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ABSTRACT

Image restoration is the process of recovering an original clean image from

its degraded version, and image enhancement takes the goal of improving

the image quality either objectively or subjectively. Both of them play a key

part in computer vision and image processing and have broad applications

in industry. The past few years have witnessed the revival of deep learning

in computer vision, and substantial progress has been made due to the use

of deep neural networks.

In this dissertation, we use deep learning to address the problems of image

restoration and enhancement, with the focus on the following topics: im-

age and video super-resolution (SR), as well as image denoising. For these

problems, deep neural networks are generally used as a regression model to

predict the original clean image content from the input. However, designing

a network structure that can effectively exploit the intrinsic image properties

to achieve remarkable performances is not a trivial task.

For image SR, several models based on deep neural networks have been re-

cently proposed and attained superior performance that overshadows all pre-

vious handcrafted models. The question then arises whether large-capacity

and data-driven models have become the dominant solution to this ill-posed

problem. We argue that domain expertise represented by the conventional

sparse coding model is still valuable, and it can be combined with the key

ingredients of deep learning to achieve further improved results. We experi-

mentally show that a sparse coding model particularly designed for SR can

be incarnated as a neural network, which can be trained from end to end.

The interpretation of the network based on sparse coding leads to much more

efficient and effective training, as well as a reduced model size. In addition,

we design a unified framework to learn a mixture of sub-networks for image

SR so as to further boost SR accuracy.

Video SR aims to generate a high-resolution (HR) frame from multiple
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low-resolution (LR) frames in a local temporal window. The inter-frame

temporal relation is as crucial as the intra-frame spatial relation for tackling

this problem. We design deep networks for utilizing the temporal relation

from two aspects. First, we propose a temporal adaptive neural network that

can adaptively determine the optimal scale of temporal dependency. Filters

on various temporal scales are applied to the input LR sequence before their

responses are adaptively aggregated. Second, we reduce the complexity of

motion between neighboring frames using a spatial alignment network which

is much more robust and efficient than competing alignment methods and

can be jointly trained with the temporal adaptive network.

Image denoising, as another important task of image restoration, is dedi-

cated to recovering the underlying image signal from its noisy measurement.

First we customize a convolutional neural network for image denoising. Sec-

ond we investigate the mutual relation between image denoising and high-

level vision tasks in a deep learning fashion when image denoising serves as a

preprocessing step for high-level vision tasks. We design a network that cas-

cades two modules for image denoising and various high-level tasks, and use

the joint loss for updating only the denoising network via back-propagation.

Self-similarity in natural images is widely used for image restoration by

many classic approaches. We propose a non-local recurrent network (NLRN)

as the first attempt to incorporate non-local operations into a recurrent neu-

ral network (RNN) for image restoration. Unlike existing methods that mea-

sure self-similarity in an isolated manner, the proposed non-local module can

be flexibly integrated into existing deep networks for end-to-end training to

capture deep feature correlation between each location and its neighborhood.

We fully use an RNN for its parameter efficiency and allow deep feature cor-

relation to be propagated along adjacent recurrent states. This design boosts

robustness against inaccurate correlation estimation due to severely degraded

images. Finally, we show that it is essential to choose a proper neighborhood

size for computing deep feature correlation given degraded images, in order

to obtain the best restoration performance.
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Chapter 1

INTRODUCTION

Image restoration aims to restore an original clean image from its corrupted

version, while image enhancement usually focuses on improving the inter-

pretability or perception of information in images either objectively or sub-

jectively. They include the topics such as image denoising, image super-

resolution, image deblurring, haze removal, image compression artifact re-

moval and so on. They belong to low-level computer vision tasks and have

been widely used in a number of applications. Recently, an increasing in-

terest in these fundamental topics has emerged from not only the research

communities of computer vision and image processing but also industry, and

substantial progress has been achieved. Each step forward facilitates the use

of visual data for the fulfillment of further tasks.

In the past few years, we have witnessed the revival of deep learning in com-

puter vision, mainly due to the large model capacity of deep neural networks,

the occurrence of large labeled datasets, and the surge of computing power.

Deep learning based approaches have been dominating in quite a number of

computer vision tasks, including image classification, face recognition, object

detection and so on.

In this dissertation, we propose to use deep learning to study image restora-

tion and enhancement, with the focus on the following topics: image and

video super-resolution (SR), as well as image denoising. A straightforward

approach to increase the network model capacity by adding more layers and

raising the number of trainable parameters is usually not the optimal solution

for these tasks. To this end, the core idea is to design task-specific network

architecture to model the complex mapping between the input image and its

output. In particular, we propose the networks of interpretable design based

on the natural priors, such as sparsity and self-similarity. We also develop a

neural network structure which enables us to study the influence of high-level

vision tasks on image restoration. Specifically, this dissertation addresses the
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following topics.

Single Image Super-Resolution Single image super-resolution is an ill-

posed problem of restoring a visually pleasing high-resolution (HR) image

from its low-resolution (LR) observation. HR images have higher pixel den-

sities and finer details than LR images. To regularize the solution of the

problem, previous methods have focused on designing good priors for natu-

ral images such as sparse representation, or directly learning the priors from

a large data set with models such as deep neural networks. We argue that

domain expertise from the conventional sparse coding model can be com-

bined with the key ingredients of deep learning to achieve further improved

results. We demonstrate that a sparse coding model particularly designed

for super-resolution can be incarnated as a neural network with the merit

of end-to-end optimization over training data. The network has a cascaded

structure which boosts the SR performance for both fixed and incremental

scaling factors. The proposed training and testing schemes can be extended

for robust handling of images with additional degradation such as noise and

blurring. A subjective assessment is conducted and analyzed in order to

thoroughly evaluate various SR techniques. Our proposed model is tested

on several benchmark datasets, and shows superiority over recent competing

methods for various scaling factors both quantitatively and perceptually.

Furthermore, we propose learning a mixture of SR inference modules in a

unified framework to further enhance the performance of single image SR.

Specifically, a number of SR inference modules specialized in different im-

age local patterns are first independently applied on the LR image to obtain

various HR estimates, and the resultant HR estimates are adaptively aggre-

gated to form the final HR image. By selecting neural networks as the SR

inference module, the whole procedure can be incorporated into a unified

network and be optimized jointly. Extensive experiments are conducted to

investigate the relation between restoration performance and different types

of network architecture. Compared with other current image SR approaches,

our proposed method achieves better restoration results on a wide range of

images consistently while allowing more flexible design choices.

Video Super-Resolution Video SR aims at estimating an HR video se-

quence from an LR one. Given that deep learning has been successfully

applied to the task of single image SR, which demonstrates the strong ca-

pability of neural networks for modeling spatial relation within one single
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image, the key challenge to conduct video SR is how to efficiently and effec-

tively exploit the temporal dependency among consecutive LR frames other

than the spatial relation. However, this remains challenging because complex

motion is difficult to model and can have detrimental effects if not handled

properly. We tackle the problem of learning temporal dynamics from two

aspects. First, we propose a temporal adaptive neural network that can

adaptively determine the optimal scale of temporal dependency. Inspired

by the Inception module in GoogLeNet [1], filters of various temporal scales

are applied to the input LR sequence before their responses are adaptively

aggregated, in order to fully exploit the temporal relation among consecutive

LR frames. Second, we decrease the complexity of motion among neighbor-

ing frames using a spatial alignment network that can be end-to-end trained

with the temporal adaptive network and has the merit of increasing the ro-

bustness to complex motion and the efficiency compared to competing image

alignment methods. We show that the temporal adaptive design considerably

improves SR quality over its plain counterparts, and the spatial alignment

network is able to attain comparable SR performance with the sophisticated

optical flow based approach, but requires much less running time. Overall

our proposed model with learned temporal dynamics is shown to achieve

state-of-the-art SR results in terms of not only spatial consistency but also

temporal coherence on public video datasets.

Image Denoising Conventionally, image denoising and high-level vision

tasks are handled separately in computer vision. We cope with the two

jointly and explore the mutual influence between them. First we propose a

convolutional neural network for image denoising which achieves the state-

of-the-art performance. Second we propose a deep neural network solution

that cascades two modules for image denoising and various high-level tasks,

respectively, and use the joint loss for updating only the denoising network via

back-propagation. We demonstrate that on one hand, the proposed denoiser

has the generality to overcome the performance degradation of different high-

level vision tasks. On the other hand, with the guidance of high-level vision

information, the denoising network can generate more visually appealing

results. To the best of our knowledge, this is the first work investigating

the benefit of exploiting image semantics simultaneously for image denoising

and high-level vision tasks via deep learning.

General Image Restoration Many classic methods have shown non-
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local self-similarity in natural images to be an effective prior for image

restoration. However, it remains unclear and challenging to make use of

this intrinsic property via deep networks. We propose a non-local recurrent

network (NLRN) as the first attempt to incorporate non-local operations into

a recurrent neural network (RNN) for image restoration. We make the follow-

ing contributions: (1) Unlike existing methods that measure self-similarity in

an isolated manner, the proposed non-local module can be flexibly integrated

into existing deep networks for end-to-end training to capture deep feature

correlation between each location and its neighborhood. (2) We fully employ

the RNN structure for its parameter efficiency and allow deep feature cor-

relation to be propagated along adjacent recurrent states. This new design

boosts robustness against inaccurate correlation estimation due to severely

degraded images. (3) We show that it is necessary to maintain a confined

neighborhood for computing deep feature correlation given degraded images.

This is in contrast to existing practice [2] that deploys the whole image.

Extensive experiments on both image denoising and super-resolution tasks

are conducted. Thanks to the recurrent non-local operations and correlation

propagation, the proposed NLRN achieves results superior to those of the

state-of-the-art methods with far fewer parameters.

The rest of this dissertation is organized as follows. We first introduce the

sparse coding based network for single image SR in Chapter 2. Learning a

mixture of deep networks for image SR to further boost SR accuracy is then

discussed in Chapter 3. Our deep learning based approach for video SR is

presented in Chapter 4. The problem of image denoising and its connection

with high-level vision tasks is explored in Chapter 5. A non-local recurrent

network for general image restoration is provided in Chapter 6. Finally,

Chapter 7 concludes with a summary.
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Chapter 2

SPARSE CODING BASED NETWORK FOR
SINGLE IMAGE SUPER-RESOLUTION

2.1 Introduction

Single image super-resolution is usually cast as an inverse problem of recov-

ering the original high-resolution (HR) image from one low-resolution (LR)

observation image. Since the known variables in LR images are greatly out-

numbered by the unknowns in typically desired HR images, this problem is

highly ill-posed and has limited the use of SR techniques in many practical

applications [3, 4].

A large number of single image SR methods have been proposed, exploiting

various priors of natural images to regularize the solution of SR. Analytical

priors, such as bicubic interpolation, work well for smooth regions, while

image models based on statistics of edges [5] and gradients [6] can recover

sharper structures. In the patch-based SR methods, HR patch candidates

are represented as the sparse linear combination of dictionary atoms trained

from external databases [7, 8, 9], or recovered from similar examples in the

LR image itself at different locations and across different scales [10, 11].

A regression model is built between LR and HR patches in [12, 13]. A

comprehensive review of more SR methods can be found in [14].

More recently, inspired by the great success achieved by deep learning [15]

in other computer vision tasks, researchers have begun to use neural networks

with deep architecture for image SR. Multiple layers of collaborative auto-

encoders are stacked together in [16, 17] for robust matching of self-similar

patches. Deep convolutional neural networks (CNN) [18] and deconvolutional

networks [19] are designed that directly learn the non-linear mapping from

LR space to HR space in a way similar to coupled sparse coding [8]. As these

deep networks allow end-to-end training of all the model components between

LR input and HR output, significant improvements have been observed over
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their shadow counterparts.

The networks in [16, 18] are built with generic architecture, which means

all their knowledge about SR is learned from training data. On the other

hand, people’s domain expertise for the SR problem, such as natural image

prior and image degradation model, is largely ignored in deep learning based

approaches. It is then worthwhile to investigate whether domain expertise

can be used to design better deep model architecture, or whether deep learn-

ing can be leveraged to improve the quality of handcrafted models.

In this chapter, we extend the conventional sparse coding model [7] using

several key ideas from deep learning, and show that domain expertise is com-

plementary to large learning capacity in further improving SR performance.

First, based on the learned iterative shrinkage and thresholding algorithm

(LISTA) [20], we implement a feed-forward neural network in which each

layer strictly corresponds to one step in the processing flow of sparse coding

based image SR. In this way, the sparse representation prior is effectively

encoded in our network structure; at the same time, all the components of

sparse coding can be trained jointly through back-propagation. This simple

model, which is named sparse coding based network (SCN), achieves notable

improvement over the generic CNN model [18] in terms of both recovery ac-

curacy and human perception, and yet has a compact model size. Moreover,

with the correct understanding of each layer’s physical meaning, we have

a more principled way to initialize the parameters of SCN, which helps to

improve optimization speed and quality.

A single network is only able to perform image SR by a particular scaling

factor. In [18], different networks are trained for different scaling factors.

In this section, we propose a cascade of multiple SCNs to achieve SR for

arbitrary factors. This approach, motivated by the self-similarity based SR

approach [10], not only increases the scaling flexibility of our model, but also

reduces artifacts for large scaling factors. Moreover, inspired by the multi-

pass scheme of image denoising [21], we demonstrate that the SR results can

be further enhanced by cascading multiple SCNs for SR of a fixed scaling

factor. The cascade of SCNs (CSCN) can also benefit from the end-to-end

training of deep network with a specially designed multi-scale cost function.

In practical SR scenarios, the real LR measurements usually suffer from

various types of corruptions, such as noise and blurring. Sometimes the

degradation process is even too complicated or unclear. We propose several
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schemes using our SCN to robustly handle such practical SR cases. When the

degradation mechanism is unknown, we fine-tune the generic SCN with the

requirement of only a small amount of real training data and manage to adapt

our model to the new scenario. When the forward model for LR generation is

clear, we propose an iterative SR scheme incorporating SCN with additional

regularization based on priors from the degradation mechanism.

Subjective assessment is important to the SR technology because the com-

mercial products equipped with such technology are usually evaluated sub-

jectively by the end users. In order to thoroughly compare our model with

other prevailing SR methods, we conduct a systematic subjective evalua-

tion among these methods, in which the assessment results are statistically

analyzed and one score is given for each method.

In short, the contributions of this section include:

• combining the domain expertise of sparse coding and the merits of

deep learning to achieve better SR performance with faster training

and smaller model size;

• exploring network cascading for arbitrary scaling factors in order to

further enhance SR performance;

• utilizing SCN to robustly handle the practical SR scenarios with non-

ideal LR measurements;

• conducting a subjective evaluation on a number of recent state-of-the-

art SR methods.

2.2 Related Work

2.2.1 Image SR Using Sparse Coding

The sparse representation based SR method [7] models the transform from

each local patch y ∈ Rmy in the bicubic-upscaled LR image to the correspond-

ing patch x ∈ Rmx in the HR image. The dimension my is not necessarily

the same as mx when image features other than raw pixels are used to repre-

sent patch y. It is assumed that the LR(HR) patch y(x) can be represented

with respect to an overcomplete dictionary Dy(Dx) using some sparse linear
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coefficients αy(αx) ∈ Rn, which are known as sparse code. Since the degra-

dation process from x to y is nearly linear, the patch pair can share the same

sparse code αy = αx = α if the dictionaries Dy and Dx are defined properly.

Therefore, for an input LR patch y, the HR patch can be recovered as

x = Dxα, s.t. α = arg min
z
‖y −Dyz‖22 + λ‖z‖1, (2.1)

where ‖ · ‖1 denotes the `1 norm which is convex and sparsity-inducing, and

λ is a regularization coefficient.

In order to learn the dictionary pair (Dy,Dx), the goal is to minimize the

recovery error of x and y, and thus the loss function L in [8] is defined as

L =
1

2

(
γ‖x−Dxz‖22 + (1− γ)‖y −Dyz‖22

)
, (2.2)

where γ (0 < γ ≤ 1) balances the two reconstruction errors. Then the

optimal dictionary pair {D∗x,D∗y} can be found by minimizing the empirical

expectation of (2.2) over all the training LR/HR pairs,

min
Dx,Dy

1

N

N∑
i=1

L(Dx,Dy,xi,yi)

s.t. zi = arg min
α
‖yi −Dyα‖22 + λ‖α‖1, i = 1, 2, ..., N,

‖Dx(:, k)‖2 ≤ 1, ‖Dy(:, k)‖2 ≤ 1, k = 1, 2, ..., K.

(2.3)

Since the objective function in (2.2) is highly nonconvex, the dictionary pair

Dy,Dx) is usually learned alternatively while keeping the other fixed [8].

2.2.2 Network Implementation of Sparse Coding

There is an intimate connection between sparse coding and neural networks,

which has been well studied in [22, 20]. A feed-forward neural network as

illustrated in Figure 2.1 is proposed in [20] to efficiently approximate the

sparse code α of input signal y as it would be obtained by solving (2.1) for

a given dictionary Dy. The network has a finite number of recurrent stages,

each of which updates the intermediate sparse code according to

zk+1 = hθ(Wy + Szk), (2.4)
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Figure 2.1: A LISTA network [20] with two time-unfolded recurrent stages,
whose output α is an approximation of the sparse code of input signal y.
The linear weights W , S and the shrinkage thresholds θ are learned from
data.

where hθ is an element-wise shrinkage function defined as [hθ(a)]i = sign(ai)(|ai|−
θi)+ with positive thresholds θ.

Different from the iterative shrinkage and thresholding algorithm (ISTA)

[23, 24] which finds an analytical relationship between network parameters

(weights W , S and thresholds θ) and sparse coding parameters (Dy and λ),

the authors of [20] learn all the network parameters from training data using

a back-propagation algorithm called learned ISTA (LISTA). In this way, a

good approximation of the underlying sparse code can be obtained within a

fixed number of recurrent stages.

2.2.3 Generic Convolutional Neural Network for SR

As a successful example of deep learning for single image SR, Dong et al. [18]

propose a fully convolutional neural network to directly learn the mapping

from the input LR image to the output HR image. It is designed to uti-

lize three convolutional layers to mimic the patch extraction and represen-

tation, non-linear mapping and reconstruction of the sparse representation

based SR methods, respectively. Due to the end-to-end training strategy

that jointly optimizes all the parameters and the large learning capacity of

neural networks, this method notably outperforms its conventional shadow

counterpart.
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Figure 2.2: Top left: the proposed SCN model with a patch extraction layer
H , a LISTA sub-network for sparse coding (with k recurrent stages
denoted by the dashed box), a HR patch recovery layer Dx, and a patch
combination layer G. Top right: a neuron with an adjustable threshold
decomposed into two linear scaling layers and a unit-threshold neuron.
Bottom: the SCN re-organized with unit-threshold neurons and adjacent
linear layers merged together in the gray boxes.

2.3 Sparse Coding Based Network for Image SR

2.3.1 Network Architecture

Given the fact that sparse coding can be effectively implemented with a

LISTA network, it is straightforward to build a multi-layer neural network

that mimics the processing flow of the sparse coding based SR method [7].

Like most patch-based SR methods, our sparse coding based network (SCN)

takes the bicubic-upscaled LR image Iy as input, and outputs the full HR

image Ix. Figure 2.2 shows the main network structure, and each of the

layers is described in the following.

The input image Iy first goes through a convolutional layer H which ex-

tracts features for each LR patch. There are my filters of spatial size sy×sy in

this layer, so that our input patch size is sy×sy and its feature representation

y has my dimensions.

Each LR patch y is then fed into a LISTA network with a finite number

of k recurrent stages to obtain its sparse code α ∈ Rn. Each stage of LISTA

consists of two linear layers parameterized by W ∈ Rn×my and S ∈ Rn×n,

and a nonlinear neuron layer with activation function hθ. The activation

10



thresholds θ ∈ Rn are also to be updated during training, which complicates

the learning algorithm. To restrict all the tunable parameters in our linear

layers, we do a simple trick to rewrite the activation function as

[hθ(a)]i = sign(ai)θi(|ai|/θi − 1)+ = θih1(ai/θi). (2.5)

Eq. (2.5) indicates that the original neuron with an adjustable threshold can

be decomposed into two linear scaling layers and a unit-threshold neuron, as

shown in the top-right of Figure 2.2. The weights of the two scaling layers are

diagonal matrices defined by θ and its element-wise reciprocal, respectively.

The sparse code α is then multiplied with HR dictionary Dx ∈ Rmx×n in

the next linear layer, reconstructing HR patch x of size sx×sx = mx.

In the final layer G, all the recovered patches are put back to the corre-

sponding positions in the HR image Ix. This is realized via a convolutional

filter of mx channels with spatial size sg×sg. The size sg is determined as

the number of neighboring patches that overlap with the same pixel in each

spatial direction. The filter will assign appropriate weights to the overlapped

recoveries from different patches and take their weighted average as the final

prediction in Ix.

As illustrated in the bottom of Figure 2.2, after some simple reorganiza-

tions of the layer connections, the network described above has some adjacent

linear layers which can be merged into a single layer. This helps to reduce the

computation load as well as redundant parameters in the network. The layers

H and G are not merged because we apply additional nonlinear normaliza-

tion operations on patches y and x, which will be detailed in Section 2.6.1.

Thus, there are totally 5 trainable layers in our network: 2 convolutional

layers H and G, and 3 linear layers shown as gray boxes in Figure 2.2.

The k recurrent layers share the same weights and are therefore conceptually

regarded as one. Note that all the linear layers are actually implemented as

convolutional layers applied on each patch with filter spatial size of 1×1, a

structure similar to the network in network [25]. Also note that all these

layers have only weights but no biases (zero biases).

Mean square error (MSE) is employed as the cost function to train the

network, and our optimization objective can be expressed as

min
Θ

∑
i

‖SCN(I(i)y ; Θ)− I(i)x ‖22, (2.6)
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where I(i)y and I(i)x are the i-th pair of LR/HR training data, and SCN(Iy; Θ)

denotes the HR image for Iy predicted using the SCN model with param-

eter set Θ. All the parameters are optimized through the standard back-

propagation algorithm. Although it is possible to use other cost terms that

are more correlated with human visual perception than MSE, our experi-

mental results show that simply minimizing MSE leads to improvement in

subjective quality.

2.3.2 Advantages over Previous Models

The construction of our SCN follows exactly each step in the sparse coding

based SR method [7]. If the network parameters are set according to the

dictionaries learned in [7], it can reproduce almost the same results. However,

after training, SCN learns a more complex regression function and can no

longer be converted to an equivalent sparse coding model. The advantage of

SCN comes from its ability to jointly optimize all the layer parameters from

end to end, while in [7] some variables are manually designed and some are

optimized individually by fixing all the others.

Technically, our network is also a CNN and it has similar layers as the

CNN model proposed in [18] for patch extraction and reconstruction. The

key difference is that we have a LISTA sub-network specifically designed

to enforce sparse representation prior, while in [18] a generic rectified linear

unit (ReLU) [26] is used for nonlinear mapping. Since SCN is designed based

on our domain knowledge in sparse coding, we are able to obtain a better

interpretation of the filter responses and have a better way to initialize the

filter parameters in training. We will see in the experiments that all these

contribute to better SR results, faster training speed and smaller model size

than a vanilla CNN.

2.3.3 Network Cascade

In this section, we investigate two different network cascade techniques in

order to fully exploit our SCN model in SR applications.
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Network Cascade for SR of a Fixed Scaling Factor

First, we observe that the SR results can be further improved by cascading

multiple SCNs trained for the same objective in (2.6), which is inspired by

the multi-pass scheme in [21]. The only difference for training these SCNs

is to replace the bicubic interpolated input by its latest HR estimate, while

the target output remains the same.

The first SCN acts as a function approximator to model the non-linear

mapping from the bicubic upscaled image to the ground-truth image. The

following SCN acts as another function approximator, with the starting point

changed to a better estimate: the output of its previous SCN.

In other words, the cascade of SCNs as a whole can be considered as a new

deeper network having more powerful learning capability, which is able to

better approximate the mapping from the LR inputs to the HR counterparts,

and these SCNs can be trained jointly to pursue even better SR performance.

Network Cascade for Scalable SR

Like most SR models learned from external training examples, the SCN dis-

cussed previously can only upscale images by a fixed factor. A separate

model needs to be trained for each scaling factor to achieve the best perfor-

mance, which limits the flexibility and scalability in practical use. One way

to overcome this difficulty is to repeatedly enlarge the image by a fixed scale

until the resulting HR image reaches a desired size. This practice is com-

monly adopted in the self-similarity based methods [10, 11, 16], but is not

so popular in other cases for the fear of error accumulation during repetitive

upscaling.

In our case, however, it is observed that a cascade of SCNs trained for

small scaling factors can generate even better SR results than a single SCN

trained for a large scaling factor, especially when the target scaling factor is

large (greater than 2). This is illustrated by the example in Figure 2.3. Here

an input image is magnified by ×4 times in two ways: with a single SCN×4

model through the processing flow (a) → (b) → (d), and with a cascade

of two SCN×2 models through (a) → (c) → (e). It can be seen that the

input to the second cascaded SCN×2 in (c) is already sharper and contains

fewer artifacts than the bicubic×4 input to the single SCN×4 in (b), which
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(a) LR image

(b) bicubic×4 (28.52) (c) SCN×2 & bicubic×2 (30.27)

(d) SCN×4 (30.22) (e) SCN×2 & SCN×2 (30.72)

Figure 2.3: SR results for the “Lena” image upscaled by 4 times. (a) → (b)
→ (d) represents the processing flow with a single SCN×4 model. (a) →
(c) → (e) represents the processing flow with two cascaded SCN×2 models.
PSNR is given in parentheses.

naturally leads to the better final result in (e) than in (d).

To get a better understanding of the above observation, we can draw a

loose analogy between the SR process and a communication system. Bicubic

interpolation is like a noisy channel through which an image is “transmitted”

from LR domain to HR domain. And our SCN model (or any SR algorithm)
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Figure 2.4: Training cascade of SCNs with multi-scale objectives.

behaves as a receiver which recovers clean signals from noisy observations.

A cascade of SCNs is then like a set of relay stations that enhance signal-

to-noise ratio before the signal becomes too weak for further transmission.

Therefore, cascading will work only when each SCN can restore enough useful

information to compensate for the new artifacts it introduces as well as the

magnified artifacts from previous stages.

Training Cascade of Networks

Taking into account the two aforementioned cascade techniques, we can con-

sider the cascade of all SCNs as a deeper network (CSCN), in which the final

output of the consecutive SCNs of the same ground truth is connected to the

input of the next SCN with bicubic interpolation in the between. To con-

struct the cascade, besides stacking several SCNs trained individually with

respect to (2.6), we can also optimize all of them jointly as shown in Fig-

ure 2.4. Without loss of generality, we assume each stage in Section 2.3.3 has

the same scaling factor s. Let Îj,k (j > 0, k > 0) denote the output image

of the j-th SCN in the k-th stage upscaled by a total of ×sk times. In the

same stage, each output of SCNs is compared with the associated ground

truth image Ik according to the MSE cost, leading to a multi-scale objective

function:

min
{Θj,k}

∑
i

∑
j

∑
k

∥∥∥SCN(Î
(i)

j−1,k; Θj,k)− I(i)k
∥∥∥2
2
, (2.7)

where i denotes the data index, and j, k denote the SCN index. For simplicity

of notation, Î0,k specially denotes the bicubic interpolated image of the final

output in the (k − 1)-th stage upscaled by a total of ×sk−1 times. This

multi-scale objective function makes full use of the supervision information

in all scales. All the layer parameters {Θj,k} in (2.7) could be optimized

from end to end by back-propagation. The SCNs share the same training
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objective and can be trained simultaneously, taking advantage of the merit

of deep learning. For the SCNs with different training objectives, we use a

greedy algorithm here to train them sequentially from the beginning of the

cascade so that we do not need to care about the gradient of bicubic layers.

Applying back-propagation through a bicubic layer or its trainable surrogate

will be considered in future work.

2.4 Robust SR for Real Scenarios

Most recent SR works generate the LR images for both training and test-

ing by downscaling HR images using bicubic interpolation [7, 27]. However,

this assumption of the forward model may not always hold in practice. For

example, the real LR measurements are usually blurred, or corrupted with

noise. Sometimes, the LR generation mechanism may be complicated, or

even unknown. We now investigate the practical SR problem and propose

two approaches to handle such non-ideal LR measurements, using the generic

SCN. In the case that the underlying mechanism of the real LR generation is

unclear or complicated, we propose the data-driven approach by fine-tuning

the learned generic SCN with a limited number of real LR measurements as

well as their corresponding HR counterparts. On the other hand, if the real

training samples are unavailable but the LR generation mechanism is clear,

we formulate this inverse problem as the regularized HR image reconstruc-

tion problem which can be solved using iterative methods. The proposed

methods demonstrate the robustness of our SCN model to different SR sce-

narios. In the following, we elaborate on the details of these two approaches,

respectively.

2.4.1 Data-Driven SR by Fine-Tuning

Deep learning models can be efficiently transferred from one task to another

by re-using the intermediate representation in the original neural network

[28]. This method has proven successful on a number of high-level vision

tasks, even if there is a limited amount of training data in the new task [29].

The success of super-resolution algorithms usually highly depends on the

accuracy of the model of the imaging process. When the underlying mecha-
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nism of the generation of LR images is not clear, we can take advantage of

the aforementioned merit of deep learning models by learning our model in

a data-driven manner, to adapt it for a particular task. Specifically, we start

training from the generic SCN model while using a very limited amount of

training data from a new SR scenario, and manage to adapt it to the new

SR scenario and obtain promising results. In this way, it is demonstrated

that the SCN has the strong capability of learning complex mappings from

the non-ideal LR measurements to their HR counterparts as well as the high

flexibility of adapting to various SR tasks.

2.4.2 Iterative SR with Regularization

The second approach considers the case that the mechanism of generating

the real LR images is relatively simple and clear, indicating the training data

is always available if we synthesize LR images with the known degradation

process. We propose an iterative SR scheme which incorporates the generic

SCN model with additional regularization based on task-related priors (e.g.

the known kernel for deblurring, or the data sparsity for denoising). In this

section, we specifically discuss handling blurred and noisy LR measurements

in detail as examples, though the iterative SR methods can be generalized

to other practical imaging models.

Blurry Image Upscaling

The real LR images can be generated with various types of blurring. Directly

applying the generic SCN model is obviously not optimal. Instead, with the

known blurring kernel, we propose to estimate the regularized version of the

HR image Îx based on the directly upscaled image Ĩx by the learned SCN

as follows:

Îx = arg min
I
‖I − Ĩx‖2, s.t. D·B · I = I0y, (2.8)

where I0y is the original blurred LR input, and the operators B and D are

blurring and sub-sampling respectively. Similar to the previous work [7], we

use back-projection to iteratively estimate the regularized HR input on which

our model can perform better. Specifically, given the regularized estimate
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Î
i−1
x at iteration i − 1, we estimate a less blurred LR image I i−1y by down-

sampling Î
i

x using bicubic interpolation. The upscaled Ĩ
i

x by learned SCN

serves as the regularizer for the i-th iteration as follows:

Î
i

x = arg min
I
‖I − Ĩ ix‖22 + ‖D·B · I − I0y‖22. (2.9)

Here we use a penalty method to form an unconstrained problem. The

upscaled HR image Ĩ
i

x can be computed as SCN(I i−1y ,Θ). The same process

is repeated until convergence. We have applied the proposed iterative scheme

to LR images generated from Gaussian blurring and sub-sampling as an

example. The empirical performance is illustrated in Section 2.6.

Noisy Image Upscaling

Noise is a ubiquitous cause of corruption in image acquisition. State-of-the-

art image denoising methods usually adopt priors such as patch similarity

[30], patch sparsity [31, 21], or both [32], as regularizers in image restoration.

In this section, we propose a regularized noisy image upscaling scheme for

specifically handling noisy LR images in order to obtain improved SR quality.

Though any denoising algorithm can be used in our proposed scheme, here

we apply spatial similarity combined with transform domain image patch

group-sparsity as our regularizer [32], to form the regularized iterative SR

problem as an example.

Similar to the method in Section 2.4.2, we iteratively estimate the less

noisy HR image from the denoised LR image. Given the denoised LR esti-

mate Î
i−1
y at iteration i− 1, we directly upscale it, using the learned generic

SCN, to obtain the HR image Î
i−1
x . It is then downsampled using bicubic

interpolation, to generate the LR image Ĩ
i

y, which is used in the fidelity term

in the i-th iteration of LR image denoising. The same process is repeated

until convergence. The iterative LR image denoising problem is formulated

as follows: {
Î
i

y, {α̂i}
}

= arg min
I,{αi}

‖I − Ĩ iy‖22

+
N∑
j=1

{
‖W3DGjI − αj‖22 + τ‖αj‖0

}
, (2.10)
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where the operator Gj generates the 3D vectorized tensor, which groups the

j-th overlapping patch from the LR image I, together with the spatially

similar patches within its neighborhood by block matching [32]. The codes

{αj} of the patch groups in the domain of 3D sparsifying transform W3D are

sparse, which is enforced by the l0 norm penalty [33]. The weight τ controls

the sparsity level, which normally depends on the remaining noise level in Ĩ iy

[34, 33].

In (2.10), we use the patch group sparsity as our denoising regularizer.

The 3D sparsifying transform W3D can be commonly used analytical trans-

forms, such as the discrete cosine transform (DCT) or the wavelet transform.

The state-of-the-art BM3D denoising algorithm [32] is based on such an ap-

proach, but further improved by more sophisticated engineering stages. In

order to achieve the best practical SR quality, we demonstrate the empiri-

cal performance comparison using BM3D as the regularizer in Section 2.6.

Additionally, our proposed iterative method is a general practical SR frame-

work, which is not dedicated to SCN. One can conveniently extend it to other

SR methods, which generates Ĩ iy in ith iteration. The performances of these

methods are compared in Section 2.6.

2.5 Subjective Evaluation Protocol

Subjective perception is an important metric to evaluate SR techniques for

commercial use, other than the quantitative evaluation. In order to more

thoroughly compare various SR methods and quantify the subjective per-

ception, we utilize an online platform for subjective evaluation of SR results

from several methods [35], including bicubic, SC [8], SE [11], self-example

regression (SER) [36], CNN [18] and CSCN. Each participant is invited to

conduct several pair-wise comparisons of SR results from different methods.

The SR methods of displayed SR images in each pair are randomly selected.

Ground truth HR images are also included when they are available as refer-

ences. For each pair, the participant needs to select the better one in terms

of perceptual quality. A snapshot of our evaluation web page1 is shown in

Figure 2.5.

Specifically, there are SR results over 6 images with different scaling fac-

1www.ifp.illinois.edu/~wang308/survey
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Figure 2.5: The user interface of a web-based image quality evaluation,
where two images are displayed side by side and local details can be
magnified by moving the mouse over the corresponding region.

tors: “kid”×4, “chip”×4, “statue”×4, “lion”×3, “temple”×3 and “train”×3.

The images are shown in Figure 2.6. All the visual comparison results are

then summarized into a 7×7 winning matrix for 7 methods (including ground

truth). A Bradley-Terry [37] model is calculated based on these results and

the subjective score is estimated for each method according to this model.

In the Bradley-Terry model, the probability that an object X is favored over

Y is assumed to be

p(X � Y ) =
esX

esX + esY
=

1

1 + esY −sX
, (2.11)

where sX and sY are the subjective scores for X and Y . The scores s for all

the objects can be jointly estimated by maximizing the log likelihood of the

pairwise comparison observations:

max
s

∑
i,j

wij log

(
1

1 + esj−si

)
, (2.12)

where wij is the (i, j)-th element in the winning matrix W , meaning the

number of times when method i is favored over method j. We use the

Newton-Raphson method to solve Eq. (2.12) and set the score for ground

truth method as 1 to avoid the scale ambiguity.

The experiment results are detailed in Section 2.6
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Figure 2.6: The six images used in subjective evaluation.

2.6 Experiments

We evaluate and compare the performance of our models using the same data

and protocols as in [27], which are commonly adopted in SR literature. All

our models are learned from a training set with 91 images, and tested on Set5

[38], Set14 [39] and BSD100 [40] which contain 5, 14 and 100 images respec-

tively. We have also trained on other larger data sets, and observe marginal

performance change (around 0.1 dB). The original images are downsized by

bicubic interpolation to generate LR-HR image pairs for both training and

evaluation. The training data are augmented with translation, rotation and

scaling.

2.6.1 Implementation Details

We determine the number of nodes in each layer of our SCN mainly according

to the corresponding settings used in sparse coding [8]. Unless otherwise

stated, we use input LR patch size sy=9, LR feature dimension my=100,

dictionary size n=128, output HR patch size sx=5, and patch aggregation

filter size sg=5. All the convolution layers have a stride of 1. Each LR patch

y is normalized by its mean and variance, and the same mean and variance

are used to restore the final HR patch x. We crop 56×56 regions from each

image to obtain fixed-sized input samples to the network, which produces
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outputs of size 44×44.

To reduce the number of parameters, we implement the LR patch extrac-

tion layer H as the combination of two layers: the first layer has 4 trainable

filters each of which is shifted to 25 fixed positions by the second layer. Sim-

ilarly, the patch combination layer G is also split into a fixed layer which

aligns pixels in overlapping patches and a trainable layer whose weights are

used to combine overlapping pixels. In this way, the number of parameters in

these two layers is reduced by more than an order, and there is no observable

loss in performance.

We employ a standard stochastic gradient descent algorithm to train our

networks with mini-batch size of 64. Based on the understanding of each

layer’s role in sparse coding, we use Harr-like gradient filters to initialize layer

H , and use uniform weights to initialize layer G. All the remaining three

linear layers are related to the dictionary pair (Dx,Dy) in sparse coding. To

initialize them, we first randomly set Dx and Dy with Gaussian noise, and

then find the corresponding layer weights as in ISTA [23]:

w1 = C ·DT
y , w2 = I −DT

yDy, w3 = (CL)−1 ·Dx, (2.13)

where w1, w2 and w3 denote the weights of the three subsequent layers after

layer H . L is the upper bound on the largest eigenvalue of DT
yDy, and C is

the threshold value before normalization. We empirically set L=C=5.

The proposed models are all trained using the CUDA ConvNet package [15]

on a workstation with 12 Intel Xeon 2.67GHz CPUs and 1 GTX680 GPU.

Training a SCN usually takes less than one day. Note that this package

is customized for classification networks, and its efficiency can be further

optimized for our SCN model.

In testing, to make the entire image covered by output samples, we crop

input samples with overlap and extend the boundary of original image by

reflection. Note we shave the image border in the same way as [18] for

objective evaluations to ensure fair comparison. Only the luminance channel

is processed with our method, and bicubic interpolation is applied to the

chrominance channels, as their high frequency components are less noticeable

to human eyes. To achieve arbitrary scaling factors using CSCN, we upscale

an image by ×2 times repeatedly until it is at least as large as the desired size.

Then a bicubic interpolation is used to downscale it to the target resolution
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Figure 2.7: The four learned filters in the first layer H .

Table 2.1: Time consumption for SCN to upscale the “baby” image from
256×256 to 512×512 using different dictionary size n.

n 64 96 128 256 512
time (s) 0.159 0.192 0.230 0.445 1.214

if necessary.

When reporting our best results in Section 2.6.3, we also use the multi-view

testing strategy commonly employed in image classification. For patch-based

image SR, multi-view testing is implicitly used when predictions from mul-

tiple overlapping patches are averaged. Here, besides sampling overlapping

patches, we also add more views by flipping and transposing the patch. Such

strategy is found to improve SR performance for general algorithms at the

sheer cost of computation.

2.6.2 Algorithm Analysis

We first visualize the four filters learned in the first layer H in Figure 2.7.

The filter patterns do not change much from the initial first and second order

gradient operators. Some additional small coefficients are introduced in a

highly structured form so that the filters can capture richer high frequency

details.

The performance of several networks during training is measured on Set5 in

Figure 2.8. Our SCN improves significantly over sparse coding (SC) [8], as it

leverages data more effectively with end-to-end training. The SCN initialized

according to (2.13) can converge faster and better than the same model with

random initialization, which indicates that the understanding of SCN based

on sparse coding can help its optimization. We also train a CNN model

[18] of the same size as SCN, but find its convergence speed much slower.

It is reported in [18] that training a CNN takes 8×108 back-propagations

(equivalent to 12.5×106 mini-batches here). To achieve the same performance

as CNN, our SCN requires less than 1% back-propagations.
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Figure 2.8: The PSNR change for ×2 SR on Set5 during training using
different methods: SCN; SCN with random initialization; CNN. The
horizontal dash lines show the benchmarks of bicubic interpolation and
sparse coding (SC).

The network size of SCN is mainly determined by the dictionary size n.

Besides the default value n=128, we have tried other sizes and plot their

performance versus the number of network parameters in Figure 2.9. The

PSNR of SCN does not drop too much as n decreases from 128 to 64, but

the model size and computation time can be reduced significantly, as shown

in Table 2.1. Figure 2.9 also shows the performance of CNN with various

sizes. Our smallest SCN can achieve higher PSNR than the largest model

(CNN-L) in [41] while only using about 20% parameters.

Different numbers of recurrent stages k have been tested for SCN, and we

find increasing k from 1 to 3 only improves performance by less than 0.1

dB. As a tradeoff between speed and accuracy, we use k=1 throughout this

section.

In Table 2.2, different network structures with cascade for scalable SR in

Section 2.3.3 (in each row) are compared at different scaling factors (in each

column). SCN×a denotes the model trained with fixed scaling factor a with-

out any cascade technique. For a fixed a, we use SCN×a as a basic module

and apply it one or more times to super-resolve images for different upscaling

factors, as shown in Table 2.2. It is observed that SCN×2 can perform as
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Figure 2.9: PSNR for ×2 SR on Set5 using SCN and CNN with various
network sizes.

Table 2.2: PSNR of different network cascading schemes on Set5, evaluated
for different scaling factors in each column.

scaling factor ×1.5 ×2 ×3 ×4
SCN×1.5 40.14 36.41 30.33 29.02

SCN×2 40.15 36.93 32.99 30.70
SCN×3 39.88 36.76 32.87 30.63
SCN×4 39.69 36.54 32.76 30.55

CSCN 40.15 36.93 33.10 30.86

well as the scale-specific model for small scaling factor (1.5), and much better

for large scaling factors (3 and 4). Note that the cascade of SCN×1.5 does

not lead to good results since artifacts quickly get amplified through many

repetitive upscalings. Therefore, we use SCN×2 as the default building block

for CSCN, and drop the notation ×2 when there is no ambiguity. The last

row in Table 2.2 shows that a CSCN trained using the multi-scale objective

in (2.7) can further improve the SR results for scaling factors 3 and 4, as the

second SCN in the cascade is trained to be robust to the artifacts generated

by the first one.

As shown in [41], the amount of training data plays an important role in

the field of deep learning. In order to evaluate the effect of various amounts

of data on training CSCN, we change the training set from a relatively small

set of 91 images (Set91) [27] to two other sets: the 199 out of 200 training
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Table 2.3: Effect of various training sets on the PSNR of ×2 upscaling with
single view SCN.

Training Set
Test Set

Set5 Set14 BSD100
ILSVRC

(100)
Set91 36.93 32.56 31.40 32.13

BSD200 36.97 32.69 31.55 32.27
ILSVRC

(7.5k)
36.84 32.67 31.51 32.31

Table 2.4: PSNR (SSIM) comparison on three test data sets among
different methods. Red indicates the best and blue indicates the second
best performance. The performance gain of our best model over all the
others’ best is shown in the last row.

Data Set Set5 Set14 BSD100
Upscaling ×2 ×3 ×4 ×2 ×3 ×4 ×2 ×3 ×4

A+ [42]
36.55 32.59 30.29 32.28 29.13 27.33 30.78 28.18 26.77

(0.9544) (0.9088) (0.8603) (0.9056) (0.8188) (0.7491) (0.8773) (0.7808) (0.7085)

CNN [18]
36.34 32.39 30.09 32.18 29.00 27.20 31.11 28.20 26.70

(0.9521) (0.9033) (0.8530) (0.9039) (0.8145) (0.7413) (0.8835) (0.7794) (0.7018)

CNN-L [41]
36.66 32.75 30.49 32.45 29.30 27.50 31.36 28.41 26.90

(0.9542) (0.9090) (0.8628) (0.9067) (0.8215) (0.7513) (0.8879) (0.7863) (0.7103)

CSCN
37.00 33.18 30.94 32.65 29.41 27.71 31.46 28.52 27.06

(0.9557) (0.9153) (0.8755) (0.9081) (0.8234) (0.7592) (0.8891) (0.7883) (0.7167)

CSCN-MV
37.21 33.34 31.14 32.80 29.57 27.81 31.60 28.60 27.14

(0.9571) (0.9173) (0.8789) (0.9101) (0.8263) (0.7619) (0.8915) (0.7905) (0.7191)

Our 0.55 0.59 0.65 0.35 0.27 0.31 0.24 0.19 0.24
Improvement (0.0029) (0.0083) (0.0161) (0.0034) (0.0048) (0.0106) (0.0036) (0.0042) (0.0088)

images 2 in BSD500 dataset (BSD200) [40], and a subset of 7,500 images from

the ILSVRC2013 dataset [43]. A model of exactly the same architecture

without any cascade is trained on each data set, and another 100 images

from the ILSVRC2013 dataset are included as an additional test set. From

Table 2.3, we can observe that the CSCN trained on BSD200 consistently

outperforms its counterpart trained on Set91 by around 0.1 dB on all test

data. However, the performance of the model trained on ILSVRC2013 is

slightly different from the one trained on BSD200, which shows the saturation

of the performance as the amount of training data increases. The inferior

quality of images in ILSVRC2013 may be a hurdle to further improve the

performance. Therefore, our method is robust to training data and can

benefit marginally from a larger set of training images.

2Since one out of 200 training images coincides with one image in Set5, we exclude it
from our training set.
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Figure 2.10: SR results given by SC [8] (first row), CNN [18] (second row)
and our CSCN (third row). Images from left to right: the “monarch” image
upscaled by ×3; the “zebra” image upscaled by ×3; the “comic” image
upscaled by ×3.

2.6.3 Comparison with State of the Art

We compare the proposed CSCN with other recent SR methods on all the

images in Set5, Set14 and BSD100 for different scaling factors. Table 2.4

shows the PSNR and structural similarity (SSIM) [44] for adjusted anchored

neighborhood regression (A+) [42], CNN [18], CNN trained with larger model

size and much more data (CNN-L) [41], the proposed CSCN, and CSCN with

our multi-view testing (CSCN-MV). We do not list other methods [8, 27, 39,

12, 45] whose performance is worse than A+ or CNN-L.

It can be seen from Table 2.4 that CSCN performs consistently better

than all previous methods in both PSNR and SSIM, and with multi-view

testing the results can be further improved. CNN-L improves over CNN by

increasing model parameters and training data. However, it is still not as

good as CSCN which is trained with a much smaller model size and on a much
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(a) bicubic (b) SE [11] (c) SC [8]

(d) DNC [16] (e) CNN [18] (f) CSCN

Figure 2.11: The “chip” image upscaled by ×4 times using different
methods.

smaller data set. Clearly, the better model structure of CSCN makes it less

dependent on model capacity and training data in improving performance.

Our models are generally more advantageous for large scaling factors due to

the cascade structure. A larger performance gain is seen on Set5 than the

other two test sets because Set5 has more similar statistics as the training

set.

The visual qualities of the SR results generated by sparse coding (SC)

[8], CNN and CSCN are compared in Figure 2.10. Our approach produces

image patterns with shaper boundaries and richer textures, and is free of the

ringing artifacts observable in the other two methods.

Figure 2.11 shows the SR results on the “chip” image compared among

more methods including the self-example based method (SE) [11] and the

deep network cascade (DNC) [16]. SE and DNC can generate very sharp

edges on this image, but also introduce artifacts and blurs on corners and

fine structures due to the lack of self-similar patches. In contrast, the CSCN

method recovers all the structures of the characters without any distortion.
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Table 2.5: PSNR of ×3 upscaling on LR images with different blurring
kernels.

Kernel Gaussian σ = 1.0 Gaussian σ = 1.6
Method CSR [46] NLM [47] SCN CSR [46] GSC [48] SCN

Butterfly 27.87 26.93 28.70 28.19 25.48 29.03
Parrots 30.17 29.93 30.75 30.68 29.20 30.83

Parthenon 26.89 – 27.06 27.23 26.44 27.40
Bike 24.41 24.38 24.81 24.72 23.78 25.11

Flower 29.14 28.86 29.50 29.54 28.30 29.78
Girl 33.59 33.44 33.57 33.68 33.13 33.65
Hat 31.09 30.81 31.32 31.33 30.29 31.62

Leaves 26.99 26.47 27.45 27.60 24.78 27.87
Plants 33.92 33.27 34.35 34.00 32.33 34.53

Raccoon 29.09 – 28.99 29.29 28.81 29.16
Average 29.32 29.26 29.65 29.63 28.25 29.90

2.6.4 Robustness to Real SR Scenarios

We evaluate the performance of the proposed practical SR methods in Sec-

tion 2.4 by providing the empirical results of several experiments for the two

aforementioned approaches.

Data-driven SR by Fine-tuning

The method proposed in Section 2.4.1 is data-driven, and thus the generic

SCN can be easily adapted for a particular task, with a small number of

training samples. We demonstrate the performance of this method in the

application of enlarging low-DPI scanned document images with heavy noise.

We first obtain several pairs of LR and HR images by scanning a document

under two settings of 150DPI and 300DPI. Then we fine-tune our generic

CSCN model using only one pair of scanned images for a few iterations. Fig-

ure 2.12 illustrates the visualization of the upscaled image from the 150DPI

scanned image. As shown by the SR results in Figure 2.12, the CSCN before

adaptation is very sensitive to LR measurement corruption, so the enlarged

texts in (b) are much more corrupted than they are in the nearest neighbor

upscaled image (a). However, the adapted CSCN model removes almost all

the artifacts and can restore clear texts in (c), which is promising for prac-

tical applications such as quality enhancement of online scanned books and

restoration of legacy documents.
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(a) nearest neighbor

(b) CSCN

(c) adapted CSCN

Figure 2.12: Low-DPI scanned document upscaled by ×4 times using
different methods.

Regularized Iterative SR

We now show experimental results of practical SR for blurred and noisy LR

images, using the proposed regularized iterative methods in Section 2.4.2.

We first compare the SR performance on blurry images using the method

proposed in Section 2.4.2 with several other recent methods [48, 46, 47],

using the same test images and settings. All these methods are designed for

blurry LR input, while our model is trained on sharp LR input. As shown

in Table 2.5, our model achieves much better results than the competitors.

Note that the inference time of our model is much less than that of the

conventional sparse coding based methods.
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Table 2.6: PSNR values for ×2 upscaling noisy LR images in Set5 by
directly using SCN (Direct SCN), directly using CNN-L (Direct CNN-L),
SCN after fine-tuning on new noisy training data (Fine-tuning SCN), the
iterative method of BM3D & SCN (Iterative BM3D-SCN), and the iterative
method of BM3D & CNN-L (Iterative BM3D-CNN-L).

σ 5 10 15 20
Direct SCN 30.23 25.11 21.81 19.45

Direct CNN-L 30.47 25.32 21.91 19.46
Fine-tuning SCN 33.03 31.00 29.46 28.44

Iterative BM3D-SCN 33.51 31.22 29.65 28.61
Iterative BM3D-CNN-L 33.42 31.16 29.62 28.59

To test the performance of upscaling noisy LR images, we simulate ad-

ditive Gaussian noise for the LR input images at four different noise levels

(σ = 5, 10, 15, 20) as the noisy input images. We compare the practical SR

results in Set5 obtained from the following algorithms: directly using SCN,

our proposed iterative SCN method using BM3D as denoising regularizer

(iterative BM3D-SCN), and fine-tuning SCN with additional noisy training

pairs. Note that knowing the underlying corruption model of real LR image

(e.g., noise distribution or blurring kernel), one can always synthesizes real

training pairs for fine-tuning the generic SCN. In other words, once the iter-

ative SR method is feasible, one can always apply our proposed data-driven

method for SR alternatively. However, the other way around is not true.

Therefore, the knowledge of the corruption model of real measurements can

be considered as a stronger assumption, compared to providing real training

image pairs. Correspondingly, the SR performances of these two methods are

evaluated when both can be applied. We also provide the results of meth-

ods directly using another generic SR model: CNN-L [41], and the similar

iterative SR method involving CNN-L (iterative BM3D-CNN-L).

The practical SR results are listed in Table 2.6. We observed the improved

PSNR using our proposed regularized iterative SR method over all noise

levels. The proposed iterative BM3D-SCN achieves much higher PSNR than

the method of directly using SCN. The performance gap (in terms of SR

PSNR) between iterative BM3D-SCN and direct SCN becomes larger as the

noise level increases. A similar result can be observed in the comparison of

iterative BM3D-CNN-L and direct CNN-L. Compared to the method of fine-

tuning SCN, the iterative BM3D-SCN method demonstrates better empirical
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(a) direct SCN (b) fine-tuning SCN (c) iterative BM3D-SCN
PSNR=24.00 dB PSNR=27.54 dB PSNR=27.86 dB

Figure 2.13: The “building” image corrupted by additive Gaussian noise of
σ = 10 and then upscaled by ×2 times using different methods.

performance, with 0.3 dB improvement on average. The iterative BM3D-

CNN-L method provides results comparable to those of the iterative BM3D-

SCN method, which demonstrates that our proposed regularized iterative

SCN scheme can be easily extended for other SR methods, and is able to

effectively handle noisy LR measurements.

An example of upscaling noisy LR images using the aforementioned meth-

ods is demonstrated in Figure 2.13. Both find-tuning SCN and iterative

BM3D-SCN are able to significantly suppress the additive noise, while many

artifacts induced by noise are observed in the SR result of direct SCN. It is

notable that the fine-tuning SCN method performs better at recovering the

texture and the iterative BM3D-SCN method is preferable in smooth regions.

2.6.5 Subjective Evaluation

We have a total of 270 participants giving 720 pairwise comparisons over six

images with different scaling factors, which are shown in Figure 2.6. Not

every participant completed all the comparisons but their partial responses

are still useful.

Figure 2.14 shows the estimated scores for the six SR methods in our

evaluation, with the score for ground truth method normalized to one. As
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Figure 2.14: Subjective SR quality scores for different methods including
bicubic, SC [8], SE [11], SER [36], CNN [18] and the proposed CSCN. The
score for ground truth result is one.

expected, all the SR methods have much lower scores than ground truth,

showing the great challenge in the SR problem. The bicubic interpolation is

significantly worse than other SR methods. The CSCN method outperforms

other previous state-of-the-art methods by a large margin, demonstrating its

superior visual quality. It should be noted that the visual difference between

some image pairs is very subtle. Nevertheless, the human subjects are able

to perceive such differences when seeing the two images side by side, and

therefore make consistent ratings. The CNN model becomes less competitive

in the subjective evaluation than it is in PSNR comparison. This indicates

that the visually appealing image appearance produced by CSCN should be

attributed to the regularization from sparse representation, which cannot be

easily learned by merely minimizing reconstruction error as in CNN.

2.7 Conclusion

We propose a new model for image SR by combining the strengths of sparse

coding and deep network, and make considerable improvement over existing

deep and shallow SR models both quantitatively and qualitatively. Besides

producing good SR results, the domain knowledge in the form of sparse cod-

ing can also benefit training speed and model compactness. Furthermore, we

investigate the cascade of networks to enhance SR performance. In addition,

the robustness to real SR scenarios is discussed for handling non-ideal LR

measurements. More generally, our observation is in line with other recent

extensions made to CNN with better domain knowledge for different tasks.

33



Chapter 3

LEARNING A MIXTURE OF DEEP
NETWORKS FOR SINGLE IMAGE

SUPER-RESOLUTION

3.1 Introduction

Single image super-resolution (SR) is usually cast as an inverse problem of

recovering the original high-resolution (HR) image from the low-resolution

(LR) observation image. This technique can be utilized in the applications

where high resolution is important, such as photo enhancement, satellite

imaging and SDTV to HDTV conversion [49]. The main difficulty resides in

the loss of much information in the degradation process. Since the known

variables from the LR image are usually greatly outnumbered by those from

the HR image, this is a highly ill-posed problem.

A large number of single image SR methods have been proposed in the lit-

erature, including interpolation based method [50], edge model based method

[5] and example based method [51, 10, 7, 27, 41, 45]. Since the former two

methods usually suffer the sharp drop in restoration performance with large

upscaling factors, the example based method has drawn great attention from

the community recently. It usually learns the mapping from LR images to

HR images in a patch-by-patch manner, with the help of sparse representa-

tion [7, 35], random forest [52] and so on. The neighbor embedding method

[51, 27] and neural network based method [41] are two representatives of this

category.

Neighbor embedding is proposed in [51, 38] which estimates HR patches as

a weighted average of local neighbors with the same weights as in LR feature

space, based on the assumption that LR/HR patch pairs share similar local

geometry in low-dimensional nonlinear manifolds. The coding coefficients are

first acquired by representing each LR patch as a weighted average of local

neighbors, and then the HR counterpart is estimated by the multiplication

of the coding coefficients with the corresponding training HR patches. An-
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chored neighborhood regression (ANR), which partitions the feature space

into a number of clusters using the learned dictionary atoms as a set of

anchor points, is utilized in [27] to improve the neighbor embedding meth-

ods. A regressor is then learned for each cluster of patches. This approach

has demonstrated superiority over the counterpart of global regression in

[27]. Other variants of learning a mixture of SR regressors can be found in

[42, 53, 54].

Recently, neural network based models have demonstrated the strong ca-

pability for single image SR [16, 41, 55], due to its large model capacity and

the end-to-end learning strategy to get rid of hand-crafted features. Cui et

al. [16] propose using a cascade of stacked collaborative local autoencoders

for robust matching of self-similar patches, in order to increase the resolution

of inputs gradually. Dong et al. [41] exploit a fully convolutional neural net-

work (CNN) to approximate the complex non-linear mapping between the

LR image and the HR counterpart. A neural network that closely mimics

the sparse coding approach for image SR is designed by Wang et al. [55, 56].

Kim et al. propose a very deep neural network with residual architecture to

exploit contextual information over large image regions [57].

In this chapter, we propose a method to combine the merits of the neigh-

borhood embedding methods and the neural network based methods via

learning a mixture of neural networks for single image SR. The entire image

signal space can be partitioned into several subspaces, and we dedicate one

SR module to the image signals in each subspace, the synergy of which allows

a better capture of the complex relation between the LR image signal and

its HR counterpart than the generic model. In order to take advantage of

the end-to-end learning strategy of neural network based methods, we choose

neural networks as the SR inference modules and incorporate these modules

into one unified network, and design a branch in the network to predict the

pixel-level weights for HR estimates from each SR module before they are

adaptively aggregated to form the final HR image.

A systematic analysis of different network structures is conducted with the

focus on the relation between SR performance and various network structures

via extensive experiments, where the benefit of utilizing a mixture of SR

models is demonstrated. Our proposed approach is contrasted with other

current popular approaches on a large number of test images, and achieves

state-of-the-art performance consistently along with more flexibility of model
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2nd SR	  Inference	  Module
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Output

1st HR	  
Estimate

2nd HR	  
Estimate

𝑛"# HR	  
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Weight	  Maps	  of	  
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Figure 3.1: The overview of our proposed method. It consists of a number
of SR inference modules and an adaptive weight module. Each SR inference
module is dedicated to inferencing a certain class of image local patterns,
and is independently applied on the LR image to predict one HR estimate.
These estimates are adaptively combined using pixel-wise aggregation
weights from the adaptive weight module in order to form the final HR
image.

design choices.

This section is organized as follows. The proposed method is introduced

and explained in detail in Section 3.2. Section 3.3 describes our experiments,

in which we analyze thoroughly different network structures and compare

the performance of our method with other current SR methods both quanti-

tatively and qualitatively. Finally in Section 3.4 we conclude this section.

3.2 Proposed Method

3.2.1 Overview

First we give the overview of our method. The LR image serves as the input

to our method. There are a number of SR inference modules {Bi}Ni=1 in
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Figure 3.2: The network architecture of SCN [55], which serves as the SR
inference module in our method.

our method. Each of them, Bi, is dedicated to inferencing a certain class of

image patches, and applied on the LR input image to predict a HR estimate.

We also devise an adaptive weight module, T , to adaptively combine at

the pixel-level the HR estimates from SR inference modules. When we select

neural networks as the SR inference modules, all the components can be

incorporated into a unified neural network and be jointly learned. The final

estimated HR image is adaptively aggregated from the estimates of all SR

inference modules. The overview of our method is shown in Figure 3.1.

3.2.2 Network Architecture

SR Inference Module

Taking the LR image as input, each SR inference module is designed to better

capture the complex relation between a certain class of LR image signals

and its HR counterpart, while predicting a HR estimate. For the sake of

inference accuracy, we choose as the SR inference module a recent sparse

coding based network (SCN) in [55], which implicitly incorporates the sparse

prior into neural networks via employing the learned iterative shrinkage and

thresholding algorithm (LISTA), and closely mimics the sparse coding based

image SR method [8]. The architecture of SCN is shown in Figure 3.2. Note

that the design of the SR inference module is not limited to SCN, and all

other neural network based SR models, e.g. SRCNN [41], can work as the

SR inference module as well. The output of Bi serves as an estimate of the

final HR frame.

37



Adaptive Weight Module

The goal of this module is to model the selectivity of the HR estimates from

every SR inference module. We propose assigning pixel-wise aggregation

weights of each HR estimate, and again the design of this module is open

to any operation in the field of neural networks. Taking into account the

computation cost and efficiency, we utilize only three convolutional layers

for this module, and ReLU is applied on the filter responses to introduce

non-linearity. This module finally outputs the pixel-level weight maps for all

the HR estimates.

Aggregation

Each SR inference module’s output is pixel-wisely multiplied with its cor-

responding weight map from the adaptive weight module, and then these

products are summed to form the final estimated HR frame. If we use y to

denote the LR input image, a function W (y; θw) with parameters θw to rep-

resent the behavior of the adaptive weight module, and a function FBi
(y; θBi

)

with parameters θBi
to represent the output of SR inference module Bi, the

final estimated HR image F (y; Θ) can be expressed as

F (y; Θ) =
N∑
i=1

Wi(y; θw)� FBi
(y; θBi

), (3.1)

where � denotes the point-wise multiplication.

3.2.3 Training Objective

In training, our model tries to minimize the loss between the target HR frame

and the predicted output, as

min
Θ

∑
j

‖F (yj; Θ)− xj‖22, (3.2)

where F (y; Θ) represents the output of our model, xj is the j-th HR image

and yj is the corresponding LR image; Θ is the set of all parameters in our

model.

If we plug Eq. (3.1) into Eq. (3.2), the cost function then can be expanded
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as:

min
θw,{θBi

}Ni=1

∑
j

‖
N∑
i=1

Wi(yj; θw)� FBi
(yj; θBi

)− xj‖22. (3.3)

3.3 Experiments

3.3.1 Data Sets and Implementation Details

We conduct experiments following the protocols in [27]. Different learning

based methods use different training data in the literature. We choose 91 im-

ages proposed in [7] to be consistent with [42, 52, 55]. These training data are

augmented with translation, rotation and scaling, providing approximately

8 million training samples of 56× 56 pixels.

Our model is tested on three benchmark data sets, which are Set5 [38],

Set14 [39] and BSD100 [40]. The ground truth images are downscaled by

bicubic interpolation to generate LR/HR image pairs for both training and

testing.

Following the convention in [27, 55], we convert each color image into the

YCbCr colorspace and only process the luminance channel with our model,

and bicubic interpolation is applied to the chrominance channels, because the

human visual system is more sensitive to details in intensity than in color.

Each SR inference module adopts the network architecture of SCN, while

the filters of all three convolutional layers in the adaptive weight module have

the spatial size of 5 × 5 and the numbers of filters of three layers are set to

be 32, 16 and N , which is the number of SR inference modules.

Our network is implemented using Caffe [58] and is trained on a machine

with 12 Intel Xeon 2.67GHz CPUs and one Nvidia TITAN X GPU. For the

adaptive weight module, we employ a constant learning rate of 10−5 and ini-

tialize the weights from Gaussian distribution, while we stick to the learning

rate and the initialization method in [55] for the SR inference modules. The

standard gradient descent algorithm is employed to train our network with

a batch size of 64 and the momentum of 0.9.

We train our model for the upscaling factor of two. For larger upscaling

factors, we adopt the model cascade technique in [55] to apply ×2 models
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multiple times until the resulting image reaches at least the desired size. The

resulting image is downsized via bicubic interpolation to the target resolution

if necessary.

3.3.2 SR Performance vs. Network Architecture

In this section we investigate the relation between various numbers of SR

inference modules and SR performance. For the sake of our analysis, we

increase the number of inference modules as we decrease the module capacity

of each of them, so that the total model capacity is approximately consistent

and thus the comparison is fair. Since the chosen SR inference module,

SCN [55], closely mimics the sparse coding based SR method, we can reduce

the module capacity of each inference module by decreasing the embedded

dictionary size n (i.e. the number of filters in SCN) for sparse representation.

We compare the following cases:

• one inference module with n = 128, which is equivalent to the structure

of SCN in [55], denoted as SCN (n=128). Note that there is no need

to include the adaptive weight module in this case.

• two inference modules with n = 64, denoted as MSCN-2 (n=64).

• four inference modules with n = 32, denoted as MSCN-4 (n=32).

The average peak signal-to-noise ratio (PSNR) and structural similarity (SSIM)

[44] are measured to quantitatively compare the SR performance of these

models over Set5, Set14 and BSD100 for various upscaling factors (×2,×3,×4),

and the results are displayed in Table 3.1.

It can be observed that MSCN-2 (n=64) usually outperforms the original

SCN network, i.e. SCN (n=128), and MSCN-4 (n=32) can achieve the

best SR performance by improving the performance marginally over MSCN-

2 (n=64). This demonstrates the effectiveness of our approach that each SR

inference model is able to super-resolve its own class of image signals better

than one single generic inference model.

In order to further analyze the adaptive weight module, we select several

input images, namely, butterfly, zebra, barbara, and visualize the four weight

maps for every SR inference module in the network. Moreover, we record

40



W
ei

gh
t

m
ap

1
W

ei
gh

t
m

ap
2

W
ei

gh
t

m
ap

3
W

ei
gh

t
m

ap
4

M
ax

la
b

el
m

ap

Figure 3.3: Weight maps for the HR estimate from every SR inference
module in MSCN-4 are given in the first four rows. The map (max label
map) which records the index of the maximum weight across all weight
maps at every pixel is shown in the last row. Images from left to right: the
butterfly image upscaled by ×2; the zebra image upscaled by ×2; the
barbara image upscaled by ×2.
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Table 3.1: PSNR (in dB) and SSIM comparisons on Set5, Set14 and
BSD100 for ×2, ×3 and ×4 upscaling factors among various network
structures. Red indicates the best and blue indicates the second best
performance.

Benchmark
SCN MSCN-2 MSCN-4

(n = 128) (n = 64) (n = 32)

Set5
×2 36.93 / 0.9552 37.00 / 0.9558 36.99 / 0.9559
×3 33.10 / 0.9136 33.15 / 0.9133 33.13 / 0.9130
×4 30.86 / 0.8710 30.92 / 0.8709 30.93 / 0.8712

Set14
×2 32.56 / 0.9069 32.70 / 0.9074 32.72 / 0.9076
×3 29.41 / 0.8235 29.53 / 0.8253 29.56 / 0.8256
×4 27.64 / 0.7578 27.76 / 0.7601 27.79 / 0.7607

BSD100
×2 31.40 / 0.8884 31.54 / 0.8913 31.56 / 0.8914
×3 28.50 / 0.7885 28.56 / 0.7920 28.59 / 0.7926
×4 27.03 / 0.7161 27.10 / 0.7207 27.13 / 0.7216

the index of the maximum weight across all weight maps at every pixel and

generate a max label map. These results are displayed in Figure 3.3.

From these visualizations it can be seen that weight map 4 shows high

responses in many uniform regions, and thus mainly contributes to the low

frequency regions of HR predictions. In contrast, weight maps 1, 2 and 3

have large responses in regions with various edges and textures, and restore

the high frequency details of HR predictions. These weight maps reveal that

these sub-networks work in a complementary manner for constructing the

final HR predictions. In the max label map, similar structures and patterns

of images usually share the same label, indicating that such similar textures

and patterns are favored to be super-resolved by the same inference model.

3.3.3 Comparison with State-of-the-Art

We conduct experiments on all the images in Set5, Set14 and BSD100 for

different upscaling factors (×2,×3, and ×4), to quantitatively and qualita-

tively compare our own approach with a number of state-of-the-art image

SR methods. Table 3.2 shows the PSNR and SSIM for adjusted anchored

neighborhood regression (A+) [42], SRCNN [41], RFL [52], SelfEx [45] and

our proposed model, MSCN-4 (n=128) , that consists of four SCN modules

with n = 128. The single generic SCN without multi-view testing in [55],
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Figure 3.4: Visual comparisons of SR results among different methods.
From left to right: the ppt3 image upscaled by ×3; the 102061 image
upscaled by ×3; the butterfly image upscaled by ×4.
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Table 3.2: PSNR (SSIM) comparison on three test data sets for various
upscaling factors among different methods. The best performance is
indicated in red and the second best performance is shown in blue. The
performance gain of our best model over all the other models’ best is shown
in the last row.

Data Set Set5 Set14 BSD100
Upscaling ×2 ×3 ×4 ×2 ×3 ×4 ×2 ×3 ×4

A+ [42]
36.55 32.59 30.29 32.28 29.13 27.33 31.21 28.29 26.82

(0.9544) (0.9088) (0.8603) (0.9056) (0.8188) (0.7491) (0.8863) (0.7835) (0.7087)

SRCNN [41]
36.66 32.75 30.49 32.45 29.30 27.50 31.36 28.41 26.90

(0.9542) (0.9090) (0.8628) (0.9067) (0.8215) (0.7513) (0.8879) (0.7863) (0.7103)

RFL [52]
36.54 32.43 30.14 32.26 29.05 27.24 31.16 28.22 26.75

(0.9537) (0.9057) (0.8548) (0.9040) (0.8164) (0.7451) (0.8840) (0.7806) (0.7054)

SelfEx [45]
36.49 32.58 30.31 32.22 29.16 27.40 31.18 28.29 26.84

(0.9537) (0.9093) (0.8619) (0.9034) (0.8196) (0.7518) (0.8855) (0.7840) (0.7106)

SCN [55]
36.93 33.10 30.86 32.56 29.41 27.64 31.40 28.50 27.03

(0.9552) (0.9144) (0.8732) (0.9074) (0.8238) (0.7578) (0.8884) (0.7885) (0.7161)

MSCN-4
37.16 33.33 31.08 32.85 29.65 27.87 31.65 28.66 27.19

(0.9565) (0.9155) (0.8740) (0.9084) (0.8272) (0.7624) (0.8928) (0.7941) (0.7229)

Our 0.23 0.23 0.22 0.29 0.24 0.23 0.25 0.16 0.16
Improvement (0.0013) (0.0011) (0.0008) (0.0010) (0.0034) (0.0046) (0.0044) (0.0056) (0.0068)

i.e. SCN (n=128), is also included for comparison as the baseline. Note that

all the methods use the same 91 images [7] for training except SRCNN [41],

which uses 395,909 images from ImageNet as training data.

It can be observed that our proposed model achieves the best SR per-

formance consistently over three data sets for various upscaling factors. It

outperforms SCN (n=128) which obtains the second best results by about

0.2 dB across all the data sets, owing to the power of multiple inference

modules.

We compare the visual quality of SR results among various methods in

Figure 3.4. The region inside the bounding box is zoomed in and shown for

the sake of visual comparison. Our proposed model MSCN-4 (n=128) is

able to recover sharper edges and generate less artifacts in the SR inferences.

3.3.4 SR Performance vs. Inference Time

The inference time is an important factor of SR algorithms other than the SR

performance. The relation between the SR performance and the inference

time of our approach is analyzed in this section. Specifically, we measure

the average inference time of different network structures in our method for

upscaling factor ×2 on Set14. The inference time costs versus the PSNR

values are displayed in Figure 3.5, where several other current SR methods

44



Figure 3.5: The average PSNR and the average inference time for upscaling
factor ×2 on Set14 are compared among different network structures of our
method and other SR methods. SRCNN uses the public slower
implementation of CPU.

[45, 52, 41, 42] are included as reference (the inference time of SRCNN is

from the public slower implementation of CPU). We can see that generally,

the more modules our network has, the more inference time is needed and

the better SR results are achieved. By adjusting the number of SR inference

modules in our network structure, we can make the tradeoff between SR

performance and computation complexity. However, our slowest network still

has the superiority in terms of inference time, compared with other previous

SR methods.

3.4 Conclusion

In this section, we propose to jointly learn a mixture of deep networks for

single image super-resolution, each of which serves as a SR inference module

to handle a certain class of image signals. An adaptive weight module is

designed to predict pixel-level aggregation weights of the HR estimates. Var-

ious network structures are analyzed in terms of the SR performance and the

inference time, which validates the effectiveness of our proposed model de-

sign. Extensive experiments show that our proposed model is able to achieve

outstanding SR performance along with more flexibility of design.
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Chapter 4

ROBUST VIDEO SUPER-RESOLUTION
WITH LEARNED TEMPORAL DYNAMICS

4.1 Introduction

Video super-resolution (SR) can be cast as the problem of estimating high-

resolution (HR) frames from a low-resolution (LR) sequence, which has been

extensively studied in the past few decades. This problem has attracted

growing attention recently as the high-definition display (e.g. HDTV) has

become prevalent in the market and even ultra-high-definition video formats,

such as 4K UHD (2160p) and 8K UHD (4320p), have emerged. There is

an increasing demand for converting low-quality video sequences into high-

definition ones so that they can be played on the high-definition displays in

a visually pleasant manner.

Video SR can be tackled from two perspectives: utilizing the intra-frame

spatial relation and the inter-frame temporal relation. In the recent years,

neural network based models have become dominant for image SR to model

the spatial relation due to the large model capacity and the end-to-end learn-

ing strategy [18, 55, 41, 57, 59, 60, 61, 62, 63]. We have witnessed the re-

markable improvement of image SR accuracy from neural network based ap-

proaches with the help of deeper architecture, more layers and more trainable

parameters.

Instead of only considering the intra-frame spatial relation for single im-

age SR, the inter-frame temporal relation is more important for video SR,

as research suggests that the human vision system is more sensitive to mo-

tion [64]. Hence it is crucial for video SR algorithms to capture and model

the effect of motion information on visual perception. To meet this need, a

number of video SR algorithms are proposed [65, 66, 67, 68, 69, 70, 71] to

conduct pixel-level motion and blur kernel estimation based on image pri-

ors, e.g., sparsity and total variation. These methods usually formulate a
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sophisticated optimization problem which incurs heavy computational cost

and thus they suffer considerable inference time. Recently, neural network

based models have also emerged in this domain [70, 72, 73]. Some of them

model the temporal relation on a fixed temporal scale via explicitly con-

ducting motion compensation to align consecutive frames as inputs to the

network model [70, 73], while the rest develop recurrent network architecture

to use the long-term temporal dependency [72].

Motion estimation is crucial for temporal dependency modeling and can

drastically influence the result of video SR. Rigid and smooth motion is usu-

ally easy to model among neighboring frames, in which case it is beneficial

to include neighboring frames to super-resolve the center frame. In contrast,

with complex motion or parallax presented across neighboring frames, mo-

tion estimation becomes challenging and erroneous motion compensation can

undermine the result of video SR.

To this end, we propose a temporal adaptive neural network that is

able to robustly handle various types of motion and adaptively select the

optimal range of temporal dependency to extract useful information among

consecutive frames and alleviate the detrimental effect of erroneous motion

estimation simultaneously. Our network takes as input a number of aligned

LR frames after motion compensation, and applies filters of different tempo-

ral sizes to generate multiple HR frame estimates. The resultant HR es-

timates are adaptively aggregated according to the confidence of motion

compensation which is inferred from the temporal adaptive network. The

proposed network architecture extends the idea of the Inception module in

GoogLeNet [1] to the temporal domain. Our model gains the robustness to

imperfect motion compensation through network learning, instead of sim-

ply boosting optical flow quality by using computationally more expensive

methods as in [70], or extracting motion information only from a single fixed

temporal scale as in [73].

Furthermore, we develop a very deep network architecture by increasing

the number of layers and trainable parameters in our temporal adaptive net-

work, in order to push the limit of the SR accuracy. Convolutions are directly

applied in the LR image space and a deconvolution layer is appended at last

to upscale the feature representation and generate the HR prediction in the

desired spatial size. This design has the benefit of drastically decreasing

the computation cost and thus facilitating the training effort as well as sub-

47



stantially reducing inference time. We provide a thorough analysis of this

temporal adaptive design and systematically investigate the relation between

the SR performance and various network structures. We demonstrate that

the temporal adaptive design obtains a clear advantage in handling complex

motion over the counterpart using temporal filters with fixed length.

Besides modeling motion information in the temporal domain, we also

conduct motion compensation in the spatial domain to enhance the tem-

poral modeling. We explore multiple image alignment methods to improve

video SR. We find that the sophisticated optical flow based approach may

not be optimal, as the estimation error on complex motion adversely affects

the subsequent SR. Therefore, we reduce the complexity of motion by esti-

mating only a small number of parameters of spatial transform, and provide

a more robust approach to aligning frames. Moreover, inspired by the spatial

transformer network [74], we propose a spatial alignment network, which

infers the spatial transform between consecutive frames and outputs aligned

frames for video SR. Compared to the conventional optical flow based meth-

ods, this spatial alignment network needs much less inference time and can

be cascaded with the temporal adaptive network and trained jointly. We

observe that reducing the complexity of motion in this manner increases the

robustness of image alignment to complex motion and thus provides better

SR performance, which shows that the spatial alignment network is beneficial

to SR by providing aligned input frames.

We conduct a comprehensive comparison of our proposed method and

other recent video SR approaches on public video datasets. Extensive video

SR results show that our method outperforms competing methods by a large

margin in terms of not only spatial consistency but also temporal coherence.

In addition, as SR can be utilized as a pre-processing step to improve the

performance of high-level vision tasks, we choose video face recognition as

an example and evaluate the improvement of its performance with the help

of various video SR approaches. Our proposed method is able to achieve the

most improvement showing that it can not only produce visually pleasant HR

results, but also better recover semantically faithful information benefiting

high-level vision tasks. A more detailed version can be found in [75].
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4.2 Related Work

In this section, we give a brief review of deep learning techniques for SR. We

first review the methods for image SR and then discuss those for video SR.

4.2.1 Deep Learning for Image SR

Image SR has been widely studied over a few decades and quite a number

of approaches have been developed. Here we only focus on neural network

based methods, which have shown impressive performance for image SR.

Dong et al. [18, 41] pioneer a three-layer fully CNN, termed SRCNN, to ap-

proximate the complex non-linear mapping between the LR image and the

HR counterpart. Due to the end-to-end training strategy that jointly opti-

mizes all the parameters and the large learning capacity of neural networks,

this method notably outperforms the conventional shadow counterparts. A

sparse coding network (SCN) that closely mimics the sparse representation

approach for image SR is designed by Wang et al. [55, 56], demonstrating

the benefit of domain expertise from sparse coding in the design of neural

networks for image SR. A very deep CNN with residual architecture and

many more layers and trainable weights, termed VDSR, is proposed by Kim

et al. [57] to attain impressive SR accuracy. Kim et al. [59] design another

network which has recursive architecture with skip-connection for image SR,

dubbed as DRCN, to boost performance while exploiting a small number of

model parameters. Liu et al. [76] propose to learn a mixture of networks that

can work in a complementary manner to further improve SR results. Shi et

al. [60] propose an efficient sub-pixel convolutional neural network, termed

ESPCN, which directly applies convolutions on the LR space of images and

learns an array of upscaling filters in the last layer of their network, in or-

der to considerably reduce the computation cost and achieve real-time SR.

Dong et al. [61] adopt a similar strategy to enhance SRCNN with smaller

filter sizes and more convolution layers. More recently, Ledig et al. [77] uti-

lize a generative adversarial network to produce plausible-looking fine details

and textures for image SR of large upscaling factors. Lai et al. [62] propose

the Laplacian pyramid super-resolution network to progressively reconstruct

the sub-band residuals of HR images. Tai et al. [63] propose another deep

recursive residual network which improves DRCN with more convolutional
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layers and more residual units. Yu et al. [78] extend a CNN based model

for computed tomography SR. Han et al. [79] propose a dual-state recurrent

network to exploit both LR and HR signals jointly and allow information to

be exchanged between LR and HR spaces in both directions.

4.2.2 Deep Learning for Video SR

With the popularity of neural networks for image SR, researchers have started

developing video SR methods of neural networks. Liao et al. [70] first gen-

erate an ensemble of SR draft via motion compensation under different pa-

rameter settings, and then use a CNN to reconstruct the HR frame from

all drafts. Huang et al. [72] avoid explicit motion estimation by extending

SRCNN for single image SR along the temporal dimension forming a recur-

rent convolutional network to capture the long-term temporal dependency.

This neural network models the long-term temporal information in bidirec-

tional “recurrent-like” connections. These methods either suffer considerable

running time due to the conventional optical flow based alignment methods,

or fail to precisely handle large-displacement and other complicated motions

which degrade the final SR performance. Kappeler et al. [73] extend SRCNN

for video SR by taking as input consecutive motion compensated frames on a

fixed temporal scale and experiment with various ways to merge feature rep-

resentations of video frames. However, the sophisticated and time-consuming

optical flow based frame alignment is the shortcoming of this method.

4.3 Temporal Adaptive Neural Network

In this section, we introduce our temporal adaptive neural network. We

start by giving an overview of the network, and then provide the detailed

architecture. We finally show the training objective of the network.

4.3.1 Overview

Our model aims to estimate an HR frame from a set of local LR frames. The

main challenge of video SR lies in the proper utilization of temporal informa-

tion to handle various types of motion specifically. To address this problem,
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Figure 4.1: The overview of the temporal adaptive neural network. It
consists of a number of SR inference branches and a temporal modulation
branch. Each SR inference branch works on a different temporal scale and
utilizes its temporal dependency to provide an HR frame prediction. These
predictions are adaptively combined using pixel-level aggregations from the
temporal modulation branch to generate the final HR frame.

we design a neural network to adaptively select the optimal temporal scale for

video SR. The network has a number of SR inference branches {Bi}Ni=1,

where each Bi works on a different temporal scale i, and uses its temporal

dependency on its scale to predict an HR estimate. We design an extra tem-

poral modulation branch, T , to determine the optimal temporal scale and

adaptively combine all the HR estimates based on motion information, at the

pixel-level. All SR inference branches and the temporal modulation branch

are incorporated and jointly learned in a unified network. The final estimated

HR frame is aggregated from the estimates of all SR inference branches con-

sidering the motion information on various temporal scales. The overview of

the temporal adaptive network is shown in Figure 4.1.

4.3.2 Network Architecture

SR inference branch

The SR inference branch Bi works on 2i−1 consecutive LR frames. c denotes

the number of channels for every input LR frame and r is the upscaling factor.

The filters of SR inference branch Bi in the first layer have the temporal

length of 2i − 1. Specifically, if we apply convolutions in the first layer, the

convolutional filters are designed to have (2i− 1)× c channels.
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First we customize a recent neural network based SR model, ESPCN [60],

as the SR inference branch due to its high SR accuracy and low computa-

tion cost, and use this lightweight model to validate the effectiveness of the

temporal adaptive network. This network has three layers in total. The first

layer is a convolutional layer with 64 kernels of size 5 × 5; the second layer

is another convolutional layer with 32 kernels of size 3 × 3; the last layer

is a sub-pixel convolution layer which uses r2 × c kernels of size 3 × 3 to

generate feature maps in r2 × c channels and rearranges them into the HR

prediction of c channels. The Rectified Linear Unit (ReLU) [26] is chosen

as the activation function of the first and second layer. All the convolutions

are conducted with stride one. Interested readers are referred to [60] for the

details of ESPCN.

Afterward we develop a much deeper network with more trainable parame-

ters as the SR inference branch in order to push the limit of the SR accuracy

of our model, since more layers and larger model size usually lead to per-

formance gain. This network employs an idea similar to ESPCN by directly

extracting features from the LR image space in order to lower the compu-

tation cost, and consists of 19 convolutional layers and one deconvolution

layer. Each convolutional layer has 64 kernels of size 3 × 3 with stride one

and a ReLU as the activation function. The last deconvolution layer is used

to enlarge the spatial dimension of feature maps into the desired size, which

has c kernels of size (2r− r mod 2)× (2r− r mod 2) with stride r and results

in the HR prediction of c channels.

Note that the design of the SR inference branch is not limited to these two

choices, and all other network based SR models, such as SRCNN and SCN,

can work as the SR inference branch as well. The output of Bi serves as an

estimate of the final HR frame.

Temporal modulation branch

The principle of this branch is to learn the selectivity of our model on different

temporal scales according to motion information. We propose to assign pixel-

level aggregation weights on each HR estimate, and in practice this branch

is applied on the largest temporal scale. For a model of N SR inference

branches, the temporal modulation branch takes 2N − 1 consecutive frames

as input. Considering the computation cost and efficiency, for this branch we
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adopt a structure similar to that of the SR inference branch. The temporal

modulation branch outputs the pixel-level weight maps on all N possible

temporal scales.

Aggregation

The output of each SR inference branch is multiplied with its corresponding

weight map from the temporal modulation branch in a pixel-wise manner,

and then these products are summed to form the final estimated HR frame.

4.3.3 Training Objective

In training, we minimize the loss between the target HR frame and the

predicted output as

min
Θ

∑
j

‖F (y(j); Θ)− x(j)‖22, (4.1)

where F (y; Θ) represents the output of the temporal adaptive network, x(j)

is the j-th HR frame and y(j) are all the associated LR frames; Θ is the set

of parameters in the network.

If we use an extra function W (y; θw) with parameter θw to represent the

behavior of the temporal modulation branch, the cost function then can be

expanded as:

min
θw,{θBi

}Ni=1

∑
j

‖
N∑
i=1

Wi(y
(j); θw)� FBi

(y(j); θBi
)− x(j)‖22. (4.2)

Here � denotes the pointwise multiplication and FBi
(y; θBi

) is the output of

the SR inference branch Bi.

In practice, we first train each SR inference branch Bi individually as in

(4.1) using the same HR frame as the training target, and then use the

resultant models to initialize the SR inference branches when training the

temporal adaptive network following (4.2). This training strategy speeds up

the convergence dramatically without sacrificing the prediction accuracy of

SR.
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4.4 Spatial Alignment Methods

The alignment of consecutive LR frames is usually applied as a prepossessing

step for video SR, and has been proved beneficial in prior works [70, 73].

We investigate several image alignment methods in order to provide better

motion compensated frames for the temporal adaptive network.

4.4.1 Rectified Optical Flow Alignment

It is well known that since the complex motion is difficult to model, the

conventional optical flow based image alignment using erroneous motion es-

timation may introduce artifacts, which can be propagated to the following

SR step and have a detrimental effect on it. We try simplifying the motion in

the patch level to integer translations for avoiding interpolation which may

cause blur or aliasing. Given a patch and its optical flow, we estimate the

integer translation along the horizontal and vertical directions by rounding

the average horizontal and vertical displacement of all pixels in this patch,

respectively. This scheme, termed rectified optical flow alignment, proves

more beneficial to the following SR than the conventional optical flow based

image alignment, which will be shown in Section 4.5.4.

4.4.2 Spatial Alignment Network

In order to align neighboring frames, we propose a spatial alignment network

which has the merits of efficient inference and end-to-end training with the SR

network. The architecture of the spatial alignment network and its cascade

with the temporal adaptive network are shown in Figure 4.2.

Each time the spatial alignment network takes as input one LR reference

frame and one LR neighboring frame (as the source frame), and generates

as output an aligned version of this neighboring frame. Specifically, these

two LR frames are first fed into a localization network to predict the spatial

transform parameter θ̂ST , which is then applied to the source frame in the

spatial transform layer, to produce the LR aligned frame. Given the success

of the rectified optical flow alignment, we design the localization network to

infer only two translation parameters. The LR source frame and reference

frame are stacked to form the input of 2×c channels. The localization network
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Figure 4.2: The architecture of the spatial alignment network and its
cascade with the SR network. Each time one LR reference frame and its
neighboring LR frame (as the source frame) are first fed into a localization
net to regress the alignment parameter θ̂ST . Then θ̂ST is applied to the
source frame in the spatial transform layer to generate an LR aligned frame.
The LR reference frame and all the aligned neighboring frames are the
input to the subsequent SR network. During the joint training, we minimize
the weighted sum of the MSE loss in the SR network and the MSE loss
between θ̂ST and the ground truth θST in the spatial alignment network.

has two convolutional layers of 32 kernels of size 9 × 9. Each convolutional

layer is followed by a max-pooling layer with stride two and kernel of size

two. Then there are two fully connected layers which have 100 and two

nodes, respectively, to regress the two translation parameters. In practice,

the spatial alignment network works on the patch level for better motion

modeling, and only the center region in each patch is kept in order to avoid

the empty area near the boundary after translation. In training, the loss in

the spatial alignment network is defined as the mean squared error (MSE)

between θ̂ST and the ground truth θST , which can be acquired from other

image alignment methods, e.g. the rectified optical flow alignment.

The LR reference frame and all the resultant aligned neighboring frames

from this network are used together as input to the temporal adaptive net-

work for SR.

We propose to train this network and the temporal adaptive network in an

end-to-end fashion, since joint learning is usually more advantageous than

separate learning. During the joint training, we minimize the weighted sum

of the loss in the spatial alignment network and the loss from the temporal
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adaptive network, as

min
{Θ,θL}

∑
j

‖F (y(j); Θ)− x(j)‖22 + λ
∑
j

∑
k∈Nj

‖θ̂(k)ST − θ
(k)
ST‖

2
2, (4.3)

where Nj denotes the set of LR frames associated to the j-th HR frame, and

λ is the scaling factor for balancing these two losses. θL represents the set of

parameters in the localization net.

4.5 Experiments

We discuss our experiments in this section. We first introduce the datasets

that we use and provide the implementation details of our system. Next, we

provide a thorough analysis of our network architecture and spatial alignment

methods. We then compare our results with state-of-the-art, and show the

influence of video SR with respect to the high-level vision tasks. Finally we

provide the running time analysis of our proposed approach.

4.5.1 Datasets

Since the amount of training data plays an important factor in training neural

network, we combine three public datasets of uncompressed videos: LIVE

Video Quality Assessment Database [80], MCL-V Database [81] and TUM

1080p Data Set [82], so as to collect sufficient training data. We prepare

data in 3D volume from video clips that have abundant textures and details

and are separated by shots or scenes. We test our method on six videos:

calendar, city, foliage, penguin, temple and walk from [70], each of which has

31 frames. In addition, we choose a 4K video dataset, Ultra Video Group

Database [83], as a second test set for the SR performance comparison. This

dataset consists of seven 120fps sequences: Beauty, Bosphorus, HoneyBee,

Jockey, ReadySteadyGo, ShakeNDry and YachtRide, covering various types

of scenes and motion. ShakeNDry has 300 frames while the other six have

600 frames. The original HR frames are downsized by bicubic interpolation

to generate LR frames for training.
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4.5.2 Implementation Details

Following the convention in [18, 55, 72, 60], we convert each frame into the

YCbCr color space and only process the luminance channel using our model.

Hence each frame has c = 1 channel. We focus on the upscaling factor of

four, which is usually the most challenging case in video SR. The input LR

frames to the temporal adaptive network are the volume of 5×30×30 pixels,

i.e. patches of 30 × 30 pixels from five consecutive frames. These data are

augmented with rotation, reflection and scaling, providing about 10 million

training samples. We implement our model using Caffe [58]. We apply a con-

stant learning rate of 10−4 for the first two layers and 10−5 for the last layer,

a batch size of 64 with momentum of 0.9. We terminate the training after

five million iterations. Experiments are conducted on a workstation with one

GTX Titan X GPU. Based on the architecture of each SR inference branch,

we can initialize the parameters from the single frame SR model, except that

the filter weights in the first layer are evenly divided along the temporal di-

mension. In practice, it is observed that this initialization strategy leads to

faster convergence and usually improves the performance.

4.5.3 Analysis of Network Architecture

We experiment with different types of architecture for the temporal adaptive

network using the two SR inference branch of three layers and 20 layers, re-

spectively, in order to investigate the relation between the SR performance

and various structures. Recall that Bi denotes the SR inference branch work-

ing on 2i− 1 LR frames, and T is the temporal adaptive branch. We explore

the structures that contain (1) only B1, (2) only B2, (3) only B3, (4) B1,2, (5)

B1,2+T , (6) B1,2,3 and (6) B1,2,3+T . B1,2 denotes the straight average of HR

predictions from B1 and B2, and B1,2,3 follows the similar definition. Note

that in the case of (1), each frame is super-resolved independently. For the

experiments in this section, LR consecutive frames are aligned as in Section

4.4.1.

The PSNR (unit: dB) comparisons of six test sequences by 4x upscaling

are shown in Table 4.1. Average PSNR of all the frames in each video is

shown in the table. It can be observed that in both the cases of SR inference

branch of three layers and 20 layers, generally the network performance is

57



Table 4.1: PSNR comparisons of different network structures: average
PSNR of all the frames in each video sequence by 4x upscaling is displayed.
Best results are shown in bold. From left to right, Bi: the HR prediction
from the i-th SR inference branch; B1,2: the straight average of HR
predictions from B1 and B2; B1,2 + T : the adaptive aggregation of the
outputs of B1 and B2 with joint learning. B1,2,3 and B1,2,3 + T follow the
similar definitions as B1,2 and B1,2 + T , respectively.

B1 B2 B3 B1,2 B1,2 + T B1,2,3 B1,2,3 + T

calendar 20.88 21.16 21.32 21.10 21.26 21.24 21.51
city 25.70 25.91 26.25 25.89 25.97 26.10 26.46

foliage 24.29 24.51 24.81 24.47 24.58 24.70 24.98
penguin 36.46 36.41 36.40 36.56 36.53 36.59 36.65
temple 28.97 29.30 29.72 29.33 29.46 29.64 30.02
walk 27.69 27.78 27.90 27.88 27.90 28.00 28.16

average 27.33 27.51 27.73 27.54 27.62 27.71 27.96

(a) Temporal adaptive network using the SR inference branch of three layers

B1 B2 B3 B1,2 B1,2 + T B1,2,3 B1,2,3 + T

calendar 21.68 22.22 22.22 22.15 22.34 22.27 22.60
city 25.89 26.46 26.72 26.36 26.55 26.58 27.01

foliage 24.47 25.21 25.32 25.07 25.29 25.26 25.56
penguin 36.95 36.86 36.85 36.99 37.01 37.03 37.09
temple 29.60 30.66 30.97 30.52 30.78 30.91 31.36
walk 28.09 28.62 28.70 28.58 28.66 28.75 29.06

average 27.78 28.34 28.46 28.28 28.43 28.47 28.78

(b) Temporal adaptive network using the SR inference branch of 20 layers

enhanced as more frames are involved, and B1,2,3+T performs the best among

all the structures. B1,2 +T obtains higher PSNRs than B1,2 and B1,2,3 +T is

superior to B1,2,3, which demonstrates the advantage of adaptive aggregation

over the straight averaging on various temporal scales. For the same temporal

architecture, the model with 20-layer SR inference branch always outperforms

the model with three-layer SR inference branch, showing that more layers and

more weights increasing the capacity of temporal adaptive network can lead

to better restoration accuracy.

In order to show the visual difference of SR results among various struc-

tures, we choose one frame from walk, and show the SR results from B1,

B3, B1,2,3 + T as well as the ground truth HR frame in Figure 4.3 with two

zoom-in regions. The region in the blue bounding box contains part of a

flying pigeon which is subject to complex motion among consecutive frames

and thus is challenging for accurate motion estimation. It can be observed

58



(a) B1 (b) B3

(c) B1,2,3 + T (d) Ground truth

Figure 4.3: Examples of SR results from walk by 4x upscaling using
different network structures. Compared with B1 and B3, the temporal
adaptive architecture B1,2,3 + T is able to effectively handle both the rigid
motion shown in the top left zoom-in region and the complex motion in the
bottom right zoom-in region.

that the HR inference from B1 has many fewer artifacts than that from B3,

indicating the short-term temporal dependency alleviates the detrimental ef-

fect of erroneous motion estimation in this case. In contrast, the zoom-in

region in the red bounding box includes the ear and part of the neck of the

pedestrian with nearly rigid motion, in which case the HR inference from

B3 is able to recover more details. This result shows the necessity of the

long-term temporal dependency. B1,2,3 + T is able to generate better HR

estimates compared with its single-branch counterparts in these two zoom-in

regions, and thus shows the effectiveness of the temporal adaptive design in

our model.

To further analyze the temporal adaptive branch, we visualize the weight

maps given by the temporal modulation branch of two frames from foliage

and temple for each SR inference branch. In addition, we use the index of the

maximum weight among all SR inference branches at each pixel to draw a
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(a) Reference (b) B1 (c) B2 (d) B3 (e) Max label map

Figure 4.4: Weight maps of three SR inference branches given by the
temporal modulation branch in the architecture B1,2,3 + T . The max label
map records the index of the maximum weight among all the SR inference
branches at every pixel, which is shown in the last column. B1, B2 and B3

are indicated in yellow, teal and blue, respectively. Frames from top to
bottom: foliage and temple by 4x upscaling.

max label map. These results are displayed in Figure 4.4. It can be seen that

B1 mainly contributes the region of cars in foliage and the top region of the

lantern in temple, which are subject to large displacements caused by object

motion and camera motion. In contrast, the weight map of B3 has larger

responses in the region subject to rigid and smooth motion, such as the plants

of the background in foliage and the sky in temple. Their complementary

behaviors are properly utilized by the temporal adaptive aggregation of our

model.

4.5.4 Analysis of Spatial Alignment Methods

We conduct experiments with the image alignment methods discussed in

Section 4.4. We choose the algorithm of Liu [84] to calculate optical flow,

considering the motion estimation accuracy and running time. Figure 4.5

shows a case where the conventional optical flow alignment fails and intro-

duces obvious artifacts in LR frames while the rectified optical flow alignment

succeeds.

As for the spatial alignment network (SAN), we use the result of the rec-

tified optical flow alignment as the training target of the spatial transform

parameter. We choose the input patch size as 60 × 60 pixels for the spatial

alignment network to achieve the best motion modeling. We keep the center

region to be 30 × 30 pixels in each patch and discard the remaining region

after translation, such that SAN can handle horizontal and vertical transla-
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(a) (b) (c) (d) (e) (f)

(g) (h) (i)

Figure 4.5: Comparison between the optical flow alignment and our
proposed rectified optical flow alignment. (a)-(c): three consecutive LR
patches warped by optical flow alignment. (d)-(f): the same three LR
patches aligned by rectified optical flow alignment. (g): HR prediction from
(a)-(c). (h): HR prediction from (d)-(f). (i): ground truth. Note that the
rectified optical flow alignment recovers more details inside the white
bounding box.

tions by up to 15 pixels in each direction with respect to the reference patch.

In real application, the whole LR image is split into overlapped patches of

60 × 60 pixels such that the super-resolved patches can be tiled together to

fully cover the HR image. The size of the overlap depends on the size of the

cropped border of SAN and the following SR network. The whole LR image

is padded with 0s to compensate for the cropped border of SAN, when we

recover the boundary of the output image. In the joint training λ is set as

−103 empirically. The visualization of the inputs and outputs of the spa-

tial alignment network is shown in Figure 4.6. It is obvious that the output

neighboring frames are aligned to the reference frame.

The PSNR comparisons between these alignment methods on six video

sequences by 4x upscaling are shown in Table 4.2. Average PSNR of all the

frames in each video is shown, and only B3 is used in the SR network with the

lightweight SR inference branch of three layers. Our proposed rectified optical

flow alignment achieves the highest PSNR, demonstrating its superiority over

the conventional optical flow alignment. The approach of spatial alignment
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 4.6: Visualization of the inputs and outputs of the spatial alignment
network. (a)-(e): five consecutive LR frames as inputs. (f)-(j): their
corresponding outputs. Note that (c) and (h) are the same reference frame
without processing of this network. Only the region in the center red
bounding box is kept for SR.

network clearly improves SR quality over its plain counterpart, which shows

the effectiveness of its alignment.

4.5.5 Comparison with State-of-the-Art

Spatial Consistency

We use our best model B1,2,3 + T with rectified optical flow alignment and

experiment with two choices of SR inference branch described in Section

4.3.2: the lightweight version of three layers, denoted as Proposed-S and the

much deeper network of 20 layers, denoted as Proposed-L. We compare them

with several recent image and video SR methods: VSRnet [73], Bayesian

method [68], Deep-DE [70], ESPCN [60] and VDSR [57] on the six test

sequences. We use the model and code of VSRnet, Deep-DE and VDSR

from their websites, respectively. The source code of Bayesian method is

unavailable, so we adopt the reimplementation of Bayesian method in [69]

and use five consecutive frames to predict the center frame. We implement

ESPCN by ourselves since its source code is unavailable as well. We report

the result on only the center frame of each sequence in that Deep-DE requires
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Table 4.2: PSNR comparisons of various frame alignment methods: average
PSNR of all the frames in each video sequence by 4x upscaling is displayed.
Best results are shown in bold. From left to right, raw: raw LR frames; OF:
conventional optical flow alignment; ROF: rectified optical flow alignment;
SAN: spatial alignment network.

raw OF ROF SAN

calendar 21.07 21.28 21.32 21.27
city 25.92 26.29 26.25 26.23

foliage 24.49 24.62 24.81 24.78
penguin 36.37 36.32 36.40 36.29
temple 29.40 29.52 29.72 29.60
walk 27.82 27.79 27.90 27.83

average 27.51 27.64 27.73 27.67

Table 4.3: PSNR (SSIM) comparisons of various video SR methods: PSNR
of only the center frame in each video sequence by 4x upscaling is displayed.
Red indicates the best and blue indicates the second best performance.

VSRnet [73] Bayesian [68] Deep-DE [70] ESPCN [60] VDSR [57] Proposed-S Proposed-L

calendar
20.99 21.59 21.40 20.97 21.50 21.61 22.73

(0.6182) (0.7203) (0.7096) (0.6430) (0.6739) (0.6986) (0.7466)

city
24.78 26.23 25.72 25.60 25.16 26.29 26.39

(0.5901) (0.7147) (0.6886) (0.6179) (0.6319) (0.7052) (0.7315)

foliage
23.87 24.43 24.92 24.24 24.41 24.99 25.50

(0.6079) (0.7022) (0.7074) (0.6376) (0.6436) (0.7059) (0.7201)

penguin
35.93 32.65 30.69 36.50 36.60 36.68 37.11

(0.9625) (0.9577) (0.9181) (0.9668) (0.9673) (0.9682) (0.9719)

temple
28.34 29.18 29.50 29.17 29.81 30.65 32.12

(0.8538) (0.9043) (0.9047) (0.8779) (0.8947) (0.9069) (0.9323)

walk
27.02 26.39 26.67 27.74 27.97 28.06 28.91

(0.8183) (0.8327) (0.7928) (0.8407) (0.8469) (0.8485) (0.8688)

average
26.82 26.75 26.48 27.29 27.58 28.05 28.79

(0.7418) (0.8053) (0.7869) (0.7640) (0.7764) (0.8056) (0.8285)

15 preceding and 15 succeeding frames to predict one center frame and there

are only 31 frames in each sequence. We display several visual results in

Figure 4.7. It can be seen that our method Proposed-L is able to recover

more fine details and less artifacts. The PSNRs and SSIMs are shown in

Table 4.3. Our method Proposed-L achieves both the highest PSNR and

SSIM, which significantly outperforms all other methods over all the frames.

Our method Proposed-S obtains the second best result in terms of average

PSNR and SSIM, but its average PSNR is 0.74 dB lower than Proposed-L,

which reveals the fact that the deeper architecture and the larger model size

are highly beneficial to improve the performance of the temporal adaptive

network.

For the application of HD video SR, we compare our two models with
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VSRnet [73] Bayesian [68] Deep-DE [70] ESPCN [60] VDSR [57] Proposed-L

Figure 4.7: Visual comparisons of SR results by 4x upscaling among
different methods. From top to bottom: zoom-in regions from foliage,
penguin and temple.

VSRnet and ESPCN on Ultra Video Group Database. We do not include

Bayesian method and Deep-DE for comparison, since both of them take

multiple hours to predict one 4K HR frame (only the CPU version of code for

Deep-DE is available). The PSNR and SSIM comparisons of these methods

are in Table 4.4, where the average PSNR and SSIM of all the frames in every

video are shown. The visual results are displayed in Figure 4.8. Our method

Proposed-L obtains both the highest PSNR and SSIM consistently over all

the video sequences, while our method Proposed-S achieves the second best.

Visual results on Ultra Video Group Database are shown in Figure 4.8. It is

noted that our method Proposed-L produces more visually pleasant results

with sharper edges.

Temporal Coherence

We compare the temporal coherence of the SR results from our model and

other competing methods. We adopt the MOVIE index [85], which is a metric
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Table 4.4: PSNR (SSIM) comparisons of several video SR methods on
Ultra Video Group Database by 4x upscaling. Red indicates the best and
blue indicates the second best performance.

VSRnet [73] ESPCN [60] VDSR [57] Proposed-S Proposed-L

Beauty
35.34 35.56 35.51 35.59 35.95

(0.7835) (0.7933) (0.7921) (0.7939) (0.8027)

Bosphorus
42.78 42.78 42.67 43.07 43.53

(0.9625) (0.9620) (0.9621) (0.9658) (0.9693)

HoneyBee
39.47 39.60 39.67 39.69 40.02

(0.9080) (0.9104) (0.9111) (0.9124) (0.9151)

Jockey
40.05 40.45 40.50 40.62 41.21

(0.9229) (0.9264) (0.9272) (0.9291) (0.9330)

ReadySteadyGo
39.51 40.16 40.24 40.61 41.17

(0.9472) (0.9494) (0.9516) (0.9560) (0.9594)

ShakeNDry
38.86 39.29 39.37 39.38 39.70

(0.9087) (0.9147) (0.9153) (0.9155) (0.9182)

YachtRide
37.39 37.49 37.53 37.79 38.03

(0.9441) (0.9452) (0.9473) (0.9502) (0.9511)

Average
39.06 39.33 39.36 39.54 39.94

(0.9110) (0.9145) (0.9152) (0.9176) 0.9213

Table 4.5: MOIVE (×10−3) index comparisons of SR results by 4x
upscaling among various SR methods. Best results are shown in bold.

VSRnet [73] ESPCN [60] VDSR [57] Proposed-L

calendar 13.13 12.62 13.06 7.77
city 6.29 5.82 5.99 3.92

foliage 4.02 3.48 3.55 2.88
penguin 2.02 1.62 1.60 1.59
temple 6.20 4.62 4.33 2.33
walk 6.27 5.13 5.16 4.19

average 6.32 5.55 5.62 3.78

to measure video quality from human perception and temporal consistency.

We evaluate the MOVIE indices of six video sequences over SR results of

the methods: VSRnet, ESPCN, VDSR and Proposed-L, and display them

in Table 4.5. Our method Proposed-L achieves significant reduction in the

MOVIE index, which demonstrates the superiority of the temporal coherence

of its super-resolved sequences.

Moreover, we select a line in a fixed position of a frame and stack every

line in this fixed position from a number of consecutive frames to create its

temporal profile. We display the results from various SR methods in Fig-

ure 4.9. It can be seen that our method Proposed-L generates smoother and

more consistent temporal changes in these temporal profiles, which proves

the enhancement of temporal coherence from our method.
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VSRnet [73] ESPCN [60] VDSR [57] Proposed-L

Figure 4.8: Visual comparisons of SR results on Ultra Video Group
Database by 4x upscaling among different methods. From top to bottom:
frames and zoom-in regions from Beauty, Bosphorus, YachtRide, HoneyBee
and ReadySteadyGo.

4.5.6 Influence of Video SR on High-Level Vision Tasks

SR can be used as a pre-processing step to enhance the performance of high-

level vision applications, such as semantic segmentation, face detection, emo-

tion recognition and digit recognition [86, 87, 88, 89], especially when the

input data is of low visual quality. Here we evaluate how various video SR

algorithms could benefit the video face identification on YouTube Face (YTF)

dataset [90]. We compare our method Proposed-S with VSRnet and ESPCN.

We form a YTF subset by choosing the 167 subject classes that contain

more than three video sequences. For each class, we randomly select one
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VSRnet [73] ESPCN [60]

VDSR [57] Proposed-L

VSRnet [73] ESPCN [60]

VDSR [57] Proposed-L

Figure 4.9: Visual comparison on the temporal profiles of the blue line in
the zoom-in region from SR results by 4x upscaling over 27 consecutive
frames among various methods. From top to bottom: calendar and city.

video for testing and the rest for training. Since the video duration varies a

lot, we split original videos into clips of 50 frames and collect about 640 clips

for testing.

The face regions are cropped and resized to 60× 60 pixels, as the original

resolution set, and then are downsampled by a factor of four to comprise

the low-resolution set. We train a customized AlexNet [15] on the original

resolution set as the classifier. Table 4.6 shows the architecture of our deep

network used for this task. The input is one frame of facial region (60 × 60

pixels). We exploit four convolutional layers and append maximum pooling

layers after the third and fourth convolutional layers. The last layer is a fully

connected layer which has 167 nodes. We follow the convention of AlexNet

to minimize the cross entropy loss during training. In addition, we train a

network model directly on the low-resolution set as the baseline.

In testing, we feed into the network SR results from the low-resolution set

by various algorithms. The prediction probability is aggregated over all the

frames in each video. The top-1 and top-5 accuracy results of face identifi-

cation are reported in Table 4.7. We include as the baseline the result from

a model directly trained on the low-resolution set. Our method Proposed-S

achieves both the highest top-1 and top-5 accuracy among all the SR meth-
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Table 4.6: Network architecture for video face identification on YTF

Layer Activation size

Input 1× 60× 60
64× 9× 9 Conv, stride 1, ReLU 64× 52× 52
32× 5× 5 Conv, stride 1, ReLU 32× 48× 48
60× 4× 4 Conv, stride 1, ReLU 60× 45× 45

Max pooling, kernel size 2, stride 2 60× 23× 23
80× 3× 3 Conv, stride 1, ReLU 80× 21× 21

Max pooling, kernel size 2, stride 2 80× 11× 11
Fc 167

Table 4.7: Face identification accuracy of various video SR methods on
YouTube Face dataset downsampled by a factor of four. The baseline refers
to the result from the model directly trained on LR frames. Best results are
shown in bold.

Top-1 accuracy Top-5 accuracy

Baseline 0.442 0.709
VSRnet[73] 0.485 0.733
ESPCN[60] 0.493 0.734
Proposed-S 0.511 0.762

ods, showing that it is able not only to produce visually pleasant results,

but also to recover more semantically faithful features that benefit high-level

vision tasks.

4.5.7 Running Time Analysis

In testing, the running time is mainly composed of two parts: the frame

alignment as pre-processing and the SR inference. For the first part, the spa-

tial alignment network can align frames significantly faster than the optical

flow based method. For 4x SR of 4K videos, it takes about 15 s to warp

five consecutive frames of 540× 960 pixels for the optical flow based method

on an Intel i7 CPU, while the spatial alignment network needs only around

0.8 s on the same CPU, which reduces the time by one order of magnitude.

For the second part, when we use the temporal adaptive network with the

SR inference branch of three layers, B1 takes about 0.3 s to generate a 4K

HR frame. B1, B2 and B3 differ only in the numbers of channels in the first

layer, so their inference time varies a little. The inference time of the tempo-
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ral modulation branch is comparable to that of the SR inference branch. All

these branches enjoy the benefit of extracting features directly on LR frames

and can be implemented in parallel for time efficiency.

4.6 Conclusion

In this chapter, we propose a temporal adaptive network and explore sev-

eral methods of image alignment including a spatial alignment network, for

learning the temporal dynamics to enhance video SR. Our proposed models

with learned temporal dynamics are comprehensively evaluated on various

video sequences and achieve state-of-the-art SR results. Both of the temporal

adaptation and the spatial alignment modules show the increased robustness

to complex motion and thus considerably improve SR performance over their

plain counterparts.
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Chapter 5

WHEN IMAGE DENOISING MEETS
HIGH-LEVEL VISION TASKS: A DEEP

LEARNING APPROACH

5.1 Introduction

A common approach in computer vision is to separate low-level vision prob-

lems, such as image restoration and enhancement, from high-level vision

problems, and solve them independently. In this chapter, we connect them

by showing the mutual influence between the two, i.e., visual perception and

semantics, and propose a new perspective for solving both the low-level and

high-level computer vision problems in a single unified framework, as shown

in Figure 5.1(a).

Image denoising, as one representative of low-level vision problems, is ded-

icated to recovering the underlying image signal from its noisy measurement.

Classical image denoising methods take advantage of local or non-local struc-

tures presented in the image [91, 32, 92, 93, 94, 95]. More recently, a num-

ber of deep learning models have been developed for image denoising which

demonstrated superior performance [96, 97, 98, 99, 100]. Inspired by U-

Net [101], we propose a convolutional neural network for image denoising,

which achieves the state-of-the-art performance.

While popular image denoising algorithms reconstruct images by minimiz-

ing the mean square error (MSE), important image details are usually lost

which leads to image quality degradation. For example, over-smoothing ar-

tifacts in some texture-rich regions are commonly observed in the denoised

output from conventional methods, as shown in Figure 5.1(b). To this end,

we propose a cascade architecture connecting image denoising to a high-level

vision network. We jointly minimize the image reconstruction loss and the

high-level vision loss. With the guidance of image semantic information, the

denoising network is able to further improve visual quality and generate more

visually appealing outputs, which demonstrates the importance of semantic
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(a)

Noisy input CBM3D
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(b)

Figure 5.1: (a) Upper: conventional semantic segmentation pipeline; lower:
our proposed framework for joint image denoising and semantic
segmentation. (b) Zoom-in regions of a noisy input, its denoised estimates
using CBM3D and our proposed method, as well as its ground truth.

information for image denoising.

When high-level vision tasks are conducted on noisy data, an indepen-

dent image restoration step is typically applied as preprocessing, which is

suboptimal for the ultimate goal [87, 102, 103]. Recent research reveals

that neural networks trained for image classification can be easily fooled by
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Figure 5.2: (a) Overview of our proposed denoising network. (b)
Architecture of the feature encoding module. (c) Architecture of the feature
decoding module.

small noise perturbation or other artificial patterns [104, 105]. Therefore,

an application-driven denoiser should be capable of simultaneously removing

noise and preserving semantic-aware details for the high-level vision tasks.

Under the proposed architecture, we systematically investigate the mutual

influence between the low-level and high-level vision networks. We show that

the cascaded network trained with the joint loss not only boosts the denois-

ing network performance via image semantic guidance, but also substantially

improves the accuracy of high-level vision tasks. Moreover, our proposed

training strategy makes the trained denoising network robust enough to dif-

ferent high-level vision tasks. In other words, our denoising module trained

for one high-level vision task can be directly plugged into other high-level

tasks without fine-tuning either module, which facilitates the training effort

when applied to various high-level tasks [106]. The code is available online.1

5.2 Related Work

Denoising is the task of estimating the high-quality signal from its noisy

measurements. Classical image denoising methods take advantage of local

or non-local structures presented in the image explicitly. Natural images are

well-known to be patch-wise sparse or compressible in transform domain, or

over certain dictionary. Prior works [91, 107, 21] exploit such local structures

and reduce noise by coefficient shrinkage for image restoration. The later

1https://github.com/Ding-Liu/DeepDenoising
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approaches, including SSC [92], CSR [108], NCSR [93], GSR [109], WNNM

[94], PCLR [110], PGPD [95], STROLLR [111], as well as BM3D [32] and

its extension for color images CBM3D [112] – group similar patches within

the image globally via block matching or clustering, and impose non-local

structural priors on these groups, which usually lead to state-of-the-art image

denoising performance.

More recently, the popular deep neural network techniques have been ap-

plied to low-level vision tasks. Specifically, a number of deep learning models

have been developed for image denoising [96, 113, 97, 114, 98, 115], which

can be classified into two categories: multilayer perception (MLP) based

models and convolutional neural network (CNN) based models. Early MLP

based models for image denoising include the stacked denoising autoen-

coder [96, 114]. Burger et al. [97] introduce a plain multilayer perception

(MLP) and thoroughly compare its denoising performance with BM3D [32]

in different experimental settings. CNNs are first utilized for image denoising

by Jain and Seung [113]. Recent works [116, 99] attempt to unfold the itera-

tive algorithms, and construct a cascaded convolutional filtering architecture

for image denoising. Very deep networks are adopted with skip connections

for image restoration [98, 100], and achieve superior performance over other

recent methods. Dilated convolutions are exploited to learn the residual im-

age for denoising in [117].

5.3 Method

We first introduce the denoising network utilized in our framework, and then

explain the relationship between the image denoising module and the module

for high-level vision tasks in detail.

5.3.1 Denoising Network

We propose a convolutional neural network for image denoising, which takes

a noisy image as input and outputs the reconstructed image. This network

conducts feature contraction and expansion through downsampling and up-

sampling operations, respectively. Each pair of downsampling and upsam-

pling operations brings the feature representation into a new spatial scale, so
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Figure 5.3: Overview of our proposed cascaded network.

that the whole network can process information on different scales.

Specifically, on each scale, the input is encoded after downsampling the fea-

tures from the previous scale. After feature encoding and decoding possibly

with features on the next scale, the output is upsampled and fused with the

feature on the previous scale. Such pairs of downsampling and upsampling

steps can be nested to build deeper networks with more spatial scales of fea-

ture representation, which generally leads to better restoration performance.

Considering the tradeoff between computation cost and restoration accuracy,

we choose three scales for the denoising network in our experiments, while

this framework can be easily extended for more scales.

These operations together are designed to learn the residual between the

input and the target output and recover as many details as possible, so we

use a long-distance skip connection to sum the output of these operations and

the input image, in order to generate the reconstructed image. The overview

is in Figure 5.2 (a). Each module in this network will be elaborated on as

follows.

Feature Encoding: We design one feature encoding module on each

scale, which is one convolutional layer plus one residual block as in [118].

The architecture is displayed in Figure 5.2 (b). Note that each convolutional

layer is immediately followed by spatial batch normalization and a ReLU

neuron. From top to down, the four convolutional layers have 128, 32, 32

and 128 kernels of size 3×3, 1×1, 3×3 and 1×1, respectively. The output of

the first convolutional layer is passed through a skip connection for element-

wise sum with the output of the last convolutional layer.

Feature Decoding: The feature decoding module is designed for fusing

information from two adjacent scales. Two fusion schemes are tested: (1)

concatenation of features on these two scales; (2) element-wise sum of them.
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Both schemes obtain similar denoising performance. Thus we choose the first

scheme to accommodate feature representations of different channel numbers

from two scales. We use a structure similar to that of the feature encoding

module except that the numbers of kernels in the four convolutional layers

are 256, 64, 64 and 256. Its architecture is in Figure 5.2(c).

Feature Downsampling & Upsampling: Downsampling operations

are adopted multiple times to progressively increase the receptive field of

the following convolution kernels and to reduce the computation cost by

decreasing the feature map size. The larger receptive field enables the kernels

to incorporate larger spatial context for denoising. We use two as both the

downsampling factor and the upsampling factor, and try two schemes for

downsampling in the experiments: (1) max pooling with stride of two; (2)

conducting convolutions with stride of two. Both schemes achieve similar

denoising performance in practice, so we use the second scheme in the rest

of the experiments for computation efficiency. Upsampling operations are

implemented by deconvolution with 4× 4 kernels, which aim to expand the

feature map to the same spatial size as the previous scale.

Since all the operations in our proposed denoising network are spatially

invariant, it has the merit of handling input images of arbitrary size.

5.3.2 When Image Denoising Meets High-Level Vision Tasks

We propose a robust deep architecture processing a noisy image input, via

cascading a network for denoising and the other for high-level vision task,

aiming to simultaneously:

1. reconstruct visually pleasing results guided by the high-level vision in-

formation, as the output of the denoising network;

2. attain sufficiently good accuracy across various high-level vision tasks,

when trained for only one high-level vision task.

The overview of the proposed cascaded network is displayed in Figure 5.3.

Specifically, given a noisy input image, the denoising network is first applied,

and the denoised result is then fed into the following network for high-level

vision task, which generates the high-level vision task output.
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Training Strategy: First we initialize the network for high-level vision

task from a network that is well-trained in the noiseless setting. We train the

cascade of two networks in an end-to-end manner while fixing the weights

in the network for high-level vision task. Only the weights in the denoising

network are updated by the error back-propagated from the following network

for high-level vision task, which is similar to minimizing the perceptual loss

for image super-resolution [119]. The reason for adopting such a training

strategy is to make the trained denoising network robust enough without

losing the generality for various high-level vision tasks. More specifically,

our denoising module trained for one high-level vision task can be directly

plugged into other high-level tasks without fine-tuning either the denoiser

or the high-level network. Our approach not only facilitates the training

effort when applying the denoiser to different high-level tasks while keeping

the high-level vision network performing consistently for noisy and noise-

free images, but also enables the denoising network to produce high-quality

perceptual and semantically faithful results.

Loss: The reconstruction loss of the denoising network is the mean squared

error (MSE) between the denoising network output and the noiseless image.

The losses of the classification network and the segmentation network both

are the cross-entropy loss between the predicted label and the ground truth

label. The joint loss is defined as the weighted sum of the reconstruction loss

and the loss for high-level vision task, which can be represented as

L(F (x), y) = LD(FD(x), x̃) + λLH(FH(FD(x)), y), (5.1)

where x is the noisy input image, x̃ is the noiseless image and y is the ground

truth label of high-level vision task. FD, FH and F denote the denoising

network, the network of high-level vision task and the whole cascaded net-

work, respectively. LD, LH represent the losses of the denoising network and

the high-level vision task network, respectively, while L is the joint loss, as

illustrated in Figure 5.3. λ is the weight for balancing the losses LD and LH .
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Table 5.1: Color image denoising results (PSNR) of different methods on
Kodak dataset. The best result is shown in bold.

σ = 25 σ = 35 σ = 50

Image CBM3D TNRD MCWNNM DnCNN Proposed CBM3D MCWNNM DnCNN Proposed CBM3D TNRD MCWNNM DnCNN Proposed

01 29.13 27.21 28.66 29.75 29.76 27.31 26.93 28.10 28.11 25.86 24.46 25.28 26.52 26.55
02 32.44 31.44 31.92 32.97 33.00 31.07 30.62 31.65 31.75 29.84 29.12 29.27 30.44 30.54
03 34.54 32.73 34.05 34.97 35.12 32.62 32.27 33.37 33.58 31.34 29.95 30.52 31.76 31.99
04 32.67 31.16 32.42 32.94 33.01 31.02 30.92 31.51 31.59 29.92 28.65 29.37 30.12 30.22
05 29.73 27.81 29.37 30.53 30.55 27.61 27.53 28.66 28.72 25.92 24.37 25.60 26.77 26.87
06 30.59 28.52 30.18 31.05 31.08 28.78 28.44 29.37 29.45 27.34 25.62 26.70 27.74 27.85
07 33.66 31.90 33.36 34.42 34.47 31.64 31.53 32.60 32.70 29.99 28.24 29.51 30.67 30.82
08 29.88 27.38 29.39 30.30 30.37 27.82 27.67 28.53 28.64 26.23 23.93 25.86 26.65 26.84
09 34.06 32.21 33.42 34.59 34.63 32.28 31.76 33.06 33.11 30.86 28.78 30.00 31.42 31.53
10 33.82 31.91 33.23 34.33 34.38 31.97 31.51 32.74 32.83 30.48 28.78 29.63 31.03 31.17
11 31.25 29.51 30.62 31.82 31.84 29.53 29.04 30.23 30.29 28.00 26.75 27.41 28.67 28.76
12 33.76 32.17 33.02 34.12 34.18 32.24 31.52 32.73 32.83 30.98 29.70 30.00 31.32 31.47
13 27.64 25.52 27.19 28.26 28.24 25.70 25.40 26.46 26.47 24.03 22.54 23.70 24.73 24.76
14 30.03 28.50 29.67 30.79 30.80 28.24 28.05 29.17 29.20 26.74 25.67 26.43 27.57 27.63
15 33.08 31.62 32.69 33.32 33.35 31.47 31.15 31.89 31.96 30.32 29.07 29.59 30.50 30.59
16 32.33 30.36 31.79 32.69 32.74 30.64 30.15 31.16 31.23 29.36 27.82 28.53 29.68 29.78
17 32.93 31.20 32.39 33.53 33.50 30.64 30.75 31.96 31.98 29.36 28.07 28.98 30.33 30.40
18 29.83 28.00 29.46 30.40 30.46 28.00 27.70 28.72 28.79 26.41 25.06 25.94 27.03 27.14
19 31.78 30.01 31.29 32.23 32.30 30.19 29.86 30.80 30.88 29.06 27.30 28.44 29.34 29.49
20 33.45 32.00 32.78 34.15 34.29 31.84 31.32 32.73 32.91 30.51 29.24 29.79 31.28 31.53
21 30.99 29.09 30.55 31.61 31.63 29.17 28.86 29.94 29.98 27.61 26.09 27.13 28.27 28.34
22 30.93 29.60 30.48 31.41 31.38 29.36 28.93 29.94 29.95 28.09 27.14 27.47 28.54 28.58
23 34.79 33.68 34.45 35.36 35.40 33.09 32.79 33.86 33.89 31.75 30.53 30.96 32.18 32.30
24 30.09 28.17 29.93 30.79 30.77 28.19 28.17 28.98 29.03 26.62 24.92 26.37 27.18 27.30

Average 31.81 30.08 31.35 32.35 32.39 30.04 29.70 30.76 30.83 28.62 27.17 28.02 29.16 29.27

5.4 Experiments

5.4.1 Image Denoising

Our proposed denoising network takes RGB images as input, and outputs

the reconstructed images directly. We add independent and identically dis-

tributed Gaussian noise with zero mean to the original image as the noisy

input image during training. We use the same training set as in [120]. The

loss of training is equivalent to Eq. (5.1) as λ = 0. We use SGD with a batch

size of 32, and the input patches are 48× 48 pixels. The initial learning rate

is set as 10−4 and is divided by 10 after every 500,000 iterations. The train-

ing is terminated after 1,500,000 iterations. We train a different denoising

network for each noise level in our experiment.

We compare our denoising network with several state-of-the-art color im-

age denoising approaches on various noise levels: σ = 25, 35 and 50. We

evaluate their denoising performance over the widely used Kodak dataset,2

which consists of 24 color images. Table 5.1 shows the peak signal-to-

noise ratio (PSNR) results for CBM3D [112], TNRD [99], MCWNNM [121],

DnCNN [100], and our proposed method. We do not list other methods

[97, 107, 94, 117] whose average performance is wore than DnCNN. The

implementation codes used are from the authors websites and the default

2http://r0k.us/graphics/kodak/
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(I) (I)

(II) (III) (II) (III)

(IV) (V) (IV) (V)

(VI) (VII) (VI) (VII)
(a) (b)

Figure 5.4: Two image denoising examples from Kodak dataset with noise
level of 50 are displayed in (a) and (b). We show (I) the ground truth
image and the zoom-in regions of: (II) the noisy image; (III) the denoised
image by CBM3D; (IV) the denoised image by DnCNN; the denoising
result of our proposed model (V) without the guidance of high-level vision
information; (VI) with the guidance of high-level vision information and
(VII) the ground truth.

parameter settings are adopted in our experiments.3

It is clear that our proposed method outperforms all the competing ap-

proaches quantitatively across different noise levels. It achieves the highest

PSNR in almost every image of the Kodak dataset.

3For TNRD, we denoise each color channel using the grayscale image denoising imple-
mentation which is from the authors’ website. TNRD for σ = 35 is not publicly available,
so we do not include this case here.
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5.4.2 When Image Denoising Meets High-Level Vision Tasks

We choose two high-level vision tasks as representatives in our study: im-

age classification and semantic segmentation, which have been dominated by

deep network based models. We utilize two popular VGG-based deep net-

works in our system for each task, respectively. VGG-16 in [122] is employed

for image classification; we select DeepLab-LargeFOV in [120] for semantic

segmentation. We follow the preprocessing protocols (e.g. crop size, mean

removal of each color channel) in [122] and [120] accordingly while training

and deploying them in our experiments.

As for the cascaded network for image classification and the corresponding

experiments, we train our model on ILSVRC2012 training set, and evaluate

the classification accuracy on ILSVRC2012 validation set. λ is empirically

set as 0.25. As for the cascaded network for image semantic segmentation

and its corresponding experiments, we train our model on the augmented

training set of Pascal VOC 2012 as in [120], and test on its validation set. λ

is empirically set as 0.5.

High-Level Vision Information Guided Image Denoising

The typical metric used for image denoising is PSNR, which has been shown

to sometimes correlate poorly with human assessment of visual quality [123].

Since PSNR depends on the reconstruction error between the denoised out-

put and the reference image, a model trained by minimizing MSE on the

image domain should always outperform a model trained by minimizing our

proposed joint loss (with the guidance of high-level vision semantics) in the

metric of PSNR. Therefore, we emphasize that the goal of our following ex-

periments is not to pursue the highest PSNR, but to demonstrate the quali-

tative difference between the model trained with our proposed joint loss and

the model trained with MSE on the image domain.

Figure 5.4 displays two image denoising examples from the Kodak dataset

with noise level of 50. A visual comparison is illustrated for a zoom-in region:

(II) and (III) are the denoising results using CBM3D [112], and DnCNN [100],

respectively; (IV) is the proposed denoiser trained separately without the

guidance of high-level vision information; (V) is the denoising result using

the proposed denoising network trained jointly with a segmentation network.
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(a) (b) (c) (d)

Figure 5.5: Two semantic segmentation examples from Pascal VOC 2012
validation set. From left to right: (a) the ground truth image, the denoised
image using (b) the separately trained denoiser, (c) the denoiser trained
with the reconstruction and segmentation joint loss, and (d) the denoiser
trained with the classification network and evaluated for semantic
segmentation. Their corresponding segmentation label maps are shown
below. The zoom-in region which generates inaccurate segmentation in (b)
is displayed in the red box.

We can find that the results using CBM3D, DnCNN and our separately

trained denoiser generate oversmoothing regions, while the jointly trained

denoising network is able to reconstruct the denoised image which preserves

more details and textures with better visual quality.

Generality of the Denoiser for High-Level Vision Tasks

We now investigate how the image denoising can enhance the high-level vi-

sion applications, including image classification and semantic segmentation,

over the ILSVRC2012 and Pascal VOC 2012 datasets, respectively. The noisy

images (σ = 15, 30, 45, 60) are denoised and then fed into the VGG-based net-

works for high-level vision tasks. To evaluate how different denoising schemes
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Table 5.2: Classification accuracy after denoising noisy image input,
averaged over ILSVRC2012 validation dataset. Red is the best and blue is
the second best results.

VGG CBM3D + Separate + Joint Joint Training
VGG VGG Training (Cross-Task)

σ=15
Top-1 62.4 68.2 68.3 69.9 69.8
Top-5 84.2 88.8 88.7 89.5 89.4

σ=30
Top-1 44.4 62.3 62.7 67.0 66.4
Top-5 68.9 84.8 84.9 87.6 87.2

σ=45
Top-1 24.3 55.2 54.6 63.0 62.0
Top-5 46.1 79.4 78.8 84.6 84.0

σ=60
Top-1 11.4 50.0 50.1 59.2 57.0
Top-5 26.3 74.2 74.5 81.8 80.2

contribute to the performance of high-level vision tasks, we experiment with

the following cases:

• Noisy images are directly fed into the high-level vision network, termed

as VGG. This approach serves as the baseline.

• Noisy images are first denoised by CBM3D, and then fed into the high-

level vision network, termed as CBM3D+VGG.

• Noisy images are denoised via the separately trained denoising net-

work, and then fed into the high-level vision network, termed as Sepa-

rate+VGG.

• Our proposed approach: noisy images are processed by the cascade of

these two networks, which is trained using the joint loss, termed as

Joint Training.

• A denoising network is trained with the classification network in our

proposed approach, but then is connected to the segmentation network

and evaluated for the task of semantic segmentation, or vice versa. This

is to validate the generality of our denoiser for various high-level tasks,

termed as Joint Training (Cross-Task).

Note that the weights in the high-level vision network are initialized from

a well-trained network under the noiseless setting and not updated during

training in our experiments.
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Table 5.3: Segmentation results (mIoU) after denoising noisy image input,
averaged over Pascal VOC 2012 validation dataset. Red is the best and
blue is the second best results.

VGG CBM3D + Separate + Joint Joint Training
VGG VGG Training (Cross-Task)

σ=15 56.78 59.58 58.70 60.46 60.41
σ=30 43.43 55.29 54.13 57.86 56.29
σ=45 27.99 50.69 49.51 54.83 54.01
σ=60 14.94 46.56 46.59 52.02 51.82

Table 5.2 and Table 5.3 list the performance of high-level vision tasks, i.e.,

top-1 and top-5 accuracy for classification and mean intersection-over-union

(IoU) without conditional random field (CRF) postprocessing for semantic

segmentation. We notice that the baseline VGG approach obtains much

lower accuracy than all the other cases, which shows the necessity of image

denoising as a preprocessing step for high-level vision tasks on noisy data.

When we only apply denoising without considering high-level semantics (e.g.,

in CBM3D+VGG and Separate+VGG), it also fails to achieve high accuracy

due to the artifacts introduced by the denoisers. The proposed Joint Training

approach achieves sufficiently high accuracy across various noise levels.

As for the case of Joint Training (Cross-Task), first we train the denois-

ing network jointly with the segmentation network and then connect this

denoiser to the classification network. As shown in Table 5.2, its accuracy

remarkably outperforms the cascade of a separately trained denoising net-

work and a classification network (i.e., Separate+VGG), and is comparable

to our proposed model dedicatedly trained for classification (Joint Training).

In addition, we use the denoising network jointly trained with the classifi-

cation network to connect the segmentation network. Its mean IoU is much

better than Separate+VGG in Table 5.3. These two experiments show that

the high-level semantics of different tasks are universal in terms of low-level

vision tasks, which is in line with intuition, and the denoiser trained in our

method has the generality for various high-level tasks.

Figure 5.5 displays two visual examples of how the data-driven denoising

can enhance the semantic segmentation performance. It is observed that the

segmentation result of the denoised image from the separately trained denois-

ing network has lower accuracy compared to those using the joint loss and the
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joint loss (cross-task), while the zoom-in region of its denoised image for in-

accurate segmentation in Figure 5.5 (b) contains oversmoothing artifacts. In

contrast, both the Joint Training and Joint Training (Cross-Task) approaches

achieve finer segmentation result and produce more visually pleasing denoised

outputs simultaneously.

5.5 Conclusion

Exploring the connection between low-level vision and high-level semantic

tasks is of great practical value in various applications of computer vision.

In this chapter, we tackle this challenge in a simple yet efficient way by

allowing the high-level semantic information to flow back to the low-level

vision part, which achieves superior performance in both image denoising

and various high-level vision tasks. In our method, the denoiser trained for

one high-level task has the generality to other high-level vision tasks. Overall,

it provides a feasible and robust solution in a deep learning fashion to real

world problems. For future work, we will explore the performance of the

denoising network when dealing with other types of noise.
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Chapter 6

NON-LOCAL RECURRENT NETWORK
FOR IMAGE RESTORATION

6.1 Introduction

Image restoration is an ill-posed inverse problem that aims at estimating

the underlying image from its degraded measurements. Depending on the

type of degradation, image restoration can be categorized into different sub-

problems, e.g., image denoising and image super-resolution. The key to suc-

cessful restoration typically relies on the design of an effective regularizer

based on image priors. Both local and non-local image priors have been

extensively exploited in the past. Considering image denoising as an ex-

ample, local image properties such as Gaussian filtering and total variation

based methods [124] are widely used in early studies. Later on, the notion

of self-similarity in natural images draws more attention and it has been ex-

ploited by non-local-based methods, e.g., non-local means [30], collaborative

filtering [32], joint sparsity [92], and low-rank modeling [94]. These non-

local methods are shown to be effective in capturing the correlation among

non-local patches to improve the restoration quality.

While non-local self-similarity has been extensively studied in the liter-

ature, approaches for capturing this intrinsic property with deep networks

are little explored. Recent convolutional neural networks (CNNs) for image

restoration [18, 57, 98, 100] achieve impressive performance over conventional

approaches but do not explicitly use self-similarity properties in images. To

rectify this weakness, a few studies [125, 126] apply block matching to patches

before feeding them into CNNs. Nevertheless, the block matching step is iso-

lated and thus not jointly trained with image restoration networks.

In this chapter, we present the first attempt to incorporate non-local op-

erations in CNN for image restoration, and propose a non-local recurrent

network (NLRN) as an efficient yet effective network with non-local module.
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First, we design a non-local module to produce reliable feature correlation

for self-similarity measurement given severely degraded images, which can be

flexibly integrated into existing deep networks while embracing the benefit

of end-to-end learning. For high parameter efficiency without compromising

restoration quality, we deploy a recurrent neural network (RNN) framework

similar to [59, 63, 127] such that operations with shared weights are applied

recursively. Second, we carefully study the behavior of non-local operation

in deep feature space and find that limiting the neighborhood of correla-

tion computation improves its robustness to degraded images. The confined

neighborhood helps concentrate the computation on relevant features in the

spatial vicinity and disregard noisy features, which is in line with conven-

tional image restoration approaches [32, 94]. In addition, we allow message

passing of non-local operations between adjacent recurrent states of RNN.

Such inter-state flow of feature correlation facilitates more robust correlation

estimation. By combining the non-local operation with typical convolutions,

our NLRN can effectively capture and employ both local and non-local image

properties for image restoration.

It is noteworthy that recent work has adopted similar ideas on video classi-

fication [2]. However, our method significantly differs from it in the following

aspects. For each location, we measure the feature correlation of each loca-

tion only in its neighborhood, rather than throughout the whole image as

in [2]. In our experiments, we show that deep features useful for computing

non-local priors are more likely to reside in neighboring regions. A larger

neighborhood (the whole image as one extreme) can lead to inaccurate cor-

relation estimation over degraded measurements. In addition, our method

fully exploits the advantage of RNN architecture: the correlation information

is propagated among adjacent recurrent states to increase the robustness of

correlation estimation to degradations of various degrees. Moreover, our non-

local module is flexible to handle inputs of various sizes, while the module

in [2] handles inputs of fixed sizes only.

We introduce NLRN by first relating our proposed model to other classic

and existing non-local image restoration approaches in a unified framework.

We thoroughly analyze the non-local module and recurrent architecture in

our NLRN via extensive ablation studies. We provide a comprehensive com-

parison with recent competitors, in which our NLRN achieves state-of-the-art

performance in image denoising and super-resolution over several benchmark
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datasets, demonstrating the superiority of the non-local operation with re-

current architecture for image restoration [128].

6.2 Related Work

Image self-similarity as an important image characteristic has been used in

a number of non-local-based image restoration approaches. The early works

include bilateral filtering [129] and non-local means [30] for image denoising.

Recent approaches exploit image self-similarity by imposing sparsity [92, 21].

Alternatively, similar image patches are modeled with low-rankness [94], or

by collaborative Wiener filtering [32]. Neighborhood embedding is a common

approach for image super-resolution [51, 27], in which each image patch is

approximated by multiple similar patches in a manifold. Self-example based

image super-resolution approaches [10, 11] exploit the local self-similarity as-

sumption, and extract LR-HR exemplar pairs merely from the low-resolution

image across different scales to predict the high-resolution image.

Deep neural networks have been prevalent for image restoration. The pi-

oneering works include a multilayer perceptron for image denoising [97] and

a three-layer CNN for image super-resolution [18]. Deconvolution is adopted

to save computation cost and accelerate inference speed [60, 61]. Very deep

CNNs are designed to boost SR accuracy in [57, 62, 130, 131]. Dense con-

nections among various residual blocks are included in [132]. Similarly CNN

based methods are developed for image denoising in [98, 100, 117]. Block

matching as a preprocessing step is cascaded with CNNs for image denois-

ing [125, 126]. Besides CNNs, RNNs have also been applied for image restora-

tion while enjoying the high parameter efficiency [59, 63, 127, 79]. Deep

neural networks are designed to exploit both the spatial relation within a

single frame and the temporal relation among consecutive frames for video

SR in [133].

In addition to image restoration, feature correlations are widely exploited

along with neural networks in many other areas, including graphical mod-

els [134, 135, 136], relational reasoning [137], machine translation [138, 139]

and so on. We do not elaborate on them here due to the limitation of space.
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6.3 Non-Local Operations for Image Restoration

In this section, we first present a unified framework of non-local operations

used for image restoration methods, e.g., collaborative filtering [32], non-local

means [30], and low-rank modeling [94], and we discuss the relations between

them. We then present the proposed non-local operation module.

6.3.1 A General Framework

In general, a non-local operation takes a multi-channel input X ∈ RN×m as

the image feature, and generates output feature Z ∈ RN×k. Here N and

m denote the number of image pixels and data channels, respectively. We

propose a general framework with the following formulation:

Z = diag{δ(X)}−1 Φ(X)G(X) . (6.1)

Here, Φ(X) ∈ RN×N is the non-local correlation matrix, and G(X) ∈ RN×k

is the multi-channel non-local transform. Each row vector X i denotes the

local features in location i. Φ(X)ji represents the relationship between the

X i and Xj, and each row vector G(X)j is the embedding of Xj.
1 The

diagonal matrix diag{δ(X)} ∈ RN×N normalizes the output at each i-th

pixel with normalization factor δi(X).

6.3.2 Classic Methods

The proposed framework works with various classic non-local methods for im-

age restoration, including methods based on low-rankness [94], collaborative

filtering [32], joint sparsity [92], as well as non-local mean filtering [30].

Block matching (BM) is a commonly used approach for exploiting non-

local image structures in conventional methods [94, 32, 92]. A q × q spatial

neighborhood is set to be centered at each location i, and X i reduces to the

image patch centered at i. BM selects the Ki most similar patches (Ki � q2)

from this neighborhood, which are used jointly to restore X i. Under the

1In our analysis, if A is a matrix, Ai, A
j , and Aj

i denote its i-th row, j-th column,
and the element at the i-th row and j-th column, respectively.
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proposed non-local framework, these methods can be represented as

Zi =
1

δi(X)

∑
j∈Ci

Φ(X)ji G(X)j , ∀i . (6.2)

Here δi(X) =
∑

j∈Ci
Φ(X)ji and Ci denotes the set of indices of the Ki se-

lected patches. Thus, each row Φ(X)i has only Ki non-zero entries. The em-

bedding G(X) and the non-zero elements vary for non-local methods based

on different models. For example, in WNNM [94],
∑

j∈Ci
Φ(X)ji G(X)j cor-

responds to the projection of X i onto the group-specific subspace as a func-

tion of the selected patches. Specifically, the subspace for calculating Zi is

spanned by the eigenvectors U i of XT
Ci
XCi

. Thus Zi = XCi
U idiag{σ}UT

i ,

where diag{σ} is obtained by applying the shrinkage function associated

with the weighted nuclear norm [94] to the eigenvalues of XT
Ci
XCi

. We show

the generalization about more classic non-local image restoration methods in

Section 6.3.3.

Except for the hard block matching, other methods, e.g., the non-local

means algorithm [30], apply soft block matching by calculating the cor-

relation between the reference patch and each patch in the neighborhood.

Each element Φ(X)ji is determined only by each {X i,Xj} pair, so Φ(X)ji =

φ(X i,Xj), where φ( · ) is determined by the distance metric. In [30], weighted

Euclidean distance with Gaussian kernel is applied as the metric, such that

φ(X i,Xj) = exp{−‖X i −Xj‖22,a /h
2}. Besides, identity mapping is di-

rectly used as the embedding in [30], i.e., G(X)j = Xj. In this case, the

non-local framework in (6.1) reduces to

Zi =
1

δi(X)

∑
j∈Si

exp{−
‖X i −Xj‖22,a

h2
}Xj , ∀i, (6.3)

where δi(X) =
∑

j∈Si exp{−‖X i −Xj‖22,a /h
2} and Si is the set of indices

in the neighborhood of X i. Note that both a and h are constants, denot-

ing the standard deviation of Gaussian kernel, and the degree of filtering,

respectively [30]. It is noteworthy that the cardinality of Si for soft BM is

much larger than that of Ci for hard BM, which gives more flexibility of using

feature correlations between neighboring locations.

The conventional non-local methods suffer from the drawback that param-

eters are either fixed [30] or obtained by suboptimal approaches [32, 92, 94],
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e.g., the parameters of WNNM are learned based on the low-rankness as-

sumption, which is suboptimal as the ultimate objective is to minimize the

image reconstruction error.

6.3.3 Extension of the General Framework to Other Classic
Non-Local Methods

Besides the extension to WNNM and non-local means, which are discussed

in Section 6.3.1, we show the proposed non-local framework (6.1) can be

extended to collaborative filtering methods, e.g., BM3D algorithm [32], as

well as joint sparsity based methods, e.g., LSSC algorithm [92]. We follow

the same notations in Section 6.3.1. Both BM3D and LSSC apply block

matching (BM) first before processing, and form N groups of similar patches

into data matrices. The index set of the matched patches for the i-th reference

patch is denoted as Ci. The group of matched patches for the i-th reference

patch is denoted as XCi
.

Similar to WNNM [94], BM3D [32] also applies BM first to group similar

patches based on their Euclidean distances. The matched patches are then

processed via Wiener filtering [32], and the denoised results of the i-th group

of patches are

ZCi
= τ−1(diag(ω)τ(XCi

)). (6.4)

Here τ(·) and τ−1(·) denote the forward and backward Wiener filtering ap-

plied to the groups of matched patches, respectively. The diagonal matrix

diag(ω) is formed by the empirical Wiener coefficients ω. BM3D applies

data pre-cleaning, using discrete cosine transform (DCT), to estimate the

original patch, and calculate the estimate of ω [32]. Since calculating ZCi
in

(6.4) involves only linear filtering, it can also be generalized using the pro-

posed non-local framework as (6.2). Unlike the extension to WNNM, here∑
j∈Ci

Φ(X)ji G(X)j corresponds to the denoised results via Wiener filtering

as shown in (6.4), of the i-th group of matched patches.

Different from BM3D and WNNM, LSSC learns a common dictionary D

for all image patches and imposes joint sparsity [92] on each data matrix of

matched patches XCi
, so that the correlation of the matched patches are

exploited by enforcing the same support of their sparse codes. Thus, the
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joint sparse coding in LSSC [92] becomes

Âi = argminAi
‖Ai‖0,∞ s.t.

∥∥XT
Ci
−DAi

∥∥2
F
≤ ε |Ci| , ∀i, (6.5)

where the (0,∞) “norm” ‖·‖0,∞ counts the number of non-zero columns of

each sparse code matrix Ai [92], and |Ci| is the cardinality of Ci. The coeffi-

cient ε is a constant, which is used to upper bound the sparse modeling errors.

In general, the solution to (6.5) is NP-hard. To simplify the discussion, we as-

sume the dictionary to be unitary (which reduces the sparse coding problem

to the transform-model sparse coding [21]), i.e., DTD = I and D ∈ Rk×k.

Thus there exists a corresponding shrinkage function η(·) for imposing joint

sparsity on the sparse codes [92, 116], such that the denoised estimates of the

i-th patch group can be obtained asZCi
= Â

T

i D
T = η(XCi

D )DT . Though

joint sparse coding projects all data onto a union of subspaces [92, 140, 21]

which is a non-linear operation in general, each data matrix XCi
is projected

onto one particular subspace spanned by the selected atoms corresponding

to the non-zero columns in Âi, which is locally linear. For the i-th group of

patches, such a subspace projection corresponds to
∑

j∈Ci
Φ(X)ji G(X)j in

the proposed general framework.

6.3.4 The Proposed Non-Local Module

Based on the general non-local framework in (6.1), we propose another soft

block matching approach and apply the Euclidean distance with linearly

embedded Gaussian kernel [2] as the distance metric. The linear embeddings

are defined as follows:

Φ(X)ji = φ(X i,Xj) = exp{θ(X i)ψ(Xj)
T} , ∀i, j , (6.6)

θ(X i) = X iW θ, ψ(X i) = X iW ψ, G(X)i = X iW g , ∀i . (6.7)

The embedding transforms W θ, W φ, and W g are all learnable and have the

shape of m × l, m × l, m ×m, respectively. Thus, the proposed non-local

operation can be written as

Zi =
1

δi(X)

∑
j∈Si

exp {X iW θW
T
ψX

T
j }X iW g , ∀i , (6.8)
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Figure 6.1: An illustration of our non-local module working on a single
location. The white tensor denotes the deep feature representation of an
entire image. The red fiber is the features of this location and the blue
tensor denotes the features in its neighborhood. θ, ψ and g are
implemented by 1× 1 convolution followed by reshaping operations.

where δi(X) =
∑

j∈Si φ(X i,Xj). Similar to [30], to obtain Zi, we evaluate

the correlation between X i and each Xj in the neighborhood Si. More

choices of φ(X i,Xj) are discussed in Section 6.5.

The proposed non-local operation can be implemented by common dif-

ferentiable operations, and thus can be jointly learned when incorporated

into a neural network. We wrap it as a non-local module by adding a skip

connection, as shown in Figure 6.1, since the skip connection enables us to

insert a non-local module into any pre-trained model, while maintaining its

initial behavior by initializing W g as zero. Such a module introduces only a

limited number of parameters since θ, ψ and g are 1 × 1 convolutions and

m = 128, l = 64 in practice. The output of this module on each location only

depends on its q × q neighborhood, so this operation can work on inputs of

various sizes.

6.3.5 Relation to Other Methods

Recent works have combined non-local BM and neural networks for image

restoration [126, 125, 2]. Lefkimmiatis [125] proposed to first apply BM

to noisy image patches. The hard BM results are used to group patch

features, and a CNN conducts a trainable collaborative filtering over the

matched patches. Qiao et al. [126] combined similar non-local BM with

TNRD networks [99] for image denoising. However, as conventional meth-

ods [32, 92, 94], these works [125, 126] conduct hard BM directly over de-
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graded input patches, which may be inaccurate over severely degraded im-

ages. In contrast, our proposed non-local operation as soft BM is applied

on learned deep feature representations that are more robust to degradation.

Furthermore, the matching results in [125] are isolated from the neural net-

work, similar to the conventional approaches, whereas the proposed non-local

module is trained jointly with the entire network in an end-to-end manner.

Wang et al. [2] used similar approaches to add non-local operations into

neural networks for high-level vision tasks. However, unlike our approach,

Wang et al. [2] calculated feature correlations throughout the whole image.

which is equivalent to enlarging the neighborhood to the entire image in our

approach. We empirically show that increasing the neighborhood size does

not always improve image restoration performance, due to the inaccuracy of

correlation estimation over degraded input images. Hence it is imperative

to choose a neighborhood of a proper size to achieve best performance for

image restoration. In addition, the non-local operation in [2] can only handle

input images of fixed size, while our module in (6.8) is flexible for various

image sizes. Finally, our non-local module, when incorporated into an RNN

framework, allows the flow of correlation information between adjacent states

to enhance robustness against inaccurate correlation estimation. This is a

new unique formulation to deal with degraded images. More details are

provided next.

6.4 Non-Local Recurrent Network

In this section, we describe the RNN architecture that incorporates the non-

local module to form our NLRN. We adopt the common formulation of an

RNN, which consists of a set of states, namely, input state, output state and

recurrent state, as well as transition functions among the states. The input,

output, and recurrent states are represented as x, y and s respectively. At

each time step t, an RNN receives an input xt, and the recurrent state and

the output state of the RNN are updated recursively as follows:

st = finput(x
t) + frecurrent(s

t−1), yt = foutput(s
t), (6.9)
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where finput, foutput, and frecurrent are reused at every time step. In our NLRN,

we set the following:

• s0 is a function of the input image I.

• xt = 0, ∀t ∈ {1, . . . , T}, and finput(0) = 0.

• The output state yt is calculated only at the time T as the final output.

We add an identity path from the very first state which helps gradient back-

propagation during training [63], and a residual path of the deep feature

correlation between each location and its neighborhood from the previous

state. Hence, st = {stfeat, stcorr}, and st = frecurrent(s
t−1, s0), ∀t ∈ {1, . . . , T},

where stfeat denotes the feature map in time t and stcorr is the collection of

deep feature correlation. For the transition function frecurrent, a non-local

module is first adopted and is followed by two convolutional layers, before

the feature s0 is added from the identity path. The weights in the non-local

module are shared across recurrent states just as convolutional layers, so our

NLRN still keeps high parameter efficiency as a whole. An illustration is

displayed in Figure 6.2.

It is noteworthy that inside the non-local module, the feature correlation

for location i from the previous state, st−1corr,i, is added to the estimated feature

correlation in the current state before the softmax normalization, which en-

ables the propagation of correlation information between adjacent states for

more robust correlation estimation. The details can be found in Figure 6.3.

The initial state s0 is set as the feature after a convolutional layer on the

input image. foutput is represented by another single convolutional layer. All

layers have 128 filters with 3× 3 kernel size except for the non-local module.

Batch normalization and ReLU activation function are performed ahead of

each convolutional layer following [141]. We adopt residual learning and the

output of NLRN is the residual image Î = foutput(s
T ) when NLRN is unfolded

T times. During training, the objective is to minimize the mean square error

L(Î , Ĩ) = 1
2
||Î + I − Ĩ||2, where Ĩ denotes the ground truth image.

Relation to Other RNN Methods

Although RNNs have been adopted for image restoration before, our NLRN

is the first to incorporate non-local operations into an RNN framework with
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Figure 6.2: An illustration of the transition function frecurrent in the
proposed NLRN.
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Figure 6.3: The operations for a single location i in the non-local module
used in NLRN.

correlation propagation. DRCN [59] recursively applies a single convolutional

layer to the input feature map multiple times without the identity path from

the first state. DRRN [63] applies both the identity path and the residual

path in each state, but without non-local operations, and thus there is no

correlation information flow across adjacent states. MemNet [127] builds

dense connections among several types of memory blocks, and weights are

shared in the same type of memory blocks but are different across various

types. Compared with MemNet, our NLRN has an efficient yet effective RNN

structure with shallower effective depth and fewer parameters, but obtains

better restoration performance, which is shown in Section 6.5 in detail.
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6.5 Experiments

6.5.1 Implementation Details

Dataset

For image denoising, we adopt two different settings to fairly and comprehen-

sively compare with recent deep learning based methods [98, 125, 100, 127]:

(1) As in [99, 100, 125], we choose as the training set the combination of

200 images from the train set and 200 images from the test set in the Berke-

ley Segmentation Dataset (BSD) [40], and test on two popular benchmarks:

Set12 and Set68 with σ = 15, 25, 50 following [100]. (2) As in [98, 127], we

use as the training set the combination of 200 images from the train set and

100 images from the val set in BSD, and test on Set14 and the BSD test set

of 200 images with σ = 30, 50, 70 following [98, 127]. In addition, we evaluate

our NLRN on the Urban100 dataset [45], which contains abundant structural

patterns and textures, to further demonstrate the capability of using image

self-similarity of our NLRN. The training set and test set are strictly disjoint

and all the images are converted to gray-scale in each experiment setup. For

image super-resolution, we follow [57, 63, 127] and use a training set of 291

images where 91 images are proposed in [7] and other 200 are from the BSD

train set. We adopt four benchmark sets: Set5 [38], Set14 [39], BSD100 [40]

and Urban100 [45] for testing with three upscaling factors ×2, ×3 and ×4.

The low-resolution images are synthesized by bicubic downsampling.

Training Settings

We randomly sample patches whose size equals the neighborhood of non-local

operation from images during training. We use flipping, rotation and scaling

for augmenting training data. For image denoising, we add independent and

identically distributed Gaussian noise with zero mean to the original image

as the noisy input during training. We train a different model for each noise

level. For image super-resolution, only the luminance channel of images is

super-resolved, and the other two color channels are upscaled by bicubic

interpolation, following [57, 59, 63]. Moreover, the training images for all

three upscaling factors: ×2, ×3 and ×4 are upscaled by bicubic interpolation
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Table 6.1: Image denoising comparison of our proposed model with various
distance metrics on Set12 with noise level of 25.

Distance metric φ(X i,Xj) PSNR

Euclidean distance exp{−‖X i −Xj‖22 /h
2} 30.74

Dot product X iX
T
j 30.68

Embedded dot product θ(X i)ψ(Xj)
T 30.75

Gaussian exp{X iX
T
j } 30.69

Symmetric embedded Gaussian exp{θ(X i)θ(Xj)
T} 30.76

Embedded Gaussian exp{θ(X i)ψ(Xj)
T} 30.80

into the desired spatial size and are combined into one training set. We use

this set to train one single model for all these three upscaling factors as

in [57, 63, 127].

We use Adam optimizer to minimize the loss function. We set the initial

learning rate as 1e-3 and reduce it by half five times during training. We use

Xavier initialization for the weights. We clip the gradient at the norm of 0.5

to prevent the gradient explosion which is shown to empirically accelerate

training convergence, and we adopt 16 as the minibatch size during training.

Training a model takes about three days with a Titan Xp GPU. For non-

local module, we use circular padding for the neighborhood outside input

patches. For convolution, we pad the boundaries of feature maps with zeros

to preserve the spatial size of feature maps.

6.5.2 Model Analysis

In this section, we analyze our model in the following aspects. First, we con-

duct the ablation study of using different distance metrics in the non-local

module. Table 6.1 compares instantiations including Euclidean distance, dot

product, embedded dot product, Gaussian, symmetric embedded Gaussian

and embedded Gaussian when used in NLRN of 12 unfolded steps. Embed-

ded Gaussian achieves the best performance and is adopted in the following

experiments.

We compare the NLRN with its variants in terms of PSNR in Table 6.2.

We have a few observations. First, the same model with untied weights

performs worse than its weight-sharing counter-part. We speculate that the

model with untied weights is prone to model over-fitting and suffers much
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Table 6.2: Image denoising comparison of our NLRN with its variants on
Set12 with noise level of 25.

Model PSNR
NLRN w/o parameter sharing 30.65
RNN with same parameter no. 30.61

Non-local module in every other state 30.76
Non-local module in every 3 states 30.72

NLRN w/o propagating correlations 30.78
NLRN 30.80

Figure 6.4: Examples of correlation maps of non-local operations for image
denoising. Noisy patch/ground truth patch: the neighborhood of the red
center pixel used in non-local operations. (1)-(6): the correlation map for
recurrent state 1-6 from NLRN with unrolling length of 6.

slower training convergence, both of which undermine its performance. To

investigate the function of non-local modules, we implement a baseline RNN

with the same parameter number of NLRN, and find it is worse than NLRN

by about 0.2 dB, showing the advantage of using non-local image proper-

ties for image restoration. Besides, we implement NLRNs where non-local

module is used in every other state or every three states, and observe that

if the frequency of using non-local modules in NLRN is reduced, the perfor-

mance decreases accordingly. We show the benefit of propagating correlation

information among adjacent states by comparing with the counter-part in

terms of restoration accuracy. To further analyze the non-local module, we

visualize the feature correlation maps for non-local operations in Figure 6.4.

It can be seen that as the number of recurrent states increases, the loca-

tions with similar features progressively show higher correlations in the map,

which demonstrates the effectiveness of the non-local module for exploiting
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Figure 6.5: Neighborhood size vs. image denoising performance of our
proposed model on Set12 with noise level of 25.
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Figure 6.6: Unrolling length vs. image denoising performance of our
proposed model on Set12 with noise level of 25.

image self-similarity.

Figure 6.5 investigates the influence of the neighborhood size in the non-

local module on image denoising results. The performance peaks at q = 45.

This shows that limiting the neighborhood helps concentrate the correlation

calculation on relevant features in the spatial vicinity and enhance correlation

estimation. Therefore, it is necessary to choose a proper neighborhood size

(rather than the whole image) for image restoration. We select q = 45 for

the rest of this section unless stated otherwise.

The unrolling length T determines the maximum effective depth (i.e.,

maximum number of convolutional layers) of NLRN. The influence of the

unrolling length on image denoising results is shown in Figure 6.6. The

performance increases as the unrolling length rises, but gets saturated after
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Table 6.3: Benchmark image denoising results. Training and testing
protocols are followed as in [100]. Average PSNR/SSIM for various noise
levels on Set12, BSD68 and Urban100. The best performance is in bold.

Dataset Noise BM3D WNNM TNRD NLNet DnCNN NLRN

Set12
15 32.37/0.8952 32.70/0.8982 32.50/0.8958 -/- 32.86/0.9031 33.16/0.9070
25 39.97/0.8504 30.28/0.8557 30.06/0.8512 -/- 30.44/0.8622 30.80/0.8689
50 26.72/0.7676 27.05/0.7775 26.81/0.7680 -/- 27.18/0.7829 27.64/0.7980

BSD68
15 31.07/0.8717 31.37/0.8766 31.42/0.8769 31.52/- 31.73/0.8907 31.88/0.8932
25 28.57/0.8013 28.83/0.8087 28.92/0.8093 29.03/- 29.23/0.8278 29.41/0.8331
50 25.62/0.6864 25.87/0.6982 25.97/0.6994 26.07/- 26.23/0.7189 26.47/0.7298

Urban100
15 32.35/0.9220 32.97/0.9271 31.86/0.9031 -/- 32.68/0.9255 33.45/0.9354
25 29.70/0.8777 30.39/0.8885 29.25/0.8473 -/- 29.97/0.8797 30.94/0.9018
50 25.95/0.7791 26.83/0.8047 25.88/0.7563 -/- 26.28/0.7874 27.49/0.8279

T = 12. Given the tradeoff between restoration accuracy and inference time,

we adopt T = 12 for NLRN in all the experiments.

6.5.3 Comparisons with State-of-the-Art Methods

We compare our proposed model with a number of recent competitors for im-

age denoising and image super-resolution, respectively. PSNR and SSIM [44]

are adopted for measuring quantitative restoration performance.

Image Denoising

For a fair comparison with other methods based on deep networks, we train

our model under two settings: (1) We use the training data as in TNRD [99],

DnCNN [100] and NLNet [125], and the result is shown in Table 6.3. We cite

the result of NLNet in the original paper [125], since no public code or model

is available. (2) We use the training data as in RED [98] and MemNet [127],

and the result is shown in Table 6.4. We note that RED uses multi-view

testing [55] to boost the restoration accuracy, i.e., RED processes each test

image as well as its rotated and flipped versions, and all the outputs are

then averaged to form the final denoised image. Accordingly, we perform the

same procedure for NLRN and find its performance, termed as NLRN-MV,

is consistently improved. In addition, we include recent non-deep-learning

based methods: BM3D [32] and WNNM [94] in our comparison. We do not

list other methods [107, 97, 95, 110, 117] whose average performances are

worse than DnCNN or MemNet. Our NLRN significantly outperforms all
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Table 6.4: Benchmark image denoising results. Training and testing
protocols are followed as in [127]. Average PSNR/SSIM for various noise
levels on 14 images, BSD200 and Urban100. Red is the best and blue is the
second best performance.

Dataset Noise BM3D WNNM RED MemNet NLRN NLRN-MV

14 images
30 28.49/0.8204 28.74/0.8273 29.17/0.8423 29.22/0.8444 29.37/0.8460 29.41/0.8472
50 26.08/0.7427 26.32/0.7517 26.81/0.7733 26.91/0.7775 27.00/0.7777 27.05/0.7791
70 24.65/0.6882 24.80/0.6975 25.31/0.7206 25.43/0.7260 25.49/0.7255 25.54/0.7273

BSD200
30 27.31/0.7755 27.48/0.7807 27.95/0.8056 28.04/0.8053 28.15/0.8423 28.20/0.8436
50 25.06/0.6831 25.26/0.6928 25.75/0.7167 25.86/0.7202 25.93/0.7214 25.97/0.8429
70 23.82/0.6240 23.95/0.6346 24.37/0.6551 24.53/0.6608 24.58/0.6614 24.62/0.6634

Urban100
30 28.75/0.8567 29.47/0.8697 29.12/0.8674 29.10/0.8631 29.94/0.8830 29.99/0.8842
50 25.95/0.7791 26.83/0.8047 26.44/0.7977 26.65/0.8030 27.38/0.8241 27.43/0.8256
70 24.27/0.7163 25.11/0.7501 24.75/0.7415 25.01/0.7496 25.66/0.7707 25.71/0.7724

Table 6.5: Image denoising comparison of our proposed model with
state-of-the-art network models on Set12 with noise level of 50. Model
complexities are also compared.

DnCNN RED MemNet NLRN

Max effective depth 17 30 80 38
Parameter sharing No No Yes Yes

Parameter no. 554k 4,131k 667k 330k
Multi-view testing No Yes No No No Yes
Training images 400 300 300 400 300 300

PSNR 27.18 27.33 27.38 27.64 27.60 27.66

the competitors on Urban100 and yields the best results across almost all

the noise levels and datasets.

To further show the advantage of the network design of NLRN, we com-

pare different versions of NLRN with several state-of-the-art network mod-

els, i.e., DnCNN, RED and MemNet in Table 6.5. NLRN uses the fewest

parameters but outperforms all the competitors. Specifically, NLRN benefits

from inherent parameter sharing and uses only less than 1/10 parameters

of RED. Compared with the RNN competitor, MemNet, NLRN uses only

half of parameters and much shallower depth to obtain better performance,

which shows the superiority of our non-local recurrent architecture.

Figure 6.7 shows the visual comparison of our NLRN and several competing

image denoising methods: BM3D [32], WNNM [94], and MemNet [127]. Our

method can recover more details from the noisy measurement.
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Ground truth

Noisy (18.75/0.3232) BM3D (29.13/0.8261) WNNM (29.30/0.8334)

MemNet (29.18/0.8223) NLRN (29.53/0.8369) Ground truth (PSNR/SSIM)

Ground truth

Noisy (19.49/0.5099) BM3D (28.95/0.9062) WNNM (30.44/0.9260)

MemNet (28.71/0.8906) NLRN (30.52/0.9267) Ground truth (PSNR/SSIM)

Ground truth

Noisy (19.39/0.4540) BM3D (27.20/0.8775) WNNM (28.86/0.8913)

MemNet (27.55/0.8807) NLRN (29.04/0.9044) Ground truth (PSNR/SSIM)

Ground truth

Noisy (19.06/0.3005) BM3D (29.61/0.8304) WNNM (30.59/0.8543)

MemNet (30.21/0.8517) NLRN (31.17/0.8727) Ground truth (PSNR/SSIM)

Ground truth

Noisy (18.88/0.3479) BM3D (28.82/0.9051) WNNM (28.38/0.9189)

MemNet (28.31/0.9112) NLRN (28.42/0.9308) Ground truth (PSNR/SSIM)

Figure 6.7: Qualitative comparison of image denoising results with noise
level of 30. The zoom-in region in the red bounding box is shown on the
right. From top to bottom: 1) the image barbara. 2) image 004 in
Urban100. 3) image 019 in Urban100. 4) image 033 in Urban100. 5) image
046 in Urban100.
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Table 6.6: Benchmark SISR results. Average PSNR/SSIM for scale factor
×2, ×3 and ×4 on datasets Set5, Set14, BSD100 and Urban100. The best
performance is in bold.

Dataset Scale SRCNN VDSR DRCN LapSRN DRRN MemNet NLRN

Set5
×2 36.66/0.9542 37.53/0.9587 37.63/0.9588 37.52/0.959 37.74/0.9591 37.78/0.9597 38.00/0.9603
×3 32.75/0.9090 33.66/0.9213 33.82/0.9226 33.82/0.923 34.03/0.9244 34.09/0.9248 34.27/0.9266
×4 30.48/0.8628 31.35/0.8838 31.53/0.8854 31.54/0.885 31.68/0.8888 31.74/0.8893 31.92/0.8916

Set14
×2 32.45/0.9067 33.03/0.9124 33.04/0.9118 33.08/0.913 33.23/0.9136 33.28/0.9142 33.46/0.9159
×3 29.30/0.8215 29.77/0.8314 29.76/0.8311 29.79/0.832 29.96/0.8349 30.00/0.8350 30.16/0.8374
×4 27.50/0.7513 28.01/0.7674 28.02/0.7670 28.19/0.772 28.21/0.7721 28.26/0.7723 28.36/0.7745

BSD100
×2 31.36/0.8879 31.90/0.8960 31.85/0.8942 31.80/0.895 32.05/0.8973 32.08/0.8978 32.19/0.8992
×3 28.41/0.7863 28.82/0.7976 28.80/0.7963 28.82/0.797 28.95/0.8004 28.96/0.8001 29.06/0.8026
×4 26.90/0.7101 27.29/0.7251 27.23/0.7233 27.32/0.728 27.38/0.7284 27.40/0.7281 27.48/0.7306

Urban100
×2 29.50/0.8946 30.76/0.9140 30.75/0.9133 30.41/0.910 31.23/0.9188 31.31/0.9195 31.81/0.9249
×3 26.24/0.7989 27.14/0.8279 27.15/0.8276 27.07/0.827 27.53/0.8378 27.56/0.8376 27.93/0.8453
×4 24.52/0.7221 25.18/0.7524 25.14/0.7510 25.21/0.756 25.44/0.7638 25.50/0.7630 25.79/0.7729

Image Super-Resolution

We compare our model with several recent SISR approaches, including SR-

CNN [18], VDSR [57], DRCN [59], LapSRN [62], DRRN [63] and Mem-

Net [127] in Table 6.6. We crop pixels near image borders before calcu-

lating PSNR and SSIM as in [18, 52, 57, 59]. We do not list other meth-

ods [45, 52, 55, 60] since their performances are worse than that of DRRN

or MemNet. Besides, we do not include SRDenseNet [132] and EDSR [130]

in the comparison because the number of parameters in these two network

models is over two orders of magnitude larger than that of our NLRN and

their training datasets are significantly larger than ours. It can be seen that

NLRN yields the best result across all the upscaling factors and datasets.

Figure 6.8 shows the visual comparison of our NLRN and several recent im-

age SR methods: DRCN [59], LapSRN [62], DRRN [63] and MemNet [127].

Our method is able to reconstruct sharper edges and produce fewer artifacts

especially in the regions of repetitive patterns.

6.6 Conclusion

We have presented a new and effective recurrent network that incorporates

non-local operations for image restoration. The proposed non-local module

can be trained end-to-end with the recurrent network. We have studied the

importance of computing reliable feature correlations within a confined neigh-

borhood against the whole image, and we have shown the benefits of passing

feature correlation messages between adjacent recurrent stages. Comprehen-
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sive evaluations over benchmarks for image denoising and super-resolution

demonstrate the superiority of NLRN over existing methods. For future

work, we will explore the connection between image restoration and improv-

ing the image aesthetic quality using deep learning [142].
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Ground truth HR

DRCN (26.82/0.9329) LapSRN (26.52/0.9316) DRRN (27.52/0.9434)

MemNet (27.78/0.9451) NLRN (28.46/0.9513) HR (PSNR/SSIM)

Ground truth HR

DRCN (20.95/0.7716) LapSRN (20.90/0.7722) DRRN (21.37/0.7874)

MemNet (21.35/0.7877) NLRN (21.92/0.8014) HR (PSNR/SSIM)

Ground truth HR

DRCN (30.18/0.8306) LapSRN (30.29/0.8388) DRRN (30.18/0.8306)

MemNet (29.25/0.8347) NLRN (31.19/0.8598) HR (PSNR/SSIM)

Ground truth HR

DRCN (20.71/0.7466) LapSRN (20.86/0.7524) DRRN (20.92/0.7666)

MemNet (21.06/0.7716) NLRN (21.41/0.7866) HR (PSNR/SSIM)

Ground truth HR

DRCN (23.99/0.6940) LapSRN (24.49/0.7247) DRRN (25.14/0.7469)

MemNet (25.19/0.7519) NLRN (25.97/0.7882) HR (PSNR/SSIM)

Figure 6.8: Qualitative comparison of image super-resolution results with
×4 upscaling. The zoom-in region in the red bounding box is shown on the
right. From top to bottom: 1) image 005 in Urban100. 2) image 019 in
Urban100. 3) image 044 in Urban100. 4) image 062 in Urban100. 5) image
099 in Urban100.
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Chapter 7

CONCLUSION

In this dissertation, we have studied the use of deep learning for image and

video super-resolution and image denoising. The main contributions are

summarized as follows.

First, we propose a model for image SR by combining the strengths of

sparse coding and deep network, and improve SR accuracy over existing

deep and shallow SR models both quantitatively and qualitatively. Besides

producing better SR results, the domain knowledge of sparse representation

also benefits training speed and model compactness. Moreover, we design

a unified framework to jointly learn a mixture of deep networks for single

image SR, each of which serves as a SR inference module to handle a certain

class of image signals. An adaptive weight module is designed to predict

pixel-level aggregation weights of the HR estimates. Extensive experiments

show that our proposed model is able to achieve outstanding SR performance

along with more flexibility of design.

Second, we propose a temporal adaptive network and explore several meth-

ods of image alignment, including a spatial alignment network, for learning

the temporal dynamics to enhance video SR. Both the temporal adapta-

tion and the enhanced spatial alignment increase the robustness to complex

motion which benefits video SR.

Third, we explore the connection between image denoising and high-level

semantic tasks, which is of great practical value in various applications of

computer vision. We tackle this challenge in a simple yet efficient way by

allowing the high-level semantic information flowing back to the low-level

vision network, which achieves superior performance in both image denoising

and high-level vision tasks. In our training strategy, the denoiser trained for

one high-level task has the generality to be applied to other high-level vision

tasks. Overall, it provides a feasible and robust solution in a deep learning

fashion to real world problems.
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Last, we present an effective recurrent network that incorporates non-local

operations for image restoration. The proposed non-local module can be

trained end-to-end with the recurrent network. We study the importance of

computing reliable feature correlations with a proper neighborhood size, and

show the benefits of passing feature correlation messages between adjacent

recurrent stages.
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