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Abstract

This thesis presents three distinct machine learning algorithms based on the mathe-

matical formalism and physical idea of diffusion processes.

First, the idea of using heat diffusion on a hypersphere to measure similarity has

been previously proposed and tested by computer scientists [37], demonstrating promis-

ing results based on a heuristic heat kernel obtained from the zeroth order parametrix

expansion; however, how well this heuristic kernel agrees with the exact hyperspherical

heat kernel remains unknown. This thesis presents a higher order parametrix expan-

sion of the heat kernel on a unit hypersphere and discusses several problems associated

with this expansion method. We then compare the heuristic kernel with an exact

form of the heat kernel expressed in terms of a uniformly and absolutely convergent

series in high-dimensional angular momentum eigenmodes. Being a natural measure

of similarity between sample points dwelling on a hypersphere, the exact kernel often

shows superior performance in kernel SVM classifications applied to text mining, tu-

mor somatic mutation imputation, and stock market analysis. The improvement in

classification accuracy compared with kernels based on Euclidean geometry may arise

from ameliorating the curse of dimensionality on compact manifolds.

Second, the effective dissimilarity transformation (EDT) on empirical dissimilarity
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hyperspheres is proposed and studied using synthetic and gene expression data sets.

Iterating the EDT turns a static data distribution into a dynamical process purely

driven by the empirical data set geometry and adaptively ameliorates the curse of

dimensionality, partly through changing the topology of a Euclidean feature space

Rn into a compact hypersphere Sn. The EDT often improves the performance of

hierarchical clustering via the automatic grouping of information emerging from global

interactions of data points. The EDT is not restricted to hierarchical clustering, and

other learning methods based on pairwise dissimilarity should also benefit from the

many desirable properties of EDT.

Finally, quantum time evolution exhibits rich physics, attributable to the interplay

between the density and phase of a wave function. However, unlike classical heat diffu-

sion, the wave nature of quantum mechanics has not yet been extensively explored in

modern data analysis. We propose that the Laplace transform of quantum transport

(QT) can be used to construct an ensemble of maps from a given complex network to a

circle S1, such that closely-related nodes on the network are grouped into sharply con-

centrated clusters on S1. The resulting QT clustering (QTC) algorithm is as powerful

as the state-of-the-art spectral clustering in discerning complex geometric patterns and

more robust when clusters show strong density variations or heterogeneity in size. The

observed phenomenon of QTC can be interpreted as a collective behavior of the micro-

scopic nodes that evolve as macroscopic cluster “orbitals” in an effective tight-binding

model recapitulating the network.

In summary, the three machine learning methods are based on three distinct dif-

fusion processes. The dynamic diffusion processes serve as a promising foundation for

future development in machine learning methods.
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Chapter 1

Introduction

As the techniques for analyzing large data sets continue to grow, diverse quantitative

sciences – including computational biology, observation astronomy, and high energy

physics – are becoming increasingly data driven. Moreover, modern business decision

making critically depends on quantitative analyses such as community detection and

consumer behavior prediction. Consequently, statistical learning has become an indis-

pensable tool for modern data analysis. Data acquired from various experiments are

usually organized into an m × n matrix, where m samples are represented as feature

vectors in Rn. The simplest distribution in Euclidean space given mean and covariance

is the multivariate Gaussian distribution; many learning algorithms, such as Gaus-

sian mixture model, linear regression, and linear discriminant analysis [31], assume

that data points are approximately normal. If the data samples are generated from a

non-Euclidean space with intrinsic curvature, then Gaussian distribution is not a good

approximation for data clouds scattered in a curved space. However, the Gaussian

probability density function shares the same functional form as Euclidean heat kernel,
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where the variance is linear in diffusion time t. As the heat kernel can be interpreted

as a heat distribution at time t initialized from a point source, we can thus generalize

the Gaussian distribution to non-Euclidean spaces using heat diffusion initialized at

any point in the space. In Chapter 2, I will show that the heuristic hyperspherical

heat kernel [38] is an unsatisfactory generalization of Gaussian distribution to a high-

dimensional sphere, and then systematically develop the exact form of hyperspherical

heat kernel using high-dimensional angular momentum eigenfunctions. Finally, the

heat kernels will be tested in support vector machine (SVM) using three real-world

data sets.

In the context of Riemannian geometry and Einstein’s theory of gravity, the “geome-

try” is completely encoded in the metric tensor. Based on a similar idea, most statistical

learning algorithms utilize a pairwise dissimilarity measure d(0)ij that depends only on

the (i, j)-pair of samples, The Euclidean ℓp-metric directly defined on the feature space

Rn is among the most common pairwise dissimilarities. In high dimensions, however,

the relative contrast between the farthest and nearest points measured by the ℓp-metric

diminishes; consequently, the concept of nearest neighbors, which serves as the founda-

tion for clustering, becomes increasingly ill-defined as the feature dimension increases

[71, 9, 33]. This phenomenon is termed “the curse of dimensionality,” analogous to

the idea of “more is different” for many-body systems [3]. Modifications of Euclidean

distances are found to improve the relative contrast for an artificial data cloud drawn

from a single distribution [71, 9], but fail in data drawn from several distributions [33].

One way to address the loss of contrast in high dimensions for multi-distribution data

is to introduce an effective dissimilarity measure calculated from the number of shared

nearest neighbors of two data points, where each point is allowed to have a fixed num-
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Figure 1.0.1: “Cheese-sticks” confused k-means and hierarchical clustering with average
linkage.

ber of nearest neighbors [33]. The use of effective dissimilarity reduces the effect of

high feature dimensions in subsequent computations; however, the choice of effective

dissimilarity function actually dictates the improvement. In Chapter 3, I will introduce

a transformation of dissimilarity matrix d(0)ij which changes the geometry of data space

and aggregates similar points. In this effective dissimilarity transformation (EDT), all

data points in the primary feature space participate in redefining the effective dissim-

ilarity between any two given data points, and thus, the effective similarity globally

captures relations to all available sample points. Iteratively applying the transforma-

tion yields a sequence of EDT, where microscopic structures condense locally, while

inter-cluster macroscopic distinctions become more evident. Thus the transformation

turns a static distribution of points into a diffusion process and often amplifies the

power of cluster separation in high dimensions.

3



Grouping similar objects into sets is a fundamental task in modern data science.

So far, we have assumed that data points are embedded in some data space. However,

many data sets, such as social networks, and gene regulation networks, cannot be au-

tomatically embedded in Euclidean space. Many clustering algorithms have thus been

devised to automate the partitioning of samples into clusters, or communities, based

on some similarity or dissimilarity measures between the samples that form nodes on

a graph [35, 31]. In particular, physics-inspired approaches based on classical spin-

spin interaction models [39, 50] and Schrödinger equation [32] have been previously

proposed; however, the former usually requires computationally intensive Monte Carlo

simulations which may get trapped in local optima, while the latter essentially amounts

to Gaussian kernel density estimation. These intriguing physical ideas thus have been

under the shadow of popular contemporary approaches that are simple and computa-

tionally efficient, such as the dissimilarity-based k-means [42, 23, 6] and hierarchical

clustering [54, 17], density-based DBSCAN [19], distribution-based Gaussian mixture

[67], and kernel-based spectral clustering [63]. In addition to high dimensionality, ge-

ometric complexity remains an outstanding challenge, e.g., in Fig. 1.0.1, the simple

“cheese-sticks” confused k-means and hierarchical clustering with average linkage. In

Chapter 4, I will demonstrate an efficient clustering algorithm which is especially robust

against geometric complexity in data distribution. It is based on the physics of quantum

walks – the quantum extension of classical random walks modeling discrete diffusion

processes; the clustering information is contained in the phase information of wave

functions at the data points. The performance of quantum transport clustering (QTC)

is comparable to the state-of-the-art spectral clustering when the clusters exhibit non-

spherical, geometrically complex shapes; at the same time, QTC is less sensitive to the
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choice of parameters in the measure of adjacency or similarity. Moreover, unlike spec-

tral clustering, the QTC representation of data on a circle does not jump in dimension

when the specified number of clusters changes. Python source code implementing the

algorithm and examples are available at https://github.com/jssong-lab/QTC.

In summary, the three machine learning methods are based on three distinct dif-

fusion processes: heat diffusion on a hypersphere, evolution of pairwise distances, and

quantum transport respectively. The dynamic diffusion processes often trace out hid-

den structures in the data sets and improve the performance machine learning algo-

rithms.
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Chapter 2

Hyperspherical heat kernel and

applications

2.1 Introduction

Lafferty and Lebanon proposed a multinomial interpretation of non-negative feature

vectors and an accompanying transformation of the multinomial simplex to a hyper-

sphere, demonstrating that using the heat kernel on this hypersphere may improve the

performance of kernel support vector machine (SVM) [37, 31, 20, 11, 15]. Despite the

interest that this idea has attracted, only approximate heat kernel is known to date.

We here present an exact form of the heat kernel on a hypersphere of arbitrary dimen-

sion and study its performance in kernel SVM classifications of text mining, genomic,

and stock price data sets.

To date, sparse data clouds have been extensively analyzed in the flat Euclidean

space endowed with the ℓ2-norm using traditional statistical learning algorithms, in-
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cluding k-means, hierarchical clustering, SVM, and neural network [31, 35, 20, 11, 24,

28]; however, the flat geometry of the Euclidean space often poses severe challenges in

clustering and classification problems when the data clouds take non-trivial geometric

shapes or class labels are spatially mixed. Manifold learning and kernel-based embed-

ding methods attempt to address these challenges by estimating the intrinsic geometry

of a putative submanifold from which the data points were sampled and by embedding

the data into an abstract Hilbert space using a nonlinear map implicitly induced by

the chosen kernel, respectively [8, 5, 49]. The geometry of these curved spaces may

then provide novel information about the structure and organization of original data

points.

Heat equation on the data submanifold or transformed feature space offers an espe-

cially attractive idea of measuring similarity between data points by using the physical

model of diffusion of relatedness (“heat”) on curved space, where the diffusion process

is driven by the intrinsic geometry of the underlying space. Even though such diffusion

process has been successfully approximated as a discrete-time, discrete-space random

walk on complex networks, its continuous formulation is rarely analytically solvable and

usually requires complicated asymptotic expansion techniques from differential geom-

etry [10]. An analytic solution, if available, would thus provide a valuable opportunity

for comparing its performance with approximate asymptotic solutions and rigorously

testing the power of heat diffusion for geometric data analysis.

Given that a Riemannian manifold of dimension d is locally homeomorphic to Rd,

and that the heat kernel is a solution to the heat equation with a point source initial

condition, one may assume in the short diffusion time limit (t ↓ 0) that most of the

heat is localized within the vicinity of the initial point and that the heat kernel on a
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Riemannian manifold locally resembles the Euclidean heat kernel. This idea forms the

motivation behind the parametrix expansion, where the heat kernel in curved space is

approximated as a product of the Euclidean heat kernel in normal coordinates and an

asymptotic series involving the diffusion time and normal coordinates. In particular,

for a unit hypersphere, the parametrix expansion in the limit t ↓ 0 involves a modified

Euclidean heat kernel with the Euclidean distance ∥x∥ replaced by the geodesic arc

length θ. Computing this parametrix expansion is, however, technically challenging;

even when the computation is tractable, applying the approximation directly to high-

dimensional clustering and classification problems may have limitations. For example,

in order to be able to group samples robustly, one needs the diffusion time t to be not

too small; otherwise, the sample relatedness may be highly localized and decay too fast

away from each sample. Moreover, the leading order term in the asymptotic series is an

increasing function of θ and diverges as θ approaches π, yielding an incorrect conclusion

that two antipodal points are highly similar. For these reasons, the machine learning

community has been using only the Euclidean diffusion term without the asymptotic

series correction; how this resulting kernel, called the parametrix kernel [37], compares

with the exact heat kernel on a hypersphere remains an outstanding question, which

is addressed in this paper.

Analytically solving the diffusion equation on a Riemannian manifold is challeng-

ing [34, 61, 10]. Unlike the discrete analogues – such as spectral clustering [45] and

diffusion map [14], where eigenvectors of a finite dimensional matrix can be easily

obtained – the eigenfunctions of the Laplace operator on a Riemannian manifold are

usually intractable. Fortunately, the high degree of symmetry of a hypersphere allows

the explicit construction of eigenfunctions, called hyperspherical harmonics, via the

8



projection of homogeneous polynomials [7, 64]. The exact heat kernel is then obtained

as a convergent power series in these eigenfunctions. Then we compare the analytic

behavior of this exact heat kernel with that of the parametrix kernel and analyze their

performance in classification. This chapter is based on [70].

2.2 The hyperspherical map

The heat kernel is the fundamental solution to the heat equation (∂t −∆x)u(x, t) = 0

with an initial point source [57], where ∆x is the Laplace operator; the amount of

heat emanating from the source that has diffused to a neighborhood during time t > 0

is used to measure the similarity between the source and proximal points. The heat

conduction depends on the geometry of feature space, and the main idea behind the

application of hyperspherical geometry to data analysis relies on the following projec-

tive map from a non-negative feature space to a unit hypersphere: A hyperspherical

projective map φ : Rn
≥0 \ {0} → Sn−1 maps a vector x, with xi ≥ 0 and

∑n
i=1 xi > 0,

to a unit vector x̂ ∈ Sn−1 where (x̂)i ≡
√
xi/
∑n

j=1 xj. We will henceforth denote

the image of a feature vector x under the hyperspherical projective map as x̂. The

notion of neighborhood requires a well-defined measurement of distance on the hyper-

sphere, which is naturally the great arc length – the geodesic on a hypersphere. Both

parametrix approximation and exact solution employ the great arc length, which is

related to the following definition of cosine similarity:

Definition 1. The generic cosine similarity between two feature vectors x,y ∈ Rn\{0}

is

cos θ ≡ x · y
∥x∥ ∥y∥

,
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where ∥·∥ is the Euclidean ℓ2-norm, and θ ∈ [0, π] is the great arc length on Sn−1.

For unit vectors x̂ = φ(x) and ŷ = φ(y) obtained from non-negative feature vectors

x,y ∈ Rn
≥0 \ {0} via the hyperspherical map, the cosine similarity reduces to the dot

product cos θ = x̂ · ŷ; the non-negativity of x and y guarantees that θ ∈ [0, π/2] in this

case.

2.3 Laplacian on a Riemannian manifold

The Laplacian on a Riemannian manifold M with metric gµν is the operator

∆ : C∞(M) → C∞(M)

defined as

∆ ≡ 1
√
g
∂µ (

√
ggµν∂ν) , (2.3.1)

where g = | det g|, and the Einstein summation convention is used. It can be also

written in terms of the covariant derivative ∇µ as

∆ = gµν∇µ∇ν . (2.3.2)

The covariant derivative satisfies the following properties

∇µf = ∂µf, f ∈ C∞(M)

∇µV
ν = ∂µV

ν + Γν
λµV

λ, V ∈ TpM
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∇µων = ∂µων − Γλ
νµωλ, ω ∈ T ∗

pM,

where Γλ
αβ is the Levi-Civita connection satisfying Γλ

αβ = Γλ
βα and ∇λgµν = 0.

To show Eq. 2.3.2, recall that the Levi-Civita connection is uniquely determined

by the geometry, or the metric tensor, as

Γλ
αβ =

1

2
gλρ (∂αgβρ + ∂βgαρ − ∂ρgαβ) .

Using the formula for determinant differentiation

[log (detA)]′ = tr
(
A′A−1

)
,

we can thus write

Γλ
λµ = ∂µ log

√
g.

Hence, for any f ∈ C∞(M),

gµν∇µ∇νf = ∇µ(g
µν∂νf) (2.3.3)

= ∂µ(g
µν∂νf) + Γλ

λµ(g
µν∂νf) (2.3.4)

= ∂µ(g
µν∂νf) + (∂µ log

√
g)(gµν∂νf) (2.3.5)

=
1
√
g
∂µ (

√
ggµν∂ν) , (2.3.6)

proving the equivalence of Eq. 2.3.1 and Eq. 2.3.2.
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2.3.1 The induced metric on Sn−1

The (n− 1)-sphere embedded in Rn can be parameterized as

x1 = cos θ1

x2 = sin θ1 cos θ2

x3 = sin θ1 sin θ2 cos θ3

...

xn−1 = sin θ1 · · · sin θn−2 cos θn−1

xn = sin θ1 · · · sin θn−2 sin θn−1, (2.3.7)

where 0 ≤ θi ≤ π, for i = 1, . . . , n− 2, and 0 ≤ θn−1 ≤ 2π. Let λ := (∂xi/∂θj) denote

the n× (n− 1) Jacobian matrix for the above coordinate transformation.

The square of the line element in Rn is given by

ds2n =
n∑

i=1

dxidxi. (2.3.8)

Restricted to Sn−1,

dxi =
n−1∑
j=1

∂xi
∂θj

dθj =
n−1∑
j=1

λijdθj. (2.3.9)

Therefore, on Sn−1, we have

ds2n−1 =
n∑

i=1

n−1∑
j,j′=1

λijλij′dθjdθj′ (2.3.10)

=
n−1∑
j,j′=1

(
n∑

i=1

λijλij′

)
dθjdθj′ . (2.3.11)
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Hence, the induced metric on Sn−1 embedded in Rn is

gµν =
(
λTλ

)
µν
. (2.3.12)

After some algebraic manipulations, it can be shown that the metric is in fact diagonal

and its determinant takes the form

g = sin2(n−2) θ1 sin
2(n−3) θ2 · · · sin4 θn−3 sin

2 θn−2. (2.3.13)

The geodesic arc length θ between x̂ and x̂′ on Sn−1 is the angle given by

θ ≡ arccos x̂ · x̂′ = arccos
n∑

i=1

x̂ix̂
′
i. (2.3.14)

2.3.2 Geodesic polar coordinates

In geodesic polar coordinates (r, ξ) around a point, one can show using Eq. 2.3.2 that

the Laplacian on a d-dimensional Riemannian manifold M takes the form

∆ = ∂2r + (∂r log
√
g)∂r +∆Sd−1

r
, (2.3.15)

where ∆Sd−1
r

is the Laplacian induced on the geodesic sphere Sd−1
r of radius r. If

function f depends only on the geodesic distance r from the fixed point, then

∆f(r) = f ′′(r) + (log
√
g)′ f ′(r), (2.3.16)

where ′ denotes the radial derivative.
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For the special case when M is Sn−1, the coordinates θ1, . . . , θn−1 described above

correspond to the geodesic polar coordinates around the north pole, with r = θ1. From

Eq. 2.3.13, we get

log
√
g(x) = (n− 2) log sin r + (n− 3) log sin θ2 + · · · (2.3.17)

+ log sin θn−2. (2.3.18)

Note that only the first terms contributes to the radial derivative.

2.4 Parametrix expansion

The parametrix kernel Kprx previously used in the literature is just a Gaussian RBF

function with θ = arccos x̂ · ŷ as the radial distance [37]: The parametrix kernel is a

non-negative function

Kprx(x̂, ŷ; t) = e−
arccos2 x̂·ŷ

4t = e−
θ2

4t ,

defined for t > 0 and attaining global maximum 1 at θ = 0. The normalization

factor (4πt)−
n−1
2 is numerically unstable as t ↓ 0 and complicates hyperparameter

tuning; as a global scaling factor of the kernel can be absorbed into the misclassifi-

cation C-parameter in SVM, this overall normalization term is ignored in this paper.

Importantly, the parametrix kernel Kprx is merely the Gaussian multiplicative factor

without any asymptotic expansion terms in the full parametrix expansion Gprx of the

heat kernel [37, 10], as described below.

The Laplace operator on manifold M equipped with a Riemannian metric gµν acts

on a function f that depends only on the geodesic distance r from a fixed point as
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described in Eq. 2.3.16. Due to the non-vanishing metric derivative in Eq. 2.3.16, the

canonical diffusion function

G(r, t) =

(
1

4πt

) d
2

exp

(
−r

2

4t

)
(2.4.1)

does not satisfy the heat equation; that is, (∆ − ∂t)G(r, t) ̸= 0. For sufficiently small

time t and geodesic distance r, the parametrix expansion of the heat kernel proposes

an approximate solution

Kp(r, t) = G(r, t)
(
u0(r) + u1(r)t+ u2(r)t

2 + · · ·+ up(r)t
p
)
,

where the functions ui should be found such that Kp satisfies the heat equation to

order tp−d/2, which is small for t≪ 1 and p > d/2; more precisely, we seek ui such that

(∆− ∂t)Kp = Gtp∆up. (2.4.2)

Taking the time derivative of Kp yields

∂tKp = G·
[(

− d

2t
+
r2

4t2

)(
u0 + u1t+ u2t

2 + · · ·+ upt
p
)
+
(
u1 + 2u2t+ · · ·+ pupt

p−1
)]
,

(2.4.3)

while the Laplacian of Kp is

∆Kp = (u0 + u1t+ · · ·+ upt
p)∆G+G∆(u0 + u1t+ · · ·+ upt

p)+2G′ (u0 + u1t+ · · ·+ upt
p)′ .

(2.4.4)
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One can easily compute

∆G =

[(
− 1

2t
+
r2

4t2

)
− r

2t
(log

√
g)′
]
G (2.4.5)

and

G′ (u0 + u1t+ · · · )′ = − r

2t
(u′0 + u′1t+ · · · )G. (2.4.6)

The left-hand side of Equation 2.4.2 is thus equal to G multiplied by

(u0 + · · ·+ upt
p)

[
− r

2t
(log

√
g)′ +

d− 1

2t

]
+∆(u0 + · · ·+ upt

p)+

−r
t

(
u′0 + · · ·+ u′pt

p
)
−
(
u1 + 2u2t+ · · ·+ pupt

p−1
)
,

and we need to solve for ui such that all the coefficients of tq in this expression, for

q < p, vanish.

For q = −1, we need to solve

u0
r

2

[
−(log

√
g)′ +

d− 1

r

]
= ru′0 , (2.4.7)

or equivalently,

(log u0)
′ = −1

2
(log

√
g)′ +

d− 1

2r
. (2.4.8)

Integrating with respect to r yields

log u0 = −1

2
[log

√
g − (d− 1) log r] + const., (2.4.9)
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where we implicitly take only the radial part of log√g. Thus, we get

u0 = const.×
( √

g

rd−1

)− 1
2

∝
(
sin r

r

)− d−1
2

(2.4.10)

as the zeroth-order term in the parametrix expansion. Using this expression of u0, the

remaining terms become

r [(u1 + u2t+ · · · ) (log u0)′ − (u′1 + u′2t+ · · · )] +

+ (∆u0 + t∆u1 + · · · )− (u1 + 2u2t+ · · · ) ,

and we obtain the recursion relation

uk+1(log u0)
′ − u′k+1 = −∆uk − (k + 1)uk+1

r
. (2.4.11)

Algebraic manipulations show that

(log rk+1 − log u0 + log uk+1)
′uk+1 = r−1∆uk , (2.4.12)

from which we get (
uk+1r

k+1

u0

)′

= r(k+1)−1u−1
0 ∆uk. (2.4.13)

Integrating this equation and rearranging terms, we finally get

uk+1 = r−(k+1)u0

∫ r

0

dr̃ r̃ku−1
0 ∆uk. (2.4.14)
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Setting k = 0 in this recursion equation, we find the second correction term to be

u1 =
u0
r

∫ r

0

dr̃ u−1
0 ∆u0 (2.4.15)

=
u0
r

∫ r

0

dr̃ u−1
0 (u′′0 + u′0(log

√
g)′) . (2.4.16)

From our previously obtained solution for u0, we find

u′0 =
1

2

(
d− 1

r
− g′

2g

)
u0. (2.4.17)

and

u′′0 =
1

4

[
(d− 1)(d− 3)

r2
− g′(d− 1)

gr
− g′′

g
+

5

4

(
g′

g

)2
]
u0. (2.4.18)

Substituting these expressions into the recursion relation for u1 yields

u1 =
u0
4r

∫ r

0

dr

[
(d− 1)(d− 3)

r2
− g′′

g
+

3

4

(
g′

g

)2
]
. (2.4.19)

For the hypersphere Sd, where d ≡ n− 1 and g = const.× sin2(d−1) r, we have

g′

g
=

2(d− 1)

tan r
(2.4.20)

and
g′′

g
= 2(d− 1)

(
2d− 3

tan2 r
− 1

)
. (2.4.21)
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Thus,

u1 =
u0
4r

∫ r

0

dr̃

[
(d− 1)(d− 3)

r̃2
− (d− 1)

(
d− 3

tan2 r̃
− 2

)]
=

u0(d− 1)

4r2
[
3− d+ (d− 1)r2 + (d− 3)r cot r

]
. (2.4.22)

Notice that u1(r) = 0 when d = 1 and u1(r) = u0(r) when d = 3. For d = 2, u1/u0 is

an increasing function in r and diverges to ∞ at r = π. By contrast, for d > 3, u1/u0 is

a decreasing function in r and diverges to −∞ at r = π; u1/u0 is relatively constant for

r < π and starts to decrease rapidly only near π. Therefore, the first order correction

is not able to remove the unphysical behavior near r = 0 in high dimensions where,

according to the first order parametrix kernel, the surrounding area is hotter than the

heat source.

Next, we apply Equation 2.4.14 again to obtain u2 as

u2 =
u0
r2

∫ r

0

dr̃ r̃u−1
0 ∆u1 (2.4.23)

=
u0
r2

∫ r

0

dr̃ r̃u−1
0 (u′′1 + u′1(log

√
g)′) . (2.4.24)

After some cumbersome algebraic manipulations, we find

u2
u0

=
d− 1

32

[
(d− 3)3 +

(d− 3)(d− 5)(d− 7)

r4
− (d− 3)2(d− 5)

r3 tan r

+
2(d− 1)2(d− 3)

r tan r
+

(d+ 1)(d− 3)(d− 5)

r2 sin r

]
. (2.4.25)

Again, d = 1 and d = 3 are special dimensions, where u2(r) = 0 for d = 1, and
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u2(r) = u0/2 for d = 3; for other dimensions, u2(r) is singular at both r = 0 and π.

Note that on S1, the metric in geodesic polar coordinate is g11 = 1, so all parametrix

expansion coefficients uk(r) must vanish identically, as we have explicitly shown above.

Thus, the full Gprx defined on a hypersphere, where the geodesic distance r is

just the arc length θ, suffers from numerous problems. The zeroth order correction

term u0 = (sin θ/θ)−
n−2
2 diverges at θ = π; this behavior is not a major problem if

θ is restricted to the range [0, π
2
]. Moreover, Gprx is also unphysical as θ ↓ 0 when

(n− 2)t > 3; this condition on dimension and time is obtained by expanding e−θ2/4t =

1− θ2

4t
+O(θ4) and (sin θ/θ)−

n−2
2 = 1+ θ2

12
(n− 2) +O(θ3), and noting that the leading

order θ2 term in the product of the two factors is a non-decreasing function of distance

θ when n−2
12

≥ 1
4t

, corresponding to the unphysical situation of nearby points being

hotter than the heat source itself. As the feature dimension n is typically very large,

the restriction (n− 2)t < 3 implies that we need to take the diffusion time to be very

small, thus making the similarity measure captured by Gprx decay too fast away from

each data point for use in clustering applications. In this work, we further computed

the first and second order correction terms, denoted u1 and u2 in Equation 2.4.22 and

Equation 2.4.25, respectively.

In high dimensions, the divergence of u1/u0 and u2/u0 at θ = π is not a major

problem, as we expect the expansion to be valid only in the vicinity θ ↓ 0; however, the

divergence of u2/u0 at θ = 0 (to −∞ in high dimensions) is pathological, and thus, we

truncate our approximation to O(t2). Since u1(θ) is not able to correct the unphysical

behavior of the parametrix kernel near θ = 0 in high dimensions, we conclude that the

parametrix approximation fails in high dimensions. Hence, the only remaining part

of Gprx still applicable to SVM classification is the Gaussian factor, which is clearly
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not a heat kernel on the hypersphere. The failure of this perturbative expansion using

the Euclidean heat kernel as a starting point suggests that diffusion in Rd and Sd are

fundamentally different and that the exact hyperspherical heat kernel derived from a

non-perturbative approach will likely yield better insights into the diffusion process.

2.5 Exact hyperspherical heat kernel

2.5.1 Euclidean heat kernel

Heat kernels in general are solutions to the heat equation

(∂t −∆)ϕ = 0

with a point-source (Dirac delta) initial condition. The heat kernel in Rd is easily found

to be

G(x,y; t) =

(
1

4πt

) d
2

K(x,y; t) (2.5.1)

where

K(x,y; t) = exp

(
−∥x− y∥2

4t

)
. (2.5.2)

K is known as the Gaussian RBF kernel with parameter γ = 1/4t. G(x,y; t) is the

solution to the heat equation satisfying the initial condition G(x,y; 0) = δ(x − y).

Note that formally,

G(x,y; t) = et∆δ(x− y);

using the Fourier transform representation of the right-hand side then yields the ex-

pression in Eq. 2.5.1.
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We treat the hypersphere Sn−1 as being embedded in Rn and use the induced metric

on Sn−1 to define the Laplacian. The Laplacian in Rn takes the usual form

∆ =
1

rn−1
∂r
(
rn−1∂r

)
− L̂2

r2
(2.5.3)

where the differential operator L̂2 depends only on the angular coordinates. −L̂2 is the

spherical Laplacian operator. [64]

2.5.2 Spherical Laplacian and its eigenfunctions

For n = 3, the Laplacian on R3 is

∆ =
1

r2
∂r
(
r2∂r

)
− L̂2

r2
(2.5.4)

where L̂2 is the squared orbital angular momentum operator in quantum mechanics.

Restricted to r = 1, the Laplacian reduces to the spherical Laplacian on S2, which is

exactly the operator −L̂2 whose eigenfunctions are the spherical harmonics Ylm(θ, ϕ)

with eigenvalue −ℓ(ℓ + 1). In this setting, Ylm(θ, ϕ) can be viewed as the angular

component of homogeneous harmonic polynomials in R3, and this perspective will be

used in the subsequent discussion of hyperspherical Laplacian. By convention, our

spherical harmonics satisfy the normalization condition

ℓ∑
m=−ℓ

|Yℓm(θ, ϕ)|2 =
2ℓ+ 1

4π
(2.5.5)
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and the completeness condition

∞∑
ℓ=0

ℓ∑
m=−ℓ

Yℓm(θ, ϕ)Y
∗
ℓm(θ

′, ϕ′) = δ(cos θ − cos θ′)δ(ϕ− ϕ′). (2.5.6)

Analogous to the Euclidean case, applying the evolution operator exp(−L̂2t) on the

initial delta distribution yields the following eigenfunction expansion of the heat kernel

on S2:

G(x̂, ŷ; t) =
∞∑
l=0

e−ℓ(ℓ+1)t

ℓ∑
m=−ℓ

Yℓm(x̂)Yℓm(ŷ)
∗. (2.5.7)

Applying the addition theorem of spherical harmonics,

4π

2ℓ+ 1

ℓ∑
m=−ℓ

Yℓm(x̂)Yℓm(ŷ)
∗ = Pℓ(x̂ · ŷ), (2.5.8)

we finally get

G(x̂ · ŷ; t) =
∞∑
ℓ=0

(
2ℓ+ 1

4π

)
e−ℓ(ℓ+1)tPℓ(x̂ · ŷ). (2.5.9)

2.5.3 Generalization to Sn−1

Similar to the spherical harmonics, the hyperspherical harmonics arise as the angular

part of degree-ℓ homogeneous harmonic polynomials hℓ that satisfy ∆hℓ = 0. In

spherical coordinates (r, ξ), we can decompose hℓ(x) = rℓỸℓ(ξ) [7, 64], where Ỹℓ(ξ) is

the desired hyperspherical harmonic. Using the spherical coordinate Laplacian in Rn

shown in Eq. 2.5.3, we get

0 = ∆hℓ(x) = Ỹℓ(x̂)
1

rn−1
∂r
(
rn−1∂rr

ℓ
)
− rℓ−2L̂2Ỹℓ(ξ), (2.5.10)
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which can be simplified to yield the following eigenvalue equation for the hyperspherical

Laplacian:

L̂2Yℓ{m} = ℓ(ℓ+ n− 2)Yℓ{m}, (2.5.11)

where the set {m} indexes the degenerate eigenstates.

By definition, the exact heat kernel Gext(x̂, ŷ; t) is the fundamental solution to heat

equation ∂tu+ L̂2u = 0 where −L̂2 is the hyperspherical Laplacian [57, 27, 34, 61]. In

the language of operator theory, Gext(x̂, ŷ; t) is an integral kernel, or Green’s function,

for the operator exp{−L̂2t} and has an associated eigenfunction expansion. Because L̂2

and exp{−L̂2t} share the same eigenfunctions, obtaining the eigenfunction expansion

of Gext(x̂, ŷ; t) amounts to solving for the complete basis of eigenfunctions of L̂2. The

spectral decomposition of the Laplacian is in turn facilitated by embedding Sn−1 in

Rn and utilizing the global rotational symmetry of Sn−1 in Rn. The Euclidean space

harmonic functions, which are the solutions to the Laplace equation ∇2u = 0 in Rn,

can be projected to the unit hypersphere Sn−1 through the usual separation of radial

and angular variables [7, 64]. In this formalism, the hyperspherical Laplacian −L̂2 on

Sn−1 naturally arises as the angular part of the Euclidean Laplacian on Rn, and L̂2

can be interpreted as the squared angular momentum operator in Rn [64].

The resulting eigenfunctions of L̂2 are known as the hyperspherical harmonics and

generalize the usual spherical harmonics in R3 to higher dimensions. Each hyper-

spherical harmonic is equipped with a triplet of parameters or “quantum numbers”

(ℓ, {mi}, α): the degree ℓ, magnetic quantum numbers {mi} and α = n
2
− 1. In the

eigenfunction expansion of exp{−L̂2t}, we use the addition theorem of hyperspherical

harmonics to sum over the magnetic quantum number {mi} and obtain the following

main result:
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Theorem 2. The exact hyperspherical heat kernel Gext(x̂, ŷ; t) can be expanded as a

uniformly and absolutely convergent power series

Gext(x̂, ŷ; t) =
∞∑
ℓ=0

e−ℓ(ℓ+n−2)t2ℓ+ n− 2

n− 2

1

ASn−1

C
n
2
−1

ℓ (x̂ · ŷ)

in the interval x̂·ŷ ∈ [−1, 1] and for t > 0, where Cα
ℓ (w) are the Gegenbauer polynomials

and ASn−1 = 2π
n
2

Γ(n
2 )

is the surface area of Sn−1. Since the kernel depends on x̂ and ŷ

only through x̂ · ŷ, we will write Gext(x̂, ŷ; t) = Gext(x̂ · ŷ; t).

Proof. We will obtain an eigenfunction expansion of the exact heat kernel by using the

lemmas. The completeness of hyperspherical harmonics (Lemma 1) states that

δ(x̂, ŷ) =
∞∑
ℓ=0

∑
{m}

Yℓ{m}(x̂)Y
∗
ℓ{m}(ŷ). (2.5.12)

Applying the addition theorem (Lemma 2) to Equation 2.5.12, we get

δ(x̂, ŷ) =
1

ASn−1

∞∑
ℓ=0

2ℓ+ n− 2

n− 2
C

n
2
−1

ℓ (x̂ · ŷ).

Next, we apply time evolution operator e−tL̂2 on this initial state to generate the heat

kernel

G(x̂ · ŷ; t) = e−L̂2tδ(x̂, ŷ) (2.5.13)

=
∞∑
ℓ=0

e−ℓ(ℓ+n−2)t2ℓ+ n− 2

n− 2

1

ASn−1

C
n
2
−1

ℓ (x̂ · ŷ). (2.5.14)
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To show that it is a uniformly and absolutely convergent series for t > 0, note that

|G(w; t)| ≤ 1

(n− 2)ASn−1

∞∑
ℓ=0

e−ℓ(ℓ+n−2)t(2ℓ+ n− 2)
∣∣∣C n−2

2
ℓ (w)

∣∣∣ ,
where w = x̂ · ŷ.

The terms involving Gegenbauer polynomials can be bounded by using Lemma 3

as

∣∣∣C n−2
2

ℓ (w)
∣∣∣ ≤ [w2 Γ(ℓ+ n− 2)

Γ(n− 2)Γ(ℓ+ 1)
+ (1− w2)

Γ( ℓ+n−2
2

)

Γ(n−2
2
)Γ( ℓ

2
+ 1)

]

=

[
Γ( ℓ+n−2

2
)

Γ(n−2
2
)Γ( ℓ

2
+ 1)

+

(
Γ(ℓ+ n− 2)

Γ(n− 2)Γ(ℓ+ 1)
−

Γ( ℓ+n−2
2

)

Γ(n−2
2
)Γ( ℓ

2
+ 1)

)
w2

]

≤
Γ( ℓ+n−2

2
)

Γ(n−2
2
)Γ( ℓ

2
+ 1)

+

∣∣∣∣∣ Γ(ℓ+ n− 2)

Γ(n− 2)Γ(ℓ+ 1)
−

Γ( ℓ+n−2
2

)

Γ(n−2
2
)Γ( ℓ

2
+ 1)

∣∣∣∣∣w2

≤
Γ( ℓ+n−2

2
)

Γ(n−2
2
)Γ( ℓ

2
+ 1)

+

∣∣∣∣∣ Γ(ℓ+ n− 2)

Γ(n− 2)Γ(ℓ+ 1)
−

Γ( ℓ+n−2
2

)

Γ(n−2
2
)Γ( ℓ

2
+ 1)

∣∣∣∣∣
≡Mℓ.

We thus have

|G(w; t)| ≤ 1

(n− 2)ASn−1

∞∑
ℓ=0

e−ℓ(ℓ+n−2)t(2ℓ+ n− 2)
∣∣∣C n−2

2
ℓ (w)

∣∣∣
≤ 1

(n− 2)ASn−1

∞∑
ℓ=0

e−ℓ(ℓ+n−2)t(2ℓ+ n− 2)Mℓ

≡ 1

(n− 2)ASn−1

∞∑
ℓ=0

Qℓ.
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But, in the large ℓ limit, we have

Mℓ ∼
Γ(ℓ+ n− 2)

Γ(n− 2)Γ(ℓ+ 1)
∼ ℓn−3

(n− 3)!
;

thus,

lim
ℓ→∞

Qℓ+1

Qℓ

= lim
ℓ→∞

e−(2ℓ+n−1)t(2ℓ+ n)Mℓ+1

(2ℓ+ n− 2)Mℓ

= 0 < 1,

for any t > 0. The sequence {Qℓ} is thus convergent, and hence, the Weiestrass M-test

implies that the eigenfunction expansion of the heat kernel is uniformly and absolutely

convergent in the indicated intervals. Q.E.D.

As before, we will rescale the kernel by self-similarity and define: The exact kernel

Kext(x̂, ŷ; t) is the exact heat kernel normalized by self-similarity:

Kext(x̂, ŷ; t) =
Gext(x̂ · ŷ; t)
Gext(1; t)

,

which is defined for t > 0, is non-negative, and attains global maximum 1 at x̂ · ŷ = 1.

Note that unlike Kprx(x̂, ŷ; t), Kext(x̂, ŷ; t) explicitly depends on the feature dimen-

sion n. In general, SVM kernel hyperparameter tuning can be computationally costly

for a data set with both high feature dimension and large sample size. In particular,

choosing an appropriate diffusion time scale is an important challenge. On the one

hand, choosing a very large value of t will make the series converge rapidly; but, then,

all points will become uniformly similar, and the kernel will not be very useful. On

the other hand, a too small value of t will make most data pairs too dissimilar, again

limiting the applicability of the kernel. In practice, we thus need a guideline for a finite

time scale at which the degree of “self-relatedness” is not singular, but still larger than
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Figure 2.5.1: (A) Color maps of the exact kernel Kext on S2 at rescaled time t∗ =
0.5, 1.0, 2.0; the white paths are simulated random walks on S2 with the Monte Carlo
time approximately equal to t = t∗ log 3/3. (B) Plots of the parametrix kernel Kprx and
exact kernel Kext on Sn−1, for n = 3, 100, 200, as functions of the geodesic distance.

the “relatedness” averaged over the whole hypersphere. Examining the asymptotic be-

havior of the exact heat kernel in high feature dimension n shows that an appropriate

time scale is t ∼ O(log n/n); in this regime the numerical sum in Theorem 2 satisfies a

stopping condition at low orders in ℓ and the sample points are in moderate diffusion

proximity to each other so that they can be accurately classified.

Figure 2.5.1A illustrates the diffusion process captured by our exact kernelKext(x̂, ŷ; t)

in three feature dimensions at time t = t∗ log 3/3, for t∗ = 0.5, 1.0, 2.0. In Figure 2.5.1B,

we systematically compared the behavior of (1) dimension-independent parametrix ker-

nel Kprx at time t = 0.5, 1.0, 2.0 and (2) exact kernel Kext on Sn−1 at t = t∗ log n/n for
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t∗ = 0.5, 1.0, 2.0 and n = 3, 100, 200. By symmetry, the slope of Kext vanished at the

south pole θ = π for any time t and dimension n. In sharp contrast, Kprx had a neg-

ative slope at θ = π, again highlighting a singular behavior of the parametrix kernel.

The “relatedness” measured by Kext at the sweet spot t = log n/n was finite over the

whole hypersphere with sufficient contrast between nearby and far away points. More-

over, the characteristic behavior of Kext at t = log n/n did not change significantly

for different values of the feature dimension n, confirming that the optimal t for many

classification applications will likely reside near the “sweet spot” t = log n/n.

2.5.4 Lemmas for the proof of convergence

To construct the eigenfunction expansion of the exact heat kernel and prove its con-

vergence, we need the following lemmas [7, 64, 43]:

Lemma 3. The hyperspherical harmonics are complete on Sn−1 and resolve the δ-

function

δ(x̂, ŷ) =
∞∑
ℓ=0

∑
{m}

Yℓ{m}(x̂)Y
∗
ℓ{m}(ŷ).

Lemma 4. The hyperspherical harmonics satisfy the generalized addition theorem

∑
{m}

Yℓ{m}(x̂)Yℓ{m}(ŷ)
∗ =

1

ASn−1

2ℓ+ n− 2

n− 2
C

n
2
−1

ℓ (x̂ · ŷ),

where Cν
ℓ (w) are the Gegenbauer polynomials and ASn−1 = 2πn/2/Γ

(
n
2

)
is the surface

area of Sn−1.

Lemma 5. The Gegenbauer polynomials Cα
ℓ (w) with α > 0 and ℓ ≥ 0 are bounded in

the interval w ∈ [−1, 1]: in particular, Cα
0 (w) = 1, Cα

1 (w) = αw, and thus, |Cα
1 (w)| ≤ α
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for w ∈ [−1, 1]. Finally, for ℓ ≥ 2,

|Cα
ℓ (w)| ≤

[
w2c2ℓ,2α + (1− w2)cℓ,α

]
, (2.5.15)

where

cℓ,α =
Γ( ℓ

2
+ α)

Γ(α)Γ( ℓ
2
+ 1)

. (2.5.16)

2.5.5 The sweet spot of t

Choosing an appropriate diffusion time t for the heat kernel is important for machine

learning applications. Here, we use the degree of self-similarity measured by the heat

kernel as a function of t, and propose a choice for which the self-similarity is neither

too large nor too small. If t is too large, then the self-similarity is roughly the uniform

similarity 1/ASn−1 , thereby losing contrast between neighbors and outliers. By contrast,

as t approaches 0, the self-similarity becomes infinite, and the sense of neighborhood

becomes too localized. We thus need an intermediate value of t, for which the self-

similarity interpolates between the two limits.

The self-similarity is a special value of the heat kernel

G(1; t) =
∞∑
ℓ=0

e−ℓ(ℓ+n−2)t2ℓ+ n− 2

n− 2

1

ASn−1

C
n
2
−1

ℓ (1) (2.5.17)

=
1

ASn−1

∞∑
ℓ=0

e−ℓ(ℓ+n−2)t2ℓ+ n− 2

n− 2

Γ(ℓ+ n− 2)

Γ(ℓ+ 1)Γ(n− 2)
. (2.5.18)

Because the series converges rapidly for sufficiently large t, we can truncate the series
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at ℓ = ℓmax; i.e.

G(1; t) ≈ 1

ASn−1

ℓmax∑
ℓ=0

e−ℓ(ℓ+n−2)t2ℓ+ n− 2

n− 2

Γ(ℓ+ n− 2)

Γ(ℓ+ 1)Γ(n− 2)
. (2.5.19)

In the large n limit, we can bound the sum as

G(1; t) ≤ 1

ASn−1

ℓmax∑
ℓ=0

(
e−nt

)ℓ nℓ

ℓ!
≤ exp (ne−nt)

ASn−1

. (2.5.20)

To keep the self-similarity finite, but larger than the uniform similarity, suggests the

choice for t of order log n/n, at which the self-similarity is roughly e/ASn−1 . We thus

search for an optimal value of t around log n/n.

2.6 SVM classifications

We evaluated the performance of kernel SVM using the

1. linear kernel K lin(x,y) = x · y,

2. Gaussian RBF Krbf(x,y; γ) = exp{−γ|x− y|2},

3. cosine kernel Kcos(x̂, ŷ) = x̂ · ŷ,

4. parametrix kernel Kprx(x̂, ŷ; t), and

5. exact kernel Kext(x̂, ŷ; t),

on two independent data sets: (1) WebKB data of websites from four universities

(WebKB-4-University) [16], and (2) glioblastoma multiforme (GBM) mutation data

from The Cancer Genome Atlas (TCGA) with 5-fold cross-validations (CV).
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mr lin rbf cos prx ext
100 74.2% 75.1% 84.4% 85.4% 85.6%
200 80.9% 82.0% 89.2% 89.6% 89.9%
300 83.2% 84.1% 89.9% 90.5% 91.1%
400 86.7% 86.1% 91.3% 91.7% 92.3%

Table 2.1: WebKB-4-University Document Classification. Performance test on four-
class (student, faculty, course, and project) classification of WebKB-4-University word
count data with different number mr of representatives for each class, for mr =
100, 200, 300, 400. The entries show the average of optimal 5-fold cross-validation mean
accuracy scores of five runs. The exact kernel (ext) reduced the error of parametrix
kernel (prx) by 1% ∼ 7% and the Gaussian RBF (rbf) by 41% ∼ 45%; the cosine kernel
(cos) also reduced the error of linear kernel (lin) by 34% ∼ 43%.

The WebKB-4-University data contained 4199 documents in total comprising four

classes: student (1641), faculty (1124), course (930), and project (504); in our analysis,

however, we selected an equal number of representative samples from each class, so that

the training and testing sets had balanced classes. Table 2.1 shows the average optimal

prediction accuracy scores of the five kernels for a varying number of representative

samples, using 393 most frequent word features. The exact kernel outperformed the

Gaussian RBF and parametrix kernel, reducing the error by 41% ∼ 45% and by 1% ∼

7%, respectively. Changing the feature dimension did not affect the performance much

(Table 2.2).

In the TCGA-GBM data, there were 497 samples, and we aimed to impute the

mutation status of one gene – i.e., mutant or wild-type – from the mutation counts

of other genes. For each imputation target, we first counted the number mr of mu-

tant samples and then selected an equal number of wild-type samples for 5-fold CV.

Imputation tests were performed for top 102 imputable genes.

Table 2.3 shows the average prediction accuracy scores for 5 biologically interesting

genes known to be important for cancer [30]:
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n mr lin rbf cos prx ext
393 400 86.73% 86.27% 91.57% 91.99% 92.44%
726 400 86.78% 86.95% 92.62% 92.91% 93.00%
1023 400 85.56% 86.11% 92.62% 92.74% 92.91%
1312 400 85.78% 86.75% 92.56% 92.81% 93.03%

Table 2.2: WebKB-4-University Document Classification. Comparison of kernel SVMs
on the WebKB-4-University data with a fixed sample size mr, but varying feature
dimension n. To account for the randomness in selecting the representative samples
using k-means, we performed fives runs of representative selection, and then performed
CV using the training and test sets obtained from each run. Finally, we averaged the
five mean CV scores to assess the performance of each classifier on the imbalanced
WebKB-4-University data set. The exact (ext) and cosine (cos) kernels outperformed
the Gaussian RBF (rbf) and linear (lin) kernels in various feature dimensions n =
393, 726, 1023, and 1312, with fixed and balanced class size mr = 400. A word was
selected as a feature if its total count was greater than 1/10, 1/20, 1/30 or 1/40
times the total number of web pages in the WebKB-4-University data set, with the
different thresholds corresponding to the different rows in the table. The exact kernel
reduced the errors of Gaussian RBF and parametrix kernels by 45 ∼ 48% and 1 ∼ 6%,
respectively; the cosine kernel reduced the errors of linear kernel by 36 ∼ 49%.

1. ZMYM4 (mr = 33) is implicated in an antiapoptotic activity [55, 52];

2. ADGRB3 (mr = 37) is a brain-specific angiogenesis inhibitor [72, 36, 29];

3. NFX1 (mr = 42) is a repressor of hTERT transcription [65] and is thought to

regulate inflammatory response [56];

4. P2RX7 (mr = 48) encodes an ATP receptor which plays a key role in restricting

tumor growth and metastases [1, 26, 41];

5. COL1A2 (mr = 61) is overexpressed in the medulloblastoma microenvironment

and is a potential therapeutic target [4, 40, 51].

For the remaining genes, the exact kernel generally outperformed the linear, cosine and

parametrix kernels (Fig. 2.6.1). However, even though the exact kernel dramatically
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lin rbf cos prx ext
ZMYM4 82.9% 84.0% 83.6% 84.1% 85.1%

ADGRB3 75.7% 81.0% 78.0% 79.5% 79.3%
NFX1 73.0% 81.2% 80.9% 82.7% 82.5%

P2RX7 79.2% 84.1% 85.0% 84.0% 85.0%
COL1A2 68.4% 70.5% 72.9% 73.9% 74.2%

Table 2.3: TCGA-GBM Genotype Imputation. Performance test on binary classifi-
cation of mutant vs. wild-type in TCGA-GBM mutation count data. The rows are
different genes, the mutation statuses of which were imputed using mr samples in each
mutant and wild-type class. The entries show the average of optimal 5-fold cross-
validation mean accuracy scores of five runs.

outperformed the Gaussian RBF in the WebKB-4-University classification problem, the

advantage of the exact kernel in this mutation analysis was not evident (Fig. 2.6.1). It

is possible that the radial degree of freedom
∑n

i=1 xi in this case, corresponding to the

genome-wide mutation load in each sample, contained important covariate information

not captured by the hyperspherical heat kernel. The difference in accuracy between

the hyperspherical kernels (cos, prx, and ext) and the Euclidean kernels (lin and rbf)

also hinted some weak dependence on class size mr (Fig. 2.6.1), or equivalently the

sample size m = 2mr. In fact, the level of accuracy showed much stronger correlation

with the “effective sample size” m̃ related to the empirical Vapnik-Chervonenkis (VC)

dimension [60, 11, 28, 59, 48] of a kernel SVM classifier (Fig. 2.6.2a-e); moreover, the

advantage of the exact kernel over the Gaussian RBF kernel grew with the effective

sample size ratio m̃cos/m̃lin (Fig. 2.6.2f).

By construction, our definition of the hyperspherical map exploits only the positive

portion of the whole hypersphere, where the parametrix and exact heat kernels seem

to have similar performances. However, if we allow the data set to assume negative

values, i.e. the feature space is the usual Rn\{0} instead of Rn
≥0\{0}, then we may apply
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the usual projective map, where each vector in the Euclidean space is normalized by

its L2-norm. As shown in Figure 2.5.1B, the parametrix kernel is singular at θ = π

and qualitatively deviates from the exact kernel for large values of θ. Thus, when data

points populate the whole hypersphere, we expect to find more significant differences in

performance between the exact and parametrix kernels. For example, Table 2.4 shows

the kernel SVM classifications of 91 S&P500 Financials stocks against 64 Information

Technology stocks (m = 155) using their log-return instances between January 5, 2015

and November 18, 2016 as features. As long as the number of features was greater

than sample size, n > m, the exact kernel outperformed all other kernels and reduced

the error of Gaussian RBF by 29 ∼ 51% and that of parametrix kernel by 17 ∼ 51%.

n m lin rbf cos prx ext
475 155 98.06% 98.69% 98.69% 98.69% 99.35%
238 155 95.50% 96.77% 94.82% 96.13% 98.06%
159 155 94.86% 95.48% 95.48% 96.13% 96.79%
119 155 92.86% 93.53% 91.57% 94.15% 94.15%
95 155 91.55% 95.50% 94.19% 94.15% 94.79%

Table 2.4: S&P500 Stock Classification. Classifications were performed on m = 155
stocks from S&P500 companies: 91 Financial vs. 64 Information Technology. The 475
log-return instances between January 5, 2015 and November 18, 2016 were used as
features. We uniformly subsampled the instances to generate variations in the feature
dimension n. Here, we report the mean 5-fold CV accuracy score for each kernel.
Although the two classes were slightly imbalanced, all scores were much larger than
the “random score” 91/155 ≈ 58.7%, calculated from the majority class size and sample
size. For n > m, the exact (ext) kernel outperformed all other kernels and reduced
the errors of Gaussian RBF (rbf) and parametrix (prx) kernels by 29 ∼ 51% and
17 ∼ 51%, respectively. When n < m, the exact kernel started to lose its advantage
over the Gaussian RBF kernel.
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Figure 2.6.1: Comparison of the classification accuracy of SVM using linear (lin),
cosine (cos), Gaussian RBF (rbf), parametrix (prx), and exact (ext) kernels on TCGA
mutation count data. The plots show the ratio of accuracy scores for two different
kernels. For visualization purpose, we excluded one gene with mr = 250. The ratios
rbf/lin, prx/cos, and ext/cos were essentially constant in class size mr and greater than
1; in other words, the Gaussian RBF (rbf) kernel outperformed the linear (lin) kernel,
while the exact (ext) and parametrix (prx) kernels outperformed the cosine (cos) kernel
uniformly over all values of class size mr. However, the more negative slope in the linear
fit of cos/lin hints that the accuracy scores of cosine and linear kernels may depend
on the class size mr; the exact kernel also tended to outperform Gaussian RBF kernel
when mr was small.
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(a) (b) (c)

(d) (e) (f)

Figure 2.6.2: (A) A strong linear relation is seen between the VC-bound for cosine
kernel µ∗ cos

VC and class size mr. The dashed line marks y = x; the VC-bound for linear
kernel, however, was a constant µ∗lin

VC = 439. (B-E) The scatter plots of accuracy scores
for cosine (cos), linear (lin), exact (ext), and Gaussian RBF (rbf) kernels vs. the
effective sample size m̃ = 2mr/µ

∗
VC; the accuracy scores of exact and cosine kernels

increased with the effective sample size, whereas those of Gaussian RBF and linear
kernels tended to decrease with the effective sample size. (F) The ratio of ext vs.
rbf accuracy scores is positively correlated with the ratio m̃cos/m̃lin of effective sample
sizes.

37



2.6.1 VC dimension and effective sample size

We have applied the linear (lin), Gaussian RBF (rbf), cosine (cos), parametrix (prx),

and exact (ext) kernels in SVM to (1) classify WebKB-4-University web pages into four

classes: student, faculty, course, and project; and (2) impute the binary mutation status

of genes in TCGA-GBM data. The kernel SVM classification results indicated that the

cosine kernel usually outperformed the linear kernel, most likely as a pure consequence

of the hyperspherical geometry, as we argue below. The exact kernel outperformed

the Gaussian RBF kernel for the WebKB document data, but the advantage of exact

kernel diminished in the TCGA mutation count data. Fig. 2.6.1 compares the accuracy

of SVM using different kernels on the TCGA-GBM data, where the accuracy ratios

rbf/lin, cos/lin, ext/lin, prx/cos, and ext/cos were greater than 1 for most class sizes

mr. Interestingly, the ratio cos/lin showed some dependence on the sample size mr,

and the exact kernel also tended to outperform the Gaussian RBF kernel when mr was

small; in general, we noted that the hyperspherical kernels tended to outperform the

Euclidean kernels in small-sample-size classification problems. This pattern may be

understood by examining the generalization error of kernel SVM as follows.

Intuitively, if a generic classifier were closely acquainted with the population dis-

tribution of data through a large sample size, then its predictions would be more

generalizable to unseen samples. The “largeness” of sample size m, however, is not

explicitly quantifiable unless we have a natural unit for it. Statistical learning theory

[60, 59, 28] provides such a unit associated with a probabilistic upper bound on gener-

alization errors. That is, with probability at least 1 − η, the generalization error of a
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binary SVM classification is bounded from above by

F (m̃;µVC, η) =

√
1

m̃

[
(log 2m̃+ 1)−

log η
4

µVC

]

where µVC is the VC-dimension of the classifier, and m̃ = m/µVC is the effective

sample size. The derivative of F (m̃;µVC, η) with respect to m̃ is proportional to a

positive factor times − log [(2m̃)µVC4/η]. Thus, the upper bound decreases with m̃

when (2m̃)µVC > η/4, and increases otherwise; the critical effective sample size m̃crt =

1
2
·(η/4)1/µVC ≈ 1

2
for typical values of µVC > 100 and η ∈ [10−3, 0.1]. The VC dimension

of a linear kernel SVM can be estimated using an empirical upper bound [59, 48]

µV C ≤ µ∗
V C = min

{
n,

R2

M2

}
+ 1, (2.6.1)

where n is the feature space dimension, R is the radius of the smallest ball in feature

space that encloses all data points, and M is the SVM margin. We evaluated the

bound µ∗
VC for the TCGA-GBM mutation count data with C = 1, and found that

the linear kernel had R2/M2 ≈ 6 × 103 and thus that µ∗lin
VC = n + 1 ≈ 4 × 102. By

contrast, the cosine kernel, which is a linear kernel in the hyperspherically transformed

space with R ≤ 1, had µ∗cos
VC approximately in the range 20 ∼ 100 ≪ µ∗lin

VC , as shown in

Fig. 2.6.2 (a). This reduction in the VC-dimension is likely responsible for the classi-

fication improvement of the cosine kernel over the linear kernel. We thus found that

m̃cos = 2mr/µ
∗ cos
VC > m̃crt, while m̃lin = 2mr/µ

∗lin
VC < m̃crt for the TCGA-GBM data,

and that the cosine kernel accuracy increased with effective sample size, whereas the

linear kernel accuracy tended to decrease Fig. 2.6.2(b,c)), consistent with the analysis

of the upper bound on generalization error F (m̃;µVC, η). In addition, the Gaussian
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RBF and exact kernels followed similar trends as the linear and cosine kernels, respec-

tively (Fig. 2.6.2(d,e)). Similar to the cosine kernel, the exact kernel likely inherited

the reduction in VC-dimension from the hyperspherical map; as a result, the accuracy

of the exact kernel also increased with m̃cos, but with slightly higher accuracy due to

the additional tunable parameter t that can adjust the curvature of nonlinear decision

boundaries. Moreover, the cases of small sample size where the exact kernel outper-

formed the Gaussian RBF kernel corresponded to the cases of larger effective sample

size ratio m̃cos/m̃lin (Fig. 2.6.2(f)).

2.7 Data preparation

The WebKB-4-University raw webpage data were downloaded from www.cs.cmu.edu

and processed with the python packages Beautiful Soup and Natural Language Toolkit

(NLTK). Our feature extraction excluded punctuation marks and included only letters

and numerals where capital letters were all converted to lower case and each individual

digit 0-9 was represented by a “#.” Very infrequent words, such as misspelled words,

non-English words, and words mixed with special characters, were filtered out. We

selected top 393 most frequent words as features in our classification tests; the cutoff

was chosen to select frequent words whose counts across all webpage documents are

greater than 10% of the total number of documents. There were 4199 documents in

total: student (1641), faculty (1124), course (930), and project (504).

The TCGA-GBM data were downloaded from the GDC Data Portal under the

name TCGA-GBM Aggregated Somatic Mutation. The mutation count data set was

extracted from the MAF file, while ignoring the detailed types of mutations and count-
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ing only the total number of mutations in each gene. Very infrequently, mutated genes

were filtered out if the total number of mutations in one gene across all samples is

less than 10% of the total number of samples (m = 497 samples and n = 439 genes).

We imputed the mutation status of one gene, mutant or wild-type, from the mutation

counts of the remaining genes. The most imputable genes were selected using 5-fold

cross-validation linear kernel SVM. Most of the mutant and wild-type samples were

highly unbalanced, the ratio being typically around 1 : 9; therefore, unthresholded

area-under-the-curve (AUC) of the receiver operating characteristic (ROC) curve was

used to quantify the classification performance of the linear kernel SVM. Mutated genes

with AUC greater than 60% were selected for the subsequent imputation tests.

To balance the sample size between classes, we performed k-means clustering of

samples within each class, with a specified number mr of centroids and took the sam-

ples closest to each centroid as representatives. For the WebKB document classifi-

cations, we used mr ≤ min{mstudent,mfaculty,mcourse,mproject}, and k-means clustering

was performed in each of the four classes separately; for the TCGA-GBM data, mr

was chosen to be the number of samples in each mutant (minority) class, and k-means

clustering was performed in the wild-type (majority) class. Since k-means might de-

pend on the random initialization, we performed the clustering 50 times and selected

the top mr most frequent representatives. Five-fold stratified cross-validations (CV)

were performed on the resulting balanced data sets, where training and test samples

were drawn without replacement from each class. The mean CV accuracy scores across

the five folds were recorded.
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2.8 Discussion

We have constructed the exact hyperspherical heat kernel using the complete basis

of high-dimensional angular momentum eigenfunctions and tested its performance in

kernel SVM. We have shown that the exact kernel and cosine kernel, both of which

employ the hyperspherical projections, often outperform the Gaussian RBF and linear

kernels. The advantage of using hyperspherical kernels likely arises from the hyper-

spherical projections of feature space, and the exact kernel may further improve the

decision boundary flexibility of the raw cosine kernel. To be specific, the hyperspherical

maps project out the less informative radial degree of freedom in a nonlinear fashion

and compactify the Euclidean feature space into a unit hypersphere where all data

points may then be enclosed within a finite radius. By contrast, our numerical estima-

tions using TCGA-GBM data show that for linear kernel SVM, the margin M tends

to be much smaller than the data range R in order to accommodate the separation of

strongly mixed data points of different class labels; as a result, the ratio R/M was much

larger than that for cosine kernel SVM. This insight may be summarized by the fact

that the upper bound on the empirical VC-dimension of linear kernel SVM tends to be

much larger than that for cosine kernel SVM, especially in high dimensions, suggesting

that the cosine kernel SVM is less sensitive to noise and more generalizable to unseen

data. The exact kernel is equipped with an additional tunable hyperparameter, namely

the diffusion time t, which adjusts the curvature of nonlinear decision boundary and

thus adds to the advantage of hyperspherical projections. Moreover, the hyperspher-

ical kernels often have larger effective sample sizes than their Euclidean counterparts

and, thus, may be especially useful for analyzing data with a small sample size in high

feature dimensions.
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The failure of the parametrix expansion of heat kernel, especially in dimensions

n ≫ 3, signals a dramatic difference between diffusion in a non-compact space and

that on a compact manifold. It remains to be examined how these differences in

diffusion process, random walk and topology between non-compact Euclidean spaces

and compact manifolds like a hypersphere contribute to ameliorating the “curse of

dimensionality,” as hinted by the results of this paper.
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Chapter 3

Effective dissimilarity

transformation

3.1 Introduction

Community detection, better known as clustering in the literature of statistical learning

[35, 31, 48, 62, 45, 14, 44], is a process of merging similar nodes of a complex network

into communities (clusters) and often shows a hierarchical organization of communities

at different levels of similarity. Akin to the idea of renormalization group in physics,

decreasing the threshold for similarity leads to increasingly coarse-grained pictures of

the “microscopic” network. The reduction in complexity can sometimes yield more

interpretable statistical models that could serve as a basis for further classification

analysis. Along this line, we present an idea of transforming dissimilarity measures to

allow dynamic agglomeration of data points into communities. This chapter is based

on [68].
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3.2 Formulation of effective dissimilarity transfor-

mation (EDT)

As observed in previous support vector machine (SVM) classification studies [38, 70],

hyperspherical geometry often improves classification accuracy. Motivated by these

results, we now introduce an effective dissimilarity transformation based on a hyper-

spherical representation of data clouds. To map sample points onto a hypersphere,

we will utilize the following hyperspherical transformation from non-negative space

Rm \ {0} to a unit hypersphere:

Definition 6. A hyperspherical projective map φ : Rm
≥0 \ {0} → Sm−1 maps a vector

x, with xi ≥ 0 and
∑m

i=1 xi > 0, to a unit vector x̂ ∈ Sm−1 where (x̂)i ≡
√
xi/
∑m

j=1 xj.

A useful measure of similarity on a hypersphere is the cosine similarity:

Definition 7. For unit vectors x̂ = φ(x) and ŷ = φ(y) obtained from non-negative

vectors x,y ∈ Rm
≥0 \ {0} via the hyperspherical projective map, the cosine similarity is

the dot product x̂ · ŷ.

The EDT relies on this notion of cosine similarity, as explained below. Many

algorithms – such as hierarchical clustering, k-medoids, and k-means – directly rely

on some notion of difference between samples. For example, the Euclidean distance

function is a popular measure of the difference between two sample points in Rn. In

statistical learning approaches based on pairwise differences, however, we often relax

the definiteness condition and triangular inequality satisfied by a distance function and

utilize instead a more general and flexible measure of difference, called the dissimilarity

function:
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Definition 8. A dissimilarity function defined on a manifold M is a map d : M×M →

R≥0 satisfying

non-negativity: d(x, y) ≥ 0 for all x, y ∈ M,

identity: d(x, x) = 0 for all x ∈ M,

symmetry: d(x, y) = d(y, x) for all x, y ∈ M.

Usually M = Rn, representing the sample space of original data directly collected

from experiments, and its nonlinear embedding into an abstract manifold is often only

implicitly defined through the dissimilarity function.

Dissimilarity functions are relatively easy to construct; in particular, we can turn

the cosine similarity on Rn
≥0\{0} into a dissimilarity function by defining d(x,y) =

1 − x̂ · ŷ = 1
2
∥x̂− ŷ∥2. We here show that this cosine dissimilarity function can be

iteratively applied to an initial dissimilarity measure and that this simple iteration

leads to several robust properties desirable for clustering applications.

More precisely, given an initial dissimilarity function d(·, ·) and m sample points,

organize the pairwise dissimilarity of the samples into an m×m non-negative, symmet-

ric dissimilarity matrix d(0). To apply our method, we only need to assume the mild

condition that each column of d(0) is not a zero vector. We then define the effective

dissimilarity transformation on the space of such matrices as follows:

Definition 9. The effective dissimilarity transformation (EDT) ψ : Rm×m
≥0 → Rm×m

≥0 is

defined as [
ψ(d(0))

]
ij
=

1

2
∥φ(pi)− φ(pj)∥2 ,

where pi is the i-th column of the dissimilarity matrix d(0) and φ is the hyperspherical

projective map into Sm−1. We denote d(1) ≡ ψ(d(0)).
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Figure 3.2.1: (a) A schematic illustration of the network structure of effective dissim-
ilarity transformations (EDT) parameterized by τ . The (i, j)-th entry of d(τ) arises
from transforming the i- and j-th columns of d(τ−1). (b) Illustrations of perspective
contraction effect of EDT. (c) Two ideal clusters with radius r and centroid-centroid
distance ℓ in R2. (d) The detector used in the measurement of local deformation of data
distributions in R2. (e) An ideal cluster of radius r in R2 and an outlier at distance ℓ
from the cluster centroid. (f) An ideal cluster of radius r in the xy-plane of R3 with
symmetrically located outliers on the z-axis at distance ℓ 1

2
= ℓ

2
from cluster centroid.

The resulting d(1) is thus a cosine dissimilarity matrix of the m samples newly

represented by the columns of the dissimilarity matrix d(0). Importantly, the pairwise

dissimilarity captured by d(1) between any two samples measures how dissimilar are

their respective d(0) dissimilarities to all samples; in other words, each entry of d(1)

depends on the global network structure encoded in d(0) as illustrated in Fig. 3.2.1(a).

Iterating the map composition ψ(τ+1) = ψ ◦ ψ(τ) yields a sequence {ψ(τ)}∞τ=0 of EDTs

and corresponding dissimilarity matrices {d(τ)}∞τ=0, where ψ(0) is the identity map and
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Figure 3.2.2: Results of Gedankenexperimente: (a) cluster condensation (Fig. 3.2.1(c)),
(b) single outlier absorption (Fig. 3.2.1(e)), (c, d) two outliers perpendicular to an ideal
cluster (Fig. 3.2.1(f)), (e, f) probabilistic sampling.

d(τ) = ψ(τ)(d(0)). The sequence of dissimilarity matrices {d(τ)}∞τ=0 may be interpreted

as inducing a data-driven evolution or flow of sample points parametrized by τ . We

will show that the data-driven redefinition of dissimilarity resulting from an iterated

application of EDT often leads to improved clustering results.

Even though EDT is simple in its definition and deterministic in nature, its nonlin-

earity makes the flow of data points difficult to study. Consequently, we first study the

properties of EDT by performing Gedankenexperimente on carefully designed synthetic

data sets shown in Fig. 3.2.1(b-f) (accompanying simulation results in Fig. 3.2.2(a-f)),

and then test the power of these observed properties in the setting of real data sets.
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3.3 Gedankenexperimente of EDT

First consider the simple data set consisting of 3 distinct points, P1, P2, and P3, in Rn,

for any n ≥ 2. Let P1 and P2 represent two ends of a ruler of length d(0)12 = a, and let P3

represent an observer at distance b to the center of the ruler; Fig. 3.2.1(b) shows two

particular cases: (1) the ruler and observer are collinear, and b > a/2; (2) the observer

and ruler form an isosceles triangle, and d(0)23 = d
(0)
13 = c =

√(
a
2

)2
+ b2. In scenario (1),

the original distance d(0)12 between P1 and P2 is equal to the ruler length and is also

the observed distance d(0)13 − d
(0)
23 measured by the observer at P3, irrespective of the

location of P3; after EDT, however, both d
(1)
12 and the ratio (d

(1)
13 − d

(1)
23 )/d

(1)
12 =

√
a
2b

shrink as the observer moves away (Section 3.4.1). That is, in the limit b ≫ a, the

effective dissimilarity between P1 and P2 approaches zero, and the observer at P3 cannot

distinguish between P1 and P2 on the scale set by d(1)12 . In the language of hierarchical

clustering, the single, average, and complete linkages become equivalent after EDT as

P3 becomes a clear outgroup. Similarly, in scenario (2), the effective ruler length also

shrinks as the observer moves away from the other two points, i.e. d
(1)
12 = 1− c

a+c
↓ 0 as

b/a ↑ ∞. We can thus summarize these properties as a perspective contraction effect:

Proposition 10. The EDT dissimilarity between each pair of points shrinks as an

observer moves away from the distribution of points. Consequently, compared to the

original dissimilarity, hierarchical clustering using the EDT dissimilarity is insensitive

to the choice of linkage.

We verified this observation by comparing the performance of Euclidean distance

with its EDT dissimilarity in the hierarchical clustering of three Gaussian clouds in

R2 using single, average and complete linkages (Fig. 3.3.1). As often is the case with
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Figure 3.3.1: Comparison of hierarchical clustering results using (a-c) Euclidean dis-
tance vs. (d-f) EDT-enhanced Euclidean distance with (a,d) single, (b,e) average, and
(c,f) complete linkages. The number of clusters was chosen to be three in the analysis.

real data, the three linkages based on the Euclidean distance led to different clustering

results (Fig. 3.3.1 top row), whereas the EDT dissimilarity was insensitive to the choice

of linkage (Fig. 3.3.1 bottom row).

We next replaced the ruler and observer in our first model with two identical ideal

clusters, each of which consisted of a centroid point and ms uniformly distributed satel-

lites at radius d(0)cs = r in R2 (Fig. 3.2.1(c)). The distance between the two centroids

was set to d(0)cc = ℓ > 2r, and data distribution had two global mirror reflection sym-
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metries about (1) the line connecting two centroids, and (2) the perpendicular bisector

thereof. We compared the changes in intra- and inter-cluster dissimilarities after EDT

and found that the two circles were deformed, but the global mirror reflection sym-

metries were preserved. We further measured the mean r̄′ ≡
⟨
d
(1)
cs

⟩
and ℓ′ ≡ d

(1)
cc

and found the ratio ℓ′/r̄′ to be an increasing function in both ℓ/r and ms; moreover,

ℓ′/r̄′ > ℓ/r for any ℓ > 2r (Fig. 3.2.2(a)). Thus, the EDT had the effect of forcing the

data points in each cluster to condense towards their respective centroid location, a

potentially desirable effect that can help automatically merge data points into correct

communities. We summarize our observation as a cluster condensation effect:

Proposition 11. For separable clusters, the EDT condenses the points within a clus-

ter, while inflating the space between clusters; this cluster condensation effect becomes

stronger with the number of points in each cluster and also with the initial inter-cluster

dissimilarity.

The previous two Gedankenexperimente were performed on highly symmetric data

sets. To probe the local deformation induced by EDT on a generic data distribution,

we devised a detector, or a composite “test charge.” The idea is generalizable to higher

feature dimensions, but to simplify the interpretation, we performed the simulation

in R2, with the detector being an ideal cluster of 12 sensor points at radius r from a

centroid point (Fig. 3.2.1(d)). Deviations of the detector from a perfect circle in local

ambient distributions were used to assess the EDT impact landscape. We captured the

deviations through the transformed arm lengths {r′i}12i=1 of the 12 sensors after EDT;

we then derived two scalar quantities of interest: (1) the mean arm length ν = ⟨r′i⟩

that measures a volume change, and (2) the standard deviation of {r′i/ν}ms
i=1, denoted

κ, that measures anisotropy or the effect of “tidal force” from probed data points. The
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observed volume changes were consistent with the effect of “perspective contraction,”

and the mean arm length ν of the detector shrank as it moved away from high density

regions of the probed data distribution (Fig. 3.3.2). The κ-distributions were highly

non-trivial, as illustrated in Fig. 3.3.3: κ attained high values whenever the rim of

the detector was near a data point, indicating an intense tug-of-war between the data

points and the detector that were both trying to capture the sensors; by contrast, the

normalized κ almost vanished at the centers of two Gaussian distributions, within the

inner circle of the two layers of circularly distributed points, and at the center of “O” in

the “COS” data. The low values of κ in the interior of clustered data suggest a screening

effect that shields the interior from anisotropic distortions, akin to the shielding effect

of conductors in electrostatics; this effect may potentially protect sub-cluster structures

within a dense cluster.

Inspired by the high values of κ near the boundary of a cluster, we performed

additional experiments to test the effect of EDT on outliers, using (1) an ideal cluster

in R2 with ms satellites at radius r from the center point and an additional single point

at varying distance ℓ from the center (Fig. 3.2.1(e)), and (2) the same ideal cluster in

the xy-plane of R3 and two outliers located on the z-axis at z = ±ℓ/2 (Fig. 3.2.1(f)).

For the first case, Fig. 3.3.4 shows how a cluster of points traps an outlier and prevents

it from escaping the cluster. Furthermore, in both cases, we observed that the trapping

power increased with cluster mass ms: in case (1), increasing ms reduced the relative

effective outlier-centroid dissimilarity ℓ′/r̄′ and broadened the outlier region that got

pulled back towards the cluster (Fig. 3.2.2(b)); in case (2), increasing ms also decreased

the relative effective outlier-centroid dissimilarity ℓ′1
2

/r′ (Fig. 3.2.2(c)). We summarize

the local deformation effect, or the “tidal force” exerted by local data distribution, as
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follows:

Proposition 12. Under the EDT, data points deform the local distribution of neigh-

boring points such that potential outliers tend to be trapped by a massive cluster. The

deformation is strong near the exterior of a cluster and almost completely screened

inside the cluster.

In case (2), we also observed an intriguing paradox: the transformed outlier-outlier

dissimilarity ℓ′ satisfied the condition ℓ′ < 2ℓ′1
2

for all ℓ 1
2
/r > 0, and it even satis-

fied the counter-intuitive inequality ℓ′ < ℓ′1
2

for sufficiently large ℓ 1
2
/r and large ms

(Fig. 3.2.2(d)). A resolution of this paradox is achieved by noting that the points at

infinity become identified under EDT. For example, for the particular case of circu-

larly distributed data points in R2, as illustrated in Fig. 3.3.5, the outer rings of points

become increasingly similar as τ , indexing the EDT iteration, increases; moreover, the

effect becomes more pronounced as the density of points at the center of the distribu-

tion increases (bottom row in Fig. 3.3.5, Section 3.4.4). In mathematical terms, adding

the point at infinity to R2 yields a compact sphere S2, and the above process can be

visualized as the outer rings diffusing towards the south pole (Fig. 3.3.5).

We tested whether this property of EDT can help improve clustering performance

on synthetic data sets that are known to confound simple algorithms. For this purpose,

we chose two clusters of data concentrically distributed with a gap in radial direction

(Fig. 3.3.6). The EDT dramatically improved the performance of hierarchical cluster-

ing with Euclidean metric (Fig. 3.3.6); furthermore, the EDT-enhanced hierarchical

clustering outperformed spectral clustering using Gaussian RBF as a measure of sim-

ilarity (Fig. ??). These observations can be summarized as EDT’s global deformation

effect:
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Proposition 13. EDT is able to globally warp the data space on the length scale

comparable to inter-cluster distances, such that points far from the majority distribution

become approximately identified. EDT thus topologically changes Rn to Sn.

In application, the EDT will asymptotically group outliers that are very dissimilar

to all clusters and may be dissimilar among themselves into one “unclassifiable” cluster

in an automatic fashion.

Lastly, we considered the effect of EDT in a probabilistic sense. The initial dissim-

ilarity d(0) can be thought of as a random matrix calculated from data sampled from

a probability distribution. We replaced the ideal clusters in R2 in Fig. 3.2.1(c) by two

independent bivariate Gaussian distributions N1((−ℓ1, 0)⊤, σ2
1) and N2((ℓ2, 0)

⊤, σ2
2) lo-

cated symmetrically about the origin, i.e. initially ℓ1 = ℓ2. We then placed a test

point at the origin and two anchor centroids at x = −ℓ1 and x = ℓ2. Denoting the

transformed value of ℓi after one application of EDT by ℓ′i, we used Monte Carlo simu-

lations to compute the probability P(ℓ′1 > ℓ′2), which may be viewed as the probability

that the test point is clustered with N2. We performed the calculation in two different

settings: (1) N1 and N2 have same number of samples (m1 = m2), but different vari-

ances; and (2) N1 and N2 share the same variance (σ2
1 = σ2

2), but different number of

samples. We found that the test point was more likely to join (1) a cluster drawn from

the distribution with larger variance, consistent with the local deformation effect that

absorbs an outlier near the boundary of a cluster into the cluster, or (2) a cluster with

fewer samples, consistent with the global deformation effect of EDT that makes points

from the majority distribution similar to each other. More precisely, we empirically

found the P(ℓ′1 > ℓ′2) to be a hyperbolic tangent sigmoid function in m1/(m1+m2) and
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− log2(σ1/σ2), as shown in Fig. 3.2.2(e-f).

3.4 Effective dissimilarity transformation

The following properties of EDT mentioned in the previous section were obtained from

the Gedankenexperimente illustrated in Fig. 3.2.2(b-f).

3.4.1 Perspective contraction

The 3 points {P1, P2, P3} shown in Fig. 3.2.1(b) form two distinct configurations: (1)

aligned in a line, and (2) forming a triangle in a plane. For case (1), let P1 and P2

be at x = +a/2 and −a/2, respectively, and P3 at x = b > a/2. Then, the original

dissimilarity matrix is

d(0) =


0 a b+ 1

2
a

a 0 b− 1
2
a

b+ 1
2
a b− 1

2
a 0

 ,

and the transformed feature vectors are:

p̂1 =
1√
b+ 3

2
a


0

√
a√

b+ 1
2
a

 ,
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p̂2 =
1√
b+ 1

2
a


√
a

0√
b− 1

2
a

 ,

and

p̂3 =
1√
2b


√
b+ 1

2
a√

b− 1
2
a

0

 .

From these feature vectors, we compute the first EDT dissimilarity matrix components

to be

d
(1)
12 = 1− p̂1 · p̂2 = 1−

√
b− 1

2
a

b+ 3
2
a
,

d
(1)
13 = 1− p̂1 · p̂3 = 1−

√
a
(
b− 1

2
a
)

2b
(
b+ 3

2
a
) ,

and

d
(1)
23 = 1− p̂2 · p̂3 = 1−

√
a

2b
.

As b/a ↑ ∞, we have d(1)12 ↓ 0, d(1)13 ↑ 1, and d
(1)
23 ↑ 1; in other words, the EDT ruler

length will shrink to zero if the observer moves away from the ruler. Next, we can

calculate the relative dissimilarity, i.e. the observed difference between P1 and P2 from

the perspective of P3 measured in units of the transformed dissimilarity d(1)12 , to be

d
(1)
13 − d

(1)
23

d
(1)
12

=

√
a

2b
.

Therefore, as the observer moves away from the ruler, the EDT ruler length shrinks to

zero, but the observed difference shrinks even faster. In the application of hierarchical
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clustering, the diminishing difference between the nearest (P2) and the farthest (P1)

point with respect to the outlier P3 implies that clustering derived from the EDT tends

to be robust against the choice of linkage, which may be single (nearest point), average,

or complete (farthest point).

For case (2), we set up a Cartesian coordinate system in R2 such that P1, P2, and

P3 are located at (0, a/2), (0,−a/2), and (b, 0), respectively, where we assume a, b > 0.

The original Euclidean distance matrix is thus

d(0) =


0 a c

a 0 c

c c 0

 ,

where c =
√(

a
2

)2
+ b2. The transformed feature vectors are

p̂1 =
1√
a+ c


0

√
a

√
c

 ,

p̂2 =
1√
a+ c


√
a

0

√
c

 ,

and

p̂3 =
1√
2


1

1

0

 .
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The corresponding transformed dissimilarity matrix elements are

d
(1)
12 = 1− p̂1 · p̂2 = 1− c

a+ c
,

and

d
(1)
23 = d

(1)
13 = 1− p̂1 · p̂3 = 1−

√
1

2

a

a+ c
.

As b/a increases to infinity, d(1)12 monotonically decreases to zero. Thus, the effective

ruler length d12 approaches 0 from the perspective of point P3 as it moves far away.

3.4.2 Cluster condensation

When clustering real datasets, the contrast between the inter-cluster distance and the

intra-cluster variance is often not very dramatic, making it very difficult to separate

the clusters. Therefore, if the data points could condense to the respective centroid

locations, then it would improve clustering accuracy considerably; this effect is precisely

what EDT accomplishes. For the synthetic data shown in Fig. 3.2.1(c), the EDT

centroid-centroid dissimilarity d
(1)
cc increased relative to the average centroid-satellite

distance
⟨
d
(1)
cs

⟩
, or the contrast captured by the ratio d(1)cc /

⟨
d
(1)
cs

⟩
grew more rapidly

than d
(0)
cc /d

(0)
cs . Moreover, for fixed d

(0)
cc /d

(0)
cs , increasing the number of satellites ms

around each centroid amplified the contrast ratio (Fig. 3.2.2(a)).

Throughout the simulations, we did not use any information about the cluster

labels, and the improvement of contrast is purely driven by the data. The dense

clusters condense while pushing themselves away from other clusters. In other words,

within a cluster, the EDT acts similar to gravity, whereas the transformation inflates

the space between clusters.
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3.4.3 Local deformation

In Fig. 3.2.1(e), r denotes the radius of the cluster and ℓ the distance between a single

test point and the cluster centroid. We simulated the effect of increasing ℓ on the EDT.

As ℓ/r ↓ 1, we observed a window where the transformed ratio ℓ′/r̄′ was less than or

equal to the local peak at ℓ/r = 1 (Fig. 3.2.2(b)). This phenomenon can be interpreted

as the cluster’s trying to reabsorb the test point that is escaping to become an outlier.

We also observed that the range of absorption window increased as the cluster size

ms increased, thus making it easier for an outlier to tunnel back to a denser cluster

(Fig. 3.2.2(b)). Moreover, the test point also deformed the shape of the cluster, and

the satellite points on the circle acted like an elastic membrane that trapped the test

point and hindered it from escaping the cluster through elongation.

3.4.4 Global deformation

Consistent with the single test point example, the cluster in Fig. 3.2.1(f) tended to

attract the two escaping outliers, as manifested by the fact that as ms increased, the

ratio ℓ′/r′ decreased (Fig. 3.2.2(c)). Counterintuitively, ℓ′/ℓ′1
2

also dropped below 1 as

ℓ/r increased (Fig. 3.2.2(d)); that is, the two test points became more similar as they

departed from the cluster centroid in opposite directions. This paradox can be resolved

by merging the points at infinity to a single point, or by topologically transforming the

Euclidean space into a hypersphere. We explicitly demonstrated our idea using two

circularly distributed data sets shown in Fig. 3.3.5. We first observed that the effective

dissimilarity between two neighboring points in the outer rings shrank faster than that

between neighboring points in the inner rings. To better visualize this phenomenon,

we then displayed the dissimilarities on a sphere using the following methods.
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For a ring of k points distributed on a unit 2-sphere at constant colatitude θ ∈ [0, π]

and uniformly partitioned longitude ϕi ∈ [0, 2π], i = 1, . . . , k, the latitude distance ℓ

between any two neighboring points is equal to sin θ δϕ, where δϕ = 2π/k. Thus, ℓ

attains its maximum value ℓmax = δϕ at the equator θ = π
2
. Note that regardless of

the size of δϕ, we always have ℓ/ℓmax = sin θ; we will utilize this fact to display the

EDT-deformed concentric rings shown in Fig. 3.3.5. For this purpose, it might appear

natural to identify the centroid as the north pole of the sphere, and then identify the

colatitude θ′ of a ring as the EDT dissimilarity between the centroid and a point on

the ring. However, while the distance between two neighboring data points on the

sphere at such θ′ would then be fixed to be sin θ′ δϕ, the actual EDT dissimilarity ℓ′

might be different. We thus empirically calculated the function f(θ′) that satisfies

ℓ′ = f(θ′)ℓ′max. We then used the location θπ
2

of the global maximum of f to calibrate

the equator location, and then calculated the effective colatitude θ̃ defined as

θ̃ =


arcsin ℓ′

ℓ′max
θ′ ≤ θπ

2

π − arcsin ℓ′

ℓ′max
θ′ > θπ

2

to display the concentric rings on the sphere, as shown in Fig. 3.3.5. Fig. 3.4.1 shows

the f(θ′) for the two circular data sets shown in Fig. 3.3.5 after τ iterations of EDT.

3.4.5 EDT and the curse of dimensionality

The loss of contrast in Euclidean distance is one of the symptoms of the curse of dimen-

sionality; to be exact, the longest distance d(0)max and shortest distance d(0)min between any

pair of points in a data set will both asymptotically approach the mean distance d̄(0)
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in the large feature dimension limit n ↑ ∞. To see whether EDT can help improve the

contrast between clusters in high dimensions, we simulated two n-dimensional Gaus-

sian distributions N ((±ℓ/2, 0, . . . , 0, 0)⊤, σ2In), 100 points from each, for ℓ/σ = 0, 4,

and 10. We then computed the Euclidean distance matrix d(0) and subsequent effective

dissimilarity matrices {d(τ)}5τ=0. Fig. 3.4.2 shows the normalized pairwise maximum

(d(τ)max/d̄(τ)) and minimum (d(τ)min/d̄
(τ)) distance between data points in each dimension.

The difference (d(τ)max−d(τ)min)/d̄
(τ) generally became larger as the EDT index τ increased,

and the improvement in contrast over the original Euclidean distance in high dimen-

sions was very dramatic when ℓ≫ σ, as seen for n = 1000 in Fig. 3.4.2(c).

3.5 Application of EDT in two gene expression data

sets

We tested the power of EDT on two publicly available gene expression data sets: (1)

59 cancer cell lines from NCI60 in 9 cancer types, (2) 116 blood cell samples in 4 cell

types from human hematopoietic stem cell differentiation data set [46], with 4,000 most

variable genes in each data set as features. We performed hierarchical clustering using

the first few iterations of EDT dissimilarity. We used the variation of information (VI)

as a well-defined distance between two clustering results [44]; using the given cell types

as the reference clustering, we optimized the threshold for cutting the dendrogram into

clusters and quantified the performance of clustering with the minimum distance to

reference clustering (Fig. 3.5.1).

For the NCI60 data, the original Euclidean distance (τ = 0) gave minimum VI of

1.042; but, after two rounds of EDT (τ = 2), the VI reduced by 31.7% to 0.712 (top

61



two rows in Fig. 3.5.1). The original Euclidean distance failed to combine all leukemia

(LE) cell lines, but EDT (τ = 2, 3) brought LE cell lines together into a single cluster.

From the very beginning (τ = 0), the melanoma cell lines were in a distinct single

cluster except for one outlier LOXIM-VI. Among the misclassified cell lines after two

iterations of EDT, the LOXIM-VI found itself more similar to the mixture cluster of

central nervous system (CNS) and breast cancer (BR) cell lines; the result is consistent

with the fact that LOXIM-VI is a desmoplastic melanoma cell line and is biologically

similar to neurofibroma [66].

For the blood cell data, the original Euclidean distance split the erythrocyte (Ek,

where larger values of k indicate latter stages of of maturity) samples into several small

sub-clusters, and the VI was 0.706 (bottom two rows in Fig. 3.5.1). After one iteration

of EDT, the VI reduced by 54.0% to 0.325, and all Ek samples were grouped into a

single cluster with two branches – immature red blood cells (E1, E2) and more mature

blood cells (E3, E4, E5) – well separated from the immune cells (T-cells, B-cells, and,

natural killer cells). These results support that the EDT can help improve clustering

performance in real data analysis.

3.6 Data preparation

Two public data sets were used in the hierarchical clustering analysis: (1) NCI60

gene expression data in 59 cancer cell lines comprising 9 cancer types, and (2) 116

differentiated blood cell samples in 4 cell types from human hematopoietic cell (HHC)

gene expression data [46]. The 9 cancer types in NCI60 data were 5 breast (BR), 6

central nervous system (CNS), 7 colon (CO), 6 leukemia (LE), 10 melanoma (ME), 8
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non-small cell lung (LC), 7 ovarian (OV), 2 prostate (PR), and 8 renal (RE) cancer.

The 4 cell types in the HHC data were red blood cells or erythrocytes (E), T-cells

(T), B-cells (B), and natural killer cells (NK). For both data sets, approximately four

thousand most variable genes were selected as features.

Samples from each data set were first clustered with the usual Euclidean distance

d
(0)
ij = ∥xi − yj∥2 , and then with the EDT dissimilarity d(τ)ij computed from d

(0)
ij . Aver-

age linkage was used in all hierarchical clustering analysis, unless indicated otherwise.

To quantify the clustering performance unambiguously, the minimum distance from

a given clustering to the standard reference clustering was found by measuring the

variation of information (VI), which is a well-defined metric function that computes

the distance between different partitions (clusterings) of a given set [44]. The reference

clustering for NCI60 was the known 9 cancer types (BR, CNS, CO, LE, ME, LC, OV,

PR, and RE); the reference clustering for HHC was the known 4 cell types (E, T, B,

and NK).

3.7 Discussion

In this paper, we have developed the notion of effective dissimilarity transformation

to enhance the performance of hierarchical clustering, utilizing only the geometric

information of all pairwise dissimilarities. The nonlinear transformation adjusts the

dissimilarities according to the global distribution of data points. The EDT can be

interpreted either as deformation of the feature space or as the result of emergent in-

teractions among all sample points. Specifically, we devised a probe to detect local

“tension,” or the force field due to ambient sample points, in a deformed feature space.
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On a global scale, the EDT is able to change the topology of original Euclidean feature

space into a compact sphere. Furthermore, iterating the EDT produces a discrete-

time dynamical process purely driven by data set geometry. Using carefully designed

Gedankenexperimente, we have shown that EDT has the following properties: (1) per-

spective contraction, (2) cluster condensation, (3) local deformation, and (4) global

deformation effects. These properties arise as different facets of the same mathemat-

ical transformation and, thus, should be interpreted in a unified manner. The cosine

similarity of EDT is akin to distance correlation [58] and measures the similarity of two

random vectors obtained from pairwise similarities to all sample points. Properties (1),

(2) and (4) can be understood as mutually enhancing the similarity among a subset of

points that share common dissimilar points, while property (3) suggests that common

similar points can enhance the similarity between “local” or slightly less similar points.

An adjustable regularizer is able to qualitatively improve an unsupervised learning

algorithm. The index of the sequence of iterated EDT, or discrete “time” τ plays the

role of tuning parameter in hierarchical clustering: increasing τ brings similar sample

points into tighter proximity, while enhancing the contrast between clusters (commu-

nities). The EDT thus helps hierarchical clustering by utilizing information about the

global data distribution. Furthermore, the improvement in clustering accuracy arises

from the transformation of data set geometry; thus, any learning algorithm based on

pairwise dissimilarity should also benefit from the desirable properties of EDT.

Although the key properties of EDT were first extracted in low feature dimensions

in this paper, these advantages, arising from capturing the intrinsic geometry of data

distribution, are independent of the feature space dimension, as demonstrated by our

finding that EDT also improved the hierarchical clustering of two biological data sets
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containing 4, 000 features. As an additional verification of the robustness of EDT in

high feature dimensions, our simulation shows that the EDT helps increase the contrast

in dissimilarity of bimodal Gaussian clouds even in feature dimensions as high as 103,

where EDT adapts to the increase in feature dimension by increasing the “time” index

τ (Section 3.4.5).

Table 3.1: Clustering variation of information as a function of α
α

τ = 0 1
20

1
8

1
4

1
2

1 2 5

NCI60 1.042 0.960 0.899 0.918 0.917 0.864 0.961 1.075
HHC 0.706 0.325 0.485 0.325 0.325 0.503 0.537 1.005

The EDT was motivated by the multinomial interpretation of a non-negative data

vector and its mapping to a hypersphere [38]. In this view, the EDT first takes element-

wise square root of the dissimilarity matrix, normalizes each column of d
1
2
ij by its L2-

norm, and finally evaluates the cosine dissimilarity between the normalized column

vectors lying on a hypersphere. One can consider generalizing this approach by raising

the distance matrix to a different power α > 0, i.e. taking dαij. Large values of α will

have the effect of selectively amplifying large elements in the column vector; in the

limit α → ∞, all but the largest element in each column will be set to zero on the

hypersphere. By contrast, small values of α will reduce the contrast between elements

in a column; in the limit α → 0, all normalized column vectors will point in the

direction (1, 1, . . . , 1), forming a single group. Thus, clustering will be poor when α is

either too small or too large. Nevertheless, tuning α amounts to performing feature

selection, and we have evaluated the effects of changing α on the hierarchical clustering

of cancer cell lines (NCI60) and human differentiated blood cell (HHC) data (Table

3.1). Comparing the performance of hierarchical clustering without EDT (τ = 0) and
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with one iteration of EDT at α = 1
20
, 1
8
, 1
4
, 1
2
, 1, 2, or 5 showed that the generalized

EDT performed similarly well when α ≈ 1
2
, but tended to underperform when α ≫ 1

2

or α ≪ 1
2
; however, different data sets may favor different choices of α.

In addition, we also tested how modulating α affects the clustering of our synthetic

annulus data sets shown in Fig. 3.3.6. We found that (1) very large or small values,

e.g. α = 5 or 1
20

, gave poor clustering results, (2) α = 1
4

gave identical clustering

results as α = 1
2
, and (3) α = 1 failed to cluster the “hard data set” correctly. Similar

observations were found in the reanalysis of “single outlier absorption” effect illustrated

in Fig. 3.2.1(e) for different values of α (Fig. 3.7.1): α values greater than 0.5 tended to

weaken the absorption effect and shorten the trapping range, but values smaller than

0.5 tended to amplify the absorption.

To investigate the effect of α further, we generated a bivariate Gaussian cloud

N ((0, 0)⊤, σ2 = 0.01) of 50 samples, and benchmarked the volume effect captured by

ν and anisotropy captured by κ using the detector shown in Fig. 3.2.1(d) (Fig. 3.7.2).

Denoting the distance between the center of bivariate Gaussian distribution and the

detector by r, our original EDT (α = 1
2
) showed ∼1/r power law decay for both ν and

κ. Increasing (decreasing) α induced faster (slower) power law decay of ν, but the κ

anisotropy robustly followed ∼1/r for a range of moderate values of α. Near α ≈ 1
2
,

we observed that ν followed a power law described by ∼1/r2α. Both ν and κ showed

significant deviations from the original EDT when α ≫ 1
2
. Therefore, within moderate

values of α, one can control the volume effect by tuning the power α, where smaller α

implies slower decay.
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(a)

(b) (c)

Figure 3.3.2: The ν-distribution for three data sets: (a) two Gaussian distributions
with equal variance, but different sample sizes mleft = 70 and mright = 30; (b) two
layers of circularly distributed points with radius router = 2rinner (bottom left); (c)
points distributed in the shape of the word “COS.” Each ν-distribution was normalized
by dividing by its maximum; the white segment in each plot indicates the diameter of
the detector used in the measurement of ν.
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(a)

(b) (c)

Figure 3.3.3: The κ-distribution for three data sets: (a) two Gaussian distributions
with equal variance, but different sample sizes mleft = 70 and mright = 30; (b) two
layers of circularly distributed points with radius router = 2rinner; (c) points distributed
in the shape of the word “COS.” Each κ-distribution was normalized by dividing by its
maximum; the white segment in each plot indicates the diameter of the detector used
in the measurement of κ.
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Figure 3.3.4: A cluster of points can pull back or “trap” an outlier. Figure shows the
case illustrated in Fig. 3.2.1(e) for varying values of the ratio ℓ/r in the range [0.5, 1.5]
and for 20 satellite points. The top gray circles indicate the actual locations of points
in R2; the bottom colored circles illustrate the corresponding effective locations after
EDT, where we doubled the distortions to visualize the effect more clearly. As ℓ/r
increased from left to right, the deformed circle behaved like an elastic membrane
trying to trap the outlier from escaping and demonstrated singular behavior at ℓ = r.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.3.5: EDT approximately identifies the points at infinity. We designed two
uniformly circularly distributed data sets with (a) a uniform increment in radius, or
(e) a small increment in radius near the center and a large increment for the outermost
three circles. For both data sets, the outer circles became relatively closer as τ in-
creased. The values τ = 1, 2, and 3 correspond to (b, f), (c, g), and (d, h), respectively.
The effect was more pronounced in the case (e), and the outermost three circles were
visibly mapped to the south pole. The mapping method can be found in Section 3.4.4.
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Figure 3.3.6: Hierarchical clustering results on (a-d) “easy” and (e-h) “hard” annulus
data sets using Euclidean metric (τ = 0) or EDT-enhanced dissimilarities up to three
iterations and using average linkage. From left to right, (a, e), (b, f), (c, g), and (d, h)
correspond to τ = 0, 1, 2, and 3, respectively. Dramatic improvements were seen after
just one iteration of EDT.
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Figure 3.4.1: Plots of the empirical function f that satisfies ℓ′ = f(θ′)ℓ′max, where ℓ′ is
the EDT dissimilarity between two neighboring points on a circle and θ′ is the EDT
dissimilarity between the centroid and the circle. The three plots on the top (a-c)
correspond to the top three spheres in Fig. 3.3.5; and similarly for the three plots on
the bottom (d-f).
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Figure 3.4.2: Plots of maximum and minimum dissimilarities normalized by mean dis-
similarity: d(τ)max/d̄(τ) (solid) and d

(τ)
min/d̄

(τ) (dashed) of two multivariate normal distri-
butions N ((±ℓ/2, 0, . . . , 0, 0)t, σ2In) in Rn with variations in (a) ℓ/σ = 0, (b) ℓ/σ = 4,
and (c) ℓ/σ = 10. For all three cases (a-c), EDT (τ > 0) enlarged the difference
between d

(τ)
max/d̄(τ) and d

(τ)
min/d̄

(τ), and hence enhanced the contrast; when the initial
inter-cluster distance ℓ ≫ σ, EDT with high index τ preserved contrast dramatically
relative to initial Euclidean distance d(0), consistent with cluster condensation effect of
EDT.
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(a) (b)

(c)

(e)

(f)

(d)

Figure 3.5.1: Hierarchical clustering of NCI60 cancer cell lines (a-d: m = 59 samples)
and human differentiated blood cells (e,f: m = 116 samples) with n = 4, 000 most
variable genes (with largest standard deviations across all samples) in each each data
set. For the NCI60 data, the original Euclidean distance (a: τ = 0) gave minimum
VI of 1.042; but, after two rounds of EDT (c: τ = 2), the VI reduced by 31.7% to
0.712. The original Euclidean distance failed to combine all leukemia (LE) cell lines,
but EDT (c,d: τ = 2, 3) brought LE cell lines together into a single cluster. From the
very beginning (a: τ = 0), the melanoma cell lines were in a distinct single cluster
except for one outlier LOXIM-VI, which is a desmoplastic melanoma cell line and
is biologically similar to neurofibroma. Among the misclassified cell lines after two
iterations of EDT, the LOXIM-VI found itself more similar to the mixture cluster of
central nervous system (CNS) and breast cancer (BR) cell lines. (e) For the blood cell
data, the original Euclidean distance split the erythrocyte (Ek, where larger values of
k indicate latter stages of of maturity) samples into several small sub-clusters, and the
VI was 0.706. (f) After one iteration of EDT, the VI reduced by 54.0% to 0.325, and
all Ek samples were grouped into a single cluster with two branches – immature red
blood cells (E1, E2) and more mature blood cells (E3, E4, E5) – well separated from
the immune cells: T-cells, B-cells, and natural killer (NK) cells. These results support
that the EDT can help improve clustering performance in real data analysis.
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Figure 3.7.1: Outlier absorption effect under different α values. Figures (a-f) corre-
spond to α = 1

20
, 1
4
, 1
2
, 1, 2, 5, respectively. For α > 1

2
, the singularity at ℓ/r = 1 was

attenuated, and the trapping window was shortened as α increased; by contrast, for
α < 1

2
, the singular peak grew sharper as α decreased, and the outlier far from the

ideal cluster can still be absorbed into the cluster.
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Figure 3.7.2: Effects of generalized EDT. We measured (a) the volume effect captured
by ν and (b) anisotropy κ of a bivariate Gaussian cloud N ((0, 0)⊤, σ2 = 0.01) of 50
samples in a plane, using the detector shown in Fig. 3.2.1(d). The original EDT (α = 1

2
)

showed 1/r power law decay, where r is the distance between the center of Gaussian
cloud and center of the detector. For α ≫ 1

2
, both volume effect and anisotropy

deviated from simple power laws.
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Chapter 4

Clustering via quantum time

evolution

4.1 Introduction

Grouping similar objects into sets is a fundamental task in modern data science. There

have been several physics-inspired approaches based on classical spin-spin interaction

models [39, 50] and Schrödinger equation [32]; however, the former usually requires

computationally intensive Monte Carlo simulations which may get trapped in local

optima, while the latter essentially amounts to Gaussian kernel density estimation.

We here use the physics of quantum transport (QT) on data similarity networks to

devise a simple and efficient clustering algorithm. This chapter is based on [69].
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4.2 Schrödinger equation implies fluid dynamics

The Schrödinger equation for a free particle is, up to the Wick rotation t→ it, formally

similar to the heat equation with heat conductance κ:

∂tu = κ∇2u. (4.2.1)

Assuming that the heat conductance κ is constant in space, the heat equation can be

rewritten as

∂tu = κ∇2u = −∇ · (−κ∇u) . (4.2.2)

Defining the heat current as

j = −κ∇u , (4.2.3)

the heat equation then becomes the conservation law

∂tu+∇ · j = 0. (4.2.4)

The Schrödinger equation also embodies a conservation law. For example, consider the

Schrödinger equation with a time-independent potential V (x):

i∂tψ = −∇2ψ

2m
+ V (x)ψ, (4.2.5)

in units where ℏ = 1. Writing its solution as

ψ(x, t) =
√
ρ(x, t)eiθ(x,t) (4.2.6)
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, where ρ is the probability density and θ the phase, we see that the Schrödinger

equation is not one but two coupled equations for ρ and θ,

ρ̇ = −∇ ·
(
ρ
∇θ
m

)
≡ −∇ · (ρv) = −∇ · j, (4.2.7)

where v = ∇θ/m is the group velocity of a quantum mechanical particle, and j = ρv

the current density; and

−θ̇ =m
2

(
∇θ
m

)2

+ V − 1

2m

[
∇2√ρ
√
ρ

]
(4.2.8)

≡1

2
mv2 + V +Q (4.2.9)

where

Q = − 1

2m

[
∇2√ρ
√
ρ

]
(4.2.10)

is the “quantum potential.”

Notice that the quantum current is proportional to ∇θ instead of ∇ρ. Thus, the

phase gradient drives the propagation of the wave function, which encodes richer

physics than classical heat density. This observation suggests that the phase infor-

mation may be useful for devising quantum algorithms.

Heat diffusion has been applied to rank web page popularity [12], probe geomet-

ric features of data distribution [14], and measure similarity in classification problems

[37, ?]. By contrast, despite the formal resemblance between the heat equation and the

Schrödinger equation, the time evolution of a quantum wave function has been largely

ignored in machine learning. Both heat and Schrödinger equations have conserved

currents; however, while the heat current is proportional to the negative gradient of
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heat density itself, the velocity of quantum probability current is set by the phase gra-

dient which satisfies the Naiver-Stokes equation, making quantum probability density

an irrotational fluid. Thus, the Schrödinger equation embodies richer physics than

heat diffusion and can capture spatiotemporal oscillations and wave interference. One

promising observation has been that quantum time evolution can be faster in reaching

faraway nodes compared with heat diffusion in ordered binary tree networks, suggest-

ing the possibility of finding practical applications of quantum mechanics in network

analysis [22, 13, 53, 21]. However, there are several outstanding challenges: e.g., unlike

the heat kernel, the oscillatory quantum probability density is monotonic in neither

time nor spatial distance; moreover, irregularities in either edge weights or network

structure can severely restrict the propagation of a wave function through destructive

interference, analogous to Anderson localization in disordered media [2]. We circumvent

these difficulties associated with using the probability density itself and demonstrate

the utility of the phase information for clustering network nodes.

4.3 Graph Laplacians

A generic undirected weighted network, e.g. a data similarity network of m samples

in Rd represented as nodes, is encoded by an m ×m symmetric adjacency matrix A.

The row or column sum vector deg(i) =
∑

k Aik =
∑

k Aki gives rise to the diagonal

degree matrix D = diag(deg). Replacing the continuous Laplacian with the graph

Laplacian L = D − A then discretizes the heat and Schrödinger equations on data

similarity networks. Enforcing the conservation of discrete heat current introduces

the normalized graph Laplacian Q = LD−1. The original graph Laplacian L of an
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undirected network is automatically Hermitian, but we adopt the symmetrized version

H = D− 1
2LD− 1

2 of Q as our Hamiltonian, since it has the same spectrum as Q. With

this choice, H has a nontrivial ground state ψ0(i) ∝
√

deg(i) [21].

For concreteness, we define the pairwise similarity or adjacency between sample xi

and sample xj by the Gaussian function Aij = exp(−r2ij/r2ε), where rij = ∥xi − xj∥ is

the Euclidean distance and rε is the ε-quantile among rij > 0. Ideally, the proximity

measure rε is chosen such that for samples i and j belonging to distinct clusters, we

have rij ≫ rε, but within any given cluster, a pair (i, j) of nearest neighbors has

rij ∼ O(rε).

4.4 Laplace transform of time evolution

The Laplace transform of a wave function |ψ(t)⟩, evolved from an initial state |ψ(0)⟩

via a time-independent Hamiltonian H, is given by

|ψ̃(s)⟩ ≡ L[|ψ⟩](s) =
∫ ∞

0

e−ste−iHt|ψ(0)⟩ dt. (4.4.1)

Since H is time-independent, we have

|ψ̃(s)⟩ = 1

s+ iH
|ψ(0)⟩ = iG(is)|ψ(0)⟩, (4.4.2)

where

G(z) ≡ (z −H)−1 (4.4.3)

is the resolvent operator of H. We have interpreted G(z) using an effective tight-

binding model. Here, we study the Laplace-transformed wave function explicitly. The
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inverse of the variable s sets the time scale within which the Schrödinger time evolu-

tion is averaged; i.e., this scale sets the extent to which oscillation in time is smoothed

out and destructive interference that can potentially localize the transport gets amelio-

rated. Motivated by this observation, this paper demonstrates that taking the Laplace

transform can resolve the issues of wave function oscillation and localization that have

hindered the application of quantum mechanics to clustering problems.

Of note, recall that spectral clustering uses the j-th entries of the first few lowest-

eigenvalue eigenvectors of the graph Laplacian to represent the j-th node. By contrast,

one distinct advantage of QTC lies in utilizing the eigenvectors ψn twice when com-

puting the phase of

⟨j|ψ̃(s)⟩ =
∑
n

⟨ψn|ψ(0)⟩
s+ iEn

ψn(j); (4.4.4)

namely, both the j-th entries ψn(j), just as in spectral clustering, and the projections

⟨ψn|ψ(0)⟩ onto the initialization node are used. In this way, as the initialization node

varies during the random sampling step, the phase representations of two nodes within

a cluster will stay close to each other, and this information is pooled together in the

QTC algorithm.
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4.5 Phase information of Laplace-transformed wave

function

Defining the Laplace transform of a wave function initially localized at node j and

evaluated at node i as [2]

L[ψ(i|j)](s) =
∫ ∞

0

dt ⟨i|e−iHt−st|j⟩, (4.5.1)

our clustering algorithm stems from the observation that the phase Θ(i|j) of this trans-

formed function is essentially constant as i varies within a cluster, but jumps as i crosses

clusters. The phase information thus provides a one-dimensional representation of data

on S1, such that distinct clusters populate separable regions on S1; intuitively, the

phase distribution Θ(·|j) corresponds to a specific perspective on community structure

sensed by the wave packet initialized at node j. In general, the phase distribution

Θ(·|j) changes with the initialization node j. Thus, if we randomly choose m′ initial-

ization nodes (m′ ≈ 100 for data sets in Fig. 4.5.1&4.5.2), for 1 < m′ ≤ m, then we

obtain an ensemble of m′ phase distributions, in each of which the phase is almost

constant within clusters; this ensemble ultimately provides a collection of perspectives

on the underlying community structure, as sensed by the wave packets initialized at

the chosen nodes.

In practice, we a priori specify the number q of clusters, and use the phase distri-

bution of each wave function to partition the nodes into q subsets. We label each of

the m′′ distinct partitions by an integer α, where m′′ ≤ m′, and calculate the occur-

rence frequency wα ∈ (0, 1] of each partition, such that the normalization condition
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∑
αwα = 1 holds. Typically, we find that the frequencies are dominated by a single

partition; other m′′−1 less frequent partitions may arise from wave functions initialized

at nodes of a small subnetwork isolated from the rest of the network. Hence, the mi-

nority predictions provide less holistic views of the network community structure, and

we choose the majority prediction from the ensemble as our final clustering decision.
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Figure 4.5.1: Comparison of (a-d) QTC and (e-h) spectral clustering using synthetic
data. We specified three clusters for (a,b,e,f), five clusters for (c,g), and eight clusters of
(d,h). We chose intermediate values of proximity measure rε in the Gaussian similarity
function to demonstrate the robustness of QTC; spectral clustering was able to produce
the correct clustering only when rε was tuned to be sufficiently small.

We compared the performance of QTC to spectral clustering 1 using four synthetic

data sets having complex geometry (Fig. 4.5.1): (1) uniform sticks, (2) non-uniform
1When without an explicit specification, the affinity matrix used in spectral clustering is the same

one used in QTC.

84



Figure 4.5.2: Comparison of (a) QTC and (b) spectral clustering using the time series
data of log-prices of aapl and googl stocks from January 3, 2005 to November 7,
2017. Five clusters were specified, and the 1%-quantile r1% was chosen as the proximity
measure. The time evolution trajectories of data in (a) and (b) are displayed in (c)
and (d), respectively, with an extra temporal dimension.

Table 4.1: Daily returns (%) at the identified jumps in Fig. 4.5.2

Date 2005 2010 2012 2013
5/23 10/21 4/16 4/20 4/21 2/8 1/24 10/18

googl +5.6 +11.4 −7.9 +0.9 −0.1 +0.5 +1.7 +13.0
aapl +5.7 −0.8 −0.6 −0.1 +5.8 +1.7 −13.2 +0.9

Q Q S S S S S Q Q S

sticks, (3) concentric annuli, and (4) the Chinese character for “thunder.” Both al-

gorithms performed equally well on the simple data set of uniformly sampled sticks

(Fig. 4.5.1(a,e)) or when rε was chosen to be sufficiently small such that the clusters

became almost disjoint subnetworks; as rε increased, however, QTC remained robust

(Fig. 4.5.1(b-d)), while spectral clustering made mistakes (Fig. 4.5.1(f-h)). We further

tested QTC on time-series stock price data (Data preparation section). The log-prices

of a portfolio of stocks form a random walk in time with occasional jumps which are of-

ten triggered by important events such as the release of fiscal reports and sales records.
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The jumps then separate the fractal-like trajectory of historical log-prices into several

performance segments. Figure 4.5.2(a,b) shows the log-price distribution of two stocks,

aapl and googl, from January 3, 2005 to November 7, 2017, where we removed the

temporal information from the data set. When we specified five clusters, QTC cut

the trajectory into five consecutive segments in the temporal space (Fig. 4.5.2(a,c))

with heterogeneous lengths, whereas spectral clustering partitioned the trajectory into

clusters of similar sizes and mixed the temporal ordering near the boundary of blue

and cyan clusters (Fig. 4.5.2(b,d)). The jumps identified by QTC (Q’s in Table 4.1)

coincided with major news events for the two stocks, whereas spectral clustering (S’s in

Table 4.1) failed to identify the large drop of aapl on 1/24/2013 and instead included

several less significant stock movements. These results showed that QTC was more

robust than the conventional spectral embedding method on non-spherical data dis-

tributions with anisotropic density fluctuations (Fig. 4.5.1(b,f)) or complex geometric

patterns exhibiting a hierarchy of cluster sizes (Fig. 4.5.1(c,g) and (d,h); Fig. 4.5.2).

When the clusters in data show strong mixing, no single partition may be clearly

dominant, so using the partition corresponding to the highest occurrence frequency wα

may be unstable. In this scenario, we propose a “fuzzy” summary of the ensemble.

Across m′ different initializations, we count the number of times where two nodes, say

i and k, are assigned to the same cluster, and then divide the count by m′. We thereby

arrive at a symmetric consensus matrix Cik with 1 along the diagonal and other entries

in [0, 1]. The consensus matrix provides a useful visualization of processed clustering

structure and also serves as a new input similarity measure suitable for many popular

statistical learning algorithms, such as spectral clustering, hierarchical clustering, and

SVM.
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Figure 4.5.3: Similarity maps of genomic locations on human chromosome 2. (a) Av-
eraged consensus matrix ⟨CLGG⟩ computed from SCNA data in LGG. (b) HiC contact
map in normal glial cells [18]. (c) Averaged consensus matrix ⟨CGBM⟩.

For instance, we used the somatic copy number alteration (SCNA) data in low-

grade glioma (LGG) and glioblastoma (GBM) patients from the Cancer Genome Atlas

to construct an adjacency matrix of genomic locations, and performed QTC with the

chosen number of clusters equal to 2, 3, 4, or 5. We summarized the predicted sim-

ilarity between genomic coordinates by averaging the consensus matrices {C(q)}5q=2

for LGG and GBM separately, yielding ⟨CLGG⟩ and ⟨CGBM⟩. The block structures in

SCNA captured by QTC closely resembled the 3D chromatin interaction HiC contact

matrix (Fig. 4.5.3) [18]; the Pearson correlation coefficients between ⟨CLGG/GBM⟩ and

tanh((CHiC)ij/C̄HiC) ∈ [0, 1) was 0.87, whereas the same correlation involving the raw

SCNA data was less than 0.50 (Fig. 4.10.1). Our QTC consensus matrix thus de-

noises the SCNA data and helps support the previously observed phenomenon linking

genomic alterations in cancer with the 3D organization of chromatin [25].
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4.6 Spectrum of graph Laplacian reflects the num-

ber of clusters

If q > 1 clusters are well-separated, the Hamiltonian is approximately q-block diagonal.

Fluctuations between the q macroscopic modes have lower kinetic energy, which mainly

arises from inter-cluster tunneling, than microscopic fluctuations within each cluster.

In this case, there exists an energy gap separating the low-energy macroscopic modes

from the high-energy microscopic oscillations. Furthermore, the low-energy states can

be approximated as linear combinations of cluster wave functions; thus, the number of

low-energy states equals the number of putative clusters. For illustration, we generated

well-separated q = 2, 3, and 4 Gaussian clusters in three dimensions (Fig. 4.6.1(a,b,c));

the adjacency matrix was computed using the 10%-quantile of pairwise distance dis-

tribution as the proximity scale in Gaussian kernel. The first 6 eigenvalues of the

Hamiltonian are plotted in Fig. 4.6.1(d,e,f).

4.7 Effective tight-binding model

Next, we provide a physical interpretation of the agglomeration phenomena observed in

QTC using an effective tight-binding model. For this purpose, we rewrite the Laplace

transform as L[ψ(i|j)](s) ≡ iG(i, j; is), where

G(i, j; z) ≡ ⟨i|(z −H)−1|j⟩ =
m−1∑
n=0

⟨i|ψn⟩⟨ψn|j⟩
z − En

(4.7.1)

is the resolvent of H, and ψn and En are the eigenvectors and eigenvalues of H, re-

spectively, for n = 0, 1, . . . ,m− 1. We assume that En are ordered in a non-decreasing
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Figure 4.6.1: (a,b,c) Gaussian distributions (σ = 0.1) in R3, with the means located
at the vertices of a regular tetrahedron of length 1. The inter-cluster distance is thus
10σ. (d,e,f) The spectrum of symmetric normalized graph Laplacian H corresponding
to the data distributions in (a,b,c), respectively.

way. As a result of our choice of short-proximity adjacency measure, the largest con-

tributions to iG(i, j; is) come from the low energy collective modes in the case of well-

separated q clusters indexed by µ = 0, 1, . . . , q−1. In this case, the ground state density

|ψ0(i)|2 ∝ deg(i) will be accumulated around the hub nodes within each cluster. Fur-

thermore, H is essentially q-block diagonal upon relabeling the nodes and exhibits a

large energy gap separating the low energy collective modes {|ψn⟩}0≤n<q from the high

energy eigenstates {|ψn⟩}q≤n<m capturing microscopic fluctuations within each cluster.

Notice that the major contribution to the resolvent in Eq. 4.7.1 comes from terms with

n < q, and that the number of low energy states equals the number of well-separated
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clusters (Fig. 4.6.1). These observations thus motivate a q-dimensional coarse-grained

Hamiltonian describing only the low energy collective modes.

In the extreme case where the clusters are completely separated from each other, the

Hamiltonian H is strictly in q diagonal blocks; each block governs the dynamics within

a cluster and has its own ground state wave function ϕµ(i) = ⟨i|ϕµ⟩, which is positive

for node i belonging to the µ-th cluster and zero otherwise. We have H|ϕµ⟩ = ξµ|ϕµ⟩

and ⟨ϕµ|ϕν⟩ = δµν for all µ, ν = 0, 1, . . . , q − 1. As we gradually turn on off-diagonal

couplings vµν = ⟨ϕµ|H|ϕν⟩ between clusters µ ̸= ν, the wave functions ϕµ are no

longer eigenstates of H. The effective tight-binding model assumes that in the weak

coupling limit, we can project H onto the subspace spanned by {ϕµ}q−1
µ=0 and diagonalize

the projected Hamiltonian hµν = ⟨ϕµ|H|ϕν⟩ to approximate the first q lowest energy

eigenstates.

Let {ϕµ}q−1
µ=0 be the cluster wave functions, or “atomic orbitals,” satisfying ϕµ(i) > 0

for i in cluster µ and zero elsewhere, and ⟨ϕµ|ϕν⟩ = δµν . The effective tight-binding

Hamiltonian is

Ĥ ≡
q−1∑

µ,ν=0

hµν |ϕµ⟩⟨ϕν |, and hµν ≡ ξµδµν + vµν , (4.7.2)

where ξµ = ⟨ϕµ|H|ϕµ⟩ describes the ground state energy of each ϕµ, and the off-diagonal

matrix vµν = ⟨ϕµ|H|ϕν⟩ for µ ̸= ν, with vµµ = 0, couples the atomic orbitals ϕµ and

ϕν . Through the diagonalization of the tight-binding Hamiltonian hµν , the q atomic

orbitals are then linearly combined into q molecular orbitals.

To illustrate the effects of off-diagonal coupling, we split Ĥ into diagonal Ĥ0 and

off-diagonal V̂ , and study the Born approximation of the Lippmann-Schwinger equation

Ĝ(z) = Ĝ0(z) + Ĝ0(z)V̂ Ĝ(z), (4.7.3)

90



where Ĝ(z) = (z − Ĥ)−1 and Ĝ0(z) = (z − Ĥ0)
−1. The resolvent matrix gµν of hµν is

defined through

g−1(z)µν = zδµν − hµν .

The resolvent matrix can be expanded if |vµν | < |z − ξν |, for all µ, ν = 0, 1, . . . , q − 1,

as

gµν(z) =
δµν

z − ξµ
+

vµν
(z − ξµ)(z − ξν)

+
∑
σ

vµσvσν
(z − ξµ)(z − ξσ)(z − ξν)

+ · · · (4.7.4)

+
∑
σ,ρ

vµσvσρvρν
(z − ξµ)(z − ξσ)(z − ξρ)(z − ξν)

+O(v4). (4.7.5)

Note that the resolvent matrix is thus a weighted sum over all possible tunneling paths

between the q clusters.

The propagator from node j to i in the effective tight-binding theory, approximating

Eq. 4.7.1, is directly related to gµν(z) as

g(i, j; z) =

q−1∑
µ,ν=0

ϕµ(i)gµν(z)ϕ
∗
ν(j). (4.7.6)

If the nodes i and j belong to two non-overlapping clusters µ and ν, respectively, then

the propagator reduces to g(i, j; z) = ϕµ(i)ϕν(j)gµν(z) and arg g(i, j; z) = arg gµν(z),

because of the disjoint support and the non-negativity of cluster wave functions. In

other words, the propagator initiated at j has a constant phase at all nodes i within

each cluster, and the phase associated with each cluster is completely determined by

the phase of resolvent matrix gµν , which in turn depends on the weak coupling vµν via

Eq. 4.7.4.

As an example, consider two sets of m samples drawn from N ((±ℓ, 0)⊤, σ212×2),
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Figure 4.7.1: (a-c) Two-cloud distributions corresponding to Fig 4.7.2(a-c). (d-f) Clus-
ter wave functions used to compute the theoretical predictions in Fig. 4.7.2(d-f).
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Figure 4.7.2: Two Gaussian clouds from N ((±ℓ, 0)⊤, σ212×2) with variations in the
center-to-center distance (a) ℓ = 3σ, (b) ℓ = 2.7σ, and (c) ℓ = 2.4σ. Adjacency matri-
ces were calculated using rε = σ. The radius of the faint large circle around each data
point indicates rε/2. (d-f) The phase distributions (red circles) of all sample points
from (a-c), respectively; exact theoretical predictions arg{igµν(is)} from the low-energy
effective model (solid line); the first, second, and third order perturbative approxima-
tions (dashed lines). The Laplace transform parameter was set to s = 1.2(E1 − E0).
The ⋆ in (a), (b), and (c) mark the initialization nodes.
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respectively. The effective 2-level Hamiltonian and resolvent matrices are

h =

ξ0 v

v ξ1

 , and g(z) =

z − ξ0 −v

−v z − ξ1


−1

. (4.7.7)

As we vary ℓ = 3σ, 2.7σ, and 2.4σ, with a fixed proximity length scale rε = σ, the cluster

configuration ranges from (a) well-separated, (b) in proximity, and (c) overlapping

(Fig. 4.7.2; Fig. 4.7.1). For each case, Fig. 4.7.2(d-f) show the phase distribution of all

samples when quantum transport is initialized at one of the nodes in the left cluster; it is

seen that our theoretical prediction arg{igµν(is)} and its perturbative approximations

calculated from Eq. 4.7.4 agree well. Furthermore, if the two clusters are identical,

i.e. ξ0 = ξ1, then the effective 2-level model can be mapped to the classic double-well

tunneling model; in this case, the phase distribution of the Laplace transform of exact

instanton solution matches that of our simulated Gaussian clouds (Fig. 4.8.1(a)). When

the weak coupling assumption is not satisfied, the low-energy theoretical predictions

serve only as asymptotic limits, and some ambiguous points in a strongly mixed region

may have a phase that interpolates between the theoretical predictions (Fig. 4.7.2(c,f),

Fig. 4.8.2, & Fig. 4.8.3).

4.8 Two-level toy model

Consider the case of two Gaussian clusters in R2 with mean at (±ℓ, 0)⊤, as shown in

Fig. 4.7.2(a-c) and Fig. 4.7.1(a-c). We expect two low energy states, i.e., the ground

state and the first excited state (Fig. 4.8.1(b)). Let ϕ0 and ϕ1 denote the cluster wave

functions for the left and right Gaussian clouds, respectively. Assuming that the two
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Figure 4.8.1: (a) The phase distribution of the Laplace transform of exact instanton
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the phases calculated from our two simulated Gaussian clouds N ((±ℓ, 0)⊤, σ212×2),
with ℓ = 0.25, σ = 0.1, and equal sample size m = 100 (× and +). (b) Plots of
the ground state ψ0 and the first excited state ψ1 wave functions derived from the
simulated data.

clusters have the same ground state energy, the ground state ψ0 and the first excited

state ψ1 of the tight-binding Hamiltonian are

|ψ0⟩ =
|ϕ0⟩+ |ϕ1⟩√

2
, |ψ1⟩ =

|ϕ0⟩ − |ϕ1⟩√
2

. (4.8.1)

Setting the ground state energy E0 = 0, and defining the first energy gap E ≡

E1 − E0, we have

|ψ̃(s)⟩ = 1

s+ iH
|ψ(0)⟩ ≈ c0|ψ0⟩

s
+
c1|ψ1⟩
s+ iE

, (4.8.2)

where cj = ⟨ψj|ψ(0)⟩. Thus,

|ψ(s)⟩ =
(
c0
s
+ c1

s+iE

)
|ϕ0⟩+

(
c0
s
− c1

s+iE

)
|ϕ1⟩√

2
, (4.8.3)
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from which we easily extract the phase in the left and right clusters to be

Θ0 = arg

(
c0
s
+

c1
s+ iE

)
(4.8.4)

= arctan
Ec0

(c0 + c1)s
− arctan

E

s
, (4.8.5)

Θ1 = arg

(
c0
s
− c1
s+ iE

)
(4.8.6)

= arctan
Ec0

(c0 − c1)s
− arctan

E

s
. (4.8.7)

If the initial state ψ(0) is a delta function located deep in the (1) left or (2) right

cluster, then (1) c0 = c1 or (2) c0 = −c1, respectively. The phases of the left and right

clusters in case (1) are

Θ00 = arctan
E

2s
− arctan

E

s
(4.8.8)

Θ01 =
π

2
− arctan

E

s
; (4.8.9)

while in case (2), the phases are

Θ10 =
π

2
− arctan

E

s
(4.8.10)

Θ11 = arctan
E

2s
− arctan

E

s
. (4.8.11)

Notice that Θµν is a constant diagonal symmetric matrix that preserves the left-right

symmetry.

The two-cluster model can be mapped to the classic double-well instanton tunneling

model which will be briefly summarized below; detailed derivations can be found in
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[47]. The model Hamiltonian is

H = −1

2
∂2x + λ(x2 − ℓ2)2, (4.8.12)

where λ > 0. The potential V (x) = λ(x2−ℓ2)2 has two minima at x = ±ℓ for ℓ > 0 and

one minimum at x = 0 for ℓ = 0. The barrier height is V (0) = λℓ4 which grows rapidly

with the separation distance ℓ. In the vicinity of minima, V (±ℓ+ε) = λ(±2εℓ+ε2)2 =

4λℓ2ε2 +O(ε3); the local harmonic frequency is thus ω = 2ℓ
√
2λ and V (0) = ω4/64λ.

In the limit λ ↓ 0 while keeping ω constant, the barrier is infinite, and the ground

state is two-fold degenerate with harmonic ground state energy E0 =
1
2
ω and expected

position ⟨x⟩ = ±ℓ. For any finite barrier, however, we should have ⟨x⟩ = 0, which is

enforced by symmetry; the symmetric solution cannot be obtained via perturbation

around either of the local minima.

Non-perturbative instanton solution splits the degeneracy:

E0 =
ω

2

(
1− 2

√
ω3

2πλ
e−ω3/12λ

)
, (4.8.13)

E1 =
ω

2

(
1 + 2

√
ω3

2πλ
e−ω3/12λ

)
. (4.8.14)

The transition amplitudes are

⟨+ℓ|e−iHt| − ℓ⟩ = i

√
ω

π
e−iωt/2 sin(ωρinstt) (4.8.15)

⟨−ℓ|e−iHt| − ℓ⟩ =
√
ω

π
e−iωt/2 cos(ωρinstt), (4.8.16)

where the instanton density ρinst =
√

ω3

2πλ
e−ω3/12λ. Notice that the energy gap is E =
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2ωρinst; thus,

⟨±ℓ|e−iHt| − ℓ⟩ =
√
ω

π
e−iωt/2 e

iEt/2 ∓ e−iEt/2

2
(4.8.17)

=

√
ω

π

e−iE0t ∓ e−iE1t

2
(4.8.18)

=

√
ω

π
e−iE0t

1∓ e−iEt

2
. (4.8.19)

If we reset the ground state energy to zero, the Laplace transform of Eq. 4.8.19 yields

the resolvent matrix elements

g00(is) =
1

2

√
ω

π

(
1

s
+

1

s+ iE

)
, (4.8.20)

g01(is) =
1

2

√
ω

π

(
1

s
− 1

s+ iE

)
, (4.8.21)

where 0 and 1 denote the states localized at x = −ℓ and x = +ℓ, respectively. The

phases are thus

Θ00(s) = arctan
E

2s
− arctan

E

s
, (4.8.22)

Θ01(s) =
π

2
− arctan

E

s
. (4.8.23)

Note that the above phase distribution is exactly the same as that from the low-energy

two-cluster model (Eq. 4.8.22) upon identifying the energy gaps.

The phase separation between the diagonal and off-diagonal elements of the resol-

vent is π/2−arctan E
2s

, and this difference is thus controlled by the ratio s/E. In other

words, the Laplace transform parameter s controls the separability between clusters in

the QTC algorithm. For s≪ E, s = E/2, or s≫ E, the phase differences are 0, π/4,
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Figure 4.8.2: (a) Two Gaussian clusters were drawn from N ((±ℓ, 0)⊤, σ212×2) with
σ = 0.1, sample size m = 100, and ℓ = 0.4 chosen to yield proximity r5% ≈ σ; the
outlier was located at (−ℓ(1 − αout) + ℓαout), 0)

⊤ between the two clusters. (b) The
quantum transport was initialized from a node in the left cluster (marked with ⋆).
The phases of the left and right clusters, averaged over their respective nodes, and the
phase of the outlier are plotted against αout, with the left cluster phases set to zero.

or π/2, respectively. Fig. 4.8.1(a) shows the phases Θ00 and Θ01 for different values of

s/E in the range [10−2, 102], suggesting that s should be chosen to be at least as large

as the energy gap E.

In practice, for an ambiguous point located between two clusters, its phase inter-

polates smoothly between the cluster phases. Figure 4.8.2(b) shows the phases of the

outlier for QTC initialized from a point deep in the left cluster. Moreover, Figure

4.8.3(b) shows the mean phases of the left and right clusters for QTC initialized at an

outlier located at (−ℓ(1−αout)+ ℓαout), 0)
⊤, and it demonstrates that a wave function

initialized from an ambiguous point loses contrast between the two clusters.

Similarly, for cases involving more than two clusters, the full Θ-matrix for all nodes

essentially amounts to the effective tight-binding matrix arg(igµν(is)). Our experience

shows that choosing s based on the average gap, E = (Eq−1−E0)/(q−1), still provides
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Figure 4.8.3: (a) Two Gaussian clusters were drawn from N ((±ℓ, 0)⊤, σ212×2) with
σ = 0.1, sample size m = 100, and ℓ = 0.4 chosen to yield proximity r5% ≈ σ; the
outlier was located at (−ℓ(1 − αout) + ℓαout), 0)

⊤ between the two clusters. (b) The
quantum transport was initialized from the outlier, and the averaged phases of the left
and right clusters are plotted against αout.

a helpful guideline and yields good multi-class clustering results.

4.9 The algorithm

In applications, we numerically calculate the Laplace transform of a wave function

initialized at a given node and then extract the phase distribution. As above, we will

assume that the total number of nodes is m and the a priori determined number of

clusters is q. The phases of nodes belonging to different clusters are typically separated

by gaps, allowing us to assign discrete class labels to nodes. We propose two methods

for converting the phases to class labels 0, 1, . . . , q − 1: (Method 1) direct difference,

and (Method 2) clustering. The steps in Method 1 are as follows:
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Method 1

1. Sort the array (θ0, . . . , θm−1) of phases in ascending order. Let π(i) denote the

rank of the phase of node i in this sorted list.

2. Denote the j-th element in the sorted list as θ(j) and compute n̂j = (cos θ(j), sin θ(j))
⊤ ∈

R2, for j = 0, . . . ,m− 1.

3. Compute the local difference rj = ∥n̂j+1 − n̂j∥, for j = 0, 1, . . . ,m− 22

4. Locate the q−1 largest values in the array (r0, . . . , rm−2) and return their indices

{Ij}q−1
j=1, whereIj < Ij+1.

5. Assign the class label j to node i iff Ij < π(i) ≤ Ij+1, where I0 = −1 and

Iq = m− 1.

The steps in Method 2 are as follows:

Method 2

1. Map each node i to n̂i = (cos θi, sin θi)
⊤ ∈ R2.

2. Apply a standard clustering algorithm in R2, e.g., k-means or k-medoids.

3. Return the class label for each node.

The first method is faster than the second method. However, when the clusters are not

clearly separable it might recognize false cluster boundaries and produce fragmented

clustering. We find that the second method is more robust.
2We did not use arc length, or the geodesic distance on S1 in that arc length is sensitive to

fluctuations in phase distribution; however, our goal is to pick out the largest jumps in phases and
ignore small jumps which may arise around large jumps.
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Using either Method 1 or Method 2, we are thus able to convert the phase dis-

tribution of a Laplace transformed wave function initialized at a single node to a set

of discrete class labels. When we change the initialization node, some of the cluster

boundaries can change. To improve clustering accuracy and reduce variation in cluster-

ing, we thus iterate QTC at multiple nodes; let m′ denote this number of initialization

nodes. The clustering results then form an ensemble of class labels, organized into a

matrix (Ωij), where i = 0, 1, . . . ,m− 1 runs through all nodes and j = 0, 1, . . . ,m′ − 1

indexes the iteration of initialization.

Notice that the class labels may get permuted across different initialization. We

introduce two methods to handle this issue and summarize the Ω-matrix: (1) direct

extraction, and (2) consensus matrix.

4.9.1 Direct Extraction

We want to count the multiplicity of the columns of Ω, up to permutation of class

labels; i.e., two columns are considered equivalent if they are equal upon permuting

the class labels. We will then choose the most frequent column vector as the desired

partition of nodes. For this purpose, we first devise a scheme for testing whether a

subset of columns are all equivalent. Let {pi} = {2, 3, 5, 7, · · · } be the set of primes,

then {√pi} is a set of irrational numbers serving as linearly independent vectors over

the field Q of rational numbers. Let A be an index set containing at least two column

indices of Ω. For each node i, we then compute the quantity ξi =
∑

k∈AΩik
√
pk. For

any two nodes i and j,

ξi − ξj =
∑
k∈A

(Ωik − Ωjk)
√
pk ≡

∑
k∈A

bk
√
pk. (4.9.1)
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Suppose i and j are in the same cluster for all k ∈ A, then bk = 0 for all k, and thus

ξi = ξj; the converse is also true, because {√pi} are linearly independent over Q. Thus,

ξi = ξj iff node i and node j are assigned to the same class by all columns indexed

by A. The minimum number of distinct ξi is q, since any column of Ω partitions the

nodes into q clusters. If the number of distinct ξi exceeds q, then there thus exists at

least two columns that disagree on the partition, so the columns indexed by A are not

all equivalent. Our algorithm including this scheme is as follows:

Ensemble Method 1

1. Let K = {0, 1, · · · ,m′ − 1} be the full index set indexing the columns of Ω.

Denote any non-empty subset of K as K ′, and let k′0 denote the first column

index appearing in K ′.

2. Define function IsEquiv({Ωik}k∈K′) to tell whether the columns of Ω indexed by

K ′ yield an equivalent clustering:

• For i = 0, 1, . . . ,m− 1:

ξi =
∑
k∈K′

Ωik
√
pk

• Count the number q′ of distinct ξi

• If q′ = q, then Return True

• Else Return False

3. Let H be a hash table with non-negative integer keys α indexing the equivalence

classes of columns of Ω and values Hα equal to the corresponding index sets of

equivalent columns. Each key α is chosen from Hα to represent the class.
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4. Define function Pigeonhole({Ωik}k∈K′ , H):

• If IsEquiv({Ωik}k∈K′) = True, then:

• For α in H:

∗ If IsEquiv({Ωik}k=α,k′0
) = True:

· IsExisting = True

· Merge K ′ and Hα

· Break for-loop

• If IsExisting = False:

∗ Create a new key α′ and Hα′ = K ′

• Else: Split K ′ in two halves K ′
1 and K ′

2

• Call H = Pigeonhole({Ωik}k∈K′
1
, H)

• Call H = Pigeonhole({Ωik}k∈K′
2
, H)

• Return H

5. Call Pigeonhole({Ωik}k∈K , H0), where H0 is an empty hash table

4.9.2 Consensus matrix

Even though the class labels may get randomly permuted for different initializations,

whether two nodes share the same class label within each initialization is independent

of the labeling convention. Therefore, we define a consensus matrix C with elements

Cij =

∑m′

k=1 δ(Ωik − Ωjk)

m′ , (4.9.2)

104



where δ is the Kronecker delta or indicator function, and m′ ≤ m is the number of the

chosen initialization nodes. Notice that Cij = Cji ∈ [0, 1], and Cii = 1 for all nodes

i, j = 1, 2, . . . ,m. The algorithm is sketched as follows:

Ensemble Method 2

1. Initialize C as an m×m identity matrix.

2. For i = 0, 1, . . . ,m− 1:

• For j = i+ 1, . . . ,m− 1:

• For k = 0, 1, . . . ,m′ − 1:

∗ If Ωik = Ωjk: Cij ++

· Cji = Cij

3. Cij = Cij/m
′ for i ̸= j

The consensus matrix measures the similarity of node pairs and facilitates the visu-

alization of network structure, e.g., chromatin interaction information between distal

genomic loci, as in Fig. 4.5.3. It can also be used as a similarity measure or dissimilarity

measure, e.g., δij − Cij, in (dis)similarity-based algorithms such as spectral clustering

and hierarchical clustering.
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4.10 Data preparation

4.10.1 Synthetic data sets

In general, for sufficiently small proximity rε in the synthetic data sets in Fig. 4.5.1

(b-d & f-h), spectral clustering was able to produce the clustering by QTC at longer

proximity; for sufficiently larger proximity, both spectral clustering and QTC failed

to recognize the putative clusters. Thus, there was a finite interval of ε for each data

set in which QTC outperformed spectral clustering. For data sets in Fig. 4.5.1 (b-d &

f-h), the intervals are approximately [3.1%, 3.9%], [0.61%, 0.85%], and [0.39%, 0.46%]

respectively.

4.10.2 Time series stock price data

The stock price data consisted of the “adjusted close” prices of the AAPL and GOOGL

stocks between January 3, 2005 and November 7, 2017, downloaded from Yahoo Fi-

nance. We log transformed the data and subtracted the two time series by the respec-

tive log-prices on the first day (1-3-2005). We computed the pairwise Euclidean distance

in R2 and took 1%-quantile of the distance distribution as the proximity length r1% =

0.05. Next, we assembled the Gaussian similarity measure Aij = exp[−(rij/r1%)
2] and

performed QTC and spectral clustering; the number of clusters was chosen to be five.

Spectral clustering was able to produce the clustering by QTC at 1%-quantile only for

shorter proximity lengths where ε ∼ [0.2%, 0.5%], and for ε ≲ 0.1%, clusters started

to become disjoint.
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Figure 4.10.1: Pearson correlation coefficients between the tanh-normalized HiC matrix
and various similarity measures. For (a) LGG and (b) GBM samples, respectively,
correlations were computed using the “unweighted” raw counts Nij of SCNA labeled
by genomic location pair (i, j), the weighted adjacency (ALGG/GBM)ij = Nijwij with
Gaussian weight wij = exp(−(rij/rε)

2), and the QTC consensus matrix CLGG/GBM
calculated assuming a different number of clusters. Both weighted and unweighted
similarity matrices were tanh-normalized.
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4.10.3 Genomic data

The TCGA somatic copy number alteration (SCNA) data in low-grade glioma (LGG)

and glioblastoma (GBM) patient samples were downloaded from the GDC Data Portal

under the name “LGG/GBM somatic copy number alterations.” To link these data to

chromatin contact information, we followed the analysis described in [25]. We parti-

tioned the genome into 1Mb bins and defined N to be a null square matrix of dimension

equal to the total number of bins. For each amplified or deleted genomic segment start-

ing at the i-th bin and ending at the j-th bin, we then incremented the (i, j)-th entry of

N by 1. The main idea behind this analysis is that genomic amplification and deletion

events are mediated by the physical co-location of the segment junctions. The raw

count matrix N was thus to be compared with the HiC chromatin contact matrix. In

cancer samples, however, an entire arm of a chromosome or even a whole chromosome

can be duplicated or deleted, potentially leading to fictitious long-range off-diagonal

elements in N . Therefore, we weighted the counts Nij by wij = exp[−(rij/rε)
2] where

rij is the genomic distance between the bins and rε = 10Mb. Using this weighted

matrix as an adjacency matrix, we performed QTC with s = 5(E1−E0), assuming the

number of clusters to be q = 2, 3, 4, 5, and computed the respective consensus matrices

C(q). Finally, we took the arithmetic mean ⟨C⟩ =
∑5

q=2C(q)/4.

The HiC data in normal human astrocytes of the cerebellum (glial cells) were

downloaded from ENCODE under the name “ENCSR011GNI” [18]. We extracted

the 3D interaction maps on chromosome 2 at 1Mb resolution. The distribution of

HiC contact matrix entries was highly heavy-tailed. In order to compare CHiC with

⟨Cij⟩ ∈ [0, 1], we transformed CHiC using tanh(CHiC/C̄HiC) ∈ [0, 1), where C̄HiC was

the mean of all CHiC entries. Next, we computed the Pearson correlation coefficients
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between the transformed CHiC and averaged ⟨C(q)ij⟩.

4.11 Comparison with other methods

In this section, we first discuss spectral embedding and then derive three additional

(dis)similarity measures using quantum mechanics. These measures can be combined

with spectral clustering as well as other (dis)similarity-based learning algorithms.

4.11.1 Spectral embedding

The state-of-the art spectral clustering can be decomposed into three major steps: (1)

assemble an affinity matrix A based on some similarity measure of sample points, (2)

compute the symmetric normalized graph Laplacian H, and (3) map each sample point

indexed by i = 0, 1, . . . ,m − 1 to a Euclidean feature space using the corresponding

elements of eigenvectors of the graph Laplacian; this mapping is called the spectral

embedding. The first two steps are essentially the same as those of QTC; the key

difference lies in the final usage of “spectral properties” of the data set. A single

iteration of QTC succinctly represents the data on S1, which we have shown is sufficient

to separate distinct clusters.

By contrast, spectral embedding maps data samples to Rq, where q is the number of

putative clusters, or the number of low energy states if all putative clusters are clearly

separable; then, the algorithm performs clustering, e.g., using k-means in the feature

space Rq. The feature vector vi associated with the i-th sample has elements

(vi)n = ψn(i) = ⟨i|ψn⟩, n = 0, 1, . . . , q − 1, (4.11.1)
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where the ψn’s are the first q lowest-eigenvalue eigenvectors of H. The L2 Euclidean

distance between nodes (i, j) is then

Dij =
√

∥vi − vj∥2

=

√√√√ q−1∑
n=0

|ψn(i)− ψn(j)|2

=

√√√√ q−1∑
n=0

(⟨i| − ⟨j|)|n⟩⟨n|(|i⟩ − |j⟩) . (4.11.2)

Note that if we actually used all eigenvectors of H, then Dij =
√

2(1− δij), i.e., each

point is equally far away from any other node. Thus, the useful clustering information

originates from the projection to low energy states,

Dij =
√

(⟨i| − ⟨j|)Pn<q(|i⟩ − |j⟩) (4.11.3)

≡
√
χii + χjj − χij − χji, (4.11.4)

where χij = ⟨i|Pn<q|j⟩ ≡
∑

n<q ψn(i)ψ
∗
n(j).

In real data, the number of nodes as well as the distribution of node density could

vary from one cluster to another. If a network is embedded in Rd, then high density

regions contain hub nodes, provided the adjacency Aij is measured with a non-negative

function that decreases with increasing distance rij, e.g., Gaussian function Aij =

exp(−r2ij/r2ε). For networks not embedded in Rd, the “density” distribution should be

interpreted as the degree distribution. We next illustrate how the spectral embedding

distance Dij responds to outliers in the presence of density variations using the simple

two-cluster model.
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Using the same notation as above, the ground state and first excited state, shown

in Fig. 4.11.1(a,b), are ψ0 = αϕ0 + βϕ1 and ψ1 = βϕ0 − αϕ1, where α, β > 0, and

α2 + β2 = 1. If we assume ϕ0 and ϕ1 are orthonormal, i.e., ⟨ϕµ|ϕν⟩ = δµν for µ, ν = 0,

and 1, then ⟨ψn|ψn′⟩ = δnn′ for n, n′ = 0, and 1. To simplify calculations, we further

assume that ϕ0 and ϕ1 have identical shapes with the maximum value h located at

node i and j, respectively; i.e., ϕ0(i) = h = ϕ1(j). Then, ψ0(i) = αh = −ψ1(j)

and ψ1(i) = βh = ψ0(j). Let γ ∈ (0, 1] such that ϕ0(k) = γϕ0(i) = γh. Then,

ψ0(k) = γαh, and ψ1(k) = γβh (Fig. 4.11.1(a,b)). Recall that ψ0(i) =
√

deg(i) for

a normalized symmetric Laplacian; hence, the differences in ψ0 across nodes can be

viewed as capturing the density variations in a network.

Simple calculations show that

χii = χjj = h2
(
α2 + β2

)
= h2 (4.11.5)

χij = χji = h2 (αβ − βα) = 0 (4.11.6)

χkk = (γh)2
(
α2 + β2

)
= γ2h2 (4.11.7)

χik = χki = γh2
(
α2 + β2

)
= γh2 (4.11.8)

and

χjk = χkj = γh2 (αβ − βα) = 0. (4.11.9)
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Hence, we find

Dij =
√
2h (4.11.10)

Dik = (1− γ)h (4.11.11)

Djk =
√

1 + γ2 h (4.11.12)

with

Dij ≥ Djk > Dik for γ ∈ (0, 1]. (4.11.13)

In the limit k becomes an outlier of the left cluster ϕ1, γ ↓ 0 and Dik ≈ Djk. Further-

more, although the inequalities Dij > Dik and Djk > Dik facilitate the task of grouping

similar points, the inequality Djk ≤ Dij could potentially undermine the clustering

accuracy. Notice that node k can be either close or far from the right cluster (Fig.

4.11.1(a,b), respectively), but yield the same Djk, as long as ϕµ(k) = γϕµ(i). In other

words, an outlier from the left cluster could be closer to the right cluster in spectral

distance, even when the outlier has a negligible connection to the right cluster (Fig.

4.11.1(b)). By sharp contrast, in QTC, the phase at a node lying between two clusters

interpolates monotonically between the phases of the two clusters (Fig. 4.8.2).

This undesirable behavior of spectral clustering may be avoided by renormalizing

the eigenvectors. Two common approaches are (Fig. 4.11.1(c,d) and (e,f), respectively):

Approach 1

1. Compute N(i) ≡ (
∑q−1

n=0 |ψn(i)|2)
1
2 .

2. Divide each ψn(i) by N(i), i.e., ψn → ψn/N .
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Figure 4.11.1: (a,b) Schematic illustrations of the ground state and the first excited
state involving two clusters; i, j, and k are node indices. Node k is an outlier (a) lying
between the two clusters or (b) far from both clusters. (c,d) The normalized ground
state and first excited state eigenfunctions using Approach 1. (e,f) The modified ground
state and first excited state eigenfunctions using Approach 2.
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Approach 2

1. Divide each ψn(i) by ψ0(i), i.e., ψn → ψn/ψ0.

Similar to the phase plateaus in QTC, ψn/N and ψn/ψ0 are essentially flat within a

cluster (Fig. 4.11.1(c,d) and (e,f), respectively).

In the first approach (Fig. 4.11.1(c,d)), the spectral embedding distances become

D(1)
ij =

√
(α− β)2 + (α + β)2 =

√
2 (4.11.14)

D(1)
ik = 0 (4.11.15)

D(1)
jk =

√
(α− β)2 + (α + β)2 =

√
2. (4.11.16)

In the second approach (Fig. 4.11.1(e,f)), the spectral embedding distances become

D(2)
ij =

√
(β/α + α/β)2 = 1/αβ (4.11.17)

D(2)
ik = 0 (4.11.18)

D(2)
jk =

√
(β/α + α/β)2 = 1/αβ. (4.11.19)

In both cases, we have D(1,2)
jk = D(1,2)

ij ; thus, the outlier node k is much more likely to be

clustered with the left cluster. (Scikit-Learn, a very popular machine learning software

package in Python, implements the second approach incorrectly as ψn → ψn × ψ0 and

sometimes yields counter-intuitive clustering results. In this paper, we use our own

implementation of Approach 1.)

Finally, we note that spectral embedding has an intrinsic weakness stemming from

ignoring potentially useful information from high-energy states. More precisely, recall

that spectral embedding assumes that the most relevant information for clustering is
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encoded in the first q low-energy eigenstates of H. However, this assumption could

be invalid in some cases, e.g., our synthetic data sets in Fig. 4.5.1, and time series

data in Fig. 4.5.2, where the information needed to separate some small clusters are

stored in higher energy modes. In such a case, spectral clustering may not have the

required information to separate the small clusters, but instead chop the large clusters

into fragments at their weak edges in low density regions. By contrast, QTC does not

require a manual cut-off in the spectrum and incorporates all eigenstates by naturally

weighing the contribution from each eigenfunction ψn by |s + iEn|−1. This difference

may explain why QTC is more robust than spectral embedding when there exists a

hierarchy of cluster sizes.

4.11.2 Time-averaged transition amplitude

The time-dependent transition amplitude Gij(t) from node j to i is complex-valued

and oscillatory in time, i.e.

Gij(t) = ⟨i|e−iHt|j⟩ (4.11.20)

=
∑
m,n

⟨i|ψm⟩⟨ψm|e−iHt|ψn⟩⟨ψn|j⟩ (4.11.21)

=
∑
n

ψn(i)ψ
∗
n(j)e

−iEnt. (4.11.22)
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To obtain a real-valued matrix, we take the squared amplitude,

|Gij(t)|2 = Gji(−t)Gij(t) (4.11.23)

=
∑
m,n

ψm(j)ψ
∗
m(i)ψn(i)ψ

∗
n(j)e

i(Em−En)t (4.11.24)

=
∑
m,n

ρmn(i)ρnm(j)e
i(Em−En)t (4.11.25)

where ρmn(i) = ⟨ψm|i⟩⟨i|ψn⟩. The oscillation in time can be averaged as

Pij = lim
T↑∞

1

T

∫ T

0

dt |Gij(t)|2 (4.11.26)

=
∑
m,n

ρmn(i)ρnm(j)

[
lim
T↑∞

1

T

∫ T

0

dt ei(Em−En)t

]
(4.11.27)

=
∑
m,n

δEm,Enρmn(i)ρnm(j). (4.11.28)

If there is no degeneracy in the spectrum of H, then the time-averaged squared tran-

sition amplitude simplifies to

Pij =
∑
n

ρnn(i)ρnn(j) =
∑
n

|ψn(i)|2|ψn(j)|2, (4.11.29)

which is a symmetric, non-negative matrix that can be used as a similarity measure.

The performance of Pij as a spectral clustering affinity matrix was tested in four

synthetic data sets (Fig. 4.11.2(a-d)) as well as the stock price time series data (Fig.

4.11.3(b)). The performance was similar to spectral clustering using Gaussian affinity.
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Figure 4.11.2: Synthetic data distributions plotted in Fig. 4.5.1. Spectral clustering
was performed using as a similarity measure (a-d) the time-averaged squared transition
amplitude, (e-h) the consensus matrices C produced by QTC, and (i-k) the similarity
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January 1, 2005 to November 7, 2017. Spectral clustering was performed using as a
similarity measure (a) the QTC consensus matrix C, (b) the time-averaged squared
transition amplitude P , and (c) the similarity S of Laplace-transformed wave functions.
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4.11.3 Density information of Laplace-transformed wave func-

tions

As in QTC, given a time-independent Hamiltonian, we take the Laplace transform of

two wave functions evolved from the states initialized at nodes i and j. Then, we take

their inner product

⟨ψ̃i(s)|ψ̃j(s)⟩ = ⟨i|(s− iH)−1(s+ iH)−1|j⟩ (4.11.30)

=
∑
n

ψn(i)ψ
∗
n(j)

s2 + E2
n

. (4.11.31)

Next, we define a similarity measure using the inner product

Sij =


∣∣∣⟨ψ̃i(s)|ψ̃j(s)⟩

∣∣∣2∣∣∣⟨ψ̃i(s)|ψ̃i(s)⟩
∣∣∣ ∣∣∣⟨ψ̃j(s)|ψ̃j(s)⟩

∣∣∣


1
2

, (4.11.32)

which is symmetric and non-negative. The performance of Sij as a spectral clustering

affinity matrix was also tested on four synthetic data sets (Fig. 4.11.2(i-l)) and the

stock price time series data (Fig. 4.11.3(c)). The performance was similar to that of

spectral clustering using Gaussian affinity (Fig. 4.11.2(i,j,l) and Fig. 4.11.3(c)), but

gave sup-optimal clustering results on the annulus data set (Fig. 4.11.2(k)).
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4.11.4 Jensen-Shannon divergence of density operators

The time evolution of the density operator ρ(j) = |j⟩⟨j| describing a pure state localized

at node j at time t = 0 is

ρ(j; t) = e−iHt|j⟩⟨j|eiHt (4.11.33)

=
∑
m,n

e−iHt|ψm⟩ {⟨ψm|j⟩⟨j|ψn⟩} ⟨ψn|eiHt (4.11.34)

=
∑
m,n

e−i(Em−En)tρmn(j)|ψm⟩⟨ψn| , (4.11.35)

where ρmn(i) = ⟨ψm|i⟩⟨i|ψn⟩. If we again take the time average, then

ρ̄(j) = lim
T↑∞

∫ T

0

dt ρ(j; t) (4.11.36)

=
∑
m,n

δEm,Enρmn(j)|m⟩⟨n|; (4.11.37)

and, in the absence of energy degeneracy, the time-averaged density operator initiated

at node j simplifies to

ρ̄(j) =
∑
n

ρnn(j)|ψn⟩⟨ψn| =
∑
n

|ψn(j)|2|ψn⟩⟨ψn|. (4.11.38)

For two time-averaged density operators corresponding to pure states initialized at node

i and j, respectively, we may measure the information-theoretic divergence between ρ̄(i)

and ρ̄(j) using the Jensen-Shannon divergence (JSD),

DJS[ρ̄(i), ρ̄(j)] = S
[
ρ̄(i) + ρ̄(j)

2

]
− 1

2
S[ρ̄(i)]− 1

2
S[ρ̄(j)] (4.11.39)
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where S[ρ] = −Tr(ρ log ρ) is the von Neumann entropy of ρ.

Using the eigenfunctions of H,

DJS[ρ̄(i), ρ̄(j)] =
∑
n

−|ψn(i)|2 + |ψn(j)|2

2
log

|ψn(i)|2 + |ψn(j)|2

2
(4.11.40)

+
1

2
|ψn(i)|2 log |ψn(i)|2 +

1

2
|ψn(j)|2 log |ψn(j)|2 (4.11.41)

which is a non-linear function of |ψn|2. The time-complexity for tabulating all elements

in pairwise JSD matrix scales as O(m3), where m is the total number of nodes, and

the computation is very slow compared with the proposed QTC method. Using small

synthetic data sets, we nevertheless implemented the JSD method and passed the JSD

matrix to hierarchical clustering as a dissimilarity measure. The JSD measure did

not show a significant performance improvement compared with the simple Euclidean

distance.

4.12 Discussion

In addition to high dimensionality and strong mixing, geometric complexity remains

an outstanding challenge; e.g., the cheese-stick distribution shown in Fig. 4.5.1(b)

with several visually separable pieces confuses almost all clustering algorithms. But,

we have demonstrated that the coherent phase information encoded in the Laplace-

transformed wave functions are as powerful as the widely applied spectral clustering.

Furthermore, the QTC shows more robustness when the data distribution contains

density fluctuations or a hierarchy of cluster sizes. Using multiple initialization sites,

QTC generates an ensemble of phase distributions, which in turn provide a collection
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of discrete cluster labels. We may either select the most popular partition from the

ensemble or encode the votes from the ensemble members into a consensus matrix.

If most members favor a particular partition, it is an indication that the clusters

are easily separable; conversely, split votes between several partitions may indicate

suboptimal model parameters or strongly mixed clusters. Thus, QTC provides a useful

self-consistency criterion absent in most clustering methods. Even in the case of spit

votes, the consensus matrix can still be used in other clustering or supervised learning

methods as an improved similarity measure. In addition to the consensus matrix, we

have explored other ways of constructing a QT kernel that can be used as an input

to numerous (dis)similarity-based algorithms. For example, we have tested the time-

average of squared transition amplitude as a similarity measure in spectral clustering;

the performance was slightly better than spectral clustering using Gaussian affinity,

although some intrinsic weaknesses of spectral embedding persisted. These results

provide evidence for potential benefits that may arise from studying data science using

quantum physics.
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Chapter 5

Conclusions

In this thesis, I introduced three major machine learning methods based on the math-

ematical form and physical idea of diffusion. In Chapter 2, I generalized the Gaussian

kernel in Euclidean space to a high-dimensional sphere using heat diffusion. The re-

sulting hyperspherical heat kernel was expanded in eigenfunctions of high-dimensional

angular momentum operator. The heat kernel was tested in SVM classifications of

documents, cancer samples, and stocks; the hyperspherical kernel often outperformed

Euclidean Gaussian RBF kernel and linear kernel. The advantage may arise from the

hyperspherical transformation of feature space, and flexibility in decision boundary. In

other words, the hyperspherical transformation removes less informative radial degree

of freedom in a nonlinear fashion and compactifies the Euclidean feature space into

a unit hypersphere where all data points are then enclosed within a finite radius. In

Chapter 3, I introduced the effective dissimilarity transformation (EDT) based on all

pairwise distances among the samples. The effects of the transformation were stud-

ied using thought experiments and tested using two gene expression data sets. The
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transformation changes the topology of original Euclidean data space assisting the ag-

glomeration of closely related points into dense clusters. Iteratively applying the EDT

drives a static data distribution in a Euclidean space into a dynamical migration pro-

cess on a hypersphere where the “curse of dimensionality” is adaptively ameliorated. In

Chapter 4, I showed that a quantum mechanical wave function is dramatically different

from a classical heat density, and so there was not a straight forward generalization of

heat kernel to the case of quantum walks. But the coherent phase information encoded

in the Laplace-transformed wave functions can be extracted to perform clustering.

The resulting quantum transport clustering (QTC) algorithm is often more robust

than traditional spectral embedding when there exist strong density fluctuations and

heterogeneity in cluster sizes. The advantage of QTC may arise from the fact that it

naturally weights the contribution of different graph Laplacian eigenmodes using their

energies, whereas spectral clustering requires a fixed cut-off in the spectrum. More

importantly, QTC using various initialization sites gives an ensemble of clusterings.

The collection of distinct clusterings can be used to construct an empirical distribution

of clustering decisions which contains much more information than a single clustering

output. One may also find a new similarity measure by pooling together clustering

results, and use the consensus matrix for further analysis. In summary, the three ma-

chine learning methods are based on three distinct diffusion processes. The dynamic

diffusion processes often trace out hidden patterns in data sets, and thus, serve as a

promising foundation for future development in machine learning methods.
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Appendix A

Multidimensional scaling

Effective dissimilarity transformation (EDT) maps a distance matrix d(τ)ij to an adjusted

distance matrix d
(τ+1)
ij . The visualization is straight forward if the original distance

matrix is calculated from a data distribution in Rn with 1 ≤ n ≤ 3. However, EDT

deforms the original distance matrix which can be alternatively viewed as the result of

deformation of original data space, Rn for example, and thus, the new distances cannot

be visualized in the original data space. The multidimensional scaling (MDS) provides

approximate embeddings of distances in an Euclidean space of a given dimension nMDS.

A.1 Multidimensional scaling

MDS takes the m × m distance matrix dij as an input, and then distance-squared

matrix Dij = d2ij is computed. Next, using mean-centering matrix J = I − 1
m
11⊤,

we get symmetric matrix B = −1
2
JDJ with spectrum λ1 ≥ λ2 ≥ · · · ≥ λm. If all

eigenvalues are positive, then the distances can be exactly embedded in a Euclidean

space, otherwise the distances dij can be approximately embedded in a Euclidean space
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Figure A.2.1: Three Gaussian clouds were separated by EDT iterations.

Figure A.2.2: Radially uniformly distributed concentric circles in R2 were deformed
into a 2-sphere embedded in R3.

using the eigenvectors {vk}nMDS
k=1 of the first nMDS largest positive eigenvalues. The MDS

coordinates are then (v1λ
1
2
1 ,v2λ

1
2
2 , · · · ,vnMDS

λ
1
2
nMDS)m×n.

A.2 Visualization of EDT iterations

Figure A.2.1 shows the drifting process of three clusters in R2. Figure A.2.2 and A.2.3

illustrate the global deformation effect described in Figure 3.3.5. Figure A.2.4 and

A.2.5 illustrate the global deformation of annulus data sets in Figure 3.3.6.
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Figure A.2.3: Concentric circles concentrated at origin in R2 were deformed into a
2-sphere embedded in R3 where the outer rim circles were pushed to the south pole.

Figure A.2.4: Annulus data set consisting a central cluster and a concentric ring in R2

was deformed to a S2 where the ring was pushed to the south pole.

Figure A.2.5: Annulus data set consisting a central cluster and a concentric ring in R2

was deformed to a S2 where the ring cluster was pushed to the south pole.
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A.3 Visualization of similarity matrix

Under certain conditions, MDS is able to embed a collection of dissimilarities in some

Euclidean space. Given a similarity matrix measured with some kernel functionG(x, y),

we are able to construct a dissimilarity measure by identifying G(x, y) as an inner

product ⟨x, y⟩. In other words,

∥x− y∥2 ≡ ⟨x− y, x− y⟩ = G(x, x)− 2G(x, y) +G(y, y)

and then we can approximately embed data points in an Euclidean space with MDS,

based on the metric induced by the kernel function.

For example, let the kernel function be the “propagator” of a massive particle in a

network described by adjacency matrix A, or

G =
1

H +m2

where H is the symmetrically normalized graph Laplacian with non-negative eigenval-

ues. In Figure A.3.1, we have three well-separated Gaussian clusters with two of them

being closer, then the first excited state ψ1 with energy E1 must corresponds to the

separation of the third cluster from the two closer clusters. Then if m2 ≫ E1 or the

particle is very massive, the propagator is short ranged and we expect three blocks in

plot of G matrix; if m2 ≈ E1, the range of the propagator is extended and should be

able to capture more global structures and thus, we expect two blocks in the plot G

matrix. Figure A.3.2 shows the transition from three blocks to two blocks when m2

decreased from 200E1 to E1. We computed the induced dissimilarities from G and then
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Figure A.3.1: Three Gaussian clusters (left) in R2 with two clusters being slightly closer.
The adjacency (right) was generated using Gaussian RBF kernel with a short proximity
length ∼ 1%-quantile of all pairwise distances. The symmetrically normalized graph
Laplacian H was calculated and diagonalized; middle plot shows that there were three
low energy modes in the spectrum of H.

embedded the dissimilarities in R2 using MDS. Figure A.3.3 shows the MDS embedding

of G in R2 where each small blocks were represented as a stick; the two merged sticks

at m2 ∼ E1 corresponds to the slightly closer two clusters in the original distribution.
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Figure A.3.2: Plots of G = (H + m2)−1 with variations in m2. As the ratio m2/E1

decreased, the two block structure grew stronger than three block structure.
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Figure A.3.3: Embeddings of dissimilarities induced by G = (H+m2)−1 with variations
in m2. As the ratio m2/E1 decreased, the three sticks gradually merged into two sticks
in the embedded space where the merged sticks corresponds to the slightly closer two
clusters.
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