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ABSTRACT 

 IlliniSat-2 bus is the second generation of a general model on which multiple-production 

of CubeSats are based upon. The IlliniSat-2 bus consists of Command and Data Handling system, 

Power Generation and Distribution system, Attitude Determination and Control system and Radio 

system. The IlliniSat-2 is required to be capable of operating a nanosatellite from size 1.5U 

(10x10x17cm) to 6U (10x22.6x36.6cm) and carrying up to three science payloads. The challenge 

with IlliniSat-2 bus is the requirement for the wide-range scalability. The major contribution of 

this work includes the requirements, design, testing, and validation of two parts of the IlliniSat-2 

bus systems: Command and Data Handling system and Power Generation and Distribution system. 

This work also contributes the lessons learned throughout the implementation of the flight 

hardware. So far, five missions are using IlliniSat-2 bus to carry their science payloads: LAICE, 

CubeSail, SpaceICE, SASSI^2 and CAPSat. CubeSail satellite was fully constructed and delivery 

to the launcher on April 12th, 2018. The tentative launch date as of this publication is August 31st, 

2018. SpaceICE, SASSI^2 and CAPSat are three missions developed as parts of the NASA Science 

Mission Directorate’s (SMD) Undergraduate Student Instrument Program (USIP). Those three 

satellites are being constructed as of this publication and will be delivered to perspective launchers 

by the end of August. LAICE satellite was constructed and is awaiting to be delivered to the launch 

in November 1st, 2018.  
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CHAPTER 1: INTRODUCTION & BACKGROUND 

This work describes the second-generation design of the electrical system of a satellite bus 

for University of Illinois at Urbana-Champaign. The bus is given the name IlliniSat-2. IlliniSat-2 

bus is designed to be 10x10x7.5cm(0.75U) in size. It is designed to be scalable from 1.5U to 6U 

in size according to CubeSat Standard[1][2] and capable of providing power and data 

communication up to three scientific payloads.  

Currently, five missions are flying with IlliniSat-2 bus carrying their scientific payloads: 

LAICE, CubeSail, SpaceICE, SASSI^2 and CAPSat. CubeSail was already constructed and 

delivered to the launcher, the tentative launch date is later in 2018. SpaceICE, SASSI^2 and 

CAPSat CubeSats are being developed as a part of the NASA Science Mission Directorate’s (SMD) 

Undergraduate Student Instrument Program (USIP).  They are finishing testing and construction 

as the thesis is getting deposited. Those three missions will be delivered to NASA at the end of 

August. LAICE is constructed and currently in the process of acquiring an FCC license and the 

tentative delivery date is November 1st 2018.  

This work discusses the requirements, design, testing, and validation of two parts of the 

IlliniSat-2 bus systems: Command and Data Handling (C&DH) system and Power Generation and 

Distribution system (Power System). Further, multiple bus software or firmware systems will be 

developed herein, including validation of the C&DH Linux kernel and the power distribution and 

monitoring firmware. The work also discusses the software used to design flight hardware and 

manufacturers used to manufacture flight hardware.  

This thesis is dedicated to IlliniSat-2 bus hardware. From C&DH system, to Power 

Generation and Distribution system involving solar panels, battery pack and Power Board. The 
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thesis will first present the overall IlliniSat-2 bus architecture, then it goes over descriptions of 

each mission and the requirements for the IlliniSat-2 bus’s C&DH and power system, then it will 

dig into the methods involved to implement a common hardware design which can meet the needs 

of multiple missions with very little variation. Each of the subsequent chapters are dedicated to a 

specific system or subsystem’s design, implementation and testing. Finally, the thesis will discuss 

the processes used to design and manufacture IlliniSat-2 hardware and software, as well as the 

lessons learned from the development of C&DH system and power system.  
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CHAPTER 2: IlliniSat-2 BUS AND MISSION OVERVIEW 

2.1 IlliniSat-2 Overview 

 The IlliniSat-2 bus is broken down into 4 main electrical systems: Command and Data 

Handling (C&DH) system, Power Generation and Distribution system, Attitude Determination and 

Control System (ADCS) and Radio system. The Power Generation and Distribution system is 

broken down into power generation, power storage, power regulation and distribution subsystems. 

The ADCS system is broken down into determination, control, and interface subsystems.  

2.2 Service Stack 

The four IlliniSat-2 main systems form a satellite service stack. The service stack is 

installed in the bottom-most unit of the satellite structure. The service stack is comprised of (from 

top to bottom) the Battery Pack Printed Circuit Board (PCB), command and data handling board, 

Power Board, 2 Z-axis Torque Coil boards, radio mounting board, and various harnesses for each 

of these subsystems. A flexible circuit interfacing and magnetometer board, a Torque Coil board 

Figure 1: IlliniSat-2 Service Stack 
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and a gyroscope board are assembled behind each solar panel and plugged in to the Power Board. 

The total size of the service stack is 90 x 90 x 75mm excluding the structures, which is the size of 

0.75U satellite. A completed service stack is depicted in Figure 1. The orientation of the IlliniSat-

2 is defined in Figure 2. The long wall of the satellite is defined as the wall with one solar panel 

chain attached.  

 

Figure 2: IlliniSat-2 Orientation 

 



5 

 

2.2.1 Command and Data Handling (C&DH) 

 The Command and Data Handling system is the brain of the satellite. In terms of data 

management, the C&DH collects and processes information about all subsystems and payloads. In 

terms of attitude determination and control, the C&DH calculates the spacecraft’s attitude and 

carries out maneuvers to change the attitude. In terms of radio communication, The C&DH carries 

out commands sent from earth and prepares data for transmission to earth. The key parts of the 

system are the space flight computer, data storage units and flight software. Pictures of the C&DH 

system is shown in Figure 3. 

2.2.2 Power Generation and Distribution 

 The Power Generation and Distribution system, short for power system, is the power plant 

of the satellite. This system generates power from solar photovoltaic cells. It then regulates the 

solar-cell-generated power into a level acceptable to charge a lithium-ion battery pack and stores 

the energy into the battery pack. The power system further distributes the regulated battery power 

Figure 3: C&DH PCB Top (left) and Bottom (right) 
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into rest of the subsystems and payloads while monitors the current consumption of the power 

distributions. Routinely, the power distribution subsystem will calculate the current percentage of 

the battery pack and enters the satellite into different power modes suitable for the battery level.  

2.2.2.1 Power Generation - Solar Panel 

 

Figure 4: Constructed Solar Panel 

  

IlliniSat-2 generates power through the use of solar photovoltaic cells (often called solar 

cells). these cells are a class of electrical device that converts the energy of light into electricity by 

the photovoltaic effect. The solar cells are constructed together into a solar cell chain and mounted 

onto the satellite wall to form a solar panel. A picture of a complete solar panel is shown in Figure 

4. 
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2.2.2.2 Power Storage - Battery Pack 

IlliniSat-2 bus stores solar-generated energy into a lithium ion battery pack. Each of the 

batteries are assembled to include a Kapton heater for temperature regulation. The battery pack 

contains over-charge, under-charge and external-short protection to ensure the safe operation of 

the battery cells. The battery pack also maintains the balancing of cell’s State of Charge (SoC) to 

maximize the charge/discharge efficiency. Several digital measurement and control Integrated 

Circuits (ICs) are included in the battery pack to communicate with the Power Board. Pictures of 

the Battery Pack is shown in Figure 5. 

Figure 5: Assembled Battery Pack Top (left) and Bottom (right) 
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2.2.2.3 Power Regulation and Distribution - Power Board 

IlliniSat-2 bus regulates and distributes all the power through the Power Board. The Power 

Board regulates the solar power into battery power, then further regulate the battery power into 

3.3V power. The Power Board distributes the battery power and 3.3V power to the rest of the 

subsystems and monitors the current consumption on each of distribution line. 

On the Power Board, there is a microcontroller that runs software to control the initial 

power state of the satellite after deployment. The software communicates with C&DH’s for the 

purpose of health monitoring. It also answers C&DH’s commands to turn on/off subsystems and 

payloads. The software detects overcurrent fault situations on the subsystems and payloads. It 

routinely updates the battery’s state of charge then enter the satellite into different power states. 

The Power Board mates with C&DH to form part of the service stack. Pictures of the Power 

Board is shown in Figure 6. 

Figure 6: Power Board Top (left) and Bottom (right) 



9 

 

2.2.3 Attitude Determination and Control System (ADCS) 

 The Attitude Determination and Control System is the arms and legs of the satellite. The 

ADCS determines the satellite’s attitude or orientation and points the satellite towards the desired 

position for charging or scientific or ground communication purpose.  

2.2.3.1 Attitude Control - Torque Coil 

 

Figure 7: Torque Coil PCB 

 The Torque Coil controls the satellite’s attitude by generating a magnetic moment that 

interacts with earth’s magnetic field, creating a torque. The Torque Coil sets the current level and 

direction through the command of C&DH and passes that current into a coil to generate the 
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desired magnetic moment. The Torque Coils are included in the X, Y and Z directions for 3-axes 

attitude control. A picture of the Torque Coil is shown in Figure 7. 

2.2.3.2 Attitude Determination – Magnetometer 

 

Figure 8: Magnetometer PCB 

 The Magnetometer is part of the attitude determination system of the satellite. It measures 

the magnetic field strength in X, Y and Z directions. The Magnetometer passes the measured data 

on to the C&DH for the purpose of attitude determination. A picture of the Magnetometer is shown 

in Figure 8. While each magnetometer can measure all three axes, a standard Illinisat-2 bus has 

multiple of them for redundancy. 
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2.2.3.3 Attitude Determination – Gyroscope 

 

Figure 9: Gyroscope PCB 

The Gyroscope is part of the attitude determination system of the satellite. It contains an 

Inertial Measurement Unit (IMU) that measures the rotation rate of the satellite as well as 

acceleration in X, Y and Z axes. The Gyroscope passes the measured data on to the C&DH for 

the purpose of attitude determination. As with the magnetometer, redundant backups are flown. 

A picture of the gyroscope is shown in Figure 9. 

2.2.3.4 ADCS Interface - Flex Cable 

 

Figure 10: Flex Cable PCB 
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Figure 11: Flex Cable assembled with ADCS devices, and glued to the solar panel 

 The Flex Cable acts like an interconnect between the service stack and the ADCS system. 

Each Flex Cable connects a torque coil, a magnetometer and a gyroscope to distribute power from 

the power board and commands from C&DH. A picture of the Flex Cable is shown in Figure 10. 

 Besides having the purpose of interfacing ADCS devices. The Flex Cable is also in charge 

of delivering solar panel power to the power board and monitoring the health of satellite wall. In 

1.5U CubeSat (CubeSail)’s case, the Flex Cable has a more important role of regulating the solar 

voltage to a level acceptable by the solar charger.  

 The Flex Cable is glued to the backside of the solar panel along with the attached ADCS 

devices. Together, the assembly forms the final solar panel design. A picture of the backside of 

the assembled solar panel is shown in Figure 11. 
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2.2.4 Radio 

   

 The Radio subsystem is the mouth and ear of the satellite. The Radio subsystem is in charge 

of establishing communication between the earth ground station and the satellite. The ground 

station uplinks commands through the Radio subsystem to the C&DH. The C&DH performs the 

received commands and downlink the data through the Radio subsystem to the ground station. The 

three radios shown in Figure 12 are the radios used for different missions that flew with IlliniSat-

2 bus.  

 

2.3 Mission Descriptions 

 As Illinisat-2 is designed to support generic science with very little hardware change, it is 

important to understand the practical needs of the existing five missions, and how they influenced 

the requirements for each system. To that end, the following sections will talk about each mission 

and their scientific goals.  

Figure 12: Radios Selected for IlliniSat-2: From left to right, AstroDev Lithium Radio, 

GlobalStar EyeStar D-2 Radio, GOMSpace NanoCom AX100 Radio 
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2.3.1 LAICE  

The Lower Atmosphere/Ionosphere Coupling Experiment (LAICE) is the first Earth 

satellite to exclusively investigate the energy and momentum of waves produced by low-

atmosphere weather system. Pictures of assembled LAICE satellite is shown in Figure 13. LAICE 

is built into a 6U CubeSat, and be compliant with NASA Educational Launch of 

Nanosatellites(ELaNa) launch standards and procedures[3]. The LAICE CubeSat will be delivered 

to International Space Station and launched into a near circular orbit between 350 and 450 km, 

depending on International Space Station altitude at the time of release. The desired mission 

duration is approximately two years in order to provide adequate longitudinal and local time 

coverage over four different seasons. 

Figure 13: LAICE Pictures After Construction. 
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LAICE is a collaborated effort between University of Illinois and Virginia Tech. There are 

two primary science goals for the LAICE mission: 

1. Systematically observe gravity waves with large vertical wavelengths at lower F-region 

heights, and correlate on a global scale remotely-sensed wave-induced airglow perturbations in the 

upper mesosphere with in-situ measurements of ion and neutral density fluctuations at higher 

altitudes. 

2. Produce global maps of active gravity wave regions in the mid- and low-latitude 

ionosphere over multiple seasons at all local times, so that global patterns and climatological 

variations can be quantitatively compared to and correlated with terrestrial weather systems via 

ray-trace modeling.[4] 

LAICE satellite is required to carry three payloads: University of Illinois Photometer 

Payload, Virginia Tech Payloads(LIIB, LINAS, SNeuPI and RPA) and Cadet L-3 Radio. The 

Photometer Payload requires 2.7W power during active science operations. The Virginia Tech 

Payloads require 4.16W power during active science operations. The Cadet Radio requires 9W of 

power during transmit. Each payload require a dedicated communication with C&DH. 

The satellite size is 6U, 10 x 22.6 x 36.6cm.  

The expected delivery date for LAICE is November 1st, 2018.  
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2.3.2 CubeSail 

 CubeSail is a CubeSat mission to demonstrate in-space deployment of solar sail technology. 

Pictures fully assembled CubeSail satellite is shown in Figure 14. CubeSail is 3U in size. During 

its operation, it will separate into two 1.5U CubeSats with a 250-meter-long, 8-centimeter-wide 

solar ribbon deployed between them. The orientation of the 1.5U CubeSat at either end will be 

used to control the orientation of the sail and achieve “propellant-less” solar sail. CubeSail is a 

collaborated effort between University of Illinois and CUAerospace. CubeSail mission goals are 

successful sail deployment, attitude control and deorbit.  

 Each unit of CubeSail carries one science payload for solar sail deployment and a 320x240 

camera to record the event. The payload consumes 4W of power during its one-time deployment 

Figure 14: CubeSail Pictures. Shown left is the mated, fully constructed CubeSail satellite. 

Right is the satellite assembled into launcher's pod. 
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event. The camera consumes 0.2W during recording. The payload and camera both require their 

own dedicated UART channel for communication. 

The satellite size is 3U, 10 x 10 x 34.5cm.   

CubeSail was delivered to Rocket Lab on April 12th, 2018. The tentative launch date as of 

this publication is August 31st, 2018. 

2.3.3 SpaceICE 

 

Figure 15: SpaceICE CAD Model 

 Interface Convective Effects (SpaceICE) is a 3U CubeSat mission designed to investigate 

freeze-casting in the microgravity environment of Low Earth Orbit (LEO). A complete CAD 

model for SapceICE is shown in Figure 15. Freeze-casting is a directional solidification technique 

that is used to fabricate porous materials with anisotropic, aligned pore structures. The SpaceICE 

mission aims to improve terrestrial fabrication of these materials by better understanding the role 

of gravity during the solidification process.  

SpaceICE is a collaborated effort between University of Illinois and Northwestern 

University. There are two primary science goals for the SpaceICE mission: 
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1. Improve Earth-based processing by building a better fundamental understanding of 

processing/microstructure relationships in freeze-casting materials and producing benchmark data 

to improve modeling efforts of the solidification process; and 

2. Advance the freeze-casting technique as an in-situ resource utilization (ISRU) 

technology.[5] 

SpaceICE will carry one science payload and a vibration motor. Specification for those 

payloads are unknown as of now due to redesigns. 

The satellite size is 3U, 10 x 10 x 34.5cm.  

The expected delivery date as of this publication for SpaceICE is August 6th, 2018. 

2.3.4 SASSI^2 

 

Figure 16: SASSI^2 CAD Model 

 Student Aerothermal Spectrometer Satellite of Illinois and Indiana (SASSI^2) is a small 

satellite mission scheduled to be flown in 2018. This mission is being developed as a part of the 

NASA Science Mission Directorate’s (SMD) Undergraduate Student Instrument Program (USIP). 

A complete CAD model for SASSI^2 is shown in Figure 16. The goal of the mission is to 
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characterize the flow field and radiation generated by the diffuse bow shock formed during high-

speed flight through the upper atmosphere. Optical spectrographic measurements of the radiation 

will be taken to provide data for fundamental flow, radiation, and materials modelling, resulting 

in improved prediction of the aerothermodynamic environment encountered by bodies during 

atmospheric entry.[6] 

 SASSI^2 is required to carry three payloads: STS-VIS Spectrometer, STS-UV 

Spectrometer and Purdue Sensor Payload. The three payloads share the same power interface and 

data interface, but are required to provide one extra power channel and one extra data channel for 

redundancy purpose. The maximum power consumption of SASSI^2 payload is 1.38W. 

 The satellite size is 3U, 10 x 10 x 34.5cm.  

The expected delivery date as of this publication for SASSI^2 is August 15th, 2018.  

2.3.5 CAPSat 

Figure 17: CAPSat CAD Model 
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 The Cooling, Pointing, Annealing Satellite (CAPSat) is a 3U CubeSat under development 

by the University of Illinois as a part of the Undergraduate Student Instrument Program (USIP). A 

complete CAD model for CAPSat is shown in Figure 17. CAPSat is expected to operate with one 

year of lifetime. It encompasses three technology demonstrations, each advancing the technology 

readiness level of NASA roadmap technologies. The experiments are: strain-actuated deployable 

panels for improved pointing control and jitter reduction, an active thermal control system, and 

single-photon avalanche detectors (SPADs) to test methods of mitigating space radiation 

damage.[7] 

 CAPSat is required to carry three scientific payloads, namely the cooling, pointing and 

annealing payloads. Each payload will have its own dedicated power and data channel. The cooling 

payload consumes 6.505W of power during its active operation. The annealing payload consumes 

9.755W of power during its active operation. The pointing payload consumes 5W of power when 

it is active.  

 The satellite size is: 3U, 10 x 10 x 34.5cm.  

 The expected delivery date as of this publication for CAPSat is August 25th, 2018. 
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2.4 Electrical Master Requirements (for IlliniSat-2 Bus Design) 

1. IlliniSat-2 bus shall be 0.75 U in size, meaning 10 x 10 x 7.5cm. IlliniSat-2 bus shall be 

able to support CubeSat missions with different form factors, from size 1.5U to 6U. 

2. IlliniSat-2 bus shall be capable of providing power and communication interfaces to 

support up to three scientific payloads in accordance to Table 1. 

3. IlliniSat-2 bus shall provide connector interfaces that are physically resistant to 10 root 

mean square acceleration (gmrs) level of vibrational damage[8]. 

4. IlliniSat-2 bus shall provide a central computer that communicates with all the subsystems, 

collect data, control the satellite’s orientation, and control the radio to uplink and downlink 

data. 

5. IlliniSat-2 bus shall provide at least 4GB of storage space for science data, and 4GB of 

storage space for redundancy. 

6. IlliniSat-2 bus shall be capable of recharging the batteries on board the spacecraft using 

solar panels. 

Mission Payloads Power Channel Estimated Power Consumption(W) Communication Channel

UIUC Photometer 1 2.7 1

Virginia Tech 1 4.16 1

Cadet Radio 1 9 1

Solar Ribon Deployment 1 4 1

Camera 1 0.2 1

Science 1 N/A 1

Vibration Motor 1 N/A 0

STS-VIS 0.75

STS-UV 0.75

Purdue Sensor 1.38

Cooling 1 6.505 1

Annealing 1 9.755 1

Pointing 1 5 1

CAPSat

2(Redundancy) 2(Redundancy)

LAICE

CubeSail

SpaceICE

SASSI^2

Table 1: Science Payloads for Each Mission and Their Power and Communication Requirement 
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7. IlliniSat-2 bus shall be capable of protecting each Lithium Ion’s battery from over-

charge(4.25V), under-charge(2.5V), over-temperature(50C), under-temperature(10C) and 

external short conditions. 

8. IlliniSat-2 bus shall provide 14 total channels of power generation and distributions in 

accordance to Table 2. 

9. IlliniSat-2 bus shall detect fault conditions of subsystems and payloads. 

10. IlliniSat-2 bus shall include 3 switches that shut down the satellite when it is assembled in 

the P-POD. 

11. IlliniSat-2 bus shall provide a remove before flight interface to cut the power to the rest of 

the satellite system once activated while still allow the batteries to be charged.  

12. IlliniSat-2 bus shall provide externally-accessible debugging interfaces for its flight 

computer and power system.  

   

Channel Max Load Current(A)

3.3V_Flex_Cable 1

3.3V_C&DH 1.5

3.3V_Payload_1 1

3.3V_Payload_2 1

3.3V_Radio 1

3.3V_Payload_3 1

Battery_Pyro 3

Battery_Flex_Cable 2

Battery_C&DH 1

Battery_Payload_1 1.5

Battery_Payload_2 2

Battery_Radio 1.5

Battery_Payload_3 1

Battery_Payload_4 1.5

Table 2: IlliniSat-2 Power Channel Distribution Requirement Table 
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CHAPTER 3: POWER AND DATA INTERFACES 

3.1 Introduction 

 IlliniSat-2 design incorporates certain standard components such as harness connectors, 

mating connectors, and communication protocol transceiver ICs. The IlliniSat-2 has a 

standardized board stacking scheme called service stack, and a grounding scheme. This chapter 

will discuss the architecture of the satellite bus.  

3.2 DF-11 connector 

 

Figure 18: 6-pin DF-11 connector 

 DF-11 connectors are responsible data and power delivery from the service stack to the 

rest of the system. For data communication, the payloads and the radios connect to the C&DH 

board via right angled Hirose DF-11 connectors positioned along the cable trench. For power 

delivery, the battery, payloads and the radios connect to the Power Board via right angled Hirose 

DF-11 connectors positioned in the middle of the PCB facing the cable trench. Figure 18 shows a 

6-pin DF-11 connector. 

 DF-11 series connector was chosen as the sole harness connector for IlliniSat-2 for two 

reasons: Firstly DF-11 has multiple features that target safe mating of the harness to the connector. 
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DF-11 connectors incorporate a simple lock system that locks the mated connectors. DF-11 

connectors have ribs on 3 sides to indicate the correct insertion, and to prevent contact miss 

insertion as well as dissimilar contact insertion[9]. The second reason for choosing DF-11 is: they 

are space saving while still maintaining an acceptable current delivery rating. DF-11 connectors 

are double rows with 2mm pitch contact with a width of 5mm. Compared with standard 2.54mm 

pin header connectors, DF-11 saves 61% of space. Each pin on DF-11 is rated for 2A when the 

wire size is 22 to 26 AWG. While standard 2.54mm spaced pin headers have a current rating of 

3A on each pin. 

 The downside of DF-11 is that the outgassing of insulating material outgasses. The general 

requirement for materials outgassing is Recovered Mass Loss (RML)<1.0% and Collected Volatile 

Condensable Materials (CVCM) < 0.1 % as per ECSS-Q-70. DF-11’s insulating material is 

polyamide which is a water absorbing material. The Total Mass Loss (TML) for polyamide is often 

above 1%[10]. However, the water absorption is always reversible, and can be controlled by 

baking out the satellite before launch.  

All the PCBs in the IlliniSat-2 bus use male-pin through-hole DF-11connectors with gold-

plated pins. All the harnesses in the satellite use female-socket DF-11 mating connectors with gold 

plated crimps. Having gold-plated pin and crimps increases the lifetime of the connector. The 

usage of through-hole connectors on a PCB ensures structural rigidity.  
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3.3 Backbone connector 

 

Figure 19: Backbone connector 

  

The backbone connector provides standardized IlliniSat-2 interface between the Power 

Board and C&DH system. Figure 19 shows a picture of the backbone connector. On the C&DH 

board, the QTE-020-02-L-D-A connector sticks off the bottom of the carrier board and mates with 

the Power Board’s QSE-020-02-L-D-A connector. The total mating height is 8mm which ensures 

the compactness of the service stack. The backbone connector passes along 3.3V and battery power, 

as well as 3 UART signal lines on the side pins. The ground connection is provided through the 

middle pin.  

The backbone connector has 22 un-used pins, which are allocated for future expansion of 

the C&DH and Power Board. A mating connector QSE-020-02-L-D-A is also soldered on the top 

of the C&DH board to ensure versatility for future missions. This expansion feature is currently 

not in use for any of the missions.  
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3.4 Data communications 

 

Figure 20: IlliniSat-2 Subsystem Communication Method 

 The flight computer communicates with the rest of the subsystems through 2-wire UART 

protocol. UART signals can be transferred with four choices of communication standards, TTL, 

RS232, RS422 and RS485, all of which are used in the IlliniSat-2 design. Among those four 

standards, only TTL is used for short range communication and involves no transceiver ICs. The 

other three are used for long distance communication and require dedicated transceiver ICs. Table 

3 shows a rough comparison between RS232, RS422 and RS485 communication methods. Figure 

20 shows the design of IlliniSat-2 communication system. 
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3.4.1 Transistor-Transistor Level (TTL) 

 TTL is used on IlliniSat-2 for short communication between the flight computer and Power 

Board and between flight computer’s debug port and the host computer. TTL performs direct 

communication between two devices at logic voltage level, which is 3.3V or 5V. The low 

communication voltage level means that the TTL communication distance is short, an estimation 

is that at maximum communication speed, 115200 bps. The data can be reliably transferred when 

the cable is less than half a meter. The voltage level for IlliniSat-2 TTL bus is 3.3V. Any voltage 

above 3.3V through the TTL channel could cause malfunction of the flight computer. TTL is not 

the most reliable standard for communication. It will likely be replaced by RS232 in the future. 

3.4.2 RS232 

 RS232 is used to communicate between the flight computer and radio. RS232 is the oldest 

and best-known standard for communication. RS232 standard has been commonly used in 

computer serial ports. It performs communication between two devices at voltages higher than 

logic level voltages. By the RS232 standard a logic high ('1') is represented by a negative voltage 

– anywhere from -3 to -25V – while a logic low ('0') transmits a positive voltage that can be 

anywhere from +3 to +25V. The high voltage communication voltage level makes the signal less 

susceptible to noise, interference, and degradation[11]. This means that an RS232 signal can 

generally travel longer physical distances than their TTL counterparts, while still providing a 

reliable data transmission. RS232 also offers isolation between the master and slaves to protect 

them from overvoltage damage. For IlliniSat-2, the RS232 bus operates at 3.3V. The transceiver 

used for RS232 in IlliniSat-2 bus is Texas Instrument’s MAX-232. 
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3.4.3 RS422 

 RS422 is used to communicate between the flight computer and all the payloads. RS422 is 

a balanced, differential serial standard that further reduces the signal noise and reliable 

communication distance, with the communication speed at 115200 bps. RS422 requires transceiver 

ICs between master and slave. ADM3488 is used throughout the spacecraft for IlliniSat-2 RS422 

bus. 

3.4.4 RS485 

 RS485 is used to communicate between the flight computer and the attitude determination 

and control system. RS485 is a single-master-multi-slave protocol with balanced differential serial 

output. It supports up to 32 slaves with a single master. In the extreme case of 6U satellite like 

LAICE, where there are 17 ADCS slaves on board. RS485 is the perfect fit to handle the 

communication. RS485 operates by toggling the DE and RE pins to determine whether the 

transceiver is in transmit mode or receive mode. When the DE and RE pins are both high, the 

transceiver is in transmit mode; when the DE and RE pins are both low, the transceiver is in receive 

mode. During the communication, all the devices should be in receive mode at idle state and toggle 

to the transmit mode if there is data to transmit. All the devices need to have their own individual 

address and command addresses so that no two devices will share a single command. RS485 

requires transceiver ICs between master and slave. LTC2850 is used throughout the spacecraft for 

IlliniSat-2 RS485 bus. 
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Table 3:RS232, RS423, RS422 and RS485 Comparison[12] 

3.5 Grounding Scheme 

 Correct grounding is important for the correct operation of a spacecraft. Correct grounding 

will reduce ground loops in the spacecraft. Ground loops can be troublesome because they can 

both radiate and receive magnetic field noise. AC magnetic field noise can couple into and disturb 

other circuits. DC magnetic fields can disturb onboard dc magnetometers. The key to minimizing 

the effects of ground loops is to minimize the enclosed area around which the current flows. 

Correct grounding can also reduce the chance of mission failures. NASA has reported failure cases 

of their spacecrafts due to high voltage rails accidentally touching the chassis and the direct 

grounding methods caused high current spikes in the spacecraft system, resulting in a 100% 

mission loss. 

According to NASA-HDBK-4001 reference handbook for grounding, there are two 

preferred strategies when it comes to grounding a spacecraft: single point “star” ground and 

multiple point ground. In both cases, the ground is a reference to the chassis. Single point star 
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ground ensures that there is one and only one DC ground reference path for each assembly; 

however, if the wires between the chassis and subsystems are too long or the frequency is too high, 

significant inductance can be induced through the wires. The system may no longer have a zero-

potential reference with respect to chassis. Multiple point ground strategy has each circuit common 

grounded directly to the chassis. Multiple point ground is typical for radio frequency subsystems 

but shall not be used when signal is lower than 1MHz frequency[13]. 

IlliniSat-2’s grounding scheme combines single point grounding and multiple point 

grounding. The radio is grounded at multiple points to the chassis to achieve multiple point 

grounding. The rest of the system is treated as a unit, with all the ground tied to the Power Board 

in a star fashion. Power Board has a single direct ground connection to chassis through one of its 

mount holes to achieve single point star ground. IlliniSat-2’s grounding complies with NASA’s 

standard for small/simple spacecraft in Table II[13]. A complete grounding diagram in the example 

of LAICE is shown in Figure 21. 

 

Figure 21: IlliniSat-2 Grounding Scheme 
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CHAPTER 4: COMMAND AND DATA HANDLING SYSTEM 

4.1 Introduction 

The Command and Data Handling (C&DH) system in a spacecraft is responsible for data 

gathering and commanding for the rest of the system. The Command and Data Handling system 

has several responsibilities: query the power system to gather battery health data of the satellite; 

query data from the Attitude Determination System to determine satellite’s attitude; command the 

Attitude Control System to control satellite’s attitude; query the Flex Cable interconnects to gather 

temperature data; communicate with the radios for beacon, handshake with the ground station and 

transfer the data; and lastly, communicate with the scientific payloads to perform science 

experiments and gather the results.  

4.2 Requirements 

1. The Command and Data Handling system shall correctly boot up the Linux kernel, and 

shall not have accidental re-boot during the mission operation.  

2. The Command and Data Handling system shall provide a second method for booting up 

the Linux system when the first boot method malfunctions.  

3. The Command and Data Handling system shall have an on-board backup battery system to 

provide power to the Real Time Clock in order to keep the timer going, even when the 

system is off. The backup battery shall include protection circuitry to prevent damage to 

the battery.  

4. The Command and Data Handling system shall have 7 channels of communication. Among 

these 7 channels is a TTL debug interface to print out kernel messages. Another is a TTL 

interface between C&DH and the Power Board. There is also a RS485 interface between 
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C&DH and ADCS system. Lastly there is a RS422 interface between C&DH and the radio 

system. The remaining 3 communication interfaces can be chosen between RS232 and 

RS422 for the payload. Having 7 channels of communication ensures expandability of the 

IlliniSat-2 bus to being able to carry 3 science payloads.  

5. The Command and Data Handling system shall provide at least 4GB of storage for science 

and housing data, and another 4GB of storage space for data backup. 

6. The Command and Data Handling PCB shall have the dimension of 90 x 90mm with a 

maximum height of 12 mm once the daughter card is mated with the carrier board. 

7. The Command and Data Handling system shall comply with the Illinisat-2 grounding 

scheme. 

8. The Command and Data Handling system shall use DF-11 connectors as per the data 

interface design between subsystems and payloads. 

9. The Command and Data Handling system shall use backbone connector to interface with 

the power board. 

4.3 C&DH Revision History 

The first generation of C&DH was designed for ION-1 satellite. The system was an off the 

shelf Small Intelligent Datalogger (SID) system developed by Tether Application. The SID system 

is radiation hardened for LEO operation with latch-up protection circuitry, watchdog timer, 

thermal and EMI repression.  

After University of Illinois acquired funding for IlliiSat-2 bus through LAICE and 

CubeSail satellite projects, it was determined that we should start making our own C&DH circuitry 

for cheaper manufacture pricing and better customer support. The second generation of C&DH is 

designed based around embedded Linux operating system. Compared with Eclipse based 
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embedded microcontroller software development environment, embedded Linux offers more 

complete device driver support, a wide variety of toolchains, packages and libraries to ease the 

process of development. The first attempt to design the C&DH was around a Texas Instrument 

OMAP microprocessor. The C&DH has a 400MHz processor, 64MB of 166MHz SRAM, 2 32MB 

of external SPI Flash, and 4 UART output ports for communication with the rest of the system. 

The design for the C&DH circuit was offloaded to an independent contractor, the circuit was 

designed, underwent the final design review and final mass production of 10 units. However, 

because of a lack prototyping and looseness of the design review, the final C&DH units have the 

RAM’s connection flipped and mirrored, causing un-fixable failure of the second revision of 

C&DH. The lesson learned from the costing experience was that prototyping a circuit before mass 

production is necessary to catch all potential design production errors.  

After the failure of designing our own in-house C&DH board, the upper management 

realized how expensive it is to prototype and manufacture a Linux system and how easy it is for a 

designer to make a mistake on a complex high-layer count Linux PCB. The focus was shifted to 

avoid designing a Linux computer. Instead, the designer should choose an already-existing 

professionally-designed-and-tested off-the-shelf Linux daughter module, and design a carrier PCB 

around the daughter module to extend the functionalities to fit the needs of the IlliniSat-2 system. 

Through researching on different websites and comparing different Linux modules, Critical Link’s 

MitySOM-335x system on module card was chosen as the daughter cad for C&DH. MitySOM-

335x is based on Texas Instrument’s OMAP2 series AM3358 microprocessor. AM3358 is the 

series of processor used in the well-known BeagleBone series of hobbyist Linux modules, which 

has a good amount of design and debugging support around the internet. The system-on-module 

also has well-supported documentations on carrier board design and custom Linux Kernel 
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modifications, which ease the engineer’s design process. The third generation of C&DH’s design 

work was carried out by Fall 2014 ECE senior design team. The carrier board offers power-

sequencing for the daughter card, two 4GB NAND storage expansion and 6 UART expansions for 

communication with the C&DH. The third revision booted up the SOM daughter card. The 

students claimed to have verified the UART communications through loop testing, but it was later  

found  that their test code was buggy and couldn’t verify the UART communication. SPI to UART 

expansion was also tested to be non-functioning. Upon further testing, the NAND flash along with 

the NAND flash controller also couldn’t be recognized by Linux Kernel. Revision 3.1 was later 

designed by ECE student ZheJi to address all the issues, and the effort did not result in a fully 

functioning C&DH.  

Due to the failure of NAND flash and SPI-to-UART controller, the decision was made to 

shy away from externally controlled NAND flash and to use ICs close to SD card that is NAND 

but with internal management circuitry instead. SD cards are not suitable for space due to the shell 

and holder material outgassing. Through research, embedded Multimedia Card, eMMC was found 

to be the alternative option to an SD card. Revision four was designed to replace the NAND with 

eMMC and SPI-to-UART with USB-to-UART. Revision 4 was a success after kernel 

modifications. It was used for CubeSail satellite. A more updated Revision 4.1 was later produced 

to address mechanical fitting error, as well as high-speed signal integrity issues. Revision 4.1 was 

used for LAICE, SpaceICE, CAPSat and SASA missions. Revision 4 design is what will be 

discussed in the next sections. The PCB layout for C&DH Revision 2 to Revision 4 are attached 

in Appendix B.  
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4.4 C&DH Hardware Function Overview  

 

Figure 22: C&DH Block Diagram 

 The Command and Data Handling system consists of system-on-module daughter card 

with the core embedded Linux circuitry; a boot-sequencing circuitry to correctly power sequence 

the daughter card with rest of the peripherals; 3 eMMCs to add in secondary boot, science and 

housing data collection and data backup; USB to UART driver to add an extra UART line, bringing 

to a total of 6 UART communication line for communication with the rest of the satellite; and an 

external coin cell battery to supply power to keep the timer alive. Figure 22 shows a complete 
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block diagram of the C&DH system. The C&DH circuit fits in a 90 x 90 mm PCB with 7.7mm 

height once the daughter card is plugged into the spacecraft which complies with requirement six.  

 C&DH PCB carries four DF-11 connectors that are used to communicate with one radio 

and three payloads. The PCB also contains a backbone connector. The backbone connector mates 

with the power board to receive power and distribute commands to power board, ADCS and debug 

console. This setup is shown in Figure 23 meets requirement eight. 

 To satisfy requirement nine in terms of grounding, the C&DH PCB offers direct connection 

to the Power Board’s ground through the middle pin of the backbone connector. A 3MOhm resistor 

is connected between chassis and C&DH’s ground for the four mounting holes of CNDH. The 

grounding scheme is shown in Figure 23. 

Figure 23: C&DH PCB Design 
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4.5 Hardware Description 

4.5.1 System-on-Module Daughter Card 

 

Figure 24: MitySOM-335x Card 

The System-on-Module card is the core of the C&DH system. The SOM is a board-level 

circuit that integrates a full embedded Linux circuitry. The SOM was designed on a 38.1 x 67.6mm 

PCB with the shape of a DDR3 RAM module. Through a 204-pin SODIMM connector, the SOM 

is mated with the carrier board for system booting, peripheral expansion and kernel debugging. 

Due to the cost and complexity of designing and fully testing a high-speed embedded system, off-

the-shelf MitySOM-335x series SOM cards from Critical Link were chosen as the flight daughter 

card. A picture of the daughter card is shown in Figure 24. MitySOM-335x is based on 1GHz 32-

bit Texas Instrument AM335x family of embedded Linux Microprocessor, with 1GB of DDR3 

RAM and 512MB of NAND storage. MitySOM-335x SOM card offers expansions of 6 channels 

of UARTs, 2 USBs and 3 MMC/SD/SDIO storage expansion channels[14]. The Linux kernel can 

be debugged through UART0 line, where all the boot message can be printed out to an external 

Linux system running Minicom or Screen. 
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4.5.2 Carrier Board 

The MitySom-335x SOM Card requires a carrier board to supply power and expand the 

peripherals per design needs. The carrier board designed includes a boot-up sequence to correctly 

provide power to the SOM card and boot-option select to provide two boot methods. The carrier 

board carries a coin cell battery as a backup supply to the Real Time Clock (RTC). The carrier 

board includes a 8GB embedded multi-media card (eMMC) to hole secondary Linux Image file 

and two 4GB eMMCs for science data storage with redundancy. Lastly, the carrier provides seven 

channels of communications to the rest of the subsystems. A 204-pin SODIMM connector is used 

to provide electrical connections between the SOM card and the carrier board and is shown in 

Figure 23. 

4.5.2.1 Boot-up Sequence 

Based on AM335x’s datasheet, it is recommended that the Linux Computer be powered-

up first before powering the rest of the peripheral circuitry[15]. The Linux core voltage line is a 

big inductive circuit that usually consumes a lot of current, which can cause ripples on the power 

supply line when it is being powered up. By waiting for the core to power up first, then power up 

the rest of the circuit, we can get cleaner power line during the boot up and avoid potential 

resonation of the loads. There are two power sequencings on the C&DH board, SOM Power 

Management Integrated Circuit (PMIC) power sequencing and carrier board power sequencing. 

The SOM PMIC sequencing is implemented on the SOM. The PMIC sequences the power supplies 

for the Linux to boot up the processor. The last powerlines in the SOM powering sequence will be 

3.3V out. Once the power sequencing is complete on the SOM side, the carrier board will get the 

indication from the 3.3V output that the AM335x is correctly powered, then the carrier board will 

power on the rest of the peripherals. 
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The boot-up sequence circuit on the carrier board consists of a P-Channel Switch and an 

inverter and is shown in Figure 25. The inverter is needed because the P-Channel switch is low 

enable. When the 3V3_OUT from the SOM is at 3.3V indicating that the Linux core is correctly 

booted up, the inverter will output 0V, which enables the P-channel switch and turns on rest of the 

circuit on the carrier board. MAX892L P-Channel Switch[16] is chosen for its low on-resistance 

and thermal shutdown to prevent overcurrent situation. The correct boot sequence result is attached 

in Figure 26. The design of boot sequence partially satisfies requirement one.  

Figure 26: C&DH Boot-up Sequence 

Figure 25: C&DH Carrier Board Boot-up Sequencer Circuit 
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4.5.2.2 Boot Option 

Linux is capable of booting from different peripherals of different storage devices, namely: 

NAND, SPI, USB, UART, SD and Ethernet[17]. The sysboot (mapped to LCD_DATA) pins [15:0] 

configure the boot order by being pulled to logic high or low with 10K Ohm resistor.  

To meet the requirement of having two ways of booting the C&DH as a fail-safe measure 

towards radiation damage, The IlliniSat-2 C&DH’s LCD_DATA [11:0] is configured to 

0x000000010011 to have a boot sequence of NAND->NANDI2C->MMC0->UART0, shown in 

Figure 27. Out of the four boot methods, only the NAND and MMC0 boot methods are 

implemented. As a result, during the boot process, C&DH will look for boot files in NAND first. 

If NAND boot fails, C&DH will look for boot files in MMC0. The boot order is also implemented 

in the uboot’s uenvironment.txt file. The design for the boot option satisfies requirement two. 

4.5.2.3 RTC Battery 

Correct timing is important for a spacecraft, especially when the central computer is Linux-

based. For IlliniSat-2, Linux scheduler daemon was timing based. If the time of the satellite is 

incorrect, the scheduled tasks will be run at the wrong time. For example, when running the attitude 

determination and Control System at incorrect kernel time, the satellite might issue a re-orientation 

at the wrong time, causing the satellite to rotate when it is not desired. When running the 

Figure 27: C&DH Boot Option Configuration 
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communication system at the wrong time, passes through the ground station will be scheduled at 

the wrong time. The C&DH system’s power is controlled by the Power Board. In the case that the 

power is cut out of C&DH from the Power Board, the SOM module will not be getting power and 

the Real Time Clock timer will be reset to the default value. To prevent the clock from being reset 

and satisfies requirement three, C&DH carrier board includes a non-rechargeable Lithium Ion coin 

cell battery feeding into the VBACKUP pin to keep the timer IC alive even when the power is cut 

off. The protection circuit for the RTC battery is a diode in forward-biased configuration to avoid 

reverse current going into the battery, and a 4.7K Ohm resistor in series to limit the current.   

Based on the datasheet of MitySOM-335x, when the PMIC RTC is active, it consumes 

10.2uA. By the recommendation of MitySOM-335x’s design guide, the RTC battery chosen is 

Panasonic BR1225 coin cell battery with 48mAh capacity. By calculation, the RTC battery can 

operate for 4706 hours, the equivalent of 196 days. The 196 days of RTC operation time will 

account for the off time of the satellite from delivery to launch; for certain missions, from delivery 

to International Space Station to deployment; as well as low power stage C&DH is shutdown 

during satellite operation.  

It is recommended to replace the coin cell battery during final assembly so that the 

spacecraft will be delivered to the launcher with the battery in a full state of charge. 

4.5.2.4 EMMC 

EMMC is a NAND based memory storage device. Unlike NAND memory, which needs 

hardware or software controller for ease of read/write/formatting/mounting, bit-flip and bad block 

handling[18]. EMMC memory has internal controller circuit integrated with the NAND memory 

cells to offer reliable storage expansion for the daughter card. The eMMCs chosen for C&DH 

carrier board is Micron MTFC series[19]. The MTFC series has low standby current at 100uA, 
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which offers defect and error management and data-loss through power-loss prevention, making 

the chip ideal for satellite operation.  

The C&DH carrier board carries 3 eMMC ICs. For C&DH REV C, eMMC0 has 2GB of 

storage that will solely be used as a second boot method, eMMC1 has 8GB of storage for science 

and house-keeping data, eMMC2 has 8GB of storage and is used as a backup for the science and 

house-keeping data. For C&DH REV D, due to a lack of available eMMC IC, the eMMC0 slot is 

assembled with 8GB EMMC. The eMMC1 and eMMC2 are assembled with 4GB EMMC. The 

eMMC0 will have 2GB of boot space, 3GB of science plus house-keeping data space and 3GB of 

backup space. eMMC1 will storage 4 GB of science and house-keeping data, eMMC2 will be the 

backup storage. This design satisfies requirement five. 

EMMCs were chosen as the storage expansion because they are closely related to the 

architecture of SD cards. They are relatively easy to implement since there is no need for an 

additional NAND controller. To implement a NAND based system, the designer needs to route the 

16 data pins, 8 command pins, 6 indication pins as well as the corresponding NAND controller’s 

data and command pins. To implement an eMMC based system, all the designer needs to route are 

the data, command and clock line. However, there are downsides of using eMMCs: the 

manufacturability of the PCB. The Ball Pitch between each eMMC Ball pins is 0.5mm. The 

diameter of each ball pad is 0.3mm, which leaves 0.2mm space for routing traces and 0.4mm space 

for routing vias. The standard PCB manufacturing capability is 6mil trace width, 6mil clearance 

between copper, 12mil via hole size and 12mil via plating. For the eMMC section of the C&DH 

design, trace width is 6mil, via hole size is 5mil with 5mil of plating, and the clearance is 3mil. 

The small via size, the small trace size and clearance, together, brought signal integrity issues on 

the eMMC data trace, as well as increased manufacturing cost.   
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4.5.2.5 Data Communication 

 
Channel Protocol Functionality 

UART0 TTY Debug 

UART1 RS422 Communication to Payload 1 

UART2 RS232 Communication to Radio 

UART3 RS485 Communication to ADCS 

UART4 TTY Communication to Power Board 

UART5 RS422 Communication to Payload 2 

USB0 RS422 Communication to Payload 3 

Table 4: C&DH UART Channel Assignment 

The requirement states that the C&DH needs 6 UART channels to communicate with rest 

of the subsystems on the satellite. MitySOM335x supports 6 independent UART and 2 USB 

communication channels, with the UART0 being the debug port to print out kernel messages. The 

final design of the communication channels is shown in Table 4, with all 6 UARTs and 1 USB 

port used. UART0 goes through Power Board into the debug header for kernel debugging. UART1 

and UART5 goes through RS422 transceivers for payload RS422 communication. UART2 is 

RS232 communication for the radio. UART3 is RS485 bus for the single-master-multi-slave bus 

of ADCS. UART4 is TTY communication between C&DH and Power Board’s MSP430. USB0 

goes through a USB to UART converter, then RS422 transceiver for payload communication. The 

USB to UART expansion requires the corresponding USB1_VBUS pin on the SOM which needs 

to be powered up with a 5V. As a result, a buck regulator was added to convert the battery voltage 

to 5V to power up the USB1 line. This design satisfies the requirement five for the subsystem and 

payload communication interfaces.  
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4.6 Kernel Driver Modification 

During the testing of the C&DH PCB, several modifications were implemented in the 

Linux kernel to add in support for the carrier board and enable desire peripherals:  

1. To satisfy requirement one, the Linux kernel is upgraded from 3.1 to 3.2 for 512MB+ 

NAND support. The Linux kernel version 3.1 only supports up to 256MB of NAND 

for UBI filesystem. When the NAND size is bigger than 256MB, kernel 3.1 will fail to 

detect the NAND and choose the correct partition table. The issue is addressed in kernel 

version 3.2.  

2. To satisfy requirement one, the baseboard-mityarm335x-laice.c and mux33xx.c for 

C&DH is modified. The mux33xx.c file is a pin-mux file for C&DH that lists the 

functionalities of each BGA pin. In the baseboard file, the designer will choose the 

functionality of each pin based on the carrier board design. In the baseboard file, two 

extra MMC pin-mux selections were added along with initialization, several UART 

pin-mux were added, and the LCD display was disabled to lower the current draw. The 

files can be found in /arch/arm/mach-Omap2/.  

3. To satisfy requirement four, the FT230x USB to UART driver support was added to 

the Linux kernel. Linux 3.2 kernel does not support FT230x series USB to UART 

transceiver, which results in the kernel not recognizing the FT230 transceiver. The 

driver was manually implemented in ftdi_sio.c and ftdi_sio_ids.h in /drivers/usb/serial/, 

and enabled in menuconfig.  

4. To satisfy requirement four, RS485 driver was further modified to include delay timing. 

During the ADCS software testing, it was noted that the RS485 bus’s enable line was 

toggled right after the command was sent, which caused the RS485 communication 
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line to be locked up. Changing the rts_delay_before and rts_delay_after variable in the 

RS485 ioctl struct during initialization had zero effect on the enable line delay time. 

Upon further investigation, we noticed that the RS485 enabled a delay that was never 

implemented in MitySOM Linux 3.2 kernel. The delay implementation was then added 

to /drivers/tty/serial/omap-serial.c.  

5. The eMMCs on the carrier board has signal integrity issue from impedance 

mismatching. To address the signal integrity issue and satisfy requirement five, the 

communication clock speed is lowered in /drivers/mmc/core/mmc.c from 50MHz to 

20MHz. For C&DH Rev D, the eMMCs are of higher revision, which didn’t fall 

through the Linux revision check. The revision check in mmc.c is also by-passed to 

allow the newer eMMCs to be recognized.  

4.7 C&DH Boot Log 

 The Appendix A showed a complete boot log of the CNDH mother board. The boot log 

demonstrates that the CNDH is capable of correctly loading its 3.2 Linux Kernel from the 512MB 

NAND Flash which meets the first requirement of successful booting. The boot log also 

demonstrates the correction creation of UART0 to UART6 channels and USB1 channel, partially 

fulfilling the fourth requirement about providing sufficient communication channels. Finally, the 

boot log showed the detection and creation of the 3 eMMC devices with the correct version number 

and storage size, fulfilling requirement five. 

4.8 Remaining Issues and Suggestion for Next Revision 

 There are certain remaining issues with the current C&DH Carrier Board PCB design. The 

issues are listed below and multiple recommendations are made to improve the C&DH carrier 

board design for the next revision.  
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The first issue is the signal integrity issue with the eMMC high speed traces. The eMMC 

data, command and clock traces can potentially run at 50MHz speed. In Rev C, impedance 

mismatch, trace length mismatch, and close trace coupling caused signal integrity issues which 

limited reliable communication speed to 10MHz. Rev D re-organized the eMMC traces to avoid 

close trace coupling and trace length mismatch, yet the eMMCs still cannot reliably operate at 

50MHz maximum communication speed. In both revisions, the communication errors occur at 

MMC0. For the future revision, it is beneficial to look into a way to route the eMMCs through 

unused pin instead of fanning out the pins through tiny vias which are prone to signal coupling. If 

possible, the future designer should look into space-safe SD card holder and SD card with low 

outgassing property, conformal coat and epoxy the SD card slots to prevent the SD card from 

ejecting during vibration.  

The second issue is the daughter card malfunctions and burns out when testing the fully-

integrated satellite. During service stack subsystem modular testing using the standard Power 

Board, C&DH and EGSE setup, damage to the daughter card was never observed. The SOM could 

always boot up and print out messages through the debug UART channel.  However, throughout 

the final integration of LAICE CubeSat and CubeSail CubeSat, the daughter card was permanently 

damaged 4 times. All 4 times were under correct testing setup. The tester removed the Remove-

Before-Flight tag to boot up C&DH, the Linux processor got hot, beeped and refused to show any 

boot message. The damages were permanent and the only course of action was to replace the 

daughter card. Upon investigation, the root cause was found to be that the design guideline were 

not followed correctly. It is specified in the design guide that all external peripherals should be 

powered up after the Linux core is powered up, hence the boot sequence described in the previous 

section[26]. The UART0 debug line has an USB to UART module for communication with the 
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host Linux computer. Ideally, when the C&DH is powered down, all the pins going into the C&DH 

should be pull to GND level. But in this case, a powered-up idle UART line will have its RX and 

TX lines raised high. As a result, the C&DH will have two 3.3V signals going into its GPIO pins 

when it is not powered off. Those GPIO pins are non-fail-safe pins that can only receive signals 

from -0.3V ~ 0.5V when the power is off. Measurements were taken on the 3V3 power line when 

the C&DH is off and UART0 on. A noisy signal in the power line with lots of ripples was observed, 

shown in Figure 28. It is believed that the ripple could potentially cause resonation on the SOM 

card and cause irreversible damage. The current solution to the problem was to use RS232 

transceivers in the UART0 line, and only have the RS232 be powered up when the power 

sequencing indicates that the SOM is powered up. The fix involves soldering a 3V3 line from the 

output of the power sequencing P-FET to the backbone connector, then guide that 3V3 line to the 

debug header on the Power Board into EGSE’s RS232 line. For the future revision, the RS232 

circuit should be added on to the carrier board with correct power sequencing.  

The third issue is a lack of method to debug C&DH user software. To be able to use 

gdbserver to debug C&DH software, one extra communication line is needed. The current C&DH 
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carrier board design does not have extra UART line for debugging. It is recommended that the 

next revision should incorporated another USB to UART converter on the USB0 line for the sake 

of debugging. 

The next issue is the slow software uploading speed. The C&DH software are uploaded 

through UART0 debug line which has the upload speed to 115200bit-per-second. The uploading 

is a slow process and a normal 4MB software takes around 5 mins to upload. For the future revision, 

it is advised to enabled ethernet support on the carrier board so that the programmers can upload 

the code through ethernet which are much faster.  

The last issue is the RTC battery life time. Currently the RTC battery can only support 196 

days of backup power. If a CubeSat were to sit on the bench for longer than 196 days, the RTC 

battery will have to be replaced before flight. A rechargeable coin cell battery with charging 

circuitry should be implemented for the next generation of C&DH. The coin cell battery should be 

able to be recharged off the main battery, thus providing longer satellite shelf life.  

4.9 Summary of Contributions 

 The C&DH design fulfilled all the requirements. The carrier board is able to successfully 

boot the daughter card with Linux 3.2 Kernel. All the required UART and USB channels are 

recognized and created. All three eMMCs are correctly detected and communicated, providing a 

method of second boot through eMMC0. An RTC battery is chosen to supply power to Linux 

Clock Driver when the main power is turned off as a method to keep the correct timing. Lastly, 

the C&DH design fit the mechanical requirement. It is able to mate with the power board through 

the backbone connector and fit inside the satellite service stack, as shown in service stack picture 

in Figure 1. 
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CHAPTER 5: POWER GENERATION AND DISTRIBUTION SYSTEM 

5.1 Introduction 

The Power Generation and Distribution System, is responsible for the generation, storage, 

distribution and monitoring of electrical power. The IlliniSat-2 Power System generates electrical 

power by converting sunlight into electrical current through solar panels. By using technology 

called Maximum Power Point Tracking (MPPT), the system can regulate the raw solar electrical 

power to a level suitable for the satellite’s electrical system. The excess electrical power will be 

stored in a battery pack consisted of four 18650 Lithium Ion batteries. The raw battery power will 

be further regulated and then distributed through Hot-Swap switches controlled by a central 

microcontroller MSP430.  The overview of the power system is shown in Figure 29. In this chapter, 

the power system is broken into 3 subsystems: Solar Panel subsystem for power generation, 

Battery Pack subsystem for power storage, and Power Board subsystem for power regulation, 

distribution and monitoring.  

Figure 29: IlliniSat-2 power System Overview 
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5.2 Requirements 

1. The Power Generation and Distribution system shall generate enough power from the 

solar panel to operate the payloads during the mission operation time.  

2. The Power Generation and Distribution system shall be able to charge the batteries with 

different length of solar array from size 1.5U to 6U. 

3. The Power Generation and Distribution system shall comply with Nanoracks’ NR-

SRD-139 document regarding battery safety[22].  

4. The Power Generation and Distribution system shall disconnect power from the 

satellite upon the insertion into a Remove Before Flight (RBF) connector or pressing 

of the switches on the bottom of the satellite.  

5. The Power Generation and Distribution system shall initiate a 50min countdown upon 

the release of foot switches. 

6. The Power Generation and Distribution system shall communicate with C&DH. 

7. The Power Generation and Distribution system shall monitor the batteries’ state of 

charge and enter satellite into corresponding power state. 

8. The Power Generation and Distribution system shall distribute power through battery 

and 3.3V lines. 

9. The Power Generation and Distribution system shall have control over the distribution 

of power to the rest of the subsystems. 

10. The Power Generation and Distribution system shall comply with the Illinisat-2 

grounding scheme. 

11. The Power Generation and Distribution system shall use DF-11 connectors as per the 

power and data interface design. 
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5.3 Power Generation – Solar Panel 

5.3.1 Introduction 

IlliniSat-2 bus generates power through the use of solar cells. Solar cells were chosen 

because of their relatively small size, easy assembly, relatively high efficiency and long operation 

life time. The Solar cells are assembled in series to form a higher voltage solar cell chain; the solar 

cell chain is attached to one side of the aluminum radiation shield to form the solar panel.  

5.3.2 Requirements 

1. The Power Generation system shall generate enough power to operate the payloads 

during the mission operation time.  

2. The Power Generation system shall adapt to different lengths of solar array from size 

1.5U to 6U. 

3. The Power Generation system shall protect the solar panels from reverse-current 

situation. 

4. The Solar Panel shall still be functioning even with the presence of a broken cell. 

5.3.3 Design  

 

Table 5: Average Power Generation and Allowed Consumption Based on Spacecraft Size 

Depending on the size of the spacecraft, the solar cell count for each will change. Table 5 

includes the averaged power generation of the solar panel depending on the size of the satellite. 

Table 5 is the verification of the first requirement. 

Configuration 

Avg Bus Power  

Generated (W)(W) 
Avg Bus Power  

Required (W) (W) 

Avg Payload  

Power Allowed (W) 

(W) 

1.5U 2.85 1.5 1.35 

2U 3.8 2 1.8 

3U 6.65 2 4.65 

6U 9.3  2.5 6.8 
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The IlliniSat-2 bus supports solar panels on four sides of its wall, up to six panels in total. 

The 6U CubeSat has two panels on the wide side of the long walls, bringing the total panel count 

to six. The 6U CubeSat is longer than a 3U CubeSat, allowing extra solar cell to be attached. Unless 

the payload specifically requires one side of the wall to not have solar panels on, all four long walls 

should have solar panel covered. The cells on each wall are configured in a serial to increase the 

overall output voltage. Usually, the +Y solar panel will have one less solar cell to accommodate 

for the Debug and RBF port from the Power Board. Table 6 shows averaged panel number and 

cell count for each spacecraft’s configuration, satisfying the second requirement. 

Configuration 
Solar Cell Count on 

one side 

Number of 

Solar Panels 

Estimated total number 

of cells 

1.5U 3 4 11 

2U 4 4 15 

3U 7 4 27 

6U 8 6 47 

Table 6: Average Solar Cell Configuration Based on Spacecraft Size 

For an individual solar cell, a corresponding IV curve is generated to analyze the cell’s 

functionality and efficiency. To generate an IV curve in a lab environment, a solar simulator was 

used. The solar simulator consists of two sub-components, a sun light generation unit and a data 

collection unit. The sunlight generation unit warms up a cold started lamp and generates light with 

intensity corresponding linearly to that of the sun. The data collection unit behaves like a 

programmable digital load operating in constant current mode, an IV curve software sweeps 

through the current and measures the output voltage. The result of one solar cell’s IV curve is 

shown in Figure 30. The peak point of the red curve indicates the peak point operation of the solar 

cell. 
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Figure 30: Solar Cell IV Curve 

The spacecraft grade triple junction GaAs solar cells used usually have around 28~30 

percent efficiency[20]. The discrepancy of the efficiency is due to slight differences in the 

manufacturing process. To select the solar cells for each panel, estimate which wall will collect 

the most amount of sunlight and put the solar cells of the highest efficiencies on that side. 

For each solar cell, there is a bypass diode connected in reverse biased fashion between the 

positive and negative output terminal shown in  

Figure 31. The bypass diodes allow the series of connected cells to continue supplying 

power at a reduced voltage rather than no power at all. Having a bypass diode also prevents one 

broken solar cell from disconnecting the rest of the solar cell chain[21].  

A blocking diode is also incorporated on the positive terminal of each solar panel. The 

block diode prevents the current from flowing back into the solar arrays. The diode configuration 

of the solar panels satisfies requirements three and four.  
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Figure 31: Solar Panel Diode Configuration 

After the construction of the solar panel, the solar cell chain will be recharacterized under 

the solar simulator. The load used to generate the IV curve can only operate when the input voltage 

from the solar panel is below 10V, due to a limitation of the solar simulator and associated test 

equipment as it was acquired from the manufacturer. A 6-cell, 14V solar panel will not operate 

correctly under the IV curve load. As a result, a dedicated programmable load LD400i and custom 

IV curve LabView software is used when the panel voltage is above 10V. The IV curve of a solar 

cell chain is shown in Figure 32.  

Figure 32: Solar Cell Chain Characterization 
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5.4 Power Storage - Battery Pack 

5.4.1 Introduction 

 For illiniSat-2 bus, Lithium-Ion 18650 rechargeable battery cells are used to store the 

energy generated by the solar panels, as well as supplying power to the rest of the system when 

the satellite is not receiving sunlight. The battery pack contains two sub battery packs in parallel 

with each sub pack made up of two cells in series, for a total of four cells. The configuration brings 

the nominal battery voltage to 7.4V, and nominal battery capacity to 6400mAh1. The battery pack 

contains battery protection ICs to prevent the over-voltage, under-voltage, and over-current 

scenario; voltage and current measurement to estimate battery state of charge; Kapton heater and 

NTC thermistor for battery temperature regulation; and a cell balancer to prolong battery’s 

operation time. The battery pack went through six iterations of design, with Rev F passing 

NanoRacks’ NR-SRD-139 Flight Acceptance Test Requirements[22] for Li-ion Cells and Battery 

Packs.  

5.4.2 Requirements 

1. All battery pack subsystems shall function at any battery pack voltage in the range of 5V 

to 8.4V. 

2. The battery pack shall ensure that no individual battery cell be charged higher than a 

voltage of 4.25 V (or maximum charge voltage as specified by specific battery vendor) 

3. The battery pack shall ensure that no individual battery cell be discharged below a voltage 

of 2.75 V (or minimum discharge voltage as specified by vendor) 

                                                 

1 This number varies based on the quality of cell purchased, age of the cell, and practical manufacturing quality 

of the cells 
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4. The battery pack shall cut off the flow of current through the batteries in the event of a 

short circuit. 

5. The battery pack shall be operating within the temperature range of 10C to 50C. 

6. The battery pack shall survive vibrational testing when assembled. The vibration intensity 

is specified in Nanoracks’ NR-SRD-139 document[22]. 

7. The battery pack shall be capable of operating in vacuum. 

8. The battery pack shall be capable of balancing all battery cell voltages within 10 mV of 

each other. 

9. The battery pack shall make battery voltage and load/charge current data readily available 

to the Power Board.  

10. The battery pack shall make battery temperature data readily available to the Power Board. 

11. The battery pack shall be capable of heating the batteries at a rate between 0.5W and 1.5W 

per battery cell. 

12. The battery pack shall have the dimension 84 x 86mm with maximum height 21mm when 

assembled.  

13. The battery pack shall comply with the Illinisat-2 grounding scheme. 

14. The battery pack shall use DF-11 connectors as per the power and data interface design. 

5.4.3 Revision History 

Revision A to Revision D of the battery pack was designed by Carl Haken between fall 

2013 and summer 2015[23]. All four revisions were tentative approaches towards achieving a 

functioning cell protection and balancing circuitry. Revision D was deemed the flight version 

battery pack for LAICE and CubeSail missions. However, during the certification of the battery 

pack for the launcher NanoRacks performed as part of this work, several electrical errors were 
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noted. Firstly, the battery protection IC does not cut off the batteries from the satellite power 

system when the batteries are under-discharged. Secondly, due to the enable voltage being lower 

than the IC threshold, the cell balancer can only be balance in one direction. And lastly, the cell 

balancer is at extremely low efficiency with almost all the energy lost as heat through the inductor. 

Due to time constraint on mission delivery of CubeSail, Revision D was flown with Power Board-

controlled battery under-voltage cutoff, and cell-balancer disabled.  

Revision E was designed by Dillon Vadgama in spring 2018 for the 3 USIP missions. 

Revision E was an attempt to fix all the remaining issues on the battery pack. Revision E replaced 

the single-cell protection IC with dual-cell protection IC, the dual low-side MOSFET drivers with 

a high-side low-side MOSFET driver, and Revision E also added a bi-directional current sensor. 

However, the cell balancer still overheats, the battery still won’t get cut off when the cells were at 

under-discharged condition.  

Revision F was designed as one of the concluding stages of this work during the summer 

of 2018 as an attempt to address all previous design flaws. the battery pack’s cell balancing system 

is completely revamped. By using bleeding-based cell balancing, as well as different grounding 

scheme referencing battery minus instead of satellite ground, the remaining issues with the battery 

pack have all been fixed. Revision F has been installed on SpaceICE, SASSI^2 and CAPSat 

missions. Due to how long the original Rev D batteries have sat within LAICE, it will be retrofit 

with a Revision F prior to delivery for launch. The PCB layout for Battery Pack Revision A to 

Revision F are attached in Appendix B. 
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5.4.4 Hardware Function Overview 

Figure 33: Battery Pack Block Diagram 

 The battery pack consists of four Lithium Ion 18650 batteries. Each battery needs to be 

assembled to have a 0.5W Kapton heater and negative temperature coefficient (NTC) thermistor 

attached to satisfy requirement five. Next, the cells are soldered on the battery pack PCB. The 

battery pack is constructed with two parallel batteries sub-pack. Each sub-pack contains two 18650 

batteries connected in series, passive protection circuit, a battery protection IC and a cell balancer. 

The battery pack communicates with the Power Board for heater control and passing along voltage 

and current data for state-of-charge estimation. The assembled battery pack is of size 84x86mm 

with 20.3mm height which satisfies requirement twelve.  

 Battery Pack PCB carries one DF-11 connector that is used to transfer raw battery power 

and I2C communication lines to the power board. Each of the “Battery plus” and “Battery minus” 
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lines use 6 pins on the DF-11 connector, making the maximum rate current to be 15A. This DF-

11 setup is shown in Figure 34 and it meets requirement fourteen. 

 To satisfy requirement thirteen in terms of grounding, the battery pack PCB offers direct 

connection to the Power Board’s battery minus through the DF-11 connector. The mounting holes 

are isolated from the battery minus. The grounding scheme is also shown in Figure 34.  

5.4.5 Hardware Description 

5.4.5.1 Lithium Ion Battery 

Lithium Ion batteries are common in home-electronics, they are one of the most popular 

types of rechargeable batteries for portable electronics[24]. Lithium Ion batteries have high energy 

density, low memory effect, and fast charging speed[25], which makes them ideal for small 

satellite when space and power generation is of constraint. 

Figure 34: Battery Pack PCB 
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Lithium Ion batteries come with their downsides: each individual cell cannot be charged 

beyond a maximum voltage threshold of 4.2V, the batteries cannot be discharged below a 

minimum voltage threshold of 2.6V. The batteries can only operate safely in a certain temperature 

range of between 10C and 50C. If the battery is discharged with the current higher than 2 times 

the battery capacity, there is a potential of the Lithium Ion battery exploding. None of the 

conditions above are desirable.  

Another problem with Lithium Ion batteries is that no two batteries are alike, each battery 

has its unique internal chemical composition. Due to the differences, when batteries are connected 

in a series, they will charge and discharge at different rates. Over time, the two batteries in series 

will have differences in voltages, which may result in premature charging and discharging cutoff. 

IlliniSat-2’s battery pack system addresses the disadvantages of the Lithium Ion batteries. 

Over-voltage, under-voltage and short protection is implemented on the Battery Pack PCB. Each 

battery cell has its own dedicated thermistor and Kapton heater to regulate the cell temperature. 

Each two-cell pack includes a bi-directional cell balancer to regulate even charge discharge. 

5.4.5.2 Battery Configuration 

The battery pack consists of two parallel sub-pack with each pack containing 2 cells. In 

the event of a battery cell failure, the sub-pack containing the faulty cell will be disconnected 

while the non-faulty sub-pack continues to operate. The two cells in series bring the pack voltage 

to be nominal 7.4V. The two packs in parallel bring the pack capacity to 6400mAh. The 

specifications for individual cell and the entire battery pack2 is shown in Table 7. 

 

                                                 

2 The specifications is subject to change depending on the choice of Lithium Ion 18650 battery cells. 
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Table 7: Battery Cell and Pack Specifications 

5.4.5.3 Battery Protection 

Figure 35: Battery Protection IC Schematic[26] 

The battery pack is protected against cell over-voltage conditions through 2 methods: 

transient voltage suppression (TVS) diode and Battery Protection IC. The TVS diode has a 

breakdown voltage of 11.1V for the pack and the Battery Protection IC protects single cell against 

charging over 4.25V. The set up means that when the one individual cell is above 4.25V during 

Specification Individual Cell Entire Battery Pack 

Nominal Voltage 3.6V 7.2V 

Minimum Discharge Voltage 2.5V 5V 

Maximum Charge Voltage 4.2V 8.4V 

Rated Capacity (Min) 3200mAh 6400mAh 

Capacity (Typical) 3350mAh 6700mAh 

Charge Current (C/2) 1625mA 3250mA 

Discharge Current (C/2) 1625mA 3250mA 

Over-charge Current (1C) 3250mA 6500mA 

Over-charge Discharge Current (C/5) 650mA 1300mA 

Over-discharge Current (1C) 3250mA 6500mA 

Over-discharge Charge Current (C/5) 650mA 1300mA 
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normal charging, the cell protection IC will pull the CO pin to low, which puts the N-FET into 

non-conducting mode and cut off the faulty cell from the battery pack. The protection IC will 

reconnect the battery once the battery is in charging condition. If in the case of a high voltage rail 

accidentally conducts to the battery pack and raises the pack voltage instantly above 11.1V, the 

TVS diode will limit the voltage to 11.1V to prevent further damage.  

The battery pack is protected against under-voltage conditions through the Battery 

Protection IC. A complete circuit depicting the protection IC is shown in Figure 35. The Battery 

Protection IC protects single cell against discharging below 2.5V. When an individual cell is below 

2.5V, the cell protection IC will pull the DO pin low, which puts the N-FET into non-conducting 

mode and disconnects the battery from the satellite. The protection IC will reconnect the battery 

once the battery is put into discharge mode.  

The battery pack is protected against overcurrent and external short condition through 2 

means: positive temperature coefficient (PTC) resettable fuse and Battery Protection IC. The PTC 

fuse has a hold current of 7A, trip current of 14A and trip speed of 0.2s. The Battery Protection IC 

protects single cells against over-current of above 16A with a trip speed of 8ms. During faulty 

operations of the spacecraft in which the current draw slowly raises to exceed 14A, the PTC fuse 

will disconnect the battery’s plus side from the spacecraft’s power line and reset only if the current 

draw returns to below 7A. During an external short or high transient in-rush current situation, the 

battery protection IC will instantly toggle DO and CO low to disconnect the battery minus the 

spacecraft’s ground and will reset if such fault conditions are removed.  

It is vital that the batteries remain above -10 Celsius at all times and are not re-charged 

when they are below 0 Celsius. Thus, each battery cell has an NTC thermistor and a 0.5W Kapton 

heater attached to it to perform thermal regulation in prevention of overheating or freezing the 
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cells. The Power Board microcontroller is responsible for turning the heaters on/off to make sure 

requirement five for operation temperature range are fulfilled. The Power Board will read the 

voltages across the thermistors to determine the temperature of each cell.  Depending on the 

batteries’ state of charge, the Power Board will issue the on/off of the Kapton Heaters. The optimal 

battery operating temperature is around 25 Celsius, so the battery should be kept as close to 25C 

as possible. If the batteries are below 0 Celsius when the satellite gets solar power, the power must 

be cut off and transferred to the heater to heat up the battery before charging.  

Aside from internal cell protection, the Power Board is also incorporated as a means of 

external voltage protection. The Power Board reads battery voltages and charge/load current to 

derive the percentage state of charge of the battery pack. Based on the state of charge of the pack, 

the Power Board will issue different power states for the satellite to enter. This acts as a method 

of further protection of the battery and will be further discussed in later sections.  

5.4.5.4 Cell Balancing 

No two batteries are identical, even the cells that come out of the same batch of 

manufacturing exhibit slightly different states of charge, capacitance, impedance, self-discharge 

rate and temperature dependence. As a result, the voltages of two battery cells in a series will 

diverge over time under the same charging or loading environment, and will potentially cause 

over-voltage cutoff when the batteries are not fully charged or under-voltage cutoff when the 

batteries are not fully depleted[27]. A cell balancer in place of cells in a series will minimize the 

differences of cell’s state of charge, thus prolong the battery lifetime.  

Among the methods of cell balancing, two practices are the most popular for a battery 

system, passive bleeding-based cell balancing and active switching-based cell balancing. In 

passive bleeding-based method, any excess energy from the cell with higher state of charge will 
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be bled out as heat through a resistor, so that eventually the two cells will have same energy stored. 

To achieve bleeding cell balancing, the user needs an op-amp to compare two battery cell’s 

voltages and one resistor for each battery cell for the excess power to bleed through. The Op-Amp 

comparator enable connections to the corresponding resistor with voltage differences beyond a 

certain threshold is detected. The downside of resistive cell balancing is the low efficiency of this 

technique due to all the excess power difference being wasted as heat. Bleeding based cell 

balancing is not recommended when the system has a tight energy constraint.  

Figure 36: Active Switching Cell Balancing Topology 

The active cell balancing system is more complicated than bleeding-based cell balancing. 

It involves actively transferring power from the cell with higher energy to the cell with lower 

energy. The approaches for active cell balancing can be capacitive or inductive, with the principle 

of storing energy from the higher energy cell to a passive device, then transfer that energy from 
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the passive device to the lower energy cell. The typical solution for active cell balancing is 

inductive based balancing based on a buck-switching-regulator topology. The balancing 

architecture is significantly more efficient because energy is transferred to where it is needed 

instead of being bled off. Based on Figure 36, if the upper cell is charged/discharged to a higher 

voltage than the lower cell and the upper MOSFET are switched at 100kHz while the lower 

MOSFET is turned off. During the switching of the upper MOSFET: when the MOSFET is turned 

on, the current flows from the upper battery into the inductor; when the upper MOSFET is turned 

off, the inductor draws current up through the lower diode and charges the lower cell. This process 

works vise-versa if the lower cell is charged to a higher voltage.  

The IlliniSat-2 battery pack system went through six iterations of prototypes with the first 

five iterations focusing on developing a functioning active switching cell balancing system and the 

last flight iteration being passive bleeding cell balancing due to time constraint on prototyping the 

active cell balancer. The first five revisions all had major problems with switching the cell 

balancing circuit. When the balancer is turned on, the cells lose majority of the power through the 

inductor instead of transferring the power to lower energy cell. The first five revisions of the design 

also made use of the wrong negative reference for the cell balancing. They all use spacecraft 

ground as ground reference instead of battery minus, leaving a conductive path even when the 

battery is cut off from the rest of the system. The sixth revision of the battery pack uses BQ29209 

IC[28] for each two-cell pack with the ground referencing the battery minus. Revision F 

implemented an automatic battery balancing control to relieve software scheduler burden from the 

Power Board. Revision F also implemented logic such that when the battery protection IC 

disconnects the battery from the satellite, the cell balancer also turns off. Revision F is a simpler 

design and was proven to be functioning for balancing a set of unbalanced batteries.  
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Figure 37 demonstrates a testing of the resistive-bleeding based cell balancing technique 

used in Battery Pack Revision F. When the test began, the two batteries in series had 0.3V 

difference. After two days of idling, the battery cell with higher voltage is balanced to the cell with 

lower voltage at around 3.46V. Then the two cells stay balanced over the remainder of six days. 

This test is a validation of requirement eight. 

 

Figure 37: Battery Cell Balancing Test Result 

5.4.5.5 Control and Measurement ICs 

The battery pack contains three I2C interfaced ICs which are controlled directly by the 

Power Board’s microcontroller. The I2C lines are routed from Power Board’s DF-11 connector, 

through the battery harness into battery’s DF-11 connector.  
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GPIO port expander 

 A sixteen-channel GPIO chip was used to control heaters. The GPIO chip’s pins default as 

high impedance input on start-up, and they will remain so until the Power Board instructs otherwise. 

The pin assignment for the port expander is shown in Table 8. 

Name Pin# When output logic 1 When output logic 0 Default  

Upper heater 
enable (A) 

4 Heater for upper cell A is 

turned on 

Heater for upper cell A is 

turned off 

Low 

Lower heater 

enable (A) 

5 Heater for lower cell A is 

turned on 

Heater for lower cell A is 

turned off 

Low 

Upper heater 

enable (B) 

20 Heater for upper cell B is 

turned on 

Heater for upper cell B is 

turned off 

Low 

Lower heater 

enable (B) 

19 Heater for lower cell B is 

turned on 

Heater for lower cell B is 

turned off 

Low 

Table 8: Port Expander GPIO Assignment 

Analog to Digital Converter 

 An eight-channel ADC IC is used to measure battery temperatures and voltages with 12-

bit precision. Measurements are sent to the Power Board microcontroller with the pin assignment 

shown in Table 9. Voltage measurements are made at the midpoint of each battery pack half and 

the top of each battery pack half. The ADC IC is only able to measure voltages in the range of 

0~3.3V, the battery mid voltage usually has the range of 3V~ 4.2V, and the battery top voltage 

usually has the range of 6V~8.4V. As a result, a 2:1 voltage divider for a battery mid voltage 

measurement, a 4:1 voltage divider for a battery top voltage measurement. All the dividers also 

undergo buffering with rail-to-rail, unity gain stable AD8607 op-amps. 
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Name Pin# Description 

Voltage 
(top point B) 

7 
(IN1) 

12-bit value corresponding to top point B voltage 
0 = 0V, 4095 = 8.4V, resolution: ~4 mV 

Voltage 
(top point A) 

14  
(IN2) 

12-bit value corresponding to top point A voltage 
0 = 0V, 4095 = 8.4V, resolution: ~4 mV 

Voltage 
(midpoint B) 

8 
(IN3) 

12-bit value corresponding to midpoint B voltage 
0 = 0V, 4095 = 4.2V, resolution: ~2mV 

Voltage 
(midpoint A) 

13  
(IN4) 

12-bit value corresponding to midpoint A voltage 
0 = 0V, 4095 = 4.2V, resolution: ~2mV 

Temperature 
(lower cell B) 

9 
(IN5) 

12-bit value corresponding to lower cell B temperature 
Higher value = higher temperature, nonlinear, needs calibration 

Temperature 
(lower cell A) 

12 
(IN6) 

12-bit value corresponding to lower cell A temperature 
Higher value = higher temperature, nonlinear, needs calibration 

Temperature 
(upper cell B) 

10 
(IN7) 

12-bit value corresponding to upper cell B temperature 
Higher value = higher temperature, nonlinear, needs calibration 

Temperature 
(upper cell A) 

11 
(IN8) 

12-bit value corresponding to upper cell A temperature 
Higher value = higher temperature, nonlinear, needs calibration 

Table 9: Battery Pack ADC Channel Assignment 

Current Reader 

 Revision A to D battery pack designs only use voltage to estimate the state-of-charge of 

the battery pack. Using voltage to measure capacity is not accurate and usually results in 10~20% 

of estimation error. Revision E and F designs incorporated a current sensor on the high side of the 

battery pack to measure the load/charge current going in/out the battery pack. The current sensor 

measures voltage across a 5 mOhm shunt resistor, returns the voltage in two’s compliment fashion 

with 2.5uV of resolution. The 5 mOhm shunt resistor is connected in a four-wire Kelvin fashion 

to avoid additional resistance.  

5.4.6 Battery Pack Assembly 

 The flight battery pack circuit boards are professionally manufactured and assembled by 

Sierra Circuit under class two standard. The battery pack circuit boards come without Li-ion 

batteries attached. To assemble the battery pack for flight configuration, the following procedures 

are followed: 
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1. Peel the plastic skin off battery with an x-acto knife. Measure the battery’s physical 

dimension. Visually analyze the battery cell for any physical defect.  

2. Cut the battery tab to be 15mm and shield the battery tab with Kapton to avoid accidental 

shorting.  

3. Shorten the Kapton heater and thermistor cable length to 15mm. Apply Pressure Sensitive 

Adhesive to the back side of the Kapton Heater. Without peeling off the release layer, apply 

pressure to activate one side of the PSA.  

4. Peel off the release layer and attach the Kapton heater onto the battery, apply pressure to 

activate the PSA on the other side. Wrap Kapton tapes around the battery cell to secure the 

heater. A assembled battery cell is shown in Figure 38. 

5. Solder the assembled battery to the battery pack PCB through the taps attached at the 

positive and negative sides.  

6. Plug the heater wires to the corresponding heater holes in the battery pack PCB and solder 

the wires in place.  

7. Remove the no-clean flux using flux cleaner and 91% isopropyl alcohol.  

Figure 38: Assembled Battery Cell 
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5.4.7 Battery Verification through Testing 

To certify the battery pack for spacecraft flight’s safety standard, especially storage on 

board the International Space Station in the example of LAICE CubeSat, the battery pack needs to 

undergo six tests: electrochemical test, charge cycling test, over-voltage test, under-voltage test, 

external short test, vacuum test, and vibration test. The next few subsections will go through each 

individual test and result of testing.  

In Revision A to E, the battery’s control and measurement ICs can only be powered by 

internal 3.3V power line on the battery pack. Such an approach has two short comings: Firstly, 

there is no way to power-off those ICs without physically or electrically removing the battery pack; 

Secondly, when the battery is cutoff at faulty conditions, those ICs will also be powered off which 

results in blank readings. In Revision F, a two-pin pin header is added, so that the tester can have 

the option to either use the internal 3.3V supply or external supply. This small change resulted in 

more reliable readings and provides a way to reset the measurement ICs without removing the 

battery cells. For final flight configuration, the two pins on the pin header will be connected 

through a blob of solder. 

All the batteries verification tests are automated using a Visual Studio C++ Software. The 

software controls the setting of a power supply and a programmable to put the battery pack into 

charge or discharge mode. The software also communicates with a MSP4305229 Launchpad 

running Power Board Software to gather voltage, temperature and current data regarding the 

battery pack. The software saves all the acquired data into a .csv file.  
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5.4.7.1 Charge Cycling test 

The battery charge cycling test charges and discharges the battery 5 times to determine the 

capacity of each battery. The objective of the cycling test is to ensure the batteries don’t have 

internal defects. If the cell capacity does not drop below 5% throughout the test, the battery pack 

pass the charge cycling test. 

Testing Steps 

1) Charge the batteries to 4.2V using a current of 3250mA. 

2) 10 minutes rest period.  

3) Discharge the batteries to 3.0V using a current of 3250mA. 

4) 10 minutes rest period. 

5) Charge the batteries to 4.2V using a current of 3250mA.  

6) 10 minutes rest period. 

7) Discharge the batteries to 3.0V using a current of 3250mA. 

8) 10 minutes rest period.  

9) Charge the batteries to 4.2V using a current of 3250mA. 

Recording Elements 

1) Individual cell voltage readings through Battery Pack’s 12-bit ADC.  

2) Charge and discharge current through Battery Pack’s current reader. 

3) Individual cell temperature readings of 50K Ohm NTC thermistor through Battery Pack’s 

12-bit ADC. 
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Result and Analysis 

 Based on the data collected and plotted in Figure 39, the total battery pack has a totally 

capacity of 6295mAh. The total capacity didn’t change during the two charge cycles and the 

temperature didn’t increase above 50C. indicating healthy batteries. This result satisfies 

requirement one.  

Figure 39: Battery Charge Cycling Result of Pack A and B 
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5.4.7.2 Cell Over-charge Test 

The cell over-charge test tests the battery pack’s ability to handle a situation where the 

batteries are charged to a voltage beyond the rated maximum charge voltage. When a Lithium Ion 

battery is fully charged, any additional charge will cause the plating of metallic lithium and 

compromise the safety[29]. The protection will cut the battery from the satellite power line when 

the pack voltage is above 8.4V, resulting in 0A charge current. The battery pack will be 

reconnected once the batteries are put into a discharging state.   

Testing Steps 

1) Over-charge the batteries using a current of 6500mA when the battery pack is at 7.4A. 

2) Wait until the charging current is 0A. Record the voltage at which the protection 

activates and the MOSFET opens the circuit. 

3) Discharge the batteries, using a current of 1300mA and record the voltage at which 

MOSFET closes the circuit. 

4) Wait until the MOSFET is closed, which means the discharge current is at 1300mA. 

Record the voltage when the MOSFET is closed.   

5) Discharge the batteries to 3.0V using a current of 3250mA. 

6) 10 minutes rest period.  

7) Charge the batteries to 4.2V using a current of 3350mA. Record the capacity of the 

battery pack.  

Recording Elements 

1) Individual cell voltage readings through Battery Pack’s 12-bit ADC.  

2) Charge and discharge current through Battery Pack’s current reader. 

3) Individual cell temperature readings of 50K Ohm NTC thermistor through Battery Pack’s 

12-bit ADC. 
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 Result and Analysis 

 Based on the data collected and plotted in Figure 40, the battery pack gets cut off from the 

main power supply when the pack voltage is at 8.6V. The MOSFET reconnects the battery to the 

circuits during when the battery pack is discharging and the pack voltage is 8.1V. The total pack 

capacity after overcharging test is 6272mAh which is 0.35% lower than the capacity derived from 

the charge cycling test. The overcharging test is a success and it satisfies requirement two.  

Figure 40: Battery Overcharge Result of Pack A and B 
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5.4.7.3 Cell Over-discharge Test 

The cell over-discharge test examines the battery pack’s ability to handle a situation where 

the batteries are discharged to a voltage beyond the rated minimum discharge voltage. When a 

Lithium Ion battery is discharged below 2.5V, any additional discharge current will cause copper 

in the anode to dissolve into the electrolyte. When the battery is charged from an over-discharged 

situation, the dissolved copper can create dendrites that might cause a short circuit inside the 

battery that may cause venting of the electrolyte[30]. The protection will cut the battery from the 

satellite power line when the pack voltage is below 5V, resulting in 0A discharge current. The 

battery pack will be reconnected once the batteries are put into a charging state.  

Testing Steps 

1) Over-discharge the batteries using a current of 6500mA when the battery pack is at 7.4A. 

2) Wait until the discharging current is 0A. Record the voltage at which the protection 

activates and the MOSFET opens the circuit. 

3) Charge the batteries, using a current of 1300mA. 

4) Wait until the MOSFET is closed, which means the charge current is at 1300mA.  

5) Charge the batteries to 4.2V using a current of 3250mA.  

6) 10 minutes rest period. 

7) Discharge the batteries to 3.0V using a current of 3250mA. 

8) 10 minutes rest period.  

9) Charge the batteries to 4.2V using a current of 3350mA. Record the capacity of the battery 

pack.  

Recording Elements 

1) Individual cell voltage readings through Battery Pack’s 12-bit ADC.  

2) Charge and discharge current through Battery Pack’s current reader. 

3) Individual cell temperature readings of 50K Ohm NTC thermistor through Battery Pack’s 

12-bit ADC. 
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Result and Analysis 

Based on the data collected and plotted in Figure 41, the battery pack gets cut off from the 

main power supply when the pack voltage is at 5V. The MOSFET reconnects the battery to the 

circuits during when the battery pack is charging and the pack voltage is 6.4V. The total pack 

capacity after overdischarging test is 6315mAh which is 0.33% higher than the capacity derived 

from the charge cycling test. The overdischarging test is a success and it satisfies requirement three. 

Figure 41: Battery Overdischarge Result of Pack A and B 
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5.4.7.4 External Short Test 

The cell external short test checks the battery pack’s ability to handle a situation where the 

batteries are shorted. When a short is created external to the battery, a large amount of current will 

flow from the batteries into the area shorting, generating a lot of heat and can cause hyper-venting 

of the electrolyte. The protection will cut the battery from the satellite power line when the 

discharge current is above 8A. The battery pack will be reconnected once the short is removed and 

the battery is put into a charging state.  

Testing Steps 

1) Externally short the batteries using a 10mOhm, 100W Chassis mount resistor.  

2) Record the current at greater than 1KHz rate for the first 3 seconds of the test. Record the 

current when the MOSFETs disconnects the circuit.  

3) Charge the batteries, using a current of 1300mA. Record the voltage at which the MOSFET 

reconnects the circuit.  

4) Discharge the batteries to 3.0V using a current of 3250mA. 

5) 10 minutes rest period.  

6) Charge the batteries to 4.2V using a current of 3350mA. 

Recording Elements 

1) Individual cell voltage readings through Battery Pack’s 12-bit ADC.  

2) Charge and discharge current through Battery Pack’s current reader. 

3) Individual cell temperature readings of 50K Ohm NTC thermistor through Battery Pack’s 

12-bit ADC. 
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Result and Analysis 

Based on the data collected and plotted in Figure 42, the battery pack disconnects the 

battery cells from the satellite two seconds after the cells are shorted. The MOSFET reconnects 

the battery pack once the short is removed and battery started discharging. The battery pack’s 

capacity after external short test is 6284mAh which is 0.15% lower than the capacity derived from 

the charge cycling test. This test demonstrated the battery pack’s ability to handle external short 

situation and thus satisfies requirement four. 

 

Figure 42: Battery External Short Result of Current Reading, Pack A and B 
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5.4.7.5 Battery Vibration Test 

 The vibration test examines the battery pack’s ability to handle a vibrational situation like 

a rocket launch. Vibration can potentially cause breaking of electrical traces around the mounting 

holes or cracking the internal structures of capacitors and resistors causing shorts. The Battery 

Pack mitigates the vibration damage by adding a battery plate to hold the bottom of the battery 

pack, the battery cells are pressed against the middle plate for additional mechanical support.  

Testing Steps 

1) Assemble the battery pack onto the vibration plate according to NASA mechanical 

spec[31].  

2) Before Vibration test, perform one charge cycling to determine the Battery Pack’s capacity.  

3) Bolt the battery pack onto a vibration table at Engineered Testing System at Indianapolis, 

IN.  

4) Record the OCV for each cell on the battery pack before the vibration starts.  

5) Vibrate the battery according to NR-SRD-139 table 1[22]. Measure OCV for each battery 

before vibration testing and between each axis of vibration testing. 

6) After the vibration, perform one charge cycling to determine the Battery’s capacity.  

Recording Elements 

1) Multimeter with 0.001V precision. 

2) Individual cell voltage readings through Battery Pack’s 12-bit ADC.  

3) Charge and discharge current through Battery Pack’s current reader. 

4) Individual cell temperature readings of 50K Ohm NTC thermistor through Battery Pack’s 

12-bit ADC. 

5) Accelerometer attached externally to the battery pack, to analyze for the resonance point.  

 Result and Analysis 

Table 10: Vibration Test Voltage Measurement result 

 

 A Top (V) A Bottom (V) B Top (V) B Bottom (V) 

Pre-Vibration 4.155 4.148 4.162 4.141 

Post-X- Vibration 4.155 4.148 4.162 4.140 

Post-Y- Vibration 4.154 4.148 4.162 4.141 

Post-Z- Vibration 4.155 4.148 4.162 4.141 
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The results were generated using the battery pack revision D for LAICE mission. The 

voltage measure of each cell was shown in Table 10, indicating that the cells remain intact after 

vibration on each axis. The capacity of the battery pack before vibration test is 6090mAh.The 

capacity of the battery pack after vibration test is 6050mAh. The battery performs well after 

vibration test satisfying requirement six. 

5.4.7.6 Vacuum Test 

 The battery pack vacuum test tests the battery’s response for long term operation in a 

vacuum. If the Lithium Ion battery is not sealed correctly, operating in a vacuum may cause leaking 

from the battery cell. The vacuum test uses on the physical parameters of the battery before and 

after being in a low-pressure vacuum, as well as the battery capacity to determine if any damaged 

is caused to the batteries during vacuum operation. 

Testing Steps 

1) Measure battery pack’s length, width, height, mass and voltage before vacuum test, the 

measurements should be recorded with 0.1mm/0.1g/0.001V precision. 

2) Perform charge cycling test on the battery pack before vacuum test. 

3) Place the fully charged batteries into the vacuum chamber at atmospheric pressure and pull 

vacuum at approximately 8psi/minute. Maintain vacuum at approximately 0.1 psia for 6 

hours, re-pressurize the chamber to ambient at a rate of 9psia/s.  

4) Perform charge cycling test on the battery pack. The change in capacity should be less than 

5%. 

5) Perform visual inspection for indication of leaks.  

6) Measure battery pack’s length, width, height, mass and voltage. The change in those 

parameters should be less than 0.1%.  

Recording Elements 

1) Scale with 0.1g precision. 

2) Caliper with 0.1mm precision. 

3) Multimeter with 0.001V precision.  

4) Individual cell voltage readings through Battery Pack’s 12-bit ADC.  

5) Charge and discharge current through Battery Pack’s current reader. 
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6) Individual cell temperature readings of 50K Ohm NTC thermistor through Battery Pack’s 

12-bit ADC. 

Result and Analysis 

 Pack A Pack B 

Length 65.52mm 64.94mm 

Width 38.79mm 38.44mm 

Height 20.35mm 20.40mm 

Mass 227.2g 

Voltage Top(4.22V), Bot(4.18V) Top(4.23V), Bot(4.18V) 

Capacity 6110mAh 

Table 11: Battery Parameters Before Vacuum Test 

 Pack A Pack B 

Length 65.53mm 64.93mm 

Width 38.60mm 38.46mm 

Height 20.38mm 20.42mm 

Mass 227.2g 

Voltage Top(4.20V), Bot(4.17V) Top(4.21V), Bot(4.16V) 

Capacity 6134mAh 
Table 12: Battery Parameters After Vacuum Test 

 The battery pack survive the vacuum operation with almost no parameter change, thus 

satisfies requirement seven. 

5.4.8 Remaining Issues and Potential Fix for Next Revision 

 So far, no issues were found with Revision E. However, there are several suggestions for 

the next revision of the battery pack.  

 For next revision of the battery pack, the correct move is to switch back to the active 

switching-based cell balancing. Revision F used passive cell balancing mainly due to time 

constraint of the mission delivery date. When time is not an urgent factor, developing an active 

cell balancing with much higher theoretical efficiency compared is more desired for a small 

spacecraft. The low efficiency in our current design could just be an inductor selection issue. The 

current selection of the 68uH inductor has 0.95Ohm to DC resistance, while the current Digi-key 
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selection has 68uH inductor with 89mOhm DC resistance. This means the inductor could be 

wasting 10 times more heat. For the next revision, the ground of the cell balancing should be 

referenced to the battery minus.  

5.4.9 Summary of Contribution 

 The battery pack design can be successfully charged and discharged with no observed 

damage or overheating. The battery pack PCB can protect the batteries from overcharge, 

overdischarge and external short conditions while maintain the state of charge balance of the 

battery cells. The battery pack can operate in vibrational environment as well as vacuum 

environment with no observed parameter change. Lastly, the battery pack is capable of 

communicating with the power board to delivery its current, voltage and temperature measurement, 

as well as letting the power board control battery’s heaters to maintain the safe operating 

temperature. In conclusion, the battery pack revision F design satisfies all the requirements listed 

in the section 5.3.2. 
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5.5 Power Distribution and Monitoring - Power Board 

5.5.1 Introduction 

The Power Board is responsible for ensuring safe operation of the CubeSat by managing 

the batteries as well as monitoring current consumption of the subsystems. The Power Board is in 

charge of charging the batteries through the solar panel. It monitors the battery’s state of charge to 

determine different power states. Power Board also answers to commands from C&DH that 

perform health monitoring, provide debugging interface for its on-board microcontroller and 

C&DH’s Linux processor, RBF and KS interfaces for turning off the satellite, as well as controls 

and monitors the power delivery to the rest of the system. All the power is run through the Power 

Board so that no system can be turned on unless we determine it is safe for them to be on. 

5.5.2 Requirements 

5.5.2.1 Hardware requirements 

1. The Power Board shall incorporate a low power central microcontroller for communication 

with C&DH, power delivery control and monitoring. 

2. The Power Board shall convert the power from the solar panel into battery level power to 

distribute to the system or charge the batteries. 

3. The Power Board shall support physical mounting and electrical connection of a maximum 

of 6 solar panels  

4. The Power Board shall control the power delivery to the rest of the system. 

5. The Power Board shall monitor the power delivery to the rest of the system. 

6. The Power Board shall have a safety factor of 2 in terms of high current trace width. 
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7. The Power Board shall disconnect power from the satellite upon the insertion into a 

Remove Before Flight connector or pressing of the switches on the bottom of the satellite. 

The disconnection shall happen at 3 locations on the power line. 

8. The Power Board shall be capable of charging the battery with the RBF plugged in. 

9. The Power Board shall provide control and electrical interface for the thermal knives.   

10. The Power Board shall provide 3.3V voltage rail to the rest of the system with back up. 

11. The Power Board shall carry a RS485 transceiver to deliver communication to the ADCS 

system. 

12. The Power Board shall comply with the Illinisat-2 grounding scheme. 

13. The Power Board shall use DF-11 connectors as per the power and data interface design. 

5.5.2.2 Software Requirements 

1. The Power Board software shall initiate a 50min countdown upon the release of foot 

switches. The countdown shall be a one-time event that shall not restart upon future reboot 

of the Power Board. 

2. The Power Board software shall communicate with the sensors on the battery pack to 

acquire voltage, temperature and current information.  

3. The Power Board software shall control battery pack’s heater based on the temperature 

reading. 

4. The Power Board software shall estimate battery pack’s state of charge and enter the 

satellite into corresponding power state. 

5. The Power Board software shall correctly respond to commands from C&DH with 115200 

bit-per-second baudrate.  
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6. The Power Board software shall monitor current consumption from rest of the subsystem 

and turn off ones that are in the faulty stage.  

7. The Power Board software shall act like C&DH’s watchdog to determine if the C&DH is 

at false state. The Power Board shall reboot C&DH if C&DH is at a false state.  

5.5.3 Revision History 

 The first revision of the Power Board was design by Nathan Poland in fall 2014, as a 

prototype testing board. The first revision of the Power Board had a faulty kill switch system that 

did not cut off the batteries from the satellite when pressed. The first revision also included eight 

RS485 transceivers for each of the Flex Cable connections, which were later deemed unnecessary.  

The second revision of the Power Board was designed by Nathan Poland and the author in 

fall 2015 and was professionally manufactured by Sierra PCB. Revision B fixed the kill switch 

issue, implemented kill switch RBF priority circuit. Revision B cut the RS485 transceiver number 

from 8 to 1. Revision B included additional 3.3V Buck Converter as a fail-safe measure. Several 

hardware issues were noticed during thorough software implementation of the Power Board. 

Firstly, the I2C line on the Power Board was flipped. An emergency bit-bang I2C protocol had to 

be implemented for flipped wire I2C. Secondly, the USB module on the microcontroller was not 

powered, which disabled the USB module. Thirdly, the grounding scheme of the Power Board was 

4 direct grounding on the four mounting holes, which created ground current loops. Fourthly, the 

UART communication line between C&DH and Power Board was flipped. Lastly, the thermal 

knife’s P-MOSFET lacked a gate driver to full saturate the PFET for conduction. One major 

mechanical issue was also noticed, the mating connector between Power Board and C&DH was 

shifted by 1mm. Revision B had the fixes implemented to address above issues and was flown by 

CubeSail mission.  
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The third revision of the Power Board was designed as part of this work during fall 2017. 

Revision C fixed all the previous problems regarding the Power Board. Revision C also added 

several improvements to the Revision B design. Revision C added pull-down resistors to set the 

hardware default state of the Hot-swap controllers. Revision C added the option for the user to turn 

on automatic Hot-swap restart. Revision C changed certain passive components’ sizes from 0402 

to 0603 for better solderability. Revision C also organized the silkscreen on the PCB for better 

aesthetic. Revision C Power Board is tested to be fully functional and will be flown by the three 

USIPs mission and LAICE mission. The PCB layout for Power Board Revision A to Revision C 

are attached in Appendix B. 

5.5.4 Hardware Function Overview 

  

Figure 43: Power Board Block Diagram 

 The Power Board consists of central microcontroller MSP430F5529 for C&DH command 

handling, data acquisition and power system autonomous monitoring. The block diagram for the 

Power Board is shown in Figure 43. The Power Board included 14 Hot-swap controllers to control 
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delivery of battery and 3.3V power to the rest of the subsystems. The Hot-swap controllers also 

provide the Power Board with current information of each subsystem. The Power Board converts 

the solar panel into battery acceptable power and charge the battery through 5 on-board MPPT 

solar chargers. 5 P-MOSFETs along with their corresponding driver circuits are implemented to 

control the firing of the thermal knives. Lastly, the Power Board included kill switch and RBF 

circuits to cut the battery power from rest of the satellite on-demand.  

 The physical dimension of Power Board is 90 x 90mm in dimension with cable drench cut 

out for harness pass through. The maximum height of the Power Board is 11.72mm, when mated 

with the C&DH, the mated height is 21.84mm. The Power Board design PCB consists of 6 layers 

of 2oz copper, with stacking topology of signal-ground-power-power-ground-signal.  

 Power Board PCB carries eight DF-11 connectors. Among them, five DF-11 connectors 

are used to provide power interface to the battery pack, radio and three payloads. One DF-11 

connector provides satellite debug interface. The rest two DF-11s serve as the Kill Switch and 

RBF. The PCB also contains a backbone connector. The backbone connector on the Power Board 

mates with the C&DH to receive power and distribute commands to power board, ADCS and 

debug console. This setup is shown in Figure 23 meets requirement thirteen. The Power Board 

also offers three expansion headers to provide extra power and data interface for 6U configuration. 

 To satisfy requirement twelve in terms of grounding, Power Board PCB offers three 

resistors pads RG1 to RG3 near the mounting holes. One of the resistors will be a zero-Ohm 

resistor shorting the satellite ground to Chassis while the other two be 3MOhm. This configuration 

forms a single point star ground. 
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5.5.5 Hardware Description 

5.5.5.1 Microcontroller – MSP430F5529 

The Power Board has several flow-down requirements for the microcontroller. The 

microcontroller is required to operate at low power consumption because it will always be turned 

on throughout the mission life time. The microcontroller is required to have high number of GPIO 

pins to control and monitor all the hot-swaps and solar chargers. The microcontroller is required 

to have at least one I2C and SPI bus peripheral to communicate with different digital sensors for 

house-keeping. The microcontroller is required to have one UART interface to communicate with 

C&DH. The microcontroller is required to run at least 8MHz for less communication latency. 

Figure 44: Power Board PCB 
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Lastly the microcontroller is required to have at least 14 analog input with at least 10-bit resolution 

to read current from the hot-swaps.  

The microcontroller chosen as the main processor is the Texas Instrument’s 

MSP430F5529[32]. MSP430F5529 fulfills almost all the microcontroller requirements, as well as 

requirement one in section 5.4.2. MSP430F5529 has 63 I/O pins with 16 of them being analog 

inputs, the whole software suite for MSP430 can be ran at 2mA at idle state and it has two I2C, 

SPI and UART interface peripherals. The only downside is the lack of GPIO pins, the Power Board 

requires 65 GPIO pins to control and monitors all on-board devices and only 49 pins are available. 

The lack of GPIO pins was compensated by having 2 I2C port expanders that offer 16 extra GPIOs 

in total. The most important reason for choosing MSP430F5529 was because of the already 

existing Texas Instrument’s popular evaluation board “MSP430F5529 Launchpad”. The 

popularity of MSP430F5529 among embedded software engineers means a more complete 

software support for developing embedded drivers, as well as more help from the internet when 

issues are encountered. Noted that the software development done in MSP430F5529 can be ported 

to other MCUs within MSP430x5xxx family with minimal change. 

MSP430F5529 is powered by an independent 3.3V Low Dropout regulator apart from the 

rest of the system to ensure that MSP430F5529 remains powered on when the rest of the satellite 

is powered off during mission lifetime. MSP430 IC has an external 32.768kHz crystal to have a 

real-time clock with low drift. MSP430F5529 includes an external watchdog timer IC to detect 

and recover from a Power Board software malfunction. Every 140ms the MSP430 chip will send 

a 2ms width pulse to the watchdog timer IC, if the 140ms window is missed, the watchdog will 

toggle the low-enabled reset pin to reset the MSP430 software.  
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The Power Board can be programmed and debugged using MSP430F5529. MSP430F5529 

launchpad includes two circuit parts. The first part is debugging the interface, it has an eZ-FET 

on-board emulator that enables debugging/programming as well as communication back to the PC. 

The second part is the actual MSP430F5529 circuit. The designer can disconnect the debugger 

from the launchpad through the jumpers, connect the debugger to the Power Board’s debug port 

to program and debug the Power Board. Having a cheap launchpad as the debugger compared with 

an expensive debugger saved a lot on development cost. 

5.5.5.2 Maximum Power Point Tracking Solar Charging  

Maximum Power Point Tracking, short for MPPT, is a technique to operate the solar cells 

at the peak power of the IV curve for maximum charging efficiency. Currently, there are two 

implementation methodologies for MPPT charging: constant operating voltage charging[33] and 

perturb observe charging[34].  

Constant operating voltage charging let the designer set a minimum input voltage threshold 

to enable the charger. The charger turns on charging when the input voltage is above the set level. 

If the minimum input voltage is set near the maximum power point of the IV curve, the solar 

charger will be operating near maximum charging efficiency when charging is at full sunlight. 

Constant operating voltage charging requires the designer to set the enable voltage through a 

resistor divider. Once the voltage is set, it cannot be changed for flight, which makes constant 

operating voltage charging a rigid design. The designer can get with the rigidity by using several 

resistors dividers. Each resistor divider will have a dedicated MOSFET for the microcontroller to 

select input voltage. This divider network method will undoubtedly increase the complexity of the 

PCB as in it will require more components. The selection of which divider to use is also 

problematic because it will require the microcontroller to know the status of the solar charger, 
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namely voltage and current, which further increases the complexity. Currently there are many ICs 

in the market that offers set-point MPPT charging. 

The second way of maximum power point tracking charging is called perturb and observe 

charging. Perturb and observe algorithm falls into the category of hill climbing algorithm, which 

involves taking steps over sampled data to reach desired level. To achieve such charging 

methodology, the microcontroller needs to perturb the charging current by increasing or decreasing 

the PWM wave’s duty cycle, record the input power through voltages and currents, compare the 

power with the previous measure point, until the charger deems the input power to be at maximum. 

Perturb and observe can be implemented analogously or digitally and is usually complex to design. 

When designed correctly, buck-boost perturb and observe charging can bring charging efficiency 

to around 95%.  Unfortunately only one commercially available chip exists to support buck-boost 

perturb and observe charging, the LT8490.  A prototype was design to determine its feasibility for 

Illinisat-2, and due to its complexity, this approach was deemed not sufficiently reliable. 

For the IlliniSat-2 bus, Constant operating voltage Maximum Power Point down-regulation 

charging with single voltage set point is used through LT3652 IC. The LT3652 is a step-down 

battery charger that operates over a 4.95V to 32V input voltage range. It provides a constant-

current and constant-voltage charge characteristic, with maximum charge current externally 

programmable up to 2A. The charger can set the desired battery float voltage up to 14.4V with a 

resistor divider. The LT3652 employs an input voltage regulation loop, which reduces charge 

current if the input voltage falls below a programmed level, set with a resistor divider. When the 

LT3652 is powered by a solar panel, the input regulation loop is used to maintain the panel at peak 

output power. When operating at full sunlight charging the battery at highest set charging current, 

the LT3652 has an efficiency of around 80%[35]. The biggest drawback of using LT3652 is that 
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if one solar panel malfunctions, the IV curve’s maximum operating point will be shifted left-ward 

while the constant operating voltage point remains the same. As a result, the solar panel will not 

be operating at maximum point and the charging efficiency is dramatically lowered. 

Figure 45: IV Curve of a Solar Panel with Damaged Solar Cell[36] 

There are five LT3652 circuits on the Power Board, four of them are used for the four solar 

panel walls of the satellite, and the last one is used to expand the Power Board to 6U configuration 

in the case of LAICE. The resistor divider going into VIN_REG pin sets the MPPT voltage of the 

charger. And it should be configured based on the MPPT voltage point of each solar panel. Figure 

46 demonstrates that the MPPT charger functioning and output the correct voltage, satisfying 

requirement two and three. 
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Note that for LT3652 solar charger to turn on and charge the batteries, the input voltage 

must be higher than the battery charging voltage. For 1.5U configuration, there are only 3 cells on 

each panel, meaning the maximum output voltage is around 7V which is lower than the required 

input voltage. A constant operating voltage MPPT boost-converter was implemented on the Flex 

Cable to step up the output voltage with a gain of two in order to turn on the LT3652 charger.  

5.5.5.3 Hot-Swap – TPS2420 

The Power Board is required to control and monitor the power delivery to the rest of the 

subsystem. For IlliniSat-2, it is decided to use a family of ICs called Hot-swaps to fulfill the 

requirement. Hot Swapping is a technique that allows replacing or adding components without 

stopping or shutting down the host device. Usually a hot-swap has an integrated software-

controlled switch with overcurrent protection. TPS2420 was chosen as the hot-swap for its wide 

range of operation voltage up to 20V, low MOSFET on resistance of 33 mOhm, hardware 

Figure 46: MPPT Charger Testing 
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configurable overcurrent fault protection, ability to restart the load after a fault condition, and 

analog output to the microcontroller to indicate the current consumption of the load[37].  

The Power Board consists of 14 hot-swaps controlling the power delivery of the battery 

and 3.3V line to C&DH, ADCS, Radio and Payloads subsystem. The overcurrent threshold level, 

the overcurrent maximum level, and the fault time for each channel are listed in Table. This satisfy 

requirement four, five and six. 

TPS2420 has two modes to protect the load from an overcurrent situation. Hard Overload 

and normal overcurrent shutdown. The TPS2420 enters hard overload mode when the load current 

is 1.6 times the configured maximum voltage. In hard overload mode, TPS2420 will immediately 

disable the output without waiting for the fault timer to expire. After the shutdown, TPS2420 will 

re-enter start up mode and attempt to re-powerup the load device. If the hard overload failure 

continuous to occurs after the restart, the TPS2420 will enter a current limit mode with the fault 

timer enabled. The device will be shutoff if TPS2420 does not get off the current limit mode before 

the timer expires. The TPS2420 enters normal overcurrent mode when the load current exceeds 

Hot Swap # Channel fault current(A) max current(A) fault time(ms) max load current(A)

1 3.3V_Flex_Cable 1 2 0.86 1

2 3.3V_C&DH 1.5 2.5 1.83 1.5

3 3.3V_Payload_1 1 2 0.86 1

4 3.3V_Payload_2 1 2 0.86 1

5 3.3V_Radio 1 2 0.86 1

6 3.3V_Payload_3 1 2 0.86 1

7 Battery_Pyro 3 4 0 3

8 Battery_Flex_Cable 2 3 3.89 2

9 Battery_C&DH 1 2 0.86 1

10 Battery_Payload_1 1.5 2.5 1.83 1.5

11 Battery_Payload_2 2 3 3.89 2

12 Battery_Radio 1.5 2.5 1.83 1.5

13 Battery_Payload_3 1 2 0.86 1

14 Battery_Payload_4 1.5 2.5 1.83 1.5

Table 13: Power Board Hot Swap Assignment 
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set fault current threshold and the countdown timer will start. If during the countdown, the current 

exceeds the maximum fault current, the fault signal will be raised and the load device will be 

shutdown. If the load device does not go below set threshold current before the timer expires, 

TPS2420 will also shutoff power delivery to the device.  

 

Figure 47: Hot-swap Schematic 

TPS2420’s maximum load current is set through RMAX and RFLT resistors. The resistor 

setting is below in Table 14. The resistors are 0603 in size which are easily solder/de-solder-able 

by hand. The user will also have the ability to enable hot-swap’s ability to restart the load after a 

fault condition. The restart is enabled through soldering a 0 Ohm resistor in RJ’s spot. 

Table 14: Hot-swap Configurations 

TPS2420 can also measure the load current without the need of an external shunt resistor. 

The full scale of the current is set by an external resistor RMON. The output voltage level from 
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the IMON pin indicates the load current level and is read by the 12 bit Analog-Digital-Converter 

pins on the MSP430. The current readings from the hot-swaps usually have high zero-current 

reading, and thus need to undergo calibration. Calibration involves running PB_Cur_Char software. 

The software sweep through the current from 0A to maximum rated amperage with 50 step points, 

and returns the raw current read from the Power Board. Figure 48 shows a characterization of a 

Hot-Swap channel with 2A maximum load current. We can see that the Hot-Swap is able to deliver 

the rated current to the load and disconnect from the load when the current is above 2A. This 

satisfies requirement eight. 

Figure 48: Hot-Swap Current Characterization (2A) 
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5.5.5.4 Kill Switch and RBF 

 

Figure 49: Power Board Kill Switch and RBF system schematic 

To satisfy requirement seven, the IlliniSat-2 bus has two sets of mechanical switches to cut 

off power from the battery to the rest of the system: Remove Before Flight Tag and Kill Switch. 

RBF is an external tag that plugs into the spacecraft’s RBF connector to shutoff the spacecraft and 

enable charging the battery. The Kill Switch is a set of mechanical switches integrated into the 

satellite so shut off power to the system and disable charging. The RBF has higher priority over 

the Kill Switch and will override the Kill Switch if both RBF and Kill Switch are engaged. 
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The schematic for the Kill Switch and RBF is shown in Figure 49. The Kill Switch and 

RBF share three MOSFETs among them, two P-MOSFETs on the high side of the battery to 

control connection between Battery plus and system voltage, and one N-MOSFET on the low side 

of the battery to control connection between Battery minus and system ground. The MOSFETs are 

chosen to have low on resistance. The PFETs have 4.5mOhm and NFET has 2.5mOhm resistance.  

The priority between Kill Switch and BRF is set through the gate current. MOSFETs have 

miller effects which introduces capacitance to the gate of a MOSFET. As a result, higher current 

going into the gate means higher time to switch on/off the MOSFET. RBF’s control signal line has 

a lower serial resistance than Kill Switch’s, which gives the RBF control signal higher current, and 

thus higher priority. 

The RBF setup allows the satellite to be charged even when the RBF is plugged into the 

power board which satisfies requirement eight. The RBF will not connect LOAD_N_L to BATT-, 

but instead connect to BATT+ to enable the NFET connecting BATT- to satellite ground. This 

configuration allows charging current to flow from BATT+ to satellite ground to charge the battery, 

while still disconnecting satellite VSYS from BATT+.  

5.5.5.5 Thermal Knife 

The thermal knife system on the Power Board is in charge of releasing any folded 

components that need to be unfolded and deployed, most importantly the antenna. To fit the 

satellite into the P-Pod from the launcher, the antenna needs to be folded down around the satellite 

and only to be released through the thermal knife when the satellite is released from the P-Pod. 

The thermal knife operates by passing 2A current through a low resistance nichrome wire, heating 

up the wire to around 200C to melt the dyneema wire that holds down the antenna. The thermal 
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knife consists of through-hole ring test points to mechanically hold the nichrome wire, and serial 

resistors to limit the current to 2A.  

When the thermal knife is turned on to release the antenna, the spacecraft should still be at 

its initial stage with fully charged batteries. The voltage going into the nichrome wire should be 

about 8.4V, indicating a full battery. The serial resistance of the thermal knife line is 4 Ohm, which 

limits the current to 2.1A. Note that the resistors in series will have 2.1A passing through them, 

which is around 8.8W of power dissipating through each one of them. Choosing resistors with high 

power rating is crucial for the correct release of antenna. Otherwise, the resistors will be burnt out 

before the nichrome wire is hot enough to melt the dyneema wire. The current design contains two 

25W 2Ohm power resistor in series.  

The mechanical challenge with the thermal knife is the thickness of the assembled PCB. 

The thermal knife is attached to the outside of the solar panel plate and the assembled thermal 

knife PCB should have maximum thickness of 5mm in order for the satellite to be physically fit 

into the release POD. As a result, the PCB are manufactured to have 1mm thickness with the 

resistors’ height being 2mm and the test point ring height 2.54mm to have the final assembly to be 

around 4mm.  

The thermal knife subsystem’s input power is controlled by a dedicated thermal knife hot-

swap that is set to have maximum load current of 3A. If all the thermal knives are fired at the same 

time, the load current will 8.4A, which will trip the hot-swap as well as the battery protection. As 

a result, the thermal knife will need to be fired sequentially in order to prevent tripping the hot-

swap. The driver circuit for the thermal knife firing consists of P-MOSFET and low-side P-

MOSFET gate driver for each thermal knife and the control signal is generated by the 
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microcontroller. Figure 50 below shows the schematic of one of the PYRO channel driver. This 

design satisfies requirement nine. 

 

5.5.5.6 3.3V Regulator  

 The Power Board carries 3.3V switching step-down regulators to supply 3.3V to the digital 

power lines in the satellite. The 3.3V regulator chosen is Texas Instrument’s TPS62111[38]. 

TPS62111 is capable of regulating battery voltage down to 3.3V at maximum 95% efficiency and 

supply up to 1.5A on the 3.3V line. The regulator also has the ability to shut itself off when its 

temperature reaches above 145 Celsius, making it more resistive towards fault situation. Figure 51 

shows the output of the 3.3V regulator when the regulator is enabled and the input is 7.4V. 

Figure 50: Thermal Knife Driver Schematic 
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 For redundancy purposes, two switching step-down regulators are implemented on the 

board. The enable is controlled by the MSP430 microcontroller. The MSP430 microcontroller will 

monitor the “Power Good” pin output on the regulator. If the output voltage is below 98.4% of 

3.3V output, the “Power Good” pin will rise to a logic low indicating an issue with the power 

supply. The microcontroller will catch the issue, turn the faulty regulator off and turn the backup 

regulator on. This design satisfies requirement ten. 

5.5.6 Power Board Software 

5.5.6.1 Power Board AIT, and early commissioning concept of operations 

The Power Board system remains on throughout the lifetime of the spacecraft. Before the 

satellite is delivered, a Remove Before Flight tag was plugged into the Power Board to override 

the Kill Switch and turn off everything on the satellite. When the satellite is assembled into the 

deployment P-POD for delivery, both the RBF and kill switches are engaged. Before the satellite 

launch, the RBF tag is removed, but the physical Kill Switch is still pressed by the P-POD to 

Figure 51: 3V3 Regulator Output 
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disable the satellite. After the satellite is released out of the deployment P-POD in space, the kill 

switch will be depressed and the satellite’s Power Board will come online. The Power Board will 

go through a 45-minute countdown, then it will check the health of the battery pack and turn on 

the C&DH if the Power Board deems that the battery is healthy. Afterwards, the Power Board will 

answer commands from C&DH following Table 15. Every minute the Power Board refreshes the 

battery percentage to determine the current power state and act on it, as well as monitor the current 

consumption of the subsystems to see if any subsystem is experiencing faulty situation.  

5.5.6.2 Software Implementation 

The Power Board software contains two major sections: peripheral drivers and device 

drivers. The peripheral drivers contain implementation for internal ADC, flash, I2C, RAM, RTC, 

SPI, timer and UART peripherals. The device drivers contain implementation of the external 

devices that are attached to MSP430. Table 16 specifies devices and their corresponding 

peripherals.   

Command Read/Write Start Byte Command Address Data Byte Return Byte Function

WDT W
Send to power board every 10s to 

keep C&DH Powered on

PWR_BRD_CHK R 0xf0 0x0001 0 5 (0x494d474f44) General Check

HS_EN W 0xf0 0x0002 2 5 (0x48535f454e) Enable Hotswaps

HS_DIS W 0xf0 0x0003 2 5 (0x48535f4449) Disable Hotswaps

BATT_V_STAT R 0xf0 0x0005 0 8 Battery Voltage Status

BATT_T_STAT R 0xf0 0x0006 0 8 Battery Temperature Status

BATT_CUR_READ R 0xf0 0x0007 0 2 Battery Current Status

BUS_VOL_READ R 0xf0 0x0008 0 2 Battery Pack Bus Voltage

BATT_HTR_ON W 0xf0 0x0009 1 5 (0x48545f4f4e) Turn on Battery Heaters

BATT_HTR_OFF W 0xf0 0x000A 1 5 (0x48545f4f46) Turn off Battery Heaters

HS_CUR_STAT R 0xf0 0x000B 0 28 HotSwap Current Status

HS_FLT_STAT R 0xf0 0x000C 0 2 HotSwap Fault Status

SC_DIS W 0xf0 0x000D 1 5 (0x53435f4449) Solar Charger Disable

SC_EN W 0xf0 0x000E 1 5 (0x53435f454e) Solar Charger Enable

SC_STA R 0xf0 0x000F 0 1 Solar Charger Status

ADS1000_READ R 0xf0 0x0010 0 3 Battery Voltage from ADS1000

BUCK_STAT R 0xf0 0x0011 0 1 Buck Regulator Status

TF_FIRE W 0xf0 0x0012 0 5 (0x544b464c59) Sequentially Fire all 5 thermal knives

"CNDH"

Table 15: Power Board Commands 
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Table 16: Power Board Device Peripheral Summary 

 

Device IC Functionality Peripheral

AD7997 Analog to Digital

INA226 Current Sensing

TCA6414A Port Expansion

Buck Regulator TPS6211 3.3V regulation GPIO

CNDH N/A N/A UART

Hot Swap TPS2420

Load Switch, 

overcurrent protection, 

current read GPIO

External NOR Flash IS25LQ080 8MB Storage SPI

Port Expander PCF8574 Port Expansion I2C

SISS23DN P-MOSFET

MCP14A0151 Gate Driver

Solar Charger LT3652 Battery Charging GPIO

Battery Pack

Thermal Knife

I2C

GPIO

Figure 52: Power Board Software Flow Chart 
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Figure 52 outlines a flow chart for the operation of the Power Board software. Upon boot, 

the Power Board will first initialize its internal RC clock generate to generate 8MHz clock signal. 

Once the oscillator is initialized, the Power Board will go through a peripheral initialization routine 

to initialize the ADC, I2C Master communication bus, custom-designed file system, Timer A, 

Timer B, and Real Time Clock. Then the Power Board will initialize the associated hardware by 

turning off all the hot-swaps, turning on all the solar charger, turning off both the 3.3V buck 

regulators, and initialize the communication between the Power Board and C&DH. Once the 

initialization is complete, the Power Board will go through the boot sequence.  

During the boot sequence routine, the Power Board checks a specific flash memory 

location at 0x1C200 to see if it is 0xFF. When reprogramming MSP430 through Code Composer 

Studio, all the un-used flash will be erased to have the initial value 0xFF. By checking for the 

initial value of a specific memory location, the software will determine whether it is the first time 

booting of MSP430. Upon determining the first boot of MSP430, the software will issue a 50min 

countdown through the RTC timer. After the 50min initial countdown, the Power Board will 

update the memory location 0x1C200 to 0xAA to disable the 50min timer in future boots. Any 

interruption of the fifty-minute countdown will not result in 0x1C200 being updated to 0xAA. This 

software setup satisfies the first requirement on software. 

After the initial countdown, the Power Board will execute its battery monitoring routine. 

The Power Board reads from the analog-to-digital converter to gather raw voltage data of the 

individual battery cell and convert the raw binary data into battery percentages of each cell. If the 

battery percentage is above 50 percent, the battery is deemed to be in a healthy state and C&DH 

will be enabled.  
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If the battery is in a good state and the C&DH is powered on. The Power Board will sit in 

idle waiting for C&DH’s commands through the UART channel at 115200 bit-per-second baud 

rate. The power board responds to commands in 1.25 to 20ms. Figure 53 is a logic analyzer capture 

of the communication between Power Board and C&DH. C&DH sends the command “0xF0 0x00 

0x01”, in 1.25ms, power board responds with “0x44 0x4F 0x47 0x4D 0x49” indicating its presence. 

This validates software requirement six. 

To satisfy requirement four, the Power Board checks the batteries’ state of charge and 

temperature every minute to make sure that the battery pack is healthy. The software is the same 

one used to generate battery reading in section 5.3.7. Following Table 17: IlliniSat-2 Power States, 

when the battery percentage is between 30 and 50 percent, the battery is deemed to be in low state 

where the C&DH will only be enabled if the satellite is charging though the solar panel; when the 

battery percentage is below 30 percent, the battery is deemed to be in emergency state where all 

the subsystems’ hot-swaps will be shutoff including C&DH, the Power Board will go into a low 

power mode, and check the battery percentage once every minute to see if the satellite is out of the 

battery emergency state. 

Figure 53: Power Board Responds to C&DH commands 
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Table 17: IlliniSat-2 Power States 

The Power Board software also functions as a watchdog timer for the C&DH. After the 

first communication between C&DH and Power Board, Power Board will enable its TimerA 

module and issue a 16s countdown. If no “CNDH” message is received during the 16s, power 

board will reboot C&DH. If “CNDH” message is received, the 16s timer will be set. Figure 54 

shows the watchdog interaction between C&DH and Power Board. C&DH sends Power Board the 

command “CNDH” every 10 seconds to prevent Power Board from rebooting C&DH. When 

C&DH stops sending the command, Power Board toggles the line and reboots C&DH. This 

implementation satisfies requirement seven.  

Figure 54: Power Board and C&DH Watchdog interaction: 

Battery Percentage State Action

Above 50% Healthy

Power on CNDH, 

allow any instrument to 

operate.

30% to 50% Low

Only power on CNDH 

when the solar panel is 

charging. Disable 

power to all the 

payloads

below 30% Energency

Power down everything 

on the satellite including 

CNDH.
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5.5.7 Remaining Issues and Next Revision 

So far, only one issue was noticed for the Power Board Revision C. The 3.3V is supplied 

to the VUSB pin not VBUS pin for the USB module. As a result, the USB module is not powered 

on for its extended GPIO function. The current fix is applying a dot of solder to short the VUSB 

and VBUS pins. 

Another fix that was implemented on the Power Board was regarding the burn out issue 

with the C&DH mentioned above. A wire is guided out from the backbone mating connector to 

the debug port to supply 3.3V to the RS232 transceivers on the EGSE.  

For the next revision of Power Board, it is not recommended to use MSP430 family of 

microcontrollers as the central processor. But instead use Texas Instrument Hercules Series of 

microcontrollers. Hercules Series of microcontrollers are designed to operate in safety critical 

applications. Inside of a Hercules microcontroller, two CPUs are running simultaneously with a 

lock step between them. Every 2 clock cycles, the CPUs will check their results to ensure they are 

not malfunctioning. Using Hercules instead of MSP430 for a system that will never be powered 

off is a safer method.  

For the next revision of Power Board, the designer should consider implementing a perturb 

observe buck boost MPPT charging circuit. As discussed above, perturb and observe is the most 

efficient way to transfer power from solar panel to battery. The designer does not necessarily need 

to put 5 of such circuits onto the Power Board because perturb and observe charging circuits are 

usually much bigger than constant operating voltage charging circuits. The designer can simply 

put two P&O circuits on the Power Board, with one being the actual charger and the other being 

the backup charger. The designer needs to figure out which solar panel is charging based on the 
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UV light sensor’s output data on the Flex Cable and electrically connect the sun facing solar panel 

to the P&O charger.  

5.5.8 Summary of Contribution 

 The Power Board design is capable of controlling the distribution of power to the rest of 

the subsystems and three payloads through the use of Hot-Swap controller. The Power Board is 

able to convert the solar panel to charge the battery through constant operating voltage Maximum 

Power Point Tracking solar charger. The Power Board contains a kill switch and RBF interface to 

disconnect the battery from the satellite for launch. The Power Board holds five thermal knife 

firing circuitries to satisfy the need to deploy either antennas or solar panels. The Power Board 

includes a microcontroller that runs Version 1 of the Power Board Software. The software 

communicates with C&DH to execute command to control the Hot-Swaps or gathering health 

monitoring data. The software also determines and enters different satellite power states based on 

the battery health. When the C&DH is powered on, the software acts like an external watchdog to 

prevent C&DH from hanging. The Power Board’s software and hardware, together, meet all the 

requirements stated in section 5.4.2.  
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CHAPTER 6: DESIGN AND MANUFACTURING LESSON LEARNED 

6.1 Introduction 

 This chapter will discuss the software used in: the design process, component sourcing 

for spacecraft Printed Circuit Boards, PCB manufacturers for prototyping and flight, and the 

process to professionally manufacture a PCB.   

6.2 PCB Design Software 

 Several PCB design software packages were used during the designing phase of IlliniSat-

2 bus and paylaod hardware. Each software has their pros and cons, and their usage was determined 

based on the respective student designer’s expertise, complexity of the PCB, and the need for 

specific specialty design tools. This section will go over the four PCB design software that were 

used during IlliniSat-2 development.  

6.2.1 OrCAD 

 OrCAD was used to design Revision one and two of the C&DH PCB. OrCAD is a very 

powerful software and an industrial standard, used at companies such as Apple, Intel and IBM[39]. 

It is mainly used for high-speed PCB design, due to its ability to perform full circuit simulation 

and signal integrity simulation with the drop in PSpice3 model feature. OrCAD has a steep learning 

curve because it was targeted towards high density, high speed, mixed signal PCB design. Most 

of the PCBs for IlliniSat-2 are neither high-speed, nor high density nor mixed signal, with the 

notable exception of the C&DH support board. OrCAD also split every one of its features into 

                                                 

3 PSpice is a SPICE circuit simulator application for simulation and verification of analog and mixed-signal 

circuits. PSpice is an acronym for Personal Simulation Program with Integrated Circuit Emphasis.  
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standalone software. The designer has to toggle between multiple software even when doing a 

simple PCB design. As a result, OrCAD stopped being used for hardware development ever since 

the departure of the designer who is familiar with it.  

6.2.2 Eagle CAD  

 Eagle CAD was used for the majority of the PCB designs for IlliniSat-2 bus. The Power 

Board, battery pack, C&DH, 3U and 6U Flex Cables, Torque Coil, Magnetometer and radio 

mounting board were all designed in Eagle CAD.  

 Eagle CAD is one of the most popular CAD software among amateurs due to its relatively 

complete schematic and PCB design interface. Eagle CAD software is low cost, easy to use, and 

have support from various forums and online communities[40]. On top of that, Eagle CAD was 

the software of choice for the ECE department, and it was particularly used by the ECE senior 

design class. The popularity of Eagle CAD within the school means that the software license is 

already available for use, and many students are trained to use Eagle CAD so the learning curve 

to apply it to spacecraft design is not steep.  

 Designing PCBs with Eagle CAD has its short comings. Thus far, four major flaws were 

noticed throughout author’s usage of Eagle CAD. The first flaw is the lack of functionality to 

facilitate high speed PCB routing, the issue was glaringly noticed during the routing of the high-

speed traces4 for C&DH. Further, unlike Altium and KiCad, Eagle CAD lacks 3D views and 3D 

PCB export which makes board-to-board mechanical fit checking problematic. The lack of such 

                                                 

4 High-speed traces are traces with signal speed of over 50MHz. In C&DH’s case, the clock, command and data 

traces are all rated to be 50MHz. When routing high speed single-ended traces, the trace impedance need to be 

50 Ohm, and the trace lengths of a signal group need to be matched within 20mil. 
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functionality caused misplacement of backbone connector between Power Board and C&DH, as 

well as difficulties in designing the Flex Cables that required fine mechanical dimension. The third 

flaw is that Eagle does not provide a more user-friendly interface for PCB routing; the complicated 

process to switch between layers makes any design or redesign with more than four layers of 

copper an unpleasant experience, like in the case of the Power Board. The last flaw with Eagle is 

that it does not have a complete design rule check. This means that certain types of design errors 

can pass the design rule inspection, allowing flawed or un-manufacturable designs to be released 

to production companies. This led to problems on multiple occasions. For instance, on one of the 

Torque Coils’ revisions, a via shorting the coil trace passed the design rule check, yet the short 

meant the Torque Coils of that batch were unusable as delivered. Determining the source of the 

problem and a fix wasted a lot of debugging time once the PCB was received. Another example 

relates to one of the Power Board’s revisions. In that case, several unterminated wires passed the 

design rule check and caused electromagnetic interference (EMI) issues with the Power Board.  

6.2.3 Altium 

 Like OrCAD, Altium is also a powerful PCB design software and an industrial standard. 

For example, Altium is the main software used for SpaceX’s PCB designs[41]. Altium is used for 

designs of the C&DH PCB high speed traces, the radio switching board between Lithium Radio 

and Cadet Radio needed by the LAICE mission, the 1.5U Flex Cable for CubeSail, and latest 

revision of Battery Pack.  

 Altium packs schematic and PCB design into a single software interface. Altium provides 

an intuitive shortcut system that greatly accelerates the design and learning process. It also 

provides the designer with a cleaner PCB coloring and design interface to ease the design process 

of PCBs with more than 4 layers. The biggest highlight for Altium Designer is its superior 3D 
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viewer for the PCB. Altium can import and export 3D models in step format, which means the 

mechanical fit check can be done during the design phase, unlike with the other software packages. 

This feature allows much better systems-level design, and ensures that the PCBs are guaranteed 

not to interfere with other spacecraft parts.  Further, Altium also supports bending of flexible PCBs 

which is essential for the design of the solar panel Flex Cables.  

 There are two downsides of using Altium. First downside is that sometimes the software 

crashes and a lot of design progresses are lost as a result. The issue was occurring a lot during 

Altium 17 and was improved in Altium 18. The second downside is the pricing of the software. 

Currently, the school doesn’t have Altium licenses. A full life time license is at about $8000 with 

one-year software update subscription, each year $2000 will need to be paid to subscribe to 

software updates.  

6.2.4 KiCad 

 KiCad is a complete open source, and free PCB design software. It is maintained by 

volunteers and paid contributors, and it recently got supported by the engineering team of 

CERN[42]. KiCad was used to design the entire SASA payload, as well as multiple interconnect 

circuits for the CAPSat and SASSI^2 payloads. The choice to use KiCad for those designs was 

made because of hardware engineers’ expertise on the software. 

 KiCad mimics most functionalities of Altium in terms of 3D viewing, shortcut assignment 

and routing modes, while being completely free. The remaining issue with KiCad is its 

complicated library linking system, and an incomplete design rule check system which misses 

PCB errors from time to time. The use of KiCad within the Illinisat-2 family of satellites is 

relatively new, and further usage, testing and experimentation is necessary before any 

recommendation to adopt it more generally can be made.  
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6.3 Embedded Software - Energia vs Code Composer Studio 

For MSP430 family microcontroller, the designer can have the option to use Code 

Composer Studio or Energia to develop the software. Originally, the implementation strategy for 

the software was to implement the software on top of the Energia framework. Energia framework 

mimics the popular Arduino framework that runs in Atmel family of microcontrollers. Energia 

contains all the necessary peripheral drivers and libraries to simplify the functions calls to greatly 

accelerate the design process. If Energia was used, the developers don’t have to spend a lot of time 

digging into the microcontroller datasheet to learn about different functionalities of each register. 

The downside of Energia is the reliability of the software’s framework. The Power Board’s 

microcontroller is required to always be powered on after the satellite’s lifecycle begins. If the 

software goes through an error situation because of bugs in the driver, the error could potentially 

latch the microcontroller, freeze the communication between Power Board and C&DH resulting 

in no control over the satellite’s power system. The entire satellite could potentially be locked up 

and the mission will be over. With the presence of the hardware watchdog, the error could 

potentially cause repeated reboot of the entire satellite at a rapid rate, which also means the failure 

of the mission. As a result, the developer for the embedded software must have a thorough 

understanding of the implementation of the embedded peripheral drivers, as well as a complete 

debugging interface to analyze the software’s reliability to catch any potential errors within the 

system. Energia and its corresponding IDE is more for hobbyist designers. It cannot guarantee the 

capability to ensure the prolonged operation of the power system. Energia also lacks a well put-

through debugging interface. Traditional embedded software debuggers involve putting 

breakpoints and pausing the program at specific instructions to analyze the internal registers, 

expressions and memories of the microcontroller. The debugging in Energia IDE can only be done 
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through printf() function calls to print out variables through UART. As a result, Energia framework 

was deemed unable to fulfill the requirements. A lower level software implementation strategy 

based on Code Composer Studio was chosen. 

Code Composer Studio is the integrated development environment to develop software 

application for the Texas Instrument family of microcontrollers and microprocessors. Code 

Composer Studio comprises a suite of tools used to develop and debug embedded applications. It 

includes an optimizing C/C++ compiler, source code editor, project build environment, debugger, 

profiler, and many other features[43]. The user can put the software into debug mode, insert 

breakpoint into either certain location in the software or specific faulty scenarios like stack 

overflow. The debug interface will provide information all the internal registers, user declared 

variables, and most importantly, the memory of the entire internal of the microcontroller. The user 

can also view the disassembly of the written C/C++ software. The usage of Code Composer Studio 

can help the programmer trace and fix software bugs more efficiently.  

6.4 Component Selection 

 Selection of components is important to ensure the proper operation of electrical 

component over the mission life time. Well selected components can ensure around many years of 

continuous operations of the satellite in the space environment. From a consumer level distributor, 

the designer is limited to two choices of component categories: general purpose grade and 

automotive grade components. The difference between general purpose and automotive 

component is the amount of testing that goes into qualifying the component. Automotive grade 

components go through a couple of JEDEC based qualification that involved high accelerated 

stress testing[44]. These tests simulate the component operating in high temperature and humidity, 

and further with simulated accelerated corrosive environment through input bias voltage. Taking 
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the example of a capacitor: if the capacitor is selected to be a general-purpose grade capacitor, it 

might be prone to internal cracking due to physical stress, parameter change through solder heat, 

etc. If the capacitor is AEC-Q200 standard qualified for automotive components, it will ensure a 

wide temperature operating range at -40 ~ 150C, moisture resistance at 80% humidity, long 

operating life, better resistance to solvents, mechanical shock, vibration and solder heat. If 

applicable[45]. AEC-Q2000 qualified automotive components are always preferred over general-

purpose components, especially when the electrical component is passive components such as 

resistors/capacitors/inductors/diodes. Below is a discussion to help future designer select 

capacitors and resistors since they are most commonly used in spacecraft electronic design. 

For capacitors, the preferred manufacturers are the name-brand Murata, Kemet, Samsung 

and TDK, since all the satellite capacitors have been sourced from them and no issues were noticed. 

The stocking for the capacitors fluctuates a lot depending on current market demand, so be 

prepared to have the capacitor selected obsolete even a week after generation of the Bill of Material. 

Due to the effect of capacitors losing capacitance in a half-life fashion, the capacitors selected 

should have their voltage rated twice the maximum operating voltage. It is wise to always have 

common value capacitors in stock, or to perform “lifetime 5 ” purchases of commonly used 

capacitors that have been proven to meet Spacecraft needs. The tolerance of the capacitor should 

be 10% to 20%. The temperature rating is preferred to be X7R that ensures operation at -55C to 

125C, but any rating above X5R is acceptable.  

                                                 

5 A “lifetime” purchase would be a preemptive purchase of extra capacitors expected to meet the manufacturing 

need for the foreseeable design life of the part, based on expected usage on upcoming missions and the part 

improvement/redesign cycle. 
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Electrolytic capacitors are general avoided for space applications. Electrolytic capacitors 

may undergo parameter changes from either ionizing or burst radiation, depending on dosage. 

Aluminum electrolytic capacitors can outgas water and organic vapors. The dielectric also can be 

weakened, and DC leakage may rise as a result of bombardment[46]. Ceramic capacitors should 

always be the first choice when selecting capacitors. The designer can also select glass film or 

tantalum capacitors for spacecraft with caution for polarity. A capacitor’s lost capacitance can be 

reset through oven bake-out, the bake-out realigns internal crystal structures of a capacitor, and 

should be performed before spacecraft delivery to ensure the capacitors can operate with a fresh 

start[47]. 

For resistors, the preferred manufacturers are the name-brand Panasonic, Samsung, 

Stackpole, Vishay Dale and Yageo, since all the satellite resistors have been sourced from them 

and no issues were noticed. The available stock from distributors for resistors fluctuates but not as 

much when compared with capacitors. Resistors usually don’t suffer from half-life effects like 

capacitors. When selecting resistors, 1% tolerance is desired, 5% is acceptable. The only big thing 

to be cautious about is the resistors’ power rating. A resistor operating above its power rating can 

lead to resistors smoking which is not desired for spacecraft. 

6.5 Tin Whiskering 

For spacecraft operating in a space environment, tin whisker from the tin solder can cause 

potential damage to the electrical circuit. Tin whiskers are electrically conductive, crystalline 

structures of tin that sometimes grow from surfaces where tin (especially electroplated tin) is used 

as a final finish. Tin whiskers were observed to grow to several millimeters and in some extreme 

cases, exceed 10mm. Tin whiskers can cause shorting of electrical circuits, causing a high surge 

of current flowing through the whisker, creating metal vapor that cascades out to short more 
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circuits. To prevent Tin Whiskers from happening, NASA suggested the use of leaded solder as a 

finish, and conformal coating the printed circuit board[48]. Tin whiskers are dangerous in the case 

of C&DH’s MitySom-335x daughter card. First, the daughter card is an off-the-shelf system 

module that is European ROHS compliant, meaning that the soldering process of the SOM card is 

lead free. Second, the BGA pitch for the AM3358 chip is 0.5mm, there is such a small gap between 

the BGA balls, that even a small growth of Tin whiskers from one pin can easily make it to another 

pin. As a result, special daughter cards are offered by Critical Link to add lead into the assembly 

process. This means re-balling the BGA with tin-lead balls, and soldering the entire circuitry with 

leaded solder paste. The daughter cards also goes through ultrasonic conformal parylene coating 

to apply coat in between BGA balls.  

6.6 PCB Manufacturers for Prototyping and Flight 

 Prototype PCBs before professionally manufacturing them is a good and cheap way to 

catch potential errors. Prototyped PCBs don’t go through thorough quoting processes, rigorous 

testing, nor certifications, which dramatically lower the cost. During the prototyping phase of the 

spacecraft, cheap PCB prototyping companies were used to manufacture PCBs. OSH Park, 

PCBWay, Golden Phoenix PCB, JLC Circuit, 4PCB, Bay Area PCB were all used at one point or 

another to manufacture prototype PCBs. Among those companies, PCBWay, Golden Phoenix PCB 

and JLC Circuit are based in China, OSH Park, 4PCB and Bay Area PCB are based in United State. 

Producing PCB in China reduces the production speed and cost dramatically while maintaining 

the same PCB quality as those produced in America. For example, PCBWay offers two-layer PCB 

that are less than 15 square inches at $5, the PCB can be delivered within a week. OSH Park offers 

two-layer PCB manufacturing at $5 per square inch, and the delivery is usually two weeks unless 

an extra $200 is paid. The cost difference and manufacture speed increase as the layer counts goes 
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up, making Chinese PCB manufacturers more attractive for satellite PCB prototyping. The big 

downside with using Chinese PCB manufacturers is that China is under ITAR and EAR regulation. 

Certain PCBs that fall into such category is not allowed to be made in China. If the components 

are shipped from American suppliers to China for assembly, they have to go through custom 

checks which can slow down the assembly process.  

 All the spacecraft hardware was later professionally manufactured and assembled in the 

United States once they were verified to be functionally flight ready. So far, Advanced Circuits 

and Sierra were used to produce rigid flight PCBs. FlexPCB was used to produce all the Flex 

Cables. Issues were noticed with all three companies. With Sierra Circuit being the more reliable 

company, Sierra Circuit has a great issue tracking system to catch any potential design or assembly 

errors. However, Sierra Circuits tends not to go through quoting files thoroughly which caused 

unnoticed quoting mistakes. For example, the Torque Coils and Battery Pack were quoted to be 

manufactured with leaded solder. Sierra missed that specification in the quote file. They had to 

confirm with one of the engineers if the boards are Restriction of Hazardous Substances (RoHS) 

compliant[49] in a section of a relatively long email. The engineer didn’t catch that question and 

answer. Sierra manufactured the boards to be unleaded as a result and caused a lot of troubles. But 

as long as the engineer is careful and thoroughly analyzes the quotes, such issues can be avoided.  

 To professionally manufacture and assemble a PCB, the designer has to go through three 

steps: generating the manufacture and assembly files, getting the quote, and placing the order. The 

designer needs to generate all the necessary Gerbers to manufacture the boards; solder paste files, 

component placement file and bill of material files should be generated to assemble the boards. 

The designer also need to attach a ReadMe file that contains the circuit’s specificationand order 

info. An example of the ReadMe file is shown below in  
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Figure 55. The files should be zipped together and upload to the manufacturer’s website. Once the 

quote is generated, the designer needs to go through the quote carefully to spot mistakes. If the 

price is acceptable, the order will be placed through the business office. Usually the manufacturer 

will give an order tracking number to track the manufacture status of the order.  

 

Figure 55: Example ReadMe.txt file for PCB quoting 

There are several parameters to stress when producing PCBs for spacecraft flight which 

should be listed in the ReadMe file. Any non-circular internal cutout of the circuit needs to have 

its own Gerber file and be specified in the ReadMe. The surface finishing is preferably a gold 

finish with the process of Eletroless Nickle Immersion Gold (ENIG) to offer longer shelf life, even 

soldering surfaces, and through-hole component’s structural rigidity[50]. The soldering process 
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has to be leaded to prevent tin-whiskering. The PCB is preferred to be at least Class 2 tested. A 

professionally designed PCB needs to meet either Class 1, 2 , 3 or 3/A standard. Class 1 is targeted 

towards general purpose electronics which should not be applied for satellite flight components. 

Class 2 products are defined as products where continued performance and extended life is 

required, and for which uninterrupted service is desired but not critical. Class 2 is usually 

affordable for CubeSat projects where funding is very limited but reliability is required. Class 3 

targets products that demand continued high performance and zero equipment downtime, such as 

life support systems and other critical systems e.g. pacemaker, satellite, radar signals, etc[51]. 

Class 3 testing can be several times more expensive than Class 2 testing, thus not economically 

sensical to run circuits through it. Class 3/A includes Space and Military Avionics and is the 

highest class for circuit boards. Class 3/A is extremely costly and mostly ITAR restricted, so they 

are never considered for LEO CubeSat missions.  
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CHAPTER 7: CONCLUSION 

 The presented design for IlliniSat-2 electrical bus offers complete solution of a Command 

and Data Handling system, as well as a Power Generation and Distribution system. All the master 

requirements are met through the further divided subsystem requirements. The C&DH and Power 

systems can not only support power and communication to the rest of the IlliniSat-2 subsystems, 

but also up to three scientific payloads. The IlliniSat-2 bus is capable of generating solar power 

for CubeSat missions with size from 1.5U to 6U. The IlliniSat-2 bus was designed with reliability 

in mind and provided redundancy whenever possible to the C&DH and Power system. The 

capability of the IlliniSat-2 bus is demonstrated by the five missions listed in Chapter Two, with 

the mission sizes varying from 1.5U to 6U and payload count varying from one to three. 

 CubeSail satellite was delivered with the presented IlliniSat-2 C&DH and Power systems. 

When CubeSail is launched and makes communication with the ground station, it will be crucial 

to analyze the performance of those two systems. The lesson that will be learnt from CubeSail 

mission can be used to implement better IlliniSat bus.  

 The subsequent USIP missions and LAICE mission, due to their later delivery dates, will 

go through more testing compared with CubeSail. Those four missions will further demonstrate 

and validate IlliniSat-2 bus’s capability for space operation. 
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APPENDIX A: C&DH BOOTLOG 

[    0.000000] Linux version 3.2.0-00362-gde97a28-dirty 

(mitydsp@mitydsp-dev) (gcc version 4.5.3 20110311 (prerelease) 

(GCC) ) #60 Fri Mar 16 16:37:22 EDT 2018 

[    0.000000] CPU: ARMv7 Processor [413fc082] revision 2 

(ARMv7), cr=10c53c7d 

[    0.000000] CPU: PIPT / VIPT nonaliasing data cache, VIPT 

aliasing instruction cache 

[    0.000000] Machine: mitysom335x 

[    0.000000] Memory policy: ECC disabled, Data cache writeback 

[    0.000000] On node 0 totalpages: 131072 

[    0.000000] free_area_init_node: node 0, pgdat c06f042c, 

node_mem_map c073e000 

[    0.000000]   Normal zone: 1024 pages used for memmap 

[    0.000000]   Normal zone: 0 pages reserved 

[    0.000000]   Normal zone: 130048 pages, LIFO batch:31 

[    0.000000] AM335X ES2.1 (sgx neon ) 

[    0.000000] pcpu-alloc: s0 r0 d32768 u32768 alloc=1*32768 

[    0.000000] pcpu-alloc: [0] 0  

[    0.000000] Built 1 zonelists in Zone order, mobility 

grouping on.  Total pages: 130048 

[    0.000000] Kernel command line: console=ttyO0,115200n8 

root=ubi0:rootfs rw ubi.mtd=8,4096 noinitrd rootfstype=ubifs 

rootwait=1 ip=none 

[    0.000000] PID hash table entries: 2048 (order: 1, 8192 

bytes) 

[    0.000000] Dentry cache hash table entries: 65536 (order: 6, 

262144 bytes) 

[    0.000000] Inode-cache hash table entries: 32768 (order: 5, 

131072 bytes) 

[    0.000000] Memory: 512MB = 512MB total 

[    0.000000] Memory: 512332k/512332k available, 11956k 

reserved, 0K highmem 

[    0.000000] Virtual kernel memory layout: 

[    0.000000]     vector  : 0xffff0000 - 0xffff1000   (   4 kB) 

[    0.000000]     fixmap  : 0xfff00000 - 0xfffe0000   ( 896 kB) 

[    0.000000]     vmalloc : 0xe0800000 - 0xff000000   ( 488 MB) 

[    0.000000]     lowmem  : 0xc0000000 - 0xe0000000   ( 512 MB) 

[    0.000000]     pkmap   : 0xbfe00000 - 0xc0000000   (   2 MB) 

[    0.000000]     modules : 0xbf000000 - 0xbfe00000   (  14 MB) 

[    0.000000]       .text : 0xc0008000 - 0xc0658000   (6464 kB) 

[    0.000000]       .init : 0xc0658000 - 0xc0694000   ( 240 kB) 

[    0.000000]       .data : 0xc0694000 - 0xc06fc0b8   ( 417 kB) 

[    0.000000]        .bss : 0xc06fc0dc - 0xc073d7b4   ( 262 kB) 
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[    0.000000] NR_IRQS:396 

[    0.000000] IRQ: Found an INTC at 0xfa200000 (revision 5.0) 

with 128 interrupts 

[    0.000000] Total of 128 interrupts on 1 active controller 

[    0.000000] OMAP clockevent source: GPTIMER2 at 24000000 Hz 

[    0.000000] OMAP clocksource: GPTIMER1 at 32768 Hz 

[    0.000000] sched_clock: 32 bits at 32kHz, resolution 

30517ns, wraps every 131071999ms 

[    0.000000] Console: colour dummy device 80x30 

[    0.000091] Calibrating delay loop... 795.44 BogoMIPS 

(lpj=3977216) 

[    0.039093] pid_max: default: 32768 minimum: 301 

[    0.039215] Security Framework initialized 

[    0.039306] Mount-cache hash table entries: 512 

[    0.039642] CPU: Testing write buffer coherency: ok 

[    0.040344] devtmpfs: initialized 

[    0.059661] omap_hwmod: pruss: failed to hardreset 

[    0.060821] print_constraints: dummy:  

[    0.061157] NET: Registered protocol family 16 

[    0.063140] OMAP GPIO hardware version 0.1 

[    0.065460] omap_mux_init: Add partition: #1: core, flags: 0 

[    0.067321] Configuring I2C Bus 1 

[    0.067413]  omap_i2c.2: alias fck already exists 

[    0.067596] Configuring I2C Bus 2 

[    0.067657]  omap_i2c.3: alias fck already exists 

[    0.068481] Registering mcspi 1 [2] 

[    0.068511]  omap2_mcspi.1: alias fck already exists 

[    0.068695] Registering mcspi 2 [2] 

[    0.068725]  omap2_mcspi.2: alias fck already exists 

[    0.068969]  edma.0: alias fck already exists 

[    0.069000]  edma.0: alias fck already exists 

[    0.069000]  edma.0: alias fck already exists 

[    0.071899] baseboard_init [MityARM-335x DevKit]... 

[    0.072204]  omap_hsmmc.0: alias fck already exists 

[    0.072570]  omap_hsmmc.1: alias fck already exists 

[    0.072814]  omap_hsmmc.2: alias fck already exists 

[    0.095581] bio: create slab <bio-0> at 0 

[    0.097534] SCSI subsystem initialized 

[    0.099060] usbcore: registered new interface driver usbfs 

[    0.099395] usbcore: registered new interface driver hub 

[    0.099578] usbcore: registered new device driver usb 

[    0.099731] musb-ti81xx musb-ti81xx: musb0, board_mode=0x3, 

plat_mode=0x3 

[    0.100006] musb-ti81xx musb-ti81xx: musb1, board_mode=0x3, 

plat_mode=0x0 

[    0.101074] omap_i2c omap_i2c.2: bus 2 rev2.4.0 at 100  kHz 
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[    0.119110] omap_i2c omap_i2c.3: bus 3 rev2.4.0 at 100 kHz 

[    0.119964] tps65910 3-002d: JTAGREVNUM 0x1 

[    0.122314] print_constraints: VRTC:  

[    0.123748] print_constraints: VIO: at 1500 mV  

[    0.126007] print_constraints: VDD1: 600 <--> 1500 mV at 1262 

mV normal  

[    0.128265] print_constraints: VDD2: 600 <--> 1500 mV at 1137 

mV normal  

[    0.129241] print_constraints: VDD3: 5000 mV  

[    0.130645] print_constraints: VDIG1: at 1800 mV  

[    0.132049] print_constraints: VDIG2: at 1800 mV  

[    0.133453] print_constraints: VPLL: at 1800 mV  

[    0.134857] print_constraints: VDAC: at 1800 mV  

[    0.136260] print_constraints: VAUX1: at 1800 mV  

[    0.137664] print_constraints: VAUX2: at 3300 mV  

[    0.139099] print_constraints: VAUX33: at 3300 mV  

[    0.140502] print_constraints: VMMC: at 3300 mV  

[    0.140991] tps65910 3-002d: No interrupt support, no core 

IRQ 

[    0.141967] Advanced Linux Sound Architecture Driver Version 

1.0.24. 

[    0.143218] cfg80211: Calling CRDA to update world regulatory 

domain 

[    0.144287] Switching to clocksource gp timer 

[    0.161468] musb-hdrc: version 6.0, ?dma?, otg 

(peripheral+host) 

[    0.161621] musb-hdrc musb-hdrc.0: dma type: dma-cppi41 

[    0.161926] MUSB0 controller's USBSS revision = 4ea20800 

[    0.161956] musb0: Enabled SW babble control 

[    0.161956] musb-hdrc: ConfigData=0xde (UTMI-8, dyn FIFOs, 

bulk combine, bulk split, HB-ISO Rx, HB-ISO Tx, SoftConn) 

[    0.161987] musb-hdrc: MHDRC RTL version 2.0  

[    0.161987] musb-hdrc: setup fifo_mode 4 

[    0.162017] musb-hdrc: 28/31 max ep, 16384/16384 memory 

[    0.162017] musb-hdrc.0: bulk split disabled 

[    0.162048] musb-hdrc.0: bulk combine disabled 

[    0.162506] musb-hdrc musb-hdrc.0: USB OTG mode controller at 

e083c000 using PIO, IRQ 18 

[    0.162658] musb-hdrc musb-hdrc.1: dma type: dma-cppi41 

[    0.162902] MUSB1 controller's USBSS revision = 4ea20800 

[    0.162933] musb1: Enabled SW babble control 

[    0.162963] musb-hdrc: ConfigData=0xde (UTMI-8, dyn FIFOs, 

bulk combine, bulk split, HB-ISO Rx, HB-ISO Tx, SoftConn) 

[    0.162963] musb-hdrc: MHDRC RTL version 2.0  

[    0.162963] musb-hdrc: setup fifo_mode 4 

[    0.162994] musb-hdrc: 28/31 max ep, 16384/16384 memory 
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[    0.162994] musb-hdrc.1: bulk split disabled 

[    0.163024] musb-hdrc.1: bulk combine disabled 

[    0.163085] musb-hdrc musb-hdrc.1: MUSB HDRC host driver 

[    0.163146] musb-hdrc musb-hdrc.1: new USB bus registered, 

assigned bus number 1 

[    0.163269] usb usb1: New USB device found, idVendor=1d6b, 

idProduct=0002 

[    0.163269] usb usb1: New USB device strings: Mfr=3, 

Product=2, SerialNumber=1 

[    0.163299] usb usb1: Product: MUSB HDRC host driver 

[    0.163299] usb usb1: Manufacturer: Linux 3.2.0-00362-

gde97a28-dirty musb-hcd 

[    0.163299] usb usb1: SerialNumber: musb-hdrc.1 

[    0.164123] hub 1-0:1.0: USB hub found 

[    0.164154] hub 1-0:1.0: 1 port detected 

[    0.164794] musb-hdrc musb-hdrc.1: USB OTG mode controller at 

e083e800 using PIO, IRQ 19 

[    0.165191] NET: Registered protocol family 2 

[    0.165344] IP route cache hash table entries: 4096 (order: 

2, 16384 bytes) 

[    0.165618] TCP established hash table entries: 16384 (order: 

5, 131072 bytes) 

[    0.165893] TCP bind hash table entries: 16384 (order: 4, 

65536 bytes) 

[    0.166046] TCP: Hash tables configured (established 16384 

bind 16384) 

[    0.166076] TCP reno registered 

[    0.166076] UDP hash table entries: 256 (order: 0, 4096 

bytes) 

[    0.166107] UDP-Lite hash table entries: 256 (order: 0, 4096 

bytes) 

[    0.166259] NET: Registered protocol family 1 

[    0.166503] RPC: Registered named UNIX socket transport 

module. 

[    0.166534] RPC: Registered udp transport module. 

[    0.166534] RPC: Registered tcp transport module. 

[    0.166534] RPC: Registered tcp NFSv4.1 backchannel transport 

module. 

[    0.166748] NetWinder Floating Point Emulator V0.97 (double 

precision) 

[    0.184448] VFS: Disk quotas dquot_6.5.2 

[    0.184509] Dquot-cache hash table entries: 1024 (order 0, 

4096 bytes) 

[    0.184997] msgmni has been set to 1000 

[    0.185791] io scheduler noop registered 

[    0.185821] io scheduler deadline registered 
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[    0.185882] io scheduler cfq registered (default) 

[    0.187652] Serial: 8250/16550 driver, 4 ports, IRQ sharing 

enabled 

[    0.189453] omap_uart.0: ttyO0 at MMIO 0x44e09000 (irq = 72) 

is a OMAP UART0 

[    0.886596] console [ttyO0] enabled 

[    0.890869] omap_uart.1: ttyO1 at MMIO 0x48022000 (irq = 73) 

is a OMAP UART1 

[    0.898742] omap_uart.2: ttyO2 at MMIO 0x48024000 (irq = 74) 

is a OMAP UART2 

[    0.906555] omap_uart.3: ttyO3 at MMIO 0x481a6000 (irq = 44) 

is a OMAP UART3 

[    0.914337] omap_uart.4: ttyO4 at MMIO 0x481a8000 (irq = 45) 

is a OMAP UART4 

[    0.922149] omap_uart.5: ttyO5 at MMIO 0x481aa000 (irq = 46) 

is a OMAP UART5 

[    0.939331] brd: module loaded 

[    0.947387] loop: module loaded 

[    0.950836] i2c-core: driver [tsl2550] using legacy suspend 

method 

[    0.957336] i2c-core: driver [tsl2550] using legacy resume 

method 

[    0.963745] at24 2-0050: 256 byte 24c02 EEPROM, read-only, 0 

bytes/write 

[    0.976593] MitySOM-335x: Part Number = 3354-HX-X38-RI 

[    0.981964] MityARM-335x DevKit: factory_config_callback 

[    0.988159] No SPI NOR Flash found. 

[    0.991790] Configuring 512MB NAND device 

[    0.996704] omap-gpmc omap-gpmc: GPMC revision 6.0 

[    1.001708] Registering NAND on CS0 

[    1.007720] m25p80 spi2.0: m25p64-nonjedec (8192 Kbytes) 

[    1.013275] Creating 1 MTD partitions on "spi_flash": 

[    1.018615] 0x000000000000-0x000000800000 : "NOR User 

Defined" 

[    1.026641] omap2-nand driver initializing 

[    1.031219] ONFI flash detected 

[    1.034637] ONFI param page 0 valid 

[    1.038299] NAND device: Manufacturer ID: 0x2c, Chip ID: 0xdc 

(Micron MT29F4G08ABAEAWP) 

[    1.046722] Creating 8 MTD partitions on "omap2-nand.0": 

[    1.052276] 0x000000000000-0x000000040000 : "SPL" 

[    1.058837] 0x000000040000-0x000000080000 : "SPL.backup1" 

[    1.065826] 0x000000080000-0x0000000c0000 : "SPL.backup2" 

[    1.072723] 0x0000000c0000-0x000000100000 : "SPL.backup3" 

[    1.079681] 0x000000100000-0x000000300000 : "U-Boot" 

[    1.086517] 0x000000300000-0x000000340000 : "U-Boot Env" 
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[    1.093322] 0x000000340000-0x000000840000 : "Kernel" 

[    1.100830] 0x000000840000-0x000020000000 : "File System" 

[    1.210357] usb 1-1: new full-speed USB device number 2 using 

musb-hdrc 

[    1.218841] OneNAND driver initializing 

[    1.225158] CAN device driver interface 

[    1.229156] CAN bus driver for Bosch D_CAN controller 1.0 

[    1.235443] PPP generic driver version 2.4.2 

[    1.240295] PPP BSD Compression module registered 

[    1.245239] PPP Deflate Compression module registered 

[    1.250946] PPP MPPE Compression module registered 

[    1.255981] NET: Registered protocol family 24 

[    1.260955] usbcore: registered new interface driver 

cdc_ether 

[    1.267242] usbcore: registered new interface driver 

cdc_subset 

[    1.273468] Initializing USB Mass Storage driver... 

[    1.278808] usbcore: registered new interface driver usb-

storage 

[    1.285095] USB Mass Storage support registered. 

[    1.290313] usbcore: registered new interface driver 

usbserial 

[    1.296417] usbserial: USB Serial Driver core 

[    1.301116] USB Serial support registered for FTDI USB Serial 

Device 

[    1.308044] usbcore: registered new interface driver ftdi_sio 

[    1.314025] ftdi_sio: v1.6.0:USB FTDI Serial Converters 

Driver 

[    1.320739] mousedev: PS/2 mouse device common for all mice 

[    1.329559] tps65910-rtc tps65910-rtc: Wake up is not 

possible as irq = 0 

[    1.342498] tps65910-rtc tps65910-rtc: rtc core: registered 

tps65910-rtc as rtc0 

[    1.350463] i2c /dev entries driver 

[    1.354766] Linux media interface: v0.10 

[    1.359039] Linux video capture interface: v2.00 

[    1.364166] usbcore: registered new interface driver uvcvideo 

[    1.370208] USB Video Class driver (1.1.1) 

[    1.431396] usb 1-1: New USB device found, idVendor=0403, 

idProduct=6015 

[    1.438415] usb 1-1: New USB device strings: Mfr=1, 

Product=2, SerialNumber=3 

[    1.445861] usb 1-1: Product: FT230X Basic UART 

[    1.450592] usb 1-1: Manufacturer: FTDI 

[    1.454589] usb 1-1: SerialNumber: DN03ZBU3 
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[    1.462738] ftdi_sio 1-1:1.0: FTDI USB Serial Device 

converter detected 

[    1.469909] usb 1-1: Detected FT-X 

[    1.473480] usb 1-1: Number of endpoints 2 

[    1.477752] usb 1-1: Endpoint 1 MaxPacketSize 64 

[    1.482574] usb 1-1: Endpoint 2 MaxPacketSize 64 

[    1.487426] usb 1-1: Setting MaxPacketSize 64 

[    1.492462] usb 1-1: FTDI USB Serial Device converter now 

attached to ttyUSB0 

[    1.501464] OMAP Watchdog Timer Rev 0x01: initial timeout 60 

sec 

[    1.510009] cpuidle: using governor ladder 

[    1.514739] cpuidle: using governor menu 

[    1.526123] usbcore: registered new interface driver usbhid 

[    1.531951] usbhid: USB HID core driver 

[    1.537048] usbcore: registered new interface driver snd-usb-

audio 

[    1.545074] ALSA device list: 

[    1.548187]   No soundcards found. 

[    1.551727] oprofile: hardware counters not available 

[    1.557037] oprofile: using timer interrupt. 

[    1.561492] nf_conntrack version 0.5.0 (8005 buckets, 32020 

max) 

[    1.568267] ip_tables: (C) 2000-2006 Netfilter Core Team 

[    1.573913] TCP cubic registered 

[    1.577301] NET: Registered protocol family 17 

[    1.581970] can: controller area network core (rev 20090105 

abi 8) 

[    1.588500] NET: Registered protocol family 29 

[    1.593139] can: raw protocol (rev 20090105) 

[    1.597625] can: broadcast manager protocol (rev 20090105 t) 

[    1.603546] lib80211: common routines for IEEE802.11 drivers 

[    1.609466] lib80211_crypt: registered algorithm 'NULL' 

[    1.609497] lib80211_crypt: registered algorithm 'WEP' 

[    1.609497] lib80211_crypt: registered algorithm 'CCMP' 

[    1.609497] lib80211_crypt: registered algorithm 'TKIP' 

[    1.609527] Registering the dns_resolver key type 

[    1.614501] VFP support v0.3: implementor 41 architecture 3 

part 30 variant c rev 3 

[    1.622528] ThumbEE CPU extension supported. 

[    1.627044] mux: Failed to setup hwmod io irq -22 

[    1.632507] Power Management for AM33XX family 

[    1.637176] pm: Err (-22) setting core voltage setting 

[    1.642730] Trying to load am335x-pm-firmware.bin (60 secs 

timeout) 

[    1.649414] Copied the M3 firmware to UMEM 
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[    1.653717] Cortex M3 Firmware Version = 0x186 

[    1.663665] UBI: attaching mtd8 to ubi0 

[    1.907775] mmc0: new high speed MMC card at address 0001 

[    1.926239] Hi, Im here: mmcblk0: mmc0:0001 Q2J55L 7.12 GiB  

[    1.932250] mmcblk0boot0: mmc0:0001 Q2J55L partition 1 2.00 

MiB 

[    1.938568] mmcblk0boot1: mmc0:0001 Q2J55L partition 2 2.00 

MiB 

[    1.957946]  mmcblk0: unknown partition table 

[    1.992279]  mmcblk0boot1: unknown partition table 

[    2.016815]  mmcblk0boot0: unknown partition table 

[    2.207672] mmc1: new high speed MMC card at address 0001 

[    2.226104] Hi, Im here: mmcblk1: mmc1:0001 Q2J54A 3.58 GiB  

[    2.232116] mmcblk1boot0: mmc1:0001 Q2J54A partition 1 16.0 

MiB 

[    2.238433] mmcblk1boot1: mmc1:0001 Q2J54A partition 2 16.0 

MiB 

[    2.257720]  mmcblk1: unknown partition table 

[    2.291961]  mmcblk1boot1: unknown partition table 

[    2.316436]  mmcblk1boot0: unknown partition table 

[    2.507324] mmc2: new high speed MMC card at address 0001 

[    2.525726] Hi, Im here: mmcblk2: mmc2:0001 Q2J54A 3.58 GiB  

[    2.531738] mmcblk2boot0: mmc2:0001 Q2J54A partition 1 16.0 

MiB 

[    2.538024] mmcblk2boot1: mmc2:0001 Q2J54A partition 2 16.0 

MiB 

[    2.559356]  mmcblk2: unknown partition table 

[    2.591552]  mmcblk2boot1: unknown partition table 

[    2.616119]  mmcblk2boot0: unknown partition table 

[    5.902923] UBI: scanning is finished 

[    5.923034] UBI: attached mtd8 (name "File System", size 503 

MiB) to ubi0 

[    5.930175] UBI: PEB size: 262144 bytes (256 KiB), LEB size: 

253952 bytes 

[    5.937286] UBI: min./max. I/O unit sizes: 4096/4096, sub-

page size 4096 

[    5.944274] UBI: VID header offset: 4096 (aligned 4096), data 

offset: 8192 

[    5.951477] UBI: good PEBs: 2015, bad PEBs: 0, corrupted 

PEBs: 0 

[    5.957763] UBI: user volume: 1, internal volumes: 1, max. 

volumes count: 128 

[    5.965209] UBI: max/mean erase counter: 43/21, WL threshold: 

4096, image sequence number: 1104463418 

[    5.974853] UBI: available PEBs: 0, total reserved PEBs: 

2015, PEBs reserved for bad PEB handling: 40 
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[    5.984649] UBI: background thread "ubi_bgt0d" started, PID 

721 

[    5.994293] tps65910-rtc tps65910-rtc: setting system clock 

to 2000-01-01 01:12:24 UTC (946689144) 

[    6.067108] UBIFS: background thread "ubifs_bgt0_0" started, 

PID 725 

[    6.137145] UBIFS: recovery needed 

[    6.506347] UBIFS: recovery completed 

[    6.510284] UBIFS: mounted UBI device 0, volume 0, name 

"rootfs" 

[    6.516571] UBIFS: LEB size: 253952 bytes (248 KiB), 

min./max. I/O unit sizes: 4096 bytes/4096 bytes 

[    6.526123] UBIFS: FS size: 398704640 bytes (380 MiB, 1570 

LEBs), journal size 9404416 bytes (8 MiB, 38 LEBs) 

[    6.536499] UBIFS: reserved for root: 0 bytes (0 KiB) 

[    6.541778] UBIFS: media format: w4/r0 (latest is w4/r0), 

UUID 4884BFB3-1E1C-425E-A654-C75ECDD298E8, small LPT model 

[    6.554901] VFS: Mounted root (ubifs filesystem) on device 

0:14. 

[    6.561492] Freeing init memory: 240K 
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APPENDIX B: PICTURES OF PCB REVISIONS 

Figure 56: C&DH Revision 2 

Figure 57: C&DH Revision 3 
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Figure 58: C&DH Revision 4 

Figure 59: Battery Pack Revision A 



138 

 

  

Figure 60: Battery Pack Revision B 

Figure 61: Battery Pack Revision C 
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Figure 62: Battery Pack Revision D 

Figure 63: Battery Pack Revision E 
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Figure 64: Battery Pack Revision F 

Figure 65: Power Board Revision A 
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Figure 66: Power Board Revision B 

Figure 67: Power Board Revision C 


