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ABSTRACT

With the end of Dennard scaling, high-performance computing increasingly re-

lies on heterogeneous systems with specialized hardware to improve application

performance. This trend has driven up the complexity of high-performance

software development, as developers must manage multiple programming

systems and develop system-tuned code to utilize specialized hardware. In

addition, it has exacerbated existing challenges of data placement as the spe-

cialized hardware often has local memories to fuel its computational demands.

In addition to using appropriate software resources to target application

computation at the best hardware for the job, application developers now

must manage data movement and placement within their application, which

also must be specifically tuned to the target system. Instead of relying on

the application developer to have specialized knowledge of system character-

istics and specialized expertise in multiple programming systems, this work

proposes a heterogeneous system communication library that automatically

chooses data location and data movement for high-performance application

development and execution on heterogeneous systems. This work presents

the foundational components of that library: a systematic approach for char-

acterization of system communication links and application communication

demands.
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CHAPTER 1

INTRODUCTION

With the end of Dennard scaling, computer architects have sought to sat-

isfy demand for increasing performance by providing specialized hardware

accelerators tuned to computation with particular characteristics. Perhaps

the most successful example of this trend is the widespread adoption of

graphics processing units (GPUs) for more general data-parallel compute

tasks. With the success of GPUs as a template, architects are moving forward

with a wide variety of accelerators, such as SIMD extensions [1, 2, 3], AI

accelerators (Google tensor processing unit [4], Huawei Neural Processing

Unit [5], IBM neuromorphic chips [6], Intel Nervana [7]), motion coprocessors

(Apple M-series [8]), field-programmable gate arrays (Xilinx Virtex [9], In-

tel Stratix [10]), network processors (Netronome Agilio [11]), digital signal

processors (Qualcomm Hexagon [12], NXP DSP56xx Family [13]), vision pro-

cessing units (Eyeriss [14], Movidius VPU [15], Mobileye EyeQ [16], Microsoft

Holographic Processing Unit [17]) and many others.

The enormous compute capability of accelerators demands high-bandwidth

access to data to “feed the beast.” Without this access, the performance

potential of the accelerator is largely wasted waiting for data. The trend

of integration (also motivated by reduction of total system cost) where

semiconductor die-size or power limits allow, has provided one approach

to solving this problem. By integrating an accelerator onto the same die

as the CPU, the accelerator more easily gets high-bandwidth low-power

access to data shared with the CPU. For accelerators with high memory

demands, however, the system memory DRAM bandwidth may ultimately

limit performance.

The second approach is to provide accelerators with their own high-

performance memory. Unfortunately, managing this memory then falls upon

runtime systems or the application developer, and moving data into acceler-

ator memory to support high-performance execution is a first-order design
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consideration for any accelerated application. The data-placement and data-

movement challenge is exacerbated by the growing demand for data-driven

applications. Analytics and neural-network applications ingest huge amounts

of data, and even if the amount of compute per data element is small, the

aggregate required computation can be commensurately large. That moti-

vates developers to use accelerators for these applications. To achieve high

performance on accelerators, developers must marshal and coordinate their

data movement and computation.

This work describes an automated approach to analyzing the performance of

data movement in systems that use discrete accelerators with local memories.

Broadly, the approach consists of two components: a system characterization

tool, which enumerates and characterizes the performance of logical com-

munication paths, and an application characterization tool, which profiles

unmodified applications to record how they interact with the system. These

tools are examined in the context of heterogeneous systems made of CPUs

and Nvidia GPUs and machine-learning workloads due to the maturity of that

hardware/software ecosystem. Together, these tools provide a foundation for

automating analysis of the relationship between system design and application

performance.

In pursuit of that vision, this work makes the following contributions:

• a detailed communication performance characterization of three multi-

CPU/multi-GPU systems designed for data-driven applications (Chap-

ters 4 and 5)

• a novel hardware enumeration tool for enumerating undirected graph

hardware topologies in multi-CPU/multi-GPU systems (Chapter 3)

• an approach for combining this characterization with an application

characterization to understand application performance on modern

accelerator-heavy systems (Chapter 6)

The rest of this document is organized as follows: Chapter 2 describes

background information on the studied computers, the CUDA programming

system, Linux NUMA system, OpenMP, and profiling tools proposed for

the application characterization; Chapter 3 describes the hardware system

characterization approach; Chapter 4 describes performance characterization

of explicit CUDA memory management. Chapter 5 describes performance

2



characterization of unified memory in CUDA systems. Chapter 6 describes

future work of application characterization and combined modeling. Chapter 7

discusses related work; and finally, Chapter 8 concludes.
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CHAPTER 2

BACKGROUND

This work examines the relationship between system and application per-

formance in the context of systems comprised of CPUs and Nvidia GPUs.

To that end, Section 2.1 describes the relationship between software abstrac-

tions and the underlying system hardware, Section 2.2 discusses how Nvidia

graphics processing units (GPUs) fit into the computing system architecture,

Section 2.3 describes the PCIe and NVLink interconnect systems used to

couple GPUs to each other and the rest of the system, Section 2.4 details

communication-related components and APIs of CUDA, the Nvidia GPU

programming system, Sections 2.5 and 2.6 describe the Linux non-uniform

memory access (NUMA) and OpenMP multiprocessing systems, Section 2.7

describes the Linux and CUDA components used in the proposed application

profiler, and Section 2.9 documents the heterogeneous systems used as case

studies in this work.

2.1 System Communication Abstraction

Application access to computing systems is made through a stack of abstrac-

tions. This work considers applications that interface with the system through

CUDA, the Linux NUMA abstraction, and OpenMP. Those API calls are

implemented in various libraries, such as libcudart.so on Linux systems. In

turn, those libraries make use of system calls provided by the operating system.

The operating system interfaces with various drivers, including the Nvidia

GPU drivers and the interconnect drivers, to make use of the underlying

hardware. Figure 2.1 shows a schematic of this stack.

Through these layers of abstraction, the underlying communication capa-

bilities are modified. For example, PCIe interconnects transfer data with

packets, but the CUDA API does not expose the ability to create custom

4
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Figure 2.1: The application interacts with the underlying hardware through
libraries, the operating system, and drivers.

packets to send to the GPU. Furthermore, the performance of the hardware

is modified. For example, when CUDA unified memory is used, some of the

link bandwidth may be consumed by control signals that help ensure data

coherence. Chapters 4 and 5 show how different uses of the CUDA API can

achieve different performance on the same physical hardware.

2.2 GPUs and System Architecture

Nvidia GPUs used in high-performance computing are fully-discrete accelera-

tors. From the software side, they demand explicit management through the

Nvidia Compute Unified Device Architecture (CUDA) programming system:

a set of C++ language extensions and libraries. In a GPU-accelerated applica-

tion, the CPU typically acts as a manager and “offloads” specialized compute

tasks to the GPU. From the hardware perspective, GPUs are separated from

the CPU and memory by an interconnect link. The GPU has its own local

memory, which must be populated with data for the GPU to operate on. For

the rest of this thesis, we will refer to the system memory associated with

that CPU as the “CPU memory” or “system memory”, and the GPU’s local

memory as “GPU memory”. Finally, though not covered in this work, the

GPU compute cores have dramatically different performance characteristics

than CPU cores, and require specialized programming styles.

Figure 2.2 shows some example interconnect bandwidth numbers for some

5
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Figure 2.2: Representative interconnect bandwidths between CPU and
system memory, GPU and GPU memory, and CPU to GPU. (a) shows a
c.2011 x86 system with an AMD Operton 6200 CPU [18] system, PCIe 2.0
x16, and Nvidia K20 GPU. (b) shows a c.2017 x86 system with an Intel
Xeon Platinum 8180M [19] CPU, PCIe 3.0 x16, and an Nvidia P100 GPU.
(c) shows a c.2013 PowerPC system with an IBM Power8 [20] CPU, two-lane
NVLink 1.0, and an Nvidia P100 GPU. (d) shows a c.2017 PowerPC system
with an IBM Power9 [21] CPU, three-lane NVLink 2.0, and an Nvidia V100
GPU.

hypothetical systems. In all cases, the bandwidth between the CPU or GPU

and their respective memories is much higher than the bandwidth between

the CPU and GPU. In older systems and current x86 systems, that link may

be an order of magnitude slower than the other interconnects. The vastly

different link performance makes data placement extremely important for

application performance.

Figure 2.2a is representative of a node of a supercomputer designed in

2012 [22]. Figure 2.2b represents a similar system, with components updated

to 2017. Figure 2.2c is a c.2013 system with an IBM Power8 CPU and NVLink

1.0. Figure 2.2d represents next-generation interconnect bandwidths present

in the Summit [23] and Sierra [24] supercomputers delivered in 2018.

2.3 PCIe and NVLink Interconnects

Modern systems with discrete GPUs feature either NVLink or PCIe accelerator

interconnects. These interconnects couple the GPUs to the CPUs and/or

other GPUs. Table 2.1 summarizes the theoretical bandwidth of common

interconnect configurations. Figure 2.3 shows example PCIe and NVLink

topologies. Section 2.4.4 describes how these topologies affect parts of the

CUDA peer-communication API.

The Nvidia DGX-1 system (Section 2.9.1) uses PCIe to connect CPUs to

GPUs, and single-lane NVLink 1.0 to connect amongst GPUs. The IBM

S822LC system (Section 2.9.2) uses two NVLink 1.0 lanes to connect pairs

6



Table 2.1: Theoretical performance for common interconnect configurations.
Only NVLink configurations used in the case studies are shown below. PCIe
3.0 x16 is included for reference, as most PCIe 3.0-attached GPUs use 16
lanes.

Interconnect Bandwidth Year Architecture
PCIe 3.0 15.8 GB/s (16 lanes) 2012 Tree

NVLink 1.0 / NVHS 20 GB/s (1 lanes) 2016 Point-to-Point
NVLink 1.0 / NVHS 40 GB/s (2 lanes) 2016 Point-to-Point
NVLink 2.0 / NVHS 75 GB/s (3 lanes) 2017 Point-to-Point
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Figure 2.3: (a) An example PCIe topology, showing the root complex at the
root of the tree, with endpoints and switches connected by links. (b) An
example NVLink topology, with each device supporting four NVLinks, and
using two to connect to each of its neighbor devices.

of devices, with each lane operating at 20 GB/s. The IBM AC922 system

(Section 2.9.3) uses three NVLink 2.0 lanes to connect pairs of devices, with

each lane operating at 25 GB/s.

2.3.1 PCIe

Peripheral Component Interconnect Express (PCIe) is an expansion bus

standard [25]. PCIe components form a tree, rooted at the root complex.

PCIe devices such as GPUs or SSDs are endpoints, with a single upstream port

and no downstream ports. Data is sent point-to-point between participating

endpoints and/or the root complex via unique PCIe addresses. The topology

also may include switches, components with a single upstream port and

7



multiple downstream ports. Switches do not receive data packets, and are

only used to extend the topology. Components are connected by PCIe links,

each of which consists of one to 32 lanes. The total bandwidth of the link

depends on the PCIe generation and the number of lanes. Figure 2.3a shows

an example topology. The PCIe 3.0 specification [26] was finalized in 2010, and

the first Nvidia GPUs to support it were some Kepler-architecture products

released in 2012 [27].

Table 2.2 shows single-lane PCIe bandwidths from generation 1.0 to 3.0.

Physically, each PCIe lane has four wires, divided into two differential signaling

pairs. A PCIe 3.0 x16 interconnect therefore has 64 wires. In PCIe 3.0, each

signaling pair operates at 8 Gb/s. With a 128b/130b encoding, this gives

PCIe 3.0 x16 a 15.8 GB/s unidirectional bandwidth.

Table 2.2: PCIe lane transfer rates

PCIe Revision Signaling Rate Encoding Line Bandwidth
1.0 2.5 GT/s 8b/10b 250 MB/s
2.0 5.0 GT/s 8b/10b 500 MB/s
3.0 8.0 GT/s 128b/130b 984.6 MB/s

2.3.2 NVLink

NVLink is a communication protocol developed by Nvidia. Current NVLink

implementations use the proprietary high-speed signaling interconnect NVHS

[28]. Like PCIe, each NVLink connects two devices. Unlike PCIe, there is

no concept of upstream or downstream ports, and devices may have multiple

ports. Multiple links may connect devices, in which case the links are combined

to contribute to the available bandwidth between devices. Figure 2.3b shows

an example topology. The NVLink 1.0 systems in this work allow each

device to have four NVLink lane connections, with each lane running at 20

GB/s [29], [30]. The NVLink 2.0 systems in this work allow each device to

have six NVLink lanes at 25 GB/s each [31].

Physically, each bidirectional lane has 32 wires, divided evenly into two

unidirectional sublinks of eight differential pairs [28]. Each pair operates at

20 Gb/s for NVLink 1.0 and 25 Gb/s for NVLink 2.0. This means a 2-lane

NVLink 1.0 has 64 wires. The improved bandwidth of 2-lane NVLink 1.0 vs.

PCIe 3.0 is directly attributable to the signaling rate on the wires.

8



2.4 CUDA

Nvidia’s CUDA (Compute Unified Device Architecture) is a programming

system for enabling general-purpose computation on Nvidia GPUs (graphics

processing units). CUDA is a set of C extensions and libraries for interfacing

with GPUs. Nvidia provides a compiler, nvcc, for generating CUDA-enabled

binaries.

CUDA provides a set of runtime and driver APIs for the developer to manage

the allocation and movement of data between the host and device memory.

From its inception, CUDA provided comprehensive APIs for developers to

mitigate application performance shortfalls stemming from the relatively

limited performance of host-device communication links. As the capabilities

of GPUs and host systems have improved, CUDA has provided simpler,

higher-level APIs that require less programmer effort. This section describes

CUDA memory-management capabilities and the historical context of their

introduction.

The CUDA API has an associated version number that defines which

CUDA actions are made available by that API. CUDA-capable hardware

advertises a specific compute capability (CC) that defines what CUDA actions

are supported by that GPU. Although the CUDA API may expose particular

capability, the GPU may need a sufficiently high CC to take advantage of it.

This section references both these version systems when discussing CUDA

features.

This work focuses on the performance of explicit CUDA memory manage-

ment and the CUDA unified memory system. There is a third set of transfer

capabilities that fall under the umbrella of remote-mapping or “zero-copy”

memory. These techniques are subsumed by unified ,emory, though making

use of them typically requires hints to the CUDA system. Once the flexibility

of the unified memory system improves, it will be important to revisit the

performance implications of zero-copy memory.

2.4.1 Basic CUDA Memory and System Memory

Prior to the introduction of unified virtual addressing (see Section 2.4.3),

the CUDA memory space was composed of multiple address spaces: one

for the host, and one for each GPU [32]. Data was explicitly allocated
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in those address spaces through cudaMalloc. Standard C/C++ memory

allocation techniques (malloc/new, free/new) are used for managing memory

on the host. cudaMemcpy is used to move data between address spaces,

whether the host and device or between devices. Since each device has a

separate address space, the programmer explicitly instructs cudaMemcpy how

to move data with cudaMemcpyHostToDevice, cudaMemcpyDeviceToHost, or

cudaMemcpyDeviceToDevice. Basic CUDA memory management runtime

calls are described in Table 2.3.

Table 2.3: Basic CUDA and C/C++ memory-management APIs.

CUDA API Description
cudaSetDevice() Associate a device with the host thread.
cudaMalloc() Allocate memory on the device.
cudaFree() Free memory on the device.

cudaMemcpy() Copy data between to,from,and between GPUs.
cudaMemcpyPeer() Copy data between GPUs without CPU involved.

C/C++ API Description
new / malloc() Allocate pageable memory on the system heap.

CudaMemcpy is only partially asynchronous with respect to the host ([33],

ch. 1). It will return once the pageable source allocation is safe to mod-

ify, but possibly before the data has finished moving to the device. This

impacts the design of the performance characterization routines in Chap-

ter 4. CudaMemcpyPeer initiates a DMA copy from one GPU to another,

without involving the host. This can improve the bandwidth of the transfer

between supported devices. The impact of this peer access is also described

in Chapters 4 and 5.

This API definition imposes the following basic structure on all CUDA

programs, which remains essentially unchanged through CUDA 9.1.

1. Allocate memory on the host with new/malloc.

2. Initialize memory on the host.

3. Allocate memory on the device with cudaMalloc.

4. Copy initialized data from the host to the device with

cudaMemcpy(..., cudaMemcpyHostToDevice).

5. Launch CUDA kernels.
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6. Copy results back to the host with cudaMemcpy(...,

cudaMemcpyDeviceToHost).

7. Free CUDA allocations with cudaFree.

Unified virtual addressing (Section 2.4.3) and unified memory (Section

2.4.5) allow the data transfer steps to happen implicitly on supported systems.

2.4.2 Page-Locked Memory

The GPU uses direct memory access (DMA) to copy data to and from the

host. When cudaMemcpy is invoked, the CPU instructs the GPU to copy a

region of host memory to the device memory (or vise-versa), without the CPU

being involved. The host must guarantee that the memory to be accessed by

the GPU will not be paged-out during the copy. First, cudaMemcpy copies

the data from the application address space to a piece of page-locked memory

in the system memory managed by the CUDA driver, and then cudaMemcpy

instructs the GPU to initiate the DMA from that page-locked region to the

GPU memory.

The CUDA runtime functions in Table 2.4 are the core functions CUDA

provides to make page-locked memory regions directly visible to the appli-

cation. When the application uses these APIs, the first copy from pageable

host memory to page-locked host memory can be elided. Section 4.2.1 demon-

strates the performance improvement from skipping this first copy. Overuse of

page-locked memory on the host will degrade overall application performance

or even impact system stability if the host system is not able to page as

needed.

CudaHostAlloc allows even more options, including the

cudaHostAllocPortable and cudaHostAllocWriteCombined flags.

CudaHostAllocWriteCombined causes a pinned allocation to be write-

combined. Writes to write-combined memory may be delayed and combined

in a buffer to reduce the number of memory accesses. Additionally, the host

may not cache this data in L1 or L2 cache, freeing up those resources for

other applications. This may prevent unnecessary cache invalidations from

occurring during the DMA. Furthermore, coherency is not enforced, so data

is not snooped on the PCIe bus, which can increase bandwidth by up to 40%

([35], 3.2.5.2). Due to the possible lack of caching, this type of allocation
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Table 2.4: CUDA pinned memory-management APIs.

API Description
CUDA
Version

Introduced
cudaMallocHost() allocate page-locked memory on the

host
1.0 [34]

cudaFreeHost() free page-locked memory on the
host

1.0 [34]

cudaHostAlloc() cudaMallocHost with additional
options

3.0 [35]

cudaHostRegister() Page-lock a range of host memory 4.0 [36]

makes sense for data that is not frequently read by the CPU, for example,

data written once by the CPU before being sent to a GPU.

CudaHostAllocPortable allows all CUDA contexts to treat the memory

as pinned, not just the context that performed the allocation. This became

the default with the introduction of unified virtual addressing.

2.4.3 Unified Virtual Addressing

Unified virtual addressing was introduced with compute capability 2.0 GPUs

and CUDA 4.0 on 64-bit systems. The host memory and the memory of each

GPU are mapped into disjoint subsections of a single unified address space.

This enhancement simplifies several of the already-introduced CUDA mem-

ory management commands ([36], 3.2.7). The cudaMemcpyDefault flag for

cudaMemcpy instructs the CUDA system to automatically determine how to

move data. By examining the address of the pointers passed to cudaMemcpy,

CUDA determines where which device the memory resides on and moves

it accordingly. This simplifies the programmer’s use of cudaMemcpy, as

cudaMemcpyDefault may be used everywhere. There is also no need to

call cudaHostGetDevicePointer for mapped allocations. Furthermore, all

mapped allocations are automatically accessible by all GPUs in the system,

not restricted to the GPU that was active at the time of the allocation.

CudaMemcpyPeer is no longer needed for device-to-device memory copies;

cudaMemcpy may be used instead.
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2.4.4 Peer Access and UVA

Peer access was introduced with CUDA 4.0. CudaDeviceEnablePeerAccess()

allows CC 2.0+ devices to address memory in another device’s address

space ([36], 3.2.6.4). For example, if GPU1 loads through a pointer to data

on GPU0, the data will be directly fetched from GPU0 memory, at the cost

of one PCIe transaction and one global memory load [32], and be cached in

the L2 of GPU0. Direct peer access requires compute capability 2.0, CUDA

4.0, Fermi+, and 64-bit system. The availability of peer access may rely on a

combination of interconnect topology and system hardware, summarized in

Table 2.5. When peer access is disabled, data transfers first pass through the

host instead of allowing direct DMA between devices.

Table 2.5: GPU-to-GPU connection, and whether peer access is supported
for the systems considered in this work.

Between GPUs with... System Peer Access
...a shared PCIe switch DGX-1 X

...different PCIe switches DXG-1 ×
...a direct NVLink connection S822LC X

...no direct NVLink connection S822LC ×
...a direct NVLink connection AC922 X

...no direct NVLink connection AC922 X

2.4.5 Unified Memory with CC 3.0+ (Kepler+)

The CUDA unified memory system was introduced with CUDA 6.0 and

requires a GPU with SM architecture of 3.0 or higher [37]. CUDA unified

memory [38] provides a single pool of memory that is accessible from the

CPU and GPU by a single pointer. CUDA automatically migrates data

between the physically distinct CPU and GPU memory as needed, allowing

GPU kernels to access the memory as if it were in the global memory, and

CPU functions to access the memory as if it were in the system memory.

Like mapped memory, this simplifies programming by removing the need for

separate host and device allocations and explicit data transfers. A summary

of unified memory APIs is shown in Table 2.6.

The underlying data is only present in one location on the system, and

in principle, unified memory allocations are automatically migrated towards
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Table 2.6: CUDA unified memory-management APIs. Initial CUDA 6.0
APIs and additional CUDA 8.0 APIs are shown.

CUDA 6 and CC3.0+ Description
managed Defines a global variable in managed

memory
cudaMallocManaged() allocate a unified memory region.

cudaStreamAttachMemAsync() Attach a managed allocation to a
stream, instead of globally.

CUDA 8 and CC6.0+ Description
cudaMemPrefetchAsync() Hint to prefetch memory to device

cudaMemAdvise() Hint about how memory will be used

their most recent use. When a kernel is launched, all pages attached to that

kernel’s stream are bulk migrated to the destination GPU. When the host

program touches a page, that page is migrated back to the system memory. In

multi-GPU systems, data does not migrate between GPUs - all other GPUs

receive peer mappings to the data, which is accessed over the PCIe bus ([37],

J.1.3).

Unified memory maintains coherence (i.e., all GPUs and the CPU have the

same view of unified memory values) by disallowing concurrent accesses to

managed data, including concurrent access to distinct managed allocations

([37], J.2.2.1). The CPU may access managed allocations after GPU execution

has completed, where “GPU execution” refers to activity in a particular stream

for stream-attached memory, or whole-GPU otherwise. For stream-attached

memory, completion of GPU execution can be guaranteed by any stream-

synchronizing call. For whole-GPU memory, completion is guaranteed by

stream synchronization when only one stream is executing on the GPU,1 or

by any call that is fully synchronous with respect to the host.2 The GPU is

considered to be active even if it is not accessing managed data. Concurrent

inter-GPU accesses are allowed, as are concurrently-executing kernels on a

single GPU ([37], J.2.2.2).

1e.g., cudaStreamSynchronize()
2e.g., cudaDeviceSynchronize()
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2.4.6 Unified Memory with CC 6.0+ (Pascal+)

With CUDA 8 and for GPUs with CC 6.0+, GPU page faulting provides

a more fine-grained data transfer mechanism [39]. Instead of moving all

managed allocations to the GPU prior to a kernel launch, the GPU will

fault if it accesses a page that is not in its memory. The page is either

migrated to the GPU to serve that access, or the page is mapped into the

GPU address space to be accessed over the host-device interconnect. Unlike

unified memory with CC 3.0, pages can migrate between GPUs on peer

accesses ([39], J.1.4). The GPU page faulting mechanism lifts all restrictions

on simultaneous access to data ([39], J.2.2.1). However, intensive interleaving

of CPU and GPU accesses to a page can cause excessive migrations and result

in severe performance degradation.

CC 6.0+ also brings 49-bit virtual addressing to cover the 48-bit virtual

addressing of modern CPUs and the GPU memory. This allows CUDA to

support managed allocations larger than the GPU memory. The total amount

of managed allocations still cannot be larger than the system memory ([39],

J.1.3).

CudaMemPrefetchAsync() hints to the unified memory system that a par-

ticular device will soon be accessing a unified memory allocation. This may

cause the system to migrate the specific region of memory over to the refer-

enced device. This hint is used in Chapter 4 in some of the unified memory

characterizations.

CudaMemAdvise() hints to the unified memory system how a particular

region of memory can be used. CudaMemAdviseSetReadMostly causes the

hinted device to establish a read-only copy of a page, instead of taking complete

ownership of a page on access. Any writes to that page become expensive,

as all read-only copies must be invalidated. This cost is not evaluated in

this work. CudaMemAdviseSetPreferredLocation hints to the driver that

data migration of the page away from the device should be avoided. This

may cause the system to establish a remote mapping for the data, instead of

migrating the page. CudaMemAdviseSetAccessedBy hints to the driver that

the device will access the memory region. It causes the page to be mapped in

the device page table for as long as possible, to prevent page faults on access.
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2.4.7 Unified Memory with CC 7.0+ (Volta+)

Though not examined in this work, Volta GPUs contain the necessary hard-

ware for more intelligent migration of pages. When support is added in

the Nvidia driver, access counters will be used to trigger page migrations of

hot pages, instead of on each access. The system will also detect thrashing,

and temporarily prevent page faults to allow faster progress on each device.

On POWER9 systems, the CPU and GPU have access to each other’s page

translation hardware, allowing memory accesses on the CPU to be served from

the GPU and cached on the CPU. Furthermore, the CPU can execute atomic

operations on locations in GPU memory without a page migration [40].

2.5 Linux Non-Uniform Memory Access

Linux includes a system for exposing non-uniform memory access architectures

(NUMA) to applications. In NUMA systems, memory is divided into multiple

nodes [41]. Processors and devices have the same access characteristics when

accessing memory in a particular node. Nodes have affinity to processors and

devices, indicating the processors and devices which can access that node

with the best performance.

This is particularly relevant on multi-socket systems, though some single-

socket systems also feature NUMA characteristics. For example, every system

considered by this work and described in Section 2.9 is a NUMA system. On

the AC922 (Figure 2.7), GPU0 is directly connected to CPU0 and GPU2 is

directly connected to CPU1. If an allocation on CPU0 were to be copied to

GPU2, the data would traverse the CPU-CPU X bus, and then the CPU-

to-GPU NVLink. On the other hand, if an allocation on CPU1 were to be

copied to GPU2, that data would only have to traverse the NVLink. This

can have a substantial effect on available bandwidth, as shown in Figure 2.4.

Chapters 4 and 5 show these effects in more detail.

16



210 214 218 222 226 230 234
0

10

20

30

40

50

60

70

80

Tr
an

sf
er

 B
an

dw
id

th
 (G

B/
s)

CPU-GPU Transfer NUMA Effects on AC922
Local (CPU0 to GPU0)
Remote (CPU0 to GPU2)

Figure 2.4: Example of NUMA bandwidth effects on AC922

Applications can leverage the numactl [42] library to affect their own NUMA

execution policy. This policy controls on which CPUs processes may execute,

and on which NUMA nodes memory is allocated. Numactl is used in this

work to ensure that data is allocated and programs execute on specific CPUs

as needed to exercise different underlying hardware links. Listing 2.1 shows a

C++ function that takes the operating system NUMA node ID as an integer

argument and binds the executing thread and its allocations to that node.

Lines 6 and 7 allocate a bitmask, and set the bit corresponding to the NUMA

node. Numa bind() in line 8 forces execution and allocations to occur on the

nodes in the nodemask.

Listing 2.1: Binding to NUMA nodes.

1 static inline void

2 numa_bind_node(const int node) {

3 if (-1 == node) {

4 numa_bind(numa_all_nodes_ptr );

5 } else if (node >= 0) {

6 struct bitmask *nodemask = numa_allocate_nodemask ();

7 nodemask = numa_bitmask_setbit(nodemask , node);

8 numa_bind(nodemask );

9 numa_free_nodemask(nodemask );

10 } else {

11 exit (1);

12 }

13 }

The benchmarks in this paper also initialize numactl with calls to numa set strict(1)

and numa set bind policy(1), which ensure that NUMA will cause the

program to exit on an error, and that if the memory cannot be allocated on
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the requested NUMA node, the allocation will fail instead of falling back to a

different node.

2.6 OpenMP

OpenMP is a shared-memory processing system that uses compiler directives

and library functions to allow applications to implement shared-memory par-

allel processing techniques [43]. Among other more sophisticated approaches,

OpenMP allows hint-assisted parallelization of nested loops through compiler

directives. This work uses OpenMP to use multiple CPU threads while

transferring data between the CPU and the GPU during the unified memory

characterization in Chapter 5. Multiple CPU threads are used to ensure

that the CPU is generating sufficient memory traffic to saturate its memory

controllers and make the maximal demands of the unified memory system.

There is a runtime overhead of entering the parallelized region, which affects

the design of the benchmarks.

Many microbenchmarks in this work rely on execution of threads on partic-

ular NUMA nodes. The numa bind(node) function binds the current process

and all child processes to the provided node, but OpenMP does not necessarily

implement worker threads as children of the current thread. Algorithm 2.1 is

used to bind all OpenMP threads to a NUMA node. A full OpenMP thread

team is created, and each of those threads individually binds itself to the

provided NUMA node.

Algorithm 2.1 Algorithm to bind all OpenMP threads to a NUMA node.

1: function omp numa bind node(dev)
2: bind cpu(dev)
3: for all worker threads do
4: bind cpu(dev)
5: end for
6: end function
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2.7 Profiling Tooling

2.7.1 CUDA Events

An event is a special kind of operation that is performed in a CUDA stream.

CUDA events allow the CUDA runtime to set and query noteworthy milestones

in the sequence of stream operations without stalling the stream. These

events may be used as a lightweight method for measuring how much time

CUDA operations take without also measuring the time taken to synchronize

the stream. Events are created with cudaEventCreate(), destroyed with

cudaEventDestroy(), and inserted into a stream with cudaEventRecord().

CudaEventSynchronize() blocks the calling thread until a particular event

has been completed in the stream. CudaEventElapsedTime() returns the

number of milliseconds that have elapsed between two completed events.

Listing 2.2 shows an example of measuring time of hypothetical CUDA

operation cudaSomeAsyncOperation() taking place in the stream stream.

Listing 2.2: Measuring time with CUDA events.

1 // Declare variables

2 float millis;

3 cudaEvent_t start , stop;

4 cudaStream_t stream;

5

6 // Create events

7 cudaEventCreate(start );

8 cudaEventCreate(stop);

9

10 // Insert events into stream

11 cudaEventRecord(start , stream );

12 cudaSomeAsyncOperation (..., stream );

13 cudaEventRecord(stop , stream );

14

15 // Wait for events to finish before computing time

16 cudaEventSynchronize(stop);

17 cudaEventElapsedTime (&millis , start , stop);

Lines 7 and 8 create the events that will wrap the operation to be timed.

Lines 11 and 13 insert the start and stop events around the operation to

be timed. Line 16 blocks until the events have finished, then line 17 produces

the milliseconds elapsed between the start and stop events.
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2.7.2 CUDA Profiling Tools Interface

The CUDA Profiling Tools Interface [44] (CUPTI) “provides...detailed in-

formation about how applications are using the GPU in a system.” Users

may inject code into the entry and exit point of every CUDA C runtime and

CUDA driver API function call. Additionally, users may configure and query

hardware and software event counters to get insight into the operation of

the GPU and CUDA stack. The event counters include instruction count,

instruction throughput, memory loads/stores, memory throughput, cache

hits/misses, branches and custom profile triggers. Chapter 6 describes how

CUPTI can be used to record memory allocations, kernel arguments, and

timestamps to build a model of the application execution.

2.7.3 LD PRELOAD

LD PRELOAD [45] is a mechanism by which the ld linker will load additional

user-specific shared objects before any others. If a function definition is

present in a pre-loaded shared object, it will override the implementation

present in later objects. When combined with dlsym() [46], it can be used

to inject code into the entry of library calls in dynamically-linked binaries.

Chapter 6 describes how LD PRELOAD can be used to infer information

about application activity based on generic library calls.

2.8 Benchmark Library

This work makes use of the Google Benchmark library [47] as a harness for the

developed custom microbenchmarks. Benchmark automatically determines

the number of iterations to run based on the number of inputs and the desired

CPU time. Benchmark allows repeated runs, and can report individual and

aggregated statistics. This work makes uses of repeated runs, and presents

results in terms of mean values and standard deviations. Benchmark also

supports manual or automatic timing. An example of the basic layout of

an automatic timing benchmark is shown in Listing 2.3. Microbenchmarks

using Benchmark are written in C++, and have a setup phase, an interaction

phase, and a teardown phase.
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Listing 2.3: Benchmark with automatic timing.

1 #include <benchmark/benchmark.h>

2 static void BM_Foo(benchmark :: State& state) {

3 for (auto _ : state) {

4 state.PauseTiming ();

5 // Time elapsed here will not be counted

6 state.ResumeTiming ();

7 foo();

8 }

9 }

10 BENCHMARK(BM_Foo );

Lines 2-9 define a Benchmark function, which is registered to be run in line

10. The loop body in lines 4 through 7 is executed and timed automatically

by the framework, and the average time is recorded. Any part of the loop

body that should not be timed can be wrapped in state.PauseTiming()

and state.ResumeTiming(). This allows for per-iteration setup code to not

be timed. The number of loop iterations is automatically controlled by the

benchmark suite based on the number of arguments and desired run time.

For the benchmarks presented in this work, there are tens of thousands of

iterations for small transfers, and as few as a single transfer test for large

iterations. The mean time is reported as a result of the benchmark. This

process is then repeated multiple times to determine a standard deviation of

the measurement.

Some of the microbenchmarks in this work make use of CUDA events to

accurately measure the time taken by various CUDA operations. Benchmark

supports this by allowing each microbenchmark to record and report its own

iteration time. For example, consider Listing 2.4.

Benchmark provides a DoNotOptimize(<expr>) function, which forces the

result of <expr> to be placed in a register. It does not prevent any op-

timization of <expr>, including replacing it with a statically-known value.

Benchmark also provides a ClobberMemory() function, which forces all pend-

ing global memory writes to be completed. Through these two functions, the

microbenchmarks can ensure that specific memory operations are completed

and not optimized away.
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Listing 2.4: Benchmark with manual timing.

1 #include <benchmark/benchmark.h>

2 static void BM_Foo(benchmark :: State& state) {

3 cudaEvent_t start , stop;

4 cudaEventCreate(start );

5 cudaEventCreate(stop);

6 float msec;

7

8 for (auto _ : state) {

9 cudaEventRecord(start , NULL);

10 ... // cuda operation to benchmark

11 cudaEventRecord(stop , NULL);

12 cudaEventSynchronize(stop);

13 cudaEventElapsedTime (&msec , start , stop);

14 state.SetIterationTime(msec / 1000);

15 }

16 }

17 BENCHMARK(BM_Foo)->UseManualTime ();

Now, when the benchmark is registered in line 17, the framework is informed

that the benchmark loop iteration will report its own time. Instead of the

framework timing the loop body in lines 9-14, CUDA events are used to

measure the operation time. The iteration time is manually set in line 14.

Although Benchmark also supports multithreaded benchmarking, the mi-

crobenchmarks developed for this work do not use it. Benchmark does not

directly support thread synchronization within each benchmark iteration,

which is needed to accurately measure the performance of using multiple

threads to move memory.

2.9 System Descriptions

Three high-performance heterogeneous systems are used in this work: an IBM

S822LC for High Performance Computing [48], an IBM AC922 [49], and an

Nvidia DGX-1 [29]. All systems feature multiple GPUs and multiple socketed

CPUs. Their key differences are in CPU architecture (64-bit little-endian

PowerPC for S822LC and AC922, x86-64 for DGX-1), number of GPUs (4

for the IBM machines, 8 for Nvidia), and GPU connection topology (NVLink

1.0 for S822LC, NVLink 2.0 for AC922, and hybrid PCIe 3.0 / NVLink 1.0
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for DGX-1).

2.9.1 Nvidia DGX-1

Table 2.7: Nvidia DGX-1 architecture summary.

Component Specification

CPU
2x Intel Xeon E5-2698 v4

40C / 80T
2.2 GHz

System Memory 512 GB DDR4
GPU 4 Nvidia P100

CPU/GPU Interconnect NVLink 1.0 (1 lane) / PCIe 3.0
CUDA 8.0, driver 384.125
Kernel 4.4.0-79

NVLink 1.0 
40 GB/s
1 Lane

Intel Xeon E5-2698 v4
256 GB DDR

PCIe 3.0
15.8 GB/s
16 Lanes

NVIDIA P100
 16 GB HBM2 GPU

CPU
QPI

38.4 GB/s

PCIe Switch

NUMA Node 0 NUMA Node 1
CPU 0 CPU 1

GPU 3

GPU 1

GPU 2

GPU 0

GPU 6

GPU 4

GPU 7

GPU 5

Figure 2.5: Nvidia DGX-1 architecture schematic. Interconnect legends are
subtitled with theoretical maximum transfer rates. Each of the four NVLink
lanes on a GPU is used to connect it to one other GPU. CPUs are connected
to GPUs by PCIe 3.0 x16 interconnects.

Table 2.7 and Figure 2.5 summarize the Nvidia DGX-1 system architecture.

The Nvidia DGX-1 machine consists of two symmetric sections [29]. Each

section consists of one 20-core Intel Xeon E5-2698v4 CPUs with 2-way SMT.

Each CPU is connected to 256GB of DDR4 RAM, and each section makes up

a Linux NUMA node. Each section has 4 Nvidia Tesla P100 GPUs coupled

by single NVLinks. The sections are connected by an Intel 9.6GT/s QPI bus
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between the CPUs providing 38.4 GB/s of bidirectional bandwidth, as well

as NVLinks between corresponding GPUs. The first CPU socket hosts the

majority of the PCI devices on the system, including the network interfaces

and the disks. The CPU/GPU device affinity is relatively simple: CPU0 is

directly connected to GPUs 0-3 and CPU1 is directly connected to GPUs 4-7.

Every GPU is directly connected to all local GPUs in its cluster, as well as

one outside.

2.9.2 IBM S822LC for High Performance Computing

Table 2.8: IBM S822LC architecture summary.

Specification

CPU
2x IBM Power8

20C / 80T
4 GHz

System Memory 512 GB DDR4
GPU 4 Nvidia P100

CPU/GPU Interconnect NVLink 1.0 (2 lanes)
CUDA 9.1.85, driver 390.31
Kernel 4.4.0-96

Table 2.8 and Figure 2.6 summarize the hardware configuration. The

IBM S822LC machine features two POWER8 CPUs and four Nvidia P100

GPUs [48]. Each POWER8 CPU has 10 cores, with 8-way simultaneous

multithreading, and is attached to 256GB of DDR4 memory for a total of

160 threads and 512 GB of memory. Each POWER8 CPU and associated

memory make up a Linux NUMA node. Each POWER8 CPU is part of

a fully-connected triad of one POWER8 CPU and two P100 GPUs. Each

device in the triad is connected by a gang of two NVLink 1.0 lanes for a

total bidirectional bandwidth of 80 GB/s. The two triads are connected at

the POWER8 CPUs by an IBM SMP X bus with 38.4 GB/s of bidirectional

bandwidth.
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Figure 2.6: IBM S822LC architecture schematic. Interconnect legends are
subtitled with theoretical maximum transfer rates. The four NVLink lanes
on a GPU are bonded into two two-lane pairs to connect it to the
neighboring CPU and GPU.

NVLink 1.0 
80 GB/s
2 Lanes

IBM Power8
256 GB DDR4

NVIDIA P100
 16 GB HBM2 GPU

CPUX Bus
38.4 GB/s

NUMA Node 0 NUMA Node 1

GPU 0

GPU 1

CPU 0 CPU 1

GPU 2

GPU 3

2.9.3 IBM AC922

The IBM AC922 machine features two POWER9 CPUs and four Nvidia V100

GPUs [49]. Each POWER9 CPU has 20 cores, with 4-way simultaneous

multithreading, and is attached to 512GB of DDR4 memory for a total of 160

threads and 1TB of memory. Each POWER9 CPU is part of a fully-connected

triad of one POWER9 CPU and two V100 GPUs. Each device in the triad is

connected by three bonded NVLink 2.0 lanes for bidirectional bandwidth of

150 GB/s. The two triads are connected at the POWER9 CPUs by an IBM

SMP X bus with 64 GB/s bandwidth. Table 2.9 and Figure 2.7 summarize

the hardware configuration. Like the S822LC, each triad is a Linux NUMA

node.
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Table 2.9: IBM AC922 architecture summary

Specification

CPU
2x IBM Power9

40C 160T
3.0 GHz

System Memory 1TB DDR4
GPU 4 Nvidia V100

CPU/GPU Interconnect NVLink 2.0 (3 lanes)
CUDA 9.2.85, driver 396.15
Kernel 4.14.0-49

Figure 2.7: IBM AC922 architecture schematic. Interconnect legends are
subtitled with theoretical maximum transfer rates. The six NVLink lanes on
a GPU are bonded into two three-lane pairs to connect it to the neighboring
CPU and GPU.

NVLink 2.0 
150 GB/s
3 Lanes

IBM Power9
512 GB DDR4
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 16 GB HBM2 GPU
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64 GB/s
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GPU 1

CPU 0 CPU 1
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CHAPTER 3

SYSTEM CHARACTERIZATION

This chapter describes and approach to produce an empirical performance

model of hardware when an application invokes communication activities

through the CUDA API functions. This performance model is needed for

understanding the measured performance results to be presented in the rest of

this thesis. In particular, this chapter motivates a joint performance model of

software abstractions and underlying hardware. It then describes an approach

for enumerating hardware components and connections.

3.1 Joint Abstraction and Hardware Model

Figure 3.1 shows two different communication abstractions of S822LC. Fig-

ure 3.1a represents the Linux NUMA view of the system. As described in

Section 2.5, this view is accessible to the application through the libnuma

library. Figure 3.1b represents the connectivity of the components through

the CUDA API. Nodes in the graphs represent data storage locations or com-

pute elements, and edges in the graph represent logical communication paths

considered in this work. NUMA and CUDA present different abstractions,

which are different from the system layout in Section 2.9.2. In practice, the

logical communication paths available to the system are the union of these

abstractions (and any other abstraction made available by the system).

Despite many of the logical communication paths using the same physical

links, they achieve different performance on those links. As demonstrated in

Chapters 4 and 5, some aspects of the empirical performance are determined

by properties of the hardware links, while others are not. A communica-

tion performance model must therefore not only be based on the empirical

performance of the logical links, but also incorporate understanding of the

underlying hardware, if the model is to be applicable to more than just the
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Figure 3.1: Communication topologies exposed to the application. (a) The
abstraction presented by NUMA. (b) The abstraction presented by CUDA.

system it was developed on.

Ideally, while empirical communication performance is characterized, the

mapping to underlying hardware should be automatically established. This

work takes that mapping as a-priori, but the following section presents initial

efforts to automate the process.

3.2 Topology Enumeration

This work proposes a two-step approach to establishing a mapping from

logical communication paths to underlying hardware.

1. Generate a graph Gs of the hardware.

2. Observe hardware utilization while exercising logical communication

paths.

The hardware is represented by a graph Gs = {E, V } where E is a set of

edges representing communication links, and V is a set of vertices representing

communication endpoints, or data routing elements. Sections 3.2.1 and 3.2.2

describe the specific system components explored. Each vertex in V is a data

routing element. These vertices are able to receive and re-transmit data on

any of their links. A PCIe switch is an example of a pure data-routing vertex.

Optionally, the vertex may serve as a communication endpoint: a source

or a sink for data. Processing elements and data storage elements serve as

communication endpoints.
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Hwcomm [50] is an open-source tool developed for automated hardware

topology enumeration. This tool can be executed on a target system to

generate Gs for that system. Thought hwcomm relies largely on exploring the

PCIe device tree, it also uses information provided by the Nvidia Management

Library [51] (NVML) to discover NVLink devices, and build a graph of

hardware components. The first step of generating Gs is to discover the

hardware components and connections through a multi-stage process.

Stage 1: Enumerate and Link CPU Sockets:

The Portable Hardware Locality [52] (hwloc) library is used to enumerate

the present CPU sockets. As the test systems only have two sockets, all

discovered sockets are considered to be directly connected by an SMP bus for

the appropriate system type. The sockets and SMP buses are added to Gs.

Stage 2: Enumerate PCI devices:

The hwloc library is used to traverse the PCI device tree. All PCI devices

are added to Gs and connected with PCI links of the appropriate type. Most

attached storage, networking, and computing components are assigned an

address in the PCI system and are discoverable in this step.

Stage 3: Update GPUs to Nvidia GPUs as appropriate:

Next, NVML is used to enumerate all Nvidia GPUs. The GPUs are matched

by PCI address with existing PCI devices previously added to Gs, and NVML

is used to discover whether NVLink is supported on each GPU and which

other devices are connected to the GPU through NVLinks. This information

is not provided by hwloc. The edges associated with the NVLinks are added

to Gs.

3.2.1 Vertex Types

Table 3.1 summarizes the types of data routers discovered by hwcomm. These

make up the vertices of Gs.

3.2.2 Edge Types

In Gs, the vertices are connected by the discoverable edge types shown in

Table 3.2.
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Table 3.1: A summary of the types of data routers that can be discovered by
hwcomm. Some components may also serve as data endpoints.

Hardware Data Router Data Endpoint
CPU Socket X X
PCI Device X X

PCIe Hostbridge X ×
PCIe Bridge X ×
CUDA GPU X X

Linux Block Device X X
Linux Network Interface X X

Table 3.2: A summary of the types of communication links that can be
discovered by hwcomm. Some components may also serve as data endpoints.

Edge Type Description
SMP Bus A symmetric multiprocessing bus connecting two CPU

sockets.
PCIe Bus A PCIe link connecting a PCIe Bidge and PCIe device or

PCIe Hostbridge and PCIe bridge.
NVLink1 A first-generation NVLink connecting two Nvidia GPUs or

an Nvidia GPU and CPU
NVLink2 A second-generation NVLink connecting two Nvidia GPUs

or an Nvidia GPU and CPU
SATA bus A Serial AT Attachment link conneting a host bus to a

mass storage device.

3.2.3 Discovered Topologies

The topologies of the S822LC, AC922, and DGX-1 systems are show in

Appendix 8.

3.2.4 Logical Path to Hardware Link Mapping

Once the system graph is established, the mapping between logical com-

munication paths and system graph vertices and edges can be established

by observing performance counters while benchmarking logical paths. For

example, NVML provides access to NVLink performance counters. As known

quantities of data are moved across the logical connections, the hardware

link performance counters can be observed to associate logical transfers with

traffic across physical links.
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In this work, automatic determination of the mapping is not considered;

instead, the mapping for the case study systems is known ahead of time.
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CHAPTER 4

EXPLICIT MEMORY PERFORMANCE

This chapter examines the performance of explicit data transfers over logical

communication links presented in a system with NUMA and CUDA interfaces.

In particular, it focuses on CPU/CPU transfers, CPU/GPU transfers, and

GPU/GPU transfers. It highlights cases where the observed logical communi-

cation performance deviates significantly from the symmetries present in the

CUDA API, numactl API, and hardware. Those deviations take the form

of different performance on identical links, anisotropic link performance, or

performance affected by device affinity.

The microbenchmarks developed for this section are available in the

microbench project [53]. That project also includes benchmarks of other as-

pects of CUDA performance, including CUDA primitives like kernel launches,

and CUDA libraries such as cuBLAS and cuDNN.

4.1 CPU / CPU Transfers

This section begins by examining CPU-CPU transfer performance through

cudaMemcpy. This attempts to provide insight into the CUDA performance

when sending data from one CPU socket to another. Such a transfer would

occur when data is sent from a CPU A to a GPU attached to another CPU

B. The data would traverse the SMP bus between CPU A and CPU B, and

the bandwidth of that bus could limit the overall performance of the transfer.

Algorithm 4.1 describes the measurement approach. During the setup phase,

an allocation is created on the source CPU src and destination CPU dst.

During the benchmark iterations, the dst cache is invalidated (if the src is

different from the dst) by accessing that data from the src. Then, cudaMemcpy

is invoked to transfer data between those allocations. CUDA events are used

to measure the time of the memory copy.
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Algorithm 4.1 Algorithm to measure cudaMemcpy CPU-CPU Bandwidth.
AllocPinned and AllocPageable are defined in Algorithm 4.2. numa bind node

is defined in Listing 2.1.

1: function bandwidth(dst, src, transfer size)
2: numa bind node(src)
3: srcP tr ← AllocPageable(transfer size)
4: memset(srcP tr, 0, transfer size)
5: numa bind node(dst)
6: dstP tr ← AllocPinned(transfer size)
7: memset(dstP tr, 0, transfer size)
8: start← cudaEventCreate()
9: stop← cudaEventCreate()

10: for state do . Benchmark library loop
11: numa bind node(src)
12: memset(srcP tr, 0, transfer size) . invalidate dst cache
13: numa bind node(dst)
14: cudaEventRecord(start)
15: cudaMemcpy(

dstP tr, srcP tr, transfer size,
cudaMemcpyHostToHost)

16: cudaEventRecord(stop)
17: cudaEventSynchronize(stop)
18: millis← cudaEventElapsedTime(start, stop)
19: state.SetIterationTime(millis

1000
)

20: end for
21: end function
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Algorithm 4.2 shows different kinds of host allocation strategies used in

microbenchmarks that need CUDA host allocations on particular NUMA

nodes. AllocPageable simply defers to malloc, which will return memory

allocation on a previously-pinned NUMA node. AllocPinned defers to malloc

to get a NUMA allocations, and then uses cudaHostRegister to pin that

memory. AllocWriteCombined uses the cudaHostAlloc CUDA library call

with the cudaHostAllocWriteCombined flag to request that CUDA allocate

write-combining memory.

Algorithm 4.2 Pageable, pinned, and write-combining host allocators.

1: function AllocPageable(bytes)

2: ptr ← 0

3: malloc(ptr, bytes)

4: return ptr

5: end function

6: function AllocPinned(bytes)

7: ptr ← 0

8: malloc(ptr, bytes)

9: cudaHostRegister(ptr, bytes, cudaHostRegisterPortable)

10: return ptr

11: end function

12: function AllocWriteCombined(bytes)

13: ptr ← 0

14: cudaHostAlloc(ptr, bytes, cudaHostAllocWriteCombined)

15: return ptr

16: end function

Figure 4.1 shows intra- and inter-CPU cudaMemcpy performance on S822LC,

AC922, and DGX-1. In all cases, for small transfers, the bandwidth is limited

by the overhead of invoking the transfer. For intermediate and larger sizes,

that overhead ceases to be the performance-limiter. At large sizes, intra-CPU

bandwidth is higher, presumably since data transfer over the SMP bus is

not required. The bandwidth saturates at the rate that a single thread can

generate loads and stores.
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S822LC and AC922 have similar intra-CPU performance except for interme-

diate sizes, where the S822LC performance peaks (presumably due to transfers

happening in cache) and AC922 performance drops. On DGX-1, inter-CPU

transfers are actually faster than intra-CPU transfers for intermediate sizes.
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Figure 4.1: CPU-to-CPU transfer bandwidth vs. transfer size. Each transfer
is measured using Algorithm 4.1. Whiskers at each point show the standard
deviation measured over 5 repetitions.

4.2 CPU / GPU Transfers

Explicit CPU-GPU transfers are caused by the cudaMemcpy family of functions

being invoked on one pointer to a host allocation and one pointer to a device

allocation. In this work, the host allocation is created by one of three methods

shown in Algorithm 4.2. The device allocation is created by cudaMalloc.

This section compares bandwidth achievable from pinned, pageable, and

write-combining host allocations, with particular emphasis on how device

affinity affects transfer-performance and cases where transfers are anisotropic.

Algorithm 4.3 is used to evaluate the achievable bandwidth for cudaMemcpy

transfers between a GPU allocation and a pageable, pinned, or write-combining

host allocation. The same algorithm can be used for these cases, because

the same cudaMemcpy CUDA API call to transfer data can be used on a

pointer pointing to any of the allocation types. Depending on the source

and destination types src and dst, and the desired host allocation type, the

corresponding CUDA or numactl APIs are called to bind later activities to

the desired GPU or CPU. Then, the CUDA or host allocators are invoked to

produce devPtr (a pointer to the device allocation) and hostP tr (a pointer

to the CPU allocation). The main benchmark loop uses the cudaMemcpy time

as the iteration time that should be reported.
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Algorithm 4.3 Measuring CPU/GPU bandwidth with cudaMemcpy. Host
allocators are described in Algorithm 4.2. numa bind node is defined in
Listing 2.1.

1: function Bandwidth(dst, src, bytes, num iters)

2: if src is GPU then

3: cudaSetDevice(src)

4: else . src is CPU

5: numa bind node(src)

6: end if

7: if dst is GPU then

8: cudaSetDevice(dst)

9: else . dst is CPU

10: numa bind node(dst)

11: end if

12: devPtr ← cudaMalloc(bytes) . device allocation

13: hostP tr ← hostAllocate(bytes) . appropriate host allocator

14: if src is GPU then

15: srcP tr ← devPtr

16: dstP tr ← hostP tr

17: else . src is CPU

18: srcP tr ← hostP tr

19: dstP tr ← devPtr

20: end if

21: start← cudaEventCreate()

22: end← cudaEventCreate()

23: for state do

24: cudaEventRecord(start)

25: cudaMemcpy(dstP tr, srcP tr, bytes, cudaMemcpyDefault)

26: cudaEventRecord(stop)

27: millis← cudaEventElapsedTime(start, stop)

28: state.SetIterationTime(millis / 1000)

29: end for

return elapsed

30: end function
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4.2.1 Comparison of Pageable, Pinned, and Write-Combining
Host Allocations

To contextualize other results presented in this chapter, Figure 4.2 shows

the transfer performance between pageable, pinned, and write-combined

allocations on CPU0 and a device allocation on GPU0. On all tested systems,

this is a local transfer between a directly-connected CPU and GPU. These

performance curves exhibit features common throughout this chapter:

• For small transfer sizes, the time is dominated by overhead of invoking

the transfer.

• For large transfer sizes, the performance is dominated by the exercised

pysical link (in pinned or write-combining transfers) or some part of

the abstraction layer (pageable transfers).

• The performance may vary smoothly across intermediate transfer sizes,

or exhibit more complicated behavior. For example, in the AC922

transfer shown in Figure 4.2a, bandwidth peaks and then drops for

intermediate transfer sizes before recovering for larger transfers.
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Figure 4.2: CudaMemcpy bandwidth vs. transfer size for CPU0 to GPU0
transfers from (a) pageable allocations, (b) pinned allocations, and (c)
write-combining allocations and GPU0 to CPU0 transfers of the same kind
(d-f). Results for S822LC, AC922, and DGX-1 systems are shown. Whiskers
show standard deviations of benchmark measurements over five repetitions.
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The curves for transfers involving pinned or write-combined allocations on

CPU0 (Figures 4.2(b,c,e,f)) share a similar shape: the transfer bandwidth

is low for small sizes, and eventually saturates once transfers become large

enough. S822LC and DGX-1 achieve ∼75% of the theoretical 40 and 20 GB/s

bandwidths of the NVLink 1.0 x2 and PCIe 3.0 x16 links, respectively. AC922

achieves nearly 100% of the theoretical 75 GB/s unidirectional NVLink 2.0

x3 bandwidth.

In contrast, Figures 4.2a and 4.2d show transfers involving pageable alloca-

tions. The achievable bandwidth for large transfer sizes on S822LC is reduced

to approximately 25% of the theoretical 40 GB/s bandwidth provided by the

link. On AC922 the performance is nearly 50% of the theoretical bandwidth.

AC922 CPU-to-GPU transfers also show a high bandwidth achieved for large

CPU-to-GPU transfers, but not for GPU-to-CPU transfers. DGX-1 band-

width peaks at 50% of the theoretical 20 GB/s of one-lane NVLink 1.0, but

drops substantially for large transfer sizes.

Section 2.4.2 describes how cudaMemcpy from a pageable allocation to

the GPU actually causes two data copies: one from the pageable allocation

application to a pinned buffer, and a second copy, a DMA from the pinned

buffer to the GPU. When pinned memory transfers are faster than pageable

memory, we can infer that the CPU memory copy from pageable allocation to

pinned buffer is limiting the performance. For comparison, consider Figure 4.1,

which shows the performance of using cudaMemcpy to only do a copy from a

pageable allocation to a pinned allocation. For S822LC, the pageable-to-GPU

transfer shown in Figure 4.2a is approximately the same performance as the

pageable-to-pinned transfer shown in Figure 4.1.

Surprisingly, on AC922, the pageable-to-GPU transfer for large transfer

sizes is substantially faster than the pageable-to-pinned transfer that it should

be limited by. This suggests that there is a different implementation for the

two cases. Bandwidth spikes at intermediate sizes suggest that the GPU

DMA may directly access data from the CPU cache when the transfer can

fit in the cache. This is further reinforced by the lack of difference between

pinned and write-combining transfer bandwidth, which suggests that caching

or lack thereof on these systems does not influence the DMA engine.
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4.2.2 CPU/GPU Bandwidth Measurements

Figure 4.3 shows CPU/GPU bandwidth on a variety of logical paths for

S822LC, AC922, and DGX-1. Transfers involving pinned and pageable

allocations are shown. Write-combined results are omitted as they match the

pinned performance.
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Figure 4.3: Transfer bandwidth vs. transfer size for local and remote
transfers from pageable and pinned host allocations on S822LC, AC922, and
DGX-1. (a-c) Transfers from pageable allocations to GPUs. (d-f) Transfers
from pinned allocations to GPUs. (a) and (d) are for S822LC, (b) and (e) for
AC922, and (c) and (f) for DGX-1.

In general, the bandwidth follows the same outline described in Section 4.2.1,

with overhead-dominated time for small transfers, bandwidth-dominated

time for large transfers, and some other behavior between. There are some

distinctive reoccurring patterns in Figures 4.3 (a)-(c).

CPU-to-GPU pageable transfers on the IBM systems exhibit peaks in

transfer bandwidth at intermediate transfer sizes. The shape of this curve

suggests some insight into the copy implementation. For example, consider

the S822LC CPU0 to GPU0 curve. The expected process is that a pageable

allocation on CPU0 is copied to one or more pinned allocations on CPU0,

which are then accessed by GPU0’s DMA engine. The fact that the peak

bandwidth at intermediate transfer sizes surpasses the measured bandwidth

39



for single-threaded inter-CPU transfers (Figure 4.1) suggests that the pageable-

to-pinned copy is indeed occurring within a single CPU, and not across CPUs.

The same shape is even present in the CPU0 to GPU2 curve, where it would be

plausible for the pageable allocation to be on CPU0 and the pinned allocation

on CPU1. For S822LC as the transfer grows larger, the bandwidth reaches

a steady-state value that is approximately the same as the single-threaded

CPU-CPU memory access bandwidth. In AC922, we see a large change

in the transfer bandwidth, suggesting that some other implementation is

chosen at those sizes. The drop before reaching that bandwidth suggests

some system performance bug, like imbalance in the number and size of the

pinned transfer buffers that prevents good overlapping of the host-device DMA

and the host-host memory copy. Finally, on AC922, the local GPU-to-CPU

transfer is actually faster than the corresponding intra-CPU cudaMemcpy,

again suggesting some difference in implementation when a GPU is involved.

On DGX-1, no similar intermediate spike is observed. The total transfer

bandwidth is capped by the lower interconnect bandwidth, clipping that

shape. Also on DGX-1, the transfer bandwidth at large sizes is seriously

degraded, falling well below even the CPU-to-CPU cudaMemcpy bandwidth.

This also may be a performance bug.

Figures 4.3 (d)-(f) show the same transfers, but from pinned allocations.

These transfers are all ultimately limited by the interconnect bandwidth, and

do not show the same peaks. On S822LC, local transfers achieve around

75% of the NVLink 1.0 bandwidth, while remote transfers achieve 50-75% of

the lower 38.4 GB/s SMP bus bandwidth. On Ac922, local transfers achieve

around 95% of the NVLink 2.0 bandwidth, while remote transfers again are

limited to around 50-75% of the 64 GB/s SMP bus. On DGX-1, both transfers

achieve around 60-70 of the PCIe 3.0 bandwidth.

4.2.3 Affinity

On systems with high-performance interconnects, transfers from GPU al-

locations to pageable CPU allocations are strongly correlated with device

affinity. Transfers involving pinned CPU allocations demonstrate a strong

effect in both CPU-to-GPU and GPU-to-CPU directions. The presence of

high-performance interconnects further exposes any performance differences,
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since bandwidth is less likely to be limited by underlying link bandwidth and

more likely to be limited by performance bugs or single-threaded memory

copies. Table 4.1 summarizes the effects.

Figure 4.3a shows that affinity has a small effect on bandwidth for pageable

transfers on S822LC. For transfers larger than 4 MB, the GPU-to-CPU remote

transfer is faster than the GPU-to-CPU local transfer. Figure 4.3b shows local

GPU-to-CPU pageable transfers on AC922 are much faster than their remote

counterparts, except for large transfers, where remote performance is slightly

higher. Figure 4.3c shows that GPU-to-CPU pageable transfers on DGX are

not affected by affinity. Figure 4.3d shows on S822LC, pinned bandwidth is

correlated with affinity, particularly in the GPU-to-CPU direction. Figure 4.3e

shows for pinned transfers on AC922, affinity has an even stronger effect.

Figure 4.3f shows no effect from affinity on pinned transfers for DGX-1.

Without the additional CPU-CPU copy, pinned bandwidth is highly dependent

on the bandwidth of the underlying hardware links. For remote transfers on

the IBM machines, the SMP bandwidth is less than the NVLink bandwidth,

and limits performance. On the DGX system, remote and local CPU-GPU

transfers all must traverse PCIe 3.0 links, so there is no performance effect

from affinity.

Table 4.1: Effect of device affinity on logical transfer bandwidth.

Transfer Kind S822LC AC922 DGX-1
Pageable → GPU × (Fig. 4.3a) × (Fig. 4.3b) × (Fig. 4.3c)
Pageable ← GPU X(Fig. 4.3a) X(Fig. 4.3b) × (Fig. 4.3c)
Pinned → GPU X(Fig. 4.3d) X(Fig. 4.3e) × (Fig. 4.3f)
Pinned ← GPU X(Fig. 4.3d) X(Fig. 4.3e) × (Fig. 4.3f)

4.2.4 Anisotropy

Anisotropy refers to the property of being directionally-dependent, e.g.,

CPU/GPU transfer bandwidth is anisotropic if CPU-to-GPU bandwidth

is different than GPU-to-CPU bandwidth. Figure 4.3 highlights that link

bandwidth exhibits significant anisotropy in systems with high-performance

interconnects. Table 4.2 summarizes the effects. Particularly for the pageable

transfers shown in Figures 4.3a and 4.3b, corresponding transfers are shown

to be highly anisotropic. In the pinned transfers on S822LC (Fig. 4.3d), all

41



transfers show some degree of anisotropy, with a larger effect over remote

transfers. For transfers where there is a difference, CPU → GPU transfers

tend to be faster. For AC922 (Fig. 4.3e), remote transfers generally show

anisotropy, and local transfers show anisotropy only for intermediate transfer

sizes. For DGX-1, pinned transfers all show 2 GB/s of anisotropy (Fig. 4.3f),

while the degree of anisotropy for transfers involving pageable allocations

depends on the transfer size (Fig. 4.3c). For pageable transfers, CPU-to-GPU

transfers tend to be faster than GPU-to-CPU transfers.

Table 4.2: Host-device transfer anisotropy.

Transfer Kind S822LC AC922 DGX-1

Pageable ↔ GPU (local) X(Fig. 4.3a) X(Fig. 4.3b) X(Fig. 4.3c)

Pageable ↔ GPU (remote) X(Fig. 4.3a) X(Fig. 4.3b) X(Fig. 4.3c)

Pinned ↔ GPU (local) X(Fig. 4.3d) X(Fig. 4.3e) X(Fig. 4.3f)

Pinned ↔ GPU (remote) X(Fig. 4.3d) X(Fig. 4.3e) X(Fig. 4.3f)

4.2.5 Differences between Identical Transfers

Figure 4.4 shows cases of different performance on two topologically- or

logically-identical links. Figures 4.4a and 4.4b show transfer bandwidth be-

tween a pageable allocation and local or remote GPU on S822LC, respectively.

Figures 4.4c and 4.4d show transfer bandwidth from a local GPU to a pageable

allocation, and a pageable allocation to a remote GPU on AC922, respectively.

Each of these four scenarios involve identical logical and topological links,

and yet a substantial transfer bandwidth difference is observed. Table 4.3

summarizes scenarios where the transfer performance differs on identical links.

These discrepancies only manifest on systems with high-bandwidth intercon-

nects and pageable transfers. This suggests that the lower-performance PCIe

3.0 buses mask any similar effects that appear on that system. Furthermore,

it suggests that the causes of these discrepancies are performance bugs in the

CUDA system relating to how internal buffers are allocated, or performance

bugs in the system firmware related to low-level data transfer.
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Figure 4.4: Cases of CPU/GPU cudaMemcpy bandwidth on identical links.
(a-b) Transfer bandwidth from pageable allocations to GPUs on S822lc. (c)
Bandwidth from local GPU to pageable CPU allocation on AC922. (d)
Bandwidth from pageable CPU allocation to remote GPU on AC922.

Table 4.3: Transfer rate variability on identical CPU-GPU links.

Transfer Kind S822LC AC922 DGX-1
Pageable → GPU X(Figs. 4.4a and 4.4b) X(Figs. 4.4d) ×
Pageable ← GPU × X(Figs. 4.4c) ×
Pinned → GPU × × ×
Pinned ← GPU × × ×

4.3 GPU / GPU Transfers

Explicit GPU-GPU transfers are caused by the cudaMemcpy family of functions

being invoked on pointers to device allocations created with cudaMalloc.

Unlike the different types of host allocations in Section 4.2, this section only

refers to a single kind of device allocation. Device allocations come with the

concept of peer access, discussed in Section 2.4.4. This section focuses on

the effect of peer access on transfer bandwidth, and cases where transfers are

anisotropic or have different performance on identical links.

Algorithms 4.4 and 4.5 are used to evaluate the achievable GPU-GPU

transfer bandwidth with and without peer access enabled. When peer access

is disabled, numa bind node is used to pin the executing thread to a specific
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node. On systems where the CUDA driver does not make NUMA-aware

allocations, this may help control for NUMA performance effects. Then, peer

access is enabled or disabled depending on the experimental configuration.

Then, cudaMalloc is used to create allocations of transfer size bytes pointed

to by srcP tr and dstP tr. The achievable bandwidth is measured during the

Benchmark loop using cudaEvents and cudaMemcpy.

Algorithm 4.4 Measuring GPU-GPU cudaMemcpy bandwidth with peer
access enabled.

1: function Bandwidth(dst, src, transfer size)

2: cudaSetDevice(src)

3: srcP tr ← cudaMalloc(transfer size) . Source allocation

4: cudaMemset(srcP tr, transfer size, 0)

5: cudaDeviceEnablePeerAccess(dst)

6: cudaSetDevice(dst)

7: dstP tr ← cudaMalloc(transfer size) . Destination allocation

8: cudaMemset(dstP tr, transfer size, 0)

9: cudaDeviceEnablePeerAccess(src)

10: start← cudaEventCreate()

11: end← cudaEventCreate()

12: for state do

13: cudaEventRecord(start)

14: cudaMemcpy(dstP tr, srcP tr, bytes, cudaMemcpyDefault)

15: cudaEventRecord(stop)

16: millis← cudaEventElapsedTime(start, stop)

17: state.SetIterationTime(millis / 1000)

18: end for

19: end function
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Algorithm 4.5 Measuring GPU-GPU cudaMemcpy bandwidth with peer
access disabled. numa bind node is defined in Listing 2.1.

1: function Bandwidth(dst, src, numa, transfer size)

2: numa bind node(numa)

3: cudaSetDevice(src)

4: srcP tr ← cudaMalloc(transfer size) . Source allocation

5: cudaMemset(srcP tr, transfer size, 0)

6: cudaDeviceDisablePeerAccess(dst)

7: cudaSetDevice(dst)

8: dstP tr ← cudaMalloc(transfer size) . Destination allocation

9: cudaMemset(dstP tr, transfer size, 0)

10: cudaDeviceDisablePeerAccess(src)

11: start← cudaEventCreate()

12: end← cudaEventCreate()

13: for state do

14: cudaEventRecord(start)

15: cudaMemcpy(dstP tr, srcP tr, bytes, cudaMemcpyDefault)

16: cudaEventRecord(stop)

17: millis← cudaEventElapsedTime(start, stop)

18: state.SetIterationTime(millis / 1000)

19: end for

20: end function

4.3.1 Transfer Rate and Peer Access

Figure 4.5 shows the performance of a variety of GPU-GPU transfers with

and without peer access. Generally, peer access has a large effect on the

bandwidth of local GPU-GPU transfers. With peer access enabled, GPUs

may do DMAs directly with their peer memory instead of copying through

the host. Without peer access, the execution is pinned to a particular CPU

to control the location for the CUDA system making memory allocations.
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Figure 4.5: GPU-GPU cudaMemcpy transfer bandwidth vs. transfer size for
various scenarios with peer access enabled or disabled. (a) GPU0 to GPU1
transfer on S822LC with and without peer access. (b) GPU-to-GPU local
transfers on AC922. (c) GPU-to-GPU local transfers on DGX-1. (d-f)
GPU-to-GPU remote transfers on the same systems. S822LC (d) and DGX-1
(f) do not support peer access for remote GPU-GPU transfers. S822LC (d) is
annotated with the CPU that the non-peer benchmark is pinned to. The
same is not shown in (e-f) because there is no significant performance effect.

Figure 4.5a shows that enabling peer access on S822LC improves the

performance of local GPU-GPU transfers by ∼40%, to over 90% of the

theoretical link bandwidth. Likewise, Figure 4.5c shows peer access roughly

doubling performance on DGX-1 and Figure 4.5b shows similar behavior

for AC922, with the much higher performance ceiling due to the increased

bandwidth of NVLink 2.0.

On S822LC remote transfers (Figure 4.5d), pinning the benchmark to the

NUMA node with affinity to the sending GPU improves the performance

by around 25%. On DGX-1 (Figure 4.5f), no similar effect is seen. Any

performance differences may be masked by the limited PCIe CPU-GPU

bandwidth relative to the CPU-CPU and GPU-GPU bandwidth, so the

specific route that the data takes through the system matters less than

whether or not the data travels over a slow PCIe bus. The performance

difference may be masked by the fact that GPU-CPU interconnects are slower

than CPU-CPU interconnects on that system, so when the data transfers
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back. On AC922 (Figure 4.5e), there is no substantial effect for large transfers

for disabling peer access.

4.3.2 Transfer Rate on Identical Transfers

Different performance is observed on identical GPU-GPU transfers when peer

access is disabled. Figure 4.6 shows some example scenarios. In isolation,

there is no reason to disable peer access for local transfers, as it always reduces

performance. Therefore, it is unlikely that a practical program would ever

exercise this scenario. During cases of contention, peer access could be utilized

to divert data along a different hardware path, so these results are presented

for completeness.

Figure 4.6a compares the bandwidth of transfers from GPU0 to GPU1

(pinned to local CPU0) and GPU2 to GPU3 (pinned to local CPU1) on

S822LC. These are identical transfers on different CPU-GPU-GPU triads

that make up S822LC (Figure 2.6). The transfer between GPU0 and GPU1

is around 30% slower than the same transfer between GPU2 and GPU3.

Similarly, Figure 4.6b shows variability in transfer bandwidths observed on

DGX-1. As shown in Figure A.1, there are three PCIe bridges between GPU0

and GPU1, and there are seven PCIe bridges between GPU2 and GPU3. The

bandwidth between GPU0 and GPU2/GPU3 is identical, as are the topologies

between them. Although the topology between GPU0 and GPU1 is shorter,

the performance is also lower. It is possible that the different bridges have

different performance characteristics.

Table 4.3 summarizes the cases where differing performance is observed.

Table 4.4: Transfer rate on identical GPU-GPU links

Transfer Kind S822LC AC922 DGX-1
GPU ↔ Local GPU

(peer enabled)
× × ×

GPU ↔ Remote GPU
(peer enabled)

N/A × N/A

GPU ↔ Local GPU
(peer disabled)

X(Fig. 4.6a) × X(Fig. 4.6b)

GPU ↔ Remote GPU
(peer disabled)

× × ×
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Figure 4.6: Transfer bandwidth vs. transfer size for S822LC and DGX-1. (a)
Differing transfer bandwidth on logically-identical local transfers on S822LC.
(b) The same for DGX-1. AC922 is omitted as no performance variability is
present when controlling for NUMA pinning during non-peer transfers.

4.4 Summary

The performance of cudaMemcpy transfers is highly dependent on device

affinity, CPU allocation type, transfer direction, and underlying hardware

performance. Transfers involving pageable host allocations are particularly

unpredictable, probably due to the performance of combined intra-CPU

communication, inter-CPU communication, cache effects, and DMA being

difficult to tune for all cases. In general, constraining communication to

pinned buffers and local devices offers the best performance, though direction

of the transfer still has a large impact. Some CPU-GPU pageable transfers

exhibit different performance even when the logical communication is the

same. This is also present in GPU-GPU transfers, but only for local transfers

when peer-access is disabled.
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CHAPTER 5

UNIFIED MEMORY PERFORMANCE

The unified memory system (Sections 2.4.5 and 2.4.6) greatly simplifies the

programmer interaction with CUDA memories and data transfer. Data

tranfers in the unified memory system are created in two ways:

• coherence (or demand) transfers, where data is migrated to ensure that

the CPU and GPU have a consistent view of memory.

• prefetch transfers, where data is moved ahead of time, with the purpose

of reducing future access times.

This chapter comprises two sections, detailing performance of prefetch and

coherence unified memory bandwidth (Section 5.1), and page fault latency

(Section 5.2). In each section, transfer bandwidth for coherence and prefetch

transfers is examined, as well as page-fault latency for demand transfers,

where applicable.

Algorithm 5.1 describes the approach to measure coherence or prefetch

bandwidth between two GPUs in the unified memory system. First, a bytes-

size unified memory allocation at ptr is associated with the destination device.

As of the time of this writing, this choice of association should not affect the

benchmark, but is enforced for consistency. Then, memset is used to force

pages backing the allocation to be produced. A start and stop event is created

on the destination device, where the kernel will be executed for coherence

bandwidth measurements. During the benchmark loop, ptr is prefetched to

the source device. Then, for coherence bandwidth, gpu write is executed on

the destination device, or for prefetch bandwidth, cudaMemPrefetchAsync

is used to prefetch ptr to the destination device. CudaEventSyncrhonize is

used to ensure the coherence or prefetch workload is complete. The time for

the CPU workload or GPU workload and synchronization is recorded as the

iteration time. The benchmark is repeated five times to discover outliers and

establish a standard deviation of measurement.
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Algorithm 5.1 Measuring GPU-GPU unified memory coherence or prefetch
bandwidth during a bytes-sized transfer between src and dst. gpu write is
defined in Listing 5.2.

1: function Bandwidth(dst, src, bytes)

2: pageSize← sysconf( SC PAGESIZE)

3: cudaSetDevice(dst)

4: ptr ← cudaMallocManaged(bytes)

5: memset(ptr, 0, bytes) . force pages to be allocated

6: cudaEventCreate(start)

7: cudaEventCreate(stop)

8: for state do

9: cudaMemPrefetchAsync(ptr, bytes, src) . move pages to src

10: cudaSetDevice(src)

11: cudaDeviceSynchronize()

12: cudaSetDevice(dst)

13: cudaDeviceSynchronize()

14: cudaEventRecord(start)

15: cudaMemPrefetchAsync(ptr, bytes, src) . if prefetch, or...

16: gpu write<<<256,256>>>(ptr, bytes, pageSize) . if coherence

17: cudaEeventRecord(stop)

18: cudaEventSynchronize(stop)

19: millis← cudaEventElapsedTime(start, stop)

20: state.SetIterationTime(millis
1000

)

21: end for

22: end function

Algorithm 5.2 describes the approach to measure coherence or prefetch band-

width from a CPU to a GPU in the unified memory system. First, execution is

bound to the source NUMA node. Then, the destination CUDA device is set to

be active, a bytes-sized unified memory allocation is created, and cudaMemset

is used to ensure that pages for the allocation are created. During the event

loop, cudaMemPrefetchAsync followed by cudaDeviceSynchronize ensure

that unified memory pages are on the source CPU. Then, the gpu write

(Listing 5.2) is used to generate coherence requests to move pages to the

destination GPU, or cudaMemPrefetchAsync is used to prefetch pages to the

destination GPU. CUDA events are used to record the elapsed time, and that
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is used as the benchmark iteration time. The benchmark is repeated five

times to discover outliers and establish a standard deviation of measurement.

Algorithm 5.2 Measuring CPU-GPU unified memory coherence or prefetch
bandwidth during a bytes-sized transfer between src and dst. gpu write is
defined in Listing 5.2.

1: function Bandwidth(dst, src, bytes)

2: numa bind node(src)

3: cudaSetDevice(dst)

4: ptr ← cudaMallocManaged(bytes)

5: cudaMemset(ptr, 0, bytes) . force pages to be allocated

6: pageSize← sysconf( SC PAGESIZE)

7: cudaSetDevice(dst)

8: cudaEventCreate(start)

9: cudaEventCreate(stop)

10: for state do

11: cudaMemPrefetchAsync(ptr, bytes, cudaCpuDeviceId) . move

pages to CPU

12: cudaDeviceSynchronize()

13: cudaEventRecord(start)

14: cudaMemPrefetchAsync(ptr, bytes, src) . if prefetch, or...

15: gpu write<<<256,256>>>(ptr, bytes, pageSize) . if coherence

16: cudaEventRecord(stop)

17: cudaEventSynchronize(stop)

18: millis← cudaEventElapsedTime(start, stop)

19: state.SetIterationTime(millis
1000

)

20: end for

21: end function

Algorithm 5.3 describes the approach to measure coherence bandwidth from

a GPU to a CPU in the unified memory system. First, execution is bound

to the destination NUMA node. Then, the source CUDA device is set to be

active, a bytes-sized unified memory allocation is created, and cudaMemset is

used to ensure that pages for the allocation are created. During the event

loop, cudaMemPrefetchAsync followed by cudaDeviceSynchronize ensure

that unified memory pages are on the source GPU. Then, the cpu write
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(Listing 5.2) is used to generate coherence requests to move pages to the

destination CPU. The automatic benchmark timing may be used instead of

CUDA events, as the CPU accesses are guaranteed to complete from the

perspective of the CPU just like normal memory accesses. The benchmark is

repeated five times to discover outliers and establish a standard deviation of

measurement.

Algorithm 5.3 Measuring GPU-to-CPU unified memory coherence band-
width during a bytes-sized transfer between src and dst. cpu write is defined
in Listing 5.1.

1: function Bandwidth(dst, src, bytes)

2: numa bind node(dst)

3: cudaSetDevice(src)

4: ptr ← cudaMallocManaged(bytes)

5: cudaMemset(ptr, 0, bytes) . force pages to be allocated

6: pageSize← sysconf( SC PAGESIZE)

7: cudaSetDevice(dst)

8: for state do

9: state.PauseTiming()

10: cudaMemPrefetchAsync(ptr, bytes, src)

11: cudaDeviceSynchronize()

12: state.ResumeTiming()

13: cpu write(ptr, bytes, pageSize)

14: end for

15: end function

Algorithm 5.4 describes the approach to measure coherence bandwidth

from a GPU to a CPU in the unified memory system. It is the same as

Algorithm 5.3, except CUDA events are used to time the asynchronous

cudaMemPrefetchAsync workload. The benchmark is repeated five times to

discover outliers and establish a standard deviation of measurement.
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Algorithm 5.4 Measuring GPU-to-CPU unified memory prefetch bandwidth
during a bytes-sized transfer between src and dst. cpu write is defined in
Listing 5.1.

1: function Bandwidth(dst, src, bytes)

2: numa bind node(dst)

3: cudaSetDevice(src)

4: ptr ← cudaMallocManaged(bytes)

5: cudaMemset(ptr, 0, bytes) . force pages to be allocated

6: pageSize← sysconf( SC PAGESIZE)

7: cudaSetDevice(dst)

8: cudaEventCreate(start)

9: cudaEventCreate(stop)

10: for state do

11: cudaMemPrefetchAsync(ptr, bytes, src)

12: cudaDeviceSynchronize()

13: cudaEventRecord(start)

14: cudaMemPrefetchAsync(ptr, bytes, cudaCpuDeviceId)

15: cudaEventRecord(stop)

16: cudaEventSynchronize(stop)

17: millis← cudaEventElapsedTime(start, stop)

18: state.SetIterationTime(millis
1000

)

19: end for

20: end function

Listing 5.1 shows a simple function to write sizeof(data type) bytes to

every stride byte in a count-byte region starting at ptr. When stride is

the page size, each page is written only once, doing the minimal amount of

work to force a page migration.

Listing 5.1: cpu write function.

static void

cpu_write(char *ptr , const size_t count , const size_t stride) {

for (size_t i = 0; i < count; i += stride) {

benchmark :: DoNotOptimize(ptr[i] = 0);

}

}

Listing 5.2 shows CUDA kernel to write sizeof(data type) bytes to every
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stride byte in a count-byte region starting at ptr. It assigns consecutive

warps in the grid to handle consecutive writes, with a single thread from each

warp doing a write. If there are too few warps in the grid to cover all writes,

the grid loops over the required writes. Since warps execute in lockstep, this

ensures the broadest simultaneous demands on the unified memory system

without redundant work within a warp.

Listing 5.2: gpu write function.

template <typename data_type >

__global__ void gpu_write(data_type *ptr ,

const size_t count ,

const size_t stride)

{

size_t gx =

blockIdx.x * blockDim.x + threadIdx.x;

size_t lx = gx & 31;

size_t wx = gx / 32;

size_t numWarps =

(gridDim.x * blockDim.x + 32 - 1) / 32;

size_t numStrides = count / stride;

size_t numData = count / sizeof(data_type );

size_t dataPerStride =

stride / sizeof(data_type );

if (0 == lx)

{

for (; wx < numStrides; wx += numWarps)

{

const size_t id = wx * dataPerStride;

if (id < numData)

{

ptr[id] = 0;

}

}

}

}
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5.1 Coherence vs. Prefetch Bandwidth
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Figure 5.1: Measured CPU-GPU coherence and prefetch bandwidth vs.
transfer size for S822LC, AC922, and DGX-1. Local and remote transfers in
the CPU-to-GPU and GPU-to-CPU direction are shown.

Figure 5.1 compares CPU/GPU prefetch and coherence bandwidth on S822LC,

AC922, and DGX-1. Prefetch provides substantially higher bandwidth than

coherence demands, especially for large transfers. This is likely because the
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DMA associated with a prefetch is a simpler and higher-performance operation

than the on-demand migration of pages. Prefetch is still lower performance

than CPU-to-GPU transfers from pinned memory. Prefetch must still obey

consistency and coherency requirements of the unified memory system, which

is a cost not present in explicit data transfer.

On the IBM systems, prefetch bandwidth between local devices is higher

than between remote devices (Figures 5.1a and 5.1c). The hardware/software

overhead of the unified memory prefetch is low enough to exercise a majority

of the available underlying hardware links, so the more limited performance of

the X bus in the remote transfers is likely the cause. The situation is reversed

on DGX-1 (Figure 5.1e), where GPU-to-CPU transfers manage to match

the performance of pinned explicit transfers, and CPU-to-GPU transfers do

not. Overall, the prefetch bandwidth is closely correlated with the underlying

hardware link performance, with AC922 providing much more bandwidth

than the other two systems.

All three systems share behavior for coherence bandwidth (Figures 5.1b,

5.1d, and 5.1f). In these measurements, CPU-to-GPU performance exceeds

GPU-to-CPU performance due to only using a single CPU thread to generate

coherence requests. On S822LC and AC922, there is a peak in coherence

bandwidth at intermediate transfer sizes. On DGX-1, coherence requests

actually provide higher bandwidth at small transfer sizes. This may be due to

reduced overhead for small number of coherence requests compared to setting

up a bulk prefetch. Investigating the details of unified memory performance

for different thread counts is under consideration as future work.
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5.1.1 Device Affinity and Coherence Bandwidth
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Figure 5.2: Measured GPU/GPU coherence and prefetch bandwidth vs.
transfer size for S822LC, AC922, and DGX-1. Local and remote transfers in
both directions for each pair of GPUs are shown. For S822LC, anisotropy on
GPU-GPU transfers is also shown. Similar anisotropy was not observed on
AC922 or DGX-1.
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Observed coherence transfer bandwidth is correlated with device affinity;

Table 5.1 summarizes the observed effects. The effect for CPU-to-GPU

transfers is small but measurable on all three systems, as shown in Figures

5.1b, 5.1d, and 5.1f. There is also a small, measurable effect for GPU-to-CPU

transfers, though using a single CPU thread may be obfuscating a larger

difference. This small effect is probably due to overhead of ensuring coherence,

so reduced link bandwidth in remote transfers is not a highly influential effect.

Figure 5.2 compares GPU/GPU prefetch and coherence bandwidth on

S822LC, AC922, and DGX-1. For GPU-GPU transfers, the effect of device

affinity on coherence bandwidth is much stronger. On S822LC, local transfers

achieve around 30% higher bandwidth. The local bandwidth is nearly 100%

higher on DGX, and also on AC922 for intermediate transfer sizes.

Table 5.1: Observed cases of device affinity affecting coherence bandwidth.

Transfer Kind S822LC AC922 DGX-1
CPU → GPU small (Fig. 5.1b) × (Fig. 5.1d) small (Fig. 5.1f)
CPU ← GPU X(Fig. 5.1b) small (Fig. 5.1d) small (Fig. 5.1f)
GPU ↔ GPU X(Fig. 5.2b) X(Fig. 5.2d) X(Fig. 5.2f)

5.1.2 Device Affinity and on Prefetch Bandwidth

Device affinity can affect the observed prefetch bandwidth. Table 5.2 shows

some cases where affinity affects prefetch transfer bandwidth. Figures 5.1a and 5.1c

show that CPU/GPU prefetch bandwidth is strongly correlated with device

affinity on S822LC and AC922. The overhead of prefetch transfers is lower

than that of coherence transfers, and the availability of bandwidth on the

underlying links has a large impact. On DGX-1 (Figure 5.1e), bandwidth is

not at all correlated with device affinity; in fact, for GPU-to-CPU transfers,

remote bandwidth is higher than local bandwidth. The hardware band-

width on DGX-1 is much lower, and other implementation details control the

performance.

Figures 5.2a, 5.2c, and 5.2e show that, like coherence bandwidth, GPU-GPU

affinity is strongly correlated with prefetch bandwidth. On all systems, local

GPUs can prefetch data much faster than remote GPUs. On S822LC, local

GPUs enjoy 130% of the transfer bandwidth of their remote companions. On

DGX-1, that number is 170%, and on AC922, it balloons to 230%. Generally,
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local GPU-GPU transfers are able to saturate around 90% of the theoretical

underlying link bandwidth, just like pinned transfers.

Table 5.2: Observed cases of device affinity affecting prefetch bandwidth.

Transfer Kind S822LC AC922 DGX-1
CPU → GPU X(Fig. 5.1a) X(Fig. 5.1c) × (Fig. 5.1e)
CPU ← GPU X(Fig. 5.1a) X(Fig. 5.1c) × (Fig. 5.1e)
GPU ↔ GPU X(Fig. 5.2a) X(Fig. 5.2c) X(Fig. 5.2e)

5.1.3 Observed Anisotropy in Coherence Bandwidth

Table 5.3 describes instances of observed anisotropy in coherence bandwidth.

All CPU/GPU coherence transfers show anisotropy due to the single CPU

thread vs. multiple GPU threads making accesses. On all systems, GPU-

to-CPU transfers can be around twice the performance for small transfers,

but for larger sizes the bandwidth saturates at the rate a single CPU thread

can generate requests. On S822LC, Figure 5.2f, there is anisotropy present

in remote GPU-to-GPU transfers. Similar GPU-GPU bandwidth anisotropy

was not observed in any other cases.

Table 5.3: Cases where anisotropy is observed in coherence bandwidth.

Transfer Kind S822LC AC922 DGX-1
CPU ↔ GPU (local) X(Fig. 5.1b) X(Fig. 5.1d) X(Fig. 5.1f)

CPU ↔ GPU (remote) X(Fig. 5.1b) X(Fig. 5.1d) X(Fig. 5.1f)
GPU ↔ GPU (local) × (Fig. 5.2b) × (Fig. 5.2d) × (Fig. 5.2f)

GPU ↔ GPU (remote) X(Fig. 5.2b) × (Fig. 5.2d) × (Fig. 5.2f)

5.1.4 Observed Anisotropy in Prefetch Bandwidth

Table 5.4 describes instances of observed anisotropy in prefetch bandwidth.

Figures 5.1a shows limited anisotropy on local CPU/GPU transfers on

S822LC, though there is substantial anisotropy for remote CPU/GPU trans-

fers. For S822LC remote transfers, as well as on AC922 and DGX-1, there

is significant CPU/GPU coherence transfer anisotropy. On DGX-1, GPU-

to-CPU transfers are always faster. On AC922 and S822LC, GPU-to-CPU
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transfers are faster for local transfers and CPU-to-GPU transfers are faster

for remote devices.

Table 5.4: Cases where anisotropy is observed in prefetch bandwidth.

Transfer Kind S822LC AC922 DGX-1
CPU ↔ GPU (local) × (Fig. 5.1a) X(Fig. 5.1c) X(Fig. 5.1e)

CPU ↔ GPU (remote) X(Fig. 5.1a) X(Fig. 5.1c) X(Fig. 5.1e)
GPU ↔ GPU (local) × (Fig. 5.2a) × (Fig. 5.2c) × (Fig. 5.2e)

GPU ↔ GPU (remote) X(Fig. 5.2a) × (Fig. 5.2c) × (Fig. 5.2e)

5.2 Page Fault Latency

Unified memory page fault latency is estimated by constructing a linked

list in managed memory and traversing it. The list is realized as a unified

memory array, where each element of the list (starting with the 0th offset

of the array) contains the array offset that is the next element of the list.

Algorithms 5.5 and 5.6 summarize the measurement routine for a transfer

to a CPU and to a GPU, respectively. The main difference between the

benchmarks is the timing method in the main benchmark loop. For CPU

destinations, the automatic Google Benchmark timing is used, as the page will

be resident on the CPU when the CPU load returns. For GPU destinations,

CUDA events are used to measure the execution time of the CUDA kernel.

The stride between linked list elements is a large number, to avoid prefetching

effects on page faults. First, execution is bound to the relevant CPU and

the relevant GPU is set as active. Then, a unified memory allocation is

created and zeroed, to force it to be backed by pages. Then, the linked list

is initialized in the unified memory allocation. In the benchmark loop, a

destination-dependent list traversal function (shown in Listings 5.3 and 5.4) is

executed on the destination device. Each access to the list incurs a page fault.

The incremental change in function execution time as the number of strides

increases is therefore an approximate measure of the page fault latency.

Listings 5.3 and 5.4 show functions for traversing the linked list. Each

function starts at the beginning of the array, and reads the offset of the next

element to read from the current offset. Finally, a value is written to the final

element to introduce a side-effect and prevent the otherwise read-only function
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Algorithm 5.5 Measuring unified memory page fault latency page fault
latency with a CPU destination. cpu traverse is defined in Listing 5.4.

1: function latency(dst, src, ptr, stride)
2: numa bind node(dst)
3: cudaSetDevice(src)
4: stride← PAGE SIZE ×2
5: bytes← sizeof(size t) ×(steps+ 1)× stride
6: ptr ← cudaMallocManaged(bytes))
7: cudaMemset(ptr, 0, bytes)
8: for i in steps do . set up stride pattern
9: ptr[i] ← (i+ 1)× stride

10: end for
11: cudaDeviceSynchronize()
12: for state do
13: state.PauseTiming()
14: cudaMemPrefetchAsync(ptr, bytes, src)
15: cudaDeviceSynchronize()
16: state.ResumeTiming()
17: cpu traverse(ptr, steps)
18: end for
19: end function

from being optimized away. If the stride between elements is constructed

appropriately, and pages are not present on the executing device, each access

will incur a page fault.

Listing 5.3: GPU linked list traversal kernel for Algorithm 5.6.

__global__ void gpu_traverse(size_t *ptr ,

const size_t steps)

{

size_t next = 0;

for (int i = 0; i < steps; ++i)

{

next = ptr[next];

}

ptr[next] = 1;

}
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Algorithm 5.6 Measuring unified memory page fault latency page fault
latency with a GPU destination. gpu traverse is defined in Listing 5.3.

1: function latency(dst, src, ptr, stride)
2: if src is CPU then
3: numa bind node(dst)
4: end if
5: cudaSetDevice(dst)
6: stride← PAGE SIZE ×2
7: bytes← sizeof(size t) ×(steps+ 1)× stride
8: ptr ← cudaMallocManaged(bytes))
9: cudaMemset(ptr, 0, bytes)

10: for i in steps do . set up stride pattern
11: ptr[i] ← (i+ 1)× stride
12: end for
13: cudaDeviceSynchronize()
14: cudaEventCreate(start)
15: cudaEventCreate(stop)
16: for state do
17: if src is CPU then
18: cudaMemPrefetchAsync(ptr, bytes, cudaCpuDeviceId)
19: else
20: cudaMemPrefetchAsync(ptr, bytes, src) . ptr to src GPU
21: cudaSetDevice(src)
22: cudaDeviceSynchronize()
23: cudaSetDevice(dst)
24: end if
25: cudaDeviceSynchronize()
26: cudaEventRecord(start)
27: gpu traverse(ptr, steps)
28: cudaEventRecord(stop)
29: cudaEventSynchronize(stop)
30: millis← cudaEventElapsedTime(start, stop)
31: end for
32: state.SetIterationTime(millis

1000
)

33: end function
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Listing 5.4: CPU linked list traversal function for Algorithm 5.5.

void cpu_traverse(size_t *ptr , const size_t steps)

{

size_t next = 0;

for (size_t i = 0; i < steps; ++i)

{

next = ptr[next];

}

ptr[next] = 1;

}

Table 5.5 summarizes the estimated page fault latencies. Figure 5.3 shows

the raw traversal times. There is no substantial difference in page fault

latencies for different CPUs, so values for transfers to CPU0 are shown. Each

traversal is run at least 200 times, and the average value is reported. Stan-

dard deviations are computed from five repetitions of the entire benchmark

procedure.

All three systems follow the same behavior, with GPU/GPU page fault

latencies being higher than CPU/GPU page fault latencies. The bottom

section of Table 5.5 shows that the cost of moving the page is a small

portion of the observed transfer time. These calculated values do not include

link latencies, and represent a lower bound. On S822LC and AC922, the

CPU/GPU page fault latency is nearly identical in both directions.

Table 5.5: Measured page-fault latencies on S822LC, AC922, and DGX-1.
Above the double-line are empirically-measured values. Below the double-line
are computed values, for the system page size and system configuration. The
value is computed by taking the link bandwidth and dividing it by the page
size; e.g., NVLink for S822LC refers to two-lane NVLink 1.0.

Page Fault Latency (µs)
Type S822LC AC922 DGX-1

CPU → GPU 14.9 24.1 35.3
CPU ← GPU 13.6 27.4 26.5

GPU0 ↔ GPU1 (local) 25.5 38.0 36.7
GPU0 ↔ GPU2 (remote) 28.8 41.5 54.4

One Page, PCIe 3.0 x16 N/A N/A 0.25
One Page, NVLink 1.6 0.9 0.4

63



5 10 15 20 25 30 35
# of Strides

0

200

400

600

800

1000

1200

1400

1600

Tr
av

er
sa

l T
im

e 
(u

s)

S822LC Unified Memory Latency
CPU0 to GPU0: 14.90 us/fault
GPU0 to CPU0: 13.63 us/fault
GPU0 to GPU1 (local): 25.53 us/fault
GPU0 to GPU2 (remote): 28.83 us/fault

(a)

5 10 15 20 25 30 35
# of Strides

0

200

400

600

800

1000

1200

1400

1600

Tr
av

er
sa

l T
im

e 
(u

s)

AC922 Unified Memory Latency
CPU0 to GPU0: 24.09 us/fault
GPU0 to CPU0: 27.43 us/fault
GPU0 to GPU1 (local): 37.95 us/fault
GPU0 to GPU2 (remote): 41.48 us/fault

(b)

5 10 15 20 25 30 35
# of Strides

0

200

400

600

800

1000

1200

1400

1600

Tr
av

er
sa

l T
im

e 
(u

s)

DGX Unified Memory Latency

CPU0 to GPU0: 35.32 us/fault
GPU0 to CPU0: 26.50 us/fault
GPU0 to GPU1 (local): 36.71 us/fault
GPU0 to GPU5 (remote): 54.43 us/fault

(c)

Figure 5.3: Linked-list traversal time vs. number of strides for S822LC,
AC922, and DGX-1. For each system, CPU-to-GPU, GPU-to-CPU, and
remote/local GPU-to-GPU times are shown. Each stride incurs a page fault,
so the slopes of these lines estimate the page fault cost. Whiskers at each
point are the standard deviation over five benchmark repetitions.

5.3 Summary

The unified memory system comes at a significant performance penalty

compared to explicit memory management, and suffers from similar topological

performance effects. Unsurprisingly, performance is strongly correlated with

device affinity, particularly for prefetch bandwidth. Performance anisotropy is

observed in nearly all prefetch benchmarks and many coherence benchmarks.

Achievable coherence performance ranges from around 30%-90% of the best

possible explicit performance, with more degradation on higher-performance

links. With the additional programmer effort of including prefetching hints,

performance nearly equal to the explicit data transfer can be achieved.
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CHAPTER 6

FUTURE WORK: APPLICATION
CHARACTERIZATION AND COMBINED

MODELING

6.1 Measuring Additional Communication Capabilities

The microbenchmarks presented in Chapters 4 and 5 cover CUDA transfers

with the unified memory system and cudaMemcpy. There are two additional

CUDA communication capabilities that are not measured in this thesis: direct

peer access and system atomics. Expanding the benchmarks to measure

those methods would provide a more complete view of CUDA communication

performance. The benchmarks could also be expanded to examine interaction

between CUDA and other system components. One such opportunity is the

GPUDirect capability, where supported non-GPU devices can communicate

with CUDA GPUs through DMA. Another opportunity is to investigate the

effect of contention on the communication performance. Such contention

could occur in bi-directional data transfers, or when multiple devices are

simultaneously communicating.

6.2 Mapping Logical Communication to Underlying

Links

Previous sections described the approach and results of measuring the data

transfer performance of the logical communication paths. Those models took

some knowledge of the underlying system configuration as a priori knowledge,

but in general this process should be automated. Application developers who

want to understand the performance of the system may not have the architec-

ture background to select appropriate performance models. System architects

who develop system capabilities may not understand the implications their

choices have on performance at the top abstraction layer. This work presents
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an initial step towards automation with automatic hardware enumeration

described in Section 3.2.

The next step is to systematically instrument all possible links for obser-

vation during the execution of applications. If the instrumentation is low-

overhead, this could be done jointly with logical performance measurements.

If not, known, separate workloads could be sent over logical communication

paths to observe hardware links. For NVLink monitoring, NVML provides

the ability to query the link utilization counters [54]. For PCIe monitoring,

the Performance Counter Monitor [55] project provides the ability to query

PCIe link counters.

For each enumerated link, the utilized hardware components could be

associated and used to select the appropriate performance model. Follow-up

work investigating the feasibility of using a single parameterized model per

combination of logical communication path and hardware link. For example,

consider a simple model to compute the transfer time ttransfer for moving

bytes bytes between some CPU and GPU:

ttransfer = c+ tbytes

where tbytes is defined as

max(BWlink,
bytes
BWL1

) 0 ≤ bytes < L1size

max(BWlink,
bytes
BWL2

) L1size ≤ bytes < L2size

max(BWlink,
bytes
BWL3

) L2size ≤ bytes < L3size

max(BWlink,
bytes

BWmem
) L3size ≤ bytes

c is some constant overhead, and BWlink, BWL1, BWL2, BWL3, and BWmem

are the bandwidths of the CPU-GPU link, L1 cache, L2 cache, L3 cache, and

main memory.

In this model, the bandwidth is a piecewise function that depends on the

transfer size - if a transfer fits within a cache, it happens at the speed of that

cache. In all cases, the transfer never happens faster than the underlying

CPU-GPU link bandwidth. The empirical results from the benchmark can

be used to determine the constants in this model.

66



6.3 Application Model

After a model of system communication performance is established, the next

step is to establish an understanding of how applications use the logical

communication paths. This would encapsulate information about how an

application produces, moves, and consumes data. The application can be

modeled as a dynamic value dependence graph (DVDG) Ga = {Ea, Va}, where

Ea is a set of edges representing data transfer, and Va is a set of vertices

representing data values. Each value represents a contiguous region of memory

that the program interacts with. Each edge is either an explicit memory copy

or a CUDA kernel launch. The edges can be tagged with observed timestamps

to facilitate program performance analysis.

Figure 6.1 shows an example code and corresponding DVDG. Each value,

represented by square boxes, is tagged with the position of the value, and size

of the value. For simplicity’s sake, it is also tagged with the line of code that

produced it. Each rounded-box edge label corresponds to the cudaMemcpy

or kernel execution. In practice, each node and edge would have much more

detailed information.

Though it is generally possible to generate these dependence graphs by hand,

it is not feasible for complicated applications. Furthermore, as applications

are updated, new models would have to be manually generated. The proposed

method described in this section would automate that process.

6.4 Constructing the Dynamic Value Dependence

Graph for Unmodified Applications

Ideally, the DVDG would be generated from an unmodified application

execution. This ensures that the tool is as accessible to users as possible, and

that it can work on closed-source applications. Unfortunately, the DVDG

cannot rely on the application to advertise any helpful information about its

behavior, and any relevant application state must be observed through its

interaction with the operating system. The proposed system (“apptracer”)

leverages two tools available on the Linux platform: the CUDA Profiling Tools

Interface (Section 2.7.2 (CUPTI) and the Linux LD PRELOAD (Section 2.7.3)

mechanism.
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1. float *a_h , *b_h , *s_h , *a_d , *b_d , *s_d;

2. malloc(a_h , 1024); // a_h = 0x0000

3. malloc(b_h , 1024); // b_h = 0x0400

4. malloc(s_h , 1024); // s_h = 0x0800

5. cudaMalloc (&a_d , 1024); // a_d = 0x0c00

6. cudaMalloc (&b_d , 1024); // b_d = 0x1000

7. cudaMalloc (&s_d , 1024); // s_d = 0x1400

8. cudaMemcpy(a_d , a_h , 1024, cudaMemcpyDefault );

9. cudaMemcpy(b_d , b_h , 1024, cudaMemcpyDefault );

10. vector_add <<<gd , bb >>>(s_d , a_d , b_d , 1024);

11. cudaMemcpy(s_h , s_d , 1024, cudaMemcpyDefault );

id:   2 (a_h)
pos:  0x0000
size: 1000

id:   3 (b_h)
pos:  0x0400
size: 1000

id:   4 (s_h)
pos:  0x0800
size: 1000

id:   5 (a_d)
pos:  0x0c00
size: 1000

id:   6 (b_d)
pos:  0x1000
size: 1000

id:   7 (s_d)
pos:  0x1400
size: 1000

id:  10 (s_d)
pos: 0x1400
size: 1000

id:  11 (s_h)
pos: 0x0800
size: 1000

cudaMemcpy
kind: HtoD
size: 1000

cudaMemcpy
kind: DtoH
size: 1000

cudaLaunch
name: vector_add

cudaMemcpy
kind: HtoD
size: 1000

cudaMemcpy
kind: HtoD
size: 1000

Figure 6.1: Example of the dynamic value dependence graph for a simple
vector add. Allocations in the code are commented with a hypothetical
position of the allocation. Square blocks represent values, and rounded boxes
represent node labels.

Apptracer would use CUPTI to capture most CUDA-related information,

and LD PRELOAD for everything else. CUPTI allows a tool to provide

a callback function that is invoked at every CUDA runtime or driver call,

and also allows apptracer to collect any performance metrics the GPU

exposes. The callback function records relevant information, including the

wall time when the CUDA runtime function is invoked, its arguments, and the

device and stream associated with the call. In this way, detailed information

about data transfers from runtime functions can be reconstructed. For

example, allocations from cudaMalloc can be associated with pointers passed

to cudaMemcpy to discover data transfers from host to device.

Apptracer would use LD PRELOAD (Section 2.7.3) to intercept known API

calls made by the application to shared libraries. For example, LD PRELOAD

could be used to observe file access, calls to CUDA libraries such as cuDNN

or cuBLAS, network access, and system memory allocations. The various
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kernel launches and allocations used by cuDNN and cuBLAS are already

visible through CUPTI, but the known semantics of the higher-level cuBLAS

and cuDNN calls allow for detailed edges to be added.

One challenge of apptracer is handling implicit data movement from

three scenarios: data moved from GPU global memory to arbitrary GPU

kernels, implicit data movement between remote mappings, and implicit

data movement through the unified memory system. On supported systems,

GPUs can directly access data that is on the host or other GPUs without

making any CUDA runtime calls. CUPTI allows the GPU to record detailed

profiling information, but this affects program execution time and distorts the

timeline. A two-pass approach, once to collect accurate timeline information

and another to capture more detailed information, may be a solution.

Another challenge is for apptracer to infer which kernel arguments are

pointers to allocations. It may be possible for apptracer to examine the

intermediate PTX representation of CUDA kernel code embedded in most

CUDA binaries, and deduce some information about function signatures.

Once the application’s use of CUDA is recorded, the next step would be

to extend the graph to some view of activity on the CPU as well. This

could be accomplished through a variety of techniques. The LD PRELOAD

mechanism could be used to instrument popular libraries such as BLAS or

MPI. The operating system trace facilities strace [56] for Linux, DTrace [57]

for MacOS, NtTrace [58], or Dr. Memory [59], [60] for Windows could be used

to track system calls and profile things such as file I/O or network interaction.

Tracking arbitrary function calls within an unmodified application may not

be possible in the case of a binary without debug symbols. Dynamic tracing

tools like Intel’s PIN [61] can insert instrumentation code, but further work

would be needed to determine the number of function arguments and their

locations to recover their values. For a cluster environment, it may be possible

to generate distributed dependence graphs at each node, and then join them

together by linking together information recorded about MPI calls.

6.5 Combined Modeling

Finally, once system performance modeling is established and application de-

mands are recorded, joint performance modeling is possible to tackle questions
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like

• For a particular DVDG, what performance could we expect on a partic-

ular system?

• For a particular DVDG and a particular budget, what system configu-

ration would perform best?

• For a particular DVDG, can the execution be rescheduled on a system

to improve performance?

• How would changing link parameters or topology on a particular system

affect application performance?

Answering these questions may require additional effort in open research

challenges, such as task scheduling with placement-dependent communication

costs, compute kernel performance estimation, and design space exploration.
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CHAPTER 7

RELATED WORK

7.1 System Topology Enumeration / Hardware Models

This work relies on and enhances an existing system topology enumeration

tool hwloc [52], which is designed around the expectation that current and

next-generation systems are hierarchical. This work uses hwloc to enumerate

topology, but embeds the devices that hwloc discovers in a graph (Section 3.2),

which is a more general model of modern hardware systems.

Amaral et al. [62] use a similar hardware graph, but their path costs are

defined qualitatively, whereas this work proposes automating a quantitative

cost that depends on the communication method used. They also describe a

topology-aware job placement strategy, but the problem considered is jobs

on nodes in a cluster environment instead of computation tasks and data

placement on GPUs in a multi-GPU node.

7.2 System Characterization

Several prior benchmark suites strive to determine system parameters through

microbenchmarking. LMBench [63] is a benchmark designed to determine

memory hierarchy parameters. It includes a single-threaded memory band-

width benchmark similar to the one included in this work. It also includes

cached I/O bandwidth measurements, a logical communication path that

this work will be extended to explore. P-Ray [64] is a benchmark suite

designed to help guide performance autotuners. It is designed to discover

hardware parameters, such as L2 cache size. Among other things, it extends

LMBench’s memory bandwidth microbenchmark to include multithreaded

transfers. Servet [65] goes a step further and includes a benchmark to deter-
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mine communication costs between pairs of cores in the context of MPI. It

also attempts to analyze the results to establish which cores are equivalent

from a communication perspective to simplify the benchmarking process. The

BlackjackBench [66] benchmark suite is designed to measure the observable

performance parameters of a system as opposed to hardware parameters. This

work also takes the view that observable system parameters are what matters

to application performance. It focuses on memory hierarchy performance, but

also includes a workload to measure communication bandwidth between pairs

of CPU cores. Liu et al. [67] take a microbenchmarking approach to evaluating

high-speed cluster interconnects, including latency, uni- and bi-directional

bandwidth, and host latency. This work takes a similar approach or subsumes

the communication microbenchmarking of this previous work, but extends it

to many kinds of CUDA communication.

This work also proposes correlating microbenchmark performance directly

with underlying hardware. McCurdy and Vetter [68] describe using perfor-

mance counters to examine the NUMA abstraction and determine its mapping

to the underlying hardware. This work proposes to automate that analysis in

Section 3.2.4.

Some GPGPU benchmark suites also make an effort to characterize certain

aspects of data-transfer performance. The Scalable Heterogeneous Computing

(SHOC) benchmark suite [69] examines host-to-device and device-to-host data

transfer on some PCIe-based systems. This work examines a much broader

set of CUDA communication capabilities such as prefetch and coherence

transfers in unified-memory systems. SHOC also examines the latency effect

of data transfers conflicting with MPI message sending on the PCIe bus. This

contention effect is similar to some future contention characterization this

work will be extended to.

Prior work has also specifically examined the communication performance

effect of incorrect NUMA pinnings in multi-GPU systems. Spafford, Meredith,

and Vetter [70] show significant anisotropy and bandwidth degradation in PCIe

bandwidth for incorrect NUMA pinnings. They also discuss how application

performance can degrade under PCIe bus contention. Expansion of the

benchmarks in this work will most likely include bus contention, as multi-GPU

applications will likely consist of phases with multi-device communication.

Limited prior work has examined performance of CUDA transfers specifi-

cally. Landaverde et al. [71] develop a set of microbenchmarks to measure
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performance of unified memory accesses for particular access patterns. Their

work focuses on the performance effect of unified memory on particular com-

putation patterns, while this work isolates NUMA effects and data transfer

performance alone. Li et al. [72] evaluate the unified memory system on sev-

eral platforms, including a multi-CPU PCIe platform, and show around a 10%

performance penalty on some applications for unified memory. They do not

do any microbenchmarking, but observe that the unified memory system in

CUDA 6.0 produced redundant transfers that were avoiding in the explicitly-

managed code. MGBench, a multi-GPU communication benchmark [73],

contains multi-GU microbenchmarks including scatter, direct access, and

ring broadcast messages. Ben-Nun et al. [74] examine direct-access trans-

fers between GPUs. They show the transfer rate of direct-access transfers

between local GPUs, remote GPUs, and CPU/GPU transfers with various

access patterns. They observe that the performance is highly dependent on

the access pattern. Like this work, they discover that the transfer rate is

highly correlated with the topological proximity of the devices. Github user

woodun has a set of open-source, unpublished microbenchmarks under the

name 9 Microbenchmarks [75]. These benchmarks largely focus on details

of Nvidia Pascal and Volta memory hierarchy, including cache lines sizes,

and costs of various operations, including TLB misses and page faults under

different CUDA device configurations and access patterns. As of the time

of this writing, no results are presented and there is no discussion of the

motivation of the benchmarks. Some of these workloads seem to attempt to

measure some of the same operations in this work, such as page fault latency.

7.3 Using Communication Models

Related works make use of the communication costs to make scheduling deci-

sions. MPIPP [76] uses communication parameters in its process placement

routine, but it gets them from the technical specification of the machine

instead of measuring it. Mercier and Clet-Ortega [77] also use communication

parameters in their placement policy. They determine the topology of the

machine from the specification and estimate the communication costs from

that topology.
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7.4 NUMA / Multi-GPU APIs

Prior work has made an effort to create NUMA-aware APIs, a possible future

direction of this work. Ben-Nun et al. [78] describe a multi-GPU partitioning

framework for distributing parallel workloads on multi-GPU nodes according

to their access patterns. It provides a set of host and device APIs that describe

containers and allow the framework to analyze kernels to determine access

patters, to decide how to schedule underlying operations onto multiple GPUs.

Groute [74] makes use of parallel constructs for asynchronous multi-GPU

programming. The programming model involves describing the application

communication pattern as a graph of communicating links and endpoints.

Section 6.3 of this work describes the DVDG, which would be used to construct

a similar application model for an existing application.

Umpire [79] is a library that facilitates the discovery and provision of

memory on next-generation architectures. Umpire aims to provide NUMA-

and GPU-aware allocators and allocation strategies. At present, it seems

to largely wrap existing host and device allocators, but also provides three

different pool allocation strategies. Umpire may eventually function as a

foundation for a high-performance memory abstraction for heterogeneous

systems.
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CHAPTER 8

CONCLUSION

This thesis examines the data-movement performance available to applications

running on multi-GPU non-uniform memory access (NUMA) systems through

a comprehensive series of microbenchmarks. Three different systems are

used as case studies: an IBM S822LC with two POWER8 CPUs and four

P100 GPUs (Section 2.9.2), an IBM AC922 with two POWER9 CPUs, four

V100 GPUs, and NVLink 2.0 (Section 2.9.3), and an Nvidia DGX-1 with

two Intel (Section 2.9.1), eight P100 GPUs, and hybrid PCIe and NVLink

1.0. These three systems cover the common component for high-performance

multi-GPU NUMA systems, with multiple CPUs, NVLink and PCIe 3.0 x16,

and Pascal- or Volta-architecture GPUs. The performance of the underlying

hardware (Section 2.3) in these systems is made available to applications

through software abstractions (Section 2.1) like CUDA and numactl. CUDA

provides a variety of methods for moving data between system components

(Section 2.4), where different choices have different performance effects due

to different uses of the underlying hardware.

The core of this thesis consists of performance measurements of explicit

(Chapter 4) and unified-memory (Chapter 5) data-movement systems in

CUDA. These measurements are generated using a new series of microbench-

marks available at https://github.com/rai-project/microbench. Gener-

ally, these benchmarks reveal that the CUDA method used to move data has

a substantial impact on the actual performance available to the application,

in some cases up to a 3x difference, as in the case of pinned transfers and

coherence transfers. When the data transfer method is simpler (pinned or

prefetch transfers), performance is highly correlated with device affinity, but

typically presents less anisotropic behavior. This is because the underlying

hardware link performance limits the overall throughput. For more compli-

cated transfer methods such as coherence, pageable transfers, or non-peer

GPU-GPU transfers, performance tends to be more anisotropic but less corre-
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lated with device affinity. The software overhead of managing these transfers

tends to limit the performance more than the underlying links. These results

can be used to inform communication and allocation choices during applica-

tion development, or allow an automated system to make the appropriate

data-movement decision to provide the best performance.

In addition to the core performance measurements, this thesis also intro-

duced a tool for enumerating the different communication hardware present

in the system. This tool is meant to serve as a foundational component of

future systems research. Any system that needs to make communication or

scheduling performance decisions will need information about the underlying

hardware that can be provided by this tool. The system abstraction available

through CUDA, the performance measurements, and the underlying hardware

topology together provide the raw information for a detailed system model.

To complete the model, it will be necessary to automatically correlate com-

munication abstractions to the underlying hardware (Section 6.2). This thesis

also describes a corresponding application model (Section 6.3) that can be

coupled with the system model. Together these models should provide enough

information to create an automatically-tuned high-performance heterogeneous

memory management capability for multi-GPU NUMA systems.
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and J. Tourino, “Servet: A benchmark suite for autotuning on multicore
clusters,” in Parallel & Distributed Processing (IPDPS), 2010 IEEE
International Symposium on. IEEE, 2010, pp. 1–9.

[66] A. Danalis, P. Luszczek, G. Marin, J. S. Vetter, and J. Dongarra, “Black-
jackBench: portable hardware characterization,” ACM SIGMETRICS
Performance Evaluation Review, vol. 40, no. 2, pp. 74–79, 2012.

[67] J. Liu, B. Chandrasekaran, W. Yu, J. Wu, D. Buntinas, S. Kini, D. K.
Panda, and P. Wyckoff, “Microbenchmark performance comparison of
high-speed cluster interconnects,” IEEE Micro, vol. 24, no. 1, pp. 42–51,
2004.

[68] C. McCurdy and J. Vetter, “Memphis: Finding and fixing NUMA-related
performance problems on multi-core platforms,” in Performance Analysis
of Systems & Software (ISPASS), 2010 IEEE International Symposium
on. IEEE, 2010, pp. 87–96.

[69] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C. Roth, K. Spaf-
ford, V. Tipparaju, and J. S. Vetter, “The scalable heterogeneous com-
puting (SHOC) benchmark suite,” in Proceedings of the 3rd Workshop
on General-Purpose Computation on Graphics Processing Units. ACM,
2010, pp. 63–74.

81



[70] K. Spafford, J. S. Meredith, and J. S. Vetter, “Quantifying NUMA and
contention effects in multi-GPU systems,” in Proceedings of the Fourth
Workshop on General Purpose Processing on Graphics Processing Units.
ACM, 2011, p. 11.

[71] R. Landaverde, T. Zhang, A. K. Coskun, and M. Herbordt, “An investi-
gation of unified memory access performance in CUDA,” in High Per-
formance Extreme Computing Conference (HPEC), 2014 IEEE. IEEE,
2014, pp. 1–6.

[72] W. Li, G. Jin, X. Cui, and S. See, “An evaluation of unified memory
technology on Nvidia GPUs,” in Cluster, Cloud and Grid Computing
(CCGrid), 2015 15th IEEE/ACM International Symposium on. IEEE,
2015, pp. 1092–1098.

[73] T. Ben-Nun, “MGBench: Multi-GPU computing benchmark
suite,” 2016 (Accessed March 14, 2018). [Online]. Available:
https://github.com/tbennun/mgbench

[74] T. Ben-Nun, M. Sutton, S. Pai, and K. Pingali, “Groute: An asyn-
chronous multi-GPU programming model for irregular computations,”
in Proceedings of the 22nd ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming. ACM, 2017, pp. 235–248.

[75] woodun, “9 Microbenchmarks,” https://github.com/woodun/
9 Microbenchmarks/, 2018.

[76] H. Chen, W. Chen, J. Huang, B. Robert, and H. Kuhn, “MPIPP: an
automatic profile-guided parallel process placement toolset for SMP clus-
ters and multiclusters,” in Proceedings of the 20th annual international
conference on Supercomputing. ACM, 2006, pp. 353–360.

[77] G. Mercier and J. Clet-Ortega, “Towards an efficient process placement
policy for MPI applications in multicore environments,” in European Par-
allel Virtual Machine/Message Passing Interface Users Group Meeting.
Springer, 2009, pp. 104–115.

[78] T. Ben-Nun, E. Levy, A. Barak, and E. Rubin, “Memory access patterns:
the missing piece of the multi-GPU puzzle,” in Proceedings of the In-
ternational Conference for High Performance Computing, Networking,
Storage and Analysis. ACM, 2015, p. 19.

[79] D. Beckingsale, “Umpire release/0.1.3,” https://github.com/LLNL/
Umpire, 2018.

82



APPENDIX A: FULL TOPOLOGIES

Figure A.1: S822LC discovered topology.
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Figure A.2: AC922 discovered topology.
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Figure A.3: DGX-1 discovered topology.
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