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ABSTRACT

Sparse matrix operations dominate the cost of many scientific applications. In parallel, the

performance and scalability of these operations is limited by irregular point-to-point com-

munication. Multiple methods are investigated throughout this dissertation for reducing

the cost associated with communication throughout sparse matrix operations. Algorithmic

changes reduce communication requirements, but also affect accuracy of the operation, lead-

ing to reduced convergence of scientific codes. We investigate a method of systematically

removing relatively small non-zeros throughout an algebraic multigrid hierarchy, yielding

significant reductions to the cost of sparse matrix-vector multiplication that outweigh af-

fects of reduced accuracy of the multiplication. Therefore, the reduction in per-iteration

communication costs outweigh the cost of extra solver iterations. As a result, sparsification

yields improvement of both the performance and scalability of algebraic multigrid.

Alterations to the parallel implementation of MPI communication also yield reduced costs

with no effect on accuracy. We investigate methods of agglomerating messages on-node be-

fore injecting into the network, reducing the amount of costly inter-node communication.

This node-aware communication yields improvements to both performance and scalability

of matrix operations, particularly in strong scaling studies. Furthermore, we show an im-

provement in the cost of algebraic multigrid as a result of reduced communication costs in

sparse matrix operations.

Finally, performance models can be used to analyze the costs of matrix operations, indicat-

ing the source of dominant communication costs, such as initializing messages or transporting

bytes of data. We investigate methods of improving traditional performance models of ir-

regular point-to-point communication through the addition of node-awareness, queue search

costs, and network contention penalties.
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CHAPTER 1: INTRODUCTION

Parallel computers are continuously advancing, yielding increased processing power with

each new generation. Emerging architectures are comprised of increasingly large networks

of symmetric multiprocessing (SMP) nodes, each consisting of several processors that share

main memory. This increased processor count yields potential to solve increasingly large and

difficult scientific applications. As the accuracy of linear systems arising from discretized par-

tial differential equations (PDEs) is correlated to system dimension, the additional compute

units of state-of-the-art computers can be used to solve PDEs to increased accuracy. While

computational work can be partitioned across a large number of processes, reducing the

per-core cost and yielding reduced time to solution, many computational kernels are unable

to take full advantage of parallel computing advances due to limited parallel scalability.

1.1 COMMUNICATION IN SCIENTIFIC CODES

Scientific simulations, for example based on solving discretized partial differential equa-

tions (PDEs), often rely on solving a sparse linear system

Ax = b, (1.1)

where A is a sparse n× n matrix, and x and b are n-dimensional vectors.

There are several approaches to solving sparse linear systems, from sparse direct meth-

ods to sparse iterative solvers. Sparse direct methods consist of factorizing the matrix A

into multiple triangular matrices followed by triangular solves. Common factorization meth-

ods include Cholesky, QR, and Gaussian elimination methods. Furthermore, multi-frontal

methods yield a factorization through a series of small dense factorizations. Alternatively, it-

erative methods consist of forming an initial guess to the solution x, and iteratively reducing

error until convergence. There are many classes of iterative methods. Basic methods, such as

Jacobi, Gauss-Seidel, and successive over-relaxation (SOR), reduce error by averaging solu-

tions of neighboring points. Krylov subspace methods, such as conjugate gradient (CG) and

generalized minimized residual method (GMRES), project the system onto a Krylov sub-

space, which is spanned by the vectors Akr, for some k, where r ← b− A · x. Furthermore,

domain decomposition methods split the problem into smaller problems on subdomains,

and multilevel methods such as geometric (MG) and algebraic (AMG) multigrid construct

a global problem of lower dimension to successively reduce error. Finally, incomplete LU

(ILU) is often used as a preconditioner, approximating Gaussian elimination by dropping a
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subset of non-diagonal entries.

Sparse direct and iterative methods lack scalability due to inherently sequential portions

of algorithms as well as large inter-process communication requirements. Direct method

factorization such as Gaussian elimination consists of factorizing one row and using this

factorization in all subsequent rows. Furthermore, direct methods require communication of

the updated matrix during each step, as subsequent matrix entries depend on each update.

Factorization yields fill-in, adding non-zeros to positions of the matrix that are initially

zero, increasing both local computation and communication at further steps as well as the

triangular solves. Finally, the triangular solves require communication of the vector at each

step.

Sparse iterative methods require several types of inter-process communication. The Jacobi

iteration method, for example, is inherently parallel, requiring only vector communication

each iteration. However, other basic methods such as Gauss-Seidel and SOR yield inherently

sequential portions similar to sparse direct methods, yielding large per-iteration communi-

cation requirements. Krylov subspace methods require sparse vector communication each

iteration to compute the residual vector. Furthermore, orthogonalization requires an inner

product, typically implemented as a collective MPI Allreduce operation. Multilevel meth-

ods require a combination of sparse vector and sparse matrix communication, much of which

is performed on matrices and vectors that are smaller in dimension than the original system.

The sparse matrix and vector communication required throughout both sparse direct and

iterative methods consists of communicating a portion of the matrix or vector between

sets of processes. For one-dimensional matrix partitions, this communication depends on

the sparsity pattern of the matrix as well as the partition across processes. Therefore,

communication throughout sparse solvers partitioned in only one-dimension is irregular,

with communication-load imbalance between processes as well as irregular combinations of

sending and receiving processes. This irregularity does not exist in all algorithm variants,

particularly those which use two- or three-dimensional matrix partitions, but irregular point-

to-point communication minimizes communication when matrices are sufficiently sparse.

Figure 1.1 shows the communication pattern between sets of processes for both a regular

MPI Allreduce operation as well as irregular communication in a sparse matrix operation

when using a standard one-dimensional decomposition. This dissertation focuses on this

irregular communication that is found throughout the sparse direct and iterative methods

with one-dimensional partitions.
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Figure 1.1: The inter-process communication pattern required to perform an MPI all-reduce
collective operation (left) and irregular point-to-point communication inside a sparse matrix
operation (right) for a coarse matrix in an AMG grad-div hierarchy on 8192 processes. Each
non-zero Aij represents that a message is sent from process i to rank j.

1.2 STATE OF THE FIELD

Sparse iterative methods, such as Krylov subspace methods, are comprised of three main

costs:

1. local computation;

2. point-to-point communication in sparse matrix operations; and

3. MPI all-reduce collective communication.

Both point-to-point and collective communication yield reduced scalability of Krylov meth-

ods. Many methods exist to reduce the synchronization bottleneck that results from collec-

tive communication, including minimizing the number of Krylov iterations, preconditioning

each iteration of the solver or increasing the amount of work per iteration. Enlarged Krylov

methods reduce communication by increasing the number of vectors added to the Krylov

subspace during each iteration, yielding increased work per-iteration over fewer iterations [1].

Communication-avoiding Krylov methods split the iterations into an outer loop and inner

loop, performing several computation steps on the inner loop before communicating, re-

sulting in reduced communication at the cost of convergence [2, 3]. Furthermore, pipelined

Krylov methods hide global synchronization steps, yielding increased scalability [4].

Irregular communication in general sparse matrix operations dominates the cost of many

sparse direct and iterative methods. This communication consists of sending either matrix or
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vector entries that are associated with non-zero columns of the sparse matrix, requiring the

irregular and unbalanced communication displayed in Figure 1.1. Graph partitioning and

matrix reordering minimizes the number of edges between processes and reduces point-to-

point communication in sparse matrix operations [5, 6]. Furthermore, data layout influences

communication requirements: one-dimensional matrix partitions are often less scalable than

two- and three-dimensional partitions, but [7, 8]. The sparse matrix storage format affects

communication, as block formats reduce data requirements associated with sparse matrix

communication [9]. Matrix operations performed redundantly on multiple processes avoid

inter-process communication requirements. Ultimately, the design of new parallel algorithms

leads to reduced communication; relying on algorithms developed for serial architectures

offers limited opportunities [10].

1.3 OVERVIEW OF CONTRIBUTIONS

Point-to-point communication remains a costly component of many parallel codes, specifi-

cally with sparse matrix operations. This dissertation investigates methods for reducing the

cost associated with irregular point-to-point communication in sparse matrix operations,

improving the scalability of scientific simulations. The contributions of this thesis include

the following:

Performance models for irregular point-to-point communication Traditional perfor-

mance models are extended to include penalties that arise during irregular sparse ma-

trix operations, such as queue search costs and network contention. These performance

models are described in Chapter 3.

Removing non-zero entries, adding sparsity into the matrix: Sparsification methods

are used throughout AMG to remove small non-zero entries that do not fit a prede-

termined sparsity pattern. These methods can greatly reduce communication require-

ments associated with each SpMV, with little impact on convergence. This is detailed

in Chapter 4.

Node-aware communication in sparse matrix operations: Communication is agglom-

erated on each node before executing inter-node communication. The data is then

redistributed among processes of the receiving node. Node-aware communication, de-

scribed in Chapter 5, is analyzed throughout the following operations

Sparse matrix-vector multiplication (SpMV): Vector values are communicated

using three-step node-aware communication before a local SpMV is performed on
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local and received values. The node-aware SpMV is described in Chapter 5.

Sparse matrix-matrix multiplication (SpGEMM): Node-aware communication

is developed for the sparse matrix communication in SpGEMMs in Chapter 6.

Each sparse matrix is aggregated on node before being communicated through

the network.

Algebraic multigrid setup and solve phases: Node-aware communication is ap-

plied throughout both the setup and solve phases of algebraic multigrid in Chap-

ter 7. Both the classical and smoothed aggregation setup methods are analyzed.
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CHAPTER 2: BACKGROUND

2.1 SPARSE MATRICES AND OPERATIONS

In parallel, a sparse n × n linear matrix A is partitioned row-wise across processes, such

that each process holds a contiguous portion of the rows of the matrix, and corresponding

vector values, as displayed in Figure 2.1. Note, one-dimensional partitions of non-contiguous

rows are possible, as a matrix permutation can transform the rows into contiguous blocks. In

w A v

P0

P1

P2

P3

Figure 2.1: A matrix partitioned across four processes, where in this example each process
stores two rows of the matrix, and the equivalent rows of each vector. The on-process block
of each matrix partition is represented by solid squares , while the off-process block is
represented by patterned entries .

addition, the rows of A on a single process into two groups: an on-process block, containing

the columns of the matrix that correspond to vector values stored locally, and an off-process

block, containing matrix non-zeros that are associated with vector values that are stored

on non-local processes. Therefore, non-zeros in the off-process block of the matrix require

communication of vector values during each sparse matrix operation.

Sparse matrix operations lack parallel scalability due to large costs associated with com-

munication, specifically in the strong scaling limit of a few rows per process. Increasing the

number of processes that a matrix is distributed across increases the number of columns in

the off-process blocks, yielding a growth in communication.

Figure 2.2 shows the percentage of time spent communicating during a SpMV operation

for two large matrices from the SuiteSparse matrix collection [11] at scales varying from

50 000 to 500 000 non-zeros per process. The results show that the communication time

dominates the computation as the number of processes is increased, thus decreasing the

scalability.
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Figure 2.2: Percentage of total SpMV time spent during communication for matrix
nlpkkt240 with 760,648,352 non-zeros

2.2 ALGEBRAIC MULTIGRID

In this section we detail the AMG setup and solve phases. We let the fine-grid operator

A be denoted with a subscript as A0.

Algorithm 2.1 describes the setup phase and begins with strength, which identifies the

strongly connected edges1 in the graph of A` at level ` to construct a strength-of-connection

matrix S`. From this, P` is constructed in interpolation to transfer vectors from level `+1

to level `, with the goal of accurately interpolating (smooth) error not sufficiently reduced by

relaxation. For classical AMG, interpolation first forms a disjoint splitting of the level `

index set {0, . . . , n−1} = C∪F , where C is the set of indices on the coarse level and where F

is the set of indices for variables that reside only on the fine level. The size of the coarse grid

is then given by n`+1 = |C|, and an interpolation operator, P` : Rn`+1 → Rn` , is constructed

using S` and A` to compute sparse interpolation formulas that are accurate for algebraically

smooth functions. Finally, the coarse-grid operator is created through a Galerkin triple-

matrix product, A`+1 = P T
` A`P`. In a two-level setting, this ensures the desirable property

that the coarse-grid correction process I − P`A−1
`+1P

T
` A` is an A`-orthogonal projection that

ensures optimal coarse-grid correction of the error in the range of interpolation (in the A`

norm). When an approximation to A`+1 is introduced, this projection property is lost,

leading to a possible deterioration in convergence. This is further discussed in Chapter 4.

1A degree-of-freedom i is strongly connected to j if algebraically smooth error (error not effectively
reduced by relaxation) varies slowly between i and j. Strength information critically informs AMG coars-
ening [12] and interpolation [13]. While a variety of strength measures abound [14], the standard strength
measure is sufficient for the problems tested.
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Algorithm 2.1: amg setup

Input: A0: fine-grid operator
max size: threshold for max size of coarsest problem
nongalerkin: (optional) non-Galerkin method
γ1, γ2, . . . (optional) drop tolerances for each level

Output: A1, . . . , AL,
P0, . . . , PL−1

while size(A`) > max size
S` = strength(A`) {Strength-of-connection of edges}

P` = interpolation(A`, S`) {Construct interpolation and injection}

A`+1 = P T
` A`P` {Galerkin product}

if nongalerkin {(optional) described in Section 4.2}

Â`+1 = sparsify(A`+1, A`, P`, S`, γ`) {Remove nonzeros in A`+1}

A`+1 = Â`+1

The density of each coarse-grid operator A`+1 depends on that of the interpolation op-

erator P`. Even interpolation operators with modest numbers of nonzeros typically lead

to increasingly dense coarse-grid operators [15, 16]. Algorithm 2.1 addresses this with the

optional step sparsify, which triggers the sparsification steps developed in Chapter 4. The

approach [15] also fits within this framework, which is detailed in Section 4.2.

The solve phase of AMG, described in Algorithm 2.2 as a V-cycle, iteratively improves an

initial guess x0 through the use of the residual equation A0e0 = r0, where e0 and r0 are the

fine-grid error and residual, respectively. High energy error in the approximate solution is

reduced through relaxation in relax — e.g. Jacobi or Gauss-Seidel. The remaining error is

reduced through coarse-grid correction: a combination of restricting the residual equation

to a coarser level, followed by interpolating and correcting with the resulting approximate

error. The coarsest-grid equation is computed with solve, using a direct solution method.

The dominant computational kernel in Algorithm 2.2 is the sparse matrix-vector (SpMV)

product, found in relax and interpolation/restriction. Typically relaxation dominates since

A` is larger and denser than P`. Thus, the performance on level ` of the solve phase depends

strongly on the performance of a single SpMV with A`.

For a SpMV, communication is required for all off-process elements in the vector that

correspond to matrix nonzeros Therefore, the density of a matrix contributes to the cost of

communication complexity in the SpMV operation. This implies that the less sparse AMG

8



Algorithm 2.2: amg solve

Input: x0: fine-level initial guess
b0: fine-level right-hand side
A0, . . . , AL
P0, . . . , PL−1

Output: x0, fine-level approximation

for ` = 0, . . . , L− 1 do
relax(A`, x`, b`, ν1) {Pre-smooth ν1 times}

b`+1 = P T
` (b` − A`x`) {Restrict residual}

xL = solve(AL, bL) {Coarsest-level direct solve}

for ` = L− 1, . . . , 0 do
x` = x` + P`x`+1 {interpolate and correct}

relax(A`, x`, b`, ν2) {Post-smooth ν2 times}

coarse levels yield large communication costs and, often, an inefficient solve phase [15, 16].

2.3 PERFORMANCE MODELING

Parallel operations, such as those involving sparse matrices, often require MPI point-to-

point communication. This category of communication consists of sending a single message

between a set of processes. In a typical implementation, the pairs of communicating pro-

cesses, along with the size of associated messages, vary. In addition, point-to-point com-

munication procedures vary with MPI implementation. Each message consists of both an

envelope and data, where the envelope contains a message description including the tag,

MPI communicator, message length, and process of origin. There are a variety of methods

for sending data, such as sending the data immediately or waiting for the receive process

to allocate buffer space. In the implementations investigated here, a message is commu-

nicated via a specific protocol of short, eager, or rendezvous, based on message size. The

short protocol consists of sending very small messages as part of the envelope directly be-

tween processes. Messages that are too large to fit in the envelope, but remain relatively

small, are communicated with eager protocol. This protocol assumes buffer space is avail-

able, and immediately communicates the data to the receiving process. Lastly, sufficiently

large messages are communicated with rendezvous protocol, during which the envelope is

communicated first, and the remainder of the data is only communicated after the receiving

process has allocated buffer space.

The cost associated with each message is dependent on the time required to initialize
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communication as well as the per-byte transport cost. Therefore, the short protocol is sig-

nificantly less costly than the others as only a single envelope is communicated, yielding

minimal costs associated with both latency and bandwidth. Messages communicated with

eager protocol have low latency costs as the messages are sent directly between processes.

However, the transport cost correlates with message size; messages can require significant

amounts of buffering depending on size. Finally, rendezvous messages yield low per-byte

transport costs but increased latency requirements associated with initial envelope commu-

nication and synchronization.

The traditional postal model estimates the cost of communicating a message as the sum

of the message startup cost and the per-byte transport, with separate parameters for each

message protocol. That is,

T = α + β · s, (2.1)

where α is the latency, 1
β

is the rate at which a byte of data is transported, and s is the

number of bytes to transport. As the associated costs vary with message protocol, separate

values for α and β are used when communicating with short, eager, and rendezvous protocols.

The max-rate model [17] improves upon the postal model by defining the cost of commu-

nication as dependent on not only the latency and inter-process bandwidth costs, but also on

the maximum bandwidth by which a node can inject data into the network. Therefore, the

max-rate model accounts for the fact that injection bandwidth becomes a bottleneck when

communicating from four or more processes per node, as is typical with state-of-the-art

parallel computers [17].

The max-rate model is defined as

T = α +
ppn · s

min(RN , ppn ·Rb)
, (2.2)

where ppn is the number of actively communicating processes per node, Rb is the rate at

which data can be sent between two processes, or the inverse of β, and RN is the maximum

rate at which a node can inject data into the network. Therefore, when the value of ppn ·Rb

is less than injection bandwidth, this model reduces to the postal model. However, with a

sufficiently large number of active processes per node, the per-byte transport rate is measured

as injection bandwidth. Figure 2.3 displays the cost of communicating a single message of

various size between pairs of processes on the same socket, on different sockets of a single

node, and on different nodes. The intra-socket and inter-socket costs are measured with the

traditional postal model, while the off-node communication is modeled with the max-rate

model.
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Figure 2.4: The cost of communicating between data of size 16s between two nodes, n and
m, with the various values for s on the x-axis of the plot. All times are calculated with the
max-rate model.

The cost of communicating data of between two nodes, varies with implementation, as

shown in Figure 2.4. For example, gathering all data on one process of node n before com-

municating as individual messages of size s to each of 16 processes on node m is significantly

more expensive than sending as a single message of size 16s to one of the processes on node

m. However, this cost is further reduced by communicating one message of size s from

each of the 16 processes on node n to a single process on node m. Therefore, the cost of

inter-node communication is minimized by limiting both the number and size of messages

communicated from any process.

11



CHAPTER 3: MODELING POINT-TO-POINT COMMUNICATION

Portions of this chapter appear in the paper ”Improving Performance Models for Irregular

Point-to-Point Communication”, in submission to EuroMPI 2018 [18].

3.1 INTRODUCTION

Hardware advances in parallel computers continue to enable solving increasingly large

problems. However, applications are often unable to take full advantage of state-of-the-art

architectures due to scaling limitations, which result from inter-process communication costs.

The cost associated with communication depends on a large number of factors, and varies

across parallel systems, specific partitions, and application scale. Therefore, performance

models are used to analyze the sources of communication costs among different architectures

and network partitions. Accurate performance models indicate whether the cost is due

mainly to the number of messages communicated, number of bytes transported, distance of

transported bytes, etc.

Traditional models estimate point-to-point communication as a combination message la-

tency and the cost of transporting bytes. Irregular operations, such as sparse matrix meth-

ods, incur costs that are not captured by traditional models. Figure 3.1 displays the mea-

sured and modeled communication costs acquired when performing a sparse matrix-matrix

(SpGEMM) multiply on the levels of an algebraic multigrid (AMG) hierarchy for an unstruc-

tured linear elasticity matrix. These timings, as well as the associated model parameters,
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Figure 3.1: Measured and modeled communication costs associated with a SpGEMM on each
level of a linear elasticity AMG hierarchy, on 8 192 processes of Blue Waters supercomputer.
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are for 8 192 processes of Blue Waters supercomputer 1 [19]. The traditional postal model

results in nearly identical timings to more robust models, such as the max-rate model [17],

which takes into account the limitations of multiple communicating processes per node. For

this problem both models capture only a fraction of the measured time.

This chapter extends traditional performance models to accurately model the irregular

point-to-point communication that occurs in commonly used operations. This chapter

presents three novel contributions, including an improvement to the max-rate model [17]

measurements:

1. node-aware model parameters;

2. an extension to include quadratic queue search times in communication; and

3. an additional parameter estimating network contention.

The remainder of this chapter is outlined as follows. Section 3.2 describes parallel point-

to-point communication as well as corresponding traditional performance models. Node-

awareness is added to traditional models in Section 3.3. Section 3.4 describes a high-volume

ping-pong algorithm along with additional acquired penalties, with a queue search parameter

described in Section 3.4.1 and a network contention penalty in Section 3.4.2. The improved

model parameters are applied to commonly used operations and compared against measured

timings in Section 3.5. Finally, conclusions, limitations, and future directions are described

in Section 3.6.

3.2 BACKGROUND

Traditional performance models, such as the postal and max-rate models accurately an-

alyze the cost of a standard ping-pong test, in which two processes are sending messages

to one another. However, they fail to account for a variety of penalties that occur during

communication in typical operations on state-of-the-art supercomputers.

There are many alternatives to traditional models that account for many penalties that

arise in standard supercomputers. The LogP model splits the α into latency, the cost re-

quired by the hardware, and overhead, the cost associated with the software [20, 21]. This

addition of overhead allows this model to capture the cost of overlapping communication

and computation. The LogGP model extends the LogP model to analyze the cost of long

messages [22]. Network contention parameters are investigated with the LoPC and LoGPC

1https://bluewaters.ncsa.illinois.edu/
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models [23, 24]. Accurate models exist for network contention in collective communication,

such as the MPI Alltoall operation [25]. Futhermore, learning algorithms yield accurate

contention prediction [26]. Topology-awareness can improve models, as hop count, or the

number of links traversed by a message, affects the cost of communication [27]. Computer

simulations can accurately estimate the cost of communication, but at a significantly in-

creased cost [28, 29, 30]. Network contention has been previously modeled for collective

communication, specifically the MPI Alltoall operation.

Throughout the remainder of this chapter, the max-rate model is used as a baseline.

All ping-pong timings are collected through multiple runs of Baseenv 2, a topology-aware

library useful for benchmarking performance. Each ping-pong test consists of four duplicate

timings, with exception to the original max-rate tests, which test the various numbers of

actively communicating processes-per-node one time each. Each Baseenv program is tested

three different times.

The models throughout this chapter are tested with Blue Waters, a Cray XE/XK machine

at the National Center for Supercomputing Applications (NCSA) at University of Illinois.

Blue Waters contains a 3D torus Gemini interconnect, in which each Gemini consists of two

nodes. The system contains 22 636 XE compute nodes, each comprised of two AMD 6276

Interlagos processors, as well as 4 228 XK compute nodes containing a single AMG processor

along with an NVIDIA GK110 Kepler GPU. All tests in this chapter are performed on

partitions of XE system nodes. The tests use a CrayMPI implementation that is similar to

MPICH.

3.3 NODE-AWARE MODELING

The standard max-rate model improves upon the postal model by adding a parameter for

injection bandwidth limits. Figure 3.2 displays the max-rate model versus measured times

when communicating a single message of various size between pairs of processes. These asso-

ciated models are computed with published Blue Waters parameters [17], and the measured

times are acquired from sending messages between processes that lie on the same socket,

different sockets of the same node, or on neighboring nodes of Blue Waters. While the ad-

dition of network injection limits yields large improvement over the standard postal model

when communicating rendezvous messages from a large number of processes per node, the

model overestimates for a large portion of these timings.

There is a large difference between intra-socket messages, intra-node messages that traverse

2http://wgropp.cs.illinois.edu/projects/software/index.html
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Figure 3.2: Ping-pong measured times (dots) versus max-rate model (lines) on Blue Waters
using parameters from [17].

intra-socket intra-node inter-node
α Rb α Rb α Rb RN

short 4.4e-07 2.09 8.3e-07 4.8e08 2.3e-06 1.3e09 ∞
eager 5.3e-07 3.09 1.2e-06 9.6e08 7.0e-06 7.5e08 ∞
rend 1.7e-06 6.09 2.5e-06 6.2e09 3.0e-06 2.9e09 6.6e09

Table 3.1: Parameters for node-aware max-rate model on Blue Waters.

across sockets, and communication between two nodes. Therefore, different parameters

should be used for each of these cases. Furthermore, intra-node messages are not injected

into the network, and therefore the simple postal model is sufficient. Figure 2.3 displays

the measured versus modeled times after splitting the model into on-socket, on-node but

off-socket, and off-node messages for Blue Waters. The parameters corresponding this node-

aware model are listed in Table 3.1.

3.4 ADDITIONAL PENALTIES

Realistic applications that involve point-to-point communication typically require com-

munication of more than one message from any process. However, standard communication

models assume the cost of sending a single message, and do not extend accurately to large

message counts. A ping-pong test with large message counts, described in Algorithm 3.1,

captures additional costs not observed in the postal or max-rate models.
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Algorithm 3.1: HighVolumePingPong

Input: rank: MPI rank of current process
p: process with which to communicate
n: number of messages to communicate
s: size of each message (in bytes)
send tags: list of n MPI send tags
recv tags: list of n MPI receive tags

if rank < p
for i < n do

MPI Isend(. . . , s, . . . , p, send tagsi, . . . )

MPI Waitall(n, . . . )

for i < n do
MPI Irecv(. . . , s, . . . , p, recv tagsi, . . . )

MPI Waitall(n, . . . )

else
for i < n do

MPI Irecv(. . . , s, . . . , p, recv tagsi, . . . )

MPI Waitall(n, . . . )

for i < n do
MPI Isend(. . . , s, . . . , p, send tagsi, . . . )

MPI Waitall(n, . . . )

3.4.1 Queue Search

Point-to-point communication conceptually requires multiple queues to be formed and

traversed, including a send queue comprised of sends that have been posted, a receive queue

of similarly posted receives, and an unexpected message queue containing communicated

messagesfor which no matching receive has been posted [31]. The function and availability

of these queues, which are dependent on MPI implementation, greatly affect the performance

of communicating a large number of messages.

The standard implementation of MPICH creates two separate receive queues, one for the

posted messages and the other for unexpected messages [32]. When an envelope is received,

the queue of posted messages is searched for a message in which all variables such as tag,

datatype, communicator, and sending process match the envelope. If no associated message

has been posted, the envelope and any corresponding data is added to the unexpected
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Figure 3.3: The measured versus modeled (max-rate) costs of sending a number of messages
between two processes that lie on the same node of Blue Waters. On the left, all receives are
posted in the same order that messages are received, resulting in no queue search cost. The
right plot displays the cost when receives are posted in the opposite order from which they
are received, resulted in a quadratic queue search cost that is not captured in the max-rate
model.

message queue. Similarly, when a message is posted by the application, the unexpected

message queue is traversed for any corresponding envelope. If no match is found, the message

is added to the posted message queue.

The CrayMPI implementation requires a receive queue to be searched linearly, yielding

an additional cost when communicating multiple messages. In the worst case, the messages

are received in the order opposite of which they are posted, requiring a traversal of an

entire queue for each receive. Therefore, the queue search is an O(n2) operation. More

specifically, the cost is n·(n+1)
2

operations in the worst case, with an average case of n·(n+1)
4

operations. Methods have been created to reduce this queue search cost, such as the use of

multiple queues in combination with hash maps [33]. However, as a standard queue search

is currently implemented in the version of MPI on Blue Waters, the large queue search cost

is investigated.

Figure 3.3 displays both the measured and modeled costs for performing the HighVolumePingPong

described in Algorithm 3.1 among all 16 processes local to a single node on Blue Waters.

The number of messages communicated ranges from 1 to 10 000 with the total number of

bytes injected into the network remaining constant. In the ideal scenario, the variables

send tagsi is equal to recv tagsi for all i < n, resulting in messages being received in the

same order as they are posted. Therefore, the first message in the searched queue yields a

match, resulting in an O(n) queue search cost. As a result, the max-rate model accurately

analyzes these measured times. In the worst-cast scenario, the variables send tagsi is equal
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to recv tagsn−i−1 for all i < n, posting receives in the opposite order from which messages

are received. Therefore, the entire queue is traversed for each receive, resulting in an O(n2)

queue search cost, yielding measured times that vary greatly from the model.

The large inaccuracies of traditional models for large message counts motivates adding an

additional parameter for the time required to search the receive queues. This addition to

the models is defined as

Tq = γ · n2 seconds, (3.1)

where γ is the cost of stepping through either the posted or unexpected message queue. This

cost is independent of message sending protocol as well as relative locations of the send and

receive processes. Therefore, there is a single parameter for all combinations of on-socket,

on-node, off-node, and short, eager, and rendezvous. The cost of stepping searching the

queue based on the worst case test, yields

γ = 8.4e− 09 seconds per search operation. (3.2)

Figure 3.4 shows the measured versus modeled times for the HighVolumePingPong test

in which the messages are received in the opposite order from which they are posted. This
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Figure 3.4: The measured versus modeled times for Blue Waters, where the model is a
combination of the max-rate model and the contention, for HighVolumePingPong tests with
a variety of message counts and sizes. The receives are posted in the opposite order of which
messages are received.

figure adds the queue search parameter to the original max-rate model, yielding a more

accurate analysis of the cost of large message counts.
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3.4.2 Network Contention

When a large amount of data is communicated throughout the network, multiple messages

are often required to traverse the same link, yielding contention within the network. Network

contention can occur on a small partition of Blue Waters when a one-dimensional partition of

the network is attained. Figure 3.5 shows a line of four Geminis, each containing two nodes,

within a one-dimension network partition. Communicating messages from all 32 processes

N0N1

G0

N2N3

G1

N4N5

G2

N6N7

G3

Figure 3.5: Four Gemini spanning a one-dimensional partition of the Blue Waters network.
A HighVolumePingPong test between all processes on Geminis G0 and G3, and equivalent
messages between G1 and G3 will result in a large amount of contention for the middle link
in the partition.

on Gemini 0 to corresponding processes on Gemini 2, and similarly sending from Geminis

1 to 3, requires all data to traverse the network link between Geminis 1 and 2. Therefore,

contention of this link occurs.

Figure 3.6 shows the measured and modeled costs of sending messages of various counts

and sizes among all processes on the row of Geminis, where the model contains both the

max-rate and queue search measures. The model underestimates the cost of communicating
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Figure 3.6: Measured versus modeled times for HighVolumePingPong communication among
the sets of Blue Waters Geminis described in Figure 3.5. The modeled times, which are
a combination of max-rate models and the queue search parameters, do not capture the
additional costs associated with contention.

a large amount of data at smaller message counts, before queue search time dominates. The
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additional measured cost can be modeled through an extra network contention parameter.

This addition measure is defined as

Tc = δ · ` seconds, (3.3)

where δ is the per-byte penalty acquired waiting for a network link and ` is the number of

bytes to traverse each link. Network contention only occurs during inter-node communica-

tion. However, the cost of contention is constant regardless of the message sending protocol.

The measure for all inter-node messages on Blue Waters is

δ = 1.0e− 10 seconds per byte. (3.4)

The number of bytes to traverse any link, or `, is dependent on the number of links each

message traverses. Therefore, knowledge of the specific partition of the network is required to

model the associated cost. This requirement is removed by assuming the nodes are connected

through a perfect three-dimension cube portion of Blue Waters’ three dimensional torus, as

displayed in Figure 3.7. Therefore, ` is defined as the following

18 19 20
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17

0 1 2

3 4 5

6 7 8

Figure 3.7: A perfect cube partition of Blue Waters Geminis is used to calculate the average
number of hops traversed by each byte of data. In this example, a message from a process
on Gemini 3 to Gemini 11 traverses 4 network links.

` = 2h3 · b · ppn bytes, (3.5)

where h is the average number of hops, or network links, traversed by each byte of data,

and b is the average number of bytes to be sent from any process. Therefore, as h3 yields

the number of Geminis within h hops of a given Gemini, this measure estimates network

contention assuming all bytes that can traverse one single link do. Furthermore, 2b · ppn
calculates the average number of bytes communicated from each Gemini.
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Figure 3.8 displays the measured and modeled costs of communicating a variety of mes-

sage counts and sizes among four Geminis of Blue Waters, with a one-dimensional network

contention. This figure includes the max-rate, queue search, and network contention models,
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Figure 3.8: Modeled versus measured times for HighVolumePingPong communication about
four Blue Waters Geminis spanning a one-dimensional partition of the networks. The pro-
cesses on the Geminis and nodes communicate as described in Figure 3.5. The modeled times
are a combination of max-rate models, queue search costs, and the contention parameter.

yielding improved accuracy in the model.

3.5 APPLICATIONS

Sparse matrix-vector (SpMV) and sparse matrix-matrix (SpGEMM) multiplication are

commonly used in a variety of applications such as numerical methods and graph algorithms.

When matrices are sufficiently sparse, point-to-point communication is used to send only

necessary values to the processes that need them.

Algebraic multigrid (AMG) is a sparse linear solver comprised of matrix operations. An

AMG hierarchy consists of successively coarser, but denser, matrices. Therefore, each level

in the hierarchy decreases in dimension, but often increases in the number of non-zeros per

row. The various levels require a variety of communication patterns, as the finer levels

require communication of few large messages while coarse levels require communicating a

larger number of small messages.

This section focuses on modeling the cost of matrix operations throughout an AMG hierar-

chy as communication costs vary drastically among the levels. The hierarchy is formed with

classical AMG to solve a three-dimensional unstructured linear elasticity problems formed
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with MFEM 3. All tests are performed with RAPtor [34] on 512 nodes of Blue Waters. The

original linear elasticity system consists of 840 000 unknowns and 65 million non-zeros.

Figure 3.9 displays the measured and modeled costs for performing a SpMV on each level

of the AMG hierarchy. The modeled costs are partitioned into the max-rate model, queue
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Figure 3.9: Measured versus modeled times for performing a SpMV on each level of linear
elasticity AMG hierarchy.

search costs, and network contention penalties. The cost of each SpMV is accurately captured

when all model parameters are included, with a large improvement over modeling with only

the max-rate model. Furthermore, the model indicates that the majority of communication

costs on coarse levels near the middle of the hierarchy are due mainly to queue search costs,

motivating efforts for minimizing the number of messages received or posted at any time.

The measured and modeled costs for performing an SpGEMM on each level of the AMG

hierarchy are shown in Figure 3.10. The models are again partitioned into max-rate, queue

search, and network contention costs, displaying a large improvement in the model accuracy

from the combination of queue search and contention parameters. These models show that

more significant costs of the SpGEMMs are from network contention, and while queue search

times could be reduced, larger savings would be acquired by reducing the number of bytes

to traverse any link.

Combining the max-rate model with queue search and network contention parameters

improves the accuracy of the model, but also over-predicts the timings. This over-prediction

is a result of using an upper bound on the queue search parameter, corresponding to the

cost of posting receives in the opposite order from which messages arrive. The upper bound

assumes the n·(n+1)
2

elements are searched, while only n elements are searched if the receives

are posted in the correct order. The queue search cost was measured for each of these

3http://mfem.org
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Figure 3.10: Measured versus modeled times for performing a SpGEMM on each level of
linear elasticity AMG hierarchy.

applications by probing for the first available message and computing its position in the

queue. The maximum cost on any process is consistently around n2

3
, which is still quadratic

and close to the worst case. Furthermore, reversing the ordering of the receives results in a

different process incurring the maximum queue search penalty, but the cost stays constant.

3.6 CONCLUSION

Common applications of point-to-point communication typically require a large number

of messages to be communicated, with large variability in corresponding messages sizes.

Furthermore, there are often combinations of intra-socket, intra-node, and inter-node mes-

sages, with the latter commonly traversing multiple links of the network. Therefore, the

traditional postal and max-rate models can be improved by splitting standard parameters

into on-socket, on-node, and off-node. Additional parameters for bounding the queue search

cost and estimating network contention further improve the accuracy of these models. When

all parameters are used, the models accurately capture the cost of irregular sparse matrix

operations on Blue Waters.

The model parameters are all computed with ping-pong and HighVolumePingPong tests

on few nodes, with the majority of tests requiring only a single node while network contention

parameters are calculated on up to eight nodes. However, these parameters remain accurate

when modeling sparse matrix operations on 512 nodes, indicating this model can be extended

to large core counts with no additional work.

This model may need alterations to accurately capture the costs on different systems. For

example, architectures with only a single socket per node, such as Blue Gene/Q machines,

will only need to partition the max-rate model into on-node and off-node messages. Further-

23



more, MPI implementations with an optimized queue search will require alternative queue

search penalties, while implementations with dynamic message routing will require a block

of communicating nodes to capture network contention in the test in Figure 3.5.

Limitations for this model include using the upper bound for queue search time and

assuming the process domain is mapped to a cube for network contention. The queue search

time will overestimate the actual cost, while the accuracy of the network contention penalty

can vary with actual partition acquired.

These models can be further extended to include topology-aware parameters, such as

additional latency required for messages traversing a large number of links. Furthermore,

the models motivate future directions for tested applications, such as methods for reducing

queue search time in SpMVs and network contention in SpGEMMs.

24



CHAPTER 4: SPARSIFICATION

Portions of this chapter appear in the publication ”Reducing Parallel Communication in

Algebraic Multigrid through Sparsification” [35].

4.1 INTRODUCTION

Algebraic multigrid (AMG) [36, 37, 13] is an O(n) linear solver for standard discretizations

of elliptic differential equations [38, 39, 40]. We consider AMG as a solver for the symmetric,

positive definite matrix problem

Ax = b, (4.1)

with A ∈ Rn×n and x, b ∈ Rn. AMG consists of two phases, a setup and a solve phase. The

setup phase defines a sequence or hierarchy of L coarse-grid and interpolation operators,

A1, . . . , AL and P0, . . . , PL−1 respectively. The solve phase iteratively improves the solution

through relaxation and coarse-grid correction.

The focus of this work is on the communication complexity of AMG in a distributed

memory, parallel setting. To be clear, we refer to the communication complexity as the time

cost of interprocessor communication, while referring to the computational complexity as the

time cost of the floating point operations. The complexity or total complexity is then the

cost of the algorithm, combining the communication and computational complexities.

There is a trade-off between per-iteration complexity and the resulting convergence —

this is controlled by the setup phase in AMG. Indeed, more accurate interpolation leads to

more entries in P` and this often improves the overall convergence. However, this also leads

to more entries in A`+1 through the Galerkin product, A`+1 = P T
` AP`, which is the most

common way to form A`+1 in AMG. As we will see, the number of entries in A`+1 is a good

proxy for the complexity of level `+ 1. In contrast, sparser interpolation and fast coarsening

reduce the complexity of a single iteration of an AMG cycle through fewer entries in A`+1

and fewer overall AMG levels, but can lead to a deterioration in convergence [39, 40].

The sparse matrices, A1, . . . , AL, in the multigrid hierarchy are, by design, smaller in

dimension, yet are often more dense as the level increases. As an example of this, Table 4.1

shows the properties of a hierarchy for a 3D Poisson problem with a 27-point finite element

stencil on a 100× 100× 100 grid. Classical AMG (Ruge-Stüben) is used for this example1.

As the problem size decreases on coarse levels, the average number of nonzero entries per

1See PyAMG [41] using ruge stuben solver(poisson((100,100,100), type=’FE’)) for more details.
Similar results are seen using a 7-point finite difference discretization.
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row increases. Here we denote by nnz the number of nonzero entries in the respective

matrix. Figure 4.1 highlights this example, where we see that both the density and pattern

of nonzeros increase on lower levels in the hierarchy.

level matrix size nonzeros nonzeros per row
` n nnz nnz⁄n

0 1 000 000 26 463 592 26
1 124 984 3 645 644 29
2 23 042 1 466 006 64
3 2991 198 043 66
4 570 32 680 57
5 117 4705 40

Table 4.1: Matrix properties using classical AMG for a 3D Poisson problem.

Level in AMG hierarchy

Figure 4.1: Matrix sparsity pattern using classical AMG for three levels in the hierarchy:
` = 3, 4, 5. The full matrix properties are given in Table 4.1.

In parallel, coarse levels that are more dense correlate with an increase in parallel com-

munication costs [42]. Figure 4.2 shows this by plotting the time spent on each level in an

AMG hierarchy during the solve phase. The time grows substantially on coarse levels, which

is attributed to increased communication costs from a decrease in sparsity. This effect is

common in AMG methods; Figure 4.2 shows two examples.

In this chapter we introduce a method for controlling the communication complexity in

AMG. The method increases the sparsity of coarse-grid operators (A`, ` = 1, . . . , L) by

eliminating entries in A`. This results in an improved balance between convergence and per-

iteration complexity in comparison to the standard algorithm. In addition, we develop an
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Figure 4.2: Left: Time spent on each level of the hierarchy during a single iteration of classical
parallel AMG for a 3D Poisson problem with hypre using Falgout coarsening [43] and hybrid
symmetric Gauss-Seidel relaxation. Right: Repeat experiment, but using aggressive HMIS
coarsening. The total time is much lower; however, the qualitative feature of expensive
coarse levels remains.

adaptive method which allows nonzero entries to be reintroduced into the AMG hierarchy,

thus recovering convergence if entry elimination is too aggressive.

In the context of this work, we define sparsity and density in terms of the average number

of nonzeros per row (or equivalently, the average degree of a node in the graph of the matrix).

In particular, density of a matrix A` of size n` is defined to be nnz(A`)/n`. The performance

of AMG is closely correlated with this metric, especially communication costs. In addition,

note that if a matrix A` is “sparser” or “denser” under this definition, it is also the case under

the more traditional density metric, nnz(A`)/n
2
` . Another advantage is that this measure

yields a meaningful comparison between matrices of different sizes. For example, a goal of

our algorithm is to generate coarse matrices as close as possible in terms of sparsity structure

to the fine grid matrix.

There are a number of existing approaches to reduce per-iteration communication com-

plexity at the cost of convergence. Aggressive coarsening, such as HMIS [40] and PMIS [40],

rapidly coarsens each level of the hierarchy, leading to a reduction in both the number and

the density of coarse operators. While these coarsening strategies reduce the cost of each

iteration or cycle in the AMG solve phase, they do so at the cost of accuracy, often resulting

in reduced convergence. Likewise, interpolation schemes such as distance-two interpola-

tion [44], improve the convergence for aggressive coarsening, but also result in an increase

in complexity.

Figure 4.2 shows that the time per level during the solve phase is reduced in comparison
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to standard coarsening, even though the same number of processes and problem size per core

are used. The use of HMIS coarsening is the only difference in problem settings between

these two runs. Regardless, while aggressive coarsening may reduce the total work required

during an iteration of AMG, the problem of expensive coarse levels still persists.

Another strategy for reducing communication complexity in AMG consists of systemat-

ically improving sparsity in the interpolation operators [44]. Removing nonzeros from the

interpolation operators reduces the complexity of the coarse-grid operators, however this

process can also have an unpredictable impact on coarse-level performance if used too ag-

gressively. Sparsity can alternatively be improved by considering a sparse approximation

to the transformation that relates the fine-grid matrix A purely injected to the coarse grid

with the less sparse but generally more desirable Galerkin coarse-grid matrix. This trans-

formation along with the injected matrix A go on to form a coarse grid that is sparser than

Galerkin but still yields good multigrid convergence for the several cases [45].

The typical approach to building coarse-grid operators, A`, is to form the Galerkin product

with the interpolation operator: A`+1 = P T
` A`P`. This ensures a projection in the coarse-

grid correction process and a guarantee on the reduction in error in each iteration of the

AMG solve phase (although the factor by which the error is reduced may be small for a

poorly converging method). Yet it is the triple matrix product in the Galerkin construction

that leads to a growth in the number of nonzeros in coarse-grid matrices. As such, there are

several approaches to constructing coarse operators that do not use a Galerkin product and

are termed non-Galerkin methods. These methods have been formed in a classical AMG

setting [15] and also in a smoothed aggregation [46] context. In general, these methods se-

lectively remove entries from coarse-grid operators, reducing the complexity of the multigrid

cycle. Assuming the appropriate entries are removed from coarse-grid operators, the result

is a reduction in complexity with little impact on convergence.

An alternative to limiting communication complexity is to directly determine the coarse-

grid stencil, an approach used in geometric multigrid. For instance, simply rediscretizing

the PDE on a coarse-level results in the same stencil pattern as for the original finest-grid

operator, thus avoiding any increase in the number of nonzeros in coarse-grid matrices.

More sophisticated approaches combine geometric and algebraic information and include

BoxMG [47, 48] and PFMG [49], where a stencil-based coarse-grid operator is built. Addi-

tionally, collocation coarse grids (CCA) [50] have been used on coarse levels to effectively

limit the number of nonzeros. Yet, all these methods rely on geometric properties of the

problem being solved. One exception is the extension of collocation coarse grids to algebraic

multigrid (ACCA) [51], which has shown similar performance to smoothed aggregation AMG.

Another approach is to consider sparsification of the graph of the sparse matrix. There

28



are several major approaches, grouped by how the difference between the original graph and

the sparsified graph is measured. One major approach finds graphs where the weight of

cuts in the original graph and the sparsified graph are close [52]. In another, called spectral

sparsification [53, 5], edges of the graph are removed if the resulting graph Laplacian remains

spectrally close to the original. Sparsification of graphs has been an active area of research

recently [54], concentrating on developing near linear-time algorithms for the sparsification.

While the immediate impact on the coarse-level matrices in a multigrid hierarchy has not

been studied, this could point to an additional improvement to the methods presented in

this work.

The approach developed in this work is to form a coarse-level operator that does not satisfy

a Galerkin product by modifying existing hierarchies. The novel benefit of the proposed

approach is that it is applicable to most AMG methods, requires no geometric information,

and provides a mechanism for recovery if the dropping heuristic is chosen too aggressively (see

Section 4.6). This chapter is outlined as follows. Section 4.2 describes the method introduced

in [15]. Section 4.3 introduces two new methods for reducing the communication complexity

of AMG: Sparse Galerkin and Hybrid Galerkin. Parallel performance models for these

methods are described in Section 4.4, and the parallel results are displayed in Section 4.5.

An adaptive method for controlling the trade-off between communication complexity and

convergence is described in Section 4.6. Finally, Section 4.7 makes concluding remarks.

4.2 METHOD OF NON-GALERKIN COARSE GRIDS

In this section we introduce terminology related to [15], which we term the method of

non-Galerkin coarse grids or non-Galerkin for the remainder of the chapter. In this case,

coarse-level operators do not satisfy the Galerkin relationship where A`+1 = P T
` A`P` for each

level `. The coarse-grid operators are first formed through the Galerkin product, followed

by a sparsification step that generates Â`+1 — see the call to sparsify in Algorithm 2.1.

As motivated in the previous section, fewer nonzeros in the coarse-grid operator reduce

the communication requirements. The sparser matrix Â`+1 replaces A`+1 and is then used

when forming the remaining levels of the hierarchy, creating a dependency between Â`+1

and all successive levels as shown in Figures 4.5a and 4.5b. Thus, this approach does not

preserve a coarse-grid correction corresponding to an A-orthogonal projection, as described

in Section 2.2.

In the following we use edges(A), for a sparse matrix A, to represent the set of edges in

the graph of A. That is, edges(A) = {(i, j) such thatAi,j 6= 0}, where Ai,j = (A)i,j is the

(i, j)th entry of A. In addition, we denote P̂ ` as the injection interpolation operator that
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Algorithm 4.1: sparsify from [15]

Input: Ac: coarse-grid operator
A: fine-grid operator
P : interpolation
P̂ : injection
S: classical strength matrix
γ: sparse dropping threshold parameter

Output: Âc, a sparsified Ac

M = edges(P̂ TAP + P TAP̂ ) {Edges in the minimal sparsity pattern}

N = ∅ {Edges to keep in Ac}

Âc = 0 {Initialize sparsified Ac}

for (Ac)i,j 6= 0 do

if (i, j) ∈M or
∣∣∣(Ac)i,j∣∣∣ ≥ γmaxk 6=i

∣∣∣(Ac)i,k∣∣∣
N ← N ∪ {(i, j), (j, i)} {Add strong edges or the required pattern}

for (Ac)i,j 6= 0 do

if (i, j) ∈ N
(Âc)i,j = (Ac)i,j

else
W = {k |Sj,k 6= 0, (i, k) ∈ N} {Find strong neighbors in the keep list}

for k ∈ W do

α =
|Sj,k|∑

m∈W |Sj,m| {Relative strength to k}

(Âc)i,k ← (Âc)i,k + α(Ac)i,j
(Âc)k,i ← (Âc)k,i + α(Ac)i,j
(Âc)k,k ← (Âc)k,k − α(Ac)i,j

Algorithm 4.2: Diagonal Lumping – Alternative for loop (§ 4.3.1)

1 for (Ac)i,j 6= 0 do

33 ismax←
∣∣∣(Ac)i,j∣∣∣ = maxk 6=i |(Ac)ik| and (i, k) /∈ N ∀ k 6= i and

∑
j Ai,j = 0

4 if (i, j) ∈ N or ismax {Keep if entry is the single, maximum nonzero}

5 (Âc)i,j = (Ac)i,j
else {Otherwise add to the diagonal}

(Âc)i,i ← (Âc)i,i + (Ac)i,j
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injects from level ` + 1 to the C points on level ` so that P̂ ` is defined as the identity over

the coarse points, leaving P̂ ` zero over the F -points.

The sparsify method for reducing the nonzeros in a matrix is described in Algorithm 4.1,

where the level subscripts are dropped for readability. The algorithm selectively removes

small entries outside a minimal sparsity pattern2 given byM` where edges(M`) = edges(P̂ T
` A`P`+

P T
` A`P̂ `). For a given tolerance γ, any entry Ai,j with (i, j) /∈M and |Ai,j| < γmaxk 6=i |Ai,k|

is considered insignificant and is removed. When entry Ai,j is removed, the value of Ai,j is

lumped to other entries that are strongly connected to Ai,j, and Ai,j is set to zero. This

reduces the per-iteration communication complexity and heuristically targets spectral equiv-

alence between the sparsified operator and the Galerkin operator [15, 46].

There is a trade-off between the communication requirements and the convergence rate.

Each entry in the matrix has a communication cost that is dependent on the number of

network links that the corresponding message travels in addition to network contention. In

addition, each entry in the matrix also influences convergence of AMG, with large entries

generally having larger impact (although this is not uniformly the case). Any entry that

has an associated communication cost outweighing the impact on convergence should be

removed. However, while it is possible to predict this communication cost based on network

topology and message size, the entry’s contribution to convergence cannot be easily prede-

termined. When dropping via non-Galerkin coarse grids, if the chosen drop tolerance is too

large, too many entries are removed and convergence deteriorates. Because the ideal drop

tolerance is problem dependent and cannot be predetermined, it is likely that the chosen

drop tolerance is suboptimal.

Figures 4.3a and 4.3b show the convergence and communication complexity, respectively,

of various AMG hierarchies for solving a 3D Poisson problem with the method of non-

Galerkin coarse grids. For both figures, the 27-point Laplacian was solved on 8192 processes

with 10, 000 degrees-of-freedom per process. The original Galerkin hierarchy converges in the

fewest number of iterations, but has the highest communication complexity. Non-Galerkin

removes an ideal number of nonzeros from coarse-grid operators (labeled ideal) when no

entries are removed from the first coarse level, and all successive levels have a drop tolerance

of 1.0. In this case, the communication complexity of the solver is greatly reduced with

little effect on convergence. However, if the first coarse level is also created with a drop

tolerance of 1.0, essential entries are removed (labeled too many). While the complexity of

2The goal of the minimal sparsity pattern is to maintain, at the minimum, a stencil as wide for the coarse
grid as exists for the fine grid. This is a critical heuristic for achieving spectral equivalence between the
sparsified operator and the Galerkin operator. The current M achieves this in many cases. It is possible in
some cases to reduce M further. See [15] for more details.
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the hierarchy is further reduced, the method fails to converge.
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Figure 4.3: Sparsity is improved in the AMG hierarchy for the 27-Point Laplacian on 8192
processes with 10, 000 degrees-of-freedom per core. The time spent on middle levels of the
AMG hierarchy is decreased (right) with little change to the residual after each iteration
(left).

If a large drop tolerance is chosen in the non-Galerkin method, the effect on convergence

can be determined after one or two iterations of the solve phase. At this point, if convergence

is poor, eliminated entries can be re-introduced into the matrix. However, with this method,

convergence improvements cannot be guaranteed. As shown in Algorithm 2.1, sparsifying on

a level affects all coarser-grid operators. Hence, adding entries back into the original operator

does not influence the impact of their removal on all coarser levels. Figure 4.4 shows how re-

adding entries is ineffective by plotting the required communication costs verses the achieved

convergence for both Galerkin and non-Galerkin AMG solve phases for the same 3D Poisson

problem. The data set Non-Galerkin (added back) is generated by removing entries with

a drop tolerance of 1.0 (everything outside of M) on the first coarse-grid operator and 0.0

(retaining everything) on all successive levels. This results in a non-convergent method. We

then add these removed entries back into the first coarse-grid operator, but this does not

reintroduce the entries which were removed from coarser grid operators as a result of the

non-Galerkin triple-matrix product P T
` Â`P`. Figure 4.4 shows that this hierarchy requires

little coarse-level communication after all entries have been reinstated to the first coarse-grid

operator. However as the required entries are not added back into all coarser grid operators,

the method still fails to converge.
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Figure 4.4: Convergence vs. communication of Galerkin and non-Galerkin hierarchies for the
27-point Poisson problem on 8192 processes, with 10, 000 degrees-of-freedom per process.
Relative residual per AMG iteration (black) vs the number of MPI sends per iteration (red)
(left), and (maximum) number of sends per level in AMG hierarchy (right)

4.3 SPARSE AND HYBRID GALERKIN APPROACHES

In this section we present two methods as alternatives to the method of non-Galerkin coarse

grids. The methods consist of forming the entire Galerkin hierarchy before sparsifying each

operator, yielding a lossless approach for increasing sparsity in the AMG hierarchy. The

first method, which is called the Sparse Galerkin method is described in Algorithm 4.3 (see

Line 1). Sparse Galerkin creates the entire Galerkin hierarchy as usual. The hierarchy is then

thinned as a post-processing step to remove relatively small entries outside of the minimal

sparsity pattern M = P̂ TAP + P TAP̂ using sparsify.

The second method that we introduce is called Hybrid Galerkin since it combines elements

of Galerkin and Sparse Galerkin to create the final hierarchy. The method is again lossless,

and is outlined in Algorithm 4.3 (see Line 2). After the Galerkin hierarchy is formed,

small entries outside are removed, this time using a modified, minimal sparsity pattern of

M = P̂ T ÂP + P T ÂP̂ .

The Sparse and Hybrid Galerkin methods retain the structure of the original Galerkin

hierarchy. Consequently, these methods introduce error only into relaxation and residual

calculations. The remaining components of each V-cycle in the solve phase (see amg solve),

such as restriction and interpolation are left unmodified. Therefore, the grid transfer oper-

ators do not depend on any sparsification, as shown in Figure 4.5. Here, we see that the

Sparse Galerkin method does not use the modified (or sparsified) operators to create the next

coarse-grid operator in the hierarchy. Conversely, Hybrid Galerkin uses the newly modified
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Algorithm 4.3: sparse hybrid setup

Input: A0: fine-grid operator
max size: threshold for max size of coarsest problem
γ1, γ2, . . . drop tolerances for each level
sparse galerkin: Sparse Galerkin method
hybrid galerkin: Hybrid Galerkin method

Output: Â1, . . . , ÂL

A1, . . . , AL, P0, . . . , PL−1 = amg setup(A0, max size, False)
Â0 = A0

for `← 1 to L do
if sparse galerkin

1 Â`+1 = sparsify(A`+1, A`, P`, S`, γ`) {Increase using the Sparse Method}

else if hybrid galerkin

2 Â`+1 = sparsify(A`+1, Â`, P`, S`, γ`) {Increase using the Hybrid Method}

operator to compute the sparsity pattern M for the next coarse-grid operator.

A0 P0

A1 P1

A2

(a) Galerkin

A0 P0

A1 Â1 P1

A2 Â2

(b) Non-Galerkin

A0 P0

A1 P1

A2

Â1

Â2

(c) Sparse Galerkin

A0 P0

A1 P1

A2

Â1

Â2

(d) Hybrid Galerkin

Figure 4.5: Dependencies for forming each operator in the various AMG hierarchies. The
difference between Sparse and Hybrid Galerkin dependencies is highlighted in red.

The new Sparse Galerkin and Hybrid Galerkin methods reduce the per-iteration cost in

the AMG solve cycle as less communication is required by each sparse, coarse-grid operator.

However, high-energy error may also be relaxed at a slower rate, yielding a reduction in

the convergence factor. As a result, the solve phase is more efficient when the reduction in

communication outweighs the change in convergence factor.

Similar to the method of non-Galerkin, it is difficult to predict the impact of removing

entries from Ac in Algorithm 4.1 on the relaxation process. However, as the structure of the

Galerkin hierarchy is retained, the convergence factor of the solve phase can be controlled on-

the-fly. In our approach, differences between Ac and Âc are stored while forming the sparse

approximations. Subsequently, if the convergence factor falls below a tolerance, entries can

be reintroduced into the hierarchy, allowing improvement of the convergence factor up to
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that of the original Galerkin hierarchy (see Section 4.6).

4.3.1 Diagonal Lumping

A significant amount of work is required in Algorithm 4.1 to improve the sparsity of each

coarse operator. When forming non-Galerkin coarse grids, this additional setup cost is hid-

den by the reduced cost of the triple matrix product with the sparsified matrix P T ÂP .

However, as the entire Galerkin hierarchy is initially formed as usual in our new methods

(Algorithm 4.3) the additional work greatly reduces the scalability of the setup phase, as

shown in Section 4.5.2. This significant cost suggests using an alternative method for spar-

sification of coarse-grid operators. When reducing the number of nonzeros from coarse-grid

operators with Sparse Galerkin or with Hybrid Galerkin, the structure of the Galerkin hier-

archy remains intact, allowing a more flexible treatment of increasing sparsity in the matrix.

For instance, one option is to remove entries by lumping to the diagonal rather than strong

neighbors, as described in Algorithm 4.1b. This variation of sparsify is beneficial for several

reasons, including: a much cheaper setup phase when compared to Algorithm 4.1; potential

to reduce the cost of the solve phase; reduced storage constraints for adaptive solve phases

(see Algorithm 4.4); and retaining positive-definiteness of coarse operators.

Algorithm 4.1b replaces the for loop in Algorithm 4.1. For each nonzero entry in the

matrix, the algorithm first checks if the entry is the maximum element in the row and if all

other entries in the row are selected for removal (see Line 3). In this case, the nonzero entry

is not removed if there is a zero row sum.

The method of diagonal lumping (Algorithm 4.1b) results in a cheaper setup phase than

Algorithm 4.1. The original non-Galerkin sparsify requires each removed entry to be

symmetrically lumped to significant neighbors. As a result, the process of calculating the

associated strong connections requires a large amount of computation through a costly loop

over neighbors of neighbors. Furthermore, to maintain symmetry, all matrix entries that

are not stored locally must be updated, requiring a significant amount of interprocessor

communication. Lumping these entries to the diagonal eliminates both the computational

and communication complexities.

Eliminating the requirement of lumping to strong neighbors yields potential for removing

a larger number of entries from the hierarchy, further reducing the communication costs of

the solve phase. The original version of Algorithm 4.1 requires that an entry must have

strong neighbors to be removed, as its value is lumped to these neighbors.

While relaxing the restrictions of the original non-Galerkin sparsify provides more op-

portunity to remove entries, the diagonal lumping also negatively influences convergence in
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some cases. Indeed, the energy of the operator can be increased as a result of the diago-

nal lumping, leading to a decrease in (spectral) equivalence with the original operator. To

mitigate this, if convergence suffers, entries can be easily reintroduced into the hierarchy,

improving convergence during the solve phase.3 As removed entries are only added to the

diagonal, the storage of both the sparse matrix along with removed entries is minimal. In

addition, these entries can be restored by inserting their values to the original positions,

and subtracting these values from the associated diagonal entries as shown in Algorithm 4.4.

The process of reintroducing these entries requires no interprocessor communication as well

as a low amount of local computational work.

Diagonal lumping also preserves matrix properties such as symmetric positive-definiteness

(SPD). As described in the following theorem, if the sparsity of a diagonally dominant SPD

matrix is increased using diagonal lumping, the resulting matrix remains SPD. Consequently,

Sparse and Hybrid Galerkin with diagonal lumping can be used in preconditioning many

methods such as conjugate gradient. It is important to note, that while SPD matrices are

an attractive property for AMG, AMG methods do not guarantee diagonal dominance of

the coarse-grid operators. Yet, in many instances this property is preserved, for example for

more standard elliptic operators.

Theorem 4.1. Let A be SPD and diagonally dominant. If Â is produced by Algorithm 4.1b,

then it is symmetric positive semi-definite and diagonally dominant.

Proof. Let A be SPD with diagonal dominance,

|Ai,i| ≥
∑
k 6=i

|Ai,k| ,∀i. (4.2)

Symmetry of Â is guaranteed from the symmetry of both A and the N from Algorithm 4.1.

For all off-diagonal entries (i, j), (j, i) ∈ N ,

Âi,j = Ai,j = Aj,i = Âj,i, (4.3)

by Line 5 in Algorithm 4.1b and the symmetry of A.

The positive-definiteness is guaranteed by the diagonal dominance and a Gershgorin disc

argument. The proof proceeds by starting with the matrix A and then considering the

3Another mitigating factor occurs when diagonal lumping is done after the construction of the hierarchy,
when Â` will be used only for relaxation. At this point, Â` must only effectively damp high energy modes and
leave low energy modes largely untouched. Since diagonal lumping of relatively small entries (as controlled
by γ) largely impacts spectral equivalence for low energy modes, this mitigates any effect from reduced
spectral equivalence.

36



change made to A by the elimination of each entry. Initially, all the Gershgorin discs of A

are strictly on the right-side of the origin, thus implying that all eigenvalues are non-negative.

Then, assume that we eliminate some arbitrary entry Ai,j, (i, j) ∈ N . This results in row i

being updated

Ai,i ← Ai,i + Ai,j and Ai,j ← 0 (4.4)

If Ai,j > 0, then the center of the Gershgorin disc is shifted to the right, and the radius

shrinks, thus keeping the disc to the right of the origin and preserving definiteness. If

Ai,j < 0, then the center of the disc is shifted to the left by |Ai,j|, but the radius of the disc

also shrinks by |Ai,j|. This also keeps the disc to the right of the origin and preserves semi-

definiteness. Furthermore, since each disc is never shifted to the left half plane, diagonal

dominance is also preserved. The proof then proceeds by considering all of the entries to be

eliminated.

Remark 4.1. If any row of A is strictly diagonally dominant, as often happens with Dirichlet

boundary conditions, then Â will be positive definite. Essentially, Algorithm 4.1b never shifts

a Gershgorin disc to the left, so Â can have no 0 eigenvalue.

4.4 PARALLEL PERFORMANCE

In this section we use a parallel performance model to illustrate the per-level costs asso-

ciated with each of the six methods:

Galerkin - Classic coarsening in AMG, as outlined in Algorithm 2.1;

Non-Galerkin - The base algorithm presented in [15];

Sparse Galerkin - The new Algorithm 4.3 with sparse galerkin and full lumping from

Algorithm 4.1;

Sparse Galerkin (Diag) - The new Algorithm 4.3 with sparse galerkin and diagonal

lumping from Algorithm 4.1b;

Hybrid Galerkin - The new Algorithm 4.3 with hybrid galerkin and full lumping from

Algorithm 4.1; and

Hybrid Galerkin (Diag) - The new Algorithm 4.3 with hybrid galerkin and diagonal

lumping from Algorithm 4.1b.
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The solve phase of AMG (see Algorithm 2.2) is largely comprised of sparse matrix-vector

multiplication, thus we model each method by assessing the cost of performing a SpMV on

each level of the hierarchy. We focus on the operators A`, as the work required for this matrix

is more costly than the restriction and interpolation operations. Specifically, we employ an

α–β model to capture the cost of the parallel SpMV based on the number of nonzeros in

A. We denote p as the number of processors, α as the latency or startup cost of a message,

and β as the reciprocal of the network bandwidth [16, 55]. In addition, nnzp represents the

average number of nonzeros local to a process, while sp and np are the maximum number of

MPI sends and message size across all processors. Finally, we use c to represent the cost of

a single floating-point operation. With this we model the total time as

T = 2 c nnzp + max
p
sp(α + βnp). (4.5)

For the model parameters above we use the Blue Waters supercomputer at the University of

Illinois at Urbana-Champaign [56, 57]. The latency and bandwidth were measured through

the HPCC benchmark [58], yielding α = 1.8× 10−6 and β = 1.8× 10−9. Since the achieved

floprate depends on matrix size, we determine the value of c by timing the local SpMV.

Specifically, letting nnzlocal be the number of nonzeros local to the processor and Tlocal the

time to perform the local portion of the SpMV, we compute c = Tlocal/2nnzlocal for each matrix

in the hierarchy.

The minimal per-level cost associated with the non-Galerkin and Sparse/Hybrid Galerkin

methods occurs when entries are removed with a drop tolerance of γ = 1.0. Using the model,

(4.5), this is highlighted in Figure 4.6 for both the Laplace and rotated anisotropic diffusion

problems (a full description of these problems is given in Section 4.5). We see that both

non-Galerkin and Hybrid Galerkin have potential to minimize the per-level cost. However,

when the per-level cost is minimized, the convergence of AMG often suffers. Therefore, less-

aggressive drop tolerances such as γ < 1.0 may remove fewer entries, increasing the per-level

cost, but due to better convergence will improve the overall cost of the solve phase. Indeed

for the rotated anisotropic diffusion problem, this is the case, where we reduce γ at fine

levels in the hierarchy in order to retain convergence (not shown for brevity).

4.5 PARALLEL RESULTS FOR SPARSE AND HYBRID GALERKIN

In this section we highlight the parallel performance of the Sparse and Hybrid Galerkin

methods. We consider scaling tests on the familiar 3D Laplacian since this is a common

multigrid problem used to establish a baseline. In order to test problems where AMG
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Figure 4.6: Modeled minimal cost of a single SpMV on each level of the AMG hierarchy for
Laplace (left) and rotated anisotropic diffusion (right), for an aggressive drop tolerance of
1.0 on each level.

convergence is suboptimal, we consider a 2D rotated anisotropic diffusion problem. Finally,

we test our methods on a suite of matrices from the Florida Sparse Matrix Collection. All

computations were performed on the Blue Waters system at the University of Illinois at

Urbana-Champaign [56]. Each method was implemented and solved with hypre [38, 59],

using default parameters unless otherwise specified. In summary, we compare the solve and

setup times for the six methods considered in Section 4.4 while preconditioning a Krylov

method such as CG or GMRES in each test.

The drop tolerances for each method vary by level, using a combination of 0.0, 0.01, 0.1,

and 1.0 across the coarse levels. Six combinations of these drop tolerances are tested for

the various test cases, and the series yielding the minimum solve time for each is selected.

Note: At 100, 000 cores, the best drop tolerances from the second largest run size are used

due to large costs associated with running 6 drop tolerances at this core count. Details of

the drop tolerances used in all the below tests are found in the Supplemental Materials due

to length.4

Generally, the drop tolerances are aggressive for the simple isotropic 3D Laplacian ex-

ample, where for instance in Figures 4.7 and 4.8, the Sparse Galerkin (Diag) method used

the values of [0.0, 0.1], i.e., no dropping on the first coarse level and then 0.1 on all sub-

sequent levels. For the more complex examples such as rotated anisotropic diffusion, the

4In addition, the modifications to hypre v2.11.0 are stored at https://github.com/lukeolson/hypre/
releases/tag/SISC-sparse-hybrid-galerkin and https://github.com/lukeolson/hypre/releases/

tag/SISC-sparse-hybrid-galerkin-adaptive.
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drop tolerances are less aggressive and usually begin on coarser levels. For instance in Fig-

ures 4.7 and 4.8, the Sparse Galerkin (Diag) method used values of [0.0, 0.0, 0.0, 0.1], i.e.,

no dropping occurs until the third coarse level, where 0.1 is used from that point onward

on all coarser levels. Overall, the drop tolerance is similar to other multigrid parameters,

such as the strength-of-connection drop tolerance. Some experimentation with a problem

type is required, but thereafter a general, conservative parameter choice can be made for

subsequent use.

We consider the diffusion problem

−∇ ·K∇u = 0, (4.6)

with two particular test cases for our simulations. Also, as problems with less structure

result in increased density on coarse levels, we consider a subset from the Florida sparse

matrix collection. The test problems are as follows:

Laplace - Here, we use K = I on the unit cube with homogeneous Dirichlet boundary

conditions. Q1 finite elements are used to discretize the problem using a uniform mesh,

leading to a familiar 27-point stencil. The preconditioner formed for the 3D Laplacian

uses aggressive coarsening (HMIS) and distance-two (extended classical modified) inter-

polation. The interpolation operators were formed with a maximum of five elements per

row, and hybrid symmetric Gauss-Seidel was the relaxation method.

Rotated Anisotropic Diffusion - In this case, we consider a diffusion tensor with homo-

geneous Dirichlet boundary conditions of the form K = QTDQ, where Q is a rotation

matrix and D is a diagonal scaling defined as

Q =

(
cos(θ) sin(θ)

− sin(θ) cos(θ)

)
D =

(
1 0

0 ε

)
. (4.7)

Q1 finite elements are used to discretize a uniform, square mesh. In the following tests we

use θ = π
8

and ε = 0.001. In each case, the preconditioner uses Falgout coarsening [43],

extended classical modified interpolation and hybrid symmetric Gauss-Seidel.

Florida Sparse Matrix Collection - We consider a subset of all real, symmetric, posi-

tive definite matrices from the Florida sparse matrix collection with size over 1,000,000

degrees-of-freedom. In addition we consider only the cases where GMRES preconditioned

with Galerkin AMG converges in fewer than 100 iterations. Each problem uses HMIS

coarsening and so-called extended+i interpolation if possible. In some cases, however,
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Galerkin AMG does not converge with these options; in these cases Falgout coarsening

and modified classical interpolation are used. Relaxation for all systems is hybrid symmet-

ric Gauss-Seidel. Note: When necessary for convergence, some hypre parameters, such as

the minimum coarse-grid size and strength tolerance, vary from the default.

The following results demonstrate that the diagonally lumped Sparse and Hybrid Galerkin

methods are able to perform comparably to non-Galerkin. Non-Galerkin and Sparse/Hybrid

Galerkin all significantly reduce the per-iteration cost by reducing communication on coarse

levels. Since the method of non-Galerkin is multiplicative in construction, the setup times

are often much lower in comparison to standard Galerkin. However, Sparse and Hybrid

do not observe this benefit since they are constructed in a post-processing step. While

the per-iteration work is decreased for all methods, the convergence suffers for the case of

rotated anisotropic diffusion problems with non-Galerkin at large scales. However, Sparse

and Hybrid Galerkin converge at rates similar to the original Galerkin hierarchy, yielding

speedup in total solve times. Moreover, in a strong scaling study, we observe that Hybrid

Galerkin is competitive, particularly at large core counts.

4.5.1 Improving sparsity in AMG Hierarchies

The significant number of nonzeros on coarse levels creates large, relatively dense matrices

near the middle of the AMG hierarchy, yielding large communication costs for each SpMV

performed on these levels. As the solve phase of AMG consists of many SpMVs on each level

of the hierarchy, the time spent on coarse levels can increase dramatically. Sparse, Hybrid,

and non-Galerkin can all reduce both the cost associated with communication as well as the

time spent on each level during a solve phase.

Figure 4.7 shows the time spent on each level of the hierarchy during a single iteration of

AMG, for both test cases with 10,000 degrees-of-freedom per core using 8192 cores. Both the

method of non-Galerkin coarse grids, as well as the Sparse and Hybrid Galerkin methods,

reduce the time required on levels near the middle of the hierarchy. Non-Galerkin has a

larger impact on the time spent on middle levels of the hierarchy for the Laplace problem

than Sparse and Hybrid Galerkin. However, for the anisotropic problem, diagonally-lumped

Hybrid Galerkin reduces level-time similarly to non-Galerkin. This is due to a large reduction

in the number of messages required in each SpMV as shown in Figure 4.8. The reduction in

total size of all messages communicated is relatively small.

The increase in time spent on each level, as well as the associated communication costs

of these levels, becomes more pronounced at higher processor counts in a strong scaling
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Figure 4.7: Time spent on each level of the AMG hierarchy during a single iteration of the
solve phase for Laplace (left) and Rotated Anisotropic Diffusion (right), each with
10,000 degrees-of-freedom per core.
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Figure 4.8: Number of sends required to perform a single SpMV on each level of the AMG
hierarchy for: Laplace (left) and Rotated Anisotropic Diffusion (right), each with
10,000 degrees-of-freedom per core.

study. Figure 4.9 illustrates this by plotting the per-level times required during a single

iteration of AMG, as well as the number of messages communicated during a SpMV for

the rotated anisotropic diffusion problem with 1,250 degrees-of-freedom per core using 8192

cores. Compared with the 10,000 degrees-of-freedom per core in Figures 4.7 and 4.8 there

is a sharper increase in time required for levels near the middle of the hierarchy due to the
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increasing dominance of communication complexity.
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Figure 4.9: For each level of the AMG hierarchy, time per iteration of AMG (left) and number
of messages sent during a single SpMV (right) for the Rotated Anisotropic Diffusion
problem with 1,250 degrees-of-freedom per core.

4.5.2 Costs of Weakly Scaled Setup Phases

Each sparsification method can lead to reduced communication costs in the middle of

the hierarchy. However, removing insignificant entries from coarse-grid operators requires

additional work in the setup phase. In the non-Galerkin method, setup times are reduced

since the increased sparsity is used directly in the triple-matrix product required to form

each successive coarse-grid operator. However, for the new methods, Sparse and Hybrid

Galerkin, the entire Galerkin hierarchy is first constructed so that the sparsify process on

each level requires additional work. Figure 4.10 shows the times required to setup an AMG

hierarchy for rotated anisotropic diffusion, with Laplace setup times scaling in a similar

manner. While there is a slight increase in setup cost associated with the Sparse and Hybrid

Galerkin hierarchies, this extra work is nominal. Therefore, while the majority of this

additional work is removed when using diagonal lumping, the differences in work required in

the setup phase between these two lumping strategies is insignificant for the problems being

tested.
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4.5.3 Weak Scaling of GMRES Preconditioned by AMG

In this section we investigate the weak scaling properties of the methods. Figure 4.11

shows both the average convergence factor and total time spent in the solve phase for a weak

scaling study with rotated anisotropic diffusion problems at 10,000 degrees-of-freedom per

core using GMRES preconditioned by AMG. GMRES is used over CG because Algorithm 4.1

guarantees symmetry but not positive-definiteness of the preconditioner. In many cases,

positive-definiteness is preserved, but when using more aggressive drop tolerances, we have

observed this property being lost. While the convergence of both diagonally-lumped Sparse

and Hybrid Galerkin remain similar to that of Galerkin, the non-Galerkin method converges

more slowly. Therefore, while non-Galerkin and diagonally-lumped Hybrid Galerkin yield

similar communication requirements, GMRES preconditioned by Hybrid Galerkin performs

significantly better as fewer iterations are required.

Remark 4.2. With the chosen drop tolerances, non-Galerkin does not converge for this

anisotropic problem at 100, 000 cores. In this case, nothing was dropped from the first three

coarse levels of the hierarchy. On the fourth coarse level a drop tolerance of 0.01 was used,

and the fifth was sparsified with a tolerance of 0.1. The remaining levels were sparsified with

a drop tolerance of 1.0. This was determined to be the best tested drop tolerance sequence for

smaller run sizes, and multiple drop tolerance sequences were not tuned at this large problem

size due to the significant costs. However, a better drop tolerance could yield a convergent

non-Galerkin method at this scale.
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Figure 4.10: Time required to setup AMG hierarchy for Rotated Anisotropic Diffusion
with 10,000 degrees-of-freedom per core.
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Figure 4.11: Convergence factors (left) and times (right) for weak scaling of Rotated
Anisotropic Diffusion (10,000 degrees-of-freedom per core), solved by preconditioned GM-
RES. For large problem sizes, non-Galerkin AMG does not converge, and timings indicate
when the maximum iteration count was reached.

The efficiency of weakly scaling to p processes is defined as Ep = T1
Tp

, where T1 is the time

required to solve the problem on a single process and Tp is the time to solve on p processes.

The efficiency of solving weakly scaled rotated anisotropic diffusion problems with non-

Galerkin, Sparse Galerkin, and Hybrid Galerkin, relative to the efficiency of Galerkin AMG,

are shown in Figure 4.12. While both the original and diagonally-lumped Sparse and Hybrid

Galerkin methods scale more efficiently than Galerkin, the poor convergence of non-Galerkin

on large run sizes yields a reduction in relative efficiency.

4.5.4 Strong Scaling of GMRES Preconditioned by AMG

We next consider the rotated anisotropic diffusion system with approximately 10, 240, 000

unknowns using cores ranging from 128 to 100, 000. Therefore, the simulation is reduced from

80, 000 degrees-of-freedom per core when run on 128 cores, to just over 100 degrees-of-freedom

per core on 100, 000 cores. Computation dominates the total cost of solving a problem

partitioned over relatively few processes, as each process has a large amount of local work.

However, as the problem is distributed across an increasing number of processes, the local

work decreases while communication requirements increase. Therefore, the time required to

solve a problem is reduced with strong scaling, but only to the point where communication

complexity begins to dominate. The efficiency of strongly scaling to p processes is defined

as Ep = T1
pTp

. Figure 4.13 shows the efficiency of solving a strongly scaled rotated anisotropic
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Figure 4.12: Efficiency of solving weakly scaled Rotated Anisotropic Diffusion at 10,000
degrees-of-freedom per core with various methods, relative to that of the Galerkin
hierarchy.

diffusion problem with GMRES preconditioned by the various sparse methods. In each case

we observe improvements over standard Galerkin.
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Figure 4.13: Efficiency of non-Galerkin and Sparse/Hybrid Galerkin methods in a strong
scaling study, relative to Galerkin AMG for Rotated Anisotropic Diffusion.

A strong scaling study is also performed on the subset of matrices from the Florida sparse

matrix collection. These problems were tested on 64, 128, 256, and 512 processes. Figure 4.14

shows the time required to perform a single V-cycle for each of the matrices in the subset,
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relative to the time required by Galerkin AMG. All methods reduce the per-iteration times

for each matrix in the subset. Furthermore, the total time required to solve each of these

matrices is also reduced, as shown in Figure 4.15. While Sparse Galerkin provides some

improvement, the Hybrid and non-Galerkin methods are comparable, particularly at high

core counts.
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Figure 4.14: Time (relative to Galerkin) per iteration for each matrix in the Florida Sparse
Matrix Collection, using p = 64, 128, 256, and 512.

4.5.5 Diagonal Lumping Alternative and PCG

Diagonal lumping retains positive definiteness of diagonally-dominant coarse-grid opera-

tors as described in Theorem 4.1. Therefore, as the preconditioned conjugate gradient (PCG)
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Figure 4.15: Time (relative to Galerkin) per AMG solve for each matrix in the Florida Sparse
Matrix Collection, using p = 64, 128, 256, and 512.

method requires both the matrix and preconditioner to be symmetric and positive-definite,

the Laplace and anisotropic diffusion problems are solved by conjugate gradient precondi-

tioned by the diagonally-lumped Sparse and Hybrid Galerkin hierarchies. Figure 4.16 shows

the solve phase times for solving the weakly scaled rotated anisotropic diffusion problem

with PCG. As with GMRES, both the Sparse and Hybrid Galerkin preconditioners decrease

the time required in the AMG solve phase during a weak scaling study.
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Figure 4.16: Weak scaling solve time for Rotated Anisotropic Diffusion, solved by PCG
preconditioned by various AMG hierarchies.

4.6 ADAPTIVE SOLVE PHASE

The previous results describe the case where good drop tolerances were known a priori for

sparsify. However, as the appropriate drop tolerance changes with problem type, problem

size, and even level of the AMG hierarchy, a good drop tolerance is often not easily realized.

When the drop tolerance is too small, few entries are removed from the hierarchy and the

communication complexity remains the same. However, if the drop tolerance is too large,

the solver is non-convergent, as described in Section 4.2.

In this section we consider an adaptive method that attempts to add entries back into the

hierarchy as a deterioration in convergence is observed. This is detailed in Algorithm 4.4.

The algorithm initializes a Sparse or Hybrid Galerkin hierarchy and proceeds by executing

k iterations of a preconditioned Krylov method — e.g. PCG. If the convergence is below

a tolerance, the coarse levels are traversed until a coarse grid operator is found on which

entries were removed with a drop tolerance greater than 0.0. Entries are then added back

to this coarse-grid operator, reducing the drop tolerance by a factor of 10. Any new drop

tolerance below γmin = 0.01 is rounded down to 0.0. This continues until entries have been

reintroduced into s coarse-grid operators. At this point, the Krylov method continues, using

the most recent value for x unless the previous iterations diverged from the true solution.

This entire process is then repeated until convergence. The adaptive solve phase requires

additional iterations over Galerkin AMG, as initial iterations of this method may not con-

verge. However, the goal of this solver is to guarantee convergence similar to Galerkin

AMG. Speed-up over Galerkin AMG is still dependent on choosing reasonable initial drop

49



tolerances.

If the Krylov method is not flexible, such as PCG or GMRES, then it must be restarted

after the preconditioner has been edited. On the other hand, a flexible method, such as

FGMRES, would not have to be restarted, but requires greater memory storage (and possibly

also more computational work) than PCG. While the new algorithms are agnostic to the

Krylov scheme, we use restarted PCG in order to directly compare schemes.

Example 4.1. As an example, consider the case of a hierarchy with 6 levels using drop

tolerances of [0, 0.01, 0.1, 1.0, 1.0, 1.0] — i.e., Â1 retains all entries from A1, Â2 and Â3

result from sparsify with γ = 0.01 and γ = 0.1, etc. Suppose that adaptive solve with

k = 3 and s = 2 results in 3 iterations of PCGand a large residual. The adaptive solve finds

the first level containing a sparsified coarse grid matrix, namely Â2. The drop tolerance on

this level is changed from 0.01 to 0.0, and the original coarse matrix A2 is sparsified with

the new drop tolerance. Furthermore, since s = 2 the drop tolerance on level 3 is reduced

from 0.1 to 0.01, and A3 is also sparsified. PCG then restarts with the new hierarchy. If

convergence continues to suffer after 3 iterations, the hierarchy is updated again, but since

Â2 has γ2 = 0.0, entries are reintroduced into coarse matrices Â3 and Â4 instead.

Using Algorithm 4.4, Figure 4.17 shows both the relative residual of the system after each

iteration as well as the communication costs of PCG using three different AMG hierarchies:

standard Galerkin, Sparse Galerkin with diagonal lumping and aggressive dropping, and

Sparse Galerkin with diagonal lumping modified with adaptivity. For the adaptive case,

we purposefully choose an overly aggressive initial drop tolerance so that entries can be

added back multiple times and one coarse level at a time to show the effect on convergence

and communication. Initially, when the drop tolerance is aggressive, the associated com-

munication costs are low, but the resulting PCG iterations do not converge; this provides a

baseline. As sparse entries are reintroduced into the hierarchy, convergence improves, while

only slightly increasing the associated communication cost. When entries are reintroduced

into the hierarchy, the preconditioner for PCG changes, and hence, the method must be

restarted. After restarting the method, convergence improves.

4.7 CONCLUSION

We have introduced a lossless method to reduce the work required in parallel algebraic

multigrid by removing weak or unimportant entries from coarse-grid operators after the

multigrid hierarchy is formed. This alternative to the original method of non-Galerkin coarse

grids is similarly capable of reducing the communication costs on coarse levels, yielding an
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Algorithm 4.4: adaptive solve

Input: A, b, x0

Â1, . . . , ÂL Sparse/Hybrid Galerkin coarse grid matrices
A1, . . . , AL original Galerkin coarse grid matrices
P0, . . . , PL−1

k PCG iterations before convergence test
s AMG levels per update
γ0, . . . , γL sparsification drop tolerance used at each level
tol convergence tolerance
sparse galerkin Sparse Galerkin method
hybrid galerkin Hybrid Galerkin method

Output: x

x = x0

r0 = b− Ax0

while ‖r‖/‖r0‖ ≤ tol

M = preconditioner(amg solve, Â1, . . . , ÂL, P0, . . . , PL−1)
x = PCG(A, b, x, k,M) {Call k steps of preconditioned CG}

r = b− Ax
if ‖r‖
‖r0‖ ≤ tol
continue

else
for ` = 0, . . . , L do

if γ` > 0
`start ← ` {Find finest level that uses dropping}

for ` = `start . . . `start + s do

γ` =

{
γ`
10
, if γ`

10
> γmin

0, otherwise
{Determine new dropping parameter}

{γmin is the min(γ0 . . . γL)}

if sparse galerkin {Re-add entries at the new dropping tolerance}
Â` =sparsify(A`, A`−1, P`−1, S`−1, γ`)

else if hybrid galerkin {Re-add entries at the new dropping tolerance}

Â` =sparsify(A`, Â`−1, P`−1, S`−1, γ`)

overall reduction in solve times. Furthermore, this method retains the original Galerkin

hierarchy, allowing many of the restrictions of non-Galerkin to be relaxed. As a result,

removed entries are easily lumped directly to the diagonals, greatly reducing setup costs,

while also reducing communication complexity during the solve phase. Furthermore, as

entries are added to the diagonal, entries removed from the matrix are stored and adaptively
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Figure 4.17: Relative residual (black) and number of MPI sends (red) per iteration when
solving the Laplace problem with: (1) PCG using Galerkin AMG; (2) Hybrid Galerkin with
aggressive dropping (labeled Too Many); (3) Hybrid Galerkin solved with Algorithm 4.4,
using k = 3, s = 1, and γ0 . . . γL set to the same drop tolerances as the aggressive case.

reintroduced into the hierarchy if necessary for convergence. Hence, the trade-off between

convergence and the communication costs is controlled at solve-time with little additional

work.
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CHAPTER 5: NODE-AWARE MESSAGE AGGLOMERATION

Portions of this chapter appear in the paper ”Node Aware Sparse Matrix-Vector Multipli-

cation”, to appear in JPDC [60].

5.1 INTRODUCTION

Sparse matrix-vector multiplication (SpMV) is a widely used operation in many simula-

tions and the is main kernel in iterative solvers. The focus of this section is on the parallel

SpMV, namely

w ← A · v (5.1)

where A is a sparse N ×N matrix and v is a dense N -dimensional vector. This operation,

described in Section 2.1, lacks scalability due to large costs associated with communication.

Machine topology plays an important role in the cost of communication [61]. Multicore

distributed systems present new challenges in communication as the bandwidth is limited

while the number of cores participating in communication increases [62]. Injection limits

and network contention are significant roadblocks in the SpMV operation [63], motivating

the need for SpMV algorithms that take advantage of the machine topology. The focus

of the approach developed in this section is to use the node-processor hierarchy to more

efficiently map communication, leading to notable reductions in SpMV costs on modern

HPC systems for a range of sparse matrix patterns. Throughout this section, the term node

aware refers to knowledge of the mapping of processes to physical nodes, although other

aspects of the topology — e.g. socket information — could be used in a similar fashion. The

mapping of virtual ranks to physical processors can be easily determined on many super

computers. The flag MPICH RANK REORDER METHOD can be set to a predetermined ordering

on Cray machines, while modern Blue Gene machines allow the user to specify the ordering

among the coordinates A, B, C, D, E, and T through the variable RUNJOB MAPPING or a

runscript option of --mapping.

There are a number of existing approaches for reducing communication costs associated

with sparse matrix-vector multiplication. Communication volume in particular is a limiting

factor and the ordering and parallel partition of a matrix both influence the total volume of

communicated data. In order to reduce this communication, graph partitioning techniques

are used to identify more efficient layouts in the data [64, 65, 7, 8]. ParMETIS [66] and

PT-Scotch [67], for example, provide parallel partitioning of matrices that often lead to im-

proved system loads and more efficient sparse matrix operations. Communication volume

53



is accurately modeled through the use of a hypergraph [68]. As a result, hypergraph parti-

tioning also leads to a reduction in parallel communication requirements, albeit at a larger

one-time setup cost. Topology-aware task mapping is used to accurately map partitions to

the allocated nodes of a supercomputer, reducing the overall cost associated with commu-

nication [69, 70, 71, 72, 73]. The approach introduced in this section complements these

efforts by providing an additional level of optimization in handling communication.

Topology-aware methods and aggregation of data are commonly used to reduce communi-

cation costs, particularly in collective operations [74, 75, 76, 77]. Aggregation of data is used

in point-to-point communication through Tram, a library for streamlining messages in which

data is aggregated and communicated only through neighboring processors [78]. Further-

more, hybrid programming is often used on SMP nodes, with the combination of MPI and

OpenMP yielding improvement over standard MPI approaches by reducing inter-node com-

munication [79]. Furthermore, the task-based hybrid approach further reduces costs through

an overlap of communication and local computation [80, 81, 82]. The method presented in

this section aggregates messages at the node level and communicates all aggregated data

at once, yielding little structural change from standard MPI communication while reducing

overall cost.

The performance of matrix operations is also improved through the use of hybrid architec-

tures and accelerators, such a graphics processing units (GPUs). The throughput of GPUs

allows for improved performance when memory access patterns are optimized [83, 84, 85].

Many preconditioners for iterative methods, such as algebraic multigrid, are dominated in

execution cost by SpMV operations and therefore lack scalability due to large communication

costs. A variety of methods exist for altering the preconditioning algorithms to reduce the

communication costs associated with each SpMV [86, 35, 87].

This section focuses on increasing the locality of communication during a SpMV to reduce

the amount of communication injected into the network. Section 5.2 describes a reference

algorithm for a parallel SpMV, which resembles the approach commonly used in practice.

A performance model is also introduced in Section 5.3, which considers the cost of intra-

and inter-node communication and the impact on performance. A new SpMV algorithm

is presented in Section 5.4, which reduces the number and size of inter-node messages by

increasing the significantly cheaper intra-node communication. The code and numerics are

presented in Section 5.5 to verify the performance.
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5.2 BACKGROUND

Modern supercomputers incorporate a large number of nodes through an interconnect to

form a multi-dimensional grid or torus network. Standard compute nodes are comprised of

one or more multicore processors that share a large memory bank. The algorithm developed

in this section targets a general machine with this layout and the results are highlighted

on Blue Waters, a Cray machine at the National Center for Supercomputing Applications.

Blue Waters consists of 22 640 Cray XE nodes, each containing two AMD 6276 Interlagos

processors for a total of 16 cores per node, and 4 228 Cray XK nodes consisting of a single

AMD processor along with an NVIDIA Kepler GPU1. The nodes are connected through

a three-dimensional torus Gemini interconnect, with each Gemini serving two nodes. The

remainder of this section with focus on only the Cray XE nodes within Blue Waters.

Consider a system with np processes distributed across nn nodes, resulting in ppn processes

per node. Rank r ∈ [0, np − 1] is described by the tuple (p, n) where 0 ≤ p < ppn is the local

process number of rank r on node n. Assuming SMP-style ordering, the first ppn ranks are

mapped to the first node, the next ppn to the second node, and so on. Therefore, rank r

is described by the tuple
(
r mod ppn, b r

ppn
c
)

. Thus, for the remainder of the section, the

notation of rank r is interchangeable with (p, n).

Parallel matrices and vectors are distributed across all np ranks such that each process

holds a portion of the linear system. Let R(r) be the rows of an N×N sparse linear system,

w ← A · v, stored on rank r. In the case of an even, contiguous partition where the kth

partition is placed on the kth rank, R(r) is defined as

R(r) =

{⌊
N

np

⌋
r, . . . ,

⌊
N

np

⌋
(r + 1)− 1

}
(5.2)

or equivalently as

R((p, n)) =

{⌊
N

np

⌋
(p, n), . . . ,

⌊
N

np

⌋
((p, n) + 1)− 1

}
. (5.3)

The rows of a matrix A are partitioned into on-process and off-process blocks, as described

in Section 5.1. Accounting for parallel nodal awareness, the off-process block is further

partitioned into on-node and off-node blocks, as described in Example 5.1.

Example 5.1. Suppose the parallel system consists of six processes distributed across three

nodes, as displayed in Figure 5.1. Let the linear system w ← A · v displayed in Figure 5.2 be

partitioned across this processor layout with each process holding a single row of the matrix

1https://bluewaters.ncsa.illinois.edu/hardware-summary

55



P0
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P4
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N0 N1 N2

Figure 5.1: An example parallel system with six processes distributed across three nodes.

and associated row of the input vector. In this example, the diagonal entry falls into the

w A v

P0

P1

P2

P3

P4

P5

Figure 5.2: An example 6× 6 sparse matrix for the parallel system in Figure 5.1. The solid
shading denotes blocks that require only on-node communication, while the striped shading
denotes blocks that require communication with distant nodes.

on-process block, as the corresponding vector value is stored locally. The off-process block,

which requires communication, consists of all off-diagonal non-zeros as the associated vector

values are stored on other processes.

For any process (p, n), the on-node columns of A correspond to vector values that are

stored on some process (s, n), where s 6= p. Similarly, the off-node columns of A correspond

to vector values stored on some process (q,m), where m 6= n. To make this clearer, we define

the following

on process(A, (p, n)) = {Aij 6= 0 | i, j ∈ R((p, n))} (5.4)
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off process(A, (p, n)) =

{Aij 6= 0 | i ∈ R((p, n)), j 6∈ R((p, n))} (5.5)

on node(A, (p, n)) =

{Aij 6= 0 | ∃ q 6= pwith i ∈ R((p, n)), j ∈ R((q, n))} (5.6)

and

off node(A, (p, n)) =

{Aij 6= 0 | ∃ q,m 6= nwith i ∈ R((p, n)), j ∈ R((q,m))} . (5.7)

5.2.1 Standard SpMV

For a sparse matrix-vector multiply, w ← A · v, each process receives all values of v

associated with the non-zero entries in the off-process block of A. For example, if rank r

contains a non-zero entry of A, Aij, at row i, column j, then rank s with row j ∈ R(s)

sends the jth vector value, vj, to rank r. Typically, these communication requirements are

determined as the sparse matrix is formed [88, 89, 90].

Example 5.2. During a SpMV, data corresponding to off-process columns is gathered on

process and communicated as a single message between processes, regardless of the node on

which each process lies. Figure 5.3 displays the process of sending data from all processes

on node n to a single process on node m. Multiple messages are communicated between the

pair of nodes. Furthermore, Figure 5.4 exemplifies the process of communicating data from a

single process on node n to all processes on node m. Not only does standard communication

result in communication of multiple messages between the set of nodes, but duplicate data is

also communicated.

In the reference SpMV, for each rank r there is a list of processes to which data is sent,

as well as the global vector indices to be sent to each. The function P(r) defines the list of

processes to which a rank r sends. Specifically,

P(r) = {t |Aij 6= 0 with i ∈ R(t), j ∈ R(r), r 6= t} (5.8)

For each t in P(r), define the function D(r, t) to return the global vector indices that process
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n m

q

Figure 5.3: Standard communication of data from processes across node n and node m to a
process q on node m results in multiple messages between sets of nodes.

n m

p

Figure 5.4: Standard communication from a process p on node n to all processes on node m
results in multiple messages and duplication data communicated between the pair of nodes.
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r sends to process t. This function is defined as follows.

D(r, t) = {i |Aij 6= 0 with i ∈ R(t), j ∈ R(r), r 6= t} (5.9)

Consider a standard SpMV for the linear system described in Example 5.1. Table 5.1 lists

the processes to which each rank must send, while Table 5.2 displays the indices that each

rank r sends to any rank t.

r
0 1 2 3 4 5

P(r) {3, 4, 5} {0, 3} {3, 4} {0, 2} {1} {0}

Table 5.1: Communication pattern for rank r in Example 5.1, containing the values for P(r).
.

r
0 1 2 3 4 5

t

0 {} {1} {} {3} {} {5}
1 {} {} {} {} {4} {}
2 {} {} {} {3} {} {}
3 {0} {1} {2} {} {} {}
4 {0} {} {2} {} {} {}
5 {0} {} {} {} {} {}

Table 5.2: Each column r lists the indices of values sent to each process t in P(r), namely
D(r, s).

.

With these definitions, the standard or reference SpMV is described in Algorithm 5.1. It is

important to note that the parallel communication in Algorithm 5.1 is executed independent

of any locality in the problem. That is, messages sent to another process may be both on-

node or off-node depending on the process, however this is not considered in the algorithm.

5.3 COMMUNICATION MODELS

The performance of Algorithm 5.1 is sub-optimal since it does not take advantage of

node locality in the communication. To see this, a communication performance model is

developed in this section. One approach is that of the max-rate model [62], which describes

the communication time as

T = α +
ppn · s

min(RN, ppnRmax

, (5.10)
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Algorithm 5.1: standard spmv

Input: r
A|R(r)

v|R(r)

Output: w|R(r)

Aon process = on process(A|R(r))
Aoff process = off process(A|R(r))
for t ∈ P(r) do

for i ∈ D(r, t) do
bsend ← v|R(r)i

MPI Isend(bsend, . . . , t, . . .)

brecv ← ∅
for t s.t. r ∈ P(t) do

MPI Irecv(brecv, . . . , t, . . .)

local spmv(Aon process, v|R(r))
MPI Waitall

local spmv(Aoff process, brecv)

where α is the latency or start-up cost of a message, which may include preparing a message

for transport or determining the network route; s is the number of bytes to be communicated;

ppn is again the number of communicating processes per node; Rmax is the achievable message

rate of each process or bandwidth; and RN is the peak rate of the network interface controller

(NIC). In the simplest case of ppn = 1, the familiar postal model suffices:

T = α +
s

Rmax

. (5.11)

MPI contains multiple message passing protocols, including short, eager, and rendezvous.

Each message consists of an envelope, including information about the message such as

message size and source information, as well as message data. Short messages contain very

little data which is sent as part of the envelope. Eager and rendezvous messages, however,

send the envelope followed by packets of data. Eager messages are sent under the assumption

that the receiving process has buffer space available to store data that is communicated.

Therefore, a message is sent without checking buffer space at the receiving process, limiting

the associated latency. However, if a message is sufficiently large, rendezvous protocol must

be used. This protocol requires the sending process to inform the receiving rank of the

message so that buffer space is allocated. The message is sent only once the sending process

is informed that this space is available. Therefore, there is a larger overhead with sending a
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α Bmax BN

Short 4.0 · 10−6 −1.8 · 107 ∞
Eager 1.1 · 10−5 6.2 · 107 ∞
Rend 2.0 · 10−5 6.1 · 108 5.5 · 109

Table 5.3: Measurements for α, Rmin, and RN for Blue Waters.

α` Bmax`

Short 1.3 · 10−6 4.2 · 108

Eager 1.6 · 10−6 7.4 · 108

Rend 4.2 · 10−6 3.1 · 109

Table 5.4: Measurements for intra-node variables, α` and Rmax`
.

message using rendezvous protocol. Table 5.3 displays the measurements for α, Rmax, and

RN for Blue Waters, as determined for the max-rate model.

The max-rate model can be improved by distinguishing between intra- and inter-node

communication. If the sending and receiving processes lie on the same physical node, data is

not injected into the network, yielding low start-up and byte transport costs. As intra-node

messages are not injected into the network, communication local to a node can be modeled

as

T` = α` +
s`

Rmax`

, (5.12)

where α` is the start-up cost for intra-node messages; s` is the number of bytes to be

transported; and Rmax`
is the achievable intra-node message rate.

Nodecomm2, a topology-aware communication program, measures the time required to

communicate on various levels of the parallel system, such as between two nodes of varying

distances and between processes local to a node. Communication tests between processes

local to one node were used to calculate the intra-node model parameters, as displayed in

Table 5.4.

Furthermore, Figure 2.3 shows the time required to send a single message of varying sizes.

The thin lines display Nodecomm measurements for time required to send a single message,

as either inter- or intra-node communication. Furthermore, the thick lines represent the

time required to send a message of each size, according to the max-rate model in (5.10) and

intra-node model in (5.12). This figure displays a significant difference between the costs of

intra- and inter-node communication.

2See https://bitbucket.org/william_gropp/baseenv
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n m

p

q

Figure 5.5: The various arrows exemplify the process of communicating data from each
process on node n to processes on node m through a three-step algorithm. The bold circles
on node n represent vector values communicated to node m.

5.4 NODE AWARE PARALLEL SPMV

To reduce communication costs, the algorithm proposed in this section decreases the

number and size of messages being injected into the network by increasing the amount of

intra-node communication, which is less-costly than inter-node communication. This trade-

off is accomplished through a so-called node aware parallel SpMV (NAPSpMV), where values

are gathered in processes local to each node before being sent across the network, followed

by a distribution of processes on the receiving node. As a result, as the matrix is formed

each process (p, n) determines the communicating processes during the various steps of

a NAPSpMV, as well as the accompanying data. A high level overview of the process

is described in Example 5.3. It is important to note that the communication for each

NAPSpMV is load-balanced such that all processes local to node n send and receive both

a similar number and size of messages through inter-node communication. Therefore, it is

assumed that the nodes n and m in Example 5.3 are only a portion of the parallel system,

and n is communicating with other nodes in a similar fashion. If the parallel system consists

only of nodes n and m, each process on node n would send a portion of the data to node m.

Example 5.3. During each NAPSpMV, off-node data is communicated through a three-

step process, as displayed in Figure 5.5. This figure displays a portion of a parallel system

consisting of 8 processes partitioned across two nodes, labeled n and m. The solid circles on

node n represent vector values sent to node m. Therefore, each process on node n must send

values to processes on node m. Instead of sending directly to destination processes, each

process (s, n) sends to the process labeled (p, n), displayed by the dashed arrows on node n.

Process (p, n) then sends all collected values through the network to process (q,m). Finally,

process (q,m) distributes received values among the processes local to node m, displayed by
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n

p

Figure 5.6: An example of how vector values corresponding with matrix entries in the on-
node block are communicated. All values (p, n) must receive from other processes (q, n) are
communicated directly as nothing is injected into the network.

the dashed arrows on node m.

On-node data is communicated directly between the process on which the vector values are

stored and that which requires the data, as displayed in Figure 5.6. In this example, the solid

circles represent vector values that are stored on each process (s, n) and needed by (p, n).

This data is sent directly between the processes in a single step.

5.4.1 Inter-node communication setup

To eliminate the communication of duplicated messages, a list of communicating nodes

is formed for each node n along with the accompanying data values. These lists are then

distributed across all processes local to n by balancing the number of nodes and volume of

data for communication. To facilitate this, the function N (n) defines the set of nodes to

which the processes on node n must send,

N (n) = {m | ∃ p, q s.t. Aij 6= 0

with i ∈ R((q,m)), j ∈ R((p, n)), n 6= m} .
(5.13)

Table 5.5 contains N (n), the list of nodes to which each node n sends. The associated

n
0 1 2

N (n) {1, 2} {0, 2} {0}

Table 5.5: Communication requirements for each node n in Example 5.1.

data values are defined for each node m ∈ N (n) with E(n,m), which returns the data indices
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to be sent from node n to node m. That is,

E(n,m) = {i | ∃ p, q s.t. Aij 6= 0 with i ∈ R((q,m)) ,

j ∈ R((p, n)), n 6= m} . (5.14)

Extending Example 5.1, Table 5.6 displays the global vector indices, E(n,m), for each set of

nodes n and m.

n
0 1 2

m
0 {} {3} {4, 5}
1 {0, 1} {} {}
2 {0} {2} {}

Table 5.6: In Example 5.1, each column n contains the values sent from n to m, as in
E(n,m).

T ((p, n)) defines the nodes to which (p, n) must send, that is the nodes in N (n) that

are distributed to process (p, n). Similarly, U((p, n)) contains the nodes that send to (p, n).

Specifically,

T ((p, n)) = {m ∈ N (n) |m maps to (p, n)} , (5.15)

U((p, n)) = {m |n ∈ N (m), n maps to (p, n)} . (5.16)

This section considers a simple distribution in which the node m ∈ N (n) to which the

most data |D(n,m)| is sent is mapped to process (0, n), the node with the second most data

is mapped to process (1, n), and so on. The opposite ordering is used for U((p, n)), mapping

the node n ∈ N (m) with largest |D(m,n)| to process (ppn − 1, n), the second largest to

process (ppn−2, n), etc. If there are fewer nodes in N (n) than there are processes per node,

a single node is mapped to multiple local processes so that all processes communicate. There

are various other possible mapping strategies, such as mapping a node m to the process (p, n)

storing the majority of the data in D(n,m). However, as this would only affect intra-node

communication requirements, these mappings are not explored in this section.

The processor layout in Example 5.1 is displayed in Table 5.7, where the columns contain

the send and receive nodes that are mapped to each process.

Finally, G((p, n)) defines the set of all off-node processes to which process (p, n) sends data
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(p, n)
(0, 0) (1, 0) (0, 1) (1, 1) (0, 2) (1, 2)

T ((p, n)) {1} {2} {0} {2} {0} {}
U((p, n)) {2} {1} {} {0} {1} {0}

Table 5.7: Processor mappings for N (n), namely T ((p, n)) and U((p, n)) for Example 5.1.

during the inter-node communication step of the NAPSpMV. Specifically,

G((p, n)) = {(q,m) |m ∈ T ((p, n)), n ∈ U((q,m))} . (5.17)

Following Example 5.1, the columns of Table 5.8 list the indices of the values that each (p, n)

sends, G((p, n)). Finally, let I((p, n), (q,m)) define the global data indices corresponding to

(p, n)
(0, 0) (1, 0) (0, 1) (1, 1) (0, 2) (1, 2)

G((p, n)) {(1, 1)} {(1, 2)} {(1, 0)} {(0, 2)} {(0, 0)} {}

Table 5.8: Inter-node communication requirements of each process (p, n) for Example 5.1
.

the values sent from process (p, n) to (q,m):

I((p, n), (q,m)) =

{E(n,m) |m ∈ T ((p, n)), n ∈ U((q,m)} (5.18)

The global vector indices to which each process (p, n) sends and receives for Example 5.1

are displayed in Table 5.9.

(p, n)
(0, 0) (1, 0) (0, 1) (1, 1) (0, 2) (1, 2)

(q
,m

)

(0, 0) {} {} {} {} {4, 5} {}
(1, 0) {} {} {3} {} {} {}
(0, 1) {} {} {} {} {} {}
(1, 1) {0} {} {} {} {} {}
(0, 2) {} {} {} {2} {} {}
(1, 2) {} {0, 1} {} {} {} {}

Table 5.9: Inter-node communication requirements for each set of processes (p, n) and (q,m).
Each column (p, n) contains the indices of values sent from (p, n) to (q,m).
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5.4.2 Local Communication

The function Gsend((p, n)) for p = 0, . . . , ppn − 1, describes evenly distributed inter-node

communication requirements for all processes local to node n. However, many of the vector

indices to be sent to off-node process (q,m) ∈ D((p, n), (q,m)), are not stored on process

(p, n). For instance, in Table 5.9, process (0, 1) sends global vector indices 0 and 1. However,

only row 1 is stored on process (0, 1), requiring vector component 0 to be communicated

before inter-node messages are sent.

Similarly, many of the indices that a process (q,m) receives from (p, n) are redistributed

to various processes on node n. Table 5.9 requires process (1, 2) to receive vector data

according to indices 0 and 1. Process (0, 2) uses both of these vector values, yielding a

requirement for redistribution of data received from inter-node communication. Therefore,

local communication requirements must be defined.

Each NAPSpMV consists of multiple steps of intra-node communication. Let a function

L((p, n), locality) define all processes, local to node n, to which process (p, n) sends mes-

sages, where locality is a tuple describing the locality of both the original location of the

data as well as its final destination. The locality of each position is described as either

on node, meaning a process local to node n, or off node, meaning a process local to node

m 6= n.

There are three possible combinations for locality:

• the data is initialized on node with a final destination off node;

• the original data is off node while the final destination is on node; or

• both the original data and the final location are on node.

These three types of intra-node communication are described in more detail in the remainder

of Section 5.4.2.

For each process (s, n) ∈ L((p, n), locality), J ((p, n), (s, n), locality) defines the global

vector indices to be sent from process (p, n) to (s, n) through intra-node communication. This

notation is used in following sections.

Local redistribution of initial data

During inter-node communication, process (p, n) sends all vector values corresponding

to the global indices in I((p, n), (q,m)) to each process (q,m) ∈ G((p, n)). The indices in
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I((p, n), (q,m)) originate on node n, but not necessarily process (p, n). Therefore, the initial

vector values must be redistributed among all processes local to node n.

Let L((p, n), (on node, off node)) represent all processes, local to node n, to which (p, n)

sends initial vector values. This function is defined as

L((p, n), (on node, off node)) =

{(s, n) | ∃ j ∈ R((p, n)), j ∈ I((s, n), (q,m))} . (5.19)

The local processes to which each (p, n) sends initial data in Example 5.1 are displayed in

Table 5.10.

(p, n)
(0, 0) (1, 0) (0, 1) (1, 1) (0, 2) (1, 2)

L {(1, 0)} {} {(1, 1)} {(0, 1)} {} {(0, 2)}

Table 5.10: Initial intra-node communication requirements for each process (p, n) in Exam-
ple 5.1. The row of the table describes L((p, n), (on node, off node)).

Furthermore, the data global vector indices sent from process (p, n) to each (s, n) ∈
L((p, n), (on node, off node)) are defined as

J ((p, n), (s, n), (on node, off node)) =

{i | i ∈ R((p, n)),∀ i ∈ G((s, n))} . (5.20)

The global vector indices that each (p, n) must send to other processes on node n in Exam-

ple 5.1 are displayed in Figure 5.11.

(p, n)
(0, 0) (1, 0) (0, 1) (1, 1) (0, 2) (1, 2)

(q
,n

)

(0, 0) {} {} — — — —
(1, 0) {0} {} — — — —
(0, 1) — — {} {3} — —
(1, 1) — — {2} {} — —
(0, 2) — — — — {} {5}
(1, 2) — — — — {} {}

Table 5.11: Global vector indices of initial data that is communicated between processes
local to each node n in Example 5.1. Each column contains the indices of values sent from
(p, n) to (q, n). Note: dashes (—) throughout the table represent processes on separate
nodes, which do not communicate during intra-node communication.
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Local redistribution of received off-node data

During inter-node communication, process (p, n) sends all data with final destination on

node m to process (q,m) ∈ G((p, n)). Process (q,m) then distributes these values across

the processes local to node m. Let L((q,m), (off node, on node)) define all processes local

to node m to which process (q,m) sends vector values that have been received through

inter-node communication. This function is defined as

L((q,m), (off node, on node)) =

{(s,m) | ∃Aij 6= 0 with i ∈ R((s,m)),

j ∈ I((p, n), (q,m))} . (5.21)

This is highlighted, for Example 5.1, in Table 5.12. Furthermore, the data global vector

(p, n)
(0, 0) (1, 0) (0, 1) (1, 1) (0, 2) (1, 2)

L {} {(0, 0)} {} {} {} {(0, 2)}

Table 5.12: Intra-node communication requirements containing processes to which each (p, n)
sends received inter-node data, according to Example 5.1. The row of the table describes
L((p, n), (off node, on node)).

indices sent from process (q,m) to each (s,m) ∈ L((q,m), (off node, on node)) are defined

as

J ((q,m), (s,m), (off node, on node)) =

{j ∈ I((p, n), (q,m)) |Aij 6= 0 with i ∈ R((s,m))} . (5.22)

The global vector indices that (p, n) sends to local process (q, n), received through inter-node

communication in Example 5.1, are displayed in Table 5.13.

Fully Local Communication

A subset of the values needed by a process (p, n) are stored on local process (s, n). One

advantage is that these values bypass the three-step communication, and are communicated
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(p, n)
(0, 0) (1, 0) (0, 1) (1, 1) (0, 2) (1, 2)

(q
,n

)

(0, 0) {} {3} — — — —
(1, 0) {} {} — — — —
(0, 1) — — {} {} — —
(1, 1) — — {} {} — —
(0, 2) — — — — {} {1}
(1, 2) — — — — {} {}

Table 5.13: Global vector indices of received inter-node data that must be communicated
between processes local to each node n in Example 5.1. Each column contains the indices of
values sent from (p, n) to (q, n). Note: dashes (—) throughout the table represent processes
on separate nodes, which cannot communicate during intra-node communication.

directly. Let L((p, n), (on node, on node)) define all processes local to node n to which (p, n)

sends vector data. This function is defined as

L((p, n), (on node, on node)) =

{(s, n) | ∃Aij 6= 0 with i ∈ R((s, n)), j ∈ R((p, n))} . (5.23)

The processes local to node n, to which (p, n) must send initial vector data in Example 5.1

are displayed in Table 5.14. Furthermore, the global vector indices sent from process (p, n)

(p, n)
(0, 0) (1, 0) (0, 1) (1, 1) (0, 2) (1, 2)

L {} {(0, 0)} {} {(0, 1)} {} {}

Table 5.14: Intra-node communication requirements containing processes to which each
process (p, n) must send vector data, according to Example 5.1. The row of the table
describes L((p, n), (on node, on node)).

to each (s, n) ∈ L((p, n), (on node, on node)) is defined as follows.

J ((p, n), (s, n), (on node, on node)) =

{j | ∃Aij 6= 0 with i ∈ R((s, n)), j ∈ R((p, n))} . (5.24)

The global vector indices which (p, n) must send to each local process (s, n) in Example 5.1

are displayed in Table 5.15.
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(p, n)
(0, 0) (1, 0) (0, 1) (1, 1) (0, 2) (1, 2)

(s
,n

)

(0, 0) {} {1} — — — —
(1, 0) {} {} — — — —
(0, 1) — — {} {3} — —
(1, 1) — — {} {} — —
(0, 2) — — — — {} {}
(1, 2) — — — — {} {}

Table 5.15: Global vector indices communicated between processes local to each node n
in Example 5.1. Each column contains the indices of values sent from (p, n) to (q, n).
Note: dashes (—) throughout the table represent processes on separate nodes, which cannot
communicate during intra-node communication.

Algorithm 5.2: local comm

Input: (p, n) : tuple describing local rank and
node of process

v|R((p,n)): rows of input vector v local to
process (p, n)

locality: locality of input and output data

Output: `recv: values that rank (p, n) receives from
other processes

{Initialize sends}

for (s, n) ∈ L((p, n), locality) do
for i ∈ J ((p, n), (s, n), locality) do

`send ← v|R((p,n))i

MPI Isend(`send, . . . , (s, n), . . .)

{Initialize receives}

`recv ← ∅
for (s, n) s.t. (p, n) ∈ L((s, n), locality) do

MPI Irecv(`recv, . . . , (s, n), . . .)

{Complete sends and receives}

MPI Waitall

5.4.3 Alternative SpMV Algorithm

The method of communicating vector values to on-node processes is described in Algo-

rithm 5.2. Using the definitions for the various steps of intra- and inter-node communica-

tion, the NAPSpMV is described in Algorithm 5.3, where local spmv() refers to a row-wise,
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non-distributed SpMV — e.g. with Intel’s MKL library or with the Eigen Library. It is

important to note that many slight variations to the algorithm are possible. The fully

local communication has no dependencies, and may be performed anytime before calling

local spmv(Aon node, b`→`). Furthermore, the function local spmv(Aon process, v|R) has no

communication requirements and, hence, can be performed at any point in the algorithm.

Algorithm 5.3: NAPSpMV

Input: (p, n): tuple describing local rank and node

of process

A|R: rows of matrix A local to process (p, n)

v|R: rows of input vector v local to process

(p, n)

Output: w|R: rows of output vector w ← Av,

local to process (p, n)

Aon process = on process(A|R)

Aon node = on node(A|R)

Aoff node = off node(A|R)

b`→` ← local comm((p, n), v|R, (on node→ on node))

b`→n` ← local comm((p, n), v|R, (on node→ off node))

{Initialize sends}

for (q,m) ∈ G((p, n)) do

for i ∈ I((p, n), (q,m)) do

gsend ← bi`→n`

MPI Isend(gsend, . . . , (q,m), . . .)

{Initialize receives}

grecv ← ∅
for (q,m) s.t. (p, n) ∈ G((q,m)) do

MPI Irecv(grecv, . . . , (q,m), . . .)

{Serial SpMV for local values}

local spmv(Aon process, v|R)

{Serial SpMv for on-node values}

local spmv(Aon node, b`→`)

{Complete sends and receives}

MPI Waitall

bn`→` ← local comm((p, n), v|R, (off node→ on node))

{Serial SpMV for off-node values}

local spmv(Aoff node, bn`→`)
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5.5 RESULTS

In this section, the parallel performance and scalability of the NAPSpMV in comparison to

the standard SpMVis presented. The matrix-vector multiplication in an algebraic multigrid

(AMG) hierarchy is tested for both a structured 2D rotated anisotropic and for unstructured

linear elasticity on 32 768 processes in order to expose a variety of communication patterns.

In addition, scaling tests are considered for random matrices with a constant number of non-

zeros per row to investigate problems with no structure. Lastly, scaling tests on the largest

15 matrices from the SuiteSparse matrix collection are presented. All tests are performed

on the Blue Waters parallel computer at University of Illinois at Urbana-Champaign.

AMG hierarchies consist of successively coarser, but denser levels. Therefore, while a

standard SpMV performed on the original matrix often requires communication of a small

number of large messages, coarse levels require a large number of small messages to be

injected into the network. Figure 5.7 shows that both the number and size of inter-node

messages required on each level of the linear elasticity hierarchy are reduced through use

of the NAPSpMV. There is a large reduction in communication requirements for coarse

levels of the hierarchy, which includes a high number of small messages. However, as the

NAPSpMV requires redistribution of data among processes local to each node, the intra-node

communication requirements increase greatly for the NAPSpMV, as shown in Figure 5.8.
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Figure 5.7: The maximum number (top) and size (bottom) of inter-node messages com-
municated by a single process during a standard SpMV and NAPSpMV on each level of the
linear elasticity AMG hierarchy.

While there is an increase in intra-node communication requirements, the reduction in

more expensive inter-node messages results in a significant reduction in total time for the

NAPSpMV algorithm, particularly on coarser levels near the middle of each AMG hierarchy,

as shown in Figure 5.9.
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Figure 5.8: The maximum number (top) and size (bottom) of intra-node messages com-
municated by a single process during a standard SpMV and NAPSpMV on each level of the
linear elasticity AMG hierarchy.
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Figure 5.9: The time required to perform the various SpMVs on each level of the rotated
anisotropic (left) and linear elasticity (right) AMG hierarchies.

Random matrices, formed with a constant number of non-zeros per row, lack structure that

is found in many finite element discretizations. As these matrices are distributed across an

increasingly large number of processes, non-zeros are more likely to be located in off-process

blocks of the matrix. Therefore, both weak and strong scaling studies of random matrices

yield increases in communication requirements with scale. The sparsity pattern of random

matrices varies with random number generator seeds and are dependent on the number of

non-zeros per row. Therefore, the standard SpMV and NAPSpMV were performed on five

different random matrices for each tested density of 25, 50, and 100 non-zeros per row, as

shown in Figure 5.10. The standard and NAPSpMV costs for all random matrices of

equivalent density are comparable. Furthermore, there is little difference in costs between

each density. Therefore, extended tests are performed on only a single random matrix with
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Figure 5.10: The time required to perform the various SpMVs on weakly (left) and strongly
(right) scaled random matrices. Five different random matrices are tested for each density
of 25, 50, and 100 non-zeros per row. The weak-scaling study tests matrices with 1 000 rows
per process, while the strongly-scaled matrix contains 4 096 000 rows.
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Figure 5.11: The time required to perform the various SpMVs on weakly (left) and strongly
(right) scaled random matrices, each with 100 non-zeros per row. The weak-scaling study
tests matrices with 1 000 rows per process, while the strongly-scaled matrix contains 4 096 000
rows.

100 non-zeros per row. Figure 5.11 displays the time required for a NAPSpMV in comparison

to the standard SpMV in both weak and strong scaling studies. For these random matrices,

the NAPSpMV exhibits improved performance over the reference implementation by up to

two orders of magnitude and also improves scalability.

The time required to perform the various SpMVs on 13 of the 15 largest matrices from

the SuiteSparse matrix collection are shown with strided and balanced partitions, in Fig-

ures 5.12 and 5.13 respectively. The remaining 2 large matrices were not included due to

partitioning constraints. For the strided partitions with np processes, each row r is local to

process p = r mod np. As some matrices in this subset have nearly dense blocks of rows,

allowing for improved load balancing over each process holding a contiguous block of rows.
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Figure 5.12: The speedup of NAPSpMVs over reference SpMVs on a subset of the largest real
matrices from the SuiteSparse matrix collection at various scales, where nnz

core
is the average

number of non-zeros per core, partitioned so that each row r is stored on process p = r
mod np, where np is the number of processes.

The balanced partitions were formed with PT Scotch graph partitioning, using the strategy

SCOTCH STRATBALANCE.

The NAPSpMV improves upon many of the matrices with strided partitions, as com-

munication patterns are far from optimal, while only minimally improving upon the graph

partitioned matrices as expected. However, the cost of partitioning motivates the use of less

optimal partitions when a smaller number of SpMVs are anticipated. Figure 5.14 shows the

time required to perform various numbers of NAPSpMVs on both the strided and balanced

partitions at the strongest scale tested, with 50 000 non-zeros per core.

In these tests, the balanced partitioned timings include the time required to graph partition

and redistribute the matrix. The crossover point for the various SuiteSparse matrices, at

which the graph partitioning becomes less costly than performing NAPSpMVs on strided

partitions, occurs only after hundreds, or often thousands, of SpMVs have been performed.

Finally, the NAPSpMV yields improvement over other commonly used node-aware com-
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Figure 5.13: The speedup of NAPSpMVs over reference SpMVs on a subset of the largest real
matrices from the SuiteSparse matrix collection at various scales, where nnz

core
is the average

number of non-zeros per core, partitioned with PT Scotch.

munication, such as hybrid programming with MPI plus open multi-processing (OpenMP).

Figure 5.15 shows the cost of a variety of sparse matrix-vector multiplies throughout an

AMG hierarchy for linear elasticity. While hybrid programming improves over the standard

SpMV on many levels of the hierarchy, the SpMV with node-aware communication yields

less cost than the MPI and OpenMP combinations.

5.6 CONCLUSION AND FUTURE WORK

This section introduces a method to reduce communication that is injected into the net-

work during a sparse matrix-vector multiply by reorganizing messages on each node. This

results in a reduction of the inter-node communication, replaced by less-costly intra-node

communication, which reduces both the number and size of messages that are injected into

the network. The current implementation could be extended to take various levels of the

hierarchy into account, such as splitting intra-node messages into on-socket and off-socket.
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Figure 5.14: The time required to perform various numbers of NAPSpMVs on strided and
balanced partitions of the largest real SuiteSparse matrices with 50 000 non-zeros per pro-
cess. The time to perform a NAPSpMV on a balanced partition includes the setup cost of
partitioning and redistributing the matrix. The crossover points represent the number of
NAPSpMVs required before graph partitioning becomes less costly than performing NAP-
SpMVs on the strided partition.

Figure 2.3 shows that on-socket messages are significantly cheaper and could be targeted to

further reduce communication costs.
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Figure 5.15: The cost of performing various SpMVs on each level of a linear elasticity
hierarchy. Two hybrid programming combinations are tested, with MPI(1) + OMP(16)
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CHAPTER 6: EXTENSIONS TO SPGEMM

6.1 INTRODUCTION

Sparse matrix operations are key components of numerical and graph algorithms. The

sparse matrix-matrix multiply (SpGEMM) is fundamental to graph contraction [91], multiple

vertex breadth first search [92], matching [93], and cycle detection [94]. Furthermore, the

SpGEMM yields a dominant cost in Schur complement methods as well as the setup phase

of algebraic multigrid (AMG).

The parallel SpGEMM is described as

C ← A ·B (6.1)

where A and B are sparse input matrices, and C is the resulting sparse matrix. The ma-

trices are partitioned across the processes, most commonly in a one-dimensional manner. A

one-dimensional matrix partition consists of partitioning either the rows or columns, each

displayed in Figure 6.1.

P0

P1

P2

P3

P0 P1 P2 P3

Figure 6.1: Sparse matrix distributed across four processes row-wise (left) and column-wise
(right).

If A is partitioned row-wise, the rows local to a process are further partitioned into an

on-process block, containing columns that correspond to local entries of B, and an off-

process block, comprised of columns that are associated with entries of B that are stored

on other processes. Equivalently, a column-wise partition of B is split into on-process rows

corresponding to local entries of A and off-process rows associated with entries of A that are
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stored on other processes.

Three possible parallel SpGEMM methods exist for one-dimensional partitions: row-wise,

in which all matrices are partitioned by rows; column-wise, in which matrices are instead

partition by column; and outer-product methods, consisting of a column-wise partition of

A multiplied by a row-wise partition of B [95]. These approaches, which are described in

detail in Section 6.2, consist of a combination of communicating matrix entries associated

with non-zeros in off-process blocks and local computation. As a problem is strongly scaled,

the number of rows local to each process decreases while the number of off-process columns

increases, yielding decreases local computation requirements but increases in communica-

tion. Therefore, large communication requirements reduce scalability of one-dimensional

SpGEMMs.

Alternatives to standard one-dimensional partitions yield increased scalability. Three-

dimensional problems can be partitioned into either two or three-dimensional blocks [96].

The most common of these methods, sparse Cannon and sparse Summa, consist of par-

titioning into two-dimensional blocks, which are communicated to all necessary processes

in a similar manner to dense multiplication [97]. Therefore, communication requires
√
p

messages of size nnz
p

, yielding improved performance over sufficiently dense one-dimensional

partitions. These improved communication requirements can be further reduced through

2.5D and 3D matrix partitions [98, 99]. Randomized two-dimensional partitions have also

shown improvements through near optimal load balancing [100]. Furthermore, 2D and 3D

matrix partitions in which only necessary matrix entries are communicated have been theo-

retically analyzed, indicating potential to further reduce communication costs and improve

scalability [101]. Finally, the matrices can be restructured with respect to sparsity to reduce

communication requirements in the congested clique model [102].

The performance and scalability of one-dimensional SpGEMMs can be improved through

graph and hypergraph partitioning, in which inter-process communication edge cuts are

minimized [5, 64, 65, 68]. Furthermore, the performance of each local SpGEMM can be

improved through fast SpGEMM algorithms [103].

Large communication requirements, as seen in many sparse matrix-vector (SpMV) multi-

plies, can be reduced through the use of node-aware communication. This chapter extends

the idea of the NAPSpMV to the SpGEMM. The remainder of the chapter is outlined as

follows. Section 6.2 details the one-dimensional SpGEMM algorithms. Section 6.2.4 extends

the idea of node-aware communication to the one-dimensional SpGEMM. Finally, code and

numerics are presented in Section 6.3.
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6.2 BACKGROUND

The parallel sparse matrix-matrix multiply C ← A ·B consists of a combination of inter-

process communication and local computation. The local computation consists of multi-

plying serial matrices. Therefore, let the function on process(A) return the serial matrix

corresponding to the on-process block of A while off process(A) returns the off-process

block. Furthermore, the function

multiply(on process(A), off process(B)) defines the serial SpGEMM of the on-process

block of A times the off-process block of B, using the SMMP approach [104].

Inter-process communication requires communication of rows in the case of a row-wise

matrix, or columns in the case of a column-wise matrix, corresponding to non-zero off-process

entries. The three one-dimensional SpGEMM approaches are further described below.

6.2.1 Row-Wise Parallel SpGEMM

A row-wise SpGEMM consists of multiplying two matrices that are each partitioned by

rows, as displayed in Figure 6.2. The function communicate rows(B) communicates the

A BC

P0

P1

P2

P3

Figure 6.2: Row-wise partitions of all matrices in the SpGEMM C ← A · B. The outlined
columns of B must be communicated and multiplied by the outlined rows of A, forming the
outlined rows of C.

rows of B corresponding to non-zero off-process columns of A. Specifically, rank r receives

the rows of B, stored on other ranks, that correspond to non-zero columns in the off-process

block of A on rank r. The local rows of A are multiplied by both the local rows of B as well

as the rows of B received through inter-process communication. Algorithm 6.1 describes

this row-wise SpGEMM in detail.
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Algorithm 6.1: row wise spgemm

Input: A: row-wise parallel matrix, local to rank
B: row-wise parallel matrix, local to rank

Output: C: row-wise parallel solution matrix, local to rank

{Inter-process communication}

R← communicate rows(B)

{Local matrix-matrix multiplication}

Con on ← multiply(on process(A), on process(B))
Con off ← multiply(on process(A), off process(B))
Coff on ← multiply(off process(A), on process(R))
Coff off ← multiply(off process(A), off process(R))

{Combine locally computed matrices}

on process(C)← Con on + Con off

off process(C)← Coff on + Coff off

6.2.2 Column-Wise Parallel SpGEMM

A column-wise SpGEMM is equivalent to the row-wise, but the matrices are partitioned

by columns rather than rows, as displayed in Figure 6.3. Similar to communicate rows, the

A BC

P0 P1 P2 P3 P0 P1 P2 P3 P0 P1 P2 P3

Figure 6.3: Column-wise partition of all matrices when computing the SpGEMM C ← A ·B.
The outlined rows of A are communicated before being multiplied by the outlined columns
of B, resulting in the outlined columns of C.

function communicate cols(A) communicate the columns of A corresponding to non-zero

off-process rows of B. Finally, both the local and received columns of A are multiplied by

the local columns of B. The column-wise SpGEMM is described in detail in Algorithm 6.2.
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Algorithm 6.2: column wise spgemm

Input: A: column-wise parallel matrix, local to rank
B: column-wise parallel matrix, local to rank

Output: C: column-wise parallel solution matrix, local to rank

{Inter-process communication}

R← communicate cols(A)

{Local matrix-matrix multiplication}

Con on ← multiply(on process(A), on process(B))
Coff on ← multiply(off process(A), on process(B))
Con off ← multiply(on process(R), off process(B))
Coff off ← multiply(off process(R), off process(B))

{Combine locally computed matrices}

on process(C)← Con on + Con off

off process(C)← Coff on + Coff off

6.2.3 Outer-Product Parallel SpGEMM

The outer-product SpGEMM consists of a column-wise matrix A multiplied by a row-

wise matrix B, as displayed in Figure 6.4. The local rows of A are multiplied by the

A BC

P0

P1

P2

P3

P0 P1 P2 P3

P0

P1

P2

P3

Figure 6.4: The SpGEMM C ← A · B is computed with a column-wise partition of A, and
row-wise partitions of B and C. Partial products of C are computed with the local columns
or rows of A and B, before being communicated and summed.

local columns of B, yielding partial results for the non-zeros of C. Assuming a row-wise

partition of the resulting matrix C, the partial results of rows of C that are stored on distant

processes must be communicated. Equivalently, in a column-wise partition of C, partial

columns of C must similarly be communicated. Therefore, the function communicate T(C)

communicate the partial results of C to the appropriate processes, yielding the transpose

of communicate rows. Finally, all partial results corresponding to either local rows of a

row-wise C, or local columns of a column-wise C, are combined. This algorithm is described
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in detail in Algorithm 6.3.

Algorithm 6.3: outer product spgemm

Input: A: column-wise parallel matrix, local to rank
B: row-wise parallel matrix, local to rank

Output: C: parallel solution matrix, local to rank

{Local matrix-matrix multiplication}

Con on ← multiply(on process(A), on process(B))
Con off ← multiply(on process(A), off process(B))
Coff on ← multiply(off process(A), on process(B))
Coff off ← multiply(off process(A), off process(B))

{Inter-process communication}

S ← Con on + Con off

R← communicate T(S)

{Combine locally computed matrices}

on process(C)← Con on + on process(R)
off process(C)← Con off + off process(R)

6.2.4 Node-Aware Communication in the SpGEMM

Communication of sparse matrices during an SpGEMM operation requires a point-to-

point communication pattern similar to that of the SpMV communication described in Al-

gorithm 5.1. In a row-wise SpGEMM C ← A ·B, the rows of B corresponding to off-process

columns of A are communicated. Similarly, column-wise SpGEMM communication consists

of sending columns of A corresponding to off-process rows in B. Finally, outer-product mul-

tiplication consists of sending all partial products of C to the appropriate process. In other

words, values of C resulting from multiplication of an off-process row i of A are sent to the

process holding the corresponding column i of A.

Standard communication of matrix rows or columns consists of communicating each row

size, followed by the corresponding column indices and data values. This data is typically sent

directly between processes as a single message. However, this results in duplicate messages

being communicated between pairs of nodes, as described in Example 5.2.

One-dimensional partitions of the matrices in C ← A ·B can be updated to include node-

awareness. In a row-wise SpGEMM, the off-process columns of A can be further partitioned

into on-node columns, corresponding to rows of B that are stored on processes located on the

same node, and off-process columns associated with rows of B stored on other nodes. This
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P0

P1

P2

P3

N0

N1

Figure 6.5: Row-wise node-aware SpGEMM. The off-process columns of A are split into
on-node columns, containing the the outlined blocks, and off-node columns, consisting of
the patterned blocks.

is exemplified in Figure 6.5. Similarly, the column-wise SpGEMM is updated so that the off-

process rows of B are split into on-node and off-node rows, as shown in Figure 6.6. Finally,

A BC

P0 P1 P2 P3 P0 P1 P2 P3 P0 P1 P2 P3

Figure 6.6: Column-wise node-aware SpGEMM. The off-process rows of B are split into
on-node and off-node blocks.

the rows of C are updated in the outer-product SpGEMM so that off-process columns are

split into on- and off-node, as displayed in Figure 6.7.

A BC

P0

P1

P2

P3

P0 P1 P2 P3

P0

P1

P2

P3

Figure 6.7: Outer-product node-aware SpGEMM. The off-process columns of C are parti-
tioned into on- and off-node.

Node-aware communication can be extended to the SpGEMM by communicating rows or

85



columns of the sparse matrix with the three-step algorithm described in Example 5.3. All

data is first gathered on-node, before being injected into the network as a single message,

and finally redistributed on the receiving node. As each node typically communicates with

many other nodes, all processes remain active in inter-node communication. This process

greatly reduces the number and size of inter-node communication at an increase of less-costly

intra-node communication.

6.3 RESULTS

Node-aware SpGEMMs are tested for AMG hierarchies that arise from a range of problems.

Two SpGEMMs are required in the formation of each coarse level of the AMG hierarchy.

First AP ← A · P performs row-wise multiplication. This product is then used in the outer

product SpGEMM Ac ← P T · (AP ) to form the coarse grid operator, as proven the most

efficient method by Ballard et al. [105].

The SpGEMM operations were tested throughout a variety of hierarchies, created with

RAPtor [34], for solving MFEM example matrices. The figures plot the node-aware SpGEMM

timings with bars, and corresponding reference SpGEMM timings are shown as stars.

Figure 6.8 shows the effects of node-aware communication in the SpGEMMs of the Lapla-

cian hierarchy, from MFEM example 1. Similarly, node-aware speedup in the hierarchy for
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Figure 6.8: MFEM Laplacian AMG hierarchy.

the linear elasticity system from MFEM example 2 is displayed in Figure 6.9. Speedups

for the grad-div problem from example 4 are shown in Figure 6.10. Finally, Figures 6.11

and 6.12 show timings for discontinuous galerkin discretizations of diffusion and linear elas-

ticity problems, respectively.

The node-aware SpGEMM was tested for a number of matrices from the Stanford large

network dataset (SNAP) collection, including the Amazon product co-purchasing directed
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Figure 6.9: Linear elasticity AMG hierarchy timings.
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Figure 6.10: Timings for Grad-Div throughout AMG hierarchy.
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Figure 6.11: Timings for Discontinuous Galerkin Diffusion hierarchy.

networks, the road networks, the citation network among US patents, DBLP collaboration

network, and Facebook and Twitter networks. The cost of row-wise multiplication AT · A
on this subset of matrices is presented in Figure 6.13. Furthermore, Figure 6.14 displays the

performance of standard and node-aware communication throughout outer-product multipli-
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Figure 6.12: SpGEMM times throughout Discontinuous Galerkin Linear Elasticity AMG
hierarchy.
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Figure 6.13: Row-wise multiplication of AT · A for a subset of SNAP matrices.

cation of AT ·A for the same subset from the SNAP collection. Node-aware communication

yields improvement in both operations for the majority of the subset, particularly when

strongly scaled to 1 000 non-zeros per row.
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Figure 6.14: Outer-product SpGEMMs performing AT · A on a subset of SNAP matrices.

6.4 CONCLUSION

Node-aware communication improves the performance and strong scalability of a variety

of matrices, particularly those with large communication patterns such as the coarse levels

of AMG hierarchies. Finer levels, as well as SNAP matrices with large amounts of spar-

sity, yield little improvement, and often acquire slowdown from node-aware communication.

Therefore, future directions include creating performance models to determine when matri-

ces have large enough communication requirements to warrant node-aware communication

throughout SpGEMM operations.
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CHAPTER 7: NODE-AWARE AMG

Portions of this chapter appear in the paper ”Improving Strong Scalability of Parallel

Algebraic Multigrid through Message Agglomeration”, in submission to SISC [106].

7.1 INTRODUCTION

Standard parallel algebraic multigrid typically exhibits strong scaling to five or ten thou-

sand degrees-of-freedom per core before communication costs outweigh local computation.

Further extending the core-count yields an increase in total solve time due to dominant com-

munication costs. Figure 7.1 shows the time required to solve a rotated anisotropic diffusion

problem with 10-million rows at a variety of scales, partitioned into local computation and

inter-process communication costs. As the processor count reaches the strong scaling limit,

communication becomes increasingly dominant. The problem scales to 1 024 processes, after

which communication costs outweigh any reductions in local computation.

Most methods for reducing communication costs in AMG focus on a redesign of the method

or on the underlying sparse matrix operations. Aggressive coarsening, for example, reduces

the dimensions of coarse levels at a faster rate, yielding reduced density and communication

requirements [39, 40, 44]. Similarly, the smoothed aggregation solver allows large aggregates,

coarsening a larger number of fine points into a single coarse point [107, 46]. Small non-

zeros resulting from fill-in on coarse levels may be systematically removed, adding sparsity

into coarse-grid operators [15, 46, 35]. Furthermore, matrix ordering and graph partitioning

yield reduced communication costs throughout sparse matrix operations [64, 65, 7, 8, 68],

and coarse level repartitioning has potential to reduce the cost of the solver. Likewise,

coarse level redistribution and duplication of the coarsest level solves yield large reductions

in communication time. The approach presented in this chapter augments these approaches,

reducing off-node message counts and sizes through aggregation of data.

Topology-aware methods and message agglomeration are commonly used to reduce com-

munication costs in MPI applications. Topology-aware task mapping minimizes message

hop counts, reducing the cost associated with communication [108, 109]. Message agglom-

eration is commonly used to reduce the cost of communication, for example in MPI col-

lectives [74, 75, 76, 77]. The Tram library [78] explores agglomeration of point-to-point

messages, by streamlining messages between neighboring processes [78].

This chapter presents a method for reducing communication costs in both the setup and

solve phases of parallel algebraic multigrid through agglomeration of messages among nodes.
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Figure 7.1: The total time required to solve an anisotropic diffusion problem with 10-million
degrees-of-freedom.

Section 7.2 covers algebraic multigrid and common parallel implementations. Section 7.4

covers numerical experiments in support of the approach and Section 7.5 contains concluding

remarks and future directions.

7.2 BACKGROUND

Common algorithms for constructing an algebraic multigrid hierarchy include the Ruge-

Stüben solver, described in Section 7.2.1, and the smoothed aggregation solver, outlined in

Section 7.2.2. Both solvers consist of a combination of local computation and point-to-point

communication, namely communication of vectors and sparse matrices.

This point-to-point communication [110] dominates the total time (both setup and solve)

in coarse levels of AMG, as show in Figure 7.2. The cost associated with communication

increases on coarse levels.

The next two sections investigate point-to-point communication in both Ruge-Stüben

and Smoothed Aggregation AMG throughout two example systems, the rotated anisotropic

diffusion problem presented in Example 7.1 and the 27-point Laplacian in Example 7.2.

Example 7.1. A two-dimensional rotated anisotropic diffusion problem K = QTDQ is

analyzed, where the rotation matrix Q and diagonal scaling D are defined as

Q =

(
cos(θ) sin(θ)

− sin(θ) cos(θ)

)
D =

(
1 0

0 ε

)
, (7.1)

with θ = π
4

and ε = 0.001. The linear system has 10-million degrees-of-freedom, unless

otherwise specified. The Ruge-Stüben hierarchy is created with Falgout coarsening and mod-
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Figure 7.2: The total cost of AMG per level.

ified classical interpolation. A strength threshold of 0.25 is used for both Ruge-Stüben and

smoothed aggregation hierarchies for this system.

Example 7.2. A three-dimensional, structured 27-point Laplacian system, 4u = 0, with 10-

million degrees-of-freedom is solved with both Ruge-Stüben and smoothed aggregation AMG.

As fill-in greatly reduces performance of 3D systems, aggressive coarsening is used when cre-

ating the Ruge-Stüben hierarchy, specifically HMIS coarsening and extended+i interpolation.

7.2.1 Classical Ruge-Stüben Setup

For an n× n matrix A, Algorithm 7.1 outlines a typical Ruge-Stüben algebraic multigrid

setup routine.

Algorithm 7.1: Classical Setup: rs setup

Input: A // sparse system matrix

max coarse // maximum size of coarse operators

Output: A0, A1, . . . , AN // hierarchy of sparse operators

P0, P1, . . . , PN−1 // hierarchy of interpolation operators

1 A0 ← A
2 `← 0
3 while |A`| > max coarse
4 S` ← strength(A`) {strength-of-connection}

5 C`, F` ← cf splitting(S`) {coarse-fine splitting}

6 P` ← interpolation(C`, F`) {interpolation}

7 A`+1 ← P T
` · A` · P` {coarse operator, Galerkin product}

8 `← `+ 1
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The remainder of this subsection further investigates the cost of each method used to create

a Ruge-Stüben hierarchy for e on 8192 processes of Blue Waters. Classical parameters are

analyzed for a two-dimensional rotated anisotropic diffusion system with 10-million degrees-

of-freedom, while aggressive coarsening methods are profiled for a 27-point Laplacian system

with 10-million rows. The cost of the various methods in these hierarchies, partitioned by

level, is displayed in Figure 7.3.
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(a) Anisotropic diffusion from Example 7.1.
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(b) 27-point Laplacian from Example 7.2.

Figure 7.3: Profile of Ruge-Stüben AMG setup costs from rs setup.

Strength of Connection: strength The strength method identifies the strength-of-

connection between nodes of A based on a tolerance θ. The classical strength method

retains an entry (i, j) ∈ A if the diagonal value Aii is positive and

Aij < θ ·min
k 6=i

(Aik) (7.2)

or the diagonal Aii is negative and

Aij > θ ·max
k 6=i

(Aik). (7.3)

In parallel, this operation is fully local, as entries in a row i of S depend only on other

entries in row i. This cost, partitioned across levels, is displayed in Figure 7.4.

Coarse-Fine Splitting: splitting The CF splitting method partitions the index set

based on the strength matrix, S` to yield to sets C and F with {0, . . . , n− 1} = C ∪ F and

C ∩ F = ∅.
There are a variety of methods in parallel [12] that consist of splittings on local partitions,

yielding a large number of coarse points along processor boundaries along with partitioning
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Figure 7.4: Cost of strength for Example 7.1.

constraints limiting the minimum partition count to the number of processes. The Cleary-

Luby-Jones-Plassmann (CLJP) algorithm for splitting is commonly used: Each initial

weight wi is the sum of the number of nodes strongly influenced by i,
∣∣STi ∣∣ and a random

value between zero and one. Therefore, each weight is unique allowing for many coarse points

to be selected each iteration. After setting initial weights, CLJP iteratively selects coarse

points through a combination of selecting independent sets and updating corresponding

weights. An independent set D is selected to contain every node i such that the weight of i

is larger than that of all neighbors. This is defined as

D =
{
i wi > wj∀j ∈ Si

⋃
STi

}
. (7.4)

Neighboring weights are then updated such that the weight of all nodes j that strongly

influence any new coarse point i ∈ D are decreased. Furthermore, if two nodes j and k both

depend on an i ∈ D, and j strongly influences k, then the weight wj is decreased.

A large amount of vector communication is associated with CLJP. Column sizes are com-

municated to form initial weights, followed by communication of calculated weights. During

each iteration, the maximum weight of each column is communicated before determining

the independent set D. After forming D, updated coarse states must be communicated, and

after weights are updated they too must be communicated. Each iteration also consists of

sending a partial sparsity pattern of the matrix S, containing all coarse nodes influenced

by each off-process column. Figure 7.5a displays the cost of each iteration of CLJP, parti-

tioning each into both vector communication and matrix sparsity pattern communication.

Furthermore, the total cost of CLJP on each level of the anisotropic hierarchy is displayed

in Figure 7.5b.

Alternative approaches such as Falgout coarsening can yield improved convergence over
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Figure 7.5: Profile of CLJP splitting for Example 7.1

CLJP by using classic Ruge-Stüben coarsening on interior points followed by CLJP on bound-

ary nodes. In addition, data structures may be optimized in order to reduce communication

volume [111]

Three dimensional systems yield complex hierarchies when coarsened with standard ap-

proaches, such as CLJP or Falgout coarsening. Therefore, 3D systems are coarsened more

aggressively with approaches such as Parallel Maximal Independent Set (PMIS). PMIS is

similar to CLJP, with identical initial weights and independent set selection. However, re-

strictions are relaxed on fine points, allowing all nodes strongly influenced by any coarse

point to be fine. Therefore, each iteration consists of selecting the independent set D of new

coarse points, defined in 7.4. For each new coarse point i ∈ D, all nodes k ∈ STj are selected

as fine points.

PMIS requires only of vector communication. The initial weights require previously de-

scribed communication of column sizes and calculated weights. Each iteration requires only

communication maximum column weights followed by updated states after selecting new

coarse points and again after adding to the set F . Figure 7.6a displays the cost of each

PMIS iteration in terms of both local computation and vector communication. Further-

more, the total cost of PMIS for the 27-point Laplacian, partitioned by level, is displayed in

Figure 7.6b, and shows that vector communication dominates the cost.

Forming Interpolation: interpolation After a splitting is constructed, interpolation

and restriction operators are formed to transfer data between fine and coarse levels. These

operators inject each coarse point with a linear combination of neighboring fine points.

(P` · e)i =

ei If i ∈ C
wijej If i ∈ F

(7.5)
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Figure 7.6: Profile of PMIS splitting for Example 7.2

The weights associated with neighboring fine points vary with method of interpolation. Di-

rect interpolation yields simple weights and requires no communication in parallel, but often

yields poor convergence. The focus here is on modified classical interpolation for standard

coarse-fine splittings and extended classical interpolation in combination with aggressive

coarsening as both methods yield convergent algorithms.

The modified classical interpolation weights are defined as

wij = − 1

aii +
∑

k∈Nw
i

⋃
F s∗
i
aik

aij +
∑

k∈FS
i \F s∗

i

aik · akj∑
m∈Cs

i
akm

 , (7.6)

where Nw
i is the set of weakly connected neighbors of i, F s∗

i contains all strongly connected

fine points that do not have a common neighbor with i, F s
i are the remaining strongly

connected fine points, and Cs
i are the strongly connected coarse points. Furthermore,

aij =

0 sign(aij) = sign(aii)

aij otherwise.
(7.7)

Parallel modified classical interpolation requires matrix communication of all coarse points

in S as associated values in A, necessary to determine
∑

m∈Cs
i
akm for all k ∈ F s

i \F s∗
i . Com-

munication is performed at the beginning of the method along with communication of initial

states; all subsequent work is fully local. After the interpolation operator is created, the as-

sociated communication pattern is determined, requiring vector communication. This cost,

as required for the anisotropic system, is displayed in Figure 7.7a, where point-to-point com-

munication dominates, with nearly equal portions due to vector and matrix communication.
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Figure 7.7: Profile of interpolation methods.

Classical interpolation does not accurately interpolate the necessary distance-two neigh-

bors for optimal convergence with aggressive coarsening. Therefore, extended interpolation

is used in combination with PMIS and HMIS to more accurately project data to coarse

levels. Extended interpolation weights are defined as

wij = − 1

ãii

aij +
∑
k∈F s

i

aik · akj∑
`∈P̂i

⋃
{i} ak`

 , j ∈ Ĉi, (7.8)

where Ĉi = Ci
⋃
Cj for all strong fine neighbors j ∈ F s

i and

ãii = aii +
∑
n∈Nw

i

ain +
∑
k∈F s

i

aik
aki∑

`∈Ĉi
⋃
{i} ak`

. (7.9)

Parallel extended interpolation requires the matrix A to be communicated as a weight wij

depends on strong neighbors similar to classical interpolation, and a subset of weak neighbors

is also required to determine
∑

`∈Ĉi
⋃
{i} ak`. The cost of extended interpolation for the 27-

point Laplacian hierarchy is profiled in Figure 7.7b.

Galerkin Triple Matrix Product: P T · A · P The Galerkin triple matrix product is

often implemented as two separate SpGEMMs, AP ← A · P , a row-wise multiply, and

Ac ← P T · AP , an outer-product SpGEMM. The former row-wise multiplication consists

of communicating the off-process portion of P before performing matrix multiplication on

local and received portions of A and P . The outer-product multiply consists of performing

partial products of Ac with the local columns of P T and rows of AP , before communicating

the portions of Ac that are stored on other processes. Finally, local partial products of Ac
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are combined with those calculated on distant processes. Therefore, each SpGEMM requires

a single instance of matrix communication. The cost of each SpGEMM required during

construction of the anisotropic diffusion hierarchy is displayed in Figure 7.8.
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Figure 7.8: Cost of P T · A · P per level for Example 7.1

7.2.2 Smoothed Aggregation Setup

Smoothed aggregation AMG (Algorithm 7.2) consists of grouping strongly connected

nodes to identify a coarse grid. Transfer operators between levels are initially formed through

the aggregation pattern and by injecting candidate vectors. Finally, the tentative interpo-

lation operators are smoothed through Jacobi smoothing before creating the coarse grid

operator through the previously described Galerkin triple matrix product.

The cost of each method required to create a smoothed aggregation hierarchy for the

anisotropic diffusion system is displayed in Figure 7.9. The cost of the setup phase is parti-
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Figure 7.9: Smoothed Aggregation setup costs from sa setup for Example 7.1.
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Algorithm 7.2: Smoothed Aggregation Setup: sa setup

Input: A // sparse system matrix

B // candidate vectors

max coarse // maximum size of coarse operators

Output: A0, A1, . . . , AN // hierarchy of sparse operators

P0, P1, . . . , PN−1 // hierarchy of interpolation operators

1 A0 ← A
2 B0 ← B
3 `← 0
4 while |A`| > max coarse
5 S` ← strength(A`) // strength-of-connection

6 Agg` ← aggregate(S`) // form coarse aggregates

7 T`, B`+1 ← tentative(Agg`, B`) // tentative interpolation

8 P` ← prolongate(A`, T`) // smooth interpolation

9 A`+1 ← P T
` · A` · P` // coarse operator, Galerkin product

10 `← `+ 1

tioned more evenly (in comparison to Ruge-Stüben) across the methods, with the majority

of the cost occurring on coarse levels.

Symmetrized Strength of Connection: strength The strength method used in

smoothed aggregation is similar to that of Section 7.2.1. However, aggregation requires an

undirected graph as input thus necessitating a symmetric sparsity pattern. The smoothed

aggregation strength method retains any entry (i, j) ∈ A if any of the following are true.

• Aij < θ ·mink 6=i(Aik) with Aii > 0

• Aij < θ ·mink 6=j(Ajk) with Ajj > 0

• Aij > θ ·maxk 6=i(Aik) with Aii < 0

• Aij > θ ·maxk 6=j(Ajk) with Ajj < 0

This symmetrized strength method requires communication of the maximum off-diagonal

for all rows with negative diagonal, along with the minimum off-diagonal for each row with

positive diagonal. Furthermore, a vector is indicating whether each diagonal is positive or

negative is also communicated. As a result, only vector communication is required, and a

profile is given in Figure 7.10.
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Figure 7.10: Symmetry strength per level for Example 7.1.

Aggregation: aggregation Aggregation clusters nodes in the sparse matrix graph of S`

to form a coarse grid. Parallel aggregation in this chapter consists of forming a distance-

two maximal independent set (MIS-2) before forming one aggregate from each selected node.

This approach yields aggregates of similar quality to the standard sequential algorithms [87].

The aggregates are created by grouping unselected nodes with the strongly connected node

in the MIS-2 set. If no node exists, the node is added to the aggregate of its strongest

connection.

Aggregation consists only of vector communication. The MIS-2 algorithm iteratively se-

lects nodes based on an initial random value, similar to PMIS. Each iteration consists of

sending updated selections five times. The cost of each iteration of MIS-2, partitioned into

local computation and inter-process communication, is displayed in Figure 7.11a. After a
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(a) Per-iteration cost of MIS-2 for finest level.
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(b) Full aggregate cost, per-level.

Figure 7.11: Cost of aggregate for Example 7.1

maximal independent set is selected, the remaining aggregation is mostly local computation.

After the first pass, in which nodes are added to the aggregate of the neighboring node

selected in MIS-2, updated aggregation information is communicated. After this communi-
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cation, the second pass of aggregating with strongest neighbors is fully local. An example

of the cost of aggregating is given in Figure 7.11b.

Tentative Interpolation: tentative Tentative interpolation, T , is formed by injecting

candidate vectors in to the sparsity pattern of each aggregate. Therefore, the number of

columns in the interpolation operator is equal to the product of the number of aggregates

and the number of candidate vectors; a single candidate vector is assumed for this work, but

the discussion extends to multiple candidate vectors as well.

Tentative interpolation requires only a single instance of vector communication, required

to find the norm of non-zero entries in each column. The cost of forming a tentative inter-

polation for each level is displayed in Figure 7.12. After the tentative interpolation operator

is created, a communication pattern must be determined for the matrix, resulting in vec-

tor communication. However, because the matrix is relatively sparse local computation

dominates the cost.
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Figure 7.12: Cost of tentative for Example 7.1.

Improving Interpolation: smooth The accuracy of tentative interpolation is improved

through iterations of Jacobi smoothing:

P ← P −
(
D−1 · S · P

)
, (7.10)

where D−1 is the inverse diagonal of S and where the initial value of P is equal to the

tentative interpolation operator T . The formation of DS ← D−1 · S is fully local. However,

the product DS ·T is a standard row-wise SpGEMM, requiring communication of the matrix

T . Figure 7.13 profiles the cost of a single sweep of Jacobi smoothing on each level, where

point-to-point communication costs dominate.
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Figure 7.13: Cost of prolongate for Example 7.1.

7.2.3 AMG Solve

The AMG solve phase (Algorithm 7.3) is the same for each method and this work focuses

on the standard v-cycle.

Algorithm 7.3: AMG Solve: solve

Input: A` // sparse system operator

P` // interpolation operator

x` // solution vector

b` // right-hand-side vector

Output: x` // updated solution vector

1 if ` = N
2 solve A`x` = b`

3 else
4 relax A`x` = b` {pre-relaxation}

5 r` ← b` − A` · x` {calculate residual}

6 r`+1 ← P T
` · r` {restrict residual}

7 e`+1 ← solve(A`+1, P`+1, 0, r`+1) {coarse-grid solve}

8 e` ← P` · e`+1 {interpolate error }

9 x` ← x` + e` {update solution}

10 relax A`x` = b` {post-relaxation}

The solve phase for a Ruge-Stüben hierarchy is profiled in Figure 7.14. The results show

that relaxation and residual construction dominate the cost; this is consistent across meth-

ods.

Each step of the solve phase is represented as a sparse matrix-vector product. As a result,

per level costs are dominated by (vector) communication, particularly at deeper levels in the

hierarchy.
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Figure 7.14: AMG V-cycle costs for Example 7.1.

7.3 NODE-AWARE COMMUNICATION

The cost associated with standard point-to-point communication throughout AMG can

be reduced through the use of node-awareness, particularly when a large number of messages

are communicated, as is the case on coarse levels of AMG. This concept is introduced in [60]

for the SpMV and is extended here to all components of the AMG setup and solve phases.

In particular, a new two-step communication process is introduced for the coarsest levels of

the AMG hierarchy.

Standard communication requires sending data directly between processes, regardless of

their locations within the parallel topology. For example, Figure 5.3 displays standard

communication in which a number of processes on node n and m send data directly to a

process q. Furthermore, Figure 5.4 shows the standard process of communicating data from

some process p on node n to all processes on node m. In both cases, multiple messages are

communicated between the two nodes. Furthermore, in the latter example, duplicate data

is sent to multiple processes on node m, indicating both the number and size of messages

communicated between nodes n and m is larger than ideal.

Typical three-step node-aware parallel (NAP) communication, described in Section 5.4,

reduces the number and size of messages injected into the network while increasing the

amount of less costly on-node communication. NAP communication gathers all data to be

sent to node m on some process local to the node n on which it originates. This data is

then sent as a single message through the network, before being distributed to the necessary

processes on node m, as exemplified in Figure 5.5.

Alternatively, this chapter introduces a method to allow all processes to remain active

in inter-node communication. This new type of node-aware communication, displayed in

Figure 7.15 consists of gathering all data on process to be sent to a node m, and sending

103



this directly to the corresponding process. This is followed by redistribution of values on the

n m

Figure 7.15: An alternative, two-step node-aware communication: (1) gather all data to be
sent to node m on process and (2) send directly to the corresponding process on node m.

receiving node. This alternate node-aware method reduces the number and size of data by

eliminating the duplication displayed in Figure 5.4, but the multiple messages communicated

between nodes in Figure 5.3 remains. The two forms of node-aware communication, two-step

and three-step, are used together to dramatically reduce communication in AMG.

7.4 RESULTS

Node-aware communication can be used when communicating any vector or sparse matrix

throughout AMG. Node-aware vector communication is implemented as previously described

in Section 5, while matrices are communicated as outlined in Section 6. This section presents

numerical results for using node-aware communication throughout algebraic multigrid. Both

two and three-dimensional systems are analyzed, as two dimensional systems use classical

Ruge-Stüben parameters such as CLJP and modified classical interpolation, while three-

dimensional systems are improved with aggressive coarsening and extended interpolation.

All tests are performed with RAPtor [34] on Blue Waters, a supercomputer at the National

Center for Supercomputing Applications [56, 57].

An array of three-dimensional problems are analyzed with both Ruge-Stüben and smoothed

aggregation AMG. For all 3D problems, HMIS coarsening is used in combination with ex-

tended+i interpolation for Ruge-Stüben hierarchies. These systems include a standard 27-

point Laplacian, 4u = 0, for which a strength tolerance of 0.25 is used. Furthermore, an

array of MFEM systems are analyzed, including the Laplace problem −4u = 1 on the

mobius strip mesh, the grad-div problem, −5(α5 · (F )) + βF = f , on the star-surf mesh,

and the discontinuous Galerkin discretization of the Laplace problem on the escher mesh.
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These systems come from MFEM examples 1, 4, and 14, and use strength thresholds of 0.5,

0.0, and 0.25, respectively.

Node-aware communication can be used in all methods on each level of the AMG hierarchy,

throughout both the setup and solve phases. However, speedup is only obtained when

sufficient amounts of data are communicated. For instance, the communication pattern

of a stenciled matrix is near optimal, as processes only talk with neighbors. The three-

step nature of node-aware communication adds synchronization costs, and will likely slow

down any near-ideal standard communication. However, communication patterns expand on

coarse levels, allowing for reduction in cost through the use of node-aware communication.

Figure 7.16 shows the speedup acquired with node-aware communication in each methods

throughout the Ruge-Stüben hierarchy for anisotropic diffusion. There is no change to the
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Figure 7.16: Speedup from node-aware communication throughout the Ruge-Stüben hierar-
chy for Example 7.1

cost of strength-of-connection, as this is a fully local method. However, all other methods

yield slowdown on the finer levels, before achieving speedup on coarse levels, particularly

near the middle of the hierarchy, where substantial costs occur. As finer levels yield little to

no improvements, node-aware communication is only implemented from level 5 onward for

the slowly coarsening classical AMG. Therefore, all further standard Ruge-Stüben tests use

standard communication until level 5, after which node-aware communication occurs.

Similarly, speedups obtained through node-aware communication in each method of an

aggressively coarsened Ruge-Stüben hierarchy for the 27-point Laplacian are displayed in

Figure 7.17. As previously shown, node-aware communication yields little to no improvement

over standard communication on fine levels. As aggressively coarsened hierarchies increase

in density more rapidly than the standard approach, communication patterns expand at

a quicker rate. Therefore, all remaining aggressive coarsening results communicate with

node-awareness only from level 3 and coarser.
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Figure 7.17: Speedup from node-aware communication throughout the aggressively coarsen-
ing Ruge-Stüben hierarchy for Example 7.2

Lastly, node-aware communication yields similar performance throughout smoothed ag-

gregation hierarchies. Figure 7.18 shows speedups over standard communication for the

methods of a smoothed aggregation hierarchy for anisotropic diffusion. Similar to aggres-
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Figure 7.18: Speedup from node-aware communication throughout the smoothed aggregation
hierarchy for Example 7.1

sively coarsened hierarchies, hierarchies coarsen at a rapid rate. All subsequent smoothed

aggregation tests use node-aware communication starting on level 3.

Node-aware communication yields performance improvements, particularly near strong

scaling limits, and improves scalability of both the setup and solve phases. Figure 7.19 shows

the cost of setting up and solving a classical AMG hierarchy for the anisotropic problem.

While the scalability of each phase is improved independently, the setup and solve phases

are typically run on equivalent process counts. As the setup phase scales further than the

solve, it is important to note that the solve phase yields little increase in cost after the

strong scaling limit when node-aware communication is used. As a result, the performance
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Figure 7.19: Time required to setup and solve the Ruge-Stüben hierarchy for Example 7.1

and scalability of the full AMG solver is improved. Figure 7.20 shows improvements to

both the strongly scaled Ruge-Stüben and smoothed aggregation hierarchies for anisotropic

diffusion.
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Figure 7.20: Time required to for full AMG solver for Example 7.1

Figure 7.21 displays a strong scaling comparison of the various solvers for both anisotropic

diffusion and the 27-point Laplacian, showing improvements to both solvers with the use

of node-aware communication. Furthermore, node-aware communication yields similar im-

provements to weak scalability. Figure 7.22 displays performance and scaling improvements

for weakly scaled anisotropic diffusion.

Finally, three-dimensional systems created with MFEM were also analyzed with node-

aware communication throughout both AMG solvers. Improvements to performance and

scalability were seen in all cases. This is displayed in Figure 7.23.

Further improvements to node-aware AMG are possible, as many operations yield little to

no speedup, particularly in the setup phase. While the majority of operations throughout

the setup phase are dependent on the sparsity pattern of A, the transpose multiplication step

P T · AP is dependent on the sparsity pattern of P . Therefore, node-aware communication
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Figure 7.21: A comparison of Ruge-Stüben (RS) and Smoothed Aggregation (SA) AMG,
with and without node-aware communication, for Example problems.
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Figure 7.22: A comparison of Ruge-Stüben and Smoothed Aggregation AMG for a weak
scaling study of the problem from Example 7.1, with 10 000 degrees-of-freedom per core.

will have larger improvements for transpose multiplication with denser P matrices. This

motivates increasing the density of P to increase the accuracy of projecting data between

methods, such as using multiple sweeps of Jacobi smoothing during the smoothed aggregation

AMG setup. Figure 7.24 shows the speedups obtained with node-aware communication

during P T · AP on each level for both the standard hierarchy and when using multiple

smoothing sweeps. There is significant speedup for the denser P resulting from the latter.

Furthermore, there is potential to improve operations on the finer levels of both the setup

and solve phase through the use of the alternative node-aware communication described in

Figure 7.15. Figure 7.25 displays the cost of matrix multiplication A ·P , P T ·AP , and A · x
with standard communication, typical node-aware communication, and the alternative two-

step node-aware communication. Two-step node-aware communication yields less potential

for slowdown on the fine levels, and improves over other methods for a subset of the levels.
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Figure 7.23: A comparison of Ruge-Stüben (RS) and Smoothed Aggregation (SA) AMG for
MFEM systems.
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Figure 7.24: Speedup in P T · (AP ) in sa setup for Example 7.1 when using a single sweep
of Jacobi prolongation, as typical, or increasing to two smoothing sweeps.
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Figure 7.25: Cost of standard, three-step node-aware, and alternative two-step node aware
communication throughout operations from Example 7.1

7.5 CONCLUSIONS

This chapter has introduced a method of using node-awareness to reduce the amount

of inter-node communication at a trade-off of less costly intra-node communication, and

applied this communication method to the various parts of algebraic multigrid. Node-aware
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communication yields improvements in the performance and scalability of both the setup

and solve phases for both a model rotated anisotropic diffusion problem as well as all tested

matrices from the SuiteSparse collection. Future work will be done to further improve

the performance of node-aware communication inside the setup phase by more efficiently

applying it to remaining methods such as CLJP.
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CHAPTER 8: CONCLUSIONS

8.1 SUMMARY

In summary, this dissertation presents multiple methods for reducing costs associated with

communication in sparse matrix operations, yielding performance and scalability improve-

ments of linear solvers such as algebraic multigrid. Performance models for point-to-point

communication are presented in Chapter 3. Contributions of this chapter include the fol-

lowing.

• Accuracy of the max-rate model is improved through the addition of node-awareness.

• An upper-bound quadratic queue search term is added to traditional models, improving

the analysis of irregular point-to-point communication during which many messages

are communicated.

• An approximate network contention penalty for communication of a large number of

bytes between non-neighboring processes.

Algorithmic changes to algebraic multigrid are presented in Chapter 4. This chapter intro-

duces a new method, similar to the method of non-Galerkin coarse grids, which adds sparsity

into matrices to reduce communication requirements at the cost of convergence. Specifically,

the contributions of this chapter are as follows.

• Relatively small non-zeros are systematically removed from coarse matrices after for-

mation of the algebraic multigrid hierarchy.

• Removed non-zeros are lumped to the diagonal rather than strongly connected neigh-

bors, allowing for removal of a larger number of non-zeros.

• The trade-off between per-iteration communication costs and convergence is controlled

through re-introduction of previously removed entries through and adaptive solve

phase.

Finally, adjustments to the parallel implementation of MPI communication are presented in

Chapters 5, 6, and 7. Node-aware communication is introduced, through which standard

messages are aggregated, to reduce the amount of costly inter-node communication. The

main contributions of these chapters are described as follows.
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• Agglomeration of messages on-node preceding inter-node communication yields an in-

crease in intra-node communication while reducing both the number and size of more

costly inter-node messages.

• Three-step node-aware communication yields large improvements to both performance

and scalability of sparse matrix-vector multiplication.

• Sparse matrix-matrix multiplication performance is improved, particularly on matrices

with relatively large communication requirements and near strong scaling limits.

• Three-step node-aware communication throughout sparse matrix operations yields

large improvements to both the setup and solve phase of algebraic multigrid, extending

strong scalability of many systems for both Ruge-Stüben and smoothed aggregation

solvers.

• An alternative two-step node-aware communication indicates potential to improve per-

formance of matrix communication on finer levels of the algebraic multigrid hierarchy.

• Node-aware communication yields larger speedups for increasingly dense matrices, in-

dicating potential speedup with dense interpolation matrices. This motivates the use

of increasingly accurate projection between levels.

An open-source parallel AMG codebase, RAPtor, is outlined in Appendix A. The main

contributions of RAPtor are outlined as follows.

• A parallel algebraic multigrid codebase similar to PyAMG in style, which allows a user

to easily switch out main methods based on user preference.

• The communication method can be switched throughout AMG, allowing for use of two

and three-step node-aware communication in any method.

• Both Ruge-Stüben and smoothed aggregation solvers are implemented, using identical

communication, matrix operations, and solve phases, and allowing for direct compari-

son of the solvers.

8.2 CONCLUDING REMARKS AND FUTURE DIRECTIONS

Alterations to both the algorithm and parallel implementation of sparse matrix operations

are presented throughout this dissertation, with a focus on reducing costs associated with

inter-process communication. Parallel communication costs are greatly reduced through the
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removal of insignificant entries, and the trade-off between algebraic multigrid per-iteration

cost and convergence rate is controlled through an adaptive solve phase. Node-aware com-

munication improves performance and strong scalability, particularly when large amounts

of inter-process communication is required. Finally, improved performance models for inter-

process communication yield the potential to analyze the source of dominant costs to target

for removal.

There are many future directions for communication reduction in sparse operations. Node-

awareness can be added to sparsification methods, as non-zeros corresponding to inter-node

communication yield larger cost than those associated with on-node values, motivating tar-

geting larger non-zeros in the former position. Furthermore, improved performance models

can be used for a more accurate prediction of sparsification tolerances.

Similarly, performance models yield potential to improve node-aware communication.

Sparse matrix communication, and the setup phase of AMG, can be improved through

the use of the two-step communication, particularly for sparser matrices with small com-

munication requirements. Furthermore, node-aware communication motivates the use of

increasingly accurate and dense transfer operators, as speedup over standard communica-

tion increases with density. Finally, this motivates the use of sparsification and node-aware

communication in combination, as denser interpolation operators yield increasingly dense

coarse-grid operators.

Finally, both sparsification and node-aware communication can be added to precondition-

ers other than algebraic multigrid. Sparsification can be applied to iterative preconditioners

such as ILU in an effort to reduce per-iteration cost. Furthermore, node-aware communi-

cation has potential to greatly improve the cost of multi-vector communication, motivating

implementation in enlarged krylov subspace methods and solution of systems with multiple

right-hand-sides.
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APPENDIX A: RAPTOR

RAPtor is an open-source parallel algebraic multigrid solver, written in C + + and MPI.

The codebase was created in an effort to reduce communication costs throughout the alge-

braic multigrid method, allowing for the use of node-aware communication throughout the

setup and solve phases. Secondly, the software implementation is similar to Pyamg [41] in

style, providing a straightforward extension to parallel AMG.

There are a large number of parallel algebraic multigrid codebases in current produc-

tion. Two commonly used solvers include Hypre [38, 59], a Ruge-Stüben solver created by

Lawrence Livermore National Laboratory, and ML [112], a smoothed aggregation solver cre-

ated by Sandia National Laboratory. Other distributed implementations of AMG include

GAMG [113], SAMG [114], AGMG [115], and ViennaCL [116]. Similarly, there are multiple

GPU implementations of AMG, including CUSP [117] and AMGX [118].

RAPtor contains a ParMultilevel object ml, which can be created as either a

ParRugeStubenSolver, yielding a classical Ruge-Stüben hierarhcy as described in Fig-

ure A.1, or a ParSmoothedAggregationSolver described in Figure A.2, which creates a

smoothed aggregation hierarchy.

ParRugeStubenSolver amg setup

Algorithm 7.1

strength: Line 4

cf splitting: Line 5

form interp: Line 6

P T · A · P : Line 7

Figure A.1: Methods in ParRugeStubenSolver

ParSmoothedAggregationSolver amg setup

Algorithm 7.2

strength: Line 5

aggregate: Line 6

tentative interp: Line 7

smooth: Line 8

P T · A · P : Line 9

Figure A.2: Methods in ParSmoothedAggregationSolver
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The ParMultilevel object has only a single solve phase, as outlined in Figure A.3. There-

ParMultilevel amg solve

Algorithm 7.3

relax: Line 4

residual: Line 5

restrict: Line 6

interp: Line 8

Figure A.3: Methods in ParMultilevel

fore, RAPtor allows for straightforward comparisons of Ruge-Stüben and smoothed aggre-

gation AMG, in which communication, matrix operations, and full AMG solve phase are

equivalent.

Figures A.4 and A.5 compare the setup and solve times, respectively, of Hypre to the

various methods of RAPtor, including standard and node-aware Ruge-Stüben and smoothed

aggregation hierarchies.
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(a) Anisotropic diffusion from Example 7.1.
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(b) 27-point Laplacian from Example 7.2.

Figure A.4: Setup times for RAPtor, in comparison to Hypre, strongly scaled, 10 240 000
non-zeros.

Furthermore, the full AMG times for strong scaling studies of the various solvers in RAP-

tor, in comparsion to Hypre, are displayed in Figure A.6, while the equivalent costs of a

weak scaling study are shown in Figure A.7.
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(b) 27-point Laplacian from Example 7.2.

Figure A.5: Solve times for RAPtor, in comparison to Hypre, strongly scaled, 10 240 000
non-zeros.
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Figure A.6: Full AMG ties for RAPtor, in comparison to Hypre, strongly scaled, 10 240 000
non-zeros.
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Figure A.7: Full AMG ties for RAPtor, in comparison to Hypre, weakly scaled, from Exam-
ple 7.1 with 10 000 degrees-of-freedom per core.
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