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ABSTRACT

This dissertation presents four studies on the mathematical education of en-

gineering students. The first study is a qualitative analysis of the beliefs of

engineering faculty at a single institution regarding what constitutes “math-

ematical maturity” for engineering students. Faculty emphasized the need

for mathematical modeling skills, fluent symbolic representation skills, and a

combination of effortless algebraic fluency and ability to use computational

tools. The second study is an analysis of the beliefs of engineering faculty

at a variety of institutions. These faculty also emphasized modeling, repre-

sentation, and computation, corroborating the results of the first study. The

third study is an analysis of the mathematical content of engineering circuits

and statics homework problems. Just 8% of statics problems and 20% of

circuits problems use calculus, and in a much more limited way than what

is taught in calculus. The fourth study presents a quantitative survey of en-

gineering sophomores’ perceptions of the relevance of mathematics to their

engineering studies. The students have somewhat favorable views of the rele-

vance of mathematics, but some high-performing students view mathematics

as irrelevant.
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CHAPTER 1

INTRODUCTION

This work examines the mathematical needs of engineering students from

multiple angles of approach and using multiple research methods. In this

chapter, I summarize each of the four studies that compose this dissertation,

the methods used, and the contribution to the existing literature.

1.1 Study A

In Study A, I present a qualitative thematic analysis of interviews with en-

gineering faculty to determine their expectations of what mathematics their

students need to succeed in their engineering courses. This study was moti-

vated by asking what “mathematical maturity” for engineering students is.

I conducted semistructured interviews with 27 engineering faculty in many

disciplines from the University of Illinois at Urbana Champaign. Participants

were generally most concerned about their students’ abilities to apply math-

ematics to physical reasoning, to represent and communicate engineering

ideas using mathematics as the language. Faculty expected that students

have a balance of quick, fluent mathematical skills for very simple prob-

lems with an ability to prudently use computational tools for more complex

problems. This work corroborates existing literature on the mathematical

needs of engineering students by applying a more rigorous qualitative re-

search methodology. This work was submitted to the International Journal

of Research in Undergraduate Mathematics Education, and accepted with

major revisions which have been included here. The three researchers who

worked on this study were Brian Faulkner (research design, data collection,

analysis, interpretation, writing), Katherine Earl (analysis), and Geoffrey

Herman (research design, interpretation, writing).
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1.2 Study B

In Study B, I present a second qualitative thematic analysis of interviews

with engineering faculty. This replication study uses the same protocol as

that of Study A, but the pool of subjects is drawn from many different types

of institution to increase the generalizability of the results. The purpose of

this study is to examine whether the results from Study A are still found

in other institutional settings. The findings of this study are nearly iden-

tical to those of Study A, indicating that the themes likely generalize well

to the nation at large. This work has been submitted to the International

Journal of Engineering Education and is under review. The three researchers

who worked on this study were Brian Faulkner (research design, data col-

lection, analysis, interpretation, writing), Nicole Johnson-Glauch (analysis),

and Geoffrey Herman (research design, interpretation, writing).

1.3 Study C

In Study C, I present a curricular matchup analysis of two engineering

courses, Circuits and Statics, and compare the content of each against the

calculus course which they list as a prerequisite. The full corpus of homework

problems for one semester in each of these courses is taken as the sample,

and analyzed with the mathematics-in-use technique [1]. Overall, very few

of the assigned problems use any calculus at all, just 8% in statics and 20%

in circuits. Of the problems that do use calculus, they apply just a tiny

fraction of the preparatory mathematics taught in calculus. Applications

of this finding to curriculum design and longitudinal reinforcement are pre-

sented. This work expands the existing literature by combining rigorous

analysis of engineering assessments (avoiding the accuracy problems of self

report) with a curriculum level scope (greater than that of previous assess-

ment analyses). We plan to submit this study to the Journal of Engineering

Education. The four researchers who contributed to this work were Brian

Faulkner (research design, data collection, analysis, interpretation, writing),

Nicole Johnson-Glauch (analysis), D.S. Choi (analysis), and Geoffrey Her-

man (research design, interpretation, writing).
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1.4 Study D

In Study D, I present a preliminary quantitative analysis of engineering stu-

dent attitudes towards the relevance of mathematics to their engineering

studies. I used a previously applied survey instrument [2] to assess the at-

titudes of engineering students towards the relevance of their mathematics

coursework. This replication study samples students at a different point in

their mathematical education than previous studies; our subjects were sopho-

mores in circuits or statics. Additionally, a conceptual evaluation of calculus

skills was administered to evaluate whether attitudes toward mathematics

were related to how much mathematics was remembered. Overall, students

had mildly positive opinions of how relevant their mathematics coursework

was to their engineering studies. This work has been submitted to the IEEE

Frontiers in Education conference and is under review. The two researchers

involved in this work were Brian Faulkner (research design, data collection,

analysis, interpretation, writing) and Geoffrey Herman (interpretation, writ-

ing).
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CHAPTER 2

STUDY A: INTERVIEWS WITH ILLINOIS
ENGINEERING FACULTY

2.1 Introduction

It is to be hoped that these new [differential equations] courses

will be taught by mathematicians rather than by engineers: the

budget of any mathematics department is entirely dependent on

the number of engineering students enrolled in our elementary

courses. Were it not for these courses, which engineers

generously defer to mathematicians, our mathematics

departments would be doomed to extinction.

Gian-Carlo Rota, MAA invited address, 1997 [3]

Engineering departments are becoming increasingly concerned about re-

tention and graduation rates as industry in the United States demands more

engineering graduates to meet expected engineering job growth in coming

decades [4]. However, since many students drop out of engineering, too

few engineering students graduate to join industry [5]. More specifically,

many students drop out of engineering not because they failed an engineering

course, but because they failed a mathematics course [6, 7, 8]. Some pro-

grams blame mathematics courses for as many as a third of their dropouts

[5, 9] . Most engineering programs require a standard “calculus sequence” of

Calculus I, Calculus II, Calculus III, Linear Algebra, and Differential Equa-

tions. Students must pass prerequisite mathematics courses from the calcu-

lus sequence to continue into core engineering coursework [10, 11, 12]. The

strictness of this prerequisite chain can particularly hamper students who

are already disadvantaged due to disability or lack of access to high school

calculus [13]. Students who do not start calculus-ready or fail a course in

the calculus sequence may struggle to complete an engineering degree before

financial aid runs out.
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Because the calculus sequence has such a strong impact on engineering

graduation, engineering departments are increasingly scrutinizing whether

these high-failure courses are worth the investment. As Gian-Carlo Rota

feared, engineering departments’ dissatisfaction with the outcomes of calculus

[14] has been used to justify drastic curricular change, such as that pursued by

the Wright State program [15]. At Wright State, all engineering students take

a special engineering mathematics course their first semester, which teaches

all mathematics in the context of engineering problems and covers different

topics from a typical first-semester calculus course. At other institutions like

University of Louisville, the College of Engineering teaches all of the calculus

sequence with its own faculty outside of a mathematics department. While

it is not clear that the Mathematics Departments were actually at fault for

poor student outcomes, the engineering faculty at these institutions clearly

believed that to be the case and acted accordingly. Many hold the belief

that engineering mathematics should be taught by engineers [16]. Having a

better understanding of the mathematical outcomes expected by engineering

faculty may help mathematics departments avoid these drastic options.

When asked why these courses are required, engineering faculty have re-

sponded that calculus is a prerequisite, in the words of one Operations Re-

search instructor, “for mathematical maturity more than just the actual cal-

culus” because “the way [the engineering course] is taught, you can do it

without calculus” [17, p 49]). This idea begs the question, What is mathe-

matical maturity according to engineering faculty?

Prior efforts have attempted to answer this question by promoting dialogue

between mathematics and engineering faculty. For example, the Curriculum

Renewal Across the First Two Years (CRAFTY) project led by the Mathe-

matical Association of America [18] gathered 35 engineering faculty together

with mathematics faculty members to generate a list of what engineering fac-

ulty expected students to know from their mathematics courses. Similarly,

Ferguson [17] convened meetings between 12 engineering faculty members

and 9 mathematicians to develop tasks that would indicate that a student

had mastered calculus knowledge. These dialogues led to a consensus that

more mathematical modeling, applied mathematics, and computational tools

are needed than are in the current mathematics curriculum. In addition to

these specific technical expectations, other subtler qualities like “life long

learner, learning to think, mental discipline, and learning the mathematical

5



thought process” [18] were proposed, though they were not well defined.

These prior efforts were selective and used time-intensive methods: multi-

day or week-long workshops for the communities to build consensus. These

prior efforts may bias findings toward over-representing the opinions of engi-

neers who are willing to take such large amounts of time to discuss mathe-

matics and are willing to work cooperatively with mathematics faculty. Ad-

ditionally, these findings may over-represent opinions that both engineering

and mathematics faculty found acceptable, downplaying expectations that

engineering faculty might have that do not align with priorities of math-

ematicians. The process of dialogue changes the beliefs and knowledge of

the participants as they learn to communicate across disciplinary boundaries

[17]. Consequently, these opinions may not reflect the expectations of the

engineering faculty who are most directly affected by students’ preparation

from the calculus sequence and may be vocal about their dissatisfaction. The

opinions of these faculty may in part lead to the drastic curricular changes

that mathematics departments seek to avoid.

To complement this prior work, we interviewed 27 engineering faculty from

11 disciplines to document their beliefs about what constitutes “mathemati-

cal maturity” for an engineering student. To fill the aforementioned gaps left

by the previous efforts, we prioritized sampling faculty who taught courses

that required courses in the calculus sequence as direct prerequisites. Addi-

tionally, while CRAFTY relied on faculty to articulate mathematical matu-

rity in their own words, we seek in this study to situate and describe faculty

members’ beliefs within the context of prior mathematics education research

to potentially reveal research-based avenues for addressing these faculty con-

cerns. We analyzed these faculty interviews using thematic analysis in light

of prior research on epistemic beliefs, symbol sense, and competencies to

answer the following two research questions.

Research Question 1) What is “mathematical maturity” for engineering

students, according to engineering faculty members?

Research Question 2) To what extent do engineering faculty perceive

their students to possess mathematical maturity?

6



2.2 Background

Since “Mathematical maturity is not a coherent, single entity, but an amor-

phous mix of diverse characteristics, each supported by special talent and

special interests” [19, p 107], we cannot expect that any single construct will

provide a complete view of mathematical maturity. As we seek to define

what mathematical maturity means to engineering faculty, we draw on three

constructs from the mathematics education research literature as possible

starting points: epistemic beliefs [20], competencies [21] and symbol sense

[22].

Epistemic beliefs provide a framework to formalize the everyday notion of

how students conceive of what mathematics is, what mathematics is for, and

what activities count as mathematics. Epistemic beliefs were chosen as a

construct for this study because they may capture the subtle qualities such

as “learning to think” that have been left mostly undefined in previous efforts

[18, 17]. From now on in this work, we will use “epistemic beliefs” to refer

to the personal beliefs that students hold about the nature of mathematical

knowledge and its relation to engineering, not to the students’ philosophy of

knowledge in general, nor the philosophy of knowledge held by the faculty

[23].

Mathematical competencies from the Dutch KOM project [21] were chosen

to capture skill-based aspects of mathematical maturity, and to see if engi-

neers placed greater emphasis on one subset of competencies than others.

Basic mechanical skills are needed, and the KOM competencies cast a wide

net over many possible types of mathematical abilities. The KOM compe-

tencies are a general and broad framework of mathematical ability. Such a

broad framework should capture any unexpected themes not well described

by the other frameworks.

Symbol sense [22] was chosen to see if symbolic representation of math-

ematical ideas might be preventing students from being able to recognize

the mathematical knowledge when it occurs in engineering courses. Since

much of the mathematics done in engineering is in the symbolic domain,

symbol sense was chosen rather than a more general construct like repre-

sentational fluency. Symbol sense emphasizes recognizing common patterns

and maintaining multiple simultaneous perspectives on an expression. This

context-agnostic perspective may be part of the “learning to think” aspect

7



mentioned in previous literature.

In summary, if a student has no mathematical capabilities (KOM com-

petencies), one cannot hope to have the mathematical maturity to apply

mathematics in engineering courses. If a student does not believe that math-

ematics applies (epistemic beliefs), they will not attempt to apply it when

there is opportunity. If a student cannot recognize familiar mathematical

structures (symbol sense), they cannot have the mathematical maturity to

apply that knowledge in engineering. These three constructs provide ade-

quate coverage to explore what engineering faculty believe constitutes math-

ematical maturity for their students, and their perception of the extent to

which their students possess mathematical maturity.

2.2.1 Epistemic beliefs

When engineering faculty say things like “learning the mathematical thought

process,” it is reminiscent of epistemic beliefs: beliefs about knowledge and

knowing [20]. For example, Gainsburg described the mathematical thought

process of veteran structural engineers with the epistemic belief of “skeptical

reverence,” valuing mathematics while always double-checking the outcome

of calculations [24, 25]. However, the connection between engineering faculty

expectations and students’ personal mathematical epistemic beliefs has not

been explored in the research literature. Epistemic beliefs vary by discipline;

for example, a student might believe mathematics knowledge is certain and

fixed, but history knowledge is uncertain and contextual [26]. Epistemic be-

liefs also vary by context; a student might express one belief about knowledge

when preparing for an exam and another belief when explaining knowledge to

a friend [27]. At the same time, a student may have beliefs about knowledge

that are contrary to an expert’s beliefs. A student’s possession of expert-like

epistemic beliefs may compose part of ‘mathematical maturity’ for engineer-

ing students.

Epistemic beliefs about mathematics have been shown to impact engineer-

ing problem solving [28]. For example, in one study, a student’s belief that he

should trust mathematical calculation over physical intuition rendered him

unable to resolve a sign error in his calculation [29]. Epistemic barriers sepa-

rate formal mathematics from the informal, intuitive mathematics demanded
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in engineering. For example, students believe that intuitive, graphical, and

informal reasoning is improper in engineering and avoid using such methods

for fear of being marked wrong [28, 20, 27].

The typical epistemic beliefs of college freshmen toward mathematics are

well documented (see Table 2.1). These beliefs include include the belief that

mathematics is irrelevant outside the mathematics classroom (practical irrel-

evance), and that all mathematics problems have exactly one solution proce-

dure (orderly process) [20, 26]. These epistemic beliefs can hinder students

from learning mathematics or applying it to new contexts. For example, or-

derly process beliefs hinder students from solving the open-ended “realistic”

problems that are important to engineering [29, 30]. These epistemic beliefs

about mathematics, unlike other disciplines, are formed almost entirely by

the student’s experiences in school [20]. For example, these beliefs may form

because the typical calculus curriculum emphasizes easy-to-test calculations

[31]. Consequently, it is likely that the existence of these epistemic beliefs

will manifest in engineering contexts. We used these epistemic beliefs to

guide the construction of our interview protocol and included each of these

beliefs in our coding scheme (see section 2.3).

2.2.2 Competencies

As described earlier, the CRAFTY project identified a set of mathematical

skills (rather than beliefs) that engineering students needed. To parallel these

findings, we incorporated the KOM competencies (translated from Dutch

as “Competencies and Mathematical Learning”) [21]. The KOM project

sought to explore the many facets of mathematical competency at all levels

of education, though it did not focus on university-level mathematics. In

contrast with the focus on epistemologies, KOM lists students’ abilities, not

beliefs. A list of proposed competencies from KOM can be found in Table 2.2.

We chose the KOM because it aligns with some findings from the CRAFTY

project and Ferguson’s [17] study, such as their finding about the importance

of mathematical modeling.

The KOM competencies are also an appropriate framework to use in this

study because they have been used in the context of engineering education.

For example, Alpers documented the degree of coverage each competency
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Table 2.1: The documented immature epistemic beliefs about mathematics
and examples of negative associated student behaviors observed in previous
literature [20, 32].

Belief Definition Associated Negative
Behaviors

Innate Ability Belief that mathematical ability is un-
changing.

Poor study strategies
[32].

Quick Learning Belief that learning and problem solv-
ing are quick processes.

Giving up on problems
taking more than 10
minutes. [32]

Orderly Pro-
cess

Belief that mathematical knowledge
and problem solving do not involve un-
certainty or failure.

Greater difficulty solv-
ing open-ended “realis-
tic” engineering prob-
lems [29, 30].

Simple Knowl-
edge

Belief that mathematical knowledge is
disconnected and isolated, and that in-
formation gained in one lesson has no
bearing on knowledge in future or past
lessons.

Greater difficulty
with transfer, reduced
comprehension and
metacognition [32, 26]

Certain
Knowledge

Belief that mathematical knowledge is
perfect and certain.

Oversimplified conclu-
sions about a problem
[32].

Omniscient
Authority

Belief that mathematical authority
(textbook or instructor) forms the ba-
sis for truth.

Giving more incoher-
ent and incorrect defi-
nitions of the limit in
calculus [33].

Practical Irrel-
evance

Belief that school mathematics has no
bearing outside the classroom and that
formal mathematics is not connected
to common sense.

Reduced attempts at
sensemaking [34, 29].

Solitary Math-
ematics

Belief that mathematics is done by in-
dividuals alone and does not need to
be communicated to others.

Reduced mathematical
communication skill
[20].
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may require in engineering coursework [35]. Other researchers [36, 37, 38, 39]

have examined how mathematical competencies developed in school may not

align with those needed in industry.

Because mathematical modeling has been described as important, we briefly

define this competency. The modeling cycle [40] involves mathematizing a

verbal or pictorial description of the system, solving the resulting mathe-

matical equations, then interpreting the solution in terms of the original

situation.

Table 2.2: The KOM competencies and short definitions of them [21]. The
competencies are overlapping, and some competencies might be more
important to engineers than to mathematicians.

Competency Definition
Thinking The student can pose questions like “Is there a. . . ?” or “Is

it possible that. . . ?” and has insight into answers. This
student understands scope of statements, and statement
types (definition, theorem, phenomenon).

Problem Tackling The student can formulate and solve non-routine prob-
lems.

Modeling The student can de-mathematize and interpret models,
and actively create and criticize mathematical models.

Reasoning The student can follow and assess formal reasoning and
proof.

Representing The student can apply algebraic, visual, graphical, tabu-
lar, verbal, geometric, diagrammatic and material objects
as representations of mathematical truth, switching rep-
resentation as needed.

Symbol & Formal-
ism

The student can decode and translate symbols, use sym-
bols, and has insight into rules for using symbols.

Communicating The student is adept at reading and writing mathematics,
with words, pictures, and equations.

Tools/Aids The student knows powers and limitations of calculators,
special paper, computer algebra systems, computational
simulations, and physical props.

2.2.3 Symbol sense

One challenge for students as they transfer from mathematics to engineering

contexts lies in differences in notational standards and conventions. For ex-

ample, while the derivative of y with respect to x in mathematics is typically
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represented with dy
dx

or y′, some engineering disciplines use the ẏ notation.

Similarly, mathematicians and physicists use the imaginary number conven-

tion for waves ekx−iωt where most engineers use the notation e−kx+jωt.

To account for these disciplinary differences in notational standards and

conventions, we used “symbol sense” (see Table 2.3) to inform the design

of our interviews and included it in our analysis code book. Symbol sense

broadly describes a student’s tendencies when using symbols and notation

[22]. As students progress from high school to college, the load on their sym-

bolic reasoning ability rises sharply [41]. For example, new types of symbols

appear such as vector and matrix valued quantities, complex numbers, and

operators that act on functions. Many new symbols are introduced, and old

symbols gain new meanings. Simultaneously, notation between and within

disciplines begins to fragment [42]. Many students lack the ability to extract

what type of object a symbol represents by looking at its place in the equa-

tion. Additionally, students have great difficulty with symbolic form answers

[43] and struggle with the notational nuances of the object/process duality

of derivatives [44].

Thus, the ability to use symbols flexibly, create and discard notation, and

use symbols to reduce effort may be a part of mathematical maturity [19]. As

mentioned by Arcavi [22], much of symbol sense may be epistemic in nature.

For example, students do not see the point of problems with answers that are

expressions of letters rather than single numbers [17]. Students do not know

when to back out and try a new approach when the analytic representation

is unproductive or reformulate the problem so that its symbolic form is more

malleable [45].

2.3 Methods

Since the CRAFTY project and Ferguson’s prior studies both relied on time-

intensive, dialogue-based methods to encourage engineering and mathematics

faculty to come to consensus about how to align the mathematics and engi-

neering curricula, we emphasize the perspectives of engineering faculty who

have not been as engaged in these inter-disciplinary discussions. To find

faculty who were most directly impacted by the mathematics curriculum,

we prioritized sampling faculty who taught courses that required courses in
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Table 2.3: The elements of symbol sense and brief definitions [22].

Symbol Sense Definition

Quantitative
Reasoning
with Symbols

Scanning an algebraic expression to make rough estimates of
the patterns that would emerge in numeric or graphic
representation and can make informed comparisons of orders
of magnitude for functions with rules of the form n, n2, n3

and nk

Selecting a
Symbol

Understanding how and when symbols can and should be
used in order to display relationships, generalizations, and
proofs which otherwise are hidden and invisible

Abandoning
Symbols

Knowing when to abandon symbols in favor of alternative
approaches in order to find an easier or more elegant
solution or representation

Manipulating
Symbols

Handling symbols quickly and efficiently, detaching oneself
from their referents

Reading
Meaning from
Symbols

Being aware of the constant need to check symbol meanings
while solving a problem, and comparing and contrasting
those meanings with one’s own intuitions or with the
expected outcome of that problem

Symbols in
Context

Sensing the different roles symbols can play in different
contexts; One symbol may be bound to two different ideas.
“Variables” and “parameters” permit different types of
manipulations

Engineering
(Designing)
Symbolic
Relationships

Creating an ad-hoc expression for a desired purpose
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the calculus sequence as direct prerequisites. If students lack the desired

“mathematical maturity” entering these follow-on courses, engineering fac-

ulty can easily construct an argument for drastic options such as teaching

mathematics courses themselves. While the views of these faculty should not

be taken as empirical fact, these perceptions do represent the constructed

reality upon which these engineering faculty will act. Our study therefore

takes a constructivist approach [46], seeking to document the opinions and

beliefs of engineering faculty have constructed, apart from mathematicians.

Mathematics faculty may actually be preparing engineering students better

than engineering faculty realize or could do themselves, but perceptions of

reality are the basis for decisions of individuals rather than objective reality.

An understanding of these perceptions will help mathematics departments

more clearly understand the wants and needs of engineering as a whole, to

avoid undue influence from a single motivated person or department when

negotiating and collaborating with their engineering college.

To document these perceptions, we chose to take a qualitative approach,

conducting open-ended interviews that would encourage engineering faculty

to fully explain their individual positions. The goal of our qualitative research

is to richly document the perspectives of participants, presenting findings

that represent the perspectives of our research population (internal valid-

ity) while acknowledging that our data does not provide evidence about the

extent to which engineering faculty at large hold these views (external gener-

alizability) [47]. We will discuss this consideration further in our limitations

sections.

We chose to do interviews over surveys, because surveys do not easily

permit follow-up questions to explore unexpected perceptions, limiting the

richness of our descriptions. Since previous research [17, 18] showed it took

a long time for faculty to uncover their expectations about what it really

meant to understand calculus and there were numerous disagreements due to

vocabulary and word use, we chose one-on-one interviews to allow for deeper

conversations that can adapt to the vocabulary and expectations that are

idiosyncratic to the individual or discipline.

To get sufficient breadth of observations, we chose to interview faculty

from a variety of engineering disciplines. To allow sufficient time to explore

each participant’s perspective, we scheduled one-hour interviews but allowed

them to go longer if the participants had more to say.

14



Consistent with our Constructivist approach, we chose to use thematic

analysis [48] to document the expectations of the faculty interviewees. A

thematic analysis interview method was not used in previous work [17]. The-

matic analysis provides a robust and flexible way to analyze qualitative data

that allows the perspectives of participants to emerge from the data. The-

matic analysis is a data-driven approach that finds patterns and common-

alities among participant’s statements, enabling the researchers to describe

participants’ perspectives with their own words. This approach also lets the

researchers build on prior theory without being constrained by it, thereby

not forcing the researchers to conform their themes to existing theories so

that prior work can enrich interpretation but not restrict it.

We chose a semi-open coding scheme with a priori codes in order to ground

the research firmly in the existing mathematics education research, while

remaining responsive to unexpected perceptions from the participants. We

sought to ground our analysis in the existing research literature because these

findings have been robust in understanding mathematical maturity in other

contexts. However, it is possible that the constructs we selected may not

span the entire range of the perceptions of engineering faculty. We therefore

permitted additional codes to emerge during analysis.

2.3.1 Participant selection

We interviewed engineering faculty members about their experience teaching

core engineering courses and the mathematical abilities of their students. We

selected participants who had taught any engineering course that requires at

least one course from the calculus sequence (Calculus I, Calculus II, Calculus

III, Linear Algebra and Differential Equations) as either a direct prerequi-

site or corequisite. These faculty members had taught such an engineering

course during the previous academic year, and 60 such faculty were identified.

Faculty members who have taught these courses recently have their experi-

ences fresh in their minds. Faculty members who teach immediate follow-up

courses are the most strongly affected by mathematics preparation issues and

are the group most likely to be involved in negotiations with mathematics

departments during curricular decisions. We solicited participants by email

and they were entered into a lottery for a $200 gift card as compensation.
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We interviewed all 24 of these faculty members who volunteered. The partic-

ipants varied from untenured assistant professors to senior faculty who had

been teaching for 20 years.

The institutional context is a large, elite, American research-intensive insti-

tution with a student population of 4̃0,000 students. The elite institution has

very mathematically prepared students; the lower quartile of accepted stu-

dents’ ACT math standardized test score corresponds to the 95th percentile

of the general population. The institution has a very high international un-

dergraduate population of 2̃0%, and programs within engineering generally

have 10-30% female students.

If any participant personally recommended a peer as an excellent can-

didate for the study given their knowledge of students and mathematics,

that peer was also sought out and interviewed. Three such additional fac-

ulty members were interviewed. These additional faculty were developing

disciplinary mathematics courses within their departments. They possessed

uniquely refined knowledge of mathematics needs inside their discipline and

provided insight into their departments’ dissatisfaction with mathematical

preparation.

The sample of faculty included members from 12 of the 13 engineering

departments on our campus: Industrial, Electrical, Mechanical, Civil, Nu-

clear, Agricultural, Chemical, Physics, Computer Science, Bioengineering,

and Materials, but not Aerospace.

2.3.2 Interview procedure

We conducted semi-structured interviews with an initial interview protocol

that allowed for asking off-script questions to explore the views of the par-

ticipant when pertinent to the research question. The interview questions

were designed to explore constructs we hypothesized were the roots of math-

ematical maturity (i.e., symbol sense, epistemic beliefs, and competencies).

If the interviewed faculty member did not mention “mathematical maturity”

or describe a similar concept with different words independently, then they

were asked at the end of the interview if the term “mathematical maturity”

meant anything to them. Interviews lasted for approximately one hour and

participants were not sent the interview protocol in advance.
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Example protocol questions included

• “What mathematical skills, abilities, or attitudes are essential to suc-

ceed in your course?” (general)

• “Do you encourage graphical/intuitive reasoning or analytic/formal

reasoning?” (KOM competencies: representing competency)

• Do students perceive the “real life” applications of the math they have

been taught? (Epistemic beliefs: practical irrelevance)

• How do your students manipulate and work with symbols abstractly?

(Symbol sense: manipulating symbols)

2.3.3 Data analysis

Because the protocol was derived by two researchers who both had extensive

backgrounds in mathematics and engineering, we added a third researcher

who had minimal background with collegiate-level mathematics and no expe-

rience with engineering but with experience in qualitative research who could

challenge the lead researcher’s assumptions about the interplay between en-

gineering and mathematics. This pair of researchers analyzed the interview

data using thematic analysis. First, the team transcribed the interviews ver-

batim and agreed on a unit of analysis. The unit of analysis defines what

statement or collection of statements can be assigned a code from the code-

book. The team defined the unit of analysis as “an uninterrupted passage

of participant speech between interviewer prompts.” This unit of analysis is

unambiguous and allows for full arguments on a topic by the faculty member

to be considered as a single unit.

Second, the team constructed an a priori codebook to anchor the study to

previous literature in mathematics education. The initial a priori codebook

was constructed from documented immature epistemic beliefs, the KOM

competencies, and symbol sense (Tables 2.1, 2.2 and 2.3).

Third, to ensure that both researchers agreed on the definition and in-

terpretation of each code in the code book, the research team iteratively

developed and refined the codebook. The team analyzed a random selec-

tion of three interviews, looking for perspectives not covered by the initial
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coding scheme. Each researcher coded these interviews independently, label-

ing each unit of analysis with a code (or multiple codes) that the researcher

thought sufficiently described that participant’s perspective. Interviews were

coded independently to encourage the researcher with minimal mathematics

background to inject their perspective into the analysis. After independent

analysis, the two researchers conferred and resolved disagreements, refining

the codebook by adding new codes and rewording definitions for each code.

The team repeated this process two more times once with a second set of

three randomly selected interviews and once more with another random se-

lection of ten interviews.

Fourth, after analyzing these initial interviews, the team finalized the list

of codes and their definitions. The team then independently analyzed the

remaining eleven interviews using this finalized coding scheme (see Appendix

B). The team compared which codes were applied to each unit of analysis,

tallying agreements and disagreements. An inter-rater reliability of 81% was

reached, indicating good agreement [49].

Fifth, we developed themes that connected the codes in the data together.

The codes were sorted into themes, gathering codes together based on how

often they co-occurred in the same unit of analysis or nearby in the same

interview. These groups of codes suggest that the codes in the group are

related to one another and have a sort of narrative structure. Each theme was

held to the standard that it should be more than the sum of its component

codes. We then reviewed these themes by generating a “thematic map” [48]

of the analysis. These thematic maps (see Figure 2.1) relate multiple codes

together into a more cohesive whole. After refining these themes through

repeated discussion, we defined and named each theme.

After groups of related codes were assembled together, codes were arranged

into an ordered structure that expresses containment, suspected causality,

and centrality relationships. If the researchers believed such a narrative

structure could be constructed, this code group was promoted to a candidate

theme and a thematic map [48] for the candidate theme was generated. A

thematic map forces the researchers to explicate the narrative structure of

the theme. This explicit structure enables systematic and skeptical critique

of the relationships between codes such as examination of co-occurrences or

adjacent occurrences of codes in the data. This critique can lead to new codes

being brought into the theme, or more often, codes with weaker supporting
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evidence being cut from the prospective theme. After refining the theme, a

final thematic map is generated. This map was used to define and name the

theme.

Figure 2.1: Thematic map. Codes are arranged and connected together
from centralizing ideas to smaller, less central ideas. Nodes with many
arrows leaving them are more important, more central ideas within the
data, have suspected causal influence on those they point to, or contain in
some way the objects they point to. The initial thematic map is condensed
and refined to better display the narrative structure inherent in the data,
by considering co-occurrence of codes within a particular passage and
within interviews. Codes whose presence in the theme cannot be firmly
justified are removed from the map, and connections between codes are
arranged to align with the narrative of the theme.

2.3.4 Trustworthiness

The first coder (also the interviewer) had an undergraduate background in

physics and mathematics, and graduate training in electrical engineering.

Participants were selected because they had taught an engineering course

that used the calculus sequence as a prerequisite. The interviewer had never

taught any of the engineering courses, and so had little disciplinary bias to

favor one participant’s expectations over another.

The second coder had no college-level mathematical experience beyond
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statistics for social scientists. The use of two coders helps reduce the like-

lihood that the results are a single researcher’s opinion projected onto the

data. The presence of a mathematical outsider keeps the preconceptions of

the more mathematically entrenched first coder in check, since perceptions of

the importance of ideas must be fully justified. We did not perform member

checking on the results. When a faculty member said something very similar

to previous participants and was informed of previous participants’ ideas at

the end of the interview, they did often comment that they felt good that

they were not the only ones who felt that way about the topic. As will be

seen later in this document, the results strongly corroborate other findings on

engineering mathematics by other authors and by different methodologies.

2.3.5 Limitations

This study has a few limitations of this study that should be explicitly dis-

cussed, which are in addition to the limitations of all qualitative research.

• Our study focuses on describing engineering faculty’s perceptions on

what mathematical maturity students need to be successful. As we

argue from our constructivist perspective, these perceptions may not

accurately describe the reality of what mathematical skills and beliefs

students actually need to be successful.

• The sample was drawn from a large, PhD-granting research institution

with elite students with median ACT math scores of 31 as compared to

the nationwide median of 24-26, who are more mathematically prepared

than the typical undergraduate. The elite status of the institution may

skew the findings, as these faculty may have higher expectations of their

students than is typical nationwide. The faculty may also overempha-

size mathematical skills that are useful for research rather than indus-

trial practice, given the research-intensive nature of the institution. For

example, the emphasis on computational tools or the dismissal of some

skills as trivial may reflect the elite status of the institution but not

the mathematical skills that engineering students at other institutions

might need.

• The sample was drawn from a single institution. Campus colleagues
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are not independent and may develop a local culture regarding what

engineering mathematics should be that varies from the population

of engineering instructors at large. Further work will examine these

beliefs with engineering faculty members from a variety of different

institutions.

• The interviewer specifically discussed epistemic belief and symbol sense

issues during the interviews. Participants’ responses are influenced

by prompting, and the symbol/representation theme may be over-

represented. No similar theme emerged in previous studies by CRAFTY,

Moore or Ferguson [18, 40, 17]. This bias is difficult to resolve and must

be taken into consideration while examining the results.

• The interview questions included linguistic features that may trigger

conformity to widespread views of the role of mathematics in engineer-

ing, such as “applicationism” [23].

• These interviews were single, isolated, one-hour events. The short time

scale and lack of prior reflection may have led to shallow interview

responses.

• The engineering faculty expectations were within the context of the

typical lecture and exam assessment structure of most institutions of

higher education in the United States. Participants gave their expec-

tations within this framework.

• In addition, the first coder has his own biases as a researcher and as

a practitioner of mathematics. The second coder has no college-level

mathematics experience. This lack of experience helps mitigate this

bias somewhat, since the first coder must explain views explicitly.

2.4 Results

In this section, we present the results of the thematic analysis. We claim

that the following three themes are representative of the most common and

important beliefs of the engineering faculty in our study.
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• Theme 1: A mathematically mature student uses and interprets math-

ematical models.

• Theme 2: A mathematically mature student chooses and manipulates

symbolic and graphical expressions.

• Theme 3: Computational tools reshape “what needs to be known” to

be mathematically mature.

To demonstrate this generalizability within the sample, we present fre-

quency counts [47] in Table 2.4 to illustrate how often each theme (and an

associated representative code) appeared across all interviews and each par-

ticipant.

Table 2.4: The three themes and each of their largest constituent codes.
Modeling competency is the largest constituent code for theme 1. The total
number of coded segments corresponding to each theme in the data are
included to show presence in the data, and the percentage of participants
mentioning that code or that theme is included to demonstrate
representativeness.
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Code/Theme
Occurrences

310 74 74 23 260 68

% of
Participants
who Mentioned
Code/Theme

100% 74% 81% 48% 100% 74%

2.4.1 Theme 1

“A mathematically mature student uses and interprets mathemat-

ical models.”
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This theme is supported by two beliefs expressed by the participants: En-

gineering faculty asserted that mathematical modeling skills are the most

important skill for engineering students and these faculty believed that poor

epistemic beliefs undermine students’ ability to develop these modeling skills.

It is worth noting that the aspects of modeling that engineering faculty

referred to did not span the entirety of the mathematical modeling cycle.

Participants often referred to only two steps, the “mathematizing” step and

the “interpreting” step. This finding is previously found in the literature [50],

where engineering homework problems use only some of the mathematical

modeling cycle, which could be called merely “application” rather than the

more encompassing “modeling.”

Strong modeling skills

Participants described that a mathematically mature engineering student is

adept at modeling engineering problems and also believes mathematics is rel-

evant to engineering. Of the KOM competencies, the modeling competency

was the most important to participants: Participants’ statements were coded

as modeling competency 74 times, and 74% of participants had statements

that were coded as modeling competency (the median KOM competency was

coded 9 times). Similarly, all participants had at least one statement that was

coded as part of this first theme. They described a mathematically mature

student as able to translate from mathematical to physical representations

of situations and to interpret the physical meaning of a mathematical result.

[I want students to] take a statement in plain English, describing

how a system works, turn it into an algebraic equation, and then

do the operations to solve the algebraic equation.

—Physics Faculty Member

According to participants, a mathematically mature student is expected to

be able to set up integrals and derivatives to describe physical situations. For

example, to participants’ dismay, students struggle to set up control volumes

for the flow of water or to sum up small differential elements of charge to

find total charge, despite participants’ expectations that these skills should be

the primary outcome of finishing calculus. Faculty stated a mathematically
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mature student should be able to use units to solve problems and examine

answers; however, they observed their students’ ignorance of dimensional

analysis. While students can manipulate simple algebra, they are unable to

connect the mathematical meaning of those manipulations to any physical

meaning. A faculty member describes the lack of mathematical maturity she

observed in the classroom:

And sometimes they have problems understanding that the mini-

mum in energy means that the force is zero. Again, because they

may be able to do d
dr

, but maybe they don’t really know what it

means physically. So many of them just set the energy to 0. They

don’t get it that there’s a minimum in the energy curve, it means

the force is zero.

– Materials Science Faculty Member

Participants stressed that mathematically mature students should already

have the ability to extract mathematical meaning to set up a problem as

well as perform algebraic/calculus manipulations. Participants highlighted

their expectation for students to be able to set up an integral or derivative

to describe a situation. A faculty member described his experience with his

students struggling with these competencies.

The word problems are not saying solve the integral of this, it’s

here’s a situation, translate which variables are known and which

variables are unknown. Then set up the problem to solve it. It

requires reasoning to set it up. I don’t know how they don’t know.

– Civil Engineering Faculty Member

As can be seen from these data, engineering faculty members expect their

students to have solid modeling skills as a result of their previous mathe-

matical experience. The expectations are mismatched with the realities of

completing calculus. This mismatch between the expectations of outgoing

students of mathematics and incoming students of engineering has been pre-

viously observed by Ferguson [17].

Unfortunately, faculty voiced their discontent with students’ modeling

competency. They noticed that students believe that mathematics is not
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relevant to engineering; without the mathematically mature belief that math-

ematics is relevant, students struggle with their modeling skills. Mathemat-

ical maturity entails not only the ability to use mathematics to make sense

of the physical world, but also the belief that one should. This belief was

captured with the code “Practical Irrelevance” 78 times whereas the median

epistemological belief was coded only 19 times.

Not only can this irrelevance belief influence students’ learning in pure

mathematics courses, but it can extend to mathematics-heavy engineering

courses. One materials engineering faculty member recalled her students

commenting on her sophomore theory class: “This isn’t really [materials en-

gineering]. This is just math or not really relevant to our major.” A civil

engineering faculty member commented on his students’ struggles with math-

ematics in the absence of relevant engineering examples, stating “You’re go-

ing to be a junior before you see any application of anything, so you better

hold on tight!” Although students’ skills and abilities in mathematics may

be admittedly poor, a deeper problem resides in their belief about mathe-

matics. A physics faculty member said that students “view calculus a, just

equations and math in general as a calculating device,” rather than the more

mature perspective as a “concise way of capturing the underlying physical

principles.”

The belief that mathematics is irrelevant and painful shapes student choices.

Many participants emphasized that this distaste for mathematics was a result

of the lack of application in the early mathematics courses. A bioengineering

faculty member stated, “They take [bioengineering] because they thought it

would be less math. The attitude of fear of math because it was disconnected

[sic].”

Faculty members claimed that the student attitude that mathematics is

irrelevant results from the abstract, application-starved presentation of intro-

ductory mathematics courses. This abstract presentation cultivates student

beliefs that mathematics is not relevant outside the mathematics classroom.

Faculty felt that they must convince students that mathematics they have

learned in the past does provide useful techniques to understand the engineer-

ing systems they currently study. This bioengineering faculty member spoke

about his struggle with convincing students of the relevance of previously

learned mathematics.
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As soon as you make the transition into the physiology domain,

the problem is convincing students that what they did learn is

applicable still, and that a plug and chug problem does provide

useful information to physiological systems.

—Bioengineering Faculty Member

This bioengineering faculty member’s challenge was not correcting their lack

of mathematics skill, but correcting their beliefs about mathematics itself.

His challenge was to convince students, that is, to change their beliefs. Stu-

dents do not search for connections that they do not believe exist. For

students to become skilled at finding connections, they must first be guided

to believe that these connections are there to be found.

I think it’s that they don’t recognize that what we’re talking about

in my class is the same mathematical operation as what they

learned to do in a methods of integration unit.

– Physics Faculty Member

Engineering faculty expect students to have attained these mathemati-

cally mature modeling skills as a result of their mathematics coursework.

Due to this mismatch of expectations, students struggle in their subsequent

engineering coursework. These findings align with previous literature, where

modeling skills consistently dominate discussion of mathematical skills for

engineers [17, 51, 18].

2.4.2 Theme 2

“A mathematically mature student chooses and manipulates sym-

bolic and graphical expressions.”

This theme was supported by the disproportionate application of two sym-

bol sense codes, Reading Meaning from Symbols and Symbols in Context,

applied 32 and 25 times respectively compared to a median application of 6

for symbol sense codes. The Symbol/Formalism competency was mentioned

by 48% of participants, and 81% of participants mentioned something from

the second theme.

The participants’ definition of “reading meaning from symbols” was specif-

ically concerned about students’ ability to extract physical meaning from
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symbols as opposed to including ideas like searching for structural simplifi-

cations as in Arcavi’s definition of reading meaning from symbols[22].

The participants’ definition of “Symbols in Context” was more conso-

nant with Arcavi’s definition, describing a mathematically mature student as

someone who recognizes that symbol meanings vary by context. For example,

one agricultural engineering faculty member commented on how frequency is

sometimes treated as a variable in the frequency domain, but is treated as a

constant when performing the integrals that compute the Fourier transform

into the frequency domain. A mathematically mature student must keep

track of the changing roles symbols play in different contexts. A mechanical

engineering faculty member commented:

I hammer it into them, what means what, what is varying, what

is constant. When we do power spectral density, there the variable

is actually frequency not time. I make sure that they understand

what is integrated with respect to what. That notation is, needs

to be explained and emphasized all the time.[sic]

-— Mechanical Engineering Faculty Member

Participants expressed dissatisfaction with many of their students’ sym-

bolic skills. Students could not transfer their mathematical knowledge be-

tween two phenomena with isomorphic symbolic form, such as inability to

handle the notational difficulties arising from similar equations for shear

forces and tensile forces.

Representational Fluency

Not surprisingly, participants stated that students’ skills were weak at trans-

lating between different representations of a problem. For example, students

struggle to, or did not attempt to transform an algebraic representation of an

object to a graphical expression of that same object. According to partici-

pants, students do not emerge from their mathematics courses understanding

that no one representation is the reality of the object; there are many repre-

sentations that express different truths about the underlying object. The lack

of mathematically mature representation skills becomes particularly worri-

some in the context of linear algebra and the change of basis.
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Objects that are doing things, linear in nature, but you can use

numbers to represent them. But the numbers aren’t the objects,

they only represent them... And you can switch basis, but it’s still

the same object. I suspect that’s true of the way they teach it here.

That you emphasize that these are invariant objects that have

a meaning in and of themselves, independently of the numbers

that you chose to ascribe to them. And then you learn how to

translate between different representations. I don’t know whether

the students get that or not, but that’s an important aspect.

– Mechanical Engineering Faculty Member

Students tend to be attached to a single, canonical representation of a sys-

tem; they struggle when they’re presented with an alternate representation.

Changing even a single letter can completely obscure their understanding of

the system at hand. In particular, students are attached to using the letter x

as the independent variable in all situations, as this physics faculty member

points out:

Part of the problem may be confronting symbolic expressions and

generaliz[ing] from them. They may have derivative of ln(x) in

calculus, but when they get the derivative of a bunch of symbolic

constants in front of ln(r), it looks like a different problem to

them.

–Physics Faculty Member

Participants also complained about students’ difficulties with the dummy

variable of integration, saying that students frequently fail to recognize a

dummy variable or when to use one. This lack of proper conceptual knowl-

edge of dummy variables causes problems with later important concepts like

convolution that depend strongly on dummy variables.

Participants said that students are attached not only to canonical symbolic

representations of phenomena, but also to algebraic representations in gen-

eral. Participants observed that their students are reluctant to use graphical

representations to solve problems. A mathematically mature student uses

simple graphical interpretations rather than sticking to the algebraic repre-

sentation ill-suited to the problem at hand. One said:
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[I wish students were good at] graphical solutions to problems. Be-

ing able to make a plot to solve a problem. Without me telling

them plot these. Just being able to do graphical solutions to prob-

lems, being able to immediately resort to that technique.

– Materials Engineering Faculty Member

The above participant commented that it is her students’ inclination to-

ward algebraic representation that causes problems, not necessarily their

ability to use graphs as a means of approaching a problem. Participants

stated that students do not view notation and representation as a flexible

tool for solving problems. Participants expressed a desire for students to

show mathematical maturity by moving fluently between mathematical rep-

resentations.

Symbols and Substitution

Within the algebraic representation, participants particularly wished that

students understood substitution as a tool to gain insight into how a sys-

tem works. Participants reported that students view substitution rules as

meaningless tricks to reach the end of problems rather than flexible ways to

change how one thinks about a problem. For example, when computing the

integrals that describe the electric fields around a sphere, the arising trigono-

metric substitutions correspond to physical angles within the system. These

correspondences can be used to help check and interpret the resulting inte-

gral. The participants teaching upper division courses (or computer science

at any level) most emphasized the importance of flexible and incisive use of

substitution compared to other participants.

Substitution rules are seen as just tricks. Maybe why they’re not

recalled as well I suspect. But I don’t know I’m speculating. Some

classes may very well put a lot of emphasis on this. The way I

learned integration as a student was not by understanding invari-

ance. It was by “Here’s a bunch of rules you can apply to evaluate

the integral.” It was understood as evaluating the integral. [em-

phasis original]

– Mechanical Engineering Faculty Member
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Not only are substitutions useful notational tools, but a mathematically ma-

ture student also recognizes that substitutions can give insight into how the

system works. Symbols are powerful tools for solving problems and also for

interpreting their results and checking for physical consistency. A mathe-

matically mature student can use symbols and other representations to solve

problems flexibly and understand answers.

2.5 Theme 3

”Computational tools reshape ‘what needs to be known’ to be

mathematically mature.”

Participants emphasized that the mathematics needed by engineers is chang-

ing. On one hand, they highlighted that mathematically mature students

have fast, practiced fluency with basic mathematical operations; on the other

hand, participants claimed that due to the increasing ubiquity of computa-

tional tools, students do not need fast, practiced fluency with advanced an-

alytic techniques. Instead, participants stressed that an engineering student

can be mathematically mature possessing merely an awareness of these tech-

niques. The Tools/Aids competency was mentioned by 74% of participants,

and all participants had at least one statement coded as part of the third

theme.

Students should be able to work the simple problem on paper so

they get some intuition. Most of the problems they’re going to deal

with are bigger than anything they could do on paper, so they need

to understand how that translates to computer and visualization

tools.

— Bioengineering Faculty Member

Fluent Basics

Participants emphasized that computational tools (e.g., ComSol, MatLab

and Wolfram Alpha) change what mathematics students must know to be

mathematically mature. According to participants, students must have flu-

ent, effortless, fast skills with basic mathematics such as algebraic manipula-

tions, derivatives of polynomials and logarithms, and first order differential
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equations. However, participants emphasized that students need this auto-

maticity with only with the simplest functions: polynomials, roots, sinusoids,

exponentials, and logarithms.

Participants observed that over-reliance on calculators for basic opera-

tions inhibits their students’ understanding of larger problems. Specifically,

students who display automaticity with basic operations rather than over-

reliance on calculators have more mental space for the surrounding engineer-

ing problem.

What I want students to have is, on an exam, I don’t want to be

wasting my time with little diddly calculations... so I can allo-

cate my mental resources to understanding the hard part of the

problem.

– Industrial Engineering Faculty Member

Analytic Awareness

Participants emphasized that there is always more mathematics to know.

They expressed that some mathematics should have practiced, honed fluency

for quick accurate reproduction. By contrast, students merely need to have

an awareness of techniques like integration by partial fractions. This partition

of knowledge into these categories results from the ubiquity of computational

tools. Ability to do integration by partial fractions quickly and accurately

is no longer important, since the student will “put it into Wolfram Alpha

anyway”. In the modern practice of engineering, practiced skill with complex

paper-and-pencil calculations is unnecessary.

So I think students should be aware, but not be a technical expert

in doing Gaussian elimination for instance. There are lots of

things that we do in engineering that we don’t need the details

anymore.

– Electrical Engineering Faculty Member

These participants claimed that the computations students must do have

changed, and that this change arises from computational resources now avail-

able. One civil engineering faculty member said that arduous analytic tech-

niques like simplex optimization are now quick and easy with a computational
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tool, leaving him more room to discuss implications and bigger problems. He

commented on how students are trained to execute computational algorithms

by hand:

Math is a tool. Why are we thinking that our objective is to make

[students] into a machine, rather than make them understand and

use the machine. . . . [People from theoretical mechanics] want

to protect that domain and fight against people that are saying

computers are adequate.

– Civil Engineering Faculty Member

In contrast to this faculty member’s perception of the desires of other dis-

ciplines, in our data the sentiment that students need fewer fancy techniques

and more computational skills was universal, regardless of engineering disci-

pline. While disciplines did disagree on the emphasis to be put on complex

numbers and transform methods, disciplines agreed that students need not

memorize formulas for infrequently used techniques of integration.

2.6 Discussion

To answer Research Question 1: Through these interviews, we found that

the engineering faculty in our study were primarily concerned about their

students’ mathematical modeling abilities and ability to apply mathematics

to physical situations. We believe that this finding may generalize to engi-

neering faculty at large since it aligns well with previous work in this area

[17, 51, 18] despite the differences in methodology.

To answer Research Question 2: Engineering faculty members in our

study were generally dissatisfied with the mathematical maturity of their

students. Keep in mind that many participants teach early core engineering

courses, so maturity may not have had time to fully develop. If the purpose of

the calculus sequence is to create mathematical maturity, engineering faculty

members do not appear to believe that the sequence is satisfactorily achieving

that goal. While some faculty concerns are less common in juniors and se-

niors, even participants teaching students who had already taken differential

equations as a prerequisite for their engineering course had serious concerns

about their students’ mathematical maturity, many no different from those

32



teaching second-semester courses. We lack the data in this study to assert

what causes this change, whether experience in the calculus sequence, un-

fit students dropping out, parallel experiences in engineering courses, or the

maturing effect of years of life in general.

Our work expands on this finding by particularly exploring the epistemic

underpinnings that threaten students’ ability to develop modeling compe-

tencies. The belief that mathematics has practical relevance is necessary for

extracting meaning from symbols or imbuing symbols with meaning. This

belief may be a critical part of what engineering faculty mean by “the math-

ematics thought process.”

The prevalence of the belief among students that mathematics is practi-

cally irrelevant should be disconcerting to both mathematicians and engi-

neers because it is detrimental to students’ desire to learn mathematics or

engage in modeling competencies [29]. In mathematics, unlike other disci-

plines, students form the majority of their epistemic beliefs as a result of

their mathematical experiences in school [20], so changes in mathematics

instruction could have a significant effect on students’ epistemic beliefs [27].

Concerns about students’ modeling skills and beliefs about the practical ir-

relevance of mathematics are already prevalent in the mathematics education

community, serving as the motivation for creating pedagogical techniques

such as Model-Eliciting Activities (MEAs) [52]. An MEA is “a problem that

simulates an authentic, real-world situation that small groups of 3-5 students

work to solve over one or two class periods. The crucial problem solving

iteration of the MEA is to express, test, and revise models that will solve

the problem” [53]. These rich, open-ended problem-solving exercises allow

students to generate their own models and engage in complex and challeng-

ing reasoning. MEAs have been suggested as a way to bridge the results

of mathematics education research and engineering education research [53].

Ferguson’s work [17] reached a similar conclusion as engineering and mathe-

matics faculty co-generated their ideal assessments, which strongly resembled

MEAs.

Consistent with our constructivist approach, we urge caution in using the

expectations of engineering faculty members as the sole arbiter of the math-

ematics curriculum. The perceptions of engineering faculty may not repre-

sent students’ actual needs and may even be misaligned with the skills that

students need as practicing engineers [54]. As apocryphally attributed to au-
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tomotive industrialist Henry Ford, “If I had asked my customers what they

wanted, they would have said faster horses.” Future data comparing student

outcomes from different pedagogical approaches and content foci are needed

to determine the accuracy of these perceptions. However, these findings do

provide insight into the frustrations and desires that drive engineering faculty

to change their curricula.

The alignment of the engineering faculty’s perspectives with mathematics

education research suggests that mathematics departments would be wise

to lend some credence to these perspectives when designing their curricula,

courses, and pedagogy. A core challenge may be learning how to develop

students’ modeling skills while also developing other core competencies such

as following formal proofs. It is important note that the engineering faculty

did not mention Reasoning Competency (ability to follow formal proof) or

Thinking Competency (ability to carefully investigate definitions) even once.

Mathematics courses are more than just what engineers need from them, and

these competencies cannot be left behind in future discussions. There is still

a duty to expose engineering students to these patterns of thinking as well

as those they will apply.

In light of our findings and the potential challenges of balancing model-

ing competencies with other competencies within a limited number of credit

hours, we provide some recommendations for how we might achieve this bal-

ance. These recommendations rely on the assumption that there is a degree

of truth to the engineering faculty members’ perceptions. We primarily focus

on potential approaches that may shift which mathematics are taught when

or identify content areas for reduced emphasis in order to increase emphasis

elsewhere in the curriculum.

2.6.1 Recommendation 1: more modeling and more context

If a root problem for students is indeed their belief that mathematics is

practically irrelevant, then the continued use of these contextless integrals

that have no physical meaning may be exacerbating this problem. While it is

not the mathematics department’s job to teach physics or engineering, it can

productively borrow examples from these disciplines to provide meaningful

contexts without sacrificing mathematical goals.
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To examine this claim, consider the following “great chain rule problem”

from Stewart’s Calculus text [55, p 204, exercise 3.4.39]:

d

dx
tan(sec(cos(x)))

This function does not describe any object in our universe, yet problems

such as this one are typical exercises in introductory calculus [11]. This func-

tion is chosen solely because it requires careful navigation of manipulations

through multiple algebraic steps. Unfortunately, upon reaching the answer

to this problem, the student cannot examine the answer for its reasonable-

ness as the question was not reasonable to begin with. This lack of context

disrupts the last interpreting step of the mathematical modeling cycle [45].

Consider, by contrast, the following problem:

The dispersion relation for surface water waves is Ω(k) =
√
gk · tanh(kh).

Find the group velocity, vg = dΩ
dk

.

Computing this derivative is much like that for the example from Stewart.

It requires knowledge of special functions and multiple applications of the

chain rule. Fortunately, after obtaining the derivative, the problem does

not end. We can ask questions like “We know that wave packets with long

central wavelength (small k) travel faster (have larger vg) than packets with

short central wavelength (large k). Explain whether your equation for group

velocity correctly models this phenomenon.” Using a physical context, we

are able to give students practice in mathematical interpretation and sense-

making in addition to practice with operations and algebra.

Using modeling examples from a variety of disciplines (e.g., mechanical,

biological, economics, electrical, material, chemical, financial, abstract math-

ematical) may also help students better learn the fundamental underlying

concepts [56, 38]. Not only can the variety of contexts provide motivation to

students from different backgrounds, but it can also help students ignore id-

iosyncrasies of specific examples and identify the cross-cutting concepts that

govern all of the examples.
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2.6.2 Recommendation 2: Explicitly introduce and vary
symbolic presentation

The goal of improving students’ symbol sense and representational fluency

may be easily achieved with a few small tweaks within the context of mod-

eling exercises. For example, instructors could intentionally move away from

always using the variable x for independent variables (and explicitly map

context specific variables to those canonical forms), assign more problems

with parameters left as letters, explicitly instruct which operations are per-

missible on variables but not on parameters, or require students to justify

why they are choosing the representation they are using (e.g., graphical vs.

algebraic).

Beyond, these changes, modeling will require explicit instruction of how to

choose variable names that facilitate meaning making and modeling. Con-

sider the following.

Alice’s velocity is 1 m/s to the left. How do we represent this variable

symbolically?

Should Alice’s Velocity be written as vA = −1, or Av = −1? The choice

for notation derives from the physical interpretation of the variables: the

quantity type (velocity) takes priority and the object possessing that prop-

erty (Alice) is put in the subscript. While this rule of mathematical commu-

nication is simple, it does require explicit attention. It is not uncommon for

instructors to unintentionally forget to explicitly describe these automatized

rules of communication [57, 58].

2.6.3 Recommendation 3: To make room, cut certain analytic
techniques

Prior studies have highlighted that computational tools are becoming in-

creasingly important for students to learn. Our study adds nuance to this

observation, articulating that advances in computational tools are shifting

the line between what students need to know well and what students can be

merely aware of. Techniques that were once essential may now be vestigial

components of our curricula.

In light of these expectations from engineering faculty members, we sug-

gest cutting many analytic techniques from the core calculus sequence (e.g.,
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integration by partial fractions, root test for convergence, the method of

integrating factor) and allowing students to solve these by computer. We

recognize that this suggestion is controversial. Does this claim not contra-

dict what faculty said about students becoming over-reliant on calculators?

We argue that removing techniques is not new to the mathematics curricu-

lum and can be done without detriment in limited circumstances. To explore

this claim, consider a simpler operation: computation of square roots.

Square roots are a fundamental operation in arithmetic. Despite their im-

portance, high schools no longer teach the algorithm for manual computation

of square roots because they are always done with a calculator. Students are

still expected to know the square roots of the “simple problems” (i.e., the first

few perfect squares). Students can then use this knowledge to judge a com-

putation’s reasonableness (i.e., that
√

17 is slightly greater than 4) but need

not be able to calculate a root to three decimal places quickly and accurately.

The emergence of cheap calculators lowers the threshold that separates “sim-

ple problems” that need to be known from “advanced” problems that do not.

Systems like Wolfram Alpha lower the threshold for integration the same way

hand calculators do for square roots. Students are still expected to be able

to integrate polynomials, logarithms, exponentials, and trigonometric func-

tions, and then use their experience with these simple integrals to be able to

qualitatively evaluate whether Wolfram Alpha gave a reasonable result for

more complex integrals such as x2+1
x3+2x2+x

.

Not teaching the square root algorithm is a good thing; the time that was

once spent teaching that algorithm has been re-purposed to cover other con-

tent. Students still develop understanding of square roots but do not need

to practice the algorithm to build that understanding. By the same argu-

ment, we would benefit from not teaching numerous integration techniques.

Students can still possess strong conceptual understanding of how integrals

work without being experts with advanced techniques of integration. This

offloading to computational tools does not contradict professors’ lamenta-

tions of over-reliance on hand calculators: they only want the very simple

calculations to be done by hand/head and want students to use tools on the

more cumbersome and complex cases.

Credit hours are a limited currency within a four-year curriculum. Each

credit hour spent teaching advanced techniques is a credit hour not spent

teaching something else such as modeling or reinforcing better epistemic be-
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liefs. As educators, it is our duty to spend each credit hour as wisely as

possible.

2.7 Conclusions

Since mathematics departments teach many service courses for majors in

other departments, there will always be a tension between creating math-

ematics courses that teach mathematics and partner disciplines that want

“mathematics-methods-for-engineers.” Logistical difficulties such as align-

ment with AP calculus exams, course articulations for transfer students, and

the expectations of graduate programs only serve to increase these tensions

by making change difficult if possible at all. Although this tension has occa-

sionally had catastrophic effects for some mathematics departments, we be-

lieve that our findings suggest productive pathways forward. We intend this

research to help mathematics departments modify their courses and avoid

losing them to engineering departments by providing a clear articulation of

engineering departmental needs.

By making prudent cuts in the calculus sequence to create room for deeper

instruction in modeling and computational skills, mathematics departments

could meet the demands for mathematically mature students from partner

disciplines. Such changes could also improve outcomes for students from

a purely mathematical perspective by improving students’ epistemic beliefs

about mathematics. Further, the advances in computation tools may indeed

be moving the line between what knowledge needs to be mastered and what

knowledge can be offloaded onto tools, further decreasing the tension that

departments of mathematics experience.
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CHAPTER 3

STUDY B: INTERVIEWS WITH
NON-ILLINOIS ENGINEERING FACULTY

3.1 Introduction

The study of the previous chapter of this dissertation asked the question,

What is mathematical maturity according to engineering faculty? In our

previous work in this topic, we interviewed 27 engineering faculty from 11

disciplines to get their raw thoughts on what constitutes “mathematical ma-

turity” for an engineering student. In this work we extend our previous work

to include faculty from a variety of different institutional sizes and types to

increase the generalizability of the result.

3.2 Background

Prior efforts to define mathematical maturity for engineering students have

relied on two primary approaches: consensus-building workshops led by pro-

fessional societies and faculty interviews at individual institutions.

3.2.1 Consensus-building workshops

The Mathematical Association of America (MAA) has actively sought to

understand the curricular needs of its “partner disciplines” (defined by the

MAA as the physical sciences, engineering, and business). MAA’s largest and

most comprehensive project to document these mathematical expectations

was the Curriculum Revision Across the First Two Years (CRAFTY) [18].

The CRAFTY workshops convened faculty members in partner disciplines

and mathematics. They had several meetings, discussions, and revisions to

develop consensus about the priorities of the introductory, post-secondary
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mathematics curriculum.

Similarly, the European Society for Engineering Education Mathematics

Working Group (MWG) used the Competencies and Mathematical Learning

(KOM), previously developed by the Dutch Ministry of Education [21], as a

starting point for defining priorities for mathematics education for engineer-

ing students [35]. The MWG report divides all of the mathematical skills of

an undergraduate education into four rings. The center (core 0) is material

all engineers should be competent in. Progressing outward to outermost ring

(elective 3) is material that only some disciplines need reliable access to.

Finally, the US Naval Academy [17] also explored what engineers and

mathematicians both consider to be mathematical competence. During work-

shops lasting several weeks, engineering and mathematics faculty met to dis-

cuss what task would demonstrate that a student had mastered calculus.

All reports particularly emphasized that engineering students and engi-

neers need to develop modeling competencies (translation between the phys-

ical and mathematical domains) during mathematics instruction. They also

emphasized the increasing importance of competencies with tools and aids as

computers become more powerful and ubiquitous. Both reports commented

how computational tools can allow more realistic models to be explored more

quickly and easily than is possible by hand, but that a loss of basic capabili-

ties is a significant worry. Finally, these reports emphasized communication

competency, urging mathematics faculty to require students to explain their

results in words and incorporate assessments that require students to both

read and write about mathematical ideas.

These efforts relied on consensus-building approaches to document the be-

liefs and attitudes of engineering faculty who were pre-selected for their prior

engagement in this dialogue. This consensus-building approach reflects the

consensus of highly engaged faculty who may not fully express their own

personal opinions in hopes of achieving some consensus. Additionally, the

reported competencies from these workshops were not critically analyzed

or evaluated using any qualitative or quantitative research methods. Con-

sequently, these reports may not accurately represent the expectations of

rank-and-file faculty from a variety of institutions.
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3.2.2 Single-institution interview studies

A complementary set of studies have investigated the beliefs of engineering

students, faculty, and practicing engineers about the role of mathematics in

the engineering curriculum.

Firouzian et al. [37] surveyed and interviewed engineering students, en-

gineering faculty, and practicing engineers about the relative importance of

the different KOM competencies. Their work showed that engineering fac-

ulty and practitioners weigh the importance of mathematical competencies

differently from mathematicians. They found that modeling competency and

tools/aids competency dominate far over the other competencies in terms of

engineering need.

Gomes and Gonzalez-Martin [59] similarly found that an engineers empha-

size the importance of checking the plausibility of a model against reality,

particularly for models that come from computational tools. Many mathe-

matical practices that are not rigorous by mathematicians’ standards (such as

the use of infinitesimals in derivations) are useful and standard mathematical

techniques for engineers.

These prior studies relied on interviews with a small number of faculty

members (four and one engineering faculty respectively). Our prior work

sought to supplement these prior studies by interviewing 27 engineering fac-

ulty from 11 disciplines about what mathematical competencies their stu-

dents need. In particular, we sought to better understand what faculty meant

when they stated that students need to “learn how to think mathematically”

or be “mathematically mature”. The codebook (see Appendix B) we de-

veloped also used the KOM competencies as a starting point but also used

other constructs from mathematics education research such as epistemology

[20] and symbol sense [22].

Other researchers [60, 61] have sought to document what mathematical

knowledge is actually used in engineering courses. These studies have found

significant mismatches between what is taught in mathematics courses and

what is used in engineering courses. These efforts, while related, are outside

the scope of this study, as they focus more on specific content knowledge

(e.g., ability to linearize a system) rather than broader competencies (e.g.,

modeling).

Critically, while these studies have documented the beliefs of individual

41



faculty, they were all performed at individual institutions. Consequently, it

is not clear whether any findings from these studies are generalizable.

3.3 Purpose of this study

The purpose of this study is to purposefully seek divergent opinions by inter-

viewing individual faculty from a variety of institutions. This purpose com-

plements the convergent approaches of the consensus-building workshops and

supplements the institution-bound perspectives documented in the interview

studies.

Promisingly, both the workshops and interviews have documented three

common themes for defining mathematical maturity for engineering students:

• Advanced techniques (e.g., integration by parts) are increasingly auto-

mated by computer, but expertise with algebra is highly desired.

• Mathematical modeling skills are of supreme importance (units of mea-

sure and estimation in particular).

• Mathematical communication and representation skills are also desired.

Consequently, we pursued this study to observe whether these themes are

sufficiently representative of faculty expectations. The engineering mathe-

matics curriculum is a core backbone of almost all engineering programs and

has been in place since the Grinter Report [62]. Hasty alteration to this back-

bone could have calamitous consequences, such as unintended effect on upper

division courses or loss of skills from the industrial base. Therefore, seeking

to document dissenting expectations or perspectives is essential before taking

any action.

3.4 Methods

Since the CRAFTY project [18] and Ferguson’s [17] prior studies both re-

lied on time-intensive, dialogue-based methods to encourage engineering and

mathematics faculty to come to consensus about how to align the mathemat-

ics and engineering curricula, we emphasize the perspectives of engineering
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faculty who have not been as engaged in these inter-disciplinary discussions.

The goal of our approach is to document the views of engineering faculty

who have not engaged in these discussions because these views may more

accurately reflect the views of the typical engineering faculty member - the

ones who will be making curricular decisions. While the views of these fac-

ulty should not be taken as empirical fact, these perceptions do represent

the constructed reality upon which these engineering faculty will act. Our

study therefore takes a constructivist approach [46], seeking to document the

expectations and beliefs of engineering faculty have constructed, apart from

mathematicians.

To document these perceptions, we chose to conduct open-ended interviews

that would encourage engineering faculty to fully explain their individual po-

sitions. We chose to do interviews rather than surveys, because surveys do

not easily permit follow-up questions to explore unexpected perceptions and

because we could get richer observations from interviews than from surveys.

Since previous research [17, 18] showed it took a long time for faculty to

uncover their expectations about what it really meant to understand cal-

culus and there were numerous disagreements due to vocabulary and word

use, one-on-one interviews allow for deeper conversations that can adapt to

the vocabulary and expectations that are idiosyncratic to the individual or

discipline.

To get sufficient breadth of observations, we chose to interview faculty

from a variety of engineering disciplines and from a variety of institutions. To

allow sufficient time to explore each participant’s perspective, we scheduled

one hour interviews but allowed them to go longer if the participants had

more to say.

Consistent with our constructivist approach, we chose to use thematic anal-

ysis [48] to document the perceptions of the faculty interviewees. A thematic

analysis interview method was not used in previous work [17]. Thematic

analysis provides a robust and flexible way to analyze qualitative data that

allows the perspectives of participants to emerge from the data. The themes

of the previous work were used as our starting point, open to possible refine-

ment or nuance that might be different in other schools.

Since the purpose of our study is to see if our findings from the original

research site (with “internal faculty”) still adequately describe perspectives

of faculty at other institutions (“external faculty”), we re-used the codebook
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from the previous research. If the codebook developed for one institution

could fully describe faculty perceptions from external institutions, this simi-

larity is strong evidence for saturation of observations.

3.4.1 Research question

Is the perception of “mathematical maturity” at a variety of institutions

consistent with the perception found at a single institution?

3.4.2 Participant selection: Saturation sampling

To explore whether perceptions are consistent across institutions, our sam-

pling must aim to find dissenting opinions. Consequently, we intended to

sample seeking to observe saturation of observations even when faculty were

recruited from a variety of institution types (size, selectivity, research output)

[63] and engineering disciplines. Highly selective schools (which we proxy by

the lower quartile of ACT mathematics score) may have higher mathemati-

cal expectations of their students, since they accept only students of higher

demonstrated mathematical ability. Research-intensive schools may have dif-

ferent expectations than teaching-focused schools, and might prioritize math-

ematical skills that are necessary for research over those for industry. Schools

with large student bodies and attendant large class sizes could have different

priorities for mathematical skills that are time-consuming to grade at large

scale (e.g. mathematical communication).

The previous research [64] was only at a single large, research intensive

school with very high admission requirements. It is reasonable to suspect that

faculty in this institution may have higher expectations about students’ level

of preparation and may downplay the importance of some mathematical skills

or may value skills more important for preparing students for research rather

than for industry. Sampling across institution types may reveal different

perspectives on “mathematical maturity” as students’ preparedness or career

expectations vary.

To recruit faculty from other institutions who would be willing to talk

about the intersection between engineering and mathematics, we first identi-

fied faculty who had participated in an engineering mathematics consortium
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at the American Society for Engineering Education conference in 2016. Of

the 18 people solicited for interview, 7 (39%) people answered and were inter-

viewed. We also used snowball sampling, following up on recommendations of

participants and colleagues. In our prior work, saturation of observation [64]

was found after 7-10 of the 27 interviews were completed. So an initial sam-

ple of seven external faculty were selected. If new observations were found

in this initial sample, more data would be collected, but no new observations

relevant to the research question were found.

Keeping with the goal of sampling from a variety of perspectives (see Ta-

ble 3.1), we sampled faculty from four-year, masters-granting, R2, and R1

institutions. We also sampled from a variety of geographical locations. The

participants varied from pre-tenure assistant professors to senior faculty who

had been teaching for 20 years. The sample of faculty included members

of electrical engineering, civil engineering, mechanical engineering, bioengi-

neering, and computer science departments. We operationalized selectivity

of institutions as the lower quartile of ACT math scores, and sampled from

schools with a variety of ranges.

3.4.3 Interview procedure

We conducted semi-structured interviews with an initial interview protocol

that allowed for asking off-script questions to explore the views of the par-

ticipant when pertinent to the research question. The interview questions

were designed to explore constructs we hypothesized were the roots of math-

ematical maturity (i.e., symbol sense, epistemology, and competencies). If

the interviewed faculty member did not mention a concept like “mathemat-

ical maturity,” “mathematical sophistication,” or “mathematical flexibility”

independently, participants were asked at the end of the interview if the term

“mathematical maturity” meant anything to them. Interviews lasted for ap-

proximately one hour and participants were not sent the interview protocol

in advance.

Example protocol questions included

• What courses do you teach and what are the prerequisites?

• What mathematical skills, abilities, or attitudes are essential to succeed

in your course?
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Table 3.1: Institutional demographics of sample.

Institution Description
Carnegie
Classification

Lower Quartile
ACT Math for
Incoming
Engineering
Students

Student
Population
(rounded to
nearest
thousand)

Small Southwestern
Masters University

Masters-
Granting

20 7,000

Midwestern
Undergraduate
College (2 faculty
members)

Four-year 28 2,000

Large Midwestern
Research University

R1 29 66,000

Medium Midwestern
Research University

R2 25 20,000

Medium Pacific
Northwest University

R1 23 30,000

Medium South East
University

R1 25 23,000

Original Research Site
Midwestern Research
University

R1 31 44,000

• What is your perception of the mathematical abilities of your incoming

students?

• What mathematical behaviors inhibit your students’ abilities in your

course?

• If you could guarantee that 100% of your incoming students possessed

one mathematical ability, what would you choose?

• Do you assign problems that contain uncertainty or imprecision?

3.4.4 Data analysis

Interviews were transcribed verbatim. To analyze the data from faculty

interviews, two researchers conducted a thematic analysis. An uninterrupted

passage of participant speech between interviewer prompts constituted one

unit of analysis. This unit of analysis is unambiguous and allows for full
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arguments on a topic by the faculty member to be considered as a single

unit.

The codebook from the previous study [64] with only faculty from the

primary research site was used to code the data. The first coder was the

author of that previous paper. The second coder was a graduate student in

materials science with experience in qualitative research.

The coding scheme was open to having additional categories for obser-

vations emerge, given that they were relevant to the research question and

were found in moderate numbers. Some interesting miscellaneous statements

were found, but only in small numbers. These few novel observations did not

constitute a new code, let alone a new theme, so were left as a miscella-

neous category. There were some novel observations, but they did not have

anything to do with the research question.

The first round of coding resulted in only 60% inter-rater reliability. A

second round after discussing disagreements only reached 72%. We then

reviewed the codebook and merged small codes consistently with the the-

matic analysis from the previous work. For example the “reading meaning

from symbols” in symbol sense was so connected to reading physical mean-

ing from symbols that it was merged into the modeling competency code.

We also instituted double-checking protocols to prevent careless miscoding

errors. After all that, we achieved 84% reliability, which is good agreement

[49].

The new data did not have any substantial new observations from which

to build new codes. The observations naturally arranged themselves into

themes, and these themes were the same themes as in our original research,

strongly echoing other previous literature.

3.4.5 Trustworthiness

The first coder had an undergraduate background in physics and mathemat-

ics, and graduate training in electrical engineering. The second coder had

an undergraduate background in physics and graduate training in materials

science. The use of two coders helps reduce the likelihood that the results

are a single researcher’s opinion projected onto the data. Since definitions of

existing codes were static, variety in researcher experience would not strongly
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impact results. We did not perform member checking on the results. When

a faculty member said something very similar to previous participants and

was informed of this similarity to others, they often commented that they

felt good that they were not alone in feeling this way. As will be seen later in

this document, the results strongly corroborate other findings on engineering

mathematics by other authors and by different methodologies.

3.5 Results

Results from these interviews corroborated results from our prior study with

faculty at our institution. No new themes or even new codes resulted, despite

the variety of different institutions. During analysis of the interview data,

we noted that the proportion of time external faculty spent on the various

themes was similar to the time spent by faculty at our institution, providing

strong evidence for saturation of observation. We illustrate this qualitative

observation by showing that the percentage of coded statements falling into

each code group is qualitatively similar (see Table 3.2).

Table 3.2: Codes were sorted into three themes. The percentage of coded
segments that were in each theme (code group) is shown. Some coded
segments aligned with multiple themes or with none of them, so
percentages may not total to 100%.

External Participants Internal Participants

THEMES
Number of
statements

Proportion
of coded
segments

Number of
statements

Proportion
of all coded
statements

Modeling 54 39% 338 46%
Computation 43 31% 240 33%
Representation 22 16% 91 12%

The same themes from the original research site remain nearly unchanged

in proportion of the total coding. Though the finding of how often each

code varied within a theme often varied considerably (particularly given the

smaller number of the external faculty), the fact that the themes have nearly

identical relative frequency in both cases indicates a surprisingly high level

of consistency. While one could suspect that the original research site, as

a highly selective large research university, might have different or higher
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expectations of what constitutes mathematical proficiency for engineers, this

does not appear to be the case.

Not only were the participants’ numerical concentrations of commentary

similar, but the contents of faculty comments were also similar. In the fol-

lowing sections, we pair quotations from the original research site with quo-

tations from external faculty to illustrate this similarity.

3.5.1 Theme 1: Modeling

Participants emphasized that mathematical modeling of physical systems

was an essential part of mathematical maturity of engineers. Participants

described mathematical modeling as being able to turn a physical descrip-

tion into a solvable mathematical system, and being able to translate math-

ematical solutions into interpreted physical meaning. The modeling theme

occupied the most coded segments of the three themes, corroborating findings

from our prior research. Faculty wanted their students to connect the math

they had learned to the engineering they were learning, but they believed

many students viewed math and engineering as separate, distinct worlds of

knowledge (Table 3.3).

Table 3.3: Students need to see mathematics as related to the real world.

Internal Bioengineer External Mechanical Engineer
“As soon as you make the transition into the
physiology domain, the problem is convincing
students that what they did learn is applica-
ble still, and that a plug and chug problem
does provide useful information to physiologi-
cal systems.”

“Getting them to not view
math as numbers on a page,
but how everything in the
world can be represented
through math.”

External faculty continue to emphasize that sense-making and identifying

physically implausible results is an important aspect of mathematics (Table

3.4).

The persistent feeling that mathematics is not relevant to their engineering

studies is particularly a problem. Students feel unmotivated and do not

believe math they are learning will ultimately reach fruition (Table 3.5).

Students are entering college with this defeating and demotivating attitude

(Table 3.6).
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Table 3.4: Students need to engage in sense-making with mathematics.

Internal Materials Engineer External Bioengineer
“Sometimes they have problems un-
derstanding that the minimum in en-
ergy means that the force is zero.
Again, because they may be able to do
d
dr

, but maybe they don’t really know
what it means physically. So many of
them just set the energy to 0. They
don’t get it that there’s a minimum in
the energy curve, it means the force is
zero.”

“I actually keep pounding that into
them. If you come up with a proba-
bility that is less than zero or greater
than one, you know you did something
wrong. Same thing with understand-
ing that standard deviations and cer-
tain statistics can only have positive
values. I keep harping on them for
that. Some students get that, others
do not.”

Table 3.5: Applications of mathematics are distant in time from when
students learn mathematical content.

Internal Civil Engineer External Electrical Engineer
“You’re going to be a junior before you
see any application of anything, so you
better hold on tight!”

“By the time they get to the applica-
tions they’ve probably forgotten it.”

3.5.2 Theme 2: Computation

Participants emphasized that the mathematics needed by engineers is chang-

ing. On one hand, they highlighted that mathematically mature students

have fast, practiced fluency with basic mathematical operations; on the other

hand, participants claimed that due to the increasing ubiquity of compu-

tational tools, students do not need fast, practiced fluency with advanced

analytic techniques. Instead, participants stressed that an engineering stu-

dent can be mathematically mature possessing merely an awareness of these

techniques. This result is consonant with previous literature [65, 66].

Faculty in both studies expressed similar beliefs about which computa-

tional tools students must master. For example, faculty mentioned spread-

sheets as a primary computational tool over other tools such Matlab, citing

their presence on the Fundamentals of Engineering exam.

External faculty also expressed similar attitudes about the proper place

of computational tools, combining caution and excitement. Computational

tools provide great possible educational opportunities, but they stressed that
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Table 3.6: Perceived lack of application demotivates students.

Internal Bioengineer External Electrical Engineer
“They take [bioengineering]
because they thought it would
be less math. The attitude of
fear of math because it was dis-
connected.” [sic]

“I’ll ask when they’re interviewing: have you
ever had a class in math where someone in
the class asks ‘How is this going to apply?’
And they already know what I’m going to say,
before I can even get it out, their face contorts
and everything. And they’re already ready to
say ‘You just need to learn it.’ And so when
I’m interviewing it’s the survivors of that.”

ability to interpret the result of a computation was of utmost importance.

Without a firm understanding of “garbage in, garbage out,” computational

tools are risky (See Table 3.7).

Table 3.7: Students need mathematical intuition to interpret the output of
computational tools.

Internal Bioengineer External Electrical Engineer
“Students should be able to
work the simple problem on
paper so they get some in-
tuition. Most of the prob-
lems they’re going to deal with
are bigger than anything they
could do on paper, so they
need to understand how that
translates to computer and vi-
sualization tools.”

“We want to have some balance between man-
ual manipulation vs using computing power.
We want them to see the concept behind those
things. There’s always time for them to pick
up the more complex tool like integrals.com
and plug it in, but you don’t understand what
you’ve got when you get it out. You don’t
even understand if you made a mistake if it
kicked out a mistake if you don’t know what
you’re doing.”

Just like the internal faculty, the external faculty stressed the importance of

having fast, fluent fundamentals. They argued that automaticity with basic

skills leaves surplus cognitive capacity for thinking about the engineering

situation surrounding the math (Table 3.8).

In the same manner as at the original research site, external faculty stated

that long, complex problems usually required a lot of algebra, but only a small

amount of calculus (see Table 3.9), despite the volume of calculus required

to enter their courses.
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Table 3.8: Students need fast fundamentals to help them focus on
understanding problems.

Internal Industrial Engineer External Mechanical Engineer
“What I want students to have
is, on an exam, I don’t want to
be wasting my time with little
diddly calculations. . . so I can
allocate my mental resources
to understanding the hard part
of the problem”

“The math skill to where you’re not struggling
to solve a derivative, you’re not struggling to
solve this trig problem. Then when the prob-
lem is put in front of you, your brain energy
can be put towards looking at it from a con-
ceptual point of view and not ‘Oh my gosh
what formula can I use to solve this.’ ”

Table 3.9: Engineering courses need algebra more than calculus.

Internal Nuclear Engineer External Bioengineer
“The vast majority of it is algebra. A
little bit of linear algebra, they need to
pick that up themselves. The differen-
tial equations I give the solution.”

“Our students really are struggling
with just algebra. Solving long, com-
plex problems usually involves a lot of
algebra. It involves a little calculus or
whatever.”

3.5.3 Theme 3: Representation

Participants emphasized that a fluency with symbolic, graphical, and ver-

bal mathematical representations is an important aspect of engineering stu-

dents’ mathematical maturity [40]. Our participants stressed that students

who understand the material will be able to translate information from one

representation to another. In doing so, students demonstrate the ability to

identify and manipulate the most important information within a problem.

Many participants shared the belief that their engineering students do not

understand why it is useful to represent a physical system or data describing

a physical system using different types of visual representations. Similarly,

students do not recognize the mathematical forms they have seen when those

same forms are presented using variables from an engineering context.

The external participants again confirmed that students are highly at-

tached to the canonical (often algebraic) representation of the system. Stu-

dents are unable to connect the meaning in one symbolic representation that

they learned in mathematics to a representation in an applied course (Table

3.10). This inability to connect knowledge of already learned things to the
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new weakens student ability to do transfer, which is required for a prerequi-

site to serve its purpose: allowing the engineering instructor to pick up where

the mathematics instructor left off.

Table 3.10: Students need to be able to generalize symbolic knowledge
away from canonical representations.

Internal Physicist External Electrical Engineer
“Part of the problem may be con-
fronting symbolic expressions and gen-
eraliz[ing] from them. They may have
derivative of ln(x) in calculus, but
when they get the derivative of a
bunch of symbolic constants in front
of ln(r), it looks like a different prob-
lem to them.”

“y = mx + b, you mean that can be
vfinal = at+v0? You mean that can be
the same thing? And because the shift
of seeing those variables represented in
multiple ways.”

External faculty had similar complaints about student attachment to al-

gebraic expressions as those at the original research site. The reluctance of

students to move between representations to simplify or understand problems

is previously documented. Faculty comment on the reluctance of students to

use graphical representations (Table 3.11).

Table 3.11: Students need to know when to move between representations.

Internal Materials Engineer External Electrical Engineer
“[I wish students were good
at] graphical solutions to prob-
lems. Being able to make a
plot to solve a problem. With-
out me telling them plot these.
Just being able to do graphi-
cal solutions to problems, be-
ing able to immediately resort
to that technique.

“I think they just don’t like to draw pictures. I
think because it takes time that they feel isn’t
really productive. I don’t know. It’s a weird
mindset and I can’t get into it so I don’t really.
I don’t think they draw as many pictures as
they should. They want to get to a number
as quickly as possible. And for some reason it
doesn’t feel to them that a picture gets them
to that desired outcome.”

The emphasis on communication skills was slightly different between the

external faculty and internal faculty. External faculty emphasized commu-

nication with the general public, in addition to communicating with other

technical professionals.
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“We have a focus, the freshman year, and it’s tied into this math.

We have a focus on communicating the things they’re learning to

the general public, which you assume a 8th grade reading level.”

- External Electrical Engineer

3.5.4 New Finding

One observation that was much more common among the external partici-

pants was the verbalized expression of the likely endpoint of their students.

More of them explicitly stated things about how their students would likely

become bench engineers, and that a lot of mathematical techniques are useful

only to those bound for graduate school. For example, one civil engineering

faculty member said:

“ Like 95% of our students will become practicing engineers.”– External

Civil Engineer

3.6 Discussion and Limitations

This study has limitations that should be explicitly discussed. These are

limitations of this study in particular, which are in addition to the limitations

of qualitative research in general.

• This study did not capture any community college level pre-engineering.

Community colleges do play a large role in the dynamics of engineer-

ing math since so many engineering students take their mathematics

coursework at community colleges before transferring to universities to

complete degrees in engineering. Since community colleges teach few, if

any, engineering courses beyond prerequisite math and science courses,

they are further distanced from what mathematics engineering students

need to be successful in industry or academia. Consequently, we chose

not to recruit faculty from these institutions.

• The interviewer specifically discussed epistemological and symbol sense

issues during the interviews. Participants’ responses are influenced
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by prompting, and the symbol/representation theme may be over-

represented. This bias is difficult to resolve and must be taken into

consideration while examining the results.

• These interviews were single, isolated, one-hour events. The short time

scale and lack of prior reflection may have led to shallow interview

responses.

• In addition, there are the first coder’s biases as a researcher and as a

practitioner of mathematics, having an undergraduate degree in physics

and mathematics and a master’s in electrical engineering. The second

coder shared the same undergraduate training in physics.

• The selection of faculty who had already participated in a mathematics

reform seminar may be biased to be more dissatisfied with the mathe-

matics curriculum than the average engineering faculty member.

• The participants were all white and male, potentially limiting the di-

versity of perspectives on the importance of mathematics.

Given these limitations, the uniformity in the data across sample popula-

tions is an indicator that we have reached saturation. Despite many studies

by many authors in many disciplines and in many institutions [17, 18, 35, 66],

the core themes in this study are consonant with prior efforts. This level of

saturation of observation means that further qualitative sampling is likely

unnecessary. We feel confident that our core three themes are representative

of the majority opinion of engineering instructors in the United States and

Europe.

We did see one nuance in the perspectives from the external faculty at

smaller institutions: their students would be working as practicing engineers

and would need to be able to communicate with the general public. This

observation does appear to be related to the institution type, as the original

research site is a research-dominated environment, but this comment came

from the two smaller institutions in this sample. Finding these nuances un-

derscores the importance of seeking out dissenting and diverse perspectives.

Future work should explore how widely these perspectives are held using

broader survey measures that particularly aim to sample among demograph-

ics that were not adequately represented in this study.
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3.7 Conclusions

Even across varied types of institution, the general themes of engineering

mathematical proficiency hold to a surprisingly similar degree. Engineering

faculty place mathematical modeling as the principal mathematical compe-

tency for their engineering students. The mathematics that students must

know is changing as a result of the ubiquity of computers, but computa-

tional power must be tempered with solid fundamentals and sense-making.

Students must be able to represent and communicate mathematical ideas,

both to other engineers and to the world at large. This result corroborates

previous work [17, 18].

Mathematics filters engineering students from their degree program, with

many students not even reaching classes with engineering faculty. That may

not be the best use for mathematics within engineering, but it is the con-

sequence of the current curriculum and prerequisites. The consistency of

findings across these different methodological approaches suggests that we

can recommend potential changes to why or how we require mathematics

prerequisites that would be broadly accepted by engineering faculty.
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CHAPTER 4

STUDY C: ANALYSIS OF ENGINEERING
HOMEWORK PROBLEMS

To be effective and useful the design of mathematics courses for

engineering students must involve a continuous and informed

dialogue between engineering and mathematics departments to

which each must contribute fully. The process of dialogue is

essential since neither must be the dominant partner. The

difficulties usually arise not in deciding what is to be taught but

how and at what level. This is where the engineering department

must have a clear understanding of what is needed and be able

to communicate this effectively to the mathematicians.

J.O. Scanlan [67, Emphasis mine]

Because of the negative impact of mathematics on graduation rates from

engineering [6, 7, 8], we are striving to rigorously document what mathemat-

ics knowledge and skills students need to successfully enter their engineering

degree programs and inform the dialogue that Scanlan [67] calls for.

Most engineering programs require a prerequisite “calculus sequence” of

Calculus I, Calculus II, Calculus III, Linear Algebra, and Differential Equa-

tions [66]. Students must pass some combination of prerequisite courses

from this sequence to continue into core engineering coursework such as stat-

ics, dynamics, circuits, and thermodynamics [10, 11, 12, 68, 66]. Due to

the length of these prerequisite chains in the “math-science death march”

[69] (see Figure 4.1), engineering students may not take their first course

with engineering faculty until their sophomore or junior year [70, 71]. These

prerequisite mathematics courses often have high failure/withdrawal rates

[72, 73, 74, 75], and a failure in one of these courses pushes back a student’s

graduation by a semester or more. The strictness of this prerequisite chain

can particularly hamper female and minority students [71] and students who

are already disadvantaged due to disability or lack of access to high school

calculus [13]. Students who do not start calculus-ready or fail a course in
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the calculus sequence may struggle to complete an engineering degree before

financial aid runs out. Consequently, there is a need to explore whether there

are ways to shorten these prerequisite chains or bypass them [71] while still

supplying students with the foundation in mathematics that they need to

be successful in engineering. Can prerequisite structures be modified to in-

clude fewer stumbling blocks that may delay graduation in order to improve

engineering retention and graduation rates?

Figure 4.1: The prerequisite relationships at our institution leading to one
particular required junior-year course in aerospace engineering. Failing any
of the prerequisite courses delays entry into the required course.

In this study, we apply the mathematics-in-use technique to map the

knowledge learned in the Calculus I to when that knowledge is used in core

engineering courses Statics and Circuits. This mapping can provide evidence

that can guide curricular decision making and dialogue between engineer-

ing and mathematics faculty regarding prerequisites to reduce the number

of stumbling blocks for students. The purpose of this study is to document

a clear understanding of what is needed by engineering departments, which

mathematics departments can use to make informed decisions about their

courses, as well as to assist engineering departments in revising their own cur-

ricula and prerequisite requirements. This study maps out explicitly which

mathematical techniques taught in Calculus are applied in the follow-on en-

gineering courses, to show when and how often mathematical techniques are

applied. This study also examines how the application of those techniques

differs between prerequisite mathematics courses and follow-on engineering

courses.

4.1 Background

Prerequisite mathematics course performance usually has a moderate Pear-

son correlation (r = 0.4 to 0.7) with subsequent engineering course perfor-
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mance [76, 77, 78, 79, 80]. Given prerequisite structures, we might assume

that the content of these prerequisite mathematics courses is strongly linked

to that of subsequent engineering courses.

Ideally, the preparation from prerequisite courses allows an engineering

professor to pick up where the mathematics professor left off, applying the

knowledge of the previous course. A successful hand-off requires that stu-

dents will both be able to recall the mathematical knowledge from the pre-

requisite course and transfer that knowledge to engineering. Unfortunately,

students often do not remember content from previous courses. About 85%

of knowledge that has not been refreshed will be forgotten within a year

[81, 82, 83, 84, 85, 86]. To be effective, prerequisite courses must be located

temporally close to their follow-on material.

Additionally, students often fail to transfer mathematical knowledge to

other disciplines without special prompting [34, 9, 87, 77, 88]. Transfer is a

complex process that allows students to apply the knowledge learned in one

domain to another domain. This transfer process is complex and proceeds by

four classical mechanisms (identical rules, analogy, knowledge compilation,

and constraint violation) that mediate different modes of transfer. These

mechanisms are activated by the applied task itself as well as environmen-

tal, social, and personal situated cues [89]. Mathematics knowledge rarely

transfers to engineering if students believe mathematics to be unrelated or

irrelevant, as many engineering students do [20, 21, 29, 90]. When trans-

fer fails, successful students engage in reduplicated learning, constructing

an isomorphic, compartmentalized version of previously learned knowledge

that is activated by different context clues [91, 28]. For example, a student

may have one schema for determining the approximation accuracy of a trun-

cated Taylor series for y = arctan(x) in a mathematics context, and has

constructed a completely separated mental structure associated with deter-

mining the approximation accuracy for an approximation of the period of

a pendulum in a physics context [28]. Such students do not associate the

two mental structures with each other and thus prerequisites may not effec-

tively prepare students. Engineering faculty must reteach the content that

has been forgotten or compartmentalized. Given these issues with recall and

transfer, one questions whether engineering students are getting the right

mathematical content at the right time [66].
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4.1.1 Curricular analysis

Previous literature has examined the connections between mathematical con-

tent in the engineering curriculum [60, 92, 35, 61, 93]. Overall, these studies

agree that only a small portion of the mathematical content in the calculus

sequence is actually applied in engineering courses; application may be sepa-

rated from the prerequisite course by a year or more, and some applications

are taught before the underlying mathematics in sequence. However, one key

weakness of this part of the literature is a dependence on faculty self-reporting

to document curricular connection. Most engineering faculty largely do not

know the particular content taught in a given mathematics course [60, 61].

Furthermore, faculty self-reporting is often inaccurate because a professor’s

perception often fails to match their practice. For example, one study found

that while 68% of calculus teachers claimed in a survey to require explana-

tions frequently on their exams, analysis of the exams themselves revealed

that only 3% of all problems involved explanation [94, 33]. Because faculty

self-report may not reflect student experience, we argue that research into

curricular alignment necessitates an alternate means of inquiry to fill this

gap. In this study, we chose to examine homework as a course artifact, due

to homework’s role as the assessment students engage with most often, and

with the most diversity in content coverage.

4.1.2 Assessment analysis

Previous research on application of calculus in engineering homework prob-

lems reveals that the way that calculus is applied in engineering may differ

greatly from how that same calculus was covered in calculus courses. One

study [95] found that in statics, students may not recognize that the integra-

tion process relating shear force to bending moment is even the same object

as the integration they learned in calculus (a failure of transfer) [95]. Analy-

sis of tasks in engineering courses has shown that an introductory electrical

engineering course uses primarily the “mathematics of physical quantities”

(management of units and orders of magnitude) which is taught neither in

high school mathematics courses nor in university-level mathematics courses

[96]. These previous works exhibit a gap: analyzing single problems or first-

semester courses lacks the curriculum-wide scope to compare calculus as a
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whole course against the curriculum of courses that follow it.

4.1.3 Research questions

While there have been studies that have examined the alignment of the en-

gineering and mathematics curriculum through faculty self-reporting, these

suffer from accuracy problems. And studies focused on homeworks examined

insufficiently large and comprehensive scope of problems to examine ques-

tions at the curricular level. Because of the accuracy problems with faculty

self-reporting, and scope problems with homework problem analysis, results

from previous work may be ineffective at enacting the curricular change that

research hoped to promote. This evidence presented in these previous works

may be less effective when engineering and mathematics departments negoti-

ate over curricular revision. In the spirit of creating “clear understanding of

what is needed”, this study seeks to provide more accurate, more comprehen-

sively scoped articulation of engineering’s mathematical needs and expands

the previous literature by analyzing the ways that calculus is applied in

homework problems in two core engineering courses.

Research Question 1) Which concepts and skills from Calculus I are

applied in engineering statics and circuits homework?

Research Question 2) How are calculus skills applied in statics and

circuits homework?

4.2 Methods

4.2.1 Mathematics-in-use

We employed the “mathematics-in-use” technique for the analysis of course

artifacts [1]. This technique involves solving a problem completely without

skipping a single step, including steps that might be obvious to an expert. It

also requires exploring many alternate solution paths. Mathematics-in-use

analyzes each problem for the concepts and skills in calculus that are required

to solve the problem. Concepts are low-level ideas about mathematics (e.g.

“derivatives express a rate of change”). Skills are the procedural sequences

of steps used to solve a particular type of problem (e.g., “how to compute the
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derivative of a polynomial”). The resulting data is a narrative description of

the problem solution (see Figure 4.2), a list of the concepts and skills that

are needed to solve that problem, and a summary of which concepts and

skills were applied (see Table 4.1). The concepts and skills for calculus were

taken from the list generated by Czocher [1], derived from interviews from

veteran calculus instructors [97]. An example of the analysis of one problem

is shown in the following section.

4.2.2 Example of mathematics-in-use

Many problems have multiple possible solutions to be documented. Concepts

and skills from calculus are bolded when they appear in the analysis. The

bolded items for each problem are summarized in Table 4.1.

Figure 4.2: An example problem prompt from statics for the
mathematics-in-use analysis. Analysis of this problem can proceed via two
common paths, “the calculus way”, and “the algebra way” which makes use
of centroids as the instructor solution presents.

The Calculus Way

Since the load is distributed, every little chunk of moment comes at a different

location. The total moment is made of a bunch of small pieces of moment

(concept: integral).

∆M = ∆F × r

We must find a way to make our variable of integration x since that is the

part of the geometry we can vary. The small chunk of force will be related
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to the loading-per-unit-length at that its location.

∆F (x) = w(x)∆x

We must construct an algebraic expression for the loading w(x) from the

diagram using point-slope form for lines. If we let the maximum value of

w(x) be P , we obtain a linear expression.

w(x) =
P

L
x+ 0

Since more advanced x’s have shorter lever arm, the lever arm r is related

to the coordinate x by r = L − x. The combination of all these algebraic

expressions yields

∆M = +(
P

L
x)(L− x)∆x

The sign is chosen to be positive since the moment is counterclockwise.

We then use concept of integration to add up all the little pieces to get a

continuous whole

∑
∆M =

∑
+(
P

L
x)(L− x)∆x

The sum becomes an integral and the differential element ∆x becomes dx.

The first piece is located at x = 0 and the last piece at x = L

M =

x=L∫
x=0

+(
P

L
x)(L− x)dx

Distribute to make the expression easier to integrate

M =

x=L∫
x=0

+(−P
L
x2 + Px)dx

We must apply the technique of integration: polynomial.

M = −1

3

P

L
x3 +

1

2
Px2

∣∣∣x=L

x=0

M = −1

3

P

L
L3 +

1

2
PL2 − (−1

3

P

L
03 +

1

2
P02)
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M =
1

6
PL2

The Algebra Way

The total force from a distributed load is the area of the triangle (area/volume)

with width L and height equal to the maximum value of w(x) being called

P .

F =
1

2
× base× height =

1

2
PL

.

A distributed load exerts its moment at the location of the centroid, which

according to the given formula for right triangles is 1
3

of the way from the

right angle, so

r =
1

3
L

Combining these algebraic expressions yields

M = r × F = +|r||F | = (
1

3
L)(

1

2
PL)

The sign is positive since the moment is counter-clockwise.

M =
1

6
PL2

4.2.3 Course content analysis

All homework problems in one semester for a course under consideration are

analyzed this way using mathematics-in-use. Groups of related problems on

a given topic from the engineering course have their tables combined. Topics

are broad ideas found in tables of contents, syllabi, or at the top of lecture

slides (e.g., “Bending Moments”). When combining the tables for each topic

in the course, one constructs a visual chart that documents the usage of

calculus concepts and skills over the entirety of the course content (see Figure

4.3 for the chart for the Differential Equations course). This format lays bare
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Table 4.1: The resultant table contribution for the example
mathematics-in-use problem. An • indicates the skill is used along the
instructor suggested problem pathway, and a ◦ that the skill could be used
on an alternative pathway. In this case, the problem does not use calculus
along the instructor-selected pathway.

CONCEPTS SKILLS
Derivative Derivative Computations
Integral ◦ Integration Techniques ◦
Fundamental Theorem Limit calculations
Limit sequences/Series
Approximation Algebraic Expressions •
Riemann sums Area/Volume •
Parametric/Polar Parametric Equations
Continuity Polar Coordinates
Optimization Trigonometric Manipulations

Logs & Exponentials
ε− δ
Listening & Reading Comprehension
Definitions & Notation
Limit Calculations

the most immediately recognizable content from a course (the topics), but

shows the base elements from the prerequisite Calculus course required to

solve that content.

4.2.4 Data selection

We have chosen to study how calculus skills/concepts are applied in two high-

enrollment core engineering courses: Statics and Circuits. These are often the

first engineering courses that students take following the calculus sequence

and are considered the gateway to upper-level engineering courses. Many

departments require Statics, Circuits or both. The content of these Statics

courses is consistent between institutions [98] so the analysis should gener-

alize well. At the original research site, the median incoming engineering

student has an unusually high ACT math of 34 (99th percentile nationally)

and most students have AP calculus credit. We expect that the calculus con-

tent here to form a conservative upper bound on the amount of calculus used

elsewhere due to the high level of calculus-readiness among our freshmen.

Unlike other work that analyzes interviews or workshops with faculty [18,
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Figure 4.3: An example matrix for the course Differential Equations [1].
Topics (columns) come from the follow-on course, Differential Equations.
Concepts and skills (rows) come from the prerequisite Calculus course(s). A
filled in square in the table indicates that the postrequisite course topic in
its column applies the calculus concept/skill from its row. Columns with
many dots are topics that require many techniques of calculus to
understand and solve. Columns with no dots are topics that do not make
use of calculus. Rows with many dots are concepts/skills from calculus that
are frequently required to solve problems in the course. Rows with no dots
(pink) are concepts/skills from calculus that are not applied in this course.
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17, 64], we have chosen to analyze homework problems. Faculty testimony

may include knowledge of the subject that is not explicitly incorporated into

the course in the same way as homework. These homework assessments are

concrete representations of values, standards, and expectations that students

are expected to achieve [99]. We analyzed homeworks, rather than exams,

because homework is the primary formative assessment. Homework problems

are also more numerous than exam questions and more likely to contain

lengthy calculations.

Statics

Statics (TAM 211) is required by 7 of the 13 engineering majors on our

campus, and leads to required mechanics classes like Mechanics of Materials,

Fluid Mechanics, and Dynamics. Hundreds of students take the three-credit

TAM 211 course each semester at our institution. Statics typically has a pre-

requisite of first-semester calculus, and is often taken in the sophomore year,

since a calculus-ready student must take Calculus I, first-semester physics,

and is then permitted access to Statics. The analysis was carried out by Brian

Faulkner and another graduate student with experience in materials science.

The homework problems and instructor solutions were obtained from the in-

structor at our institution. The sample had 12 homework assignments with

a total of 84 problems. The topics list was taken from the homework titles

from the syllabus publicly available on the course website.

Circuits

Circuits (ECE 205) is required by 5 of 13 engineering majors on our campus.

The ECE 205 course is a service course for non-electrical and non-computer

engineers. Hundreds of students take the three-credit ECE 205 course each

semester at our institution. We chose circuits-for-nonmajors because it is

required by more departments and likely more representative of institutions

that offer only one circuits course. Circuits requires two semesters of calculus

as a prerequisite, and is often taken in the sophomore year. Analysis of the

Circuits problems was conducted by me and another graduate student in

electrical engineering. The topics for mathematics-in-use were taken from

the course syllabus publicly available on the course website. The sample
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has 12 homework assignments with a total of 70 problems. The homework

problems and instructor solutions were obtained from the instructor.

4.2.5 Trustworthiness

I am an engineering-mathematics education researcher with a background in

physics, mathematics, and electrical engineering. The data were primarily

analyzed by me with the mathematics-in-use technique. Two random prob-

lems in each lesson in statics were re-coded by a second researcher (with a

materials science background). The circuits problems were re-analyzed by

a third researcher (with an electrical engineering background) in the same

fashion. An inter-rater reliability of 87% was achieved.

Member checking [100] was performed by showing the resulting topic-

concept/skill chart to the course instructors and asking if the evaluation

seemed correct. The instructor of the Circuits course indicated that the

topic-skill/concept table matched their perception of the mathematical con-

tent course. The instructor for Statics similarly confirmed that the table

matched their perception of the course.

4.3 Results

The outcomes of the analysis for Statics (see Table 4.2) and Circuits (see

Table 4.3) are summarized in the following section. Given the status of

calculus as a prerequisite to these core engineering courses, the quantity and

variety of calculus applied in these courses is strangely small and limited.

4.3.1 Statics

As can be clearly seen in the Table 4.2, the majority of the mathematics

applied in Statics is algebra, geometry, and trigonometry (•’s in Table 4.2).

Very little calculus is used. Of all the problems in an entire semester of

statics (84 problems), just 7 (8%) of these problems require calculus. Five of

those 7 are from a single lesson (internal forces).

In our Statics course, energy functions and unstable equilibrium were not

covered, leading to the lack of derivatives and optimization as observed in
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statics by others [50].

4.3.2 Circuits

Of the 70 homework problems in one semester of Circuits (see Table 4.3), 14

of them (20%) require calculus concepts or skills to solve. Most calculus (10

of the 14) is concentrated in two lessons, the first on LR and RC circuits, and

the second on LRC circuits. Although Calculus II is an indirect prerequisite

for Circuits, and sequences & series and parametric/polar are two primary

topics in Calculus II, neither of these two topics occurs in Circuits.

4.3.3 Comparison of the use of calculus ideas

In addition to the limited application of calculus ideas in both Circuits and

Statics, the way those concepts are used also varies between the mathemat-

ical prerequisite course and the engineering courses that follow it. These

differences are summarized in Tables 4.4, 4.5, 4.6, 4.7 and 4.8. These ideas

are further elaborated upon in Section 4.4.

4.4 Discussion

4.4.1 Research question 1

Which concepts and skills from Calculus are applied in engineering

statics and circuits?

The skills from Calculus that are applied in Statics are low in both abun-

dance and diversity. Only 8% of problems in statics apply calculus in any

way, and the portion of calculus that is applied is very limited. Only a tiny

fraction of the content taught in calculus is used in Statics.

The situation in Circuits is similar. Only 20% of problems in Circuits

use calculus, but the diversity of concepts that are called upon in Circuits

is moderately diverse. Integration, differentiation, and limits all occur in at

least one lesson as a real tool. Reiterating, this circuits course is a service

course offered to non-electrical engineering students. The circuits course for
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Table 4.2: Calculus concepts and skills in Statics. A concept or skill from
calculus (row) in a statics lesson (column) is indicated by a • on the
instructor path or a ◦ on an alternative path.
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Table 4.3: Calculus concepts and skills in Circuits. A concept or skill from
calculus (row) in a statics lesson (column) is indicated by a • on the
instructor path or a ◦ on an alternative path.
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Table 4.4: Mismatches in how the Derivative concept is taught in Calculus
and applied in Circuits and Statics.

Derivatives in
Calculus [1]

Derivatives in
Circuits

Derivatives in
Statics

Synthesis

Computation;
rate of change.

Derive current
to find voltage
or vice versa in
inductors and
capacitors;
match to an
initial condition
for I’(t).

Infinitesimal
displacements in
virtual work;
check integral
calculations.

Derivatives are
pre-defined
relationships
between
physical
quantities.

Table 4.5: Mismatches in how the Integral concept is taught in Calculus
and applied in Circuits and Statics.

Integrals in
Calculus [1]

Integrals in
Circuits

Integrals in
Statics

Synthesis

Antiderivative;
measurement of
area; volume
and
accumulation.

Integrate
current or
voltage to find
the other in
capacitors and
inductors.

Integrate load
density to get
shear force;
integrate shear
force to get
bending moment
in beams.

Integrals are
pre-defined
relationships
between
physical
quantities.
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Table 4.6: Mismatches in how the Fundamental Theorem of Calculus
concept is taught in Calculus and applied in Circuits and Statics. The
usages of the concept overlap very little in the two courses.

Fundamental
Theorem in
Calculus [1]

Fundamental
Theorem in
Circuits

Fundamental
Theorem in
Statics

Synthesis

Formal
justification for
using
antiderivatives
instead of
definite
integrals;
shortcut for
computing
certain
derivatives and
definite
integrals.

Produces
parameter for
initial currents
in LRC circuits;
inverts
derivative
relationships
into integral
relationships
when desired
quantity is
inside either
operator.

Virtual work
justification.

N/A

Table 4.7: Mismatches in how the Limit concept is taught in Calculus and
applied in Circuits and Statics.

Limits in
Calculus [1]

Limits in
Circuits

Limits in Statics Synthesis

Algebraic
computation;
exposure to
formal (ε− δ)
definitions; basis
for derivative
definition

Evaluate high
frequency
response of
circuits.

Evaluate right
and left side
values around
point loads.

Formalism of
limits is not
applied, only
very simple
limits are
evaluated.
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Table 4.8: Mismatches in how the Continuity concept is taught in Calculus
and applied in Circuits and Statics. The fact that different physical
quantities have different continuity constraints is a key feature in both
courses.

Continuity in
Calculus[1]

Continuity in
Circuits

Continuity in
Statics

Synthesis

Property to be
checked.

Current in
capacitors and
inductors
cannot change
instantaneously.

Shear force and
bending moment
only have jumps
at locations of
point loads,
applied moments
and joints.

Guarantee
desirable
physical
properties.

electrical engineers may use much more calculus. But this course is likely

representative of service circuits courses, and at institutions that offer only

one circuits course.

The low percentage of problems that require calculus sheds light on the

likely source of the correlation between performance in engineering courses

and their calculus prerequisites. Even optimistically assuming perfect trans-

fer of knowledge, calculus can account for a share of the correlation at most

equal to its percentage of the assessments. So in cases where the correlation

coefficient (often r = 0.4 to 0.7 in the literature [76, 77, 78, 79, 80]) is higher

than the percentage of problems that use calculus (0.08 and 0.2 in this work),

we can conclude that much of this correlation comes from a confounding vari-

able. A likely candidate would be algebra skills, since calculus courses and

engineering courses both require large amounts of algebraic calculation.

This result does not have the power to suggest curricular change to prereq-

uisites. However, it does suggest a question: Given the high engineering

student attrition in calculus, what is the minimum amount of calcu-

lus content in an engineering course that justifies requiring calculus

as a prerequisite?

Answering this question is beyond the scope of this work, as it depends on

many contextual factors. Course grades are often more determined by exams,

which may not have a similar concept/skill distribution to that on the home-

work. Other sources of assessment such as projects or participation may not

depend on calculus at all. However, the assertion “calculus must be a strict
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prerequisite for statics because statics uses calculus” might be overly simplis-

tic. Perhaps a leaner calculus-like course might provide adequate preparation

while consuming less time in the curriculum. Some programs, such as the

Wright State Model, have explored modifying the first-semester mathemat-

ics curriculum to increase alignment between engineering and mathematical

preparation [15].

Recall and Transfer

Most engineering students will forget approximately 85% of mathematical

concepts they learned in calculus after one year [81, 86, 85, 82, 83, 84]. Due to

this forgetting, students might not be able to recall knowledge from calculus

by the time it is applied in engineering courses. In Table 4.9, we elaborate

on some of the possibilities of mathematical concepts from Calculus 1 and

how they are applied in statics and/or dynamics.

Table 4.9: A mock-up of the consequences of several curricular cases, using
the prerequisite chain from Calculus I to Statics to Dynamics as an
example. (Dynamics was not analyzed in this study; this table is merely a
discussion aid.)

Example

Skill/Concept
Calculus I Statics Dynamics IMPLICATION

A
Integration of

polynomials
• • •

Longitudinal

reinforcement

B
Computation of

derivatives
• • 85% Forgotten [81]

C ε− δ limit • Pure math?

D Quotient Rule • Obsolete?

The result is three types of cases with their own implications for students’

ability to recall mathematics concepts and thus performance in engineering

problems.

Case A

Content in row A is repeatedly refreshed and re-learned through new con-

texts. The prerequisite system functions as intended, assuming adequate

transfer.
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Case B

Content in row B does not occur in Statics, but does occur in the following

course, Dynamics. Techniques taught in Calculus that are not refreshed

may be forgotten by the time they must be recalled in Dynamics. However,

structured review of content can provide longitudinal reinforcement in off-

semesters and reduce how much is forgotten [101, 102], and is not as drastic

a revision as full curricular reform. For case B, the skill of computation of

derivatives is not practiced, and may be forgotten by the time students reach

dynamics. To remedy this lapse in reinforcement, instructors might alter

exercises to take the derivative from bending moment to shear force, rather

than exclusively integrating from shear force to bending moment.

Case C

Mathematical content in row C may not have application anywhere in the

sequence. It may be targeted at mathematics majors. For example, the

formalism of the ε− δ definition of the limit may not be seen again.

Case D

Content that is not applied in subsequent courses might also be an obsolete

topic relegated to computers and no longer in active use in engineering, such

as exact equations and integrating factors commonly taught in Ordinary

Differential Equations courses [3]. The obsolescence explanation is suggested

by interviews with engineering faculty [17, 18, 61, 77, 64].

4.4.2 Research question 2

How are the skills that are applied in Statics and Circuits used

differently than in calculus?

Of the content from calculus that is applied in Circuits and Statics, the

usage and nature of that content knowledge vary considerably. The following

section illuminates a few of these differences. For the following section, it is

important to note that the topic coverage of calculus courses around the

nation is very standardized [103]. This high degree of uniformity, reinforced

by market leader textbooks such as Stewart’s Calculus [55] allows us to make

conclusions about calculus teaching as a whole. There are certainly some

variants such as the Wright State program [15] but these are a small minority.
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Complexity of Functions

In Calculus, students learn a set of rules powerful enough to take the deriva-

tive of any combination of functions. Calculus students learn how to differ-

entiate and integrate the six standard trigonometric functions, exponentials,

logarithms, and roots. Standard techniques include the chain rule for func-

tion compositions like
√

sin(x2), the product rule for multiplied functions

like ex ·
√
x, and the quotient rule for division of functions like sin(x)

x
[55].

Second semester calculus inverts these techniques for integration, covering u-

substitution, trigonometric integrals, and integration by parts. Only a subset

of these practiced skills find application in Circuits or Statics.

Statics coursework does not require students to use any type of deriva-

tives; students do not use the chain rule, product rule, or quotient rule at all.

In contrast, students do use integration in statics. However, students typ-

ically only integrate piecewise polynomial functions and completely ignore

functions such as exponentials, logs and roots.

Circuits uses mostly polynomial functions, along with exponential func-

tions. The chain rule is limited to functions of the form eax. The product

rule appears just once in Circuits (for the function x · eax). The quotient rule

is entirely absent in Circuits. Surprisingly, Circuits (for non-electrical ma-

jors) never takes the derivative of a sinusoid to see the voltage-leads-current

phase relationship in inductors, using frequency domain instead. Circuits

uses none of the advanced techniques of integration taught in its prerequisite

Calculus II.

This result corroborated evidence with interviews with engineering faculty,

who stated that only a small fraction of the rules learned in calculus are

used regularly in engineering [17, 61, 64, 91, 18]. Only the simplest rules of

calculus are applied in Circuits and Statics. While previous results have also

made this point, it is important to stress just how simple “simple” is. The

most complex function encountered would be a simple homework exercise in

a calculus class. Much class time in Calculus is dedicated to techniques that

do not reach application, at least not immediately.

77



Continuity

The continuity concept has interesting epistemic mismatches between cal-

culus and the applied courses. Continuity appears as a necessary concept

in 4/7 of the statics problems that use calculus, and in 7/14 of the circuits

problems that use calculus. In Calculus, continuity is just a “property to be

checked” [1]; students are tested on evaluating whether a given function is

continuous.

In Statics, continuity determines what is allowed. Students must manage

which quantities are allowed to be discontinuous, and under what conditions.

In Statics, the shear force on a beam can jump only (be discontinuous) at

the location of a point load, and the magnitude of that discontinuity must be

equal to the size of the point load. Continuity constraints must be applied

to solve many problems in statics, particularly with piecewise functions.

In Circuits, the current in a resistor may change instantaneously (can be

discontinuous) but the current in an inductor cannot change instantaneously

(may not be discontinuous). Management of discontinuity is a key that

enables the solution of several problems, providing information that makes a

system solvable.

In both Circuits and Statics, most integration and differentiation acts on

piecewise (often piecewise linear) functions. This use contrasts with instruc-

tion in calculus, where piecewise functions are covered, but are not a focus

of instruction.

Management of continuity concerns is particularly important for interact-

ing with these piecewise functions in Circuits and Statics (see Figure 4.4).

When integrating current with time to obtain charge transferred, for instance,

the total charge must be continuous. This use of continuity is most evident if

students have an algebraic expression for each piece of the piecewise function.

The result of one integration, combined with continuity constraints, becomes

the +C used for the next piece. The continuity relationships between seg-

ments are always related to physical events or locations, such as the presence

of a point load in Statics or the moment a switch is thrown in Circuits.

This use of continuity contrasts with the types of integration and differen-

tiation practice of much of calculus, where most functions are single algebraic

expressions rather than piecewise functions. Also in Statics and Circuits, the

explicit algebraic expression for these piecewise functions is rarely given. An
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Figure 4.4: Typical functions from Circuits (left) and Statics (right) from
the instructor solutions. Piecewise functions containing quadratic or linear
segments are the norm.

expression must be obtained from a given graph, or the function must be

integrated graphically rather than symbolically. The solution is expected in

graph form, not analytic/algebraic form.

When doing these piecewise integrations, more complicated kinds of con-

tinuity are sometimes encountered. At the location of an applied moment

(i.e., a point-like twisting force) or a reaction moment at a fixed joint in

Statics, there is a kind of discontinuity beyond first-semester calculus (Dirac

δ function) that is not represented in the shear diagram. This lack of repre-

sentation is a key source of error when applying integration from shear force

to bending moment [104].

This application of continuity and its importance is consistent between

these statics and circuits. This consistency may indicate that increasing the

emphasis on discontinuous and piecewise functions in the teaching of Calculus

(though at the expense of other content) may better prepare students for

subsequent coursework.

Usage of Limits

In calculus, limits form the first few weeks of instruction. The definition

of the limit may be presented. Students learn various rules for evaluating

limits for many sums and products of limits, as well as rules for handling

ill-behaved indeterminate forms.

In Statics, the breadth of limits encountered is much more narrow than
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that learned in calculus. Limits only appear once in Statics. One homework

problem asks the student to obtain a numeric value for the (discontinuous)

shear force just to the right/left of the point load at point a. This problem

uses the v(a+) notation from calculus, though any “limit” is simply evaluation

of the right side of the piecewise function.

Circuits use limits to examine the response of filters at high frequency.

However, all limits in this course use only the rules of very large numbers:

If A � b, then A + b ≈ A. This number system is commonly called the

Extended Real Line. Only the limit at infinity appears in Circuits. Advanced

techniques like L’Hospital’s rule for ill-behaved functions such as Sinc(x) =
sin(x)

x
(an important function in signal processing) are absent. The most

complex limit students must evaluate is

|H(ω =∞)| = lim
ω→∞

ω√
ω4 + Aω2 +B

≈ ω√
ω4 + Aω2

≈ ω√
ω4
≈ 1

∞
≈ 0

The application of limits in Circuits and Statics is much simpler and less

mathematically rigorous than the limits in Calculus courses. Historically,

this limited application makes sense: Calculus had been used to develop

beam theory [105] nearly a century before the first epsilon-delta limit proof

was published [106]. Stronger, more rigorous formulations of limits were a

response to strange, paradoxical corner cases that defy the intuitive notions

of limiting behavior. However, the simple, well-behaved physical systems un-

der consideration in these early courses are described by simple, well-behaved

functions. The ill-behaved functions that make mathematically rigorous def-

initions worthwhile are not encountered.

Reduction to Algebra

Our analysis technique, mathematics-in-use, follows all the solution paths

that a student might have access to by this point in their education. Many

problems in both Statics and Circuits could be solved using the methods

taught in calculus (in the charts, the ◦’s). However, the instructor solution

to these problems does not use calculus and is a purely algebraic solution.

Upon reflection, this preference for algebraic solutions makes sense. Calculus

is more difficult than algebra, so engineers who must do many calculations are
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incentivized to reduce a calculus-based problem to an algebraic one whenever

possible. This phenomenon has been seen before; students often reduce to

algebra even when the pre-computed algebraic expression is inappropriate in

Physics II [77].

In Statics, many problems involving bending moment are in principle prob-

lems of integration, but are not in practice from the students’ perspective.

Most of the “integrations” are over simple rectangular or triangular func-

tions (piecewise linear functions); the “integrals” for shear forces use basic

geometry, not calculus. The integral may be the area under the curve, but

that interpretation of calculus only matters when the functions of interest

are curved. Computation of bending moments also avoids use of calculus

through centroids. Students use a provided table of centroids combined with

algebra, rather than calculus, to compute bending moments. One can com-

pare directly the length and complexity of these problems as seen in the

example mathematics-in-use (see Section 4.2.2).

When discussing loads and power in the Circuits course, students must

calculate which load would receive maximum power from a given source.

One could construct an expression for the power delivered as a function

of the source load resistances, take its derivative with respect to the load

resistance, set this expression equal to zero, and solve for the load resistance,

just as optimization problems are taught in calculus. However, the instructor

solution to the homework simply states as a fact that matching impedances

produce the maximum power. The student is not expected to perform any

optimization.

4.4.3 Limitations

We must interpret these results conservatively.

• This analysis covers only two courses. Other core courses in engineer-

ing, science, or business may apply more or different calculus. For

example, though sequences and series do not occur in either of these

courses, they are essential tools in signal processing. These results can-

not suggest any curricular change. A similar study of greatly increased

scope could make credible suggestions.

• This study’s data makes no claims about how much of this required
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calculus knowledge is remembered by these students. We also cannot

speculate about the quality of successful transfer of concepts/skills from

Calculus to Circuits/Statics.

• This study describes only these classes as they are. We cannot infer

from this data why they are that way, or what they should be like. Engi-

neering faculty may wish to use more estimation/approximation [107],

but feel they cannot, or may have decreased the quantity of calculus

applied in the course in response to falling mathematical competence of

the typical student [66]. A study of an entirely different methodology

could probe these questions.

• This analysis does not permit examining topics that are not covered

due to issues of topic sequencing. For example, in this analysis, no

linear system bigger than 3 × 3 was encountered. This absence may

be because techniques for larger systems are taught in linear algebra,

which often is taught after Circuits or Statics.

• This study is limited to a single offering at a single institution. Other

instructors may place more or less emphasis on a topic, or explore

it more mathematically. However, due to the high level of calculus-

readiness at our institution, on average other institutions will probably

use even less calculus in their Circuits and Statics courses.

• This study’s data does not let us infer why a particular course is a

prerequisite. It may be a prerequisite for reasons not having to do with

content, such as gate keeping or practice with more fundamental skills.

A completely different methodology would be necessary to investigate

this aspect.

• This analysis does not account for successive re-learning. After all,

isn’t forgetting and re-learning essential to long-term learning? True,

but the timescale for relearning effects is typically on the order of days

or weeks [108]. This contrasts with the 6-18 month time spans between

learning and re-learning for mathematical content in the engineering

mathematics sequence.

• This analysis investigates only homework problems, but exams usually

make up more of the student’s grade. In courses where exams differ

82



greatly from the homework, this kind of analysis is inaccurate.

4.5 Conclusions

From these data, we cannot be too hasty to make changes or suggest reform.

There are many factors that influence prerequisite structures, the content of

courses, and how students progress through it all. The multi-faceted needs

of departments and the multiple objectives of introductory mathematics (to

serve engineers, scientists, mathematicians, and general education) further

cloud any attempt to make policy suggestions. However, these results can

suggest a shape for future research and discussions. The relatively narrow

span of applications may be a boon. Many teachers of calculus feel they are

“in a rush to cover everything” [109, 110], even lecturing during recitation

times to cover all the content in the calculus syllabus [111]. Perhaps these

teachers could relax, slow down, and deepen some content at the expense of

less-vital advanced techniques [112, 113].

Specific, detailed mapping of the mathematical needs of the engineering

curriculum could allow engineering departments to more clearly communicate

what is needed to mathematics departments. Mathematics faculty are aware

that engineers are dissatisfied with calculus outcomes and want to change to

please these client disciplines, but are themselves not well-versed enough in

the applications of calculus to do so alone [77, 91]. Previous studies have

found that both mathematics and engineering faculty are ignorant of what

goes on in the others’ classrooms [61, 60, 91, 114]. Future studies could repeat

this analysis for more courses such as introductory physics, chemistry, dy-

namics, and thermodynamics. A sufficiently large collection of such analyses

could not only provide powerful evidence for reform, but also assist engineers

in arranging longitudinal reinforcement of mathematical topics within their

own courses. We can work towards a future where students in mathematics

courses need not ask the ever-present question “When am I ever going to use

this?”
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CHAPTER 5

STUDY D: SURVEY OF ENGINEERING
STUDENTS BELIEFS

5.1 Introduction

Due to the length of these prerequisite chains in the “math-science death

march” [69], engineering students may not take their first course with engi-

neering faculty until their sophomore or junior year [70, 71]. Since students

do not interact with engineering faculty early on, they often wonder if their

math courses are actually relevant or are just a barrier to get through. As a

consequence, students often form deleterious beliefs about mathematics and

its relationship with engineering [20]. These beliefs may be contributing to

the problems of dropout, as students who do not believe mathematics is rel-

evant will be less interested, less motivated, and exert less effort, exacerbat-

ing other problems. Due to the difficult nature of prerequisite mathematics

courses, and their position at the root of the prerequisite tree, any lowering

of motivation in these courses as a result of low perceived relevance could

have great consequence for students’ ability to graduate in four years.

5.2 Background

5.2.1 Previous work on why students’ attitudes about the
relevance of mathematics to engineering matter

Engineering students hold varying beliefs about the relevance of their math-

ematics coursework to engineering. Belief that mathematics is not relevant

to engineering correlates with increased rates of dropout from engineering

[115]. Many students believe that mathematics is not connected enough to

engineering, and having high relevance beliefs is an important motivational
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factor to encourage diligent study and learning [116]. Higher relevance beliefs

are correlated with higher rates of transferring mathematical knowledge to

engineering and being able to successfully apply it in that new context [117].

5.2.2 Previous work on what attitudes are in what stage of
college

Generally, engineering students’ attitudes towards mathematics (particularly

their belief in its relevance to engineering) change as they progress through

the engineering curriculum from freshmen to seniors.

In general, incoming freshmen engineering students do not believe their

mathematics coursework is relevant to engineering [118, 119, 120]. Students

may not even realize there is any relationship between mathematics and en-

gineering until after their first year of study [84]. Unsurprisingly, students

rate math for which they have not yet seen any applications as being irrele-

vant to engineering [121]. Students perceive mathematics as unconnected to

engineering design [70]. Over the course of the freshmen year, many engi-

neering students’ relevance beliefs actually get lower than when they entered

college [122, 123]. This phenomenon is not entirely uniform, as freshmen

in an engineering-math course had relatively high relevance beliefs towards

mathematics [2].

Upperclassmen have more mixed opinions of the relevance of mathematics.

According to some studies, juniors and seniors have low relevance beliefs [93,

124] and believe that their mathematics coursework had too few applications

relevant to engineering [111]. However, other studies [125] indicate that they

believe mathematics to be very relevant to engineering. In further interviews,

students reported that the content of math courses is mainly procedural, but

that conceptual math is more relevant to engineering careers, and to their

engineering studies [126].

The previous literature undersamples the sophomore year, focusing on

freshmen and seniors. However, students begin taking core engineering courses

in the sophomore year. It may be exposure to these applied courses that

shapes students’ attitudes towards mathematics. Furthermore, the sopho-

more year directly follows the high-attrition freshman year. Examination of

the sophomore year can shed light on whether the difference between fresh-
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man and senior surveys is a result of student attrition.

5.2.3 Research questions

Research Question 1) How relevant do sophomore engineering students

believe their mathematics coursework is?

Research Question 2) Is this answer related to how much calculus they

remember?

5.3 Methods

To answer these research questions, we surveyed engineering students about

their beliefs regarding the relevance of their mathematics coursework to their

engineering studies. The survey instrument was taken from Flegg et al.’s

work [2]. To expand on this instrument, we added items to the survey about

what “being good at math in engineering” means to students. To answer the

second research question, we added a conceptual calculus assessment [127,

128]. This instrument requires no calculations, only graphical evaluations of

functions and derivatives and concept knowledge of integrals and limits.

The structure of the survey instrument was as follows:

• Survey items [2] (10 five-point Likert scale items)

• Additional survey items created by the authors (7 five-point Likert scale

items)

• Conceptual measure of calculus knowledge (11 true/false items, 14 mul-

tiple choice items) [128]

5.3.1 Institutional context

This study was carried out in a large, elite, American, research-intensive

university with a student population of about 44,000 students. This study

compares to Flegg et al.’s work [2] with a large, elite, Australian, research-

intensive university with about 48,000 students. With similar institutional

context (other than country), we can expect to be able to compare the results

reasonably.
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5.3.2 Participant selection

Participants were students currently taking Engineering Statics or Engineer-

ing Circuits during the Spring semester of 2018. Six hundred students were

solicited by email through the course instructor. A total of 66 students re-

sponded (response rate 11%). Students were incentivized to participate by

entry into a raffle for one of four $100 gift cards. Demographic characteris-

tics of the respondents were not collected. Two incomplete responses were

discarded.

Sophomore courses are often students’ first exposure to engineering [70, 71].

If students are indeed revising their beliefs in response to seeing applications

of mathematics, it is reasonable that it would happen during the sophomore

year in these introductory core engineering courses. Circuits and Statics have

large enrollments and maximized the chances of getting a large sample.

5.4 Results

This work-in-progress presents some initial results of this survey. Unfortu-

nately, the small achieved sample size precludes more advanced analyses such

as exploratory factor analysis. However, basic statistics and comparison to

previous work can be presented. See Tables 5.1 and 5.2 for Cronbach’s α

analysis of the internal consistency of the Likert scale items. The responses

to the survey (for items that were not eliminated) are presented in Figures

5.1 and 5.2. Overall, students have moderate views of how relevant their

mathematics coursework is to their engineering studies.

The conceptual calculus instrument’s basic statistics are presented in Fig-

ure 5.3. “Difficulty” is the percentage of students who answered correctly (A

problem with difficulty below 0.2 is hard, a problem with difficulty above 0.8

is easy). Discrimination (Pearson point-biserial correlation) measures how

well the problem correlates with overall score; items with discrimination be-

low 0.2 are nearly as likely to be answered right by low-performing as by

high-performing students.

Combining the conceptual instrument data and the items from the rel-

evance survey, we can see how relevance beliefs and performance on the

calculus instrument are related.
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Table 5.1: Cronbach α data for items from Flegg et al. [2]. Cronbach α
with that item removed is shown in the right column. Eliminating items
that did not contribute to internal validity (struckthrough) yields α = 0.91,
a quite high level of internal consistency [129]. Items 10 and 11 indeed do
not seem to be asking about perceptions of relevance, and it makes sense
that they do not load with the rest of the items.

Whole Instrument after removing rejected items 0.91
3. I can see how the mathematics skills that I am currently
developing will be useful in an engineering career.

0.66

5. In my current mathematics course, I am being taught ways of
thinking that will remain with me long after I graduate.

0.67

6. I believe that my current mathematics course teaches me how to
formulate and solve problems that are directly related to
engineering.

0.66

7. My current mathematics course exposes me to ideas which I
know I will need later on in my engineering degree.

0.66

8. I believe that being able to communicate effectively using
mathematical arguments is an important skill to have.

0.67

9. The formal and rigorous aspects of mathematics that I have seen
in my current mathematics course are important for my future
engineering career.

0.67

4. Being integrated with mathematics majors in my math courses
helps me to get a better understanding of the uses of mathematics
as a whole rather than just in the engineering fields.

0.69

10. For me, I only want to learn what I feel is likely to be graded. 0.79
11. At some stage during my degree program I have been so
overwhelmed by mathematical content that I have considered
withdrawing from my engineering degree.

0.85
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Table 5.2: Cronbach’s α data for the additional survey items. Eliminating
items that did not contribute to reliability (struckthrough) yields reliability
of α = 0.76, indicating good agreement for those items. The derogatory
wording of “plug and chug” likely explains the elimination of item 16.

Whole instrument excluding rejected items 0.76
13. Being good at math in engineering means describing real world
situations with math equations.

0.69

14. Being good at math in engineering means knowing if the
equation makes physical sense.

0.67

17. Being good at math in engineering means being good at
manipulating equations.

0.67

15. Being good at math in engineering means being good at word
problems.

0.67

12. Being good at math in engineering means being able to solve
math problems quickly.

0.69

18. Being able to solve integrals by hand doesn’t matter because
Wolfram Alpha can do them.

0.72

16. Being good at math in engineering means being able to plug
and chug equations.

0.76

Figure 5.1: Student survey responses to Likert scale items copied from
Flegg et al.(after inconsistent items removed).
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Figure 5.2: Student survey responses to new Likert scale items (after
inconsistent items removed).

Figure 5.3: Descriptive statistics (difficulty and discrimination) for items in
the conceptual measure of calculus knowledge. Most items had acceptable
discrimination. There were multiple items with very high difficulty but also
high discrimination above 0.4. Two of these items are mathematical theory
questions about fundamental theorems, which only very few high-scoring
students answered correctly.
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Figure 5.4: Plot of the average of the Likert scale items (after removal of
low consistency items). The median score on the conceptual measure of
calculus knowledge is 72%, and the median relevance rating is 3 (slightly
agree that math is relevant). Belief in relevance and score are loosely
correlated (Pearson correlation 0.42). The slope of the trendline is 0.07.
This slope means a student answering items with one more point of
relevance on average does about 7% better on the concept test. So a
student answering 2 (neutral on whether mathematics is relevant) scores an
expected 62% on the assessment, but one answering a 3 (slightly agree that
mathematics is relevant) scores a 69%. Neither the relevance beliefs nor the
relevance beliefs are homoscedastic (variance on the left is visibly higher);
the linear regression is presented only as a rough magnitude of effect. A
Spearman’s rank order correlation results in ρS = 0.48.
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5.5 Discussion

Given the moderate correlation between performance on the calculus assess-

ment and the relevance beliefs, we can add evidence for some interpretations

of why relevance beliefs seem to change over time. Students who remember

more, and are thus probably earning higher grades, also have higher relevance

beliefs. This result is consistent with previous literature, that high relevance

beliefs can influence students’ study strategies and have higher transfer to

engineering. Very concerning are the students in the upper left quadrant of

Figure 5.4, who despite high performance on the calculus assessment, believe

mathematics is mostly irrelevant. This data contradicts the claim that only

poor or ill-prepared students think math is irrelevant. These students are

performing well, but even high performers fail to see the utility of the con-

tent they have been learning. Poor beliefs cannot be blamed on ill-prepared

and unmotivated students in this case.

Consistent with results from Flegg et al. [2], about 30% of students agreed

with the statement “At some stage during my degree program I have been so

overwhelmed by mathematical content that I have considered withdrawing

from my engineering degree.” Since most students who drop out of engineer-

ing do so before beginning their sophomore year, these are the students who

nearly dropped out recently.

Overall, students had moderate to slightly positive views of the relevance

of mathematics to engineering. This result appears much like a dampened

version of the results from Flegg et al.’s work. There is a majority of students

that believe math is relevant, but this majority is not as overwhelmingly large

as in Flegg et al.’s work [2].

The jump between the high irrelevance beliefs (and steadily falling rele-

vance beliefs) in freshman year to the mildly positive beliefs in sophomore

suggests the dropout hypothesis: students who did not believe mathemat-

ics was relevant also had low performance in their mathematics classes, and

dropped out of engineering. The remainder of students have higher beliefs in

the relevance of mathematics on average, because the bottom has dropped

out of the student distribution.

While there is some moderate positive correlation between calculus test

score and relevance beliefs, these data are not strong enough to answer Re-

search Question 2. Most students with high test scores who remembered more
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calculus also had higher relevance beliefs. The presence of some high-scoring

but low-believing students in the sample lends credence to the hypothesis that

students of high mathematical ability need to have seen engineering applica-

tions to achieve the higher relevance beliefs observed in 3rd and 4th year stu-

dents. This result matches previous literature for engineering-mathematics

classes [2].

5.5.1 Limitations

The results of this work should be interpreted in the light of the following

limitations:

• The limited sample size and response rate reduce confidence in the

results.

• Data come from a single elite research institution and may not gen-

eralize to typical engineering institutions around the nation. Stu-

dents at less selective schools may have less mathematical preparation

and stronger beliefs that mathematics is irrelevant, and faculty at less

research-intensive schools may not stress the mathematical aspects of

engineering as heavily.

• Students normally take Statics in their 3rd semester (Fall of sophomore

year). Spring statics courses are largely composed of advanced students

who enter college with calculus credit (a semester ahead), students who

failed Statics and are retaking it, and students who were unable to

take Calculus their first semester (a semester behind). This data likely

samples the extremes of the population more than a fall offering.

• The sample is largely white or Asian male students; these results may

not generalize to other demographics.

• When interviewed, even practicing engineers do not recognize when

they are doing math in their work, despite observers seeing the mathe-

matics in the engineers’ practice. The practicing engineers also thought

their math coursework was not relevant [38]. Student perceptions may

be similarly biased, not recognizing the mathematics they did as rele-

vant or present in their work.
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5.6 Conclusions

Overall, the sophomore students we surveyed have somewhat positive opin-

ions of the relevance of mathematics to their careers as engineering students

and as engineers. Consonant with previous work, engineering students have

varying beliefs regarding the relevance of mathematics to their engineering

studies. The sophomore year is filled with important core engineering courses

like Statics and Circuits, which shape students’ opinions of what engineering

is and how it relates to other disciplines. The task remains to investigate how

we can best encourage engineering students to develop productive expert-like

beliefs towards mathematics, particularly during the freshman year when

such beliefs are most connected to persistence and retention.
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CHAPTER 6

SCHOLARLY AMBITIONS AND FUTURE
WORK

Building on these studies, going forward I want to pursue a path of scholar-

ship that enables more effective communication of needs between engineering

departments and the mathematics departments that support them [67]. Most

mathematics departments do care about their service mission, and sincerely

want to help their students going forward. Unfortunately, many suffer from

change fatigue [130]. After a small group of motivated engineers demand

changes, the mathematics department makes the demanded changes, and

just as many engineers are unsatisfied next year. When facing the choice be-

tween doing the hard work of curricular change and having everyone be mad,

or doing nothing and have everyone be mad anyway, the choice is obvious.

I want more students to get more out of the first years of engineering

education, much of which is from mathematics. Partially, I am a critic of

the dominant epistemology of “applicationism” [23], which holds that math-

ematics and application are separated, that they do not change each other,

and can perfectly well be learned independently of each other. This perspec-

tive is at odds with history [105]. Much mathematics was invented to solve

physics problems. The cost of this “applicationism” epistemology is dire, and

I want students passing their mathematics coursework, entering engineering

coursework, and graduating with degrees in engineering.

6.1 Expansion Studies (Next Two Years)

6.1.1 National survey (extends Studies A and B)

One extension to this study could be a large-scale national quantitative sur-

vey of engineering faculty. Such a study would get a much larger, more

representative sample of faculty and build on the results of the interviews in
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Studies A and B. This approach could make a more powerful case for the

generality and uniformity of the assertions in this thesis, and perhaps make

a more convincing case for reform. However, 20 years of educational research

in this direction has made so little difference in the way that mathematics is

taught to engineering students, perhaps other tactics might be more effective

in using research to enact revisions.

6.1.2 Full curriculum artifact analysis (extends Study C)

An extension of the course artifacts analysis presented in this dissertation

to more (six to ten) core engineering courses would dramatically expand the

power of the result. Such a set of studies could examine whole course se-

quences and take a critical look at the engineering side of the curriculum,

pointing out when different techniques lapse in reinforcement and give stu-

dents the opportunity to forget the mathematics they have learned. A larger

set of courses would also be much clearer, more trustworthy information to

give to mathematics departments. Many mathematics departments are beset

by many requests for changes, and cannot be expected know how many of

those changes are universally popular among the client disciplines and how

many are unique demands. An analysis of the entire engineering core could

be very clear communication from engineering instructors to their colleagues

in mathematics. Furthermore, artifact analysis of this nature could help

make difficult decisions regarding cuts in the curriculum, since this analysis

would provide precise information about how many majors use content and

how often they do so.

6.1.3 Multi-institution perceptions of relevance (extends
Study D)

I am currently collaborating with Jaqi McNeil at the University of Louisville.

We plan to corroborate the results of Study D, examining the students’ per-

ceptions of relevance at multiple institutions. Since introductory mathemat-

ics courses at that institution are taught within the engineering college (by

the Engineering Fundamentals department), it may be that students there

will have higher perceptions of the relevance of mathematics to their engi-
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neering studies. This pattern was the case in Flegg et al.’s work in an applied

engineering mathematics courses [2].

6.2 Medium Term Studies (Next 5 Years)

6.2.1 Transfer from Mathematics to Engineering

This dissertation does not study transfer, but transfer is essential to the very

idea of prerequisites’ existence. Existing literature clearly states that trans-

fer is difficult without explicit transfer-oriented support, but our curricula

are often structured around the implicit assumption that transfer is easy

and automatic. I will study the rate of successful transfer from mathemat-

ics to engineering, what can be done to maximize the chances, and help set

reasonable expectations. I am particularly interested in how matters of no-

tational convention and representation affect transfer from mathematics to

engineering. Can we modify tasks to make this “handoff” from mathematics

to engineering more efficient?

In the next 5 years, I hope to establish close enough relationships with

my institution’s mathematics department that we could engage in collabo-

rative investigations of transfer from mathematics coursework to engineering

coursework. I would like to study modified homework problems that incorpo-

rate some of the recommendations of this thesis. Such problems could be fit

into a standard mathematics course without substantially altering the cur-

riculum. Even if the list of topics and techniques stays fixed, there is much

room within homework problems to introduce symbolic variety or sense-

making opportunities. Derivatives need not always be taken with respect

to x, homeworks could have d
dt

[h+v0 · t− 1
2
g · t2] as more of the standard drill

exercises. One study could examine transfer success after exposure to such

problems within their mathematics courses. Additional types of assessment

activities could be incorporated in this phase of research.

6.2.2 Symbolic domain modeling

One modeling and symbolic facet that I may want to pursue is the notion

of different ranks of variables: Constants, parameters, variables, and others
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such as temporary variables summoned for notational convenience. This dis-

tinction is essential to many applied mathematics tasks, particularly when

displaying and communicating data, but is not brought up in mathematical

courses. I would be interested to study how this conception influences stu-

dents applied math and math modeling skills. Dr. Kevin Hadley from the

South Dakota School of Mines has expressed interest in collaborating on this

topic, since it closely aligns with his area of study of engineering numeracy.

6.2.3 Infinitesimals and engineering modeling

Typical calculus classes are taught with limit-based methods, as opposed

to the infinitesimal-based methods employed by Newton and Leibniz. How-

ever, these infinitesimal-based methods are still common practice in physics

and engineering. I would be interested in studying whether being taught

with infinitesimal methods in mathematics courses leads to better modeling

outcomes when describing physical systems using calculus. Mathematics-

education researcher Dr. Robert Ely from the University of Idaho would be

a potential collaborator.

6.3 Long Term Studies (Next 10 years)

6.3.1 Model eliciting activities

MEAs have been successfully used as a pedagogical tool at Purdue and other

institutions [131]. Much good mathematics education research, engineering

education research, and education research on the boundary of those two

domains [17] indicates that these activities may be a part of the solution to

the current mismatch between engineering’s expectations and mathematics’s

preparation. By five years into my career, I hope to have established strong,

productive collaborations between engineering and mathematics at my insti-

tution, such that efforts like incorporating and studying MEAs would be a

possibility. I would like to study the impact of MEAs on both engineering

outcomes (ill-posed problems, communication) and mathematical outcomes

(abstracted conceptual knowledge, proof/derivation).

98



6.3.2 Skeptical reverence

Gainsburg’s model of “Skeptical Reverence”[25] for mathematics (appreci-

ating the power of mathematics while also keeping in mind its limitations)

seems like a noble goal toward which to bend mathematical education for

engineers. As more of the particular skills are subsumed by computers, it

becomes that much more essential to develop in our students the skills that

computers do not yet have. Perhaps such a high level of epistemic maturity

cannot be reached in only 4 years of undergraduate education. However,

this viewpoint should be consistently presented to our students so that they

emerge from undergrad with the most mature and useful of mathematical

attitudes possible. This change would make their first few years as practi-

tioners more productive, and help align education with practice. Epistemic

beliefs can be changed through targeted instruction [27]. A very long-term

agenda would be interventions in engineering math (and core engineering)

courses that push students’ epistemic beliefs towards those of mature veteran

practitioners.
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APPENDIX A

INTERVIEW PROTOCOL

The interview protocol is a semi-structured interview with a set of main

questions and sample follow-up questions that might be asked depending on

how the interviewee responds. This protocol is intended to take between 30

and 60 minutes.

1. What engineering courses do you teach?

(a) How often do you teach these courses?

(b) Why do you teach these particular courses?

2. Have you been an engineer in industry before your present career in

academia?

(a) What did you do? What mathematics did you use on the job?

3. What are the prerequisite math courses for the courses you teach?

(a) In what ways does students’ performance in each course you teach

depend on their performance in the mathematics prerequisites?

(b) How do you perceive the content of the courses you teach build

on the content of the prerequisite courses?

(c) In the courses you teach, how would you describe the importance

of mathematics?

4. What is your general perception of the mathematical preparedness of

the students rising up to your course?

(a) How many lectures do you spend on purely mathematical review

for your course?

(b) Does this vary by semester?
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(c) How do you interpret students’ lack of preparation?

(d) What part do the instructors of the prerequisite courses play?

(e) What part does the curriculum itself play?

5. What types of attitudes toward mathematics in Engineering do you

perceive in your students? How do those attitudes impede students’

learning?

(a) Do students perceive the “real life” applications of the math they

have been taught? Can they connect math to application? The

engineering uses?

(b) What do you do to alter this attitude?

(c) Do you consider attitudes about learning to be key goals?

6. Is the math students use in your class genuine to the experience of

engineering (in your experience in academia/industry)?

(a) Do you assign problems that have multiple correct solutions? So-

lutions that aren’t immediately apparent?

(b) How many minutes do the longest problems take an average stu-

dents to solve?

(c) How do your students think about models, critically or hegemon-

ically? Does this improve after taking your course?

7. What do you think should be the relationship between the engineering

curriculum and mathematics curriculum? How well are the current

curricula meeting your expectations and needs?

(a) What do you think about the choice of content and order of con-

tent presentation?

(b) Do students remember/transfer what they have learned in math?

(c) Are math courses a form of mental exercise for engineers but not

directly applicable? Just a form of general education?

8. Do you believe that some mathematics topics or skills are taught better

by mathematics faculty and some are taught better by engineering

faculty? Why or Why not?

101



(a) For example, electrical engineering makes much more extensive

use of Laplace transforms, but they are still covered in the stan-

dard Differential Equations class.

9. (3rd year course faculty only) What emphasis do you put on derivations

in your course? Do you think they are important for future practicing

engineers? For future engineering researchers?

10. What specific mathematical knowledge must students have mastered

to do well in your course?

(a) Is it things like integration by parts, or how to define variables, or

“what is a scalar?”

11. What mathematical knowledge do you think students should have mas-

tered but is not taught in prerequisite calculus sequence course (dimen-

sional analysis, name that object game, extreme case analysis, etc)?

12. Describe your students’ skills at manipulating notation or working with

symbols abstractly.

(a) Do you encourage graphical/intuitive methods over analytic/formal

methods?

(b) Do you encourage estimation (over calculation) in your class?

(c) Do they think they can create their own methods or are they

beholden to the formula sheet?

102



APPENDIX B

CODEBOOK

This appendix shows the codes and definitions for the qualitative analysis

used in Study A and Study B.

Discrete to continuous: Use this code when the faculty member men-

tions a transition between discrete and continuous phenomena. Examples:

Setting up a discrete equation for conservation. Running ∆M
∆t

into dM
dt

. Con-

structing control volumes or infinitesimal elements. Setting up discretization,

or chopping a domain into tiny pieces.

Derivations: This code is for discussions of what derivations are for in a

class. These are formal proofs for equations that are used in class, or perhaps

of special results. Examples: What is the role of derivations in this course.

Do not use this code for casual mentions of derivations without comment on

their role in the course.

Analytic Awareness: Use this code when the participant mentions the

proper place of “fancy” techniques, advanced manipulation skill, techniques

of integration or similar topics. Examples: Students should have an aware-

ness that advanced techniques exist, but should not be expected to apply

and recall them on their own without access to reference material. They

need to be aware that they can look up the specific fancy technique for their

own discipline. They need to be aware that there are all these techniques

out there. We don’t use and apply most of the complicated integration tech-

niques. I think students should be aware, but not be a technical expert in

doing Gaussian elimination for instance.

Fluent Basics: Use this code for references to algebra skills being fast,

accurate, and second nature. This includes elementary geometry such as

circles, spheres and cuboids. Examples: d
dx

(x2 + 2x + 1) should fast and

second nature. Their algebra needs to be fast. They need to know basics.

Fundamentals: The math that is applied in engineering courses, and

needs to be remembered by engineering students, is just the simplest concepts
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from math courses. Examples: Derivatives of polynomials and logs, but not

derivatives of complicated product rule chain rule compositions. First order

y′ = ky equations, not the Frobenius method. 2 × 2 matrices, not finding

eigenspaces of 4 × 4 systems by hand. Vector addition and multiplication,

not gradients and curls. We don’t teach them all the nitty-gritty detail, we

have a chance to teach students to become better engineering students.

Forgetting College Math: Use this code when the subject mentions

that students have forgotten mathematics from their previous college courses.

The participant regrets having to review, expects that they should know this

already, or knows that it has been a few semesters since it has been reviewed

and reinforced.

Forgetting High school math: Use this for mentions of students who

have forgotten the rules for manipulating simple high school level construc-

tions like factoring, square roots, division of functions, rules for exponents,

etc. If they mention the student having taken calculus in high school, apply

this code, but generally this will be for pre-calculus courses and below.

Varied Student Ability: Use this code when the faculty member men-

tions that they have a wide range of abilities in math in their class. Example:

There is a top crust that get everything, and a bottom dregs that always

struggle. Do not use this code if they compare across universities or compare

college students to general population.

Solving Symbolically: Use this when faculty mention that students

hsould not plug in numerical values immediately. In the problem “Find

the time it takes for a ball to fall 20m if released from rest,” One would

use the equation y = y0 + v0t + 1
2
at2. Solving symbolically manipulates this

expression without substituting any non-zero numerical values (the y0 = 20m

and a = −9.9m/s2 in this problem) to obtain 0 = h + 1
2
at2 ⇒ t =

√
2h
a

=√
2·20
9.9

. Solving numerically in this context means solving the equation 0 =

20 + 0 + 1
2
(−9.8)t2. Examples: You do the same manipulations, but on

cumbersome, error-prone numbers rather than sleek letters. You are given

numerical values, but you delay choosing to use them. It’s easier to solve a

problem with letters than to put the numbers in immediately.

Ignorance of Prereqs: Use this code when the subject does not know

the prerequisites are for their course, or for ignorance of the content taught

in that prerequisite course. Examples: I’m not sure what they cover in
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differential equations. I’m surprised they don’t cover that in calculus. I

don’t know what course PHYS212 even is. Do not use this code if they are

just saying that students can ignore the prerequisite system at their own

peril.

Dimensional Analysis: Use this code for any mentions of using the units

of physical quantities to assist in problem solving. Examples: Knowing that

acceleration is meters · seconds2. Catching mistakes by finding things are

dimensionally inconsistent. Adding apples and oranges. Do not use this code

for merely mentioning that things have units. They need to mention using

the units of things to aid in solving problems or understanding the equations

in some way.

Math reluctance: Use this code for mentions that students are reluctant

to do math, engage with math, learn math, etc. This code captures the

sentiment of I hate math but I can’t articulate why. Also use this code if the

faculty member expresses a desire to reverse this and generate excitement.

Letters can be answers: Use for mentions that algebraic expressions

with letters are a valuable type of answer, in addition to just numerical

answers. Examples: Expressions with integrals or derivatives can also be

answers. You are not solving for an answer, solving for a behavior.

Thinking Competency: A student with strong Thinking Competency

can pose questions and has insight into answers. This student understands

scope, and statement types (definition, theorem, phenomenon). Questions

like “Is there a. . . ?” or “Is it possible that. . . ?” indicate strong Thinking com-

petency, they question the boundaries of the mathematics that they learn.

Examples: I want them to anticipate the breakdown cases. They should

know what counterexamples to suggest. They should generalize results to a

larger class of objects. They should know the scope of a given concept. For

example taking the average of everyone’s favorite color has gone beyond the

scope of what an average means.

Problem tackling competency: A student with strong Problem-Tackling

competency can formulate and solve problems. However, non-routine prob-

lems are what count; not all questions are problems. The ability to solve

routine exercises is not included in problem-tackling competency. Examples:

They just can’t solve multistep problems. Anything that they haven’t seen

that exact one before, they’re flummoxed. Do not use this code for: They

can’t do the simple things right. Even standard problems they just don’t
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know how to do.

Modeling: A student with Modeling Competency can de-mathematize

and interpret models, and actively create models. Furthermore, he or she can

criticize models, and make non-evident assumptions/decisions. This involves

all and any of the steps in the Lesh modeling cycle: Identify the real-world

phenomenon, simplify or idealize the phenomenon, express the idealized phe-

nomenon mathematically (i.e., mathematize), perform the mathematical ma-

nipulations (i.e., solve the model), interpret the mathematical solution in

real-world terms, test the interpretation against reality. Examples: Build-

ing it up from basic parts. They need to do word problems. They need to

take the result they get and interpret what it means in terms of the original

problem statement. They need to turn the situation into a simple object.

Examining assumptions such as no friction or perfectly circular. Validating

an equation with real data. Translating a real world problem into differential

equations. Interpreting, but not actually solving, a problem. Do not use this

code when: The emphasis is just on the mathematical manipulations (solve

the model) step. There is no physical context. When the professor wants to

make sure all the problems are physically reasonable. When they discuss the

student having a reluctance to look for applications (that should be coded

with Practical Irrelevance).

Reasoning competency: A student with Reasoning Competency can

follow and asses reasoning. This competency is not coming up with ideas,

but confirming that proof/justification is solid, assessing formal argument

and proof. This student can dismantle bad reasoning and spot shaky proof.

Examples: Assessing if a proof has been done correctly. Spotting errors in

reasoning. Do not use this code for: Checking your work and making sure

there are no sign errors. Knowing if an assumption is physically reasonable.

Representing competency: A student with Representing Competency

can apply algebraic, visual, graphical, tabular, verbal, geometric, diagram-

matic and material objects as representations of mathematical truth. This

student can choose and switch representation as needed. This competency

contains the aspects of representational fluency. Examples: Knowing when

to switch to a different representation. Ability to correctly switch represen-

tations. Observe corresponding features between representations. Plots and

graphs. Do not use this code for: Mentions of types of graphs being used

(the subject must have a mention of how the students should use graphs,
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how they need to gain skill in graphs, how they are doing graphs wrong or

how they are unable to interpret the graphs). This code overlaps with the

symbol sense code: Abandoning Symbols.

Symbol/formalism competency: A student with Symbol/Formalism

competency can decode and translate symbols, use symbols, and has insight

into rules for using symbols. This code overlaps with Symbol sense codes.

Use this category to sort miscellaneous notation statements that don’t fall

readily into the symbol sense categories, or the Solve Symbolically code.

Examples: Knowing the difference between σ and τ (stresses). Name and

identify a symbol.

Communicating competency: A student with strong Communicating

Competency is adept at reading and writing mathematics, with words, pic-

tures, and equations. Mathematics is the language of technical communica-

tion. Examples: They just do not know how to label things correctly. They

choose conventions that do not let me know what is going on. Writing/ justi-

fying answers within math. The culture of engineering or culture of physics.

This code overlaps with the aspects of the Solitary Mathematics epistemol-

ogy. Communicating Competency is an ability to communicate mathematics

effectively, the Solitary Mathematics is believing that one should commu-

nicate mathematics, or that communication factors should determine some

mathematical choices. Use Communicating competency if the faculty mem-

ber mentions poor skills at communicating (such as bad presentations or

reports), rather than student inclination to communicate mathematically.

Tools/aids competency: A student with strong Tools and Aids compe-

tency knows possibilities and limitations associated with mathematical tools

such as calculators, special paper, computer algebra systems, computational

simulations, and physical props. Examples: Using computers to do mathe-

matics in engineering. Using MatLab, Mathematica, Python, or other script-

ing computation. Using COMSOL, Fluent or other computational simulation

software. Using Wolfram Alpha, computer algebra systems, and symbolic

manipulation systems. Do not use this code for: When subject mentions

general programming ability.

Quantitative reasoning with symbols: This code captures the ability

to scan an algebraic expression to make rough estimates of the patterns that

would emerge in numeric or graphic representation. Examples: Ability to

scan a table of function values or a graph or to interpret verbally stated con-
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ditions. Ability to identify the likely form of an algebraic rule that expresses

the appropriate pattern. Ability to make informed comparisons of orders of

magnitude for functions with rules of the form n, n2, n3, and nk. If you

change this variable, what happens to that variable.

Selecting a symbol: An understanding of and an aesthetic feel for the

power of symbols. Understanding how and when symbols can and should

be used in order to display relationships, generalizations, and proofs which

otherwise are hidden and invisible. Seeing equivalent expressions for non-

equivalent meanings. Different symbolic representations can display more

information for example how 4(n)(n − 1) is a multiple of 8). Information

can be built into a symbol, and students should try to maximize the infor-

mation that can be gleaned from the expression. How much of the meaning

do we pre-pack into the expression. We have the freedom to express and

represent how we want. The initial binding of symbols is not binding, we

can re-represent when it is convenient. Students have a feel for an optimal

choice of symbols. Ability to determine which of several equivalent forms

might be most appropriate for answering particular questions. The ability

to select a possible symbolic representation of a problem, and, if necessary,

to have the courage, first, to recognize and heed one’s dissatisfaction with

that choice, and second, to be resourceful in searching for a better one as

replacement. Examples: Choosing y′ over dy
dx

over ẏ(x). Choosing −α2 over

λ in an eigenvalue problem. Choosing n(n − 1) instead of n2 − n (to make

evenness obvious). Creating your own symbol or notation. Do we represent

the acceleration due to gravity as g or as −g?

Abandoning Symbols: Use this code when the subject mentions a

feeling for when to abandon symbols in favor of other approaches in order to

make progress with a problem, or in order to find an easier or more elegant

solution or representation. Having symbol sense should include the intuitive

feel for when to call on symbols in the process of solving a problem, and

conversely, when to abandon a symbolic treatment for better tools.

Manipulating symbols: An ability to manipulate and to “read” sym-

bolic expressions as two complementary aspects of solving algebraic problems.

On the one hand, the detachment of meaning necessary for manipulation

coupled with a global “gestalt” view of symbolic expressions makes symbol-

handling relatively quick and efficient. Extending the number of important

operations we can perform without thinking about them. The student knows
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when they can reasonably forget the referents of the symbol. Examples: An-

ticipate deriving a tautology (like in a system of degenerate equations). Solve

v
√
u = 1 + 2v

√
1 + u for v is easy, the u’s don’t matter. The student can

prudently detach the meaning of the symbols and their referents.

Reading meaning from symbols: An ability to “read” symbolic ex-

pressions. The reading of the symbolic expressions towards meaning can add

layers of connections and reasonableness to the results. Examples: A priori

inspection before manipulation. Reading as a goal for manipulations. Read

and check for reasonableness (the six times as many students as professors

6s = p problem). Ability to inspect algebraic operations and predict the form

of the result or, as in arithmetic estimation, to inspect the result and judge

the likelihood that it has been performed correctly. Reduction to a previous

result (this is the choosing sine or cosine for the ramp problem, reduction of

the jacketed cable to a solid cable, or reduction of a disk to a point charge

very far away. This also has some serious linkage to modeling competency.

Taking appropriate limits, examining whether it makes sense in a particular

limit. Does this function have this property? Using sanity checks (e.g., some

things should not go to infinity, things are forbidden to be negative).

Symbols in context: Sensing the different roles symbols can play in

different contexts. Examples: In y = mx + b, there are ‘variables’ and

‘parameters’. Both are letters that represent numbers, but have very different

meanings. The student can navigate conventional meanings of letters (such

as ‘a’ meaning an offset of a circle and finding a circle that goes through

(0, a) ).Choosing i or j for an imaginary unit. Understanding notation in

different contexts; the same symbol can have different meanings in different

places or classes. Understanding the role of a dummy variable.

Engineer symbolic relationships: Use this code when the subject men-

tions the awareness that one can successfully engineer symbolic relationships

which express the verbal or graphical information needed to make progress in

a problem, and the ability to engineer those expressions. Examples: Creating

an ad-hoc expression for a desired purpose. Developing an expression with

a desired property. Creating an algebraic expression that matches a graph.

Do not use this code for: Creating your own symbol or choosing a symbol.

These epistemic belief codes contain both the “negative” and “positive”

ends of that attribute. A quote about a growth mindset would be put in

the Innate Ability code, since it is the opposite of Innate Ability, the mature
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epistemic belief along the same axis.

Innate Ability: Students believe that mathematical ability is fixed and

unchanging. Students then interpret mistakes as personal inadequacy. Fur-

thermore, they believe that only geniuses can truly understand or create

mathematics. Students are quick to give up when faced with a challenging

problem and causes students to devalue education itself.

Quick Learning: Students believe that learning is quick process, and

furthermore so is problem solving. Examples: Students believe problems

should be solvable within five minutes, and will give up on a problem as

impossible after just 10 minutes. Students focus on speed when studying

rather than on understanding. They believe they don’t need to practice.

The student claims they can learn it as they go.

Orderly Process: Students believe that mathematical knowledge and

knowing does not involve uncertainty or failure. Examples: Student is re-

luctant to change tactics, and pursues their first strategy “come hell or high

water.” They will not just try something random and see if it works.

Simple Knowledge: Students believe mathematical knowledge is discon-

nected, and that information gained in one lesson has no bearing on knowl-

edge in future or past lessons. Examples: Students prefer that there be only

one method to solve a problem, as it reduces the amount of memorizing they

have to do. The students plug and chug equations. Engage in memorization

without meaning. The student does not see ow it all fits together or con-

nections between concepts. They do not understand the fundamentals at a

deep level. Student should new methods because they are connected to other

things, not for their own sake.

Certain Knowledge: Students believe mathematical knowledge is highly

certain, particularly material that is presented in class. The idea that “all

models are wrong, some are useful” conflicts directly with this epistemic belief

held by many students. Examples: Wanting excessively many significant

figures. Needing 99% accuracy.

Omniscient Authority: The belief that mathematical authority (usually

a textbook or the instructor) forms the basis for truth. Students believe

that mathematical problems have one and only one correct answer, and that

answers become correct when ratified by the teacher.

Practical Irrelevance: Students believe that the mathematics learned in

school has no bearing on their out-of-school lives. Students rarely try to con-
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nect formal mathematical knowledge to everyday common sense. Examples:

Connecting derivations to practical problems. Connecting mathematics to

physics. Math isn’t just something you have to get through, you will use it

later. Learning math in engineering context vs learning math purely in the

abstract. The professor trying to make connection between coursework and

practical applications. Use this code to capture students not seeing appli-

cations, not transferring knowledge from math to engineering, mathematics

courses being too abstract and not having applications. This code is for a

belief/tendency to look for applications, not an ability to do them correctly

(that is modeling competency).

Solitary Mathematics: Students believe that mathematics is done by

individuals alone. This belief undermines the nature of mathematics as a

form of communication. Examples: Math is a language of technical commu-

nication or “mathematics is the language of engineering.” Students are disin-

clined to write down explanations. This code overlaps with Communicating

Competency. Code statements that have to do with students not believing

that they should be concerned with communicative issues in mathematics

in Solitary Mathematics and code commentary on quality of communication

into Communicating Competency.
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APPENDIX C

SURVEY INSTRUMENT

This instrument is adapted from Flegg et al. [2].

Please indicate how much you agree with the following statements: 1 -

strongly disagree, 2 - disagree, 3 - neutral 4 - agree, 5 - strongly agree

I can see how the mathematics skills that I am currently

developing will be useful in an engineering career.
1 2 3 4 5

Being integrated with first year mathematics majors helps

me to get a better understanding of the uses of mathematics

as a whole rather than just in the engineering fields.

1 2 3 4 5

In my current mathematics course, I am being taught ways

of thinking that will remain with me long after I graduate
1 2 3 4 5

I believe that my current mathematics course teaches me

how to formulate and solve problems that are directly

related to engineering.

1 2 3 4 5

My current mathematics course exposes me to ideas which I

know I will need later on in my engineering degree.
1 2 3 4 5

I believe that being able to communicate effectively using

mathematical arguments as an important skill to have.
1 2 3 4 5

The formal and rigorous aspects of mathematics that I have

seen in my current mathematics course are important for my

future engineering career.

1 2 3 4 5

For me, I only want to learn what I feel is likely to be

graded.
1 2 3 4 5

At some stage during my degree program I have been so

overwhelmed by mathematical content that I have

considered withdrawing from my engineering degree.

1 2 3 4 5
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Please indicate how much you agree with the following statements: 1 -

strongly disagree, 2 - disagree, 3 - neutral 4 - agree, 5 - strongly agree

Being good at math in engineering means being able to

solve math problems quickly.
1 2 3 4 5

Being good at math in engineering means describing real

world situations with math equations
1 2 3 4 5

Being good at math in engineering means knowing if the

equation makes physical sense.
1 2 3 4 5

Being good at math in engineering means being good at

word problems
1 2 3 4 5

Being good at math in engineering means being able to plug

and chug equations
1 2 3 4 5

Being good at math in engineering means being good at

manipulating equations.
1 2 3 4 5

Being able to solve integrals by hand doesn’t matter because

Wolfram Alpha can do them
1 2 3 4 5
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APPENDIX D

CONCEPTUAL MEASURE OF CALCULUS
KNOWLEDGE

This instrument is taken from Cromley et al. [128].

Directions: Solve each of the following problems, using any available space

for scratch work.

Problem 1

Is each of the following a graph of a function in the form of y = f(x)?

Circle YES or NO.

YES NO

YES NO

YES NO

YES NO
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YES NO

YES NO

Problem 2

For the function f whose graph is shown below, circle each labeled point(s)

that satisfies the following conditions.

Circle all that apply.
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a. f ′(x) = 0 A B C D E F

b. 0 < f ′(x) < 1 A B C D E F

c. f ′(x) > 1 A B C D E F

d. f(x) = 0 A B C D E F

e. f ′(x) < 0 A B C D E F

f. f ′(x) < 1 A B C D E F

g. f ′(x) is not defined A B C D E F

Problem 3

Which information would you use to determine each of the following? (Cir-

cle all that apply.)

If f has a critical point at x = 3 f f ′ f ′′

The zeros off f f ′ f ′′

If the graph of f has an inflection point at x = −1 f f ′ f ′′

Intervals on which f is decreasing f f ′ f ′′

Problem 4

What information would you need to know about the function, f(x) (shown

below), in order to determine each of the following? (Mark an X for each

that applies.)
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An anti-

derivative

g exists

Whether

f(x) is

even or

odd

f(x)

is de-

fined

for all

real

values

f(x) is

contin-

uous

over a

closed

interval

f(x) is

differ-

en-

tiable

on an

open

interval

Inflec-

tion

points

of f(x)

If there exists a

point c on f(x)

such that

f ′(c) = f(b)−f(a)
b−a (If

the Mean Value

Theorem for

derivatives

applies)

If the definite

integral of the

derivative of f(x)

is given by∫ b

a
f(x)dx =

g(b)− g(a),where

g is the

antiderivative (If

the First

Fundamental

Theorem of

Calculus applies)

If the area F (b)is

given by F (b) =∫ b

a
f(x)dt(If the

Second

Fundamental

Theorem of

Calculus applies)
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Problem 5

State whether each of the following is an accurate statement about limits.

(Circle YES or NO.)

a.

The limit of a function f(x)at a given

value of x may not exist, even though

f(x)is defined at x

YES NO

b.

In order to determine the limit of

f(x),the formula for f(x) must be

given

YES NO

c.
The limit of a function f(x) at a

given value of x may be infinite
YES NO

d.
If f(x) is continuous at a given value

of x, it has a limit for that value of x
YES NO

e.

The value of the limit of f(x) at the

point f(a) is the same as the value of

f(a)

YES NO
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