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ABSTRACT

In recent years, deep learning has achieved great success in speech enhan-

cement. However, there are two major limitations regarding existing works.

First, the Bayesian framework is not adopted in many such deep-learning-

based algorithms. In particular, the prior distribution for speech in the Bay-

esian framework has been shown useful by regularizing the output to be in

the speech space, and thus improving the performance. Second, the majo-

rity of the existing methods operate on the frequency domain of the noisy

speech, such as spectrogram and its variations. We propose a Bayesian speech

enhancement framework, called BaWN (Bayesian WaveNet), which directly

operates on raw audio samples. It adopts the recently announced WaveNet,

which is shown to be effective in modeling conditional distributions of speech

samples while generating natural speech. Experiments show that BaWN is

able to recover clean and natural speech.

Multi-channel speech enhancement with ad-hoc sensors has been a challen-

ging task. Speech model guided beamforming algorithms are able to recover

natural sounding speech, but the speech models tend to be oversimplified to

prevent the inference from becoming too complicated. On the other hand,

deep learning based enhancement approaches are able to learn complicated

speech distributions and perform efficient inference, but they are unable to

deal with variable number of input channels. Also, deep learning approaches

introduce a lot of errors, particularly in the presence of unseen noise types

and settings. We have therefore proposed an enhancement framework called

DeepBeam, which combines the two complementary classes of algorithms.

DeepBeam introduces a beamforming filter to produce natural sounding

speech, but the filter coefficients are determined with the help of a monaural

speech enhancement neural network. Experiments on synthetic and real-

world data show that DeepBeam is able to produce clean, dry and natural

sounding speech, and is robust against unseen noise.
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CHAPTER 1

INTRODUCTION

Deep learning has been widely used in speech enhancement tasks because

its strong representation power is capable of characterizing complex noise

distributions. For example, some works directly predict output spectrum

using deep neural networks (DNN) or denoising auto-encoders [1, 2, 3, 4]. A

series of works [5, 6] applied different deep learning architectures to predict

ideal ratio masks. In addition, several works performed speech separation

using various deep learning architectures [7, 8].

However, these approaches have two major limitations. First, these deep

learning algorithms rarely incorporate an explicit prior model for clean speech

or a Bayesian framework, which has been shown effective for speech enhance-

ment [9]. While the variability of noise is hardly tractable, the clean speech

signal is highly structured, and thus a prior speech model can regularize

enhanced speech to become speech-like. Without the speech model, many

deep learning algorithms are not generalizable to noise without highly similar

characteristics.

On the other hand, existing Bayesian speech enhancement algorithms mos-

tly model speech using simple probability distribution in order to have closed-

form solutions. For example, a large body of such works assume HMM-GMM

models [10, 11, 12, 13] or Laplacian models [14, 15, 16, 17]. Others make loo-

ser assumptions on kurtosis or negentropy of speech distribution [18, 19].

For these algorithms, building a more accurate model for speech becomes a

bottleneck, which can potentially be opened by deep learning.

The second limitation regarding the existing deep learning based approach

is that most deep learning algorithms operate on amplitude spectrum, such

as short-time Fourier transform or cochleargram. The noisy phase spectrum

is directly applied to the enhanced speech without restoring the clean phase

spectrum, which may suffer from phase distortion. Also, in some spectral

restoration methods, the time domain signal is recovered by overlap-add,

1



which is prone to artifacts and discontinuities. However, applying deep lear-

ning directly to speech waveform is difficult because the high sampling rate

requires large temporal memory and receptive field size.

Fortunately, the recently announced WaveNet [20] has demonstrated a

strong capability in modeling raw audio waveforms. Its receptive field size

is significantly boosted by stacking dilated convolution layers with exponen-

tially increasing dilation rates. Experiments have shown that it is able to

generate random babbles with high naturalness. Moreover, WaveNet is pro-

babilistic, which naturally fits into the Bayesian framework.

Motivated by these observations, we propose a Bayesian speech enhance-

ment algorithm using deep learning structures inspired by WaveNet, called

the Bayesian WaveNet (BaWN). BaWN directly predicts the clean speech au-

dio samples by estimating the prior distribution and the likelihood function

of clean speech using WaveNet-like architectures, which are the two major

components of the Bayesian network. It promotes a happy marriage between

the Bayesian framework and the deep learning techniques: the former bro-

adens the generalizability for the latter, and the latter improves the model

accuracy for the former.

Multi-channel speech enhancement with ad-hoc sensors has long been a

challenging task [21]. As the traditional benchmark in multi-channel enhan-

cement tasks, beamforming algorithms do not work well with with ad-hoc

microphones. This is because most beamformers need to calibrate the spea-

ker location as well as the interference characteristics, so that they can turn

the beam toward the speaker, while suppressing the interference. However,

neither parameter can be accurately measured, due to the missing sensor

position information and microphone heterogeneity [22].

Another class of beamforming algorithms avoid measuring the speaker po-

sition and interference. Instead, they introduce prior knowledge on speech,

and find the optimal beamformer by maximizing the “speechness” crite-

ria, such as sample kurtosis [18], negentropy [19], speech prior distributions

[16, 17], fitting glottal residual [23] etc. In particular, the GRAB algorithm

[23] is able to outperform the closest microphone strategy even in very ad-

verse real-world scenarios. Despite their success, these algorithms are limited

by their oversimplified prior knowledge. For example, GRAB only models

glottal energy, resulting in vocal tract ambiguity.

On the other hand, deep learning techniques are well known for their
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ability to capture complex probability dependencies and efficient inference,

and thus have been widely used in single-channel speech enhancement tasks

[6, 7, 8, 24, 25, 26]. Unfortunately, directly applying deep enhancement net-

works to multi-channel enhancement suffers from two difficulties. First, deep

enhancement techniques often produce a lot of artifacts and nonlinear distor-

tions [24, 25] which are perceptually undesirable. Second, neural networks

often generalize poorly to unseen noise and configurations, whereas in speech

enhancement with ad-hoc sensors, such variability is large.

As it turns out, these problems can in turn be resolved by traditional beam-

forming. Therefore, several algorithms [27, 28, 29, 30, 31] have been proposed

that apply deep learning to predict time-frequency masks, and then beamfor-

ming to produce the enhanced speech. However, these methods are confined

to frequency domain, which incurs two problems for our application. First,

they to not work well for ad-hoc microphones because of the spatial corre-

lation estimation errors. Second, our application is for human consumption,

but the frequency-domain methods suffer from phase distortions and discon-

tinuities, which impede perceptual quality.

Motivated by this observation, we have proposed an enhancement frame-

work for ad-hoc microphones called DeepBeam, which combines deep lear-

ning and beamforming, and which directly works on waveform. DeepBeam

introduces a time-domain beamforming filter to produce natural sounding

speech, but the filter coefficients are iteratively determined with the help of

WaveNet [20]. It can be shown that despite the error-prone enhancement

network, DeepBeam is able to converge approximately to the optimal be-

amformer under some assumptions. Experiments on both the simulated and

real-world data show that DeepBeam is able to produce clean, dry and

natural sounding speech, and generalize well to various settings.
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CHAPTER 2

ALGORITHM

2.1 Bayesian WaveNet

The problem is formulated within the Bayesian framework. Denote X0:T−1

as the random process of the clean speech, which is quantized into Q levels,

q0:Q−1, via the µ-law encoding [32], so each Xt is a discrete variable. The

subscript 0 : T−1 denotes a set with subscripts running from 0 through T−1.

Denote Y0:T−1 as the random process of the observed noisy signal. In this

thesis, only additive noise is considered, but the framework is generalizable

to other types of interferences. Our task is to infer the clean speech x̂t given

a set of noisy observations Y0:T = y0:T . For notational ease, probability mass

functions will be abbreviated, e.g. p(Xt = xt|Yt = yt) as p(xt|yt).
We apply a sub-optimal greedy inference scheme for X0:T−1. Given inferred

values of the past samples x̂0:t−1, the inferred value of the current sample,

x̂t, is defined as the posterior expectation

x̂t , E [Xt|Xt−τ1:t−1 = x̂t−τ1:t−1, Yt−τ2:t+τ2 = yt−τ2:t+τ2 ] (2.1)

Here we have made a Markov assumption that the probabilistic dependence

of Xt upon variables in the distant past and far future is negligible, when the

closer ones, Xt−τ1:t−1 and Yt−τ2:t+τ2 , are given. The terms τ1 and τ2 denote

the range of dependence on X0:T−1 and Y0:T−1, respectively. Therefore, the

following posterior distribution should be evaluated:

p(Xt = xt|Xt−τ1:t−1 = x̂t−τ1:t−1, Yt−τ2:t+τ2 = yt−τ2:t+τ2)

,p(xt|x̂t−τ1:t−1, yt−τ2:t+τ2)

∝p(xt|x̂t−τ1:t−1) · p(yt−τ2:t+τ2 |x̂t−τ1:t−1, xt)

(2.2)

where the , sign denotes the abbreviation.
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Define the likelihood function as

L(xt; x̂t−τ1:t−1, yt−τ2:t+τ2) , p(yt−τ2:t+τ2|x̂t−τ1:t−1, xt) (2.3)

Then Eq. (2.2) can be rewritten into

p(xt|x̂t−τ1:t−1, yt−τ2:t+τ2)

= p(xt|x̂t−τ1:t−1)︸ ︷︷ ︸
prior model

·L(xt; x̂t−τ1:t−1, yt−τ2:t+τ2)︸ ︷︷ ︸
likelihood model

(2.4)

The BaWN architecture is based on Eq. (2.4). As shown in Figure 2.1(a),

it consists of two models. The first model is called the prior model, or the

speech model, modeling the prior distribution of clean speech signals. For

each time t, it takes x̂t−τ1:t−1 as input, and outputs a Q-dimensional vector

of the log estimated pmf log p̂(xt|x̂t−τ1:t−1) up to an unknown constant.

The second model is called the likelihood model, or the noise model, mo-

deling the likelihood function. It takes as inputs x̂t−τ1:t−1 and yt−τ2:t+τ2 ,

and outputs a Q-dimensional vector of the estimated log likelihood function

log L̂(xt; x̂t−τ1:t−1, yt−τ2:t+τ2) up to an unknown constant.

The two outputs are added and then passed through a softmax nonline-

arity. Notice that the exponential function in softmax turns addition into

multiplication; the normalization step in softmax removes any unknown con-

stant. Therefore it can be easily shown, from Eq. (2.4), that the output

of the softmax nonlinearity is the p(xt|x̂t−τ1:t−1, yt−τ2:t+τ2) of interest. Also,

the output of the prior model, passing through a softmax nonlinearity alone,

becomes the prior distribution p(xt|x̂t−τ1:t−1).

The following two subsections introduce the two models respectively.

2.1.1 The Prior Model

The prior model replicates the architecture of WaveNet because it performs

a similar task. As shown in Figure 2.1(b), the prior model consists of two

modules. The first is the dilated convolution module, which contains a stack

of B1 blocks with L1 layers for each. The l-th layer in the b-th block is a 1D

causal convolution layer through time, with kernel size 2 and dilation rate

2l. For each time t, it produces two vector outputs—a hidden output z
(b,l)
t ,
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The Prior 

Model

The Likelihood 

Model

SoftmaxSoftmax

 𝑥𝑡−𝜏1:𝑡−1  𝑥𝑡−𝜏1:𝑡−1 𝑦𝑡−𝜏2:𝑡+𝜏2

 𝑝 𝑥𝑡  𝑥𝑡−𝜏1:𝑡−1  𝑝 𝑥𝑡  𝑥𝑡−𝜏1:𝑡−1,  𝑦𝑡−𝜏2:𝑡+𝜏2

(a) The general model framework

Dilated Convolution 

⋯

 𝑥𝑡−1 𝑥𝑡−2 𝑥𝑡−3⋯

Post 

Processing

ReLU

⋮

ReLU

log  𝑝 𝑥𝑡|  𝑥𝑡−𝜏1:𝑡−1

𝜎 tanh

𝑖𝑡𝑖𝑡−2𝑙

𝑟𝑡

𝑧𝑡
𝑏,𝑙

𝑠𝑡
𝑏,𝑙

(b) The prior model. The right plot gives a detailed view of a basic convolution
unit in the left plot (Eq. (2.5)).

Dilated Convolution 

⋯

 𝑥𝑡−1 𝑥𝑡−2 𝑥𝑡−3⋯

log  𝐿 𝑥𝑡;  𝑥𝑡−𝜏1:𝑡−1, 𝑦𝑡−𝜏2:𝑡+𝜏2

Dilated Convolution 

𝑦𝑡−1 𝑦𝑡+1𝑦𝑡⋯

⋯⋯

⋯

⋮

(c) The likelihood model. The middle module is the post processing module,
whose structure is similar to that in (b).

Figure 2.1: The model architecture. Compound arrows denote that the
node is multiplied by a weight matrix before sent to the next unit. Circled
add and circled dot denote element-wise addition and multiplication
respectively. The data path that generates the current output at time t is
highlighted.
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which is fed into the convolution layer above, and a skip output s
(b,l)
t , which

is directly fed into the second module. The nonlinearity applied is a gated

activation unit [33] with residual structure [34]. Formally,

f
(b,l)
t = tanh

(
W

(b,l)
f0 i

(b,l)
t +W

(b,l)
f1 i

(b,l)

t−2l
+ d

(b,l)
f

)
(2.5a)

g
(b,l)
t = σ

(
W

(b,l)
g0 i

(b,l)
t +W

(b,l)
g1 i

(b,l)

t−2l
+ d(b,l)

g

)
(2.5b)

r
(b,l)
t = f

(b,l)
t � g(b,l)

t (2.5c)

z
(b,l)
t = i

(b,l)
t +W (b,l)

z r
(b,l)
t + d(b,l)

z (2.5d)

s
(b,l)
t = i

(b,l)
t +W (b,l)

s r
(b,l)
t + d(b,l)

s (2.5e)

where σ(·) denotes the sigmoid function, � denotes element-wise multiplica-

tion, and i
(b,l)
t denotes the input to this layer,

i
(b,l)
t =


z

(b,l−1)
t if l > 0

z
(b−1,L1−1)
t if l = 0, b > 0

Wix̂t otherwise

(2.6)

The second module is the post-processing module, which sums all the skip

outputs of time t, s
(0:B1−1,0:L1−1)
t , and passes it to a stack of 1×1 convolution

(fully connected within time t) layers with ReLU activation. The receptive

field size is shown as

τ1 = B1

(
2L1 − 1

)

2.1.2 The Likelihood Model

The likelihood model is more complex than the prior model. This is because

1) in addition to x̂t−τ1:t, which is the input to both models, the likelihood

model also takes yt−τ2:t+τ2 as input; 2) the prior model is causal, but the

likelihood model is non-causal.
To address these complexities, we adapt the original WaveNet structure

to that shown in Figure 2.1(c). The likelihood model also has a dilation
convolution module and a post-processing module, but the dilation module
now contains two parts. The first part deals with the input x̂t−τ1:t, and has
the same structure as in Eqs. (2.5) and (2.6). The second part deals with the
input yt−τ2:t+τ2 , and has almost the same structure, except for two differences.
First, the number of blocks and layers within each block is changed to B2

and L2 respectively, to accommodate τ2, which can be different from τ1.
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Second, instead of a causal convolution with kernel size 2, this part imposes
a non-causal convolution with kernel size 3 to account for future dependency.
Formally, Eqs. (2.5a) and (2.5b) are adapted to

f
(b,l)
t = tanh

(
W

(b,l)
f0 i

(b,l)
t +W

(b,l)
f1 i

(b,l)

t−2l
+W

(b,l)
f−1 i

(b,l)

t+2l
+ d

(b,k)
f

)
(2.7a)

g
(b,l)
t =σ

(
W

(b,l)
g0 i

(b,l)
t +W

(b,l)
g1 i

(b,l)

t−2l
+W

(b,l)
g−1 i

(b,l)

t+2l
+ d(b,l)g

)
(2.7b)

The post-processing module in the likelihood model is the same as that in

the prior model, except that it sums all the skip outputs from both parts of

the dilated convolution module.

2.2 Deep Beamformer

To formally define the problem, denote s[t] as the clean speech signal. Sup-

pose there are K channels of observed signals, yk[t], k = 1, · · · , K, which are

represented as

yk[t] = s[t] ∗ ik[t] + n[t] ∗ jk[t] (2.8)

where ∗ denotes discrete convolution, n(t) denotes additive noise, and ik[t]

and jk[t] are the impulse responses of the signal reverberation and noise

reverberation in the k-th channel, respectively. Our goal is to design a τ -tap

beamformer hk[t], k = 1, · · · , K, whose output is defined as

x[t] =
K∑
k=1

yk[t] ∗ hk[t] (2.9)

For notational brevity, define

s = [s[1], · · · , s[T ]]T x = [x[1], · · · , x[T ]]T

yk = [yk[1], · · · , yk[T ]]T y = [yT1 , · · · ,yTK ]T

h = [h1[1], · · · , h1[τ ], h2[1], · · · , hK [τ ]]T

(2.10)
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which are all random vectors. Also define convolutional matrices

Yk =



yk[1]

yk[2] yk[1]
...

...
. . .

yk[τ ] yk[τ − 1] · · · yk[1]
...

...
...

yk[T ] yk[T − 1] · · · yk[T − τ + 1]


(2.11)

and

Y = [Y1, · · · ,YK ] (2.12)

With these notations, Eq. (2.9) can be simplified as

x = Y h (2.13)

The target of designing the beamformer is to minimize the weighted mean

squared error (MSE):

min
x=Y h

E
[
‖x− s‖2

W |y
]

(2.14)

where ‖x‖2
W = xTWx; W is a positive definite weight matrix, which, in

our case, is a diagonal matrix of Var−1(s[t]|y).

Equation (2.14) is a Wiener filtering problem [35], whose solution is

x∗ = PE[s|y] (2.15)

where

P = Y (Y TWY )−1Y TW (2.16)

is in fact the projection matrix onto the beamforming output space. So by

Eq. (2.15), x∗ is essentially projecting E[s|y] onto the space that is represen-

table by the beamforming filter.

As shown by Eq. (2.15), solving the Wiener filtering problem requires

computing E[s|y], which, due to the complex probabilistic dependencies, we

would like to introduce a deep neural network to learn. However, as discussed,

training a neural network to directly predict E[s|y] from the multi-channel

input y suffers from inflexible input dimensions, artifacts and poor generali-

zation. DeepBeam tries to resolve these problems and find an approximate
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solution.

2.2.1 The Algorithm Overview

As mentioned, DeepBeam introduces a deep enhancement network to learn

the posterior expectation, while addressing its limitations. First, DeepBeam

is regularized by the beamformer to generalize well to unseen noise and mi-

crophone configurations. Second, it tolerates the distortions and artifacts

generated by the neural network. Formally, the neural network outputs an

inaccurate prediction of the posterior expectation E[s|ξ],

f(ξ) = E[s|ξ] + ε(ξ) (2.17)

where ξ is a single-channel noisy observation, and ε(ξ) is the prediction error.

The goal of DeepBeam is to approximate the optimal beamformer given the

inaccurate enhancement network. Algorithm 1 shows the description of the

DeepBeam algorithm. A graph of the DeepBeam framework is shown in

Figure 2.2.

Inaccurate Monaural Enhancement NetworkBeamfomer

𝒚"
𝒔$ ← 𝔼 𝒔|𝒙 + 𝜺 𝒙

𝒙 ← 𝑷𝒔$

𝒚, 𝒚-
⋯

𝒙/∗

Figure 2.2: DeepBeam framework.

Algorithm 1 essentially alternates between the posterior expectation and

projection iteratively. It will be shown in section 2.2.3 that as long as the

error term ε is not too large, this iteration will approximately converge to

the optimal beamformer output.

One elegance of DeepBeam is that x(n) can be regarded as a noisy ob-

servation, and shares some statistical structures with the true noisy obser-

vations, yk. To see this, notice that by Eq. (2.19), x(n) is the output of a

beamformer on y. Therefore, it can be shown that x(n) also takes the form

of Eq. (2.8), with the same speech and noise source, but with a different im-
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Algorithm 1 The DeepBeam algorithm.

Input: Multi-channel noisy speech observations y;
A neural network that predicts f(ξ) (Eq. (2.17)) from any single-channel
noisy observation ξ.

Output: Beamformer output x̂∗.

Initialization:
1: Find the ‘cleanest’ channel k∗ by finding the channel that has the smallest

0.4 quantile of its squared sample points.
2: Set x(0) = yk∗ .

Iteration:
3: for n = 1 to maximum number of iterations do
4: Feed x(n−1) to the monaural enhancement network, and obtain its out-

put
ŝ(n) = f(x(n−1)) = E[s|x(n−1)] + ε(x(n−1)) (2.18)

5: Update the beamformer coefficients and output

x(n) = P ŝ(n) (2.19)

6: end for
7: return x̂∗ = x(N)

pulse response. This justifies the use of one monaural enhancement network

to take care of all the x(n).

2.2.2 Enhancement Network Structure

DeepBeam is a general framework, in which the choice of the neural network

structure is not fixed. The following network structure is just one of the

structures that produce competitive results.

The enhancement network applied here is similar to [25], which is inspired

by WaveNet [20]. Formally, denote the quantized speech samples as s̃[t], and

the samples of x(n) as x(n)[t]. Then the enhancement network predicts the

posterior probability mass function (PMF) of s̃[t]:

p(s̃[t]|x(n)) ≈ p(s̃[t]|x(n)[t− τr], · · · , x(n)[t+ τr]) (2.20)

Here we have restricted the probabilistic dependency to span τr time steps.

Cross-entropy is applied as the loss function.

11



Similar to WaveNet, the enhancement network consists of two modules.

The first module, called the dilated convolution module, contains a stack of

dilated convolutional layers with residual connections and skip outputs. The

second module, called the post processing module, sums all the skip outputs

and feeds them into a stack of fully connected layers before producing the

final output.

There are two major differences from the standard WaveNet structure.

First, the input to the enhancement network is the noisy observation wa-

veform x(n) instead of the clean speech. Second, to account for the future

dependencies, the convolutional layers are noncausal 1 × 3 instead of the

causal 1× 2.

After the posterior distribution is predicted, the posterior moments,E[s|x(n)]

and Var[s[t]|y] (for computing W ), are computed as the moments of the pre-

dicted PMF.

2.2.3 Convergence Analysis

In order to analyze the convergence property of DeepBeam, we assume the

following bound on the error term:

E[‖Pε(x(n))‖2
W |y] ≤ ρE[‖x(n) − s‖2

W |y] (2.21)

where ρ < 0.5 is some constant. This assumption is actually not quite

stringent, because it bounds not the weighted norm of ε(x(n)) itself, but

its projected value Pε(x(n)). In fact, the projection can drastically reduce

the weighted norm of the error term. For example, most of the artifacts

and nonlinear distortions that the enhancement network introduces cannot

possibly be generated by beamforming on y, and therefore will be removed

by the projection. The only errors that are likely to remain are residual noise

and reverberations. This is one advantage of combining beamforming filter

and neural network. This assumption is also very intuitive. It means that

the projected output error is always smaller than input error.

Then, we have the following theorem.
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Theorem 1. Suppose Eq. (2.21) holds. Then

lim sup
n→∞

E[‖x(n) − x∗‖2
W |y] ≤ u (2.22)

where

u =
2ρ

1− 2ρ
E[‖s− x∗‖2

W |y]

+
2

1− 2ρ
sup
n

E[‖PE[s|x(n)]− x∗‖2
W |y]

(2.23)

Proof. On one hand, from Eqs. (2.18) and (2.19)

E[‖Pε(x(n))‖2
W |y] = E[‖x(n+1) − PE[s|x(n)]‖2

W |y]

≥1

2
E[‖x(n+1) − x∗‖2

W |y]− E[‖PE[s|x(n)]− x∗‖2
W |y]

(2.24)

On the other hand, by orthogonality principle

E[‖x(n) − s‖2
W |y] = E[‖x(n) − x∗‖2

W |y] + E[‖s− x∗‖2
W |y] (2.25)

Combining Eqs. (2.21), (2.24) and (2.25), we have

E[‖x(n+1) − x∗‖2
W |y] ≤ 2ρE[‖x(n) − x∗‖2

W |y] + (1− 2ρ)u (2.26)

Create an auxiliary sequence

a(n) = E[‖x(n) − x∗‖2
W |y]− u (2.27)

Then by Eq. (2.26),

a(n+1) ≤ (2ρ)na(1) (2.28)

Taking lim supn→∞ on both sides of Eq. (2.28) concludes the proof.

If u = 0, then Eq. (2.22) implies mean square convergence to the optimal

beamformer output. In actuality, u is nonzero, but it tends to be very small.

The first term of u measures the distance between the optimal beamformer

output and the true speech. According to our empirical study, when the

number of channels is sufficient, the optimal beamformer is able to recover

the true speech very well, so the first term is small. The second term of

u measures the distance between two posterior expectations PE[s|x(n)] and

13



PE[s|y]. The former is conditional on single-channel noisy speech, and the

latter on multiple-channel noisy speech. Considering that the speech sample

space is highly structured, and that the noisy speech x(n) is relatively clean

already, both posterior expectations should be close to the true speech, and

thereby close to each other. In a nutshell, with a small u, the DeepBeam

prediction is highly accurate. Section 5.2 will verify the convergence behavior

of DeepBeam empirically.
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CHAPTER 3

EXPERIMENTS

3.1 Bayesian WaveNet

3.1.1 Training the Prior Model

If we replace the input x̂t−τ1:t−1 with the true clean samples, denoted as

x∗t−τ1:t−1, then the prior model can be trained on clean speech, following a

similar paradigm as in WaveNet. Specifically, for each t, given the previ-

ous true clean speech, x∗t−τ1:t−1 as input, the training scheme minimizes the

cross entropy between the estimated prior distribution and the empirical dis-

tribution. Formally, the training scheme solves the following optimization

problem:

max
T−1∑
t=0

Q−1∑
i=0

1 {x∗t = qi} log p̂(Xt = qi|xt−τ1:t−1) (3.1)

where 1{·} denotes the indicator function, which equals 1 if the statement

in its argument is true and 0 otherwise.

So far, we have implemented only the speaker-dependent enhancement

task. The generalization to speaker-independent models will be one of our

future directions.

3.1.2 Training the Likelihood Model

Once the prior model is trained, the likelihood model can be trained by

combining both models to estimate the posterior distribution, as indicated

by Eq. (2.2). Ideally, we would like to solve

max
T−1∑
t=0

Q−1∑
i=0

1 {x∗t = qi} log p̂(Xt = qi|x̂t−τ1:t−1, yt−τ2:t+τ2) (3.2)
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However, notice that the input of time t contains x̂t−τ1:t−1, which is a function

of the previous time outputs, as shown in Eq. (2.1). Therefore, Eq. (3.2)

introduces time recurrence, which causes gradient explosion in practice. An

alternative is to replace x̂t−τ1:t−1 with the true value x∗t−τ1:t−1 as in prior

model training, but this approximation leads to insufficient training, because

the model is given too much oracle information about the clean speech.

Our solution is to replace x̂t−τ1:t−1 with the inferred clean speech produced

by the network trained in the previous iteration. Denote the previous inferred

value as x̂
(old)
t−τ1:t−1; then the problem in Eq. (3.2) is reformulated as

max
T−1∑
t=0

Q−1∑
i=0

1 {x∗t = qi} log p̂(Xt = qi|x̂(old)
t−τ1:t−1, yt−τ2:t+τ2) (3.3)

The previous inferred value x̂
(old)
t−τ1:t−1 can be implemented efficiently using the

method in [36].

It should be emphasized that while optimizing for Eq. (3.3), the weights

of the prior model should be held fixed to prevent deviation from modeling

the prior distribution.

3.1.3 Configurations

The three dilated convolutional networks of the WaveNet enhancement model

all have 4 blocks of 10 layers, which makes a receptive field size of approxima-

tely two to three phones. For each layer, the hidden output has 32 channels

and the skip output has 1024 channels. The post-processing modules in both

the prior and the likelihood models contain two fully connected layers, each

with 1024 hidden nodes. The clean speech is quantized into 256 levels, so

the output dimension is 256.

The training dataset consists of a clean training set (for the prior model)

and a noisy training set. The clean training set contains a total of 9700 ut-

terances (19 hours) from audio books played by a female speaker [37]. The

noisy training set was created by mixing the 9700 clean utterances randomly

with 100 environment noises from [4, 38, 39], including train, airport, restau-

rant and ring tones. The SNR of the noisy training set is set to two levels: 0

dB and -5 dB.

There are two test sets, respectively containing 20 and 100 clean utterances
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of the same speaker randomly selected from another audio book. For the

first test set, called the unseen noise test set, 100 noises were selected from

a completely different noise dataset [40] in order to test the generalizablity

of BaWN, where the types of noise and recording configurations completely

differ from that of the training noise dataset. For investigation purpose, the

second test set, called the seen noise test set, contains 20 noises drawn from

the training noise dataset.

The input training utterances were first segmented into fixed-length tokens.

Then, each clean token was quantized using 256-level µ-law companding and

padded with 4092 historical samples based on the receptive field size of the

our model. The noisy utterances were not quantized because the model

does not make predictions of noisy speech. Each noisy token was padded

not only with historical samples but also with the same number of future

samples. The target output was a 256 dimensional one-hot vector indicating

the quantization level of the desired output sample.

The prior model was trained on all 9700 (19 hours) clean utterances. Due

to significantly increased model complexity and the EM-like training proce-

dures, the likelihood model was trained on only 500 (1 hour) utterances from

the noisy training set. Though the small amount of training data may lead

to an insufficiently trained likelihood model, it actually provides a good op-

portunity to verify the power of the prior model and test the generalizablity

of BaWN. For fair comparison, the DNN-IRM baseline was trained on the

complete noisy training set. During testing, each predicted clean sample was

fed back as the clean input sample to predict the next clean sample.

The DIRM baseline was constructed according to [6] and trained on the

same 9700 noisy utterances. The 64-channel cochleargrams were extracted

from the noisy utterances as the input features. The targets were the ideal-

ratio-masks (IRMs) at the corresponding frame and channel. The IRM of

the current frame is predicted using 23 neighboring frames centered at the

current frame. During testing, the IRMs were predicted and applied to the

corresponding noisy utterances to recover clean utterances.
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3.2 Deep Beamformer

3.2.1 Enhancement Network Configurations

The enhancement network hyperparameter configurations follow [20]. The

network has 4 blocks of 10 dilated convolution layers. There are two post-

processing layers. The hidden node dimension is 32, and the skip node di-

mension is 256. The clean speech is quantized into 256 levels via µ-law

companding, and thus the output dimension is 256. The activation function

in the dilated convolutional layers is the gated activation unit; that in the

post-processing layers is the ReLU function. The output activation is soft-

max.

The enhancement network is trained on simulated data only, which is ge-

nerated in the same way as in [23]. The speech source, noise source and eight

microphones are randomly placed into a randomly sized cubic room. The im-

pulse response from each source to each microphone is generated using the

image-source method [41, 42]. The noisy observations are generated accor-

ding to Eq. (2.8). The reverberation time is uniformly randomly drawn from

[100, 300] ms. The energy ratio between the speech source and noise source,

Er, is uniformly randomly drawn from [−5, 20] dB. The speech content is

drawn from VCTK [43], which contains 109 speakers. The noise content con-

tains 90 minutes of audio drawn from [4, 38, 39]. The total duration of the

training audio is 8 hours. The enhancement network is trained using ADAM

optimizer for 400,000 iterations.

3.2.2 Simulated Data Evaluation

The simulated data for evaluation is generated the same way as the training

data, except for two differences. First, the source energy ratio, Er, is set to

four levels, −10 dB, 0 dB, 10 dB, and 20 dB. Second, both the speaker and

noise can be either seen or unseen in the training set, leading to four different

scenarios to test generalizability. It is worth highlighting that the unseen

speaker utterances and unseen noise are both drawn from different corpora

from training, TIMIT [44] and FreeSFX [40] respectively. Each utterance is

3 seconds in length. The total length of the dataset is 12 minutes.
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DeepBeam is compared with GRAB [23], MVDR1 [45], IVA [16] and the

closest channel (CLOSEST), in terms of two criteria:

• Signal-to-Noise Ratio (SNR): The energy ratio of processed clean

speech over processed noise in dB.

• Direct-to-Reverberant Ratio (DRR): the ratio of the energy of di-

rect path speech in the processed output over that of its reverberation in dB.

Direct path and reverberation are defined as clean dry speech convolved with

the peak portion and tail portion of processed room impulse response. The

peak portion is defined as ±6 ms within the highest peak; the tail portion is

defined as ±6 ms beyond.

3.2.3 Real-world Data Evaluation

DeepBeam and the baselines are also evaluated on the real-world dataset

introduced in [23], which consists of two utterances by two speakers mixed

with five types of noise, all recorded in a real conference room using eight

randomly positioned microphones. The source energy ratio is set such that

the SNR for the closest microphone is 10 dB. The utterance in each scenario

is around 1 minute long, so the total length of the dataset is 10 minutes.

Besides SNR, a subjective test similar to [23] is performed on Amazon

Mechanical Turk. Each utterance is broken into six sentences. In each test

unit, called HIT, a subject is presented with one sentence processed by the

five algorithms, and asked to assign an MOS [46] to each of them. Each HIT

is assigned to 10 subjects.

1Clean speech is given for voice activity detection.
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CHAPTER 4

RESULTS

4.1 Bayesian WaveNet

4.1.1 Objective Evaluation Results

The performance was measured by the average of SNR, signal-to-artifacts

ratio (SAR), signal-to-distortion ratio (SDR), and short-time objective intel-

ligibility (STOI) of the predicted clean utterances. The first three metrics

were computed using the BSS-EVAL toolbox [47].

As seen in Table 4.1, the BaWN model outperforms the DNN-IRM model

in terms of much higher SNRs. The performance advantage is more signifi-

cant in the −5 dB case, where BaWN takes the lead in SAR and STOI as

well. Also, our model generalizes better to the completely different unseen

noise, as the performance drop is smaller. This is remarkable considering

that the likelihood model was trained on only one hour of noisy speech and

the parameters of the model were not tuned. The prior model has enough

knowledge about the distribution of clean speech samples and tends to make

non-speech distributions less likely under unseen noise and low SNR, which

helps to make better predictions even if the likelihood model is weak. BaWN

achieves slightly lower SDR and, in the 0dB case, SAR, because the sequen-

tial inference would occasionally generate impulse noise. Yet this does not

weaken our argument for BaWN, considering the inherent negative corre-

lation between the SNR and SAR/SDR, and the huge performance gain in

SNR.
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Table 4.1: Average SNR, SAR, SDR, STOI of the enhanced utterance using
DNN-IRM and BaWN. The first three metrics are measured in decibels
(dB), and the STOI is measured in percentage (%). Case indicates the
input SNR of the training and testing dataset. Noise indicates whether the
noise type is covered by the training set. BaWN stands for Bayesian
WaveNet. DIRM stands for DNN-IRM.

Case Noise Model SNR SAR SDR STOI

0dB
seen

BaWN 22.2 8.53 8.83 85.7
DIRM 15.6 10.3 12.3 86.4

unseen
BaWN 22.1 8.37 8.75 84.3
DIRM 11.9 8.58 12.7 84.8

-5dB
seen

BaWN 21.6 7.15 7.37 81.7
DIRM 12.2 6.45 8.53 79.0

unseen
BaWN 20.3 6.65 6.92 80.7
DIRM 9.20 5.25 8.24 76.6

4.2 Deep Beamformer

4.2.1 Simulated Data Results

Table 4.2 shows the results. As expected, DeepBeam’s performance drops

from S1, where both noise and speaker are seen during training, to S4, where

neither is seen. However, in terms of SNR, even DeepBeam S4 significantly

outperforms MVDR, which is the benchmark in noise suppression. In terms

of DRR, DeepBeam matches or surpasses CLOSEST except for -10 dB.

GRAB performs worse than in [23], because each utterance is reduced from

10 seconds to 3 seconds, which is more realistic but challenging. In short,

of “cleanness” and “dryness”, most algorithms can only achieve one, but

DeepBeam can achieve both with superior performance.

4.2.2 Real-world Data Results

DeepBeam and the baselines are also evaluated on the real-world dataset

introduced in [23], which consists of two utterances by two speakers mixed

with five types of noise, all recorded in a real conference room using eight

randomly positioned microphones. The source energy ratio is set such that

the SNR for the closest microphone is 10 dB. The utterance in each scenario
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Table 4.2: Simulated Data Evaluation Results.

Er = -10 0 10 20

SNR
(dB)

DeepBeam S1 18.5 22.0 26.5 28.4
DeepBeam S2 17.1 20.3 25.9 27.4
DeepBeam S3 15.3 19.5 24.1 27.6
DeepBeam S4 14.1 19.0 23.1 28.5
GRAB 2.48 12.5 21.6 25.4
CLOSEST -5.13 3.38 14.9 24.8
MVDR 8.41 12.9 22.6 26.7
IVA 10.3 13.3 16.8 19.2

DRR
(dB)

DeepBeam S1 3.45 8.97 11.2 11.5
DeepBeam S2 7.38 11.9 12.6 11.5
DeepBeam S3 5.60 4.85 8.43 9.78
DeepBeam S4 2.11 6.68 7.10 9.31
GRAB -0.83 1.70 3.63 3.68
CLOSEST 8.56 7.32 7.67 8.44
MVDR -2.17 -3.47 -3.42 -4.13
IVA -8.92 -8.77 -8.81 -8.99

S1: seen speaker, seen noise S2: seen speaker, unseen noise

S3: unseen speaker, seen noise S4: unseen speaker, unseen noise

is around 1 minute long, so the total length of the dataset is 10 minutes.

Besides SNR, a subjective test similar to [23] is performed on Amazon

Mechanical Turk. Each utterance is broken into six sentences. In each test

unit, called HIT, a subject is presented with one sentence processed by the

five algorithms, and asked to assign an MOS [46] to each of them. Each HIT

is assigned to 10 subjects.

Table 4.3 shows the results. As can be seen, DeepBeam outperforms

the other algorithms by a large margin. In particular, DeepBeam achieves

> 4 MOS in some noise types. These results are very impressive because

DeepBeam is only trained on simulated data. The real-world data differ

significantly from the simulated data in terms of speakers, noise types and

recording environment. Furthermore, some microphones are contaminated

by strong electric noise, which is not accounted for in Eq. (2.8). Still, Deep-

Beam manages to perform well. The neural network used to be vulnerable

to unseen scenarios, but DeepBeam has now made it robust.
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Table 4.3: Realworld Data Evaluation Results.

Noise Type N1 N2 N3 N4 N5

SNR
(dB)

DeepBeam 20.1 20.0 16.9 19.6 18.7
GRAB 18.9 17.4 12.4 18.5 17.4
CLOSEST 10.0 10.0 10.0 10.0 10.0
MVDR 10.8 16.5 7.72 14.0 13.4
IVA 11.7 9.74 6.83 12.4 15.9

MOS

DeepBeam 3.83 3.72 3.63 4.09 4.20
GRAB 3.10 3.06 2.93 3.71 3.45
CLOSEST 2.74 2.68 3.02 3.55 3.50
MVDR 2.05 2.40 2.28 2.71 2.62
IVA 1.73 2.03 1.75 1.78 2.08

N1: cell phone N2: CombBind machine N3:paper shuffle

N4: door slide N5: footsteps
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CHAPTER 5

DISCUSSION

5.1 Entropy Analysis for Bayesian WaveNet

The effectiveness of the prior model under the Bayesian framework can be

further visualized and analyzed by computing the entropies of the estimated

prior and posterior distribution of each sample. Specifically

H
(pr)
t = −

Q∑
i=0

p̂(Xt = qi|x̂t−τ1:t−1)

· log2 p̂(Xt = qi|x̂t−τ1:t−1)

H
(post)
t = −

Q∑
i=0

p̂(Xt = qi|x̂t−τ1:t−1, yt−τ2:t+τ2)

· log2 p̂(Xt = qi|x̂t−τ1:t−1, yt−τ2:t+τ2)

(5.1)

Since the prediction of a sample is more uncertain if the entropy of the

corresponding distribution is high, we can conclude that the prior model plays

a more important role than the likelihood model at time t if H
(pr)
t < H

(post)
t .

Hence we define a prior effectiveness function

et = 1

(
H

(pr)
t < H

(post)
t

)
(5.2)

to depict the real-time effectiveness of the prior model. et is further smoothed

by a 20 ms moving average filter.

In Figure 5.1a, using the entropies of the predicted distributions for each

sample from the prior model and the likelihood model respectively, a 0-1

vector indicating whether the prior model is more certain than the likelihood

model about each predicted sample was computed and then smoothed by a

rectangular window of 20 ms. For example, a level of 0.8 at some sample
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Figure 5.1: The prior effectiveness function (Eq. (5.2)) of a speech segment,
smoothed by a 20 ms moving average filter, with its corresponding
utterance and noise.

point indicates that the prior model is more certain than the likelihood model

80% of the time within 20 ms around this sample point.

Figure 5.1 shows the smoothed et of a test speech segment (a), as well as

its corresponding clean speech (b) and noise (c) waveforms. There are two

important observations. First, the prior model is more effective when the

SNR is low, as can be seen from the segment before 0.25 s. This is because

when the SNR is high enough, the likelihood model can simply pass noisy

observation through, which does not rely much on the prior model.

Second, the prior model is more effective after the onset of vowels or voi-

ced consonants. Accordingly, the likelihood model is more effective during

unvoiced consonants or at the onset of speech activities, as can be seen from

dips in the effectiveness function at around 0.4 s, 0.5 s and 0.65 s. This is

25



because the voiced speech is well structured, so the prior model knows what

comes next once it recognizes the phone. On the other hand, the prior model

is less certain about the unvoiced phones because they are stochastic and can

be easily confused with noise.

5.2 Empirical Convergence Analysis for Deep

Beamformer

In order to empirically test whether DeepBeam has a good convergence

property, 10 sets of eight-channel simulated data are generated with the S1

setting and Er = 10. To study different numbers of channels, in each sub-

test, K channels are randomly drawn from each set of data for DeepBeam

prediction, and the resulting SNR convergence curves of the 10 sets are avera-

ged. K runs from 3 to 8.

1 2 3 4 5 6 7

Iterations

15

20

25

S
N

R

3 4 5 6 7 8

# Channels
27

28

Figure 5.2: SNR convergence curves with different numbers of channels.

Figure 5.2 shows all the averaged convergence curves. As can be seen,

DeepBeam converges well in all the sub-tests, which supports our conver-

gence discussions in section 2.2.3. Also, the more channels DeepBeam has,

the higher convergence level it can reach, which shows that DeepBeam is

able to accommodate different numbers of channels using only one monaural

network. We also see that the marginal benefit of having one more channel

diminishes.
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CHAPTER 6

CONCLUSION

We proposed a WaveNet enhancement model that directly operates on speech

waveforms and exploited its generalizability to completely unseen noise. The

results showed that our proposed model is able to produce clean speech and

outperforms the DNN-IRM model under small-sized training data in terms

of generalizability owing to the effectiveness of the prior model.

We also proposed DeepBeam as a solution to multi-channel speech en-

hancement with ad-hoc sensors. DeepBeam combines the complementary

beamforming and deep learning techniques, and has exhibited superior per-

formance and generalizability in terms of noise suppression, reverberation

cancellation and perceptual quality. DeepBeam is a step closer toward re-

solving the longstanding tradeoff of perceptual quality and generalizability

in deep enhancement networks, and demonstrates the power of bridging the

signal processing and deep learning areas.
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