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ABSTRACT 

 

Green stormwater infrastructure (GSI; e.g., rain gardens, bioswales, green roofs) is widely 

used as a climate change mitigation strategy for its potential to reduce stormwater management 

problems (e.g., poor water quality, increased streamflow velocities, and flood risk due to 

impervious surfaces), while providing other human and ecosystem benefits, such as urban heat 

island reduction. Despite the increased popularity of GSI, its implementation has significant 

challenges associated with stakeholder resistance, budget constraints, and lack of methods for 

integrated catchment-scale assessment of socio-ecological multifunctionality. 

Current approaches used for the spatial planning of GSI are often limited to a specific 

spatial scale (e.g., household, neighborhood) and are only intended for the evaluation of a specific 

objective (e.g., heat mitigation, flooding) by a particular stakeholder (e.g., homeowners, 

government agencies). As such, planning decisions are often based on limited information about 

where different types of GSI will be most effective and have failed to consider their potential 

benefits to the entire suite of socio-ecological systems and the risks associated with multiple 

hazards. These limitations have prevented the integration of regional/city assessments and 

neighborhood/site planning, which can lead to unsustainable solutions and stakeholder resistance 

to GSI installation. The central premise of this dissertation is to explore the use of vulnerability of 

socio-ecological systems as the driver for prioritizing locations and types of GSI installations in 

urban settings.  

Using commonly available data in cities, the concepts of “service-benefiting areas” and 

“service-needing areas” are used to first propose a new spatial analytical framework needed to 

better define and understand spatial relationships between GSI projects and the vulnerability of 

socio-economic, socio-ecological, and engineered systems to multiple hazards (i.e., flooding and 

urban heat island). The method allows rapid identification of the most vulnerable communities to 

potential hazard risks at the site scale (i.e., 10-30 meter raster cells) and quantification of risk 

mitigation potential of GSI at the appropriate spatial scale (site and catchment scale). Using 

screening rules associated with different design criteria and planning regulations, the method then 

identifies areas with the greatest suitability for GSI implementation. Lastly, a spatially scalable 

optimization approach is used to maximize the multifunctionality of GSI locations and types under 

multiple objectives (e.g., reducing flash flooding risk while increasing ecologic connectivity). The 
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proposed framework uses a graph-based approach with a simplified distributed hydrologic model 

and mixed-integer linear programming to maximize the potential delivery of GSI benefits to the 

most vulnerable areas. This enables a better understanding of the impact that multiple stakeholder 

opinions could have on the prioritization of potential locations and types of GSI. 

Results from applying the proposed framework in multiple cities show that current methods 

used for quantifying socio-ecological vulnerability have failed to consider the appropriate scales 

at which GSI projects need to be planned and have often misestimated the spatial correlation of 

vulnerability. In particular, a new approach used to quantify social susceptibility is shown to be 

more robust to factors associated with data uncertainty and methodological decisions compared to 

previous methods. Furthermore, the use of a smaller spatial unit (i.e., Census Blocks) significantly 

reduces the impact of these factors on the spatial patterns of vulnerability.  

Comparing the results with actual GSI projects implemented in the City of Philadelphia, 

PA, shows that the lack of integrated methods for spatial planning of GSI projects has led to their 

siting in areas that do not maximize benefits for the most vulnerable communities (i.e., those most 

susceptible to suffer loss/damage during a hazard event and least likely to recover from the event). 

Using the presented framework to explore spatial synergies and tradeoffs among the socio-

ecologic vulnerabilities, the most vulnerable areas were found to be significantly less likely to 

receive the potential GSI benefits. Additionally, "high priority” areas for GSI installations that are 

within one mile of current or planned GSI installations were identified. This suggests that a more 

integrated approach to the spatial planning of GSI could have avoided this problem.  

Lastly, results from applying the optimization framework to spatial prioritization of 

infiltration structures (e.g., rain gardens and ponds) and trees show the spatial synergies and 

tradeoffs that exist between these two types of GSI when different hazard mitigation goals are 

considered. Moreover, the results show that the consideration of vulnerability in the spatial 

planning of GSI has significant impacts to its spatial allocation, which could result in aggravating 

disparities in social justice if ignored. These results suggest that by using the proposed approach, 

city and regional organizations can reduce the cost and time associated with identifying suitable 

areas for GSI implementation, allow more informed design work, and improve social justice and 

community buy-in. However, the results of this study also suggest the need for more effective tools 

that enable better participatory and integrated assessment of GSI projects to promote social justice. 

Moreover, they suggest the need for more detailed distributed hydrologic and micro-climate 
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models that enable a more accurate estimation of the impacts of implementing GSI to reduce 

vulnerability at multiple spatial scales. 
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CHAPTER 1. INTRODUCTION AND BACKGROUND LITERATURE 

 

1.1 Motivation & problem statement 

Climate change and increasing populations in urban areas present new challenges for 

planning, design, and prioritization of infrastructure in our cities. More frequent, intense, and 

longer heat waves, droughts, and high-intensity rainfall events are some of the hazards that are 

being intensified by climate change and could potentially have disastrous effects on vulnerable 

communities (Karl et al. 2008; Strzepek et al. 2010; Dierauer et al. 2012; Andersen et al. 2013; 

Burian et al. 2013; Kunkel et al. 2013). The potential risks of these hazards have been aggravated 

by increasing rates of urbanization (Cutter et al., 2003; Turner II, 2003a & 2003b; Cutter & Finch, 

2008; IPCC, 2007 & 2012; Kenett & Portugali, 2012). In addition, reductions in available funding 

have prevented the retrofitting and construction of new infrastructure needed to mitigate these 

natural hazards (ASCE, 2013; Minsker et al., 2015). Increasing urbanization has increased loads 

from stormwater runoff and pollutants, reduced ecosystem nutrient retention, and created poor 

water quality and ecosystem health downstream (NRC, 2008; Wendel et al., 2011). Furthermore, 

loss of tree canopy and expansion of impervious areas and storm sewer systems have significantly 

decreased infiltration and evapotranspiration and increased streamflow velocities, flood risk, and 

urban heat island impacts (Price, 2000 & 2011; Burian et al. 2013; Fletcher et al., 2013; Norton et 

al., 2015). All of these problems have brought increasing implementation of green stormwater 

infrastructure (GSI; e.g., rain gardens, green roofs, and pervious pavements) to reduce stormwater 

management problems (e.g., poor water quality, increased flood risk, etc.) while also benefitting 

human and ecosystem health. 

Many municipalities across the United States are now implementing GSI practices to meet 

stormwater management goals (e.g., Benedict & McMahon 2006; NRC, 2008; Roy et al., 2014; 

Pennino et al., 2016; US EPA, 2018) by protecting, restoring, and mimicking natural landscapes 

and pre-development hydrology. The main objective for their implementation has varied from 

alleviating flooding and combine sewer overflows during heavy precipitation events (Montalto et 

al., 2007; Autixier et al., 2014; Lennon et al., 2014), to addressing water quality issues and 

restoring stream baseflows and aquatic ecosystems at the catchment scale (Walsh et al., 2005; 

Filoso & Palmer, 2011; Burns et al., 2012). Nevertheless, as components of the natural urban 

landscape, GSI projects, particularly those designed to include and support native vegetation, have 
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additional socio-ecological benefits that extend beyond local storm water control. GSI has shown 

great potential to mitigate heat island effects by providing shading and changing land surface 

albedos; to improve air quality by reducing nitrogen dioxide, particulate matter, and ozone levels; 

to restore ecological habitats and their connectivity; and to reduce energy consumption and noise 

pollution (Pincetl, 2007; Dunn, 2010; Pataki et al., 2011; Demuzere et al., 2014). Furthermore, 

urban green spaces exert significant positive impacts on individuals and communities by 

encouraging people to walk, run, cycle, play, and engage in recreation that provides healthy 

physical activity, reduces physiological symptoms of stress (Morris, 2003; Chang & Chen, 2005; 

Maas et al., 2006; Thompson et al., 2012), and increases life expectancy (Takano et al., 2002; 

Mitchell & Popham, 2008). Because of this multifunctionality, GSI is considered to be a no-regret 

strategy for climate change mitigation (Mees et al., 2011; Cheng, 2016), especially when compared 

to traditional single-purpose gray stormwater infrastructure (e.g., piped drainage and water 

treatment systems). 

Despite the growing attention to large-scale (i.e., watershed, city, regional) implementation 

of GSI, its strategic spatial planning and implementation has been limited. Large-scale spatial 

planning of GSI has suffered from ambiguity in the term green infrastructure (i.e., whether it refers 

to all landscape urban features such as parks or just street/building level features such as rain 

gardens and green roofs). Furthermore, GSI implementation has followed an opportunistic, 

piecemeal approach, particularly with a lack of integrated planning methods that consider its full 

multifunctionality (Matthews et al., 2015; Kuller et al., 2017). Most spatial planning of GSI has 

been limited to site-scale designs that only consider stormwater reduction benefits. In cases where 

large-scale initiatives have been proposed, these have often received significant stakeholder 

resistance and have faced significant funding constraints that have limited evaluation of where GSI 

would be most beneficial (Clean Water America Alliance, 2011; Montalto et al., 2013; Baptiste et 

al., 2015). 

Current planning and design methodologies have often concentrated only on hydrologic 

modeling and assessment of site-specific designs and thus do not adequately integrate site-scale 

design decisions with catchment-scale impacts (Golden et al., 2017; Jefferson et al., 2017; Kuller 

et al., 2017). Furthermore, current methods for assessing the benefits of GSI have often limited 

their use/applicability to a specific spatial scale (e.g., household, neighborhood) and are only 

intended for the evaluation of a specific objective (e.g., heat island effect mitigation, flood risk 
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reduction, water quality improvements, etc.) from a particular stakeholder (e.g., homeowners, 

governmental and non-governmental organizations, etc.). As such, planning and design decisions 

have often been based on limited information about where different types of GSI will be most 

effective and have disregarded the potential impacts of GSI to the entire suite of socio-ecological 

systems and the risks associated with multiple hazards (e.g., flash flooding, urban heat island). 

These limitations have made it difficult to translate the analysis and information between spatial 

scales and to consider the opinions of multiple stakeholders, thus creating a disconnect between 

regional assessments and city/neighborhood planning. More importantly, this lack of strategic 

planning disregards the significant implications that GSI siting decisions have for environmental 

and social justice, especially considering the coping capacity and hazard exposure of different 

communities to multiple hazards (i.e., their vulnerability). 

These limitations suggest the need for more effective tools and methods that enable a more 

participatory and integrated assessment of sites and types of GSI projects at multiple scales, from 

regions to plots. Furthermore, there is limited understanding of how the opportunistic site-scale 

implementation of GSI and limitations in its spatial planning have affected the delivery of GSI 

benefits to the most vulnerable, and thus in ultimately understanding GSI’s social justice 

ramifications (Lovell et al., 2013; Meerow, et al., 2017). Additionally, there is a need to understand 

how these limitations have affected the evaluation of spatial tradeoffs and synergies among the 

benefits of potential GSI installations to maximize their multifunctionality under multiple 

objectives (e.g., reducing flash flooding risk while increasing ecologic connectivity). All of these 

shortcomings suggest the need for more integrated and interdisciplinary approaches that include 

the concepts of vulnerability science, hazard risks, and human-environmental systems (Abunnasr, 

2013; Locke et al., 2013; Norton et al., 2015). 

The central premise of this study is to explore the use of vulnerability of socio-ecological 

systems as a driver for prioritizing locations and types of GSI installations in urban settings. More 

specifically, this work seeks to answer two primary research questions: (1) Have current 

approaches used for the quantification of socio-ecologic vulnerability and spatial planning of GSI 

affected the delivery of GSI benefits to areas of highest vulnerability? and (2) How can different 

locations and types of GSI installations be prioritized at multiple scales in order to maximizes its 

mitigation potential in the most socio-ecologically vulnerable areas to address multiple hazards?  
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It is hypothesized that the aforementioned limitations have prevented GSI projects from 

being strategically planned and sited in areas where their benefits are maximized for the most 

vulnerable community members, especially considering their full multifunctionality. Finally, it is 

expected that different spatial allocations and distributions of GSI could have significant impact 

on the socio-ecological vulnerability of systems without significantly reducing stormwater 

management benefits at the watershed scale. 

 

1.2 Related work 

One of the major challenges facing the adoption of GSI today is differences in 

conceptualization of the term itself. Different disciplines have used diverse biophysical, cultural, 

economic, political and socio-ecological characteristics to define GSI. This ambiguity in the 

interpretation and definition of the term has led to differences in methods and assumptions for 

spatial planning of GSI.  

Existing methods used for spatial planning of GSI can be divided into two broad categories: 

(1) those that define GSI as “planned open space” and (2) those that define GSI as part of the 

stormwater management infrastructure system (Matthews et al., 2015; Sussams et al., 2015). 

Planning methods in the former category often consider political and/or ecological perspectives. 

Their objective is to improve management of the natural landscape by creating, preserving, or 

rehabilitating networks of multifunctional green spaces that provide a range of ecological, social 

and economic benefits (e.g., parks, green open fields, urban forests, etc.). Additionally, previous 

studies in this category have often guided policies and regulations for improving ecological 

integrity of the natural landscape, issues associated with social and environmental justice, and 

sustainable management of ecological services (Chang et al., 2012; Pearsall, et al., 2012; Cheng, 

2013; Hansen & Pauleit, 2014; Heckert & Rosan, 2016; Calderón-Contreras et al., 2017). Due to 

the nature of the problems being addressed, spatial scales at which these methods have been used 

have ranged from countries to large regions (e.g., river basins to U.S. counties). 

On the other hand, planning methods in the latter category have approached GSI planning 

from an engineering perspective as a rational exercise. Related to this topic, an abundant body of 

literature has been generated over the last 30 years about the hydrologic performance of GSIs 

under different hydro-climatic conditions, the most appropriate methods for its modeling and 

monitoring, and different frameworks for its localized planning and design. Illustrated by recent 
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literature reviews presented by Golden et al. (2017), Jefferson et al. (2017) & Kuller et al. (2017), 

previous studies have ranged from modeling and experimental performance assessment of 

different GSI to the development of frameworks that use simulation-optimization approaches to 

optimize the location, type, and design parameters of different GSI options. The spatial scale of 

analysis in these studies have varied from 1-200 km2 watersheds to individual city blocks 

(Jefferson et al., 2017), and most of them have concentrated on either assessing the GSI capacity 

to reduce stormwater runoff problems (e.g., increase in infiltration and reduction in runoff volume 

and/or a time lag and reduction of peak discharge) or to improve the water quality via increased 

in-situ treatment of stormwater (e.g., reduction of phosphorous/nitrogen loads). These studies have 

been the basis for our current scientific understanding of the capabilities of GSI to address 

stormwater management problems, and have enabled initial buy-in from stakeholders for 

installation of numerous experimental/pilot projects. Nonetheless, recent findings suggest that 

these studies: (1) have not properly addressed the benefits of localized projects at the watershed 

scale, either from a volume/peak discharge reduction or water quality perspective, and (2) have 

failed to account for the full multifunctionality of GSI (Lovell et al., 2013; Golden et al., 2017; 

Jefferson et al., 2017; Kuller et al., 2017). 

In particular, consolidation of the concepts and spatial scales used in these two aspects has 

received little attention, particularly as a component of the engineered stormwater management 

system. One approach that has been considered in urban watersheds is the idea of prioritizing areas 

for investment and implementation of GSI (e.g., Randhir et al., 2001; Perez-Pedini et al., 2005; 

Lee et al., 2012; Claro et al., 2013; Shuster & Rhea, 2013; Kuller et al., 2017). The central idea of 

these approaches is that detailed data at smaller scales can be used as proxy indicators of the 

aggregated benefits of GSI at larger scales. By spatially aggregating these indicators, larger areas 

can then be ranked based on the availability of suitable locations for GSI installation, the need of 

the communities to receive the GSI benefits, and the potential benefits of the GSI projects at the 

watershed scale. Moreover, by collecting data and hydraulic results at smaller watershed scales, 

these studies have then aggregated these indicators within larger administrative boundaries and 

integrated other types of data and methods to explore socio-ecological issues, policy regulations, 

and city-wide investment plans. Methods for these analyses have ranged from simple overlays of 

different spatial data layers to more complex analyses that use multi-criteria decision-making 
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frameworks and simplified hydrologic models (Norton et al., 2015; Heckert & Rosan, 2016; Chan 

et al., 2017; Kuller et al, 2017; Meerow et al., 2017).  

Given the flexibility and simplicity of these GSI prioritization techniques and current 

concerns about the impacts of climate change, particularly to the most vulnerable communities, 

these methods have recently been of great interest for informing long-term GSI investment plans 

at large scales. This trend has been particularly significant in the last two decades when the concept 

of vulnerability has been increasingly adopted for planning and assessment of urban infrastructure 

projects (Damm, 2010; Abunnasr, 2013; Locke et al., 2013; Norton et al., 2015). Previously 

dominated by only exposure risk assessment (i.e., probability and intensity of a hazardous event), 

the process of infrastructure planning and design has evolved to now consider susceptibility and 

resilience (i.e., coping capacity) of the affected systems, particularly socio-ecological systems 

(Cutter 1996; Thywissen, 2006; Jones & Andrey, 2007; Damm, 2010).  

Broadly defined, vulnerability refers to the potential to suffer loss or harm from some actual 

or potential hazardous event and the ability to recover from that loss. In the hazard literature, 

vulnerability is argued to be multidimensional, where the exposure to the hazard (i.e., risk) and the 

characteristics of the exposed system both function as co-determinants of the systems’ 

vulnerability (McCarthy et al., 2001; Cutter et al., 2003; Turner II, 2003a; Mueller & Dooling, 

2011; Kappes et al., 2012). Within this context, the concept of vulnerability is often used to guide 

analysis to enhance social and ecological well-being by reducing risks to different hazards. Urban 

infrastructure is often designed to provide a specified level of hazard risk reduction. Therefore, 

integrated planning, design, and prioritization of GSI that considers the concept of vulnerability 

should maximize risk reduction of the most vulnerable communities (i.e., provide the greatest 

reduction in potential to suffer loss or harm from some actual or potential hazardous event and 

maximize the ability to recover from that loss), and thus maximize potential benefits of the 

investment (Cheng, 2016; Meerow et al., 2016a).  

At this time only a few studies have proposed analytical frameworks that integrate the 

concept of vulnerability into planning, prioritization, and design of GSI (Susilo et al., 2006; Claro 

et al., 2013; Locke et al., 2010 & 2013; Norton et al., 2015; Chan et al., 2017; Meerow et al., 2017). 

Among the most recent and complete analytical frameworks for the prioritization of GSI is the 

work presented by Locke et al. (2010 & 2013). Locke et al. (2010) proposed an urban tree canopy 

prioritization framework that integrated geographic information system (GIS) methods to 



7 

 

prioritize tree planting sites based on need (i.e., the capacity of trees to address a specific issue in 

the community) and suitability (i.e., biophysical constraints and tree-planting target goals). The 

method integrated a set of variables at the neighborhood level to identify communities with the 

greatest need to receive the tree canopy benefits associated with air quality, noise reduction, 

biodiversity, public health, water, urban heat island, and socio-economic metrics. The final 

prioritization of the neighborhoods used a standardized aggregated index for the need and 

suitability components and ranked them based on their position within a sorted list. This work was 

further expanded by Locke et al. (2013) and used in a collaborative planning process to achieve a 

tree canopy target in Baltimore, MD. Through surveys and preference solicitations, the study 

explored overlaps among public agency programs and stakeholders’ preferences for tree planting 

prioritization criteria using a hierarchical clustering tree. The study concluded that tree planting 

initiatives should align with neighborhoods’ motivations, capacities, and interests in order to 

improve adoption of better urban forestry practices. 

A more recent study by Norton et al. (2015) presents a multi-scale (i.e., neighborhood, 

street, and street canyons scales) framework for prioritization and selection of urban green 

infrastructure when its intended use is urban heat mitigation. The framework integrates the 

concepts of social vulnerability, behavioral exposure, and the cooling benefits of GSI to prioritize 

the placement and type of GSI. The framework was applied to a case study in Port Phillips in 

Melbourne, AU, and the results were presented to a group of stakeholders during a workshop. The 

participants of the workshop recognized the utility of the approach in prioritizing neighborhoods 

but highlighted its lack of consideration of the multi-functionality of GSI. Finally, the workshop 

participants highlighted the implementation challenges associated with competing factors (e.g., 

high priority locations for GSI with underground electrical and water utility lines) and interactions 

between private and public spaces. 

Previous studies have shown the importance of using planning methods that consider both 

small-scale impacts and larger-scale socio-ecological issues (Demuzere et al., 2014; Norton et al., 

2015; Cheng, 2016; Jefferson et al., 2017; Kuller et al., 2017; Meerow et al., 2016a & 2017). In 

particular, they showed how spatial planning of GSI can be guided by disparities in different 

communities’ abilities to mitigate the impacts of climate change. Furthermore, they have provided 

a much-needed conceptual framework for integrating the concept of vulnerability into decision 

making. Nevertheless, these studies have limited quantification of vulnerability to a specific 
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system and a particular hazard. Moreover, these studies have limited prioritization analyses to the 

spatial scale of neighborhood/Census Tract and a specific type of GSI (i.e., trees). If GSI is to be 

planned as a climate risk mitigation strategy, its prioritization must consider the full range of GSI 

benefits to the entire socio-ecological system. Moreover, it should consider the potential tradeoffs 

among benefits provided by different types of GSI under different hazard mitigation goals. 

Furthermore, with the exception of Locke et al. (2013), who attempted to consolidate stakeholder 

opinions by taking the mean of the results, most approaches have neglected potential impacts of 

opinions from multiple stakeholders (e.g., competition for space when considering multiple 

hazards and different types of GSI).  

In order for GSI to be more widely adopted and implemented, recent studies have suggested 

that GSI planning tools should allow different groups of stakeholders to consolidate their different 

definitions of GSI and assess their planning objectives within their distinct institutional and 

administrative boundaries (Matthews et al., 2015), while translating the information gathered from 

the analysis across multiple scales. Furthermore, it has been argued that the use of planning tools 

that allow for the conceptualization of GSI as climate adaption strategies within a “learn-by-

doing” framework might be the most suitable strategy to enable large-scale implantation of GSI 

(Matthews et al., 2013 & 2015). Additionally, studies have suggested the need for development of 

new frameworks that conceptualize cities as socio-ecological systems composed of a continuous 

matrix of multifunctional landscapes, including their synergistic interactivity (Lovell et al., 2013). 

 

1.3 Contributions and thesis outline 

Participatory and integrated assessment of GSI projects at multiple scales remains one of 

the grand challenges for their effective implementation (Matthews et al., 2015; Kuller et al., 2017). 

Previous approaches for prioritizing GSI have predominately only considered GSI stormwater 

management benefits. Furthermore, previous studies have only focused on the evaluation of a 

specific type of GSI and have ignored the synergies and tradeoffs among GSI multifunctionality. 

The primary objective of this work is to begin addressing these limitations through a new spatially 

scalable analytical framework (Figure 1.1) that uses socio-ecological vulnerability for prioritizing 

locations and types of GSI installations in urban settings. The framework considers the multiple 

benefits offered by different types of GSI and, more importantly, prioritizes GSI implementation 

by considering the geo-location of communities in most need of the GSI benefits (i.e., the most 
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vulnerable communities). The proposed framework achieves these objectives by integrating three 

primary components: (1) identification of vulnerable communities for which GSI would provide 

the greatest benefits, (2) identification of suitable sites for different types of GSI, considering local 

regulations and design criteria, and (3) a multi-criteria evaluation to explore spatial tradeoffs and 

synergies associated with the potential benefits of GSI.  

The first step of the framework quantifies the vulnerability of different components of the 

urban system (i.e., social, ecological, and infrastructure). This is achieved by aggregating 

susceptibility indicators that represent vulnerabilities associated with different hazards. The 

method then combines these vulnerability scores into a relative vulnerability index (RVI) with 

different degrees of vulnerability (e.g., high, medium, low) in each area. Using screening rules 

associated with different design criteria and planning regulations, the methodology then identifies 

areas with the greatest suitability for GSI implementation. Lastly, a spatially scalable optimization 

approach is used to maximize the multifunctionality of these different locations and types of GSI 

project when considering multiple objectives (e.g., reducing flash flooding risk while increasing 

ecologic connectivity). The proposed framework uses a graph-based approach with a simplified 

distributed hydrologic model and mixed-integer linear programming to execute a multi-objective 

optimization to maximize potential delivery of GSI benefits to the most vulnerable areas. The 

framework can also incorporate opinions of multiple stakeholders by specifying varying 

importance to the mitigation of different hazards, weighting given to socio-ecologic systems, and 

preferences associated with GSI types and their geo-locations. 
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Figure 1.1: Conceptual overview of the GSI prioritization framework. 

 

1.3.1 Thesis outline  

To implement and test the framework given in Figure 1.1, several research questions are 

addressed: 

• How should vulnerability be defined and quantified within the context of GSI 

planning? 

• How should the multiple benefits of GSI be spatially quantified and represented? 

• How can this information be integrated in a multi-criteria analysis to inform the spatial 

planning of GSI at multiple scales? 

The first question focuses on whether current approaches for quantifying socio-ecological 

vulnerability can be used for spatial planning of GSI. Traditional methods used for quantification 

of social susceptibility create disconnects between the spatial scale at which GSI projects are 

planned (e.g., city blocks, tax lots, or small watersheds under 2-10 km2) and the spatial scale used 

for quantifying vulnerability (Carr et al., 2015). As such, the work presented in Chapter 2 explores 

how current approaches for the quantification of social susceptibility may have limited the delivery 

of GSI to the most vulnerable communities by misdiagnosing the spatial correlation of 

vulnerability and using spatial units of analysis that can produce large variabilities in the final 
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results. To address these challenges, this chapter also presents a new analytical framework that 

downscales the vulnerability indicators to site scale (i.e., 10 m) and associates the vulnerability 

indicators with the potential benefits of GSI. The chapter concludes by presenting a spatial analysis 

of the most common spatial patterns of socio-ecologic vulnerability in four cities in the United 

States and their potential implications for spatial planning of GSI. 

Having an approach for quantifying vulnerability, the second research question focuses on 

how the potential benefits of GSI to reduce vulnerability could be spatially quantified. Thus, in 

Chapter 3, the concepts of “service-benefiting” and “service-needing” areas (Fisher et al. 2009) 

are adopted to relate the multiple benefits of GSI to the vulnerability of socio-ecologic systems. 

This framework is then used to explore the spatial patterns of vulnerability and current GSI 

installations in the City of Philadelphia, PA. The goal of this chapter is to: (1) demonstrate the 

utility of the method as a planning tool and (2) better understand the extent to which vulnerable 

communities have benefited from the installation of GSI projects. These analyses provide insight 

into the potential limitations of current GSI planning’s delivery of benefits to the most vulnerable 

communities. 

Chapter 4 then presents a spatially scalable prioritization framework that optimizes the 

potential delivery of GSI benefits to the most vulnerable communities, building upon the 

knowledge gained in previous chapters. The framework spatially relates GSI mitigation potentials 

to vulnerability levels of different communities using the methods developed in Chapter 2 to 

identify the most vulnerable communities and the methodology presented in Chapter 3. The 

primary contribution of this chapter is the development of a multi-objective optimization 

framework that uses a graph-based approach with a simplified distributed hydrologic surrogate 

model and mixed-integer linear programming to maximize the potential delivery of GSI benefits 

to the most vulnerable areas. The framework is applied to three watersheds within the City of 

Baltimore, MD, the City of Philadelphia, PA, and the City of Dallas, TX, to test the utility and 

robustness of the prioritization method in diverse hydro-climates and explore the locations and 

distributions of different types of GSI at multiple scales. Furthermore, the impacts of different 

weights representing different hazard mitigation goals and/or planning criteria (i.e., different 

opinions from stakeholders) are explored. The chapter concludes with a discussion of the potential 

implications of the observed patterns on future planning and design of GSI. 
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Finally, Chapter 5 concludes the dissertation by summarizing the most significant findings 

of this work and discussing its limitations. Moreover, future research questions are proposed to 

guide further development of advanced tools and methods for quantifying GSI benefits and enable 

more integrated assessment and a participatory planning process. 
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CHAPTER 2. QUANTIFICATION OF SOCIO-ECOLOGICAL VULNERABILITY 

WITHIN A GREEN INFRASTRUCTURE PLANNING FRAMEWORK 

 

2.1 Introduction 

If green stormwater infrastructure (GSI) is to be used as a climate adaptation strategy, it is 

important that its spatial planning and design be considered within a vulnerability framework. To 

do so, the urban landscape needs to be conceptualized as a socio-ecologic system and consider the 

potential impacts that GSI could have on improving sustainability and resilience. Therefore, in this 

chapter we explore the literature on socio-ecologic vulnerability to investigate the following 

question: How should vulnerability be defined and quantified within the context of GSI planning?  

The conceptual use of vulnerability, particularly of social vulnerability, to make informed 

planning and design decisions has been in practice for decades (Fekete, 2009; Burton, 2010; 

Zebardast, 2013; Guillard-Gonçalves et al., 2015). Particularly in the hazard and socio-

environmental justice literature, the concept of vulnerability has often been presented as the risk 

of being exposed to a certain hazard severity (Fekete et al., 2010; Burian et al., 2013; Carr et al., 

2015). More recently though, the definition of vulnerability has been expanded to include not only 

the risk of exposure to a hazard, but also the susceptibility and resilience of the exposed system 

(Cutter et al., 2003; Cutter & Finch, 2008; Damm, 2010; Kappes et al., 2012). Conceptually, 

resilience is often defined as the capacity of the system to adapt to or recover from a shock 

introduced by exposure to a stressor (Cutter et al., 2008; Meerow et al., 2016a & 2016b). On the 

other hand, susceptibility represents the intrinsic properties of the system that increase the 

likelihood of harm or loss when exposed to a stressor (Cutter et al., 2003; Kappes et al., 2012). 

Within this new conceptual definition, vulnerability is thus seen as a combination of risk of 

exposure to a hazard and the capacity of the system to remain undisturbed and/or quickly recover 

to its original state (Turner II, 2003a & 2003b; Kappes et al., 2012; Carr et al., 2015). 

This reframing of the concept of vulnerability has brought challenges associated with its 

quantification. Particularly, the quantification of susceptibility and resilience has received a lot of 

attention in the last two decades (Tate, 2013; Carr et al., 2015; Meerow et al., 2016a & 2016b). 

Quantification of the probability of being exposed to a certain hazard severity (e.g., flooding return 

period) is a scientific exercise in which physical models and statistical tools used to predict 

exposure risk can be validated by the use of abundant historic data. However, there are currently 
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no models that can capture the complexities associated with intra- and inter-dependencies of socio-

ecologic systems. More importantly, there are very little to no data to validate these vulnerability 

quantification methods (Bakkensen et al., 2017). Given these limitations, vulnerability 

quantification methods have concentrated on the identification of proxy metrics that attempt to 

capture the most critical characteristics associated with the susceptibility and resilience of socio-

ecologic systems. 

To date, most vulnerability quantification approaches predominantly rely on the use of 

indicators (i.e., hazard risk, susceptibility, and resilience). Traditionally, these assessments use a 

composite index (metric) to represent the relative vulnerability between different 

areas/communities in the system (i.e., the likelihood that a community will suffer more harm or 

loss when compared to another). This concept of relative vulnerability is used in the absence of 

validation data to create and/or corroborate the “true” degrees of vulnerability and the 

complexities associated with capturing cause-effect relationships and/or inter-system 

dependencies. Instead, the assumption is that given a spatial extent, one can identify areas that are 

more vulnerable than others. To create these relative vulnerability indices, a list of susceptibility 

and resilience indicators (e.g., for flooding, preparedness, awareness, and travel time) is 

aggregated into a single metric and associated with a hazard severity level. Using these metrics, 

different ranking/ordering approaches are then used to assign a nominal degree (e.g., low, 

moderate, high) of vulnerability. These vulnerability indicators simplify the complexities 

associated with quantifying system vulnerability, thus making vulnerability a more understandable 

and accessible concept to decision makers (Turner II, 2003b; Cutter & Finch, 2008; Damm, 2010; 

Locke et al., 2013; Norton et al., 2015). 

However, the data, the spatial scale of analysis, and the method of 

aggregation/quantification of vulnerability indices have varied between quantification methods. 

Moreover, very often the definition of vulnerability itself has been drastically different, where the 

concept has been used to describe the marginality, adaptability, susceptibility, fragility and/or risk 

of the system to some threat, which is sometime “hypothetical” (Füssel, 2007). Furthermore, 

traditional approaches for quantifying vulnerability have failed to consider the spatial scale at 

which disaster risk-reduction interventions are designed and implemented (Carr et al., 2015).  

These limitations have been shown to produce incomplete explanations of the variance in 

vulnerability outcomes and have suggested a risk of misdiagnosing community-specific 
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vulnerability and the effects of different intervention programs (Cutter & Finch 2008; Schmidtlein 

et al. 2008; Carr et al., 2015). This spatial attribution problem (i.e., where the sources of 

information or conceptualization do not align with the spatial scale and needs of those using the 

information [Birkmann et al., 2010; Fekete et al., 2010]) has been particularly prevalent in methods 

used for the quantification of social vulnerability (Fekete et al., 2010; Carr et al., 2015). Social 

vulnerability has been defined as the characteristics of the population that influence the likelihood 

of loss given a particular event. These characteristics are often associated with limited access to 

resources and political power, social capital, beliefs and customs, physical limitations of the 

population, and different characteristics of the built environment (Cutter et al., 2003; Schmidtlein 

et al., 2008). As such, social, economic, demographic, and housing data are often used to construct 

social vulnerability indicators. Because these data are often collected within administrative 

boundaries (e.g., county, U.S. Census Tracts) the spatial scale of analysis used to inform 

infrastructure planning and design decisions is often limited to those boundaries.  

Depending on how large the discrepancy between the spatial resolution at which the data 

are available and the spatial unit of analysis of infrastructure projects (e.g., a watershed), correctly 

assessing where and what disaster-risk reduction interventions are most urgently needed can 

become very challenging and, more importantly, assessing who will be the beneficiaries of their 

implementation. To be effectively implemented, GSI is typically designed and constructed at small 

spatial scales (e.g., city parcel, tax lot, or subwatershed of 0.01-10 km2) (Golden et al., 2017; 

Jefferson et al., 2017). This is because its engineering design depends on the calculation of fine-

scale rainfall-runoff estimates in order to ensure an efficient and acceptable performance (e.g., 

flood mitigation goal, nutrient reduction threshold). In addition, it has been argued that many of 

the co-benefits associated with GSI (e.g., increase in productivity, reduction in stress, improved 

air quality, and urban heat island mitigation) only affect people that are in close proximity (e.g., 

distances less than 1.6 km [~1 mile]) (Lee & Maheswaran, 2011; James et al., 2015). Thus, if the 

concept of vulnerability is to be used to identify communities in need of GSI benefits, the 

quantification of social susceptibility should be done at the smallest spatial resolutions at which 

the data are available. 

The objective of this work is to address these limitations through the development of a new 

method for quantifying social susceptibility at the smallest resolution for which data are available 

(i.e., Census Blocks). More specifically, this study seeks to evaluate the variability in the social 
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susceptibility indicator (SoSI) due to the use of dasymetric mapping techniques (i.e., areal 

aggregation/disaggregation) and different methods used for its calculation. The hypothesis to be 

tested is that the use of smaller scales of analysis will result in lower sensitivity to the calculation 

method, but a higher sensitivity to data uncertainty. Moreover, it is expected that calculation of the 

indicator at different spatial scales will result in changes to spatial patterns of vulnerability and 

better identification of the most vulnerable communities. 

The method is applied to four cities in the United States to test the reproducibility of any 

observed changes in the variability of the social susceptibility indicator. This also allows 

investigation of the applicability and utility of the proposed framework to show common trends in 

spatial patterns of vulnerability in different regions. 

 

2.1.1 Related work 

Although there is neither a single definition nor a single measure of social susceptibility, 

the social vulnerability index (SoVI), introduced by Cutter et al. (2003), has been one of the most 

widely accepted and used (Fekete, 2009; Burton, 2010; Zebardast, 2013; Guillard-Gonçalves et 

al., 2015). SoVI is a metric composed of different indicators that represent a community’s ability 

to respond to, cope with, recover from, and adapt to environmental hazards. Note that while Cutter 

et al. (2003) and others have defined and used SoVI as a metric to quantify vulnerability, they 

assume an equal probability of exposure to any environmental hazard. Under the most recent 

conceptual definition of vulnerability, this metric more suitably represents the susceptibility and/or 

resilience of a community. In this study, vulnerability is defined as a combination of the ordinal 

values that represent hazard exposure risk and susceptibility. Having noted this distinction, in this 

study SoVI will be referenced as the social susceptibility indicator (SoSI). 

Particularly in the United States, the SoSI has been used and integrated in many studies 

and urban planning methods and for different purposes ranging from disaster planning to socio-

environmental justice. For example, SoSI has been applied to compute the relative vulnerability 

of different populations under alternative infrastructure scenarios and to prioritize the location of 

new trees in urban settings (e.g., Jones & Andrey, 2007; Cheng, 2013; Tate, 2013; Norton et al., 

2015; Cheng, 2016; Meerow et al., 2017). However, to date, the use of the SoSI as part of 

infrastructure planning and prioritization assessments has been very limited due to a lack of data 

for validation and variability of the results as a consequence of methodological choices (Jones & 
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Andrey, 2007; Tate, 2013; Carr et al., 2015). Furthermore, while previous studies have had an 

appropriate spatial scale of analysis (i.e., counties and Census Tracts), the discrepancy between 

the spatial scales at which SoSI has been calculated and analyzed and the spatial resolution needed 

to effectively plan and design GSI (e.g., small neighborhoods of 5- 6 street blocks) has been 

identified as a limitation (Birkmann & Von Teichman, 2010; Carr et al., 2015). 

Openshaw & Taylor (1979) identified the scale problem and the aggregation problem as 

part of the Modifiable Areal Unit Problem (MAUP) of a aereally aggregated data at different 

scales. The scale problem refers to the ecological fallacy in which the scales of analysis change 

the relationship between the studied variables. The aggregation problem refers to the fact that this 

relationship between the variables can be equally likely from the intrinsic relationship between the 

variables or a product of the aggregation scheme. Current methods used for the construction and 

utilization of the SoSI suffer from both of these problems. As such, quantifying the impact of 

different methodological choices and the use of different spatial scales on the variability of the 

SoSI have been the primary focus of past studies. 

As an initial step to address some of these problems, previous studies have concentrated 

on quantifying the sensitivity of the SoSI to different construction methods and its application at 

different spatial scales and in different geographic contexts. Jones & Andrey (2007) provided a 

critical review on the methods used for construction of the SoSI and were among the first to show 

their impact on the resulting indicators of relative vulnerability. Schmidtlein et al. (2008) evaluated 

the sensitivity of the SoSI to changes in its construction, the spatial scale at which is applied, and 

different geographical contexts. Their results demonstrated that the predominant factor influencing 

the variability of the results is the manner in which the components of a principal component 

analysis (PCA) are combined to create the final index value. Additionally, the authors found that 

a decrease in the scale of aggregation caused a decrease in the variability of the data explained by 

the PCA, and increased the variance of the resulting SoSI indexes. 

Tate (2012) performed a sensitivity analysis on the change in final SoSI ranking using 

different structural designs and analysis of scale within a Monte Carlo simulation framework. The 

analysis suggested that the structural designs and scales accounted for 58 to 86% of the variance 

in the results. Most recently, Tate (2013) performed a very similar analysis with different 

construction methods and spatial scales. The results showed a high magnitude of uncertainty and 
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statistical bias in areas of high vulnerability. Additionally, the results suggested that the selected 

weighting scheme had the most influence in the uncertainty/variance of the final results. 

To date, none of these previous studies has explored the sensitivity of the SoSI to the use 

of dysametric methods that allow calculation at smaller scales than Census Block Groups and the 

impact of data uncertainty at these smaller scales (i.e., American Community Survey, 2012). Nor 

have they evaluated the impact that the observed variability in SoSI could have on spatial patterns 

associated with another metrics (e.g., hazard exposure). This lack of understanding of the 

variability of social susceptibility indicators at smaller scales deters its use for local decision 

making (Birkmann & Von Teichman, 2010; Carr et al., 2015).  

 

2.2 Methodology 

The methodology used in this study consists of three main components: (1) calculation of 

the SoSI using the new method (Section 2.2.1), (2) aggregation of indicators to represent 

infrastructure susceptibility, ecological integrity, and hazard exposure severity associated with 

flooding and urban heat island (Section 2.2.2); and (3) spatial analysis of the variability in socio-

ecologic vulnerability (Section 2.2.3).  

 

2.2.1 Quantification of social susceptibility 

The proposed approach to computing the SoSI follows the methods used in most previous 

studies but introduces a new uniform dasymetric mapping to populated areas as a way of 

transferring information about susceptibility between spatial scales. The method used to construct 

the SoSI largely consists of 5 main steps: (1) selection of model structure, (2) selection and data 

collection for the indicators, (3) transformation and normalization of the input data, (4) weighting 

and aggregation methods to combine the data into a single metric, and (5) allocation of the SoSI 

results to a set of vulnerability classes (i.e., ranking scheme). However, as will be discussed in 

Section 2.2.1.5 below, in this study the aggregation of the indicators differs from previous studies 

by using data collected at different spatial scales. The choices made by the index developer in each 

of these steps involve conceptual assumptions and have been demonstrated to have significant 

impacts in the final rankings of vulnerability (Jones & Andrey, 2007; Tate, 2013). Figure 2.1 

presents an overview of these steps and the variability analysis implemented in this work. 
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In this section, some of the most common approaches used in each of these steps are 

highlighted, including their conceptual and/or theoretical assumptions. For a more detail 

discussion and review of the steps and assumptions used to quantify social susceptibility, the reader 

can refer to Jones & Andrey (2007), Schmidtlein et al. (2008), and Tate (2012 & 2013). 

 

Figure 2.1: Overview of steps used to calculate the SoSI and assess its variability to different 

methodological choices. Geo-ID refers to the unique identifiers assigned to Census Blocks and 

Census Block Groups. 

 

2.2.1.1 Model selection 

The process of quantifying social susceptibility begins by selecting a model to be used to 

represent vulnerability. The deductive model (Tate, 2013), which commonly uses a short (e.g., 10) 

list of variables that are normalized and combined to obtain the social susceptibility indicator, is 

selected for this work. This model was chosen because it is the most widely used, because of its 

ease of implementation and interpretation, and because of the flexibility it provides to add/remove 

variables. Some studies have raised concerns that the deductive model introduces double counting 

(Cutter et al., 2003; Tate, 2012 & 2013), which is the idea that results might be biased towards 

populations for which more than one variable is highly correlated. This study argues that double 

counting is not a significant limitation when the intended use is to inform the prioritization of GSI 

projects. This reasoning stems from the idea that all things being equal, populations with a higher 

susceptibility in one indicator should be deemed as such even if highly correlated with other 
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indicators. This assumption seems reasonable given the lack of supporting literature and lack of 

consensus to justify assigning relative importance to the different indicators, which would be 

necessary for methods such as PCA. Furthermore, because the data used in this study is collected 

at different spatial scales, the existence of this correlation might be beneficial in transferring social 

susceptibility information between scales. Nevertheless, in an effort to reduce this problem, 

attention was paid to the selection of the indicators such that a similar number of indicators 

represents each dimension of social susceptibility. 

 

2.2.1.2 Selection of indicators  

The objective of the indicator selection step is to choose a set of indicators as proxy metrics 

of the multidimensional and complex dimensions of social susceptibility. The major considerations 

in the selection of indicators are: (1) the dimensions of vulnerability that are intended to be 

represented when combined with the exposure to a hazard, (2) the correlation between indicators, 

and (3) the availability and cost of obtaining the data. When selecting indicators, one must consider 

whether these are related to the susceptibility of people when exposed to the hazard(s) of interest. 

For example, while a variable such as “air conditioning in home” is relevant to calculating the 

vulnerability to extreme heat, it is not relevant when considering the exposure to flooding. 

Additionally, consideration must be given to how these indicators were collected as it might not 

be possible to spatially aggregate/ disaggregate to other spatial units. The availability of the data 

and its uncertainty often play a major role in which indicators are finally selected.  

The social susceptibility indicators used in this study are presented in Table 2.1. These are 

the most common indicators used in studies of social susceptibility to multiple hazards, particularly 

flooding and extreme heat events, the two hazards for which GSI is most often used as a mitigation 

strategy. The data used to calculate the indictors are collected from the U.S. Census and the 

American Community Survey at three different spatial scales: Census Tracts, Census Block 

Groups, and Census Blocks. Census Blocks are the smallest spatial unit at which the U.S Census 

reports its decennial data and thus represent the smallest scale of analysis that could be used to 

calculate the SoSI (U.S. Census SF1, 2010). Census Block Groups have been used in some of the 

most recent sensitivity studies and thus serve as a base of comparison to the results at the smaller 

scale of Census Blocks. Lastly, Census Tracts are statistical subdivisions of counties, having 

population sizes between 2,500 and 8,000 people2.  
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It should be noted that the social susceptibility indicators are collected only at the spatial 

scale(s) for which a representative sample of the population can be obtained. While Census Blocks 

provide total counts of demographic data (i.e., total number of people or households), at this level 

the dissemination of data related to wealth, health, and education are limited due to privacy 

concerns. Therefore, these data are collected at the Census Block Group and Census Tract levels 

for which a more representative sample of the population is available. 

 

Table 2.1: List of social susceptibility indicators with their respective cardinality, data sources, 

and spatial resolution. 

 

*SF1 – U.S. Census Summary File 1, 2010 [www.census.gov/2010census/news/press-

kits/summary-file-1.html].  

 *ASC5 – American Community Survey 5-year estimates, 2012 [www.census.gov/programs-

surveys/acs/guidance/estimates.html] 



22 

 

2.2.1.3 Transformation of the data 

The next step in the process of constructing the indicator is to consider whether the data 

will be transformed or not. The two most common transformations used to date are the absolute 

count or the use of a relative proportion of the population. An absolute count refers to the use of 

the total population count associated with a particular socio-economic characteristic and the 

assignment of its corresponding cardinality (i.e., +/- add or reduces susceptibility as the value of 

the variable increases). For example, when examining the indicator for age one might consider 

higher counts of older populations to represent a higher level of susceptibility. On the other hand, 

a higher total count of the population in private residences might represent a lower level of 

susceptibility. The transformation of the data using relative proportion divides the total count by 

a normalizing value and is intended to represent the relative disadvantage between population 

groups. The two most common metrics used to create relative proportions are the total population 

in the area of study and population density (i.e., total count of people per area). Because of the 

popularity of these two transformation methods (i.e., absolute counts and population density) in 

the literature and the documented impact they can have on the final values of the SoSI, both of 

them are considered in the analysis of variability. 

 

2.2.1.4 Normalization, aggregation, and ranking  

The last three steps of the process include the normalization (also known as 

standardization) of the indicators to a dimensionless scale (i.e., normalization), the aggregation of 

these into a single metric and the assignment of some ranks or categorical values intended to 

represent different levels of susceptibility. In order to understand the impact of different 

methodological choices on social susceptibility at the smaller scale of Census Blocks, the 

following normalization methods are considered: linear scaling (i.e., min-max), standard score 

(i.e., z-score) and ordinal values (i.e., percentiles) (Schmidtlein et al., 2008; Tate, 2013). The 

aggregation methods considered in this work include the summation of the normalized values 

(sum) and the weighted summation of susceptibility categories (i.e., wrank). In the wrank method, 

susceptibility categories (i.e., normalization by using nominal values) are assigned to the raw data 

and then a weighted sum is computed of the total number of indicators that are assigned the same 

nominal category. The SoSI value for spatial unit i is thus calculated by: 
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 𝑆𝑜𝑆𝐼𝑖 =  ∑
𝐶𝑗

𝐶𝑚𝑎𝑥
∗ 𝑋𝐶𝑗

𝐶𝑚𝑎𝑥

𝑗= 𝐶𝑚𝑖𝑛

 (2.1) 

 

where Cj represents the nominal degree of social susceptibility (e.g., Low = 2), Cmax represents the 

maximum nominal value that could be assigned (e.g., Very High = 5) and XCj represents the total 

number of indicators that received a nominal value equal to Cj when using the ranking scheme on 

the raw data.  

The wrank method seeks to reduce the problems of sensitivity to outliers present when 

using multiplication methods, and to reduce the issues of compensability (i.e., low values in one 

indicator can mask high values in another) associated with summation. However, because of the 

use of nominal categories, the method produces a loss in the measurement of relative differences, 

and thus a loss of information, and continues to use the assumption of interaction (i.e., all groups 

behave statistically similar) used by previous methods.  

Finally, the assignment of categorical levels of susceptibility uses the percentiles of the 

resulting SoSI. As such, the resulting SoSI values are allocated to susceptibly categories defined 

as: (1) Very low ([0%- 5%]), (2) Low ([10%-25%]), (3) Moderate ([25%-75%]), (4) High ([75%-

90%]) and, (5) Very high ([90% - 100%]). 

 

2.2.1.5 Spatial disaggregation 

This work proposes a modification to prior work with a spatial disaggregation method that 

allows the use of data collected at different spatial scales. Spatial disaggregation, most commonly 

known as dasymetric mapping, is a technique used to distribute attribute data more accurately 

within a larger or arbitrary area unit by the overlay of geographic boundaries that exclude, restrict, 

or confine the attribute in question1. The techniques are more often used for the spatial 

redistribution of population counts from the spatial areas at which the data were collected, or 

source zones (e.g., Census Tracts), to smaller areal units that usually fall within boundaries of the 

source zone (i.e., target zones) defined by smaller administrative boundaries (e.g., city parcels or 

tax lots). Dasymetric methods have varied from the use of simple areal weighting estimations that 

                                                           
1 Retrieved February 22, 2016 from: 

http://support.esri.com/en/knowledgebase/GISDictionary/term/dasymetric%20mapping 

http://support.esri.com/en/knowledgebase/GISDictionary/term/dasymetric%20mapping
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use land cover as ancillary data to the use of probabilistic models that make use of different data 

sources for the total population counts and an array of ancillary datasets (e.g., land cover, 

residential point data, tax lot datasets, etc.) (Su et al., 2010; Nagle et al., 2014).  

In this study however, the proposed spatial disaggregation method is much simpler. Rather 

than redistributing population counts to the target zones, the corresponding SoSI associated with 

the source zone is assumed to be uniform in all populated areas of the target zones. In short, the 

SoSI is computed at the spatial scale at which the data are available, and the resulting values are 

assumed to be constant in all corresponding smaller areas that had a population count (see Figure 

2.2 for reference).  

Additionally, rather than using the area of land reported by the U.S. Census data, land cover 

data are used to calculate the total inhabited area. Inhabited area is assumed to be only those areas 

classified as developed (i.e., open space, low intensity, medium intensity and high intensity) in the 

2011 National Land Cover Data (NLCD) from the U.S. Geological Survey (USGS). All other 

classes are assumed to be unpopulated regions. This approach assumes that all communities in the 

target zones have the same level of susceptibility associated with the indicator collected at the 

source zone. This assumption, while limited, does not produce biases or introduce uncertainties by 

using more complex dasymetric methods (Su et al., 2010; Nagle et al., 2014). For example, the 

method does not make assumptions about how to distribute the total count associated with the 

indicators, particularly those associated with minority groups (e.g., people with a disability). 

 

 

Figure 2.2: Spatial relationship of U.S. Census spatial units. SoSI values of the source zone are 

assumed to be uniform in all populated areas of the target zones. 
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2.2.2 Overview of vulnerability framework 

The second component of the methodology relates the susceptibility of socio-, ecological- 

and infrastructure systems to multiple hazards, taking into consideration the potential benefits that 

GSI could offer as a mitigation strategy. Following a prior approach commonly used in risk-hazard 

assessments (Kappes et al., 2012; Carr et al., 2015), this study uses the relationship between 

exposure to a hazard and susceptibility of the exposed systems to define different levels of relative 

vulnerability. As such, the proposed approach has two primary components: (1) the aggregation 

of susceptibility indicators for social, ecological, and infrastructure systems, and (2) the 

designation and mapping of different levels of hazard severity. 

The subsections below present descriptions and a table of indicators (Table 2.2) selected 

from the literature to represent the susceptibility of infrastructure systems, the ecologic integrity 

of the urban landscape, and exposure severity to the hazards of flooding and urban heat island. 

These indicators have: (1) good consensus about their significance to represent the intended 

dimension of vulnerability, and (2) a spatial scale of quantification that is similar or smaller than 

Census Blocks (i.e., a resolution of raster data). Additionally, the metrics represent the dimensions 

of the systems in which implementation of GSI could be beneficial (e.g., ecologic connectivity) 

and use commonly available data in most cities.  

 

2.2.2.1 Ecological integrity / susceptibility 

Some forms of GSI have shown great potential to address issues of ecologic susceptibility, 

also referred to as ecologic integrity (Chang et al., 2012; Lovell et al., 2013; Zhao et al., 2013). 

Ecological susceptibility is a complex, often case-specific, concept with many definitions and no 

standard set of metrics for its quantification. Broadly defined, it refers to the capacity of the 

ecosystem to withstand and adapt to stressors over time and space (Williams & Kapustka, 2000). 

The concept of ecological susceptibility has been applied extensively in many land conservation 

planning and watershed policy studies. In these previous studies, the quantification of ecosystem 

susceptibility has often concentrated on measuring exposure to hazards that threaten the integrity 

of ecosystems and/or habitat integrity at various scales of species organization (for a detailed 

review, refer to De Lange et al., 2010). As such, many of these studies have been conducted at a 

regional scale and have considered long time periods (i.e., months to decades).  
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The potential benefits of GSI to the ecosystem are however much more localized (Weber 

et al., 2006; Chang et al., 2012; Tannier et al., 2012; Yu et al., 2012; Tannier et al., 2016). The use 

of GSI to increase ecological connectivity and restore habitat integrity has often been cited 

(Tzoulas et al., 2007; Chang et al., 2012; Yu et al., 2012; Zhao et al., 2013). Ecologic connectivity 

is broadly defined as the degree to which the landscape facilitates or impedes the movement of 

natural resources and species, considering both structural and functional connectivity. Functional 

connectivity takes into account the behavior of the species, while structural connectivity is used to 

define the spatial configuration of habitat patches. Given the diversity of species that one could 

consider in the urban landscape, the indicators selected in this study focused only on metrics for 

structural connectivity (Mallarach et al., 2006; Chang et al., 2012; Yu et al., 2012; Meerow et al., 

2017). More specifically, the metrics selected are intended to represent the level of connectivity 

between ecologic cores, their habitat integrity and the resistance of the landscape to facilitate its 

connectedness (McRae et al., 2008; Shirk & McRae, 2013). 

In addition, when GSI is implemented within riparian areas, it has shown potential to 

improve the health of aquatic ecosystems in streams and large water bodies (Zhao et al., 2013). 

Moreover, many municipalities today have implemented GSI with the primary objective of 

complying with restrictions on pollutant loads from stomwater runoff (e.g., MS4 permits). 

Therefore, an additional set of indicators is also included that identify water bodies susceptible to 

significant increases in pollutant load due to stormwater runoff. These indicators include water 

bodies with a large percentage of impervious drainage area and/or streams close to road 

intersections, as well as water bodies identified by the U.S Environmental Protection Agency 

(EPA) as impaired waters. 

 

2.2.2.2 Infrastructure susceptibility 

Unlike ecosystem and social susceptibility, the concept of infrastructure susceptibility has 

been well defined and various methods exist for its quantification. Infrastructure susceptibility 

refers to the ability of the infrastructure (the system or individual components) to withstand and/or 

absorb the shock of a hazard without compromising its structural integrity, without affecting 

human well-being, and while continuing to provide its intended functionality/service (Kappes et 

al., 2012; Evans et al., 2014; Mazzorana et al., 2014). As shown in Table 2.2, a basic list of 

indicators from the literature is used to represent both the structural and functional vulnerabilities 
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of buildings. The indicators represent characteristics of buildings associated with their structural 

vulnerability to flooding events and, critically, with their intended functions for human well-being.  

 

Table 2.2: List of indicators for ecological integrity and infrastructure susceptibility 

 

 

2.2.3 Hazard exposure severity 

Among the most common hazards for which GSI has been used as a mitigation strategy 

are air quality, noise pollution, water quality, urban heat island, flooding, drought, wildfires, and 

human health problems (Demuzere et al., 2014; US EPA, 2018). Among all of these hazards, flash 

flooding, river flooding, and urban heat island (UHI) have been the primary hazards driving the 

implementation of GSI and are the focus of this work (Demuzere et al., 2014). 

GSI has been shown to potentially mitigate flooding by reducing the velocity and volume 

of stormwater runoff, thus reducing the peak discharge from small to moderate rainfall events. For 

large storms, GSI has demonstrated mixed performance and thus often is not considered as a 

mitigation strategy (US EPA, 2014; Golden et al., 2017; Jefferson et al., 2017). Nevertheless, the 

reduction of impervious surfaces and the increase in infiltration and evapotranspiration associated 

with implementation of GSI has made flood mitigation one of the primary reasons for its 

implementation (Golden et al., 2017; Jefferson et al., 2017).  

GSI has also been used as a mitigation strategy for the effects of UHI by replacing 

impervious surfaces, increasing infiltration rates, and providing shading (Norton et al., 2015; Park 

System Indicators Cardinallity References

Normalized Difference Vegetation Index (NDVI) -

% of impervious surfaces near streams and wetlands (riparian zones) (i.e., buffers of 10m, 

30m and 100m)
+

% of tree canopy near streams and wetlands (riparian zones) (i.e., buffers of 10m, 30m and 

100m)
-

Barren land +

Continous patches of tree canopy -

Continous patches of impervious surfaces +

% of roads buffers (Urparian zones) (10 m, 30 m, 100 m) +

Impervious surfaces with slope > 3% +

Landscape resistance to ecologic connectivity -/+

NDBI (Normalized Difference Building Index) +

Road crossing streams +

U.S. EPA impaired waters +

Buffer zones around schools, hospital, community centers and nursing homes (i.e., 0.5 mi, 

1 mi and 3mi)
+
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>1990 (lowest vulnerability)) 
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et al., 2017). All of these benefits contribute to reduction in risk of mortality due to extreme heat 

and increase thermal comfort (Tzoulas et al., 2007; Wang et al., 2016; Pincetl et al., 2016; Park et 

al., 2017; Zhang et al., 2017).  

To quantify the level of exposure and/or risk associated with each these hazards, there are 

many methods ranging from deterministic to probabilistic models (e.g., Demuzere et al., 2014; 

Kuller et al., 2017). However, most of these methods require very detailed data and their analytical 

capability on large spatial scales is often limited. A simplification that is often used is to employ a 

proxy measurement (e.g., land surface temperature to represent urban heat island) and/or 

assignment of different categorical values that represent the degree of exposure severity using risk 

thresholds commonly reported in the hazard literature. Given this study’s scale of analysis and 

effort to use commonly available data, a simplified quantification method is implemented to 

represent different levels of hazard exposure severity. The subsections below discuss the steps 

used to construct the categorical severity values (0 – no exposure/risk, 5-maximun exposure/risk) 

for the hazards of flash flooding, river flooding, and urban heat island.  

 

2.2.3.1 River flooding and flash flooding 

The risk associated with exposure to river flooding is measured using the National Flood 

Hazard Layer (NFHL) from Federal Emergency Management Agency (FEMA) maps. NFHL 

FEMA flood maps assign a nominal value to the results of hydrologic modeling. Although 

deterministic and uncertain, these maps have been used extensively in assessing flood risk. The 

assigned categorical severity values used in this study follow general guidelines for assessing flood 

risks (Table 2.3). 

The risk of exposure to flash flooding is measured using the modified version of the Flash 

Flooding Potential Index (FFPI) developed by the National Oceanic and Atmospheric 

Administration (NOAA) and National Weather Service (NWS) (Ceru, 2012; Zogg & Deitsch, 

2013). This FFPI index indicates which areas are more likely to produce large and fast volumes of 

runoff. The index is generated using four empirical formulas that consider infiltration capacity of 

different soils, the land cover, and the topographic slope (Zogg & Deitsch, 2013).  

However, the application of the FFPI in urban environments has been limited and it has 

typically been used to analyze large regions (e.g., counties or states). As such, the metrics do not 

account for differences in exposure risk between communities upstream and downstream of the 
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watershed outlet. Moreover, the metrics do not account for potential exposure to flash flooding in 

communities located near tributaries and small streams. In order to consider these criteria for 

application in urban watersheds, the index is modified in this work to include three additional 

indicators: the topographic wetness index, the height above nearest drainage, and the height above 

the watershed outlet.  

The topographic wetness index (TWI) has been used in previous studies to identify flat 

areas with low infiltration and large drainage areas (Babbar-Sebens et al., 2013; Martin-Mikle et 

al., 2015; CMAP, 2017). The TWI is a steady state wetness index that is a function of the 

topographic slope and the drainage area. As such, areas with a high TWI value are more likely to 

experience high flow accumulation, and therefore a higher likelihood of flooding. The height 

above nearest drainage (HAND) has been used extensively to identify areas likely to experience 

flooding by accounting for the difference in elevation between an area within the watershed and 

the nearest stream (Nobre et al., 2011 & 2015; CMAP, 2017). Similarly, the height above the 

watershed outlet represents the higher likelihood of flash flood in communities near the watershed 

outlet versus those upstream. The inclusion of these two metrics accounts for local (i.e., HAND) 

and regional differences in exposure of downstream versus upstream communities.  

One limitation of these two indicators (i.e., HAND and height above watershed outlet) is 

the need to delineate the watershed and/or have a good representation of the stream network. 

Furthermore, the indicators are a relative measure of potential to flood and thus are defined by the 

spatial extent of the analysis. To address these limitations, height above the outlet is calculated 

using the watershed boundaries delineated by the National Hydrography Dataset (NHD) with a 

hydrologic unit code of HUC12 and the height above nearest drainage is calculated using smaller 

watershed boundaries delineated by the ArcHydro Tool. Lastly, it should be noted that the transfer 

of water between watersheds is not accounted for when considering the height above the outlet. 

This could be considered a limitation as the HUC12 watersheds themselves have a relative risk to 

experience flooding. However, due to the large extent of the HUC12 as compared to the spatial 

extent of city limits, this assumption is considered reasonable.  

Finally, the value of the FFPI is computed by adding the mean of the four equations in the 

NOAA FFPI to the TWI, HAND, and height about watershed outlet indices. The resulting FFPI 

values are then scaled 0-1 and the assignment of categorical severity values is defined as: (0) Very 
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low ([0%- 5%]), (1) Low ([10%-25%]), (2) Moderate ([25%-75%]), (3) High ([75%-90%]) and, 

(4) Very high ([90% - 100%]). 

 

Table 2.3: Severity categories assigned to FEMA flood types. 

Severity class Description FEMA Codes 

Very high 1% annual chance flood A, AE 

High River or stream flood AO 

Moderate Shallow ponding AH 

Low Increase flood risk due to development AR 

Very low (No risk) No Flooding X, B 

 

2.2.3.2 Urban heat island 

  The risk of exposure to extreme heat caused by urban heat island (UHI) is measured using 

mean land surface temperatures (LST) as a representative metric. LST has been extensively used 

in previous studies to represent UHI and its relationship to land cover and urban form, as well as 

risk of exposure to extreme heat experienced by communities with different socio-economic 

profiles (Liu et al., 2011; Connors et al., 2013; Xu & Guo, 2014; Mirzaei, 2015). The mean LST 

temperatures are estimated using Landsat 8 data during the hottest months of the year (May to 

September) for multiple years in each city. The data are converted from radiance measurement of 

the satellite’s infrared and red bands to LST (Liu et al., 2011; Connors et al., 2013; Xu & Guo, 

2014). Additionally, the cloud coverage of any given dataset is limited to less than 5%. Lastly, 

categorical severity values are assigned using the maximum mean annual relative humidity (~ 60 

to 70 %) for a particular city and the categories of extreme heat suggested by NOAA (Figure 2.3).  
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Figure 2.3: NOAA's heat index and exposure severity classes. 

 

2.2.4 Variability analysis of social susceptibility 

The last part of the methodology consists of: (1) assessing the variability of social 

susceptibility to the influence of data uncertainty and the use of different methodological choices 

for its construction, and (2) quantifying the variability in the spatial patterns of hazard vulnerability 

caused by using different spatial scales and handling of unpopulated areas in the SoSI calculation. 

Unpopulated areas are either considered to have very low social susceptibility or are excluded from 

the analyses. 

The SoSI variability analysis uses a Monte Carlo approach for each of the 12 possible 

combinations of methodological choices presented in Table 2.4. The simulations are conducted by 

sampling data for each of the individual indicators associated with the ACS5 data, following 

guidelines for using the Margins of Errors (MOE) published by the 2012 American Community 

Survey (ACS) 5-year summary (refer to U.S. Census Bureau, 2009 for more details). During the 

sampling process, all indicators with negative values are replaced by a zero. A total of 500 

simulations were used since the running average of all Census Block Groups and Census Blocks 

reached convergence at this value. Results of the variability due to methodological choices are 

analyzed by comparing the correlation between the resulting SoSI values. Lastly, the effects of 



32 

 

data uncertainty to the variability in the susceptibility categories are analyzed using the consistency 

of the category throughout all Monte Carlo simulations. 

 

Table 2.4: Methodological choices considered in the SoSI variability analysis. 

 

Data transformation Normalization Aggregation 

Absolute min-maz equal weight sum (sum) 

Population density z-score weighted ranks (wrank) 

  percentiles   

 

In order to explore the impact of SoSI variability on the spatial patterns of vulnerability, a 

univariate and bivariate spatial autocorrelation analysis is performed using the method of Local 

Indicator of Spatial Association (LISA) (Anselin et al., 2006; Lloyd, 2006), with the spatial 

weights defined by queen contiguity (i.e., consideration of all immediately contiguous 

units/neighbors). The univariate analysis investigates the variability in spatial correlation of social 

susceptibility and the location of spatial clusters of highly susceptible communities. The bivariate 

analysis explores the spatial relationship of social susceptibility with the dependent variables of 

infrastructure susceptibility, ecologic integrity, and hazard severity exposure categories for urban 

heat island, river flooding, and flash flooding. The bivariate analysis uses the mean of the SoSI 

obtained from the Monte Carlo simulations for each of the respective spatial units of analysis and 

the average value of the dependent variables, calculated using the raster cells within each of the 

Census Block Groups or Census Blocks.  

Lastly, particular consideration is given to the treatment of unpopulated areas. The LISA 

method uses the difference between the values in a defined neighborhood to their mean in order to 

calculate the spatial correlation. Therefore, the treatment of unpopulated areas as areas with no-

susceptibility (i.e., null value) or very-low susceptibility (i.e., zero) can have significant impacts 

on the mean in these neighborhoods. More specifically, depending on the distribution of the 

dependent variable associated with these non-populated areas, the spatial autocorrelation can skew 

towards more positive or negative correlations, depending on whether these unpopulated areas are 

included or excluded from the analysis. This study shows the implications of using either of these 

two assumptions below. 
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2.3 Case studies and data – 4 cities 

The proposed framework is applied in four US cities to explore the spatial patterns of 

vulnerability: Philadelphia, PA, Chicago, IL, Baltimore, MD, and Dallas, TX. These cities are 

selected to represent humid to semi-arid hydro-climatic regions that are more likely to use green 

features, as well as many of the different hazards for which GSI has been identified as a mitigation 

strategy. Furthermore, each of these cities has different institutional structures, policies and 

regulations that drive the urban form, and socio-economic and socio-ecological profiles, a needed 

diversity to assess the contributions of the study. Figure 2.4 presents the spatial extent considered 

in each of these cities. Note that although the extent used for Baltimore, MD, and Dallas, TX, 

encompasses the city boundaries, the spatial limits used are more representative of the County 

because of data availability and the hydrologic properties of the region. 

The data collected for each of these cities and their respective sources are presented in 

Table B.1 (Appendix B). In order to calculate all hydrologic indicators (e.g., TWI, HAND, etc.) 

the hydrologic data are collected for the entire HUC12 watersheds that contain the city limits. All 

of the collected data are pre-processed to the same spatial reference system (i.e., North American 

Datum [NAD] 1983 with corresponding zones) and a raster resolution of 10 meters. Lastly the data 

used to calculate the SoSI variables are gathered from two sources published by the US Census 

Bureau: Summary File Level 1 (SFL1) data (2010) and the American Community Survey for 5-

years prediction (ACS5) (2012).  
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Figure 2.4: Spatial extent of cities included in the case studies, including Census Block Groups 

(darker lines) and Census Blocks (light gray lines), for: A) Baltimore, MD, B) Chicago, IL, C) 

Dallas, TX and D) Philadelphia, PA. 

 

2.4 Results and discussion 

The results presented in this study include: (1) an analysis of SoSI variability to data 

uncertainty and different methodological choices, and (2) a spatial correlation analysis of the 

observed spatial patterns of vulnerability. 
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Figure 2.5 presents the mean value of the Pearson’s correlation coefficient for SoSI values 

calculated using the methods from Table 2.4. The results show that at the scale of Census Block 

Groups, there is a marked difference in SoSI values using different data transformation methods. 

More specifically, there is a reduction in the mean correlation for methods that use an absolute 

count versus those that use population density. However, this was the only step of the indicator 

construction process that seemed to cause a significant change in the correlations. Except for the 

City of Chicago, all other cities have a SoSI correlation larger than 0.9 regardless of the 

combination of construction steps used after the data transformation. In Chicago, in addition to the 

influence of different data transformation methods, using population density with an ordinal 

normalization causes a reduction in the correlation. 

However, methodological choices seem to have a larger influence on the variability of 

correlations at the Census Block scale. At this scale, the transformation of the data is also the most 

influential methodological step. However, in contrast to the Census Block Groups scale, other 

methodological choices also affect the correlations. The use of different aggregation methods 

appears to cause most of this variability, particularly when population density is used. In contrast, 

the min-max normalization method causes the largest variability in the correlations when absolute 

counts are used. In fact, these aforementioned combinations of methods have a greater correlation 

with all other combinations. In other words, the use of absolute counts and the min-max 

normalization method seem to compromise the correlation of the SoSI with other methodological 

combinations that use the same data transformation, resulting in higher correlations with all 

combinations of methods. 

In Figures 2.6 and 2.7, the effects of data uncertainty for each combination of methods is 

presented. Figure 2.6 presents the percent consistency in susceptibility classes identified in the 

Monte Carlo simulations. Percent consistency is defined as the percent of Monte Carlo simulations 

for which a spatial unit (e.g., Census Block) receives the same susceptibility class. Figure 2.7 

presents the percent of Census Block Groups and Census Blocks that have consistency in their 

susceptibility classes across 80% or 90% of all Monte Carlos simulations. These two figures 

suggest that data uncertainty has a larger effect on the variability of the susceptibility categories at 

the Census Blocks level, particularly when using population densities and the z-score or min-max 

normalization.  
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Additionally, the results suggest that the use of the sum of weighted ranks aggregation 

method or ordinal normalization resulted in a larger number of Census Block and Census Block 

Groups achieving the same consistency threshold, thus suggesting a lower sensitivity to the data 

uncertainty. This higher consistency in susceptibility categories for a larger number of spatial units 

is not surprising as these two methods reduce the relative difference between SoSI values and thus 

reduce changes in susceptibility categories caused by data uncertainty.  

Lastly, it is worth noticing that the City of Chicago resulted in a very small number of 

Census Block Groups and Census Blocks with consistency in their susceptibility categories larger 

than 80% when using population densities and z-score or min-max normalization. Nevertheless, 

in all other cities the results show similar variability in susceptibility classes due to data uncertainty 

regardless of the methods used for the SoSI calculation. 
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Figure 2.5: Correlation matrices of the SoSI values obtained using different methods from Table 2.4. Axis labels show the combination 

of methods used for transformation | normalization | aggregation.
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Figure 2.6: Percent consistency in social susceptibility category when considering all Monte Carlo 

simulations. Each line represents a different combination of methods. 
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Figure 2.7: Percent of Census Block Groups and Census Blocks with consistency in susceptibility 

categories larger than 80% (white markers) and 90% (black markers). 

 

The results presented in this section suggest that the most critical step in the construction 

of the SoSI is the data transformation, regardless of the spatial unit. These results are consistent 

with other studies and are not surprising given that conceptually the use of absolute counts versus 

relative ratios have different meanings. Furthermore, given that 47% (16 of the 34) of the indicators 

used to construct the SoSI are not available at the Census Block scale, the observed dominance of 

the data transformation method on SoSI variability may be due to the influence of data 

transformation methods at larger spatial scales. The observed increase in SoSI correlation at the 

Census Block scale for some combinations of methods seems to support this hypothesis, 

suggesting that at these smaller scales, choices in construction steps become less important to the 

variability of the results. However, in order to test this hypothesis, the indicators used for the 

analysis would need to be collected at all spatial scales. Finally, the results suggest that the use of 

ordinal normalization could increase consistency of the SoSI categories when data uncertainty is 

considered, while reducing the impact in SoSI variability due to other methodological choices. 
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2.4.1 Variability in the spatial patterns of vulnerability 

Figures 2.8 and 2.9 present the distribution of the resulting spatial correlations obtained 

using different data transformation methods in the SoSI calculation (i.e., absolute count or 

population density) and each treatment of unpopulated areas (i.e., A-excluded from the analysis, 

B-considered to have SoSI equal to zero). There are three main observations that can be made from 

these results. First, in using Census Block Groups to compute the SoSI, different data 

transformation methods had a significant impact on the spatial correlation of social susceptibly. In 

particular, when population density is used, the correlation increases to larger positive values. 

These results suggest that the use of area as a normalizing variable reduces the spatial variability 

of the computed SoSI. On the other hand, the variability in spatial correlation due to the use of 

different data transformation methods is lower at the Census Block scale. Only for the case when 

population density is used, and unpopulated areas included in the analysis, are large variabilities 

observed in the spatial correlation. However, upon further investigation, the z-score or min-max 

normalization, regardless of the aggregation technique, had high positive correlation values (close 

to 0.8), which caused the observed large variability. Lastly, Census Blocks have more consistent 

values of spatial correlation regardless of how the unpopulated areas are treated.  

Second, in order to further investigate the variability in the SoSI spatial correlation, the 

spatial clusters identified by the LISA method are analyzed. These spatial clusters of 

autocorrelation are obtained from the scenario in which unpopulated areas are excluded from the 

analysis and only clusters with statistical significance (p ≤ 0.01) are considered. Figures 2.10-A 

and 2.10-B presents a series of maps of spatial autocorrelations for the different data 

transformation techniques at both the Census Block Groups and the Census Blocks spatial scales. 

For the purpose of simplifying the illustrations, only the cities of Dallas, TX (Figure 2.10-A), and 

Chicago, IL (Figure 2.10-B), are presented, but all maps are available in Appendix B (Figure B.1). 

Using these maps, the influence of the choice in data transformation method at the Census Block 

Groups can be seen more clearly. In Chicago, IL, some of the large clusters of high and low social 

susceptibility are somewhat consistent between data transformation methods at the Census Block 

Groups scale. However, in Dallas, TX, the opposite behavior is observed, with no good spatial 

correlation between clusters of high or low social susceptibility. A possible explanation for this 

behavior is the relative difference in the extent of Census Block Groups in Dallas versus in 

Chicago. By visual inspection, the Census Block Groups in Chicago seem to be more consistent 
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in size when compared to the Census Block Groups in Dallas. Thus, when transforming the data 

to population densities, variability in the area of the Census Block Groups in Dallas creates a 

completely different relationship between the indicators used to construct the SoSI. At the Census 

Blocks scale, this relative difference between the areas is reduced and thus a better spatial match 

of the cluster is observed. This is particularly true for Chicago, in which the spatial clusters 

identified using both data transformation methods are very similar. In Dallas, while there is still 

some significant differences in the spatial patterns of the clusters, a much better match is observed 

for clusters of high social susceptibility. 

Finally, the third observation relates to the general trends in the patterns of how social 

susceptibility spatially relates to hazard exposure and susceptibility of the ecological and 

infrastructure systems. Figure 2.8 shows that in all cities, when unpopulated areas are excluded 

from the analysis, social susceptibility is positively spatially correlated with areas of lower 

ecological integrity and higher infrastructure susceptibility. These results are consistent with 

previous studies that have concluded that communities with lower socio-economic status are often 

spatially close to areas of higher imperviousness and urban green spaces of low quality, and have 

limited accessibility to parks and other open spaces (Nicholls, 2001; Pham et al., 2012; Heckert, 

2013; Hoffimann et al., 2017). Furthermore, the use of population density at the Census Block 

Groups scale results in a large positive correlation between social susceptibility and both ecologic 

and infrastructure susceptibility. The large discrepancy of this result with the spatial correlations 

obtained in all other scenarios suggests that the large positive spatial autocorrelation of social 

susceptibility is biasing these results towards larger correlation values. Lastly, it should be noted 

that at the Census Block scale, the choice of data transformation method has a lower impact on the 

variability of the correlation values. The largest influence comes from the consideration or 

exclusion of unpopulated areas. 

With regards to the spatial relationship with hazards exposure, socially susceptible 

communities are more likely to be located in areas prone to flash flooding and at higher risk of 

exposure to extreme heat (Figure 2.9). More specifically, the results presented in Figure 2.9 

illustrate that when using absolute counts, there is a “weak” but positive correlation between these 

factors. This suggests that areas with a larger number of susceptible people, as opposed to a higher 

density of susceptible people when population density is used, are more likely to be exposed to 

higher degrees of hazard severity.  
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Finally, it is worth noticing that there are some exceptions to these patterns and that the 

consideration of unpopulated areas can have significant impacts in diagnosing these 

vulnerabilities. For example, the City of Chicago shows no spatial correlation between social 

susceptibility and urban heat island when unpopulated Census Blocks are eliminated from the 

analysis. However, when these unpopulated Census Blocks are assigned a social susceptibility 

category, an increase to a positive spatial autocorrelation is observed. This discrepancy is caused 

by two problems when using the LISA method: (1) the elimination of neighbors that have a high 

hazard severity category around areas of high social susceptibility when unpopulated areas are 

excluded from the analysis and (2) the assignment of a value of zero to the social susceptibility of 

these unpopulated areas when these are considered in the calculation of spatial correlation.  

In Chicago, this discrepancy occurs because some of the unpopulated areas have higher 

severity classes for urban heat island. In fact, when unpopulated areas are excluded from the 

analysis, the univariate spatial autocorrelation of urban heat island in Chicago is 0.8. However, 

when these unpopulated areas are considered, the spatial autocorrelation increases to 0.88. By 

eliminating unpopulated areas from the spatial correlation analysis, adjacent Census Blocks are 

assumed not to be exposed to these higher hazard severity categories and thus report a lower 

correlation. A similar phenomenon is observed for the City of Dallas. When unpopulated Census 

Blocks are eliminated from the analysis, the social susceptibility seems to dominate the spatial 

correlation due to the large numbers of highly susceptible areas with a high number of neighbors 

that were eliminated. However, when these unpopulated areas are considered in the analysis not 

only the variability of the spatial correlation is reduced, and the difference between using absolute 

counts versus population density is negligible, but there is a slight increase in the correlation that 

suggest a “weak” but positive correlation. 

Regardless of the treatment of unpopulated areas, using the proposed quantification method 

at the Census Block scale is more consistent in identifying spatial clusters of high social 

susceptibility and high hazard severity. In fact, even when the spatial autocorrelations are 

significantly different, the High-High areas remain somewhat invariable. For example, Figure 2.11 

presents the Census Block Groups and Census Blocks identified by the bi-variate LISA analysis 

as clusters of high social susceptibility and high exposure severity to flash flooding and urban heat 

island (i.e., High-High clusters) in the City of Philadelphia, PA. Figure 2.11 shows the percent of 

all methods that identified the same High-High areas (i.e., percent of agreement). 
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As seen in Figure 2.9, the treatment of unpopulated areas has significant impacts on the 

spatial autocorrelation. However, areas identified as High-High in Figure 2.11 remain somewhat 

unchanged. Furthermore, while the use of both spatial units identify similar High-High areas for 

both hazards, at the Census Blocks scale a larger portion of the area has a higher percentage 

agreement. Moreover, the use of Census Blocks allows identification of additional High-High 

areas that are obscured when using the larger spatial scale of Census Block Groups. 

Figure 2.12 offers a summary of these findings in all cities by presenting a matrix of percent 

agreement between methods in identifying High-High areas. More specifically, the row value in a 

column represents the percentage of High-High areas (i.e., Census Block Groups or Census 

Blocks) identified by the column method that were also identified by the row method. The results 

show that the influence of different methodological choices becomes less significant when using 

Census Blocks as the spatial unit of analysis, providing smaller variability in identifying High-

High areas. For Census Block Groups, the High-High areas identified by methods using absolute 

counts were also identified as High-High areas by methods using population density. The opposite, 

however, is not shown to be true. 

All of these results indicate robustness of the proposed method to inform decision making, 

since regardless of the assumptions made during the construction of the SoSI and the treatment of 

unpopulated areas, the areas in most need of receiving GSI benefits can be identified. 
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Figure 2.8: Variability in the spatial autocorrelation of social susceptibility and its spatial 

relationship to ecologic integrity (EcoS) and infrastructure susceptibility (InfraS). 
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Figure 2.9: Variability in the spatial autocorrelation of social susceptibility and its spatial 

relationship to the exposure severity of urban heat island (UHI), flooding (FEMA) and flash 

flooding (FFPI). 
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Figure 2.10-A: Spatial cluster of autocorrelation as identified by LISA for Dallas, TX. The four 

scenarios presented include: A-absolute counts/Census Block Groups, B-population 

density/Census Block Groups, C-absolute counts/Census Blocks, and D-population density/ 

Census Blocks. 
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Figure 2.10-B: Spatial cluster of autocorrelation identified by LISA method for Chicago, IL, using: 

A-absolute counts/Census Block Groups, B-population density/Census Block Groups, C-absolute 

counts/Census Blocks, and D-population density/ Census Blocks. 
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Figure 2.11. Spatial clusters of high social susceptibility and high potential exposure to flash 

flooding (FFPI) (A & B) and urban heat island (C & D) in Philadelphia, PA. Gray scale represents 

the percentage of social susceptibility methods that identified the same Census Block Groups (A 

& C) or Census Blocks (B & D) as High-High clusters in the bi-variate analysis when excluding 

unpopulated areas from the analyses. 
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Figure 2.12. Percent of agreement between methods in identifying High-High areas. The row value in a column represents the percentage 

of High-High areas (i.e., Census Block Groups or Census Blocks) identified by the column method that were also identified by the row 

method. 
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2.5 Conclusions and limitations 

To fully integrate the concept of vulnerability in the planning and design of GSI, a more 

systematic and flexible approach is needed that defines what constitutes vulnerability (what 

parameters should be measured), the appropriate scale at which it should be quantified (spatial unit 

at which the benefits will be received), and how these different metrics should be 

interpreted/aggregated to represent relative vulnerability). This study addresses this problem with 

a new framework for quantifying vulnerability at a spatial scale that is useful for planning GSI.  

While prior methods have proposed quantification of vulnerability at the Census Track and 

Census Block Groups, this study shows that the spatial patterns of vulnerability observed at these 

scales can be largely influenced by the data transformation method selected. By using the proposed 

approach to quantify social susceptibility at the Census Blocks scale, the influence of 

methodological choices on the spatial patterns of vulnerability is reduced. Additionally, the results 

suggest that computing social susceptibility at the Census Block Groups scale eliminates small 

clusters of highly susceptible communities that are exposed to high hazards severity, an important 

feature for decision making. 

Furthermore, this study concludes that the data transformation step is the most critical in 

contributing to the variability of social susceptibility. Ordinal normalization allows for a reduction 

in variability due to data uncertainty and produces similar spatial patterns of vulnerability, 

regardless of the data transformation used. As such, an absolute count data transformation with an 

ordinal normalization appears to be the most appropriate method for calculating social 

susceptibility in the context of spatial GSI planning. The use of absolute counts produces lower 

variability in identifying spatial clusters of high vulnerability.  

Previous studies have noted that using absolute counts has often given the SoSI a positive 

correlation with higher population areas (Jones & Andrey, 2007; Tate, 2013). As such, it has been 

suggested that this method should be used only when: (1) the difference in population between 

spatial units is low, in order to avoid skewing the SoSI values by population size, and/or (2) when 

the objective for using SoSI is to identify the total number of vulnerable people (e.g., use in 

evacuation planning). As with any other infrastructure investment, the implementation of GSI 

should maximize the population that will be positively affected while reducing costs. Thus, using 

an absolute count may be beneficial in identifying areas where there are large numbers of 

vulnerable people for whom small investments in GSI could have a large impact.  
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Finally, this study uses the traditional risk-hazard analytical framework in which the 

relationship between the natural phenomenon that constitutes a threat and the impact that the threat 

could have on each of the systems is addressed. While it is the most widely used approach in the 

hazard literature, the approach is limited by not accounting for the multiple interactions that exist 

between ecological and social systems. Additionally, it does not consider threats that are processes 

rather than events (e.g., climate change, land use change). Finally, the approach does not consider 

the relationship between the magnitude of the stressor and the sensitivity of the social, ecological, 

and infrastructure systems, which would determine the potential risk and coping capacity of each 

system. More accurate and complete data are needed to better understand the validity of the 

indicators used to represent these processes and for the proposal of method that could allow to 

quantify them. 
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CHAPTER 3. SPATIAL PATTERNS OF VULNERABILITY AND GREEN 

STORMWATER INFRASTRUCTURE: ARE WE MAXIMIZING BENEFITS? 

 

3.1 Motivation & related work 

Building upon the work presented in the previous chapter, this study addresses the question 

of how current and planned GSI implementation relate spatially to the areas of highest 

vulnerability. As the greening of cities continues to become a popular way to mitigate the impacts 

of climate change, the creation and preservation of urban green spaces have become an 

environmental justice concern. There has been longstanding interest and work devoted to 

understanding and quantifying the spatial relationship between urban green spaces and the socio-

economic conditions of urban populations (Pham et al., 2012; Nicholls, 2001; Sister et al., 2009; 

Heckert, 2013; Wen et al., 2013). These studies have usually defined green infrastructure as a 

broad range of multifunctional green spaces that provide ecological, social and economic benefits 

(e.g., parks, green open spaces, urban forests, green-way trails, etc.).  

Spatial relationships between green infrastructure and different sociodemographic groups 

have often been explored from a perspective of “access” to green spaces (where access is defined 

as the spatial density of green spaces in each of the administrative boundaries (e.g., Census Tracts), 

the use of distance buffers around these green spaces, or the travel time and/or road distance to the 

nearest green space) (Landry et al., 2009; Pearsall et al., 2012; Pham et al., 2012; Kabisch et al., 

2014; La Rosa et al., 2014; Wolch et al., 2014; Schwarz et al., 2015; Ambrey et al., 2017; Ekkel 

et al., 2017). More recent studies have done similar analyses using a more narrowed definition of 

GSI that only includes engineered systems specifically designed and/or installed for on-site 

treatment and infiltration of stormwater runoff (e.g., green roofs, rain gardens, bioswales, etc.). 

For example, Chan et al. (2017) investigated the spatial relationship (i.e., co-location) between 

street tree and green roof density in Portland, OR, and the sociodemographic factors of different 

Census Block Groups. The study found that Census Block Groups with a higher percentage of 

minorities, people of lower median age and income, and people with a lower level of education 

had, in general, a higher green street density. Census Block Groups with a lower median age and 

median income also had a higher density of green roofs. 

Given GSI’s utility as a climate change mitigation strategy, the focus of more recent studies 

is on the relationship between urban green spaces and vulnerability of socio-ecologic systems. 
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These studies have explored the spatial relationships between social susceptibility to flooding or 

urban heat hazards and the spatial co-location of urban green spaces (e.g., Fekete, 2009; Cheng, 

2013; Johnson et al., 2012; Yoon, 2012). The objective of the studies has been to either: (1) 

demonstrate how the concepts of vulnerability can be used to identify communities in need of 

mitigation strategies (i.e., vulnerable communities with a lack of green spaces), or (2) to identify 

what characterizes the most vulnerable communities within the study area (e.g., lower income, 

lower education levels, higher median age, etc.) and how these are related to the location of green 

spaces (Huang et al., 2011; Bradford et al., 2015; Cheng, 2016). These studies have found that 

vulnerable socio-economic groups tend to be in areas with more imperviousness and “low quality” 

green spaces (e.g., small parks with only grass). Additionally, these studies have concluded that 

vulnerable socio-economic groups tend to have a higher risk of exposure to severe floods and heat 

waves.  

These prior studies have only considered urban green spaces rather than engineered GSIs, 

and have disregarded their multifunctionality as a mitigation strategy for multiple hazards. The 

distinction between urban green spaces and engineered GSIs is particularly important because the 

benefits of engineered GSIs are often more localized than those from larger urban green spaces 

(e.g., parks), their cost of installation and operation/maintenance is often not shared by everyone, 

and their main functionality is the management of stormwater. Furthermore, these studies have 

analyzed GSI in terms of their spatial density or co-location, but GSI benefits are not confined to 

an administrative boundary and should be analyzed considering the entire spatial extent to which 

GSI benefits are received. This is a particularly critical distinction when assessing stormwater 

management benefits, as hydrologic processes and land surface temperatures can vary drastically 

within large administrative boundaries (e.g., Census Tracts).  

To begin addressing these limitations, recent studies have begun to explore the challenges 

of considering more localized GSI and their spatial relationship with social vulnerability. For 

example, Heckert & Rosan (2016) proposed an “Equity Index” for the identification of areas in 

need of GSI installations. Using Philadelphia, PA, as a case study, the index was used to identify 

Census Block Groups that are in need of GSI installation based on their socio-economic profiles 

and the spatial density of playgrounds and vacant lots. Meerow et al. (2016a) proposed a three-

phase process for resilience planning in which the “five Ws” (i.e., for whom, what to what, where, 

when, and why) could be negotiated collectively in order to achieve greater consensus among 
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stakeholders, considering the significant implications that resilience planning decision could have 

on equity. The study showed that the large spatial variability in prioritization of different areas for 

GSI development is a consequence of using different spatial scales of analysis and different 

planning criteria. The authors acknowledge the heterogeneity that exists within Census Tracts and 

the limitations of using administrative boundaries for the planning of green spaces, which could 

hinder the correct identification of green space beneficiaries. 

A more recent study by Meerow et al. (2017) began to address some of these limitations 

by focusing on more specific engineered/planned GSIs and their multiple benefits. Using Pearson 

correlation as the metric of evaluation, the study revealed the synergies (positive correlation) 

among places with high priority for improvements in urban heat island, stormwater management, 

and air quality, and also highlighted the tradeoffs (a negative correlation) between these places and 

those with a high need for habitat connectivity. Additionally, the study revealed that while current 

and planned GSI projects in Detroit have been located in places with high “park poverty”, they 

have not been sited in Census Tracts with high priority for social vulnerability, urban heat island, 

stormwater abatement, habitat connectivity, and air quality (i.e., all of these metrics had a negative 

correlation), even when accounting for stakeholder preferences. 

To date, the inclusion of socio-ecologic vulnerability and its relationship to the location of 

engineered GSI has been limited. The few previous studies that have investigated this relationship 

have used a spatial scale of analysis that is too large to account for the true beneficiaries of the GSI 

or to identify which communities are most in need of GSI. By using a spatial analysis comparable 

to Census Tracts (very few at Census Block Groups scale) the assumption has been that everyone 

within these administrative boundaries is equally benefiting from the co-location of GSI in these 

areas. However, the socio-economic profiles and exposure to different hazard severities within 

these large administrative boundaries can be highly heterogeneous. 

Furthermore, in previous studies, no differentiation has been made between the benefits 

associated with different types of GSI. Instead, it has been assumed that all GSI, regardless of size 

or type, could provide the same level of service. This is mostly because previous studies have 

concentrated on the broader definition of urban green open spaces. This definition might be 

appropriate for exploring social and environmental justice issues related to accessibility within 

larger administrative boundaries (e.g., Census Tract), but for engineered stormwater management 

practices, a closer examination of potential benefits is needed (e.g., permeable pavements have a 
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negligible impact on providing habitat restoration and human health benefits). Moreover, because 

the primary goal of engineered GSI is abatement of stormwater runoff, their benefits need to be 

quantified considering the hydrologic connectivity of the landscape. Lastly, the conclusions of 

previous studies could have been biased by the modifiable areal unit problem (MAUP) (Openshaw 

et al., 1979; Lloyd, 2006; Wong, 2009): As the area used for spatial aggregation increases, the 

correlation between the variables tends to increase as well (i.e., this is particularly true for socio-

economic variables). 

 

3.1.1 Contributions 

 To our knowledge, no other studies have explored the relationship between socio-

ecologically vulnerable communities and the location of GSI at a spatial scale closer to their 

benefits (i.e., 10 meter raster). Furthermore, no other study has examined these relationships for 

GSI specifically engineered for stormwater management. As such, the main contribution of this 

study is to develop an analytical approach that uses the concepts of “service-needing and service-

benefiting areas” to spatially relate the potential benefits offered by engineered GSI and the 

vulnerability of different communities. The approach integrates the vulnerability framework 

presented in Chapter 2 with a multiple flow direction algorithm to better understand where the 

beneficiaries of GSI are located, as well as the communities in most need of GSI. Lastly, this study 

investigates the spatial synergies and tradeoffs associated with GSI benefits, particularly impacts 

on immediate surroundings versus downstream areas, for identifying areas of high priority for GSI 

implementation. 

The hypothesis to be tested in this study is that GSI installations have not been sited in 

areas that would maximize their multifunctionality to communities that need the benefits of GSI 

the most (i.e., the most vulnerable communities). Additionally, it is expected that the use of a 

smaller spatial unit of analysis, a fuller concept of vulnerability that includes engineered and 

ecological systems, and the consideration of hydrologic connectivity will provide new insights on 

social and environmental justice issues. 

 

3.2 Methodology 

In order to investigate the spatial relationship between vulnerability and the benefits 

provided by GSIs, this study adopts the concept of service areas for the assessment of ecosystem 
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services. This concept was introduced by Fisher et al. in 2009, used by Syrbe & Walz in 2012, and 

highlighted recently by Hansen & Pauleit (2014) and Kuller et al. (2017). In this conceptual 

framework, the spatial aspects of ecosystem services are analyzed by dividing and categorizing 

the landscape into service–providing, -connecting and –benefiting areas. Service-providing areas 

(SPAs) are defined as those with the potential to offer one or multiple ecosystem services. These 

ecosystem services are then provided to service-benefiting areas (SBAs) by service-connecting 

areas (SCAs). Finally, SPAs and SBAs can have one of four possible spatial relationships: in-situ, 

omnidirectional, directional – slope dependent (i.e., downslope), and directional without strong 

slope dependence. 

In order to apply this concept to the planning of GSI, SPAs are defined as areas where GSIs 

are installed and SBAs are defined as areas receiving the potential benefits offered by these GSI 

projects. In addition, this study introduces the concept of service-needing areas (SNAs) to define 

those areas with the highest need to receive a particular GSI benefit (i.e., those most vulnerable). 

Unlike previous studies that have often defined SNAs as areas with low spatial density of green 

spaces or trees and larger disadvantaged populations, in this study SNAs are defined as the areas 

with higher vulnerability of social, ecological, and infrastructure systems. As such, SNAs are 

highly dependent on the susceptibility of the systems to the exposure severity of different hazards 

and therefore will vary spatially depending on the hazard and system considered (i.e., less confined 

to administrative boundaries). 

Using this conceptual framework, the methodology consists of three primary components: 

(1) quantification of the vulnerability of socio-ecologic systems using susceptibility and hazard 

exposure severity indicators, (2) definition and identification of service-needing areas, and (3) 

definition and identification of GSI’s service-benefiting areas. The quantification of vulnerability 

is completed using the susceptibility and hazard exposure severity indicators discussed in Chapter 

2 and will not be repeated in this chapter. However, the sub-sections below extend Chapter 2 by 

addressing how susceptibility and hazard exposure indices are combined to reflect different levels 

of vulnerability in order to define and identify SNAs. Finally, the last step of the methodology 

differentiates between the benefits of GSI that are perceived locally from spatial proximity and 

those that must consider the hydrologic connectivity of the topography. 
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3.2.1 Susceptibility and hazard exposure indicators 

The susceptibility and hazard severity exposure indicators used in this study follow the 

methods and indicators presented in Chapter 2. Based on the findings of Chapter 2, the SoSI 

analysis uses an absolute count for each of the indicators and nominal normalization of the data 

(specifically weighted sum of ranks), which resulted in the least variability due to data uncertainty 

and spatial unit of analysis. Lastly, the SoSI is calculated at both the Census Block Groups and 

Census Block level in order to investigate the impact of different spatial scales on the observed 

patterns of vulnerability and GSI projects. 

 

3.2.2 Definition and identification of service-needing areas  

As previously mentioned, SNAs are defined by the location of vulnerable communities. 

Although many have argued that vulnerability is an intrinsic characteristic of a system, most 

analysts acknowledge that the vulnerability of a system only becomes relevant under the potential 

risk of a hazard (Cutter et al., 2003; Cutter & Finch, 2008; Damm, 2010; Kappes et al., 2012). 

Therefore, the quantification of vulnerability should consider both the likelihood of exposure to a 

particular hazard and the potential effects of the hazard on each of the social, ecological and 

infrastructure systems (e.g., flooding events affect all three systems, while extreme heat events 

only affect social and ecological systems). In this study, SNAs are thus identified by using the 

spatial co-location of different levels (i.e., nominal categories) of susceptibility and hazard 

exposure.  

This approach recognizes that not all hazards affect urban systems equally, thus exposure 

severity categories of a hazard are only associated with susceptibility of relevant sub-systems. 

More specifically, SNAs are defined using the various combinations of susceptibility and exposure 

severity to urban heat island and flooding. For example, one vulnerability level to urban heat island 

might be described by a high social susceptibility and a very high exposure severity to extreme 

heat. By using the severity associated with each of these two dimensions of vulnerability, the 

decision as to which combination of susceptibility categories and degrees of hazard exposure 

merits attention is left to the index user. Lastly, as discussed in Chapter 2, no assumptions are made 

about the impact of hazards on the ecological system and therefore ecological susceptibility is not 

associated with a hazard.  
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This definition of SNAs avoids assumptions about how the two dimensions of vulnerability 

should be aggregated into a single metric, a common method used in previous studies. In the hazard 

literature, most studies have used summation or multiplication methods to relate these two metrics, 

resulting in an index of relative vulnerability. While easy to interpret and implement, the use of 

these aggregation methods assumes a particular type of relationship between the degree of 

vulnerability changes and a unit change in either the hazard exposure severity or the susceptibility 

of the system. Summation methods assume a linear relationship, while multiplication methods 

assume more complicated relationships that could reduce compensability problems (i.e., low 

values in one indicator can mask high values in another).  

Proposed approaches have often also combined the vulnerability to multiple hazards by 

adding up the resulting values of vulnerability, and therefore have assumed that the degree of 

vulnerabilities to different hazards is the same. Both of these assumptions are problematic, 

especially when the degree of vulnerability is being used to guide decision making. To date, there 

is no consensus as to which of these approaches should be used and very little evidence to support 

either assumption. The use of either of these aggregation methods introduces an additional level 

of uncertainty. Furthermore, preliminary analyses in this study showed that the assumed 

relationships between susceptibility and hazard exposure can have significant impacts on the 

spatial patterns of relative vulnerability.  

 

3.2.3 Definition of service-providing and service-benefiting areas  

In a recent review by Demuzere et al., 2014 the author emphasizes the need for a framework 

that accounts for the multi-scale and multi-functional nature of GSI as a climate mitigation 

strategy. The study suggests that the benefits of GSI associated with stormwater management (i.e., 

flood mitigation and improvements to water quality), human and restorative capacities, and CO2 

reductions can be perceived and reasonably quantified at three spatial scales (site-scale/ city-block, 

neighborhood/district, and city region). However, the literature review also highlighted the lack of 

supporting evidence to suggest that GSI benefits associated with other air quality improvements 

(e.g., NO2, PM10), thermal comfort, reduction in energy use, and other ecologic services are well 

understood and quantified at scales larger than the site-scale/city-block (e.g., Ekkel et al., 2017; 

Park et al., 2017). 
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The lack of consensus and empirical evidence to support the quantification of non-

stormwater GSI benefits at scales larger than site-scale/city-block suggest the need for different 

quantification methods in their assessment. As such, this study relates the GSI benefits to 

vulnerable areas by differentiating between the stormwater management benefits (i.e., hydrologic 

benefits) and the GSI benefits that are provided to the immediate surroundings (i.e., localized). 

This differentiation is done by using two spatial relationships: the hydrologic connectivity of the 

topography and an omnidirectional spatial relationship. 

 

3.2.3.1 Localized benefits 

In this study, the localized benefits of GSI are defined as those that require the beneficiaries 

to be in spatial proximity (i.e., Euclidian distance of ≤ 1 mile) in order to receive benefits. Among 

the most common and well-recognized localized benefits associated with GSI are thermal comfort, 

reduced energy use, human health, provision of micro-habitats, and improvements in air quality 

(mostly CO2 sequestration) (Pakzad et al., 2017).  

The individual cooling capacity of site-specific GSI has been reported to be dependent on 

its type and structure and has often been limited to its immediate surroundings. This cooling 

capacity is most often associated with changes to the surface albedo from replacing impervious 

surfaces and providing shade with trees. Trees, for example, can have a radius of influence between 

3-12 m (Akbari et al., 1992; Troxel et al., 2013) which is most often associated with the height and 

width of the tree crowns (i.e., shading potential and evapotranspiration) (Wang, 2016; Park et al., 

2017). Gardens have shown to be capable of having a surface temperature of 4 °C lower than the 

immediate surrounding surfaces (Cameron et al., 2012). Green roofs have been observed to reduce 

daytime roof temperatures by as much as 3 °C (Sharma et al., 2016). However, more recent studies 

have demonstrated that the cooling capacity of larger, more centralized green spaces (e.g., parks) 

can have larger regions of influence. For example, Vaz Monteiro et al. (2016) concluded that green 

spaces between 3-5 hectares (ha) could have cooling benefits that extend a distance of 70-120 

meters. Lin et al. (2015) found that 2 km2 parks could affect the temperature of surrounding areas 

up to a distance of ~250 meters. 

Similar to the urban heat island mitigation potential, the potential of GSI to improve 

ecologic connectivity and habitat integrity at the site-scale is often limited. Studies often report an 

increase in biota (i.e., insects, birds and small reptiles) near or within GSI (Cameron et al., 2012). 
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However, when analyzed at the larger scale, connected GSI can help reduce the landscape 

resistance to movement of different species, thus improving ecologic connectivity. GSI has also 

been shown to provide mental health benefits (i.e., stress, depression, anxiety), improve cognitive 

abilities, encourage physical activity and serve as an educational tool (Morris, 2003; Chang & 

Chen, 2005; Maas et al., 2006; Tzoulas et al., 2007; Lee & Maheswaran, 2011; Thompson et al., 

2012). For people to receive these health benefits, the quality of the green spaces (e.g., degree of 

visual stimulation) and access and proximity to the GSI (e.g., positive interactions with nature) are 

arguably among the most critical factors (Lee & Maheswaran, 2011; James et al., 2015). Studies 

have also found that urban green spaces that are poorly maintained and in disrepair are less likely 

to be visited due to a perceived lack of safety.  

In order to account for differences in spatial extent of each of these benefits and avoid 

assumptions about appropriate distance thresholds, this study adopts the concept of spatial 

proximity. The approach follows Tobler's first law of geography (Tobler, 1970; Lloyd, 2006), 

which assumes that those in closer proximity to the GSI will have a higher likelihood of perceiving 

its benefits. Additionally, no assumptions are made about how the presence of GSI affects the 

degree of vulnerability in surrounding areas. Therefore, the analysis solely computes the 

distribution of vulnerability around the GSIs.  

Under these assumptions and generalizations, spatial proximity is measured using 

Euclidean-ring buffers (Figure 3.1) around each of the GSI projects up to a distance of 1800 meters 

(a maximum distance threshold used in previous studies addressing issues of accessibility to urban 

green spaces) (Wendel et al., 2011; Heckert, 2013). Ring buffers define the area of analysis by 

taking the difference between an inner and outer circular buffer of different diameters. As such, 

ring buffers are selected over circular buffers because they allow exploration of how the 

distribution of vulnerability changes as the distance from the GSI increases. While the use of 

circular buffers would also allow exploration of the change in vulnerability as the distance from 

the GSI increases, it would only provide the cumulative vulnerability of the areas surrounding the 

GSI. The use of ring buffers allows more explicit observation of how areas at different distances 

from the GSI contribute to total cumulative vulnerability (i.e., the difference between the 

cumulative vulnerability at two different distances when using circular buffers). 
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Figure 3.1. Illustration of Euclidean ring buffers used to assess the change in vulnerability as a 

function of the distance from the GSI. Ring buffers are incremented using distance steps of 100 

meters. The minimum and maximum buffer diameters are 90 meters and 1800 meters, respectively.  

 

3.2.3.2 Stormwater management benefits 

The main goal for the implementation of engineered GSI has been improved management 

of stormwater runoff. These benefits have often been quantified by a reduction in peak discharge 

at the watershed outlet and/or in the total volume of surface water runoff, especially from 

impervious surfaces. In order to estimate the impact of GSI on these two criteria, a hydrologic 

model is needed to consider complex rainfall-runoff processes in urban watersheds (e.g., 

infiltration, water routing, performance of hydraulic structures such as storm sewer systems, 

surface and subsurface water interactions, etc.). A large array of urban hydrology models are 

available to model these processes (see reviews by Jefferson et al., 2017 and Kuller et al., 2017). 

However, the models usually require very detailed data about the properties of the watershed and 

the stormwater management infrastructure (e.g., drainage and sewer system, location of pervious 

and impervious surfaces, soil properties, etc.) that may not be readily available. Furthermore, 

calibration data are needed in the form of discharge values at a gauging station near the outlet or 

downstream of the watershed, which are not available in many watersheds.  
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In lieu of these very detailed models, at larger scales (i.e., city, regional) approximate 

hydrological analysis of a watershed is often completed using digital elevation models (DEMs), 

which can identify watershed boundaries, sub-catchments, channel and stream networks, stream 

lengths, and many other parameters (for reference, see Maidment, 2002, and Dixon & Uddameri, 

2016). To conduct these analyses, two of the most important watershed characteristics are flow 

direction and flow accumulation. Broadly defined, these two parameters describe how the total 

amount of surface water flows across the terrain, assuming each terrain cell receives a rain drop. 

As such, these parameters have been the foundation for flooding analyses, assessment of 

geomorphological processes, and modeling of overland flows (e.g., Maidment, 2002; Khaleghi et 

al., 2011; Dixon & Uddameri, 2016; Zhang et al., 2017).  

Acknowledging the complexities that dominate hydrological processes in urban 

watersheds, and because of its common use in large-scale hydrological analysis, this study uses 

the metric of flow accumulation to represent the hydrological connectivity of the landscape (i.e., 

potential water flow that exists between different areas of the watershed). The use of flow 

accumulation accounts for potential flow paths that the stormwater runoff retained at GSIs could 

have followed and thus aids in identifying areas downslope of the GSI project to which a large 

portion of this retained volume of water would have drained. These areas are then assumed to be 

the beneficiaries of the GSI stormwater management benefits.  

However, not all cells downslope of GSI projects have an equal likelihood of receiving 

these benefits. To account for these differences, this study makes use of the multiple flow direction 

method (MFD) proposed by Freeman (1991) & Quinn et al. (1991), called FD8, to calculate flow 

accumulation. The FD8 method allocates the outflow of a terrain grid cell to its neighboring 

downslope grid cells using the slope between cells to proportionally distribute the flow. Using the 

FD8 method, it is assumed that each individual GSI grid cell has the potential to reduce flow 

accumulation of its downslope cells by 1 unit of runoff/grid cell area (i.e., maximum runoff 

potential of a grid cell). Because no rainfall is assumed and the resolution of the grid cell is 

constant, the estimation of how much of this 1 unit of runoff/grid cell area is received by downslope 

cells (i.e., potential reduction to flow accumulation because of the GSI) is dependent on the terrain 

topography and the allocation of flow calculated using the FD8 method. 

The advantage of using a multiple flow direction method is that it provides a more 

conservative estimate of the downslope and upstream areas by not constraining the potential water 
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flow to a single flow path downslope, as in the steepest descent method [D8]. A conservative 

estimate is appropriate given the uncertainties in the DEM, the exact geo-location of the GSI, and 

errors/uncertainty in the land cover data. Furthermore, it allows conclusions that are statistically 

significant by not reducing the number of downslope samples to a single cell.  

The disadvantage of using an MFD method is that a decision needs to be made as to how 

flat regions will be handled. Allocating the potential water in a terrain grid cell of a flat region 

using differences in slope is not possible as all surrounding cells have the same terrain elevation. 

In this case, the algorithm needs to assume an allocation of the water flow, otherwise no allocation 

of the water is made and the hydrologic connectivity is discontinued (i.e., the flat region is 

interpreted as a sink – no outlet). There are two possible solutions to this problem: (1) pre-

processing the DEM so that there are no flat areas and/or sinks, or (2) using a different approach 

to allocate the flow in these situations. Solutions in the latter category include the assumption of 

an equal likelihood, and thus an equal allocation of the water to all neighboring cells (i.e., 

deterministic), the random allocation of the water to a specific number of cells (i.e., random), and 

the allocation of the water to all neighboring cells with some introduced noise (i.e., randomized).  

Once again, in an effort to be conservative and draw conclusions about the vulnerability in 

downslope areas of the GSI project that are insensitive to these limitations, this study considers 

two different resolution DEMs and two approaches to water routing over flat areas. The DEMs 

evaluated include a 10-meter resolution DEM obtained from the National Elevation Dataset (NED) 

and the 30-meter resolution hydrologically-corrected DEM provided in the National Hydrography 

Dataset (NHDPlus), both owned by the United States Geological Survey (USGS). The NHDPlus 

DEM is resampled to a 10-meter resolution using bilinear interpolation in order to match the 

resolution of the data to the susceptibility and hazard exposure severity indicators. The two 

approaches to water routing over flat areas are: (1) treating flat areas as sinks and (2) deterministic 

allocation. Treating flat areas as sinks assumes that none of the areas downslope of flat areas are 

hydrologically connected, thus no benefits can be perceived. On the other hand, the deterministic 

approach assumes that all areas downslope of flat areas would receive water flow allocation (i.e., 

no restriction on hydrologic connectivity). 
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3.3 Case study – Philadelphia, PA 

In order to investigate the utility of the proposed approach, the City of Philadelphia, PA is 

used as a case study to explore the spatial patterns between vulnerability and engineered GSI. The 

Philadelphia Water Department (PWD) has committed to invest $1.6 billion dollars in GSI as a 

means to reduce stormwater runoff and prevent occurrences of combined sewer overflows 

(Philadelphia Water Department, 2009). As part of their Green City, Clean Waters project 

(Philadelphia Water Department, 2009), PWD began implementing numerous GSI projects around 

the city in 2009. More importantly, the PWD has compiled and validated detailed information 

about implemented and planned GSI projects, data that is currently scarce in most U.S. cities. This 

information includes types of GSI and a polygon representation of their geo-locations, which 

allows a more accurate definition of GSI parameters for benefits estimation and comparison with 

vulnerability.  

PWD has also committed to active engagement with the private sectors to achieve their 

stormwater mitigation goals, as they acknowledge that using public lands alone will be insufficient. 

Considering the opinion of diverse stakeholders in the planning and design of GSI projects has 

been argued to be critical for successful and efficient implementation (Heckert & Rosan, 2016; 

Meerow et al., 2017; Kuller et al., 2017). However, it has also been argued that GSI stakeholder 

incentive programs (e.g., tax rebates) can reinforce social and environmental inequalities (Perkins 

et al., 2004; Heynen and Perkins, 2005; Heynen et al., 2006). Sectors that receive incentives to 

implement GSI are often those with more economic resources, that own private land, and that have 

more available space on their properties. Furthermore, there is often lack of confidence in effective 

long-term maintenance of GSI when implemented in communities with a lack of economic 

resources (Heckert et al., 2016). As such, GSI projects implemented in the City of Philadelphia 

provide an opportunity to investigate whether these challenges have caused disparities in the 

mitigation of vulnerabilities and to illustrate how the proposed approach could inform more 

equitable and just GSI implementations. 

The PWD GSI project data are available at the OpenDataPhilly portal 

(https://www.opendataphilly.org/). The data include a list of different types of implemented and 

planned GSI projects from both public and private owners. Data associated with implemented GSI 

projects include year of installation, from 2000 to 2016, (Figure 3.2) and whether they are on 

public or private land. Data provided for planned GSI (i.e., in design, waiting approval, or in 

https://www.opendataphilly.org/
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construction) is in the form of point locations and includes a general description of the selected 

site and a list of the different types of GSI that are intended to be constructed. Because of their 

point location format, the data for planned GSI are only used to investigate how these locations 

spatially relate to areas with a high potential for benefits and needs. Finally, PWD’s data on type 

of GSI is related to types of benefits as shown in Table 3.1. Based on the descriptions provided by 

PWD for each listed GSI, it is assumed that infiltration/storage trenches and pervious pavements, 

which have no vegetation, provide little to no benefits associated with habitat 

preservation/improvement, reduction of urban heat island, or human health. 

The spatial co-location of GSI and SNAs is explored by using a minimum buffer distance 

of 90 meters and a maximum distance of 1800 meters (refer to Figure 3.1 for reference). A 

minimum buffer distance of 90 meters is used because at least 98% of the landscape has land 

surface temperatures that do not vary by more than 5 F (Figure B.2 in Appendix B), and thus it is 

assumed that the hazard exposure severity to urban heat island would not vary much within such 

a short distance. Lastly, Euclidian - ring buffers are created using a 100-meter increment. 

 

Table 3.1: Potential benefits of different types of GSI 

GSI Types 
Potential Benefit (Mitigation/Restoration) 

Hydrologic Ecologic Urban heat island Human health 

Infiltration/Storage 

trench 
✓    

Bumpout ✓ ✓ ✓ ✓ 

Rain garden ✓ ✓ ✓ ✓ 

Wetland ✓ ✓ ✓ ✓ 

Basin ✓ ✓ ✓ ✓ 

Tree trench ✓ ✓ ✓ ✓ 

Planter ✓ ✓ ✓ ✓ 

Pervious pavement ✓    

Swale ✓ ✓ ✓ ✓ 

Green roof ✓ ✓ ✓ ✓ 
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Figure 3.2: Summary of ownership and year of installation for GSI projects 

 

Figure 3.3: PWD GSI projects and social susceptibility.  

3.4 Results and discussion 

This section presents the spatial patterns among GSI projects in the City of Philadelphia, 

PA and the identified SNAs and SBAs. The analyses are restricted to the combined sewer service 

area, shown in Figure 3.3, where PWD has concentrated GSI implementation. The results include: 
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(1) spatial proximity of GSI projects to SNA for ecological susceptibility and social vulnerability 

related to urban heat island, (2) distribution of social vulnerability to flash flooding in areas 

downslope of the GSI projects, and (3) spatial synergies between SNAs that could represent missed 

opportunity for maximizing multifunctionality of GSI.  

 

3.4.1 Spatial patterns of susceptibility and urban heat island vulnerability 

3.4.1.1 Spatial co-location  

Figure 3.4-A presents the distribution of susceptibility categories with spatial co-location 

(i.e., 90 meter concentric circle buffers) of GSI projects. Figure 3.4-A suggests that most GSI 

projects are associated with areas of moderate susceptibility, with few projects located in very low 

or very high susceptibility areas. Only a spatial co-location of GSI projects with areas of high 

infrastructure susceptibility are observed.  

Note that in Figure 3.4-A, the percentages of the total buffer area associated with 

infrastructure susceptibility are generally low (i.e., less than 10%). This is because non-building 

areas are excluded from the infrastructure susceptibility calculations (i.e., rather than assigning a 

very low susceptibility, non-building areas are assigned a null score). Therefore, a large percentage 

of the total buffered areas is associated with null infrastructure susceptibility. Nevertheless, the 

results show that most buildings around the GSI (i.e., a higher percentage of the total buffered 

area) have higher infrastructure susceptibility. These results are likely due to almost 2/3 of all GSI 

projects being implemented on privately owned land. Due to data limitations, infrastructure 

susceptibility in this study considers only building use and buffer zones around buildings with the 

highest need for protection (i.e., schools, hospitals, community centers, senior centers, and 

residences). Thus, given the PWD goal of targeting schools and privately owned land for GSI 

implementation (Philadelphia Water Department, 2009), it is not surprising that higher 

infrastructure susceptibility is observed.  

Furthermore, one of the main goals of the PWD is the reduction of impervious surfaces 

and greening of the combined sewer service area. Thus, it is not surprising that many of the GSI 

projects are located near areas with moderate to high ecological susceptibility. Lastly, one of the 

indicators used to calculate social susceptibility is the ownership status of the household. Areas 

with a higher number of owned households receive a lower susceptibility score. To investigate 

whether the observed distributions of social susceptibility were due to biases introduced by land 
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ownership, the results were recalculated considering only GSI projects located on public land. No 

significant changes to the results were observed, thus suggesting that even those projects that have 

been located on public lands have been located in areas of moderate social susceptibility.  

Another possible explanation for the observed distributions of susceptibility was the 

introduction of biases from assigning susceptibility categories. Moderate susceptibility is 

associated with all values that between 25th and 75th percentiles, and thus account for a larger 

percentage of the data. In order to test the hypothesis that the observed distributions in Figure 3.4-

A were not a caused by a category bias (i.e., a larger percentage of the total area associated with a 

susceptibility category was within the buffers), the total area contained in the 90-meter buffers for 

each susceptibility category was divided by their respective total areas in the combined sewer 

service region. Figure 3.4-B presents the result of these calculations. It can be seen that, in general, 

all susceptibility categories had a similar percentage of their total area within the buffered area and 

thus it can be assumed that no category biases were introduced to the susceptibility patterns.  

Note that when using Census Blocks, the distribution of GSI located in areas with very low 

social susceptibility changes significantly (i.e., about 20%) when compared to results obtained 

using Census Block Groups. This change in distribution is mostly due to the siting of GSI in 

unpopulated areas. On the other hand, GSI distributions in areas with high social susceptibility did 

not change significantly when using either Census Blocks or Census Block Groups for the social 

susceptibility calculation. The small differences observed for the high and very high social 

susceptibility categories were due to the small number of GSIs that were spatially co-located in 

these areas. Such results further highlight the biases that can be introduced when using Census 

Block Groups to calculate social susceptibility. As such, all other results are presented in this 

section at both spatial scales to illustrate the impacts of this assumption on the observed spatial 

patterns. 

Figure 3.5 presents the results of the spatial co-location of GSI and socially vulnerable 

areas for urban heat island exposure. The results suggest that GSI projects with heat island 

mitigation potential have mostly been located in areas of low to moderate vulnerability and not in 

areas with the highest degree of exposure severity. When accounting for categorical biases, some 

of these findings become even more significant. Figure 3.5-B presents the stacked percentages of 

the total vulnerability area included within the buffers (i.e., each combination of susceptibility and 

hazard exposure severity is one partition in the bars, thus the theoretical maximum of the y-axis is 
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500%). Figure 3.5-B shows that although 52% of the total area associated with a high to very high 

hazard severity are included within the buffer areas, thus spatially co-located with the GSI, only 

11% was co-located with areas of high to very high social susceptibility. This finding is more 

significant in areas with very high social susceptibility and very high hazard severity at the Census 

Block scale, since 0% of these areas were included within the buffers. In short, while it seems that 

GSI projects have been located in areas with high degree of exposure severity to urban heat island, 

the results suggest that there has been no consideration of the susceptibility of the communities in 

these areas. Therefore, those more vulnerable to urban heat island are not the most likely 

beneficiaries of the urban heat island mitigation potential offered by the GSI projects in 

Philadelphia. 

Lastly, one possible explanation for the observed distributions of susceptibility and 

vulnerability in Figures 3.4 and 3.5 is that these patterns are caused by the assumptions made in 

assigning susceptibility categories. First, it is assumed that the location of the GSI and the 

assignment of the susceptibility and hazard exposure categories are not independent spatial 

processes. In other words, it is assumed that the location of the GSI projects should be influenced 

by the degree of vulnerability. Second, the observed distributions of vulnerability are analyzed by 

considering both the percentage of buffered areas and the percentage of total area associated with 

a susceptibility category and different degrees of hazard exposure severity.  

Therefore, under these two assumptions, if the planning of GSI has targeted the most 

vulnerable areas, then the buffer area around the GSI should account for a large percentage of the 

total area associated with the higher vulnerability categories. This would be true even though the 

total area might be small compared to the areas associated with other degrees of vulnerability (e.g., 

moderate susceptibility with moderate hazard exposure severity). However, such patterns are not 

observed in Figures 3.4 and 3.5, and instead GSI projects are located in areas of moderate to high 

hazard severity with low to moderate susceptibility (i.e., low to moderate vulnerability). Therefore, 

the results suggest that the PWD has not targeted the most vulnerable communities and the 

assignment of high to very high susceptibility categories does not have a significant impact on the 

results. 
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Figure 3.4: Left (A): Distribution of the social, ecological and infrastructure susceptibility 

categories of areas where GSI was located. Right (B): Percent of the total area associated with a 

susceptibility class included within the buffered areas. 

 

 

Figure 3.5: Left (A): Distribution of social vulnerability to urban heat island for areas where GSI 

was located. Right (B): Percentages of the total area associated with UHI vulnerability classes 

within the buffered areas. Legend shows the hazard severity categories for UHI. 

 

3.4.1.2 Changes in vulnerability with spatial proximity  

Having explored the distribution of susceptibility and vulnerability as it relates to the 

spatial co-location of GSI projects, the next step was to investigate how these distributions changed 

with distance from the GSI. Figure 3.6 shows the change in susceptibility and hazard exposure 

severity for each of the areas covered by the Euclidian ring buffers. It can be observed that as the 

distance from the GSI increases, the percentage of buffer area corresponding to higher social 

susceptibility categories increased. However, the maximum percentage of buffered area was 

observed to still be less than 20% at a distance of 1000 meters from the location of the GSI projects. 
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On the other hand, no changes were observed in the distribution of ecological susceptibility and 

infrastructure susceptibility decreases with distance. These patterns suggest that a very small 

number of GSI projects have been located in areas surrounding communities with higher social 

susceptibility. Furthermore, the decrease in infrastructure susceptibility with distance from GSI 

confirms the hypothesis that many of these projects were sited in residential, school, or hospital 

areas. 

Figure 3.7 shows the change in social susceptibility and severity of urban heat island as a 

function of distance to GSI projects. In this case, only the change in vulnerability using Census 

Blocks is illustrated as a more significant variability was observed than when using Census Block 

Groups (Figure B.3 in Appendix B). Similar to the results of spatial co-location, when considering 

only the percentage of buffered areas corresponding to different degrees of vulnerability, no 

significant change is observed (Figure 3.7-A). The most notable trends are the decrease in 

percentage of area associated with moderate social susceptibility and increase in very low 

susceptibility, and the increased percentage of the buffered area corresponding to a very high 

hazard severity category. These results suggest that the areas surrounding GSI tend to have lower 

social susceptibility and a higher degree of exposure severity. When the total area within the 

buffers is divided by the total area corresponding to a particular degree of vulnerability, Figure 

3.7-B shows that this increase in hazard severity is quite significant. At a distance of 900 to 1000 

meters from the GSI, the percentage of the total area associated with very high exposure severity 

and high and very high social susceptibility are 60% and 35%, respectively. In other words, if GSI 

projects had been located within these areas, they would be in much closer proximity (< 100 

meters) of 95% of the area with the highest vulnerability (i.e., very high exposure severity and 

high to very high social susceptibility). These results suggest that urban heat island mitigation 

and/or social susceptibility were not one of the major drivers in PWD’s selection of potential GSI 

locations. 
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Figure 3.6: Changes in the distribution of susceptibility as a function of distance from the GSI. 
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Figure 3.7: Changes in distribution of hazard exposure severity and social susceptibility as a 

function of distance from the GSI. For each ring buffer distance, the plotted bars represent the 

different categories of social susceptibility [i.e., Left: Very Low to Right: Very High]. Top graph 

(A) presents the change in distribution relative to the area of the ring buffer. Bottom graph (B) 

presents the change in distribution relative to the total area associated with each of the potential 

combinations of vulnerability. 

 

3.4.2 Spatial patterns of flood vulnerability and stormwater management benefits of GSI 

The analysis of GSI SBAs and SNAs for stormwater management benefits are presented 

in a similar fashion to those in the previous subsection. Figure 3.8 shows the distribution of social 

susceptibility categories and corresponding degrees of exposure severity to flash flooding of areas 
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downslope of the GSI projects. However, unlike the results in the previous section, the total area 

associated with a vulnerability category is calculated using the total downslope area of the GSI 

project, as opposed to the total area within the buffered area as for the localized benefits. The 

results are again presented for both Census Block Groups and Census Blocks to illustrate the 

importance of accounting for non-populated areas and small “hot-spots” of high social 

susceptibility (as presented in Chapter 2).  

Additionally, Figure 3.9 shows the distributions of vulnerability to flash flooding for 

different potential stormwater benefits (i.e., the percentage of potential reduction to the flow 

accumulation caused by the GSI projects). Lastly, the results are shown using both DEM sources 

(i.e., NHDPlus and USGS) and the two approaches discussed for handling flat areas in the 

calculation of flow accumulation (i.e., No Flats – considered flats as sinks, Flats – used 

deterministic approach to estimate direction and allocation of the flow). 

The results in this section show that, in general, the GSI projects tend to be located 

upstream of areas with high flash flooding potential (i.e., high to very high exposure severity 

categories). This is not a surprising result since the abatement of stormwater runoff has been the 

major driver in PWD’s GSI implementation. However, GSI projects are located in no particular 

social susceptibility category, suggesting that vulnerability of downslope areas was likely not taken 

into consideration. In Figure 3.8-A, most GSI projects were located upstream of areas with very 

low (probably unpopulated) and moderate social susceptibility. When evaluating the category 

biases (Figure 3.8-B), most categories had similar percentage of their total area included within 

these downslope areas, although those associated with very low and very high social susceptibility 

consistently had the highest percentages. Given that highly vulnerable areas are not more likely to 

be downslope of the GSI and that the total area by vulnerability category was similar, it suggests 

that observed patterns are more a function of the approach used to assign nominal categories of 

susceptibility and hazard exposure severity and that GSI projects were not sited with the intention 

of reducing vulnerability.  

Lastly, the observed patterns were consistent regardless of the DEM used or the treatment 

of flat areas in the flow accumulation calculation. Although different combinations of DEMs and 

flat area approaches had an impact in estimating total downslope areas (as expected), the relative 

differences between vulnerability categories remained consistent, providing a higher degree of 

robustness to these findings. 
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The most vulnerable areas are also less likely to receive a larger portion of the stormwater 

reduction benefit provided by the GSI projects. Figure 3.9 presents the reduction in flow 

accumulation by vulnerability category. The observed patterns of vulnerable communities having 

low likelihood to receive GSI benefits were more pronounced by taking into account flow 

accumulation reduction in these areas. Furthermore, areas that are benefiting the most from the 

GSI projects are those associated with moderate exposure severity and moderate social 

susceptibility.  

 

 

 

Figure 3.8: Top graphs (A): Vulnerability of downslope cells from the GSI projects. Bottom graphs 

(B): Percent of total area associated with each vulnerability class. [Left: Census Block Groups, 

Right: Census Blocks]. The bars in each susceptibility category correspond to the use of (left to 

right) USGS DEM-No Flats, USGS DEM-Flats, NHD DEM-No Flats and NHD DEM-Flats. 
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Figure 3.9: Total reduction in flow accumulation in downslope areas. The bars in each 

susceptibility category correspond to the use of (left to right): Block Groups / USGS DEM-No 

Flats, Block Groups / USGS DEM-Flats, Block Groups / NHD DEM-No Flats, Block Groups / 

NHD DEM-Flats, Blocks / USGS DEM-No Flats, Blocks / USGS DEM-Flats, Blocks / NHD 

DEM-No Flats and Blocks / NHD DEM-Flats. 

 

3.4.3 Spatial patterns of planned GSI and SNAs: Are we maximizing opportunities? 

 Having observed that most implemented GSI projects have not been sited in areas that 

benefit the highest vulnerable areas, the next step is to examine planned GSI projects. The spatial 

intersection of the nominal categories of high and very high susceptibility and hazard exposure 

severity is used to identify: (1) areas upslope of communities with high vulnerability to flash 

flooding, (2) vulnerable communities to urban heat island, (3) areas upslope of impaired water 

bodies, and (4) areas with high social and ecological susceptibility. These areas offer the maximum 

potential benefits for GSI. Upslope areas are calculated using the USGS DEM, since it has a higher 

grid resolution, and considering both approaches for treatment of flat areas. 

Figure 3.10 presents visual representation of areas with high to very high synergy potential 

and planned GSI. Visual inspection of these patterns suggests that most of the planned GSI projects 
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seemed to be surrounding these high synergy areas, rather than located within them. Moreover, a 

significant portion of the planned GSI are located near the central-east boundary of the combined 

sewer service area, which has very little synergy potential. In order to quantify these spatial 

patterns, Figure 3.11 presents the change in distribution of the synergy potential as a function of 

distance to the planned GSI projects. Between 400 and 500 meters from the location of the planned 

GSI projects, the percentage of areas with high synergy potential could be larger.  

A possible explanation for the observed patterns is PWD’s goal to install GSI projects on 

public land associated with parks and schools and on private properties. Figure 3.10 shows that 

34% of the planned GSI projects are confined to schools or parks. The rest of the projects were 

intended to be installed in identified green streets or other vacant lots. While this approach has 

benefits for reducing the cost of implementation (e.g., land acquisition, construction and 

maintenance/operation, etc.), it may hinder siting GSI in areas that could increase return on 

investment by improving the vulnerability of several systems simultaneously.  

Another hypothesis was that perhaps these locations were chosen to address areas not being 

served already by regulation projects in private properties (i.e., required by PWD in any new 

development) (Philadelphia Water Department, 2018). The PWD requires new development to 

treat “the first 1.5 inches of runoff from all directly connected impervious area (DCIA) within the 

limits of earth disturbance.” To test this hypothesis, a clustering analysis using the cross-L function 

was done. The cross-L function is a measurement of repulsion (no clustering) or attraction 

(clustering) between different point sets (Appendix A.2). As such, the tested hypothesis is: the 

planned PWD GSI projects would show repulsion (no clustering) with respect to GSI regulation 

projects that were already implemented or planned. The results (Figure 3.12) suggest that there is 

a statistically significant clustering (i.e., p-value ≤ 0.01 for 100 simulations of complete spatial 

randomness [CSR]) around planned regulation projects at a distance of approximately 400 meters 

and no statistically significant pattern with currently installed regulation projects.  

These results suggest that most of the planned PWD GSI projects have been located near 

areas of new development where GSI projects are now required under current regulations. 

However, the results also show that no significant spatial pattern is observed between the locations 

of planned PWD GSI projects and current regulation projects. Further research and engagement 

with the PWD is needed to better understand these conflicting results and the policies and strategies 

driving future GSI projects. Nevertheless, the results presented in Figures 3.11 and 3.12 confirm 



78 

 

the hypothesis that planned PWD GSI projects have not been located in areas of most need for GSI 

benefits. 

 

Figure 3.10: Types of locations for planned GSI projects and their spatial relationship with areas 

of high synergy. 

 

 

Figure 3.11: Synergistic potential of areas surrounding the planned GSI projects. 
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Figure 3.12: Cross-L functions for PWD planned GSI projects with respect to: (A) planned 

regulation GSI projects and (B) current regulation GSI projects. Solid black lines represent the 

values of the L-function, the gray region shows the envelope of statistical significance for the 

simulations of complete spatial randomness, and the dashed red line represents the theoretical 

Poisson L-function. 

 

3.5 Conclusions 

With growing popularity of GSI in cities, it is important that planning decisions consider 

the social and environmental justice implications of siting decisions. This study explores the spatial 

relationships between green infrastructure and socio-ecological vulnerability using a new 

analytical method for more spatially explicit assessment of GSI benefits. 

The results from the spatial analysis of current and planned GSI projects and vulnerability 

in the City of Philadelphia suggest that GSI projects could be more strategically placed to 

maximize multifunctionality for the most vulnerable communities. Current GSI projects have most 

often been co-located in areas of low to moderate socio-ecologic susceptibility and UHI 

vulnerability. Additionally, most of these GSI projects are upslope of areas with very low to 

moderate vulnerability to flash flooding, and a portion are upslope from unpopulated areas.  

Finally, by using the spatial intersection between different SNA, the method identifies 

areas with high synergistic potential for GSI implementation that are within 500 – 1000 meters of 

current GSI projects. Additionally, future planned PWD projects are in close proximity, but not 
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within, these areas of high priority for GSI implementation. Most of these planned GSI projects 

are clustered around private regulatory projects, suggesting that siting decisions are most likely 

based on land ownership criteria. 

The findings of this study concur with previous studies that have highlighted the need for 

planning tools to represent more spatially explicit GSI benefits (Kuller et al., 2017). By calculating 

the results at both the Census Block Group and Census Blocks, this study shows that, particularly 

for stormwater abetment benefits, the spatial scale of analysis has a significant impact on the 

results. Such findings suggest that previous studies exploring the spatial relationship of GSI and 

vulnerability might have misestimated the true beneficiaries of GSI and overestimated the spatial 

correlations between the location of GSI and the vulnerability of those communities. 

The findings of this study however, are limited to the analysis of GSI projects in the City 

of Philadelphia and should be tested in other cities. Rai (2018) has developed GSI detection tools 

that can be used to identify GSI locations, since most cities do not have complete inventories of 

GSI. Furthermore, the conclusions presented in this study are limited by the assumption that all 

GSIs have the same effectiveness to reduce/retain stormwater runoff. In reality, the runoff 

reduction potential varies among different types of GSI; exploring these differences might provide 

new insights about the magnitude of benefits experienced by communities in service needing areas. 

Finally, more investigation is needed on the spatial relationship of GSI and vulnerability under 

different organizational, institutional and governmental structures. For example, do GSI projects 

planned by non-profit organizations show a different relationship with vulnerable areas? How 

different are the spatial patterns of vulnerability and GSI benefits in cities with required GSI 

implementation (e.g., Baltimore City) versus voluntary programs? Such analysis would provide a 

much richer understanding of the factors that may prevent GSI implementation in the most 

vulnerable locations. 

  



81 

 

CHAPTER 4. AN INTEGRATED AND SPATIALLY SCALABLE PRIORITIZATION 

FRAMEWORK FOR GREEN STORMWATER INFRASTRUCTURE SITING  

 

4.1 Introduction & problem statement 

As discussed in Chapter 1 and confirmed with the case study in Chapter 3, current methods 

for large-scale spatial planning of GSI lack consideration of multiple benefits at multiple scales. 

Additionally, only a few studies have considered the vulnerability of socio-ecologic systems for 

prioritization of future GSI implementation. This chapter presents a new planning support system 

(PSS) for prioritization of GSI siting to address these limitations. 

Planning support systems (PSS), a term introduced and defined by Harris (1989), are 

information frameworks that integrate a diverse set of criteria, information technologies, and data. 

PSS need to be interactive, adaptable, flexible, integrative, and allow for a participatory process 

(Harris, 1989; Malmqvist et al., 2006; Geertman & Stillwell, 2012; Chandio et al., 2013; Brown 

et al., 2015; Kuller et al., 2017). More specifically, for PSS to be successful in guiding the decision-

making process, they need to: (1) provide a deeper and richer understating of the problem at hand 

and (2) allow translation of ideas into actionable plans by aiding their formulation and 

communication between stakeholders (Ashley et al., 2004; Geertman & Stillwell, 2012; 

Malczewski et al., 2015; Kuller et al., 2017). When used for spatial planning, PSS need to explicitly 

represent the spatial problem, translate information between different data sources and scales of 

analysis, and enable the spatial analysis and production of highly visual and easily interpretable 

results (Geertman & Stillwell, 2012; Malczewski et al., 2015).  

To date, the use of PSS for spatial planning of GSI has focused solely on estimating 

stormwater management benefits. Kuller et al. (2017) review an extensive list of PSS used for 

spatial planning of GSI in practice and research. The study concludes that most of the available 

PSS for spatial planning of GSI have rarely been used for planning purposes, especially at large 

spatial extents (e.g., city scale). The primary reasons for this implementation gap (Kuller et al., 

2017) are: (1) methods that are too generic, complex, inflexible, and technology-oriented, and (2) 

tools that require specific and detailed data and trained personnel to use them (Klosterman, 1997; 

Geertman & Stillwell, 2004; Vonk et al., 2005; te Brömmelstroet & Bertolini, 2008; Viavattene et 

al., 2008; Kuller et al., 2017). These limitations have prevented PSS from being used for evaluating 

GSI implementation scenarios, story-telling and translation of vision plans, and providing 
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transparency to decision processes. Additionally, the use of GSI hydrologic models has been 

hindered by their complexity (distributed parameter models) and lack of spatial explicitness 

(lumped parameter models) needed to integrate with other GSI multi-criteria decision analysis at 

multiple scales (Kuller et al., 2017). 

The quality of the PSS and their use during the planning process have great influence over 

the success of the implemented GSI (Montalto et al., 2013; Kuller et al., 2017). Using current PSS 

could lead to technologically optimized plans that fail to provide the full range of benefits in 

practice. To address these problems and increase the use and uptake of PSS in the spatial planning 

of GSI, new tools are needed. In particular, previous studies suggest that new PSS should consider 

reframing the spatial planning of GSI as a location choice (Locke et al., 2010; Norton et al, 2015; 

Kuller et al., 2017). As a location choice, the goal becomes identifying locations in which GSI 

could be most efficient (i.e., suitability of the site to implement GSI) and effective (i.e., delivering 

benefits to areas with the greatest need). For this goal, it has been suggested that new PSS should 

sacrifice some of the complexity associated with correctly modeling the hydrologic behavior of 

the GSI in order to provide user friendly, flexible, and heuristic but methodologically competent 

tools that generate easily interpretable results (te Brömmelstroet & Bertolini, 2008). Planning tools 

tend to lose transparency and user friendliness with increasing complexity. On the other hand, 

disregarding this complexity can diminish the accuracy and comprehensibility of the results. 

Therefore, finding a balance between these competing factors is an active area of research. 

 Other than the evidence-based framework proposed by Kuller et al. (2017), in which the 

authors present a list of indicators that have been used in practice or research to represent the 

efficiency and effectiveness of different types of GSI, to the author’s knowledge, no other study 

has proposed an analytical framework that considers the spatially explicit assessment/integration 

of these two components. Moreover, no other PSS considers a wide range of socio-ecological 

factors nor, more importantly, the vulnerability of these systems to multiple hazards (Kuller et al., 

2017). The central premise of this chapter is to develop and test a new spatially scalable multi-

objective optimization framework as an improved PSS for spatial planning of GSI. The framework 

considers multiple GSI benefits, provides flexibility to consider opinions of multiple stakeholders, 

and incorporates vulnerability of socio-ecological systems. 

The framework is applied to three watersheds in the City of Dallas, TX, the City of 

Philadelphia, PA, and Baltimore County, MD, to test the utility and robustness of the prioritization 
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method in diverse hydroclimates and at multiple spatial scales (11 km2, 5 km2, and 1 km2 

watersheds). The watershed in Baltimore County, MD, is used to test the utility of the proposed 

framework to inform decisions at the scale at which GSI is typically planned (i.e., small 

neighborhood, sub-watersheds ≤ 2 km2; Golden et al., 2017; Jefferson et al., 2017). The case 

studies in Philadelphia, PA, and Dallas, TX, explore the impact of different hazard mitigation goals 

and planning criteria (i.e., different stakeholder opinions) on the spatial distribution of different 

types of GSI and their impact on the vulnerability of socio-ecologic systems. The study concludes 

with a discussion about the implications of GSI siting decisions on vulnerability and how the 

proposed framework could be used as a PSS to guide future decision making towards more socially 

just implementations. 

 

4.2 Methodology 

The GSI prioritization framework consists of three main components, shown in Figure 1.1: 

(1) identification of suitable GSI sites given local regulations and design criteria, (2) quantification 

of geographical preferences based on the potential of these GSI to mitigate multiple hazards, 

improve ecological integrity and human health, and consider different planning policies, and (3) 

identification of locations and types of GSI using geographical information systems (GIS) multi-

criteria decision analysis (GIS-MCDA). Using screening rules associated with different design 

criteria and planning regulations, the methodology begins by identifying areas with the greatest 

suitability for GSI implementation. These areas are then subdivided into potential spatial 

arrangements and sizes for different types of GSI. Each of these spatial arrangements is then 

assigned a geo-preference score that estimates the potential of GSI to provide different benefits in 

these locations. Finally, a multi-objective optimization framework is used to maximize the 

potential of GSI to reduce stormwater runoff volume from impervious surfaces while considering 

other benefits, including improvement of socio-ecological vulnerability. The following 

subsections define these steps in more detail. 

 

4.2.1 Identification of suitable sites 

The process of identifying suitable sites for implementing GSI is often dominated by two 

main factors: (1) the biophysical properties of the potential site and design criteria associated with 

the GSI, which depends on the main driver for its implementation (e.g., stormwater runoff 
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reduction, reduction in urban heat island, etc.), and (2) institutional and organizational policies and 

regulations that dictate availability of urban spaces for different types of GSI. In practice, the site 

identification process is often time consuming and costly, as a holistic analysis of site suitability 

requires a large amount of data, approval of many government agencies, and consideration of the 

opinions of many different stakeholders. Furthermore, this process is often conducted at the 

neighborhood or sub-watershed scale, as large-scale planning (e.g., city or county scale) would 

significantly increase costs and planning duration (e.g., Shoemaker, 2009; Marney, 2012). To 

address these challenges, rule-based methods have been developed to rapidly and inexpensively 

identify potentially suitable sites for GSI installation using predetermined thresholds for different 

design criteria (e.g., Viavattene et al., 2008; Marney, 2012; Lee et al., 2012; Locke et al., 2013).  

One of the most well-known and widely used rule-based methods for GSI planning is the 

EPA BMP Siting Tool (Shoemaker, 2009; Lee et al., 2012), which is a component of the workflow 

implemented in the EPA SUSTAIN tool (US EPA SUSTAIN, 2018). EPA SUSTAIN is best 

known for its capacity to optimize a portfolio of different types of GSI using an evolutionary 

algorithm that maximizes reduction in runoff volume and improvements to water quality while 

minimizing the project’s total cost. To generate an array of different alternatives for evaluation, 

SUSTAIN first identifies potential locations for implementing GSI using the EPA BMP Siting 

Tool’s design and policy criteria, for which thresholds are defined (e.g., distance from building > 

10 feet). In addition, the tool allows users to rank potential locations based on user preference for 

soil type. Locations meeting all criteria are then evaluated as potential sites for implementing a 

specific type of GSI. 

The siting methodology used in this work takes a similar approach to the EPA BMP Siting 

Tool. The method selects sites based on how their features compare to different design and policy 

thresholds, and selects sites meeting all criteria as potential locations for GSI implementation. 

Table 4.1 presents this framework’s list of criteria, which were selected based on recommendations 

from the literature (Lee et al., 2012; Kuller et al., 2017) and design manuals shown. Many of these 

criteria and their recommended thresholds are used in the EPA BMP Siting Tool and the GSI 

design guidelines listed for several U.S. cities. However, unlike the EPA BMP Siting Tool, the 

proposed approach also includes ranges for the site’s percent of tree canopy and percent of 

imperviousness. These ranges prevent GSI from being placed in locations with high tree canopy 

coverage or high degrees of perviousness, since these sites already provide some of the same 
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benefits as GSI. Additionally, GSI is not placed in highly impervious locations given that 

implementation is often costly and/or impractical in these areas. Finally, the EPA BMP Siting Tool 

reports the results as vector features (i.e., polygons), while the proposed approach identifies sites 

at the 10-meter raster cell level (i.e., grid cells). This enables integration with the other steps of the 

framework and different spatial aggregations (e.g., total surface area of GSI). Furthermore, it 

enables the use of grid-based distributed hydrologic models for more detailed evaluation of GSI 

implementation scenarios. 

This methodology for identifying suitable areas is robust and adaptable, as it enables 

adding or removing additional criteria for different types of GSI. Additionally, the use of 

thresholds reduces the computational cost of analyzing large spatial extents and a large array of 

different GSI. 

 

Table 4.1: Criteria for identifying potential GSI implementation sites. 

 

 

4.2.2 Assessment of different spatial configurations for infiltration structures 

Once suitable areas for implementing GSI have been identified, the next step in the 

methodology is to assess how these areas can be used to implement different spatial configurations 

and different sizes of infiltration and retention structures. The spatial configuration of the GSI 

refers to the many potential options for spatial clustering of grid cells to make up the GSI surface 

Siting criteria Small GSI (retention) Large GSI (retention) Trees References

Drainage Area (acres) < 5 10 < DA < 25 -

Slope (%) <= 5 <= 15 <= 30

Imperviousness (I) (%) 30 < I < 80 30 < I < 80 30 < I < 80

Soil Group A-D (with ranking) A-D (with ranking) -

Road buffer < 100 ft > 100 ft -

Stream buffer > 100 ft > 100 ft -

Building buffer > 10 ft > 60 ft > 10 ft

Tree Canopy (TC) (%) TC < 60 TC < 30 TC < 60

Outside 100yr floodplain Yes - -

Land cover 

(NLCD, 2011)

Min. Surface Area 8% of impervious area 30% of impervious area -

Santa Clara Valley County

City of Seattle

City of Portland

City of Sacramento

Links to Design Manuals

http://www.scvurppp-w2k.com/pdfs/1112/c3_workshop/c3_workshop_track_2_sizing_calcs_6-5-12.pdf

http://ascelibrary.org/doi/pdf/10.1061/41009%28333%2961

https://www.portlandoregon.gov/bes/71127

https://www.cityofsacramento.org/-/media/Corporate/Files/DOU/Specs-

Drawings/SWQ_DesignManual_May07_062107.pdf?la=en

Developed, barren, 

shrubland, herbaceous

Developed, barren, 

shrubland, herbaceous

Developed, barren, 

shrubland, herbaceous

EPA SMP Siting Tool

Design manuals from 

multiple cities
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area. The assessment of potential spatial configurations is especially needed when considering 

large areas that have significant numbers of grid cells. 

The assessment of potential spatial configurations of infiltration structures begins by 

assuming that every grid cell within a suitable area could potentially be used to implement GSI. 

For the purposes of this discussion, the total spatial extent associated with an identified suitable 

area will be referred to as Areai, where i is an index between 1 and the total number of suitable 

areas, and the total number of grid cells within Areai will be referred to as Mi. Using this notation, 

a single grid cell is the smallest type of GSI that could be considered for implementation within 

Areai, and its maximum surface area is considered to be equal to the area of the grid cell.  

The algorithm then sorts the grid cells by their flow accumulation (i.e., the proxy metric 

use to represent the total amount of surface water flow across the terrain, as introduced in Chapter 

3) and identifies the grid cell with the largest flow accumulation within Areai. It is assumed that 

the grid cell with the largest flow accumulation is the location with the highest likelihood of 

receiving the most stormwater runoff and thus the most desirable location to implement GSI. From 

the grid cell with the largest flow accumulation, an iterative process begins in which directly 

connected grid cells (i.e., contiguous in all directions) with the largest flow accumulation are added 

recursively. In the case that multiple cells have the same flow accumulation value, each of them is 

considered as a different spatial configuration with the same surface area. This process continues 

until no more grid cells are directly connected or the total extent of the Areai is accounted for. 

Lastly, the process is repeated Mi -1 times within the same Areai to account for potential spatial 

configurations with other upslope cells considered as the starting cell of the algorithm. 

The described approach could yield a very large number of potential GSIs, especially if the 

spatial extent of Areai is large. To address this issue, a data tree structure is used to associate the 

different spatial configurations to the grid cells that were used as starting points of the recursive 

process described above. The use of a data tree structures the decision space of potential GSIs by 

their surface area. Thus, the root node of the data tree for Areai represents the largest possible GSI 

that could be implemented within it (i.e., theoretically, that area would be equal to Areai). The 

child nodes of the root nodes would then be the second largest GSI that could be implemented, 

and so forth. Every time a level is added to the tree, multiple child nodes could be created if 

different spatial configurations have the same surface area. This process continues growing the 

data tree up to the point at which all child nodes are assigned a single grid cell. As such, the parent 
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nodes of the tree structure represent different spatial configurations of GSI, all with the same 

surface area. These different levels of the data tree will be denoted by the subscript j and the 

different spatial configurations for that level will be differentiated by the subscript k. Therefore, 

Areaijk represents the k spatial arrangement with a surface area associated with level j for Areai. 

This approach considers a significant number of different GSI implementation scenarios, 

a needed capability of any GSI planning tool. Furthermore, it provides the user with great 

flexibility to consider potential implementation of specific types of GSI (i.e., small infiltration 

structures with a specified surface area), or to explore the solution space by considering all possible 

scenarios. Moreover, because the approach is done for each Areai, a specific type of GSI for which 

the stakeholders have a strong preference could be evaluated in one area, while in another Areai 

the full envelope of potential GSIs could be considered (e.g., a network of smaller GSI or a large 

retention structure such as a wetland). 

 

4.2.3 Assignment of geo-preferences 

Having identified potential GSIs that could be implemented, the next step of the 

methodology is to quantify the potential benefits of these GSIs to mitigate exposure severity to 

multiple hazards, improve ecological integrity and human health, and associate their geo-location 

with different planning policies. As noted earlier, this framework adopts the concept of 

geographical preferences (i.e., geo-preferences) for both the efficiency and effectiveness of 

potential GSI sites. 

Geo-preference, a term often used in urban planning, represents a set of qualitative or 

quantitative levels of preferences associated with specific criteria (e.g., Locke et al., 2013; Norton 

et al., 2015; Jankowski et al., 2016; Kuller et al., 2017). The value used to indicate preferences can 

represent the magnitude of marginal preference of some locations over others or can simply define 

the preference order (i.e., rank). These geo-preferences are often extracted from the knowledge 

gathered from previous studies conducted at smaller and more detailed spatial scales. For GSI, 

these geo-preferences should identify the optimal location for the intended use and multi-

functional benefits. Previous studies can inform the assignment of geo-preferences associated with 

the desired implementation location, given a particular objective (e.g., Marney, 2012; Locke et al., 

2013; Norton et al., 2015; Kuller et al., 2017). Moreover, these geo-preferences should relate 
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vulnerability to the GSI’s hazard mitigation potential, such that the most preferable locations are 

those that could provide the greatest benefits to the most vulnerable communities.  

In this study, geo-preferences are limited to the specific effects that GSI can have on human 

health, hydrological performance (potential runoff retention), ecological and habitat restoration, 

and urban heat island (UHI) mitigation, as these are the benefits considered most important in the 

case study cities. Additionally, this study considers the geo-preferences associated with cities’ 

policies and regulations, and the community’s preferences for the types of GSI. The use of geo-

preferences in this study highlights the capability and flexibility of the prioritization framework to 

consider multiple benefits, but other criteria may also be important in some regions.  

The prioritization framework assumes that potential GSI sites are the service-providing 

areas (SPAs) described in Chapter 3. Thus, geo-preference scores are assigned to GSI sites based 

on their potential to deliver different localized benefits and stormwater management benefits to 

the respective service-needing areas (SNA). A geo-preference score for GSI i associated with the 

criteria k (i.e., gik) is then calculated by aggregating (i.e., summation or multiplication) normalized 

metrics derived using these methods. Geo-preference scores associated with criteria k are finally 

scaled between zero (i.e., very low preference) and one (i.e., very high preference). A brief 

discussion of the quantification of these geo-preference scores is provided in the sub-sections 

below. 

 

4.2.3.1 Human health and ecological benefits  

For people to receive human health benefits from GSI, access and proximity are considered 

the most critical factors (Lee & Maheswaran, 2011; James et al., 2015). Although there are no 

clear guidelines for locating GSI to maximize human health benefits, most studies suggest that the 

potential to walk, feel safe, and enjoy the aesthetics of green spaces motivate most people to make 

use of them (Morris, 2003; Maas et al., 2006). In urban planning, especially in transportation 

planning, it is often accepted that people are willing to walk between 0.25-0.50 miles, with a 

maximum of 1 mile, to their destination. As such, the geo-preference assigned to potential GSI 

sites for human health benefits consider 0.25, 0.5, 0.75 and 1-mile circular buffer zones around 

schools, hospitals, community spaces, parks, and green open spaces. Specifically, 0.25 mi buffers 

are assumed to have very high preference [1], while 1 mi buffers have low preference [0.25]. All 

buffer layers are then added (i.e., a GSI site that is 0.25 miles from school [score = 1] and 0.5 miles 
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from a hospital [score = 0.75] would receive a score of 1.75), and the resulting values are scaled 

between zero and one.  

Additionally, sites that have high to very high social susceptibility within a 90-meter buffer 

are given higher priority. Geo-preference values for this criterion are then calculated by 

considering the percentage of the buffer area that has high to very high social susceptibility. 

Finally, the human health geo-preference score for a GSI site is calculated by adding the values 

obtained from both of these buffer analyses (Appendix A.3). 

Similarly, the potential of GSI to restore ecological connectivity and provide habitat 

restoration has been associated with creating ecological cores in areas with little to no vegetation 

or in areas that have high resistance to the flow of species between ecological cores (McRae et al., 

2008; Chang et al., 2012; Tannier et al., 2012). Additionally, GSI has been shown to improve the 

health of aquatic ecosystems by reducing pollutant loads to receiving waters, mimicking more 

natural stream flows, and recharging the groundwater (Zhao et al., 2013; Golden et al., 2017). The 

framework uses the indicators of ecologic susceptibility described in Chapter 2 and the methods 

from Chapter 3 for identifying areas with the highest need for ecological restoration/protection, 

and thus the areas with the highest need to receive these GSI benefits. GSI sites that are located 

near areas with high ecologic susceptibility (within a buffer of 90 meters as described in Chapter 

3) or upslope of the most impaired water bodies (i.e., moderate to very high susceptibility) receive 

a higher geo-preference. Geo-preference scores of GSI sites are then calculated by taking the mean 

of the ecologic susceptibility within a 90-meter buffer and normalizing the resulting values 

between zero and one. Finally, if the GSI sites are upslope of water bodies with moderate to very 

high susceptibility a one is added to their geo-preference score (Appendix A.3). 

 

4.2.3.2 Policy and planning criteria 

Policy geo-preferences are those associated with the city’s regulations for using and 

developing urban spaces. When planning and designing GSI, different regulatory mandates dictate 

the use and intended use of the land and/or the specific type of permitted development. These 

regulations can often be very strict and can deter the completion of a proposed project. Thus, when 

planning GSI installations, geo-preference should be given to those locations that either are in 

compliance or have the least potential for conflict. In this study, the preference associated with 

zoning regulations and the use of vacant lots were considered because of their common use in 
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planning GSI projects. Even though zoning and land use preferences differ between cities, design 

guidelines (see Table 4.1) indicate a high preference for locating GSI in residential and/or open 

urban areas (i.e, geo-preference score equal to 1), followed by a moderate preference for 

commercial/business areas (i.e., geo-preference score equal to 0.75-0.5), and very low preference 

for manufacturing/industrial sites (i.e., geo-preference score equal to 0.25 - 0), with some cities 

not even considering manufacturing/industrial sites as an option. Additionally, vacant lots, 

especially those owned by the city, are always a preferred location for GSI because the cost of 

acquisition and redevelopment is typically low. Thus, the geo-preference score of a GSI site for 

policy and planning criteria is calculated by adding up the normalized values of preferences 

associated with land use/zoning and a binary variable that indicates if the potential GSI is located 

within a vacant lot. 

 

4.2.3.3 Urban heat island mitigation index 

The quantification of UHI mitigation potential by different types of GSI remains a highly 

active area of research (Mirzaei, 2015). While models exist to estimate UHIs (Liu et al., 2011; 

Connors et al., 2013; Xu & Guo, 2014; Mirzaei, 2015), these are generally complex and require 

detailed spatio-temporal data for a large number of variables that are often not readily available. 

More importantly, no models were identified that could estimate the reduction in UHI due to 

implementation of different types of GSI and/or their spatial configuration. While the majority of 

previous studies have concentrated on site-scale measurement of the reduction in air and surface 

temperatures produced by trees, gardens, or green roofs, the impact of different levels of GSI 

implementation at larger scales is still unclear. Nevertheless, a significant number of studies have 

explored the spatial relationship between land surface temperatures (LST) and land cover and the 

cooling benefits of green spaces of different sizes and types (e.g., Chen et al., 2006; Connors et 

al., 2013; Myint et al., 2013; Maimaitiyiming et al., 2014; Zheng et al., 2014; Lin et al., 2015; 

Zhang et al., 2017). Therefore, the geo-preferences associated with the UHI mitigation potential 

of GSI followed the general recommendations and findings of these studies, as outlined below.  

In general, larger and more concentric clusters of green spaces, especially those containing 

a higher percent of tree canopy, have been found to produce a stronger cooling effect than 

scattered, dispersed green spaces (Zhang et al., 2009; Myint et al., 2013; Maimaitiyiming et al., 

2014; Lin et al., 2015). In addition, numerous studies (e.g., Chen et al., 2006; Connors et al., 2013; 
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Myint et al., 2013; Maimaitiyiming et al., 2014; Zheng et al., 2014; Zhang et al., 2017) have 

demonstrated how increases in impervious surfaces and loss of tree canopy are largely responsible 

for increases in LST and have demonstrated the positive effect of increasing vegetation coverage. 

Zheng et al. (2014) showed the importance of the spatial configuration of anthropogenic land cover 

features on the LST. The results suggest that city planners should target areas with a large 

continuous patch of paved surfaces and/or open areas with minimum vegetation for UHI 

mitigation. Additionally, optimization of the spatial arrangement of trees to provide maximum 

shading over these paved surfaces was recommended for significant UHI mitigation. 

Following these general guidelines, geo-preference scores associated with the potential of 

GSI sites to mitigate UHI are assigned by considering four indicators: (1) surface area, (2) 

eccentricity, (3) mean LST, and (4) difference between mean LST within the potential GSI site 

and mean LST of the surrounding area. Potential GSI sites with a larger surface area and located 

in areas with higher LST are assumed to have higher cooling potential, especially if tree canopy is 

increased in these areas. The eccentricity, which measures the deviation of an area from a perfect 

circle (where 0 represents a perfect match and 1 represents a spatial arrangement close to a line), 

is used to give preference to GSI arrangements that are concentric. Finally, following the 

recommendations by Zhang et al. (2017), the difference in mean LST in the potential GSI area and 

the mean LST of surrounding areas is used as a geo-preference associated with GSI potential 

cooling capacity. It is assumed that GSI sites with higher mean LST than surrounding areas would 

have more significant impact in reducing LST.  

Using these four indicators, the geo-preference score of every potential GSI site is 

calculated by taking the average of the normalized values of the indicators (Appendix A.3). Note 

that no GSI site is given a geo-preference score of 0, since it is assumed that reducing impervious 

surfaces will always help to mitigate UHI, even if it is small. Additionally, it is assumed that trees, 

particularly those with shading potential, are the preferred strategy for UHI mitigation over green 

open spaces and/or GSI that are not intended to retain large volumes of water (e.g., detention 

ponds) (Norton et al., 2015; Zardo et al., 2017). Finally, when taking into consideration social 

susceptibility of the communities where potential GSI are located, a higher geo-preference score 

is given to those sites in highly vulnerable areas. Highly vulnerable areas are identified by a binary 

variable and defined as those having any combination of the nominal categories of high to very 

high for social susceptibility and UHI exposure severity (refer to Chapter 3 for more details). 
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Finally, the UHI vulnerability is considered in the geo-preference score by multiplying the 

previously-calculated normalized indicator by the percentage of a 90-meter buffer area around the 

GSI deemed vulnerable to UHI. 

It should be noted that the indicators used in this study to represent the cooling benefits of 

GSI sites should only be used as general guidelines, as the cooling effects of continuous green 

spaces are highly variable and will depend largely on the patch size and the characteristics of the 

surrounding area (Connors et al., 2013; Lin et al., 2015). As such, the use of these indicators to 

represent the potential of GSI projects to mitigate UHI has two main limitations. First, it assumes 

a linear relationship between the indicators and the cooling benefits of GSI. Previous studies have 

shown that this might be a valid assumption for areas smaller than 1-2 ha, but the relationship 

becomes non-linear for larger areas (Lin et al, 2015, suggested an exponential relationship.).  

Secondly, these indicators do not account for the additional cooling benefits that a GSI 

project could provide when another nearby GSI project is also implemented. To what degree the 

cooling benefit of an area is affected by additional implementation of nearby GSI is not clear or 

well documented to date (Zhang et al., 2017). Lastly, the cooling benefits of specific types of GSI 

could be maximized by following different and more detailed guidelines for their optimal geo-

location. For example, large trees tend to provide the greatest cooling benefits by providing shade; 

thus, the recommendation is that they be placed next to buildings and/or over streets where shade 

can have the largest impact (Locke et al., 2010; Norton et al., 2015). However, implementing many 

of these guidelines at the watershed scale can be challenging, as high spatial resolution data (e.g., 

tree locations, building height, road width, etc.) are needed to assess not only the potential impact 

on land surface temperature but also the watering needs of the infrastructure itself (Norton et al., 

2015). 

 

4.2.3.4 Hydrological performance: Potential runoff retention index 

The stormwater management benefits of GSI are undoubtedly the primary driver for their 

implementation. Any PSS proposed to aid in the spatial planning of GSI should therefore reflect 

the heuristics used for stormwater design and planning and use appropriate performance indicators. 

In this study, the hydrological performance of GSI sites, and thus their potential for mitigating the 

risk of flooding, is approximated using the potential runoff retention index. The index serves as a 

proxy for the potential of different locations and types of GSI to reduce the volume of runoff 
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produced at these sites and/or from their contributing upslope area. Volume of runoff was selected 

as the metric of interest, instead of peak discharge reduction, because several well documented 

indices exist for its estimation. Additionally, considering only the dampening of peak flow in GSI 

design could have the negative effects of producing longer peak flows (due to superposition of the 

resulting hydrographs) if done without careful consideration of the hydrologic connectivity of the 

sub-watersheds (McCuen, 1979; Emerson et al., 2005; Goff & Gentry, 2006; Petrucci et al., 2013). 

Careful assessment of the potential effects caused by peak discharge reduction requires the use of 

hydrologic models and their calibration with gauge data, which is a level of complexity that the 

proposed planning framework is intended to avoid. 

The calculation of the potential runoff retention index in this study relies on two primary 

assumptions: (1) the hydrologic connectivity of the landscape can be quantified by using a multiple 

flow direction method, and (2) the concept of a design capture ratio. As discussed in Chapter 3, 

the use of the multiple flow direction method (MFD) proposed by Freeman (1991) and Quinn et 

al. (1991) [FD8] is used to represent the hydrologic connectivity of the landscape, and the metric 

of flow accumulation is used to represent the likelihood of this connectivity. In this chapter, the 

same assumptions and methods are used to integrate the concept of capture ratio.  

GSI capture ratio is a proxy metric that is used to represent the efficiency of the GSI in 

reducing stomwater runoff given its total surface area, its design ponding depths and infiltration 

rates, and the amount of runoff from contributing upslope area (Lee et al., 2012). Its calculation 

varies depending on the available information and the intended use, but it is most commonly 

represented by the ratio between the water storage capacity of the GSI and the expected volume of 

runoff that will drain to it. The capture ratio has been used in many planning and design guidelines 

for quick assessment of potential GSI sites (e.g., design guidelines in Table 4.1). In particular, it 

is most often used as a sizing criterion where the surface area of the GSI needs to be greater than 

a percentage of the total impervious area it treats. In some cities, the proposal for any new GSI 

must meet a predefined minimum threshold for the capture ratio. For example, the City of Portland, 

OR, requires that the surface area of proposed infiltration structures be at least 6-9% of the total 

drainage area (City of Portland, 2018). Hydrologic tools such as the EPA National Stormwater 

Calculator (SWC) (US EPA SWC, 2018) have also used this metric for the sizing of GSI and for 

estimation of the expected reduction in runoff by different types of GSI. In the SWC manual, 

capture ratios of 5-6% of the total contributing impervious area are recommended (p. 47). 
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Using the MDF method and the concepts discussed above, the potential runoff retention 

index of a GSI is quantified as the ratio between its surface area (e.g., number of connected cells 

[Areaij]) and its contributing drainage area. The potential runoff from the contributing drainage 

area for any GSI is calculated by adding up the runoff potential of all grid cells that are upslope 

from it. The potential runoff of each grid cell caused by 1 in of rainfall is quantified using the 

NRCS TR-55 composite curve number for connected impervious areas. Curve numbers are one of 

the most extensively used methods for estimation of the potential runoff from areas with different 

land uses, land cover, and soils. Its long history of use and investigation have shown that it is a 

reliable proxy metric to the estimation of runoff potential, although it is well known that it tends 

to overestimate the runoff volumes (Paudel et al., 2009). The curve numbers used in this study are 

those associated with the land cover categories from the National Land Cover Database (NLCD, 

2011; Homer et al., 2015), and were gathered from the most common values in the literature 

(NRCS TR-55, 1986; WSDOT, 2014). Finally, the adjusted curve numbers for a given land cover 

with a percentage of impervious area are estimated with the following equation (NRCS TR-55, 

1986):  

 𝐶𝑁𝑐 =  𝐶𝑁𝑝 +  
𝑃𝑖𝑚𝑝

100
(98 − 𝐶𝑁𝑝) (4.1) 

 

where CNc is the runoff curve number for the entire land use, CNp is the pervious runoff curve 

number and Pimp is the percent imperviousness. This equation is used when the runoff from 

impervious areas is directly connected to the drainage system or the runoff occurs as a shallow 

concentrated flow that runs over the pervious area and then into the drainage system. These two 

assumptions are usually valid for urban and/or residential land where GSI are often implemented. 

Within this framework, this equation was used to account for the different imperviousness found 

within the same land cover category, and therefore assumes that those grid cells with higher 

imperviousness will have a higher potential to produce runoff.  

Using equation 4.1, the total drainage area of a GSI (i.e., DAi) is then calculated by adding 

the runoff potential (i.e., CN) of all contributing cells as determined by the MFD. As previously 

discussed, the MFD method partitions the flow coming out of a grid cell to its downslope neighbors 

by using the slope between cells to proportionally distribute the flow. Therefore, the contribution 

of runoff from a grid cell upslope from a GSI site is calculated by multiplying the percentage of 
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contributing flow, determined by the MFD, and the CN of that grid cell. The total drainage area of 

a GSI is thus the sum of the potential runoff of all grid cells upslope.  

The proposed potential runoff retention index has several properties that make it desirable 

for the prioritization of GSI sites. By using this index, GSI sites with a contributing area with low 

tree canopy cover and a large area of impervious surfaces receive a higher geo-preference for GSI 

because these areas are assumed to be the most influential in producing larger runoff volume whose 

mitigation will result in a larger reduction in vulnerability. Additionally, GSI that are upslope in 

the watershed are preferred given the likelihood of these sites to have larger capture ratios. Upslope 

GSI sites are often desirable given their larger potential to retain and reduce the velocity and 

volume of stormwater runoff as the volumes and velocities of water in these areas are often lower 

than in downhill areas. Finally, as will be presented in the section below, this metric also gives 

higher preference to GSI that have the potential to form a connected hydrologic network of GSI 

over isolated GSI sites.  

 

4.2.4 Multi-criteria prioritization of GSI projects 

The final prioritization of the location and types of GSI is performed by using a GIS multi-

criteria decision analysis (GIS MCDA). GIS MCDA is the process of analyzing spatially explicit 

multi-criteria geographical information by coupling geographical information systems with 

methods of multi-criteria analysis (Malczewski & Rinner, 2015). GIS MCDA methods are 

commonly employed in PSS due to their ability to synthesize complex processes using proxy 

indicators and for their ability to explicitly consider the spatial component of the problem at hand. 

GIS MCDA has been widely applied to mapping the suitability of GSI implementation and for 

determining optimal spatial locations; among the most common techniques is multi-objective 

optimization algorithms based on GIS MCDA. 

Multi-objective optimization, or multi-objective decision analysis, is the process of 

framing decisions based on a model described by a set of objectives and constraints. When based 

on GIS MCDA, the most commonly used methods include those that generate non-dominated 

solutions (weighting and constraint methods), distance-based methods (e.g., goal programming 

and reference point methods), and interactive methods. (Malczewski & Rinner, 2015, provide 

more detailed descriptions of each of these methods.) The selection of which method to use is often 

dictated by the problem being solved, the planning process, and/or the need for the model to 
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consider multi-criteria and the opinions of multiple stakeholders. Regardless of the method used, 

this type of analysis enables identification of the tradeoffs and synergies among the objectives 

(often expressed as marginal costs or benefits).  

Moreover, previous studies have demonstrated the importance of engaging and involving 

stakeholders in GSI planning and design to avoid unsustainable solutions, resistance from 

stakeholders, and future rejection of GSI projects (Clean Water America Alliance, 2011; Montalto 

et al., 2013; Baptiste et al., 2015). Furthermore, one of the major challenges is considering 

competing stakeholder opinions in evaluating different GSI alternatives (Montalto et al., 2013; 

Norton et al., 2015). Multi-objective optimization presents a viable option to address these 

challenges by allowing different levels of importance to be given to different objectives and 

presenting a Pareto front of tradeoffs among multiple objectives to facilitate reaching consensus.  

Therefore, this study uses multi-objective optimization to identify the location and types 

of GSI that should be implemented to maximize runoff volume reduction from impervious surfaces 

while considering other benefits (i.e., geo-preferences) and the vulnerability of socio-ecologic 

systems. To this end, two primary concepts are used to model runoff: (1) the concept of a spatially 

distributed hydrograph, and (2) the use of a directed graph to represent the hydrologic connectivity 

of GSI.  

In general, two main conceptual approaches have been used for developing spatially 

distributed hydrographs. One approach is based on the idea of a spatially distributed unit 

hydrograph. First introduced by Maidment (1993) and then further developed and tested by Muzik 

(1996a & 1996b), this approach derives a time-area diagram. Using a single flow direction method 

to estimate the flow directions derived from a DEM, a flow distance to the outlet can be 

determined. Assigning flow velocity to each cell, a flow time to the outlet can then be calculated. 

Using these flow times, isochrones of flow time at a specified time interval can then be laid out on 

a grid and the time-area diagram for a watershed can be calculated by considering the number of 

cells between isochrones.  

The second conceptual approach for spatially distributed hydrographs conceptualizes the 

grid cells as a combination of linear reservoirs and linear channels. Introduced by Dooge (1959), 

and extended by Wang et al. (1996) to provide an analytical solution, this approach divides a 

watershed into sub-watersheds, each assumed to have an approximately uniform precipitation 

excess (i.e., volume of rainfall available for direct surface runoff) and geographical conditions. 
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The spatially distributed hydrograph is then represented by the numerical convolution of the 

hydrologic response of each cell and the unequal inputs to each cell. This concept has been the 

foundation of many surface rainfall-runoff distributed models (Zellner et al., 2016), including the 

EPA Soil and Water Assessment Tool (SWAT) model (US EPA SWAT, 2018). 

The concept of the spatially distributed hydrograph is used in this study to estimate the 

potential reduction in volume and peak discharge of stormwater runoff caused by the hydrologic 

connectivity of GSI projects. The assumption is that if the convolution of the hydrographs of each 

grid cell represents the hydrologic response at the outlet of the watershed, maximizing the 

hydrologic connectivity of the GSI or the capacity of the GSI network would result in the greatest 

improvement at the watershed scale. In other words, the retention of runoff by GSI in series would 

maximize their efficiencies (i.e., higher capture ratios) and therefore provide the largest retention 

of runoff volume. This idea has been proposed and explored by previous studies on the optimal 

spatial allocation of retention basins (Travis et al., 2008; Shen et al., 2013; Sebti et al., 2016). 

Furthermore, recent literature reviews have highlighted the need to consider the hydrologic 

connectivity of GSI sites in the development of distributed hydrologic models that could scale the 

impact of GSI to the watershed scale (Jefferson et al., 2017; Golden et al., 2017). However, to the 

author’s knowledge, no other studies have integrated this concept within a multi-objective 

optimization framework for spatially explicit planning of GSI. 

Using the concept of spatially distributed hydrographs, the hydrologic connectivity of the 

GSI, and thus the added benefits due to superposition of GSI hydrographs, can be represented by 

a directed graph. Directed graphs are a common method used to represent flow networks where 

the edge connecting two nodes is usually assigned a flow capacity and the nodes connected by this 

edge are distinguished between sources and sinks (see Saha Ray, 2013). Commonly used to 

represent transportation networks, directed graphs are useful for simplifying complex spatial 

processes by using a matrix to represent the transfer of flow between sources and sinks. Such 

representation of the spatial problem enables the use of linear and non-linear optimization 

techniques, a desirable feature in any multi-criteria analysis due to the low computational cost and 

convergence of these methods. The use of a directed graph to represent the hydrologic connectivity 

of the GSI assumes that each GSI site is a node in the graph and the edges between nodes represent 

the reduction in the volume of stormwater runoff to downslope GSI by implementing GSI upslope. 

More specifically, the reduction in the runoff volume to a GSI located downslope of another GSI 
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is proportional to its surface area (i.e., potential runoff retention index) (see Appendix A.4 for an 

illustrative example). Finally, the directed graph of GSI hydrologic connectivity is represented by 

a matrix in which each row is a potential GSI and each column contains the potential reduction in 

runoff volume draining to this GSI (i.e., surface area of GSI that are upslope). This matrix is 

subsequently referred to as CB (i.e., connectivity benefit). 

 

4.2.4.1 Optimization formulation 

In order to simplify the discussion of the optimization formulation, in this section a GSI 

associated with Areaijk (Section 4.2.2.) will be referred to by simply using the subscript i. It is 

assumed that the user/stakeholder has already decided which type of GSI will be considered in the 

optimization, has extracted their spatial arrangement and surface area from the data tree structure 

(Section 4.2.2), and has calculated their respective upslope drainage areas. Mathematically, this 

problem can be represented as: 

  

 max
𝑥

∑ 𝑥𝑖 ∗ 𝐷𝐴𝑖

𝑁

𝑖=0

 + ∑ 𝑦𝑖

𝑁

𝑖=1

 (4.2) 

 𝑇𝑜𝑡𝑎𝑙 𝑎𝑟𝑒𝑎 =  𝐵𝑢𝑑𝑔𝑒𝑡 (𝐵𝑐) =  
∑ 𝐴𝑟𝑒𝑎𝑖 ∗ 𝑥𝑖

𝑁
𝑖=1

∑ 𝐴𝑟𝑒𝑎𝑖
𝑁
𝑖=1

≤ 𝐵𝑐 (4.3) 

 𝐶𝑎𝑝𝑡𝑢𝑟𝑒 𝑅𝑎𝑡𝑖𝑜 𝐿𝑜𝑤𝑒𝑟 𝐿𝑖𝑚𝑖𝑡: (𝐷𝐴 ∗ 𝑦𝑖 − 𝐶𝐵 ∗ 𝑥𝑖) ∗ 𝛼 ≤ 𝐴𝑟𝑒𝑎𝑖 ∗ 𝑥𝑖 (4.4) 

 𝐶𝑎𝑝𝑡𝑢𝑟𝑒 𝑅𝑎𝑡𝑖𝑜 𝑈𝑝𝑝𝑒𝑟 𝐿𝑖𝑚𝑖𝑡: (𝐷𝐴 ∗ 𝑦𝑖 − 𝐶𝐵 ∗ 𝑥𝑖) ≥ 𝐴𝑟𝑒𝑎𝑖 ∗ 𝑥𝑖 (4.5) 

 𝑆𝐸 ∗ 𝑦𝑖 ≤ 1 (4.6) 

 𝑥𝑖 −  𝑦𝑖 ≤ 0 (4.7) 

 0 ≤  𝑥𝑖  ≤ 1 (4.8) 

          𝑦𝑖 ≥ 0 (4.9) 

 

where xi is the decision variable that represents the percentage of the area for a particular site 

(i.e.Areaijk) that will be used to implement the GSI, N is the total number of spatial arrangements 

of GSI being considered, DAi represents the total upslope drainage area of GSI i, Bc is the 

percentage of the total available area suitable for implementing GSI that can be used, CB is the 

hydrologic connectivity matrix that represents the reduction in drainage area due to 

implementation of GSI networks,  is the required capture ratio, and SE is a matrix that prevents 
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GSI from sharing the same grid cells in their spatial arrangements (described in more detail below). 

Equation 4.5 assumes that GSI with a capture ratio larger than 1, which implies accumulating less 

runoff volume than their intended design storage capacity, are not desirable. 

The binary variable yi is used to implement the capture ratio constraint when an infiltration 

or retention GSI is implemented (i.e., yi = 1). Lastly, an additional constraint can be added when 

different sizes and spatial arrangements of GSI can be considered for implementation within the 

same Areaij. Consider, for example, the scenario in which an entire Areaij could be used for the 

construction of a wetland, or a smaller portion can be used to implement a number of smaller bio-

retentions in series, both of which are defined by a spatial arrangement of grid cells. In this 

scenario, if the wetland is considered for implementation, the option to implement smaller bio-

retentions has to be disregarded as the area (or shared space) has already been committed. To 

account for this problem of sharing the same space, the constraint shown in Equation 4.6 is added. 

The matrix SE in this constraint [Equation 4.6] represents the competition for space between 

different GSI. Each row of SE is associated with a potential GSI and a one is allocated to the 

columns of said row for each other GSI with the same grid cells in their spatial arrangement. As 

such, the total sum of each row should be equal to one, implying that only one of the GSI that 

share grid cells in their spatial arrangements can be implemented (e.g., if the wetland is 

implemented, the smaller bio-retentions cannot be considered).  

The above formulation maximizes the interception of runoff from impervious surfaces 

(represented by the drainage area calculated using the adjusted CN values [Equation 4.1]) given a 

threshold of capture ratio and total area to be used to implement GSI projects. Intuitively, Equation 

4.2 maximizes the capture of runoff from areas upslope of the GSI while ensuring that the capture 

ratio design criteria are met. While xi represents the percentage of a GSI’s area that will be used, 

its multiplication by DAi in Equation 4.1 translates to maximizing potential runoff capture. The 

use of CN for the calculation of DAi [Equation 4.1] identifies those upslope areas from the GSI 

that have the potential to produce the largest volumes of runoff. Maximizing the sum of DAi * xi 

in Equation 4.2 therefore can be interpreted as finding which GSI sites have the potential (enforced 

by the capture ratio constraint) to provide the largest reduction in runoff volume. However, by 

considering the hydrologic connectivity of the GSI using the matrix CB, the formulation also finds 

the network of GSI that has the largest runoff reduction potential. Lastly, the closer xi is to one, the 

higher the GSI capture ratio and therefore the higher the efficiency.  
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Up to this point, the optimization formulation has only considered the stormwater 

management benefits of infiltration structures. In order to consider the other benefits and geo-

preferences of GSI, the 𝜖-constraint method is used. Introduced by Haimes et. al. (1971), the 𝜖-

constraint method is a commonly used approach in multi-objective optimization in which one of 

the objectives is optimized while the others are restricted to a user-specified value (𝜖). The main 

advantages of this method are its applicability to convex and non-convex problems and the 

elimination of the need for a normalization approach and weights to represent importance given to 

the different objectives.  

For each geo-preference considered as part of the multi-criteria analysis, the following 

constraint is added to the optimization formulation: 

 ∑ 𝑔𝑖𝑘 ∗ 𝑥𝑖

𝑁

𝑖=1

 ≥  𝜆𝑘𝐺𝑘 (4.10) 

 

where gik is the geo-preference score of GSI i associated with the criteria k, Gk is the maximum 

score that can be achieved for this criterion, obtained by solving the optimization problem with the 

associated geo-preference scores, and k is the percentage of that maximum value that is required 

to be met. Conceptually, this approach forces the optimization to select areas that might not be 

hydrologically optimal but that have great potential to meet some of the other criteria. By using 

the constraints of the original formulation when maximizing the total score associated with a 

particular geo-preference, the capture ratio constraint is also invoked.  

One of the most significant limitations of the 𝜖-constraint method is that the range of 

feasible values for the objectives used as constraints needs to be known in advance. Furthermore, 

in order to find the Pareto front, a thorough investigation of the solution space is needed with many 

secondary objectives as constraints. If the range of feasible solutions is not known by the user, the 

use of the 𝜖-contraint method will give an optimal solution for the user-specified constraint values, 

but cannot ensure that said solution is fully Pareto optimal. As a solution to this problem, it is often 

recommended that the user begins exploration of the solution space by attempting to find a feasible 

solution using the bounds of the secondary objectives. This ensures that at least the anchor points 

(i.e., the optimal solution with only one additional secondary objective) of the Pareto front are 

found. 
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Finally, in this optimization formulation the variable zi [Equation 4.11] is used to represent 

those GSI that do not have to meet the capture ratio constraint, such as trees, or to consider the use 

of these areas for other purposes (e.g., recreational spaces, open green areas, etc.). While most 

engineered GSI are designed and intended for the retention and infiltration of stormwater runoff, 

trees are often a more desirable alternative to reduce UHI and provide ecological services. 

Therefore, the inclusion of trees in the optimization formulation preserves areas with a high need 

to receive tree benefits by maximizing potential runoff reduction using other areas first. 

Additionally, the use of trees can reduce the potential runoff from contributing upslope areas to 

GSI sites (i.e., a lower value of CN and thus a lower DAi [Equation 4.1]) that initially do not meet 

the capture ratio constraint. By adding trees in upslope areas, these GSI sites can become feasible 

options. 

For non-engineered GSI such as trees, the potential runoff reduction benefit 𝜑 [Equation 

4.11] is calculated using a rainfall interception rate (i.e., storage capacity) obtained from field 

observations, empirical models, and/or physical models. In this study, the storage capacity of these 

non-engineered GSI is computed using curve numbers from the literature (Sample, et al., 2001; 

Engel & Hunter, 2009; Ahiablame et al., 2012 & 2013; Liu et. al., 2015; WERF, 2017). 

Lastly, depending on the spatial planning scale, it might be desirable to restrict the use of 

Areaij to only one type of GSI (e.g., rain gardens or trees). To account for this restriction, an 

additional constraint [Equation 4.13] needs to be considered. Mathematically, these modifications 

to the optimization formulation can be represented by: 

 max
𝑥

∑ 𝑥𝑖 ∗ 𝐷𝐴𝑖

𝑁

𝑖=1

+ ∑ 𝑦𝑖

𝑁

𝑖=1

+ ∑ 𝑧𝑖 ∗

𝑁

𝑖=1

𝜑 ∗ 𝐴𝑟𝑒𝑎𝑖 (4.11) 

 
∑ 𝐴𝑟𝑒𝑎𝑖 ∗ 𝑥𝑖

𝑁
𝑖=1 +  ∑ 𝐴𝑟𝑒𝑎𝑖 ∗ 𝑧𝑖

𝑁
𝑖=1

∑ 𝐴𝑟𝑒𝑎𝑖
𝑁
𝑖=1

≤ 𝐵𝑐 (4.12) 

 ∑ 𝑔𝑥𝑖𝑘 ∗ 𝑥𝑖

𝑁

𝑖=1

+  ∑ 𝑔𝑧𝑖𝑘 ∗ 𝑧𝑖

𝑁

𝑖=1

 ≥  𝜆𝑘𝐺𝑘 (4.13) 

 𝑦𝑖 + 𝑧𝑖 ≤ 1 (𝑜𝑝𝑡𝑖𝑜𝑛𝑎𝑙) (4.14) 

 

where zi is the percentage of Areaij used by the non-engineered GSI, 𝜑 is the percentage of rainfall 

interception, and gxik and gzik represent the geo-preference scores associated with criteria k 

[previously presented in Equation 4.12] for infiltration structures and trees, respectively. 
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The use of Equation 4.14 as a constraint in this optimization formulation should be given 

careful consideration given the main goal of the analysis and the spatial extent and type of GSI 

under consideration. This constraint prevents the use of a single GSI location (Areai) to be used 

simultaneously for infiltration structures and trees. When planning a large spatial extent (e.g., 10-

20 km2 watershed), the goal of the multi-objective optimization should be to identify the Areai that 

have the largest potential to provide the desired benefits (e.g., reduction of runoff or mitigation of 

UHI), with less concern for specific types and spatial arrangements of GSI. When the spatial scale 

of analysis focuses on smaller regions (i.e., identified Areai at the larger scale, such as 1-2 km2 

watersheds), this constraint becomes more important to identify a specific type of GSI and where 

should it be located. The available space to implement different types of GSI within the same Areai 

also becomes limited. For example, the implementation of both trees and retention ponds within a 

single grid cell in a 3-meter grid is unlikely. 

 

4.2.4.2 Weighting scheme 

To provide a high level of flexibility in the different spatial planning criteria, two methods 

are used to account for differences in stakeholder opinions and preferences: (1) sum of weights, to 

consider the importance given to mitigation of flooding versus UHI, and (2) multiplication by a 

preference factor to reflect the degree of preference given to sites that meet planning criteria and/or 

are located in areas of high social or ecologic susceptibility. 

The sum of weights approach is implemented using four different weights for: (1) the 

reduction of total volume of runoff at the watershed outlet (WDA), (2) the mitigation of UHI (WUHI), 

and (3,4) the mitigation of urban heat island and flash flooding in the most vulnerable communities 

(WUHIV, WFFPI, respectively). To ensure that the sum of the weights equal one, the weights are 

calculated as follows: 

 𝑊𝐹𝐹𝑃𝐼 = (1 − 𝑊𝐷𝐴) ∗ 𝑊𝑓𝑓𝑝𝑖 (4.15) 

 𝑊𝑈𝐻𝐼𝑉 =  (1 − 𝑊𝐷𝐴) ∗ (1 −  𝑊𝑓𝑓𝑝𝑖) (4.16) 

 𝑊𝑈𝐻𝐼 = 𝑊𝐷𝐴 ∗ (1 −  𝑊𝑓𝑓𝑝𝑖) (4.17) 

 𝑊𝐷𝐴 , 𝑊𝑓𝑓𝑝𝑖  ∈ [0, 1] (4.18) 

 

where WDA represents the importance given to maximization of runoff reduction at the watershed 

outlet, and thus gives less importance to the location of vulnerable communities, and Wffpi 
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represents the relative importance given to the mitigation of flash flooding over the mitigation of 

UHI. These weights are incorporated into the optimization formulation through the parameter k 

[Equation 4.13], which is used to constrain the percentage of the maximum attainable score for a 

given geo-preference. This sum of weights method is chosen because: (1) it is intuitive and easily 

interpretable by the stakeholders, (2) it shows the tradeoffs that exist when accounting for different 

objectives and (3) it reduces the number of potential combinations of weights that could be used. 

The second method for representing stakeholder preferences is multiplication by a 

preference factor (i.e., a penalty weight), which represents how much one site is preferred over 

others given its compliance with planning criteria and siting in areas of high social and ecologic 

susceptibility. As such, the magnitude of the factor can be interpreted as the relative importance 

given to these criteria over those associated with the performance of the GSI (i.e., mitigation 

potentials), as shown below: 

 𝑤𝑔𝑖,𝑁𝑜𝐼𝑁𝐹 =  ∑ 𝑔𝑖,𝑘

𝐾

𝑘=1

∗ (1 − 𝑊𝐼𝑁𝐹,𝑘) ∗ 𝐹𝑘 (4.19) 

 𝑤𝑔𝑖,𝐼𝑁𝐹 =  ∑ 𝑔𝑖,𝑘

𝐾

𝑘=1

∗ 𝑊𝐼𝑁𝐹,𝑘 ∗ 𝐹𝑘 (4.20) 

 𝑊𝐼𝑁𝐹,𝑘 ∈ [0, 1] (4.21) 

 

where wgi,k is the multiplier associated with GSI site i and criteria k, gi,k is the normalized geo-

preference score, Fk is the preference factor used for criteria k (i.e., large value relative to the range 

of gk), and WINF,k represents the marginal preference for infiltration structures over non-infiltration 

structures at GSI site i (e.g., the marginal benefit of having trees versus rain gardens when 

considering improvement to human health or ecologic restoration).  

By separating these criteria from the geo-preference indicators associated with the 

performance of the GSI, the approach rewards sites with a high geo-preference score while meeting 

the performance constraints (specified by k [eq. 4.13]). Moreover, the approach is 

methodologically flexible, equitable, and transparent, characteristics argued as crucial to any 

participatory process (Geertman & Stillwell, 2012; Nordstrom et al., 2012; Kuller et al., 2017).  

One limitation of the proposed weighting scheme is that the magnitude of the preference 

factor [Fk] needs to be large enough to account for the range of values associated with the objective 



104 

 

function. In other words, the preference factor has to be large enough that when multiplied by the 

values of the objective function a clear preference is given to those GSI that meet the intended 

criterion. The selection of the magnitude of the preference factor is therefore a trial-and-error 

process. 

An additional limitation of the presented weighting scheme is that it does not guarantee 

that the optimized solutions will be Pareto optimal if: (1) the implementation of different types of 

GSI in the same space (i.e., Areai) is not allowed [Equation 4.14] and (2) two or more secondary 

objectives (i.e., at least two 𝜖-constraints) are considered at the same time. This limitation is 

created because the weighting method requires that the sum of the weights has to equal one, and 

the use of Equation 4.14 prevents simultaneous maximization of multiple benefits gained by 

implementing different GSI in the same Areai.  

This limitation is most significant in the scenario where a small percentage of the area to 

implement GSI is considered [Equation 4.12] and both the vulnerability to flash flooding and UHI 

are considered as part of the analysis. When these two objectives are considered, the 

implementation of infiltration structures or the planting of trees will depend largely on the 

importance given to the hazard mitigation goals. Therefore, if the benefits associated with 

implementing GSI in Areai are restricted to only those provided by one of these two types of GSI, 

the current weighting method would produce a linear tradeoff between hazard mitigation 

objectives. Depending on the spatial scale of analysis, and the GSI being considered, such tradeoff 

might not reflect the true Pareto front.  

Finding the true Pareto front in this case would require relaxing the requirement that the 

sum of the weights has to equal one. For low levels of GSI implementation, it might be possible 

to find a solution that achieves the full benefits associated with these secondary objectives 

[Equation 4.13 is met when WUHIV = 1, and WFFPI = 1]. This process, however, introduces a large 

computational cost, particularly for planning problems that consider a large number of solutions, 

and disregards the relative importance given by the stakeholders to each objective. Thus, rather 

than trying to find the exact Pareto front, this weighting method allows for a rapid representation 

of the solution space with Pareto optimal anchor points. Once consensus has been built among the 

stakeholders about which scenarios are worth exploring in more detail, a fuller consideration of 

the weights can be given to find the exact Pareto optimal solutions. 
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4.2.4.3 Testing and sensitivity analysis 

The last step of the methodology involves testing how well the optimization results perform 

at stormwater capture via a hydrologic model, as well as conducting a sensitivity analysis of the 

most significant parameters in the optimization formulation. For this step, the LandLab open-

source toolkit (Bates et al. 2010; Hobley et al., 2017) is used to calculate the peak discharge and 

runoff volume associated with the prioritized GSI projects. LandLab uses an overland shallow 

water two-dimensional storage cell inundation model to derive a simplified and explicit solution 

for the routing of overland flow. The model considers water acceleration (thus reducing the rapid 

reversals of water flow referred to as chequerboard oscillations) and propagation of the shallow 

water wave. The model was extended by De Almeida et al. (2012) to improve stability in low 

friction areas and since then has been used in several flooding studies (De Almeida, et al., 2013; 

Sampson et al., 2013). This model was selected for this study because of its similarity to the 

hydrologic assumptions of the prioritization framework (i.e., multiple flow directions), its 

flexibility to manipulate the properties of grid cells as needed, and its low computational cost. 

Landlab uses a topology of grid cells represented as nodes and the flow of water between grid cells 

is represented by links. This implementation allows routing in multiple flow directions and 

estimation of results by grid cell, a desirable feature for analyzing the reduction of runoff in 

specific areas (e.g., vulnerable areas).  

In this study, the LandLab overland flow model is modified to account for differences in 

the roughness of different land covers and their initial abstractions (i.e., rainfall depth after which 

runoff begins) are estimated using the curve number method. Different Manning roughness 

coefficients are assigned to the grid cells using typical values from SWMM for pervious (=0.1) 

and impervious (=0.01) surfaces and weighting the values by the percent of imperviousness (e.g., 

80% impervious would result in a =0.028). Additionally, curve numbers are assigned to each grid 

cell using Equation 4.1 and the storage capacity (S) and initial abstractions (Ia = 0.2*S) of the grid 

cell are calculated. Therefore, it is assumed that until the initial abstractions are met a grid cell will 

not generate runoff.  

It is acknowledged that this is a significant simplification to the process of infiltration, not 

only because the soil infiltration rates are ignored, but also because it treats rainfall and incoming 

runoff produced by upslope cells equally. However, this method allows consideration of the 

differences in timing that can occur because of these infiltration processes without adding any 
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computational cost (e.g., as opposed to solving Green and Ampt’s [1911] equations for each grid 

cell at each time step).  

Finally, the modeling of infiltration structures is done by assuming a storage capacity of 2 

inches and a Manning’s roughness coefficient of  = 0.1. The properties of the grid cell in which 

GSI is considered for implementation are changed by using the area average value of the existing 

conditions and the percentage of the grid cell [Areai] dedicated to implementation of GSI as 

obtained from the optimization results (i.e., xi). 

Next, the sensitivity analysis considers: (1) the impact of a Euclidian distance threshold 

between grid cells to limit the hydrologic connectivity and contributing drainage area of distant 

GSI sites, (2) the use of different values to represent the potential of infiltration structures to 

mitigate urban heat island, and (3) the potential of trees to prevent stormwater runoff (i.e., volume 

of rainfall intercepted by trees). The sensitivity to potential UHI mitigation of different types of 

GSI considers common guidelines found in the literature. As previously discussed, trees have 

much higher mitigation potential to land surface temperatures than vegetated open spaces (Zheng 

et al., 2014; Norton et al., 2015; Zardo et al., 2017). However, there is very little evidence as to 

the marginal benefits associated with this difference. In a recent article by Zardo et al. (2017) the 

authors present a framework for assigning scores of cooling capacity to different combinations of 

tree canopy coverage, land cover, and total surface area. The results suggest that the cooling 

capacity of grass and other vegetated areas can be between 0.1 – 0.3 of those areas with high tree 

canopy coverage. These suggestions align with the differences in land surface temperatures (LST) 

observed in this study between areas with impervious surfaces greater than 50% and no trees versus 

higher tree canopy percentage (Figure B.4 in Appendix B). Therefore, the sensitivity analysis 

compares the results with the cooling capacity of infiltration structures to be 10% or 30% of trees 

[parameter gxik = 0.1-0.3 * gzik in Equation 4.13]. 

Similarly, no clear guidelines exist to suggest the percentage of rainfall that can be captured 

by trees, or cluster of trees, in urban areas. Studies that have investigated this question have 

reported the results as the interception of annual rainfall volume, not at the level of individual 

storm events (e.g., Xiao et al., 2002; Inkiläinen et al., 2013). Furthermore, the results of the studies 

have varied significantly since the capacity of trees to capture rainfall and slow runoff will depend 

on many intrinsic properties of different tree types (e.g., leaf area index, tree canopy area, height, 

trunk width, etc.). Nevertheless, trees have been represented in previous studies (e.g., Mccutcheon, 
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2003; Fan et al., 2013; see NRCS TR-55, 1986) using curve number values ranging from 65 to 77. 

When compared to typical curve number values used to represent engineered GSI (i.e., 35-40) the 

capacity of trees to produce runoff is approximately twice the potential of infiltration structures. If 

the storage capacity is compared using these curve numbers, the rainfall interception capacity of 

trees has an upper limit of 20% of engineered GSI. Therefore, the sensitivity analysis considers 

5%, 10% or 20% rainfall interception ratios for trees [parameter 𝜑 in Equation 4.11].  

 

4.3 Case studies – Three watersheds 

To test the feasibility, utility, and robustness of the proposed approach for prioritization of 

GSI projects, three watersheds with different areas and land cover distributions are considered as 

case studies. The three watersheds are located in the City of Dallas, TX, the City of Philadelphia, 

PA, and Baltimore County, MD (Figure 4.1; Figure B.5, B.6 and B.7 in Appendix B). The 

watershed located in Baltimore County, MD, is known as Dead Run 5 (DR5) watershed and is a 

tributary of the Dead Run watershed located on the outskirts of Baltimore City. The 1.6 km2 

watershed has mixed land cover with 36% impervious areas, and has mostly residential land use. 

Because of its inclusion within the Gwynns Fall watershed, which is part of the Baltimore 

Ecosystem Study Long Term Ecological Research site (BES LTER [https://beslter.org/]), DR5 has 

been the subject of numerous previous studies (e.g., Smith, 2010; Smith et al., 2013; Miles et al., 

2014 & 2015; Bhaskar et al., 2016). This provided high resolution data for the locations identified 

as potential sites for implementation of rain gardens (i.e., infiltration structures) and a calibrated 

SWMM model (provided by Tetra Tech) to compare the results of the overland flow model. As 

such, in DR5 the prioritization of trees is not considered. Furthermore, UHI mitigation is also not 

considered because the UHI hazard exposure severity ranges from very low to low in this 

watershed. 

The watersheds located in Philadelphia, PA, and Dallas, TX, are also mostly residential 

and have high needs for GSI implementation based on the analyses presented in previous chapters. 

The watershed in Philadelphia has a total area of 11 km2 with 76% impervious area and 1.6% tree 

canopy, along with a high density of planned PWD GSI projects. The watershed located in Dallas, 

TX, is a “hot spot” for vulnerability to both urban heat island and flooding. This is the largest of 

the three watersheds, with an area of 24.8 km2, including 34% impervious areas and 28% tree 

canopy. Table 4.2 summarizes the properties of each watershed. 

https://beslter.org/
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Lastly, the analyses presented in the section below assume that a capture ratio of 𝛼 = 8% 

is required for infiltration structures [Equation 4.4], that the rainfall interception capacity of trees 

is 𝜑 = 5% [Equation 4.11], and the urban heat island mitigation potential of infiltration structures 

is 10% of UHI mitigation for trees (i.e., 10% of the urban heat island mitigation geo-preference 

score of a site) [gxik = 0.1 * gzik in Equation 4.13]. It is also assumed that the hydrologic connectivity 

of sites extends to the total area of the watershed (i.e., infinite hydrologic connectivity). An infinite 

hydrologic connectivity implies that the potential runoff of a grid cell (i.e., flow accumulation) is 

equal to the potential runoff produced by said grid cell plus the allocation of runoff from all upslope 

grid cells as determined by the MFD method. 

 

Table 4.2: Summary of the most prevalent features for the case study watersheds 

 

 

 

 

Figure 4.1: Spatial extent and elevation of the three case study watersheds. 

 

Watershed Area (km
2
) Imperviousness (%) Tree canopy (%)

Potential area for GSI

 (% of watershed area)

Dead Run 5

(Baltimore, MD)
1.60 36.0 22.0 19.8

Sub-watershed of PWD 

CSO service area 

(Philadelphia, PA)

11.0 74.0 1.60 17.6
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24.8 34.0 28.0 21.8
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4.4 Results and discussion 

The results of this study include (1) evaluation of the optimization solutions with the 

overland flow model for the DR5 watershed (the only watershed for which a validated SWMM 

model was available), (2) the analysis of spatial tradeoffs and synergies that exist between potential 

GSI projects when considering different hazard mitigation goals in the Philadelphia and Dallas 

watersheds, and (3) a sensitivity analysis of these spatial patterns. The analysis of spatial tradeoffs 

and synergies that exist between potential GSI projects and hazard mitigation goals was only 

completed in the Philadelphia and Dallas watersheds that have more heterogeneous spatial patterns 

of flash flooding and urban heat vulnerability than those observed in DR5. Furthermore, the larger 

spatial extent of these two watersheds provides a more complete representation of the Pareto fronts 

for different levels of GSI implementation. 

 

4.4.1 Evaluation of optimized solutions with the overland flow model in DR5 watershed 

Evaluation of the GSI prioritization in DR5 with the overland flow model followed two 

main steps: (1) a comparison of the discharge at the watershed outlet obtained from the overland 

flow model and the EPA SWWM model, and (2) evaluation of the hydrologic response (i.e., peak 

flow discharge and runoff volumes) produced by the optimized spatial allocation of infiltration 

structures in the watershed for different budget constraints (i.e., total available area to implement 

GSI). 

 

4.4.1.1 Assessment of overland flow model 

Using the EPA SWMM model provided by Tetra Tech, continuous design storms 

associated with a 2-year return frequency and storm durations of 5, 15, 30, and 60 minutes, as well 

as 2 hours, were evaluated to identify the critical storm for this return period. A 2-year design 

storm is most often used for the design of small GSI (see design manuals in Table 4.1). For a 2-

year return period, the 30-minute storm with a rainfall intensity of 2.1 inches/hour produced the 

largest peak discharge, with a value of 38.4 cubic feet per second (cfs). This 2-yr, 30-min 

continuous design storm was then used as inputs into the overland flow model in order to obtain a 

discharge curve that could be compared to the SWMM results. 

To assess the match between the models, the Nash–Sutcliffe model efficiency coefficient 

(E) and the coefficient of determination (r2) were used (for reference see Krause et al., 2005) to 
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compare discharges at the watershed outlet. The Nash–Sutcliffe efficiency metric quantifies the 

sum of squared differences between the predicted and observed values normalized by the 

variations in the observed values. The coefficient of determination (r2) is used to quantify how 

much of the observed dispersion in the discharge values is due to the prediction model and the 

observed discharge values. For comparison purposes with the simplified overland flow model, the 

results obtained from the SWMM model are assumed to be the true representation of the 

hydrologic response of DR5 to the evaluated design storm (i.e., observed values).  

The resulting values for the Nash–Sutcliffe model efficiency coefficient and coefficient of 

determination for the hydrographs were 0.9 and 0.91, respectively. Figure 4.2 shows that the 

largest discrepancy between the models was the magnitude and timing of the peak discharge, 

which occurs at a later time in the simplified overland flow model. Nevertheless, these results 

suggest that both models have similar results and therefore that the simplified overland flow model 

can reasonably represent hydrologic responses. 

 

 

Figure 4.2: Resulting hydrographs from SWMM and the modified overland flow model for a 2-

year, 30-minute continuous storm (intensity 2.1 inches/hour). 
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4.4.1.2 Assessment of the hydrologic response of the optimized allocation of GSI 

Having tested the ability of the overland flow model to represent hydrologic response, the 

next step was to investigate the hydrologic response of the optimized GSI implementation 

scenarios. Prioritization of potential sites for infiltration structures was done by considering each 

suitable grid cell to be a potential GSI (i.e., GSI surface area is equal to grid cell size [100 square 

meters]) and maximizing the reduction in total runoff volume at the watershed outlet and the total 

runoff volume to those areas with higher vulnerability to flash flooding. At the spatial scale of 

DR5, social susceptibility was not observed to be significantly different between areas and thus 

the definition of the most vulnerable areas considered only residential buildings that had high to 

very high exposure severity to flash flooding. In addition, given the small extent of the watershed, 

a capture ratio of 1% is used. The identified vulnerable areas can be observed in Figure 4.3.  

The multi-objective optimization of GSI locations in DR5 was completed for eight 

different budget constraints (i.e., 5% to 20% of the area available for infiltration structures). 

Additional scenarios were not evaluated as it was observed that no additional potential reduction 

of flow accumulation (i.e., runoff volume) in the most vulnerable areas was achievable. Figure 4.3 

presents the Pareto fronts for each of the implementation scenarios and Figure 4.4 shows the 

locations of the prioritized GSI for the scenarios in which 5% and 10% of the total GSI area was 

used. The results suggest that for a low level of GSI implementation there is a tradeoff between 

reducing volume of runoff at the outlet and the reduction of runoff volume in the vulnerable areas. 

Moreover, it can be seen that the spatial locations of the prioritized GSI projects are distinctly 

different. As the area used for GSI is increased, the competition between the objectives becomes 

less prevalent up to the point in which no additional implementation of GSI would produce further 

benefits in the vulnerable areas.  

Because the highest level of competition between objectives was observed for lower levels 

of implementation, the optimal solutions for 5% and 10% of the GSI area were then used as inputs 

to the overland flow model. The peak discharge at the watershed outlet and runoff volumes in the 

vulnerable areas (i.e., reported per grid cell) were then calculated as presented in Figures 4.5 and 

4.6. It can be seen that the hydrologic results show similar patterns to the tradeoffs observed in the 

optimization results. As discussed in the methodology section, the reduction of flow accumulation 

from the most impervious areas and the hydrologic connectivity of the GSI are assumed to have 

the largest impact on the peak discharge given the spatially distributed hydrographs. The results 
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presented in Figure 4.5 suggest that this is a reasonable assumption for this watershed and overland 

flow model.  

When analyzing peak discharge in Figure 4.5, the optimization formulations that weighted 

the reduction of flow accumulation to the watershed outlet more heavily had the lowest values of 

peak discharge, as expected. However, it can also be noted that when the implementation level of 

infiltration structures was increased to 10%, the differences in peak discharge between 

prioritization scenarios was reduced. In fact, other than the optimization formulation in which the 

maximum achievable reduction of flow accumulation to the vulnerable areas was used as a 

constraint, all other prioritization scenarios had similar peak discharges. This relationship is 

suggested in the Pareto fronts given the small values obtained for the total reduction of flow 

accumulation when the optimization formulation was required to meet 100% of the achievable 

reduction of flow accumulation to the vulnerable areas. For all other scenarios, as the level of GSI 

implementation increased, the difference between flow accumulation reduction at the watershed 

outlet became negligible, thus suggesting a similar peak discharge. 

Analyzing the runoff volume reduction in the vulnerable areas, similar conclusions can be 

made. Figure 4.6 shows that the total runoff volume reported by the overland flow has a positive 

relationship with the prioritization scenarios that used a higher weight for reduction of flow 

accumulation in the most vulnerable areas. Moreover, it can be observed that the difference in total 

runoff volume between scenarios that consider only the runoff to the outlet and the scenario that 

considered only runoff to vulnerable areas increased with higher levels of GSI implementation. 

The results presented in Figure 4.6 and the Pareto fronts presented in Figure 4.3 suggest that 

neglecting vulnerability in prioritizing infiltration structures could aggravate disparities unless a 

minimum level of GSI implementation is met. For DR5 watershed, the optimization results suggest 

that this level would be 0.0632 km2, or 4% of the total area of the watershed (i.e., 20% of the 

available area for GSI implementation). 

Note that while Figures 4.3, 4.5, and 4.6 suggest a tradeoff between the optimization 

objectives, the magnitude of these tradeoffs are significantly different. The maximum percent 

difference between peak discharges was ~ 3% when only considering reduction of flow 

accumulation to the watershed outlet [WFFPI = 0] versus the vulnerable areas [WFFPI = 1]). In 

addition, the mean percent difference between WFFPI = 0 and other weightings of the objectives 

were 1% and 0.2% when using 5% and 10% of the total GSI area. On the other hand, the mean 
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percent difference between the total volume of runoff in vulnerable areas was 50% (standard 

deviation of 10%) for WFFPI = 0 versus WFFPI = 1. Intuitively, these results suggest that 

prioritization of GSI locations for the most vulnerable communities has a small impact on 

stormwater benefits at the outlet. On the other hand, disregarding vulnerable areas in GSI planning 

can have a significant impact on hazard impacts.  

 

Figure 4.3: Left: Location of the most vulnerable areas in DR5. Right: Pareto fronts for DR5 with 

different percentages of GSI implementation (symbols) and weightings used for WFFPI (i.e., percent 

of maximum achievable reduction in flow accumulation to vulnerable areas) [Light gray: WFFPI = 

0; Black: WFFPI = 1]. 
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Figure 4.4: Spatial representation of prioritized infiltration structure locations with no 

consideration of vulnerability (left) and full consideration of vulnerability (right). Top row 

represents the prioritization when considering only 5% of the available area and the bottom row 

shows results for 10% of the available area. 
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Figure 4.5: Observed relationship between the optimized flow accumulation values and the peak 

discharge reported by the overland flow model. The color of the markers in the plot symbolize the 

weights used for WFFPI (i.e., percent of the maximum achievable reduction in flow accumulation 

to vulnerable areas) [Light gray: WFFPI = 0; Black: WFFPI = 1]. Additionally, squares represent 5% 

of available area for GSI; circles represent 10% of available area for GSI. 
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Figure 4.6: Total runoff volume in vulnerable areas reported by the overland flow model for 

different implementation scenarios and weighting of the objectives.  

 

4.4.2 Prioritization of GSI given different mitigation goals: Philadelphia, PA and Dallas, TX 

 The second part of the analysis considers the tradeoffs and synergies observed when 

prioritizing infiltration structures and trees in the cities of Philadelphia, PA and Dallas, TX. To 

conduct the analysis, it is assumed that a capture ratio of 𝛼 = 8% is required for infiltration 

structures [Equation 4.4], that the rainfall interception capacity of trees is 𝜑 = 5% [Equation 4.11] 

and the urban heat island mitigation potential of infiltration structures when compared to that of 

trees is 10% (i.e., 10% of the urban heat island mitigation geo-preference score of a site) [gxik = 

0.1 * gzik in Equation 4.13]. It is also assumed that the hydrologic connectivity of sites extends to 

the total area of the watershed (i.e., infinite hydrologic connectivity). An infinite hydrologic 

connectivity implies that the potential runoff of a grid cell (i.e., flow accumulation) is equal to the 

potential runoff produced by said grid cell plus the allocation of runoff from all upslope grid cells 

as determined by the MFD method. Four scenarios are analyzed with different weights to represent 

the importance given to mitigation of urban heat island and flash flooding and to assign a higher 

preference to ecologic and human health benefits and/or planning criteria (refer to Equations 4.15 

to 4.20):  

(1) Runoff reduction in watershed outlet and mitigation of UHI (i.e., WDA = 1 and Wffpi varies 

between 0 and 1 in increments of 0.2) 
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(2) Runoff reduction at the watershed outlet and in the most vulnerable areas to flash flooding 

(i.e., Wffpi = 1 and WDA varies between 0 and 1 in increments of 0.2) 

(3) Mitigation of flash flooding and UHI vulnerability (i.e., WDA = 0 and Wffpi varies between 

0 and 1 in increments of 0.2) 

(4) Consideration of ecologic, human health benefits, and planning criteria in the previous 

three weighting scenarios (i.e., WINF,k = 0.5 and Fk = 100). 

Figure 4.7 presents the Pareto fronts for the mitigation of urban heat island and the reduction 

of runoff volume at the watershed outlet (i.e., weighting scenario 1). In both watersheds, the Pareto 

front shows a competition for space between hazard mitigation objectives. As UHI mitigation is 

given higher importance, the implementation of trees is preferred and thus the potential to reduce 

runoff at the watershed is reduced. The opposite relationship holds true given higher preference 

for flood mitigation, for which infiltration structures are more effective.  

When both objectives are considered, a higher importance given to UHI mitigation results 

in an increase in the marginal benefits of increased GSI investment for both of these objectives. 

Trees can only offer UHI mitigation benefits when located in areas with high land surface 

temperatures. On the other hand, infiltration structures are less spatially restricted, as many 

locations can offer similar potential for runoff reduction. However, the performance of infiltration 

structures can improve from implementing trees in their upslope areas that reduce the potential 

volume of runoff (i.e., total impervious area) draining into these sites (i.e., higher capture ratios). 

The results also suggest that neglecting either of these objectives can have significant impacts on 

the potential mitigation benefits that could otherwise be achieved if both are considered. Planting 

trees in areas with higher UHI mitigation potential should thus be given priority over the use of 

infiltration structures in these areas, as it is likely that other sites could be used to implement 

infiltration structures and achieve similar runoff reduction benefit at the watershed scale. 

When comparing the Pareto fronts of these watersheds, two noteworthy observations can 

be made. First, one of the most notable differences between the Pareto fronts is the marginal benefit 

in the geo-preference scores of UHI with an increase in budget. When the UHI mitigation potential 

is given full consideration [Equation 4.17 WUHI = 1], the Pareto fronts for the watershed in 

Philadelphia suggest that ~85% of the total achievable UHI mitigation potential can be obtained 

by using only 25% of the potential area for GSI. In Dallas, 50% of the potential area for GSI is 

needed to reach a similar UHI mitigation potential.  
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A possible explanation for this difference is that the watershed in Dallas has a larger percent 

of its area with high to very high UHI hazard exposure severity, and therefore a higher percentage 

of its area is needed for GSI to gain a similar UHI mitigation objective. However, only 38.8% of 

the watershed area had high to very high UHI hazard exposure severity in Dallas, versus 56.2% in 

Philadelphia. Further, the percentage area suitable for planting trees within these areas of high to 

very high UHI hazard exposure severity is 33.9% in Dallas and 12.1% in Philadelphia. More 

importantly though, only 6.4% of the GSI area in Philadelphia provided 50% of the total UHI 

mitigation geo-preference score, while in Dallas 18.6% of the GSI area is needed. These results 

highlight the importance of considering both the efficiency and effectiveness of potential GSI sites. 

The identification of a large percentage of the watershed area as suitable sites for GSI 

implementation does not necessarily translate to a large UHI hazard mitigation benefit. This is 

because the UHI mitigation potential of a GSI site depends on the composition of its surrounding 

areas (e.g., consider the example of locating a tree in the middle of a large parking lot). 

Furthermore, the low percentages of the GSI area need to achieve at least half of the UHI mitigation 

potential highlight the competition for space that could exist when considering different hazard 

mitigation objectives. For a low level of GSI implementation, if the GSI sites with large UHI 

mitigation potential are also among the most desirable locations for flood mitigation, this results 

in a tradeoff as previously discussed.  

The second notable difference between the Pareto fronts of these two watersheds is the 

marginal increase in UHI mitigation benefit at low UHI weighting levels (i.e., WUHIV = 0.2). The 

Pareto fronts for the Dallas watershed suggest that mitigation of UHI as an objective in the 

optimization formulation needs an importance weight of at least WUHIV = 0.4 (almost equal to the 

importance given to the reduction of runoff at the watershed outlet) in order to observe a significant 

marginal increase in UHI mitigation benefits (i.e., geo-preference score). In Philadelphia, this trend 

is not observed and the marginal benefits increase more uniformly. These results suggest that many 

of the potential GSI sites in Philadelphia have high UHI mitigation potential as well as high 

potential to reduce runoff volume at the watershed outlet, while in Dallas a competition for space 

is less prevalent and the Pareto fronts are dominated by how much of the potential GSI area is 

dedicated to the mitigation of each separate hazard (i.e., importance weights represented by 

parameter k and used in eq. 4.13). 
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Figure 4.7: Pareto fronts for Philadelphia and Dallas watersheds when considering mitigation of 

urban heat island and runoff volume at the watershed outlet. Each line represents a different GSI 

implementation scenario (i.e., percent of total area available for implementing GSI). Round 

markers in lines represent different degrees of importance given to optimization objectives. 

Weighting scenarios increase WDA by 0.2 starting from WUHI = 1 / WDA = 0 [Equations 4.15-4.18]. 

 

Similar results are observed when the vulnerability of different communities to these two 

hazards is considered. Figure 4.8 presents the observed tradeoffs when different degrees of 

importance are given to reducing the volume of runoff at the watershed outlet and to the reduction 

of runoff volumes in areas with the highest flash flooding vulnerability. Figure 4.9 (A and B) 

presents the locations of the prioritized sites for several levels of GSI implementation. Similar to 

the patterns observed in DR5, as higher importance is given to runoff volume reduction in 

vulnerable areas, a spatial clustering of GSI occurs upslope of said areas. This is particularly 

significant in the scenarios where a small percentage (i.e., < 20%) of the available area for GSI 

implementation is used. Similar to the patterns observed in DR5, prioritization of sites to reduce 

flash flood vulnerability did not have a negative impact on the potential reduction in runoff volume 

at the watershed outlet. However, it should be noted that a larger number of GSI sites is needed to 

achieve said levels of runoff reduction in vulnerable areas.  

Furthermore, the difference in the total number of sites considered for implementation 

between weighting scenarios decreased with an increase in the watershed area. For the watershed 

in Philadelphia, a larger number of infiltration structures is needed to provide maximum runoff 

reduction benefits to the vulnerable areas while maintaining the same level of runoff reduction at 
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the watershed outlet. This difference is negligible in the watershed located in Dallas, in which 

regardless of the importance given to the protection of the vulnerable communities the number of 

sites and the reduction of runoff at the watershed outlet remain very similar. One possible 

explanation for the observed results is that they are caused by the assumptions of infinite 

hydrologic connectivity. By assuming that hydrologic connectivity extends over the whole 

watershed, the increase in area creates additional opportunities for sites that could benefit the 

vulnerable areas and thus creates less competition for space. 

The results in Figure 4.8 also show that as the percentage of the area used for implementing 

GSI increases, the reduction in runoff volume to the vulnerable areas plateaus at about 60-70% of 

the total potential benefits in both cities, suggesting that no additional benefit could be obtained. 

Upon further investigation of the results, it was concluded that the unattainable 30-40% of the 

potential benefits are associated with GSI sites that do not meet the capture ratio constraint and 

therefore are prioritized for the planting of trees. Related to this limitation, when full consideration 

is given to the reduction of runoff in vulnerable areas (WFFPI = 1), the runoff reduction benefits at 

the watershed outlet decreased after a certain percentage of the available area for GSI is used. The 

decrease in benefits at the watershed outlet is caused by the prioritization of trees in areas upslope 

from the vulnerable communities (e.g., Figure 4.9-A). In short, by requiring the optimization 

problem to meet the maximum achievable level of runoff reduction to the vulnerable areas, GSI 

sites that do not have a hydrologic connectivity to these vulnerable areas are not considered as 

potential sites for GSI implementation until said level of benefit is achieved. As such, a higher 

preference is given to the use of trees in order to reduce the potential runoff from areas that drain 

to the vulnerable areas but that do not meet the capture ratio constraints for infiltration structures. 
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Figure 4.8: Potential runoff reduction benefits in vulnerable areas [light gray: WFFPI = 1] and at the 

watershed outlet [black: WFFPI = 0] as a function of the total area used for implementing GSI. The 

different lines represent different degrees of importance given to the two runoff reduction 

objectives (i.e., percentage of the maximum achievable reduction in flow accumulation to 

vulnerable areas). 

Philadelphia, PA Dallas, TX
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Figure 4.9-A: Optimized spatial allocation of trees (black) and infiltration structures (white) when 

optimizing to reduce runoff reduction in vulnerable areas [WFFPI = 1] and at the watershed outlet 

[WFFPI = 0] in Dallas, TX., with: (A)10% and (B) 40% of the potential GSI area implemented. 

 

WFFPI = 0 WFFPI = 1

A.

B.
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Figure 4.9-B: Optimized spatial allocation of trees (black) and infiltration structures (white) when 

optimizing to reduce runoff reduction in vulnerable areas [WFFPI = 1] and at the watershed outlet 

[WFFPI = 0] in Philadelphia, PA, for: (A)10% and (B) 40% of the potential GSI area implemented. 

WFFPI = 0 WFFPI = 1

A.

B.
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Figure 4.10 presents a graph for the same parameters as discussed in the previous paragraph 

but for the scenario in which different degrees of importance are given to the mitigation of flooding 

and urban heat island vulnerability. Other than the scenario in which only the mitigation to urban 

heat island is considered, small changes to the curves are observed (when compared to those 

presented in Figure 4.8). When prioritizing sites solely for the objective of mitigating urban heat 

island vulnerability, the planting of trees is preferred in the vulnerable areas. Thus, the optimization 

solution does not include implementation of infiltration structures until all sites with the potential 

to mitigate urban heat island vulnerability are used to plant trees. This has severe impacts on both 

the runoff reduction benefits in areas of flash flood vulnerability and at the watershed outlet.  

As the importance given to mitigation of flash flooding in vulnerable areas increases (and 

thus the importance UHI mitigation decreases), the changes in the curves are less significant. 

Nevertheless, the results show that inclusion of flash flooding vulnerability as an optimization 

objective has significant impact on potential runoff reduction, even if given small importance. 

When small importance is given to flash flooding mitigation (e.g., WFFPI = 0.2), the optimization 

formulation is required to meet at least 80% of the total UHI mitigation potential (i.e., geo-

preference score; WUHIV = 0.8 is used in Equation 4.13 as λk). In Philadelphia, the small shifts in 

the curves associated with this weighting scenario suggest that there are a low number of GSI sites 

that have large and similar mitigation potential for both hazards in vulnerable areas. For the 

watershed in Dallas, the magnitude of differences between weighting scenarios is larger, 

suggesting that a higher number of potential GSI sites have large and similar mitigation potential 

for both hazards in vulnerable areas. As suggested before, this might be due to the assumption of 

infinite hydrologic connectivity and the larger watershed area. Overall, the results in Figure 4.10 

suggest that neglecting either of the hazard mitigation objectives could result in significant losses 

of potential vulnerability reduction and that GSI prioritization should consider both objectives. 
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Figure 4.10: Potential runoff reduction benefits in vulnerable areas and at the watershed outlet as 

a function of the total area used for implementing GSI. Each line represents different degrees of 

importance given to UHI mitigation [black: WFFPI = 0] and flash flood vulnerability [light gray: 

WFFPI = 1]. 

Philadelphia, PA Dallas, TX
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Lastly, the influence of higher weighting for ecologic and human health benefits and/or 

planning criteria was investigated. Figures 4.11 & 4.12 presents a comparison of the total geo-

preference score associated with prioritized sites when including/excluding these criteria and 

consideration of different hazard mitigation objectives. While a small increase in the geo-

preference score for a particular level of GSI implementation is observed when these criteria are 

considered, the shape of the curves is dominated by the performance constraints (e.g., capture ratio, 

minimum runoff reduction to vulnerable areas).  

Nevertheless, there are two noteworthy observations. First, the prioritization of sites based 

on their potential to reduce runoff at the watershed outlet produced higher total geo-preference 

scores, thus suggest that many of the sites prioritized by considering only said objective have 

higher potentials to provide ecologic and human health benefits, and/or are preferred by planning 

criteria. Secondly, the consideration of vulnerability in the prioritization process reduced the 

variability of the curves for different weightings of the objectives. This suggests that regardless of 

the mitigation objective, sites with a higher potential for mitigating urban heat island and flash 

flooding vulnerability have similar geo-preference scores associated with these other criteria.  

The observed trends suggest that the traditional engineering approach that only considers 

the stormwater abetment at the watershed outlet could have the largest impact on ecologic 

restoration and human health as defined in this work. However, UHI mitigation has human health 

benefits that are not reflected in the results of Figure 4.11. Future work is needed to better 

understand how a reduction in UHI could be reflected in human health risk reduction. 
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Figure 4.11: Total geo-preference scores for human health and planning criteria when considering 

different prioritization objectives. Solid lines represent the inclusion of said criteria in the 

prioritization process; dashed lines represent its exclusion. 
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Figure 4.12: Total geo-preference scores for ecologic benefits when considering different 

objectives. Solid lines represent the inclusion of said criteria in the prioritization process; dashed 

lines represent its exclusion. 

 

4.4.3 Sensitivity analysis results 

The results of the sensitivity analysis show that the observed patterns and conclusions 

discussed in the previous section are not significantly affected by changes in the values used to 

represent cooling capacity of infiltration structures or rainfall interception rate of trees. While the 

use of different values produces some small shifts in the coordinates of the Patero curves, the 

tradeoff and patterns previously discussed remained unchanged. This is not surprising given that 

regardless of the range of values used, the cooling capacity of infiltration structures is always lower 

than trees and the rainfall interception rate of trees is always lower than the runoff reduction 

potential of infiltration structures.  

Moreover, the sensitivity analysis showed that the observed patterns are not significantly 

affected by a distance restriction in hydrologic connectivity. Figures 4.13 and 4.14 present the 

runoff reduction in vulnerable areas and at the watershed outlet when considering mitigation of 

flash flooding and UHI vulnerability. Comparing the trends of the curves in Figures 4.13 and 4.14 

with those in Figures 4.8 and 4.10, in which no restriction to hydrologic connectivity was imposed, 
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it can be seen that the trends remain largely unchanged. Furthermore, when comparing the spatial 

location of prioritized areas, no significant changes were observed. Such results highlight the 

robustness of the prioritization framework and its spatial scalability.  

Additionally, these results invalidate the hypothesis that the assumption of infinite 

hydrologic connectivity caused the previously discussed differences in the Dallas watershed. It 

was hypothesized that the small difference in the number of GSI sites needed to achieve different 

runoff reduction benefits (Figure 4.8) and the competition for space observed when considering 

the vulnerability to different hazards (Figure 4.10) could have been caused by the assumption that 

any upstream GSI located within the watershed area could provide runoff reduction benefits to the 

vulnerable areas. However, the similarity of the results presented in Figures 4.13 and 4.14 suggest 

that this assumption of infinite hydrologic connectivity had no significant impact on the observed 

trends, implying that many of the optimal locations have a hydrologic connectivity of 200 meters 

or less. These results suggest that the observed differences for the Dallas watershed are caused by 

its larger watershed area. A larger watershed area provides a larger number of potential GSI sites, 

each with different runoff and UHI mitigation potential.  

Finally, only the graphs showing the total number of sites used as a function of the total 

available area in Figures 4.13 and 4.14 are seen to have a noteworthy change with restrictions in 

hydrologic connectivity. The previously noted increase in the total number of sites used for 

mitigation of flash flooding vulnerability was reduced and all curves followed a similar trend 

regardless of the importance given to this objective. Restricting the hydrologic connectivity has 

the most significant impact when considering low levels of GSI implementation for the scenario 

where only runoff reduction to the watershed outlet is considered. This is not an unexpected result, 

given that the restriction imposed on hydrologic connectivity forces the prioritization framework 

to consider locations that are spatially close, thus resembling the clustering behavior observed 

when the reduction of runoff in vulnerable areas is given the most importance. 
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Figure 4.13: Potential runoff reduction benefits in vulnerable areas [light gray: WFFPI = 1] and at 

the watershed outlet [black: WFFPI = 1] as a function of the total area used for implementing GSI, 

with a distance threshold of 200 meters to restrict hydrologic connectivity. Each line represents 

different degrees of importance given to the two runoff reduction objectives (i.e., percent of the 

maximum achievable reduction in flow accumulation to vulnerable areas).  

Philadelphia, PA Dallas, TX
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Figure 4.14: Potential runoff reduction benefits in vulnerable areas and at the watershed outlet as 

a function of the total area used for implementing GSI, with a distance threshold of 200 meters to 

restrict hydrologic connectivity. Each line represents different degrees of importance given to the 

mitigation of urban heat island [black: WFFPI = 0] and flash flood vulnerability [light gray: WFFPI 

= 1]. 

Philadelphia, PA Dallas, TX
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4.5 Conclusions and limitations 

This chapter proposes an integrated and spatially scalable PSS for spatial planning of GSI. 

Using the concepts of spatially distributed hydrographs, the capture ratio of infiltration structures, 

and commonly used indicators and guidelines for the calculation of geo-preference scores 

associated with GSI benefits, the locations and types of GSI are prioritized based on their potential 

to address different design and planning objectives. Additionally, the framework considers the 

vulnerability of socio-ecological systems to enable a spatial planning process that maximizes GSI 

benefits in the most vulnerable communities.  

Results obtained from the prioritization framework have good representation of an 

overland flow hydrologic model and show the impact of considering spatially explicit 

representation of GSI, particularly in the reduction of flash flooding vulnerability. Application of 

the framework in two urban watersheds highlights its ability to explore tradeoffs between 

mitigation of different hazards with various types of GSI. Results highlight the impact that GSI 

siting decisions can have in reducing vulnerability and suggest the need for its inclusion in the 

spatial planning process. Using vulnerability as a major driver for GSI prioritization is shown to 

have minimal impact on stormwater abetment benefits at the watershed outlet. More importantly, 

for these case studies, a potential space competition is identified between different hazard 

mitigation objectives and the various types of GSI. 

The findings of this study highlight the need for better methods and approaches that more 

accurately quantify the multiple benefits of GSI. While the geo-preference scores used in this study 

simplify the quantification of GSI benefits, the approach has limitations in representing the real 

degree of tradeoffs between hazard mitigation objectives, especially when vulnerability is 

considered. Better data/models are needed to quantify all of the benefits from different types of 

GSI more accurately. Moreover, there is a need to understand the marginal benefits and costs with 

changes in the spatial scale of analysis, total area, spatial configuration, and combinations of types 

of GSI. This is particularly true for the estimation of UHI mitigation potentials, as the benefit 

associated with different levels of GSI implementation and its spatial arrangement is poorly 

understood. Lastly, the patterns observed in the prioritization of areas preferred by planning criteria 

and/or because of their potential to positively influence ecological and human health suggest the 

need for more integrated and participatory approaches with transparent and inclusive planning 

processes.  
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Future work is needed to better understand the persistence of the tradeoffs between 

mitigation objectives and to investigate the validity of the hydrologic assumptions used. 

Application of the prioritization framework in other cities and the inclusion of additional factors 

associated with spatial planning of GSI (e.g., cost and construction regulations) could provide new 

insights to propose more socially just plans. Additionally, the use of the proposed framework to 

explore GSI implementation scenarios that consider different policies and regulations, the cost of 

installation and operation/maintenance of GSI, and additional implementation objectives (e.g., in-

situ treatment of runoff) would further elucidate the competing factors and areas that would 

provide the greatest return on investment.  

Lastly, as previously discussed, the proposed spatial optimization framework neglects the 

temporal component of the rainfall-runoff process as well as the sub-surface processes that occur 

over longer time periods (e.g., recharge of groundwater, impact on base flows). This is, in part, 

due to the lack of distributed hydrologic models that can fully capture the complexities of urban 

stormwater processes. Using distributed hydrologic models would also involve a more 

computationally-intensive optimization process that may not be necessary for large-scale planning. 

Once the best areas and types of GSI are identified with this framework, more detailed hydrologic 

models can be developed for those areas if needed. Nonetheless, this multi-step process could be 

avoided if future research developed distributed hydrologic models that can account for urban 

rainfall-runoff processes and the complexities of modeling the GSI performance while maintaining 

a low computational cost and sufficient flexibility to be integrated into the PSS.  
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CHAPTER 5. LIMITATIONS AND FUTURE WORK 

The findings presented in this dissertation suggest that the lack of integrated spatial GSI 

planning, particularly at large scales, have limited the delivery of GSI benefits to the most 

vulnerable communities. Application of the proposed prioritization framework shows that 

consideration of vulnerability in GSI planning significantly affects spatial allocation of GSI, 

which, if ignored, could aggravate social justice disparities. In this chapter, limitations of the 

approach are summarized and recommendations are made to further investigate the findings and 

overcome the limitations.  

The proposed framework for the quantification of socio-ecological vulnerability assumes 

no interactions among the susceptibility indicators nor among the hazards and ignores the temporal 

component of said relationships. However, it has been argued that the vulnerability of socio-

ecologic systems is not static nor system independent (Füssel, 2007; De Lange et al, 2010; Fekete 

et al., 2010). Threats to these systems occur over different time scales and their impact may reflect 

differently at multiple scales (e.g., urbanization). Additionally, when combined, spatio-temporal 

hazard processes may create different risks associated with exposure (e.g., a heavy rain during a 

drought period, while beneficial to some systems, could exacerbate the risk to extreme heat by 

increasing relative humidity). Moreover, there are intra- and inter-dependences that may influence 

the vulnerability of said systems and are ignored in the proposed framework. For example, 

economic stability can depend on the integrity of ecological services (Turner II, 2003a & 2003b).  

More importantly, the proposed approach neglects the concept of resilience. Resiliency, a 

concept describing the recovery and adaptive capacity of the system, must be considered in order 

to have a full representation of all dimensions of vulnerability. Unfortunately, due to its fairly new 

uptake and consideration for decision making, insufficient indicators have been proposed for its 

quantification (Meerow et al., 2016a & 2016b). Furthermore, a recent literature review on urban 

resiliency identified significant tensions in finding agreement on its conceptual meaning, which 

has led to challenges in the proposal of frameworks (Meerow et al., 2016a & 2016b). Advances 

must be made in this area before resiliency can be integrated into the proposed vulnerability 

framework or used to guide decision-making. Moreover, there is a need for identification and 

collection of data that could serve as indicators of recovery and adaptive capacity of socio-ecologic 

and socio-technical systems.  
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To this end, it would be interesting to consider the development and use of data science 

techniques to develop resilience indicators. Data science techniques such as text mining, computer 

vision, and machine learning enable the extraction and analysis of large volume of data from many 

different sources (e.g., social media, news articles, images). Moreover, these techniques have 

showed to be less costly and time consuming than methods often used to collect survey data (e.g., 

Japec et al., 2015). In particular, new methods for the quantification of social susceptibility could 

be developed using social media data. For example, Klinenberg (1999) determined that a 

significant resilience indicator to UHI vulnerability is the level of neighborhood cohesion (i.e., the 

level of aid/help shared between neighbors). At the same time, other studies have shown how 

Facebook data could be used to estimate social networks (e.g., Adamic et al., 2005; Horvát et al., 

2012). Therefore, data science techniques could potentially be used to estimate the level of 

neighborhood cohesion (i.e., resilience indicator to extreme heat) from Facebook data. Future 

research to extract and validate derived indicators of resilience using data science is needed.  

The proposed approach for quantifying social susceptibility could be extended by 

considering the use of more complex and statistically rigorous dasymetric techniques. Recently 

proposed methods, such as the penalized maximum entropy dasymetric model proposed by Nagle 

et al. (2014), use high resolution spatial data and information from many data sources collected at 

different spatial scales (e.g., point location of households and satellite imagery) to provide 

estimates of population at very fine spatial scales (i.e., tax lots). These methods are 

computationally costly. Furthermore, their use has been limited to socio-demographic 

characteristics and not features related to income or physical disadvantage of the populations at 

risk. Due to privacy concerns, these features are often reported at the Census Tract or county level.  

The use of Cloud computing and Web services to calculate social susceptibility presents 

an opportunity to solve these problems. The users could select which dimensions of social 

susceptibility will be considered, the method used for its quantification, and the data to be used, 

all while maintaining data privacy. To date, a few Web services for social susceptibility have been 

developed (e.g., NOAA’s Digital Coast, US Army Corps of Engineers Social Vulnerability Index-

Explorer). However, these are restricted to the use of a specific method and data, and do not 

provide the flexibility needed to accommodate conceptual assumptions that have significant 

impacts on the spatial patterns of vulnerability, as shown in Chapter 2. Moreover, these Web 
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services report social susceptibility at the spatial scale of counties or Census Tracts, which were 

shown to be too large for spatial planning of GSI.  

Another limitation of this work is the variability analysis of the spatial patterns of social 

susceptibility and vulnerability, which is limited to methods and indicators most commonly used 

in the literature. It would be beneficial to understand the applicability of the proposed approach 

with other methods and for decision making related to other problems (e.g., evacuation planning).  

The findings presented in this dissertation also suggest the need for methods that more 

accurately estimate the multiple benefits of GSI. The results in Philadelphia, PA, and Dallas, TX, 

suggest that a competition for space exists between hazard mitigation goals and for the protection 

of vulnerable areas to these hazards. Whether or not the geo-preference scores and indicators 

accurately reflect the full capacity of different GSI to provide the intended benefits is a question 

that needs further investigation. This would require the collection of more detailed data on these 

benefits at multiple scales and the development of models that accurately predict the full suite of 

GSI co-benefits and their impacts on vulnerability. This would allow stakeholders to decide how 

much, if any, they would be willing to sacrifice of one objective for the added benefit of another 

objective. 

The findings presented in this dissertation also highlight the need for distributed hydrologic 

models that can estimate hydrologic benefits of GSI at multiple scales and are computationally 

efficient. This has been an area of recent interest, and recent studies have identified such needs 

(Golden et al., 2017; Jefferson et al., 2017). The results of this work also show that flow 

accumulation is a suitable proxy metric for representing rainfall-runoff processes in large-scale 

GSI planning. However, the presented analyses used only a simplified overland flow model and 

thus do not consider any of the complexities associated with the conveyance of stormwater runoff 

in urban environments. Given the significant impact that siting decisions can have on reducing 

flood vulnerability, a more thorough assessment of the appropriateness of using flow accumulation 

as a proxy metric or the development of new estimation models is need.  

Furthermore, additional research is needed to understand the impacts of using different 

capture ratio values for different types of GSI. The analyses presented in Chapter 4 assume a 

capture ratio of 8% regardless of the area dedicated to implementation of infiltration structures. 

Nevertheless, the literature suggests that different infiltration structures should have different 

capture constraints (e.g., design guidelines in Table 4.1). Moreover, infiltration structures with the 
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same surface area could have different storage capacities, and thus require varying capture ratios, 

due to different design parameters (e.g., soil used, connection to sewer system, etc.). Therefore, 

the influence of using capture ratios that vary with the type of GSI and their design parameters on 

the optimal spatial allocation of GSI is an area of future research.  

Another limitation of this work is the assumption of a static planning process in time, which 

is not valid in practice because the urban landscape and the opinion of stakeholders are constantly 

changing. Therefore, the prioritization process should account for shifts over time in the 

importance given to different objectives and changes in the availability of space to implement GSI. 

Models could take into account future land development plans, predictions of population growth 

and urban sprawl, and any regulatory/policy constraints that could affect future GSI 

implementation and effectiveness. Furthermore, the prioritization process should account for 

changes in spatial patterns of vulnerability caused by shifts in community susceptibility (e.g., 

displacement of lower-income families in gentrifying neighborhoods) or implementation of hazard 

mitigation strategies (e.g., new reservoirs with flood water capacity).  

To address this limitation, the proposed prioritization framework could be coupled with 

urban growth and climate change models to yield more robust and cost-effective GSI 

implementation plans. Urban growth models allow prediction of spatio-temporal land use patterns 

and re-allocations of different communities (Cheng, 2013; Feng et al., 2016; Li & Gong, 2016; 

Musa et al., 2017). Similarly, climate models can estimate spatio-temporal changes in temperatures 

and rainfall patterns (Cheng, 2013; IPCC, 2012) that could affect GSI planning. Incorporation of 

these models would, however, require re-formulation of the multi-objective optimization and 

nonlinear solution methods to handle the added complexity. 

Furthermore, while the presented framework facilitates the translation of information 

between multiple stakeholders, it does not provide the capability to find an optimal solution that 

maximizes the level of stakeholder consensus given different opinions. Future research is needed 

to include preference aggregation techniques or collaborative optimization models (e.g., Mysiak 

et al., 2005; Tippett, 2005; Babbar-Sebens & Minsker, 2008; Singh et al., 2008; Piemonti et al., 

2013; Basco-Carrera et al., 2017; Choi et al., 2017) that maximize the needs of all stakeholders 

involved. 

Finally, the proposed prioritization framework enables investigation of many other issues 

related to the spatial planning of GSI that were not considered in this work. Among the most critical 
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factors associated with GSI implementation, and not explicitly considered in this study, is the cost 

of construction and operation/maintenance. Different GSI can have economies of scale associated 

with their construction cost (i.e., larger projects could provide larger benefits for a low increase in 

the marginal costs) (Potts et al., 2015). Thus, the cost associated with GSI implementation 

scenarios could vary even if the total GSI area is the same, which is the proxy metric used in this 

work as a budget constraint in optimization formulation. Including monetary cost explicitly in the 

framework could improve understating of the tradeoffs between reducing vulnerability and the 

cost of implementing different types of GSI.  

Moreover, different economic incentives programs could be explored to foster more 

equitable planning of GSI. One such idea would be to investigate different economic models that 

would share the costs of GSI among all beneficiaries. The cost of operation/maintenance and a 

percentage of the cost of construction are usually assumed by the owners of the land in which the 

GSI is installed. However, as demonstrated in this dissertation, the hydrologic benefits of GSI are 

not limited to its geo-location and not all areas downstream benefit equally from its 

implementation. Therefore, an economic model that shares the cost among all beneficiaries could 

help increase buy-in to implement GSI and aid in developing incentive programs that target sites 

providing the most benefit to the vulnerable communities. 

Additionally, the proposed framework could be used to further investigate other issues such 

as equity and social justice, the impact of current and new policies and regulations on the design 

and management of GSI, and the impact that GSI could have in solving specific 

ecologic/environmental problems (e.g., preservation of salmon habitat in Portland, OR). By 

framing the spatial planning of GSI as a spatially explicit quantification of vulnerability, site 

suitability, and mitigation potential, the proposed framework allows integration of additional 

spatial data that represent these related issues.  

While the results presented in this dissertation highlighted the impact that GSI siting 

decision could have on improving vulnerability, the analyses did not include an assessment of 

other aspects of social and/or environmental justice. Much like the concept of vulnerability, the 

concept of social justice is complex, multi-faceted, and multi-disciplinary, and thus its explicit 

consideration requires a discussion of its definition and the use of methods appropriate for its 

assessment. For example, future research could explore how GSI perceptions and willingness-to-
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pay affect the implementation of GSI in the areas where GSI is needed the most, and thus its impact 

on improving vulnerability.  

More specifically, the results presented in Chapter 3 suggest that a large portion of the 

available area for GSI in Philadelphia, PA, is private land. Thus, further research is needed to 

investigate the barriers associated with GSI implementation (e.g., aesthetics, maintenance cost, 

etc.) on private land and whether re-framing the problem with a vulnerability perspective could 

help overcome some of those barriers. In addition, many municipalities today have policies and 

regulations associated with the capture/reduction of stormwater runoff (e.g., stormwater credit 

programs) that could be re-evaluated from a social justice perspective. For example, should runoff 

generating areas upslope from vulnerable communities pay higher service charges? Should 

increasing trees around schools located in lower socio-economic educational districts, which was 

shown in recent studies (Matsuoka, 2010; Wu et al., 2014; Sivarajah et al., 2018) to significantly 

improve student performance, be prioritized over mitigation of urban heat island? The proposed 

framework enables investigating the impact of different polices and plans on these issues and could 

aid in the proposal of more equitable and just GSI implementation.  

Lastly, generalization of the observed tradeoffs between mitigation objectives is limited by 

the application of the prioritization framework in two watersheds. Further research is needed to 

better understand how these patterns could change when different hydro-climatic conditions, types 

of urban form, and additional implementation objectives (i.e., removal of pollutants, groundwater 

recharge, etc.) are considered. 
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APPENDIX A. SUPPLEMENTAL PSEUDOCODES AND METHODOLOGIES 

A.1 Pseudocode of method used to calculate ecological indicators presented in Table B.2. 

• Continuous patches of tree canopy 

 

• Continuous patches of impervious surfaces 

 

 

 

 

 

 

 

 

 

 

Step-1: Initiate an empty grid (Gtc) with the same raster resolution and spatial extent as input data. 

Step-2: for tc := 0% to 100% step ∆ tree canopy do 

Create binary raster by identifying grid cells with tree canopy < tc (i.e., grid cell with 

tree canopy < tc = 1). 

  Label all continuous connected grid cells (8-grid neighbors) as individual patches (p). 

  Calculate area of each patch (Ap) and identify largest patch (Amax). 

  Initiate an empty grid (g) with the same raster resolution and spatial extent as input data. 

  for each Ap do 

   Calculate ecologic susceptibility potential of patch p and add to g: 

    g = g + (1 +
𝐴𝑝

𝐴𝑚𝑎𝑥
) ∗ (1 −  

𝑡𝑐

100
) 

  end 

  Add to cumulative ecologic susceptibility potential: Gtc = Gtc + g 

Step-3: Scale Gtc to the interval [0,1].  

Step-1: Initiate an empty grid (Gis) with the same raster resolution and spatial extent as input data. 

Step-2: for is := 100% to 0% step ∆ impervious surfaces do 

Create binary raster by identifying grid cells with impervious surfaces < is (i.e., grid cell 

with impervious surfaces < is = 1). 

  Label all continuous connected grid cells (8-grid neighbors) as individual patches (p). 

  Calculate area of each patch (Ap) and identify largest patch (Amax). 

  Initiate an empty grid (g) with the same raster resolution and spatial extent as input data. 

  for each Ap do 

   Calculate ecologic susceptibility potential of patch p and add to g: 

    g = g + (1 +
𝐴𝑝

𝐴𝑚𝑎𝑥
) ∗ (

𝑖𝑠

100
) 

  end 

  Add to cumulative ecologic susceptibility potential: Gis = Gis + g 

Step-3: Scale Gis to the interval [0,1].  
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• Identification of ecologic cores and landscape resistance to ecologic connectivity. 

 

 

A.2 Cross-K function 

The K-function is a widely used technique used to explore the global spatial clustering 

patterns of point data. Mathematically, it can be defined as:  

𝐾(𝑟) =
1

𝜆

∑ ∑ 𝐼(𝑑𝑖,𝑗 ≤ 𝑟)𝑛
𝑗=1

𝑛
𝑖=1

𝑛
 

where r is the search radius, di,j is the Euclidean distance from between i and j, n is the total number 

of data points and λ is the average density of points. I takes the value of 1 if the di,j is less than or 

equal to the search radius, otherwise it takes the value of 0. This function essentially measures the 

tendency of points to be close to each other as defined by the search radius distance. A version of 

this function is the cross-K function and it is used when two different sets of data points are 

considered. Finally, the cross-L function is the standardized cross-K function calculated as: 

𝐿(𝑟) =  √
𝐾(𝑟)

𝜋
− 𝑟 

Lastly, the application of the cross L-function often includes the performance of a Monte Carlo 

simulation to determine the statistical significance of the results and create a significance envelope. 

 

 

 

 

Step-1: Define habitat integrity and landscape resistance values look-up table for input land 

cover/use data (Table B.2). 

Step-2: for each input land cover/land use raster do 

  Create a habitat integrity value (Hv) and a landscape resistance raster (Hr) 

 end 

Step-3: Calculate an average habitat value raster (𝐻𝑣
̅̅̅̅ ) and an average landscape resistance raster 

(𝐻𝑟
̅̅̅̅ ). 

Step-4: Apply a 2-D circular averaging filter (i.e., radius = 200 meters) to raster 𝐻𝑣
̅̅̅̅ . 

Step-5: Create a binary raster that represent the location of ecologic cores (Ec) by identifying grid 

cells with 𝐻𝑣
̅̅̅̅  ≥ 0.6. 

Step-6:  Label all continuous connected grid cells (8-grid neighbors) as individual ecologic cores. 

 Calculate area of each ecologic core (Aec) and identify largest core (𝐴𝑒𝑐𝑚𝑎𝑥
). 

 Eliminate ecologic cores with Aec < 0.1 km2 

Step-7: Computes the Euclidean distance transform (Dc) of the binary raster Ec (i.e., shortest 

Euclidean distance between a grid cell and a nonzero grid cell [ecologic cores]) 

Step-8: Calculate landscape connectivity resistance (Lr) as: Dc*(1+𝐻𝑟
̅̅̅̅ ) 

Step-9: Scale Lr to the interval [0,1]. 
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A.3 Pseudocode of method used to calculate geo-preference scores (Section 4.2.3). 

• Urban heat island (UHI) mitigation (g1) and UHI mitigation in vulnerable areas (g2). 

 

• Flash flooding mitigation in vulnerable areas (g3) 

 

 

 

Step-1: Initiate g1 and g2 as empty arrays with size N x 1. 

Step-2: for each GSIi do 

Calculate Areai (spatial arrangement of grid cells). 

Calculate eccentricity of Areai (Ei). 

Calculate mean land surface temperature (LST) of grid cells in Areai (Ti). 

Create a 90-meter buffer around Areai. 

Calculate mean land surface temperature (LST) of grid cells only in buffer (TBi). 

Difference between LST of Areai and buffer area: UHIi = Ti - TBi. 

if UHIi < 0 then UHIi = 0 end 

Calculate percentage of grid cells (UHIVULi) in buffered Areai (i.e., buffer & Areai) 

with moderate to very high social susceptibility and UHI hazard exposure category. 

 end 

Step-3: Scale arrays Area, T, [E+1] and [UHI +1] to the interval [0.01,1] (i.e., sArea, sT, sE and 

sUHI, respectively). 

Step-4: Scale array UHIVUL to the interval [0,1] (sUHIVUL). 

Step-5: for each Areai do 

 gi,1 = (sAreai + sTi + sEi + sUHIi) / 4 

 gi,2 = gi,1 * sUHIVULi 

 Round gi,1 and gi,2 to nearest integer. 

               end 

 

Step-1: Initiate g3 as empty array with size N x 1. 

Step-2: Create an empty grid (F) with the same grid resolution and spatial extent as input data. 

Step-3: Convert F to a binary grid in which grid cells with moderate to very high social 

susceptibility and flash flooding hazard exposure category are assigned a value of 1. 

 

Step-4: for each GSIi do 

Using the MDF method, identify grid cells down slope of GSIi (cells_idi). 

Initialize GSIi total potential runoff reduction in vulnerable areas: Total_BENi = 0. 

for each grid cell (c) in cells_idi do 

 Calculate the Euclidean distance of grid cell c to nearest GSIi grid cell (disti,c). 

 if disti,c < distance threshold and F[c] = 1 then 

      Calculate the potential reduction in flow accumulation in c caused by GSIi (BENi,c) 

      Total_BENi = Total_BENi + BENi,c 

 end 

end 

Calculate geo-preference score of GSIi 

gi,3 = Total_BENi * [
𝐬𝐮𝐦(𝐹[𝑐𝑒𝑙𝑙𝑠_𝑖𝑑𝑖])

 𝐬𝐮𝐦(𝐹)
+ 1]  

 end  

Step-3: Round gi,3 to nearest integers. 
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• Human health (g4), ecological benefits (g5) and policy and planning criteria (g6) 

 

 

A.4 Illustrative example of using a directed graph to represent the hydrologic connectivity 

of GSI. 

Consider an example where there are three potential sites for GSI [A]. As presented in 

Section 4.3., the use of a directed graph to represent hydrologic connectivity of GSI assumes that 

each GSI site is a node in the graph and the edges between nodes represent the reduction in 

stormwater runoff volume to downslope GSI by implementing GSI upslope. For example, as 

illustrated in panel B, because GSI2 is located downslope of GSI1, implementation of GSI1 reduces 

the total upslope drainage area of GSI2 by a total equal to the upslope drainage area of GSI1. In the 

directed graph network, the node of GSI1 would be connected to the node of GSI2 and the value of 

the edge between them would be equal to the upslope drainage area of GSI1 [panel C]. Note, 

Step-1: Initiate g4, g5 and g6 as empty arrays with size N x 1. 

Step-2: Calculate need for ecological restoration/protection (ECO) and social susceptibility (SOSI) 

using data and methods described in Chapters 2 & 3. 

Step-3:  Create a binary grid (bSOSI) in which grid cells with high to very high social susceptibility 

are assigned a value of 1. 

Step-4: Create a binary grid (ECOW) that identifies (grid cell = 1) grid cells upslope of water bodies 

with moderate to very high susceptibility. 

Step-5: Create a binary grid (V) that identifies vacant lots (grid cells = 1). 

Step-6: Create an empty grid (LUSE) and assign grid cell values associated with the normalized 

preference given to different land uses and zoning regulations (see section 4.2.3.2). 

Step-7:  Create circular buffers around schools, hospitals, community spaces, parks, and green open 

spaces.  

 Initialize an empty grid (HH) with the same grid resolution and spatial extent as input data. 

 for each location(L) do 

   Create four different binary grids (hL,r) use to represent buffers of radius (r): 0.25, 0.50, 

0.75 and 1 mile. 

   HH = HH + hL,r**(1.25 – r) 

 end 

Step-8: Scale HH to the interval [0,1] 

Step-9: for each GSIi do 

Create a 90-meter buffer (b) around Areai (spatial arrangement of grid cells). 

gi,4 = gi,4*sum(HH[b])*[
𝐬𝐮𝐦(𝑏𝑆𝑂𝑆𝐼[𝑏])

𝐬𝐮𝐦(𝑏)
+ 1] 

gi,5 = mean(ECO[b]) + ECOW[Areai] 

gi,6 = sum(LUSE [b]) + V[Areai] 

 end 

 

Step-10: Scale arrays gi,4, gi,5, and gi,6 to the interval [0.01,1]  
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however, that the opposite is not true, as implementation of GSI2 would not reduce receiving runoff 

to GSI1. 

 

Figure A.1 Illustrative example of using a directed graph to represent the hydrologic connectivity 

of three potential GSI. 
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APPENDIX B. ADDITIONAL RESULTS AND SUPPLEMENTAL DATA 

Table B.1 Collected data and sources for the quantification of socio-ecologic vulnerability. 

 
 

 

 

 

 

 

 

 

 

 

 

Data layers Data sources

Buildings footprints

Construction year of buildings

Total buildings floors

Buildings type

Census boundaries (Tracts / Census Block Groups / Census Blocks )

Community centers / Senior centers

Hospitals

Digital Elevation Model (DEM)

Ecologic resistance / Habitat value

Existing vegetation cover (EVC) Landfire

Percent of immpervioussness

LANDSAT 8

Land Use

National Land Cover Database (NLCD)

NOAA/FEMA flood maps

Nursing Homes (0.5 mile)

Parks (& open spaces)

Schools

NHDPlus Data

Topographic slope

Soils

ASC / SF1 Data

Street center lines

Percent of tree canopy

Vacant parcels

Water & Streams

Watersheds

Zoning

City Limits

OpenDataPhilly (https://www.opendataphilly.org/)

Chicago Data Portal (https://data.cityofchicago.org/)

Dallas OpenData (https://www.dallasopendata.com/)

Baltimore Open Data (https://data.baltimorecity.gov/)

USGS National Map Viewer 

(https://viewer.nationalmap.gov/advanced-viewer/)

National Hydrography Dataset Plus (NHDPlus) 

(http://www.horizon-

systems.com/nhdplus/NHDPlusV2_data.php)

NRCS Soil Data (SSURGO) 

(https://websoilsurvey.sc.egov.usda.gov/App/HomePage.ht

m)

EarthExplorer (https://earthexplorer.usgs.gov/)

NOAA Atlas 14 

(https://hdsc.nws.noaa.gov/hdsc/pfds/pfds_map_cont.html)

LANDFIRE Program (https://www.landfire.gov/)

FEMA Flood Map Service (https://msc.fema.gov/portal)

US Census Bureau (https://www.census.gov/)

EPA Impaired Waters and TMDLs 

(https://www.epa.gov/tmdl/impaired-waters-and-tmdls-

resources-tools-and-databases)
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Table B.2 Habitat integrity and landscape resistance values used to identify ecological cores and 

calculate landscape connectivity. Refer to McRae et al., 2008 and Shirk & McRae, 2013 for more 

details about selected values and methods. 

 

 

 

Class Description Habitat Value Resistance Class ID Source

Open Water 1 0 11

Developed, Open Space 0.48 0.52 21

Developed, Low Intensity 0.36 0.64 22

Developed, Medium Intensity 0.24 0.76 23

Developed, High Intensity 0.15 0.85 24

Barren Land 0.76 0.24 31

Deciduous Forest 0.93 0.07 41

Evergreen Forest 0.93 0.07 42

Mixed Forest 0.93 0.07 43

Shrub/Scrub 0.95 0.05 52

Herbaceuous 0.83 0.17 71

Hay/Pasture 0.44 0.56 81

Cultivated Crops 0.32 0.68 82

Woody Wetlands 0.89 0.11 90

Emergent Herbaceuous Wetlands 0.89 0.11 95

Roads 0 1 1

Open Water 1 0 11

Developed-Upland Deciduous Forest 0.48 0.52 13

Developed-Upland Evergreen Forest 0.48 0.52 14

Developed-Upland Mixed Forest 0.48 0.52 15

Developed-Upland Herbaceous 0.48 0.52 16

Developed-Upland Shrubland 0.48 0.52 17

Developed - Low Intensity 0.36 0.64 22

Developed - Medium Intensity 0.24 0.76 23

Developed - High Intensity 0.15 0.85 24

Developed-Roads 0 1 25

Barren 0.76 0.24 31

Tree Cover >= 20 and < 30% 0.93 0.07 102

Tree Cover >= 30 and < 40% 0.93 0.07 103

Tree Cover >= 40 and < 50% 0.93 0.07 104

Tree Cover >= 50 and < 60% 0.93 0.07 105

Tree Cover >= 60 and < 70% 0.93 0.07 106

Tree Cover >= 70 and < 80% 0.93 0.07 107

Tree Cover >= 80 and < 90% 0.93 0.07 108

Tree Cover >= 90 and <= 100% 0.93 0.07 109

Shrub Cover >= 20 and < 30% 0.95 0.05 112

Shrub Cover >= 30 and < 40% 0.95 0.05 113

Shrub Cover >= 40 and < 50% 0.95 0.05 114

Shrub Cover >= 50 and < 60% 0.95 0.05 115

Shrub Cover >= 60 and < 70% 0.95 0.05 116

Shrub Cover >= 70 and < 80% 0.95 0.05 117

Shrub Cover >= 80 and < 90% 0.95 0.05 118

Shrub Cover >= 90 and < 100% 0.95 0.05 119

Herb Cover >= 80 and < 90% 0.83 0.17 128

Herb Cover >= 90 and <= 100% 0.83 0.17 129

USGS NLCD, 2011

USGS LANDFIRE EVC, 2010 
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Table B.3 Curve numbers (CN) assigned to different land cover classifications in the NLCD 2011 

data. CN values gathered from the most common values in the literature (NRCS TR-55, 1986; 

WSDOT, 2014) and are adjusted based in the percent of imperviousness of the grid cells [Equation 

4.1].  

 

NLCD 2011  

Land cover description 
Class 

value 

Curve 

number 

Open water 11 1 

Developed, Open Space 21 0.4 

Developed, Low Intensity 22 0.55 

Developed, Medium Intensity 23 0.65 

Developed High Intensity 24 0.83 

Barren Land (Rock/Sand/Clay)  31 0.65 

Deciduous Forest 41 0.52 

Evergreen Forest 42 0.48 

Mixed Forest 43 0.48 

Shrub/Scrub 52 0.3 

Grassland/Herbaceous 71 0.22 

Pasture/Hay 81 0.35 

Cultivated Crops 82 0.4 

Woody Wetlands 90 1 

Emergent Herbaceous Wetlands 95 1 
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Figure B.1 Spatial cluster of autocorrelation as identified by LISA for Baltimore, MD (bottom) 

and Philadelphia, PA (top). The four scenarios presented include: A-absolute counts/Census Block 

Groups, B-population density/Census Block Groups, C-absolute counts/Census Blocks, and D-

population density/ Census Blocks 
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Figure B.1(cont.) 
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Figure B.2 Distribution of the range of land surface temperatures for different circular buffer sizes. 

The legend presents the radius of the circular buffers in raster cells (i.e., 10 meter raster). It was 

noted that for a circular buffer of 9 pixels (i.e., 90 meters) 90% of the total area had a land surface 

temperature range within the buffers less than or equal to 5 °F.  
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Figure B.3 Changes in distribution of hazard exposure severity and social susceptibility as a 

function of distance from the GSI calculated using Census Block Group. For each disk buffer, the 

plotted bars represent the different categories of social susceptibility [i.e., Left: Very Low, Right: 

Very High]. Top graph (A) presents the change in distribution relative to the area of the disk buffer. 

Bottom graph (B) presents the change in distribution relative to the total area associated with each 

of the potential combinations of vulnerability (i.e., stacked percentages). Lastly, the color of the 

bar correspond to the hazard exposure severity of urban heat island [i.e., legend]. 
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Figure B.4 Distribution of land surface temperature between areas with imperviousness greater 

than 50% and no trees were compared to areas that had a higher tree canopy. Results showed that 

areas without trees could have up to a 0.3 to 0.4 lower probability of having the same land surface 

temperature as areas with trees. 
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Figure B.5 Geographic location of Dead Run 5 (DR5) case study watershed (Section 4.3). 
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Figure B.6 Geographic location of Philadelphia’s case study watershed (Section 4.3). 
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Figure B.7 Geographic location of Dallas’ case study watershed (Section 4.3). 

 

 
 


