
c© 2018 Phuong V. Nguyen

DOSSIER: DISTRIBUTED OPERATING SYSTEM AND INFRASTRUCTURE FOR
SCIENTIFIC DATA MANAGEMENT

BY

PHUONG V. NGUYEN

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2018

Urbana, Illinois

Doctoral Committee:

Professor Klara Nahrstedt, Chair
Professor Roy H. Campbell
Professor Indranil Gupta
Dr. Deepak Turaga

ABSTRACT

As scientific advancement and discovery have become increasingly data-driven and interdisci-
plinary, there are urging needs for advanced cyberinfrastructure to support managing and process-
ing scientific data generated from day-to-day research. However, the development of data-driven
cyberinfrastructure for scientific research areas has often lagged behind the development of such
tools in other engineering and IT-related fields. Such the development gap is due to various di-
versity challenges of scientific data management and processing. First, these are the challenges in
terms of the diversity of scientific data and data processing tasks, as the cyberinfrastructure should
be able to support managing and processing heterogeneous types of scientific data that have been
captured from scientific instruments. Second, as the cyberinfrastructure must help to shorten time
from digital capture of data to interpretation and insights, it is challenging for the infrastructure to
deal with the diversity of users and scientific workload. Third, it is the diversity of scientific in-

struments. Since there is still a significant number of scientific instruments that run their scientific
software tools on old operating systems (e.g., Windows XP, Windows NT, Windows 2000), the
cyberinfrastructure must help to bridge the performance and security gap between old scientific
instruments and its advanced cloud-based infrastructure.

In this thesis, we aim to address the above diversity challenges by taking a holistic approach in
designing a distributed operating system and infrastructure for scientific data management, named
DOSSIER. At the core of DOSSIER is an adaptive control microservice infrastructure that is de-
signed to tackle the aforementioned challenges of data cyberinfrastructure for distributed scientific
data management. Particularly, to handle heterogeneous scientific data processing and analysis,
we start with redesigning the execution environment for scientific workflows, which traditionally
follows a monolithic approach, using a novel microservice architecture and latest virtualization
technology (i.e., container technology). The microservice design enables dynamic composition of
workflows, and thus, is efficient in dealing with heterogeneous workflows. The new microservice
architecture also allows us to express system resources in a more simple way, and thus, enables
the design of a new adaptive resource management mechanism to handle large-scale and dynamic
scientific workloads. We are the first to apply feedback control theory to design a self-adaptation
mechanism for scientific workflow management system to help shorten the time from data acquisi-
tion to insights. To address the security and performance gap issues when connecting old scientific
instruments to cloud-based cyberinfrastructure, we design an edge-cloud architecture that puts
cloudlet servers directly connected to the scientific instruments and act as the security shield for
the aging instruments. Cloudlets will also coordinate with cloud-based backend system to tackle

ii

the performance issue by scheduling data transfer and offloading processing tasks to cloudlets
to avoid traffic congestion and guarantee performance of data processing jobs across edge-cloud
architecture.

By designing, developing, and testing DOSSIER in the real scientific environments, we demon-
strate that an edge-cloud microservice architecture with learning-based adaptive control resource
management is needed for timely distributed scientific data management.

iii

To my beloved parents, for their unlimited confidence in me.

To my wife Linh, for her endless love and support, and my daughter Minh, for unknowingly

inspiring daddy everyday.

iv

ACKNOWLEDGMENTS

First of all, I would like to thank my advisor, Professor Klara Nahrstedt, for all the guidance and
support throughout my Ph.D. study. I really appreciate and feel fortunate for the opportunity to join
her research group and being involved in various projects under Professor Nahrstedt’s leadership.
Without her trust and support, I would not make it through.

I would also like to thank my thesis committee members, Professor Roy H. Campbell, Professor
Indranil Gupta, and Dr. Deepak Turaga, for their insightful comments and suggestions to help me
improve the thesis.

I would like to express my gratitude to all the members of the T2C2, 4CEED, and BRACELET
projects, including team members from Micro and Nanotechnology Lab, Materials Research Lab,
and Engineering IT, which I was a part of since the beginning. The opportunity to work in an
inter-disciplinary, highly collaborative team that develops an impactful product for real users, and
at the same time, to apply my research results into production have been the highlight of my Ph.D.
study.

I would like to thank all of my mentors of the summer internship I did during my Ph.D. program:
Dr. Debessay Fesehaye Kassa, Mr. Siddhartha Jain, Dr. Vinod Muthusamy, Dr. Aleksander
Slominski, Dr. Vatche Ishakian. Their guidance and support have made those summers productive
and memorable ones, and I learned a lot of practical experiences working in both industry and
research labs environments.

I would also like to thank both current and former members of MONET research group for all
the help during my time with the group. Especially, I would like to thank Dr. Debessay Fesehaye
Kassa and Dr. Long Vu for introducing me to the group (without your introduction, none of
this research would have been possible) and for helping me through the early days of my Ph.D.
research.

I would like express my dearest appreciation to my extended family from Vietnam, especially
my Mom and Dad, for all the love, support and confidence they have in me. I would like to thank
my dearest wife Linh for her love and support through thick and thin, and my beloved daughter
Minh for being my everyday inspiration. Spending valuable time with my family really helped me
to find a good balance during the busy and sometimes stressful Ph.D. life.

Last but not least, I would like to thank the National Science Foundation for supporting re-
search done in this thesis through awards numbered 1443013 and 1659293. The opinions, findings
and conclusions or recommendations expressed in this thesis are those of the author and do not
necessarily reflect the view of the National Science Foundation.

v

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1

CHAPTER 2 BACKGROUND AND CHALLENGES . 4

CHAPTER 3 RELATED WORK . 9
3.1 Scientific Data Management . 9
3.2 Scientific Workflow Execution and Monitoring 9
3.3 Cloud-based Workflow Management Systems . 10
3.4 Scalability and Adaptability of Workflow Systems 11
3.5 Edge-Cloud Architecture for Data Cyberinfrastructure 12

CHAPTER 4 OVERVIEW OF DOSSIER . 13

CHAPTER 5 MICROSERVICE ARCHITECTURE FOR SCIENTIFIC DATA MAN-
AGEMENT . 17
5.1 Overview of Microservice Architecture . 17
5.2 Task Dependency Service . 19
5.3 Microservice Resource Models and Assumptions 21

CHAPTER 6 ADAPTIVE CONTROL FRAMEWORK FOR MICROSERVICE IN-
FRASTRUCTURE . 24
6.1 Overview . 24
6.2 Integration of Adaptive Control Framework with Microservice Infrastructure . . . 24
6.3 Microservice Monitoring . 26
6.4 Microservice Adaptation . 27

CHAPTER 7 QUEUEING NETWORK-BASED RESOURCE ADAPTATION 29
7.1 Modeling Motivations . 29
7.2 Modeling Performance of Microservice Execution Environment 29
7.3 Microservice Adaptation as Optimization Problem 32
7.4 Greedy Resource Allocation Solutions . 34
7.5 Evaluation . 36
7.6 Summary and Discussions . 45

CHAPTER 8 MONAD - MODEL PREDICTIVE CONTROL RESOURCE ADAPTATION 46
8.1 System Identification . 46
8.2 Controller Design . 48
8.3 Evaluation . 50
8.4 Summary and Discussions . 56

vi

CHAPTER 9 ADAPTIVE MICROSERVICE INFRASTRUCTURE VIA MODEL-BASED
REINFORCEMENT LEARNING . 58
9.1 Background: Reinforcement Learning . 58
9.2 Model-based Reinforcement Learning Adaptation for Microservice Infrastructure . 59
9.3 Evaluation . 64
9.4 Summary and Discussions . 68

CHAPTER 10 4CEED - REAL-TIME ACQUISITION AND ANALYSIS FRAME-
WORK FOR MATERIALS-RELATED CYBER-PHYSICAL ENVIRONMENTS 72
10.1 Extending DOSSIER to Material-related Environment 72
10.2 Curation Service . 72

CHAPTER 11 BRACELET - HIERARCHICAL EDGE-CLOUD MICROSERVICE
INFRASTRUCTURE . 76
11.1 BRACELET’s Architecture . 78
11.2 BRACELET’s Resource Management . 83
11.3 BRACELET’s Security Design . 88
11.4 Evaluation . 89

CHAPTER 12 CONCLUSIONS . 94

APPENDIX A DETAILS ON PARAMETRIC DECOMPOSITION PROCEDURE 95

REFERENCES . 97

vii

CHAPTER 1: INTRODUCTION

Scientific research has become increasingly data-driven and interdisciplinary. One of the key en-

abling factors for such a trend is that scientific instruments are becoming more and more advanced

and capable of capturing digital data in real-time. One example is the evolution of microscopes,

from traditional optical microscopes that use light to interact with sample to generate images,

which are limited in the spatial resolution, to more advanced electron microscopes (e.g., trans-

mission electron microscopes or TEMs) that use high energy beam of electrons to pass through

sample to produce high-resolution images. Such advanced electron microscopes are often con-

nected to computers that help to enable accurate calibration of microscope and real-time capturing

of digital images. As more and more digital data being captured, it opens opportunities for data-

driven analysis and data sharing across related research disciplines.

The development of data-driven cyberinfrastructure for scientific research areas (e.g., material

science, biology), however, has often lagged behind the development of such tools in other engi-

neering and IT-related fields. In particular, related efforts in data-driven cyberinfrastructure mainly

focus on homogenous, well-organized data and support data processing and analysis in an offline

or batch manner (e.g., in areas such as astronomy, high-energy physics). On the other hand, much

less effort has been on long-tail scientific data - data of small or medium size collected during day-

to-day research (e.g., digital images of a scientific experiment, captured by digital microscopes in

the lab), or “dark data” that consists of unpublished data of failed experiments. It has been shown

that more than 50% of scientific findings do not appear in the published literature [1], as only data

of successful experiments are often included in publications.

As scientific advancement and discovery have increasingly moved to a data-driven and inter-

disciplinary approach, such a development gap in data-driven cyberinfrastructure can cause sig-

nificant delay in bridging the innovation across scientific disciplines. For example, in material

science domain, National Academy’ studies [2] suggest that it typically takes 20 years to go from

the discovery of new materials to fabrication of new and next-generation devices based on the

new materials. There are several issues with the current state of data capture and storage in ma-

terials and semiconductor fabrication domains that contribute to the long cycle from discovery

of new materials to fabrication of new devices. The most notable issues include manual digital

data capturing and transferring (i.e., often done via “sneaker-net” techniques), and the lack of ad-

vanced data management and sharing (i.e., researchers often store data in their local hard drive

or use generic storage services, such as Box or Google Drive, that do not provide any assistance

in organizing and processing data). Hence, to shorten the discovery cycle, it will require a major

1

transformation in how we collect digital data about materials and how we make the digital data

available to computational tools for developing new materials and fabricating new devices to the

research community.

Developing an advanced data management and infrastructure to support scientific data-driven

research poses several challenges. First, in terms of data management and processing, the infras-

tructure should be able to support managing and processing heterogeneous types of scientific data

that have been captured from instruments. Since scientific data processing job is often modeled as

workflows, the infrastructure thus needs to support executing heterogeneous types of workflows.

Second, the cyberinfrastructure needs to be scalable and adaptive to deal with varying and of-

ten bursty workload, in order to help shorten the time from digital capture to interpretation and

insights. In addition, instead of being deployed on public cloud infrastructure with elastic and

unlimited resources, cyberinfrastructure is often deployed within educational or research institu-

tions with limited resources. Therefore, the cyberinfrastructure should be designed to support

flexible resource management strategies to meet different objectives (e.g., a certain average job

response time is guaranteed) and satisfy different constraints (e.g., total resource cost is under a

limited budget) set by users. Third, in terms of data acquisition, due to a slow update cycle of

scientific software, a large number of scientific instruments is still connected to computers running

old and unsupported OS (e.g., Windows XP) whose software cannot be patched with important

security protections. Hence, connecting these instruments to the cyberinfrastructure network can

cause concerns about security and the performance gap between old software system and the new

networked infrastructure.

In this thesis, we aim to address the above challenges by taking a holistic approach in de-

signing a distributed operating system and infrastructure for scientific data management, named

DOSSIER1. At the core of DOSSIER is an adaptive control microservice infrastructure that is de-

signed to tackle the aforementioned challenges of data cyberinfrastructure for distributed scientific

data management. Particularly, to handle heterogeneous scientific data processing and analysis,

we start with redesigning the execution environment for scientific workflows, which traditionally

follows a monolithic approach, using a novel microservice architecture and latest virtualization

technology (i.e., container technology). The microservice design enables more flexible and dy-

namic composition of workflows, and thus, is efficient in dealing with heterogeneous workflows.

The new microservice architecture also allows us to express system resources in a more simple

way, and thus, enables the design of a new adaptive resource management mechanism to handle

large-scale and dynamic scientific workloads. We are the first to apply feedback control theory to

1DOSSIER stands for Distributed Operating SyStem and Infrastructure for SciEntific Data Management

2

design a self-adaptation mechanism for scientific workflow management system to help shorten the

time from data acquisition to insights. To address the security and performance gap issues when

connecting old scientific instruments to cloud-based cyberinfrastructure, we design an edge-cloud

architecture that puts cloudlet servers directly connected to the scientific instruments and act as the

security shield for insecure instrument computers. Cloudlets will also coordinate with cloud-based

backend system to tackle the performance issue by scheduling data transfer and offloading pro-

cessing tasks to cloudlets to avoid traffic congestion and guarantee performance of data processing

jobs across edge-cloud architecture.

In summary, our thesis statement is that: Edge-cloud microservice architecture with learning-
based adaptive control resource management is needed for timely distributed scientific data
management.

The remaining of this thesis is organized as follows. In Chapter 2, we provide background

information of scientific data environment, the material-related environment, through which we

motivate, develop and validate our algorithms and approaches, and discuss in details the key chal-

lenges for building a data cyberinfrastructure for that environment. In Chapter 3, we summarize

related work on scientific data management and cyberinfrastructure. In Chapter 4, we present an

overview of DOSSIER and its high-level architecture. In the following chapters, we describe in de-

tails different components of DOSSIER, from its microservice execution architecture (Chapter 5)

and adaptive control framework (Chapter 6), to its realizations using queueing network (Chapter 7),

model predictive control (Chapter 8), and reinforcement learning (Chapter 9). Then, in Chapter 10,

we present 4CEED - an application of DOSSIER in material-related environment. After that, we

describe the design and implementation of BRACELET - our hierarchical edge-cloud microservice

infrastructure to tackle the distributed data acquisition and processing challenges (Chapter 11). We

conclude the thesis, summarize lessons learned and future directions in Chapter 12.

3

CHAPTER 2: BACKGROUND AND CHALLENGES

To better understand the target environment of this thesis - the material-related scientific exper-

iments, we provide some background information on the materials, semiconductor experiments,

and analytical instruments used in materials science research. In addition, we present some insights

from our user study to shed light on the scientific user requirements and expectations.

Figure 2.1 shows a typical experiment flow in material-related research. In the first step, re-

searchers create physical experimental samples, either in their labs or in shared fabrication facil-

ities. These physical samples can range from microelectronic devices, to biological samples, to

nanoparticles. Once physical samples are created, they must be prepared for analysis (Step 2). For

example, with analysis using Scanning Electron Microscopes (SEM), the preparation usually in-

volves cutting the sample into a size which can be placed under the microscope and attaching it to

a SEM sample holder. The result of such preparation is called an an analytical sample. The actual

analysis of an analytical sample happens using analytic tools/instruments (Step 3), including SEM

and other electron microscopes, as well as x-ray, ion, and optical scattering experiments.

The results of the analysis in Step 3 are the digital footprints of the physical experimental sam-

ples. These digital data can vary in format, depending on the type of analytic instrument used. For

example, the output of SEM microscopes (Figure 2.2) consists of: (i) digital images of analytical

sample that are stored in standard image format (e.g., .TIF, .GIF., or .JPEG), (ii) instrument spe-

cific information and meta-data (e.g., temperature, pressure, accelerating voltage, detector used,

etc.) that are stored in a text file, and (iii) unstructured notes by researchers about the experimental

or analytical results. On the other hand, output data from the TEM microscopes is in proprietary

data format (i.e., DM3) that contains both image data and instrument specific meta-data. In such

the case of proprietary data format, it might require another step to convert the results of analytic

tools to standard formats (Step 4). The researchers must then transport the converted files to their

personal workstation (Step 5 - which often uses a “sneakernet” of USB thumb drives) for follow-

up interpretation (Step 6). If the interpretation result is negative, further modifications might be

needed for the procedure to create physical experimental sample (Step 7), which causes repetitions

of the process until the desired interpretation, insights and criteria are satisfied.

While new analytic techniques have allowed for a surge of nanomaterials research publications

and related innovative products, the time between discovery of new materials and their application

in, for example, semiconductor fabrication processes is at a relative stagnation, taking several years

between an incepted material design and its commercial usage. This slow process can be attributed

largely in part to communication of research, or rather the lack-there-of, specifically pertaining to

4

1. Create
physical

experimental
sample

2. Prepare analytical
sample from the

physical
experimental

sample

3. Analyze
the analytical

sample

4. Convert
digital

analytical
data

5.Transport
the converted

analytical
data

6. Interpret
the converted

analytical
data

7. Modify the
procedure for
creation of the

physical
experimental sample

Figure 2.1: Typical experiment flow in material science.

Figure 2.2: An example of SEM output.

5

nanomaterial analysis tools. Most often negative results from these nanomaterial analysis tools are

not published, the transportation of the collected data is often insecure, and the resulting data files

are often propriety, causing inherent loss of data through file conversions in order to work up the

data for publication quality figures.

In order to accelerate the experimental process, it is necessary to have an expedient mean to

capture, transport, and process the digital data (i.e., output of Step 3) in timely and in trusted

manner before archiving them. Furthermore, it is necessary to have access to extensive data anal-

ysis and visualization for more efficient interpretation of the results. Such a distributed timely

and trusted data-driven framework would greatly reduce the time, security and data loss risks of

the manual efforts involved in the Step 4, 5, and 6 of the experimental scientific process. In ad-

dition, a networked platform that provides authorized access to archived experimental data (e.g.,

dark unpublished data) would help to close the communication gap between researchers and pre-

vent unnecessary repetitions of the experimental process, caused by the lack of information in the

literature.

There are a number of diversity challenges for building data-driven framework and cyberinfras-

tructure to support timely scientific data management in pre-publication phase..

First, the diversity of scientific data and data processing tasks represents a major challenge.

The cyberinfrastructure should be able to support managing and processing heterogeneous types

of scientific data that have been captured from instruments. This is challenging, since data gen-

erated from scientific experiments is often multi-modal (as shown in Figure 2.2) and the process

of studying a single type of material sample often involves a number of heterogeneous types of

experiments (Figure 2.3 shows a series of different types of experiments that are often executed

during the semi-conductor experimental process). In addition, because multiple, co-dependent

tasks, called task workflows, process scientific data, the cyber-infrastructure must support execut-

ing heterogeneous types of workflows.

Second, while the data infrastructure must help to shorten time from digital capture to interpre-

tation and insights, it is challenging for the data infrastructure to deal with the diversity of users

and their scientific workload. With current manual data acquisition and transfer, it often takes

hours from when data is captured in the lab until users can process the data and gain insights from

the experiments. The opportunity to shorten that time gap is to provide the ability to upload data

right away during the ongoing lab session. Our recent user survey shows that 66% of users feel

they have enough time during the microscope lab session to upload the data if such a data-upload

service and/or tool exists. However, even if such a uploading tool exists, the unpredictability and

the dynamism of workloads, uploaded from hundreds of scientific instruments during lab sessions

6

SiO2 Mask
Deposition Diffusion

Plasma
Etching

Oxidation Device
CharacterizationMetallization

Lithography

Lithography

SiNx
Deposition

SiNx
Removal

Profilometry
Ellipsometry SIMS

SEM

Profilometry
SEM

SEM Profilometry
SEM

Optical microscopy
SPA

Optical microscopy

Profilometry
Ellipsometry

SEM Optical microscopy

Figure 2.3: Heterogeneous types of experiments often done on a material sample.

(a) Amount of data uploaded

(b) Number of files uploaded

Figure 2.4: Data usage on MRL’s JOEL instrument from Sep 2015 to Sep 2016.

might pose a serious challenge for the scalability and adaptability of data infrastructure.

To better understand workload characteristics, we study the actual usage of experimental instru-

ments in material research environment. In particular, we select two of the most popularly used

instruments in MRL, namely JOEL and HeliosFIB, and collect information about experimental

results created on those instruments, such as creation time, size of output file, etc, over a one-year

time period. This information gives us vital information about the actual usage of these instru-

ments and the typical workload generated from those instruments. The results on instrument usage

are shown in Figure 2.4 and Figure 2.5. We can see that, on both instruments, the workloads are

highly variable and often bursty. In general, there is a correlation between the number of files

and the amount of data uploaded (especially in HeliosFIB case). However, for JOEL instrument,

the variability in the amount of uploaded data seems to be more extreme, due to the fact that the

7

(a) Amount of data uploaded

(b) Number of files uploaded

Figure 2.5: Data usage on MRL’s HeliosFIB instrument from June 2015 to March 2016.

files produced by JOEL are generally large files and can vary in sizes. These results suggest that

the data cyber-infrastructure that supports capturing and processing digital data generated from

instruments needs to be scalable and highly adaptive to handle variable and bursty workloads.

Third, the diversity of instruments is a challenge. The data infrastructure must help to bridge

the performance and security gap between old scientific instruments and their advanced cloud-

based infrastructure. There is still a significant number of scientific instruments that run their

scientific software tools on old operating systems (e.g., Windows XP, Windows NT, Windows

2000). Since these OSes cannot operate at the network speed of a powerful cloud and are not

patched with the latest security patches, the instruments are taken offline and cannot connect to

the cloud infrastructure. This is because if these instruments were put on the network, they would

be destroyed by viruses and might represent major security threats and performance bottlenecks to

the very expensive instruments and the overall network infrastructure. Furthermore, this situation

will not go away, since instrument companies do not upgrade their instrument software at the same

frequency with which the computing companies upgrade their OSes1. Even more recent OSs,

such as Windows 7, will become obsolete in the near future, and scientific instruments running on

Windows 7 will eventually join the group of offline instruments. As a result, the current networked

solution for scientific instruments is not evolvable and represents a major barrier to accelerating

the pace of discovery and deployment of advanced cyber-infrastructure.

In this thesis, we design DOSSIER to tackle the above diversity challenges (i.e., diversity of data,

tasks, users, workloads, and devices) to support timely distributed scientific data management.

1It is often that the instrument companies (e.g., GE, Siemens) stop augmenting/updating their scientific softwares
when OSes are upgraded to newer versions or when new OS patches come up. Hence, to make use of the instruments,
scientific users have to run the instruments on older OSes.

8

CHAPTER 3: RELATED WORK

Before introducing our proposal solution, DOSSIER, for timely distributed scientific data man-

agement, we discuss various categories of related work on scientific data management, scientific

workflow systems, distributed cyberinfrastructure, and briefly explain how our approach differs

from the related work.

3.1 SCIENTIFIC DATA MANAGEMENT

The related efforts in scientific data management have been focusing on making existing datasets

more accessible and shareable (e.g., DataUp [3], SkyServer [4]), toward long-terms preservation

(e.g., SEAD [5]). Other efforts focus on providing easy access and collaboration to distributed cy-

berinfrastructure that incorporate cloud and grid technologies, such as HubZero [6], NanoHub [7]

(for nanotechnology simulations), BrownDob [8], Data Conservancy Instance [9] (for cloud-based

data curation). With DOSSIER, our focus shifts to capturing, accurately curating, scientific digital

data in a timely and trusted manner before fully archiving and publishing them for wide access and

sharing. Thus, our effort is complementary to those other efforts, and we could effectively leverage

results of existing solutions (e.g., data preservation tools for long-term storage of data, data cura-

tion tools for curating data after it has been captured and stored). Although we will demonstrate

our design of data management system for materials-related environments, it can be extended to

use in other domains where the nested data model and workflow-based data processing mechanism

apply.

3.2 SCIENTIFIC WORKFLOW EXECUTION AND MONITORING

Scientific workflow management systems (WfMS) [10][11] have traditionally employed a mono-

lithic approach in workflow implementation and execution. In particular, each workflow is imple-

mented as a tightly coupled set of tasks and has its own workflow execution plan that specifies

how to run the workflow on a distributed computation infrastructure. For example, Pegasus [12]

statically translates a workflow graph into an execution plan (e.g., selecting sites for tasks to run

and cluster tasks based on various criteria) and the plan could not be changed once the execution

runs. In other systems, such as Taverna [13], Triana [14], Kepler [15], all data movements and task

submissions to grid infrastructure need to be explicitly specified and organized in the execution

plan. In Shock/AWE [16][17], once being executed, the execution plan is often coordinated by

9

a centralized server (and often, with a single task queue) that is in charge of task invocation and

synchronization. Such a static, infrastructure-dependent execution plan creation, and centralized

coordination mechanism make the existing systems less efficient in dealing with large-scale and

heterogeneous workloads.

In DOSSIER, we leverage the latest advances in cloud computing and virtualization technol-

ogy to abstract away the infrastructure complexity (e.g., task allocation on actual servers/VMs is

handled by cluster management system, such as YARN [18], Docker Swarm, Kubernetes [19])

and focus on the design of workflow execution model. In particular, by modeling tasks as micro-

services, we are able to separate workflow’s task dependencies from task implementation, and thus

allow more flexible and dynamic composition and execution of workflows.

Real-time monitoring is important to control workflow execution [11], and it is still an open

issue. The common approaches for workflow monitoring are still based on analyzing execution

log data [20], or provenance data [21][22], and often require extra implementation effort to collect

such data. In DOSSIER, we leverage our micro service-based architecture and the publish/subscribe

middleware to perform seamless performance monitoring of workflows and tasks.

3.3 CLOUD-BASED WORKFLOW MANAGEMENT SYSTEMS

With the increasing popularity of cloud infrastructure, there have been efforts [23][24] to de-

ploy WfMS on the cloud to take advantage of the elasticity and service level agreement of cloud

resources. Cloud-based deployment of WfMSs opens the opportunity to offer WfMS using the sci-

entific workflow-as-a-service (SWfaaS) model [25][26] that can support a broader range of users

with different requirements. While related works that leverage grid and cloud-based infrastruc-

ture often use resource models based on VMs and virtual resources, with the recent advances in

virtualization technology, especially container technology, there have been efforts [27][16][28] to

use container as the execution environment for executing workflow tasks. These efforts mainly

focus on containerizing workflow’s tasks to overcome the dependency issues during workflow de-

ployment and to improve the reproducibility of workflow implementation via containerized tasks.

However, little effort has been done on the composability of workflows.

The microservice execution model and the use of container technology as the implementation

standard for a task in DOSSIER allow us to offer workflow-as-a-service capability. Users can

either execute a workflow that consists of tasks implemented in any language and packaged into

containers; or easily compose and execute new workflows using reusable tasks. The micro-service

execution model also allows to abstract the resource allocation as the allocation of consumers

10

over task’s micro-services. This simple allocation model enables efficient resource scheduling and

adaptation strategies (to discuss shortly) to provide guarantees on various constraints set by users

(e.g., deadline, cost), which are often supported by a software-as-a-service system.

Our DOSSIER system operates on top of a generic cloud resource management system that offers

basic resource management capabilities. Although we use Kubernetes [19] in our implementation,

DOSSIER can be used with other systems, such as YARN [18] and Mesos [29] that help allocate

available computational resources to applications.

3.4 SCALABILITY AND ADAPTABILITY OF WORKFLOW SYSTEMS

To provide various guarantees when executing scientific workflows, there have been related

works on scheduling and allocation of tasks under cost and deadline constraints of individual work-

flow [30][31], or workflow ensembles [32][33][34]. Techniques developed in these works mostly

focus on optimizing execution order of tasks and the allocation of tasks on distributed resources

and require advanced knowledge of workflow’s structure (e.g., critical paths, partitioning tasks in

workflows)[35][36]. In addition, there have also been related work that leverage the elasticity of

cloud resources to dynamically provision resources allocated for executing a workflow (e.g., CPU,

memory of VMs), in order to meet certain deadline constraint [25][37][34].

In DOSSIER, using the microservice execution model, we are able to simplify the way we control

the scalability of the system by controlling the number of consumers per task in a workflow. In

addition, we are able to derive black-box performance model (without knowledge of workflow

structures) of the system using the allocation of consumers as control inputs. From the performance

model, we design self-adaptation mechanism based on feedback control theory, so that DOSSIER

can self-adapt to the dynamism of workloads to guarantee performance constraints provided by

users.

Feedback control-theoretic approaches, which are traditionally used in mechanical and electrical

systems (e.g., in robotics), have been adopted in several types of software system [38], such as web

server [39], distributed visual tracking system [40], adaptive real-time systems [41], and network

congestion avoidance [42]. As far as we are concerned, we are the first to apply feedback control

mechanism to enable self-adaptive and QoS-aware support in scientific workflow systems. Cloud-

based workflow systems pose complex interactions between different workflow types and tasks

(via task dependencies), as well as various performance and resource cost constraints, and thus

a simple controller model such as PID (Proportional-Integral-Derivative) is not suitable. Hence,

we use multilayer neural networks, which have theoretically-proven approximation power and

11

have been applied successfully in the identification and control of dynamic systems, to capture

the performance model of the system. In addition, we employ the model predictive control [43]

methodology and treat the controller design problem as an optimization problem, which allows us

to incorporate various system constraints, using the receding horizon technique [44].

3.5 EDGE-CLOUD ARCHITECTURE FOR DATA CYBERINFRASTRUCTURE

Related work on cyberinfrastructure [6, 9, 45] has mainly focused on cloud-based, two-tier

architecture and lacks of support for vulnerable scientific instruments running on out-of-date op-

erating systems. In this thesis, we design the first microservice-based hierarchical edge-cloud ar-

chitecture (Chapter 11) for cyberinfrastructure that seamlessly extends cloud-based infrastructure

to the edges to help connect and protect otherwise disconnected and vulnerable instruments.

In terms of computation offloading in the edge-cloud architecture, there has been related work in

mobile computing domain [46] that aims to minimize execution time or preserve energy on the mo-

bile endpoints. Tong et al. [47] propose a workload placement algorithm to decide which mobile

programs are placed (i.e., placement) on which edge-cloud servers, and how much computational

capacity is needed (i.e., scaling). Tan et al. [48] propose a general model for deciding when and

where to offload a job from a mobile user. Wang et al. [49] investigate the assignment and the

scheduling of tasks over multiple cloudlets. Most of related work, however, only deals with work-

loads of independent tasks (sometimes with known task profiles). In DOSSIER, we are dealing

with dependent tasks from multiple workflow types and we propose a novel resource placement

and scaling across edge cloud infrastructure using a micro-service performance model.

In terms of resource scaling of a cloud application, there exists related work [50–53] on us-

ing predictive models (especially using machine learning techniques) to accurately predict per-

formance and resource demand of applications to make informed decisions on resource scaling

and reconfiguration. The main difference between those approaches and our approach is that we

model the system performance at the granularity of individual microservices in order to support

both resource scaling and computation placement decisions.

12

CHAPTER 4: OVERVIEW OF DOSSIER

As motivated in Chapter 1, this thesis focuses on designing a novel distributed operating sys-

tem for data cyberinfrastructure, named DOSSIER, that addresses the challenges in scientific data

management and processing, system scalability and adaptability, and data acquisition when deal-

ing with heterogeneous and dynamic scientific workloads. With DOSSIER, we take a holistic

approach and tackle the challenges in all layers of the cyberinfrastructure stack: from runtime

system, monitoring, to adaptation and applications.

An architectural overview of our DOSSIER is presented in Figure 4.1. At the lowest level is the

set of distributed computing and storage resources, as well as scientific instruments that are parts

of the cyberinfrastructure. The distributed resources are managed by a basic resource management

layer, whose main objectives are to provide an abstraction of the resources and to support basic

resource allocation capabilities (e.g., to allocate a task to an computing node that has available

resource). On top of the resource abstraction layer is a runtime system layer that provides ex-

ecution environment for scientific applications (accessed via API component), such as scientific

data processing and analysis tasks. The monitoring component monitors the performance of run-

time components, storage usage, progress of executing workflows. The collected monitoring data

can be used by the resource scheduling and adaptation component to dynamically and adaptively

schedule the system resources to meet certain performance guarantees and resource constraints

from applications. Application layer provides users access to various features, such as data man-

agement, curation, and scientific workflow composition. Cross-layer security component handles

user authentication and access control across different layers of DOSSIER. In the following, we

briefly introduce each component.

Similar to traditional operating systems that manage entities including memory, devices, files,

and processes, DOSSIER is a distributed operating system that manages a set of core entities:

tasks, workflows, instruments, and data files (in addition to datasets and nested collections for file

organization, similar to folder in traditional OS). In particular, DOSSIER keeps track of progress,

requests, and resources associated with tasks and workflows. Instruments are registered when they

are connected to DOSSIER, so that DOSSIER is aware of the type, network, and workload charac-

teristics of the instruments (which are vital information during data acquisition phase with edge-

based cloudlets). DOSSIER also keeps track of all information about owner, creation date/time,

permissions, etc. of the files, datasets, and collections.

In terms of the runtime system, we present a novel microservice execution environment for het-

erogeneous scientific workflows. In particular, instead of using a traditional monolithic, centralized

13

Computing & Storage Resources

Basic Resource Management

Runtime System

Resource
Scheduling &

Adaptation

MonitoringAPI

Services
Se

cu
rit

y

Applications

D
O
SSIE

R

Figure 4.1: Architectural overview of DOSSIER.

task coordination approach, we design workflow execution mechanism based on a microservice ar-

chitecture, where each task is modeled as a microservice with its own request queue and computing

capability. With this design, we can separate complex task dependencies from the implementation

of individual tasks, and thus, enable more scalable execution of heterogeneous workflows. We

present the design of the microservice architecture in details in Chapter 5.

As motivated in Chapter 2, one of the key challenges for the data cyberinfrastructure is to help

shorten time from data capture to insights. To address this challenge, we design a adaptive con-

trol framework for the microservice infrastructure to help the infrastructure to adapt with the dy-

namism of scientific workloads. At a glance, the framework consists of three main components:

microservice monitoring (i.e., to monitor the actual performance of microservices), microservice

performance model (i.e., to present formulation of the performance of microservices and provide

near-future predictions of performance), and microservice resource adaptation (i.e., to leverage

performance predictions to appropriately allocate system resources to microservices). We present

a high-level overview of the adaptive control framework and how it is integrated with the microser-

vice execution environment in Chapter 6.

From Chapter 7 to Chapter 9, we present different realizations of the adaptive control frame-

work presented in Chapter 6. In Chapter 7, we present a white-box queueing network-based

adaptation mechanism for microservice infrastructure. Specifically, we use a white-box queueing

network model to model the performance of the microservice infrastructure and present multiple

14

Monitoring
Data Collector

Alert
Engine

Task Invoker Task Dependency
Service

Task A Task B Task C

System
Identification

Adaptive
Control

Distributed Resource Management System

Resource
Actuator

API

Curation
Service

Data
Management

System
Administration

Workflow
Composition

Se
cu

rit
y

Scientific instruments Compute resources Storage resources

Material Science
Application

Bio-engineering
Application

Astronomy
Application

Physics
Application

D
O
SSIE

R
A

pplications

Figure 4.2: Detailed architecture of DOSSIER.

optimization-based microservice resource adaptation strategies that leverage that white-box model

for near-future performance predictions.

In Chapter 8, we present MONAD, a novel self-adaptive mechanism for microservice infrastruc-

ture using control theory. In particular, we design a feedback control-based resource adaptation

approach that is based on black-box neural network-based system model (and thus does not require

any advanced knowledge of workflow structures like in white-box techniques) and employ a model

predictive control-based resource adaptation mechanism that incorporates performance guarantees

into adaptation objective to find optimal resource allocation strategies that satisfy resource budget

constraints.

15

In Chapter 9, we present our novel model-based reinforcement learning approach for microser-

vice resource adaptation. While the progress in (deep) reinforcement learning has shown great

benefit in a variety of application domains (e.g., training AI agents to outperform human players

in a lot of computerized games), we are one of the first to study the application of reinforcement

learning, the model-based technique in particular, in the context of distributed system and network-

ing domain. We will show in Chapter 9 how different concepts of reinforcement learning, such as

episode, rewards, environment, policy, can be mapped to our targeted environment of distributed

microservice infrastructure, and how we can train a resource management agent to operate by itself

to perform resource adaptation.

In terms of services, DOSSIER’s open architecture enable a number of service building blocks

can be incorporated to, including curation service, data management, workflow composition, and

system administration to name a few. These services can be used to build domain-specific scien-

tific data management applications. In Chapter 10, we validate the practicality of these services

in materials-related application domain by developing 4CEED - a real-time data acquisition and

analysis framework for material-related environment. In particular, 4CEED provides a streamlined

curation service that helps users to perform nimble and adaptive data collection from material re-

search instruments by wrapping of data with extensive meta-data in real-time and in a trusted

manner. A number of data processing tasks are developed specifically for various types of material

data to process data uploaded from instruments. In addition, 4CEED leverages DOSSIER’ service

building blocks to provide advanced data management, curation, and sharing of the collected data

after they have been processed by the back-end service.

In Chapter 11, we present a novel edge-cloud architecture that extends the cloud-based mi-

croservice infrastructure to the edges to help connect and secure old scientific instruments, as well

as to help cloud-based infrastructure (with limited resources) to better handle dynamic scientific

workloads uploaded from a large number of instruments. We will show how our edge-cloud ar-

chitecture enables seamless extension of DOSSIER’s microservice architecture to the edges and

allows monitoring and adaptation of microservices across cloud and edges.

In terms of security, although this is not the main focus of the thesis as we focus more on the per-

formance aspect of distributed scientific data management (i.e., how to provide timely responses

to acquisition, processing and curation requests of scientific data), we employ state-of-the-art and

existing security techniques and best practices in DOSSIER, such as user authentication for access-

ing application services, permission control on user data, encryption for data transfer, to ensure

that user data is secure and is only accessible to the ones that has permission.

16

CHAPTER 5: MICROSERVICE ARCHITECTURE FOR SCIENTIFIC DATA
MANAGEMENT

Traditional workflow management systems (or WfMSs for short) often employ a monolithic

approach in workflow implementation and execution. In particular, each workflow is implemented

as a tightly coupled set of tasks and has its own workflow execution plan that specifies how to

run the workflow on a distributed computation infrastructure. For example (cf. surveys in [10]

and [11] for more details), Pegasus statically translates a workflow graph into an execution plan

(e.g., including selecting sites for tasks to run and cluster tasks based on various criteria) and the

plan cannot be changed once it is executed. In other systems, such as Taverna, Triana, or Kepler,

all data movements and task submissions to grid infrastructure need to be explicitly specified

and organized in the execution plan. In Shock/AWE [17], once being executed, the execution

plan is often coordinated by a centralized server (and often, with a single task queue) that is in

charge of task invocation and synchronization. This, the static, infrastructure-dependent execution

plan creation, and centralized coordination mechanism make the existing systems less efficient in

dealing with large-scale workloads of heterogeneous workflows.

In DOSSIER, we leverage the latest advances in cloud computing and virtualization technol-

ogy to abstract away the infrastructure complexity (e.g., task allocation on actual servers/VMs is

handled by a cluster management system, such as YARN or Kubernetes) and focus on the design

of the workflow execution model. We exploit the fact that the tasks in scientific workflows are

only data-dependent and different workflows often share common tasks. In addition, data process-

ing tasks are often quite simple and not algorithmic-heavy (e.g., extracting meta-data from raw

file, generating preview from images, indexing meta-data, etc. - see Chapter 2 for more examples).

Therefore, instead of the traditional monolithic approach, we model scientific data processing tasks

as microservices, and separate workflow’s task dependencies from the implementations of individ-

ual tasks. This microservice approach enables more flexible and scalable workflow composition

and resource scheduling (e.g., resource scaling can be done at the task level, instead of the whole

workflow).

5.1 OVERVIEW OF MICROSERVICE ARCHITECTURE

An architectural overview of the DOSSIER’s microservice-based execution environment is pre-

sented in Figure 5.1.

In DOSSIER, the execution abstraction model is in terms of tasks (i.e., each task corresponds to a

17

Task A’s Request Queue

Task B’s Request Queue

Task A’s
Consumer

3: Dispatch requests
(round-robin)

Task A’s Micro-service Task B’s Micro-service

Workflow Invoker

2: Send requests to
appropriate task queue

1: Lookup task
dependencies of

workflow requests …

TDS
Ensemble

4:
 P

ub
lis

h
re

qu
es

t
to

 s
ub

se
qu

en
t t

as
k

0: Submit
workflow
request

Task coordination

Message bus

Task execution

TDS
Server

TDS
Server

TDS
Server

Task B’s
Consumer

A B

Workflow description

Workflow Composition
Tools

…

Figure 5.1: Design of workflow execution layer

data processing or data analysis task) and workflows (i.e., a Directed Acyclic Graph of tasks, which

corresponds to a data processing job). Each task is modeled as a microservice that consists of a

first-in-first-out request queue1 and a set of consumers subscribing to the queue to handle requests.

Task dependencies are maintained by a separate task dependency service2 (or TDS). Figure 5.2

shows an example of a task dependency table of workflows type 1 & 2 maintained by TDS.

User interacts with the execution environment by submitting a workflow-based data processing

request that includes input data, a workflow type (in case user requests for an existing workflow

type in the system) or a workflow description (in case user composes his/her own workflow). A

workflow description is presented in form of a task graph’s edge list. Each workflow type has a

corresponding workflow description that is already stored in TDS. Workflow input data (and all

1In DOSSIER, the task requests are non-preemptive, and we do not perform admission control on incoming re-
quests. We leave these extensions for future work.

2Workflow’s task dependencies are checked by TDS to make sure there is no cycle in the workflow.

18

Type From To
1 Start A
1 A B
1 B End
2 Start A
2 A C
2 A D
2 C E
2 D E
2 E End

… … …

Start A B End

Start A

C

E

D

End

Workflow type 1

Workflow type 2

Task dependencies
Figure 5.2: Example of workflow types and the corresponding task dependencies

intermediate results) are stored in a shared storage system that can be accessed by all tasks.

Whenever a workflow request arrives,3 the task invoker asks the TDS which task of the workflow

should be processed first. Upon receiving response from TDS, given a request of workflow type

1, for example, the task invoker will send the request to task A’s request queue (i.e., the first

task of workflow type 1) so that it can be processed by one of A’s consumers. Besides being a

subscriber to its task request queue, each task consumer also acts as a publisher for other types of

tasks following the workflow’s task dependency graph. After a task consumer finishes processing

a request, it will ask TDS about the subsequent task(s) of the workflow to “publish” the request

to those tasks. For example, with a request of workflow type 1, after being processed by a task

A consumer, the consumer will publish the request to task B’s request queue. The processing of

the request ends when task B’s consumer is informed by the TDS that B is the last task of the

workflow type 1.

5.2 TASK DEPENDENCY SERVICE

5.2.1 Task Synchronization

In addition to answering task dependency look-ups, TDS is also responsible for synchronization

between tasks that run in parallel. For example, in the workflow type 2 (Figure 5.2), task E

must wait for both tasks C and D, which can run in parallel, to finish before E can be processed.

3Only authorized users can send workflow requests to the system, and task invoker will check if the user has
appropriate permissions to access the data required by the workflow request.

19

Because of the publish/subscribe mechanism, whenC andD finish their work, they will publish the

workflow request to task E’s queue. Let us assume that task C finishes before task D. The request

published by C thus arrives first at task E’s request queue and is picked up by an E’s consumer.

Since taskE depends on the output of bothC &D, theE’s consumer could not perform taskE yet.

Therefore, the E’s consumer creates a temporary synchronization token in TDS that holds status

of E’s dependencies. For simplicity, we can consider the synchronization token as a dependency

counter that is initialized as the number of dependencies a task has minus one (in our example,

the token is initialized to be 1, since E has two dependencies). When task D finishes, it publishes

the workflow request to E. Another E’s consumer that picks up the request published by D will

check if a synchronization token for the request exists. Since a token has already been created, the

consumer checks if the request is forwarded from the task’s last dependency (i.e., current token

value of 1). If not, the consumer decreases the token value by one and exits. In our example, since

D is E’s last dependency, the consumer will proceed to perform actual processing of task E.

Algorithm 5.1 Task Synchronization Procedure
1: procedure synchronize(RID, TID)
2: if |prev(TID)| == 1 then
3: return True

4: cur token = get token(RID, TID)
5: if cur token == null then
6: create token(RID, TID, |prev(TID)| − 1)
7: return False

8: else if cur token == 1 then
9: delete token(RID, TID)

10: return True

11: else
12: update token(RID, TID, cur token− 1)

13: return False

We outline the synchronization procedure in Algorithm 5.1. The procedure synchronize is

called at the beginning every time a task consumer processes a request. It takes two parameters,

the request identifier RID and the consumer’s task identifier TID, and it returns True if the synchro-

nization is done (i.e., no more dependencies to wait for) and the task can be executed; and returns

False otherwise. If there is only one dependency that task TID depends on (prev function returns

the set of dependencies of a task), then there is no need for synchronization (Line 2-3). If this is the

request forwarded from the first dependency of TID, a new synchronization token is created (Line

4-7). Function create token(RID, TID, |prev(TID)| − 1) creates a new synchronization token

for request RID at task TID and initialize it to |prev(TID)| − 1. If this is the request from the last

dependency of TID, we delete the token from TDS and return True so that task TID can be pro-

cessed for request RID (Line 8-10). Otherwise, we update the token on TDS (i.e., decrease its value

20

by one – update token(RID, TID, cur token − 1)) and continue to wait for all dependencies to

finish (Line 11-13).

5.2.2 Scalable Task Dependency Service

Since TDS is involved every time a task consumer is invoked (i.e., to perform synchroniza-

tion), or during task dependency lookup, it is vital that the TDS is highly available and able to

quickly respond to a large number of requests at the same time. To offer high availability and high

performance, we designed TDS as an ensemble of multiple TDS servers and maintain a replica

of task dependencies data on each server. For read requests (e.g., dependency lookup requests,

token retrieval), any of the TDS servers can respond using its own local replica of task depen-

dencies. Therefore, reads are quick and scalable. For write requests (i.e., for creating, updating

synchronization tokens, and updating workflow’s task dependencies for applications such as dy-

namic workflow composition), to guarantee consistency across multiple TDS servers, we use a

quorum-based write mechanism with leader election. Specifically, one server from the set of TDS

servers is elected as the leader. When a write request is sent to a server, the server passes on the

request to the leader. This leader then issues the same write request to all other TDS servers. The

write request is deemed successful only if a strict majority of the servers, or a quorum, responds

successfully to this write request.

5.3 MICROSERVICE RESOURCE MODELS AND ASSUMPTIONS

We finish off this section by describing various assumptions, performance metrics, guarantees,

and microservice resource models used by DOSSIER.

5.3.1 Microservice Resource Model

Let us assume that the supported N workflow types compose of J types of tasks (i.e., each

workflow type corresponds to a DAG of a subset, or all, of J types of tasks). We model each task

type j (1 ≤ j ≤ J) as a microservice that handles requests of the task type j. Specifically, the

microservice consists of a request queue that stores the task’s requests, and a set of uniform task

consumers4 that subscribe to the request queue to perform actual processing of the task’s requests.

4Consumers of a task have uniform computational capacity, in terms of CPU and memory, and this low-level
resource information is abstracted away by the cloud infrastructure. Hence, the WfMS only needs to control the
number of consumers for each task and task consumers become the computational representation of resource.

21

A workflow request is processed by multiple micro-services that correspond to the tasks in the

workflow. Micro-services communicate with each other via a publish/subscribe middleware5.

We denote the configuration of the numbers of consumers over tasks during time window

(Tk, Tk+1) as m(k) = (m1(k),m2(k), ...,mJ(k)), where mj(k) is the number of consumers of

task type j during the k-th time window. Since the more consumers subscribe to a task’s request

queue, the more requests can be processed in parallel (and the less time requests must wait in the

queue), m(k) influences task’s and workflow’s processing times. Hence, we use m(k) to represent

resource allocation decision6 to be made by the system, so that it can adapt with the dynamism of

incoming workload to satisfy various performance guarantees.

5.3.2 Performance Metrics

At workflow level, we are measuring the average processing time (or average delay) of each

workflow type i (1 ≤ i ≤ N), as well as the average delay over all types of workflows. The

processing delay of a workflow request is defined as the duration between its arrival time t and

the time when the workflow’s last task is finished. The average delay of workflow type i over the

time window (Tk, Tk+1), denoted as di(k), is calculated by averaging delays of all requests of type

i that arrive during (Tk, Tk+1). We denote d(k) as the vector form of the set of all average delays

of workflow types in the k-th time window: d(k) = (d1(k), d2(k), ..., dN(k)). The average delay

of requests over all types of workflows in the time window (Tk, Tk+1) is denoted as d̄(k).

At task level, the processing delay of a workflow request when it is processed by a microservice

is measured from the time the request arrives at task’s request queue until the request departs the

microservice after being processed by one of the task consumers. As a result, the processing delay

includes both the waiting time in the queue and the actual processing time by task consumer. Since,

according to the Little’s law7, this processing delay is proportional to the number of requests in

the microservice (i.e., including requests waiting in the queue and requests being processed by

task consumers), or the number of work-in-progress, also named work-in-progress or WIP for

short. The more work-in-progress a microservice has, the longer delay is to be expected. We

denote wej(k) as work-in-progress of task j (1 ≤ j ≤ J) on at location8 e (0 ≤ e ≤ E) during

5We assume that all workflow data and intermediate results between tasks are stored in a shared storage system
that can be accessed by all tasks, and the data transfer times are included in the task processing time.

6From now, we refer to resource allocation decision as m(k) - the allocation of consumers over different task’s
micro-services.

7Wikipedia: https://en.wikipedia.org/wiki/Little\%27s_law
8Location notation is used in case the infrastructure is distributed across cloud and multiple edges (as in Chap-

ter 11). We refer to cloud-based infrastructure in case e is omitted.

22

time window (Tk, Tk+1). We use w(k) as the vector representation of work-in-progress over all

microservices during k-th time window.

5.3.3 Performance Guarantees

In this thesis, we use absolute delay guarantee for the average processing delay of individual

workflow types (i.e., di(k)) and of all workflow types (i.e., d̄(k)). Specifically, a delay threshold

Ti (1 ≤ i ≤ N) is assigned to each type of workflow i, so that the average delay of workflow type

i over any time window (Tk, Tk+1) is guaranteed to be under the threshold: di(k) < Ti. Similarly,

a delay threshold T is used as the performance guarantee for all types of workflows: d̄(k) < T .

23

CHAPTER 6: ADAPTIVE CONTROL FRAMEWORK FOR MICROSERVICE
INFRASTRUCTURE

6.1 OVERVIEW

As motivated from Chapter 2, in order to shorten time from data capture to interpretation and in-

sights, it is important to design DOSSIER to be adaptive with the dynamism of scientific workloads.

Built upon the microservice infrastructure (Chapter 5), we employ a control-theoretic approach to

design an adaptive control framework whose purpose is to dynamically adapt system resources to

meet certain performance guarantees under changing workloads and limited resource capacity.

The framework (Figure 6.1) consists of three main components: A monitor that captures real-

time performance of microservices, a performance model that provides near-future predictions

of microservices’ performances, and a controller that leverages performance predictions to make

decisions on microservice resource allocation to maintain performance guarantees under resource

constraints. Specifically, each time a performance guarantee is violated (e.g., d̄(k) exceeds T),

based on the feedback er that captures the deviation of the performance metrics from the reference

performance T , the controller, with the help of performance model’s predictions (i.e., d̂(k + 1)),

will explore different possible microservices’ resource allocation (i.e., m(k + 1)) and decide on

the optimal allocation of resources in the next time interval (i.e., m∗(k + 1)).

6.2 INTEGRATION OF ADAPTIVE CONTROL FRAMEWORK WITH MICROSERVICE
INFRASTRUCTURE

The integration of adaptive control framework with the existing microservice infrastructure can

be presented in a layered architecture as shown in Figure 6.2. It consists of three main layers (from

Controller
𝒯 𝑒𝑟+

−

Feedback loop
Monitor

System 𝐝(k)

Performance
model

𝐦(k + 1)𝐝,(k + 1)

𝐦∗(k + 1)

Figure 6.1: Adaptive control framework for microservice infrastructure

24

Collector

System
operational DB

VisualizerAlert engine

Resource
actuator

Ex
ec

ut
io

n
la

ye
r

Task invoker Task dependency
service

Task A Task B Task C

M
on

ito
rin

g
la

ye
r

A
da

pt
at

io
n

la
ye

r

Performance
model

Control
optimization

Updated
control policy

Performance
predictions

Figure 6.2: Integration of adaptive control framework with microservice infrastructure.

bottom-up): microservice execution layer, monitoring layer, and adaptation layer.

As presented in Chapter 5, the microservice execution layer is in charge of executing requested

workflows. To deal with the heterogeneity of workflows, we designed the execution layer using

a microservice-based architecture, in which tasks are modeled as microservices that interact with

each other via event-based message passing mechanism.

The monitoring layer monitors the performance of workflows and task’s microservices (e.g.,

processing times, arrival rates of workflow requests of different types). The collector collects

performance information and stores them in a time series database, which then can be presented

to system administrators via a visualization interface (i.e., visualizer). The alert engine com-

ponent periodically checks the performance information in the database and makes alerts if any

performance guarantee is violated. To respond to alerts, resource actuator will consult with the

adaptation layer (to be described) for resource allocation decisions and then, perform resource

reallocation to adapt system performance.

The adaptation layer provides control decisions, which are in the form of resource allocations,

so that the system can adapt to the dynamism of the incoming workload. The layer consists of

a performance model component that provide near-future performance predictions, and a control

25

optimization component that leverages the performance predictions to optimize the allocation of

resources under performance and resource constraints.

6.3 MICROSERVICE MONITORING

To support performance guarantees, it is important to monitor system states to respond to ab-

normal performance in a timely manner. In the following, we present the design of our monitoring

layer that captures the system performance measures in a non-intrusive way.

At a glance, the monitoring layer consists of four main components: collector, visualizer, alert

engine, and resource actuator. For each time window (Tk, Tk+1), the collector collects information

about system performance metrics (i.e., d(k)), and the current allocation of resources (i.e., m(k)).

The collected information is time-stamped and stored in a time series database, called system op-

erational database. Visualizer retrieves real-time performance data from the time series database

and displays it to system administrators via an interactive Web interface. The alert engine period-

ically checks on key performance metrics from the database and triggers alert if any performance

guarantee is violated (e.g., when d̄(k) exceeds a processing time threshold T). The triggered alert

notifies resource actuator to consult adaptation layer to provide an updated allocation of resources

(i.e., m(k + 1), for the next time window (Tk+1, Tk+2)). Upon receiving m(k + 1), the resource

actuator will perform re-allocation of resources on the execution layer.

The main challenge for the monitoring layer is to be able to capture performance information in

a non-intrusive way and with little or no modification to the implementation of applications. Often,

the monitoring feature is implemented as part of the APIs and applications have to explicitly make

calls to monitoring APIs to record their performance (e.g., calling monitoring APIs when the appli-

cation starts and ends to record processing time). In DOSSIER, we leverage the publish/subscribe

middleware used in the execution layer to design a monitoring service that does not interfere with

to the performance and does not require any modification to the existing implementation of tasks

and workflows.

Specifically, we leverage the subscription model of the Advanced Message Queuing Protocol

(AMQP), the open standard that has been supported by most publish/subscribe middlewares, to

perform non-intrusive performance monitoring. In the AMQP subscription model (cf. Figure 6.3),

when messages arrive from publishers, they will be routed through an exchange to appropriate

message queues. The routing decisions depend on the type of exchange used. In DOSSIER, we

employ a topic type, in which the exchange routes messages to one or many queues (i.e., all queues

receive the same copy of the message) based on matching between the message’s routing key and

26

“A”

{“Start”, “End”}

AMQP-based Publish/Subscribe Middleware

Message Exchange

Producer

Collector
Collector’s queue

…

Task A’s queue

“Start” Task
Invoker

Task A’s
Consumer

Task Invoker’s queue

Figure 6.3: Leverage AMQP subscription model to perform non-intrusive monitoring

a pattern that was used to bind a queue to an exchange. As shown in the design of the execution

layer (cf. Chapter 5), each task holds its own message queue (e.g., task A’s message queue is

bound to the exchange to match messages with routing key “A”) and a set of consumers subscribed

to its queue. We also use two pseudo tasks, i.e., “Start” and “End”, to respectively represent

the invocation and the completion of each workflow (i.e., the task invoker essentially becomes

the consumer of “Start” message queue). Using these two pseudo tasks, we introduce a separate

message queue for the monitoring layer’s collector that is binded to all messages with routing keys

“Start” or “End”. When collector processes a workflow request with routing key “Start”, it creates

a new entry for the request in the time series database to mark its arrival. When collector processes

a workflow request with routing key “End”, it updates the database entry of the started request to

mark its completion, and records the processing time.

To capture statistics about arrival workload (i.e., the number of arrival requests of a workflow

type over a time window), we simply perform an aggregation query over the time series database

over that time windows to count the number entries having arrival time fall in between (Tk, Tk+1).

Then, performance metrics {di(k)}, d̄(k) can be calculated by averaging the processing times of

requests in the time window (Tk, Tk+1).

6.4 MICROSERVICE ADAPTATION

As described above, the two main components of the microservice adaptation layer are perfor-

mance model and control optimization. In this thesis, we present and evaluate multiple solutions

for microservice resource adaptation to tackle various diversity challenges mentioned in Chapter 2.

Table 6.1 summarizes our solutions that are categorized by the control optimization technique used,

27

Thesis work Controller Performance
model

Allocation
decision

Diversity
challenge

GRESMAN and 4CEED Optimization-based
heuristics

White-box Scaling Data, user,
and task

MONAD Model predictive
control

Black-box Scaling Workload

BRACELET Optimization-based
heuristics

Black-box Scaling &
placement

Aging
devices &
workload

RL-MONAD Reinforcement
learning

Black-box Scaling Complex
workload

Table 6.1: Realizations of the adaptive control framework.

types of performance model used to model performance of microservice infrastructure, types of al-

location decision used for adaptation, and diversity challenges that the various solutions focus on.

In the following chapters, we present in details these realizations of the microservice adaptation

mechanism. In particular, in Chapter 7, we will present a white-box approach to model the perfor-

mance of microservice infrastructure (i.e., GRESMAN). In Chapter 8, we will present a black-box

neural network-based performance model of the microservice infrastructure and model predictive

control-based approach for control optimization (i.e., MONAD). In Chapter 11, we present an

adaptive control mechanism for edge-cloud architecture to tackle the diversity challenges in de-

vices (scientific instruments) and workload. Ultimately, in Chapter 9, we present our recent results

on using model-based reinforcement learning to train an agent that performs resource allocation

by its own using a learned model of the microservice execution environment.

28

CHAPTER 7: QUEUEING NETWORK-BASED RESOURCE ADAPTATION

7.1 MODELING MOTIVATIONS

From the system architecture description in Chapter 5, it is intuitive to model each microservice

as a queue (i.e., represented by the topic’s message queue) with multiple workers (i.e., the sub-

scribing consumers). In addition, microservices in the system are connected to each other because

job requests are forwarded across the topics following the dependencies between tasks in a job.

Hence, we can model the system as a network of queues, where each microservice is an individual

queue in the network. Besides, as job requests can be of different job types, i.e., they arrive and

then leave the system at different times, the queuing network model of the system is categorized

as multiple-class and open.

By modeling the microservice execution environment as a multiple-class open queuing network

(OQN), we are able to apply known results in queuing theory [54][55][56] to obtain the solution

for the system’s performance metrics. However, since there are numerous models that have been

developed for OQN, choosing an appropriate one is non-trivial. While other related work that

utilizes queuing network for performance modeling often opts out for simplified models to ob-

tain analytical solutions, the results are limited by strong (and sometimes unrealistic) assumptions

about the system, such as deterministic or exponential distribution of arrival rates of job requests

and processing rates.

In this thesis, we decide to build our model based on more realistic assumptions. Particularly,

we consider job request arrival rates and processing times at each topic, and both follow general

distributions, represented by parameter sets Λ = {(λi, ca2
i)}(1 ≤ i ≤ N) and Γ = {(µj, cs2

j)}(1 ≤
j ≤ J), respectively. Under these assumptions, each microservice is appropriate to a GI/G/m queue

and the microservice infrastructure can be modeled as a Generalized Multiple-class Jackson OQN

[54][55]. In the remaining of this chapter, we show how to leverage this model to obtain solution

for performance metrics of the system.

7.2 MODELING PERFORMANCE OF MICROSERVICE EXECUTION ENVIRONMENT

Before analyzing our model using generalized multiple-class Jackson OQN, let us consider the

special case, when job arrival rates and task processing rates are exponentially distributed (i.e.,

ca2
i = 1,∀1 ≤ i ≤ N and cs2

j = 1,∀1 ≤ j ≤ J). In this case, each topic in the pub/sub system

corresponds to a M/M/m queue. Because of the exponential distributions, we can aggregate all

29

λi Expected arrival rate of requests for job type i to the system.
λij Expected arrival rate of requests for job type i at topic j.
ca2

i Squared coefficient of variant (scv), or variability, of arrival rate of job
type i to the system.

λ̃j Aggregated job arrival rate of all job types at topic j.
c̃a2

j Aggregated scv of all job types at topic j.
Λ Set of parameters representing system’s workload: Λ =

{(λi, ca2
i)}(1 ≤ i ≤ N).

µj Expected processing rate of a task at topic j.
cs2
j Squared coefficient of variant (scv), or variability, of processing rate of

a task at topic j.
Γ Set of parameters representing system’s computing capacity: Γ =

{(µj, cs2
j)}(1 ≤ j ≤ J).

wj(mj) Expected number of work-in-progress requests for topic j (a function
of mj).

νj Value of a job request at topic j.
Fj(mj) Cost of allocating mj consumers subscribing to topic j.
M Resource cost budget.
T Work-in-progress, or equivalently, response time constraint.

Table 7.1: Notations used to describe parameters of queueing network model.

job types as a single type (since the combination of exponential distribution is also exponential).

In addition, we can obtain the analytical solution of the expected number of work-in-progress job

requests of a topic j (i.e., wj) as a function of µj, λ̃j,mj following Erlang-C formula [54] (where

λ̃j is the aggregated job arrival rate at topic j of all job types: λ̃j =
∑N

i=1 λij with λij is the

expected arrival rate of job request type-i at topic j):

w
M/M/m
j (µj, λ̃j,mj) =

λ̃j
µjmj

(
λ̃j
µj

)mjπ(0)

(1− λ̃j
µjmj

)2mj!
+
λ̃j
µj

(7.1)

with:

π(0) = {
mj−1∑
t=0

(
λ̃j
µj

)t

t!
+

(
λ̃j
µj

)mj

(1− λ̃j
µjmj

)mj!
}−1

For generalized case, since the job arrival rates and task processing rates are generally dis-

tributed, it is not possible to obtain exact analysis of wj as in the special case. Hence, in this

thesis, we employ an approximation method, named parametric decomposition [55], to measure

the steady-state behavior solution for wj . Specifically, for each topic j (in general case, is modeled

as a GI/G/m queue), we can derive the aggregated job arrive rate and scv of all job types λ̃j and

c̃a2
j respectively using parametric decomposition procedure.

30

Aggregate
workflows

Generate BFS-
based order of
microservices

Perform
parametric

decomposition

Workflow
descriptions

Validate
workflows

Λ"# , 1 ≤ 𝑗 ≤ 𝐽Λ) , 1 ≤ 𝑖 ≤ 𝑁
𝑀# ,1 ≤ 𝑗 ≤ 𝐽

(offline)
(online)

Figure 7.1: DECOMPOSE algorithm.

However, as the compute plane is modeled as a set of independent microservices, computing

wj requires decomposing {Λi}(1 ≤ i ≤ N) to the aggregated arrival rate distribution of job

requests at each individual microservice: {Λ̂j}, (1 ≤ j ≤ J). In this thesis, we present an algo-

rithm, named DECOMPOSE, based on the parametric decomposition method, proposed by Vliet et

al. [55]. The procedure is illustrated in Figure 7.1. It starts with loading and validating workflow

descriptions, (which are stored in edge-list format that consists of a list of edges, specified by start-

ing and ending vertex, of the workflow) of jobs that system supports to make sure that they are

valid DAGs. After that, it merges all workflows into an aggregated graph, and then sorts the ver-

tices in the aggregated graph (each vertex corresponds to a type of task or microservice) based on

breadth-first search (BFS) ordering. Obtaining such an order of microservices can be done offline

or periodically each time workflows are updated. Using this order, the procedure then performs

parametric decomposition on each individual microservice (i.e., the BFS order is to ensure that a

microservice is decomposed only after its precedent microservices have been decomposed). The

parametric decomposition step is performed online as it takes real-time job arrival rates & pro-

cessing time distributions to compute the aggregated arrival rate distribution at each microservice:

{Λ̂j}(1 ≤ j ≤ J).

With the aggregated rates and scvs, the expected number of work-in-progress job requests

w
GI/G/m
j is derived as an approximate function of λ̃j, c̃a2

j , µj, cs
2
j , and mj . Among several good

two-moment approximations of wGI/G/mj that have been established for the GI/G/m queue [57],

in this thesis, we use the common approximation formulation proposed in [58] that is based on an

extension of the exact formula used in the M/M/m case:

w
GI/G/m
j (λ̃j, c̃a

2
j , µj, cs

2
j ,mj)

=
λ̃j
µj

+ λ̃j(
c̃a2

j + cs2
j

2
)(w

M/M/m
j (µj, λ̃j,mj)−

λ̃j
µj

)
(7.2)

where wM/M/m
j (µj, λ̃j,mj) is the expected number of job requests in progress of a M/M/m

31

queue as computed in Equation 7.1.

In Equation 7.2, we can consider λ̃j, c̃a2
j , µj, cs

2
j as given (i.e., either provided or calculated

by parametric decomposition). Therefore, wGI/G/mj becomes a function of mj only, denoted as

w
GI/G/m
j (mj).

Given the performance measure of individual topic wGI/G/mj (mj) obtained by Equation 7.2, the

system performance measure (i.e., work-in-progress of the whole pub/sub system) can be calcu-

lated as a function of m: WIP (m) =
∑J

j=1 νjw
GI/G/m
j (mj), where νj is the value of a job request

at topic j. In the following, without any confusion, we use wj(mj) to refer to wGI/G/mj (mj) for

being concise.

7.3 MICROSERVICE ADAPTATION AS OPTIMIZATION PROBLEM

Let us consider a cloud-based pub/sub system that consists of J topics (i.e., supports processing

J tasks) and accepts requests for N types of jobs, each job corresponds to a workflow of tasks

supported by the pub/sub system (the summary of notations used in this chapter is presented in

Table 7.1). For each type of job i, we assume that the arrival rate of requests follows a general

distribution, denoted by expected rate λi and squared coefficient of variant (or scv for short) of the

rate ca2
i . The set of parameters Λ = {(λi, ca2

i)}(1 ≤ i ≤ N) defines the system’s workload.

In terms of computational parameters, for each topic j (1 ≤ j ≤ J), there are mj (uniform)

consumers subscribed to its message queue. For each consumer of a topic j, we assume that the

time it takes to process the appropriate task follows a general distribution, denoted by expected

processing rate µj and scv of the rate cs2
j . We assume that the processing rate parameters Γ =

{(µj, cs2
j)}(1 ≤ j ≤ J) depend on the implementation of consumers and task input data, and are

given (e.g., by the collecting statistics of the processing time of completed tasks).

Since the workload and computational times could be considered as given, the numbers of con-

sumers over topics m = (m1,m2, ...,mJ) (which can be dynamically provisioned by exploiting

the elasticity of the cloud infrastructure) are the main variables to measure performance of the

elastic pub/sub system.

The system performance metrics include job’s expected response time and cost of computational

resources. Since response time is linearly related to the number of job requests being in the system

(by Little’s law), we use total WIP in the system as the performance metric. Particularly, WIP

of the system is defined as WIP (m) =
∑J

j=1 νjwj(mj), where νj and wj(mj) are respectively

the value of a work-in-progress of a topic1 and the number of requests in progress per topic j

1These values are used to penalize for work-in-progress of topics that have long average processing time. We

32

(if νj = 1,∀j, w equals the total number of jobs in the system). In terms of the resource cost,

since in this thesis we consider allocating consumers over topics as the main resource allocation

mechanism, the total resource cost depends on the number of provisioned consumers per topic

and it is defined as F (m) =
∑J

j=1 Fj(mj), where the function Fj(mj) (assumed to be given)

is the cost of allocating mj servers at station j. Since the performance of resource allocation

algorithms depends on the shape of Fj(mj), we assume that Fj(mj)(∀1 ≤ j ≤ J) need to be

a non-decreasing convex function of mj . This assumption is reasonable since the resource cost

increases as the number of consumers at a topic increases.

With the above notations and definitions, the resource management problem for cloud-based

pub/sub system can be formulated as optimization problems. By using different objective func-

tions for optimization problems, we allow users to flexibly choose between different resource

provisioning strategies to suit their purposes.

For the first optimization problem, the objective is to minimize system’s overall response time,

or appropriately the w metric:

Problem Definition 7.1 (Minimal Time Resource Allocation) Given a cloud-based pub/sub sys-

tem that supports N types of job and J different tasks (topics), a workload Λ, processing rates Γ,

and a cost budgetM, find an optimal allocation m of consumers to topics to minimize system’s

work-in-progress WIP :

argmin
m

WIP (m) =
J∑
j=1

νjwj(mj)

subject to
J∑
j=1

Fj(mj) =M

For the second optimization problem, the objective is to minimize the total resource cost of

allocating consumers across topics:

Problem Definition 7.2 (Minimal Cost Resource Allocation) Given a cloud-based pub/sub sys-

tem that supports N types of job and J different tasks, a workload Λ, processing rates Γ, and a

WIP constraint T , find an optimal allocation m of consumers to topics to minimize system’s total

resource cost F (m):

assume that these values are given.

33

argmin
m

F (m) =
J∑
j=1

Fj(mj)

subject to
J∑
j=1

νjwj(mj) ≤ T

In order to solve the above problems, it is important to obtain the formulation for the perfor-

mance metric WIP . In the next section, we will describe our approach to derive WIP of the

elastic pub/sub system using queuing theory.

7.4 GREEDY RESOURCE ALLOCATION SOLUTIONS

With the formulation of system’s performance metric WIP obtained from previous section, we

now show how to efficiently solve the optimization problems described in previous section.

While we can view both optimization problems in Definition 7.1 and 7.2 as integer programming

problems and apply standard solver to solve them, dynamic resource allocation for the system

requires more efficient solutions. In this thesis, we propose greedy strategies to efficiently solve

the optimization problems. In addition, by realizing the convex property of the objective functions,

we are able to prove that the solutions by greedy algorithms are also the optimal solutions.

For the first optimization problem (Definition 7.1), by observing that wj(mj) is a convex non-

increasing function of mj , ∀1 ≤ j ≤ J [59], we can solve the optimization problem in Defini-

tion 7.1 using a greedy strategy. Particularly, in Algorithm 7.1, each topic is initialized with one

consumer, and then, the algorithm greedily finds the topic with the largest benefit if being allo-

cated one more consumer. The benefit is defined to be proportional to the decrease of the number

of work-in-progress job requests (i.e., νj[wj(mi−1
j)−wj(mi−1

j + 1)]). The algorithm ends when it

reaches the resources cost constraintM.

Algorithm 7.1 Minimal Time Greedy Resource Allocation
1: procedure MINTIMEGREEDY

2: Initial allocation m0: m0
j = 1, ∀1 ≤ j ≤ J

3: i = 1 . Initialize iteration count
4: while

∑J
j=1 Fj(mj) <M do

5: Find j∗ = argmax1≤j≤Jνj[wj(m
i−1
j)− wj(mi−1

j + 1)]

6: mi
j∗ = mi−1

j∗ + 1 . Add one consumer to most benefit topic
7: i = i+ 1

8: Return mi

34

With the non-increasing convexity ofwj(mj), it can be proven that the solution of Algorithm 7.1

is also the optimal solution, based on Theorem 3 in [56].

For the second optimization problem (Definition 7.2), given the non-decreasing convexity of

Fj(mj), ∀1 ≤ j ≤ J (as assumed) and the non-increasing convexity of wj(mj), ∀1 ≤ j ≤ J , we

can again use the similar greedy strategy as in Algorithm 7.1 to find the optimal resource allocation

solution. The minimal cost greedy resource allocation algorithm is presented in Algorithm 7.2.

Algorithm 7.2 Minimal Cost Greedy Resource Allocation
1: procedure MINCOSTGREEDY

2: Initial allocation m0: m0
j = 1,∀1 ≤ j ≤ J

3: i = 1 . Initialize iteration count
4: while WIP (mi) ≤ T do
5: Find j∗ = argmax1≤j≤J

νj [wj(m
i−1
j)−wj(mi−1

j +1)]

Fj(m
i−1
j +1)−Fj(mi−1

j)

6: mi
j∗ = mi−1

j∗ + 1 . Add one consumer to most benefit topic
7: i = i+ 1

8: Return mi

The main difference between Algorithm 7.2 and 7.1 is that, in Algorithm 7.2, the benefit of

adding an additional consumer to a topic is defined to be inversely proportional to the increase

in resource cost (i.e., Fj(mi−1
j + 1) − Fj(mi−1

j)) and directly proportional to the decrease of the

number of work-in-progress job requests (i.e., νj[wj(mi−1
j) − wj(mi−1

j + 1)]) (Line 5). Based on

Theorem 2 in [56], the solution by Algorithm 7.2 is proven to be “sufficiently close to the optimal

solution”.

After decomposition, WIP , from a function of {Λ̂j}, {Mj}, and m, becomes the function of m

only. Thus, the resource allocation problem becomes finding m that minimizes system’s work-in-

progress WIP (m) while satisfying a cost constraint of the total resource cost F (m).

To perform resource allocation efficiently, we present a greedy elastic scaling algorithm, de-

noted as GRESMAN, to dynamically find m. In particular, the Algorithm 7.3 starts with the current

configuration of consumers over microservices, and then, greedily finds the microservice with the

largest local benefit if being allocated one additional consumer, denoted as ∆(mi
j,m

i
j + 1). The

notion of local benefit of a microservice is defined to be proportional to the decrease of the number

of work-in-progress job requests of that microservice. The most beneficial microservice is added

to a queue A that maintains an ordered list of microservices being provisioned. The reason of

having a queue A is that order of allocation of consumers also affects system performance. As

requests travel through the system following task dependencies, non-careful allocation order of

consumers can cause bottleneck at a microservice if it is allocated with more consumer after its

35

precedent microservices. The algorithm ends when either system’s WIP is under a threshold T
(i.e., represent time constraint), or the total resource cost F (m) reaches a certain budget C.

Algorithm 7.3 Dynamic Greedy Elastic Scaling Algorithm (GRESMAN)
1: procedure GRESMAN
2: Define m0 as the current configuration of consumers
3: Initialize allocation plan A = []
4: Initialize iteration count i = 1
5: {Λ̂j} = DECOMPOSE({Λj}, {Mj},m0) . Initial decomposition
6: while WIP (m0) > T and F (m) < C do
7: ĵ = argmax1≤j≤J∆(mi

j,m
i
j + 1) . Find the most beneficial microservice

8: mi
ĵ

= mi
ĵ

+ 1 . Add one consumer to that microservice

9: A.append(ĵ) . Update allocation plan
10: {Λ̂j} = DECOMPOSE({Λj}, {Mj},mi) . Update {Λ̂j}
11: i = i+ 1 . Update iteration count
12: Return A, mi

In terms of complexity, the online component of the DECOMPOSE procedure requires to iterate

over all vertices and edges in the aggregated graph. Therefore, the complexity of DECOMPOSE is

O(|V | + |E|), with V and E being the set of vertices (i.e., microservices and |V | = J) and edges

(i.e., and interactions between microservices) in the aggregated graph. With GRESMAN, finding

the most beneficial microservice (Line 7) and calculating WIP (Line 6 – executed once for each

iteration) both require to iterate over all microservices. The number of iterations of the while loop

depends on the convergence of WIP to under the time constraint T , or the total resource cost

(which equals the total number of consumers) reaches the budget constraint. For simplicity, if we

assume that the cost constraint is met first, then the complexity of GRESMAN is O(C · (|V |+ |E|)).

7.5 EVALUATION

7.5.1 Evaluation Settings

Implementation: We implemented our cloud-based elastic pub/sub system using RabbitMQ2 as

the message queue engine and Docker3 container technology as the implementation platform for

consumers (for better isolation and server consolidation). Particularly, each consumer is imple-

mented and encapsulated into a Docker image and subscribes to a RabbitMQ’s message queue

2RabbitMQ - https://www.rabbitmq.com
3Docker - https://www.docker.com

36

Task Description 𝜇j cs2j

A Unpacking digital microscope output files
(e.g., DM3, HDF5) 4.2 0.33

B Extracting and analyzing metadata from input file 3.7 0.5

C Extracting and analyzing image from input file 6.7 0.4

D Classifying the input file into appropriate experiment
type & predicting if the experiment is successful or not 5.1 0.5

(a) Supported types of task.

A B D

C D

A
B

D
C

Job type Format ca2i

1 0.33

2 0.5

3 0.25

(b) Supported types of job.

Figure 7.2: Tasks and jobs supported by the system.

of appropriate topic. We deploy the system on a cluster of three servers, each server is equipped

with an Intel Xeon quad core processor (1.2Ghz for each core) and 16GB of RAM. We use Kuber-

netes4 as the Docker container ostrastration engine for the cluster and each topic’s consumer set

is abstracted as a Kuberneters’ ReplicationController. The resource manager (resource allocator

in particular) interacts directly with Kubernetes to dynamically scale the size of ReplicationCon-

troller (i.e., number of consumers) of each topic. All system components are implemented using

Python programming language.

Case study: We take the application of executing scientific computing workflows as the case study.

Particularly, the system supports analyzing experimental data generated by digital microscopes

(which are usually in formats of DM3, or HDF5 files). Four types of task are supported, which

correspond to the steps needed to process input data (Figure 7.2(a)). Depending on the input data,

the system can support three different types of job, each job consists of all or a subset of supported

tasks (Figure 7.2(b)).

Parameter settings: The processing rates of tasks are given in Figure 7.2(a). The scv of job arrival

rates are given in Figure 7.2(b), while the expected arrival rates of each job type (i.e., λi) are varied

4Kubernetes - http://kubernetes.io

37

0

5

10

15

20

25

0 1 2 3 4 5 6 7 8 9 10

Ex
pe

ct
ed

 W
IP

Iteration

MinTime
Random

Figure 7.3: Numerical analysis comparison.

during the evaluation to represent changing workload. Note that the time unit we use for rates (i.e.,

processing time rate µj and job arrival rate λi) is per minute. To simplify the computation, we use

a uniform resource cost function, i.e., Fj(mj) = mj,∀j, and consider the job requests as equally

important, i.e., νj = 1, ∀j5.

In terms of comparing approach, we compare our resource management algorithms, named

MinTime (Algorithm 7.1) and MinCost (Algorithm 7.2), with random resource allocation ap-

proach, named Random. In Random, for each iteration, a topic is randomly chosen to be allocated

an additional consumer. To evaluate the performance of different algorithms, we initially allocate

one consumer to each topic: m = (1, 1, 1, 1). Then, after each iteration (i.e., after a consumer

is allocated to a topic), we measure the average response time of each type of job, as well as the

average of all jobs. An algorithm is considered better if it achieves lower average response time

after a given number of iterations (in case of minimal time allocation), or requires less iterations

to reach a predefined response time threshold (in case of minimal cost allocation).

7.5.2 Numerical Analysis

First, we compare our algorithm, MinTime in particular, with Random using numerical analy-

sis. Specifically, given a workload {λi} = (3.0, 3.5, 3.0) and a cost constraint M = 10 (since

Fj(mj) = mj , M is equivalent to the number of additional consumers allowed), we calculate

the number of expected work-in-progress jobs in the system (i.e., WIP (m)) produced by each

algorithm after each iteration (i.e., an iteration is equivalent to an additional consumer added). The

5Note that Fj(mj) and νj can be chosen in any form so that WIP (m) and F (m) maintain their non-increasing
and non-decreasing convex properties.

38

0

50

100

150

200

250

300

350

400

450

[0.5, 1.0,
0.5]

[1.0, 1.5,
1.0]

[1.5, 2.0,
1.5]

[2.0, 2.5,
2.0]

[2.5, 3.0,
2.5]

[3.0, 3.5,
3.0]

A
ve

ra
ge

 re
sp

on
se

 ti
m

e
(s

ec
on

ds
)

Job arrival rates

Type 1 Type 2
Type 3 All

Figure 7.4: Average response time when incoming workload increase.

result in Figure 7.3 shows that MinTime outperforms Random by adding consumers to the most

benefit topics, and thus helps reduce WIP (m) at a faster rate. We observe similar result when

comparing MinCost with Random.

We also notice that the result of Random can be different between different runs of Random

algorithm (hence the error bars). Therefore, in the remaining of this section, we will use the

Random’s best result after multiple runs.

7.5.3 Varying workload

We first evaluate the performance of the pub/sub system by varying the input workload. In this

experiment, we fix the number of consumers for each topic to be 1 (i.e., m = (1, 1, 1, 1)) and

increase the arrival rates of different job types. The results in Figure 7.4 show that, as expected,

when the arrival rates increase, the average response time of the system (averaging over each

individual job type as well as over all job types) increases. This result suggests that, in order to

maintain average response time under a certain level (e.g., QoS constraint), we need to provision

the system resources (i.e., number of consumers subscribing to topics). In addition, in Figure 7.4,

we also observe that the increases in the average response time of different job types are different.

For example, job type 3 seems to be less affected by the increase of the arrival rates, compared

with job type 1 and type 2. This suggests that, when provisioning the number of consumers at each

topic, one should consider the differences in the sensitivity of different job types to the changing

workload. This insight is also consistent with our motivation in designing the greedy resource

allocation strategies, in which, we give higher provisioning priority to topic whose provisioning

gives largest benefit.

39

0
20
40
60
80

100
120
140
160
180
200

0 1 2 3 4 5

A
ve

ra
ge

 re
sp

on
se

 ti
m

e
(s

ec
on

ds
)

Iteration

MinTime Random

(a) Average response time over all types of job.

0

50

100

150

200

250

0 1 2 3 4 5

A
ve

ra
ge

 re
sp

on
se

 ti
m

e
(s

ec
on

ds
)

Iteration

Type 1 Type 2
Type 3

(b) MinTime’s performance with different types of job.

Figure 7.5: Minimize time resource allocation comparison.

7.5.4 Minimal Time Optimization Task

For the Minimal Time Resource Allocation task, given a workload {λi} = (2.0, 2.5, 2.0) and a

cost constraintM = 5, we perform resource allocation using MinTime and Random. We measure

the performance of each algorithm over iterations. Figure 7.5(a) shows that, as two algorithms

reach the cost constraint (i.e., after 5 iterations), MinTime outperforms Random by achieving a

lower average response time of all types of job. Although Random’s allocation helps reduce the

response time at some degree, it could not achieve optimal result due to its randomization in

selecting topics for provisioning. In addition, MinTime also performs well with individual types of

job. Figure 7.5(b) shows that the average response time of each type of job quickly drop after just

a few consumers are added to the system.

7.5.5 Minimal Cost Optimization Task

For the Minimal Cost Resource Allocation task, given a workload {λi} = (3.0, 3.5, 3.0) and a

response time constraint of 50 seconds: T = 50, we perform resource allocation using MinCost

and Random until the system average response time of all types of job smaller than or equal T . The

result in Figure 7.6 shows that MinCost satisfies the response time constraint in just 5 iterations

(i.e., 5 additional consumers are needed). On the other hand, even though Random helps reduces the

response time, it struggles in bringing down the response time to below T , even after 10 iterations.

The results in both optimization tasks help confirm the effectiveness of using greedy strategy in

selecting the topics for resource provisioning that maximize the overall benefit.

40

0

50

100

150

200

250

300

0 1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 re
sp

on
se

 ti
m

e
(s

ec
on

ds
)

Iteration

MinCost Random

Figure 7.6: Minimize cost resource allocation comparison.

Effectiveness comparison of resource allocation strategies

In this evaluation, we take the bursty workload situation described earlier and compare the ef-

fectiveness of our GRESMAN (Algorithm 7.3), with baseline resource allocation strategies: Random

(which randomly assign consumers to microservices), and Popularity (which assign consumers

to microservices proportional to the popularity of the task, or the number of workflows a task

belongs to). The main metric for comparison is the average response time over all types of work-

flows.

In addition to the MDP workflows, we also use LIGO Inspiral Analysis workflows that analyze

data from the coalescing of compact binary systems such as binary neutron stars and black holes.

We initially allocate one consumer to each topic in MDP and LIGO workflows, except Inspiral

& TrigBank tasks for their high popularity in LIGO’s workflows, and seek to minimize average

job response time given a resource cost constraint of 10 and 60 additional consumers for MDP

and LIGO workflows respectively. Resource allocation is kicked off when the resource manager

observes that average job response times exceed a certain threshold (2 seconds for MDP, and 10

seconds for LIGO).

From the results in Figure 7.7, we can easily see the impact of the abnormal change in the

number of arrival requests to the response time without provisioning in both workflow sets (the red

line). The impact is more significant in LIGO case, since it is a more complex set of workflows

with higher number of tasks and interactions between tasks. The results also show that, in both

workflow set, our GRESMAN algorithm is more effective than the baselines in dealing with bursty

workload situation, and the Popularity approach performs better than Random. That is because

our approach can accurately capture the workload situation of each individual microservice and

allocates additional consumers to the microservices that are most beneficial in bringing down the

41

0

2

4

6

8

10

12

A
ve

ra
ge

 re
sp

on
se

 ti
m

e
(s

ec
on

ds
)

Arrival time

No provisioning Random

Popularity GRESMAN

(a) MDP workflows.

0

20

40

60

80

100

120

140

160

A
ve

ra
ge

 re
sp

on
se

 ti
m

e
(s

ec
on

ds
)

Arrival time

No provisioning Random
Popularity GRESMAN

(b) LIGO workflows.

Figure 7.7: Effectiveness comparison of resource allocation approaches in bursty workload situation.

response time. On the other hand, random allocation does not consider the workload situation of

individual microservice when allocating additional consumers, and Popularity approach relies

on a simple heuristic based on the popularity of microservices to decide its allocation.

Scalability

To evaluate the scalability of the coordination service, we vary the arrival rates of job requests

and measure the number of consumers that need to be provisioned (the allocation of consumers

over microservices is generated by GRESMAN algorithm) so that the average response time of the

system is kept under a certain threshold. We use both sets of workflows for this evaluation and set

the response time threshold to 2 seconds for MDP and 10 seconds for LIGO workflows.

The result in Figure 7.8 shows that, as the arrival rate increases, the number of consumers that

42

0

20

40

60

80

100

120

140

6 12 18 24 30 36

N
o.

 o
f p

ro
vi

sio
ne

d
co

ns
um

er
s

Job request arrival rate (requests per second)

LIGO MDP

Figure 7.8: Scalability of coordination service by varying arrival rates of job requests.

coordination service needs to provision must increase to maintain the quality of service (i.e., over-

all response time under a certain threshold). However, we also see that, in both sets of workflows,

the required number of consumers is almost linear to the job request arrival rates. This is accept-

able and allow us to further scale the coordination service to adapt to a high number of incoming

requests. In our evaluation, with a modest setup of three-node cluster (described earlier), we can

provision up to 150 consumers, each running as a Docker container, using Kubernetes without any

performance issue.

Impact of resource order on provisioning overhead

As we have seen in Figure 7.7, it still takes some time for resource provisioning to take full

effect and put the response time back to normal. One of the main reasons is due to the overhead of

starting up provisioned consumers. This overhead is difficult to avoid without advance knowledge

of arrival workload. Another reason, as we find out in our experiments, is due to the provisioning

order of resources. Let us again take the bursty workload situation with MDP set in previous

section as an example. In this case, our GRESMAN algorithm decides new optimal provisioning

strategy as m = (mA,mB,mC ,mD) = (2, 3, 2, 7). If we simply provision the microservices in

the sequential order, e.g., first start with A, then B, C, and D, it might put D, which is the one

needs additional consumers the most, under more stress, because other microservices have their

consumers provisioned earlier and start sending more requests to D. To reduce the effect of the

second overhead, we can carefully order the provisioning of topics. In particular, we leverage

the allocation plan A obtained from the GRESMAN algorithm (Algorithm 7.3), which specifies the

provisioning order additional consumers to microservices that is most beneficial in bringing down

the overall response time. Figure 7.9(b) shows the results of the carefully ordered provisioning,

43

0

2

4

6

8

10

12

R
es

po
ns

e
tim

e
(s

ec
on

ds
)

Arrival time

Type 1 Type 2 Type 3

(a) Effect of resource provisioning using GRESMAN on different job types.

0

2

4

6

8

10

12

R
es

po
ns

e
tim

e
(s

ec
on

ds
)

Arrival time

Type 1 Type 2 Type 3

(b) Carefully ordering provisioning of resources further improves provisioning effectiveness.

Figure 7.9: Impact of resource provisioning order in handling bursty workload with MDP workflows.

44

compared with the results by using sequential provisioning order (i.e.,A,B,C,D) in Figure 7.9(a),

when they both use the same optimal allocation m = (2, 3, 2, 7) generated by GRESMAN algorithm.

7.6 SUMMARY AND DISCUSSIONS

In this chapter, we present the first realization of the adaptive control framework introduced in

Chapter 6. We model the system as a multiple-class open queuing network, a white-box approach,

to derive system performance measures. Then, we formulate the resource management problem

of the microservice workflow infrastructure, which can be considered as an elastic pub/sub sys-

tem, as optimization problems using different objectives functions. Then, we introduce greedy

algorithms to efficiently solve the optimization problems. Similar to other white-box approaches,

this approach would work well in case that the distributions of incoming workflow requests fol-

low Poisson distribution and the processing times of microservices follow general distribution.

However, in case that the workflow workloads consist of a large number of tasks with complex

interaction between tasks and in very dynamic workload situations, the cost of performing para-

metric decomposition, whenever the workload distributions change, will increase overhead and

make the approach less practical.

45

CHAPTER 8: MONAD - MODEL PREDICTIVE CONTROL RESOURCE
ADAPTATION

In this chapter, we present our work on MONAD that employs a control-theoretic approach in

realizing the adaptation control framework (c.f. Chapter 6). Specifically, each time a performance

guarantee is violated (e.g., d̄k exceeds T), the adaptation layer is notified by the monitoring layer,

and the controller, as part of the adaptation layer, will generate a new allocation of resources (i.e.,

mk+1) based on the feedback er that captures the deviation of the measured performance from the

reference performance T . There are typically two steps involved in developing a feedback control-

based system: system identification and controller design. We present our solutions for each step

in the remainder of this chapter.

8.1 SYSTEM IDENTIFICATION

In the system identification step, we develop a mathematical model of the system that we want to

control using measurements of the system’s input and output signals. Particularly, given a control

input1 (i.e., mk in our case) and the state of the system in the current time window (i.e., dk), the

system model should be able to predict the performance of the system in the next time window

(i.e., dk+1).

There are two common approaches to the system identification problem: white-box and black-

box approach [60]. While the former assumes the understanding of how the system works inter-

nally (e.g., workflow structures) or the prior existence of a system model formulation; the latter

assumes that no prior model or knowledge of internal system is available. Due to its realistic as-

sumptions, the black-box approach is more desirable and it is our choice of approach in this thesis.

In the following, we first present our design of the system model and then, the model training

procedure.

8.1.1 System Model Design

There are many techniques to solve the system identification problem [60]. Capturing the perfor-

mance model of complex dynamic systems, such as workflow systems, which are often non-linear

and consist of multiple inputs, outputs with complex interactions, without knowledge of the sys-

tem internals, requires techniques with good approximation power. In this thesis, we use multilayer

1In the context of feedback control-based adaptation, we also use control input to refer to the allocation of re-
sources.

46

𝐖"

𝐛"

+

𝒇"

𝐖&

𝐛&

+

𝒇&

𝐖'

𝐛'

+

Input First hidden layer Second hidden layer Output layer

𝐱
|𝐱|×1

𝑆"×|𝐱|

𝐲"
S"×1

𝑆&×𝑆"

𝐲&

S&×1
𝑆'×𝑆&

𝐲' = 𝐝𝒌2𝟏

S'×1

𝒇'

𝐝𝒌

𝐱 = (𝐝5∥ 𝐦5)9	

𝐦;

Figure 8.1: Neural network model of workflow system identification

neural networks, which have proven approximation power and have been applied successfully in

the identification of dynamic and non-linear systems with multiple inputs and outputs.

Our neural network model of the workflow system is presented in Figure 8.1. The network con-

sists of two hidden layers2 and one output layer. The number of neurals in each layer is denoted as

S1, S2, and S3 respectively. Similarly, Wi,bi (i = 1, 2, 3) represent the weight matrix and bias of

each layer. Since most dynamic systems are non-linear, to introduce the non-linearity into the net-

work model, we add a rectified linear unit (or ReLU) as the non-linear activation function (i.e., f 1,

f 2) on the output of the two hidden layers. The neural network model takes input x as the combi-

nation of system states (i.e., dk) and control input (i.e., mk) in the current time window (Tk, Tk+1),

and predicts output as the system states dk+1 of the next time window (i.e., (Tk+1, Tk+2)). The

neural network model can be presented as a matrix-based function of dk and mk:

dk+1 = f(dk,mk)

= W3f 2(W2f 1(W1(dk ‖mk)
T + b1) + b2) + b3

(8.1)

8.1.2 Training System Identifier

The training procedure for system identifier’s neural network model is presented in Figure 8.2.

Specifically, the training process begins with the system model in an initial state and the control

input is randomly generated. At the k-th time window (i.e., (Tk, Tk+1)), the input of the neural

network model is set as the combination of the current system states dk and system’s control

input mk. The neural network model can be trained using the backpropagation algorithm for

2The structure of the network and its parameters are decided empirically, as currently there is not yet a theoretical
foundation for the design of neural networks.

47

Neural
network-based
system model

System 𝑒𝑟
+

−

(estimated output)

(identifier
error)System

states

𝐦& 𝐝&()

𝐝*&()

𝐝&

Figure 8.2: Training artificial neural network-based system identifier

feedforward neural networks. The predicted next states of the system d̂k+1 are compared with

the output of the real system dk+1 (i.e., the reference values), and identifier error er is calculated

for each of the neurons in the output layer. After that, the error values are propagated backwards

through the network to update the model’s parameters {Wi,bi}(i = 1, 2, 3).

8.2 CONTROLLER DESIGN

The controller design step uses the system model learned from the system identification step

(i.e., function f(dk,mk)) to design a controller that can produce control inputs to guide the sys-

tem to follow a desired output. The three most common approaches for controller design, given

a learned neural network system model are: model predictive control, NARMA-L2 control, and

model reference control [61]. To incorporate various performance and cost constraints into con-

troller design, we employ the model predictive control methodology and treat the controller design

problem as an optimization problem using the receding horizon technique [62].

Specifically, at the k-th time window, when the performance constraint is violated (e.g., d̄k
exceeds T), the controller seeks to produce new control inputs mk+1 to guide the system back to

comply with the performance constraints. Using the receding horizon technique, we solve a control

optimization problem over fixed T future intervals, from time window (k + 1)-th to (k + T)-th, to

obtain a sequence of the next T control inputs M = {mτ}, k + 1 ≤ τ ≤ k + T that minimize the

deviations from the predicted values to the reference trajectory (i.e., T) over T time windows while

satisfying the resource budget constraint (i.e., C denotes the maximum number of consumers in the

system). The control optimization problem to solve at time k-th is formally defined as follows:

48

argmin
M={mτ}

k+1≤τ≤k+T

k+T∑
τ=k+1

l(dτ ,mτ)

subject to dτ+1 = f(dτ ,mτ), k ≤ τ ≤ k + T− 1

J∑
j=1

mj
τ ≤ C, k + 1 ≤ τ ≤ k + T

mτ ∈ ZJ+, k + 1 ≤ τ ≤ k + T

(8.2)

where l(dτ ,mτ) is defined as:

l(dτ ,mτ) =
N∑
i=1

λi · (Ti − diτ)2 +
J∑
j=1

µj · (∆mj
τ)2 (8.3)

In the above optimization problem, l(dτ ,mτ) is the instantaneous cost function at time τ (k +

1 ≤ τ ≤ k + T) that captures the deviation of system output dτ from reference performance {Ti},
in which Ti is the reference performance specific to workflow type i, while also accounting for

the control increments (i.e., ∆mj
τ = mj

τ − mj
τ−1) over different types of resources. In case we

use performance guarantee T on the average processing time across all types of workflows, we

can replace the first term in Equation 8.3 (i.e.,
∑N

i=1 λi · (Ti − diτ)
2) by (T − d̄τ)

2 to capture the

deviation from the reference performance T .

The model predictive control-based adaptation algorithm, denoted as MPCAdapt, is presented in

Algorithm 8.1. The algorithm starts by initializing the control sequence M using the same current

control input mk for all T future time horizons (Line 4-5), and the set of constraints (Line 6-9).

After that, we solve the optimization problem (i.e., minimize function) with objective function

mpc obj func described in problem (8.2) (Line 11).

It is easy to observe that the optimization problem (8.2) is a constrained non-linear integer

programming problem (i.e., because decision variables {mτ} are positive integers and the objec-

tive function is in quadratic form with non-linear component f(dτ ,mτ)), whose complexity is

NP-hard. To solve the problem efficiently, we relax problem (8.2) into a constrained non-linear

optimization problem (i.e., by relaxing the integrality constraint of control inputs) and use the Se-

quential Least Squares Programming optimization algorithm (or SLSQP), an iterative method, to

solve the relaxed problem. The non-integer solution then can be used to approximate the integer

solution for the original problem.

After finding the sequence of control input, denoted as M∗, only the first “control move” M∗[0]

is returned and is used as the control input for the next time window mk+1. As we move to the

(k + 1)-th time window, we repeat the same control optimization process (i.e., MPCAdapt) for the

49

next T time windows (i.e., from (k + 2)-th to (k + T + 1)-th). The process ends when the system

satisfies the performance constraints.

Algorithm 8.1 Model Predictive Control-based Adaptation

1: procedure MPCAdapt(mk, T, {Ti}, C)
2: M = {}
3: C = {}
4: for ι in [0, T− 1] do # Initialize M
5: M.append(mk)

6: for ι from [0, T− 1] do # Add cost constraints
7: C = C ∪ {C − sum(M[ι]) ≥ 0}
8: for ι from [0, T− 1] do # Add positive resource constraints
9: C = C ∪ {M[ι][j] ≥ 0,∀j ∈ [0, J − 1]}

10: # Solve the optimization problem as described in (8.2):
11: M∗ = minimize(mpc obj func{{Ti},T},M,C)
12: # Only return the first control move:
13: Return M∗[0]

Even though we are able to solve the optimization problem (8.2) in an online manner by relax-

ation, it is still inefficient to run MPCAdapt on a high dimensional input and over a large number

of time windows. Therefore, we also introduce a heuristic-based dynamic control algorithm (Al-

gorithm 8.2) to efficiently produce control inputs for the system to meet performance guarantees

while satisfying resource constraints. Specifically, different from MPCAdapt, in HeuristicAdapt,

we only consider the next time window, instead of looking ahead T time windows, and we iter-

atively (and greedily) allocate additional resources to the task that produces minimal instant cost

(i.e., instant cost function, based on Equation 8.3), instead of trying to solve a global optimiza-

tion problem.

8.3 EVALUATION

8.3.1 MONAD Deployment

In the following, we describe in detail our implementation of the MONAD system. We have

deployed the MONAD system on a cluster of three servers, each server is equipped with an Intel

Xeon quad core processor (1.2Ghz per core) and 16GB of RAM.

For the workflow execution layer, we implement TDS service using ZooKeeper and use a

quorum of 3 TDS servers to maintain tasks dependencies data. We use RabbitMQ as the pub-

50

Algorithm 8.2 Heuristic Adaptation Algorithm

1: procedure HeuristicAdapt(mk,dk, {Ti}, C)
2: while {∃i ∈ [1, N] : dik > Ti} and

∑J
j=1m

j
k ≤ C do

3: cur min = −1.0
4: j min = −1
5: for j from 1 to J do
6: mj

k = mj
k + 1

7: if instant cost(dk,mk) < cur min then
8: cur min = instant cost(dk,mk)
9: j min = j

10: mj
k = mj

k − 1

11: mj min
k = mj min

k + 1

12: Return mk

lish/subscribe middleware and we implement each task’s micro-service as an ensemble of a Rab-

bitMQ’s task request queue and a set of task consumers, each consumer is deployed as a Docker

container. We use the round-robin dispatching mechanism for each task’s request queue so that

multiple requests can be processed in parallel and each consumer receives a fair share of requests.

In terms of fault tolerance, to make sure a request never gets lost (e.g., because of consumer

crashes), we employ a message acknowledgment mechanism between request queue and its con-

sumers: An acknowledgement is sent back from the consumer to tell the request queue that the

consumer has finished processing a request.

We use Kubernetes as the container orchestration engine for the execution layer. With Kuber-

netes, we can abstract the set of consumers of each task’s micro-service as a Kubernetes’ Repli-

cation Controller, which helps ensure that, in the event of a container crash and server failure, a

specified number of containers per task (or scaling factor) is always running at any time. Upon

receiving a control input (i.e., mk) from the adaptation layer, the resource actuator simply instructs

Kubernetes to change the scaling factor of each task’s replication controller.

For the monitoring layer, we use InfluxDB as the time series database to store the monitoring

data, and Grafana as the visualization engine to provide real-time system performance status to

administrators via an interactive interface. We use Kapacitor as the alert engine that monitors the

time series database and invokes adaptation process whenever a performance guarantee is violated.

Other components in monitoring layer are implemented using Python.

For the adaptation layer, we use Tensorflow to train system identifiers and use Python’s SciPy

optimization package to solve the control optimization problem.

51

0

2

4

6

8

10

12

14

16

18

20

0 10 20 30 40 50 60 70 80 90

Te
st

in
g

er
ro

r

Epoch

(a) MDP

0

20

40

60

80

100

120

140

0 10 20 30 40 50 60 70 80 90

Te
st

in
g

er
ro

r

Epoch

(b) LIGO

Figure 8.3: Testing performance of system identifiers

8.3.2 Evaluation Settings

Workflows: We use two workflow ensembles: the material science data processing workflows [45]

(or MDP for short) that support processing experimental data generated by digital microscopes;

and LIGO Inspiral Analysis workflows that analyze data from the coalescing of compact binary

systems such as binary neutron stars and black holes. The MDP ensemble consists of 3 types of

workflows and 4 types of tasks, and we use 3 complex workflows from LIGO: CAT, Full, and

Injection, which consist of 7 types of tasks.

System Identification: To generate training and testing data for the system identification step, we

randomly generate a workload by varying the arrival rates of requests of different workflow types

and vary the allocation of resources over tasks. This way of generating data to train system identi-

fiers allows us to capture a good variety of workload and resource allocation dynamics, so that our

trained models can be better prepared for future workload situations. In addition, this allows us to

collect the training data without the need of bootstrapping the system. The performance data (i.e.,

dk) and resource allocation (i.e., mk) are then captured by the monitoring layer and stored into the

time series database for training. The data are aggregated over equal-length time windows. Via our

experiments, we choose the window length (i.e., Tk+1 − Tk) to be 10 seconds as it helps produce

the best balance between the prediction accuracy and the data collection overhead (i.e., a too long

time window might not capture the dynamism of workload, while a too short one might cause data

aggregation overhead). Our collected dataset is aggregated from about 60K requests of MDP and

about 15K requests of LIGO workflows. The data is then split using 80:20 ratio for training and

testing.

In terms of the neural network’s model parameters, we set S1 and S2 equal to 32 neurals in each

52

hidden layer for MDP, 64 neurals for LIGO workflows (as LIGO has a higher input dimension). To

train system identifiers for both sets of workflows, we set learning rate as 0.001, batch size as 100,

and used 100 training epochs. Figure 8.3 shows the effectiveness of the trained system identifier

using neural network model on two workflow ensembles when testing on unseen data.

Resource Adaptation: To evaluate the effectiveness of different adaptation algorithms in handling

varying and bursty workload situations (i.e., workload with abnormally high arrival rate of re-

quests), we emulate the bursty workload situation by abnormally increasing the arrival rates of

requests of different types of workflows to up to 10 and 5 times compared with the normal rates on

MDP and LIGO workflows (respectively), and measure the effectiveness of our resource allocation

strategy. In this evaluation, we use the absolute delay guarantee for d̄k: d̄k < T , and set T equal

10 and 30 seconds for the MDP and LIGO workflows respectively. We set the resource constraint

C for the MDP and LIGO worklows to be 15 and 90 maximum number of consumers respectively.

For the MPCAdapt algorithm, we set T = 5, and use a uniform cost for resources µj = 1∀j and

the same weight for all workflow types λi = 1∀i 3.

8.3.3 Effectiveness of System Identification

Figure 8.4 shows clearly the effectiveness of the trained neural network-based system identifier

on accurately predicting the average processing delay over all workflow types on both MDP (cf.

Figure 8.6(a)) and LIGO (cf. Figure 8.4(b)) workflow ensembles.

Further study of the results shows that our system identifier also performs well on predicting the

processing time of individual workflow types, as shown in Figure 8.5 on two of MDP’s workflows.

Although these MDP’s workflows pose different workload and performance characteristics, the

system identifier can accurately predict the processing time of each type. These results help verify

the effectiveness of using neural network-based model with multiple outputs, one for each work-

flow type, to capture the dynamic system model with complex interactions between tasks across

different workflow types.

8.3.4 Effectiveness of Adaptation Algorithms

As we can see in Figure 8.6, the MPCAdapt algorithm outperforms HeuristicAdapt as it helps

quickly neutralize the effect of abnormal and bursty workload on the performance of the system.

3The costs and weights can be easily set to more realistic values (if available) without affecting the performance
of the algorithm.

53

0

50

100

150

200

250

300

Pr
oc

es
si

ng
 ti

m
e

(s
ec

on
ds

)

Arrival time

Actual Predicted

(a) MDP

0

20

40

60

80

100

120

140

160

180

Pr
oc

es
si

ng
 ti

m
e

(s
ec

on
ds

)

Arrival time

Actual Predicted

(b) LIGO

Figure 8.4: Effectiveness of system identification on predicting average performance on different workflow
ensembles

This is because MPCAdapt can produce better resource adaptation strategies by solving the opti-

mization problem over T future time windows, instead of using heuristic as in HeuristicAdapt

which can lead to local optimum. In addition, by looking ahead a future time horizon and taking

one control move at a time, the MPCAdapt algorithm can adjust its adaptation strategies to the ex-

ternal factors, such as changes in arrival workload. The HeuristicAdapt algorithm shows good

promise4 as it offers acceptable performance while being more efficient to compute.

54

0

50

100

150

200

250

300

Pr
oc

es
si

ng
 ti

m
e

(s
ec

on
ds

)

Arrival time

Actual Predicted

(a) MDP’s DM3 file processing workflow

0

10

20

30

40

50

60

70

80

Pr
oc

es
si

ng
 ti

m
e

(s
ec

on
ds

)

Arrival time

Actual Predicted

(b) MDP’s experiment classification workflow

Figure 8.5: Effectiveness of system identification on predicting processing time of individual MDP work-
flows

0

500

1000

1500

2000

Pr
oc

es
si

ng
 ti

m
e

(s
ec

on
ds

)

Arrival time

No provision
HeuristicAdapt
MPCAdapt

(a) MDP

0

200

400

600

800

1000

Pr
oc

es
si

ng
 ti

m
e

(s
ec

on
ds

)

Arrival time

No provision
HeuristicAdapt
MPCAdapt

(b) LIGO

Figure 8.6: Effectiveness of adaptation algorithms on adapting system performance when dealing with
bursty workload

55

0
50

100
150
200
250
300
350
400

N
um

be
r o

f r
eq

ue
st

s

Time

(a) MDP

0
100
200
300
400
500
600
700
800

N
um

be
r o

f r
eq

ue
st

s

Time

(b) LIGO

Figure 8.7: Incoming requests to TDS during the bursty workload (aggregated every 5 seconds)

8.3.5 Efficiency of TDS

To evaluate the efficiency of the TDS, we capture the number of requests (aggregated every

5 seconds) which arrive at TDS during the bursty workload experiment above (for both MDP

and LIGO workflows). As expected, when additional consumers are allocated to tasks to process

increasing workflow requests, the number of requests sent to TDS also increases (i..e., both de-

pendency lookups and synchronization inquiries). Despite the increase in the number of requests

to TDS, the maximum latency of responses by TDS is only 22ms for MDP and 37ms for LIGO

workflows, which are insignificant compared with the workflow processing time. These results

help verify the efficiency of TDS service in handling dynamic workload.

8.4 SUMMARY AND DISCUSSIONS

In summary, in this chapter, we presented the design and implementation of MONAD, a black

box-based realization of the adaptive control framework for heterogeneous scientific workflows

microservice infrastructure. MONAD uses artificial neural networks, a black-box model, to model

performance of the microservice infrastructure and uses this model to assist resource allocation

under model predictive control framework.

The main advantage of MONAD that makes it more practical, compared to white-box approach

presented in previous chapter, is that MONAD does not require any advance knowledge of workflow

structure, workload distribution, and task characterization. However, MONAD can only perform

4Although the results show that HeuristicAdapt is more efficient than MPCAdapt, we leave the evaluation on
more complex workflow ensembles with higher number of dimensions (or tasks) for future work.

56

well if there exists training data of historical workloads to train the performance model of the

system. In addition, similar to other supervised approaches, the amount of training data needed

is proportional to the complexity of the workflow workload (i.e., represented by the number of

tasks and workflow types that the infrastructure supports), and if there are changes in the workload

configurations (e.g., new workflow types are supported), the performance model might need to be

updated with new training data to capture those changes.

57

CHAPTER 9: ADAPTIVE MICROSERVICE INFRASTRUCTURE VIA MODEL-BASED
REINFORCEMENT LEARNING

9.1 BACKGROUND: REINFORCEMENT LEARNING

We begin by providing some background about algorithms of Deep Reinforcement Learning.

Firstly, we introduce the basic concepts about reinforcement learning, then we will move on to the

algorithm we apply as our approach.

Reinforcement learning [63] is a type of algorithms which seek to find appropriate actions for an

agent who interacts with an environment, often modeled as a Markov Decision Process (MDP). At

each time step t of the MDP, the process is at a state st ∈ S, where S is a finite state set. An agent

observes the state and makes an action at ∈ A, where A is a finite action set. A reinforcement

learning algorithm does not assume any knowledge of a mathematical model of the MDP. It tries

to learn an appropriate policy π(a|s) = P (at|st) by maximizing an accumulation of its current

immediate reward and all future immediate rewards Vt =
∑∞

t=0 γ
trt, where γ ∈ [0, 1] is the

discount factor, and at follows policy π(a|s). The reward aggregation is an action value function,

and can be represented byQπ(s, a) = Eπ[Vt|st, at], denoting the expected return starting from state

st, taking action at, and following policy π(a|s) thereafter. A reinforcement learning algorithm

tries to find the policy which can maximize the action value function. This policy is the best policy

that an agent can take to achieve the best possible performance in the environment. By decoupling

the immediate reward and discounted value of future return, we can write the action value function

as

Qπ(st, at) = Eπ[rt + γQπ(st+1, at+1)], (9.1)

which is the Bellman Equation. The method of finding the optimal policy by learning and maxi-

mizing the Bellman Equation based on (st, at, rt, st+1, γ) tuples is called the Q-learning.

Instead of finding the optimal policy by finding an action which maximizes the action value

function at each time step (as Q-learning does), an actor-critic algorithm applies a gradient on

the action value function — the critic function — with regard to policy parameter θ as shown

in Equation. 9.2, and uses this gradient to update parameters of the policy function — the actor

function.

∇θJ(θ) = Eπθ [∇θ log πθ(s, a)Qπθ(s, a)]. (9.2)

58

Environment

Agent

Reward ! Observe state "Take action #

Figure 9.1: Interactions between agent and environment in reinforcement learning.

If we model action as deterministic decisions a = µθ(s), Silver et al. proves that the gradient of

action value function can be written as

∇θJ(θ) = E[∇θµθ(s)∇aQ
µ(s, a)|a=µθ(s)]. (9.3)

In this way we can perform the parameter update of deterministic policy function with

θk+1 = θk + αE[∇θµθ(s)∇aQ
µk(s, a)|a=µθ(s)], (9.4)

where α is learning rate, and θk is the set of parameters of policy function at iteration k. For

example, if the policy function is modeled as a feedforward neural network, then θk consists of the

weights and biases of neural network’s layers.

9.2 MODEL-BASED REINFORCEMENT LEARNING ADAPTATION FOR
MICROSERVICE INFRASTRUCTURE

Reinforcement learning, with its closed-loop feedback from the environment, is an ideal candi-

date for realization of our adaptive control framework for microservice infrastructure. In particular,

the role of an agent in reinforcement learning is equivalent to that of a controller in the adaptive

control framework: given current state and an objective (i.e., maximize long-term aggregated re-

ward), make decision on the next action (e.g., allocation of resources across microservices).

59

In terms of the performance model, there are often two main directions regarding to the model

of the environment in reinforcement learning: model-free and model-based approaches. With

model-free approach, the agent relies on the feedback from actual environment and learns either

a reward value function (i.e., Q-learning method) or a state-action policy function (i.e., policy

gradient method). The main drawback of the model-free approach is its high sample complexity,

as this approach uses actual interactions between agent and environment to improve and train its

agent upon. With model-based approach, instead of using actual interactions with the real environ-

ment, we train a model of the environment and use this model’s predictions to help with training

the agent (either by using Q-learning or policy gradient method). The benefit of model-based

approach is smaller sample complexity, compared with the model-free approach, by the use of

environment model to draw synthetic feedback from the environment. This benefit makes model-

based approach more suitable for systems and networking applications, since in these applications,

waiting for actual feedbacks from real environment is often very time-consuming (e.g., the system

performance and states are often monitored over periodic time intervals of tens of seconds or min-

utes). This is different from applications such as computerized games (e.g., Atari games) where the

model-free approach shines, because in such applications, the agent can receive feedbacks from

environment almost instantly due to the availability of computerized model of the games.

On the other hand, the disadvantage of the model-based approach is that we need to be able to

train an accurate model of the environment, which is challenging in high-dimensional and complex

environments, in order to achieve good performance on training the agent. There have been differ-

ent approaches proposed to address this issue. For example, one approach is to train an ensemble

of environment model to improve model’s generalization and avoid being stuck in local optimal of

an overfitted model. Another example is to design the environment model training and policy train-

ing in an iterative manner. The key idea of this method is that, by switching iteratively between

on-policy (i.e., use the current policy to interact with real environment and collect more training

data for environment model) and off-policy (i.e., turn off the current policy, retrain environment

model with newly collected training data, and use the updated environment model to improve the

current policy) modes, we can again avoid being stuck in a local optimal of environment model

and gradually build more accurate model of environment (with help of newly collected training

data), as well as improve the policy.

In this thesis, we propose to use model-based reinforcement learning for implementing our

adaptive control framework. In the following, we first present some preliminaries on how state,

action, and reward are define in the context of microservice infrastructure. Then, we will show how

we construct and train a model for the environment (i.e., microservice execution environment in

60

our case), how we leverage the environment model to train a policy, and finally, how we integrate

on-policy and off-policy training in a iterative framework.

9.2.1 Preliminaries: State, Action, and Reward

In the context of our microservice infrastructure, the state of environment s(k) corresponds to

the average delays of different types of workflows in the k-th time window d(k) as defined in

Chapter 5: s(k) = d(k) = {di(k)}, 1 ≤ i ≤ N .

Reward can be defined as the aggregated decrease in average delays of different workflow types

observed from the environment after each time window:

r(k) =
N∑
i=1

di(k − 1)− di(k) (9.5)

An action a(k) that the agent makes corresponds to the decision of allocation of consumers

across microservices m(k): a(k) = m(k) = {mj(k)}, 1 ≤ j ≤ J . Since the total number of

consumers over all microservices is bounded (i.e.,
∑J

j=1mj(k) ≤ C), we also have to enforce

such the constraint on the action made at each time window a(k).

9.2.2 Environment Model Learning

To train a model for the environment, we use a similar black-box neural network-based approach

as shown in Chapter 8, and extend the neural network architecture to improve the generalization

of the model, which is vital in model-based reinforcement learning scenario.

Our neural network-based environment model takes input x as the combination of system states

(i.e., s(k)) and action (i.e., a(k)) in the current time window (Tk, Tk+1): x = (s(k) ‖ a(k))T ,

and predicts output as the system states sk+1 of the next time window (i.e., (Tk+1, Tk+2)). The

neural network model consists of L layers, with the number of neurals in each layer is denoted

as S(l) (1 ≤ l ≤ L). Correspondingly, W(l),b(l) (1 ≤ l ≤ L) represent the weight matrix and

bias of layer i-th. Each layer l-th also includes a non-linear (except the last layer that uses the

linear identity function) activation function f (l) to introduce the non-linearity into the network

model. In particular, we use rectified linear unit (or ReLU) as the non-linear activation function

for the hidden layers and identity activation as the activation function for output layer. We denote

y(l) as the vector of outputs from layer l (y(0) = x). To improve model’s generalization, we add

a dropout layer [64] after the output of each hidden layer. A dropout layer is represented by a

61

!(#)

%(#)

+

'(#)(ReLU)

+

'(() (ReLU)

+

Input First hidden layer Second hidden layer Output layer

)
|)|×1

-(#)×|)|

.(#)
S(#)×1

-(()×-(#)

.(()
S(()×1

-(0)×-(()

.(0) = 2(k + 1)
S(0)×1

'(0) (Identity)

2(k)

) = (2(k) ∥ 5(k))6

5(k)

789:9;<

=>(#)
S(#)×1

=>(()
S(()×1789:9;<

!(()

%(()

!(0)

%(0)

Figure 9.2: Neural network model of microservice environment.

Bernoulli distribution with parameter p, also known as keep probability, that represents how likely

the updating gradients being kept during back-propagation training process. The neural network

model can be described via a series of matrix-based calculations as follows (0 ≤ l ≤ L− 1):

r
(l)
j ∼ Bernoulli(p)(1 ≤ j ≤ S(l)), (9.6)

ỹ(l) = r(l) ∗ y(l),

y(l+1) = f (l+1)(W(l+1)ỹ(l)) + b(l+1))

The output of the model is the predicted state of the environment in the next time window:

s(k+1) = y(L). Figure 9.2 shows an actual neural network architecture of our environment model

with two hidden layers and one dropout layer after each hidden layer.

If we denote Φ as the set of parameters of the environment models: Φ = {{W(l)}, {b(l)}}
(S(l), L, p are tuning parameters), then the environment model can be represented by a function

f̂Φ: s(k + 1) = f̂Φ(s(k), a(k)). And the objective of environment model learning is to find a

parameter Φ that minimize least square error of one-step prediction:

minΦ
1

|D|
∑

(s(k),a(k),s(k+1))∈D

||s(k + 1)− f̂Φ(s(k), a(k))|| (9.7)

where D is the set of training data. In this case, we employ a common practice in designing

neural network and let the network model predict the change in state (rather than the next state)

given a state and an action as inputs. This helps to prevent the network model to memorize the

previous state.

62

+ + +

Input First hidden layer Second hidden layer Output layer

"
|"|×1

&' &(&) = +(k + 1)
S())×1

" = (0(k))1

23456
78

0(k)
9(')×|"|

:(')

;(')

4(')(ReLU) 4(() (ReLU) 4()) (Softmax)

:(()

;(()

:())

;())

S(')×1
9(()×9(') 9())×9(()

S(()×1

Figure 9.3: Actor network architecture.

9.2.3 Policy Learning

After training the environment model, the trained model can be used to generate synthetic sam-

ples of system dynamic. These synthetic samples can be used to train the policy.

In this thesis, we use actor-critic method for policy learning. With this method, we train simul-

taneously two neural network-based models of actor and critic. While the actor network tries to

make decision on the next action a(k + 1) given current state s(k) (i.e., learning the policy), the

critic network is used to evaluate the value of action made by the actor network (i.e., learning value

function).

While we can leverage vanilla neural network structure for the critic network, the design of the

actor network requires more considerations to ensure that the output of the actor network satisfies

the resource constraint (i.e., the total number of consumers across all microservices is bounded).

To enforce such a constraint, we design action output of actor network as a categorical distribution,

or a probability distribution over J different possible outcomes (each outcome corresponds to

the allocation of a microservice), by applying a softmax activation function for the output layer

(Figure 9.3). The categorical distribution can be then translated into numbers of consumers by

multiplying with the total number of consumers C:

mj(k) = bC ∗ aj(k)c,∀1 ≤ j ≤ J (9.8)

In this thesis, we use deep deterministic policy gradient method (or DDPG) [65] to train the

actor-critic policy networks. If we denote Θ as the parameter of the actor neural network, then the

learned policy can be represented by a function π̂Θ: a(k + 1) = π̂Θ(s(k)).

63

9.2.4 Iterative Model-based Reinforcement Learning

As mentioned at the beginning of this chapter, to overcome the limitation of the model-based re-

inforcement learning approach (i.e., the learned policy often exploits regions where scarce training

data is available for the environment model), one method is to switch iteratively between on-policy

(i.e., use the current policy to interact with real environment and collect more training data for en-

vironment model) and off-policy (i.e., turn off the current policy, retrain environment model with

newly collected training data, and use the updated environment model to improve the current pol-

icy) modes. As a result, we can avoid being stuck in a local optimal point of the environment

model and gradually build more accurate model of environment (with help of newly collected

training data), as well as improve the policy.

The iterative training procedure is presented in Algorithm 9.1, in which the outer loop represents

on-policy training on real environment, and the inner loop represents off-policy training using

environment model.

Algorithm 9.1 Iterative Model-based Reinforcement Learning Procedure

1: Initialize π̂Θ, f̂Φ, and D
2: repeat
3: Collect sample from real environment using π̂Θ and add to D
4: Train environment model f̂Φ using D
5: repeat
6: Collect synthetic samples from f̂Φ using π̂Θ

7: Update policy π̂Θ using DDPG algorithm
8: until Performance of the policy stops improving
9: until The policy performs well in real environment

9.3 EVALUATION

9.3.1 Evaluation Settings

We leverage microservice-based workflow infrastructure presented in Chapter 5 as the environ-

ment to evaluate the reinforcement learning-based resource adaptation. For environment model

learning, we emulate workflow workload to the system and monitor the system performance in

terms of work-in-progress of tasks and the corresponding number of allocated consumers. Specif-

ically, we use the MDP workload (c.f. Chapter 7 and 8) that includes three types of workflows

(N = 3) and four different types of tasks (J = 4). We initialize a random policy and collect

64

50

500

5000

50000

500000

0 10 20 30 40 50 60 70 80 90

Te
st

in
g

er
ro

r

Epoch

Keep Probability = 0.6
Keep Probability = 0.8
Keep Probability = 1.0

Figure 9.4: Testing error of environment model using different dropout rates.

training data from the real microservice execution environment. The collected information is used

as the training dataset D. The training dataset is then splitted with ratio 80% - 20% for training

and testing respectively.

9.3.2 Effectiveness of Environment Model Learning

Figure 9.4 demonstrates the effect of using dropout layers in improving generalization of envi-

ronment model when performing on testing data over training epoch (i.e., each epoch corresponds

to one forward pass and one backward pass of all the training examples). Specifically, we can see

that as we increase the dropout rate (i.e., decrease the keep probability p), the prediction results

become less overfitted, which is demonstrated through smaller testing error. This is desirable since

we want the model to generalize well when dealing with unseen data.

Figure 9.5 demonstrates qualitatively the effectiveness of using trained environment model to

accurately predict near future performance, in terms of work-in-progress, of individual microser-

vices (Figure 9.5-b and Figure 9.5-c), as well as average performance across all microservices

(Figure 9.5-a) (each data point is 15 seconds apart on x-axis).

9.3.3 Effectiveness of Policy Learning

After obtaining a trained model of the environment, we perform policy training using synthetic

state traces generated by the environment model. During policy training, we record the perfor-

65

0

10

20

30

40

50

60

70

80

90

100

W
or
k-
in
-p
ro
gr
es
s

Time

Predicted
Actual

(a) Average across all microservices

0

5

10

15

20

25

30

35

40

45

50

W
or
k-
in
-p
ro
gr
es
s

Time

Predicted
Actual

(b) Microservice A

0

50

100

150

200

250

300

350

400

W
or
k-
in
-p
ro
gr
es
s

Time

Predicted
Actual

(c) Microservice D

Figure 9.5: Effectiveness of trained environment model when predicting average work-in-progress across
microservices and work-in-progress of individual microservices.

66

0 10 20 30 40 50 60 70 80
Episode # (x 100)

0

50

100

150

200

250

M
ea

n
re

w
ar

d

Absolute reward

(a) Absolute reward

0 10 20 30 40 50 60 70 80
Episode # (x 100)

125

100

75

50

25

0

25

50

M
ea

n
re

w
ar

d

Relative reward

(b) Relative reward

Figure 9.6: Effectiveness of training policy using trained environment model and different reward functions.

mance of the policy (by average aggregated reward) after every 50 episodes, each episode is de-

fined as 20 consecutive time step with each time step corresponds to an action made by policy

network. We evaluate with different reward functions as described previously, including abso-

lute reward and relative reward, to see how effective each reward functions is in training policy

network.

The result is shown in Figure 9.6. We can see that, with both reward functions, the performance

of policy converge after around 500 episodes (for absolute reward) and 400 episodes (for relative

reward). This convergence result demonstrates the effectiveness of using learned environment

model to train policy network.

We also zoom into some sample episodes to see how policy network, trained with absolute re-

67

ward function, makes resource allocation decisions. Figure 9.7 and Figure 9.8 show two examples

of two different episodes (each episode is limited to 20 time steps in our evaluation). In each exam-

ple, Figure 9.7-a and Figure 9.8-a show how work-in-progress of microservices (i.e., system states)

change overtime as the policy network makes resource allocation decisions, which are shown in

Figure 9.7-b and Figure 9.8-b respectively. It demonstrates that the policy network is trained to al-

locate resources among microservices to gradually reduce the aggregated work-in-progress across

microservices, which resonates with the use of absolute reward during training.

In addition, as shown in examples in Figure 9.7 and 9.8, the policy network is able to learn an

efficient order of allocation among the microservices so that it can achieve the best reduction in

aggregated work-in-progress across all microservices. Specifically, in both examples, the policy

network tends to allocate resources to microservices following order of D → C → B → A (i.e.,

gradually prioritize to allocate consumers to D, C, B, and then A). Interestingly, this order is the

reversed topological order of the tasks in the set of workflows that system supports, and thus, the

allocation order makes sense as the requests are routed through the tasks in topological order.

To evaluate the effectiveness of iterative policy learning, we use the initially learned policy to

interact the real microservice environment and collect additional interaction data. This data is then

used to update the environment model (i.e., microservice performance model) and then, update

the initially learned policy. The result in Figure 9.9 show that the policy learning performance

improves after an iteration: the newly learned policy is much faster to converge and it also achieves

better convergence performance than the initially learned policy. This is because newly collected

interaction data helps to environment model to make better predictions on the performance of

microservice infrastructure and, as a result, also helps to train a better policy network.

9.4 SUMMARY AND DISCUSSIONS

In this chapter, we present another realization of the adaptive control framework using model-

based reinforcement learning, as the next step from the model predictive control approach pre-

sented in Chapter 8 toward a hand-off approach for resource allocation of microservice infras-

tructure. We show how different notions in reinforcement learning, such as state, action, and

reward, can be defined in the context of microservice infrastructure. Our preliminary evaluation

results demonstrate the effectiveness of training accurate model of the microservice environment

and effective policy networks using various reward functions. The results also show the effec-

tiveness of iterative model learning and policy learning to help improve the performance of pol-

icy network over time. Similar to model predictive control approach presented in Chapter 8, the

68

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

W
or

k-
in

-p
ro

gr
es

s

Time step

Task A Task B Task C Task D

(a) Work-in-progress of microservices

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
es

ou
rc

e
al

lo
ca

tio
n

Time step

(b) Percentage of resource allocated to microservices

Figure 9.7: Sample 1 - Effectiveness of learned policy network in allocating resources to microservices to
help reduce work-in-progress. Time steps are 15 seconds apart, and y-axis represents percentage of number
of consumers allocated to tasks.

69

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

W
or

k-
in

-p
ro

gr
es

s

Time step

Task A Task B Task C Task D

(a) Work-in-progress of microservices

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
es

ou
rc

e
al

lo
ca

tio
n

Time step

(b) Percentage of resource allocated to microservices

Figure 9.8: Sample 2 - Effectiveness of learned policy network in allocating resources to microservices to
help reduce work-in-progress. Time steps are 15 seconds apart, and y-axis represents percentage of number
of consumers allocated to tasks.

70

0 20 40 60 80 100
Episode # (x 100)

10

5

0

5

10

15

20

M
ea

n
re

w
ar

d

Initial policy
Policy after 1st iteration

Figure 9.9: Effectiveness of iteratively collect more environment interactions by initial policy and retrain
the environment model and policy.

model-based reinforcement learning approach also relies on a black-box model of the environment

(both approaches use neural network to model the performance). However, in RL-MONAD, we

use work-in-progress as the performance metric, instead of average workflow processing delays as

in MONAD, as work-in-progress is fully observable after every time step while processing delays

might not.

Although RL-MONAD is capable of learning resource allocation strategies and adapting with

the changes of environment (thanks to its iterative learning process), its potential disadvantage

is mainly in the overhead of training/updating performance model and policy network overtime

(even though updating model and policy can be done in parallel while the system is still running

with the old policy and model). In addition, through the experiments, we found out that RL-

MONAD is often slow in response to sudden increase or decrease in the workload. This can be

explained by the fact that RL-MONAD uses aggregated long-term rewards to train policy, while the

workflow workload we experimented with only consists of tasks with relatively short processing

times, which require faster response and shorter-term planning of resource allocation. Therefore,

as a next step, we plan to perform further evaluations with more complex workflow workloads with

longer average processing times to better measure the effectiveness of RL-MONAD when handling

dynamic workload situations.

71

CHAPTER 10: 4CEED - REAL-TIME ACQUISITION AND ANALYSIS FRAMEWORK
FOR MATERIALS-RELATED CYBER-PHYSICAL ENVIRONMENTS

10.1 EXTENDING DOSSIER TO MATERIAL-RELATED ENVIRONMENT

As briefly introduced in Chapter 4, to validate the effectiveness and practicality of using DOSSIER

and its service building blocks in supporting data management applications of cyberinfrastructure,

in this section, we present the architectural overview of the 4CEED framework for real-time cap-

ture, curation, coordination, collaboration, and distribution of scientific material-related data. The

framework consists of two main services: curation (instrument and user tier) and coordination

(cloud tier) services (Figure 10.1). The streamlined curation service that helps users to perform

nimble and adaptive data collection from material research instruments by wrapping of data with

extensive meta-data in timely and trusted manner. The coordination service is built based on

DOSSIER and its service building blocks. In coordination service, a number of data processing

tasks are developed specifically for various types of material data to process data uploaded from

instruments.

The more detailed overview of 4CEED is presented in Figure 10.2. Since the coordination

service is based on the DOSSIER infrastructure that has been described in Chapter 5 and 6, in

the following, we focus on describing the design of 4CEED’s curation service and how it takes

advantage of the service building blocks provided by DOSSIER.

10.2 CURATION SERVICE

The data curation service consists of two main components: uploader (i.e., for uploading data

from scientific instruments) and curator (i.e., for curating data after experimental sessions at in-

struments). Both uploader and curator applications are built based on DOSSIER’ services. In

particular, DOSSIER’s data management service provides a novel extensible data model for het-

erogeneous and multi-modal scientific data (i.e., combination of multimedia data like images,

structured and unstructured data, text, tags, etc.) (Figure 10.3). The data model is designed to be

generic, so that it can support managing different types of scientific data from different application

domains. The model is based on nested structures necessary to mimic hierarchical organization of

scientific experiments. Specifically, the data model hierarchy includes three main concepts: nested

collections, datasets, and files. At the lowest level, files represent experimental result data, such

as images, text, or proprietary files. A dataset is a grouping of files and metadata capturing the

72

Curator

Uploader

4CEED Curation Service

DOSSIER

4CEED Coordination Service

Campus
network

4CEED

Material-
related task

Figure 10.1: DOSSIER as part of 4CEED implementation.

Campus
network

4CEED Uploader

4CEED Uploader

MNTLMRL

upload images,
Spectra, maps,
metadata, text

upload images,
metadata, text

view, edit, share
data (via Webapp)4CEED

Curator

(Office side)
(Cloud side)

(Instrument side)

4CEED Uploader

4CEED Uploader

4CEED Uploader

4CEED Uploader

Process, analyze, and
correlate data from
multiple sources

4CEED Coordinator

Figure 10.2: Overview of 4CeeD system.

73

Collection

Collection Collection .	.	.

Dataset Dataset

Image Text .	.	.Meta-data

Figure 10.3: Data model of DOSSIER’s data management service.

preparation information of the experimental sample. A collection is a way for users to organize

their datasets (e.g., each collection represents experiment data for a day, or done by a specific in-

strument). The nested structure of collections provides users the flexibility to describe their own

data organization. While the concepts of collections, datasets, and files provide a vertical organi-

zation of data, we use the concept of spaces for horizontal organization to support sharing of data.

A space is a set of collections and datasets that are shared among multiple users. Different levels

of user permissions (e.g., owner, editor, and viewer) can be configured for each space to enable

flexible collaboration between users.

Using DOSSIER’s data management service, 4CEED’s uploader provides a new simple, user-

in-the-loop interface for uploading raw data generated from materials-making and characterization

instruments (e.g., microscopes) and device fabrication instruments during lab sessions. The user

involvement in the data input step is because all materials and device fabrication instruments are

supervised and controlled by experimenting users. Often, we want users to enter process-related

data, notes regarding experimentation with new materials, reasoning on why a certain physical

component was added or removed, and so forth. Specifically, the uploader provides an interface

that consists of 3 simple dependent steps following the nested data model. In the first step, user

creates or selects a collection or sub-collection from his/her own set of existing nested collections

(stored on the cloud) visualized by a tree-based structure. After selecting (or creating) a collection,

in step 2, user can create or select an existing dataset. Under dataset, users can manually enter

meta-data associated with the experiment, or use provided meta-data templates (i.e., each template

correspond to a collection of meta-data fields) for faster and more accurate recording of meta-

data. In the third step, users can drag and drop multiple raw experimental files generated from the

74

instruments to the dataset selected/created in step 2 to submit to the cloud. Additional file-level

meta-data can also be added in the third step.

Using DOSSIER’s data curation service, 4CEED’s curator provides a novel interface that allows

users abilities to browse, view, edit their uploaded data at the office side, using the nested data

model. Especially, as the raw uploaded data has been processed by the coordination service,

users can see results of all data processing tasks done on the raw data. Examples of the tasks

include extracting instrument-specific meta-data and image from DM3 file, generating previews

for microscopy images, and classifying experimental data into appropriate types (e.g., diffusion,

oxidation, etc.) or outcomes (i.e., success or failure). Each type of experimental data requires

a different set of data processing tasks, which are expressed in form of a workflow or Directed

Acyclic Graph (DAG) of tasks, to be applied. Each workflow or task graph corresponds to a type

of a data processing job, which can be configured by the coordination service. In addition, within

the curation service, we provide an “e-commerce style” search (i.e., similar to search feature on

e-commerce sites like Amazon, Newegg) over shared data repository of experiments. Users can

easily and efficiently search through a large amount of experimental data by combining traditional

keyword-based search and structured data filtering (or faceted search). The structured data used

in filtering can be instrument-specific meta-data, experiment-related settings, or the results of data

processing tasks (e.g., outcome classification).

Both 4CEED’s uploader and curator can be accessed as web-based applications (hence are

platform-independent) and both require authentication to access, curate and share data. The com-

munication between uploader, curator and the cloud-based system is via the HTTPS protocol to

ensure security. 4CEED is open-sourced1 and it can be deployed using different resource manage-

ment deployment mechanisms, including: virtual machine (i.e., with minikube), single server (i.e.,

with docker-compose), cluster (i.e., using Kubernetes), and hosted solution (i.e., Google Cloud

Platform).

14CEED’s Github: https://github.com/4ceed/4ceedframework/

75

CHAPTER 11: BRACELET - HIERARCHICAL EDGE-CLOUD MICROSERVICE
INFRASTRUCTURE

As motivated in Chapter 1, the main challenge in terms of data acquisition from scientific in-

struments is due to the performance and security gaps between scientific instruments and back-end

cloud and network infrastructure. In particular, major scientific instruments and their software

tools run old operating systems, such as Windows XP, Windows NT, Windows 2000, and Win-

dows 3.11. Even though these OSes are capable of networking, they are set offline because they

cannot operate at the network speed of a powerful cloud (e.g., if a fast cloud server communicates

with a slow computer with older OS and network interfaces, connections often break quickly,

and/or more data might be retransmitted because of delayed acknowledgements) and they are also

not patched with the latest security patches (since companies such as Microsoft no longer support

these older operating systems). In addition, the software updating cycle of scientific tools (e.g.,

instrument tools developed by companies such as Siemens and GE) is much slower, compared

with that of IT tools. As a result, this issue will not go away and it prevents the instruments to

be connected with the advanced networked cyberinfrastructure. Further, such a disconnection also

hinders the ability to upload scientific data from the instruments to the cloud during experimental

sessions (e.g., as in 4CEED).

To address this problem, we extend DOSSIER to include a networked edge component (or

cloudlet), named BRACELET, between the scientific instruments and cloud as the middle tier of

a three-tier hierarchy . As shown in Figure 11.1 where BRACELET is integrated into 4CEED ar-

chitecture, BRACELET will be placed in each research lab to shape and protect traffic from instru-

ments in the lab to the campus cluster hosting scientific data management system (i.e., 4CEED’s

coordination service). BRACELET will handle the mismatch in computational and network speeds

(i.e., performance mismatch) and the mismatch in security, and enable enhanced computation over

scientific data to offload some computation functions from older instruments (e.g., extraction of

metadata from images and other data).

The BRACELET will run performance and security components (Figure 11.2) to process, protect,

and upload data to cloud infrastructure and protect scientific instruments from threats coming from

outside network. The BRACELET device design will have a dual and integrated architecture with

two major components to enable uploading service from instruments to the cloud infrastructure,

as follows.

The performance component will concentrate on the performance and reliability matching that

needs to be done to connect older scientific instruments to the cloud infrastructure. Specifically,

76

DOSSIER
Edge

(BRACELET)
Curator

Uploader

4CEED Curation Service

DOSSIER
Cloud

4CEED Coordination Service

Campus
network

4CEED with BRACELET

Material-
related task

Figure 11.1: Integrating edge-based BRACELET to 4CEED’s data acquisition architecture.

BRACELET will receive scientific instruments’ data from the 4CEED uploader client, running net-

work protocols that match the speed of slower instruments. BRACELET will be caching data, since

users will upload data at different rates (because of running different types of instruments or having

different operating systems and network interfaces). Then, BRACELET’s performance adaptation

endpoint will coordinate with the cloud side to perform traffic shaping, multiplexing, aggregation,

and scheduling of data traffic to the backend cloud system in a protected manner. In addition,

BRACELET could also receive instructions from the cloud side (via performance adaptation end-

point) to perform certain data processing, such as metadata extraction from the instrument’s raw

output data, to offload processing from slower and computation-limited instruments and hence

speed up the end-to-end upload process. The runtime system is the same as that on the cloud

(to create a uniform execution environment for computational offloading), and is monitored by a

monitoring endpoint that aggregates and sends status information to the monitoring component on

the cloud.

The security component will concentrate on the protection and security changes that need to be

done to connect older scientific instruments to the cloud infrastructure and protect the instruments

from external threats. Within BRACELET’s security component, we will explore the integration of

the authentication and authorization protocols such as Shibboleth and OAuth to achieve authenti-

cation and authorization between BRACELET and cloud infrastructure; a registration protocol to

create an admissible table of instruments that are allowed to upload data to the cloud infrastructure;

white-listing of IP addresses of computers that control instruments; and a firewall to check which

packets are allowed to pass further or to be admitted.

77

Performance
Adaptation
Endpoint

Task A Task B

Monitoring
Endpoint

Firewall

Instrument
Registration

Authentication &
Authorization

Task A

Figure 11.2: BRACELET’s component architecture.

11.1 BRACELET’S ARCHITECTURE

An overview of BRACELET’s 3-tier architecture is presented in Figure 11.3. In particular, the

first tier, i.e., instrument tier, includes scientific instruments attached to computers running old op-

erating systems that could not directly connect to the cloud (the new instruments that run with more

advanced operating systems can connect directly to the cloud in the existing 2-tier architecture).

On each instrument’s computer, users use a uploader client to upload experiment data upstream.

The second tier, i.e., the edge or cloudlet tier1, includes edge-based devices, or cloudlets, that

consist of two network interfaces: one connects to instruments’ VLAN and another connects to

the cloud via public network. Lastly, on the third tier, i.e., cloud tier, we deploy a cloud-based

infrastructure that connects to the public network. The cloud-based tier supports data processing,

curation, storage, correlation, and search of scientific experiment data uploaded from instruments

via cloudlets.

11.1.1 BRACELET’s Microservice Architecture

Figure 11.4 shows the detailed microservice architecture of BRACELET and its performance

components. To enable seamless integration of cloudlets to the existing 2-tier cloud-based infras-

tructure, we design BRACELET by extending the cloud-based microservice architecture [45, 53] to

1From now, we will use edge, edge device and cloudlet interchangably.

78

Cloud-based
Infrastructure

Old Instrument

Old Instrument

Old Instrument

Cloudlet

Old Instrument

Old Instrument

Old Instrument

Cloudlet

Campus
network

Edge 1 Edge 2

100Mbps

10Gbps

New Instrument New Instrument

100Mbps

1Gbps 1Gbps

Figure 11.3: Overview of BRACELET system.

the edges. In particular, while the cloud-based infrastructure operates on the full 5-layer architec-

ture, the cloudlets operates on three layers to enable computational offloading of tasks to the edges

and seamless communication between edge- and cloud-based components. In the following, we

describe all the layers in details.

Infrastructure Layer

Infrastructure layer provides a level of abstraction and virtualization of all computation and

storage resources across cloud and edges. We leverage container technology for virtualization

and use a container orchestration engine to manage the container allocation across edge-cloud

infrastructure.

Execution Layer

We design execution layer using a microservice workflow execution model across cloud and

edges. Experiment data uploaded from instruments will be handled by a specific type of data

processing workflow, each workflow type corresponds to a directed acyclic graph (DAG) of a

subset (or all) types of data processing tasks that system supports. We model each task as a

79

Task A’s cloud workers Task B’s cloud workers

Task dependency
lookup

Task A’s edge workers

A.Edge-1

Campus
network

Cloud-based
task invoker

Edge control
endpoint

Cloud control
endpoint

Host cluster (Cloud)Edge node (Cloudlet)

Edge-based
task invoker

System
Perf. Logs

Visualizer

System
performance

model

Resource
allocation

Performance
predictions

Task
monitor

TDS
monitor

Workflow
monitor

Coordinate
resource
allocationTask

Dependency
Service

Task
Dependency

Service

Publish-subscribe message bus Publish-subscribe message bus

Consume
rConsume

rConsumer

A

Consume
rConsume

rConsumer

B

Consume
rConsumer

Update resource
allocation

Old Instrument

Old Instrument

Old Instrument

Instrument
private
network

Figure 11.4: Detailed architecture of BRACELET system.

microservice2 with its own request queue that stores the task’s requests, and a set of task consumers

that subscribe to the request queue to perform actual processing of the task’s requests.

The communication between dependent tasks in a workflow follows the publish-subscribe mech-

anism. When a task request arrives at the queue, a task consumer subscribing to the queue will

pick up the request to process it. After processing the request, the consumer asks the coordination

layer (to be described shortly) about the subsequent tasks of the workflow and publish the request

to the corresponding queues of the subsequent tasks. We assume that all workflow data and in-

termediate results between tasks are stored in a shared storage system that can be accessed by all

micro-services across cloud and edges.

A microservice can be deployed on a cloudlet (or multiple cloudlets), on cloud, or on both cloud

and cloudlets. The publish-subscribe message bus is available across cloud and edges to enable

seamless communication between edge- and cloud-based micro-services.

2From now, we will use task and microservice interchangably.

80

Job type From To
Wf1 Start A
Wf1 A B
Wf1 B C
Wf1 C End
Wf2 Start C
Wf2 C D
Wf2 D End

Figure 11.5: Example of task dependency table.

Job type From To
… … …

Wf1.E1 Start A.E1
Wf1.E1 A.E1 B.E1
Wf1.E1 B.E1 C
Wf1.E1 C End

… … …

Figure 11.6: Updated task dependency table with an edge-based version of Wf1.

Coordination layer

On top of the execution layer is the coordination layer that consists of a task dependency service,

or TDS, that maintains the dependencies between tasks of a workflow (i.e., task dependencies are

essentially the directed edges of workflow’s task graph) and responds to task dependency lookups

from the execution layer. Figure 11.5 shows an example of task dependencies maintained by TDS

for two types of workflows (i.e., Wf1 and Wf2) and 4 types of tasks (i.e., A, B, C, and D - please note

that the same task can be used by multiple workflow types).

The separation of task coordination from the execution of tasks enables more flexible and scal-

able workflow composition (i.e., we can support new workflow types by simply creating new set

of task dependencies between the existing tasks). To offer high availability and high performance,

we designed TDS as an ensemble of multiple TDS instances running on both cloud and edges and

maintain a replica of task dependency data on each instance.

To coordinate resource allocation across cloud and edges, coordination layer maintains a control

endpoint on each cloud and edge side. The cloud control endpoint is the centralized entity that

receives new resource allocation from the adaptation layer (to be described shortly) and informs

other edge control endpoints to implement new allocation.

81

Monitoring layer

Monitoring layer captures performance metrics (c.f. Chapter 5) of workflows, micro-services,

and TDS. These metrics are stored in a performance logs database. Performance data is used by

adaptation layer (to be described shortly) to make resource allocation decisions. Although moni-

toring services are running on the cloud, they still can seamlessly communicate with components

running on edges to collect the performance metrics, thanks to the deployment of coordination and

execution layers across cloud and edges.

Adaptation layer

Adaptation layer is the brain of BRACELET system. This layer consists of a system performance

model that is trained on the performance logs collected by monitoring layer and provides near fu-

ture performance predictions to help resource allocation module to dynamically allocate resources

for micro-services across cloud and edges. We describe adaptation layer in details in Section 11.2.

11.1.2 Edge Cloud Microservice Execution Model

We end the architecture section by describing how micro-services are initially deployed and how

workflows are executed seamlessly across cloud and edges by leveraging the dynamic configura-

tion of workflow’s task dependencies.

Since data can be uploaded to the cloud either via a cloudlet or directly from advanced instru-

ments (which are able to connect directly to the cloud without cloudlet), all micro-services have

to be deployed on the cloud, so that they can be ready to support processing all types of work-

flows. For each cloudlet, depending on the types of data that is uploaded from instruments to

the cloudlet, micro-services of the corresponding data processing workflows have to be deployed

on the cloudlet. Therefore, the initial deployment of micro-services on cloud and cloudlets can be

decided in advance with knowledge of the types of uploaded data3. For example, if the system sup-

ports all types of workflows in Table 11.5, then micro-services of all tasks A, B, C, D are deployed

on the cloud. If only data corresponding to workflow Wf1 is uploaded through an edge named E1,

then initial deployment on E1 will include micro-services of the tasks in Wf1, namely A.E1, B.E1,

and C.E1 (i.e., the edge-specific suffix is used to differentiate with cloud-based deployments of

A, B, and C).
3This is a reasonable assumption since the type of uploaded data is specific to the type of instrument, which is

known information.

82

With the above initial deployment, the execution of a workflow across cloud and edge can be

conveniently handled by the cloud control endpoint via dynamic configuration of task dependen-

cies on TDS. For example, to execute a workflow Wf1 across edge E1 and cloud (e.g., processing

requests of task A and B on E1, and of task C on the cloud), the cloud control endpoint simply

creates a new edge-based workflow type on TDS, namely Wf1.E1 (Table 11.6), that directs re-

quests of task A and B to their E1-based microservice deployments, namely A.E1 and B.E1 (task

C is still handled by its cloud-based microservice deployment). After creating the new workflow

type Wf1.E1, cloud control endpoint will inform edge control endpoint at E1 to use Wf1.E1 as the

workflow type to process all requests for Wf1 of data being uploaded via E1 (instead of the initial

cloud-only version of workflow Wf1 as shown in Table 11.5).

11.2 BRACELET’S RESOURCE MANAGEMENT

BRACELET’ system performance is controlled by allocating resources to micro-services and by

placing task computation across edges and cloud. In particular, for each microservice, the more

consumers subscribe to a task’s request queue, the more requests can be processed in parallel and

the less time requests must wait in the queue. Therefore, m(k) influences the work-in-progress

w(k) and workflow’s processing times d(k). In addition, the flexible execution model of work-

flows across edge and cloud (presented in Section 11.1.2) enables BRACELET’s resource manage-

ment to make timely decisions on whether to place the computation of a workflow’s task on an

edge- or cloud-based microservice to balance the workload across the infrastructure.

In this thesis, we present a novel approach to tackle both resource allocation and computation

placement challenges of micro-services. In the following sections, we first present a microservice

performance model that provides performance predictions of individual micro-services. These

predictions not only can be used to estimate expected delays of different types of workflows (by

aggregating delays of individual micro-services), but also can be used to explore different compu-

tation placement options of micro-services and choose the one that minimizes expected processing

delays. After introducing the microservice performance model, we will show how to apply the

model to solve the resource allocation and computation placement challenges.

11.2.1 Microservice Performance Model

Modeling performance of a system is basically to derive a function that takes system’s resource

configurations as inputs and produces prediction of system performance in the near future. In this

83

thesis, we use artificial neural network, a black-box and data-driven approach with proven approx-

imation power and successful applications in modeling performance of non-linear and complex

systems, to model the performance of micro-services.

Specifically, the neural network model takes input x as the combination of microservice per-

formance output (i.e., work-in-progress w(k)) and microservice’s resource configurations (i.e.,

number of consumers per microservice m(k)) in the current time window (Tk, Tk+1), and predicts

microservice performance in the next time window (Tk+1, Tk+2): w(k + 1)4. The neural network

model consists of n layers, with the number of neurals in each layer is denoted as Si (1 ≤ i ≤ n).

Correspondingly, Wi,bi (1 ≤ i ≤ n) represent the weight matrix and bias of layer i-th. Each layer

i-th also includes a non-linear (except the last layer that uses the linear identity function) activation

function f i to introduce the non-linearity into the network model. The neural network model can

be described as a function f of w(k) and m(k) via a series of matrix calculations as follows:

Z1 = f 1(W1(w(k) ‖m(k))T + b1) (11.1)

Z2 = f 2(W2Z1) + b2)

...

Zn = fn(WnZn−1) + bn)

w(k + 1) = f(w(k),m(k)) = Zn

To train the microservice performance model, we define a loss function using standard root

mean square error to capture the differences between values of work-in-progress predicted by the

model (i.e., wej(k + 1)) and the values actually observed (i.e., ŵej(k + 1)) over all micro-services

on cloud and edges:

L(k + 1) =

√
1

N
∑
e,j

(wej(k + 1)− ŵej(k + 1))2 (11.2)

where N is the total number of microservices on cloud and edges. The model is trained using

gradient descent optimizer and backpropagation is used as the gradient computing technique.

4Refer to Chapter 5 for a complete introduction on notations of microservice resource and performance.

84

11.2.2 Microservice Work-in-progress Optimization

We formulate the microservice resource allocation problem as an work-in-progress optimiza-

tion problem (Problem (11.3)) whose objective is to minimize the work-in-progress across micro-

services on cloud and edges. Since work-in-progress is proportional to the average delay of each

microservice as well as processing delay of workflows, such an objective also corresponds to min-

imizing the average delay across all workflow types. Specifically, at the end of k-th time window,

we would like to solve an optimization problem to find the optimal number of consumers for micro-

services in the next time window (i.e., m(k + 1)) that minimizes the aggregated work-in-progress

across all micro-services. The problem is subjected to resource constraints Ce (0 ≤ e ≤ E) that

represents the maximum number of task consumers can be allocated on cloud and on each edge.

argmin
m(k+1)

E∑
e=0

J∑
j=1

wej(k + 1)

subject to
J∑
j=1

me
j(k + 1) ≤ Ce,∀0 ≤ e ≤ E

(11.3)

For simplicity, if we assume that the objective function of (11.3) is a linear function of m(k+1),

the optimization (11.3) is an integer linear programming problem, which is NP-hard. In fact, as we

often see in a complex system that consists of a number of micro-services with complex depen-

dency relationships to support various types of workflows, the formulation of performance metrics

(i.e., w(k + 1)) by resource configuration (i.e., m(k + 1)) is often a non-linear and complex func-

tion. As a result, problem (11.3) could not be solved efficiently by well-known linear programming

techniques.

In this thesis, we leverage the learned microservice performance model that captures the rela-

tionship between w(k+1) and m(k) (i.e., the performance model provides a function w(k+1) =

f(w(k),m(k))) and present a greedy strategy (Algorithm 11.1) to efficiently solve the optimiza-

tion problem (11.3). Specifically, given the current microservice allocation at time k (i.e., m(k)),

for each available task consumer that can be allocated (i.e., the while loop from Line 5-10), the

algorithm greedily finds the microservice with the most benefit if it is allocated one additional

consumer (Line 6). The benefit is defined to be the decrease in the work-in-progress of a mi-

croservice, i.e., wej(k)−wej(k + 1), in which wej(k + 1) is the predicted work-in-progress of task j

microservice on edge e if we allocate one additional consumer to it (i.e., me
j(k+ 1) = me

j(k) + 1).

85

Algorithm 11.1 Microservice Work-in-progress Optimization

1: procedure µSERVICEWIPOPT(m(k))
2: Initialize m(k + 1) = m(k)
3: Cj = {1, .., J}
4: Ce = {0, .., E}
5: while

∑J
j=1m

e
j(k + 1) ≤ Ce(∀0 ≤ e ≤ E) do

6: Find (j∗, e∗) = argmaxj∈Cj ,e∈Ce [w
e
j(k)− wej(k + 1)]

7: me∗
j∗(k + 1) = me∗

j∗(k + 1) + 1

8: if
∑J

j=1m
e∗
j (k + 1) = Ce∗ then

9: Ce = Ce \ e∗

10: Return m(k + 1)

Aggregate
workflows

Sort tasks in
topological order

Workflows

Validate
workflows

Optimize
edge-cloud
placement

A B D

C D

A DC A
B

D
C A B DC, , ,

Micro-service
performance

model

A B DC, ,
Edge-based

micro-services
Cloud-based

micro-services

Performance
predictions

Figure 11.7: microservice edge-cloud placement procedure.

11.2.3 Microservice Computation Placement

As described in Section 11.1.2, the microservice execution model enables flexible placement of

computation to edge- and cloud-based micro-services. In this section, we present our microservice

placement strategy based on the system performance model shown in Section 11.2-A.

Our strategy is motivated from the following invariant of placing computation across cloud and

edge: For task micro-services in a workflow (e.g., Wf1 in Figure 11.5), once a microservice (e.g.,

A) is placed on the cloud, all of its subsequent micro-services in the workflow (i.e., B and C) are

also placed on the cloud (i.e., to avoid unnecessary and costly round-trip communications between

cloud and edge).

The microservice placement procedure for each branch of an edge and cloud is presented in

Figure 11.7. First, all the workflow types that correspond to data uploaded from the edge are

validated to ensure that they are in DAG format. Then, all workflow types are aggregated into a

single DAG graph. After that, all the tasks in the aggregated graph are sorted in topological order.

86

The next step is to find an edge-cloud cut to partition the set of tasks into two sets: one set whose

computation is placed on the edge-based micro-services and another set whose computation is

placed on the cloud-based micro-services. The placement procedure iterates over the tasks in the

topological order obtained from previous step. At the j-th iteration (1 ≤ j ≤ J), the j-th task

in the topological order is considered as the edge-cloud cut. It means that the computation of all

tasks up to (j − 1)-th in topological order is placed on the edge-based micro-services, and the

computation of those from (j)-th is placed on the cloud-based micro-services.

To evaluate the placement of a task as the edge-cloud cut, we consider whether such place-

ment helps to: (i) minimize the average delays of micro-services that involve in the placement

(i.e., min delay criteria), and (ii) minimize the communication cost between edge and cloud (i.e.,

min communicaiton criteria). We leverage the microservice performance model learned from Sec-

tion 11.2-A to quantify these two criteria. In particular, at the current time k, the performance

model is used to make predictions about work-in-progress of each microservice in the next time

window w(k + 1). By the Little Law, w(k + 1) can be used to estimate the processing delay by

summing up the work-in-progress requests of all task micro-services (i.e., quantifying min delay).

In addition, the difference between work-in-progress in time k (i.e., w(k)) and in time k + 1 (i.e.,

w(k + 1)) can also be used to measure the number of requests transitioned between edge-based

and cloud-based micro-services, which is proportional to the communication between edge and

cloud (i.e., quantifying min communication). As we iterate through the tasks in the topological

order, we report the task whose placement as the edge-cloud cut helps minimize average delays

and communication cost and use it as the edge-cloud cut in placement decision.

11.2.4 BRACELET’s Joint Resource Allocation Procedure

While both microservice placement and WIP optimization procedures rely on the performance

model and both can be used to control system performance, placement procedure is more efficient

than WIP optimization. In particular, the first three steps of the placement procedure can be done

offline and the online step (i.e., optimize edge-cloud placement) only needs to iterate over all types

of tasks in an edge-cloud branch. On the other hand, WIP optimization needs to iterate over all

task micro-services (edge- and cloud-based ones) for each available consumer.

Thus, we combine the two procedures into a joint resource allocation procedure (Figure 11.8).

Once started, the procedure keeps running as long as the system operates and periodically checks

system performance metrics (via monitoring layer) to see if certain performance guarantee is vi-

olated. If there is violation, the procedure will first try to invoke the more efficient edge-cloud

87

Micro-service
WIP optimization

Optimize
edge-cloud
placement

Start
Check

performance
metrics

Performance
guarantee
violated?

Perform
computation
placement?

No

Yes Yes

No

Micro-service
performance

model

Performance
predictions

Figure 11.8: BRACELET’s joint resource allocation procedure.

Cloud-based
Infrastructure

Instrument

Instrument

Instrument

Campus
network

Cloudlet

Performance components

Firewall

Network
Security
Monitor

Logger

Network
Log DB

Network
Log Viz.

Security components

Figure 11.9: BRACELET’s security component design.

placement procedure to mitigate the violation. The procedure will keep trying with edge-cloud

placement optimization for a predefined number of times before invoking the more expensive

work-in-progress optimization, in case the performance violation could not be mitigated.

11.3 BRACELET’S SECURITY DESIGN

BRACELET’s security components are designed to help protect vulnerable scientific instruments

once they are connected to the edge-cloud cyber-infrastructure. They consist of a software firewall

that is configured with whitelisting rules to enable only data traffic from instruments to the cloud

and certain control traffic from the cloud to the cloudlet. Furthermore, each cloudlet also includes

a network security monitor component to listen to and capture meta-data of all network traffic in

and out of the cloudlet. The security monitor component is also capable of applying customizable

scripts to filter and analyze network traffic to detect and alert of potential attacks. All network

monitoring logs are collected, parsed, and transformed by a logger component, and stored into a

88

network logs database. Real-time network traffics and statistics can be queried and visualized to

BRACELET’s admin by the network log visualization component.

In addition to data driven monitoring and detection at cloudlet, all vulnerable scientific instru-

ments are connected to a managed switch so that instrument’s MAC layer address is checked to

ensure that the instrument can only talk to cloudlet and not to other peer instruments. At applica-

tion level, users are required to login on each instrument to upload data, and the login sessions are

additionally verified with instrument reservation database as part of the two-factor authentication

process.

11.4 EVALUATION

11.4.1 Evaluation Settings

We implement BRACELET by extending the implementation of the existing cloud-based mi-

croservice infrastructure [45, 53] to the edges. The whole edge-cloud infrastructure cluster is

managed by a Kubernetes container orchestration engine and each cloudlet is a remote node in the

extended Kubernetes cluster5. Each cloudlet has its own locality tagging that is used to schedule

micro-services on to the edge. A microservice consists of a RabbitMQ request queue and a set

of Docker-based task consumers that are deployed as a ReplicationController set on Kubernetes.

TDS service is based on Apache Zookeeper coordination system. We configure Zookeeper and

RabbitMQ using ensemble and cluster mode respectively so that we have a Zookeeper and Rab-

bitMQ endpoint on each edge and cloud side (i.e., to improve availability and enable seamless

communication between micro-services). Monitoring layer’s implementation is similar to the one

in [53], and we use Tensorflow to build microservice performance model used in the adaptation

layer. We use Bro as the network security monitor at cloudlet and use ELK stack for logging,

storing, and visualizing the collected network security logs.

In terms of the workload, we use the MDP workflow ensemble [45, 53] that supports processing

experimental data generated by digital microscopes. MDP consists of three types of workflows

(numbered 1, 2, and 3) and four types of tasks (named A, B, C, and D).

In order to obtain training data to train the performance model, we let the system runs through a

bootstrapping process in which we randomly vary the arrival rates of incoming requests of different

workflow types and randomly vary the allocation of consumers across microservices (i.e., m(k))

5The BRACELET system is deployed on a cloud-based cluster of two nodes, each node is equipped with an Intel
Xeon quad core processor, 1.2Ghz per core, and 16GB of RAM, and two cloudlets, each cloudlet is equipped with
Intel Core i7 CPU 3.4Ghz and 8GB of RAM.

89

0

100

200

300

400

500

600

700

800

0 10 20 30 40 50 60 70 80 90

Tr
ai

ni
ng

 lo
ss

Training epoch
Figure 11.10: Training error of microservice performance model.

as well as the computation placement of tasks in a workflow across cloud and edges. We record

the actual performance output ŵ(k+ 1) = {ŵej(k+ 1)} to use as the ground-truth data to train the

model.

To evaluate BRACELET’s microservice placement and work-in-progress optimization strategies,

we emulate up to 5x spikes of workflow requests to BRACELET (both cloud and edge sides) and

measure how effective our approaches is, compared to related approaches. BRACELET’s resource

allocation procedure is invoked if average delay d̄(k) exceeds performance guarantee of 20 sec-

onds.

11.4.2 Evaluation of Microservice Performance Model

We design the neural network with two hidden layers and an output layer (i.e., total number

of layers n = 3), with the number of hidden neurals S1 and S2 both equal 128, and f 1 and f 2

are ReLU function. For training, we set learning rate as 0.001, batch size as 100, and use 100

training epochs. Figure 11.10 shows the training loss L(k+ 1) over training epochs. It verifies the

effectiveness of using neural network to capture performance of micro-services.

Figure 11.11 evaluates the generalization of trained performance model when testing with un-

seen data. It shows that the model is able to predict quite accurately the near future performance

(measured by work-in-progress) of micro-services on both cloud and edge. Especially, it can pre-

dict the spikes in work-in-progress very effectively, which is vital in making resource allocation

decisions.

90

0

20

40

60

80

100

120

140

160

180

W
or
k-
in
-P
ro
gr
es
s

Time

Predicted
Actual

(a) Cloud-based microservice D

0

20

40

60

80

100

120

140

160

180

W
or
k-
in
-P
ro
gr
es
s

Time

Predicted
Actual

(b) Edge-based microservice C on cloudlet E1

Figure 11.11: Effectiveness of microservice performance prediction. Each time step on x-axis is 15 seconds
apart, which corresponds to the length of time interval (Tk, Tk+1).

11.4.3 Evaluation of Microservice Computation Placement

We fix the number of consumers of micro-services m(k) and evaluate how BRACELET’s mi-

croservice computation placement strategy can handle sudden spike in the incoming requests. We

compare our placement strategy with other related approaches:

• Bandwidth-optimized [47]: Initially, all requests are handled by cloud-based micro-services.

When performance guarantee is violated, the processing of requests that arrive from an edge

is offloaded to the edge-based micro-services.

• Delay-optimized: This strategy is often employed in mobile cloud computing scenario. Ini-

tially, requests arriving from an edge are handled by edge-based micro-services. When

performance violation occurs, the processing of requests is offloaded to the cloud-based

micro-services.

91

0

50

100

150

200

250

Av
er

ag
e

de
la

y

Time

Performance model-based
Bandwidth-optimized
Delay-optimized
No provisioning

Figure 11.12: Effectiveness of BRACELET’s microservice placement strategy compared with others. Each
time step on x-axis is 15 seconds apart, which corresponds to the length of time interval (Tk, Tk+1).

0

50

100

150

200

250

Av
er

ag
e

de
la

y

Time

Joint Resource Management
Placement Only

Figure 11.13: Effectiveness of BRACELET’s joint resource allocation procedure. Each time step on x-axis
is 15 seconds apart.

The result in Figure 11.12 shows that our computation placement strategy outperforms other

approaches by dynamically evaluating different placement options using the accurate performance

model (i.e., the dynamism of placement decisions is captured by the ups and downs in average de-

lay when using our strategy). Delay-optimized scheme performs poorly since it creates congestion

on cloud-based micro-services when performance violation occurs.

11.4.4 Evaluation of Joint Resource Allocation Procedure

It is intuitive that, given additional consumers to allocate, the microservice WIP optimization

procedure can help improve the result when using only microservice computation placement. We

show that, even without any additional consumer to allocate (i.e., the extreme case), the joint pro-

cedure introduced in Section 11.2 can still achieve better result by smartly re-arranging consumers

92

among micro-services to the ones that are most in need, compared to when using only microservice

computation placement.

In particular, given an initial allocation of consumers over micro-services, when performance

guarantee is violated, the joint procedure will first try with changing computation placement. After

a number of attempts (i.e., 3 retries in our evaluation), without any additional consumers, the joint

procedure will try to re-arrange the current set of consumers and re-allocate them to micro-services

that are most beneficial from such re-allocation using Algorithm 11.1. Result in Figure 11.13

shows that such the joint approach greatly helps improve the result of resource allocation even in

the extreme case when there is no additional resource.

93

CHAPTER 12: CONCLUSIONS

In this thesis, we present DOSSIER - our holistic approach in designing a distributed operating

system and infrastructure for scientific data management. As part of DOSSIER’s novel architec-

ture, we take a radical approach to design a microservice execution environment for scientific

workflows that enables more flexible and dynamic composition of workflows, and thus, is efficient

in dealing with heterogeneous workflows. At the core of DOSSIER is an adaptive control microser-

vice infrastructure that is designed to tackle the diversity challenges of data cyberinfrastructure for

distributed scientific data management, including data, task, user, workload, and device diversity.

We present in this thesis a number of realizations of the adaptive control framework and discuss

pros and cons, as well as, recommend situations where each solution can be applied.

To support developing new scientific data management applications, DOSSIER offers a vari-

ety of core functionalities via service model, such as data management service, data curation,

workflow composition, etc. Using these services, users can easily develop new applications with

domain-specific interfaces for data inputting, and new domain-specific data processing tasks to

be deployed and run on DOSSIER’s microservice infrastructure. Some results and lessons from

the development of DOSSIER have been applied into production environment at the University of

Illinois at Urbana-Champaign to serve users in material sciences. In the future, we look forward

to extending DOSSIER’s application to other related domains that share similar characteristics

to material sciences, and investigating other extensions and improvements of DOSSIER, such as

cross-institutional federated data cyberinfrastructure, combining scientific experiment data with

sensory data for provenance and reproducibility of experiments, further enhancing search and data

correlation capability of DOSSIER to accelerate scientific discovery, to name a few.

By designing, developing, and testing DOSSIER in the real environments, we demonstrate that an

edge-cloud microservice architecture with learning-based adaptive control resource management

is needed for timely distributed scientific data management.

94

APPENDIX A: DETAILS ON PARAMETRIC DECOMPOSITION PROCEDURE

In this section, we describe in details how to use parametric decomposition to derive aggregated

job arrive rate and scv at each topic, when the elastic pub/sub system is modeled as a generalized

Jackson OQN (i.e., each topic is modeled a GI/G/m queue). In this thesis, we employ a parametric

decomposition procedure similar to the one described in [55].

The realistic assumption about the general distribution of job arrival and processing rates makes

aggregating multiple types of job more difficult. In the special case, where the job arrival rates

and processing rates are exponentially distributed and each topic is modeled as a M/M/m queue,

we can aggregate multiple job types by just simply summing up the arrival rates of all job types at

a topic (since the combination of exponential distribution is also exponential). In addition, since

the rate of a job type departing a topic is the same as the arrival rate (Burke’s theorem [66]), the

aggregation at each topic is not affected by the flows of different job types across topics. On the

other hand, in generalized case, as the rates are no longer exponential, the aggregation of multiple

job types depend on the flows of jobs across topics.

To analyze the flows of different types of job requests across topics, parametric decomposition

employs a divide-and-conquer approach (hence decomposition). Particularly, we treat each topic

in isolation and divide the workflows, each corresponds to a type of job, into three basic building

blocks: merge, split, and follow through.

Merge

The merge building block represents the merging of arrival requests of multiple types of job at

a topic. The aggregated job request arrival rates at topic j is approximated as follow:

λ̃j =
N∑
i=1

λi1ij (A.1)

where λi is the expected arrival rate of job type i and 1ij is an indicator function: 1ij = 1 if job

type i goes through topic j and 1ij = 0 otherwise.

And the aggregated scv of arrival rates over all types of job types is calculated as follow:

c̃a2
j =

N∑
i=1

λi

λ̃j
ca2

ij1ij (A.2)

where ca2
ij is the scv of the arrival rate of job type i at topic j.

95

Follow through

As an aggregated stream of multiple types of job requests enters, is processed, and departs topic

j, the scv of aggregated departure stream is approximated as follow [67]:

c̃d
2

j = 1 + (1− ρ2
j)(c̃a

2
j − 1) +

ρ2
j

(mj)
1
2

(cs2
j − 1) (A.3)

where ρj is the traffic intensity at topic j: ρj =
λ̃j

µjmj
. Please also note that the departure stream

is equivalent to the arrival stream to the follow-up topic.

Split

After being processed by a topic, aggregated stream of multiple types of job might be splitted

into different paths as it departs the topic. The scv of individual departure stream of product type

i from topic j, cd2
ij , can be approximated as follow [68]:

cd2
ij =

λi

λ̃j
c̃d

2

j + (1− λi

λ̃j
)× (

λi

λ̃j
+ (1− λi

λ̃j
)ca2

ij) (A.4)

96

REFERENCES

[1] A. R. Ferguson, J. L. Nielson, M. H. Cragin, A. E. Bandrowski, and M. E. Martone, “Big data
from small data: data-sharing in the’long tail’of neuroscience,” Nature neuroscience, vol. 17,
no. 11, p. 1442, 2014.

[2] N. Science and T. C. (OSTP), “Materials genome initiative for global competitiveness,” 2011.

[3] C. Strasser, J. Kunze, S. Abrams, and P. Cruse, “Dataup: A tool to help researchers describe
and share tabular data,” F1000Research, vol. 3, 2014.

[4] A. S. Szalay, J. Gray, A. R. Thakar, P. Z. Kunszt, T. Malik, J. Raddick, C. Stoughton, and
J. vandenBerg, “The sdss skyserver: public access to the sloan digital sky server data,” in
Proceedings of the 2002 ACM SIGMOD international conference on Management of data.
ACM, 2002, pp. 570–581.

[5] B. Plale, R. H. McDonald, K. Chandrasekar, I. Kouper, S. Konkiel, M. L. Hedstrom, J. My-
ers, and P. Kumar, “Sead virtual archive: Building a federation of institutional repositories
for long-term data preservation in sustainability science,” International Journal of Digital
Curation, vol. 8, no. 2, pp. 172–180, 2013.

[6] M. McLennan and R. Kennell, “Hubzero: a platform for dissemination and collaboration in
computational science and engineering,” Computing in Science & Engineering, vol. 12, no. 2,
2010.

[7] G. Klimeck, M. McLennan, S. P. Brophy, G. B. Adams III, and M. S. Lundstrom, “nanohub.
org: Advancing education and research in nanotechnology,” Computing in Science & Engi-
neering, vol. 10, no. 5, pp. 17–23, 2008.

[8] S. Padhy, G. Jansen, J. Alameda, E. Black, L. Diesendruck, M. Dietze, P. Kumar, R. Kooper,
J. Lee, R. Liu et al., “Brown dog: Leveraging everything towards autocuration,” in Big Data
(Big Data), 2015 IEEE International Conference on. IEEE, 2015, pp. 493–500.

[9] M. S. Mayernik, G. S. Choudhury, T. DiLauro, E. Metsger, B. Pralle, M. Rippin, and
R. Duerr, “The data conservancy instance: Infrastructure and organizational services for re-
search data curation,” D-Lib Magazine, vol. 18, no. 9/10, 2012.

[10] J. Liu, E. Pacitti, P. Valduriez, and M. Mattoso, “A survey of data-intensive scientific work-
flow management,” Journal of Grid Computing, vol. 13, no. 4, pp. 457–493, 2015.

[11] E. Deelman, D. Gannon, M. Shields, and I. Taylor, “Workflows and e-science: An overview
of workflow system features and capabilities,” Future Generation Computer Systems, vol. 25,
no. 5, pp. 528–540, 2009.

[12] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K. Vahi, G. B.
Berriman, J. Good et al., “Pegasus: A framework for mapping complex scientific workflows
onto distributed systems,” Scientific Programming, vol. 13, no. 3, pp. 219–237, 2005.

97

[13] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Greenwood, T. Carver, K. Glover,
M. R. Pocock, A. Wipat et al., “Taverna: a tool for the composition and enactment of bioin-
formatics workflows,” Bioinformatics, vol. 20, no. 17, pp. 3045–3054, 2004.

[14] I. Taylor, M. Shields, I. Wang, and A. Harrison, “Visual grid workflow in triana,” Journal of
Grid Computing, vol. 3, no. 3-4, pp. 153–169, 2005.

[15] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludascher, and S. Mock, “Kepler: an exten-
sible system for design and execution of scientific workflows,” in Scientific and Statistical
Database Management, 2004. Proceedings. 16th International Conference on. IEEE, 2004,
pp. 423–424.

[16] W. Gerlach, W. Tang, K. Keegan, T. Harrison, A. Wilke, J. Bischof, M. D’Souza, S. De-
void, D. Murphy-Olson, N. Desai et al., “Skyport: container-based execution environment
management for multi-cloud scientific workflows,” in Proceedings of the 5th International
Workshop on Data-Intensive Computing in the Clouds. IEEE Press, 2014, pp. 25–32.

[17] W. Tang, J. Wilkening, N. Desai, W. Gerlach, A. Wilke, and F. Meyer, “A scalable data
analysis platform for metagenomics,” in Big Data, 2013 IEEE International Conference on.
IEEE, 2013, pp. 21–26.

[18] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans, T. Graves,
J. Lowe, H. Shah, S. Seth et al., “Apache hadoop yarn: Yet another resource negotiator,” in
Proceedings of the 4th annual Symposium on Cloud Computing. ACM, 2013, p. 5.

[19] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes, “Borg, omega,
and kubernetes,” ACM Queue, vol. 14, pp. 70–93, 2016. [Online]. Available:
http://queue.acm.org/detail.cfm?id=2898444

[20] D. Gunter, E. Deelman, T. Samak, C. H. Brooks, M. Goode, G. Juve, G. Mehta, P. Moraes,
F. Silva, M. Swany et al., “Online workflow management and performance analysis with
stampede,” in Proceedings of the 7th International Conference on Network and Services
Management. International Federation for Information Processing, 2011, pp. 152–161.

[21] F. Horta, J. Dias, K. A. Ocana, D. de Oliveira, E. Ogasawara, and M. Mattoso, “Using prove-
nance to visualize data from large-scale experiments,” in High Performance Computing, Net-
working, Storage and Analysis (SCC), 2012 SC Companion:. IEEE, 2012, pp. 1418–1419.

[22] F. Costa, V. Silva, D. De Oliveira, K. Ocaña, E. Ogasawara, J. Dias, and M. Mattoso, “Cap-
turing and querying workflow runtime provenance with prov: a practical approach,” in Pro-
ceedings of the Joint EDBT/ICDT 2013 Workshops. ACM, 2013, pp. 282–289.

[23] C. Hoffa, G. Mehta, T. Freeman, E. Deelman, K. Keahey, B. Berriman, and J. Good, “On
the use of cloud computing for scientific workflows,” in eScience, 2008. eScience’08. IEEE
Fourth International Conference on. IEEE, 2008, pp. 640–645.

[24] E. Deelman, “Grids and clouds: Making workflow applications work in heterogeneous dis-
tributed environments,” International Journal of High Performance Computing Applications,
vol. 24, no. 3, pp. 284–298, 2010.

98

[25] J. Wang, P. Korambath, I. Altintas, J. Davis, and D. Crawl, “Workflow as a service in the
cloud: architecture and scheduling algorithms,” Procedia Computer Science, vol. 29, pp.
546–556, 2014.

[26] Y. Zhao, Y. Li, W. Tian, and R. Xue, “Scientific-workflow-management-as-a-service in the
cloud,” in Cloud and Green Computing (CGC), 2012 Second International Conference on.
IEEE, 2012, pp. 97–104.

[27] C. Zheng and D. Thain, “Integrating containers into workflows: A case study using makeflow,
work queue, and docker,” in Proceedings of the 8th International Workshop on Virtualization
Technologies in Distributed Computing. ACM, 2015, pp. 31–38.

[28] K. Liu, K. Aida, S. Yokoyama, and Y. Masatani, “Flexible container-based computing plat-
form on cloud for scientific workflows,” in Cloud Computing Research and Innovations (IC-
CCRI), 2016 International Conference on. IEEE, 2016, pp. 56–63.

[29] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. H. Katz, S. Shenker,
and I. Stoica, “Mesos: A platform for fine-grained resource sharing in the data center.”

[30] J. Yu, R. Buyya, and C. K. Tham, “Cost-based scheduling of scientific workflow applications
on utility grids,” in e-Science and Grid Computing, 2005. First International Conference on.
Ieee, 2005, pp. 8–pp.

[31] S. Abrishami, M. Naghibzadeh, and D. H. Epema, “Deadline-constrained workflow schedul-
ing algorithms for infrastructure as a service clouds,” Future Generation Computer Systems,
vol. 29, no. 1, pp. 158–169, 2013.

[32] H. Zhao and R. Sakellariou, “Scheduling multiple dags onto heterogeneous systems,” in Par-
allel and Distributed Processing Symposium, 2006. IPDPS 2006. 20th International. IEEE,
2006, pp. 14–pp.

[33] R. Tolosana-Calasanz, J. Á. BañAres, C. Pham, and O. F. Rana, “Enforcing qos in scien-
tific workflow systems enacted over cloud infrastructures,” Journal of Computer and System
Sciences, vol. 78, no. 5, pp. 1300–1315, 2012.

[34] M. Malawski, G. Juve, E. Deelman, and J. Nabrzyski, “Algorithms for cost-and deadline-
constrained provisioning for scientific workflow ensembles in iaas clouds,” Future Genera-
tion Computer Systems, vol. 48, pp. 1–18, 2015.

[35] E. Ogasawara, J. Dias, F. Porto, P. Valduriez, and M. Mattoso, “An algebraic approach for
data-centric scientific workflows,” Proc. of VLDB Endowment, vol. 4, no. 12, pp. 1328–1339,
2011.

[36] W. Chen and E. Deelman, “Partitioning and scheduling workflows across multiple sites with
storage constraints,” Parallel Processing and Applied Mathematics, pp. 11–20, 2012.

[37] S.-M. Park and M. Humphrey, “Predictable high-performance computing using feedback
control and admission control,” IEEE Transactions on Parallel and Distributed Systems,
vol. 22, no. 3, pp. 396–411, 2011.

99

[38] T. F. Abdelzaher, J. A. Stankovic, C. Lu, R. Zhang, and Y. Lu, “Feedback performance control
in software services,” IEEE Control Systems, vol. 23, no. 3, pp. 74–90, 2003.

[39] C. Lu, Y. Lu, T. F. Abdelzaher, J. A. Stankovic, and S. H. Son, “Feedback control architecture
and design methodology for service delay guarantees in web servers,” IEEE Transactions on
Parallel and Distributed Systems, vol. 17, no. 9, pp. 1014–1027, 2006.

[40] B. Li and K. Nahrstedt, “A control-based middleware framework for quality-of-service adap-
tations,” IEEE journal on selected areas in communications, vol. 17, no. 9, pp. 1632–1650,
1999.

[41] C. Lu, J. A. Stankovic, S. H. Son, and G. Tao, “Feedback control real-time scheduling:
Framework, modeling, and algorithms,” Real-Time Systems, vol. 23, no. 1, pp. 85–126, 2002.

[42] V. Jacobson, “Congestion avoidance and control,” in ACM SIGCOMM computer communi-
cation review, vol. 18, no. 4. ACM, 1988, pp. 314–329.

[43] M. T. Hagan, H. B. Demuth, and O. D. Jesús, “An introduction to the use of neural networks
in control systems,” International Journal of Robust and Nonlinear Control, vol. 12, no. 11,
pp. 959–985, 2002.

[44] S. DI, “Neural generalized predictive control: A newton-raphson implementation,” 1997.

[45] P. Nguyen, S. Konstanty, T. Nicholson, T. Obrien, A. Schwartz-Duval, T. Spila, K. Nahrst-
edt, R. H. Campbell, I. Gupta, M. Chan, K. McHenry, and N. Paquin, “4ceed: Real-time
data acquisition and analysis framework for material-related cyber-physical environments,”
in Cluster, Cloud and Grid Computing (CCGrid), 2017 17th IEEE/ACM International Sym-
posium on. IEEE, 2017.

[46] P. Mach and Z. Becvar, “Mobile edge computing: A survey on architecture and computation
offloading,” IEEE Communications Surveys & Tutorials, vol. 19, no. 3, pp. 1628–1656, 2017.

[47] L. Tong, Y. Li, and W. Gao, “A hierarchical edge cloud architecture for mobile computing,”
in INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Commu-
nications, IEEE, 2016, pp. 1–9.

[48] H. Tan, Z. Han, X.-Y. Li, and F. C. Lau, “Online job dispatching and scheduling in edge-
clouds,” in INFOCOM 2017-IEEE Conference on Computer Communications, IEEE, 2017,
pp. 1–9.

[49] L. Wang, L. Jiao, D. Kliazovich, and P. Bouvry, “Reconciling task assignment and schedul-
ing in mobile edge clouds,” in Network Protocols (ICNP), 2016 IEEE 24th International
Conference on, 2016, pp. 1–6.

[50] H. Nguyen, Z. Shen, X. Gu, S. Subbiah, and J. Wilkes, “Agile: Elastic distributed resource
scaling for infrastructure-as-a-service.” in Autonomic Computing (ICAC), 2013 USENIX In-
ternational Conference on, vol. 13, 2013, pp. 69–82.

100

[51] A. Matsunaga and J. A. Fortes, “On the use of machine learning to predict the time and
resources consumed by applications,” in Proceedings of the 2010 10th IEEE/ACM Interna-
tional Conference on Cluster, Cloud and Grid Computing, 2010, pp. 495–504.

[52] R. C.-L. Chiang, J. Hwang, H. H. Huang, and T. Wood, “Matrix: Achieving predictable
virtual machine performance in the clouds.” in Autonomic Computing (ICAC), 2014 USENIX
International Conference on, 2014, pp. 45–56.

[53] P. Nguyen and K. Nahrstedt, “Monad: Self-adaptive micro-service infrastructure for hetero-
geneous scientific workflows,” in Autonomic Computing (ICAC), 2017 14th IEEE Interna-
tional Conference on. IEEE, 2017.

[54] G. R. Bitran and R. Morabito, “State-of-the-art survey: Open queueing networks: Optimiza-
tion and performance evaluation models for discrete manufacturing systems,” Production and
Operations Management, vol. 5, no. 2, pp. 163–193, 1996.

[55] M. Van Vliet and A. H. R. Kan, “Machine allocation algorithms for job shop manufacturing,”
Journal of Intelligent Manufacturing, vol. 2, no. 2, pp. 83–94, 1991.

[56] O. J. Boxma, A. R. Kan, and M. van Vliet, “Machine allocation problems in manufacturing
networks,” European Journal of Operational Research, vol. 45, no. 1, pp. 47–54, 1990.

[57] H. C. Tijms, Stochastic Modelling and Analysis: A Computational Approach. New York,
NY, USA: John Wiley & Sons, Inc., 1986.

[58] W. Whitt, “Approximations for the gi/g/m queue,” Production and Operations Management,
vol. 2, no. 2, pp. 114–161, 1993.

[59] M. Dyer and L. Proll, “On the validity of marginal analysis for allocating servers in m/m/c
queues,” Management Science, vol. 23, no. 9, pp. 1019–1022, 1977.

[60] G. F. Franklin et al., Feedback control of dynamic systems. Addison-Wesley Reading, MA,
1994, vol. 3.

[61] M. T. Hagan et al., “An introduction to the use of neural networks in control systems,” Inter-
national Journal of Robust and Nonlinear Control, vol. 12, no. 11, pp. 959–985, 2002.

[62] S. DI, “Neural generalized predictive control: A newton-raphson implementation,” 1997.

[63] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press Cam-
bridge, 1998, vol. 1, no. 1.

[64] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: A
simple way to prevent neural networks from overfitting,” The Journal of Machine Learning
Research, vol. 15, no. 1, pp. 1929–1958, 2014.

[65] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra,
“Continuous control with deep reinforcement learning,” arXiv preprint arXiv:1509.02971,
2015.

101

[66] P. J. Burke, “The output of a queuing system,” Operations research, vol. 4, no. 6, pp. 699–
704, 1956.

[67] W. Whitt, “The queueing network analyzer,” Bell Labs Technical Journal, vol. 62, no. 9, pp.
2779–2815, 1983.

[68] G. R. Bitran and D. Tirupati, “Multiproduct queueing networks with deterministic routing:
Decomposition approach and the notion of interference,” Management Science, vol. 34, no. 1,
pp. 75–100, 1988.

102

