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Abstract

In this work, we present a new differentially-constrained machine learning model,

termed Evolving Gaussian Processes (E-GP), for modeling and inference of

spatiotemporally evolving dynamical systems. We show that an E-GP model

can be used to estimate the latent state of large-scale physical systems of this

type, and furthermore that a single E-GP model can generalize over multiple

physically-similar systems over a range of parameters using only a few training

sets. It is also shown that an E-GP model provides access to practical physical

insights into the dynamic structure of the system(s) it is trained on. In particular,

from spectral analysis of the linear dynamic layer in the top level of the E-GP

model, one may derive the Koopman modes and eigenvalues of the system. We

are also able to derive the spatial distribution of the invariant subspaces of a

system using a new clustering method. This information can be used for sensor

placement and/or mobile agent path planning for robust inference of the state of

the system using few measurements. We primarily demonstrate our method on

computational flow dynamics (CFD) data sets on fluid flowing past a cylinder

at different Reynolds numbers. Though these systems are governed by highly

nonlinear partial differential equations (the Navier-Stokes equations), we show

that their major dynamical modes can be captured by a linear dynamical layer

over the temporal evolution of the weights of stationary kernels.
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Chapter 1

Introduction

1.1 Challenges

One of the most difficult and important problems in bringing machine learning

to physical domains is modeling and tracking large-scale stochastic phenomena

with both spatial and temporal (spatiotemporal) evolution [1]. Examples of such

phenomena include temperature variation, CO2 flux over large areas, extreme

weather events [12] like wildfires, pedestrian traffic patterns, and fluid dynamics.

The last example is a classic physics problem for numerical analysis, and is

an ongoing subject of research in the field of Computational Fluid Dynamics

(CFD). This field’s aim is to model fluid flow using the first principles of fluid

mechanics, e.g., by using numerical methods to solve the nonlinear Navier-Stokes

partial differential equations. These simulations are costly and resource-intensive,

sometimes requiring days on a supercomputer to generate. This means they are

ill-suited for machine-learning tasks that require access to dozens or hundreds

of simulations of different but similar situations. They are even more poorly

suited for online robotic applications, such as autonomous aerial, ground, or

water vehicles.

In contrast to first-principles approaches, data-driven models of spatiotem-

porally evolving phenomena have been gaining more attention in the machine

learning and statistics communities [8]. The ultimate goal of this approach would

be to generate highly efficient machine learning models that can be used instead

of the costly numerical simulations for design and autonomy purposes. Success

of this technique could revolutionize design and control of complex physical

systems, such as soft robotics, as they would significantly reduce the cost and

resources required in simulations. However, in order to be successful, these

models need to be able to generalize across different physical situations. For

example, in the context of fluid flows, these models must be able to predict fluid

dynamics at different conditions (e.g. Reynolds number) than the training data.

This is a difficult problem, as it requires that the model have the capability to

actually learn the underlying physics and not just input-output relationships.

As far as this author knows, there is no machine learning method currently in

the field which is capable of producing physically-meaningful models of such

complex dynamic systems using only raw measurements. It is the aim of this
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work to change that.

1.2 Contribution

1.2.1 Generalizing Across Similar Spatiotemporally

Evolving Systems

In this work, we demonstrate that a machine learning model can learn and

generalize over the physics of the Navier-Stokes partial differential equation

(PDEs) using only raw measurements, which we believe is unique in our field.

We believe that this model can generalize over other similarly parameterized

PDEs. We also show that the E-GP model works because it is deeply connected

with Koopman operator theory. We leverage these results, along with new

methods for analyzing the E-GP transition matrix, to produce new methods for

path planning for mobile agents seeking to discover the true state of a changing

system.

This work is built on results originally published in [15], and uses the pre-

dictive mechanism therein to perform inference with a single machine learning

model over multiple systems. We term this model Evolving Gaussian Processes

(E-GPs), which is a differentially-constrained hierarchic modeling method that

layers a linear dynamic transition model on the weights of a kernel-based model

(such as a Gaussian Process (GP) or a Gaussian Radial Basis Function (RBF)

Neural Network). The advantage of E-GPs is that by separating the spatial

and temporal dynamics hierarchically and using a linear transition model on

the weights, the learning problem becomes more tractable while complex spa-

tiotemporal behaviors can still be captured in a relatively low-complexity model.

Furthermore, the linear transition model not only provides physical insights into

the system, but also potentially enables the design of observers and controllers

[15, 14]. In this work, we show that E-GP is powerful enough to generalize over

multiple similar PDE-governed systems, and refine it by doing an in-depth anal-

ysis of the resulting model and showing how it can be used for online inference.

Our approach leaves open the possibility of modeling nonlinear behavior in the

weight-space evolution using neural networks as the transition models, especially

as the flow becomes turbulent at higher Reynolds numbers. However, as shown

in the latter part of this work, the ability to perform spectral analysis on the

linear operator in the weight space is very important. Therefore, we consider

that the better potential alternative would be to replace the kernel-based model

with some other machine learning model, preferable something whose parameters

are also spatially encoded like RBFs.

We demonstrate our results using CFD data of flow over a bluff body over a

range of Reynolds numbers from 100 to 1000. The conventional wisdom would be

to learn a separate model over each Reynolds number, but our results show that

this is not necessary if one leverages our spatially encoded hierarchic Evolving
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Gaussian Process model. Using the learned dynamics over weights of successive

kernel models, E-GP is capable of predicting the future states of functional

evolution in a recurrent manner. The key benefit is that evolution of large

function spaces can be transformed into learning the evolution of a relatively

smaller Hilbert space which is encoded by the kernels and the associated weight

vector. Furthermore, the E-GP model’s transition matrix provides valuable

insights into the system, showing spatial correlations in the dynamics, local

modes of dynamic evolution through invariant subspaces, and eigenmodes of

evolution. The latter, importantly, connects this work to ongoing work in

Koopman operator theory in CFD communities.

Koopman operator theory is a way of defining an linear operator over func-

tions, or “observables”, of the state space of a dynamic system which may

be nonlinear. By finding the eigenfunctions (aka Koopman modes) and corre-

sponding eigenvalues of the operator, one obtains a description of the dynamics

that can be used to model the evolution of a system given a snapshot of its

measurables. In this work, we show that the eigenvalues and eigenvectors of

the linear transition model in the weight space of the E-GP model correspond

directly with the eigenvalues and eigenfunctions of the Koopman operator via

the kernel operator. Currently, the most popular data-driven technique in CFD

literature for discovering Koopman modes is Dynamic Mode Decomposition

(DMD), which is what we use for comparison.

Our analysis of the transition matrix, particularly study of the Koopman

modes, eigenvalues, and the invariant subspaces, has led to breakthroughs in

choosing optimal paths for a mobile agent to take in a domain in order to infer

the state of a system that is changing in both space and time. We have developed

two new algorithmic contributions towards this end which we present here. First,

we present a method, inspired by k-means clustering, for identifying areas of the

domain which correspond to invariant subspaces in the linear transition matrix.

Secondly, we present a method for identifying which path amongst a library of

paths is most likely to provide the most useful data for a moving agent in the

system.

1.3 Related Work

In the machine learning community, kernel methods constitute a very well-studied

and powerful class of methods for inference in spatial domains [31], in which

correlations between input variables are encoded via a covariance kernel, and

the model is formed through a weighted sum of the kernels [26]. There is a

significant body of literature on extending these methods to spatiotemporal

modeling [33, 26]. A naive approach is to utilize both spatial and temporal

variables as inputs to the kernel. However, this technique leads to an ever-

growing kernel dictionary, which is computationally taxing. In recent years,

some degree of success has been found [8] by focusing on designing nonseperable
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and nonstationary covariance kernels for environment-specific dynamics and

optimizing/learning associated hyperparameters in local regions of the input

space (ours being a significant exception). The Process Convolution with Local

Smoothing Kernels (PCLSK) approach [13] captures nonstationary structures by

allowing variation in kernel hyperparameters across the input space, which can

be modeled using additional latent Gaussian processes [20, 23, 10]. Other such

methods map the nonstationary process into a latent space where the problem

becomes approximately stationary [30, 22]. However, there are a few major

drawbacks to this approach. First of all, these methods currently have limited

scalability to large-scale phenomena, due to the fact that the hyperparameter

optimization problem is not convex in general, leading to methods that are

difficult to implement (like MCMC), susceptible to local minima, and can become

computationally intractable for large datasets like those generated by CFD. The

scalability issue is only exacerbated by the fact that data is typically retained

across both space and time. Just as importantly, the models generated by these

methods do not lend themselves well to addressing the important challenges of

monitoring systems with sensor feedback and designing controllers.

The geostatistics community literature has several examples of the dynamical

spatiotemporal modeling approach, where the focus is on finding good dynamical

transition models on the linear combination of weights in a parameterized model

[7]. The advantage of this approach is that when the spatial and temporal

dynamics are hierarchically separated, the learning problem can be made convex

if linear transition models are used; as a result, complex nonstationary kernels are

often not necessary. The approach presented in this paper aligns closely with this

vein of work. This was the inspiration for the Kernel Observers papers [15, 14]

which were able to determine the optimal number and location of static sensors

for monitoring and predicting the state of a distributed system using feedback,

by constructing an observer in a reproducing kernel Hilber space. If feedback

is allowed, monitoring (state recovery) and prediction (filtering) can be made

more efficient than other nonstationary kernel methods [6]. This thesis builds

on that work by considering the much more challenging problem of predicting

the state of the system using only a single measurement every time step from a

mobile agent.

Within the CFD community literature, a new framework for data-driven

analysis of nonlinear fluid flow was introduced in the 90s, called Koopman

operator theory. A Koopman operator is a linear, infinite-dimensional operator

that is defined for an autonomous dynamical system and governs the evolution

of its observables, which are scalar functions of the state [36]. Although the

Koopman operator is linear with respect to the infinite-dimensional space of

observable functions, it does not rely on linearizing the underlying dynamic

system. Indeed, this operator has been used to analyze nonlinear fluid flows

[19, 18]. If the most significant eigenfunctions, eigenvalues, and eigenmodes of

the Koopman operator can be approximated from the data, many of the same
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advantages of E-GP are realized: the ability to transform the state space so the

dynamics appear linear, to predict the temporal evolution of the linear system,

and reconstruct the state of the original nonlinear system. Dynamic Mode

Decomposition is the most widely used method for finding a finite-dimensional

subspace of the Koopman operator’s infinite-dimensional domain to work in, first

introduced in 2008 [29] and shown to be connected with the Koopman operator

not long after [28]. There are many modifications to DMD in CFD literature, all

aiming to improve either the theoretical or practical value of the method, but

the two most common variants are the Arnoldi method and the another using

singular value decomposition (SVD). Williams et al., recently applied the kernel

trick to DMD, allowing the algorithm to be extended to systems with much

larger dimensions [35]. However, this method is restricted to approximating

the Koopman operator and is only indirectly concerned with generative models,

whereas our method is concerned with the evolution of the weights which can

be directly used to predict observables (we also use Gaussian kernels instead of

polynomial). Most importantly, our method has the capacity to can generalize

across similar systems, and lends itself well toward designing observers and

controllers for those system(s).

For the purpose of aerospace design tasks, feedforward neural networks have

been used to model a highly restricted subset of the CFD output, such as the

pressure at a couple of points on an object surface [5]. Convolutional neural

networks (CNNs) have been used to model either simple, low-Reynolds number,

steady flows at low resolution [11], or (more recently) certain costly components

of CFD simulators [32] for turbulent flows. However, as far as we know, no

end-to-end neural network has been used to learn and generalize about dynamics

of a complex dynamic CFD system, nor used as the basis for online inference

of the state of system using sparse/mobile measurements. We hope this work

provides inspiration for future research in that area.
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Chapter 2

Background

2.1 Partial Differential Equations and the

Navier-Stokes Equations

Partial differential equations are ubiquitous in science and engineering and have

their origins in multivariate calculus with functions that operate in continuous

space. In this space, any change in functional values can be represented as a

combination of partial derivatives of this multivariable function with respect to

the independent variables (usually time and space). Examples of such PDEs litter

the various areas of science and engineering as a means to describe evolutionary

dynamics of many complex systems, including areas of mechanics (solids, fluids,

gases), transport phenomena in general (waves, information), electrostatics &

electromagnetics, circuits, thermal sciences, quantum mechanics, transmission

lines and more.

The predominant class of PDEs encountered in practical science and engi-

neering are of the second order. These second order PDEs, especially when

linear, can be classified into elliptic, parabolic or hyperbolic depending on the

signature of eigenvalues of the coefficients of the PDE system. However, the

generic PDEs encountered in practice are non-linear, i.e. the coefficients of the

PDE system are functions of the independent variables or dependent variables

or both. For example, the Navier-Stokes equations (NSE) can be classified as

mixed type, i.e they can behave as hyperbolic or parabolic or elliptic systems in

different regimes of the non-linear coefficients, depending on the boundary and

initial conditions specified. The other consequence of the nonlinearity is chaotic

dynamics, commonly referred to as turbulence, wherein any small disturbance

evolve the system along bifurcations to excite unstable modes and new physical

scales, in a cumulative cascading effect.

In our view, the Navier-Stokes equations represents most, if not all of the

overall complexity of modeling 2nd order PDEs as it (a) allows of hybrid system

behavior, i.e. elliptic-hyperbolic etc. and (b) the nonlinearity results in complex

spatio-temporal dynamics that is prevalent in many practical situations. The

form of the NSE for compressible Newtonian fluids is expressed below, where u

is the fluid velocity, p is the fluid pressure, ρ is the fluid density, and µ is the

fluid dynamic viscosity. [21]
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ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+∇ ·

(
µ(∇u + (∇u)T )

)
+∇

(
−2µ

3
∇ · u

)
+ ρg

2.2 Kernel Observers

As presented in [15], the problem is predictive inference of a time-varying

stochastic process, whose mean f evolves as fτ+1 ∼ F(fτ , ητ ), where F is a

distribution varying with time τ and exogenous inputs η. The goal of our

approach is to hierarchically separate temporal evolution from spatial functional

evolution. Our prototype is the classical and quite general abstract evolution

equation (AEO), which can be defined as the evolution of a function u embedded

in a Banach space B: u̇(t) = Lu(t), subject to u(0) = u0, and L : B → B
determines spatiotemporal transitions of u ∈ B [3]. To make this approach

computationally realizable, we restrict the sequence fτ to lie in a reproducing

kernel Hilbert space (RKHS) [26]. Let k : Ω × Ω → R be a positive-definite

Mercer kernel on a domain Ω, modeling the covariance betwen any two points in

the input space. This also implies the existence of a smooth map ψ : Ω → H,

where H is an RKHS with the property k(x, y) = 〈ψ(x), ψ(y)〉H. The insight of

the proposed model is in assuming spatiotemporal evolution in the input domain

corresponds to temporal evolution of the mixing weights of a kernel model alone

in the functional domain.

Let y ∈ RN be the measurements of the function available from N sensors,

A : H → H be a linear transition operator in the RKHS H, and K : H → RN

be a linear measurement operator. The model for the functional evolution and

measurement studied in this paper is:

fτ+1 = Afτ + ητ , yτ = Kfτ + ζτ , (2.1)

where ητ is a zero-mean stochastic process in H, and ζτ is a Wiener process

in RN . To avoid working in dual space and have the parameters grow with

the data, we work with an approximate feature map ψ̂(x) := [ ψ̂1(x) ··· ψ̂M (x) ]

to an approximate feature space Ĥ. Typical examples of such maps include

random Fourier features [24], FastFood [16], A la Carte [37], and the Nyström

method [34]. Here we use the dictionary of atoms approach as follows: let Ω be

compact. Given points C = {c1, . . . , cM}, ci ∈ Ω, define the dictionary of atoms

FC = {ψ(c1), · · · , ψ(cM )}, ψ(ci) ∈ H, the span of which is a strict subspace

Ĥ of the RKHS H generated by the kernel, where ψ̂i(x) := k(x, ci). In the

approximate space case, we replace the transition operator A : H → H in (2.1)

by Â : Ĥ → Ĥ. The finite-dimensional evolution equations approximating (2.1)

in approximate dual form are

wτ+1 = Âwτ + ητ , yτ = Kwτ + ζτ , (2.2)
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where we have matrices Â ∈ RM×M , K ∈ RN×M , the vectors wτ ∈ RM ,

and where we have slightly abused notation to let yτ , ητ and ζτ denote their

Ĥ counterparts. Here K is the matrix whose rows are of the form K(i) =

[ ψ̂1(xi) ψ̂2(xi) ··· ψ̂M (xi) ]. In systems-theoretic language, the matrix acts as a

measurement operator.

Modeling the system as a linear time-invariant dynamic system in the weight

space enables the use of several important and useful techniques from control

theory. For example, it was demonstrated in [14] that given a spatiotemporally

evolving system modeled using (2.2), under certain conditions one may choose a

set of N sensing locations such that even with N �M , the functional evolution

of the spatiotemporal model can be estimated (which corresponds to monitoring)

and can be predicted robustly (which corresponds to Bayesian filtering). The

key to solving this problem is designing the measurement operator K so that

the pair (K, Â) is observable. By taking the Jordan decomposition of the Â and

looking at the geometric multiplicities of the eigenvalues, one can determine the

cyclic index of Â. The cyclic index is a nonconservative lower bound on the

number of distinct sampling locations required for the observability of system

(2.2), and is equal to the number of invariant subspaces Hi ⊂ H into which A
can be uniquely decomposed. It is formally defined as the largest geometric

multiplicity of an eigenvalue in Â.

An invariant subspace of a linear mapping from some vector space to itself is a

subspace W of RM that is preserved by Â, that is Â(W ) ⊆W . Trivial examples

include {0} and RM , but we are interested in subspaces that correspond with

a set of regions dividing the domain. Unlike neural networks, the weights in

an E-GP do not exist in some abstract, difficult-to-comprehend space, but are

associated with kernel centers in specific locations in the domain. We refer to

this very important attribute of E-GPs as the spatial encoding property.

2.3 Koopman Operator Theory

Koopman operator theory is formulated in the context of studying the ”dynamics

of observables”, that is, the dynamics of the system are analyzed by studying the

evolution of functions on the state space, rather than the state space trajectories

themselves.

Our formulation will follow that found in the exemplary [4]. The state space

shall be denoted as S and the dynamics on S defined by the transition operator

T : M → M . A scalar observable is defined as a function φ : S → C, where φ

belongs to a function space F which we will specify later. A real-life interpretation

of an observable function would be a sensor measuring some quantity related to

the system. Instead of tracking the state trajectory s, T (s), T 2(s), ..., we track

the trace φ(s), φ(T (s)), φ(T 2(s)), .... This corresponds with the familiar state
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and output equation format used in the control theory community:

sn+1 = T (s), yn = φ(sn) (2.3)

The Koopman operator, also known as the composition operator, is defined

on the space of observables (UT : F → F) as follows:

(Uφ)(s) = (φ ◦ T )(s) = φ(T (s)) (2.4)

for all s ∈ M . When F is a vector space, then U is linear. When S is a finite

set, then U is a finite-dimensional operator and can be represented by a matrix;

however, in the usual case that the state space is not finite (either finite- or

infinite-dimensional), then U is infinite-dimensional. Often, we would like to

extend the space of scalar observables to a vector space. A natural example

of this is when we have N sensors φ1, ..., φN collecting measurements which we

might store as a vector to consider writing the measurements of N particular

sensors as a vector

2.3.1 Dynamic Mode Decomposition

As noted before, Dynamic Mode Decomposition is the most popular method for

approximating the Koopman modes of a system from a discrete time series of

observations, and there exist many variants of DMD. We describe the Arnoldi

method below.

The data is in the form of a sequence of snapshots: Y N1 = {y1, y2, . . . , yt}
where yi ∈ RN is the i-th snapshot of the flow field measurements, and Y N1 ∈
RN×t is a matrix whose columns are the individual snapshots. The subscript

and superscript denote the index of the snapshot in the first and last columns

respectively. The presumption of DMD is that we can approximately relate all

of these snapshots via the linear mapping

yi+1 = Ayi

This implies that

Y t2 = AY t−1
1 + reTt−1

where r is the vector of residuals that accounts for behaviors that cannot be

described completely by A, et−1 = {0, 0, . . . , 1} ∈ Rt−1. The DMD algorithm

outputs the eigenvalues and eigenvectors of A.

The Arnoldi approach, noting that the number of measurements N is often

much larger than the number of snapshots t, is to rewrite the above matrix

equation as

Y t2 = AY t−1
1 = Y t−1

1 B + reTt−1
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where B is the companion matrix

B = {e2, e3, . . . , et−1, a}, yt = a1y1 + · · ·+ at−1yt−1 + r

The vector a can be computed by solving a least squares problem. The eigen-

values of A are approximated by the eigenvalues of S, and the eigenvectors are

approximated by Y T−1
1 v where v is an eigenvector of S.

2.4 k-Means Clustering

k-means clustering is an algorithm [17] that aims to partition M vectors into

k clusters in which each vector belongs to the cluster with the nearest mean,

with the result that the vector space is divided into cells. The problem is NP-

hard, however there are efficient heuristic algorithms that widely employed and

converge quickly to local optimums.

Specifically, given a set of vectors {x1, . . . , xn}, k-means clustering aims to

partition the n observations into k ≤ n sets S = S1, . . . , Sk so as to minimize the

within-cluster sum of squares (WCSS) (i.e. variance), which handily equals the

pairwise squared deviations of points in the same cluster. That is, the problem is

arg min
S

k∑
i=1

∑
x∈Si

‖x−µi‖2 = arg min
S

k∑
i=1

|Si|VarSi = arg min
S

k∑
i=1

1

2|Si|
∑
x,y∈Si

‖x−y‖2

The standard, iterative algorithm for solving this problem is as follows:

1. Assignment step: assign each vector xi to the cluster whose mean has the

least squared Euclidean distance (the “nearest” one).

2. Calculate the new means to be the centroids of the new clusters, m
(t+1)
i =

1
|Sti |

∑
xj∈Stj

xj

The algorithm is done when the assignments no longer change, though there

is no guarantee that the optimum is found. The most common way to initialize

the algorithm is to choose k vectors from the data set and use these as the initial

means (Forgy method).
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Chapter 3

Methods

3.1 Evolving Gaussian Processes

The Evolving Gaussian Processes method builds on the Kernel Observers method.

The primary novelty in our method of generating a model is learning an Â matrix

for multiple systems. We found that the class of functional evolutions F defined by

linear Markovian transitions in a RKHS is still sufficient to model the nonlinear

Navier Stokes equations, since the unknown map ψ allows us to model highly

nonlinear dynamics in the input space. However, we do expect that phenomena

such as bifurcation or turbulence will require nonlinear mappings H. There are

three steps to generate an Evolving Gaussian Process model:

1. After picking the kernel and estimating the bandwidth hyperparameter σ

(we utilize the maximum likelihood approach, although other approaches

can be used), find an optimal basis vector set C using the algorithm in [9].

2. Use Gaussian process inference to find weight vectors for each time-step

in the training set(s), generating the sequence wτ , τ = 1, . . . , T for each

system. A uniform time-step makes next step easier but can be worked

around for non-uniform data sets

3. Using the weight trajectory, use matrix least-squares with the equation

Â[w1, w2, ..., wT−1] = [w2, w3, ..., wT ] to solve for Â.

4. To generate a multi-system model, concatenate the weight trajectories

from each similar system in the least-squares computation of Â. That is,

let Wθ = [w
(θ)
1 , w

(θ)
2 , ..., w

(θ)
n−1] and W ′θ = [w

(θ)
2 , w

(θ)
3 , ..., w

(θ)
n ] be the weight

trajectory and next weight trajectory for some parameter . Then we solve

the least-squares problem Â = [Wθ1 , . . . ,Wθn ] = [W ′θ, . . . ,W
′
θn

]

For the sake of defining when it is appropriate to expect our method to be able

to generalize across different spatiotemporally evolving systems, we shall define

what it means for two fluid flows to be similar. In configuring a fluid dynamics

simulation, a set of quantifiable parameters are defined. Two dynamical fluid

systems S1 and S2 are considered similar if they have the same configuration of

parameters and differ only in the value of at most one parameter. Furthermore,

we require that the parameter be continuously variable and that any observable
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data point in the domain of the system vary smoothly as that parameter varies

from its value in S1 to its value in S2. For example, for fluids flowing past

identical cylinders, the Reynolds number associated with the free stream velocity

may be varied to produce similar systems. However, to replace the system’s

cylinder with a triangle would be to qualitatively change the configuration of

the system parameters, and thus would produce a non-similar system.

Unlike neural networks, the weights in an E-GP do not exist in some abstract,

difficult-to-comprehend space, but are associated with kernel centers in specific

locations in the domain. We refer to this attribute of E-GPs as the spatial

encoding property. This property is an extremely valuable tool for gaining

insight into the learned model works. For example, by plotting which kernel

centers are associated with which invariant subspaces in the transition matrix,

one can visualize where the eigenfunctions are found and how the dynamic modes

are separated spatially. For another example, by plotting arrows from center cj

to ci for each of the largest elements âij of Â, one can visualize how different

areas of the domain influence each other’s evolution.

3.2 Theoretical Connection between Koopman

& E-GP

Having formulated the Koopman operator as we did previously, we are prepared

to examine why and how the eigenvalues and eigenvectors of the matrix Â can

be related to the Koopman operator. In our system, the states are the mean

functions fτ which exist in the state space H, which is an RKHS generated by the

positive definite Mercer kernel k. The system operator A takes the place of the

state transformation, and the measurement operator K is in essence an observable

of the state. From this perspective, the finite-dimensional approximation of the

Hilbert space is really a dimensionality-reducing convolution operator. Given that

in the limit of centers used, Ĥ becomes dense in H, we can identify every function

with the set of weight vectors in RM . Since we still want the corresponding

operators in approximate space, Â and K, to be linear, they become matrices.

We can now write the Koopman operator U as a matrix as well, defined by

UK = KÂ

Supposing v is an eigenvector of Â with eigenvalue λ, Âv = λv, we find that

U(Kv) = KÂv = λKv

which implies that Kv is a Koopman mode with eigenvalue λ.

12



3.3 Spectral Analysis of E-GP Model and

Resulting Algorithms

One way of viewing the invariant subspaces concept (as described above) is say

that information contained in an invariant subspace never leaves that invariant

subspace. We hypothesize that the kernel centers associated with the invariant

subspaces of a spatiotemporally evolving system are generally associated with

spatial regions in the domain (and not just homogeneously spread all over and

or mixed with the other invariant subspaces). This hypothesis makes sense both

physically and mathematically. In physics, the principle of locality states that

an object is only directly influenced by its immediate surroundings [? ]. If this

is the case (and there is no reason to believe that it is not, apart from certain

quantum dynamics situations), and the E-GP model accurately captures the

physics of the system, then information (measurable phenomena) may only travel

continuously from one point in the domain to another. Mathematically, since a

value at any one point in the domain is influenced by the weights of multiple

nearby centers, we would expect nearby centers to be connected dynamically,

unless separated by “plains” where the values are indistinguishable from noise.

When a square matrix is nicely formed, the Jordan form of a n× n matrix

Â is block diagonal, and therefore gives a decomposition of the n dimensional

Euclidean space into invariant subspaces of Â. The cyclic index, which can be

found by counting the geometric multiplicities of eigenvalues in Â, gives the

number of invariant subspaces. In reality, data-driven approximations of Â rarely

give such easily interpretable properties. Hence, the need for an algorithm with

divides invariant subspaces.

Each block in the Jordan normal form has a set of corresponding eigenvectors

and an eigenvalue with geometric multiplicity. When we transform the former

back into the domain space, we obtain complex-valued functions which are

the Koopman modes of the system. These provide an image of what kind of

structures we see in the dynamics. The eigenvalues describe the frequency with

which these structures oscillate between their real and imaginary forms, as well

as the exponential growth or decay of their magnitudes. In this paper, we

demonstrate our method on systems with eigenvalues primarily on the unit circle

(neither growing nor decaying).

3.3.1 k-Invariant Subspaces Clustering

The intuition behind our k-invariant subspaces clustering algorithm is to replace

the Euclidean distance with a different metric of “nearness”, namely one corre-

sponding with the dynamic connections in the space. The Â matrix provides

easy access to these: its rows Âi∗ indicate which centers inform the ith value of

wtindex+1, and its columns Â∗j indicate what centers will be informed by the jth

value of wτ . However, in order to cluster without bias, we need to control for
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the differing frequencies of the eigenmodes. If we do the eigen-decomposition of

the matrix as Â = UDU−1, then let D̄ be zeroed out except for its eigenvalues

on the unit circle, and let Ū be truncated to only the corresponding eigenvectors.

Then let Ā = UDU†, where U† is the pseudo-inverse. Much like the pairwise

squared deviations of points formulation of the k-means clustering problem, we

can now write our problem as

arg max
S

k∑
i=1

1

2|Si|
∑
xi 6=xj
xj ,xi∈Si

Ā2
ij

This problem can be solved with the following algorithm: Note the differences

Algorithm 1 k-Invariant Subspaces Algorithm

1: while clusters have changed do
2: for each center i do
3: find cluster k which maximizes the score

1

|Sk|+ 1

(
‖Āi,Sk\{i}‖

2 + ‖ĀSk\{i},i‖
2
)

4: reassign center i to cluster with highest score
5: end for
6: end while
7: return clusters

between this and the k-means clustering algorithm: first, we are maximizing since

the terms represent influnce rather than nearness. Secondly, we use |Sk|+ 1 in

the denominator to avoid division by zero. Thirdly, we exclude centers influence

on themselves from the score by taking Sk \ {i}.

3.3.2 Scoring Paths

We have already described some of the important properties of the dynamics

of the system. Now we discuss their relevance for path planning. We postulate

that the value of taking a measurement at a point in the domain with respect to

a particular eigenvector is proportional to the following factors:

1. The spatial extent of the eigenvector. This can be taken to be equivalent

to the area under the curve of the magnitude of the complex function

corresponding to that eigenvector (normalized by the function peak)

SEi =
1

supx viΦ̂(x)

∫
X

|viΦ̂(x)|dx

2. The expected size of the measurement itself, which is roughly equal to

viΦ̂(x).

3. The ratio of the frequency with which that Koopman mode is visited to
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the frequency of its eigenvalue. This factor is included due to the aliasing

effect

4. A discount factor equal to a decaying exponential of the number of times

that eigenmode has been visited

This scoring method allows one to decide the likeliest candidate amongst a

large family of paths

3.3.3 Generating High-Scoring Random Paths

We propose the following algorithm for generating high-scoring paths:

1. Cluster the centers into invariant subspaces according to the k-invariant

subspaces algorithm, with the best reasonable guess(es) for k

2. In each cluster, select a waypoint where the sum of all Koopman modes is

maximized

3. Generate a path by selecting waypoints randomly, where the selection is

randomly weighted. The weights are equal to the spatial extent of the

clusters multiplied by an exponential decay factor for the number of times

each has been visited
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Chapter 4

Experimental Results

4.1 Modeling the Individual Flows

We used CFD methods to generate the states for a canonical fluid mechan-

ics problem: flow past a cylinder at various Reynolds numbers, namely Re =

100, 300, 600, 800 and 1000. This deterministic, high-dimensional spatiotem-

poral dynamical system is well-studied in the fluid dynamics literature, both

experimentally and numerically [27, 2, 25]. In our CFD simulation, we used a 4th-

order polynomial expansion with spectral element method on the incompressible

Navier-Stokes equation to generate the cylinder flow data. The spatial domain

is [−2, 10]× [−3, 3], excluding the diameter-1 cylinder at the origin. Neumann

boundary conditions are applied to the far-field of the cylinder in the y-direction

and the outlet of the flow field; and a Dirichlet boundary condition is applied

to the inlet. Each data set contains at least 200 snapshots with a uniform time

step of 0̃.03 sec. Each snapshot contains 24,000 velocity data points for Re=100

or 95,000 velocity data points for Re=300,600,800,1000. Each data set took

at least 10 hours in a high performance computer cluster to generate. Figures

4.1,4.2(a-c) visualize the horizontal velocity for Re=100 and Re=1000, with red

being the greatest negative velocity and blue the greatest positive velocity. The

flow is unstable, periodic, and clearly nonlinear.

(a) Snapshot 0 (b) Snapshot 10 (c) Snapshot 20

(d) Snapshot 0 (e) Snapshot 10 (f) Snapshot 20

Figure 4.1: Visualization of Fluid Flow at Re = 100, CFD (a-c), E-GP (d-f)

We used the Gaussian RBF kernel k(x, y) = e−‖x−y‖
2/2σ2

in our E-GP model,
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(a) Snapshot 0 (b) Snapshot 5 (c) Snapshot 10

(d) Snapshot 0 (e) Snapshot 5 (f) Snapshot 10

Figure 4.2: Visualization of Fluid Flow at Re = 1000, CFD (a-c), E-GP (d-f)

with σ estimated to be 0.4. Using a budget of 600 kernel centers (see Figure

4.4(a)-4.4(b), and note how they cluster in the most dynamic regions), we find

a 600× 600 matrix Â which accurately (Figure 4.3(a)) captures the dynamics

of the nonlinear system. We can use this to propagate single initial condition

w0 forward to make predictions, then compare the predictions to the original

training data. We found total percentage errors between 3% for Re=100 and

7-8% for Re=1000, as can be seen in the solid lines in Figure 4.3(a). We define

the total percentage errors as Eτ = ‖yτ−ȳτ‖2
‖ȳτ‖2 where ȳτ is the output vector for

time τ and yτ is the E-GP estimate at that time. Note that the size of the model

has been reduced by almost two orders of magnitude from the original CFD data.

This process takes about 13 minutes in MATLAB for a 200 snapshot by 95,000

point set on an ordinary Intel i7 4.00 GHz processor.

4.2 One Transition Matrix for Everything

In order to approach the challenge of generalizing across similar spatiotemporally

evolving systems, the first question we had to answer is whether we can find

an Â matrix that accurately captures the dynamics of multiple similar flows.

The answer to that question is yes, using the trajectory concatenation method.

Amazingly, a single model generated this way works almost as well on all five

data sets as do five individual models trained on each data set separately. This

is confirmed by both the total error plots (Figure 4.3(a)), which show only slight

increases in each of the total percentage error plots, and visual inspection of

the dynamic modes displayed. This result is even more surprising in light of

the fact that the rate of vortex shedding for each Reynolds number is different.

By taking a Fourier transform of the time evolution of a data point located at

(0.5,8), we find that for the original data sets the vortex shedding frequency is

0.448 Hz, 1.260 Hz, 1.380 Hz, 1.388, and 1.401 Hz for Re=100, 300, 600, 800,

and 1000 respectively, and for the E-GP models the frequencies are 0.452 Hz,

1.21 Hz, 1.36 Hz, 1.36 Hz, and 1.36 Hz respectively.
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(a) Universal Generalizer vs Individual
Models

(b) Different Models Tested on Re=800

Figure 4.3: Total Percentage Errors

4.3 Generalizing from Learned Dynamics to

Unknown Dynamics

Having seen that it is possible to find a single transition in the weight space that

models the dynamics systems over a range of parameters, the next challenge is

to be able to model flows with parameters that the model has not been trained

on. We derived an Â matrix from the Re=100, 300, 600, and 1000 data sets and

tested it against the Re=800 data set. The results are below in Figure 4.3(b).

For the first 120 snapshots, the total percentage error remains under 10%, which

is satisfactory. After this, however, the total percentage error curves upwards

as the slight errors in the transition matrix compound. Over 800 snapshots, we

found an average total percentage error of less than 25%.

4.4 Linear Dynamical Layer Analysis &

Insights

Due to the spatial encoding of the weights which the linear transition model

operates on, we are able to analyze the dynamics and find physical insights into

the process. We demonstrate two techniques: (1) using eigendecomosition of

the transition matrix to discover the eigenfunctions and invariant subspaces

of system, and (2) visualizing the most significant spatial interactions in the

system.

An invariant subspace of a linear operator is a subspace of the Hilbert

space such that any vector in the subspace remains in the subspace under

transformation by the operator. By marking which kernel centers are associated

with different subspaces, we can spatially separate the space into multiple

dynamic modules. The physical insight is some areas of the space are dynamically

entangled with each other, and other are independent of each other. For those

interested in monitoring spatiotemporally evolving systems, the number and
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(a) Re = 100, ε = 0.005 (b) Re = 1000, ε = 0.05

(c) All Reynolds numbers, ε =0.069

Figure 4.4: Eigenvector Heat Maps

location of the invariant subspaces determines how many and where feedback

sensors ought to be for robust prediction of the weights.

Before doing the Jordan decomposition of Â, we zero any elements smaller

than some small ε in order to stabilize the algorithm for matrices with many

elements close to zero. Afterwards we visualize the eigenvector matrix using

a logarithmic color chart, as seen in Figures 4.4(a),4.4(b),4.4(c). These plots

are for models trained individually on Re=100 and Re=1000 with 300 kernels,

and on all five with 600 kernels, for comparison. We see three categories of

eigenvector in the rows: (1) Rows at the bottom that have exactly one non-zero

elements, (2) In the middle, a couple rows with a dozen significant elements, and

(3) at the top a number of rows that affect the majority of the kernel centers in

the space.

Each eigenvector of (1) spans its own invariant subspace, and is depicted

in magenta circles in Figures 4.5(a),4.5(b),4.5(c). Category (3) is one invariant

subspace, depicted with black crosses. Category (2) is subsumed in Category (3).

The figures show that the dynamics near/around the cylinder and in its wake

are so entangled that a single sensor measurement in that area may be sufficient

to estimate over that entire subspace. On the other hand, areas far from the

core of dynamic excitement are their own independent, invariant subspaces, and

thus must be monitored locally.

Another way to visualize the operation of the linear transition matrix is to
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plot lines between kernel centers that are influencing each other strongly. That

is, if we draw a line center cj to ci for each of the (relatively) largest elements

aij of Â, one can see how the system dynamics are coupled spatially (Figures

4.6(a),4.6(b),4.6(c)). We can also plot the magnitude of aij in a third axis for

further insight into the most dominant dynamic connection in the system.

(a) Re = 100, ε = 0.005 (b) Re = 1000, ε = 0.05

(c) All Reynolds numbers, ε = 0.069

Figure 4.5: Invariant Subspaces

(a) Re=100 (b) Re=1000

(c) Trained on all 5 data sets

Figure 4.6: Visualization of Co-Relations in Transition Matrix
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(a) 0◦, real component (b) 6◦, real component (c) 12◦, real component

(d) 0◦, imaginary component (e) 6◦, imaginary component (f) 12◦, imaginary component

(g) 0◦, real component (h) 6◦, real component (i) 12◦, real component

(j) 0◦, imaginary component (k) 6◦, imaginary component (l) 12◦, imaginary component

Figure 4.7: Primary Koopman Modes, Re=100. (a-f) E-GP, (g-l) DMD

4.5 Koopman Modes & Eigenvalues

In order to derive the eigenvalues and Koopman modes of the system, one must

simply take the eigenvalues and eigenvectors of the Â matrix, and transform the

latter through the observation matrix K. As shown in figures 4.7 through 4.11,

the eigenmodes corresponding with the eigenvectors of the Â matrix correspond

exactly with the eigenmodes from the DMD method. As shown in 4.12, the

eigenvalues also match along the unit circle – orange represents E-GP, blue DMD.

The values inside the unit circle exponentially decay to zero.

4.6 Mobile Path Planning & Inference

To begin our investigation into mobile path planning & inference, we constructed

a number of simple synthetic spatiotemporally evolving systems. One of these is

displayed below 4.13. This is a system with two invariant subspaces, in each of

which, two hills oscillate up and down in sync at a different frequency than the

other invariant subspace. This is ideal for testing our methods. In the example

shown we used 100 centers with an RBF kernel with σ = 0.3, however in testing

we also went as low as 20 centers.

The k-means algorithm divides the system nicely through the middle, as
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(a) 0◦, real component (b) 15◦, real component (c) 30◦, real component

(d) 0◦, imaginary compo-
nent

(e) 15◦, imaginary compo-
nent

(f) 30◦, imaginary compo-
nent

(g) 0◦, real component (h) 15◦, real component (i) 30◦, real component

(j) 0◦, imaginary compo-
nent

(k) 15◦, imaginary compo-
nent

(l) 30◦, imaginary compo-
nent

Figure 4.8: Primary Koopman Modes, Re=300. (a-f) E-GP, (g-l) DMD

(a) 0◦, real component (b) 16◦, real component (c) 33◦, real component

(d) 0◦, imaginary compo-
nent

(e) 16◦, imaginary compo-
nent

(f) 33◦, imaginary compo-
nent

(g) 0◦, real component (h) 16◦, real component (i) 33◦, real component

(j) 0◦, imaginary compo-
nent

(k) 16◦, imaginary compo-
nent

(l) 33◦, imaginary compo-
nent

Figure 4.9: Primary Koopman Modes, Re=600. (a-f) E-GP, (g-l) DMD
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(a) 0◦, real component (b) 17◦, real component (c) 34◦, real component

(d) 0◦, imaginary compo-
nent

(e) 17◦, imaginary compo-
nent

(f) 34◦, imaginary compo-
nent

(g) 0◦, real component (h) 17◦, real component (i) 34◦, real component

(j) 0◦, imaginary compo-
nent

(k) 17◦, imaginary compo-
nent

(l) 34◦, imaginary compo-
nent

Figure 4.10: Primary Koopman Modes, Re=800. (a-f) E-GP, (g-l) DMD

(a) 0◦, real component (b) 17◦, real component (c) 34◦, real component

(d) 0◦, imaginary compo-
nent

(e) 17◦, imaginary compo-
nent

(f) 34◦, imaginary compo-
nent

(g) 0◦, real component (h) 17◦, real component (i) 34◦, real component

(j) 0◦, imaginary compo-
nent

(k) 17◦, imaginary compo-
nent

(l) 34◦, imaginary compo-
nent

Figure 4.11: Primary Koopman Modes, Re=1000. (a-f) E-GP, (g-l) DMD
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(a) Re=100 (b) Re=300

(c) Re=600 (d) Re=800

(e) Re=1000

Figure 4.12: Eigenvalue Comparison
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Figure 4.13: Simple Synthetic System with Two Invariant Subspaces

(a) Initial clustering of centers (b) Final clustering of centers

Figure 4.14: Synthetic System Invariant Subspaces

expected.

We found that few purely random paths would converge quickly for the

synthetic data set, due to the large plain of zero values in between the two invari-

ant subspaces. Our method for generating and selecting paths with waypoints

resulted in paths that traveled between the four humps and quickly converged.

Since the CFD data set has dynamics almost everywhere, most paths are able

to converge to the state. However, it is notable that a pre-designed lawnmower

path failed to do as well as most random paths. The random paths generated

and chosen by our methods did the best.

(a) Initial clustering of centers (b) Final clustering of centers

Figure 4.15: CFD System Invariant Subspaces
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Chapter 5

Conclusion

In this work, we presented a systems-theoretic approach to the problem of

modeling complex spatiotemporally evolving phenomena and generalizing across

continuously similar systems. Our approach focused on deriving a linear transi-

tion matrix in a space of weights layered over a kernel-based model. We also

showed that spectral analyis of the linear transition matrix in the weight space

of the model reveals connections to Koopman operator theory and provides key

insights into the physics of the system, which may be used to design paths for

mobile agents seeking to infer the state of the system. These methods were

demonstrated on computational flow dynamics data of a fluid moving past a

cylinder at various Reynolds numbers. We found that a single model could

predict the evolution of the system at five very different Reynolds numbers with

almost the same accuracy as a model of the same size trained on only one of the

data sets. We found that our model was able to predict the evolution of similar

systems that it had never been trained on. We found that the eigenvectors of

the transition matrix, transformed into the input space, are identical to the

Koopman modes found through Dynamic Mode Decomposition, which illustrate

elegantly the dynamic structures which compose the wake and the vortices being

shed from the cylinder. We demonstrated a new algorithm for determining the

spatial regions associated with different invariant subspaces in linear transition

matrix, and described how mobile agents can plan paths based on these results.
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