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ABSTRACT

This thesis is divided into four chapters. The first chapter discusses the relationship between stacks on

a site and groupoids internal to the site. It includes a rigorous proof of the folklore result that there is

an equivalence between the bicategory of internal groupoids and the bicategory of geometric stacks. The

second chapter discusses standard concepts in the theory of geometric stacks, including Morita equivalence,

stack symmetries, and some Morita invariants. The third chapter introduces a new site of Dirac structures

and provides a rigorous answer to the question: What is the stack associated to a symplectic groupoid?

The last chapter discusses a remarkable class of Poisson manifolds, called b-symplectic manifolds, giving a

classification of them up to Morita equivalence and computing their Picard group.
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Introduction

Background

One of the main goals of this thesis is to provide a rigorous foundation for the study of stacks in the context

of Poisson geometry. The motivation for this originates with the introduction of symplectic groupoids

independently by Weinstein [51], Karasëv [27], and Zakrzewski [53] in the late 1980s.

The original intent of symplectic groupoids was as a method for attacking the quantization problem

in Poisson geometry. The hope was that it would be possible to reformulate the quantization problem

of a Poisson manifold to an (easier) quantization problem on the associated symplectic groupoid. While

this has not been accomplished, many other applications of symplectic groupoids have been found towards

understanding the geometry of Poisson manifolds.

A few years before symplectic groupoids were introduced, Hilsum and Skandalis [25] had noted the

connections between bibundles of ‘foliation groupoids’ and the transverse geometry of the foliation. Such

objects had a straightforward generalization to arbitrary Lie groupoids. In the topological setting, Mo-

erdijk [39] [40] [41] related groupoid bibundles to morphisms of their associated sheaves. This work and the

subsequent work of other authors built upon this and led to the general belief that studying Lie groupoids

and their bibundles is equivalent to studying geometric stacks (groupoid valued sheaves) on the site of man-

ifolds. From this point of view, an equivalence (called a Morita equivalence) of Lie groupoids is a principal

bibundle.

To connect these developments to Poisson geometry, consider the notion of a dual pair [50]. This consists

of a pair of Poisson manifoldsM and N , together with a symplectic manifold S equipped with Poisson maps:

M ← S → N

such that the fibers of M are symplectically orthogonal to the fibers of N . Algebraically, a dual pair relates

the Lie algebra of functions on M to the Lie algebra of functions on N ,

C∞(M)→ C∞(S)← C∞(N) .
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Marsden and Weinstein observed that the Poisson manifolds M and N seemed to be closely related. In

particular, under some connectedness and completeness conditions, they have isomorphic leaf spaces as well

as isomorphic transverse geometry. Furthermore, examples of dual pairs made frequent natural appearances

in the subject. For instance, an example of a dual pair arises from the moment map S → g∗ of a free and

proper Hamiltonian actions of a Lie group on a symplectic manifold:

g∗ ← S → S/G .

The relationship between symplectic groupoids and dual pairs arises from the observation due to Xu [52]

that a sufficiently well behaved dual pair inherits a principal bibundle structure:

M ← S → N ⇒
G S H

M N

In particular, G and H are Morita equivalent as Lie groupoids. This formed the basis for Xu’s definition of

symplectic Morita equivalence of symplectic groupoids (and consequently Poisson manifolds).

Although Morita equivalence of Lie groupoids was motivated by a correspondence of sheaves. It was not

clear at the time how to understand symplectic groupoids sheaf theoretically and it was certainly not under-

stood what sort of equivalence of sheaves one should expect to obtain from a symplectic Morita equivalence.

The study of symplectic Morita equivalences has been well developed since the pioneer work we have

described above. For instance, dual pairs and symplectic groupoids have appeared in classical mechanics [33]

and deformation quantization [26]. New Morita invariants, such as the Picard group, have been defined [7]

and studied [46].

Our goals here are twofold. One is to develop a rigorous treatment of symplectic groupoids as presenta-

tions of stacks. The other goal is to obtain classification results for interesting families symplectic groupoids,

up to Morita equivalence. The first three chapters are concerned with the first goal, while the last chapter

accomplishes the second.

Contents

Although our primary interest is in Poisson geometry, it turns out that Poisson and symplectic geometry

are not sufficiently well behaved categorically to provide a rigorous stacky treatment of symplectic Morita

equivalences. In order to resolve this, we will first make a detour into the general theory of sites, stacks,

and groupoids in the first two chapters. Thereby, we will obtain a nice criteria for exactly what sorts of

categories are amenable to a theory of geometric stacks and groupoids. The result is a general theory for

understanding stacks over sites that are ‘similar to manifolds.’

In the third chapter we introduce and study a site called DMan which makes the stack of a symplectic
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groupoid rigorous. Lastly, the fourth chapter is dedicated to solving the classification problem, up to Morita

equivalence, for a special class of Poisson manifolds called b-symplectic. We will now proceed with a more

detailed description of the contents of each chapter.

Chapter 1

Chapter 1 is dedicated to making the correspondence between groupoids and geometric stacks rigorous. The

setting that we will use is that of a good site (see Definition 1.34), which we have introduced in this thesis.

The main theorem (Theorem 1.59) that we prove in Chapter 1 is:

Theorem (Fundamental theorem of geometric stacks). Suppose C is a good site. There is an equivalence

of bicategories between the bicategory of groupoids internal to C (with bibundles as morphisms) and the

bicategory of geometric stacks on C.

We should make a few comments about the context of this result. The above theorem is false for an

arbitrary (i.e. not necessary good) site. We define a site C to be good enough if the above theorem holds.

The the content of our work is therefore to prove that a good site is good enough, where good is a set of

criteria that is fairly reasonable for geometric categories. For example, the sites of schemes, manifolds, and

topological spaces are all good.

In the case that C is the site of smooth manifolds, the theorem roughly says that studying Lie groupoids

and bibundles is equivalent to studying geometric stacks on the site of manifolds. This is fairly well known

and the earliest sketch of the result is in Blohmann [2]. Later, Carchedi [8] included a complete proof in his

thesis. We will see in Chapter 3 that there is a good reason for us to generalize this result to sites beyond

manifolds.

Chapter 2

Chapter 2 continues the work of Chapter 1 with a more in depth look at equivalences of stacks (Morita

equivalence). In particular, it develops the relationship between morphisms of groupoids internal to C and

groupoid bibundles. The key concept is that of a weak equivalence of groupoids in C. The main theorem of

the chapter is Theorem 2.14 which says:

Theorem. The following are equivalent:

• G and H are Morita equivalent as C-groupoids.

• There exists a C-groupoid K and a pair of weak equivalences H ← K → G.

When C is the site of smooth manifolds, this fact is well known. Our main contribution is the observation

that the result holds for any (good) site. This theorem is a weaker version of a stronger fact that (in

some sense) bibundles are the universal object which inverts weak equivalences and the construction of a
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(bicategory) of fractions. For more details on these ideas see Pronk [44] or Pradines [43]. More recent work

on the subject, and in a fairly general setting was done by Meyer and Zhu [35] as well as Roberts [36]. This

result has significant utility in the study of Morita invariants since it is often-times much easier to prove

invariance of a property under weak equivalence than bibundles.

Chapter 3

Chapter 3 finally relates all of our work to Poisson geometry by introducing the good site of Dirac manifolds

DMan. Dirac manifolds were originally described by Theodore Courant [10]. They unify Poisson structures,

foliations, and symplectic forms as Dirac structures. Intuitively speaking, a Dirac structure should be thought

of as a (possibly singular) foliation of the manifold by pre-symplectic manifolds. Although we will state all

of the most important details about Dirac structures, we refer the interested reader to [4] or [38] for more

detail.

For us, Dirac structures are a convenient relaxation of the notion of a Poisson structure to improve

categorical behavior. The category Poisson manifolds is rather poorly behaved and a symplectic groupoid is

not a groupoid internal to Poisson manifolds. However, in DMan we have D-Lie groupoids and the punchline

of the chapter is the Theorem 3.42 which says:

Theorem. Let G and H be symplectic groupoids. Then G and H are also D-Lie groupoids and the following

are equivalent:

(1) G and H are Morita equivalent as symplectic groupoids.

(2) BG is isomorphic to BH.

(3) There exists a principal (G,H)-bibundle of D-Lie groupoids.

(4) There exists a pre-symplectic groupoid G′ and a pair of weak equivalences of D-Lie groupoids G ← G′ → H.

At first sight it may seem that this theorem follows as an immediate corollary of the main theorems of

the first two chapters. However, there is some work to be done in order to show that DMan actually does

what we want. The main reason this all works is the, slightly surprising, Proposition 3.37, which relates

Morita equivalenc of D-Lie groupoids to the existing notion of symplectic Morita equivalence. Throughout

the chapter, we also take the time to give geometric characterizations of groupoids and bibundles in DMan,

as the categorical definition is not particularly amenable to doing geometry.

Chapter 4

Chapter 4 shifts gears from theory building to computation. The main goal is to classify, up to Morita

equivalence, a special class of Poisson manifolds called b-symplectic (or log-symplectic). A b-symplectic

manifold is a type of Poisson manifold which is a mild degeneration of the notion of a symplectic manifold,
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where the symplectic form has a log type singularity along a prescribed hypersurface. The relative tameness of

b-symplectic manifolds means that they form a tractable class for the explicit calculation of many invariants

of Poisson manifolds (see [23], [3], [46] and [45]).

In particular, the Picard group of a b-symplectic compact surface M was computed by Radko and

Shlyakhtenko in [45]. The goal of the chapter is to prove a generalization of their result to arbitrary (even)

dimension: we calculate the Picard group of any stable b-symplectic manifold. Every b-symplectic structure

on an orientable compact manifold can be perturbed to a stable one, so in this sense stable structures are

fairly generic.

For any stable b-symplectic manifoldM we will construct a collection of discrete data Gr called a discrete

presentation of M . The discrete presentation is a combinatorial object which takes the form of a heavily

decorated graph that encodes the topological configuration of the symplectic leaves of M . This graph

resembles the data that was used previously in the aforementioned calculation of the Picard group of a

compact surface and by Gualtieri and Li to classify integrations of b-symplectic manifolds [22]. The edges

of the graph Gr represent the connected components of the singular locus of M while the vertices represent

the orbits. The decorations take the form of the fundamental groups of open orbits π1(U), the fundamental

groups of symplectic leaves π1(L) of the singular locus and homomorphisms between them.

The main results of the chapter are the following two theorems. The first says:

Theorem. Suppose M is a stable b-symplectic manifold and Gr is a discrete presentation of M . Then:

Pic(M) ∼=
(

OutAut(Gr) nRN
)
/H,

where H ⊂ OutAut(Gr) nRN is a discrete normal subgroup.

We give an explicit description of H and the action of RN on OutAut(Gr). Of course, to make sense

of this result we will define isomorphisms and inner automorphisms of discrete presentations. It turns out

that isomorphisms of discrete presentations are a powerful tool for the classification of stable b-symplectic

structures. This is the content of our second main theorem:

Theorem. SupposeM1 andM2 are stable b-symplectic manifolds and Gr1 and Gr2 are discrete presentations

of each, respectively. Then M1 and M2 are Morita equivalent if and only if there exists an isomorphism

Gr1 → Gr2.

The relatively simple statements of Theorem 4.58 and Theorem 4.55 are somewhat deceptive as the

definition of an isomorphism of discrete presentations Gr1 → Gr2 is not so straightforward. On the other

hand, the data can often be simplified when computing specific examples (see Section 4.7).
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Chapter 1: Sites and stacks

In this chapter, we will give a general treatment of stacks on a site. Our aim is to develop a general theory

of geometric stacks which resembles that of stacks over differentiable manifolds. The focus of our treatment

is to relate geometric stacks on a well behaved site C to groupoids internal to C.

A significant background in category theory is not necessary to understand our work here. However,

it is not possible (or advisable) to completely avoid category theory and we will apply simple categorical

reasoning when appropriate. After all, the objects of study (stacks) are inherently categorical. The author

also hopes that the following will provide a reasonable bridge between category theory and geometry and

hence we use a language that is intelligible to a person in either subject. This chapter will proceed as follows:

• In Section 1.1 we will introduce our notation and recall the basic definitions for categories as well as

establish the notion of a category with topology.

• In Section 1.2 we will proceed to define categories fibered in groupoids and stacks and provide a precise

definition for what we mean by geometric stack.

• In Section 1.3 we will define what we mean by a groupoid internal to a site. We will then proceed to

define the functor B which will relate groupoids to geometric stacks. This section will conclude with

a proof of Theorem 1.59 which states that B is an equivalence.

• In Section 1.4 we will take a look at a few simple example of sites to which we can apply our results.

The general strategy we will use is piecemeal borrowed from a variety of expository texts on the subject.

In particular, our work is guided by Xu and Behrend [1] as well as Metlzer [34] which have both written

excellent treatments of the subject. Lerman [29] and del Hoyo [17] also provided the author with significant

inspiration and intuition. Lastly, another short treatment of the main theorem of this chapter, in the setting

of smooth manifolds, can be found in Blohmann [2].
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1.1 Categories and topology

1.1.1 Notation

Categories will play a central role in both the study of groupoids and sites. It will be convenient to recall

our basic definitions and notation.

Definition 1.1. A category C is composed of a collection C0 called the objects, and a collection C1 called

the morphisms, together with the following:

• to every morphism f ∈ C1 we associate two objects M and N called the source and target of f

respectively. This situation is summarized by the notation: f : M → N ;

• to every object M ∈ C0 we associate a morphism IdM called the unit of M ;

• to every pair of morphisms f : M → N and g : N → O we associate a morphism g ◦ f : M → O.

This data must satisfy the following axioms:

(C1) the source and target of IdM is M ,

(C2) the source of f ◦ g is the source of f ,

(C3) the target of f ◦ g is the target of f ,

(C4) given any f : M → N and IdM : M →M then f ◦ 1M = f ,

(C5) given any f : M →M and IdM : y → y then IdM ◦ f = f ,

(C6) given any three morphisms f, g and g then (h ◦ g) ◦ f = h ◦ (g ◦ f) whenever defined.

Example 1.2 (Sets). The category whose objects are sets and whose morphisms are set theoretic mappings

will be denoted by Set.

Example 1.3 (Topological spaces). The category whose objects are topological spaces and whose morphisms

are continuous mappings will be denoted by Top.

Example 1.4 (Smooth manifolds). The category whose objects are smooth manifolds and whose morphisms

are smooth maps will be denoted by Man.

Example 1.5 (Open sets). Given a topological space X, then we will denote the category whose objects

are open subsets of X and morphisms are given by subset inclusions.

Example 1.6 (Opposite category). Suppose C is any category. Then we can construct a new category Cop

called the opposite category for which the source and target are swapped, and the order of composition is

reversed.
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Given any two objects, M and N ∈ C0, we denote by Hom(M,N) the subcollection of C1 which consists

of morphisms whose source is M and target is N . Sometimes we may write End(M) to denote Hom(M,M)

the endomorphisms of M .

Given an arbitrary object M ∈ C, then a generalized element x is a morphism x whose codomain is

M . Generalized elements and morphisms will be distinguished by our notation. For example, generalized

elements of M will usually be denoted by x or y whereas morphisms in C are denoted by f or g. One

can ‘push forward’ generalized elements along a morphisms f : M → N by taking f(x) := f ◦ x which is a

generalized element of N .

Example 1.7 (Slice category). Given any category C and an object M in C0, one can define a new category

C/M called the slice category of M . An object in C/M is a morphism f : N → M . A morphism in C/M is

a commutative triangle:

N2 M

N2 M

f1

g 1M

f2
(1.1)

where the source is f1, the target is f2 and composition is defined by composing in C vertically.

Definition 1.8. A commutative square consists of four morphisms illustrated below:

M N

O P

f

h g

k

such that g ◦ f = k ◦ h. A commutative square is a pullback square if for any f ′ : M ′ → N and h′ : M ′ → O

there is a unique morphism e : M ′ →M such that f ◦ e = f ′ and g ◦ e = g′.

The pullback property implies that g and k define M up to a unique isomorphism. For this reason we

may write M = O×g,kN or M = O×P N and call M the fiber product of k and g. Following this notational

convention, we may use f ′ × h′ or (f ′, h′) to denote the unique morphism defined by the universal property

(called e above). pr1 and pr2 will denote the projection maps O×P N → O and O×P N → N , respectively.

For most categories, when fiber products exists there is a canonical such object. However, the universal

property only guarantees uniqueness up to a unique isomorphism. To justify our use of the notation O×g,kN

we will assume that for any given category, we have made a choice of fiber product for every pair of morphisms

g and k such that the fiber product exists. For example, when C = Set then the most natural choice is the

set {(x, y) : g(x) = k(y)}.

Definition 1.9. Given a morphism f : M → N in a category C, we say that f is an isomorphism if there

exists a morphism such that f ◦ g = IdN and g ◦ f = IdM . In such a case, we may write g = f−1.

A morphism is f : M → N is called cartesian if for all g : M ′ → N the fiber productM ′×MM exists. How
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strong the cartesian condition is depends on how many fiber products the category admits. For instance, in

the category of manifolds the cartesian maps are the (local) submersions. On the other hand, in the category

of sets every morphism is cartesian.

Definition 1.10. A functor F : C → D is a pair of mappings of collections Fi : Ci → Di, i = 0, 1 such that

F respects the source, target, and composition relationships. That is:

(f : M → N) 7→
(
F1(f) : F0(M)→ F0(N)

)
and F1(f ◦ g) = F1(f) ◦ F1(g).

For general categories, we will typically omit the subscripts in F0 and F1 for brevity.

A functor F : C → D is called

• full if the mapping Hom(M,N)→ Hom(F (M), F (N)) is surjective,

• faithful if that same mapping is injective,

• fully faithful if both of the above hold,

• surjective on objects if F0 is surjective,

• essentially surjective on objects (or just essentially surjective) if every object in D is isomorphic to one

in the image of F0,

• an isomorphism if there exists another functor G : D → C such that F ◦ G and G ◦ F are identity

functors,

• an equivalence of categories if it is both essentially surjective and fully faithful.

Remark. We do not assume that our categories are concrete (meaning that they have a fully faithful functor

into the category of sets). For this reason, all definitions of morphisms or proofs of equalities of morphisms

should technically be done without reference to ‘points’ or ‘elements’. However, the notation for composition

of morphisms can be cumbersome and most computations done in terms of elements can be turned into

computations involving compositions of morphisms in some category.

Our use of the generalized element notation helps to alleviate this problem. For instance, if we want to

define a morphism f : M1 ×X M2 → N1 ×Y N2. Then we may write:

f(m1,m2) := (f1(m1), f(m2)) .

Formally, this means f := (f1 ◦ pr1)× (f2 ◦ pr2). The expression can be made precise if we think of m1 as

the generalized element pr1 : M1 ×X M2 →M1 and m2 as the generalized element pr2 : M1 ×X M2 →M2.
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1.1.2 Grothendieck topology

The categories that we are interested in come with topological structures. The concept of a Grothendieck

topology allows us to explore the consequences of such a structure in the abstract. We will begin with the

concept of a sieve, which is just a collection of morphisms closed under right composition. Throughout this

subsection, C is a fixed category.

Definition 1.11. A sieve S on an object M ∈ C0 is a (possibly empty) collection of morphisms whose target

is M , such that S is closed under precomposition. That is, for all f ∈ S and g ∈ C1 then f ◦ g ∈ S whenever

it is defined.

Let us make a few remarks about sieves:

• An arbitrary subcollection S′ ⊂ Hom(−,M) defines always defines a sieve S := {f ◦g : f ∈ S′, g ∈ C1}.

In such a case we say that S is generated by S′.

• Given a sieve S on M and a morphism g : N → M , the collection g∗S := {f : g ◦ f ∈ S} is called the

pullback sieve along g.

• Given two sieves S and T on M , the intersection S ∩ T is also a sieve.

• Give a sieves S = {si : Ui → M}i∈I and T = {tj : Vj → M}J∈J let S ×M T denote the collection of

fiber products {si ×M tj}(i,j)∈I×J . S1 ×M S2 is a sieve. However, if either S1 or S2 is generated by

cartesian morphisms, then S1 ×M S2 generates S1 ∩ S2.

When S = T we denote the elements of S×M S by {sij : Uij →M}. We extend this notation to higher

products as well, where sijk : Uijk →M denotes the map Ui ×M Uj ×M Uk →M .

We can now define a Grothendieck topology. Roughly speaking, a Grothendieck topology is a collection of

distinguished sieves which are designated covering sieves. Covering sieves should roughly behave like a sieve

generated by open embeddings whose images cover the target.

Definition 1.12. A Grothendieck topology on a category C is an assignment to each object M , a collection

of subsets of Hom(−,M) called covering sieves. This assignment must satisfy the following properties:

(T1) The whole of Hom(−,M) is a covering sieve of M .

(T2) If S is a covering sieve of M and g : Y →M is any morphism, then the pullback g∗S is a covering sieve

of Y .

(T3) Suppose S is a covering sieve on M and T is an arbitrary sieve on M such that g∗T is a covering sieve

for all g ∈ S. Then T is a covering sieve.

The condition (T2) should be interpreted as being analogous to the fact that the inverse image of an

open cover is an open cover. (T3) is corresponds to the observation that a collection of subsets is an open

10



cover if and only if it covers every element of a covering. In practice, defining a Grothendieck topology is

often easier to do in terms of generators called covering families.

Definition 1.13. Let C be a category. A Grothendieck pre-topology is an assignment to each objectM in C

of a collection of subcollections of the set Hom(−,M) called covering families. This assignment must satisfy

some properties.

(PT1) If f : N →M is an isomorphism then {f} is a covering family.

(PT2) If {ui : Ni →M} is a covering family then each ui is cartesian and {pr2 : Ni×MN → N} is a covering

family of N .

(PT3) If {ui : Ni →M}i∈I is a covering family of M and {Nij → Ni}j∈Ji is covering family of Ni for each

i, then the compositions {Nij → Ni →M} constitute a covering family of M .

To a pre-topology, we associated a Grothendiek topology by defining the covering sieves to be those sieves

which are generated by covering families.

Example 1.14. We can equip the category of open subsets of a topological sets X with a pre-topology by

defining {ui : Ui ↪→ U} be a covering family if
⋃
Ui = U . That is, a covering family is a covering in the

conventional sense.

Example 1.15. If C = Man, then we can give Man the following pre-topology: a covering {ui : Ui → M} of

manifold M is a collection of étale smooth maps ui whose images cover M . This is the same pre-topology

used in [1].

Example 1.16. If C = Man, then we can give Man the following pre-topology: a covering {ui : Ui → M} of

manifold M is a collection of open embeddings ui whose images cover M .

While Example 1.15 and Example 1.16 are different pre-topologies, it is easy to check that they generate

the same Grothendieck topology.

Definition 1.17. A site is a category C together with a Grothendieck topology

1.2 Stacks

1.2.1 Fibered categories

There are a few different ways to present the subject, but for our purposes a fibered category will be a functor

into C satisfying certain properties. We will typically denote the domain of this functor with X , Y, or Z.

Objects in these categories will be typically denoted with upper case letters X, Y and Z, while morphisms

will be denoted a, b, and c.
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Definition 1.18. A category fibered in groupoids (abbreviated CFG) over a category C is a category X

together with a functor π : X → C such that the following properties hold.

(CFG1) Given any morphism f : M → N in C and object Y in X such that π(Y ) = N , then there exists a

morphism a : X → Y in X such that π(a) = f .

∃X Y

M N

∃a

f

(CFG2) Given morphisms f : M1 → M2 and g : M2 → M3 in C together with a : X → Z and b : Y → Z

such that π(a) = g ◦ f and π(b) = g, then there exists a unique morphism c such that π(c) = f and

b ◦ c = a.

X Y Z

M1 M2 M3

a

∃!c b

f g

Example 1.19. Given any object M in C, let M̄ denote the slice category of M . Let π : M̄ → C be the

functor: 
N1 M

N2 M

g

f1

f2

 7→ g : N1 → N2

It is straightforward to verify that this functor satisfies the axioms of a category fibered in groupoids.

Example 1.20. Let F : Cop → Set be a presheaf. That is, F is a contravariant functor from C to the

category of sets. Then we can define a CFG over C as follows. The object collection of X is defined to be

the disjoint union of the sets F (M) for each object M in C. There is a morphism a : X → Y in X if and

only if there exists an f such that F (f)(Y ) = X.

The name ‘fibered in groupoids’ arises from the following observation. Fix an objectM of C and consider

the subcategory XM which is defined as below:

(XM )0 := {X ∈ X0 : π(X) = M} (XM )1 := {a ∈ X1 : π(a) = 1M} .

Lemma 1.21. XM is a groupoid. That is, every morphism in XM has an inverse.
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Proof. Let a : X → Y be a morphism in XM . Then consider the following diagram:

Y X Y

M M M

1Y

a

1M 1M

(CFG2) says that there exists a unique b : Y → X such that a ◦ b = 1Y . This shows that a admits a left

inverse. On the other hand, consider the related diagram:

X X Y

M M M

a

a

1M 1M

We can see immediately that both b ◦ a and 1X satisfy the existence invoked in (CFG2) and, since such a

morphism must be unique, they are equal.

The objects guaranteed by (CFG1) are called a pullback of Y along f and we will denote them by f∗Y

or Y |M . Due to the fact that the pullback is only unique up to a unique isomorphism, this is a slight abuse

of notation. Generally, in the following text one should interpret statements about f∗Y and Y |M as holding

for an arbitrary choice of pullback representative. Hence, we are claiming implicitly that our arguments and

definitions are invariant under this choice.

Linguistically, we think of a CFG X as sitting ‘above’ C. Hence a morphism in a ∈ X is said to over a

morphism f in C if π(a) = f . Similarly, an object X ∈ X is said to be over π(x) ∈ C.

Lemma 1.22. Given π(Y ) = N and f : M → N , then f∗Y is unique up to a unique isomorphism. That

is, suppose we are given a1 : X1 → Y and a1 : X1 → Y such that π(ai) = f for i = 1, 2. Then there exists a

unique isomorphism b : X1 → X2 such that a2 ◦ b = a1.

Proof. Suppose there exists a1 : X1 → Y and a2 : X2 → Y such that π(a1) = π(a2) = f . Then we have a

diagram:

X1 X2 Y

M M N

a1

a2

1M f

Then (CFG2) tells us that there exists a unique morphism b such that a2◦b = a1. Since b ∈ XM , Lemma 1.21

tells us that b is an isomorphism.

Definition 1.23. A morphism of CFGs F : X → Y is a functor which commutes with the projections to C. A

morphism of CFGs is called an isomorphism if it is an equivalence of categories. A 2-morphism η : F1 → F2

is a (necessarily invertible) natural transformation of functors.
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Definition 1.24. A CFG is called representable if it is isomorphic to M̄ for some object M ∈ C.

Formally, this notion of morphisms and 2-morphisms makes CFGs over C into a strict bicategory (see

Definition A.1). We will keep the more cumbersome technical results regarding bicategories in the appendix

for the sake of brevity. The above bicategory data is clearly coherent since it is strict. Bicategories have

their own version of the fiber product which we call the homotopy fiber product and is denoted with ×̃ (see

Definition A.10).

1.2.2 Stacks

A stack is just a CFG over a site which satisfies some ‘gluing’ axioms. These axioms can roughly be translated

as saying that both morphisms and objects are constructed from local data. Before we state the definition,

we should clarify a minor bit of notation:

Let X be a CFG over C. Let u : U →M be a morphism in C and φ : P → Q be a morphism in X covering

IdM . Given pullbacks P |U and Q|U , then we denote by φ|U : P |U → Q|U the unique morphism such that:

P Q

P |U Q|U

φ

φ|U

commutes. The existence and uniqueness of this morphism is an immediate consequence of (CFG2).

Definition 1.25. A CFG X over a site C is called a stack if it satisfies:

(S1) Given the following data:

• a covering sieve {si : Ui →M}i∈I ,

• objects P and Q in XM ,

• morphisms φi : P |Ui → Q|Ui covering the identity,

such that for all si and sj :

φi|Uij = φj |Uij .

There exists a unique morphism φ : P → Q such that φ|P |Ui = φi.

(S2) Given the following data:

• a covering family {si : Ui →M}a∈A of an object M in C,

• a collection of objects {Pi ∈ XUi}i∈A,

• morphisms φij : Pj |Uij → Pi|Uij
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such that, for all i, j, k ∈ I, φij |Uijk ◦ φjk|Uijk = φik|Uijk .

There exists an object P over M together with morphisms {φi : P |Ui → Pi}i∈A such that

φij ◦ φj |Uij = φi|Uij .

A CFG which satisfies at least (S1) is called a pre-stack.

Example 1.26. Let C be any site. Then IdC : C → C is a stack. It is representable if and only if C has a

terminal object.

Example 1.27. Let C be any site, then any representable CFG X ∼= C/M is a stack if and only if Id : C → C

is a (pre-)stack.

Example 1.28. Let C be the site of smooth manifolds and let G be a Lie group. Then BG, the category of

principal G-bundles, is a stack.

Example 1.29. Let F : Cop → Set be a presheaf. Then the associated CFG X is a pre-stack if an only if it

satisfies the locality axiom, i.e.:

s|Ui = t|Ui ∀Ui ⇒ s = t .

Furthermore F is a sheaf if and only if X is a stack.

1.2.3 Morphisms of stacks

Morphisms of stacks are defined to be morphisms of the underlying CFGs. In this subsection we will review

a few important classes of such morphisms.

Definition 1.30. Let F : X → Y be a morphism of CFGs over a site.

• We say F is locally essentially surjective or an epimorphism if for any object Y ∈ YM , there is a

covering sieve {Ua}a∈A of M such that each Y |Ua is isomorphic to an object in the image of F .

• We say F is representable if for any morphism M̄ → Y with M ∈ C, the fiber product X×̃YM̄ is

representable.

• We say F is a submersion if it is a representable epimorphism.

• We say F is a monomorphism if it is fully faithful.

There is a one-to-one correspondence between morphisms of representable stacks F : M̄ → N̄ and

morphisms F ′ : M → N in C. In other words, the functor M 7→ M̄ is fully faithful (the Yoneda lemma).

We should clarify that that for our examples, the term submersion will actually correspond to surjective

submersions.
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Example 1.31. Let f : M → N be a morphism in C and let f̄ : M̄ → N̄ be the associated morphism of

representable CFGs. Then f̄ is an epimorphism if and only if f admits local sections. That is there exists a

covering S = {si : Ui →M} of N together with morphisms {σi : Ui →M} such that f ◦σi = si for all s ∈ S.

Ui

M N

si∃σi

f

The functor f̄ is always a monomorphism. Lastly, f̄ is representable if and only if it is cartesian. Generally,

we will say that a morphism f in a site C is a submersion if and only if f̄ is a submersion.

Definition 1.32. A stack X is geometric or presentable if there exists a submersion (i.e. a representable

epimorphism) M̄ → X .

The significance of this definition will be made more clear in the next section, where we begin our

discussion of groupoids.

1.3 Groupoids

Throughout this section C will be some choice of site as defined above. Objects of C will be denoted with

letters such as M and N . Our goal is to develop the correspondence between groupoids internal to a site

and geometric stacks. We will develop this correspondence in a relatively high level of generality to unify

the proofs for specific cases. To begin, we will need to make sure our working conditions are reasonable, and

so we will need to make a few additional assumptions about C.

Definition 1.33. To any site C, there is a distinguished class of maps that we call submersions. A morphism

f : M → N in C is called a submersion if it is cartesian (always admits fiber products) and f admits local

sections. By local sections, we mean that there exists a covering S = {si : Ui → M} of N together with

morphisms {σi : Ui →M} such that f ◦ σi = si for all s ∈ S.

Ui

M N

si∃σi

f

The submersions in C are precisely those morphisms which give rise to submersions of the associated repre-

sentable stacks (see Example 1.31.)

There is a CFG of submersions which we call Sub. The objects Sub are defined to be the submersions
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in C. The morphisms of Sub are defined to be pullback squares:

f∗P P

N M

p

f

Composition is defined by horizontal composition of pullback squares. The CFG projection Sub → C is

defined by:
f∗P P

N M

p

f

7→ N M
f

It is not difficult to check that Sub is a CFG. Axiom (CFG1) follows from the fact that submersions are

stable under base change, (corollary of Lemma B.9). Axiom (CFG2) follows from the universal property of

pullback squares.

Definition 1.34. A site C is good if the following hold:

(GS1) C has an initial object. That is, there exists an object ∅ ∈ C such that for anther other object M in

C, there is a unique morphism ∅ →M .

(GS2) Every covering sieve is generated by some set of cartesian morphisms.

(GS3) Morphisms in C are local. That is, given a pair of objects M and N together with a covering sieve

S = {si : Ui →M} on M and maps fi : Ui → N such that the following diagram commutes:

Uij Ui

Uj N

fi

fj

there exists a unique morphism f : M → N such that f ◦ si = fi for all si.

(GS4) The CFG of submersions Sub (Definition 1.33) is a stack.

(GS5) If f ◦ g is a submersion, then f is a submersion.

The requirement of the existence of an initial object is for fairly minor technical reasons. For Man the

initial object is the empty manifold. We need such an object so that fiber products will exist in cases where

the images of the smooth maps are disjoint. We do not require the existence of a terminal object as this fails

for some of the examples of sites which we are interested (i.e DMan). The requirement of cartesian generators

is necessarily standard either, but it prevents some aberrant behavior and the author is not aware of an

example of an interesting site which does not satisfy this property.

Condition (GS3) is necessary since we need a way of constructing new morphisms in C. It is also reasonable

to expect that morphisms in C are local with respect to the ambient topology. Note that (GS3) implies that
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Sub is a pre-stack and so (GS4) is about gluing of objects. (GS4) also implies that being a submersion is

local in the codomain. The last condition, (GS5) is needed to prove Lemma 1.54. There are weaker versions

that suffice to prove this lemma, but we have chosen an easy to state version that resembles the smooth case.

From here on out, and throughout the appendix, we assume that C is a good site.

Remark. For some settings, it may be prudent to be more restrictive with the definition of a submersion. For

instance, it may be the case that the set of cartesian epimorphisms do not satisfy (GS5). In this situation, the

arguments in this text will still work so long as our designated class of maps satisfy the following properties:

• they must be submersions in our weaker sense (cartesian epimorphisms);

• they must include isomorphisms;

• they must make C into a good site (i.e. they satisfy (GS4) and (GS5)).

In such a setting, one should adjust the definition of a presentation accordingly.

1.3.1 Internal groupoids

Roughly speaking, an internal groupoid is a groupoid whose arrows and units are objects of a category (or

a site). To do this, we will transfer the groupoid data into a collection of morphisms such that a collection

of diagrams commutes. Throughout this subsection, C denotes an

Definition 1.35. A groupoid internal to a site C, also called a C-groupoid, consists of the following data:

• objects G and M in C called the arrows and units,

• submersions s, t : G → M , called the source and target (see Definition 1.33 for the definition of a

submersion in a general site),

• morphisms u : M → G and i : G → G called the unit and inverse

• a morphism m : G ×s,t G → G.

such that (A)-(F) of Definition 1.1 hold (when interpreted as commutative diagrams in C). We also require

that the following diagrams commute:

(G1) (i is an involution)
G

G G

ii

Id

(G2) (compatibility of i with s and t)
M

G G

s

i

t
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(G3) (compatibility of i with m)

G G ×s,t G

M G

t

Id×i

m

u

Example 1.36. A Man-groupoid is called a Lie groupoid.

Example 1.37. Given any C-groupoid G ⇒ M , we can construct the opposite groupoid Gop for which the

source and target maps are reversed, and the multiplication morphism comes from the composition:

G ×t,s G → G ×s,t G → G.

Example 1.38. Any object M ∈ C has an associated trivial groupoid 1M for which the arrows and objects

are both M and the source and target maps are identities.

We will use the notation G ⇒ M to denote a C-groupoid whose arrows are G and units are M . The

notation G(n) will denote the n-fold fiber product G ×s,t · · · ×s,t G. By convention we define G(0) := M .

Since G comes with two morphisms to M , there is some ambiguity when writing things such as G ×M N .

To alleviate this, given f : N →M , when we take a fiber product on the right side, as in G ×M N we always

mean G ×s,f N . Similarly, N ×M G = N ×f,t G. From this convention, it should be clear that we think of

arrows in the groupoid as going from right to left.

Definition 1.39. Let G ⇒M and H⇒ N be C-groupoids. A morphism of C-groupoids, denoted F : G → H

consists of two morphisms F1 : G → H and F0 : M → N such that the following diagrams commute:

(GM1) (Compatibility of F with s and t)

G H

M N

s

F1

s

F0

and
G H

M N

t

F1

t

F0

(GM2)

G(2) H(2)

G H

(F◦pr1)×(F◦pr2)

m m

F1

Remark. We may sometimes denote the multiplication morphism with ·. For instance, f · g is a synonym for

m ◦ (f × g). Of course, the associativity of m implies that (f · g) · h = f · (g · h) whenever such morphisms

are well defined.
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1.3.2 Internal actions

Definition 1.40. Let G ⇒ M be a C-groupoid. Then a left G action on an object P in C consists of the

following data:

• a morphism tP : P →M ,

• a morphism mL : G ×M P → P

such that the following diagrams commute:

G11 (Compatibility of mL with units)

G ×M P

P P

mL(u◦J)×Id

Id

G22 (Associativity)

G ×M G ×M P G ×M P

G ×M P P

(m(pr1,pr2),pr3)

(pr1,(mL(pr2,pr3)))

mL

mL

A right action is defined in a symmetrical fashion. That is, we swap all instances of s and t and write mR

instead of mL.

Like with groupoids, we will sometimes write f · g to mean mL(f × g).

In the case where C is manifolds or topological spaces. This corresponds to the standard definition of a

groupoid action.

Definition 1.41. Let G ⇒M be a C-groupoid and P , mP
L , t

P be a left action of G on P as above. Suppose

Q, mQ
L and tQ is another left G action. Then we say a morphism φ : P → Q is G-equivariant if:

(GE1) (Preserves the anchor)
M

P Q

tP

φ

tQ

(GE2) (Preserves the product)

G ×M P G ×M Q

P Q

mP
L

(pr1,φ◦pr2)

mQ
L

φ

Definition 1.42. Let G ⇒ M be a C-groupoid. A left G-bundle over an object N in C, consists of a left G

action on P , together with a submersion sP : P →M such that:
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GB1 (compatibility of mL with sP )
G ×M P P

P N

mL

pr2 sP

sP

Furthermore, we say that the G is

(GB2) almost principal if sP : P → N is a submersion and mL × pr2 : G ×M P → P ×N P is a submersion

(GB2) principal if it is almost principal and mL× pr2 : G ×M P → P ×N P is an isomorphism (i.e. diagram

(GB1) is a pullback square).

Right G-bundles are defined in the obvious symmetric manner.

A left action on P is called (almost) principal if it can be made into a (almost) principal G-bundle over

some manifold N . Since such a submersion P → N is unique up to a unique isomorphism (see Lemma B.1)

it makes sense to write P/G to indicate some canonical choice of N .

If P → N and Q→ N ′ are equipped with the structure of a G-bundle, then a morphism of G-bundles is

a pair of maps φ : P → Q and f : N → N ′ such that φ is G-equivariant and the following commutes:

(GBM) (Compatible with projection)

P Q

N N ′

φ

sP sQ

f

A left G-bundle is illustrated with a diagram:

G P

M N

t s

The reader should check that in the case of C = Man a principal G-bundle is the standard object. The

morphism A : G ×M P → P ×N P defined by

A(g, p) = (g · p, p)

is called the total action. Note that the total action is an isomorphism implies the existence of a division

map. That is, a morphism m̃L : P ×N P → G such that:

m̃L(p, q) · q = p

The condition that the action is principal implies that the division map is uniquely defined by this property.

Given a G-action on P . We say that the action is principal if there exists an object N and a submersion
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P → N which makes P a principal G-bundle over N . In such a case, we denote N by P/G. This notation is

sensible since, by Lemma B.1, N is unique up to a unique isomorphism.

To keep notation from getting out of hand, we will distinguish between sP and s when it is not necessary.

We think of “arrows” in a G-bundle as going from right to left. For this reason, if P is a right G-bundle, the

morphism tP is the projection to the base instead of sP .

Example 1.43. Any C-groupoid G ⇒ M can be made into a G-bundle over M by left multiplication. The

inverse of the total action can be constructed directly using the division map on the groupoid m ◦ (pr1× (i ◦

pr2)).

Example 1.44. Suppose P is a left G-bundle. Then we can form a right G-bundle called P op whose total

space is the same as P and whose source is the target of P . The right action is define in the obvious way:

p · g := i(g) · p

Example 1.45. Let G ⇒ M be a C-groupoid and suppose f : N → M is a morphism in C. Then G ×M N

naturally inherits the structure of a left principal G-bundle. Such a bundle is called the trivial bundle

associated to f .

Example 1.46. Suppose P → N is a principal (left) G-bundle and f : N ′ → N is a morphism in C. Then

there exists a unique G-bundle structure on f∗P := P×NN ′ such that f∗P → P is a morphism of G-bundles.

Such a bundle is called the pullback bundle. The multiplication map on f∗P is defined below:

mf∗P
L (g, (g′, p)) := (g · g′, p)

From this point of view, the trivial bundle associated to a morphism f : N →M is the pullback of G as

a G-bundle. For this reason we will use f∗G to denote the trivial G bundle associated to f .

A trivialization of a G-bundle P is a G-bundle isomorphism f∗G → P . Our next lemma gives us some

insight into the local geometry of principal G-bundles.

Lemma 1.47. Suppose P → N is a principal left G-bundle. There is a one-to-one correspondence between

trivializations φ : f∗G → P and sections σ : N → P such that tP ◦ σ = f .

Proof. Suppose we have an f : N → M and recall f∗G := G ×M N . Let σ̃ := (u ◦ f, Id) be the canonical

section of f∗G. Then σ := φ ◦ σ̃ is a section of P . Furthermore, it clearly satisfies t ◦ σ = f .

For the other direction of the correspondence, suppose σ : N → P is a section. Then we can define

φ(g, x) = g · σ(x) .

That φ is equivariant is fairly routine. To see that φ is an isomorphism we will the division map to construct
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its inverse:

φ−1(p) := (m̃L(p, σ ◦ s(p)), s(p))

Definition 1.48. Let G ⇒M and H⇒ N be C-groupoids. A (G,H)-bibundle consists of an object P in C

as well as a left G bundle structure on P and right H bundle structure on P such that the source and target

maps are shared between them. Lastly, we require that:

(BB) (the actions commute)

G ×M P ×N H P ×N H

G ×M P P

(mL(pr1,pr2),pr3)

(pr1,(mR(pr2,pr3)) mR

mL

A bibundle is left(right) principal if the left(right) action forms a principal left(right) G bundle over N(M).

We say that the bibundle is principal or biprincipal if it is both left and right principal.

If P and P ′ are both equipped with (G,H)-bibundle structures, then a morphism φ : P → P ′ is a

morphism of (G,H)-bibundles if it is equivariant with respect to both actions.

A (G,H)-bibundle can be illustrated with a diagram of the form:

G P H

M N

t s

Example 1.49. Any C-groupoid G ⇒ M is naturally a biprincipal (G,G)-bibundle. It is called the trivial

(G,G)-bibundle.

Example 1.50. Suppose F : G → H is a C-groupoid homomorphism covering f : M → N . Then we can

construct a bibundle P := f∗H. The left action on P is the trivial H action while the left action of G is

defined by the rule:

(h, x) · g = (hF (g), x) .

We will take a closer look at this last example in Chapter 2.

1.3.3 Generalized morphisms

Bibundles allow us to generalize weaken the notion of a groupoid morphism. We will see later that this

weaker notion of morphism is precisely what is needed to study the stack associated to a C-groupoid.

Definition 1.51. Let G ⇒ M and H ⇒ N be C-groupoids. A Hilsum-Skandalis map or a generalized

morphism is a left principal (G,H)-bibundle.
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An equivalence of generalized morphisms is a morphism of (G,H)-bibundles.

We use the term equivalence due to the fact that all bibundle morphisms are automatically isomorphisms

(see Lemma B.7). Generalized morphisms can be composed via the following construction. Let P be a

(G,H)-bibundle and Q be a (H,K)-bibundle illustrated below:

G P H Q K

M N O

t s t s

Consider the object P ×N Q and the canonical morphism t̂ : P ×N Q→ N . Note that this is the target map

of a (left) action of H whose product is given by:

m̂L(h, (p, q)) := (p · i(h), h · q)

By Lemma B.4, this action is principal. We denote (P ×N Q)/H with P ⊗H Q.

Notably, P ⊗Q inherits a (G,K)-bibundle structure. The anchor maps are the unique maps which make

the below diagram commute:
P ×N Q

M O

P ⊗H Q

These maps exist due to Lemma B.1. Similarly, the left action map is the unique morphism such that the

diagram below commutes.

G ×M P ×N Q P ×N Q

G ×M P ⊗H Q P ⊗H Q

(mL(pr1×pr2))×pr3

Id×(π◦(pr1×pr2)) π

The right action is defined similarly.

Lemma 1.52. These actions make P ⊗H Q a left principal (G,K)-bibundle.

Proof. We must show the total action is an isomorphism. Note that that the total action makes the following

diagram commute:
G ×M (P ×N Q) (P ×N Q)×O (P ×N Q)

G ×M (P ⊗H Q) (P ⊗H Q)×O (P ⊗H Q)

Where the vertical arrows are the projections under the action of H. By Corollary B.3, the fact that the top

arrow is an isomorphism implies that the bottom arrow is as well.
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Similarly, Corollary B.3 implies that the left and right actions must commute, since they are obtained

by reducing commuting left and right actions modulo H.

Remark. We will use tensor product notation for constructing maps involving P ⊗Q. For instance, we may

sometimes write f ⊗ g to denote the post composition of f × g with the projection P ×N Q → P ⊗ Q.

Similarly, if we write:

p⊗ q 7→ f(p, q)

We mean to denote the unique morphism obtained from the H invariant map f .

With this product in hand, we can define the bicategory of generalized morphisms.

Definition 1.53. Let GMor (generalized morphisms) denote the following bicategory:

• The objects of GMor are C-groupoids.

• The 1-morphisms are generalized morphisms of C-groupoids.

• The 2-morphisms isomorphisms of generalized morphisms.

If P is a (G,H)-bibundle, then we say the source of P is H and the target of P is G. Composition of

generalized morphisms is by the tensor product defined above. Vertical composition of 2-morphisms is by

composition in C. Suppose P1 and Q1 and (G,H)-bibundles and P2 and Q2 are H, K bibundles. Given

2-morphisms α : P1 → P2 and β : Q1 → Q2 then vertical composition is the unique 2-morphism α⊗H β such

that the below diagram commutes.

P1 ×N Q1 P1 ⊗H Q1

P2 ×N Q2 P2 ⊗H Q2

(α◦pr1)×(β◦pr2) α⊗Hβ

Again, existence and uniqueness of this morphism is given by Corollary B.3.

Given a C-groupoid G, the unit 1-morphism is G (viewed as a G-bibundle with the obvious actions). The

left unit UL is the unique 2-morphism G ⊗G P → P obtained by reducing the left multiplication modulo G.

The right unit is defined similarly.

Suppose P1, P2 and P3 are (G1,G2), (G2,G3), and (G3,G4)-bimodules, respectively. Where Gi ⇒ Mi are

C-groupoids. Associativity is the unique 2-morphism obtained by reducing the canonical isomorphism:

(P1 ×M2 P2)×M3 P3 → P1 ×M2 (P2 ×M3 P3) .

modulo the actions of G2 and G3.

We have omitted the proof that this data satisfies the coherence conditions for a bicategory since we will

show later that GMor is equivalent to a (strict) bicategory and must therefore be coherent.
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Lemma 1.54. A generalized morphism is (weakly) invertible if and only if it is biprincipal.

Proof. Suppose P is a biprincipal (G,H)-bundle for C-groupoids G ⇒ M and H ⇒ N . Let P op be the

(H,G)-bibundle obtained by taking the opposite actions on P .

Then we claim that P ⊗H P op ∼= G as G-bundles. By the definition of P ⊗H P op we have that:

P ⊗H P op = P ×N P/H

We have division map m̃L : P ×N P → G and it is clear that m̃L is H-invariant. By Lemma B.1 we obtain

a morphism Φ: P ⊗H P op → G. Since m̃L is G-equivariant we have that Φ is equivariant and so Φ is a

G-bundle morphism. Since Φ covers the identity it is an isomorphism (see Lemma B.6). The argument is

symmetric for P op ×G P .

On the other hand, suppose P has a weak inverse Q. Then since P ⊗ Q ∼= H we can conclude that

t ◦ pr1 : P ×N Q→M is a submersion. By (GS5) from the definition of a good site, we conclude that t is a

submersion.

To conclude the proof, we need to show that the right action on P is principal. First note that s : Q→M

is a submersion (by a similar argument as before). Therefore, we can choose a covering {Ui → M} of M

with sections σi : Ui → Q of s : Q→M . Such sections let us construct a family of maps Ui ×M P → Q⊗ P

by using the rule:

(x, p) 7→ σi(x)⊗ p

Similarly, we have a family of morphisms:

Ui ×M P ×t,t P → (Q⊗ P )×t,t (Q⊗ P ) (x, p, q) 7→ ((σi(x)⊗ p), (σi(x)⊗ q))

By using the division map for the right action on Q⊗P we get local division maps δi : Ui×M ×P ×t,tP → H

for the right action on P . Since C is a good site, we can glue the δi together into a global division morphism

δ : P ×t,t P → H. That this division map gives inverts the total action follows from the definition of the

action on Q⊗H P .

1.3.4 The classifying stack

Suppose G is a C-groupoid. Then consider the category BG such that

• an object in BG is a principal G bundle P → N

• a morphism in BG is an equivariant map φ : P → Q.

Observe that there is a natural forgetful functor BG → Sub. This follows from:
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Lemma 1.55. Suppose G is a C-groupoid. Let P → N1 and Q → N2 be principal left G-bundles and

φ : P → Q be a G-bundle morphism covering f : N1 → N2. Then

P Q

N1 N2

φ

f

is a pullback square in C.

Proof. We must show that φ̃ : P → f∗Q = Q×N2
N1 is an isomorphism. In other words, it suffices to prove

the lemma in the case where f = Id. Therefore, without loss of generality assume N1 = N2 = N and f = Id.

Let S = {si : Ui → N1} be a covering sieve such that the the pullback bundles {s∗iP → Ui} and

{s∗iQ→ Ui} admit sections. Let φi : s∗iP → s∗iQ} be defined as below:

φi(p, x) := (φ(p), x)

By Lemma B.6 each φi is invertible. Hence the collection φ−1
i defines the inverse of φ locally. Since C is a

good site, the φ−1
i can be glued to obtain a global inverse of φ.

The functor BG → Sub is a faithful inclusion. In general, it is not full or essentially surjective. Now

consider the forgetful functor π := BG → C which passes to the base of the G-bundle.

Theorem 1.56. The functor π : BG → C makes BG a category fibered in groupoids.

Proof. We must show (CFG1) and (CFG1) from Definition 1.18. First of all, (CFG1) follows from the

construction of the pullback bundle (Example 1.46).

To show (CFG2), suppose we are given morphisms f : M1 → M2 and g : M2 → M3 in C together with

a : P → R and b : Q → R such that π(a) = g ◦ f and π(b) = g. We must show that there exists a unique

morphism c such that π(c) = f and b ◦ c = a.

P Q R

M1 M2 M3

a

∃!c b

f g

Since BG → Sub is a faithful inclusion, we know that there exists a morphism c which makes the diagram

commute. We only need to show that c is G-equivariant. By Lemma 1.55 we know that we can replace Q

with g∗R and P with f∗g∗R. Since f∗g∗R→ g∗R is clearly G-equivariant, the theorem follows.

Theorem 1.57. BG is a stack.

Proof. We need to show that BG satisfies (S1) and (S2) from Definition 1.25.

27



(S1) Suppose we are given the following data:

• a covering sieve {si : Ui → N}i∈I ,

• objects P and Q in BGN ,

• morphisms φi : P |Ui → Q|Ui covering the identity,

such that

φi|Uij = φj |Uij .

We must show there exists a unique morphism φ : P → Q such that φ|P |Ui = φi. Since BG → Sub is

an inclusion and Sub is a stack, we already know that there is a morphism φ : P → Q. We must show

that φ is G equivariant. In other words, we need the following diagram to commute:

G ×M P G ×M Q

P Q

mL

pr1×(φ◦pr2)

mL

φ

The maps P |Ui → P and Q|Ui → Q generate covering sieves of P and Q, respectively. Since we know

each φi : P |Ui → Q|Ui is G-equivariant. We can conclude that the above diagram commutes locally.

Since C is a good site, it must commute globally.

(S2) Now suppose we are given the following data:

• a covering sieve {si : Ua → N}i∈I of an object N in C,

• a collection of objects {Pi ∈ XUi}i∈I ,

• morphisms φij : Pj |Uij → Pi|Uij

such that, for all i, j, k ∈ I such that sijk exists, φij |Uijk ◦ φjk|Uijk = φik|Uijk .

We must show there exists a principal G-bundle P over N together with morphisms {φi : P |Ui → Pi}i∈I
such that

φij ◦ φj |Uij = φi|Uij .

Again, we know that there exists P → N in SubN which satisfies this data. We claim that there is

an action of G on P which makes each φi equivariant. In other words, we must construct a morphism

mL : G ×M P → P . To do this, observe that {G ×M Pi → G ×M P} generates a covering sieve of

G ×M P . Hence we can treat each left action of G on Pi as a locally defined left action on P . Since

these actions are assumed to agree on intersections and C is a good site, we conclude that they can be

glued together into a unique map G×M P → P . The resulting morphism will constitute an action since

diagrams which commute locally in a good site must commute globally.
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1.3.5 Geometric stacks

So far we have observed that a C-groupoid gives rise to a stack. Let Stacks be the bicategory of stacks

over C. In this section we will extend the relationship G 7→ BG to a pseudofunctor (see Definition A.7)

of bicategories B : GMor → Stacks and prove the main properties of B. A pseudofunctor of bicategories

is just a map of objects, 1-morphisms, and 2-morphisms, together with a compatibility map relating the

compositions.

We have already defined the action of B on objects. To define B on 1-morphisms we must construct a

morphism of CFGs BP : BH → BG for a left principal (G,H)-bibundle P .

Suppose Q is a principal left H bundle (i.e. an object of BH). Then we define BP (Q) := P ⊗HQ. Given

φ : Q1 → Q2 a H-bundle morphism. Then BP (φ) : P ⊗H Q1 → P ⊗H Q2 is the unique morphism making

the following diagram commute:

P ×N Q1 P ×N Q2

P ⊗H Q1 P ⊗H Q2

pr1×(φ◦pr2)

BP (φ)

It is clear that BP (φ ◦ ψ) = BP (φ) ◦BP (ψ) and so BP is a functor. This defines B on 1-morphisms.

Now suppose Φ : P1 → P2 is a (G,H)-bibundle isomorphism. We must define a natural transformation

BΦ: BP1 → BP2. In other words, we need a function η : (BH)0 → (BG)1. Given an object Q in BG, let

η(Q) : P1 ⊗H Q→ P2 ⊗Q

be the unique morphism obtained by reducing (Φ ◦ pr1)× pr2 : P1×N Q→ P2×N Q modulo H. Clearly this

makes the below diagram commutes for any morphism φ in BG and so η defines a natural transformation.

P1 ⊗H Q1 P2 ⊗H Q1

P1 ⊗H Q2 P2 ⊗Q2

η(Q1)

BP1(φ) BP2(φ)

η(Q2)

p1 ⊗ q1 Φ(p1)⊗ q1

p1 ⊗ φ(q1) Φ(p1)⊗ φ(q1)

Suppose P1 : H → G and P2 : K → H are 1-morphisms in GMor. For B to be a pseudofunctor, we should

exhibit a natural transformation B(P1 ⊗ P2) ∼= B(P1) ◦ B(P2). In other words, for each object Q in BG

we need an isomorphism B1(P1, P2, P3) : (P1 ⊗ P2)⊗Q → P1 ⊗ (P2 ⊗Q). This isomorphism is constructed

canonically by the associator of the fiber product in C. Lastly, for each C-groupoid G, we should exhibit a

natural isomorphism B2(G) between the functor:

BG → BG P 7→ G ⊗G P

and the identity functor on BG. This natural transformation comes from the canonical isomorphism between
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G ⊗G P and P .

Technically, to show that B is a well defined pseudofunctor, we need to check coherence of this data.

Since this calculation is straightforward and not particularly enlightening, so we will omit the proof.

Proposition 1.58. Let G ⇒M be a C-groupoid for C a good site. Then BG is a geometric stack.

Proof. Let p : M̄ → BG be the functor f 7→ f∗G. That is, it sends a morphism f : N →M to the associated

trivial bundle f∗G. We claim that p is a presentation of M .

Since every G-bundle is locally trivial, it follows that p is an epimorphism. Hence, we only need to show

that p is a representable morphism of CFGs. Suppose q : N̄ → BG is a morphism of CFGs. Without loss of

generality, we can assume that q(g) = g∗q(IdN ). Then Lemma B.15 says that there is a pullback square:

Q̄ N̄

M̄ BG

s

t q

p

Which immediately implies that p is representable.

Let GStacks ⊂ Stacks be the full sub-bicategory of geometric stacks. Then the previous result says that

we can restrict the codomain of B to the full sub-2-category of geometric stacks. We now state the main

theorem of the chapter.

Theorem 1.59 (Fundamental theorem of geometric stacks). Suppose C is a good site. The pseudofunctor

B is an equivalence between GMor, the bicategory of C-groupoids and bibundles, and GStacks, the bicategory

of geometric stacks.

Before we proceed to prove this theorem, we should mention some of the context for this result. In the

case of C = Man, it is folklore. For instance, one can find a statement and (partial) proof of the result in

Blohmann [2]. In the case where C is the site of topological spaces, we are not aware of a reference which

states the above theorem in this form. However, since the study of higher structures in Top is very well

developed, the author considers it likely that it is at least an easy corollary of an existing theorem. The main

utility of the Theorem is not in applying it to a well known site. Rather, it is mainly useful for understanding

geometric stacks for newly defined or uncommon sites. In fact, this is precisely what we will do in Chapter

3.

There are two (equivalent) definitions of equivalence of bicategories (see Leinster [28] for a discussion of

this). The one that we will use, (and the one that appears in Definition A.7) is as follows: a pseudofunctor

F is an equivalence if and only if F is an equivalence of categories at the level of Hom-categories and F

is surjective up to weak equivalences. Hence, we can split the proof of Theorem 1.59 into the next two

propositions.
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Proposition 1.60. The pseudofunctor B is biessentially surjective onto geometric stacks. That is, every

geometric stack X is equivalent to BG for some C-groupoid G.

Proof. Suppose p : M̄ → X is a presentation. Lemma A.13 says that M̄×̃X M̄ is a strict groupoid internal to

CFGs. Furthermore, since the CFG of arrows is representable, there exists a C-groupoid G and a 2-pullback

square:
Ḡ M̄

M̄ X

s

t (1.2)

We claim that BG is equivalent to X . By Lemma B.21 it suffices to show that there exists a pre-stack

Y together with a pair of local equivalences (see Definition B.18) BG ← Y → X . Let Y be defined to be

the pre-stack of trivial G bundles. That is: the objects of Y are defined to be morphisms f : N → M . The

morphisms of Y are isomorphisms φ : f∗1G → f∗2G.

The forgetful functor Y → BG is clearly a local equivalence. We need to construct a local equivalence

E : Y → X . Recall that a local equivalence is a fully faithful and locally essentially surjective functor. Since

Y has the same objects as M̄ , we can define E : Y → X to be equal to p at the level of objects. Since we are

working with CFGs, it suffices to define E for morphisms covering the identity. Suppose φ : f∗1G → f∗2G is a

morphism in Y covering the identity for fi : N →M .

By Lemma B.5 there is a unique γ : N → G such that

φ(g, x) = (g · γ(x), x).

Let η : M̄0 → X1 be the natural transformation which witnesse the 2-commutativity of Diagram 1.2. Then

we define E(φ) := η(γ) where γ : N →M is the morphism just described.

To see that E is a functor, observe that

E(φ1 ◦ φ2) = η(m(γ2, γ1)) = η(γ1) ◦ η(γ2) = E(φ1) ◦ E(φ2)

The second equality comes from two facts:

• if F : Ḡ → M̄×̃X M̄ is the canonical map, then η = pr1.5 ◦ F0 : G0 → M̄×̃X M̄ ;

• the groupoid operation on G is, by definition, the one obtained via F : Ḡ → M̄×̃X M̄ .

Now that we have defined E, it is clear that E is locally essentially surjective so we only need to show

that it is fully faithful. It suffices to show this for morphisms covering the identity. Fix a pair of objects

f and g in Y. Suppose a : f∗X0 → g∗X0 is a morphism in X covering the identity. Consider the object

(f, a, g) in M̄×̃BGM̄ . Since F is an equivalence, (f, a, g) is in the orbit of F (γ) for a unique γ ∈ Ḡ. Since

this process inverts E we conclude that E|Hom(f,g) is a bijection.
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Proposition 1.61. Let G ⇒M and H⇒ N be C-groupoids and let Bun(G,H) be the category whose objects

are generalized morphisms P : G → H and morphisms are isomorphisms of generalized morphisms. On the

other hand, let Hom(BG,BH) be the category whose objects are CFG morphisms BG → BG and morphisms

are natural transformations. Then B : Bun(G,H)→ Hom(BG,BH) is an equivalence of categories.

In other words, the psuedofunctor B is bi-fully faithful.

Proof. We will first show essential surjectivity. Suppose F : BG → BH is a CFG morphism. Then consider

N̄×̃BHM̄ which fits into the 2-commutative diagram:

N̄×̃BHM̄ M̄

BG

N̄ BH

F

By Lemma A.14, N̄×̃BHM̄ has a left H̄ action and a right Ḡ action. Its clear from the definitions of these

actions that they commute. Since N̄ → BH is a presentation, there exists a (H,G)-bundle P which fits into

a 2-commutative square:
P̄ M̄

BG

N̄ BH

s

t

F

The right action of G is principal since s is a submersion (see Lemma A.14 for why the action is principal).

Note that P → BG is a presentation. Therefore, by replacing M with P , we can assume without loss of

generality that there exists a 2-commutative square:

M̄ N̄

BG BH

f

F

In such a case, we get a morphism σ : M → P which splits s : P → M . Since P admits a section, we can

assume without loss of generality that P = G ×s,f N = f∗G.

Now we claim that there is a natural transformation η : BP → F . Such a natural transformation must

associate to each object Q in BG an isomorphism P ⊗G Q → F (Q). We will first define η for trivial G

bundles. Suppose g∗G → N ′ is such a G-bundle. Then P ⊗G g∗G can be identified with g∗f∗H (due to the

fact that P admits a section).
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The equivalence P̄ → N̄×̃BHN̄ sends ρ : N ′ → P to the triple (t ◦ ρ, α(ρ), s ◦ ρ) where

α(ρ) : (t ◦ ρ)∗H → F ((s ◦ ρ)∗G), .

Then we can define η on trivial G-bundles to be η(g∗G) := α(σ ◦ g). Therefore:

η(g∗G) : g∗f∗H → F (g∗G) .

To define η for non-trivial P , we extending it (non canonically) by making a choice (for each P ) of a local

trivialization and define η(P ) to be the uniqueH-bundle isomorphism obtained from gluing the identifications

coming from η applied to each trivialized piece. Since η satisfies the condition for being a natural transfor-

mation locally, it also satisfies the condition globally after glueing. This shows B : Bun(G,H)→ Hom(G,H)

is essentially surjective.

We will now show that it is fully faithful. Fix a left principal (G,H)-bibundle P for C-groupoids G ⇒M

and H ⇒ N . Now consider the function B : Isom(P, P ) → Isom(BP,BP ). Suppose that Bφ = IdP for

φ : P → P . Then for all Q ∈ BG, φ ⊗ Id : P ⊗ Q → P ⊗ Q is the identity, hence φ : P → P must be the

identity. This shows that the function is injective.

Now let η : BP → BP be a natural transformation, we want to show η is in the image. We know that

η(Q) : P ⊗Q→ P ⊗Q and

P ⊗Q1 P ⊗Q1

P ⊗Q2 P ⊗Q2

η(Q1)

BP (ψ) BP (ψ)

η(Q1)

commutes for any morphism ψ : Q1 → Q2 in BG. In particular, by taking Q = H and observing that there

is a canonical isomorphism P ⊗ H ∼= P then we get a G-bundle isomorphism φ : P → P . We claim that φ

is a bibundle morphism. To show this we need to explain why φ is H-equivariant. To see this, consider an

arbitrary morphism γ : N ′ → H, by the natural isomorphism condition the following diagram commutes:

P ⊗ (t ◦ γ)∗H P ⊗ (t ◦ γ)∗H

P ⊗ (s ◦ γ)∗H P ⊗ (s ◦ γ)∗H

η(Q1)

p⊗(h,x)7→p⊗(h·γ(x),x) p⊗(h,x)7→p⊗(h·γ(x),x)

η(Q1)
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Using the definition of φ, we can extend this diagram as below:

(t ◦ γ)∗P (t ◦ γ)∗P

P ⊗ (t ◦ γ)∗H P ⊗ (t ◦ γ)∗H

P ⊗ (s ◦ γ)∗H P ⊗ (s ◦ γ)∗H

(t ◦ γ)∗P (t ◦ γ)∗P

(p,x)7→p⊗(γ(x),x))

(p,x)7→(φ(p),x)

(p,x)7→p⊗(γ(x),x))

η(Q1)

p⊗(h,x)7→p⊗(h·γ(x),x) p⊗(h,x)7→p⊗(h·γ(x),x)

p⊗(h,x)7→(p·h,x)

η(Q1)

p⊗(h,x)7→(p·h,x)

(p,x)7→(φ(p),x)

Which implies that (φ(p) · γ(x), x) = (φ(p) · γ(x), x) and so φ must be H-equivariant.

To finish, we need to show that B(φ) = η : BP → BP. Which is equivalent to showing that

η(Q) = φ⊗ IdQ : P ⊗Q→ P ⊗Q

for all objects Q ∈ BG. It suffices to show this for trivial H-bundles since we only need to check equality of

maps locally. Suppose Q = f∗H then by the definition of φ we have that

P ⊗ f∗H P ⊗ f∗H

f∗P f∗P

η(f∗H)

(p,x)7→(φ(p),x)

commutes, where the vertical arrows are the canonical identifications. Since φ is equivariant, we also know

that:
P ⊗ f∗H P ⊗ f∗H

f∗P f∗P

η(f∗H)

(p,x)7→(φ(p),x)

Since φ is H-equivariant, we have that:

P ⊗ f∗H P ⊗ f∗H

f∗P f∗P

φ⊗IdH

(p,x)7→(φ(p),x)

commutes as well. Since the vertical arrows are the same isomorphisms in both of these diagrams, we can

put them together to obtain the desired equality.

These two propositions complete the proof of the main theorem. In the next section we will look at a

few examples of sites and study the geometric meaning of these concepts in each setting.
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1.4 Examples

Here we will briefly explore a few examples of good sites and the geometric interpretation of our theorems.

1.4.1 Manifolds

Let C be the site of manifolds. Then a C-groupoid is a Lie groupoid. A principal C-groupoid bundle is the

same as a principal bundle of the associated Lie groupoid. Principal bibundles of Lie groupoids are called

Morita equivalences. The theorem says the study of geometric stacks over the site of smooth manifolds is

equivalent to the study of principal groupoid bundles.

It is clear that a submersion in the sense we have discussed thus far is the same as a surjective submersion

of manifolds. However, if we wish, we can be more strict with the definition of submersion, and we will obtain

a corresponding class of geometric stack represented by a Lie groupoid.

Example 1.62. Suppose we redefine submersion to mean locally trivial fibration. Then a C-groupoid becomes

a Lie groupoid G ⇒ M for which the source map makes G into a locally trivial fibration. By our theorem,

the stacks represented by such groupoids are precisely those which admit a presentation p : M → X which

is a locally trivial fibration. In this case, we mean that p is a representable epimorphism such that for any

N̄ → X, the associated map M̄ ×X N̄ → N is a locally trivial fibration of manifolds.

A sub-example of this case are the stacks represented by source proper Lie groupoids. That is, groupoids

whose source maps are proper submersions.

Apart from alternative notions of submersion, we can also enrich the category of manifolds with additional

data.

Example 1.63. Let C be the category whose objects are pairs (M,X) where X is a vector field on the

smooth manifold M . A morphism in this category is a smooth map f : (M,X) → (N,Y ) such that X and

Y are f -related.

We can give C a Grothendiek topology by setting a covering family to be a collection of open embeddings

(Ui, X|Ui)→ (M,X) whose images cover M . This site comes with a forgetful functor to Man. A submersion

in this category is just a surjective submersion. A C-groupoid is a Lie groupoid G equipped with a vector

field X which is multiplicative.

m∗(X,X) = X

Recent work by Berwick-Evans and Lerman [30] has shown that such a vector field is a reasonable

candidate for the definition of a vector field on a geometric stack. Hence, we obtain our first example of an

interesting strategy. One can try to understand structures on a geometric stack by equipping the site itself

with additional structure.
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1.4.2 Schemes

The site of schemes over a base satisfies our axioms for a good site when equipped with the etale topology.

Gluing along submersions is easy since schemes are already defined locally. If one is more strict and requires

more topological properties such as seperatedness, then one might need to be careful, but most of the time

these properties are preserved as long as you gluing inside of Sub. In this context, it is also reasonable to

replace site theoretic submersions with ‘smooth’ morphisms of stacks.

Our definition of a geometric stack is very close to the definition of an Artin stack. For an Artin stack,

one commonly requires that the diagonal embedding:

X → X ×X

be a representable morphism of stacks. We have a good reason for not requiring this in the manifold setting

since it would imply that:

(t, s) : G →M ×M

is a local submersion, due to the following pullback square:

Ḡ M̄ × M̄

BG BG ×BG

(t,s)

Since every map of schemes is cartesian, the condition of representability is much weaker in the algebraic

geometry setting. A nice property of this Artin condition is that it is equivalent to requiring that for each

X and Y in XN , there is a scheme S such that maps into S classify isomorphisms X → Y which cover the

identity. For Lie groupoids, we can only expect this to be the case when X and Y are trivial G-bundles.

1.4.3 Algebroids

A Lie algebroid is a vector bundle A→ TM , equipped with a Lie bracket [·, ·]A on its space of sections and

a anchor map ρ : A→ TM such that:

[α, fβ]A = f [α, β]A + ρ(α)(f)β ∀α, β ∈ Γ(A) ∀f ∈ C∞(M) (1.3)

If A and B are Lie algebroids, a morphism of Lie algebroids is a vector bundle morphism F : A→ B which

commutes with the anchors and is compatible with the brackets. We will not state the bracket compatibility

condition here, but we will comment that it implies that

F∗([α, β]A) = [F∗(α), F∗(β)]B
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whenever the pushforward of α and β by F are well defined.

Let C be the category whose objects are algebroids and whose morphisms are algebroid morphisms. The

cartesian morphisms in this category are precisely the ones whose underlying vector bundle map is a vector

bundle epimorphism covering a (local) submersion. Equip C with the Grothendieck (pre)topology whose

covering families are the inclusion A|U ↪→ A for open embeddings U →M .

Under this definition of Grothendieck topology, the “submersions” are algebroid maps F : A → B which

cover submersions and admit local algebroid splittings B|U → A. Unlike with ordinary vector bundles,

finding splittings of algebroid morphisms is non-trivial and we cannot expect them to exist in general.

Hence, a submersion in this category is a fairly strong condition.

A C-groupoid is a groupoid internal to algebroids A ⇒ B such that the source (and target) morphisms

are submersions in the above sense. This is the same as a LA-groupoid [31] except for the local splitting

condition.
A G

B M

The forgetful functor from C to manifolds can be extended to a functor BA→ BG where G is the underlying

Lie groupoid associated to A ⇒ B. This is a candidate for a definition of a Lie algebroid on a geometric

stack. One caveat to this is that BA is not a stack over Man. This is in contrast to the non-singular setting,

where the total space of a Lie algebroid is also a manifold. One can get around this issue by first applying

the “total space” functor to BA and then stackifying.

One should take care that a principal A⇒ B bundle internal to algebroids is not the same as a principal

bundle as a C-groupoid. The important distinction is the local splitting conditions. The main distinction

comes from the fact that we require submersions to admit local sections and, in general, one cannot expect

a surjective morphism of algebroids F : A → B to admit local sections, even if the base of the morphism is

the identity.
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Chapter 2: Morita equivalence

In this chapter, we will will introduce and study various notions of Morita equivalence and the Picard

group. We will also review some strategies for computing Morita equivalences as well as take a look at a few

examples. Throughout this chapter, C is a good site (Definition 1.34).

Recall that principal bibundles of C-groupoids are precisely the isomorphisms in GMor. Isomorphism in

GMor has a special name:

Definition 2.1. Let G and H be C-groupoids. A Morita equivalence between G and H is a principal

(G,H)-bibundle.

This chapter will be organized as follows:

• In Section 2.1 we explore the relationship between bibundles of C-groupoids and C-groupoid homomor-

phisms. In particular, we define a special class of C-groupoid homomorphisms called weak equivalences.

• In Section 2.2 we prove the main results of this chapter. The main theorem essentially states that the

equivalence relation generated by weak equivalences is the same as Morita equivalence.

• In Section 2.3 we define the Picard group of a C-groupoid G, which turns out to be the group of

automorphisms of BG.

• In Section 2.4 we look at a few examples of Morita equivalences and the Picard group for specific sites.

2.1 Generalized morphisms and homomorphisms

In Chapter 1 we saw that there is a functorB : GMor→ GStacks from Groupoids with generalized morphisms

to geometric stacks. In this section we will note that there is a pseudofunctor (Definition A.7)

P : CGrpd→ GMor

from the category of C-groupoids (with homomorphisms as morphisms) to C-groupoids with generalized

morphisms.
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2.1.1 Homomorphisms of groupoids

Recall that a C-groupoid homomorphism from G ⇒ M to H ⇒ N covering f : M → N , is a morphism

F : G → H which is compatible with the groupoid structure maps.

Definition 2.2. Let F : G → H be a C-groupoid morphism covering f : M → N . Then:

• F is called essentially surjective if t ◦ pr1 : H×N M → N is a submersion.

• F is called fully faithful if M ×f,t H×f,s M exists and:

(t, F, s) : G →M ×f,t H×s,f M

is an isomorphism.

• F is called an weak equivalence if it is both essentially surjective and fully faithful.

Observe that the essentially surjective condition depends only of the base map f . For this reason we say an

arbitrary morphism f : M → N is essentially surjective if 1M → H is essentially surjective.

Unsurprisingly, one can make groupoids and groupoid homomorphisms into a bicategory. To do this, we

must give the analogue of a natural transformation internal to C.

Definition 2.3. Let F : G → H and G : G → H be groupoid homomorphisms covering f : M → N and

g : M → N , respectively. A natural transformation from F to G is a morphism η : M → H such that:

• s ◦ η = f and t ◦ η = g;

• m(η ◦ t, F ) = m(G, η ◦ s) : G → H

Given Fi : G → H covering fi : M → N for i = 1, 2, 3 and a pair of natural transformations η1 : F1 → F2

and η2 : F2 → F3 then the vertical composition η2 ∗ η1 is defined to be:

η2 ∗ η1 := η2 · η1 : M → H .

Now suppose we are given η : F1 → F2 and ζ : G1 → G2 for Fi : G → H and Gi : H → K. Then the

horizontal product ζ ◦ η is defined as below:

ζ ◦ η(x) := (G2 ◦ η(x)) · (ζ ◦ f1(x))

These constructions give a natural bicategory structure on C-groupoids which is analogous to the bicat-

egory of standard groupoids. The important caveat is that everything is performed internally to C.
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Definition 2.4. Let CGrpd be the bicategory defined as follows:

• The objects of CGrpd are C-groupoids.

• The 1-morphisms of CGrpd are C-groupoid homomorphisms.

• The 2-morphisms of CGrpd are natural transformations.

Composition of 1-morphisms is defined in the obvious manner. Horizontal and vertical composition of 2-

morphisms is defined as above.

It is not difficult to check that this satisfies the axioms of a bicategory. In fact, it is a strict bicategory

since the horizontal product is strictly associative. We should offer a word of caution, however. Unlike the

case of set-theoretic groupoids, a fully faithful and essentially surjective morphism of C-groupoids does not

necessarily admit a weak inverse.

2.1.2 Pullback groupoids

We would like to point out one construction which is particularly useful for computing Morita equivalences.

Lemma 2.5. Let G ⇒ M be a C-groupoid and suppose f : N → M is essentially surjective. Then N ×M
G ×M N exists and inherits a canonical groupoid structure such that projection to the middle component

N ×M G ×M N → G is a groupoid homomorphism.

Proof. Let f !G be shorthand for N ×M G ×M N . To give a groupoid structure on f !G we should first define

the source and target maps.

Let the source f !G → N be projection to the last component and the target be projection to the first

component. The source and target maps are submersions since they are the base changes of a submersion.

Let F : f !G → G be projection to the middle component. Then we define the product on f !G as follows:

(z, g2, y) · (y, g1, x) := (z, g2 · g1, x).

This clearly makes F a C-groupoid homomorphism.

Definition 2.6. Let G⇒M be a C-groupoid and f : N →M be essentially surjective. Then

f !G := N ×M G ×M N

is called the pullback groupoid along f .

The reason we do note use the notation f∗G to denote the pullback groupoid is due to possible confusion

with the pullback of the trivial G-bundle. Recall that f∗G is defined to be G×MN while f !G is N×M G×MN .
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Since the pullback of G as a bundle and as a groupoid do not coincide, it will spare us some possible confusion

if we use distinct notation.

It is not necessary that f : N →M be essentially surjective for this construction to result in a C-groupoid.

It is clear however that it will not always work. Even if f !G exists as an object in C, it may not necessarily

be the case that the source and target maps are submersions.

Lemma 2.7. Let G ⇒ M be a C-groupoid and suppose f : N → M is essentially surjective. The canonical

homomorphism F : f !G → G is a weak equivalence.

Proof. The result is clear from the definition of fully faithful.

2.1.3 Map-like bibundles

Given a C-groupoid homomorphism F : G → H covering f : M → N , there is a canonical construction of a

generalized morphism. Let

P(F ) := f∗H = H×N M .

Since this is just the trivial bundle associated to f , there is a canonical left principal H-bundle structure

over M . To make P(F ) into a bibundle (and hence a generalized morphism) we must equip it with a right

G-action. Let:

(h, t(g)) · g := (h · F (g), s(g))

Definition 2.8. A 1-morphism G → H in GMor is called map-like if it is isomorphic to P(F ) for some

homomorphism F : G → H.

The next lemma gives a geometric characterization of the map-like bibundles.

Lemma 2.9. A generalized morphism is map-like if and only if it admits a section (as a left G-bundle).

Proof. Let F : G → H be a C-groupoid homomorphism and suppose Q ∼= P(F ) is map-like. Since P(F )

clearly admits a section (it is trivial as a left H-bundle) then Q must admit a section.

On the other hand, suppose N ← Q → M is a left principal (H,G)-bibundle and admits a section. We

must show it is isomorphic to P(F ) for some F : G → H. Let σ : M → Q be a section of Q. Now let F be

the unique morphism such that:

σ(t(g)) · g = F (g) · σ(s(g))
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To see that this is a homomorphism, observe that:

F (g1 · g2) · σ(s(g1 · g2)) = σ(t(g1 · g2)) · g1 · g2

= σ(t(g)) · g1 · g2

= F (g1)σ(s(g2)) · g2

= F (g1) · F (g2) · σ(s(g2))

= F (g1) · F (g2) · σ(s(g1 · g2))

Now we construct an isomorphism P(F ) = H×N M → Q. Let

φ(h, x) 7→ h · σ(x)

By Lemma 1.47 we know that φ is an isomorphism of principal H-bundles. That φ is G equivariant follows

from a simple computation:

φ(h, x) · g = h · σ(x) · g = h · F (g) · σ(s(g)) = φ(hF (g), s(g))

The assignment F 7→ P(F ) is bifunctorial in the following sense.

Lemma 2.10. Suppose F : G → H and G : H → K are C-groupoid homomorphisms covering f : M → N

and g : N → O, respectively. Then there is a canonical isomorphism:

P(G,F ) : P(G)⊗H P(F )→ P(G ◦ F )

Proof. It suffices to construct an H-invariant map Φ: P(G) ×N P(F ) → P(F ◦G) which respects the left

and right actions. Recall that

P(G) := g∗K = K ×O N P(F ) := f∗H = H×O N P(G ◦ F ) := (g ◦ f)∗K = K ×O M .

Hence we define

Φ((k, y), (h, x)) := (k ·G(h), x) .

It is a routine check that Φ is H-invariant and respects the actions of K and G. Therefore, it must descend

to a bibundle isomorphism P(G,F ).

Isomorphisms of C-groupoid homomorphisms can be related to bibundle isomorphisms by the following

process. Suppose η : F → G is a natural transformation of C-groupoid homomorphisms from G to H covering

f : M → N and g : M → N , respectively.
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Then let

P(η)(h, x) := (h · (i ◦ η)(x), x)

Note that this uses the (opposite) correspondence from Lemma B.5. By that same lemma, this is H equiv-

ariant. That is is G-equivariant follows from the natural transformation condition.

Proposition 2.11. The mapping η 7→ P(η) gives a one-to-one correspondence between natural transforma-

tions η : F → G of C-groupoid homomorphisms G → H and bibundle isomorphisms P(F )→ P(G).

Furthermore, this correspondence respects the vertical and horizontal products in the following senses:

• For all ζ : G1 → G2 and η : F1 → F2 which are horizontally composable, the below diagram commutes:

P(G1)⊗P(F1) P(G2)⊗P(F2)

P(G1 ◦ F1) P(G2 ◦ F2)

P(G1,F1)

P(ζ)⊗P(η)

P(G2,F2)

P(ζ◦η)

(2.1)

• For all ζ and η which are vertically composable P(ζ ∗ η) = P(ζ) ◦P(η).

Proof. The correspondence is one-to-one thanks to Lemma B.5.

• Suppose ζ and η are horizontally composable such that Fi : G → H and Gi : H → K. Then the bottom

left path of Diagram 2.1 is:

(k, t(h))⊗ (h, x)

(k ·G1(h), x) (k ·G1(h) · (i ◦ ζ)(f1(x)) · (i ◦G2 ◦ η)(x), x)

Going the other direction, we get:

(k, t(h))⊗ (h, x)
(
k · (i ◦ ζ)(t(h)), t(h)

)
⊗
(
h · (i ◦ η)(x), x

)
(k · (i ◦ ζ)(t(h)) ·G2(h) · (i ◦G2 ◦ η)(x), x)

But since ζ is a natural transformation, we have:

(i ◦ ζ)(t(h)) ·G2(h) = G1(h) · (i ◦ ζ)(s(h)) = G1(h)

So the diagram commutes.

• Suppose ζ : F2 → F3 and η : F1 → F2 are horizontally composable for Fi : G → H covering fi : M → N .

Recall that (ζ ∗ η)(x) := ζ(x) · η(x). Therefore:

P(ζ ∗ η)(h, x) := (h · i ◦ (ζ(x) · η(x)), x) = (h · (i ◦ η)(x) · (i ◦ ζ)(x), x)
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Which is the same as P(ζ) ◦P(η).

The following theorem summarizes our results so far:

Theorem 2.12. P : CGrpd→ GMor is a psuedofunctor from the bicategory of C-groupoids to the bicategory of

generalized morphisms. Furthermore, P is a bijection on objects. The restriction of P to the Hom categories

Hom (G,H)CGrpd → Hom (G,H)GMor

is a fully faithful embedding whose essential image consists of the the map-like generalized morphisms.

Proof. We take P to be the identity on objects. Except for coherence, the theorem follows from the propo-

sitions and lemmas we proved in this subsection. We will leave the proof of coherence for this functor to the

bored reader.

2.2 Morita equivalence

2.2.1 Weak equivalences

It is natural to ask whether the bifunctor defined in the previous section allows us to to study Morita

equivalences purely in terms of C-groupoid homomorphismse To answer this question, we will begin with

characterizing those morphisms which give rise to Morita equivalences.

Lemma 2.13. Suppose F : G → H is a homomorphism of C-groupoids. Then P(F ) is a Morita equivalence

if and only if F is a weak equivalence.

Proof. Suppose F is a weak equivalence. We only need to show that the right action of G on P(F ) is

principal. Since F is a weak equivalence, we can assume without loss of generality that G ∼= f !H. Recall

that P(F ) := H×N M and f !H := M ×N H×N M . If C is made of sets and functions, the right action of

P(F ) is of the form:

(h, x) · (x, h′, y) = (h · h′, y) .

The total action is therefore:

((h, x), (x, h′, y)) 7→ ((h, x), (h · h′, y))

This leads us to notice that

((h1, x), (h2, y)) 7→ (x, h−1
1 h2, y)

is a division map for the right action. Since this division map is unique, the action must be principal.
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Now that we have identified the C-groupoid morphisms which give rise to Morita equivalences. It is

reasonable to wonder if there are enough of these maps to generate the Morita equivalence relation. That

is, given two Morita equivalent C-groupoids, does there exist a chain of weak equivalences connecting them?

The answer is yes and actually two weak equivalences suffice.

Theorem 2.14. The following are equivalent:

• G and H are Morita equivalent.

• There exists a C-groupoid K and a pair of weak equivalences H ← K → G.

Proof. Going from the second to the first is clear.

Let P be a biprincipal (H,G)-bibundle for H⇒ N and G ⇒M . By Lemma 2.7, the mapping (sP )!G → G

is a weak equivalence. Let K := (sP )!G. To conclude the proof, we must construct a weak equivalence

F : K → H. Let F be the unique morphism satisfying:

p1 · g = F (p1, g, p2) · p2

The existence and uniqueness of F follows from the existence and uniqueness of the division map for the

left H-action on P . A quick check verifies that this is indeed a homomorphism of C-groupoids covering

tP : P → N . To prove that this is a weak equivalence it suffices to show that the induced map

K = (sP )!G → (tP )!H

is an isomorphism. Since the right action is principal as well, by the same trick we can construct a homo-

morphism F ′ : (tP )!H → K using the rule:

(p1, h, p2) 7→ (p1, g, p2) ⇔ p1 · g = g · p2

Since F ′ is clearly the inverse of K → (tP )!H the result follows.

The above proposition tells us that if we wish to show that something is Morita invariant, it suffices to

show that it is invariant under weak equivalences.

2.2.2 Examples of Morita equivalences

Example 2.15 (Manifolds). When C is the site of smooth manifolds. Then the C-groupoids are precisely

the Lie groupoids. Given a Lie groupoid G ⇒M , the following are Morita invariants:

• The orbit space of G, that is the topological space obtained by taking the quotient of M by the

equivalence relation onM induced by the map (s, t) : G →M ×M . This is sometimes called the coarse

moduli space of G.
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• Suppose one is given an orbit O ⊂M of G in M . In other words, a point in the coarse moduli space of

G. Then for any pair of points, x, y ∈ O the isotropy groups Gx := (s, t)−1(x, x) and Gy are isomorphic.

Hence, to each orbit we can associate an isomorphism class of an isotropy group, and these classes are

preserved by Morita equivalences.

This is (not even close) to being an exhaustive list of the extensive number of Morita invariants which are

known. However, these two Morita invariants fundamental in that they provide one with some justification

for the intuition that the stack associated to a Lie groupoid should be thought of as a singular manifold

equipped with additional symmetry groups.

Example 2.16 (Dirac Structures). Suppose C = DMan (see Chapter 2). Then a C-groupoid is a D-Lie

groupoid. In the previous chapter, we say that a Morita equivalence of D-Lie groupoids always has an

underlying Morita equivalence of Lie groupoids. Hence any Morita invariant of Lie groupoids is also a

Morita invariant of D-Lie groupoids.

A D-Lie groupoids often come with additional interesting invariants.

• Suppose G ⇒M is a symplectic groupoid. Then M inherits a Poisson bivector. By choosing a density

µ onM one can construct what is called the modular vector field Xµ. It turns out that different choices

of densities on M give rise to modifications of Xµ by Hamiltonian vector fields. Hence, we obtain what

is called the modular class

[Xµ] ∈ X (M)/Xham(M) := H1
π(M) .

Ginzburg and Lu showed [20] that symplectic Morita equivalences induced isomorphisms in H1
π(M).

Later, it was shown by Crainic [11] that the modular class is preserved by such isomorphisms.

2.3 The Picard group

Roughly, the Picard group is the group of Morita self equivalences.

Definition 2.17. Suppose G ⇒ M is a C-groupoid. The Picard group of G, denoted Pic(G) is the set of

principal (G,G)-bibundles, up to isomorphism.

Under the correspondence developed in Chapter 1, we know that the Picard group is the automorphisms

of the associated stack BG modulo natural transformations. Of course, that point of view does not lend

itself to calculations. In general, we should expect that the Picard group of a given groupoid is difficult, if

not impossible, to compute.

2.3.1 Outer automorphisms

Let P represent an element of the Picard group Pic(G). Then we say that [P ] ∈ Pic(G) is map-like if P is

map-like. Map-like elements of the Picard group do not form a subgroup in general since [P ]−1 need not be
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map-like.

Definition 2.18. Consider the group homomorphism P : Aut(G) → Pic(G) which sends a C-groupoid au-

tomorphism to the associated map-like element of Pic(G). The kernel of this map is called the inner au-

tomorphisms of G, denoted InnAut(G). The image of this map is canonically isomorphic to OutAut(G) :=

Aut(G)/ InnAut(G).

We might wonder if one can characterize the image of P geometrically. In order to do this, we need to

introduce the notion of a bisection.

Definition 2.19. Suppose P is a principal (G,H)-bibundle for C-groupoids G ⇒M and H⇒ N . A bisection

of P is a morphism σ : N → P such that t ◦ σ : N →M is an isomorphism.

Lemma 2.20. An element [Q] ∈ Pic(G) comes from an automorphism F : G → G if and only if Q admits a

bisection.

Proof. Suppose Q admits a bisection. Then by Lemma 2.9 we can construct an F : G → G so that Q ∼= P(F ).

Since P is principal we know that F is a weak equivalence. Since F is an isomorphism on objects it must

be an isomorphism of C-groupoids.

The other direction is clear by taking the canonical section of P(F ) when F is an isomorphism.

We also have a characterization of inner automorphisms.

Lemma 2.21. A morphism F : G → G is an inner automorphism if and only if there exists a bisection

σ : M → G of G such that:

F (g) = (σ ◦ t)(g) · g · (i ◦ σ ◦ s(g))

Proof. By assumption there is an isomorphism ΦP(F )→ G as (G,G)-bibundles. Let:

σ(x) := Φ(u ◦ f(x), x) : M → P(F )→ G

Then we have that:

Φ(F (h), s(h)) = Φ(F (h) · u ◦ f(s(h)), s(h)) = F (h) · σ(s(h))

On the other hand:

Φ(F (h), x) = Φ(F (h), x) = Φ(u ◦ f(t(h)), t(h)) · h = σ(t(h)) · h

Hence:

F (h) = σ(t(h)) · h · (i ◦ σ)(s(h))

47



On the other hand, suppose F is given by such a formula. Then it is straightforward to check that:

Φ: P(F )→ G Φ(g, x) 7→ g · σ(x)

yields the desired isomorphism.

2.4 Examples

2.4.1 Manifolds

Suppose C is the site of smooth manifolds.

Definition 2.22. Let G ⇒ M be a Lie groupoid and let M/G denote the orbit space of G (as a purely

topological object). The static Picard group is the kernel of the homomorphism Pic(G) → Aut(M/G)

denoted by PicZ(G). In other words, it is the elements of the Picard group which act trivially on the orbit

space.

The static Picard group fits into an exact sequence:

1→ PicZ(G)→ Pic(G)→ Aut(M/G) .

Note that the last arrow is not surjective. There is no guarantee that all topological symmetries of M/G can

be witnessed by elements of the Picard group. We will treat a few instances for which the Picard group has

been calculated.

Example 2.23 (Trivial groupoids). Suppose 1M ⇒M and 1N ⇒ N are trivial Lie groupoid. That is, every

morphism is a unit. Then 1M is Morita equivalent to 1N if and only if they are diffeomorphic. A principal

(1M , 1M )-bibundle is the same as a diffeomorphism f : M →M . Hence

Pic(1M ) ∼= Diff(M) .

Every element of the Picard group is map-like and the group of inner automorphisms of 1M ⇒M is trivial.

Lastly, the static Picard group is trivial as well since Pic(1M )→ Aut(M) is injective.

Example 2.24 (Trivial line bundle). Let G = RM ⇒ M be the trivial line bundle. That is, the groupoid

operation is just fiber-wise addition in R. Suppose P is a principal (RM ,RM )-bibundle. The left action of

G makes P into an (affine) line bundle. Since every affine line bundle admits a global section, we know that

P comes from an automorphism of G. Since G is abelian, the inner automorphisms of G are trivial and we

conclude that

Pic(G) ∼= OutAut(G) ∼= Diff(M).
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The static Picard group is trivial.

Example 2.25 (Bundles of abelian groups). To the best of our knowledge, this case first appeared in a

paper by Moerdijk [37]. It is a, more interesting, generalization of the previous example.

Consider the case where G ⇒M is a Lie groupoid such that s = t and is such that Gx := t−1(x) = s−1(x)

is an abelian group for all x ∈M . We can think of G as defining a sheaf whose local sections are bisections of

G. Any principal (G,G)-bundle P defines a diffeomorphism fP : M →M of the orbit space of G. Furthermore,

any (G,G) bibundle is, in particular, a principal G-bundle. Hence, there is an associated Čech cohomology

class cP ∈ H1(M,G). This gives rise to a group isomorphism:

Pic(G)→ H1(M,G) n Diff(M)

where the action of Diff(M) on H1(M,G) is by pullbacks.

Example 2.26 (Lie groups). Suppose G ⇒ {∗} is a Lie group. In other words, it is a Lie groupoid

over a point. Then every (G,G)-bibundle admits a bisection and so Pic(G) ∼= OutAut(G). Note that, by

Lemma 2.21, the outer automorphisms of G as a groupoid are the same as the outer automorphisms of G as

a Lie group.

Example 2.27 (Transitive groupoids). Suppose G ⇒M is a Lie groupoid such that the orbit space M/ G

is a point. For any x ∈ M , the inclusion of the isotropy group Gx ↪→ M is a weak equivalence. Hence

Pic(G) ∼= Pic(Gx) = OutAut(Gx).

For example, if G = Π1(M) ⇒M is the fundamental groupoid of M and M is connected, then we obtain

Pic(G) ∼= OutAut(π1(M)).

2.4.2 Morita equivalence of Lie algebroids

Recall that a Lie algebroid is a vector bundle A→M together with a Lie bracket

[·, ·] : Γ(A)× Γ(A)→ Γ(A)

satisfying a Leibnitz type identity. When Pradines [42] introduced the notion of Lie algebroid, he showed

that any Lie groupoid can be differentiated to a Lie algebroid. If a Lie algebroid is isomorphic to one of this

type, then we say it is integrable. It is well known that not every Lie algebroid is integrable.

When a Lie algebroid is integrable, there is a unique (up to isomorphism) integration with simply con-

nected source fibers called the canonical integration. For a reader interested in more details, we refer them

to [14] and [12].

Definition 2.28. Suppose A → M and B → N are integrable Lie algebroids, with canonical integrations

G ⇒ M and H ⇒ N , respectively. Then a Morita equivalence between A and B is a Morita equivalence of

G and H. Similarly, the Picard group of A denoted Pic(A) is defined to be Pic(G).

49



Example 2.29 (Tangent). The canonical integration of the tangent algebroid is the fundamental groupoid.

Therefore, ifM and N are connected, then TM and TN are Morita equivalent if and only if π1(M) ∼= π1(N).

Furthermore, Pic(TM) = OutAut(π1(M)).

Example 2.30. If A → {∗} is a Lie algebroid over a point, then A is the same as a Lie algebra. The

canonical integration of A is just the simply connected integration G of the Lie algebra. Hence

Pic(A) ∼= OutAut(G) ∼= OutAut(g).

Two Lie algebras are Morita equivalent if and only if they are isomorphic.

2.4.3 Symplectic Morita equivalence

For C = DMan (see Chapter 3), there is a special class of C-groupoids called symplectic groupoids. Morita

equivalence of symplectic groupoids was originally developed by Xu [52] (without the use of Dirac structures).

Picard groups of symplectic groupoids were first introduced and studied by Bursztyn and Weinstein[7]. We

will recall the definition of these objects to make the following discussion more clear.

Definition 2.31. A symplectic groupoid is a Lie groupoid G together with a symplectic form Ω ∈ Ω2(G)

which is multiplicative:

m∗Ω = pr∗1Ω + pr∗2Ω .

A Morita equivalence of symplectic groupoids G and H is a principal (G,H)-bibundle P together with a left

and right mulitplicative 2-form ω on P .

m∗Lω = pr∗1ΩG + pr∗2ω m∗Rω = pr∗1ω + pr∗2ΩH .

The Picard group of a symplectic groupoid G is the set of isomorphism classes of Morita self equivalences.

One important reason to be interested in symplectic groupoids is that they are the objects which integrate

Poisson manifolds. Given (M,π) a Poisson manifold, then T ∗M inherits a Lie algebroid structure. When

T ∗M is integrable, we say that (M,π) is an integrable Poisson manifolds. The canonical integration of a

Poisson manifold inherits a multiplicative symplectic form from the canonical symplectic form on T ∗M .

Definition 2.32. Suppose (M,πM ) and (N, πN ) are integrable Poisson manifolds. Then we say that M

and N are Morita equivalent as Poisson manifolds if their canonical integrations are symplectically Morita

equivalent. Similarly, the Picard group of a Poisson manifold is defined to by the Picard group of its

symplectic integration (as a DMan-groupoid).

Example 2.33. Suppose M and N are any manifolds. Then T ∗M ⇒ M and T ∗N ⇒ N are symplectic

groupoids via fiberwise addition. The Poisson structure that they integrate is given by the zero bivector.
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A principal (T ∗M,T ∗N)-bibundle (P, ω) always admits a bisection, σ : N → P . The bisection gives rise to

a diffeomorphism fP : N → M and a 2-form β := σ∗ω. Bursztyn and Weinstein showed that the resulting

map:

Pic(T ∗M)→ H2(M) n Diff(M)

is a group isomorphism.

Example 2.34. Suppose (M,ω−1) is a connected Poisson manifold such that ω−1 : T ∗M → TM is the

inverse of a symplectic form. It follows thatM is integrable and the canonical integration is the fundamental

groupoid Π1(M). The symplectic structure on the fundamental groupoid is obtained by the pullbacks

t∗ω − s∗ω.

As we saw earlier, Π1(M) is Morita equivalent to the group π1(M,x) for any given base-point x. It turns

out that this is Morita equivalence of symplectic groupoids. Hence, symplectic manifolds (interpreted as

Poisson manifolds) are Morita equivalent if and only if their fundamental groups are isomorphic.

This example tells us that we should not expect Morita equivalence to tell us very much about the leaf-

wise geometry of a Poisson manifold. Morita equivalences are fundamentally about the transverse geometry

of the groupoid.

Example 2.35. Suppose g is a Lie algebra. Then the dual g∗ inherits a canonical Poisson structure. The

canonical integration is T ∗G ∼= G× g∗ equipped with the (coadjoint) action groupoid structure, where G is

the simply connected integration of g.

For the compact and semi-simple case, Bursztyn and Fernandes [6] proved the following theorem:

Theorem 2.36. Suppose g is a compact semi-simple Lie algebra. Then:

Pic(g∗) ∼= OutAut(g)
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Chapter 3: The site of Dirac structures

In this chapter we will construct a site whose stacks include those associated to symplectic groupoids. 1 The

main concept used here is that of a Dirac structure which is simultaneously a generalization of a foliation

and a symplectic manifold. Intuitively, one should think of a Dirac structure as a smooth manifold equipped

with a (poissibly singular) foliation by pre-symplectic manifolds. More exposition on Dirac structures can

be found in [4][38].

The structure of this chapter is as follows:

• Section 3.1 gives a brief review of important concepts from the theory of Dirac structures. Topics

covered include the definition of a Dirac structure, pullbacks and gauge transformations of Dirac

structures.

• Section 3.2 will define the site of Dirac manifolds DMan and establish our notation. It concludes with

a proof that the site of Dirac structures is good.

• Section 3.3 develops the theory of DMan-groupoids called D-Lie groupoids. While a D-Lie groupoid is

more general than a symplectic groupoid, it turns out that this generalization is faithful.

• Section 3.4 studies principal bundles and Morita equivalences of D-Lie groupoids. It proves that

symplectic Morita equivalences and Morita equivalences of symplectic groupoids (as D-Lie groupoids)

are the same.

• Section 3.5 turns to the study of stacks in the world of Dirac manifolds. It collects the work we have

done so far and includes the proof of Theorem 3.41 which is the main result of the chapter.

3.1 Dirac structures

3.1.1 Generalized tangent bundle

The Courant bracket was developed by Theodore Courant [10] with the introduction of Dirac structures.

We begin with defining the generalized tangent bundle, which is the vector bundle for which the Courant

bracket is defined.
1Most of the following chapter has already appeared in an article by the author in Letters in Mathematical Physics [49].
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Definition 3.1. Let M be a smooth manifold. The generalized tangent bundle is the direct sum of the

tangent and cotangent bundles.

TM := TM ⊕ T ∗M

Elements of TM are denoted v ⊕ η for some vector v ∈ TM and covector η ∈ T ∗M .

The generalized tangent bundle comes with a bracket called the Courant bracket.

[V ⊕ η,W ⊕ ζ]TM := [V,W ]⊕ LV (ζ)− LW (η) + d(η(W )) . (3.1)

For a 2-form ω, the notation ω[ denotes the associated linear map TM → T ∗M given by vector contraction.

Notably, the above bracket does not form a Lie bracket. While it satisfies the Jacobi and Leibnitz identities,

it is not anti-symmetric.

If we are supplied with a 3-form φ on M we can “twist” the bracket.

[V ⊕ η,W ⊕ ζ]
φ
TM := [V,W ]⊕ LV (ζ)− LW (η) + d(η(W )) + φ(X,Y,−) . (3.2)

If we are considering the twisted case, then we call φ the background 3-form. Twisted brackets are interesting

because they make a natural appearance in Lie theory. See Example 3.6.

The generalized tangent bundle comes with two pairings, one symmetric and one anti-symmetric.

〈v ⊕ η, w ⊕ ζ〉+ = ζ(v) + η(w) (3.3)

〈v ⊕ η, w ⊕ ζ〉− =
1

2
(ζ(v)− η(w)) (3.4)

3.1.2 Dirac geometry

Definition 3.2. Let M be a smooth manifold. A Dirac structure on M is a subbundle L ≤ TM which

is maximally isotropic with respect to 〈·, ·〉+ and whose sections are involutive (closed) under the Courant

bracket.

A φ-twisted Dirac structure is defined similarly, except we require that L is involutive under the φ-twisted

Courant bracket.

Example 3.3. Suppose ω is a 2-form on M such that dω = φ. Let L := {v ⊕ ω[(v)} be the graph of ω.

Then L is a φ-twisted Dirac structure.

Example 3.4. Let F be an integrable distribution onM (i.e. a foliation onM). Now let F ◦ ≤ T ∗M denote

the annihilator of F . That is, it is the vector bundle of 1-forms η such that η(v) = 0 for all v ∈ F . Then

Lω := F ⊕ F ◦ is a Dirac structure.
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Example 3.5. Let π ∈ X2(M) on M and denote by π] the contraction map T ∗M → TM . Let Lπ be the

graph of π]. Then Lπ is a Dirac structure if and only if π is a Poisson bivector. For our purposes, this will

serve as our definition of a Poisson bivector.

If L is a φ-twisted Dirac structure, then we say π is a φ-twisted Poisson bivector.

Example 3.6. Let G be a compact Lie group. Let θ be the (right invariant) Mauer-Cartan 1-form on G.

That is, for each v ∈ TgG,

θ(v) = dRg−1(v)

Since G is compact, we can assume there is an bi-invariant metric ρ(·, ·) on G. Then

φ(v1, v2, v3) :=
1

2
ρ
(
θ(v1), [θ(v2), θ(v3)]

)
defines a 3-form on G called the Cartan 3-form.

Using the metric, we can identify TG with TG ⊕ TG and at each g ∈ G consider the elements of TG

which have the form

(dLg(v)− dRg(v))⊕ 1

2

(
dLg(v))− dRg(v))

)
It was observed by Severa and Weinstein [47] that this defines a φ-twisted Dirac structure on G.

A Dirac structure is an example of a Lie algebroid. Any Dirac structure L ≤ TM comes with a projection

to TM which we will call the anchor map and denote with ρ. Since sections of L are involutive, it comes

with a Lie bracket [·, ·]L. Anti-symmetry follows from the condition that L is isotropic. The bracket and

anchor are compatible in the following sense:

[α, fβ]L = f [α, β]L + Lρ(α)(f)β ∀α, β ∈ Γ(L) (3.5)

At each x ∈M , there is a pairing on the image of ρ given by

ω(v, w) := 〈v ⊕ η, w ⊕ ζ〉− ∀v ⊕ η, w ⊕ ζ ∈ Lx

Well definedness of this pairing follows from the maximally isotropic condition on L. Since L is an algebroid,

it follows that we can integrate the image of ρ to a singular foliation ofM by regularly immersed submanifolds.

The pairing ω can be restricted to each orbit O to get a 2-form ωO ∈ Ω2(O). If L is Dirac structure, then

it follows that dωO is closed. When L is a φ-twisted Dirac structure we instead get that dωO + φ = 0.

3.1.3 Morphisms

Dirac structures come with two natural notions of morphism. To begin, we will explain the basic pushforward

and pullback operations on Dirac structures.
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Definition 3.7. Suppose f : M → N is a smooth map and L is a φ-twisted Dirac structure on M . The

pushforward of L along f is defined to be

f∗L := {df(v)⊕ η : v ⊕ f∗η ∈ L}

Now suppose L′ is a Dirac structure on N . The pullback of L along f is defined to be:

f∗L′ := {v ⊕ f∗η : df(v)⊕ η ∈ L′}

For each point x ∈M , the pushforward and pullback operations always give maximally isotropic subspaces.

However, the pullback operation will not always give a continuous subbundle of TM . The pushforward

operation has the same potential problems as the pushforward of vector fields in that it may give different

answers over the same fiber. In the twisted case, the pullback of a φ-twisted Dirac structure along f is a

f∗φ twisted Dirac structure (if it exists).

If we are given Dirac structures LM onM and LN on N , then we say that f is forward Dirac if f∗LM = N .

We say that f is backwards Dirac if f∗LN = LM .

Example 3.8. Let f : M → N be any smooth map and L = TM ≤ TM be the tangent Dirac structure.

Now consider the function f(x) = x2. Then f∗TM is not a valid Dirac structure since it is not a continuous

subbundle of TN .

Example 3.9. Suppose f : M → N is a smooth map and ω is a 2-form on M . Then f∗Lω = Lf∗ω.

Example 3.10. Let πM and πN be Poisson bivectors on M and N respectively. Then f∗LπM = LπN if and

only if πM and πN are f -related.

Before we can define our site of Dirac manifolds, we will introduce one more operation on subbundles of

TM .

Definition 3.11. Suppose LM is a (φ-twisted) Dirac structure on M . Given a 2-form β ∈ Ω2(M) then we

define the gauge transformation of LM by β to be:

LM + β := {v ⊕ (η + ω[(v)) : v ⊕ η ∈ LM .}

If LM is a φ-twisted Dirac structure then LM + β is a (φ− dβ)-twisted Dirac structure.

Lemma 3.12. Suppose f : M → N is a smooth map and LN is a Dirac structure on N . Then for any

2-form β ∈ Ω2(N) we have that:

f∗(LN + β) = f∗LM + f∗β

Proof. Due to the maximality condition on Dirac structures, it suffices to show that one is contained in the
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other. An arbitrary element of f∗(LM + β) can be written in the form

v ⊕ f∗(η + β[(df(v)))

For some v ⊕ η ∈ LM . This expression equals

v ⊕ f∗η + (f∗β)
[
((v)) .

But this is clearly an element of f∗LM + f∗β.

At each orbit O of the Dirac structure, the effect of the gauge transformation is that it adds β|O to the

to 2-form ωO. Therefore, we should not be surprised by its compatibility with the pullback operation.

3.2 DMan

3.2.1 The category of Dirac manifolds

We can now define the site of Dirac manifolds. Let DMan be the category defined as follows:

Definition 3.13. Let DMan be the category defined as follows:

• The objects of DMan are triples (M,φ,LM ) where M is a smooth manifold and LM is a φ-twisted Dirac

structure.

• The morphisms of DMan are pairs (f, β) : (M,φM , LM ) → (N,φN , LN ) where f : M → N is a smooth

map and β is a 2-form on M such that:

f∗φN = φM + dβ and f∗LN = LM + β .

Composition of pairs is given by the rule (f, β1) ◦ (g, β2) = (f ◦ g, g∗β1 + β2).

Example 3.14 (Gauge Transformations). Suppose (M,LM ) is a Dirac manifold and β is a closed 2-form

on M , then (Id, β) : (M,LM ) → (M,LM + β) is a morphism in DMan. We call such morphisms gauge

transformations.

Example 3.15 (Smooth Maps). Let M and N be any smooth manifolds. Then (M,TM) and (N,TN) are

Dirac manifolds. For any smooth map f : M → N we have that (f, 0) : (M,TM)→ (N,TN) is a morphism

in DMan.

Example 3.16 (Symplectic Leaves). Suppose (M,LM ) is a manifold and LM is the graph of a Poisson

bivector. Any orbit O of M has an associated symplectic form ωO and the immersion i : O → M satisfies

i∗LM = LωO .
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To simplify our notation we will sometimes denote a morphism (f, β) in DMan by f alone and the 2-form β

will be called the gauge part of f . Similarly we may sometimes denote a Dirac manifold (M,φM , LM ) by M

alone. The notation LM and φM will always denote the φM -twisted Dirac structure on M . Lastly, if we say

a morphism in DMan is a submersion we mean that the underlying smooth map is a surjective submersion.

When we give DMan a topology, we will see that this agrees with our site theoretic notion of a submersion.

The category DMan comes with a natural functor Pr1 : DMan → Man by projection to the first factor of

each triple. This functor is split by a fully faithful functor i : Man → DMan which takes any manifold M to

the Dirac manifold (M,φM = 0, TM) and any smooth map f to (f, 0).

We can characterize commutative diagrams in DMan by considering the associated diagram in Man together

with a gauge equation. For example, suppose we are given a triangle T of morphisms in DMan as per (3.6).

T =

M2

M1 M3

f2f1

f3

(3.6)

The gauge part of T is the equation β1 + f∗1β2 = β3 (here βi is the gauge part of fi). More generally, any

diagram D in DMan comes with a set of gauge equations coming from each triangle in D. It is not difficult to

note that D is a commuting diagram if and only if Pr1(D) commutes in Man and each gauge equation holds.

Suppose we are given two morphisms (f, β) : M → X and (g, α) : N → X in DMan such that the manifold

M ×X N exists. Then the fiber product is defined to be M ×X N where

LM×XN := (f ◦ pr1)
∗
LX − pr∗1β − pr∗2α. (3.7)

Such a fiber product fits into a corresponding pullback square in DMan:

M ×X N N

M X

pr2

pr1 g

f

We take the gauge parts of pr1 and pr2 to be pr∗2α and pr∗1β respectively. Observe that such a fiber product

always exists if either f or g is cartesian in Man.

Fiber products in DMan are true fiber products in that they still satisfy the same universal property.

Suppose we have the following diagram in DMan:

Y

M ×X N N

M X

k

h2

h1

pr2

pr1 g

f
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Let η1 and η2 be the gauge parts of h1 and h2, respectively. Then the gauge equation arising from the

outermost square is

h∗1β + η1 = h∗2α+ η2 . (3.8)

We already know that there is a unique smooth map k : Y →M ×X N which makes this diagram commute.

We can define the gauge part of k, call it κ, one of two ways:

κ+ k∗pr∗1β = η2 or equivalently κ+ k∗pr∗2β = η1 .

In the presence of (3.8), these definitions are equivalent. They must hold in order for the diagram to commute

since they represent the gauge equations of the top and left triangles created by inserting k : Y →M ×X N

into the diagram above. Hence, (k, κ) is the unique morphism which completes the diagram in DMan.

3.2.2 Topology

The category DMan inherits a natural topology from the forgetful functor Pr1 : DMan→ Man.

Definition 3.17. A collection of morphisms C = {ui : Ui →M} in DMan is a covering family if Pr1(C) is a

covering family in Man.

A routine check shows that this satisfies the axioms of a pre-topology and so we obtain a Grothendieck

topology on DMan. A site theoretic submersion then is just a morphism in DMan which projects to a submersion

in Man.

Proposition 3.18. DMan is a good site.

Proof. DMan has an initial object. It is the empty manifold equipped with the unique Dirac structure on the

empty manifold. Morphisms in DMan are clearly defined locally since any (f, β) is uniquely determined by

its restrictions to an open cover. We only need to show that Sub is a stack. In particular, we need to prove

that given the following data:

• an open cover {Ui ↪→M} on some object M in DMan;

• submersions pi : Pi → Ui;

• and morphisms φij : Pj |Uij → Pi|Uij ;

such that φij |Uijk ◦ φjk|Uijk = φik|Uijk then there exists a submersion P → M in DMan and identifications

φi : P |Ui → Pi such that:

φij ◦ φj |Uij = φj |Uij

Since Man is a good site we already know that a manifold and smooth maps φi exist. We only need to come

up with a Dirac structure and a 3-form on P and the gauge parts for each φi.
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Without loss of generality, we can assume the gauge parts of the embeddings {Ui ↪→ M} are zero and

the gauge parts of the submersions Pi → Ui are zero. Let φP and LP be defined to be the pullback of φM

and LM respectively. Then this structure is compatible with the identifications φi : P |Ui → Pi if we take the

gauge parts to be zero.

To finish, we need to show that φij ◦ φj |Uij = φi|Uij . Let βij be the gauge part of each φij . Since we

took the gauge parts of each φi to be zero, the gauge equation associated to this expression is:

φ∗j (βij) = 0 .

This is true since every βij is zero. To see why note that pi|Uij ◦ φij = pj |Uij and the gauge part of each pi

is zero. Then the gauge equation for this expression says βij = 0.

With this result, all of our work from Chapter 1 and Chapter 2 can be applied to DMan.

3.3 DMan-groupoids

3.3.1 D-Lie groupoids

Definition 3.19. A D-Lie groupoid is a DMan-groupoid. In other words, it is a groupoid internal to DMan.

This definition is elegant, but we should provide a geometric interpretation for such an object.

Theorem 3.20. D-Lie groupoids are in one-to-one correspondence with the following data:

• A Lie groupoid G ⇒M ,

• (a possibly twisted) Dirac structure on M ,

• and a pair of two forms σ and τ on G.

such that for Ω := τ − σ:

(DL1) t∗φM − s∗φM = dΩ,

(DL2) and t∗LM = s∗LM + Ω

(DL3) m∗Ω = pr∗1Ω + pr∗2Ω for m : G ×M G → G

Proof. If we are given a D-Lie groupoid G ⇒ M . Then let σ and τ be the gauge parts of the source and

target map. We only need to show that Ω := τ − σ satisfies the desired properties. (DL1) follows from

combining s∗φM = φG + σ and t∗φM = φG + τ . (DL2) follows from the observation that t∗LM = LG + τ

and s∗LM = LG + σ.
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To recover (DL3) we consider the gauge part of the compatibility of m with s. That is:

s ◦m = s ◦ pr2 : G ×M G → G .

Let µ be the gauge part of m. Then the gauge part of this equation is:

m∗σ + µ = pr∗2σ + pr∗1σ . (3.9)

If the reader is not sure how this equation is obtained, they should look at the construction of the fiber

product in DMan from the previous section. The target map yields a similar equation:

m∗σ + µ = pr∗2τ + pr∗1τ . (3.10)

Then (DL3) is obtained by subtracting these equations.

To obtain the opposite correspondence, we must define a Dirac structure on G and the gauge parts of

the structure maps. Let φG be defined to be s∗φM − σ or equivalently t∗φM − τ . Let LG be defined to be

s∗LM − σ or equivalently t∗LM − τ .

We already have gauge parts for s and t. To define the gauge part of m, call it µ, we can use either

Equation 3.9 or Equation 3.10. Property (DL3) guarantees that these are equivalent.

For the unit map u we take consider the axiom s ◦ u = IdM . The gauge part of this axiom is

u∗σ + υ = 0m (3.11)

if υ is the gauge part of u. Hence we can take Equation 3.11 to be a definition for υ.

To define the gauge part of the inverse map i we take inspiration from the fact that s ◦ i = t. Let the

gauge part of i, called ι be defined to be the unique 2-form such that:

i∗σ + ι = τ . (3.12)

If this choice of ι, µ and υ define a D-Lie groupoid, then surely this inverts the correspondence we defined

at the start. The only possible problem is that our choices may not result in a well defined D-Lie groupoid.

That is, our assumptions (DL1), (DL2) and (DL3) may not be enough to imply the gauge parts of every

groupoid axiom holds. It turns out this does not happen and we leave the proof of this fact to the appendix

(see Lemma C.1).

The 2-form Ω := τ − ω clearly plays an important role in the study of D-Lie groupoids. We will call

this the characteristic form of G. When σ = 0 we say that G is target aligned. We will see later that (up to

isomorphism) every D-Lie groupoid is target aligned. The pair (τ, σ) is called the gauge pair of G.
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Now let’s look at a few examples of such data.

Example 3.21 (Symplectic Groupoids). Given (G,Ω), a symplectic groupoid integrating a Poisson manifold

(M,Lπ), then t∗Lπ = s∗Lπ + Ω. Therefore, a symplectic groupoid is the same as a target aligned D-Lie

groupoid with non-degenerate characteristic form.

Example 3.22 (Symplectic orbifolds). Let G ⇒M be an étale Lie groupoid and suppose ω is a symplectic

form on M . Suppose further that t∗ω− s∗ω = 0. When G is proper, it can be thought of as the presentation

of a (possibly non-effective) symplectic orbifold. By thinking of M as a Dirac manifold, then G can also be

thought of as a D-Lie groupoid with characteristic form 0.

3.3.2 D-Lie groupoid morphisms

We will now take a closer look at homomorphisms of D-Lie groupoids. A morphism of D-Lie groupoids is

just a morphism of DMan-groupoids as discussed in Chapter 1. Throughout, G and H are D-Lie groupoids

over M and N respectively. Also, ΩG and ΩH will denote their respective characteristic forms.

There is a characterization of morphisms in terms of the characteristic forms.

Lemma 3.23. There is a one-to-one correspondence between morphisms of D-Lie groupoids, and the fol-

lowing data:

• a Lie groupoid homomorphism F : G → H covering f : M → N ;

• a 2-form β which makes (f, β) into a morphism of Dirac manifolds.

such that:

F ∗ΩH = t∗β − s∗β + ΩG . (3.13)

Proof. One direction of the correspondence is clear. We simply let β be the gauge part of the base map of the

given D-Lie groupoid morphism. One only has to show that Equation 3.13 holds. This follows immediately

by looking at the gauge parts of compatibility of F with the source and target maps:

F ∗σH + α = s∗β + σG . (3.14)

F ∗τH + α = t∗β + τG . (3.15)

In the above, α is the gauge part of F : G → H.

To reverse this correspondence, we need to supply α. This is easy since we can use either of the two equa-

tions above as definitions for α. Our assumption means that these choices are equivalent. By construction,

it is clear that this choice of α makes (F, α) compatible with the source and target maps. We only need to

check that (F, α) is compatible with multiplication.
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To see why, first note that the gauge part of (F, F ) : G ×M G → H×N H is pr∗1α+ pr∗2α− pr∗2t
∗β. That

is:

(F, F )∗µH + pr∗1α+ pr∗2α = m∗α+ µG

If we take Equation 3.14 as the definition of α and apply Equation 3.9, we get:

m∗α+ µG = m∗s∗β −m∗F ∗σH + pr∗1σ
G + pr∗2σ

G

On the other hand:

(F, F )∗µ+ pr∗1α+ pr∗2α− pr∗2t
∗α = (F, F )∗(pr∗1σ

H + pr∗2σ
H −m∗σH) + pr∗1α+ pr∗2α− pr∗2t

∗α

= pr∗1F
∗σH + pr∗2F

∗σH −m∗F ∗σH + pr∗1α+ pr∗2α− pr∗2t
∗α

= pr∗1s
∗β + pr∗1σ

G + pr∗2s
∗β + pr∗2σ

G −m∗F ∗σH − pr∗2t
∗α

= m∗s∗β −m∗F ∗σH + pr∗1σ
G + pr∗2σ

G

Which shows that (F, α) is a D-Lie groupoid homomorphism.

Now we observe a useful corollary which clarifies why we mainly need to consider the characteristic form

of a D-Lie groupoid.

Lemma 3.24. Every D-Lie groupoid is canonically isomorphic to a target aligned D-Lie groupoid.

Proof. Let G ⇒M be a D-Lie groupoid over M with gauge pair (τ, σ). Then the pair gauge pair (Ω, 0) also

determines a target aligned D-Lie groupoid. Furthermore, the identity map IdG of Lie groupoids together

with β = 0 satisfies Lemma 3.23 and so the gauge transformation:

(IdG , σ) : (G, LG)→ (G, LG + σ),

is an isomorphism of D-Lie groupoids.

Example 3.25 (Symplectic Groupoids). Suppose G ⇒ M and H ⇒ N are symplectic groupoids. If we

think of G and H as target aligned D-Lie groupoids then a morphism consists of a homomorphism of Lie

groupoids F : G → H together with a closed 2-form β ∈ Ω2(M) such that (3.13) holds.

3.3.3 D-Lie algebroids

There is an infinitesimal version of D-Lie groupoids. Burzstyn and Cabrera [5] showed that given a φ-closed

multiplicative form on a Lie groupoid, there is a corresponding infinitesimal multiplicative form on the

corresponding algebroid A. An infinitesimal multiplicative form relative to a 3-form φ onM is a bundle map

ρ∗ : A→ T ∗M
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which satisfies for all a1, a2 ∈ Γ(A):

(MF1) (Anti-symmetry)

ρ∗(a1)(ρ(a2)) = −ρ∗(a2)(ρ(a1))

(MF2) (Compatibility with the bracket twisted by φ)

ρ∗([a1, a2]) = Lρ(a1)µ(a2)− Lρ(a2)µ(a1) + φ(ρ(a1), ρ(a2),−)

Where ρ : A → TM is the anchor map of A. We should clarify that the ∗ notation is intended to indicate

that ρ∗A takes values in the cotangent bundle, not that it is the dual of the anchor map ρ : A → TM . a

compatibility condition with the bracket on A and is anti-symmetric Note that we have used the ∗ notation

to emphasize that the map takes values in the cotangent bundle. We do not mean that ρ∗A is the linear dual

of the anchor.

Example 3.26. Let L be a φ-twisted Dirac structure on M and let ρ∗ : L → T ∗M be the projection to

the cotangent bundle. Then ρ∗ is an infinitesimal multiplicative form relative to φ. To see this one should

observe that the anti-symmetry condition follows from the fact that L is isotropic and the bracket condition

follows from the closure of L under the Courant bracket.

Now suppose Ω is a multiplicative form on a Lie groupoid. From [5], we can recover an IMF by defining

ρ∗A in the following way:

ρ∗A(v) := η ⇔ t∗η = Ω[(v) . (3.16)

We now proceed to a simple lemma, which will motivate our definition of D-Lie algebroid.

Lemma 3.27. Suppose G ⇒M is a D-Lie groupoid with characteristic form Ω. Let A be the corresponding

algebroid and ρ∗A be the associated infinitesimal multiplicative form and ρA be the anchor map. Then ρA(v)⊕

ρ∗A(v) ∈ LM for all v ∈ A and (ρ⊕ ρ∗A) : A→ LM is a Lie algebroid homomorphism.

Proof. We have two things to show. First, the claim that, for any v ∈ A, ρA(v) ⊕ ρ∗A(v) ∈ LM . Let

v ∈ A := ker ds|M and suppose η = ρ∗A(v). By the definition of the pullback, we know that v ⊕ 0 ∈ s∗LM .

Consequently, v⊕Ω[(v) ∈ t∗LM by Theorem 3.20. Hence, by the definition of ρ∗A, we have that v⊕η ∈ t∗LM .

Therefore, we can conclude that ρA(v)⊕ ρ∗A(v) ∈ LM (again by the definition of the pullback).

Now for the second part. Recall the definition of the Courant bracket.

[V ⊕ η,W ⊕ ζ]LM := [V,W ]⊕ LV (ζ)− (dη)
[
(W ) + φ(V,W,−) . (3.17)

We need to show that

[ρA(V )⊕ ρ∗A(V ), ρA(W )⊕ ρ∗A(W )]LM = ρA([V,W ]A)⊕ ρ∗A([V,W ]A) .
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This is clearly true for the TM component, since ρ : A→ TM is compatible with the standard Lie bracket.

For the T ∗M component, the result follows immediately from (MF2).

Definition 3.28. A D-Lie algebroid is a Lie algebroid (A, [·, ·]A, ρ) over a Dirac manifold (M,L) together

with a Lie algebroid homomorphism ρ̃ : A→ LM

We can recover an infinitesimal multiplicative form from this definition by taking ρ∗A to be the T ∗M

component of ρ̃. We say that a D-Lie algebroid is integrable if there exists a D-Lie groupoid G whose

corresponding infinitesimal multiplicative form is ρ∗A. When G is source simply connected and target aligned

we say that G is the canonical integration.

Example 3.29 (Poisson Manifolds). Let (G,Ω) be a symplectic groupoid over a Poisson manifold (M,π).

Then let ρ̃ : A→ T ∗M be the standard identification of the algebroid of G with the cotangent bundle of M .

In this way, we can think of A as a D-Lie algebroid.

Example 3.30 (Dirac Structures). Let LM be any Dirac structure. Then if we take ρ̃ : LM → LM to be

the identity morphism, we can think of LM as a D-Lie algebroid.

Example 3.31 (Trivial algebroids). Let A be a rank zero vector bundle, thought of as a trivial algebroid.

Then for any Dirac structure LM on the base of A, we can take ρ̃ : A→ LM to be the zero map.

The last example illustrates the interesting fact that integrability of LM is neither a necessary nor a

sufficient condition for integrablity of the D-Lie algebroid.

Definition 3.32. Suppose (A, ρ∗A) and (B, ρ∗B) are D-Lie algebroids. A morphism of D-Lie algebroids is a

Lie algebroid morphism F : A→ B which cover a morphism of Dirac manifolds (f, β) : M → N such that

f∗ ◦ ρ∗B ◦ F = ρ∗A + β[ .

The left side of the equation above is the pullback of the IM 2-form ρ∗B along F . The right side is the

infinitesimal form of the gauge transformation Ω + t∗β − s∗β. Hence, this is just the infinitesimal version of

(3.13).

3.4 Principal bundles and Morita equivalence

In this section, we will define G-bundles and (G,H)-bibundles in the setting of D-Lie groupoids. By our

work in Chapter 1, these objects determine the behavior of geometric stacks over DMan. Furthermore, we

will see that Morita equivalence of D-Lie groupoids faithfully generalizes Morita equivalence for symplectic

groupoids.
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3.4.1 Principal G bundles

Definition 3.33. Let G ⇒M be a D-Lie groupoid. A left G-bundle over N is a G-bundle internal to DMan,

i.e., an ordinary G-bundle sP : P → N , where P and N are Dirac manifolds and all the structure maps

sP : P → N , tP : P → M and mL : G ×M P → P are DMan-morphisms. We say that P is principal if the

induced morphism G ×M P → P ×N P is an isomorphism.

The reader should note that, by our construction of fiber products in DMan, a G-bundle for a D-Lie

groupoid is principal if and only if the underlying action of a Lie groupoid is principal.

The morphisms sP , tP and mP
L come with gauge parts σP , τP and µPL . The equation associated to

sP ◦mL(g, p) = sP(p) is

µL + m∗σP = pr∗1σ
G + pr∗2σ

P .

Similarly, the gauge equation of tP ◦mL(g, p) = t(g) is

µL + m∗τP = pr∗1τ
G + pr∗2τ

P .

Therefore, when defining a principal G-bundle it suffices to specify the 2-forms σP and τP . As with D-Lie

groupoids, we say the characteristic 2-form of P is ΩP := τP − σP . Let ΩG be the characteristic 2-form of

G. Then

m∗LΩP = pr∗1ΩG + pr∗2ΩP .

That is, the 2-form ΩP is left multiplicative. When σP = 0 we call P target aligned. By a similar argument

as in Lemma 3.24, every principal G-bundle is canonically isomorphic to a target aligned principal G-bundle.

3.4.2 Bibundles

We can now proceed to tackle bibundles and Morita equivalence in DMan. Throughout this section G and H

are D-Lie groupoids over the Dirac manifolds M and N respectively.

Definition 3.34. Suppose G andH are D-Lie groupoids. A (G,H)-bibundle is defined to be a bibundle object

internal to the category DMan. Hence, it is an object P in DMan together with morphisms tP , sP ,mL,mR

(again in DMan) which satisfy the axioms of commuting left and right actions over N and M , respectively.

A bibundle P is said to be left principal bibundle if the left action makes P into a left principal G-bundle

over N . We define right principal similarly. We call P a principal bibundle if P is both left and right

principal. A principal (G,H)-bibundle is also called a Morita equivalence of G and H.

Just like G-bundles, a (G,H)-bibundle P of D-Lie groupoids is determined by the data of the underlying

bundle and the gauge part of the source and target maps σP and τP . The characteristic form ΩP of P is

defined to be σP − τP as before. Using the same techniques as before we can show that σP and τP define a
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bibundle if and only if ΩP is left and right multiplicative. That is

m∗LΩP = pr∗1Ω + pr∗2ΩP and m∗RΩP = pr∗1ΩP + pr∗2ΩH.

We say that P is target aligned if σP = 0.

An equivariant map of (G,H)-bibundles is a morphism Φ : P → Q which commutes with the source

and target maps and respects the multiplication. In terms of the characteristic 2-form the condition on

F : Q→ P is just

F ∗ΩP = ΩQ .

This makes sense when compared to the case of left G-bundles since we can think of any (G,H)-bibundle

morphism as a left G-bundle morphism covering the identity on N . As with D-Lie groupoids, for any bibundle

P the gauge transformation (Id, σP ) : (P,LP )→ (P,LP + σP ) is an isomorphism of P with a target aligned

bibundle.

The next few examples demonstrate how this notion of Morita equivalence of D-Lie groupoid relates to

existing definitions of Morita equivalence.

Example 3.35 (Morita equivalence of Lie groupoids). Given a Morita equivalence P of Lie groupoids G and

H, then thinking of G and H as D-Lie groupoids with the tangent Dirac structure allows us to view (P, TP )

as a Morita equivalence of D-Lie groupoids (G, TG) and (H, TH). Furthermore, it is a simple exercise to

check that any Morita equivalence of the D-Lie groupoids (G, TG) and (H, TH) is isomorphic to such a

(P, TP ).

Example 3.36 (Symplectic Morita equivalence). Given a symplectic Morita equivalence (P,ΩP ) of sym-

plectic groupoids (G,ΩG) and (H,ΩH), we can think of (P,ΩP ) as a target aligned Morita equivalence of G

and H viewed as D-Lie groupoids.

We can improve on the observation from the preceding example.

Proposition 3.37. Suppose G and H are symplectic groupoids, i.e. target aligned D-Lie groupoids with

symplectic characteristic forms. There is a one-to-one correspondence between symplectic Morita equivalences

and target aligned principal (G,H)-bibundles.

Proof. One direction is just Example 3.36. For the other direction, suppose P is a target aligned principal

(G,H)-bibundle. We must show that ΩP is symplectic at each p ∈ P . So fix p and let x = sP (p) ∈ N and

y = t(p) ∈ M . Suppose e : U → P is a local section of sP around x such that e(x) = p and let β := e∗ΩP .
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Next define f := tP ◦ e and notice that

f∗LM = e∗(tP )
∗
LM

= e∗(LP + Ω)

= e∗LP + β

= e∗(sP )
∗
LN + β = LN + β .

In other words, (f, β) : U →M is a morphism in DMan. Since P is principal, f is transverse to the orbits of

M .

We will need these facts in a moment, but first we should use the section e to ‘trivialize’ our bibundle.

When P is restricted to U , we can identify it with the trivial G-bundle associated to this map. That is,

P |U ∼= G ×s,f U, with p corresponding to (u(f(x)), x).

When P |U is written in this way, then we can use the left multiplicativity of ΩP to see that

ΩP = pr∗1ΩG + pr∗2β.

Hence, for any two vectors

(vi, wi) ∈ Tp(G ×M N) = {(v, w) ∈ Tu(f(x))G × TxN : ds(v) = df(w)},

we have that

ΩP ((v1, w1), (v2, w2)) = ΩG(v1, v2) + β(w1, w2) .

Now suppose that (v1, w1) is in the kernel of ΩP . We will show that it must be zero by pairing it with a few

careful choices of (v2, w2). First let us see what happens when (v2, w2) = (v2, 0) for arbitrary v2 ∈ ker ds.

Then

0 = ΩP((v1, w1), (v2, 0)) = ΩG(v1, v2) .

Therefore, we can conclude that v1 is ΩG orthogonal to ker ds. Since G is a symplectic groupoid, this implies

that v1 ∈ ker dt.

Now suppose (v2, w2) = (du df(w2), w2) for arbitrary w2 ∈ TOx tangent to orbit of x. We can conclude

that

0 = ΩG(v1,du df(w2)) + β(w1, w2) . (3.18)

Let GOy = s−1(Oy) = t−1(Oy) be the restriction of G to the orbit Oy and let ωOy be the leafwise symplectic
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form on the orbit. For any symplectic groupoid, it turns out that

ΩG |GOy = t∗ωOy − s∗ωOy .

Since both v1 and dudf(w2) are tangent to GOy , we can conclude that

ΩG(v1,dudf(w2)) = ωOy (dt(v1),df(w2))− ωOy (ds(v1),df(w2))

= −ωOy (ds(v1),df(w2))

= −ωOy (df(w1),df(w2))

= −f∗ωOy (w1, w2)

= −ωOx(w1, w2)− β(w1, w2).

In the second line we have use the fact that v1 ∈ ker dt. In the third line we used the fact that (v1, w1) must

be tangent to G ×M U . The last line follows from the fact that (f, β) is a morphism of Dirac manifolds.

Combining this with (3.18) we get that

ωOx(w1, w2) = 0 . (3.19)

Recall that w2 was an arbitrary vector tangent to Ox. Since ωOx is symplectic, we can conclude that w1 = 0.

So far we have shown that (v1, w1) = (v1, 0) and that v1 ∈ ker dt. It follows that v1 ∈ ker ds. We still

need to show that v1 = 0. To do this we will show that ΩG(v1, v) = 0 for arbitrary v ∈ Tu(y)G. Since ΩG is

symplectic, this will show that v1 = 0.

First write v in the form vA + vu for vA ∈ ker ds and vu ∈ Im(du). Let us see what happens when we

pair it with v1:

ΩG(v1, v) = ΩG(v1, vA) + ΩG(v1, vu) = 0 + ΩG(v1, vu) .

Since f is transverse to the foliation on M , we can write vu = du df(w) + du(vO), where w ∈ TxN and

vO ∈ TyOy. Hence,

ΩG(v1, vu) = ΩG(v1,dudf(w)) + ΩG(v1,du(vO)) . (3.20)

Recall that we have assumed that (v1, 0) is in the kernel of ΩP . Therefore,

0 = ΩP ((v1, 0), (dudf(w), w))

= ΩG(v1,dudf(w)) + β(0, w)

= ΩG(v1,dudf(w)) .

Therefore, we can conclude that the first summand on the right side of (3.20) vanishes. For the second
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summand, observe that both v1 and du(vO) are tangent to GOy and so

ΩG(v1,du(vO)) = ωOx(dt(v1), vO)− ωOx(ds(v1), vO) = 0 .

Hence, we conclude that ΩG(v1, v) = 0. Since v was arbitrary and ΩG is symplectic, we conclude that v1 = 0.

So ΩP is non-degenerate at p and therefore symplectic.

3.4.3 Weak equivalences

Let G and H be D-Lie groupoids over M and N . Suppose F : H → G is a morphism of D-Lie groupoids

covering f : N →M . Then we can construct the left principal (G,H)-bibundle:

PF := G ×s,f N ,

with the obvious commuting actions of G (on the left) and of H (on the right). We equip PF with the

characteristic form:

ΩPF = pr∗1ΩG + pr∗2β ,

where β is the gauge part of f : N → M . This is the same as the standard construction for Lie groupoids

with the addition of the characteristic form. The reader can easily check that these actions satisfy the axioms

of a (G,H)-bibundle.

Definition 3.38. We say that a morphism of D-Lie groupoids F : H → G is a weak equivalence if PF is a

principal (G,H)-bibundle.

In other words, a weak equivalence of D-Lie groupoids is a D-Lie groupoid morphism which gives rise to a

Morita equivalence. Later, it will be shown that these equivalences further correspond to an isomorphism of

the underlying stacks. The name weak equivalence is chosen because while they are not necessarily invertible

as D-Lie groupoid morphisms, they become (weakly) invertible when passing to the 2-category of stacks.

Recall that PF is principal if and only if it is a principal bibundle of Lie groupoids. Therefore, F is a

weak equivalence if and only if the underlying generalized map of Lie groupoids is a weak equivalence. This

immediately gives rise to a notion of symplectic weak equivalences.

Example 3.39 (Symplectic Weak Equivalences). Suppose G and H are symplectic groupoids (i.e., G and

H are target aligned D-Lie groupoids and their characteristic 2-forms ΩG and ΩH are symplectic). Then a

weak equivalence F : H → G consists of a homomorphism of Lie groupoids, together with a closed 2-form β

on N such that the following hold.

(a) F : H → G is fully faithful and essentially surjective.

(b) f : N →M is transverse to πM (the Poisson structure on M).
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(c) F ∗ΩG = ΩH + t∗β − s∗β.

Condition (a) and (b) ensure that F is a weak equivalence of the underlying Lie groupoids as per the usual

definition. That is, PF is principal as a Lie groupoid bibundle. The last condition is the geometric condition

for F to consitute a morphism of D-Lie groupoid as per our discussion of D-Lie groupoid morphisms.

Composition of homomorphisms corresponds to the tensor product operation at the level of bimodules.

Our work in Chapter 1 already constructed the tensor product site theoretically, but for completeness we

will repeat the construction in our D-Lie setting.

Given a left principal (G1,G2)-bibundle P and a left principal (G2,G1)-bibundle Q. Assume that G1, G2,

G3, P and Q are all target aligned. Thinking of the Gi as Lie groupoids then

P ⊗Q := P ×M2
Q/G2 ,

where the action of G2 on (p, q) is defined to be g2 · (p, q) = (p · g−1
2 , g · q). In order to equip P ⊗ Q into a

target aligned left principal (G1,G3)-bibundle, we only need to equip it with a multiplicative 2-form ΩP⊗Q.

Multiplicativity of ΩP and ΩQ with respect to the action of G2 ensures that

Ω̃ := pr∗1ΩP + pr∗2ΩQ ,

is basic with respect to the action of G2 on P ×M2 Q. Hence, Ω̃ descends to a 2-form on P ⊗ Q. Left and

right multiplicativity of ΩP⊗Q can easily be checked.

3.5 Stacks in DMan

Stacks over DMan are mainly interesting because they provide a rigorous foundation for taking about the

stack associated to a (pre)-symplectic groupoid. We will make this claim precise in this section. First we

begin with a somewhat obvious result.

Proposition 3.40. Suppose G is a D-Lie groupoid. Let BG denote the category whose objects are left

principal G-bundles and morphisms are equivariant maps F : P → Q. Let the functor π : BG → DMan send

F : P → Q to f : M → N . Then BG is a stack.

Proof. This is just a corollary of Theorem 1.57 since Proposition 3.18 showed that DMan is a good site.

Our next theorem provides the basic correspondence for studying Morita equivalence of D-Lie groupoids.

Theorem 3.41. Suppose G ⇒M and H⇒ N are D-Lie groupoids. Then the following are equivalent:

(i) BG and BH are isomorphic.

(ii) There exists a principal (G,H)-bibundle.
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(iii) There exists a D-Lie groupoid K and weak equivalences F1 : K → G and F2 : K → H.

Proof. This result can be thought of as an analogue of Theorem 2.26 in [1]. The above theorem is a corollary

of Theorem 1.59 and Theorem 2.14 applied to the case where C = DMan.

Theorem 3.42. Let G and H be symplectic groupoids. The following are equivalent:

(1) G and H are symplectically Morita equivalent.

(2) BG is isomorphic to BH.

(3) There exists a principal (G,H)-bibundle of D-Lie groupoids.

(4) There exists a pre-symplectic groupoid G′ and a pair of weak equivalences of D-Lie groupoids G ← G′ → H.

Proof. This is an immediate corollary of Proposition 3.37 and Theorem 3.41.

Example 3.43 (The Stack of a Poisson Manifold). We saw earlier that there is a one-to-one correspondence

between symplectic groupoids (G,Ω) integrating a Poisson manifold (M,π) and target aligned D-Lie groupoid

G with a symplectic characteristic form.

From this point of view, if G is a proper symplectic groupoid then BG is the analogous in DMan of

the notion of a separated stack. The space of objects of such proper symplectic groupoids are the Poisson

manifolds of compact type, studied by Crainic, Fernandes and Martinez-Torrez in [15,16].

Example 3.44 (A non-presentable stack). One weakness of the category DMan is that it lacks a terminal

object. This is remedied by passing to stacks over DMan. In fact, the category DMan equipped with the

identity projection is a terminal object in the 2-category of stacks. This is, perhaps, the simplest example

of a stack over DMan which does not admit a presentation.
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Chapter 4: b-Symplectic structures

In this chapter, we solve the classification problem, up to Morita equivalence, for a remarkable class of

Poisson manifolds. 2 Along the way, we compute the Picard group of Poisson manifolds of this class. The

chapter is organized as follows:

• In Section 4.1 and Section 4.2 we will establish our notation and give a brief overview of b-symplectic

structures and their symplectic groupoids.

• In Section 4.3 we will outline the general strategy of our proof and reduce the problem to 2-dimensions.

• Section 4.4 and Section 4.5 are concerned with classifying groupoids over the ‘affine plane’ and the

‘affine cylinder’ respectively via discrete data.

• Finally, in Section 4.6 we will complete our proofs of the two main theorem, concerning the classification

and the Picard groups of our b-symplectic manifolds.

• Section 4.7 goes over a few explicit applications. In particular, we will compare these results with the

classification of b-symplectic compact surfaces due to Bursztyn and Radko [3] and the computation of

the Picard group for b-symplectic surfaces obtained by Radko and Shlyakhtenko [45].

4.1 Stable b-symplectic structures

In this section we recall some basic facts on b-symplectic manifolds that we will need later and, at the same

time, we establish our notation conventions and terminology for b-symplectic manifolds. Since b-symplectic

manifolds are examples of Poisson manifolds they are also examples of Dirac manifolds. Hence, they can be

considered to be objects in DMan.

A b-symplectic structure (also known as a log symplectic structure) on an 2n dimensional smooth manifold

M is a Poisson structure π onM such that the section ∧nπ of ∧2nTM intersects the zero section transversely.

The singular locus Z of π is the zero set of ∧nπ and is a codimension one embedded submanifold (an

hypersurface) in M .
2Most of the content of this chapter has appeared previously in a pre-print by the author [48]

72



There are two alternative languages used in the study of b-symplectic structures. The b-geometry point

of view treats b-symplectic structures as non-degenerate closed 2-forms on the b-tangent bundle, while the

Poisson point of view treats b-symplectic structures as a special class of Poisson bivectors on M . We will

mostly use the language of Poisson geometry.

We will always assume that M is orientable. A choice of volume form µ determines a modular vector

field Xµ: it is the unique Poisson vector field such that:

LXhµ = Xµ(h)µ,

for any hamiltonian vector field Xh. If µ′ = efµ is another choice of volume form, then the corresponding

modular vector fields are related by Xµ′ = Xµ +Xf .

In dimension 2, the following two examples of b-symplectic manifolds will play an important role. Un-

derstanding these examples and their integrations will be critical to our main result.

Example 4.1 (Affine plane). The plane R2 equipped with the Poisson structure x∂y∧∂x, is a b-symplectic

manifold which we call the affine plane and denote it by aff. If µ = dx ∧ dy is the standard volume form in

R2, the associated modular vector field is Xµ = ∂y. As a Poisson manifold, aff is the linear Poisson structure

associated to the dual of the 2-dimensional affine Lie algebra.

For any real number, ρ 6= 0, we can modify the Poisson structure on aff by setting:

πρ =
1

ρ
π.

The modular vector field of πρ relative to the standard volume is ρ∂y.

Example 4.2 (Affine cylinder). Consider the action of Z on affρ given by n · (x, y) = (x, y + n). This is an

action by Poisson diffeomorphisms and the Poisson structure of the quotient R2/Z = R× S1 takes the form:

(
x

ρ

)
∂

∂θ
∧ ∂

∂x
.

Here ∂θ denotes the projection of ∂y to R2/Z. We call this manifold the affine cylinder of modular period ρ

and denote it by caffρ. When ρ = 1 we may denote caffρ by just caff.

The modular vector field of πρ relative to the standard volume µ = dx ∧ dθ is Xµ = ρ∂θ. The modular

period ρ turns out to be a complete Morita invariant of caffρ: the manifolds caffρ1 and caffρ2 are Morita

equivalent if and only if ρ1 = ρ2.

For a b-symplectic manifold (M,π) we will denote the corresponding singular 2-form as π−1. In a

neighborhood of a point on the singular locus, the Darboux-Weinstein splitting theorem gives the local

normal form:

π = x
∂

∂y
∧ ∂

∂x
+

n−1∑
i

∂

∂pi
∧ ∂

∂qi
.
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Alternatively, the corresponding singular 2-form is given by:

π−1 =
1

x
dx ∧ dy +

n−1∑
i

dqi ∧ dpi.

In Darboux-Weinstein coordinates, the modular vector field associated to the canonical volume form µ in

such coordinates is Xµ = ∂
∂y .

Example 4.3 (Semi-local model). Given a symplectic manifold (L, ωL) and a symplectomorphism f : L→ L

recall that the symplectic mapping torus:

Tf :=
R× L

(y + 1, p) ∼ (y, f(p))
,

yields a symplectic fibration Tf → S1. The corresponding regular Poisson structure πf on Tf can naturally

be extended to a b-symplectic structure π on R× Tf with singular locus Z = Tf by setting:

π =
x

ρ

∂

∂θ
∧ ∂

∂x
+ πf ,

where ρ ∈ R is any non-zero real number. We call it the canonical b-symplectic extension of Tf with period

ρ.

The previous example furnishes the semi-local model around the connected components of Z of the class

of b-symplectic structures of interest to us:

Definition 4.4. A stable b-symplectic structure is an oriented b-symplectic structure on M for which each

component Zi of the singular locus Z admits a tubular neighborhood U isomorphic to R × Tf , for some

mapping torus f : L→ L and some real number ρ 6= 0. The number ρ is called the modular period of Zi.

Notice that the leaf space of a stable b-symplectic manifold has a simple structure: it is a collection of

circles connected by open points, one for each connected component of M − Z.

The results of Guillemin, Miranda, and Pires [23, 24] lead to the following useful criteria for stability

(combine Theorem 50 from [24] and Theorem 59 from [23]):

Theorem 4.5 (Guillemin, Miranda, Pires). Let (M,π) be a orientable b-symplectic manifold. Then (M,π)

is stable if and only if Z is compact and each of its connected components admits a closed leaf.

In particular, when M is compact we need only verify the existence of closed leaves in each connected

component of the singular locus.

Example 4.6 (Closed b-symplectic surfaces). In dimension 2, every b-symplectic structure on a compact

oriented surface M is stable. Such stable b-symplectic (or just b-symplectic) structures on were studied

by Olga Radko in [45] who called them topologically stable surfaces. Radko showed that, up to Poisson

diffeomorphism, stable b-symplectic structures on a surface M were classified by the following data:
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(a) The topological arrangement of the singular curves.

(b) The period of the modular vector field around each singular curve.

(c) The ‘regularized’ volume of π−1 on M .

Later, Bursztyn and Radko [3] proved that (a) and (b) alone classify a topologically stable surface, up to

Morita equivalence.

We quote here one more fact from the work of Guillemen, Miranda, and Pires, that will be useful for us

in the sequel (see [24]):

Theorem 4.7 (Guillemin, Miranda, Pires). The Poisson cohomology of an arbitrary b-symplectic structure

is given by:

Hn
π (M) ∼= Hn

dR(M)⊕Hn−1
dR (Z).

4.2 Picard groups

We defined the Picard group of C-groupoid in Chapter 2. In this section C = DMan (see Chapter 3). Every

(integrable) Dirac structure comes with an integrating groupoid. In the case of b-symplectic manifolds,

the integrating groupoid is a symplectic groupoid. In this section, we will review these definitions, with

particular focus on the b-symplectic case. One slight change from the previous discussion is that technically

we permitting Dirac structures on non-Hausdorff manifolds. However, we will always assume the space

of objects is Hausdorff. Formally, we are considering stacks over non-hausorff Dirac manifolds which are

presented by Hausdorff manifolds.

4.2.1 Symplectic groupoids over b-symplectic structures

Recall that a symplectic groupoid is a pair (G ⇒ M,Ω), where the symplectic form on G is required to be

multiplicative:

m∗Ω = pr∗1Ω + pr∗2Ω.

A symplectic groupoid induces a unique Poisson structure π on its manifold of units M for which the target

map t : G →M is Poisson. In such a case we say that G integrates (M,π). If G has 1-connected s-fibers, then

we say that G is the unique (up to isomorphism) canonical integration of (M,π) and we write G = Σ(M).

The general integrability criteria of Crainic and Fernandes imply that a Lie algebroid with injective

anchor map on an open dense set is integrable (see [12]). It follows that every b-symplectic manifold (M,π)

admits an integration. Recalling our two examples of b-symplectic manifolds defined earlier, we give their

canonical integrations.
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Example 4.8 (Integration of the affine plane). The two dimensional affine group, which we denote by Aff,

is R2 equipped with the product

(c, d) · (a, b) = (a+ c, b+ ead).

The Lie algebra of Aff is aff, the two dimensional affine Lie algebra. Identifying aff and aff∗ using the

standard metric on R2, leads to the linear Poisson structure on aff from Example 4.1. We can now use the

fact that the integrations of linear Poisson structures on the dual of a Lie algebra g are the action groupoids

T ∗G ' G× g∗ ⇒ g∗ associated with the coadjoint action of a Lie group G integrating g, equipped with the

canonical symplectic form on the cotangent bundle.

We can write the co-adjoint action of Aff on aff ' aff∗ explicitly as:

(a, b) · (x, y) = (xea, y + xb).

The resulting action groupoid GAff = Aff × aff ' R4 has source and target maps defined by:

s(a, b, x, y) = (x, y), t(a, b, x, y) = (a, b) · (x, y).

and multiplication given by:

(c, d, xea, y + xb) · (a, b, x, y) = (a+ c, b+ ead, x, y).

The multiplicative symplectic form on the groupoid GAff is:

Ω = t∗(dlog x ∧ dy)− s∗(dlog x ∧ dy)

= dx ∧ db+ da ∧ dy + bda ∧ dx+ x da ∧ db.

Since Aff is simply connected, GAff has simply connected source fibers, and we conclude that GAff ∼= Σ(aff),

the canonical integration.

The Poisson manifolds affρ and aff have isomorphic algebroids. Hence, Σ(affρ) has the same underlying

Lie groupoid as Σ(aff) = GAff but with the new symplectic form ρΩ. We will denote this modified symplectic

groupoid by GAffρ.

Example 4.9 (Integration of the affine cylinder). The affine cylinder caff was constructed in Example 4.2

as a quotient of the affine plane aff by a free and proper action of Z by Poisson diffeomorphisms. The

Z-action and the Aff-action on aff commute. We obtain a lifted Z-action on GAff by symplectic groupoid

isomorphisms and its quotient is the action groupoid:

Caff := Aff × caff = {(a, b, x, θ) ∈ R2 × (R× S1)}.
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The quotient symplectic structure is:

Ω = dx ∧ db+ da ∧ dθ + bda ∧ dx+ xda ∧ db.

Again, the source fibers of Caff are simply connected so Caff ∼= Σ(caff).

Remark. Gualtieri and Li in [22] have found the source connected integrations of b-symplectic manifolds.

Although we do not explicitly use their classification here, our definition of the discrete presentation bears

resemblance to their work.

For a Lie groupoid G ⇒ M we will be using the following notations. The isotropy group over x ∈ M is

the Lie group of arrows with source and target x:

Gx := t−1(x) ∩ s−1(x).

The restriction of G to a subset U ⊂M is the subset of arrows in G whose source and target lie in U :

G|U := s−1(U) ∩ t−1(U).

The quotient space M/G is the topological quotient of M by the orbits of G and we call it the orbit space

of G. A bisection of G is a smooth section σ : M → G of the source map such that t ◦ σ : M → M is a

diffeomorphism. A local bisection around g ∈ G is a map σ : U → G where U ⊂M is an open neighborhood

of s(g) such that σ(s(g)) = g and t ◦ σ : U → t ◦ σ(U) is a diffeomorphism. A basic fact is:

Lemma 4.10. For a Lie groupoid G ⇒M and an arrow g ∈ G there always exists a local bisection σ : U → G

around g.

We leave the (easy) proof to the reader. Notice that such a bisection, in general, is not unique.

4.2.2 The Picard group

We defined the Picard and Bibundles in Chapter 2. Lets take a look at a few examples which arise in the

b-symplectic setting. Recall that we use the following diagram to illustrate the notion of (G2,G1)-bibundle:

G2 P G1

M2 M1

t s

From here on out, all bibundles are assumed to be principal bibundles. Recall that any (G2,G1)-bibundle P

induces a map of orbit spaces which we denote by the same letter P :

P : M1/G1 →M2/G2, [x] 7−→ [t(p)] for any p ∈ P with s(p) = x.
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Example 4.11. Given a symplectic groupoid (G,Ω) over a Poisson manifold M and a complete Poisson

transversal T (i.e., a submanifold intersecting each symplectic leaf of M transversely in a symplectic sub-

manifold), then (G|T ,ΩG|T ) is a symplectic groupoid Morita equivalent to (G,Ω): a (G,G|T )-bibundle is given

by:
G s−1(T ) G|T

M T ,
t s

with the obvious left/right actions. By Proposition 8 in [13], both s−1(T ) and G|T are symplectic submani-

folds. Using the multplicativity of Ω, it follows easily that this is indeed a symplectic bibundle.

A bibundle P is a generalized isomorphism G1 → G2, where an element p ∈ P is thought of as an “arrow"

from a point in M1 to a point in M2. For any (G2,G1)-bibundle P the restriction of P to U ⊂ M1 is the

collection of all elements of p whose source lies in U .

P |U := s−1(U).

When G1,G2 ⇒M have the same unit manifold, the isotropy of P at x ∈M are the points in P which have

source and target equal to x.

Px := s−1(x) ∩ t−1(x).

A bisection of (G2,G1)-bibundle P is a section σ : M1 → P of s : P → M1 such that t ◦ σ : M1 → M2 is a

diffeomorphism.

We will now review the construction of map-like bibundles. Suppose F : G1 → G2 is an isomorphism

of symplectic groupoids. The induced map f : M1 → M2 on the space of units is necessarily a Poisson

diffeomorphism and we say that F covers f . The map F gives rise to a symplectic bibundle:

P(F ) := G2 ×s,f M1,

with anchor maps:

t(g, x) = t(g), s(g, x) = x,

and left/right multiplication defined by:

g2 · (g, x) = (g2g, x), (g, x) · g1 = (gF (g1), x).

The symplectic structure on PF is the pullback pr∗1Ω2. The symplectic (G2,G1)-bibundle PF is called the

symplectic bibundle associated to F .

In general, not every bibundle will arise from a symplectomorphism of symplectic groupoids. In fact, it

is shown in [6] that:
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Proposition 4.12. A symplectic (G2,G1)-bibundle P is isomorphic to PF for some isomorphism of sym-

plectic groupoids F : G1 → G2 if and only if the bibundle admits a lagrangian bisection.

For a symplectic manifold M the obstructions to finding a symplectomorphism F : Σ(M)→ Σ(M) such

that PF ∼= P become a symplectic version of the Nielson realization problem (see [6]). For b-symplectic

manifolds the obstructions are even more complicated, but when M is a closed b-symplectic surface these

obstructions vanish [46] and one can always find a bisection.

Example 4.13 (Picard group of a closed b-symplectic surface). Radko and Shylakthenko in [46] computed

the Picard group of any toplogical stable surface. They showed that for a toplogical stable surface M , every

symplectic (Σ(M),Σ(M))-bibundle admits a lagrangian bisection, from which it follows that the Picard

group of such a surface is isomorphic to the group of outer Poisson automorphisms.

Pic(M) ∼= OutPoiss(M)

Their result depends critically on the Dehn-Nielsen-Baer theorem which is false for dimensions greater than

2. They went on to describe this group with the help of labeled graphs. This is the primary inspiration for

our definition of a discrete presentation which we will use to both classify and compute invariants for stable

b-symplectic manifolds in higher dimensions.

4.2.3 The Picard Lie algebra

The Lie algebra of the Picard group was defined and studied by Burzstyn and Fernandes in [6]. In general,

the Picard group of a Poisson manifold can be infinite dimensional, however Corollary 1.3 from [6] says

that the Picard Lie algebra, pic(M), fits into a long exact sequence together with the Poisson and de Rham

cohomologies of M :

. . . H1
dR(M) H1

π(M) pic(M) H2
dR(M) H2

π(M) . . .

Applying Theorem 4.7, the map Hn
dR(M) → Hn

π (M) = Hn
dR(M) ⊕ Hn−1

dR (Z) is just injection to the first

coordinate. Hence the exact sequence becomes:

H1
dR(M) H1

dR(M)⊕RN pic(M) H2
dR(M) H2

dR(M)⊕H1
dR(Z)

where N is the number of connected components of Z. We conclude that:

Proposition 4.14. If M is a stable b-symplectic manifold whose singular locus Z has N connected compo-

nents, then its Picard Lie algebra is the N -dimensional abelian Lie algebra:

pic(M) ∼= RN .
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In particular, the Picard group of M is finite dimensional.

Proof. The long exact sequence argument above gives the dimension of pic(M). Moreover, by choosing

appropriate volume forms in the local model, one can find compactly supported modular flows around each

connected component of Z, which lead toN commuting Poisson vector fields. The time-1 flows of these vector

fields yield a N dimensional family of bibundles. Hence, the Picard Lie algebra is abelian and the connected

component of the identity of Pic(M) is a quotient of RN by some (possibly trivial) discrete subgroup.

4.3 Strategy of the proof

The main aim of this chapter is to prove Theorem 4.55, describing the Picard group Pic(M) of a stable

b-symplectic manifold M . The main steps in the proof are:

Step 1. Reduce the computation of Pic(M) = Pic(Σ(M)) to the computation of Pic(G), where G ⇒ C is a

symplectic groupoid integrating a disjoint union C of affine cylinders (see Example 4.2).

Step 2. Describe Pic(G) in terms of discrete data associated with a graph whose vertices are the connected

components of M − Z and whose edges are the connected components of Z.

Section 4.3.1 takes care of Step 1, while Step 2 we will be taken care of in the remaining sections. Section

4.3.2 proves a simple lemma about gluing bibundles. Finally Section 4.3.3 will define pointed bibundles which

will be a bridge between discrete data and geometric data.

4.3.1 Reduction to 2 dimensions

Step 1 will follow from restricting Σ(M) to a complete 2-dimensional Poisson transversal C: Σ(M) and

G = Σ(M)|C are Morita equivalent (see Example 4.11) so that Pic(Σ(M)) = Pic(G). We will use the semi-

local models around the singular hypersurface of a stable b-symplectic manifold to construct the Poisson

transversal.

Let the singular hypersurface Z be decomposed into a disjoint union of connected components Z = ti∈IZi.

By the definition of stable b-symplectic structure, each Zi has trivial normal bundle and is a symplectic

mapping torus Tfi , for some symplectomorphism fi : Li → Li. We have a Poisson diffeormorphism

φi : Ui → R× Zi,

defined on an open neighborhood Ui of Zi, where R× Zi is furnished with the Poisson structure:

π =
x

ρi

∂

∂θ
∧ ∂

∂x
+ πfi ,

where ρi be the modular period of Zi. We think of Li as a leaf of Zi, i.e, a fiber of the mapping torus
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p : Zi → S1. Also, we can assume that fi is the holonomy of the flat connection on p : Zi → S1 induced by

the modular vector field on Zi.

Lemma 4.15. For each component Zi there exists an embedded Poisson transversal:

ιi : (−ε, ε)× S1 ↪→M,

with induced Poisson structure the b-symplectic affine cylinder caffρi :

ι∗i (π) =
x

ρi

∂

∂θ
∧ ∂

∂x
.

Proof. Since Li is connected there exists a section γi : S1 → Zi of p : Zi → S1. Since the normal bundle to

Zi is trivial we can extend γi to a 2 dimensional embedded submanifold

ιi : (−ε, ε)× S1 → R× Zi.

The first coordinate corresponds to the normal directions to Zi so that ιi|{0}×S1 = γi. Thus the image of ιi

is transversal to each leaf. It is clear from Example 4.3 that the pullback by ι∗i π−1 of the b-form will satisfy

the (inverse) of the formula above.

Fix an orientation for M . We say that an open symplectic leaf of M is positive (respectively, negative)

if the orientation provided by the symplectic form coincides (respectively, is the opposite) of the orientation

of M . Notice that we can orient the transversal of the previous lemma such that ιi(x, θ) lies in a positive

(respectively, negative) leaf if and only if x is positive (respectively, negative). We will assume that we have

done this from now on.

Corollary 4.16. Suppose (M,π) is a stable b-symplectic manifold. There exists a complete Poisson transver-

sal ι : C ↪→ M , where C = ti∈ICi is a disjoint union of affine cylinders Ci ' caffρi with modular period ρi.

In particular, Σ(M) is Morita equivalent to the restriction:

G := Σ(M)|ι(C).

Proof. We take for C the disjoint union of the transversals constructed in Lemma 4.15. Since the embedding

C → M intersects every orbit of M , it is a complete Poisson transversal. Hence, G and Σ(M) are Morita

equivalent (see Example 4.11).

The groupoids G integrating disjoint unions of affine cylinders arising from a complete Poisson transversal

are not totally arbitrary. For example, they share with Σ(M) one useful feature: the modular vector field

can be lifted to a family of symplectic groupoid automorphisms of G as shown by the next lemma.
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Lemma 4.17. LetM be a stable b-symplectic manifold with a complete Poisson transversal ι : C →M . There

exists a choice of volume form µ on M such that the modular vector field Xµ is tangent to ι(C). In particular,

if G = Σ(M)|ι(C), then the 1-parameter family of symplectic groupoid automorphisms Φt : Σ(M) → Σ(M)

induced by Xµ preserves G.

Proof. Let ω be any choice of volume form onM . We claim that we there exists a smooth function g : M → R

such that the modular vector field associated to the volume form µ := egω is tangent to the embedding

ι : C →M .

We will perform this adjustment locally around each Zi. Let γi be the section of Mfi → S1 as in Lemma

4.15. We can lift γi to a curve γ̃i : [0, 1]→ [0, 1]×Li which respects the equivalence relation (0, fi(p)) ∼ (1, p).

Without loss of generality assume that γ̃i is constant near the endpoints.

Let gt : Li → R be a time dependent family of smooth functions such that pr2 ◦ γ̃i is an integral curve of

the (time dependent) Hamiltonian vector field Xgt . Again, we can assume without loss of generality that the

gt are zero near the endpoints of [0, 1]. We can think of the family gt as a function g̃ : [0, 1]×Li → R. Since gt
is trivial near the endpoints, it respects the equivalence relation ∼ and descends to a function g : Mfi → R.

Let Xg be the Hamiltonian vector field associated to g. If Xω is the modular vector field relative to ω

then Xω +Xg is tangent to ι and hence

Xω +Xg = Xegω = Xµ,

is tangent to the embedding ιi. By choosing a local bump function around Zi we can arrange that the

support of g to be contained in a small neighborhood of Zi.

Remark. Although the transversals we have defined are only ‘finite’ cylinders of the form (−ε, ε) × S1, any

integration of a finite cylinder is Morita equivalent to an integration of R× S1.

We summarize this discussion for future reference in the following proposition.

Proposition 4.18. Suppose M is a stable b-symplectic manifold. Then Σ(M) is Morita equivalent to an

integration G of a disjoint union C of affine cylinders. Furthermore G satisfies the following properties:

(a) the restriction of G to any single cylinder has connected orbits;

(b) the open orbits of G can be split into two categories, positive and negative. Positive (respectively, negative)

orbits are disjoint unions of positive (respectively, negative) half cylinders;

(c) there exists a smooth family of symplectic groupoid automorphisms Φt : G → G covering the flow of the

modular vector field Xµ, where µ is the standard volume form on C.

Definition 4.19. Suppose C is a disjoint union of affine cylinders. An integration G of C satisfying (a)-(c)

above is said to be natural.
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It will be our goal to find all natural integrations G of C. In order to do this, we will first classify

natural integrations of the affine plane in Section 4.4, which will enable us to classify integrations of the

affine cylinder in Section 4.5. Next, we will need to extend the classification of natural integrations of the

affine cylinder to a disjoint union of affine cylinders. The needed data will be a labeled graph called the

discrete presentation consisting of a labeled graph which encodes the topology of the orbit space together

with isotropy and holonomy data.

4.3.2 Gluing bibundles

Once one describes the integrations G of C in terms of a discrete presentation, we will see that it is possible

to describe the bibundles of G. In order to do this, ones needs a gluing lemma for bibundles.

Let G ⇒M be any symplectic groupoid. Suppose {Ui}i∈I is a saturated open cover of M , so each Ui is

a collection of orbits of G. We set Uij := Ui ∩ Uj and, in particular, Uii = Ui.

Lemma 4.20. Let f : I × I → I × I be a bijection and assume we have a family of (G|Uf(i) ,G|Ui)-bibundles:

G|Uf(i) Pi G|Ui

Uf(i) Ui .

Suppose further that for each pair (i, j) ∈ I×I we have an isomorphism of bibundles φij : Pj |Ui∩Uj → Pi|Ui∩Uj
satisfying the cocycle condition:

φij ◦ φjk = φik.

Then there exists a (G,G)-bibundle P together with an isomorphism of bibundles φi : P |Ui → Pi such that:

φij ◦ φj = φi.

Proof. Using the well-known description of principal G-bundles in terms of Haeflieger cocycles, it is clear that

one can glue them along a saturated cover, provided they are related on the intersections by isomorphisms

satisfying the cocycle condition. Hence, starting with the right principal G|Ui-bundles Pi we construct a

right principal G-bundle P and isomorphism of principal G|Ui-bundles φi : P |Ui → Pi. These isomorphisms

allow to define left G|Ui-principal actions on P |Ui from the ones on the Pi, commuting with the right action,

and which agree on intersections. Hence, we obtain a G-left principal action that commutes with the right

G-action, making P is a principal (G,G)-bibundle, and for which the φi : P |Ui → Pi become isomorphism of

bibundles.
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4.3.3 Pointed bibundles

Definition 4.21. Suppose G ⇒ (M,m0) and H ⇒ (N,n0) are groupoids over pointed manifolds. We say

(P, p0) is a pointed bibundle if P is a (G,H)-bibundle and the anchor maps are base-point preserving.

To any such (P, p0) there is a canonical isomorphism ψp0 : Gm0 → Hn0 such that:

p0g = ψp0(g)p0.

An isomorphism φ : (P, p0) → (Q, q0) of pointed bibundles is an isomorphism of bibundles such that the

source (target) of p0 and q0 are equal. We say φ is a strong isomorphism if φ(p0) = φ(q0). To any isomorphism

of pointed bibundles, we can associate a unique element hφ ∈ Hn0 characterized by the property:

hφφ(p0) = q0.

We can check easily that hφ satisfies:

Chφ ◦ ψp0 = ψq0 .

This leads us to the following lemma:

Lemma 4.22. Suppose G ⇒ (M,m0) and H⇒ (N,n0) are transitive groupoids over pointed manifolds. Let

(P, p0) and (Q, q0) be pointed bibundles. The relation φ 7→ hφ gives 1-1 correspondence between isomorphisms

φ : (P, p0)→ (Q, q0) and elements h ∈ H such that:

Ch ◦ ψp0 = ψq0 . (4.1)

Proof. We begin by commenting that two isomorphisms φ1, φ2 : P → Q are equal if and only if there exists

p ∈ P such that φ1(p) = φ2(p). This immediately implies that φ 7→ hφ is injective.

It only remains to show that given h ∈ Hn0
we can construct φ such that hφ = h. Any p ∈ Q can be

written in the form p = h1p0g1 for g1 ∈ G and h1 ∈ H, we define φ(p) = h1(h−1q0)g1. Property (4.1) implies

that this definition is invariant with respect to the decomposition of p. Clearly hφ(p0) = q0 and therefore

hφ = h.

By interpreting isomorphisms of bibundles in this way, we get the following useful properties. For

φ2 : P → Q and φ1 : Q→ R then:

hφ1◦φ2 = hφ1hφ2 . (4.2)

On the other hand, given φ1 : P1 → Q1 and φ2 : P2 → Q2 such that P1 ⊗ P2 is defined, then:

hφ1⊗φ2 = hφ1ψp1(hφ2). (4.3)
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4.4 Picard groups of the affine plane

In this section, G will denote a natural integration of aff (see Definition 4.19). We will also denote by G+

and G− the restrictions of G to the positive plane aff+ and to the negative plane aff−. The symbol ± will

be used to indicate that cases for both + and − are being treated simultaneously.

Our aim is to compute Pic(G) and we will proceed as follows:

• in Section 4.4.1, we show that any integration G of aff arises as a semi direct product GAff×affK where

K is a discrete bundle of Lie groups;

• in Section 4.4.2, we will show how to construct K from discrete data which we will refer to as the

isotropy data of G;

• in Section 4.4.3, we obtain a correspondence between maps of isotropy data and bibundles;

• finally, in Section 4.4.4, we compute the Picard group of G ⇒ aff.

4.4.1 The short exact sequence of G

Our goal is to find a ‘split fibration’ of G. Note that GAff is the only source connected integration of aff, up

to isomorphism. Hence, G0 ' GAff and we denote by i : GAff → G the inclusion. The proof of the following

lemma is inspired in Proposition 3 from [46].

Lemma 4.23. There is a Lie groupoid morphism p : G → GAff which is split by the canonical map i :

GAff → G.

Proof. Recall that GAff ∼= Aff × aff. Let g ∈ G be an arrow with t(g) = (x2, y2) and s(g) = (x1, y1), where

x1 6= 0. Then we can set:

p(g) :=

(
log

(
x2

x1

)
,
y2 − y1

x1
, x1, y1

)

This map is a local symplectomorphism. Morover, its restriction to G0 ' GAff is easily seen to be the identity,

for an arrow (a, b, x, y) ∈ GAff has source (x, y) and target (eax, y + xb), so that: p(a, b, x, y) = (a, b, x, y)

(see Example 4.8). Hence, p ◦ i is the identity and it remains to show that p extends to all of G.

Suppose g0 ∈ G(0,y0). We choose a local bisection σ around g0 and let g(t) = σ(t, y0), so:

t(g(t)) = (x(t), y(t)) s(g(t)) = (t, y0).

Observe that for t 6= 0, one has p(g(t)) = (log(x(t)/t), (y − y0)/t, t, y0). Also:

lim
t→0

(
x(t)

t

)
= x′(0) > 0, lim

x→0

(
y(t)− y0

t

)
= y′(0).
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Since dt · g′(0) = (x′(0), y′(0)), these limits exist. We define p on all of G by letting:

p(g0) = (log(x′(0)), y′(0), 0, y0).

We must check that this definition is independent of the choice of local bisection σ. If σ1 and σ2 are two

local sections through g0 we claim that

dt · g′1(0) = dt · g′2(0),

so it follows that p is well-defined. For this observe that t 7→ g1(t)g2(t)−1 is a smooth curve in G0 ' GAff that

passes through the point (0, 0, 0, 0) at t = 0. Hence, if we write g1(t)g2(t)−1 = (a(t), b(t), x(t), y(t)) ∈ GAff,

we have:

t(g1(t)) = t(g1(t)g2(t)−1) = t(a(t), b(t), x(t), y(t)) = (ea(t)x(t), y(t) + x(t)b(t)),

t(g2(t)) = s(g1(t)g2(t)−1) = s(a(t), b(t), x(t), y(t)) = (x(t), y(t)).

Since we have x(0) = y(0) = a(0) = b(0) = 0, it follows that:

dt · g′1(0) = (x′(0), y′(0)) = dt · g′2(0),

so the claim follows.

We leave the details of proving that p is differentiable morphism of groupoids to the reader.

The map p fits into the following short exact sequence of Lie groupoids:

1 K G GAff 1

aff aff aff .

p

i

(4.4)

Here K, the kernel of p, is a bundle of discrete groups over aff. The map i yields a natural action of GAff on

K, and we have that G is the semi-direct product of GAff and K:

Lemma 4.24. The map F : GAff ×s,t K → G such that F (g, k) = i(g)k is an isomorphism.

Proof. The map p is a fibration since it covers a submersion (the identity) and G → GAff×aff aff = GAff is a

submersion. The canonical map i : GAff → G is a section of p so this exhibits a flat cleavage of p. Therefore,

by [32] (Thm 2.5.3) the map is an isomorphism.

More explicitly, the multiplication in GAff ×aff K is given by the formula:

(g′, k′) · (g, k) = (g′g, θg−1(k′)k),
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where θg(k) denotes the action of an element g ∈ GAff on k ∈ K.

Remark. We note that we have not used all of our naturality assumptions about G. In fact, the above lemmas

are true for any integration of G with connected orbits.

4.4.2 The isotropy data of G

Since G ∼= GAff ×aff K, the wide subgroupoid K determines G up to isomorphism. Our next task is to show

that we can reduce K to a few pieces of discrete data. Since we can lift the modular vector field ∂/∂y to a

flow of G, we see that K|x=0 is a locally trivial bundle of discrete groups. Let,

G+ := K(1,0), G− := K(−1,0), H := K(0,0).

For each h ∈ H there is a unique global section σh : aff → K such that σh(0, 0) = h. Similarly, for g ∈ G±

there is a unique section σg : aff± → K such that σg(±1, 0) = g. So we can define maps

aff×H → K, (x, y, h) 7→ σh(x, y),

aff± ×G± → K, (x, y, g) 7→ σg(x, y),

which cover K. Moreover, these give rise to group homomorphisms:

φ± : H → G±, φ±(h) := σh(±1, 0).

Definition 4.25. We call isotropy data I a pair of homomorphisms φ± : H → G±, where H,G± are

arbitrary discrete groups:

I :=

(
G− H G+φ− φ+

)
.

When φ± arise from an integration G of aff as above, we call I the isotropy data associated to G.

Notice that isotropy data is only defined for G such that the discrete bundle K|x=0 is locally trivial. This

condition is equivalent to requiring that the modular vector field lifts to a complete vector field on G.

Given arbitrary isotropy data I, we denote by K(I) the following bundle of groups over aff:

K(I) :=


 ⊔
g∈G±

aff± × {g}

 t
 ⊔
h∈H

aff× {h}


 / ∼,

where ∼ is the equivalence relation generated by:

(x, y, h1) ∼ (x, y, h2) if φ±(h1) = φ±(h2), (x, y) ∈ aff±.
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We equip K(I) with the quotient topology, so that it becomes a bundle of discrete groups over aff. There is

an obvious action of GAff on K(I) and we call the Lie groupoid:

G(I) := GAff ×aff K(I) ⇒ aff

the symplectic groupoid associated to I. The symplectic structure is the pullback under the projection of the

symplectic structure in GAff. One checks easily that K(I) (and hence G(I)) will be Hausdorff if and only if

φ± are injective.

The equivalence relation ∼ is precisely the equivalence relation given by the intersection of the images of

σh and σg for h ∈ H and g ∈ G±. Therefore,

Theorem 4.26. Let p : G → GAff be the fibration from Lemma 4.23, with kernel K. If G is natural and I

is the isotropy data associated with G then K(I) ∼= K and G(I) ∼= G.

Any point in G ∼= G(I) can be uniquely represented by a pair (g, α) where g ∈ GAff and

α ∈


G± if g ∈ GAff±

H if g ∈ GAff|x=0

In these “coordinates” the product is given by (g, α) · (h, β) = (gh, αβ).

4.4.3 Maps of isotropy data

In this section, G1
∼= G(I1) and G2

∼= G(I2) will be symplectic groupoids integrating aff with isotropy data

I1 and I2 respectively where:

Ii :=

(
G−i Hi G+

i

φ−i φ+
i

)
for i = 1, 2.

Recall the discussion of pointed bibundles in Section 4.3.3. We think of G1 and G2 as groupoids over

the pointed manifold (aff, (0, 0)). Therefore, if we say (P, p0) is a pointed (G2,G2)-bibundle we mean that

p0 ∈ P(0,0).

A bibundle P is orientation preserving if it relates the positive half-plane to the positive-half plane and

orientation reversing otherwise. A bisection σ of a Z-static bibundle is called Z-static if s ◦ σ(x, y) = (x, y)

or s ◦ σ(x, y) = (−x, y).

Proposition 4.27. Suppose P is a Z-static (G2,G1)-bibundle. Then P admits a Z-static bisection.

Proof. Suppose P orientation preserving. We first make the following claim: There is a local symplectomor-
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phism Φ : P → GAff which makes the following diagram commute:

P GAff

aff× aff .

t×s

Φ

t×s

We can think of the claim as an analogue of lemma 4.23 for bibundles and the proof of this claim is similar.

If P is orientation preserving then for p ∈ P let s(p) = (x2, y2) and t(p) = (x1, y1). If P is orientation

reversing then let s(p) = (−x2, y2) and t(p) = (x1, y1). Then we define Φ for x1 6= 0 by:

Φ(p) :=

(
log

(
x2

x1

)
,
y2 − y1

x1
, x1, y1

)
,

so the claim follows.

Let p0 ∈ P(0,0) be such that Φ(p0) = (0, 0, 0, 0) ∈ GAff|Z . Notice that Q := Φ−1(u(Z)) is a principal

H2 bundle over Z. Therefore, p0 extends to a unique section of Q. On the other hand, since Φ is a local

diffeomorphism, the identity section of GAff gives a unique local extension of any q ∈ Q to a static bisection.

Therefore p0 extends to a unique static bisection in some neighborhood of Z which we can extend uniquely

to all of aff.

When P is orientation reversing, we replace s by composing it with (x, y) 7→ (−x, y), and then the same

argument applies.

A pointed bibundle (P, p0) is called Z-static if P is a Z-static bibundle and p0 extends to a Z-static bisec-

tion. Let (P, p0) be such a orientation preserving pointed (G2,G1)-bibundle and σ the associated bisection.

Then the points σ(±1, 0) and σ(0, 0) ∈ P determine group homomorphism ψ± : G±1 → G±2 and ψ : H1 → H2

such that:

G−1 H1 G+
1

G−2 H2 G+
2 ,

ψ−

φ−1 φ+
1

ψ ψ+

φ−2 φ+
2

(4.5)

commutes. If P is orientation reversing then we get a similar diagram:

G−1 H1 G+
1

G+
2 H2 G−2 .

ψ−

φ−1 φ+
1

ψ ψ+

φ+
2 φ−2

(4.6)

This motivates the following definition:

Definition 4.28. An orientation preserving isomorphism Ψ : I1 → I2 is a triple of group isomorphisms

Ψ = (ψ,ψ±) such that (4.5) commutes. An orientation reversing isomorphism Ψ : I1 → I2 is a triple of

group isomorphisms such that (4.6) commutes.
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This gives a category where composition corresponds to composing the vertical arrows. For a map of

isotropy data Ψ : I1 → I2 and α ∈ H,G−, G+ we may sometimes write Ψ(α) to mean ψ(α), ψ−(α), ψ+(α),

respectively.

Example 4.29 (Inner automorphisms). Given α ∈ H the inner automorphism associated to α is the

orientation preserving isomorphism Cα : I → I where ψ := Cα : H → H is conjugation by α and ψ± :=

Cφ±(α) : G± → G± is conjugation by φ±(α).

Example 4.30 (Pointed bibundles). In the above discussion, we constructed the isomorphism of isotropy

data associated to (P, p0), a Z-static pointed (G2,G1)-bibundle.

The next lemma says that the second example is generic:

Lemma 4.31. There are 1-1 correspondences between:

(i) orientation preserving isomorphisms of isotropy data Ψ : I1 → I2 and orientation preserving Z-static

pointed (G2,G2)-bibundles.

(ii) orientation reversing isomorphisms of isotropy data Ψ : I1 → I2 and orientation reversing Z-static

pointed (G2,G2)-bibundles.

For this lemma, we are considering pointed bibundles up to strong isomorphism.

Proof. We prove the orientation preserving case. The orientation reversing case is similar, so can be left

to the reader. Given a orientation preserving Z-static pointed (G2,G1)-bibundle we have already provided

the construction of an isomorphism of isotropy data above. Suppose Ψ is an isomorphism of isotropy data.

Then we can define a symplectic groupoid isomorphism F : G1 → G2. In our ‘coordinates’ from before, F

takes the form:

F (g, α) = (g,Ψ(α)).

The bibundle associated to this map PΨ is symplectomorphic to G2 and comes with a canonical point

pΨ = u(0, 0). Clearly (PΨ, pΨ) is an orientation preserving Z-static pointed bibundle. The definition of the

actions on PΨ make it clear that the isomorphism of isotropy data associated to (PΨ, pΨ) is Ψ.

From now on, we will use the notation PΨ to denote the bibundle associated to a map of isotropy data.

The map Ψ 7→ PΨ is functorial, i.e.

PΨ1◦Ψ2
∼= PΨ1

⊗ PΨ2
.

When we pass to ordinary isomorphism classes of bibundles, we can think of the map Ψ 7→ PΨ as corre-

sponding to the forgetful map (P, p0) 7→ P .

4.4.4 The Picard group of G(I)

We need one more lemma before calculating the Picard group.
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Lemma 4.32. For any isomorphism Ψ : I → I, the bibundle PΨ is trivial if and only if Ψ is an inner

automorphism.

Proof. It is proved in [7] that for any automorphism F : G → G then PF is a trivial bibundle if and only if

F is an inner automorphism associated to a static bisection. Now suppose PΨ is trivial. Recall the F from

the construction of PΨ in Lemma 4.31. Since PΨ is trivial, we must have that F is given by conjugation by

a static bisection σ. Let α = σ(0, 0) ∈ H. Then ψ : H → H must be Cα and ψ± = Cφ±(α) and so Ψ is an

inner automorphism. On the other hand, if Ψ = Cα let σ be the unique static bisection extending α. Then

clearly F is the inner automorphism induced by σ.

In particular, the inner automorphisms are in the kernel of the map Ψ 7→ PΨ and form a normal subgroup.

Therefore, it makes sense to define OutAut(I) to be the automorphisms of I modulo inner automorphisms.

We now prove the main theorem of this section:

Theorem 4.33. Let G = G(I) be a natural symplectic groupoid integrating aff. Then:

Pic(G) ∼= OutAut(I)× R.

Proof. We start by observing that from Lemma 4.32 it follows that the subgroup Z Pic(G) ⊂ Pic(G) of

Z-static bibundles is isomorphic to OutAut(I). By naturality, we have a 1-parameter group of symplectic

automorphisms of G integrating the modular vector field:

Modt : G → G, (a, b, x, y, α) 7−→ (a, b, x, y + t, α).

We let Mt ∈ Pic(M) be the element represented by the bibundle associated with Modt, and this defines

1-parameter subgroup Mod ⊂ Pic isomorphic to R.

Every symplectic bibundle P preserves the class of the modular vector field. It follows that an arbitrary

P ∈ Pic(G) acts on {x = 0} by translations. Therefore the subgroups Mod and Z Pic(G) generate Pic(G).

Since Z-static bibundles commute with Modt, elements in Z Pic(G) commute with elements in Mod. Hence:

Z Pic(G)×Mod→ Pic(G), (P,Q) 7−→ PQ,

is a well defined surjective group homomorphism. We claim that the kernel is trivial: if P ∈ Z Pic(G) and

Q ∈Mod, then PQ = 1 if and only if P = Q−1. But Q−1 is Z-static if and only if Q = 1.

4.5 The Picard group of the affine cylinder

Let caff be the affine cylinder. Points in caff are equivalence classes [(x, y)] of pairs (x, y) ∈ R2, where:

(x, y) ∼ (x, y + n), ∀n ∈ Z.
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The projection C : aff → caff, (x, y) 7→ [(x, y)], is a local Poisson diffeomorphism. Throughout this section

G ⇒ caff is a natural integration of the affine cylinder. Our goal is to show that we can realize G as a quotient

of some G(I). The projection G(I)→ G will depend on the holonomy data of G. We will proceed as follows:

• in Section 4.5.1, we extract discrete data from any natural integration of caff and give a definition of

holonomy data, denoted (I,Hol);

• in Section 4.5.2, we classify bibundles over caff via maps of holonomy data;

• in Section 4.5.3, we compute the Picard group a natural integration of caff.

4.5.1 Holonomy data

Similarly to the affine plane, natural integrations of G of the affine cylinder can be characterized with discrete

data. We will begin by defining the isotropy data of G.

Lemma 4.34. Suppose G is a natural integration of caff. Then there exists isotropy data I and a surjective

groupoid homomorphism Pr : G(I)→ G:

G(I) G

aff caff ,

Pr

such that Pr is an isomorphism at the level of isotropy groups and aff→ caff is the universal cover.

Proof. First consider the pullback groupoid:

C∗G := {((x2, y2), g, (x1, y1)) ∈ aff× G × aff : t(g) = C(x2, y1), s(g) = C(x1, y1)}.

Let G be the maximal open subgroupoid of C∗G with connected orbits. Let Pr : G → G be projection to

the middle component. The homomorphism Pr is surjective and is an isomorphism when restricted to any

isotropy group of G. Furthermore, since G is natural, it is clear that G is natural and by Theorem 4.26 we

can identify G with G(I) for some isotropy data I.

If Pr : G(I)→ G is as in the above lemma, we say I is the isotropy data of G which we denote as before

(G− ← H → G+).

Our goal is to compute the fibers of Pr. To do this, we will define some convenient notation.

• The image Pr(K(I)) = K ⊂ G is a discrete bundle of Lie groups. Clearly H ∼= K(0,0) so let hol : H → H

be the holonomy of K|{0}×S1 . In other words:

Pr(g − n,holn(α)) = Pr(g, α) .
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Where if g = (a, b, x, y) then g + n := (a, b, x, y + n) for any integer n.

• Let η be the unique bisection η : (aff− Z)→ GAff such that:

t ◦ η(x, y) = (x, y + 1) .

Observe that η cannot be defined on the critical locus Z.

• Since Pr(η(±1, 0)) ∈ K(±1,0)
∼= G±, let γ± ∈ G± be such that:

Pr(η(x, y)) = (u(x, y), γ±) x 6= 0 .

• Let ζ : (aff− Z)→ G(I) be the bisection ζ such that

ζ(x, y) = (η(x, y), (γ±)−1) for x ∈ aff±.

Proposition 4.35. Suppose Pr : G(I) → G is as in the above lemma. Let ζ± and hol : H → H be as we

just defined them. Then for any (g, α), (g′, α′) ∈ G(I) we have that Pr(g, α) = Pr(g, α) if and only if one of

the following holds:

(i) g, g′ ∈ GAff|aff± and there exists integers n and m such that:

ζn(g, α)ζm = (g′, α′) ;

(ii) g1, g2 ∈ GAff|Z and there exists an integer n such that:

(g1 − n,holn(α1)) = (g2, α2) .

Proof. Suppose g1, g2 ∈ GAff|aff± and there exists n and m as above. Observe that Pr(ζ) is the identity

section whenever ζ is defined and so Pr(g, α) Pr(ζn(g, α)ζm) = Pr(g′, α′).

Now suppose g1, g2 ∈ GAff|aff± such that Pr(g, α) = Pr(g′, α′). Then the y coordinates of the source

and target of g and g′ differ by integers. Therefore there exist n and m such that η−ngη−m = g′. Hence

Pr(ζn(g, α)ζm) = Pr(g′, α′). Since ζn · (g, α) · ζm has the same source and target as (g′, α′) and are mapped

by Pr to the same point, they must be equal (recall Pr is a bijection at the level of isotropy groups).

Now suppose g1, g2 ∈ GAff|Z and there exists an n satisfying (ii). By the definition of the holonomy map

Pr(g1 − n,holn(α1)) = Pr(g1, α1) and so Pr(g1, α1) = Pr(g2, α2). On the other hand, suppose Pr(g1, α1) =

Pr(g2, α2). Then there exists a unique n such that g2 = g1 − n. By the definition of holonomy, we conclude

that Pr(g2,hol
n(α1)) = (g2, α2). Since Pr is an isomorphism at the level of isotropy groups, we conclude

that holn(α1) = α2.
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Hence, the topology of G is uniquely determined by I, hol and γ±. We call the tuple Hol = (I,hol, γ±)

the holonomy data of G. The holonomy map hol and γ± also satisfy a compatibility condition. Let hol± :

G± → G± be conjugation by γ±.

Lemma 4.36. The triple H = (hol,hol±) : I → I is an automorphism of isotropy data.

Proof. We must show that:
G− H G+

G− H G+ ,

hol− hol hol+ (4.7)

commutes. We first claim that hol± are the holonomy of K around the circles {±1}×S1. Let ηt : aff−Z →

GAff be the unique 1-parameter family of bisections such that:

t(ηt(x, y)) = (x, y + t) .

Let g(t) : [0, 1] be the path in G defined as follows:

g(t) = Pr(ηt(±1, 0) · Pr(u(±1, 0), α) · (η−t(±1, t)).

Then g(t) is a path in K covering the circle {±1} × S1 ⊂ caff. Furthermore:

g(0) = Pr(u(±1, 0), α), and g(1) = Pr(u(±1, (γ±)α(γ±)−1.

Hence the holonomy of K|{±1}×S1 is conjugation by γ± and the claim follows.

The holonomy of K can also be understood in terms of the projection K(I) → K. In particular, (4.7)

commutes as a consequence of the continuity of K(I)→ I.

This motivates our definition of holonomy data:

Definition 4.37. Let I be isotropy data G− ← H → G+, hol : H → H be an isomorphism, and γ± ∈ G±.

Then Hol = (I,hol, γ±)) is called holonomy data if hol± = Cγ± and H := (hol,hol±) : I → I is an

automorphism of isotropy data.

A strong isomorphism (I1,hol1, γ
±
1 ) → (I2,hol2, γ

±
2 ) is an isomorphism (ψ,ψ±) : I → I such that Ψ

commutes H and ψ±(γ±1 ) = γ±2 .

We say strong isomorphism above since we will need a weaker notion of isomorphism in our treatment

of bibundles over caff. By Proposition 4.35 the fibers of G(I)→ G can be computed entirely in terms of the

holonomy data, hence:

Theorem 4.38. Suppose G1 and G2 are natural integrations of caff. Then G1 and G2 are isomorphic if and

only if their holonomy data is strongly isomorphic.
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4.5.2 Bibundles over caff

Suppose G1 and G2 are natural integrations with holonomy data (I1,Hol1) and (I2,Hol2) respectively. We

will denote this data as follows:

Ii := G−i Hi G+
i .

φ−i φ+
i

Holi := (holi, γ
±
i ) .

Throughout, Pri : G(Ii) → Gi denotes the projection from Section 4.5.1. As in the affine plane case, we

say that a (G2,G1)-bibundle is Z-static if the induced map of orbit spaces fixes the critical line. By fixing a

covering aff → caff we can think of caff together with the image of the origin in aff as a pointed manifold.

Our aim is characterize pointed (G1,G2)-bibundles in terms of holonomy data.

Lemma 4.39. Suppose P is a Z-static pointed (G2,G1)-bibundle. Then there exists a unique pointed

(G(I2),G(I1))-bibundle (PΨ, p0) and a surjective submersion Φ : PΨ → P satisfying:

Φ(g · p) = Pr
2

(g) · Φ(p) , Φ(p · g) = Φ(p) · Pr
1

(g) . (4.8)

Proof. Consider the pullback groupoids C∗G1 and C∗G2. Let C∗P be the corresponding (C∗G2, C
∗G1)-

bibundle:

C∗P := {((x2, y2), p, (x1, y1)) ∈ aff× P × aff : C(x2, y2) = t(p) , C(x1, y1) = s(p)} .

Let P be the complement of {(0, y2), p, (0, y1)) : y2 6= y1} in C∗P . Then P is an open submanifold of C∗P .

Let p := ((0, 0), p0, (0, 0)) so that (P , p) is a pointed manifold. The left and right actions of C∗G2 and C∗G2

make (P , p)) into a Z-static pointed (G2,G1)-bibundle. Hence we can identify (P , p) with an isomorphism

Ψ : I1 → I2 and the associated pointed bibundle (PΨ, pΨ). The construction of P makes it clear that (4.8)

holds.

Let σ be the canonical static bisection of (PΨ, pΨ). Since the left action is principal, we know that there

exists an h ∈ H2 such that h ·Φ(σ(0, 0)) = Φ(σ(0, 1)). Let δ be the unique static bisecion of G(I2) extending

h. The bisection δ satisfies:

Φ(δ(x, y) · σ(x, y)) = Φ(σ(x, y + 1)). (4.9)

We can think of δ as measuring the failure σ to descend to a bisection of P . The topology of P is determined

by the pair (Ψ, δ(0, 0) = h) since:

Φ((g, α) · σ(x, y)) = Φ((g′, α′) · σ(x, y + n)) ⇔

Pr
2

(g, α) = Pr
2

(g′, α′) ·

n−1∏
i=0

Pr
2

(δ(x, y + i))

 . (4.10)
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The pairs (Ψ, h) arising in this manner are not arbitrary. The next proposition lays out the appropriate

compatibility condition.

Proposition 4.40. Let (P, p0) be a Z-static pointed (G2,G1)-bibundle and suppose Ψ : I1 → I2 and h ∈ H

are as defined above. Then the following holds:

(i) Hol2 ◦Ψ = Ch ◦Ψ ◦Hol1;

(ii) φ±(h) = (γ±2 )Ψ(γ±1 )−1.

Proof. We will prove the case where P is orientation preserving and leave the orientation reversing case to

the reader. We first show that (i) holds. Notice that:

Φ( (u(x, y + 1),Ψ(α)) · σ(x, y + 1) ) = Φ(σ(x, y + 1)) · Pr
1

(u(x, y + 1), α);

= Φ( δ(x, y) · σ(x, y) ) · Pr
1

(u(0, 0),Hol1(α));

= Φ( δ(x, y) · (u(x, y),Ψ ◦Hol(α)) · σ(x, y) ).

On the other hand:

Φ( (u(x, y + 1),Ψ(α)) · σ(x, y + 1) ) = Pr
2

(u(x, y + 1),Ψ(α)) · Φ(σ(x, y + 1));

= Pr
2

(u(0, 0),Hol ◦Ψ(α)) · δ(x, y)Φ(σ(x, y));

= Φ( (u(x, y),Hol ◦Ψ(α)) · δ(x, y) · σ(x, y) ).

Combining these two equalities at the values (x, y) = (±1, 0), (0, 0) yields:

Hol ◦Ψ(α) = Ch ◦Ψ ◦Hol(α).

We now show (ii) holds. Recall the bisection η : aff − Z → GAff from Section 4.5.1. Let ζi(x, y) =

(η(±1, 0), γ±i ) ∈ G(Ii) for i = 1, 2. Then Pri(ζi) is the identity at every point and therefore:

Φ(σ(±1, 1)) = Pr
2

(ζ2)−1 · Φ(σ(±1, 1)) · Pr
1

(ζ1);

= Φ2(ζ−1
2 ·Ψ(ζ1)) · Φ(σ(±1, 0)).

Therefore φ±(h) = (γ±2 )Ψ(γ±1 )−1.

This motivates our definition of maps of holonomy:

Definition 4.41. Suppose h ∈ H and Ψ : I1 → I2 is an isomorphism of isotropy data. We say that

(Ψ, h) : (I1,Hol1) → (I2,Hol2) is an isomorphism of holonomy data if (i) and (ii) from Proposition 4.40

hold.
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This produces a category in which the objects are holonomy data and isomorphisms are composed via

the following rule:

(Ψ1, h1) ◦ (Ψ2, h2) := (Ψ1 ◦Ψ2, h1Ψ1(h2)).

Example 4.42 (Inner automorphisms). Suppose Ψ = Cα : I → I is an inner automorphism and h satisfies:

hol(α) = hα. (4.11)

Then the isomorphism (Ψ, h) : (I,Hol)→ (I,Hol) is called an inner automorphism.

Example 4.43 (Pointed bibundles). Given any Z-static pointed (G2,G1)-bibundle (P, p0) then Proposition

4.40 says that the Ψ and h we constructed is an isomorphism of isotropy data. In such a case we call (Ψ, h)

the holonomy isomorphism of (P, p0).

The reader is encouraged to check that composition of bibundles corresponds to composition of isomor-

phisms of holonomy. Our main end with this definition is to show that Example 4.43 is the generic case.

The next proposition says that the holonomy isomorphism of a Z-static pointed bibundle classifies (P, p0)

strongly.

If we combine (4.10) with Proposition 4.40 and Proposition 4.35 then:

Proposition 4.44. Suppose Φ : PΨ → P is as in Lemma 4.39. Let holh : H → H be the bijection

holh(α) = hol(α)h. Then Φ((g, α) · σ(x, y)) = Φ((g′, α′) · σ(x′, y′)) if and only if one of the following holds:

(i) (x, y), (x′, y′) ∈ Z and there exists an integer n such that:

(g − n, holnh(α)) = (g′, α′) ;

(ii) (x, y), (x′, y′) ∈ aff± and there exists integers n and m such that:

ζ−n2 (g, α) ·Ψ(ζ−m1 ) = (g′, α′).

Since we can characterize P in terms of Ψ and h, two Z-static pointed bibundles are strongly isomorphic

if and only if their associated holonomy isomorphisms are equal. We conclude this section with our main

result regarding bibundles over caff.

Theorem 4.45. There is a 1-1 correspondence between the following:

(i) orientation preserving isomorphisms of holonomy data and orientation preserving Z-static pointed

(G2,G2)-bibundles;

(ii) orientation reversing isomorphisms of holonomy data and orientation reversing Z-static pointed (G2,G2)-

bibundles.
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Again, we consider pointed bibundles up to strong isomorphism.

Proof. We have already shown how to obtain holonomy data from a bibundle. Hence, we need to show that

given a holonomy isomorphism (Ψ, h), we can construct a Z-static pointed bibundle. Let ∼ be the following

equivalence relation on PΨ:

(g, α) · σ(x, y) ∼ (g′, α′) · σ(x, y + n)⇔ (4.10) holds.

Let Φ : G → PΨ/ ∼ be the natural projection. We need to check that the equivalence relation respects the

left and right actions. That is:

Φ((g2, α2) · p) = Φ((g′2, α
′
2) · p′) , (4.12)

whenever Pr2(g2, α2) = Pr2(g′2, α
′
2) and Φ(p) = Φ(p′); and

Φ(p · (g1, α1)) = Φ(p′ · (g′1, α′1)) (4.13)

whenever Φ(p) = Φ(p′) and Pr1(g1, α1) = Pr1(g′1, α
′
1), for appropriately composable pairs.

We first check, (4.12) holds. Suppose p = (g, α) · σ(x, y) and p′ = (g′, α′) · σ(x, y + n). Since p ∼ p′ we

have:

Pr
2

(g, α) = Pr
2

(g′, α′) ·

n−1∏
i=0

δ(x, y + i)

 .

Since Pr2(g2, α2) = Pr(g′2, α
′
2):

Pr
2

(g2g, α2α) = Pr
2

(g′2g
′, α′2α

′)

n−1∏
i=0

δ(x, y + i)

 .

So (4.12) holds.

To check the right action, we use the interpretation of ∼ from Proposition 4.44 and separate into cases

where g, g1 ∈ GAff|aff± and g ∈ GAff|Z . Suppose n,m, k and l are integers such that:

ζ−n2 · (g, α) ·Ψ(ζ−m) = (g′, α′) ;

ζ−k1 · (g1, α1) · ζ−l1 = (g′1, α
′
1) .

Composability tells us that m and k must be equal. Hence:

ζ−n2 · (gg1, αΨ(α)) ·Ψ(ζ−l1 ) = (g′g′1, αΨ(α′1)) .
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So the right action is well defined. Now suppose g, g1 ∈ GAff|Z . So there exists n and m:

(g − n,holnh(α)) = (g′, α′) ;

(g1 −m,holm(α)) = (g′1, α
′
1).

Again, we observe that n = m by composability. Since, it suffices to prove the result for n = 1 we will just

show this case. Hence:

(g′, α′) · (g′1Ψ(α′)) = (g − 1,hol(α)h) · (g′ − 1,Ψ(hol(α′)))

= ((gg1)− 1,hol(α)h(Ψ◦)hol(α1)h−1h)

= ((gg1)− 1,hol(αα1)h)

= ((gg1)− 1,holh(αα1)).

We leave it to the reader to check that PΨ/ ∼ inherits a (non-hausdorff) smooth structure from PΨ.

4.5.3 The Picard group G(I,Hol)

Before computing the Picard group of G = G(I,Hol) we need this next lemma:

Lemma 4.46. Suppose (Ψ, h) : (I,Hol)→ (I,Hol) is an isomorphism. Then P (Ψ, h) is isomorphic to the

trivial bibundle if and only if (Ψ, h) is an inner automorphism.

Proof. Suppose (P, p0) is a Z-static pointed bibundle such that P is isomorphic to the identity bibundle.

Suppose (Ψ, h) is the holonomy isomorphism of (P, p0). Then P ∼= PΨ is the identity bibundle and therefore

Ψ = Cα : I → I is an inner automorphism. Let F : PΨ → G(I) be the trivialization of PΨ such that

F (σ(x, y)) = (u(x, y), α). Then:
G(I) PΨ

G ∼= P ,

F

Pr
Φ

commutes and therefore Φ(τ(x, y) · σ(x, y)) = Pr(u(x, y), hα). On the other hand:

Φ(τ(x, y) · σ(x, y)) = Φ(σ(x, y + 1)) = Pr(u(x, y + 1), α) = Pr(u(x, y),Hol(α)).

Therefore: hol(α) = hα.

Now suppose (Ψ, h) is an inner automorphism and Ψ = Cα. Consider (G(I), α) as a Z-static pointed

bibundle. Then (G,Pr(α)) is a Z-static pointed (G,G)-bibundle with holonomy isomorphism (Ψ, h) and

therefore by Theorem 4.45 P (Ψ, h) ∼= G.

Since the inner automorphisms occur as the kernel of a homomorphism, they are a normal subgroup and
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it makes sense to define OutAut(I,Hol) to be the automorphisms modulo inner automorphisms.

The results of the preceding subsections work just as well for caffρ (see Example 4.2), the only distinction

is the scaling of the appropriate symplectic forms the constant term ρ. In this section we will fix some ρ

and natural integration G ⇒ caffρ. We can now compute the Picard group of G ∼= G(I,Hol). As we did for

G(I) denote the subgroup of Pic(G) generated by the modular flow by Mod. In this section, ρ will be the

modular period of caffρ (see Example 4.2).

Lemma 4.47. The element Modt ∈Mod for t = ρ is isomorphic to P (Hol, e).

Proof. It suffices to show that there exists p0 ∈ Modρ such that (Modρ, p0) is a Z-static pointed bibundle

and (Hol, e) is its associated holonomy isomorphism. The (G(I),G(I))-bibundle (PHol, pHol) comes with a

projection Φ : PHol → Modρ. If we take p0 = Φ(pHol) then the holonomy data of (Modρ, p0) is (Hol, e) so

we are done.

There is an action of R on Z Pic(G) ∼= OutAut(I,Hol) by conjugation

t · P = (Modt)⊗ P ⊗ (Mod−t).

Using this action, we can compute the Picard group.

Theorem 4.48. For any G ∼= G(I,Hol) an integration of caff with connected orbits there is a surjective

homomorphism:

OutAut(I,Hol) oR→ Pic(G).

The kernel of this map is subgroup generated by (P (Hol, e),−ρ).

Proof. Let Φ be the map given by (P (Ψ, h), t) 7→ P (Ψ, h) ⊗Modt. Any bibundle in Pic(G) can be written

in the form P (Ψ, h) ⊗ [Modt] since for any P we can find a t such that P ⊗M t ∈ Z Pic(G) so the map is

surjective.. Furthermore, the map is a homomorphism since for any P1, P2 ∈ Z Pic ∼= OutAut(I,Hol) and

t1, t2 ∈ R:

Φ(P1, t1)⊗ Φ(P2, t2) = P1 ⊗Modt1 ⊗ P2 ⊗Modt2

= P1 ⊗Modt1 ⊗ P2 ⊗Mod−t1 ⊗Modt1 ⊗Modt2

= P1 ⊗ (Modt1 ⊗ P2 ⊗Mod−t1)⊗Modt1+t2

= Φ((P1, t1) · (P2, t2))

Finally, if Φ(P, t) = e then P ∼= [Mod−t] meaning that t = nρ for some n ∈ Z and P ∼= P (Hol, e)−n.
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4.6 Picard groups of stable b-symplectic manifolds

Throughout this section it will be useful to index sets and group elements with superscripts. To avoid

confusion, when the symbols i, j, k, l, n and m occur in superscripts, we intend to treat them as indices. I.e

an object Xn denotes the element with index n and not ‘X to the power n’. Let C = ti∈ICi (I finite or

countable) be a disjoint union of affine cylinders such that each Ci ∼= caffρ
i

. In this section G will denote a

natural integration of C. Our main end is to classify (G2,G1)-bibundles and compute Pic(G).

Recall that the numbers ρi are called the modular periods of C. Let {V n}n∈N (N finite or countable)

be an enumeration of the open orbits of C. To each Ci let Ei denote the saturation of Ci in the foliation

induced by G. We also define adjacency maps + : I → N and − : I → N such that V +(i) is the positive

orbit adjacent to Ci (similarly for −). Throughout, Gi denotes the restriction of G to Ci and Gn denotes the

restriction of G to V n.

4.6.1 Discrete data of G

Let Gi := G|Ci be the restrictions of G to a given cylinder. Since each Gi is an integration of an affine cylinder

we can assume it has the form Gi ∼= G(Ii,Holi) where Holi = (holi, (γi)±) and:

G−(i) Hi G+(i)

G−(i) Hi G+(i) ,

(holi)− holi

(φi)− (φi)+

(holi)+

(φi)− (φi)−

commutes. If G is constructed by restricting to transverse cylinders of a stable b-symplectic manifold (as in

Section 4.3) then we have following geometric interpretation:

Gn ∼= π1(Un), Hi ∼= π1(Li), hol± = C(γi)± ,

holi = (fi)∗ : π1(Li)→ π1(Li).

Where each Un is an open orbit, fi : Li → Li is the holonomy of the mapping torus Zi and (γi)±i are the

homotopy classes of the section of Zi → S1 in adjacent orbits.

Definition 4.49. The orbit graph, Gr(G), of G is defined as follows:

• there is one vertex vn for each open orbit V n ⊂ C;

• there is one edge ei for each cylinder Ci ⊂ C;

• each edge ei is adjacent to a positive and negative vertex v+(i) and v−(i) respectively.

For a stable b-symplectic manifold, the orbit graph, Gr(M), of M is defined to be the orbit graph of

any Morita equivalent G ⇒ C. We will need to attach more data to the orbit graph in order to construct a
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complete set of Morita invariants and enable computation of the Picard group of Σ(M).

Definition 4.50. To each vertex, vn, assign the following data:

• the sign of a vertex vn is the sign of V n;

• the isotropy of vn is the isotropy group Gn.

To each edge, ei we assign the following data;

• the modular period of an edge ei is ρi (the modular period of Ci);

• the isotropy data and holonomy data of ei is the pair (Ii,Holi) such that Gi ∼= G(Ii,Holi).

We call the orbit graph together with the above data Gr the discrete data of G and a discrete presentation

of M (If G was obtained by a restriction of Σ(M)).

Remark. The discrete data actually characterizes G ⇒ C up to isomorphism. We omit a proof of this for

brevity, as it is not needed for our calculation. Also note that a discrete presentation ofM is not constructed

in a canonical manner as it depends on a choice of transversal C →M .

4.6.2 Isomorphisms of discrete data

Suppose C1 := ti∈I1Ci1 and C2 := ti∈I2Ci2 and G1 and G2 are natural integrations of each. Enumerate the

open orbits of G1 and G2 as V n1 for n ∈ N1 and V m2 for m ∈ N2. We now need to characterize (G2,G1)-

bibundles in terms of discrete data. In order to do this, it will be convenient to fix a choice of base points

vn1 ∈ V n and vm2 ∈ V m as well as a choice of groupoid elements gin and gjm for each ±(i) = n or ±(j) = m

such that the source of gin is vn and the target of gin is [±1, 0] ∈ Ci. The purpose of this is to fix an

identification of the isotropy groups of each half cylinder in the same orbit and so we can treat each open

orbit as a pointed manifold.

Suppose P is a (G2,G1)-bibundle. Clearly P induces an isomorphism of the orbit graphs F : Gr1 → Gr2.

We can think of F as a map F : I1 → I2 (also N1 → N2). We say P is orientation preserving if P preserves

the signs of the vertices and orientation reversing otherwise. Since P preserves the modular vector field F

must preserve the modular periods.

Now restrict P to the affine cylinders CF (i)
2 and Ci1 to obtain a (GF (i)

2 ,Gi1)-bibundle P i. Suppose {pi}i∈I1 ⊂

P is a set of points such that (P i, pi) is a Z-static pointed bibundle for all i ∈ I1. Then we call (P, {pi}) a

Z-static marked bibundle. Any such marked bibundle has an associated collection of holonomy isomorphisms

(Ψi, hi) : (Ii1,Holi1)→ (Ii2,Holi2). Notice that (Ψi, hi) is orientation preserving/reversing if and only if F is

orientation preserving/reversing.

For each pointed bibundle (P i, pi) let Φi : PΨi → P i be the projection from Lemma 4.39. Let σi be the

static bisection of PΨi extending pi and let:

pi± := (g
F (i)
F (n))

−1 · σ(±1, 0) · gin ∈ P .

102



If P±(i) is the restriction of P to the open orbits V ±(i) and V F (±(i)). Then (P±(i), pi±) are pointed

(GF (±(i)),G±(i))- bibundles of transitive groupoids. If ±(i) = ±(j), the bibundles P±(i) and P±(j) are

equal. There is a unique g±ij ∈ GF (±(i)) such that g±ij · p
j
± = pi±. Furthermore by Lemma 4.22 g±ij must

satisfy:

ψ±i = Cg±ij
◦ ψ±j , (4.14)

and for ±(i) = ±(j) = ±(k):

g±ijg
±
jk = g±ik (4.15)

This motivates our definition of an isomorphism of discrete data. Let Gr1 and Gr2 be the discrete data of

G1 and G2 respectively.

Definition 4.51. An isomorphism F : Gr1 → Gr2 consists of the following:

• an underlying graph isomorphism F : Gr1 → Gr2;

• holonomy isomorphisms (Ψi, hi) : (Ii1,Holi1)→ (I
F (i)
2 ,Hol

F (i)
2 );

• cocycles g±ij ∈ G
F (±(i))
2 for all i, j ∈ I1 such that ±(i) = ±(j).

The underlying graph isomorphism, holonomy isomorphisms, and cocycles must satisfy the following com-

patibility conditions:

(i) the holonomy isomorphisms are orientation preserving/reversing if and only if F is orientation preserv-

ing/reversing;

(ii) if i ∈ I1 then ρi1 = ρ
F (i)
2 ;

(iii) for any i, j ∈ I1 such that ±(i) = ±(j) then (4.14) holds;

(iv) for any i, j, k ∈ I1 such that ±(i) = ±(j) = ±(k) then (4.15) holds.

Example 4.52 (Inner automorphisms). Suppose Gr is discrete data. Define F : Gr → Gr to be an

automorphism of Gr such that:

• F is the identity;

• (Ψi, hi) = (Cαi , hi) are inner automorphisms;

• and g±ij = (φi2)±(αi)(φ
j
2)±(αj)

−1 for all ±(i) = ±(j).

Such an F is called an inner automorphism of Gr.

Example 4.53 (Bibundles). Modulo the choices of base-points made at the beginning of this section, we

can canonically construct an isomorphism of discrete data F from any Z-static marked bibundle (P, {pi}).

In this case we say that F is the discrete isomorphism associated to (P, {pi}).
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A strong isomorphism ϕ : (P, {pi}) → (Q, {qi}) is an isomorphism of bibundles which preserves the

markings.

Proposition 4.54. There is a 1-1 correspondence between orientation preserving (reversing) isomorphisms

of discrete data Gr1 → Gr2 and orientation preserving (reversing) Z-static marked bibundles modulo strong

isomorphisms.

Proof. Suppose (P, {pi}) and (Q, {qi}) are Z-static marked (G2,G1)-bibundles with identical discrete isomor-

phisms F . By Theorem 4.45 there is a strong identification ϕi : (P i, pi) → (Q, qi) of the restrictions of P

and Q to the cylinders Ci1 and CF (i)
2 . The isomorphisms ϕi induce strong isomorphisms:

ϕ±(i) : (P±(i), pi±)→ (Q±(i), qi±),

of pointed bibundles. Since P and Q have the same cocycle, these isomorphisms satisfy ϕ±(i) = ϕ±(j)

whenever ±(i) = ±(j). Therefore the ϕi extend to a unique strong isomorphism ϕ : (P, {pi})→ (Q, {qi}).

On the other hand, suppose F is an isomorphism of discrete data. Let (P i, pi) be P (Ψi, hi) with the

standard point. As we saw in the beginning of this section, each (P i, pi) induces a pointed bibundle over

the adjacent orbits. We denote these pointed (GF (±(i)),G±(i))-bibundles (P i±, p
i
±). To glue these bibundles

together, Lemma 4.20 says that it suffices to construct bibundle isomorphisms ϕ±ij : P j± → P i± for each

±(i) = ±(j) such that:

ϕ±ij ◦ ϕ
±
jk = ϕ±ik ∀ ± (i) = ±(j) = ±(k). (4.16)

We apply Lemma 4.22 and define ϕ±ij to be the pointed bibundle isomorphisms associated to g±ij . Then

equation (4.2) implies that (4.16) holds if and only if (4.15) holds and so the proposition follows.

Under this 1-1 correspondence, given isomorphisms of discrete data F : G1 → G2 and F ′ : G2 → G3 the

composition corresponds to the following isomorphism:

• the underlying graph map is the composition F ′ ◦ F ;

• the holonomy isomorphisms are the compositions (Ψ′F (i), h
′
F (i)) ◦ (Ψi, hi);

• and the cocycles are {(g′)±F (ij)(ψ
′)±F (i)(g

±
ij)} for ±(i) = ±(j).

The last one is a consequence of (4.3). Given any (G1,G2)-bibundle P one can make a suitable choice of

base-points on C1, C2 and P which make P a marked bibundle. Therefore, Theorem 4.55 follows:

Theorem 4.55. Suppose M1 and M2 are stable b-symplectic manifolds and Gr1 and Gr2 are discrete pre-

sentations of each, respectively. Then M1 and M2 are Morita equivalent if and only if there exists an

isomorphism Gr1 → Gr2.
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4.6.3 The Picard Group of a stable b-symplectic manifold

In this section G is a natural integration of C. We continue to use the notation we have established thus far

and fix a choice of base points vn ∈ V n and arrows gin as before. We need one last lemma about Z-static

bibundles.

Lemma 4.56. An automorphism F : Gr→ Gr of the discrete presentation of G ⇒ C gives rise to the trivial

bibundle if and only if F is an inner automorphism.

Proof. Suppose (P, {pi}) is a marked (G,G)-bibundle and let ϕ : P → G be an isomorphism as bibundles. Let

F be the isomorphism of discrete data associated to (P, {pi}). By Lemma 4.32 the holonomy isomorphisms

are all inner automorphisms (Cαi , hi). As a bibundle, G has a canonical marking induced by the identity

section. Hence if we restrict ϕ to open orbits, denoted ϕn we get an isomorphisms of marked bibundles:

ϕn : (P±(i), pi±)→ (G±(i),u(v±(i))).

By Lemma 4.22, for each i in I the isomorphism ϕ corresponds to (φi)±(αi). Furthermore, since:

(Gn,u(v±(i)))

(P±(i), p±(i)) (P±(j), p±(j)) ,Id

φn φn

commutes, we conclude that g±ij · (φj)±(αj) = (φi)±(αi). Therefore F is an inner automorphism.

Now assume F is an inner automorphism. Since the holonomy isomorphisms (Cαi , hi) are all inner, there

are unique identifications of ϕi : Gi → P i such that αi · ϕ(u(0, 0)) = pi for all i ∈ I. Let {pi} be a new

marking of P obtained from this identification. With this new marking the cocycles of (P, {pi}) take the

form:

(φi)±(αi)
−1g±ij(φ

j)±(αj) = (φi)±(αi)
−1 · (φi)±(αi) · (φj)±(αj)

−1 · (φj)±(αj) = e

Since (P, {pi}) and G have the same discrete data, P ∼= G.

The inner automorphisms of Gr form a normal subgroup of Aut(Gr). Therefore it makes sense to define

the outer automorphisms OutAut(Gr) to be the inner automorphisms modulo outer automorphisms. We

can summarize the preceding work thus far with the equation:

OutAut(Gr) ∼= Z Pic(G),

where Z Pic(G) are the (G,G)-bibundles such that the restriction to each cylinder is a Z-static bibundle.

To compute the full Picard group, we also need to identify the subgroup of bibundles which correspond to

modular flows.
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Let Xi ∈ X (C) be the vector fields on C such that Xi|Ci is the modular vector field of Ci and Xi = 0

outside of Ci. Since G is natural, the flow of each such vector field produces a family of groupoid isomorphisms

Φti : G → G. Let

Qi(t) := PΦi(t)

be the symplectic bibundles induced by these flows. Since the isomorphisms Φti commute, the bibundles

Qi(t) must commute with each other. In other words, we have a homomorphism:

(RN ,+)→ Pic(M)

where RN denotes the vector space of functions N → R (recall that N may be an infinite index). We call

the image of this map Mod(M) ⊂ Pic(M). Topologically it is a connected Lie group integrating the abelian

Lie algebra RN .

Lemma 4.57. Let Fi : Gr→ Gr be the automorphism of Gr given by the following data:

• The underlying graph automorphism is trivial;

• The holonomy isomorphisms (Ψk, hk) are trivial for k 6= i and (Ψi, hi) = (Holi, e);

• The cocycles g±kj = e for k, j 6= i and g±ij = γ±i for j 6= i.

We will call Fi the twisting automorphism about Ci. Then the bibundle associated to the automorphism Fi
is Qi(ρi).

Proof. Observe that the twisting automorphism behaves in the following manner. Suppose g ∈ G is in an

open orbit. Then for g ∈ G|C−Ci we have that Φρii (g) = g. If g ∈ G such that the target of g lies in Ci and

the source of g lies in C − Ci, then Φρii (g) = γ±i g. For g ∈ Gi we have that Φρii is conjugation by γ±i .

The bibundle Qi(ρi) is diffeomorphic to G2 where the right action of G1 satisfies g2 · g1 = g2Φρii . Since

Qi(ρi) has this form, it inherits a natural marking from the identity section u : C → G. From this it is easy

to deduce that there is natural strong isomorphism of P |C−Ci and GC−Ci (the identity bibundle). We denote

this marking by the tuple {qi}. Furthermore, given any g ∈ G whose target is the base point of qi and whose

source is the base point of qj for j 6= i. We notice that:

g · qj · g−1 = gg−1(γ±i )−1 · qi = (γ±i )−1 · qi .

Therefore the cocycle part of this marked bibundle must as above.

We see that the additive group (Rn,+) acts on Z Pic(M) ∼= OutAut(Gr) by conjugation:

(t1, ..., tN ) = Qti1 · ... ·Q
tN
N PQ−tNN · ... ·Q−t11 .
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This action measures the failure of elements of Z Pic(G) and Mod(G) to commute. Since any element

P ∈ Pic(G) can be written as a product of elements in these groups, we have proved Theorem 4.58.

Theorem 4.58. Suppose M is a stable b-symplectic manifold and Gr is a discrete presentation of M . There

is a surjective group homomorphism:

OutAut(Gr) nRN → Pic(M).

The kernel of this group homomorphism is generated by elements of the form ([Fi]−1, Qρii ).

This concludes the main portion of the chapter. The next section will examine a few examples.

4.7 Applications and examples

4.7.1 Compact surfaces

We mentioned earlier Radko and other authors in studying b-symplectic structures on surfaces. In particular

the Picard group was computed by Radko and Shylakhtenko, [46]. Their work contained two important

results. The first was that any (Σ(M),Σ(M))-bibundle admitted a lagrangian bisection (for M a 2-dim

compact, oriented, b-symplectic manifold). The consequence of this is that the Picard group of M can

be interpreted as the group of outer Poisson automorphisms of M Secondly, they were able to provide

combinatorial data which would assist in the explicit calculation of M .

In this section, we will see what Theorem 4.55 and Theorem 4.58 mean in dimension 2, and compare our

results to existing work.

Suppose M is a compact surface with a b-symplectic structure. Then M is automatically stable. Our

procedure of finding transverse cylinders toM corresponds to restricting Σ(M) to collars around the singular

locus Z, which is just a finite union of disjoint circles.

WhenM is a compact surface, we automatically get many simplifications of the data encoded by Gr(M).

1. Since the groupsHi are all trivial, the isotropy data just consists of assigning to each vi the fundamental

group of its associated open leaf. Given the orbit graph, we can instead simply state the genus of each

open leaf.

2. The elements γ±i are the homotopy classes of loops around the collars of each open leaf. Therefore,

they are completely determined by the orbit graph, together with the fundamental group (or genus)

of each open leaf.

3. The modular periods are specified as before.

Therefore Theorem 4.55 reduces to the classification of compact b-symplectic surfaces from [3].
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Let us see what automorphisms of Gr(M) correspond to. First let us restrict to static automorphisms of

Gr(M) (i.e. those which fix the underlying graph). Such automorphisms produce static bibundles which we

denote S Pic(M).

Recall that to specify a morphism we must give automorphisms:

(Ψi, h) = (Ii,Holi)→ (Ii,Holi) ,

and cocycles {g±ij}. The groups Hi are all trivial and the various diagrams commute trivially, so an auto-

morphism (Ψi, h) is the same as a pair of maps ψ±i such that ψ±i (γ±i ) = γ±i .

The cocycles must satisfy Cg±ij ◦ ψ
±
j = ψ±i . The morphism Gr(M)→ Gr(M) will be trivial.

Let Vn be any open orbit. Then the cocycles g±ij for i and j adjacent to Vn together with the maps

φ±i : Gn → Gn and φ±j : Gn → Gn are equivalent (modulo inner automorphisms) to specifying an element of

the mapping class group of the associated surface. This recovers the combinatorial description of the Picard

group from [46].

4.7.2 Examples due to Cavalcanti

In [9], Cavalcanti demonstrated several ways of constructing b-symplectic manifolds. In particular, he showed

that given a symplectic manifold M with a compact symplectic submanifold L of codimension 2 with trivial

normal bundle admits a log symplectic structure such that Z ∼= tNi=1S1 × L (see thm 5.1 in [9]).

We can immediately see that any such example is a stable b-symplectic manifold. We will restate the

construction here and then compute the discrete presentation and Picard group of a simple example.

Since L has a trivial normal bundle, the symplectic neighborhood theorem says that there is a tubular

neighborhood, U of L such that U ∼= D2 × L as a symplectic manifold. Then for any embedding of closed

curves Γ : tNi=1S1 ↪→ D2 we can rescale the Poisson bivector by a function which vanishes on Γ linearly and

which is constant near the boundary of D2. We can easily extend this function to all of M and rescale the

bivector on M . The result will be a b-symplectic structure which agrees with the symplectic structure on

M outside of U , but which Z has N connected components, all of them contained in U .

The orbit graph of M will be determined by the topological arrangement of the closed curves in D2.

There will be one orbit for each connected component of D2 \Z. We will now consider the concrete example

mentioned in [9].

Example 4.59. Consider M = CP 2# ¯CP 2 (i.e. the blowup of CP 2 at a point). M has the structure of a

locally trivial S2 bundle over S2. Let p be a point in S2. Then

M |S2\p ∼= S2 ×D2.

We can now choose curves in D2 to define the singular locus. Suppose there is only one. Then the induced
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b-symplectic structure on M has two open leaves and every symplectic leaf of M is simply connected.

The orbit graph ofM consists of two vertices connected by a single edge. The isotropy data and holonomy

are all trivial. When constructing the b-symplectic structure above, we can arrange for whichever modular

period ρ we want. We see immediately from Theorem 4.55 thatM is Morita equivalent to the Radko sphere,

S2 with modular period ρ.

In fact, for any topological arrangement of curves in D2, we can see that the induced b-symplectic

structure on M will be Morita equivalent to the sphere S2 with the same arrangement of singular curves

(thinking of D2 as a punctured sphere).

The Picard group can therefore be computed by existing methods for surfaces. The case of a single

singular curve provides an easy calculation. The holonomy, and isotropy data is all trivial and therefore the

Picard group of M is Z2 × S1. The factor of Z2 corresponds to the orientation reversing graph swap while

the S1 factor corresponds to the modular flows.

4.7.3 Cosymplectic boundaries

The following class of examples is mentioned in the work of Frejlich et al (see [19]). Suppose N is a connected

symplectic manifold with a cosymplectic boundary ∂N . We say that the boundary ofN is ( stable) if Z := ∂M

is a disjoint union of mapping tori. We can construct a b-symplectic manifold M by gluing two copies of

N along their boundary. The orbit graph of M will have two vertices and one edge for each connected

component of Z.

The isotropy and holonomy data will be determined by the topology of the embeddings Z = ∂N →

N . Note that Gr(M) comes with a cannonical orientation reversing automorphism and Z Pic(M) ∼= Z2 ×

Z Pic+(M) where Z Pic+(M) are the orientation preserving automorphisms of Gr(M).

Lefschetz fibrations over the two dimensional disk provide a well studied class of examples. Let M be a

4 dimensional manifold and p : M → D2 be a Lefschetz fibration such that p−1(x) ∼= Sg is a compact surface

of genus g for any regular value p. By a theorem of Gompf [21] we can equip M with a symplectic structure

such that the boundary of M is a cosymplectic mapping torus Mf .

In a paper by Eliashberg [18], it was proved that any symplectic mapping torus could be realized as

the boundary of a Lefschetz fibration over D2. The applications of these results to b-symplectic geometry

were pointed out in [19]. The topology of Lefschetz fibrations has been a subject of keen interest, and is

determined by the monodromy around singular fibers. By computing the monodromy of these fibrations,

one can apply Theorem 4.58 to compute the Picard group of the assocaited b-manifolds. We will conclude

our comments with simple example.

Example 4.60. Let T 2 be two dimensional torus and f : T 2 → T 2 be a single (right handed) Dehn twist

(i.e f(θ1, θ2) = (θ1 + θ2, θ2). There is a unique Lefschetz fibration p : M ′ → D2 with monodromy f around

the the singular point 0 ∈ D2.
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As per our previous comments we can glue two copies of M ′ along the boundaries ∂M to form a b-

symplectic manifold M with a connected singular locus of the form Z = Mf .

By studying the topology of M we can conclude that the isotropy data takes the form:

Z Z⊕ Z Z

Z Z⊕ Z Z
Id

pr2 pr2

hol Id
pr2 pr2

Where the map hol is given by the matrix ( 1 1
0 1 ). Notice that the + and − maps are not injective and so

Σ(M) is not Hausdorff.

An orientation preserving automorphism (Ψ, h) of this data turns out to be a choice of matrix ( 1 a
0 1 ) and

an element h = 0⊕ z ∈ Z⊕ Z. Since every group here is abelian, the inner automorphisms are trivial. The

orientation reversing automorphisms can always be written as the obvious swapping map and an orientation

preserving automorphism. Therefore, Z Pic(M) ∼= Z× Z× Z2.

The twisting automorphism from the modular flow corresponds to (( 1 1
0 1 ), 0⊕ 0). Since this element has

infinite order in Z Pic we can conclude that Mod(M) ∼= R. The action of R on ZPic is trivial so we have a

surjective group homomorphism,

R× (Z× Z× Z2)→ Pic(M).

The kernel of this map are elements of the form (n, (−n,m, k)) and so

Pic(M) ∼= R× Z× Z2.
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Appendix A: 2-Category theory

There are many possible choices to make and competing definitions when it comes to higher categorical

structures. We have included this appendix in the hope that it will clarify the precise definitions we are

using. Loosely speaking, the philosophy is that when one invokes the existence of higher morphisms it is

necessary to make specific and coherent choices. For instance, the data of a 2-commutative square must

include the 2-morphism witnessing commutativity. More generally, a 2-commutative diagram must include

the relevant 2-morphisms and the supplied 2-morphisms must satisfy the ‘obvious’ identities.

A.1 Bicategories

We refer the interested reader to Leinster [28] for a good discussion of the topic of bicategories. Our definition

is equivalent to his. However, since there are differences in notation, it is worthwhile to state a definition

here.

Definition A.1. A bicategory C is the following data:

• a collection of objects C0;

• for each pair of objects, x, y ∈ C0, a (possibly empty) category C(x, y) = C2(x, y) ⇒ C1(x, y);

• for any three objects x, y, z ∈ C0, a functor (called horizontal composition):

◦ : C(y, z)× C(x, y)→ C(x, z) g ◦ h := ◦(g, h)

(f, g) 7→ f ◦ g

• For any x ∈ C0 a functor:

{x} → C(x, x)

x 7→ Idx

Here {x} is thought of as a trivial category with one morphism.
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The elements of C2 := tx,y∈C0C2(x, y) are called the 2-morphisms of C. The elements of C1 := tx,y∈C0C1(x, y)

are called the 1-morphisms of C. The composition operation on C(x, y) is called vertical composition and will

be denoted by ∗. We do not assume that either of C2 or C1 together with ◦ constitutes a category over C0.

We will use the notation C(n) = C(n)
2 ⇒ C(n)

1 to denote the category of n horizontally composable morphisms.

Since we do not require that ◦ satisfies the axioms of a category, we instead require that C comes with the

following data:

• A natural isomorphism of functors

A : AL → AR

where AL and AR are the parallel functors C(3) → C2 defined below:

AL(α, β, γ) := (α ◦ β) ◦ γ AR(α, β, γ) := α ◦ (β ◦ γ)

Such a natural transformation is determined by a function A which associates to each (g, h, k) ∈ C(3)
1 ,

a 2-morphism:

A(g, h, k) : (g ◦ h) ◦ k → g ◦ (h ◦ k)

• A pair of natural isomorphisms of functors

UL : UL → IdC2
UR : UR → IdC2

where UL and UR are parallel functors (with respect to vertical composition) C → C such that for any

α ∈ C2(x, y):

UL(α) = 1y ◦ α UR(α) = α ◦ 1x

Such natural transformations are determined by functions UL and UR which associate to We also For

every 1-morphism f : x→ y in C1, two choices of 2-morphisms:

UL(f) : Idy ◦ f → f UR(f) : f ◦ Idx → f.

This data must satisfy the following coherence axioms which are encoded as (vertically) commutative dia-

grams.
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(BC1) for all 1-morphisms f, g, h, k which are horizontally composable, the following diagram commmutes:

((f ◦ g) ◦ h) ◦ k

(f ◦ (g ◦ h)) ◦ k (f ◦ g) ◦ (h ◦ k)

f ◦ ((g ◦ h) ◦ k) f ◦ (g ◦ (h ◦ k))

A(f,g,h)◦1k A(f◦g,h,k)

A(f,g◦h,k) A(f,g,h◦k)

Idf◦A(g,h,k)

(BC2) for all 1-morphisms f and g which are horizontally composable:

(f ◦ Idx) ◦ g f ◦ (Idx ◦ g)

f ◦ g
UR(f)◦1g

A(f,Idx,g)

1f◦UL(g)

A bicategory is called strict if A, UL, and UR take values in vertical identities.

Example A.2 (Category of Categories). Suppose C is a category of categories. That is, the objects of C

are categories and the morphisms of C are functors. Then we can make C into a bicategory by taking our

2-morphisms to be natural transformations between functors.

Recall that given functors Fi : A → B, a natural transformation α : F1 → F2 is a map α : A0 → B1 such

that (A.1) commutes.

F1(x) F1(y)

F2(x) F2(y)

F1(f)

α(x) α(y)

F2(f)

(A.1)

Given Fi : X → Y and 2-morphisms α1 : F1 → F2 and α2 : F2 → F3 we can take (α2 ∗ α1)(x) := α2(x)α1(x)

for any x ∈ A0.

For horizontal composition, suppose we are given functors Fi : : X → Y, Gi : Y → Z and 2-morphisms

β : G1 → G2, α : F1 → F2. Then

(β ◦ α)(x) := (β(F2(x)) ◦ (G1(α(x)) ∈ Z1 ∀x ∈ X1 .

A sub-example to this case is the category of stacks over a given site. In this case the natural transfor-

mations can be shown to be natural isomorphisms. Hence, all 2-morphisms are invertible.

Example A.3 (Bibundles). Take the objects of C to be Lie groupoids, the 1-morphisms of C to be Lie

groupoid bibundles and the 2-morphisms to be bibundle isomorphisms. Then the resulting object satisfies

the axioms of a bicategory. The associativity map is obtained from the cannonical isomorphism:

P1 ⊗ (P2 ⊗ P3)→ (P1 ⊗ P2)⊗ P3 (p1 ⊗ (p2 ⊗ p3) 7→ (p1 ⊗ p2)⊗ p3 .
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Definition A.4. Let C be a bicategory. Let f : x → y and g : y → x be 1-morphisms. We say that g is a

weak inverse of f if there exist 2-isomorphisms α : f ◦ g → 1y and β : g ◦ f → 1x. If a 1-morphism admits a

weak inverse then we call it a weak isomorphism. Two objects in C are weakly isomorphic if there exists a

weak isomorphism between them.

Example A.5. Suppose C is the bicategory of categories. Then a functor is a weak isomorphism if and

only if it is an equivalence of categories.

Definition A.6. A (2,1)-category is a bicategory such that all 2-morphisms are vertical isomorphisms.

Every (2,1)-category C has a 1-category C̄ associated to it which we call the truncation of C. The objects of

C̄ are the same as C while the morphisms of C̄ are the 2-isomorphism classes of the 1-morphisms of C.

A.2 Pseudofunctors

Definition A.7. Given bicategories C and D, a pseudofunctor consists of a function F0 : C0 → D0, and for

each pair of objects x and y in C0 a functor F : Hom(x, y) → Hom(F0(x), F0(y)). Furthermore, a pseudo

functor F must be equipped with the following data:

• a natural isomorphism F : F (− ◦ −)→ F (−) ◦ F (−). Such a natural transformation is witnessed by a

function F which assigns to each composable pair (f, g) ∈ C(2)
1 a 2-isomorphism:

F1(f, g) : F (f ◦ g)→ F (f) ◦ F (g)

• for every object x ∈ C0, a 2-isomorphism F2(x) : F (Idx)→ IdF (x).

This data must be coherent, which is encoded via vertical diagrams of 2-morphisms. We will not write the

coherence conditions here but we instead refer the reader to Leinster [28].

A pseudofunctor F : C → D is called an equivalence of 2-categories if it is an equivalence of categories for

each Hom(x, y) and is biessentially surjective. That is, every object in D is weakly equivalent to an object

in the image of F .

Remark. Equivalences of categories can also be defined in terms of pseudonatural transformations of pseudo

functors. The precise statement is that a pseudofunctor F is an equivalence if and only if there exists a

pseudofunctor G such that F ◦G and G◦F are pseudonaturally equivalent to the identities. See Leinster [28]

for more detail.

Example A.8. Suppose C is a weak (2,1) category with invertible 2-morphisms and let C̄ be its truncation.

We can think of C̄ as a strict bicategory where all 2-morphisms are the identity. Then there is a natural

pseudofunctor Π : C → C̄ which is obtained by passing to equivalence classes in the truncation.
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A.3 Fiber products in bicategories

Definition A.9. Let C be a bicategory. A 2-commutative square consists of a square of 1-morphisms:

x y

z w

f

g h

k

together with a 2-isomorphism α : h ◦ g → k ◦ f .

Definition A.10. Suppose C is a bicategory. A 2-commutative square is a diagram:

w y

x z

g̃

f̃ g

f

together with a 2-isomorphism α : f ◦ g̃ → g ◦ f̃ is a pullback square if given any other 2 commutative square:

w′ x

y z

f̃ ′

g̃′ g

f

with associated 2-isomorphism α′ : f ◦ g̃′ → g ◦ f̃ ′, there exists a morphism h : w′ → w, and 2-isomorphisms

β1 : f̃ ′ → f̃ ◦ h and β2 : g̃′ → g̃ ◦ h such that the following square of 2-morphisms commutes:

f ◦ g̃′ g ◦ f̃ ′

f ◦ g̃ ◦ h g ◦ f̃ ◦ h

α′

1f◦β2 1g◦β1

α◦1h

(A.2)

Lastly, we require such an h, β1, β2 satisfying this property to be unique in the following sense: Given h′,

β′1, and β′2 with the same property, then there exists a unique 2-isomorphism γ : h→ h′ such that the below

diagrams commute:

f̃ ′ f̃ ◦ h

f̃ ◦ h′

β1

β′1
1
f̃
◦γ

g̃′ g̃ ◦ h

g̃ ◦ h′

β2

β′2
1g̃◦γ

The element w in a 2-categorical pullback square is called the homotopy fiber product of x and y and may

sometimes be written x×̃zy.

Example A.11. For the bicategory of categories (and the bicategory of CFGs), there is a canonical con-

struction of the homotopy fiber product of F : X → Z and G : Y → Z. Let us first define the category

X×̃ZY as follows:
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• The objects X ×Z Y are triples (X, a, Y ) such that X and Y are objects of X and Y respectively, and

a : F (X)→ G(Y ) is an isomorphism in Z.

• The morphisms are diagrams:

X1 F (X1) G(Y1) Y1

X2 G(Y2) G(Y2) Y1

b1 F (b2)

a1

G(b1) b1

a2

such that the inner square commutes. The source and target of such diagrams are given by passing

to the top and bottom row, respectively. Composition of two such diagrams is obtained by composing

the vertical morphisms.

This construction comes with natural projections to X and Y which fit into a pullback square:

X×̃ZY Y

X Z

pr2

pr1 G

F

The cannonical 2-morphism associated to this pullback square is obtained from the map

pr1.5 : (X×̃ZY)0 → Z1 where pr1.5(X, a, Y ) = a.

We can see that this satisfies the definition of a pullback since given any other 2-commutative square:

W Y

X Z

F̃

G̃ G

F

with 2-morphism α : F ◦G̃→ F̃ ◦G, then we can define a functor H :W → X×ZY by letting H(a : w1 → w2)

be equal to:

G̃(w1) F ◦ G̃(w1) G ◦ F̃ (w1) F̃ (w1)

G̃(w2) F ◦ G̃(w2)) G ◦ F̃ (w2) F̃ (w2)

G̃(a) F◦G̃(a)

α(w1)

G◦F̃ (a) F̃ (a)

G̃(a)

All that remains to show that X ×Z Y is a 2-pullback is to define β1 and β2 from the definition. By taking

β1 = 1G̃ and β2 = 1F̃ we see that X ×Z Y does, in fact, fit into a 2-pullback square.

Definition A.12. A (strict) groupoid G internal to a bicategory C consists of two objects G1 and G0 together
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with 1-morphisms

s : G1 → G0 , t : G1 → G0 , u : G0 → G1 ,

m : G1×̃s,tG1 → G1 , i : G → G

which satisfy the axioms of a groupoid. Note that in this setting G(n)
1 := G1×̃s,t . . . ×̃s,tG1.

When C is the bicategory of CFGs then we call such an object a CFG groupoid. A (strict) morphism of

CFG groupoids is a pair of functors, one for the CFG of arrows and one for the CFG of objects which commute

with the groupoid structure. Such a pair of functors is called an isomorphism if they are equivalences of

categories.

Proposition A.13. Let F : X → Y be a functor. Then X×̃YX is canonically a strict groupoid internal to

the bicategory of categories.

Proof. We will construct this groupoid structure directly. The category of objects will be X . The source and

target will be defined to be pr2 and pr1 respectively. The unit morphism X → X×̃Y X is the 2-categorical

diagonal embedding:

a : x1 → x2 7→

x1 F (x1) F (x1) x1

x2 F (y2) F (x2) x2

a F (a)

1

F (a) a

1

The multiplication functor will be defined by horizontal concatenation:
x1 F (x1) F (x3) x3 x3 F (x3) F (x5) x5

x2 F (x2) F (x4) x4 x4 F (x4) F (x6) x6

f F (f)

a1

F (g) g

b3

g F (g)

a3

F (k) k

a2 b4 a4


7→

x1 F (x1) F (x5) x5

x2 F (x2) F (x6) x6

f F (f)

a3◦F (b3)◦a1

F (g) k

a4◦F (b4)◦a2
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Lastly, the inverse functor is obtained by flipping horizontally:

x1 F (x1) F (x3) x3

x2 F (x2) F (x4) x4

f F (f)

a1

F (g) g

a2
7→

x3 F (x3) F (x1) x1

x4 F (x4) F (x2) x2

g F (g)

a−1
1

F (f) f

a−1
2

Recall that the composition operation on the arrows of X×̃YX is by vertical composition. Since these

operations clearly commute with vertical composition we conclude that they are all indeed functors. Checking

that these maps satisfy the axioms of a groupoid is straightforward.

Lemma A.14. Let F : X → Y and G : Z → Y be full functors. Then there is a left G := X×̃ZX action on

P := X×̃YZ defined by a functor:

mL : G×̃s,pr1
P → P

Furthermore, this action is principal in the sense that the total action

mL × pr2 : G×̃s,pr1
P → P×̃pr2

P

is an equivalence of categories.

Proof. mL is defined by the rule:
x1 F (x1) F (x3) x3 x3 F (x3) G(y1) y1

x2 F (x2) F (x4) x4 x4 F (x4) G(y2) y2

f F (f)

a1

F (g) g

b3

g F (f)

c1

G(k) k

a2 b4 c2


7→

x1 F (x1) G(y1) y1

x2 F (x2) G(y2) y2

f F (f)

c1◦F (b3)◦a1

G(g) k

c2◦F (b4)◦a2

That this satisfies the axioms of a left action is straightforward. The only thing remaining to check is that
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the mapping:
x1 F (x1) F (x3) x3 x5 F (x5) G(y1) y1

x2 F (x2) F (x4) x4 x6 F (x6) G(y2) y2

f F (f)

a1

F (g1) g1

b1

g2 F (g2)

c1

G(k) k

a2 b2 c2


7→

x1 F (x1) G(y1) y1 y1 G(y1) F (x3) x3

x2 F (x2) G(y2) y2 y2 G(y2) F (x4) x4

f F (f)

c1◦F (b1)◦a1

G(k) k

Id

k G(k) F (g2)

c1

g2

c2◦F (b2)◦a2 Id c2

is an equivalence of categories. We begin by showing that it is essentially surjective. Consider the following

diagram, which is a morphism in P×̃ZP:

x′ F (x′) G(y′) y′ y′′ G(y′′) F (x′′) x′′

x′ F (x′) G(y′′) y′′ y′′ G(y′′) F (x′′) x′′

1 1

q

G(r) r

r

1 1 1

s

1

G(r)◦q 1 s

Note that the top row of the diagram can be an arbitrary object in P×̃Y P. On the other hand, the bottom

row is the image of the following object in G×̃XP under the total action:

x′ F (x′) F (x′′) x′′ x′′ F (x′′) G(y′′) y′′
s−1◦G(r)◦q 1 s

Hence the total action is essentially surjective. That the total action is faithful is relatively clear from the

definition. To show that it is full, suppose we have a pair of objects in G×̃XP:

x1 F (x1) F (x3) x3 x5 F (x5) G(y1) y1

x2 F (x2) F (x4) x4 x6 F (x6) G(y2) y2

a1 b1 c1

a2 b2 c2

as well as an arbitrary morphism in P×̃ZP between their images:

x1 F (x1) G(y1) y1 y1 G(y1) F (x3) x3

x2 F (x2) G(y2) y2 y2 G(y2) F (x4) x4

f F (f)

c1◦F (b1)◦a1

G(k) k

Id

k G(k) F (g2)

c1

g2

c2◦F (b2)◦a2 Id c2

(A.3)
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Then let g1 := b−1
2 ◦ g2 ◦ b1. Then we claim that:

x1 F (x1) F (x3) x3 x5 F (x5) G(y1) y1

x2 F (x2) F (x4) x4 x6 F (x6) G(y2) y2

f F (f)

a1

F (g1) g1

b1

g2 F (g2)

c1

G(k) k

a2 b2 c2
(A.4)

is a morphism in G×̃XP. To prove this we need to show that the three squares commute. The central square

commutes by the definition of g1. We have already assumed the right square commutes since it occurs in

(A.3). Lastly, the left square commutes by combining the commutativity of the following diagrams:

F (x3) F (x5) F (x5) G(y1) F (x1) G(y1)

F (x4) F (x6) F (x6) G(y2) F (x2) G(y2)

F (b1)

F (g1) F (g2)

c1

F (g2) G(k)

c1◦F (b1)◦a1

F (f) G(k)

F (b2) c2 c2◦F (b2)◦a2
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Appendix B: Groupoids and stacks

B.1 Groupoids and actions

In this section we include several lemmas about groupoids, groupoid actions and principal bundles. Through-

out C is a category with an initial object and is endowed with Grothendieck topology making it into a good

site. That is, a site where Sub is a stack and morphisms in C are locally defined.

Importantly, we do not assume that C has a terminal object and, relatedly, we cannot assume that

morphisms in C are characterized by their behavior on points. All proofs must hold in terms of morphisms

and commuting diagrams. However, since the notation for constructing morphisms can become cumbersome,

we may sometimes include the “pointwise" versions of our definitions to help the reader in parsing them.

Lemma B.1. Let G have a left action on P and suppose that P/G = B exists (i.e. the action is almost

principal. That is, there exists a submersion s : P → B such that the total action G ×M P → P ×B P is a

submersion. Then for any f : P → X such that f ◦mL = f ◦ pr2, there exists a unique f ′ : B → X such

that the below diagram commutes:
G ×s,J P P

P B

X

mL

pr2 π
f

π

f

f ′

Proof. We we will define f ′ locally. Suppose S = {si} is a sieve on B such that there exist sections σi : Ui → P

along si. Then we define f ′i : Ui → X to be f ◦ σi. To see that this defines a morphism B → X, we need to

check that the f ′i agree on intersections. This follows from the following claim: Given g1, g2 : N → P such

that s ◦ g1 = s ◦ g2, then f ◦ g1 = f ◦ g2.

Since we only need to check this property locally, we can assume without loss of generality that there

exists a right inverse of the total action, and hence a division map δ : P ×B P → G. That is, a mapping δ

such that:

mL(δ(pr1, pr2), pr2) = pr1 : P ×N P → P .
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Then g1 = mL(δ(g1, g2), g2) and

f ◦ g1 = (f ◦ g1)(mL(δ(g1, g2), g2))

= (f ◦ pr2)(mL(δ(g1, g2), g2))

− f ◦ g2 .

Hence, there exists f ′ such that f ◦ si = fi. Uniqueness of f ′ follows from the fact that any other such

morphism must agree with f ′ locally.

Corollary B.2. Suppose G has an almost principal action on P . Then P/G is unique up to a unique

isomorphism.

Proof. Lemma B.1 shows that P/G must satisfy a universal property. In more technical terms, it is the

coequalizer of mL : G ×M P → P and pr2 : G ×M P → P . It is a standard result of category theory that

coequalizers are unique up to a unique isomorphism.

Corollary B.3. Suppose G acts on P , Q and R in such a way that P/G, Q/G and R/G exist.

• Given an equivariant morphism f : P → Q there exists a unique morphism f/G : P/G → Q/G compat-

ible with the projections.

• In such a case, f/G is an isomorphism if f is an isomorphism.

• Lastly, given another equivariant morphism g : Q→ R for a G-action on R, then (g◦f)/G = (g/G◦f/G)

Proof. • Since f is equivariant, we can apply Lemma B.1 to sQ◦f : PtoQ/G to obtain a unique morphism

f/G : P/G → Q/G. Since any morphism compatible with the projections must satisfy Lemma B.1 this

morphism is unique.

• This follows by checking that f−1/G : Q/G → P/G is the inverse of f/G. This is clear by looking at

the local construction of f/G from Lemma B.1.

• This holds by observing that the equation is true locally. Since morphisms in C are locally defined,

such an equation must hold globally.

Lemma B.4. Let G ⇒ M be a C-groupoid. Suppose P → N is a principal left G-bundle and there is a left

action of G on Q such that the target map tQ : Q → M is a submersion. Then the diagonal action of G on

Q×M P is principal.

Proof. The diagonal action of G on Q×M P is defined to be

m∆
L = (mQ

L (pr1, pr1 ◦ pr2),mP
L (pr1, pr2 ◦ pr2)) : G ×M (P ×M Q)→ P ×M Q
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We must construct an object Ñ and a submersion s∆ : P ×M P → Ñ which makes P ×M P a principal

bundle over Ñ .

We will construct Ñ by realizing it as an object in SubN . Let S : {si : Ui → N be a covering sieve of

N and σi : Ui → P be sections along S. Now suppose that Ñi := Q ×t,t◦σi Ui. Each Ñi comes with a

submersion Ñi → Ui, so this is a family of objects of in Sub. Let γij : Uij → G be the cycle associated to

the sections σi of P . Then Φij : Ñi|Uij → Ñj |Uij is defined to be:

Φij := (mL(γij , pr1), pr2) : N ×tN ,t◦σij Uij → N ×tN ,t◦σij Uij

Defines a coherent gluing map for the Ñi. Therefore, there exists an object Ñ and identifications Φi : Ñ |Ui =

Ñi.

We still need to define a projection Q ×M P → Ñ . To find this, we will repeat our argument, except

instead gluing an object over N , we glue an object over Ñ . Notice that the set {Ñi → Ñ} generates a

covering sieve of Ñ . Furthermore, for each i the morphism pr1 × sP : Q×M Pi → Q×M Ui is a submersion.

Again, we have a canonical way of gluing the Pi := P |Ui together, which we can extend to a gluing of the

Q×M Pi. Since Sub is a stack we obtain an submersion Q×M P → Ñ .

This submersion makes Q×M P into a G-bundle over Ñ since each restriction Q×M Pi = (Q×M P )|Ni
makes the necessary diagram commute. Since it suffices to show diagrams commute locally, we conclude

that Q ×M P → Ñ is a G-bundle. To finish, we need to explain why the diagonal action is principal. We

will be somewhat brief on this point and just provide the reader with the inverse of the total action. Recall

m̃P
L is the division map for the left action on P . Then

(m̃P (pr1 ◦ pr2, pr2 ◦ pr2), (pr2 ◦ pr1, pr2 ◦ pr1)) : (Q×M P )×M (Q×M P )→ G ×M (Q×M P )

is the inverse of the total action. The trick here is that the G component is uniquely determined by the terms

two terms coming from P . That this is the inverse of the total action is a straightforward computation.

B.1.1 Principal Bundle Lemmas

The next lemma is the first step to understanding principal G-bundles in terms of cocycles.

Lemma B.5. Suppose G ⇒ M is a C-groupoid. Let f : N → M and g : N → M be morphisms in C and

G ×s,f N and G ×s,g N be the trivial bundles associated to them.

There is a one-to-one correspondence between principal bundle morphisms φ : G ×s,f N → G ×s,g N

covering the identity and morphisms γ : N → G such that t ◦ γ = f and s ◦ γ = g.

Proof. Suppose φ : P → Q is an isomorphism covering the identity. Let σ := (u ◦ f)× Id : N → G ×s,f N be
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the canonical section. Then we define

γ := pr1 ◦ φ ◦ σ : N → G.

Observe that s ◦ γ = g and t ◦ γ = f .

On the other hand, suppose we are given such a γ. Then let

φ := (m ◦ (pr1 × (γ ◦ pr2)))× pr2 : G ×s,f N → G ×s,g N

If C has points this formula is equivalent to φ(g, x) = (g · γ(x), x). This morphism is G-equivariant thanks

to the associativity of G. The correspondence is one-to-one since

γ = pr1 ◦ φ ◦ σ .

Lemma B.6. Let G ⇒M be a C-groupoid and suppose P and Q are principal left G-bundles. If φ : P → Q

is a principal G-bundle morphism covering the identity, then φ is an isomorphism.

Proof. Let S = {si : Ui → N} be a covering sieve such that there exist {σPi } and {σ
Q
i } be sections of s∗iP

and s∗iQ. Such a covering exists since P → N and Q→ N are submersions. Let φi be the unique morphism

which makes
s∗iP s∗iQ

P Q

φi

φ

commute. Then by Lemma B.5 each φi is related to some γi : N → G. By the construction in the lemma, it

is clear that i ◦ γi gives rise to φ−1
i . Hence each φi is an isomorphism.

Lemma B.7. Let P and Q be left principal (G,H)-bibundles. Then any bibundle morphism φ : P → Q

covering the identity is an isomorphism.

Proof. It suffices to show that φ is locally an isomorphism. Hence we can assume without loss of generality

that P = f∗P and Q = f∗Q are trivial bundles. Then the result follows immediately from our work in

Lemma B.5.

B.2 Stack lemmas

Our stack lemmas will be made more concise by adopting the following terminology.

Definition B.8. Let π : X → C be a CFG over a site. Given an objectM in C, descent data overM consists

of:
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• a covering family {ia : Ua →M}a∈A of M ,

• a collection of objects {Pa ∈ XUa}a∈A,

• morphisms φab : Pb|Uab → Pa|Uab

such that, for all a, b, c ∈ A, φab|Uabc ◦ φbc|Uabc = φac|Uabc . Given a morphism f : M → N in C, descent data

over f consists of:

• a covering family {ia : Ua →M}a∈A of M in C,

• objects P ∈ XM and Q ∈ XN ,

• morphisms φa : P |Ua → f∗Q|Ua covering the identity,

such that

Fa|P |Uab = Fb|f∗Q|Uab .

The above definition is designed to correspond with the stack axioms (S1) and (S2). Given descent data

over f as above, we say that φ : P → Q is a realization of this data if φ|Ua = φa for every a. Similarly, given

descent data over an object M , we say that P , together with maps φa : P |Ua → Pa is a realization of this

data if φab ◦ φb|Uab = φa|Uab.

Using this terminology the stack axioms can be restated as follows.

(S1) descent data over a morphism f always admits a unique realization.

(S2) descent data over an object M always admits a realization.

Lemma B.9. Suppose

X̃ X

Ỹ Y

F̃ F

is a 2-pullback square of CFGs. Then:

• F is an epimorphism implies that F̃ is an epimorphism

• F is representable implies that F̃ is representable

• F is a submersion implies that F̃ is a submersion

Proof. It suffices to show the first two.

• Suppose F is an epimorphism. Let the map Ỹ → Y be denoted by G. Given an object Ỹ ∈ Ỹ|M , we

know that there exists a covering {Ui} of M and isomorphisms ai : G(Ỹ )|Ui → F (Xi) for some objects

Xi ∈ X . Hence the triples:

X̃i := (Ỹ |Ui , ai, Xi)
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are objects in the fiber product X̃ ∼= Ỹ ×Y X . Since F̃ (Xi) = Ỹ |Ui the claim follows.

• Suppose N̄ → Ỹ is a CFG morphism for N̄ , representable. Then we have a rectangle:

N̄×̃Ỹ X̃ X̃ X

N̄ Ỹ Y

F̃ F

Since both of the inner squares are pullback squares, it follows that the outer square is also a pullback

square. Hence

N×̃Ỹ X̃ ∼= N×̃YX .

Since F is representable, it follows that N×̃Ỹ X̃ is a representable CFG.

Corollary B.10. Suppose

M̃ M

Ñ N

f̃ f

is a pullback square in a site C. Then f is a submersion implies that f̃ is a submersion.

Proof. Note that the functor which sends an object of C to its associated stack is representable.

Lemma B.11. Let F : X → Z and G : Y → Z be CFG morphisms such that X and Y are stacks and Z be

is a pre-stack. Then X×̃ZY is a stack.

Proof. Recall that an object of X×̃ZY consists of a triple (X, a, Y ) for objects X ∈ X and Y ∈ Y and

a morphism a : F (X) → G(Y ) in Z which covers the identity. Recall that a morphism in X×̃ZY from

(X1, a1, Y1)→ (X2, a2, Y2) consists of two morphisms (b, b′) such that a2 ◦ F (b) = G(b′) ◦ a1.

(S1) Let f : M → N be a morphism in C and let {(bi, b′i)} be descent data over f for X×̃ZY (we will

denote the associated covering family by {Ui}). Then {bi} and {b′i} constitute descent data in X and Y

over f respectively. Let b and b′ be morphisms given by the first stack axiom. Then we need to show that

(b, b′) is a morphism in X×̃ZY which realizes the given data. We conclude that a2 ◦ F (b) = G(b′) ◦ a1 since

this holds when restricted to each Ui in the covering. Furthermore (b, b′) is clearly a realization of this data,

since the restriction of (b, b′) to Ua is just (b|Ua , b′|Ua).

(S2) Suppose (Xi, ai, Yi) is descent X×̃ZY data over an object M ∈ C. Let (φab, φ
′
ab) be the cocycle

associated to this data. The definition of composition in X×̃ZcalY implies that the collections {φab} and

{φ′ab} satisfy the cocycle condition for descent X and Y data respectively. Therefore, there must exist objects

X and Y realizing this data. Furthermore, the collection {ai} constitutes descent Z data over the identity

morphism. Since Z is a prestack we conclude that there exists a morphism a which realizes this data. Then
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the triple (X, a, Y ) together with the associated morphisms (φa, φ
′
a) constitutes a realization of the original

data.

Lemma B.12. Let X be a CFG and M be an object in C. Suppose F1 : M̄ → X and F2 : M̄ → X are

CFG morphisms such that F1(IdM ) ∼= F2(IdM ). Then is a one-to-one correspondence between natural

transformation from F1 to F2 and Isom(F1(IdM ), F2(IdM )).

Proof. Suppose F1(IdM ) = X and F2(IdM ) = Y . Let a : X → Y be an isomorphism. To a natural

transformation, we need a function η : M̄0 → X̄1. Let η(f) is defined to be the unique isomorphism F1(f)→

F2(f) which makes the below diagram commute:

F1(f) X

F2(f) Y

η(f) a

To get the reverse correspondence, given such a natural transformation η, we can let a := η(IdM ).

B.2.1 Groupoids vs Stacks

Lemma B.13. Suppose G is a C-groupoid. Let p : M̄ → BG be the morphism which send f : N →M to the

trivial G-bundle f∗G. Then there is a 2-pullback square:

Ḡ M̄

M̄ BG

s

t p

p

Proof. To make the above into a 2-commutative diagram, we must provide the natural transformation. Given

an object γ : N → G we need to exhibit an isomorphism φγ : (t◦γ)∗G → (s◦γ)∗G. Let φγ be the isomorphism

associated to γ via the correspondence provided by Lemma B.5. It is routine to check that the resulting

function is a natural transformation.

Since we have a 2-commutative diagram, we obtain a morphism G → M̄×̃BGM̄ . On morphisms, this

functor acts as below:

N1

G

N2

γ1

h

γ2

7→
t ◦ γ1 (t ◦ γ1)∗G (s ◦ γ1)∗G s ◦ γ1

t ◦ γ2 (t ◦ γ2)∗G (s ◦ γ2)∗G s ◦ γ2

h

φγ1

h

φγ2

The 1-1 correspondence from Lemma B.5 tells us that this functor is actually a bijection. Therefore, the

diagram is a pullback square.

130



Lemma B.14. The identification of Ḡ with M̄×̃BGM̄ from Lemma B.13 is a CFG groupoid isomorphism.

Proof. Suppose we are given γ1, γ2 : N → G such that s ◦ γ1 = t ◦ γ2. As in Lemma B.13, let φγ : (t ◦ γ)∗G →

(s ◦ γ)∗G denote the G-bundle isomorphism provided in Lemma B.5. Then φm◦(γ1×γ2) = φγ2 ◦ φγ1 .

Using this relationship and the definition of the groupoid structure on M̄×̃BGM̄ (see Proposition A.13),

it is routine to check that Ḡ → M̄×̃BGM̄ is an isomorphism of CFG groupoids.

Lemma B.15. Let G ⇒ be a C-groupoid and Q be a G bundle over N . Let q : N̄ → BG be the CFG morphism

which sends g : N ′ → N to g∗Q. Then there is a 2-pullback square:

Q̄ N̄

M̄ BG

s

t q

Furthermore, the identification Q̄→ M̄×̃BGN̄ is a Ḡ-bundle isomorphism.

Proof. We should clarify that the left action of Ḡ on M̄×̃BGN̄ comes from combining Lemma B.14 with

Lemma A.14.

First off, we observe that a morphism ρ : N ′ → Q gives rise to a canonical section σρ : N ′ → (s ◦ ρ)∗Q.

Furthermore, by Lemma 1.47, a section provides us with a canonical trivialization φρ : (t◦ρ)∗G→ (s◦ρ)∗Q.

Hence, we can define a functor Q̄→ M̄×̃BGN̄ :

N1

Q

N2

ρ1

h

ρ2

7→
t ◦ ρ1 (t ◦ ρ1)∗G (s ◦ ρ1)∗Q s ◦ ρ1

t ◦ ρ2 (t ◦ ρ2)∗G (s ◦ ρ2)∗Q s ◦ ρ2

h

φρ1

h

φρ2

The functor is a bijection since trivializations φ : f∗G → g∗Q over the identity N ′ → N ′ are in 1-1 corre-

spondence with morphisms ρ : N ′ → Q such that s ◦ ρ = g. Therefore Q̄ → M̄×̃BGN̄ is an isomorphism.

Now suppose γ : N ′ → G and ρ : N ′ → Q. Then one can easily check that

φmL◦(γ×ρ) = φρ ◦ φγ .

From this formula, it follows from a routine calculation using the definition of the M̄×̃BGN̄ action that the

identification Q̄→ M̄×̃BGN̄ is (strictly) Ḡ-equivariant.

Proposition B.16. Let G be a C-groupoid and M̄ → BG be the canonical presentation of its stack. Then

Ḡ ∼= M̄×̃BGM̄ as CFG groupoids.
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Proof. By Lemma B.15, we already know that G fits into a 2-pullback square:

Ḡ M̄

M̄ BG

t

s

We only need to show that the isomorphism Ḡ → M̄ ×BG M̄ is a CFG groupoid homomorphism. The

mapping Ḡ → M̄ ×BG M̄ sends γ : N → G to the triple (t ◦γ, φγ , s ◦γ) where φγ is the isomorphism covering

the identity associated to γ (see Lemma B.5).

The groupoid operation on Ḡ is defined as follows: suppose γ1 : N → G and γ2 : N → G are morphisms

such that s ◦ γ1 = t ◦ γ2. Then γ1 · γ2 = m(γ1, γ2). We also know that φγ2 ◦ φγ1 = φm(γ1,γ2). Then

it is clear from the definition of the CFG groupoid structure on M̄×̃BGM̄ that the functor is a groupoid

homomorphism at the level of objects. Since both categories have trivial isotropy, we conclude that the

functor Ḡ → M̄ ×BG M̄ is a CFG groupoid isomorphism.

B.2.2 Stackification

Definition B.17. Let π : X → C be a CFG over a site C. Then the canonical stackification of X , denoted

SX is constructed as follows:

• An object of SX over M consist of descent data over M .

• Suppose {Pi} and {Qj} are descent data over M and N respectively. Let the coverings associated

to this data be S := {Ui → M} and T := {Vj → N}. A morphism f : {Pi} → {Qj} covering

f : M → N is represented by a collection of morphisms {φi : Pi → Qj} defined relative to a refinement

{Wi → M} ⊂ V ⊂ S ∩ f∗T , which satisfy the descent data over f condition relative to the cocycles

identifying the Pi and Qj on each double intersection. Two representations of a morphism are declared

equivalent if they are equal on some refinement of their respective coverings.

Composition of morphisms is performed by finding representatives which are defined relative to the same

covering and then composing in the natural way.

The CFG structure comes from projecting descent data over f to f . The axiom (CFG1) is satisfied by just

pulling back the descent data along f . On the other hand, (CFG2) follows by observing that it holds locally,

and since morphisms (by construction) are characterized by their local behavior, the necessary morphism

must exist. That the canonical stackification results in a stack is true tautologically since it replaces objects

and morphisms with descent data.

Definition B.18. Suppose F : X → Y is a morphism of CFGs. Then F is called a local equivalence if both

a monomorphism (fully faithful) and an epimorphism (locally essentialy surjective).

The following is the main property of local equivalences that we are interested in.
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Lemma B.19. Suppose F : X → Y is a local equivalence for X a stack and Y a CFG. Then F is an

equivalence of CFGs and therefore Y is a stack.

Proof. We only need to show that F is essentially surjective. Suppose Y is an object in YM . Since F is

locally essentially surjective, we know that there exists a covering {Ui → M} of M and objects Xi ∈ XUi
such that F (Xi) = Yi := Y |Ui . The Yi come with natural identifications φij : Yj → Yi. We have assumed

that F is fully faithful so there exist corresponding identifications ψij : Xj → Xi. These identifications must

satisfy the cocycle condition and (since we have assumed that X is a stack), we can conclude that there

exists X ∈ XM and ψi : X|Ui → Xi realizing this data.

Since ψi := F (ψi) : F (X)|Ui → Yi realizes the {Yi} descent data, we can conclude that F (X) is isomorphic

to Y .

Lemma B.20. If X is a pre-stack. Then the canonical map X → SX is a local equivalence.

Proof. Since X is a pre-stack and so morphisms in X are assumed to be determined by descent data, it

follows that X → SX is a monomorphism. That X is an epimorphism is clear since any descent data {Pi}

overM in X relative to a covering {Ui →M} can be restricted to any single component Pi, which is certainly

in the image of X .

Our last lemma on the topic of stackification is the observation that it is functorial, and it is well behaved

for local equivalences.

Lemma B.21. Suppose F : X → Y be a morphism of pre-stacks. There is a canonical morphism of CFGs

SF : SX → SY

which makes
X Y

SX SY

F

SF

commute. Lastly, SF is an equivalence of stacks if F is a local equivalence.

Proof. Since a morphism of CFGs sends descent data to descent data, the functor SF is defined in the

obvious manner such that it pushes forward descent data along F . This clearly makes the necessary diagram

commute.

Suppose F is a local equivalence. For the second part, we only need to show that SF is a local equivalence

by Lemma B.19. Since Y → SY is a local equivalence and the image of SF includes the image of Y, we

can conclude that SF is locally essentially surjective. To show that SF is fully faithful, it suffices to show

that Hom({Xi}, {X ′i})→ Hom({F (Xi)}, {F (X ′i)}) is a bijection for small objects of SX . But this certainly

holds for objects in the image of X ↪→ SX .
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Appendix C: Dirac structures

C.1 D-Lie groupoids

Lemma C.1. Suppose G ⇒M is a Lie groupoid together with the following data:

• a pair of 2-forms σ and τ on G;

• and a φ-twisted Dirac structure LM on M .

Such that, for Ω := τ − σ,

• m∗Ω = pr∗1Ω + pr∗2Ω

• t∗LM = s∗LM + Ω

Then we can equip G with a s∗φ−dσ-twisted Dirac structure LG := s∗LM−σ = t∗LM−τ . Furthermore, if we

take the 2-forms µ, ι, and υ defined by the equations below to be the gauge parts of m, i, and u respectively.

Then these maps constitute a well defined D-Lie groupoid.

m∗σ + µ = pr∗2σ + pr∗1σ (C.1)

i∗σ + ι = τ (C.2)

u∗σ + υ = 0 (C.3)

Proof. We need to check that the groupoid axioms are satisfied, this amounts to checking that some diagrams

in DMan commute. Since G ⇒ M is already a Lie groupoid, we only need to check that the gauge equation

associated to each axiom holds. In the table below, we have enumerated the axioms of a groupoid and

computed the corresponding equations of 2-forms.
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Axiom Domain Gauge Part

(G1) s ◦ u = IdM M u∗σ + υ = 0

(G2) s ◦m = s ◦ pr2 G(2) m∗σ + µ = pr∗1σ + pr∗2σ

(G3) s ◦ i = t G i∗σ + ι = τ

(G4) i ◦ u = u M u∗ι+ υ = υ

(G5) m ◦ ((u ◦ t)× IdG) = IdG G ((u ◦ t)× Id)
∗
µ = (u ◦ t)∗σ

(G6) m ◦ (IdG × (u ◦ s)) = IdG G (Id× (u ◦ s))∗µ = (u ◦ s)∗τ

(G7) m ◦ (i× IdG) = u ◦ s G (i× Id)
∗
µ− i∗σ = s∗υ + σ

(G8) m ◦ (IdG × i) = u ◦ t G (Id× i)
∗
µ− i∗τ = t∗υ + τ

(G9)
m ◦ (m(pr1 × pr2)× pr3) =

m ◦ (pr1 ×m(pr2 × pr3))
G(3) see (C.5) below.

The equations from (G1-G3) follow immediately by definition. The equation for (G4) holds since

u∗(ι) = u∗(τ − σ).

And the pullback of a multiplicative form along u is always zero. The first equality follows from (G3) while

the second follows from the fact that τ − σ is multiplicative.

Next we show (G5) by computing directly.

((u ◦ t)× Id)
∗
µ = ((u ◦ t)× Id)

∗
(pr∗1σ + pr∗2σ −m∗σ)

= (u ◦ t)∗σ + σ − (m((u ◦ t)× Id))
∗
σ

= (u ◦ t)∗σ + σ − σ = (u ◦ t)∗σ .

It follows from the multiplicativity of τ − σ that

m∗τ + µ = pr∗1τ + pr∗2τ . (C.4)

By using this expression for µ we can show (G6) by a calculation essentially identical to (G5). Next up, we

show (G7):

(i× Id)
∗
µ− i∗σ = (i× Id)

∗
(pr∗1σ + pr∗2σ −m∗σ)− i∗σ

= i∗σ + σ − (u ◦ s)∗σ − i∗σ

= −s∗u∗σ + σ = s∗ι+ σ
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Since (G8) is similar we can proceed to (G9). The gauge equation for (G9) is

(pr1 × pr2)
∗
µ+ (m ◦ (pr1 × pr2)× pr3)

∗
µ =

(pr2 × pr3)
∗
µ+ (pr1 ×m ◦ (pr2 × pr3))

∗
µ .

(C.5)

If we apply the substitution µ = pr∗1σ + pr∗2σ −m∗σ throughout, we get:

pr∗1σ + pr∗2σ − (pr1 × pr2)
∗
m∗σ + (pr1 × pr2)

∗
m∗σ + pr∗3σ −A∗Lσ =

pr∗2σ + pr∗3σ − (pr2 × pr3)
∗
m∗σ + (pr2 × pr3)

∗
m∗σ + pr∗1σ −A∗Rσ .

Here AL,AR : G(3) → G are the left and right hand associativity maps. Since G is a Lie groupoid and

assumed to be associative, it follows immediately that (9) holds.
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