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ABSTRACT 

 The phenomenon of brands partnering with causes is referred to as cause-related marketing 

(CRM). This dissertation provides numerous steps forward within the realm of CRM research, as 

well as balance theory research. Some CRM partnerships may seem less compatible than others, 

but the level of perceived compatibility (also referred to as “fit”) differs from consumer to 

consumer. I analyzed CRM compatibility through the lens of balance theory both via a survey-

based approach, as well as a social media analytics approach. My contributions to CRM and 

balance theory are as follows: I found that a consumer’s attitude towards a brand, along with their 

attitude towards a cause, predicts their perceptions of CRM compatibility. I also show that adding 

continuous measures of attitude and attitude strength enabled the prediction of balanced and 

unbalanced consumer evaluations of perceived CRM compatibility. This is the first time that 

attitude strength has been incorporated into balance theory. I found evidence that a consumer’s 

attitude towards a brand (or towards a cause), and the strength of that attitude, can spill from one 

organization to another when brands and causes enter into CRM partnerships. Methodologically, 

I present a novel way to indirectly measure the strength of attitudes towards brands and towards 

causes through analyzing perceived conversation topic similarity via a self-reported survey 

measure, but I was not able to provide evidence that attitude strength could be measured via a 

social media analytics approach to conversation topic similarity. To dig deeper into this lack of 

social media analytics results, I provide some considerations with regards to research conducted 

using a hybridization of a survey-based approach tied to a social media analytics approach. 

Practically, I share recommendations as to how to choose CRM partners for future CRM 

partnerships, which should prove beneficial to CRM researchers, practitioners, and advertisers.  
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LIST OF IMPORTANT TERMS & PHRASES 

 
 

Brand A shortened name for a for-profit company. 

Cause A shortened name for a not-for-profit company. 

CRM An acronym for cause-related marketing. In this dissertation, I define 
CRM as a business strategy in which a brand partners with a cause 
through various types of engagements, to address both organizations’ 
objectives. 

CRM Triad A triangular structure of three entities: a consumer, a brand, and a 
cause. In this triad, the consumer evaluates their attitude towards the 
brand, their attitude towards the cause, and their perception of 
compatibility between the brand and the cause in the CRM partnership. 
See Figure 1.1. 

CSR An acronym for corporate social responsibility. CSR refers to 
corporate social actions that address social needs, while CRM is CSR 
in which a brand partners with a cause to address social needs. Thus, 
CRM is a subset of CSR. 
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LIST OF VARIABLES 

 
 

ASBRAND An individual’s self-reported strength of their attitude towards the brand 
within a CRM partnership. 

ASCAUSE An individual’s self-reported strength of their attitude towards the cause 
within a CRM partnership. 

ASDIFFERENCE The mathematical difference between ASBRAND and ASCAUSE (the absolute 
value) for an individual. 

ATBRAND An individual’s self-reported attitude towards the brand within a CRM 
partnership. 

ATCAUSE An individual’s self-reported attitude towards the cause within a CRM 
partnership. 

ATDIFFERENCE The mathematical difference between the absolute values of ATBRAND and 
ATCAUSE (The lesser subtracted from the greater) for an individual. 

ATASDIFFERENCE The mathematical difference between the absolute values of (ATBRAND x 
ASBRAND) and (ATCAUSE x ASCAUSE) (The lesser subtracted from the greater) 
for an individual. 

BALANCECRM A binary variable (0 or 1) that denotes whether a CRM triad is balanced or 
not. I accept weak balance as a condition of balance throughout this 
dissertation. 

COMPPERCEIVED An individual’s self-reported perceived CRM compatibility between a 
brand and a cause within a CRM partnership. 

SURVEYSIMBRAND An individual’s self-reported perceived amount of conversation topics that 
an individual believes to be similar to a brand (how similar are the topics 
that I speak about to the topics that I believe a brand would speak about). 

SURVEYSIMCAUSE An individual’s self-reported perceived amount of conversation topics that 
an individual believes to be similar to a cause (how similar are the topics 
that I speak about to the topics that I believe a cause would speak about). 

CODERSIMBRAND Human coded similarity assessment between the dissertation participants’ 
self-reported SURVEYSIMBRAND and their Text Razor TWEETDIVBRAND. 

CODERSIMCAUSE Human coded similarity assessment between the dissertation participants’ 
self-reported SURVEYSIMCAUSE and Text Razor TWEETDIVCAUSE. 

RAWDIVBRAND The divergence (opposite of similarity) between computational raw word 
analysis of an individual’s Twitter feed and a brand’s Twitter feed. 

RAWDIVCAUSE The divergence (opposite of similarity) between computational raw word 
analysis of an individual’s Twitter feed and a cause’s Twitter feed. 

TWEETDIVBRAND The divergence (opposite of similarity) between computational 
conversation topic analysis of an individual’s Twitter feed and a brand’s 
Twitter feed. 

TWEETDIVCAUSE The divergence (opposite of similarity) between computational 
conversation topic analysis of an individual’s Twitter feed and a cause’s 
Twitter feed. 
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CHAPTER 1: GENERAL INTRODUCTION AND DISSERTATION OUTLINE 

 

CAUSE-RELATED MARKETING 

 In 1983, American Express launched an initiative to restore the Statue of Liberty and 

Ellis Island (“American Express - Corporate Social Responsibility - Initiatives,” n.d.). They did 

this in partnership with two causes: The World Monuments Fund and the National Trust for 

Historic Preservation. This effort was widely considered a success, as they raised $1.7 million 

through this partnership. American Express widely promoted this effort and trademarked it as, 

“cause-related marketing” (CRM) (Welsh, 1999). Some years later, Varadarajan and Menon 

(1988) provided a definition of CRM as follows: 

Cause-related marketing is the process of formulating and implementing activities that 
are characterized by an offer from the firm to contribute a specified amount to a 
designated cause when customers engage in revenue-providing exchanges that satisfy 
organizational and individual objectives. (p. 60) 

 
 In the American Express partnership with the World Monuments Fund and the National 

Trust for Historical Preservation, American Express contributed one cent for every credit card 

charge, and a dollar per each new cardholder in the final quarter of 1983. This resulted in a 17% 

increase in the number of credit cards and 28% more usage on American Express cards during 

that period. This proved to American Express that CRM was a beneficial financial strategy, and 

they were also able to promote their company as being socially responsible. In fact, this seems to 

be the angle that they were most focused on, as they accentuate this point quite clearly: 

These initiatives aim to increase public awareness of the importance of historic and 
environmental conservation, preserve global historic and cultural landmarks, educate 
visitors on sustainable tourism and strengthen local communities through preservation 
efforts (“American Express - Corporate Social Responsibility - Initiatives,” n.d.). 
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 Barone, Miyazaki, and Taylor (2000) suggested that CRM has not just been limited to 

donations that are dependent on revenue-providing exchanges, but can apply to other types of 

cause-related partnerships, such as lump sum donations by brands to causes, or brands offering 

discounts for members of causes. For example, Royal Caribbean pledged to donate $5 million as 

a lump sum donation to the World Wildlife Fund in efforts to preserve the ocean environment 

(Hancock, 2016). Whereas an example of a CRM partnership involving a discount between a 

brand and a partnership is Wyndham Hotel’s ten percent discount given to National Rifle 

Association members (Fairchild, 2013). 

Cause-related marketing is sometimes used interchangeably with corporate social 

responsibility (CSR), but they are separate, albeit related, concepts. Brønn and Vrioni (2001) 

discussed the differences between the two, and suggested that CSR refers to corporate social 

actions that address social needs, while CRM is CSR in which a brand partners with a cause to 

address social needs. Thus, CRM is a subset of CSR. An example of CSR that is not CRM would 

be a company deciding to use 100% recyclable materials in its products. They are not partnering 

with a cause to do this (as in CRM), but it is an activity that a brand is conducting alone to 

provide societal benefit.  

Although research has shown that there are definitely skeptics that do not trust the 

motivations behind CRM (Webb & Mohr, 1998), the phenomenon of CRM has substantially 

grown in popularity. Engage for Good, an organization that helps educate individuals and 

organizations about CRM, states that CRM spending has grown from $120 million in 1990 to 

$2.05 billion in 2017 (“ESP’s Growth of Cause Marketing - Engage for Good,” 2017). The 

growth and success of CRM has also been shown in newer advertising channels, such as in the 

realm of social media. Adweek, an American advertising trade publication, recently analyzed 
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what topics companies promote via social media (Vijay, 2017). They found that the topics that 

received the most engagement were the topics related to CRM. CRM researchers and 

practitioners would be wise to dig deeper into researching CRM on social media, as a recent Pew 

Research Center survey showed that up to 75% of adults in the United States use social media 

(A. Smith & Anderson, 2018). They also show that this percentage grows to 94% within the age 

range of 18 to 24 year olds with regards to social media use. Thus, these future consumers will 

most likely be interfacing with brands and causes on social media platforms. 

Some more recent CRM examples are Starbucks with (RED) to fight AIDS, Warby 

Parker with Vision Spring to provide glasses for those in need, Fitbit with the American Heart 

Association to promote heart health, and Coca-Cola with the World Wildlife Fund to preserve 

polar bear habitats in the arctic. As another example of CRM effectiveness from these more 

recent partnerships, the World Wildlife Fund heralded the success of their partnership with Coca-

Cola, as they were able to raise $2 million dollars for arctic conservation (“‘Arctic Home’ 

Generates over $2 Million in Donations for Polar Bear Conservation | Press Releases | WWF,” 

2012). 

Cause-Related Marketing Compatibility/Fit 

 Although the World Wildlife Fund advertised the success of their partnership with Coca-

Cola widely, it was not without controversy. Coca-Cola has been accused in the past to actually 

be destroying the environment (e.g., “In hot water,” 2005), therefore there could be a perception 

that a partnership between Coca-Cola and the World Wildlife Fund does not seem to be a natural 

fit. This concept of assessing the compatibility of a brand and a cause within a CRM partnership 

is commonly called CRM fit (e.g., Lafferty, Goldsmith, & Hult, 2004) or CRM compatibility 

(e.g., Trimble & Rifon, 2006). CRM compatibility is an important concept within CRM 



4 
 

literature; in fact, a recent text-mining-based review of CRM literature found that brand-cause fit 

(compatibility) was the most frequently occurring topic across CRM literature from 1988 to 2013 

(Guerreiro, Rita, & Trigueiros, 2016). Practically speaking, CRM compatibility is important as 

perceived compatibility has been shown to predict acceptance of CRM partnerships (Lafferty et 

al., 2004). One could imagine that both Coca-Cola and the World Wildlife Fund would have 

benefitted from understanding how consumers might accept or reject their partnership before 

they entered into it and/or widely advertised it. Previous studies have looked at how 

compatibility affects downstream variables such as attitudes towards partnerships and consumer 

behavior (e.g., Basil & Herr, 2006; Gupta & Pirsch, 2006; Pracejus & Olsen, 2004; Simmons & 

Becker-Olsen, 2006; Trimble & Rifon, 2006), but as far as I know, no studies have focused on 

how to predict a consumer’s perception of compatibility in the first place. If we could understand 

how to predict a consumer’s perceived CRM compatibility, then joining this together with 

previous research that shows that perceptions of CRM compatibility predicts acceptance of 

partnerships (e.g., Lafferty et al., 2004), there would be a possibility that we could predict this 

acceptance prior to brands and causes entering into partnerships. 

The realm of social media is a place where brands and causes have feeds that are 

managed by individuals or groups working for those organizations. These social media managers 

normally attempt to discuss topics that a brand or cause would care about, as these discussions 

are also usually tied to their business mission and/or advertising strategies. As social media 

usage continues to grow (A. Smith & Anderson, 2018), finding ways to use social media 

analytics to predict aspects of CRM compatibility should provide great value to CRM 

researchers and practitioners. This may help us to understand when social media backlash could 

occur towards a CRM partnership. A recent example of CRM backlash is the case of the 
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#BoycottNRA social media campaign. After a series of recent mass shootings, consumers’ 

acceptance of CRM relationships between the National Rifle Association (NRA) and various 

brands has substantially soured (Edevane, 2018). If I consider Lafferty et al.’s (2004) findings 

that perceptions of CRM compatibility predicts CRM acceptance, then it may be helpful for the 

partnering brands to understand how consumers construct their perception of CRM 

compatibility. Additionally, as social media is increasingly becoming a platform for CRM 

communication and advertising (Vijay, 2017), predicting aspects of CRM compatibility from 

social media is an important area of investigation as well. 

Therefore, to address this gap of understanding how to predict consumers’ perceived 

CRM compatibility ratings, in this dissertation I will look into how consumers build their 

perceptions of compatibility towards CRM partnerships (COMPPERCEIVED), namely by looking at 

their pre-existing attitudes towards the brands (ATBRAND), and their pre-existing attitudes towards 

the causes (ATCAUSE), that are participating in the partnership. I will also investigate how I can 

understand CRM compatibility both from a survey approach, as well as a social media analytics 

approach. One theory that might help in predicting this compatibility is balance theory. Basil and 

Herr (2006) were the first (and quite probably, the only) researchers to investigate whether using 

a balance theory framework could help us gain insight into CRM partnerships. Thus, I will 

briefly explain balance theory next. 

Balance Theory 

 Balance theory was conceptualized by Fritz Heider, in which he wrote, “Attitudes 

towards persons and causal unit formations influence each other” (Heider, 1946, p. 107). 

Through this statement, Heider was suggesting that when attitudinal relationships occur between 

people, objects (unit formations), or some combination of people and objects, these attitudes 
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affect each other. To clarify what is an attitude, Eagly and Chaiken (1993) defined attitude as, “a 

psychological tendency that is expressed by evaluating a particular entity with some degree of 

favor or disfavor” (p. 1). Heider (1946) suggested that attitudinal relationships move towards a 

state of balance. He defined balance as, “a harmonious state, one in which the entities comprising 

the situation and the feelings about them fit together without stress” (Heider, 1946, p. 180). One 

of the most well-known relationship structures of balance is the concept of triadic balance, where 

three people are represented as having attitudinal relationships towards one another (see Figure 

1.1). 

Figure 1.1: Example of Heider’s (1946) Theory of Triadic Balance 

 

 In this example, Tina, Joe, and Tom all have relationships with each other. Positive signs 

denote a positive attitude, whereas negative signs denote a negative attitude. In Heider’s original 

conceptualization, directionality of attitudes was not considered, as it was assumed that if Joe 

likes Tina, then Tina likes Joe. Although this is not always the case, this is in line with 

explaining Heider’s original framework; this is also in line with evaluating CRM partnerships 

(organizations versus people), which will be explained later in this dissertation. In Heider’s 

framework, these triads are supposed to move towards attitudinal balance or harmony. In the first 

triad (moving from left to right in Figure 1.1), Tina, Joe, and Tom all like each other, and 
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therefore there is a state of harmony or balance. In the second triad, Joe doesn’t like Tina, and 

Tina doesn’t like Tom, so it is not a problem that Joe likes Tom. There is no inherent relational 

stress in the second triad. In the third triad, Joe likes Tina, Tina likes Tom, but Joe does not like 

Tom. This is a stressful relational situation. Maybe Tina would try to avoid Tom when Joe is 

around, because Tina knows that Joe does not like Tom. Heider suggested that this is an 

unbalanced triad, and therefore the system needs to change for balance to be restored. There are 

numerous options as to how the system could change to bring it back into balance, but one of the 

easiest conceptualizations of change for balance would be for Joe to reconcile with Tom and 

enter into a positive relationship with each other. The fourth triad is an interesting one, as Heider 

suggested that this was an unbalanced triad, but later research conceptualized this triad as 

potentially balanced as well. Heider called three negative attitudes in a triad an unbalanced triad, 

but Davis (1967) suggested that three negative attitudes in a triad were weakly balanced. In fact, 

Davis (1967) pointed to the fact that even Heider suggested, “If two negative relations are given, 

balance can be obtained either when the third relationship is positive or when it is negative, 

though there appears to be a preference for the positive alternative” (Heider, 1958, p. 206). Thus, 

although there is a strong tendency towards three negative relationships being imbalanced, 

Heider (1958) and Davis (1967) acknowledged that there was the possibility of a weaker 

tendency towards three negative relationships being balanced as well. Davis categorized this as a 

condition of weak balance. I could conceptualize this when I consider the cliché, “an enemy of 

my enemy is my friend.” This is essentially the second triad in Figure 1.1., where Joe doesn’t 

like Tina, and Tina doesn’t like Tom, so Joe likes Tom. I can consider though that Joe does not 

necessarily have to like Tom, and that would not necessarily cause relational stress on the 

system. Therefore, an enemy of my enemy can also be my enemy. I accepted the condition of 
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weak balance throughout this dissertation, as weak triadic balance has been proven to hold in real 

social data (Leskovec, Huttenlocher, & Kleinberg, 2010b). I will discuss Basil and Herr’s (2006) 

connecting of triadic balance theory with CRM partnerships next. After this, I will move into 

discussing dyadic balance theory, and its potential connection with CRM partnerships and social 

media data.  

Balance Theory and Cause-Related Marketing 

 Basil and Herr (2006) suggested that CRM partnerships could be considered as 

psychological triads, in which a consumer evaluates a brand, a cause, and their perceived 

compatibility between the brand and cause. Heider (1958) stated that triads could include both 

persons as well as entities, and that these entities could have also have some form of unit 

relationship to each other that was different than an attitudinal relationship (e.g., a person owning 

an object, thus having an assumed positive attitude towards that object). Basil and Herr’s (2006) 

conceptualized triad is shown in Figure 1.1. 

Figure 1.2: Cause-Related Marketing Triad 

 
 I use their conceptualized CRM triad for the first major chapter of this dissertation 

(Chapter 2), where I go into more detail about what Basil and Herr focused on in their study. 

From a high-level perspective, they set a foundation for my study in which they showed that a 
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balance theory framework could help us understand various aspects of CRM compatibility and 

attitudes towards CRM; with this said, they did not fully investigate how CRM compatibility 

could be comprehensively predicted by using this balance theory framework. I took this next step 

within this dissertation and found that perceived CRM compatibility (COMPPERCEIVED) could be 

predicted through a consumer’s attitude towards a brand (ATBRAND), along with their attitude 

towards a cause (ATCAUSE). I also question and dissect balance theory along the way. 

 One of the open questions within balance theory is the question of how continuous 

attitude measures would affect balance (e.g., Antal, Krapivsky, & Redner, 2006). Heider’s 

(1946) original conceptualization only dealt with a dichotomous handling of attitude (either 

positive or negative, with no neutral), but attitudes have been shown to be continuous in nature 

(Eagly & Chaiken, 1993). Recent studies in balance have shown evidence that balance holds 

when attitudes are measured as continuous variables (e.g., Leskovec et al., 2010b), but less is 

known about how continuous attitude measurement affects balance within CRM triads. An open 

question therefore is whether using continuous attitude measures for ATBRAND and ATCAUSE (e.g., 

+2, -1, +3) versus dichotomous measures (e.g., +1, -1) will change whether or not 

COMPPERCEIVED will have a valence that follows balance theory. Through measuring 

participants’ ATBRAND, ATCAUSE, and COMPPERCEIVED, I assessed whether all three sides of the 

CRM triad followed balance or not (BALANCECRM). I found that balance within a CRM triad 

(BALANCECRM) could be predicted by looking at the degree of attitude valence differences 

between a consumer’s attitude towards a brand and their attitude towards a cause (ATDIFFERENCE), 

when participants had opposing valences of attitude towards a brand (ATBRAND) and their attitude 

towards a cause (ATCAUSE; e.g., a consumer likes the brand but dislikes the cause). Specifically, 

as the difference between a consumer’s attitude towards a brand and attitude towards a cause 
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(ATDIFFERENCE) grew larger, the probability that balance theory held grew smaller. This 

conceptually makes sense, as this is basically suggesting that the further I get away from 

Heider’s original conceptualization of the dichotomous attitude structure of balance theory, there 

is more chance that CRM triads will be in states of imbalance (BALANCECRM = 0) versus being 

balanced (BALANCECRM = 1). 

 The final aspect of triadic balance and CRM partnerships that I cover within this 

dissertation is the question of whether adding attitude strength will benefit predictive models of 

balance within CRM partnerships. Research has shown that attitude strength is a separate 

construct than attitude, and that when attempting to predict behavioral change, attitude strength 

is what moderates the predictive nature of attitude on behavior (Petty & Krosnick, 1995). To 

clarify the difference between attitude and attitude strength, consider for example my attitudes 

towards Mondays and my attitudes towards bigotry. If I was to rate my attitudes on a scale from 

-5 to +5 (-5 being extremely negative, and +5 being extremely positive), my attitudes towards 

Mondays and bigotry would both rate at -5. Now I know that there is something different about 

those attitudes, but that difference does not show up in a simple valenced measurement of 

attitude alone. The measurement that picks up on the difference in those two attitudinal arenas is 

the measure of attitude strength. The strength of my attitude towards Mondays is fairly weak, 

meaning that it could be easily moved. If my workplace provided free lunches on every Monday, 

my attitude towards Mondays would quickly change to a +5. Since the strength of my attitude 

towards Mondays is weak, it is easy to change my attitude. Now with the example of my -5 

attitudes towards bigotry, free lunches would not change my attitude, because the strength of my 

attitude towards that topic is very strong. In fact, there is potentially not much that I believe 
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someone could do to change my attitude on that topic. This example helps us to see the 

difference between attitude and attitude strength as psychological constructs. 

Balance theory suggests that attitudes may change to achieve states of balance (see 

previous discussion on Figure 1.1). If balance theory considers systems in which attitudes are 

potentially changed, and attitude strength is a construct that shows us how resistant attitudes are 

to change, then it seems reasonable that considering attitude strength within balance theory 

would be fruitful. The combination of attitude strength and balance theory has not been 

previously researched within the realm of CRM partnerships. Therefore, I collected participants’ 

strength of their attitudes towards a brand (ASBRAND), and the strength of their attitudes towards a 

cause (ASCAUSE) and found that attitude strength does improve my models in predicting balanced 

CRM triads. I assessed balance within CRM triads by assessing the valences of participants’ 

ATBRAND, ATCAUSE, and COMPPERCEIVED. This could be potentially considered as the first step 

towards a larger contribution to balance theory as a whole, but at the very least it is a furthering 

of our understanding of CRM partnership evaluations. 

 Finally, I looked at analyzing CRM partnership attitude strengths via dyadic balance 

theory and testing that relationship through survey measures as well as through social media 

analytics. I explain this next, and finish with a high-level view of the overall dissertation outline. 

Balance Theory, Cause-Related Marketing, and Social Media 

 When considering dyadic balance theory (balance theory within two person/entity 

systems), Heider (1958) stated, “p similar to o induces p likes o, or p tends to like a similar o” (p. 

184). Heider was suggesting that attitudes and unit formations influence each other even in two-

person situations. In this case, similarity produces some form of relational unit between two 

people, and this affects their attitudes towards one another in a positive manner. Therefore, 
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Heider is suggesting that similarity influences attitude. In network analysis, a close phenomenon 

to this is called homophily. McPherson et al. (2001) defines homophily as, “the principle that 

contact between similar people occurs at a higher rate than among dissimilar people.” (p. 416). 

This does not necessarily assume positive attitudinal contact, but it draws a connection between 

similarity and behavior. Multiple studies have been conducted looking at homophily on social 

networks (e.g., Choudhury, 2011; Weng & Lento, 2014; Youyou, Schwartz, Stillwell, & 

Kosinski, 2017). Choudhury (2011) looked at homophily on Twitter by testing to see if there 

were any factors of similarity that influenced behavior, namely behavior in how people followed 

others on Twitter. The factors of similarity that she looked at were demographic attributes 

(location, gender, ethnicity), political orientation, activity-specific attributes (activity pattern, 

broadcasting behavior, interactiveness), and content-based attributes (topical interest, sentiment 

expression). She found that people seemed to follow others on Twitter that engaged in similar 

topical conversation as their own selves. Therefore, she found evidence that similarity of topic 

conversation influenced behavioral movement on Twitter. 

Thus, I have the case that Heider (1958) suggested that similarity influences attitude, 

homophily suggests that similarity influences behavior, and Choudhury’s (2011) research 

suggests that topic conversation similarity influences Twitter following. Heider did not consider 

attitude strength in his original conceptualization of balance theory, but research has shown that 

attitude strength moderates the ability to predict attitude change (Howe & Krosnick, 2017; Petty 

& Krosnick, 1995), and balance theory involves the possibility of attitudes changing. 

Additionally, previous research has shown evidence that one way to measure an individual’s 

attitude strength towards a topic is if they talk about that topic, and how much they talk about it 

(Krosnick, Boninger, Chuang, Berent, & Carnot, 1993). 
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Putting all of these pieces together, if a person talks about the same topics as a brand (or 

cause), this suggests that they are similar (according to topics of conversation) with that brand 

(or cause). According to Choudhury’s (2011) research, this similarity of topical conversation has 

be found to correlate with Twitter following behavior, of which behavior is influenced by 

attitude strength. Thus, I hypothesized that similarity of topics of conversations between a person 

and a brand (or cause) could be a way to measure the strength of their attitude towards that brand 

(or cause). As a clarifying note, attitude strength does not include valence (positive or negative), 

therefore a person may have a strong attitude towards a cause because they talk about the same 

topics (e.g., a person and the National Rifle Association both discussing guns), but the person 

may be speaking of guns negatively, and the NRA may be speaking of the guns positively. 

 When considering brands and causes within CRM partnerships, they are both entities 

with communications staff that promote certain topics according to their business mission or 

their advertising strategies. Thus, in the second main study of my dissertation (Chapter 3), I 

investigated the relationship between a consumer’s perceived similarity of topical conversation 

with a brand (SURVEYSIMBRAND), and the strength of that consumer’s attitude towards the 

brand (ASBRAND). I also investigated the relationship between a consumer’s perceived similarity 

of topical conversation with a cause (SURVEYSIMCAUSE), and the strength of that consumer’s 

attitude towards the cause (ASCAUSE). I found that a consumer’s perceived topic similarity with a 

brand (SURVEYSIMBRAND) predicted the strength of their attitude towards that brand 

(ASBRAND), and their perceived topic similarity with a cause (SURVEYSIMCAUSE) predicted the 

strength of their attitude towards that cause (ASCAUSE). This new survey measure of the strength 

of attitudes towards brands and towards causes in CRM partnerships is a contribution to the 

realm of CRM, as it provides an indirect method of measuring attitude strength. 
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In the second portion of Chapter 3, I investigated if a social media analysis of the topics 

that a consumer talks about could help me predict their attitude strength towards a brand or a 

cause. I did this by comparing the divergence (the opposite of similarity) between a consumer’s 

topics of conversation in their Twitter feed compared to the topics of conversation of a brand’s or 

cause’s Twitter feed (TWEETDIVBRAND and TWEETDIVCAUSE respectively). If I can predict the 

strength of consumers’ attitudes towards brands and causes via social media analytics, I will be 

closer to creating a prediction model for CRM compatibility using solely social media analytics. 

I did not find this social media analytics divergence method to be a way to measure the strength 

of consumers’ attitudes towards a brand or a cause, but I did find that using a hybrid survey-

based and social media analytics approach may have issues that have not been previously 

considered in social science research. Although there is no research using a hybrid survey-based 

and social media analytics approach within the realm of CRM, there are many examples of this 

type of method within social science research (e.g., J. Chen, Hsieh, Mahmud, & Nichols, 2014; 

Golbeck, Robles, Edmondson, & Turner, 2011; Youyou et al., 2017). I provide an explanation of 

some considerations when using this sort of hybrid method, as well as next steps in using this 

sort of approach in future CRM research. 

DISSERTATION OUTLINE 

My aim within this dissertation is to understand how balance theory can help to give us 

deeper insight into CRM compatibility, as well as how analyzing CRM compatibility could also 

further our understanding of balance theory. 

This dissertation contains a general introduction (Chapter 1), followed by two chapters 

that are meant to be in publishable format as individual research journal papers. A summary of 

these two research papers (Chapter 2 and 3) is presented below. I then conclude with a general 
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discussion on the overall findings of this dissertation (Chapter 4). Within the final chapter, I will 

also discuss general limitations, future research thoughts, and indicate ways in which this 

dissertation has evolved since the proposal stage. 

 Chapter 2 describes a study in which I was able to predict participants’ ratings of CRM 

partnership compatibility (COMPPERCEIVED) via their self-reported attitude towards the brand 

(ATBRAND), along with their self-reported attitude towards the cause (ATCAUSE). I was also able 

to predict states of CRM triad balance/imbalance (BALANCECRM) within CRM partnership 

evaluations through incorporating the consideration of continuous attitude and attitude strength 

measures within balance theory. This allowed me to provide evidence that attitudes towards 

brands and towards causes were spilling over into one another. I will give further detail on 

spillover within Chapter 2. This study consisted of an online (N = 993) survey collection using 

Amazon Mechanical Turk. 

 Chapter 3 describes a study in which I investigated various ways to measure attitude 

strength within the realm of CRM and discussed the difficulties in comparing a survey approach 

with a social media analytics approach. I asked participants how similar they believed the topics 

that they talk about were with the topics that certain brands and causes talk about (the brands and 

causes from my first study in Chapter 2). I found that I was able to predict participants’ 

assessments of the strength of their attitudes towards those brands and causes (ASBRAND and 

ASCAUSE) from their perception of topic discussion similarity with those brands and causes 

(SURVEYSIMBRAND and SURVEYSIMCAUSE respectively). This is a contribution to the realm of 

CRM, as this is a novel way to measure strength of attitudes towards brands and towards causes 

that may not suffer from social desirability bias as would a direct questioning of attitude strength. 

I was not able to predict the strength of their attitudes towards brands and causes (ASBRAND and 
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ASCAUSE) through a computational analysis of participants’ Twitter feeds when compared to 

topic discussion divergence (opposite of similarity) of brand’s or cause’s Twitter feeds 

(TWEETDIVBRAND and TWEETDIVCAUSE respectively). I did find that my computational 

method to assess the topics that brands (or causes) were talking about on Twitter produced topics 

that were in line with what participants believed these brands (or causes) would be talking about. 

I also share considerations and issues with using a social media analytics approach within social 

science research. This study consisted of an online (N = 170) survey collection using Amazon 

Mechanical Turk (a subset of the N = 993 from Chapter 2), and a data collection of Twitter social 

media feed data from the participants in this study, as well as Twitter data from the brands and 

causes in this study. 
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CHAPTER 2: CAN WE FIND THE RIGHT BALANCE IN CAUSE-RELATED 

MARKETING? ANALYZING THE BOUNDARIES OF BALANCE THEORY IN 

EVALUATING BRAND-CAUSE PARTNERSHIPS 

 

The phenomenon of brands partnering with causes is referred to as cause-related marketing 

(CRM). Some CRM partnerships may seem less compatible than others, but the level of perceived 

compatibility (also referred to as “fit”) differs from consumer to consumer. We know a great deal 

about how perceptions of compatibility affect attitude and behavior towards CRM partnerships, 

but we know less about how to predict a consumer’s perception of compatibility. Therefore, my 

purpose was to investigate the boundaries in which balance theory could be used to analyze CRM 

partnerships, particularly in the context of attitude strength. This is the first study to consider the 

construct of attitude strength (versus attitude alone) when considering balance theory. I found that 

a consumer’s attitude towards a brand, along with their attitude towards a cause, predicts their 

perceptions of CRM compatibility. I also found that CRM triadic balance could be predicted when 

attitude strength was included in the models, and that balance theory allowed me to observe 

preliminary evidence of attitude and attitude strength spillover effects when predicting the valence 

of CRM compatibility ratings. This could be useful for advertising practitioners, as I explain how 

they can use these insights to determine which organizations to partner with in the future, as well 

as how advertising these partnerships may affect consumers. 
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“Unfortunately, it seems that a number of large environmental groups will not be 
challenging the corporate world anytime soon. Amazingly, several have "sold 
out" to the very companies that are destroying the environment. Some even have 
partnerships with the planet's most unethical corporations” (Filmore, 2013). 
 

 Fillmore’s (2013) negative remarks are in response to various environmental non-profits, 

such as The World Wildlife Fund (WWF), forming business relationships with major 

corporations like Coca-Cola in 2007 (“Coca-Cola | Partnerships | WWF,” 2017), or WWF 

partnering recently with Royal Caribbean in 2016 (Hancock, 2016). This phenomenon of for-

profit businesses (brands) partnering with not-for-profit organizations (causes) is commonly 

referred to as cause-related marketing (Varadarajan & Menon, 1988). As noted by Fillmore 

(2013), some cause-related marketing (CRM) partnerships may seem more unusual or 

incompatible than others, but the level of perceived compatibility (also referred to as “fit”) has 

been shown to differ from consumer to consumer (Basil & Herr, 2006). Several studies have 

explored how consumer perceptions of compatibility affect attitudes towards partnerships and 

consumer behavior (Basil & Herr, 2006; Gupta & Pirsch, 2006; Pracejus & Olsen, 2004; 

Simmons & Becker-Olsen, 2006; Trimble & Rifon, 2006), but no one has shown how we can 

predict a consumer’s potential perception of compatibility prior to entering into a CRM 

partnership by looking solely at their attitude towards a brand, and their attitude towards a cause. 

This is important because perceived compatibility has been shown to predict acceptance of CRM 

partnerships (Lafferty et al., 2004). Thus, if I could predict consumers’ potential perceived 

compatibilities through their attitudes towards a brand, and their attitudes towards a cause, before 

the organizations enter into a partnership, this could provide much practical value to CRM 

practitioners and advertisers. Therefore, in line with this gap in understanding, my purpose was 

to investigate the boundaries in which balance theory (Heider, 1946) can be used to analyze 

CRM partnerships and predict consumer perceptions of CRM partnership compatibility. 
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I summarize my contributions and findings as follows: I provide a theoretical 

contribution to the arena of CRM, as I found that a consumer’s current attitude towards a brand, 

along with their current attitude towards a cause, predicts their perceptions of CRM 

compatibility; I present a methodological contribution by contributing a means to predict 

psychological balance towards CRM partnerships by incorporating both continuous attitude and 

attitude strength measures into the prediction model; finally, I provide a practical contribution, as 

I found preliminary evidence that spillover effects may be occurring from brands to causes (and 

potentially vice versa) to affect perceived ratings of CRM compatibility. Simonin and Ruth 

(1998) provided evidence that consumers’ attitudes towards brand partnerships have been found 

to influence each other after they enter into a partnership (denoted by Simonin and Ruth as a 

spillover effect), but this phenomenon has not been studied within CRM partnerships. The ability 

to predict potential CRM compatibility perceptions, and to understand how consumers’ attitudes 

and attitude strengths towards brands and causes are affected through CRM partnerships has 

practical value for both brands as well as causes. As in Filmore’s (2013) previous example, 

WWF and Royal Caribbean could have benefitted in understanding how people may perceive the 

compatibility of their partnership prior to engaging in it. Additionally, advertisers of CRM 

partnerships need to be able to understand how consumers will perceive partnerships before they 

are entered into, or widely communicated. 

Guiding Research Question: What are the boundaries of using balance theory to evaluate cause-

related marketing compatibility? 
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LITERATURE REVIEW 

Cause-Related Marketing 

 Varadarajan and Menon (1988) defined CRM as follows: 

Cause-related marketing is the process of formulating and implementing activities 
that are characterized by an offer from the firm to contribute a specified amount to 
a designated cause when customers engage in revenue-providing exchanges that 
satisfy organizational and individual objectives. (p. 60) 
 
Thus, in their definition, CRM is specifically limited to partnerships where a brand ties a 

donation to a cause for every transaction that a consumer engages in with the brand. Barone, 

Miyazaki, and Taylor (2000) suggest that CRM partnerships can have a broader definition, as 

some CRM partnerships may not involve a direct donation to a cause per every brand purchase. 

A brand could just make a large donation to a charity without any sales ties. A very recent 

example of this was Royal Caribbean’s pledge to donate $5 million to the World Wildlife Fund 

to support ocean conservation (Hancock, 2016). Thus, I define CRM as a business strategy in 

which a brand partners with a cause through various types of engagements, to address both 

organization’s objectives. 

Varadarajan and Menon (1988) suggested that one of the driving factors in brands 

partnering with causes is to boost sales through the association with causes that could help 

brands tap into markets that were previously untapped. Brands may be attempting to associate 

themselves with certain social positions to convince various segments of consumers to purchase 

their products/services, such as in the case of Royal Caribbean and the WWF. This is in line 

conceptually with Henderson et al.’s (1998) work in applying associative network analysis to 

brands, as they found that certain concepts are associated with brands (e.g., the concept of 

“value” associated with McDonald’s), and these concepts form networks with other brands and 

concepts within the human mind. Thus, McDonald’s might be associated with Burger King in a 
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consumer’s mind, linked by the concept of “value”. One of the goals of CRM could be to take 

the concept of “environmentally green” that is associated with the WWF and build an association 

between “environmentally green” with Royal Caribbean by positioning a partnership between 

WWF and Royal Caribbean. 

However, the brands and causes entering into CRM partnerships may not have entirely 

compatible associations. For example, while intentions of ocean conservation might seem 

enticing, we have evidence that cruises themselves are contributing to the decline in ocean health 

due to water and air pollution (Moodie, 2016). Therefore, there is the possibility that consumers 

might reject the association between Royal Caribbean and WWF. Much research has been 

conducted to analyze the effects of how CRM “fit” or “compatibility” influences consumer 

behavior in response to CRM partnerships, but there is a gap in understanding what 

psychological constructs contribute to the formation of this compatibility perception in each 

consumer. 

Cause-Related Marketing Compatibility/Fit 

 Assessing the fit between partnering companies has been studied not just in CRM 

partnership research, but brand partnership research in general. Simonin and Ruth (1998) looked 

at the phenomenon of brand partnerships (corporations partnering with corporations), and 

analyzed the effects that these partnerships had on consumer attitudes towards those 

partnerships. One of the factors found to affect consumer attitudes was the level of fit between 

the two companies that formed a partnership together. They described fit to be the level of 

cohesiveness and/or consistency that partnering brands possessed. Fit has also been found to be 

important in CRM partnerships, and has been found to affect cause-brand partnership attitude 

(Basil & Herr, 2006; Lafferty et al., 2004; Trimble & Rifon, 2006), brand equity (Simmons & 
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Becker-Olsen, 2006), consumer choice (Pracejus & Olsen, 2004), and purchase intentions (Gupta 

& Pirsch, 2006). Guerreiro et al. (2016) recently conducted a text-mining analysis of journal 

articles on the subject of CRM between 1988 and 2013, and found that brand-cause fit was the 

most frequently used topic across the articles. Thus, it seems that the concept of fit is an 

important topic within CRM research. Trimble and Rifon (2006) suggested that the term 

“compatibility” is a more comprehensive term from all the terms that have previously been used. 

Since compatibility is a term that conveys the meaning of these terms more naturally, I use the 

term compatibility throughout this study. 

In previous studies, researchers directly measured how participants rated compatibility 

between brands and causes through self-reported survey measures (Gupta & Pirsch, 2006; 

Lafferty et al., 2004; Myers & Kwon, 2013), asking questions such as how congruent, 

compatible, or consistent were the CRM partnerships between the brands and causes. This is the 

first study that attempts to dissect how participants construct that rating psychologically. For 

example, this rating might be based on objective comparisons of the stated missions of the brand 

and the cause, or it might be based more on subjective attitudes. Basil and Herr (2006) provided 

a balance theory approach to investigate how attitudes towards a brand and a cause affect 

attitudes towards CRM partnerships. Although it was not the focus on their study, they found 

some interesting connections between balance theory and components of CRM compatibility. I 

will review balance theory and Basil and Herr’s (2006) work next. 

Balance Theory and CRM Triads 

 Heider (1946) wrote, “Attitudes towards persons and causal unit formations influence 

each other” (p. 107). Thus, in this statement, Heider was acknowledging that people can have 

attitudes towards other individuals as well as entities, and these attitudes influence each other. 
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Eagly and Chaiken (1993) defined attitude as, “a psychological tendency that is expressed by 

evaluating a particular entity with some degree of favor or disfavor” (p. 1). Heider suggested that 

attitudinal relationships move towards balanced states. A balanced state is explained as, “a 

harmonious state, one in which the entities comprising the situation and the feelings about them 

fit together without stress” (Heider, 1958, p. 180). Historically, work on balance has focused on 

Heider’s triadic relationship work (three person or entity relationships). In a three-person triad 

(with the three people being denoted as “A, B, and C”, “+” denotes mutual liking, and “-” 

denotes mutual dislike), Heider hypothesized that balance (triadic balance) would be found in the 

case where A+B, B+C, and A+C (all positive attitudinal sentiments in this triangle of 

relationships). Balance can also occur when two relationships in the triad are negative and one is 

positive. So, if I think of A-B, B-C, and A+C, this would also be balanced; in this case, A and C, 

who are friends, have a mutual enemy of B. Heider added that individuals can have relationships 

with entities as well, such as an individual owning a piece of property; this type of relationship 

was not denoted as an attitudinal relationship, but rather just a positive association with an 

object, and these unit formations fell under the umbrella of triadic balance theory as well. 

As a slight departure from Heider’s original balance theory, Davis (1967) suggested that 

an all negative relationship is a balanced state as well (e.g., an enemy of my enemy can still be 

my enemy without apparent tension in the system). Including this additional state of balance is 

considered assessing balance via weak balance (Easley & Kleinberg, 2010), and I incorporated 

weak balance into this study. 

 Balance theory has been incorporated into consumer psychology research (Woodside & 

Chebat, 2001), and more specifically, Basil and Herr (2006) took this triadic balance theory 

framework and applied it to the realm of CRM partnerships. They pointed to the fact that Heider 
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(1958) specifically indicated that entities could have relationships to each other, and these 

relationships were called unit relationships. Basil and Herr (2006) conceptualized CRM 

partnerships as being a consumer, brand, and cause triad as shown in Figure 2.1. Instead of 

conceptualizing the relationship between the brand and the cause as attitudes between the two 

organizations, they suggested that we could view this triad as a one-way psychological 

evaluation of a CRM partnership from the perspective of a consumer. Thus, they conceptualized 

the relationship between the brand and the cause as a consumer’s assessment of the compatibility 

between the brand and the cause. 

Figure 2.1: Cause-Related Marketing Triad 

 
Their focus was taking this CRM triad and using the balance theory framework to predict 

aspects of participants’ attitudes towards CRM partnerships. They found that when consumers’ 

attitudes towards brands and their attitudes towards causes were both negative (consumer-brand 

and consumer-cause), participants rated the partnerships to be appropriate, but not necessarily 

appealing. This is important because they showed that there was a predictive relationship 

between an attitude combination and ratings of appropriateness for the CRM partnerships. With 

this said, they did not provide a comprehensive predictive model for taking separate attitudes 

towards a brand and a cause and predicting CRM compatibility. Thus, I hypothesize that a 

consumer’s attitude towards a brand (ATBRAND), along with their attitude towards a cause 
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(ATCAUSE), should positively predict a consumer’s perception of CRM compatibility 

(COMPPERCEIVED) in CRM triads. 

H1: Consumers’ attitudes towards a brand (ATBRAND), along with their attitudes towards 
a cause (ATCAUSE), will positively predict their perceptions of CRM compatibility 
(COMPPERCEIVED) in CRM triads. 

 
Being able to predict CRM compatibility is important because we have evidence that 

CRM compatibility predicts acceptance of CRM partnerships (Lafferty et al., 2004). Now this 

hypothesis does not necessarily assume that all CRM triads will be balanced, but rather that 

consumers’ attitudes towards brands and their attitudes towards causes can predict perceptions of 

CRM compatibility. 

The Boundaries of Predicting CRM Triadic Balance 

 In the original conceptualization of balance theory, all attitude relations were equal in 

extremities (e.g., 1, 1, 1), but with potentially opposing valences (e.g., +1, -1, -1). In fact, even a 

recent analysis of balance theory in online social networks only used two categorical conditions, 

either positive or negative, in testing balance theory (Leskovec et al., 2010b), but attitudinal 

evaluations have been shown to be continuous in nature (Eagly & Chaiken, 1993). How does 

considering continuous attitudinal evaluations affect how we think about balance theory (e.g., 

instead of -1, +1, -1, we consider +5, -2, +3)? Previous research has entertained this exact 

question, as Antal et al. (2006) concluded their research within social networks with the open 

question of how continuous edge values affect balance theory (attitudes in triads can also be 

called edges). Kułakowski et al. (2005) entertained the effect of continuous edge values on 

mathematical models that simulated balance theory effects, and found that over time, continuous 

edge values appear to also move towards balanced states. Marvel et al. (2011) also found this to 

be the case with network graphs that were much larger than just an individual triad, but the 
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process of getting to a balanced state occurs over a period of time (all the triads within a larger 

system end up balanced). When considering these continuous edge values and the transition 

period from unbalanced to balance states, there is even the possibility that triads can end up in a 

“jammed” state of imbalance (Antal, Krapivsky, & Redner, 2005), meaning that triads got stuck 

in states of imbalance (e.g., a triad sits stuck at an imbalanced state of A+B, B-C, A+C, even 

though this triad should move to a balanced state). Thus, I suggest that the expectation of CRM 

triads being balanced is dependent on looking at the differences between separate continuous 

attitudes towards brands and causes in which the valences are opposing each other. Let us 

consider a clarifying example through Figure 2.2. 

Figure 2.2: Separate Attitudes Difference to Predict Balance Example 

 

John has a very negative attitude regarding Royal Caribbean (ATBRAND), and a very 

positive attitude regarding WWF (ATCAUSE). John’s attitude towards Royal Caribbean and his 

attitude towards WWF are identical in their extremities (ATDIFFERENCE = 0), but their valences are 

opposing one another. This is a situation similar to which triadic balance theory was originally 
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conceptualized (Heider, 1958), and thus I predict that this triad would be balanced 

(BALANCECRM = 1) when looking at the valences of ATBRAND, ATCAUSE, and COMPPERCEIVED. 

Conversely, let us consider a consumer named Mary. She has a slightly negative attitude 

regarding Royal Caribbean (ATBRAND), and a very positive attitude regarding WWF (ATCAUSE). 

Mary’s attitude towards Royal Caribbean and attitude towards WWF are different in their 

extremities (ATDIFFERENCE = 4, when taking the absolute values of ATBRAND and ATCAUSE), and 

their valences are also opposing one another. Although Mary’s attitude towards Royal Caribbean 

is negative, it is only slightly negative. This is now a situation that is not similar to which balance 

theory was originally conceptualized, as the attitudes are continuous, and the extremity 

difference between the separate attitudes (ATDIFFERENCE) is large. 

As a clarification to my method in calculating ATDIFFERENCE, the reason I am using the 

absolute values of ATBRAND and ATCAUSE is because I am focusing on the magnitude differences 

between each attitude. In the example of John and Mary from Figure 2.2, John’s attitudes were 

closer to the originally conceptualized balance theory by Heider (1946) as their magnitudes were 

equal (ATBRAND = -5 and ATCAUSE = +5) even though their valences were different. Therefore, in 

an attitude scale ranging from -5 to +5, one example of a combination of attitudes that are 

furthest away from Heider’s (1946) originally conceptualized dichotomous structure of equal 

magnitude valences (+1 and -1) would be Mary’s example from Figure 2.2 (ATBRAND = -1 and 

ATCAUSE = +5, which leads to ATDIFFERENCE = 4 when taking the absolute values first of ATBRAND 

and ATCAUSE). If I did not take the absolute values of ATBRAND and ATCAUSE first, but rather just 

subtracted the values and then taken the absolute value of the result, this would not be in line 

with comparing how far continuous attitudes take me from original balance theory (or keeps me 

close to original balance theory). Looking at John’s example (ATBRAND = -5 and ATCAUSE = +5), 
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if I did not take the absolute values first of ATBRAND and ATCAUSE, ATDIFFERENCE would either 

equal +10 or -10, depending on how you ordered the subtraction. This is against the goal of my 

analysis, which is to create a variable that represents how close I am to original balance theory. 

By taking the absolute values of ATBRAND and ATCAUSE for John first and subtracting the lesser 

from the greater, I obtain an ATDIFFERENCE = 0, which is exactly the value I am looking for. This 

also allows me to analyze attitudes with the same valence, but that have large differences in 

magnitude (e.g., ATBRAND = +5 and ATCAUSE = +1, which still leads to ATDIFFERENCE = 4 when 

taking the absolute values first of ATBRAND and ATCAUSE). 

Simonin and Ruth (1998) found that when brands enter into partnerships with other 

brands, their post-partnership attitudes changed the separate attitudes towards each of the brands 

(which they called a “spillover effect”). More specifically, they found that in these brand 

alliances (a brand partnering with another brand), consumers’ pre-existing attitudes towards each 

brand affect their attitudes towards the partnership as a whole, and these attitudes towards the 

partnership then change their post-partnership attitudes towards each brand. Thus, we have 

evidence that attitudes towards entities in a partnership are spilling into (or influencing) one 

another. As a clarification of this spilling or influencing effect, Osgood and Tannenbaum (1955) 

found that more extreme attitudes tended to hold greater influence on end states of psychological 

congruity when paired with less extreme attitudes. This is a concept very similar to balance 

theory, as Osgood and Tannenbaum (1955) suggested that when previously independent attitudes 

are paired together in some form of relationship (e.g., I do not like ice cream, but I do like the 

flavor of chocolate, and now I am being presented with chocolate ice cream), this relationship 

would change an individual’s attitudes (e.g., I might decide that I like ice cream a bit more, 

maybe chocolate a bit less, or some combination of both). Thus, putting together insights from 
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Heider (1946), Simonin and Ruth (1998), and Osgood and Tannenbaum (1955), I should find 

evidence that Mary’s attitude towards Royal Caribbean and her attitude towards the WWF will 

spill into one another. 

Thus, Mary may evaluate the CRM partnership to be positively compatible even though it 

does not create a balanced CRM triad (ATBRAND is negative, ATCAUSE is positive, and 

COMPPERCEIVED is positive, which is not a balanced triad). Therefore, the key to predicting 

whether or not balance will hold in this CRM triad depends on the difference between the 

extremities (ATDIFFERENCE) of Mary’s attitude towards the brand (ATBRAND), and her attitude 

towards the cause (ATCAUSE). The larger that the difference (ATDIFFERENCE) grows, the further I 

am getting away from Heider’s (1946) original balance theory. Therefore, in Mary’s case, a 

CRM triad may not be balanced, but it may still result in a compatible partnership 

(COMPPERCEIVED is positive, but BALANCECRM = 0). Thus, I am hypothesizing that as the 

difference between consumers’ separate attitudes (ATDIFFERENCE) increases, the probability that 

CRM triads will be balanced (BALANCECRM) will decrease. 

H2: As the difference between the absolute values of consumers’ attitudes towards the 
brand and their attitudes towards the cause (ATDIFFERENCE) increases, the probability that CRM 
triads are balanced (BALANCECRM) will decrease. 
  

Brands and causes have much to gain from understanding when unbalanced evaluations 

occur in consumers. In Heider’s (1958) discussion on balance, unbalanced states were considered 

as suboptimal, but unbalanced states may actually be positive situations for CRM partnerships. If 

I revisit Mary’s situation, this is a case where the slightly disliked Royal Caribbean has the 

potential to gain from a CRM partnership with the extremely liked WWF. 

Now that I have looked at predicting balance through differences in attitudes 

(ATDIFFERENCE), I would like to discuss a way to improve my predictive model by adding the 
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additional factor of attitude strength. Attitude strength has been shown to predict psychological 

movement better than measures of attitude alone (Petty & Krosnick, 1995), therefore attitude 

alone may not be able to give me a full picture of how balance theory may be affected by 

continuous attitudinal values. Thus, I will discuss the difference between attitude and attitude 

strength next. 

Attitude and Attitude Strength within CRM triads 

 Attitudes are often measured with scales ranging from negative to positive extremities 

(e.g., -5 to +5, Eagly & Chaiken, 1993), but one of the issues with this scale is that it does not 

consider attitude strength. Petty and Krosnick (1995) defined attitude strength as the degree to 

which attitudes possess the features of persistence, resistance to change, impact on information 

processing and judgments, and guiding behavior. Attitude strength is a construct distinct from 

attitude, and often measured with a positive scale (e.g., +1 to +11, Bassili, 1996). Since there is 

evidence that attitude strength moderates the relationship between attitudes and behaviors (Petty 

& Krosnick, 1995), adding attitude strength to my evaluation should improve my prediction of 

balance. Since I am using logistic regression (as detailed in the methods section), I will look at 

the change in Akaike information criterion (∆AIC) to assess whether the predictive model was 

improved by the addition of attitude strength. 

H3: Adding the measurement of attitude strength (ASBRAND and ASCAUSE) will improve the 
models (∆AIC) for predicting CRM triadic balance (BALANCECRM). 

 
Let us go back to my example with John and Mary, but with the addition of attitude 

strength to my model (See Figure 2.3). 
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Figure 2.3: Attitude X Attitude Strength Difference to 
Predict Balance Example 

 

Let us say that John has a very negative attitude (ATBRAND) and very strong attitude 

(ASBRAND) regarding Royal Caribbean, and a very positive (ATCAUSE) and very strong attitude 

(ASCAUSE) regarding WWF. Although original balance theory did not consider attitude strength, 

this is still a situation in which equal extremities of attitude and attitude strength 

(ATASDIFFERENCE = 0) are close to the conceptualization of original balance theory, and thus I 

predict that there is a greater probability that the CRM triad will be balanced (BALANCECRM = 

1). 

The major difference in my example comes into play if I consider Mary once again. Let 

us consider that she has a slightly negative attitude (ATBRAND) regarding Royal Caribbean, but 

that attitude is very weak in strength (ASBRAND); conversely, she has a very positive attitude 

(ATCAUSE) regarding WWF, and that attitude is very strong in strength (ASCAUSE). Compared to 

my previous consideration of Mary, since I have additional information as to the strength of 

Mary’s attitudes towards WWF, my ability to predict balance should be improved with the 

addition of attitude strength to my model. In my previous prediction model (hypothesis 2), 
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attitude alone was considered first, as original balance theory was only based on attitudes. With 

this said, since psychological movement is better predicted by attitude strength (Petty & 

Krosnick, 1995), this model should provide more predictive insight. 

H4: As the difference between the absolute values of consumers’ attitudes x attitude 
strengths towards the brand and their attitudes x attitude strengths towards the cause 
(ATASDIFFERENCE) increases, the probability that CRM triads are balanced (BALANCECRM) will 
decrease. 

 
METHODS 

Pre-Test 

 My first task was to identify CRM partnerships to analyze for this study, as I wanted to 

see how my predictions differed across a wide range of levels of average compatibility. Thus, I 

tested to find three real CRM partnerships that were, on average, perceived as having high 

compatibility, average compatibility, and low compatibility. The four CRM partnerships that I 

pre-tested were Fitbit and American Heart Association (FitbitAHA), Royal Caribbean and the 

World Wildlife Fund (RoyalWWF), Grey Goose and the National Gay and Lesbian Task Force 

(GreyGooseNGLTF), and Wyndham Hotels and the National Rifle Association 

(WyndhamNRA). I recruited thirty-seven staff members from a Midwest university to participate 

in my pre-test. I chose university staff members due to their range of ages being closer to my 

intended main study participants (rather than being limited to the ages of a college student 

sample). This was important since my main study was going to use Amazon MTurk as its 

sample, and Amazon MTurk has workers from 18 years old to 60+ years old (J. Ross, Zaldivar, 

Irani, & Tomlinson, 2010). They were asked to evaluate how compatible each of the partnerships 

were (COMPPERCEIVED) on an 11-point scale from -5 (Not compatible at all) to +5 (Extremely 

compatible). For example, to assess a participant’s perception of CRM compatibility towards the 

partnership between Royal Caribbean and the WWF, I asked, “How compatible do you think this 
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partnership is between Royal Caribbean and the World Wildlife Fund for Nature?” This 

compatibility measure was adapted from Basil and Herr (2006), as they asked how strong 

participants perceived CRM alliances to be on a -5 to +5 scale. The results were recoded to a 

positive 11-point scale (one through eleven) for statistical analyses. 

Due to violations of normality in the data when conducting Shapiro-Wilks normality 

tests, I used nonparametric measures to compare means. Using a Kruskal Wallis test, I found that 

on average, FitbitAHA was rated as having high compatibility (MCOMP_PERCEIVED=10.11, 

SD=1.95), RoyalWWF as having average compatibility (MCOMP_PERCEIVED =6.23, SD=2.68), 

GreyGooseNGLTF as having average compatibility (MCOMP_PERCEIVED =5.46, SD=2.89), and 

WyndhamNRA as having low compatibility (MCOMP_PERCEIVED =3.59, SD=2.31); the differences 

overall were significant (H(3)=73.28, p=.00) when compared against each other. With this said, 

when conducting Mann-Whitney pairwise comparisons, I found that all comparisons were 

significant (p<.01) except that GreyGooseNGLTF (MCOMP_PERCEIVED =5.46, SD=2.89) was not 

significantly different from RoyalWWF (U=9.97, p=1.00), and GreyGooseNGLTF was not 

significantly different from WyndhamNRA (U=22.51, p=.14). Therefore, I excluded 

GreyGooseNGLTF and kept RoyalWWF as my average compatibility partnership. 

Participants 

 For the main study, I collected survey responses from participants through Amazon 

Mechanical Turk (MTurk) from September 6, 2017 to September 20, 2017. MTurk has been 

found to be at least as reliable as data obtained by traditional methods (Buhrmester, Kwang, & 

Gosling, 2011), and although there has been some controversy with regards to its validity when 

being used for research studies, various studies have given insights into how to best manage 

studies utilizing MTurk for use in research (Chandler & Shapiro, 2016; Mason & Suri, 2012). 
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They suggested things such as disguising the purpose of the study until the task was accepted, 

monitoring evidence of cross-talk, and paying a fair wage. I followed these principles as I made 

sure that the MTurk advertisement did not divulge the purpose of the study until workers 

accepted, I made sure that finalization codes were randomized at the end of the survey to make 

sure that workers were not sending codes to each other, and I calculated a fair wage. I used 

Qualtrics to estimate the survey time length (eight to twelve minutes), multiplied that time to a 

percentage of United States minimum wage, and compensated each participant accordingly 

($1.45 each). Also, recently Kees et al. (2017) provided evidence that MTurk is a very good 

platform for collection data for advertising research, and they also focused on the issue of paying 

a fair wage to increase participant engagement. 

I collected N=997 responses, but four participants were removed after reviewing the data. 

One participant came very close to explaining what they thought the purpose of this study was, 

one participant stated that they were confused as to what they were supposed to be doing, and 

two participants expressed anger and annoyance at filling out the survey. Therefore, N=993 

responses were analyzed for this study. 

Measures 

 I collected attitude measures towards the brands (ATBRAND), and attitude measures 

towards the causes (ATCAUSE) on 11-point scales from -5 (Extremely negative) to +5 (Extremely 

positive), drawn from Basil and Herr (2006). For example, to assess a participant’s attitude 

towards Royal Caribbean, I asked, “How would you rate your attitude towards Royal Caribbean 

International?” I also collected attitude strength measures towards the brands (ASBRAND), and 

attitude strength measures towards the causes (ASCAUSE), measured on 11-point scales from +1 

(Not strong at all) to +11 (Extremely strong), which was adapted from Bassili (1996). As an 
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example, to assess a participant’s attitude strength towards Royal Caribbean, I asked, “How 

strong is your attitude toward Royal Caribbean International?” I also asked a question assessing 

the participant’s perception of CRM compatibility (COMPPERCEIVED) on an 11-point scale from -

5 (Not compatible at all) to +5 (Extremely compatible), which was adapted from Basil and Herr 

(2006). For example, to assess a participant’s perception of CRM compatibility towards the 

partnership between Royal Caribbean and the WWF, I asked, “How compatible do you think this 

partnership is between Royal Caribbean and the World Wildlife Fund for Nature?” Each 

participant was presented with all three partnerships, but the order of partnerships was presented 

randomly. Additionally, for each partnership that was presented to the participants, the 

presentation order of the brand and cause was also randomized. See Appendix 1 for the survey 

instrument. 

Analyses 

To test the robustness of my results, I separated my analyses by each partnership to see if 

my hypotheses were supported across a wide range of average perceived compatibilities. 

Additionally, COMPPERCEIVED was recoded to a positive 11-point scale to better interpret the 

statistical results. 

For hypothesis 1, I used multi-regression analysis with the participant’s ATBRAND and 

ATCAUSE as the predictor variables, and COMPPERCEIVED as the outcome variable. To test 

hypotheses 2-4, I calculated four derived variables from this subset of data. I computed the first 

variable, BALANCECRM, by categorizing each participant’s results, either balanced or not 

balanced, by looking at the valences of ATBRAND and ATCAUSE, and the valence of their 

COMPPERCEIVED. As a note, if an attitude value was zero, I removed these participants from the 

testing of hypotheses 2-4. Heider’s (1958) balance theory does not consider neutral (a value of 
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zero) attitudes, and even recent balance theory work in real world social networks does not 

include the analysis of neutral edges (Antal et al., 2006; Leskovec, Huttenlocher, & Kleinberg, 

2010a). I discuss this further in the limitations and future research section. 

I then computed the second variable, ATDIFFERENCE, by taking the absolute value of a 

participant’s ATBRAND and ATCAUSE and subtracting the greater attitude value from the lesser 

attitude value (e.g., the absolute value of -1 subtracted from the absolute value of +5 equals 4, 

see Figure 2.2 for this example). Once ATDIFFERENCE was constructed, I ran a logistic regression 

to see if an increasing ATDIFFERENCE would decrease the probability of BALANCECRM to test 

hypothesis 2. 

For hypotheses 3 and 4, I created the third variable, ASDIFFERENCE, by taking a 

participant’s ASBRAND and their ASCAUSE and subtracting the lesser value from the greater value. 

Finally, I computed the fourth variable, the ATASDIFFERENCE. I did this by first multiplying a 

participant’s ATBRAND by their ASBRAND. Then I multiplied a participant’s ATCAUSE by their 

ASCAUSE. Finally, I took the absolute values of both these results (for the same reason I took 

absolute values as previously explained for ATDIFFERENCE), and subtracted the greater from the 

lesser (e.g., -1 x +3 subtracted from +5 x +11 equals 52; see Figure 2.3 for this example); this 

fourth variable functioned as the interaction variable in my analyses. Then I ran a logistic 

regression to see if an increasing ATDIFFERENCE, ASDIFFERENCE, and ATASDIFFERENCE increases the 

probability of BALANCECRM and strengthens my model. 

RESULTS 

 By conducting manipulation checks using an one-way ANOVA test, I found that on 

average, FitbitAHA was rated as having high compatibility (MCOMP_PERCEIVED =9.86, SD=1.57), 

RoyalWWF as having average compatibility (MCOMP_PERCEIVED =7.57, SD=2.64), and 
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WyndhamNRA as having low compatibility (MCOMP_PERCEIVED =5.72, SD=3.41), and all three 

were significantly different from one another (F(2,2976)=868.10, p=.00). 

Hypothesis 1 stated that ATBRAND and ATCAUSE should predict COMPPERCEIVED in CRM 

triads. Multiple regression analyses showed that hypothesis 1 was fully supported (see Table 

2.1). 

Table 2.1: Predicting CRM Compatibility with Attitude 
 

Partnership Variables B SE B ß t p R2 

Fitbit & 
American 

Heart 
Association 
(N = 993) 

Constant 6.08 .26 - 23.73 .00 

.20 ATBRAND .26 .02 .33 10.95 .00 

ATCAUSE .18 .03 .21 6.86 .00 

Royal 
Caribbean 
& World 
Wildlife 

Fund 
(N = 993) 

Constant 2.38 .44 - 5.40 .00 

.15 ATBRAND .44 .04 .32 10.60 .00 

ATCAUSE .23 .04 .16 5.20 .00 

Wyndham 
Hotels & 
National 

Rifle 
Association 
(N = 993) 

Constant 1.22 .36 - 3.38 .00 

.28 ATBRAND .21 .05 .12 4.09 .00 

ATCAUSE .43 .03 .48 17.16 .00 

DV – COMPPERCEIVED 

Hypothesis 2 stated that as ATDIFFERENCE increases, the probability that BALANCECRM is 

balanced will decrease. Logistic regression analyses showed that ATDIFFERENCE significantly 

predicted BALANCECRM, for RoyalWWF and WyndhamNRA, but not for FitbitAHA (see Table 

2.2). For logistic regression, the odds ratio is the change in odds; when the odds ratio is under 1, 
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this tells me that as the predictor increases (ATDIFFERENCE), the odds of the outcome occurring 

decreases (BALANCECRM). For WyndhamNRA, I found the odds ratio to be .82. Thus, in the 

case of RoyalWWF and WyndhamNRA, hypothesis 2 was supported, but when I considered 

each of the three partnerships, hypothesis 2 was only partially supported. Sample sizes for the 

analyses were less than the sample sizes in hypothesis 1 because neutral attitudes were removed 

from the analysis of hypotheses 2-4. This is discussed further in my limitations and future 

research section. 

Table 2.2: Predicting Balance with Attitude Differences 
 

Partnership Variables B 95% CI for Odds Ratio p AIC 
Lower Odds Upper 

Fitbit & 
American Heart 

Association 
(N = 758) 

Constant 2.44 7.87 11.45 17.23 .00 
423.47 

ATDIFFERENCE .01 .81 1.01 1.29 .92 

Royal Caribbean 
& World 

Wildlife Fund 
(N = 584) 

Constant 1.98 4.95 7.15 10.58 .00 
537.32 

ATDIFFERENCE -.26 .64 .77 .93 .01 

Wyndham 
Hotels & 

National Rifle 
Association 
(N = 452) 

Constant 1.54 3.29 4.67 6.76 .00 

475.35 
ATDIFFERENCE -.20 .67 .82 1.00 .05 

DV – BALANCECRM 

 Hypothesis 3 stated that adding the measurement of attitude strength will strengthen the 

models for predicting BALANCECRM. My prediction models were strengthened by the addition 

of ASBRAND and ASCAUSE for FitbitAHA (∆AIC=-49.57), RoyalWWF (∆AIC=-9.99), and 

WyndhamNRA (∆AIC=+2.84) (see Table 2.3). The Akaike Information Criterion (AIC) 

estimates the quality of a model, relative to another model. When the change in AIC is negative, 
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that means the model was improved. Thus, in the case of FitbitAHA and RoyalWWF, hypothesis 

3 was supported, but when I considered each of the three partnerships, hypothesis 3 was only 

partially supported. 

Table 2.3: Predicting Balance with Attitude X Attitude Strength Differences 
 

Partnership Variables B 
95% CI for Odds 

Ratio p ∆AIC 

Lower Odds Upper 

Fitbit & American 
Heart Association 

(N = 758) 

Constant 2.96 12.47 19.22 30.82 .00 

-49.57 
ATDIFFERENCE -.43 .42 .65 .99 .04 

ASDIFFERENCE -.80 .36 .45 .56 .00 

ATASDIFFERENCE .12 1.08 1.13 1.19 .00 

Royal Caribbean & 
World Wildlife 

Fund 
(N = 584) 

Constant 2.12 5.63 8.29 12.52 .00 

-9.99 
ATDIFFERENCE -.39 .48 .67 .93 .02 

ASDIFFERENCE -.27 .66 .76 .88 .00 

ATASDIFFERENCE .04 1.01 1.04 1.08 .02 

Wyndham Hotels & 
National Rifle 
Association 
(N = 452) 

Constant 1.50 3.09 4.48 6.63 .00 

+2.84 
ATDIFFERENCE -.33 .52 .72 .99 .04 

ASDIFFERENCE -.00 .86 1.00 1.15 .98 

ATASDIFFERENCE .01 .98 1.01 1.05 .38 

DV – BALANCECRM 
 

Hypothesis 4 stated that as ATASDIFFERENCE increases, the probability that 

BALANCECRM is balanced will decrease. When I added attitude strength into the model, logistic 
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regression analyses showed that when ATDIFFERENCE increased, the probability that 

BALANCECRM was balanced significantly decreased across all three partnerships, in line with 

my hypothesis 4. Logistic regression also showed that when ASDIFFERENCE increased, the 

probability that BALANCECRM was balanced significantly decreased in FitbitAHA and 

RoyalWWF, but not for WyndhamNRA, which was partially in line with my hypothesis 4. With 

this said, when ATASDIFFERENCE increased, the probability that BALANCECRM was balanced 

significantly increased for FitbitAHA and RoyalWWF, which was against the direction of my 

hypothesis 4. Thus overall, hypothesis 4 was only partially supported (see Table 2.3). 

GENERAL DISCUSSION 

My objective was to analyze CRM partnerships using a balance theory framework. Basil 

and Herr (2006) took this triadic balance theory framework and applied it to the realm of CRM 

partnerships, but they did not attempt to predict CRM compatibility from consumers’ separate 

attitudinal ties to the brand and the cause. This is important because we have evidence that CRM 

compatibility predicts acceptance of CRM partnerships (Lafferty et al., 2004). I found that 

consumers’ attitudes towards a brand (ATBRAND), along with their attitudes towards a cause 

(ATCAUSE), did in fact positively predict their perceptions of CRM compatibility 

(COMPPERCEIVED) in CRM triads (see Table 2.1). One might think that a consumer would 

evaluate the compatibility of a CRM partnership through an objective evaluation (without 

attitudinal bias) of the compatible missions and attributes of the brand and cause, but I found 

evidence that CRM partnership compatibility is strongly influenced by pre-existing attitudes. 

This has important managerial relevance, as brands and causes cannot just rely on logically 

compatible partnerships leading to consumers positively accepting CRM partnerships. This also 

opens the door for partnerships that may not make the most logical sense when objectively 
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comparing the missions and attributes of the brand and cause. If the general public, on average, 

has positive attitudes towards the brand, and positive attitudes towards the cause, this partnership 

might end up being positively accepted, even if the objective missions of the brand and the cause 

are at odds with each other. This also gives more evidence that advertisers of brands and causes 

may want to make sure they do their due diligence to raise the publics’ attitudes towards a brand 

and attitudes towards a cause, so that they are both positive (on average), before they enter into a 

partnership, rather than relying on the partnership itself to raise attitudes towards the brand 

and/or the cause. In 2010, KFC partnered with the breast cancer advocacy group Susan G. 

Komen for the Cure to donate money to breast cancer research when people bought fried chicken 

at KFC. This partnership was ridiculed as an incompatible partnership due to the illogical pairing 

of unhealthy fried chicken with a health cause, with news headlines strongly challenging the 

CRM partnership by stating, “What the cluck?” (Hutchinson, 2010). However, KFC has also 

been rated as one of America’s most hated fast-food restaurants (Picchi, 2015), thus this 

partnership may have gone wrong due to general attitudes towards KFC rather than the objective 

incompatibility of the missions of the two entities. 

I also looked at the issue of balance within CRM triads. The original conceptualization of 

balance theory did not consider continuous attitude measures, and therefore I predicted that 

incorporating the continuous nature of attitudes into my analyses would help me predict when 

CRM triads would become unbalanced. I predicted that as the difference (ATDIFFERENCE) between 

the absolute values of the consumers’ attitudes towards the brand (ATBRAND) and their attitudes 

towards the cause (ATCAUSE) increases, the probability that CRM triads are balanced 

(BALANCECRM) will decrease. I found that this was only supported in the two cases of 

FitbitAHA and RoyalWWF (see Table 2.2). The likely reason that my hypothesis 2 was only 
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partially supported could be due to previous research suggesting that attitude strength must be 

incorporated into my models when attempting to predict psychological movement (Petty & 

Krosnick, 1995). Therefore, my third hypothesis looked at whether or not adding attitude 

strength would strengthen my model for predicting balance, as attitude strength was not 

previously considered when evaluating CRM triads. As far as I know, attitude strength has also 

not been previously incorporated into balance theory. I hypothesized that adding attitude strength 

into my model would strengthen the prediction of balance, and this held true for FitbitAHA and 

RoyalWWF, but not for WyndhamNRA. The predictive model for balance in the case of 

WyndhamNRA was basically unchanged with the addition of attitude strength (∆AIC=+2.84), 

whereas the other two models were improved. Although this was only partial support for 

hypothesis 3, when I added attitude strength, I was able to predict balance for all three 

partnerships in line with hypothesis 4 (see Table 2.4). In all three cases, when attitude strength 

was included in the models, as the difference between consumers’ attitudes towards the brand 

and their attitudes towards the cause (ATDIFFERENCE) increased, the probability that CRM triads 

were balanced (BALANCECRM) decreased, which followed the direction of hypothesis 4. This 

provided evidence that more extreme attitudes are spilling into less extreme attitudes (and 

possibly vice versa, which again will be discussed in my limitations section) and affecting the 

valence of participants’ perceived compatibility ratings. I was only able to see this effect across 

all three partnerships when I included attitude strength into the predictive models. Thus, 

measuring attitude strength proved to be important when predicting balance in CRM 

partnerships. 

With regards to the main effect of ASDIFFERENCE, in the cases of FitbitAHA and 

RoyalWWF, as the difference between the strength of consumers’ attitudes towards the brand 



43 
 

and the strength of their attitudes towards the cause (ASDIFFERENCE) increased, the probability that 

CRM triads were balanced (BALANCECRM) decreased, which followed the direction of 

hypothesis 4. This also provided evidence that for FitbitAHA and RoyalWWF, stronger attitudes 

were spilling into weaker attitudes (and possibly vice versa, which again will be discussed in my 

limitations section) and affecting the valence of participants’ perceived compatibility ratings. 

This was not true though for WyndhamNRA. 

Unexpectedly though, as the difference between consumers’ attitudes x attitude strengths 

towards the brand and their attitudes x attitude strengths towards the cause (ATASDIFFERENCE) 

increased, the probability that CRM triads are balanced (BALANCECRM = 1) slightly increased 

for FitbitAHA and RoyalWWF, but not for WyndhamNRA. This was against the direction of 

hypothesis 4, as this suggests that balance is more stable when ATASDIFFERENCE is greater 

between consumers’ attitudes x attitude strengths towards the brand and their attitudes x attitude 

strengths towards the cause. With this said, I believe that it is a strong possibility that this is an 

artifact of manually multiplying the attitude and attitude strength measures for both the brand 

and the cause before taking the extremity differences. As an example, there may be a different 

coefficient needed in the multiplication of attitude and attitude strength measures for brands 

versus causes. Understanding this dynamic of how a better interaction formula could be built for 

adding attitude strength into balance theory would require a study testing different combination 

of coefficients (and possibly additional mathematical models) with a large group of partnerships, 

thus it was beyond the scope of my study. I provide a starting point for future research into the 

deeper investigation this interaction. Attitude strength has not previously been considered in 

balance theory, therefore I had to start from what I knew about general interaction effects. 
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Therefore, when looking at the results for hypotheses 3-4, WyndhamNRA seems to be 

the outlier, as the addition of attitude strength does not seem to improve the model for predicting 

balance in its CRM triads (BALANCECRM). My initial thought as to why this partnership was 

different was that maybe the differences in attitudes (ATDIFFERENCE) towards Wyndham and the 

NRA were on average much larger with greater separation across participants than with the other 

two partnerships, but this was not true. The average difference of attitudes towards the brand and 

attitudes towards the cause were very close to one another: FitAHA (MAT_DIFFERENCE=1.25, 

SD=1.13), RoyalWWF (MAT_DIFFERENCE =1.47, SD=1.14), and WyndhamNRA (MAT_DIFFERENCE 

=1.31, SD=1.12), although a one-way ANOVA showed there were significant differences 

(F(2,1791)=6.48, p=.00). After running a Tukey post-hoc pairwise test, it was only the average 

difference of attitudes for FitbitAHA that was significantly different than RoyalWWF (p=.00).  

The only major difference I found was that NRA was the only organization where the 

average of participants’ attitudes towards the NRA was close to neutral, but there was a much 

wider variance to participants’ attitudes as shown by the difference in standard deviation as 

compared to the other brands/causes (see Table 2.4). Additionally, after running a Tukey post-

hoc pairwise test, I confirmed that it was only the NRA that was different in attitude as compared 

to AHA and WWF (p=.00 in both pairwise cases). 
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Table 2.4: One-Way ANOVA for ATBRAND and ATCAUSE 

Brand/Cause M SD F(2,1791) p 
Fitbit (N = 758) 8.73 1.78 

25.89 .00 
Royal Caribbean 

(N = 584) 
7.99 2.10 

Wyndham Hotels 
(N = 452) 

8.29 1.83 

American Heart 
Association 
(N = 758) 

9.65 1.60 

308.60 .00 
World Wildlife 

Fund 
(N = 584) 

9.49 1.63 

National Rifle 
Association 
(N = 452) 

6.55 3.52 

 

Even when looking at attitude strength across all the brands and causes, there was not a 

large difference across the organizations (see Table 2.5). 

Table 2.5: One-Way ANOVA for ASBRAND and ASCAUSE 

Brand/Cause M SD F(2,1791) p 
Fitbit (N = 758) 7.59 2.46 

11.06 .00 
Royal Caribbean 

(N = 584) 
6.94 2.60 

Wyndham Hotels 
(N = 452) 

7.22 2.53 

American Heart 
Association 
(N = 758) 

8.61 2.20 

8.11 .00 
World Wildlife 

Fund 
(N = 584) 

8.58 2.29 

National Rifle 
Association 
(N = 452) 

8.08 2.67 
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Thus, it seems that the major difference was that attitudes towards the NRA were the only 

attitudes that were both close to neutral on average, and also quite divided across the participants 

in my sample. Since the mean of attitudes towards the NRA were so close to the midpoint of the 

scale (MATCAUSE=6.55, on a scale from 1 to 11), and the standard deviation was much larger than 

the rest of the brands and causes, I decided to look at how results for H4 would look if I split the 

analyses by the midpoint, by separating participants with positive attitudes towards the NRA 

(MATCAUSE > 6) from those with negative attitudes towards the NRA (MATCAUSE < 6). The results 

can be found in Table 2.6. 

Table 2.6: Predicting Balance with Attitude X Attitude Strength Differences for NRA Split by 
Positive and Negative Attitudes 

 

Partnership Variables B 
95% CI for Odds 

Ratio p 
Lower Odds Upper 

Wyndham Hotels & National 
Rifle Association, with 

Negative Attitudes Towards 
the NRA  
(N = 183) 

Constant 1.65 2.56 5.19 11.28 .00 

ATDIFFERENCE -.22 .53 .80 1.22 .30 

ASDIFFERENCE .06 .87 1.06 1.32 .57 

ATASDIFFERENCE .00 .95 1.00 1.03 .83 

Wyndham Hotels & National 
Rifle Association, with 

Positive Attitudes Towards 
the NRA 
(N = 269) 

Constant 1.54 2.99 4.70 7.62 .00 

ATDIFFERENCE -.81 .24 .45 .81 .01 

ASDIFFERENCE -.25 .60 .78 1.01 .06 

ATASDIFFERENCE .07 1.01 1.08 1.15 .02 

DV – BALANCECRM 

 As seen in Table 2.6, I gain much deeper insight into the prediction of BALANCECRM for 

the NRA. By looking at ATDIFFERENCE for both the positive group and the negative group, I see 
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that H4 is partially supported only in the positive group. Thus, I only have evidence that attitudes 

are spilling over when attitudes are positive towards the NRA. Moreover, I can see a significant 

interaction effect between attitude and attitude strength (ATASDIFFERENCE) for the NRA in the 

positive group when I split the groups by valence towards the NRA. Since I know that attitudes 

towards Wyndham were on average positive (see Table 2.4), I have evidence that when a brand 

that is generally viewed positively partners with a cause that is viewed positively (the split group 

of participants that view the NRA positively), spillover is occurring across the brand and the 

cause (ATDIFFERENCE predicts BALANCECRM) to influence changes in perceived compatibility of 

the CRM partnership. What about when a brand such as Wyndham partners with a cause that is 

viewed negatively? When looking at only the participants that had negative attitudes towards the 

NRA, I find no evidence of spillover (ATDIFFERENCE does not predict BALANCECRM), and thus 

no influence on changing perceived compatibility towards the CRM partnership. Judging from 

these results, this study further confirms intuition that there does not seem to be any benefit from 

partnering with a cause in which people generally hold negative attitudes towards. 

Key Takeaways and Recommendations 

 I would like to conclude this discussion with a summarized list of key takeaways and 

recommendations for CRM practitioners, advertisers, and researchers. 

• I found that perceived compatibility of CRM partnerships is strongly formulated by 
consumers attitudes towards the brand and the cause in the partnership (subjective 
attitudes), therefore practitioners and advertisers should not rely on a CRM partnership to 
raise attitudes towards a brand or a cause, but rather should consider efforts to raise 
attitudes towards a brand and a cause prior to the partnership being widely advertised. 
 

• When measuring attitudes towards brands and causes in CRM partnerships to predict 
balance, I found that including the measurement of the strength of attitudes towards those 
brands and causes was important, as attitude strength improved my models of predicting 
changes to peoples’ perceptions of CRM compatibility. Therefore, practitioners, 
advertisers, and researchers should consider the inclusion of attitude strength into their 
models of analyzing CRM partnerships’ effects on consumer behavior. 
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• When brands and causes, in which people hold generally positive attitudes towards, 

partner with one another, I found evidence that attitudes towards the brand and towards 
the cause were spilling over into one another to change perceptions of compatibility. This 
could be considered a positive outcome, as it suggests that people are blending their 
views towards a brand and a cause together, which could be one of the aims of CRM. 
 

• When brands, in which people hold generally positive attitudes towards, partner with 
causes, in which people hold generally negative attitude towards, I found no evidence 
that attitudes towards the brand and towards the cause were spilling over into one another 
to change perceptions of compatibility. Thus, there seems to be no benefits that I could 
find within this study for this type of partnership. The negatively viewed cause may be 
expecting that positive attitudes towards a well-liked brand could “rub-off” on the cause, 
but this does not seem to be the case. 

 
LIMITATIONS AND FUTURE RESEARCH 

Direction of Spillover Effects 

Simonin and Ruth’s (1998) research into spillover effects within brand alliances used 

structural equation modeling with the assessment of attitudes towards brands before and after 

presentation of the alliance. Although finding the end state of attitudes towards brands and 

causes, and the strength of those attitudes, was not the initial focus of this study, surveying these 

downstream measures could have given me more insight into understanding if there is a 

consistent direction with regards to the spillover effect that I found preliminary evidence for 

within CRM triads. With my current analysis, a limitation was that I could not be for sure which 

direction attitude, and the strength of those attitudes, are spilling over into/from. Future research 

into CRM partnerships could benefit from combining my study’s methods with the Simonin and 

Ruth’s (1998) to provide more insight into the effects of CRM partnerships (as they focused 

solely on brand-brand alliances, and not brand-cause alliances). They used a structural equation 

modeling approach that assessed participants’ attitudes pre-partnership and post-partnership (as 

well as the strength of those attitudes), thus giving them insight into which direction the spill-

over effects were occurring. 
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Spillover Effects Analyses Over Time 

 Marvel et al. (2011) provided theoretical proof that triads (and larger systems that include 

triads) become balanced over time, but this study focused only on a snapshot of time. In the 

future, by collecting attitude, attitude strength, and perceived compatibility measures over time, I 

could also see whether or not more CRM triads eventually end up in states of balance as was 

proved by Marvel et al. (2011). Their findings were based on simulation data, but looking at how 

continuous attitude, attitude strength, and perceived compatibility measures move with regards to 

balance in CRM triads over time could provide empirical evidence to their findings. 

Neutral Attitudes and Balance Theory 

 Another limitation was the prevalence of neutral separate attitudes towards brands and 

causes in my sample. There was a total of 2,979 total responses across three partnerships (N=993 

per partnership). The number of responses in which one of more of the separate attitudes towards 

the brands and causes were neutral (ATBRAND=0 and/or ATCAUSE=0) was 1,185. This was a large 

number of responses that were excluded from my analyses for hypotheses 2-4, as previous 

studies on balance theory have not considered what to do with neutral attitudes. Future research 

should work to understand how to handle neutral attitudinal edges within questions of balance; 

additionally, researchers could consider expanding the initial sample size of data collection to 

make sure that all partnerships have an appropriate number of data points even if neutral edges 

need to be removed. 

Single-Item vs. Multiple-Item Measures 

 This study used single-item measures for the measurement of attitude, attitude strength, 

and perceived compatibility, which could be initially considered a limitation. With this said, 

Bergkvist et al. (2007) compared the predictive validity of single-item measures and multiple-
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item measures for attitudes towards advertising, and found that there was no difference in 

predictive validity between single-item versus multiple-item. Future research could consider 

incorporating multiple-item measures to see if there are any predictive differences in outcomes. 

Interaction Variable for Attitude and Attitude Strength 

Another limitation, as mentioned previously, was that my calculation of attitude x attitude 

strength was an informed, but preliminary approach that may have contributed to my mixed 

findings. This study seems to be the first to consider attitude strength in CRM partnership 

research, and thus it is only a starting point. Thus, future CRM studies may find that taking a 

more nuanced approach, looking at different statistical models to assess direction of spillover, 

seeing how balance changes over time, researching how to handle neutral attitudes, testing 

multiple-item measures, and considering coefficient differences for organizations, could prove 

fruitful. 

Attitude Strength and its Relationship with Arousal and Involvement 

 Petty and Krosnick (1995) suggested that measuring attitude strength alongside attitude 

would enable us to better measure impact on information processing and judgments, as well as 

help us predict behavior. Although I only measured attitude strength in this study with regards to 

a construct that modifies the effect of attitude on processing and behavior, there have been other 

psychological constructs that have shown to be moderators of information processing and 

behavior. 

For example, we have evidence that measuring arousal alongside with attitudes also 

enables us to better measure impact on information processing, specifically helping to predict 

how people process advertisements (Shapiro, MacInnis, & Park, 2002). Arousal has also been 

measured alongside emotions within excitation transfer theory, in which emotion-arousing 
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situations affect behavior due to portions of “excitation” that transfer from previously related or 

unrelated emotionally arousing situations (Zillmann, 2007). As implied from excitation transfer 

theory, arousal is thus related to interest, and interest is another way to measure attitude strength 

(Petty & Krosnick, 1995). Additionally, involvement has been suggested as a highly related 

construct to attitude strength (Petty & Krosnick, 1995), and Kokkinaki and Lunt (1997) found 

that involvement and attitude accessibility (attitude accessibility is yet another way to measure 

attitude strength; Petty & Krosnick, 1995) predicted attitude-behavior consistency in how 

participants chose consumer products. Kokkinaki and Lunt (1997) also found that involvement 

and attitude accessibility were indeed separate, albeit related, constructs within their study. 

Thus, as examples of additional psychological constructs that moderate behavior and 

processing, there seems to be connections between attitude strength, arousal, and involvement. 

Future research may benefit from looking at how either one of these constructs (or various 

combinations of them) may affect behavior within CRM partnerships. One example could be 

measuring attitude strength alongside a measure of involvement, such as the personal 

involvement inventory (Zaichkowsky, 1994), which could provide a well-tested multiple-item 

measure to pair alongside the measurement of attitude strength. I could look to see both the 

correlations between the measurements of the different constructs, as well as see how a construct 

such as involvement changes my results with regards to CRM partnerships and compatibility. 

Alternate Ways to Predict Consumers’ Acceptance or Rejection of Partnerships 

This study built upon Lafferty et al.’s (2004) findings that perceived compatibility 

predicted CRM partnership acceptance, but what about the cases in which I found that perceived 

compatibility was positive, but the CRM triad was not balanced (BALANCECRM=0)? A positive 

perceived compatibility should predict positive acceptance of a CRM partnership according to 
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previous research (Lafferty et al., 2004), but if the CRM triad is not balanced, then Heider’s 

(1946) balance theory suggests that the CRM triad may bring psychological pressure to change. 

Future studies should look to study this apparent contradiction. Interestingly, when looking at the 

distribution of balanced to unbalanced triads in this study’s data, the percentages of triads that 

were balanced for each partnership were as follows: FitbitAHA (91.74%), RoyalWWF (80.06%), 

and WyndhamNRA (69.99%). As of late February 2018 (after this study was conducted), 

Wyndham Hotels ended their partnership with the National Rifle Association in the wake of the 

Marjory Stoneman Douglas High School shooting in Parkland, Florida (Edevane, 2018). Future 

research should look at if there is a potential connection between WyndhamNRA having the 

lowest number of balanced CRM triads, and public backlash against the partnership. 

CRM Research and Social Media Data 

One final promising area of future research could be within the realm of social media 

data, as researchers could potentially use social media data to assess attitudes towards brands and 

towards causes (as well as the strength of those attitudes). This could provide a means for brands, 

causes, and advertising practitioners to make even more informed decisions regarding the realm 

of CRM. After the previous mentioned Florida school shooting, Wyndham Hotel’s Twitter 

account was filled with tweets condemning their partnership with the NRA, thus providing even 

more evidence that social media is an important arena for CRM partnership research. 

CONCLUSION 

The purpose of this study was to investigate the boundaries in which balance theory 

(Heider, 1946) can be used to analyze CRM partnerships and predict consumer perceptions of 

CRM partnership compatibility. Within this investigation, I brought together theoretical 

understandings of balance theory and the difference between attitude and attitude strength to 
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predict balance in CRM triads. My findings benefit researchers, as they advance theory both for 

balance theory as well as for CRM research, but they also bring value to CRM and advertising 

practitioners. Having the understanding of how to predict potential CRM compatibility 

perceptions is important, especially if it can be used prior to entering into a partnership. 

Additionally, by providing insight into how to predict balance in CRM triads, this gives CRM 

and advertising practitioners deeper understanding into how to choose future CRM partners, as 

well as considering campaigns to advertise brands and causes individually to raise attitudes 

towards them before entering into a partnership. 
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CHAPTER 3: PERILS AND PITFALLS OF SOCIAL MEDIA ANALYTICS: A 

COMPARISON BETWEEN SURVEY AND SOCIAL MEDIA ANALYTICS APPROACHES 

WHEN USING BALANCE THEORY TO MEASURE ATTITUDE STRENGTH IN CAUSE-

RELATED MARKETING PARTNERSHIPS 

 

Social media has brought about many changes within the realm of cause-related marketing 

(CRM). As in the case of recent social media backlash towards causes like the National Rifle 

Association, it seems that consumers’ attitudes towards brands, as well as their attitudes towards 

causes, can change in a very short period of time. Research has shown that the ease in which 

attitudes towards organizations can be changed is dependent on how strong peoples’ attitudes are 

towards those organizations. Therefore, in light of the importance of attitude strength within 

CRM, my purpose was to compare different ways to measure the strength of consumers’ 

attitudes towards brands, and towards causes, within the domain of CRM. I examined two novel 

ways of assessing consumers’ attitude strengths towards brands and causes through balance 

theory: a survey measure assessing discussion topic similarity to indirectly measure attitude 

strength, and a social media analytics method of analyzing social media discussion similarity as 

another indirect measure of attitude strength. I found that by assessing the similarity of topic 

conversation between a consumer and a brand (or cause), I could predict the strength of a 

consumer’s attitude towards that brand (or cause) using a survey measure, but not using social 

media analytics. I explain my thoughts on why one approach worked versus the other, as well as 

share some considerations when conducting psychological research using a hybridization of a 

survey approach and a social media analytics approach. 
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 In late February 2018, after the mass shooting at Marjory Stoneman Douglas High School 

in Parkland, Florida, ThinkProgress posted a list of all the companies that were engaged in a 

cause-related marketing partnership with the National Rifle Association (NRA) to offer 

discounts to NRA members (Lerner, 2018). Cause-related marketing (CRM) is a phenomenon of 

for-profit businesses (brands) partnering with not-for-profit organizations (causes) for reasons 

that are beneficial to both of the organizations’ objectives (Barone, Norman, & Miyazaki, 2007; 

Varadarajan & Menon, 1988). ThinkProgress’ posting, alongside growing use of #BoycottNRA 

and #NeverAgain on social media, started a domino-effect of companies ending their CRM 

partnerships with the NRA (Edevane, 2018). It seems that the benefits that existed for the 

companies partnering with the NRA were outweighed by the public anger towards the mass 

shooting and the topic of gun-ownership in America. Some CRM partnerships may seem more 

incompatible than others, and research has shown that perceived compatibility predicts 

acceptance (or rejection) of CRM partnerships (Lafferty et al., 2004), consumer choice (Pracejus 

& Olsen, 2004), and purchase intentions (Gupta & Pirsch, 2006). In Chapter 2 of this 

dissertation, I investigated a CRM partnership between Wyndham Hotels and the NRA, and 

found that this partnership was perceived, on average, as incompatible. Notably, Wyndham was 

also a company that ended their relationship with the NRA in light of the backlash in February 

2018. I also found that measuring attitude strength enables the prediction of consumers’ 

perceptions of CRM compatibility in ways that attitude alone cannot predict, therefore I believed 

that it would be important to investigate novel ways to measure the strength of attitudes towards 

brands, as well as the strength of attitudes towards causes, that participate (or will participate) in 

CRM partnerships. 
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Investigating new ways to measure the strength of attitudes towards brands, as well as the 

strength of attitudes towards causes, can provide an important step forward for the realm of CRM 

research and practice. Previously, the only way to measure the strength of attitudes towards 

people or objects was through self-reported survey measures and/or survey response latency 

measurement, but a way to measure attitude strength via social media analytics does not 

currently exist within research literature. Social media analytics is the process of using 

computational methods and tools to extract insights from social media data (Fan & Gordon, 

2013), and it is being widely used by companies to analyze consumer behavior (Yun & Duff, 

2017). A recent Pew Research Center survey showed that up to 75% of adults in the United 

States use social media (A. Smith & Anderson, 2018). They also show that this percentage grows 

to 94% within the age range of 18 to 24-year-olds with regards to social media use. In August of 

2017, AdWeek analyzed how people reacted to various topics of postings by brands on 

Facebook, and they found that content that featured corporate social responsibility initiatives 

(cause-related marketing is a form of a corporate social responsibility) received by far the most 

engagement versus other topics of conversation (Vijay, 2017). If I could use social media 

analytics to detect the strength of attitudes towards brands, and the strength of attitudes towards 

causes, this would bring me one step closer to developing a social media analytics method to 

predict potential CRM compatibility prior to organizations entering into CRM partnerships. In 

this study, I experimented with a topic-based approach to measuring attitude strength (both via a 

survey and social media analytics), as this could be a more indirect way to measure how strong 

attitudes may be towards brands or towards causes. Since attitude strength is a measure of how 

easily attitudes can be changed, cause-related advertisers should also be interested in different 

ways to get at measuring attitude strengths towards brands and towards causes. 
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I only focused on the measurement of attitude strength within CRM partnerships for this 

study, rather than looking at both attitude and attitude strength for the following reasons. 

First, I was interested in investigating how I could use a social media analytics approach 

to assessing attitude strength apart from assessing attitude, as the methodology and data needed 

to assess either in the realm of CRM have key differences. Measuring attitudes towards people or 

objects within social media has been previously researched (also referred to as opinion mining or 

sentiment analysis; e.g., Eirinaki, Pisal, & Singh, 2012), but attitude strength has not been 

previously measured through social media data as a separate psychological construct. Measuring 

attitude towards CRM brands and causes would require acquiring data of social media users 

talking directly about those brands and/or causes, and then I could use previously developed 

methods of detecting attitude towards objects in text (e.g., Eirinaki et al., 2012). In contrast, I 

hypothesized that CRM attitude strength could be detected in social media data that does not 

directly discuss CRM brands and causes, and therefore it offered a way for CRM practitioners to 

assess general strength of attitudes towards brands and causes across a broader set of data. 

Secondly, this research considers Krosnick et al.’s (1993) study, in which they focused on 

investigating the various different ways to measure attitude strength (apart from the measurement 

of attitude). They found that each way to measure attitude strength (e.g., attitude certainty, 

attitude importance) were distinct yet correlated measures, and that any given measure may be 

more appropriate to ask for various circumstances or realms of assessment. I was interested in 

seeing if I could identify a novel indirect survey-based measure of attitude strength specifically 

within the realm of CRM, and that could potentially help avoid issues that come from directly 

asking for attitude strength (e.g., the issue of social desirability bias). 
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Thus, due to the previously researched importance of attitude strength within CRM 

partnerships (Chapter 2 of this dissertation), the lack of research within the computational realm 

of detecting attitude strength from social text, the possibility that attitude strength could be 

detected from social data that is more widely accessible, and the desire to find an alternative 

measure of attitude strength within the realm of CRM, I chose to focus specifically on attitude 

strength within this study. 

By looking at measuring attitude strength both via a survey-based approach and a social 

media analytics approach, I compare and contrast these methods in efforts to bring additional 

insight into various considerations that researchers and practitioners should take when 

considering using either approach (or a hybridized approach). With regards to a theoretical 

framework, previous research has used Heider’s (1946) balance theory in analyzing CRM 

partnerships (Basil & Herr, 2006; Chapter 2 of this dissertation). Thus, my purpose was to 

investigate how I could use balance theory (Heider, 1946) to discover novel ways (both via 

survey-based and social media analytics approaches) to measure the strength of attitudes towards 

brands, as well as the strength of attitudes towards causes, participating (or that will participate) 

in CRM partnerships. 

Guiding Research Question: How can I use balance theory to discover novel ways to measure 

the strength of attitudes towards brands, as well as the strength of attitudes towards causes, that 

participate (or will participate) in cause-related marketing partnerships via a survey approach 

as well as a social media analytics approach? 
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LITERATURE REVIEW 

Cause-Related Marketing Compatibility and Attitude Strength 

 As previously stated, cause-related marketing (CRM) is a phenomenon of for-profit 

businesses (brands) partnering with not-for-profit organizations (causes) for reasons that are 

beneficial to both of the organizations’ objectives (Barone et al., 2007; Varadarajan & Menon, 

1988). Some examples of CRM partnerships include Starbucks with (RED) to fight AIDS, or 

Coca-Cola with the World Wildlife Fund to preserve polar bear habitats in the arctic. CRM has 

grown in popularity over the years, as CRM spending has increased from $120 million in 1990 to 

$2.05 billion in 2017 (“ESP’s Growth of Cause Marketing - Engage for Good,” 2017). 

 According to a recent text-mining analysis of CRM research between 1988 and 2013, the 

concept of CRM fit (or CRM compatibility) was one of the most prominent topics discussed and 

researched within the CRM realm (Guerreiro et al., 2016). Some CRM partnerships are 

perceived as more compatible than others, as previous research has shown that the partnership 

between Fitbit and the American Heart Association has been perceived on average as more 

compatible versus the partnership between Wyndham Hotels and the NRA (Chapter 2 of this 

dissertation). We have evidence that perceived CRM compatibility predicts acceptance of CRM 

partnerships (Lafferty et al., 2004), consumer choice (Pracejus & Olsen, 2004), and purchase 

intentions (Gupta & Pirsch, 2006). Thus, understanding how consumers form their perceptions of 

CRM compatibility has practical importance for brand managers, public-relations professionals, 

and cause-related advertisers. In Chapter 2 of this dissertation, I found that incorporating attitude 

strength improved my models for predicting CRM compatibility across three CRM partnerships, 

compared to predicting via attitude measures alone. 
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In describing attitude strength, Howe and Krosnick (2017) suggested that some attitudes 

are strong versus weak, and it is strong attitudes that most affect our thoughts and behaviors. 

Petty and Krosnick (1995) stated that strong attitudes are resistant to change, they are stable over 

time, they influence our thoughts, and they are better predictors of behavior than weak attitudes. 

An individual may have the same extreme attitude towards two topics, such an extremely 

negative view towards pollution as well as an extremely negative view towards Mondays. With 

this said, attitude strength deals with how resistant that attitude is to change, and how easily that 

attitude can be influenced. That same individual’s views towards pollution may be very strong, 

thus preventing any sort of change in attitudes. 

 With regards to how attitude strength specifically affected CRM compatibility, I found 

evidence that degree differences in the attitudes towards brands and attitudes towards causes 

(ATDIFFERENCE) was related to changes in participants’ perceptions of the compatibility of the 

CRM partnership when attitude strength was included in my predictive models (Chapter 2 of this 

dissertation). Thus, it is important to understand how to assess the strength of individuals’ 

attitudes towards brands and towards causes before they enter into a CRM partnership or 

advertise the partnership widely. 

Attitudes have historically been measured through a variety of measures and methods. 

Some of these methods include self-reported survey measures (e.g., the Likert scale assessment 

of attitudes, Likert, 1932), behavioral survey measures (e.g., the implicit association test, 

Greenwald, McGhee, & Schwartz, 1998), and physiological methods (e.g., facial 

electromyographic activity, Krosnick, Charles, & Wittenbrink, 2005). On the other hand, attitude 

strength has only been assessed through self-reported survey measures of attitude strength (Petty 

& Krosnick, 1995), or behaviorally measuring the response latency to survey questions (Bassili, 
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1993, 1996). Preceding the 1990 Ontario provincial election, Bassili (1993) asked participants 

which political party they were going to vote for in, how certain they were of their choice, and 

asked them which political party they actually voted for after the election. Assessing how certain 

someone is of their attitudes is one of the many ways to measure self-reported attitude strength 

(Petty & Krosnick, 1995). Bassili (1993) found that participants’ response latency towards the 

question of which political party they were going to vote for was a stronger predictor of which 

political party they actually voted for as compared to how they answered with regards to the 

certainty of their choice. Attitude certainty was still a predictor of voting behavior, but response 

latency was a much stronger predictor. Thus, response latency has been considered a valid 

behavioral measure of attitude strength. Bassili (1996) later followed up with comparing the use 

of response latency as a behavioral measure of attitude strength to a larger number of self-

reported measures of attitude strength (e.g., attitude certainty, attitude importance, attitude 

knowledge, attitude strength, etc.), and found response latency to be the most predictive of 

behavior. 

Previous research has not measured strength of attitudes towards brands and towards 

causes within CRM partnerships outside of directly asking this via a self-report survey (Chapter 

2 of this dissertation). Self-reported measures of attitude and attitude strength may suffer from 

both social desirability response bias as well as self-deception (Krosnick et al., 2005). Social 

desirability response bias is the tendency to self-report in ways that are driven by a desire to be 

viewed more favorably by others. As an example, an individual may actually like the National 

Rifle Association, but they may believe that there is such negative media attention on the 

association right now that they feel a bit embarrassed to report their attitude (and the strength of 

their attitude) towards the NRA on a survey. Therefore, they may change their response due to 
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social desirability response bias. Self-deception works in a similar way, except the motive of this 

bias is driven more from an individual’s desire to view their own self favorably. Thus, if I could 

provide other indirect ways to predict consumers’ separate attitude strengths towards brands and 

causes, this may provide strong value practically within the realm of CRM. 

Using response latency could be an indirect way to measure attitude strength towards 

brands and causes, but there have not been any previous studies to show that web-based surveys 

via MTurk can provide enough time sensitivity (and consistency) required for detecting attitude 

strength. Lab based studies using software such as DirectRT (Jarvis, 2016) have the benefit of 

having controlled computational environments, but I focused on finding measures that would be 

accessible to a range of people (e.g., practitioners within non-profits that may be looking for low-

cost methods to evaluate potential CRM partners), while still ensuring that there was the 

potential to overcome issues such as social desirability bias. Thus, one of the main contributions 

of this study is providing a new indirect survey measure of the strength of attitudes towards 

brands and towards causes within the realm of CRM. To explain this novel method, I turn to 

balance theory next. 

Balance Theory and Attitude Strength 

 Heider’s balance theory (1946) is probably most well-known as applied to triads of 

relationships, but he also spoke of the application of balance theory within two person/entity 

systems. I will refer to this as dyadic balance theory. Heider suggested that individuals can have 

attitudes towards other people and/or objects, and these attitudes influence each other. While 

speaking about dyadic systems, he stated, “p similar to o induces p likes o, or p tends to like a 

similar o” (Heider, 1958, p. 184). Therefore, he was stating that similarity affects attitudinal 

evaluation, although he did not clarify similarity on what grounds. The relationship between 



63 
 

similarity and group formation has been studied in network analysis for quite some time as well. 

In network analysis, this phenomenon is usually referred to as homophily. McPherson et al. 

(2001) defines homophily as, “the principle that a contact between similar people occurs at a 

higher rate than among dissimilar people. The pervasive fact of homophily means that cultural, 

behavioral, genetic, or material information that flows through networks will tend to be 

localized” (p. 416). Thus, the effects of similarity within balance theory runs alongside the 

concept of homophily in network analysis. 

 Choudhury (2011) tested this concept of homophily on Twitter, as she looked at Twitter 

users and any new people that they would follow over a period of time, and compared the new 

people they followed with the original Twitter user to see if there was any correlation with the 

following attributes: location (Twitter profile location), gender (Twitter first names compared to 

US Census data on gender), ethnicity (Twitter last names compared with US Census data on 

ethnicity), political orientation (words denoting political orientation in Twitter profiles), activity-

pattern (distribution of posting tweets over a 24 hour period), broadcasting behavior (fraction of 

retweets to total posts), interactiveness (fraction of @mentions to total posts), topical interest 

(topic codes derived from analyzing tweets via opencalais.com), and sentiment expression 

(sentiment analysis of tweets utilizing Linguistic Inquiry Word Count; Pennebaker, Boyd, 

Jordan, & Blackburn, 2015). Although she found mixed effects for most of the attributes, she 

found that Twitter users tended to follow other users that were discussing topics similar to what 

they were discussing. 

One could imagine that people follow others on Twitter due to liking them or their 

content, but they could also follow someone due to the topic that they are discussing regardless 

of the valence of their attitude towards the Twitter account. For example, if someone was 
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interested in efforts to reduce carbon emissions worldwide, they might still follow Exxon 

Mobil’s Twitter feed even if they strongly disliked Exxon Mobil. They might follow Exxon 

Mobil on Twitter due to their strong attitude strength towards the topic of climate change, 

regardless of their negative attitudes towards the brand. In fact, there is even a suggested term for 

this on Twitter: Tweetenfreude (“the hate-follow”; Weissman, 2014). Thus, my explanation of 

Choudhury’s (2011) findings is that there is a connection between similarity of topical discussion 

and attitude strength. Interestingly, one of the ways that has been shown to measure the strength 

of attitudes towards topics is by measuring what topics an individual talks about, and how often 

they talk about those topics (Krosnick et al., 1993). Thus, by synthesizing insights together from 

Choudhury (2011), Krosnick et al. (1993), and Heider (1958), I am proposing a new indirect 

self-reported measure of the strength of attitudes towards brands and towards causes within the 

realm of CRM. I hypothesize that a consumer’s perceived similarity of topical conversation 

between themselves and a brand (SURVEYSIMBRAND) within CRM partnerships will predict the 

strength of their attitude towards that brand (ASBRAND). I also hypothesize that a consumer’s 

perceived similarity of topical conversation between themselves and a cause 

(SURVEYSIMCAUSE) within CRM partnerships will predict the strength of their attitude towards 

that cause (ASCAUSE). 

H1a: As the perceived similarity of topics of discussion between a consumer and a brand 
(SURVEYSIMBRAND) increases, the strength of the consumer’s attitude towards that brand 
(ASBRAND) will increase. 

 
H1b: As the perceived similarity of topics of discussion between a consumer and a cause 

(SURVEYSIMCAUSE) increases, the strength of the consumer’s attitude towards that cause 
(ASCAUSE) will increase. 
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Social Media and Attitude Strength within Cause-Related Marketing 

 Social media has impacted the realm of CRM greatly. In August of 2017, AdWeek 

analyzed how people reacted to various topics of postings by brands on Facebook, and they 

found that content that featured corporate social responsibility initiatives (cause-related 

marketing is a form of corporate social responsibility, or CSR) received by far the most 

engagement versus other topics of conversation (Vijay, 2017). Bühler et al. (2016) looked at how 

Facebook and YouTube advertising of a CRM campaign affected intentions to purchase the 

CRM brand’s products, and found that using these social media platforms rivaled print 

advertising and point of sale positioning. However, engagement with CRM does not uniformly 

benefit companies. Hashtag campaigns such as #NeverAgain and #BoycottNRA have caused 

some CRM partnerships to separate (Popken, 2018). Therefore, having a deeper understanding of 

how CRM practitioners and advertisers could use social media should be a very practical area of 

investigation. 

 We have evidence that Twitter is a platform in which similarity of topical discussion has 

been found to be correlated with users following other users with the same topical interest 

(Choudhury, 2011). Research has shown that one of the ways to measure the strength of attitude 

towards a topic is by measuring how much an individual talks about that topic (Krosnick et al., 

1993). Sprout Social, a social media analytics company founded in 2010 that has customers such 

as Microsoft, Hyatt, and Titleist, found that successful organizations are consistent with their 

topics of conversation on social media (Jackson, 2017). They also suggest that most large 

organizations have Twitter accounts, as it is both an avenue for public messaging as well as a 

way for taking in customer services requests and responses. Thus, bringing together Choudhury’s 

(2011) homophily findings on topical discussion, Heider’s (1958) theoretical framework of 
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dyadic balance, and the consideration that Twitter is a platform in which large organizations are 

discussing various topics of organizational interest, I hypothesize that computational similarity 

between a Twitter user’s discussion topics and a brand’s discussion topics (TWEETDIVBRAND) 

within CRM partnerships should predict the strength of the user’s attitude towards that brand 

(ASBRAND). I also hypothesize that computational similarity between a Twitter user’s discussion 

topics and a cause’s discussion topics (TWEETDIVCAUSE) within CRM partnerships should 

predict the strength of the user’s attitude towards that cause (ASCAUSE). As a clarifying point to 

the hypothesis, I actually used the measure of divergence (the opposite of similarity) due to the 

sparse nature of computational topic analysis. This will be explained further in the methods 

section. 

H2a: As the divergence of topics discussed on Twitter between a consumer and a brand 
(TWEETDIVBRAND) increases, the strength of the consumer’s attitude towards that brand 
(ASBRAND) will decrease. 

 
H2b: As the divergence of topics discussed on Twitter between a consumer and a cause 

(TWEETDIVCAUSE) increases, the strength of the consumer’s attitude towards that cause 
(ASCAUSE) will decrease. 
 

METHODS 

CRM Brands and Causes 

 I used the same brands and causes from my previous study (Chapter 2 of this 

dissertation), as this current study was an extension of the survey instrument from Chapter 2 (see 

Appendices 1 and 2). Therefore, the three partnerships that I included in this study were Fitbit 

and American Heart Association (FitbitAHA), Royal Caribbean and the World Wildlife Fund 

(RoyalWWF), and Wyndham Hotels and the National Rifle Association (WyndhamNRA). I 

collected data from September 6, 2017 to September 20, 2017, which was five months before 

Wyndham Hotels ended their partnership with the National Rifle Association. 
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Participants 

 For this study, I collected survey responses from participants through Amazon 

Mechanical Turk (MTurk). Although there has been some debate about MTurk and its viability 

for research studies, Kees et al. (2017) provided evidence that advertising research could reliably 

use Amazon MTurk. I collected N=997 responses, but four participants were removed after 

reviewing the data, due to concerns over their understanding of the purpose of the data, or 

whether they were fit to fill out the survey due to their post-survey comments. Therefore, N=993 

responses were remaining. Towards the end of my survey, I asked participants to provide their 

Twitter usernames, so that I could compare analyses of their Twitter accounts to their surveyed 

responses. I made sure that participants were well informed as to what would be happening with 

their Twitter usernames if they provided it, and that they knew this step was optional (see 

Appendix 2 for the exact verbiage given to participants). N=337 participants responded with their 

Twitter usernames, but after checking to see if the usernames were actual Twitter accounts and 

checking that they actually had any tweets in their timelines, the number of responses were 

reduced to N=184. I also limited my scope to users with tweets within the year of 2017, so as to 

standardize for those that have more years of tweets than others historically. All analyses were 

thus conducted on these remaining N=170. 

Measures  

I collected additional survey questions that were not reported on the first study due to the 

scope of the study (Chapter 2 of this dissertation). Please refer to Appendix 1 for the first study’s 

survey instrument. Due to the importance of attitude strength to this current study, I re-iterate 

that I collected strength of attitude towards the brands (ASBRAND), and strength of attitude 

towards the causes (ASCAUSE; See Appendix 1). The attitude strength measures were adapted 
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from Bassili (1996) and were measured on an 11-point scale from +1 (Not strong at all) to +11 

(Extremely strong). To assess this, I asked, “How strong is your attitude toward [brand/cause]?” 

Each participant was presented with all three partnerships, but the order of partnerships (as well 

as the presentation order of the brand and the cause) was presented randomly. 

With regards to measures of topics of discussion and topic similarity, I first collected 

participants’ self-reported similarity of topical conversation with a brand (SURVEYSIMBRAND) 

or a cause (SURVEYSIMCAUSE) by asking, “The topics that [brand/cause] would talk about are 

consistent with the topics that I talk about.” This was measured on an 11-point scale from -5 (Not 

consistent at all) to +5 (Extremely consistent). My measure of computational topics divergence 

between a participant and a brand (TWEETDIVBRAND) or cause (TWEETDIVCAUSE) was derived 

through running a divergence analysis between the topics discussed on a participant’s Twitter 

feed and a brand/cause’s Twitter feed. The reason why I used a divergence analysis instead of a 

similarity analysis was due to the issue of symmetric similarity comparisons producing a large 

number of zero overlapping topics of discussion. For example, if Joe talks about religion, nature, 

and basketball, and a brand talks about boxing, fishing, and rodeos, the similarity would be zero. 

With regards to running statistical analyses against attitude strength, this would pose a 

mathematical problem. Therefore, I used a divergence measure called Kullback-Leibler 

divergence (KL divergence). KL divergence is not a similarity measure, but rather an 

asymmetric comparison of probability distributions (Joyce, 2011). The formula for KL 

divergence is represented in Equation 3.1. 

𝐷"#(𝑝||𝑞) = 	∑ 𝑝(𝑥-) ∙ 𝑙𝑜𝑔
2(34)
5(34)

6
-78     (3.1) 

P(x) and q(x) are two probability distributions of a discrete random variable x. As a 

clarifying example, you may use KL divergence to assess how far a study’s data frequency 
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distribution (p(x)) strays from a normal distribution (q(x)). In this case, a normal distribution is 

your reference point, and KL divergence looks at each frequency level, and calculates how all of 

them in aggregate stray from a normal distribution. Therefore, if the two distributions are exactly 

the same, the KL divergence value is zero (lower values = greater similarity in distributions). As 

the distribution under consideration grows further away from the prototype, the KL divergence 

grows in value. Thus, going back to my example of Joe and the brand, I have six total topics 

between Joe and the brand (religion, nature, basketball, boxing, fishing, and rodeos). If I were to 

consider this as a distribution of topic frequency, while keeping the order of the topics the same, 

a probability distribution vector that includes all the topics would look like [1, 1, 1, 1, 1, 1]. If I 

just consider the topics that the brand talks about, its probability distribution vector looks like [0, 

0, 0, 1, 1, 1]. This is my prototype distribution if I am considering KL divergence. A smoothing 

constant must be added to the zero values within the distributions as zero values would create 

undefined KL divergence values, as dividing by a zero in Equation 3.1 would result in an 

undefined value (Han & Kamber, n.d.). With the addition of this smoothing constant (.001 in this 

case), Joe’s original distribution vector for the topics he talks about would be represented as [1, 

1, 1, .001, .001, .001]. Therefore, with regards to similarity analysis, [1, 1, 1, .001, .001, .001] 

compared against [.001, .001, .001, 1, 1, 1] would be zero, but with KL divergence it would be 

the non-zero number of DKL(Joe||Brand) = 6.89. Having these non-zero KL divergence numbers 

are important if I am calculating statistical correlations between computational topics divergence 

(TWEETDIVBRAND or TWEETDIVCAUSE) and attitude strength (ASBRAND or ASCAUSE 

respectively). I used the SciPy entropy function to calculate KL divergence (Jones, Oliphant, & 

Peterson, 2014), and added a smoothing constant of .001 to each value within the topic 

distribution vectors. 
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To actually compute the topics being discussed on the Twitter feeds of the participants 

and the brands and the causes, I used Text Razor’s machine-learned topic tagging API 

(“TextRazor - The Natural Language Processing API,” n.d.). Describing their tool, they write, 

“TextRazor's topic tagger uses millions of Wikipedia pages to help assign high level topics to 

your content with no additional training on your data, using our knowledgebase of entity and 

word category relationships.” When I sent this tool a Twitter timeline, it sent me back a listing of 

predefined topic terms with their associated probabilities of occurring within the timeline. As an 

example, when I sent the National Rifle Association’s Twitter timeline to Text Razor’s Topic 

Tagging API, the first topic that it returned was “Handgun” with a 100% probability that it was 

being discussed in the timeline. After analyzing the frequencies of topics for each brand/cause 

and their associated probabilities, I set a cutoff probability of 80% for topic inclusion within my 

analyses. The 80% probability cutoff point was also the top 5% of topics for each brand/cause 

(See Appendix 3 for all of the 80% probability and above topics for each brand/cause). 

Text Razor has been shown to be one of the most effective toolsets for named-entity 

recognition (computationally identifying entities such as persons or organizations within bodies 

of text) (Rizzo, van Erp, & Troncy, 2014). With this said, I do not believe their topic-tagging tool 

has been used previously in scholarly research. Additionally, since they are a for-profit company, 

details of the machine learned model training process for their topic-tagging is proprietary, and 

therefore the model is “black-box”. Therefore, as a validation check to compare against this 

“black-box” topic-tagging, I also conducted a term-frequency (TF) matrix divergence analysis of 

words between a participant’s Twitter feed and the words on a brand’s (or cause’s) Twitter feed. 

I will refer to this as a participant’s raw word divergence with a brand (RAWDIVBRAND) or with 

a cause (RAWDIVCAUSE) throughout the rest of this study. As a computationally clarifying note, 
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before I conducted the TF analysis, I tokenized (normalizing word-casing), removed stop words, 

stemmed, vectorized, and then converted each Twitter timeline into a TF matrix. Tokenization 

(in my context) is breaking down tweets into tokens, which could be words, hashtags, URLs, etc. 

I used the TweetTokenizer within the NLTK toolkit, which is a custom made tokenizer to 

recognize tokens appropriately within tweets (Loper & Bird, 2002). Stemming is the process of 

taking various forms of a word and reducing them to their most basic stem (e.g., running and 

runs both reduce to the stem “run”). This is important when frequency distributions of words are 

being created. I used the same NLTK toolkit for this stemming function as well. Vectorization 

and the subsequent conversion into TF matrices is the process of taking all the stemmed tokens 

and creating term frequency matrices (similar to the frequency vectors for topics previously 

mentioned), and then conducting a divergence analysis. I used the scikit vectorizer functions to 

vectorize (Pedregosa et al., 2012), and I conducted the KL divergence analysis using the SciPy 

entropy function (Jones et al., 2014). Just as with my KL divergence analysis of topics, I added a 

smoothing constant of .001 to each value within the raw word frequencies to prevent undefined 

values. 

Finally, as a validation check between the measure of self-reported similarity of topical 

conversation (SURVEYSIMBRAND and SURVEYSIMCAUSE) and the measure of computational 

topics divergence (TWEETDIVBRAND and TWEETDIVCAUSE respectively), I collected thought-

listings of what topics participants believed each brand or cause would talk about. I provided 

twelve open-ended text boxes, with a minimum required topic listing of one, as this was in line 

with Cacioppo and Petty’s (1981) paper on using a thought-listing technique. This was also 

similar to Ross et al.’s (2006) recent thought-listing procedure in collecting participant’s brand 

associations towards sports teams. The question I asked was, “If [brand/cause] was a person, 
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what topics do you think [brand/cause] would talk about? Please provide up to 12 topics, with a 

minimum of 1 topic.” 

Analyses 

For all of my hypotheses, I separated my analyses by each brand and cause to see if my 

results could be validated six times with six different organizations. I also normalized 

SURVEYSIMBRAND and SURVEYSIMCAUSE from a -5 to +5 scale to a +1 to +11 scale, as this 

allowed for a more straightforward statistical analysis against ASBRAND and ASCAUSE 

respectively. For hypothesis 1a, I used linear regression analysis with SURVEYSIMBRAND as the 

predictor variable, and ASBRAND as the outcome variable. For hypothesis 1b, I used linear 

regression analysis with SURVEYSIMCAUSE as the predictor variable, and ASCAUSE as the 

outcome variable. To test hypothesis 2a, I used linear regression analysis with TWEETDIVBRAND 

as the predictor variable, and ASBRAND as the outcome variable. To test hypothesis 2b, I used 

linear regression analysis with TWEETDIVCAUSE as the predictor variable, and ASCAUSE as the 

outcome variable. To conduct a validation check on hypothesis 2a, I used linear regression 

analysis with RAWDIVBRAND as the predictor variable, and ASBRAND as the outcome variable. To 

conduct a validation check on hypothesis 2b, I used linear regression analysis with 

RAWDIVCAUSE as the predictor variable, and ASCAUSE as the outcome variable. 

RESULTS 

Descriptive Statistics 

Descriptive statistics for ASBRAND and ASCAUSE are presented within Table 3.1. A one-

way ANOVA test showed that the averages for both the brands and the causes were significantly 

different than one another. 
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Table 3.1: Descriptive Statistics for Attitude Strength 

Brand/Cause 
(N = 170) 

M SD F(2,507) p 

Fitbit 7.28 2.67 
14.35 .00 Royal Caribbean 6.27 2.87 

Wyndham Hotels 5.66 2.90 
American Heart 

Association 
8.58 2.00 

11.47 .00 
World Wildlife 

Fund 
8.15 2.49 

National Rifle 
Association 

7.26 3.11 

 

Descriptive statistics for SURVEYSIMBRAND and SURVEYSIMCAUSE are presented 

within Table 3.2. A one-way ANOVA test showed that the averages for both the brands and the 

causes were significantly different than one another. 

Table 3.2: Descriptive Statistics for Self-Reported Similarity of Topical Conversation 

Brand/Cause 
(N = 170) 

M SD F(2,507) p 

Fitbit 8.14 2.05 
24.46 .00 Royal Caribbean 6.87 2.55 

Wyndham Hotels 6.32 2.74 
American Heart 

Association 
8.00 2.05 

62.42 .00 
World Wildlife 

Fund 
7.99 2.08 

National Rifle 
Association 

5.34 3.28 

 

Descriptive statistics for TWEETDIVBRAND and TWEETDIVCAUSE are presented within 

Table 3.3. A one-way ANOVA test showed that the averages for the brands were significantly 

different than one another, but not for the causes. 
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Table 3.3: Descriptive Statistics for Computational Topics Divergence 

Brand/Cause 
(N = 170) 

M SD F(2,507) p 

Fitbit 5.54 1.58 
58.04 .00 Royal Caribbean 4.99 1.53 

Wyndham Hotels 3.79 1.49 
American Heart 

Association 
6.23 1.71 

2.53 .08 
World Wildlife 

Fund 
6.43 1.75 

National Rifle 
Association 

6.02 1.68 

 

Descriptive statistics for RAWDIVBRAND and RAWDIVCAUSE are presented within Table 

3.4. A one-way ANOVA test showed that the averages for both the brands and the causes were 

significantly different than one another. 

Table 3.4: Descriptive Statistics for Raw Word Divergence 

Brand/Cause 
(N = 170) 

M SD F(2,507) p 

Fitbit 5.44 1.29 
18.30 .00 Royal Caribbean 6.08 1.35 

Wyndham Hotels 6.23 1.19 
American Heart 

Association 
5.30 1.41 

3.41 .04 
World Wildlife 

Fund 
5.64 1.31 

National Rifle 
Association 

5.30 1.46 

 

Hypotheses Results 

My hypothesis 1a was that as SURVEYSIMBRAND increases, ASBRAND will increase. 

Linear regression analyses showed that hypothesis 1a was fully supported (see Table 3.5). My 

hypothesis 1b was that as SURVEYSIMCAUSE increases, ASCAUSE will increase. Linear 
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regression analyses showed that hypothesis 1b was also fully supported (see Table 3.5). As a 

note, the R2 values for WWF (R2=.04) and NRA (R2=.03) were concerningly low, and I address 

this in the general discussion section. 

Table 3.5: Predicting Attitude Strength with Self-Report Topic Similarity 
 

Brand/Cause Variables B SE B t p R2 

Fitbit 
(N=170) 

Constant 3.51 .78 4.52 .00 
.12 

SURVEYSIMBRAND .46 .09 5.01 .00 

Royal 
Caribbean 
(N=170) 

Constant 1.43 .51 2.83 .01 
.36 

SURVEYSIMBRAND .70 .07 10.23 .00 

Wyndham 
Hotels 

(N=170) 

Constant 2.48 .49 5.10 .00 
.21 

SURVEYSIMBRAND .50 .07 7.07 .00 

American 
Heart 

Association 
(N=170) 

Constant 5.00 .56 8.98 .00 
.19 

SURVEYSIMCAUSE .44 .07 6.59 .00 

World 
Wildlife Fund 

(N=170) 

Constant 6.10 .73 8.31 .00 
.04 

SURVEYSIMCAUSE .25 .09 2.84 .00 

National Rifle 
Association 

(N=170) 

Constant 6.29 .44 14.36 .00 
.03 

SURVEYSIMCAUSE .17 .07 2.52 .01 

DV – ASBRAND or ASCAUSE 

My hypothesis 2a was that as TWEETDIVBRAND increases, ASBRAND will decrease. 

Linear regression analyses showed that hypothesis 2a was not supported (see Table 3.6). My 
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hypothesis 2b was that as TWEETDIVCAUSE increases, ASCAUSE will decrease. Linear regression 

analyses showed that hypothesis 2b was not supported (see Table 3.6). 

Table 3.6: Predicting Attitude Strength with Computational Topic Divergence 
 

Brand/ 
Cause Variables B SE B t p R2 

Fitbit 
(N=170) 

Constant 7.71 .88 8.78 .00 
.00 

TWEETDIVBRAND -.05 .15 -.35 .73 

Royal 
Caribbean 
(N=170) 

Constant 6.71 .88 7.66 .00 
.00 

TWEETDIVBRAND 
 -.09 .17 -.53 .60 

Wyndham 
Hotels 

(N=170) 

Constant 5.11 .61 8.34 .00 
.01 

TWEETDIVBRAND  .15 .15 .97 .34 

American 
Heart 

Association 
(N=170) 

Constant 9.18 .61 15.00 .00 
.00 

TWEETDIVCAUSE  -.08 .09 -.83 .41 

World 
Wildlife 

Fund 
(N=170) 

Constant 7.80 .79 9.85 .00 
.01 

TWEETDIVCAUSE  .11 .12 .91 .37 

National 
Rifle 

Association 
(N=170) 

Constant 7.46 1.49 5.01 .00 
.00 

TWEETDIVCAUSE  -.03 .24 -.13 .90 

DV – ASBRAND or ASCAUSE 
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Raw Tweet Divergence Validation Check 

 Since the Text Razor topic tagging tool is a proprietary “black box” machine-learned 

model, I also ran a raw term-frequency divergence analysis. When I conducted this analysis, I 

found that as RAWDIVBRAND increased, ASBRAND significantly increased (see Table 3.7). 

Additionally, as RAWDIVCAUSE increased, ASCAUSE significantly increased only for American 

Heart Association (see Table 3.7). For the four results that were significant, the effect size ranges 

were extremely low (R2 = .02–.07). The low effect sizes suggest that these results are not of 

practical significance, and statistical significance was not found across all brands/causes. Thus, 

hypotheses 2a and 2b were not supported when conducting this raw word divergence validation 

check. 

Table 3.7: Predicting Attitude Strength with Raw Word Divergence 
 

Brand/Cause Variables B SE B t p R2 

Fitbit 
(N=170) 

Constant 4.87 .87 5.60 .00 
.04 

RAWDIVBRAND .44 .16 2.85 .00 

Royal 
Caribbean 
(N=170) 

Constant 2.89 .98 2.94 .00 
.06 

RAWDIVBRAND .56 .16 3.52 .00 

Wyndham 
Hotels 

(N=170) 

Constant 1.56 1.15 1.36 .18 
.07 

RAWDIVBRAND .66 .18 3.63 .00 

American 
Heart 

Association 
(N=170) 

Constant 7.34 .60 12.37 .00 
.02 

RAWDIVCAUSE .23 .11 2.15 .03 
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Table 3.7 (cont.) 
 

Brand/Cause Variables B SE B t P R2 

World 
Wildlife Fund 

(N=170) 

Constant 6.80 .84 8.08 .00 
.01 

RAWDIVCAUSE .24 .15 1.65 .10 

National Rifle 
Association 

(N=170) 

Constant 7.17 .90 7.95 .00 
-.01 

RAWDIVCAUSE .02 .16 .11 .92 

DV – ASBRAND or ASCAUSE 

GENERAL DISCUSSION AND CONSIDERATIONS FOR SOCIAL MEDIA 

ANALYTICS RESEARCH 

My guiding research question for this study was figuring out how I could use balance 

theory to discover new ways to measure strength of attitudes towards brands and towards causes 

that participate (or will participate) in cause-related marketing partnerships. I was able to use 

principles of dyadic balance theory, homophily, and attitude strength measured via topics of 

discussion, to predict the strength of attitudes towards brands and causes within CRM 

partnerships using a survey-based approach. When I asked participants to report their perceived 

similarity of topical conversation with a brand (SURVEYSIMBRAND), I found evidence that this 

predicted the strength of participant’s self-reported attitude towards the brand (ASBRAND) across 

all three brands (supporting hypothesis 1a). When I asked participants to report their perceived 

similarity of topical conversation with a cause (SURVEYSIMCAUSE), I found evidence that this 

predicted the strength of participants’ self-reported attitude towards the cause (ASCAUSE) across 

all three causes (supporting hypothesis 1b). This is an important contribution to cause-related 

practitioners and advertisers, as this provides an indirect way to assess the strength of 
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consumers’ attitudes towards brands and/or causes. Due to being an indirect survey measure, it 

has the potential to help in overcoming social desirability bias or self-deception bias than when 

just asking for attitude strength directly. 

One issue with the results from hypotheses 1a and 1b was the low R2 values for WWF 

(R2=.04) and NRA (R2=.03). A potential reason for such low fit for these two organizations is the 

possibility that these two organizations may have a stronger potential to suffer from social 

desirability bias compared to all the other organizations in my study. The issues of climate 

change and gun ownership have proven to be very divisive issues in America (Funk, 2016; 

Parker, 2017), and this could have affected some participants’ responses to the attitude strength 

question of, “How strong is your attitude toward the World Wildlife Fund (or the National Rifile 

Association)?” This would then affect the linear fit (R2) between attitude strength measured 

directly and attitude strength measured indirectly. If this was the case, future CRM studies that 

measure the strength of attitudes towards brands and towards causes could benefit from adopting 

this study’s indirect measure of attitude strength for brands and for causes. 

When I assessed the computational topical conversation divergence between participants’ 

Twitter feeds and the Twitter feeds of brands (TWEETDIVBRAND) and causes 

(TWEETDIVCAUSE), this did not predict participants’ self-reported attitude strengths (ASBRAND 

and ASCAUSE respectively; hypotheses 2a and 2b). I will now dig a bit deeper into the results of 

hypotheses 2a and 2b within the following sections, with an additional focus on outlining some 

considerations when comparing a social media analytics approach to a survey approach. More 

specifically, I present some of the issues that can arise from automated analysis of social media 

data when forecasting psychological constructs, such as attitude strength. I provide additional 

analyses from the data within this study to address some of the issues within this study, as well 
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as provide commentary on how to potentially address issues that could not be investigated 

further within this study’s current dataset. 

Consideration #1: Nuances of Survey Measure Wording Affecting Computational Analysis 

Comparisons 

 There could be many reasons why hypotheses 2a and 2b were not supported, but one 

reason could have been due to a discrepancy between what topics participants believed that a 

brand (or cause) talked about, versus what that brand (or cause) actually talks about on Twitter. 

For example, when a participant was asked, “The topics that Fitbit would talk about are 

consistent with the topics that I talk about,” they could have assumed that Fitbit talks about 

vacations, and then assessed that they were very similar in conversational topics with Fitbit 

because they also talked a lot about vacations. This could have caused an issue with the 

computational analysis of topics, because Fitbit’s Twitter does not mention the topic of 

vacations, and therefore a participants self-reported topic similarity with Fitbit would be 

fundamentally different than their Twitter topic similarity with Fitbit. Due to this potential 

discrepancy, I investigated this in greater detail with my validity checks on participants’ thought 

listings of topics for each brand and cause. As shown in Appendix 2, I asked each participant to 

list what topics they believed each brand and cause would talk about (up to 12 topics, with 1 

minimum topic listed). I then recruited three full-time employees from a large Midwestern 

university to help code my data. I presented each coder with what topics a participant thought a 

brand (or cause) would talk about, and what topics the Text Razor Topic Tagging engine 

produced for the Twitter timeline of the brand (or cause). An example can be found in Table 3.8. 
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Table 3.8: Thought-Listing Coding Example of Fitbit 

Participant’s Thought-Listing of What Topics 
Fitbit Discusses 

Text Razor’s Topic Tagging of Topics from 
Fitbit’s Twitter Feed 

Fitness, being healthy, exercise, sleep, workout 
routines, tracking your activities 

Fitbit, Smartwatch, Motivation, Physical exercise, 
Physical fitness, Health, Weight loss, Dieting, 

Relaxation (psychology), Sleep, Personal trainer 

 

 I wanted to assess how similar participants’ perceptions of what topics each brand and 

causes talks about is to what Text Razor’s Topic Tagging model pulled out of each brand or 

cause’s Twitter feed. I had each coder rate the self-report to Text Razor similarity 

(CODERSIMBRAND and CODERSIMCAUSE) across the two cells (e.g., the two cells in Table 3.3) 

on a scale of -2, -1, +1, and +2. I met with all the coders to discuss each rating, and we came to a 

consensus that +2 would be when the stemmed form of a word (e.g., walking to walk) or more 

was in both cells, +1 would be that no words are shared between cells but the topics are very 

related to one another, -1 would be that the topics are very distantly related to one another, and -2 

would be that there is absolutely no relationship between the two cells. After coding, inter-rater 

reliability was assessed using a two-way, absolute agreement, average-measures intra-class 

correlation (ICC) (McGraw & Wong, 1996) to assess the agreement between coders. The 

resulting ICCs were in the excellent range for Fitbit (ICCCODERSIM_BRAND=.93), American Heart 

Association (ICCCODERSIM_CAUSE=.84), World Wildlife Fund (ICCCODERSIM_CAUSE=.82), and the 

National Rifle Association (ICCCODERSIM_CAUSE=.78) according to Cicchetti (1994). Royal 

Caribbean (ICCCODERSIM_BRAND=.46) and Wyndham Hotels (ICCCODERSIM_BRAND=.57) were in the fair 

range according to Cicchetti (1994). When discussing with the coders as to what might have 

caused problems with Royal Caribbean, they indicated that the topic of “emergency evacuation” 

on Royal Caribbean’s Twitter timeline caused some confusion (see Appendix 3). With regards to 
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Wyndham Hotels, Wyndham’s Twitter timeline only produced one topic via Text Razor’s Topic 

Tagging tool: Tourism. Since coders only had one topic to compare against, they stated that it 

was much more of a subjective call when comparing this one topic against all the topics that the 

participants listed. 

 To gain more insights into the issues with Royal Caribbean and Wyndham’s Twitter 

timelines, I conducted a term frequency analysis of their timelines. After Twitter tokenization 

with NLTK TweetTokenizer (Loper & Bird, 2002) and stop word removal, the top fifty term 

frequencies are represented in Table 3.9. 

Table 3.9: Top Fifty Terms for Royal Caribbean and Wyndham Hotels 

Brand Top Fifty Terms 

Royal Caribbean 

('hi', 753), ("we're", 487), ('sorry', 423), ('please', 405), ('us', 
403), ('sailing', 367), ('changes', 348), ('hey', 347), ("we'll", 

343), ('info', 293), ('updates', 228), ('time', 222), ("i'm", 214), 
('onboard', 206), ('dm', 196), ('welcome', 193), ('stay', 179), 
('guests', 175), ('booking', 173), ('still', 171), ('made', 169), 
('thanks', 159), ('tuned', 153), ('soon', 152), ('cruise', 146), 
('make', 145), ('know', 139), ('update', 134), ('help', 131), 
('zack', 128), ('hear', 124), ('visit', 123), (':)', 120), ('look', 

118), ('see', 116), ('kiki', 116), ('monitoring', 112), ('nat', 110), 
('keep', 107), ('check', 106), ('understand', 106), ('ana', 104), 

('working', 104), ('storm', 104), ('itinerary', 103), ('sure', 102), 
('sail', 100), ('like', 99), ('website', 97), ('let', 94) 

Wyndham 

('please', 131), ('sorry', 127), ('hear', 119), ('colleagues', 104), 
('assist', 91), ('experience', 84), ('@whgsupport', 80), ('us', 

71), ('may', 68), ('contact', 62), ('email', 60), 
('whgcustomercare@wyn.com', 58), ('dm', 55), ('apologize', 

48), ('assistance', 45), ('concerns', 43), ('matter', 41), 
('whgsupport', 37), ('contacting', 36), ('concern', 24), ('issue', 
23), ('situation', 21), ('wyndham', 14), ('friends', 13), ('aware', 
12), ('troubling', 12), ('know', 12), ('taking', 12), ('seriously', 
12), ('investigating', 12), ('owner', 12), ('@wyndhamchamp', 

12), ('@wyndham', 12), ('would', 11), ('look', 11), 
('#wyndhamchamp', 11), ('sure', 10), ('hotel', 9), ('love', 8), 
("i'm", 8), ('able', 7), ('help', 6), ('community', 6), ('w', 6), 
('@whg_news', 6), ('support', 5), ('happy', 5), ('local', 5), 

('ceo', 5), ('hospitality', 5) 
 

During the time period of my Twitter timeline collection, Hurricane Harvey forced Royal 

Caribbean and other cruise lines to cancel their cruises (Young, 2017). Thus, this is likely why 

the topic of “emergency evacuation” was found in the Text Razor topic list of Royal Caribbean 
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(see Appendix 3), and why many of the terms that are frequently appearing for Royal Caribbean 

in Table 3.9 have to do with an emergency (e.g., monitoring, changes, updates, sorry). With 

regards to Wyndham, there were many terms shown in Table 3.9 indicating that Wyndham is 

using their Twitter timeline primarily for customer service complaints (e.g., sorry, heart, assist, 

experience, aware, troubling, investigating, etc.). Upon deeper analysis of Wyndham’s tweets 

from my collection period, one of the most prevalent tweets is the following tweet (although it is 

modified slightly for each response): “We apologize for your experience. Please contact our 

colleagues @WHGSupport so they may assist you with your concerns.” Therefore, Text Razor’s 

topic tagging engine most likely did not have enough unique tweets to work with, which 

probably contributed to Wyndham having only the one Text Razor topic tag of “tourism”. 

Additionally, Text Razor has stated that their topic tagging is derived from data taken from 

Wikipedia, which poses an issue for a topic such as customer service. If Text Razor is using the 

descriptions of Wikipedia entries to predict the Wikipedia entry name via machine learning, 

topics such as customer service would not come up in a topic tagging assessment of a social 

media feed. This is due to the fact that the Wikipedia entry for customer service describes what 

customer service is, but it does not give examples of how organizations apply customer service 

conversationally on social media. 

The averages and standard deviations (in parentheses) of the coder ratings for the brands 

and the causes were MCODERSIM_BRAND=1.52 (1.17) for Fitbit, MCODERSIM_CAUSE=1.68 (0.95) for AHA, 

MCODERSIM_BRAND=0.24 (1.13) for Royal Caribbean, MCODERSIM_CAUSE=1.54 (0.94) for WWF, 

MCODERSIM_BRAND=-0.13 (1.13) for Wyndham Hotels, and MCODERSIM_CAUSE=1.48 (1.16) for the 

National Rifle Association. For all of the brands and causes that had excellent ICCs, they had 

averages that were MCODERSIM=1.48 or higher, which means that what participants believed a 
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brand/cause would talk about were quite close to the topics that Text Razor’s Topic Tagging 

model found on the brand/cause Twitter timelines. This functioned as an important validation 

step between participants’ survey assessment of their topics of conversation as compared to a 

brand (or cause). 

As one additional follow-up to the topic of emergency evaluation causing confusion with 

Royal Caribbean, I looked at what would happen to my attitude strength prediction results from 

hypothesis 2 if I removed the emergency evacuation topic from the Text Razor topic output. 

Even with the emergency evacuation topic removed, TWEETDIVBRAND still did not predict 

ASBRAND (see Table 3.10). 

Table 3.10: Predicting Attitude Strength with Computational Topic Divergence 
 

Brand/Cause Variables B SE B t p R2 

Royal 
Caribbean 
(N=170) 

Constant 6.70 .85 7.90 .00 
.00 

RAWDIVCAUSE 
 -.09 .17 -.53 .60 

DV – ASBRAND 

 Thus, in general, participants were assessing correctly as to what topics brands and 

causes were actually talking about. At the same time, I show that comparing and contrasting a 

survey approach against social media analytics approach should not be treated lightly. Additional 

validation steps should be taken to make sure that researchers are measuring appropriately across 

the two approaches. I share a few more insights on limitations of my comparison of attitude 

strength across the survey and social media results in the limitations section. 
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Consideration #2: Accuracy of Computational Topic Detection on Social Media Data 

Another consideration that I entertained was whether or not computational topic tagging 

is accurate enough to conduct this study’s analysis. Since there is an extensive body of 

knowledge that deals with a structured human assessment of content called content analysis (e.g., 

Harwood & Garry, 2003; Krippendorff, 2012; Skalski, Neuendorf, & Cajigas, 2017), I wanted to 

see how Text Razor’s topic tagging analysis compared to the gold-standard of human content 

analysis. Thus, I conducted two phases of content analysis reviews of the social media data from 

this study. 

First, I recruited two full-time employees from a large Midwestern university to conduct 

the content analyses, with myself functioning as the facilitator. The first content analysis phase 

was an effort to decide on which topics should be included in the set of topics that they would 

look for when reviewing the Twitter timelines for the brands and the causes. I adopted a 

provisional coding approach (Saldaña, 2009), which begins a coding process with a “start-list” of 

potential codes to start with prior to coding. My start-list was taken from the survey responses in 

which I asked each participant to list what topics they believed each brand and cause would talk 

about (up to 12 topics, with 1 minimum topic listed; see Appendix 2). After reviewing the 

suggested topics across all the brands and causes, I found enough consistency in responses 

between the following topics: Business Travel, Charitable Giving, Climate Change, Cruises, 

Customer Service, Diet, Environmentalism, Exercise, Fashion, Firearms, Gun Politics, Gun 

Violence, Health, Heart, Hotels, Hunting, Marketing, Medicine, Nature, Oceans, Religion, 

Sports, Technology, Vacations, Weather, and Wildlife. I then presented each coder with the 

Twitter timelines from the three brands (Fitbit, Royal Caribbean, and Wyndham Hotels) and the 

three causes (AHA, WWF, and NRA) separately as HTML web pages. Upon discussion, the 
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coders suggested that 100-150 tweets were as much as they could process visually and 

cognitively when attempting to look for topics being discussed, so I ran a random selection script 

to choose 150 tweets from each brand and each cause to be presented as separate HTML pages. 

The coders reviewed each Twitter timeline and indicated on a separate spreadsheet as to what 

topics they believed were being discussed from the previously constructed start-list of topics. 

They also were given the opportunity to write in suggestions of other topics being discussed that 

were not covered by the provided start-list of topics. Upon completion of this coding task, I ran a 

reliability analysis and found substantial agreement (k=.70) between the two coders according to 

Viera and Garrett (2005). Additionally, after discussion of potential topics that were not part of 

the original start-list, the coders came to a joint conclusion that the start-list was comprehensive 

enough of a list without any necessary topics missing. They did indicate though that two topics 

from the start-list did not seem to be discussed across the three brands and the three causes, 

namely the topics of Business Travel and Religion. Thus, I removed those two topics from 

consideration for the next phase of coding. 

When analyzing this first phase of coding, one of the most apparent discrepancies was 

between Text Razor’s topic tagging of Wyndham’s Twitter timeline and a human coded topic 

coding of Wyndham’s Twitter timeline. Text Razor’s topic tagging of Wyndham’s timeline only 

produced the topic of “Tourism”, whereas a human topic coding exercise of that same timeline 

produced the topics: Charitable Giving, Customer Service, Environmentalism, Health, Hotels, 

Marketing, Technology, and Vacations. Although Text Razor does not give details as to how 

their topic tagging was built, they do mention that they use “millions of Wikipedia pages” to 

assign “hundreds of thousands of different topics at different levels of abstraction” (“TextRazor - 

The Natural Language Processing API,” n.d.). Judging from this description, they are using a 
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supervised machine-learned classification approach (Kotsiantis, 2007) in which they use 

Wikipedia page titles as the name of the topic (e.g., Customer Service), and the page body as the 

training data for that topic (e.g., for customer service, 

https://en.wikipedia.org/wiki/Customer_service). One of the biggest indicators of this is the fact 

that when Text Razor’s topic tagging API reviewed the Twitter timeline for Wyndham, it only 

returned the topic of “Tourism”, but not the topic of “Customer Service”. As seen in Table 3.9 

though, Wyndham clearly uses much of their Twitter account for customer service. The reason 

why Text Razor did not pick that topic up, and the reason why I suspect that they are using a 

supervised machine-learned approach to classify topics through the content of Wikipedia pages, 

is because Wikipedia’s entry on “Customer Service” describes customer service only, rather than 

also providing examples of people providing actual service to customers. This is clearly a major 

pitfall to using social media analytics, especially with regards to black-box machine-learned 

models, as this provides more evidence that it is very important to know how a machine-learned 

model was trained and built. In this case, a human coded topic analysis was dramatically 

different than the machine-learned model. 

For the second phase of content analysis, I presented the same two coders from the first 

phase with separate HTML pages for each of the 170 Twitter timelines from the participants 

from this study. I ran a random selection script to choose 150 tweets from each timeline when 

constructing the HTML pages, which was in line with what the coders had indicated that they 

could handle visually and cognitively in the previous coding phase. The coders reviewed each 

HTML page of participants’ tweets and marked as many topics as they could determine were 

being discussed from the topic list that was created from the previous coding phase. After 

running reliability analysis, I found that their coding had moderate agreement (k=.42) according 
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to Viera and Garrett (2005). This was not enough agreement to run additional analyses, but the 

disagreement brings about important insights. I went through extensive training with both coders 

in the first phase where we walked through how they would process what a topic is and what a 

topic isn’t, and they achieved substantial agreement in phase one when analyzing brand and 

cause Twitter feeds. With this said, when they analyzed users’ Twitter timelines, they found it 

much more difficult to code topics for these timelines. Interestingly, when I discussed with the 

coders as to which Twitter timelines were problematic, there was a mix of agreement and 

disagreement. They both agreed that timelines that were mostly in different languages should be 

removed from analysis, but they disagreed as to what level of photo to word ratio, English to 

other language ratio, or marketing to personal posts ratio was acceptable. This is yet another 

example of how “black-box” computational models really veil some complicated issues with the 

underlying data. 

As a final point to this consideration, I wanted to address why I did not use traditional 

topic modeling (Blei, 2012; Blei et al., 2003) in this study. Topic modeling was originally 

developed to summarize a large corpus of documents, to provide a quick way to summarize what 

the documents were about (Blei et al., 2003). Thus, topic modeling assumed that there were 

many documents within a corpus, and each document had many words. The problem with 

applying topic modeling to Twitter is the question of what you consider a document. If you 

decide to consider each tweet a document, then there is not enough data within a tweet to 

adequately work to what topic modeling was originally conceptualized for. More recent topic 

modeling methods created specifically for Twitter have attempted to work around this limitation 

through various strategies, such as considering each conversation string between Twitter users as 

separate documents (Alvarez-Melis & Saveski, 2016), considering all the tweets that mention the 



89 
 

same hashtag as a document (Mehrotra, Sanner, Buntine, & Xie, 2013), or considering all the 

tweets from the same author as a document (Hong & Davison, 2010). 

Hong and Davison’s (2010) strategy may seem like an appropriate method for this study, 

but the next issue is that traditional topic modeling does not actually output topics, but rather 

outputs words from the documents that are related to one another (e.g., instead of outputting a 

topic such as “environment”, a topic modeling exercise would output a grouping of words such 

as: tree, climate change, oceans, green). A researcher must then code those topics, which is not a 

trivial task, and proper coding of topics should be based on theoretical knowledge and context-

specific expertise (Humphreys & Wang, 2018; Saldaña, 2009). In some senses, this nullifies the 

allure of social media analytics, as part of the reason why a researcher may look to a social 

media analytics method is so that prior coding and training work from experts could be leveraged 

in a fully automatic way (without the need for intensive human coding). In fact, I would argue 

that running traditional topic modeling on social media data is actually not much different than 

running traditional content analysis of manually coding topics with human coders, with the 

additional help of grouping words that seem similar to one another. With this said, even the 

additional help of computationally grouping words together may also be erroneous in the case of 

this current study. This is due to the fact that the topics I am interested in would be the topics 

from my three brands and three causes, which using Hong and Davison’s (2010) strategy would 

produce just six documents. Topic modeling was created based on the need to parse through 

thousands, if not millions, of documents rather than just six. 

Thus, I chose to use a previously trained machine-learned model that has been trained on 

millions of topics and that can be used in a fully automatic fashion. Looking at my results from 

the human coding of topics, I can see that there is potential for danger with using these fully-
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automated social media analytics models. The majority of these machine-learned topic discovery 

models do not have published articles explaining the inner-workings of the training of the models 

(e.g., “Classification by Taxonomy · Text Analysis API | Documentation,” n.d.; “TextRazor - 

The Natural Language Processing API,” n.d.; “Thomson Reuters | Open Calais,” n.d.), but even 

the ones that do have articles associated with them do not actually publish the machine-learned 

model itself (which could be done as a Python pickle file) or any of the data used to train the 

model (e.g., Quercia, Askham, & Crowcroft, 2012). 

Therefore, researchers and practitioners should be very cautious when running social 

media analytics methods such as topic discovery. It may still be the case that human coding is the 

best way to go about topic discovery in many cases. On the computational side, I have also 

shown evidence as to why we need more computational models where the details on the training 

of the model, as well as the model itself, is published. I would suggest that researchers should 

also consider publishing the data used to build the machine-learned models, but there are 

additional concerns with that practice, namely in the areas of privacy, data ethics, and social 

media platform terms of service. One example of a machine-learned model that has both 

sufficient published details of the training of the model, and the model itself is published, is 

IBM’s Personality Insights model (Arnoux et al., 2017). 

Consideration #3: Differences in Results Depending on Social Media Platform 

There are clearly numerous other potential reasons why my social media analytics 

approach to predicting attitude strength did not work. One obvious reason is that maybe a social 

media analytics approach is not a viable way to measure attitude strength, but this conclusion 

seems a bit premature due to the vast landscape of additional social media platforms and topic 

tools that are available. In light of this, one of my limitations could have been that Twitter may 
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not be the optimal social media platform for this kind of analysis. Rosenstiel et al. (2015) 

surveyed 4,713 social media users, and found that 90% of Twitter users in the survey said that 

they used Twitter for reading and sharing news. Only 30% of those Twitter users stated that they 

used Twitter to tell others what they were doing and what they were thinking about. This could 

be a major reason why my social media analytics approach did not work, as only certain topics 

are being discussed in the news at any given time. Thus, a topic tagging tool running on Twitter 

timelines would pick up only a small set of topics being discussed in the news. Future research 

should consider using other social media platforms (e.g., Facebook, Reddit, Tumblr, etc.) in 

which people may talk about a wider range of topics. 

In line with the consideration of differences across social media platforms, previous 

research has looked at how individuals interact with brands via various social media platforms. 

Smith, Fischer, and Yongjian (2012) analyzed brand-related user-generated posts (UGC) across 

Twitter, Facebook, and YouTube, and found that Twitter hosted the most percentage of posts in 

which brands were the focus of the UGC (76% of all brand-related UGC, as opposed to 66% for 

Facebook, and 42% for YouTube). Studies like this provide additional evidence that people 

operate differently depending on the social media platform that they are using, and thus one 

platform may be more appropriate for certain computational methods, whereas others may not. 

This is both an important consideration for researchers, as well as an open-area of research with 

regards to testing to see what methods are appropriate for which platforms. 

Consideration #4: Lack of A-Priori Hypotheses in Previous Machine-Learned Social Media 

Studies 

 This potential inability to use Twitter for the analysis of individuals’ full topics of 

conversation also brings about a deeper question for research using social media data. Social 
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science studies that deal with social media generally fall into three camps: studies that ask 

participants to self-report about their behavior on social media platforms (e.g., Blackwell, 

Leaman, Tramposch, Osborne, & Liss, 2017; Marshall, Lefringhausen, & Ferenczi, 2015; 

Tandoc, Ferrucci, & Duffy, 2015), studies that analyze actual social media data directly (e.g., K.-

J. Chen, Lin, Choi, & Hahm, 2015; Leskovec et al., 2010b; Ranganath, Morstatter, Hu, Tang, & 

Liu, 2015; Zhang, Bhattacharyya, & Ram, 2016), and studies that bridge between some form of 

self-reported data and correlating this data with actual social media data (e.g., J. Chen et al., 

2014; Golbeck et al., 2011; Markovikj, Gievska, Kosinski, & Stillwell, 2013; Park et al., 2015; 

Youyou, Kosinski, & Stillwell, 2015; Youyou et al., 2017). For the studies that ask participants 

to self-report about their social media usage, a critique of this research is that self-reported social 

media behavior and observed social media behavior could be different. The studies that directly 

analyze social media data solely could be criticized for different reasons, such as not knowing if 

accounts are bots, or not really understanding what deeper psychological markers could be 

driving any observed effects. Therefore, it seems that a combined approach that has participants 

both fill out a survey and give access to their social media data could be an ideal way to conduct 

research within the realm of social media. Part of this assumption is that social psychological 

measures that are self-reported should be detectable via online social media data. Previous 

research seems to show that this is possible, as there has been much research conducted that 

looks at correlating participants’ self-reported personality tests with what words they use on 

social media (e.g. Arnoux et al., 2017; Golbeck et al., 2011; Kern et al., 2014; Schwartz et al., 

2013). With this said, in all of these previous research studies, personality scores were first 

calculated by self-reported personality tests, and then machine-learning was used to correlate 

whatever words could be correlated to various personality score combinations to build a 
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predictive model. There was no prediction prior to building the machine-learned model as to 

which words would correlate with what personality dimensions; whereas in this study, I had a 

specific hypothesis that the divergence score of topics of conversation would predict one self-

reported social psychological measure (attitude strength). Future research should look into this 

discrepancy, especially to see if there are certain ways or directions in which a survey-based 

approach does or does not work when correlated against social media data. 

Consideration #5: Potential Differences in Self-Presentation on Social Media 

 Finally, one of the more fundamental questions when comparing social media data to 

self-reported psychological assessments is whether or not people present themselves on social 

media in the same way that they would present themselves in everyday offline settings. An 

assumption of my study, as well as previous studies correlating self-reported psychological 

measures and social media behavior (e.g. Arnoux et al., 2017; Golbeck et al., 2011; Kern et al., 

2014; Schwartz et al., 2013), is that people present themselves on social media platforms in ways 

that are approximately close to who they really are in offline settings. Hogan (2010) refers to the 

interesting dilemma that social media brings when considering the platform in light of 

Goffman’s (1959) dramaturgical approach in which Goffman suggests that an individual presents 

himself/herself in an idealized way when appearing “front stage” to certain audiences, and yet 

showing their true selves when appearing “back stage” to another subset of audiences (and/or to 

their own selves). The dilemma lies in how an individual now conceptualizes what is front stage 

and back stage within the realm of social media. Marwick and Boyd (2011) took this one step 

further and suggested that figuring out who is actually watching (the audience) becomes 

increasingly confusing on social media platforms. They directly surveyed 226 Twitter users by 

directly @mentioning them, asking them questions such as: Who do you imagine reading your 
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tweets? Who do you tweet to? What they found was that peoples’ perceptions as to who their 

actual audience was on Twitter varied widely even though all the individuals had fully public 

facing Twitter accounts. Thus, a platform like Twitter could be an environment where people 

may be presenting a different self than they would normally present, and this could present issues 

when correlating a private self-report measurement of psychological measures to a public-facing 

social media platform. Future research should consider the potential differences in how people 

present themselves online, and how that may affect the types of consumer research we could 

reliably conduct using social media analytics. 

LIMITATIONS 

Survey Measures for Topic Similarity and Attitude Strength 

 Although I found support for conversation topic similarities predicting attitude strengths 

via an indirect survey measure, there are limitations to this measurement for conversation topic 

similarity. The specific survey question regarding conversation topic similarity was as follows, 

“The topics that Royal Caribbean International would talk about are consistent with the topics 

that I talk about” (Royal Caribbean example). As far as I know, attitude strength with CRM has 

not previously been measured via similarity, thus I had to make a decision as to how to word this 

measure. I chose this “consistency” wording because I believed that it was a more natural way to 

ask this question, but research has shown that minor changes in how questions are worded can 

substantially affect results (Schwarz, 1999). Therefore, the word “similarity” could possibly have 

provided different results than the word “consistency”. Additionally, I did not ask them to 

consider arenas of discussion, as people may talk about certain topics at work, but other topics at 

home. Future studies should consider how changing the wording of the measure affects 

outcomes. 
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  Another potential limitation to my dissertation is the way that I measured attitude 

strength. I measure attitude strength by asking, “How strong is your attitude toward Royal 

Caribbean International?” (Royal Caribbean example; adapted from Bassili, 1996). Although this 

was not an incorrect way to measure attitude strength, research has shown that there are 

numerous different ways to measure attitude strength (e.g., attitude accessibility, attitude 

importance; Petty & Krosnick, 1995). While many measures of attitude strength correlate with 

one another, they each have been shown to represent different dimensions of attitude strength 

(Krosnick et al., 1993). Therefore, adding additional measures of attitude strength could have 

given me broader insight into its effects within CRM partnerships. We have evidence that 

another way to measure attitude strength is through response latency (Bassili, 1996), in which 

attitude strength has been reliably assessed by how quickly an individual responds to a question 

about their attitude towards a topic. For future research, attitude strength could be assessed by 

taking various self-reported survey measures of attitude strength, while also recording the 

response latency for each participant towards those questions. With this said, previous research 

has shown that the validity of response latency measurement for attitude strength measurement 

depends on how sensitive the mechanism is that picks up the time latencies (Bassili & Fletcher, 

1991). This kind of response latency measurement would likely require surveys administered in a 

physical lab setting with computers that have very precise software installed for measuring 

response latency, such as DirectRT (Jarvis, 2016). 

Frequency of Topics Beings Discussed 

Another limitation of my study was that my method of computationally comparing topic 

similarity (divergence) to predict attitude strength was based simply on whether that topic was 

being discussed or not on a Twitter timeline. It did not account for the amount a topic was being 
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discussed on a Twitter timeline, which is a portion of Krosnick et al.’s (1993) findings on topic 

conversation predicting attitude strength. Machine-learned topic tagging does not currently count 

occurrences that a topic is being discussed in a body of text, but rather probabilities. With this 

said, future research could consider running topic tagging on smaller segments of social media 

feeds to get at an approximation of the frequency of the topics being discussed, but this would 

require filtering feeds that are much closer in number of posts to one another. Thus, this could 

have contributed to the lack of findings for hypotheses 2a and 2b. 

Survey-Based Topic Similarity Measurement 

Another consideration that was not brought up within Chapter 3 was the possibility that I 

was not comparing apples to apples when it came to comparing my indirect survey-based 

measure of attitude strength with a social media analytics approach. Maybe a more appropriate 

comparison would have been to ask each participant what topics they talk about as well as ask 

them what topics they believed a brand (or cause) talks about. Then I could have run a similar 

topic similarity (or divergence) comparison between the two to see if that correlates with the 

surveyed attitude strength as my base case. Another possibility would be to ask participants what 

topics of discussion would be in common with a brand (or cause), and what topics of discussion 

would be not in common with a brand (or cause). The ratio of common to not common could 

potentially be another way that is closer in comparison to the social media analytics approach. 

This is another avenue for future research in this area. 

CONCLUSION 

 In this day and age where CRM partnerships are being actively discussed and debated on 

social media, cause-related advertisers and practitioners should benefit from understanding 

various ways in which attitude strength towards brands and causes can be measured. I provided 
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an indirect survey-based measure in which attitude strength could be measured towards brands 

and towards causes, but I was not able to prove out a social media analytics approach to 

detecting attitude strength towards brands and towards causes on social media. I also brought to 

light deeper considerations when conducting research across self-reported surveys and actual 

social media data. As social media environments become more and more segmented by various 

affiliations and beliefs, even beyond CRM debates, the search for how to detect attitude strength 

on social platforms becomes ever more important. 
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CHAPTER 4: GENERAL DISCUSSION AND CONCLUDING REMARKS 

 

GENERAL DISCUSSION 

CRM Compatibility Predictions by Attitudinal Bias 

 The focus of this dissertation was to understand how balance theory can help to give us 

deeper insight into CRM compatibility, as well as to analyze how CRM compatibility could also 

further our understanding of balance theory. One of my most important findings was that CRM 

compatibility can be predicted via consumers’ attitudes towards brands, alongside their attitudes 

towards causes. Simmons and Becker-Olsen (2006) wrote that, “Compatibility between a firm 

and a sponsored cause is high when the two are perceived as congruent (i.e., as going together), 

whether that congruity is derived from mission, products, markets, technologies, attributes, brand 

concepts, or any other key association” (p. 155). With regards to the examples that they list, they 

are suggesting that consumers’ assessments of congruence are based on some sort of logical 

comparison of metrics between the partnering organizations. What I found suggests that CRM 

compatibility is not just based on logical comparisons of key congruence metrics between a 

brand and a cause (if at all), but rather simply on separate subjective attitudes towards brands and 

towards causes. This is not that surprising, as previous research in human decision making has 

shown that people are prone to using biases in judgments rather than objective reasoning (Lord, 

Ross, & Lepper, 1979). Many times, we may be unaware that this is happening cognitively. In 

fact, Nisbett and Wilson (1977) showed that when people were asked to report on why we 

responded to things in a certain way, they were incredibly poor in accurately assessing what 

drove their responses. By understanding that we could assess consumers’ perceptions of CRM 

compatibility by measuring their attitudes towards a brand, alongside their attitude towards a 
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cause, this opens up the possibility of predicting how consumers would perceive CRM 

compatibility between a brand and a cause before they actually enter into a CRM partnership. 

CRM practitioners and advertisers could measure attitudes towards brands and towards causes 

first, and then make a decision as to whether or not certain brands should partner with certain 

causes. 

 This gives further evidence then that CRM practitioners and advertisers should not rely 

largely on logical comparisons of brands and causes when considering future partnerships. 

Rather, they should be very concerned about general attitudes that people have towards brands 

and causes prior to entering into any form of CRM partnership. One consideration for CRM 

practitioners and advertisers could be that much work would still need to be done to increase 

consumers’ attitudes towards a brand, as well as their attitudes towards a cause, prior to entering 

into a CRM partnership. In fact, it may be appropriate to include this stage as part of the overall 

timeline of the CRM partnership timeline and strategy. If consumers’ attitudes cannot be 

changed positively prior to the partnership being publicly advertised, it may be wise to 

discontinue (or modify) the plans to partner. 

Using Attitude Strength within Balance Theory 

 Attitude strength has not been considered previously within balance theory, and this is the 

first series of studies to consider attitude strength when predicting perceived CRM compatibility 

within CRM triads. Previous studies that found balance theory to hold in real world data (e.g., 

Leskovec et al., 2010a, 2010b) only looked at dichotomous attitude values (+1 or -1), but I 

focused on considering attitudes as continuous values within this dissertation. When only 

continuous measures of attitude towards the brand and towards the cause were considered, I was 

only able to predict whether or not CRM triads would be balanced in two out of the three CRM 
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partnerships within Chapter 2. Attitude strength has been shown to predict psychological 

movement better than measures of attitude alone (Petty & Krosnick, 1995), and balance theory is 

conceptually based on the prediction of psychological movement. Therefore, when I included 

continuous measures of attitude strength within the calculations of balance in CRM triads, I was 

able to predict balance for all three CRM partnerships. A consideration for future research could 

be that adding attitude strength to balance theory beyond CRM research may also show benefit 

to models of balance prediction. In fact, a recent review of attitude strength suggested that 

attitude strength may play a role in balance theory (Howe & Krosnick, 2017). With regards to the 

realm of CRM research, I have provided evidence that future studies should consider adding 

attitude strength when considering perceived CRM compatibility. 

Spillover of Attitude within CRM Partnerships 

 Another major finding was the discovery that when attitude strength was included in my 

predictive model, I found evidence across all three partnerships that consumers’ attitude towards 

brands and towards causes were spilling over into one another within CRM evaluations of 

compatibility. As mentioned earlier, Wyndham Hotels cut ties with the NRA in February 2018, 

due to consumers’ responses to the recent mass shootings in the United States. In fact, one news 

report showed a Twitter snapshot to emphasize the work that Wyndham was doing to assuage 

consumers’ concerns (Taylor, 2018, see Figure 4.1). 
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Figure 4.1: Twitter Snapshot from Business Insider Report (Names Blacked Out) 

 

 I assume that part of Wyndham’s business reason for ending the partnership was that they 

believed that attitudes towards their brand was being negatively affected by the partnership with 

the NRA, especially due to all the activity they were receiving from social media users that I can 

assume have negative attitudes towards the NRA. Looking at the data from my dissertation 

though, it may not have been that case that attitudes towards Wyndham was being negatively 

affected by peoples’ attitudes towards the NRA. In fact, when I looked at participants who had 

negative attitudes towards the NRA, I did not find any evidence that those negative attitudes 

were spilling into the attitudes towards Wyndham (or from Wyndham to the NRA). If I were to 

look only at the dataset within this dissertation, it seems that Wyndham’s decision to end the 

partnership with the NRA might have been pre-mature. With that said, I considered analyzing the 

data for WyndhamNRA by looking at those who had positive attitudes towards Wyndham and 

negative attitudes towards NRA (N=158) and comparing it to those who had negative attitudes 

towards Wyndham and negative attitudes towards the NRA (N=25), but the sample size of the 
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latter was far too small to make any sort of statistical conclusions from. Lakens and Evers (2014) 

suggest that a minimum sample size of N=126 is needed before most statistical conclusions can 

be made for most social psychology studies. With this said, I already stated in Chapter 2 that I 

could find no benefit from a well-liked brand partnering with a disliked cause, and therefore it 

seems that the safest bet is for CRM practitioners and advertisers to stay away from a partnership 

such as the one between Wyndham and the NRA. 

Topic Similarity Scope Changes Since the Dissertation Proposal 

 My findings on conversation topic similarity predicting attitude strength requires some 

further explanation as compared to the originally approved dissertation proposal. This 

dissertation has stayed largely on track with the committee approved dissertation proposal from 

the spring of 2017. The major change started theoretically within the first study (Chapter 2), as 

the original proposal suggested that I could also predict perceived compatibility from consumers’ 

conversation topic similarities with a brand, alongside their conversation topic similarities with a 

cause. This hypothesis suggested that conversation topic similarity could predict both the 

measures of attitude and attitude strength together at the same time. Upon later consideration, 

and subsequent conversation with committee members, I realized that the measure of attitude 

(valence and degree of favor) could not be predicted from conversation topic similarity. I only 

have evidence that it is attitude strength (not attitude) that can be predicted by what topics an 

individual talks about, and how often they talk about those topics (Krosnick et al., 1993). 

 Thus, due to this change, the scope of the second study (Chapter 3) changed. One of the 

original intentions of the second study was to provide a comprehensive computational prediction 

model for CRM compatibility using social media data. To do this, I would also need to detect 

participants’ attitudes towards brands and towards causes via a social media analytics approach. 
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Since one of the focuses of this dissertation was to compare participants’ social media data with 

their surveyed responses, one way to measure participants’ attitudes towards brands and towards 

causes would have been to run feature-based sentiment analysis on participants’ social media 

data. Feature-based sentiment analysis is the measurement of attitude towards words (sometimes 

called tokens or features in the computational sciences) in a dataset (Eirinaki et al., 2012). The 

reason why this was not possible for the dataset in this dissertation was due to the fact that I was 

limited to the social media feeds of the Amazon Turk participants from my studies. To run 

feature-based sentiment analysis, the participants would have needed to be speaking about the 

specific brands (Fitbit, Royal Caribbean, and Wyndham Hotels) and the specific causes 

(American Heart Association, WWF, NRA) within their social media feeds. These brand (or 

cause) names would have been the features in which feature-based sentiment analysis could have 

been run on, but not enough participants had these features appearing within their social media 

feeds. 

 To illustrate this, I ran an analysis of all N=170 participants’ Twitter feeds to see if there 

was enough mentions of the brands and/or causes to run feature-based sentiment analysis. For 

each brand and/or cause, I focused on looking for the following words/phrases: Royal Caribbean 

(‘Royal Caribbean’, ‘RoyalCaribbean’); WWF (‘WWF’, ‘World Wildlife Fund’); Fitbit 

(‘Fitbit’); American Heart Assocation (‘American Heart Association’, ‘AHA’, 

‘AmericanHeart’); Wyndham Hotels (‘Wyndham’, ‘Wyndham Hotels’); NRA (‘NRA’, ‘National 

Rifle Association’). Across the N=170 participants, only one participant mentioned words related 

to Royal Caribbean, one participant mentioned words related to WWF, eight participants 

mentioned words related to Fitbit, seventeen participants mentioned words related to AHA, no 

participants mentioned words related to Wyndham Hotels, and seventeen participants mentioned 
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words related to NRA. Thus, even in the best case of having seventeen participants that spoke 

about the NRA on their Twitter feeds, this would not have been enough to run a regression 

analysis against self-reported attitudes towards the NRA.  

Since I could not predict consumers’ attitudes towards the brands and towards the causes 

within CRM partnerships, I focused on one piece of the predictive model, namely attitude 

strength. What I found was that although I could predict attitude strength from surveyed 

conversation topic similarities with brands (or causes), I could not predict attitude strength using 

a social media analytics approach. This brought about larger questions as to whether or not we 

can use a hybrid survey to social media analytics approach to answer specifically hypothesized 

social science questions with social media data. I have evidence that a hybrid approach works 

when there are no a priori hypotheses of what variables may correlate with a participants’ survey 

responses and their social media data (e.g., Golbeck et al., 2011; Kern et al., 2014; Youyou et al., 

2017), but I have less evidence that an a priori hypothesized correlation will work between 

participants’ surveyed responses and their social media data. For this dissertation, I specifically 

hypothesized that topic similarity between a consumer and a brand (or cause) would predict their 

surveyed attitude strength. Although this was supported via an indirect survey measure, it was 

not supported via a social media analytics approach.  

  



105 
 

Prediction of Attitude Strengths via Topic Similarities 

 Part of the focus of this dissertation was to find new ways to measure attitude strength 

within CRM partnerships, and I found that participants’ self-report of their perceived similarity 

of topical conversation with a brand (or a cause) was an indirect way to measure their self-

reported attitude strength towards that brand (or that cause) when using a survey method. 

Conversation topic similarity may be a way for CRM practitioners to assess attitude strength 

more discretely towards brands and causes prior to entering into a CRM partnership, and this 

novel method could potentially suffer less from social desirability bias and self-deception bias 

concerns when using a survey to measure attitude strength. 

Future Research on CRM Partnerships with Social Media Data 

 Moving forward, there is great potential for additional insights for CRM partnerships via 

social media data, including the following considerations. 

 Sentiment analysis for assessing separate attitudes towards brands and causes. In 

future studies, if a larger sample of participants that mention brands/causes directly on their 

social media feeds could be acquired, I could run sentiment analyses towards these brands and 

causes. Another strategy could be to find social media users that are talking about brands and 

causes within their feeds, and directly asking them if they would like to take a survey of their 

attitudes and attitude strengths towards those brands and causes. Drawing from my work on 

using perceived conversation topic similarity to predict attitude strength, there may be a 

possibility to detect attitudes towards brands and towards causes by assessing consumers’ 

attitudes towards the topics that are most associated with a brand or a cause. For example, if I 

look at the topic tagging data from Fitbit’s Twitter feed (see Appendix 3 from Chapter 3), I see 

that one of the topics that Fitbit discusses is physical fitness. If I was able to run sentiment 
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analysis towards the topic of physical fitness on consumers’ Twitter feeds (for the consumers 

that discuss physical fitness), could this predict their attitude towards Fitbit? As mentioned in 

Chapter 3, Twitter may not be the best social media platform to assess this, as the breadth of 

topic discussion may be limited. However, pairing the computational assessment of separate 

attitudes towards brands and causes with the assessment of separate attitude strengths towards 

brands and causes could provide the pieces to create a computational predictive model for CRM 

compatibility using social data. 

 Computational topic similarity prediction of attitude strength via image analysis. 

Another consideration for future research would be attempting to predict attitude strength 

through entity recognition via social media images. Instagram is a social media platform in 

which each social media post requires the sharing of some sort of image or picture. Amongst 18-

24 year old Americans, Instagram is one of the most popular social media platforms today (A. 

Smith & Anderson, 2018). As individuals share vast numbers of photos and images on 

Instagram, there is an interesting opportunity to analyze these photos to understand what the 

individuals are interested in. Advances in machine learning, and specifically deep learning, have 

produced tools that allow us to analyze image similarity (e.g., van der Walt et al., 2014) and 

recognize entities (e.g., bicycle, female, dog) within images (e.g., “Amazon Rekognition – Video 

and Image - AWS,” n.d.). Entities that are detected within images could potentially be correlated 

with topics that the posting individual is interested in. Therefore, I could compare the similarity 

of entities within images that are shared on brand (or cause) Instagram accounts with the 

Instagram accounts of consumers to check for a correlation between this similarity and attitude 

strength. I could also consider a raw image similarity analysis (without the entity recognition) as 

a baseline analysis between Instagram accounts. This Instagram study could also give me more 
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insight as to whether correlating social media data with a specifically hypothesized social 

psychological measure could work. 

LIMITATIONS 

Neutral Attitudes and Balance Theory 

 Heider (1958) briefly discussed neutral edges within balance theory, but excluded their 

consideration in his final models of balance. More recently, Altafini (2012) studied how opinions 

are formed within structurally balanced networks, and he commented on neutral edges within 

structural balance by stating, “Also for this more general definition (the one adopted in this 

paper) structural balance implies a lack of ambiguity in the way each individual classifies each 

other individual as a friend or as an enemy” (p. 1). Other studies have pointed to the fact that 

there needs to be further research in considering neutral edges within balance theory (e.g., Antal 

et al., 2005, 2006), but I could not find any that actually included them in their studies. I did not 

realize this issue until I was in the data analysis stage of this dissertation, thus the only 

reasonable decision I could make was to exclude triads that included neutral attitudes from my 

analyses. At the very least, future studies should consider using an even-numbered scale, as that 

will obviously prevent anyone from denoting a neutral attitude. 

Number of CRM Partnerships Pre-Tested 

 The four CRM partnerships that I pre-tested were Fitbit and American Heart Association, 

Royal Caribbean and the World Wildlife Fund, Grey Goose and the National Gay and Lesbian 

Task Force, and Wyndham Hotels and the National Rifle Association. My aim was to find three 

partnerships that exhibited, on average, high perceived compatibility, mid-level perceived 

compatibility, and low perceived compatibility. The three partnerships that I chose were 

FitbitAHA (MCOMP_PERCEIVED=10.11, SD=1.95), RoyalWWF (MCOMP_PERCEIVED=6.23, SD=2.68), 
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and WyndhamNRA (MCOMP_PERCEIVED=3.59, SD=2.31). I had made the assumption that amongst 

the four partnerships being tested, I was going to find the three levels of perceived compatibility, 

and this was indeed the case. With this said, pre-testing more partnerships would have been the 

safer route, and would have potentially given me even greater separation between perceived 

compatibilities. There could have also been the possibility of including a range of perceived 

compatibilities that spanned across four or more partnerships, although I would have had to 

consider survey fatigue for the participants at a certain point. 

CONCLUDING REMARKS 

 In this dissertation, I analyzed CRM compatibility through the lens of balance theory both 

via a survey-based approach, as well as a social media analytics approach. I found evidence that 

a consumer’s attitudes towards a brand, along with their attitudes towards a cause can predict 

their perceived CRM compatibility, and that attitude and attitude strength can spill over within 

CRM partnerships. I also showed that attitude strength can be measured indirectly through 

analyzing perceived conversation topic similarity via a self-reported survey measure. Although 

this does not give me the final picture that I need to predict CRM compatibility both from a 

survey-based approach and a social media analytics approach, this dissertation provides 

numerous steps forward within the realm of CRM research, as well as balance theory research. 

As far as I know, this was the first series of studies that included attitude strength within balance 

theory. I also provided insight and subsequent questions into research conducted using a 

hybridization of a survey-based approach tied to a social media analytics approach. Building on 

this, I provided some considerations for future research building upon these methods, especially 

in the context of newer computational techniques to analyze social media data. Lastly, this 

dissertation provided insights that are beneficial to CRM researchers, practitioners, and 
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advertisers as we move forward in our efforts to acquire a greater understanding of CRM 

partnerships as a whole. 
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APPENDIX A: SURVEY INSTRUMENT – RC AND WWF EXAMPLE 

 
These questions pertain to Royal Caribbean International. Royal Caribbean International 
is a for-profit cruise line brand. 
 
How would you rate your attitude towards Royal Caribbean International? 
 
-5 (Extremely negative)  -4  -3  -2  -1  0 (Neither negative nor positive)  1  2  3  4  5 (Extremely positive) 
 
How strong is your attitude toward Royal Caribbean International? 
 
1 (Not strong at all)  2  3  4  5  6  7 8 9 10 11 (Extremely strong) 
 
-- page break -- 
 
These questions pertain to the World Wildlife Fund for Nature. The World Wildlife Fund 
for Nature (WWF) is a non-profit organization focused on nature conservation. 
 
How would you rate your attitude towards the World Wildlife Fund for Nature? 
 
-5 (Extremely negative)  -4  -3  -2  -1  0 (Neither negative nor positive)  1  2  3  4  5 (Extremely positive) 
 
How strong is your attitude toward World Wildlife Fund for Nature? 
 
1 (Not strong at all)  2  3  4  5  6  7 8 9 10 11(Extremely strong) 
 
-- page break – 
 
In 2016, Royal Caribbean International and the World Wildlife Fund for Nature (WWF) 
announced a global partnership to support ocean conservation. 
 
How compatible do you think this partnership is between Royal Caribbean and the World 
Wildlife Fund for Nature? 
 
-5 (Not compatible at all)  -4  -3  -2  -1  0 (Neither compatible nor incompatible)  1  2  3  4  5 (Extremely 
compatible) 
 
-- End of Survey – 
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APPENDIX B: ADDITIONAL SURVEY QUESTIONS – RC EXAMPLE 

 
Take a moment to think about Royal Caribbean International. 
 
If Royal Caribbean International was a person, what topics do you think Royal Caribbean 
International would talk about? Please provide up to 12 topics, with a minimum of 1 topic. 
 
Topic 1 _________ 
Topic 2 _________ 
Topic 3 _________ 
Topic 4 _________ 
Topic 5 _________ 
Topic 6 _________ 
Topic 7 _________ 
Topic 8 _________ 
Topic 9 _________ 
Topic 10 _________ 
Topic 11  _________ 
Topic 12  _________ 
 
Now think about how you see yourself. Once you’ve done this, indicate your agreement or 
disagreement with the following statement: 
 
The topics that Royal Caribbean International would talk about are consistent with the topics that 
I talk about. 
 
-5 (Not consistent at all)  -4  -3  -2  -1  0 (Neither negative nor positive)  1  2  3  4  5 (Extremely consistent) 
 
-- after all the CRM questions – 
 
Lastly, please provide your Twitter username below. We will utilize a computational scan 
that analyzes your Twitter posts to look for things related to the brands mentioned in this survey. 
Only brand information will be stored, and it will be stored with an anonymous ID, which cannot 
be tracked back to your Twitter account. You may email Joseph Yun at jtyun@illinois.edu if you 
have any questions or concerns with this computational scan of your Twitter account. This step is 
optional. 
 
Please enter you Twitter username: 
 
_______________________________________ 
 
-- End of Survey – 
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APPENDIX C: TEXT RAZOR TOPICS OF EACH BRAND AND CAUSE 

 

Brand/Cause Text Razor Topics from Twitter Timeline 

Fitbit 
Fitbit, Smartwatch, Motivation, Physical exercise, 
Physical fitness, Health, Weight loss, Dieting, 
Relaxation (psychology), Sleep, Personal trainer 

Royal Caribbean MS Adventure of the Seas, Emergency evacuation, 
Royal Caribbean International, Water transport, Sailing 

Wyndham Hotels Tourism 

American Heart Association 

Stroke, Atrial fibrillation, Coronary artery disease, 
Myocardial infarction, Cardiopulmonary resuscitation, 
Heart, Health, Cardiovascular disease, Hypertension, 
Cardiac arrest, American Heart, Association, 
Hypercholesterolemia, Physical exercise, Cholesterol, 
Medicine, Medical specialties, Clinical medicine, 
Antiplatelet drug, Health sciences, Heart failure, 
Cardiovascular system, Disease, Adherence 
(medicine), Diseases and disorders, Venous 
thrombosis, Thrombosis, Healthy diet, Management of 
acute coronary syndrome, Peripheral artery disease, 
Surgery, Risk, Health care, Artery, Cardiovascular 
diseases 

World Wildlife Fund 

Council, Endangered species, Vaquita, World Wide 
Fund for Nature, Biodiversity, Rhinoceros, Coral 
bleaching, Orangutan, Elephant, World Heritage Site, 
Coral reef, World Oceans Day, Earth, Poaching, Coral, 
Conservation biology, Earth Overshoot Day, Natural 
environment, Climate change, Giraffe, Deforestation, 
Protected area, Wildlife, Snow leopard, Donana 
National Park, Ivory trade, Sea turtle, Shark 
Whale, Irrawaddy dolphin, Belize, Polar bear, Bear, 
Turtle, Leopard, Palm oil, Ecology, Facebook, 
Wetland, Paris Agreement, Great Barrier Reef, 
Conservation, Extinction, Coral Triangle 

National Rifle Association 

Handgun, National Rifle Association, Overview of gun 
laws by nation, Concealed carry in the United States, 
Gun politics in the United States, Concealed carry, 
Firearm, Shotgun, Assault weapon, Second 
Amendment to the United States Constitution, 
Revolver, Hunting, American Rifleman, Government, 
Firearms, Projectile weapons, Weapons, Law, 
Projectiles, Rifle, Shooting sport, Constitutional carry, 
Eddie Eagle, Suppressor, Neil Gorsuch, Winchester 
Repeating Arms Company, Security, Justice, Bolt 
action, United States, Sturm, Ruger & Co., Politics, 
Public sphere, United States Congress, Right to keep 
and bear arms, Gun, Remington Arms 
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APPENDIX D: IRB LETTER 

 


