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Abstract 

 

Over the past several decades, the development of ultra-sensitive nano/micromechanical sensor 

technology has had a transformative effect on the field of nanoscience.  These devices are 

currently used in many different applications including biological, chemical and inertial sensing; 

atomic force microscopy and infrared spectroscopy; and precise time keeping and 

synchronization.   Traditionally, these systems were studied within the framework of linear 

dynamics, and incidental nonlinearity was suppressed by design.  More recently, researchers 

have intentionally incorporated nonlinearity in the design of such devices in order to exploit the 

rich nonlinear behavior. Some of the nonlinear phenomena that researchers aim to utilize include 

internal resonance, resonant bandwidth expansion, ultra-sensitive bifurcation frequencies 

associated with sudden jumps in the response, coexistence of multiple solution branches and 

higher harmonic generation.  In this dissertation, I investigate further ways in which intentional 

nonlinearity can be leveraged to enhance micromechanical resonant sensing techniques. In 

particular, I focus on applications to AFM and mass sensing.   

 

Within the area of AFM, the performance of a new cantilever design during multi-frequency 

tapping mode AFM is studied.  The system consists of a base cantilever with an inner paddle 

which, under harmonic excitation, vibrates like a system of linearly coupled oscillators engaging 

simultaneously a lower, in-phase and a higher, out-of-phase resonant mode.  The cantilever is 

designed so that the 2nd mode frequency (i.e., the out-of-phase eigenfrequency) coincides with an 

integer multiple of the fundamental mode frequency, providing the necessary conditions for 

realization of internal resonance.  During tapping mode, the nonlinear tip-sample force activates 

the internal resonance and thereby amplifies the out-of-phase resonant mode.  In contrast to other 

multi-frequency AFM techniques, the advantage of this approach is that multiple harmonics with 

strong signal-to-noise ratios (SNR) are excited while maintaining the simplicity of a single 

excitation frequency. The ability of this inner-paddled cantilever to measure compositional 

properties of polymers and bacteria was studied, and it was found that the internal resonance-

based design results in enhanced sensitivity to Young’s modulus.  
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In another study, a new micromechanical resonant mass sensor design is introduced consisting of 

a doubly clamped beam having a concentrated mass at its center, subjected to harmonic base 

excitation.  The resonator is specifically designed to exhibit geometric nonlinearity due to 

midplane stretching.  The reduced order model of the system’s fundamental bending mode is that 

of a Duffing oscillator (i.e., an oscillator having cubic stiffness in addition to linear stiffness) 

under harmonic base excitation.  For positive cubic stiffness, it is well known that the Duffing 

oscillator exhibits hardening in the frequency response curve resulting in a broadband resonance.  

The bandwidth of the resonator is determined by the linear resonant frequency (lower bound) and 

the jump-down bifurcation frequency (upper bound).  Under harmonic excitation at a fixed 

forcing level, the jump down bifurcation frequency is proportional to the forcing level, and at 

each forcing level there indeed exists a jump down bifurcation.  In the proposed system, the 

forcing level is not fixed; rather, it is proportional to the square of the driving frequency of the 

base excitation.  Interestingly, analytical and computational analyses predict the existence of a 

critical excitation amplitude above which there is no theoretically predicted jump down 

bifurcation.  It is shown that the effect of the concentrated mass is to lower the threshold of the 

critical excitation amplitude to a realizable level.   

 

In practice, there must inevitably be a jump down bifurcation and this bifurcation may be 

triggered by the excitation of internal resonances, shrinking domain of attraction of the upper 

solution branch, variations in the initial state due to noise and/or the presence of nonlinear 

damping.  However, the critical excitation amplitude appears to correspond to sudden and 

significant bandwidth expansion.  Experimental results from a Duffing-like oscillator provide 

some verification of the powerful theoretical predictions.  Ultimately, by operating at an 

excitation amplitude above the critical level, the ultra-wide resonant bandwidth can be exploited 

in a mass detection scheme based on amplitude tracking.  In comparison to other 

micromechanical mass sensors, this technique and design offers a wide range of operational 

frequencies and amplitudes with strong SNR, eliminates the need for frequency sweeping and 

sophisticated feedback control, and requires relatively simple actuation and microfabrication 

methods. 
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Chapter 1: Introduction 
 

In recent decades, micro and nanomechanical resonators have drawn considerable attention due 

to their high sensitivity, portability and relatively low-cost. They are currently used for a wide 

variety of applications including precise frequency generation and timekeeping, nanoscale 

imaging and sensor technology (Antonio et al., 2012; Arlett et al., 2011; Brand et al., 1998; 

Garcia, 2010; Garcia and Perez, 2012; Johnson and Mutharasan, 2012; Schmidt and Howe, 1987; 

Stemme, 1991). In general, nano/micromechanical resonators have relatively low damping with 

Q-factors in the range of 102 to 105 and high resonant frequencies ranging from 104 to 109 Hz.  

These amazing properties result in sharp resonance peaks at high frequencies, which are 

extremely sensitive to physical properties like force and mass. For example, such sensors are 

capable of detecting forces present in intramolecular covalent bonds (de Oteyza et al., 2013) and 

even quantifying the mass of a single proton (Chaste et al., 2012). 

 

Broadly speaking, most micromechanical resonant sensing techniques utilize a micro beam 

structure under harmonic excitation, undergoing either torsional or flexural vibrations.  

Qualitative or quantitative changes in the dynamic response at resonance are monitored and 

serve as the detection mechanism.  The harmonic excitation may be applied at the base or 

directly to the structure from a variety of different actuation forces including piezoelectric, 

electrostatic and magnetic. Until recently, these resonators were designed and studied within the 

framework of linear dynamics.  Nevertheless, nonlinearity is not entirely avoidable and may 

arise from a variety of different sources. Nonlinearity may be generated by large deformations of 

the resonator (i.e., geometric nonlinearity), nonlinear interactions with external structures, 

nonlinear potential forces associated with the actuation mechanism, nonlinear constitutive 

relations of the structure’s material and/or nonlinear damping. Traditionally, nonlinearity was 

undesirable in the dynamics of micro/nano resonators and researchers focused on mitigating 

sources of incidental nonlinearity  (Ekinci et al., 2004; Ekinci and Roukes, 2005; Kacem et al., 

2010).  Over the past couple of decades, a new approach to nonlinearity in 

micro/nanoresonantors has emerged and is now an expanding, active research area.  In this 

approach, nonlinearity is intentionally incorporated into the device design in order to leverage 

the rich nonlinear behavior for practical purposes.  Some of the unique nonlinear phenomena that 

designers aim to exploit include resonance bandwidth expansion, internal resonance, parametric 
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resonance, bifurcation frequencies associated with sudden jumps in the response amplitude, 

coexistence of multiple solutions and higher harmonic generation.   

 

Antonio et al. (2012) utilized an internal resonance between the first flexural mode and the first 

torsional mode of an electrostatically actuated microresonator to achieve frequency stabilization 

of the jump-down bifurcation frequency.  In practice, the frequency stabilization can be used in 

time-keeping and synchronization schemes with enhanced signal-to-noise-ratios (SNR) as 

compared to the SNR achievable in the linear dynamic regime.  In a more recent study, it was 

further shown that the mode coupling in this device results in coherent energy transfer between 

vibrational modes that can precisely counterbalance energy dissipation in the absence of an 

external energy supply (Chen et al., 2017). In several studies, it was shown that the jump 

bifurcations associated with nonlinear resonances are considerably more sensitive to the addition 

of mass than the linearized resonant frequency due to extremely low effective Q-factors.  This 

novel feature has given rise to a burgeoning research area known as bifurcation-based mass 

sensing, in which a variety of different resonator designs and actuation methods have been 

considered.  In some cases, parametric resonance is used to generate the jump bifurcation, which 

is achieved by harmonically varying the resonators effective linear stiffness and driving the 

system at twice the unperturbed natural frequency (Miller et al., 2010; Burgner et al., 2010; Li et 

al., 2014b; Prakash et al., 2012; Turner et al., 1998; Zhang et al., 2002; Zhang and Turner, 2005; 

Yie et al., 2011).  In other approaches, nonlinear resonances exhibiting either strong hardening 

behavior or strong softening behavior give rise to the ultra-sensitive jump bifurcation, where the 

hardening behavior is typically the result of geometric nonlinearity and the softening behavior is 

often caused by electrostatic actuation (Cho et al., 2010; Bajaj et al., 2016; Bouchaala et al., 

2016; Kumar et al., 2011; Kumar et al., 2012; Younis and Alsaleem, 2009).  Alternatively, 

resonance bandwidth expansion resulting from parametric resonance can be used in mass 

detection schemes based on amplitude tracking (Hiller et al., 2015; Li et al., 2014a) or in 

electromechanical pass-band filtering (Rhoads et al., 2005).   

 

In atomic force microscopy (AFM) applications, the microresonator (i.e., probe) itself is a linear 

system but interaction with the sample introduces nonlinearity into the dynamics.  The nonlinear 

interaction between the probe tip and sample may result in the co-existence of two stable 



	 3	

solution branches at resonance and higher harmonics in the cantilever’s response. Usually, it is 

undesirable for the cantilever’s dynamics to transition from one solution branch to the other 

while collecting an AFM image because it may generate artifacts.  To address this issue, Cho et 

al. (2012) theoretically introduced a new probe design that intentionally incorporates geometric 

nonlinearity in order to eliminate one of the solution branches.  In contrast, under certain 

conditions, branch jumping throughout an AFM scan can be beneficial since the branch selection 

provides qualitative compositional information (Garcia, 2010).  Recently, quantitative 

compositional mapping has become a popular research area in AFM and, in what is termed 

multi-harmonic AFM, the higher harmonics are utilized to compute quantitative material 

property measurements (Cartagena et al., 2013; Cartagena-Rivera, 2015; Raman et al., 2011).   

 

The focus of this dissertation is to further contribute to the research area discussed above and 

consider new ways in which nonlinearity can be exploited to improve micromechanical resonant 

sensing techniques.  Specifically, we consider applications in AFM and mass sensing.  This 

dissertation is composed of six Chapters, each of which contains its own references and 

numbering system.  In Chapter 2, we discuss some fundamental concepts and common 

applications of microresonant sensing.  An outline of the theoretical modeling and analysis of 

linear microresonant sensors is presented in Section 2.1, with a focus on mass and force sensors.  

In Section 2.2, motivations for intentional nonlinearity in the design of microresonant sensors, 

common sources of nonlinearity and relevant nonlinear phenomena are discussed. 

 

In Chapter 3, we present work in the area of AFM in which a new design of the AFM probe is 

proposed. The new cantilever design utilizes intentional internal resonance to passively amplify 

higher harmonics for use in multi-harmonic, tapping mode AFM.  The necessary conditions for 

internal resonance are achieved by specifically designing the cantilever so that a higher 

vibrational mode coincides exactly with a higher harmonic and the internal resonance is then 

activated by the nonlinear tip-sample interaction.   The proposed cantilever design consists of a 

base micro-cantilever with an inner paddle where the base cantilever is a structurally modified 

commercial AFM cantilever and the inner paddle is a 300nm thick Si membrane (Keum et al., 

2012; Keum et al., 2016).  Under harmonic excitation, this system behaves like two linearly 

coupled damped harmonic oscillators involving a lower, in-phase vibrational mode and a higher, 
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out-of-phase vibrational mode.   The length of the inner paddle is specifically chosen so that the 

higher eigenfrequency is an integer multiple of the lower eigenfrequency.  If the ratio of the 

higher eigenfrequency to the lower eigenfrequency is n, then the nonlinear tip-sample interaction 

will trigger a 1:n internal resonance in the inner-paddled cantilever resulting in strong 

amplification of the nth harmonic.  The efficacy of this new probe design was theoretically and 

experimentally shown in a previous study (Jeong et al., 2016).  In contrast to other multi-

frequency AFM techniques, this approach provides multiple channels with strong signal to noise 

ratios while maintaining the simplicity of a single excitation frequency.  I experimentally and 

computationally studied the capability of this cantilever to characterize material properties of 

polymers, bacteria and viruses and found that the internal resonance-based design results in 

enhanced sensitivity to Young’s modulus.  In some cases, the enhanced material sensitivity is 

due to differences in branch selection among coexisting solution branches, which are not 

detected by the first harmonic amplitude.  In other cases, I found that, in contrast to commercial 

AFM cantilevers, the internal resonance based design introduces sensitivity to Young’s modulus 

among the first harmonic phase for a purely elastic sample.  The chapter concludes with a 

detailed outline for material property inversion analysis that could be used to convert the 

observables of this inner-paddled cantilever into quantitative compositional information. 

 

In Chapter 4, a new micromechanical resonant sensor deign is introduced consisting of a 

clamped-clamped beam having a concentrated mass at its center.  A reduced order model of the 

beam system is constructed in the form of a discrete spring-mass system that contains cubic 

stiffness due to axial stretching of the beam in addition to linear flexural stiffness. The beam is 

intentionally designed to enhance the cubic nonlinearity in order to cause nonlinear axial tension 

and thereby generate a broadband resonance of the fundamental flexural mode in the frequency 

response curve.  For a fixed forcing level of the beam, the range of frequencies that constitutes 

the broadband resonance is determined by the linearized frequency (lower bound) and the drop 

bifurcation frequency (upper bound).  However, harmonic base excitation at the two clamped 

ends of the beam is used in this study and therefore the forcing level is not fixed, but rather is 

proportional to the square of the excitation frequency.  Interestingly, we see that for sufficiently 

large base excitation amplitudes, there is theoretically no drop frequency. Computational results 

confirm this theoretical prediction and we find that the presence of the concentrated mass 
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significantly lowers the threshold amplitude required to achieve the no drop phenomenon. In 

practice, of course, it is not feasible to truly have no drop down bifurcation in the frequency 

response curve; the drop bifurcation may occur due to the excitation of internal resonances 

(Antonio et al., 2012; Chen et al., 2017), shrinking of the upper solution branch’s domain of 

attraction, variations in the initial state due to noise and the presence of nonlinear damping. Each 

of these practical limitations will be discussed in Section 4.5.  However, it’s likely that the 

threshold amplitude corresponds to a critical excitation amplitude above which the bandwidth 

suddenly expands considerably. 

 

Since the no drop phenomenon is valid for a general class of systems whose reduced order model 

is that of a Duffing oscillator excited by harmonic base excitation, I experimentally study a 

different Duffing system in an effort to verify this phenomenon.  The system consists of a Si 

microcantilever restricted at its free end by a polymer bridge and is excited at the base via 

piezoelectric actuation.  It has previously been shown that the flexural motion of this system is 

also governed by the Duffing equation, with an additional nonlinear damping term  (Asadi et al., 

2017). Indeed we experimentally observe a sudden and significant increase in the resonant 

bandwidth above a critical excitation voltage, which provides some experimental verification of 

the theoretical predictions outlined in Sections 4.1 - 4.4.  Further, we see that the nonlinear 

damping term has the effect of limiting the maximum drop frequency when operating above the 

threshold excitation amplitude.   

 

Chapter 5 theoretically outlines a mass sensing technique involving the doubly-clamped 

microbeam sensor design introduced in Chapter 4.  By operating at an excitation amplitude 

above the critical threshold, the ultra-wide resonant bandwidth can be leveraged in a mess 

sensing method based on amplitude tracking.  A secondary effect of the cubic nonlinearity in the 

system is strong amplification of the third harmonic and, hence, both the first and third 

harmonics are monitored as mass is added to the device.  In a computational study, I track 

changes in the steady-state amplitudes of the first and third harmonics as mass is added to the 

device, at a fixed excitation frequency within the broadband.  In practice, the base excitation 

could be provided via piezoelectric actuation and the purely mechanical device could be 

fabricated using conventional microfabrication techniques.   This scheme would require an initial 
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forward sweep of the drive frequency in order to attract the high-amplitude solution, and changes 

in the steady-state amplitude would serve as the mass detection mechanism thereafter.  This 

eliminates the need for time-consuming frequency sweeps each time mass is added and/or 

sophisticated feedback control loops.  The advantage of this approach is that the ultra-wide 

bandwidth allows for a considerably larger range of operational frequencies and amplitudes with 

strong SNR, as compared to other mass sensors that rely on amplitude tracking (both linear and 

nonlinear designs).  Additionally, the device design and actuation mechanism are relatively 

simple. 
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Chapter 2: Dynamics of micro/nanomechanical resonators 

 

In this Chapter, I discuss linear and nonlinear dynamics of micro/nanomechanical resonators.  

Traditionally, micro/nanomechanical resonators have been designed to operate in the linear 

dynamic regime, which simplifies the theoretical modeling considerably.  In Section 2.1, I 

outline a general approach to reduced order modeling of linear micro/nanomechanical resonators 

and summarize the fundamental operating principles of micro/nanomechanical mass and force 

sensing within the linear dynamic regime.  More recently, researchers have explored the 

advantages of intentionally incorporating nonlinearity in the design of micro/nanoresonators 

(Cho et al., 2016; Lifshits and Cross, 2008; Rhoads et al., 2010; Younis, 2011). In Section 2.2, I 

summarize the motivation for nonlinearity in micro/nanomechanical resonant sensing and 

discuss several of the prominent sources of nonlinearity. 

 

2.1 Linear dynamic regime 

 

2.1.1 Beam mechanics 

 

Most micro/nanomechanical resonators are beam structures that undergo either flexural or 

torsional motion.  The dynamics of such structures remain in the linear regime when the beam 

deflection is small enough that axial elongation of the neutral axis is negligible.  Further, for 

beams with sufficiently large length to thickness ratios (i.e. relatively thin beams), the shear 

deformation is negligibly small and it can be assumed that plane sections remain plane after 

deformation.  The boundary conditions vary depending on the specific application, with 

clamped-clamped and clamped-free boundary conditions being the most common types 

encountered in micro/nanomechanical resonators.  In this sub-section, I introduce the equations 

governing transverse motion of Euler-Bernoulli beam structures and focus on clamped-clamped 

and clamped-free boundary conditions in particular. 
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2.1.1.1 Governing equations  

 

Consider the transverse motion 		v x ,t( )  of a thin beam with a distributed mass 	
m x( )  and bending 

stiffness 		EI(x)  as shown in Fig. 2.1a, and a differential element of the beam, as shown in Fig. 

2.1b.    Bending moment M, shear force Q, and infinitesimal variations of these quantities act on 

the differential element, along with a distributed force 		f x ,t( ) .  In this analysis, the following 

assumptions are made: 

 

1) There is no shear deformation in the beam; cross-sections initially perpendicular to the neutral 

axis of the beam remain plane and perpendicular to the neutral axis during bending. 

2) The Y axis is an axis of symmetry of the cross-section; thus, motion is in-plane, and there are 

no out-of-plane effects. 

3) There are neither axial deformations nor axial forces present in the neutral axis.  

4) There are no rotational inertia effects. 

5) The slopes, angles and deflections of the beam are small. 

 

              
Figure 2.1: (a) Element of a beam in the X-Y plane and (b) a corresponding differential element. 

 

By balancing the forces acting on the differential element shown in Fig.2.1b, the equilibrium 

relation is given by 

 

		f (x ,t)

		v(x ,t)

	x
	X

	Y

		 m(x),E(x),I(x)

		f (x ,t)

	
Q+ ∂Q

∂x
dx	Q

	
M + ∂M

∂x
dx

	
θ + ∂θ

∂x
dx

θ
	M

	x 	x +dx

(a) (b) 
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Q+ ∂Q

∂x
dx

⎛
⎝⎜

⎞
⎠⎟
cos θ + ∂θ

∂x
dx

⎛
⎝⎜

⎞
⎠⎟
−Qcosθ + f x ,t( )dx =m x( )∂

2v
∂t2

dx           (2.1) 

 

where 		Q =Q(x ,t) , 		θ =θ(x ,t)  and 		v = v(x ,t) . Equation (2.1) can be asymptotically expanded 

with respect to the small parameter dx, 

 

		
∂
∂x

Qcosθ( )dx + f x ,t( )dx +O dx2( ) =m x( )∂
2v
∂t2

dx                              (2.2) 

 

In light of the small angle assumption, approximate 	cosθ ≈1giving, to leading order,   

 

		
∂Q
∂x

+ f x ,t( ) =m x( )∂
2v
∂t2

                                                                    (2.3) 

 

The balance of moments at x gives 

 

		
0=M − M + ∂M

∂x
dx

⎛
⎝⎜

⎞
⎠⎟
− 12 f x ,t( )dx2 − Q+ ∂Q

∂x
dx

⎛
⎝⎜

⎞
⎠⎟
dx                              (2.4) 

 

which, to leading order, reduces to  

 

	
Q = − ∂M

∂x
                                                                                                (2.5) 

 

where 		M =M(x ,t) . The assumption stated in (1) implies that the longitudinal strains vary 

linearly with respect to the depth of the beam and that the neutral axis of the beam coincides with 

the centroid of the cross-section.  This results in the following relation between the curvature, 

		κ(x ,t) , and the bending stiffness, 		EI(x)= E(x)I(x) , 
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κ(x ,t)= M(x ,t)

EI(x)                                                                                               (2.6) 

 

from the geometry,  
 

		
κ(x ,t)= ∂2v(x ,t)

∂x2
/ 1+ ∂2v(x ,t)

∂x2
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

1/2

                                                                         (2.7) 

 

Taking into account the assumption of small slopes in the beam, (2.6) and (2.7) give the relation 

 

		
M(x ,t)
EI(x) ≈ ∂2v(x ,t)

∂x2
                                                                                     (2.8) 

 

Finally, substitution of (2.8) and (2.5) into (2.3) gives 

 

		
m x( )∂

2v
∂t2

+ ∂2

∂x2
EI(x)∂

2v
∂x2

⎡

⎣
⎢

⎤

⎦
⎥ = f x ,t( )                                                        (2.9) 

 

as the governing equation for transverse motion of a thin beam. 

 

2.1.1.2 Modal analysis of a prismatic beam 

 

Consider an unforced, undamped, thin beam having uniform density and flexural rigidity, 

 

		
m∂2v
∂t2

+EI ∂
4v

∂x4
=0                                   (2.10) 

 

Two types of simple boundary conditions are considered in particular.  In the resonator chosen 

for a mass sensing application (Chapter 5), I focus on clamped-clamped boundary conditions,  
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v(0,t)= ∂v

∂x
(0,t)= v(l ,t)= ∂v

∂x
(l ,t)=0                                              (2.11) 

 

and in the AFM application (Chapter 3), clamped-free boundary conditions are considered, 

 

		
v(0,t)= ∂v

∂x
(0,t)=0                                                        (2.12a) 

		
M(l ,t)=0 ⇒ ∂2v

∂x2
(l ,t)=0                                                       (2.12b) 

		
Q(l ,t)=0 ⇒ ∂3v

∂x3
(l ,t)=0                                                       (2.12c) 

 

Introduce the method of separation of variables, i.e., 		v(x ,t)=ϕ(x)η(t) , and separate (2.10) into 

a set of time- and space-dependent equations, 

 

		 
!!η+ω 2η =0, φ '''' −ω

2

c4
φ =0, c4 = EI

m
         (2.13) 

 

where overdot denotes differentiation with respect to t and prime denotes differentiation with 

respect to x.  The general solution to the space-dependent equation is given by 

 

		 φ(x)=C1 sinλx +C2cosλx +C3sinhλx +C4 coshλx , λ4 =ω 2 /c4                 (2.14) 

 

The constants C1, C2, C3 and C4 and eigenvalue λ  are determined from the boundary conditions 

of the beam.  In the following analysis the specific boundary value problem is solved for the case 

of a clamped-clamped beam and a cantilever. 
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Clamed-clamped beam 

 

For a clamped-clamped beam, the boundary conditions are 

 

		φ(0)=φ
'(0)=φ(l)=φ '(l)=0                                                           (2.15) 

 

The conditions 	φ(0)=φ
'(0)  imply 		C2 = −C1   and 		C4 = −C3  so that  

 

		

sinλl − sinhλl cosλl − coshλl
cosλl − coshλl −sinλl − sinhλl

⎡

⎣
⎢

⎤

⎦
⎥

C1
C2

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= A

C1
C2

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
=0                                                (2.16) 

 

For nontrivial solutions of 		C1  and 		C2 , the determinant of matrix A must be nonzero.  In other 

words, the following condition must be true 

 

		cosλlcoshλl =1             (2.17) 

 

The infinity of λ  that satisfy the transcendental equation in (2.17) are the eigenvalues, and the 

corresponding eigenfrequencies are given by, 

 

		
ω i = λi

2 EI
m

             (2.18) 

 

The ratios 		 C1 /C2( )
i  are obtained by substituting λ  into (2.16)  

 

		
C1 /C2( )

i
=
sinλil + sinhλil
cosλil − coshλil

           (2.19) 

 

Hence, the eigenfunction that characterizes the ith normal mode of vibration is given by 
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φi(x)=Ci

sinλil + sinhλil
cosλil − coshλil

⎛

⎝⎜
⎞

⎠⎟
sinλi x − sinhλi x( )+ cosλi x − coshλi x

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
                           (2.20) 

 

where 	Ci  is an arbitrary multiplicative constant. Introduce the normalized eigenfunctions, 		Φi(x)
, defined as 

 

		
Φi(x)=α iψ i(x), ψ i(x)=

sinλil + sinhλil
cosλil − coshλil

⎛

⎝⎜
⎞

⎠⎟
sinλi x − sinhλi x( )+ cosλi x − coshλi x ,                                        

		
α i = m ψ i

2(x)dx
0

l

∫
⎛

⎝
⎜

⎞

⎠
⎟           (2.21) 

 

Note that normalization is not a unique process and other normalization definitions can be used.  

The specific normalization in (2.21) is chosen so that, 

 

		
mΦi

2(x)dx
0

l

∫ =1              (2.22) 

 

Clamped-free beam (Cantilever) 

 

For a clamped-free beam, the boundary conditions are 

 

		φ(0)=φ
'(0)=φ ''(l)=φ '''(l)=0                                                  (2.23) 

 

By following the same steps as for the clamped-clamped beam, the infinity of eigenvalues, 	λi , 

are found to satisfy 

 

		cosλlcoshλl = −1                                                                                                                    (2.24) 
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and the associated 		 C1 /C2( )
i
 are given by  

 

		
C1 /C2( )

i
=
sinλil − sinhλil
cosλil − coshλil

           (2.25) 

 

Hence, the eigenfunction that characterizes the ith normal mode of vibration is given by 

 

		
φi(x)=Ci

sinλil − sinhλil
cosλil − coshλil

⎛

⎝⎜
⎞

⎠⎟
sinλi x − sinhλi x( )+ cosλi x − coshλi x

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
                           (2.26) 

 

where 	Ci  is an arbitrary multiplicative constant. The normalized eigenfunctions, 		Φi(x) , are 

defined as 

 

		
Φi(x)=α iψ i(x), ψ i(x)=

sinλil − sinhλil
cosλil − coshλil

⎛

⎝⎜
⎞

⎠⎟
sinλi x − sinhλi x( )+ cosλi x − coshλi x ,                                        

		
α i = m ψ i

2(x)dx
0

l

∫
⎛

⎝
⎜

⎞

⎠
⎟

−1/2

                      (2.27) 

 

Again, the specific normalization is selected so that 

 

		
mΦi

2(x)dx
0

l

∫ =1              (2.28) 

 

Finally, the solution to (2.10) can be written as the linear superposition of the infinite normal 

modes of vibration, 

 

		
v(x ,t)= Φi(x)Ν i(t)

i=1

∞

∑             (2.29) 
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where 		Ν i(t)  are the generalized coordinates, or, equivalently, the principle coordinates of the 

normalized mode shapes, 		Φi(x) .  That is, 		Ν i(t)  is the contribution of the ith vibration mode in 

the beam response, where the vibration modes are associated with an infinite, discrete spectrum 

of distinct eigenfrequencies and corresponding eigenfunctions.
  

 

2.1.1.3 Forced vibration of a damped prismatic beam 

 

Consider a forced, damped, thin beam having uniform density and flexural rigidity, 

 

		
m∂2v
∂t2

+ c ∂v
∂t

+EI ∂
4v

∂x4
= f (x ,t)           (2.30) 

 

Assume that the motion of the beam can be written as a linear superposition of the countably 

infinite set of normalized eigenfunctions characterizing the vibration modes of the underlying 

undamped, unforced beam. To this end, a solution to (2.30) of the form 

 

		
v(x ,t)= Φi(x)Ν i(t)

i=1

∞

∑                                                    (2.31) 

 

is assumed where 		Φi(x)
 
are the normalized eigenfunctions and 		Ν i(x)

 
are the corresponding 

generalized coordinates.  Substituting (2.31) into (2.30) gives 

 

		 
m Φi(x)!!Ν i(t)

i=1

∞

∑ + c Φi(x) !Ν i(t)+EI Φi(x)Ν i(t)
i=1

∞

∑
i=1

∞

∑ = f (x ,t)                 (2.32) 

 

Now, each eigenfrequency and eigenfunction pair, 		 ω i ,φi(x){ } , must satisfy the relation 

 

		EIφi
''''(x)−mω i

2φi(x)=0                                                                                 (2.33) 
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It can be shown that, the eigenfunctions obey the following orthogonality condition (Meirovitch, 

1975), 

 

		
mφi (x)φ j (x)dx =0

0

l

∫ , i ≠ j                                                                     (2.34) 

 

That is, the eigenfunctions are orthogonal with respect to the mass distribution. It follows that  

 

		
EIφi

''''(x)φ j (x)dx =0
0

l

∫ , i ≠ j                                                                                                (2.35) 

 

In accordance with the specific normalizations considered here, the normalized eigenfunctions 

satisfy the following mass-orthonormality condition 

 

		
mΦi (x)Φ j (x)dx =δ ij

0

l

∫             (2.36) 

 

from which the stiffness-orthonormality condition follows, 

 

		
EIΦi

''''(x)Φ j (x)dx =ω i
2δ ij

0

l

∫             (2.37) 

 

where 	
δ ij  is the Kronecker delta. Finally, multiplying (2.14) by 		Φ j (x) , integrating from 		x =0  to 

	x = l  and using the orthonormality conditions stated in (2.36) and (2.37), results in 

 

		 
!!Ν j(t)+2ζ jω j

!Ν j(t)+ω j
2Ν j(t)= Fj(x ,t), 2ζ jω j =

c
m
, Fj(x ,t)= f (x ,t)Φ j (x)dx

0

l

∫    (2.38)  

 



	 22	

where 		Ν j(t)  is the projection of the solution, 		v(x ,t) , onto the normalized jth eigenmode shape, 

multiplied by the mass distribution, 

 

		
Ν j(t)= mv(x ,t)Φ j(x)dx

0

l

∫                          (2.39)
 

 

Hence, the original partial differential equation has been reduced to a countably infinite set of 

uncoupled, ordinary differential equations.  In other words, each vibration mode can be reduced 

to a single-degree-of-freedom modal oscillator.  Each modal oscillator has an effective stiffness, 

effective mass and effective damping coefficient.  In (2.21), for the general jth mode, 		ω j
2  

represents the ratio of the effective stiffness to the effective mass, 		2ζ jω j  
is the ratio of the 

effective damping coefficient to the effective mass and 		Fj x ,t( )
 
is the ratio of the force imparted 

to the jth modal oscillator to the effective mass.  In the following section, I will outline a 

technique that is commonly used to compute the effective mass and stiffness for a given 

vibration mode of various beam systems.  Once the effective mass and stiffness are known, the 

so-called lumped-parameter model can be constructed. 

 

2.1.1.4 Effective mass and stiffness 

 

When analyzing the dynamics of micro/nanoresonators, it is convenient to develop a lumped-

parameter model corresponding to a particular vibration mode of interest.  The lumped parameter 

model consists of a point mass connected to a linear spring and damper as shown in Fig. 2.2c. 

The point mass is characterized by the effective mass, 		mef , the spring is characterized by an 

effective stiffness, 		kef , and the damper is characterized by an effective damping coefficient, 		cef .  
In general, the displacement of the point mass, 	z , corresponds to the displacement at a particular 

point along the beam.  It is common for 	z  to denote the displacement of the anti-node (i.e., the 

maximum displacement) for the vibrational mode of interest, as shown in Figs. 2.2b and 2.2c for 

the fundamental bending modes of a doubly clamped beam and cantilever, respectively.   
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Figure 2.2: A prismatic beam having distributed mass 	m  and distributed damping 	c , under the 

distributed load 		f (x ,t)  with (a) clamped-clamped boundary conditions and (b) clamped-free 

boundary conditions. Both beams are depicted in their fundamental bending modes.  For a 

clamped-clamped beam, the anti-node (location of maximum displacement) of the fundamental 

bending mode is at the center of the beam and for a clamped-free beam, the anti-node of the 

fundamental bending mode is at the free end of the beam.  (c) The reduced order lumped-

parameter model with effective mass, 		mef , effective stiffness, 		kef , effective damping coefficient, 

		cef , and effective loading 		Fef .  Typically, the displacement of the point mass in the lumped-

parameter model corresponds to the displacement at the anti-node as indicated here.  

                                                                 

The effective force, , denotes the projection of the distributed force, , onto the 

vibrational mode of interest scaled by the effective mass.  The parameters are “lumped” in the 

sense that a point mass is used to isolate the inertial effects and a massless spring is used to 

isolate the stiffness effects.  In reality, of course, the mass and stiffness are distributed 

continuously throughout the beam structure.  However, as shown in the previous section, by 

projecting the governing equation onto a particular vibration mode, a discrete modal oscillator 

can be recovered.  Here a widely used method to determine the effective stiffness and effective 

Clamped-clamped beam 

Clamped-free beam  

Lumped-parameter model 

Sampl
e 

		kef 		cef

		mef
		z(t)

		Fef

		Fef 		f (x ,t)

(a) 

(b) 

(c) 
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mass is outlined.  Note, that by determining either the effective mass or effective stiffness, the 

other lumped parameters immediately follow from (2.38). 

 

We will take 	z  to be the displacement at an arbitrary point along the beam, 	x = a , provided that 

the point does not coincide with a node.  To compute the effective stiffness, we want to write the 

total potential energy, PE, in the form  

 

		
PE= 12kefz

2                             (2.40) 

 

To begin, we compute the total potential energy in the system: 

 

		
PE= 12 EI(vxx )2

0

l

∫ dx                            (2.41) 

 

where 
	( )

x
 denotes partial differentiation with respect to x so that 

		
vxx =

∂2v(x ,t)
∂x2

.  For the 

general jth mode, the displacement can be written as 

 

		v(x ,t)=Ν j(t)Φ j(x)               (2.42) 

 

The displacement at 	x = a  is given by 

 

		z(t)= v(a,t)=Ν j(t)Φ j(a)                (2.43) 

 

Hence, the displacement along the beam can be written as 

 

		
v(x ,t)= z(t)

Φ j(x)
Φ j(a)

              (2.44) 
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By substituting (2.44) into (2.41), we get 

 

 

		
PE= 12

EI
Φ j

2(a) Φ j
''( )2dx

0

l

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
z2                         (2.45) 

 

Using integration by parts and assuming simple boundary conditions, we have 

 

		
Φ j

''( )2dx
0

l

∫ = Φ j
''''Φ j dx

0

l

∫                                  (2.46) 

 

Substituting (2.46) into (2.45) and using the stiffness-orthonormality condition in (2.37) gives 

 

		
PE= 12

ω j
2

Φ j
2(a)

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
z2                                   (2.47) 

 

Hence, the effective stiffness is 

 

		
kef =

ω j
2

Φ j
2(a)                                               (2.48) 

 

It follows (2.38) that the effective mass, effective damping coefficient and effective force are 

given by 

 

		
mef =

kef
ω j

2 =
1

Φ j
2(a)                                   (2.49) 

		
cef =mef

c
m

= 1
Φ j

2(a)
c
m

                                 (2.50) 
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Fef =mef f (x ,t)Φ j(x)dx

0

l

∫ = 1
Φ j

2(a) f (x ,t)Φ j(x)dx
0

l

∫           (2.51) 

 

Now, for the modal oscillator corresponding to the jth vibration mode, equation (2.38) can 

equivalently be written in the form 

 

		 mef !!z + cef !z +kefz = Fef                                                                        (2.52) 

 

Alternatively, one can first compute the effective mass by writing the total kinetic energy, KE, in 

the form 

 

		 
KE= 12mef !z

2                                                             (2.53) 

 

The total kinetic energy in the beam is 

 

		
KE= 12 m(vt )2

0

l

∫ dx                            (2.54) 

 

By differentiating (2.44) with respect to time and substituting the relation into (2.54) we have, 

 

		 
KE= 12

m
Φ j

2(a) Φ j( )2dx
0

l

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
!z2                       (2.55) 

 

Employing the mass-orthonormality condition in (2.36) gives 

 

		 
KE= 12

1
Φ j

2(a)
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
!z2                                   (2.56) 
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and, hence, the effective mass  
		
mef =

1
Φ j

2(a)  is recovered.  

 

2.1.2 Basic principles of resonant micro/nanomechanical sensing 

 

2.1.2.1 Harmonic excitation of a micro/nanomechanical resonator  

 

Generally micro/nanomechnical resonators are excited harmonically and the transient and/or 

steady state response of the resonator is used to detect physical properties like force and mass.   

Specifically, changes in the transient resonant frequency or steady-state amplitude often serve as 

the detection mechanism for sensing.  Hence, the effective force often has the form 

		Fef = F cosωt  so that the initial value problem governing the motion of the resonator is given by, 

 

		 mef !!z + cef !z +kefz = F cosωt , z(0)= z0 , !z(0)= !z0                                                       (2.57) 

 

The solution 		z(t)  is the sum of a transient response, 		zt(t) , resulting from the initial conditions 

and the steady-state response, 		zss(t) , caused by the harmonic excitation.  The steady-state 

response is 

 

		
zss(t)= Zss cos ωt −ϕss( ) , Zss =

P

(ωn
2 −ω 2)2 +4ζ 2ωn

2ω 2
, ϕss = tan−1 2ζωnω

ωn
2 −ω 2

⎛

⎝
⎜

⎞

⎠
⎟    (2.58) 

 

and the transient response is 

 

		 
zt(t)= Zte

−ζωnt cos ωdt −ϕt( ) , ϕt = tan−1 z0 − Zss cosϕss
!z0 /ωd − Zss sinϕss

⎛

⎝⎜
⎞

⎠⎟                                                     

		 Zt = z0 − Zss cosϕss( )cosϕt + !z0 /ωd − Zss sinϕss( )sinϕt                                           (2.59) 
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where 

 

		
ωn

2 =
kef
mef

, 2ζωn =
cef
mef

, P = F
mef

, ωd =ωn 1−ζ 2
             (2.60) 

 

Here we assume that the resonator is underdamped so that	ζ <1which is indeed the case for 

micro/nanomechanical resonators.  In applications involving micro/nanoresonators it is common 

to characterize the damping in terms of the quality factor or Q-factor.  The Q-factor is defined as 

the ratio of the resonant frequency to the bandwidth of the resonance curve at half of the peak 

amplitude, Δω , 

 

	
Q =

ωn

Δω                     (2.61) 

 

and is inversely related to the effective damping coefficient: 

 

		
Q =

ωnmef
cef

= 1
2ζ                                          (2.62) 

 

A schematic of the steady-state response of the resonator for various damping levels is shown in 

Fig. 2.3.  We can see that the response near resonance is in the form of a Lorentz curve where the 

location of the peak is determined by the resonant frequency and the damping level determines 

the width of the curve.  Note that the peak of the resonance curve does not occur exactly at the 

natural frequency , rather the peak occurs at . However, in applications 

involving micro/nanomechanical resonators, the damping is relatively low with Q-factors in the 

range of 100 to 10,000 and, hence, .  

	ωn 		ωpeak =ωn 1−2ζ 2

		ωpeak ≈ωd ≈ωn
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Figure 2.3:  Resonance curves for various damping levels; normalized steady-state amplitude, 

		 

Zssωn
2

P !Zpk
, versus the normalized drive frequency for Q=100, Q=1,000 and Q=10,000, where 

		 
!Zpk =max

Zssωn
2

P
⎛

⎝
⎜

⎞

⎠
⎟ . 

 

In sensing applications involving micro/nanomechanical resonators, variations in the frequency 

of the transient response, i.e. the damped natural frequency 	ωd , or variations in the steady-state 

amplitude, 		Zss , often serve as the sensing mechanism.  The relations in (2.58) and (2.59) clearly 

indicate that 	ωd  and 		Zss  depend on the undamped natural frequency, 	ωn , of the vibrational mode 

of interest. Further, 		ωn
2
 is proportional to the ratio of the effective stiffness,		kef , to the effective 

mass, 		mef , which indicates that external contributions to the effective mass or the effective 

stiffness of the modal oscillator may be observed by monitoring the frequency of the transient 

response or the amplitude and phase of the steady-state response.  In mass sensing applications, 

typically mass is deposited onto the resonator thereby modifying the effective mass of the 

oscillator and, in turn, causing variations in the transient and steady-state observables.  If for 

example the resonator is pre-functionalized to attract a specific chemical or bio-molecule, the 

mass sensor further becomes a chemical- or bio-sensor. In contrast, in force sensing applications 
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such as AFM, the interaction forces between the resonator and a sample influence the effective 

stiffness of the oscillator, resulting in variations in the transient and steady-state observables.   

 

2.1.2.2 Mass and force sensors 

 

In this section, we present a summary of the mathematical analysis required to quantitatively 

relate the transient and steady-state observables to the amount of added mass (in the case of a 

mass sensor) or the gradient of the external force (in the case of a force sensor).  Additionally, 

quantitative measurements of the sensitivities and resolutions are shown.   It is important to note 

that these analyses are all within the context of linear micro/nanomechanical sensors and are not 

appropriate in the nonlinear dynamical regime.  For mass sensing, the only external force present 

is the harmonic excitation and hence, the resonator behaves linearly for sufficiently small 

deformations, as will be discussed in more detail in Section 2.2.  The most prominent force 

sensor that utilizes a micromechanical resonator is the atomic force microscope (AFM), which 

senses the interaction force between a sharp tip at the end of a cantilever and a sample to achieve 

high-resolution imaging.  For AFM, in addition to harmonic excitation, the interaction force 

between the sharp tip and the sample is present and, in general, this interaction force is nonlinear.  

However, for small perturbations in the vicinity of an equilibrium point, the interaction force is 

approximately linear.  Specifically, the equilibrium points correspond to positions of the 

cantilever where the mechanical restoring force exactly counter-balances the tip-sample 

interaction force.  If the motion of the cantilever is such that the interaction force is smooth and 

in the vicinity of an equilibrium point, then the interaction force may be approximated as linear 

and the following analysis is valid.   
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Mass sensors 

 
Figure 2.4:  Qualitative depiction of the downward shift in the resonance curve that occurs when 

the effective mass of a resonator increases. 

 

When mass is added to a micro/nanomechanical resonator, the primary resonance curves shifts 

downward toward lower frequencies (see Fig. 2.4) and by tracking the shifts in the linear 

resonant frequency, 	δωn , one can deduced the amount of added mass.  The added mass is 

typically small enough that contributions to the effective stiffness of the beam are negligible and 

we will assume here that there is no change in the effective stiffness due to the presence of added 

mass.  For an added mass, 	m , the effective mass becomes 

 

		mef =mef0 +m                      (2.63) 

 

where 		mef0  is the initial effective mass of the resonator before the mass 	m  is added.  The 

resonant frequency can be written as   

 

		ωn =ωn0 +δωn                      (2.64) 
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where 		ωn0 = kef /mef0  is the initial resonant frequency.  Substitution of (2.64) and (2.63) into 

the relation 		ωn
2 = kef /mef  gives 

 

		
ωn0 +δωn =

kef
mef0 +m

=ωn0 1+ m
mef0

⎛

⎝⎜
⎞

⎠⎟

−1/2

                  (2.65) 

 

Assuming that 		m/mef0 <<1 , we can asymptotically expand (2.65) with respect to 		m/mef0  

 

		
ωn0 +δωn ≈ωn0 1− m

2mef0

⎛

⎝⎜
⎞

⎠⎟
           (2.66) 

 

which can be rearranged to give the relation 

 

		
m= −

2mef0
ωn0

δωn                               (2.67) 

 

Equation (2.67) gives a quantitative measurement for the amount of added mass, 	m , based on a 

measured change in the resonant frequency, 	δωn .  The quantity 		−2mef0 /ωn0  is the inverse of the 

mass responsivity of the resonator, 	Rm , defined as the ratio of the shift in the resonant frequency 

for a given change in the effective mass 

 

		
Rm =

∂ωn

∂mef
                               (2.68) 

 

where, for 		m/mef0 <<1 , 
		
Rm = −

ωn0
2mef0

.  The minimum detectable added mass, 		mmin , is then 

dictated by the minimum detectable shift in the resonant frequency, 		δωn ,min , 
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mmin = −

2mef0
ωn0

δωn ,min                    (2.69) 

 

The minimum detectable shift in resonant frequency is limited by the presence of noise in the 

system.  Any source of damping in the system can in turn serve as a source of noise due to 

thermal fluctuations, according to the dissipation-fluctuation theorem (Heer, 1972). Such thermal 

fluctuations account for Nyquist-Johnson noise in the readout circuitry and thermomechanical 

noise in the resonator.  Regarding thermomechanical noise, the damping-mechanisms present in 

the resonator’s dynamics cause random vibrations along the beam such that the mean square 

amplitude of the resulting motion is nonzero.  As will be discussed in Chapter 5, there are often 

additional sources of noise that are not necessarily associated with thermal losses, including 

adsorption and desorption of molecules in the surrounding medium, temperature fluctuations that 

induce thermal stresses, and defect motion within the resonator (Cleland and Roukes, 2002).  For 

linear resonators, a rigorous analysis of such noise sources and the resulting minimum detectable 

frequency shift has been considered in previous studies (Albrecht et al., 1991; Butt and Jaschke, 

1995; Cleland, 2005; Cleland and Roukes, 2002; Ekinci et al., 2004).  Considering only the 

presence of thermomechanical noise, the minimum detectable frequency shift is given by 

 

		
δωn ,min =

ωn0kBTΔω
EcQ

                  (2.70) 

 

where 	kB  is the Boltzmann constant, T is the temperature and 	Ec  is the maximum mechanical 

energy stored in the resonator.  By substituting (2.70) into (2.69) the ultimate mass resolution can 

be computed 

 

		
mmin =2mef0

kBTΔω
EcQωn0

                   (2.71) 
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Force sensors 

 

There are many different operational modes of AFM, which will be discussed in detail in 

Chapter 3.  In this section we focus on dynamic modes of AFM wherein harmonic excitation is 

applied to a cantilever as it scans the surface of a sample and the cantilever’s dynamics remain 

within the linear regime.  The cantilever has a sharp tip at one end and the interaction force 

between the tip and sample, 	Fts , is used to measure the topography.  Specifically, the force 

gradient 
	

∂Fts
∂z

 is used as an indicator for measuring the sample height. As the tip approaches the 

sample, it initially feels the attractive van der Waals forces between the tip and sample, and once 

the tip makes contact with the sample, it feels repulsive Hertz forces along with the attractive van 

der Waals forces. There are many additional types of forces that may be present in the tip-sample 

interaction, such as electrostatic forces, adhesive forces and viscous forces; but a commonly used 

tip sample force model is the Derjaguin-Muller-Toporov (DMT) contact model which accounts 

for only the attractive van der Waals and repulsive Hertz forces, as shown in Fig. 2.5.  In 

addition to the tip-sample interaction force 	Fts , the tip is under the action of the mechanical 

restoring force from the resonator, 		kefz . Positions where the mechanical restoring force exactly 

counter-balances the tip-sample force correspond to equilibrium positions, 		zeq .  This is 

illustrated in Fig. 2.5 where the parameter 		z0  
denotes the un-deflected tip-sample separation.  

When 		z > −z0 , the tip is not in contact with the sample, and only the attractive van der Waals 

force is present. When		z < −z0 , the tip is in contact with the sample and both attractive and 

repulsive Hertz-like forces act on the cantilever tip.  There may exist two equilibrium positions, 

one position corresponding to a point above the sample where 		z > −z0 , and one corresponding to 

a point on the surface of the sample where 		z < −z0 , as shown in Fig. 2.5. For small perturbations 

in the displacement with respect to an equilibrium position, the tip sample interaction force may 

be approximated as 
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Fts(z)= Fts(zeq )+

∂Fts
∂z

⎛

⎝⎜
⎞

⎠⎟ zeq
(z − zeq )            (2.72) 

 

Hence, the effective stiffness of the resonator becomes  

 

		
kef = kef0 +k , k = −

∂Fts
∂z

⎛

⎝⎜
⎞

⎠⎟ zeq
          (2.73) 

If the equilibrium position corresponds to a point above the sample (i.e., the tip is not in contact 

with the sample), then the force gradient is positive, and the presence of the tip-sample 

interaction force decreases the effective stiffness.  In contrast, if the equilibrium position is in the 

sample (i.e., the tip and sample are in contact), the force gradient is negative, and the tip-sample 

interaction increases the effective stiffness.   

 

In a method known as frequency-modulation AFM (FM-AFM), the resonant frequency of the 

transient cantilever response is used to track variations in the force gradient.  The force gradient 

is thus determined from a measureable shift in the resonant frequency, .  Substituting (2.64) 

and (2.73) into the relation gives 

 

           (2.74) 

 

For  we can asymptotically expand (2.74) with respect to , 

 

                                (2.75) 

	∂ωn

		ωn
2 = kef /mef

		
ωn0 + ∂ωn =

kef 0 +k
mef 0

=ωn0 1+ k
kef 0

		k /kef0 <<1 		k /kef0

		
ωn0 + ∂ωn ≈ωn0 1+ k

2kef 0
⎛

⎝⎜
⎞

⎠⎟
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                           (a)           (b) 

Figure 2.5: (a) A schematic of the lumped-parameter-model of a conventional AFM cantilever 

interacting with a sample and (b) a qualitative plot of the tip-sample interaction force, 		Fts(z) , 

and the mechanical restoring force 		kefz  versus z.  When the tip is not in contact with the sample, 

it holds that 		z > −z0 , and when the tip is in contact with the sample, it holds that 		z < −z0 .  

Positions for which 		kefz  is equal to 		Fts(z)  correspond to equilibrium positions.  In  (b), two 

equilibrium points are shown: one corresponding to a point on the surface of the sample for 

which 		zeq < −z0 ,  and the other corresponding to a point just above the sample for which 

		zeq > −z0 . 

 

By rearranging (2.75), we can relate the force gradient to the measured change in the resonant 

frequency, 

 

		

∂Fts
∂z

⎛

⎝⎜
⎞

⎠⎟ zeq
= −k = −

2kef0
ωn0

δωn                      (2.76) 

 

The quantity 		2kef0 /ωn0 is the inverse of the stiffness responsivity of the resonator, 	Rk , defined as 

the ratio of the shift in the resonant frequency for a given change in the effective stiffness, 

 

Sample 

		kef 		cef

		mef

	z

		z0



	 37	

		
Rk =

∂ωn

∂kef
             (2.77) 

 

which, for 		k /kef0 <<1 , gives 
		
Rk =

ωn0
2kef0

. 

 

As with the ultimate mass resolution, the ultimate stiffness resolution is governed by the 

minimum detectable shift in the resonant frequency (see equation (2.70)).  Assuming that all 

noise sources other than thermomechanical are negligible, the minimum detectable force gradient 

is 

 

		

∂Fts
∂z

⎛

⎝⎜
⎞

⎠⎟ zeq min

= k
min

=2kef0
kBTΔω
EcQωn0

                     (2.78) 

 

In a different AFM technique known as amplitude-modulation AFM (AM-AFM), the amplitude 

of the steady-state cantilever response is used to detect variations in the force gradient while the 

excitation frequency is held fixed at a set-point value, 	ω sp .  In an AM-AFM scan (in which the 

dynamics of the cantilever remain in the linear regime), variations in the sample height cause 

changes in the force gradient, which, in turn, modify the steady-state amplitude.  In order to 

avoid artifacts in the image, it is important that the set-point excitation frequency either 1) 

remains larger than the instantaneous resonant frequency throughout the scan so that the 

condition 		ω sp >ωn0 +δωn  holds, or 2) remains smaller than the resonant frequency throughout 

the scan so that the condition 		ω sp ≤ωn0 +δωn  holds. 

 

To explain in more detail how the force gradient is used to measure topography and the problems 

associated with driving the cantilever exactly at the natural frequency, consider AM-AFM 

measurements taken at three different locations in a sample corresponding to different sample 

heights, as shown in Fig. 2.6a.  At location 1, the undeflected tip-sample separation is 
 
; at 		z01
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location 2, the undeflected tip-sample separation is  and at location 3, the undeflected tip-

sample separation is , where . Note that, at each location, the absolute height of 

the cantilever base (with respect to a fixed reference frame) is the same so that the sample height 

is smallest at location 1 and largest at location 3.  Here we will assume that the motion of the 

cantilever is restricted to small displacements about the equilibrium point in the repulsive force 

regime so that the tip is always in contact with the sample and the force gradient is always 

negative.   

 

The corresponding force-displacement curves and equilibrium points for the three locations are 

depicted in Fig. 2.6b. We see that, as the sample height increases, the force-displacement curve 

shifts and the equilibrium position increases from 
 
at location 1, to at location 2, to  

at location 3.  Further, the magnitude of the gradient at the equilibrium position increases from 

 , to , to , and as a result the effective stiffness of 

the oscillator increases from 
 
, to , to  .   

 

Let us consider separately two different scenarios:  an AM-AFM scan from location 2 to location 

1, and an AM-AFM scan from location 2 to location 3. In Figs. 2.7 and 2.8, we show the 

resulting shifts in the resonance curves that occur before the feedback control acts. When the tip 

moves from location 2 to location 3, the sample height increases, and the effective stiffness 

increases causing the entire resonance curve to shift upward. Alternatively, when the tip moves 

from location 2 to 1, the sample height decreases, the effective stiffness decreases and the 

resonance curve shifts downward.  We can see in Fig. 2.7 that if the set-point excitation 

frequency is exactly equal to the initial resonant frequency, i.e. if , the 

resulting change in the steady-state amplitude due to an increase in sample height and due to a 

decrease in sample height may be indecipherable. 

 

 

		z02

		z03 		z03 < z02 < z01

		zeq1 		zeq2 		zeq3

		
k1 = −

∂Fts
∂z

⎛

⎝⎜
⎞

⎠⎟ zeq1 		
k2 = −

∂Fts
∂z

⎛

⎝⎜
⎞

⎠⎟ zeq2 		
k3 = −

∂Fts
∂z

⎛

⎝⎜
⎞

⎠⎟ zeq3

		kef1 = kef0 +k1 		kef2 = kef0 +k2 		kef3 = kef0 +k3

		ω sp =ωn2 = kef2 /mef
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Figure 2.6:  (a) A schematic of the lumped-parameter-model for an AFM cantilever interacting 

with a sample at three different locations corresponding to different sample heights: location 1, 

location 2 and location 3.  At location 1, the sample height is lowest and at location 3, the 

sample height is highest.  (b) A qualitative plot of the tip-sample interaction force versus z at the 

three different locations depicted in (a).  Notice that as the sample height increases, the force 

gradient at the equilibrium point on the surface of the sample (i.e. the equilibrium point for 

which 		zeq < −z0 ) increases in magnitude.  
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Figure 2.7: Resonance curves at locations 1, 2 and 3 shown in Fig. 2.6a.  When the tip moves 

from location 2 to 1, the effective stiffness decreases and the resonance curve shifts downward 

toward lower frequencies and when the tip moves from location 2 to 3, the effective stiffness 

increases and the resonance curve shifts upward.  This figure illustrates that if the set-point 

frequency is set equal to the initial resonant frequency at location 2, the steady-state amplitude 

will decrease if the sample height increases and if the sample height decreases. 

 

 

 
Figure 2.8: Resonance curves at locations 1, 2 and 3 shown in Fig. 2.6a. Here we see that if the 

set-point frequency is larger than the initial resonant frequency at location 2, the steady-state 

amplitude will decrease if the sample height decreases and increase if the sample height 

increases. 
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In Fig. 2.8 we see that if the set-point excitation frequency is instead chosen to be larger than the 

initial resonant frequency, i.e. 		ω sp >ωn2 , then an upward shift in the steady-state amplitude may 

clearly be interpreted as an increase in the sample height, and a downward shift in the steady-

state amplitude may be interpreted as a decrease in the sample height.  Feedback control would 

then be used to adjust the distance between the cantilever base and the sample in order to recover 

the initial, set-point amplitude of the steady-state response.  Equivalently, the set-point excitation 

frequency could be selected to be smaller than the initial resonant frequency. What is important 

is that, as the sample height increases or decreases, the steady-state amplitude varies 

monotonically in order to avoid artifacts in the image.   

 

Assuming that, indeed, the set-point excitation frequency remains either larger or smaller than 

the instantaneous resonant frequency, we can approximately compute the change in the effective 

stiffness associated with a measurable change in the steady-state amplitude. The instantaneous 

steady-state amplitude is 

 

		Zss = Zss0 +δZss                           (2.79) 

 

The change in the steady-state amplitude is implicitly related to the change in effective stiffness 

via the shift in the resonant frequency.  By substituting (2.58) and (2.64) into (2.79), gives 

 

		

Zss0 +δZss =
P

ωn0 +δωn( )2 −ω 2⎡
⎣⎢

⎤
⎦⎥

2
+4ζ 2ω 2 ωn0 +δωn( )2

= P

ωn0
2 1+ δωn

ωn0

⎛

⎝⎜
⎞

⎠⎟

2

−ω 2
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

2

+4ζ 2ω 2ωn0
2 1+ δωn

ωn0

⎛

⎝⎜
⎞

⎠⎟

2

                 (2.80) 
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Substituting 
		
δωn

ωn0
= k
2kef 0

 into (2.80) and asymptotically expanding the right-hand-side with 

respect to 
		
k
kef 0

, under the assumption that 
		
k
kef 0

<<1 , we have 

 

		

k ≈

2kef 0
Zss0ωn0

2 (1−2ζ 2)ω sp −ωn0
2 δZss , ω sp >ωn

−2kef 0
Zss0ωn0

2 (1−2ζ 2)ω sp −ωn0
2 δZss , ω sp <ωn

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

       (2.81) 

 

So that if the set-point excitation frequency remains greater than the instantaneous resonant 

frequency, a downward (upward) shift in the steady-state amplitude indicates a decrease 

(increase) in the effective stiffness and sample height. In contrast, if the set-point excitation 

frequency remains less than the instantaneous resonant frequency, an downward (upward) shift 

in the steady-state amplitude indicates an increase (decrease) in the effective stiffness and sample 

height.  This of course is only valid for dynamic AFM modes in which the tip remains in contact 

with the sample and the dynamics can be approximated as linear.  In other words, when the tip 

undergoes small displacements with respect to an equilibrium position on the surface of the 

sample for which the force gradient is negative. Opposite trends would be observed in the case of 

small displacements with respect to an equilibrium position above the sample for which the force 

gradient is positive.   

 

2.2 Nonlinear dynamic regime 

 

2.2.1 Motivation for intentional nonlinearity in micro/nanomechanical resonators 

 

It is clear from (2.69) and (2.78) that the mass and force sensitivity of micro/nanomechanical 

resonators can be improved by decreasing the effective mass and stiffness, increasing the 

resonant frequency, increasing the Q-factor and decreasing the ratio of the thermal energy, 	kBT , 
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to the maximum mechanical energy.  Decreasing the overall size of the resonator simultaneously 

results in a decrease in effective mass and effective stiffness and an increase in the resonant 

frequency and the Q-factor.  To illustrate this effect, consider the dependence of the effective 

stiffness, effective mass and the resonant frequency on system parameters (deduced from (2.18), 

(2.36), (2.48) and (2.49)) 

 

		 
kef ∼ Ew

t
l

⎛
⎝⎜

⎞
⎠⎟

3

, mef ∼ ρwtl , ωn
2 ∼

E
ρ

t
l2

⎛
⎝⎜

⎞
⎠⎟

2

        (2.82) 

 

where w is the beam width, t is the thickness, l is the length, E is Young’s modulus and ρ  is the 

density.  If the length, width and thickness are uniformly scaled down by a factor of n, then the 

effective stiffness decreases by a factor of n, the effective mass decreases by a factor of n3 and 

the resonant frequency increases by a factor of n2.  Decreasing the size of the resonator also 

reduces internal damping by minimizing or eliminating grain boundaries and defects within the 

beam (e.g. single crystal Si).  The external damping due to interfacial friction with the 

surrounding medium can be reduced by decreasing the pressure, as is often done in 

micro/nanoresonant sensing applications.  In the case of nanoscale resonators operating in ultra-

high-vacuum (UHV) conditions, further reductions in device scale may additionally reduce the 

thermoelastic damping within the structure due to the increase in the resonant frequency itself.  

Thermoelastic damping plays a large role when other sources of dissipation have been 

substantially mitigated and it constitutes the losses associated with transverse heat flow from the 

warmed material in compression to the cooled material in tension.  If the resonant frequency is 

sufficiently large, the oscillation period is small compared to the characteristic time associated 

with the thermoelastic heat flow (i.e. the time it takes for the material to equilibrate) and the 

losses are therefore reduced (Roszhart, 1990; Sosale, 2011).   

 

In the ongoing push for enhanced sensitivity, the size of state-of-the-art (with regard to 

sensitivity) resonant sensors are becoming increasingly small.  Recall that, in the derivation of 

the linear beam equation, we assumed relatively small displacements and slopes.  If in contrast, 

the relative response amplitude compared to the characteristic size of the device becomes large, 
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axial strain along the beam induces a nonlinear term in the equation governing transverse motion 

of the beam.  In this sense, all beam structures have a threshold amplitude above which they 

behave nonlinearly and the aforementioned linear analysis is not applicable.  As the 

characteristic size of the resonator decreases, this threshold amplitude decreases as well and in 

extreme cases, the linear dynamic regime may occur entirely below the noise floor.  In any event, 

by operating at larger amplitudes that are further within the nonlinear regime, the signal-to-noise-

ratio (SNR) may be enhanced, which is one source of motivation for intentional nonlinearity in 

micro/nanoresonators.  Further, in some cases, nonlinear phenomena may be exploited to achieve 

paradigm-shifting improvements in the area of micro/nanoresonant sensing (Cho et al., 2016; 

Lifshitz and Cross, 2008; Rhoads et al., 2010; Younis, 2011). 

 

Nonlinearity due to mid-plane stretching of the beam is known as geometric nonlinearity and is 

often observed in clamped-clamped structures.  Geometric nonlinearity is the most common type 

of nonlinearity encountered in micro/nanoresonators, especially in mass-sensing applications.  

Other sources of nonlinearity include nonlinear interactions, like the interaction between the tip 

and sample in AFM, nonlinear damping, material nonlinearity and nonlinear external potentials 

associated with the actuation or sensing mechanism.  In the following section, various sources of 

nonlinearity will be discussed in more detail.  

 

2.2.2 Sources of nonlinearity 

 

2.2.2.1 Geometric nonlinearity  

 

When a mechanical structure undergoes transverse motion and is restricted at its boundaries, 

elongation of the material generates axial tension, which in turn, introduces geometric 

nonlinearity with respect to the transvers deflection.  Nayfeh and Mook (1985) present a detailed 

derivation of the equations governing the transverse motion of a beam undergoing geometric 

mid-plane stretching. In this exposition, it is assumed that plane sections remain plane, rotary 

inertia effects are negligible and the stress is linearly related to strain.  Depending on the 

boundary conditions, they distinguish between two important cases: 1) when the axial 

displacement along the beam is of the same order as the transverse displacement and 2) when the 
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axial displacement is of the same order as the square of the transverse displacement and out-of-

plane motion can be neglected.  The second case is far more common in the analysis of 

geometrically nonlinear beam structures but the first case has been shown to be appropriate for 

hinged-hinged boundary conditions.    Since in micro/nanoresonant sensing, clamped-clamped 

boundary conditions are more common, we will focus on the second case.  Following the 

notation of Section 2.1, the governing equation is given by 

 

		
mvtt +EIvxxxx −

EA
2l vxx vx

2dx
0

l

∫ =0             (2.81)  

 

where A is the cross-sectional area of the beam.  If we incorporate linear damping, assume the 

beam vibrates in its fundamental mode shape of the underlying linear system and project (2.81) 

onto the fundamental mode shape (stated in (2.21) for i=1), the resulting reduced order model is  

 

		 mef !!z + cef !z +kefz +k3z
3 =0               (2.82) 

 

where 		kef , 		mef  and 		cef  are the effective linear stiffness, mass and damping coefficient defined in 

(2.48), (2.49) and (2.50) for 		a= l /2  and i=1,  z is the displacement of the center of the beam (

		z = v(l /2,t)) and 		k3  is the effective cubic stiffness given by 

 

		
k3 =

EA
φ1
4(l /2) − φ1

''φ1dx
0

l

∫ φ1
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0

l

∫
⎛

⎝
⎜

⎞
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⎟                                                                                           (2.83) 

 

The reduced order model (2.82) has the form of the well-known Duffing equation (in the absence 

of external forcing).  Under harmonic excitation, the steady-state amplitude as a function of drive 

frequency is not a Lorentz curve as it is for the linear case; rather the frequency-amplitude curve 

bends so that the resonant frequency is amplitude dependent.  The nonlinear bending of the 

resonance curve causes hysteresis, bifurcation points and a multi-valued region for which there 

coexists two stable solutions and one unstable solution.  
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To discuss these nonlinear phenomena in more detail, the method of multiple-scales will be 

employed to analyze a Duffing oscillator under harmonic excitation.  To this end, we incorporate 

harmonic excitation into (2.82) 

 

		 mef !!z + cef !z +kefz +k3z
3 = F0 cosωt                (2.84) 

 

and for convenience, we introduce the parameters, 

 

		
2µ =

cef
mef

, α =
k3
mef

, q0 =
F0
mef

               (2.85) 

 

and write (2.84) in the form 

 

		 !!z +2µ !z +ωn
2z +αz3 = q0 cosωt                (2.86) 

 

The method of multiple scales is an analytical technique that is part of a larger family of 

perturbation techniques used to analyze weakly nonlinear systems.  In this method, we isolate the 

dynamics occurring at different time scales by considering expansions in terms of multiple 

independent time variables instead of a single independent time variable.  We introduce the small 

parameter ε  and the new independent time scales,  

 

		 Tn = ε
nt , n=0,1,2,… .                           (2.87) 

 

Further, we rescale the displacement, damping coefficient and forcing level 	z→εz , µ→εµ , 

		q0→εq0 , and express the solution as an asymptotic series with respect to ε ,  

 

		 z t ;ε( ) = z0 T0 ,T1 ,…( )+ εz1 T0 ,T1 ,…( )+…
 
 .                (2.88) 
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We are interested in studying the response of the system near fundamental resonance and hence, 

we introduce the frequency detuning parameter σ  of 		O(1) , and consider small perturbations in 

the excitation frequency with respect to the linearized resonant frequency 
 

	ω =ωn + εσ                        (2.89) 

 

By substituting (2.87) through (2.89) into (2.86), one recovers a series of coupled linear ordinary 

differential equations (ODEs) governing the response at different orders of ε .  As shown by 

Nayfeh and Mook (1985), by solving the ODEs corresponding to 		O(1)  and 		O(ε ) , the response to 

leading order can be computed and is given by, 

 

		z(t)= acos(ωt −γ )+O(ε )                    (2.90) 

 

where 	a  and γ  vary slowly as compared to z and satisfy the set of autonomous, coupled ODEs, 

 

		

′a = −µa+ 12
q0
ωn

sin(γ )

a ′γ =σa− 38
α
ωn

a3 + 12
q0
ωn

cos(γ )
                             (2.91) 

 

The steady-state values of 	a  and γ  correspond to fixed points of (2.91).  By substituting 

		 ′a = ′γ =0  into (2.91) and rearranging, we obtain the steady-state frequency-amplitude relation  

 

		
µ2 + σ − 3α

8ωn

a2
⎛

⎝⎜
⎞
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⎣

⎢
⎢
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q0
2

4ωn
2                    (2.92) 

 

When 		µ = q0 =0 , (2.92) defines the frequency-amplitude relation of the transient response of an 

unforced, undamped oscillator.  This curve is the so-called backbone curve and is given by,  
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a=

8σωn

3α
⎛

⎝⎜
⎞

⎠⎟

1/2

                       (2.93) 

 

In Fig. 2.9, we plot the amplitude versus frequency for two different cases: 	α >0  and 	α <0 . If 

	α =0 , the system is linear and the resonance curve is a Lorentz curves as discussed in Chapter 

2.1.  For 	α >0 , the frequency-amplitude curve bends forward towards larger frequencies, known 

as a hardening effect in the resonance curve.  This is the case for geometric nonlinearity in 

doubly-clamped beams.  Alternatively, for 	α <0  the frequency-amplitude curve bends backward 

towards lower frequencies, which is known as a softening effect. As shown in Fig. 2.10, for 

	α ≠0  there exist frequency ranges for which only one solution exists and frequency ranges for 

which three solutions exist.  The multivalued response leads to the jump phenomenon where 

small changes in the frequency lead to abrupt changes in the steady-state amplitude.  The 

frequencies, at which an abrupt change or jump in the response occurs, correspond to bifurcation 

points, and these bifurcation points cause hysteresis loops in the frequency response.  For 	α >0  (

	α <0 ), if the drive frequency is incrementally swept forward (backward), the response will track 

the upper solution branch in the multivalued region and then abruptly decrease at the jump-down 

bifurcation point. On the other hand, for 	α >0  (	α <0 ), if the drive frequency is incrementally 

swept backward (forward), the response will track the lower solution branch in the multivalued 

region and then abruptly increase at the jump-up bifurcation point.  
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Figure 2.9: The frequency amplitude curves at steady state for a Duffing oscillator. When the 

nonlinear stiffness coefficient, α , is negative, we observe softening behavior in the resonance 

curve, and when α  is positive, we see hardening in the resonance curve. The black dashed lines 

denote the backbone curves corresponding to zero damping and zero forcing. 

 

 
Figure 2.10: Primary resonance curve of Duffing oscillator having positive cubic stiffness.  The 

nonlinear bending in the frequency-amplitude curve leads to the jump phenomenon, hysteresis 

loops and a multivalued region in which there coexists two stable solution branches (solid blue 

curves) and one unstable solution branch (dashed red curve). 

 



	 50	

To determine which solutions are physically realizable, a stability analysis must be performed.  If 

a solution is unstable, it is not physically realizable.  To this end, we investigate the nature of the 

equilibrium points of the autonomous set of equations (2.91).  Let 		a= a0 +ξ  and 	γ = γ 0 +ψ  

where 
	
ξ <<1, ψ <<1 and 		(a0 ,γ 0)  corresponds to an equilibrium point of (2.91). By 

substituting these relations into (2.85) and Taylor expanding about 		(a0 ,γ 0) , we obtain the set of 

linear first order differential equations governing the perturbations ξ  and ψ   
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      (2.94) 

 

This linear set of homogenous first order differential equations has a solution of the form 

 

		 ξ =Ξe
λt , ψ =Ψeλt                                      (2.95) 

 

Substituting (2.95) into (2.94) we obtain the expression satisfied by λ ,  
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For stability, both eigenvalues must have non-positive real parts and, hence, the steady-state 

response is unstable when 

 

  
Λ = µ2 + σ −

3αa0
2

8ω n

⎛
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⎞
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                    (2.97) 

 

It can be shown that the region of instability encompasses the middle solution branch within the 

multivalued region, as indicated in Fig. 2.10.   When multiple stable solutions exist, the initial 

conditions determine which solution is physically realized.  The set of all initial conditions that 

give rise to a particular steady solution constitute the domain of attraction for that solution.   

 

To summarize some important points regarding geometric nonlinearity in beams, this type of 

nonlineaity is due to mid-plane stretching and is a common type of nonlineaity encountered in 

micro/nanoreosnators.  The reduced order model of the fundamental bending mode is that of a 

Duffing oscillator which has cubic stiffness.  For sufficiently small response amplitudes, the 

Duffing oscillator behaves nearly linearly and the frequency-response curve approaches a 

Lorentz curve.  As the amplitude increases, nonlinear bending of the frequency-amplitude curve 

occurs leading to the jump phenomenon, hysteresis loops, and frequency ranges for which two 

stable solutions exist.   

 

2.2.2.2 Nonlinear interactions 

 

Geometric nonlinearity does not play a significant role in the dynamics of an AFM cantilever 

interacting with a sample due to the free boundary condition at the cantilever tip.  The free 

boundary condition substantially lowers the axial tension in the beam and thereby reduces mid-

plane stretching.  That is to say, the AFM cantilever itself is a linear system but the interaction of 
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the tip and the sample introduces nonlinearity in the dynamics of the cantilever (Eaton and West, 

2010; Garcia, 2010; Garcia and Perez, 2002; Raman et al., 2008).   

 

As discussed in Section 2.1, depending on the sample and operating conditions, the tip-sample 

interaction may contain van der Waals forces, Hertzian forces, capillary forces, electrostatic 

forces, magnetic forces and viscous forces; but for simplicity, we consider the DMT contact 

model, which includes only the van der Waals and Hertzian forces.  When the tip is not in 

contact with the sample, the attractive van der Waals force governs the interaction and when the 

tip is in contact with the sample, both the repulsive Hertzian force and attractive van der Waals 

force govern the interaction.  For relatively large indentations of the tip into the sample, the 

Hertz force dominates the interaction (Binning et al., 1986; Derjaguin et al., 1980).  In Section 

2.1, we considered the case when the tip oscillates with small amplitude in the immediate 

vicinity of an equilibrium point.  In this scenario, it is appropriate to Taylor expand the DMT 

contact law, allowing for a complete linearization of the dynamics.  However, in most AFM 

applications, the displacement of the tip is not confined to small perturbations near an 

equilibrium point, and the dynamics are therefore non-linearizeable (Lee et al., 2003; Rutzel at 

al., 2003; Stark et al., 2010).   

 

In the most common type of dynamic AFM mode known as tapping mode AFM, the tip taps 

against the surface so that, for most of the oscillation period, the tip is not in contact with the 

sample.  The non-smooth vibro-impacts between the tip and sample are strongly nonlinear and 

result in nonlinear bending of the resonance curves of the cantilever.  For example, a resonance 

curve of a commercial AFM cantilever interacting with a sample is shown in Fig. 2.11.  The 

solid curves denote the response of the cantilever when it is interacting with a sample and the 

blue dashed curve is the linear response of the cantilever in absence of interaction with a sample.  

The red crosses denote the unstable solution branch. In this case, the tip is about 150nm above 

sample and, hence, the onset of the nonlinear bending in the frequency response curve occurs at 

an amplitude of ~150nm.  In other words, the cantilever responds linearly for amplitudes small 

enough that the tip does not feel the sample, but for amplitudes large enough, the tip sample 

interaction causes bending of the resonance curve.  As the response amplitude increases into the 

nonlinear regime, initially the attractive van der Waals forces are felt resulting in a softening 
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effect in the resonance curve; and as the amplitude further increases, the repulsive Hertz forces 

dominate resulting in a stiffening effect.  We see that the nonlinear bending of the resonance 

curve results in a multivalued region where there coexist two stable branches and one unstable 

branch.  The significance of the coexisting solution branches will be discussed in detail in 

Chapter 3. The nonlinear interaction between the tip and sample also generates higher harmonics 

in the cantilever’s response and, in general, these higher harmonics have poor SNR.  Special 

techniques can be used to amplify these higher harmonic signals for use in compositional AFM 

imaging, and one such approach is presented in Chapter 3.   

 

Figure 2.11:  The solid blue curve corresponds to the resonance curve of a commercial AFM 

cantilever interacting with a sample having a Young’s modulus of 0.1 GPa, at a static tip-sample 

distance of 150 nm.  The dashed blue curve denotes the linear response of the cantilever in 

absence of interaction with the sample.  The red crosses denote the unstable solution branches.  

 

2.2.2.3 Nonlinear damping 

 

Typically, the damping mechanisms present in micro/nanomechanical systems are approximated 

as a linear viscous element in the reduced order model but, in some cases, this simple linear 

model is not sufficient.  More recently, researchers have explored nonlinear damping models to 

approximate the dynamics of microresonators (Eichler 2011, Zaitsev 2012, Jeong 2013, Asadi 

2017, Anderson 2012).  In particular, it has been shown that a nonlinear damping model 
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proportional to the product of the square of the displacement and the velocity captures the 

amplitude-dependent damping effect observed in some microresonant systems.  In Chapter 4 we 

analyze a Si cantilever that is attached at its free end to a fixed base via a polymer bridge.  Asadi 

et al. (2017) previously showed that the reduced order model governing flexural motion of this 

system is that of a Duffing equation with an additional nonlinear damping term. Whereas, 

previously, Asadi et al. considered harmonic excitation at a fixed forcing level, we consider a 

forcing level proportional to the square of the excitation frequency (owing to the presence of 

base excitation) and study how the nonlinear damping term affects the resonant bandwidth of the 

system. 

 

2.2.2.4 Nonlinear external potentials 

 

A common technique used for the excitation and sensing of vibration in micro/nanoresonators is 

parallel-plate electrostatic actuation and/or detection. In the simplest variation of electrostatic 

actuation, the resonator is excited with an electrostatic force applied directly to the beam 

structure (rather than at the base) and acting in the transverse direction.  The microbeam 

constitutes a non-stationary upper electrode, which forms a parallel-plate-capacitor with a 

stationary lower electrode mounted below the microbeam.   A constant DC load is superimposed 

on a harmonic AC load causing the resonator to vibrate about a deflected position.  The 

electrostatic force is an essentially nonlinear function of the distance between the upper and 

lower electrodes, and to leading order, this force is quadratic in nature (Batra et al., 2007; 

Younis, 2011).  The quadratic term in the reduced order model of the resonator has a softening 

effect on the primary resonance curve.  Typically, geometric nonlinearity due to midplane 

stretching also plays a role in the dynamics of these systems.  Depending on the relative strength 

of the cubic term (resulting from geometric nonlinearity) and quadratic term (resulting from 

electrostatic nonlinearity), the system may exhibit strong Duffing-like hardening behavior, strong 

softening behavior or mixed behavior.    In some mass sensing applications, the drop down 

bifurcation resulting from either strong softening or strong hardening behavior is utilized as an 
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ultrasensitive switch detecting a threshold amount of mass (Bajaj et al., 2016; Bouchaala et al., 

2016; Younis et al., 2009).  In other studies, researchers have leveraged the hardening and 

softening effects against each other in order to expand the linear dynamic regime (Kacem et al., 

2010).   In the work presented in this thesis, I have only considered piezoelectric excitation at the 

base of microbeam structures and, hence, this type of nonlinearity does not play a role in the 

systems we consider.   
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Chapter 3 

 

Performance of an inner-paddled AFM cantilever designed to promote internal resonance 

 

3.1 Introduction 

 

As applications of nanotechnology multiply, increasingly small samples and devices emerge 

calling for nano-scale morphological and compositional measurements. Assessing the 

mechanical properties of bio-samples is particularly important, because it can help us understand 

the relationships between mechanical properties and biological processes and enhance our 

fundamental understanding of the bio-sample.  For example, the mechanical stiffness of cells has 

been related to malignancy (Suresh et al., 2015), and the loss tangent of cancer cells has been 

linked to metastatic potential (Rother et al., 2014).  A cornerstone of nanoscience is the 

dependence of material properties on the physical dimensions of the material and, hence, the 

quantification of material properties such as Young’s (or elastic) modulus in the nano-scale can 

be challenging.  In fact, the nano-scale quantitative measurement of material properties is a 

research area of immense interest and, while considerable headway has been made, there is still 

much to understand and develop in this field.  A measurement technique that has made great 

strides in nano-scale compositional mapping is Atomic Force Microscopy (AFM), which was 

invented in 1986 by Binning, Quate, and Gerber (Binning, Quate, and Gerber, 1986) .   

 

AFM is an imaging technique that uses a mechanical cantilever with a sharp tip to scan the 

surface of a sample while the deflection of the cantilever is detected with a laser system.  In the 

original format known as contact mode AFM, the tip remains in constant contact as it scans the 

sample, and the static deflection of the cantilever is used to provide a topographical measurement 

of the surface.  Soon after the invention of AFM, dynamic mode AFM (Martin, Williams, and 

Wickramasinghe, 1987) was introduced and has since become a mainstay for the many different 

variations of AFM.  In dynamic mode AFM, a resonant harmonic excitation is applied to either 

the base of the cantilever, the base of the sample or directly to the tip, and a feedback mechanism 

is employed to capture the sample’s morphology (García, 2002).  While the cantilever responds 

harmonically to the excitation as it scans the sample, it may remain in contact with the sample in 
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a variation known as contact resonance AFM (Cartagena-Rivera et al., 2015; Gannepalli et al., 

2011; Mahaffy et al., 2000; Mahaffy et al., 2004; Yablon et al., 2012; Yuya, Hurley, and Turner, 

2008), or it may be in contact with the sample for only part or none of the oscillation cycle in 

formats known as tapping mode AFM (or intermittent-contact mode AFM) and non-contact mode 

AFM (Eaton, 2010; García, 2010).  The primary advantage of using either intermittent-contact 

mode or non-contact mode AFM is that the reduced tip-sample interaction results in minimal 

damage to the tip and sample while achieving high sensitivity due to the high quality factor of 

the micro-cantilever employed in the AFM operation. 

 

The most common technique used in AFM operation is known as amplitude modulation AFM 

(AM-AFM) wherein the steady-state response amplitude of the cantilever serves as the feedback 

parameter, and the relative tip-sample separation is adjusted in order to maintain a predetermined 

“set-point” amplitude. The resulting relative tip-sample separation conveys topographical 

information while the phase of the steady-state cantilever response with respect to the excitation 

provides a qualitative compositional map (García, 2010). Nanomechanical imaging based on the 

phase in an AM-AFM configuration is known as phase imaging or loss tangent imaging (Paulo 

and García, 2001; Proksch et al., 2016; Proksch and Yablon, 2012; Tamayo and Garcia, 1997). 

While phase imaging and loss-tangent imaging provide useful qualitative compositional maps, 

their main drawback is that, for an inelastic tip-sample interaction, the information delivered by 

the phase couples the contributions of the conservative and non-conservative constituents of the 

tip-sample force.  Specifically, the AFM loss tangent has been analytically related to the ratio of 

the loss modulus to the storage modulus (Hurley et al., 2015; Proksch et al., 2016).  Moreover, 

for a completely elastic tip-sample interaction, the phase shows no variation with respect to 

changes in the Young’s modulus (Garcia and Proksch, 2013; Tamayo and Garcia, 1997).  This 

implies that in the absence of dissipative forces in the tip-sample interaction, the phase provides 

no compositional information regarding stiffness. 

 

In order to gather more information about the sample, researchers began measuring the response 

at more than one frequency in what is generally known as multi-frequency AFM (Dufrêne et al. 

2017; Garcia and Herruzo 2012; Rodríguez and García 2004).  While multi-frequency AFM is 

not limited to intermittent-contact and non-contact mode AFM and, in fact, significant effort has 
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been devoted to contact resonant mode AFM (Cartagena-Rivera et al., 2015; Gannepalli et al., 

2011; Yablon et al., 2012) where the tip-sample interaction is approximately linear, in this work 

we restrict our attention to tapping mode AFM. A common approach, called bimodal AFM, relies 

on the excitation and detection of two resonant frequencies. Some studies have investigated the 

use of the first flexural and first torsional modes in bimodal AFM (Kawai et al., 2010), but most 

have focused on the first two flexural modes (Garcia and Proksch, 2013; Herruzo et al., 2013; 

Herruzo, Perrino, & Garcia, 2014; Hurley et al., 2015; Kocun et al., 2017; Labuda et al., 2016; 

Martinez-Martin et al., 2011; Rodríguez and García, 2004). Typically, the fundamental resonant 

mode is operated in either amplitude modulation (AM) or frequency modulation (FM) mode to 

track topographical variations while the higher mode is used to deliver compositional 

information.   Martinez-Martin et al. used a bimodal configuration wherein the fundamental 

mode was controlled via FM and the higher mode operated in open loop to quantitatively 

measure the Young’s modulus of a single immunoglobin M (IgM) anti-body (Martinez-Martin et 

al., 2011). Herruzo et al. extended the approximate analytical model used by Martin-Martniez et 

al. (Kawai et al., 2009; Sader and Jarvis, 2004) to compute the damping coefficient, storage 

modulus and maximum sample deflection of various polymer blends in a technique that involved 

a total of five feedback loops (Herruzo et al., 2014). Kokun et al. used bimodal AM-FM to 

generate quantitative compositional maps of samples encompassing a wide stiffness range, 

including a compliant gel, DNA and stiff metals (Kocun et al., 2017; Labuda et al., 2016).  

Solares and his colleagues extended the bimodal concept to trimodal AFM where the excitation 

of three eigenmodes adds subsurface imaging capabilities for soft samples (Ebeling, Eslami, and 

Solares, 2013; Solares and Chawla, 2010a, 2010b).  Furthermore, the excitation of four 

eigenmodes – tetramodal AFM – and five eigenmodes – pentamodal AFM – has been explored, 

and the benefits of such techniques are still under investigation (Solares, An, and Long, 2014). 

 

Another approach to multi-frequency AFM is multi-harmonic AFM, in which the cantilever is 

excited with a single frequency while the response is measured at several frequencies 

corresponding to integer multiples of the excitation frequency (i.e., harmonics) (Cartagena et al., 

2013; Raman et al., 2011; Sahin et al., 2007).  Raman et al. have developed analytical models 

relating the 0th harmonic amplitude (DC offset), 1st harmonic phase, 2nd harmonic amplitude and 

2nd harmonic phase of the cantilever’s response to four quantitative compositional 
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measurements: Maximum adhesive tip-sample force, maximum sample indentation, effective 

sample stiffness and intrinsic viscosity (Cartagena et al., 2013).  In this method, the only 

feedback parameter is the 1st harmonic amplitude, which is used to track topography with the 

typical AM-AFM scheme.  The analytical relations were recovered by assuming that the 

response and tip-sample force contain only the 0th, 1st and 2nd harmonics (other harmonics were 

assumed to be trivially small), balancing the harmonics and, finally, relating the quantitative 

force harmonics to material properties via the appropriate Fourier integrals.  The model was then 

used to image and map Bacillus subtillis bacteriophage φ 29 in liquid. Sahin et al. considered a 

new cantilever design having a tip that is offset from the long axis so that, during tapping mode 

AFM, the tip-sample interaction generates a torque about the long axis and thereby excites 

torsional vibrations. This cantilever is driven only at the fundamental flexural eigenfrequency 

yet, due to the relatively large gain and bandwidth of the torsional mode’s transfer function, the 

torsional response contains multiple harmonics with strong signal-to-noise ratios (SNR).  The 

higher harmonics in the torsional response are then used to quantify the adhesive forces and 

effective Young’s moduli of polymer samples with the assumption of an elastic tip-sample 

interaction and known (or measurable) transfer functions for the fundamental flexural and 

torsional modes (Sahin et al., 2007). 

 

While the achievements of multi-frequency AFM in quantitative compositional mapping are 

significant, the governing theoretical models are still under development and require further 

verification. The measurement techniques and feedback control schemes involved in bimodal 

AFM are sophisticated and may not be available to many AFM users.  Moreover, the multi-

harmonic AFM technique relies on harmonics with sufficient SNR that can be challenging to 

recover in the absence of liquid (Cartagena et al., 2013; Raman et al., 2011).   To this end, the 

potential of a new approach to compositional mapping that relies on a unique variation of multi-

frequency AFM is investigated.  By designing the cantilever system so that one of the harmonics 

coincides with a higher resonant mode, the higher harmonic is amplified via intentional internal 

resonance.  In that context the technique developed in this work may be regarded as a 

combination of multi-harmonic AFM and bimodal AFM.  The key distinction is that, unlike 

other bimodal approaches, the input signal contains only a single frequency, yet the cantilever 

response contains two frequencies with large SNR. The efficacy of this new inner-paddled 
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cantilever design was theoretically and experimentally demonstrated in some recent work of our 

group (Jeong et al., 2016).  Quantification of the SNR and a detailed analysis of the effect of 

noise is outside the scope of this study, but readers are referred to the work of Santos et al. 

(2014) for such a discussion. 

 

The proposed AFM cantilever consists of a base micro-cantilever with an inner Si paddle as 

shown Fig. 3.1a.  When base harmonic excitation is applied to it, the cantilever system behaves 

like a system of two linearly coupled harmonic oscillators exhibiting dominant in-phase and out-

of-phase resonant modes.  That is, the two-degree-of-freedom reduced order model of the 

cantilever system has two resonant modes corresponding to synchronous motions of the two 

effective masses of the system.  In the absence of damping, there is no phase lag between the 

motions of the two effective masses during the in-phase mode, while there is a 180-degree phase 

lag between the motions of the two effective masses during the out-of-phase mode.  In the 

presence of weak damping, the in-phase and out-of-phase modes are preserved, but the phase 

differences between the oscillations of the two effective masses are (only slightly) perturbed 

from the aforementioned values. The inner-paddled cantilever is specifically designed so that the 

higher eigenfrequency corresponding to the out-of-phase mode is an integer multiple, say n, of 

the lower, in-phase eigenfrequency as described in a previous work (Jeong et al., 2016; Potekin 

et al., 2017; Potekin et al., 2018). 

 

To this end, computational and experimental studies are performed aiming toward an 

understanding of the underlying dynamics of this new internal resonance–based high-frequency 

AFM operation. Accordingly, the embedded information in the measured nth harmonic signal is 

considered in detail, and its implementation to more efficient AFM operation is explored. To 

begin, a description of the design and theoretical model of the inner-paddle cantilever is 

presented in Section 3.2. In Section 3.3, the performance of an inner-paddled cantilever designed 

to support 1:3 internal resonance is studied.  In particular, the ability of this cantilever to 

distinguish the material properties of a blended polystyrene-low density polyethylene (PS – 

LDPE) specimen is investigated. Additionally, an approximate empirical model that relates the 

3rd harmonic amplitude to the average tip-sample interaction force is developed, further enabling 

the predictive design of the proposed new microcantilever system.  The focus of Section 3.4 is on 
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optimizing the cantilever design by studying the efficacy of a 1:3 internal resonance as compared 

with a 1:2 internal resonance.  In Section 3.5, the cantilever designed with an intentional 1:2 

internal resonance is used to generate topographical and compositional maps of cyanobacteria. 

Then, in Section 3.6, the amplitude-modulation feedback control of the fundamental mode is 

computationally modeled to study variations in the phase of the first mode, amplitude of the 

higher mode and phase of the higher mode with respect to changes in the Young’s modulus.  

Finally, an outline of an approximate analytical method that could be used to convert the AM-

AFM observables of the inner-paddled cantilever into quantitative compositional maps is 

presented in Section 3.7. 

 

3.2 Inner-paddled cantilever design and reduced-order model 

 

Scanning electron microscope (SEM) images of the inner-paddled cantilevers designed to 

support 1:3 internal resonance and 1:2 internal resonance are shown in Figs. 3.1a and 3.1b, 

respectively.  The cantilever system consists of a base microcantilever having a middle cavity in 

which a 300 nm thick silicon (Si) nanomembrane oscillates.  The base cantilever was constructed 

from a commercially available AFM cantilever that was structurally modified to accommodate 

an inner paddle added via transfer printing-based microassembly (Keum et al., 2012; Keum et 

al., 2016). Details of the inner-paddled cantilever design and fabrication process used can be 

found in a previous paper (Jeong at al., 2016).  The length of the inner paddle was carefully 

chosen to achieve a 1:n ratio, where n is an integer, between the eigenfrequencies of the two 

leading in-phase and out-of-phase bending modes of the combined system.  This provides the 

conditions required for the realization of a 1:n internal resonance in this system, which can only 

be activated in the presence of nonlinearity.   
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                       (a)                                            (b)                                                      (c)            

Figure 3.1: SEM images of the inner-paddled cantilevers designed with a (a) 1:3 IR and (b) 1:2 

IR, and (b) a shcematic of the inner-paddled cantilever’s lumped-parmater reduced-order model. 

 

The source of nonlinearity that eventually triggers the 1:n internal resonance is the realization of 

non-smooth, vibro-impacts between the tip and sample during tapping mode AFM operation.  

When the AFM system is harmonically excited at a frequency equal to its first, in-phase natural 

frequency in the presence of the nonlinear tip-sample interactions, the result is energy transfer 

from low-to-high frequencies resulting in the generation of strong higher harmonics in the 

cantilever’s response.  By design, the nth harmonic coincides with the second, out-of-phase 

natural frequency, and this provides the nonlinear dynamical mechanism whereby the 1:n 

internal resonance amplifies the response of the nth harmonic in the measured responses.   

 

By contrast, in the absence of the nonlinear non-smooth tip-sample interactions, the cantilever 

system is designed to operate in a linear dynamic regime. Assuming that both the base cantilever 

and inner paddle oscillate in their corresponding fundamental bending modes, the integrated 

system can be approximated by a set of linearly coupled damped harmonic oscillators as depicted 

in Fig. 3.1c.  This represents the lumped reduced-order model of the dynamics of this system. 

The corresponding equations of motion for the coupled oscillators are stated in equation (3.1), 

wherem1 (m2 ) is the effective mass, k1 ( k2 ) the effective stiffness, and c1 ( c2 ) the effective 

damping coefficient of the base cantilever (inner paddle): 
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Fig. 1. The new cantilever system for higher-harmonic AFM: (a) The base cantilever with inner Si paddle designed for 1:3 resonance, and (b) the sample composed of a 
“stiff” polymer (PS) with a “soft” (Copolymer) island; measurement points are denoted by crosses ( ×). 
corresponds to the higher frequency and a negative ratio x 1 ( t ) / 
x 2 ( t ) (that is, the synchronous oscillations of the two masses are 
out-of-phase with respect to each other). When weak damping is 
added to the system the in- and out-of-phase modes are still pre- 
served but the corresponding phase differences between the two 
oscillations of the two masses are now non-trivial but close to the 
aforementioned values. 

Returning to microcantilever design with the inner paddle, the 
dimensions of the inner paddle are adjusted so that the higher nat- 
ural frequency of the out-of-phase mode is equal (or nearly equal) 
to three times that of the fundamental, in-phase mode. This pro- 
vides the necessary condition of a 1:3 internal resonance in the 
cantilever-paddle system. Eventually, under base excitation of the 
lower, in-phase mode the nonlinear internal resonance is triggered 
by the non-smooth (and strongly nonlinear) tip-sample dynamic 
vibro-impact interactions between the cantilever tip and the sam- 
ple. This results in nonlinear energy transfers from the directly ex- 
cited fundamental in-phase mode to the higher-frequency, out-of- 
phase mode, triggered by the 1:3 internal resonance. The ensuing 
amplification of the third harmonic of the system response is then 
utilized for high-frequency AFM. The efficacy of this new cantilever 
design was demonstrated experimentally ( Jeong et al., 2016 ). How- 
ever, the type of information delivered by the higher-frequency 
measured signals that are now detectable, and their potential use 
for AFM operation, was not fully understood yet. 

To this end, in the present work we perform computational 
and experimental studies aiming to an understanding of the un- 
derlying dynamics of this new internal resonance–based high- 
frequency AFM operation. Accordingly, the embedded information 
in the measured third harmonic signal is considered in detail, and 
its implementation to more efficient AFM operation is explored. In 
the particular application considered in this work, we investigate 
the ability of the proposed AFM cantilever design to distinguish the 
material properties of a PS – LDPE specimen. Finally, we develop 
an approximate empirical model that relates the higher harmonic 
amplitude to the average tip-sample interaction force, further en- 
abling the predictive design of the proposed new microcantilever 
system. 
2. Description of the new AFM cantilever system 

In Fig. 1 a we depict the scanning electron microscope (SEM) 
image of a fabricated AFM cantilever, consisting of a base micro- 
cantilever incorporating an inner paddle in the form of a 300 nm 
thin silicon ( Si ) nanomembrane. The base cantilever resembles the 
physical configuration and dimensions of a typical commercially 
available AFM cantilever, except for its structural modification by 
the addition of a middle cavity where the inner paddle oscillates. 

The geometry of the inner paddle is carefully designed to enforce 
a condition of 1:3 ratio between the natural frequencies of the 
two leading in-phase and out-of-phase bending modes of the in- 
tegrated system. This provides the necessary (but not sufficient) 
condition for realization of 1:3 internal resonance in this system, 
which cannot be activated under conditions of linearity. We note 
that since in the absence of the sample-tip interactions, the atomic 
force microscope is constructed to operate in its linear dynamical 
regime (i.e. to behave approximately in a linear fashion, having no 
geometrically nonlinear effects due, e.g., to high flexibility), so it 
can be modeled by a reduced order model consisting of two lin- 
early coupled simple harmonic oscillators. It follows that in the ab- 
sence of the nonlinear sample-tip interactions the microcantilever- 
paddle system cannot support any nonlinear internal resonances 
between its first two modes without any other nonlinear effects 
(such as the ones induced by its non-smooth interaction with the 
sample). As discussed below, what eventually triggers 1:3 reso- 
nance in the system is the strongly nonlinear tip-sample inter- 
action of the AFM system when it operates under dynamic AFM 
mode operation. 

Indeed, when the AFM system is under harmonic base excita- 
tion with frequency equal to its first (in-phase mode) natural fre- 
quency and operates in the dynamic AFM mode of operation, the 
resulting repetitive vibro-impacts between the tip of the micro- 
cantilever and the sample provide the condition that eventually 
activates 1:3 resonance in the system. This, in turn, induces en- 
ergy transfer from low-to-high frequencies and amplifies the sec- 
ond (out-of-phase) mode of the system, which, by design, coin- 
cides with the 3rd harmonic of the basic harmonic of base exci- 
tation of the AFM system. The detailed design of this system and 
the followed fabrication protocols can be found in a previous work 
( Jeong et al., 2016 ). The sample considered in this work is depicted 
in Fig. 1 b, consisting of a “stiff” polymer (PS) with a “soft” (Copoly- 
mer) island ( Jeong et al., 2016 ). 

During the AFM dynamic mode operation of this new AFM de- 
sign, the lower in-phase bending mode is directly excited by the 
applied harmonic base excitation. The strongly nonlinear and non- 
smooth interactions between the AFM tip and the surface of the 
specimen triggers the 1:3 nonlinear internal resonance between 
the in-phase and out-of-phase bending modes of the system, and 
nonlinear energy transfer from the directly excited lower, in-phase 
bending mode to the higher, out-of-phase bending mode takes 
place. The oscillation of the cantilever system is measured by the 
AFM laser system by focusing near the end of the inner paddle. 
Since the laser spot is larger than the width of the based cantilever, 
the measured signal contains the dynamics of both the base can- 
tilever and the inner paddle. Using the lock-in technique, the first 
(directly excited) and the third (amplified by the 1:3 internal res- 
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combined system.  This provides the conditions required for the realization of a 1:n internal resonance in 

this system, which can only be activated in the presence of nonlinearity.  The source of nonlinearity that 

eventually triggers the 1:n internal resonance is the realization of non-smooth, vibro-impacts between 

the tip and sample during tapping mode AFM operation.  When the AFM system is harmonically excited 

at a frequency equal to its first, in-phase natural frequency in the presence of the nonlinear tip-sample 

interactions, the result is energy transfer from low-to-high frequencies resulting in the generation of 

strong higher harmonics in the cantilever’s response.  By design, the nth harmonic coincides with the 

second, out-of-phase natural frequency, and this provides the nonlinear dynamical mechanism whereby 

the 1:n internal resonance amplifies the response of the nth harmonic in the measured responses.   

 

              
                                                                  (a)                                                   (b)                      

Figure 1: (a)  SEM image of the inner-paddled cantilever designed with a 1:2 IR, and (b) its lumped-

parmater reduced-order model. 

 

By contrast, in the absence of the nonlinear non-smooth tip-sample interactions, the cantilever system is 

designed to operate in a linear dynamic regime. Assuming that both the base cantilever and inner paddle 

oscillate in their corresponding fundamental bending modes, the integrated system can be approximated 

by a set of linearly coupled damped harmonic oscillators as depicted in Fig. 1b.  This represents the 

lumped reduced-order model of the dynamics of this system. The corresponding equations of motion for 

the coupled oscillators are stated in equation (1), wherem1 (m2 ) is the effective mass, k1 ( k2 ) the 

effective stiffness, and c1 (c2 ) the effective damping coefficient of the base cantilever (inner paddle): 

m1!!x1 + c1 !x1 + c1 !x1 − !x2( )+ k1x1 + k1 x1 − x2( ) = k1y0 cos ωdt( )− c1ωdy0 sin ωdt( )+Fts x1( )                         (1.a) 

 20 !m  

		 y0 sin ωdt( )
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   m1!!x1 + c1 !x1 + k1x1 + k2(x1 − x2 )+ c2( !x1 − !x2 ) = k1y0 sinω dt + c1ωd y0 cosω dt + Fts(x1)                  (3.1a) 

   m2!!x2 + k2(x2 − x1)+ c2( !x2 − !x1) = 0                                                                                            (3.1b) 

 

To model the force applied to the cantilever system through a piezoelectric shaker during 

dynamic AFM operation, we incorporate harmonic base excitation in the reduced order model 

with amplitude y0  and drive frequency ωd .  Finally, x1  and x2  are the displacements of m1  and

m2 , respectively; x0  is the static separation between the cantilever tip and the sample; and Fts  is 

the tip-sample interaction force.  The DMT contact model (Derjaguin, Muller, and Toporov, 

1980) was used to approximate the nonlinear vibro-impacts between the tip and sample and is 

given in equation (3.2): 

 

		

Fts x1( ) =
− 2HR3

3 2R+ x0 + x1( )⎡⎣ ⎤⎦
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In (3.2), H is the Hamakar’s constant, R is the radius of curvature of the tip, E* is the effective 

tip-sample Young’s modulus and a0  is the intermolecular distance.  The DMT tip-sample force 

is piecewise continuous with respect to x1 ; when the tip is not in contact with the sample, it holds 

that x1 > a0 − x0  and Fts  is equal to the attractive van der Waals force whereas, when the tip is in 

contact with the sample, it holds that x1 < a0 − x0   and Fts  is equal to the sum of a repulsive 

Herztian component and a (constant) attractive van der Waals term. 

 

To avoid lengthy descriptions and redundancies, we will now establish a nomenclature for the 

aforementioned inner-paddled cantilever design.  As described above, a cantilever with a single 

inner paddle can be approximated by a two-degree-of-freedom reduced order model consisting of 

two coupled harmonic oscillators.  This system of two coupled oscillators gives rise to two 

vibration modes associated with two distinct eigenfrequencies, ω1  and ω2 . Assuming the 



	 67 

eigenfrequencies are ordered so that ω1 <ω2 , the ratio of these two eigenfrequencies, 

n =ω2 /ω1 , will be used to distinguish between different inner-paddled cantilever designs.  An 

inner-paddled cantilever designed so that the ratio of the two eigenfrequencies of its reduced 

order model is equal to 1:n, will be referred to as a “1:n cantilever”.  There is a significant 

distinction between the inner-paddled cantilever designs for which n is an integer and those for 

which n is not an integer. If n is an integer, the inner-paddled cantilever can support an internal 

resonance activated by the nonlinear tip-sample interaction; otherwise, internal resonance is not 

possible. Similarly, an inner-paddled cantilever having two inner paddles (as shown in Fig.5a) 

can be modeled as a system of three linearly coupled harmonic oscillators with three vibration 

modes and corresponding eigenfrequencies, ω1 , ω2 	and ω3 , where it is assumed that 

ω1 <ω2 <ω3 . Accordingly, a cantilever with two inner paddles designed so that the ratio of its 

three eigenfreqencies is denoted by 1:n:m,  where n =ω2 /ω1  and m =ω3 /ω1 ,	will be referred 

to as a “1:n:m cantilever”.  

 

3.3 Computational and experimental results for the 1:3 cantilever 

 

In order to test the efficacy of this new AFM system for enhanced measurement of material 

properties, a two-component polymeric sample mounted on a glass slide (see Figure 3.2) was 

tested. The circular island contains relatively “compliant” low-density Polyolefin Elastomer 

(LDPE) with an elastic modulus of ~ 0.1 GPa on the macro-scale, whereas the surrounding 

matrix is relatively “stiff” Polystyrene (PS) with an elastic modulus of ~ 2 GPa on the macro-

scale. In Table 3.1, the parameters of the reduced-order model and the materials are listed. The 

measurements were performed under base excitation of the base cantilever at the fixed forcing 

frequency of 𝜔! = 0.9995𝜔!!  (where 𝜔!!  is the natural frequency of the lower in-phase 

mode of the beam-paddle system), and at fixed excitation amplitude 0y . Then the amplitude and 

phase of the measured 1st and 3rd harmonic signals (corresponding to the lower and higher modes 

of the system incorporating 1:3 internal resonance) were obtained while varying the static tip-

sample separation 𝑥! at a fixed location on the LDPE island or the PS surrounding matrix.  
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Figure 3.2: AFM image of a PS sample containing an inner LDPE island. 

 

This experiment was numerically simulated by integrating the model (3.1) in Python for several 

hundreds of cycles to steady-state and performing a fast Fourier transform (FFT) of the response 

to compute the amplitudes and phases of the first and third harmonics. To simulate the tip 

approaching the sample, I began at an x0 value sufficiently large so that the tip was not in contact 

with the sample and incrementally decreased x0 for a fixed excitation amplitude, y0.  For each 

new simulation, the initial conditions were set equal to the final conditions of the simulation 

corresponding to the previous x0 value.  Additionally, the total simulation time was set equal to 

an integer multiple of the drive period to achieve consistency in the base motion, and the steady 

state segmentation used in the FFT was chosen to be an integer multiple of the drive period to 

mitigate edge effects. 

 

Comparisons of experimental and computational results for both the stiff PS region and the 

compliant LDPE region of the sample are depicted in Fig. 3.3. For both materials, there was 

strong qualitative agreement between the experimental and computational results, which 

demonstrates the predictive capability of the theoretical model for this new cantilever design. 

This suggests that the DMT contact model is capable of predicting the response of the 

microcantilever tip interacting with both tested materials, over most of the initial separation 

distances 𝑥!. 

 

 

 

 

LDPE

  1 µm 
 	 PS

  20 µm 
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Parameter description Value 

Effective masses, 1:2 cantilever 		 m1 =6.27ng, m2 =0.0756ng  

Effective stiffnesses, 1:2 cantilever 		 k1 =5.22N/m, k2 =0.244N/m  

Lower eigenfrequency, 1:2 cantilever  	 ω1 = 9.051×105rad/s  

Effective masses, 1:3 cantilever 		 m1 =6.27ng, m2 =0.0615ng  

Effective stiffnesses, 1:3 cantilever 		 k1 =5.22N/m, k2 =0.453N/m  

Lower eigenfrequency, 1:3 cantilever 	 ω1 = 9.074×105rad/s  

Effective masses, 1:3.5 cantilever 		 m1 =6.27ng, m2 =0.057ng  
Effective stiffnesses, 1:3.5 cantilever 		 k1 =5.22N/m, k2 =0.569N/m  

Lower eigenfrequency, 1:3.5 cantilever 	 ω1 = 9.079×105rad/s  
Damping coefficients, all cantilevers 		 c1 = c2 =2.85×10

−8Ns/m,  

Tip radius, all cantilevers 		 R =30nm  
Tip elastic modulus, all cantilevers 		

Etip =169GPa  

Elastic modulus of LDPE 		 ELDPE =0.1GPa  

Hamakar’s constant of LDPE 		 HLDPE =3×10−19J  

Elastic modulus of PS 		 EPS =2GPa  

Hamakar’s constant of PS 		 HPS =2×10−19J  

Table 3.1: System parameters of the 1:2 cantilever, the 1:3 cantilever, the 1:3.5 cantilever, the 
LDPE material and the PS material. 
 

Considering first the stiffer PS sample, the trend of the amplitude of both harmonics in the 

numerical results coincides with that of the experimental results in most of the considered range 

of 𝑥!. As the tip approaches the sample (i.e., in the limit of small values of  𝑥!), we note that the 

decreasing trend of the phase is also captured by the numerical model for most values of 𝑥!. At 

very small initial displacements 𝑥! , however, there is a discrepancy in the trend of the phases 

between the experimental and numerical results, e.g., see the results in Figures 3b and 3d; we 
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attribute this discrepancy to limitations of the DMT model at small separation distances, as well 

as to complex sample-tip interactions due to the dynamics of the sample itself (i.e., due to the 

flexibility of the sample) which cannot be captured by the vibro-impact model (3.1) used herein. 

Similarly, for the compliant LDPE sample, the trends in all experimental signals are reflected in 

the numerical results at most initial tip-sample separations 𝑥! , but again we see some 

discrepancies at very small values of 𝑥! . Specifically, the amplitude and phase of the 3rd 

harmonic become unsteady for small 𝑥! , whereas the corresponding amplitude of the 1st 

harmonic decreases abruptly. These unsteady dynamics could also be due to a dynamic transition 

into a regime where the tip is sticking to the sample (i.e., transition to a state of motion in which 

the tip oscillates about an equilibrium point on the sample while maintaining continuous contact 

with the sample), but this trend is not observed in the experimental results (Lee et al., 2003).  

 

Considering the results of Fig. 3.3 in detail, we note that for both materials the amplitudes of the 

1st harmonics (i.e., the components of the responses at the excitation frequency) linearly decrease 

as the tip approaches the surface, and the slopes measured on both materials are almost identical. 

In contrast, there is a clear discrepancy between the slopes of the 3rd harmonic amplitudes (which 

are intensified by the intentional 1:3 internal resonance introduced by the design) of the 

responses in the co-polymer and PS regions. Additionally, we see a clear difference in the 

reversed trend of the phases (both of the 1st harmonics and the 3rd harmonics) corresponding to 

the two stiff and compliant materials. The phases of the 1st and 3rd harmonics increase as the tip 

approaches the more compliant LDPE region, but decrease as the tip approaches the stiffer PS 

region. Note that, since the amplitudes of the 1st and 3rd harmonics are the root mean square 

values of oscillation amplitude, meaningful phase lags occur over a range of 180 degrees.  

However, we plot the phase over a larger range so as to eliminate possibly misleading jumps in 

the phase. 
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(a) 

 
(b) 

 
(c) 

Figure 3.3. Experimental (left column) and numerical (right column) sensitivity curves of the 

inner paddle response for the PS sample (blue) and the LDPE sample (red), for excitation 

amplitude 𝑦! = 0.91 𝑛𝑚: (a,b) Amplitudes of 1st and 3rd harmonics versus static tip-sample 

distance, (c,d) phases of first and third harmonics versus static tip-sample distance (note that the 

phase of the 3rd harmonic has no meaning when the amplitude is zero). 
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between the experimental and numerical results, e.g., see the results in Figures 3b and 3d; 

we attribute this discrepancy to limitations of the DMT model at small separation 

distances, as well as to complex sample-tip interactions due to the dynamics of the 

sample itself (i.e., due to the flexibility of the sample) which cannot be captured by the 

vibro-impact model (1,2) used herein. Similarly, for the soft co-polymer sample, the 

trends in all experimental signals are reflected in the numerical results at most initial tip-

sample separations !!, but, again we see some discrepancies at very small values of !!. 

Specifically, the amplitude and phase of the 3rd harmonic become unsteady for small !!, 

whereas the corresponding amplitude of the 1st harmonic decreases abruptly. These 

unsteady dynamics could also be caused due to a dynamic transition into a regime where 

the tip is sticking to the sample (i.e. transition to a state of motion in which the tip 

oscillates about an equilibrium point on the sample while maintaining continuous contact 

with the sample), but this trend is not observed in the experimental results (Lee et al., 

2003).  
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(d) 

Figure 3.3 (cont.) 

 

These results can be placed in proper context when noting that, for a conventional AFM 

cantilever (without a paddle), it is well known that the cantilever dynamics during dynamic mode 

operation is highly nonlinear, leading to the coexistence of two stable steady-state solutions, 

namely a low-amplitude solution (designated as the “lower solution branch”), and a high-

amplitude solution (namely the “upper solution branch”). The low-amplitude solution 

corresponds to attraction-dominant regimes between the tip and the sample, whereas the high-

amplitude solutions typically correspond to repulsion-dominant regimes. On the lower branch, 

the phase (of the first harmonic) is known to increase as the tip approaches the sample, whereas 

on the upper branch, typically the phase decreases as the tip approaches the sample (Lee et al., 

2003; Stark, 2010; Garcia, 2010).  

 

Based on the above, it follows that the trends in the phases of the 1st and 3rd harmonics as well as 

the amplitude of the third harmonic in the numerical and experimental results appear to 

differentiate between two nonlinear dynamical regimes occurring separately in the two dissimilar 

materials. Indeed, for the case of the stiffer PS material, the steady state nonlinear dynamics 

appear to be attracted to and stably track the upper solution (repulsive) branch, whereas for the 

case of the LDPE material the dynamics appear to be attracted by the lower solution (attractive) 

branch. To confirm this, after fixing the tip-sample separation to 𝑥! = 100 nm, additional 

computations of the tip-sample interaction forces as functions of the distances 𝛿 = 𝑎! −

𝑥! + 𝑥!  for both materials during dynamic AFM mode operation were performed. The results 
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are depicted in Figure 3.4, from which it is clear that for the compliant LDPE sample, the 

interaction force is in the attractive dynamic regime dominated by the van der Waals forces; 

whereas for the stiff PS sample, the interaction force is predominantly in the repulsive dynamic 

regime dominated by the repulsive Hertzian forces which confirm our previous assertions. 

 

 

 
          (a)          (b) 

Figure 3.4. Nonlinear tip-sample interaction force, 𝐹!" , versus distance 𝛿 = 𝑎! − 𝑥! + 𝑥!  

during dynamic AFM mode operation for a tip-sample separation of 𝑥! = 100 𝑛𝑚 and base 

excitation amplitude of 𝑦! = 0.91 𝑛𝑚: (a) Purely attractive dynamic regime for the case of the 

LDPE (compliant) sample, and (b) Predominantly repulsive dynamic regime for the case of the 

PS (stiff) sample. 

 

It follows that the difference in branch selection among the two materials results from a 

difference in material properties (namely, elastic modulus) since the PS material is significantly 

stiffer than the LDPE.  Furthermore, the phase of a typical AFM cantilever is well known to 

depend on material properties, which is the reason why the phase is currently used to construct 

qualitative compositional maps.  Hence, regarding the new cantilever design, the fact that the 

amplitude and phase of the third harmonic also exhibit different trends among the two materials 

indicates that these may be utilized as additional channels with which material properties can be 

measured qualitatively.  This is the motivation for this work, which aims to characterize the 

relationship between material properties and information delivered by the third harmonic.  
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Figure 3.5. Amplitude of the 1st harmonic versus normalized drive frequency 𝛺!  for a base 

excitation amplitude of 𝑦! = 0.91 𝑛𝑚  and for four different normalized static tip-sample 

distances (𝑥! = 𝑥!/180 𝑛𝑚), namely, 𝑥! = 0.99 (green), 𝑥! = 0.83 (blue), 𝑥! = 0.56 (red) and 

𝑥! = 0.28 (black): (a) Compliant LDPE sample (note two co-existing upper and lower solution 

branches at the driving frequency 𝛺! = 0.9995 – denoted by the dashed vertical line); (b) stiff 

PS sample (note the existence of only the upper solution branch at the driving frequency). These 

results explain theoretically the experimental AFM measurements reported in Figures 3.3 and 

3.4. 

 

To gain further insight into why the two tested materials seem to be attracted to and eventually 

track different solution branches, a detailed computational study of the steady state dynamics of 

the reduced order model (3.1) under conditions of dynamic AFM operation was performed. In 

Fig. 3.5, the resonance curves of this system for several different normalized static tip-sample 

distances 𝑥! are presented. In the plots the static tip sample distance is normalized by the free 

amplitude of the base cantilever according to 𝑥! = 𝑥!/180 nm. The drive frequency used in 

these simulations is indicated with a vertical dashed line in each of the plots of Fig. 3.5. From the 

results shown in Fig. 3.5b, I deduce that as the tip approaches the stiff PS sample, there exists 

only the upper solution branch at a normalized drive frequency of Ω! = dω 1mω = 0.9995 (this 

was the frequency used for producing the results of Figs. 3.3 and 3.4). It follows that the upper 

solution represents the only possible stable attractor for the steady state dynamics of the system 

at Ω! = 0.9995, which explains why in the AFM measurements of the PS sample, the nonlinear 

dynamics is attracted by the upper solution branch and not by the lower one. On the contrary, in 
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Fig. 5. Amplitude of the 1st harmonic versus normalized drive frequency !d for a 
base excitation amplitude of y 0 =0.91 nm and for four different normalized static 
tip-sample distances ( x s =x 0 /180 nm), namely, x s =0.99 (green), x s =0.83 (blue), 
x s =0.56 (red) and x s =0.28 (black): (a) Soft co-polymer sample (we note two co- 
existing upper and lower solution branches at the driving frequency !d =0.9995 
– denoted by the dashed vertical line); (b) stiff PS sample (we note the existence 
of only the upper solution branch at the driving frequency). These results explain 
theoretically the experimental AFM measurements reported in Figs. 3 –4. (For inter- 
pretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 

forces; whereas for the stiffer PS sample, the interaction force is 
predominantly in the repulsive dynamic regime dominated by the 
repulsive Hertzian forces which confirm our previous assertions. 

It follows that the difference in branch selection among the two 
materials results from a difference in material properties (namely, 
elastic modulus) since the PS material is significantly stiffer than 
the copolymer. Furthermore, the phase of a typical AFM cantilever 
is well known to depend on material properties which is the rea- 
son why the phase is currently used to construct qualitative com- 
positional maps. Hence regarding the new cantilever design, the 
fact that the amplitude and phase of the third harmonic also ex- 
hibit different trends among the two materials indicates that these 
may be utilized as additional channels with which material prop- 
erties can be measured qualitatively. This is the motivation for this 
work which aims to characterize the relationship between material 
properties and information delivered by the third harmonic. 

To gain further insight into why the two tested materials seem 
to be attracted to, and eventually track different solution branches, 
we performed a detailed computational study of the steady state 
dynamics of the reduced order model (1,2) under conditions of dy- 
namic AFM operation. In Fig. 5 , we depict the resonance curves 
of this system for several different normalized static tip-sample 
distances x s . In the plots the static tip sample distance is nor- 
malized by the free amplitude of the base cantilever according to 
x s =x 0 /180 nm. The drive frequency used in these simulations is in- 
dicated with a vertical dashed line in each of the plots of Fig. 5 . 
From the results shown in Fig. 5 b, we deduce that as the tip ap- 
proaches the stiff PS sample, there exists only the upper solution 
branch at a normalized drive frequency of !d = ω d / ω m 1 = 0.9995 
(this was the frequency used for producing the results of Figs. 3 
and 4 ). It follows that the upper solution represents the only pos- 
sible stable attractor for the steady state dynamics of the system at 
!d =0.9995, which explains why in the AFM measurements of the 
PS sample, the nonlinear dynamics is attracted by the upper solu- 
tion branch and not by the lower one. On the contrary, in Fig. 5 a, 
we deduce that as the tip approaches the soft co-polymer sample, 
both the upper and lower solution branches co-exist in the steady 
state dynamics, so both high and low amplitude solutions can act 
as attractors at !d =0.9995. This holds for all static tip-sample dis- 
tances x s , except for x s =0.99. Interestingly, at x s =0.99 it appears 
that only the lower branch exists for the co-polymer sample, which 
explains the selection of the lower branch upon approach to the 
sample. Hence, as the tip continues to approach the co-polymer 
sample, the dynamics stably tracks the lower branch. We note that 
when two or more co-existing stable attractors exist in the dynam- 

Fig. 6. Amplitude of the 3rd harmonic versus normalized drive frequency for, (a) 
the co-polymer sample, and (b) the PS sample; and average tip-sample interaction 
force per cycle during steady state versus normalized drive frequency for, (c) the 
co-polymer sample, and (d) the PS sample. The same base excitation amplitude of 
y 0 =0.91 nm and normalized static tip-sample distances are considered as in Fig. 5 , 
namely, x s =0.99 (green), x s = 0.83 (blue), x s = 0.56 (red) and x s =0.28 (black), and 
the vertical dashed line corresponds to the driving frequency at !d =0.9995 as for 
the results in Figs. 3 –5. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
ics, the actual path of the steady state solution depends solely on 
the choice of initial conditions. 

Finally, we computed the change in amplitude of the 3rd har- 
monic and the average interaction force while varying the normal- 
ized drive frequency !d for both samples, as seen in Fig. 6 . Inter- 
estingly, these results indicate that the amplitude of the third har- 
monic is directly proportional to the absolute value of the average 
force per cycle. We also see that even greater amplification of the 
third harmonic is achieved on the upper branch at larger driving 
frequencies. 

The plots shown in Figs. 5–6 were obtained by numerically in- 
tegrating the model (1,2) in Python for several hundreds of cycles 
into steady state and computing the amplitudes of the 1st and 3rd 
harmonics as well as the average tip-sample interaction force for 
each value of !d . A fast Fourier transform (FFT) of the steady state 
time series was used to calculate the resulting amplitudes of the 
1st and 3rd harmonics of the steady state responses. The dura- 
tion of the steady state segmentation was chosen to be an inte- 
ger multiple of the drive frequency in order to mitigate edge ef- 
fects in the FFT. To stably track the different branches (especially 
in frequency ranges where co-existing solutions are realized), the 
initial conditions of a new simulation (for incremental frequency 
!d +#!d ) were set equal to the final conditions of the simula- 
tion corresponding to the previous frequency value !d , whereas 
the total simulation time was set equal to an integer multiple of 
the driving period to achieve continuity of the base motion. 

Fig. 6 indicates that the magnitude of the average tip-sample 
interaction force is linearly related to the amplitude of the third 
harmonic. Accordingly, as a means to develop an empirical model 
relating the two quantities, we assume the following relation, 
∣∣F̄ ts ∣∣ ≈ C A 3 (3) 
where | ̄F ts | is the magnitude of the average tip-sample interaction 
force per cycle during steady state, A 3 is the amplitude of the mea- 
sured third harmonic, and C is a real constant. We then find C such 
that the average error among twelve different computational data 
sets is minimized. The twelve data sets include the force curves 
for the PS at two base excitation levels, namely, y 0 =0.91 nm and 
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Fig. 3.5a, I deduce that as the tip approaches the compliant LDPE sample, both the upper and 

lower solution branches co-exist in the steady state dynamics, so both high and low amplitude 

solutions can act as attractors at Ω! = 0.9995. This holds for all static tip-sample distances 𝑥!, 

except for 𝑥! = 0.99. Interestingly, at 𝑥! = 0.99 it appears that only the lower branch exists for 

the co-polymer sample, which explains the selection of the lower branch upon approach to the 

sample. Hence, as the tip continues to approach the LDPE sample, the dynamics stably track the 

lower branch. Note that when two or more co-existing stable attractors exist in the dynamics, the 

actual path of the steady state solution depends solely on the choice of initial conditions. 

 

Finally, the change in the amplitude of the 3rd harmonic and the average interaction force as 

functions of the normalized drive frequency, Ω!, were computed for both samples, as seen in 

Fig. 3.6. Interestingly, these results indicate that the amplitude of the third harmonic is directly 

proportional to the absolute value of the average force per cycle. Also, even greater amplification 

of the third harmonic is achieved on the upper branch at larger driving frequencies. 

 

Fig. 3.6 indicates that the magnitude of the average tip-sample interaction force is linearly related 

to the amplitude of the third harmonic. Accordingly, as a means to develop an empirical model 

relating the two quantities, it is assumed that 

 

3tsF CA≈                                                                          (3.3) 

 

where tsF  is the magnitude of the average tip-sample interaction force per cycle during steady 

state, 3A  is the amplitude of the measured third harmonic, and C  is a real constant. We then 

find C  such that the average error among twelve different computational data sets is minimized. 

The twelve data sets include the force curves for the PS at two base excitation levels, namely, 

𝑦! = 0.91 nm and 1.02 nm (presented in Fig. 3.3 and Fig. 3.7, respectively); the force curves for 

the LDPE at the same two base excitation levels (again presented in Fig. 3.3 and Fig. 3.7, 

respectively); and the resonance curves at four different normalized tip-sample separations, 

𝑥! = 0.28, 0.56, 0.83 and 0.99, for the LDPE and PS samples (shown in Figs. 3.5a and 3.5b, 

respectively). At each value of C , the root mean square error (RMSE) for each data set is 
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computed, and the unweighted average of the twelve different RMSE values is calculated. Note 

that data points corresponding to the linear response are not included in this numerical 

computation. The corresponding constant that minimizes this average RMSE value is found to be 

min 3.57C = . 

 

 
Figure 3.6. Amplitude of the 3rd harmonic versus normalized drive frequency for, (a) the LDPE 

sample, and (b) the PS sample; and average tip-sample interaction force per cycle during steady 

state versus normalized drive frequency for, (c) the LDPE sample, and (d) the PS sample. The 

same base excitation amplitude of  𝑦! = 0.91 𝑛𝑚 and normalized static tip-sample distances are 

considered as in Fig. 3.5, namely, 𝑥! = 0.99  (green), 𝑥! = 0.83  (blue), 𝑥! = 0.56  (red) and 

𝑥! = 0.28  (black), and the vertical dashed line corresponds to the driving frequency at 

𝛺! = 0.9995 as for the results in Figs. 3.3-3.5. 
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Fig. 5. Amplitude of the 1st harmonic versus normalized drive frequency !d for a 
base excitation amplitude of y 0 =0.91 nm and for four different normalized static 
tip-sample distances ( x s =x 0 /180 nm), namely, x s =0.99 (green), x s =0.83 (blue), 
x s =0.56 (red) and x s =0.28 (black): (a) Soft co-polymer sample (we note two co- 
existing upper and lower solution branches at the driving frequency !d =0.9995 
– denoted by the dashed vertical line); (b) stiff PS sample (we note the existence 
of only the upper solution branch at the driving frequency). These results explain 
theoretically the experimental AFM measurements reported in Figs. 3 –4. (For inter- 
pretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 

forces; whereas for the stiffer PS sample, the interaction force is 
predominantly in the repulsive dynamic regime dominated by the 
repulsive Hertzian forces which confirm our previous assertions. 

It follows that the difference in branch selection among the two 
materials results from a difference in material properties (namely, 
elastic modulus) since the PS material is significantly stiffer than 
the copolymer. Furthermore, the phase of a typical AFM cantilever 
is well known to depend on material properties which is the rea- 
son why the phase is currently used to construct qualitative com- 
positional maps. Hence regarding the new cantilever design, the 
fact that the amplitude and phase of the third harmonic also ex- 
hibit different trends among the two materials indicates that these 
may be utilized as additional channels with which material prop- 
erties can be measured qualitatively. This is the motivation for this 
work which aims to characterize the relationship between material 
properties and information delivered by the third harmonic. 

To gain further insight into why the two tested materials seem 
to be attracted to, and eventually track different solution branches, 
we performed a detailed computational study of the steady state 
dynamics of the reduced order model (1,2) under conditions of dy- 
namic AFM operation. In Fig. 5 , we depict the resonance curves 
of this system for several different normalized static tip-sample 
distances x s . In the plots the static tip sample distance is nor- 
malized by the free amplitude of the base cantilever according to 
x s =x 0 /180 nm. The drive frequency used in these simulations is in- 
dicated with a vertical dashed line in each of the plots of Fig. 5 . 
From the results shown in Fig. 5 b, we deduce that as the tip ap- 
proaches the stiff PS sample, there exists only the upper solution 
branch at a normalized drive frequency of !d = ω d / ω m 1 = 0.9995 
(this was the frequency used for producing the results of Figs. 3 
and 4 ). It follows that the upper solution represents the only pos- 
sible stable attractor for the steady state dynamics of the system at 
!d =0.9995, which explains why in the AFM measurements of the 
PS sample, the nonlinear dynamics is attracted by the upper solu- 
tion branch and not by the lower one. On the contrary, in Fig. 5 a, 
we deduce that as the tip approaches the soft co-polymer sample, 
both the upper and lower solution branches co-exist in the steady 
state dynamics, so both high and low amplitude solutions can act 
as attractors at !d =0.9995. This holds for all static tip-sample dis- 
tances x s , except for x s =0.99. Interestingly, at x s =0.99 it appears 
that only the lower branch exists for the co-polymer sample, which 
explains the selection of the lower branch upon approach to the 
sample. Hence, as the tip continues to approach the co-polymer 
sample, the dynamics stably tracks the lower branch. We note that 
when two or more co-existing stable attractors exist in the dynam- 

Fig. 6. Amplitude of the 3rd harmonic versus normalized drive frequency for, (a) 
the co-polymer sample, and (b) the PS sample; and average tip-sample interaction 
force per cycle during steady state versus normalized drive frequency for, (c) the 
co-polymer sample, and (d) the PS sample. The same base excitation amplitude of 
y 0 =0.91 nm and normalized static tip-sample distances are considered as in Fig. 5 , 
namely, x s =0.99 (green), x s = 0.83 (blue), x s = 0.56 (red) and x s =0.28 (black), and 
the vertical dashed line corresponds to the driving frequency at !d =0.9995 as for 
the results in Figs. 3 –5. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
ics, the actual path of the steady state solution depends solely on 
the choice of initial conditions. 

Finally, we computed the change in amplitude of the 3rd har- 
monic and the average interaction force while varying the normal- 
ized drive frequency !d for both samples, as seen in Fig. 6 . Inter- 
estingly, these results indicate that the amplitude of the third har- 
monic is directly proportional to the absolute value of the average 
force per cycle. We also see that even greater amplification of the 
third harmonic is achieved on the upper branch at larger driving 
frequencies. 

The plots shown in Figs. 5–6 were obtained by numerically in- 
tegrating the model (1,2) in Python for several hundreds of cycles 
into steady state and computing the amplitudes of the 1st and 3rd 
harmonics as well as the average tip-sample interaction force for 
each value of !d . A fast Fourier transform (FFT) of the steady state 
time series was used to calculate the resulting amplitudes of the 
1st and 3rd harmonics of the steady state responses. The dura- 
tion of the steady state segmentation was chosen to be an inte- 
ger multiple of the drive frequency in order to mitigate edge ef- 
fects in the FFT. To stably track the different branches (especially 
in frequency ranges where co-existing solutions are realized), the 
initial conditions of a new simulation (for incremental frequency 
!d +#!d ) were set equal to the final conditions of the simula- 
tion corresponding to the previous frequency value !d , whereas 
the total simulation time was set equal to an integer multiple of 
the driving period to achieve continuity of the base motion. 

Fig. 6 indicates that the magnitude of the average tip-sample 
interaction force is linearly related to the amplitude of the third 
harmonic. Accordingly, as a means to develop an empirical model 
relating the two quantities, we assume the following relation, 
∣∣F̄ ts ∣∣ ≈ C A 3 (3) 
where | ̄F ts | is the magnitude of the average tip-sample interaction 
force per cycle during steady state, A 3 is the amplitude of the mea- 
sured third harmonic, and C is a real constant. We then find C such 
that the average error among twelve different computational data 
sets is minimized. The twelve data sets include the force curves 
for the PS at two base excitation levels, namely, y 0 =0.91 nm and 
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(a) 

 
(b) 

Figure 3.7. Experimental (left column) and numerical (right column) sensitivity curves of the 

inner paddle for the PS sample (blue) and the LDPE sample (red) with excitation amplitude 

𝑦! = 1.02 𝑛𝑚: (a,b) Amplitudes of 1st and 3rd harmonics versus static tip-sample distance, (c,d) 

phases of first and third harmonics versus static tip-sample distance (note the phase of the third 

harmonic has no meaning when the amplitude is zero). Similar to the results shown in Fig. 3.3, 

strong correspondence between the computational and experimental results is observed for most 

𝑥!, but a discrepancy is seen at small 𝑥!.  In this case, the computational results show evidence 

of branch jumping at low 𝑥!, which did not occur in the experiment.  
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(c)  

 
(d)  

Figure 3.7 (cont.) 

 

A comparison of tsF  and 
min 3C A  for twelve data sets are shown in Figs. 3.8 and 3.9. Overall, 

strong correspondence between tsF  and 
min 3C A  is observed for most of the data, which 

suggests that indeed the average force is nearly proportional to the amplitude of the third 

harmonic. This is significant since it demonstrates the potential of the amplified (due to 1:3 

internal resonance) third harmonic to measure the average tip-sample interaction force. Further, 

since the tip-sample interaction force is directly related to material properties of the sample and 

the average tip-sample force is linearly related to the amplitude of the third harmonic, it follows 

that the amplitude of the third harmonic serves as an effective parameter to use in the 

construction of compositional maps.   It is reasonable to expect that compositional maps based 

on the amplitude of the third harmonic using this new cantilever design may more accurately 

indicate qualitative measurements of elastic modulus as compared to the phase of a typical 
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Figure	1.	Experimental	(left	column)	and	numerical	(right	column)	sensitivity	curves	of	the	inner	
paddle	 for	 the	 PS	 sample	 (blue)	 and	 the	 co-polymer	 sample	 (red)	 with	 excitation	 amplitude	
!! = 1.02 nm:	(a,b)	Amplitudes	of	1st	and	3rd	harmonics	versus	static	tip-sample	distance,	(c,d)	
phases	 of	 first	 and	 third	 harmonics	 versus	 static	 tip-sample	 distance	 (note	 the	 phase	 of	 the	
third	harmonic	has	no	meaning	when	the	amplitude	is	zero).	
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cantilever.  Currently, compositional maps measured with typical cantilevers are based on the 

phase (of the 1st harmonic) and the phase has been related analytically to the average power 

dissipated by the tip-sample interaction (Anczykowski et al., 1999).  This makes the phase a 

good candidate for qualitative measurements of viscoelastic material properties associated with 

dissipation.  However, the amplitude of the third harmonic in our new cantilever design is found 

to be proportional to the average tip-sample force of an elastic tip-sample interaction, which 

suggests that it may be a better indicator of elastic material properties like Young’s modulus. 

 

 
(a) 

 
(b) 

Figure 3.8. Comparison of the average tip-sample interaction force, tsF , and 
min 3C A  as 

functions of the normalized drive frequency.  Results are shown for the LDPE sample (left 

column) and the PS sample (right column) for a normalized static tip-sample distance of (a) 

𝑥! = 0.28, (b) 𝑥! = 0.56, (c) 𝑥! = 0.88, and (d) 𝑥! = 0.99. The base excitation amplitude is 

𝑦! = 0.91 nm. 
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(c) 

    
(d) 

Figure 3.8 (cont.) 

 

Note again that discrepancies appear in the limit of small tip-sample distances in the force curves 

of both materials (see Fig. 3.9), as well as in the resonance curves for the LDPE region (see Fig. 

3.8). These are attributable to limitations of the DMT contact model and to complicated sample-

tip dynamic interactions due to adhesion and viscoelasticity of the sample (which is not taken 

into account in the current model), as discussed previously. In addition, it is clear that there is 

stronger agreement of the correlation (3.3) for the lower solution branch compared to the upper 

solution branch. 
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Figure 7. Comparison of the average tip-sample interaction force, tsF  and min 3C A  as 

functions of, (a) static tip-sample distance for the co-polymer sample, (b) static tip-

sample distance for the PS sample, (c) normalized drive frequency for the co-polymer 

sample at a normalized static tip-sample distance of  !! = 0.88, and (d) normalized drive 

frequency for the PS sample at a normalized static tip-sample distance of  !! = 0.88; the 

base excitation amplitude is !! = 0.91 nm. 
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(a) 

 
(b) 

Figure 3.9. Comparison of the average tip-sample interaction force, tsF , and 
min 3C A  as 

functions of the static tip-sample distance. Results are shown for the LDPE sample (left column) 

and the PS sample (right column) at a base excitation amplitude of (a) 𝑦! = 0.91 𝑛𝑚, and (b) 

𝑦! = 1.02 𝑛𝑚. The normalized drive frequency is Ω! = 0.9995. 
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designs, higher harmonics will be present in the inner paddle response due to the nonlinear tip-

sample interaction force.  Further, for a general 1:n cantilever design where n is an integer, the 

nth harmonic will coincide with the second (or out-of-phase) eigenfrequency and thereby provide 

excitation to the second vibrational mode.  By indirectly exciting the second mode, in addition to 

directly driving the fundamental mode, a steady-state resonant response at the second 

eigenfrequency is induced, as well as another at the first eigenfrequency (i.e., the excitation 

frequency).  This is precisely the mechanism of intentional internal resonance, and I will measure 

the effectiveness of a 1:n internal resonance by the energy transferred to the nth harmonic in the 

inner paddle response. 

 

To this end, the energy partition among different harmonics is computed in both the base 

cantilever and the inner paddle.  The total energy in the system is the sum of its kinetic energy, 

T(t), and its potential energy, V(t), and is given by 

 

T t( )+V t( ) = 1
2
m1 !x

2
1 +
1
2
m2 !x

2
2 +
1
2
k1 x1 − xd( )2 + 1

2
k2 x1 − x2( )2                                                 (3.4) 

 

or, equivalently,  

 

T t( )+V t( ) = E1 t( )+E2 t( )                                                                                                      (3.5) 

 

where E1(t) is the total energy in the base cantilever and E2(t) the total energy in the inner paddle:        

                                                                                                

		 
E1 t( ) = 12m1 !x1

2 + 12k1 x1 − xd( )2 + 14k2 x1 − x2( )2                                                                            (3.6) 

		 
E2 t( ) = 12m2 !x2

2 + 14k2 x1 − x2( )2                                                                                                     (3.7) 

 

Furthermore, the displacements of the base cantilever and inner paddle can be decomposed into 

their 1st, 2nd and 3rd harmonic components and the higher frequency remainders as  
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x1 t( ) =η1 t( )+η2 t( )+η3 t( )+ r1 t( ) , x2 t( ) = ξ1 t( )+ξ2 t( )+ξ3 t( )+ r2 t( )                          (3.8) 

 

where ηi (ξi ), i = 1,2,3 are the three leading harmonics of the base cantilever (inner paddle) 

response and r1 ( r2 ) is the higher frequency remainder of the displacement of the base cantilever 

(inner paddle) response.  The 1st, 2nd, and 3rd harmonic components are given by 

 

		
η1 t( ) = B1 sin ωdt +ψ 1( ) , η2 t( ) = B2sin 2ωdt +ψ 2( ) , η3 t( ) = B3sin 3ωdt +ψ 3( )                  (3.9) 

		
ξ1 t( ) = A1 sin ωdt +φ1( ) , ξ2 t( ) = A2sin 2ωdt +φ2( ) , ξ3 t( ) = A3sin 3ωdt +φ3( )                  (3.10) 

 

where Bi (Ai), i = 1,2,3 are the amplitudes of the first three harmonics of the base cantilever 

(inner paddle) response and   ψ i ( φi ) are the phases of the first three harmonics with respect to the 

excitation in the base cantilever (inner paddle).  By substituting (3.8) into (3.6), the energy of the 

base cantilever can be decomposed into energy in the 1st harmonic,	E11 ; energy in the 2nd 

harmonic,	E12 ; energy in the 3rd harmonic,	E13 ; and the higher frequency energy remainder, E1
r , 

as 

 

		E1 t( ) = E11 t( )+E12 t( )+E13 t( )+E1r t( )                      (3.11) 

		 
E1
1 t( ) = 12m1 !η1

2 + 12k1 η1 − xd( )2 + 14k2 η1 −ξ1( )2         (3.12) 

		 
E1
i t( ) = 12m1 !ηi

2 + 14k2 ηi −ξi( )2 , i =2,3                     (3.13) 

		E1
r t( ) = E1 t( )−E11 t( )−E12 t( )−E13 t( )            (3.14) 

 

Similarly, by substituting (3.8) into (3.7), the energy in the inner paddle can be decomposed into 

energy in the 1st, 2nd, and 3rd harmonics and the remaining energy, given by 
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		E2 t( ) = E21 t( )+E22 t( )+E23 t( )+E2r t( )              (3.15) 

		 
E2
1 t( ) = 12m2

!ξ1
2 + 14k2 η1 −ξ1( )2                       (3.16) 

		 
E2
i t( ) = 12m2

!ξi
2 + 14k2 ηi −ξi( )2 , i =2,3          (3.17) 

		E2
r t( ) = E2 t( )−E21 t( )−E22 t( )−E23 t( )            (3.18) 

 

The base cantilever and inner paddle participate in both the fundamental (in-phase) mode and the 

second (out-of-phase) mode, which means energy transfer to the nth harmonic resulting from a 

1:n internal resonance will occur in the base cantilever as well as the inner paddle.  However, the 

focus is on energy partition in the inner paddle because the inner paddle plays a significantly 

larger role in the second mode than the base cantilever due to the inner paddle’s relatively small 

mass.  Specifically, regarding the eigenvector associated with the second mode, the component 

corresponding to the inner paddle’s participation is nearly an order of magnitude larger than the 

component corresponding to the base cantilever’s participation. As a result, the amplitude of the 

nth harmonic in the inner paddle is much larger than the amplitude of the nth harmonic in the base 

cantilever, making the response of the inner paddle a better candidate for measurement.  For this 

reason, attention is restricted to the response of the inner paddle.   

 

The energy in the 1st, 2nd, and 3rd harmonics and the remaining energy versus the static tip-

sample separation, x0, are shown in Fig. 3.10 for the 1:2, 1:3 and 1:3.5 cantilevers.  In this study, 

I numerically simulated the steady-state responses of the three different cantilevers as they 

approached a LDPE sample while being harmonically excited at their fundamental frequencies.  

This was achieved using the same procedure that was used to generate the dynamic force curves 

shown in Figs. 3.3 and 3.7, a description of which is provided in Section 3.3.  Then, equations 

(3.15) through (3.18) were used to compute the energy decomposition among the different 

harmonics. The system parameters used for the simulations are listed in Table 3.1.  The 

excitation amplitude was fixed at 𝑦! = 0.35 nm for the 1:2 cantilever and 𝑦! = 0.39 nm for the 

1:3 cantilever and 1:3.5 cantilever.  The excitation amplitudes were chosen so that the total 

energy in the system during steady state was the same for all three cantilevers. 
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As expected, energy transfer to higher harmonics is present in all three cantilevers due to the 

nonlinear tip-sample interaction, but the realization of internal resonance in the 1:2 cantilever 

and 1:3 cantilever amplifies energy transfer to the 2nd and 3rd harmonics, respectively.  Indeed, 

the energy in the 2nd harmonic is largest for the 1:2 cantilever (Fig. 3.10b) whereas the energy in 

the 3rd harmonic is largest for the 1:3 cantilever (Fig. 3.10c).  Furthermore, the remaining energy 

is largest for the 1:3.5 cantilever (Fig. 3.10d), which is the result of this cantilever’s inability to 

transfer energy from the remaining higher harmonics to the harmonic coinciding with the second 

eigenfrequency.  While both the 1:2 cantilever and 1:3 cantilever notably outperform the 1:3.5 

cantilever due to internal resonance, the 1:2 cantilever appears to transfer energy to the 2nd 

harmonic more efficiently than the 1:3 cantilever transfers energy to the 3rd harmonic.  This is 

evident by the fact that the remaining energy is lowest for the 1:2 cantilever, and by also noting 

that the energy in the 3rd harmonic for the 1:3 cantilever is lower than the energy in the 2nd 

harmonic for the 1:2 cantilever.    

 

The enhanced performance of the 1:2 cantilever as compared with the 1:3 cantilever can be 

attributed to the lack of anti-symmetry in the force-displacement curve of the tip-sample 

interaction (see Fig. 3.4).  Regarding higher harmonic generation in nonlinear dynamical systems 

under harmonic excitation, it is well known that, typically, harmonics corresponding to higher 

frequencies have smaller amplitudes.  A notable exception is when the force-displacement curve 

of the nonlinearity exhibits anti-symmetry.  In this case, the nonlinear forcing contains no even 

Fourier components in the frequency domain and, therefore, there is no presence of even 

harmonics in the response.  For such systems, e.g., in systems with cubic nonlinearity, the third 

harmonic will generally be the harmonic with the largest amplitude.  However, if the external 

forcing exhibits asymmetry, the second harmonic is generally expected to be the dominant higher 

harmonic in the response. Referring back to Fig. 3.4, it is clear that the force-displacement curve 

of the sole source of nonlinearity is asymmetric indicating that, in general, the second harmonic 

should have the largest amplitude of all the higher harmonics.  This means that the 2nd harmonic 

is more capable of transferring energy via an internal resonance than any other harmonic, hence 

the 1:2 cantilever’s superior performance shown in Fig. 3.10. 
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        (a)           (b) 

      
        (c)           (d) 
Figure 3.10: Computational energy partition within the inner paddle among the first three 
harmonics. 
 

As a next step, quantities that are directly measured during dynamic AFM operation are 

compared for the 1:2 cantilever, 1:3 cantilever and 1:3.5 cantilever.  In Fig.3.11, the amplitudes 

at the 1st harmonic (Fig. 3.11a), 2nd harmonic (Fig. 3.11b) and 3rd harmonic (Fig. 3.11c) are 

plotted versus static tip-sample separation for all three cantilevers.  Similarly, the phases with 

respect to the base excitation at the 1st harmonic (Fig. 3.11d), 2nd harmonic (Fig. 3.11e) and 3rd 

harmonic (Fig. 3.11f) are plotted versus static tip-sample separation, for each cantilever.  Due to 

the enhanced efficacy of the 1:2 internal resonance as compared with the 1:3 internal resonance, 

the amplitude of the 2nd harmonic for the 1:2 cantilever is significantly larger than the amplitude 

of the 3rd harmonic for the 1:3 cantilever.  This means that the SNR for the higher harmonic will 

be greater for the 1:2 cantilever than the 1:3 cantilever.  The significance of the improved SNR is 

that it results in enhanced sensitivity to compositional information. 
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                            (a)                                 (b)            (c) 

 

 
                            (d)                       (e)               (f) 
 
Figure 3.11: Computational force curves of the inner paddle.  

 
As discussed in detail in Section 3.3, it is well known that the nonlinear tip-sample interaction in 

AFM may result in the co-existence of two solutions: An “upper branch” solution associated 

with a large response amplitude and repulsive averaged tip-sample interaction, and a “lower 

branch” solution associated with a relatively small response amplitude and attractive averaged 

tip-sample interaction. Along with the phase of the first harmonic, the higher harmonic 

amplitude and phase can distinguish between the upper and lower branch selection due to a 

difference in the slopes of the corresponding force curves.  In other words, as x0 varies, the trends 

in the higher harmonic phase, higher harmonic amplitude and first harmonic phase are different 

for the lower branch solution than for the upper branch solution.  In contrast, the slopes of the 

first harmonic amplitude versus x0 are nearly identical for the two coexisting solution branches. 

Accordingly, the slopes of the curves shown in Figs. 3.11b – 3.11f indicate a lower branch 

selection due to the sample’s low stiffness (0.1GPa).  
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3.5 Experimental study of the 1:2 cantilever and the 1:3:4 cantilever 
 

Motivated by the computational results presented in Section 3.4, the performance of a 1:2 

cantilever (shown in Fig. 3.1b) and a 1:3:4 cantilever (shown in Fig. 3.12) were experimentally 

investigated.  Specifically, the sensitivity force curves were experimentally obtained for each 

cantilever interacting with a LDPE specimen.  The LDPE specimen is part of the two-component 

polymeric sample mounted on a glass slide as shown in Fig. 3.2. Again, the circular island 

contains relatively compliant LDPE with elastic modulus of ~0.1GPa whereas the surrounding 

material is relatively stiff polystyrene (PS) with elastic modulus of ~2GPa.  Using a MFP-3D 

Infinity AFM system from Asylum, the response was measured at two frequencies 

simultaneously: the excitation frequency, ωd , and the amplified (via internal resonance) higher 

harmonic. Each cantilever was driven at its fundamental eigenfrequency with a fixed base 

excitation amplitude (𝑦! = 0.35 nm  for the 1:2 cantilever and 𝑦! = 0.39 nm  for the 1:3:4 

cantilever).   

 
Figure 3.12: (a) SEM image of a 1:3:4 IR cantilever and (b) an AFM image of a PS sample 

containing an inner LDPE island. 
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(a)                       (b) 

Figure 3.13: Experimental force curves of the (a) 1st harmonic and (b) nth harmonic for a 1:n IR. 

 

Fig. 3.13 shows the variation in the experimental amplitude of the first harmonic and higher 

harmonic with respect to the tip-sample separation.  For the 1:2 cantilever, the response was 

measured at ωd 	and 2ωd  (red curve in Fig. 3.13); and for the 1:3:4 cantilever, the response was 

measured at ωd , 3ωd , and 4ωd .  Since the “bi-modal function” using the MFP-3D Infinity 

allows for the measurement of only two harmonics at once, the 1:3:4 cantilever was 

characterized with two separate experimental force curves: one in which the response was 

measured at ωd and 3ωd  (dark blue curve in Fig. 3.13) and one in which the response was 

measured at ωd and 4ωd  (light blue curve in Fig. 3.13).  The measurement of the 1:3:4 cantilever 

at 3ωd 	illustrates the efficacy of a 1:3 internal resonance, whereas the measurement at 4ωd

demonstrates the efficacy of a 1:4 internal resonance.  In Fig. 3.13, it is clear that the 1:2 

cantilever’s second harmonic response is significantly larger than the 1:3:4 cantilever’s 3rd and 

4th harmonic responses while the first harmonic responses of both cantilevers are nearly 

identical.  These results coincide well with the computational force curves shown in Fig. 3.11, 

providing some experimental verification of the computational study presented in Section 3.4.  In 

particular, this result experimentally validates the prediction that, for a cantilever system 

designed with a 1:n internal resonance, energy transfer to the nth harmonic is larger for n = 2 than 

for n = 3, 4.  It should be noted that the higher harmonic energy transfer in the 1:3:4 cantilever is 

partitioned among two harmonics via internal resonance rather than one harmonic as it is for the 

1:2 cantilever. However, since the 2nd harmonic amplitude for the 1:2 cantilever is nearly an 

order of magnitude larger than the 3rd and 4th harmonic amplitudes of the 1:3:4 cantilever, the 

aforementioned conclusions are still valid.  As discussed in detail in Section 3.4, the enhanced 
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efficacy of the 1:2 IR as compared to the 1:3 IR can be attributed to asymmetry in the tip-sample 

interaction force.   

 

	
	

Figure 3.14: AFM images of a blended PS-LDPE sample using the (a-d) 1:2 IR of the 1:2 

cantilever, (e-h) 1:3 IR of the 1:3:4 cantilever and the 1:4 IR of the 1:3:4 cantilever.  Beginning 

at the left, the first column is the amplitude of the 1st harmonic, the second column is the 

amplitude of nth harmonic for a 1:n IR, the third column is the phase of the 1st harmonic and the 

fourth column is the phase of the nth harmonic for 1:n IR.  Note that the color scale for each 

image is different. 

 

To evaluate the cantilever systems in actual dynamic mode AM-AFM, three different AFM 

measurements were taken on a polystyrene (PS) sample with an inner low-density polyolefin 

elastomer island (LDPE) as shown in Fig. 3.14. In Figs. 3.14a-3.14d are the results from one 
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AFM scan in which the amplitudes and phases at and  were measured using the 1:2 

cantilever; in Figs. 3.14e-3.14h are the results from a second scan in which the amplitudes and 

phases at and were measured using the 1:3:4 cantilever; and in Figs. 3.14i-3.14l are the 

results from a third scan in which the amplitudes and phases at and  were measured 

using the 1:3:4 cantilever.  Since the focus is on qualitative comparisons, the color scales for 

each image are omitted.  

 

Considering first the amplitudes and phases measured at ωd , the quality of the images from all 

three scans look similar.  This is to be expected since ωd  is the directly excited frequency which 

coincides with the resonant frequency of the fundamental eigenmode.  As a result, a large 

resonant response is elicited from the fundamental mode, at ωd , leading to clear images for all 

three scans.  In contrast, the higher harmonic (that coincides with the out-of-phase mode) is not 

directly excited; rather, it is indirectly excited via internal resonance.  The effectiveness of a 1:n 

internal resonance is what determines the strength of the implicit excitation at nωd  and the 

resulting response at nωd .  Due to the enhanced efficacy of the 1:2 internal resonance as 

compared with the 1:3 internal resonance and 1:4 internal resonance, the amplitude and phase 

images measured at 2ωd  with the 1:2 cantilever show a distinct color change between two 

dissimilar materials with higher SNR.  Contrary to the 1:2 resonance, a smaller energy transfer to 

3ωd 	and 4ωd 	in the 1:3 and 1:4 internal resonances results in loss of material sensitivity in the 

higher harmonic amplitude images.  

 
3.6. Performance of the 1:2 cantilever in AFM scans of bacteria cells 

 

The phase of a conventional AFM cantilever has been used to construct qualitative 

compositional maps.  In section 3.3 the behavior of a 1:3 cantilever was investigated and the 

third harmonic amplitude and phase were found to be sensitive to sample properties as well.  It 

was shown there that branch selection is detected by the 1st harmonic phase and higher harmonic 

observables, which is the basis for compositional sensitivity.  The branch selection reveals 

compositional information because, interestingly, the domains of attraction for the coexisting 

ωd 2ωd

ωd 3ωd

ωd 4ωd
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solutions are influenced by the material properties of the sample (Potekin et al., 2017; Cho et al., 

2012; Garcı́a and San Paulo, 2000; Raman et al., 2008; Stark, 2010).   

 

           Height                 Amplitude at  ωd       Amplitude at  2ωd          Phase at  ωd             Phase at  2ωd

 
 
Figure 3.15: AFM Images of a cyanobacteria cell that has not been exposed to cyanophage 

(control sample) using the 1:2 cantilever; (a-e) show a full scale image of a cell and (f-j) show a 

zoomed in image near the outer edge of the cell. Beginning at the left, the first column is the 

height data, the second column is the amplitude of 1st harmonic, the third column is the 

amplitude of the 2nd harmonic, the fourth column is the phase of the 1st harmonic and the fifth 

column is the phase of the 2nd harmonic. Notice that compositional differences are detected with 

the amplitude of the 2nd harmonic and the phases of the 1st and 2nd harmonics that are not 

detected with the height measurement nor the amplitude of the 1st harmonic. 

 
Motivated by these results, a 1:2 cantilever was used to image Microcutis aeruginosa 

cyanobacteria taken from Lake Erie, and the results are shown in Fig. 3.15.  Water samples were 

originally collected from western Lake Erie to isolate M. aeruginosa and (named as Ma-LEP). 

After isolation, cyanophage were concentrated by Centriprep® Centrifugal Filters YM-50. The 

propagated cyanophage (1 ml) or autoclaved cyanophage (control) was inoculated into 300 ml of 

M. aeruginosa culture and incubated at room temperature under light/dark conditions for 2 

weeks, and samples were collected at designated time intervals. Several drops of the culture were 

immobilized onto gelatin-coated mica, and after 10 minutes they were washed and air-dried and 
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subjected to AFM imaging.  Figs. 3.15a – 3.15e correspond to a single measurement of the 

cyanobacteria cell (control sample) constructed with (a) the height data obtained from the 

feedback controller error of , (b) the amplitude at , (c) the amplitude at , (d) the phase 

at , and (e) the phase at . Below this row of images, Figs. 3.15f – 3.15j show a zoomed-in 

view of the bacteria cell indicated by the blue circle in Fig. 3.15c.  The images in Figs. 3.15f – 

3.15j were each constructed with the same metric as the image directly above them. 

 

 
                              (a)                                (b) 

 
                              (c)                                 (d) 

Figure 3.16: Computational force curves corresponding to the tip approaching the sample; (a) 

amplitude of the 1st harmonic versus the static tip-sample separation, (b) amplitude of the 2nd 

harmonic versus the static tip-sample separation, (c) phase of the 1st harmonic versus the static 

tip-sample separation and (d) phase of the 2nd harmonic versus the static tip-sample separation. 

Note that the curves corresponding to E=1GPa nearly cover up the curves corresponding to 

E=0.133GPa and similarly, the curves corresponding to E=200GPa nearly cover up the curves 

correspond E=50GPa. 

ωd ωd 2ωd

ωd 2ωd
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Interestingly, the 2nd harmonic amplitude, 2nd harmonic phase and 1st harmonic phase reveal 

stark contrast in parts of the bacteria that are neither detected by the 1st harmonic amplitude nor 

the height data.  Since the higher harmonic amplitude and phase are known to deliver 

compositional information, whereas the height and first harmonic amplitude provide 

topographical information, these regions of stark contrast likely indicate a change in material 

properties of the bacteria cell.  To verify this interpretation, compositional force curves of the 1:2 

cantilever approaching samples of varying stiffness were constructed and are shown in Fig. 3.16.  

Specifically, the variation of the 1st harmonic amplitude with respect to tip-sample separation 

(Fig. 3.16a), 2nd harmonic amplitude with respect to tip-sample separation (Fig. 3.16b), 1st 

harmonic phase with respect to tip-sample separation (Fig. 3.16c) and 2nd harmonic phase with 

respect to tip-sample separation (Fig. 3.16d) are shown for four different Young’s modulus 

values, namely 0.133GPa, 1GPa, 50GPa, and 200GPa, while the attractive force is the same for 

all cases. The excitation amplitude was held fixed at 0.9nm for all simulations. 

 

The force curves corresponding to the 1st harmonic amplitude appear to be nearly identical for 

the four different stiffness values considered.  In contrast, the force curves corresponding to the 

2nd harmonic amplitude, 1st harmonic phase and 2nd harmonic phase display different trends for 

E = 0.133GPa  and E =1GPa 	than for E = 50GPa  and E = 200GPa .  Following the discussion 

in Section 3.3, the trends in the force curves of the 2nd harmonic amplitude, 1st harmonic phase 

and 2nd harmonic phase for E = 0.133GPa  and E =1GPa 	indicate a lower branch selection, 

whereas the trends for E = 50GPa  and E = 200GPa 	indicate an upper branch selection. The 

difference in branch selection for relatively compliant samples versus stiff samples is due to the 

influence that the Young’s modulus of the sample has on the domains of attraction for each 

solution (Cho et al., 2012; Garcı́a and San Paulo, 2000; Raman et al., 2008; Stark, 2010).  For 

samples with low Young’s moduli, the domain of attraction giving rise to the lower solution 

branch dominates the phase space.  As the Young’s modulus of the sample increases, the lower 

branch’s domain of attraction shrinks while the upper branch’s domain of attraction expands 

until, for large Young’s moduli, the upper branch becomes the dominant attractor.  It is 

interesting that the two force curves belonging to the lower branch corresponding to different 

stiffness valuesE = 0.133GPa  and E =1GPa , look almost identical.  This is because, on the 
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lower branch, the tip does not actually contact the sample (in the repulsive regime); rather, it 

interacts with the sample via attractive forces.  Hence, the sample’s stiffness does not have a 

large effect on the resulting dynamics.  In contrast, on the upper branch, the tip-sample 

interaction is dominated by the Hertzian contact force, which indeed depends on the sample’s 

stiffness.  However, as the Young’s modulus increases, the cantilever’s response converges and, 

for this reason, the two force curves belonging to the upper branch corresponding to E = 50GPa  

and E = 200GPa 	are also very similar.  Further, the converged 1st harmonic response amplitude 

on the upper branch is similar to the 1st harmonic response amplitude on the lower branch and, 

for this reason, no difference is observed in the force curves corresponding to the 1st harmonic 

amplitude for all four stiffness values considered. Variations in upper branch force curves due to 

changes in Young’s modulus are explored in Section 3.7. 

 

      Height                Amplitude at  ωd       Amplitude at  2ωd         Phase at  ωd             Phase at  2ωd

	
 

Figure 3.17: AFM Images of another cyanobacteria cell that has not been exposed to 

cyanophage (control sample) using the 1:2 cantilever; (a-e) show a full-scale image of a cell and 

(f-j) show a zoomed in image near the outer edge of the cell. Beginning at the left, the first 

column is the height data, the second column is the amplitude of 1st harmonic, the third column 

is the amplitude of the 2nd harmonic, the fourth column is the phase of the 1st harmonic and the 

fifth column is the phase of the 2nd harmonic. Notice that compositional differences are detected 

with the amplitude of the 2nd harmonic and the phases of the 1st and 2nd harmonics that are not 

detected with the height measurement nor the amplitude of the 1st harmonic. 
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           Height                Amplitude at  ωd       Amplitude at  2ωd          Phase at  ωd              Phase at  2ωd

 
 

Figure 3.18: AFM Images of a cyanobacteria cell that has been exposed to cyanophage for 6 

hours using the 1:2 cantilever; (a-e) show a full scale image of the cell and (f-j) show a zoomed 

in image near the outer edge of the cell. Beginning at the left, the first column is the height data, 

the second column is the amplitude of 1st harmonic, the third column is the amplitude of the 2nd 

harmonic, the fourth column is the phase of the 1st harmonic and the fifth column is the phase of 

the 2nd harmonic. Notice that compositional differences are detected with the amplitude of the 2nd 

harmonic and the phases of the 1st and 2nd harmonics that are not detected with the height 

measurement nor the amplitude of the 1st harmonic. 
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          Height                 Amplitude at  ωd        Amplitude at  2ωd          Phase at  ωd             Phase at  2ωd

 
 

Figure 3.19: AFM Images of another cyanobacteria cell that has been exposed to cyanophage 

for 6 hours using the 1:2 cantilever; (a-e) show a full scale image of the cell and (f-j) show a 

zoomed in image near the outer edge of the cell. Beginning at the left, the first column is the 

height data, the second column is the amplitude of 1st harmonic, the third column is the 

amplitude of the 2nd harmonic, the fourth column is the phase of the 1st harmonic and the fifth 

column is the phase of the 2nd harmonic. Notice that compositional differences are detected with 

the amplitude of the 2nd harmonic and the phases of the 1st and 2nd harmonics that are not 

detected with the height measurement nor the amplitude of the 1st harmonic. 

 

The computational force curves shown in Fig. 3.16 suggest that the sharp contrast in the 

cyanobacteria AFM scans that appear in the images constructed with the amplitude at ωd , phase 

at 2ωd  and phase at ωd  but not in the images constructed with the amplitude at ωd  and height 

data, is due to variation in the cell’s material properties. This pattern was observed in several 

other measurements of the bacteria, both before and after exposure to the cyanophage virus, that 

are shown in Figs. 3.17 - 3.19.  To experimentally verify the interpretation that the regions of 

contrast correspond to distinct compositional regions in which the lower branch was selected due 

to relatively low Young’s modulus, experimental force curves at two different points on the 

bacteria cell depicted in Fig. 3.15h were obtained.  The points selected are indicated in Fig. 

3.20d, and the corresponding force curves are shown in Figs. 3.20a – 3.20d; the blue force curves 
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were taken at a point inside the region of contrast, and the red force curves were taken outside 

this region. 

 

 
Figure 3.20: (a-d) Dynamic force curves taken at the locations indicated by crosses in (e). The 

image shown in (e) corresponds to the cyanobacteria image shown in Fig. 3.15h. 

 

Indeed the experimental force curves in Fig. 3.20 show a difference in branch selection among 

the two distinct regions shown in Fig. 15, for a set-point amplitude of 100 nm.  In the force 

curves corresponding to a point outside the region (red curves), upon approaching the sample the 

lower branch is initially selected by the cantilever’s dynamics, and around x0 =115nm  the 

response jumps to the upper branch.  As with the computational force curves, the jump from the 

lower to upper branch is not visible in the force curves of the 1st harmonic amplitude, but it is 

indicated by changes in the trends of the 1st harmonic phase, 2nd harmonic phase and 2nd 

harmonic amplitude.  A vertical black line denotes the point at which the red force curves show a 

switch in branch selection.  The set-point amplitude used to construct the images of the 

cyanobacteria was 100 nm and, hence, the branch selection among the two distinct regions 
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3.20d; the blue force curves were taken at a point inside the region of contrast, and the red force curves 

were taken outside this region. 

 

 
             (a)                  (b) 

 
                    (c)                       (d)                                        (e)  

Figure 3.20: (a-d) Dynamic force curves taken at the locations indicated by crosses in (e). The image 

shown in (e) corresponds to the cyanobacteria image shown in Fig. 3.15h. 

 

Indeed the experimental force curves in Fig. 3.20 show a difference in branch selection among the two 

distinct regions shown in Fig. 15, for a set-point amplitude of 100 nm.  In the force curves 

corresponding to a point outside the region (red curves), upon approaching the sample the lower branch 

is initially selected by the cantilever’s dynamics, and around x0 =115nm  the response jumps to the 

upper branch.  As with the computational force curves, the jump from the lower to upper branch is not 

visible in the force curves of the 1st harmonic amplitude, but it is indicated by changes in the trends of 

the 1st harmonic phase, 2nd harmonic phase and 2nd harmonic amplitude.  A vertical black line denotes 

the point at which the red force curves show a switch in branch selection.  The set-point amplitude used 

to construct the images of the cyanobacteria was 100 nm and, hence, the branch selection among the two 

distinct regions shown in Fig. 3.15 is different. In the region containing the point marked by a blue 

amplitude is above the noise floor because otherwise, the phase has no meaning.  Also, notice that the 

phases of the red force curves show another change in their trend for small x0 , which is indicated by a 

vertical green line.  In previous studies, this behavior was shown to be attributed to adhesion hysteresis, 

which was not accounted for in the numerical model (Tamayo & Garcia, 1997). 

	

	
                                                             (a)                                                                      (b)  

	
                                      (c)                                                (d)                                                           (e) 

  
Figure S4: (a-d) Dynamic force curves taken at the locations indicated by crosses in (e). The image 
shown in (e) corresponds to the cyanobacteria image shown in Fig. 5h of the manuscript. 
 
S2. Un-shifted phase results corresponding to Fig. 13 
 
In Fig. S5 we plot the original, un-shifted phases versus Young’s modulus from the AM-AFM 

simulation discussed in Section 6 of the manuscript.  The phases shown in Figure S5 were then shifted 

so that the phases at E=0.1GPa were equal to 0 to facilitate comparison among the different cantilevers.  

The shifted phase curves are shown in Fig. 13d - 13f of the manuscript. 
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amplitude is above the noise floor because otherwise, the phase has no meaning.  Also, notice that the 

phases of the red force curves show another change in their trend for small x0 , which is indicated by a 

vertical green line.  In previous studies, this behavior was shown to be attributed to adhesion hysteresis, 

which was not accounted for in the numerical model (Tamayo & Garcia, 1997). 
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Figure S4: (a-d) Dynamic force curves taken at the locations indicated by crosses in (e). The image 
shown in (e) corresponds to the cyanobacteria image shown in Fig. 5h of the manuscript. 
 
S2. Un-shifted phase results corresponding to Fig. 13 
 
In Fig. S5 we plot the original, un-shifted phases versus Young’s modulus from the AM-AFM 

simulation discussed in Section 6 of the manuscript.  The phases shown in Figure S5 were then shifted 

so that the phases at E=0.1GPa were equal to 0 to facilitate comparison among the different cantilevers.  

The shifted phase curves are shown in Fig. 13d - 13f of the manuscript. 
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shown in Fig. 3.15 is different. In the region containing the point marked by a blue cross, the 

lower branch is selected, and in the region containing the point marked by a red cross, the upper 

branch is selected.  Note that the 2nd harmonic phase is only plotted when the 2nd harmonic 

amplitude is above the noise floor because, otherwise, the phase has no meaning.  Also, notice 

that the phases of the red force curves show another change in their trend for small x0 , which is 

indicated by a vertical green line.  In previous studies, this behavior was shown to be attributed 

to adhesion hysteresis, which was not accounted for in the numerical model (Tamayo & Garcia, 

1997). 

 

To summarize, in the AFM images shown in Figs. 3.15 and 3.17-3.19, the relatively dark (light) 

regions in the 2nd harmonic amplitude images (1st and 2nd harmonics phase images) that are 

neither delineated in the height nor 1st harmonic amplitude images denote relatively compliant 

regions of the cells for which the lower branch is selected, and the surrounding material 

corresponds to a relatively stiff region for which the upper branch is selected. The robustness of 

this experimental observation together with the computational and experimental force curves 

provide verification that the regions of sharp contrast correspond to a distinct compositional 

landscape that is only detectable by the higher harmonic and the 1st harmonic phase.  

 

3.7 Sensitivity of the amplified higher harmonic to sample stiffness 
 
In addition to influencing the domains of attraction for the upper and lower solution branches, 

the material properties affect the response of the cantilever on a given solution branch. In 

particular, the higher harmonic amplitude in the inner-paddled cantilever was shown to be 

directly proportional to the average force of a conservative tip-sample interaction (Section 3.3), 

suggesting that the higher harmonic amplitude is closely related to elastic properties such as 

Young’s modulus.   

 

To better understand the relationship between the compositional observables in the inner-paddled 

cantilever system and material properties, compositional force curves for various Young’s 

moduli ranging from 0.1GPa to 200GPa were constructed.  In Fig. 3.21, variations in the 

amplitudes of the first three harmonics with respect to tip-sample separation are shown for a 1:2 

cantilever (Figs. 3.21a, 3.21d and 3.21g), a 1:3 cantilever (Figs. 3.21b, 3.21e and 3.21h), and a 
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commercial cantilever for comparison (Figs. 3.21c, 3.21f and 3.21i).  The corresponding 

variations in the phases of the first three harmonics with respect to tip-sample separation for each 

cantilever are shown in Fig. 3.22.  The parameters of the 1:2 and 1:3 cantilevers are stated in 

Table 3.1, which differ only in the length of their inner paddles. The commercial cantilever 

considered has no inner paddle and, hence, it can be modeled as a (single) damped harmonic 

oscillator with an effective mass of 6.27ng, effective stiffness of 5.22N/m and damping 

coefficient of .  The excitation amplitude was held fixed at 𝑦! = 0.35nm,	and 

the Hamakar’s constant set equal to  for all simulations.  For each cantilever, the 

amplitudes at  (Fig.9a-9c) are given in nm whereas the amplitudes at  (Fig.10d-10f) and 

 (Fig.10g-10i) are normalized by the free amplitude at  (i.e., the amplitude in the absence 

of the interaction with the sample), to facilitate comparison among the different cantilevers. 

 

To construct the force curves in Figs. 3.21 and 3.22, I began with  and initial 

conditions that lie within the domain of attraction for the upper branch.  After integrating the 

system in (3.1) well into steady state, I increased  by 1nm, set the initial conditions for the 

new simulation equal to the final conditions of the previous simulation and repeated this 

procedure until .  For all simulations it appears that initially, as  increases from 

10nm, the upper branch is stably tracked.  The initial upper branch selection is indicated by the 

trends in the higher harmonic amplitudes as well as the 1st harmonic phases and higher harmonic 

phases.  Depending on the sample stiffness and the cantilever, the solution transitions from the 

upper branch to the lower branch somewhere between 	and . This 

dynamic transition is denoted by a sudden jump in each of the force curves and a change in the 

slopes of the higher harmonic amplitudes, 1st harmonic phases and higher harmonic phases 

thereafter. 

 

2.85×10−8Ns/m

6×10−19 J
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Figure 3.21: Steady-state amplitudes versus static tip-sample separation for six different sample 

stiffnesses: -- E = 0.1GPa, --- E = 0.133GPa, --- E = 0.2GPa, --- E = 1GPa, --- E = 50GPa and 

--- E = 200GPa.  The left column corresponds to the 1:2 cantilever, the center column to the 1:3 

cantilever and the right column to a commercial cantilever.  The amplitudes at 	2ωd  and 	3ωd  are 

normalized by the amplitude at 	ωd  in the absence of interaction with the sample. 
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        1:2 Cantilever         1:3 Cantilever        Commercial Cantilever 

       

     

 
 

Figure 3.21: Steady-state amplitudes versus static tip-sample separation for six different sample 

stiffnesses: -- E = 0.1GPa, --- E = 0.133GPa, --- E = 0.2GPa, --- E = 1GPa, --- E = 50GPa and --- E = 

200GPa.  The left column corresponds to the 1:2 cantilever, the center column to the 1:3 cantilever and 

the right column to a commercial cantilever.  The amplitudes at 	2ωd  and 	3ωd  are normalized by the 

amplitude at 	ωd  in the absence of interaction with the sample. 
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Figure 3.22: Steady-state phases versus static tip-sample separation for six different sample 

stiffnesses:    --- E = 0.1GPa, --- E = 0.133GPa, --- E = 0.2GPa, --- E = 1GPa, --- E = 50GPa 

and --- E = 200GPa.  The left column corresponds to the 1:2 cantilever, the center column to the 

1:3 cantilever and the right column to a commercial cantilever.   

 

The jump from the upper to lower branch occurs because, for each stiffness value, the domain of 

attraction of the upper branch shrinks and, eventually, disappears as x0 increases. Additionally, 

since the domain of attraction for the upper branch expands as the stiffness increases, the value 

of x0  at which this transition happens increases as E increases. Finally, the tip loses contact with 

the sample around x0 = 64nm 	for the 1:2 cantilever and x0 = 70nm 	for the 1:3 cantilever and 

the commercial cantilever. The x0  value for which the tip ceases to interact with the sample 
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Figure 3.22: Steady-state phases versus static tip-sample separation for six different sample stiffnesses:    

--- E = 0.1GPa, --- E = 0.133GPa, --- E = 0.2GPa, --- E = 1GPa, --- E = 50GPa and --- E = 200GPa.  

The left column corresponds to the 1:2 cantilever, the center column to the 1:3 cantilever and the right 

column to a commercial cantilever.   

 

commercial cantilever considered has no inner paddle and, hence, it can be modeled as a (single) 

damped harmonic oscillator with an effective mass of 6.27ng, effective stiffness of 5.22N/m and 

damping coefficient of .  The excitation amplitude was held fixed at !! = 0.35nm,	and 

the Hamakar’s constant set equal to  for all simulations.  For each cantilever, the amplitudes 
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corresponds to the point at which the amplitude of the base cantilever is approximately equal to 

the tip-sample separation.  Finally, by comparing Fig. 3.21d with Fig. 3.21h, it is clear that, for 

all values of E, the 1:2 cantilever is more effective at transferring energy to the 2nd harmonic than 

the 1:3 cantilever is at transferring energy to the 3rd harmonic.  This further emphasizes the 

superiority of a 1:2 IR over a 1:3 IR in our multi-paddle cantilever design. 

 

Notice that, in the x0  region for which the lower branch is attracted, there is practically no 

variation in the force curves corresponding to different Young’s moduli for a given cantilever.  

In contrast, in the region of x0 corresponding to the upper branch, the response depends quite 

strongly on the sample’s stiffness.  This makes sense since, on the lower branch, the tip-sample 

interaction is characterized by attractive van der Waals forces whereas, on the upper branch, the 

repulsive Hertzian force dominates the interaction.  In order to further understand the 

dependence of the cantilever’s response on the sample’s stiffness (on the upper solution branch) 

during AM-AFM imaging, the computational study was modified to incorporate feedback 

control of the first harmonic amplitude. A set point amplitude, Asp ,	was selected for the first 

harmonic and, as E increased from 0.1GPa to 200GPa, the tip-sample separation was varied until 

the amplitude at ωd  matched the set-point amplitude, as depicted in Fig. 3.23.  This computation 

simulates an AM-AFM scan across a flat sample with stratified stiffness. 

 
Figure 3.23:  Schematic of the feedback control simulation used to generate the results presented 

in Fig. 3.24.  The simulation begins in the most compliant region of the sample and ends in the 

stiffest region. 1	
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Figure 3.24: Results from a numerical simulation of an AFM scan across a sample with varying 

stiffness and uniform height. Plots of the (a) tip-sample separation versus sample stiffness, (b) 

amplitude of the 2nd harmonic versus sample stiffness, (c) amplitude of the 3rd harmonic versus 

sample stiffness, (d) phase of the 1st harmonic versus sample stiffness, (e) phase of the 2nd 

harmonic versus sample stiffness and (f) phase of the 3rd harmonic versus sample stiffness are 

shown for the 1:2 cantilever, 1:3 cantilever and commercial cantilever.  The phases are shifted 

so that the phases of all three cantilevers coincide at E = 0.1GPa, to facilitate comparison.  

 

In Fig. 3.24, we show the results of the 1:2 cantilever, 1:3 cantilever and commercial cantilever 

for a set-point amplitude of 47nm.  Specifically, the  values required to maintain 47nm at  

(Fig.3.24a), and the corresponding amplitude at  (Fig.3.24b), amplitude at  (Fig.3.24c), 

phase at  (Fig.3.24d), phase at  (Fig.3.24e), and phase at  (Fig.3.24f) are plotted 

versus E.  To facilitate comparison among the different curves in Fig.3.24, the phases have been 

shifted so that at E=0.1GPa they are equal to 0. Again, note the superior performance of the 1:2 

IR as compared with the 1:3 IR in the inner-paddled cantilevers.  This is evident in the fact that 

the amplitude at  for the 1:2 cantilever is larger than the amplitude at 	for the 1:3 

cantilever.   
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to 0. Again, note the superior performance of the 1:2 IR as compared with the 1:3 IR in the inner-

paddled cantilevers.  This is evident in the fact that the amplitude at 2ωd  for the 1:2 cantilever is larger 

than the amplitude at 3ωd 	for the 1:3 cantilever.   

 

              
                     (a)     (b)               (c) 

           
                    (d)     (e)               (f) 

 

Figure 3.24: Results from a numerical simulation of an AFM scan across a sample with varying stiffness 

and uniform height. Plots of the (a) tip-sample separation versus sample stiffness, (b) amplitude of the 

2nd harmonic versus sample stiffness, (c) amplitude of the 3rd harmonic versus sample stiffness, (d) 

phase of the 1st harmonic versus sample stiffness, (e) phase of the 2nd harmonic versus sample stiffness 

and (f) phase of the 3rd harmonic versus sample stiffness are shown for the 1:2 cantilever, 1:3 cantilever 

and commercial cantilever.  The phases are shifted so that the phases of all three cantilevers coincide at 

E = 0.1GPa, to facilitate comparison.  

 

Furthermore, unlike the commercial cantilever, the phases (of all three harmonics) of the inner-paddled 

cantilevers show variation with respect to the Young’s modulus even though the tip-sample interaction 

is conservative.  For commercial cantilevers (with or without the use of multi-frequency AFM), the 

phase of the 1st harmonic shows no sensitivity to the Young’s modulus for a conservative tip-sample 
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Furthermore, unlike the commercial cantilever, the phases (of all three harmonics) of the inner-

paddled cantilevers show variation with respect to the Young’s modulus even though the tip-

sample interaction is conservative.  For commercial cantilevers (with or without the use of multi-

frequency AFM), the phase of the 1st harmonic shows no sensitivity to the Young’s modulus for 

a conservative tip-sample interaction. This means that, for samples that have negligible 

dissipative forces, no compositional information is delivered by the 1st harmonic phase while 

using a commercial cantilever (Garcia & Proksch, 2013; Tamayo & Garcia, 1997).  However, the 

1st harmonic phases of the proposed multi-paddle cantilevers (both the 1:2 cantilever and 1:3 

cantilever) clearly show sensitivity to Young’s modulus in the absence of dissipative tip-sample 

forces.  The sensitivity of the multi-paddle cantilever’s 1st harmonic phase to stiffness (for an 

elastic tip-sample interaction) marks a unique advantage of the new cantilever design as 

compared to commercial cantilevers. 

 

 Percent decrease from E = 0.1GPa to E = 200GPa (%) 

 Amplitude at 2ωd  Phase at ωd  Phase at 2ωd  

H = 3×10−19 J  77.9 0.28 0.69 

H = 6×10−19 J  92.3 2.00 5.33 

Table 3.2:  Percent increase in the 2nd harmonic amplitude, 1st harmonic phase and 2nd harmonic 

phase during the numerical simulation of an AM-AFM scan across a flat sample with stratified 

stiffness (see Figure 3.23) with the 1:2 cantilever.  Two different values of the Hamakar’s 

constant are considered. 

 

As a final step, the sensitivity of the 1st harmonic phase, 2nd harmonic phase and 2nd harmonic 

amplitude to stiffness are compared for the 1:2 cantilever.  Until now, sensitivity to material 

properties has been observed in both the 1st harmonic phase and the higher harmonic 

observables.  Material characterization based upon branch selection discussed in previous 

sections was evident in the 1st harmonic phase as well as the higher harmonic amplitude and 

phase. The goal in this step is to see whether using the higher harmonic observables provides an 

advantage over the 1st harmonic phase in material characterization.  To this end, the percent 

changes in the amplitude at 2ωd , phase at ωd 	and phase at 2ωd  during the AM-AFM simulation 
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(depicted in Fig.3.24) were computed for two different values of the Hamakar’s constant, and the 

results are summarized in Table 3.2.  Indeed we see that the higher harmonic amplitude provides 

a distinct advantage over the 1st harmonic phase for sensitivity to sample stiffness; from E = 

0.1GPa to E = 200GPa, the amplitude at 	2ωd  decreases by 92.3% (77.9%) while the phase at ωd  

decreases by only 0.28% (2%) for 		H =6×10−19J (		H =3×10−19J ).  The enhanced sensitivity of the 

higher harmonic amplitude compared with that of the 1st harmonic phase suggests that the higher 

harmonic amplitude, amplified by internal resonance, may be a better candidate for 

compositional maps of Young’s modulus.   

 

3.8 Material property inversion analysis 
 
In order to convert our 1st and 2nd harmonic AM-AFM observables into quantitative 

compositional measurements, the theoretical models developed by Prof. A. Raman’s group at 

Purdue University (Raman et al., 2011; Cartagena et al., 2013) can be adapted for the proposed 

inner-paddled cantilever.  Since the 1:2 cantilever was shown to be superior to the 1:3 cantilever 

earlier in the manuscript, attention will be restricted to the 1:2 cantilever.  Recall that the laser 

directly measures the response of the inner paddle rather than the response of the base cantilever, 

but it is the base cantilever that actually interacts with the sample.  The first step towards 

quantitative compositional mapping is converting the observables A1,A2, 	φ1 , and 	φ2 , which 

correspond to the amplitudes and phases of the 1st and 2nd harmonics of the inner paddle’s 

motion, into the corresponding measurements for the base cantilever.  The displacement of the 

inner paddle, x2, is assumed to have the form 

 

		

x2 ≈ A1 sin ωt +φ1( )+ A2sin 2ωt +φ2( )
= A1 sin θ( )+ A2sin 2θ +Φ( )                                                                                  (3.19) 

where 		θ =ωt +φ1 , 	Φ =φ2 −2φ1  and A1, A2, 	φ1 , and 	φ2  are directly measured by the laser during 

AM-AFM.  The displacement of the base cantilever, x1, is assumed to have the form 
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x1 ≈B1 sin ωt +ψ 1( )+B2sin 2ωt +ψ 2( )
= B1 sin θ +Θ( )+B2sin 2θ +Ψ( )                                                                          (3.20) 

where 	Θ =ψ 1 −φ1  and 	Ψ =ψ 2 −2ψ 1 .  By substituting (3.19) and (3.20) into (3.1b), neglecting 

damping (		c1 = c2 =0), and balancing the 1st and 2nd harmonics, the following relations are 

recovered 

 

		
ψ 1 =φ1 , B1 = k2 −m2ω

2( )A1 /k2                                                                                         (3.21) 

		
ψ 2 =φ2 −π , B2 = k2 −4m2ω

2( )A2 /k2                                                                                 (3.22) 

 

The equations in (3.21) relate the amplitudes and phases of the inner paddle’s motion to that of 

the base cantilever’s motion at 	1ω .  Similarly, the equations in (3.22) relate the amplitudes and 

phases of the inner paddle’s motion to that of the base cantilever’s motion at 	2ω .  Given that 

	ω ≈ω1 and 	2ω ≈ω2  where 	ω1 (	ω2 ) is the resonant frequency of the in-phase (out-of-phase) 

vibrational mode, the relations in (3.21) correspond to the lower, in-phase mode shape and the 

relations in (3.22) correspond to the higher, out-of-phase eigenmode shape. This result is 

expected in light of the assumption that 		c1 = c2 =0 . 

 

In order to perform harmonic balance analysis of equation (3.1a), following the work of 

Cartagena et al. (2013), the tip-sample interaction force must be decomposed into its harmonic 

components; i.e., Fts must be written as a Fourier series 

 

		
Fts = Fts

0 + Fts
n sin nθ( )

n=1

∞

∑                                                                                                             (3.23) 

 

The frequency response (or transfer function) of the inner-paddled cantilever serves as a filter 

that passes the frequencies corresponding to the in-phase and out-of-phase vibration modes and 
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filters out the other harmonic components in (3.23).  Since the in-phase modal frequency 

corresponds to the 1st harmonic and the out-of-phase modal frequency corresponds to the 2nd 

harmonic, all other harmonics of Fts can be neglected in the harmonic balance analysis of (1.a).  

Substituting (3.19) and (3.20) into (1.a) and retaining only the 1st and 2nd harmonic components 

of Fts gives 

 

		

B1 k1 −m1ω
2 +k2( )− A1k2{ }sinθ + k1 B1 +B2( )−k1B2 −4m1ω

2B2{ }cosψ sin(2θ )
+ k1 B1 +B2( )−k1B2 −4m1ω

2B2{ }sinψ cos(2θ )= Fex cosψ 1 +Fts
1( )sinθ −Fex sinψ 1 cosθ +Fts2sin2θ

    

(3.24) 

 

Note that, for consistency with the assumptions made previously, damping has been neglected in 

this step (		c1 = c2 =0).  Since it is assumed that the tip-sample interaction is purely elastic, the 1st 

and 2nd Fourier components of Fts are conservative (i.e., they contain only a 	sinθ  term).  The 

coefficients of the 1st and 2nd Fourier components of Fts are given by 

 

		
Fts
1 = 1

π
sinθFtsdθ

0

2π

∫                                                                                                                   (3.25) 

		
Fts
2 = 1

π
sin2θFtsdθ

0

2π

∫                                                                                                                 (3.26) 

 

For 	0<θ <π , the displacement of the base cantilever, x1, is positive indicating that the base 

cantilever is deflected upward (w.r.t to its static position), away from the sample and is therefore 

not in contact with the sample.  For 	π <θ <2π , x1 is negative indicating that the cantilever is 

deflected downward (with respect to its static position), towards the sample. To simplify the 

following analysis, a modified version of the DMT contact model (3.2) will be considered.  Here, 

the tip-sample interaction force will be approximated as 
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Fts x1( ) =
0, x1 > −x0

FvW + 43E
* R − x0 + x1( )⎡⎣ ⎤⎦

3/2 , x1 < −x0

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

                                                        (3.27) 

 

where FvW is the maximum attractive van der Waals force between the tip and sample.  When 

		x1 > −x0 , the tip is not in contact with the sample, and there is no tip-sample interaction force.  

When 		x1 < −x0 , the tip is in contact with the sample, and the tip-sample interaction force 

contains an attractive van der Waals component, FvW and a repulsive Hertz component. 

Regarding the expressions in (3.25) and (3.26), contributions to the integral occur only when the 

tip is in contact with the sample.  At the moment the tip makes contact with the sample, it holds 

that 

		
B1 sin θ0( )+B2sin 2θ0 +ψ( ) = −x0 , π <θ0 <3π /2                                                             (3.28)  

where 	θ =θ0  corresponds to the time the tip contacts the sample.  Further, 	sinθ  is symmetric 

with respect to 	θ =3π /2  and, hence, the coefficients of the 1st and 2nd Fourier components can 

be written in the form 

 

		
Fts
1 = 2

π
sinθFtsdθ

θ0

3π/2

∫                                                                                                                 (3.29) 

		
Fts
2 = 2

π
sin2θFtsdθ

θ0

3π/2

∫                                                                                                               (3.30) 

 

Returning now to (S6) and balancing the 	cosθ and 	cos2θ  terms, we have 

 

	 sinψ 1 =0 ⇒ψ 1 =0,π                                                                                                        (3.31) 
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	 sinΨ =0 ⇒Ψ =0,π                                                                                                          (3.32) 

 

where 	ψ 1 =Ψ =0  if 	ω <ω1  and 	ψ 1 =Ψ =π  if 	ω >ω1 .  This too is an expected result since 

damping has been neglected in the dynamics of the inner-paddled cantilever.  Balancing the 

	sinθ  terms in (3.24) gives  

 

		B1 k1 −m1ω
2 +k2( )− A1k2 = ±Fex +Fts

1                                                                                         (3.33) 

 

and balancing the 	sin2θ  terms gives 

 

		± B2 k1 +k2( )+k2A2 −4m1ω
2B2⎡⎣ ⎤⎦ = Fts

2                                                                                     (3.34) 

 

for 	ψ 1 =Ψ =0,π  (i.e. the coefficients of 	Fex  and 		Fts
2  are +1 for 	ψ 1 =Ψ =0  and -1 for 

	ψ 1 =Ψ =π ).  By evaluating the integrals in (3.29) and (3.30), the 1st and 2nd Fourier components 

of Fts can be related to the van der Waals force, 	FvW , and the effective Young’s modulus, 		E * , 

such that 

 

		

Fts
1 = 2

π
sinθ FvW + 43Eeff R − x1 + x0( )⎡⎣ ⎤⎦

3/2⎡

⎣
⎢

⎤

⎦
⎥dθ

θ0

3π/2

∫

= 2
π

sinθFvW dθ +
8Eeff R
3π sinθ − B1 sin θ( )+B2sin 2θ +ψ( )+ x0( )⎡

⎣
⎤
⎦
3/2
dθ

θ0

3π/2

∫
θ0

3π/2

∫

= 2
π
FvW cosθ0 +

8Eeff R
3π Int1 B1 ,B2 ,ψ ,x0( )

 
(3.35) 
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Fts
2 = 2

π
sin2θ FvW + 43Eeff R − x1 + x0( )⎡⎣ ⎤⎦

3/2⎡

⎣
⎢

⎤

⎦
⎥dθ

θ0

3π/2

∫

= 2
π

sin2θFvW dθ +
8Eeff R
3π sin2θ − B1 sin θ( )+B2sin 2θ +ψ( )+ x0( )⎡

⎣
⎤
⎦
3/2
dθ

θ0

3π/2

∫
θ0

3π/2

∫

= 2
π
FvW cos2θ0 +

8Eeff R
3π Int2 B1 ,B2 ,ψ ,x0( )

         

(3.36) 

 

where 

 

		
Int1 B1 ,B2 ,x0( ) = sinθ − B1 sinθ ±B2sin2θ + x0( )⎡⎣ ⎤⎦

3/2
dθ

θ0

3π/2

∫                                                    (3.37) 

		
Int2 B1 ,B2 ,x0( ) = sin2θ − B1 sinθ ±B2sin2θ + x0( )⎡⎣ ⎤⎦

3/2
dθ

θ0

3π/2

∫                                                   (3.38) 

 

Substituting (3.35) and (3.36) into (3.33) and (3.34) results in  

 

		
B1 k1 −m1ω

2 +k2( )− A1k2 = ±Fex +
1
π
FvW cosθ0 +

4Eeff R
3π Int1 B1 ,B2 ,ψ ,x0( )                              (3.39) 

		
± B2 k1 +k2( )+k2A2 −4m1ω

2B2⎡⎣ ⎤⎦ =
1
π
FvW cos2θ0 +

4Eeff R
3π Int2 B1 ,B2 ,ψ ,x0( )                         (3.40) 

 

for 	ψ 1 =Ψ =0,π .  Here k1, k2, m1, m2 and R are known parameters of the inner-paddled 

cantilever, A1 and A2 are directly measured by the laser, B1 and B2 are determined from A1 and A2 

using (3.21) and (3.22) and x0 can be determined from the calibrated Z-piezo data (where Z-

piezo is the vertical displacement of cantilever’s base).   
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Figure 3.25: Dynamic force curves from Fig. 3.20 (a), annotated to illustrate the x0 at which the 

tip contacts the sample, the set-point amplitude, Asp, and the set-point tip-sample separation, xsp. 

 

Determination of x0 requires an initial dynamic force curve to be taken just before the AFM scan 

in order to calibrate the Z-piezo data.  For example the experimental dynamic force curve shown 

in Fig. 3.25 has been calibrated in the sense that the Z-piezo distance that is directly measured by 

the AFM has been converted into an equivalent static tip-sample separation, x0. This was done by 

assuming that the x0 at which the tip makes contact with the sample (see Fig. 3.25) is equal to the 

1st harmonic amplitude of the base cantilever, B1, and that, at x0=0, the response of the base 

cantilever is approximately 0.  These assumptions are most appropriate when the cantilever’s 

dynamics track the lower branch, or when the sample is relatively stiff (and the cantilever’s 

dynamics track either branch).  Of course, the laser directly measures A1 rather than B1, but by 

neglecting damping B1 can be computed from A1 via (3.21).  By making these assumptions in 

order to calibrate the Z-piezo data, it follows that the slope of the dynamic force curve of the 1st 

harmonic amplitude (A1 vs x0) is assumed to have a slope equal to the ratio

		A1 /B1 = k2 / k2 −m2ω
2( ) .  In other words, the slope of the dynamic force curve (of the 1st 

harmonic amplitude) is approximated as 

 

 

		

dA1
dx0

=
k2

k2 −m2ω
2( )                                                                                                                   (3.41) 
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Finally, associated with a particular set-point value for A1, Asp, is a set-point value for x0, xsp, as 

illustrated in Fig. 3.25.  Based on Asp, xsp and the slope of the force curve, the instantaneous x0 

can be computed: 

 

		
x0 = xsp +

dA1
dx0

⎛

⎝⎜
⎞

⎠⎟

−1

A1 − Asp( )                                                                                                      (3.42) 

 

For the parameters listed in Table 1 for the 1:2 cantilever, 		k2 / k2 −m2ω1
2( ) =1.34  and therefore, 

 

		
x0 = xsp +

A1 − Asp( )
1.34                                                                                                                  (3.43) 

 

Note that, in theory, the feedback control maintains 		A1 = Asp  throughout the AM-AFM scan but, 

in practice, A1 varies slightly throughout the scan.  Hence, it would be reasonable to assume 

		A1 = Asp  and 		x0 = xsp  but more accurate to use the instantaneous A1 and x0.  Finally, with x0 

determined, (3.28), (3.39) and (3.40) can be used to compute 	FvW and 		E *  numerically. 

 
3.9 Conclusions 
 
In this work we studied the compositional mapping performance of a newly introduced AFM 

cantilever consisting of a base cantilever and inner paddle during tapping mode AFM.  Under 

harmonic base excitation, the cantilever system behaves like a system of two coupled harmonic 

oscillators involving a lower, in-phase eigenmode and a higher, out-of-phase eigenmode.  The 

cantilever is specifically designed to support a 1:n internal resonance between the two 

eigenmodes so that the nth harmonic coincides with the out-of-phase resonant frequency.  By 

directly exciting the in-phase frequency, the nonlinear tip-sample interaction activates the 

internal resonance and thereby amplifies the nth harmonic. 

 

An experimental and computational study of a cantilever designed to support 1:3 internal 

resonance is presented in Section 3.3. Sensitivity curves were constructed in which the 
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amplitudes and phases of the first and third harmonics were plotted versus the static tip-sample 

separation for two distinct materials in a blended PS-LDPE specimen. Strong correspondence 

between the experimental and numerical results was observed, providing verification of the 

reduced order lumped-parameter model for the new cantilever design.  Additionally, a large 

variation in the trend of the amplitude of the third harmonic and phases of the first and third 

harmonics depending on the measured materials was observed, whereas the corresponding trend 

of the first harmonic amplitude appeared to be nearly unchanged for both materials. The stark 

contrast in the trends of the amplitude of the third harmonic and phases of the first and third 

harmonics as functions of tip-sample approach distance was attributed to a difference in branch 

selection among the two materials; namely, the “stiff” PS region leads to steady dynamics that 

are attracted by a stable upper branch (corresponding to a high-amplitude solution) which is 

associated with a Hertzian- dominated repulsive interaction regime, whereas the “compliant” co-

polymer region leads to dynamics attracted by a lower branch (low amplitude solution) which is 

associated with a van der Waals- dominated attractive interaction regime.  Moreover, in the 

computational study, a strong correspondence between the magnitude of the average tip-sample 

interaction force per cycle and the magnitude of the third harmonic was observed. These two 

quantities appeared to be linearly related by a constant of proportionality 𝐶!"#.  While 𝐶!"# was 

computed numerically in this study, in practice this value may be determined with the use of a 

calibration sample with known material properties.  The linear relation between average tip-

sample force and the amplitude of the third harmonic may then me used to obtain quantitative 

measurements of the average tip-sample interaction force for a given material.   

 

In Section 3.4, we presented results from a computational study of energy transfer to the nth 

harmonic for different 1:n internal resonance designs and found the case of n = 2 to be optimal 

due to asymmetry in the tip-sample force-deflection curve.  Experimental force curves and AFM 

scans of the blended PS-LDPE sample shown in Section 3.5 confirmed the enhanced 

performance of the 1:2 internal resonance as compared with a 1:3 internal resonance and a 1:4 

internal resonance.  The 1:2 cantilever was then used to construct compositional maps of 

cyanobacteria in Section 3.6.  The compositional maps constructed with the 2nd harmonic 

amplitude, 2nd harmonic phase and 1st harmonic phase revealed stark contrast that was not 

observed in the topographical image. Computational and experimental force curves showed that 



	 115 

the contrast was due to a difference in branch selection owing to variations in the sample’s 

Young’s modulus, which is consistent with the findings presented in Section 3.3.   

 

Finally, we numerically simulated the feedback control in AM-AFM and studied the variations 

of the first three harmonics (amplitude and phase) with respect to changes in Young’s modulus 

in Section 3.7.  The amplitude of the nth harmonic for a 1:n internal resonance showed 

significantly enhanced sensitivity to stiffness as compared to the phases, underscoring the utility 

of the higher harmonic in compositional mapping.  Furthermore, unlike for a commercial 

cantilever, the phase of the first harmonic showed sensitivity to stiffness for a conservative tip-

sample force, which is attributed to the large presence of the nth harmonic in the response.  

Overall, the amplification of the 2nd harmonic in the 1:2 cantilever due to internal resonance 

provides a unique advantage over other multi-harmonic techniques. The presence of the higher 

harmonic with a relatively strong SNR could be exploited in a material property inversion 

scheme based on the adaptation of existing models (Sahin et al., 2007; Cartagena et al., 2013). 

An outline of the theoretical analysis that would be required to convert the AM-AFM 

observables of the 1:2 cantilever into quantitative material properties is presented in Section 3.8. 
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Chapter 4 
 

Nonlinear dynamics of a micromechanical Duffing oscillator under harmonic base 
excitation 

 
In this chapter I consider a clamped-clamped beam under harmonic base excitation having a 

concentrated mass at its center. The reduced-order model of the system is that of a Duffing 

oscillator, which is well known to result in hardening of the fundamental resonance curve. The 

primary role of the concentrated mass is to enhance the geometric nonlinearity of the system and 

thereby generate an ultra-wide resonance bandwidth.  For a fixed forcing level of the beam, the 

range of frequencies that constitute the broadband resonance are determined by the linearized 

frequency (lower bound) and the jump-down frequency (upper bound).  However, harmonic base 

excitation at the two clamped ends of the beam is used in this study and therefore the forcing 

level is not fixed, rather it is proportional to the square of the excitation frequency.  Interestingly, 

I found that for sufficiently large base excitation amplitudes, there is no theoretically predicted 

jump-down frequency.  The critical excitation level above which there is no theoretical jump-

down event is significantly lowered by the presence of the concentrated mass. In fact, without 

the concentrated mass, it would not be practically feasible to achieve the no drop phenomenon, 

hence its critical role in the beam design (Potekin et al., 2018).  Computational and experimental 

results confirm this theoretical prediction and a physical explanation of the phenomenon is 

outlined.  Physically, of course, it is not possible to truly have no jump-down bifurcation point in 

the frequency response.  In practice, this bifurcation point may occur due to the presence of 

nonlinear damping, the excitation of internal resonances, perturbations in the initial conditions 

and/or excitation amplitude caused by noise, the basin of attraction for the upper branch solution 

may become impractically small. A study of such practical limitations is also included in this 

chapter. As discussed in Chapter 5, by operating at an excitation amplitude above the critical 

threshold, the ultra-wide resonant bandwidth can be exploited in a mass sensing application. 

 
4.1 Resonator design and reduced order model 
 
In Fig. 4.1, a schematic of the system under consideration is depicted: a long thin clamped-

clamped beam with a concentrated point mass at its center and harmonic base excitation at its 

clamped supports. Assuming that plane sections remain plane during the beam vibration, a linear 
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stress-strain constitutive law, and planar motion, one can derive the equation of motion 

describing the transverse motion of the beam with nonlinearity due to midplane stretching, 

 

 [ ] 2 2
1 0

( ) ( / ) ( / 4 ) 0
L

c tt t xxxx xx xA m x L w A Q w EIw EA L w w dxρ δ ρ ω+ − + + − =∫                               (4.1) 

 
where ρ  is the mass density, A  is the cross-sectional area, cm is the mass of the concentrated 

point mass, E  is Young’s modulus, I  is the area moment of inertia, L  is the half-length, Q  is 

the Q -factor, 1ω  is the linearized eigenfrequency of the fundamental flexural mode, ( )xδ  is the 

Dirac delta function,  is the spatial coordinate along the beam, t  is time and ( , )w x t  is the 

transverse displacement. The boundary conditions are given by, 

 
( ) ( ) ( ) ( ) ( )0, 2 , sin , 0, 2 , 0x xw t w L t a t w t w L tω= = = =                                                    (4.2) 

 
 

                                    
Figure 4.1: Schematic of the system under consideration: A doubly clamped beam with a 

concentrated mass at its center under harmonic base excitation. 

 
By decomposing the displacement   w x,t( )  into a “pseudo-static” component, 

( ) ( ), sinsw x t a tω= − , plus a “flexible” component, ( )f ,w x t , one can instead consider the 

following boundary value problem describing the relative transverse motion of the beam with 

respect to the clamped supports, given by 

 

x

		L/2

	L

	x

		asin(ωt)
	mc 		ρ ,A,E ,I ,Q

		w(x ,t)
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[ ] ( )

[ ]

2 2

, 1 , , , ,0
2

1

( ) ( / ) ( / 4 )

( ) sin ( / )cos

L

c f tt f t f xxxx f xx f x

c

A m x L w A Q w EIw EA L w w dx

A m x L a t A Q t

ρ δ ρ ω

ρ δ ω ω ρ ωω ω

+ − + + −

= − + − +
∫               (4.3a) 

 
   , ,(0, ) (2L, ) 0, (0, ) (2L, ) 0f f f x f xw t w t w t w t= = = =                                                      (4.3b) 

 
 
Finally, by introducing the following normalizations, 

 

   
!x = x

2L
, !wf =

wf

2L
, !a = a

2L
, !δ ( !x) = 2Lδ (x), Θ2 = EI

16ρAL4

 
22, , / ,

2
cm ALt

L A I
µ τ ω β

ρ
= =Θ Ω = Θ =

                                                                          
(4.4)

 

 
the equation of motion can be written in non-dimensional form, 
 
 

   

1+ µ !δ ( !x −1/ 2)⎡⎣ ⎤⎦ !wf ,ττ +
Ω1

Q
!wf ,τ + !wf , !x!x!x!x − β !wf , !x!x

!wf , !x( )2
d!x

0

1

∫

= − 1+ µ !δ ( !x −1/ 2)⎡⎣ ⎤⎦ !aΩ
2 sin(Ωτ )+

!aΩΩ1

Q
cos(Ωτ )

                                                 (4.5a) 

   
wf 0,τ( ) = wf 1,τ( ) = 0, wf , !x 0,τ( ) = wf , !x 1,τ( ) = 0        (4.5b) 

 

If it is assumed that the mass-loaded beam vibrates in the fundamental flexural mode of the 

underlying linear system, the nondimensional displacement along the beam can be written as, 

 

   
wf
!x,τ( ) =W1 !x( )φ1 τ( )

                        
(4.6)

 
 

where W1 x( )
 
is the fundamental linear mode shape and ( )1φ τ  is the corresponding modal 

amplitude. Specifically, W1 x( )  is the solution to the problem 
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W1

'''' = 1+ µ !δ ( !x −1/ 2)⎡⎣ ⎤⎦Ω1
2W1                                                                                                    (4.7a) 

 
' '

1 1 1 1(0) (1) 0, (0) (1) 0W W W W= = = =                                                                                 (4.7b) 
 

where prime denotes differentiation with respect to the normalized spatial variable. The solution 

can be written in terms of the Green’s function of the system as, 

 

   W1 = µΩ1
2W1(1/ 2)G( !x;Ω1)                                                                                                         (4.8) 

 

where the Green’s function is given by, 

 

   

G( !x;Ω1) = 1
D(Ω1)

G1( !x;Ω1), 0 ≤ !x ≤1/ 2

G2( !x;Ω2 ), 1/ 2 ≤ !x ≤1

⎧

⎨

⎪
⎪

⎩

⎪
⎪

                                                                      (4.9)
 

 
where, 
 

   

G1( !x;Ω1) = ϕ3 Ω1 / 2( )ϕ2 Ω1( )−ϕ2 Ω1 / 2( )ϕ3 Ω1( ){ }ϕ2 Ω1 !x( )
+ ϕ2 Ω1 / 2( )ϕ2 Ω1( )−ϕ3 Ω1 / 2( )ϕ1 Ω1( ){ }ϕ3 Ω1 !x( )

 

 

   

G2( !x;Ω1) = ϕ3 Ω1 / 2( )ϕ2 Ω1( )−ϕ2 Ω1 / 2( )ϕ3 Ω1( ){ }ϕ2 Ω1 1− !x( )⎡⎣ ⎤⎦

+ ϕ2 Ω1 / 2( )ϕ2 Ω1( )−ϕ3 Ω1 / 2( )ϕ1 Ω1( ){ }ϕ3 Ω1 1− !x( )⎡⎣ ⎤⎦  

 

   

D Ω1( ) = 4Ω1
3 coshΩ1 cosΩ1 −1( ), ϕ1

!x( ) = sinh !x + sin !x,

ϕ2
!x( ) = cosh !x − cos !x, ϕ3

!x( ) = sinh !x − sin !x,
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Then, by projecting equation (4.5a) onto the fundamental mode shape and using the following 

mass-orthogonality and stiffness-orthogonality conditions, 

 

   
1+ µ !δ ( !x −1/ 2)⎡⎣ ⎤⎦W1

2 d!x = 1,
0

1

∫ W1
''''W1 d!x =Ω1

2

0

1

∫                                                                (4.10) 

 
the following Duffing equation describing the fundamental modal amplitude is recovered, 
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Ω1

Q
1− µW1
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⎬
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1
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⎣
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⎢

⎤

⎦
⎥
⎥
sin(ωτ )+ "a

ΩΩ1

Q
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"x( )d"x

0

1

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
cos(ωτ )

    (4.11) 

 
Finally, by introducing the notation    !z(τ ) = φ1(τ )W1 1/ 2( ) , the single-degree-of-freedom nonlinear 

reduced-order model is obtained, 

 

   ! ′′z + !ce! ′z + !ke !z + !k3 !z
3 = !bΩ2 sin(Ωτ )+ !dΩ1Ωcos(Ωτ )                                                                (4.12) 

 
where, 
 

   
!ce =

Ω1

Q
1− µW1

2 1/ 2( )⎡⎣ ⎤⎦ , !ke =Ω1
2 , !b = − W1 !x( )d!x

0

1

∫ + µW1 1/ 2( )⎡
⎣⎢

⎤
⎦⎥
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Q
W1 1/ 2( ) W1 !x( )d!x

0

1
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β

W1
2 1/ 2( ) − W1

'' !x( )W1 !x( )d!x
0

1

∫ W1 !x( )⎡⎣ ⎤⎦
2

d!x
0

1

∫
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
   (4.13)                       

 
An interesting observation is that, due to the harmonic base excitation, there are two forcing 

terms on the right-hand-side of the reduced model (4.12) depending linearly and quadratically on 

the forcing frequency Ω . This means that the overall amplitude of the combined forcing terms 

increases with increasing Ω . 
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4.2 Theoretical prediction of a no-drop phenomenon 
 
Beginning with the reduced order model of the beam stated in equations (4.12) and (4.13), the 

second term on the right-hand side of equation (4.12) is neglected since it is trivially small 

compared to the other forcing term present and recover the equation 

 

   !′′z + !ce !′z + !ke !z + !k3 !z
3 = !bΩ2 sin Ωτ( )                                                                                          (4.14) 

 

The forcing term proportional to   !d  in equation (4.12) is neglected because attention is restricted 

to systems with Q -factors on the order of 100 or higher (  ⇒ !d << !b ).  I now take a one term 

expansion in the displacement at the center of the beam,    !z =
!Asin Ωτ −ϕ( ) ,

 
and balance the 

harmonics to obtain an approximate frequency-amplitude relation in the beam, 

 

   

3
4

!k3

Ω1
2
!A3 = Ω2

Ω1
2 −1

⎛

⎝⎜
⎞

⎠⎟
!A+
!bΩ2

Ω1
2 1−

!c2
e
!b2Ω2

!A2                                                                               (4.15) 

 

The backbone curve of the frequency amplitude relation corresponds to the undamped, unforced 

system and hence is given by 

 

   

3
4

!k3

Ω1
2
!A3 = Ω2

Ω1
2 −1

⎛

⎝⎜
⎞

⎠⎟
!A                                                                                                               (4.16) 

 

At the intersection of the backbone curve and the frequency amplitude curve we have the point 

containing the drop frequency, dΩ , and the drop amplitude,    
!Ad , and therefore the drop 

frequency is given by 

 

   
Ωd =Ω1 / 1−

3 !k3
!b2

4 !c2
e

                                                                                                                (4.17) 
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which gives real values only for 
   

!b ≤
4 !c2

e

3 !k3

, indicating that there is no drop in the frequency 

amplitude curve for excitation amplitudes larger than a critical amplitude,    !ac  , given by 

 

   

!ac =
4 !c2

e

3 !k3W1 1/ 2( ) W1 !x( )d!x
0

1

∫ + µW1 1/ 2( )⎡
⎣⎢

⎤
⎦⎥

                                                                          (4.18) 

 

In order to verify this numerically, I construct computational frequency amplitude curves for the 

system by using parameters listed in Table 4.1.  For the duration of this section, these system 

parameters will be used in all computational studies. According to equation (4.18), the critical 

excitation amplitude above which there is no drop frequency (for this set of parameters) is 

c 0.049nma = .  The analytical and numerical results of forward frequency sweeps corresponding 

to 0.03nma = , 0.035nma = , 0.045nma =  and 0.05nma =  are compared in Fig. 4.2.  We see 

that for ca a< , there is strong correspondence between the theoretical and computational curves 

and that indeed there is a drop in the computational frequency amplitude curve as predicted.  In 

contrast, for the case of ca a> , there is no drop frequency within the large range of frequencies 

considered.  This provides some numerical verification of the theoretically predicted no-drop 

phenomenon resulting from the harmonic balance analysis. 

 

Mass density of the beam 32,330kg/mρ =  

Young’s modulus of the beam 169GPaE =  

Half-length 25 mL µ=  

Beam thickness 200nmt =  

Beam width 20 mw µ=  

Mass ratio of the concentrated mass to the 

mass of the rest of the beam 
20µ =  

Q-factor 100Q =  

Table 4.1.  System parameters used in the computational study of the beam. 
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In order to gain a physical understanding of this phenomenon, I consider the same system but 

with harmonic excitation applied directly to the center of the beam rather than the base.  The 

reduced order equation of motion in this case is 

 

   !′′z + !ce !′z + !ke !z + !k3 !z
3 = qsin Ωτ( )                                                                                               (4.19) 

 

where, here,   !z  is the absolute displacement at the center of the beam and q is the (fixed) 

nondimensional force.  Holding all system parameters fixed, the drop frequency is a function 

only of q,  and for each value of q there exists a drop frequency given by 

 

   

Ωd q( ) =
!ke

2
1+ 1+

3 !k3q
2

Ω1
4 !ce

2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

.                                                                                                (4.20) 

 

An increase in the forcing level results in an increase of the drop frequency as illustrated in Fig. 

4.3.  For base excitation, the forcing level is proportional to the square of the excitation 

frequency,    q = !bΩ2
 and, hence, for a fixed base excitation I can compute the drop frequency as a 

function of the excitation frequency, 

 

   

Ωd q Ω( )( ) =Ωd Ω( ) =
!ke

2
1+ 1+

3 !k3
!b2Ω4

ω1
4 !ce

2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

                                                                        (4.21) 
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                                       (a)                                                                           (b) 

 

 
                                       (c)                                                                           (d) 

Figure 4.2:  Computational forward frequency sweeps and analytical frequency amplitude 

curves at excitation amplitudes of (a) 0.03nma = , (b) 0.035nma = , (c) 0.045nma =  and (d) 

0.05nma = . 

 
In Fig. 4.4, the drop frequency as a function of the excitation frequency is plotted for several 

different base excitation amplitudes.  In this plot, a drop occurs at Ω  if ( )dΩ Ω =Ω .  

Interestingly, we see that for 0.049nmca a< =  there indeed exists an Ω   for which ( )dΩ Ω =Ω; 

but for ca a> , ( )dΩ Ω >Ω for all Ω , and hence there is no drop frequency. 
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Figure 4.3:  Computational frequency amplitude curves for 1 2 3 4q q q q< < < .  The corresponding 

drop frequencies are denoted by df
i , where ( )d df

2
q

π
Θ= Ω  and d df f ( )i

iq≡ . 

 

                              

Figure 4.4.  Drop frequency associated with a fixed forcing level corresponding to    q = !bΩ2

versus excitation frequency for several different excitation amplitudes. For 0.049nmca a< = , 
the drop frequency occurs at ( )dΩ Ω =Ω and for ca a> , there is no drop frequency. 

	
4.3 Characterization of the nonlinearity in terms of system parameters 
 
The next step in our analysis focuses on quantifying the nonlinearity in terms of system 

parameters.  I restrict attention to the case when ca a>  and introduce a parameter, λ , as a 

measure of the nonlinearity 
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( ) ( )
1

ˆ

A A
f f f
f f

λ −= =                                                        (4.22) 

 

where 1f  is the linearized frequency, f is some frequency larger than 1f , 1f̂ f f= −  is their 

difference and ( )A f   is the response amplitude at f as depicted in Fig. 4.5.  For simplicity, 

( )A f  is taken to be the response along the backbone curve and therefore, λ  can be written in 

terms of system parameters as 

 

( )
( )

2

12

ˆ6 1 ,
32 1ˆ

8 3

E fF
L E tf

L

πλ µ
π ρ

π µ
ρ

=
+ Ω

 

   
F µ( ) = 1

W1 1/ 2( ) − W1
''W1 d!x

0

1

∫ W1
'( )2

d!x
0

1

∫                                                                               (4.23) 

 

 

 
Figure 4.5: Amplitude versus frequency curve for ca a> .  The quantity λ  is a measure of the 

bending of the frequency response curve.  
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Notice that  does not depend on w (the beam width) but in practice, an increase in w may cause 

a decrease in Q.  The dependence of λ  on   f̂  is of the form  

 

  
λ ~ f̂ / a

f̂ / a +1
, a = 1

π8 3
E
ρ

t
L2 Ω1(µ)

 
 

so when   f̂ < a , λ  increases with increasing   f̂  and when   f̂ >> a , λ  is nearly independent of 

  f̂ .  This is due to the fact that slope of the backbone curve decreases rapidly (with respect to 

increasing frequency) in the immediate vicinity of the linear frequency, but nearly saturates for 

frequencies considerably larger than the linear frequency.  The dependence of  on all other 

parameters is illustrated in Fig. 4.6. We see that a decrease in ,  and t (the beam thickness) 

and an increase in the ratio  result in an increase of .  The relationship between  and 

 raises the question, what is the significance of the concentrated mass?  As will be shown, the 

function of the concentrated mass is to lower the critical excitation amplitude to a level that is 

physically practical. 

 

 
                                         (a)                                                                    (b) 

Figure 4.6: A measure of the nonlinearity, , versus the mass ratio of the concentrated mass to 

the mass of the rest of the beam, , (a); the half-length of the beam, , (b); the thickness of the 

beam, t, (c) and the ratio of the Young’s modulus to the density of the beam, , (d). 
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                                         (c)                                                                    (d) 

Figure 4.6 (cont.) 

	
4.4 The role of the concentrated mass 
 

The critical excitation amplitude required to achieve the no drop phenomenon can also be written 

in terms of the system parameters, 

 

   

ac =
2

3 2
t
Q

p µ( ), p µ( ) = Ω1 µ( ) 1−W1
2 1/ 2( )⎡⎣ ⎤⎦

W1 d!x + µW10

1

∫ 1/ 2( )⎡
⎣⎢

⎤
⎦⎥

− W1
''W1 d!x

0

1

∫ W1
'( )2

d!x
0

1

∫
                  (4.24) 

 

For the thickness and Q-factor considered in this section, the critical amplitude as a function of 

the mass ratio is shown in Fig. 4.7.  Clearly, the critical amplitude decreases dramatically as the 

mass ratio increases from 0 to around 10.  For a mass ratio of 0 (no concentrated mass), the 

critical amplitude is nearly 3 nm, which is well above the commonly used excitation amplitudes 

on the order of 0.1 nm. This means that, without the concentrated mass, it would not be 

physically feasible to achieve the no drop phenomenon, hence its critical role in the beam design. 
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Figure 4.7.  Critical excitation amplitude above which there is no drop frequency versus the 

mass ratio of the concentrated mass to the mass of the rest of the beam. 

 
4.5 Practical limitations 

 

4.5.1 Theoretical basins of attraction 

 

One practical limitation to exploiting the no drop phenomenon may be the domain of attraction 

corresponding to the high-amplitude, upper solution branch as the drive frequency increases.  

Above the critical excitation amplitude, the upper solution branch may indeed exist for all drive 

frequencies (larger than the linearized frequency) but the set of initial conditions that give rise to 

this solution may be impractically small. In order to study this limitation, I use the method of 

averaging to study the domains of attraction at several different drive frequencies and excitation 

amplitudes.  To this end, I assume a solution to (4.14) of the form 

 

   
!z = !A(τ )sin Ωτ −ϕ(τ )⎡⎣ ⎤⎦ , !′z = !A(τ )Ωcos Ωτ −ϕ(τ )⎡⎣ ⎤⎦                                                      (4.25) 

 

which gives the following set of coupled ODEs governing the so-called slow flow of the 

dynamics 

 



	 137	

   
! ′A = cosθ

Ω
!A(Ω2 − !ke )− !ce

!AΩcosθ − !k3
!A3 sin3θ + !bΩ2 sin(Ωτ )⎡⎣ ⎤⎦                                           (4.26a) 

   
′ϕ = sinθ
!AΩ

!A(Ω2 − !ke )− !ce
!AΩcosθ − !k3

!A3 sin3θ + !bΩ2 sin(Ωτ )⎡⎣ ⎤⎦                                            (4.26b) 

 

where  θ =Ωτ −ϕ(τ ) . By assuming sufficient time-scale separation between the “fast” dynamics 

corresponding to the harmonic motion at frequency Ω , and the relatively “slow” dynamics 

corresponding to the modulation envelope characterized by (4.26), the right-hand-sides of 4.26a 

and 4.26b can be averaged.  Specifically, it is assumed that   !A
 
and ϕ  remain constant over each 

“fast” oscillation cycle and that   ! ′A
 
and ′ϕ are equal to their average values over each “fast” 

oscillation cycle: 

 

   
! ′Aav =

1
2π

cosθ
Ω

!Aav (Ω2 − !ke )− !ce
!AavΩcosθ − !k3

!Aav
3 sin3θ + !bΩ2 sin(θ +ϕav )⎡⎣ ⎤⎦dθ

0

2π

∫                 (4.27a) 

   
′ϕav =

1
2π

sinθ
!AavΩ

!Aav (Ω2 − !ke )− !ce
!AavΩcosθ − !k3

!Aav
3 sin3θ + !bΩ2 sin(θ +ϕav )⎡⎣ ⎤⎦dθ

0

2π

∫                 (4.27b) 

 

The amplitude,    
!Aav , and phase,  ϕav , that result from this analysis are not exact; rather they are 

the approximate, averaged values.   The averaging analysis is based on the fundamental 

assumption that   !A
 
and ϕ  are slowly varying (with respect to the fast dynamics) and, hence, the 

smaller   ! ′A
 
and ′ϕ  are, the better the averaged values approximate the exact solution. In (4.26) 

we see that   ! ′A
 
and ′ϕ  are proportional to    Ω

2 − !ke , which means that, as the perturbation in the 

drive frequency from the linearized resonant frequency decreases, the accuracy of the averaging 

analysis improves. 

 

Upon evaluating the integrals in (4.27), the following set of nonlinear, autonomous first order 

differential equations are recovered as 
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! ′Aav +

1
2
!ce
!Aav −

1
2
!bΩsin(ϕav ) = 0                                                                                              (4.28a)                                           

   
Ω !Aav ′ϕav +

1
2
!ke −Ω

2( ) !Aav +
3
8
!k3
!Aav

3 − 1
2
!bΩ2 cos(ϕav ) = 0                                                          (4.28b) 

 

The steady-state amplitude and phase correspond to the equilibrium point(s) of (4.28) for which 

		 ! ′Aav = ′ϕav =0 .  Specifically, the equilibrium points satisfy 

 

   
!ce
!Aeq = !bΩsin(ϕeq )                                                                                                        (4.29a)                                           

   
!ke −Ω

2( ) !Aeq +
3
4
!k3
!Aeq

3 = !bΩ2 cos(ϕeq )                                                                                     (4.29b) 

 

The relations in (4.29) can be used to recover the frequency-amplitude and phase-amplitude 

relations at steady state 

 

   
!ce + Ω2 − !ke −

3
4
!k3
!Ass

2⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
!Ass

2 = !b2Ω4                                                                                     (4.30a) 

   

tan(ϕss ) =
−Ω!ce

Ω2 − !ke −
3
4
!k3
!Ass

2
                                                                                                    (4.30b)                                            

 

The stability of the steady-state response can be determined by studying the stability of the 

equilibrium points of (4.28).  To this end, I introduce small perturbations ξ  and ψ  from 

equilibrium in the amplitude and phase, respectively, 

 

   
!Aav = !Aeq + ξ , ϕav =ϕeq +ψ , ξ ,ψ ≪1                                                                            (4.31) 

 

and substitute (4.31) into (4.28) to obtain the linearized first order differential equations, which 

govern the perturbations ξ  and ψ , 
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′ξ
′ψ

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
=

−
!ce

2

!bΩ
2

cos(ϕeq )

Ω2 − !ke

2ΩAeq

−
9 !k3 Aeq

8Ω
−
!bΩ

2Aeq

sin(ϕeq )

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

ξ
ψ

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
                                                       (4.32) 

 

This linear set of homogenous first order differential equations has solutions of the form 

 

 		 ξ =Ξe
λt , ψ =Ψeλt                                      (4.33) 

 

Substituting (4.33) and (4.29) into (4.32), the expression satisfied by λ  is obtained as 

 

   

−
!ce

2
− λ

Aeq

2Ω
Ω2 − !ke −

9
4
!k3 Aeq

2⎛
⎝⎜

⎞
⎠⎟

1
2ΩAeq

Ω2 − !ke −
9
4
!k3 Aeq

2⎛
⎝⎜

⎞
⎠⎟

−
!ce

2
− λ

= 0

 

and expanding the determinant gives the equation 

 

   
λ 2 + !ceλ + 1

4
!ce

2 + 1
4Ω2 Ω2 − !ke −

9
4
!k3 Aeq

2⎛
⎝⎜

⎞
⎠⎟

Ω2 − !ke −
3
4
!k3 Aeq

2⎛
⎝⎜

⎞
⎠⎟
= 0

      (4.34) 

 

For stability, both eigenvalues must have non-positive real parts and hence, the steady-state 

response is unstable when 

 

   
Λ = 1

4
!c2

e +
1

4Ω2 Ω2 − !ke −
9
4
!k3 Aeq

2⎛
⎝⎜

⎞
⎠⎟

Ω2 − !ke −
3
4
!k3 Aeq

2⎛
⎝⎜

⎞
⎠⎟
< 0

       (4.35)
 

 



	 140	

The frequency-amplitude and frequency-phase relations at steady-state are given by (4.30), and 

the local stability of the steady-state solutions are determined by (4.33).  In Fig. 4.8, the 

resonance curves are shown for an excitation amplitude of 0.3nm, which is below the critical 

level (Fig. 4.8a), and an excitation amplitude of 0.5nm, which is above the critical level (Fig. 

4.8b).  Again, the system parameters considered are stated in Table 4.1 for which the critical 

excitation amplitude is 0.495nm.  The top row contains the steady-state amplitude versus drive 

frequency curves and the bottom row contains the steady-state phase (with respect to the 

excitation) versus drive frequency.  For drive frequencies within the broadband resonance, there 

exist three equilibrium points of (4.28): two stable spirals and one unstable saddle.  One of the 

stable equilibrium points is on the high-amplitude, upper solution branch and the other is on the 

low-amplitude, lower solution branch.  For drive frequencies above the drop-down bifurcation 

point, there exists a single equilibrium point corresponding to a stable spiral. The blue curves 

correspond to the stable steady-state solutions (i.e., the stable equilibrium points of (4.28)) and 

the red curve corresponds to the unstable steady-state solutions (the unstable equilibrium points 

of (4.28)). Since the damping is relatively low (Q=100), the amplitude on the stable, upper 

solution branch is only slightly larger than the amplitude on the unstable solution branch for 

drive frequencies within the broadband and not in the immediate vicinity of the linearized 

frequency.  As a result, the red amplitude curves in Fig. 4.8 nearly overlap with the high-

amplitude blue curves.  In contrast, we see a distinct difference in the steady-state phase versus 

frequency curves. 
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  (a)                                        (b) 
 

Fig. 4.8: Frequency-amplitude (top row) and phase-amplitude (bottom row) curves at steady 

state for (a) an excitation amplitude of 0.03nm and (b) an excitation amplitude of 0.05nm.  The 

vertical dashed lines indicate the drive frequencies considered in the theoretical domains of 

attraction shown in Fig. 4.9 and 4.10.  The stable solution branches correspond to the blue 

curves and the unstable branch corresponds to the red curve.  Note that red curve partially 

covers the high-amplitude blue curve. 

 

When multiple solutions exist, the initial conditions determine which solution is physically 

realized. For a fixed excitation within the broadband, the domains of attraction for each solution 

and a global picture of the dynamics can be constructed by numerically computing the phase 

plane trajectories of (4.28).     The phase plane trajectories at four different excitation frequencies 

are shown for  in Fig. 4.9, and for  in Fig.4.10. The four excitation 

frequencies considered are 98kHz, 103kHz, 120kHz and 121kHz, which are indicated by the 

vertical dashed lines in Fig. 4.8. The excitation amplitude 0.5nm is just above the critical 

excitation level and, hence, all four excitation frequencies are within the broadband resonance.  

In contrast, the excitation amplitude 0.3nm is below the critical amplitude, and the drop-down 

bifurcation frequency is 120.9kHz.  This means that the excitation frequencies 98kHz, 103kHz 

and 120kHz are within the broadband where three solutions exist and the excitation frequency 

121kHz is just outside the broadband where the single, low-amplitude solution exists.   

		a=0.5nm 		a=0.3nm
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Figure 4.9 : Theoretical domains of attraction  for a = 0.05nm at (a) 98kHz, (b) 103kHz, (c) 

120kHz and (d) 121kHz. 

(a) 

(b) 

   
(d) 

(c) 
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Figure  4.10: Domains of attraction  for a = 0.03nm at (a) 98kHz, (b) 103kHz, (c) 120kHz and 

(d) 121kHz. 

(a) 

(b) 

(c) 

(d) 
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In Figs. 4.9 and 4.10, the low-amplitude stable spiral is indicated by a square marker, the high-

amplitude stable spiral is indicated by a circle marker and the unstable saddle is indicated by a 

star marker.  The domains of attraction for the two stable solutions are separated by the two 

separatrices, which are the black curves emanating from the saddle point.  The saddle point is 

associated with two purely real eigenvalues: one positive and one negative.  The separatrices 

correspond to the phase plane trajectories that lie along the eigenvector corresponding to the 

negative eigenvalue, in the vicinity of the saddle point.  The arrows indicate the direction of the 

trajectories as time increases.  Hence, any point along the separatricies will lead to the unstable 

saddle point as time passes.  However, any perturbation from this path will give rise to one of the 

stable attractors, and for this reason, the saddle is not physically realizable. The red curves in 

Figs. 4.9 and 4.10 are the trajectories that emanate from the saddle and approach the high-

amplitude response, whereas the blue curves are the trajectories that emanate from the saddle and 

approach the low-amplitude response.  Close to the saddle point, the trajectories shown in red 

and blue lie along the eigenvector associated with the positive eigenvalue of the saddle.  The 

separatrices partition the phase plane into two sections.  The portion of the phase plane 

containing the red trajectory is the domain of attraction for the high-amplitude steady-state 

response, and the portion of the phase plane containing the blue trajectory is the domain of 

attraction for the low-amplitude response.  The dashed arrows connected to the separatricies in 

Figs 4.8a, 4.8b, 4.9a, and 4.9b indicate that the trajectories indeed continue into the high 

amplitude portion of the phase plane, but are omitted in these figures since they are outside the 

area of interest. 

 

Considering first the results corresponding 		a=0.5nm  (Fig. 4.8), we see that the domains of 

attraction for the high-amplitude responses shrink as the excitation frequency increases.  This 

underscores a practical limitation of achieving the no drop phenomenon since, for sufficiently 

small high-amplitude domains of attraction, small perturbations in the state variables will cause 

unwanted transitions to the low-amplitude response.  In practice, the bandwidth of the broadband 

resonance may be restricted by the size of the domain of attraction corresponding to the high-

amplitude response.  This means that, the bandwidth of the broadband resonance will be finite, 

and that the size of the bandwidth may be dictated by the domains of attraction.  By comparing 

Figs. 4.8a-4.8c with 4.9a-4.9c, respectively, we can see that as the excitation amplitude 
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increases, the domain of attraction for the high-amplitude response increases. This trend 

indicates that the practical limitation owing to the domains of attraction may be overcome 

slightly by operating at an excitation amplitude even higher than 0.5nm, say 1nm.  This will 

increase the effective bandwidth but, ultimately, the drop-down bifurcation will occur due to the 

impractically small size of the high-amplitude domain of attraction for a sufficiently large drive 

frequency. 

 

In Figs. 4.9c and 4.9d, we see that the high-amplitude stable spiral and the unstable saddle 

coalesce as the drive frequency increases from 120kHz to 121kHz, and at 121kHz only the low-

amplitude solution exists.   As discussed in Section 4.2, this bifurcation occurs because, at 

120.9kHz, the drop-down frequency associated with the forcing level 		 !bΩ2
 is equal to the drive 

frequency.  This type of bifurcation does not occur at 		a=0.5nm  for any drive frequency, since it 

is above the critical amplitude.   

 

4.5.2 The effect of noise on branch selection 

 

Noise has an effect on nonlinear sensors for which there is no counterpart in linear mass sensors.  

For a nonlinear sensor, in addition to influencing the minimum detectable shift in observables, 

noise effects the branch selection within the bi-stable bandwidth by causing perturbations in the 

initial state of the resonator.  In fact, stochastic variations in the response amplitude and phase 

effectively blur the separatrix between the basins of attraction for the two stable solutions 

(Asaleem and Younis, 2010; Kumar et al., 2012; Kozinsky et al., 2007). As the domain of 

attraction for the upper solution branch shrinks, the dynamics on the upper solution branch 

become increasingly susceptible to undesirable branch jumping in the presence of noise. For this 

reason, noise may ultimately trigger a drop down bifurcation as the drive frequency increases, 

and this effect will become more pronounced as the high-amplitude domain of attraction 

decreases in size. 
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4.6.3 Internal resonances 

 

In general, internal resonance is possible in a nonlinear resonator whenever two or more modal 

frequencies are commensurable or nearly commensurable.  That is, the necessary conditions for 

internal resonance occur when 	
ωq =mω p +nω r , where 	

ωq , 	
ω p  and 	ω r  correspond to distinct 

frequencies associated with different vibration modes and 	m  and 	n  are integers.  Depending on 

the type of nonlinearity present, these commensurable relationships may cause the corresponding 

modes to be nonlinearly coupled, and the nonlinear coupling between modes can cause energy 

exchanges between the modes involved in the internal resonance (Nayfeh and Mook, 1995; 

Vakakis et al., 2008).  

 

If an internal resonance is excited in the proposed resonator design within the broadband of the 

fundamental flexural mode, the energy input to the fundamental flexural mode may be 

transferred to the other mode(s) participating in the internal resonance.  This energy transfer can 

then trigger a drop down bifurcation in the response of the fundamental flexural mode.  In recent 

studies, this very phenomenon was reported in an electrostatically actuated resonant microsensor 

(Antoinio et al., 2012; Chen et al., 2017).  This system also exhibits geometric nonlinearity, but 

instead of base excitation, electrostatic actuation is imparted directly to the device. It was shown 

that the fundamental flexural mode of this device exhibits strong hardening behavior and, in 

some cases, the drop down bifurcation results from an internal resonance with the fundamental 

torsional mode.  Further, Antonio et al. showed that, for sufficiently large excitation levels, the 

drop bifurcation is overcome by the large energy input, and for relatively low excitation levels, 

the drop frequency saturates due to the internal resonance.   

 

4.5.4 Nonlinear damping 
 
Finally, nonlinear damping may also serve as a practical limitation to the no drop phenomenon.  

Interestingly, I find that by including an additional nonlinear damping term in the reduced order 

model, there is in fact a theoretically predicted drop down bifurcation above the critical 

excitation amplitude.  Yet still, theoretical analysis predicts a sudden increase in the drop 

frequency at the threshold amplitude, for sufficiently small nonlinear damping coefficients.  
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Specifically, the nonlinear damping considered is proportional to the product of the square of the 

displacement and the velocity.  Details regarding the theoretical model and analysis are presented 

in Sections 4.6 and 4.7. 

 

 

4.6 Experimental verification of the ultra-wide broadband resonance in heterogeneous 

microbeams  

 

Here I experimentally show the existence of ultra-wide broadband resonances in nonprismatic, 

heterogeneous microbeam resonators. A scanning electron microscope (SEM) image of the 

system under consideration is shown in Fig. 4.4a.  The system consists of a Si microcantilever 

that is connected by a polymer bridge to a fixed base.  As discussed in a previous study by Asadi 

et al. (2017), by design, the Si cantilever has a significantly lower bending stiffness than the 

polymer attachment and, as a result, transverse loading induces a relatively larger bending 

deflection of the Si cantilever as compared to the polymer attachment.  Similarly, the axial 

stiffness of the polymer bridge is designed to be considerably lower than that of the Si cantilever 

so that an axial force primarily stretches the polymer bridge and not the Si cantilever.  The net 

effect is that harmonic excitation near a bending mode induces large flexural motion of the Si 

cantilever and relatively large axial stretching of the polymer attachment.   In other words, under 

harmonic excitation, the Si cantilever behaves as a linear, damped harmonic oscillator, which is 

constrained in the transverse direction by a viscoelastic element (see Fig. 1b).  Details regarding 

the fabrication of these devices are presented in Asadi et al., 2017.  

 

I am particularly interested in the fundamental bending mode of the system and, hence, the 

parameters k1, c1 and m correspond to the effective stiffness, damping coefficient and mass of the 

fundamental bending mode of the Si cantilever. The parameters k2 and c2  denote the effective 

stiffness and damping coefficient of the axial stretching of the polymer bridge.  When this 

microcantilever-polymer system vibrates in its fundamental bending mode, the large vertical 

displacement of the free end of the Si cantilever causes large axial deflection of the polymer 

attachment and in turn, results in strong geometric nonlinearity. Assuming harmonic excitation 

applied to the base (i.e., to the fixed end of the Si cantilever and the fixed end of the polymer 
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bridge) and including only leading order nonlinearity, the equation of motion governing 

transverse motion of the cantilever near the fundamental bending mode is given by (Anderson et 

al., 2012; Asadi et al., 2017; Cho et al., 2012; Jeong et al., 2013)  

 

     (4.36) 

 

where L2 is the length of the polymer attachment and y is the relative displacement of the free 

end of the Si cantilever with respect to the base.  Equation (4.36) is in the form of the Duffing 

equation having cubic stiffness, with an additional nonlinear damping term, . The cubic 

stiffness and the nonlinear damping term originate from the axial stretching of the polymer 

attachment and are of geometric origin.  Further, note that the excitation level is not fixed, but 

rather is proportional to the square of the drive frequency due to the presence of base excitation.   

 

Aiming to experimentally verify the theoretical predictions outlined in Section 4.1, I 

experimentally investigate the dynamics of the device shown in Fig. 4.11 near its fundamental 

bending mode.  It is important to note that the reduced order equation of motion for this system, 

stated in (4.36), is not exactly the same as the equation of motion considered in Section 4.1, 

which modeled a doubly clamped beam having a concentrated mass at the center.  The difference 

is that equation (4.36) has one additional term corresponding to the nonlinear damping.  

Nevertheless, since the reduced order equation of motion for the microcantilever-polymer system 

is quite similar to that of a classic Duffing oscillator, it is reasonable to expect the 

microcantilever-polymer system to behave qualitatively similar to the doubly clamped beam in 

response to harmonic base excitation.  Our goal is to see if the microcantilever-polymer system 

shows evidence of a threshold base excitation amplitude above which the resonant bandwidth 

expands substantially.   

 

 

 

 

		 
m!!y + c1 !y +k1 y +k3 y

3 + c3 !yy
2 =maω 2cosωt , k3 =

k2
2L22

, c3 =
c2
L2
2

		 c3 !yy
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Figure 4.11: (a) An SEM image of the system, which is presented in Fig. 1a of a journal 

publication by Asadi et al. (2017).  The system consists of a silicon micro cantilever grounded to 

the base via a polymer attachment.  The Si cantilever has dimensions 500	µm x 100	µm x 20  

	µm and I consider two different devices having slightly different dimensions for the polymer 

attachment: 50	µm x 30	µm x 3	µm  and 40	µm x 20	µm x 3	µm . (b) The lumped parameter 

model of the system.  The flexural motion of the Si cantilever is modeled by a linear damped 

harmonic oscillator with effective stiffness k1, effective mass m, and effective damping coefficient 

c1, where the displacement of the effective mass corresponds to the displacement of the free end 

of the cantilever.  The effective mass is constrained by a horizontal viscoelastic element with 

stiffness k2 and damping coefficient c2, which models the effect of the polymer attachment.  The 

large flexural displacement of the cantilever induces axial stretching in the polymer attachment 

resulting in geometric nonlinearity in the cantilever’s dynamics. 

 

		k1 		c1

		y +acosωt
	m

		acos(ωt)

		acos(ωt)
		k2

		c2
		L2

Si cantilever 

Polymer attachment 

(a) 

(b) 
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To this end, experimental frequency response curves were obtained for two different 

microcantilever-polymer devices, at various excitation amplitudes.  A piezoelectric shaker was 

used to provide the harmonic base excitation, and the shaker was carefully chosen so that the 

operational frequencies were well outside the resonance of the shaker.  This allows us to assume 

that the shaker responds linearly to excitation.  Due to the base excitation, a fixed voltage level 

corresponds to a fixed excitation amplitude, but not a fixed forcing level.  The forcing level is 

proportional to the square of the drive frequency and the excitation amplitude.  The shaker was 

excited with an AC voltage at peak-to-peak values ranging from 3V to 20V provided by a 

frequency generator.  The dynamic response of the microbeam was measured by a laser Doppler 

vibrometer (LDV; Polytec OFV-534 sensor and OFV-5000 controller) and the laser was pointed 

at the free end of the Si cantilever in order to measure the maximum deflection of the structure.  

The measured signal was delivered to a remote computer via an oscilloscope (Tektronix 

DSOX4034A) where it was post-processed in LabView. The excitation frequency was 

incrementally swept forward and at each excitation frequency, an FFT of the steady-state motion 

was computed, and the response at the fundamental harmonic was recorded.   

 

In Fig. 4.12 the dynamic response of two different devices are shown.  The results shown in Fig. 

4.12a correspond to “device 1”, which has a 50 x 30 x 3  polymer attachment, and 

the results shown Fig. 4.12b correspond to “device 2”, which has a 40 x 20 x 3  

polymer attachment.  Both devices have a Si cantilever with dimensions 500 x 100 x 20

.  For each device, I began with a forward frequency sweep at 20V and incrementally 

decreased the excitation voltage until around 3V, at which point the structure behaved 

approximately linearly.  For device 1 (see Fig. 4.12a), we see that, as the excitation voltage 

increases from 3V to 6V, the drop frequency steadily increases; from 6V to 7V, the drop 

frequency suddenly increases substantially; and from 7V to 20V, the drop frequency increases 

non-monotonically.  For device 2 (see Fig. 4.12b), we see that as the excitation voltage increases 

from 3V to 7V, the drop frequency increases steadily; from 7V to 8V, the drop frequency 

suddenly increases substantially; and from 8V to 20V, the drop frequency steadily increases.   

 

 

	µm 	µm 	µm

	µm 	µm 	µm

	µm 	µm

	µm
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Figure 4.12: Frequency response curves of two different micro beam structures consisting of a Si 

cantilevers constrained at its free end by a polymer attachment (shown in Fig. 4.11).  Both 

devices have a 50	µm x 30	µm x 3	µm  Si cantilever and differ only in the dimensions of the 

polymer attachment: (a) device 1 has of 50	µm x 30	µm x 3	µm  polymer attachment and (b) 

device 2 has a 40	µm x 20	µm x 3	µm  polymer attachment.  Note that in (a), the responses at 

18V, 14V and 7V nearly cover the responses at 20V, 16V and 8V, respectively.  

 

I believe that the sudden jump in the drop frequency caused by a small increase in the excitation 

voltage, in both devices, is evidence of the critical excitation amplitude that was theoretically 

predicted for a Duffing oscillator under harmonic base excitation in Sections 4.1-4.4.  

Specifically, I believe the critical excitation amplitude for device 1 corresponds to a voltage of 

around 7V and the critical excitation amplitude for device 2 corresponds to voltage of around 

8V.  

 

4.7 Theoretical analysis of the Duffing equation with nonlinear damping 

 

It appears that the microcantilever-polymer devices under base excitation exhibit ultra-wide 

broadband resonances above a threshold excitation amplitude.  Below the critical amplitude, the 

bandwidth increases steadily as the excitation amplitude increases, and near the critical 

amplitude, the bandwidth increases abruptly given a small increase in the excitation amplitude.  

This is indeed the phenomenon described theoretically in Section 4.2; however, the reduced 

(a)              (b) 
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order equation of motion for the microcantilever-polymer device has an additional nonlinear 

damping term as compared to the classic Duffing equation considered in Section 4.2.  Naturally, 

this raises the question, how does the nonlinear damping effect the dynamics of the Duffing 

oscillator, and does equation (4.36) also lead to the no-drop phenomenon? 

 

As a first step, the following normalizations are introduced 

 

		 

!y = y
L1
, τ =ω0t , ω0 =

k1
m
, ζ1 =

c1
2mω0

ζ2 =
c3L1

2

mω0
, Ω= ω

ω0
, α =

k3L1
2

mω0
2 , !a=

a
L1

              (4.37) 

 

and (4.36) is written in non-dimensional form 

 

		 ! ′′y +2ζ1 ! ′y + !y +α !y3 +ζ2 ! ′y !y
2 = !aΩ2cosΩτ          (4.38) 

 

where the linear damping coefficient is related to that the Q-factor  according to  

 

		
Q = 1

2ζ1
                (4.39) 

 

In order to determine the system parameters of interest, the set of parameters that minimize the 

error between the theoretical and experimental results for devices 1 and 2 are found. Within the 

linear dynamic regime, for a fixed excitation frequency and amplitude, the steady-state amplitude 

of the system is given by, 
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where 		ω =2π f
 
and 		ω0 =2π f0 . For the relatively large Q factors associated with 

microresonators, the peak of the linear resonant curve occurs at 		f ≈ f0
 
and, hence, the steady-

state amplitude can be defined as 
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where 		Apk   is the peak steady state amplitude given by  

 

		Apk = aQ .                                   (4.42) 

 

Using the experimental resonance curves at sufficiently low excitation voltages (~0.1V) so that 

the dynamic response is linear, equation (4.41) can be used to simultaneously determine 		f0
 
and 

	Q . Once 	Q  is determined, the excitation amplitude can be identified using equation (4.42). 

Finally, by dividing the excitation amplitude by the corresponding excitation voltage, the 

sensitivity, 	C , of the actuation system can be computed. In other words, if a linear relationship 

between the excitation voltage, 		Vex , and the base excitation amplitude is assumed, then 	C
 
is the 

conversion factor which can be computed using the relation 
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		C = a/Vex                                                            (4.43) 

 

Following the steps outlined above, I computed a Q-factor of 		Q =2,915  (		Q =1515 ) for device 1 

(device 2), a linear resonant frequency of 		f0 =61.8kHz  (		f0 =51kHz ) for device 1 (device 2), 

and an average conversion factor of 		C =0.1nm/V .  Next, the nonlinear stiffness coefficients, α , 

are extracted for both devices based on the nonlinear dynamic responses at several different 

excitation voltages below the critical level.  At each excitation level considered, the drop down 

bifurcation frequency and response amplitude (i.e. the peak amplitude, which occurs at the drop 

frequency) is extracted and used in a fitting with the backbone curve.  The backbone curve of 

this system is given by 
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                                                                    (4.44) 

  

Note that since the backbone curve corresponds to zero damping and forcing, the backbone curve 

of the microcantilever-polymer system is the same as that of a classic Duffing oscillator.  

Equation (4.44) was derived using the method of harmonic balance, the details of which are 

provided in Section 4.2.  Using this method, I found the nonlinear stiffness coefficient to be 

	α =6,838
 
for device 1 and 	α = 9,174

 
for device 2. In Fig. 4.13, the resulting comparisons of the 

theoretical backbone curve and the experimental resonance curves at excitation voltages below 

the critical level are shown. 

 

At this point, a parametric study of the nonlinear damping coefficient, , is performed in order 

to assess how the nonlinear damping term affects the dynamics. Specifically, I want to 

investigate how the nonlinear damping term in (4.38) affects the ultra-wide broadband resonance 

of the underlying classical Duffing equation. When , the reduced order model of a classic 

Duffing oscillator under harmonic base excitation is recovered, which was theoretically analyzed 

in Sections 4.1 – 4.5.  It was shown in Section 4.2 that there exists a critical excitation amplitude 

	ζ2

	ζ2 =0
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above which there is no theoretical drop down bifurcation in the primary resonance curve. Here I 

theoretically investigate whether or not there exists such a threshold excitation amplitude in the 

case .  

 

 
Figure 4.13: Results of the fitting used to determine the nonlinear stiffness coefficients for (a) 

device 1 and (b) device 2. The black dashed line corresponds to the theoretical backbone curve 

for a nonlinear stiffness coefficient of (a) 	α =6,838  and (b) 	α = 9,174 , and the solid lines 

correspond to the experimental resonance curves at various excitation voltages below the 

critical excitation level. 

 

In Fig. 4.14, the theoretical drop frequency versus excitation amplitude is plotted for six different 

values of the nonlinear damping coefficient: 	ζ2 =0  (black dashed line), 	ζ2 =5×10
−4  (solid blue 

line), 	ζ2 =5×10
−2   (solid orange line), 	ζ2 =5  (solid yellow line), 	ζ2 =50  (solid purple line) and 

	ζ2 =500  (solid green line).  The curves shown in Fig. 4.14a correspond to the parameters 

previously extracted for device 1, namely, 		f0 =61.8kHz , 		Q =2,915
 
and

 
	α =6,838 , and the 

curves shown in Fig. 4.14b correspond to the parameters previously extracted for device 2, 

namely, 		f0 =51kHz , 		Q =1,515
 
and 	α = 9,174 . These theoretical curves were constructed using 

the method of harmonic balance.  Specifically, I assume a steady-state response of the form 

		 !y = !Acos(Ωτ −ϕ) , substitute this expression into (4.38) and balance the first harmonic terms to 

obtain the frequency-amplitude relation at steady state: 

	ζ2 >0

(a)              (b) 
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 The drop-down bifurcation point occurs at the intersection of the curve defined by (4.45) and the 

backbone curve defined by 

 

		 
3
4α
!A3 = Ω2 −1( ) !A                                          (4.46) 

 

By combining (4.45) and (4.46), the third order polynomial defining the drop frequency, 	Ωd , is 

recovered 
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The relation in (4.47) was then numerically solved in order to generate the curves shown in Fig. 

4.14. As expected, for the case of , there is no theoretical drop frequency above a critical 

excitation amplitude and in the immediate vicinity of the critical amplitude, the drop frequency 

increases dramatically. For , the drop frequency also increases drastically near the 

critical excitation amplitude, but at amplitudes higher than the critical level, there does exist a 

theoretical drop frequency in contrast to the case of .  Further, the rate of increase in the 

drop frequency with respect to the excitation amplitude decreases considerably for excitation 

amplitudes above the critical level.  As  increases, it appears that the bandwidth expansion 

near the critical excitation amplitude decreases until, in the limit of large nonlinear damping (e.g. 

), there is no obvious critical excitation amplitude.   

 

	ζ2 =0

	ζ2 =5×10
−4

	ζ2 =0

	ζ2

	ζ2 >~50
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To further investigate the effect of  , I study the points where the slope in the drop frequency 

versus excitation frequency curves reach their maxima.  I track the locus of points where  

reaches a global maximum as  increases and summarize the results in Fig. 4.15. In particular, I 

plot the  and  versus , where is the maximum slope and  is the 

corresponding excitation amplitude.  The results shown in Fig. 4.15a correspond to the fitted 

parameters for device 1 and the results shown in Fig 4.15b correspond to the fitted parameters 

for device 2.  Nonlinear damping coefficients in the range  to are 

considered, and the inset of each figure shows a zoomed in view for  in the range of  

to 3.  Indeed we see that as  increases, the maximum slope decreases at an increasing rate. The 

excitation amplitude  a*  initially increases for small  and then decreases; for the fitted 

parameters corresponding to device 1 (device 2),  a* increases until  ( ) and 

decreases thereafter. 

 

	ζ2

		
dfd
da

	ζ2

		

dfd
da

⎛

⎝⎜
⎞

⎠⎟max
	a∗ 	ζ2

		

dfd
da

⎛

⎝⎜
⎞

⎠⎟max
	a∗

	ζ2 =5×10
−4

	ζ2 =100

	ζ2 	5×10−4

	ζ2

	ζ2

	ζ2 =0.5 	ζ2 =1.38



	 158	

 
Figure 4.14: Computational curves of the drop frequency versus the excitation amplitude at 

various levels of nonlinear damping for (a) 		f0 =61.8kHz , 		Q =2,915
 
and

 
	α =6,838  (the fitted 

parameters corresponding to device 1) and (b) 		f0 =51kHz , 		Q =1,515
 
and 	α = 9,174  (the fitted 

parameters corresponding to device 2).  The right column shows zoomed-in views for low drop 

frequencies. 

 

 

 

 

 

 

Zoomed-in view 

Zoomed-in view 

(a) 

(b) 
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Figure 4.15: Numerical analysis of the locust of points corresponding to global maxima of  
		
dfd
da

 

, where
		
dfd
da

 is the slope of the drop frequency versus excitation amplitude curve for a fixed 	ζ2 . 

In (a), the system parameters are 		f0 =61.8kHz , 		Q =2,915
 
and

 
	α =6,838  (the fitted parameters 

corresponding to device 1) and in (b), the system parameters are 		f0 =51kHz , 		Q =1,515
 
and 

	α = 9,174  (the fitted parameters corresponding to device 2.  The left column shows the 

maximum slope, 
		

dfd
da

⎛

⎝⎜
⎞

⎠⎟max
 , versus 	ζ2and the right column shows the corresponding excitation 

amplitude, 	a∗ , versus 	ζ2 . The inset of each plot shows a zoomed-in view for low 	ζ2 .  
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Figure 4.15: Numerical analysis of the locust of points corresponding to global maxima of  
		
dfd
da

 , where

		
dfd
da

 is the slope of the drop frequency versus excitation amplitude curve for a fixed 	ζ2 . In (a), the 

system parameters are 		f0 =61.8kHz , 		Q =2,915
 
and

 
	α =6,838  (the fitted parameters corresponding to 

device 1) and in (b), the system parameters are 		f0 =51kHz , 		Q =1,515
 
and 	α = 9,174  (the fitted 

parameters corresponding to device 2.  The left column shows the maximum slope, 
		

dfd
da

⎛

⎝⎜
⎞

⎠⎟max
 , versus 	ζ2

and the right column shows the corresponding excitation amplitude, 	a∗ , versus 	ζ2 . The inset of each 

plot shows a zoomed-in view for low 	ζ2 .  
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In summary, for relatively low values of the nonlinear damping coefficient, there exists a critical 

excitation amplitude above which the resonant bandwidth increases substantially.  In contrast to 

the case of 	ζ2 =0 , there is indeed a theoretically predicted drop bifurcation above the critical 

excitation amplitude.  Therefore, nonlinear damping may also be a practical limitation to the no 

drop phenomenon discussed in Section 4.2. As a final step, I plot the experimental drop 

frequency as a function of the excitation amplitude in Fig. 4.16, for both devices.  The excitation 

amplitudes were computed from the excitation voltages using the average sensitivity among the 

two devices (see equation 4.43).  If we compare the curves in Fig. 4.16a and 4.16b with the 

curves shown in Fig. 4.14a and 4.14b corresponding to 	ζ2 =5×10
−4 , respectively, we see 

qualitative agreement but substantial quantitative discrepancies.  The primary difference is that 

the theoretically predicted bandwidth expansion is substantially larger than that observed in the 

experiment. Also, the theoretically predicted critical amplitude is larger than the experimentally 

observed critical amplitude.  Essentially, the theoretical model captures qualitatively the sudden 

bandwidth expansion observed in the experiment, but it does not predict the correct scaling.  This 

may be due to a limitation of the theoretical model and perhaps additional sources of nonlinearity 

play a role in the dynamics of the microcantilever-polymer devices. 

 

 

 
Figure 4.16:  Experimental plots of the drop frequency versus excitation amplitude for (a) device 

1 and (b) device 2. 

 

 

Device 1 Device 2 (a) (b) 
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4.8 Conclusions 

 

In this Chapter, a new micromechanical resonant sensor design is introduced consisting of a 

doubly clamped beam having a concentrated mass at its center and under harmonic base 

excitation.  The reduced order model of the fundamental flexural mode is constructed in the form 

of a discrete spring-mass system containing cubic stiffness due to geometric nonlinearity, in 

addition to linear stiffness.  In other words, the fundamental bending mode is governed by the 

Duffing equation where the forcing level is not fixed, rather it is proportional to the square of the 

drive frequency due to the presence of base excitation. I found that there exists a critical 

excitation amplitude above which there is no theoretically predicted drop down bifurcation in the 

resonance curve.  Further, the presence of the concentrated mass significantly lowers the critical 

excitation required for this theoretical no drop phenomenon.  Practically, it is not possible to 

have no drop down bifurcation, and the inevitable drop down may result from the presence of 

nonlinear damping, the excitation of internal resonances, and/or shrinking of the high-amplitude 

domain of attraction combined with stochastic variations in the initial state due to noise.  In 

practice, I believe that the critical excitation amplitude corresponds to an amplitude at which 

sudden bandwidth expansion occurs.   

 

In order to experimentally investigate this phenomenon, I consider a microresonator system 

consisting of a Si microcantilever restricted at its free end by a polymer bridge.  It had previously 

been shown that the fundamental bending mode of this device is characterized well by the 

Duffing equation with an additional nonlinear damping term (Asadi et al., 2017). Experimental 

resonance curves were obtained for two different microcantilever-polymer devices that were 

excited harmonically at the base via a piezoelectric actuator. For each device, various resonance 

curves were obtained at different excitation voltages, where a fixed excitation voltage 

corresponds to a fixed base excitation amplitude of the piezo shaker.  In both structures, a sudden 

expansion in the bandwidth at a critical excitation voltage was observed.  Further, theoretical 

analysis showed that the presence of weak nonlinear damping may also serve as a practical 

limitation to the no drop phenomenon.  For relatively low values of the nonlinear damping 

coefficient, I theoretically predict a critical excitation amplitude at which a sudden increase in 

the bandwidth occurs, but for excitation amplitudes above the threshold level, there exists a 
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theoretical drop down bifurcation in contrast to the case of zero nonlinear damping.  The 

theoretical model qualitatively predicts the experimental results obtained from the 

microcantilever-polymer device but not quantitatively.  The quantitative discrepancies may be 

due to shortcomings of the theoretical model. 
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Chapter 5 

 

A micromechanical mass-sensing method based on amplitude tracking within an  

ultra-wide broadband resonance 

 

5.1 Background and motivation 

 

Among linear resonant mass sensors (also known as “dynamic-mode mass sensors”) there are 

two different conventional methods typically used for detection. One requires a frequency 

generator to incrementally sweep the excitation frequency and record the steady-state response 

amplitude at each frequency, before and after the addition of a discrete mass (the object that is 

sensed). The resulting resonance curves typically reveal a downward shift in the linear resonant 

frequency from which the amount of added mass is deduced (Arlett et al., 2011; Johnson and 

Mutharasan, 2012; Mahmoud, 2016). This relatively simple, open-loop mass sensing method 

was among the earliest measurement techniques, commonly used in applications where ultra-

high sensitivity is not required (Ilic et al., 2001; Ilic et al., 2005; Johnson and Mutharasan, 2012; 

Ma et al., 2012). Limitations of this technique include unaccounted-for contributions to the 

effective stiffness of the resonator; however, recent studies have investigated different ways to 

approximate the added stiffness (Grüter et al., 2010; Gupta et al., 2006; Ilic et al., 2012; Ma et 

al., 2012; Zhang, 2014). 

 

The other common resonant mass sensing technique involves a closed-loop feedback procedure 

to ensure that as mass is added to the device, the system is always excited at resonance (Arlett et 

al., 2011; Johnson and Mutharasan, 2012). The advantage of this more complicated closed-loop 

method is that it eliminates the need for time-consuming frequency sweeps. Also, it allows for 

the use of ultra-high vacuum (UHV) conditions in which particularly high Q-factors arise, 

resulting in enhanced sensitivity (Ekinci et al., 2004; Kharrat et al., 2008; Garcia and Perez, 

2002). The characteristic times associated with the decay of the transient terms are directly 

proportional to the Q-factor, and for most applications, the decay rate in UHV conditions is so 

slow that the open-loop approach becomes impractical (Garcia and Perez, 2002). For this reason, 

the closed-loop approach is usually used under UHV conditions to achieve extreme sensitivity, 
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and it is the method required to realize state-of-the-art yoctogram resolution (Chaste et al., 2012; 

Chiu et al., 2008; Ekinci et al., 2004; Jensen et al., 2008; Yang et al., 2006; Yang et al., 2011). 

While closed-loop mass sensing offers the advantages of improved sensitivity and independence 

from frequency sweeps, it has the disadvantages of requiring sophisticated FM-PLL feedback 

control, and, typically, extremely small resonator designs and UHV operating conditions. 

 

In the last couple of decades, researchers have studied the advantages of intentional nonlinearity 

in the design of microresonator mass sensors.  A general feature of nano- and micro-scale 

resonators is that the relative magnitude of the resonance amplitude is quite large (compared to 

the device size) and, as a result, these devices often exhibit significant geometric nonlinearity. 

On the one hand, this limits the operational range for conventional mass sensing methods in 

which a linear dynamic regime is required. On the other hand, it underscores the potential of 

intentionally exploiting nonlinear phenomena to improve microresonant sensing technology 

(Askari et al., 2017; Bajaj et al., 2016; Bouchaala et al., 2016; Cho et al., 2010, Hiller et al., 

2015; Jain et al., 2012; Kacem et al., 2010; Karabalin et al., 2008; Kumar et al., 2011; Kumar et 

al., 2012; Li et al., 2014; Rhoads et al., 2005; Rhoads et al., 2010; Turner et al., 1998; Younis 

and Alsaleem, 2009; Yu et al., 2002; Zhang et al., 2002; Zhang and Turner, 2005). One such 

research area is bifurcation-based mass sensing, which utilizes the large changes in amplitudes 

associated with bifurcations in the nonlinear frequency response of microresonators.  Typically, 

the nonlinear microresonators considered display either a softening frequency response where 

the frequency response curve bends backward toward lower frequencies, or a hardening response 

where the frequency response curve bends forward toward higher frequencies.  In either case, the 

bending of the frequency response results in bi-stability, hysteresis and bifurcation points in the 

frequency response.  Bifurcation points associated with a sudden upward shift in the response 

amplitudes occur at jump-up frequencies and bifurcation points associated with a sudden 

downward shift in the response amplitude occur at a jump-down frequencies. The addition of 

mass on the microresonator shifts the entire frequency response towards lower frequencies and, 

hence, the dependence of the jump-up and jump-down frequencies on mass can be exploited in 

mass detection schemes.   
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Cho et al. (2010) theoretically and experimentally studied a harmonically driven, doubly-

clamped carbon nanotube resonator and determined that the large resonance bandwidth and 

jump-down frequency are more sensitive to added mass and damping levels than the linearized 

natural frequency of a resonator.  Zhang et al. (Zhang et al., 2002; Zhang and Turner, 2005) 

studied a single-crystal Si micro-oscillator where fringing-field electrostatic force was used to 

periodically change the effective stiffness of the resonator and thereby generate parametric 

harmonic excitation. Shifts in the jump-up frequency were used to detect mass, and the jump-up 

frequency was shown to be 1-2 times more sensitive to mass than the linearized frequency. 

Kumar et al. (Kumar et al., 2011; Kumar et al., 2012) studied a piezoelectrically-actuated 

microcantilever probe consisting of a Si cantilever with a piezoelectric layer that was initially 

designed for scanning probe microscopy. Due to the presence of geometric, material and inertial 

nonlinearity, both cubic and quadratic terms appear in the reduced order equation of motion for 

the microcantilever. Depending on the relative contribution of the different sources of 

nonlinearity, either a softening or stiffening behavior is observed in the frequency response.  In 

either case, variations in both the jump-up and jump-down frequencies due to mass addition were 

studied analytically and experimentally. Bouchaala et al. (2016) studied an electrostatically 

actuated beam, which exhibited geometric (cubic) and electrostatic (quadratic) nonlinearity. The 

contribution of the electrostatic nonlinearity was controlled via the DC voltage, and for low DC 

voltages hardening was observed in the frequency response, whereas for large DC voltages, 

softening was observed in the frequency response.  It was shown that in the case of softening, the 

jump-up event can be used as a switch to detect a threshold amount of added mass, and in the 

case of hardening changes in the response amplitude prior to the jump-down event can be used 

to quantify added mass in addition to the jump-down event signaling the addition of a critical 

amount of mass.   

 

The incorporation of active feedback control in the aforementioned sensing techniques has also 

been explored.  Hiller et al. (Hiller et al., 2015; Li et al., 2014) analytically and experimentally 

studied amplitude feedback control of a parametrically excited microbeam sensor during 

parametric resonance. As mass is added to the sensor, the excitation frequency varies in order to 

maintain a predetermined set-point response amplitude, and the resulting frequency shifts are 

used to quantify the amount of added mass.  Interestingly, the operational frequencies and 
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forcing levels considered lie within a parameter space that gives rise to a unique response 

amplitude (i.e., there is no hysteresis in the operational range considered).   

 

 
(a) 

 
                                         (b)                                                                (c) 
Figure 5.1: (a) Proposed nonlinear resonator design before (left) and after (right) mass 

deposition; (b) steady-state response amplitude at the 1st harmonic versus excitation frequency, 

before (blue) and after (red) mass deposition and (c) steady-state response amplitude at the 3rd 

harmonic versus excitation frequency, before (blue) and after (red) mass deposition. In (b) and 

(c), for drive frequencies lower than a critical value (corresponding to a bifurcation point), there 

exists a unique, stable response and for drive frequencies larger than this critical value, there 

co-exist two stable responses denoted by solid lines and one unstable response denoted by a 

dotted line.  

 

Bajaj et al. (2016) considered a microscale quartz tuning pitchfork and used feedback control to 

provide a source of cubic nonlinearity in the dynamics.  Due to the feedback, the motion of the 

pitchfork was well described by the Duffing equation. By varying the gain of the cubic stiffness 
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term from negative, zero to positive, the frequency response behavior varied from softening to 

linear to hardening, respectively.  Analytical and experimental analysis of the bifurcation 

frequencies in this active Duffing oscillator demonstrated the viability of a tunable, 

commercially available bifurcation-based sensor. 

 

In this Chapter, I consider the device introduced in Chapter 4 (Sections 4.1-4.4), namely, a 

clamped-clamped beam under harmonic base excitation having a concentrated mass at its center. 

As discussed in Chapter 4, the reduced-order model of the system is that of a Duffing oscillator, 

and for sufficiently large base excitation amplitudes there is theoretically no jump-down 

bifurcation point.  Further, the critical excitation level above which there is no theoretical jump-

down event is significantly lowered by the presence of the concentrated mass.  By operating at 

an excitation amplitude above this critical threshold, the ultra-wide resonant bandwidth is 

exploited for a mass-sensing technique based on amplitude tracking.  A secondary effect of the 

cubic nonlinearity is the strong amplification of the third harmonic and, hence, I track both the 

first and third harmonic amplitudes as mass is added to the microresonator. 

 

For a fixed excitation frequency within the broadband resonance, as mass is added to the center 

of the beam, I computationally study the change in the steady-state response amplitudes of the 

first and third harmonics and find that they show strong sensitivity to mass.  The novelty of the 

proposed mass sensor design is that its ultra-wide resonant bandwidth allows for a considerably 

larger range of operational frequencies and response amplitudes as compared to other 

micromechanical resonant mass sensors incorporating nonlinearity.   Additionally, multi-

harmonic measurements are considered (Dohn et al., 2010; Hanay et al., 2012; Olcum et al., 

2015) and while both the first and third harmonic amplitudes prove to be more sensitive to mass 

than the linearized frequency, the third harmonic amplitude is found to be the most sensitive 

indicator.  Furthermore, the design parameters are reasonable from a manufacturing point of 

view (beam width and thickness ~100 nm, beam length ~ 1 µm) and femtogram mass resolution 

is achieved.  This study focuses on developing the analytical and computational framework for 

the proposed mass-sensing technique based on a new resonator design. 
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5.2 Harmonic balance analysis 

 

A schematic of the resonator design is shown in Fig. 4.1. Assuming that plane sections remain 

plane during the beam vibration, a linear stress-strain constitutive law, and planar motion, and 

including geometric nonlinearity due to mid-plane stretching, the partial differential equation 

governing transverse motion in the beam is stated in (4.1).  In Chapter 4, I show in detail how 

(4.1) can be reduced to an ordinary differential equation governing the fundamental bending 

mode, stated in (4.14).  Specifically, (4.14) corresponds to the Duffing equation with harmonic 

excitation proportional to the square of the excitation frequency.  

 

The reduced-model (4.14) is the starting point for the following dynamic analysis. In order to 

analytically approximate the backbones of the frequency-amplitude curves, I consider the 

underlying undamped, unforced system and perform harmonic balance using the two-term 

expansion, 

 

   !z(τ ) = !A1(τ )sin Ωτ +ϕ1( ) + !A3(τ )sin 3Ωτ +ϕ3( ) 	 	 	 	 	 	 				(5.1) 

 

or, equivalently, 
 

   !z(τ ) = !A1(τ )sin θ( ) + !A3(τ )sin 3θ +ψ( ) 	 	 	 	 	 	 	 				(5.2) 

 
where the two phases are defined as 1θ τ ϕ=Ω +  and 3 13ψ ϕ ϕ= − . The third harmonic is 

included in the two-term expansion since it is expected that the cubic stiffness nonlinearity of 

(4.14) contributes primarily to the amplification of the third harmonic in the response. Upon 

substitution of (5.2) into (4.14) while neglecting damping and forcing (i.e., setting ce = b = d = 0

), the coupled, nonlinear equations describing the amplitude-frequency relations for the backbone 

curves for the first and third harmonics are recovered, 

 

k3 A1
3 + 2 k3 A1 A3

2  k3 A1
2 A3 +

4
3
Ω1
2 −Ω2( ) A1 = 0          (5.3a) 
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2 − 9Ω2( ) "A1 + 2 "k3
"A3
"A1

2 + "k3
"A3

3 = 0                    (5.3b) 

 ψ = 0,π                                                          (5.3c) 

 
Note that since the system has no damping, the phase lag between the two harmonics is either 0 

or π ; 0ψ =  holds when 1Ω <Ω , whereas ψ π=  holds when 1Ω≥Ω . Further, the cubic 

nonlinearity has a hardening effect causing the backbone curves to bend toward higher 

frequencies so that their domains correspond to 1Ω≥Ω  and, hence, it holds that ψ π=  along the 

backbone curves. 

 

5.3 Primary resonances of the 1st and 3rd harmonics 

 

In Fig. 5.2 I depict a comparison between computational frequency-amplitude resonance curves 

and the analytical backbone curves obtained by solving the system (5.3a) – (5.3c) for the first 

and third harmonics. I consider fundamental resonance of the reduced-order model (4.14); i.e., 

the forced steady-state responses with dominant harmonic component at the frequency Ω  of the 

applied harmonic excitation. The computational resonance curves were obtained by numerically 

integrating the reduced-order model (4.14) for a specific frequency and amplitude of excitation 

and specific initial conditions, letting the dynamics reach a steady state and recording the steady-

state response. The lumped-parameter model (4.14) was numerically integrated in Python for 

several hundreds of cycles into the steady state. Then, a fast Fourier transform (FFT) of the 

steady-state response was performed to compute the amplitudes of the 1st and 3rd harmonics at 

each value of the excitation frequency. In order to reduce edge effects in the FFT, the duration of 

the steady-state segment was set equal to an integer multiple of the drive period. While 

incrementally increasing or decreasing the drive frequency to simulate an upward or downward 

frequency sweep, respectively, the initial conditions of a new simulation were set equal to the 

final conditions of the preceding simulation. Finally, the total simulation time was chosen to be 

an integer multiple of the drive period to achieve consistency in the initial conditions of the base. 

The system parameters used to generate all computational and analytical results in this work are 

listed in Table 5.1. 
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                           (a)                                                               (b) 
Figure 5.2: Comparison of numerical resonance curves (comprised of forward and backward 

sweeps) and the analytical backbone curves (resulting from harmonic balancing): (a) first and 

(b) third harmonic components of the steady-state response. 

	
Table 5.1.  System parameters used in the computational study of the beam. 

Mass density of the beam  
Young’s modulus of the beam  

Beam half-length  
Beam thickness  

Beam width`  
Ratio of concentrated mass to beam mass  

Q-factor  
Base excitation amplitude  

 
 
Strong agreement between the computational frequency-amplitude curves and the analytical 

backbone curves is observed. The reason for this strong correlation is two-fold: the relatively low 

damping and forcing levels, and the accuracy of the harmonic balance model (5.1) and (5.2). 

Indeed, as the forcing and damping levels approach zero, the frequency-amplitude resonance 

curves become increasingly narrow and, in the limit of zero damping and forcing, by definition 

they coincide with the backbone curves. A Q-factor of 100 and a base excitation amplitude of 0.5 

nm result in a damping coefficient and forcing levels small enough that, in (4.14), the harmonic 

forcing terms and the damping term are dominated by the other terms of the reduced-order 

2,330ρ =
3kg / m

169E = GPa
0.6L = mµ

100t = nm
300w = nm
4µ =
100Q =

0.5a = nm
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model. Additionally, it is known a posteriori that most of the energy in the fundamental 

resonance response is localized in the first and third harmonics and, hence, the two-term 

approximation used in (5.1) is appropriate. In particular, I computed the energy partition in the 

system (i.e., the sum of the kinetic and potential energy of the system) among the first and third 

harmonics for each excitation frequency considered in Fig. 5.2 and found that the energy in the 

first harmonic decreased from 99.99% at the 182 MHz to 97.8% at 500 MHz whereas the energy 

in the third harmonic increased from ~0 at 182 MHz to 0.8% at 500 MHz.  If we consider the 

total energy in both the first and third harmonics, we see that this amount decreases from 99.99% 

at 182 MHz to 98.6% at 500 MHz and, within this range of frequencies, is 99.2% on average.  As 

a result, for the parameter values considered in Table 1, the harmonic balance analysis of the 

undamped, unforced system approximates well the response of the actual damped, forced 

system, at least for frequencies not in the immediate vicinity of the linearized natural frequency.  

 

More importantly, considering the fundamental resonance branches in Fig. 5.2, we observe a 

large broadband resonance of the system encompassing a range of over 270 MHz or 2.5 times 

the linearized frequency; this broad bandwidth occurs even in the presence of viscous damping in 

the system. In fact, due to the base excitation and the presence of the concentrated mass at the 

center of the beam, there is no theoretical jump-down frequency for the excitation level 

considered (0.5 nm).  A detailed analysis and physical explanation of this no-drop phenomenon 

is presented in the Chapter 4.  It is shown here that, because the excitation level is not fixed,  it is 

proportional to the square of the excitation frequency; for sufficiently large excitation amplitudes 

there should be theoretically no jump-down bifurcation point in the frequency response.  The 

critical excitation amplitude required to achieve the no-drop phenomenon is found to be 

inversely related to the ratio of the concentrated mass to the beam mass. The role of the 

concentrated mass in the resonator design is to lower this critical excitation amplitude to a 

practical level.  Specifically, for the system parameters considered in Table 1, the critical 

excitation amplitude in the absence of the concentrated mass is around 1.1 nm, whereas the 

critical excitation amplitude for a mass ratio of 4 is 0.1 nm.  Hence, the concentrated mass lowers 

the critical excitation amplitude for the system by an order of magnitude and thereby enhances 

the feasibility of realizing the ultra-wide broadband.  
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As discussed in Section 4.5, it is not possible to truly have no jump-down bifurcation point in the 

frequency response.  In practice, this bifurcation point may occur due to the excitation of higher 

resonances, perturbations in the initial conditions and/or excitation amplitude caused by noise, or 

the basin of attraction for the upper branch solution may become impractically small.  Indeed, 

noise plays an important role in the dynamics of nonlinear systems near bifurcation points, and 

significant effort has been dedicated to this topic (Aldridge and Cleland, 2005; Alsaleem and 

Younis, 2010; Kozinsky et al., 2007; Unterreithmeier et al., 2008).  An experimental 

investigation of the effect that noise has on the dynamics of the resonator near the jump-down 

bifurcation are critical to fully characterizing this system, but are beyond the scope of the present 

work.  Based on the theoretical and numerical analysis shown in Section 4.2 and experimental 

the corresponding experimental verification presented in Section 4.6, it is clear that in practice, 

for excitation amplitudes larger than the critical excitation amplitude, the resonant bandwidth is 

significantly larger than for excitation amplitudes below the threshold.   

 

The ultra-wide broadband resonance could be exploited in a mass sensing application based on 

amplitude tracking. To place this in context, recall the mass sensing scenario depicted in Fig. 5.1. 

When a foreign mass is attached to the beam, the nonlinear resonance curve (in blue) is shifted 

toward lower frequencies (in red). For mass sensing, a fixed driving frequency can be randomly 

chosen within the broad resonance bandwidth as an operating frequency, and the changes of the 

1st and 3rd harmonic amplitudes provide the mass sensitivity. Owing to the broad resonance 

bandwidth, there is no need to adjust the operating frequency, either by sweeping the frequency 

around the resonance frequency (as in the open-loop method) or by modulating the frequency via 

a PLL (as in the closed-loop method) – as would be necessary for a linear resonator to follow the 

moving resonance peak. Further, the ultra-wide broadband allows for a significantly larger range 

of operational frequencies and amplitudes as compared to other mass sensing techniques relying 

on nonlinear resonances. 

 

In Fig. 5.3 I analytically and computationally show how the first and third harmonics vary as 

mass is added to the center of the resonator at a fixed excitation frequency of 250 MHz. The 

selection of the frequency of 250 MHz was somewhat arbitrary and, in fact, any frequency 

within the broadband (i.e., higher than the linearized frequency) shown in Fig. 5.2 can be 
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selected as the operational drive frequency.  The computational results indicate that tracking the 

high-amplitude branch as mass is added is indeed feasible despite the perturbations in the 

concentrated mass.  That is to say, the addition of mass in 25 fg increments does not trigger a 

transition to the lower solution branch.  In practice, the excitation frequency would need to be 

swept up to the target operational frequency initially in order to attract the upper solution branch 

before mass is added.  Once the upper solution branch is realized, the excitation frequency 

remains constant as mass is added and the upper solution branch is tracked.  In other words, the 

mass sensing procedure would require an initial ramp up of the frequency but would not require 

frequency sweeping each time a discrete amount of mass is added.  The excitation could be 

applied by a piezoelectric actuator. 

 

 
                          (a)                                                                  (b) 

Figure 5.3: Comparison of numerical and analytical (resulting from harmonic balance) 

fundamental resonance amplitude curves versus added mass: (a) first and (b) third harmonics of 

the steady-state response at constant excitation frequency of 250 MHz. 

 
5.4 Sensitivity and mass resolution 

 

As a way of estimating the efficacy of the proposed resonator design, I introduce the following 

sensitivities, of the linearized resonant frequency, linS , the amplitude of the first harmonic, 
1
S , 

and the amplitude of the third harmonic 3
S , 

 

lin 10 1 1 1 10 3 3 30/ , / , /S S A A S A Aω ω= = =                                                                                (5.4) 
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where ( )10 10Aω  is the linearized resonant frequency (depending on the amplitude of the 1st 

harmonic, 10A ) before any mass is added, and ( )1 1Aω  is the linearized resonant frequency 

(depending on the amplitude of the 1st harmonic,   A1 ) after mass is added to the center of the 

beam, and 30A  and   A3  are the amplitudes of the third harmonic before and after mass is added. 

As discussed in the previous section, the proposed mass detection scheme relies on changes in 

the amplitudes at a fixed excitation frequency rather than changes in the linear resonant 

frequency. However, in the following exposition I include the sensitivity of the linearized 

frequency for comparison. Since the linearized resonant frequency decreases as mass is added 

while the amplitudes of the first and third harmonics increase as mass is added, the sensitivities 

are always greater than or equal to one. 

 

 
                              (a)                                                                (b) 

Figure 5.4: (a) Sensitivity of the first harmonic amplitude versus excitation frequency versus 

added mass for an operational frequency range of 182 MHz to 500 MHz, (b) sensitivity of the 

third harmonic amplitude versus excitation frequency versus added mass for an operational 

frequency range of 182 MHz to 500 MHz, (c) zoomed-in image of (a) for an operational 

frequency range of 182 MHz to 200 MHz, (d) zoomed-in image of (b) for an operational 

frequency range of 182 MHz to 200 MHz, (e) linearized frequency versus added mass and (f) 

sensitivity of the linearized frequency versus added mass.  The operational ranges depicted in (c) 

and (d) are indicated by a dashed-blue rectangle in (a) and (b). 
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                             (c)                                                                 (d) 

 
                                 (e)                                                               (f) 

Figure 5.4 (cont.) 

	
In Figs. 5.4a-b I plot the sensitivities of the first and third harmonic amplitudes versus excitation 

frequency and added mass for an operational frequency range of 182 MHz to 500 MHz. The 

sensitivities of both the first and third harmonic amplitudes increase significantly in the vicinity 

of the linearized frequency, and for this reason zoomed-in views of Figs. 5.4a-b are shown in 

Figs. 5.4c-5.4d for an operational frequency range of 182 MHz to 200 MHz.  Due to the 

broadband resonance, the sensitivities of the steady-state response amplitudes depend on the 

excitation frequency as well as the added mass. This is due to the fact that the proposed mass 

sensor offers the advantage of a wide range of operational frequencies, so any excitation 

frequency that falls within the broad resonant bandwidth of the microresonator can be selected as 

the excitation frequency. In contrast, the sensitivity of the linearized frequency depends only on 

added mass (cf. Fig. 5.4d) since, for a given amount of added mass, there is a unique linearized 

resonant frequency (cf. Fig. 5.4c). 
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                          (a)                                                                 (b) 

Figure 5.5.  Analytical backbone curves of the first (a) and third (b) harmonics corresponding to 

zero damping and zero forcing and resulting from a two-term harmonic balance analysis. 

	
All three sensitivities are by construction equal to unity before any mass is added, and they all 

are directly proportional to the amount of mass added. The reason that the sensitivities increase 

as added mass increases is because the shift in the linearized frequency and the steady-state 

response amplitudes is greater for a larger amount of added mass than for a smaller amount of 

added mass. The peak sensitivity of the linearized frequency is lin 1.28S = , the peak sensitivity of 

the first harmonic amplitude is 1 1.55S = , and the peak sensitivity of the third harmonic amplitude 

is 3 2.95S = . In fact, for a given amount of added mass, 1S  and 3S  are both greater than linS  at 

each excitation frequency considered and, in particular, 3S  is the largest.  

 
Regarding the dependence of 1S  and   S3  on the excitation frequency, we clearly see that the 

sensitivities increase as the excitation frequency decreases. This trend can be understood by 

considering the analytical backbone curves shown in Fig. 5.5. Here I plot the backbone curves of 

the first and third harmonics before any mass is added, ad 0m = , and after ad 100m =  fg is added 

to the center. Note that the addition of mass causes the resonance curves to shift toward lower 

frequencies and, as a result, the steady-state amplitudes increase for a fixed frequency within the 

broadband. As a representative comparison, consider the cases corresponding to excitation 

frequencies of 200 MHz and 400 MHz, denoted by vertical dashed lines in Figures 5.5a and 5.5b. 
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The increases in the steady-state amplitudes are comparable at these two frequencies; yet the 

initial amplitudes (i.e., before mass is added – for ad 0m = ) are significantly smaller at 200 MHz 

as compared to 400 MHz. Since the initial amplitudes are smaller at lower frequencies (although 

the increases in amplitudes with added mass are similar), the sensitivities 1S  and 3S  increase 

with decreasing frequency.  This is especially true of the third harmonic for operational 

frequencies in the vicinity of the linearized resonant frequency; since the amplitude of the third 

harmonic is extremely small (~10 pm) at the linearized resonant frequency before mass is added, 

the ratio of the amplitude after mass is deposited to the initial amplitude is quite large for drive 

frequencies near the linear resonant frequency. 

 

As a final step I define the responsivities of the linearized frequency, , amplitude of the first 

harmonic, , and amplitude of the third harmonic, , as 

 

                                                                                       (5.5)
 

 
 

Hence, the responsivities are the derivatives of the corresponding observable (measured) 

variables with respect to added mass. 

 

As with the sensitivities, the responsivities of the nonlinear steady-state response amplitudes 

depend on the excitation frequency as well as the added mass, while the responsivity of the 

linearized frequency depends only on added mass. In Fig. 5.6a, I plot  versus added mass; in 

Fig. 5.6b (5.6c) I show a contour plot of  ( ) as a function of added mass and excitation 

frequency; and in Fig. 5.6d (5.6e) I plot  ( ) versus added mass at five specific drive 

frequencies, namely, 182 MHz, 190 MHz, 200 MHz, 350 MHz and 500 MHz.  Since the 

linearized frequency decreases with increasing added mass whereas the nonlinear steady-state 

amplitudes increase, the linear responsivity  is always negative, while the nonlinear 

responsivities  and  are positive quantities. 
 

linR

1R 3R

31 1
lin 1 3

ad ad ad

, , dAd dAR R R
dm dm dm
ω= = =

linR

1R 3R

1R 3R

linR

1R 3R
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         (a) 

                                                               
(b)                                                                    (c) 

 

     
        (d)                                                                 (e) 

Figure 5.6. (a) Responsivity versus added mass for the linearized frequency, responsivity versus 

added mass versus excitation frequency of the (b) first harmonic component, and (c) third 

harmonic component and responsivity versus added mass at five particular excitation 

frequencies of the (d) first harmonic component, and (e) third harmonic component. In (d) and 

(e), the responsivities of the amplitudes of the first and third harmonics are shown at 182 MHz 

(cyan), 190 MHz (black), 200 MHz (blue), 350 MHz (red) and 500 MHz (green). 
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Interestingly, we see that 1R  is inversely related to the amount of added mass at all excitation 

frequencies whereas 3R  is inversely related to the amount of added mass for excitation 

frequencies above around 210 MHz and directly proportional to the amount of added mass for 

frequencies below 210 MHz.  Regarding the dependence of the nonlinear responsivities on the 

operational frequency, 1R  decreases as the excitation frequency decreases for frequencies above 

251 MHz. At 251 MHz, the trend of 1R  with respect to excitation frequency changes, and 1R  

increases sharply as the drive frequency approaches the linearized frequency.  In contrast, 3R  

decreases with decreasing excitation frequency for the entire range of operational frequencies. 

 

Another important mass sensing metric is the minimum detectable mass or mass resolution.  For 

a conventional mass sensor designed to operate in the linear dynamic regime, the mass 

resolution, linmδ , is given by 

 
1

lin lin 1m Rδ δω−=                                            (5.6) 

 

where 1δω  is the minimum detectable shift in the linear resonant frequency. For the proposed 

nonlinear sensor that tracks shifts in the resonant amplitudes rather than frequency, the mass 

resolutions are given by  

 
1 1

1 1 1 3 3 3,m R A m R Aδ δ δ δ− −= =                                                (5.7,5.8) 

 

where 1mδ  ( 3mδ )  is the mass resolution that results from tracking shifts in the 1st  harmonic (3rd 

harmonic) amplitude and 1Aδ  ( 3Aδ ) is the minimum detectable change in 1st  harmonic (3rd 

harmonic) amplitude. The responsivities, linR , 1R  and 3R , are deterministic quantities determined 

by the sensor design, while the linear resonant frequency, 1ω , and response amplitudes, 1A 	and 

3A , vary stochastically due to the presence of noise in the measurement system.  As a result, the 

minimum detectable shifts in the linear frequency and response amplitudes, and the resulting 

mass resolutions, are largely influenced by noise (Kumar et al., 2012). The physical sources of 
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noise are similar for linear and nonlinear sensors, but the primary role that noise plays can be 

quite different.   

 

As the dissipation-fluctuation theorem states, any source of damping in the system can in turn 

serve as a source of noise due to thermal fluctuations (Heer, 1972).  This includes the Nyquist-

Johnson noise in the readout circuitry and the thermomechanical noise in the resonator itself.  In 

the case of thermomechanical noise, the damping-mechanisms present in the resonator’s 

dynamics induce random forcing along the beam such that the average force is zero, but the 

mean square amplitude of the resulting motion is nonzero (Albrecht et al., 1991; Butt and 

Jaschke, 1995; Cleland, 2005; Cleland and Roukes, 2002; Ekinci et al., 2004; Heer, 1972).  

Additionally, there exist so called parametric noise sources (Cleland and Roukes, 2002) that are 

associated with parametric changes in the resonator that do not necessarily result in thermal 

losses. Examples of parametric noise sources include adsorption and desorption of molecules in 

the surrounding medium, temperature fluctuations that induce thermal stresses, and defect 

motion within the resonator (Cleland and Roukes, 2002). Significant effort has been dedicated to 

quantifying the minimum detectable frequency shift, 1δω , and resulting mass resolution, linmδ , 

for linear resonators due to the presence of such noise sources ( Albrecht et al., 1991; Butt and 

Jaschke, 1995; Cleland, 2005; Cleland and Roukes, 2002; Ekinci et al., 2004; Heer, 1972).  

Within the nonlinear dynamic regime, the signal-to-noise (SNR) is significantly larger due to the 

relatively large response amplitudes and, as a result, the dissipation-induced amplitude noise is 

less restrictive in practice.  However, theoretical quantification of the minimum detectable 

amplitude shift is challenging due to the complex nonlinear behavior.  As a crude estimate for 

the minimum detectable change in amplitude, the amplitude resolution can be taken to be an 

order of magnitude larger than the average dissipation-induced amplitude fluctuations (due to 

thermomechanical noise) near the primary resonance.  For the linearized reduced order model of 

the doubly-clamped beam characterized by the effective stiffeness, 
( )3 2

18 1/ 2
EIk

LW
=  , and 

effective mass, 
( )2

1

2
1/ 2
ALm

W
ρ= , the equipartition theorem says that the mean square displacement 

fluctuations of the center of the beam, z2th , satisfy 2 2 2
th 1 th

1 1 1
2 2 2 Bk z m z k Tω= =   near the 
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fundamental bending mode, where kB  is the Boltzmann constant and T is the temperature (Heer, 

1972).  Considering the system parameters stated in Table 1 and T = 298K , we have 

 

th
Bk Tz
k

≈                            (5.9) 

 

If the amplitude resolution is assumed to be an order of magnitude larger than zth , then the 

minimum detectable shift in amplitude is ~30 pm. Considering the maximum values of 

R1 = 0.75nm/fg  and R3 = 0.026nm/fg  shown in Figs. 5.6b and 5.6c (corresponding to 182 MHz 

and 500 MHz, respectively, with zero added mass) and using equations (21) and (22), I compute 

mass resolutions of 0.04 fg and 1.2 fg for the amplitudes of the first and third harmonics, 

respectively.  

 

5.5 Conclusions 

 

Following the work presented in Chapter 4 (Sections 4.1-4.4), in this Chapter I consider the 

doubly clamped beam having a concentrated mass at the center and under harmonic base 

excitation in a mass sensing scheme based on amplitude tracking.    By operating at an excitation 

amplitude above the critical threshold, the bandwidth of the nonlinear resonance increases 

significantly. A two-term harmonic balance analysis was used to analytically predict the 

backbone curves (i.e., the frequency-amplitude relations of the underlying undamped, unforced 

system) of the first and third harmonics of the steady-state response of the beam. I also 

computationally generated frequency-amplitude curves of the damped, forced system and, 

interestingly, found that they coincide closely with the analytical backbones. The strong 

correspondence is due to the relatively low-damping and forcing levels of this system, and to the 

energy localization of the steady-state response in the first and third harmonics.  

 

In order to exploit the large bandwidth for mass sensing, I studied shifts in the steady-state 

amplitudes of the first and third harmonics resulting from the addition of mass at the center of 

the beam. I found that tracking the high amplitude resonant response is indeed feasible and that 

the steady-state response amplitudes are quite sensitive to added mass.  The advantage of the 
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proposed resonator design as compared to other micromechanical mass sensors (both linear and 

nonlinear) is its ultra-wide range of operational frequencies and amplitudes with strong SNR.  

The design of the resonator is also simple in terms of fabrication with feature sizes larger than 

100 nm. Finally, the first and third harmonic amplitudes demonstrated enhanced sensitivity to 

mass addition as compared to the linearized frequency, and their mass resolutions were found to 

be on the femtogram scale.  In practice, the presence of electrical and parametric noise would 

likely increase the minimum detectable shift in amplitude and thereby increase the resulting mass 

resolutions for the 1st and 3rd harmonics.  The primary focus of this study was to introduce the 

proposed resonator design and develop a theoretical framework for the mass sensing method 

based on amplitude tracking within ultra-wide resonant bandwidths.  
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Chapter 6: Concluding remarks and suggestions for future work 

 

6.1 Summary  

 

In this dissertation, nonlinear microresonator designs have been considered for application in 

AFM and mass sensing.  Through computational and experimental analysis, the proposed 

resonator designs have been shown to offer unique advantages over existing sensor designs.  The 

thesis began with an overview of basic operating principles and limitations of linear and 

nonlinear micromechanical resonators.  This included a discussion of reduced order modeling, 

relevant linear and nonlinear analytical analyses, motivations for intentional nonlinearity and 

common sources of nonlinearity. 

 

In Chapter 3, I studied the performance of a new probe design to be used in multi-frequency 

tapping mode AFM.  The cantilever is composed of a base microcantilever with an inner paddle 

made of a Si nanomembrane.  The reduced order model of the inner-paddled cantilever was 

constructed in the form of two linearly coupled damped harmonic oscillators having a lower, in-

phase vibration mode and a higher, out-of-phase vibration mode.  By design, the out-of-phase 

vibration frequency is an integer multiple of the in-phase vibration frequency providing the 

necessary conditions for internal resonance.  The nonlinear vibro-impacts between the tip and 

sample during tapping mode AFM trigger the internal resonance leading to strong, passive 

amplification of a higher harmonic.  Through computational and experimental studies, the 

reduced order model of the inner-paddled cantilever was verified, and it was shown that a 1:2 

internal resonance is optimal.   Further, it was shown that the internal resonance-based design 

leads to enhanced compositional sensitivity as compared to commercial cantilevers.  In some 

instances, the material characterization was based on branch selection among coexisting solution 

branches.  In other cases, the internal resonance-based design introduced sensitivity to Young’s 

modulus in the phase that would otherwise not be there for a purely elastic sample.  At the end of 

the chapter, an outline for material property inversion analysis is presented which can be used to 

convert the inner-paddle’s observables to quantitative compositional measurements.   
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In Chapter 4, a micromechanical resonator consisting of a doubly clamped beam having a 

concentrated mass at the center was studied.  The reduced order model of this system was shown 

to be in the form of the Duffing equation, which is well known to exhibit nonlinear bending of 

the primary resonance curve.  The nonlinear bending results in a broadband resonance where the 

lower bound of the resonant bandwidth is linear frequency and the upper bound is the jump-

down bifurcation frequency.  It was shown that under harmonic base excitation, there is no 

theoretically predicted jump-down bifurcation above a critical excitation amplitude.  It was 

further shown that the presence of the concentrated mass lowers the critical excitation amplitude 

required to achieve this no drop phenomenon.  In practice, the drop bifurcation may inevitably be 

triggered by the presence of noise, excitation of internal resonances, shrinking domain of 

attraction for the upper solution branch and/or the presence of nonlinear damping.   

 

A related system was studied experimentally in order to investigate the prediction of sudden 

bandwidth expansion at a critical excitation amplitude.  The system consists of a Si 

microcantilever that is constrained at its free end by a polymer bridge.  The reduced order model 

of this system is also that of a Duffing oscillator but with an additional nonlinear damping term.  

Two different microcantilever-polymer devices showed evidence of sudden bandwidth 

expansion at a threshold excitation level, providing some validation of the theoretical 

predictions.  Further, theoretical analysis showed that the presence of nonlinear damping is also a 

practical limitation to the no drop phenomenon and may indeed be responsible for the jump 

bifurcations observed in the microcantilever-polymer devices at large excitation levels.   

 

In Chapter 5, the microresonator design consisting of a doubly-clamped beam with a 

concentrated mass at the center was considered in a mass sensing application.  By operating at an 

excitation amplitude above the critical level, the ultra-wide bandwidth can be exploited in a mass 

detection method based on amplitude tracking.  I computationally studied variations in the first 

and third harmonic amplitudes as mass was added to the device, at a fixed base excitation 

frequency within the broadband.  Both the first and third harmonic amplitudes proved to be more 

sensitive to added mass than the linear resonant frequency and, in particular, the third harmonic 

amplitude was the most sensitive indicator.  In comparison to other linear and nonlinear 
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micromechanical sensors, this device provides a wide range of operational frequencies and 

amplitudes while maintaining simplicity in the microfabrication and actuation methods.   

 

6.2 Suggestions for future work 

 

In this section, suggestions for future research topics based on the present work are provided. 

 

Quantitative compositional mapping with the inner-paddled cantilever 

Using the material property inversion analysis included in the end of Chapter 3, the observables 

of this cantilever system can be transformed into quantitative material property measurements.  

One of the primary limitations to quantitative compositional mapping in multi-harmonic AFM is 

the SNR of the higher harmonic signals (Cartagena et al., 2013; Raman et al., 2011; Stark et al., 

2010).  Special techniques need to be used to amplify the higher harmonics or 0th harmonic that 

may not be available to most AFM users.  For example, Cartagena et al. (2013) used a 

magnetically excited AFM cantilever that is pre-compressed onto a sample submerged in liquid 

in order to achieve a strong 0th harmonic signal.  In other approaches to quantitative 

compositional mapping using tapping mode AFM, such as the commercially available AM-FM 

Viscoelastic Mapping Mode offered by Asylum Research, multiple feedback control loops are 

required, one of which utilizes relatively sophisticated frequency modulation feedback control 

scheme (Kocun et al., 2017; Hurley et al., 2015).  This type of technique is not well suited for a 

novice AFM user and further, the required tools may not be widely available.  Quantitative 

compositional mapping with the proposed inner-paddled cantilever would offer a considerably 

simpler alternative to the methods currently available.  The main drawback is that the inner-

paddled cantilever is not commercially available; however, methods for batch microfabrication 

of this device are currently being investigated.   

 

Further experimental verification of ultra-wide broadband resonances 

Following the work presented in Chapter 4, a more systematic validation of the theoretical 

predictions outlined in Section 4.1 may be possible with the use of electrostatic actuation.  If the 

resonator is excited electrostatically, the excitation force acts directly on the resonator rather than 

at the base (Younis and Asaleem, 2009; Younis, 2011).  In this case, the forcing level of the 
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harmonic excitation is independent of the excitation frequency, and the theoretical no drop 

phenomenon should be impossible.  Practically, this means that the resonance curves of the 

microcantilever-polymer devices should show no evidence of sudden bandwidth expansion.  If 

indeed it can be shown that, under electrostatic actuation, the devices do not exhibit sudden 

bandwidth expansion, this would further underscore the conclusions drawn from the resonance 

curves shown in Fig. 4.12; specifically, that the sudden bandwidth expansion observed in the 

microcantielver-polymer devises under harmonic base excitation is due to the existence of a 

critical excitation amplitude as predicted in Sections 4.1 and 4.7. Additionally, this procedure 

can be repeated for other Duffing-like microresonant systems in order to test the robustness of 

this phenomenon.   

 

Eliminating cross-talk in AFM-IR using the inner-paddled cantilever 

AFM-IR is a technique that combines atomic force microscopy and infrared (IR) spectroscopy to 

achieve chemical analysis of samples with high spatial resolution.  In AFM-IR, a small region of 

a sample is locally irradiated with a monochromatic IR light source, and if the frequency of the 

IR laser coincides with a frequency associated with the molecular vibrations of the irradiated 

region, the light will be absorbed.  The light absorption results in photothermal expansion of the 

irradiated region, which is detected by an AFM probe interrogating the region.  The thermal 

expansion of the region provides an impulsive excitation to the AFM cantilever and thereby 

excites the vibration modes of the cantilever.  A fast Fourier transform (FFT) of the cantilever’s 

response measures the amplitudes and frequencies of the cantilever’s vibration modes at a 

specific IR wavelength. The wavelength of the IR laser is incrementally swept while the 

magnitude of the highest peak in the FFT is recorded.  Typically, the fundamental bending mode 

provides the highest peak in the FFT and is therefore the ideal candidate for monitoring IR 

absorption. The amplitude of a specific vibration mode as a function of IR wavelength provides 

the absorption spectrum for the irradiated region, and this absorption spectrum is a unique 

chemical “fingerprint” that can be used to identify the local material (Dazzi et al., 2010; Dazzi et 

al., 2012).  One limitation to this technique is crosstalk between the IR absorption and the 

contact condition between the tip and sample (e.g., the sample’s local Young’s modulus).  

Variations in the contact stiffness between a commercial AFM tip and the sample cause 

variations in the vibration frequencies of the cantilever.  The shifts in the vibration frequencies 
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resulting from changes in the contact stiffness influence the AFM-IR measurements and, 

therefore, cause undesirable crosstalk.  In a recently submitted paper (Dharmasena et al., 

submitted) it was shown that, under certain conditions, the in-phase vibration frequency of the 

inner-paddled cantilever is independent of the tip-sample contact stiffness.  On the other hand, 

the out-of-phase vibration frequency shows strong sensitivity to the tip-sample contact stiffness. 

The stability of the in-phase frequency with respect to the contact stiffness can potentially be 

exploited in order to eliminate crosstalk in AFM-IR measurements and thereby enhance the 

accuracy of the chemical analysis.   Secondly, it is possible that by simultaneously tracking shifts 

in the out-of-phase frequency, the local contact stiffness can be measured as well. 

 

Bifurcation based photothermal spectroscopy using nonlinear microresonators  

AFM-IR offers state-of-the-art spatial resolution for IR spectroscopy and the ultimate spatial 

resolution of AFM-IR is on the order of 10nm.  However, as the feature size decreases, the 

magnitude of the thermal expansion associated with IR absorption decreases as well making it 

difficult to measure absorption spectra in features smaller than ~10nm (Felts et al., 2013).  To 

overcome this limitation with regard to feature size, it may be possible to utilize ultra-sensitive 

bifurcation frequencies.  Specifically, the nanoparticulate sample of interest may be attached 

directly to a doubly clamped microbeam (Larsen et al., 2013) where the IR laser is irradiated 

upon the sample.  By specifically designing the beam to enhance geometric nonlinearity, strong 

hardening in the primary resonance curve can be achieved. If the microbeam is excited 

harmonically at an operating point just below the jump-down bifurcation frequency on the upper 

solution branch, the resonator will be extremely sensitive to small perturbations in the state 

variables.  This operating point can be realized by sweeping the drive frequency forward to a 

frequency just under the jump-down frequency.  When the IR laser is tuned to a wavelength 

corresponding to absorption by the nanoparticle, the thermal expansion will provide an impulsive 

excitation directly to the resonating microbeam.  Since the domain of attraction for the upper 

solution branch is so small in this operating regime, extremely small impulsive forces should 

cause the dynamics to transition from the upper branch to the lower branch.  This will be 

indicated by a sudden decrease in the response amplitude.  The jump bifurcation can be used as a 

switch, detecting a threshold amount of thermal expansion in the sample (Bouchaala et al., 

2016).  As the IR frequency is swept, the jump-down bifurcation should happen at frequencies 
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corresponding to the molecular vibration frequencies of the sample. In the end, this technique 

could be used to identify the molecular vibration frequencies for extremely small nanoparticles.  

That is, the frequencies of the peaks in the absorption spectra would be identified, but not the 

relative amplitudes.  In light of the discussion presented in Section 4.6, noise may cause artificial 

peaks in the measured absorption spectra but repeating the spectroscopy process several times 

might filter out the noise-induced peaks.  Also, UHV and low temperature operating conditions 

may help eliminate undesirable branch jumping due to noise.   
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