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Abstract

The development of a new spacecraft trajectory design method most often occurs because a particular

capability does not exist. The invention is usually considered successful so long as it is capable of producing

solutions to the problem in question, and thus satisfies a particular design requirement, or is mathematically

elegant. When innovation favors the latter to the exclusion of the former, the interoperability of the new

method with existent techniques, and the utility of the method in the context of the overall mission design

process, from concept to flight operations, is not always realized.

The concepts introduced and developed throughout this work respond to specific preliminary mission

design needs, but their development is also focused on maintaining, or improving, trajectory design workflow

compatibility and efficiency. The techniques described address specific contributions to the multiple gravity-

assist trajectory optimization state-of-the-art, however, each one is also an important component of a modern

trajectory design paradigm and is valuable for its ability to be integrated with and streamline that process

as a whole.

The bounded-impulse approximation is a widely used method for early stage trajectory design for low

and high thrust vehicles. Many previous studies involving this method of design have focused on developing

new or improved trajectory transcriptions. This dissertation introduces analytic techniques for calculating

the Jacobian matrix for two existing bounded-impulse trajectory models. The calculations allow for the use

of a smooth spacecraft power model. One such model is introduced that handles multiple thruster on-off

events and a variety of logic programs. A smooth spline-based ephemeris system is also discussed that is

compatible with the analytic Jacobian formulae.

Mission design activities associated with the NASA New Frontiers 4 proposal call identified a particu-

lar shortcoming of the popular Sims-Flanagan bounded-impulse model, namely that its control nodes are

distributed equally in time, clustering them at apoapsis for eccentric transfers, which reduces the control

authority at periapsis. In response to this, a partially regularized bounded-impulse model is introduced that

distributes control nodes equally at both apses. The new transcription is capable of delivering the same

ii



mass to the target as a trajectory modeled using Sims-Flanagan, but requires far fewer control segments in

the trajectory discretization to do so.

A bounded-impulse trajectory is usually sufficient to generate a first order (or better) estimate of a

mission’s mass budget, however, these low-fidelity models can prove problematic to converge inside a flight-

fidelity design tool that models finite-burn arcs. Low-thrust trajectories in particular suffer from this issue

due to the extended period of time that the thruster operates. Analytic partial derivative computations

are introduced in this work that enable the replacement of bounded-impulse maneuvers and Keplerian

propagation with numerical integration arcs without reducing the runtime performance such that the model

becomes unusable for preliminary design tasks. These calculations are also compatible with a smooth electric

power model and accommodate final time free problems. The resulting trajectory is shown to be sufficiently

accurate such that the flight heritage tool MIRAGE can track it within acceptable error limits placed on

the spacecraft’s state vector.

Finally, improvements that this thesis makes to bounded-impulse trajectory models are leveraged to

solve a challenging planetary satellite tour design problem. The robustness improvements that the analytic

Jacobian formulae afford the trajectory transcription, are combined with a parallelized flyby tree pathfinding

algorithm to produce a design framework capable of autonomously optimizing a moon tour mission similar

to Galileo from launch through tour end using two-body dynamics.
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Chapter 1

Introduction

Spacecraft trajectory design is a broad concept that, in order to be carried out successfully, must draw upon

specialized skill sets from a variety of technical disciplines. The specific knowledge required to perform the

design tasks differs considerably depending on the particular category of mission that is being supported. As

spacecraft technology progresses, the menu of mission classifications continues to expand, and the potential

responsibilities of a trajectory design engineer are becoming more extensive in turn. The demands placed on

such an individual might include the quantification of the long-term station keeping requirements of an Earth-

observing weather satellite, designing a many-hundred revolution transfer for an electric-bus commercial

satellite to geostationary orbit, investigating efficient transfers in Earth-Moon space that exploit the natural

dynamics of a multi-body system, or even confronting the enormous combinatoric challenge of constructing

a planetary satellite tour. The focus of this work is restricted to the preliminary design techniques associated

with MGA trajectories. Many of the concepts that are discussed have been incorporated into the planetary

mission design process at the National Aeronautics and Space Administration (NASA) Goddard Space Flight

Center (GSFC). With this in mind, discussion is provided throughout that illustrates how a particular

characteristic of a design method lends itself well to a NASA flight project or proposal effort.

While the methods described in this work are most appropriately characterized as preliminary design

techniques, it is important to emphasize that a major aspect of their utility is that the trajectory analysis

products that they are capable of producing are compatible with higher fidelity design processes that are

carried out in the later stages of a mission’s lifecycle. In addition, a critical underlying theme shared by the

algorithms and supporting frameworks discussed in this dissertation, is that of automation; not only of each

individual design step, but of the process as a whole. The high cadence of a modern NASA Science Mission

Directorate flight project proposal effort, be it for a strategic or Principal Investigator (PI)-led mission,

requires that a trajectory design team be able to rapidly respond to a systems engineering environment that

is in constant flux. This is particularly true of a concept study that is based around an electric propulsion

system, as the spacecraft hardware and trajectory design processes are inseparable. In order to be successful,
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trajectory analysts must employ techniques that are not only thorough in their exploration of a complex

design space, but are highly flexible and ideally autonomous in order to maximize productivity. With this as

motivation, it is important to describe how a planetary mission proposal is supported from initial inception

through to flight operations and how the contents of this document contribute to that process.

1.1 The Path to Flight

The planning of an interplanetary science mission is a complex task and an important requirement placed

on the flight dynamics team is that it be able to deliver trajectory solutions during any phase of the process

beginning with initial concept studies through flight operations. A successful design workflow must not

only feature tools and techniques for producing trajectory solutions at any fidelity level, but ideally it will

also enforce process requirements that ensure the transition of solutions from low and medium fidelity to

flight-fidelity is reproducible and is achieved with minimal human in-the-loop activity.

Figure 1.1 depicts, at a high level, the mission design process in place at several organizations. The

names of some example software tools typically employed at each stage of the mission design process are

listed from left to right in the order that are usually leveraged. Of particular note is that the European Space

Agency (ESA) Advanced Concepts Team (ACT), does not support a complete mission design infrastructure,

and their inclusion in this discussion is for comparison reasons. The ACT is primarily a research-focused

organization that is not generally required to support flight projects, and for this reason the majority of their

contributions are in the form of leading theoretical work. Much of the research described in the following

chapters owes its origins to the past and present members of this world-class organization.

Figure 1.1: Comparison of mission design workflow paradigms from several institutions.
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1.1.1 Preliminary Design

Traditionally, a mission planning effort begins by using frameworks that favor simplified models and tech-

niques that can support a breadth-oriented exploration of the design space of interest. Mission design usually

requires a broad search phase if it features a complex combinatoric element (e.g. a large number of flyby

target possibilities). The goal of a preliminary design analysis is to assess, at a fundamental level, the basic

feasibility of the mission. Trajectory solutions resulting from this type of analysis will typically determine if

the mass budget is within the correct order of magnitude and which flyby sequences are possible for a given

launch window that can deliver the payload to its destination. Despite the fact that many preliminary design

methods make use of simplified physics and hardware models, they can be extremely resource intensive from

a computational point of view due to the size of most MGA design spaces.

An example broad search design implementation is the Satellite Tour Design Program (STOUR) devel-

oped at the Jet Propulsion Laboratory (JPL) for the Galileo mission to Jupiter [8]. The STOUR algorithm

approximates trajectories as two-body conic sections connected with patched-conic flybys. Modernizations

of the STOUR concept have been developed in recent years, most notably the STAR algorithm by Damon

Landau at JPL, Explore by Lantukh and Russell [9] as well as other contributors at the Johns Hopkins Uni-

versity Applied Physics Laboratory (JHUAPL), and most recently the NASA Exhaustive Lambert Lattice

Search (NELLS) by Jeremy Knittel at KinetX and the author. The entirety of Chapter 6 is dedicated to the

contributions that this dissertation makes to NELLS, and by extension preliminary MGA mission design in

general.

Often low-fidelity design methods are employed at the preliminary design stage as they are typically

more straightforward to implement and are less computationally expensive. Such methods even exist for

continuous-thrust trajectory design, where the spacecraft’s control and state histories are often approximated

using analytic techniques. Assumed shape techniques include those by Petropoulos, who modeled low-thrust

transfers using exponential sinusoids [10], Wall and Conway who employed an inverse polynomial to model

rendezvous trajectories [11], De Pascale and Vasile [12] and Vasile et al. [13] who extended the concept to

spatial transfers and Taheri and Abdelkhalik [14] who employed a Fourier series to model continuous thrust

trajectories. The primary advantage of these methods over more sophisticated ones is their fast execution

time, which makes them particularly suitable for low-fidelity design.

Many preliminary design techniques also make use of the bounded-impulse maneuver approximation

for both high-thrust chemical rocket motors as well as to generate approximations of continuous-thrust
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transfers. The latter is usually achieved using some variation of the method due to Sims and Flanagan [15].

The bounded-impulse trajectory approximation will be introduced in section 3.

1.1.2 Medium Fidelity Mission Design

Bounded-impulse methods are often sufficiently accurate to be used for high-level mission and systems

trades. The simplified dynamics that constitute most low-fidelity techniques, however, generate trajectories

of insufficient accuracy for some mission types or do not meet the minimum accuracy requirements for certain

mission design activities such as Discovery and New Frontiers proposal work. For proposals in particular,

at least one high-fidelity point solution is typically expected at the conclusion of Pre-Phase A. The flight-

fidelity tools that produce these solutions, however, require a great deal of human analyst time that may not

be available or affordable in the context of a proposal. In addition, the flight-fidelity tools are not always

readily available to all teams wishing to submit a proposal. An intermediate level of design fidelity that

bridges the gap between medium and high fidelity that is easy and inexpensive to use and is also readily

available to all potential users is therefore highly desirable. Such a “medium” fidelity technique should avoid

bounded-impulse approximations and rather integrate the equations of motion, and its dynamics model

should include reasonably high fidelity models of propulsion and power systems as well as significant orbit

perturbations such as third-body gravity and solar radiation pressure (SRP).

The main discriminator between this trajectory model and one of flight quality is that, even at this level

of accuracy, patched-conic flybys are typically retained as the incorporation of fully-integrated flybys is only

usually necessary for accurate navigational analysis. An example of this medium fidelity concept, referred

to as the finite-burn low-thrust (FBLT) transcription was introduced by Englander et al. [16] and is the

focus of Chapter 5. It is a unique aspect of the GSFC planetary mission design paradigm and is sufficient to

ensure that a proposed trajectory is actually feasible and is not an artifact of the low-fidelity models available

in most preliminary design tools. Another medium fidelity implementation capable of handling low-thrust

trajectories was proposed by Yam et al. [17]. This method uses Taylor integration to propagate the spacecraft

state subject to continuous-thrust, however, it is not capable of incorporating an accurate power model into

the optimization process, and is therefore unfortunately not suitable for most preliminary design tasks.

Another method that falls under this classification is the concept of multi-conic trajectory analysis [18–20].

The multi-conic method models perturbative accelerations acting on a spacecraft by considering the conic

orbital motion due to each perturbation source separately and then combines these individual influences.

In this sense, it is similar to Encke’s method of perturbations [21], the differentiating characteristic being
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that the multi-conic method does not rely on explicit numerical integration. The PLAnetary Trajectory

Optimization (PLATO) and Multiple Orbit Satellite Encounter Software (MOSES) [22] software packages,

which were developed at JPL and were used to aid in the design of the Galileo interplanetary cruise and

satellite tour trajectories respectively, are examples of tools that employ this method.

1.1.3 High Fidelity Mission Design

A high-fidelity spacecraft reference trajectory does not rely on any simplified model assumptions, such as

the bounded-impulse and patched-conics approximations. The differential equations of motion are forward-

integrated using a fine fixed step size, or error-controlled adaptive step size, and typically include the

gravitational influences of the planets and many of the most prominent small bodies in the solar system.

Solar pressure is accounted for and higher-order gravitational models are used for all close encounters with

massive bodies (i.e. flybys and rendezvous). If a thorough medium fidelity analysis was performed, large

improvements to the design using differential correctors or local optimizers should not occur at this stage, and

will only be employed to close the trajectory in the context of the high accuracy physics engine at the core of

a final stage design tool. These software solutions include the General Mission Analysis Toolkit (GMAT) [23],

FreeFlyer [24], Systems Tool Kit (STK) [25], and Copernicus [26].

A current major technical challenge faced in the field of preliminary trajectory design is the automatic

robust generation of sufficiently accurate medium fidelity initial guesses for a high-fidelity solver for missions

of extreme complexity. These difficult scenarios include many-revolution continuous-thrust transfers, low-

energy trajectories and of particular importance to this dissertation, tours of planetary satellite systems.

While high-fidelity trajectory generation is not discussed at length in the remainder of this document, it

should be noted that all of the contributions described herein serve to enable and improve the procedure for

arriving at high-fidelity and flight-fidelity solutions.

1.1.4 Flight Fidelity

The final step in the mission design process is the generation of the reference trajectory for the spacecraft

to track and the navigation solutions and resulting control commands that it requires to do so. There

exist very few software implementations capable of generating navigation solutions for a spacecraft in flight.

The Double Precision Trajectory and Orbit Determination Program (DPTRAJ/ODP) is a notable example

that was used extensively to support the Voyager program at JPL. The licensed version of this software
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(Multiple Interferometric Ranging Analysis using GPS Ensemble (MIRAGE)) has been used to support

NEAR, Genesis, Stardust, Deep Space 1 and many other planetary missions at JPL, and more recently at

KinetX, MESSENGER, New Horizons and OSIRIS-REx. Mystic, developed by Greg Whiffen and others

at JPL [27] is a six degree-of-freedom optimization program that was used to design the Dawn trajectory,

and is currently used to fly the spacecraft as well. Finally, JPL recently made their operational navigation

software Mission analysis, Operations, and Navigation Toolkit Environment (MONTE) available to license.

The MONTE software has been used for all operational navigation tasks at JPL since 2012.

Flight-validated trajectory software packages feature all of the modeling fidelity of a high-fidelity tool, but

include additional capabilities that allow them to be integrated into a spacecraft’s operational ground system.

For example, they must include the ability to process radiometric data from the Deep Space Network (DSN),

which is used to produce an orbit determination update and then appropriately command the spacecraft

such that it tracks the reference path. These tasks require a close interaction between the mission design and

flight navigation teams, a concept that is discussed further in Chapter 5. In particular, it is essential that

the flight heritage tool be able to produce control commands capable of tracking the reference trajectory

provided by the mission designers.

1.1.5 Optimization

The complexity of many modern space mission designs often requires that optimization methods be lever-

aged during the preliminary design process, and even for the generation of flight solutions. A variety of

optimization techniques have been applied to solve trajectory optimization problems, however most can be

categorized as indirect, direct or hybrid methods. Indirect methods [28–34] use necessary conditions derived

using the Calculus of Variations (COV) [35,36] and solve the resulting Hamiltonian boundary value problem

that results. Direct methods [37–42] cast the trajectory optimization problem as a parameter optimiza-

tion problem and directly extremalize a cost function, and hybrid approaches [27, 43–45] rely on Bellman’s

Principle of Optimality of a dynamic program.

The Evolutionary Mission Trajectory Generator (EMTG) introduced by Englander and Conway [46–48]

is a direct method hybrid optimal control (HOC) automaton under development at GSFC that is capable

of optimizing both high and low-thrust trajectories at several levels of fidelity. The Mission Analysis Low-

Thrust Optimization (MALTO) software package created by Sims et al. at JPL [49], Gravity Assisted

Low-thrust Local Optimization Program (GALLOP) [50, 51] produced at Purdue University and Parallel

Global Multiobjective Optimizer (PaGMO) [52] developed by the ESA ACT are other tools capable of
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producing low-fidelity designs that rely on direct optimization methods. Other design tools that employ

optimization techniques include Variational calculus Trajectory Optimization Program (VARITOP) and the

more precise Solar Electric Propulsion Trajectory Optimization Program (SEPTOP), both of which employ

COV based techniques and are classified as indirect solvers. For a more comprehensive review of trajectory

optimization techniques, the reader is referred to the Journal of Guidance, Control, and Dynamics survey

paper by John Betts [53] and the book edited by Conway [54].

The incorporation of accurate hardware modeling into the trajectory design process is required for any

credible mission design framework (primarily for solar electric spacecraft) and is a topic of current research

[55]. Embedding realistic spacecraft power hardware models into most optimization algorithms can be

challenging and is the topic of section 2.4. Despite these challenges, accurate power hardware modeling is

a requirement for Discovery and New Frontiers proposals and for this reason, when possible, a trajectory

design effort should account for such models at the earliest possible stage. The contributions to preliminary

trajectory design and optimization methods described in chapters 3, 4, and 5 account for the requirement

that accurate power models be incorporated at all stages of the mission design process.

1.2 Multiple Gravity Assist Trajectories

A gravity assist (or flyby) is the intentional execution of a close-proximity pass by a massive body for

the purpose of altering a spacecraft’s trajectory. Bending of the flight path is achieved via a momentum

exchange between the spacecraft and the flyby target body. This maneuver provides a means of altering a

spacecraft’s velocity vector without the use of any on-board propellant. Who precisely first developed the

concept of the gravity assist and realized that it may be particularly enabling when applied to interplanetary

trajectories is the subject of a typical debate that embroils most technical fields from time to time. Suffice

it to say that several individuals have contributed to the subject of gravity assists starting with Russian

scientists Yuri Kondratyuk and Friedrich Zander in the early 20th century. The application of the idea

to modern trajectory design in a technical sense is probably most appropriately attributed to the work of

JPL mathematician Michael Minovitch [56] in 1961-1963 although others had suggested its use prior to that

including the science fiction writers Ray Cummings [57] and Arthur C. Clarke [58] 1.

The gravity assist maneuver was first performed by the Soviet probe Luna 3 in 1959 in order to photograph

the far side of the moon. The use of a gravity assist trajectory for the express purpose of reaching another

1Clarke interestingly also cites the work of Lawden [59] as the earliest reference that he was able to find on the subject at
the time.
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planet in our solar system was first made by the Mariner 10 spacecraft as it passed by Venus on its way to

Mercury in 1974. In many cases, the ability to use flyby trajectories may actually determine whether or not

a certain mission profile is even feasible, as was the case with the Voyager 1 and 2, Galileo, Ulysses, Cassini,

MESSENGER, and Juno spacecraft as well as, most recently, the OSIRIS-REx mission to the asteroid Bennu.

For Cassini in particular, the use of Titan as a flyby target was the key to the success of the mission. Cassini

launched with enough onboard propellant for about 2.4 km/s of velocity change. By the time it reached

Saturn, the spacecraft had performed one 450 m/s deep space maneuver and a 626 m/s capture maneuver

at Saturn, and had only enough propellant remaining for about 1 km/s of velocity change maneuvers. Titan

flybys provided about 90 km/s of velocity change over the course of Cassini’s main, equinox and solstice

tours, thereby enabling such a lengthy and complex mission.

1.2.1 Solving the Multiple Gravity Assist Problem: Pathfinding and

Pathsolving

The MGA problem is difficult to solve for several reasons. The first is that there are typically many

flyby targets to consider, resulting in a complex combinatorics problem. An MGA trajectory problem also

includes continuous variables including flight times and launch geometry parameters such as right ascension,

declination and launch C3. If maneuvers are to be included, this significantly complexifies the problem,

which in turn typically requires a corresponding increase in the sophistication of the chosen solution method.

Furthermore, a particular method might include elements of optimization that seek to identify solutions that

extremalize a particular cost function such as propellant consumed or time of flight (TOF).

A particularly well constructed summary of global MGA solution methods is provided by Lantukh in

his dissertation [9], however, a brief discussion follows here for the sake of completeness. As Lantukh notes,

solving the MGA problem requires that the trajectory designer address both the pathfinding (planning) as

well as the pathsolving (scheduling) aspects of the problem.

Pathfinding involves determining the order of countable categorical events required to achieve the mis-

sion objectives. These discrete events include, for example, the order of flyby targets. The main challenge

encountered when solving MGA trajectory pathfinding problems is the high degree of combinatoric com-

plexity associated with most mission design spaces. Pathsolving is the act of determine a solution, or family

of solutions, associated with a particular pathfinding configuration. In contrast to pathfinding, pathsolving

typically involves a continous design space where the solution technique must select continuous or mixed-

integer decision parameters. A particular solution method might address one or both of these aspects of the
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MGA problem.

1.2.2 Graphical Methods

The oldest class of MGA solution techniques are those requiring significant manual calculations and are

often paired with graphical aids that help guide the trajectory design engineer in the solution process.

These methods are characterized by their heavy reliance on human-in-the-loop mathematical analysis and

intuition. Strange and Longuski introduced the concept of a Tisserand plot [60], which are plots of constant

v∞ contours. These plots indicate whether a ballistic transfer from one flyby body to another is feasible from

an energy perspective, but not from a phasing perspective. An example Tisserand plot is shown in Fig. 1.2.

A follow-on analysis is therefore required using a solver such as STOUR or EMTG to determine whether a

feasible transfer actually exists. Campagnola and Russell [61] augmented this concept to include transfers

featuring impulsive maneuvers, and then extended it further for use in low-energy multi-body mission design

activities [62].

Figure 1.2: Figure from [2]. Tisserand graph for heliocentric trajectories, with example EVME trajectory
(in bold). The plot shows that for an Earth launch v∞ of 5 km/s, Venus can be reached, then Mars, and
finally back to Earth with an arrival v∞ of 5 km/s.
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Another example of a graphical aid that has been incorporated into mission design workflows is the v∞

sphere [63]. This geometric construct is a sphere with radius equal to the flyby hyperbolic excess velocity

vector magnitude that is formed by the loci of all v-infinity vector tips. The sphere is a map of all possible

orbits around the central body. Various studies have characterized the various flyby trajectories that result

from placing the tip of the v∞ vector at various locations on this sphere. Russell and Ocampo examined

free return trajectories [64], Strange et al. performed a thorough mapping of the globe [3] and Woolley and

Scheeres [65] applied the concept to single-body moon tour endgame design. Most recently, Lantukh and

Russell [66] and Lantukh [9] extended the method past a pure graphical aid and incorporated the v∞ sphere

into an automated method for incorporating nπ transfers into the global MGA search problem.

Figure 1.3: A simple v∞ sphere, where blue contours represent orbits with the same period and green
contours map orbits with the same inclination. Reproduced from [3].
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1.2.3 Exhaustive Methods

The second category of MGA solution techniques are those that exhaustively explore the problem design

space. These methods employ a grid to discretize the problem’s continuous variables, thereby enabling a

systematic search of a portion of or, for problems of very low dimensionality, the entirety of the decision

space. Perhaps the most well-known of these methods is the one employed by STOUR [8], however, as

mentioned previously there have been several more recently developed implementations that fall into this

category including STAR, Explore [9], SOURCE [67] and NELLS. The core algorithm of STOUR requires the

user to define a priori a sequence of flyby targets, then the program will step through a range of launch dates

and compute all conic point-to-point ballistic trajectories connecting those bodies adhering to some specified

launch date vs. time of flight to the first flyby target grid discretization. These two-body solutions may be

obtained analytically by solving Lambert’s problem and are connected using a patched-conics flyby model, a

concept that is discussed further in section 2.3. Since the Galileo mission, STOUR has been automated [68]

and its capabilities have been augmented to allow for the use of aerogravity assist (AGA)s [4, 69], powered

flybys [70], deep-space maneuver (DSM)s [71] and shape-based approximations of low-thrust transfers [72].

It is becoming more common for parallel computing techniques to be incorporated into systematic search

methods. This is often due to the large volume of local searches that must be executed in order to thoroughly

explore the design space. Russell [73] employed parallel computing to solve a large number of Two Point

Boundary Value Problem (TPBVP)s using primer vector theory for the Restricted Three Body Problem

(RTBP). Izzo et al. [74] also used parallel computing to search the flyby sequence space for their solution

to the Global Trajectory Optimization Competition (GTOC) 6 problem.

Exhaustive methods nearly always require that bounds be placed on the search domain, or a “pruning”

mechanism be incorporated into the method, in order to make the problem computationally tractable in

a reasonable amount of time. These strategies, commonly referred to as branch and bound (BB), can be

incorporated directly into the search algorithm, such as with SOURCE, Explore and NELLS, or they can be

used to limit the scope of the search, while not directly solving for MGA trajectories as is the case with the

Gravity Assist Space Pruning (GASP) algorithm [75, 76]. Pruning mechanisms aside, exhaustive methods

fundamentally operate by mapping the entire search space. Conversely, metaheuristic methods employ

mechanisms that identify solutions without the need for total enumeration and often feature a stochastic

search element.
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1.2.4 Metaheuristic Methods

Metaheuristics are problem-independent, typically non-greedy, methods that search a given problem space

according to some set of behavioral laws. Vinkó and Izzo [77] compare the global optimization performance

of several of these methods applied to several benchmark trajectory design problems. A similar study

was also carried out by Vasile et al. [78]. One interesting attribute that many metaheuristics share is

that their derived search mechanism mimics the behavior of certain animal species such as particle swarm

optimization (PSO) [79] and Ant Colony Optimization (ACO) [80]. Algorithms based around ACO were

first applied to the MGA problem by Ceriotti and Vasile [81]. This method was then extended, by the same

authors, to include a single DSM [82].

Solution techniques in this category often feature concepts rooted in evolutionary biology to guide their

search and are often population based, meaning that they maintain a collection of candidate solutions as

the method iteratively searches for the globally optimal solution. The first application of an evolution-

inspired algorithm to the MGA problem was the work by Gage et al. [83]. Their study displayed the

superiority of a genetic algorithm (GA)’s performance over that of a grid search and how that trend grew

as the number of design variables increased. This work was followed by the investigations performed by

Vasile [84] and Vasile and De Pascale [85]. Their method combined a global evolutionary algorithm called

Evolutionary Branching (EB) with a local sequential quadratic programming (SQP) sequence. Differential

Evolution (DE) [86] is a population-based evolutionary algorithm that has been applied extensively to the

MGA problem. Olds et al. applied DE to the problem of interplanetary MGA trajectory design [87]. This

was followed by Izzo et al. [88] who employed DE in conjunction with an asynchronous island model and Izzo

et al. [89] who applied it to a generalized island model. The team led by Izzo also successfully incorporated

DE into their search method for finding the best known (at the time) solution to the GTOC 6 problem [74].

Differential evolution was also used by Englander et al. [90] to solve the Multiple Gravity Assist with One

Deep Space Maneuver (MGA-1DSM) problem. Vinkó and Izzo [77] developed a hybrid solution method

that combined PSO and DE and applied it to the MGA problem. Finally, Englander [48] and Englander

et al. [90] made use of this technique to solve the inner-loop problem of an interplanetary trajectory HOC

automaton.

Genetic algorithms [91] are one of the most popular methods for solving trajectory design problems,

especially those involving gravity assists. Rauwolf and Coverstone-Carroll [92] applied a GA to solve the

interplanetary low-thrust problem, which was particularly important foundational work for researchers who

eventually included gravity-assist events in the problem formulation. Conway et al. examined the MGA
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problem as a hybrid optimal control problem (HOCP) and proposed several two-stage solution techniques

including a GA + nonlinear program (NLP) solver as well as one that combined BB + GA into the two-

loop HOC solution process [93]. Wall and Conway examined missions to asteroids [94] using another HOC

formulation that used a binary GA outer-loop solver to choose the sequence of asteroids and a real-valued

GA combined with a novel shape-based trajectory approximation method to determine the trajectory be-

tween targets. Woo et al. [95] used a GA to choose initial guesses for the low-thrust trajectory optimization

package SEPTOP. Gad and Abdelkalik developed the Hidden Genes Genetic Algorithm (HGGA) for solv-

ing the MGA problem with a free number of impulsive maneuvers [96]. Abdelkalik and Gad introduced

the Dynamic-Size Multiple Population Genetic Algorithm (DSMPGA) for solving the same problem [97].

Recently, Englander applied the concept of the junk gene from evolutionary biology to the interplanetary

MGA problem [48].

Multi-Objective Genetic Algorithm (MOGA)s, which seek to identify Pareto optimal solutions have also

been used by several researchers for spacecraft trajectory optimization problems. Coverstone et al. [98]

leveraged the Non-Dominated Sorting Genetic Algorithm (NSGA) developed by Srinivas and Deb [99] to

solve single-phase interplanetary trajectories to Mars and Mercury. Vavrina and Howell [51] used a MOGA

to choose initial values for the GALLOP program, which uses the Sims-Flanagan transcription method along

with an NLP solver to solve the multiple gravity assist with low-thrust (MGALT) problem. Later Vavrina et

al. [100] and Englander et al. [101] employed the Non-Dominated Sorting Genetic Algorithm II (NSGA-II)

[102] to perform systems-level optimization of high and low-thrust interplanetary MGA trajectories.

Another class of metaheuristics are augmented local searches such as Simulated Annealing (SA) [103],

Tabu search [104,105] and monotonic basin hopping (MBH) (Appendix A.1) [106,107]. These search strate-

gies often include a gradient-based local search step, which is further enabled by an exploration mechanism

that reinitializes the local search in the vicinity of previously discovered solutions, thus avoiding entrapment

in local minima, the primary weakness of a gradient-based search. Johnson applied Tabu search [108] to the

problem of multiple target tour trajectory problems. The metaheuristic method that is most relevant to this

work is MBH. This method was first applied to the MGA problem by Addis et al. [109]. Yam et al. [110,111]

combined the MBH iterative local search method with the Sims-Flanagan bounded-impulse model to com-

pute approximations to continuous-thrust transfers. Englander and Englander [112] performed an extensive

analysis that examined tuning the MBH algorithm for low-thrust trajectory optimization problems. The

solution method of Yam et al. served as the seed for the HOC work by, Englander and Conway [47] and

Ellison et al. [113] and is the topic of the following section.
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1.3 Hybrid Optimal Control Trajectory Automaton

Spacecraft trajectory optimization problems belong to a general class of problems called hybrid optimal

control problems [114–116]. The defining characteristic of an HOCP is the inclusion of both discrete and

continuous variables in the parameterization of the problem. Specifically, the values of the discrete variables

define the configuration of the sub-problem described by the continuous variables. When applied to an

MGA problem, this means that an HOCP seeks to simultaneously solve both the pathfinding as well as the

pathsolving problems that were discussed in section 1.2.1. Consider the problem of transferring a spacecraft

from the Earth to another body in the solar system. A typical discrete variable set that characterizes this

problem is the flyby sequence (including the option to not use gravity assists) that the spacecraft will use

to complete the transfer to the target body. These discrete variables describe a particular transfer structure

that is then locally optimized by varying continuous variables such as the launch epoch, the engine throttle

time history and the TOF of each flyby leg. The first description of an HOC solution framework for aerospace

mission/trajectory design problems can be found in the pioneering by Ross and D’Souza [117]. The first

application of the HOC method to the interplanetary MGA problem was by Conway et al. [93], followed

shortly by an extension to multi-objective HOC by Vavrina and Howell [51]. Recently, the incorporation

of additional variables such as the spacecraft’s solar array size, thruster type, launch vehicle employed and

other systems-level discrete optimization variables have also been successfully incorporated into the HOCP

structure [100,101].

1.3.1 Hybrid Optimal Control Solver Structure

One method for solving HOCPs, such as the notional mission described above, is to use a nested optimization

loop structure. This method utilizes an outer-loop to select values for the discrete variables. These in turn

define a particular problem space in which the real-valued variables may be varied by the inner-loop. The

purpose of the inner-loop solver is to evaluate a particular choice of outer-loop variable values based on a cost

metric (e.g. the amount of spacecraft mass that was delivered to the target) in order to compare it against

other discrete variable configurations. Examples of typical outer-loop solvers include genetic algorithms

GAs, BB or even total enumeration (grid searches) for small problems. The inner-loop problem has been

solved using a variety of methods, several of which are discussed later in sections 3.1, 3.2, 4.2 and 5.1. The

most popular solution method is to discretize the problem and convert it into a nonlinear programming

problem [118]. The specific nested loop solver implementation referenced in this work is the EMTG [46,48],
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however, this nested loop solver structure has enjoyed widespread success, and several research efforts have

exploited it for spacecraft trajectory design [110,111,119].

1.3.2 Outer-Loop Solver

In the context of the MGA problem, one of the primary roles of the outer-loop solver is to perform flyby

sequence pathfinding. For example, if the specified mission is to transfer a spacecraft from Earth to Jupiter,

on a given iteration of the outer-loop one or more sequences will be constructed from a set of possible gravity-

assist target bodies (e.g. {Venus-Earth-Mars, Earth-Venus-Venus-Earth}) for the inner-loop to evaluate.

The inner-loop will then solve the continuous optimization problem, and compute the resulting cost function

value. This cost function information is, in turn, used by the outer-loop to assess the efficacy of any one

flyby route.

Several algorithms have been shown to be effective at solving the HOC outer-loop problem. Branch and

bound is perhaps the most straight-forward to both conceptualize and implement and forms the basis for

most exhaustive MGA solution techniques. The BB method casts the set of all possible event sequences as a

tree structure. For a multi-stage optimization problem, the total enumeration of the states that the problem

variables may occupy are represented as nodes in the tree. Possible subsequent decisions are represented

as child nodes that branch from the current parent node. Since traversing the tree of a problem with high

combinatorial complexity, such as the MGA problem, rapidly becomes computationally intractable, partial

solutions are pruned away at each level of the tree according to some bounding law. For example, the beam

search tree traversal algorithm only branches a specified number or percentage of child nodes at each level

of the tree according to the cost function value of the partial solutions.

Since typical cost functions for the MGA problem do not obey the law of superposition, that is each flyby-

to-flyby phase of the problem is not independent of previous and subsequent phases, BB will not guarantee

the identification of the globally optimal solution, and also means that the cost function value of partial

solutions cannot be meaningfully compared to known full-length solutions (solutions that have traversed

the entire depth of the tree) or even other partial-length solutions. Nevertheless, BB has been employed to

explore the solutions spaces of challenging mission design problems such as the GTOC 6 problem, and is

often the only feasible choice when the complexity of the problem becomes too great to effectively employ

other outer-loop algorithms such as GAs. This technique for solving the MGA sequencing problem used in

chapter 6 where it is applied to the planetary satellite tour problem.

Genetic algorithms have become a popular choice for solving the interplanetary MGA problem as first
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demonstrated by Gage et al. [83]. A GA was first incorporated into an MGA HOC solution framework by

Conway et al. [93]. Genetic algorithms operate by first generating a population of random decision vectors,

which are referred to as chromosomes. At each generation, the fitness of each of these chromosomes is

determined by evaluating the problem’s cost function. After evaluation, a selection operator is applied that

selects the members of the population that will become the parents for the next generation. A crossover

operator is then applied that creates the next population from the selected parents, replacing a certain

portion of the overall population. Finally, with some small propability, random mutation occurs amongst

the population. In order to guard the highest-valued members of the population from being discarded due

to random mutation, a certain number of elite individuals are guaranteed to be preserved and carried over

to the next generation. The genetic algorithm will proceed for a certain number of pre-specified generations,

or until some user-specifed convergence criterion is satisfied.

The most useful class of genetic algorithm, as far as preliminary mission design is concerned, are the

so-called multi-objective genetic algorithms. These routines are capable of mapping Pareto surfaces in

a problem’s design space as opposed to optimal point-solutions, and are of more use to mission design

engineers who must react to constantly evolving spacecraft hardware designs and requirements. Recent

advances by Vavrina et al. [100] and Englander et al. [101] employ the NSGA-II [102] and represent the

current state-of-the-art in system-level spacecraft trajectory optimization research.

1.3.3 Inner-Loop Solver

The objective of the HOC inner-loop solver is to compute the locally optimal trajectory solution for a given

configuration of the outer-loop optimization problem, i.e. it performs trajectory pathsolving. The specific

problem formulation varies depending on the level of fidelity required as well as whether a chemical or electric

propulsion system is being employed. Several trajectory models are considered in this work.

As with the outer-loop, there are also many methods available for solving the inner-loop problem. If the

trajectory problem is formulated as a Hamiltonian boundary value problem, then primer vector techniques

can be applied to obtain solutions that satisfy the necessary conditions of optimality. Metaheuristic tech-

niques such as PSO and DE are attractive in that they are relatively straightforward to implement and do

not require gradient information to perform their local search. The inner-loop solution technique that is the

topic of discussion for much of this work is nonlinear programming, a gradient-based technique that will be

introduced in section 2.1. Regardless of the strategy that is employed to solve the trajectory optimization

problem, it is essential to the successful operation of the overall HOC solver that the inner-loop operate in
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a robust fashion.

1.3.4 Accurate and Efficient Execution of the Inner-Loop

The goal of the inner-loop solver in an HOC framework is to return the cost function value associated with

a particular selection of outer-loop decision variables. If the inner-loop fails to return as solution (assuming

one exists), or even if it returns a solution of poor quality (i.e. not locally optimal), then the effectiveness of

the outer-loop will be compromised. For example, if a genetic algorithm is used as the outer-loop solver, and

the inner-loop returns an inaccurate cost function value for a particular flyby sequence, then that sequence

will be scored lower than it otherwise would have been. As a result of this, during the selection phase, that

member of the population could be removed from the population pool prematurely, thus spoiling the overall

integrity of the genetic pool.

In addition to robustness concerns, the second most important characteristic of a high-quality inner-loop

solver is fast execution. The vast majority of the execution time associated with an HOC solver is attributed

to the inner-loop. Whereas the outer-loop typically only needs to perform a few basic initialization operations

during each of its iterations, the costliest typically being sorting routines, the inner-loop must evaluate the

trajectory cost function. This routine typically includes the evaluation of the equations of motion, calls to

hardware modeling routines, ephemerides and even costly numerical integration for higher fidelity models.

In order to ensure that the local decision space is thoroughly explored, and the local minimum identified,

many solution paradigms evaluate the inner-loop multiple times for each iteration of the outer-loop. For all

of these reasons, inner-loop execution usually dominates the runtime of the overall optimization framework,

and any improvements to the efficiency of its operation are important for reducing the time-to-solution.

One of the most significant applications of the contributions described in this work to a practical prob-

lem was the optimization of the Phase-A trajectory for the Lucy mission. Flight dynamics analysis tasks

supporting this mission heavily rely on the inner loop of the optimization framework that is a focal point

of this work. Lucy is a NASA Discovery program project that will perform flybys of one main belt asteroid

and six Jupiter Trojan small bodies. It is scheduled to launch in October of 2021. It was selected in January

2017 to proceed to Phase-B study. The original design was performed by Brian Sutter and Chelsea Welch

from Lockheed Martin, however, the final optimization was performed by Jacob Englander using EMTG.

The optimization of the trajectory decreased the propellant cost function, reduced the small body encounter

relative velocities by a significant amount and made the Polymele and Leucus encounters possible. The Lucy

mission itinerary is summarized in Table 1.1 and the trajectory is shown in Fig. 1.4 and 1.5 [120].
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Table 1.1: Lucy small body targets and nominal encounter dates.

Event/Encounter Encounter Date

Launch October 16 2021

DSM 1 April 19 2022

EGA 1 October 16 2022

DSM 2 February 2 2024

EGA 2 December 13 2024

52246 Donaldjohanson April 20 2025

DSM 3 April 3 2027

3548 Eurybates August 12 2027

15094 Polymele September 15 2027

DSM 4 September 29 2027

11351 Leucus April 18 2028

DSM 5 July 23 2028

21900 Orus November 11 2028

EGA 3 December 26 2030

617 Patroclus + Menoetius March 2 2033

Figure 1.4: Lucy optimized trajectory showing the inclined orbits of the small body targets.
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Figure 1.5: Lucy optimized trajectory. Red dots are bipropellant maneuvers, purple diamonds are small
body intercepts and blue dots are Earth flybys.

The analytic derivative methods described in chapters 2 and 3, which significantly increase the robustness

of the local optimizer, directly contributed to the improved Lucy solution. The development of the high-

thrust optimization transcription described in chapter 3, as well as its analyic gradients, have also been

directly applied to Lucy missed-maneuver analysis activities by the author and other members of the Lucy

flight dynamics team.

1.3.5 Trajectory Design Heritage of Hybrid Optimal Control

Trajectory design and optimization using HOC is a relatively new practice. Despite this, HOC has al-

ready accrued design heritage on several mission proposals as well as a phase-B flight project. This was

accomplished with the EMTG mission design software, which represents the cumulative efforts of several

researchers including Dr. Jacob Englander, Mr. Matthew Vavrina, Dr. Alexander Ghosh, Mr. Ryne Beeson

as well as the author.

To the author’s knowledge, the first example of a HOC automaton being successfully applied to a mission
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proposal effort is Asteroid Robotic Redirect Mission (ARRM) [100]. This effort was particularly noteworthy

as the use of the HOC method was instrumental in ARRM Option B being selected in favor of Option A

before the entire project was ultimately canceled by the United States congress. Since the work on ARRM,

EMTG has been used on several other proposals, including several in the New Frontiers 4 round of selection.

The most successful of these was the design of the trajectory for the CAESAR mission, which was selected

to advance to Phase A in December 2017.

1.4 Satellite Tour Design

Although the idea of a planetary satellite tour had been the subject of technical consideration since the

early 1970s, the Galileo mission to Jupiter marked the first time that gravity assists were used to enable a

scientific tour of a planetary satellite system. From December 1995 to September 2003, Galileo performed 33

flybys of Io, Europa, Ganymede and Callisto during its survey of the Jovian system. The Galileo tour design

was a manual process where STOUR was employed to perform the initial ballistic patched-conic design 2.

This solution was then input to MOSES, which used the multiconic method to produce a trajectory that

approximated the influence of other gravitating bodies, SRP etc [22], before finally being forward integrated

in high-fidelity.

The Cassini spacecraft is currently completing the final week of its twenty year mission, most of which has

been spent orbiting the planet Saturn. Cassini’s tour of Saturn’s moons is significantly more sophisticated

than Galileo’s. To respond to this, the Computer Algorithm for Trajectory Optimization (CATO) software

was developed, which integrated the spacecraft’s equations of motion subject to the point mass gravitational

effects of other bodies, SRP and the oblateness of the central body [122,123].

1.4.1 Flyby Combinatorics

The human lifespan, combined with a general unwillingness to wait large spans of time before receiving

scientific returns from a mission, limits the number of gravity-assists that interplanetary spacecraft missions

can reasonably use (to perhaps not greater than ten) 3. By contrast, a planetary satellite tour can include

hundreds of gravity-assists, as was the case with the Cassini mission where the orbiter performed 162 targeted

moon flybys over the course of its 13 year exploration of the Saturnian system. As a result of this disparity,

2Prior to its automation by Steve Williams [121], the STOUR search process was entirely user-interactive
3The most number of GAs used by a spacecraft during its interplanetary cruise, to date, is six by the MESSENGER

spacecraft.
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many of the search techniques that have been shown to be effective for interplanetary MGA design encounter

severe limitations when applied to satellite tour problems.

Heuristic methods such as genetic algorithms were first applied to the interplanetary MGA problem in

order to help cope with the large dimension of the flyby pathfinding problem. Even for relatively modest

problems where the chromosome length is perhaps only 10-15 bits in length, a genetic algorithm run can last

days or weeks in order to ensure that the design space has been properly explored and that the population

has maturely evolved. Tour problems represent a significantly more complex pathfinding problem, and some

variation of the branch and bound method remains the only practical approach to contend with such a large

design space in an acceptable amount of time. Of course, as discussed in section 1.2.3, the branch and

bound method does not consider the entire search space and so any advances made in methods that more

thoroughly explore the design space of extremely high dimensional pathfinding problems, such as planetary

satellite tours, are valuable.

In order to illustrate the computational complexity associated with different MGA problems, first consider

a mission from Earth to Jupiter, where we limit valid intermediate flyby targets to Earth, Venus or Mars.

If the choice during each phase of the problem is to just flyby either Earth, Venus or Mars, and we let the

spacecraft perform up to five flybys on its way to Jupiter, there exist 243 different flyby combinations of

Earth, Venus and Mars (e.g E-EVEEM-J). For comparison, let’s assume that the Galileo spacecraft had

exactly four flyby options for each phase of its Jupiter tour: perform a flyby of either Io, Europa, Ganymede

or Callisto. For its 33 flyby tour, there exists 7.3786976×1019 unique flyby combinations of the four Galilean

moons.

1.4.2 Automation

Automation of the flyby sequence search for gravity-assist trajectories is a highly desirable capability, and is

the subject of several ongoing research efforts. Regarding interplanetary trajectories, the work of Englander

and Conway is arguably the most advanced. Certainly it has enjoyed the most success to date, with their

methods being applied to produce the final optimized trajectory for the recently selected NASA Discovery

class Lucy mission. That body of research has shown that a HOC automaton is capable of automating the

interplanetary mission design process. These methods have not yet been extended to the design of planetary

satellite tours.

Significant work has been performed that has enabled automated pathfinding and pathsolving of the

satellite tour problem. The most conceptually straightforward methods are based on exhaustive grids. The
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STOUR software was used during the preliminary design phase of the Galileo tour [22] albeit as a user-in-

the-loop application. As previously mentioned, STOUR was eventually automated and served as one of the

many inspirations for what is probably the most advanced pathsolving tools capable of preliminary design

of a gas giant moon tour, Explore [9]. Explore is similar to STOUR in that it is an exhaustive grid-based

MGA search method. In addition to patched Lambert C3 matching routines, Explore incorporates more

sophisticated trajectory elements such as v-infinity leveraging maneuver (VILM)s [124] and nπ transfers [66]

as well as advanced search logic such as Pareto pruning algorithms. Explore was employed to produce the

third place solution for the GTOC 6 problem. That competition also saw other groundbreaking work in

satellite tour design. Izzo et al. [74] developed a completely automated tree search algorithm that employed

a parallel asynchronous island optimization algorithm.

Where the previously mentioned studies have focused on the design of the entire tour, there have also

been studies that focused on the automation of specific aspects of a moon tour mission. The work of

Lynam [125,126] and Didion and Lynam [127] was specifically concerned with exhaustive searches for double

and triple flyby capture sequences at the beginning of a tour. These works produced an extensive library

of precomputed capture sequences spanning several decades. Valid interplanetary trajectories were then

identified for a particular capture solution via backwards propagation. These studies relied on analytic

derivations of the required satellite phasing constraints and incoming interplanetary velocity asymptotes

required to produce a feasible capture. While interesting, this body of work is not particularly conducive to

a rapid preliminary design cadence.

The state-of-the-art for automated capture design was recently advanced by Scott et al. [128], who

developed a strategy for designing a capture sequence that is subject to practical constraints that are placed

on the interplanetary trajectory. That is to say, their method is flexible enough to design a capture trajectory

based deviations from an already-established nominal interplanetary arrival asymptote. In that respect, their

work represents a significant increase in utility from a practical preliminary mission design standpoint over

Lynam’s exhaustive solution database methods.

Automatic design of satellite capture and tour trajectories is one of the most challenging problems

in modern astrodynamics, and remains an active research area. This work revisits the automated tour

pathsolving problem in part where Lantukh’s work on Explore left off, by investigating parallelization of the

underlying flyby tree search algorithm as well as the transition from a C3 matching Lambert grid solution

to a direct optimization transcription that is capable of locally optimizing an entire end-to-end moon tour

problem.
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1.4.3 Path Constraints and Hazard Avoidance

The development of an automated method for designing planetary satellite tours must be flexible enough

to accommodate practical engineering considerations, such as environmental hazards. Formulating a useful

tour solution is not as simple as stringing together as many flybys as possible given a certain quantity of

propellant. The environment around the giant planets Jupiter and Saturn are hostile regions for spacecraft

to operate in. The Jupiter-Io plasma torus is one of the most radioactively hazardous areas for a spacecraft

to fly through. Extended periods of time spent in this region close to the planet will rapidly degrade all

but the most radiation-hardened electronics, and practical tour design in the Jovian system must take this

into account [129]. High relative-velocity collisions with the debris and dust that can be found in planetary

ring structures can be catastrophic to spacecraft and present another navigational hazard when designing

and flying trajectories in close proximity to the giant planets. A particularly interesting example of an

environmental factor that will impact future mission design is the high-inclination of the Uranian system

caused by the planet’s 97 degree axial tilt relative to the ecliptic plane. Any spacecraft that will go into

orbit around Uranus in the future will have to avoid the planet’s rings and also contend with inclination

reduction should one of its goals be close-proximity exploration of Uranus’s moons [130].

In addition to natural phenomena that require the imposition of path constraints on a trajectory, other

mission requirements also place constraints on a spacecraft performing a satellite tour. One of the most

common of these is line-of-sight communications constraints. In order to communicate wih the ground, a

spacecraft’s high gain antenna must point towards Earth. Since most interplanetary spacecraft buses do not

have articulating high-gain mounts, this means slewing the entire spacecraft, which then places restrictions

on when maneuvers can occur. Perhaps even more consequential is whether a particular obtained tour

solution is viable from a navigational perspective. The short encounter to encounter times during a tour can

become a serious concern when assessing the risk associated with the navigation of the spacecraft. This is

one of the major concerns with multiple satellite-aided captures at a gas giant, as studied by Lynam [126].

The automated methods described in chapter 6 do not directly address these concerns, however, the

general automated tour solving framework described in that chapter does not preclude the future inclusion

of environmental and operational constraints into the search process.
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1.5 Summary of Contributions and Dissertation Structure

The contributions that will be described in the remaining chapters of this work impact multiple areas of

mission design and trajectory optimization.

Chapter 2 describes the general direct method multiple shooting formulation that will be the subject of

discussion for much of this dissertation. The forward-backward shooting (FBS) transcription is a generic

trajectory optimization concept that may be specialized to both high and low-thrust spacecraft at varying

levels of fidelity. The specific contributions described in this chapter are:

1. The description of a solar electric power model that is of sufficient accuracy such that it may be used

for NASA Discovery and New Frontiers proposal efforts. A smoothing technique is discussed that

makes the power model well-behaved when used inside a gradient-based optimizer.

2. A rapid-retrieval RAM-based ephemeris system is described that is compatible with a gradient-based

optimizer and that represents an improvement over the state-of-the-art in that the smooth ephemeris

interpolation and data storage processes that are presented are superior to similar existing ephemeris

systems.

Chapter 3 provides a complete description of the algorithms necessary to compute analytic defect con-

straints for two bounded-impulse trajectory models.

1. The partial derivative mathematics required to analytically compute match-point defect constraints

for two low-fidelity transcriptions are described in the form of linear mapping matrices.

2. The recursive sweep algorithm for computing the defect constraints using these matrices is described.

3. Results of an investigation of the robustness properties of a numerical optimizer using the analytic

derivatives described in this chapter versus using finite-differencing are presented.

4. Gradient accuracy is verified using automatic differentiation and timing data relative to Jacobian

calculation using finite differencing is provided.

The material in chapter 4 describes a new medium-fidelity low-thrust trajectory transcription, which is

a time-regularized version of the well-known Sims-Flanagan transcription. This trajectory model corrects

a shortcoming of the time-discretization employed by the original Sims-Flanagan transcription, namely the

lack of control nodes located at the periapse of eccentric transfers. The contributions described are:

1. An algorithm that regularizes the Sims-Flanagan transcription and redistributes the control nodes
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equally in eccentric anomaly.

2. An exact method for propagating a spacecraft’s state using a modified universal Kepler propagator in

conjunction with the new transcription.

3. The analytic calculations required to compute match-point derivatives for the new trajectory tran-

scription.

4. A method for extending the new regularization algorithm to distribute control nodes with equal true

anomaly spacing.

The FBLT transcription is a straightforward extension of the MGALT model, however, the techniques

required to compute the match-point defect gradients for this problem is significantly different. Chapter 5

describes the improvements to the FBLT physics model, gradient computations and efforts made to verify

this trajectory transcription against heritage navigation tools. These advancements include:

1. Extensions of the FBLT model to include modeling of n-body gravity, SRP and planetary oblateness

perturbations.

2. A method for computing time-of-flight derivatives for time free trajectory optimization problems mod-

eled with the FBLT transcription that employ fixed-step explicit numerical integration.

3. A description of the method used to verify the accuracy of the FBLT model against a heritage spacecraft

navigation tool. This work was carried out in cooperation with engineers at KinetX Aerospace.

Chapter 6 discusses advancements made towards fully automating the planetary satellite tour design

process. These include:

1. A tree data structure and a search algorithm, similar to the one developed by Lantukh for Explore,

capable of performing Lambert C3 matching for the interplanetary and satellite tour MGA problems.

2. A process for parallelizing the Lambert tree search using OpenMP multithreading

3. The incorporation of a tree node object pool to increase the efficiency of the tree search program.

4. A demonstration of the ability of a direct method optimization framework to locally optimize an end-

to-end launch, interplanetary cruise, and planetary satellite tour using an initial guess from the C3

matching tree search. This is done using the MGAnDSMs transcription described in chapter 3, and is

enabled by the gradient computations described therein.

The final chapter summarizes the contributions described in this dissertation and outlines avenues for
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future research and plans for pursuing them.
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Chapter 2

Trajectory Optimization Using
Nonlinear Programming and
Forward-Backward Shooting

Figure 2.1: NASA Pioneer at Jupiter. By Rick Guidice.

The various MGA trajectory optimization techniques described in this work are all examples of direct method

trajectory transcriptions and rely on the concept of parameter optimization using nonlinear programming.

This chapter will introduce the concept of an NLP and discuss one of the main challenges associated with

achieving a robust problem formulation, namely the accurate specification of constraint and objective func-

tion gradients.

The family of trajectory transcriptions used throughout this work is described in section 2.2. A smooth
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solar electric spacecraft power model and a smooth ephemeris model are discussed, both of which are

compatible for use with a gradient-based optimizer. The power model is suitable for preliminary mission

design and meets the requirements set forth for NASA Discovery program proposal work [131].

2.1 Nonlinear Programming

An NLP is an optimization problem whereby the minimization (or maximization) of an objective function

J(x) is achieved by varying a set of real variables x, subject to a set of equalities and inequalities, commonly

referred to as constraints. Examples of numerical NLP solvers include the Interior Point OPTimizer (IPOPT)

[132] or the Sparse Nonlinear OPTimizer (SNOPT) [133], which is the solver that was used for this work.

These algorithms are designed to solve mathematical programming problems of the following form:

(NLP ) =


min
x

f(x) Rn 7→ R

s.t. lb ≤

 x

c(x)

 ≤ ub (2.1)

x ∈ Ω ⊆ Rn, c ∈ Rm lb, ub ∈ Rn+m

where f(x) is a smooth scalar function, c(x) is a vector of smooth nonlinear and linear constraint functions,

{lb, ub} are vectors of constant lower and upper bounds on x and c and Ω is the feasible region for (NLP ).

A feasible point xf for the problem posed in Equation (2.1) is one that satisfies all of the problem con-

straints [118].

The core algorithm implemented in SNOPT is a sparse SQP solver, which like many NLP solution

methods relies on the Karush-Kuhn-Tucker (KKT) first order necessary conditions [134, 135] to determine

whether or not xf is in fact the optimal solution x∗ to the problem described in Eq. (2.1):

1. λ∗i ≥ 0 i = 1, 2, ...,m dual feasibility

2. λ∗i ci(x
∗) = 0 i = 1, 2, ...,m complementary slackness

3. ∇f(x∗) +
∑m
i=1 λ

∗
i∇ci(x∗) = 0 stationarity

One will note that the stationarity necessary condition requires the evaluation of the gradients of the
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objective function f and the constraint vector c with respect to the problem decision vector x. The matrix

containing the partial derivatives of the constraints with respect to the decision vector is known as the

Jacobian. Degraded Jacobian accuracy as a result of using approximation techniques such as finite differences

in lieu of specifying analytically obtained values for the dense entries of the Jacobian, can increase the number

of iterations required to solve the problem or could even result in the solver encountering numerical difficulties

resulting in more severe exit conditions (e.g. singular entries in or rank-deficiency of the Jacobian).

2.1.1 Jacobian Calculation Techniques

Nonlinear programming solvers typically include a mode of operation where the software can compute the

Jacobian matrix via a finite differencing approximation. There are many possible finite difference algorithms.

The forward and central differencing methods are shown in Eq. (2.2) and (2.3). These algorithms exhibit

first and second order Taylor series truncation error respectively, however, higher-order accuracy methods

are also possible [136].

∂cj(x)

∂xi
=
cj(xi + h)− cj(xi)

h
+O(h) (2.2)

∂cj(x)

∂xi
=
cj(xi + h)− cj(xi − h)

2h
+O(h2) (2.3)

While divided differences are straightforward to implement, when the problem constraints are complex

functions, the accuracy limits of this technique make its use inside an NLP solver undesirable for several

reasons. First, finite differencing requires multiple calls to the NLP cost function in order to compute a

single entry in the Jacobian. When the problem cost function is computationally expensive to evaluate,

this can seriously hinder the progress of the optimizer from a pure runtime point-of-view. The more serious

problem with employing divided differences is the inherent inaccuracy of the method. As Eq. (2.2) and

(2.3) indicate, reducing the size of the perturbation step h will reduce the truncation error of the method.

Doing so beyond a certain point, however, will begin to increase the floating point round-off error when the

algorithm is implemented on a digital computer. For these reasons, finite-differencing is best avoided unless

the use of other techniques is not possible, such as when using black-box software packages.

The concept of generating derivatives using complex numbers was introduced by Lyness and Moler

[137, 138]. Perhaps the most advanced derivative computation technique in the category of complex step
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methods is the work by Lantoine et al. [139] and Pellegrini and Russell [136] with their introduction of

multicomplex step differentiation. Multicomplex numbers are an extension of the complex numbers, and this

method uses minute perturbations along the appropriate multicomplex direction to obtain partial derivatives

of arbitrary order for any holomorphic function. While this technique has been shown to be both accurate

and robust, its implementation is non-trivial and typically requires the development of auxiliary software

that implements multicomplex mathematical floating point operations.

Still yet another class of methods for numerically computing partial derivatives is automatic differentia-

tion. Automatic differentiation, also known as algorithmic differentiation or computational differentiation,

encompasses a class of techniques that seeks to numerically compute the derivatives of a function expressed

in a computer program at accuracies matching machine epsilon precision and can be realized using a wide

variety of implementation strategies. In general, Automatic Differentiation (AD) techniques fundamentally

rely on the fact that the chain rule can be successively applied to the mathematical expressions contained in

a computer program in order to obtain derivatives of those expressions to arbitrary order. Automatic differ-

entiation was first introduced in 1964, with the pioneering work on forward mode derivative accumulation by

Wengert [140]. Reverse mode accumulation was introduced shortly after by Linnainmaa [141,142] and is the

discrete analogue to continuous adjoints of differential equations. Automatic differentiation implementations

can be roughly partitioned into these two main operational families, namely techniques that use forward

mode derivative accumulation, and those that use reverse mode accumulation. Additional details regarding

forward mode AD will be discussed in section 3.6.1.

Often the most computationally efficient means for computing the Jacobian is to provide analytic ex-

pressions for the dense entries. Depending on the complexity of the NLP problem being solved, this can

be a tedious and error-prone process. Despite this, a large portion of the contributions described in this

work relate to the analytic calculation of partial derivatives for trajectory transcriptions. Chapter 3 will

describe algorithms for computing the Jacobian for two bounded-impulse trajectory models and chapter 4

will extend these methods to a time-regularized bounded-impulse model. Chapter 5 will discuss techniques

for computing the Jacobian of a finite-burn trajectory model that employs numeric integration.

2.2 Forward-Backward Multiple Shooting

The MGA trajectory optimization problem is a multi-phase optimal control problem and a mission trajectory

may be organized into Np phases. In a forward-backward shooting phase, the spacecraft state is propagated
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from both phase boundaries inwards to an interior defect point in contrast to a single-shooting algorithm

where the spacecraft state is propagated from one of the boundaries directly to the other. There are a

number of advantages to using a multiple shooting transcription over one with a single forward shooter.

The most obvious benefit is that the length of the shooting arcs are reduced, which leads to a reduction

in numerical sensitivity and improved convergence. Moving the terminal manifold constraint to the mid-

point of the phase prevents the optimizer from having to satisfy equality constraints with respect to an

ephemeris-pegged object. Furthermore, from a practical standpoint, defects in the trajectory are easier to

correct farther away from targeted flybys.

The boundaries of an FBS phase are called control points and can be massive bodies (flyby targets) such

as planets, their satellites, asteroids, etc., or even a free point in space. The optimizer encodes the mass

and the relative velocity vector of the spacecraft with respect to the control points (v∞) at either side of

the phase as decision variables. These decision parameters are combined with ephemeris data to form the

complete spacecraft state at either side of a phase, which is then propagated forwards and backwards from

the control points at the phase boundaries. This two-sided shooting, in general results in a discontinuity of

the spacecraft’s state vector (X) at some location along the phase, which is closed to within some tolerance

by the numerical optimizer as shown in Figure 2.2.

Match point Control point (planet, satellite, free point in space)

Forward propagation

Backward propagation

Mission clock time flow

F

mp
X B

mp
X

Figure 2.2: A single FBS phase.

The FBS formulation is popular, especially among interplanetary trajectory designers and there are

several examples of spacecraft trajectory optimization tools and design infrastructures that make use of the

FBS concept, including CATO [122,123], MALTO [15,49] and EMTG [47,48,90,113,143]
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The hallmark constraint of an FBS phase is the match point continuity constraint. In order to enforce

continuity of the state vector across the match point, a vector of “defect” constraints is applied:

cmp = XB
mp −XF

mp =


rB − rF

vB − vF

mB −mF

 = 0 (2.4)

For a multi-phase mission, the sum of the individual phase flight times (∆tp) is constrained such that it fall

within the upper and lower bounds (∆tmin and ∆tmax) placed on the total mission time-of-flight ∆tflight by

the trajectory analyst:

cTOF = ∆tmin ≤ ∆tflight =

Np∑
i=1

∆tpi ≤ ∆tmax (2.5)

A list of typical decision variables that characterize an FBS mission are described in Table 2.1.

Table 2.1: Typical decision variables for an FBS mission.

xi Description Count

tlaunch Launch epoch 1

v∞ Launch impulse magnitude 1

RA Right ascension of launch asymptote 1

DEC Declination of launch asymptote 1

∆tp Phase time of flight Np

mfp Phase final mass Np

v∞p
(t0) Phase initial excess velocity vector 3(Np − 1)

v∞p(tf ) Phase final excess velocity vector 3Np
a

a For a rendezvous this becomes 3(Np − 1) because the ren-

dezvous maneuver is deterministic.

2.3 The Patched-Conics Model

By their nature, preliminary trajectory design methods incorporate approximations that aid in accelerating

the exploration of the design space. One of the most widely utilized approximation methods is the patched-
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conics model. This technique allows for the calculation of MGA trajectories using a two-body Keplerian

propagation. In this framework, flyby maneuvers are modeled as instantaneous elastic collisions in the frame

of the central body. The velocity of the spacecraft with respect to the central body immediately prior to

the flyby is denoted by v−s/c. Then, interaction with the flyby target moving with velocity vplanet causes

an instantaneous change in the spacecraft velocity ∆vflyby. The magnitude of the velocity of the spacecraft

immediately after the flyby v+
s/c may be larger or smaller than the velocity prior to the event, in the frame

of the central body. The magnitude of the hyperbolic excess velocity vectors with respect to the GA target

v−∞,v
+
∞, however, remain unchanged. The body frame conservation of energy, must be formulated as a

constraint when the patched-conic model is employed by a numerical optimizer:

cv∞ = v+
∞ − v−∞ = 0 (2.6)

The flyby geometry must be further constrained such that the altitude of the spacecraft does not drop below

a minimum safe altitude hsafe above the body’s radius rbody, and that the turn angle of the flyby is physically

realizable:

cflyby-altitude = rperiapse − (rbody + hsafe) ≥ 0 (2.7)

=
µbody

v+
∞

2

[
1

sin(δ/2)
− 1

]
− (rbody + hsafe) ≥ 0

where δ is defined in Eq. (2.8).

δ = acos

(
v−∞ · v+

∞
v−∞ v+

∞

)
(2.8)

and rbody is the radius of the target flyby body.
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Figure 2.3: Patched-conic model flyby vector geometry.

Gradients for Equations (2.6) and (2.7) with respect to the flyby velocity asymptote vectors are computed

as follows:

∂cflyby-altitude

∂v−∞x

= −
µbody cos

(
acos(α)

2

)(
v+
∞x
v−∞y

2 − v−∞x
v+
∞y
v−∞y

+ v+
∞x
v−∞z

2 − v−∞x
v+
∞z
v−∞z

)
rperiapse(α− 1)

[
1− (v−∞xv

+
∞x+v−∞yv

+
∞y+v−∞zv

+
∞z )2

γβ

]1/2

γ3/2β3/2

(2.9)

∂cflyby-altitude

∂v−∞y

= −
µbody cos

(
acos(α)

2

)(
v+
∞y
v−∞x

2 − v−∞y
v+
∞x
v−∞x

+ v+
∞y
v−∞z

2 − v−∞y
v+
∞z
v−∞z

)
rperiapse(α− 1)

[
1− (v−∞xv

+
∞x+v−∞yv

+
∞y+v−∞zv

+
∞z )2

γβ

]1/2

γ3/2β3/2

(2.10)

∂cflyby-altitude

∂v−∞z

= −
µbody cos

(
acos(α)

2

)(
v+
∞z
v−∞x

2 − v−∞z
v+
∞x
v−∞x

+ v+
∞z
v−∞y

2 − v−∞z
v+
∞y
v−∞y

)
rperiapse(α− 1)

[
1− (v−∞xv

+
∞x+v−∞yv

+
∞y+v−∞zv

+
∞z )2

γβ

]1/2

γ3/2β3/2

(2.11)

where
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α =
v−∞x

v+
∞x

+ v−∞y
v+
∞y

+ v−∞z
v+
∞z

β1/2γ1/2

β = v+
∞x

2
+ v+
∞y

2
+ v+
∞z

2

γ = v−∞x

2
+ v−∞y

2
+ v−∞z

2

∂cflyby-altitude

∂v+
∞x

=
2v+
∞x

µbody

rperiapseξ2
−

2v+
∞x

µbody

rperiapse sin
(

acos(ε)
2

)
ξ2

−
µbody cos

(
acos(ε)

2

)(
v−∞x

v+
∞y

2 − v−∞y
v+
∞x
v+
∞y

+ v−∞x
v+
∞z

2 − v−∞z
v+
∞x
v+
∞z

)
rflyby(ε− 1)

[
1− φ2

ψξ

]1/2
ψ1/2ξ5/2

(2.12)

∂cflyby-altitude

∂v+
∞y

=
2v+
∞y

µbody

rperiapseξ2
−

2v+
∞y

µbody

rperiapse sin
(

acos(ε)
2

)
ξ2

−
µbody cos

(
acos(ε)

2

)(
v−∞y

v+
∞x

2 − v−∞x
v+
∞y
v+
∞x

+ v−∞y
v+
∞z

2 − v−∞z
v+
∞y
v+
∞z

)
rflyby(ε− 1)

[
1− φ2

ψξ

]1/2
ψ1/2ξ5/2

(2.13)

∂cflyby-altitude

∂v+
∞z

=
2v+
∞z

µbody

rperiapseξ2
−

2v+
∞z

µbody

rperiapse sin
(

acos(ε)
2

)
ξ2

−
µbody cos

(
acos(ε)

2

)(
v−∞z

v+
∞x

2 − v−∞x
v+
∞z
v+
∞x

+ v−∞z
v+
∞y

2 − v−∞y
v+
∞z
v+
∞y

)
rflyby(ε− 1)

[
1− φ2

ψξ

]1/2
ψ1/2ξ5/2

(2.14)

where
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ε =
φ

ψ1/2ξ1/2

ξ = v+
∞x

2
+ v+
∞y

2
+ v+
∞z

2

φ = v−∞x
v+
∞x

+ v−∞y
v+
∞y

+ v−∞z
v+
∞z

ψ = v−∞x

2
+ v−∞y

2
+ v−∞z

2

2.4 Spacecraft Power System Modeling

The solar electric power model introduced in this section is compatible with gradient-based optimizers that

require differentiability of the problem constraints and objective function. For a spacecraft using a solar

electric propulsion (SEP) system, the maximum amount of thrust that the system can produce depends

on the power available, which in turn depends on its distance from the Sun. The relationship between

power generated and thrust produced must be modeled in the trajectory optimization process even at the

preliminary design stage. The trajectory design analyses presented in this work incorporate models of real

thruster hardware. Typically, trajectory design engineers are supplied with polynomial representations of

the thrust and mass flow rate of a given thruster, e.g.,

Tmax = eTP
4
eff + dTP

3
eff + cTP

2
eff + bTPeff + aT (2.15)

ṁmax = emP
4
eff + dmP

3
eff + cmP

2
eff + bmPeff + am (2.16)

where Peff is the power available to each thruster,

Peff = P/Nactive (2.17)

and Nactive is the number of thrusters firing at any point in time. The polynomial coefficients used in Eq.

(2.15) and (2.16) are provided in Table A.1 in Appendix A.2.

Equations (2.15) and (2.16) are valid over a range [Pmin, Pmax] where Pmin represents the minimum

amount of power necessary to turn on the thruster’s power processing unit (PPU) at the lowest setting and

Pmax represents the maximum amount of power that the PPU can safely accommodate. The total power

available to the electric propulsion system P is the difference between the power generated by the spacecraft
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Pgenerated and the power required to operate the spacecraft bus Ps/c,

P = (1− δpower)
(
Pgenerated − Ps/c

)
(2.18)

where δpower is the propulsion power margin. In this work, the power delivered by a solar array is given

by [51]:

Pgenerated =
P0

r2
s/�

(
γ0 + γ1/rs/� + γ2/r

2
s/�

1 + γ3rs/� + γ4r2
s/�

)
(2.19)

where the γi are solar array coefficients typically determined from experimental data provided by the man-

ufacturer, rs/� is the distance between the Sun and the spacecraft in Astronomical Unit (AU) and P0 is the

“base power” delivered by the array at 1 AU. P0 is in turn a function of the time since launch,

P0 = P0-BOL (1− τ)
t

(2.20)

where P0-BOL is the base power delivered by the array at 1 AU on the day of launch, τ is the decay rate of the

solar arrays measured as a percentage per year, and t is the time since launch in years. Equation (2.20) may

also be used to model the decay of a radioisotope thermal generator (RTG) or advanced Stirling radiosotope

generator (ASRG) power system. The power required by the spacecraft bus Ps/c is also modeled as a

polynomial,

Ps/c = as/c + bs/c/rs/� + cs/c/r
2
s/� (2.21)

where as/c, bs/c, and cs/c are specified by the mission designer.

The most interesting case is when Peff > Pmax or Peff < Pmin, and therefore thrusters must be switched

on or off. When Peff > Pmax then either an additional thruster must be switched on, or if no other thrusters

are available, Peff must be clipped to Pmax. Finally, when Peff < Pmin then a thruster must be switched off.

A discontinuity exists in Equations (2.15) and (2.16) at the boundaries where Peff = Pmax or Peff = Pmin.

A discontinuity such as this results in the gradients of Equations (2.15) and (2.16) to become undefined,

which will negatively impact the performance of gradient-based optimizers, especially in the case where there

is not enough power to turn on any thrusters at all. It is desirable to smooth the power and propulsion

models and remove the discontinuity. McConaghy [144] proposed smoothing the propulsion model using the

“smoothstep” technique from the field of computer graphics. A different approach has been developed for

this work.

Heaviside [145] defined the unit step function as instantaneously taking half value at the point of transi-
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tion. It is then possible to approximate the step function using the logistics function,

H (x) = lim
α→∞

1

1 + exp (−2αx)
. (2.22)

Equation (2.22) is continuously differentiable and therefore eliminates the problems that a gradient-based

solver would have with a step function. In the context of multi-thruster switching, a set of Heaviside step

functions {Hi (P )} is introduced,

Hi (P ) =
1

1 + exp (−2α (P − P ∗i ))
(2.23)

where each Heaviside step function Hi (P ) defines the switch state of the ith thruster and α defines the

sharpness of the transition. The larger the value of α, the closer Hi (P ) approximates the Heaviside step

function. However, while the derivativesH ′i (P ) increase as α increases, they remain finite andHi (P ) remains

continuous. Numerical experimentation indicates that the optimizer behaves best when the derivatives are

reasonably small (i.e. small α), however, if α is too small then the thruster model will frequently report a

fractional non-integer Hi (P ). Nactive may then be defined as,

Nactive =

N∑
i=1

Hi (P ) (2.24)

To fully define Nactive, it is necessary to define the transition powers P ∗i at which a thruster would be

switched on and off. For propulsion modules featuring multiple thrusters, several different thruster logic

programs may be followed. When as few thrusters as possible are activated for a given available power each

P ∗i is an integer multiple of Pmax except for P1, which is equal to Pmin. Alternatively if as many thrusters as

possible are activated, then each P ∗i would be an integer multiple of Pmin. It is also possible to define other

switching laws such as maximum thrust or maximum total specific impulse, or even maximize the propulsion

system efficiency for a given power level, in which case one would need to compute the transition P ∗i where

those merit functions change as a function of the number of thrusters. Two of these thruster logic programs

are provided in Algorithms 1 and 2:

Figure 2.4 shows the available thrust for a notional system with four XR-5 (BPT-4000) thrusters, each

with Pmin = 0.302 kW. The plot is focused on the region between 2 and 4 AU where the thruster transitions

occur. The spacecraft’s solar array can provide 10 kW at 1 AU and the spacecraft bus requires 0.5 kW at all

times. Several values of α are shown, each a different compromise between smoothness and accuracy. One
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Algorithm 1 Multi-Thruster Logic:
Maximum Number of Thrusters
nactive = navailable

if P ≥ Pmin then
for n = navailable;n > 0;−− n do

if P ≥ nPmin then
nactive = n
break

end if
end for

else
nactive = 0

end if

Algorithm 2 Multi-Thruster Logic:
Minimum Number of Thrusters
nactive = navailable

if P ≥ Pmin then
for n = navailable;n > 0;−− n do

if P ≤ nPmax then
nactive = n
break

end if
end for

else
nactive = 0

end if

can see that the line marked with + symbols, representing α = 1000, closely approximates the unsmoothed

solid red line that does not have continuous derivatives. The smoothing method described here removes

these discontinuities and improves the robustness of the solver. A value of α = 100 is recommended as a

good compromise between well-behaved derivatives and accuracy.
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Figure 2.4: Thrust vs. distance from sun for various values of α. The propulsion system consists of 4xBPT-
4000 thrusters with PBOL = 10 kW.

2.5 Partial Derivatives of the Ephemeris

In most trajectory design applications, ephemeris data for solar system bodies is provided using the Space-

craft Planet Instrument C-matrix Events (SPICE) ephemeris toolkit [146]. SPICE provides a compact,

high-precision approximation to the actual integrated ephemerides by using Chebychev polynomial fits and

is considered industry standard for astronomers and planetary scientists, and also for most trajectory design

work. However, SPICE suffers from several major limitations that make it less than ideal for optimization

applications. First, in the interest of maintaining a small memory footprint, SPICE reads ephemeris data

directly from the hard drive for each query and is therefore quite slow. While this was a requirement of

software in the past when computer memory was significantly more limited, it is also a major execution

speed handicap for modern trajectory optimization frameworks. Second, and of particular importance to

this work, SPICE does not provide derivatives of the Chebychev functions used to model the body states,

which are required to compute time derivatives of the ephemeris. Furthermore, in the interest of main-

taining accuracy, each of the six states (x, y, z, ẋ, ẏ, ż) is fit to a separate polynomial for most SPICE

ephemeris types. A body’s velocity in SPICE is therefore not guaranteed to be the derivative of its position.

Finally, the Chebychev state vector fits are performed over fairly short intervals of time. The polynomial
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fitting functions are C0 continuous at the boundaries of these intervals, and are, therefore, not differentiable

at these points. As a result of these limitations, SPICE is not the ideal ephemeris package for trajectory

optimization because it does not work well with an analytic derivative formulation.

Several attempts were made to circumvent the issue of a non-smooth ephemeris. The first approach

was to simply compute all derivatives with respect to time variables (e.g. launch epoch and phase flight

times) using finite differencing, however, this was slow and resulted in poor convergence properties. The

second approach was to finite difference just the ephemeris itself and then chain the resulting boundary state

derivative with the analytical derivatives derived in a previous work [143]. The second approach was much

faster but delivered a poor approximation to the actual derivatives and also resulted in poor convergence.

The third approach was to fit a cubic spline to the SPICE ephemeris data and cache the spline coefficients

in the computer’s random access memory (RAM), a strategy first proposed by Arora and Russell [147]. The

approach used in this work is similar, except that where Arora and Russell created a complex ephemeris

archives and saved them to the hard drive such that they could be reused, the package created for this work

(SplineEphem) performs the spline fitting at the start of the optimization program’s execution. The resulting

ephemeris system is simpler to use at the cost of a few seconds of load time prior to each optimization run.

2.5.1 SplineEphem

The creation of a SplineEphem fit for a given solar system body consists of two steps. First, SPICE is used

to generate the set of ephemeris points over which the spline will be fit. The spline fits themselves are then

computed using the GNU Scientific Library (GSL) spline package [148]. Figures 2.5 and 2.6 show the error

in position and velocity for a SplineEphem fit to Jupiter over 1000 days, with 100 ephemeris points per

orbital period of Jupiter. The maximum position error in this example is 414 km and the maximum velocity

error is 4.3 m/s, which is more than sufficient for the preliminary trajectory design studies presented in this

work. Should better accuracy be required for high-fidelity planning, the number of sample points may be

increased at the cost of a larger RAM footprint.

In addition to providing analytic derivatives that themselves lead to improved speed and convergence,

SplineEphem is much faster than SPICE. SplineEphem’s access speed was tested using 1e+7 ephemeris

access events. When the accesses are sequential in time then SplineEphem is 12 times faster than SPICE,

and if the sample epochs are randomized, then SplineEphem is 82 times faster.
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Figure 2.5: SplineEphem error relative to SPICE for the position of Jupiter relative to the Sun, over a
1000-day period.

Figure 2.6: SplineEphem error relative to SPICE for the velocity of Jupiter relative to the Sun, over a
1000-day period.
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Chapter 3

Analytic Gradient Computation for
Bounded-Impulse Trajectory Models

Figure 3.1: Apollo 8 Coming Home by Robert McCall.

The modeling of spacecraft maneuvers as impulsive events is a common preliminary design technique. The

impulsive approximation treats a finite-burn maneuver as an instantaneous change in a spacecraft’s velocity

vector (i.e. an elastic collision). For nearly all preliminary maneuver design activities, this approximation is

acceptable, and the additional propellant cost of modeling a burn of finite duration is of little importance

to early stage design.

Traditionally, most impulsive analysis was performed in the context of determining a ∆v budget for a

particular trajectory. That is to say, the impulsive maneuver could be of infinite magnitude, and whether or
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not a particular required maneuver ∆v was achievable or not from a hardware/propellant perspective was

only considered a posteriori. For the preliminary design analysis, and corresponding trajectory transcription

techniques, described in this work, all impulsive maneuvering is performed assuming a bounded-impulse

model. That is to say, mass is propagated alongside position and velocity, and unachievable maneuvers from

a propellant consumption perspective are discarded during the optimization process.

The practice of incorporating impulsive maneuvers into preliminary design is not limited to high-thrust

regimes. The pioneering work by Sims and Flanagan [15] introduced a method for approximating low-

thrust trajectory arcs using a series of bounded-impulses that laid the groundwork for how most preliminary

low-thrust mission design has been carried out since that paper was published. In particular, low-fidelity

low-thrust interplanetary mission design at NASA GSFC, JPL and JHUAPL is all based on this concept.

The bounded-impulse approximation for spacecraft trajectories, in both high and low-thrust regimes,

has an important role in many preliminary trajectory design frameworks [15,46,49,111,149]. Mission design

efforts have benefited greatly from the execution speed of software implementations of these models, and they

are valued for their ability to rapidly generate preliminary design quality solutions capable of steering trade

studies and proposal efforts [100, 101]. Efficiency is important when exploring problems with large design

spaces, therefore, any measures that can be taken to improve a preliminary design method’s execution speed

should be taken.

The primary advantage of computing maneuvers impulsively is that Keplerian propagation of the space-

craft is possible at all times if two-body motion is assumed. That is to say, the spacecraft’s state can be

advanced according to the following matrix equation:

rk+1

vk+1

 =

F G

Ḟ Ġ


rk

vk

 , (3.1)

where expressions for F, Ḟ ,G and Ġ are provided in Eq. (3.18), (3.19), (3.21) and (3.22). When modeling

a true finite-burn, even if only central body gravity is being considered, numerical integration of a thrust

term in the differential equations of motion is required.

The accurate and efficient computation of constraint gradients has been shown to be of critical importance

to a preliminary design optimization framework [73,150,151]. Multi-objective HOC solution frameworks that

seek to generate Pareto surfaces [100,101] in particular are enabled by the fast computation of accurate NLP

gradients.
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The multiple gravity-assist low-thrust (MGALT) [47] and multiple gravity-assist with n deep space

maneuvers using shooting (MGAnDSMs) [152] are two examples of bounded-impulse trajectory models

and are described in the next two sections. The remainder of the Chapter is then dedicated to analytic

techniques for computing the Jacobian matrices for both of these transcriptions. The methods presented

allow for the incorporation of an accurate solar-electric power model [131] into the trajectory model and are

applicable to trajectories around any central body.

Despite the utility of providing analytic gradient information to an NLP optimizer, an algorithm spec-

ification for computing partial derivatives of one of the most important trajectory models to preliminary

mission design, the Sims-Flanagan transcription, has been notably absent from the literature to date. While

several variations of the Sims-Flanagan transcription exist, due to improvements made to the algorithm

since it was introduced, the version presented here has been successfully incorporated into an operational

preliminary design framework [47] that has supported several Discovery and New Frontiers class mission

concept studies and implementations, and is recommended for the general practitioner. Particular emphasis

is placed on the computation of the Sims-Flanagan phase defect constraint gradients, which are characterized

by complex functional dependencies.

Application problems that underscore the benefits gained from utilizing an analytically computed Jaco-

bian in the optimizer are presented at the end of this chapter. Several of these examples also investigate

the effect that using these analytic techniques has on a solver scheme that incorporates both local gradient

searches using an NLP solver as well as a stochastic search component realized with the monotonic basin

hopping (MBH) heuristic [48, 153–155]. The algorithms described here have been verified for accuracy by

using an automatic differentiation package that was developed by Ghosh [156].

3.1 Multiple Gravity-Assist Low-Thrust Trajectory Model

The multiple gravity assist with low-thrust (MGALT) transcription is a simplified model that combines the

well-known Sims-Flanagan transcription [15] with a two-body patched-conic flyby model [157]. Each phase

of a Sims-Flanagan trajectory is itself a multistage optimal control problem, and is discretized into N equal

time segments. Fig. 3.2 depicts a single phase and shows the match point discontinuity.

The continuous thrust that may be applied over the course of the kth segment in a phase is approximated

by a bounded-impulse at the center of the segment whose maximum magnitude is equal to the change in

velocity that would have been provided had the spacecraft’s thruster been operated continuously at its
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Figure 3.2: A single MGALT phase. The velocity symbols v−k and v+
k are present to indicate the velocity

of the spacecraft immediately prior to and immediately after the kth impulsive maneuver.

maximum throttle setting for the full duration of the segment:

∆vmaxk =
NactiveD Tmaxk (tf − t0)

mkN
(3.2)

In Eq. (3.2), Nactive is the number of active thrusters, D is the thruster duty cycle, Tmaxk is the maximum

available thrust for the current maneuver, t0 and tf are the beginning and ending epochs of the current

phase and mk is the mass of the spacecraft at the center of the segment, just prior to the applied impulse.

Since the applied thrust is approximated as a discontinuous ∆v vector, it is possible to propagate the

spacecraft’s position and velocity components using Kepler’s equation between applied impulses. Further-

more, due to this discontinuity, the following notation is adopted to distinguish between the spacecraft’s

velocity just before, and immediately following, the applied impulse, i.e.

v+
k = v−k + ∆vmaxkuk (3.3)

for forward propagation, and
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v−k = v+
k −∆vmaxkuk (3.4)

for backward propagation. Note that in the backwards propagation half phase, the − and + superscripts on

the pre- and post-impulse spacecraft velocities preserve the manner by which a trajectory will be physically

flown and not the way it is numerically propagated in the solver. The 3x1 vector uk contains the control

parameters associated with the kth maneuver, for which the norm is bounded by one (the “up-to-unit vector

control” stage constraint [158]), i.e.

uk =

[
uxk uyk uzk

]T
; ‖uk‖ ≤ 1 (3.5)

Each MGALT phase contains N control vectors. The spacecraft’s mass across the kth bounded impulse is

computed using the following equation:

mk =


mk−1 − ‖uk−1‖ ∆mmaxk−1

forward propagation

mk+1 + ‖uk‖ ∆mmaxk backward propagation

(3.6)

where ∆mmaxk = D ∆tk ṁmaxk and ∆tk =
(tf−t0)
N . Note that the impulsive thrust approximation implies

m+
k−1 = m−k and for notational convenience, we set m−k = mk.

An MGALT phase is a specific variety of the general FBS phase. As such, it inherits the constraints and

decision variables as described in Table 2.1 and section 2.2, and adds to them the components of the control

vectors uk.

The maximum available thrust Tmax and the maximum mass-flow rate ṁmax are computed using a

propulsion system power model [113, 159]. These quantities are typically functions of their input power P ,

which is in turn a function of the spacecraft’s distance from the sun rs/� for the case of a solar electric power

system. In advanced power system models that model hardware degradation, the power available may also

be dependent on the time since launch, and will therefore have a direct dependency on the current epoch t

i.e.

Tmaxk(Pk(rs/�, t)); ṁmaxk(Pk(rs/�, t)) (3.7)
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3.2 Multiple Gravity-Assist with n Deep-Space Maneuvers

Trajectory Model

The multiple gravity assists with n deep space maneuvers per phase, using a shooting technique (MGAnDSMs),

is an FBS phase that models the trajectory of a spacecraft using a chemical engine [152]. A typical single

MGAnDSMs phase is depicted in Fig. 3.3. This phase type allows for the number n of mid-course maneu-

vers to be selected a priori or by an outer-loop optimizer. The maneuvers are separated in time by a ∆tk

optimization variable that determines their location in the phase. Note that maneuvers at the phase end

points are also possible. Alternatively, the phase endpoint may be a gravity-assist body. If fewer than n

maneuvers are optimal for the transfer, the formulation is structured such that one or more of the potential

maneuvers will have a magnitude of zero.

Figure 3.3: A single MGAnDSMs phase.

Unlike MGALT, the applied ∆v at each maneuver is encoded directly as a decision variable:

v+
k = v−k + ∆vk (3.8)
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Furthermore, mass is propagated using the Tsiolkovsky rocket equation:

mk+1 = mke
−∆vk/ve (3.9)

where ve is the rocket’s exhaust velocity measured relative to the vehicle.

As with MGALT, the specialization of an FBS phase to an MGAnDSMs phase introduces several ad-

ditional optimization parameters and constraints. As summarized in Table 3.1, for this phase type, the

mid-course maneuver vectors (if any), and the relative time variables ∆tk that separate them must be

selected by the NLP solver.

Table 3.1: Additional decision variables for an MGAnDSMs phase.

xi Description Number

∆t1 time to first maneuver 1

∆t2, ...,∆tn inter-maneuver times n− 1

∆tn+1 time from last maneuver to phase end 1

∆v1, ...,∆vn DSM vectors 3n

The inter-maneuver times ∆t2, ...,∆tn are only present for n > 1 and, for any single phase, the inter-

maneuver times ∆tk are constrained such that their sum does not exceed the phase flight time:

n+1∑
k=1

∆tk −∆tp = 0 (3.10)

In practice, the true decision variable selected by the NLP solver, is αk ∈ [0, 1], with ∆tk = αk∆tp. Then,

the elements in the set {αi} are constrained such that their sum does not exceed one.

3.3 Two-Body Propagation Using a Universal Variable

Formulation

The transcriptions described in this paper utilize Keplerian two-body propagation using the Lagrange co-

efficients [160], Eq. (3.1). It should be noted that this could be replaced with numerical integration in

the case of MGAnDSMs for the purpose of including additional dynamics thereby increasing the fidelity of
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the solution. For the case of MGALT, if the two-body propagation is replaced with numerical integration,

the impulsive approximation should be discarded in favor of including the thrust term directly into the

differential equations of motion [159].

It is generally beneficial to use a two-body propagation method capable of robustly propagating any orbit

initial condition (i.e. elliptical, parabolic or hyperbolic) initialized by a search method. For this reason, a

propagation method based on universal orbit variables is employed. Here we extend the propagator described

by Der [161] to any conic orbit. The universal variables are defined according to the energy regime of the

orbit. For elliptic trajectories:

α =
1

a
=

2

rk
− v2

k

µ
> 0 (3.11)

then defining

y = αχ2 (3.12)

C =
1

y
(1− cos(

√
y)) (3.13)

S =
1

y3
(
√
y − sin(

√
y)) (3.14)

the universal variables become:



U1 = χ(1− yS)

U2 = χ2C

U3 = χ3S

U0 = 1− αU2

(3.15)

For a hyperbolic trajectory, α < 0 and then
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U0 = cosh(
√
−αχ)

U1 = 1√
−αχ sinh(

√
−αχ)

U2 = 1
α (1− U0)

U3 = 1
α (χ− U1)

(3.16)

Parabolic trajectories are unlikely to be initialized by a search method. However, they can occur when an

optimizer transitions a hyperbolic trajectory to an elliptic one, or vice versa. In this case, α = 0 and



U0 = 1

U1 = χ

U2 = 1
2U1χ

U3 = 1
3U2χ

(3.17)

Since it will never be the case that α will be exactly equal to zero (to machine precision), we find that a

tolerance of |α| < 1× 10−12 works well.

The Lagrange coefficients and their time derivatives are given by:

F = 1− U2

rk
(3.18)

Ḟ = −
√
µ

rk+1rk
U1 (3.19)

F̈ = −
√
µ

rk

(
U̇1

rk+1
− U1

ṙk+1

r2
k+1

)
(3.20)

G =
1
√
µ

(rkU1 + σkU2) (3.21)

Ġ = 1− U2

rk+1
(3.22)

G̈ = −

(
U̇2

rk+1
− U2

ṙk+1

r2
k+1

)
(3.23)

where,

rk+1 = rkU0 + σkU1 + U2 (3.24)
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ṙk+1 = rkU̇0 + σkU̇1 + U̇2 (3.25)

σk+1 = σkU0 + (1− αrk)U1 (3.26)

σk =
rk · vk√

µ
(3.27)

∂U0

∂χ
= −αU1;

∂Un
∂χ

= Un−1 n = 1, 2, ... (3.28)

∂χ

∂t
=

√
µ

r
(3.29)

Kepler’s equation in terms of the universal variable may be written as follows:

f = rkU1 + σkU2 + U3 −
√
µ∆t (3.30)

where,

∂f

∂χ
= rk (3.31)

∂2f

∂χ2
= σk (3.32)

Solution of Eq. (3.30) for the root χ is achieved by iteration using the Laguerre-Conway method [162], using

the following update scheme:

χi+1 = χi − δχ; χ0 =


α
√
µ∆t, if α > 0

√
µ

10rk
∆t, otherwise

(3.33)

where,
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δχ =


Nf

∂f
∂χ±
√
η
, if η > 0

f
∂f
∂χ

, otherwise

(3.34)

and,

η =

∣∣∣∣∣(N − 1)2

(
∂f

∂χ

)2

−N(N − 1)f
∂2f

∂χ2

∣∣∣∣∣ (3.35)

Laguerre’s root finding method, when applied to a general smooth function f , requires that the sign in the

denominator of Eq. (3.34) be positive if f
′

(Eq. (3.31) in this case) is non-negative and negative otherwise.

Since Eq. (3.31) can never be negative for the particular case of Eq. (3.30), the sign will always be positive.

The order N is typically set to 5, but can be increased if numerical instabilities are encountered.

3.4 Match Point Gradient Computation

A large majority of the dense entries of the Jacobian matrix for the MGALT and MGAnDSMs transcriptions

are comprised of partial derivatives of the phase match points; this is because the partials of the match point

constraint vector cmp are dense with respect to nearly all entries in the decision vector x. These derivatives

are also the most complicated Jacobian entries to calculate. At the most general level, their computation

can be summarized by the following expression:

∂cmp

∂x
=
∂XB

mp

∂x
−

XF
mp

∂x
(3.36)

Calculating the matrix Eq. (3.36) requires the propagation of sensitivity information from various inter-

mediate points along a phase onwards to the match point. STMs can be used to map derivatives across

Keplerian arcs. The bounded impulse approximation introduces a velocity discontinuity at the location of

each maneuver (i.e. r(t) ∈ C0 and v(t) ∈ C−1). For this reason, in addition to the STMs, a method is

also required for mapping derivative information across these discontinuities. This mapping can also be ex-

pressed as a matrix and is hereafter referred to as the maneuver transition matrix (MTM). The alternating

STM/MTM derivative mapping technique is illustrated in Fig. 3.4. It is useful, to associate the maneuver

index k with the STMs and MTMs in order to keep track of the large number of calculations required to

compute the match point partials.
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Figure 3.4: Derivative mapping matrices.

Computation of the match point partial derivatives is complicated by the complex functional dependencies

created during the propagation of the spacecraft state. The dependency map for the MGALT transcription,

especially when it is coupled with a solar electric power model, is particularly intricate as shown in Fig.

3.5, where the + and - superscripts have been dropped from the position vector at the time of the applied

maneuver, i.e. r+
k = r−k = rk due to the impulsive maneuver approximation.

Figure 3.5: Forward half phase MGALT functional dependency tree.
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3.4.1 State and Derivative Propagation Sweeps

Multiplication of these matrices is transitive, allowing chains of STM-MTM pairs to propagate derivative

information from any point along the phase to the match point, as shown in Fig. 3.6.

Figure 3.6: Example of a 10 segment MGALT phase. Match point derivatives are calculated in three steps:
1) the STMs and MTMs are computed as the state is propagated to the match point, 2) the STM-MTM
multiplication chains are assembled from the match point outwards to the phase boundaries, 3) derivative
information is propagated from points along the phase to the match point.

First, the spacecraft state (X) is propagated from both phase boundaries inward to the defect in the center

of the phase. As this propagation proceeds, the STMs and MTMs are calculated and stored. Then STM-

MTM matrix chains are constructed in a backwards sweep that opposes the direction of state propagation.

It is most efficient to perform this sweep beginning at the match point and then proceed towards the phase

boundary as the STM-MTM sub-chains can be successively constructed by recursively combining previously

computed sub-chains, as illustrated in Fig. 3.7 for a forward half-phase. The same holds true for backward

propagated half-phases.

Finally, the STM-MTM chains can be used to propagate derivative information from any point along

the phase to the match point in order to compute the defect constraint cmp there. The calculation of STMs

and MTMs and the construction of the matrix chains represents the majority of the computational effort

required to evaluate a two-point shooting phase as depicted in Fig. 3.6.
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Figure 3.7: Recursive construction of the STM-MTM chain for a forward propagated half-phase.

Two-Body State Transition Matrix

The two-body perturbation state transition matrix contains the first-order sensitivities of the spacecraft’s

position and velocity vectors at arbitrary time tk with respect to variations in the position/velocity vector

at a previous time tk−1.

Φ(tk, tk−1) =

R̃(t) R(t)

Ṽ(t) V(t)

 =

 ∂rk
∂rk−1

∂rk
∂vk−1

∂vk
∂rk−1

∂vk
∂vk−1

 (3.37)

The 3x3 quadrants of the perturbation STM can be computed analytically and are available from several

sources [160,163–167]. The expressions for these submatrices developed by Battin [160] are provided in the

Appendix (Equations (A.1) - (A.4)).

Augmented State Transition Matrix

In order to account for first order sensitivities of mass, time-of-flight and launch epoch/previous phase flight

times, the spacecraft state vector is augmented with two slots, one to hold the current phase flight time and

one to hold a previous phase’s flight time.
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X =



r

v

m

∆tp

∆tprevious


(3.38)

Going forward, the vector X will refer to this augmented state vector. The two-body STM is expanded with

additional rows and columns to accommodate the augmented state vector:

Φk =
∂X−k
∂X+

k−1

=



R̃k(t) Rk(t)
∂r−k
∂∆tp

Ṽk(t) Vk(t)
06×1

∂v−k
∂∆tp

06×1

03×6 I3×3



=



∂r−k
∂r+k−1

∂r−k
∂v+

k−1

∂r−k
∂∆tp

∂v−k
∂r+k−1

∂v−k
∂v+

k−1

06×1
∂v−k
∂∆tp

06×1

03×6 I3×3


(3.39)

Proceeding from the left, the first additional row/column in Eq. (3.39) is for the spacecraft’s mass, then

current phase time-of-flight and previous phase flight times. This augmented STM may be used for both

the MGALT and MGAnDSMs transcriptions as both transcriptions use Keplerian two-body propagation

methods. Note that Eq. (3.39) depicts the STM from a forward half phase, the index and impulsive burn

notational convention changes slightly for a backwards half phase:

Φk =
∂X+

k

∂X−k+1

(backwards half phase STM) (3.40)

It is important to note that the computations associated with previous phase flight times are valid for all

previous phase flight times as well as the launch/departure epoch. A perturbation in any one of these past

epoch variables impacts the current state in the same manner. The inclusion of the two additional variables
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in the state vector is for the convenience of expressing the calculations in the following sections as matrix

operations and does not result in a corresponding augmentation of the match point constraint (Eq. 2.4),

which remains a defect in position, velocity and mass only.

MGALT Maneuver Transition Matrix

Unlike the STM, the MTM is transcription dependent due to the presence of thruster hardware modeling

for MGALT and because mass is propagated differently for the two trajectory models. The MGALT MTM

is calculated as follows:

Mk =
∂X+

k

∂X−k

=



∂r+k
∂r−k

∂r+k
∂v−k

∂r+k
∂mk

03×1 03×1

∂v+
k

∂r−k

∂v+
k

∂v−k

∂v+
k

∂mk
Mk24 Mk25

∂mk+1

∂r−k
01×3 1 Mk34 Mk35

02×7 I2×2



=



I3×3 03×3 03×1 03×1 03×1

∂v+
k

∂r−k
I3×3

∂v+
k

∂mk
Mk24 Mk25

∂mk+1

∂r−k
01×3 1 Mk34 Mk35

02×7 I2×2


(3.41)

For forward propagated half phases:

∂v+
k

∂r−k
=
∂∆vmaxk

∂r−k
= uk

D∆tk
mk

· ∂Tmaxk

∂Pk
· ∂Pk
∂rs/�k

·
∂rs/�k
∂rk

(3.42)

The last term in Eq. (3.42) implies that these calculations are valid for any central body, i.e.,
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rs/� = r− r� (3.43)

where r� is the position of the sun with respect to the central body. This sub-matrix is similarly calculated

for backwards propagated half phases, with the addition of an extra term that accounts for the fact that in

Eq. (3.6), mk has a direct dependence on ṁmaxk :

∂v−k
∂r+

k

= uk
D∆tk
mk

· ∂Pk
∂rs/�k

·
∂rs/�k
∂rk

·
[
∂Tmaxk

∂Pk

− ‖uk‖
D∆tkTmaxk

mk
· ∂ṁk

∂Pk

]
(3.44)

From Eq. (3.3) and (3.4), it follows that:

∂v+
k

∂mk
=
∂∆vmaxk

∂mk
= −uk

D∆tkTmaxk

m2
k

= −uk
∆vmaxk

mk
(3.45)

∂v−k
∂mk+1

=
∂∆vmaxk

∂mk
· ∂mk

∂mk+1
= uk

D∆tkTmaxk

m2
k

= uk
∆vmaxk

mk
(3.46)

The sensitivity of the post/pre-burn mass to changes in the spacecraft’s current position is calculated as

follows:

∂mk+1

∂r−k
= −‖uk‖D∆tk

∂ṁk

∂Pk
· ∂Pk
∂rs/�k

·
∂rs/�k
∂rk

(3.47)

∂mk

∂r+
k

= ‖uk‖D∆tk
∂ṁk

∂Pk
· ∂Pk
∂rs/�k

·
∂rs/�k
∂rk

(3.48)

The submatrices Mk24 and Mk34 will be discussed in section 3.4.3 and Mk25 and Mk35 in section 3.4.4.

MGAnDSMs Maneuver Transition Matrix

The MTM changes slightly for the high-thrust case as previously mentioned since mass is propagated using

the rocket equation. The MTM becomes:
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Mk =
∂X+

k

∂X−k
=



I3×3 03×3 03×1

03×3 I3×3 03×1 07×2

01×3 01×3 Mk33

02×7 I2×2


(3.49)

where,

Mk33 =
∂mk+1

∂mk
= e−∆vk/ve . (3.50)

STM-MTM Chain

Once Φk and Mk have been calculated for each segment, propagation of derivative information from any

point along the trajectory onward to the match point is achieved through sequential multiplication of these

matrices:

∂X†F
∂X+

k

= ΦN/2+1MN/2ΦN/2 · . . . ·Mk+1Φk+1 (3.51)

The only remaining step towards obtaining the actual derivatives of interest in Eq. (3.36) is to compute

the derivative
∂X+

k

∂xi
, that is the sensitivity of the spacecraft’s state immediately following the kth impulse to

changes in the ith element of the decision vector. One or more of these derivatives may be contained in the

derivative connection matrix Ξk. Details on the calculation of Ξk vary depending on the particular pi being

considered and are provided in subsequent sections for several decision vector entries. After computing the

derivative connection matrix, the match point Jacobian entries may be calculated as follows:

ΦN/2+1MN/2ΦN/2 · . . . ·Mk+1Φk+1Ξk (3.52)

3.4.2 Partials With Respect to Segment Control Variables

For both bounded impulse models, the majority of the problem decision variables are those defining the

magnitude and the direction of thrust applied over the course of each segment. The MTM submatrices

60



corresponding to these variables are computed differently for the two models.

MGALT Control Variables

For the low-thrust case, the actual decision variable is the “up-to-unit” throttle vector that scales the

maximum allowed ∆v for the segment. For forward propagated half phases, from Eq. (3.3):

∂v+
k

∂uk
= ∆vmaxkI3×3 (3.53)

and from Eq. (3.6):

∂mk+1

∂uk
= − uTk
‖uk‖

D ∆tk ṁmaxk (3.54)

therefore,

Ξk =
∂X+

k

∂uk
=



03×3

∂v+
k

∂uk

∂mk+1

∂uk

02×3


(3.55)

and hence,

∂XF
mp

∂uk
=


Φk+1Ξk k = N/2∏N/2−k
i=1

(
ΦN/2+2−iMN/2+1−i

)
Φk+1Ξk 1 ≤ k < N/2

(3.56)

When considering derivatives of the match point constraint with respect to control parameters in the back-

wards propagated half phase, the method changes slightly and
∂X−k
∂uk

must now be calculated:

∂v−k
∂uk

=
D∆tk ṁmaxk

‖uk‖
∆vmaxkuku

T
k −∆vmaxkI3×3 (3.57)

and from Eq. (3.6):
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∂mk+1

∂uk
=

uTk
‖uk‖

D ∆tk ṁmaxk (3.58)

therefore,

Ξk =
∂X−k
∂uk

=



03×3

∂v−k
∂uk

∂mk+1

∂uk

02×3


(3.59)

and hence,

∂XB
mp

∂uk
=


Φk+1Ξk k = N/2 + 1∏N
i=k (ΦiMi−1) Φk+1Ξk N/2 + 1 < k ≤ N

(3.60)

MGAnDSMs Control Variables

Computing match point control sensitivities for MGAnDSMs is done differently from the procedure for the

MGALT case in that the applied ∆v at each mid-course maneuver is directly encoded as a decision variable

(in lieu of the MGALT throttle parameter) and mass is propagated with the rocket equation. Therefore, for

forward propagation:

∂mk+1

∂∆vk
= −mk

ve

∆vTk
∆vk

e−∆vk/ve (3.61)

and,

Ξk =
∂X+

k

∂∆vk
=



03×3

I3×3

∂mk+1

∂uk

03×3


(3.62)

The procedure is similar for backwards propagation. The match point derivative calculations for phase final

mass and the components of v∞ are not discussed here, but their computation is analogous to the control
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sensitivity calculations for both MGALT and MGAnDSMs.

3.4.3 Partials with Respect to the Current Phase Flight Time

MGALT Flight Time Variables

The current phase flight time variable enters into the match point derivative computations via the STM in

addition to the MTM. The STM contains explicit time dependencies of the pre-impulse position and velocity

because the Kepler propagation length of each segment is computed from the current phase flight time. The

method for computing these derivatives is due to Pitkin [168] and is also used by Lantoine and Russell for

computing state sensitivities with respect to time-of-flight variables across one Keplerian arc [169]. The plus

and minus signs correspond to forward and backward propagated half phases respectively. Expressions for

computing the Lagrange coefficients F and G are provided by Battin [160] and their time derivatives are

discussed in the article by Pitkin [168].

∂r−k
∂∆tp

=
∂r−k
∂∆tk

· ∂∆tk
∂∆tp

= ±
[
Ḟr+

k−1 + Ġv+
k−1

] ∂∆tk
∂∆tp

(3.63)

∂v−k
∂∆tp

=
∂v−k
∂∆tk

· ∂∆tk
∂∆tp

= ±
[
F̈r+

k−1 + G̈v+
k−1

] ∂∆tk
∂∆tp

(3.64)

The derivative of segment propagation time with respect to ∆tp is calculated differently for the half-segments

than it is for full segments. In the MGALT model, half-segments occur at the left and right phase boundaries,

and on either side of the match point:

∂∆tk
∂∆tp

=


1
N for full segments

1
2N for half-segments

(3.65)

The MTM also contains entries that facilitate the computation of partial derivatives with respect to

∆tp. Specifically, changes in ∆vmaxk and ∆mmaxk due to variations in ∆tp are encoded in each MTM. The

submatrices Mk24 and Mk34 are comprised of ∆tp derivative directions of Pk, ∆t and tk that do not involve

the position of the spacecraft at the point of the applied maneuver r−k . To see what is meant by this, it is

helpful to examine the partial derivative of Pk with respect to ∆tp:
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∂Pk
∂∆tp

=
∂Pk
∂rs/�k

·
∂rs/�k
∂r−k

·
∂r−k
∂∆tp

+
∂Pk
∂tk
· ∂tk
∂∆tp

(3.66)

The first term in Eq. (5.43) is calculated by Eq.’s (3.42), (3.44) and (3.63). The second term must be

accounted for by Mk24 and Mk34 .

The sub-matrix Mk24 is calculated as follows for forward propagation, where tk is the current mission

epoch (measured from launch):

Mk24 = uk
D

mk

[
∆tk

∂Tmaxk

∂Pk
· ∂Pk
∂tk
· ∂tk
∂∆tp

+
∂∆tk
∂∆tp

Tmaxk

]
(3.67)

and with the added terms accounting for the dependence on ṁmaxkby ∆vmaxk for backwards propagation:

Mk24 =− uk
D

mk

[
∆tk

∂Tmaxk

∂Pk
· ∂Pk
∂tk
· ∂tk
∂∆tp

+
∂∆tk
∂∆tp

Tmaxk

−‖uk‖
D∆tk Tmaxk

mk

(
ṁk

∂∆tk
∂∆tp

+ ∆tk
∂ṁmaxk

∂Pk
· ∂Pk
∂tk
· ∂tk
∂∆tp

)]
(3.68)

The derivative of the current epoch tk with respect to ∆tp is readily calculated once one considers how the

current epoch is computed for a forward propagated half phase (where t0 is the epoch at the start of the

phase):

tk = t0 + ∆t1 + ∆t2 + ∆t3 + . . .+ ∆tk

= t0 +
∆tp
2N

+
∆tp
N

+
∆tp
N

+ . . .+
∆tp
N

= t0 +
(k − 0.5)

N
∆tp (3.69)

thus,

∂tk
∂∆tp

=

(
k − 0.5

N

)
(3.70)
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For a backwards propagated half phase, the calculation is similar and the derivative is:

∂tk
∂∆tp

=

(
0.5− k
N

)
(3.71)

The final sub-matrix in the augmented MTM is computed as follows, again with the negative sign corre-

sponding with forward propagation, the positive sign with backward:

Mk34 = ∓‖uk‖D
(
ṁmaxk

∂∆tk
∂∆tp

+ ∆tk
∂ṁmaxk

∂Pk
· ∂Pk
∂tk
· ∂tk
∂∆tp

)
(3.72)

Computing the match point ∆tp gradients requires using the following matrix:

∂XF
mp

∂∆tp
= ΦN/2+1MN/2ΦN/2 · . . . ·Φ2M1Ξ1 (3.73)

where

Ξ1 =



∂r−1
∂∆tp

∂v−1
∂∆tp

0

1

0


(3.74)

and

∂XB
mp

∂∆tp
= ΦN/2+2MN/2+1ΦN/2+3 · . . . ·ΦN+1MNΞN (3.75)

where

ΞN =



φB

0

1

0


(3.76)

In Eq. (3.76), φ accounts for the fact that the state at the right hand boundary of a phase has non-zero ∆tp
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gradients:

φB =

R̃N+2 RN+2

ṼN+2 VN+2

 ∂Xf

∂∆tp
+

 ∂r+N
∂∆tp

∂v+
N

∂∆tp

 (3.77)

MGAnDSMs Flight Time Variables

Computing current phase flight time derivatives for the high thrust transcription requires that Eq. (3.65)

be replaced by:

∂∆tk
∂∆tp

= αk (3.78)

since, for MGAnDSMs, the inter-maneuver Keplerian propagation times ∆tk are not uniform as they are

for MGALT, rather each is constructed out of two decision variables the αk and ∆tp:

3.4.4 Partials with Respect to Previous Phase Flight Times and Launch

Epoch

Flight time variables from previous phases as well as the launch epoch variable affect the state at the left

and right boundaries of the current phase. As a result, Eq. (3.74) must be modified to become:

Ξ1 =



φF

0

0

1


(3.79)

φF =

R̃1 R1

Ṽ1 V1

 ∂X0

∂∆tprevious
+

 ∂r−1
∂∆tprevious

∂v−1
∂∆tprevious

 (3.80)

Previous phase flight times do not impact the Keplerian propagation time between maneuvers in the

current phase. For this reason, the STM does not contain explicit partial derivatives of the state with

respect to previous time-of-flight variables. Changes in a previous phase’s flight time will, however, result

in a change to the current maneuver’s epoch. Specifically, the current epoch’s sensitivity is unity, i.e.
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∂tk
∂∆tprevious

= 1, (3.81)

therefore,

Mk25 = uk
D

mk

(
∆tk

∂Tmaxk

∂Pk
· ∂Pk
∂tk

)
, (3.82)

for forward half phases,

Mk25 = −uk
D∆tk
mk

(
∂Tmaxk

∂Pk
· ∂Pk
∂tk
− ‖uk‖

D∆tk Tmaxk

mk

∂ṁmaxk

∂Pk
· ∂Pk
∂tk

)
(3.83)

for backward half phases and

Mk35 = ∓‖uk‖D∆tk
∂ṁmaxk

∂Pk
· ∂Pk
∂tk

(3.84)

with the negative (positive) sign being used for forward (backward) half phases.

3.4.5 Partials with Respect to the MGAnDSMs Burn Indices

The match point derivatives with respect to the MGAnDSMs burn indices {αi} are computed similarly to

the phase flight time variables, except that each one influences the size of only one propagation arc in a half

phase.

∂XF
mp

∂∆tk
= MN/2ΦN/2 · . . . ·Φk+1MkΞk (3.85)

where

Ξk =



∂r−k
∂αk

∂v−k
∂αk

0

0

0


(3.86)
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∂XB
mp

∂∆tk
= ΦN/2+1MN/2+1ΦN/2+2 · . . . ·ΦkMkΞk (3.87)

where

Ξk =



∂r+k
∂αk

∂v+
k

∂αk

0

0

0


(3.88)

3.5 Distance Constraint Derivative Computation

This section will discuss an operational constraint that imposes a minimum and/or maximum value on the

distance between the spacecraft and bodies in the solar system, i.e.,

dLB ≤ rs/c-body ≤ dUB (3.89)

where dLB and dUB are defined by the analyst for each body of interest. For example, the spacecraft may

be constrained to never get too close to the sun due to thermal loading, or may not be allowed to fly farther

from the earth than some maximum distance for communications hardware limitations. These constraints

occur often in real-world mission design, especially in low-thrust applications where the desire to prevent

the spacecraft from becoming too hot is in conflict with the availability of more power and therefore more

efficient propulsive capabilities closer to the sun.

The distance constraint is straightforward to pose in the optimization problem because it requires only

looking up the position of the relevant solar system bodies at each segment in the trajectory. However

it is quite computationally expensive for two reasons. The first is that each ephemeris lookup requires a

database query, which is quite slow. The second reason is that computing analytical derivatives of the

distance constraint requires recursive multiplications of the STMs and MTMs along the trajectory, similar

to the STM-MTM chains used to compute the match point derivatives (e.g. Eq. (3.56)). In a large problem

with many segments, over 50% of the execution time for the trajectory optimization can be accounted for

by the derivative calculation code for the distance constraint.
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In particular, the distance constraint and its derivatives must be computed at each maneuver point in

the phase. The STM-MTM chains that must be computed in order to facilitate this are as follows:

∂X−j

∂X+
k

=


Φk+1 j = k + 1∏j−k
i=1 (Φj+2−iMj+1−i) Φk+1 2 ≤ k < j ≤ N/2

(3.90)

for forward half phases, and

∂X+
j

∂X−k
=


Φk+1 j = k − 1∏k
i=j+2 (ΦiMi−1) Φk+1 N/2 + 2 ≤ j < k ≤ N

(3.91)

for backward half phases. Then, as an example of how these chains are used to compute a path constraint

sensitivity, to compute the gradient of the distance of the spacecraft from some body of interest at the center

of the jth segment dj = ‖rj − rbody‖, with respect to a previous control variable uk, Eq. (3.90) may be

combined with Eq. (3.55):

∂dj
∂uk

=
∂dj

∂X−j

∂X−j

∂X+
k

Ξk (3.92)

It should be noted that since the distance constraint is only enforced at maneuver locations along the

phase, it is really only useful in conjunction with the MGALT model, which features a large number of

impulses. In order to impose a similar constraint for the MGAnDSMs transcription, additional “non-

maneuver” nodes can be introduced at regular intervals along the phase that are used exclusively to enforce

the distance constraint. Furthermore, this method for computing gradients of a distance constraint may

actually be applied to any path constraint that the designer might be required to place on the spacecraft’s

trajectory.

3.6 Gradient Accuracy Verification

3.6.1 Forward Mode Automatic Differentiation Using Operator Overloading

The mathematical foundations of forward mode AD are often described using the concept of a dual number.

A dual number extends the real numbers and forms a one-dimensional Grassmann algebra. This is done by
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extending each real number x ∈ R with a nilpotent component ε. An example of dual numbers being used

to accumulate derivative information for the function f(x1, x2) = x1x2 + ln(x1) is shown in Table 3.2.

Table 3.2: Automatic differentiation performed with dual numbers.

Expression Derivative

f1 = x1 f ′1 = x1 + ε1
f2 = x2 f ′2 = x2 + ε2
f3 = ln(f1) f ′3 = ln(x1 + ε1)

= ln(x1) + ln(1 + ε1
x1

)

= ln(x1) + 1
x1
ε1 +O(ε21)

= ln(x1) + 1
x1
ε1

f4 = f1f2 f ′4 = f ′1f2 + f1f
′
2 = 2x1x2 + x2ε1 + x1ε2

f5 = f3 + f4 f ′5 = f ′3 + f ′4 = 2x1x2 + ln(x1) +
(
x2 + 1

x1

)
ε1 + x1ε2

In the above procedure, we make use of the fact that higher order expressions involving the nilpotent ε will

annihilate. Now, derivative information is obtained by examining the coefficients of ε1 and ε2 in the final

row of Table 3.2, i.e.

∂f

∂x1
=

(
x2 +

1

x1

)
(3.93)

∂f

∂x2
= x1 (3.94)

This procedure can be reflected in a software implementation by exploiting operator overloading. The

dual number algebra can be replicated by overloading the standard floating point mathematical operators

such that when they are used in an elementary mathematical expression, not only is the result of the

expression computed and stored in memory, but each derivative direction is propagated and stored as well.

This concept is illustrated in Table 3.3. Although analytical expressions appear in the table it is emphasized

that, in practice, all derivative information is stored in floating point memory without the creation or storage

of symbolic expressions.

3.6.2 Accuracy Verification

The analytic techniques described in this work are not the only methods available for computing the con-

straint partials of a nonlinear program. Finite differencing methods are probably the simplest to implement,

although this is typically accompanied by a decrease in program execution speed and worse a decrease in
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Table 3.3: Forward AD using operator overloading.

Original Line of Code Overloaded Accumulated
(Stored Value) Derivative Operations Derivative Information

f1 = x1 1 (seeded) [1, 0]
f2 = x2 1 (seeded) [0, 1]

f3 = ln(f1) (1/f1)f ′1 = 1
x1

[
1
x1
, 0
]

f4 = f1f2 f ′1f2 = f2 [x2, 0]
f1f
′
2 = f1 [x2, x1]

f5 = f3 + f4 f ′3 + f ′4

[(
x2 + 1

x1

)
, x1

]

the accuracy of the partials. Other techniques such as complex step differentiation and algorithmic differ-

entiation (AD) can produce near-machine precision derivative information, and are general techniques that

do not require any a priori information about the problem being solved. Both of these techniques typically

require a longer runtime than specialized analytic formulae, if they are used to compute derivatives during

a typical cost function evaluation. If they are used to compute only individual STMs and MTMs, which are

then incorporated into derivative computations such as Eq. (3.51), then one would expect the runtimes to

decrease. The interested reader is directed to a detailed study by Pellegrini and Russell, that examines finite

differencing techniques of varying order, the complex step method as well as analytic methods as applied

to STM computation for integrated trajectories [136]. This section will examine the accuracy of the partial

derivative calculation methods described in this paper compared with the same derivatives obtained using

central differencing as well as ones calculated using the AD library developed by Ghosh [170]. This AD

software package uses C++ operator overloading in a tapeless forward-mode configuration.

An example 20 segment Earth to Mars MGALT trajectory phase was evaluated, and the Jacobian

was computed using central differencing, the formulae presented in this paper as well as AD. The partial

derivatives calculated with AD are assumed to be truth. An example column from the Jacobian is shown

in Tables 3.4 and 3.5 for the finite differencing and analytic cases respectively. This column contains the

partial derivatives the match-point continuity constraint cmp with respect to the x component of the control

vector from the first segment in the phase ux1 (i.e. the segment furthest from the match-point in the forward

half-phase). The error of the partial derivative values relative to the values computed using AD is shown for

both methods.
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Table 3.4: Example match-point derivatives computed using central differencing compared with algorithmic
differentiation. A central differencing step size of 1.0e-7 was used.

Derivative Value computed with FD Error Relative to AD value
∂x†

∂ux1
-2020560.390983700 0.002538938555645e-5

∂y†

∂ux1
-166778.4769555778 0.136749253496038e-5

∂z†

∂ux1
-81633.22222039030 0.084320438683687e-5

∂ẋ†

∂ux1
-0.1006144971940313 0.016670205267864e-5

∂ẏ†

∂ux1
0.07758976470341465 0.029646679151652e-5

∂ż†

∂ux1
0.03673856948309212 0.050559366283141e-5

∂m†

∂ux1
2.346964682917494 0.027179713285220e-5

Table 3.5: Example match-point derivatives computed analytically compared with algorithmic differentia-
tion.

Derivative Value computed analytically Error relative to AD value

∂x†

∂ux1
-2020560.339682915 0.0e-14

∂y†

∂ux1
-166778.7050242114 0.296659647101017e-14

∂z†

∂ux1
-81633.29105393921 0.267389352563618e-14

∂ẋ†

∂ux1
-0.1006144804213910 0.082758193947980e-14

∂ẏ†

∂ux1
0.07758974170063281 0.035772223244046e-14

∂ż†

∂ux1
0.03673855090831362 0.037774456163087e-14

∂m†

∂ux1
2.346964045019395 0.018921858253112e-14

As one would expect, the Jacobian values obtained with central differencing differ from the AD values with

a relative error on the order of 1.0e-6 to 1.0e-8. With the analytic methods presented in this paper precision

at, or very close to, machine precision is achieved.

3.7 Example: Ice Giant Intercept

This problem is inspired by the Ice Giants Decadal Mission Study Final Report from the NASA Planetary

Science Decadal Survey carried out by the Applied Physics Laboratory [171]. The thruster mass flow rate

and thrust polynomial coefficients, sufficiently accurate for preliminary design purposes, are from the 2014

Discovery proposal NEXT thruster guide [131] and are provided in the Appendix (Table A.1). The problem

was first solved assuming all parameters having the values in Table 3.6 [172] except for the following: a
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minimum earth flyby altitude of 300 km, a maximum time of flight of 13.5 years, a simplified solar array

model {γ0 = 1.0, γ1 = γ2 = γ3 = γ4 = 0.0} and no forced coasts. This solution was then used as an initial

guess for the problem as described in Table 3.6. The NLP solver was run using a finite differenced Jacobian

and then using an analytic Jacobian.

Table 3.6: Uranus Probe mission parameters

Parameter Value
Maximum allowed initial mass 4200 kg
Earliest allowed launch date January 1st, 2020
Launch window 365.25 days
Maximum flight time 13 years
Launch vehicle Atlas V (531) NLS-1

Launch C3 11.834 km2/s2

Launch declination bounds [−28.5◦, 28.5◦]
Arrival type intercept
Maximum arrival v∞ 7.21 km/s
Thruster 2 x NEXT TT10 high Isp
Throttle logic minimum number of thrusters
Thruster duty cycle 0.9
Solar power coefficients γ0 = 1.1705 γ1 = 0.0289

γ2 = −0.2197 γ3 = −0.0202
γ4 = −0.0001

Spacecraft bus power requirement coefficients as/c = 0.8
bs/c = 0.0
cs/c = 0.0

Solar array BOL power (launch at 1 A.U.) 26.0 kW
Power margin (δpower) 15%
Flyby sequence E-E-U
Minimum earth flyby altitude 1000 km
Post-launch checkout coast 30 days
Pre-Earth flyby coast 42 days
Post-Earth flyby coast 7 days
Number of segments per phase 100
Ephemeris SplineEphem
SNOPT feasibility tolerance 1.0e-5
SNOPT optimality tolerance 1.0e-6
Objective function maximize final mass
SNOPT max. runtime 3600 s
SNOPT major iteration limit 8000

Table 3.7: SNOPT convergence statistics for the Uranus Probe mission

Metric Analytic Finite Differences
Optimal normalized cost 0.80964301784 0.80964033542
SNOPT major iterations 755 1162
Feasibility achieved 1.07094e-13 2.62403e-09
SNOPT execution time (s) 15 112
Optimality tolerance met? Yes No
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The results summarized in Table 3.7 indicate that while both Jacobian calculation methods resulted in

essentially equal final cost values, the NLP solver was able to achieve a significantly tighter feasibility

tolerance in fewer iterations using analytic gradients as opposed to finite differenced ones. The analytic

Jacobian also led to an optimal exit condition for the NLP solver. The locally optimal trajectory found for

this problem is shown in Fig. 3.8 and 3.9.

Figure 3.8: Optimal Uranus Probe trajectory.

Figure 3.10 shows the throttle setting used as well as the number of active thrusters throughout the mission.

The thruster count transitions were smoothed using the technique described in section 2.4. Figure 3.11

depicts the power generated by the spacecraft’s solar array, the power utilized by the thrusters and the

thrust achieved. It is important to note that while a bang-bang control structure is exhibited in Figure
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Figure 3.9: Optimal Uranus Probe trajectory.

3.10, the power model does not allow for the thrusters to operate at their maximum input voltage setting

at all times. The gap present between the two power curves in Figure 3.11 is due to the power margin and

spacecraft bus power requirements.
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Figure 3.10: Optimal Uranus Probe trajectory throttle and active thruster histories.

Epoch

Figure 3.11: Optimal Uranus Probe trajectory thrust and power level histories.
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3.8 Example: Mercury Spiral-Down

For the next example, a more thorough investigation of the convergence properties of the NLP solver SNOPT

was carried out. The mission considered is a low-thrust rendezvous with Mercury with a single intermediate

flyby of Venus, and was previously solved by Sauer [173] and Debban et al. [174]. The objective function

to be maximized is the mass delivered to Mercury. The problem was first solved using the MBH heuristic

in conjunction with SNOPT, which provided the local search method. The MBH algorithm is described in

Appendix A.1. The problem assumptions are provided in Table 3.8 and the locally optimal solution that

was found is shown in Figure 3.12 and has a normalized cost function of 0.701429.

Table 3.8: Mercury rendezvous mission parameters.

Parameter Value
Maximum allowed initial mass 603 kg
Earliest allowed launch date January 1st, 2002
Maximum flight time 3 years
Launch vehicle Delta 7326

Launch C3 2.0 km2/s2

Launch declination bounds [−90.0◦, 90.0◦]
Arrival type rendezvous
Thruster 1 x NSTAR
Thruster duty cycle 1.0
Solar power coefficients γ0 = 1.0 γ1 = 0.0

γ2 = 0.0 γ3 = 0.0
γ4 = 0.0

Spacecraft bus power requirement coefficients as/c = 0.0
bs/c = 0.0
cs/c = 0.0

Solar array BOL power (launch at 1 A.U.) 2.6 kW
Flyby sequence E-V-Y
Minimum earth flyby altitude 300 km
Pre-Venus flyby coast 45 days
Post-Venus flyby coast 15 days
Number of segments per phase 200
Ephemeris SplineEphem
SNOPT feasibility tolerance 1.0e-5
SNOPT optimality tolerance 1.0e-3
Objective function maximize final mass
SNOPT max. runtime 1800 s
SNOPT major iteration limit 8000

Once the solution shown in Figure 3.12 was obtained, a series of convergence tests were performed by

perturbing the optimal decision vector x∗ with a series of random vectors drawn from a normal distribution

N with a mean µ of zero:

77



Figure 3.12: Optimal Mercury rendezvous trajectory.

xi = x∗i +N (µ = 0, σi) xi ∈ x and σi ∈ R (3.95)

The standard deviation used to perturb the ith decision variable (σi) was selected differently for each type

of variable. A summary of these standard deviations is shown in Table 3.9.

The problem was then re-solved once using an analytic Jacobian and once with the partials provided by

finite differences in order to draw a comparison between the two methods. This process was repeated for
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Table 3.9: Standard deviations used to perturb each type of decision variable in the Mercury rendezvous
problem.

Decision variable σi
launch epoch 1.0 days
launch v∞ 1.0 km/s
right ascension of launch asymptote 0.5 radians
declination of launch asymptote 0.5 radians
Earth-Venus flight time 1.0 days
Earth-Venus terminal v∞ 1.0 km/s
Earth-Venus final mass 1.0 kg
Venus-Mercury flight time 1.0 days
Venus-Mercury initial v∞ 1.0 km/s
Venus-Mercury terminal v∞ 1.0 km/s
Venus-Mercury final mass 1.0 kg
control 0.1

100 trials. In each case, SNOPT was allowed to run for a maximum of 30 minutes. If the solver did not

converge, exit stating infeasibility or otherwise terminate prior to the 30 minute limit, its achieved objective

value was recorded as zero and its execution time was recorded as 30 minutes. The objective function values

achieved in each of these 200 trials are shown in Figure 3.13. The time-to-conclusion for each trial is shown

in Figure 3.14.

Figure 3.13: Final normalized objective values achieved by SNOPT for 100 perturbed initial conditions
around the solution shown in Figure 3.12.

The times-to-conclusion in Figure 3.14 include instances where the solver successfully converged (feasi-
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Figure 3.14: SNOPT time-to-conclusion for 100 perturbed initial conditions around the solution shown in
Figure 3.12.

bility and optimality tolerances satisfied), partially converged (feasible only), or successfully exited but did

not converge (e.g. claimed problem was infeasible, encountered numerical difficulties during linear system

decomposition etc.). Given a wall clock time limit of 30 minutes, using analytic derivatives SNOPT suc-

cessfully reached a conclusion for 82/100 trials. Using finite differences it did so in 27/100 trials. Of these

“successful conclusion” cases, 66 converged using an analytic Jacobian and 27 did so using finite differences.

These statistics reveal an interesting finding. They suggest that when using analytic derivatives, not only

is the solver able to converge more robustly, but also that its SQP algorithm is able to more effectively

determine when it will not converge.

The next series of experiments that were performed sought to determine which decision variables were the

most sensitive to perturbation for this problem, and how effective analytic derivatives are at re-converging a

perturbed solution compared with finite differencing. The decision variables were divided into five categories:

time (launch epoch, E-V flight time, V-Y flight time), mass (mass at V, mass at Y), hyperbolic excess

vectors (launch v∞, E-V final v∞, V-Y initial v∞, V-Y final v∞), control and launch asymptote

orientation (RA and DEC of launch asymptote). Using the standard deviations in Table 3.9, 20 perturbed

initial decision vectors were created for each decision variable category. For example, for the time category

only the launch epoch and phase flight time variables were perturbed; all other decision variables retained

their optimal values. Each perturbed decision vector was used to initialize one SNOPT run once using
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analytic partials and one using finite differencing. A summary of convergence statistics for these experiments

is provided in Table 3.10.

Table 3.10: Convergence rates for each decision variable category.

Decision variable Analytic convergence Finite differencing convergence
category rate rate
time 19/20 16/20
mass 19/20 12/20
hyperbolic excess 16/20 5/20
control 19/20 11/20
launch RA/DEC 19/20 16/20

The results in Table 3.10 quantify the superiority of employing analytic gradients in the vicinity of an

NLP solution. When employing an analytically defined Jacobian, SNOPT converged more frequently for all

decision variable types.

3.9 Example: Odysseus Direct

The next mission design application considered is a flight to the Greek camp Jupiter Trojans that orbit the

Sun-Jupiter L4 point. A notional mission to 1184 Odysseus is considered where two proximity constraints

are placed on the spacecraft: the spacecraft must not get closer to the Sun than 0.9 AU and it must not be

farther than 5.75 AU from Earth at any point during its transfer to Odysseus. The solar proximity constraint

is a common constraint that is usually applied to avoid excessive thermal loading of the spacecraft. The

latter path constraint could be due to a communication range limitation of a high gain antenna used during

the mission’s interplanetary cruise. The value of 5.75 AU is somewhat contrived in that it is not based on

any actual communication hardware). The mission parameters are provided in Table 3.11.

Four hundred MBH solver instances were run for this problem: 100 trials using the analytic methods

introduced in this paper along with SplineEphem, 100 trials using the analytic gradients as well as raw SPICE

calls, 100 trials using finite differencing and SplineEphem, and finally 100 trials using finite differencing with

direct calls to SPICE. For all search strategies, SNOPT was allowed to iterate for a maximum of 20 minutes,

although it typically converged or otherwise terminated before that time limit. The statistics for the 400

trials (100 for each Jacobian calculation strategy) are shown in Table 3.12 and the optimal solution found

is shown in Figure 3.15.

The results in Table 3.12 indicate that analytic gradients significantly improve the performance of the

solver. The more accurate derivatives increase the robustness of the SQP method, and the step direction
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Table 3.11: Odysseus direct mission parameters

Parameter Value
Maximum allowed initial mass 3500 kg
Earliest allowed launch date January 1st, 2024
Launch window 365.25 days
Maximum flight time 14 years
Launch vehicle Atlas V (551) NLS-2
Maximum launch C3 28.0 km2/s2

Launch declination bounds [−28.5◦, 28.5◦]
Arrival type low-thrust rendezvous
Thruster 2 x NEXT TT11, high thrust
Throttle logic minimum number of thrusters
Thruster duty cycle 0.9
Solar power coefficients γ0 = 1.0 γ1 = 0.0

γ2 = 0.0 γ3 = 0.0
γ4 = 0.0

Spacecraft bus power requirement coefficients as/c = 1.0
bs/c = 0.0
cs/c = 0.0

Solar array BOL power (launch at 1 A.U.) 40.0 kW
Power margin (δpower) 15%
Flyby sequence E-O
Post-launch checkout coast 60 days
Number of segments per phase 200
Ephemeris SplineEphem
SNOPT feasibility tolerance 1.0e-5
Objective function maximize final mass
MBH runtime 8 hrs.
SNOPT max. runtime 20 min
SNOPT major iteration limit 8000

Table 3.12: Solution statistics for Odysseus Direct 8-hour MBH runs.

Metric Analytic + SplineEphem Analytic + SPICE FD + SplineEphem FD + SPICE
Best mass delivered (kg) 2304 2297 2287 2228
Mean # feasible solutions 300 283 338 318
Mean-max mass delivered (kg) 1015 631 862 450
Mean-mean mass delivered (kg) 778 316 503 381
Success rate (%) 78 63 56 51
Mean time to best solution 5h 21 min. 5 h 25 min. 5 h 30 min. 5 h 47 min.

determined by the minor level iterations is more likely to be accepted by the major level. The success

percentage indicates the number of MBH+NLP solver runs that found at least one feasible solution in the

eight hour search period. The runs that featured analytic gradients, in general, had a higher success rate

than the finite difference trials. The switch from SplineEphem to SPICE had a negative impact on the

performance of the optimizer. In general, the cost function values significantly decreased and the ability of

the solver to find feasible solutions was hindered.

The same mission was also optimized without imposing the distance constraint. The optimal uncon-

strained trajectory is shown in Figure 3.17. Without the requirement that it remain within 5.75 AU of

Earth, the spacecraft passes well beyond the 5.75 AU limit prior to rendezvous with the asteroid, as in-

dicated by the horizontal red dashed line in Fig. 3.18. For this particular problem, the unconstrained

and constrained problems are in the same family, and it can be concluded a posteriori that the proximity

constraint could also have been enforced indirectly by constraining the arrival date at Odysseus.
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Figure 3.15: Optimal path constrained Odysseus Direct trajectory.
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Figure 3.16: Constrained Odysseus Direct distance from the Earth and Sun as a function of time. The
horizontal line placed at 5.75 A.U. shows that the proximity constraint was successfully enforced.
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Figure 3.17: Optimal Odysseus Direct trajectory without proximity constraint.
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Figure 3.18: Unconstrained Odysseus Direct distance from the Earth and Sun as a function of time.
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3.10 Example: Cassini

The following example demonstrates the relative performance of analytic derivatives and finite differencing

for the MGAnDSMs transcription. The Cassini problem solved here uses the same flyby sequence that the

actual orbiter used on its way to Saturn (E-VVEJ-S). Due to the unavailability of a Titan IV (401) B launch

vehicle model, it was assumed for this example that the spacecraft was launched using an Atlas V (551).

The solver was allowed to place a single deep space maneuver at any point along each phase. An orbital

insertion maneuver was included in the total mission ∆v and thus influenced the final delivered mass. The

mission parameters and assumptions are described in Table 3.13.

Table 3.13: Cassini mission parameters.

Parameter Value
Earliest allowed launch date January 1st, 1997
Saturn arrival date unbounded
Launch window 365.25 days
Maximum flight time 7 years
Maximum allowed initial mass 10000 kg
Launch vehicle Atlas V (551) NLS-2

Maximum launch C3 18.069 km2/s2

Launch declination bounds [−28.5◦, 28.5◦]
Thruster Isp 312 s
Flyby sequence E-VVEJ-S
Ephemeris model SPICE
Arrival type orbital insertion
Insertion semimajor axis 5 447 500 km
Insertion eccentricity 0.98
SNOPT feasibility tolerance 1.0e-5
Max SNOPT runtime 5 s
Objective function maximize log10 final mass

One hundred instances of the MBH solver were run for four hours. No initial guess was provided. All

MBH runs converged to the known optimal solution. The best known optimal solution found delivers 3195

kg to orbit around Saturn, and requires only a single 0.428 km/s maneuver at aphelion between the two

Venus flybys and a 0.622 km/s orbital insertion maneuver, totaling 1.05 km/s. This trajectory is shown in

Figures 3.19 and 3.20.

Table 3.14: Solution statistics for 100 4-hour MBH runs.

Metric Analytic Finite Differences
Best mass delivered (kg) 3195 3195
Mean number of MBH hops taken 1432 591
Mean time to best solution 1 hr. 48 min. 2 hr. 10 min.
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Figure 3.19: Optimal Cassini trajectory.

The relative performance between the runs using analytic derivatives and the those using finite differenc-

ing is more comparable for this transcription, as shown in Table 3.14, in part due to the fact that the Cassini

problem is not particularly challenging for the MBH + SNOPT solver. As a result, both methods display

considerable robustness, with none of the runs failing to identify the known optimal solution. The analytic

derivatives arrived at their best found solution faster than the runs using finite differencing. This is due

to the increased execution speed that employing analytic partials allows for in addition to the robustness

benefits discussed in section 3.8.
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Figure 3.20: Optimal Cassini trajectory.
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3.11 Example: Comet Sample Return Mission

The benefits of implementing the analytic methods presented in this work are demonstrated by solving a

relatively complex interplanetary mission design problem with the goal of recovering a surface sample from

the comet 67P/ChuryumovGerasimenko. Comet Surface Sample Return (CSSR) has been of ongoing interest

to the planetary science community [172]. Prior investigation has demonstrated that comet rendezvous, and

in particular roundtrip missions, are enabled by solar electric propulsion [175–177]. For a more recent and

relevant mission example, the authors selected the New Frontiers 4 comet sample return concept proposed

by Choukroun et al. [178].

The solution technique introduced by Yam et al., which combines the metaheuristic monotonic basin

hopping (MBH) with a gradient-based local optimization step, is used to solve this problem. The local

optimizer selected for this example is SNOPT. The MBH solution method begins by initializing each decision

variable randomly within within some bounded interval. Then, the NLP is optimized until the problem is

determined to be locally optimal, or the solver terminates due it exceeding user-specified resource limitations

(e.g. run time, maximum iterations etc.) or some other solver exit condition. The decision vector is then

perturbed with new values being selected from a statistical distribution before the local solver is executed

again. The process repeats until a stagnation condition is met or a specified time limit is exceeded. For

further details on the MBH algorithm, the reader is directed to the initial study by Yam et al. or the more

recent work by Englander et al. [46], Englander and Englander [112] and Englander and Conway [47].

The parameters for the example comet sample return problem are summarized in Table 3.15. The launch

vehicle performance data for the Atlas V (431) was obtained from the NASA Launch Services Program

Launch Vehicle Performance website [179]. The paper by Choukroun et al. did not specify which thrusters

were used in their design, however, the paper does mention that the mission was designed around a Lockheed-

Martin A2100 bus. The A2100 is a commercial satellite bus that flies XR-5 hall current thrusters [180].

Performance models for the BPT-4000 (now designated the XR-5) are from the experimental study conducted

by Hofer [181]. For this problem, the BPT-4000 Ext-high-Isp throttle curve was used. The paper by

Choukroun [178] also does not specify any information about the solar array hardware used, so for this

problem all γi in the solar array model are set to zero except γ0 = 1, corresponding to a 1/r2 electric power

model. Additional details about the solar electric power modeling, including multiple thruster switching

conditions are provided by Englander and Conway [47].

In order to quantify the solver’s speed and robustness improvements, the comet sample return problem
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Table 3.15: Parameters for the sample return mission to comet 67/P.

Parameter Value

Maximum allowed initial mass 10000 kg

Earliest allowed launch date June 16th, 2024
Launch window 1 day

67/P arrival date bounds April 1st 2029 - April 30th 2029

Fixed 67/P departure date December 8th 2033

Earth return date bounds November 8th 2034 - November 9th 2036
Maximum flight time 12.5 years
Launch vehicle Atlas V (431) NLSII
Maximum launch C3 25.0 km2/s2

Launch declination bounds [−28.5◦, 28.5◦]
Arrival type low-thrust rendezvous
Thruster 3 x BPT-4000, extra high Isp
Throttle logic minimum number of thrusters
Thruster duty cycle 0.9
Solar power coefficients γ0 = 1.0 γ1 = 0.0

γ2 = 0.0 γ3 = 0.0
γ4 = 0.0

Spacecraft bus power requirement coefficients as/c = 1.0
bs/c = 0.0
cs/c = 0.0

Solar array BOL power (launch at 1 A.U.) 30.0 kW
Flyby sequence E-67/P-E
Forced post-Launch checkout coast 60 days
Number of segments per phase 80
SNOPT feasibility tolerance 1.0e-5
Objective function maximize returned mass to Earth
MBH runtime 2 hrs.
SNOPT max. runtime 120 seconds
SNOPT major iteration limit 8000

was solved 100 times with SNOPT being provided a Jacobian calculated using the methods presented in this

work and 100 times where it was provided with a Jacobian computed with a central differencing routine.

Both the analytic and finite differenced runs were provided with the exact Jacobian sparsity pattern. The

results of the runs using analytic and finite differenced derivatives are compared in Table 3.16. The best

locally optimal solution found is shown in Fig. 3.21. None of the runs using finite differencing identified any

feasible solutions. Furthermore, even when the solver employing finite differencing to compute its Jacobian

is initialized with the optimal answer identified by the solver using analytic partial derivatives, the former

identified the feasibility of the seeded solution and then diverged almost immediately after it began iterating.

By contrast, out of 100 trials where our analytic techniques were used to compute the Jacobian, 94 identified

a feasible solution to the problem and 60 cases identified the best known cost function value to within

1 kg. Note that the best known value cost function value is the one reported in Fig. 3.21 as no other

literature source has been found that has solved this problem. The average MBH+NLP run identified 55

feasible solutions in its two hour search and on average identified its best solution after 16.6 minutes. The

comet sample return problem is not only an example of how providing analytic partial derivatives to the

MBH+NLP solver is beneficial, it is an example of how doing so enables the solver.

Information about the state of the solar electric power system, as well as other pertinent spacecraft infor-

mation is shown in Fig. 3.22. These details reveal how the methods developed in this work allow for the use
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Table 3.16: Solution statistics for 100 2-hour MBH+NLP runs.

Metric Analytic Finite differenced
Best mass delivered (kg) 2104 -
Mean # feasible solutions 55 -
Mean-max mass delivered (kg) 1839 -
Mean-mean mass delivered (kg) 1440 -
Success rate (%) 94 -
Mean time to best solution (min.) 16.6 -

Figure 3.21: Sample return trajectory to comet 67/P.

of a complex power system model, which is necessary for most mission proposal design efforts.
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Figure 3.22: Spacecraft metrics for the 67/P sample return mission.

3.12 Computational Efficiency and Accuracy

The analytic techniques described in this work are not the only methods available for computing the con-

straint partials of a nonlinear program, as was discussed in section 2.1.1. This section will examine the

computational efficiency and accuracy of the partial derivative calculation methods described in this paper

compared with the same derivatives obtained using central differencing as well as ones calculated using the

AD library developed by Ghosh [170]. The AD software package uses C++ operator overloading in a tapeless

forward-mode configuration.

The relative computational efficiencies of the analytic techniques presented in this paper, AD and central

differencing are quantified by examining the average time required to compute the Jacobian for the comet

sample return problem described in section 3.11. The Jacobian matrix for the example problem was computed

1000 times using each method, and the average required calculation time ratios of central differencing and

AD to analytic are summarized in Fig. 3.23. As with the example problem solved in the previous section, the

Jacobian sparsity pattern was provided to the solver when using the analytic formulae or finite differencing.

The automatic differentiation library used also uses a sparse formulation that avoids the calculation of dense

zero entries in the Jacobian.
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Figure 3.23: Run time ratios for computing the Jacobian of the comet sample return example problem using
AD and central differencing as a function of the number of control segments used.

It is important to note that while the central differencing scheme employed in this work avoids dense

zero calculations, it does not exploit the specific sparsity pattern of the MGALT Jacobian. That is to say,

the example problem presented is comprised of two MGALT phases, and a large majority of each phase’s

decision variables are decoupled from the other phase. A “smart” finite differencing routine would exploit

this problem structure and see an execution speed increase. For this problem, one would expect to see

a reduction in Jacobian computation time of about half since every time a cost function call is made to

compute a Jacobian entry associated with phase 1, a corresponding entry associated with phase 2 may

also be computed. Furthermore, other finite differencing algorithms might be considered, and a forward

or backward differencing routine would also lead to an execution speed increase, at the cost of derivative

accuracy.

Finite differencing not only suffers from an execution speed perspective, it is also the least accurate of the

three methods discussed in this section. A central differencing routine can be expected to produce gradient

information that has a relative error of usually no better than 1.0e-08, although higher order algorithms

have been shown to exceed the accuracy of central differencing [136]. Analytic gradients by contrast are

generally as accurate as those produced by AD or complex step differentiation. The primary disadvantages

of analytic calculations, as noted by Pellegrini and Russell [136], is the complexity of their implementation,

and the potential unavailability of gradient information from third party libraries, a problem which is only

overcome by finite differences or a custom re-implementation of the desired library.
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Chapter 4

A Time-Regularized
Bounded-Impulse Trajectory
Transcription
The most recent Decadal Survey published by the National Research Council in 2013 included Comet Surface

Sample Return as the first of five possible mission variants that the New Frontiers 4 selection should be made

from. Preliminary mission design efforts that supported concept studies that targeted comets inevitably

encountered a fundamental shortcoming of the MGALT transcription (if the mission was low-thrust). The

equal temporal spacing of the control nodes in the MGALT model results in the clustering of nodes at

apoapsis, leaving few nodes at periapsis. The faster orbital velocities near periapsis require more control

nodes in order to more accurately capture the rapidly changing dynamics there. An analogous effect can

be seen by employing an adaptive-step integrator to propagate a highly eccentric orbit. The adaptive-step

algorithm will lengthen the step size at apoapsis in order to reduce computational time, but reduce it at

periapsis where error control necessitates a smaller time step.

In this chapter, a new time-regularized low-thrust transcription is introduced based on the MGALT

model. The new transcription retains the ability to use Keplerian propagation arcs, and does not rely on

a series solution to do so. Furthermore, due to the way in which the Keplerian propagator is employed

to translate angular propagation arcs into flight times, the state propagation aspect of the algorithm is no

longer iterative in the sense that a traditional Kepler solver is. These improvements are made at the cost of

having to introduce only one decision variable and constraint per trajectory phase. A motivating notional

comet rendezvous problem is solved that illustrates the benefits (i.e. computational savings) of adopting the

new transcription in favor of the original Sims-Flanagan based models.

4.1 Regularization of the Bounded-Impulse Model

Regularization, as it pertains to celestial mechanics and astrodynamics, involves using a mathematical trans-

formation to express the equations of motion in a more convenient form [182]. The concept of regularization

was born from the studies pertaining to the three body problem by Tullio Levi-Cevita [183] and the Danish
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German astronomer Peter Hansen. The primary issue that regularization transformations seek to mitigate

is the singularity that arises in the n-body equations of motion :

r̈i =

n∑
j=1
j 6=i

Gmj
(rj − ri)

‖rj − ri‖3
(4.1)

when two particles collide.

The problem of the n-body singularity came to light in a practical sense with the advent of Cowell’s

method of perturbations, where the equations of motion are integrated directly with quadratures [160]. This

method was first used by its inventor Phillip Herbert Cowell, along with Andrew Claude de la Cherois

Crommelin to predict the return of comet 1P/Halley in 1910 [184]. The ability of regularization techniques

to recast the equations of motion in a more favorable form again became of interest in the latter half of the

twentieth century when digital computers became capable enough to employ Cowell’s method for day-to-day

astrodynamics analysis.

4.1.1 The Sundman Transformation

Karl F. Sundman was a Finnish astronomer who worked on the three-body problem, and developed the

following regularization transformation:

dt = rds, (4.2)

where s replaces time t as the independent variable of integration. The new variable is sometimes referred to

as “ficticious time”, or “s-time”, with the corresponding integration referred to as “s-domain” integration.

In many applications, this transformation is expressed in terms of the universal anomaly as follows:

dt =
r
√
µ
dχ (4.3)

While the Sundman transformation does not altogether remove the singularity in Eq. (4.1), as Roa

points out it does reduce the power in the denominator from three to one [182]. More importantly, the

transformation rescales the integration step size around an orbit such that smaller steps are taken near

periapsis. By contrast, when the orbital equations of motion are integrated with respect to time, discrete
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points on the orbit cluster at apoapsis, and are sparser at periapsis.

4.1.2 Regularization of the Bounded-Impulse Model

While bounded-impulse models are capable of accurately predicting mass budgets for many types of low-

thrust trajectories, certain classes of missions, such as those requiring multiple-revolutions of the central

body with no intermediate flybys as well as those requiring large eccentricity changes, present more of a

challenge. The more revolutions that the spacecraft requires to complete a transfer, the greater the number

of control nodes that are required to ensure that the bounded-impulse trajectory will be suitable as a seed for

a finite-burn model. For trajectories requiring large eccentricity changes the original Sims-Flanagan model,

which evenly spaces control nodes in time, places few control nodes near periapse, where energy change is

most efficiently carried out. These problems compound one another, and when using the MGALT model,

the only way to mitigate this shortcoming is to add more control points, which increases the computational

complexity of the problem. For this reason, it is desirable to find a method for redistributing the control

nodes for these higher eccentricity trajectories, thus eliminating the need to increase the number of segments.

Redistribution of the control nodes along a trajectory can be achieved using a time-regularization tech-

nique such as a Sundman transformation. Pellegrini et al. [185] recently applied generalized Sundman

transformations to the Stark and Kepler (sub-case of Stark) problems, but transcription regularization has

been of interest for some time, especially concerning propagation of highly-elliptic trajectories using nu-

merical integration [186, 187]. The Stark propagation method explored by Pellegrini et al. is based on a

series solution, where the length of the series determines the accuracy of the solution. The Stark model was

also extended for use with a Taylor integrator similar to the work by Yam et al. [17]. In this chapter, an

exact method for solving the time-regularized Kepler problem is introduced that does not rely on a series

solution. Solving Kepler’s equation typically requires iterative techniques such as Newton’s method, the

Laguerre-Conway method or bisection. Instead, we introduce a strategy that transforms a universal Kepler

propagator into an iteration-free method at the expense of the introduction of one additional decision vari-

able and constraint per trajectory phase to be selected and enforced respectively by an NLP optimizer. In

addition, two different control node distribution methods will be discussed, one that aligns the nodes with

the universal anomaly and one that does so with the true anomaly.
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4.2 Multiple Gravity-Assist Low-Thrust Using a Sundman

Transformation

In the original MGALT model, a numerical optimizer selects the phase flight time variable (∆tp), and a

Kepler solver then iteratively determines the corresponding change in eccentric anomaly (∆Ep) by solving

Kepler’s equation. Analogously, a Kepler solver using a universal formulation determines the change in

generalized anomaly (∆χp) given a particular flight time. The generalized anomaly arises from applying a

Sundman transformation to the Kepler solver’s independent time variable (Eq. (4.3)).

For the original MGALT transcription, the propagation time input to the Kepler propagator ∆t is simply

determined by dividing the phase flight time by N , the number of discretization segments. The goal of this

new algorithm is to instead place the control nodes at equal intervals of anomaly around the orbit, instead of

positions separated by equal propagation times. The optimizer will now select a total propagation anomaly

variable for the phase ∆χp, that will be divided into N equal segments
(

∆χ =
∆χp

N

)
. It is not intuitive for a

mission designer to place bounds on this new independent angle variable. It is much more natural to think in

terms of flight times, therefore, the MGALT flight time constraints are retained in this new method for the

mission designer to specify, with the task of selecting the total displacement in generalized anomaly being

left to the NLP solver. The universal Kepler solver is used in an inverse sense to compute the time-of-flight

that results from the angular displacement in each low-thrust control segment, in addition to propagating

the state without the need for iteration. An epoch constraint is then imposed at the match point ensuring

that the accumulated propagation time arcs
(∑N

k=1 ∆tk

)
sum to the total phase flight time variable ∆tp.

The procedure for evaluating a trajectory phase, and for obtaining all the necessary partials to compute

match point derivatives, is as follows (definitions for the symbols below are provided in the Appendix):

1. ∆χp is selected by the NLP solver and is the total change in generalized anomaly required to propagate

one trajectory phase. The size of the propagation segment, between each control node, is ∆χ =
∆χp

N

2. Starting at the left boundary, propagate inwards to the phase center for N
2 segments of generalized

anomaly

3. For each propagation segment in the forward half-phase:

(a) beginning with some post-maneuver state X+
k−1 =

[
r+
k−1 v+

k−1

]T
, compute α (Eq. (3.11)), the

reciprocal of the semimajor axis, to determine if the current conic orbit is elliptic, hyperbolic or

parabolic (this affects the computation of the universal functions {Un} and their derivatives)
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(b) compute the universal functions Un n = 0, 1, 2, 3 (Eq. (3.15) - (3.17)).

(c) compute ∂Un
∂α and ∂Un

∂χ (Eq. (4.25)) for n = 0, 1, 2, 3 (for use in computing step g).

(d) compute the segment propagation time ∆tk (Eq. (4.7)) resulting from a propagation through ∆χ

of generalized anomaly as well as ∂∆tk
∂χ (Eq. (4.22))

(e) compute the Lagrange coefficients and their derivatives F, ∂F∂χ , Ḟ ,
∂Ḟ
∂χ , G,

∂G
∂χ , Ġ and ∂Ġ

∂χ (Eq. (3.18)

- (4.30))

(f) compute the propagated state X−k =
[
r−k v−k

]T
(Eq. (3.1))

(g) compute
∂X−k
∂X+

k−1

1 and ∂∆tk
∂X+

k−1

(Eqs. (4.23) and (4.24)), which form the basis for computing match

point derivatives

(h) compute the maximum available thrust Tmaxk using Eq. (2.15)

(i) compute ∆vmaxk with Eq. (3.2)

(j) compute the throttle magnitude constraint ‖uk‖ < 1

(k) apply the impulsive maneuver v+
k = v−k + uk∆vmaxk

(l) compute the spacecraft’s mass after the applied impulse m+
k+1 with Eq. (3.6)

4. Locate the right hand phase boundary using the phase flight time NLP decision variable ∆tp

5. Repeat step 3 for the backwards half-phase

6. compute the match point constraint cmp and its partials
∂cmp

∂p

cmp =



rB − rF

vB − vF

mB −mF

tB − tF


= 0 (4.4)

where the F and B superscripts denote quantities at the end of the forward and backward propagated

half-phases respectively. The epochs on either side of the match point are computed as follows, with

t0 referring to the epoch at the beginning of the phase, and tf referring to the epoch at the end of the

phase:

1This matrix is calculated using Eqs. (9.84)-(9.87) in Battin [160] or by differentiating Eq. (3.1) and using the additional
derivative information provided in the Appendix. This also provides a means for deriving the Battin equations.
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tF = t0 +

N/2∑
k=1

∆tk (4.5)

tB = tf −
N∑

k=N/2+1

∆tk (4.6)

In the procedure above, the - and + superscripts indicate a quantity immediately prior to and after an

applied impulse respectively. The 3x1 vector uk contains the control parameters of the kth control node.

The scalar quantity ∆vmax represents the maximum ∆v achievable by the spacecraft were it to operate its

thruster continuously over the course of the propagation segment, and is computed using Eq. (3.2). The

spacecraft’s mass across the kth bounded impulse is computed using Eq. (3.6).

One peculiarity of this method is that the maximum size of a maneuver ∆vmaxk can only be determined

after the propagation time ∆t has been computed. This is in contrast to using an equivalent time spacing of

the nodes (MGALT) where segment propagation time is known prior to propagation and hence the trajectory

may be computed in half-segments. For this reason, maneuvers must occur at the the right-hand boundary of

a segment instead of in the center as they would for the original MGALT transcription. This is immaterial, as

the location of the impulse is more or less arbitrary for an impulsive approximation of continuous-thrust, save

for the case of the last segment in any half-phase where placing the maneuver on the right-hand boundary

results in it occurring exactly at the match point. When both half-phases are considered, this results in the

burn at the match point having a maximum potential size that is twice as large as the others. This is not a

major concern, however, as the purpose of bounded-impulse methods is to produce an accurate estimation

of the total mass requirement of a mission, and not necessarily the exact topology of its trajectory, and this

method does not violate the total possible ∆v that the low-thrust engine is capable of imparting. This issue

also reduces asymptotically with the use of more control nodes.

4.3 MGALTS Iteration-Free Propagator

When a two-body trajectory is propagated in the time domain (i.e. when time is used as the independent

variable of propagation) using Kepler’s equation, an iterative root finding algorithm must be applied to solve

for the corresponding change in eccentric anomaly. The need for iteration is due to Kepler’s equation being

transcendental in the anomaly variable (χ in Eq. (3.30)).
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The original MGALT transcription relies on two-body propagation by solving Kepler’s equation in the

time domain. By contrast, the multiple gravity assist with low-thrust using a Sundman transformation

(MGALTS) model employs Kepler’s equation in an inverse sense, as the independent variable becomes the

angular anomaly χ. The propagation time ∆t associated with a corresponding change in generalized anomaly

χ is computed as follows:

∆tk =
1
√
µ

(rk−1U1 + σk−1U2 + U3) (4.7)

where σk−1 is computed using Eq. (3.27) and the universal variables Un are computed using Eq. (3.15)

- (3.17) or alternatively, using the recursion relation in Eq. (A.6). Equation (4.7) is required to compute

the epoch match point constraint in Eq. (4.4) and is not transcendental in ∆t. By switching to an angular

independent propagation variable, the MGALTS transcription removes the iteration that is required to

propagate the spacecraft state vector for the MGALT model.

4.4 MGALTS True Anomaly Node Spacing

The selection of the generalized anomaly as the independent variable is natural for this new algorithm as the

universal Kepler propagator makes direct use of it. The use of this variable instead of time is convenient as

the two-body nonlinear differential equations of motion can be transformed into linear differential equations

with constant coefficients. The solution to these differential equations can be obtained via a power series

expansion that gives rise to the universal functions Un. The transformation that allows for this is given in

Eq. (4.3), with its generalization commonly expressed as:

dt = c rγds (4.8)

where c ∈ R and γ ∈ {R : γ ≥ 0}. The case of γ = 0 results in an equal temporal spacing of the control

nodes across a trajectory arc, i.e. the original Sims-Flanagan transcription. An equal spacing in generalized

or eccentric anomaly corresponds to γ = 1. For highly eccentric orbits, it is beneficial to cluster more control

nodes in the vicinity of periapse, which can be achieved by increasing γ. For γ = 3/2 the control nodes align

with the elliptic (intermediate) anomaly and γ = 2 results in a distribution corresponding to true anomaly

f .
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γ = 0 γ = 1

γ = 1.5 γ = 2

Figure 4.1: Generalized Sundman transformation applied to a discretized orbit with a semimajor axis of
1.0 and eccentricity of 0.716 where c = 1.0.

Arbitrary selection of γ in the context of a numerical integration scheme like Runge-Kutta or Taylor is

possible as Eq. (4.8) is easily integrated using these numerical techniques. The set of universal functions

{Un} in the analytic Kepler solver, however, comes about for the special case of γ = 1. For other powers of

r, the convenient transformation of the nonlinear differential equations of motion to linear ones is destroyed.

If, however, a different choice of γ (anomaly type) can be related to the generalized anomaly, the generalized

anomaly-based propagation technique employing {Un} can be retained.

To illustrate this concept, consider the case where the independent variable chosen by the NLP solver is

changed to the total change in true anomaly over one phase ∆fp, with the total change in true anomaly over

one segment being ∆f =
∆fp
N . In order to utilize the same universal propagation technique, the change in

the generalized anomaly ∆χ must be computed from the change in true anomaly ∆f , and several additional

derivatives must be computed for the Jacobian matrix. The following relationships between the change in
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true anomaly and the first two universal functions are due to Battin [160] 2.

U0

(χ
2

;α
)

=

√
rk+1

rk p

(
√
p cos

(
1

2
∆f

)
− σk sin

(
1

2
∆f

))
(4.9)

U1

(χ
2

;α
)

=

√
rk+1rk
p

sin

(
1

2
∆f

)
(4.10)

The orbital parameter is defined as p = a(1− e2). Using Equations (4.9) and (4.10) as well as Eqs. (3.15) -

(3.17), the following relationships between the change in true anomaly and the change in generalized anomaly

are obtained:

∆χ =



2rksin( 1
2 ∆f)

√
p cos( 1

2 ∆f)−σksin( 1
2 ∆f)

;α = 0

2√
α

tan−1

[ √
αrksin( 1

2 ∆f)
√
p cos( 1

2 ∆f)−σksin( 1
2 ∆f)

]
;α > 0

2√
−α tanh−1

[ √
−αrksin( 1

2 ∆f)
√
p cos( 1

2 ∆f)−σksin( 1
2 ∆f)

]
;α < 0

(4.11)

4.5 MGALTS Analytic Match Point Gradients

Computation of match point gradients for MGALTS requires slight alterations to be made to the algorithms

from chapter 3, as we must now account for the addition of the χp decision variables as well as the fact

that the segment propagation times (∆tk variables) are now dependent on the spacecraft’s state vector at

the beginning of the segment in contrast to MGALT where the spacecraft’s state at the end of a segment

is dependent on the propagation time. To accommodate these changes, the STMs and MTMs must each

be augmented with an additional row and column to hold partials required to compute sensitivities with

respect to χ. It should also be noted that the STMs must now hold ∂∆tk
∂X+

k

derivative information.

2These equations are obtained by equating two expressions for the F and G Lagrange coefficients. The first set describes F
and G in terms of change in true anomaly and the second set in terms of the universal functions (Battin [160] Eqs. (3.42) and
(4.84) respectively)
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Φk =
∂X−k
∂X+

k−1

=



∂r−k
∂r+k−1

∂r−k
∂v+

k−1

03×1 03×1 03×1
∂r−k
∂χ

∂v−k
∂r+k−1

∂v−k
∂v+

k−1

03×1 03×1 03×1
∂v−k
∂χ

01×3 01×3 1 0 0 0

∂t
∂rk−1

∂t
∂vk−1

0 1 0 ∂t
∂χ

∂∆tk
∂rk−1

∂∆tk
∂vk−1

0 0 0 ∂∆tk
∂χ

0 0 0 0 0 1


(4.12)

Mk =
∂X+

k

∂X−k
=



I3×3 03×3 03×1 03×1 03×1 03×1

∂v+
k

∂r−k
I3×3

∂v+
k

∂mk
Mk24 Mk25 03×1

∂mk+1

∂r−k
01×3 1 Mk34 Mk35 0

03×7 I3×3


(4.13)

The spacecraft state, at any point in time, does not have a dependence on the phase flight time ∆tp for the

Sundman regularized version of MGALT, therefore, expressions for the maneuver transition matrix (MTM)

sub-matrices differ slightly than what was presented in Chapter 3:

Mk24 = uk
D∆t

mk
· ∂Tmaxk

∂Pk
· ∂Pk
∂tk

(4.14)

Mk24 = −uk
D∆t

mk

(
∂Tmaxk

∂Pk
· ∂Pk
∂tk
− ‖uk‖

D∆t Tmaxk

mk

∂ṁmaxk

∂Pk
· ∂Pk
∂tk

)
(4.15)

Mk25 = uk
D

mk

(
∆t

∂Tmaxk

∂Pk
· ∂Pk
∂∆tk

+ Tmaxk

)
(4.16)

Mk25 =− uk
D

mk

[
∆t

∂Tmaxk

∂Pk
· ∂Pk
∂∆tk

+ Tmaxk

−‖uk‖
D∆t Tmaxk

mk

(
ṁmaxk + ∆t

∂ṁmaxk

∂Pk
· ∂Pk
∂∆tk

)]
(4.17)
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Mk34 = ∓‖uk‖D∆t
∂ṁmaxk

∂Pk
· ∂Pk
∂∆tk

(4.18)

Mk35 = ∓‖uk‖D
(
ṁmaxk + ∆t

∂ṁmaxk

∂Pk
· ∂Pk
∂∆tk

)
(4.19)

For most applications ∂Pk
∂∆tk

will be zero, since the available power would most likely not have an explicit

dependency on the segment propagation time (note that this does not include the non-explicit dependency

on propagation time via distance from the Sun rk, or the explicit dependency on current epoch tk, which is

captured in Eq. (4.14)).

The spacecraft’s state partials with respect to the generalized anomaly are calculated by differentiating

the Lagrange coefficients:

∂rk+1

∂χ
=
∂F

∂χ
rk +

∂G

∂χ
vk (4.20)

∂vk+1

∂χ
=
∂Ḟ

∂χ
rk +

∂Ġ

∂χ
vk (4.21)

There are several required partials of the segment propagation time:

∂∆t

∂χ
=

1
√
µ

(
rk
∂U1

∂χ
+ σk

∂U2

∂χ
+
∂U3

∂χ

)
(4.22)

∂∆t

∂rk
=

1
√
µ

(
∂rk
∂rk

U1 + rk
∂U1

∂rk
+
∂σk
∂rk

U2 + σk
∂U2

∂rk
+
∂U3

∂rk

)
(4.23)

∂∆t

∂vk
=

1
√
µ

(
rk
∂U1

∂vk
+
∂σk
∂vk

U2 + σk
∂U2

∂vk
+
∂U3

∂vk

)
(4.24)

Partials of the universal functions with respect to the generalized anomaly are calculated using the following

recursion:

∂U0

∂χ
= −αU1;

∂Un
∂χ

= Un−1 n = 1, 2, ... (4.25)
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∂Un

∂X−k
=
∂Un
∂α

∂α

∂X−k
n = 0, 1, 2, ... (4.26)

The derivatives of the Lagrange coefficients are given by:

∂F

∂χ
= − 1

rk

∂U2

∂χ
(4.27)

∂Ḟ

∂χ
=

√
µ

rk

(
U1

r2
k+1

∂rk+1

∂χ
− 1

rk+1

∂U1

∂χ

)
(4.28)

∂G

∂χ
=

1
√
µ

(
rk
∂U1

∂χ
+ σk

∂U2

∂χ

)
(4.29)

∂Ġ

∂χ
=

U2

r2
k+1

∂rk+1

∂χ
− 1

rk+1

∂U2

∂χ
(4.30)

Expressions for the Lagrange coefficients themselves are provided in Eq. (3.18)-(3.23). The distance from

the central body at the end of the propagation segment is given by Eq. (3.24) and its partial with respect

to χ is:

∂rk+1

∂χ
= rk

∂U0

∂χ
+ σk

∂U1

∂χ
+
∂U2

∂χ
(4.31)

Once the derivatives for the generalized anomaly variables have been calculated, the chain rule allows one

to easily extend the derivative calculation if true anomaly is used instead by way of Eq. (4.11):

∂∆χ

∂∆fp
=
∂∆χ

∂∆f

∂∆f

∂∆fp
(4.32)

∂∆χ

∂∆f
=


rk
√
p

[σk sin( 1
2 ∆f)−

√
p cos( 1

2 ∆f)]
2 ;α = 0

2
√
prk

p+αr2k+σ2
k+(p−σ2

k−αr
2
k)cos(∆f)−2

√
pσksin(∆f)

;α 6= 0

(4.33)
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4.6 Application: Rendezvous with Comet

45P/Honda-Mrkos-Pajdušáková

The problem selected to illustrate the benefits of time regularization is a notional rendezvous with the comet

45P/Honda-Mrkos-Pajdušáková. This is a short-period comet with a period of approximately 5.25 years.

We consider a direct flight to the comet, with no intermediate flybys. The rendezvous problem was solved

once using the MGALT transcription (Figure 4.2), then a second time using the MGALTS transcription

with generalized anomaly nodal spacing (Figure 4.3), and then finally using MGALTS with true anomaly

nodal spacing (Figures 4.7 and 4.8). All three optimizations were performed using the same configuration

parameters shown in Table 4.1. The NLP objective was the minimization of the propellant consumed.

Table 4.1: 45P/Honda-Mrkos-Pajdušáková rendezvous mission parameters

Parameter Value
Maximum allowed initial mass 4000 kg
Earliest allowed launch date August 27th, 2016
Launch window 5 years
Maximum flight time unbounded
Latest allowed arrival date January 1st, 2030
Launch vehicle Atlas V (555) NLS-2

Maximum launch C3 21.7156 km2/s2

Launch declination bounds [−28.5◦, 28.5◦]
Arrival type rendezvous
Thruster 2 x NEXT TT11 high thrust
Throttle logic minimum number of thrusters
Thruster duty cycle 0.95
Solar power coefficients γ0 = 1.32077 γ1 = −0.10848

γ2 = −0.11665 γ3 = 0.10843
γ4 = −0.01279

Spacecraft bus power requirement coefficients as/c = 1.0
bs/c = 0.0
cs/c = 0.0

Solar array BOL power (launch at 1 A.U.) 40.0 kW
Power margin (δpower) 15%
Post-launch checkout coast 60 days
Number of segments per phase 200
Ephemeris SPICE
SNOPT feasibility tolerance 1.0e-5
SNOPT optimality tolerance 1.0e-4
Objective function maximize final mass

Specific information about power modeling and throttle logic used is omitted here but is available, and

adheres to Discovery class mission proposal requirements [113,131].
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Figure 4.2: Rendezvous with 45P using MGALT with 200 segments, ∆tmission = 3690 days

Figures 4.2 and 4.3 show that the optimizer arrives at two solutions that differ by less than one percent

in terms of mass delivered to the comet. The major difference between the two solutions is the flight time

required for the transfer. The MGALT trajectory requires 10.10 years, whereas the MGALTS completes the

rendezvous in only 7.96 years. The throttle histories depicted in Figures 4.4 and 4.5 shed light on why this is

the case. The MGALTS trajectory features a much later launch date, yet arrives earlier at the target. It is

able to achieve this due to the greater number of control points located near periapsis for that transcription.

The clustering of control nodes there allows the pump-up maneuver to happen more efficiently, meaning the

spacecraft can match the energy of the comet’s orbit in a shorter time. The MGALT solution on the other

hand is not able to achieve the same energy change per periapsis passage. This works out in a particularly

unfortunate way for this mission as it results in the spacecraft having to make an entire extra revolution of

the sun in order to carry out the rendezvous.
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Figure 4.3: Rendezvous with 45P using time-regularized MGALTS with 200 segments, ∆tmission = 2909
days

By increasing the number of control nodes for the MGALT model, a solution qualitatively similar to the

MGALTS solution can be obtained due to the increased number of nodes at periapsis. Figure 4.6 shows the

new MGALT solution, this time using 400 segments instead of 200. Increasing the segment count by degrees

will eventually yield a trajectory with a more comparable flight time to the MGALTS solution.
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Figure 4.4: MGALT throttle magnitude and distance from the sun as a function of time.

Figure 4.5: MGALTS throttle magnitude and distance from the sun as a function of time.

We will now examine how the true anomaly-based version of the MGALTS transcription fares with this

problem. It is first worth noting that when the NLP solver uses total phase true anomaly as its decision

variable, it is capable of recovering a solution similar to that found when using generalized anomaly as a
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Figure 4.6: Rendezvous using MGALT with 400 segments, ∆tmission = 3472 days

decision variable, as shown in Figure 4.7. This added flexibility makes this version of the model especially

attractive for use in generating Pareto surfaces, which are more valuable sets of data for a mission proposal

team than a single point solution that extremalizes one cost function such as delivered mass [100,101].

With the higher concentration of control nodes near periapse, however, other solution families may also be

accessed. In particular, trajectories featuring much shorter flight times become available. Figure 4.8 shows

a rendezvous trajectory with the comet that takes 6.43 years to complete. The redistribution of the control

nodes in the true-anomaly based model allows for solutions such as this where, compared to the mission

shown in Figure 4.7, 1.5 years of flight time are traded for approximately 300 kg of propellant.

The comet 45/P rendezvous problem is an illustrative example of a mission that benefits from the new

regularized bounded-impulse model discussed in this chapter. The increased control authority afforded by

locating more control points near periapsis allows for the transfer to be completed with less propellant
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Figure 4.7: Rendezvous using the MGALTS true anomaly-based transcription with 200 segments,
∆tmission = 2913 days

used or with a reduced flight time. The fact that both of these solutions are easily discovered by the local

optimizer suggests that the MGALTS transcription would provide greater flexibility to a global optimizer

seeking to identify solutions that are Pareto optimal in mass delivered to the comet and time-of-flight.
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Figure 4.8: Rendezvous using the MGALTS true anomaly-based transcription with 200 segments,
∆tmission = 2350 days
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Chapter 5

Analytic Gradient Computation for
Finite-Burn Trajectory Models

Figure 5.1: 70 meter antenna at Goldstone, California.

Bounded-impulse trajectory transcriptions are capable of estimating the mass requirements for a wide

variety of missions, however, they can result in an inaccurate representation of the topology of the trajectory.

Higher fidelity modeling is therefore often necessary to bridge the gap between a low-fidelity solution and

a high-fidelity one as would be produced by software packages such as GMAT, FreeFlyer, STK, or Mystic.

Proper operation of these tools can require a great deal of human analyst time that may not be available

or affordable in the context of a proposal. In addition, these tools may not even be made available to all

teams wishing to submit a proposal due to their cost or restricted access. An intermediate level of design

fidelity that is easy and inexpensive to use and also readily available to all potential users is therefore highly
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desirable.

For both high and low-thrust propulsion regimes, the first step towards achieving higher fidelity is to

adopt a numerical integration scheme in favor of the Keplerian propagators at the heart of most low-fidelity

tools. Another important fidelity improvement is to adopt to a finite-burn model if the spacecraft is using

an electric thruster. While most maneuvers executed with a chemical rocket motor can still reasonably be

approximated as impulsive events right up until the flight-fidelity solution is closed in a high-heritage tool

such as MIRAGE, the same is not true for continuous-thrust motors that operate for days or weeks at a

time. It is therefore important to have the ability to model finite-burns, i.e. integrate with a thrust term in

the equations of motion. Doing so can yield solution topologies that can vary significantly compared with

their bounded-impulse equivalents.

The “medium” fidelity trajectory model described in this Chapter integrates the equations of motion

rather than approximating them, and its acceleration model includes reasonably high fidelity models of

propulsion and power systems as well as significant orbit perturbations such as third-body gravity, SRP,

and central body oblateness. This model is sufficient to ensure that a proposed trajectory is actually feasible

and is not an artifact of the lower fidelity models available in most preliminary design tools.

As one might expect, moving to a numerically integrated model drastically changes the way that analytic

gradients must be computed. Chapter 5 will describe how the gradient calculation process changes for

finite-burn models, and it will describe how specifically to compute analytic derivatives for a solar electric

spacecraft employing an electric thruster in the context of a high-fidelity physics engine. Due to the runtime

costs associated with numerical integration, user-provided gradients become even more valuable from a time

saving perspective and providing them enables the use of a finite-burn model the context of preliminary design

as a result of the decreased runtimes afforded by not employing finite differencing. Methods for numerically

computing gradients for a patched-conic FBLT trajectory model will be discussed in this chapter. As in

chapter 3, the methods described in this chapter allow for the incorporation of an accurate spacecraft power

model, which is of vital importance for mission proposal efforts. An algorithm will also be presented for

computing time-of-flight gradients for a finite-burn model using an explicit integration scheme, which enables

optimization of free final time problems.

The FBLT trajectory model described in this chapter is the last step required before moving to a high-

heritage tool such as GMAT or STK, and represents the true trajectory that will be flown very well. However,

before a trajectory model such as FBLT can be trusted, it must be verified against a high-heritage navigation

tool that might be used to actually fly the mission. A demonstration of the high-heritage software package
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MIRAGE’s ability to track a reference trajectory designed using FBLT will be the focus of section 5.6.

5.1 Finite-Burn Dynamical Model

The FBLT transcription divides a continuous-thrust spacecraft trajectory into Np phases, each consisting

of N segments in the same manner as the MGALT model. This transcription, however, increases the

level of modelling fidelity over MGALT by replacing the bounded-impulse approximated thrust arcs with

continuously integrated ones. One obvious advantage that this transcription has over MGALT is its ability

to model the effects of forces from sources other than the central body and the spacecraft’s thruster, such as

other gravitating bodies and SRP by directly modelling them in the equations of motion. This is known as

Cowell’s method of special perturbations. The inertial Cartesian differential equations of motion governing

a continuously thrusting spacecraft in orbit around a central body subject to gravitational forces from i

perturbing bodies, SRP and central body oblateness are:

r̈ = −
G
(
��*

0
m+mcb

)
r2

r

r
−
∑

i

G mi

(
r− ri

‖r− ri‖3
+

ri

r3
i

)
+
CrAsKφ

c m r2
s/�

rs/�

rs/�
+ r̈J2 +

D T

m
u (5.1)

ṁ = −‖u‖ D ṁmax (5.2)

where G is the universal gravitational constant, m is the mass of the spacecraft, mcb is the mass of the central

gravitational body, mi is the mass of the ith gravitational body, r is the position vector of the spacecraft

with respect to the central body and ri is the position vector of the ith body w. r. t. the central body.

Regarding the variables associated with radiation pressure, Cr is the coefficient of reflectivity on the

interval [0, 2], As is the spacecraft area exposed to sunlight, K is the total percentage of the sun seen by the

spacecraft ([0, 1]), φ is the solar flux and c is the speed of light in a vacuum.

The central body J2 acceleration term (r̈J2) must be computed in the body-centered, fixed equatorial

coordinate (BCF) frame. The central body’s radius is denoted by R. If the other acceleration terms are

computed in a different coordinate frame, then r̈J2 must be rotated into that frame as well after it has been

computed in BCF. The acceleration due to central body oblateness, measured in the inertial frame is given

by Eq. (5.3).
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r̈J2 = r̈J2ICRF = M ICRF
BCF r̈J2BCF (5.3)

where M ICRF
BCF is the rotation matrix from the BCF frame to the ICRF frame. Methods for computing these

rotation matrices are provided in Appendix A.5. The oblateness acceleration, measured in the central body

fixed frame is given by:

r̈J2BCF =
3J2µR

2

2r5
BCF


1− 5

xBCFz
2
BCF

r2BCF

1− 5
yBCFz

2
BCF

r2BCF

3− 5
z3BCF

r2BCF

 (5.4)

The thruster variable u is a throttle scaling vector whose three components are selected by the optimizer

on the range [−1, 1], D is the thruster duty cycle (modelled continuously), T is the instantaneous thrust of

the electric motor and ṁmax is the maximum instantaneous mass flow rate of the propellant through the

motor. Note that in Equation (5.1) the mass of the spacecraft is neglected in the first term since mcb >> m.

The vector geometry of this problem is illustrated in Figure 5.2. The diagram on the left depicts the

general case, where the central body need not be the Sun, whereas the right hand diagram shows how the

problem simplifies for a heliocentric trajectory. For the situation shown on the left in Figure 5.2, the Sun

is included for two reasons, despite the fact that it is not the central body. The first reason is that for

most mission designs, the Sun would almost certainly be included in the problem dynamics (the summation

in Equation (5.1)) due to its gravitational dominance in the solar system. The second reason is that for

accurate solar electric propulsion modelling, the position of the spacecraft with respect to the Sun must be

tracked at all times throughout the optimization so that the solar flux may be calculated at the spacecraft’s

current location. The vectors ri and r� are obtained from ephemeris calls. Note that rs/� is the position

vector of the spacecraft with respect to the Sun and rs/i is the position vector of the spacecraft with respect

to the ith gravitational body, both expressed in the coordinates of the inertial frame attached to the central

body, e.g.

rs/� = r− r� (5.5)

and
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rs/� =
[
(x− x�)2 + (y − y�)2 + (z − z�)2

]1/2
(5.6)

Figure 5.2: Vector diagrams for the general central body case and the heliocentric case.

5.2 Runge-Kutta Eighth Order Fixed-Step Integrator

The Runge-Kutta (RK) four stage integration method (RK4) is a classic choice for the numerical propagation

of orbits [38,53]. This method has an error accumulation of O
(
h4
)
, where h is the size of the integration time

step, and is also limited to a fixed step size. The numerical integrator employed for analysis in this chapter

is a fixed-step version of the eighth order adaptive-step RK7(8)13M integrator developed by Ghosh [188].

This integrator uses s = 13 stages to propagate the state vector. The RK8 step propagation is calculated

according to the following program:

X̂n+1 = X̂n +

s∑
i=1

b̂iki, i = 2, 3, ..., s (5.7)

tn+1 = tn + h (5.8)

where
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k1 = h · f
(
tn, X̂n

)
, (5.9)

ki = h · f
(
tn + cih, X̂n(i)

)
(5.10)

The Runge-Kutta matrix entries aij , quadrature weights (bi, b̂i) and the nodes (ci =
∑i−1
j=1 aij) are deter-

mined from the rk7(8)13M Butcher tableau [1], which is provided in the Appendix. The circonflex accent

indicates that the eighth order solution tableau entries are used as opposed to the seventh order. The value

of the state vector at the ith intermediate stage of the nth RK sub-step, X̂n(i), is computed by:

X̂n(i) = X̂n +

i−1∑
j=1

aijkj i > j i, j = 1, 2, 3, ..., s (5.11)

5.3 Match Point Gradient Computation

5.3.1 General Method

Calculation of the FBLT match point derivatives is, as in the MGALT transcription, reliant on the com-

putation of the spacecraft’s state transition matrix, the derivative of the FBLT vector field with respect to

initial conditions and is a linear mapping of the spacecraft’s state vector X from an initial epoch t0 to some

later epoch t:

X(t) = Φ(t, t0) X(t0) (5.12)

This mapping can be used to construct the partial derivatives of the match point constraints with respect to

the decision variables that form the problem Jacobian. The chain rule allows multiplication of these matrices

to be transitive, i.e. for three distinct time epochs t0, t1 and t2:

Φ(t2, t0) = Φ(t2, t1) ·Φ(t1, t0) (5.13)

It is this important property of the STM that allows for the computation of the match point constraint

derivatives for both MGALT and FBLT. State transition matrix multiplication sweeps are also an integral
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part of some differential dynamic programming methods such as hybrid differential dynamic programming

(HDDP) developed by Lantoine and Russell [44, 45]. In order to calculate the match point derivatives, the

spacecraft’s state transition matrix (STM) must be computed over the course of each FBLT segment as

shown in Figure 5.3.

Figure 5.3: An FBLT phase with unoptimized match point constraint. Along with the spacecraft state, the
entries of N STMs are also computed.

Since the three control parameters that determine the thrust level and direction in each FBLT segment

ux, uy and uz, and the mass at the end of each phase mf , are all NLP decision variables, the traditional

six-by-six perturbation transition matrix [160] is augmented to include entries describing the first-order

sensitivities of the spacecraft’s state at some epoch t due to changes in these variables at some initial epoch

t0 [189]:

Φ(t, t0) =



∂r
∂r0

∂r
∂ṙ0

∂r
∂m0

∂r
∂u0

∂ṙ
∂r0

∂ṙ
∂ṙ0

∂ṙ
∂m0

∂ṙ
∂u0

∂m
∂r0

∂m
∂ṙ0

∂m
∂m0

∂m
∂u0

∂u
∂r0

∂u
∂ṙ0

∂u
∂m0

∂u
∂u0


(5.14)

This augmented STM forms the basis for all match point partial derivative computations, except for those

associated with the phase times of flight or the launch epoch. Those derivatives are discussed in a later

section.
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As an example of how these augmented STMs are used to compute match point derivatives, consider the

case for decision vector entries p = ux, uy, or uz. These partial derivatives account for the vast majority of

the dense Jacobian entries and their computation alone affords substantial computational speed-up during

SNOPT’s local optimization procedure. Suppose that the partial derivative of the match point constraint

with respect to the control variables in the ith segment are desired. First, the STM immediately adjacent

to the match point has its right three columns zeroed/stripped:

Φs(t, t0) =



∂r
∂r0

∂r
∂ṙ0

∂r
∂m0

03×3

∂ṙ
∂r0

∂ṙ
∂ṙ0

∂ṙ
∂m0

03×3

∂m
∂r0

∂m
∂ṙ0

∂m
∂m0

01×3

∂u
∂r0

∂u
∂ṙ0

∂u
∂m0

03×3


(5.15)

This STM is then right-multiplied by the next segment’s “stripped” STM. This procedure proceeds se-

quentially until the segment of interest is reached at which point the final unaltered STM from Eq. (5.14)

associated with the kth segment is right-multiplied to the resultant “stripped” STM.

Φ(tmp, tk) = Φs(tmp, tmp−1) · . . . ·Φs(tk+2, tk+1) ·Φ(tk+1, tk) (5.16)

In Eq. (5.16) tk refers to the epoch at the beginning of the kth segment and tmp refers to the epoch at

the match point. The resultant matrix Φ(tmp, tk) contains explicit Jacobian entries for the match point

constraint with respect to the control vector from the kth segment uk.

5.3.2 Numerical Computation of the FBLT State Transition Matrix

Since the FBLT transcription is comprised of piecewise numerically integrated arcs, the unknown STM

entries must be computed via integration as well [190, 191]. Entries of the STM Φ are computed with the

following matrix differential equation:

Φ̇ = AΦ (5.17)

where A = ∂Ẋ
∂X is the state propagation matrix. The differential equations in Eq. (5.17) are collectively

known as the variational equations. A similar approach for the numerical computation of finite-burn state
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transition matrices was employed by Ocampo and Munoz [192] as well as Russell [73] in indirect trajectory

optimization frameworks and Ocampo and Mathur [193] for a direct method. Equation (5.17) is also known

as the fundamental set or the fundamental solution and has long been used for low-thrust spacecraft guidance

applications [194].

A =
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∂x
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∂ṁ
∂ux

∂ṁ
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∂ṁ
∂uz

∂u̇x
∂x

∂u̇x
∂y

∂u̇x
∂z

∂u̇x
∂vx

∂u̇x
∂vy

∂u̇x
∂vz

∂u̇x
∂m

∂u̇x
∂ux

∂u̇x
∂uy

∂u̇x
∂uz

∂u̇y
∂x

∂u̇y
∂y

∂u̇y
∂z

∂u̇y
∂vx

∂u̇y
∂vy

∂u̇y
∂vz

∂u̇y
∂m

∂u̇y
∂ux

∂u̇y
∂uy

∂u̇y
∂uz

∂u̇z
∂x

∂u̇z
∂y

∂u̇z
∂z

∂u̇z
∂vx

∂u̇z
∂vy

∂u̇z
∂vz

∂u̇z
∂m

∂u̇z
∂ux

∂u̇z
∂uy

∂u̇z
∂z



=



03×3 I3×3 03×1 03×3

A21 03×3 A23 A24

A31 01×3 01×1 A34

03×3 03×3 03×1 03×3


(5.18)

Expressions for the partitions A21, A23, A24 and A41 are found by taking partial derivatives of Equations

(5.1) and (5.2).

Letting µcb = Gmcb and µi = Gmi

A21 =
∂r̈

∂r

=
3µcbrr

T

r5
− µcb

r3
I3x3 +

3µi rs/ir
T
s/i

r5
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− µi
r3
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− 3CrAsKφ

c m

rs/�rTs/�

r5
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+
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+
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u D
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· ∂T
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· ∂P

∂rs/�
·
∂rs/�

∂r
(5.19)

where
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∂r̈J2
∂r

=
∂r̈J2ICRF
∂rICRF

=
∂r̈J2ICRF
∂r̈J2BCF

∂r̈J2BCF
∂rBCF

∂rBCF
∂rICRF

(5.20)

and

u =


ux

uy

uz

 (5.21)

and

∂rs/�

∂r
=

[
∂rs/�

∂x

∂rs/�

∂y

∂rs/�

∂z

]
(5.22)

Note that
∂r̈J2ICRF
∂r̈J2BCF

is the rotation matrix from BCF→ICRF and ∂rBCF
∂rICRF

is the rotation matrix from

ICRF→BCF.

The J2 partials in the BCF frame
(
∂r̈J2BCF
∂rBCF

)
are computed as follows (where the BCF frame subscript has

been omitted):

∂ẍJ2
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3J2µR

2

2r9
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The entries in Equation 5.22 are computed by taking partial derivatives of Equation 5.6.

A23 =
∂r̈

∂m
=
−G r

r3
− u D T

m2
+

CrAsKφ

c m2 r2
s/�

rs/�

rs/�
(5.23)

Since we are neglecting the mass of the spacecraft in the first term of Equation (5.1), the partial derivative

reduces to:
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= −u D T
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+
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c m2 r2
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(5.24)

∂r̈
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=
D T
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I3x3 (5.25)

A31 =
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A34 =

(
∂ṁ

∂u

)T
=

[
−∂‖u‖

∂u
D ṁmax

]T
(5.27)

where,

∂‖u‖
∂u

=
u

‖u‖+ ε
(5.28)

The quantity ε = 1.0 × 10−25 prevents a singularity in the event that the thruster is turned off by the

optimizer. The m×m equations of Equation (5.17) are appended to the state vector and all k = m+m×m =

110 differential equations are integrated alongside the other state vector entries:

124



Ẋ = f =
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(5.29)

The sij are defined using:
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(5.30)
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=



s11 s12 s13 s14 s15 s16 s17 s18 s19 s110

s21 s22 s23 s24 s25 s26 s27 s28 s29 s210

s31 s32 s33 s34 s35 s36 s37 s38 s39 s310

s41 s42 s43 s44 s45 s46 s47 s48 s49 s410

s51 s52 s53 s54 s55 s56 s57 s58 s59 s510

s61 s62 s63 s64 s65 s66 s67 s68 s69 s610

s71 s72 s73 s74 s75 s76 s77 s78 s79 s710

s81 s82 s83 s84 s85 s86 s87 s88 s89 s810

s91 s92 s93 s94 s95 s96 s97 s98 s99 s910

s101 s102 s103 s104 s105 s106 s107 s108 s109 s1010



(5.31)

In FBLT, the thrust vector is held constant over one segment (both magnitude and direction), i.e.

u̇x = 0; ux(0) = ux

u̇y = 0; uy(0) = uy (5.32)

u̇z = 0; uz(0) = uz

The STM matrix integration proceeds from the initial conditions:

ṡij(0) =


1 if i = j

0 otherwise

(5.33)

5.4 FBLT Match Point Phase Time of Flight Gradients

Like the MGALT transcription, FBLT encodes the phase flight time as a decision variable. The match point

constraints are completely dense with respect to the flight time decision variable, therefore the NLP solver

requires the gradient of those constraints with respect to the flight time. Conceptually, these gradients are

quite simple. The perturbation of the spacecraft’s state vector at the match point due to a perturbation

in the time of flight (∆tp) is given by the time differential of the state vector. For example, in order to

determine how the spacecraft’s position vector at the match point rm would be altered by a slight change in
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the time of flight (to first order), one would just multiply the spacecraft’s velocity at the match point vmp

by the time-of-flight perturbation.

δrmp = vmp · δ∆tp (5.34)

However, FBLT does not propagate the spacecraft’s state analytically, but rather numerically, therefore,

the match point defect gradients must be computed by taking the partial derivative of Eq. (5.7) with respect

to the time of flight.

∂X̂n+1

∂∆tp
=
∂X̂n

∂∆tp
+

s∑
i=1

b̂i
∂ki
∂∆tp

(5.35)

where

∂ki
∂∆tp

=
∂h

∂∆tp
f + h

∂f

∂∆tp
(5.36)

For a fixed-step integrator ∂h
∂∆tp

= 0, except for the partial segment leading into the match point. The

partial derivative of ki (specifically f) with respect to ∆tp must be computed at each intermediate stage of

the RK step and stored in memory as Eq. (5.35) includes their summation across all s stages. These partial

derivatives are most efficiently computed alongside the vector f . We are only interested in calculating the

partial derivatives with respect to ∆tp of the first seven entries in the f vector (i.e. ẋ, ẏ, ż, ẍ, ÿ, z̈ and ṁ,

the time derivatives of the match point states). To facilitate the computation of ∂f
∂∆tp

, the ∆tp gradient of

the state vector approximation at each stage must be computed (i.e. the partial derivative of Eq. (5.11) is

required):

∂X̂n(i)

∂∆tp
=
∂X̂n

∂∆tp
+

i−1∑
j=1

aij
kj
∂∆tp

(5.37)

The first three entries in the vector ∂f
∂∆tp

are given by the fourth, fifth and sixth entries in Eq. (5.37). To

simplify notation, it is assumed that the following partial derivatives are all computed in the ith stage of the

nth RK sub-step and these subscripts have been omitted from the following partial derivative calculations.

∂ṙ

∂∆tp
=
∂X̂4,5,6

∂∆tp
(5.38)
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In order to compute the sensitivity of the spacecraft’s acceleration with respect to the time of flight, the

chain rule is applied to Eq. (5.1):

∂r̈

∂∆tp
=
∂r̈

∂r
· ∂r

∂∆tp
+

∑
i

∂r̈

∂ri
· ∂ri
∂∆tp

+
∂r̈

∂m
· ∂m
∂∆tp

(5.39)

The first term of Eq. (5.39) is computed using Equations (5.19) and (5.37) for the two partial derivatives

respectively. The first parital derivative of the second term of Eq. (5.39) is computed as follows:

∂r̈

∂ri
= −µi

(
3rs/ir

T
s/i

r5
s/i

− I3x3

r3
s/i

− 3rir
T
i

r5
i

+
I3x3

r3
i

)
(5.40)

It is important to note that, for the special where body i is the sun, Equation (5.40) has an additional term:

∂r̈

∂r�
=− µ�

(
3rs/�rTs/�

r5
s/�

− I3x3

r3
s/�
−

3r�rT�
r5
�

+
I3x3

r3
�

)

+
3CrAsKφ

c m

rs/�rTs/�

r5
s/�

− 1

r3
s/�

I3x3

+
u D

ms
· ∂T
∂P
· ∂P

∂rs/�
·
∂rs/�

∂r�
(5.41)

This additional term is present since a change in the position of the spacecraft with respect to the Sun affects

not only their gravitational interaction, but also the power generated by the solar arrays of the spacecraft,

and hence the maximum acceleration of the spacecraft due to the thrusters and solar pressure. At first

glance it seems as though Eq. (5.41) and Eq. (5.19) are double-counting some terms. To resolve this, one

need just examine the partial derivative directions of the spaceraft’s thrust with respect to time-of-flight:

∂T

∂∆tp
=
∂T

∂P
· ∂P
∂∆tp

(5.42)

where
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∂P

∂∆tp
=

∂P

∂rs/�
·
∂rs/�

∂∆tp
+
∂P

∂t
· ∂t

∂∆tp

=
∂P

∂rs/�
·
(
∂rs/�

∂r
· ∂r

∂∆tp
−
∂rs/�

∂r�
· ∂r�
∂∆tp

)
+
∂P

∂t
· ∂t

∂∆tp
(5.43)

The first term in Eq. (5.43) is accounted for in Eq. (5.19), the second term is accounted for in Eq. (5.41)

and the final term is the explicit time derivative of power. This last term is non-zero if hardware decay

is accounted for. The third term in Eq. (5.39) uses Eq. (5.24) and (5.37). Finally, the phase flight time

sensitivity of the mass flow rate differential equation must be computed:

∂ṁ

∂∆tp
= −‖u‖ D ∂ṁmax

∂P
· ∂P
∂∆tp

(5.44)

where the maximum mass flow rate time-of-flight gradient is calculated similarly to Eq. (5.42).

5.5 Example: Finite-Burn Comet Sample Return

The typical use case for the FBLT model is to locally re-converge a low-fidelity bounded-impulse initial

guess. The FBLT optimization does not usually require MBH to re-converge an MGALT initial guess.

This is especially true for interplanetary trajectories where perturbative accelerations are relatively small in

magnitude. Switching the propagation method from two-body to numerical integration does however result

in a sharp increase in execution time. For these reasons, avoiding finite differences is primarily important

from a runtime perspective. Since the MGALT initial guess is fairly close to the finite-burn, n-body solution,

the optimizer is typically robust enough to converge when using a finite-differenced Jacobian. The runtime

cost of evaluating the finite-burn objective function can render the FBLT transcription impractical for a

low-thrust transfer with many control segments and a complex dynamics model.

In order to quantify the advantages of computing the FBLT Jacobian with the variational equations,

the comet sample return example from section 3.11 is re-converged with an n-body gravity model and a

cannonball SRP model. The mission parameters specific to the FBLT optimization are shown in Table 5.1.

Two one hour runs were executed: one using the variational equations to compute the STMs/Jacobian and

one using finite differencing to do so. Information associated with the two runs is provided in Table 5.2.

The first timing metric is how long it took SNOPT to complete a single major iteration. For this first
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major iteration, 99 minor iterations were required for both Jacobian calculation strategies. The variational

equations improve the execution speed for this problem by over two orders of magnitude allowing for the

optimizer to improve the problem feasibility metric. The finite differencing run was not allowed to iterate

beyond one hour, so it is not known if it would achieve the same feasibility. The locally optimal solution

found by SNOPT (using the variational equations) is shown in Fig. 5.4.

Table 5.1: Physics model parameters for the 67P comet sample return mission.

Parameter Value
Point mass gravity sources Mercury, Venus, Mars, Jupiter, Saturn, Uranus, Neptune
Propagator fixed-step RK8
Integration step size 1 day
Spacecraft surface area 100 m2

Coefficient of reflectivity 2

Solar flux 1360 W/m
2

Table 5.2: Physics model parameters for the 67P comet sample return mission.

Metric Variational FD
Time to execute 1 SNOPT major iteration 1.83 s 235 s
SNOPT major iterations completed in one hour 2111 7
NLP feasibility achieved 1e-15 1e-6

Figure 5.4: Optimal round-trip finite-burn trajectory to 67P.

130



An immediate observation is that closing the trajectory in the higher fidelity physics model has improved

the cost function value over the MGALT solution shown in Fig. 3.21, with ten additional kilograms returned

to Earth. One clear shortcoming of the modeling fidelity is that the Earth is not included as a perturbing

point mass. The Earth is not included in the physics model due to the use of the patched conic approximation.

Augmenting the FBLT transcription to model 3D flybys requires a straightforward modification to the current

model and is a topic of immediate research.

5.6 FBLT Dynamical Model Verification and Validation Using

MIRAGE

In this section, the extensions made to the FBLT [16] acceleration model that were presented in this chapter

(third-body perturbations and solar radiation pressure) are verified for accuracy using the operational navi-

gation tool MIRAGE [195]. MIRAGE is a licensed version of DPTRAJ/ODP originally developed at JPL to

support high-fidelity orbit determination, trajectory propagation and maneuver planning [196]. MIRAGE

has flight heritage from the 1970s to the present day and has been used to navigate many deep-space mis-

sions, including NEAR, Stardust, Genesis, and many other missions at JPL, and, more recently at KinetX,

MESSENGER, New Horizons, and OSIRIS-REx. Most relevant to the analysis in this section, MIRAGE was

used to navigate the Deep Space 1 mission, which employed solar electric propulsion. MIRAGE is therefore

an ideal environment in which to check the accuracy of EMTG’s FBLT mode.

5.6.1 Mission to 9712 Nauplius and 1143 Odysseus

A notional solar-electric propulsion (SEP) mission to the Trojan asteroids Nauplius and Odysseus is used as

the benchmark case to compare EMTG and the software package MIRAGE. This benchmark was chosen for

this analysis because the “Trojan Tour and Rendezvous” was listed as one of the acceptable targets in the

New Frontiers 4 Announcement of Opportunity [197]. New Frontiers 4 step one has since been completed,

however, a Trojan Tour and Rendezvous remains an ideal case with which to validate a new design tool that

may be used to propose similar missions in the future. The Announcement of Opportunity states that the

Trojan Tour and Rendezvous “is intended to examine two or more small bodies sharing the orbit of Jupiter,

including one or more flybys followed by an extended rendezvous with a Trojan object.” Accordingly, our

benchmark mission performs a flyby of the magnitude 10.7 Trojan 9712 Nauplius before rendezvousing with

1143 Odysseus, which at magnitude 7.93 is one of the largest Trojans. The operations at Odysseus are
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not considered in this paper. This benchmark is appropriate for validating EMTG against MIRAGE and

also provides a test case for an operational validation process that could be used for any mission or mission

proposal.

The assumptions for the benchmark mission to Nauplius and Odysseus are listed in Table 5.3. Table 5.4

lists the major events in the mission, and Figure 5.5 is a plot of the optimal trajectory. The acceleration

model settings used in the comparison are given in Table 5.5 provided in the next section.

Table 5.3: Assumptions for the benchmark mission to Nauplius and Odysseus

Option Value

Launch window 1/1/2024 - 12/31/2024

Flight time upper bound 12 years

Arrival conditions Nauplius: flyby Odysseus: rendezvous

Launch vehicle Atlas V 551

Launch asymptote declination bounds [−28.5, 28.5] (Kennedy Space Center)

Post-launch/Pre-flyby/Post-flyby coast durations 60/30/30 days

Solar array P0 40 kW

Solar array coefficients γi [1, 0, 0, 0, 0]

Spacecraft power coefficients as/c − cs/c [0.8, 0, 0]

Propulsion system 2 NEXT in “high-Thrust” mode [198]

Throttle logic minimum number of thrusters

Duty cycle 90%

Power margin 15%

Number of segments per phase 40

The NEXT thruster coefficients for use in Eq. (2.15) and (2.16) are provided in Table A.1. The multi-thruster

logic used for this problem is provided in Algorithm2.

Table 5.4: Significant events in the Nauplius-Odysseus mission

Event # Date Event Location v∞ (km/s) Mass (kg)

1 12/31/2024 launch Earth 5.587 3256.2

2 7/13/2033 intercept 9712 Nauplius 2.229 1852.4

3 12/31/2036 Low-thrust rendezvous 1143 Odysseus – 1653.1
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Figure 5.5: Optimal trajectory to Nauplius and Odysseus.

5.6.2 Trajectory Validation

The low-thrust trajectory generated by EMTG can be converted into a near-equivalent trajectory created

by the MIRAGE navigation software. Demonstration of the MIRAGE targeting is done for two reasons: to

perform independent verification and validation of the EMTG propagation and to create a database suitable

for conducting orbit determination (OD), covariance analysis, and trajectory prediction and management

during flight operations. MIRAGE models each thrust segment produced by EMTG as a long finite-burn

based on a specified thrust profile and direction. The SEPV module of MIRAGE is employed to search for

a ∆v that achieves the target position state at the end of each thrust arc. To avoid overlap of finite-burn

segments, the actual thrust arc, as modeled by MIRAGE, is shortened by up to one hour to allow margin for

the ∆v targeting algorithm. This slight foreshortening amounts to a tiny fraction of the overall thrust arc.

Due to small mismatches in force models between the two sets of software, small adjustments or tweaks to

the thrust level are required to achieve convergence of spacecraft state, including velocity and mass, as well

as position. The MIRAGE analysis presented in this section was performed by Ken Williams from KinetX

aeropsace and was the subject of a conference paper, on which the author of this work was a co-author [199].
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For the scenario used as a test case for this study, force models and planetary ephemerides used by

EMTG and MIRAGE were simplified as much as possible, as shown in Table 5.5, to facilitate comparison

of results. Note that the Trojans are modeled as massless particles in this analysis.

Table 5.5: Simplified force model assumptions used for the EMTG-MIRAGE comparison.

Category Model Notable Details

Planetary ephemerides DE433 • Available bodies (SPICE ID): SUN (10), MER-

CURY BARYCENTER (1), MERCURY(199),

VENUS BARYCENTER (2), VENUS (299),

EARTH BARYCENTER (3), EARTH (399),

MOON (301), MARS BARYCENTER (4),

MARS (499), JUPITER BARYCENTER (5),

SATURN BARYCENTER (6), URANUS

BARYCENTER (7), NEPTUNE BARYCEN-

TER (8), PLUTO BARYCENTER (9)

• Time span (ET or TDB):

1899 DEC 04 00:00:00 - 2050 OCT 17 00:00:00

Gravity Sun, Earth

and Jupiter only µ

[km3/s2]

• µ� = 1.32712440041939E+11

• µ⊕ = 3.98694790080000E+05

• µX = 1.26686510964000E+08

Solar radiation pressure Spacecraft bus • As = 114.1 m2

• Cr = 1.0

• φ = 1.015242216E+08 kg km3

m2s2

equivalent to solar luminosity L� = 1360 W
m2

Accelerations associated with specific forces were checked and model inputs tuned to ensure good agreement

between the two software sets. It is understood that for an actual flight mission, complexity and fidelity of

models would be increased systematically to preserve the consistency of models between the two software

sets.

Figures 5.6-5.8 provide deviations of the MIRAGE derived states relative to EMTG for the Earth-

Nauplius phase of the representative low-thrust mission. The red dashed lines indicate a point within a

134



specific thrust arc where power limitations necessitated powering down one of the active thrusters. These

changes were modeled in terms of thrust and mass flow changes, which can be characterized in MIRAGE as

quartic and cubic polynomials of elapsed time, respectively. Since these inflection points were so approxi-

mated, this engendered certain state discrepancies, as shown in Figures 5.6-5.8. Nevertheless, the resultant

maximum difference in targeted position over the entire trajectory phase was only 87.3 m. The maximum

velocity difference of 1.17 m/s coincided with one of the thrust mode changes, but this discrepancy dissipated

exponentially over the remainder of the trajectory phase, resulting in a final mass difference of 742 g, a final

velocity difference of about 15 cm/s and an overall discrepancy in ∆v usage of only 2.24 m/s out of a total of

17.34 km/s of total ∆v expended, well within the operational tolerances that could be anticipated for such

a mission.

Figure 5.6: Differences in propagated spacecraft position of MIRAGE relative to EMTG for the Earth-
Nauplius phase.
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Figure 5.7: Differences in propagated spacecraft velocity of MIRAGE relative to EMTG for the Earth-
Nauplius phase.

Figure 5.8: Differences in propagated spacecraft mass of MIRAGE relative to EMTG for the Earth-Nauplius
phase.

Also, if the problematic thrust arc is partitioned at the point where one of the thrusters is deactivated,

the agreement between EMTG and MIRAGE is somewhat improved. Although the maximum position

discrepancy is now 162.3 m, the maximum velocity difference is now reduced to 69.6 cm/s, the final mass
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difference falls to 449 g, and the overall discrepancy in ∆v usage is now only 940 cm/s. Hence, as expected,

it is always possible to improve the agreement between the two software sets by improving the modeling

fidelity of all thrust arcs.

Figure 5.9: Differences in propagated spacecraft position of MIRAGE relative to EMTG for the Earth-
Nauplius phase after thrust segment partition.

Figure 5.10: Differences in propagated spacecraft velocity of MIRAGE relative to EMTG for the Earth-
Nauplius phase after thrust segment partition.
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Figure 5.11: Differences in propagated spacecraft mass of MIRAGE relative to EMTG for the Earth-Nauplius
phase after thrust segment partition.

Figures 5.12-5.14 show similar data for the Nauplius-Odysseus trajectory phase. There were no thruster

mode changes within any thrust arcs over this phase, so consequently the agreement between EMTG and

MIRAGE was somewhat improved, with a final mass discrepancy of 542 g, and a difference of only 14 mm/s

out of 1.63 km/s of total ∆v expended, again well within operational tolerances.
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Figure 5.12: Differences in propagated spacecraft position of MIRAGE relative to EMTG for the Nauplius-
Odysseus phase.

Figure 5.13: Differences in propagated spacecraft velocity of MIRAGE relative to EMTG for the Nauplius-
Odysseus phase.
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Figure 5.14: Differences in propagated spacecraft mass of MIRAGE relative to EMTG for the Nauplius-
Odysseus phase.
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Chapter 6

Towards a Gas Giant Satellite Tour
Automaton

Figure 6.1: Artist’s concept of Galileo at Jupiter.

The success of missions such as Galileo and Cassini are a testament to the maturity of satellite tour mission

design techniques. The processes used for their design, however, can be manually intensive. Recent research

in this domain of mission design is typically characterized by broad exhaustive searches of the planet-centered

tour design space, accompanied by a decoupled optimization of the interplanetary portion of the overall

trajectory. In particular, no preliminary design method exists that is capable of autonomously optimizing a

trajectory from launch through the planetary capture and early stages of a satellite tour.

Studies such as the ones performed by Lynam et al. [200], Lynam [125,126] and Didion and Lynam [127]

perform a thorough analysis of the capture design using exhaustive grid searches resulting in large solution

databases or in high-fidelity point solutions. Solution databases suffer from the primary drawback of being
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inflexible to changing system or mission level requirements. Similarly, single point solutions, while useful as

a final flight deliverable, are similarly laborious to generate in high-heritage tools such as STK and must be

regenerated every time requirements change. The systematic tour design process developed by Scott et al.

alleviates some of these problems and incorporates optimization into the design of planetary satellite-aided

capture subject to interplanetary trajectory constraints, but still only considers a piecewise approach where

the interplanetary transfer to a hyperbolic arrival asymptote at a gas giant is constructed separately from

the capture design [128].

This chapter seeks to further close the gap between autonomous interplanetary trajectory design and

the recent work that has been done towards automating the satellite tour pathfinding problem. In partic-

ular, a path forward will be described that combines the interplanetary HOC methods of Englander and

Conway [47] with the Lambert grid-based methods of Lantukh and Russell [9], the latter of which has been

demonstrated to be successful at performing satellite tour design. The combination of these methods is

enabled by the analytical gradient algorithms developed in the previous chapters of this work in addition to

several innovations that extend the work of Lantukh and Russell, including acceleration of the tree search

algorithm using parallel computing architectures.

6.1 Lambert’s Problem

“Determination of an orbit, having a specified transfer time and connecting two position vectors, is called

Lambert’s Problem” [160]. Where Kepler’s problem is concerned with solving the two-body initial value

problem, Lambert’s problem solves the two-body boundary value problem for the following differential

equation:

r̈ + µ
r

r3
= 0 (6.1)

In precise mathematical terms, Lambert’s problem can be stated as: “Given two times t1 and t2 and

two position vectors r1 and r2, find a solution to the differential equation in Eq. (6.1) rtrans, such that

rtrans(t1) = r1 and rtrans(t2) = r2”. The two position vectors, are separated by the angle θ as shown in

Figure 6.2.
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Figure 6.2: Lambert transfer geometry.

The objective of solving the two-body boundary value problem is to determine the vectors v1 and v2.

Lambert’s problem does not have a unique solution; any Keplerian arc connecting the position vectors r1

and r2 with the same TOF, is a possible Lambert solution. Since Keplerian motion is confined to a plane, the

final position and velocity vectors can be expressed as functions of the initial position and velocity vectors

according to Eq. (3.1).

For any fixed (r1, r2, θ) geometry there exist 2Nrev+1 prograde and Nrev+1 retrograde Lambert transfers,

where Nrev is the number of complete revolutions of the central body required for the transfer (i.e. Nrev = 0

solutions have a transfer angle θ < 2π). ForNrev = 0 the two solutions are simply the prograde and retrograde

transfers. For every Nrev ≥ 1, the four solutions are classified as combinations of prograde/retrograde +

short-period/long-period, with each combination corresponding to a different transfer semimajor axis (or

equivalently TOF).

Historically, solution methods for Lambert’s problem served as a means for computing the orbits of

celestial bodies. Today, Lambert arc computations are essential components of many preliminary mission

design and spacecraft navigation methods due to their fast computation times. The exhaustive grid search

tool STOUR, for example, computes body-to-body transfers by solving Lambert’s Problem. The iterative

Lambert algorithm used in this work is due to Arora and Russell [201] and implemented in C++ primarily

by Matt Vavrina [152].
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6.2 Lambert Grid Using True Anomaly Discretization

The complexity of a moon tour, where flybys can number in the tens to hundreds, can be considerably

greater than a typical interplanetary MGA trajectory. Some of the most effective methods for solving the

interplanetary MGA problem are relatively ineffective at addressing the enormous design space of a complex

moon tour. Systematic grid searches, however, provide a means for approaching the problem, even though

total enumeration is not possible.

The basis for the planetary satellite tour pathfinding framework proposed in this Chapter is a true

anomaly-based grid, where body-to-body Lambert transfers are computed between grid nodes distributed

around the orbits of the two bodies. The nodes are separated by a user-specified true anomaly spacing.

Pathfinding using a true anomaly grid proceeds as follows:

1. The user selects the number of discretization points for each flyby target in the pathfinding problem.

2. The grid search is initiated by selecting the epoch of departure from the first body (i.e. the launch

body).

3. For a given value of Nrev the minimum TOF from the launch body to the second body in the flyby

sequence is determined (that satisfies user-placed bounds on departure C3). For Nrev = 0 a solution

will always exist, although the departure C3 will be large. For multi-revolution Lambert transfers a

valid transfer will not exist for all possible TOF, therefore a bracketing search is used to determine the

smallest TOF for which a departure C3 is defined.

4. The true anomaly of the target body is advanced by a user-specified grid spacing.

5. The Lambert algorithm is executed to determine if a valid transfer exists for the new transfer geometry

and current Nrev value.

6. If a transfer exists it is stored

7. Repeat steps 4 - 6 until the maximum allowable TOF is reached.

8. Repeat steps 4 - 7 for each desired value of Nrev for the first leg in the flyby sequence.

9. Advance to the next flyby body in the sequence

10. For each subsequent body in the flyby sequence, repeat all steps using a C3 matching algorithm to

determine valid flyby maneuvers.
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6.3 C3 Matching Algorithm

In order to incorporate Lambert solutions into an MGA pathsolving algorithm, a method is required for

determining if a feasible flyby maneuver is possible at a target body connecting two Lambert arcs. In order

to ensure that a feasible gravity-assist can be achieved, the two constraints in Equations (2.6) and (2.7) must

be satisfied.

The algorithm for connecting any two Lambert transfers with a flyby event proceeds as follows:

1. Solve Lambert’s problem for the current geometry and TOF: r1(t1), r2(t2) to get the outbound C30

for the flyby at r1(t1).

2. If Lambert solution is found, check if Eq. (2.6) is satisfied, i.e. C30 - C3target = 0, where C3target is

the incoming C3 at r1(t1).

3. If the C3 magnitude matches, then proceed to step 7.

4. Advance the true anomaly grid. If the new TOF is greater than the maximum allowed flight time,

then terminate C3 matching.

5. Solve the new Lambert problem to get the new outbound C31

6. If the C3 magnitude matches, then proceed to step 7 otherwise, if sgn(C30 - C3target) 6= sgn(C31 -

C3target), then a solution was missed and a bisection search is initiated to locate it. Otherwise, a match

was not found, return to step 4.

7. Check if Eq. (2.7) is satisfied. If the turn angle is valid, then a flyby can be used to connect the two

Lambert legs.

8. Repeat steps 4-7.

An example C3 vs. TOF plot is shown in Fig. 6.3. The above procedure will search along the C3 curve

and identify the two intersection points labeled “Match #1” and “Match #2”, which represent two valid C3

matches for a Venus to Earth Lambert transfer. After identifying these matches, Eq. (2.7) would need to

be enforced in order to determine if the C3 match also corresponded to a physically realizable gravity-assist

maneuver.
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Figure 6.3: Example of a C3 matching plot for a transfer from Venus to Earth (from [4]).

6.4 Linearly Interpolated Ephemeris

Section 2.5.1 discussed the reasons why ephemeris calls can be an expensive computational bottleneck. This

is especially true if these calls must be made to the hard drive, such as with the SPICE ephemeris system.

Random access memory based readers, such as FIRE and SplineEphem significantly reduce ephemeris access

costs, however, in an effort to accelerate the Lambert grid search as much as possible, a simplified linearly

interpolated ephemeris was implemented for this work. The ephemeris works similar to SplineEphem in that

JPL HORIZONS data is obtained over a mission’s period of interest at discrete time intervals ∆t. Then a

linear interpolation is performed between ephemeris points to obtain planetary positions and velocities.

In Algorithm 3 rephem, vephem and tephem are equal-length arrays containing correlated position, velocity

and epoch information respectively for an ephemeris object. The Julian Date for which the ephemeris data

is being computed is denoted as JD and ∆t is the interval in days between two successive ephemeris data

points (e.g. ∆t = tephem[1]− tephem[0]).

A linearly interpolated ephemeris does not provide sufficient accuracy for most mission design applica-

tions, however, when the low-fidelity solution produced by the tree search is input as an initial guess into a

146



higher fidelity design tool, the local optimizer can compensate for the discrepancies between the linearized

ephemeris and a higher accuracy one such as SplineEphem or SPICE. This sacrifice in accuracy due to em-

ploying the linear ephemeris model is offset by about a factor of four increase in execution speed compared

with SplineEphem.

Algorithm 3 Linear Ephemeris Call

1: inputs are rephem, vephem, tephem, JD, ∆t
2: procedure LinearEphem

3: indexLow ← floor
(
JD−tephem[0]

∆t

)
4: indexHigh ← ceil

(
JD−tephem[0]

∆t

)
5: r ← rephem[indexLow] +

rephem[indexHigh]−rephem[indexLow]
∆t

6: v ← vephem[indexLow] +
vephem[indexHigh]−vephem[indexLow]

∆t
7: end procedure

6.5 Pathfinding Software Framework

6.5.1 N-ary Tree

The pathfinding problem, as it pertains to MGA trajectories, is best represented as a tree. A tree is a

construct from graph theory. Specifically, a tree is a connected graph that does not feature any cycles

(acyclic). A graph is connected if each of its vertices is reachable from all other vertices, and is acyclic if

none of its vertices can be reached from itself (i.e. there is no path leaving from any vertex that can be

traced back to itself). The tree topology used to represent the MGA pathfinding problem in this work is the

n-ary tree. Every node in an n-ary tree has at most n children. An example of an n-ary tree is shown in

Figure 6.4. Every node in this tree, except the leaf nodes, has two child nodes, and is also an example of a

binary tree. This figure also gives one an appreciation for the combinatoric complexity of the gravity-assist

problem. Here, we only consider two child nodes per node, however, for the flyby pathfinding problem, there

typically exist many more than two subsequent decision branches that can be explored.

147



Figure 6.4: A complete binary tree propagated to a depth of 12.

6.5.2 The Trajectory Forest Data Structure

A gravity-assist pathfinding tree is created by encoding a particular launch/departure date as the root node

of the tree. The root node serves no other purpose other than to encode this particular date and does not

represent an actual body-to-body trajectory. The child nodes of the root node (nodes with a depth of one)

represent feasible trajectories that connect the first body in the flyby sequence to the second body. These

departure legs all share a common launch/departure date, but can represent transfers with different flight

times, maneuver geometries, resonances, number of revolutions around the central body etc.

A collection of multiple trajectory trees forms a forest. The trajectory forest represents the total enu-

meration of the gravity-assist pathfinding problem, subject to the level of discretization imposed by the
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practitioner. An example trajectory forest is shown in Fig. 6.5.

Figure 6.5: Example trajectory forest for an E-EV-J gravity-assist sequence.

6.5.3 Tree Search Algorithms

The use of a tree data structure to encode the MGA problem is convenient from a data organizational aspect,

but it also flexibly supports a large variety of search strategies. Several studies focusing on multiple flyby

trajectories have employed different tree search algorithms. Izzo et al. [74] employed a novel search strategy

called the lazy race tree search (LRTS) that selected the fifty shortest flight time transfers from leaves at any

level in the tree to branch. The shortest flight time strategy was effective for the GTOC 6 problem [202] as

the problem’s cost function rewarded solutions that generally featured the largest number of flybys in a fixed

time. The LRTS attempted to counter the greediness of a beam search by allowing leaf nodes to remain

in contention for branching at any point during the search process. By contrast, beam search only selects

a certain subset of the current leaf nodes for branching and all other leaf nodes are permanently removed

(pruned) from the tree. The Monte Carlo tree search (MCTS) is another branching strategy that has been

applied to the multiple flyby pathfinding problem [203]. This search strategy uses random sampling of the

decision space to focus on the most promising decisions (and therefore the most promising regions) in the

tree.

Beam search is perhaps the most straightforward tree search strategy, and is the strategy employed for

the application examples presented in this chapter. Beam search is initiated by branching all of the root

nodes in the forest. Then the level one leaf nodes are sorted according to some partial cost function, and

a certain number or percentage are selected for branching to create the level two leaf nodes. The process

is repeated until some termination criterion is met. Figure 6.6 depicts a beam search algorithm searching

through three levels of a trajectory forest. The beam search algorithm is inherently greedy and is useful for

RAM-limited problems where only a fraction of the design space can be explored.
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Figure 6.6: Dynamic trajectory forest exploration using beam search.

Specific tree search strategies are not a primary focus of this work, and the identification of more suitable

search algorithms represents an worthwhile avenue for future research, especially in the area of satellite tour

design.
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6.5.4 Software Implementation

The software implementation of an n-ary tree is ordinarily based on the construction of an individual node

class (assuming an object oriented framework) whose interconnected instances form the tree structure. A

node object will possess a pointer to its parent node in the tree, which is set to null if the current node is

the root of the tree. Each node also has either a pointer to each child that branches from it, or a pointer

to its first child and a pointer to its adjacent sibling node. In this way, any node in the tree can be reached

from any other node. The tree can also be easily pruned using recursion. Due to the large memory footprint

associated with a trajectory forest representing an MGA Lambert grid, the implementation used to produce

the results in this work does not connect the nodes of each tree using pointer variables. Furthermore, only

the current leaf nodes that are eligible for branching are retained in RAM. All ancestor nodes are archived

on the hard drive using serialized binary files. Each node in the tree is given knowledge of its parent using

two integer identification numbers: one number indicates which binary file the serialized parent object is

stored in, the other encodes a unique number identifying the parent node object.

While many problems are sufficiently small that additional layers of the forest, or even perhaps the entire

forest, may be retained in memory, this is not true in general. A long term launch date scan, or a fine

time-of-flight grid can result in a single layer of the forest containing hundreds of thousands or millions of

nodes. Retaining only branching leaf nodes in RAM allows the program to accommodate the largest problem

size possible.

Reconstruction of a particular trajectory is straightforward. The parent ID variable that each node

possesses allows for the reconstruction of a multiple flyby trajectory via recursive hard disk accesses. The

parent IDs represent the connections in the underlying mathematical tree, and in effect create a network of

reverse linked lists that makes recursive tracing of the tree possible. The necessary and sufficient information

required to reconstruct any trajectory identified in the search process is just the list of leaf node identification

numbers. In practice the final product of a tree search is a vector of tuples, where each tuple contains the

ID of a leaf node, the ID of the file that its contained in, as well as any relevant scoring information for that

node (e.g. cumulative flight time, delta-v, launch C3 etc.). The final vector of information allows for Pareto

sorting of the final trajectories, without having to reconstruct any one trajectory object. An analyst is then

free to reconstruct any individual trajectory (for plotting, or to obtain other more detailed information) by

recursively tracing one of the linked lists starting with one of the leaf nodes.

The reverse linked list concept just described is similar to the one implemented by Lantukh [9], however,
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our implementation extends this with additional software engineering strategies that will be described in the

next section.

6.5.5 RAM Management Using Object Pooling

The large branching factor of most gravity-assist pathfinding problems makes any software implementation

of the tree search inherently RAM limited. Storing only the leaf nodes and their immediate children in

RAM helps to mitigate the data storage limitation, however, very large problems can consume all of the

available RAM on a computer. As the algorithm dynamically explores the flyby forest, object creation and

destruction can also lead to significant slow-downs. In order to prevent solutions from being missed due to

the unavailability of RAM, and to prevent the high frequency creation/destruction of node objects as the

program proceeds, an object pool is introduced to the search program. An object pool is a software design

pattern whose operation is based on a “pool” of pre-constructed software objects. These objects are drawn

upon by the program whenever an object instance is required, and then when it is not needed any longer,

it is returned to the pool instead of being destructed. An example where object pooling is beneficial is a

program that utilizes many network connections and calls. Network connection objects, such as sockets or

database connections can be time consuming to create. A pool of these objects would eliminate the need to

constantly create a new object whenever the program requests one, by instead simply providing one from

the pool.

Maintaining an object pool provides two main benefits. First, the computational overhead associated with

the constant construction and destruction of objects is eliminated. Second, by allocating a pre-determined

number of objects to the pool, the RAM footprint of the program using the pool can be bounded before

execution begins. The trajectory forest search procedure is made more efficient by using a node pool, and

is also size-restricted eliminating the possibility of locking up a compute node due to RAM exhaustion.

6.6 Non-Ballistic Pathsolving

6.6.1 Deep-Space Maneuvers

Incorporating DSMs into the search increases the size of the design space, and results in a more complicated

Boundary Value Problem (BVP) compared to the ballistic body-to-body planar Lambert transfer. By

inserting a DSM into the trajectory, the initial and final central body relative velocities of the spacecraft can
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no longer be determined using Lambert’s method alone. A DSM trajectory that remains in the Lambert

plane will experience a change in orbital energy due to the added impulse, or should the transfer contain

a broken-plane maneuver, Lambert’s method by definition can no longer be used as the trajectory will be

split between two transfer planes.

In order to accommodate the inclusion of impulsive maneuvers, the ballistic Lambert transfer is aug-

mented. First, the spacecraft’s post departure position (r+
departure) and velocity (v+

s/c-departure) are propagated

for a period of time ∆tDSM1
= tDSM − tdeparture by solving Kepler’s equation, which provides the pre-DSM

inertial state of the spacecraft rDSM and v−s/c-DSM. Lambert’s problem is then solved using the boundary

conditions r+
DSM , r−arrival, and TOF = ∆tDSM2

. Solving this problem will yield the unknown boundary

velocities v+
s/c-DSM and v−s/c-arrival. The magnitude of the DSM required to complete the transfer is then

calculated:

∆vDSM = v+
s/c-DSM − v−s/c-DSM (6.2)

There now remains one final unknown in the problem posed, that being the initial departure velocity of

the spacecraft relative to the central body (v+
s/c-departure). For a ballistic transfer, this would be determined

as one of the boundary velocity outputs when solving Lambert’s problem, however, the first half of the

trajectory has been replaced with a Keplerian propagation arc, therefore, this velocity must be provided

as an input to the problem. The enumeration of the outgoing flyby velocity orientation is achieved by

discretizing the flyby “pump” and “crank” angles, which are denoted as θ and φ respectively in Figure 6.7

153



     

  
 

    

 

To central body

C

V

N

Figure 6.7: Flyby pump θ and crank φ angles. Reproduced from [3]

The magnitude of the outgoing spacecraft hyperbolic excess velocity vector in the velocity-normal-conormal

frame
[
V̂ N̂ Ĉ

]
is determined using Eq. (6.5):

v+
∞ = v+

∞


cos(θ)

sin(θ)sin(φ)

−sin(θ)cos(φ)

 (6.3)

This velocity is expressed in the inertial frame with respect to the central body using the following coordinate

transformation:

v+
s/c = vbody + T ICRF

RTN v+
∞ (6.4)

where

T ICRF
VNC =

[
V̂ N̂ Ĉ

]
(6.5)

154



The unit vectors defining the
[
V̂ N̂ Ĉ

]
frame are computed using the position and velocity of the flyby body

at the flyby epoch:

V̂ =
vbody

‖vbody‖
(6.6)

N̂ =
rbody × vbody

‖rbody × vbody‖
(6.7)

Ĉ = T̂ × N̂ (6.8)

Flybys that result in a change only to the pump angle (∆θ) will alter the inertial velocity of the spacecraft

with respect to the central body. This means that the semimajor axis, and therefore the orbital period of

the post-flyby trajectory, will also be adjusted. Gravity-assists that increase the pump angle are referred

to as “pump downs” as the inertial velocity of the spacecraft is decreased, and the semimajor axis reduced.

Conversely, “pump up” maneuvers increase the semimajor axis as a result of the larger v∞ decreasing the

pump angle.

A gravity-assist that changes only the crank angle will alter the inclination and eccentricity of the

spacecraft’s orbit, but preserve the size of the semimajor axis. If the inclination of the spacecraft’s pre-flyby

orbit plane is small (i.e. near the central body’s equator), then the inclination change will be large, while

the eccentricity change will not be very significant. The opposite is true if the pre-flyby inclination is large.

A cranking flyby at high inclinations will not result in a large inclination change, however, the eccentricity

change will be more pronounced. The procedure for performing a DSM trajectory search is summarized in

Algorithm 4.

6.6.2 Resonant Flybys

Two bodies are in orbital resonance if there exists an integer relationship between the periods of their orbits

about the central body. In other words, p : q resonance exists between a spacecraft and a potential flyby

target if the spacecraft completes p revolutions about the central body in the time it takes the flyby target to

complete q revolutions. Incorporating resonant transfers into multiple gravity-assist trajectories is beneficial

for several reasons.
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Algorithm 4 Departure to a DSM

1: inputs are φ, θ, TOF , v+
∞, tDSM

2: procedure DSM
3: compute v+

∞
4: compute T ICRF

RTN

5: compute v+
s/c

6: if departing from flyby then
7: compute required turn angle
8: if required turn angle > maximum possible turn angle then
9: return

10: end if
11: end if
12: propagate spacecraft’s post-flyby state (r+

s/c, v+
s/c) for ∆tDSM1 =⇒ r−DSM v−DSM

13: solve Lambert transfer from rDSM to rarrival with transfer fime ∆tDSM2

14: if Lambert solution exists then
15: compute the magnitude of the DSM using Eq. (6.2)
16: save DSM transfer
17: end if
18: end procedure

Resonant orbits set up repeat encounters with a gravitating body, which is useful for queuing future flyby

maneuvers, but also for scientific reasons. When investigating a body, such as a planetary satellite, repeat

visits to that body are beneficial as they offer additional opportunities to make observations and collect

scientific data. For example, repeat encounters with a gravitational body allow a spacecraft to refine its

measurements of the gravity field and multiple ground tracks are a necessity for generating surface maps.

Including resonant transfers in a Lambert-based pathfinding algorithm is challenging as Lambert’s prob-

lem is singular for transfers of 0 and 180 degrees. Furthermore, in the context of a real ephemeris model,

exact orbital resonances do not exist. With this in mind, this study implements near-resonant transfers by

inserting a small impulsive maneuver near the midpoint of the transfer in order to target a precise flyby of

the target body. The target arrival date is computed using the following equation:

tarr = tdep + qTbody, (6.9)

where tdep is the flyby departure epoch, and Tbody is the orbital period of the target flyby body, calculated

at the departure epoch. Incorporating near-resonances into the flyby search in this manner is convenient

as these trajectories are a subset of the DSM transfers described in the last section. In particular, a near-

resonance transfer is one where the flyby pump angle α remains unchanged and the change in crank angle

φ can vary on the interval [0, 2π].

The incorporation of resonant transfers into the Lambert tree search algorithm is demonstrated with a
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repeat-encounter trajectory of Saturn’s moon Enceladus. The tree search problem setup is summarized in

Table 6.1.

Table 6.1: Lambert tree search settings for repeat Enceladus encounter sequence.

Parameter Value

Start date (JD) 2463598.5

min. departure C3 1.96 km2/s2

max. departure C3 4.0 km2/s2

∆C3 0.1 km2/s2

∆φ 1 degree

max. revs. 1

min. flyby altitude 20 km

max. flyby altitude 100 km

In this example, the spacecraft begins at Enceladus with a relatively low velocity relative to the satellite,

and then executes ten consecutive π transfers, however, since linearly interpolated SPICE ephemeris data is

used, these transfers are not exact π transfers. The minimum ∆v ten-encounter trajectory identified by the

tree search is shown in Fig. 6.8.
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Figure 6.8: Repeat Enceladus backflip encounters using the Lambert tree search and linearly interpolated
SPICE data. Dots indicate flyby encounters and maneuver locations. Plot is shown in the J2000 ecliptic
frame.

The repeat “backflip” encounters with the moon accumulate a significant amount of ∆v during the

Lambert search. In order to increase the ephemeris fidelity, and reduce the propellant cost, the tree search

results are input to a local-optimizer using the MGAnDSMs transcription. The optimizer is free to adjust

the epoch, magnitude and direction of the targeting maneuvers as well as the epochs of the encounters

slightly to reduce the cost function (total ∆v). Local optimization using MGAnDSMs reduced the required

∆v for the complete ten encounter sequence from 293 m/s to 195 m/s. An example Enceladus-to-Enceladus

transfer from the optimal trajectory is shown in Fig. 6.9.
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Figure 6.9: Example Enceladus to Enceladus π transfer locally optimized using the MGAnDSMs transcrip-
tion. Ephemeris data is spline-fit SPICE (SplineEphem). The original Lambert transfer used 36.71 m/s of
∆v. Plot shows the trajectory in the J2000 Saturn equatorial frame.

6.7 Parallel N-ary Tree Exploration

Trajectory forest traversal is an embarrassingly parallelizable problem. The branching of any two leaf nodes

in the forest are independent operations that may be carried out in parallel, in a straightforward manner. To

begin with, the launch dates to be considered are distributed evenly amongst all available processing cores.

Each core is responsible for branching each launch date node that is assigned to it. Once the first generation

of leaf nodes has been produced (representing departure legs), the leaf nodes that are selected for further

branching are again evenly distributed amongst the available processors and the procedure repeats. In this

manner, the entire problem is executed in parallel except for a few select operations such as sorting and file

i/o. Even these operations can be performed in parallel as there exist algorithms for performing parallel file

read/write as well as sorting.

This parallelization of the tree search problem is realizable in both distributed and shared memory

configurations. It is worth noting that a distributed implementation of this algorithm would not require
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substantial inter-processor communication overhead, and is therefore especially conducive to processor grid

scaling. For this work, a shared memory parallelization scheme is considered, primarily due to the compute

hardware available, but the analyses and observations are equally valid for a distributed version of the tree

search algorithm.

6.7.1 Multithreading Using OpenMP

OpenMP is a specific implementation of processor multithreading that follows the fork-join operational

concept and is available for the C, C++ and Fortran programming languages. OpenMP is attractive as it

is relatively straighforward to implement, being controlled almost exclusively by way of compiler directives

in the source code. Essentially, a programmer need only designate areas of the code that are to be executed

in parallel (e.g. a for loop whose iterations are independent of one another) and the OpenMP API carries

out the necessary low-level actions required to perform the parallel execution.

In the OpenMP paradigm, the runtime environment designates a master thread that subsequently desig-

nates (forks) its own slave threads amongst which the system divides the computational work to be performed.

Individual threads in this thread pool carry out their alloted instructions in the designated parallel region of

code and then idle at the end of the parallel region until all threads in the pool have finished their execution

(i.e. they join). Being a shared memory scheme, all threads executing in an OpenMP parallel region exist

on the same compute node and therefore draw from the same source of RAM.

6.7.2 Intel Xeon Cluster vs. Intel i7 Quad-Core

The parallel tree search framework described in this chapter is demonstrated in this work by deployment

on a Linux computing cluster furnished with four Intel Xeon E-74890 processors. Each Xeon chip houses

15 individual processors, which in turn have two logical threads each, for a total of 160 compute threads

across the system. The cluster also features 512 GB of total RAM, which is an attractive feature for the

RAM-limited breadth-first tree traversal algorithm.

In order to quantify the execution speed increases gained from parallelization of the flyby tree traversal

algorithm, an example MGA interplanetary mission to Saturn is considered. A fixed flyby sequence of Earth-

Earth-Venus-Venus-Earth-Saturn is assumed. Only ballistic trajectories are considered, and the search is

performed from Saturn backwards through the flyby sequence to Earth. We have found this backwards

search to be beneficial when considering trajectories to the outer planets as the tree search is only performed
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on trajectory legs that successfully connect from the inner solar system to the outer solar system. The

backward search also filters out any Lambert solutions with excessively long times-of-flight between the

inner and outer planets, thus eliminating early in the search many trajectories that will violate a total flight

time constraint imposed by the mission designer.

For this problem, a 1000 day Saturn arrival window scan in one day increments is considered. The orbits

of Venus and Earth are discretized into 225 and 365 grid points of true anomaly respectively, achieving a 1

day flight time resolution for the Lambert flight time grid. The breadth-first tree search algorithm retained

the top 30% of all partial solutions at each level (flyby) in the search. Tree nodes were ranked according to

the following partial cost function:

C =
1√
2

√
TOF 2 + v2

∞f
(6.10)

where TOF is the time-of-flight of the current partial solution and v∞f
is the arrival hyperbolic velocity

at Saturn. This is a partial cost function in that it is applied against each partial flyby sequence upon

completion of each level in the tree search. More sophisticated partial cost functions and Pareto sorting

algorithms have been described by both Johnson [108] and Lantukh [9] that seek to mitigate the greediness

associated with pruning the flyby tree as the search is executed, however, those strategies are not a focus of

this work.

The tree search was executed on three separate hardware configurations in order to capture the benefits

of the parallel search:

1. Serial search on an Intel i7-7820 @ 2.90 GHz

2. Parallel OpenMP search on an Intel i7-7820 @ 2.90 GHz

3. Parallel OpenMP search on the Linux cluster with Intel Xeon E-74890 @ 2.80 GHz

The Intel i7 runs were executed on a laptop with four processors (for a total of eight logical threads). The

solution with the lowest Saturn encounter velocity is shown in Fig. 6.10.
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Figure 6.10: Ballistic Lambert MGA trajectory from Earth to Saturn, using an E-EVVE-S flyby sequence.

The execution times associated with each hardware setup are summarized in Table 6.2.
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Table 6.2: Lambert tree search execution times for the E-EVVE-S problem.

Architecture Runtime

Serial i7 3.06 hrs.

OpenMP i7 0.54 hrs.

OpenMP Linux cluster 4.97 min.

The embarrassing parallelism of the breadth-first flyby tree search affords substantial speed-up when

OpenMP multithreading is exploited. All three cases computed 1 153 641 feasible Lambert trajectory legs

and 579 full E-EVVE-S sequences were identified (with the lowest 70% partial sequences being pruned at

each level in the tree search).

6.8 Satellite Tour Automaton

The combinatorics of designing a planetary satellite tour make an exhaustive survey of the problem space

impossible even for the world’s most powerful super computers. The tour design problem is an ideal candidate

for deployment of the tree search framework outlined thus far in this chapter. The level of fidelity provided

by the Lambert solutions that form the basis for the tree search is insufficient for anything beyond an

academic exercise, therefore, a useful design workflow will feature a means for taking the output of the

tree search and increasing its accuracy. This section will illustrate preliminary work that contributes to an

automated moon tour design process and will showcase the progress made with an example 35-flyby Jovian

moon tour design that is optimized from launch through tour completion. The example problem is solved

using the MGAnDSMs transcription described in Chapter 3 and therefore relies heavily on the analytic

gradient formulae discussed there.

The traditional means for converting a Keplerian patched-conic initial guess to high-fidelity is to manually

forward-shoot the spacecraft state in a high-heritage tool such as STK. Forward differential correction is

usually employed to satisfy equality constraints, targeting states provided by the initial guess. If optimization

is applied to the trajectory design, it is usually applied in a piecewise manner, as was the case with the

solutions to the GTOC6 problem submitted by the ESA-ACT [74] and University of Texas at Austin [9]

teams. The ESA-ACT team computed optimal encounter-to-encounter transfers using differential evolution.

The UT-Austin team computed their entire tour sequence using Lambert arcs including VILMs and nπ

transfers, and then converted the maneuvers to finite-burn arcs using a local optimizer based on Hybrid
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Differential Dynamic Programming (HDDP). The local low-thrust optimization was performed one transfer

at a time, where the v-infinity body encounter states provided by the Lambert search were targeted by the

optimizer.

The focus of this section is the design and optimization of a complex interplanetary transfer to Jupiter,

followed by a Jovian satellite tour. A high-thrust chemical propulsion system is assumed, with an Isp of

320 seconds. A fixed interplanetary flyby sequence of E-VVE-JSOI is used, where JSOI denotes arrival

at Jupiter’s sphere of influence. The flyby sequence is the same as the one used by Cassini en route to

Saturn. Problem assumptions for the interplanetary trajectory to Jupiter are shown in Table 6.3 and the

optimal trajectory found is shown in Fig. 6.11. Upon arrival at Jupiter’s sphere of influence, the spacecraft

then targets a flyby of the moon Ganymede and then Callisto. The terminal intercept v∞ of the spacecraft

at Callisto is constrained to be less than 6 km/s, which is more than sufficient to ensure capture around

Jupiter. The entire sequence of launch through the first Callisto intercept was optimized, without the need

for an initial seed state, using the MBH heuristic and was modeled with the MGAnDSMs transcription that

was described in Chapter 3. The optimization objective was to maximize mass delivered to Callisto. The

optimizer was allowed to insert up to one deep-space maneuver anywhere in each phase of the trajectory,

but their presence was not assumed. In particular, it is worth emphasizing that the Jupiter orbital insertion

(JOI) and apojove raise maneuvers (ARM) were placed by the optimizer and were completely driven by

the terminal constraint that the Callisto intercept occur with a relative velocity of no more than 6 km/s.

Comparing with terminology present in the literature, the optimizer essentially performed a single satellite-

aided capture flyby, followed by the JOI and ARM maneuvers before the first Callisto flyby.
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Table 6.3: Optimization parameters for interplanetary and Jupiter capture sequence.

Parameter Value
Earliest allowed launch date February 1st, 2015
Launch window 365.25 days
Maximum flight time 8 years
Maximum allowed initial mass 6000 kg
Launch vehicle Atlas V (551) NLS-2
Launch declination bounds [−28.5◦, 28.5◦]
Thruster Isp 320 s
Flyby sequence E-VVE-JSOI-GC
Ephemeris model SplineEphem
Maximum number of maneuvers per phase 1
Arrival type Callisto intercept
Maximum v∞ at Callisto intercept 6 km/s
Minimum Jupiter approach distance 200 000 km
SNOPT feasibility tolerance 1.0e-5
Max MBH runtime 8 hrs
Max SNOPT runtime 30 s
Objective function maximize final mass

165



Figure 6.11: Interplanetary transfer to Jovian SOI.
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6.8.1 Ephemeris Referenced Boundary Interface

The capture sequence at Jupiter was modeled using a series of multiple shooting phases across the boundary

of and inside the planet’s sphere of influence (SOI), using the technique described by Sarli et al. [204]. To

accomplish this, a phase boundary is placed, by the optimizer, on the surface of the SOI and at a periapse

point with respect to the planet. The SOI phase boundary connects the last flyby of the interplanetary

cruise with the periapse phase boundary. The periapse phase boundary then connects to the first satellite

flyby encounter. The positions of these two phase boundaries are referenced with respect to an ephemeris

point of the target planet, not the sun. Assuming the spacecraft has a chemical propulsion system (i.e. the

MGAnDSMs transcription is employed) the optimizer is free to place a maneuver (or maneuvers) anywhere

along either phase. In addition, the optimizer can place a maneuver exactly at the periapse point, should it

be optimal to perform the orbital insertion maneuver there.

Shooting arcs are propagated from both sides of each phase boundary, just as they are in a typical

FBS transcription used for interplanetary cruise, and a defect constraint at the center of each phase must

be satisfied. The various half-phase propagations and boundary locations are illustrated in Fig. 6.12. By

locating a phase boundary on the SOI, any required coordinate system change occurs there as opposed to

in the middle of a phase propagation, where it could complicate derivative calculations and cost function

evaluation in general. The periapse phase boundary is defined via a constraint on the spacecraft’s state at

that point:

cp = r · v = 0 (6.11)

It is important to note that not all incoming hyperbolic trajectories that preface an orbital insertion

maneuver will necessarily pass through a periapse point. For instance if a significant inclination change

needs to be performed upon arrival at the target planetary system, the insertion maneuver will preferentially

be located at a node crossing. Locating the orbital insertion maneuver at a node means that the subsequent

periapse raise maneuver, which occurs near apoapse will also be located at or very close to the opposing node.

The periapse raise maneuver and inclination change can be combined into a single maneuver in a location

that is efficient for both orbital geometry adjustments (i.e. apoapse for a periapse raise maneuver and nodal

crossing for an inclination change). While this work considers a periapse boundary, the framework discussed

in this section does not preclude the use of other boundary types, including an arbitrary unconstrained free

point in space.
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SOI

Figure 6.12: Ephemeris referenced boundary multiple shooting procedure.

168



6.8.2 Satellite Tour Lambert Tree Search

After an optimized interplanetary trajectory and Jupiter capture sequence was found, the arrival v∞ vector

at the first Callisto flyby was used as an initial condition for a flyby tree search. The purpose of this search

is to construct a patched-Lambert initial guess for a satellite tour that can be optimized in a gradient based

solver.

The tree search was executed on a laptop with an Intel i7 processor with a 2.90 GHz nominal clock speed.

OpenMP multithreading was used to accelerate the search. Deep-space maneuvers were not considered,

except for use during resonance targets. A beam search was used where 20 000 trajectories were branched at

every level (flyby) in the tree. The search required 5.37 hours and resulted in a trajectory tree consisting of 45

317 952 individual Lambert transfers. Branching selection considered partial trajectories that required the

smallest ∆v. Since no deep-space maneuvers were considered, this essentially favored feasible non-resonant

transfers, which did not require a targeting maneuver. As a secondary selection criteria, the terminal

maximum flyby bend angle was used to discern between sibling leaf nodes that had identical propellant

requirements. Maximum bend angle was used as it is a good indicator of how effective a particular transfer

will be at accessing a larger number of possible Lambert transfers during the next phase of branching.

Connecting a large number of flybys together in the Jovian system is fairly straightforward due to the large

masses of the Galilean moons, and 132 095 feasible 35 encounter solutions were identified by the tree search,

which is a very small subset of all possible feasible solutions considering only 20 000 leaf nodes were branched

at every level in the tree. In fact, some tree levels featured well over three million valid partial trajectories.

After the tree search was complete, the solution comprised of patched Lambert arcs was combined with

the interplanetary cruise and Ganymede-Callisto capture sequence to create an initial guess for the gradient-

based solver, which was then used to feasiblize and locally optimize the complete end-to-end trajectory from

launch through tour completion. The tour parameters and flyby sequence is shown in Table 6.3.

Table 6.4: Optimization parameters for full interplanetary cruise + 35 flyby tour optimization (beyond
those specified in Table 6.3).

Parameter Value
Maximum flight time 11 years
Flyby altitude bounds for Galilean satellite flybys [200 km, 10 000 km]
Flyby sequence E-VVE-JSOI-GC-CCCCCCCCCC

-GGGGGGGGGGGG
-EEEEEEEEEEE

Arrival type Europa intercept
Max SNOPT runtime 30 min
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The MBH heuristic was not employed to perform this final optimization as the initial guess was nearly

feasible and the use of a fully analytically specified Jacobian, using the techniques described in Chapter 3,

ensured robust iteration of the local optimizer. The NLP solver was executed for 30 minutes to allow it to

thoroughly refine the cost function. The final locally optimal tour beginning at Jupiter SOI is shown in Fig.

6.13. The orbital insertion and perijove raise maneuver details are shown in Fig. 6.14.

It should be stressed that this problem is a complete end-to-end optimization of a moon tour with a

similar number of flybys as the mission executed by the Galileo spacecraft, and represents a significant

improvement to the state-of-the-art of moon tour optimization. The 35 flyby example is by no means a

stress case for this optimizer, as it was deployed in the latest NASA New Frontiers 4 proposal round where it

was used to optimize tours of 60+ flybys with ease. The analytic techniques that were described in chapter

3 are an enabling feature of the solver that allows it to locally optimize a problem of this size and sensitivity.

Furthermore, the entire mission pathsolving process was fully automated, from launch through final Europa

flyby, and required no manual intervention by the analyst. Pathfinding (i.e. sequence selection) was not

treated in this example, with a fixed flyby sequence being provided to the solver a priori.

The next step in the development of the automated moon tour generation framework is to optimize the

trajectory in an n-body gravity model. During the tour, and especially while the spacecraft is flying on the

initial capture petal orbit, the Sun is a significant perturber. Closer to Jupiter, the gravity of the Galilean

satellites must also be accounted for. Some planets, Saturn in particular, have significant oblateness, which

must be modeled in a practical tour design tool. The time domain fixed-step propagator described in chapter

5 is not suitable for high-fidelity optimization of planetary tours. In order to properly model the trajectory

at both periapse and apoapse of the capture petal orbit a very small integration step size needs to be

used, driven by the spacecraft’s speed at periapse. Unfortunately, this results in prohibitively slow objective

function execution speeds. One solution is to switch to a time-regularized version of the FBLT transcription,

which is left as future work.
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Figure 6.13: Locally optimized Galilean moon tour C:11, G:13, E:11, 3.82 year flight time from SOI interface
to final Europa intercept. The large grey petal ellipse represents the osculating orbit of the spacecraft prior
to the periapse raise maneuver that occurs at apojove of the first capture ellipse. 1.425 km/s deterministic
∆v (JOI maneuver: 1.079 km/s, perijove raise maneuver: 0.346 km/s).
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Figure 6.14: Jupiter orbit insertion and perijove raise maneuvers.
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6.8.3 Future Search Improvements and Practical Navigation Considerations

The flyby pathfinding search performed for the satellite tour presented in the previous section identified low

∆v feasible solutions and made no concessions for important operational factors that must be considered

in the context of a real mission design effort. Probably the most important consideration that was ignored

during the tree search phase of this tour design is the relative positioning of the Sun, Earth, central body,

and the spacecraft during the satellite encounters and other critical mission events. In particular, it is vital

to maintain a communication line-of-sight, free of radio interference, between the Earth and the spacecraft

to confirm maneuver success. For example, during its Jupiter orbital insertion maneuver, Galileo had a

direct line-of-sight to Earth so that entry probe data could be relayed to Earth and so Doppler ranging

could confirm that the insertion burn had successfully occurred (Fig. 6.15).

Figure 6.15: Jupiter arrival (December 7, 1995): Io flyby, Probe relay, and Jupiter orbit insertion (from [5]).

Three things could disrupt a communication link between the DSN and the spacecraft: 1) obstruction

by the central body 2) obstruction by a satellite and 3) a solar conjunction. None of these problems arise
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for the tour presented in this chapter, however, these constraints were not explicitly enforced by the tree

search algorithm or the local optimizer.

One particular concern that does exist with the mission presented is the encounter frequency for the

Europa flybys in particular. Towards the end of the mission, some of the Europa encounters occur only six

days apart, which is too high a frequency to ensure accurate navigation via Doppler ranging and ∆-DOR

measurements from the deep space network. After an encounter, a spacecraft ground system must measure

the flyby bend angle, perform updated orbit determination and then command the spacecraft should a

trajectory correction be required. Current navigation methods, and spacecraft technology levels, do not

allow for such a rapid operational cadence. These rapid encounters could easily be corrected by enforcing a

minimum encounter-to-encounter flight time during the tree search. Comparing to the Galileo flight plan,

a constraint was placed on the trajectory that no two satellite encounters could occur sooner than 35 days

apart [5]. The Galilean prime tour is shown in Fig. 6.16 and the difference between that figure and Fig.

6.13 is noticeable. The semimajor axes of the Galileo prime orbits are noticeably larger than the majority

of the orbits in the tour that was designed in this chapter (Fig. 6.13).

Figure 6.16: Satellite tour petal plot in the Jupiter-Sun rotating frame (from [6]).

Environmental hazards also pose a challenge to spacecraft performing satellite tours. The radiation

environment at Jupiter, as well as the ring systems at Saturn and Uranus, make for dangerous operational

environments. Previous studies have incorporated maximum radiation dosage constraints [129] as well

as inclination reduction and ring avoidance [130, 205] into the mission design process. Radiation dosage

measurements as well as physical hazard avoidance must be accounted for and should be incorporated into
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the tree search as well as the local gradient-based optimization routine. The tree traversal filter must account

for these factors as the local optimizer will not always be able to sufficiently correct a trajectory that violates

these hazard constraints.

Specific mission science objectives, risk tolerance levels, and spacecraft configurations will drive which

specific events (e.g. flybys during a solar conjunction) are allowed or disallowed during flight, however, to

be useful as a practical design tool, the tree search must be able to enforce practical constraints such as

these during its filtering process should the practitioner require them to be. In addition, its filter should be

easily configurable such that it can take any reasonable engineering constraint as an input. Development of

a more flexible filter interface is left as future work.
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Chapter 7

Conclusions

7.1 Bounded-Impulse Gradient Conclusions and Future Work

The material contained in chapters 2 and 3 is in essence a mathematical specification for an operational

preliminary design framework. The primary contributions in these chapters are the analytic algorithms

for computing the Jacobian matrix for two bounded-impulse trajectory transcriptions, one that models

continuous-thrust spacecraft and the other that may be used to model high-thrust chemical trajectories.

An important characteristic of the particular calculation methods that are presented is that they allow

for the inclusion of accurate spacecraft power models. The power models described have been made ro-

bust to switching events (e.g. thruster power cut-off thresholds) by modeling these discontinuous events

using connected exponential fall-off functions that maintain gradient continuity. These power models are

of sufficient accuracy for the preliminary design work that is typically performed for NASA Discovery/New

Frontiers pre-Phase A proposal efforts.

Ephemeris data retrieval systems are also problematic for gradient-based optimizers. Frameworks such

as SPICE, which is essentially a table lookup state machine, typically favor accuracy over suitability for use

inside a gradient-based search algorithm. In order to preserve the smoothness of the time related variables

in the transcriptions discussed, an algorithm is presented that fits SPICE ephemeris data to cubic B-splines

creating a smooth ephemeris retrieval system that also maintains sufficient accuracy such that it may still

be employed for practical preliminary design activities.

Finally, the benefits of implementing the analytic techniques described are illustrated through various

practical example problems. The Uranus intercept and Venus spiral-down examples showcase the opti-

mizer’s improved ability to converge on the locally optimal solution when the solver is initialized in the

vicinity of the solution. The improved convergence characteristics observed quantify the robustness im-

provements gained through the adoption of analytic Jacobian calculations in favor of using the method of
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finite-differences. The Odysseus rendezvous and Cassini benchmark examples explore the improvements

exhibited by a gradient-based optimizer operating in cooperation with a stochastic search heuristic. The

Odysseus problem demonstrates that the a non-smooth ephemeris model is particularly problematic and no-

ticeably degrades the robustness of the solver even when all non-time related Jacobian entries are specified

analytically.

Despite the flexibility of the techniques presented at incorporating various practical constraints, propul-

sion system variants and mission types, there remains a fidelity gap between the models presented in this

work and hardware realizations that they represent. While polynomial mass-flow rate and generated power

curves are substantially more accurate than assuming constant array power or even a “one over r squared”

model, true electric propulsion systems are significantly more complex. The PPU of a modern ion thruster

such as NEXT operates in a two dimensional setting grid with mass flow rate and grid voltage being the two

input controls, not simply a single throttle parameter as was used in this work. Recently Knittel et al. [55]

began an effort to capture the complexity of these physical systems more accurately in the trajectory models

with methods that remain compatible with gradient-based optimizers. While Knittel’s work represents the

state-of-the-art in this area of research, there remains significant potential to improve upon his methods. In

particular, the 2D throttle grid models that they produced are not as robust when employed by an NLP

solver compared to the 1D polynomial curve fits. Future work should address this issue.

7.2 Time Regularized Bounded-Impulse Model Conclusions and

Future Work

The development of the MGALTS transcription represents one of the first significant innovations on the

Sims-Flanagan transcription since its introduction nearly twenty years ago. The primary shortcoming of

the original Sims-Flanagan model is its equal temporal spacing of the control nodes. For many trajectories,

spacing control nodes in time is sufficient for a medium-fidelity study, however, certain mission classes are

enabled by a more efficient discretization. Transfers to highly eccentric taeets, for example, benefit greatly

from clustering control nodes at periapsis where orbital energy changes are more efficiently executed.

Transformation of the orbital differential equations of motion using a Sundman transformation, which

changes the independent variable of integration, is a popular method for regularizing a propagator that uses

numerical integration. Regularization of the medium-fidelity Sims-Flanagan model is less straightforward.

An independent variable change from time to an angular anomaly is still performed, however, unlike an
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integration scheme where the only required change is a slight alteration to the differential equations, changing

the independent variable for the two-body initial value problem effectively changes the nature of the problem

being solved. Given a flight time, solving Kepler’s equation for change in angular position always requires

an iterative root-finding algorithm. The procedure introduced in chapter 4 inverts the orbital initial value

problem in a sense, computing a time-of-flight from a given change in angular anomaly. Then, by introducing

new time decision variables and constraints, the angular independent variable selected by the nonlinear

optimizer can be rectified with the time constraints placed on the trajectory by the mission designer.

The new regularized low-thrust bounded-impulse transcription is flexible in that it retains the same basic

structure and components as the Sims-Flanagan model (e.g. Kepler solver), so an existing implementation

of the latter can be extended to the new regularized version. It is also straightforward to adopt different

independent angular variables via algebraic manipulations of the universal Kepler solver. Finally, as shown

in chapter 4 analytic derivatives can also be computed for this transcription.

A valuable future research effort would be to perform a thorough analysis of the robustness and general

relative performance of this new transcription compared to the original Sims-Flanagan algorithm. Since

MGALTS removes the need to iteratively solve Kepler’s equation, it is expected that this new model will ex-

ecute more quickly, however, since it also requires the addition of new NLP decision variables and constraints

that affect the SQP iteration, the execution speeds of the two algorithms could be similar. It is suspected

that high-eccentricity transfers are not the only mission types that will benefit from a time-regularized tran-

scription. A comparative study that illustrates the merits of adopting MGALTS for other trajectory families

would be a valuable future contribution.

7.3 Finite-Burn Gradient Conclusions and Future Work

The medium-fidelity finite-burn trajectory transcription described in this work was originally introduced by

Englander et al. [159] in order to bridge the gap between the low-fidelity bounded impulse models such as

those described in chapter 3 and high fidelity tools such as GMAT. The FBLT transcription shares the same

decision vector as the MGALT model, and therefore facilitates an automated process for converting a low-

fidelity bounded-impulse solution to a patched-integrated version of the same trajectory. The introduction of

numerical integration allows for the straightforward inclusion of perturbing accelerations by way of Cowell’s

method. The transition from bounded-impulse to a patched-integrated trajectory that models n-body gravity

and solar radiation pressure was illustrated by reconverging the comet sample return example presented in
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chapter 3.

Chapter 5 describes numerical methods for computing the Jacobian matrix of the FBLT model that allow

for the incorporation of the power and ephemeris models presented in chapter 2. An algorithm for computing

time-of-flight derivatives was also described that allows one to solve final time free optimization problems.

These methods are based on the variational equations for integrating a numerical state transition matrix, and

therefore are only accurate to machine precision when used with a fixed-step integration scheme. Applying

the Sundman transformation to the FBLT model would be a natural extension to the current transcription

and would alleviate some of the shortcomings of the current time discretization.

The utility of a particular trajectory model is directly related to how physically realistic it is. With

this in mind, analysis was performed with help from engineers at KinetX Aerospace that determined how

accurately the operational navigation software MIRAGE can track a reference trajectory optimized using

the FBLT model. The validation exercise showed that MIRAGE could track an FBLT trajectory to within

operational tolerances. This exercise is important as it reinforces the notion that an FBLT trajectory is

“flyable” even though it is not actually flight fidelity.

The current two-sided multiple shooting evaluation of an FBLT trajectory can exhibit sensitivity for

complex trajectories. Development of a parallel shooting variant of the FBLT model would be a straight-

forward extension of the work presented in Chapter 5. The gradient computations for such a transcription

would be simplified as the single phase match point would be replaced with multiple match points along the

phase, which would eliminate the need for long multiplication chains of state transition matrices. Explicit

Runge-Kutta integration could be retained [38], however, an investigation into convergence properties us-

ing other solution techniques (i.e. implicit integration) would be valuable. Adoption of a parallel shooting

variant of the FBLT transcription would also allow one to model a discrete duty cycle concept of oper-

ations (CONOPS). The parallel shooting subdivisions of a low-thrust phase make it straightforward to

impose forced coast periods required for navigation activities such as communications with Earth and orbit

determination. For this reason alone, development of a high-fidelity parallel shooting variant of FBLT would

be an important contribution.

7.4 Satellite Tour Automaton Conclusions and Future Work

The first contribution of chapter 6 is a tree traversal algorithm that leverages modern software engineering

concepts such as object pooling and multithread parallelism using OpenMP. The tree search routine can be

179



deployed on a variety of platforms from single-node laptops to multi-core high-memory bandwidth platforms.

The algorithm seeks to maximize execution speed and uses an ephemeris system that linearly interpolates

body state data points from SPICE. The tree search framework also supports the inclusion of deep space

maneuvers and near-resonant transfers. The tree search algorithm and associated data structures off a

significantly more flexible pathfinding solution than a total enumeration grid search of the MGA problem.

The reverse linked list data structure can accommodate a wide variety of tree exploration programs and

filtering criteria.

The second contribution described in Chapter 6 is the formulation of a trajectory optimization automaton

that is capable of performing a continuous end-to-end optimization of a moon tour mission from launch at

Earth through tour completion. The framework models a finite SOI at the target planet where the tour

occurs and the optimizer is capable of autonomously placing orbital insertion maneuvers to ensure capture

around the planet. A piecewise Lambert moon tour solution is constructed using the parallel tree search

and is provided as a seed to a local gradient-based optimizer that employs multiple shooting as well as the

analytic Jacobian calculation methods described in Chapter 3. This workflow is shown to be capable of

optimizing tours with tens of gravity-assists using a two-body patched-conic gravity model, and is predicted

to have no trouble converging tours consisting of well over 100 flybys in a single optimization run.

Potential future work for the satellite tour automaton could focus on the computer science aspects

of the Lambert search algorithm, tree exploration and search filtering strategies or trajectory modeling

fidelity. A hybrid parallel deployment of the tree search on computational infrastructure that combines

multithread parallelism as well as multinode distributed parallelism using a standard such as message passing

interface (MPI) is one possible research vector. Scaling of the search to larger distributed clusters would allow

for the large design spaces associated with satellite tours to be more efficiently and thoroughly explored.

This work did not place particular emphasis on filtering strategies for the breadth-first tree search, and

future investigations into how to effectively prune partial solutions from the tree, yet still adequately explore

the design space would have a great deal of practical value.

Incorporation of maneuvers into the Lambert search drastically increases the complexity of the trajectory

combinatorics and a method that relies less on exhaustive exploration would be valuable, with recent work

by Landau based on primer vector theory being especially promising [206]. Finally, an important next step

in the moon tour optimization research effort is to increase the fidelity by replacing the Keplerian propagator

with an integrated one. Doing so will require applying a regularization transformation (e.g. Sundman) to

the FBLT model in order to accommodate the large disparity in integration step sizes needed for the various
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stages of a satellite tour.
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Appendix A

A.1 Monotonic Basin Hopping

Monotonic basin hopping is a method that searches for the global extremum of problems that have many

local optima, which is a characteristic of most trajectory optimization problems. The MBH algorithm was

first applied in the field of computational chemistry for solving molecular conformation problems [107]. The

incorporation of this stochastic search technique into a preliminary trajectory design workflow is a relatively

recent advancement that was pioneered by Yam et al. [110, 111]. In that work, MBH was combined with a

bounded-impulse low-thrust trajectory transcription. Since then, several research efforts have incorporated

MBH into the trajectory optimization process [47, 48, 78, 90, 109, 207, 208]. The primary advantage of using

MBH to guide a local search is that the algorithm does not require an initial guess in order to begin its

iteration, it can be initialized from a random decision vector. The MBH algorithm is described in Figure

A.1. The algorithm is initiated by running the local optimizer on a randomly initialized decision vector x.

If a feasible point is obtained, then it is stored as the current point xc if its cost function is better than

the incumbent current point. The decision vector is then randomly perturbed before the local optimizer is

executed again. The MBH algorithm is often described as a guided multi-start.
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Figure A.1: Monotonic basin hopping algorithm flowchart.

During each MBH iteration, the new decision vector x′ is generated by perturbing each element of x

using a random number drawn from a probability distribution. The original MBH algorithm performed this

perturbation using a uniform distribution, however, more recent research by Englander [48] and Englander

and Englander [112] has shown that heavy-tailed distributions such as Cauchy and Pareto distributions are

significantly better-suited to trajectory optimization problems.

A.2 Thruster Performance Curves

Thrust polynomial coefficients provide a relationship between input power (kW) and the maximum possible

applied thrust (mN). Mass flow rate coefficients provide a curve fit in mg/s.
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Table A.1: Thruster performance parameters.

Parameter NEXT TT10 NEXT TT11 [131] NSTAR [209]

High-Isp High-Thrust

aT -1.92224e-6 11.9388817 26.337459

bT 54.05382 16.0989424 -51.694393

cT -14.41789 11.4181412 90.486509

dT 2.96519 -2.04053417 -36.720293

eT -0.19082 0.101855017 5.145602

am 2.13781 2.75956482 2.5060

bm 0.03211 -1.71102132 -5.3568

cm -0.09956 1.21670237 6.2539

dm 0.05717 -0.207253445 -2.5372

em -0.004776 0.011021367 0.36985

Pmax (kW) 7.266 7.36 2.6

Pmin (kW) 0.638 0.64 0.525

A.3 Fundamental Perturbation STM

Vector expressions for the 3x3 perturbation STM partitions [160]:
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In Equations (A.1) - (A.4), I is the 3x3 identity matrix. The quantity C is calculated using the universal

functions:

√
µC = 3U5 − χU4 −

√
µ(t− t0)U2 (A.5)

The functions Un have traditionally been calculated with continued fraction expansions [160,163], however,

the following recursion relation can be used to compute higher-order universal functions:

Un(χ, α) + αUn+2(χ, α) =
χn

n!
n = 0, 1, 2, 3, ... (A.6)

A.4 Runge Kutta Eighth Order Butcher Tableau
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53011238
667516719

1 185892177
718116043 0 0 −3185094517

667107341
−477755414
1098053517

−703635378
230739211

5731566787
1027545527

5232866602
850066563

−4093664535
808688257

3962137247
1805957418

65686358
487910083

−528747749
2220607170

2
45

1 403863854
491063109 0 0 −5068492393

434740067
−411421997
543043805

652783627
914296604

11173962825
925320556

−13158990841
6184727034

3936647629
1978049680

−160528059
685178525

248638103
1413531060 0 1

4 0

Table A.2: Butcher tableau for the Dormand and Prince RK7(8)13M method [1]
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A.5 IAU Cartographic and Rotational Calculations

An orientation/rotation model of the planets is required for the implementation of a high-order gravity field

model, or computing trajectories that may span multiple reference frames in general. The rotational model

used for this work, and also implemented in the EMTG software, is defined by the International Astronomical

Union (IAU) Working Group on Cartographic Coordinates and Rotational Elements [7].

Figure A.2: Reproduced from [7]. Reference system used to define orientation of the planets and their
satellites. For Ẇ (t) > 0, body rotation is prograde (e.g.,Mercury, Jupiter). For Ẇ (t) < 0, body rotation is
retrograde (e.g., Venus, Uranus)

A body’s mean axis of rotation and body-dependent longitudinal point define the planetary coordinate

systems. The IAU has developed approximate expressions for the rotational elements that relate the plan-

etary coordinates to the ICRF reference frame. The ICRF frame is an epochless frame, which differs from

the J2000.0 mean dynamical frame by a rotation of less than 0.1 arcs.
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Rx =


1 0 0

0 cos (π/2− δ0) −sin (π/2− δ0)

0 sin (π/2− δ0) cos (π/2− δ0)

 (A.7)

Rz =


cos (π/2 + α0) −sin (π/2 + α0) 0

sin (π/2 + α0) cos (π/2 + α0) 0

0 0 1

 (A.8)

The rotation matrix that maps body-centered inertial coordinates to the ICRF frame calculated as follows:

RICRF
BCI = RzRx (A.9)

Similarly, the rotation matrix that maps body-centered fixed coordinates to body-centered inertial coordi-

nates is:

RBCI
BCF =


cos (W ) −sin (W ) 0

sin (W ) cos (W ) 0

0 0 1

 (A.10)

The variable quantities in Eq. (A.7)-(A.10) are expressed in units of days (86400 seconds) or Julian centuries

(36 525 days). For example, the angular quantities for Jupiter are:
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α0 = 268.056595◦ − 0.006499◦T (A.11)

+ 0.000117◦ sin (99.360714◦ + 4850.4046◦T )

+ 0.000938◦ sin (175.895369◦ + 1191.9605◦T )

+ 0.001432◦ sin (300.323162◦ + 262.5475◦T )

+ 0.000030◦ sin (114.012305◦ + 6070.2476◦T )

+ 0.002150◦ sin (49.511251◦ + 64.3000◦T )

δ0 = 64.495303◦ − 0.002413◦T (A.12)

+ 0.000050◦ cos (99.360714◦ + 4850.4046◦T )

+ 0.000404◦ cos (175.895369◦ + 1191.9605◦T )

+ 0.000617◦ cos (300.323162◦ + 262.5475◦T )

+ 0.000013◦ cos (114.012305◦ + 6070.2476◦T )

+ 0.000926◦ cos (49.511251◦ + 64.3000◦T )

W = 284.95◦ + 870.5360000d (A.13)

where T is the number of Julian centuries since the standard epoch and d is the interval in days from the

standard epoch.
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