqn) · β(κ, rnj) (5.59)

5.2.5.3 Hybrid FMA

Using the plane wave and multipole expansions of the Green’s function, the

hybrid FMA can be obtained easily by using the discussions in Chapter 4:

e−κrij

rij
≈ κ

∫
d2κ̂e−κ·rim · α(l0,κ, rmn) · e−κ·rnj︸ ︷︷ ︸

plane wave expansion

+ κ

(
β(κ, rim) · α̃(l0, lm, κ, rmn) · β(κ, rnj)

)
︸ ︷︷ ︸

multipole expansion

(5.60)
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where α(L0,κ, rmn) is defined as:

α(L0,κ, rmn) =
κ

4π

L0∑
l=0

(2l + 1)kl(κrmn)Pl(κ̂ · rmn) (5.61)

The matrix elements of β(κ, r) are defined in (5.55) and the matrix elements

of α(L0, Lm, κ, r) is defined similar to (5.56) as:

α̃l′m′,lm(L0, Lm, κ, r) =
Lm∑

l′′=L0+1

4π(−1)l
′+l′′−lΦ̃l′′,m−m′(κ, r)AL,L′,L′′ (5.62)

All the discussions in Chapter 4 apply in the hybrid FMA in the imaginary

frequencies. Then we can use this hybrid FMA to accelerate the matrix

vector product in the calculations of the Casimir force.

5.3 Numerical Results

In this section, we validate the method in a few steps. First we investigate the

Casimir force contributions at different imaginary frequencies for PEC and

dielectric structures. Second, the attractive Casimir force between the PEC

structures is calculated using the direct method. The simulation results are

compared with the reference publication [89] for the validations. Third, the

randomized SVD is integrated to compress the matrix ∂
∂r

Md. In this step,

the inverse in (5.15) is still computed using the direct method. With the

randomized SVD, both the attractive and repulsive Casimir force between

dielectric objects are studied in the numerical examples. Then we validate

the accuracy of the hybrid FMA at imaginary frequencies in the worst case.

Finally, the complete fast computing scheme, with the randomized SVD and

the hybrid FMA, is used to calculate the Casimir force for problems with

various sizes.
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5.3.1 Casimir Force at Imaginary Frequencies

From the discussion in Section 5.2.3, the integral form of the Casimir force

equation (5.24) is approximated as a finite summation:

F = − h̄c
l

∑
i

w̃itr

(
M
−1

d (cki)
∂

∂d
Md(cki)

)
(5.63)

where ki is the imaginary wave number.

Figure 5.2: The contributions of the Casimir force at imaginary frequencies
for two identical PEC spheres with radius R = 1 nm. Top: the trace
evaluated at the imaginary wave numbers k. Bottom: the weighted

contributions to the Casimir force.
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The simulation results of a simple two-sphere structure are shown in Fig-

ure 5.2. The integrand in the Casimir force expression and the weighted

contributions to the Casimir force at imaginary frequencies are shown. It

can be seen that the contributions are mostly from the lower imaginary wave

number =[k]. Also as the distance d decreases, the Casimir force increases.

A similar plot can be found in Figure 5.3 for dielectric spheres with ε(iξ) =

2.0. The same conclusion can be drawn that most of the contributions are

from the lower imaginary wave number =[k] for dielectrics.

Figure 5.3: The contributions of the Casimir force at imaginary frequencies
for two identical dielectric spheres (R = 1 nm, ε(iξ) = 2.0). Top: the trace

evaluated at the imaginary wave numbers k. Bottom: the weighted
contributions to the Casimir force.
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5.3.2 Casimir Force Between PEC Objects

It is well known that the Casimir force between two PEC objects is attractive.

A previous work [89, pp. 112] reported the Casimir energy between two

spheres, two parallel capsules and two perpendicular capsules. We reproduce

the Casimir energy calculations using our solver for the same structures for

validations. Then the Casimir force equation is used, which is then compared

to the finite difference results of the Casimir energy:

F = − d

dr
E (5.64)

The Casimir energy and the Casimir force are calculated for different dis-

placed distances for these structures. The comparisons are shown in Figures

5.4-5.9.

Figures 5.4, 5.6 and 5.8 show the simulation results of the Casimir energy

compared to the reference [89, p. 112]. Figures 5.5, 5.7 and 5.9 show the

simulation results of the Casimir force compared to the finite difference of

the data in Figures 5.4, 5.6 and 5.8. The signs of the force are chosen to be

positive if the force is attractive. All the results of the Casimir energy and

the force show good matches with the reference. Therefore, our numerical

solver is validated for PEC structures.

89



0 1 2 3 4 5 6
Distance (nm)

10 5

10 3

10 1

101

N
or

m
al

iz
ed

 C
as

im
ir

 E
ne

rg
y 

(
c R

) Simulation
From Reid et. al.

Figure 5.4: Casimir energy between two PEC spheres (radius R = 1 nm)
compared to the reference.
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Figure 5.5: Casimir force between two PEC spheres (radius R = 1 nm)
compared to the finite difference results.
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Figure 5.6: Casimir energy between two parallel PEC capsules compared to
the reference.
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Figure 5.7: Casimir force between two parallel PEC capsules compared to
the finite difference results.
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Figure 5.8: Casimir energy between two perpendicular PEC capsules
compared to the reference.
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Figure 5.9: Casimir force between two perpendicular PEC capsules
compared to the finite difference results.

5.3.3 Casimir Force Between Dielectric Objects and the
Randomized SVD

We further present the calculation results of the Casimir force between di-

electric objects and compare with the finite difference results. First, only the

direct inverse method is used. Figure 5.10 shows the results of the Casimir
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force of two dielectric spheres with εr(iξ) = 2.0. Our simulation results match

well with the finite difference of the Casimir energy results using the direct

method.
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Figure 5.10: The the Casimir force compared to the finite difference of
energy.

Then we apply the randomized SVD to compress the matrix ∂
∂d

Md. The

example of the parallel capsules with more unknowns is simulated and the

results are also compared to the finite differences of the Casimir energy.

Figure 5.11 shows the calculations of attractive force between two parallel

capsules using the randomized SVD. Both results show good agreements

with finite differences of the Casimir energy. We further use the randomized

SVD technique to investigate the attractive and repulsive force between two

dielectric objects emerged in different background. Lifshitz’s theory suggests

that when the two objects are submerged in the fluid and the permittivity

of the two objects and the fluid satisfies:

ε1(iξ) < εfluid(iξ) < ε2(iξ) (5.65)

the force between the objects will be repulsive for large separations.

The next example validates this theory for two spheres. The relative per-

mittivity of the two spheres at the imaginary frequencies are 1.5 and 6.5

respectively. The fluid permittivity is changed from 1 to 7. The force is
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Figure 5.11: The randomized SVD calculations of the Casimir force
compared to the finite difference of energy.

normalized by the PFA predictions for two spheres (see Appendix B):

FPFA =
π3h̄cR

720d3
(5.66)

We can see from the results in Figure 5.12 that at reasonable far regime, the

force is repulsive when (5.65) is satisfied.

5.3.4 Hybrid FMA at Imaginary Frequencies

The hybrid FMA can be used to accelerate the matrix vector products in the

calculations. We validate the hybrid FMA at imaginary frequencies using

(5.60) for the worst case of FMA, which is the same setup as in Figure 4.6.

Figure 5.13 shows the worst-case errors for one buffer box with the target

accuracies from 10−3 to 10−4.5, and Figure 5.14 shows the errors for two buffer

boxes with the target accuracies from 10−5 to 10−8. Both figures demonstrate

that the error can be well bounded near the target accuracies.

With the hybrid FMA successfully adapted to the imaginary frequencies,

we can then use the randomized SVD and the FMA to efficiently calculate

the Casimir force.
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5.3.5 Hybrid FMA and Randomized SVD for Large-Scale
Problems

With the numerical validations of the randomized SVD (rSVD) in Section

5.3.3 and the validations of the hybrid FMA for imaginary frequencies in

Section 5.3.4, we can apply the fast scheme using hybrid FMA and rSVD.

Sphere pairs with different numbers of unknowns and different displaced

distances are simulated and compared with the previous simulations result

using the direct method as in Figures 5.2, 5.3, 5.5 and 5.10.

Table 5.1 lists the number of unknowns of the mesh sets in the simulations.

When the spheres are dielectric, the numbers of unknowns are twice the

numbers of unknowns in the PEC simulations. We will simulate two spheres

with small distance (d = 0.1R), intermediate distance (d = 1R) and large

distance (d = 2R), where R is the radius of the spheres and R = 1 nm.

Figures 5.15, 5.16 and 5.17 show the simulated traces evaluated at different

imaginary frequencies of two PEC spheres with the distances d = 2R, d =

R and d = 0.1R respectively. These results are compared with the direct

method in the top figure of Figure 5.2. The weight contribution curves from

the bottom figure of Figure 5.2 are used to represent the significance of the

contributions of the data points.
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Table 5.1: Numbers of unknowns in the PEC and dielectric simulations.

Mesh Set # of Unknowns (PEC) # of Unknowns (Dielectrics)

A 1,908 3,816

B 3612 7,224

C 25,266 50,532

The results in Figures 5.15, 5.16 and 5.17 show that as the distance between

the two objects decreases, more errors are found in the simulation results

using the fast scheme in the wide range of imaginary frequencies. This is

as expected since the mutual interaction matrix ∂
∂d

Md is no longer very low

rank and the rSVD approximation becomes inaccurate.

From the data in Figures 5.15, 5.16, and 5.17, we can calculate the Casimir

force and the errors compared to the direct method results from Figure 5.2.

The Casimir force and the errors at different d for the three mesh sets are

shown in Figure 5.18.
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Figure 5.15: The simulation results of the three PEC sphere pairs of the
mesh sets with d = 2R using the hybrid FMA and rSVD.
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Figure 5.16: The simulation results of the three PEC sphere pairs of the
mesh sets with d = R using the hybrid FMA and rSVD.
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Figure 5.17: The simulation results of the three PEC sphere pairs of the
mesh sets with d = 0.1R using the hybrid FMA and rSVD.
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Figure 5.18: The Casimir force of the three PEC sphere pairs of the mesh
sets using the hybrid FMA and rSVD.

The three mesh sets and the three choices of the distance d are used for

the simulations of the dielectric sphere pair. The permittivity of the spheres

εr = 2. Similarly, the results at the imaginary frequencies are shown in

Figures 5.19, 5.20 and 5.21 and are compared to the results using the direct

method. The Casimir force between the two spheres at d = 2R, d = R and

d = 0.1R are shown in Figure 5.22. We can also see that, for two closed

objects the simulation errors increase.
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Figure 5.19: The simulation results of the three dielectric (εr = 2) sphere
pairs of the mesh sets with d = 2R using the hybrid FMA and rSVD.
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Figure 5.20: The simulation results of the three dielectric (εr = 2) sphere
pairs of the mesh sets with d = R using the hybrid FMA and rSVD.
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Figure 5.21: The simulation results of the three dielectric (εr = 2) sphere
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Figure 5.22: The Casimir force of the three dielectric (εr = 2) sphere pairs
of the mesh sets using the hybrid FMA and rSVD.

5.4 Numerical Issues

There exist some numerical issues that can be improved in the future for the

proposed fast scheme.

First, the method becomes less accurate when the two objects are close

to each other. This is due to the inaccurate low-rank approximation of the

matrix using the rSVD. It can be improved by increasing the number of

the singular values in rSVD. Therefore, it further requires more efficient

implementation of the solver.

Second, the EFIE for PEC, and PMCHWT for dielectrics become ill-

conditioned at low imaginary frequencies, for example =[k]R < 0.01 (this

is very similar to the low-frequency breakdown at the real frequencies). This

gives rise to large iteration numbers to solve (5.32) using the iterative solver.

As a result, the computational time is increased or even inaccurate results

are produced due to failures of convergences. An introduction of the low-

frequency stable formulations can be useful to reduce to computational cost

and improved the accuracy.

Third, the computational time is not significantly reduced using the pro-

posed method. This is because of the large number of the matrix vector

product needed in order to solve (5.32) in the procedure 2, especially for
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small =[k]R. A parallel implementation of the FMA can be particularly

useful.

5.5 Conclusions

In this chapter, we review some background of the Casimir force. The ex-

pression of the Casimir force between two objects is re-derived using the

argument principle and it can be expressed in terms of matrices in the sur-

face integral equation for homogeneous bodies. A fast computing scheme is

proposed and validated to calculate the Casimir force for large-scale prob-

lems. The numerical issues are briefly discussed for future improvements of

the proposed method.
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Chapter 6

Conclusions

In this dissertation, we successfully establish an enhanced augmented elec-

tric field integral equation for dielectrics. Then this method is extended to

the simulations of conductors. Some real-world structures are simulated to

demonstrate the capabilities of the method. Then we further study the fast

algorithm in the integral equation. We propose a broadband multilevel fast

multipole algorithm using a hybridization of the multipole and plane wave ex-

pansions. High accuracy can be achieved using this method the error and can

be well controlled. Finally we apply the hybrid fast mulitpole algorithm and

the randomized singular value decomposition in the surface integral equation

to calculate the Casimir force.

A fast computing scheme is proposed for large-scale computing of the

Casimir force. The computational time can be further improved by using

mixed integral equation formulations at low and high frequencies, parallelling

the FMA at imaginary frequencies or applying the direct inverse method.

This can be the future work to further accelerate the solver of the Casimir

force calculations.

103



Appendix A

Derivations of the Integrals Using the Modified
Integral Method

The integrals of interest are:

I1 =

∫
S′
dr′

eikR

R
(A.1)

Iβ =

∫
S′
dr′

eikR

R
ρ(r′) (A.2)

I⊥ = d

∫
S′
dr′

ikR− 1

R3
eikR (A.3)

I‖ =

∫
S′
dr′

ikR− 1

R3
eikRρ(r′) (A.4)

In order to evaluate these integrals over a triangle, we can project the ob-

servation point onto the source triangle. Then the surface integral can be

written as a summation of three surface integrals on the sub-triangles, as in

Figure A.1. Then each integral can be converted into cylindrical coordinates

by: ∫
S′
dr′ =

3∑
i=1,hi 6=0

∫
S′i

dr′ =
3∑

i=1,hi 6=0

∫ θ+i

θ−i

dθ

∫ ρi(θ)

0

ρdρ (A.5)

where ρi(θ) = hi
cos θ

. For (A.1) and (A.3), using

ρdρ = RdR (A.6)

the expressions in (A.1) and (A.3) can be simplified as:

I1 =
3∑

i=1,hi 6=0

∫ θ+i

θ−i

dθ
1

ik

(
eikR(θ) − eikd

)
(A.7)

I⊥ = d̂

3∑
i=1,hi 6=0

∫ θ+i

θ−i

dθ

(
d

R(θ)
eikR(θ) − eikd

)
(A.8)
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where R(θ) =
√
d2 + h2

i / cos2 θ. The above method is the same as in [50]

except that the singularities are removed.

Figure A.1: Dividing the surface integral into three sub-triangle integrals.

For (A.2) and (A.4), using (A.5) will not simplify the integrals because

the inner integrals over ρ do not have analytical forms. One can use the

derivations in [50] to derive an equation of ûi. But when r0 is on the triangle

edges, ûi is undefined. Alternatively, we propose another way to evaluate

(A.2) and (A.4) to avoid this issue using an equation similar to (A.5):

∫
S′
dr′ =

3∑
i=1,hi 6=0

∫
S′i

dr′ =
3∑

i=1,hi 6=0

∫ l+i

l−i

ρdρ

∫ β(θ)

α(θ)

dθ (A.9)
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i ŵ+
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ûi
v̂i

x−
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x+
i

Figure A.2: Dividing one sub-triangle into A, B, C parts. Part A is
enclosed by the boundary of the sub-triangle and the arc. Parts B, C are
the remaining two regions.

To do this, we need to further divide each sub-triangle into three parts: A,

B and C, as in Figure A.2. In general, for an arbitrary function f(R),∫
A

dr′f(R)ρ(r′)

=

∫ hi

0

ρ2dρf(ρ)

(
sin θ+

i − sin θ−i
cos θ−i − cos θ+

i

)
i

(A.10)

∫
B

dr′f(R)ρ(r′)

=

∫ l+i

hi

ρdρf(ρ)

(
ρ sin θ+

i − s+
i

√
ρ2 − h2

i

hi − ρ cos θ+
i

)
i

(A.11)

∫
C

dr′f(R)ρ(r′)

=

∫ l−i

hi

ρdρf(ρ)

(
s−i
√
ρ2 − h2

i − ρ sin θ−i
ρ cos θ−i − hi

)
i

(A.12)

where (
a

b

)
i

= aûi + bv̂i (A.13)

and

s±i =
θ±i
|θ±i |

(A.14)
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Summing over the integrals in A, B and C, we have:∫
S′
dr′f(R)ρ(r′) =

3∑
i=1,hi 6=0

(
sin θ+

i

− cos θ+
i

)
i

∫ l+i

0

ρ2dρf(ρ)+

3∑
i=1,hi 6=0

(
− sin θ−i
cos θ−i

)
i

∫ l−i

0

ρ2dρf(ρ)+

3∑
i=1,hi 6=0

 (
−s+

i

∫ l+i
h

+s−i
∫ l−i
h

)
ρdρf(R)

√
ρ2 − h2

i

hi

(∫ l+i
hi
−
∫ l−i
hi

)
ρdρf(R)


i

(A.15)

It turns out that the first and the second terms on the right-hand side of

(A.15) cancel out. The first term is a vector pointing in the −ŵ+
i direction,

as in Figure A.2, with the amplitude given by the integral. The second

term points to −ŵ−i and the amplitude is given by the integral from 0 to l−i .

Noticing that each l−i is also l+j for the other sub-triangle, then the two terms

cancel out when summing up the contributions from the three triangles.

For the last term, the component in ûi requires numerical integration. The

component in the v̂i can be integrated analytically using (A.6). In (A.2),

f(R) = eikR

R
, ∫

ρdρf(R) =
1

ik
eikR (A.16)

By letting R±i =
√
d2 + (l±i )2,

Iβ =
3∑

i=1,hi 6=0

 − ∫ x+ix−i x2

R(x)
eikR(x)dx

hi
ik

(
eikR

+
i − eikR−i

)  (A.17)

In (A.4), f(R) = eikR

R3 (ikR− 1),∫
ρdρf(R) =

eikR

R
(A.18)

I‖ =
3∑

i=1,hi 6=0

 −
∫ x+i
x−i

x2

R3(x)
(ikR(x)− 1)eikR(x)dx

hi

(
eikR

+
i

R+
i

− eikR
−
i

R−i

)  (A.19)
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Appendix B

Proximity Force Approximation of Casimir
Energy and Force for Simple Structures

The proximity force approximation (PFA) can be used to calculate the Casimir

energy and force between two objects closed to each other. This approxima-

tion is based on the equations of the Casimir energy and force between two

parallel plates from Casimir’s 1948 famous paper [17]. The energy per unit

area is:

E(a) = − π2h̄c

720a3
(B.1)

and the force per unit area:

F (a) =
π2h̄c

240a4
(B.2)

where a is the distance between the two plates.

B.1 Two Identical Spheres

For a two-sphere setup, if the two spheres are very close to each other, i.e.

H � R, where H is the distance between the two spheres and R is the radius

of the spheres, the energy and the force can be calculated by integrating the

above equations in (B.1) and (B.2).

By substituting a = H +R(1− cos θ) in the polar coordinate:

Espheres(H) = −π
2h̄c

720

∫
S

dS
1

a3

= −π
2h̄c

720
2R2

∫ π/2

0

dθ
sin θ

(H + 2R(1− cos θ))3

(B.3)

108



Letting b = H
R

, and assuming b→ 0, we have:

Espheres(H) =
π2h̄c

360R

∫ 0

1

dx
1

(b+ 2− 2x)3

=
π2h̄c

360R

(
1

4(b+ 2)2
− 1

4b2

)
≈ − π2h̄c

1440Rb2

(B.4)

Therefore the Casimir energy is:

Espheres(H) = − π2h̄cR

1440H2
(B.5)

Taking the derivative of the energy with respect to H, the Casimir force is:

Fspheres(H) = −π
2h̄cR

720H3
(B.6)

B.2 A Sphere and a Plate

If one of the sphere is replaced by the plate, the derivation is similar, by only

removing a factor of 2 in the expression of a:

Esphere-slab(H) = −π
2h̄c

720

∫
S

dS
1

a3

= −π
2h̄c

720
2R2

∫ π/2

0

dθ
sin θ

(H +R(1− cos θ))3

(B.7)

Therefore:

Esphere-slab(H) = −π
2h̄cR

720H2
(B.8)

The Casimir force is then

Fsphere-slab(H) = −π
2h̄cR

360H3
(B.9)
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plasmonic structures using the multilevel fast multipole algorithm,” Int.
J. RF Microw. Comput. Eng., vol. 26, no. 4, pp. 335–341, May 2016.

[62] V. Rokhlin, “Rapid solution of integral equations of classical potential
theory,” J. Comput. Phys., vol. 60, no. 2, pp. 187–207, Sep. 1985.

[63] L. F. Greengard, “The rapid evaluation of potential fields in particle
systems,” Ph.D. dissertation, 1987.

[64] V. Rokhlin, “Diagonal forms of translation operators for the Helmholtz
equation in three dimensions,” Appl. Comput. Harmon. Anal., vol. 1,
no. 1, pp. 82–93, Dec. 1993.

[65] L. Hamilton, P. Macdonald, M. Stalzer, R. Turley, J. Visher, and
S. Wandzura, “3D method of moments scattering computations using
the fast multipole method,” in Proc. IEEE Antennas Propag. Soc. Int.
Symp. URSI Natl. Radio Sci. Meet., vol. 1. IEEE, 1994, pp. 435–438.

[66] J. M. Song and W. C. Chew, “Fast multipole method solution using
parametric geometry,” Microw. Opt. Technol. Lett., vol. 7, no. 16, pp.
760–765, 1994.

[67] B. Dembart and E. Yip, “A 3D fast multipole method for electromag-
netics with multiple levels,” 11th Ann. Rev. Prog. Appl. Comput. Elec-
tromag., vol. 1, pp. 621–628, 1995.

[68] J. M. Song and W. C. Chew, “Multilevel fast-multipole algorithm for
solving combined field integral equations of electromagnetic scattering,”
Microw. Opt. Technol. Lett., vol. 10, no. 1, pp. 14–19, Sep. 1995.

[69] W. C. Chew, S. Koc, J. M. Song, C. C. Lu, and E. Michielssen, “A
succinct way to diagonalize the translation matrix in three dimensions,”
Microw. Opt. Technol. Lett., vol. 15, no. 3, pp. 144–147, June 1997.

[70] J. Song and W. C. Chew, “Interpolation of translation matrix in
MLFMA,” Microw. Opt. Technol. Lett., vol. 30, no. 2, pp. 109–114,
July 2001.

115



[71] J. Sarvas, “Performing interpolation and anterpolation entirely by fast
Fourier transform in the 3-D multilevel fast multipole algorithm,” SIAM
J. Numer. Anal., vol. 41, no. 6, pp. 2180–2196, 2003.

[72] E. Darve and P. Have, “A fast multipole method for Maxwell equations
stable at all frequencies,” Philos. Trans. R. Soc. A Math. Phys. Eng.
Sci., vol. 362, no. 1816, pp. 603–628, 2004.

[73] B. Hu, W. C. Chew, and S. Velamparambil, “Fast inhomogeneous
plane wave algorithm for the analysis of electromagnetic scattering,”
Radio Sci., vol. 36, no. 6, pp. 1327–1340, Nov. 2001.

[74] E. Darve, “Efficient fast multipole method for low frequency scattering,”
Cent. Turbul. Res. Annu. Res. Briefs, 2001.

[75] L. J. Jiang and W. C. Chew, “Low-frequency fast inhomogeneous plane-
wave algorithm (LF-FIPWA),” Microw. Opt. Technol. Lett., vol. 40,
no. 2, pp. 117–122, 2004.

[76] M. Vikram, H. Huang, B. Shanker, and T. Van, “A novel wideband
FMM for fast integral equation solution of multiscale problems in
electromagnetics,” IEEE Trans. Antennas Propag., vol. 57, no. 7, pp.
2094–2104, July 2009.

[77] M. Takrimi, O. Ergul, and V. B. Erturk, “A novel broadband multi-
level fast multipole algorithm with incomplete-leaf tree structures for
multiscale electromagnetic problems,” IEEE Trans. Antennas Propag.,
vol. 64, no. 6, pp. 2445–2456, 2016.

[78] T. Xia, H. Gan, M. Wei, W. C. Chew, H. Braunisch, Z. Qian, K. Aygun,
and A. Aydiner, “An integral equation modeling of lossy conductors
with the enhanced augmented electric field integral equation,” IEEE
Trans. Antennas Propag., vol. 65, no. 8, pp. 4181–4190, Aug. 2017.

[79] L. L. Meng, X. Y. Z. Xiong, T. Xia, and L. J. Jiang, “The error
control of mixed-form fast multipole algorithm based on the high-order
multipole rotation,” IEEE Antennas Wirel. Propag. Lett., vol. 16, pp.
1655–1658, 2017.

[80] H. Cheng, W. Y. Crutchfield, Z. Gimbutas, L. F. Greengard, J. F.
Ethridge, J. Huang, V. Rokhlin, N. Yarvin, and J. Zhao, “A wideband
fast multipole method for the Helmholtz equation in three dimensions,”
J. Comput. Phys., vol. 216, no. 1, pp. 300–325, July 2006.

[81] I. Bogaert, J. Peeters, and F. Olyslager, “A nondirective plane wave
MLFMA stable at low frequencies,” IEEE Trans. Antennas Propag.,
vol. 56, no. 12, pp. 3752–3767, Dec. 2008.

116



[82] O. Ergul and B. Karaosmanoglu, “Broadband multilevel fast multipole
algorithm based on an approximate diagonalization of the Green’s
function,” IEEE Trans. Antennas Propag., vol. 63, no. 7, pp. 3035–3041,
July 2015.

[83] H. B. G. Casimir and D. Polder, “The influence of retardation on the
London-van der Waals forces,” Phys. Rev., vol. 73, no. 4, pp. 360–372,
Feb. 1948.

[84] F. London, “The general theory of molecular forces,” Trans. Faraday
Soc., vol. 33, no. 1, p. 8, Jan. 1937.

[85] P. W. Milonni and C. Eberlein, “The quantum vacuum: An
introduction to quantum electrodynamics,” Am. J. Phys., vol. 62,
no. 12, p. 1154, Dec. 1994.

[86] S. K. Lamoreaux, “The Casimir force: Background, experiments, and
applications,” Reports Prog. Phys., vol. 68, no. 1, pp. 201–236, Jan.
2005.

[87] P. R. Atkins, “A study on computational electromagnetics problems
with applications to Casimir force calculations,” Ph.D. dissertation, Uni-
versity of Illinois at Urbana-Champaign, 2013.

[88] N. Halko, P. G. Martinsson, and J. A. Tropp, “Finding structure with
randomness: Probabilistic algorithms for constructing approximate
matrix decompositions,” SIAM Rev., vol. 53, no. 2, pp. 217–288, Sep.
2009.

[89] H. Reid, “Fluctuating surface currents: A new algorithm for efficient
prediction of Casimir interactions among arbitrary materials in arbitrary
geometries,” Ph.D. dissertation, Massachusetts Institute of Technology,
2011.

117


	Chapter 1 Introduction
	Computational Electromagnetics
	Surface Integral Equation and Fast Multipole Algorithm
	Casimir Force Calculations Using Surface Integral Equation
	An Overview of the Dissertation

	Chapter 2 An Enhanced Augmented Electric Field Integral Equation for Dielectric Objects
	Introduction
	A-EFIE Formulation for PEC
	Motivations of A-EFIE
	A-EFIE Formulation for PEC
	A-EFIE and EFIE

	A-EFIE Formulation for Dielectrics
	A-EFIE Formulation for Dielectrics
	Testing and Basis Functions
	Preconditioner for Dielectric Formulation
	Mixed-Form Fast Multipole Algorithm

	Numerical Results
	Condition Number of the System Matrix
	Convergence History
	Scattering
	Periodic Array Scattering
	Lossy Plasmonic Material

	Conclusion

	Chapter 3 The Enhanced Augmented Electric Field Integral Equation for Conductive Structures
	Introduction
	Methods
	Formulation
	Integral Evaluations
	Conventional Singularity Subtraction
	Circle Approximation
	Line Integral Method
	Modified Integral Method

	PEC and IBC Approximations

	Numerical Results
	Validation
	Scattering of a Conducting Sphere
	Skin Depth in a Transmission Line

	Large-Scale Simulations
	Two-Layer Circuit Board I
	Two-Layer Circuit Board II
	Four-Layer Circuit Board III


	Conclusion

	Chapter 4 A Broadband Multilevel Fast Multipole Method Using Plane Wave and Multipole Hybridization
	Introduction
	Methods
	Reviews of the Conventional FMA
	The Diagonal FMA Using Plane Waves
	The Dense FMA Using Multipoles

	A Review of the Diagonal FMA Using Inhomogeneous Plane Waves
	Derivation of the Fast Inhomogeneous Plane Wave Algorithm

	Formulation of the Hybrid FMA
	Determining L0 and Lm
	Multilevel and Multi-Scale Considerations
	Rotation for Multipole Expansions

	Numerical Results
	Single-Level Worst Case
	Multilevel Application Cases
	Spherical Scattering Validations

	Conclusions

	Chapter 5 Efficient Calculations of the Casimir Force Using the Surface Integral Equation
	Introduction
	Methods
	Derivations of the Casimir Energy and Force
	The Casimir Energy and Force Representations Using the Surface Integral Equation
	Numerical Implementations
	A Fast Computing Scheme
	Imaginary Hybrid Fast Multipole Algorithm
	Generalization of the diagonal FMA
	Generalization of the dense FMA
	Hybrid FMA


	Numerical Results
	Casimir Force at Imaginary Frequencies
	Casimir Force Between PEC Objects
	Casimir Force Between Dielectric Objects and the Randomized SVD
	Hybrid FMA at Imaginary Frequencies
	Hybrid FMA and Randomized SVD for Large-Scale Problems

	Numerical Issues
	Conclusions

	Chapter 6 Conclusions
	Appendix A Derivations of the Integrals Using the Modified Integral Method
	Appendix B Proximity Force Approximation of Casimir Energy and Force for Simple Structures
	Two Identical Spheres
	A Sphere and a Plate

	References

