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ABSTRACT

A distributed system is composed of independent agents, machines, processing units, etc.,

where interactions between them are usually constrained by a network structure. In contrast

to centralized approaches where all information and computation resources are available at

a single location, agents on a distributed system can only use locally available information.

The particular flexibilities induced by a distributed structure make it suitable for large-

scale problems involving large quantities of data. Specifically, the increasing amount of

data generated by inherently distributed systems such as social media, sensor networks, and

cloud-based databases has brought considerable attention to distributed data processing

techniques on several fronts of applied and theoretical machine learning, robotics, resource

allocation, among many others. As a result, much effort has been put into the design of

efficient distributed algorithms that take into account the communication constraints and

make coordinated decisions in a fully distributed manner.

In this dissertation, we focus on the principled design and analysis of distributed algorithms

for optimization, learning and belief systems over networks. Particularly, we are interested

in the non-asymptotic analysis of various distributed algorithms and the explicit influence

of the topology of the network they ought to be solved over.

Initially, we analyze a recently proposed model for opinion dynamics in belief systems with

logic constraints. Opinion dynamics are a natural model for a distributed system and serve

as an introductory topic for the further study of learning and optimization over networks. We

assume there is an underlying structure of social relations, represented by a social network,

and people in this social group interact by exchanging opinions about a number of truth

statements. We analyze, from a graph-theoretic point of view, this belief system when a set

of logic constraints relate the opinions on the several topics being discussed. We provide

novel graph-theoretic conditions for convergence, explicit estimates of the convergence rate

and the limiting value of the opinions for all agents in the network in terms of the topology

of the social structure of the agents and the topology induced by the set of logic constraints.

We derive explicit dependencies for a number of well-known graph topologies.

We then shift our attention to the distributed learning problem of cooperative inference
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where a group of agents interact over a network and seek to estimate a joint parameter that

best explains a set of network-wide observations using the local information only. Again, we

assume there is an underlying network that defines the communication constraints between

the agents and derive explicit, non-asymptotic, and geometric convergence rates for the

concentration of beliefs on the optimal parameter. For the case of having a finite number of

hypotheses, we propose distributed learning algorithms for time-varying undirected graphs,

time-varying directed graphs and a new acceleration scheme for fixed undirected graphs.

For each of the network structures, we present explicit dependencies for the worst case

network topology. Furthermore, we extend these belief concentration results to hypotheses

sets being a compact subset of the real numbers, for a simplified static undirected network

assumption. Moreover, we present a generic distributed parameter estimation algorithm

for observational models belonging to the exponential family of distributions. We further

extend the distributed mean estimation from Gaussian observations to time-varying directed

networks.

The graph-theoretical analysis of belief systems with logic constraints and the distributed

learning for cooperative inference are specific instances of convex optimization problems

where the objective function is decomposable as the sum of convex functions. Particularly,

these problems assume each of the summands is held by a node on a graph and agents are

oblivious to the network topology. As a final object of interest, we study the optimality of

first-order distributed optimization algorithms for general convex optimization problems. We

focus on understanding the fundamental limits induced by the distributed networked struc-

ture of the problem and how it compares with the hypothetical case of having centralized

computations available. We show that for large classes of convex optimization problems, we

can design optimal algorithms that can be executed over a network in a distributed manner

while matching lower complexity bounds of their centralized counterparts with an additional

iteration cost that depends on the network structure. We design optimal distributed algo-

rithms for various convexity and smoothness properties that can be executed over arbitrary

fixed, connected and undirected graphs. Furthermore, we explore the application of these

distributed algorithms to the problem of distributed computation of Wasserstein barycenters

of finite distributions.

Finally, we discuss some future directions of research for the design and analysis of dis-

tributed algorithms, both from theoretical and applied perspectives.
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nothing could be closer to reality. I cannot imagine having better advisers than Prof. Angelia
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CHAPTER 1

INTRODUCTION

Large numbers of interconnected components add to the complexity of engineering systems.

Developing models and tools for the analysis of such distributed systems is necessary, not

only from the engineering point of view but for effective decision-making and policy design.

For example, the control of autonomous vehicles for exploration, rescue, and surveillance

depends on the coordination abilities of fleets of robots; each robot should make decisions

based on local information and limited communications. Power networks (e.g., the electric

grid) need several generating and consuming stations to coordinate offer and demand to

improve efficiency. In traffic control, the goal is to avoid jams distributively and to increase

traffic flow based on limited infrastructure (e.g., roads). Economic systems need modeling,

estimation, and control of markets at the micro and macroeconomic scales. Market dynam-

ics depend on several agents influencing the system, each of which might have conflicting

goals. In telecommunication networks, several stations need to communicate over non-perfect

channels to optimize information transmission. The control of industrial processes requires

communication and coordination between different parts of the process in hazardous envi-

ronments. The modeling and control of ecological systems requires the analysis of several

actors interacting with each other, subject to changing environments.

The increasing amount of data generated by recent applications of distributed systems

such as social media, sensor networks, and cloud-based databases has brought considerable

attention to distributed data processing, in particular the design of distributed algorithms

that take into account the communication constraints and make coordinated decisions in a

distributed manner [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. In a distributed system, interactions

between agents are usually constrained by the network structure and agents can only use lo-

cally available information. This contrasts with centralized approaches where all information

and computation resources are available at a single location [12, 13, 14, 15].

Traditional approaches for the design of distributed inference algorithms, for inherently

distributed systems, assume a fusion center exists. The fusion center gathers all the in-

formation and makes centralized decisions [12, 13, 14, 15]. Nonetheless, communication

constraints, limited memory and lack of physical accessibility to certain measurements hin-
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der this task. Therefore, it is necessary to develop algorithmic protocols that take into

account such constraints and use only locally available information.

The adoption of distributed optimization algorithms on several fronts of applied and the-

oretical machine learning, robotics, and resource allocation has increased the attention on

such methods in recent years [16, 17, 18, 19, 20]. The particular flexibilities induced by

the distributed setup make them suitable for large-scale learning problems involving large

quantities of data [21, 22, 23, 24, 25]. Although many results on these themes have appeared

in recent years, the study of distributed decision-making and computation traces back to

classic papers from the 70s and 80s [5, 6, 7, 8, 9, 10, 11].

In [26] the authors defined society as “wise” if the influence of the most influential agents

vanishes with the size of the network. This assumes there exists some balancedness in the

network in terms of the agents’ centrality. Knowledge about the topology of the network

can be used to design algorithms that take the agents’ connectivity into account, but this

introduces additional information requirements and limits the ad-hoc nature of a distributed

solution. Specifically, in evolving networks the connectivity of the agents’ changes with time

and thus so does their influence, introducing variability in the group confidence.

The object of study of this dissertation is twofold: on the one hand we have a convex

optimization problem
∑m

i=1 fi(z) assumed to be the sum of a finite number n of convex

functions, and on the other hand we have a network, modeled as a graph G(V,E), with

|V | = n nodes and a set of edges E between them that represent their ability to share

information, see Fig. 1.1. The main property of this object is the assumption that each

node i in the network has access to a single fi(z) only. Nonetheless, one seeks to solve the

network-wide optimization problem by local interactions constrained by the network edges.

Now that we have defined the main focus of this theses we can describe the specific

problems we are interested in. We study four specific problems:

1. Graph-theoretic analysis of belief systems with logic constraints.

min
x∈Rn

n∑

i=1

n∑

j=1

aij‖xi − xj‖2 ∀i ∈ V.

2. Distributed learning with finite hypotheses sets.

min
θ∈Θ

n∑

i=1

DKL(P i‖P i
θ) Θ is finite.
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min
z∈R

n∑
i=1

fi(z)

Optimization
Problem

Network
of Agents

f1(z)

f2(z)
f3(z)

f4(z)

fn(z)

Figure 1.1: The object of study of this dissertation.

3. Distributed learning on compact hypotheses sets.

min
θ∈Θ⊂Rd

n∑

i=1

DKL(P i‖P i
θ) Θ is compact.

4. Optimal algorithms for distributed optimization.

min
z∈R

m∑

i=1

fi(z),

such that

(a) Each fi is strongly convex and smooth.

(b) Each fi is strongly convex.

(c) Each fi is smooth and convex.

(d) Each fi is convex.
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1.1 Motivation and Past Work

In this section, we introduce each of the problems studied in this dissertation and motivate

the open problems for each case. We provide some classic references and guide the reader

towards a more comprehensive literature review.

1.1.1 Opinion Dynamics in Belief Systems with Logic Constraints

The analysis and modeling of opinion dynamics spans several decades of interdisciplinary

research [27, 28, 29, 30, 31, 32, 33, 34, 35]. Belief systems are modeled as a process where

agents continuously update their beliefs by repeated interactions where opinions are ex-

changed over some social structure (e.g., social network) [10, 36]. New opinions are formed

by aggregating operations weighted by the relative importance assigned by an individual to

others. This simple characterization has provided tools for analyzing the long-term behav-

iors using systems theory. Nevertheless, the characterization has been shown insufficient to

explain the existence of shared beliefs in a population [37].

Opinion formation cannot be described solely as an ideological deduction from a set of

principles about the social world. Repeated social interactions and logic constraints on

truth statements are consequential for the construction of belief systems as well. Recently

proposed generalizations of opinion dynamic models integrate functional interdependencies

among issues that coherently bound ideas and attitudes [38]. Mainly, logic constraints in

belief systems provide a successful model for the evolution of opinions in both large-scale

populations and small groups [37]. Logic constraints build upon the natural idea that be-

lieving a specific statement is true may depend on the belief that other statements are true

as well. Nonetheless, existing algebraic tools can be too complicated to use when facing

large-scale and complex networks [38]. Understanding the role of the networks involved

in the structural features of a belief system is of critical importance and can have direct

implications for better decision-making and policy design [39, 40, 41, 42, 37].

We seek to provide graph-theoretic answers for a model of opinion dynamics of a belief

system with logic constraints. Particularly, we are interested in showing how the belief

system properties depend on the social network where agents interact and the set of logic

constraints that relate beliefs on different truth statements. Moreover, we search for explicit

dependencies for a variety of commonly used large-scale network models.
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1.1.2 Distributed (Non-Bayesian) Learning over Networks

Numerous engineered and natural systems can be modeled as a group of agents interacting

(e.g., people, robots, sensors). Distributed non-Bayesian learning studies groups of agents

that try to “learn” a distribution (from a parametrized family) that best explains some

observed data [1, 43, 44, 45, 46, 25, 47]. Specifically, agents seek to learn this parameter in

a distributed manner where each agent accesses local information without the involvement

of any centralized coordination.

One traditional problem in decision-making is that of parameter estimation. Given a

set of noisy observations coming from a joint distribution, one would like to estimate a

parameter or distribution that minimizes a certain loss function. For example, maximum

a posteriori (MAP) or minimum least squared error (MLSE) estimators fit a parameter to

some model of the observations. Both MAP and MLSE estimators require some form of

Bayesian posterior computation based on models that explain the observations for a given

parameter. Computation of such a posteriori distributions depends on having exact models

about the likelihood of the corresponding observations. This is one of the main difficulties of

using Bayesian approaches in a distributed setting. A fully Bayesian approach is not possible

because full knowledge of the network structure, or of other agents’ likelihood models, may

not be available [48, 49, 29].

In [29], the authors describe results on learning in social networks based on computing

posterior distributions using Bayes’ rule. That is, given some assumed prior knowledge

and new observations, an agent computes a posterior based on likelihood models, see [50].

Nevertheless, a fully Bayesian approach might not be possible because full knowledge of the

network structure, or other agents’ likelihood models, need not be available [48, 49]. Other

authors showed that non-Bayesian methods can be used in learning task as well [51, 1, 52, 43].

In this case, agents are assumed to be boundedly rational (i.e., fail to aggregate information

in a fully Bayesian manner [26]). They repeatedly communicate with others and use naive

approaches to aggregate information.

Several groundbreaking papers have described distributed methods to achieve global be-

haviors by repeatedly aggregating local information without complete knowledge of the net-

work [1, 2, 3, 4]. For example, in distributed hypothesis testing using belief propagation,

convergence and its dependence on the communication structure were shown [3]. Later,

extensions to finite capacity channels, packet losses, delayed communications, and tracking

were developed [53, 54]. In [2], the authors proved convergence in probability, the asymptotic

normality of the distributed estimation and provided conditions under which the distributed

estimation is as good as a centralized one. Later in [1], the almost sure convergence of a
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non-Bayesian rule based on the arithmetic mean was shown for fixed topology graphs. Ex-

tensions to information heterogeneity and asymptotic convergence rates have been derived

as well [52]. Following [1], other methods to aggregate Bayes estimates in a network have

been explored. In [55], geometric means are used for fixed topologies as well. However,

the consensus and learning steps are separated. The work in [56] extends the results of [1]

to time-varying undirected graphs. In [43], local exponential rates of convergence for undi-

rected gossip-like graphs are studied. The authors in [46, 45, 57, 56] proposed a non-Bayesian

learning algorithm where a local Bayes’ update is followed by a consensus step. In [46], con-

vergence result for fixed graphs is provided, and large deviation convergence rates are given,

proving the existence of a random time after which the beliefs will concentrate exponen-

tially fast. In [45], similar probabilistic bounds for the rate of convergence are derived for

fixed graphs, and comparisons with the centralized version of the learning rule are provided.

Other variations of the non-Bayesian approach have been proposed for continuum set of

hypotheses [58], weakly connected graphs [59], bisection search algorithms [60], transmission

node failures [61, 62, 63] and time-varying graphs [64, 65, 66]. See [67, 68] for an extended

literature review.

1.1.3 Optimal Convergence Rates in Distributed Optimization over
Networks

Early algorithms for distributed optimization, such as distributed subgradient methods, were

shown successful for solving optimization problems in a distributed manner over networks

[69, 70, 71, 72]. Nevertheless, these algorithms are particularly slow compared with their cen-

tralized counterparts. Recently, distributed methods that achieve linear convergence rates

for minimizing a sum of strongly convex and smooth (network) objective functions have been

proposed. One can identify three main approaches to the study of distributed algorithms.

In [73], a new method was proposed where it was shown that O((n2 +
√
L/µn) log ε−1) it-

erations are required to find an ε solution to the optimization problem when the function

is µ-strongly convex and L-smooth, and m is the number of nodes in the network. In [74],

a new analysis technique for the convergence rate of distributed optimization algorithms

via a semidefinite programming characterization was proposed. This approach provides an

innovative procedure to numerically certify worst-case rates of a plethora of distributed

algorithms, which can be useful to fine-tune parameters in existing algorithms based on

feasibility conditions of a semidefinite program. In [75], a unifying approach was proposed,

that recovers rate results from several existing algorithms such as those in [76, 77]. This
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newly proposed general method is able to recover existing rates and achieves an ε precision in

O(
√
L/(µλ2) log ε−1) iterations, where λ2 is the second largest eigenvalue of the interaction

matrix. These results require some minimal information about the topology of the network

and provide explicit statements about the dependency of the convergence rate on the prob-

lem parameters. Specifically, polynomial scalability is shown with the network parameter

for particular choices of small enough step-sizes, and even uncoordinated step-sizes are al-

lowed [78]. One particular advantage of this approach is that it can handle time-varying and

directed graphs. Nevertheless, optimal dependencies on the problem parameters and tight

convergence rate bounds are far less understood. A third approach was recently introduced

in [79], where the first optimal algorithm for distributed optimization problems was pro-

posed. This new method achieves an ε precision in O(
√
L/µ(1 + τ/

√
γ) log ε−1) iterations

for µ-strongly convex and L-smooth problems, where τ is the diameter of the network and γ

is the normalized eigengap of the interaction matrix. Even though extra information about

the topology of the network is required, the work in [79] provides a coherent understanding

of the optimal convergence rates and its dependencies on the communication network.

One particular area of interest is the large-scale optimal transport problems. Optimal

transport distances (also known as earth mover’s distances or Wasserstein distances) de-

sign an optimal plan to move “mass” from one probability distribution to another. This

problem can be traced back to the early work of Monge [80] and Kantorovich [81] and has

been of constant interest for allowing natural formulations to the problems of comparing,

interpolating, and measuring distances of functions [82]. On the other hand, computational

optimal transport has gained popularity for its applications in learning theory [83], com-

puter vision [84], computer graphics [85], statistical inference [86], information fusion [87],

and its relative complexity advantages with respect to classical methods [88]. Particularly,

large-scale optimal transport has been of recent interest for the latest applications where

large quantities of data are available and efficient algorithms are required [89, 90, 91]. Com-

prehensive accounts of the optimal transport problem and its computational aspects can be

found in [92, 93, 94, 82].

1.2 Dissertation Structure and Contributions

As indicated earlier, this dissertation is devoted to the study of the relation between op-

timization problems in the form of a sum of convex functions and distributed networks.

Moreover, we are particularly interested in the design of distributed algorithms that can

be executed over a network where each node only requires local information and yet global

7



performance goals are achieved. For each of the studied problems and algorithms, we fo-

cused on non-asymptotic performance analysis by looking into their efficiency and scalability

concerning the structural properties of the problem and the topology of the network where

the problem needs to be solved. Next, we provide a summary of the main contributions of

this dissertation.

In Chapter 2, we study how the structural properties of the social network of agents and the

set of logic constraints influence the dynamics of a belief system from a graph-theoretic point

of view. We describe this influence for the convergence of beliefs, the expected convergence

time and the stationary value of the belief system. Informally, we answer the following three

questions with graph-theoretic conditions that are easily accessible for a number of commonly

used topologies in large-scale complex networks: When does a belief system converge? How

long does it take converge? What does it converge to?

In Chapter 3, we consider the problem of distributed learning, where a network of agents

collectively aims to agree on a hypothesis that best explains a set of distributed observations

of conditionally independent random processes. We focus on the case where the number of

hypotheses is finite and propose a distributed algorithm and establish consistency, as well

as a nonasymptotic, explicit, and geometric convergence rate for the concentration of the

beliefs around the set of optimal hypotheses. Additionally, if the agents interact over static

networks, we provide an improved learning protocol with better scalability with respect to

the number of nodes in the network. Also, we propose a novel belief update algorithm for

distributed learning over time-varying directed graphs. Our main results state that, after a

transient time, all agents will concentrate their beliefs at a network independent rate.

In Chapter 4, we revisit the problem of distributed (non-Bayesian) learning. In contrast

with Chapter 3, we focus on the problem of having compact hypothesis sets. We explore a

variational interpretation of the Bayesian posterior and its relation to the stochastic mirror

descent algorithm to propose a new distributed learning algorithm. We show that, under ap-

propriate assumptions, the beliefs generated by the proposed algorithm concentrate around

the true parameter exponentially fast. We provide explicit non-asymptotic bounds for the

convergence rate. Moreover, we develop explicit and computationally efficient algorithms for

observation models in the exponential families. The algorithm is expressed as explicit up-

dates on the parameters of the conjugate distribution of the observational model (i.e., means

and precision for Gaussian beliefs). As an application example, we present a distributed al-

gorithm for the problem of parameter estimation with Gaussian noise for the general case

of time-varying directed graphs. We show a convergence rate of O(1/k) with the constant

term depending on the number of agents and the topology of the network.

In Chapter 5, we study the optimal convergence rates for distributed convex optimization
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problems over networks, where the objective is to minimize the sum
∑n

i=1 fi(z) of local func-

tions of the nodes in the network. We provide optimal complexity bounds for four different

cases: the case when each function fi is strongly convex and smooth, the cases when it is

either strongly convex or smooth, and the case when it is convex but neither strongly convex

nor smooth. Our approach is based on the dual of an appropriately formulated primal prob-

lem, which includes the underlying static graph that models the communication restrictions.

Our results show distributed algorithms that achieve the same optimal rates as their central-

ized counterparts (up to constant and logarithmic factors), with an additional cost related

to the spectral gap of the interaction matrix that captures the local communications of the

nodes in the network. As an application example, we propose a new class-optimal algorithm

for the distributed computation of Wasserstein barycenters over networks. Assuming that

each node in a graph has a probability distribution, we prove that every node is able to

reach the barycenter of all distributions held in the network by using local interactions com-

pliant with the topology of the graph. We show the minimum number of communication

rounds required for the proposed method to achieve arbitrary relative precision both in the

optimality of the solution and the consensus among all agents for undirected fixed networks.

1.3 Mathematical Preliminaries

1.3.1 Networks and Graph Theory

We model the communication structure that defines the ability of the group of agents to

exchange information between them as a graph. Particularly, throughout this dissertation

we will assume the number of agents n remains fixed, and the interactions between them

are enabled by the edges of a graph G(V,E), where V = {1, 2, · · · , n} and E ∈ V × V is a

set of directed edges such that an ordered pair (j, i) ∈ E if an agent j can communicate or

share information to agent i. In the general case, we will denote this as a directed graph. A

path P of G is a finite sequence {pi}li=0 such that (pi, pi+1) ∈ E for 0 ≤ i ≤ l− 1. Moreover,

define n(P) as the number of edges in the path P. A cycle C of a graph G is a path P such

that p0 = pl, i.e., the start and end nodes of the path are the same. We denote the period

of a directed graph as d(G), and define it as the greatest common divisor of the length of all

cycles in the graph G. If all edges in the network are bidirectional, we will refer to the graph

as undirected. Figure 1.2 shows some examples of common undirected graph topologies.
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Complete Graph Complete Graph

(a)

Complete Graph Complete Graph

(b)

(c) (d)

(e) (f) (g)

Figure 1.2: Examples of common graphs. (a) Dumbbell graph, two complete graphs
connected by an edge. (b) Bolas graph, two complete graphs connected by a path. (c)
Complete binary tree. (d) 2-d grid or lattice. (e) Star graph. (f) 3-d grid. (g) Two star
graph connected on their centers.

Even though we assume the set of nodes in the graph remains constant, we might allow for

the edges to change with time. In this scenario, we will refer to the graph as a time-varying

graph and we will define a particular graph at an instant k as Gk(V,Ek). Moreover, we

denote the graph sequence a {Gk}.
Next, we provide three useful definitions regarding the connectivity of a graph, or a se-

quence of graphs, for the cases when the edges are directed, undirected, or changing with

time.

Definition 1. An undirected and static graph is called connected, if there is a path between

any pair of nodes or vertices.

Definition 2. A directed and static graph is called:
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• Weakly connected if by replacing all directed edges by undirected ones creates a con-

nected graph.

• Connected if it contains a directed path, for any two pair of nodes i, j ∈ V , from i to

j or from j to i.

• Strongly connected if it contains a directed path, for any two pair of nodes i, j ∈ V ,

from i to j and from j to i.

Definition 3. A sequence of directed and time-varying graph is called B-strongly connected

if there is an integer B ≥ 1 such that the graph
{
V,
⋃(k+1)B−1
i=kB Ei

}
is strongly connected for

all k ≥ 0.

We define the Laplacian matrix L∈ Rn×n of the static directed graph G as a squared

matrix whose elements are defined as

[L]ij =





−1, if (j, i) ∈ E,
deg(i), if i = j,

0, otherwise,

where deg(i).

In addition, we will define weighted adjacency matrix A ∈ Rn×n associated with a graph

G as a squared matrix such that [A]ij 6= 0 if (j, i) ∈ E and [A]ij = 0 if (j, i) /∈ E. That

is, we assume each of the edges in the graph gets assigned a weight. Particularly, we will

use positive matrices A where every element is nonnegative. We will say a matrix A is row

stochastic or simply stochastic if [A]ij ≥ 0 and
∑n

j=1[A]ij = 1 for all i ∈ V . Moreover, we

will say a matrix A is column stochastic if [A]ij ≥ 0 and
∑n

i=1[A]ij = 1 for all j ∈ V . Finally,

a matrix A is doubly stochastic if it is row stochastic and column stochastic.

There are several ways to construct a set of stochastic weight matrices. If the graph

is undirected one can construct row stochastic or doubly stochastic weight matrices from

undirected local interactions. For example, one can construct doubly stochastic weight

matrices by considering a lazy Metropolis (stochastic) matrix of the form Āk = 1
2
In + 1

2
Âk,

where In is the identity matrix and Âk is a stochastic matrix whose off-diagonal entries

satisfy

[Âk]ij =





1

max{dik+1,djk+1} if (i, j) ∈ Ek,
0 if (i, j) /∈ Ek,
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where dik is the degree (the number of neighbors) of node i at time k. Note that the lazy

Metropolis weights require undirected communications since each weight [Âk]ij depends on

the degree of both agent i and agent j.

Next, we present a series of assumptions for different cases of the network connectivity

and directedness. We will use different assumptions for time-varying directed graphs, time-

varying undirected graphs and fixed graphs.

Assumption 1. The graph sequence {Gk} and the matrix sequence {Ak} are such that:

(a) Ak is doubly-stochastic with [Ak]ij > 0 if (i, j) ∈ Ek.

(b) If (i, j) /∈ Ek for some i 6= j then Aij = 0.

(c) Ak has positive diagonal entries, [Ak]ii > 0 for all i = 1, . . . , n.

(d) If [Ak]ij > 0, then [Ak]ij ≥ η for some positive constant η.

(e) {Gk} is B-strongly connected.

Assumption 1(a) and Assumption 1(b) characterize the communication between agents.

If two agents can exchange information at a certain time instant k, the underlying com-

munication graph will have an edge between the corresponding nodes. This also implies

a positive weighting of the information shared. The graph sequence {Gk} and the matrix

sequence {Ak} define a corresponding inhomogeneous Markov chain with transition proba-

bilities Ak. Assumption 1(c) guarantees the aperiodicity of this Markov chain. Additionally,

Assumptions 1(d) and 1(e) guarantee that this Markov chain is ergodic by ensuring there is

sufficient connectivity and that the entries of Ak do not vanish. Assumption 1 is common in

distributed optimization and consensus literature [69, 72]. It guarantees convergence of the

associated Markov chain and defines bounds on relevant eigenvalues in terms of the number

of agents.

Assumption 2. The graph G and matrix A are such that:

(a) A is doubly-stochastic with [A]ij = aij > 0 for i 6= j if and only if (i, j) ∈ E.

(b) A has positive diagonal entries, aii > 0 for all i ∈ V .

(c) The graph G is connected.

Analogous to Assumption 1, we use the following assumption when the interaction between

the agents happens over static graphs.
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Assumption 3. The graph sequence {Gk} is static (i.e. Gk = G for all k) and undirected

and the weight matrix Ā is a lazy Metropolis matrix, defined by

Ā =
1

2
In +

1

2
Â,

where Â is the Metropolis matrix, which is the unique stochastic matrix whose off-diagonal

entries satisfy

Âij =

{
1

max{deg(i)+1,deg(j)+1} if (i, j) ∈ E,

0 if (i, j) /∈ E.

1.3.2 Lemmas for Left Product of Weighted Adjacency Matrices

One of the main theoretical tools we are going to exploit in the analysis of distributed

algorithms over networks is the left product of stochastic matrices. Next, we present a

number of auxiliary lemmas that will allow us to analyze the convergence and convergence

rate of distributed algorithms. For a more comprehensive account of this results see [95].

First, we recall few results from [72] about the convergence of a product of doubly stochas-

tic matrices.

Lemma 1. [72, 69] Under Assumption 1 on a matrix sequence {Ak}, we have

∣∣∣∣[Ak:t]ij −
1

n

∣∣∣∣ ≤
√

2λk−t ∀ k ≥ t ≥ 0,

where λ ∈ (0, 1) is given by:

λ =
(

1− η

4n2

) 1
B
.

If each Ak is the lazy Metropolis matrix associated with Gk and B = 1, then

λ = 1− 1

O(n2)
.

.

Proof. The proof may be found in [72], except the bounds on λ for the lazy Metropolis chains

which may be found in [96].
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Lemma 2. [Corollary 2.a in [72]] Let the graph sequence {Gk}, with Gk = (Ek, V ) be uni-

formly strongly connected. Then, there is a sequence {φk} of stochastic vectors such that

| [Ak:t]ij − φik| ≤ Cλk−t for all k ≥ t ≥ 0.

The constants C, δ and λ satisfy the following relations:

(1) For general B-strongly-connected graph sequences {Gk},

C = 4, λ =

(
1− 1

nnB

) 1
B

, δ ≥ 1

nnB
.

(2) If every graph Gk is regular with B = 1,

C =
√

2, λ =

(
1− 1

4n3

) 1
B

, δ = 1,

and {Ak} is a sequence of matrices where Ak is a stochastic matrix such that

[Ak]ij =





1

djk
if (j, i) ∈ Ek,

0 otherwise.

.

Lemma 3. [Corollary 2.b in [72]] Let the graph sequence {Gk} satisfy the B-strong connec-

tivity assumption. Define

δ , inf
k≥0

(
min

1≤i≤n
[Ak:01n]i

)
. (1.1)

Then, δ ≥ 1/nnB, and if all Gk with B = 1 are regular, then δ = 1. Furthermore, the

sequence φk from Lemma 2 satisfies φjk ≥ δ/n for all k ≥ 0, j = 1, . . . , n.

The next lemma is an extension of Lemma 2 in [45] to the case of time-varying graphs. It

provides a technical result that will help us later in the computation of the non-asymptotic

convergence rate for the distributed learning algorithms.

Lemma 4. Let Assumption 1 hold for a matrix sequence {Ak}. Then for all i,

k∑

t=1

n∑

j=1

∣∣∣∣[Ak:t]ij −
1

n

∣∣∣∣ ≤
4 log n

1− λ ,

where λ = 1− η/4n2, and if every Ak is a lazy Metropolis matrix then λ = 1− 1/O(n2).
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Proof. In [45], the authors assume the weight matrix is static and diagonalizable, then they

use the following inequality from [97]:

‖e′jAk − π′‖1 ≤ nλ2(A)k,

where ej is a vector with its j-th entry equal to one and zero otherwise, π is the stationary

distribution of the Markov chain with transition matrix A and λ2(A) is the second largest

eigenvalue of the matrix A.

For time-varying graphs, one can use the inequality in Lemma 1 instead. The remainder

of the proof remains the same as in [45].

Finally, we will state an enabling theorem presented in [96], which presents a distributed

consensus protocol that achieves a consensus with linear growth in the number of agents.

Theorem 5. [96] Suppose each node i in a fixed undirected connected graph updates its

variable xik at each time instant k ≥ 2 as follows:

yik+1 = xik +
1

2

∑

j∈Ni

xjk − xik
max {di + 1, dj + 1} , (1.2a)

xik+1 = yik+1 +

(
1− 2

9U + 1

)(
yik+1 − yik

)
, (1.2b)

where Ni is the set of neighbors of agent i and di is its corresponding degree. Then, if U ≥ n

we have that

‖yk − x̄1‖2
2 ≤ 2

(
1− 1

9U

)k−1

‖y1 − x̄1‖2
2 ∀k ≥ 1, (1.3)

where [yk]i = yik and x̄ = 1
n

n∑
i=1

xi1, and the process is initialized with yi1 = xi1.

1.3.3 Random Walks, Mixing and Markov chains

Consider a finite graph G = (V,E) composed of V nodes with a set of edges E and a compliant

associated row-stochastic matrix A. A random walk on the graph G is the event of a token

moving from one node to another according to some probability distribution. These dynamics

are captured by a Markov chain X = (Xk)
∞
0 such that P{Xk+1 = y|Xk = x} = P (x, y).

This Markov chain is called ergodic if it is irreducible and aperiodic. For an ergodic Markov

chain, there exists a unique stationary distribution π, which describes the probability that
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a random walk visits a particular node in the graph as the time goes to infinity, that is

P{Xk = j} → πj as k → ∞. The stationary distribution is invariant to the transition

matrix, that is π′P = π′. It follows immediately that its convergence reduces to analyzing

powers of P (Theorem 4.9 in Levin et al.[98]).

Now, define the distance to stationarity as

d(k) = max
x∈Ω
‖P k(x, ·)− π‖TV .

Moreover, define the mixing time of the Markov chain as

tmix(ε) = min
k
{k : d(k) ≤ ε},

and we say the Markov chain is rapid mixing if tmix(ε) = poly(log n, log 1
ε
). Finally, it holds

that

λ2

2(1− λ2)
log

(
1

2ε

)
≤ tmix(ε) ≤ log n+ log(1/ε)

1− λ2

, (1.4)

where λ2 is the second largest left-eigenvalue of the transition matrix P [99].

Table 1.1 shows estimates for the dependency of the mixing time of a random walk on a

graph for several common well-studied topologies and the number of nodes in the network.

1.3.4 The Coupling Method

Consider two independent Markov chains X = (Xk)
∞
0 and Y = (Yk)

∞
0 , with the same

transition matrix P . Then, define the coupling time K as the smallest k such that Xk = Yk,

that is, K = mink≥0{Xk = Yk}. Note that K is a random variable and it depends on P as

well as the initial distributions of the processes Xk and Yk. Finally, define the quantity LP

as the maximum expected coupling time of a Markov chain with transition matrix P over

all possible initial distributions of the processes Xk and Yk, then

LP = max
u,v

E[K] where X0 = u and Y0 = v.

In words, this LP is the maximum expected time it takes for two random walks, with the

same transition matrix and arbitrary initial states, to intersect. If we assume X starts from

a distribution π, and Y from some other arbitrary stochastic vector v and we couple the
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Table 1.1: Maximum expected convergence time for a random walk on networks with n
nodes.

Network Topology Mixing Time
Complete O(n log 1/ε)

Cycle O(n2 log 1/ε)
Path [100] O(n2 log 1/ε)

Dumbbell Graph [101] O(n2 log 1/ε)
Complete Binary Tree [102, 103, 98]-Section 5.3.4 O(n log 1/ε)

k-d Cube with Loops [104] O((1− 1/k) log 1/ε)
k-d Hypercube {0, 1}k [98]-Section 5.3.3 O(k log k log 1/ε)

Lovasz Graph Ckn [104] O((1− 1/(kn2)) log 1/ε)
2-d Grid [105, 106] O(n log n log 1/ε)
Star Graph [107] O(n log 1/ε)

3-d Grid [105, 106] O(n2/3 log n log 1/ε)
Two Joined Star Graphs O(n log 1/ε)
k-d Grid [105, 106] O(k2n2/k log n log 1/ε)

2-d Torus [108] O(n2 log 1/ε)
3-d Torus [108] O(n2 log 1/ε)
k-d Torus [108] O(n2k log k) log 1/ε)
Lollipop [109] O(n3 log 1/ε)
Barbell [109] O(n3 log 1/ε)

Eulerian: d-degree and expansion [110] O(|E|2 log 1/ε)
Lazy Eulerian with degree d-degree [111] O(n|E| log 1/ε)

Eulerian: d-degree, max-degree weights and expansion [110] O(n2d log 1/ε)
Lamplighter on k-Hypercube [108] O(k2k log 1/ε)
Lamplighter on (k, n)-Torus [108] O(knk log 1/ε)

Bolas Graph [112] O(n3 log 1/ε)
Geometric Random Graph: Gd(n, r) [113] O(r−2 log n log 1/ε)

Geometric Random Graph: G2(n,Ω(polylog(n))) [114] O(polylog(n) log 1/ε)
Erdős-Rényi: G(n, c/n), c > 1 [115, 116] O(log2 n log 1/ε)

Erdős-Rényi: G(n, (1 + δ)/n), δ3n→∞ [117, 118] O((1/δ3) log2(δ3n) log 1/ε)
Erdős-Rényi: G(n, 1/n) [119] O(n log 1/ε)

Newman-Watts (small-world) Graph [120] O(log2 n log 1/ε)
Expander Graph [121] O(n2 log 1/ε)

Exponential Random Graph: High temperature [122] O(n2 log n log 1/ε)
Exponential Random Graph: Low temperature [122] O(exp(n) log 1/ε)

Any Connected Undirected Graph [96] O(n2 log 1/ε)
Any Connected Graph O(|E|diam(G) log 1/ε)

processes Y and X by defining a new process W such that

Wk =




Yk, if k < K,

Xk, if k ≥ K,
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then

‖v′P k − π‖1 ≤ max
v

Pv {K > k}

and by the Markov inequality

‖v′P k − π‖1 ≤
maxv E[K]

k
.

Thus, after T = O(LP log 1/ε) steps, ‖vTP T − π‖1 ≤ ε, for any v.

1.3.5 Some Basic Notions on Convex Analysis

In this subsection, we will present a sequence of basic definitions from convex analysis. For

a comprehensive account of definitions and results of convex analysis see [123].

Definition 4 (Definition 1.2.1 in [123]). A subset C of Rd is called convex if

αx+ (1− α)y ∈ C, ∀x, y ∈ C, ∀α ∈ [0, 1].

Definition 5 (Definition 1.2.2 in [123]). Let C be a convex subset of Rd. A function

f : C → R is called convex if

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y), ∀x, y ∈ C, ∀α ∈ [0, 1].

Definition 6. Let f : Rd → R be a convex function and X be a bounded set in Rd. We say

f is Lipschitz continuous over X with constant L, or simply L-Lipschitz over X, if

‖f(x)− f(y)‖ ≤ L‖x− y‖, ∀x, y ∈ X.

Definition 7. We will refer to a function f(·) as µ-strongly convex with µ > 0, if for any

x, y it holds that

f(y) ≥ f(x) +
〈
∇̃f(x), y − x

〉
+
µ

2
‖x− y‖2

2,

where ∇̃f(x) is any subgradient of f(·) at x.

Definition 8. We will refer to a function f(·) as having L-Lipschitz continuous gradients
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(or L-smooth), if it is differentiable and for any x and y it holds that

‖∇f(x)−∇f(y)‖2 ≤ L‖x− y‖2.

1.3.6 Additional Definitions

McDiarmid’s Inequality

In the proof of some of the non-asymptotic converge rates bounds we will use McDiarmid’s

inequality [124], which provides bounds for the concentration of functions of random vari-

ables. This inequality allows us to show bounds on the probability that the beliefs exceed a

given value ε. For completeness, next, we state the McDiarmid’s inequality.

Theorem 6. (McDiarmid’s inequality [124]) Let X1, . . . , Xk be a sequence of independent

random variables with Xt ∈ X for 1 ≤ t ≤ k. Further, let g : X k → R be a function of

bounded differences, i.e., for all 1 ≤ t ≤ k,

sup
xt∈X

g (. . . , xt, . . .)− inf
xt∈X

g (. . . , xt, . . .) ≤ ct,

then for any ε > 0 and all k ≥ 1,

P
(
g({Xt}kt=1)− E[g({Xt}kt=1)] ≥ ε

)
≤ exp

(
− 2ε2∑k

t=1 c
2
t

)
.

Distances between Probability Distributions

Next, we provide three definitions of the most common “distance” functions between prob-

ability distributions.

Definition 9. The squared Hellinger distance between two probability distributions P and

Q is given by

h2 (P,Q) =
1

2

∫ (√
dP

dλ
−
√
dQ

dλ

)2

dλ,

where P and Q are dominated by λ. Moreover, the Hellinger distance satisfies the property

that 0 ≤ h(P,Q) ≤ 1.
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Definition 10. If P and Q are probability measures over a set X, and P is absolutely

continuous with respect to Q, then the Kullback-Leibler divergence from Q to P is defined as

DKL(P‖Q) =

∫

X

log
dP

dQ
dP,

where dP/dQ is the Radon-Nikodym derivative of P with respect to Q.

Definition 11. The total variation distance between two probability measures P and Q on

a sigma-algebra F of subsets of the sample space Ω is defined as

‖P −Q‖TV = sup
A∈F
|P (A)−Q(A)|.

The Kronecker Product

In the next definition, we recall some basic properties of the Kronecker product and the

corresponding Kronecker product of two graphs.

Definition 12. [125] Let A be a m × n matrix, and C be a p × q matrix, the Kronecker

product A⊗ C is the mp× nq matrix defined as:

A⊗ C =




a11C . . . a1nC
...

. . .
...

am1C . . . amnC




or explicitly

A⊗ C =




a11




c11 . . . c1q

...
. . .

...

cp1 . . . cpq


 . . . a1n




c11 . . . c1q

...
. . .

...

cp1 . . . cpq




...
. . .

...

am1




c11 . . . c1q

...
. . .

...

cp1 . . . cpq


 . . . amn




c11 . . . c1q

...
. . .

...

cp1 . . . cpq






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=




a11c11 . . . a11c1q . . . a1nc11 . . . a1nc1q

...
. . .

...
...

. . .
...

a11cp1 . . . a11cpq . . . a1ncp1 . . . a1ncpq
...

...
...

...
...

...
...

...

am1c11 . . . am1c1q . . . amnc11 . . . amnc1q

...
. . .

...
...

. . .
...

am1cp1 . . . am1cpq . . . amncp1 . . . amncpq




.

Moreover, the following properties hold:

1. Bilinearity and associativity: for matrices A, B and C, and a scalar k, it holds:

A⊗ (B + C) = A×B + A⊗ C
(A+B)× C = A⊗ C +B ⊗ C

(kA)⊗ C = A⊗ (kB) = k(A⊗B)

(A⊗B)⊗ C = A⊗ (B ⊗ C).

2. Non-Commutative: In general A × B 6= B ⊗ A. However, there exists commutation

matrices P and Q such that:

A⊗B = P (B ⊗ A)Q,

and if A and B are square matrices then P = Q′.

3. Mixed-product property: for matrices A, B, C and D:

(A⊗B)(C ⊗D) = (AC)⊗ (BD).

Additionally, we will define the Kronecker product of graphs as follows. The Kronecker

(also known as categorical, direct, cardinal, relational, tensor, weak direct or conjunction)

product G = G1 ⊗ G2 of two graphs G1 = (V1, E1) and G2 = (V1, E1) is a graph G = (V,E)

where V = V1 × V2 and |V | = |V1||V2|; and (u, u′) → (v, v′) ∈ E if and only if u → v ∈ E1

and u′ → v′ ∈ E2. Moreover, the adjacency matrix of the graph G is the Kronecker product

of the adjacency matrices of G1 and G2.
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CHAPTER 2

GRAPH-THEORETIC ANALYSIS OF BELIEF
SYSTEMS UNDER LOGIC CONSTRAINTS

In this chapter, we study how the structural properties of the social network of agents and the

set of logic constraints influence the dynamics of a belief system from a graph-theoretic point

of view. We describe this influence for the convergence of beliefs, the expected convergence

time and the stationary value of the belief system. Informally, we answer the following

three questions with graph-theoretic conditions that are easily accessible for a number of

commonly used topologies in large-scale complex networks:

1. When does a belief system converge?

2. How long does it take for a belief system to converge?

3. Where does a belief system converge?

2.1 Problem Formulation

Friedkin et al.[37, 38] describe a belief system with logic constraints as a group of n agents

that periodically exchange and update their opinions about a set of m different truth state-

ments with logical dependencies among them. After each social interaction, the agents use

shared opinions as well as underlying logical dependencies among the opinions to update

their beliefs. The agents exchange their opinions by interacting over a social network cap-

tured by a graph G = (V,E), where V is the set of agents, and E is a set of edges. A

directed edge towards an agent indicates that it receives the opinion of another agent, i.e.,

the directed flow of information. Analogously, the logical dependencies among the truth

statements are modeled by a graph T = (W,D), where an edge between two statements

exists if the belief in one statement affects belief in the other.

The generalized dynamics of a belief system are defined as follows. First, every agent

aggregates its opinions on every truth statement according to the imposed logic constraints

(i.e., modifying the opinions to take into account the dependencies on the other truth state-

ments). Second, the agents share their opinions over a social network, where the opinions
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are aggregated again to take into account those coming from the neighboring agents (i.e.,

social interactions). Finally, a new opinion is formed as a combination of the most recent

aggregation and the initial opinion, which models adversity to deviate from the initial beliefs

or stubbornness. The opinion of an agent on a specific statement being true or false is mod-

eled by a scalar value between zero and one. A value of zero indicates that the given agent

strongly believes a specific statement is false, whereas a value of one indicates that the agent

believes the statement is true. Similarly, a value of 0.5 indicates the maximal uncertainty

about a statement. The aggregation steps consist of weighted (convex) combinations of the

available values, where the weights represent the relative influence. This model is described

in the following equations (2.1) for an arbitrary agent i ∈ V and an arbitrary statement

u ∈ W :

x̂ik(u) =
m∑

v=1

Cuvx
i
k(v) (Aggregation by logic constraints) (2.1a)

x̄ik(u) =
n∑

j=1

Aijx̂
j
k(u) (Aggregation by social network) (2.1b)

xik+1(u) = λix̄ik(u) + (1− λi)xi0(u) (Influence of initial beliefs) (2.1c)

where 0 ≤ xik(u) ≤ 1 represents the opinion of an agent i at time k on a certain statement u,

while x̂ik(u) and x̄ik(u) are the intermediate aggregation steps. Specifically, the intermediate

aggregated opinion x̂ik(u) of agent i on statement u is formed by using the opinions of the

same agent about the other statements v. The parameters 0 ≤ Cuv ≤ 1 are compliant

with the graph T that models the logic constraints in the sense that Cuv is nonzero if the

statement u depends on statement v, and otherwise Cuv = 0. These parameters represent

the strength of the logic constraints, i.e., the influence that an opinion on a statement has

on the opinion on other statements.

Subsequently, the intermediate aggregated opinion x̄ik(u) of agent i on statement u is

formed by combining all the intermediate opinions x̄ik(u) of neighboring agents j. In this

update, the parameters 0 ≤ Aij ≤ 1 represent the weights that an agent i assigns to the

information coming from its neighbor j, for example A13 is how agent 1 weights the opinions

shared by agent 3. These parameters are compliant with the network G in the sense that

if there is an incoming edge to agent i from agent j in the graph, then the corresponding

weight Aij is nonzero.

The last update in Eq. (2.1) indicates that, at time k+1, the new opinion xik+1(u) of agent i

on statement u is obtained as a weighted combination of its intermediate aggregated opinion

x̄ik(u) at time k and its initial opinion xi0(u) on statement u. The parameter 0 ≤ λi ≤ 1 that
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agent i uses models its stubbornness. If λi < 1 we say an agent is stubborn, where λi = 0

indicates that the agent i is maximally closed to the influence of others. If λi = 1, agent i is

said to be maximally open to the influence of others, and oblivious if additionally it is not

influenced by stubborn agents.

We can group the parameters {Aij} into an n-by-n matrix A, known as the social influence

structure, and the parameters {Cuv} into an m-by-m matrix C, known as the multi-issues

dependent structure [38]. These matrices are nonnegative. Furthermore, the weights Aij

assigned by an agent i to its neighbors j sum up to one, i.e., the sum of the entries in each

row of the matrix A is 1; likewise, the sum of the entries in each row of the matrix C is 1.

Thus, the matrices A and C are row-stochastic

Figure 2.1(c) shows the belief system generated by the network of agents in Fig. 2.1(a)

and the set of logic constraints in Fig. 2.1(b). This new graph depicted in Fig. 2.1(c) is much

larger than the network of agents or the network of statements taken separately; effectively,

it has 2nm nodes. The belief of each agent on each truth statement is a separate node; also,

the initial beliefs are separate nodes.

The model of this larger graph of the belief system can be compactly restated as

xk+1 = Pxk, (2.2)

where xk ∈ [0, 1]2nm is a state that stacks the current beliefs of all agents on all topics along

side with the initial beliefs, i.e.,

xk =

[
x1
k(1), . . . , x1

k(m)︸ ︷︷ ︸
Beliefs of Agent 1

, x2
k(1), . . . , x2

k(m)︸ ︷︷ ︸
Beliefs of Agent 2

, . . . , xnk(1), . . . , xnk(m)︸ ︷︷ ︸
Beliefs of Agent n

,

x1
0(1), . . . , x1

0(m)︸ ︷︷ ︸
Initial Beliefs of Agent 1

, x2
0(1), . . . , x2

0(m)︸ ︷︷ ︸
Initial Beliefs of Agent 2

, . . . , xn0 (1), . . . , xn0 (m)︸ ︷︷ ︸
Initial Beliefs of Agent n

]′

and

P =

[
(ΛA)⊗ C (In − Λ)⊗ Im

0nm Inm

]
,

where 0nm is a zero matrix of size n×m, Inm is an identity matrix of size n×m, ⊗ indicates

the Kronecker product, Λ is a diagonal matrix with the i-th diagonal entry being λi, and

x′ denotes the transpose of a vector or matrix x. This allows for the definition of the belief

system graph P , which is compliant with the matrix P , where an edge from ` to r exists if

Pr` > 0. Equation (2.3) shows an example of a matrix P for the belief system in Fig. 2.1(c)
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Figure 2.1: A belief system with 4 agents and 3 truth statements. (a) Agents are
represented as nodes/circles, numbered from 1 to 4, and the network of influences among
them is shown as edges between nodes. The truth statements or topics are color-coded,
e.g., the truth statement 1 is represented as a red square. Agent 2 is influenced by its own
opinion and agents 4 and 1, agent 1 follows the opinion of agent 3 which in turn follows the
opinion of agent 4, agent 4 follows its own opinion only. A possible matrix A for this social
network is shown below the graph. This indicates that agent 2 assigns a higher weight of 1

2

to the opinion of agent 1 than the weight it assigns to the opinion of communicated by
agent 4. (b) The truth statement 1 is influenced by the belief that statement 2 is true,
statement 2 directly follows the belief in statement 3. A possible matrix C for this set of
logic constraints is shown below the graph. The belief that the truth statement 1 is true is
influenced (with a weight of 1

2
) by the opinion that the truth statement 2 is true. (c) The

beliefs system, see equation 2.2, composed by the agent’s interaction graph and the logic
constraints.
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assuming that λi = 0.5 for all agents.

P =







0 0 0 0 0 0 1
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

1
2
· I12

012 I12




. (2.3)

Figure 2.2 shows an example where a network of 5 agents forms a cycle graph, given in

Fig. 2.2(a), a set of 4 logic constraints forms a directed path, given in Fig. 2.2(b), and λi = 1

for all i. The belief system graph is shown in Fig. 2.2(c). Figure 2.2(d) shows dynamics of

the belief vector as the number of social interactions increases. The opinion on all 4 topics

converges to a single value for all agents. Figure 2.2(e) shows the dynamics of the belief vector

when no logic constraints are considered. In this case, the agents reach some agreement on

the final value, but this consensual value is different for each of the statements. See Fig. 2.3

for an additional example of the influence of the logic constraints on the resulting belief

system and Fig. 2.4 for a variation of the example discussed in Fig. 2.2 when the network of

agents is a complete graph.

2.2 Convergence, Convergence Time and Convergence Value

In this section, we provide graph-theoretic answers to the questions of convergence, conver-

gence time and convergence value of a belief system with logic constraints. Particularly, we

are interested in how the topology of the graph of agent interactions and the graph of topic

relations, as well as the number of agents and the number of truth statements, affect the

dynamics of a belief system.
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Figure 2.2: A belief system with agents on a cycle graph and logic constraints on a path
graph. (a) A network of 5 oblivious agents forming a cycle graph. (b) A set of 4 truth
statements with logic constraints forming a path graph. (c) The belief system graph P . (d)
The belief dynamics with logic constraints. (e) The belief dynamics with no logic
constraints. The beliefs of all agents have been color coded per truth statement. The
agents reach an agreement on each of the truth statements.
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Figure 2.3: The influence of the logic constraints in the resulting aggregated belief system.
(a) The network of agents, where agent 1 follows the opinion of agent 2, agent 2 is
influenced by agent 1 and 3, agent 3 is influenced by its own opinion, and the opinion of
agent 4 and agent 4 is influenced by agent 3 as well as its own. (b) The opinion on
statement 1 is influenced by the belief on statement 2. (c) The opinion on statements 2
and 1 follow each other. (d) The opinion on statements 2 and 1 influence each other (e-g)
The belief systems with the network of agents in (a) and logic constraints in (b-d).

2.2.1 Does it converge?

The convergence of the belief system can be stated as a question of the existence of a limit

of the beliefs in time, as the social interactions continue with time. That is, whether or not

there exists a vector of opinions x∞ such that

lim
k→∞

xk = lim
k→∞

P kx0 = x∞

for any initial value x0.

Friedkin et al. [37, 38] showed that a belief system with logic constraints will converge
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(a) (b)

(c)

Figure 2.4: Two examples of graph product between a complete graph/cycle graph with 5
nodes and a path graph of 4 logical belief constraints. (a) A complete graph with 5 agents.
(b) A path graph with 5 nodes. (c) A cycle graph with 5 agents. (d) The resulting belief
system graph from the network of agents in (a) and the network of logic constraints in (b).

to equilibrium if and only if either limk→∞(ΛA)k = 0, or limk→∞(ΛA)k 6= 0 and limk→∞Ck

exists. Moreover, if we represent the matrices A and Λ with a block structure as

A =

[
A11 A12

0 A22

]
Λ =

[
Λ11 0

0 I

]

where A22 is the subgraph of oblivious agents, then the belief system is convergent if and

only if limk→∞Ck and limk→∞(A22)k exists. We next consider how these conditions may

be interpreted in terms of the the topology of the network of agents and the set of logic

constraints.

The belief system in Eq. (2.2) converges to equilibrium if and only if every closed strongly

connected component of the graph P is aperiodic [30, 126]. Recall that a strongly connected

component is closed if it has no incoming links from other agents; otherwise it is called

open, see Fig. 2.5. In general, the set of strongly connected components can be computed
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efficiently for large-complex networks[127].

1
2

3

4

5
6

7

8

9
10

11

12

Open Strongly
Connected Component

Closed Strongly
Connected Component

Open Strongly
Connected Component

Figure 2.5: Open and closed strongly connected components of a graph. A graph with 12
nodes and 3 strongly connected components. The strongly connected component composed
of nodes 5, 6, 7 and 8 is closed since it has no incoming edges from other components.

We can now recall an auxiliary result that will help us later in the convergence analysis

of the belief system. Namely, the next theorem relates the connectedness of the Kronecker

product of directed graphs with the connectedness of the factor graphs.

Theorem 7 (Theorem 1 in [128]). Let G and H be strongly connected directed graphs.

Let d1 = d(G), d2 = d(H), d3 = gcd(d1, d2) and D = lcm(d1, d2). Then, the number of

components in G ⊗H is d3. Moreover, for any component B of G ⊗H, d(B) = D.

Theorem 7 allows us to state our main result in this section. Namely, we relate the

connectivity properties of the strongly connected components of the product of two graphs

with the connectivity properties of the strongly connected components of the each of the

factor graphs.

Lemma 8. Every strongly connected component of the Kronecker product graph G1 ⊗ G2 is

the result of the Kronecker product of a strongly connected component of G1 and a strongly

connected component of G2.

Proof. Let A1 and A2 denote the adjacency matrices for the graphs G1 and G2, respectively.

We can construct a condensation og the graph G by contracting every strongly connected

component to a single vertex, resulting in a directed acyclic graph. Thus, a topological
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ordering is possible (see Cormen et al. [129] Section 22.4) and there always exists two per-

mutation matrices P1 and P2 such that we can rearrange the matrices A1 and A2 into a block

upper triangular form where each of the blocks is a strongly connected component, that is

P ′1A1P1 =




A1
1 ∗ ∗ ∗

0 A2
1 ∗ ∗

0 0
. . . ∗

0 0 . . . An1
1




and P ′2A2P2 =




A1
2 ∗ ∗ ∗

0 A2
2 ∗ ∗

0 0
. . . ∗

0 0 . . . An2
2



.

Moreover, define P = P1 ⊗ P2 and by properties of the Kronecker product, cf. Definition

12, it follows that

(P ′1A1P1)⊗ (P ′2A2P2) = P ′(A1 ⊗ A2)P,

where P is also a permutation matrix and

P ′(A1 ⊗ A2)P =




A1
1 ⊗ A2 ∗ ∗

0
. . . ∗

0 · · · An1
1 ⊗ A2


 .

Finally, by property 2 in Definition 12 there exists a permutation matrix Q such that

Q′(P ′(A1 ⊗ A2)P )Q =




A2 ⊗ A1
1 ∗ ∗

0
. . . ∗

0 · · · A2 ⊗ An1
1


 ,

=




A1
2 ⊗ A1

1 ∗ ∗ ∗ ∗ ∗ ∗
0

. . . ∗ ∗ ∗ ∗ ∗
0 · · · An2

2 ⊗ A1
1 ∗ ∗ ∗ ∗

0 · · · 0
. . . ∗ ∗

0 · · · · · · 0 A1
2 ⊗ An1

1 ∗ ∗
0 · · · · · · · · · 0

. . . ∗
0 · · · · · · · · · · · · 0 An2

2 ⊗ An1
1




.

Therefore, every block in the block diagonal form of the product of two adjacency matrices

is the product of two strongly connected components, one from each graph.

The matrix P has two diagonal blocks, one corresponding to the initial beliefs and one in-
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volving the product ΛA⊗C. The initial belief nodes are aperiodic closed strongly connected

components, each consisting of a single node. Therefore, the diagonal block in P corre-

sponding to the initial beliefs induces an aperiodic graph. Moreover, strongly connected

components with stubborn agents do not affect the convergence of the belief system. Thus,

one can focus on the closed strongly connected components of the graph induced by A22⊗C.

The product A22⊗C can be written in its block upper triangular form, where each of the

blocks in the diagonal is the product of one strongly connected component from the graph

induced by A22 and one from T (see Supplementary Lemma 8).Theorem 7 shows that the

period of a product graph is the lowest common multiple of the periods of the two factor

graphs. If the factor graphs are not coprime the resulting product graph is a disconnected

set of components. Nevertheless, each of the resulting components will have the same period

as defined above. Therefore, in order for a product graph to be aperiodic we require the

factors to be aperiodic as well. An immediate conclusion drawn from this fact is that

the process (2.2) converges to an equilibrium if an only if every closed strongly connected

component of the graph T is aperiodic and every closed strongly connected component

of the graph G composed by oblivious agents only is aperiodic. This is a graph-theoretic

interpretation of the algebraic criteria derived in [37, 38].

In Fig. 2.1, the network of agents has a single closed strongly connected component which

consists of the node 4. The network of truth statements also has a single closed strongly

connected component, consisting of the node 3. Thus, the belief system will converge to a set

of final beliefs. In Fig. 2.2, the belief system has one closed strongly connected component

shown in green with the topology of a cycle graph. This strongly connected component

corresponds to the product of the cycle graph and the green node of the logic constraints.

The cycle graph is aperiodic if and only if the number of nodes is odd. Thus, if the cycle

network of agents has an even number of nodes, the belief system will not converge.

2.2.2 How long does a belief system take to converge?

We seek to characterize the time required by the process in Eq. (2.2) to be arbitrarily close

to its limiting value in terms of properties of the graphs G and T , such as the number of

agents and truth statements, and the topology of the graphs. We will provide an estimate on

the number of iterations required for the beliefs to be at a distance of at most ε from their

final value (assuming they converge). We will express this estimate in terms of the total
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variation distance, denoted by ‖ · ‖TV . For this we define the convergence time as follows:

T (ε) = min
k≥0

{‖xk − x∞‖TV
‖x0 − x∞‖TV

≤ ε

}
,

where xk evolves according to Eq. (2.2). Informally, the value T (ε) shows the minimum

number of social interactions required for the belief system to be arbitrarily close to their

final value as a function of the initial disagreement.

The dynamics of the belief system in Eq. (2.2) are closely related to the dynamics of a

Markov chain with a transition matrix P . Convergence to a stationary distribution of a

random walk with the transition probability P on the graph P implies convergence of the

dynamics in Eq. (2.2). Therefore, bounds on the convergence time based on the mixing

properties of this Markov chain provide rates of convergence for the belief system. Notably,

the convergence time is proportional to the maximum time required for the random walk

to get absorbed into a closed strongly connected component plus the time needed for such

component to mix sufficiently. Figure 2.6 illustrates this by considering two random walks

X and Y with the same transition matrix P .

X0

XO(H)

Y0

XO(H+L) = YO(H+L)F

Figure 2.6: Hitting and absorbing time of a random walk. A random walk starts at X0 in a
transient state and evolves according to some transition matrix P ; after O(H) time steps
(the absorbing time), it gets absorbed into a closed connected component. Then, after
O(L) time steps (the mixing time) it crosses paths with another random walk Yk starting
at π the stationary distribution of P . Then after O((L+H) log(1/ε)) time steps, the
random walk X0 is arbitrarily close to its limit value.

If we denote by L the maximum expected mixing time among all closed strongly connected

components, and by H the maximum expected time to get absorbed into a closed component,

then if the graph P has no bipartite closed strongly connected components, the belief system

will be ε close to its limiting distribution after O((L + H) log(1/ε)) steps. Therefore, not
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only do we have an estimate of the convergence time of the belief system in terms of the

topology of the graph P , but we also know this convergence happens exponentially fast. We

formalize this statement in Theorem 9.

Theorem 9. Assume that there exists at least one closed strongly connected component

in the graph P, and that all closed strongly connected components are aperiodic. Let L

be the maximum expected coupling time of a random walk in a closed strongly connected

component of P. Moreover, let H be maximum expected time for a random walk, starting

at an arbitrary node, to get absorbed into a closed strongly connected component. Then,

for k ≥ 4(L + H) log(1/ε), it holds for the belief system described in equation (2.2) that

‖xk − x∞‖TV ≤ ε.

Proof. We use the coupling method to bound the convergence time of the belief system [130].

The main conceptual idea of the proof is relation between the convergence time of the belief

system described in equation (2.2) and the ergodic properties of a random walk over on the

graph P . Particularly, consider a random walk on the state space {1, . . . , 2nm} which, at

time k jumps to a random neighbor of its current state. The relation between a random

walk on a graph and the convergence properties of systems of the form of the belief system

in (2.2) has been previously explored in [131].

Initially, we show that all opinions xik, such that i lies in a closed strongly connected

component, will converge to some stationary point. Thus, in what follows we will find the

required time to reach some ε-consensus via coupling arguments, which in turn will provide

the required time for a belief system to be ε close to its stationary distribution.

Let i be a node belonging to a closed strongly connected component S and let PS be the

matrix obtained by looking at the minor of P corresponding to entries in S. If S is closed

then PS is row-stochastic, and Perron-Frobenius theory tells us there exists some vector πS

such that

π′SPS = π′S.

Now, define two independent random walks X = (Xk)
∞
0 and Y = (Yn)∞0 with the same

transition matrix PS. X starts from a distribution πS, and Y from some other arbitrary

stochastic vector v. Moreover, couple the processes Y and X by defining a new process W

such that

Wk =




Yk, if k < K,

Xk, if k ≥ K,
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where K = min {k ≥ 0 : Yk = Xk} is called the coupling time. Each random walk moves

according to PS, so if we correlate them by moving them together after they intersect,

we have not changed the fact that, individually, they move according to PS. With this

construction of the coupling (Theorem 5.2 in Levin et. al.[98]), we have that

‖v′P k
S − πS‖TV ≤ max

v
P {K > k} ,

and by the Markov inequality

‖v′P k
S − πS‖TV ≤

maxv E[K]

k
. (2.4)

Therefore, to be at a distance of at most 1/4 we require k = 4 maxv E[K]. We say the mixing

time of the random walk is 4L where we have that L = maxv E[K] is the maximum expected

time it takes for the random walks X and Y in the source S to intersect. Then, it follows

from Eq. 4.36 in Levin et. al.[98] that in order to be ε close to the stationary distribution

we require at least k ≥ 4L log(1/ε) steps, for any v. Therefore, we have shown that xik for

i in a closed strongly connected component S converges to π′Sx
S
0 at a geometric rate. Here

xS0 stacks those xi0 that belong to S.

Now, consider the case where i belongs to an open strongly connected component. Let

M be the set of states in such connected component. Stacking up xik over i in M into the

vector xMk , observe that

xMk+1 = ZxMk +Ryk, (2.5)

where Z is strongly connected and substochastic, meaning some rows add up to less than 1.

The entries of yk come from nodes in other strongly connected components and the matrix

R represents how they influence the nodes in M .

Initially, assume that yk converges and call its limit y∞. Now, consider a random walk

that moves around M according to Z; the moment it steps out of M into another strongly

connected component we say it is absorbed by it since it can not return to M .

Let qik be the probability the walk is at state i in M at time k. Then

q′k+1 = qk
′Z,

and let Hi be the expected time to get absorbed into any other strongly connected compo-
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nent, the set of nodes in M is connected to, starting from node i and let

H1 = max
i∈M

Hi.

If the absorbing strongly connected component is closed, then H = H1. On the other

hand, the absorbing strongly connected component will have some other absorbing time H2,

i.e., the time to get absorbed into another strongly connected component. Thus, the total

absorbing time H is the sum of the absorbing times of the strongly connected components

on the longest path on the condensation of the graph G from an open strongly connected

component to a closed strongly connected component. The condensation of the graph G is

a directed acyclic graph and such path always exist.

By Markov inequality, regardless of where the random walk starts, the probability that it

takes more than 4H iterations to get absorbed is at most 1/4. Thus, for all k ≥ 4H log(1/ε)

steps we have that ‖qk‖1 < ε.

Now, let z∞ be the vector that satisfies

z∞ = Zz∞ +Ry∞, (2.6)

which we know exists since every eigenvalue of Z must be strictly less than 1 (since Zk → 0).

If we define

∆k = xMk − z∞,

then subtracting the updates of xM and z∞,

∆k+1 = Z∆k +R(yk − y∞). (2.7)

It follows that ∆k goes to zero since we have assumed that yk → y∞, and Zk → 0.

In conclusion, this argument shows that for all k ≥ 4(L+H) log(1/ε) steps every node is

within ε of its limiting value.

The next lemma states the relation of the coupling and absorbing time for random walks

on product graphs. Specifically, it shows a maximum-type behavior where the coupling

and absorbing time of the product system is the maximum of coupling and aborning of the

factors.

Lemma 10. Consider two aperiodic strongly connected directed graphs G1 and G2. The

expected coupling time of two random walks on the graph G1 ⊗ G2 is L = max{L1, L2},
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where L1 and L2 are the expected coupling times for random walks on the graphs G1 and

G2 respectively. Similarly, a random walk on an open strongly connected component of a

graph G1 ⊗ G2 has an expected absorbing time (into another strongly connected component)

of H = max{H1, H2}, where H1 and H2 are the expected absorbing times for random walks

on the graphs G1 and G2 respectively.

Proof. Given that both graphs are aperiodic and strongly connected, their product is also

aperiodic and strongly connected, and there exists a limiting distribution π for a random

walk moving on the Kronecker product graph G1 ⊗ G2.

Consider a random walk X = (Xk)
∞
0 , on the graph G1 ⊗ G2, with transition matrix

A1 ⊗ A2 starting with some arbitrary distribution v, where A1 is the transition probability

on a random walk on the graph G1 and A2 is the transition probability on a random walk

on the graph G2. Moreover, from the definition of the Kronecker product of graphs, we have

that the state space of G1 ⊗ G2 is the Cartesian product V = V1 × V2, composed by the

ordered pairs (i, j) for i ∈ V1 and j ∈ V2. Thus, the probability that the random walk X

jumps from the node (i, j) to the node (̄i, j̄) is [A1]i,̄i[A2]j,j̄.

Following the coupling method, define another random walk Y = (Yk)
∞
0 with the same

transition matrix A1 ⊗ A2 but starting at the stationary distribution π. Now, construct an

new random walk as follows:

Wk =




Yk, if k < K,

Xk, if k ≥ K,

where K = min {k ≥ 0 : Yk = Xk}. Clearly, if the state of the random walk X at time

k is Xk = (ik, jk) and the state of the random walk Y at time k is Yk = (̄ik, j̄k), then

the condition Yk = Xk implies that ik = īk and jk = j̄k. Thus, the coupling time K can

alternatively be expressed in terms of the two separate conditions ik = īk and jk = j̄k, which

in turn represents the coupling conditions for two separate random walks on each individual

coordinate where each coordinate represents one of the factor graphs. Therefore, we write

the coupling time between the random walks X and Y as K = min {k ≥ 0 : Yk = Xk} =

min {k ≥ 0 : ik = īk, jk = j̄k} which is equivalent to

K = min {k ≥ 0 : Yk = Xk}
= min {k ≥ 0 : ik = īk, jk = j̄k}
= max {min {k ≥ 0 : ik = īk} ,min {k ≥ 0 : jk = j̄k}}
= max{K1, K2},
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where K1 and K2 are the coupling times for the graphs G1 and G2 respectively. Thus,

P {K > k} = P {max{K1, K2} > k}
= 1− P {max{K1, K2} ≤ k}
= 1− P {K1 ≤ k}P {K2 ≤ k}
≤ P {K1 ≤ k}+ P {K2 ≤ k} .

Note that given that the initial state of the random walk X is v, the random walks

on each of its coordinates have some well defined initial state, v1(i) =
∑
j∈V2

v((i, j)) and

v2(j) =
∑
i∈V2

v((i, j)), where v1(i) is the probability of staring in node i ∈ V1, v2(j) is the

probability of starting in node j ∈ V2, and v((i, j)) is the probability of the random walk X

to start in the node (i, j).

It follows from Theorem 5.2 in Levin et. al.[98] that

‖v′(A1 ⊗ A2)S − π‖TV ≤ max
v

P {K > k}

≤ max
v1

P {K1 > k}+ max
v2

P {K2 > k}

≤ max
v1

E[K1]

k
+ max

v2

E[K2]

k

= max
v1

L1

k
+ max

v2

L2

k
.

Thus, in order to be at a distance at most 1/4 from the stationary distribution we require

k ≥ 8 max{L1, L2}. Moreover, in order to be ε close to the stationary distribution we require

at least k ≥ 8 max{L1, L2} log(1/ε) steps in the random walk for any initial state v. Finally,

the coupling time of X is L = max{L1, L2}.
A similar argument follows for the absorbing time of a random walk on a transient com-

ponent defined by a product graph requires both coordinates be absorbed individually, thus

H = max{H1, H2}.

We have shown that each of the strongly connected components of the graph P is the

product of two such components, one from the graph G and the other from the graph T .

Moreover, the expected mixing and absorbing times for a random walk on a product graph

are the maximum of the expected mixing and absorbing times of the individual factor graphs

(see Lemma 10). Thus, we have an explicit characterization of the convergence time in terms

of the components of the network of agents and the network of logic constraints. For example,

in Fig. 2.2, the expected absorbing time is of the order of the number of nodes in the path,
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that is m, while the expected mixing time of cycle [133, 134, 98] graphs is of the order of the

number of the nodes squared, which is n2 in this example. Thus, the expected convergence

time for the belief system is O(max(n2,m) log(1/ε)). Figure 2.7 depicts simulation results for

this bound that demonstrate its validity. In particular, Fig. 2.7(a) shows how the convergence

time changes when the number of nodes in the cycle graph increases, while Fig. 2.7(b) shows

how the convergence time changes when the number of truth statements in the directed

path graph increases. Moreover, Fig. 2.7(c) shows that the convergence to the final beliefs

is exponentially fast.
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Figure 2.7: Convergence time for a belief system with an undirected cycle as a social
network and a directed path as a network for the logic constraints. (a) Varying the number
of the agents in the social graph. (b) Varying the number of the truth statements for a
directed path. (c) The exponential convergence rate of the belief system.

Table 2.1 presents the estimates for the expected convergence time for belief systems

composed of well-known classic graphs. We use the existing results about the mixing time
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for these graphs to provide an estimate of the convergence time of the resulting belief system

when all agents are oblivious. Table 1.1 shows a detailed list of references on each of the

studied graphs. Particularly, our method allows the direct estimation of the dynamics of

a belief system when large-scale complex networks are involved. For example, we provide

convergence time bounds for the case where networks follow random graph models, namely:

the geometric random graphs, the Erdős-Rényi model, and the Newman-Watts small-world

networks. These graphs are usually considered for their ability to represent the behavior of

complex networks encountered in a variety of fields [135, 136, 137, 138] (see Fig. 2.8).

Figure 2.9 shows experimental results for the convergence time of a belief system for

a subset of the graphs given in Table 2.1. For every pair of graphs, we show how the

convergence time increases as the number of agents or the number of truth statements change.

One can particularly observe that the maximum type behavior on the convergence time as

predicted by the theoretical bounds. See Fig. 2.10 and Fig. 2.11 for additional numerical

results on other combinations of graphs from Table 2.1, and Fig. 2.12 and Fig. 2.13 for their

linear convergence rates, respectively.

2.2.3 What does it converge to?

So far we have discussed the conditions for convergence of belief system dynamics and the

corresponding convergence time. Convergence implies the existence of a vector x∞ where

the set of beliefs settles as the number of interactions increases. Particularly, Proskurnikov

and Tempo [126] characterize the limiting distribution as a solution of

X∞ = ΛAX∞C
′ + (I − Λ)X0,

which can be intractable to compute when the matrices A and C are large. We are interested

in a characterization of this limit vector that admits a rapid computation of its value.

Lemma 8 shows that one can always group the nodes in the graph P into open and

closed strongly connected components. In order to guarantee convergence we assume that

every closed strongly connected component is aperiodic. For example, assume there is a

closed strongly connected component S and let PS be the minor of the matrix P obtained

by taking into account only the nodes in the set S. Then, PS corresponds to the transition

matrix of an irreducible and aperiodic Markov chain with a stationary distribution πS, where

π′SPS = π′S. The vector πS is effectively the left-eigenvector of the matrix PS corresponding

to the eigenvalue 1. Let xSk be the vector obtained from the state vector xk by taking only
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Table 2.1: Maximum expected convergence time for the belief system with Logic
constraints for different networks of agents with n nodes and networks of truth statements
with m nodes. The approximated maximum expected convergence time identified as ≈
should be understood in terms of the order O(·), that is, an estimate up to constant terms.
Additionally, all the estimates provided should be multiplied by the accuracy term log(1/ε).

Network of Agents Logic Constraints
Maximum Expected

Convergence Time ≈
Complete Directed Path m

Cycle Directed Path max(n2,m)

Cycle Path max(n2,m2)

Dumbbell Graph Complete Binary Tree max(n2,m)

k-d Cube with Loops Complete Binary Tree max((1− 1/k),m

k-d Hypercube {0, 1}k Complete Binary Tree max(k log k,m)

Lovasz Graph Ckn Dumbbell max(1− 1/(kn2),m2)

2-d Grid Star max(n log n,m)

3-d Grid Two Joined Star max(n2/3 log n,m)

k-d Grid Star max(k2n2/k log n,m)

2-d Torus 2-d Grid max(n2,m logm)

3-d Torus Star max(n2,m)

k-d Torus k-d Grid max(n2k log k, k2m2/k logm)

Lollipop Star max(n3,m)

Barbell Star max(n3,m)

Eulerian: d-degree and expansion Dumbbell max(|E|2,m2)

Eulerian: d-degree, max-degree weights Dumbbell max(n2d,m2)

Lazy Eulerian with degree d-degree Dumbbell max(n|E|,m2)

Lamplighter on k-Hypercube Bolas max(k2k,m3)

Lamplighter on (k, n)-Torus Bolas max(knk,m3)

Geometric Random: Gd(n, r) Bolas max(r−2 log n,m3)

Geometric Random: r = Ω(polylog(n)) Bolas max(polylog(n),m3)

Erdős-Rényi: G(n, c/n), c > 1 Dumbbell max(log2 n,m2)

Erdős-Rényi: G(n, c/n), c > 1 Newman-Watts max(log2 n, log2m)

Erdős-Rényi: G(n, (1 + δ)/n), δ3n→∞ Dumbbell max((1/δ3) log2(δ3n),m2))

Erdős-Rényi: G(n, 1/n) Dumbbell max(n,m2)

Newman-Watts : G(n, k, c/n), c > 0 Path max(log2 n,m2)

Expander Path m2

Exponential Random: High temperature Path max(n2 log n,m2)

Exponential Random: Low temperature Path max(exp(n),m2)

Any Connected Undirected Graph
Expander n2

with Metropolis Weights

Any Connected Undirected Graph Expander |E|diam(G)
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Figure 2.8: (a-c) Geometric random graphs with 200, 400 and 2000 nodes respectively. A
geometric random graph is the result of randomly placing n nodes in a metric space and
adding an edge between two nodes if and only if their distance is smaller than a certain
radius r [139]. (d-f) Erdős-Rényi random graphs with 200, 400 and 1000 nodes
respectively. An Gn,p Erdős-Rényi graph is the result of adding edges independently with
probability p to a set of n nodes [140]. (g-i) Small-World Random Graphs with 200, 400
and 1000 nodes respectively. The Newman-Watts graph Hn,k,p is the random graph
obtained from a (n, k)-ring graph by independently adding edges with probability p [141].
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Figure 2.9: Convergence time of various belief systems. (a) Varying the number of agents
on a 2d-grid with fixed the number of truth statements on a star graph. (b) Varying the
number of truth statements on a star graph with fixed number of agents on a 2d-grid. (c)
Varying the number of agents on a Erdős-Rényi graph with fixed the number of truth
statements on a dumbbell graph. (d) Varying the number of truth statements on a
dumbbell graph with fixed number of agents on a Erdős-Rényi graph. (e) Varying the
number of agents on a Newman-Watts small-world graph with fixed the number of truth
statements on a path graph. (f) Varying the number of truth statements on a path graph
with fixed number of agents on a Newman-Watts small-world graph.
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Figure 2.10: Convergence time for different examples of networks of agents and network of
truth statements in a belief system. Varying the number of agents for a: (a) complete
graph, (c) undirected cycle, (c) dumbbell graph, (e) 2-d grid and (g) 3-d grid. Varying the
number of truth statements for a: (b) directed path, (d) complete binary tree, (f) star
graph and (h) two joined star graphs.
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Figure 2.11: Convergence time dependency for random graphs. (a) Varying the number of
agents in a geometric random graph with a fixed number of truth statements in a Bolas
graph. (b) Varying the number of truth statements in a Bolas graph with a fixed number
of agents in a geometric random graph. (c) Varying the number of agents in a Erdős-Rényi
random graph with a fixed number of truth statements in a dumbbell graph. (d) Varying
the number of truth statements in a dumbbell graph with a fixed number of agents in an
Erdős-Rényi random graph. (e) Varying the number of agents in an Newman-Watts
random graph with a fixed number of truth statements in an undirected path graph.
(f) Varying the number of truth statements in an undirected path graph with a fixed
number of agents in a Newman-Watts random graph random graph.
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Figure 2.12: Exponentially fast convergence of the belief system. Distance to the final
value of a belief system with: (a) a directed cycle network of agents and a directed path of
truth statements, (b) a dumbbell network of agents and a complete binary tree of truth
statements, (c) a 2-d grid of agents and a star network of truth statements, (d) a 3-d grid
of agents and a two-joined star network of truth statements.

the components of xk corresponding to the nodes in the set S. Then,

lim
k→∞

xSk = π′Sx
S
0 1|S|,

where |S| is the cardinality of the set S, and 1p is the vector of size p with all entries equal to

1 [126, 98]. Additionally, recall that every strongly connected component of P is the product

of two strongly connected components, one from the network of agents and one from the logic

constraint network. Thus, PS = AS ⊗ CS for some matrices AS and CS (sub-matrices of A

and C, respectively), which implies that πS = πAS ⊗ πCS , i.e., the vectors πAS and πCS are the

corresponding left eigenvalues of the factor components of PS associated with the eigenvalue

1. Therefore, the final beliefs of those nodes in the closed strongly connected component S

are a weighted average of their initial beliefs, and the weights (sometimes referred to as the

social power) are determined by the product of the left-eigenvectors of the factors AS and
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Figure 2.13: Geometric convergence of the belief system with random networks of agents.
(a) Distance to the stationary distribution for a network of 200 agents modeled as a
geometric random graph and a network of 150 truth statements modeled as a Bolas graph.
(b) Distance to the stationary distribution for a network of 500 agents modeled as a
Erdős-Rényi random graph and a network of 100 truth statements modeled as a dumbbell
graph. (c) Distance to the stationary distribution for a network of 500 agents modeled as a
small-world random graph and a network of 100 truth statements modeled as a undirected
path graph.

CS. Particularly, the value πS indicates the limit distribution of a random walk in S, that

is, it tells the probability that a random walk visits a particular node in S after a long time.

On the other hand, now consider an open strongly connected component M with incoming

edges from nodes grouped into a set SM , in this case, the belief xik, for i ∈M , will converge

to

lim
k→∞

xik =
∑

j∈SM
pijx

j
∞

where pij is the probability of absorption of a random walk starting at node i into a node

j ∈ SM with limiting value xj∞. Therefore, the limiting value of nodes in an open strongly
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connected components is a convex combination of the limiting values of the nodes it is

connected to.

In order to compute the limiting values of the belief system consider a random walk starting

in an open strongly connected component M of a graph G. Moreover, assume the open

strongly connected component M has incoming edges from nodes in other strongly connected

components, and group those nodes in a set defined as SM = {j | (j, i) ∈ E, i ∈M}.
The dynamics of the nodes inM are described in equation (2.5). Similarly as in Theorem 9,

we can assume that yk converges to some value y∞. Therefore, we can analyze the dynamics

in the strongly connected component M as follows: Initially define the following two systems

x̄Mk+1 = Zx̄Mk +Ry∞

xMk+1 = ZxMk +Ryk,

where Z is the set of weights assigned to nodes inside the component M and R is the set of

weights assigned to each of the incoming edges from other components.

It follows that

lim
k→∞

(x̄Mk+1 − xMk+1) = Z lim
k→∞

(x̄Mk − xMk ) +R lim
k→∞

(y∞ − yk)

= Z lim
k→∞

(x̄Mk − xMk ).

Moreover, given that Z is substochastic, the magnitude of its eigenvalues are strictly less

than 1 and 1− Z is invertible. Thus, we can conclude that limk→∞ x̄Mk+1 = limk→∞ xMk+1.

Stacking the vector x̄Mk and y∞ into a single vector we obtain the following recursion:

[
x̄Mk+1

y∞

]
= PM

[
x̄Mk
y∞

]
, (2.8)

where

PM =

[
Z R

0 I

]
.

Thus, in order to find the limit value of the set of beliefs in the component M we can

focus in the analysis of the powers of the matrix PM .

We have that

lim
k→∞

P k
M =

[
0 NR

0 I

]
,
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where N = I + Z + Z2 + · · · = (1 − Z)−1. The matrix NR is the absorbing probability

matrix, where pij , [NR]ij is the probability of being absorbed by into the node j ∈ SM
starting from node i ∈M . Moreover, it follows that for any node i ∈M

lim
k→∞

xik =
∑

j∈SM
pijx

j
∞,

where xj∞ is the limiting value of the components in the closed strongly connected component

j ∈ SM .

Therefore, the limiting value of nodes in an open strongly connected component is a

convex combination of the limiting values of the closed strongly connected components it is

connected to.

2.3 Numerical Analysis

Next, we provide a numerical analysis of three large-scale networks from the Stanford Net-

work Analysis Project (SNAP)[142], see Fig. 2.14. Table 2.2 shows the description of the

networks used. In the three cases, we select the largest strongly connected component of the

graph and use it as a representative of the network structure and the mixing properties of the

graph. Furthermore, we assume that the agents use equal weights for all their (in)neighbors.

Table 2.2: Datasets of large-scale networks. Description, the number of nodes, the number
of edges, simulated mixing time and an upper bound on the mixing time of the three
datasets used in the numerical analysis. The upper bound on the mixing time is computed
from the second largest eigenvalue bound in Eq. (1.4)

Graph Nodes Edges Type
Upper Bound on

Description
Mixing Time

wiki-Vote [143] 1300 103663 Directed 145 Wikipedia who-votes-
on-whom network

ca-GrQc [144] 4158 13428 Undirected 12308 Collaboration network
of arXiv General Rel-
ativity

ego-Facebook[145] 3927 88234 Undirected 53546 Social circles from
Facebook

Random graph generating models, such at the Erdős-Rényi graphs, the Newman-Watts

graph, and the geometric random graphs, have been proposed to model the dynamics and

the properties of real large-scale complex networks, for example, rapid mixing or linear
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(a)

(b) (c)

Figure 2.14: Large-scale complex networks from the Stanford Network Analysis Project
(SNAP). (a) The ego-Facebook, nodes are anonymized users from Facebook and edges
indicate friendship status between them. (b) The wiki-Vote graph, each node represents a
Wikipedia administrator and an directed edge represents a vote used for promoting a user
to admin status. (c) The ca-GrQc graph is a collaboration network from arXiv authors
with papers submitted to the General Relativity and Quantum Cosmology category, edges
indicate co-authorship of a manuscript. The gray scale in the node colors shows the
relative social power according to the left-eigenvector corresponding to the eigenvalue 1.

convergence of the beliefs. The existing approaches for the computation of such properties

in real-world social networks are mainly simulation-based or require extensive computations

for the approximation of the spectral properties of the graphs [146, 147]. Our analysis

based on the graph-theoretical properties of the networks provides a structural explanation

of the exhibited behavior. Specifically, we can explain fast mixing or equivalently linear

convergence of beliefs from the existence of highly influential cliques that drive the dynamics

of the complete belief system. In particular, suppose we want to study whether a specific
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graph has a rapid mixing and, for example, there is a subset of V̄ of M nodes that affect

the 20% of the final opinion. Then, it is enough to check if there is a finite number K such

that after K time steps, a random walk in the graph has a probability of 1/5 to be in V̄ ,

resulting in the probability of being at any of these particularly influential nodes of 1
5M

. The

next theorem describes how the existence of a clique of a well-connected subset of nodes can

guarantee fast mixing of a random walk on a graph.

Theorem 11. Consider a random walk on a connected undirected and static graph G =

(V,E) with |V | = n nodes, and assume there is a subset V̄ ⊂ V with M nodes such that

after K steps, the probability of being in V̄ is at least 1
5

and the probability of being on a

specific node in V̄ is at least 1
5M

. Then the mixing time of the corresponding Markov chain

is of the order O(MK log(1/ε)).

Proof. The proof follows immediately since any two random walks will intersect with prob-

ability 1
M

every K steps.

Figure 2.15 shows the cumulative influence of the nodes in each of the graphs, that is, the

weight an ordered subset of the nodes has on the final value of the beliefs. In this case, since

we are considering a single strongly connected component, the weights are determined by

the left-eigenvalue of the weight matrix corresponding to the eigenvector 1. Table 2.3 shows

the values for K and M of the graphs studied in this section.

Figure 2.16 shows the convergence time of a belief system when the network of agents

is the three large-scale complex networks described in Table 2.2. Results show that the

predicted maximum type behavior holds; that is, the convergence time of the belief system

is upper bounded by the maximum mixing time of a random walk on the graph of agents and

the graph of logic constraints. The convergence time remains constant and of the order of

the convergence time of the network of agents, until the mixing time of the network formed

by the logic constraints is larger. Then, the total convergence time increases based on the

specific topology of the graph of logic constraints.

Table 2.3: Size of the highly influential cliques and the number of iterations required for
them to drive the fast mixing of a random walk on the three examples of large scale graphs.

Graph K % of Nodes M

wiki-Vote [143] 121 10% 25

ca-GrQc [144] 365 11% 1700

ego-Facebook[145] 365 11% 1829
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Figure 2.15: Cumulative social power of the agents. Each of the nodes in the graphs
considered has some weight in the final value achieved by the belief system. In all three
cases, the 20% most important nodes account for 50% of the final value.

Figure 2.17 shows the exponential convergence rate of the belief system. It shows a linear

convergence rate of the total variation distance between the beliefs and its limiting value as

the number of iteration increases.

2.4 Conclusions

Friedkin et al. [37] proposed a new model that integrates logic constraints into the evolution

opinions of a group of agents in a belief system. Logic constraints among truth statements

have a significant impact on the evolution of opinion dynamics. Such restrictions can be

modeled as graphs that represent the positive or negative influence the beliefs on specific

topics have on others. Starting from this context, we have here approached this model from

its extended representation of a belief system, where opinions of all agents on all topics as

well as their corresponding initial values are nodes in a larger graph. This larger graph is

composed of the Kronecker product of the graphs corresponding to the network of agents

and the network of logical constraints respectively.

In this chapter, we have provided graph-theoretic arguments for the characterization of

the convergence properties of such opinion dynamic models based on extensive existing

knowledge of convergence and mixing time of random walks on graphs using the theory

of Markov chains. We have shown that convergence occurs if every strongly connected

component of the network of logic constraints is non-bipartite and every strongly connected

component of oblivious agents is non-bipartite as well. Moreover, to be arbitrarily close
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Figure 2.16: Convergence time of belief system with large-scale complex networks. (a) The
social network is the ego-Facebook graph, and the logic constraints form a complete
binary tree with an increasing number of topics. (b) The social network is the wiki-Vote

graph and the logic constraints form Newman-Watts small-world graph with an increasing
number of topics. (c) The social network is the ca-GrQc arXiv collaboration graph, and
the logic constraints form an Erdős-Rényi graph with an increasing number of topics.

to their limiting value we require O((L + H) log(1/ε)) time steps. The parameter L is the

maximum coupling time for a random walk among the closed strongly connected components

of the product graph, and H is the maximum time required for a random walk, that starts

on an open component, to get absorbed by a closed component. Our analysis applies to

broad classes of networks of agents and logic constraints for which we have provided bounds

regarding the number of nodes in the graphs. Finally, we show that the limiting opinion

value is a convex combination of the nodes in the closed strongly connected components and

this convergence happens exponentially fast.

Our framework offers analytical tools that deepen our abilities for modeling, control and
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Figure 2.17: Total variation distance between the beliefs and its limiting value as the
number of iteration increases. Results are shown for a particular subset of randomly
selected agents.

synthesis of complex network systems, particularly man-made, and can inspire further re-

search in domains where opinion formation and networks interact naturally, such as neuro-

science and social sciences. Finally, extending this analysis to other opinion formation models

that use different aggregating strategies may require further study of Markov processes and

random walks.
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CHAPTER 3

DISTRIBUTED (NON-BAYESIAN) LEARNING
WITH FINITE HYPOTHESES SETS

In this chapter, we begin with a variational analysis of Bayesian posterior and derive an op-

timization problem for which the posterior is a step of the stochastic mirror descent method.

We then use this interpretation to propose a distributed stochastic mirror descent method

for distributed learning. We show that this distributed learning algorithm concentrates the

beliefs of all agents around the true parameter at an exponential rate. We derive high

probability non-asymptotic bounds for the convergence rate.

3.1 Problem Formulation

Initially, we introduce the learning problem from a centralized perspective, where all infor-

mation is available at a single location. Later, we will generalize the setup to the distributed

setting where only partial and distributed information is available.

3.1.1 The Bayesian Approach to Statistical Inference

Consider a probability space (Ω,F ,P), where Ω is a sample space, F is a σ-algebra and P a

probability measure. Assume that we observe a sequence of independent random variables

X1, X2, . . ., all taking values in some measurable space (X ,A) and identically distributed

with a common unknown distribution P on X , i.e. Xk ∼ P for all k. In addition, we

have a statistical model P = {Pθ : θ ∈ Θ} composed by a parametrized family of probability

measures on the sample space (X ,A), where the map Θ→P from parameter to distribution

is injective. Moreover, all distributions in the model are dominated1 by a σ-finite measure

λ, with corresponding densities pθ = dPθ/dλ. Assume also that the model P is well-

specified, thus there exists a θ∗ such that Pθ∗ = P . The objective is to estimate θ∗ based

on the sequence of received observations x1, x2, . . .. For example, the maximum likelihood

1A measure µ is dominated by (or absolutely continuous with respect to) a measure λ if λ(B) = 0 implies
µ(B) = 0 for every measurable set B.
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estimator (MLE) can be defined as

θ̂(X) = arg sup
θ∈θ

pθ(X) = arg sup
P∈P

p(X).

Following a Bayesian approach, the parameter is represented as a random variable ϑ on

the set Θ that is equipped with a σ-algebra T and a prior probability measure µ0 on the

measurable space (Θ, T ). Moreover, we assume the existence of a probability measure Π on

the product space (X × Θ) with σ-algebra (A × T ). Therefore one can pair the elements

of the parametric model with the conditional distributions ΠX|ϑ. Furthermore, the densities

pθ(x) are measurable functions of θ for any x ∈ X . We then define the belief µk as the

posterior distribution given the sequence of observations up to time k, i.e.,

µk(B) = Π(ϑ ∈ B|X1, . . . , Xk) =

∫
B

∏k
t=1 pθ(Xt)dµ0(θ)∫

Θ

∏k
t=1 pθ(Xt)dµ0(θ)

, (3.1)

for all B ∈ T (note that we used the independence of the observations at each time step).

Assuming that all observations, up to time k, are readily available at a centralized location,

under appropriate conditions, the recursive Bayesian posterior in Eq. (3.1) will be consistent

in the sense that the beliefs µk will concentrate around θ∗; see [148, 149] and [150] for a formal

statement. Furthermore, several authors have studied the rate at which this concentration

occurs, in both asymptotic and non-asymptotic regimes [151, 152, 153].

3.1.2 The Distributed Statistical Inference Problem

Now, consider the case where there is a network of n agents observing the process X1, X2, . . .,

where Xk is now a random vector belonging to the product space
∏n

i=1X i and Xk =

[X1
k , X

2
k , . . . , X

n
k ]′. Specifically, agent i observes the sequence X i

1, X
i
2, . . ., where X i

k is now

distributed according to an unknown distributions P i, effectively making Xk ∼ P =
∏n

i=1 P
i.

The statistical model is now distributed, where each agent i has a private family of distribu-

tions P i = {P i
θ : θ ∈ Θ} it would like to fit to the observations. However, the goal is for all

agents to agree on a single θ that best explains the complete set of observations instead of

their local observations only. In other words, the agents collaboratively seek to find θ∗ such

that P θ∗ =
∏n

i=1 P
i
θ∗ =

∏n
i=1 P

i = P .

Agents interact over a network defined by an undirected graph G = (V,E), where V =

{1, 2, . . . , n} is the set of agents and E is a set of undirected edges, i.e., (i, j) ∈ E if and

only if agents i and j can communicate with each other. We study a simple interaction
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model where, at each step, agents exchange their beliefs with their neighbors in the graph.

Thus at every time step k, agent i will receive the sample xik from X i
k as well as the beliefs

of its neighboring agents, i.e., it will receive µjk−1 for all j such that (i, j) ∈ E. Applying a

fully Bayesian approach runs into some obstacles in this setting, as agents know neither the

network topology nor the private family of distributions of other agents. Our goal is to design

a learning procedure which is both distributed and consistent. That is, we are interested

in a belief update algorithm that aggregates information in a non-Bayesian manner and

guarantees that the beliefs of all agents will concentrate around θ∗.

3.2 Bayesian Posterior as Stochastic Mirror Descent

In this section, we observe that the posterior in Eq. (3.1) corresponds to an iteration of

a first-order optimization algorithm, namely stochastic mirror descent [154, 155, 156, 157].

Closely related variational interpretations of Bayes’ rule are well-known, and in particular

have been given in [158, 159, 160]. The specific connection to stochastic mirror descent has

not been noted, as far as we are aware. This connection will serve to motivate a distributed

learning method which will be the main focus of this chapter.

3.2.1 Bayes’ Rule as Stochastic Mirror Descent

Suppose we want to solve the following optimization problem:

min
θ∈Θ

F (θ) , DKL(P‖Pθ), (3.2)

where P is an unknown distribution and P = {Pθ : θ ∈ Θ} is a parametrized family of dis-

tributions. Here, DKL(P‖Q) is the Kullback-Leibler (KL) divergence2 between distributions

P and Q.

First note that we can rewrite the optimization problem in Eq. (3.2) as

min
θ∈Θ

DKL(P‖Pθ) = min
π∈∆Θ

EπDKL(P‖Pϑ) where ϑ ∼ π

= min
π∈∆Θ

EπEP
[
− log

dPϑ(X)

dP (X)

]
where ϑ ∼ π,X ∼ P,

2DKL(P‖Q) between distributions P and Q (with P dominated by Q) is defined to be DKL(P‖Q) =
−EP [log dQ/dP ] .
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where ∆Θ is the set of all possible distributions on the parameter space Θ. Since the

distribution P does not depend on ϑ, it follows that

arg min
π∈∆Θ

EπEP
[
− log

dPϑ(X)

dP (X)

]
= arg min

π∈∆Θ

EπEP [− log pϑ(X)]

= arg min
π∈∆Θ

EPEπ [− log pϑ(X)] . (3.3)

The equality in Eq. (3.3), where we exchange the order of the expectations, follows from

the Fubini-Tonelli theorem. Clearly, if θ∗ minimizes Eq. (3.2), then a distribution π∗ which

puts all the mass on θ∗ (i.e. π∗(ϑ = θ∗) = 1) minimizes Eq. (3.3).

The difficulty in evaluating the objective function in Eq. (3.3) lies in the fact that the

distribution P is unknown. A generic approach to solving such problems is using algorithms

from stochastic approximation methods, where the objective is minimized by constructing a

sequence of gradient-based iterates whereby the true gradient of the objective (which is not

available) is replaced with a gradient sample that is available at a given time.

A particular method that is relevant for the solution of stochastic programs as in Eq. (3.3)

is the stochastic mirror descent method [161, 155, 154, 162]. The stochastic mirror descent

approach constructs a sequence of densities {dµk}, as follows:

dµk+1 = arg min
π∈∆Θ

{
〈− log pθ(xk+1), π〉+

1

αk
Dw(π, dµk)

}
, (3.4)

where αk > 0 is the step-size, the inner product is defined as 〈p, q〉 =
∫

Θ
p(θ)q(θ)dσ, and

Dw(x, xk) is a Bregman distance function associated with a distance-generating function w,

i.e.,

Dw(x, z) = w(z)− w(x)− δw[z;x− z],

where δw[z;x − z] is the Fréchet derivative of w at z in the direction of x − z. If we

choose w(x) =
∫
x log x as the distance-generating function, then the corresponding Bregman

distance is the Kullback-Leibler (KL) divergence DKL. Additionally, by selecting αk = 1,

the solution to the optimization problem in Eq. (3.4) can be computed explicitly, where for

each θ ∈ Θ,

dµk+1(θ) ∝ pθ(xk+1)dµk(θ),

which is the particular definition for the posterior distribution according to Eq. (3.1) (a
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formal proof of this assertion is a special case of Proposition 12 shown later in this chapter).

3.2.2 Entropic Distributed Stochastic Mirror Descent

Now, consider the distributed problem where the network of agents want to collectively solve

the following optimization problem:

min
θ∈Θ

F (θ) , DKL (P ‖P θ) =
n∑

i=1

DKL(P i‖P i
θ). (3.5)

Recall that the distribution P is unknown (though, of course, agents gain information

about it by observing samples from X i
1, X

i
2, . . . and interacting with other agents) and that

P i containing all the distributions P i
θ is a private family of distributions and is only available

to agent i.

We propose the following algorithm as a distributed version of the stochastic mirror descent

for the solution of problem Eq. (3.5):

dµik+1 = arg min
π∈∆Θ

{
〈− log piθ(x

i
k+1), π〉+

n∑

j=1

aijDKL(π‖dµjk)
}

where θ ∼ π, (3.6)

with aij > 0 denoting the weight that agent i assigns to beliefs coming from its neighbor

j. Specifically, aij > 0 if (i, j) ∈ E or j = i, and aij = 0 if (i, j) /∈ E. The optimization

problem in Eq. (3.6) has a closed form solution. In particular, the posterior density at each

θ ∈ Θ is given by

dµik+1(θ) ∝ piθ(x
i
k+1)

n∏

j=1

(dµjk(θ))
aij ,

or equivalently, the belief on a measurable set B of an agent i at time k + 1 is

µik+1(B) ∝
∫

B

piθ(x
i
k+1)

n∏

j=1

(dµjk(θ))
aij . (3.7)

We state the correctness of this claim in the following proposition.

Proposition 12. The probability measure µik+1 over the set Θ defined by the update protocol

Eq. (3.7) coincides, almost everywhere, with the update the distributed stochastic mirror

descent algorithm applied to the optimization problem in Eq. (3.5).
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Proof. We need to show that the density dµik+1 associated with the probability measure µik+1

defined by Eq. (3.7) minimizes the problem in Eq. (3.6). To do so, let G(π) be the objective

function for the problem in Eq. (3.6), i.e.,

G(π) = 〈− log piθ(x
i
k+1), π〉+

n∑

j=1

aijDKL(π‖dµjk).

Next, we add and subtract the KL divergence between π and the density dµik+1 to obtain

G(π) = 〈− log piθ(x
i
k+1), π〉+

n∑

j=1

aijDKL(π‖dµjk)

−DKL

(
π‖dµik+1

)
+DKL

(
π‖dµik+1

)

= 〈− log piθ(x
i
k+1), π〉+DKL

(
π‖dµik+1

)
+

n∑

j=1

aijEπ log
dµik+1

dµjk
.

Now, from Eq. (3.7) it follows that

G(π) = 〈− log piθ(x
i
k+1), π〉+DKL

(
π‖dµik+1

)
+

n∑

j=1

aijEπ log

(
1

dµjk

1

Zi
k+1

n∏

l=1

(
dµlk
)ail piθ(xik+1)

)

= 〈− log piθ(x
i
k+1), π〉+DKL

(
π‖dµik+1

)

− logZi
k+1 + 〈log piθ(x

i
k+1), π〉+

n∑

j=1

aijEπ log

(
1

dµjk

n∏

l=1

(
dµlk
)ail
)

= − logZi
k+1 +DKL

(
π‖dµik+1

)
−

n∑

j=1

aijEπ log dµjk +
n∑

l=1

ailEπ log dµlk

= − logZi
k+1 +DKL

(
π‖dµik+1

)
, (3.8)

where Zi
k+1 =

∫
θ
piθ(x

i
k+1)

∏n
j=1(dµjk(θ))

aij is the corresponding normalizing constant.

The first term in Eq. (3.8) does not depend on the distribution π. Thus, we conclude that

the solution to the problem in Eq. (3.6) is the density π∗ = dµik+1 as defined in Eq. (3.7)

(almost everywhere).

We remark that the update in Eq. (3.7) can be viewed as a two-step process: first, every

agent constructs an aggregate belief using a weighted geometric average of its own belief

and the beliefs of its neighbors, and then each agent performs a Bayes’ update using the
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aggregated belief as a prior. We note that similar arguments in the context of distributed

optimization have been proposed in [157, 163] for general Bregman distances. In the case

when the number of hypotheses is finite, variations on this update rule were previously

analyzed in [45, 25, 46].

Example 1 (Distributed Bernoulli Filter). Consider a group of 4 agents, connected over a

network as shown in Fig. 3.1. A set of metropolis weights for this network is given by the

following matrix:

A =




2/3 1/6 0 1/6

1/6 2/3 1/6 0

0 1/6 2/3 1/6

1/6 0 1/6 2/3



.

1

2

3

4

Figure 3.1: A network of 4 agents.

Furthermore, assume that each agent is observing a Bernoulli random variable such that

X1
k ∼ Bern(0.2), X2

k ∼ Bern(0.4), X3
k ∼ Bern(0.6) and X4

k ∼ Bern(0.8). In this case, the

parameter space is Θ = [0, 1]. Thus, the objective is to collectively find a parameter θ∗ that

best explains the joint observations in the sense of the problem in Eq. (3.5), i.e.

min
θ∈[0,1]

F (θ) =
4∑

j=1

DKL(Bern(θj)‖Bern(θ))

=
4∑

j=1

(
θ log

θ

θj
+ (1− θ) log

1− θ
1− θj

)
,

where θ1 = 0.2, θ2 = 0.4, θ3 = 0.6 and θ4 = 0.8. We can see that the optimal solution is

θ∗ = 0.5 by determining it explicitly via the first-order optimality conditions or by exploiting

the symmetry in the objective function.

To summarize, we have given an interpretation of Bayes’ rule as an instance of stochastic

mirror descent. We have shown how this interpretation motivates a distributed update rule.
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In the next section, we discuss explicit forms of this update rule for parametric models

coming from exponential families.

Distribution P i’s are unknown. Therefore agents try to “learn” the solution to this opti-

mization problem based on local observations and interactions, see Fig. 3.2.

P

P ∗θ

P θ1

P θ2

Figure 3.2: Geometric interpretation of the learning objective. The triangle represents the
probability simplex; observations of the agents are generated according to a joint
probability distribution P .

Moreover, agents interact over a sequence of graphs {Gk} where G = {V,Ek}, with V =

{1, 2, · · · , n} being the set of agents where each agent is denoted as a node, and Ek being

the set of edges where (j, i) ∈ Ek if agent j can communicate with node i at time instant

k. Specifically, agents communicate with each other by sharing their beliefs about the

hypotheses set, denoted as µik, which is a probability distribution over Θ.

Next, we introduce three algorithms. The first is a version of Eq. (3.7) for finite ran-

dom variables with beliefs dominated by the counting measure and agents interacting over

undirected time-varying graphs. Then, for fixed graphs we develop an additional algorithm

that scales better with respect to the number of agents. Finally, we propose an algorithm

that works on time-varying directed graphs. For the first algorithm, we show consistency.

Then for the three proposed algorithms, we show explicit, non-asymptotic, and geometric

concentration rates of the beliefs on the correct hypotheses.
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3.3 Distributed Learning over Time-Varying Undirected Graphs

For agents interacting over undirected time-varying graphs, we consider the following rule

which is a specific version of Eq. (3.7) when Θ = {θ1, . . . , θm} is a finite set:

For each θ ∈ Θ,

µik+1(θ) =
1

Zi
k+1

n∏

j=1

µjk(θ)
[Ak]ijpiθ(x

i
k+1)β

i
k , (3.9)

where Zi
k+1 is a normalization factor to make the beliefs a probability distribution, i.e.,

Zi
k+1 =

m∑

r=1

n∏

j=1

µjk (θr)
[Ak]ij piθr(x

i
k+1)β

i
k ,

where the Ak is a non-negative matrix of “weights”, which is compliant with the connectivity

structure of the underlying communication network. The network at each time instant k is

modeled as a graph Gk composed by a node set V = {1, 2, . . . , n} and a set Ek of undirected

links. The variable βik is a stationary Bernoulli random process with mean qi, which indicates

if an agent obtained a new realization of X i
k+1. Specifically, βik = 1 indicates that agent i

obtained a new observation, while βik = 0 indicates that it did not.

3.3.1 Preliminaries

Next, we provide three important definitions that we use in the sequel to describe some

learning-related quantities.

Definition 13. The group confidence of a nonempty subset W ⊆ V of agents is given by

CWq (θ) = −
∑

i∈W
qiDKL

(
P i‖P i

θ

)
for all θ ∈ Θ,

where qi is the mean-value of the i.i.d. Bernoulli variable βik characterizing the availability

of measurements for agent i. If W = V , we simply write Cq.

The group confidence provides a way to quantify the quality of a hypothesis from the

perspective of a subset of the agents. The quality of a hypothesis for individual agents is

weighted by the mean of the i.i.d. Bernoulli process governing the availability of observations.

Definition 14. Two distinct hypotheses θi and θj are said to be W -observationally equivalent

if CWq (θi) = CWq (θj).
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This definition extends the idea of observational equivalence introduced in [1]. Group

observational equivalence provides a general definition where a group of agents cannot dif-

ferentiate between two hypotheses even if their corresponding likelihood models are not the

same.

Finally, we introduce the optimal set of hypotheses as the set with the maximum group

confidence.

Definition 15. The optimal hypothesis set is defined as Θ∗ = arg max
θ∈Θ

Cq(θ), and the confi-

dence of the optimal hypothesis set is denoted as C∗q, i.e., C∗q = Cq(θ∗) for θ∗ ∈ Θ∗.

The optimal set is always non-empty, and we assume it is a strict subset of Θ to avoid

the trivial case where all hypotheses are observationally equivalent. This holds if there is a

unique true state, θ̂ ∈ Θ, such that each agent i sees distributions generated according to

P i = P i
θ̂
, and Θ contains other hypotheses besides θ̂.

Informally, we will refer to our assumptions above as describing a setup with conflicting

models ; by this, we mean that the hypothesis which best describes the observations of agent

i (i.e., the hypothesis θ which minimizes DKL(P i‖P i
θ)) may not be the hypothesis which best

describes the observations of a different agent, and may in fact not belong to the optimal

set Θ∗.

We will further require the following assumption on the agents’ prior distributions and

likelihood functions. The first of these is sometimes referred to as the zero probability

property [8].

Assumption 4. For all agents i = 1, . . . , n,

(a) The set Θ̂∗ = ∩ni=1Θ∗i is nonempty, where Θ∗i ⊆ Θ∗ is the subset of optimal hypotheses

with positive initial beliefs for agent i, i.e., µi0(θ) > 0 for all θ ∈ Θ∗i and µi0(θ) = 0 for

all θ ∈ Θ∗ \Θ∗i.

(b) The support of the true distribution of the observations is contained in the support of

the likelihood models for all hypothesis, i.e., there exists an α > 0 such that if P i (x) > 0

then P i
θ (x) > α for all θ ∈ Θ.

Uniform prior beliefs satisfy the Assumption 4(a), which is a reasonable assumption if

there is no initial information about the hypotheses quality. In Eq. (3.9), if µik(θ) = 0 for

some hypothesis θ and for some agent i, at some instance k, then all beliefs of all agents

will eventually become zero at that hypothesis. Assumption 4(a) removes the undesired

effects of this property which could lead to the inability to learn. Also, Assumption 4(b)

guarantees the sub-Gaussian behavior of the observed random variables. Specifically, the
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derived convergence rates use results from the measure concentration of random variables. In

the most common setting, the random variables must have a sub-Gaussian or sub-exponential

behavior [164].

3.3.2 Consistency

The next theorem shows that the dynamics in Eq. (3.9) concentrate the beliefs on the optimal

set Θ∗, which is precisely the set that best describes the observations.

Theorem 13. Under Assumptions 1 and 4, the update rule of Eq. (3.9) has the following

property:

lim
k→∞

µik(θ) = 0 a.s. for all θ /∈ Θ̂∗, i = 1, . . . , n.

Next, we present a result regarding the weighted average of random variables with a finite

variance.

Lemma 14. Assume that the graph sequence {Gk} satisfies Assumption 1. Also, let As-

sumption 4 hold. Then, for θv /∈ Θ∗ and θw ∈ Θ̂∗,

lim
k→∞

(
1

k

k∑

t=1

Ak:tLθv ,θwt +
1

n
1n1

′
nH(θv, θw)

)
= 0 a.s. (3.10)

where Lθv ,θwt is a random vector with coordinates given by

[Lθv ,θwt ]i = βit−1 log
piθv(X

i
t)

piθw(X i
t)

∀i = 1, . . . , n,

while the vector H(θv, θw) has coordinates given by

H i(θv, θw) = qi
(
DKL(P i‖P i

θv)−DKL

(
P i‖P i

θw

))
.

Proof. Adding and subtracting 1
k

∑k
t=1

1
n
1n1

′
nLθv ,θwt to the expression under the limit in

Eq. (3.10) yields

1

k

k∑

t=1

Ak:tLθv ,θwt +
1

k

k∑

t=1

1

n
1n1

′
nH(θv, θw) =

1

k

k∑

t=1

(
Ak:t −

1

n
1n1

′
n

)
Lθv ,θwt +

1

k

k∑

t=1

1

n
1n1

′
n

(
Lθv ,θwt +H(θv, θw)

)
. (3.11)
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By Lemma 1, limk→∞Ak:t = 1
n
1n1

′
n for all t ≥ 0. Moreover, by Assumption 4(b), we have

that logα ≤ [Lθv ,θwt ]i ≤ log 1
α

. Thus, the first term on the right-hand side of Eq. (3.11) goes

to zero a.s. as we take the limit over k →∞.

Regarding the second term on the right side of Eq. (3.11), by the definition of the KL

divergence, and the assumption of each βit being independent, we have that

E
[
βit−1 log

piθv(x
i
t)

piθw(xit)

]
= qi

∑

x∈X i
pi(x) log

piθv(x)

piθw(x)

= qi
∑

x∈X i
pi(x) log

(
piθv(x)

piθw(x)

pi(x)

pi(x)

)

= qi

(∑

x∈X i
pi(x) log

(
pi(x)

piθw(x)

)
−
∑

x∈X i
pi(x) log

(
pi(x)

piθv(x)

))

= qi
(
DKL

(
P i‖P i

θw

)
−DKL

(
P i‖P i

θv

))
,

or equivalently

E[Lθv ,θwt ] = −H(θv, θw).

Kolmogorov’s strong law of large numbers states that if {Xt} is a sequence of independent

random variables with variances such that
∑∞

k=1
Var(Xk)

k2 <∞, then
1
n

∑n
k=1Xk − 1

n

∑n
k=1 E[Xk]→ 0 a.s. Let Xt = 1

n
1′nLθv ,θwt , then by Assumption 4(b), it can

be seen that supt≥0 Var (Xt) < ∞. The final result follows by Lemma 1 and Kolmogorov’s

strong law of large numbers.

Lemma 14 provides the necessary results to complete the proof of Theorem 13.

Proof. (Theorem 13) Initially, define the following quantities: for all i = 1, . . . , n and k ≥ 0,

ϕik(θv, θw) , log
µik(θv)

µik(θw)
, (3.12)

defined for any θv /∈ Θ̂∗ and θw ∈ Θ̂∗. We also use these quantities later in the proof of

Theorem 17.

Let agent i be arbitrary and consider the update rule of Eq. (3.9). We will show that

µik(θv)→ 0 as k →∞ for all i = 1, . . . , n. Note that if θv ∈ Θ∗ \ Θ̂∗, then as a consequence

of Assumption 4(a) we have that µik(θv) = 0 for all i and large enough k. Thus, we consider

the case when θv /∈ Θ∗ in the remainder of this proof.
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Using the definition of ϕik(θv, θw), it follows from Eq. (3.9) that

ϕik+1(θv, θw) = log
µik+1(θv)

µik+1(θw)

= log

∏n
j=1 µ

j
k(θv)

[Ak]ijpiθv(X
i
k+1)β

i
k

∏n
j=1 µ

j
k(θw)[Ak]ijpiθw(X i

k+1)β
i
k

=
n∑

j=1

[Ak]ijϕ
j
k (θv, θw) + βik log

piθv(X
i
k+1)

piθw(X i
k+1)

.

Stacking up the values ϕik+1(θv, θw) for i = 1, . . . , n, into a single vector ϕk+1(θv, θw), we

can compactly write the preceding relations, as follows:

ϕk+1(θv, θw) = Akϕk(θv, θw) + Lθv ,θwk+1 , (3.13)

where Lθv ,θwk+1 is defined in the statement of Lemma 14. Now, the relation in Eq. (3.13) implies

that for all k ≥ 0,

ϕk+1(θv, θw) = Ak:0ϕ0(θv, θw) +
k∑

t=1

Ak:tLθv ,θwt + Lθv ,θwk+1 . (3.14)

The, if we add and subtract
∑k

t=1
1
n
1n1

′
nH(θv, θw) in Eq. (3.14), where H(θv, θw) is as in

Lemma 14, it follows that

ϕk+1(θv, θw) = Ak:0ϕ0(θv, θw)− k

n

n∑

i=1

H i(θv, θw)1n

+
k∑

t=1

(
Ak:tLθv ,θwt +

1

n
1n1

′
nH(θv, θw)

)
+ Lθv ,θwk+1 .

By the definition of group confidence (cf. Definition 13), we have

n∑

i=1

H i(θv, θw) = Cq(θw)− Cq(θv) = C∗q − Cq(θv), (3.15)

where the last equality follows from θw ∈ Θ̂∗ and the definition of the optimal value C∗q
(Definition 15). Therefore,

ϕk+1(θv, θw) = Ak:0ϕ0(θv, θw)− k

n

(
C∗q − Cq(θv)

)
1n
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+
k∑

t=1

(
Ak:tLθv ,θwt +

1

n
1n1

′
nH(θv, θw)

)
+ Lθv ,θwk+1 .

By dividing both sides of the preceding equation by k and taking the limit as k goes to

infinity, almost surely we have

lim
k→∞

1

k
ϕk+1(θv, θw) = lim

k→∞

1

k
Ak:0ϕ0(θv, θw) + lim

k→∞

1

k

k∑

t=1

(
Ak:tLθv ,θwt +

1

n
1n1

′
nH(θv, θw)

)

+ lim
k→∞

1

k
Lθv ,θwk+1 −

1

n

(
C∗q − Cq(θv)

)
1n.

(3.16)

The limit on the left-hand side of Eq. (3.16) is justified since all the limits on the right-

hand side exist. Specifically, the first term on the right-hand side of Eq. (3.16) converges to

zero deterministically. The second term converges to zero almost surely by Lemma 14, while

the third term goes to zero since Lθv ,θwt is bounded almost surely (cf. Assumption 4(b)).

Consequently,

lim
k→∞

1

k
ϕk+1(θv, θw) = − 1

n

(
C∗q − Cq(θv)

)
1n a.s.

Since C∗q is the maximum value and θv 6∈ Θ∗, it follows that C∗q − Cq(θv) > 0, implying

that ϕk(θv, θw) → −∞ almost surely. Also, by µik(θv) ≤ exp (ϕik(θv, θw)) for all i, we have

µik(θv)→ 0 a.s.

One specific instance of our setup is when there exists a unique hypothesis that matches

the distribution of the observations of all agents. This case relates to the previously proposed

approaches for distributed learning. Specifically, in [46, 43, 1], the authors assume that there

is a “true state” of the world, i.e., there is a unique hypothesis such that the distance between

such hypothesis and the true distribution of the data is zero for all agents. This case could

be expressed, as a consequence of Theorem 13, as follows:

Corollary 15. Under assumptions of Theorem 13, if there is a unique hypothesis θ∗ with

C∗q = 0, then

lim
k→∞

µik(θ
∗) = 1 a.s. ∀i ∈ V.

Proof. By Theorem 13 for every θ 6= θ∗ we have that lim
k→∞

µik(θ) = 0 a.s.
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In general, one can consider several closed social cliques where the same hypothesis can

represent different distributions for different groups. For example, in a social network, what

one community might consider as a good hypothesis, need not be good for other communi-

ties. Each disconnected social clique could have a different optimal hypothesis, even if all

observations come from the same distribution, see Fig. 3.3. If such social cliques interact,

Theorem 13 provides the conditions for which all agents will agree on the hypothesis that is

the closest to the best one considering the models of all agents in the network and not only

those in a specific clique.

1

*
θθ =

1

*
θθ =

1

*
θθ =

2

*
θθ =

Figure 3.3: Conflicting social groups interacting. Initially, on the left, there are three
isolated social cliques, each with a different optimal hypothesis. Once such groups interact
(on the right), others might influence the local decision, and a clique changes its beliefs to
the optimal with respect to the complete set of agents. In this case, one of the groups was
convinced that θ1 was a better solution than θ2.

The previous statement is formally stated in the next corollary.

Corollary 16. Let the agent set V be partitioned into p̂ disjoint sets Vj, j = 1, . . . , p̂. Under

assumptions of Theorem 13 where each agent updates its beliefs according to Eq. (3.9), if

there exists a hypothesis θ∗ such that

p̂∑

j=1

CVj
q (θ∗) > max

θ 6=θ∗

p̂∑

j=1

CVj
q (θ),

then limk→∞ µik(θ
∗) = 1 a.s. for all i.

Proof. If the hypothesis θ∗ exists, then the group confidence on θ∗ is larger than the group

confidence for any other hypothesis. Thus, Θ̂∗ = {θ∗} and the result follows by Theorem

13.
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3.3.3 Convergence Rate for Time-Varying Undirected Graphs

This subsection presents our result regarding the non-asymptotic explicit convergence rate

of the update rules in Eq. (3.9).

Theorem 17. Let Assumptions 1 and 4 hold and let ρ ∈ (0, 1). The update rule of Eq. (3.9)

has the following property: There is an integer N (ρ) such that, with probability 1 − ρ, for

all k ≥N (ρ) and for all θv /∈ Θ∗, we have

µik(θv) ≤ exp

(
−k

2
γ2 + γi1

)
for all i = 1, . . . , n,

where

N (ρ) ,
⌈

1

γ2
2

8 (logα)2 log
1

ρ

⌉
,

γi1 , max
θw∈Θ̂∗

θv /∈Θ∗

{
max
i

log
µi0(θv)

µi0(θw)

}
+

12 log n

1− λ log
1

α
,

γ2 ,
1

n
min
θv /∈Θ∗

(
C∗q − Cq(θv)

)
,

with α from Assumption 4(b), η from Assumption 1(d) and λ given by:

λ =
(

1− η

4n2

) 1
B
.

If each Ak is the lazy Metropolis matrix associated with Gk and B = 1, then

λ = 1− 1

O(n2)
.

In words, the belief of each agent on any hypothesis outside the optimal set decays at a

network-independent rate which scales with the constant γ2, which is the average Kullback-

Leibler divergence to the next best hypothesis. However, there is a transient due to the γi1

term (since the bound of Theorem 17 is not below 1 until k ≥ 2γi1/γ2), and the size of this

transient depends on the network and the number of nodes through the constant λ.

Observe that the term γi1 represents the influence of the initial beliefs as well as the mixing

properties of the graph. If all agents use uniform initial beliefs, i.e., µi0 ≡ 1/|Θ|, then the

effect of the initial beliefs is zero and γi1 reduces to

γi1 =
12 log n

1− λ log
1

α
,
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where the constant λ may be thought of as the “time to ergodicity” of the inhomogeneous

Markov chain associated with the matrix sequence Ak. On the other hand, if one can start

with an informative prior where µi0(θ∗) > µi0(θ), the influence of the initial beliefs will be a

negative term, effectively reducing the transient time.

Before proving Theorem 17, we will provide an auxiliary result regarding bounds on the

expectation of the random variables ϕik(θv, θw) as defined in Eq. (3.12).

Lemma 18. Consider ϕik(θv, θw) as defined in Eq. (3.12), with θw ∈ Θ̂∗. Then, for any

θv /∈ Θ∗ we have

E[ϕik (θv, θw)] ≤ γi1 − kγ2, for all i and k ≥ 0,

with γi1 and γ2 as defined in Theorem 17.

Proof. Taking the expected value in Eq. (3.14) we can see that for all k ≥ 0,

E[ϕik+1(θv, θw)] =
n∑

j=1

[Ak:0]ijϕ
j
0(θv, θw)−

k∑

t=1

n∑

j=1

[Ak:t]ijH
j(θv, θw)−H i(θv, θw).

By adding and subtracting
k+1∑
t=1

n∑
j=1

1
n
Hj(θv, θw), we obtain

E[ϕik+1(θv, θw)] =
n∑

j=1

[Ak:0]ijϕ
j
0(θv, θw)−

k∑

t=1

n∑

j=1

(
[Ak:t]ij −

1

n

)
Hj(θv, θw)

− k + 1

n

n∑

j=1

Hj(θv, θw)−
(
H i(θv, θw)− 1

n

n∑

j=1

Hj(θv, θw)

)
. (3.17)

For the first term in Eq. (3.17), since Ak:0 is stochastic matrix, we have that

n∑

j=1

[Ak:0]ijϕ
j
0(θv, θw) ≤ max

i
log

µi0(θv)

µi0(θw)
.

The second term in Eq. (3.17) can be bounded using Lemma 4, thus

k∑

t=1

n∑

j=1

(
[Ak:t]ij −

1

n

)
Hj(θv, θw) ≤ 4 log n

1− λ log
1

α
,

since logα ≤ Hj(θv, θw) ≤ log 1
α

.
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The last term in Eq. (3.17) is bounded as

1

n

n∑

j=1

(
H i(θv, θw)−Hj(θv, θw)

)
≤ 2 log

1

α

≤ 8 log n

1− λ log
1

α
,

where the last inequality follows from 2 ≤ 8 log n for n ≥ 2 and 1− λ < 1.

Finally we have that

E[ϕik+1(θv, θw)] ≤ max
i

log
µi0(θv)

µi0(θw)
+

12 log n

1− λ log
1

α
− k + 1

n

n∑

j=1

Hj(θv, θw),

from which the desired result follows by using the definitions of γi1, γ2, Hj(θv, θw) and taking

the appropriate maximum values over θv and θw on the right hand side of the preceding

inequality.

Now, we are ready to prove Theorem 17.

Proof. (Theorem 17) First, we will express the belief µik+1(θv) in terms of the variable

ϕik+1(θv, θw). This will allow us to use McDiarmid’s inequality to obtain the concentra-

tion bounds. By the dynamics of the beliefs in Eq. (3.9) and Assumption 4(a), since

µik(θw) ∈ (0, 1] for θw ∈ Θ̂∗, we have

µik(θv) ≤
µik(θv)

µik(θw)
= exp

(
ϕik(θv, θw)

)
.

Therefore,

P
(
µik(θv) ≥ exp

(
−k

2
γ2 + γi1

))
≤ P

(
exp

(
ϕik(θv, θw)

)
≥ exp

(
−k

2
γ2 + γi1

))

= P
(
ϕik(θv, θw) ≥ −k

2
γ2 + γi1

)

≤ P
(
ϕik(θv, θw)− E[ϕik(θv, θw)] ≥ k

2
γ2

)
,

where the last inequality follows from Lemma 18.

We now view ϕik+1(θv, θw) as a function of the random vectors S1, . . . ,Sk (see Eq. (3.14)),

where St = (S1
t , . . . , S

n
t ) for t ≥ 1, and the random variable Sik+1. Next, we will establish

that this function has bounded differences in order to apply McDiarmid’s inequality.
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For all t with 1 ≤ t ≤ k and j with 1 ≤ j ≤ n, we have

max
sjt∈Sj

ϕik+1(θv, θw)− min
sjt∈Sj

ϕik+1(θv, θw)

= max
st∈Sj

[Ak:t]ij log
pjθv(xk)

pjθw(xk)
− min

st∈Sj
[Ak:t]ij log

pjθv(xk)

pjθw(xk)

≤ [Ak:t]ij log
1

α
+ [Ak:t]ij log

1

α

= 2[Ak:t]ij log
1

α
.

Similarly, from Eq. (3.14) we can see that

max
sjk+1∈Sj

ϕik+1(θv, θw)− min
sjk+1∈Sj

ϕik+1(θv, θw) ≤ 2 log
1

α
.

It follows that ϕik+1(θv, θw) has bounded variations, with

k∑

t=1

n∑

j=1

(2[Ak:t]ij log
1

α
)2 +

(
2 log

1

α

)2

= 4

(
log

1

α

)2
(

k∑

t=1

n∑

j=1

([Ak:t]ij)
2 + 1

)

≤ 4

(
log

1

α

)2

(k + 1),

where the last inequality follows from the fact that Ak:t is row stochastic.

Thus,

P
(
ϕik(θv, θw)− E[ϕik(θv, θw)] ≥ k

2
γ2

)
= exp

(
− 2

(
1
2
kγ2

)2

4k
(
log 1

α

)2

)
.

Therefore, for a given confidence level ρ, in order to have

P
(
µik(θv) ≥ exp

(
−1

2
kγ2 + γi1

))
≤ ρ,

we require that

k ≥ 1

γ2
2

8 (logα)2 log
1

ρ
.
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3.4 Distributed Learning over Time-varying Directed Graphs

In this section we present our results for distributed learning over directed time-varying

graphs. We propose a new algorithm in which every agent i updates its beliefs on a hypothesis

θ given some observation xik+1 following the next protocol

yik+1 =
∑

j∈N i
k

yjk
djk

(3.18a)

µik+1 (θ) =
1

Zi
k+1


∏

j∈N i
k

µjk (θ)

y
j
k

d
j
k piθ

(
xik+1

)



1

yi
k+1

, (3.18b)

where at time k: N i
k is the set of in-neighbors of node i, that is N i

k = {j|(j, i) ∈ Ek} (a node

is assumed to be its own neighbor) and the value dik its the out degree of node i. The term

Zi
k+1 is the corresponding normalization factor.

The proposed update rule in Eqs. (3.18) is inspired by the push-sum protocol recently

studied in [165, 166] and its application to distributed optimization in time-varying directed

graphs [167, 72, 168, 169, 170]. At each time step, each node shares its beliefs on the

hypothesis set Θ to its out neighbors. Additionally, it also shares a self-assigned weight

yjk/d
j
k to be used by its neighbors. Then, each node i computes the geometric average of

the beliefs of its in-neighbor set with weights corresponding to a normalized version of the

self-assigned weights it received. Then a Bayesian update step is performed based on the

local observations with a learning rate parameter of 1/yik+1.

In this subsection, we show a non-asymptotic convergence rate for the proposed update

rule in Eq. (3.18).

Theorem 19. Let Assumption 4 hold, and let the sequence {Gk} be B-strongly connected.

Also, let ρ ∈ (0, 1) be a given error percentile (or confidence value). Then, the update rule

in Eqs. (3.18), with yi0 = 1 and uniform initial beliefs, has the following property: There is

an integer N (ρ) such that, with probability 1− ρ, for all k ≥N (ρ) and for all θv /∈ Θ∗ there

holds

µik (θv) ≤ exp

(
−k

2
γ2 +

1

δ
γi1

)
for all i = 1, . . . , n,

where

N (ρ) ,
⌈

1

δ2γ2
2

8 (log (α))2 log

(
1

ρ

)
+ 1

⌉
,
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γi1 = max
θw∈Θ̂∗

θv /∈Θ∗

{
2C

1− λ‖H (θv, θw) ‖1 − [H (θv, θw)]i

}
,

γ2 =
1

n
min
θv /∈Θ∗

(C∗ − C (θv)) ,

with C (θ) being the group confidence on hypothesis θ and C∗ = C(θ) for all θ ∈ Θ∗ and the

vector H (θv, θw) has coordinates given by

[H (θv, θw)]i = DKL(P i‖P i
θv)−DKL

(
P i‖P i

θw

)
.

The constants C, δ and λ satisfy the following relations:

(1) For general B-strongly-connected graph sequences {Gk},

C = 4, λ =

(
1− 1

nnB

) 1
B

, δ ≥ 1

nnB
.

(2) If every graph Gk is regular with B = 1,

C =
√

2, λ =

(
1− 1

4n3

) 1
B

, δ = 1.

This theorem shows that the network of agents will collectively solve the optimization

problem in Eq. (3.5). After a transient time N (ρ), the belief in the hypothesis outside the

optimal hypothesis set, that maximizes the group confidence, will decay exponentially fast.

Moreover, this will happen at a rate that depends on explicitly characterized terms γi1 and

γ2. Additionally, after a transient time of 2γi1/δγ2 for which the beliefs are bounded by 1 the

exponential decay will occur at a rate that depends on γ2 only, i.e., the average difference

between the optimal confidence and the second best hypothesis. This exponential rate is

network independent and holds for all the nodes in the network.

This result generalizes previously proposed algorithms [25] when the optimal set of the

hypothesis is also optimal from the local perspective [64]. Moreover, in contrast with pre-

vious literature, the convergence rate induced by the parameter γ2 does not depend on the

parameter δ, that is, after a transient time, the convergence rate is as if the sequence of

graphs were regular. Without this regularization behavior, the amount an agent contributes

to the group confidence is determined by its location in the network, i.e., δ. Then in the

case of time-varying graphs, the importance of the nodes might change as well, and since we

allow for disjoint node optimal hypothesis, the concentration of the beliefs would oscillate

with the confidence as a weighted sum of local confidences are changing with the topology
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of the network.

Remark 1. If the auxiliary sequence yik is not used in the update rule, i.e.

µik+1 (θ) =
1

Zi
k+1

∏

j∈N i
k

µjk (θ)
1

d
j
k piθ

(
xik+1

)
,

with the corresponding normalization term Zi
k+1, we obtain a similar result as in Theorem

19 with the exponential rate

µik (θv) ≤ exp

(
−δk

2
γ2 + γi1

)
, for all i = 1, . . . , n,

with the same constants δ, C, γ2, γi1 and N (ρ). However, after the same transient time

2γi1/δγ2, the exponential decay occurs at a rate that depends on δγ2, where δ might be very

small (note that δ ≥ 1/nnB).

In this section we analyze the dynamics of the proposed learning rule in Eqs. (3.18). First,

define the following quantities that simplify the analysis procedure: For all i = 1, . . . , n and

k ≥ 0 let

ϕik (θv, θw) , log
µik (θv)

µik (θw)
, (3.19)

ϕ̂ik (θv, θw) , yikϕ
i
k (θv, θw) , (3.20)

for any θv /∈ Θ̂∗ and θw ∈ Θ̂∗. With this definition in place we can focus on analyzing the

dynamics of ϕ̂ik (θv, θw).

Proposition 20. The quantity ϕ̂ik (θv, θw) evolves as

ϕ̂ik+1 (θv, θw) =
n∑

j=1

1

djk
ϕ̂jk (θv, θw) + log

piθv(x
i
k+1)

piθw(xik+1)
. (3.21)

Moreover, by staking all ϕ̂ik (θv, θw) into a single vector, ϕ̂k+1 (θv, θw) can be compactly stated

as

ϕ̂k+1 (θv, θw) = Akϕ̂k (θv, θw) + Lθv ,θwk+1 , (3.22)
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where Ak is a stochastic matrix such that

[Ak]ij =





1

djk
if (j, i) ∈ Ek,

0 otherwise,

and
[
Lθv ,θwk+1

]
i

= log
piθv (xik+1)

piθw (xik+1)

Proof. By the definitions provided in Eqs. (3.19) and (3.20) we have that

ϕ̂ik+1 (θv, θw) = yik+1ϕ
i
k+1 (θv, θw)

= yik+1 log
µik+1 (θv)

µik+1 (θw)

= yik+1 log

(
n∏
j=1

µjk (θv)
[Ak]ijy

j
k piθv(x

i
k+1)

) 1

yi
k+1

(
n∏
j=1

µjk (θw)[Ak]ijy
j
k piθw(xik+1)

) 1

yi
k+1

= log

(
n∏
j=1

µjk (θv)
[Ak]ijy

j
k piθv(x

i
k+1)

)

(
n∏
j=1

µjk (θw)[Ak]ijy
j
k piθw(xik+1)

)

=
n∑

j=1

[Ak]ij y
j
k log

µjk (θv)

µjk (θw)
+ log

piθv(x
i
k+1)

piθw(xik+1)
.

The first three equalities follow from Eqs. (3.18), (3.19) and (3.20). Cancellation of the term

yik+1 leads to the fourth equality. The rest of the proof follows from arithmetic properties of

logarithms.

We can now proceed to further analyze the sequence ϕ̂ik+1 (θv, θw). First by adding and

subtracting the term
∑k

t=1φk1
′Lθv ,θwt from Eq. (3.22) we obtain

ϕ̂k+1 (θv, θw) = Ak:0ϕ̂0 (θv, θw) +
k∑

t=1

Ak:tLθv ,θwt + Lθv ,θwk+1 −
k∑

t=1

φk1
′Lθv ,θwt +

k∑

t=1

φk1
′Lθv ,θwt

= Ak:0ϕ̂0 (θv, θw) +
k∑

t=1

Dk:tLθv ,θwt + Lθv ,θwk+1 +
k∑

t=1

φk1
′Lθv ,θwt ,

with Dk:t = Ak:t − φk1′.

77



From now on we will ignore the first term in ϕ̂k+1 (θv, θw), assuming all agents use a

uniform distribution as their initial beliefs; thus ϕ̂i0 (θv, θw) = 0. This simplifies the notation

and facilitates the exposition of the results. Moreover, it does not limit the generality of our

method since this term can be upper bounded and it will depend at most linearly on the

number of agents.

Now we have that

ϕik+1 (θv, θw) =

k∑
t=1

[
Dk:tLθv ,θwt

]
i
+
[
Lθv ,θwk+1

]
i
+

k∑
t=1

φik1
′Lθv ,θwt

yik+1

.

Similarly the dynamics of yk can be expressed as

yk+1 = Ak:0y0

= Ak:0y0 − φk1′y0 + φk1
′y0

= Dk:01 + φkn,

which leads us to

ϕik+1 (θv, θw) =

k∑
t=1

[
Dk:tLθv ,θwt

]
i
+
[
Lθv ,θwk+1

]
i
+

k∑
t=1

φik1
′Lθv ,θwt

[Dk:01]i + φikn
. (3.23)

The next lemma will provide a general tool for analyzing the non-asymptotic properties

of a learning rule that can be expressed as a log-linear function of bounded variations and

upper bounded expectation as it was recently used in [64, 25]. It can be interpreted as a

specialized version of the McDiarmid concentration [124] for log-linear update rules.

Lemma 21. Consider a learning update rule that can be expressed as a log-linear function,

i.e.,

µik+1 (θv) ≤ exp
(
ϕik+1 (θv, θw)

)
.

If the term ϕik+1 (θ) is of bounded variations with bounds {cik} at each time k and its expected

value is upper bounded by an affine function as E
[
ϕik+1 (θ)

]
≤ 1

δ
γi1 − kγ2, then

P
(
µik+1 (θv) ≥ exp

(
−k

2
γ2 +

1

δ
γi1

))
≤ exp

(
−

1
2

(kγ2)2

∑k+1
t=1 (cit)

2

)
.
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Proof. Following simple set properties of the probability measure on the desired set

µik+1 (θv) ≥ exp

(
−k

2
γ2 +

1

δ
γi1

)
,

we have that

P
(
µik+1 (θv) ≥ exp

(
−k

2
γ2 +

1

δ
γi1

))
≤ P

(
exp

(
ϕik+1 (θv, θw)

)
≥ exp

(
−k

2
γ2 +

1

δ
γi1

))

= P
(
ϕik+1 (θv, θw) ≥ −k

2
γ2 +

1

δ
γi1

)

= P
(
ϕik+1 (θv, θw)− E

[
ϕik+1 (θv, θw)

]
≥

−k
2
γ2 +

1

δ
γi1 − E

[
ϕik+1 (θv, θw)

])

= P
(
ϕik+1 (θv, θw)− E

[
ϕik+1 (θv, θw)

]
≥ k

2
γ2

)
.

Finally, use McDiarmid’s inequality to get the desired result.

The next lemma will show the desired properties required in Lemma 21 to get the non-

asymptotic results. First, we will show the bounds on the expected value and then the

bounded variation property.

Lemma 22. Consider ϕik+1 (θv, θw) as defined in Eq. (3.19), then

E
[
ϕik+1 (θv, θw)

]
≤ 1

δ
γi1 − kγ2

for all i and k ≥ 0, with γi1 and γ2 as in Theorem 19.

Proof. First by taking the expected value of Eq. (3.23) we have that for all k ≥ 0,

E
[
ϕik+1 (θv, θw)

]

=

k∑
t=1

[Dk:tH (θv, θw)]i + [H (θv, θw)]i +
k∑
t=1

φik1
′H (θv, θw)

[Dk:01]i + φikn

=

k∑
t=1

[Dk:tH (θv, θw)]i + [H (θv, θw)]i + kφik1
′H (θv, θw)

[Dk:01]i + φikn
.

The main idea is to analyze how the term E
[
ϕik+1 (θv, θw)

]
differs from a dynamic term

where all agents have the same importance in the network and thus the learning occurs at
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a rate 1′H (θv, θw) /n.

The first step will be to add and subtract the term k1′H (θv, θw) /n; therefore, we obtain

E
[
ϕik+1 (θv, θw)

]
=

k∑
t=1

[Dk:tH (θv, θw)]i + [H (θv, θw)]i + kφik1
′H (θv, θw)

[Dk:01]i + φikn

− k1′H (θv, θw)

n
+ k

1′H (θv, θw)

n
.

By working out the arithmetic we have

E
[
ϕik+1 (θv, θw)

]
=

n

(
k∑
t=1

[Dk:tH (θv, θw)]i + [H (θv, θw)]i + kφik1
′H (θv, θw)

)

n ([Dk:01]i + φikn)

− ([Dk:01]i + φikn) k1′H (θv, θw)

n ([Dk:01]i + φikn)
+ k

1′H (θv, θw)

n

=

n

(
k∑
t=1

[Dk:tH (θv, θw)]i + [H (θv, θw)]i

)

n ([Dk:01]i + φikn)

− ([Dk:01]i) k1
′H (θv, θw)

n ([Dk:01]i + φikn)
+ k

1′H (θv, θw)

n
.

Before finalizing the proof note that the denominator of the above function has the prop-

erty [Dk:01]i + φikn > δ. This follows from the fact that this term is the sum of the i-th row

of the matrix Ak:0 multiplied n times [72]. Therefore by taking absolute value of the first

terms we obtain

E
[
ϕik+1 (θv, θw)

]
≤ 1

δ

(
k∑

t=1

(
max
j
| [Dk:t]ij |

)
‖H (θv, θw) ‖1 + [H (θv, θw)]i

)

+
k

nδ
‖H (θv, θw) ‖1

(
max
j
| [Dk:0]ij |

)
n+ k

1′H (θv, θw)

n
.

Using Lemma 2 we obtain upper bounds on | [Dk:t]ij | where

E
[
ϕik+1 (θv, θw)

]
≤ 1

δ

(
C

k∑

t=1

λk−t‖H (θv, θw) ‖1 + [H (θv, θw)]i

)

+ k
C

δ
λt‖H (θv, θw) ‖1 + k

1′H (θv, θw)

n

≤ 2C

δ

1

1− λ‖H (θv, θw) ‖1 +
1

δ
[H (θv, θw)]i + k

1′H (θv, θw)

n
.
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The desired result follows by definition of the group confidence; thus,

1′H (θv, θw) = C∗ − C (θv).

Finally, note that the term ϕik (θv, θw), as a function of a sequence of k random vectors, is

of bounded variations, i.e.

max
st∈S

ϕik+1 (θv, θw)−min
st∈S

ϕik+1 (θv, θw) ≤ 2

δ

(
log

1

α

)
.

We have now successfully developed the auxiliary results for the proof of Theorem 19.

Proof. (Theorem 19)

The proof procedure will be a compilation of previous lemmas. As a first step, we will

show that the proposed learning rule can be expressed as a log-linear function.

Since µik (θ) ∈ (0, 1] for all i = 1, . . . , n, k ≥ 0 and all θ ∈ Θ, we have that

µik+1 (θv) ≤
µik+1 (θv)

µik+1 (θw)

=

(
n∏
j=1

µjk (θv)
[Ak]ijy

j
k piθv(x

i
k+1)

) 1

yi
k+1

(
n∏
j=1

µjk (θw)[Ak]ijy
j
k piθw(xik+1)

) 1

yi
k+1

=




n∏

j=1

(
µjk (θv)

µjk (θw)

)[Ak]ijy
j
k
piθv(x

i
k+1)

piθw(xik+1)




1

yi
k+1

= exp

(
1

yik+1

(
n∑

j=1

[Ak]ij ϕ̂
j
k (θv, θw) + log

piθv(x
i
k+1)

piθw(xik+1)

))

= exp
(
ϕjk+1 (θv, θw)

)
.

This result alongside Lemma 22 provides the conditions for Lemma 21; thus, the following

relation is valid:

P
(
µik+1 (θv) ≥ exp

(
−k

2
γ2 + γi1

))
≤ exp

(
−

1
2

(kγ2)2

∑k+1
t=1 (cit)

2

)
.
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Specifically, we have that cit = 2
δ

log 1
α

. Therefore,

P
(
ϕik+1 (θv, θw)− E

[
ϕik+1 (θv, θw)

]
≥ k

2
γ2

)
≤ exp

(
−

1
2

(kγ2)2

∑k+1
t=1

(
2
δ

log 1
α

)2

)

= exp

(
− (kγ2δ

2)
2

8(k + 1)
(
log 1

α

)2

)

≤ exp

(
−(k − 1)γ2

2δ
2

8 (logα)2

)
.

Finally, for a given confidence level ρ, in order to have

P
(
µik (θv) ≥ exp

(
−1

2
kγ2 + γi1

))
≤ ρ,

we require that

k ≥
8 (log (α))2 log 1

ρ

δ2γ2
2

+ 1.

This completes the proof.

3.5 Acceleration of Distributed Learning over Fixed Undirected

Graphs

For static undirected graphs, we propose a new belief update rule with one-step memory as

follows: For each θ in Θ

µik+1(θ) =
1

Z̃i
k+1

n∏
j=1

µjk(θ)
(1+σ)Āijpiθ(x

i
k+1)β

i
k

n∏
j=1

(
µjk−1(θ)pjθ(x

j
k)
βjk−1

)σĀij , (3.24)

where Z̃i
k+1 is the corresponding normalization factor given by

Z̃i
k+1 =

m∑

r=1

n∏
j=1

µjk (θr)
(1+σ)Āij piθr(x

i
k+1)β

i
k

n∏
j=1

(
µjk−1(θr)p

j
θr

(xjk)
βjk−1

)σĀij ,
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where Ā is a specifically chosen matrix (called the lazy Metropolis matrix ) and σ a constant

to be set later. We initialize µi−1(θ) to be equal to µi0(θ) for all i = 1, . . . , n and θ ∈ Θ.

We will show that this update rule generates a sequence of beliefs that concentrate at a

rate a factor of n faster than the previous results. Note that the update rule described in

Eq. (3.24) requires the communication of the product of the beliefs and likelihood functions

and an additional memory since the beliefs at time k+ 1 depend on the beliefs a time k and

at time k − 1.

Our next result shows the belief concentration rate for the update rule described in

Eq. (3.24).

Theorem 23. Let Assumptions 3 and 4 hold and let ρ ∈ (0, 1). Furthermore let U ≥ n and

let σ = 1−2/(9U+1). Then, the update rule of Eq. (3.24) with this σ, uniform initial beliefs

with the condition µi−1(θ) = µi0(θ) and βi−1 fixed to zero, has the following property: There

is an integer N (ρ) such that, with probability 1 − ρ, for all k ≥ N (ρ) and for all θv /∈ Θ∗,

it holds that

µik(θv) ≤ exp

(
−k

2
γ2 + γi1

)
for all i = 1, . . . , n,

where

N (ρ) ,
⌈

1

γ2
2

48 (logα)2 log

(
1

ρ

)⌉
,

γi1 ,
4 log n

1− λ log
1

α
,

γ2 ,
1

n
min
θv /∈Θ∗

(
C∗q − Cq(θv)

)
,

with α from Assumption 4(b) and λ = 1− 1
18U

.

Note that the beliefs for k = −1 and k = 0 are defined as equal. Additionally, we assume

there is no observation available for time 0; this holds if we assume βi−1 = 0 with any

realization of Si0.

The bound of Theorem 3 is an improvement by a factor of n compared to the bounds of

Theorem 17. In a network of n agents where α, ρ and γ2 are treated like constants with

respect to the number of agents, we require at least O(n log n) iterations for the beliefs on

the incorrect hypotheses to be below certain small value epsilon (assuming U is within a

constant factor of n). Following the results of [45], the best bound one could get using a

Metropolis weights is O(n2 log n), as in Theorem 17 if B = 1.

We note, however, that the requirements of Theorem 23 are more stringent than those

of Theorem 17. The network topology is fixed (i.e., a static graph) and all nodes need to
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know an upper bound U on the total number of agents. This upper bound must be within

a constant factor of the number of agents.

Next, we define some quantities that we use in the analysis of Eq. (3.24). Define the

matrix B and a scalar σ as follows:

B =

[
(1 + σ) Ā −σĀ

In 0

]
, (3.25)

and

σ = 1− 2

9U + 1
, (3.26)

where In is the identity matrix and 0 is the matrix with all entries equal to zero of the

appropriate size and Ā is as defined in Assumption 3.

We have the following auxiliary result for the matrix B.

Lemma 24. Consider the matrix B and the parameter σ as defined in Eqs. (3.25) and (3.26)

respectively. Then

∣∣∣∣[[In 0]Bk[In In]′]ij −
1

n

∣∣∣∣ ≤
√

2λk ∀ k ≥ 2,

where λ = 1− 1
18U

.

Proof. The linear time consensus algorithm described in Eq. (1.2) can be expressed as

yk+1 = Āxk

xk+1 = yk+1 + σ
(
yk+1 − yk

)
,

which implies that yk+1 = Ā
(
yk + σ

(
yk − yk−1

))
with yi1 = xi1. Therefore

[
yk+1

yk

]
=

[
(1 + σ) Ā −σĀ

In 0

][
yk

yk−1

]
= Bk

[
y1

y0

]
,

where we assumed that y0 = y1. Thus,

yk+1 = [In 0]Bk[In In]′y1.
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By substituting the previous relation into Eq. (1.3) and using x1 = y1, we obtain

‖[In 0]Bk[In In]′y1 −
(

1

n

n∑

i=1

yi1

)
1n‖2

2 ≤ 2

(
1− 1

9U

)k
‖y1 −

1

n

n∑

i=1

yi11n‖2
2,

which implies that

max
i

∣∣∣∣∣[[In 0]Bk[In In]′y1]i −
1

n

n∑

i=1

yi1

∣∣∣∣∣ ≤
√

2

(√
1− 1

9U

)k

‖y1 −
1

n

n∑

i=1

yi11n‖2.

The preceding relation holds for any y1. In particular, if we take y1 = ej, where ej is a

vector whose j-th entry is equal to one and zero otherwise, we conclude that for every i and

j,

∣∣∣∣[[In 0]Bk[In In]′]ij −
1

n

∣∣∣∣ ≤
√

2

(
1− 1

18U

)k
.

This follows from the inequality
√

1− β ≤ 1 − β/2 for all β ∈ (0, 1) and the fact that

‖ej − 1
n
1n‖ ≤ 1.

Now, we are ready to prove Theorem 23.

Proof. (Theorem 23) The proof is along the lines of the proof for Theorem 17. From the

definition of ϕik+1(θv, θw) we have

ϕik+1(θv, θw) = log
µik+1(θv)

µik+1(θw)

= log

∏n
j=1 µ

j
k(θv)(1+σ)Aij piθv (Xi

k+1)β
i
k∏n

j=1(µjk−1(θv)pjθv (Xj
k)
β
j
k−1 )σAij∏n

j=1 µ
j
k(θw)(1+σ)Aij piθw (Xi

k+1)
βi
k∏n

j=1(µjk−1(θw)pjθw (Xj
k)
β
j
k−1 )σAij

=
n∑

j=1

(1 + σ) Āij log
µjk(θv)

µjk(θw)
−

n∑

j=1

σĀij log
µjk−1(θv)

µjk−1(θw)

+ βik log
piθv(X

i
k+1)

piθw(X i
k+1)

−
n∑

j=1

σĀijβ
j
k−1 log

pjθv(X
j
k)

pjθw(Xj
k)

=
n∑

j=1

(1 + σ) Āijϕ
j
k(θv, θw)−

n∑

j=1

σĀijϕ
j
k−1(θv, θw)
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+ [Lθv ,θwk+1 ]i −
n∑

j=1

σĀij[Lθv ,θwk ]j.

Stacking the previous relation for all i we obtain the following vector representation for the

dynamics:

ϕk+1(θv, θw) = (1 + σ) Āϕk(θv, θw)− σĀϕk−1(θv, θw) + Lθv ,θwk+1 − σĀLθv ,θwk . (3.27)

Now, define the following auxiliary vector

zk+1(θv, θw) = ϕk(θv, θw) + Lθv ,θwk+1 ,

where z0(θv, θw) = 0, since ϕ−1(θv, θw) = 0 by the assumption of uniform initial beliefs, and

Lθv ,θw0 = 0 due to β−1 = 0, in which case we can set Si0 to any value in S i.
By writing the evolution for the augmented state [ϕk+1(θv, θw) zk+1(θv, θw)]′ we have

[
ϕk+1(θv, θw)

zk+1(θv, θw)

]
= B

[
ϕk(θv, θw)

zk(θv, θw)

]
+

[
Lθv ,θwk+1

Lθv ,θwk+1

]

which implies that for all k ≥ 1,

[
ϕk+1(θv, θw)

zk+1(θv, θw)

]
= Bk+1

[
ϕ0(θv, θw)

z0(θv, θw)

]
+

k∑

t=1

Bk+1−t
[
Lθv ,θwt

Lθv ,θwt

]
+

[
Lθv ,θwk+1

Lθv ,θwk+1

]
.

Then we have

ϕk(θv, θw) = [In 0]Bk[In In]′ϕ0(θv, θw) +
k∑

t=1

[In 0]Bk−t[In In]′Lθv ,θwt ,

where the assumption of uniform initial beliefs sets the first term of the above relation to

zero.

The remainder of the proof follows the structure of the proof of Theorem 17, where we

invoke Lemma 24 instead of Lemma 2. First, we will find a bound for the expected value of

ϕk(θv, θw) and later we will show this is of bounded variations. In this case, we have

E[ϕik(θv, θw)] = −
k∑

t=1

n∑

j=1

[[In 0]Bk−t[In In]′]ijH
j(θv, θw).
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By adding and subtracting
k∑
t=1

n∑
j=1

1
n
Hj(θv, θw) we obtain

E[ϕik(θv, θw)] = −k
n

n∑

j=1

Hj(θv, θw) +
k∑

t=1

n∑

j=1

(
1

n
− [[In 0]Bk−t[In In]′]ij

)
Hj(θv, θw).

Similarly, as in the proof of Theorem 17, we bound the term in parentheses using the

non-asymptotic bounds from Lemma 24 in conjunction with Lemma 4. By doing so, it can

be seen that

E[ϕik(θv, θw)] ≤ 4 log n

1− λ log
1

α
− k

n

n∑

j=1

Hj(θv, θw).

Now, we will show that ϕik(θv, θw), as a function of the random variables consisting in Sjt

for 1 ≤ t ≤ k to 1 ≤ j ≤ n, has bounded variations and we will compute the bound. First,

we fix all other input random variables but [Lθv ,θwt ]j and we have

max
sjt∈Sj

ϕik(θv, θw)− min
sjt∈Sj

ϕik(θv, θw) = max
sjt∈Sj

[[In 0]Bk−t[In In]′]ij[Lθv ,θwt ]j

− min
sjt∈Sj

[[In 0]Bk−t[In In]′]ij[Lθv ,θwt ]j

≤ [[In 0]Bk−t[In In]′]ij2 log
1

α
.

Thus, the summation of the squared bounds in McDiarmid’s inequality is

k∑

t=1

n∑

j=1

(
[[In 0]Bk−t[In In]′]ij2 log

1

α

)2

.

Now, by adding and subtracting the term 1/n we have that

k∑

t=1

n∑

j=1

(
[[In 0]Bk−t[In In]′]ij2 log

1

α

)2

≤ 8

(
log

1

α

)2 k∑

t=1

n∑

j=1

(
[[In 0]Bk−t[In In]′]ij − 1/n

)2

+ 8

(
log

1

α

) k∑

t=1

n∑

j=1

(1/n)2 ,

where we have used x2 ≤ 2((x− y)2 + y2).

We can bound the first term in the preceding relation using Eq. (3.27) with y1 = ej since
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Eq. (3.27) holds for any choice of y1. Specifically, we obtain that for all j = 1, . . . , n

n∑

i=1

(
[[In 0]Bk−t[In In]′]ij − 1/n

)2 ≤ 2

(
1− 1

9U

)k−t
.

Additionally, note that [In 0]Bk[In In]′ is a symmetric matrix since it is a polynomial of

Ā which is symmetric itself. This in turn implies that [In 0]Bk−t[In In]′ is also symmetric.

Therefore, it holds that for all i = 1, . . . , n

n∑

j=1

(
[[In 0]Bk−t[In In]′]ij − 1/n

)2 ≤ 2

(
1− 1

9U

)k−t
.

Finally, we have

k∑

t=1

n∑

j=1

(
[[In 0]Bk−t[In In]′]ij2 log

1

α

)2

≤ 8

(
log

1

α

)2(
2k +

k

n

)

≤ 24 (logα)2 k.

Now, by the McDiarmid inequality and getting the values of k such that the desired

probabilistic tolerance level ρ is achieved, we obtain

P
(
ϕik(θv, θw)− E[ϕik(θv, θw)] ≥ k

2
γ2

)
= exp

(
− 2

(
1
2
kγ2

)2

24 (logα)2 k

)

= exp

(
− kγ2

2

48 (logα)2

)
.

Therefore, for a given confidence level ρ, in order to have

P
(
µik(θv) ≥ exp

(
−1

2
kγ2 + γi1

))
≤ ρ,

we require that

k ≥ 1

γ2
2

48 (logα)2 log
1

ρ
.

Figure 3.4 presents simulation results that show how the convergence time depends on the

number of agents in the network. Figure 3.4 shows the time required for a group of agents
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to have a set of beliefs at a distance of ε = 0.01 from the singleton distribution around the

optimal hypothesis. For example, on a path graph, as the path grows longer, the number

of iterations required to meet the desired ε accuracy grows rapidly. This is due to the low

connectivity of the network. The time required for consensus is smaller for the circle and

the grid graphs due to their better connectivity properties.
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(c) Grid Graph

Figure 3.4: Empirical mean over 50 Monte Carlo runs of the number of iterations required
for µik(θ) < ε for all agents on θ /∈ Θ∗. All agents but one have all their hypotheses to be
observationally equivalent. Dotted line for the algorithm proposed in [1], dashed line for the
procedure described in Eq. (3.9) and solid line for the procedure described in Eq. (3.24).

3.6 Generalized Non-Bayesian Learning Protocols

In this section, we discuss a general class of distributed non-Bayesian algorithms. First,

we will motivate the choice of the update rules described in Eq. (3.9) and Eq. (3.24). For

simplicity of exposition, we will assume that the agents always obtain observations (i.e.

βik = 1 in Eqs. (3.9) and (3.24) for all i and k). Then, we will provide a comparison between

our algorithms and previously proposed algorithms within the generalized distributed non-

Bayesian framework.

Opinion pooling or opinion aggregation has been studied before in [8, 11, 9, 10]. It is

considered a traditional problem in economics, where several experts have beliefs about

a hypothesis and one needs to aggregate their beliefs into a single probability distribu-

tion. Different opinion aggregation functions result from using different divergence metrics
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for probability distributions (see [171]). Similarly, different opinion pool operators define

different non-Bayesian distributed learning rules. A general form of opinion pooling was

introduced in [11], termed g-Quasi-Linear Opinion pools (g-QLOP), defined as follows:

τAkg
(
. . . , µjk(θ), . . .

)
=

g−1
(∑n

j=1 [Ak]ijg(µjk(θ))
)

∑m
r=1 g

−1
(∑n

j=1 [Ak]ijg(µjk (θr))
) ,

with τAg :
∏n

i=1 P (Θ) → P (Θ). The g-QLOP corresponds to weighted arithmetic averages

when g(x) = x and to weighted geometric averages when g(x) = log x.

The update rules studied in this chapter can be seen as a two-step procedure. First, the

beliefs of the neighbors are combined according to an opinion aggregation function. Second,

the resulting aggregate distribution is updated using Bayes’ rule. The proposed update rule,

see Eq. (3.9), uses the logarithmic opinion pool, where

τAklog x

(
. . . , µjk(θ), . . .

)
=

∏n
j=1 µ

j
k(θ)

[Ak]ij

∑m
r=1

∏n
j=1 µ

j
k (θr)

[Ak]ij
,

thus

µik+1(θ) =
τAklog x

(
. . . , µjk(θ), . . .

)
piθ(x

i
k+1)

∑m
r=1 τ

Ak
log x

(
. . . , µjk(θr), . . .

)
piθr(x

i
k+1)

.

Logarithmic pools are externally Bayesian [8, 172], i.e., the order of aggregation of beliefs

and new evidence does not influence the update rule. That is, from a learning point of view,

if the function is externally Bayesian, we can interchange the innovation and diffusion steps.

The order in which we aggregate opinions and make the Bayesian update does not change

the update rule. The next proposition shows that the update rule in Eq. (3.9) is externally

Bayesian.

Proposition 25. Assume that βik = 1 for all i and k in the update rule Eq. (3.9). Then,

this rule is externally Bayesian, i.e. Eq. (3.9) is equivalent to:

µik+1(θ) = τAklog x

(
. . . ,

µjk(θ)p
i
θ(x

i
k+1)

∑m
r=1 µ

j
k (θr) piθr(x

i
k+1)

, . . .

)
.

Proof. The proof of this proposition can be found in [25].
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Consider now a linear opinion pool, where

τAkx
(
. . . , µjk(θ), . . .

)
=

n∑

j=1

[Ak]ijµ
j
k(θ).

If the opinion aggregation is done first, as studied in [56], then the resulting update rule is

µik+1(θ) =

∑n
j=1[Ak]ijµ

j
k(θ)p

i
θ(x

i
k+1)

∑m
r=1

∑n
j=1[Ak]ijµ

j
k(θr)p

i
θr

(xik+1)
.

On the other hand, if the Bayesian update is done first, then the resulting update rule is

µik+1(θ) =
n∑

j=1

[Ak]ij
µjk(θ)p

j
θ(x

j
k+1)

∑m
r=1 µ

j
k(θr)p

j
θr

(xjk+1)
. (3.28)

The linear pool-based update rule is similar to the update rule proposed in [1]. The

authors in [1] proposed the following rule:

µik+1(θ) = τAx

(
. . . ,

µik(θ)p
i
θ(x

i
k+1)

∑m
r=1 µ

j
k (θr) piθr(x

i
k+1)

, . . .

)
,

where opinion aggregation with linear functions is performed locally with priors from the

neighbors. The main difference is that in Eq. (3.28), a convex combination of the posteriors

received from the neighbor set is used to generate the new individual posterior, while in [1]

the update rule is a convex combination of the individual posterior and the neighbors’ priors.

In [43], the authors considered the case where the randomized gossip algorithm defines

the communication structure. The update protocol is based on a distributed version of

the Nesterov’s dual averaging with stochastic gradients corresponding to the log-likelihood

models given a set of observations. In this case, the agents exchange the likelihoods of

the current observations instead of the beliefs. Thus, the consensus step is performed as a

geometric aggregation of the likelihoods, and the resulting update rule can be described as

µik+1(θ) =
µik(θ)τ

Wk
log x

(
. . . , pjθ(x

j
k+1), . . .

)
∑m

r=1 µ
i
k (θr) τ

Wk
log x

(
. . . , pjθr(x

j
k+1), . . .

) , (3.29)

where Wk is the communication matrix coming from the gossip protocol.

The idea of communicating aggregated versions of likelihoods instead of beliefs was previ-

ously studied in the context of distributed estimation in sensor networks [53]. Approaching

the problem from the point of view of the belief propagation algorithm resulted in an up-
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date rule in the form of Eq. (3.29). In [53], the authors showed convergence results for

primitive, rings, tree, random graphs and other extensions to the original belief propagation

algorithm. Similarly, in [46], the authors propose an update rule where every agent performs

local Bayesian updates before aggregating their beliefs using geometric averages, i.e.

µik+1(θ) = τAlog x

(
. . . ,

µjk(θ)p
j
θ(x

j
k+1)

∑m
r=1 µ

j
k (θr) p

j
θr

(xjk+1)
, . . .

)
.

Convergence results for fixed communications matrices are provided, as well as asymp-

totic characterizations of the rates of convergence. Later in [46], the authors extended the

characterization of the rate of convergence to large deviation theory, providing a statement

about the existence of a random time after which the beliefs will decrease exponentially.

3.7 Numerical Example: Distributed Source Localization

As a motivating example, consider the problem of distributed source localization [17, 173].

In this scenario, a network of n agents receives noisy measurements of the distance to a

source. The sensing capabilities of each sensor might be limited to a certain region. The

group objective is to identify the location of the source jointly. Figure 3.5 shows a group

of 7 agents (circles) seeking to localize a source (star). There is an underlying graph that

indicates which nodes can exchange messages. Moreover, each node has a sensing region

indicated by the dashed circle around it. Each agent observes signals proportional to the

distance to the target. Since a target cannot be localized effectively from a single measure

of the distance, agents must cooperate to have any hope of achieving decent localization.

In this section, we apply the proposed algorithms to the problem of distributed source

localization based on differential signal amplitudes [17, 173, 174, 175, 176]. We compare

the performance of our methods, Eq. (3.9) and Eq. (3.24), with the algorithms proposed

in [56, 1]. For simulation purposes, we will assume the graphs are fixed, and there exists a

single θ∗ such that P i = P i
θ∗ for all i, in which case our update rule simplifies to the learning

algorithm proposed in [45].

Each agent constructs a grid of hypotheses about the possible location of the source. Figure

3.6(a) shows a 10 by 10 area partitioned in a 3 by 3 grid, which results in 9 hypotheses.

Moreover, there are three agents (represented by circles), at different locations. The graph

structure shows that agent 1 communicates with agent 2, and similarly, agent 3 communicates

with 2. The star represents the target.

Each agent constructs likelihood functions for its hypotheses based on its sensor model.
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Figure 3.5: Distributed source localization example.

The observations follow a truncated normal distribution with the mean proportional to the

distance between the agent and the grid point of the corresponding hypothesis. For example,

assume an agent i is in a position xia and the target is located at xs. The received signals are

X i
k = ‖xs − xia‖+ cW i

k, where c is some positive constant and W i
k is a truncated zero-mean

Gaussian noise. Now, consider that a hypothesis θ is at a point xθ. The corresponding

likelihood model under hypothesis θ assumes observations are X i
k|θ = ‖xθ − xa‖+ cW i

k.

Figure 3.6(b) shows the likelihood functions for θ5 and θ3 of agent 2, clearly hypothesis θ3

is closer to the true distribution of the observations P 2. Note that there is not a “true state

of the world” in the sense that P 2 is not equal to any of the hypotheses in the grid.

The information each agent obtains is enough just to estimate the distance to the source,

but not its complete coordinates. For instance, a single sensor can only locate the source

within a circular band around it, see Fig. 3.7.

Figure 3.8(a) shows another group of 20 agents now interacting according to an appropriate

network structure, see Assumptions 1 and 3. A finer grid partition has been used, where

each coordinate has 100 points, resulting in 10000 hypotheses in total. Figure 3.8(b) shows

the belief on the hypothesis θ∗, defined to be the grid point closest to the location of the

target.

Figure 3.9 repeats the simulations presented in Figure 3.8 but including 10 agents with

all their hypotheses observationally equivalent (i.e. no measurements available), and 3 con-

flicting agents whose observations have been modified (corrupted) such that the optimal

hypothesis is the (0, 0) point in the grid.

Figure 3.9(b) shows the protocols presented in Eqs. (3.9) and (3.24) concentrate the beliefs
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Figure 3.6: Source localization on a grid with 3 agents and 9 hypotheses. (a) A group of 3
agents in a grid of 3× 3 hypotheses. Each hypothesis corresponds to a possible location of
the source. For example, hypothesis θ2 locates the source at the (−10, 0) point in the plane.
(b) The likelihood functions for θ2 and θ5 and distribution of observations P 2 for agent 2.

onto the optimal hypothesis. The performance of the algorithms in [1] and [56] deteriorates

if conflicting agents are present. This is evident from the lack of concentration of the beliefs

around the true hypotheses.

3.8 Conclusions

We proposed two distributed cooperative learning algorithms for the problem of collabora-

tive inference. The first algorithm focuses on general time-varying undirected graphs, and

the second algorithm is specialized for fixed graphs. In both cases, we show that the be-

liefs converge to the hypothesis set that best describes the observations in the network. We

require reasonable connectivity assumptions on the communication network over which the

agents exchange information. Our results prove convergence rates that are non-asymptotic,

geometric, and explicit. The bounds depend explicitly on the graph sequence properties, as

well as the agent learning capabilities. Moreover, we do so in a new general setting where

there might not be a true state of the world which is perfectly described by a single hypoth-

esis, i.e., misspecified models. Additionally, we analyze networks where agents might have

conflicting hypotheses, i.e., the hypothesis with the highest confidence changes if different

subsets of agents are taken into account. The algorithm for fixed undirected graphs achieves
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Figure 3.7: Belief distribution of one agent over the hypotheses grid. Darker shades of gray
indicate higher beliefs on the corresponding hypothesis.

a factor of n improvement in the convergence rate with respect to the number of agents in

comparison with that of the existing algorithms.

We proposed a new update rule for the problem of distributed non-Bayesian learning

on time-varying directed graphs with conflicting hypotheses. We show that the beliefs of

all agents concentrate around an optimal set of hypotheses explicitly characterized as the

solution to an optimization problem. This optimization problem consists on finding a prob-

ability distribution (from a parametrized family of distributions) closest to the unknown

distribution of the observations, and it needs to be solved by the agents interacting over

a sequence of network and using the local information only. The proposed algorithm also

guarantees that after a finite time, that depends on the network structure, all agents will

learn at a network-independent rate that is the average of the agents’ individual learning

abilities. We refer to this as a “balanced” behavior since all agents are weighted equally

even if its connectivity is different. This result guarantees certain robustness properties of

the learning process since faulty sensors or adversarial agents will not have any advantage

even if they are centrally located.
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(b) Belief of one agent on the optimal hypothesis

Figure 3.8: Network of agents and belief of one agent on the optimal hypothesis. (a) A
network of agents as well as the belief distribution over the hypothesis set (a grid in the x,
y location). Darker shade of gray indicates higher beliefs on the corresponding hypothesis
(point in the hypotheses grid). (b) Belief evolution on the optimal hypothesis θ∗ for
different belief update protocols.
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(b) Belief of one agent on the optimal hypothesis

Figure 3.9: Network of normal, faulty and no-sensor agents and belief of one agent on the
optimal hypothesis. (a) A network of heterogeneous agents. 4 indicates agents whose
observations have been modified such that the optimal hypothesis is the (0, 0) point in the
grid. � indicates agents for whom all hypotheses are observationally equivalent (i.e. no
data is measured). ◦ indicates regular agents with correct observation models and
informative hypothesis. (b) Belief evolution on the optimal hypothesis θ∗ for different
belief update protocols.
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CHAPTER 4

DISTRIBUTED LEARNING FOR COOPERATIVE
INFERENCE

In this chapter, we build upon the work in [151] on non-asymptotic behaviors of Bayesian

estimators to derive new non-asymptotic concentration results for distributed learning al-

gorithms. In contrast to Chapter 4, which assumes a finite hypothesis set, in this chapter

we extend the framework to compact sets of hypotheses. Our results show that in gen-

eral, the network structure will induce a transient time after which all agents learn at a

network-independent rate, and this rate is geometric.

4.1 Revisit Concentration for a Finite Number of Hypotheses

We now turn to proving a concentration result when the set Θ of hypotheses is finite. We will

show the exponential convergence of beliefs on a Hellinger ball around the true hypothesis

θ∗. The purpose is to introduce the techniques gently. We will use the techniques later in

the case of a compact set of hypotheses.

Naturally, we need some assumptions on the matrix A. For one thing, the matrix A has

to be “compatible” with the underlying graph, in that information from node i should not

affect node j if there is no edge from i to j in G. At the other extreme, we want to rule

out the possibility that A is the identity matrix, which in terms of Eq. (3.7) means nodes

do not talk to their neighbors. Formally, we let Assumption 2 hold, which is stronger than

Assumption 1 but will be sufficient to illustrate the behavior of the proposed algorithm.

We equip the set of all probability distributions P over the parameter set with the

Hellinger distance to obtain the metric space (P, h). The metric space induces a topol-

ogy, where we can define an open ball Br(θ) with a radius r > 0 centered at a point θ ∈ Θ,

which we use to construct a special covering of subsets B ⊂P.

Definition 16. Define an n-Hellinger ball of radius r centered at θ as

Br(θ) =



θ̂ ∈ Θ

∣∣∣∣∣∣

√√√√ 1

n

n∑

i=1

h2
(
P i
θ , P

i
θ̂

)
≤ r



 .
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Additionally, when no center is specified, it should be assumed that it refers to θ∗, i.e. Br =

Br(θ∗).

Given an n-Hellinger ball of radius r, we will use the following notation for a covering of

its complement Bcr. Specifically, we are going to express Bcr as the union of finite disjoint

and concentric annuli. Let r > 0 and {rl} be a finite strictly decreasing sequence such that

r1 = 1 and rL = r and express the set Bcr as the union of annuli generated by the sequence

{rl} as

Bcr =
L−1⋃

l=1

Fl,

where Fl = Brl \ Brl+1
.

When the number of hypotheses is finite, the density update in Eq. (3.7) can be written

in a simpler form for discrete beliefs over the parameter space Θ as

µik+1(θ) ∝ piθ(x
i
k+1)

n∏

j=1

(µjk(θ))
aij . (4.1)

We will fix the radius r, and our goal will be to prove a concentration result for a Hellinger

ball of radius r around the optimal hypothesis θ∗. We start by partitioning the complement

of this ball, i.e., Bcr, as described above into the annuli Fl. We introduce the notation Nl
to denote the number of hypotheses within the annulus Fl. We refer the reader to Fig. 4.1

which shows a set of probability distributions, represented as black dots, where the true

distribution P is represented by a star.

Given that the number of hypotheses is finite, there exists an α > 0 such that ρ(P i
θ1
, P i

θ2
) > α

for any θ1, θ2 ∈ Θ and i = 1, . . . , n, where the separation between hypotheses is defined in

terms of the Hellinger affinity between two distributions Q and P , given by

ρ(Q,P ) = 1− h2(Q,P ).

We are now ready to state our first result as a lemma that bounds concentration of

aggregated log-likelihood ratios.

Lemma 26. Let Assumption 2 hold. Given a set of independent random variables {X i
t}

such that X i
t ∼ P i for i = 1, . . . , n and t = 1, . . . , k, a set of distributions {Qi} where P i
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Figure 4.1: Creating a covering for a ball Br. F represents the correct hypothesis P θ∗ , •
indicates the location of other hypotheses and the dash lines indicate the boundary of the
balls Brl .

dominates Qi, then for all y ∈ R,

P

[
k∑

t=1

n∑

j=1

[Ak−t]ij log
dQj

dP j
(Xj

t ) ≥ y

]
≤ exp

(
−y

2
+

4 log n

1− δ − k
1

n

n∑

j=1

h2(Qj, P j)

)
.

Proof. By the Markov inequality and Jensen’s inequality we have

P

[
k∑

t=1

n∑

j=1

[Ak−t]ij log
dQj

dP j
(Xj

t ) ≥ y

]
≤ exp

(
−y

2

)
E




k∏

t=1

n∏

j=1

√(
dQj

dP j
(Xj

t )

)[Ak−t]ij




≤ exp
(
−y

2

) k∏

t=1

n∏

j=1

E

[√(
dQj

dP j
(Xj

t )

)][Ak−t]ij

= exp
(
−y

2

) k∏

t=1

n∏

j=1

ρ(Qj, P j)[Ak−t]ij ,

where the last inequality follows from the definition of the Hellinger affinity function ρ(Q,P ).

Moreover, it follows from ρ(Qj, P j) = 1 − h2(Qj, P j) and 1 − x ≤ exp(−x) for x ∈ [0, 1]
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that

k∏

t=1

n∏

j=1

ρ(Qj, P j)[Ak−t]ij ≤ exp

(
−

k∑

t=1

n∑

j=1

[Ak−t]ijh
2(Qj, P j)

)
.

Now, by adding and subtracting
∑k

t=1
1
n

∑n
j=1 h

2(Qj, P j) we have

P

[
k∑

t=1

n∑

j=1

[Ak−t]ij log
dQj

dP j
(Xj

t ) ≥ y

]

≤ exp

(
−y

2
−

k∑

t=1

n∑

j=1

(
[Ak−t]ij −

1

n

)
h2(Qj, P j)− k

n

n∑

j=1

h2(Qj, P j)

)

≤ exp

(
−y

2
+

4 log n

1− δ −
k

n

n∑

j=1

h2(Qj, P j)

)
.

Finally, the last line above follows from Lemma 4 applied on the second term inside the

exponential.

We are now ready to state our first main result, which bounds concentration of Eq. (4.1)

around the optimal hypothesis for a finite hypothesis set Θ. The following theorem shows

that the beliefs of all agents will concentrate around the Hellinger ball Br at an exponential

rate.

Theorem 27. Let Assumption 2 hold, and let σ ∈ (0, 1) be a desired probability tolerance.

Then, the belief sequences {µik}, i ∈ V that are generated by the update rule in Eq. (4.1),

with initial beliefs such that µi0(θ∗) > ε for all i, have the following property: For any radius

r > 0 with probability 1− σ,

µik+1 (Br) ≥ 1− 1

ε

L−1∑

l=1

Nrl exp
(
−kr2

l+1

)
for all i and all k ≥ N,

where

N = inf

{
t ≥ 1

∣∣∣∣∣ exp

(
4 log n

1− δ

) L−1∑

l=1

Nrl exp
(
−tr2

l+1

)
< σ

}
,

and δ as defined in Lemma 4.

Proof. We are going to focus on bounding the beliefs of a measurable set B, such that
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θ∗ ∈ B. For such a set, it follows from Eq. (4.1) that

µik (B) =
1

Zi
k

∑

θ∈B

n∏

j=1

µj0 (θ)[
Ak]

ij

k∏

t=1

n∏

j=1

pjθ(X
j
t )

[Ak−t]
ij

=


1 +

∑
θ∈Bc

n∏
j=1

(
µj0(θ)

µj0(θ∗)

)[Ak]
ij

k∏
t=1

n∏
j=1

(
pjθ(Xj

t )

pj(Xj
t )

)[Ak-t]
ij

∑
θ∈B

n∏
j=1

(
µj0(θ)

µj0(θ∗)

)[Ak]
ij

k∏
t=1

n∏
j=1

(
pjθ(Xj

t )

pj(Xj
t )

)[Ak-t]
ij




−1

≥ 1−
∑

θ∈Bc

n∏

j=1

(
µj0(θ)

µj0(θ∗)

)[Ak]
ij k∏

t=1

n∏

j=1

(
pjθ(X

j
t )

pj(Xj
t )

)[Ak-t]
ij

,

where Zi
k is the appropriate normalization constant.

Moreover, from the assumption that µi0(θ∗) > ε for all i = 1, . . . , n, it follows that

µik (B) ≥ 1− 1

ε

∑

θ∈Bc

k∏

t=1

n∏

j=1

(
pjθ(X

j
t )

pj(Xj
t )

)[Ak-t]
ij

. (4.2)

The relation in Eq. (4.2) describes the iterative averaging of products of density functions,

for which we can use Lemma 26 with Q = Pθ and P = Pθ∗ . Then,

P

[
sup
θ∈Bc

k∑

t=1

n∑

j=1

[Ak−t]ij log
pjθ(X

j
t )

pj(Xj
t )
≥ y

]
≤
∑

θ∈Bc
exp

(
−y

2
+

4 log n

1− δ −
k

n

n∑

j=1

h2(P j
θ , P

j)

)

and by setting y = − k
n

∑n
j=1 h

2(P j
θ , P

j) we obtain

P

[
sup
θ∈Bc

k∑

t=1

n∑

j=1

[Ak−t]ij log
pjθ(X

j
t )

pj(Xj
t )
≥ −k

n

n∑

j=1

h2(P j
θ , P

j)

]

≤ exp

(
4 log n

1− δ

)∑

θ∈Bc
exp

(
− k

2n

n∑

j=1

h2(P j
θ , P

j)

)
.

Now, we let the set B be the Hellinger ball of a radius r centered at θ∗ and define a cover

(as described above) to exploit the representation of Bcr as the union of concentric Hellinger

annuli, for which we have

P

[
sup
θ∈Bc

k∑

t=1

n∑

j=1

[Ak−t]ij log
pjθ(X

j
t )

pj(Xj
t )
≥ −k

n

n∑

j=1

h2(P j
θ , P

j)

]
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≤ exp

(
4 log n

1− δ

) L−1∑

l=1

∑

θ∈Fl
exp

(
−k

2

1

n

n∑

j=1

h2(P j
θ , P

j)

)

≤ exp

(
4 log n

1− δ

) L−1∑

l=1

Nrl exp

(
−k

2
r2
l+1

)
.

We are interested in finding a value of k large enough such that the above probability is

below σ. Thus, define the value of N as

N = inf

{
t ≥ 1

∣∣∣∣∣ exp

(
4 log n

1− δ

) L−1∑

l=1

Nrl exp
(
−tr2

l+1

)
< σ

}
.

It follows that for all k ≥ N with probability 1− σ, for all θ ∈ Bcr
k∑

t=1

n∑

j=1

[Ak−t]ij log
pjθ(X

j
t )

pj(Xj
t )
≤ −k

n

n∑

j=1

h2(P j
θ , P

j).

Thus, from Eq. (4.2) with probability 1− σ we have

µik (Br) ≥ 1− 1

ε

∑

θ∈Bcr

exp

(
−k
n

n∑

j=1

h2(P j
θ , P

j)

)

= 1− 1

ε

L−1∑

l=1

∑

θ∈Fl
exp

(
−k
n

n∑

j=1

h2(P j
θ , P

j)

)

≥ 1− 1

ε

L−1∑

l=1

Nrl exp
(
−kr2

l+1

)
.

Note that in general the belief concentration rate described in Theorem 27 depends on

the geometry of the hypotheses set and how are they distributed on the parameter space.

Corollary 28 describes the scenario where the sequence {rl} is such that L = 2, so r1 = 1

and r2 = r.

Corollary 28. Let Assumption 2 hold, and let σ ∈ (0, 1) be a desired probability tolerance.

Then, the belief sequences {µik}, i ∈ V that are generated by the update rule in Eq. (4.1),

with initial beliefs such that µi0(θ∗) > ε for all i, have the following property: For any radius
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r > 0 with probability 1− σ,

µik+1 (Br) ≥ 1− 2

ε

(
log
N
σ

+
4 log n

1− δ − kr
2

)
,

where N is the number of hypotheses outside Br and δ as defined in Lemma 4.

4.2 Concentration for Compact Hypotheses Sets

Next, we consider the case when the hypothesis set Θ is a compact subset of Rd. We will

now additionally require the map from Θ to
∏n

i=1 P
i
θ be continuous (where the topology on

the space of distributions comes from the Hellinger metric). This will be useful in defining

coverings, which will be made clear shortly.

Definition 17. Let (M,d) be a metric space. A subset S ⊆ M is called ε-separated with

ε > 0 if d(x, y) ≥ ε for any x, y ∈ S. Moreover, for a set B ⊆M , let NB(ε) be the smallest

number of Hellinger balls with centers in S of radius ε needed to cover the set B, i.e., such

that B ⊆ ⋃m∈S Bε (m).

As before, given a decreasing sequence 1 = r1 ≥ r2 ≥ · · · ≥ rL = r, we will define the

annulus Fl to be Fl = Brl \ Brl+1
. Furthermore, Sεl will denote maximal εl-separated subset

of F . Finally, Kl = |Sεl |.
We note that, as a consequence of our assumption that the map from Θ to

∏n
i=1 P

i
θ

is continuous, we have that each Kl is finite (since the image of a compact set under a

continuous map is compact). Thus, we have the following covering of Bcr:

Bcr =
L−1⋃

l=1

⋃

m∈Sεl

Fl,m,

where each Fl,m is the intersection of a ball centered at an element in Sεl with Fl. Figure 4.2

shows the elements of a covering for a set Bcr. The cluster of circles at the top right corner

represents the balls Bεl and, for a specific case in the left of the image, we illustrate the set

Fl,m.

Example 2. We continue our previous Example 1. Suppose we are interested in analyzing

the concentration of the beliefs around the true parameter θ∗ on a Euclidean ball of radius

0.05; that is, we want to see the total mass on the set [0.45, 0.55]. This in turn represents

a Hellinger ball of radius r = 0.001254. For this choice of r, we propose a covering where

r1 = 1, r2 = 1/2, r3 = 1/4, . . ., r10 = 1/512, r11 = r.
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Br

Fl,m
Pθ∗

Figure 4.2: Creating a covering for a set Br. F represents the correct hypothesis P θ∗ .

Figure 4.3 shows the Hellinger distance between the hypotheses pθ and the optimal one pθ∗.

Specifically, the x-axis is the value of θ, and the y-axis shows the Hellinger distance between

the distributions. Figure 4.3 also shows the covering we defined before, as horizontal lines

for each value of the sequence rl, which in turn defines the annulus Fl. The Hellinger ball

of radius r is also shown, with the corresponding subset of Θ where we want to analyze the

belief concentration.

In this example, the parameter has dimension 1. The number of balls needed to cover each

annulus can be seen to be 2, i.e., we only need 2 balls of radius rl/2 to cover the annulus Fl.
Thus, Kl = 2 for 1 ≤ l ≤ L− 1.

Without loss of generality, we will make the following technical assumption that will be

technically convenient for the analysis of the concentration of beliefs on compact sets.

Assumption 5. For every i = 1, . . . , n and all θ, it holds that piθ(x) ≤ 1 almost everywhere.

Let us give an example before explaining the reasoning behind this assertion. Let us

assume there is just one agent, and say X ∼ P is Gaussian with mean θ∗ = 5 and variance

0.01. Our model is Pθ = N (θ, 0.01) for θ ∈ Θ = [0, 10]. Because the variance is small, the

density values are larger than 1. Instead let us multiply all our observations by 10. We will
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Figure 4.3: Hellinger distance of the density pθ to the optimal density pθ∗ .

then have that our observations come from 10X, which indeed has density upper bounded

by one. In turn our model now should be Qθ = N (10θ, 1) or, alternatively, Qθ = N (θ, 1) for

θ ∈ Θ̂ = [0, 100].

We note that this modification does not come without cost. As in the case of countable

hypotheses, our convergence rates will depend on α, defined to be a positive number such

that ρ(Pθ1 , Pθ2) > α for any θ1 and θ2. The process we have sketched out proportionally

decreases the parameter α.

In the general case, if each agent observes Xj
t ∼ P j, then there exists a large enough

constant M > 1 such that MXj
t ∼ Qj where the density of Qj is at most 1. We can then

have agents multiply their measurements by M and redefine the densities to account for this

scaling.

We next provide a concentration result for the logarithmic likelihood of a ratio of densities,

which will serve the same technical function as Lemma 26 in the countable hypothesis case.

We begin by defining two measures. For a hypothesis θ and a measurable set B ⊆ Θ, let P⊗kB
be the probability distribution with density (i.e., Radon-Nikodym derivative with respect to
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λ⊗nk),

gB(xk) =
1

µ0(B)

∫

B

k∏

t=1

n∏

j=1

pjθ(x
j
t)dµ0(θ). (4.3)

Similarly, let P̄
⊗k
B be the measure with density

ḡB(xk) =
1

µ0(B)

∫

B

k∏

t=1

n∏

j=1

(pjθ(x
j
t))

[Ak−t]ijdµ0(θ). (4.4)

Note that P̄
⊗k
B ’s are not probability distributions due to the exponential weights. Nonethe-

less, they are bounded and positive. The next lemma shows the concentration of the loga-

rithmic ratio of two weighted densities, as defined in Eq. (4.4), for two different sets B1 and

B2, in terms of the probability distribution P⊗kB1
.

Lemma 29. Let Assumptions 2 and 5 hold. Consider two measurable sets B1, B2 ⊂ Θ, both

with positive measures, and assume that B1 ⊂ Br1(θ1) and B2 ⊂ Br2(θ2) where Br1(θ1) and

Br2(θ2) are disjoint. Then, for all y ∈ R

PB1

[
log

ḡB2(Xk)

ḡB1(Xk)
≥ y

]

≤ exp(−y/2) exp

(
log

(
1

α

)
4 log n

1− δ

)
exp


−k



√√√√ 1

n

n∑

j=1

h2(P j
θ1 , P

j
θ2)− r1 − r2




2
 ,

where PB1 is the probability measure that gives Xk a distribution P⊗kB1
with density gB1 as

defined in Eq. (4.3).

Proof. By the Markov inequality, it follows that

PB1

[
log

ḡB2(Xk)

ḡB1(Xk)
≥ y

]
≤ exp(−y/2)EB1

[√
ḡB2(Xk)

ḡB1(Xk)

]

= exp(−y/2)

∫

Xk

√
ḡB2(xk)

ḡB1(xk)
gB1(xk)dλ⊗kn(xk).

Now, by Assumption 5 it follows that gB ≤ ḡB almost everywhere. Thus, we have

PB1

[
log

ḡB2(Xk)

ḡB1(Xk)
≥ y

]
≤ exp(−y/2)

∫

Xk

√
ḡB2(xk)

√
ḡB1(xk)dλ⊗kn(xk)
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≤ exp(−y/2)ρ
(
P̄
⊗k
B2
, P̄
⊗k
B1

)
,

where we are interpreting the definition of the Hellinger affinity function ρ(·, ·) as a function

of two bounded positive measures, not necessarily probability measures.

At this point, we can follow the same argument as in Lemma 2 in [177], page 477, where

the Hellinger affinity of two members of the convex hull of sets of probability distributions

is shown to be less than the product of the Hellinger affinity of the factors. In our par-

ticular case, the measures P̄
⊗k
B are not probability distributions. Nonetheless, the same

disintegration argument holds. Thus, we obtain

ρ
(
P̄
⊗k
B2
, P̄
⊗k
B1

)
≤

k∏

t=1

n∏

j=1

ρ
(
P̄ j
B2
, P̄ j

B1

)
,

where P̄ j
B is the measure with Radon-Nikodym derivative ḡB(x) = 1

µ0(B)

∫
B

(pjθ(x))[Ak−t]ijdµ0(θ)

with respect to λ.

In addition, by Jensen’s inequality1, with x[Ak−t]ij being a concave function and

1/µ0(B)
∫
B
dµ0 = 1, we have that

ḡB(x) ≤


 1

µ0(B)

∫

B

pjθ(x)dµ0(θ)




[Ak−t]ij

.

Thus,

PB1

[
log

ḡB2(Xk)

ḡB1(Xk)
≥ y

]
≤ exp(−y/2)

k∏

t=1

n∏

j=1

ρ(P j
B1
, P j

B2
)[Ak−t]ij ,

where P j
B is the probability distribution associated with the density 1

µ0(B)

∫
B

pjθ(x)dµ0(θ).

The compactness of Θ guarantees that ρ(P j
B1
, P j

B2
) > α for some positive α, thus similarly

as in Lemma 26, we have that

PB1

[
log

ḡB2(Xk)

ḡB1(Xk)
≥ y

]
≤ exp(−y/2) exp

(
log

(
1

α

)
4 log n

1− δ

) k∏

t=1

n∏

j=1

ρ(P j
B1
, P j

B2
)1/n

≤ exp(−y/2) exp

(
log

(
1

α

)
4 log n

1− δ

)
exp

(
−k
n

n∑

j=1

h2(P j
B1
, P j

B2
)

)
.

1For a concave function φ and
∫

Ω
f(x)dx = 1, it holds that

∫
Ω
φ(g(x))f(x)dx ≤ φ

(∫
Ω
g(x)f(x)

)
.
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Finally, by using the metric defined for the n-Hellinger ball and the fact that for a metric

d(A,B) for two sets A and B d(A,B) = infx∈A,y∈B d(x, y) we have

PB1

[
log

ḡB2(Xk)

ḡB1(Xk)
≥ y

]

≤ exp

(
−y

2
+

4 log
(

1
α

)
log n

1− δ

)
exp


−k



√√√√ 1

n

n∑

j=1

h2(P j
B1
, P j

B2
)




2


≤ exp


−y

2
+

4 log
(

1
α

)
log n

1− δ − k



√√√√ 1

n

n∑

i=1

h2
(
P j
θ1
, P j

θ2

)
− r1 − r2




2

 .

Lemma 29 provides a concentration result for the logarithmic ratio between two weighted

densities over a pair of subsets B1 and B2. The terms involving the auxiliary variable y and

the influence of the graph, via δ, are the same as in Lemma 26. Moreover, the rate at which

this bound decays exponentially is influenced now by the radius of the two disjoint Hellinger

balls where B1 and B2 are contained respectively.

The bound provided in Lemma 29 is defined for the random variables Xk having a distri-

bution P⊗kB . Nonetheless, Xk are distributed according to P⊗k. Therefore, we introduce a

lemma that relates the Hellinger affinity of distributions defined over subsets of Θ.

Lemma 30. Let Assumptions 2 and 5 hold. Consider P⊗kB as the distribution with density

gB as defined in Eq. (4.3), for B ⊆ BR. Then h(P⊗kB ,P⊗k) ≤
√
nkR.

Proof. By Jensen’s inequality, we have that

√
gB(x) ≥ 1

µ0(B)

∫

B

√√√√
k∏

t=1

n∏

j=1

pjθ(x
j
t)dµ0(θ).

Then, by definition of the Hellinger affinity, it follows that

ρ(P⊗kB ,P⊗k) ≥
∫

X⊗k

√√√√
k∏

t=1

n∏

j=1

pj(xjt)


 1

µ0(B)

∫

B

√√√√
k∏

t=1

n∏

j=1

pjθ(x
j
t)dµ0(θ)


 dλ⊗nk(x).
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By using the Fubini-Tonelli theorem, we obtain

ρ(P⊗kB ,P⊗k) ≥ 1

µ0(B)

∫

B

∫

X⊗k

√√√√
k∏

t=1

n∏

j=1

pj(xjt)

√√√√
k∏

t=1

n∏

j=1

pjθ(x
j
t)dλ

⊗nk(x)dµ0(θ)

=
1

µ0(B)

∫

B

k∏

t=1

n∏

j=1

ρ(P j, P j
θ )dµ0(θ)

=
1

µ0(B)

∫

B

k∏

t=1

n∏

j=1

(
1− h2(P j, P j

θ )
)
dµ0(θ).

Finally, by the Weierstrass product inequality it follows that

ρ(P⊗kB ,P⊗k) ≥ 1

µ0(B)

∫

B

(
1−

k∑

t=1

n∑

j=1

h2(P j, P j
θ )

)
dµ0(θ)

=
1

µ0(B)

∫

B

(
1− n 1

n

k∑

t=1

n∑

j=1

h2(P j, P j
θ )

)
dµ0(θ)

≥ 1

µ0(B)

∫

B

(
1− nkR2

)
dµ0(θ),

where the last line follows by the fact that any density P θ, inside the n-Hellinger ball defined

in the statement of the lemma, is at most at a distance R to P .

Finally, before presenting our main result for compact sets of hypotheses, we will state an

assumption regarding the necessary mass all agents should have around the correct hypoth-

esis θ∗ in their initial beliefs.

Assumption 6. The initial beliefs of all agents are equal. Moreover, they have the following

property: for any constants C ∈ (0, 1] and r ∈ (0, 1] there exists a finite positive integer K,

such that

µ0

(
B C√

k

)
≥ exp

(
−k r

2

32

)
for all k ≥ K.

Assumption 6 implies that the initial beliefs should have enough mass around the correct

hypothesis θ∗ when we consider balls of small radius. Particularly, as we take Hellinger balls

of radius decreasing as O(1/
√
k), the corresponding initial beliefs should not decrease faster

than O(exp(−k)).

The assumption can almost always be satisfied by taking initial beliefs to be uniform. The
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reason is that, in any fixed dimension, the volume of a ball of radius O(1/
√
k) will usually

scale as a polynomial in 1/
√
k, whereas we only need to lower bound it by a decaying

exponential in k. For concreteness, we show how this assumption is satisfied by an example.

Example 3. Consider a single agent, with a uniform initial belief receiving observations

from a standard Gaussian distribution, i.e. Xk ∼ N (0, 1). The variance is known, and

the agent would like to estimate the mean. Thus the models are Pθ = N (θ, 1). Now, the

Hellinger distance can be explicitly written as

h2(P, Pθ) = 1− exp

(
−1

4
θ2

)
.

Therefore, the Hellinger balls of radius 1/
√
k will correspond to Euclidean balls in the

parameter space of radius

2

√
log

(
1

1− 1
k

)
.

Uniform initial belief indicates that µ0

(
B C√

k

)
= O( 1√

k
), which can be made larger than

exp(−k r2

32
) for sufficiently large k.

We are ready now to state our main result regarding the concentration of beliefs around

θ∗ for compact sets of hypotheses.

Theorem 31. Let Assumptions 2, 5 and 6 hold, and let σ ∈ (0, 1) be a given probability

tolerance level. Moreover, for any r ∈ (0, 1], let {Rk} be a decreasing sequence such that for

k = 1, . . . , Rk ≤ min
{

σ
2
√

2kn
, r

4

}
. Then, the beliefs {µik}, i ∈ V, generated by the update rule

in Eq. (3.7) have the following property: With probability 1− σ,

µik+1(Br) ≥ 1− χ exp

(
− k

16
r2

)
, for all i and all k ≥ max{N,K},

where

N = inf

{
t ≥ 1

∣∣∣∣∣ exp

(
log

(
1

α

)
4 log n

1− δ

) L−1∑

l=1

Kl exp

(
− t

32
r2
l+1

)
<
σ

2

}
,

with K as defined in Assumption 6, χ =
L−1∑
l=1

exp(− 1
16
r2
l+1) and δ = 1− η/n2, where η is the

smallest positive element of the matrix A.
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Proof. Let us start by analyzing the evolution of the beliefs on a measurable set B with

θ∗ ∈ B. From Eq. (3.7) we have that

µik(B) =

∫
B

k∏
t=1

n∏
j=1

pjθ(X
j
t )

[Ak−t]ijdµ0(θ)

∫
Θ

k∏
t=1

n∏
j=1

pjθ(X
j
t )

[Ak−t]ijdµ0(θ)

≥ 1−

∫
Bc

k∏
t=1

n∏
j=1

pjθ(X
j
t )

[Ak−t]ijdµ0(θ)

∫
B

k∏
t=1

n∏
j=1

pjθ(X
j
t )

[Ak−t]ijdµ0(θ)

.

Now let us focus specifically on the case where B is a n-Hellinger ball of radius r > 0 with

center at θ∗. In addition, since Rk < r, we get

µik(Br) ≥ 1−

∫
Bcr

k∏
t=1

n∏
j=1

pjθ(X
j
t )

[Ak−t]ijdµ0(θ)

∫
BRk

k∏
t=1

n∏
j=1

pjθ(X
j
t )

[Ak−t]ijdµ0(θ)

.

Our goal will be to use the concentration result in Lemma 29. Thus, we can multiply and

divide the denominator on the right-hand side of the above inequality by µ0(BRk) to obtain

µik(Br) ≥ 1−

∫
Bcr

k∏
t=1

n∏
j=1

pjθ(X
j
t )

[Ak−t]ijdµ0(θ)

ḡBRk (Xk)µ0(BRk)
.

Moreover, we use the covering of the set Bcr to obtain

µik(Br) ≥ 1−

L−1∑
l=1

Kl∑
m=1

∫
Fl,m

k∏
t=1

n∏
j=1

pjθ(X
j
t )

[Ak−t]ijdµ0(θ)

ḡBRk (Xk)µ0(BRk)

≥ 1−

L−1∑
l=1

Kl∑
m=1

ḡFl,m(Xk)µ0(Fl,m)

ḡBRk (Xk)µ0(BRk)
. (4.5)

The previous relation defines a ratio between two densities, i.e. ḡFl,m(Xk)/ḡBRk (Xk), both

for the weighted likelihood product of the observations, where the numerator is defined over

the set Fl,m and the denominator with respect to the set BRk .
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Lemma 29 provides a way to bound term ḡFl,m(Xk)/ḡBRk (Xk) with high probability, thus

PBRk

({
Xk

∣∣∣∣∣ sup
l,m

log
ḡFl,m(Xk)

ḡBRk (Xk)
≥ y

})
≤

L−1∑

l=1

Kl∑

m=1

PBRk

(
log

ḡFl,m(Xk)

ḡBRk (Xk)
≥ y

)

≤
L−1∑

l=1

Kl∑

m=1

exp


−y

2
+

4 log
(

1
α

)
log n

1− δ − k



√√√√ 1

n

n∑

j=1

h2(P j
m, P j)− δl −Rk




2


≤
L−1∑

l=1

Kl∑

m=1

exp

(
−y

2
+

4 log
(

1
α

)
log n

1− δ − k (rl+1 − δl −Rk)
2

)
,

where pjm is the density of at the point θ = m ∈ Sεl , where Sεl is the maximal εl separated

set of Fl as in Definition 17.

Particularly, let’s use the covering proposed in [151], where δl = rl+1/2. From this choice

of covering, we have that

rl+1 − δl −Rk > rl+1 − rl+1/2− rl+1/4

= rl+1/4,

where we have used the assumption thatRk ≤ r/4 or equivalentlyRk ≤ rl/4 for all 1 ≤ l ≤ L.

Thus, we can set y = − k
16
r2
l+1 and it follows that

PBRk

({
Xk

∣∣∣∣∣ sup
l,m

log
ḡFl,m(Xk)

ḡBRk (Xk)
≥ y

})

≤ exp

(
log

(
1

α

)
4 log n

1− δ

) L−1∑

l=1

Kl exp

(
− k

16
r2
l+1

)
. (4.6)

The probability measure in Eq. (4.6) is computed for Xk distributed according to P⊗kBRk
.

Nonetheless, Xk is distributed according to the (slightly different) P⊗k. Our next step is to

relate these two measures.

First, we have that for any distribution P θ ∈ BRk , from the Definition 16 of the n-Hellinger

ball, it holds that

√√√√ 1

n

n∑

j=1

h2(P j
θ , P

j) ≤ Rk,

and we relate the total variation distance and the Hellinger affinity as in Lemma 1 in [178];
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for any measurable set A it holds that

sup
A

(
P⊗kBRk

(A)− P⊗k(A)
)2

≤ 1− ρ2(P⊗kBRk
,P⊗k),

and by definition of the Hellinger affinity we have that

sup
A

(
P⊗kBRk

(A)− P⊗k(A)
)2

= 1− (1− h2(P⊗kBRk
,P⊗k))2

≤ 2h2(P⊗kBRk
,P⊗k),

where first we have used the relation that for any x ∈ R, it holds that 1− (1− x2)2 < 2x2.

Then, from Lemma 30 we have that

sup
A

(
PBRk (A)− P⊗k(A)

)2

≤ 2knR2
k.

Therefore, by considering the measurable subset

Γk =

{
Xk

∣∣∣∣∣ sup
l,m

log
ḡFl,m(Xk)

ḡBRk (Xk)
≥ − k

16
r2
l+1

}
,

we have that

P
(
Γk
)
< PBRk

(
Γk
)

+
√

2knRk

≤ exp

(
log

(
1

α

)
4 log n

1− δ

) L−1∑

l=1

Kl exp

(
− k

16
r2
l+1

)
+
σ

2
.

Furthermore, we are interested in finding a large enough k such that the probability

described in Eq. (4.6) is at most σ. Thus, we define

N ≥ inf

{
t ≥ 1

∣∣∣∣∣ exp

(
log

(
1

α

)
4 log n

1− δ

) L−1∑

l=1

Kl exp

(
− t

16
r2
l+1

)
<
σ

2

}
.

Moreover, from Eq. (4.5) we obtain that with probability 1− σ for all k ≥ N ,

µik(Br) ≥ 1−
L−1∑

l=1

Kl∑

m=1

exp

(
− k

16
r2
l+1

)
µ0(Fl,m)

µ0(BRk)

= 1−
L−1∑

l=1

exp

(
− k

16
r2
l+1

)
µ0(Fl)
µ0(BRk)
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≥ 1− 1

µ0(BRk)
L−1∑

l=1

exp

(
− k

16
r2
l+1

)
.

Now, define χ =
L−1∑
l=1

exp
(
− 1

16
r2
l+1

)
, then it follows that

µik(Br) ≥ 1− 1

µ0(BRk)
L−1∑

l=1

exp

(
− k

16
r2
l+1

)

= 1− 1

µ0(BRk)
L−1∑

l=1

exp

(
− 1

16
r2
l+1

)
exp

(
−k − 1

16
r2
l+1

)

≥ 1− 1

µ0(BRk)
χ exp

(
−k − 1

16
r2

)
,

where the last inequality follows from rl ≥ r for all L ≤ l ≤ 1. Finally, by Assumption 6 we

have that, for all k ≥ K,

µik(Br) ≥ 1− χ exp(−k − 1

16
r2 +

k − 1

32
r2)

= 1− χ exp(−k − 1

32
r2),

or equivalently µik+1(Br) ≥ 1− χ exp(− k
32
r2).

Analogous to Theorem 27, Theorem 31 provides a probabilistic concentration result for

the agents’ beliefs around a Hellinger ball of radius r with center at θ∗ for sufficiently large

k.

4.3 Cooperative Learning on the Exponential Family

We begin with the observation that, for a general class of models {P i}, the computation

of the posterior beliefs µik+1 is intractable. Indeed, computation of µik+1 involves solving an

integral of the form

∫

Θ

piθ(x
i
k+1)

n∏

j=1

(dµjk(θ))
aij . (4.7)
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There is an entire area of research called variational Bayes’ approximations dedicated to

efficiently approximating integrals that appear in such context [179, 180, 181].

The purpose of this section is to show that for exponential family [182, 183] there are

closed-form expressions for the posterior beliefs generated by the proposed distributed infer-

ence algorithm.

Definition 18. The exponential family, for a parameter θ = [θ1, θ2, . . . , θs]′, is the set of

probability distributions whose density can be represented as

pθ(x) = H(x) exp(M(θ)′T (x))

for specific functions H(·), M(·) and T (·) where M(θ) = [M(θ1),M(θ2), . . . ,M(θs)]′ depends

on the density parameters and T (·) depends on the observations.

For example, consider a Normal distribution parametrized by its mean θ with known

variance σ2. Then, it holds that

pθ(x) =
1√

2πσ2
exp

(
−(x− θ)2

2σ2

)
(4.8)

=
1√

2πσ2
exp

(
− x2

2σ2
+
xθ

σ2
− θ2

2σ2

)

=
exp

(
− x2

2σ2

)

√
2πσ2︸ ︷︷ ︸
H(x)

exp




[
θ θ2

]

︸ ︷︷ ︸
M(θ)

[
x
σ2

− 1
2σ2

]

︸ ︷︷ ︸
T (x)



.

Among the members of the exponential family, one can find the distributions such as

normal, Poisson, exponential, gamma, Bernoulli, and beta, among others [184]. In our case,

we will take advantage of the existence of conjugate priors for all members of the exponential

family. The definition of the conjugate prior is given below.

Definition 19. Assume that the prior distribution p on a parameter space Θ belongs to

the exponential family. Then, the distribution p is referred to as the conjugate prior for a

likelihood function pθ(x) if the posterior distribution p(θ|x) ∝ pθ(x)p(θ) is in the same family

as the prior.

Definition 19 implies that, if the belief density at some time k is a conjugate prior for our

likelihood model, then our belief at time k + 1 will be of the same class as our prior. For

example, if a likelihood function follows a Gaussian form, then having a Gaussian prior will
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produce a Gaussian posterior. This property simplifies the structure of the belief update pro-

cedure since we can express the evolution of the beliefs generated by the proposed algorithm

in Eq. (3.7) by the evolution of the natural parameters of the member of the exponential

family it belongs to. Naturally, by induction, if the prior belief at time k = 0 is a conjugate

prior of the likelihood function, the beliefs for all k > 0 will belong to the same exponential

family.

We now proceed to provide more details. First, the conjugate prior for a member of the

exponential family can be written as

pχ(M(θ)) = f(χ) exp(M(θ)′χ),

which is a distribution over the natural parameters M , where χ is a vector of parameters

of the conjugate prior. Going back to the example in Eq. (4.8), assume that our prior is a

normal distribution on θ with mean θ̂ and variance σ̂2, then χ = [θ̂ σ̂2]′ and

pχ(M) =
1√

2πσ̂2
exp

(
−(θ − θ̂)2

2σ̂2

)
(4.9)

=
1√

2πσ̂2
exp

(
− θ2

2σ̂2
+
θθ̂

σ̂2
− θ̂2

2σ̂2

)

=
exp

(
− θ̂2

2σ̂2

)

√
2πσ̂2︸ ︷︷ ︸
f(χ)

exp




[
θ θ2

]

︸ ︷︷ ︸
M(θ)

[
θ̂
σ̂2

− 1
2σ̂2

]

︸ ︷︷ ︸
χ



.

Then, it can be shown that the posterior distribution, given some observation x, has the

same exponential form as the prior with updated parameters as follows:

pχ̄,ν̄(M |x) = pχ+T (x)(M) ∝ pθ(x)pχ,ν(M |x). (4.10)

Particularly, for the example in Eq. (4.8) and Eq. (4.9), the posterior distribution is still

normal with parameters

σ̄2 =
σ2

ν̄
and θ̄ =

χ̄

ν̄
.

Now, we are going to exploit the structure of the exponential family of distributions

to reformulate the distributed inference algorithm in Eq. (3.7) into an easy-to-implement

algorithm in terms of the parametric representation of the beliefs for each agent.
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Initially, consider that the set of agents have a belief at time k in the form of a distribution

over the parameter space that is a member of the exponential family. That is, assume that

each agent i has a belief over the natural parameter M such that

dµik(M) ∝ exp
(
M ′χik

)
.

Then, according to the first step in Eq. (3.7), an agent i needs to compute the weighted

geometric average of the beliefs of its neighbors including its own. Given the parametrization

in the exponential family, it holds that

n∏

j=1

(
dµjk(M)

)aij ∝
n∏

j=1

(
exp

(
M ′χjk

))aij

= exp

(
M ′

n∑

j=1

aijχ
j
k

)
.

Now, if all agents have beliefs in the same exponential family and they are conjugate priors

to their corresponding likelihood functions, then we can write the posterior of agent i as

dµik+1(M) ∝ exp

(
M ′

n∑

j=1

aijχ
j
k

)
piM(xik+1)

= exp

(
M ′

n∑

j=1

aijχ
j
k−
)

exp(M ′T i(xik+1))

= exp

(
M ′
(

n∑

j=1

aijχ
j
k + T i(xik+1)

))

= exp
(
M ′χik+1

)
.

As an immediate conclusion, it follows that for distributed inference problems when the

observation models are members of the exponential family, one can always construct a set

of beliefs using prior conjugates and the algorithm in Eq. (3.7) simplifies to updates in the

parameters of the exponential family, as shown by the following proposition.

Proposition 32. Assume the belief density dµik at time k has an exponential form with

natural parameters χik and νik for all 1 ≤ i ≤ n, and that these densities are conjugate priors

of the likelihood models piθ. Then, the belief density of agent i at time k + 1, as computed

in the update rule in Eq. (3.7), has the same form as the beliefs at time k with the natural
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parameters given by

χik+1 =
n∑

j=1

aijχ
j
k + T i(xik+1). (4.11)

Proposition 32 simplifies the algorithm in Eq. (3.7) and facilitates its use in traditional

estimation problems where members of the exponential family are used.

4.3.1 Additional Examples

In this subsection, we are going to state the general distributed algorithm in Eq. (4.11) pre-

sented in Proposition 32 for several distributed parameter estimation problems. Particularly,

we explicitly write the definition of the vector T i(xik) and χik, from which the parameters of

the current beliefs for each agent can be computed. Later in Section 4.3.2 we will provide

simulation results for several distributed inference problems over various graph topologies.

Distributed Gaussian filter with unknown mean and known variance

Assume each agent in the network observes a signal of the form X i
k = θi + εik, where θi is

finite and unknown scalar quantity, while εi ∼ N (0, 1/τ i) is a zero mean Gaussian noise with

precision τ i = 1/(σi)2 known only by agent i. The objective of the network is to agree on a

single θ∗ that solves the optimization problem in Eq. (3.5).

In this case, the likelihood models, the prior and the posterior are normal distributions.

Thus, if the beliefs of the agents at time k are Gaussian, i.e., µik = N (θik, 1/τ
i
k) for all

i = 1 . . . , n, then their beliefs at time k + 1 are also Gaussian. In particular, they are given

by µik = N (θik, 1/τ
i
k) for all i = 1 . . . , n, with

M(θ) =

[
θ

θ2

]
, T i(xik) =

[
xikτ

i

−1
2
τ i

]
, χik =

[
θikτ

i
k

−1
2
τ ik

]
.

We note that this specific setup is known as Gaussian learning and has been studied in

[66, 185], where the expected parameter estimator is shown to converge at an O(1/k) rate.

Distributed Gaussian filter with unknown variance and known mean

In this case, the agents want to cooperatively estimate the value of a variance which is

the parameter for Eq. (3.5). Specifically, each agent i observes a realization of the random
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variable X i
k = θi + εik, with εik ∼ N (0, 1/τ i), where θi is known and τ i is unknown. The

beliefs of all agents are chosen to be a gGamma distribution µik = gamma(αik, β
i
k) and it

follows that

M(τ) =

[
τ

log τ

]
, T i(xik) =

[
−1

2
(xik − θi)2

−1
2

]
, χik =

[
−βik

−(αik − 1)

]
.

Distributed Gaussian filter with unknown mean and variance

In the preceding examples, we have considered the cases when either the mean or the variance

is known. Here, we will assume that both the mean and the variance are unknown and need to

be estimated. Explicitly, we still have noise observations X i
k = θi + εik, with εik ∼ N (0, 1/τ i).

We are going to assume all agents have beliefs that follow the normal-gamma distribution,

i.e. µik = NormalGamma(θik, λ
i
k, α

i
k, β

i
k) for i = 1, · · · , n. Moreover, the it holds that

M(θ, τ) =




log τ

τ

τθ

τθ2



, T i(xik) =




1
2

−1
2
(xik)

2

xik

−1
2



, χik =




αik − 1
2

−1
2
λik(θ

i
k)

2 − βik
λikθ

i
k

−1
2
λik



.

Distributed Bernoulli filter

Here, each of the agents receives private observations of the form X i
k ∼ Bernoulli(pi), with

pi unknown. In order to estimate the network-wide parameter, each agent constructs a

sequence of beliefs following a beta distribution, i.e. µik = beta(αik, β
i
k). Then, the proposed

algorithm in Eq. (4.11) updates its parameters. Moreover, it holds that

M(p) =

[
log p

log(1− p)

]
, T i(xik) =

[
xik

1− xik

]
, χik =

[
αik

βik

]
.

Distributed Poisson filter

Similarly as before, we consider an observation model where each agent i receives realization

of a Poisson random variable with unknown parameter λi, i.e., X i
k ∼ Poisson(λi) for all i.

The conjugate prior to a Poisson likelihood model is the gamma distribution. Thus, at time

k the beliefs of each agent i are given by µik = gGamma(αik, β
i
k). Moreover, it holds that
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M(λ) =

[
log λ

λ

]
, T i(xik) =

[
xik

−1

]
, χik =

[
αik − 1

−βik

]
.

Distributed exponential filter

As a final example, we consider an observation model where each agent i receives realization

of an exponential random variable with unknown rate λi, i.e., X i
k ∼ exponential(λi) for all

i. The conjugate prior of an exponential likelihood model is the gamma distribution. Thus,

if at time k the beliefs of each agent i are given by µik = gamma(αik, β
i
k). Moreover, it holds

that

M(λ) =

[
λ

log λ

]
, T i(xik) =

[
−1

xik

]
, χik =

[
αik − 1

−βik

]
.

4.3.2 Experimental Results

In this section, we show a number of experimental results for the problem of distributed esti-

mation of network-wide parameters for various network topologies and various observational

models. We present the experimental results with the following format.

We explore six different estimation problems:

• Figure 4.4: Distributed estimation of the network-wide mean parameter with Gaussian

observations with the local knowledge of private variances.

• Figure 4.5: Distributed estimation of network-wide variance parameter with Gaussian

observations with the local knowledge of private means.

• Figure 4.6: Distributed estimation of network-wide mean and variance parameters with

Gaussian observations without knowledge of local means or variances.

• Figure 4.7: Distributed estimation of the network-wide parameter with heterogeneous

Bernoulli observations.

• Figure 4.8: Distributed estimation of the network-wide parameter with heterogeneous

Poisson observations.
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• Figure 4.9: Distributed estimation of the network-wide parameter with heterogeneous

Exponential observations.

For each of the figures described above, we measure the performance of the proposed

algorithm using its normalized distance to optimality and the distance to consensus, defined

as follows:

Distance to Optimality:
|F (θk)− F (θ∗)|
|F (θ0)− F (θ∗)| ,

Distance to Consensus: ‖Lθk‖2
2,

where θk = (θ1
k, θ

2
k, · · · , θnk ) is the aggregation of all the current parameter estimations for

each of the agents, and the function F (θk) is defined as

F (θk) =
n∑

i=1

DKL(P i‖P i
θik

),

and L is the graph Laplacian of the communication graph. We have used the graph Laplacian

as a measure of distance to consensus since by definition the set where θ1
k = θ2

k = · · · = θnk ,

i.e. consensus, is null space of the matrix L.

Finally, we present the results for five classes of networks, namely: complete graphs, cycle

graphs, path graphs, star graphs, and Erdős-Rényi random graphs. For each of the network

classes, we show the performance for 10 agents, 100 agents, and 1000 agents.

4.4 Distributed Gaussian Learning on Time-Varying Directed

Graphs

In this subsection, we assume that the observations have Gaussian distribution and that

the likelihood models are Gaussian, both with bounded second-order moments, i.e. X i
k ∼

N (θi, (σi)2) and piθ(·|σi) = N (θ, (σi)2) where σi > 0 for every i. This setting corresponds

to the case of having measurements of the true parameter θ∗ corrupted by some Gaussian

noise and the agents being informed that the noise is Gaussian with a known variance.

The Kullback-Leibler distance between two univariate Gaussian distributions P and Q,

where P = N (θ1, (σ1)2) and Q = N (θ2, (σ2)2), is given by

DKL (P‖Q) = log
σ2

σ1
+

(σ1)2 + (θ1 − θ2)2

(σ2)2
− 1

2
.
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Figure 4.4: Distributed estimation of a network-wide mean from Gaussian observations.
Optimality and distance to consensus for the distributed estimation of a network-wide
unknown mean parameter, from Gaussian observations, for various graph topologies
(complete, cycle, path, star and Erdős-Rényi ) of increasing size (10 agents, 100 agents and
100 agents).
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Complete Cycle Path Star Erdős-Rényi
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Figure 4.5: Distributed estimation of a network-wide variance from Gaussian observations.
Optimality and distance to consensus for the distributed estimation of a network-wide
variance parameter, from Gaussian observations, for various graph topologies (complete,
cycle, path, star and Erdős-Rényi ) of increasing size (10 agents, 100 agents and 100
agents).
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Complete Cycle Path Star Erdős-Rényi
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Figure 4.6: Distributed estimation of a network-wide mean and variance from Gaussian
observations. Optimality and distance to consensus for the distributed estimation of
network-wide mean and variance parameters, from Gaussian observations, for various
graph topologies (complete, cycle, path, star and Erdős-Rényi ) of increasing size (10
agents, 100 agents and 100 agents).
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Complete Cycle Path Star Erdős-Rényi
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Figure 4.7: Distributed estimation of a network-wide parameter from Bernoulli
observations. Optimality and distance to consensus for the distributed estimation of a
network-wide parameter of Bernoulli observations for various graph topologies (complete,
cycle, path, star and Erdős-Rényi ) of increasing size (10 agents, 100 agents and 100
agents).
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Complete Cycle Path Star Erdős-Rényi
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Figure 4.8: Distributed estimation of a network-wide parameter from Poisson observations.
Optimality and distance to consensus for the distributed estimation of a network-wide
parameter of Poisson observations for various graph topologies (complete, cycle, path, star
and Erdős-Rényi ) of increasing size (10 agents, 100 agents and 100 agents).
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Complete Cycle Path Star Erdős-Rényi
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Figure 4.9: Distributed estimation of a network-wide parameter from Exponential
observations. Optimality and distance to consensus for the distributed estimation of a
network-wide parameter of Exponential observations for various graph topologies
(complete, cycle, path, star and Erdős-Rényi ) of increasing size (10 agents, 100 agents and
100 agents).
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Thus, in this case, the problem in Eq. (3.5) is equivalent to

min
θ∈Θ

F (θ) ,
n∑

i=1

(θ − θi)2

2(σi)2
, (4.12)

which is convex with a unique solution

θ∗ =
n∑

i=1

θi/(σi)2

n∑
j=1

1/(σj)2

. (4.13)

However, the exact value of θi is unknown and each agent i has access only to noisy

observations of the form X i
k = θi + εi, where εi ∼ N (0, (σi)2). Moreover, variances are only

known locally, i.e. agent i only knows σi.

We propose the following distributed algorithm for solving the problem in Eq. (4.12) over

time-varying directed graphs:

τ ik+1 =
n∑

j=1

[Ak]ij τ
j
k + τ i, (4.14a)

θik+1 =

n∑
j=1

[Ak]ij τ
j
kθ

j
k + xik+1τ

i

τ ik+1

, (4.14b)

where τ i = 1/(σi)2 is referred to as the precision of the observations. The weights [Ak]ij are

chosen as

[Ak]ij =





1

djk+1
if (j, i) ∈ Ek,

0 otherwise,
(4.15)

where djk is the out-degree of node j at time k. Without loss of generality, we assume that

τ i0 = τ i for all i.

Remark 2. It is not necessary for each agent to have some form of informative observations.

Indeed, there might be agents with no observations working as buffers for information for

which we also expect correct estimates of θ∗. These “blind” agents depend on communicating

with other agents to construct their estimates.

Remark 3. While our focus is on the univariate Gaussian case, extensions to the multi-

variate are similarly possible using the results of conjugate priors for multivariate Gaussian

distributions.
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The next proposition shows that the algorithm in Eq. (4.14) is a specific realization of

Eq. (3.7) for the case of Gaussian distributions in the priors and likelihood models.

Proposition 33. Let the prior belief density µ̄i0 of every agent be a Gaussian function, i.e.

dµi0(θ; θi0, σ
i) = N (θi0, (σ

i)2),

and let the parametric family of distributions for the likelihood models be Gaussian functions,

i.e.

piθ(·|σi) = N (θ, (σi)2).

Then, for any k ≥ 1, the posterior belief density dµik, given by Eq. (3.7), is also a Gaussian

function. Moreover, if the weights aij are chosen to be 1/(djk + 1), then the mean and the

standard deviation of the posterior follow Eq. (4.14).

Now, we proceed to state our two main results showing the convergence properties of the

algorithm in Eq. (4.14).

Lemma 34. The expected mean process {E[θik]} converges to θ∗ for all i with a convergence

rate of O(1/k). Moreover, the constant terms depend on the topology of the network, the

precision of the observations and the initial guess.

Proof. In fact, we will prove the bound

∣∣E[θik+1]− θ∗
∣∣ ≤ τmax

τminkδ

(
‖θ0 − θ∗1‖1 +

2C‖θ − θ∗1‖1

1− λ

)
, (4.16)

with τmax = maxj τ
j, and τmin is the smallest non-zero precision among all agents.

First, define a new variable as xik = τ ikθ
i
k, then from Eq. (4.14b) it follows that

xk+1 = Akxk + diag(τ)sk+1

= Ak:0x0 +
k∑

t=1

Ak:tdiag(τ)st + diag(τ)sk+1,

where diag(τ) is a diagonal matrix with [diag(τ)]ii = τ i and xk = [x1
k, . . . , x

n
k ]′, τ = [τ 1, . . . , τn]′,

sk = [s1
k, . . . , s

n
k ]′.

Adding and subtracting
∑k

t=1 φkτ
′st from the preceding relation we obtain

xk+1 = Ak:0x0 +
k∑

t=1

Dk:tdiag(τ)st + diag(τ)sk+1 +
k∑

t=1

φkτ
′st,
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with Dk:t = Ak:t − φk1′, and φk is as in Lemma 2.

Following a similar procedure, from Eq. (4.14a) it holds that

τk+1 = Ak:0τ0 +
k∑

t=1

Dk:tτ + kφk1
′τ + τ.

Going back to the original variable θk, we have that

E[θik+1] =
[Ak:0diag(τ)θ0]i +

∑k
t=1[Dk:tdiag(τ)θ]i + τ iθi + kφikτ

′θ

[Ak:0τ0]i +
∑k

t=1[Dk:tτ ]i + kφik1
′τ + τ i

.

By subtracting θ∗ on both sides of the previous relation and taking the absolute value, we

obtain

∣∣E[θik+1]− θ∗
∣∣ ≤

∣∣∣∣∣
[Ak:0diag(τ0) (θ0 − θ∗1)]i∑k

t=1[Dk:tτ ]i + kφik1
′τ

∣∣∣∣∣+
∣∣∣∣∣

τ i (θi − θ∗)∑k
t=1[Dk:tτ ]i + kφik1

′τ

∣∣∣∣∣+

∣∣∣∣∣

∑k
t=1 [Dk:tdiag(τ) (θ − θ∗1)]i∑k

t=1[Dk:tτ ]i + kφik1
′τ

∣∣∣∣∣ ,

where the terms involving kφikτ
′θ cancel out and the following positive terms are removed

from the denominator [Ak:0τ0]i + τ i > 0.

Then by the fact that [Dk:t1]i + φikn > δ on the denominator and using Lemma 2 on the

third term it follows that

∣∣E[θik+1]− θ∗
∣∣ ≤

∣∣∣∣
[Ak:0diag(τ0) (θ0 − θ∗1)]i

kδτmin

∣∣∣∣+
τ i|θi − θ∗|
kδτmin

+
Cτmax‖θ − θ∗1‖1

kδτmin(1− λ)
.

Finally, the desired result follows by Hölders inequality in the first term with

‖[Ak:0diag(τ)]i‖∞ = τmax and grouping the second and third terms since C
1−λ > 1.

∣∣E[θik+1]− θ∗
∣∣ ≤ maxj[Ak:0]ijτ

j‖θ0 − θ∗1‖1

kδτmin
+

2Cτmax‖θ − θ∗1‖1

kδτmin(1− λ)
.

The first term in Eq. (4.16) shows the dependency on the initial estimates θ0 while

the second term depends on the heterogeneity of mean of local observations. The network

topology and the number of agents are characterized by λ and δ.

We are now ready to state our main result about the almost sure convergence of the

proposed algorithm.
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Theorem 35. Let the graph sequence of interactions {Gk}∞k=1 be B-strongly connected. More-

over, assume X i
k ∼ N (θi, (σi)2) and piθ(·|σi) = N (θ, (σi)2) for all i. Then, the sequence {θik}

generated by Eq. (4.14) converges almost surely to θ∗, i.e.

lim
k→∞

θik = θ∗ a.s. ∀i

Remark 4. The specific selection of weights as 1/(djk + 1) is a design choice. Theorem 35

still holds for any sequence of column stochastic matrices {Ak} with every non-zero entry

bounded from below away from zero, and with positive diagonal entries.

A specific version of the proposed problem is the case when all agents observe independent

realizations of the same random variable, i.e. X i
k ∼ N (θ∗, (σ2)∗). Recently, authors in

[185, 186] have explored this case. Specifically, in [186] the authors are concerned with the

effects of the network topology on the convergence rate of the distributed mean estimation

problem. They show mean square consistency of the following algorithm

θik+1 =
k

k + 1

n∑

j=1

aijθ
j
k +

1

k + 1
xik+1, (4.17)

and provide explicit rates for different network topologies. Note that the algorithm in Eq.

(4.17) reduces to Eq. (4.14) when τ i = 1 in such a way that τ ik = k for all i, and the graph

is static with a doubly stochastic weight matrix.

In [185], the authors proposed a new distributed Gaussian learning algorithm where com-

munication between agents is noisy. Following the non-Bayesian learning without recall

approach proposed in [47] they develop the specific realization for Gaussian random vari-

ables. Additionally, they consider the sequence of observations {sik} as coming from an

agent, denoted as n+1, and thus a different weighting strategy is proposed. Their algorithm

is

τ ik+1 = τ ik + djkτ, (4.18a)

θik+1 =

∑n+1
j=1 τ

j
ka

j
k

τ ik+1

, (4.18b)

with the specific condition that τ jk = τ for all j 6= i, ajk = θik for j = i and ajk = θjk + ε with

ε ∼ N (0, τ), with an+1
k = xik. The authors showed almost sure convergence of the algorithm.

Moreover, a convergence rate of O(k−
γ
2d ) was derived, where γ is a bound on the uniform

connectivity to the truth observations and d is the maximal degree over all the networks.
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One particular characteristic of the algorithm proposed in [185] is that, apart from tradi-

tional literature on distributed learning, the authors do not assume agents communicate over

a sufficiently connected network (B-strong connectivity in Theorem 35). They replace this

assumption by a so-called truth-hearing assumption which works as a 1/γ-strong connectiv-

ity with the n+1 node that provides direct noisy observations of θ∗. Thus, it is required that

every node receives signals from node n+1 at least once in every time interval of length 1/γ.

If all agents receive independent observations from identical distributions, connectivity of

the network and truth hearing assumptions both serve the same purpose of guarantying the

diffusion of the information over the network; otherwise, some form of connectivity between

agents is needed.

In addition to different connectivity assumptions, one main characteristic of the algorithm

in Eq. (4.18) is that agents do not differentiate the signal X i
k coming from the observations

of the parameter, and the signals {ajk} coming from other agents. Every agent treats both

signals similarly. The weights for observations of X i
k and neighbor signals {θik}ni=1 decay.

In our approach in Eq. (4.14), the weight for X i
k decays to zero and the weight for the

convex combination of {θik}ni=1 goes to one. This indeed shows that we do require the

identification of signals coming from either agents or the noisy parameter observations.

This extra information could explain why our approach has better performance in terms of

convergence rates.

Next, we provide simulation results for our proposed algorithm, and we compare its perfor-

mance with results in [185, 186]. Initially, we will consider the same scenario as in [185, 186]

with static undirected graphs with all agents having identical distributions in their noiseless

beliefs sharing. We will evaluate the performance of the algorithms for two different graph

topologies, namely path/line graph and a lattice/grid graph.

Figure 4.10 shows the absolute error of the estimated value θ∗ for the lattice/grid graph

with 25 agents. It is assumed that X i
k ∼ N (4, 1). An average of 500 Monte Carlo simulations

is shown for one arbitrary agent. Also, the theoretical convergence rates are shown for

comparison purposes. No simulation of the algorithm in Eq. (4.17) is shown since it reduces

to the same algorithm as in Eq. (4.14) for the simulated scenario.

Figure 4.11 shows the simulation results for the same scenario as in Fig. 4.10 but now for

a path/line graph of 15 agents. As predicted by the theoretical convergence rate bounds, the

proposed algorithm in Eq. (4.14) decays as O(1/k) where the topology of the network affects

only the constant, whereas the proposal in Eq. (4.18) depends explicitly on the maximum

degree among all graphs as O(1/k1/d).

Next, we will show that for the case of each agent having noise with different standard

deviations, by using information about the current estimate precision (i.e., τ ik), a better
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Figure 4.10: Distributed Gaussian learning on a grid graph. Simulation results of
algorithms in Eq. (4.14) and Eq. (4.18) for a lattice/grid graph of 25 nodes for an average
behavior over 500 Monte Carlo simulations.
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Figure 4.11: Distributed Gaussian learning on a path graph. Simulation results of
algorithms in Eq. (4.14) and Eq. (4.18) for a path graph of 25 nodes. Average behavior
over 500 Monte Carlo simulations.

performance is achieved. Fig. 4.12 shows the absolute error on the estimation of θ∗ for the

algorithm in Eq. (4.14) that uses precision information and the proposal in Eq. (4.17) that

assumes uniform precision. In this simulation, agents have heterogeneous precisions such
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that X i
k ∼ N (4, i). That is, in the path graph, the first agent has τ 1 = 1; the last agent,

on the other hand, has τn = n. This implies that agent 1 has the highest variance in its

observations. We have chosen to show the results for agent 1 only.
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Figure 4.12: Distributed Gaussian learning on a path graph and heterogeneous variances.
Simulation results of algorithms in Eq. (4.14) and Eq. (4.17) for a path graph of 25 nodes
with heterogeneous precisions (i.e. τ ′s). Average behavior over 500 Monte Carlo
simulations.

Finally, we will present the simulation results for a directed static graph which has been

shown to be a pathological case for the push-sum algorithm, see Fig. 4.13. Each agent

receives signals of the form X i
k ∼ N (i, n−i+1). Thus every agent has different measurement

precisions and different θi. The optimal θ∗ is defined in Eq. (4.13).

Figure 4.13: A particularly bad graph. Directed graph for simulation of the algorithm in
Eq. (4.14).

Figure 4.14 shows the simulation results for the algorithm in Eq. (4.14) to the specific set

of observations Sik ∼ N (i, n− i+ 1) on the graph in Fig. 4.13. The average over 10 Monte
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Carlo simulations is shown. The predicted O(1/k) behavior is observed, after a transition

time that depends on the number of agents in the network (i.e. the effects on n and λ in

Lemma 34).
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Figure 4.14: Distributed Gaussian learning on a particularly bad graph. Simulations
results of algorithms in Eq. (4.14) for the graph depicted in Fig. 4.13. Four different results
are shown, for 10, 20, 30 and 40 agents respectively.

4.5 Conclusions

We proposed two distributed cooperative learning algorithms for the problem of collaborative

inference. We have proposed an algorithm for distributed learning with both countable

and compact sets of hypotheses. Our algorithm may be viewed as a distributed version of

stochastic mirror descent applied to the problem of minimizing the sum of Kullback-Leibler

divergences. Our results show non-asymptotic geometric convergence rates for the belief

concentration around the true hypothesis.

We developed an algorithm for distributed parameter estimation with Gaussian noise over

time-varying directed graphs. The proposed algorithm is shown to be a specific case of a

more general class of distributed (non-Bayesian) learning methods. Almost sure converge

as well as an explicit convergence rate is shown in terms of the network topology and the

number of agents. Comparisons with recently proposed approaches are presented.
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CHAPTER 5

A DUAL APPROACH FOR OPTIMAL
ALGORITHMS IN DISTRIBUTED OPTIMIZATION

In this chapter, we go back to our original distributed optimization problem

min
z∈Rm

n∑

i=1

fi(z), (5.1)

where the each fi is convex and known by an agent i only, that represents a node in an

arbitrary communication network. The problem in Eq. (5.1) is to be solved in a distributed

manner by repeated interactions of a set of agents over a static network. We follow the

approach in [79] by formulating a dual problem and exploit recent results in the study of

convex optimization problems with affine constraints [187, 188, 189] to develop algorithms

with provably optimal convergence rates for the cases where each of the objective functions

fi has one the following properties:

1. it is strongly convex and with Lipschitz continuous gradients;

2. it is strongly convex and Lipschitz continuous on a bounded set (but not necessarily

smooth);

3. it is convex with Lipschitz continuous gradients;

4. it is convex and Lipschitz continuous (not necessarily smooth).

Our results match known optimal complexity bounds for centralized convex optimization

(obtained by classical methods such as Nesterov’s fast gradient method [190]), with an ad-

ditional cost induced by the network of communication constraints. This extra cost appears

in the form of a multiplicative term proportional to the square root of the spectral gap of

the interaction matrix. In summary, our main results provide an algorithm that achieves

ε relative accuracy on any fixed, connected and undirected graph according to Table 5.1,

where universal constants, logarithmic terms, and dependencies on the initial conditions are

hidden for simplicity. The resulting iteration complexities are given both for the optimality

of the solution and the violation of the consensus constraints. Note that for distributed
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Table 5.1: Iteration Complexity of Distributed Optimization Algorithms. All estimates are
presented up to logarithmic factors, i.e. of the order Õ.

Approach Reference
µ-strongly
convex and
L-smooth

µ-strongly
convex and
M-Lipschitz

L-smooth
M-Lipschitz

Centralized [191]
√
L/µ M2/(µε)

√
L/ε M2/ε2

Gradient
Computations

[192]b (L/µ)5/7n3 − 1/ε5/7 −
[73]a n2 + n

√
L/µ − 1/ε 1/ε

[96] − − − nM2/ε2

[193] − − − n2M2/ε2

[194] (L/µ)n2 − − −
[195] − − (L/ε)n3 −
[196] (L/µ)m4 − (L/ε)n4 −
[75]c

√
L/µn2 − − −

Communication
Rounds

[79]
√
L/µn − − −

[197] −
√
M2/(µε)n − nM/ε

This work
√
L/µn

√
M2/(µε)n

√
L/εn nM/ε

a Additionally, it is assumed functions are proximal friendly. No explicit dependence on L,
M or n is provided.
b An iteration complexity of Õ(

√
1/ε) is shown if the objective is the composition of a

linear map and a strongly convex and smooth function. Moreover, no explicit dependence
on L and n is provided.
c A linear dependence on n is achieved if L is sufficiently close to µ.

algorithms based on primal iterations these estimates translate to computations of gradients

of the local functions for each of the agents. On the other side, in dual based algorithms, the

complexity refers to computations of the gradients of the Lagrangian dual function, which

translates to the number of communication rounds in the network.

Additionally, we build upon the designed optimal algorithms for distributed optimization

to propose a new class-optimal algorithm for the distributed computation of Wasserstein

barycenters over networks. Assuming that each node in a graph has a probability distri-

bution, we prove that every node can reach the barycenter of all distributions held in the

network by using local interactions compliant with the topology of the graph. We show the

minimum number of communication rounds required for the proposed method to achieve

arbitrary relative precision both in the optimality of the solution and the consensus among

all agents for undirected fixed networks.

137



5.1 Problem Formulation

Initially, let us introduce a stacked column vector x = [xT1 , x
T
2 , . . . , x

T
n ]T ∈ Rnm to rewrite

problem (5.1) in an equivalent form as follows:

min
x1=...=xn

F (x) where F (x) ,
n∑

i=1

fi(xi). (5.2)

Suppose that we want to solve this problem in a distributed manner over a network.

We model such a network as a fixed connected undirected graph G = (V,E). We assume

that the graph G does not have self-loops. The network structure imposes information

constraints; specifically, each node i has access to the function fi only and a node can

exchange information only with its immediate neighbors, i.e., a node i can communicate

with node j if and only if (i, j) ∈ E.

We can represent the communication constraints imposed by the network by introducing

a set of equivalent to the constraints in Eq. (5.2). To do so, we define the communication

matrix (also referred to as an interaction matrix) by W , W̄ ⊗ Im, where ⊗ indicates the

Kronecker product and W̄ is the Laplacian matrix of the graph G.

Throughout this chapter, we assume that the undirected graph G = (V,E) is connected.

Under this assumption, the Laplacian matrix W̄ is symmetric and positive semi-definite.

Furthermore, the vector 1 is the unique (up to a scaling factor) eigenvector associated with

the eigenvalue λ = 0. Given the definition W = W̄ ⊗ Im, one can verify that W inherits all

the properties of W̄ , i.e., it is a symmetric positive semi-definite matrix and it satisfies the

following relations:

• Wx = 0 if and only if x1 = . . . = xn.

•
√
Wx = 0 if and only if x1 = . . . = xn.

• σmax(
√
W ) = λmax(W ).

Therefore, one can equivalently rewrite the problem in Eq. (5.2) as follows:

min√
Wx=0

F (x) where F (x) ,
n∑

i=1

fi(xi). (5.3)

Note that the constraint set {x |
√
Wx = 0} is the same as the set {x | x1 = . . . = xn},

since ker(
√
W ) = span(1) due to the connectivity of the graph G.

Additionally, it follows that if each function fi(xi) in Eq. (5.3) is µi-strongly convex in xi,

then F (x) is µ-strongly convex in x, with µ = min1≤i≤n µi. Also, if each fi(xi) in Eq. (5.3)
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is Li-smooth, then F (x) is L-smooth with L = max1≤i≤n Li.

Our main algorithmic tool in this chapter will be Nesterov’s fast gradient method (FGM) [198].

Equations in (5.4) state a version of the FGM method for a general µ-strongly convex and

L-smooth function f(x). Other variants of this method can be found in [198, 199, 200].

xk+1 = yk −
1

L
∇f(yk), (5.4a)

yk+1 = xk+1 +

√
L−√µ√
L+
√
µ

(xk+1 − xk). (5.4b)

Specifically, it holds for the iterates of Eq. (5.4) that

f(xk)− f ∗ ≤ L
(

1−
√
µ/L

)k
‖x0 − x∗‖2

2, (5.5)

where f ∗ denotes the minimum value of the function f(x) over Rn and x∗ is its minimizer.

In what follows, we will consider a generic optimization problem with linear constraints.

Then, we will apply FGM and obtain some basic insights. Moreover, we will derive the

results for a corresponding distributed algorithm for solving problem (5.3). To start, consider

a µ-strongly convex and an L-smooth function f(x) to be minimized over a set of linear

constraints

min
Ax=0

f(x). (5.6)

Assume that the problem is feasible, in which case a unique solution exists, denoted by

x∗. The Lagrangian dual for the problem in Eq. (5.6) is given by

min
Ax=0

f(x) = max
y

{
min
x

{
f(x)−

〈
ATy, x

〉}}
. (5.7)

The Lagrangian dual problem can be re-formulated as an equivalent minimization problem,

as follows:

min
y
ϕ(y) where ϕ(y) , max

x

{〈
ATy, x

〉
− f(x)

}
. (5.8)

The function ϕ(y) is µϕ-strongly convex on ker(AT )⊥ with µϕ = σ+
min(A)/L. Moreover, it

has Lϕ-Lipschitz continuous gradients with Lϕ = σmax(A)/µ.

Additionally, from Demyanov-Danskin’s theorem (see, for example, Proposition 4.5.1 in

[123]), it follows that ∇ϕ(y) = Ax∗(ATy) where x∗(ATy) denotes the unique solution to the
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inner maximization problem

x∗(ATy) = arg max
x

{〈
ATy, x

〉
− f(x)

}
. (5.9)

Note that there is no duality gap between the primal problem in Eq. (5.6) and its dual

problem in (5.8). Also, the dual problem has a solution (see, for example, Proposition 6.4.2

in [123]). In view of Eq. (5.9), the primal optimal solution x∗ is the same as x∗(ATy∗) where

y∗ is any dual optimal solution. In general, the dual problem in Eq. (5.8) can have multiple

solutions of the form y∗ + ker(AT ) when the matrix A does not have a full row rank. When

the solution is not unique, we will use y∗ to denote the smallest norm solution, and we let

R be its norm, i.e. R = ‖y∗‖2. In order to find x∗(ATy) one can use optimal (randomized)

numerical methods [198, 201, 202]. In the remainder of this chapter, we will assume that we

have access to x∗(ATy) explicitly for any given y. Section 5.3 discusses possible extension

when no dual solution is explicitly available.

Definition 20. A function f(x) is dual-friendly if, for any y, one has immediate access to

an explicit (or efficiently computed) solution x∗(ATy) to the dual subproblem associated with

the optimization problem in Eq. (5.6).

Examples of optimization problems for which Definition 20 holds can be found in the

literature, i.e. the entropy-regularized optimal transport problem [203], the entropy linear

programming problem [204] or the ridge regression.

Next, we will apply the bound for the FGM algorithm in Eq. (5.5) on the dual prob-

lem (5.8), which is not strongly convex in the ordinary sense (on the whole space). However,

by choosing y0 = x0 = 0 in Eq. (5.4) as the initial condition, the algorithm applied to the

dual problem will produce iterates that lie in the linear space of gradients ∇ϕ(y), which are

of the form Ax for x = x∗(ATy). In this case, the dual function ϕ(y) will be strongly convex

when y is restricted to the linear space spanned by the range of the matrix A. The iterations

in Eq. (5.4) for the dual problem then specialize to the following:

yk+1 = ỹk −
1

Lϕ
Ax∗(AT ỹk), (5.10a)

ỹk+1 = yk+1 +

√
Lϕ −

√
µϕ√

Lϕ +
√
µϕ

(yk+1 − yk). (5.10b)

We will explore the case when the linear constraints Ax = 0 represent the network commu-

nication constraints as
√
Wx = 0 and the function f(x) corresponds to the network function

F (x) as defined in Eq. (5.3). Particularly, if we make the change of variables
√
Wyk = zk
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and
√
Wỹk = z̃k, then the resulting algorithm can be executed in a distributed manner. The

interaction between agents is dictated by the term Wx∗(z̃k) which depends only on local

information. As a result, each agent i in the network has its local variables zik and z̃ik, and

to compute their value at the next iteration, it only requires the information sent by the

neighbors defined by the communication graph G as follows:

zik+1 = z̃ik −
1

Lϕ

n∑

j=1

Wijx
∗
j(z̃

j
k)

z̃ik+1 = zik+1 +

√
Lϕ −

√
µϕ√

Lϕ +
√
µϕ

(zik+1 − zik).

Additionally, the dual subproblem can be computed in a distributed manner at node i as

x∗i (z̃
i
k) = arg max

xi

{〈
z̃ik, xi

〉
− fi(xi)

}
.

We will be interested in finding solutions to the problem in Eq. (5.6) that attain the

function value arbitrarily close to the optimal value and have arbitrarily small feasibility

violation of the linear constraints. For this, we introduce the following definition.

Definition 21. [197] A point x̂ ∈ Rnm is called an (ε, ε̃)-solution of (5.6) if the following

conditions are satisfied

f(x̂)− f ∗ ≤ ε and ‖Ax̂‖2 ≤ ε̃,

where f ∗ denotes the optimal value for the primal problem in Eq. (5.6).

Note that an (ε, ε̃)-solution is not an optimal solution of (5.6) in the traditional sense.

The point x̂ implies only an approximate solution with ‖Ax̂‖2 ≤ ε̃.

The next section presents the main results on the optimal convergence rates for different

convexity and smoothness assumptions on the functions fi.

5.2 Optimal Algorithms for Distributed Convex Optimization

Our main results provide convergence rate estimates for the solution of the problem in

Eq. (5.1) for four different cases in terms of the properties of the function F (x) =
∑n

i=1 fi(xi).

Assumption 7. For a set of functions {fi}i=1,··· ,n assume:
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(a) Each fi is µi-strongly convex and Li-smooth, thus F is µ-strongly convex and L-smooth.

(b) Each fi is µi-strongly convex and Mi-Lipschitz on a closed ball around the optimal

point with radius equal to the magnitude of the optimal solution, thus F is µ-strongly

convex and M-Lipschitz on that closed ball.

(c) Each fi is convex and Li-smooth, thus F is convex and L-smooth.

(d) Each fi is convex and Mi-Lipschitz, thus F is convex and M-Lipschitz.

Moreover, we define µ = min1≤i≤n µi, L = max1≤i≤n Li and M = max1≤i≤nMi.

Next, we provide a sequence of algorithms and theorems considering each case in Assump-

tion 7. Under each assumption, we present the minimum number of iterations required, for

the corresponding algorithm, to reach an approximate solution of the problem in Eq. (5.3).

5.2.1 Sums of Strongly Convex and Smooth Functions

Assume that each fi in Eq. 5.3 is µi-strongly convex and Li-smooth, thus F is µ-strongly

convex and L-smooth. Then we propose Algorithm 1 to be executed distributedly for each

of the agents in the network.

Algorithm 1 Distributed FGM for the Dual of strongly convex and smooth problems

1: All agents set zi0 = z̃i0 = 0 ∈ Rn and N .

2: For each agent i ∈ V
3: for k = 0, 1, 2, · · · , N do

4: x∗i (z̃
i
k) = arg max

xi

{〈z̃ik, xi〉 − fi(xi)}
5: Share x∗i (z̃

i
k) with neighbors, i.e. {j | (i, j) ∈ E}.

6: zik+1 = z̃ik − µ
λmax(W )

∑n
j=1 Wijx

∗
j(z̃

j
k)

7: z̃ik+1 = zik+1 +

√
λmax(W )/µ−

√
λ+

min(W )/L√
λmax(W )/µ+

√
λ+

min(W )/L
(zik+1 − zik)

8: end for

The next theorem presents our main result regarding the performance of Algorithm 1.

Theorem 36. Let F (x) be dual friendly and Assumption 7(a) hold. For any ε > 0, the

output x∗(zN) of Algorithm 1 is an (ε, ε/R)-solution of (5.3) for

N ≥ 2

√
L

µ
χ(W ) log

(
2
√

2λmax(W )R2

µ · ε

)
,
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where R = ‖y∗‖2, and χ(W ) = λmax(W )/λ+
min(W ).

Proof. Algorithm 1 follows from the FGM in (5.4) applied to the dual problem (5.8) with

the change of variables
√
Wyk = zk and

√
Wỹk = z̃k. Therefore, we are going to use the

convergence results of the FGM for the dual problem in terms of the dual variables yk and

ỹk and provide an estimate of the convergence rate of in terms of the primal variables.

Initially, it follows from Theorem 2.2.2 in [198], Section 2.2.1, that the sequence of esti-

mates generated by the iterations in (5.10) has the following property:

ϕ(yk)− ϕ∗ ≤ LϕR
2 exp

(
−k
√
µϕ
Lϕ

)
. (5.12)

Moreover, it holds that

ϕ∗ ≤ ϕ(yk+1) ≤ ϕ(ỹk)−
1

2Lϕ
‖∇ϕ(ỹk)‖2

2. (5.13)

Thus

‖∇ϕ(ỹk)‖2
2 ≤ 2Lϕ (ϕ(yk)− ϕ∗)

‖
√
Wx∗(

√
Wỹk)‖2

2 ≤ 2L2
ϕR

2 exp

(
−k
√
µϕ
Lϕ

)
.

We can conclude that ‖
√
Wx∗(zk)‖2 ≤ ε/R if k ≥ 2

√
Lϕ
µϕ

log
(√

2LϕR2

ε

)
.

Now, by using the Cauchy–Schwarz inequality, it follows that

|〈yk,
√
Wx∗(

√
Wyk)〉|2 ≤ ‖yk‖2

2‖
√
Wx∗(

√
Wyk)‖2

2.

We can bound ‖yk‖2 following ideas from [205], where it was shown that

‖yk − y∗‖2 ≤ ‖y0 − y∗‖2.

Thus, since we assume y0 = 0, it holds that ‖yk‖2 ≤ 2‖y∗‖2 ≤ 2R, then

|〈yk,
√
Wx∗(

√
Wyk)〉|2 ≤ 4R2‖

√
Wx∗(

√
Wyk)‖2

2,

≤ 8R4L2
ϕ exp

(
−k
√
µϕ
Lϕ

)
.

Therefore f(x∗(zk))− f ∗ ≤ ε if k ≥ 2
√

Lϕ
µϕ

log
(

2
√

2L2
ϕR

3

ε

)
.
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Finally, based on Lemma 1 in [204], Algorithm 1 will produce an (ε, ε/R)-solution if

N ≥ 2

√
Lϕ
µϕ

log

(
max

{
2
√

2LϕR
2

ε
,

√
2LϕR

2

ε

})
.

Following the definitions of Lϕ, µϕ, and χ(W ), we obtain the desired result.

5.2.2 Sums of Strongly Convex and M -Lipschitz Functions on a Bounded
Set

Assume that each fi in Eq. (5.3) is µi-strongly convex and Mi-Lipschitz on a bounded

set, thus F is µ-strongly convex and M -Lipschitz on that specific set, then, we propose

Algorithm 2 to be executed distributedly for each of the agents in the network.

Algorithm 2 Distributed FGM for the Dual of strongly convex and M -Lipschitz problems

1: All agents set zi0 = z̃i0 = 0 ∈ Rn and N .

2: For each agent i ∈ V
3: for k = 0, 1, 2, · · · , N do

4: x∗i (z̃
i
k) = arg max

xi

{〈z̃ik, xi〉 − fi(xi)}
5: Share x∗i (z̃

i
k) with neighbors, i.e. {j | (i, j) ∈ E}.

6: zik+1 = z̃ik − 1
λmax(W )/µ+ε/R2

(
n∑
j=1

Wijx
∗
j(z̃

j
k) + ε

R2 z
i
k

)

7: z̃ik+1 = zik+1 +

√
λmax(W )/µ+ε/R2−

√
ε/R2√

λmax(W )/µ+ε/R2+
√
ε/R2

(zik+1 − zik)
8: end for

The next theorem presents our main result regarding the performance of Algorithm 2.

Theorem 37. Let F (x) be dual friendly and Assumption 7(b) hold. Moreover, assume F (x)

is M-Lipschitz in the set {x | ‖x− x∗‖2 ≤ Rx} with Rx = ‖x∗(0)− x∗‖2. For any ε > 0, the

output x∗(zN) of Algorithm 2 is an (ε, ε/R)-solution of (5.3) for

N ≥ 2

√
4χ(W )

M2

µ · ε + 1 log

(
4χ(W )

M2

µ · ε + 1

)
,

where χ(W ) = λmax(W )/λ+
min(W ).

Proof. Initially, consider the regularized dual function ϕ̂ with µ̂ = ε
4R2 , which is µϕ̂-strongly
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convex with µϕ̂ = ε
4R2 , and Lϕ̂-smooth with Lϕ̂ = λmax(W )

µ
+ ε

4R2 . Thus, similarly as in (5.12)

ϕ̂(yk)− ϕ̂∗ ≤ Lϕ̂R̂
2 exp

(
−k
√
µϕ̂
Lϕ̂

)
≤ Lϕ̂R

2 exp

(
−k
√
µϕ̂
Lϕ̂

)
,

where R̂ = ‖ŷ∗‖2, and ŷ∗ is the smallest norm solution of the regularized dual problem. Note

that by definition R̂ = ‖ŷ∗‖2 ≤ ‖y∗‖2 = R.

Next, we provide a relation between the distance to optimality of the non-regularized

primal problem and the regularized dual problem. Note that for any y it holds that

ϕ̂(y)− ϕ̂∗ ≥ ‖∇ϕ̂(y)‖2
2

2Lϕ̂
=
‖∇ϕ(y) + µ̂y‖2

2

2Lϕ̂
≥ µ̂ 〈y,∇ϕ(y)〉

Lϕ̂
.

Therefore,

〈y,∇ϕ(y)〉 ≤ Lϕ̂
µϕ̂

(ϕ̂(y)− ϕ̂∗) ≤ 4

ε
L2
ϕ̂R

4 exp

(
−k
√
µϕ̂
Lϕ̂

)
.

Consequently, if k ≥ 2
√
Lϕ̂/µϕ̂ log (2Lϕ̂R

2/ε) , then 〈y,∇ϕ(y)〉 ≤ ε.

Moreover, it follows from the definition of the regularized dual function that

‖∇ϕ(yk)‖2 ≤ ‖∇ϕ̂(yk)‖2 + µ̂‖yk‖2

≤
√

2Lϕ̂(ϕ̂(y)− ϕ̂∗) + µ̂‖yk‖2

≤
√

2Lϕ̂R exp

(
−k

2

√
µϕ̂
Lϕ̂

)
+ 2µ̂R̂

≤
√

2Lϕ̂R exp

(
−k

2

√
µϕ̂
Lϕ̂

)
+

ε

2R
.

Using the definition of the gradient of the dual function then we have that

‖
√
Wx∗(

√
Wỹk)‖2 ≤ ε/R, for k ≥ 2

√
Lϕ̂/µϕ̂ log

(√
2Lϕ̂R

2/ε
)
.

We conclude, from Lemma 1 in [204], that we will have an (ε, ε/R) solution of (5.3) if

k ≥ 2

√
Lϕ̂
µϕ̂

log

(
max

{
2Lϕ̂R

2

ε
,

√
2Lϕ̂R

2

ε

})

≥ 2

√
Lϕ̂
µϕ̂

log

(
2Lϕ̂R

2

ε

)

= 2

√√√√
λmax(W )

µ
+ ε

4R2

ε
4R2

log




2R2
(
λmax(W )

µ
+ ε

4R2

)

ε



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= 2

√
4R2λmax(W )

µ · ε + 1 log

(
4R2λmax(W )

µ · ε + 1

)
.

Now, we focus our attention to find a bound on the value R such that we can provide an

explicit dependency on the minimum non zero eigenvalue of the graph Laplacian. This will

allow us to provide an explicit iteration complexity in terms of the condition number of the

graph Laplacian.

Theorem 3 in [197] provides a bound that relates R with the magnitude of the gradient

of F (x) at the optimal point x = x∗. Particularly, it is shown that

R2 = ‖y∗‖2
2 ≤
‖∇F (x∗)‖2

2

σ+
min(A)

. (5.14)

It was shown in [205] that the iterations generated by the FGM in (5.4) always lie inside

an Euclidean ball around the optimal solution y∗ (y∗ is the optimal solution of the dual

problem in this case), with a radius equal to ‖y0− y∗‖2 which is effectively equal to R given

our initialization z0 = 0. The set {y | ‖y − y∗‖ ≤ R} is defined in the dual variables.

However, we seek to provide a condition on the primal variables, i.e., x. It follows from

the definition of the function x∗(
√
Wy), that the set {y | ‖y − y∗‖ ≤ R} is mapped into

an Euclidean ball centered at x∗, since the point x∗(
√
Wy∗) = x∗. As for the radius, note

that x∗(0) = arg minx F (x). Thus, given the assumption that F (x) is M -Lipschitz in the set

{x | ‖x− x∗‖2 ≤ Rx} with Rx = ‖x∗ − x∗(0)‖, it holds that

R2 ≤ M2

σ+
min(A)

.

Therefore to have an (ε, ε/R)-solution it is necessary that

k ≥ 2

√
λmax(W )

λ+
min(W )

M2

µ · ε + 1 log

(
λmax(W )

λ+
min(W )

M2

µ · ε + 1

)

≥ 2

√
4χ(W )

M2

µ · ε + 1 log

(
4χ(W )

M2

µ · ε + 1

)
.
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5.2.3 Sums of Smooth Functions

Assume that each fi in Eq. (5.3) is convex and Li-smooth, thus F is convex and L-smooth.

Then we propose Algorithm 3 to be executed distributedly for each of the agents in the

network.

Algorithm 3 Distributed FGM for the Dual of Smooth convex functions

1: All agents set zi0 = z̃i0 = 0 ∈ Rn and N .

2: For each agent i ∈ V
3: for k = 0, 1, 2, · · · , N do

4: x̂∗i (z̃
i
k) = arg maxxi

{
〈z̃ik, xi〉 − fi(xi)− ε

2R2
x
‖xi‖2

2

}

5: Share x∗i (z̃
i
k) with neighbors, i.e. {j | (i, j) ∈ E}.

6: zik+1 = z̃ik − 1
λmax(W )/(ε/R2

x)

∑n
j=1Wijx̂

∗
j(z̃

j
k)

7: z̃ik+1 = zik+1 +

√
λmax(W )

ε/R2
x
−
√
λ+

min
(W )

L+ε/R2
x√

λmax(W )

ε/R2
x

+

√
λ+

min
(W )

L+ε/R2
x

(zik+1 − zik)

8: end for

The next theorem presents our main result regarding the performance of Algorithm 3.

Theorem 38. Let F (x) be dual friendly and Assumption 7(c) hold. For any ε > 0, the

output x∗(zN) of Algorithm 3 is an (ε, ε/R)-solution of (5.3) for

N ≥ 2

√(
2LR2

x

ε
+ 1

)
χ(W ) log

(
8
√

2λmax(W )R2R2
x

ε2

)
.

where χ(W ) = λmax(W )/λ+
min(W ) and Rx = ‖x∗ − x∗(0)‖2.

Proof. Initially, consider the regularized problem

min√
Wx=0

F̂ (x) where F̂ (x) , F (x) +
ε

2R2
x

‖x− x∗(0)‖2
2, (5.15)

where F (x) is defined in (5.3). The function F̂ (x) is µ̂-strongly convex with µ̂ = ε
2R2

x
and

L̂-smooth with L̂ = L + µ̂. Given that the regularized primal function is strongly convex

and smooth, we can use the results from Theorem 36. Particularly, in order to have an

(ε/2, ε/(2R))-solution of problem (5.15), one can use Algorithm 1 with

N ≥ 2

√
L̂

µ̂
χ(W ) log

(
4
√

2λmax(W )R2

µ̂ · ε

)
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= 2

√
L+ ε

2R2
x

ε
2R2

x

χ(W ) log

(
4
√

2λmax(W )R2

ε
2R2

x
· ε

)

= 2

√(
2LR2

x

ε
+ 1

)
χ(W ) log

(
8
√

2λmax(W )R2R2
x

ε2

)
.

Having an (ε/2, ε/(2R))-solution of problem (5.15), guarantees that x̂∗N is an (ε, ε/(R))-solution

of problem (5.3), and the desired result follows.

5.2.4 Sums of Convex and M -Lipschitz Functions

Assume that each fi in Eq. 5.3 is convex and Mi-Lipschitz, thus F is convex and M -Lipschitz.

Then we propose Algorithm 4 to be executed distributedly for each of the agents in the

network.

Algorithm 4 Distributed FGM for the Dual of M -Lipschitz functions

1: All agents set zi0 = z̃i0 = 0 ∈ Rn and N .

2: For each agent i ∈ V
3: for k = 0, 1, 2, · · · , N do

4: x̂∗i (z̃
i
k) = arg maxxi

{
〈z̃ik, xi〉 − fi(xi)− ε

2R2
x
‖xi‖2

2

}

5: Share x∗i (z̃
i
k) with neighbors, i.e. {j | (i, j) ∈ E}.

6: zik+1 = z̃ik − 1
λmax(W )/(ε/R2

x)+ε/R2

(
n∑
j=1

Wijx
∗
j(z̃

j
k) + ε

R2 z
i
k

)

7: z̃ik+1 = zik+1 +

√
λmax(W )

ε/R2
x

+ε/R2−
√
ε/R2√

λmax(W )

ε/R2
x

+ε/R2+
√
ε/R2

(zik+1 − zik)

8: end for

The next theorem presents our main result regarding the performance of Algorithm 4.

Theorem 39. Let F (x) be dual friendly and Assumption 7(d) hold. For any ε > 0, the

output x∗(zN) of Algorithm 4 is an (ε, ε/R)-solution of (5.3) for

N ≥ 2

√
16χ(W )

M2R2
x

ε2
+ 1 log

(
16χ(W )

M2R2
x

ε2
+ 1

)
,

where χ(W ) = λmax(W )/λ+
min(W ), R = ‖y∗‖2, and Rx = ‖x∗ − x∗(0)‖2.

Proof. Consider again, as in Theorem 38, the regularized problem (5.15) where F (x) is

defined in (5.3). The function F̂ (x) is µ̂-strongly convex with µ̂ = ε
2R2

x
. However, we
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have assumed now that F (x) is not smooth. Nevertheless, from Theorem 37, we have that

Algorithm 2 will generate an (ε/2, ε/(2R))-solution of (5.15), namely x∗N , for

N ≥ 2

√
8χ(W )

M2

µ̂ · ε + 1 log

(
8χ(W )

M2

µ̂ · ε + 1

)

= 2

√
8χ(W )

M2

ε
2R2

x
· ε + 1 log

(
8χ(W )

M2

ε
2R2

x
· ε + 1

)

= 2

√
16χ(W )

M2R2
x

ε2
+ 1 log

(
16χ(W )

M2R2
x

ε2
+ 1

)
.

Therefore, x∗(zN) is an (ε, ε/R)-solution for problem (5.3).

5.3 Discussion and Extensions

Table 5.2 presents a summary of the results presented in Section 5.3.1. In particular, it

shows the number of communication rounds required to obtain an (ε, ε/R)-solution for each

the presented properties of the function F (x).

Table 5.2: A summary of algorithmic performance.

Property of F (x) Iterations Required

µ-strongly convex and L-smooth Õ
(√

(L/µ)χ(W )
)

µ-strongly convex and M -Lipschitz Õ
(√

(M2/(µε))χ(W )
)

L-smooth Õ
(√

(LR2
x/ε)χ(W )

)

M -Lipschitz Õ
(√

(M2R2
x/ε

2)χ(W )
)

The estimates in Table 5.2 are optimal up to logarithmic factors. Particularly in the

smooth cases, where L < ∞, these estimates follow from classical centralized complex-

ity estimation of the FGM algorithm. In the distributed setting, one has to perform√
χ(W ) log(ε−1) additional consensus steps at each iteration. This corresponds to the num-

ber of iterations needed to solve the consensus problem

min
x

1

2
〈x,Wx〉 , (5.16)

where W is a communication matrix. FGM provides a direct estimate on the number

of iterations required to reach consensus; particularly, we need O(
√
χ(W ) log ε−1), where
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we have used the fact that (5.16) is σmin(
√
W )-strongly convex in x0 + ker(W ) and has

σmax(
√
W )-Lipschitz continuous gradients. Moreover, it follows that this estimate cannot be

improved up to constant factors.

The specific value of χ(W ) and its dependency on the number of nodes m has been

extensively studied in the literature of distributed optimization [25]. Table 1.1 provides

an extensive list of worst-case dependencies of the spectral gap for large classes of graphs.

Particularly, for fixed undirected graphs, in the worst case we have χ(W ) = O(n2) [96].

This matches the best upper bound found in the literature of consensus and distributed

optimization [207, 208]. Thus, the constraint described as
√
Wx = 0 should be preferred over

the description asWx = 0, even though both representations correctly describe the consensus

subspace x1 = . . . = xn. Particularly, when we pick A =
√
W , we have χ(ATA) = χ(W )

instead of χ(W TW ) = χ(W 2)� χ(W ).

Note that we typically do not know R or Rx. Thus, we require a method to estimate the

strong convexity parameter µ̂ which is challenging [209, 210]. Therefore, we can apply the

restarting technique on µ [210]. The payment for that is an 8 multiplicative factor in the

estimation [211]. Similarly, a generalization of the FGM algorithm can be proposed when

Lϕ is unknown [204]. The specific details of this generalization are beyond the scope of this

work.

Considering the general problem in Eq. (5.1), the condition number L/µ can be large if

one of the µi is small. Thus, we can formulate another equivalent problem as

min√
Wx=0

Fα(x) =
n∑

i=1

fi(xi) +
α

2
〈x,Wx〉 , (5.17)

where

Fα is µ ≥ min

{
n∑

i=1

µi, αλmin(W )

}
-strongly convex and has

L ≤
(

max
i=1,...,m

Li + αλmax(W )

)
-Lipschitz continuous gradients.

Moreover, if we set α = O(
∑n

k=1 µk/λmin(W )), one can solve problem (5.17) with relative

precision ε after

Õ
(√

(L/µ̄+ χ(W ))χ(W )
)
,

communication steps, where µ̄ =
∑n

i=1 µi. This estimate shows that we can replace the

smallest strong convexity constant for the sum among all of them, but we have to pay
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an additive price proportional to the condition number of the graph. This result can be

extended to the case when F (x) is just smooth by using the regularization technique with

µi = ε/(nR2
xi

) = ε/(R2
x).

The cases when F (x) is convex or strongly convex can be generalized to p-norms, with

p ≥ 1, see [187]. Particularly, the definitions of the condition number χ(·) need to be defined

accordingly. Let us introduce a norm ‖x‖2
p = ‖x1‖2

p + ...+ ‖xn‖2
p for p ≥ 1 and assume that

F (x) is µ-strongly convex and L-Lipschitz continuous gradient in this (new) norm ‖ · ‖p (in

Rmn), see [212] (Lemma 1), [213] (Lemma 1) and [206] (Theorem 1). Thus

χ(W ) =
max‖h‖=1

<h,Wh>
µ

min‖h‖=1,h⊥ker(W )
<h,Wh>

L

.

5.3.1 The Case When F (x) is Not Dual Friendly

The results in Theorems 36, 37, 38, and 39 assume F (x) is dual-friendly. In this section, we

explore the case when no exact solution to the dual problem is available.

When the function is strongly convex and smooth or just smooth, one can solve Eq. (5.9)

using FGM. Therefore, we can find a solution for the dual problem, i.e. x∗(ATy), in a loga-

rithmic number of iterations from a desired relative precision δ. Specifically, when the func-

tion is strongly convex and smooth, we can solve the auxiliary problem in O(
√
L/µ log(δ−1))

oracle calls (i.e. calculation of∇f(x)). On the other hand, when the function is only smooth,

we require O(
√
LR2

x/ε log(δ−1)) iterations. Both estimates are optimal up to logarithmic

factor. Therefore, in those cases, we obtain optimal convergence rates both in the number of

communication rounds (Ax, ATy multiplications) and oracle calls (computations of ∇f(x)).

In the non-smooth cases, we might use another approach. Consider the case where f(x)

is convex and M -Lipschitz and apply Nesterov’s smoothing technique [206, 214] to (5.7).

Thus, we can solve the composite type mixed smooth/non-smooth type problem

min
‖x‖2≤Rx

Gε(Ax)︸ ︷︷ ︸
O(1/ε)-smooth

+ f(x)︸︷︷︸
M -Lipschitz

, (5.18)

where

Gε(Ax) = max
y

{
〈y, Ax〉 − ε

2R2
‖y‖2

2

}
=
R2

2ε
‖Ax‖2

2.

It holds that Gε(Ax) is (σmax(AT )R2/ε)-smooth. Thus, using Lan’s accelerated gradient

sliding [215], one can find an ε-solution (in function value) of (5.18) without any auxiliary
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dual problem, after

O(
√

(M2R2
x/ε

2)χ(ATA)) and O
(
M2R2

x/ε
2
)

communication rounds and gradient computations respectively. Unfortunately, in this ap-

proach we can guarantee ‖AxN‖ ≤ ε/R only in the best case [216].

Using the restart technique [211, 217] one can extend Lan’s accelerated gradient sliding

for f(x) being µ-strongly convex. At the k-th restart the number of communication rounds

is O(
√
σmax(A)R2/(µε)) and the number of gradient computations is O

(
(2kM2)/(ε2R2

x)
)
.

This allows to improve estimates for (5.18) to Õ(
√
M2/(µε)χ(ATA)) communication rounds

and O (M2/µε) gradient computations. These estimates are optimal up to logarithmic fac-

tors. Moreover, one can extend these results to stochastic optimization problems and the

estimations will not change [197].

5.4 Simulation Results

In this section, we will provide experimental results that show the performance of the op-

timal distributed algorithms presented in the previous section for cycle and Erdős-Rényi

random graph of various sizes. We choose the cycle graph (χ(W ) = O(n2)) and the Erdős-

Rényi random graph (χ(W ) = O(log(n))), see Fig. 5.1. Moreover, we show the scalability

properties of the algorithms for networks of increasing size.

1

2 3

4 5

(a) Cycle graph (b) Erdős-Rényi random graph

Figure 5.1: Two examples of networks of agents. (a) A cycle graph with 5 agents. (b) An
Erdős-Rényi random graph with 160 agents.
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Particularly for the cycle graph network of 5 agents shown in Fig. 5.1(a) agent 1 can

share information with agents 4 and 5, agent 5 shares information with agents 1 and 3, and

similarly for the other agents. Thus, the corresponding interaction matrix W̄ is

W̄ =




2 −1 0 0 −1

−1 2 −1 0 0

0 −1 2 −1 0

0 0 −1 2 −1

−1 0 0 −1 2




.

Initially, consider the regression (strongly convex and smooth) problem

min
z∈Rm

1

2nl
‖b−Hz‖2

2 +
1

2
c‖z‖2

2, (5.19)

to be solved distributedly over a network. Each entry of the data matrix H ∈ Rnl×m is

generated as an independent identically distributed random variable Hij ∼ N (0, 1); the

vector of associated values b ∈ Rnl is generated as a vector of random variables where

b = Hx∗ + ε for some predefined x∗ ∈ Rm and ε ∼ N (0, 0.1). The columns of the data

matrix H and the output vector b are evenly distributed among the agents with a total of l

data points per agent. The regularization constant is set to c = 0.1. Thus, each agent has

access to a subset of points such that

bT = [ bT1︸︷︷︸
Agent 1

| bT2︸︷︷︸
Agent 2

| · · · | bTn︸︷︷︸
Agent n

] and HT = [ HT
1︸︷︷︸

Agent 1

| HT
2︸︷︷︸

Agent 2

| · · · | HT
n︸︷︷︸

Agent n

],

where bi ∈ Rl and Hi ∈ Rl×m for each i. In this setup, each agent i has a private local

function

fi(xi) ,
1

2nl
‖bi −Hixi‖2

2 +
1

2

c

m
‖xi‖2

2.

Moreover, the optimization problem in Eq. 5.19 is equivalent to

min√
Wx=0

n∑

i=1

(
1

2

1

nl
‖bi −Hixi‖2

2 +
1

2

c

m
‖xi‖2

2

)
,

where W = W̄ ⊗ Im.

Figure 5.2 shows experimental results for the ridge regression problem for a cycle graph and
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an Erdős-Rényi random graph. For each type of graph we show the distance to optimality

as well as the distance to consensus for a fixed graph with n = 100, m = 10 and l = 100.

Additionally, the scalability of the algorithm is shown by plotting the required number

of steps to reach an accuracy of ε = 1 · 10−10 versus the number of nodes in the graph.

We compare the performance of the proposed algorithm with some of the state-of-the-art

methods for distributed optimization. Dist-Opt refers to Algorithm 1. NonAcc-Dist

refers to the non-accelerated version of Algorithm 1. FGM is the centralized FGM. Acc-

DNGD refers to the algorithm proposed in [192] with parameter η = 0.1 and α =
√
µη.

EXTRA refers to the algorithm proposed in [76] with parameter α = 1. DIGing refers to

the algorithm proposed in [24] with parameter α = 0.1. Figure 5.2 shows linear convergence

rate with faster performance than other algorithms and linear scalability with respect to the

size of the cycle graphs.

Now, consider the Kullback-Leibler (KL) barycenter computation problem (strongly con-

vex and M -Lipschitz)

min
z∈S1(m)

n∑

i=1

DKL(z‖qi) ,
n∑

i=1

m∑

j=1

zi log (zi/[qi]j) ,

where S1(m) is the unit simplex in Rm and qi ∈ S1(m) for all i ∈ V . Each agent has a

private probability distribution qi and seek to compute the a probability distribution that

minimizes the average KL distance to the distributions {qi}i=1,...,n. Figure 5.3 shows the

results for the KL barycenter problem for a cycle graph with n = 100, m = 10 and various

values of the regularization parameter. We show the distance to optimality as well as the

distance to consensus and the scalability of the algorithm.

In Eq. (5.19), if we assume c = 0 and Hi is a wide matrix where m� l (i.e., the dimension

of the data points is much larger than the number of data points per agent), then the resulting

problem is smooth but no longer strongly convex. Figure 5.4 compares the performance of

the proposed method with the distributed accelerated method proposed in [192] for non-

strongly convex functions (Acc-DNGD-NSC) for a fixed regularization value µ̂ = 1 · 10−6.

The bottom two plots in Figure 5.4 show the distance to optimality and distance to consensus

over an Erdős-Rényi random graph of two different sizes, namely n = 20 and n = 100. The

top two plots in Figure 5.4 show the same comparison for a cycle network. Figure 5.5 shows

the performance of the proposed algorithm over an Erdős-Rényi random graph with n = 50,

m = 20 and l = 10, for different values of the regularization parameter. As expected, smaller

values of the regularization parameter increase the precision of the algorithm but hinder its

rate. As presented in Table 5.1, the algorithms have similar convergence rates, as shown by
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Figure 5.2: Distance to optimality and consensus, and network scalability for a strongly
convex and smooth problem. Left plots correspond to cycle graphs and right plots
correspond to Erdős-Rényi random graphs.
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Figure 5.3: Distance to optimality and consensus, and network scalability for a strongly
convex and M -Lipschitz problem over a cycle graph with n = 100s, m = 10 and various
values of the regularization parameter µ̂. The brown line shows the performance for the
non-accelerated distributed gradient descent of the dual problem.

the intersection of the curves around the accuracy point corresponding to the regularization

parameter. Nevertheless, as seen in Figure 5.2, Acc-DNDG-NSC has the worst scalability

with respect to the number of nodes, which is particularly evident for the cycle graph.

5.5 Distributed Computation of Wasserstein Barycenters

One of the common uses of the Wasserstein distance is the aggregation of distributions by

considering their barycenter [218], which itself is another distribution [219]. Wasserstein

barycenters has been shown superior to traditional Euclidean-based methods in a range

of application such as image processing [218], economics and finance [220] and condensed

matter physics [221]. Figure 5.6 shows a sample of 100 images of the digit 7 from the MNIST

dataset [222], and their respective Euclidean mean and Wasserstein mean. The Wasserstein

barycenter better captures the structural features of the input images.
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Wasserstein
Mean

Euclidean
Mean

Figure 5.6: Samples of the digit 7 from the MNIST dataset and comparison of their
Euclidean and Wasserstein Barycenters.

For discrete and finite distributions, the Wasserstein barycenter can be efficiently com-

puted by solving a large linear program [223] or using regularization to approximate a solu-

tion efficiently and exploit its convenient algebraic properties [218, 219, 224]. In this section,

we consider the problem of computation of Wasserstein barycenters over networks. The

flexibilities induced by the distributed setup make it suitable for problems involving large

quantities of data with no centralized storage [22, 24, 20, 225]. Particularly, we assume a

group of agents is connected over a network, and each agent locally holds a probability dis-

tribution with finite support. The group seeks to compute the Wasserstein barycenter of all

distributions in the network cooperatively. Figure 5.7 shows an Erdős-Rényi random graph

with 160 agents where each agent holds a sample of the digit 7 from the MNIST dataset.

Distributed consensus with the Wasserstein metric was introduced in [87, 226]. In [226],

the authors showed asymptotic convergence to the Wasserstein barycenter of the initial distri-

158



Figure 5.7: Erdős-Rényi random graph where each agent privately holds a sample of the
digit 7 from the MNIST dataset.

butions given some weak connectivity assumptions on the graph over which agents exchange

information. Nevertheless, the proposed algorithm requires that each agent computes an

exact Wasserstein barycenter of local distributions at each iteration. Although one can have

closed form solutions for some families of continuous distributions, in general, the problem

can be intractable. On the other hand, a recent approach [227] explores the computational

advantages of a dual formulation of the Wasserstein barycenter and exploits the paralleliz-

able structure of the problem to propose a scalable, communication-efficient algorithm for

its computation on arbitrary continuous distributions. Nevertheless, it requires a central

fusion center that coordinates the actions of the parallel machines.

In contrast with existing literature [226, 227], we propose a first-order algorithm that can

be executed distributedly over a network with unknown topology. We derive an explicit

convergence rate of the order O(1/k2) with an additional cost that depends on the condition

number of the graph over which the agents interact. Additionally, we present two numerical

examples to illustrate and validate our results. First, we show some basic properties of the

algorithm for the problem of computing the Wasserstein barycenter of univariate, discrete

and truncated Gaussian distributions. Then, we show the result of applying our algorithm

to a subset of the MNIST digit database on a large-scale network of 1000 agents.
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5.5.1 Problem Statement

Consider two probability distributions p, q ∈ S1(m) with support on a finite set of points

{xi ∈ Rd}mi=1 such that p(xi) = pi and q(xi) = qi. Moreover, consider a non-negative

symmetric matrix M , where [M ]ij ∈ R+ accounts for the cost of moving mass from pi to

bin qj. Without loss of generality, in the numerical example we will consider the Euclidean

costs where [M ]ij = ‖xi − xj‖2
2. Additionally, define the set of couplings or transportation

polytope U(p, q) as

U(p, q) ,
{
X ∈ Rm×m

+ | X1 = p,XT1 = q
}
.

The entropy-regularized optimal transport problem [228] seeks to minimize the transporta-

tion costs while maximizing the entropy (maximum-entropy principle, γ > 0) and is defined

as

Wγ(p, q) , min
X∈U(p,q)

{〈M,X〉 − γE(X)} , (5.20)

where

〈M,X〉 ,
m∑

i=1

m∑

j=1

MijXij and E(X) , −
m∑

i=1

m∑

j=1

h(Xij),

and ∀x > 0, h(x) , x log x and h(0) , 0. The solution W0(p, q) is called the Wasserstein

distance between p and q and if γ > 0 Wγ(p, q) is known as regularized (or smoothed)

Wasserstein distance. For γ > 0, problem (5.20) is strongly convex and admits a unique

solution X∗.

For simplicity, let us introduce the notation Wγ,q(p) for fixed probability distribution

q ∈ S1(m)

Wγ,q(p) ,Wγ(p, q).

One particular advantage of entropy-regularizing the Wasserstein distance is that there

exist closed-form representations for the dual problem and its gradients [218, 224] where the

Fenchel-Legendre transform of (5.20) is defined as

W∗γ,q(y) , max
p∈S1(m)

{〈y, p〉 −Wγ,q(p)} . (5.21)

In [89], other regularization functions were explored. The squared 2-norm was shown to
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produce sparse transportation plans. In this chapter, we will use the entropy regularization.

Nevertheless, our results extend naturally to regularization functions, especially those that

admit closed-form solution of dual gradients. The next theorem states the closed-form solu-

tions of the dual problem and the gradient of the entropy regularized Wasserstein barycenter

problem.

Theorem 40 (Theorem 2.4 in [224]). For γ > 0, the Fenchel-Legendre dual function

W∗γ,q(p, q) is differentiable and its gradient ∇W∗γ,q(y) is 1/γ-Lipschitz in the 2-norm with

W∗γ,q(y) = γ (E(q) + 〈q, logKα〉) and

∇W∗γ,q(y) = α ◦ (K · q/(Kα)) ∈ S1(m),

where y ∈ Rm, α = exp(y/γ) and K = exp(−M/γ).

We will use the results of Theorem 40 to design an algorithm for the computation of the

Wasserstein barycenter on graphs based on recent ideas of dual approaches for convex opti-

mization problems with affine constraints [229, 230] and optimal algorithms for distributed

optimization [231].

The Wasserstein barycenter [218, 219] of a family of discrete distributions (q1, q2, · · · , qn)

in S1(m) is defined as the solution to the following optimization problem

min
p∈S1(m)

n∑

i=1

λiWγ,qi(p), (5.22)

where {λ}ni=1 is a set of weights that describe the relative importance of each distribution.

Without loss of generality we assume that λ1 = · · · = λn.

The Wasserstein barycenter is an extension of the Euclidean barycenter to nonlinear metric

spaces corresponding to the empirical Fréchet mean [232]. The existence and uniqueness of

a Wasserstein barycenter has been studied in the literature [233]. Problem (5.22) is strictly

convex and admits a unique solution, denoted by p∗ [224].

For the distributed computation of Wasserstein barycenters, let us introduced stacked the

column vectors p = [pT1 , · · · , pTn ]T and q = [qT1 , · · · , qTn ]T , where ∀ i ∈ V , pi, qi ∈ S1(m), and

rewrite the problem (5.22) in an equivalent form

min
p1=···=pn

p1,...,pn∈S1(m)

n∑

i=1

Wγ,qi(pi). (5.23)

We denote the unique solution of (5.23) by p∗ = [(p∗1)T , · · · , (p∗n)T ]T with p∗1 = · · · = p∗n =
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p∗. We seek to solve problem (5.23) in a distributed manner over a network, where each

distribution qi is held by an agent i on a network.

Therefore, one can equivalently rewrite problem (5.23) as

min
p1,...,pn∈S1(m)√

Wp=0

Wγ,q(p) =
n∑

i=1

Wγ,qi(pi). (5.24)

Note that the constraint set {p1, . . . , pn ∈ S1(m) |
√
Wp = 0} is the same as the set

{p1, . . . , pn ∈ S1(m) | p1 = · · · = pn}, since ker(
√
W ) = span(1) due to the connectivity of

the graph G.

Next, we state the proposed algorithm for solving the optimization problem in Eq. (5.24)

and analyze its convergence rate.

5.5.2 Algorithm and Results

In [187], the authors proposed a novel analysis for the minimization of strongly convex

functions with affine constraints of the form

min
Ax=0

f(x), (5.25)

where f(x) is 1-strongly convex with respect to the p-norm with the corresponding dual

problem is defined as

min
y
g(y) where g(y) = max

x
{
〈
ATy, x

〉
− f(x)}. (5.26)

We denote x∗(ATy) the solution to the problem defining g(y). The dual function g(y) is

L-smooth with L = ‖A‖L1→L2 = maxi=1,··· ,n ‖Ai‖2
2, where Ai is the i-th column of A. Addi-

tionally, from Demyanov-Danskin’s theorem (see, for example, Proposition 4.5.1 in [123]), it

follows that ∇g(y) = Ax∗(ATy). Thus, one can use accelerated first order methods such as

Nesterov’s fast gradient [190] or one of its recent reformulations to obtain an approximate

solution. For example, the linear coupling method presented in [234], for problem (5.26),

can be written as

yk+1 = τkzk + (1− τk)wk, (5.27a)

wk+1 = yk+1 −
1

L
Ax∗

(
ATyk+1

)
, (5.27b)

zk+1 = zk − αk+1Ax
∗ (ATyk+1

)
, (5.27c)
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where αk+1 = (k + 2)/(2L) and τk = 2/(k + 2). Note that the update rules in (5.27), as

proposed in [234], are defined for the primal problem; thus, yk here should be understood as

xk in [234], and similarly wk here should be understood as yk in [234].

The novelty in [187] lies in the statement of the convergence rate of the accelerated methods

in terms of the duality gap and the constraint violation. Additionally, it was shown that

for the linear coupling accelerated algorithm [229] one can guarantee that the solutions

will remain in a closed ball around the optimal solution with a radius proportional to the

distance between the initial point of the algorithm and the optimal solution. Next, we state

a technical result based on [187] that will help us in the design and analysis of our proposed

algorithm for the distributed computation of the Wasserstein barycenters.

Theorem 41. The fast gradient method based on linear coupling in Eq. (5.27) applied to

problem (5.26), with w0 = y0 = z0 = 0, has the following properties: ∀ k ≥ N it holds that

g(wk) + f(x̆k) ≤ ε and ‖Ax̆k − b‖2 ≤ ε/R,

where x̆k =
∑k−1

t=0
(t+2)
k(k+3)

x∗(ATyt+1), N ,
√

16LR2/ε, R = ‖y∗‖2 <∞ and y∗ is the optimal

point of g(·) with minimal norm.

Proof. The proof consists in combining Theorem 2 in [235] and proof of Theorem 1 in

[236].

Problem in Eq. (5.24) can be equivalently reformulated as the maximization problem

max
p1,...,pn∈S1(m)√

Wp=0

−Wγ,q(p) =
n∑

i=1

Wγ,qi(pi),

with its corresponding Lagrangian dual problem

min
y

max
p1,...,pn∈S1(m)

{
〈y,
√
Wp〉 −Wγ,q(p)

}
,

where y = [yT1 · · · yTn ]T .

Moreover, the Fenchel-Legendre transform of Wγ,qi(pi) is

W∗γ,qi([
√
Wy]i) = max

pi∈S1(m)

{〈
[
√
Wy]i, pi

〉
−Wγ,qi(pi)

}
.

where [
√
Wy]i is equivalent form of

∑n
j

√
W ijyj, where

√
W ij = [

√
W̄ ]ij ⊗ Im.
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Therefore, we can rewrite the problem (5.24) as follows:

min
y
W∗γ,q(

√
Wy) =

n∑

i=1

W∗γ,qi([
√
Wy]i). (5.28)

Additionally, from Theorem 40 the gradient can be expressed in closed form as

∇W∗γ,qi
(

[
√
Wy]i

)
=

n∑

j=1

√
W ijp

∗
j

(
[
√
Wy]j

)
,

where

p∗j(ỹ) = α(ỹ) ◦
(
K · qj

(Kα(ỹ))

)
.

Moreover, it holds that one can recover the solution p∗ to the primal problem (5.24) from

a solution y∗ to the dual problem (5.28) as

p∗ = p∗
(√

Wy∗
)
.

The optimality relation between the dual and the primal problem follows from Theorem

3.1 in [224]. In general, the dual problem (5.28) can have multiple solutions of the form

y∗ + ker(
√
W ) when the matrix

√
W does not have a full row rank. When the solution is

not unique, we will use y∗ to denote the smallest norm solution, and we let R be its norm,

i.e. R = ‖y∗‖2.

The entropy regularization term is γ-strongly convex with respect to the 1-norm over the

probability simplex S1(m). As a consequence, the computation of the Wasserstein barycen-

ter of a set of discrete probability distributions {qi}ni=1 is equivalent to solving the dual

decomposable L-smooth (with respect to the 2-norm) optimization problem (5.28) with

L = ‖
√
W‖2

L1→L2/γ [237]. Specifically, in this setup it holds that

‖
√
W‖2

L1→L2 = max
i=1,··· ,n

‖
√
W i‖2

2 = max
i=1,··· ,n

√
W

T

i

√
W i

= max
i=1,··· ,n

[W ]ii = dmax.

We can explicitly write the Nesterov’s accelerated gradient method (FGM) [198] for

smooth functions. Particularly, we follow the linear coupling approach recently proposed
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in [234]. Setting ŵk = ẑk = ŷk = 0, the FGM generates iterates according to:

ŷk+1 = τkẑk + (1− τk)ŵk (5.29a)

ŵk+1 = ŷk+1 −
1

L

√
Wp∗

(√
W ŷk+1

)
(5.29b)

ẑk+1 = ẑk − αk+1

√
Wp∗

(√
W ŷk+1

)
(5.29c)

where αk+1 = (k + 2)/(2L) and τk = 2/(k + 2).

Unfortunately, algorithm (5.29) cannot be executed in a distributed manner. Although the

entries of local gradient vectors can be computed independently by each node, the sparsity

pattern of the matrix
√
W need not be the same as the communication constraints induced

by the graph G. Thus, the variables ŵk and ẑk cannot be computed on the network. This

problem is solved by a change of variables such that ỹ =
√
W ŷ, w̃ =

√
W ŵ and z̃ =

√
W ẑ.

Algorithm 5 presents the resulting distributed accelerated gradient method for the dual

problem of the Wasserstein barycenter problem.

Algorithm 5 Distributed Computation of Wasserstein Barycenters

Require: Each agent i ∈ V is assigned its distribution qi.
1: All agents set w̃i0 = ỹi0 = z̃i0 = 0 ∈ Rn and N
2: Set K = exp(−M/γ)
3: For each agent i ∈ V :
4: for k = 0, 1, 2, · · · , N − 1 do
5: τk = 2

k+2
and αk+1 = k+2

2
1
L

6: ỹik+1 = τkz̃
i
k + (1− τk)w̃ik

7: p∗i (ỹ
i
k+1) = exp

(
ỹik+1

γ

)
◦


K · qi

K exp

(
ỹi
k+1
γ

)



8: Share p∗i (ỹ
i
k+1) with {j | (i, j) ∈ E}

9: w̃ik+1 = ỹik+1 − 1
L

∑n
j=1Wijp

∗
j(ỹ

j
k+1)

10: z̃ik+1 = z̃ik − αk+1

∑n
j=1Wijp

∗
j(ỹ

j
k+1)

11: end for
12: Set (y∗N)i = w̃iN , ∀i ∈ V
13: Set (p∗N)i =

∑N−1
k=0

(k+2)
N(N+3)

p∗i (ỹ
i
k+1), ∀i ∈ V

Based on [187], we can guarantee that Algorithm 5 generates sequences of vectors {ỹk, w̃k, z̃k}
which remain in a ball BR(0) with R = ‖ỹ0 − ỹ∗‖2 = ‖ỹ∗‖2. Now, we are ready to state our

main result that provides a convergence rate for Algorithm 5 with explicit dependencies on

the problem parameters and the topology of the network.
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Theorem 42. Assume that ‖∇W∗γ,q(ỹ)‖2 ≤ G on a ball BR(0),. Then, it holds that that

after

N ≥
√

16G2

γ · ε χ(W )

iterations, the outputs of Algorithm 5; i.e.,

p∗N = [(p∗N)T1 , · · · , (p∗N)Tn ]T and y∗N = [(y∗N)T1 , · · · , (y∗N)Tn ]T

have the following properties:

Wγ,q(p
∗
N) +W∗γ,q(y∗N) ≤ ε and ‖

√
Wp∗N‖2 ≤ ε/R,

where χ(W ) = dmax/dmin.

Proof. The dual function W∗γ,q(y) is (dmax/γ)-smooth. Thus, from Theorem 41 that

Wγ,q(p
∗
N) +W∗γ,q(y∗N) ≤ ε and ‖

√
Wp∗N‖2 ≤ ε/R

holds for k ≥
√

16dmaxR2/(γε). Moreover, considering the boundedness of the gradients of

the dual function, we can estimate the radius as

R2 ≤
‖∇W∗γ,q(y∗)‖2

2

min
x∈E⊥ker(

√
W ),u∈H∗

‖x‖E=1,‖u‖H∗=1

{〈u,
√
Wx〉}

=
G2

dmin

.

Thus, we require k ≥ √
16G2
γ·ε

dmax
dmin

and the desired result follows from the definition of

χ(W ).

Theorem 42 provides the minimum number of iterations required for the proposed algo-

rithm to reach some arbitrary relative accuracy in the solution of the distributed Wasserstein

Barycenter problem. The convergence rate is shown to be of the order O(1/k2) which has

been shown to be optimal for smooth convex optimization problems [198] with an additional

cost proportional to the square root of the number of agents in the network in the worst

case.

In general, one might be interested in finding a Wasserstein barycenter for the original

Wasserstein distance with no regularization term, that is, solving the problem in Eq. (5.22)

with γ = 0. The next theorem explains a choice of γ that provides converge rate result with

respect to the non-regularized optimal transport based on the iterates of Algorithm 5.
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Theorem 43. Assume that ‖∇W∗γ,q(ỹ)‖2 ≤ G on a ball BR(0), and set γ = ε/(4n logm).

Then, it holds that after

N ≥
√

128G2n logm

ε2
χ(W )

iterations the outputs of Algorithm 5, i.e.,

p∗N = [(p∗N)T1 , · · · , (p∗N)Tn ]T and y∗N = [(y∗N)T1 , · · · , (y∗N)Tn ]T ,

have the following properties:

W0,q(p
∗
N)−W0,q(p

∗) ≤ ε and ‖
√
Wp∗N‖2 ≤ ε/(2R),

where χ(W ) = dmax/dmin.

Proof. Considering weak dualityW∗γ,q(y∗N) ≥ −Wγ,q(p
∗) and Theorem 42 for ε→ ε/2, obtain

Wγ,q(p
∗
N)−Wγ,q(p

∗) ≤ ε/2. (5.30)

By the choice of γ, for ∀ i = 1, ..., n, it holds that

Wγ,qi(p
∗
i )−W0,qi(p

∗
i ) ≤ ε/(2n),

Wγ,qi((p
∗
N)i) ≥ W0,qi((p

∗
N)i).

Summing these inequalities and combining the result with (5.30), the desired result follows.

5.5.3 Numerical Experiments

In this section, we show two numerical experiments to validate the results from Theorem 42.

We explore the problem of computing Wasserstein barycenter of univariate, discrete and

truncated Gaussian densities and the computation of the Wasserstein barycenter of a sub-

sample of 1000 digit images from the MNIST dataset.

Barycenter of Gaussian Distributions

Initially, we explore the computation of Wasserstein barycenters for sets of univariate, dis-

cretized and truncated Gaussian densities [218]. We consider a network of agents where
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each agent i holds an univariate, discretized and truncated Gaussian distribution, with

mean µi ∈ [−5, 5], standard deviation σ ∈ [0.1, 2] and equally spaced support of 100 points

in [−5, 5]. The entropy regularization parameter is set to γ = 0.1. Figure 5.8 shows the

distance to optimality and the distance to consensus of the outputs of Algorithm 5 when

the agents are connected over various graph topologies and a fixed size of 50 nodes. Also,

Figure 5.8 shows the scalability of the algorithm, i.e., the number of iterations required to

reach an ε accuracy in the distance to optimality and consensus for networks of increasing

size.
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Figure 5.8: Optimality and scalability of Algorithm 5 for various graphs.
e∗(y∗k) = (W∗γ,q(y∗k)−W∗γ,q(y∗))/(W∗γ,q(y∗0)−W∗γ,q(y∗)), ε1 = 1 · 10−8 and ε2 = 1 · 10−6.

MNIST Dataset

We randomly sample 1000 images for each digit of the MNIST dataset [222, 238]. Each

image has 28 × 28 pixels and is scaled uniformly at random between 0.5 and 2 of its size
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and randomly located on a larger 56 × 56 blank image. The pixel values of the image are

normalized to add up to 1. We assign one sample from each digit to each agent on a group

of 1000 agents, and the objective is to jointly compute the Wasserstein barycenter for each

digit of the 1000 samples present in the network. Each agent owns only one image, and these

images are different. In total, the number of images assigned to each agent is equal to the

number of digits. The agents are connected over an Erdős-Rényi random graph with 1000

nodes and connectivity parameter 4/1000. The entropy regularization parameter is set to

γ = 0.01. Figure 5.9 shows the local barycenter of the 9 digits for a subset of 3 agents in

the network at various number of iterations.

5.6 Conclusions

We have provided convergence rate estimates for the solution of convex optimization prob-

lems in a distributed manner. The provided complexity bounds depend explicitly on the

properties of the function to be optimized. If F (x) is smooth, then our estimates are opti-

mal up to logarithmic factors; otherwise, our estimates are optimal up to constant factors.

The inclusion of the graph properties in terms of
√
χ(W ) shows the additional price to be

paid in contrast with classical (centralized/non-distributed) optimal estimates. The authors

recognize that the proposed algorithms required, to some extent, global knowledge about the

graph properties and the condition number of the network function. Nevertheless, we aimed

to provide a theoretical foundation for the performance limits of the distributed algorithms.

The cases where global information is not available require additional study.

As an application example, we developed a novel algorithm for the distributed computation

of Wasserstein barycenters over networks where a group of agents connected over a network

and each agent holds some local probability distribution with finite support. Our results

provably guarantee that all agents in the network will converge to the Wasserstein barycenter

of all distribution on the network. We provide an explicit and non-asymptotic convergence

rate of the order O(1/k2) with an additional cost proportional to the condition number of

the graph over which the agents exchange information.
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Figure 5.9: Local Wasserstein barycenter of the digits of the MNIST dataset for a subset of
3 agents out of 1000 on an Erdős-Rényi random graph. A video of the evolution of the
local barycenters for 10 agents is available at http://bit.ly/2t9fn0Y.
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CHAPTER 6

CONCLUSIONS AND DIRECTIONS FOR FUTURE
RESEARCH

6.1 Conclusions

The distributed setup, where one needs to make global decisions using the local informa-

tion only, is particularly well-suited for modern applications of data science, where data

are sparse, hard to transmit, or stored distributedly. The main idea and contribution of

this dissertation is the strengthening of connections between the challenges of processing

massive data sets and the mathematical foundations of optimization, statistics, and network

science. Particularly, we ought to bridge the theory of network science and mathematical

programming with applications of statistical inference and belief systems over networks, and

its connection to inherently distributed systems.

In this dissertation, we have mainly focused on the questions of efficiency and scalability of

algorithms that can be executed in a distributed manner over a network. We have presented

our results grouped in three particular problems.

The first one is concerned with the graph-theoretical analysis of the convergence properties

of belief systems with logic constraints. We have provided novel graph-theoretical analysis

of the questions of convergence, convergence rate and the limit value of such belief systems

with a special interest in understanding the explicit influence of the topology of the social

network involved and the network of induced by the logic constraints.

Second, we shifted our attention to the problem of distributed statistical inference. We

have provided a novel connection between Bayesian posteriors and stochastic approximation

algorithms that allowed us to propose a series of new algorithms for statistical estimation

problems over networks where agents or nodes are oblivious to the topology of the network.

For finite hypotheses sets, we have provided three new algorithms for large classes of net-

works, namely, time-varying undirected graphs, time-varying directed graphs and fixed undi-

rected graphs. In each of these network classes, we have provided explicit, non-asymptotic

convergence rates for the proposed algorithms for worst case networks. Also, we have studied

the distributed statistical inference problem when the hypothesis sets are compact subsets of
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Rd. We have shown non-asymptotic belief concentration rates for a new distributed learning

algorithm for static undirected graphs. Moreover, we provided a general distributed learn-

ing algorithm for distributed parameter estimation problems when observations come from

members of the exponential family of distributions. For the case of Gaussian observations,

we extended our results to time-varying directed graphs.

Finally, we studied the fundamental properties of solving convex optimization problems

over networks. Particularly, we follow a dual approach for the design of distributed optimal

algorithms for convex optimization with various convexity and smoothness properties. For

the case of static undirected graphs, we propose optimal algorithms for the minimization of

the sum of strongly convex and smooth functions, either strongly convex or smooth functions,

or just convex functions. We show that these optimal algorithms can be executed over

arbitrary static and undirected networks and they achieve the same convergence rates as their

centralized counterparts. However, there is an additional multiplicative factor proportional

to the topology of the network where the problem is being solved. We show that this

dependency is linear in the number of nodes in the network in the worst case graph in a

Euclidean setting. Then, we use these results to develop a novel algorithm for the distributed

computation of Wasserstein barycenters over networks. We show the proposed algorithm

achieves optimal convergence rates for the entropy regularized optimal transport problem as

well as the non-regularized one. Given the geometry of the optimal transport problem, the

dependency on the network topology is shown to be the ratio between the maximum degree

and minimum degree among all nodes in the network.

6.2 Directions for Future Research

Each of results presented in this dissertation opens up a number of problems that require

further study as we will discuss next.

• The problem of tracking optimal hypothesis when its distributions are changing with

time requires further study. Ideas from social sampling can also be incorporated in

this framework, where the dimension of the beliefs is large and only partial beliefs are

transmitted. Moreover, studying the influence of corrupted measurements or malicious

agents is also of interest, especially in the setting of social networks.

• The exploration about how variations in stochastic approximation algorithms will pro-

duce new non-Bayesian update rules for more general problems remains to be explored.

Promising directions include acceleration results for proximal methods, other Bregman
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distances or constraints within the space of probability distributions. Furthermore, we

have modeled interactions between agents as exchanges of local probability distribu-

tions (i.e., beliefs) between neighboring nodes in a graph. The interesting open question

is to understand to what extent this can be reduced when agents transmit only an ap-

proximate summary of their beliefs. We anticipate that future work will additionally

consider the effect of parametric approximations allowing nodes to communicate only

a finite number of parameters coming from, say, Gaussian mixture models or particle

filters.

• Future work should consider nonlinear observations of the parameter θ, that is, X i
k ∼

N (gi(θ), (σi)2) for some function g : θ → R. Ongoing work develops similar parameter

estimation approaches for the larger case of the exponential family of distributions on

the natural parameter space. A particularly interesting case is when the parameter

θ∗ is changing with time, either arbitrarily, on some form of Markov process or other

dependencies. This case renders observations to be neither identically distributed nor

independent.

• In Chapter 4, we derived concentration results for an infinite number of hypotheses,

particularly, for parametric models where Θ ⊂ Rd is a compact set. In order to simplify

the analysis, it is assumed that the networks where agents are interacting are undirected

and fixed. Nonetheless, as seen in Chapter 3 for the case of finite hypotheses, we can

provide algorithms for time-varying directed graphs in Eq. (3.24) and acceleration on

fixed graphs in Eq. (3.18).

We conjecture that similar algorithms can be derived for the infinite hypotheses case.

For example, for time-varying directed graphs we propose an algorithm of the following

form:

yik+1 =
∑

j∈N i
k

yjk
djk

(6.1a)

dµik+1 (θ) ∝


∏

j∈N i
k

dµjk (θ)

y
j
k

d
j
k piθ

(
xik+1

)



1

yi
k+1

. (6.1b)

Similarly, for fixed graphs we propose that an algorithm can be derived with a linear
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scalability with respect to the number of nodes, explicitly

dµik+1(θ) ∝

n∏
j=1

dµjk(θ)
(1+σ)Āijpiθ(x

i
k+1)β

i
k

n∏
j=1

(
dµjk−1(θ)pjθ(x

j
k)
βjk−1

)σĀij . (6.2)

In turn, these two new protocols generate a set of new algorithms that can be made

explicit for members of the exponential family.

• In Chapter 4 we develop an algorithm for the case where the observations as well as

the parametric model are Gaussian distributions. It assumes that the observations

are of the form: X i
k = θi + εik with εik ∼ N (0, (σi)2). Therefore, P i = N (θ∗, σ) and

P i
θ = N (θ, σ).

The problem is the estimation of a parameter θ∗ ∈ θ ⊆ R that solves

min
θ∈Θ

F (θ) ,
n∑

i=1

(θ − θi)2

2(σi)2
.

If instead the parameter space is Θ ⊆ Rm, then X i
k = θi + εik with εik ∼ N (0, (Σi)2),

where Σi is now a covariance matrix in Rm×m. Therefore, P i = N (θ∗,Σi) and P i
θ =

N (θ,Σi), which implies the estimation problem consists in solving

min
θ∈Θ

F (θ) ,
n∑

i=1

(θ − θi)′(Σi)−1(θ − θi)

since for two multivariate Gaussian distributions P = N (θ0,Σ0) and Q = N (θ1,Σ1)

DKL(P,Q) =
1

2

(
tr(Σ−1

1 Σ0)− (θ1 − θ0)′Σ−1
1 (θ1 − θ0)− k + ln

(
detΣ1

detΣ1

))
.

Now, assume that the observations are in the form of X i
k = Ci′θ + εik, where θ ∈ Rm,

Ci ∈ Rm and εik ∼ N (0,Σ). Moreover, we can stack all Ci into a single matrix C,

then P i = N (Ci′θ∗,Σ) and P i
θ = N (Ci′θ,Σ). The optimization problem to be solved

is then

min
θ
‖θ − θ∗‖2

CΣ−1C′ (6.3)
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and the resulting algorithm is

(Σi
k+1)−1 =

n∑

j=1

aij(Σ
j
k)
−1 + Ci(Σi)−1Ci′ (6.4a)

θik+1 = Σi
k+1

(
n∑

j=1

aij(Σ
j
k)
−1θjk + Ci′(Σi)−1xik+1

)
. (6.4b)

It is clear from Eq. (6.3) that there is an immediate connection between the Kullback-

Leibler minimization problem and the least squares or linear regression problem. Sev-

eral questions can be asked about this setup:

– How does the rates of convergence on Eq. (6.4) compare with other distributed

optimization approaches for the solution of least squares problems?

– The algorithm in Eq. (6.4) requires each agent i to transmit θik and also Σi
k,

which can be communication intensive since the communication of a square matrix

is needed. Can we have similar behavior by only transmitting certain entries?

What is a good approach to select which entries to send? How do the rates of

convergence get affected?

– What happens if the observation matrices Ci are changing with time?

– Can we provide a rate of convergence if the observations are nonlinear, i.e. X i
k =

f i(θ) + εik?

• The optimal algorithms proposed in Chapter 5 require a certain amount of informa-

tion regarding the spectral properties of the graph and the convexity and smoothness

parameters of the functionals. The case where spectral information of the network is

not available requires further study, for example, by using restarting techniques. Ad-

ditionally, it is still an open problem whether one can show the optimal performance

of distributed algorithms for time-varying graphs or directed graphs.

• The use of mathematical programming tools for large-scale optimal transport problems

has taken on importance in recent years. Particularly for the problem of the computa-

tion of Wasserstein barycenters, one can explore the use of incremental curvature-aided

information to get better performance. Also, recently proposed stochastic approaches

can provide more efficient algorithms [239, 227].

• One can try to generalize the results of Chapter 5 to intermediate levels of smoothness.

That is, try to propose the method for arbitrary Hölder parameter ν ∈ [0, 1]. For
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example, one can use universal Nesterov’s method by skipping the adaptation and

proper choosing of δ(ν, ε). This is another way to obtain results in the non-smooth

case as a special situation ν = 0. In the dual space, we will not have classical strong

convexity but just uniform convexity. However, it can be studied by introducing inexact

oracle as in [240].

• One can further extend the results in Chapter 5 to obtain the same rates of conver-

gence when the graphs change with time by using restarting techniques [241, 242].

Nevertheless, we require additional assumptions. Particularly, the network changes

should not happen often, and nodes must be able to detect when these changes occur.

The condition number of the sequence of graphs χ(Wk) then is the worst one among

all the graphs in the execution of the algorithm. Additionally, it is still an open re-

search question whether these optimal convergence rates can be achieved over directed

networks.
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