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Abstract

Solving Satisfiability Modulo Theories (SMT) problems in a key piece in automat-

ing tedious mathematical proofs. It involves deciding satisfiability of formulas of a

decidable theory, which can often be reduced to solving systems of equalities and

disequalities, in a variety of theories such as linear and non-linear real and integer

arithmetic, arrays, uninterpreted and Boolean algebra. While solvers exist for many

such theories or their subsets, it is common for interesting SMT problems to span

multiple theories. SMT solvers typically use refinements of the Nelson-Oppen com-

bination method, an algorithm for producing a solver for the quantifier free fragment

of the combination of a number of such theories via cooperation between solvers of

those theories, for this case. Here, we present the Nelson-Oppen algorithm adapted

for an order-sorted setting as a rewriting logic theory. We implement this algorithm

in the Maude System and instantiate it with the theories of real and integer ma-

trices to demonstrate its use in automated theorem proving, and with hereditarily

finite sets with reals to show its use with non-convex theories. This is done using

both SMT solvers written in Maude itself via reflection (Variant-based satisfiability)

and using external solvers (CVC4 and Yices). This work can be considered a first

step towards building a rich ecosystem of cooperating SMT solvers in Maude, that
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modeling and automated theorem proving tools typically written using the Maude

System can leverage.
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Chapter 1

Introduction

In 1928, David Hilbert posed the “Entscheidungsproblem” (“the decision problem”)

to the mathematical community: a challenge to mechanize mathematics; to find an

algorithm that takes as input any first-order logic statement and return whether it

is a true statement or not. Even though, in 1936, Alan Turing and Alonzo Church

independently showed that such an algorithm is impossible, great progress has been

made towards solving significant and profitable subsets of first-order logic formulae.

Given a theory and a first order logic formula in it’s signature, the Satisfiabil-

ity Modulo Theories problem is that of deciding whether there is an assigment of

variables such that the interpretation of that forumla holds in some model of that

theory. In this case, we say that the forumla is “satisfiable”. Otherwise we say that

the formula is “unsatisfiable”. Validity, an important related concept, is the dual of

satisfiability. A formula is “valid” in a theory, if in every model of the theory and for

every possible assigment of variables, the formula holds. For example, the statement

“every natural number factorizers uniquely into a set of prime numbers” is valid

in Peano arithmetic, whereas any first order logic formulation of “Peano arithmetic

is consistent” in the theory of Peano arithmetic is not, due to Gödel’s Incomplete-

ness Theorems. An algorithmic check for validity of arbitary formulae was Hilbert’s
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dream and forms the core of SMT solving.

Although, alas, Hilbert’s dream is impossible, and in general satisfiability is un-

decidable (e.g. for non-linear integer arithmetic), there are subsets of theories that

are decidable and immensely useful for a variety of applications including solving

optimization problems, program verification and automated theorem proving.

Over the years, efficient algorithms were devised for linear real and integer arith-

metic, non-linear arithmetic, arrays (partial functions from the naturals) amongst

others, as well as theory-generic algorithms (Meseguer 2016). Program verification

and other applications, however, often involve working with a combination of two

or more theories (e.g. verification of a sorting algorithm may involve using the com-

bined theory of arrays and of total linear orders). Initially, solving satisfiability

problems in a combination of theories involved manually working out the combined

procedure and proving their correctness (Shostak 1979)(Suzuki and Jefferson 1980).

In 1979, Greg Nelson and Derek Oppen published a generic method for composing

SMT solvers for two theories into one for the quantifier free fragment of their union

(Nelson and Oppen 1979). In (Shostak 1984), Shostak introduced a procedure for

deciding combinations of “canonizable” and “solvable” theories, called Shostak the-

ories. Today, most SMT solvers use the Nelson-Oppen algorithm, with refinements

for handling Shostak, shiny, and polite theories, at their core.

In this thesis, we implement in rewriting logic an order-sorted Nelson-Oppen

algorithm for composing satisfiability modulo theory (SMT) solvers for first order

theories into an SMT solver for the quantifier-free fragment of their union. We

build on the Tinelli and Zarba’s work of extending the Nelson-Oppen algorithm to
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order-sorted logics (Tinelli and Zarba 2004) and refer to the notes of Meseguer (J.

Meseguer 2017b), to implement this algorithm as an order-sorted rewrite theory using

the Maude System.

Implementing this as a rewrite theory is particularly attractive for several reasons.

Firstly, the inference rules translate almost directly into axioms of an equational the-

ory (used as rewriting rules), making the algorithm much clearer than it would be

in, e.g. C++. Secondly, many first order logic theories can be defined as equational

theories with an initial algebra semantics (a subset of rewrite theories). This, in

combination with rewriting logic being a reflective logic allows implementing the-

ory generic SMT solvers such as Variant-Based Satisfiability (Meseguer 2016) and

congruence closure possible. In particular, these solvers have been implemented in

Maude (Skeirik and Meseguer 2016) taking advantage of reflection through Maude’s

META-LEVEL.

The Maude System is a programming language often used for modeling and ver-

ification of systems. It has been used to verify a wide spectrum of systems, from

biological systems (Pathway Logic (Eker et al. 2004)), to Cryptographic Protocols

(Maude NPA (Escobar, Meadows, and Meseguer 2006)), to concensus algorithms, to

programming languages (KFramework (Şerbanuţă and Roşu 2010)), and so on (see

(Meseguer 2012) for a comprehensive survey of such applications). The capabili-

ties of many of these formal verification tools can be substantially increased through

leveraging the power of SMT solvers. Besides the SMT solvers mentioned previously,

Maude also offers access to CVC4 (Barrett et al. 2011) as well as Yices (Dutertre

2014), both state of the art solvers. While both CVC4 and Yices themselves im-
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plement the Nelson-Oppen algorithm internally, those implementations do not allow

cooperation between the algorithms implemented in Maude as rewrite theories, or

other solvers. Thus this implementation of the algorithm can be seen as a first step

towards a rich, robust and extensable ecosystem of cooperating SMT solvers.

1.1 Satisfiability Modulo Theories (SMT)

SMT problems are decision problems for checking whether a first-order logic formula

φ(x⃗) is satisfiable in a theory T , i.e. whether there is a model M of T such that

M |= ∃x⃗φ(x⃗). Similarly, a formula is said to be valid if its negation is unsatisfiable.

Checking satisfiabilty and its dual, validity, have a wide range of applications,

including logistics, optimization, software verification, program synthesis and au-

tomated theorem proving. In fact validity forms the core of automated theorem

proving. Its importance has led to the standardization of a language, SMT-LIB for

describing SMT problems, and the SMT-COMP competition, where the foremost

solvers compete against each other for effectiveness and performance. This has cre-

ated a virtuous cycle where difficult real world SMT problems posed by industry and

academia are added to the benchmarks and the solvers compete at efficiently solving

these problems, enabling further and more interesting applications.

SMT has come a long way since Hilbert posed his problem of “mechanising math-

ematics”. In 1929, Persburger proved that linear integer arithmetic is indeed decid-

able, and although it was shown later by Fischer and Rabin that the algorithm must

be worst case doubly exponential on the length of formulae, the Simplex Algorithm
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and its variations has proven to be an effective method of solving SMT for both real

and integer quantifier free linear arithmetic efficiently. Efficient algorithms have also

been found for a number of other theories, such as the theory of arrays, uninterpreted

functions and more.

SMT problems in automated theorem proving and program verification com-

monly involve combinations of standard theories. For example, verifying a sorting

algorithm may involve solving queries in the combined theories of lists and of total

orders. Prior to 1979, this involved manually looking for a combined algorithm, and

proving that it worked as promised. In 1979, Nelson and Oppen proposed a general

algorithm for combining SMT solvers into one for the quantifier free fragment of the

larger theory. Although this algorithm only applies to a class of theories called stably

infinite (which intuitively means that models of both theories can be found having

the same cardinality), this requirement is much easier to meet in a many-sorted or

order-sorted context, and it has furthermore been relaxed in subsequent work (e.g.,

to so-called “polite” theories). As a consequence many important theories fall into

this class or satisfy weaker requirements allowing them to be combined.

1.2 Logical foundations of Maude

The Maude System is a programming language and framework whose semantics is

based on Rewriting Logic. Rewrite theories model concurrent systems. In particular,

for model checking purposes they provide a very high level formalism for axiomatizing

possibly infinite Kripke structures. This is exploited in Maude for formal analysis
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purposes, since concurrent systems specified as rewrite theories can be analyzed using

Maude’s LTL model checker and other model checkers and theorem proving tools in

Maude’s formal environment.

Since a rewrite theory is a triple (Σ, E,R) with (Σ, E) an equational theory with

symbols Σ and (possibly conditional) equations E, and R the theory’s rewrite rules

axiomatizing system transitions, a rewrite theory defines over the elements of the

initial algebra TΣ/E (which models the system states), a transition system. This

transition system is intrinsically concurrent thanks to the logic’s semantics, and

captures naturally the non-determinism present in such systems.

1.2.1 Unsorted vs Many-Sorted vs Order-Sorted Logics

Traditionally, first order logic has been used in an unsorted setting, i.e. there is a

single set of elements in the model that can be quantified over. This can however

make representing some theories cumbersome. For example, in the theory of vector

spaces there are two types of objects that are of interest to us: vectors and scalars.

If we approach this by defining a signature whose terms can represent either vectors

or scalars, along with predicates for checking whether an element is a vector or a

scalar, functions on vectors would become partial. We could work around this by

adding a third “type” of element to represent invalid results for these functions, but

this quickly becomes cumbersome.

Many sorted logics offer a solution to this. A many sorted signature is a pair

Σ = (S, F ) where S is a set of sorts, and F is a S∗×S-indexed set of function symbols

F = {Fa,r : (a, r) ∈ S∗ × S}. If f ∈ Fs1×...×sn,s, we write f : s1 × . . . × sn → s.
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For a many-sorted signature Σ, a many-sorted Σ-algebra, is a pair (A,_A), where

A = {As}s∈S is an S indexed set, and _A is the interpretation map, mapping each

function symbol f : s1 × · · · × sn → s to a function fA : As1 × · · · × Asn → Ss (J.

Meseguer 2017a). Terms, formulae and sentences are defined as they traditionally

are in first order logic. Now, for the theory of vector spaces, we can define a signature

with two sorts: one for vectors and another for scalars and use it to axiomatize vector

spaces concisely.

However, we can do better than many-sorted logic. Take the theory of lists. The

head function takes a non-empty list and returns its first element. But, what happens

when the list is empty? What does the head function return in the case of an empty

list? The head function must be partial. Order-sorted signatures allow formallizing

such partiality (Meseguer 2013).

An order sorted signature Σ = ((S,≤s), F ) is a triple where (S, F ) is a many-

sorted signature, and ≤s is a partial order on the set S. Models of order-sorted the-

ories are order-sorted Σ−algebras. For an order-sorted signature Σ an order-sorted

Σ−algebra is a many-sorted Σ−algebra, (A,_A), satisfying the following additional

conditions:

1. If s≤ss
′, then As ⊂ As′ .

2. Given constant symbols c : ϵ → s and c : ϵ → s′ with s and s′, sorts in the

same connected component under ≤s, then their interpretations, cϵ,sA ∈ Aa and

cϵ,s
′

A ∈ As′ , are the same element.

3. Given function symbols f : a→ r and f : a′ → r′ with a′ = s′1×· · ·×s′n and a =
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s1×· · ·×sn and each si and s′i, and r and r′ in the same connected component

(i.e. f is subsort overloaded) then for each a⃗ ∈ (As1×· · ·×Asn)∩(As′1
×· · ·×As′n)

we have fA,s1×···×sn→s(⃗a) = fA,s′1×···×s′n→s′ (⃗a) (i.e. subsort-overloaded functions

agree on common elements).

In an order-sorted setting, we can define lists with distinct subsorts for the empty

list and non-empty lists. The head function can then be defined as a total function

with domain non-empty lists.

1.2.2 Equational Logic

A signature Σ is a set of function symbols and their arities. An equational theory is a

pair (Σ, E), where E is a set of algebraic identities on the terms TΣ(X) constructed

from the signature Σ with (sorted) variables in X. For example, the group Z5

could be described as the initial algebra of an equational theory for a signature

Σ = {0, 1,_ + _,−_} with the following equations E:

x+ 0 = x Additive Identity

x+ (y + z) = (x+ y) + z Associativity

x+ y = y + x Commutativity

1 + 1 + 1 + 1 + 1 = 0 Characteristic 5

x+ (−x) = 0 Inverses

Note that underscores in the signature indicate holes for subterms, and thus

indicate the arity of the symbol.
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This equational theory can be implemented as a Maude functional module as

follows:

fmod Z5 is
sorts Z5 .
op 0 : -> Z5 [ctor] .
op 1 : -> Z5 [ctor] .
op _ + _ : Z5 Z5 -> Z5 [assoc comm id: 0 ctor] .
op - _ : Z5 -> Z5 .

vars x y : Z5 . --- x and y are variables of sort Z5
eq (-0) = 0 . --- Inverse of 0
eq (-1) = 1 + 1 + 1 + 1 . --- Inverse of 1
eq 1 + 1 + 1 + 1 + 1 = 0 . --- Characteristic 5
eq -(x + y) = (-x) + (-y) . --- Inverse distribute

endfm

This program represents an equational theory E = ((S,≤S),Σ, E ∪ B). Here,

S = {Z5} ≤s= {} and Σ = {0, 1,_ + _}. The fmod Z5 is ... endfm construct

defines a functional module that describes an equational theory. The signature of this

theory has a single sort Z5. The op declaration defines the terms and functions in the

signature of that theory. These are of the form op NAME : ARGUMENTS -> RESULT

[ATTRIBUTES]. For example, _ + _ takes two terms of sort Z5 and returns another

of the same sort, while 0 and 1 are constants of sort Z5. The ctor attribute marks

a term as part of the constructor signature of the theory. The assoc, comm and id:

0 attributes mark the plus operator as being associative, commutative and having 0

as its identity. The vars declaration allows using the tokens x and y as variables in

equations. Each eq construct represents an axiom in the equational theory.

Although ordinarily equations in equational theories are symmetric – in a proof

we may replace equals by equals if a term matches either the left hand side or the

9



right hand side – equations in Maude are only applied from left to right. This is to

allow defining a terminating execution and also, by choosing equations carefully so

that they are confluent, to ensure a unique result for every terminating execution of

a term. Attributes like assoc and comm allow specifying common axioms that would

otherwise be difficult to define in a terminating manner (and also make computations

using Maude’s efficient matching algorithms modulo such axioms considerably more

expressive, with very succinct specifications.) Because of this directionality, the

theories must be confluent for them to form a well-defined equational theory. i.e. the

application of equations must yield the same final result irrespective of the order

in which eqautions are applied. Although tools such as the Church-Rosser Checker

and the Maude Termination Tool are provided to help check these, the burden of

making sure that functional modules are confluent and terminating is ultimately on

the programmer defining them. This orientation on the equations means that we

will sometimes have to define equations that would otherwise be mathematically

deducible. For example, if we had defined the functional module with the same

equations as the equational theory, Maude would not have been able to deduce that

−3 = 2. However, it is trivial to show that each set of equations can be derived

from the other. In spite of this, it can be seen from the example above that the

representational distance between an equational theory and its implementation in

Maude very small.

Besides the syntax demonstrated above, Maude also supports conditional equa-

tions, i.e. an equation that fires only when some predicate expression holds for an

equation’s instance, and also an “otherwise” clause – an equation that will fire when
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no other equation holds.

1.2.3 Rewriting Logic

A rewrite theory R is a triple (Σ, E,R), where (Σ, E) is an equational theory and R

the set of one step rewrite rules on the terms of the signature.

The rewrite rules R define a relation −→R⊂ TΣ × TΣ. This relation is obtained

from the closure of R under reflexivity, E−equality (equality under the set of axioms

E), congruence (if a subterm rewrites, then the rewrite “lifts” to all terms containing

that subterm; t −→R t′ =⇒ f(. . . , t, . . .) −→R f(. . . , t′, . . .)), replacement (for any

substitution θ, t −→R t′ =⇒ tθ −→R t′θ) and transitivity. If x −→R y, we say “x

rewrites to y”.

This relation defines a transition system, where the system states are precisely

the elements of the initial algebra TΣ/E associated to the equational theory (Σ, E).

Execution of a program in Maude – reducing a concrete term via the rewrite relation

−→R – involves following the edges of this transition graph and terminates when

the term it arrives at has no outward edges. Maude can also perform symbolic

execution, i.e. reduce a term that has variables, as well as search the structure for

terms matching a pattern or predicate. By defining state predicates by means of

equations and adding these equations as well as the predicate symbols to the rewrite

theory, the above transition system becomes a Kripke structure. Kripke Structures

are commonly used in the implementation of model checking and are the structures

over which Linear and Branching Temporal Logics are defined. Again, this makes

the representational distance between the specification of the model and the data
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structures we use to reason over it minimal, making verification of correctness of

model checkers and other tools that reason over these structures easier than that of

model checkers where systems are specified in some imperative langaugee

Rewrite theories are defined in Maude through system modules. Since we imple-

ment the Nelson-Oppen combination algorithm purely as a functional module, we

do not go into the details of the syntax for system modules here.

1.2.4 Reflective logic

Rewriting logic is a reflective logic – its meta theory can be represented at the object

level in a consistent way. i.e. there is a universal theory U and a function (_⊢_) such

that for any theory T , T⊢φ ⇐⇒ U⊢T⊢φ. This is particularly interesting because it

allows us to implement both the models we work over, and the theorem proving and

the model checking tools we use in the same language. In fact, the implementation of

variant-based satisfiability by Stephen Sherik and of the Nelson-Oppen Combination

Algorithm here crucially take advantage of this.

In Maude, the built-in module META-LEVEL is used to do this lifting. Terms are

represented in the sort Term, and modules in the sort Module. The function upModule

: ModuleExpression Bool -> Module takes a ModuleExpression, a quote followed

by the module name (e.g. 'Z5) and returns a term representing the module. Sim-

ilarly, the function upTerm : Universal -> Term takes a term of any sort and

returns a meta-term, i.e. a term of sort Term. Constants, function symbols and vari-

ables in a term are represented using quoted identifiers. Arguments of a function

symbol in a term are placed in a comma separated list within square brackets. Con-
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stants and variables have their sorts annotated as part of the identifier. For example

the term 1 + 1 is represented at the meta level as '_+_[ '1.Z5, '1.Z5 ], while the

variable X of sort Z5 as 'X:Z5. Meta-terms can be reduced in a reflective way by the

reflected equations of a reflected functional module using the metaReduce function.

META-LEVEL’s upModule function allows us to lift a theory and perform rewrites with

it like any other term.

1.3 Decision Procedures in Maude

There are a several satisfiability procedures available in Maude, either implemented

in Maude at the meta level, or in external tools and made accessible in Maude

through their API. It is these tools that we shall use as the base solvers for the

Nelson-Oppen combination method.

1.3.1 Variant-based Satisfiability

Variant-based satisfiability is a theory-generic procedure that applies to initial models

of a large class of user-definable order-sorted equational theories. The equations of

such theories must satisfy the finite variant property (FVP) (Escobar, Sasse, and

Meseguer 2012)(Comon-Lundh and Delaune 2005) and may include axioms such as

commutativity, associativity-commutativity, or identity.

Let T = (Σ, E ∪ B) where the equations E are confluent, terminating and B-

coherent modulo axioms B. A E,B−variant of a term t is a pair (u, θ) such that

u =B (tθ)!E⃗,B, where for any term u, u!E⃗,B denotes the fully simplified term obtained
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by exhaustive simplification with the oriented equations E⃗ modulo B. Given variants

(u, θ) and (v, γ) of t, (u, θ) is more general than (v, γ) iff there is a substitution ρ

such that:

1. θρ =B γ and

2. uρ =B v

A theory T has the finite variant property (FVP) iff for each term t there is a

finite most general complete set of variants. If a theory (Σ, E∪B) is FVP and B has

a finitary B−unification algorithm, then folding variant narrowing gives a finitary

E ∪B-unification algorithm (Escobar, Sasse, and Meseguer 2012).

Furthermore, if (Σ, E ∪ B) ⊇ (Ω, EΩ ∪ BΩ) is a subsignature of constructors

and (Ω, EΩ ∪BΩ) is OS-compact, then satisfiability of quantifier free formulae in the

initial algebra of this theory is decidable by variant-based satisfiability. This has been

implemented in Maude by Sherik and Meseguer (Skeirik and Meseguer 2016) and

will be used for demonstrating the order-sorted Nelson-Oppen combination method.

Refer to (Meseguer 2016) for a more in-depth description.

1.3.2 CVC4 and Yices

CVC4 is an industry-standard automatic theorem prover that supports many theories

including rational and integer linear arithmetic, arrays, bitvectors and a subset of

non-linear arithmetic (Barrett et al. 2011). Yices is another state of the art SMT

solver that supports in addition tuples and scalar types and excels in non-linear real

and integer arithmetic (Dutertre 2014). Maude allows interaction with these solvers

via their respective C APIs.
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Although CVC4 and Yices allow defining algebraic data types they do not allow

terms in these data types to be identified by additional axioms or have any operations

except term constructors and term selectors. Variant based satisfiablilty includes

these simple algebraic data types as a special case, but it covers a much wider class

of algebraic specifications: it allows user-defined functions (provided their equations

are FVP), and structural axioms such as combinations of commutative, associative

commutative, and identity axioms. Therefore, it complements CVC4, Yices and

other SMT solvers by allowing a very wide range of user-definable decidable theories.
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Chapter 2

Order Sorted Nelson Oppen as a
rewrite theory

Given decision procedures for the quantifier free formulae in several theories the

Order-Sorted Nelson-Oppen combination method gives us a decision procedure for

the quantifier free fragment in the combination of these theories, provided that the

theories are disjoint, stably infinite for their shared sorts and optimally intersecting.

In theories stably infinite in a set of sorts, we can find models for each theory such

that the cardinalities of the carrier sets of those sorts match.

Stably Infinite Let T be an order-sorted first-order theory with signature Σ =

((S,≤), F, P ) and s1, s2, . . . sn ∈ S. Let F ⊂ FirstOrderFormula(Σ), be the set

of first order formulae in Σ

T is stably infinite in sorts s1, s2, . . . sn for F−satisfiability iff every T−satisfiable

formula φ ∈ F , is also satisfiable in a model B = (B,_B) ∈ mod(T ) such that

|Bsi | ≥ χ0, 1 ≤ i ≤ n.

For Nelson-Oppen combinations, requiring that both theories T1 and T2 are

stably infinite intuitively means that we can always find models of both theories

where the cardinalities of sorts s1, . . . , sn agree.

Notation: For sort s and signature Σi, let [s]i denote it’s connected component
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of sorts in Σi

Optimally intersectable (J. Meseguer 2017b) The order-sorted signatures Σ1

and Σ2 are optimally intersectable iff:

1. Functions and predicates sorts agree: For each f ∈ fun(Σ1)∩fun(Σ2)

(resp, p ∈ pred(Σ1) ∩ pred(Σ2)), ∃{i, j} ∈ {1, 2} such that:

• Fi(f) = Fj(f)∩ ([s1]i×· · ·× [sm]i)× [si] (resp Pi(p) = Pj(p)∩ ([s1]i×

· · · × [sm]i)

• [sl] ⊂ [sl]j, 1 ≤ l ≤ n, and [s]i ⊂ [s]j (resp. [sl]i ⊂ [sl]j, 1 ≤ l ≤ n).

2. Intersection is a single component: For every sort s ∈ S0, we have

[s]1 ∩ S2 = [s]2 ∩ [s]1 = [s]1 ∩ [s]2

3. and, for any two sorts si ∈ Si and sj ∈ Sj any one of:

i. Intersection is empty: [si]i ∩ [sj]j = ∅

ii. Intersection is the top sort of one component: [si]1 ∩ [sj]2 =

{s0}, where s0 is the top-sort of at least one of the connected com-

ponents.

iii. Once component is subsumed in the other:

a. ∃k ∈ {1, 2} and [sk]k has a top sort, [sk]k ⊂ [sl]l {k, l} = {1, 2}.

b. ≤k ∩[sk] =≤l ∩[sk]22

c. (downward closure): ∀s ∈ [sl]l,∀s′ ∈ [sk]k, s ≤l s
′ =⇒ s ∈ [sk]k

Given two order-sorted, optimally intersecting, stably-infinite theories T1 and T2

with disjoint signatures Σ1 and Σ2 each with decision procedures for quantifier free
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Ti-satisfiability we want to derive a decision procedure for quantifier free T1 ∪ T2

satisfiability. We can transform any formula φ into an equisatisfiable formula in

disjunctive normal form. Further, for each atom in such a formula we can apply

“purification” to obtain a formula where each atom is in the signature of one of the

two theories.

Now, our task has become to find a T1 ∪ T2-model M0 and an assignment a :

vars(φ) →M0 such that M,a |= φ. How can we decompose this satisfiability problem

into similar subproblems for the theories T1 and T2? What follows summarizes more

detailed arguments in (J. Meseguer 2017b) about the order-sorted Nelson-Oppen

combination. Because of the stably infinite assumptions on the theories T1, T2, as

well as the assumption that the corresponding signatures are optimally intersectable

and disjoint, if φ is purified into an equisatisfiable conjunction φ1∧φ2 of formulas φ1

and φ2 in the theories T1 and T2, we can always choose M so that the shared sorts in

M have infinite cardinalities, so that M is the amalgamation of models M1 and M2 of

theories T1 and T2 that satisfy φ1 and φ2, and that have the same cardinality for the

shared sorts. The interesting question is the converse one: under what conditions,

given models M1 and M2 with same cardinality in shared sorts, and assignments a1

and a2 such that Mi, ai |= φi, 1 ≤ i ≤ 2 can we amalgamate M1 and M2 into a single

T1∪T2-model M with an assignment a such that M,a |= φ? The answer is that such

an amalgamation M and an assignment a extending both a1 and a2 after a suitable

bijective identification of the sets for the shared sorts will exist if and only if a1 and

a2 generate the same equivalence relation among the variables of φ1 and φ2 that

have shared sorts. Therefore, since the satisfaction of any such equivalence relation
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can be characterized by a conjuction ψ of equalities and disequalities among shared

variables (called an “arrangement”), a “naive” order-sorted Nelson-Oppen algorithm

amounts to finding such a ψ among all possible equivalence relations such that φi∧ψ

is Ti-satisfiable, 1 ≤ i ≤ 2.

The question now becomes: how do we efficiently find such an arrangement of

variables? Checking each equivalence class for satisfiability is infeasable as the num-

ber of equivalence classes grows exponentially with the number of variables, even

in the order sorted case where we can restrict ourselves to equivalences compatible

with the sort structure of the signatures (e.g. we cannot have an equality between

a boolean and an integer variable). Instead of checking each of the possible parti-

tions on the shared variables, we choose a Darwinian approach, pruning classes of

equivalences from the search space if an identification of a single pair of variables

implied by one theory is not satisfiable in another (equality propagation). In the

case of non-convex theories, we may have φ −→ (x1 = y ∨ x2 = y) without either

φ −→ x1 = y or φ −→ x2 = y individually holding. Thus if any theory implies the

disjunction of all remaining identifications we branch our search, checking if at least

one of the remaining identifications is satisfiable (split). We can think of each equal-

ity propagation step of the algorithm as pruning the search space (of arrangements)

of unsatisfiable ones, and the split step dividing the search space into smaller groups

where the split step can apply. The inference rules for the Equality Propagation and

Split rules are given in Figure 2.1 where φE denotes the equalities between variables

with shared sorts obtained so far by previous inference steps, and CE denotes the

still uncommitted equalities between such shared sorts. These rules are similar to
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xm = xn ∈ CE Ti |= (φi ∧ φE) −→ xm = xn NelsonOppenSat(φ1 ∧ φ2 ∧ φE ,CE)
CheckSat(φj ∧ φE ∧ xm = xn)

∧ NelsonOppenSat(φ1 ∧ φ2 ∧ φE ∧ xm = xn,CE \ {xm = xn})

Equality Propagation

Ti |= (φi ∧ φE) −→
∨

CE NelsonOppenSat(φ1 ∧ φ2 ∧ φE ,CE)

∨
xm=xn∈CE

 CheckSat(φ1 ∧ φE ∧ xm = xn)
∧ CheckSat(φ2 ∧ φE ∧ xm = xn)
∧ NelsonOppenSat(φ1 ∧ φ2 ∧ φE ,CE \ {xm = xn})

 Split

Figure 2.1: Inference rules for the Nelson-Oppen algorithm

rules presented in (Manna and Zarba 2003) for the unsorted case and have a similar

proof of correctness.
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Chapter 3

Implementation in Maude

The Nelson-Oppen algorithm is implemented in Maude as the function nelson-oppen-sat.

Besides the names of the theories and the unpurified formulae, the algorithm also

requires information about which function to use to check satisfiability, and whether

the theory is convex. We use “tagged” formulae to represent this information. For

example, the term tagged('1.Nat ?= '2.Nat, (('mod > 'NAT), ('check-sat >

'var-sat))) represents the formula “1 = 2” in the module of NAT, and that we

should use the var-sat procedure to check its satisfiability. In the implementation

in Maude, these tagged formula are represented by the sort TaggedFormula and sets

of tagged formulae by the sort TaggedFormulaSet. For rewriting logic variables (not

to be confused with variables part of the formula we are rewriting over) of the sort

TaggedFormula we use the variables TF1 and TF2, while for TaggedFormulaSet we

use TFS.

op nelson-oppen-sat : TaggedFormulaSet QFForm -> Bool .

The nelson-oppen-valid function converts a validity check into a satisfiability

check:

op nelson-oppen-valid : TaggedFormulaSet QFForm -> Bool .
----------------------------------------------------------
eq nelson-oppen-valid(TFS, PHI) = strictNot(nelson-oppen-sat(TFS, ~ PHI)) .
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Given a quantifier free formula PHI in the set of theories TFS (each tagged with

information regarding covexitivity, and information about which procedure to use

for checking sat), we first convert it to disjunctive normal form (DNF) and simplify

it (e.g. ⊥ ∧ φ becomes ⊥).

eq nelson-oppen-sat(TFS, PHI)
= $nosat.dnf(TFS, simplify(toDNF(toNNF(simplify(PHI))))) .

The algorithm then considers each disjunction separately.

eq $nosat.dnf(TFS, CONJ \/ PHI)
= $nosat.dnf(TFS, CONJ) or-else $nosat.dnf(TFS, PHI)
.

We then purify each mixed disjunct into a conjunction of “pure” atoms each

wellformed in the signature of one of the theories, and tagged with the appropriate

information.

ceq $nosat.dnf(TFS , CONJ)
= $nosat.purified(TFS, purify(ME1, ME2, CONJ))

if ( tagged(tt, ('mod > ME1); TS1)
, tagged(tt, ('mod > ME2); TS2))

:= TFS
.

eq $nosat.purified(TFS, CONJ)
= $nosat.tagged(tagWellFormed(TFS, CONJ)) .

Next, we make sure each of the tagged formulae (TF1, TF2) are satisfiable on their

own.

eq $nosat.tagged((TF1, TF2))
= check-sat(TF1) and-then check-sat(TF2) and-then $nosat.basicSat(TF1, TF2)
[print "Purified:\n\t" TF1 "\n\t" TF2]

.
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From the set of shared variables X1,2 := vars(φ1) ∩ vars(φ2) we define a set of

candidate equalities.

CE := {xi = yi|xi, yi ∈ X1,2
si
, xi ̸≡ yi}

where X1,2
si

is the subset of shared variables in the connected component of sort

si.

ceq $nosat.basicSat(TFS)
= $nosat.ep( TFS

, candidate-equalities(in-module(moduleIntersect(ME1, ME2)
, vars(PHI1) ; vars(PHI2)))
)

if ( tagged(PHI1, ('mod > ME1); _1:Tags)
, tagged(PHI2, ('mod > ME2); _2:Tags))
:= TFS

.

Next, we apply the equality propagation inference rule. If any identification of

variables is implied by a theory, we propagate that identification to the other theories

by replacing all occurrences of the variable in the left hand side with that on the right

hand side in all formulae and the candidate equalities. Performing the substitution

instead of merely adding the equality to the formula has the advantage of reducing

the number of candidate equalities we need to try.

ceq $nosat.ep(( tagged(PHI1, ('mod > ME1); TS1)
, tagged(PHI2, ('mod > ME2); TS2)), X1 ?= X2 \/ CANDEQ)

= check-sat(tagged(simplify(PHI2 << (X1 <- X2)), ('mod > ME2); TS2))
and-then $nosat.ep(( tagged(simplify(PHI1 << (X1 <- X2)), ('mod > ME1); TS1)

, tagged(simplify(PHI2 << (X1 <- X2)), ('mod > ME2); TS2))
, simplify(CANDEQ << (X1 <- X2)))

if check-valid(tagged(PHI1 => (X1 ?= X2), ('mod > ME1); TS1))
[ print "EqualityProp: " ME1 ": => " X1 " ?= " X2 ] .
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If, after checking each identification individually, there are none that are implied

we apply the split rule.

eq $nosat.ep(TFS, CANDEQ) = $nosat.split(TFS, CANDEQ) [owise print "Split? " CANDEQ] .

If there are no variables left to identify, then the formula is satisfiable

eq $nosat.split(TFS, mtForm) = true .

However, if some disjunction of identifications is implied and we are in a non-

convex theory, we “split”. i.e. we try each of the possible identification left in turn

and see if at least one of them is satisfiable.

ceq $nosat.split(TFS, CANDEQ)
= $nosat.split.genEqs(TFS, CANDEQ, CANDEQ)

if ( tagged(PHI1, ('mod > ME1) ; ('convex > 'false) ; TS1)
, tagged(PHI2, ('mod > ME2) ; TS2))

:= TFS
/\ check-valid(tagged((PHI1) => (CANDEQ), ('mod > ME1); ('convex > 'false) ; TS1))
.

Otherwise, since there are no implied identifications and the theories are stably-

infinite, the equation is satisfiable.

eq $nosat.split(TFS, CANDEQ) = true [owise] .

We use $nosat.split.genEqs to generate this disequality of sat problems.

eq $nosat.split.genEqs((tagged(PHI1, ('mod > ME1); TS1), tagged(PHI2, ('mod > ME2); TS2))
, X1 ?= X2 \/ DISJ?1, X1 ?= X2 \/ DISJ?2)

= ( check-sat(tagged(PHI1 /\ X1 ?= X2, ('mod > ME1); TS1))
and-then check-sat(tagged(PHI2 /\ X1 ?= X2, ('mod > ME2); TS2))
and-then $nosat.ep(( tagged(PHI1 /\ X1 ?= X2, ('mod > ME1); TS1)

, tagged(PHI2 /\ X1 ?= X2, ('mod > ME2); TS2))
, DISJ?2)
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)
or-else $nosat.split.genEqs(( tagged(PHI1, ('mod > ME1); TS1)

, tagged(PHI2, ('mod > ME2); TS2))
, DISJ?1, X1 ?= X2 \/ DISJ?2)

[print "Split: " ME1 " : " X1 " ?= " X2 ]
.

eq $nosat.split.genEqs(( tagged(PHI1, ('mod > ME1); TS1)
, tagged(PHI2, ('mod > ME2); TS2))

, mtForm, DISJ?2)
= false
.
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Chapter 4

Examples

4.1 Matrices with real and integer entries

The specification that follows is not exactly the one used in the experiments, but is

equivalent to it. There are two somewhat subtle issues about this example, namely:

(i) the use of parameterization, and (ii) the use of definitional extensions, that can

best be explained using Maude parameter theories, parameterized modules, and pa-

rameter instantiation by views.

We can define in Maude the theory of 2× 2 matrices over a ring as the following

module parameterized by the theory of rings as its parameter theory:

fth RING is
sort Ring .
op _+_ : Ring Ring -> Ring [assoc comm] .
op _*_ : Ring Ring -> Ring [assoc comm] .
op 0 : -> Ring .
op 1 : -> Ring .
op - : Ring -> Ring .
vars x y z : Ring .
eq x + 0 = x .
eq 1 * x = x .
eq x + -(x) = 0 .
eq x * (y + z) = (x * y) + (x * z) .

endfth
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fmod MATRIX{R :: RING} is
sort Matrix .
op matrix : R$Ring R$Ring R$Ring R$Ring -> Matrix [ctor] .

vars A B C D : R$Ring .

op m11 : Matrix -> R$Ring .
op m12 : Matrix -> R$Ring .
op m21 : Matrix -> R$Ring .
op m22 : Matrix -> R$Ring .

eq m11(matrix(A, B, C, D)) = A [variant] .
eq m12(matrix(A, B, C, D)) = B [variant] .
eq m21(matrix(A, B, C, D)) = C [variant] .
eq m22(matrix(A, B, C, D)) = D [variant] .

endfm

Next, we define matrix multiplication, determinant and identity as definitional

extensions of the theory of matrices. That is, these new functions are fully defined

in terms of the theory of matrices itself and can always be “evaluated away.” This is

important to meet the Nelson-Oppen theory disjointness requirement, as explained

below.

fmod MATRIX-OPS{R :: RING} is
protecting MATRIX{R} .

vars A1 B1 A2 B2 : R$Ring .
vars A B : Matrix .

op mulSum : R$Ring R$Ring R$Ring R$Ring -> R$Ring .
eq mulSum(A1, B1, A2, B2) = (A1 * B1) + (A2 * B2) .

op multiply : Matrix Matrix -> Matrix .
eq multiply(A, B)
= matrix(mulSum(m11(A),m11(B),m12(A),m21(B)),
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mulSum(m11(A),m12(B),m12(A),m22(B)),
mulSum(m21(A),m11(B),m22(A),m21(B)),
mulSum(m21(A),m12(B),m22(A),m22(B))) .

op determinant : Matrix -> R*Ring .
eq determinant(A)
= (m11(A) * m22(A)) - (m12(A) * m21(A)) .

op identity : -> Matrix .
eq identity = matrix(1, 0, 0, 1) .

endfm

Next we instantiate the theory of rings to the module for the theory of Reals

using a view:

view Real from RING to REAL is
sort Ring to Real .
op 0 to 0/1 .
op 1 to 1/1 .
op _+_ to _+_ .
op _- to _- .
op _*_ to _*_ .

endv

fmod MATRIX-REAL is
protecting MATRIX-OPS{Real} .

endfm

What is crucial about this theory instantiation is that, since the operators in

MATRIX-OPS are all definitional extensions, they can all be evaluated away to their

righthand sides, i.e., to operators in the disjoint union of two theories: (i) the FVP

theory MATRIX obtained by completely removing its RING parameter part, and (ii) the

theory REAL to which the parameter theory RING is instantiated. Therefore, the order-

sorted Nelson-Oppen algorithm can be invoked to decide validity and satisfiability
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of formulas in MATRIX-REAL, once we: (i) evaluate away all defined operations in

MATRIX-OPS appearing in a formula, and (ii) purify the formula into its two disjoint

parts.

We cannot, at the moment, use this specification as is, because the Nelson-Oppen

implementation does not support views yet. Instead, we execute the the following

query against an equivalent specification of real matrices:

reduce in MATRIX-TEST : nelson-oppen-valid(
( tagged(tt, (('mod > 'MATRIX-REAL); ('check-sat > 'var-sat)))
, tagged(tt, (('mod > 'REAL); ('check-sat > 'smt-sat)))
),

(multiply('A:Matrix, 'B:Matrix) ?= identity('0/1.Real, '1/1.Real))
=> (determinant('A:Matrix) != '0/1.Real)

) .

The negation of this forumla (since we are checking validity) purifies to the fol-

lowing the formula in the theory of reals:

'0:Real ?= '0/1.Real
/\ '1:Real ?= '1/1.Real
/\ 'p11:Real ?= '_+_['_*_['a11:Real, 'b11:Real],'_*_[ 'a12:Real, 'b21:Real]]
/\ 'p12:Real ?= '_+_['_*_['a11:Real, 'b12:Real],'_*_[ 'a12:Real, 'b22:Real]]
/\ 'p21:Real ?= '_+_['_*_['a21:Real, 'b11:Real],'_*_[ 'a22:Real, 'b21:Real]]
/\ 'p22:Real ?= '_+_['_*_['a21:Real, 'b12:Real],'_*_[ 'a22:Real, 'b22:Real]]
/\ '0/1.Real ?= '_-_['_*_['a11:Real, 'a22:Real],'_*_[ 'a12:Real, 'a21:Real]]

and, in the theory of Matrices:

'a11:Real ?= 'm11['A:Matrix] /\ 'b11:Real ?= 'm11['B:Matrix]
/\ 'a12:Real ?= 'm12['A:Matrix] /\ 'b12:Real ?= 'm12['B:Matrix]
/\ 'a21:Real ?= 'm21['A:Matrix] /\ 'b21:Real ?= 'm21['B:Matrix]
/\ 'a22:Real ?= 'm22['A:Matrix] /\ 'b22:Real ?= 'm22['B:Matrix]
/\ 'matrix['1:Real ,'0:Real , '0:Real ,'1:Real ]

?= 'matrix['p11:Real,'p12:Real,'p21:Real,'p22:Real]
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Next, each theory propagates equalities that are implied by each formula:

'MATRIX-REAL: => '0:Real ?= 'p12:Real
'MATRIX-REAL: => '1:Real ?= 'p11:Real
'REAL: => 'p12:Real ?= 'p22:Real
'MATRIX-REAL: => 'p11:Real ?= 'p21:Real
'REAL: => 'a11:Real ?= 'a21:Real
'REAL: => 'a12:Real ?= 'a22:Real
'MATRIX-REAL: => 'p21:Real ?= 'p22:Real

But, this last identification is a contradiction in the theory of reals. p22 cannot

equal p21 since p22 = p12 = 0, while p21 = p11 = 1. Thus, the negation is unsatisfiable

and the original formula must be valid.

It turns out that if we combine this module with the Integers instead of the Reals,

we can prove something stronger: that any invertible matrix must have determinant

±1. Unfortunately, CVC4 is not able to solve the non-linear arithmetic needed to

prove this. We must instead turn to the Yices solver, the other SMT solver available

in Maude. Even so, the default configuration for Yices does not enable the solver for

non-linear arithmetic (MCSAT), and running this example involved modifying the

Maude C++ source code to enable that configuration. Even so, the computational

difficulty involved in solving non-linear integer arithmetic forced us to restrict the

proof to upper-triangular matrices.

reduce in MATRIX-TEST : nelson-oppen-valid(
( tagged(tt, (('mod > 'MATRIX-INTEGER);

('check-sat > 'var-sat); ('convex > 'true)))
, tagged(tt, (('mod > 'INTEGER );

('check-sat > 'smt-sat); ('convex > 'false)))
),

( multiply('A:Matrix, 'B:Matrix) ?= identity('0.Integer, '1.Integer)
/\ 'm21['A:Matrix] ?= '0.Integer
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/\ 'm21['B:Matrix] ?= '0.Integer
)

=> ( determinant('A:Matrix) ?= '1.Integer
\/ determinant('A:Matrix) ?= '-_['1.Integer]

)
) .

In the theory of integers this purifies to:

'0:Integer ?= 'a21:Integer /\ '0:Integer ?= 'b21:Integer
/\ '0:Integer ?= '0.Integer /\ '1:Integer ?= '1.Integer
/\ 'p11:Integer ?= '_+_[ '_*_['a11:Integer, 'b11:Integer]

, '_*_['a12:Integer, 'b21:Integer]]
/\ 'p12:Integer ?= '_+_[ '_*_['a11:Integer, 'b12:Integer]

, '_*_['a12:Integer, 'b22:Integer]]
/\ 'p21:Integer ?= '_+_[ '_*_['a21:Integer, 'b11:Integer]

, '_*_['a22:Integer, 'b21:Integer]]
/\ 'p22:Integer ?= '_+_[ '_*_['a21:Integer, 'b12:Integer]

, '_*_['a22:Integer, 'b22:Integer]]
/\ '1.Integer != '_-_['_*_[ 'a11:Integer, 'a22:Integer]

,'_*_[ 'a12:Integer, 'a21:Integer]]
/\ '-_['1.Integer] != '_-_[ '_*_['a11:Integer, 'a22:Integer]

, '_*_[ 'a12:Integer, 'a21:Integer]]

and, in the theory of matrices to:

'0:Integer ?= 'a21:Integer /\ '0:Integer ?= 'b21:Integer
/\ 'a11:Integer ?= 'm11['A:Matrix] /\ 'b11:Integer ?= 'm11['B:Matrix]
/\ 'a12:Integer ?= 'm12['A:Matrix] /\ 'b12:Integer ?= 'm12['B:Matrix]
/\ 'a21:Integer ?= 'm21['A:Matrix] /\ 'b21:Integer ?= 'm21['B:Matrix]
/\ 'a22:Integer ?= 'm22['A:Matrix] /\ 'b22:Integer ?= 'm22['B:Matrix]
/\ 'matrix[ '1:Integer,'0:Integer, '0:Integer,'1:Integer]

?= 'matrix['p11:Integer,'p12:Integer,'p21:Integer,'p22:Integer]

Similar equalities are propagated:

'INTEGER: => '0:Integer ?= 'p21:Integer
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'INTEGER: => 'p21:Integer ?= 'a21:Integer
'INTEGER: => 'a21:Integer ?= 'b21:Integer
'MATRIX-INTEGER: => '1:Integer ?= 'p11:Integer
'INTEGER: => 'a11:Integer ?= 'b11:Integer
'MATRIX-INTEGER: => 'p11:Integer ?= 'p22:Integer

leading to a complex contradiction forcing some elements to be inverses of others

in an impossible way, allowing us to conclude that the original formula is valid.

4.2 Hereditarily Finite Sets with Reals

In this example, we demonstrate the combination algorithm with non-convex theories

– non-linear real arithmetic and hereditarily finite sets. Hereditarily finite sets is an

example of a theory not currently definable in CVC4 or Yices2 because of its use

of algebraic data types modulo axioms like associativity-commutativity and having

FVP equations. Hereditarily finite sets (HFS) are a model of set theory without the

axiom of infinity. Although hereditarily finite sets are expressive enough to encode

constructs like the integers and the natural numbers, its initial model is a countable

model and so cannot encode the real numbers.

We have three sorts, X, the parametric sort, Sets and Magmas. Both Xs and Sets

are Magmas.

sorts X Set Magma .
subsorts X Set < Magma .

The elements of a hereditarily finite set can be elements of the parameter sort X

of “atomic elements”, or can be other hereditarily constructed inductively from the

following three constructors. First, empty is a Set:
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op empty : -> Set [ctor] .

Second, the union operator is an associative, commutative and idemopotent op-

erator:

op _ , _ : Magma Magma -> Magma [ctor assoc comm] .
----------------------------------------------------------------------------
eq M , M , M' = M , M' [variant] .
eq M , M = M [variant] .

Finally, a Set may be constructed from any Magma by enclosing it in braces.

op { _ } : Magma -> Set [ctor] .

We also have a subset operator and the various equations (not detailed here)

defining it:

op _ C= _ : Magma Magma -> MyBool .

We instantiate this module with Reals as a subsort of X:

fmod HFS-REAL is
including HEREDITARILY-FINITE-SET .
sorts Real .
subsorts Real < X .

op fake-0 : -> Real [ctor] .
op fake-s : Real -> Real [ctor] .

endfm

Finally, we check the satisfiability of the formula {x2, y2, z2} ⊆ {a} ∧ x ̸= y. i.e.

“is it possible for the set of squares of three numbers, two of which must be distinct,

to be a subset of a set with a single element.” This is indeed possible, since every
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positive real number has two distinct square roots. Since set union is idempotent, if

the two distinct numbers are additive inverses of each other and the third is equal

to either, then the proposition would indeed be satisfied.

Our query is:

reduce in NELSON-OPPEN-COMBINATION :
nelson-oppen-sat( ( tagged(tt, ('mod > 'REAL) ; ('check-sat > 'smt-sat))

, tagged(tt, ('mod > 'HFS-REAL); ('check-sat > 'var-sat))
)
, ( '_C=_[ '`{_`}['_`,_[ '_*_ [ 'Z:Real, 'Z:Real ]

, '_*_ [ 'X:Real, 'X:Real ]
, '_*_ [ 'Y:Real, 'Y:Real ]
]]

, '`{_`}['A:Real]]
?= 'tt.MyBool

)
/\ 'X:Real != 'Y:Real

) .

This purifies to:

'x2:Real ?= '_*_['X:Real,'X:Real]
/\ 'y2:Real ?= '_*_['Y:Real,'Y:Real]
/\ 'z2:Real ?= '_*_['Z:Real,'Z:Real]
/\ 'X:Real != 'Y:Real,

in the theory of the hereditarily finite sets, and to:

'tt.MyBool ?= '_C=_['`{_`}['_`,_['z2:Real,'x2:Real,'y2:Real]],'`{_`}['A:Real]]
/\ 'X:Real != 'Y:Real

in the theory of the reals.

Initially, a few equalities are propagated from the theory of hereditarily finite

sets:
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'HFS-REAL: => 'x2:Real ?= 'y2:Real
'HFS-REAL: => 'y2:Real ?= 'z2:Real
'HFS-REAL: => 'z2:Real ?= 'A:Real

Since no more identifications of variables are implied on their own and the theories

are not convex, the algorithm must check whether a disjunction of identifications is

implied by either of the theories, and indeed x = z∨y = z is implied. The algorithm

splits the search space on the remaining candidate equalities (a = x, a = y, a = z,

x = y, z = z and y = z). It first tries the case where a = x and finds that there

are satisfiabile arrangements (this can happen when a = x = 1). It then splits the

search space again, but finds that there are no arrangements a = y possible (since

that implies that x = y). However the case where a = z is satisfiable. This causes the

the equality x = z to be propagated. Now, since no further equalities or disjunctions

thereof hold, the algorithm concludes that the formula is satisfiable.
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Chapter 5

Conclusion & Future work

The examples above have demonstrated the usefulness of Nelson-Oppen combination

in Maude. Even so, the tool is still a prototype. As mentioned previously, the Nelson-

Oppen method forms the keystone of general SMT solving. Other key pieces need

to be implemented in Maude for the solver to be efficient and viable.

For example, in this implementation, prior to purification and to applying the

Nelson-Oppen algorithm, we convert the formula into its DNF form. This can lead to

an exponential blow up in the length of the formula. A more efficient solution would

be to take advantage of a boolean structure by using a SAT solver by extension of

the DPLL algorithm (Davis and Putnam 1960) to the so-called DPLL(T) algorithm

(Nieuwenhuis, Oliveras, and Tinelli 2006)(Krstić and Goel 2007).

Being a prototype, little effort has been spent on optimization. For example,

when working with the var-sat solver, the list of most general unifiers is computed

repeatedly at every query to the solver. Computing this list can be expensive de-

pending on the term and theory under consideration. For example, in an extreme

case checking the satisfiability of the forumala { X:Magma, Y:Magma, Z:Magma }

C= { X:Magma } ?= true using var-sat takes tens of minutes. Most of this time

is spend calculating this list of unifiers. If such a formula were to arise in the course
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of the Nelson-Oppen algorithm, the list of unifiers may need to be computed several

times at prohibitive cost.

Stable infiniteness requires that the theory has infinite models. However, there

are several important theories that are not stably infinite. For example, the theory

of bit vectors (Z/2nZ) can be used to model “machine integers” widely used by many

programming languages. In (Tinelli and Zarba 2003), Tinelli and Zarba showed that

this requirement can be reduced to the case where all but one of the theories is

“shiny”. Further work by Ranise, Ringeissen and Zarba (Ranise, Ringeissen, and

Zarba 2005), and by Jovanovi and Barrett (Jovanović and Barrett 2010) provided

an easier to compute alternative called strongly “polite” theories. Extending this

implementation to handle these cases would greatly expand the usefulness of these

theories.

Work also needs to be done to expand the the implementation to handle more

than two theories at a time, and theories that share a sub-signature, though this

work is mostly on the purification front.

In general, one can envision incrementally building up towards a flexible, efficient

and powerful SMT infrastructure in Maude delegating subproblems both to external

solvers as well as to tools that leverage the power and expressiveness of rewriting

logic.
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