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ABSTRACT

The growth in size and computational requirements in training Neural Networks (NN)

over the past few years has led to an increase in their sizes. In many cases, the networks can

grow so large that can no longer fit on a single machine. A model parallel approach, backed

by partitioning of Neural Networks and placement of operators on devices in a distributed

system, provides a better distributed solution to this problem. In this thesis, we motivate

the case for device placement in Neural Networks. We propose, analyze and evaluate m-

SCT, a polynomial time algorithmic solution to this end. Additionally, we formulate an

exponential time optimal ILP solution that models the placement problem. We summarize

our contributions as:

1. We propose a theoretical solution to the memory constrained placement problem with

makespan and approximation ratio guarantees.

2. We compare and contrast m-SCT with other state of the art scheduling algorithms in

a simulation environment and show that it consistently performs well on real world

graphs across a variety of network bandwidths and memory constraints.

3. We lay the foundation for the experimental evaluation of the proposed solutions in

existing Machine Learning frameworks.
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CHAPTER 1: INTRODUCTION

The past few years have seen a huge shift in interest towards Machine Learning. With

the advent of deep learning, the complexity in training Neural Networks (NN) has increased

manifold. The training process is expensive, resource intensive and time consuming. The

time increases as the models become more complex and training data increases. For instance,

in [1], training the 152-layer neural network for one iteration requires 11.3 billion floating

point operations and the model is trained up to 6× 105 iterations.

In order to keep up with the infrastructure requirements of such explosive growth, dis-

tributed computing in Machine Learning is the focus of a lot of current research [2] [3] [4]

[5] and software development.

The software industry has universalized the usage of many specialized NN frameworks that

are not only optimized to shorten the training time, but also standardize the development of

Machine Learning algorithms. Several of these frameworks such as MXNet [4], Torch7 [6],

Theano [7] and TensorFlow [8] are described in more detail in chapter 2.

Recent research has led to multiple developments in data parallelism [9] [10] [11]; a tech-

nique which focuses on distributing data across different processors, each possessing an

independent copy of the model. This approach stems from SIMD (single instruction, mul-

tiple data) computer architecture [12, p. 182], one of the oldest ways of parallel processing

on computers. Adequate user support has been provided for these techniques in leading

Machine Learning (ML) frameworks [4] [6] [13] [7] [14] such as TensorFlow (TF) [8] [15].

While data parallelism is an effective way to handle burgeoning training data, it does little

to alleviate the problems caused by the ever increasing size of the models themselves as they

become more complex.

Model parallelism is an effective way to handle this issue as it distributes a single model

across multiple processors which independently compute model parameters for the part of

the model assigned to them. In parallel computing terms, it can be thought of as MPSD

(multiple program, single data). Model parallelism can prove to be an indispensable tool for

NN models which are too big to fit on a single machine. However, there is no explicit support

for users to deploy this technique on most ML engines effectively and users are required to

manually place parts of the model on different processors in an arbitrary fashion. Recent

work on optimization of these placements [16] make use of reinforcement learning and are a

step up from human expert placements and heuristics. However, using reinforcement learning

for placement is both time and resource intensive and therefore has not been deployed widely.

In this thesis, we develop an algorithmic foundation for the device placement problem and
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explore multiple models such as k-min cut and scheduling with communication delay to fit

the problem. Our aim is to provide a relatively fast, easy to deploy and effective theoretical

solution for this problem.

1.1 CONTRIBUTION OF THIS THESIS

1. We introduce the concept of wait time and use it to establish why scheduling with

communication delay is preferred over k-min cut to model the placement problem.

2. In chapter 2 (section 4.4), we formulate an integer linear programming (ILP) problem

using the placement problem constraints (including memory constraints). The running

time for this optimal solution is O(2n
2
), where n is the total number of nodes.

3. In chapter 8, we further demonstrate the difficulty in applying LP relaxation or other

convex optimization relaxation techniques to approximate the optimal solution in poly-

nomial time.

4. Next, in chapter 4 (section 4.3.2), we propose m-SCT, a modified version of the SCT

algorithm [17] that incorporates memory constraints in the system. We prove the

modified approximation ratio to be within (1+ 2+2ρ
(2+ρ)m

)· 1
K−1

of the finite SCT algorithm

approximation ratio, where the total memory available on all machines is K times the

total memory required by the network, m is the number of available machines, and ρ

is ratio between the maximum communication time between any two nodes and the

minimum computation time for any node.

5. Both the optimal formulation and the m-SCT algorithm expect a directed acyclic graph

(DAG). Since back-propagation in neural networks introduces some cycles, in chapter

5, we first establish the makespan for the forward computation case and put forth a

mathematical proof (section 5.4.2, theorem 5.3) showing that the approximation ratio

remains unchanged after back-propagation. Furthermore, we show that the makespan

of the backward pass is within C0 times the makespan for the forward pass (section

5.4.2, theorem 5.1), where C0 is the maximum ratio between (a) corresponding back-

ward pass edge weight and forward pass edge weight and (b) corresponding backward

pass node weight and forward pass node weight.

6. In chapter 7, we experimentally compare the performance of m-SCT, m-ETF and m-

TOPO using simulation. We vary the bandwidth and the total number of processors for
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all experiments. For each case, we experiment under two memory constraints (a) fixed

total memory in the system (section 7.1) and (b) fixed amount of memory available on

each machine (section 7.2). We show that m-SCT consistently performs well for large

bandwidth for both Inception-V3 and our small Convolution Neural Network (CNN)

model.

7. Finally, we demonstrate the viability of using TensorFlow to implement our theoretical

model. We implement the ability to inject device placement post hoc into user specified

code and therefore show that it can successfully be used to develop a one-click device

placement solution in the future.

1.2 OUTLINE OF THIS THESIS

1. In Chapter 2, we provide the system and algorithm preliminaries as well as provide

background on Machine Learning systems and model parallelism.

2. In Chapter 3, we present the problem statement and related work. We discuss the

k-min cut and scheduling with communication delay models as well as the relevant

existing algorithms under the latter. We also touch upon the motivating factors for

our thesis in device placement.

3. In Chapter 4, we discuss the exponential time optimal solution for placement problem.

We also modify the polynomial time SCT algorithm to incorporate memory constraints

and create m-SCT. We then discuss the new approximation ratio as well as an alternate

way to calculate the greedy priority using weighted sums for m-SCT.

4. In Chapter 5, we discuss how to incorporate back-propagation in the algorithms from

Chapter 4. We also prove some guarantees on the makespan of the backward pass.

5. In Chapter 6, we present our implementation. We discuss the details of our simulation

including how to estimate communication and computation times for our models. We

also provide a reference to the open source graph library and LP solver used in our

experiments.

6. In Chapter 7, we present our experimental results and discussion. We simulate the

m-SCT algorithm on Inception-v3 and a small CNN graph. We then compare its

performance with that of memory constrained m-ETF algorithm as well as the topo-

logical sort algorithm m-TOPO, for varying network bandwidth and total number of

processors.
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7. In Chapter 8, we acknowledge the theoretical directions that did not yield successful

results and the reasons for their failure.

8. In Chapter 9, we present our conclusions.

9. In Chapter 10, we set forth the future work for the second part of this project. Since

the primary focus of this work is to lay a theoretical foundation, this chapter discusses

the ensuing implementation and experimental work needed to create a holistic solution.

We also briefly mention some limitations of our work that may be examined in greater

detail at a future time.
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CHAPTER 2: PRELIMINARIES

In this chapter we discuss some preliminary systems and algorithm terminologies.

2.1 SYSTEMS PRELIMINARIES

Model Parallelism: In the context of distributed ML, model paralleli refers to distribut-

ing a model across different devices in a way such that every part of the model is responsible

for training the same data but is individually responsible for maintaining its assigned set of

model parameters. In figure 2.1, the model is distributed horizontally between GPU 1 and

GPU 2. TensorFlow provides implicit support for model paralleli. When the user specifies

the device placement, the appropriate communication between the sub-graphs is inserted

automatically.

Figure 2.1: Model distributed across GPU 1 and GPU 2 to demonstrate model paralleli [4]

Machine Learning Frameworks: Recent years have witnessed the rise of multiple Ma-

chine Learning systems that are scalable and capable of supporting intensive computation.

The increase in the availability of big data i.e., large and high quality datasets (such as [18]

[19]), has spurred on the development of these frameworks even further. Apache’s MXNet

[4] is a popular framework that provides support for multiple languages. It also supports dif-

ferent programming paradigms including declarative and imperative programming. Torch7

[6] is an open source Machine Learning library that extends Lua [20], a lightweight scripting

language, that focuses on efficient numerical computation. Microsoft’s CNTK toolkit [13]

specializes in training deep neural networks. It provides a number of optimized built-in com-
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ponents to easily express many widely used Neural Networks (NN) models like Recurrent

Neural Network (RNN) / Long Short-Term Memory (LSTM) [21] and Feed Forward Neu-

ral Network (FFN) [22] to name a few. Several other commonly used frameworks include

Theano [7], Chainer [14] and Caffe [23]. For the purposes of this thesis and our experiments,

we choose TensorFlow, Google’s high performing and widely deployed Machine Learning

(ML) engine.

TensorFlow TensorFlow is an open source software library for ML, developed by the

Google Brain team. TensorFlow (TF)’s architecture is based on a dataflow graph, responsi-

ble for both computation and maintaining state. The dataflow graph also houses operations

that are responsible for mutating the system’s state. TF follows a very high level program-

ming paradigm and doesn’t restrict its users to any low level organization models (like the

parameter server model). The nodes of the data flow graph can be arbitrarily mapped to

physical devices or even particular CPUs and GPUs within a single machine. The flexibil-

ity of this paradigm is very conducive to exploring different device placements for model

paralleli and testing their efficiencies.

The serialized version of the dataflow graph is known as graphdef. The serialization is

especially useful as it allows for the consolidated user graph to be language independent and

be used across a variety of TF instances and external applications.

TF Operations and Tensors Tensors [24] are generalizations of vectors and matrices

to higher dimensions. In TF, the edges of the dataflow graph have associated tensors which

represent the data produced and consumed by the operation nodes. TF tensors are generally

immutable. A TF operation is a node in the dataflow graph that accepts tensors as input

and produces tensors as output. It is the computation unit of the TensorFlow model.

TF Variables TF variables are mutable tensors. As a construct, they are best utilized

when maintaining shared and persistent state that can be modified by operations according

to the logical dictates of the user’s model.

TF Timeline TF timeline is a TensorFlow object that can be used to record the computa-

tion time of tasks in the dataflow graph. The timeline object can be exported as a JSON file.

The timeline tool’s source code is available at tensorflow/tensorflow/python/client/timeline.py

in the TensorFlow github repository.
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2.2 ALGORITHM PRELIMINARIES

Directed Acyclic Graph (DAG) We define a DAG as a directed graph with no directed

cycles.

Makespan The makespan of a schedule L for a graph G is the total execution time for

graph G, given the device placement assigned by L.

Collocation We say two tasks are collocated if they are placed on the same machine.

Approximation Ratio We define the approximation ratio of an algorithm (for a mini-

mization problem) as the maximum ratio between the algorithm’s solution and the optimal

solution.
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CHAPTER 3: PROBLEM STATEMENT, MOTIVATION, AND PRIOR
WORK

In this chapter, we present the problem statement, motivation and prior work for the

placement problem.

3.1 PROBLEM STATEMENT

Given memory constraints, we want to generate a m-machine device placement for all

the nodes in a dependency DAG G such that the makespan is minimized. Each node in

G represents a computational task and each edge u → v ∈ E(G) represents that task v is

dependent on task u. The node weights of G represent the computation time for each task,

while the edge weights represent the communication size between 2 related nodes.

Each machine may not use more than M amount of memory, given the assumption that the

total memory on any individual machine is M , and each node is associated with a certain

amount of memory as well. Since Neural Networks (NN) require their dependency graphs

to be executed thousands of times [25] [26], it is advantageous to pre-allocate memory for

inputs and outputs associated with each task. Therefore, we assume each task is associated

with a permanent memory usage that is persistent across training iterations.

3.2 MOTIVATION

Memory constraints With the advent of deep learning, the NN are increasingly grow-

ing in size and complexity. Most widely used models like RNNLM [27], Neural Machine

Translation (NMT) [28] and Inception-v3 have very large memory footprints. According to

[16] when the batch size for RNNLM and NMT is increased to 256 and their LSTM size

is increased to 4096 and 2048 respectively, even a single layer of these models is unable to

fit on a single machine. Model parallelism is the only viable option in such cases. This

motivates the study and development of placement algorithms so that training times remain

reasonably fast.

Limitations of Machine Learning solutions The placement problem is solved using

reinforcement learning in [16]. This approach has several limitations as it essentially brute

forces through a set of possible placements. Training is computationally intensive and de-

pending on the setup, it can take up to several days to compute a single placement. The

training process must be repeated if any changes are made either to the model or the devices
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on which the model is being placed. Additionally, there is no way to determine the optimal-

ity of the solution obtained in this manner. It can also be argued that Machine Learning

(ML) is an unreasonably exorbitant tool for this problem.

Placement as a part of a larger elastic solution If we consider the larger problem

of developing elastic distributed systems [29], the constant allocation and de-allocation of

resources for tasks would highly benefit from placement being computed on the fly. There-

fore, it is worthwhile to invest research effort into algorithmic solutions that run faster than

their ML counterparts.

3.3 PRIOR WORK

3.3.1 k-min cut

k-min cut Model k-min cut is an optimization problem which finds a minimum weighted

edge cut that partitions a dependency graph G into k components. In the dependency graph

for the placement problem, the edge weight is proportional to the communication time be-

tween the connected nodes. Therefore, a solution to k-min cut would provide a partition of

G with minimal overall communication cost, resulting in a reduced makespan. k-min cut is

an NP hard problem [30] and extensive research effort has been dedicated to providing good

approximation algorithm for this problem [31] [32] [33]. A popular variation of the problem

introduces balance constraints in order to obtain partition of uniform sizes [34] [35].

Deficiency of the Model The k-min cut model does not account for wait time. We de-

fine wait time as the machine idle time when no task can execute because their dependency

have not been satisfied. In Figure 2.1, we show that two partitions with the same overall

communication cost can have very different makespans. Figure 2.1 uses a dependency graph

similar to that of Recurrent Neural Networks (RNN) and assumes unit computation and

unit communication time. The number in each node denotes their starting time given the

partition marked by the dotted line in the image. As we can see, the left partition results

in a much smaller makespan than the right partition, even though they have the same total

communication cost. Since k-min cut only minimizes the communication cost, we conclude

that it is not a suitable model for our problem.
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Figure 3.1: The left and right partitions have the same communication cost but different
makespans

3.3.2 Scheduling with Communication Delay

Alternatively, we model the placement problem as a scheduling with communication delay

problem.

Scheduling with Communication Delay Model Given a dependency DAG G, the

scheduling with communication delay problem schedules tasks on machines while accounting

for communication delays between related tasks placed on different machines. The problem’s

objective is to minimize the total execution time (makespan) of G. Since this model focuses

on holistically minimizing the makespan instead of just concentrating on the communication

time, it is better suited to the placement problem.

Variants of the problem The problem has three common variants. The unit com-

putation time unit communication time (UET-UCT) version of the problem assumes unit

computation time and unit communication time in the dependency graph G. The small

communication time (SCT) version of the problem assumes that the ratio between the max-

imum communication time between any two nodes and the minimum computation time for

any node is ≤ 1. The general version of the problem places no constraints on either com-

munication or computation time.

10



NP-Hardness As proven in [36], the problem is NP hard even when reasonable accom-

modations are provided, such as infinite number of processors and UET-UCT conditions.

Therefore, approximation algorithms are developed to provide a solution in polynomial time

with good accuracy.

Existing Work Most approximation algorithms solve the scheduling with communica-

tion delay problem with special assumptions such as UET-UCT or SCT. To the best of the

author’s knowledge, no constant approximation ratio algorithm has been developed for the

general scheduling with communication delay problem. For the general case, [37] describes

an earliest task first (ETF) scheduling scheme which has the best known approximation

ratio of 2 + ρ− 1
m
, where ρ is ratio between the maximum communication time between any

two nodes and the minimum computation time for any node in the graph and m is the total

number of machines (for more details see section 4.2). Under the SCT constraint (ρ ≤ 1),

algorithms with better approximation ratios are known. By using linear programming (LP)

relaxation and priority based greedy scheduling, [17] is able to achieve an approximation

ratio of 4+3ρ
2+ρ
− 2+2ρ

m(2+ρ)
. Since ρ ≤ 1 under the SCT assumption, the approximation ratio is

constant (for more details see section 4.3).

Viability of the SCT Assumption Neural Networks are computationally intensive as

mentioned in chapter 1. This characteristic, coupled with the fact that distributed NN

frequently utilize high performance computers in data centers (resulting in smaller commu-

nication times), makes the SCT assumption viable. If for certain applications, the SCT

assumption is significantly violated, a collocating scheme described in [38] can be applied at

the pre-processing stage. Computationally small nodes are grouped together and treated as

a single node to reduce ρ to near-SCT compliance.
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CHAPTER 4: ALGORITHM DESIGN

In this chapter, we present the details of the three selected algorithms: topological sort,

ETF [37] and SCT [17] algorithm to solve the scheduling with communication delay problem.

We modify all three existing algorithms to incorporate the memory constraint per machine,

resulting in modified algorithms m-TOPO, m-ETF and m-SCT. We assume the memory on

all machines to be homogeneously distributed for the purposes of this thesis. We assume the

total memory on any individual machine to be M . Furthermore we prove the approximation

ratio of m-SCT.

We also model our memory constrained scheduling with communication delay problem

with integer linear programming (ILP), which generates the optimal solution. For small

to medium size graphs (up to 50 nodes), the results can be generated within a reasonable

amount of time (at most a few hours). In the future, the optimal solution can be used to

provide a baseline and measure the performance of our modified approximation algorithms.

4.1 TOPOLOGICAL SORT

4.1.1 Definition

Topological sort is a linear ordering of vertices in a DAG G, such that for each directed

edge u→ v, u comes before v in the linear ordering.

4.1.2 Algorithm description

The existing topological sort algorithm [39] first topologically sorts the nodes in DAG G,

then place nodes evenly on each machine.

4.1.3 Memory constrained version:

In our modified algorithm m-TOPO, we first number the total number of m machines

from 1 to m. Then, we assign tasks to machines in increasing order. For any machine i,

m-TOPO places nodes until a machine is full or the total number of nodes placed so far is

≥ in
m

, where n is the total number of nodes in the graph.
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4.2 ETF

4.2.1 Algorithm description

The existing earliest task first (ETF) algorithm [37] schedules the earliest schedule-able

task first, and the process is repeated until all tasks are scheduled. The algorithm maintains

a task list I with unscheduled tasks and a machine list P with the earliest time a machine

becomes available. The next available time of each machine is denoted by free(p). The

algorithm

1. computes the earliest schedule-able time for all tasks in I,

2. selects the task with the smallest earliest schedule-able time,

3. schedules the task from b on the machine where it can begin at the earliest.

For any task i, let si be the starting time and pi be the computation time. Let Γ−(i)

be the set of all immediate predecessors of task i. For any edge i → j ∈ E(G), let cij be

the communication delay between tasks i and j. cij is only valid when tasks i and j are on

different machines. Denote xip to be 0 when task i is on machine p and 1 otherwise. The

earliest schedule-able time for any task j (a) is min
p∈P

[
max

(
free(p), max

i∈Γ−(i)
(si + pi + cijxip)

)]
.

Under the small communication time (SCT) assumption, ETF has approximation ratio 2 +

ρ− 1
m

, which tends to 3 when ρ approaches 2 and m is large. A detailed description can be

found in [37].

4.2.2 Memory constrained version

In our modified algorithm m-ETF, at each step we sort the task machine pair (t, p) accord-

ing to the task t’s earliest schedule-able time on machine p. Then we examine task machine

pairs in the sorted order, until we find (t, p) where adding task t to machine p will not result

in p′s memory being overloaded.

4.3 SCT

4.3.1 Algorithm description

The existing SCT algorithm [17] is similar to ETF [37], but prioritizes:
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1. Scheduling tasks together that are also scheduled together in the infinite machine

variation of the problem, as described in the following section.

2. Scheduling an urgent task. An urgent task at time t is one that can be scheduled on

any idle machine to begin at time t. Such a task has already been delayed scheduling

and should not be further ignored.

When the above prioritizing scheme results in better approximation ratio with the SCT

assumption. We describe below the algorithm in detail.

Infinite machine algorithm For the infinite number of machines case, the SCT as-

sumption makes it possible to model the problem as an integer linear programming (ILP)

with a meaningful linear programming (LP) relaxation. As discussed in the Reflection chap-

ter (chapter 8), not all ILPs have meaningful LP relaxations.

The SCT assumption ensures that; for each task i, it is advantageous to schedule only one

immediate successor j on the same machine as i. Scheduling two successors of i on the same

machine as i is not optimal because the second task could have started earlier on a new

machine. For any task i, a favorite child f(i) denotes the preferred successor of i that is

scheduled on the same machine as i.

The ILP is formulated as follows,

minw∞ Minimize makespan w∞

∀i→ j ∈ E(G), xij ∈ {0, 1} xij = 0 when j is i’s favorite child

∀i ∈ V (G), si ≥ 0 All tasks start after time=0

∀i ∈ V (G), si + pi ≤ w∞ all tasks should complete before

makespan

∀i→ j ∈ E(G), si + pi + cijxij ≤ sj Given edge i→ j, j must start

after i completes. If on different

machines, communication cost

should be added

∀i ∈ V (G),
∑

j∈Γ+(i)

xij ≥ |Γ+(i)| − 1
Every node has at most 1 favorite

child

∀i ∈ V (G),
∑

j∈Γ−(i)

xij ≤ |Γ−(i)| − 1

Every node is the favorite child of

at most 1 predecessor

(4.1)

The ILP modeled above can be relaxed to LP by allowing xij to take any real value
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between 0 and 1. This LP can be solved in polynomial time using the interior point method

[40]. Then the SCT algorithm simply rounds the LP solution xij to be 1 if xij ≥ 0.5 and 0

otherwise. It can be easily verified that the rounded solution complies with all constraints

stated above. xij can be used to determine the favorite child of each task. j is i’s favourite

child if and only if xij = 1.

This infinite machine algorithm achieves an approximation ratio 2+2ρ
2+ρ

, as described in [17].

Finite machine algorithm The favourite child determined by the infinite machine case

alongside the urgent task are used as priorities. Then priorities are incorporated into the

base SCT algorithm to determine the final placement. In order to understand the algorithm,

let’s consider a partially completed schedule S at an arbitrary time t during the execution.

Let i be the last task scheduled on machine p. For each remaining unscheduled task j, denote

the machine on which j can start the earliest as ep(j). Let’s define a machine p to be free

at time t if machine p is available at time t and it is possible to schedule i’s favourite child

f(i) earlier on a different machine. In other words, ep
(
f(i)

)
6= p. Let’s define a machine p

to be awake at time t if it is favourable to schedule i’s favourite child on p. In other words,

ep
(
f(i)

)
= p.

The algorithm maintains a list P of machines in the order of their earliest available time.

Let’s consider a machine p that is available at time t. If p is free at t, the algorithm schedules

the earliest task available on p. If an urgent task is available, it will naturally also be the

earliest task. If p is awake, the algorithm schedules an urgent task on p if there is an urgent

task in I at time t, otherwise it schedules the favorite child f(i) of i on p.

The algorithm repeatedly finds the next moment when a machine is available t, and

schedules task on available machines as described above, until all tasks are scheduled.

If a task i and its favorite child f(i) are scheduled together in the infinite machine algo-

rithm, it results in a very good approximation ratio. This intuitively shows that f(i) has

a bigger influence on the start time of future tasks than i’s other successors and thus it is

advantageous to schedule i and f(i) together even in the finite machine case. [17] proves

that the SCT algorithm gives a better approximation ratio than ETF, as expected. The

SCT approximation ratio is 4+3ρ
2+ρ
− 2+2ρ

m(2+ρ)
approximation ratio, which tends to 7

3
when ρ

approaches 1 and m is large, while the ETF approximation ratio approaches 3 (as described

in section 4.2). See [17] for detail of the proof of the approximation ratio.
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4.3.2 Memory constrained version

For our memory constrained version of the SCT algorithm (m-SCT), we maintain the

same priority scheme as the finite case SCT algorithm. To enforce the memory constraint,

we assume each machine has the same amount of memory M . Let K =
mM∑n
i=1 di

, where m

is the total number of machines, n is the number of nodes in graph G and for any node i

in G, di is the size of memory required by i. Intuitively, K is the ratio of the total memory

available from all machines to the total memory required by the model. When the memory

M on a machine is exceeded, we drop it from the list of available machines for the duration

of the algorithm. We prove below that m-SCT approximates the optimal solution within

(1 + 2+2ρ
(2+ρ)m

) · 1
K−1

of the finite SCT’s approximation ratio.

Theorem 4.1 Let the approximation ratio given by the finite SCT algorithm be α, then

m-SCT has approximation ratio ≤ α + (1 + 2+2ρ
(2+ρ)m

) · 1
K−1

.

Proof:

Since M =
K

m

n∑
i=1

di, from a total of m machines, at most m
K

machines would be full

(hence dropped) at any time. Therefore, there are at least (K−1)m
K

machines not dropped

throughout the algorithm.

Let’s denote w∞ as the makespan given by the infinite SCT algorithm and w∞OPT as

the optimal solution to the infinite machine variation of scheduling with communication

delay problem. Let wmOPT be the optimal solution to the m machine finite scheduling with

communication delay problem and wmOPTm be the optimal solution to the memory constrained

m machine finite scheduling with communication delay problem. Then, w∞OPT ≤ wmOPT ≤
wmOPTm.

Since at least (K−1)m
K

machines are always available for scheduling in m machine m-SCT,

it generates a makespan T ′ at least as good as the one generated by finite SCT with (K−1)m
K

machines, T .

From [17], the m machine finite SCT algorithm has makespan W such that W ≤ 1
m
·∑n

i=1 pi + (1 − 1
m

)w∞. Therefore, the (K−1)m
K

machine finite SCT algorithm has makespan

16



T such that,

T ≤ 1
(K−1)m

K

·
n∑
i=1

pi + (1− 1
(K−1)m

K

)w∞

≤ K

(K − 1)m

n∑
i=1

pi + (1− K

(K − 1)m
)w∞

=
K

K − 1

1

m

n∑
i=1

pi + (1− K

(K − 1)m
)w∞

≤ K

K − 1
wmOPT + (1− K

(K − 1)m
)w∞

As described in section 4.3.1, the approximation ratio between w∞ and w∞OPT is β = 2+2ρ
2+ρ

.

For the makespan T ′ generated by m machine m-SCT,

T ′ ≤ T ≤
( K

K − 1
+ (1− K

(K − 1)m
)β
)
wmOPTm (4.2)

≤
(

(
1

K − 1
+

β

(K − 1)m
) + 1 + (1− 1

m
)β
)
wmOPTm (4.3)

The m machine finite SCT algorithm in [17] has the approximation ratio α = 1+(1− 1
m

)β.

Using equation (4.2), m-SCT has an approximation ratio α + (1 + 2+2ρ
(2+ρ)m

) · 1
K−1

.

4.4 OPTIMAL SOLUTION

We modified the infinite machine ILP (described in section 4.3.1) to incorporate the finite

machine and memory constraints. [41] [42] [43] [44] show other similar attempts in the area.

Through this section, let V be the set of all tasks and E be the set of all edges in G, the

dependency graph.

4.4.1 Memory constraints

In this section, we discuss how to incorporate memory constraints in the infinite machine

SCT constrained ILP formulation. In this ILP, no variable records which machine a task is

placed on. However, for enforcing the memory constraint, we must record the tasks associ-

ated with each machine. Let yip be 1 if task i is on machine p and 0 otherwise. Let mi be

the size of memory that needs to be reserved for task i. Denote P as the set of all machines

and M as the upper memory limit for any machine. Then, the memory constraint for each

17



machine can be modeled as follows,

∀p ∈ P,
n∑
i=1

yipmi ≤M (4.4)

We need a variable xij, which describes whether task i and task j are on the same machine

for our ILP. Let xij be 1 if i, j are scheduled on the same machine and 0 otherwise. Then

xij = 1, if and only if for some machine p, yipyjp = 1 (both i and j are on machine p).

Therefore, we model xij as,

xij =
∑
p∈P

yipyjp (4.5)

However, (4.4) is not linear and cannot be added to an ILP. We now attempt to linearize

(4.4). Let’s define yijp = yipyjp. Now, xij and yijp have a linear relationship. Fortunately,

since yip and yjp are both boolean variables, we can further express yijp’s relationship with

yip and yjp using linear equations. Namely,

yijp ≥ yip + yjp − 1

yijp ≤ yip

yijp ≤ yjp (4.6)

yijp ∈ {0, 1}

This linear model ensures that yijp is true if and only if both i and j are on machine p,

i.e., yijp = 1 when yip = 1 and yjp = 1 and 0 otherwise. Combining the equations above, the

following equations model the memory constraints in totality,

18





∀p ∈ P,
n∑
i=1

yipmi ≤M Total memory on each machine ≤ M

∀i, j ∈ V, xij =
∑
p∈P

yijp
Tasks i and j are on the same machine

when for some machine p, both i and j

are on machine p

∀i, j ∈ V, p ∈ P, yijp ≥ yip + yjp − 1 If both yip and yjp = 1, then both

task i and j are on machine p and

yijp = 1

∀i, j ∈ V, p ∈ P, yijp ≤ yip yijp = 1 only when i is on machine p

∀i, j ∈ V, p ∈ P, yijp ≤ yjp yijp = 1 only when j is on machine p

∀i, j ∈ V, p ∈ P, yijp ∈ {0, 1} Whether both i and j are on machine p

∀i ∈ V, p ∈ P, yip ∈ {0, 1} Whether i is on machine p

∀i, j ∈ V, xij ∈ {0, 1} Whether i and j are on the same

machine.

(4.7)

4.4.2 Finite machine constraints

In this section, we model the required finite machine constraints with linear equations.

Let’s define tasks i and j to be unrelated when task i is not an ancestor of task j and task

j is not an ancestor of task i. An important difference introduced by the finite machine

constraint is that we may have to put unrelated tasks on the same machine because of the

limited number of total machines. In the original infinite machine SCT constrained ILP,

there is no constraints specifying the relationship of unrelated tasks’ starting time, since

they would never be placed on the same machine. Here, if two unrelated tasks are scheduled

on the same machine, we must additionally ensure that the execution time of the tasks do

not overlap. This can be modeled as an additional constraint,

si + pi ≤ sj OR sj + pj ≤ si (4.8)

where for any task i, si is the starting time of task i and pi is the computation time of task

i. Equation (4.5) ensures that either task i is fully executed before task j’s starting time or

vice versa. This is important because it is not possible to parallelly execute tasks on a single

machine. It is possible to convert the above nonlinear constraint into a linear form. Let’s

define bij = 0 when task i executes before task j and 1 otherwise. Then, equation (4.5) is
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equivalent to the following constraints,

si − sj ≤ −pi + (U + pi)bij (4.9)

si − sj ≥ L+ (pj − L)bij (4.10)

Intuitively, when bij = 0, then i executes before j, and (4.6) enforces that i’s execution

must finish before j’s starting time. In this case, (4.7) is always true and does not interfere.

When bij = 1, (4.7) similarly ensures that j’s execution must finish before i’s starting time.

In this case, (4.6) is always true and does not interfere. We choose constants L and U to

appropriately activate which constraint dominates in each case. One way to choose L and

U is to set L = −(
∑

i∈V pi +
∑

i→j∈E cij) and U =
∑

i∈V pi +
∑

i→j∈E cij. Therefore, when

bij = 0, i is completed before j starts.

We must only enforce constraints (4.6) and (4.7) when tasks i and j are on the same

machine. This leads to a slight modification to constraints (4.6) and (4.7), as we incorporate

xij (as defined in section 4.4.1), which is a boolean variable describing whether tasks i and

j are on the same machine, as follows,

∀(i, j) 6∈ E, si − sj ≤ −pi + (U + pi)(bij + 1− xij) (4.11)

∀(i, j) 6∈ E, si − sj ≥ L(2− xij) + (pj − L)bij (4.12)

4.4.3 Final ILP formulation

Summarizing the above constraints for finite memory and number of machines, and com-

bining them with the infinite machine ILP (described in section 4.3.1), we arrive at the final

ILP.

minw Minimize makespan

∀i ∈ T, si ≥ 0 All tasks start sometime after 0

∀(i, j) ∈ E, xij ∈ {0, 1} Whether i and j are on same machine

∀i ∈ T, si + pi ≤ w All tasks complete before makesapn

∀(i, j) ∈ E, si + pi + (1− xij)cij ≤ sj j must start after i completes and if

they are on different machines

communication cost should be added

20





∀i ∈ V, p ∈ P, yip ∈ {0, 1} Whether i is on machine p

∀i, j ∈ V, p ∈ P, yijp ∈ {0, 1} Whether both i and j are on machine p

∀i ∈ V,
∑
p∈P

yip = 1
Each task should be scheduled on

exactly 1 machine

∀i, j ∈ V, p ∈ P, yijp ≥ yip + yjp − 1 If both yip and yjp = 1, then both

i and j are on machine p and yijp = 1

∀i.j ∈ V, p ∈ P, yijp ≤ yip yijp = 1 only when i is on machine p

∀i, j ∈ V, p ∈ P, yijp ≤ yjp yijp = 1 only when j is on machine p

∀i, j ∈ V, xij =
∑
p∈P

yijp
Tasks i and j are on the same machine

when for some machine p, both i and j

are on machine p

∀p ∈ P,
n∑
i=1

yipsi ≤M
Total memory used on each machine

≤ M

∀(i, j) 6∈ E, si − sj Enforces that when bij = 0, i finishes

≤ −pi + (U + pi)bij + U(1− xij) before j starts, given that i, j are on

the same machine (xij = 0). If i and j

are on different machines, constraint

becomes meaningless and degrades to

their starting time difference being

less than an arbitrary large number U

∀(i, j) 6∈ E, si − sj Enforces that when bij = 1, j finishes

≥ L+ (pj − L)bij + L(1− xij) before i starts, given that i, j are on

the same machine (xij = 0). If i and j

are on different machines, constraint

becomes meaningless and degrades to

their starting time difference being

larger than an arbitrary small number

L

(4.13)
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CHAPTER 5: BACK PROPAGATION

In this chapter, we discuss how to account for back propagation in the algorithms proposed

in chapter 4 and prove certain makespan and approximation ratio guarantees for it.

5.1 DEFINITION AND NEED FOR BACK PROPAGATION

Definition In neural network training, the back propagation algorithm (a) propagates the

total error backwards through the Neural Network (NN) layers (b) computes the gradient

of each weight and bias in the network, using the propagated error (c) applies the gradients

calculated in (b) to their corresponding weights and biases (d) eventually minimizes the total

error of the NN.

Need for BP The back propagation algorithm is needed to train multi-layer NNs. It

corrects the weights and biases of every layer in the NN to reduce the error in each iteration

of the training process.

5.2 ACCOUNTING FOR BACK PROPAGATION

The scheduling algorithms discussed in chapter 3 are only valid for directed acyclic graphs.

The process of backpropagation in NN training introduces some cycles and is computation-

ally intensive. Since BP is non trivial and accounts for a significant chunk of the makespan,

we account for it separately.

5.3 SCHEDULING STRATEGY

Each operation node in TensorFlow (TF) has an associated gradient node that is re-

sponsible for the calculation of gradient for that operation. Similarly, each variable has

an associated GradientDescent node whose primary purpose is the application of gradient

and updating the variable. Together, these two nodes are primarily responsible for the BP

process. Between these two functionalities, gradient computation accounts for the majority

of the complexity.

If we collocate the gradient nodes with their corresponding operation nodes, we discover

that the resulting backward dependency graph G′ is the reverse of the forward propagation

graphG, i.e., same vertices and reverse edges. TF provides a very straightforward interface to
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specify these collocations. Unlike the gradient nodes, which must wait for their predecessors

from G′ before executing, the GradientDescent nodes have no such dependencies. The

gradient application can be carried out at any time in the BP process after the gradient has

been calculated for a node, including at the end. Given the lack of GradientDescent node

inter-dependencies and their less intensive nature, their contribution to the makespan can

be safely ignored for the purposes of our proofs. Their withdrawal from consideration serves

another critical purpose. Without the GradientDescent nodes, the connections between the

forward and backward computation graphs (G and G′) are severed and the entire NN graph

can be considered a DAG. Under this assumption, our previously discussed algorithms from

chapter 4 can be successfully used.

5.4 GUARANTEES

Given the assumptions stated above, we prove certain guarantees for the BP phase in

the remainder of this chapter. First, we show that the makespan of the backward pass

is within C0 (as defined in section 5.4.1) times the makespan of the forward pass. Next,

we prove that if C (as defined in section 5.4.1) is constant across the NN, the initially

established approximation ratio remains unchanged after back propagation. It is worth

noting that while the makespan guarantee only holds if the gradient nodes are collocated

with operations, in practice, it is possible to apply DAG algorithms simply after the removal

of the GradientDescent nodes.

5.4.1 Preliminaries

In this subsection, we define a schedule and enumerate the necessary and sufficient condi-

tions for a schedule to be legal.

Schedule We define a schedule S for graph G as a list that associates each node in G

with a machine p on which it will be executed and a starting time si.

Backward Schedule Denote the makespan of schedule S as T . We define forward sched-

ule S’s corresponding backward schedule S ′ as a schedule where for any node i in G, (a) i is

associated with the same machine as in S (b) i has starting time s′i = C0(T − si− pi), where

si is i’s starting time in S.
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Legal Schedule Let’s denote the computation time of node i in dependency graph G as

pi and the communication time between any two tasks i and j in G to be cij.

Schedule S is legal if and only if,

1. si ≥ 0

2. si + pi ≤ sj or sj + pj ≤ si when task i and task j are on the same machine. This

guarantees that tasks i and j do not overlap.

3. si+pi ≤ sj when task i and task j are on the same machine and there is an edge i→ j

in the dependency graph G. This guarantees that the precedence relationship between

tasks i and j is honored, when they are on the same machine.

4. si + pi + cij ≤ sj when task i and task j are on different machine, and there is an edge

i → j in the dependency graph G.cThis guarantees that the precedence relationship

between tasks i and j is honored, when they are on different machines.

Backward dependency graph The backward dependency graph G′ is the reverse of

the forward propagation graph G, i.e., G′ shares the same vertices with G but has reversed

edges. We denote the computation time of a node j in G′ as p′j and the communication time

between any nodes j and i in G′ as c′ji.

NN proportionality constant We define the NN proportionality constant C0 for forward

graph G and backward graph G′ as the maximum ratio between (a) corresponding backward

pass edge weight and forward pass edge weight and (b) corresponding backward pass node

weight and forward pass node weight.

C0 = max
(
maxj∈V (G)

p′j
pj
,maxi→j∈E(G)

c′ji
cij

)
NN proportionality function We define the NN proportionality function C as follows

(a) For any node i ∈ V (G), let C(i) =
p′i
pi

(b) for any edge i→ j ∈ E(G), let C(i→ j) =
c′ji
cij

.

We say function C is constant if for all i ∈ V (G), C(i) = C0 and for all i → j ∈ E(G),

C(i→ j) = C0. Essentially, C0 is the max over all values of C.

5.4.2 Theorems

Theorem 5.1 Given a schedule S on G, S’s corresponding backward schedule S ′ is legal

and makespan(S ′) ≤ C0 ·makespan(S)
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Proof We know that ∀i→ j ∈ E(G), c′ji ≤ C0cij and ∀j ∈ V (G), p′j ≤ C0pj

Denote the makespan of schedule S as T .

We prove below that the schedule S ′ is legal:

1. We know T ≤ si + pi∀i
Therefore s′i = C0(T − si − pi) ≥ 0 ∀i ∈ V (G)

2. Let i, j be 2 arbitrary tasks assigned to the same machine.

Since S is a legal schedule, we know that si + pi ≤ sj or sj + pj ≤ si.

T − si − pi ≥ T − sj − pj + pj or T − sj − pj ≥ T − si − pi + pi.

C0(T − si − pi) ≥ C0(T − sj − pj) +C0pj or C0(T − sj − pj) ≥ C0(T − si − pi) +C0pi.

s′i ≥ s′j + p′j or s′j ≥ s′i + p′i.

3. Let j → i be an arbitrary edge in G′ and i, j are assigned to the same machine in S.

i→ j ∈ E(G) <=> j → i ∈ E(G′).

Since S is a legal schedule, we know that i→ j ∈ E(G), si + pi ≤ sj.

C0(T − si − pi) ≥ C0(T − sj − pj) + C0pj.

s′i ≥ s′j + p′j in G′.

4. Let j → i be an arbitrary edge in G′ and i, j are assigned to different machines.

i→ j ∈ E(G) <=> j → i ∈ E(G′)

Since S is a legal schedule, we know that i→ j ∈ E(G), si + pi + cij ≤ sj.

C0(T − si − pi)− C0ci→j ≥ C0(T − sj − pj) + C0pj.

C0(T − si − pi) ≥ C0(T − sj − pj) + C0pj + C0cij.

s′i ≥ s′j + p′j + c′ji in G′.

S ′ satisfies all condition for a legal schedule and therefore is legal.

makespan(S ′) = maxi(s
′
i + p′i) = maxi(C0(T − si)) ≤ C0T = C0 ·makespan(S)

Theorem 5.2 When NN proportionality function C is constant, the makespan of optimal

schedule for G′ is C0 times the makespan for optimal schedule for G.

Proof We know that ∀j ∈ V (G′),
p′j
pj

= C0, and ∀j → i ∈ E(G′),
c′ji
cij

= C0.

Therefore, max
(
maxj∈V (G′)

pj
p′j
,maxj→i∈E(G′)

cij
c′ji

)
= 1

C0
.

Let OPT be the shortest makespan for any schedule on G with m machines. Let S∗ be

an optimal schedule for G.

Let OPT ′ be the shortest makespan for any schedule on G with m machines. Let S ′∗ be

an optimal schedule for G′.
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By Theorem 5.1 we know that there is a schedule S ′ for G′ where makespan(S ′) ≤
C0makespan(S∗), therefore OPT ′ ≤ makespan(S ′) ≤ C0makespan(S∗) = C0OPT .

For the same reason OPT ≤ 1
C0
OPT ′.

Therefore OPT ′ = C0OPT .

Theorem 5.3 When NN proportionality function C is constant, given a schedule S for

G, the backward schedule S ′ has the same approximation ratio as S.

Proof By Theorem 5.2, the makespan of optimal schedule for G’ OPT ′ is C0 times the

makespan for optimal schedule OPT for G.

By Theorem 5.1, makespan(S ′) ≤ C0makespan(S) andmakespan(S ′) ≤ 1
C0
makespan(S).

makespan(S ′) = C0makespan(S).

Therefore, makespan(S′)
OPT ′

= makespan(S)
OPT

, which means the approximation ratio of S ′ equals

the approximation ratio of S.
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CHAPTER 6: IMPLEMENTATION

In this chapter, we provide implementation and simulation details of our selected algo-

rithms. We resort to using the simulation technique as it allows for easy comparison of

algorithms without committing to any framework and being influenced by the idiosyncrasies

of any specific implementation.

6.1 SIMULATION

We implement the algorithms discussed in chapter 3 in NetworkX [45], a popular open

source Python package for creation and manipulation of graphs. In order to compare all

the algorithms and demonstrate the difference in their efficiencies effectively, we simulate

distributed graph partitioning. We test our selected algorithms on Inception-V3 [46] and a

small custom Convolution Neural Network (CNN) [47] graph model (described in greater

detail in chapter 6). These graphs are good representations of commonly used models in

Machine Learning (ML) frameworks, such as TensorFlow. For the simulation, first, we realis-

tically estimate the computation time of each node and the inter node communication times.

Then, we create a new graph in NetworkX where each node corresponds to a computation

task from the selected model (with its weight being the computation time) and each edge

corresponds to the dependency between these tasks (with the edge weight being the inter

node communication time). Finally, we execute the selected algorithm on this graph, which

yields the placement and the corresponding makespan.

6.2 ESTIMATION OF COMPUTATION TIME

To estimate the computation time we input a model into TensorFlow and generate the

graphdef, an internal representation of the TensorFlow (TF) graph and part of its core

framework (as described in section 2.1). The graphdef is then profiled using a TF python

client, timeline, which outputs a JSON file. The JSON file details the computation time

of each TF node as a dur argument as can be seen from figure 5.1. In order to avoid the

initialization costs, we use the computation data from the 50th iteration and experimentally

verify that the computation time for further iterations is approximately the same. The

nodes which do not have any computation time associated with them and exist merely for

the purposes of control flow, do not appear in the profiling. We manually add these nodes

with zero cost in the simulation. The timeline visualization for our CNN model is presented
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in figure 5.2.

It’s worth noting that the TF graph is different from the logical graph as it includes nodes

for variables, operations and several other ancillary nodes like read/write (as detailed in

section 2.1). The use of the TF graph is preferable to the logical one as it gives substantial

insight into how Machine Learning frameworks break down logical operations and establish

the control flow. Simulation using this real world breakdown of nodes is more likely to yield

realistic results that can be extrapolated to other existing Machine Learning systems as well.

Figure 6.1: Timeline [8] output for a vari-
able with computation time of 3ms

Figure 6.2: Timeline [8] visualization

6.3 ESTIMATION OF COMMUNICATION TIME

The inter node communication time factors significantly in all our scheduling algorithms.

To estimate the communication time effectively, if two nodes are on the same machine, we

assume communication time to be zero. This assumption is justified because communication

over a network is many times more expensive than within the same machine. For all other

cases, first, the total size of the data to be communicated is determined using equation (5.1).

We obtain the tensor dimensions in a similar way as the computation times, using the time-

line object. The JSON file obtained in this case provides the tensor description argument

which lists the dimensions of the tensor as well as the total bytes requested by the system

for that tensor (based on its datatype) as shown in figure 5.3.

Size of tensor = dim1 · dim2 · dim3 (6.1)
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Figure 6.3: Timeline [8] output for tensor of dimensions 100,784 requesting 313600 bytes of
memory

Once the size of tensor is determined and we assume a suitable network bandwidth, the

communication time is calculated based on equation 5.2. We use a variety of bandwidths

in our experiments in order to see how performance varies as the data centre bandwidth

varies. Greater bandwidths imply smaller communication time, and help comply with the

small communication time (SCT) assumption better (see section 4.3.2).

Communication time = size/bandwidth (6.2)

Sometimes in TF, the size of the tensor is dynamically determined at run-time. Our

models do not use any dynamic tensors as they are not conceptually different from the

statically sized ones. Different techniques may be required to extract the size information

for these cases in the future.

6.4 CONSTRAINTS

In the simulation, we introduce memory constraints on every processor and perform exper-

iments using a fixed number of processors for each case. We vary the number of processors

across experiments to note the makespan and partitioning trends as the number of processors

change for different algorithms.

Unlike our simulation, TF has arbitrary rules about collocation of certain nodes on the

same machine. These rules help assist the particular implementation architecture of TF and

make it more productive. This is especially true in the case of backpropagation. Gradient

nodes are commonly collocated with the original operation nodes. However, in our imple-

mentation, we do not explicitly collocate nodes and allow the algorithms to place them as
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they deem fit. In the future, if TF experiments are carried out on similar models, some

adjustments must be made to accommodate the collocation constraints.

6.5 LINEAR PROGRAMMING SOLVER

We use interior point method to solve the linear programming (LP) problems resulting

from our algorithm. This method is preferred over other solvers such as simplex [48] be-

cause it guarantees polynomial execution time [49]. Specifically, we use the primal dual

interior-point solver in Mosek optimization software [50], which has a run time complexity

of O(n3.5L), where L is the maximum number of bits in the LP inputs (in our case 64, the

number of bits in a python floating point number).

Experimentally, Mosek interior point solver is very fast, even for large graphs such as

Inception-v3. For the Inception-v3 experiments in chapter 7, the Mosek interior point solver

solves each LP in 3-10 seconds (see more details in chapter 7).
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CHAPTER 7: EXPERIMENTAL RESULTS

In this chapter, we compare and contrast the performance of our selected algorithms

on Inception-V3 and the small CNN model, and present our experimental results. For all

our experiments, we assume a high speed data-center network (varying bandwidths) with no

packet loss. We carry out the experiments on a Google VM machine (n1-standard-4 machine

with 4 vCPUs and 15 GB memory).

The experiments are divided into two major categories; the fixed total memory experi-

ments, where the total memory in the system remains constant regardless of the number

of machines used, and the variable total memory experiments, where each machine has a

fixed amount of memory and the overall memory of the system increases as the number of

machines increase.

7.1 FIXED TOTAL MEMORY EXPERIMENTS

For the experiments in this section, we fix the total memory, which is distributed evenly

across machines. As the number of machines increase, the memory per machine decreases.

7.1.1 Experiment on small CNN

Summary In this experiment, we compare m-TOPO, m-ETF and m-SCT’s makespan for

the small Convolutional Neural Network (CNN) graph. We present the plots for these cases

in Figure 7.1 to Figure 7.4.

Specifications We fix the total memory across all machines to be 3 times the memory

required by the CNN, distributed evenly across machines. We vary the bandwidths (1E5,

1E7, 1E9 and 1E11 bytes/second ) and the number of machines (3, 6, 9, 12, 15) for all three

alogorithms.

Trends and discussion In the first three cases (Figure 7.1 to 7.3), the makespans of m-

SCT and m-ETF algorithms display a gradually increasing trend as the number of machines

increase. This behaviour can be attributed to the fact that the small CNN model is not very

parallizable and the memory constraint becomes tighter as the number of machines increase.

As the bandwidth increases from 1E5 to 1E9 bytes/second (Figure 7.1 to 7.3), makespan

decreases for both m-ETF and m-SCT. These algorithms perform significantly better with
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increasing bandwidths because it leads to smaller inter-node communication times for them

and both of them have a constant approximation ratio under the small communication time

(SCT) assumption.

Across all cases, m-ETF and m-SCT steadily outperform m-TOPO, except for a few

configurations where m-TOPO chances upon an optimal placement.

In the first three plots, m-SCT has more consistent performance than m-ETF because

it prioritizes the placement of favorite children and urgent tasks. Under tight memory

constraints, like in this experiment, the effect of these optimizations is very pronounced.

Very few tasks can fit on a single machine and m-SCT chooses these more carefully than m-

ETF. In the last case (Figure 7.4), the 1E11 bytes/second bandwidth is so large for the small

CNN graph that the communication time is negligible. Therefore, the differences between

the performances of m-ETF and m-SCT are not very significant.

Figure 7.1: Makespan for small CNN with

fixed total memory - 1E5 bytes/second

Figure 7.2: Makespan for small CNN with

fixed total memory - 1E7 bytes/second
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Figure 7.3: Makespan for small CNN with

fixed total memory - 1E9 bytes/second

Figure 7.4: Makespan for small CNN with

fixed total memory - 1E11 bytes/second

Fixed total memory on small CNN

7.1.2 Experiment on Inception-V3

Summary In this experiment, we compare m-TOPO, m-ETF and m-SCT’s makespan for

the Inception-V3 model. We present the plots for these cases in Figure 7.5 to Figure 7.8.

Specifications We fix the total memory across all machines to be 3 times the memory

required by the Inception-V3 model. We vary the bandwidths (1E7, 1E9, 1E10 and 1E11

bytes/second ) and the number of machines (3, 6, 9, 12, 15) for all three algorithms.

Trends and discussion For the E7 bytes/second bandwidth case (Figure 7.5), m-SCT

performs poorly because the because the bandwidth is very low and the SCT assumption

is significantly violated (as communication times become larger due to low bandwidth). As

the bandwidth increases in the subsequent cases (Figure 7.6 to 7.8), m-SCT behaves better

and outperforms both m-ETF and m-TOPO.

Across all cases (Figure 7.5 to 7.8), the makespan of m-SCT dips to a low point and rises

afterwards. As the number of machines increase, the availability of free machines that can

execute a ready task also increases. In this scenario, there are fewer than usual urgent tasks

that are waiting to be executed and the m-SCT algorithm loses some of its advantage over

m-ETF. For a large number of processors, the m-ETF and m-SCT graphs almost converge.

For bandwidths other than 1E7 bytes/second (Figure 7.6 to 7.8) m-SCT and m-ETF out-
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perform m-TOPO, similar to the CNN experiment.

We notice that the total memory constraint in this experiment (three times the required

memory) is not very high. We expect that if this constraint is tightened further, the perfor-

mance difference between m-ETF and m-SCT will become more pronounced.

Figure 7.5: Makespan for Inception-V3 -

fixed total memory - 1E7 bytes/second

Figure 7.6: Makespan for Inception-V3 -

fixed total memory - 1E9 bytes/second

Figure 7.7: Makespan for Inception-V3 -

fixed total memory - 1E10 bytes/second

Figure 7.8: Makespan for Inception-V3 -

fixed total memory - 1E11 bytes/second

Fixed total memory on Inception-V3
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7.2 VARIABLE TOTAL MEMORY EXPERIMENTS

For the experiments in this section, we fix the total memory on each machine. The total

memory in the system increases as the number of machines increase.

7.2.1 Experiment on small CNN

Summary In this experiment, we compare m-TOPO, m-ETF and m-SCT’s makespan for

the small CNN graph. We present the plots for these cases in Figure 7.9 to Figure 7.12.

Specifications We fix the memory of an individual machine as 75 MB. We vary the

bandwidths (1E5, 1E7, 1E9 and 1E11 bytes/second) and the number of machines (3, 6, 9,

12, 15) for all three algorithms.

Trends and discussion Across all cases (Figure 7.9 to 7.12), m-ETF and m-SCT out-

perform m-TOPO, as expected.

Both m-SCT and m-ETF display a generally decreasing trend as the number of machines

increase. The performance of m-ETF improves significantly with the increase in the number

of machines as the tight memory constraint (from fewer machines) penalizes m-ETF heavily

for not smartly prioritizing the placements of any tasks. For high number of machines, the

effects of prioritizing become less prominent as machines become less crowded and many

related tasks can easily fit on the same machine without making an extra effort to schedule

them together. This behaviour is observed for all bandwidths.

Figure 7.9: Makespan for small CNN

75MB RAM/machine - 1E5 bytes/second

Figure 7.10: Makespan for small CNN

75MB RAM/machine - 1E7 bytes/second
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Figure 7.11: Makespan for small CNN

75MB RAM/machine - 1E9 bytes/second

Figure 7.12: Makespan for small

CNN 75MB RAM/machine - 1E11

bytes/second

Variable total memory on small CNN

7.2.2 Experiment on Inception-V3

Summary In this experiment, we compare m-TOPO, m-ETF and m-SCT’s makespan for

the Inception-V3 graph. We present the plots for these cases in Figure 7.13 to Figure 7.16.

Specification We fix the memory of an individual machine as 16 GB. We vary the band-

widths (1E7, 1E9, 1E10 and 1E11 bytes/second) and the number of machines (3, 6, 9, 12, 15)

for all three algorithms. The Inception-V3 model is tested on a subset of imagenet (flower).

Trends and discussion Across all cases (Figure 7.9 to 7.12), m-ETF and m-SCT out-

perform m-TOPO, as expected.

Both m-SCT and m-ETF display a generally decreasing trend. This behaviour is very

similar to the CNN experiment (section 7.2.1). The imagenet dataset can result in some

very large tensor sizes for Inception-V3. When the bandwidth is as low as 1E7 bytes per

second (Figure 7.13), the SCT assumption is severely violated and the priorities determined

by m-SCT are not very accurate. In this case, m-ETF performs better than m-SCT because

(a) the steadily increasing memory benefits m-ETF, as explained in section 7.2.1. (b) m-SCT

uses inaccurate priority.

As the bandwidths increase (Figure 7.13 to 7.16), the SCT assumption becomes more
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accurate and m-SCT starts outperforming m-ETF as expected.

Figure 7.13: Makespan for Inception-V3 -

16GB RAM/machine - 1E7 bytes/second

Figure 7.14: Makespan for Inception-V3 -

16GB RAM/machine - 1E9 bytes/second

Figure 7.15: Makespan for Inception-

V3 - 16GB RAM/machine - 1E10

bytes/second

Figure 7.16: Makespan for Inception-

V3 - 16GB RAM/machine - 1E11

bytes/second

Variable total memory on Inception-V3

7.3 OVERALL TREND

m-ETF takes slightly lesser time to execute as compared to m-SCT and can potentially be

preferred when memory constraint is not very tight. m-SCT performs consistently well in all

37



cases (as long as the SCT assumption is not violated, which can happen at low bandwidths)

and is significantly better performing than m-TOPO and m-ETF when memory is tightly

constrained.
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CHAPTER 8: REFLECTION

In this chapter we describe our unsuccessful attempts at approximating the solution to

the optimal ILP formulation, modeling the memory constrained finite machine scheduling

with communication delay problem, using a pure LP relaxation approach. We present the

challenges and the reasons for failure of this method.

8.1 APPROXIMATION OF THE ILP SOLUTION

As illustrated in section 4.4, the optimal solution integer linear programming (ILP) opti-

mally models the objective function and constraints for the memory constrained scheduling

with communication delay problem. However, solving this optimal ILP is an NP hard prob-

lem and requires exponential time. We attempt to use the linear programming (LP) relax-

ation technique on the optimal ILP formulation (described in section 4.4) in order to obtain

an approximate polynomial time solution to our problem. To formulate an optimal solution,

we modify the infinite machine ILP [17] by incorporating finite machine and memory con-

straints. When we attempt to relax the additional constraints (to an LP) individually, we

are faced with a unique set of challenges for each case. We describe them below in further

detail.

8.1.1 Challenges in the finite machine constraints relaxation

In this section, we show that LP relaxation of ILP constraints (4.11) and (4.12), which

model the finite machine assumptions, is not meaningful.

As discussed in section 4.4.2, under the finite machine assumption, it is possible for the

ILP to schedule two unrelated tasks on the same machine. Let tasks i and j be two unrelated

tasks. If i and j are scheduled on the same machine, then either i is executed before j, or

j is executed before i. This results in an OR condition, as seen in equation (4.8). In the

remainder of this section we reason that OR constraints are non convex and show that this

non convexity renders the relaxation of the finite machine constraints meaningless.

When a solution set S is convex, if a, b ∈ S, then any of their convex combination c =

λa + (1 − λ)b for some non-negative λ, must belong to the set S. For an OR condition in

the form x ≤ L OR x ≥ H(L < H), x = L and x = H are feasible solutions. However, most

convex combinations of L and H (e.g. x = L+H
2

) are not solutions. This proves that the OR

constraint is non convex.
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One of the properties of LP is that its feasible region is always convex. Here, we are forced

to relax the non convex solution space to a convex solution space, which is problematic. In

the OR condition example above, the LP solution space would contain all x such that

L < x < H, which the OR constraint should have excluded. In our case, equations (8.1)

and (8.2) model the OR constraint as specified in section 4.4.2. To recap,

si − sj ≤ −pi + (U + pi)bij (8.1)

si − sj ≥ L+ (pj − L)bij (8.2)

In the ILP formulation, bij is a boolean variable that takes the value of either 0 or 1.

After LP relaxation, bij is allowed to take any real value between 0 and 1. This implies that

si − sj is able to take any real value between −pi and pj, which further implies execution

overlap between task i and j, exactly what we hope to avoid. For instance, when bij = 0.5,

si − sj ≥ L+pj
2

OR si − sj ≤ U−pi
2

. Since L is a very small negative number and U is a very

large positive number, by equation (4.9) and (4.10), si − sj ≥ a small negative number OR

si−sj ≤ a large positive number. In this case si−sj = 0 is a feasible solution, indicating that

tasks i and j will start at the same time on the same machine (an unacceptable result). To

conclude, LP relaxation does not accurately approximate the ILP finite machine constraints.

8.1.2 Challenges in the memory constraints relaxation

In this section we discuss the challenges associated with meaningfully rounding the LP

relaxation of the ILP memory constraints, due to the presence of many interdependent

variables. From section 8.1.1, we know that for the finite machine case, a pure LP relaxation

approach is infeasible. The LP must be supplemented by greedy scheduling in this case. We

conclude that it is preferable to enforce the memory constraints in the greedy portion of the

combined algorithm.

The linear equations based on the memory constraints introduce many highly correlated

variables, which makes independent rounding hard. For example, in the final optimal ILP

formulation (4.4.3), yijp is dependent on yip and yjp. Furthermore xij is dependent on yijp.

If we independently round yip, then we cannot also independently round yijp and xij without

violating some of the LP constraints. Moreover, independent rounding must satisfy the

memory constraint per machine (M) presented in equation (8.3) and recapped below,

∀p ∈ P,
n∑
i=1

yipmi ≤M (8.3)
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In the LP relaxation of (8.3), yip is allowed to take any value between 0 and 1. It is highly

likely that yip will take some fractional value. After we obtain a solution to the LP relaxation

problem, we must round the value of yip to 0 or 1 to satisfy the original ILP constraints.

In the rounding process, if multiple fractional yips are rounded up to 1, it is possible that

equation (8.3) is no longer satisfied and the total memory required of machine p exceeds M .

It is possible that with a complicated rounding scheme we could circumvent both of these

issues, however, to the author’s knowledge, no existing rounding scheme handles complicated

correlation between variables and still results in a good approximation ratio. Alternatively, if

we use LP relaxation + greedy scheduling approach, we can shift the burden of enforcing the

finite machine as well as the memory constraints to the greedy portion of the algorithm and

relax the infinite machine ILP to LP without any issues. This solution, combined with the

small communication time (SCT) assumption, results in the m-SCT algorithm as described

in section 4.3.

8.2 FUTURE DIRECTIONS

Our main roadblock is that no convex optimization approach can relax a non convex

constraint. Advancements in the field of non convex optimization may help generate better

algorithms for our placement problem. It may also be possible that the existing constraints

be expressed or relaxed in novel ways to avoid the non convexity.
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CHAPTER 9: CONCLUSION

In this thesis we have motivated the placement problem and proposed a theoretical optimal

and an approximation solution to the placement problem. Our final contributions are :

• We modeled the optimal solution by modifying an existing infinite machine solution

and introducing memory and finite machine constraints as detailed in section 4.4.1 and

4.4.2

• We proposed m-SCT, a memory constrained approximate solution to the placement

problem, under the small communication time assumption. We proved that m-SCT

approximates the optimal solution within (1+ 2+2ρ
(2+ρ)m

) · 1
K−1

of the finite SCT’s approx-

imation ratio, where K is the ratio of the total memory available from all machines

to the total memory required by the model and ρ is ratio between the maximum com-

munication time between any two nodes and the minimum computation time for any

node in the graph.

• We compared and contrasted the performance of m-SCT against memory constrained

versions of state of the art scheduling algorithms ( m-ETF and m-TOPO, as detailed

in chapter 7) using simulation.

We showed that m-SCT consistently outperformed m-TOPO as long as the small

communication time assumption was not violated.

In experiments where the individual amount of memory on a machine was constrained

but not the total memory, we showed that m-SCT performed well consistently without

getting significantly affected by an increase in machines. m-ETF, however, performed

poorly when the number of machines were fewer and significantly improved with the

increase in the total number of machines. For both our models, Inception-V3 and the

small CNN graph, the performance of m-SCT and m-ETF almost converged for the

15 machines case.

• We concluded that m-ETF can potentially be preferred to m-SCT when memory con-

straint is not very tight, since it takes slightly lesser time to execute as compared to

m-SCT. m-SCT performs consistently well in all cases (as long as the SCT assumption

is not violated, which can happen at low bandwidths) and is significantly better per-

forming than m-TOPO and m-ETF when memory is tightly constrained (see chapter

7 for details).

We believe that our preliminary work will open up exploration in theoretical solutions for

the placement problem rather than rely on brute force Machine Learning (ML) solutions,
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as is the norm currently. We have argued that a theoretical approach is more conducive to

the development of a one-click placement solution that is fast, efficient and implementable.

Finally, we have detailed concrete future steps for the second part of this project.
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CHAPTER 10: FUTURE WORK

1. The immediate next step is to implement the theoretical algorithms presented in this

thesis in TensorFlow. Experimental TF results would go a long way in qualifying

our theoretical guarantees and simulation results. To this end, some implementation

challenges that may arise are :

• Arbitrary collocation constraints enforced by TensorFlow (TF) must either be

followed or modified.

• The TF scheduler behaves transparently and does not allow the users to explicitly

decide the order of scheduled tasks. Changes to TF source code may be necessary

for the required granularity of control.

• The algorithms described in chapter 3 require that the communication cost be-

tween any two nodes in the dataflow graph be known. This cost will depend on

the combination of TFs control flow and the properties of the underlying network.

The control flow may exhibit some differences from the one used in our simulation

as TF is capable of manipulating it at runtime. Overall, it may prove challenging

to obtain the actual communication costs.

• The presence of dropout layers and dynamic tensor sizes in the users graph may

lead to another extraction challenge as TFs present implementation only makes

this information available at runtime.

2. The final implementation goal is to develop a one-click solution that can transparently

determine the appropriate partition and carry out model parallelism without explicit

user involvement.

3. Throughout this thesis, we assume that the memory is distributed homogeneously

among machines, in any distributed cluster. In the future, we may assume the presence

of heterogeneous clusters and examine how they affect the performance of our selected

algorithms.

4. m-SCT may be compared against additional baselines like vertical and random cut.

5. The m-SCT algorithm performs best when the ratio of communication time to compu-

tation time is low. In situations where the user graph consists of multiple nodes that

are not computationally intensive and the underlying network is slow, the small com-

munication time (SCT) assumption may be significantly violated. collocating small
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nodes [38] and treating them as a single large node for the purposes of placement may

prove to be an effective strategy that should be explored in these cases.

6. This thesis opens up a variety of new directions for modeling the placement problem.

A well known scheduling model that can potentially lend itself well to this work is

the classical resource-constrained project scheduling problem (RCPSP) as described in

[44]. It is possible that exploring novel modelling directions and constraint formulations

may help in alleviating some of the issues described in chapter 7.
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[26] D. C. Cireşan, U. Meier, J. Masci, L. M. Gambardella, and J. Schmidhuber,
“Flexible, high performance convolutional neural networks for image classification,” in
The Twenty-Second International Joint Conference on Artificial Intelligence - Volume
Volume Two, ser. IJCAI’11. AAAI Press, 2011, ISBN: 978-1-57735-514-4. [Online].
Available: http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-210 pp. 1237–1242.

[27] T. Mikolov, S. Kombrink, A. Deoras, L. Burget, and J. Cernocky, “Rnnlm-recurrent
neural network language modeling toolkit,” in The 2011 Automatic Speech Recognition
and Understanding (ASRU) Workshop, 2011, pp. 196–201.

[28] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly learning
to align and translate,” ArXiv Preprint arXiv:1409.0473, September 2014.

[29] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Konwinski, G. Lee,
D. A. Patterson, A. Rabkin, I. Stoica et al., “Above the clouds: A berkeley view of cloud
computing,” Technical Report UCB/EECS-2009-28, EECS Department, University of
California, Berkeley, Tech. Rep., 2009.

[30] M. R. Garey and D. S. Johnson, Computers and Intractability; A Guide to the The-
ory of NP-Completeness. New York, NY, USA: W. H. Freeman & Co., 1990, ISBN:
0716710455.

[31] H. Saran and V. V. Vazirani, “Finding k cuts within twice the optimal,” SIAM
Journal on Computing, vol. 24, no. 1, pp. 101–108, February 1995. [Online]. Available:
http://dx.doi.org/10.1137/S0097539792251730

[32] W. Fernandez de la Vega, M. Karpinski, and C. Kenyon, “Approximation schemes for
metric bisection and partitioning,” in The Fifteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, ser. SODA ’04. Philadelphia, PA, USA: Society for
Industrial and Applied Mathematics, 2004, ISBN: 0-89871-558-X. [Online]. Available:
http://dl.acm.org/citation.cfm?id=982792.982864 pp. 506–515.

[33] C. H. Ding, X. He, H. Zha, M. Gu, and H. D. Simon, “A min-max cut algorithm
for graph partitioning and data clustering,” in Data Mining, 2001. ICDM 2001, IEEE
International Conference on. IEEE, 2001, pp. 107–114.

48



[34] S. Arora, S. Rao, and U. Vazirani, “Expander flows, geometric embeddings and
graph partitioning,” in The Thirty-sixth Annual ACM Symposium on Theory of
Computing, ser. STOC ’04. New York, NY, USA: ACM, 2004. [Online]. Available:
http://doi.acm.org/10.1145/1007352.1007355 pp. 222–231.

[35] R. Krauthgamer, J. S. Naor, and R. Schwartz, “Partitioning graphs into balanced com-
ponents,” in The Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms,
ser. SODA ’09. Philadelphia, PA, USA: Society for Industrial and Applied Mathe-
matics, 2009. [Online]. Available: http://dl.acm.org/citation.cfm?id=1496770.1496872
pp. 942–949.

[36] J. Hoogeveen, J. Lenstra, and B. Veltman, “Three, four, five, six, or
the complexity of scheduling with communication delays,” Operations Research
Letters, vol. 16, no. 3, pp. 129 – 137, October 1994. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0167637794900248

[37] J.-J. Hwang, Y.-C. Chow, F. D. Anger, and C.-Y. Lee, “Scheduling precedence
graphs in systems with interprocessor communication times,” SIAM Jornal
on Computing, vol. 18, no. 2, pp. 244–257, April 1989. [Online]. Available:
http://dx.doi.org/10.1137/0218016

[38] C. H. Papadimitriou and M. Yannakakis, “Towards an architecture-independent analysis
of parallel algorithms,” SIAM Journal on Computing, vol. 19, no. 2, pp. 322–328, May
1990.

[39] A. B. Kahn, “Topological sorting of large networks,” Communications of
the ACM, vol. 5, no. 11, pp. 558–562, November 1962. [Online]. Available:
http://doi.acm.org/10.1145/368996.369025

[40] N. Karmarkar, “A new polynomial-time algorithm for linear programming,” in The
Sixteenth Annual ACM Symposium on Theory of Computing. ACM, 1984, pp. 302–
311.

[41] R. Kolisch, “Serial and parallel resource-constrained project scheduling methods revis-
ited: Theory and computation,” European Journal of Operational Research, vol. 90,
no. 2, pp. 320–333, April 1996.

[42] R. Niemann and P. Marwedel, “An algorithm for hardware/software partitioning using
mixed integer linear programming,” Design Automation for Embedded Systems, vol. 2,
no. 2, pp. 165–193, March 1997.

[43] T. Davidovic, L. Liberti, N. Maculan, and N. Mladenovic, “Towards the optimal solution
of the multiprocessor scheduling problem with communication delays,” Multidisciplinary
International Scheduling Conference: Theory and Applications, January 2007.

[44] F. B. Talbot, “Resource-constrained project scheduling with time-resource tradeoffs:
The nonpreemptive case,” Management Science, vol. 28, no. 10, pp. 1197–1210, October
1982.

49



[45] A. Hagberg, P. Swart, and D. S Chult, “Exploring network structure, dynamics, and
function using networkx,” Los Alamos National Lab.(LANL), Los Alamos, NM (United
States), Tech. Rep., 2008.

[46] C. Szegedy, S. Ioffe, and V. Vanhoucke, “Inception-v4, inception-resnet and the
impact of residual connections on learning,” Computing Research Repository, vol.
abs/1602.07261, February 2016. [Online]. Available: http://arxiv.org/abs/1602.07261

[47] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep con-
volutional neural networks,” in Advances in Neural Information Processing Systems 25,
F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, Eds. Curran Associates,
Inc., 2012, pp. 1097–1105. [Online]. Available: http://papers.nips.cc/paper/4824-
imagenet-classification-with-deep-convolutional-neural-networks.pdf

[48] R. H. Bartels and G. H. Golub, “The simplex method of linear programming using lu
decomposition,” Communications of the ACM, vol. 12, no. 5, pp. 266–268, May 1969.

[49] J. A. Tomlin, “Progress in mathematical programming interior-point and related
methods,” N. Megiddo, Ed. New York, NY, USA: Springer-Verlag New
York, Inc., 1988, ch. A Note on Comparing Simplex and Interior Methods
for Linear Programming, pp. 91–103, ISBN: 0-387-96847-4. [Online]. Available:
http://dl.acm.org/citation.cfm?id=72638.72644

[50] E. D. Andersen and K. D. Andersen, “The mosek interior point optimizer for linear
programming: an implementation of the homogeneous algorithm,” in High Performance
Optimization. Springer, 2000, pp. 197–232.

50


