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ABSTRACT

Bilinear inverse problems (BIPs), the resolution of two vectors given their im-

age under a bilinear mapping, arise in many applications. Without further

constraints, BIPs are usually ill-posed. In practice, parsimonious structures

of natural signals (e.g., subspace or sparsity) are exploited. However, there

are few theoretical justifications for using such structures for BIPs. We con-

sider two types of BIPs, blind deconvolution (BD) and blind gain and phase

calibration (BGPC), with subspace or sparsity structures. Our contributions

are twofold: we derive optimal identifiability conditions, and propose efficient

algorithms that solve these problems.

In previous work, we provided the first algebraic sample complexities for

BD that hold for Lebesgue almost all bases or frames. We showed that for

BD of a pair of vectors in Cn, with subspace constraints of dimensions m1 and

m2, respectively, a sample complexity of n ≥ m1m2 is sufficient. This result is

suboptimal, since the number of degrees of freedom is merely m1+m2−1. We

provided analogous results, with similar suboptimality, for BD with sparsity

or mixed subspace and sparsity constraints. In Chapter 2, taking advantage

of the recent progress on the information-theoretic limits of unique low-rank

matrix recovery, we finally bridge this gap, and derive an optimal sample

complexity result for BD with generic bases or frames. We show that for

BD of an arbitrary pair (resp. all pairs) of vectors in Cn, with sparsity

constraints of sparsity levels s1 and s2, a sample complexity of n > s1 + s2

(resp. n > 2(s1 + s2)) is sufficient. We also present analogous results for BD

with subspace constraints or mixed constraints, with the subspace dimension

replacing the sparsity level. Last but not least, in all the above scenarios, if

the bases or frames follow a probabilistic distribution specified in Chapter 2,

the recovery is not only unique, but also stable against small perturbations

in the measurements, under the same sample complexities.

In previous work, we proposed studying the identifiability in bilinear in-

ii



verse problems up to transformation groups. In particular, we studied sev-

eral special cases of blind gain and phase calibration, including the cases of

subspace and joint sparsity models on the signals, and gave sufficient and

necessary conditions for identifiability up to certain transformation groups.

However, there were gaps between the sample complexities in the sufficient

conditions and the necessary conditions. In Chapter 3, under a mild assump-

tion that the signals and models are generic, we bridge the gaps by deriving

tight sufficient conditions with optimal or near optimal sample complexities.

Recently there has been renewed interest in solutions to BGPC with care-

ful analysis of error bounds. In Chapter 4, we formulate BGPC as an eigen-

value/eigenvector problem, and propose to solve it via power iteration, or in

the sparsity or joint sparsity case, via truncated power iteration (which we

show is equivalent to a sparsity-projected gradient descent). Under certain

assumptions, the unknown gains, phases, and the unknown signal can be

recovered simultaneously. Numerical experiments show that power iteration

algorithms work not only in the regime predicted by our main results, but

also in regimes where theoretical analysis is limited. We also show that our

power iteration algorithms for BGPC compare favorably with competing al-

gorithms in adversarial conditions, e.g., with noisy measurement or with a

bad initial estimate.

A problem related to BGPC is multichannel blind deconvolution (MBD)

with a circular convolution model, i.e., the recovery of an unknown signal

f and multiple unknown filters xi from circular convolutions yi = xi ~ f

(i = 1, 2, . . . , N). In Chapter 5, we consider the case where the xi’s are

sparse, and convolution with f is invertible. Our nonconvex optimization

formulation solves for a filter h on the unit sphere that produces sparse out-

puts yi~h. Under some technical assumptions, we show that all local minima

of the objective function correspond to the inverse filter of f up to an in-

herent sign and shift ambiguity, and all saddle points have strictly negative

curvatures. This geometric structure allows successful recovery of f and xi

using a simple manifold gradient descent algorithm with random initializa-

tion. Our theoretical findings are complemented by numerical experiments,

which demonstrate superior performance of the proposed approach over the

previous methods.
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CHAPTER 1

INTRODUCTION

Bilinear inverse problems (BIPs), i.e., the simultaneous recovery of two vari-

ables x and y given bilinear measurement z = A(x, y), have attracted much

attention recently [1]. However, theoretical understanding of the identifiabil-

ity – or uniqueness of the solution to a BIP has been lacking until recently.

Furthermore, there has been tremendous interest in efficient algorithms for

BIPs with theoretical guarantees. In this dissertation, we present near op-

timal identifiability results for two BIPs, blind deconvolution (BD) [2] and

blind gain and phase calibration (BGPC) [3]. We also study guaranteed ef-

ficient algorithms for BGPC [4], and for a related problem – multichannel

blind deconvolution (MBD).

1.1 Blind Deconvolution

Blind deconvolution (BD) is the bilinear inverse problem of recovering the

signal and the filter simultaneously given the their convolutioin or circular

convolution. It arises in many applications, including blind image deblurring

[5], blind channel equalization [6], speech dereverberation [7], and seismic

data analysis [8]. Without further assumptions, BD is an ill-posed problem,

and does not yield a unique solution. In Chapter 2, we focus on subspace

or sparsity assumptions on the signal and the filter. These priors, which

render BD better-posed by reducing the search space, were shown to be

effective constraints or regularizers in various applications [9, 10, 11, 12,

13, 14]. However, despite the success in practice, the theoretical results on

uniqueness in BD with a subspace or sparsity constraint are limited.

Recently, the “lifting” scheme – recasting bilinear or quadratic inverse

problems, such as blind deconvolution and phase retrieval, as rank-1 matrix

recovery from linear measurements – has attracted considerable attention
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[14, 15]. Choudhary and Mitra [16] showed that identifiability in BD (or in

any bilinear inverse problem) hinges on the set of rank-2 matrices in a certain

nullspace. In particular, they showed a negative result that the solution to

BD with a canonical sparsity prior, that is, sparsity over the natural basis, is

not identifiable [17]. However, the authors did not analyze the identifiability

of signals that are sparse over other dictionaries. Eldar et al. [18] derived

tight sufficient conditions for low-rank matrix recovery. However, the authors

did not exploit any sparsity priors, and the results do not apply to structured

measurements that arise in BD.

Using the lifting framework, Ahmed et al. [14], Ling and Strohmer [19],

and Lee et al. [20, 21] proposed algorithms to solve BD with with sub-

space constraints, mixed constraints, and sparsity constraints, respectively.

Chi [22] solved BD with mixed constraints, where the sparse spikes do not

necessarily lie on a grid.1 They all showed successful recovery using convex

programming or alternating minimization, which implies identifiability and

stability. These results are constructive, being demonstrated by establish-

ing performance guarantees of algorithms. However, the guarantees are only

shown to hold with high probability. The probability of failure is nonzero,

and decays in a power-law form as the size of the problem increases.

In previous work [23], we addressed the identifiability up to scaling in single

channel blind deconvolution under subspace or sparsity constraints. We pre-

sented the first algebraic sample complexities for BD with fully deterministic

signal models. In particular, we showed that for BD of a pair of vectors in

Cn, with generic subspace constraints of dimensions m1 and m2, the bilinear

mapping is injective if n ≥ m1m2. This sufficient condition is suboptimal for

two reasons. First, it has been shown that the information-theoretic limit

(necessary condition) of such a problem is n ≥ m1+m2−1 [24, Theorem V.1].

Secondly, the number of degrees of freedom in the unknown pair of vectors is

m1 +m2−1. Similarly, the sample complexities for BD with sparsity or with

mixed constraints are n ≥ 2s1s2 and n ≥ 2s1m2, respectively, where s1 and

s2 denote the sparsity levels of the signal and the filter. Here the cost for the

unknown support is an extra factor of 2. These results suffer from the same

suboptimality as the results for the subspace constraints, in comparison to

1The off-grid signal in [22] is not sparse over a fixed dictionary, and hence should not
be confused with the setting in Chapter 2. The identifiability result corresponding to this
scenario is an interesting open problem.
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the number of degrees of freedom of the continuous-valued unknowns.

In Chapter 2, we finally bridge this gap. We show nearly optimal sufficient

conditions for identifiability and stability in blind deconvolution that match

the number of degrees of freedom in the unknowns. Results are given for

the cases of subspace constraints, sparsity constraints, or mixed constraints,

and for complex or real signal and filter. For example, a sample complexity

of n > s1 + s2 is sufficient to recover a pair of signals, which are s1 and s2-

sparse with respect to generic dictionaries, from their circular convolution.

This sufficient condition almost matches the necessary condition in [24]. The

results of Chapter 2 provide the first tight sample complexity bounds, without

large constants or log factors, for unique and stable recovery in BD. Such tight

bounds were not achieved (either for unique or for stable recovery) in any of

the previous works [14, 19, 21, 22].

The tight sample complexities in the identifiability results apply to Lebesgue

almost all bases or frames.2 Given a sufficient number of measurements, the

conditions for unique recovery are violated only on a set of Lebesgue measure

zero. In this sense, these results are deterministic, requiring no probabilistic

assumptions. As an immediate corollary though, if the bases or frames are

drawn from any probability distribution that is absolutely continuous with

respect to the Lebesgue measure (e.g., the entries are jointly Gaussian with a

non-singular covariance, or i.i.d. following a uniform distribution, etc.), then

the results in Chapter 2 hold: they imply that the signal and the filter are

identifiable with probability 1, which is better than being identifiable with

high probability as in previous works [14, 19, 21, 22].

The unique recovery results are complemented by matching stability re-

sults. If the bases or frames follow a distribution specified later in Chapter 2,

then under the same sample complexities as in the identifiability results, the

recovery is stable with high probability against small perturbations in the

measurements. In Chapter 2, the probability of failure decays in an expo-

nential form as the size of the problem increases, faster than the power-law

decay in previous works [14, 19, 21, 22].

Although all the main results of Chapter 2 are stated and proved for 1D

circular convolution, they translate to 2D or higher-dimensional circular con-

2Results of similar nature, in that they apply to “almost all” objects of interest, have
been derived for FIR multichannel deconvolution [25] and for low-rank matrix recovery
[18].
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volutions, by replacing the 1D discrete Fourier transform (DFT) with 2D or

higher-dimensional DFTs. These sample complexity bounds are theoretical

confirmations that subspace and sparsity assumptions are effective regular-

izers for blind deconvolution problems, such as blind image deblurring and

blind channel equalization. The solutions are indeed unique and stable as

long as the number of measurements exceeds the number of unknowns. Al-

though the emphasis of Chapter 2 is not on any practical method, it provides

a guideline for solving BD with subspace or sparsity priors. Algorithms that

succeed only in regimes with suboptimal dependence on subspace dimensions

or sparsity levels (e.g., requiring a sample complexity of n = Ω(s1s2) to re-

cover a pair of signals of s1 and s2), are not due to a fundamental limitation,

but due to the suboptimality of the method or its analysis. On the other

hand, our results encourage the pursuit of algorithms that are guaranteed to

succeed in the optimal regime [14, 26, 21].

One of the main technical tools for the derivation of our results are results

on information-theoretic limits of low-rank matrix recovery. Inspired by the

brilliant work of Riegler et al. [27] on such limits for real matrix recovery

from noise-free observations, we extend the results to complex matrix recov-

ery from noisy observations, and apply them to blind deconvolution. The

contributions of our extension include: (i) we refine the covering number ar-

gument used in [27] to achieve stability under the same sample complexity;

(ii) we provide a simpler proof that gets rid of some unnecessary technicali-

ties; (iii) we derive a concentration of measure bound with better constants,

and an analogous result in the complex case, which is a non-trivial extension.

These results may be of independent interest.

After our paper [2] was submitted and posted on arXiv, Kech and Krah-

mer [28] proved slightly improved identifiability and stability results for blind

deconvolution using techniques from algebraic geometry. Their sample com-

plexities, proved to be both necessary and sufficient, differ from ours by an

additive term of at most five samples. For example, we show that a sample

complexity of n > 2(s1 + s2) is sufficient for the uniform identifiability of

every pair of signals of sparsity s1 and s2, respectively. In comparison, Kech

and Krahmer gave an optimal bound n ≥ 2(s1 + s2)− 2, which differs from

our sample complexity by three samples. For BD with sparsity constraints,

Kech and Krahmer only considered undercomplete or square dictionaries, in

contrast to our analysis, which applies also to overcomplete dictionaries.
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1.2 Blind Gain and Phase Calibration

Blind gain and phase calibration (BGPC) is a bilinear inverse problem that

arises in many applications. It is the joint recovery of an unknown gain

and phase vector λ ∈ Cn and signal vectors φ1, φ2, . . . , φN ∈ Cn given the

entrywise product Y = diag(λ)Φ, where Φ = [φ1, φ2, . . . , φN ] ∈ Cn×N . An

example of BGPC is the joint estimation of albedo3 and the lighting con-

ditions in inverse rendering [29]. Another example is the joint recovery of

source signals, and unknown gains and phases of sensors, in array processing

[30], where the directions of arrival of source signals are properly discretized

using a grid. Multichannel blind deconvolution (with the circular convolu-

tion model), i.e., the joint recovery of the signal and multiple channels, is

also a BGPC problem. BGPC has been studied extensively, and numerous

solutions have been proposed, in the context of direction of arrival estimation

[31, 32, 33, 34, 35] or radar imaging [36, 37].

1.2.1 Identifiability

One of the fundamental questions is: When does BGPC admit a unique solu-

tion? Despite the massive research efforts in BGPC, there are few results on

identifiability in terms of sample complexity. Several works provided partial

answers to the uniqueness of BGPC in the context of certain applications. In

each of these works, the problem formulation and treatment were tailored to

the application. For example, Nguyen et al. [29] showed a sufficient condition

for unique inverse rendering. Morrison et al. [38] proposed an algorithm for

synthetic aperture radar (SAR) autofocus and showed a necessary condition

for their algorithm. Both problems fall into the category of BGPC problems

with subspace constraints.

In previous work [1, 39], by deriving general necessary and sufficient con-

ditions for identifiability in a bilinear inverse problem up to a transformation

group, we addressed the uniqueness in all BGPC problems in a common

framework. Results were derived for several different scenarios, and were

given in terms of sample complexities: the number of samples required for

a unique solution. In particular, we considered the subspace constraint and

3Albedo, also known as reflection coefficient, is the ratio of reflected radiation from a
surface to incident radiation upon it.
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joint sparsity constraint scenarios for the signals, and derived sufficient con-

ditions for the identifiability up to scaling (or other groups of equivalence

transformations). We also gave necessary conditions in the form of tight

lower bounds on sample complexities. The sufficient conditions and the nec-

essary conditions coincide in some cases, but have gaps in other cases, which

lead to some conjectures on how to bridge these gaps.

A limitation of the previous works [1, 39], is that the sample complexities

in the sufficient conditions are suboptimal. For example, for BGPC with a

subspace constraint of dimension m, the sample complexity in the sufficient

condition is N ≥ m. However, the necessary condition says that the sample

complexity only needs to satisfy N ≥ n−1
n−m . This less demanding sample

complexity coincides with the bound obtained by counting the number of

degrees of freedom and the number of measurements, and also agrees with

the empirical phase transition [1]. The sufficient condition for identifiability

in BGPC with a joint sparsity constraint at sparsity level s suffers from

similar suboptimality: the sufficient condition is N ≥ s, versus the necessary

condition N ≥ n−1
n−s .

In Chapter 3, we close the gaps between the sufficient and necessary con-

ditions. In the subspace constraint scenario, the subspace model and the

signals are assumed to be generic. Then we show that the sample complexity

in the necessary condition is actually sufficient for almost all signals. There-

fore, the sample complexity is optimal. This proves one of our conjectures

in [1]. We also generalize this result to the joint-sparsity case, and derive

a sample complexity that is near optimal. These results provide favorable

uniqueness bounds for real-world applications. For example, in sensor array

processing, if the number of sensors is four times the number of sources, then

our results imply that two snapshots are sufficient to calibrate the gains and

phases.

1.2.2 Efficient Solution

There exists a long line of research regarding the solutions for each application

of BGPC. However, fundamental sample complexities for the uniqueness of

solutions to BGPC [1, 3], and error bounds for efficient algorithms [40, 41]

have been established only recently. A main drawback of the guaranteed
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algorithms of [40, 41] is that the recovery error is sensitive to the choice of

certain linear constraints. We refer readers to Section 4.1.4 for a detailed

discussion of prior art.

In Chapter 4, we overcome the drawbacks of previous algorithms by re-

formulating the BGPC problem as an eigenvalue/eigenvector problem. In

the subspace case, we use algorithms that find principal eigenvectors such as

the power iteration algorithm (also known as the power method) [42, Sec-

tion 8.2.1], to find the concatenation of the gain and phase vector and the

vectorized signal matrix in the form of the principal component of a struc-

tured matrix. In the sparsity case, the problem resembles sparse principal

component analysis (sparse PCA) [43]. We then propose to solve the sparse

eigenvector problem using truncated power iteration [44].

The main contribution of Chapter 4 is the theoretical analysis of the error

bounds of power iteration and truncated power iteration for BGPC in the

subspace and joint sparsity cases, respectively. When the measurement ma-

trix is random, and the signals and the noise are adversarial, our algorithms

stably recover the unknown gains and phases, and the unknown signals with

high probability under near optimal sample complexities. Since truncated

power iteration relies on a good initial estimate, we also propose a simple

initialization algorithm, and prove that the output is sufficiently good under

certain technical conditions. The fundamental estimates derived in Chapter

4 can be applied to other algorithms for BGPC, and possibly to algorithms

for similar problems.

We complement the theoretical results with numerical experiments, which

show that the algorithms can indeed solve BGPC in the optimal regime. We

also demonstrate that the algorithms are robust against noise and an inaccu-

rate initial estimate. Experiments with different initialization schemes show

that our initialization algorithm significantly outperforms the baseline. Then

we apply the power iteration algorithm to inverse rendering, and showcase

its effectiveness in real-world applications.

1.3 Multichannel Sparse Blind Deconvolution

Blind deconvolution, which aims to recover unknown vectors x and f from

their convolution y = x ~ f , has been extensively studied, especially in the
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context of image deblurring [5, 45, 46, 47]. Recently, algorithms with theo-

retical guarantees have been proposed for single channel blind deconvolution

[14, 19, 22, 26, 21, 48, 49]. In order for the problem to be well-posed, these

previous methods assume that both x and f are constrained, to either reside

in a known subspace or be sparse over a known dictionary. However, these

methods cannot be applied if f (or x) is unconstrained, or does not have a

subspace or sparsity structure.

In many applications in communications [50], imaging [51], and computer

vision [52], convolutional measurements yi = xi ~ f are taken between a

single signal (resp. filter) f and multiple filters (resp. signals) {xi}Ni=1. We

call such problems multichannel blind deconvolution (MBD).4 Importantly,

in this multichannel setting, one can assume that only {xi}Ni=1 are structured,

and f is unconstrained. While there has been abundant work on single chan-

nel blind deconvolution (with both f and x constrained), research in MBD

(with f unconstrained) is relatively limited. Traditional MBD works as-

sumed that the channels xi’s are FIR filters [53, 54, 55] or IIR filters [56],

and proposed to solve MBD using subspace methods. Despite the fact that

MBD with a linear (i.e., standard, non-circular) convolution model is known

to have a unique solution under mild conditions [25], the problem is gen-

erally ill-conditioned [57]. Recent works improved the conditioning of such

problems by introducing subspace or low-rank structures for the multiple

channels [57, 58].

In Chapter 5, while retaining the unconstrained form of f , we consider a

different structure of the multiple channels {xi}Ni=1: sparsity. The resulting

problem is termed multichannel sparse blind deconvolution (MSBD). The

sparsity structure arises in many real-world applications.

Opportunistic underwater acoustics: Underwater acoustic channels

are sparse in nature [59]. Estimating such sparse channels with an array of

receivers using opportunistic sources (e.g., shipping noise) involves a blind

deconvolution problem with multiple unknown sparse channels [60, 61].

Reflection seismology: Thanks to the layered earth structure, reflec-

tivity in seismic signals is sparse. It is of great interest to simultaneous

recover the filter (also known as the wavelet), and seismic reflectivity along

the multiple propagation paths between the source and the geophones [62].

4Since convolution is a commutative operation, we use “signal” and “filter” interchange-
ably.
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Functional MRI: Neural activity signals are composed of brief spikes

and are considered sparse. However, observations via functional magnetic

resonance imaging (fMRI) are distorted by convolving with the hemodynamic

response function. A blind deconvolution procedure can reveal the underlying

neural activity [63].

Super-resolution fluorescence microscopy: In super-resolution fluo-

rescence microscopic imaging, photoswitchable probes are activated stochas-

tically to create multiple sparse images and allow microscopy of nanoscale

cellular structures [64, 65]. One can further improve the resolution via a com-

putational deconvolution approach, which mitigates the effect of the point

spread function (PSF) of the microscope [66]. It is sometimes difficult to

obtain the PSF (e.g., due to unknown aberrations), and one needs to jointly

estimate the microscopic images and the PSF [67].

Previous approaches to MSBD have provided efficient iterative algorithms

to compute maximum likelihood (ML) estimates of parametric models of the

channels {xi}Ni=1 [61], or maximum a posteriori (MAP) estimates in various

Bayesian frameworks [62, 52]. However, these algorithms usually do not have

theoretical guarantees or sample complexity bounds.

Recently, guaranteed algorithms for MSBD have been developed. Wang

and Chi [41] proposed a convex formulation of MSBD based on `1 minimiza-

tion, and gave guarantees for successful recovery under the condition that

f has one dominant entry that is significantly larger than other entries. In

our previous work [4], we solved a nonconvex formulation using projected

gradient descent (truncated power iteration), and proposed an initialization

algorithm to compute a sufficiently good starting point. However, in that

work, theoretical guarantees were derived only for channels that are sparse

with respect to a Gaussian random dictionary, but not channels that are

sparse with respect to the standard basis.

We would like to emphasize that, while earlier papers on MBD [53, 54,

55, 56] consider a linear convolution model, more recent guaranteed methods

for MSBD [41, 4] consider a circular convolution model. By zero padding

the signal and the filter, one can rewrite a linear convolution as a circular

convolution. In practice, circular convolution is often used to approximate

a linear convolution when the filter has a compact support or decays fast

[68], and the signal has finite length or satisfies a circular boundary condition

[45]. The accelerated computation of circular convolution via the fast Fourier
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transform (FFT) is especially beneficial in 2D or 3D applications [45, 67].

Multichannel blind deconvolution with a circular convolution model is also

related to blind gain and phase calibration [1, 69, 70, 40]. Suppose that

a sensing system takes Fourier measurements of unknown signals and the

sensors have unknown gains and phases, i.e., ỹi = diag(f̃)Fxi, where xi are

the targeted unknown sparse signals, F is the discrete Fourier transform

(DFT) matrix, and the entries of f̃ represent the unknown gains and phases

of the sensors. The simultaneous recovery of f̃ and xi’s is equivalent to

MSBD in the frequency domain.

In Chapter 5, we consider MSBD with circular convolution. In addition to

the sparsity prior on the channels {xi}Ni=1, we impose, without loss of general-

ity, the constraint that f has unit `2 norm, i.e., f is on the unit sphere. (This

eliminates the scaling ambiguity inherent in the MBD problem.) We show

that our sparsity promoting objective function has a nice geometric land-

scape on the the unit sphere: (S1) all local minima correspond to signed

shifted versions of the desired solution, and (S2) the objective function is

strongly convex in neighborhoods of the local minima, and has strictly nega-

tive curvature directions in neighborhoods of local maxima and saddle points.

Similar geometric analysis has been conducted for dictionary learning [71],

phase retrieval [72], and single channel sparse blind deconvolution [49]. Re-

cently, Mei et al. [73] analyzed the geometric structure of the empirical risk

of a class of machine learning problems (e.g., nonconvex binary classification,

robust regression, and Gaussian mixture model). Chapter 5 is the first such

analysis for MSBD.

Properties (S1) and (S2) allow simple manifold optimization algorithms to

find the ground truth in the nonconvex formulation. Unlike the second-order

methods in previous works [74, 72], we take advantage of recent advances in

the understanding of first-order methods [75, 76], and prove that a simple

manifold gradient descent algorithm, with random initialization and a fixed

step size, can accurately recover a signed shifted version of the ground truth

in polynomial time almost surely. This is the first guaranteed algorithm for

MSBD that does not rely on restrictive assumptions on f (e.g., dominant

entry [41], spectral flatness [4]), or on {xi}Ni=1 (e.g., jointly sparse, Gaussian

random dictionary [4]).

Recently, many optimization methods have been shown to escape saddle

points of objective functions with benign landscapes, e.g., gradient descent
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[77, 78], stochastic gradient descent [79], perturbed gradient descent [80],

Natasha [81, 82], and FastCubic [83]. Similarly, optimization methods over

Riemannian manifolds that can escape saddle points include manifold gradi-

ent descent [76], the trust region method [74, 72], and the negative curvature

method [84]. Our main result shows that these algorithms can be applied to

MSBD thanks to the favorable geometric properties of our objective function.
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CHAPTER 2

IDENTIFIABILITY AND STABILITY IN
BLIND DECONVOLUTION

2.1 Problem Statement

2.1.1 Notations

We use lower-case letters x, y, z to denote vectors, and upper-case letters

D and E to denote matrices. We use F to denote the normalized (unitary)

discrete Fourier transform (DFT) matrix. Unless otherwise stated, all vectors

are column vectors. The dimensions of all vectors and matrices are made

clear in the context. We use superscript letters to denote subvectors or

submatrices. For example, the scalar x(j) represents the jth entry of x. The

vector D(j,:) represents the jth row of the matrix D. The colon notation

is borrowed from MATLAB. The transpose and conjugate transpose to a

matrix A are denoted by AT and A∗, respectively. The inner product of two

matrices A and M are denoted by 〈A,M〉 = trace(A∗M). We use ‖·‖0 to

denote the `0 “norm”, or number of nonzero entries. We use ‖·‖2 to denote

the `2 norm of a vector or the spectral norm of a matrix, and ‖·‖F to denote

the Frobenious norm of a matrix. We use � to denote entrywise product.

Circular convolution is denoted by ~.

We say a subset ΩM of a linear vector space is a cone, if for every M ∈ ΩM

and every σ > 0, the scaled vector σM ∈ ΩM. The real and imaginary

parts of a complex vector are denoted by Re(x) and Im(x), respectively.

If ΩX is a subset of Cm, then we use Re(ΩX ) = {Re(x) : x ∈ ΩX}, and

Im(ΩX ) = {Im(x) : x ∈ ΩX} to denote the real and imaginary parts of ΩX .

The unit ball in Rm (with respect to the `2 norm) centered at the origin is

denoted by BRm . Then x+RBRm denotes the ball in Rm of radius R centered

at x. Similarly, the unit ball in Cm1×m2 (with respect to the Frobenius norm)

centered at the origin is denoted by BCm1×m2 . Then M + RBCm1×m2 denotes
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the ball in Cm1×m2 of radius R centered at M . We use VCm(R) =
∫
RBCm

dx to

denote the volume of a ball of radius R in Cm. Here, the multiple integral of

a real-valued function f(x) over ΩX ⊂ Cm is defined as the multiple integral

of f(y(1:m) +
√
−1y(m+1:2m)) over {y ∈ R2m : y(1:m) +

√
−1y(m+1:2m) ∈ ΩX}.

We say a property holds for (Lebesgue) almost all vectors/matrices, or

generic vectors/matrices, if the property holds for all vectors/matrices except

for a set of Lebesgue measure zero.

2.1.2 Blind Deconvolution

In this chapter, we study the blind deconvolution (BD) problem with the

circular convolution model. It is the joint recovery of two vectors u0 ∈ Cn

and v0 ∈ Cn, namely the signal and the filter,1 given their circular convolution

z = u0 ~ v0, subject to subspace or sparsity constraints. The constraint sets

ΩU and ΩV are subsets of Cn. With these definitions, the BD problem is

written as follows:

Find (u, v),

s.t. u~ v = z,

u ∈ ΩU , v ∈ ΩV .

We further assume that the constraint sets, which add to BD the prior

information of the signal and the filter, are subspaces or sets of sparse vectors

over a dictionary. For example, in blind image deblurring, the image (signal)

can be assumed to be sparse over a dictionary (e.g., wavelets). The point

spread function (filter) either has a small support and hence belongs to a

subspace, or follows a simple parametric model that can be linearized by

manifold embedding [85]. Another example is blind echo cancellation, where

one can model a multipath channel as a sparse vector. With channel coding,

the transmitted signal resides in the column space of the coding matrix. For

more examples of subspace or sparsity priors in BD, we refer the readers

to [14, 19, 21, 26] and the references therein. Specifically, we consider the

following scenarios for the constraints:

1. (Subspace Constraints) The signal u and the filter v reside in lower-

1Due to symmetry, the name “signal” and “filter” can be used interchangeably.
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dimensional subspaces spanned by the columns of D ∈ Cn×m1 and

E ∈ Cn×m2 , respectively, with m1,m2 < n. The matrices D and E

have full column ranks. The signal u = Dx for some x ∈ Cm1 . The

filter v = Ey for some y ∈ Cm2 .

2. (Sparsity Constraints) The signal u and the filter v are sparse over given

dictionaries formed by the columns of D ∈ Cn×m1 and E ∈ Cn×m2 , with

sparsity level s1 and s2, respectively. Here m1 and m2 do not have to be

smaller than n. The matrices D and E are bases or frames that satisfy

the spark condition [86]: the spark, namely the smallest number of

columns that are linearly dependent, of D (resp. E) is greater than 2s1

(resp. 2s2). The signal u = Dx for some x ∈ Cm1 with ‖x‖0 ≤ s1. The

filter v = Ey for some y ∈ Cm2 with ‖y‖0 ≤ s2.

3. (Mixed Constraints) The signal u is sparse over a given dictionary D ∈
Cn×m1 , and the filter v resides in a lower-dimensional subspace spanned

by the columns of E ∈ Cn×m2 , with m2 < n. The matrix D satisfies the

spark condition, and E has full column rank. The signal u = Dx for

some x ∈ Cm1 with ‖x‖0 ≤ s1. The filter v = Ey for some y ∈ Cm2 .2

In all three scenarios, the vectors x, y, and z reside in Euclidean spaces

Cm1 , Cm2 and Cn. Given the measurement z = (Dx0) ~ (Ey0), the blind

deconvolution problem can be rewritten in the following form:

(BD) Find (x, y),

s.t. (Dx) ~ (Ey) = z,

x ∈ ΩX , y ∈ ΩY .

If D and E satisfy the full column rank condition or the spark condition, then

the uniqueness of (u, v) is equivalent to the uniqueness of (x, y). Indeed, the

full rank or spark conditions are satisfied for Lebesgue almost all D and E.

Therefore, the results about the recovery of (x, y) in BD with generic bases

or frames imply the corresponding results for (u, v). For simplicity, we will

discuss problem (BD) from now on. The constraint sets ΩX and ΩY depend

on the constraints on the signal and the filter. For subspace constraints, ΩX

2We can also consider the scenario where u resides in a subspace spanned by the columns
of D, and v is sparse over E. By symmetry, the analysis will be almost identical, and thus
omitted.
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and ΩY are Cm1 and Cm2 , respectively. For sparsity constraints, ΩX and ΩY

are {x ∈ Cm1 : ‖x‖0 ≤ s1} and {y ∈ Cm2 : ‖y‖0 ≤ s2}, respectively.

2.1.3 Identifiability up to Scaling

An important question concerning the blind deconvolution problem is to

determine when it admits a unique solution. The BD problem suffers from

scaling ambiguity. For any nonzero scalar σ ∈ C such that σx0 ∈ ΩX and
1
σ
y0 ∈ ΩY , (D(σx0)) ~ (E( 1

σ
y0)) = (Dx0) ~ (Ey0) = z. Therefore, BD does

not yield a unique solution if ΩX ,ΩY contain such scaled versions of x0, y0

(which is the case for the subspace or sparsity constraint sets in the previous

section). Any valid definition of unique recovery in BD must address this

issue. Our approach is as follows. If every solution (x, y) is a scaled version

of (x0, y0), then we say that (x0, y0) can be uniquely identified up to scaling.3

We also consider the case when this property is satisfied by all pairs (x0, y0)

of interest. Thus we define identifiability as follows.

Definition 2.1.1.

1. Weak identifiability: We say that the pair (x0, y0) ∈ ΩX × ΩY , in

which x0 6= 0 and y0 6= 0, is identifiable up to scaling, if every solution

(x, y) ∈ ΩX × ΩY satisfies x = σx0 and y = 1
σ
y0 for some nonzero σ.

2. Strong identifiability: We say that the set ΩX × ΩY is identifiable

up to scaling, if every pair (x0, y0) ∈ ΩX ×ΩY that satisfies x0 6= 0 and

y0 6= 0 is identifiable up to scaling.

For blind deconvolution, there exists a linear operator GDE : Cm1×m2 → Cn

such that

GDE(xyT ) = (Dx) ~ (Ey). (2.1)

Given the measurement z = GDE(x0y
T
0 ) = (Dx0)~ (Ey0), one can recast the

BD problem as the recovery of the rank-1 matrix M0 = x0y
T
0 ∈ ΩM = {xyT :

3Unconstrained BD also suffers from shift ambiguity. If the signal and the filter are
circularly shifted by ` and −`, respectively, their circular convolution remains the same.
However, the BD problem with generic basis or frames does not suffer from shift ambiguity.
If the signal and the filter are shifted, then they no longer reside in the same generic
subspaces, or are no longer sparse with respect to the same generic dictionaries, as before.
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x ∈ ΩX , y ∈ ΩY}. Using this so-called “lifting” [14] procedure, the lifted BD

problem has the following form:

(Lifted BD) Find M,

s.t. GDE(M) = z,

M ∈ ΩM.

The uniqueness of M0 is equivalent to the identifiability of (x0, y0) up to scal-

ing. In (Lifted BD), weak identifiability means the recovery of M0 is unique,

or M0 is the only point in ΩM that maps to GDE(M0). Strong identifiability

means the recovery of all matrices in ΩM is unique, that is GDE is injective

on ΩM, i.e., there exists G−1
DE : GDE(ΩM)→ ΩM.

Since ΩX and ΩY are cones, the lifted constraint set ΩM is also a cone.

As shown later, for the linear operator GDE and the cone constraint set

ΩM, identifiability on ΩM is essentially the same as identifiability on the

constraint set restricted to the unit ball ΩM
⋂
BCm1×m2 . From now on, we

use the shorthand notation

ΩB := ΩM
⋂
BCm1×m2 . (2.2)

Hence σΩB = ΩM
⋂
σBCm1×m2 .

2.1.4 Stable Recovery

Noise is ubiquitous in real-world applications. In a noisy setting, the mea-

surement in matrix recovery is z = GDE(M0) + ξ, where M0 = x0y
T
0 denotes

the true rank-1 matrix, and ξ denotes noise or other perturbation in the

measurement. In order to estimate M0 from the measurement z, we consider

the following constrained least squares problem:

(Noisy BD) min .
M

‖GDE(M)− z‖2 ,

s.t. M ∈ σΩB,

where σΩB = {xyT : x ∈ ΩX , y ∈ ΩY ,
∥∥xyT∥∥

F
≤ σ}. For all practical pur-

poses, the solution to a blind deconvolution problem is bounded. Therefore,

we solve (Noisy BD) subject to the constraint set restricted to a ball, whose
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radius σ is sufficiently large. For example, σ can be set based on conservative

upper estimates of the energy of x0 and y0.

We introduce the following two notions of stability of recovery:

Definition 2.1.2.

1. Single point stability: We say that the recovery of M0 ∈ σΩB,

using measurement operator GDE and constraint set σΩB, is stable,

if for all M ∈ σΩB such that ‖GDE(M)− GDE(M0)‖2 ≤ δ, we have

‖M −M0‖2 ≤ ε.

2. Uniform stability: We say that the recovery on σΩB is uniformly

stable if for all M1,M2 ∈ σΩB that satisfy ‖GDE(M1)− GDE(M2)‖2 ≤ δ,

we have ‖M1 −M2‖2 ≤ ε.

In both definitions, ε = ε(δ) is a function of δ that vanishes as δ approaches

0.

It is easy to see that the stability as defined above, would guarantee the

accuracy of the constrained least squares estimation. Let M1 = x1y
T
1 denote

the solution to (Noisy BD). Suppose the perturbation ξ is small, i.e., ‖ξ‖2 ≤
δ
2

for some small δ > 0. Then the deviation of GDE(M1) from GDE(M0) is small,

i.e.,

‖GDE(M1)− GDE(M0)‖2

≤ ‖GDE(M1)− z‖2 + ‖z − GDE(M0)‖2

≤ 2 ‖GDE(M0)− z‖2 = 2 ‖ξ‖2 ≤ δ.

By the definition of single point stability (or uniform stability), we have

‖M1 −M0‖2 ≤ ε(δ), which is also a small quantity.

If the recovery of M0 is stable, then for every ε > 0, there exists δ > 0

such that for every M ∈ σΩB that satisfies ‖GDE(M)− GDE(M0)‖2 ≤ δ,

we have ‖M −M0‖2 ≤ ε. If the recovery is uniformly stable on σΩB, then

for every ε > 0, there exists δ > 0 such that for all M1,M2 ∈ σΩB that

satisfy ‖GDE(M1)− GDE(M2)‖2 ≤ δ, we have ‖M1 −M2‖2 ≤ ε. If GDE
satisfies strong identifiability, i.e., GDE is invertible when restricted to ΩM,

then single point stability at M0 implies that G−1
DE is continuous at GDE(M0).

Finally uniform stability on σΩB implies that G−1
DE is uniformly continuous

on GDE(σΩB).
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Suppose ΩM is a cone, and we need to evaluate stability on σΩB =

ΩM
⋂
σBCm1×m2 . We can scale M0 and the radius of the ball by 1

σ
simul-

taneously. If for all M ∈ ΩB such that
∥∥GDE(M)− GDE(M0

σ
)
∥∥

2
≤ δ, we have∥∥M − M0

σ

∥∥
2
≤ ε(δ), then for allM ∈ σΩB such that ‖GDE(M)− GDE(M0)‖2 ≤

δ, we have ‖M −M0‖2 ≤ σε( δ
σ
). Therefore, we only need to consider the

stability of recovery on the constraint set restricted to the unit ball, ΩB.

In the next section, we present the main results on the identifiability and

stability in blind deconvolution, i.e., the optimal sample complexities that

guarantee unique and stable recovery in (Lifted BD) and (Noisy BD), respec-

tively.

2.2 Main Results

We present the weak and strong identifiability results for blind deconvolution

in Section 2.2.1, and present single point and uniform stable recovery results

in Section 2.2.2. These results are proved in Section 2.4, which depends

heavily on the matrix recovery results in Section 2.3.

2.2.1 Identifiability Results

Subspace membership and sparsity have been used as priors in blind de-

convolution for a long time. Previous works either use these priors without

theoretical justification [9, 10, 11, 12, 13], or impose probabilistic models and

show successful recovery with high probability [14, 19, 21, 22]. The sufficient

conditions for the identifiability in BD in our prequel paper [23] are (except

for a special class of so-called sub-band structured signals or filters) subop-

timal. In this section, we present sufficient conditions for identifiability in

BD, as defined in Section 2.1.1, with minimal assumptions. First, the weak

identifiability results in the following theorem are sharp to within an additive

term of two samples.

Theorem 2.2.1 (Weak Identifiability). If n > d, then for Lebesgue almost

all D ∈ Cn×m1 and E ∈ Cn×m2, the pair (x0, y0) ∈ ΩX ×ΩY (x0 6= 0, y0 6= 0)

is identifiable up to scaling. Here, d is the sample complexity bound, which is

m1 +m2, s1 +m2, and s1 +s2 in the subspace, mixed, and sparsity constraints

scenarios, respectively.
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The above sufficient condition is appealing since it approaches the informa-

tion-theoretic limit of blind deconvolution. For example, it has been shown

that the necessary condition for blind deconvolution (or any bilinear inverse

problem) with two unknown vectors of sparsity s1 and s2 is n ≥ s1 + s2 −
1, which is a fundamental limit [24, Theorem V.1]. Therefore, to within

two samples difference, our sufficient sample complexity presented above is

optimal. Moreover, our sample complexity almost matches the number of

degrees of freedom in the unknowns, which is m1 + m2 − 1, s1 + m2 − 1,

and s1 + s2 − 1, for BD with subspace, mixed, and sparsity constraints,

respectively.

This result is a sufficient condition for weak identifiability. Unlike our

results on BD with generic bases or frames in [23], which guarantee the

injectivity of the bilinear mapping of circular convolution, this result only

guarantees the identifiability of one pair (x0, y0) in the constraint set. A

sufficient condition for strong identifiability, which applies uniformly to all

pairs (x0, y0) in the constraint set, is presented next. In comparison to the

optimal result in Theorem 2.2.1, the cost for strong identifiability is a factor

of 2 in the sample complexity.

Theorem 2.2.2 (Strong Identifiability). If n > 2d, then for Lebesgue almost

all D ∈ Cn×m1 and E ∈ Cn×m2, all pairs (x0, y0) ∈ ΩX ×ΩY (x0 6= 0, y0 6= 0)

are identifiable up to scaling. Here, d is the same as in Theorem 2.2.1.

Interestingly, the sample complexity of Theorem 2.2.2 doubles that of The-

orem 2.2.1. The extra samples are reasonable: (1) weak identifiability means

that any one point other than (x0, y0) must map to a point different from

(Dx0) ~ (Ey0); (2) strong identifiability means that any two distinct points

in the set must map to different points in Cn. A similar phenomenon in

compressed sensing is well known: weak recovery of an s-sparse vector re-

quires s+1 generic samples [87], but strong recovery (injectivity) requires 2s

generic samples [86].

The above results hold true for Lebesgue almost all complex matrices D

and E. However, in many real-world applications, both the signal and the

filter are real vectors. Therefore, it is worthwhile to consider the special case

where D ∈ Rn×m1 , E ∈ Rn×m2 , x ∈ Rm1 , and y ∈ Rm2 . We show that the

same sample complexities still hold in this special case.
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Theorem 2.2.3. In the case where D, E, x, and y are real, the sample

complexities in Theorems 2.2.1 and 2.2.2 hold for Lebesgue almost all D ∈
Rn×m1 and E ∈ Rn×m2.

The proofs of Theorems 2.2.1 and 2.2.2 are presented in Section 2.4.1, and

depend on Theorem 2.3.2, Corollaries 2.3.6 and 2.3.7, and Lemma 2.4.1. The-

orem 2.2.3 is proved similarly in Section 2.4.2, with a variation of Theorem

2.3.2, i.e., Lemma 2.4.2.

All the results hold for Lebesgue almost all matrices D and E. When

the sample complexity is met, the identifiability is violated only on a set

of Lebesgue measure zero in the space of matrices D and E. Therefore, if

D and E are drawn from a distribution that is absolutely continuous with

respect to the Lebesgue measure (e.g., D and E are independent random

matrices whose entries are i.i.d. following a Gaussian distribution), then the

identifiability result holds almost surely.

2.2.2 Stability Results

The previous section gives the sample complexities that guarantee the identi-

fiability in BD. Next, we show that the same sample complexity can guarantee

stability. Recall that GDE and ΩB are defined in (2.1) and (2.2), respectively.

Here we only consider single point stability and uniform stability on ΩB,

which correspond to Definition 2.1.2 with σ = 1. As argued before, stability

on ΩB implies stability on an arbitrary bounded set.

Theorem 2.2.4. Assume that D ∈ Cn×m1 and E ∈ Cn×m2 are indepen-

dent random matrices, such that the random vectors {(FD)(j,:)∗}nj=1 are i.i.d.

following a uniform distribution on RBCm1 , and {(FE)(j,:)∗}nj=1 are i.i.d. fol-

lowing a uniform distribution on RBCm2 .

1. If n > d and δ <
√
nR2, then with probability at least 1−C ′( δ2

R4 )n−d( 1
ε2

)n,

we have single point stability on ΩB.

2. If n > 2d and δ <
√
nR2, then with probability at least 1−C ′′( δ2

R4 )n−2d( 1
ε2

)n,

we have uniform stability on ΩB.

Here, d is the same sample complexity bound as in Theorems 2.2.1 and 2.2.2.

Except for a log factor, C ′ and C ′′ only depend on n, m1, m2, s1, and s2.
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Table 2.1: A summary of the constants in Theorem 2.2.4.

d C ′ C ′′

Subspace constraints m1 +m2
Cn

nn−d
(4C)n

nn−2d

Mixed constraints s1 +m2

(
m1

s1

)2 Cn

nn−d

(
m1

s1

)4 (4C)n

nn−2d

Sparsity constraints s1 + s2

(
m1

s1

)2(m2

s2

)2 Cn

nn−d

(
m1

s1

)4(m2

s2

)4 (4C)n

nn−2d

Define C = 648 m1m2

(
1 + 2 ln 2

√
nR2

3δ

)
. The explicit expressions for d, C ′,

and C ′′ in the scenarios of subspace, mixed, or sparsity constraints are sum-

marized in Table 2.1.

Theorem 2.2.4 is proved in Section 2.4.3. Its proof hinges on a key step

(2.8) in the proof of Lemma 2.3.3, which is also crucial to the proofs of the

identifiability results.

The stability results of Theorem 2.2.4 correspond to the identifiability

results for the complex case, in Theorems 2.2.1 and 2.2.2. Similar stability

results can be derived for the case where D, E, x, and y are real, which

correspond to the identifiability results in Theorem 2.2.3. They are omitted

here for brevity.

In the discussion below, we interpret the single point stability result in

Theorem 2.2.4. The uniform stability result can be interpreted similarly.

Here, to make sure that the probability of stable recovery 1−C ′( δ2

R4 )n−d( 1
ε2

)n

is non-trivial, let ε = ε(δ) > C ′
1

2n
(
δ
R2

)α
, where α = 1− d

n
∈ (0, 1), and ε(δ)

vanishes as δ approaches 0.

Reconstruction signal-to-noise ratio (RSNR) and measurement signal-to-

noise ratio (MSNR) are defined respectively by:

RSNR =
‖M0‖2

2

‖M −M0‖2
2

,

MSNR =
‖GDE(M0)‖2

2

‖GDE(M)− GDE(M0)‖2
2

.

Consider the case when the error bounds are tight: ‖M −M0‖2 = ε, and

‖GDE(M)− GDE(M0)‖2 = δ. Since the matrix M0 resides in the unit ball,

RSNR is on the order of 1
ε2

. Since {(FD)(j,:)∗}nj=1 and {(FE)(j,:)∗}nj=1 are
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uniformly distributed on balls of radius R, the norm of the measurement

GDE(M0) is on the order of R2. Hence MSNR is on the order of R4

δ2 . Theorem

2.2.4 can then be interpreted as follows: the probability of failure (unstable

reconstruction) is roughly RSNRn ·MSNR−(n−d).

Let ε(δ) = C ′
1

2n
(
δ
R2

)α
2 , where α = 1 − d

n
, then the probability of single

point stability in Theorem 2.2.4 reduces to 1− ( δ
R2 )n−d. If n > d, then as δ

approaches 0, the recovery error ε(δ) vanishes, and the probability 1−( δ
R2 )n−d

converges to 1. This means that if D and E are random with the distributions

specified in Theorem 2.2.4, then the recovery of M0 is unique with probability

1, which is also a corollary of Theorem 2.2.1.

Next, we establish stability for the special case where the operator GDE is

an isometry in the mean. Given any matrix M = xyT , we have

G∗DEGDE(M) = n
n∑
j=1

(FD)(j,:)∗(FD)(j,:)M(FE)(j,:)T (FE)(j,:),

the expectation of which is

E [G∗DEGDE(M)]

=
n2

m1m2

E
[∥∥(FD)(j,:)∗∥∥2

2

]
· E
[∥∥(FE)(j,:)∗∥∥2

2

]
M

=
n2

m1m2

· m1R
2

m1 + 2
· m2R

2

m2 + 2
M.

The first line follows from the fact that the distribution of (FD)(j,:)∗ and

(FE)(j,:)∗ are independent and isotropic. The second line is due to the

fact that (FD)(j,:)∗ and (FE)(j,:)∗ are uniformly distributed on RBCm1 and

RBCm2 , respectively. It follows that by setting R =
(

(m1+2)(m2+2)
n2

) 1
4
, we have

E [G∗DEGDE(M)] = M .

Next, as an example, we analyze the uniform stability of the subspace

constraints scenario, with this special choice of R. This will provide insight

into how the constants vary with n, m1, and m2. Let ε(δ) = 2C ′′
1

2n
(
δ
R2

)β
,

where β = 1 − 2(m1+m2)
n

. Substituting the expressions for R and C ′′, and

ignoring the log factor, we have ε(δ) = O
(

(m1m2)
1−β

2 n
β
2 δβ
)

. By Theorem

2.2.4, in the subspace constraints scenario, if n > 2(m1 +m2), i.e., β ∈ (0, 1),

22



then with probability at least 1− 0.25n, we have

‖M1 −M2‖2 . (m1m2)
1−β

2 n
β
2 ‖GDE(M1)− GDE(M2)‖β2 ,

for all M1,M2 ∈ ΩB. Hence, G−1
DE is Hölder continuous of order β on GDE(ΩB).

We conclude this section by emphasizing the differences between the iden-

tifiability results in Section 2.2.1 and the stability results in Section 2.2.2:

1. The identifiability results address the identifiability on cone constraint

sets, whereas the stability results address the stability on the same

constraint sets restricted to a ball of an arbitrary but finite radius.

From a practical point of view, because the radius can be arbitrarily

large, this restriction is of no significant consequence.

2. The identifiability results hold for generic (Lebesgue almost all) matri-

ces D and E. The stability results hold with high probability when D

and E follow some specific distributions.

2.3 Identifiability in Low-Rank Matrix Recovery

Using the lifted formulation, blind deconvolution with subspace or sparsity

constraints has been reduced to the recovery, subject to constraints, of a

rank-1 matrix from linear measurements that have a particular structure.

The identifiability question in BD is thus reduced to identifiabilty in the

latter recovery problem. In this section we address the more general question

of identifiability in low-rank matrix recovery. Our results express the sample

complexity for identifiability in terms of the Minkowski dimension of the set

in which the matrix to be recovered lives. These results are applied to the

BD problem in Section 2.4 to derive the main results of this chapter.

Recently, Riegler et al. [27] derived sample complexity results for low-

rank matrix recovery, and for the recovery of matrices of low description

complexity, that match the number of degrees of freedom. They consid-

ered the case where the matrices are real. Define the measurement operator

A : Rm1×m2 → Rn as

z = A(M0) = [〈A1,M0〉 , 〈A2,M0〉 , · · · , 〈An,M0〉]T ∈ Rn,
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where Aj ∈ Rm1×m2 (j = 1, 2, · · · , n) denote the measurement matrices. De-

noting by ΩM ⊂ Rm1×m2 the constraint set (which is assumed to be nonempty

and bounded) for the unknown matrix, the matrix recovery problem is

(MR) Find M,

s.t. A(M) = z,

M ∈ ΩM.

The conditions for unique solution to the matrix recovery problem (MR) are

expressed in terms of the Minkowski dimension of the constraint set ΩM,

which is defined as follows.

Definition 2.3.1. The lower and upper Minkowski dimensions of the nonempty

bounded set ΩM ⊂ Rm1×m2 are

dimB(ΩM) := lim inf
ρ→0

logNΩM(ρ)

log 1
ρ

,

dimB(ΩM) := lim sup
ρ→0

logNΩM(ρ)

log 1
ρ

,

where NΩM(ρ) denotes the covering number of ΩM given by

NΩM(ρ) = min

{
k ∈ N : ΩM ⊂

⋃
1≤i≤k

(Mi + ρBRm1×m2 ), Mi ∈ Rm1×m2

}
.

If dimB(ΩM) = dimB(ΩM), then it is simply called the Minkowski dimension,

denoted by dimB(ΩM).

The Minkowski dimension of the constraint set ΩM can be used to represent

its description complexity. Riegler et al. showed that the solution to (MR) is

unique if the sample complexity is greater than the description complexity.

For almost all measurement matrices A1, A2, · · · , An ∈ Rm1×m2 , the recovery

of M0 ∈ ΩM is unique if n > dimB(ΩM) (see [27, Theorem 1]). An even

more amazing result is that the same sample complexity can be achieved

by rank-1 measurement matrices. For almost all aj ∈ Rm1 and bj ∈ Rm2

(j = 1, 2, · · · , n), the recovery of M0 ∈ ΩM from measurements
〈
ajb

T
j ,M0

〉
=

aTjM0bj (j = 1, 2, · · · , n) is unique if n > dimB(ΩM) (see [27, Theorem 2 and

Lemma 3]).
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In this section, we state and prove the extension of this result to the case

where the matrices are complex. The Minkowski dimension of the constraint

set of complex matrices ΩM ⊂ Cm1×m2 can be defined as in Definition 2.3.1,

with the real number field R replaced by the complex number field C. As will

be shown in the next section, by simply changing the number field from real to

complex, the Minkowski dimension of a set doubles. Meanwhile, by taking

n complex-valued measurements, the number of real-valued measurements

also doubles (from n to 2n). Theorem 2.3.2 shows that, together with the

fact that the Minkowski dimension doubles for the complex case, we need the

same number of complex-valued measurements in complex matrix recovery

as we need real-valued measurements in real matrix recovery.

Before the rigorous statement and proof, we provide an intuitive explana-

tion for why the sample complexity matches the Minkowski dimension, which

also serves as a road map to our proof. Weak or strong identifiability for al-

most all measurement operators means that the set of degenerate {aj, bj}nj=1

that map some nonzero matrix to zero, has Lebesgue measure zero. Alterna-

tively, we can show that the set of “bad” {aj, bj}nj=1 that map some nonzero

matrix to some point in a small ball of radius δ, has Lebesgue measure that

vanishes as δ approaches zero. This Lebesgue measure turns out to be pro-

portional to two quantities – the covering number of the constraint set ΩM

with balls of radius δ, and the volume of a ball of δ in the ambient space Cn of

measurements, i.e., the measure is roughly proportional to (1
δ
)dimB(ΩM) · δ2n.

Therefore, it vanishes as δ approaches zero if 2n > dimB(ΩM).

Theorem 2.3.2. Suppose the set ΩM ⊂ Cm1×m2 is non-empty and bounded.

For almost all sets of vectors aj ∈ Cm1 and bj ∈ Cm2 (j = 1, 2, · · · , n), there

does not exist a matrix M ∈ ΩM\{0} such that
〈
ajb

T
j ,M

〉
= a∗jMbj = 0 for

j = 1, 2, · · · , n, if 2n > dimB(ΩM).

Proof. We prove Theorem 2.3.2 using the following lemma.

Lemma 2.3.3. Suppose the set ΩM ⊂ Cm1×m2 is non-empty and bounded.

Let the vectors {aj}nj=1 and {bj}nj=1 be independent random vectors, where

{aj}nj=1 are i.i.d. following a uniform distribution on RBCm1 , and {bj}nj=1

are i.i.d. following a uniform distribution on RBCm2 . If 2n > dimB(ΩM),

then

P := P
[
∃M ∈ ΩM\{0}, s.t. a∗jMbj = 0 for j = 1, · · · , n

]
= 0.

25



We use N (Ω, {aj}nj=1, {bj}nj=1) to denote the event that there exists M ∈ Ω

such that a∗jMbj = 0 for j = 1, 2, · · · , n. Here, we prove that such an event

does not happen for almost all {aj}nj=1, {bj}nj=1 by proving it happens with

probability zero for random {aj}nj=1, {bj}nj=1 following uniform distributions,

thanks to the equivalence between the uniform measure and the Lebesgue

measure. To be more specific, restricted to the same support RBCm1×RBCm2 ,

the Lebesgue measure is absolutely continuous with respect to the uniform

distribution.4 If the probability of the event N (ΩM\{0}, {aj}nj=1, {bj}nj=1) is

zero, then the Lebesgue measure of the set of {aj}nj=1 and {bj}nj=1, over which

the event happens, is zero too. It follows that, for almost all aj ∈ RBCm1 and

bj ∈ RBCm2 (j = 1, 2, · · · , n), the event N (ΩM\{0}, {aj}nj=1, {bj}nj=1) does

not happen. This argument is true for arbitrary radius R. Hence if 2n >

dimB(ΩM), then by Lemma 2.3.3 the event N (ΩM\{0}, {aj}nj=1, {bj}nj=1)

does not happen, and therefore this event does not happen for almost all

aj ∈ Cm1 and bj ∈ Cm2 (j = 1, 2, · · · , n), i.e., there does not exist a matrix

M ∈ ΩM\{0} such that a∗jMbj = 0 for j = 1, 2, · · · , n. Therefore, we only

need to prove Lemma 2.3.3, thus completing the proof of Theorem 2.3.2.

Proof of Lemma 2.3.3. The set ΩM\{0} can be written as

ΩM\{0} =
⋃
L∈Z+

ΩM,L, (2.3)

where ΩM,L := {M ∈ ΩM : 1
L
≤ ‖M‖2 ≤ L}. By a union bound, we have

P ≤
∑
L∈Z+

PL,

where

PL := P
[
∃M ∈ ΩM,L, s.t. a∗jMbj = 0 for j = 1, 2, · · · , n

]
.

In order to show that P = 0, it suffices to prove that PL = 0 for all L ∈ Z+.

Let L be an arbitrary positive integer. We form a minimal cover of ΩM,L

with balls of radius ρ centered at the points {Mρ,L,i}
NΩM,L

(ρ)

i=1 . These points

may or may not be in ΩM,L. However, by the minimality of the cover, the

4Because the uniform measure is also absolutely continuous with respect to the
Lebesgue measure, the two measures are equivalent.
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intersection of ΩM,L with each ball is nonempty, hence there exists another

set of points {M ′
ρ,L,i}

NΩM,L
(ρ)

i=1 such that

M ′
ρ,L,i ∈ ΩM,L

⋂
(Mρ,L,i + ρBCm1×m2 ),

for i = 1, 2, · · · , NΩM,L
(ρ). Now we cover ΩM,L with balls of radius 2ρ

centered at {M ′
ρ,L,i}

NΩM,L
(ρ)

i=1 , which are points in ΩM,L (a property that will

be needed for inequality (2.8) below), because

(Mρ,L,i + ρBCm1×m2 ) ⊂ (M ′
ρ,L,i + 2ρBCm1×m2 ),

and

ΩM,L ⊂
⋃

1≤i≤NΩM,L
(ρ)

(Mρ,L,i + ρBCm1×m2 ) ⊂
⋃

1≤i≤NΩM,L
(ρ)

(M ′
ρ,L,i + 2ρBCm1×m2 ).

Defining δ = R2ρ, we have

PL ≤
NΩM,L

(ρ)∑
i=1

P
[
∃M ∈ (M ′

ρ,L,i + 2ρBCm1×m2 ),

s.t. a∗jMbj = 0 for j = 1, 2, · · · , n
]

(2.4)

≤
NΩM,L

(ρ)∑
i=1

P
[
∃M ∈ (M ′

ρ,L,i + 2ρBCm1×m2 ),

s.t.
∣∣a∗jMbj

∣∣ ≤ δ for j = 1, 2, · · · , n
]

(2.5)

≤
NΩM,L

(ρ)∑
i=1

P
[∣∣a∗jM ′

ρ,L,ibj
∣∣ ≤ 3δ for j = 1, 2, · · · , n

]
(2.6)

=

NΩM,L
(ρ)∑

i=1

n∏
j=1

P
[∣∣a∗jM ′

ρ,L,ibj
∣∣ ≤ 3δ

]
(2.7)

≤NΩM

(
δ

R2

)
(3δ)2ng(3δ,

1

L
,L,R)n. (2.8)

Inequality (2.4) uses a union bound. The event in (2.4) implies the event in

(2.5), which then implies the event in (2.6). Inequality (2.6) is due to the
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following chain of inequalities, of which the last is implied by |a∗jMbj| ≤ δ:

∣∣a∗jM ′
ρ,L,ibj

∣∣ ≤ ∣∣a∗j(M ′
ρ,L,i −M)bj

∣∣+
∣∣a∗jMbj

∣∣
≤‖aj‖2

∥∥M ′
ρ,L,i −M

∥∥
2
‖bj‖2 +

∣∣a∗jMbj
∣∣

≤‖aj‖2

∥∥M ′
ρ,L,i −M

∥∥
F
‖bj‖2 +

∣∣a∗jMbj
∣∣

≤2R2ρ+ δ = 3δ.

Equation (2.7) is due to the independence between random vector pairs

{aj, bj}nj=1. Inequality (2.8) uses the fact that NΩM,L
(ρ) ≤ NΩM(ρ) =

NΩM

(
δ
R2

)
, and the concentration of measure inequality P

[∣∣a∗jM ′
ρ,L,ibj

∣∣ ≤ δ
]
≤

δ2g(δ, 1
L
, L,R) in Lemma A.1.2 in Appendix A.1. (By construction, M ′

ρ,L,i,

as points in ΩM,L, satisfy the norm bounds 1
L
≤
∥∥M ′

ρ,L,i

∥∥
2
≤ L.) Here

g(δ, 1
L
, L,R) is a function of δ defined in (A.6) in Appendix A.1 , which

satisfies lim
δ→0

log g(δ, 1
L
,L,R)

log 1
δ

= 0.

Next, we show that (2.8) implies PL = 0. Assume the contrary, i.e. PL > 0.

Since PL does not depend on δ, we have lim inf
δ→0

logPL
log 1

δ

= 0. By (2.8) and the

assumed sample complexity 2n > dimB(ΩM),

0 = lim inf
δ→0

logPL
log 1

δ

≤ lim inf
δ→0

logNΩM

(
δ
R2

)
+ 2n log(3δ) + n log g(3δ, 1

L
, L,R)

log 1
δ

= dimB(ΩM)− 2n < 0,

which is a contradiction. Since L is arbitrary, we have PL = 0 for all L ∈ Z+.

This completes the proof of Lemma 2.3.3.

Corollaries 2.3.4 and 2.3.5 are direct consequences of Theorem 2.3.2.

Corollary 2.3.4 (Weak Identifiability, Bounded). Suppose the constraint

set ΩM ⊂ Cm1×m2 is nonempty and bounded. For almost all aj ∈ Cm1 and

bj ∈ Cm2 (j = 1, 2, · · · , n), the recovery of M0 from measurements
〈
ajb

T
j ,M0

〉
(j = 1, 2, · · · , n) is unique if 2n > dimB(ΩM).

Proof. Define the set ΩM −M0 = {M1 −M0|M1 ∈ ΩM}. Saying that the

recovery of M0 from a∗jM0bj (j = 1, 2, · · · , n) is unique, is equivalent to

saying that there does not exist a matrix M in (ΩM −M0)\{0} such that〈
ajb

T
j ,M

〉
= 0 (j = 1, 2, · · · , n).
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Since the set ΩM −M0 is the shift of the set ΩM by M0, we have that

dimB(ΩM −M0) = dimB(ΩM). Therefore, Corollary 2.3.4 follows from The-

orem 2.3.2.

Corollary 2.3.5 (Strong Identifiability, Bounded). Suppose the constraint

set ΩM ⊂ Cm1×m2 is nonempty and bounded. For almost all aj ∈ Cm1 and

bj ∈ Cm2 (j = 1, 2, · · · , n), the recovery of all matrices M0 ∈ ΩM from

measurements
〈
ajb

T
j ,M0

〉
(j = 1, 2, · · · , n) is unique if n > dimB(ΩM).

Proof. Define the set ΩM − ΩM = {M1 −M2|M1,M2 ∈ ΩM}. Saying that

the recovery of all matrices in ΩM is unique, is equivalent to saying that

there does not exist a matrix M in (ΩM−ΩM)\{0} such that
〈
ajb

T
j ,M

〉
= 0

(j = 1, 2, · · · , n).

By Lemma A.2.1 in Appendix A.2,

dimB(ΩM − ΩM) ≤ dimB(ΩM − ΩM) ≤ 2dimB(ΩM).

Therefore, Corollary 2.3.5 follows from Theorem 2.3.2.

The proof of Theorem 2.3.2 is adapted from the proofs of [27, Theorem 2

and Lemma 3]. We make several refinements to this approach:

1. We simplify the expression of ΩM\{0} as a union of subsets (see (2.3)).

We define the subsets only by the spectral norm bounds, and remove

technical discussions unrelated to our analysis of identifiability. This

simplification also results in an easy proof of stability in Section 2.4.3.

2. We adjust the radius of balls in the covering number argument from

δ to δ/R2 (see (2.4) – (2.8)). This does not make any difference to

the identifiability results, but has a big impact on the stability results.

As will be shown by the proofs in Section 2.4.3, this change of radius

results in tighter error bounds in Section 2.2.2, which can be interpreted

in terms of signal-to-noise ratios.

3. We extend the analysis from the real case to the complex case, thus

enabling its application to blind deconvolution. Despite the similarity

in proofs, the extension is not a trivial application of the canonical

isomorphism between Cn and R2n (see Lemmas A.1.1 and A.1.2 in

Appendix A.1).
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The proofs in this chapter can serve as a simpler proof of the sample

complexity for the real matrix recovery problem, which is n > dimB(ΩM),

by making the following modifications:

1. Changing the number field from complex to real.

2. Using a different concentration of measure inequality in (2.8):

P
[∣∣aTjM ′

ρ,L,ibj
∣∣ ≤ δ

]
≤ δf(δ,

1

L
,L,R),

which is formally stated and proved in Lemma A.1.1, where f(δ, 1
L
, L,R)

is a function of δ that satisfies lim
δ→0

log f(δ, 1
L
,L,R)

log 1
δ

= 0. Hence PL ≤
NΩM

(
δ
R2

)
(3δ)nf(3δ, 1

L
, L,R)n. If n > dimB(ΩM), then PL = 0 for

all L ∈ Z+.

Owing to the linearity of the measurements in the matrix recovery problem,

the above results can be easily extended to the case where the constraint set

is a cone. To avoid verbosity, we only prove Corollary 2.3.6. Corollary 2.3.7

can be proved in a similar fashion.

Corollary 2.3.6 (Weak Identifiability, Unbounded). Suppose the constraint

set ΩM ⊂ Cm1×m2 is a cone. For almost all aj ∈ Cm1 and bj ∈ Cm2 (j =

1, 2, · · · , n), the recovery of M0 from measurements
〈
ajb

T
j ,M0

〉
= a∗jM0bj

(j = 1, 2, · · · , n) is unique if 2n > dimB(ΩB), where ΩB = ΩM
⋂
BCm1×m2 .

Corollary 2.3.7 (Strong Identifiability, Unbounded). Suppose the constraint

set ΩM ⊂ Cm1×m2 is a cone. For almost all aj ∈ Cm1 and bj ∈ Cm2

(j = 1, 2, · · · , n), the recovery of all matrices M0 ∈ ΩM from measurements〈
ajb

T
j ,M0

〉
= a∗jM0bj (j = 1, 2, · · · , n) is unique if n > dimB(ΩB), where

ΩB = ΩM
⋂
BCm1×m2 .

Proof of Corollary 2.3.6. We prove uniqueness by contradiction. Suppose

that the recovery of M0 is not unique, i.e., there exists M1 ∈ ΩM such that〈
ajb

T
j ,M1

〉
=
〈
ajb

T
j ,M0

〉
(j = 1, 2, · · · , n). Let σ := 2 max{‖M0‖F , ‖M1‖F} >

0. Since ΩM is a cone, we have

1

σ
M0,

1

σ
M0 ∈ ΩB,

〈
ajb

T
j ,

1

σ
M1

〉
=

〈
ajb

T
j ,

1

σ
M0

〉
, j = 1, 2, · · · , n.
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Therefore, when the matrix recovery problem is restricted to a nonempty

bounded constraint set ΩB, the recovery of 1
σ
M0 is not unique. This, however,

contradicts the sample complexity 2n > dimB(ΩB) and Corollary 2.3.4.

Corollaries 2.3.6 and 2.3.7 show that the solution to the matrix recovery

problem with a cone constraint set is unique, if the solution to the corre-

sponding problem restricted to the unit ball is unique.

2.4 Proof of the Main Results

2.4.1 Proof of Theorems 2.2.1 and 2.2.2

The identifiability of (x0, y0) up to scaling in (BD) is equivalent to the unique-

ness of M0 = x0y
T
0 in (Lifted BD). Note that

z = GDE(M0) = (Dx0) ~ (Ey0) =
√
nF ∗[(FDx0)� (FEy0)],

1√
n

(Fz)(j) = (FD)(j,:)x0(FE)(j,:)y0

= (FD)(j,:)x0y
T
0 (FE)(j,:)T = a∗jM0bj,

where aj = (FD)(j,:)∗ is the conjugate transpose of the jth row of FD, and

bj = (FE)(j,:)∗ is the conjugate transpose of the jth row of FE. Rewriting

(Lifted BD) in the frequency domain:

(Lifted BD)f Find M,

s.t. a∗jMbj =
1√
n

(Fz)(j), 1 ≤ j ≤ n,

M ∈ ΩM = {xyT : x ∈ ΩX , y ∈ ΩY}.

Clearly, the constraint set ΩM is a cone. Since aj = (FD)(j,:)∗ and bj =

(FE)(j,:)∗, there exists a bijection between the pair (D,E) ∈ Cn×m1 ×Cn×m2

and the set of vector pairs {aj ∈ Cm1 , bj ∈ Cm2}nj=1. By Corollary 2.3.6,

the recovery of M0 is unique for almost all D ∈ Cn×m1 and E ∈ Cn×m2

if 2n > dimB(ΩB). By Corollary 2.3.7, the recovery of all matrices in ΩM

is unique for almost all D ∈ Cn×m1 and E ∈ Cn×m2 if n > dimB(ΩB).
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Hence, Theorems 2.2.1 and 2.2.2 follow from the upper bounds on Minkowski

dimensions in Lemma 2.4.1.

Lemma 2.4.1. The upper Minkowski dimensions of ΩB = ΩM
⋂
BCm1×m2

in (Lifted BD) with subspace, mixed, and sparsity constraints are bounded by

2(m1 +m2), 2(s1 +m2), and 2(s1 + s2), respectively.

Proof of Lemma 2.4.1. For simplicity, we only prove the upper bound for the

mixed constraint set. The bounds for the other two scenarios can be proved

in a similar fashion. First of all,

ΩB = {xyT : x ∈ ΩX , y ∈ ΩY ,
∥∥xyT∥∥

F
≤ 1}

= {xyT : x ∈ ΩX , y ∈ ΩY , ‖x‖2 ≤ 1, ‖y‖2 ≤ 1}

= {xyT : x ∈ ΩX
⋂
BCm1 , y ∈ ΩY

⋂
BCm2}.

By Lemmas A.2.2 and A.2.3, we have

dimB(ΩM
⋂
BCm1×m2 )

≤ dimB(ΩX
⋂
BCm1 ) + dimB(ΩY

⋂
BCm2 )

≤ dimB

(
Re
(

ΩX
⋂
BCm1

))
+ dimB

(
Im
(

ΩX
⋂
BCm1

))
+ dimB

(
Re
(

ΩY
⋂
BCm2

))
+ dimB

(
Im
(

ΩY
⋂
BCm2

))
. (2.9)

Recall that, in the mixed constraints scenario, the filter satisfies a subspace

constraint, and ΩY = Cm2 . The restriction to the unit ball is ΩY
⋂
BCm2 =

BCm2 , whose real and imaginary parts are BRm2 . By a standard volume

argument (see [88, Lemma 4.1]),

NBRm2
(ρ) ≤

(
3

ρ

)m2

, ∀ρ ≤ 1. (2.10)

Hence

dimB

(
Re
(

ΩY
⋂
BCm2

))
= dimB

(
Im
(

ΩY
⋂
BCm2

))
= dimB(BRm2 ) = lim sup

ρ→0

logNBRm2
(ρ)

log 1
ρ

≤ lim sup
ρ→0

m2

log 3
ρ

log 1
ρ

= m2. (2.11)

Meanwhile, the signal satisfies a sparsity constraint, and ΩX = {x ∈ Cm1 :

‖x‖0 ≤ s1}. The restriction to the unit ball is ΩX
⋂
BCm1 = {x ∈ Cm1 :
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‖x‖0 ≤ s1, ‖x‖2 ≤ 1}, whose real and imaginary parts are

Re
(

ΩX
⋂
BCm1

)
= Im

(
ΩX
⋂
BCm1

)
= {x ∈ Rm1 : ‖x‖0 ≤ s1, ‖x‖2 ≤ 1},

which is the union of unit balls in s1-dimensional subspaces. Denote this set

by Γm1
s1,1

. By a standard volume argument,

NΓ
m1
s1,1

(ρ) ≤
(
m1

s1

)(
3

ρ

)s1
≤
(
em1

s1

)s1 (3

ρ

)s1
, ∀ρ ≤ 1,

where the second inequality follows from Stirling’s approximation. Hence

dimB

(
Re
(

ΩX
⋂
BCm1

))
= dimB

(
Im
(

ΩX
⋂
BCm1

))
= dimB(Γm1

s1,1
) = lim sup

ρ→0

logNΓ
m1
s1,1

(ρ)

log 1
ρ

≤ lim sup
ρ→0

s1

log 1
ρ

+ log 3em1

s1

log 1
ρ

= s1.

(2.12)

Combining (2.9), (2.11), and (2.12), we have that the upper Minkowski di-

mension of the mixed constraint set is bounded by 2(s1 +m2).

2.4.2 Proof of Theorem 2.2.3

Next, we prove Theorem 2.2.3, which establishes results corresponding to

those of Theorems 2.2.1 and 2.2.2 in the case where D, E, x, and y are real.

When D are E are real matrices, aj = (FD)(j,:)∗ and bj = (FE)(j,:)∗ are

complex vectors, but they are no longer generic. Therefore, Corollaries 2.3.6

and 2.3.7 cannot be applied directly to this case.

Proof of Theorem 2.2.3. By (2.9) in the proof of Theorem 2.4.1, when x, y,

and M = xyT are real, the Minkowski dimensions of the restricted constraint

sets are half those in Theorem 2.4.1. For subspace, mixed, and sparsity

constraints, the upper Minkowski dimensions of the restricted constraint sets

are bounded by m1 +m2, s1 +m2, and s1 + s2, respectively. To maintain the

same sample complexities, we need to show a result analogous to Theorem

2.3.2, in which aj = (FD)(j,:)∗ and bj = (FE)(j,:)∗, D and E are real matrices,

and n > dimB(ΩM) is sufficient.
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Lemma 2.4.2. Suppose ΩM ⊂ Rm1×m2 is a nonempty bounded set. Let D ∈
Rn×m1 and E ∈ Rn×m2, aj = (FD)(j,:)∗ and bj = (FE)(j,:)∗ (j = 1, 2, · · · , n).

For almost all D ∈ Rn×m1 and E ∈ Rn×m2, there does not exist a matrix

M ∈ ΩM\{0} such that
〈
ajb

T
j ,M

〉
= a∗jMbj = 0 for j = 1, 2, · · · , n, if

n > dimB(ΩM).

The proof of Lemma 2.4.2 is very similar to that of Theorem 2.3.2. In fact,

the only difference is the following: the mapping between the real matrices

D,E and the complex vectors {aj}nj=1, {bj}nj=1 is no longer a bijection. The

vectors a1 and b1 are real vectors. Due to the conjugate symmetry of DFT,

the vectors aj and an+2−j is a conjugate pairs, i.e. aj = an+2−j. The same

is true for bj and bn+2−j. Therefore, (roughly) the first half of the DFT

measurements contain all the information of real-valued unknowns. There

exists a bijection between D,E and the vectors {aj}d(n+1)/2e
j=1 , {bj}d(n+1)/2e

j=1 .

Due to this subtlety, in the probabilistic argument (analogous to Lemma

2.3.3) we assume {aj}d(n+1)/2e
j=1 , {bj}d(n+1)/2e

j=1 are independent random vectors

as follows:

• When n is even, {a1, an
2

+1} and {b1, bn
2

+1} are real random vectors fol-

lowing uniform distributions on RBRm1 and RBRm2 , respectively. The

vectors {aj}
n
2
j=2 and {bj}

n
2
j=2 are complex random vectors following uni-

form distributions on RBCm1 and RBCm2 , respectively.

• When n is odd, a1 and b1 are real random vectors following uniform dis-

tributions on RBRm1 and RBRm2 , respectively. The vectors {aj}
n+1

2
j=2 and

{bj}
n+1

2
j=2 are complex random vectors following uniform distributions on

RBCm1 and RBCm2 , respectively.

We apply corresponding changes to the proof of Lemma 2.3.3. (As before,

we define δ = ρR2.) When bounding the probability PL, (2.7) and (2.8) now

become:
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• When n is even,

PL ≤
NΩM,L

(ρ)∑
i=1

n
2

+1∏
j=1

P
[∣∣a∗jM ′

ρ,L,ibj
∣∣ ≤ 3δ

]
≤ NΩM

(
δ

R2

) (
3δf(3δ,

1

L
,L,R)

)2 ·
(
(3δ)2g(3δ,

1

L
,L,R)

)n
2
−1

= NΩM

(
δ

R2

)
(3δ)nf(3δ,

1

L
,L,R)2 · g(3δ,

1

L
,L,R)

n
2
−1.

• When n is odd,

PL ≤
NΩM,L

(ρ)∑
i=1

n+1
2∏
j=1

P
[∣∣a∗jM ′

ρ,L,ibj
∣∣ ≤ 3δ

]
≤ NΩM

(
δ

R2

) (
3δf(3δ,

1

L
,L,R)

)
·
(
(3δ)2g(3δ,

1

L
,L,R)

)n−1
2

= NΩM

(
δ

R2

)
(3δ)nf(3δ,

1

L
,L,R) · g(3δ,

1

L
,L,R)

n−1
2 .

Whether n is even or odd, we have PL = O
(
NΩM

(
δ
R2

)
δn
)
. By the same

argument as in the proof of Lemma 2.3.3, the sample complexity is n >

dimB(ΩM).

2.4.3 Proof of Theorem 2.2.4

In this section, we establish the stability results in blind deconvolution. The

measurement in (Noisy BD) can be rewritten in the frequency domain:

z̃(j) :=
1√
n

(Fz)(j) = (FD)(j,:)x0(FE)(j,:)y0 +
1√
n

(Fξ)(j) = a∗jM0bj + ξ̃(j),

where M0 = x0y
T
0 , aj = (FD)(j,:)∗, bj = (FE)(j,:)∗, and ξ̃ = 1√

n
Fξ. Define

linear operator A(M) by A(M) =
[
a∗1Mb1, a

∗
2Mb2, · · · , a∗nMbn

]T
. We rewrite

(Noisy BD) in the frequency domain:

(Noisy BD)f min .
M

‖A(M)− z̃‖2 ,

s.t. M ∈ σΩB,
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where σΩB = {xyT : x ∈ ΩX , y ∈ ΩY ,
∥∥xyT∥∥

F
≤ σ}.

Note that

A(M) =
1√
n
FGDE(M),

‖A(M)‖2 =
1√
n
‖GDE(M)‖2 .

The single point stability result in the subspace constraints scenario in Theo-

rem 2.2.4 follows from Lemma 2.4.3 , with every δ replaced by δ√
n
. All other

cases can be proved using similar lemmas, which we omit here for brevity.

Lemma 2.4.3. In (Noisy BD)f with subspace constraints, assume that the

random vectors {aj}nj=1 are i.i.d. following a uniform distribution on RBCm1 ,

and {bj}nj=1 are i.i.d. following a uniform distribution on RBCm2 . Let the

true matrix be M0 ∈ ΩB = ΩM
⋂
BCm1×m2 = {xyT : x ∈ BCm1 , y ∈ BCm2}. If

n > m1 +m2 and δ ≤ R2, then with probability at least

1−
(

648 m1m2

(
1 + 2 ln

2R2

3δ

))n(
δ2

R4

)n−m1−m2
(

1

ε2

)n
,

for all M ∈ ΩB such that ‖A(M)−A(M0)‖2 ≤ δ, we have ‖M −M0‖2 ≤ ε.

To ensure that the probability bound is nontrivial, we insist that

ε >

√
648 m1m2

(
1 + 2 ln

2R2

3δ

)(
δ

R2

)n−m1−m2
n

.

Since the right-hand size vanishes as δ approaches 0, the above lemma guar-

antees stable recovery in (Noisy BD)f . Next, we prove this lemma, exploiting

a key result in the proof of Lemma 2.3.3.

Proof of Lemma 2.4.3. We need to bound the following probability of stabil-

ity:

Ps :=P
[
∀M ∈ ΩB, if ‖A(M)−A(M0)‖2 ≤ δ, then ‖M −M0‖2 ≤ ε

]
=1− P

[
∃M ∈ ΩB, s.t. ‖A(M)−A(M0)‖2 ≤ δ, and ‖M −M0‖2 > ε

]
=1− P

[
∃M ∈ ΩB −M0, s.t. ‖M‖2 > ε and ‖A(M)‖2 ≤ δ

]
=:1− Pf ,
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where the probability of failure Pf satisfies:

Pf =P
[
∃M ∈ ΩB −M0, s.t. ‖M‖2 > ε and ‖A(M)‖2 ≤ δ

]
≤P
[
∃M ∈ ΩB −M0, s.t. ‖M‖2 > ε and |a∗jMbj| ≤ δ, j = 1, 2, · · · , n

]
≤NΩB

(
δ

R2

)
(3δ)2ng(3δ, ε, 2, R)n (2.13)

≤

(
6
√

2R2

δ

)2m1+2m2

(3δ)2n

·
(
π2 · VCm1−1(R) · VCm2−1(R)

ε2 · VCm1 (R) · VCm2 (R)

(
1 + 2 ln

2R2

3δ

))n
(2.14)

=

(
6
√

2R2

δ

)2m1+2m2

(3δ)2n ·
(
m1m2

ε2R4

(
1 + 2 ln

2R2

3δ

))n
(2.15)

≤
(
R2

δ

)2m1+2m2

(6
√

2)2n(3δ)2n ·
(
m1m2

ε2R4

(
1 + 2 ln

2R2

3δ

))n
=

(
δ2

R4

)n−m1−m2
(

1

ε2

)n
·
(

648 m1m2

(
1 + 2 ln

2R2

3δ

))n
.

Inequality (2.13) follows from (2.8), with the norm bounds ε < ‖M‖2 ≤ 2. In

(2.14), the bound on the covering number of ΩB = ΩM
⋂
BCm1×m2 = {xyT :

x ∈ BCm1 , y ∈ BCm2} is derived as follows:

NΩB

(
δ

R2

)
≤ NBCm1

(
δ

2R2

)
NBCm2

(
δ

2R2

)
≤
(
NBRm1

(
δ

2
√

2R2

))2(
NBRm2

(
δ

2
√

2R2

))2

≤

((
6
√

2R2

δ

)m1
)2((

6
√

2R2

δ

)m2
)2

=

(
6
√

2R2

δ

)2m1+2m2

,

where the first two inequalities follow from (A.7), (A.8) in Appendix A.2,

and the third inequality follows from (2.10) and the assumption δ ≤ R2. The

expression for g(3δ, 1
L
, 2, R) is given by (A.6) in Appendix A.1. Recall that

VCm1 (R) denotes the volume of a ball of radius R in Cm1 . Equation (2.15)

follows from the fact that VCm(R) = VR2m(R) = πmR2m

m!
. That completes the

proof.

37



CHAPTER 3

IDENTIFIABILITY IN BLIND GAIN AND
PHASE CALIBRATION

3.1 Problem Statement

3.1.1 Notations

We use upper-case letters A, X and Y to denote matrices, and lower-case

letters to denote vectors. The diagonal matrix with the elements of vector λ

on the diagonal is denoted by diag(λ). The vector formed by a concatenation

of the columns of X is denoted by vec(X). Matrices In and Fn denote the

identity matrix and the discrete Fourier transform (DFT) matrix of size n×n.

Unless otherwise stated, all vectors are column vectors. The dimensions of all

vectors and matrices are made clear in the context. The circular convolution

is denoted by ~. The Kronecker product of two matrices is denoted by ⊗.

The entrywise product is denoted by �. The range space of the conjugate

transpose of a matrix D is denoted by R∗(D) = R(D∗), and the nullspace

of D is denoted by N (D). The orthogonal complement of a subspace V is

denoted by V⊥. Given a vector x ∈ Cn, span(x) denotes the one-dimensional

subspace of Cn spanned by x, and x⊥ denotes its orthogonal complement.

We use j, k to denote indices, and J,K to denote index sets. If a matrix

or a vector has dimension n, then an index set J is a subset of {1, 2, . . . , n}.
The cardinality of J is denoted by |J |, and the complement of J is denoted

by J c. Superscript letters denote subvectors or submatrices. For example,

the submatrix A(J,K) has size |J | × |K| and consists of the entries indexed

by J × K. Borrowing the colon notation from MATLAB, the vector A(:,k)

represents the kth column of matrix A.
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3.1.2 The BGPC Problem

Blind gain and phase calibration (BGPC) is the following constrained bilinear

inverse problem given the measurement Y = diag(λ0)Φ0:

Find (λ,Φ),

s.t. diag(λ)Φ = Y,

λ ∈ ΩΛ, Φ ∈ ΩΦ,

where λ ∈ ΩΛ ⊂ Cn is the unknown gain and phase vector, and Φ ∈ ΩΦ ⊂
Cn×N is the signal matrix. In this chapter, we impose no constraints on λ,

i.e., ΩΛ = Cn. As for the matrix Φ, we impose subspace or joint sparsity

constraints. In both scenarios, Φ can be represented in the factorized form

Φ = AX, where the columns of A ∈ Cn×m form a basis or a frame (an

overcomplete dictionary), and X ∈ ΩX ⊂ Cm×N is the matrix of coordinates.

The constraint set becomes ΩΦ = {Φ = AX : X ∈ ΩX}. Under some mild

conditions1 on A, the uniqueness of Φ is equivalent to the uniqueness of X.

For simplicity, we treat the following problem as the BGPC problem from

now on.

(BGPC) Find (λ,X),

s.t. diag(λ)AX = Y,

λ ∈ Cn, X ∈ ΩX .

We consider two scenarios in this chapter:

(1) Subspace constraints: The signals represented by the columns of Φ

reside in a low-dimensional subspace spanned by the columns of a known

matrix A. The matrix A is tall (n > m) and has full column rank. The

constraint set is ΩX = Cm×N .

(2) Joint sparsity constraints: The columns of Φ are jointly sparse over a

known dictionary A, where A is a square matrix (n = m) or a fat matrix

(n < m). The constraint set ΩX is

ΩX = {X ∈ Cm×N : X has at most s nonzero rows}.
1Under a subspace constraint, A is required to have full column rank. Under a joint

sparsity constraint, A is required to satisfy the spark condition [86]. Both conditions are
satisfied by a generic A.
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In other words, the columns of X are jointly s-sparse.

In the rest of this chapter, we address the identifiability in the above BGPC

problem. In BGPC, the constraint sets ΩΛ and ΩX are cones – they are closed

under scalar multiplication. For any nonzero scalar σ, the pairs (λ0, X0) and

(σλ0,
1
σ
X0) map to the same Y and therefore are non-distinguishable. This

problem is said to suffer from scaling ambiguity. The set {(σλ0,
1
σ
X0) : σ 6= 0}

is an equivalence class of solutions generated by a group of scaling transfor-

mations. The solution (λ0, X0) is said to be identifiable up to scaling if every

solution to BGPC is a scaled version of (λ0, X0) in that equivalent class. In

this chapter, we answer the following question: Under what conditions is the

solution (λ0, X0) unique up to scaling?

Our results are stated in terms of sample complexities, which are the num-

bers of data samples or measurements needed for unique recovery of the

solutions. They are given by inequalities describing the conditions that need

to be satisfied by the problem parameters, n, m, s, and N . The numbers n

and m denote the length of the signals and the dimension of the subspace

in which they are assume to reside, in the subspace constraint scenario. The

sparsity level s is the number (out of m) of nonzero rows of X in the joint

sparsity scenario. Finally, the number of signals captured (number of columns

of Y and Φ) is denoted by N . Since it is often difficult to acquire a large

number of signals, it is desirable to have sample complexities that requires

small N . We defer the reader to Section 3.1.3 for a detailed discussion of

these quantities in specific applications.

3.1.3 Applications

This section gives a detailed account of the applications of BGPC. Table 3.1

summarizes what parameters n, m, s, and N represent in these applications.

Subspace Constraint: In inverse rendering [29], the columns of Y =

diag(λ)Φ represent images under different lighting conditions, where λ rep-

resents the unknown albedos,2 and the columns of Φ represent the intensity

maps of incident light under different conditions. The columns of A are the

first several spherical harmonics extracted from the 3D model of the object.

They form a basis of the low-dimensional subspace in which the intensity

2In inverse rendering, albedos are real and positive. We ignore this extra information
here for simplicity.
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maps reside.

Multichannel blind deconvolution with the circular convolution model also

falls into this category. The measurement Y (:,j) = diag(λ)Φ(:,j) can be also

written as:

F−1
n Y (:,j) = (F−1

n λ) ~ (F−1
n Φ(:,j)).

The vector λ represents the DFT of the signal, the columns of Φ represent

the DFTs of the impulse responses of the channels, and the columns of Y

represent the DFTs of the channel outputs. The columns of F−1
n A form a

basis for the low-dimensional subspace in which the impulse responses of the

channels reside. For example, when the multiple channels are FIR filters that

share the same support J , they reside in a low-dimensional subspace whose

basis is F−1
n A = I(:,J). By symmetry, the roles of signals and channels can

be switched. In channel encoding, when multiple signals are encoded by the

same tall matrix E, they reside in a low-dimensional subspace whose basis is

F−1
n A = E. In this case, the vector λ represents the DFT of the channel.

Joint Sparsity Constraint: In sensor array processing with uncalibrated

sensors, the vector λ represents unknown gains and phases of the sensors, and

the columns of Φ represent snapshots captured at different time instants,

assuming unit gain and zero phase for all sensors. Consider a scene with ra-

diating sources whose positions (directions of arrival in the far-field scenario)

are discretized, using a grid of m positions. Then each column of A ∈ Cn×m

represents the array response to a single source at one position on the grid.

With only s < m unknown sources, each column of Φ is the superposition of

the same s columns of A. It follows that the columns of the source matrix X

have a common support determined by the source positions, and are jointly

s-sparse.

If the impulse responses in multichannel blind deconvolution are jointly

sparse over the dictionary F−1
n A, then as argued in the subspace constraints

case, the vector λ, the columns of Φ, and the columns of Y represent the

DFTs of the signal, the impulse responses, and the channel outputs, respec-

tively. By symmetry, the roles of signals and channels can be switched. For

example, in hyperspectral imaging, image samples at different frequencies in

the light spectrum are likely to share the same discontinuities, and be jointly

sparse over the same dictionary. If all image samples are corrupted with the

same blurring kernel, then the deblurring procedure is a BGPC problem with
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Table 3.1: Physical meanings of the problem parameters in applications.

Inverse
Rendering

Sensor Array
Processing

Multichannel Blind
Deconvolution

n # pixels # sensors Length of the signal

m
# spherical
harmonics

# positions on
the grid

Dimension of the channel
subspace
(subspace constraint)

s # sources
Channel sparsity level
(joint sparsity constraint)

N # images # snapshots # channels

joint sparsity constraints.

SAR autofocus [38] is a special multichannel blind deconvolution problem,

where X represents the SAR image and A = F is the 1D DFT matrix. The

entries in λ represent the phase error in the Fourier imaging data, which

varies only along the cross-range dimension.3 If the coverage of the image is

extended by oversampling the Fourier domain in the cross-range dimension,

the rows of the image X corresponding to the region that is not illuminated

by the antenna beam will be composed of zeros. Thus, the SAR image X

can be modeled as a matrix with jointly sparse columns.

3.2 Main Results

3.2.1 BGPC with a Subspace Constraint

We first consider identifiability in BGPC with a subspace constraint. The

measurement in the following problem is Y = diag(λ0)AX0. The known

matrix A ∈ Cn×m is tall (n > m), and therefore the columns of Φ = AX

reside in a low-dimensional subspace. The corresponding constraint sets are

ΩΛ = Cn and ΩX = Cm×N , hence the problem is unconstrained with respect

to λ and X.

In a previous work [1], we showed that N ≥ m is sufficient to guarantee

3In SAR autofocus, the entries of the phase error λ have unit moduli. We ignore this
extra information here for simplicity.
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identifiability when A, λ0, and X0 are generic. However, numerical experi-

ments show that when n−1
n−m ≤ N ≤ m, the solution can still be identifiable

(see [1, Section 3.3]). In this section, we explore the regime where λ0, X0,

and A are generic, and n−1
n−m ≤ N ≤ m. We prove the following sufficient

condition for the identifiability of (λ0, X0) up to scaling.

Theorem 3.2.1. In the BGPC problem with a subspace constraint, if n > m

and n−1
n−m ≤ N ≤ m, then for almost all λ0 ∈ Cn, almost all X0 ∈ Cm×N ,

and almost all A ∈ Cn×m, the pair (λ0, X0) is identifiable up to an unknown

scaling.

The sample complexity required by this theorem, N ≥ n−1
n−m , is much less

demanding than the condition N ≥ m in our previous results [1, Theorem

3.3 and Corollary 3.4]. In fact, this sample complexity is optimal, since it

matches the sample complexity in the necessary condition [1, Proposition

3.5]. It suggests that if m ≤ n
2
, i.e., the dimension of the subspace is less

than half the ambient dimension, then N = 2 signal vectors are sufficient to

recover (λ0, X0) uniquely. This result provides a favorable bound for real-

world applications. For example, the typical dimension of the intensity map

subspace in inverse rendering is m = 9, which is really small when compared

to the size of the images (e.g., n = 256× 256 = 216). Therefore, having two

images under different lighting conditions is sufficient for the uniqueness of

the solution. We will prove this result in Section 3.3.1.

When the sample complexity is achieved, for almost all λ0, X0, and A,

the solution (λ0, X0) is unique up to scaling. In other words, this result is

violated only for (λ0, X0, A) on a subset of Cn × Cm×N × Cn×m that has

Lebesgue measure zero. If (λ0, X0, A) is random, following a distribution

that is absolutely continuous with respect to the Lebesgue measure (e.g.,

the entries of λ0, X0, and A are i.i.d. following a Gaussian distribution),

then the solution to BGPC is identifiable up to scaling with probability 1.

Moreover, the degenerate set of (λ0, X0, A) that fails the test, is an algebraic

variety, which is not dense in the ambient space. In real-world applications,

λ0 and AX0 represent natural signals, which are not likely to belong to the

particular lower-dimensional manifold of degeneracy.

As shown later in the proof of Theorem 3.2.1, the identifiability hinges on

the following conditions:

1. There are no zero rows in AX0, and all the entries of λ0 are nonzero.
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2. The matrix in (3.2), which is a function of A and X0, has full column

rank.

For a given combination of λ0, X0, and A, one can test whether the above

conditions are satisfied. Figure 3.1 shows the test results of random λ0,

X0, and A, whose entries are generated as i.i.d. Gaussian random variables

N(0, 1). We fix n = 20, and check Conditions 1 and 2 for different values

of (m,N). Here, white (resp. black) means that the conditions are satisfied

(resp. are not satisfied). The red line represents the boundary N = n−1
n−m .

The test results remain the same for 20 independent random experiments,

which is consistent with the fact that Conditions 1 and 2 are satisfied for

random Gaussian vectors and matrices with probability 1 when the sample

complexity N ≥ n−1
n−m is achieved.

5 10 15

5

10

15

m

N

Figure 3.1: Verification of the identifiability conditions in 1 and 2 for
random (λ0, X0, A) ∈ Cn × Cm×N × Cn×m. The white (resp. black) region
means that the conditions are satisfied (resp. are not satisfied) for all 20
trials. The red line represents the boundary N = (n− 1)/(n−m)
corresponding to the necessary and sufficient condition in Theorem 3.2.1.

3.2.2 BGPC with a Joint Sparsity Constraint

Next, consider identifiability in BGPC with a joint sparsity constraint. The

measurement is Y = diag(λ0)AX0. The columns of A ∈ Cn×m form a basis or

frame for the signals. There are s nonzero rows in X0, and the corresponding

constraint set is

ΩX = {X ∈ Cm×N : X has at most s nonzero rows}.

44



In a previous work [1], sufficient conditions for the uniqueness of the solu-

tion to the above problem were derived for some special cases (e.g., A = F ).

A sample complexity N ≥ s was established as sufficient for these special

cases. However, when λ0, X0, and A are generic, a less demanding sufficient

condition can be proved using essentially the same argument as in the proof

of Theorem 3.2.1. The proof is presented in Section 3.3.3.

Theorem 3.2.2. In the BGPC problem with a joint sparsity constraint, if

n > 2s and n−1
n−2s

≤ N ≤ s, then for almost all λ0 ∈ Cn, almost all X0 ∈ Cm×N

with s nonzero rows, and almost all A ∈ Cn×m, the pair (λ0, X0) is identifiable

up to an unknown scaling.

The sample complexity N ≥ n−1
n−2s

is far superior to the previous sufficient

condition [1] of N ≥ s, when the sparsity level s is much smaller than the

ambient dimension n. For example, if s ≤ n
4
, then N = 2 is sufficient. In

sensor array processing, the number of sources s is often much smaller than

the number of sensors n. Therefore, only two snapshots are needed to recover

the unknown gains and phases uniquely. This is especially significant when

the working conditions of the sensor array and/or the source locations vary

over time, and it needs to be re-calibrated continuously. One can achieve

higher temporal resolution by solving BGPC using fewer snapshots.

Next, we compare the sample complexity in the sufficient condition of The-

orem 3.2.2 to a necessary condition for this scenario. Suppose the support

of X0 is known, then the joint sparsity constraint reduces to a subspace con-

straint. By the necessary condition for the subspace scenario [1, Proposition

3.5], it follows that a necessary condition for the joint sparsity scenario is

N ≥ n−1
n−s . The sample complexity in the sufficient condition of Theorem

3.2.2, N ≥ n−1
n−2s

, nearly matches the necessary condition when the sparsity

level s is small compared to signal length n. Indeed, when n ≥ 4s, the above

sufficient and necessary conditions both reduce to N ≥ 2. When n ≥ 3s, the

necessary condition reduces to N ≥ 2, and the sufficient condition reduces

to N ≥ 3, which is off by 1.
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3.3 Proof of the Main Results

3.3.1 Proof of Theorem 3.2.1

First, BGPC is a bilinear inverse problem. Theorem 2.8 [1] stated equivalent

conditions for identifiability in bilinear inverse problems up to some trans-

formation groups. Specializing this result to the identifiability in BGPC up

to scaling, we have the following lemma.

Lemma 3.3.1. In BGPC, the pair (λ0, X0) ∈ ΩΛ × ΩX (λ0 6= 0, X0 6= 0) is

identifiable up to scaling if and only if the following two conditions are met:

1. If diag(λ1)AX1 = diag(λ0)AX0 for some (λ1, X1) ∈ ΩΛ × ΩX , then

X1 = σX0 for some nonzero σ.

2. If diag(λ1)AX0 = diag(λ0)AX0 for some λ1 ∈ ΩΛ, then λ1 = λ0.

We first show that Condition 2 holds: that is, if X0 is given, then the

recovery of λ0 is unique. Note that for almost all matrices A ∈ Cn×m and

X0 ∈ Cm×N , there are no zero rows in the product AX0. It follows that, if

diag(λ0)AX0 = diag(λ1)AX0 for some λ1 ∈ Cn, then λ1 = λ0.

By Lemma 3.3.1, to complete the proof, we only need to show that Con-

dition 1 also holds for generic λ0, X0, and A.4 Suppose there exists (λ1, X1)

such that diag(λ0)AX0 = diag(λ1)AX1. Consider the k-th row on both sides

of the equation, which can be written as

(IN ⊗ A(k,:))vec(X0)λ
(k)
0 = (IN ⊗ A(k,:))vec(X1)λ

(k)
1 .

Now, for almost all λ0, X0, and A, the left-hand side is nonzero. Therefore

λ1 and X1 are nonzero. It follows that

(IN ⊗ A(k,:))
(
vec(X1)− λ

(k)
0

λ
(k)
1

vec(X0)
)

= 0,

and hence,

vec(X1) ∈ N (IN ⊗ A(k,:)) + span(vec(X0)).

4We use arguments similar to those used for the proof of [23, Theorem 4.2].
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Next, we project vec(X1) onto the orthogonal complement of span(vec(X0)).

It follows that

Pvec(X0)⊥vec(X1) =vec(X1)− Pspan(vec(X0))vec(X1)

∈ N (IN ⊗ A(k,:)) + span(vec(X0)).

For linear vector spaces V1 and V2, V1 + V2 = (V⊥1
⋂
V⊥2 )⊥. Using the fact

that N (IN ⊗A(k,:))⊥ = R∗(IN ⊗A(k,:)), and span(vec(X0))⊥ = vec(X0)⊥, we

have

Pvec(X0)⊥vec(X1) ∈
(
R∗(IN ⊗ A(k,:))

⋂
vec(X0)⊥

)⊥
,

for k = 1, 2, . . . , n. Taking note of the fact that

Pvec(X0)⊥vec(X1) ∈ vec(X0)⊥,

we have

Pvec(X0)⊥vec(X1) ∈ vec(X0)⊥
⋂( ⋂

k=1,2,...,n

(
R∗(IN ⊗ A(k,:))

⋂
vec(X0)⊥

)⊥)
.

(3.1)

Since

IN ⊗ A(k,:) =



A(k,:) 0 0 . . . 0

0 A(k,:) 0 . . . 0

0 0 A(k,:) . . . 0
...

...
...

. . .
...

0 0 0 . . . A(k,:)


,

vec(X0)∗ =
[
X

(:,1)∗
0 X

(:,2)∗
0 X

(:,3)∗
0 . . . X

(:,N)∗
0

]
,

it is easy to verify that, for almost all A and X0, the intersection of the

row space of IN ⊗A(k,:) and the orthocomplement of vec(X0) is an (N − 1)-

dimensional subspace:

R∗(IN ⊗ A(k,:))
⋂

vec(X0)⊥ = R∗
(
D(A(k,:), X0)

)
,
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where the matrix D(A(k,:), X0) ∈ C(N−1)×mN is a function of A(k,:) and X0:

D(A(k,:), X0) =


−γ2 γ1 0 . . . 0

−γ3 0 γ1 . . . 0
...

...
...

. . .
...

−γN 0 0 . . . γ1

⊗ A(k,:),

and γj = A(k,:)X
(:,j)
0 for j = 1, 2, . . . , N . For generic matrices A and X0,

D(A(k,:), X0) has full row rank, which is N − 1. By (3.1),

Pvec(X0)⊥vec(X1) ∈ N





vec(X0)∗

D(A(1,:), X0)

D(A(2,:), X0)
...

D(A(n,:), X0)




. (3.2)

We have the following claim, to be proved in Section 3.3.2.

Claim 3.3.2. For almost all X0 and A, if n > m and n−1
n−m ≤ N ≤ m, then

the matrix in (3.2) has full column rank, which is mN .

Given this claim, for almost all X0 and A,

Pvec(X0)⊥vec(X1) = 0.

Therefore, X1 resides in the 1-dimensional subspace in Cm×N spanned by

X0, i.e., X1 = σX0. Recall that X1 is nonzero, hence σ 6= 0, establishing

Condition 2 in Lemma 3.3.1, thus proving Theorem 3.2.1.

3.3.2 Proof of Claim 3.3.2

We prove that the matrix in (3.2) has full column rank for almost all X0

and A that satisfy n > m and n−1
n−m ≤ N ≤ m. By the definition of matrix

D(A(k,:), X0), we have D(A(k,:), X0)vec(X0) = 0. Hence the first row vec(X0)∗

is orthogonal to the rest of the rows in the matrix in (3.2). Therefore, we

only need to show the rank of the following matrix is at least mN − 1 for
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almost all X0 and A:

D(A,X0) =


D(A(1,:), X0)

D(A(2,:), X0)
...

D(A(n,:), X0)

 ∈ Cn(N−1)×mN .

Using the basic result in algebraic geometry that a polynomial function

from Cn to C is either identically zero, or nonzero almost everywhere, it

follows easily that the rank of D(A,X0) is at least mN − 1 for almost all A

and X0, if the rank is mN − 1 for at least one choice of A and X0.5 The rest

of the proof is an explicit construction of A and X0 that satisfies this rank

condition.

The matrix X0 ∈ Cm×N is a tall matrix (N ≤ m), hence one can choose

X0 as the first N columns of Im. The matrix A ∈ Cn×m is also tall (n > m),

therefore one can choose A as a subset of m columns from Fn. The first N

columns are A(:,1:N) = F
(:,1:N)
n . We pick m − N columns out of F

(:,N+1:n)
n as

A(:,N+1:m) in a manner such that there are no blocks of consecutive N columns

except for the first N columns. To satisfy this condition, the columns F
(:,N+1)
n

and F
(:,n)
n must not be picked.6 This can be demonstrated by Figure 3.2. This

can be done because (n−m)N ≥ n− 1.

Given this choice of X0 and A,

D(A(k,:), X0) =


−αk−1 1 0 . . . 0

−α2(k−1) 0 1 . . . 0
...

...
...

. . .
...

−α(N−1)(k−1) 0 0 . . . 1

⊗ A(k,:),

where α = e−
2π
√
−1
n . One can view D(A,X0) as a block matrix with n blocks,

one on top of the other. Each block itself is a block matrix with (N −1)×N
blocks.

5Indeed, if D(Ã, X̃0) has rank mN − 1 for some Ã and X̃0, then there exists a subset

K of mN − 1 columns such that D(Ã, X̃0)(:,K) has full column rank. By [25, Lemma 1],
for almost all A and X0, we have D(A,X0)(:,K) has full column rank, and hence D(A,X0)
has rank at least mN − 1.

6Because of the circular nature of the DFT matrix, the first column and the last column
of Fn are also considered “consecutive”.
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Figure 3.2: Construction of the matrix A from the DFT matrix Fn.

Consider the left null vector w ∈ Cn(N−1) of the matrix D(A,X0). Suppose

w = [w1,1, w1,2, . . . , w1,N−1, w2,1, w2,2, . . . , w2,N−1, . . . , wn,1, wn,2, . . . , wn,N−1]>,

and w∗D(A,X0) = 0. Then we have

n∑
k=1

(
N−1∑
j=1

αj(k−1)wk,j

)
A(k,:) = 0, (3.3)

n∑
k=1

wk,jA
(k,:) = 0, for j = 1, 2, . . . , N − 1. (3.4)

In order to show that D(A,X0) has rank mN − 1, we need to prove that

there are exactly M := n(N − 1)− (mN − 1) = nN −mN − n + 1 linearly

independent left null vectors w. This number is greater than or equal to zero
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because N ≥ n−1
n−m . Consider the following matrix:

W =


w1,1 w1,2 . . . w1,N−1

w2,1 w2,2 . . . w2,N−1

...
...

. . .
...

wn,1 wn,2 . . . wn,N−1

 .

By (3.4), the columns of W are orthogonal to the columns of A. Recall that

the columns of A are a subset of the columns of Fn. We use A⊥ ∈ Cn×(n−m)

to denote the matrix whose columns are the complement set of columns, i.e.,

the remaining n − m columns in Fn that are not picked. Then W = A⊥Q

for some Q ∈ C(n−m)×(N−1).

Next, we show that there are exactly M linearly independent matrices Q

such that W = A⊥Q satisfies (3.3). Consider the following vector v ∈ Cn

whose entries are the coefficients in (3.3):

v :=


∑N−1

j=1 α−j·0w1,j∑N−1
j=1 α−j·1w2,j

...∑N−1
j=1 α−j(n−1)wn,j

 =
N−1∑
j=1

F (:,n+1−j)
n �W (:,j)

=
n−m∑
i=1

N−1∑
j=1

(
F (:,n+1−j)
n � A(:,i)

⊥
)
Q(i,j). (3.5)

By (3.3), v is also orthogonal to the columns in A. Therefore, there exists a

vector p ∈ Cn−m such that

v = A⊥p =
n−m∑
i=1

A
(:,i)
⊥ p(i). (3.6)

By (3.5) and (3.6), we have

n−m∑
i=1

A
(:,i)
⊥ p(i) −

n−m∑
i=1

N−1∑
j=1

(
F (:,n+1−j)
n � A(:,i)

⊥
)
Q(i,j) = v − v = 0. (3.7)

The entrywise product of two columns in Fn is still a column in Fn. In

particular, if j2 > j1, then F
(:,n+1−j1)
n � F

(:,j2)
n = F

(:,j2−j1)
n . Therefore,

{F (:,n+1−j)
n � A(:,i)

⊥ }
N−1
j=1 are N − 1 consecutive columns of Fn on the left of
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A
(:,i)
⊥ . Hence every term in the sum of (3.7) contains a column of Fn.

Next, we investigate which columns of Fn are included in this sum. Based

on the way we partition Fn into A and A⊥, at least one column in any N con-

secutive columns in F
(:,N+1:n)
n must belong to A⊥ (see Figure 3.2). The only

exception is that, between F
(:,n)
n and F

(:,N+1)
n , which are adjacent columns

in A⊥,7 there are N columns F
(:,1:N)
n . Therefore, when i = 2, 3, . . . , n −m,

the columns {F (:,n+1−j)
n � A(:,i)

⊥ }
N−1
j=1 sweep to the left of A

(:,i)
⊥ , and “fill the

gap” by covering all the columns between A
(:,i)
⊥ and A

(:,i−1)
⊥ . In general, since

the gap between A
(:,i−1)
⊥ and A

(:,i)
⊥ could be smaller than N − 1, there could

be overlaps of columns. When i = 1, since A
(:,1)
⊥ = F

(:,N+1)
n , the columns

{F (:,n+1−j)
n � A(:,1)

⊥ }
N−1
j=1 are F

(:,2:N)
n . Therefore F

(:,1)
n is not included in this

sum. In summary,

{
A

(:,i)
⊥

}n−m
i=1

⋃{{
F (:,n+1−j)
n � A(:,i)

⊥

}N−1

j=1

}n−m
i=1

=
{
F (:,j)
n

}n
j=2

,

i.e., the (n−m) + (n−m)(N − 1) terms in the sum of (3.7) actually contain

n−1 distinct columns of Fn. It follows that there are (n−m)+(n−m)(N −
1) − (n − 1) = nN − mN − n + 1 = M linearly independent choices of

the coefficient vector [vec(Q)>, p>]>. We denote these linearly independent

vectors by [vec(Qk)
>, p>k ]>, k = 1, 2, . . . ,M .

Next we prove that Q1, Q2, . . . , QM are linearly independent. We argue

by contradiction. Suppose they are linearly dependent, and there exists

β1, β2, . . . , βM such that
M∑
k=1

βkQk = 0. (3.8)

Then,

A⊥

( M∑
k=1

βkpk

)
=

M∑
k=1

βkA⊥pk =
M∑
k=1

βk

n−m∑
i=1

N−1∑
j=1

(
F (:,n+1−j)
n � A(:,i)

⊥
)
Q

(i,j)
k

=
n−m∑
i=1

N−1∑
j=1

(
F (:,n+1−j)
n � A(:,i)

⊥
)( M∑

k=1

βkQ
(i,j)
k

)
= 0.

The second equation follows from (3.7), and the last equation follows from

7Recall that F
(:,n)
n and F

(:,N+1)
n are not picked for A, and are the last and the first

columns of A⊥.
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(3.8). Since the matrix A⊥ has full column rank, we have

M∑
k=1

βkpk = 0. (3.9)

Equations (3.8) and (3.9) suggest that [vec(Qk)
>, p>k ]>(k = 1, 2, . . . ,M) are

linearly dependent, which causes a contradiction. Therefore, Q1, Q2, . . . , QM

are linearly independent. There exist exactly M linearly independent left

null vectors for D(A,X0). Therefore, D(A,X0) has rank mN − 1 for the

special choice of A and X0, which completes the proof.

3.3.3 Proof of Theorem 3.2.2

First, by the same argument as in the proof of Theorem 3.2.1, if X0 is

given, the recovery of λ0 is unique. Again by Lemma 3.3.1, we only need

to show that for generic λ0, X0, and A, if there exists (λ1, X1) such that

diag(λ0)AX0 = diag(λ1)AX1, then X1 = σX0 for some nonzero σ.

We start by fixing the supports of X0 and X1. Suppose diag(λ0)AX0 =

diag(λ1)AX1, and J0 and J1 are the row supports (the index set on which the

rows of a matrix are nonzero) of X0 and X1, respectively, and |J0| = |J1| = s.

Then focus on the following equation, containing the nonzero rows of X0 and

X1:

diag(λ0)A(:,J0
⋃
J1)X

(J0
⋃
J1,:)

0 = diag(λ1)A(:,J0
⋃
J1)X

(J0
⋃
J1,:)

1 .

Obviously, the cardinality of the set J0

⋃
J1 is at most 2s. Let ` = |J0

⋃
J1| ≤

2s. We can show that X
(J0

⋃
J1,:)

1 = σX
(J0

⋃
J1,:)

0 for some nonzero σ, following

the same steps as in the proof of Theorem 3.2.1, with Claim 3.3.2 replaced

by the following claim:

Claim 3.3.3. For almost all X0 with row support J0 and almost all A, if

n > 2s ≥ ` and n−1
n−2s

≤ N ≤ s, then the following matrix has full column
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rank, which is `N : 

vec(X
(J0

⋃
J1,:)

0 )∗

D(A(1,J0
⋃
J1), X

(J0
⋃
J1,:)

0 )

D(A(2,J0
⋃
J1), X

(J0
⋃
J1,:)

0 )
...

D(A(n,J0
⋃
J1), X

(J0
⋃
J1,:)

0 )


. (3.10)

The proof of Claim 3.3.3 uses arguments similar to those in the proof

of Claim 3.3.2: an explicit construction of A(:,J0
⋃
J1) and X

(J0
⋃
J1,:)

0 that

satisfies a rank condition described below. Here, one cannot choose every

entry of X
(J0

⋃
J1,:)

0 freely, since it has only s nonzero rows. Let Q be an `× `
permutation matrix, such that the first s rows of QX

(J0
⋃
J1,:)

0 are nonzero.

Then we apply the construction of A and X in the the proof of Claim 3.3.2,

to A(:,J0
⋃
J1)Q−1 and QX

(J0
⋃
J1,:)

0 . For example, we choose X
(J0

⋃
J1,:)

0 such

that QX
(J0

⋃
J1,:)

0 is the first N ≤ s columns of I`. Then by the proof of Claim

3.3.2, the following matrix has full column rank `N :

vec(QX
(J0

⋃
J1,:)

0 )∗

D(A(1,J0
⋃
J1)Q−1, QX

(J0
⋃
J1,:)

0 )

D(A(2,J0
⋃
J1)Q−1, QX

(J0
⋃
J1,:)

0 )
...

D(A(n,J0
⋃
J1)Q−1, QX

(J0
⋃
J1,:)

0 )


. (3.11)

We complete the proof of Claim 3.3.3 by making the following observation:

(3.11) is a permutation of the columns of (3.10), and the two matrices have

the same rank.

We continue the proof of Theorem 3.2.2. We have established that

X
(J0

⋃
J1,:)

1 = σX
(J0

⋃
J1,:)

0

for some nonzero σ. Recall that the other rows of X0 and X1 are zero. Hence

X1 = σX0. Therefore, for almost all λ0 and A, and almost all X0 whose row

support is J0, the solution (λ1, X1), for which the support of X1 is J1, satisfies

that X1 = σX0 and λ1 = 1
σ
λ0. There are a finite number of choices for the

supports J0 and J1,
(
m
s

)2
choices to be exact. Therefore, we can complete

the proof by enumerating over all possible choices for J0 and J1.

54



CHAPTER 4

BLIND GAIN AND PHASE CALIBRATION
VIA SPARSE SPECTRAL METHODS

4.1 Introduction

4.1.1 Notations

We use A>, A, and A∗ to denote the transpose, the complex conjugate,

and the conjugate transpose of a matrix A, respectively. The k-th entry of a

vector λ is denoted by λk. The j-th column, the k-th row (in a column vector

form), and the (k, j)-th entry of a matrix A are denoted by a·j, ak·, and akj,

respectively. Upper script t in a vector η(t) denotes the iteration number in an

iterative algorithm. We use In to denote the identity matrix of size n×n, and

1n,m and 0n,m to denote the matrices of all ones and all zeros of size n×m,

respectively. The i-th standard basis vector is denoted by ei, whose ambient

dimension is clear in the context. The `p norm and `0 “norm” of a vector x are

denoted by ‖x‖p and ‖x‖0, respectively. The Frobenius norm and the spectral

norm of a matrix A are denoted by ‖A‖F and ‖A‖, respectively. The support

of a sparse vector x is denoted by supp(x). The vector vec(X) denotes

the concatenation of the columns of X = [x·1, x·2, . . . , x·N ], i.e., vec(X) =

[x>·1, x
>
·2, . . . , x

>
·N ]>. A diagonal matrix with the entries of vector x on the

diagonal is denoted by diag(x). The Kronecker product is denoted by ⊗. We

use & to denote the relation greater than up to log factors. We use [n] to

denote the set {1, 2, . . . , n}. For an index set T , the projection operator onto

T is denoted by ΠT , and the operator that restricts onto T is denoted by

ΩT . We use these operator notations for different spaces, and the ambient

dimensions will be clarified in the context.
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4.1.2 Problem Formulation

In this section, we introduce the BGPC problem with a subspace constraint or

a sparsity constraint. Suppose A ∈ Cn×m is the known measurement matrix,

and λ ∈ Cn is the vector of unknown gains and phases, the k-th entry of which

is λk = |λk|e
√
−1ϕk . Here, |λk| and ϕk denote the gain and phase of the k-th

sensor, respectively. The BGPC problem is the simultaneous recovery of λ

and the unknown signal matrix X ∈ Cm×N from the following measurement:

Y = diag(λ)AX +W, (4.1)

where W ∈ Cn×N is the measurement noise. The (k, j)-th entry in the

measurement ykj has the following expression:

ykj = λk a
>
k· x·j + wkj.

Clearly, BGPC is a bilinear inverse problem. The solution (λ,X) suffers

from scaling ambiguity, i.e., (λ/σ, σX) generates the same measurements as

(λ,X), and therefore cannot be distinguished from it. Despite the fact that

the solution can have other ambiguity issues, in this chapter, we consider

the generic setting where the solution suffers only from scaling ambiguity

[3].1 Even in this setting, the solution is not unique, unless we exploit the

structure of the signals. In this chapter, we solve the BGPC problem under

two scenarios – BGPC with a subspace structure, and BGPC with sparsity.

(1) Subspace case: Suppose that the known matrix A is tall (n > m) and

has full column rank. Then the columns of AX reside in the low-dimensional

subspace spanned by the columns of A. The problem is effectively uncon-

strained with respect to X.

(2) Sparsity case: Suppose that A is a known dictionary with m ≥ n,

while the columns of X are s0-sparse, i.e., ‖x·j‖0 ≤ s0 for all j ∈ [N ]. A

variation of this setting is that the columns of X are jointly s0-sparse, i.e.,

there are at most s0 nonzero rows in X. In this case, the subspace constraint

on AX no longer applies, and one must solve the problem with a sparsity (or

joint sparsity) constraint.

1An example of another ambiguity is a shift ambiguity when A is the discrete Fourier
transform matrix [1, 41]. For a generic matrix A, the solution to BGPC does not suffer
from shift ambiguity.
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Table 4.1: Comparison of sample complexities with prior work.

Subspace Joint Sparsity Sparsity

Unique Recovery [3]
n > m

N ≥ n−1
n−m

n > 2s0

N ≥ n−1
n−2s0

–

Least Squares [40]
n & m

N & 1
– –

`1 Minimization [41] – –
n & s0

N & n

This Paper
n & m

N & 1

n & s0

N &
√
s0

–

Note: n, N , m and s0 represent the number of sensors, the number of snapshots, the subspace
dimension, and the sparsity level, respectively.

The BGPC problem arises in applications including inverse rending, sensor

array processing, multichannel blind deconvolution, and SAR autofocus. We

refer the reader to our previous work [3, Section II.C] for a detailed account of

applications of BGPC. For consistency, from now on, we use the convention

in sensor array processing, and refer to n and N as the numbers of sensors

and snapshots, respectively.

4.1.3 Our Contributions

We reformulate BGPC as the problem of finding the principal eigenvector of

a matrix (or operator). In the subspace case, this can be solved using any

eigen-solver, e.g., power iteration (Algorithm 1). In the sparsity case, we

propose to solve this problem using truncated power iteration (Algorithm 2).

Our main results can be summarized as follows.

Theorem 4.1.1. Under certain assumptions on A, λ, X, and W , one can

solve the BGPC problem with high probability using:

(1) Subspace case: algorithms that find the principal eigenvector of a

certain matrix, e.g., power iteration, if n & m and N & 1.

(2) Joint sparsity case: truncated power iteration with a good initial-

ization, if n & s0 and N &
√
s0.

In Table 4.1, we compare the above results with the sample complexities

for unique recovery in BGPC [3], and previous guaranteed algorithms for
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BGPC in the subspace and sparsity case [40, 41]. In the subspace case,

power iteration solves BGPC using optimal (up to log factors) numbers of

sensors and snapshots. These sample complexities are comparable to the

least squares method in [40]. Moreover, we show that power iteration is

empirically more robust against noise than least squares.

Truncated power iteration solves BGPC with a joint sparsity structure,

with an optimal (up to log factors) number of sensors, and a slightly sub-

optimal (within a factor of
√
s0 and log factors) number of snapshots. In

comparison, the `1 minimization method for the sparsity case of BGPC uses

a similar number of sensors, but a much larger number of snapshots. Numer-

ical experiments show that truncated power iteration empirically succeed, in

both the joint sparsity case and the more general sparsity case, in the optimal

regime.

The success of truncated power iteration relies on a good initial estimate

of X and λ. We propose a simple initialization algorithm (Algorithm 3) with

the following guarantee.

Theorem 4.1.2. Under additional assumptions on the absolute values of the

nonzero entries in X, our initialization algorithm produces a sufficiently good

estimate of λ and X if n & s2
0. (We do not require any additional assumption

on the number N of snapshots.)

Despite the above scaling law predicted by theory, numerical experiments

suggest that our initialization scheme is effective when n & s0.

4.1.4 Related Work

BGPC arises in many real-world scenarios, and previous solutions have mostly

been tailored to specific applications such as sensor array processing [30, 89,

90], sensor network calibration [69, 91], synthetic aperture radar autofocus

[38], and computational relighting [29]. However, the previous methods do

not have theoretical guarantees in the forms of quantitative error bounds.

The idea of solving BGPC by reformulating it into a linear inverse problem,

which is a key idea in this chapter, has been proposed by many prior works

[69, 38, 29]. In particular, Bilen et al. [70] provided a solution to BGPC with

high-dimensional but sparse signals using `1 minimization. However, such

methods have not been carefully analyzed until recently. Ling and Strohmer
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[40] derived an error bound for the least squares solution in the subspace case

of BGPC. In this chapter, the power iteration method has sample complexi-

ties comparable to those of the least squares method [40], and is empirically

more robust to noise than the latter. Wang and Chi [41] gave a theoretical

guarantee for `1 minimization that solves BGPC in the sparsity case, where

they assumed that A is the discrete Fourier transform (DFT) matrix and X

is random following a Bernoulli–sub-Gaussian model. In this chapter, we give

a guarantee for truncated power iteration under the assumption that A is a

complex Gaussian random matrix, and X is jointly sparse, well-conditioned,

and deterministic. In this sense, we consider an adversarial scenario for the

signal X. Our sample complexity results require a near optimal number n

of sensors, and a much smaller number N of snapshots. Moreover, truncated

power iteration is more robust against noise and inaccurate initial estimate

of phases. Very recently, Eldar et al. [92] proposed new methods for BGPC

with signals whose sparse components may lie off the grid. Similar to earlier

work on blind calibration of sensor arrays [30], these methods rely on empir-

ical covariance matrices of the measurements and therefore need a relatively

large number of snapshots.

A problem related to BGPC is multichannel blind deconvolution (MBD).

Most previous works on MBD consider linear convolution with a finite im-

pulse response (FIR) filter model (see [53, 54], and a recent stabilized method

[57, 58]). In comparison, BGPC is equivalent to MBD with circular convo-

lution and a subspace model or a sparsity model, akin to some recent studies

[40, 41]. BGPC is more general in the sense that: (a) linear convolution

can be rewritten as circular convolution via zero-padding the signal and the

filter; (b) the FIR filter model is a special case of the subspace model.

To position BGPC in a more broad context, it is a special bilinear inverse

problem [1], which in turn is a special case of low-rank matrix recovery from

incomplete measurements [93, 94, 28, 24]. A resurgence of interest in bilinear

inverse problems was pioneered by the recent studies in single-channel blind

deconvolution of signals with subspace or sparsity structures, where both the

signal and the filter are structured [14, 19, 21, 22, 26].

Another related bilinear inverse problem is blind calibration via repeated

measurements from multiple different sensing operators [95, 96, 97, 98, 99,

100]. Since blind calibration with repeated measurements is in principle an

easier problem than BGPC [40], we believe our methods for BGPC and our
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theoretical analysis can be extended to this scenario.

Also related is the phase retrieval problem [101], where there only exists

uncertainty in the phases (and not the gains) of the sensing system. An

active line of work solves phase retrieval with guaranteed algorithms (see

[15, 102, 103, 104, 105, 106, 107] and [108] for a recent review).

The error bounds of power iteration and truncated power iteration have

been analyzed in general settings, e.g., in [42, Section 8.2.1] and [44]. These

previous results hinge on spectral properties of matrices such as gaps be-

tween eigenvalues, which do not translate directly to sample complexity re-

quirements. This chapter undertakes analysis specific to BGPC. We relate

spectral properties in BGPC to some technical conditions on λ, A, X, and

W , and derive recovery error under near optimal sample complexities. We

also adapt the analysis of sparse PCA [44] to accommodate a structured

sparsity constraint in BGPC.

BGPC and our proposed methods are non-convex in nature. In particular,

our truncated power iteration algorithm can be interpreted as projected gra-

dient descent for a non-convex optimization problem. There have been rapid

developments in guaranteed non-convex methods [109] in a variety of do-

mains such as matrix completion [110, 111, 112], dictionary learning [71, 74],

blind deconvolution [21, 26], and phase retrieval [103, 102, 72]. It is a com-

mon theme that carefully crafted non-convex methods have better theoretical

guarantees in terms of sample complexity than their convex counterparts, and

often have faster implementations and better empirical performance. This

chapter is a new example of such superiority of non-convex methods.

4.2 Power Iteration Algorithms for BGPC

Next, we describe the algorithms we use to solve BGPC. In Section 4.2.1, we

introduce a simple trick that turns the bilinear inverse problem in BGPC to

a linear inverse problem. In Sections 4.2.2 and 4.2.3, we introduce the power

iteration algorithm we use to solve BGPC with a subspace structure, and the

truncated (or sparse) power iteration algorithm we use to solve BGPC with

sparsity, respectively.
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4.2.1 From Bilinearity to Linearity

We use a simple trick to turn BGPC into a linear inverse problem [69].

Without loss of generality, assume that λk 6= 0 for k ∈ [n]. Indeed, if any

sensor has zero gain, then the corresponding row in Y is all zero or contains

only noise, and we can simply remove the corresponding row in (4.1). Let γ

denote the entrywise inverse of λ, i.e., γk = 1/λk for k ∈ [n]. We have

diag(γ)Ys = AX, (4.2)

where Ys = diag(λ)AX is the noiseless measurement. Equation (4.2) is linear

in all the entries of γ and X. The bilinear inverse problem in (λ,X) now

becomes a linear inverse problem in (γ,X). In practice, since only the noisy

measurement Y is available, one can solve diag(γ)Y ≈ AX.

This technique was widely used to solve BGPC with a subspace structure,

in applications such as sensor network calibration [69], synthetic aperture

radar autofocus [38], and computational relighting [29]. Recently, Ling and

Strohmer [40] analyzed the least squares solution to (4.2). Wang and Chi

[41] considered a special case where A is the DFT matrix, and analyzed the

solution of a sparse X by minimizing the `1 norm of A−1diag(γ)Y .

We use the same trick in our algorithms. Define

D :=


IN ⊗ a>1·

...

IN ⊗ a>n·

 , (4.3)

E :=


y1·

. . .

yn·

 . (4.4)

We can decompose E into E = Es + En, where

Es :=


λ1X

>a1·
. . .

λnX
>an·

 ,
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En :=


w1·

. . .

wn·

 .
Define also

B :=

[
D∗D αD∗E

αE∗D α2E∗E

]
, (4.5)

Bs :=

[
D∗D αD∗Es

αE∗sD α2E∗sEs

]
,

where α is a nonzero constant specified later.

Clearly, (4.2) can be rewritten as

Dx− Esγ = 0,

where x = vec(X). Equivalently, η = [x>,−γ>/α]> is a null vector of Bs.

When certain sufficient conditions are satisfied, η is the unique null vector

of Bs. For example, if λ, A, and X are in general positions in Cn, Cn×m,

and Cm×N , respectively, then N ≥ n−1
n−m snapshots are sufficient to guarantee

uniqueness of the solution to BGPC in the subspace case. We refer readers

to our work on the identifiability in BGPC for more details [1, 3].

Since only the noisy matrix B is accessible in practice, one can instead

find the minor eigenvector, i.e., the eigenvector corresponding to the smallest

eigenvalue of B. The rest of this section focuses on algorithms that find such

an eigenvector of B, with no constraint (in the subspace case), or with a

sparsity constraint (in the sparsity case).

4.2.2 Power Iteration for BGPC with a Subspace Structure

In the subspace case (n > m), we solve for the minor eigenvector of the

positive definite matrix B. In Section 4.3, we derive an upper bound on the

error between this eigenvector and the true solution η.

The minor eigenvector of B can be computed by a variety of methods.

Here, we propose an algorithm that remains computationally efficient for

large scale problems. By eigenvalue decomposition, the null vector of B is
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identical to the principal eigenvector of

G = βImN+n −B, (4.6)

for a large enough constant β. This eigenvector can be computed using the

power iteration algorithm (see Algorithm 1).

The size of G is (Nm+n)× (Nm+n). An advantage of Algorithm 1 over

an eigen-solver that decomposes G, is that one does not need to explicitly

compute the entries of G to iteratively apply it to a vector. Furthermore,

rather than O((Nm + n)2), by the structure of D and E, the per iteration

time complexity of applying the operator G to a vector is only O(mnN). This

can be further reduced if A and A∗ are linear operators with implementations

faster than O(mn).

The rule of thumb for selecting parameter α is that the `2 norms of the

columns of D be close to those of αE so that G in (4.6) exhibits good spectral

properties for power iterations. A safe choice for β is ‖B‖, which may be

conservatively large in some cases, but works well in practice. In Section

4.3, we discuss our choice of parameters α, β under certain normalization

assumptions (see Remark 4.3.6).

Algorithm 1 converges to the principal eigenvector of G, as long as the

initial estimate η(0) is not orthogonal to that eigenvector. This insensitivity

to initialization is a privilege not shared by the sparsity case (see Section

4.2.3).

Algorithm 1: Power Iteration for BGPC

Input: A ∈ Cn×m, Y ∈ Cn×N , initial estimate η(0) ∈ CNm+n

Output: η(t) ∈ CNm+n

Parameters: α, β
Compute operator G : CNm+n → CNm+n by (4.3), (4.4), (4.5), (4.6)
t← 1
repeat

Compute η(t) = Gη(t−1)/
∥∥Gη(t−1)

∥∥
2

t← t+ 1

until convergence criterion is met
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4.2.3 Truncated Power Iteration for BGPC with Sparsity

When 2 ≤ n ≤ m, [D,αE] ∈ CNn×(Nm+n) is a fat matrix, and the null space

of B has dimension at least 2. Therefore, there exist at least two linearly

independent eigenvectors corresponding to the largest eigenvalue of G. To

overcome the ill-posedness, one can leverage the sparsity structure in X to

make the solution to the eigenvector problem unique.

Let Πs(x) denote the projection of a vector x onto the set of s-sparse

vectors. It is computed by setting to zero all but the s entries of x of the

largest absolute values. Let Π′s(X) denote the projection of a matrix X onto

the set of matrices whose columns are jointly s-sparse. This projection is

computed by setting to zero all but the s rows of X of the largest `2 norms.

We define two projection operators on η = [x>,−γ>/α]> that will be used

repeatedly in the rest of this chapter:

Π̃s(η) := [Πs(x·1)>,Πs(x·2)>, . . . ,Πs(x·N)>,−γ>/α]>,

Π̃′s(η) := [vec
(
Π′s(X)

)>
,−γ>/α]>.

For the sparsity case of BGPC, we adapt the eigenvector problem in Section

4.2.2 by adding a sparsity constraint:

max
η

η∗Gη

s.t. ‖η‖2 = 1,

Π̃s0(η) = η.

(4.7)

This nonconvex optimization is very similar to the sparse PCA problem.

The only difference lies in the structure of the sparsity constraint. In sparse

PCA, the principal component is s0-sparse. In (4.7), the vector η consists of

s0-sparse vectors x·1, x·2, . . . , x·N , and a dense vector −γ/α.

To solve (4.7), we adopt a sparse PCA algorithm called truncated power

iteration [44], and revise it to adapt to the sparsity structure of BGPC (see

Algorithm 2). One can choose parameters α and β using the same rules as

in Section 4.2.2. Note that we use a sparsity level s1 ≥ s0 in this algorithm,

for two reasons: (a) in practice, it is easier to obtain an upper bound on the

sparsity level instead of the exact number of nonzero entries in the signal;

and (b) the ratio s0/s1 is an important constant in the main results, con-
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trolling the trade-off between the number of measurements and the rate of

convergence.

For the joint sparsity case, we use essentially the same algorithm, with Π̃s1

replaced by Π̃′s1 .

Since (4.7) is a nonconvex optimization problem, a good initialization η(0)

is crucial to the success of Algorithm 2. Algorithm 3 outlines one such

initialization. We denote by ΠTx the projection onto the support set Tx,

which sets to zero all rows of D∗E but the s1 rows of the largest `2 norms in

each block. (The j-th block of D∗E consists of m contiguous rows indexed

by {(j − 1)m+ `}`∈[m].) Then the normalized left and right singular vectors

u and v of ΠTxD
∗E are computed as initial estimates for x and λ. We use

1./v to denote the entrywise inverse of v except for zero entries, which are

kept zero. In Section 4.3, we further comment on how to choose a proper

initial estimate η(0) (see Remark 4.3.11).

Algorithm 2: Truncated Power Iteration for BGPC with Sparsity

Input: A ∈ Cn×m, Y ∈ Cn×N , initial estimate η(0) ∈ CNm+n

Output: η(t) ∈ CNm+n

Parameters: α, β, s1

Compute operator G : CNm+n → CNm+n by (4.3), (4.4), (4.5), (4.6)
t← 1
repeat

Compute η̃(t) = Gη(t−1)/
∥∥Gη(t−1)

∥∥
2

Compute η(t) = Π̃s1(η̃(t))/
∥∥∥Π̃s1(η̃(t))

∥∥∥
2

t← t+ 1

until convergence criterion is met

4.2.4 Alternative Interpretation as Projected Gradient
Descent

Algorithms 1 and 2 can be interpreted as gradient descent and projected

gradient descent, respectively. Next, we explain such equivalence using the

sparsity case as an example.

Recall that BGPC is linearized as
[
D αE

]
η = 0. Relaxing the sparsity
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Algorithm 3: Initialization for Truncated Power Iteration

Input: A ∈ Cn×m, Y ∈ Cn×N

Output: initial estimate η(0) ∈ CNm+n

Parameters: s1

Compute matrix D∗E ∈ CNm×n by (4.3), (4.4)
Tx ← ∅
for j ∈ [N ] do

Compute the row norms
∥∥∥d∗·((j−1)m+`)E

∥∥∥
2

for ` ∈ [m]

Find subset Tj ⊂ [m] (|Tj| = s1) s.t. for ` ∈ Tj and `′ ∈ [m]\Tj:∥∥d∗·((j−1)m+`)E
∥∥

2
≥
∥∥d∗·((j−1)m+`′)E

∥∥
2

Merge support Tx ← Tx
⋃

(Tj + {(j − 1)m})
end
Compute the principal left and right singular vectors u, v of ΠTxD

∗E

η(0) ← [u>,−(1./v>)/n]>

η(0) ← η(0)/
∥∥η(0)

∥∥
2

level from s0 to s1, the optimization in (4.7) is equivalent to:

min
η

1

2

∥∥∥[D αE
]
η
∥∥∥2

2

s.t. ‖η‖2 = 1,

Π̃s1(η) = η.

The gradient of the objective function at η(t−1) is[
D∗

αE∗

] [
D αE

]
η(t−1) = Bη(t−1).

Each iteration of projected gradient descent consists of two steps:

(i) Gradient descent with a step size of 1/β:

η̃(t) = η(t−1) − 1

β
B η(t−1) =

1

β
Gη(t−1).

(ii) Projection onto the constraint set, i.e., the intersection of a cone (Π̃s1(η) =
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η) and a sphere (‖η‖2 = 1):

η(t) = Π̃s1(η̃(t))/
∥∥∥Π̃s1(η̃(t))

∥∥∥
2
.

Clearly, the two steps are identical to those in each truncated power itera-

tion except for a different scaling in Step (i), which, due to the normalization

in Step (ii), is insignificant.

4.3 Main Results

In this section, we give theoretical guarantees for Algorithms 1 and 2 in the

subspace case and in the joint sparsity case, respectively. We also give a

guarantee for the initialization by Algorithm 3.

4.3.1 Main Assumptions

We start by stating the assumptions on A, λ, X and W , which we use

throughout this section.

Assumption 4.3.1. A is a complex Gaussian random matrix, whose entries

are i.i.d. following CN (0, 1
n
). Equivalently, the vectors {ak·}nk=1 are i.i.d.

following CN (0m,1,
1
n
Im).

Assumption 4.3.2. The vector λ has “flat” gains in the sense that 1− δ ≤
|λk|2 ≤ 1 + δ for some δ ∈ (0, 1).

Assumption 4.3.3. The matrix X ∈ Cm×N is normalized and has good

conditioning, i.e., ‖X‖F = 1, and for some θ ∈ (0, 1) we have:

• Subspace case:

min{‖NX∗X − IN‖ , ‖mXX∗ − Im‖} ≤ θ,

• Joint sparsity case:

min{‖NX∗X − IN‖ ,
∥∥s0ΩT0XX

∗Ω∗T0
− Is0

∥∥} ≤ θ,
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where ΩT denotes the operator that restricts a matrix to the row support T ,

and T0 := {i ∈ [m]|
∥∥e>i X∥∥2

> 0} (|T0| = s0) is the row support of X.

Assumptions 4.3.1 – 4.3.3 can be relaxed in practice.

• The complex Gaussian distribution in Assumption 4.3.1 can be relaxed

to CN (0, σ2
A) for any σA > 0. We choose the particular scaling σ2

A =

1/n, because then A satisfies the restricted isometry property (RIP)

[113], i.e., (1 − δs) ‖x‖2
2 ≤ ‖Ax‖

2
2 ≤ (1 + δs) ‖x‖2

2 for some δs ∈ (0, 1),

when n is large compared to the number s of nonzero entries in x.

• The gains can center around any σ > 0, i.e., σ(1−δ) ≤ |λk|2 ≤ σ(1+δ).

Due to bilinearity, we may assume that λk’s are centered around 1

without loss of generality by solving for (λ/σ, σX).

• The Frobenius norm ‖X‖F of matrix X can be any positive number.

If ‖X‖F is known, one can scale X to have unit Frobenius norm be-

fore solving BGPC. In practice, the norm of X is generally unknown.

However, due to Assumptions 4.3.1 (RIP) and 4.3.2 (“flat” gains), we

have √
(1− δs)(1− δ) ≤

‖diag(λ)AX‖F

‖X‖F

≤
√

(1 + δs)(1 + δ).

Hence ‖Y ‖F is a good surrogate for ‖X‖F in noiseless or low noise

settings, and one can scale X by 1/ ‖Y ‖F to achieve the desired scal-

ing. The slight deviation of ‖X‖F / ‖Y ‖F from 1 does not have any

significant impact on our theoretical analysis. Therefore, we assume

‖X‖F = 1 to simply the constants in our derivation.

• The conditioning of X can also be relaxed. When N is large, one can

choose a subset of N ′ < N columns in Y , such that the matrix formed

from the corresponding columns of X has good conditioning. When

noise amplification is not of concern (noiseless or low noise settings), one

can choose a preconditioning matrix H ∈ CN×N such that X ′ = XH

is well conditioned, and then solve the BGPC with Y ′ = Y H.

In summary, we can manipulate the BGPC problem and make it approxi-
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mately satisfy our assumptions. For example, (4.1) can be rewritten as:

1

‖Y H‖F

Y H = diag
(λ
σ

)( 1√
nσA

A
)(√nσσA
‖Y H‖F

XH
)

+
1

‖Y H‖F

WH.

We can run Algorithms 1 and 2 with input 1√
nσA

A and 1
‖Y H‖F

Y H, and solve

for λ
σ

and
√
nσσA
‖Y H‖F

XH. The above manipulations do not have any significant

impact on the solution, or on our theoretical analysis. However, by making

these assumptions, we eliminate some tedious and unnecessary discussions.

We also need an assumption on the noise level.

Assumption 4.3.4. The noise term W satisfies

• Subspace case: maxk∈[n],j∈[N ] |wkj| ≤ CW√
nN

• Joint sparsity case: maxk∈[n],j∈[N ] |wkj| ≤ CW√
nN2

for an absolute constant CW > 0.

In the subspace case, the assumption on the noise level is very mild. Be-

cause under Assumptions 4.3.1 – 4.3.3, ‖diag(λ)AX‖F ≤
√

(1 + δs)(1 + δ),

the noise term W , which satisfies ‖W‖F ≤ CW , can be on the same order in

terms of Frobenius norm as the clean signal diag(λ)AX.

Finally, the following assumption is required for a theoretical guarantee of

the initialization.

Assumption 4.3.5. For all j ∈ [N ], there exists T ′j ⊂ supp(x·j) ⊂ [m], such

that for all ` ∈ T ′j,
|x`j|2

‖x·j‖2
2

≥ ω

s0

,

for some absolute constant ω, and∑
`′∈[m]\T ′j

|x`′j|2

‖x·j‖2
2

≤ δX ,

for some small absolute constant δX ∈ (0, 1).

Assumption 4.3.5 says that the support of x·j can be partitioned into two

subsets. The absolute values of the entries in the first subset T ′j are sufficiently

large. Moreover, the total energy (sum of squares of the entries) in the

second subset is small compared to the squared norm of x·j. For example,
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the assumption is satisfied in the following special case: T ′j = supp(x·j)

(therefore x`′j = 0 for `′ ∈ [m]\T ′j), and the absolute values of the nonzero

entries are all comparable, e.g., x`j = ±‖x·j‖√
s0

.

Before introducing our main results, we disclose the choice of parameters

α and β for our theoretical analysis of Algorithms 1 and 2.

Remark 4.3.6. When Assumptions 4.3.1 – 4.3.3 are satisfied, we choose

α =
√
n and β = 3/2.

4.3.2 A Perturbation Bound for the Eigenvector Problem

Next, we introduce a key result, a perturbation bound for the eigenvector

problem, which is used to derive error bounds for power iteration algorithms.

Let {Tj}Nj=1 denote subsets of [m], such that |Tj| = s and supp(x·j) ⊂ Tj.

We define Tx ⊂ [Nm] and Tη ⊂ [Nm+ n] as follows:

Tx :=
⋃
j∈[N ]

(
Tj + {(j − 1)m}

)
, (4.8)

Tη := Tx
⋃(

[n] + {Nm}
)
. (4.9)

Recall that ΩT restricts a vector to the support T , and hence Ω∗TΩT is the

projection operator onto the support T . Clearly, we have x = Ω∗TxΩTxx, and

η = Ω∗TηΩTηη. In the subspace case discussed in Theorem 4.3.7, we have

s = m, Tj = [m], Tx = [Nm], and Tη = [Nm+ n]. In the joint sparsity case,

we have T1 = T2 = · · · = TN . We set |Tj| = s = s0 + 2s1, which we justify

later in the analysis of truncated power iteration.

Let

η̇ :=
η

‖η‖2

denote the normalized version of η, which is the eigenvector of Bs and EBs

corresponding to eigenvalue 0. Let η̂ denote the principal eigenvector of G.

In the joint sparsity case, let η̂Tη denote the principal eigenvector of ΩTηGΩ∗Tη ,

where T = T1 = · · · = TN , |T | = s, and the support of η is a subset of Tη

defined in (4.9).

In Algorithms 1 and 2 and in our analysis, vectors η̇, η̂, and η(t) are nor-

malized to unit norm. However, multiplication by a scalar of unit modulus

is a remaining ambiguity, i.e., the set {e
√
−1ϕη̇ : ϕ ∈ [0, 2π)} is an equiva-

70



lence class for η̇. Our main results use d(η, η′) := minϕ

∥∥∥e√−1ϕη − η′
∥∥∥

2
to

denote the distance between η and η′, which is a metric on the set of such

equivalence classes.

Theorem 4.3.7 (Subspace Case). Let α =
√
n, and suppose Assumptions

4.3.1 – 4.3.4 are satisfied with δ < 1/3 and a sufficiently small absolute

constant CW > 0. Then there exist absolute constants c, C, C ′ > 0, such that

if

max
{m log2(Nm+ n)

n
,
log(Nm+ n)

N
,
log(Nm+ n)

m

}
≤ C, (4.10)

then with probability at least 1− 2n−c − e−cm,

d(η̂, η̇) ≤ ∆,

where

∆ :=
8C ′

1− 3δ
max{ν, ν2}, (4.11)

and

ν :=
√
nN max

k∈[n],j∈[N ]
|wkj|. (4.12)

We defer the proof to Section 4.5, and summarize the mathematical tools

we use here. By the Davis-Kahan sin θ Theorem [114], the error d(η̂, η̇) in the

eigenvector is bounded if there exists a sufficiently large spectral gap between

the two largest (in terms of absolute values) eigenvalues of G = βI −B. We

divide this task into two parts: (1) show that there exists a large spectral gap

in βI−EB; (2) prove that ‖B − EB‖ is small using concentration of measure

inequalities, e.g., the matrix Bernstein inequality [115, Theorem 1.6].

Whenm is large (e.g., m ≥ n), (4.10) does not hold, hence the perturbation

bound of the eigenvector η̂ of G in Theorem 4.3.7 is no longer true. We can,

however, bound the perturbation of the eigenvectors of submatrices of G

uniformly.

Theorem 4.3.8 (Joint Sparsity Case). Let α =
√
n and s = s0 + 2s1,

and suppose Assumptions 4.3.1 – 4.3.4 are satisfied with δ < 1/3 and a suffi-

ciently small absolute constant CW > 0. Then there exist absolute constants
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c, C, C ′ > 0, such that if

max
{(s+N) log8 n log2(sN +m)

n
,

√
s log2 n log(sN +m)

N
,

log4 n log2(sN +m)

s0

}
≤ C, (4.13)

then with probability at least 1− 2n−c −m−cs,

d(η̂Tη , ΩTη η̇) ≤ ∆̃,

where

∆̃ :=
8C ′

1− 3δ
max{N3/2ν, ν2}, (4.14)

and ν is defined in (4.12).

The main challenge in the joint sparsity case is that, instead of bounding

the spectral norm of B−EB, one must bound the “sparse” norm of B−EB,

i.e., the maximum spectral norm of all principal submatrices whose row (and

column) support is Tη defined by (4.9). Since B − EB can be broken down

into the sum of several terms, we give a uniform bound over all submatri-

ces on each term. For any given term, we adopt one of two approaches,

whichever provides a tighter bound: (1) we bound the spectral norm of an

individual submatrix, and apply a union bound over all submatrices; (2) we

use a variational form of the sparse norm, and apply a bound on the suprema

of second order chaos [116, Theorem 2.3].

The error bounds for Algorithms 1 and 2 in the next section rely on The-

orems 4.3.7 and 4.3.8, and existing analysis of power iteration [42] and trun-

cated power iteration [44]. Additionally, the perturbation bounds in this

section are of independent interest. In particular, Theorem 4.3.7 shows that

if the assumptions and the prescribed sample complexities in (4.10) are satis-

fied, then with high probability the principal eigenvector η̂ of G is an accurate

estimate of the vector η̇ that concatenates the unknown variables. It gives an

error bound for any algorithm that finds the principal eigenvector of G. On

the other hand, while Theorem 4.3.8 does not directly guarantee the success

of any particular algorithm, it can be used to analyze other algorithms that

find the sparse principal component of G, similar to the analysis of Algorithm
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2 in Theorem 4.3.10.

4.3.3 Error Bounds for the Power Iteration Algorithms

In this section, we give performance guarantees for Algorithms 1 and 2 under

the assumptions stated in Section 4.3.1. Under the conditions in Theorem

4.3.9 (resp. Theorem 4.3.10), the iterates in Algorithm 1 (resp. Algorithm

2), in the noiseless case, converge linearly to the true solution. In the noisy

case, the recovery error is proportional to the noise level.

Theorem 4.3.9 (Subspace Case). Suppose Assumptions 4.3.1 – 4.3.4 are

satisfied with δ < 1/4 and a sufficiently small absolute constant CW > 0. Let

α =
√
n, and β = 3/2. Assume that ξ := |η̂∗η(0)| > 0. Then there exist

absolute constants c, C, C ′ > 0, such that if (4.10) is satisfied, then with

probability at least 1− 2n−c − e−cm, the iterates in Algorithm 1 satisfy

d(η(t), η̇) ≤ ρtd(η(0), η̇) + 2∆,

where ∆ is defined in (4.11), and

ρ :=
{

1− 1

2

[
1−

(1 + 6δ

3− 2δ

)2]
ξ(1 + ξ)

}1/2

. (4.15)

Theorem 4.3.9 shows that the power iteration algorithm requires n =

O(m log2(Nm + n)) sensors and N = O(log(Nm + n)) snapshots to suc-

cessfully recover X and λ. This agrees, up to log factors, with the sample

complexity required for the uniqueness of (λ,X) in the subspace case, which

is n > m and N ≥ n−1
n−m [3].

Next, we compare Theorem 4.3.9 with a similar error bound for the least

squares approach by Ling and Strohmer [40, Theorem 3.5]. The sample com-

plexity in Theorem 4.3.9 matches the numbers required by the least squares

approach n = O(m log2(Nm + n)) and N = O(log2(Nm + n)) (up to one

log factor). One caveat in the least squares approach is that, apart from the

linear equation (4.2), it needs an extra linear constraint to avoid the trivial

solution γ = 0, X = 0. Unfortunately, as revealed by [40, Theorem 3.5], in

the noisy setting, the recovery error by the least squares approach is sensitive

to this extra linear constraint. Our numerical experiments (Section 4.6) show

that power iteration outperforms least squares in the noisy setting.
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Theorem 4.3.10 (Joint Sparsity Case). Suppose Assumptions 4.3.1 –

4.3.4 are satisfied with δ < 1/4 and a sufficiently small absolute constant

CW > 0. Let α =
√
n, β = 3/2, s1 ≥ s0 in Algorithm 2, and define

s = s0 + 2s1. Then there exist absolute constants c, C, C ′ > 0, such that

if |η̇∗η(0)| ≥ ξ + ∆̃ for some ξ ∈ (0, 1), and (4.13) is satisfied, then with

probability at least 1− 2n−c −m−cs, the iterates in Algorithm 2 for the joint

sparsity case satisfy

d(η(t), η̇) ≤ ρ̃td(η(0), η̇) +
2
√

5∆̃

1− ρ̃
,

where ∆̃ is defined in (4.14), and ρ̃ < 1 has the following expression:

ρ̃ := ρ ·
(

1 + 2

√
s0

s1

+
2s0

s1

)1/2

, (4.16)

and ρ is defined in (4.15).

Theorem 4.3.10 is only valid when ρ̃ < 1. With the choice s1 = 2s0,

when δ approaches 0, and ξ approaches 1, the convergence rate ρ̃ is roughly
1
3

√
1 +
√

2 + 2 ≈ 0.62. We discuss a more realistic scenario next.

Remark 4.3.11. A good initialization for λ alone is usually sufficient. Sup-

pose one has a good initial estimate for the gains and phases, i.e., λ satisfies

|λk − e
√
−1ϕk | <

√
1 + δ − 1 for known phase estimates {ϕk}nk=1. One can

initialize Algorithm 2 with η(0) = [0>Nm,1, e
−
√
−1ϕ1 , . . . , e−

√
−1ϕn ]>, then when

∆ is negligible (noiseless or low noise settings), ξ in Theorem 4.3.10 can

be set to 1/
√

(1 + δ)(2 + δ). For example, if δ = 0.05 and s1 ≥ 10s0, then

ρ̃ < 1. Since we do not attempt to optimize the constants in this chapter, the

constants in this exemplary scenario are conservative.

Theorem 4.3.10 states that for Algorithm 2 to recover λ and a jointly

sparse X, it is sufficient to have n = O(s0 log8 n log2(s0N + m)) sensors

and N = O(
√
s0 log2 n log(s0N + m)) snapshots. In comparison, the (up to

a factor of 2) optimal sample complexity for unique recovery in the joint

sparsity case is n > 2s0 and N ≥ n−1
n−2s0

[3]. Hence, the number of sensors

required in Theorem 4.3.10 is (up to log factors) optimal, but the number

of snapshots required is suboptimal. Another drawback is that these results

apply only to the joint sparsity case, and not to the more general sparsity
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case. However, we believe these drawbacks are due to artifacts of our analysis.

For both the joint sparsity case and the sparsity case, we have Nn complex-

valued measurements, and Ns0 +n− 1 complex-valued unknowns. One may

expect successful recovery when n and N are (up to log factors) on the

order of s0 and 1, respectively. In fact, numerical experiments in Section 4.6

confirms that truncated power iteration successfully recovers λ and X in this

regime for the more general sparsity case.

Wang and Chi [41] analyzed the performance of `1 minimization for BGPC

in the sparsity case, where they assumed that A is the DFT matrix, and X

is a Bernoulli–sub-Gaussian random matrix. Their sample complexity for

`1 minimization is n = O(s) and N = O(n log4 n). The success of their

algorithm relies on a restrictive assumption that λk ≈ 1, which is analogous

to the dependence of our algorithm on a good initialization of λk. In the next

section, we show that such dependence can be relaxed under some additional

conditions using the initialization provided by Algorithm 3.

4.3.4 A Theoretical Guarantee of the Initialization

The next theorem shows that, under certain conditions, Algorithm 3 recovers

the locations of the large entries in X correctly, and yields an initial estimate

η(0) that satisfies |η̇∗η(0)| > 1− 2δ (close to 1).

Theorem 4.3.12 (Initialization). Suppose Assumptions 4.3.1 – 4.3.5 are

satisfied. Then there exist absolute constants C ′′, c′′ > 0, such that if

n > C ′′s2
0 log6(nmN),

then with probability at least 1−n−c′′, for all j ∈ [N ] the set T ′j in Assumption

4.3.5 is a subset of Tj in Algorithm 3. Additionally, in the joint sparsity case,

if sample complexity (4.13) is satisfied with a sufficiently large C, Assump-

tion 4.3.4 is satisfied with a sufficiently small CW , and Assumption 4.3.5 is

satisfied with a sufficiently small δX , then η0 produced by Algorithm 3 will

satisfy that |η̇∗η(0)| is arbitrarily close to

n3/2 + ‖λ‖2 ‖γ‖
2
2√

n2 + ‖λ‖2
2 ‖γ‖

2
2

√
n+ ‖γ‖2

2

> 1− 2δ.
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By Theorem 4.3.12, the constant ξ in Theorem 4.3.10 can be set to 1− 2δ

in a low noise setting. For δ < 0.19, this constant ξ is larger than the one in

Remark 4.3.11, and allows ρ̃ < 1 for more choices of s1.

Our guarantee for the initialization requires that the number n of sensors

scales quadratically (up to log factors) in the sparsity s0, which seems sub-

optimal. Similar suboptimal sampling complexities show up in sparse PCA

[117] and sparse phase retrieval [102, 104, 118].

In the joint sparsity case, instead of estimating the supports of x·1, x·2, . . . , x·N

separately, one can estimate the row support of X directly by sorting∑
j∈[N ]

∥∥d∗·((j−1)m+`)E
∥∥2

2

for ` ∈ [m] and finding the s1 largest. In this case, Assumption 4.3.5 can

be changed to: There exists a subset T ′ of large rows (in terms of `2 norm),

such that for all ` ∈ T ′, ∑
j∈[N ] |x`j|2

‖X‖2
F

≥ ω

s0

,

and ∑
j∈[N ],`′∈[m]\T ′ |x`′j|2

‖X‖2
F

≤ δX .

In this case, the subset T ′ can be identified and an initialization η(0) can be

computed under the same conditions as in Theorem 4.3.12, which can be

proved using the same arguments.

4.4 Fundamental Estimates

To prove the main results, we must first establish some fundamental estimates

specific to BGPC. Proofs of some lemmas in this section can be found in

Appendix B.

4.4.1 A Gap in Eigenvalues

A key component in establishing a perturbation bound for an eigenvector

problem (e.g., Theorem 4.3.7) is bounding the gap between eigenvalues.

Lemma 4.4.1 gives us such a bound.
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Lemma 4.4.1. Suppose Assumptions 4.3.1 – 4.3.3 are satisfied and α =
√
n. Then the smallest eigenvalue of EΩTηBsΩ

∗
Tη

is 0, and the rest of the

eigenvalues reside in the interval [ (1−δ)2

1+δ
, 2(1 + δ)].

4.4.2 Perturbation Due to Randomness in A

Next, we show that ΩTηBsΩ
∗
Tη

, whose randomness comes from A, is close to

its mean EΩTηBsΩ
∗
Tη

under certain conditions.

Lemma 4.4.2. Suppose Assumptions 4.3.1 – 4.3.3 are satisfied, and α =
√
n. For any constant δB > 0, there exist absolute constants C, c > 0, such

that:

• Subspace case: If (4.10) is satisfied with C, then

‖Bs − EBs‖ ≤ δB

with probability at least 1− n−c − e−cm.

• Joint sparsity case: If (4.13) is satisfied with C, then∥∥∥ΩTηBsΩ
∗
Tη − EΩTηBsΩ

∗
Tη

∥∥∥ ≤ δB

for all T1 = · · · = TN and Tη defined in (4.9), with probability at least

1− n−c −m−cs.

Proof of Lemma 4.4.2. Recall that

ΩTηBsΩ
∗
Tη =

[
ΩTxD

∗DΩ∗Tx
√
nΩTxD

∗Es√
nE∗sDΩ∗Tx nE∗sEs

]
.

It follows that ∥∥∥ΩTηBsΩ
∗
Tη − EΩTηBsΩ

∗
Tη

∥∥∥
≤
∥∥ΩTxD

∗DΩ∗Tx − EΩTxD
∗DΩ∗Tx

∥∥ (4.17)

+ n ‖E∗sEs − EE∗sEs‖ (4.18)

+ 2
√
n ‖ΩTxD

∗Es − EΩTxD
∗Es‖ . (4.19)

77



Lemma 4.4.2 follows from the bounds on the spectral norms in (4.17) – (4.19)

in Lemmas 4.4.3 – 4.4.6, respectively.

Lemma 4.4.3. Suppose Assumption 4.3.1 is satisfied, then there exist abso-

lute constants C1, c1 > 0, such that:

• Subspace case:

‖D∗D − ED∗D‖ ≤ C1

√
m

n
,

with probability at least 1− e−c1m.

• Joint sparsity case: For any {Tj}Nj=1 and Tx defined in (4.8),

∥∥ΩTxD
∗DΩ∗Tx − EΩTxD

∗DΩ∗Tx
∥∥ ≤ C1

√
s

n
logm,

with probability at least 1−m−c1s.

Lemma 4.4.4. Suppose Assumptions 4.3.1 – 4.3.3 are satisfied, then there

exist absolute constants C2, c2 > 0, such that

• Subspace case:

‖E∗sEs − EE∗sEs‖ ≤
C2

n
max

{√ log n

N
,

√
log n

m
,
log n

N
,
log n

m

}
,

• Joint sparsity case:

‖E∗sEs − EE∗sEs‖ ≤
C2

n
max

{√ log n

N
,

√
log n

s0

,
log n

N
,
log n

s0

}
,

with probability at least 1− n−c2.

Lemma 4.4.5 (Subspace Case). Suppose Assumptions 4.3.1 – 4.3.3 are

satisfied, and min{N,m} > log n, then there exist absolute constants C3, c3 >

0, such that

‖D∗Es − ED∗Es‖ ≤ C3 max
{√ log(Nm+ n)

nN
,√

log(Nm+ n)

nm
,

√
m log(Nm+ n)

n

}
,
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with probability at least 1− n−c3.

Lemma 4.4.6 (Joint Sparsity Case). Suppose Assumptions 4.3.1 – 4.3.3

are satisfied, then there exist absolute constants C3, c3 > 0, such that for all

T1 = · · · = TN ,

‖ΩTxD
∗Es − EΩTxD

∗Es‖

≤ C3s
1/4
0 (s+N)1/4(

√
n+
√
s+N)1/2

nmin{√s0,
√
N}

log3 n log(sN +m),

with probability at least 1− n−c3.

4.4.3 Perturbation Due to Noise

We established some fundamental estimates regarding Bs in Sections 4.4.1

and 4.4.2. In this section, we turn to perturbation caused by noise. By the

definitions of B, Bs, E, Es, and En, we have

B = Bs +Bn,

where

Bn :=

[
0 αD∗En

αE∗nD α2(E∗sEn + E∗nEs + E∗nEn)

]
.

Therefore,

ΩTηBnΩ∗Tη

=

[
0 αΩTxD

∗En

αE∗nDΩ∗Tx α2(E∗sEn + E∗nEs + E∗nEn)

]
.

Lemma 4.4.7 gives an upper bound on the spectral norm of the perturba-

tion from noise.

Lemma 4.4.7. Suppose Assumptions 4.3.1 – 4.3.3 are satisfied. Let α =
√
n

and let ν be defined by (4.12). Then there exist absolute constants c, C, C ′ > 0

such that:

• Subspace case: If (4.10) is satisfied, then with probability at least
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1− n−c

‖Bn‖ ≤ C ′max{ν, ν2}.

Additionally, for any constant δW > 0, there exists an absolute constant

CW > 0, if Assumption 4.3.4 is satisfied with CW , then the above bound

becomes

‖Bn‖ ≤ δW .

• Joint sparsity case: If (4.13) is satisfied, then with probability at

least 1− n−c ∥∥∥ΩTηBnΩ∗Tη

∥∥∥ ≤ C ′max{N3/2ν, ν2}

for all T1 = · · · = TN and Tη defined in (4.9). Additionally, for any

constant δW > 0, there exists an absolute constant CW > 0, if Assump-

tion 4.3.4 is satisfied with CW , then the above bound becomes∥∥∥ΩTηBnΩ∗Tη

∥∥∥ ≤ δW .

Proof. To complete the proof, we bound the spectral norms of ΩTxD
∗En,

E∗sEn, and E∗nEn in Lemmas 4.4.8, 4.4.10, and 4.4.11, respectively.

Lemma 4.4.8 (Subspace Case). Suppose Assumption 4.3.1 is satisfied,

and m > log n, then there exist absolute constants C4, c4 > 0, such that

‖D∗En‖ ≤ C4 max
{√

log(Nm+ n),

√
Nm

n
log(Nm+ n)

}
max

k∈[n],j∈[N ]
|wkj|,

with probability at least 1− n−c4.

Lemma 4.4.9 (Joint Sparsity Case). Suppose Assumption 4.3.1 is sat-

isfied, then there exist absolute constants C4, c4 > 0, such that for all T1 =

· · · = TN ,

‖ΩTxD
∗En‖ ≤ C4

(√
sN +

√
sN logm+

√
N log3 n

)
·
√

log n max
k∈[n],j∈[N ]

|wkj|,

with probability at least 1− n−c4.
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Lemma 4.4.10. Suppose Assumptions 4.3.1 – 4.3.3 are satisfied, then there

exist absolute constants C5, c5 > 0, such that

• Subspace case:

‖E∗sEn‖ ≤ C5

√
N

n
max

{
1,

√
log n

N
,

√
log n

m

}
· max
k∈[n],j∈[N ]

|wkj|,

• Joint sparsity case:

‖E∗sEn‖ ≤ C5

√
N

n
max

{
1,

√
log n

N
,

√
log n

s0

}
· max
k∈[n],j∈[N ]

|wkj|,

with probability at least 1− n−c5.

Lemma 4.4.11.

‖E∗nEn‖ ≤ N max
k∈[n],j∈[N ]

|wkj|2,

4.4.4 Scalar Concentration

We now introduce a few scalar concentration bounds that are useful in the

proof of Theorem 4.3.12.

Lemma 4.4.12. Suppose Assumptions 4.3.1 – 4.3.4 is satisfied, then there

exist absolute constants C6, c6 > 0, such that for all j ∈ [N ] and ` ∈ [m], we

have∣∣∣∣∣∣
∑
k∈[n]

(
|λkak`a>k·x·j|2 − E|λkak`a>k·x·j|2

)∣∣∣∣∣∣ ≤ C6 ‖x·j‖2
2 log3(nmN)

n3/2
, (4.20)

∣∣∣∣∣∣
∑
k∈[n]

λkak`ak`a
>
k·x·jwkj

∣∣∣∣∣∣ ≤ C6 ‖x·j‖2 log2(nmN)

n
max

k∈[n],j∈[N ]
|wkj|

≤
C6CW ‖x·j‖2

2 log2(nmN)√
1− θn3/2

, (4.21)
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and ∣∣∣∣∣∣
∑
k∈[n]

(
|ak`wkj|2 − E|ak`wkj|2

)∣∣∣∣∣∣ ≤ C6 log2(nmN)

n1/2
max

k∈[n],j∈[N ]
|wkj|2

≤
C6C

2
W ‖x·j‖

2
2 log2(nmN)

(1− θ)n3/2
, (4.22)

with probability at least 1− n−c6.

4.5 Proofs of the Main Results

4.5.1 Proof of the Perturbation Bound for the Eigenvector
Problem

In this section, we prove Theorem 4.3.7. Theorem 4.3.8 can be proved simi-

larly.

Proof of Theorem 4.3.7. First,

G = βINm+n −B = (βINm+n − EBs)− (Bs − EBs)−Bn. (4.23)

Lemma 4.4.1 establishes a gap in the eigenvalues of the matrix EBs – the

smallest and the second-smallest eigenvalues of EBs are separated by a gap

of at least
(1− δ)2

1 + δ
≥ 1− 3δ > 0.

Therefore, the gap between the largest and the second-largest eigenvalues

of βINm+n − EBs is at least 1 − 3δ. By Lemmas 4.4.2 and 4.4.7, there

exist absolute constants c, C, C ′, CW > 0 such that if all the assumptions are

satisfied, then with probability at least 1− 2n−c − e−cm,

‖(Bs − EBs) +Bn‖ ≤ ‖Bs − EBs‖+ ‖Bn‖ ≤
1− 3δ

4
, (4.24)

‖Bn‖ ≤ C ′max{ν, ν2}. (4.25)

Recall that η̇ is the principal eigenvector of βINm+n − EBs. By the Davis-
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Kahan sin θ Theorem ([114]; see also [42, Theorem 8.1.12]), (4.24) and (4.25)

imply

sin∠(η̇, η̂) ≤ 4

1− 3δ
‖(Bs − EBs +Bn)η̇‖2

≤ 4

1− 3δ
‖Bn‖ ≤

4C ′

1− 3δ
max{ν, ν2},

where the second inequality is due to Bsη̇ = EBsη̇ = 0.

Theorem 4.3.7 follows from the above bound, and the fact that

d(η̇, η̂) =
√

2− 2 cos∠(η̇, η̂) = 2 sin
∠(η̇, η̂)

2
≤ 2 sin∠(η̇, η̂).

One can prove Theorem 4.3.8 using the same steps as in the proof of

Theorem 4.3.7, by restricting rows and columns of matrices to the support

Tη and applying the corresponding uniform bounds on submatrices.

4.5.2 Proof of the Error Bound for Algorithm 1

Proof of Theorem 4.3.9. Recall that the largest eigenvalue of βINm+n−EBs

is β− 0 = 3
2
, and all other eigenvalues reside in the interval [3

2
− 2(1 + δ), 3

2
−

(1−δ)2

1+δ
]. By Lemmas 4.4.2 and 4.4.7, there exist constants c, C, CW > 0 such

that

‖(Bs − EBs) +Bn‖ ≤ ‖Bs − EBs‖+ ‖Bn‖ ≤ min
{
δ,

(1− δ)2

1 + δ
+ 3δ − 1

}
,

with probability at least 1 − 2n−c − e−cm. By (4.23), the largest eigenvalue

of G is ‖G‖ ≥ 3
2
− δ, the corresponding eigenvector is η̂, and all the other

eigenvalues of G reside in the interval [−1
2
− 3δ, 1

2
+ 3δ].

Next, we establish the convergence rate of power iterations for BGPC. By

the eigenvalue decomposition of G and the Pythagorean theorem,

Gη̂ = ‖G‖ η̂,

∥∥Gη(t−1)
∥∥ ≤√‖G‖2 |η̂∗η(t−1)|2 +

(1

2
+ 3δ

)2

(1− |η̂∗η(t−1)|2).
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Therefore,

|η̂∗η(t)| = |η̂
∗Gη(t−1)|
‖Gη(t−1)‖2

≥ ‖G‖ |η̂∗η(t−1)|√
‖G‖2 |η̂∗η(t−1)|2 + (1

2
+ 3δ)2(1− |η̂∗η(t−1)|2)

≥ |η̂∗η(t−1)| 1√
|η̂∗η(t−1)|2 + (1+6δ

3−2δ
)2(1− |η̂∗η(t−1)|2)

= |η̂∗η(t−1)| 1√
1−

(
1− (1+6δ

3−2δ
)2
)
(1− |η̂∗η(t−1)|2)

≥ |η̂∗η(t−1)|
[
1 +

1

2

(
1− (

1 + 6δ

3− 2δ
)2
)
(1− |η̂∗η(t−1)|2)

]
,

where the last inequality is due to 1√
1−z ≥ 1 + 1

2
z for z ∈ (0, 1). It follows

that

[1− |η̂∗η(t)|] ≤ [1− |η̂∗η(t−1)|]

×
[
1− 1

2

(
1− (

1 + 6δ

3− 2δ
)2
)
|η̂∗η(t−1)|(1 + |η̂∗η(t−1)|)

]
. (4.26)

Clearly, {|η̂∗η(τ)|}tτ=0 is monotonically increasing unless |η̂∗η(0)| = 0. By the

definition ξ := |η̂∗η(0)|, the convergence rate in (4.26) is bounded by ρ2 < 1.

It follows that

[1− |η̂∗η(t)|] ≤ ρ2[1− |η̂∗η(t−1)|] ≤ ρ2t · [1− |η̂∗η(0)|].

Hence

d(η̂, η(t)) ≤ ρt · d(η̂, η(0)).

By Theorem 4.3.7, for τ = 0, . . . , t

d(η̇, η̂) ≤ ∆.

It follows from the triangle inequality that

d(η̇, η(t)) ≤ ρt · d(η̇, η(0)) + 2∆.
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4.5.3 Proof of the Error Bound for Algorithm 2

Proof of Theorem 4.3.10. In the joint sparsity case, any iterate

η(τ) = [x(τ)>,−γ(τ)>/α]>

satisfies that x(τ) is the concatenation of jointly sparse {x(τ)
·j }Nj=1. In the t-th

iteration, we define a support set T (t) that has cardinality s = s0 + 2s1, and

satisfies

supp(x·j)
⋃

supp(x
(t−1)
·j )

⋃
supp(x

(t)
·j ) ⊂ T (t),

for all j ∈ [N ]. Define T
(t)
η using (4.8) and (4.9) with T1 = · · · = TN =

T (t). Next, we focus on the submatrix Ω
T

(t)
η
GΩ∗

T
(t)
η

and subvectors Ω
T

(t)
η
η̇ and

Ω
T

(t)
η
η(t), etc. Since the supports of η(t) and η̇ are subsets of T

(t)
η , we have

|η̇∗Ω∗
T

(t)
η

Ω
T

(t)
η
η(t)| = |η̇∗η(t)|.

We prove by induction that {|η̇∗η(τ)|}tτ=0 is monotonically increasing (until

it crosses a threshold specified later in the proof). Suppose {|η̇∗η(τ)|}t−1
τ=0 is

monotonically increasing. Next, we prove

|η̇∗η(t)| > |η̇∗η(t−1)|.

By the assumption that |η̇∗η(0)| ≥ ξ + ∆̃ and Theorem 4.3.8, we have

|η̂∗
T

(t)
η

Ω
T

(t)
η
η(t−1)| ≥ |η̇∗η(t−1)| − d(Ω

T
(t)
η
η̇, η̂

T
(t)
η

)

≥ ξ + ∆̃− ∆̃ = ξ.

Following the same steps in the proof of Theorem 4.3.9, we obtain a bound
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for η̃(t) similar to (4.26):

[1− |η̂∗
T

(t)
η

Ω
T

(t)
η
η̃(t)|]

≤ [1− |η̂∗
T

(t)
η

Ω
T

(t)
η
η(t−1)|]

[
1− 1

2

(
1− (

1 + 6δ

3− 2δ
)2
)

|η̂∗
T

(t)
η

Ω
T

(t)
η
η(t−1)|(1 + |η̂∗

T
(t)
η

Ω
T

(t)
η
η(t−1)|)

]
≤ [1− |η̂∗

T
(t)
η

Ω
T

(t)
η
η(t−1)|]

[
1− 1

2

(
1− (

1 + 6δ

3− 2δ
)2
)
ξ(1 + ξ)

]
= ρ2[1− |η̂∗

T
(t)
η

Ω
T

(t)
η
η(t−1)|],

where ρ is defined in (4.15). It follows that

d(η̂
T

(t)
η
, Ω

T
(t)
η
η̃(t)) ≤ ρ · d(η̂

T
(t)
η
, Ω

T
(t)
η
η(t−1)).

We use the perturbation bound in Theorem 4.3.8 one more time:

d(Ω
T

(t)
η
η̇, Ω

T
(t)
η
η̃(t)) ≤ ρ · d(Ω

T
(t)
η
η̇, Ω

T
(t)
η
η(t−1)) + 2∆̃.

Equivalently, √
1− |η̇∗η̃(t)| ≤ ρ

√
1− |η̇∗η(t−1)|+

√
2∆̃. (4.27)

Next, we show that the truncation step amplifies the error only by a small

factor. The vector Π̃s1(η̃(t)) is the projection of η̃(t) onto the set of structured

sparse vectors, and η(t) is the normalized version. We define three index sets

Ta = supp(η̇)\supp(η(t)),

Tb = supp(η̇)
⋂

supp(η(t)),

Tc = supp(η(t))\supp(η̇).

By the Cauchy-Schwarz inequality,

|η̇∗η̃(t)|2 ≤
∥∥ΩTa η̃

(t)
∥∥2

2
+
∥∥ΩTb η̃

(t)
∥∥2

2

≤ 1−
∥∥ΩTc η̃

(t)
∥∥2

2
≤ 1− |Tc|

|Ta|
∥∥ΩTa η̃

(t)
∥∥2

2
,

where the last inequality is due to projection rule, i.e., Π̃s1(η̃(t)) keeps the

largest entries of η̃(t) (in the part corresponding to x). Since |Tc|/|Ta| ≥ s1/s0,
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we have ∥∥ΩTa η̃
(t)
∥∥

2
≤
√
s0

s1

(1− |η̇∗η̃(t)|2). (4.28)

Also by the Cauchy-Schwarz inequality,

|η̇∗η̃(t)|2 ≤ (
∥∥ΩTa η̃

(t)
∥∥

2
‖ΩTa η̇‖2 +

∥∥ΩTb η̃
(t)
∥∥

2
‖ΩTb η̇‖2)2

≤
(∥∥ΩTa η̃

(t)
∥∥

2
‖ΩTa η̇‖2 +

√
1− ‖ΩTa η̃

(t)‖2
2

√
1− ‖ΩTa η̇‖

2
2

)2

≤ 1− (
∥∥ΩTa η̃

(t)
∥∥

2
− ‖ΩTa η̇‖2)2.

It follows that

‖ΩTa η̇‖2 ≤
∥∥ΩTa η̃

(t)
∥∥

2
+
√

1− |η̇∗η̃(t)|2. (4.29)

By (4.28) and (4.29),

|η̇∗η̃(t)| − |η̇∗Π̃s1(η̃(t))| ≤ |η̇∗
(
η̃(t) − Π̃s1(η̃(t))

)
|

=
∥∥ΩTa η̃

(t)
∥∥

2
‖ΩTa η̇‖2 ≤

(√s0

s1

+
s0

s1

)
(1− |η̇∗η̃(t)|2). (4.30)

By (4.27) and (4.30),√
1− |η̇∗η(t)| ≤

√
1− |η̇∗Π̃s1(η̃(t))|

≤
√

1− |η̇∗η̃(t)|

√
1 +

(√s0

s1

+
s0

s1

)
(1 + |η̇∗η̃(t)|)

≤
√

1− |η̇∗η̃(t)|

√
1 + 2

(√s0

s1

+
s0

s1

)
≤ ρ

√
1 + 2

√
s0

s1

+
2s0

s1

√
1− |η̇∗η(t−1)|+

√
10∆̃

≤ ρ̃
√

1− |η̇∗η(t−1)|+
√

10∆̃.

Therefore, {|η̇∗η(τ)|}tτ=0 indeed monotonically increases unless
√

1− |η̇∗η(τ)|
reaches

√
10∆̃/(1− ρ̃) for some τ . The proof by induction is complete.

It follows that √
1− |η̇∗η(t)| ≤ ρ̃t

√
1− |η̇∗η(0)|+

√
10∆̃

1− ρ̃
,
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or equivalently

d(η̇, η(t)) ≤ ρ̃td(η̇, η(0)) +
2
√

5∆̃

1− ρ̃
.

4.5.4 Proof of the Guarantee for Algorithm 3

Proof of Theorem 4.3.12. We first show that, under the conditions in The-

orem 4.3.12, the support Tj in Algorithm 3 contains T ′j ⊂ supp(x·j) in As-

sumption 4.3.5. To this end, we prove that the norms of the rows of D∗E

indexed by T ′j are larger than those outside supp(x·j). For a fixed j ∈ [N ],

the j-th block of D∗E is indexed by the set (j − 1)m + [m]. Therefore, the

goal is to show that

min
`∈T ′j

∥∥d∗·((j−1)m+`)E
∥∥2

2
> max

`′∈[m]\supp(x·j)

∥∥d∗·((j−1)m+`′)E
∥∥2

2
,

or equivalently,

min
`∈T ′j

∑
k∈[n]

|ak`ykj|2 > max
`′∈[m]\supp(x·j)

∑
k∈[n]

|ak`′ykj|2.

Since

E|ak`ykj|2 =
1

n2
|λk|2(‖x·j‖2

2 + |x`j|2) +
1

n
|wkj|2,

it suffices to show that for all ` ∈ T ′j and `′′ ∈ [m],

1

n2

∑
k∈[n]

|λk|2|x`j|2 > 2
∣∣∣∑
k∈[n]

(
|ak`′′ykj|2 − E|ak`′′ykj|2

)∣∣∣. (4.31)

Recall that

ykj = λka
>
k·x·j + wkj.
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By the triangle inequality and Lemma 4.4.12, for all j ∈ [N ] and ` ∈ [m],∣∣∣∑
k∈[n]

(
|ak`ykj|2 − E||ak`ykj|2

)∣∣∣
≤
∣∣∣∑
k∈[n]

(
|λkak`a>k·x·j|2 − E|λkak`a>k·x·j|2

)∣∣∣
+ 2
∣∣∣∑
k∈[n]

Re
(
λkak`ak`a

>
k·x·jwkj

)∣∣∣
+
∣∣∣∑
k∈[n]

(
|ak`wkj|2 − E|ak`wkj|2

)∣∣∣
≤ C6

(
1 +

CW√
1− θ

)2 ‖x·j‖2
2 log3(nmN)

n3/2
,

with probability at least 1− n−c6 .

By Assumptions 4.3.2 and 4.3.5, if we plug the above result into (4.31),

then the following sample complexity is sufficient for Algorithm 3 to correctly

identify the subsets T ′j (j ∈ [N ]) with probability at least 1− n−c6 :

n1/2 >
2C6

ω(1− δ)

(
1 +

CW√
1− θ

)2

s0 log3(nmN).

Thus the first half of Theorem 4.3.12 is proved.

Given that the support Tj covers the large entries indexed by T ′j ,∥∥∥∥EΠTxD
∗E − 1

n
xλ>

∥∥∥∥ =

∥∥∥∥ 1

n
ΠTxxλ

> − 1

n
xλ>

∥∥∥∥
≤

√√√√1 + δ

n

∑
j∈[N ],`′∈[m]\T ′j

|x`′j|2 ≤
√

(1 + δ)δX
n

. (4.32)

We also have

‖ΠTxD
∗E − EΠTxD

∗E‖

≤ ‖ΩTxD
∗Es − EΩTxD

∗Es‖+ ‖ΩTxD
∗En‖

≤ 1

α
(
∥∥∥ΩTηBsΩ

∗
Tη − ΩTηEBsΩ

∗
Tη

∥∥∥+
∥∥∥ΩTηBnΩ∗Tη

∥∥∥)

≤ 1√
n

(δB + δW ), (4.33)

where the last inequality follows from Lemmas 4.4.2 and 4.4.7, given that the
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conditions of Theorem 4.3.10 are satisfied. By the triangle inequality, and

(4.32) and (4.33),∥∥∥∥ΠTxD
∗E − 1

n
xλ>

∥∥∥∥ ≤ 1√
n

(δB + δW +
√

(1 + δ)δX),

where δB can be made arbitrarily small by a sufficiently large C in (4.13),

δW can be made arbitrarily small by a sufficiently small CW in Assumption

4.3.4, and the last term can be made arbitrarily small by a sufficiently small

δX in Assumption 4.3.5. Therefore, the first left and right singular vectors u

and v can become arbitrarily close to x and to λ/ ‖λ‖2 (up to a global phase

factor, i.e., a constant of unit modulus), respectively, and |η̇∗η(0)| approaches

n3/2 + ‖λ‖2 ‖γ‖
2
2√

n2 + ‖λ‖2
2 ‖γ‖

2
2

√
n+ ‖γ‖2

2

> 1− 2δ.

The inequality follows from Assumption 4.3.2, i.e.,
√

1− δ ≤ |λk| ≤
√

1 + δ,

and 1/
√

1 + δ ≤ |γk| = 1/|λk| ≤ 1/
√

1− δ.

4.6 Numerical Experiments

In this section, we test the empirical performance of Algorithm 1 and Algo-

rithm 2.

4.6.1 Subspace Case: Power Iteration vs. Least Squares

In Algorithm 1, we choose α =
√
n, and β = ‖B‖ (computed using another

power iteration on B). We compare Algorithm 1 with the least squares

approach in [40, Section 3.3], where γ1 = 1 is used to avoid the trivial solution.

We generate A ∈ Cn×m as a complex Gaussian random matrix, whose

entries are drawn independently from CN (0, 1
n
), i.e., the real and imaginary

part are drawn independently from N (0, 1
2n

). The unknown gains and phases

λk are generated as follows:

λk = e
√
−1ϕk

(
1 + (

√
1 + δ − 1)e

√
−1ϕ′k

)
, ∀k ∈ [n], (4.34)
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Figure 4.1: Illustration of λk in the complex plane.

such that λk is on a small circle of radius
√

1 + δ − 1 centered at a point

on the unit circle, and ϕk and ϕ′k are drawn independently from a uniform

distribution on [0, 2π). Figure 4.1 visualizes one such synthesized λk in the

complex plane. We set δ = 0.1 in all the numerical experiments. The entries

of X ∈ Cm×N are drawn independently from CN (0, 1
Nm

), so that the Frobe-

nius norm of X is approximately 1. In the noisy setting, we generate complex

white Gaussian noise W ∈ Cn×N , whose entries are drawn from CN (0,
σ2
W

Nn
).

We define measurement signal-to-noise ratio (MSNR) and recovery signal-to-

noise ratio (RSNR) as:

MSNR := 20 log10

‖diag(λ)AX‖F

‖W‖F

,

RSNR := −10 log10(2− 2|η̇∗η(t)|).

We test the two approaches at four noise levels: σW = 0, 0.1, 0.2, and 0.5,

which roughly correspond to MSNR of∞, 20 dB, 14 dB, and 6 dB. At these

noise levels, we say the recovery is successful if the RSNR exceeds 30 dB, 20

dB, 14 dB, 6 dB, respectively. The success rates do not change dramatically

as functions of these thresholds. In the experiments, we set n = 128, N = 16,

and m = 8, 16, 24, . . . , 64. For each m, we repeat the experiments 100 times

and compute the empirical success rates, which are shown in Figure 4.2.

As seen in Figure 4.2(a), both power iteration and least squares achieve

perfect recovery in the noiseless setting. However, as seen in Figures 4.2(b) –

4.2(d), power iteration is clearly more robust against noise than least squares,

whose performance degrades more severely in the noisy settings.

The empirical phase transitions of power iteration are shown in Figure 4.3.
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Figure 4.2: Subspace case: The empirical success rates of power iteration
(blue solid line) and least squares (red dashed line). The x-axis represents
m, and the y-axis represents the empirical success rate. (a) – (d) are the
results with σW = 0, 0.1, 0.2, and 0.5, respectively.

We fix N = 16 and plot the phase transition with respect to n and m (Figure

4.3(a)); we then fix n = 2m and plot the phase transition with respect to N

and m (Figure 4.3(b)). Clearly, to achieve successful recovery, n must scale

linearly with m, but N can be small compared to m and n. This confirms the

sample complexity in Theorem 4.3.9, of n & m and N & 1. Careful readers

may notice in Figure 4.3(b) that for N = 5 the success rates at m < 16 are

worse than those at m ≥ 16. This seemingly peculiar phenomenon is caused

by a small n = 2m, which does not belong to the large number regime

associated with a high probability.

64 128 192 256

64
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192

256

(a)

16 32 48 64

2

3
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(b)

Figure 4.3: The empirical phase transition of power iteration. Grayscale
represents success rates, where white equals 1, and black equals 0. (a) The
x-axis represents m, and the y-axis represents n. (b) The x-axis represents
m, and the y-axis represents N .
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4.6.2 Sparsity Case: Truncated Power Iteration vs. `1

Minimization

In the sparsity case, we use the same setup described in the previous section,

except for the signal X. The supports of the s0-sparse columns of X are

chosen uniformly at random, and the nonzero entries follow CN (0, 1
Ns0

). This

unstructured sparsity case is more challenging than the joint sparsity case in

Theorem 4.3.10.

In Algorithm 2, we choose α =
√
n, and β = ‖B‖. In all the experi-

ments, we assume that the sparsity level s0 is known, and set s1 = 2s0 for

convenience. A more sophisticated scheme that decreases s1 as the iteration

number increases may lead to better empirical performance [44].

For the experiment we suppose that the phases {ϕk}nk=1 in (4.34) are avail-

able, and let

γ(0) := [e−
√
−1ϕ1 , . . . , e−

√
−1ϕn ]> (4.35)

denote the initial estimate of γ, which is close to but different from the true

γ, i.e., the entrywise inverse of λ in (4.34). See Figure 4.1 for an illustration

of λk, γk, and γ
(0)
k . Then we initialize Algorithm 2 with η(0) = [0>Nm,1, γ

(0)>]>.

We compare Algorithm 2 with an `1 minimization approach. Wang and

Chi [41] adopted an approach tailored for the case where A is the DFT

matrix and λk ≈ 1. They use a linear constraint
∑

k∈[n] γk = n to avoid the

trivial solution of all zeros. For fair comparison, we revise their approach to

accommodate arbitrary A and λ. The revised approach uses the alternating

direction method of multipliers (ADMM) [119] to solve the following convex

optimization problem:2

min
γ,X

‖vec(X)‖1

s.t. diag(γ)Y = AX,

γ(0)∗γ = n.

Here, γ(0) is the initial estimate of γ defined in (4.35), and used as initializa-

tion in our Algorithm 2 in this comparison.

2In the noisy setting, one could replace the linear constraint diag(γ)Y = AX with
an ellipsoid constraint ‖diag(γ)Y −AX‖F ≤ ε. However, the parameter ε needs to be
adjusted with noise levels. For fair comparison of robustness to noise, we use the linear
constrained `1 minimization in the noisy setting (similar to [41]).
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We conduct numerical experiments with the same four noise levels and

criterion for successful recovery as in Section 4.6.1. In the experiments, we set

n = 128, m = 256, N = 16, and s0 = 8, 16, 24, . . . , 64. For each s0, we repeat

the experiments 100 times and compute the empirical success rates, which

are shown in Figure 4.4. In the noiseless case (Figure 4.4(a)), `1 minimization

achieves a slightly higher success rate near the phase transition. However,

truncated power iteration is more robust against noise than `1 minimization,

which breaks down completely at the higher noise levels (Figures. 4.4(b) –

4.4(d)).

Figure 4.4(a) clearly shows that truncated power iteration recovers η suc-

cessfully when n = 128, N = 16, and s0 = 32. This suggests that truncated

power iteration may succeed when n and N are (up to log factors) on the

order of s0 and 1, respectively. However, while the scaling with the number

of sensors n agrees with Theorem 4.3.10, success with such small number of

snapshots N is not guaranteed by our current theoretical analysis.
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Figure 4.4: Sparsity case: The empirical success rates of truncated power
iteration (blue solid line) and `1 minimization (red dashed line). The x-axis
represents s0, and the y-axis represents the empirical success rate. (a) – (d)
are the results with σW = 0, 0.1, 0.2, and 0.5, respectively.

Next, we assume that only a subset of the phases {ϕk}nk=1 are available, and

examine to what extent Algorithm 2 and `1 minimization depend on a good

initial estimate of γ. In the numerical results shown in Figure 4.5, we consider

only the noiseless setting of BGPC with sparsity, and set s0 = 4, 8, 12, . . . , 32.

In Figures 4.5(a) and 4.5(b), we replace 1/2 and 3/4 of {ϕk}nk=1 with random
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phases, respectively, and use the resulting bad estimate γ(0) in Algorithm 2

and `1 minimization. As seen in Figure 4.5, truncated power iteration is less

dependent on accurate initial estimate of γ.
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Figure 4.5: Sparsity case: The empirical success rates of truncated power
iteration (blue solid line) and `1 minimization (red dashed line), with bad
initial estimate of the phases. The x-axis represents s0, and the y-axis
represents the empirical success rate. (a) and (b) are the results for which
1/2 and 3/4 of {ϕk}nk=1 are initialized with random phases.

We repeat the above experiments for the joint sparsity case, where we

replace Π̃s1 in Algorithm 2 with Π̃′s1 . We also replace the `1 norm ‖vec(X)‖1

in the competing approach with a mixed norm:

‖X‖2,1 =
∑
`∈[m]

(∑
j∈[N ]

|x`j|2
)1/2

,

which is a well-known convex method for the recovery of jointly sparse signals.

The results for different noise levels and for inaccurate γ(0) are shown in

Figures 4.6 and 4.7, respectively. In the joint sparsity case, truncated power

iteration is robust against noise, but seems less robust against errors in the

initial phase estimate. We conjecture that the failure of Algorithm 2 in

the joint sparsity case is due to the restriction of Π̃′s1 . By projecting onto

jointly sparse supports, the algorithm is likely to converge prematurely to

an incorrect support. When compared to the results in Figures 4.7(a) and

4.7(b), Figures 4.7(c) and 4.7(d) show that using Π̃s1 instead of Π̃′s1 in the

first half of the iterations indeed improves the performance of Algorithm 2

in the joint sparsity case. In the rest of the experiments, we use Π̃s1 during

the first half of the iterations in Algorithm 2 for the joint sparsity case.

Next, we plot the phase transitions for truncated power iteration. We fix

N = 16 and m = 2n and plot the empirical phase transition with respect to n

and s0 (sparsity case in Figure 4.8(a), and joint sparsity case in Figure 4.8(c));

we then fix n = 4s0 and m = 2n and plot the empirical phase transition with
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Figure 4.6: Joint sparsity case: The empirical success rates of truncated
power iteration (blue solid line) and mixed minimization (red dashed line).
The x-axis represents s0, and the y-axis represents the empirical success
rate. (a) – (d) are the results with σW = 0, 0.1, 0.2, and 0.5, respectively.
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Figure 4.7: Joint sparsity case: The empirical success rates of truncated
power iteration with Π̃′s1 (blue solid line) and mixed minimization (red
dashed line), with bad initial estimate of the phases. The x-axis represents
s0, and the y-axis represents the empirical success rate. (a) and (b) are the
results for which 1/2 and 3/4 of {ϕk}nk=1 are initialized with random

phases. In (c) and (d), we repeat the experiments, but use Π̃s1 instead of

Π̃′s1 in the first half of the iterations.
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respect to N and s0 (sparsity case in Figure 4.8(b), and joint sparsity case

in Figure 4.8(d)). It is seen that, to achieve successful recovery, n must scale

linearly with s0, but N can be small compared to s0 and n. On the one hand,

the scaling law n & s0 in Theorem 4.3.10 is confirmed by Figure 4.8; on the

other hand, N &
√
s0 seems conservative and might be an artifact of our

proof techniques. We have yet to come up with a theoretical guarantee that

covers the more general sparsity case, or requires a less demanding sample

complexity N & 1. In Figures 4.8(b) and 4.8(d), the success rates at smaller

s0 are lower than those at a larger s0, because the number of sensors n = 4s0

is too small to yield a high probability.
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Figure 4.8: The empirical phase transition of truncated power iteration.
Grayscale represents success rates, where white equals 1, and black equals
0. (a) Sparsity case: The x-axis represents s0, and the y-axis represents n.
(b) Sparsity case: The x-axis represents s0, and the y-axis represents N . (c)
Joint sparsity case: The x-axis represents s0, and the y-axis represents n.
(d) Joint sparsity case: The x-axis represents s0, and the y-axis represents
N .

4.6.3 Sparsity Case: Initialization

In this section, we examine the quality of the initialization produced by

Algorithm 3 by comparing it with two different initializations: (i) the good

initialization η(0) = [0>Nm,1, γ
(0)>]> aided by side information on the phase

in Section 4.6.2; and (ii) a baseline initialization η(0) = [0>Nm,1,1
>
n,1]>. We
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use the same setting as in Section 4.6.2, except that N = 32. We let σW =

0.1, and claim the recovery is successful if the RSNR exceeds 20 dB. In the

experiment for the joint sparsity case, for the reason mentioned in Section

4.6.2, we ignore the joint sparsity structure and estimate the support of

different columns of X independently in the initialization and during the

first half of the iterations. Only in the second half of the iterations, we use

the projection Π̃′s1 onto jointly sparse supports.

Figure 4.9 shows that, although the initialization provided by Algorithm

3 is not as good as the accurate initialization with side information, it is far

better than the baseline. Figure 4.10 shows the empirical phase transition

with respect to n and s0, when Algorithm 3 is used to initialize truncated

power iteration (sparsity case in Figure 4.10(a), and joint sparsity case in

Figure 4.10(b)). The results suggest that when n scales linearly with s0,

Algorithm 3 can provide a sufficiently good initialization for truncated power

iteration. For example, in 4.10(a), the success rate is 1 when n = 256 and

s0 = 20. Therefore, the sample complexity n & s2
0 in Theorem 4.3.12 could

be overly conservative and an artifact of our analysis.
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Figure 4.9: The empirical success rates of truncated power iteration with
the initialization in Algorithm 3 (blue solid line), with a baseline
initialization η(0) = [0>Nm,1,1

>
n,1]> (red dashed line), and with the accurate

initialization η(0) = [0>Nm,1, γ
(0)>]> with side information in Section 4.6.2

(black dash-dot line). The x-axis represents s0, and the y-axis represents
the empirical success rate. (a) is the result for the sparsity case, and (b) is
the result for the joint sparsity case.

4.6.4 Application: Inverse Rendering

In this section, we apply the power iteration algorithm to the inverse render-

ing problem in computational relighting – given images of an object under

different lighting conditions (Figure 4.11(a)), and the surface normals of the
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Figure 4.10: The empirical phase transition of truncated power iteration
with the initialization in Algorithm 3. The x-axis represents s0, and the
y-axis represents n. (a) is the result for the sparsity case, and (b) is the
result for the joint sparsity case.

object (Figure 4.11(b)), the goal is to recover the albedos (also known as

reflection coefficients) of the object surface and the lighting conditions. In

this problem, the columns of Y = diag(λ)AX ∈ Rn×N represent images

under different lighting conditions, which are the products of the unknown

albedo map λ ∈ Rn and the intensity maps of incident light under different

conditions AX. For Lambertian surfaces, it is reasonable to assume that

the intensity of incident light resides in a subspace spanned by the first nine

spherical harmonics computed from the surface normals [29], which we de-

note by the columns of A ∈ Rn×9. Then the columns of X are the coordinates

of the spherical harmonic expansion, which parameterize the lighting condi-

tions. We can solve for λ and X using Algorithm 1. Our approach is similar

to that of Nguyen et al. [29], which also formulates inverse rendering as an

eigenvector problem. Despite the fact that the two approaches solve for the

eigenvectors of different matrices, they yield identical solutions in the ideal

scenario where the model is exact and the solution is unique.

In our experiment, we obtain N = 12 color images and the surface normals

of an object under different lighting conditions,3 and we compute the first

m = 9 spherical harmonics. We apply Algorithm 1 to each of the three color

channels, and the albedo map recovered using 200 power iterations is shown

in Figure 4.11(c). We also compute new images of the object under new

lighting conditions (Figure 4.11(d)).

3The images are downloaded from https://courses.cs.washington.
edu/courses/csep576/05wi/projects/project3/project3.htm on September 16, 2017.
The surface normals are computed using the method described in the same webpage.
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Figure 4.11: Inverse rendering and relighting. (a) We use 12 images of the
object under different lighting conditions. (b) The surface normals. The
three dimensions of the normal vectors are represented by the RGB
channels of the color image. (c) The recovered albedo map. (d) Computed
images of the object under new lighting conditions.
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CHAPTER 5

MULTICHANNEL SPARSE BLIND
DECONVOLUTION VIA MANIFOLD

GRADIENT DESCENT

5.1 MSBD on the Sphere

5.1.1 Notations

We use [n] as a shorthand for the index set {1, 2, . . . , n}. We use x(j) to denote

the j-th entry of x ∈ Rn, and H(jk) to denote the entry of H ∈ Rn×n in the

j-th row and k-th column. The superscript in h(t) denotes iteration number

in an iterative algorithm. Throughout the chapter, if an index j /∈ [n], then

the actual index is computed as modulo of n. The circulant matrix whose

first column is x is denoted by Cx. We use δjk to denote the Kronecker delta

(δjk = 0 if j 6= k and δjk = 1 if j = k). The entrywise product between

vectors x and y is denoted by x�y, and the entrywise k-th power of a vector

x is denoted by x�k. We use ‖·‖ to denote the `2 norm (for a vector), or the

spectral norm (for a matrix). We use Re(·) and Im(·) to denote the real and

imaginary parts of a complex vector or matrix.

5.1.2 Problem Statement

In MSBD, the measurements y1, y2, . . . , yN ∈ Rn are the circular convolutions

of unknown sparse vectors x1, x2, . . . , xN ∈ Rn and an unknown vector f ∈
Rn, i.e., yi = xi~ f . In this chapter, we solve for {xi}ni=1 and f from {yi}Ni=1.

One can rewrite the measurement as Y = CfX, where Y = [y1, y2, . . . , yN ]

and X = [x1, x2, . . . , xN ] are n × N matrices. Without structures, one can

solve the problem by choosing any invertible circulant matrix Cf and compute

X = C−1
f Y . The fact that X is sparse narrows down the search space.

Even with sparsity, the problem suffers from inherent scale and shift am-

biguities. Suppose Sj : Rn → Rn denotes a circular shift by j positions,
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i.e., Sj(x)(k) = x(k−j) for j, k ∈ [n]. Note that we have yi = xi ~ f =

(αSj(xi)) ~ (α−1S−j(f)) for every nonzero α ∈ R and j ∈ [n]. Therefore,

MSBD has equivalent solutions generated by scaling and circularly shifting

{xi}ni=1 and f .

Throughout this chapter, we assume that the circular convolution with the

signal f is invertible, i.e., there exists a filter g such that f ~ g = e1 (the

first standard basis vector). Equivalently, Cf is an invertible matrix, and the

DFT of f is nonzero everywhere. Since yi~ g = xi~ f ~ g = xi, one can find

g by solving the following optimization problem:

(P0) min
h∈Rn

1

N

N∑
i=1

‖Cyih‖0 , s.t. h 6= 0.

The constraint eliminates the trivial solution that is 0. If the solution to

MSBD is unique up to the aforementioned ambiguities, then the only mini-

mizers of (P0) are h = αSjg (α 6= 0, j ∈ [n]).

5.1.3 Smooth Formulation

Minimizing the non-smooth `0 “norm” is usually challenging. Instead, one

can choose a smooth surrogate function for sparsity, which can be minimized

using first-order or second-order optimization methods.

Here, we make two observations: (1) one can eliminate scaling ambiguity

by restricting h to the unit sphere Sn−1; (2) sparse recovery can be achieved

by maximizing the “spikiness” ‖·‖4
4 [120]. Based on these observations, we

adopt the following optimization problem:

(P1) min
h∈Rn

− 1

4N

N∑
i=1

‖CyiRh‖
4
4 , s.t. ‖h‖ = 1.

The matrix R := ( 1
θnN

∑N
i=1C

>
yi
Cyi)

−1/2 ∈ Rn×n is a preconditioner, where θ

is a parameter that is proportional to the sparsity level of {xi}Ni=1. In Section

5.2, under specific probabilistic assumptions on {xi}Ni=1, we explain how the

preconditioner R works.

Problem (P1) can be solved using first-order or second-order optimization

methods over Riemannian manifolds. The main result of this chapter pro-
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vides a geometric view of the objective function over the sphere Sn−1 (see

Figure 5.2). We show that some off-the-shelf optimization methods can be

used to obtain a solution ĥ close to a scaled and circularly shifted version of

the ground truth. Specifically, ĥ satisfies CfRĥ ≈ ±ej for some j ∈ [n], i.e.,

Rĥ is approximately a signed and shifted version of the inverse of f . Given

solution ĥ to (P1), one can recover f and xi (i = 1, 2, . . . , N) as follows:1

f̂ = F−1
[
F(Rĥ)�−1

]
, (5.1)

x̂i = CyiRĥ. (5.2)

5.2 Global Geometric View

5.2.1 Main Result

In this chapter, we assume that {xi}Ni=1 are random sparse vectors, and f is

invertible:

(A1) The channels {xi}Ni=1 follow a Bernoulli-Rademacher model. More pre-

cisely, xi(j) = AijBij, where {Aij, Bij}i∈[N ],j∈[n] are independent random

variables, Bij’s follow a Bernoulli distribution Ber(θ), and Aij’s follow a

Rademacher distribution (taking values 1 and −1, each with probability

1/2).

(A2) The circular convolution with the signal f is invertible. We use κ to

denote the condition number of f , which is defined as κ :=
maxj |(Ff)(j)|
mink |(Ff)(k)|

,

i.e., the ratio of the largest and smallest magnitudes of the DFT. This

is also the condition number of the circulant matrix Cf , i.e. κ =
σ1(Cf )

σn(Cf )
.

The Bernoulli-Rademacher model is a special case of the Bernoulli–sub-

Gaussian models. The derivation in this chapter can be repeated for other

sub-Gaussian nonzero entries, with different tail bounds. We use the Rademacher

distribution for simplicity.

1An alternative way to recover a sparse vector xi given the recovered f̂ and the mea-
surement yi, is to solve the non-blind deconvolution problem. For example, one can solve

the sparse recovery problem minx
1
2

∥∥∥Cf̂x− yi
∥∥∥2 + λ ‖x‖1 using FISTA [121]. We omit

the analysis of such a solution in this chapter, and focus on the simple reconstruction
x̂i = CyiRĥ.
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Let φ(x) = −1
4
‖x‖4

4. Its gradient and Hessian are defined by ∇φ(x)(j) =

−x3
j , and Hφ(x)(jk) = −3x2

jδjk. Then the objective function in (P1) is

L(h) =
1

N

N∑
i=1

φ(CyiRh),

where R = ( 1
θnN

∑N
i=1C

>
yi
Cyi)

−1/2. The gradient and Hessian are

∇L(h) =
1

N

N∑
i=1

R>C>yi∇φ(CyiRh),

HL(h) =
1

N

N∑
i=1

R>C>yiHφ(CyiRh)CyiR.

Since L(h) is to be minimized over Sn−1, we use optimization methods over

Riemannian manifolds [122]. To this end, we define the tangent space at

h ∈ Sn−1 as {z ∈ Rn : z ⊥ h} (see Figure 5.1). We study the Riemannian

gradient and Riemannian Hessian of L(h) (gradient and Hessian along the

tangent space at h ∈ Sn−1):

∇̂L(h) = Ph⊥∇L(h),

ĤL(h) = Ph⊥HL(h)Ph⊥ − 〈∇L(h), h〉Ph⊥ ,

where Ph⊥ = I −hh> is the projection onto the tangent space at h. We refer

the readers to [122] for a more comprehensive discussion of these concepts.

Figure 5.1: A demonstration of the tangent space of Sn−1 at h, the origin of
which is translated to h. The Riemannian gradient and Riemannian
Hessian are defined on tangent spaces.

The toy example in Figure 5.2 demonstrates the geometric structure of the

objective function on Sn−1. (As shown later, the quantity EL′′(h) is, up to

an unimportant rotation of the coordinate system, a good approximation to

L(h).) The local minima correspond to signed shifted versions of the ground
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(a) (b) (c)

Figure 5.2: Geometric structure of the objective function over the sphere.
For n = 3, we plot the following quantities on the sphere S2: (a) EL′′(h),

(b)
∥∥∥E∇̂L′′(h)

∥∥∥, and (c) minz⊥h,‖z‖=1 z
>EĤL′′(h)z.

truth (Figure 5.2(a)). The Riemannian gradient is zero at stationary points,

including local minima, saddle points, and local maxima of the objective

function when restricted to the sphere Sn−1 (Figure 5.2(b)). The Riemannian

Hessian is positive definite in the neighborhoods of local minima, and has at

least one strictly negative eigenvalue in the neighborhoods of local maxima

and saddle points (Figure 5.2(c)). We say that a stationary point is a “strict

saddle point” if the Riemannian Hessian has at least one strictly negative

eigenvalue. The Riemannian Hessian is negative definite in the neighborhood

of a local maximum. Hence, local maxima are strict saddle points. Our

main result Theorem 5.2.1 formalizes the observation that L(h) only has two

types of stationary points: (1) local minima, which are close to signed shifted

versions of the ground truth, and (2) strict saddle points.

Theorem 5.2.1. Suppose Assumptions (A1) and (A2) are satisfied, and the

Bernoulli probability satisfies 1
n
≤ θ < 1

3
. Let κ be the condition number of f ,

let ρ < 10−3 be a small tolerance constant. There exist constants c1, c
′
1 > 0

(depending only on θ), such that: if N > max{ c1n9

ρ4 log n
ρ
, c1κ

8n8

ρ4 log n}, then

with probability at least 1− n−c′1, every local minimum h∗ in (P1) is close to

a signed shifted version of the ground truth. I.e., for some j ∈ [n]:

‖CfRh∗ ± ej‖ ≤ 2
√
ρ.

Moreover, one can partition Sn−1 into three sets H1, H2, and H3 that satisfy

(for some c(n, θ, ρ) > 0):

◦ L(h) is strongly convex in H1, i.e., the Riemannian Hessian is positive
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definite:

min
z:‖z‖=1
z⊥h

z>ĤL(h)z ≥ c(n, θ, ρ) > 0.

◦ L(h) has negative curvature in H2, i.e., the Riemannian Hessian has a

strictly negative eigenvalue:

min
z:‖z‖=1
z⊥h

z>ĤL(h)z ≤ −c(n, θ, ρ) < 0.

◦ L(h) has a descent direction in H3, i.e., the Riemannian gradient is

nonzero: ∥∥∥∇̂L(h)
∥∥∥ ≥ c(n, θ, ρ) > 0.

Clearly, all the stationary points of L(h) on Sn−1 belong to H1 or H2. The

stationary points in H1 are local minima, and the stationary points in H2

are strict saddle points. The sets H1, H2, H3 are defined in (5.12), and the

positive number c(n, θ, ρ) is defined in (5.13).

We only consider the noiseless case in Theorem 5.2.1. One can extend

our analysis to noisy measurements by bounding the perturbation of the

objective function caused by noise. In Section 5.5, we verify by numerical

experiments that the formulation in this chapter is robust against noise.

5.2.2 Proof of the Main Result

Note thatR = ( 1
θnN

∑N
i=1C

>
yi
Cyi)

−1/2 asymptotically converges to (C>f Cf )
−1/2

as N increases. Therefore, L(h) can be approximated by

L′(h) =
1

N

N∑
i=1

φ(Cyi(C
>
f Cf )

−1/2h) =
1

N

N∑
i=1

φ(CxiCf (C
>
f Cf )

−1/2h).

Since Cf (C
>
f Cf )

−1/2 is an orthogonal matrix, one can study the following

objective function by rotating on the sphere h′ = Cf (C
>
f Cf )

−1/2h:

L′′(h′) =
1

N

N∑
i=1

φ(Cxih
′).
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Our analysis consists of three parts: (1) geometric structure of EL′′, (2)

deviation of L′′ (or its rotated version L′) from its expectation EL′′, and (3)

difference between L and L′.

Geometric structure of EL′′. By the Bernoulli-Rademacher model

(A1), the Riemannian gradient for h ∈ Sn−1 is computed as

E∇̂L′′(h) = Ph⊥E∇L′′(h) = nθ(1− 3θ)(‖h‖4
4 · h− h

�3). (5.3)

The Riemannian Hessian is

EĤL′′(h) = Ph⊥EHL′′(h)Ph⊥ − h>E∇L′′(h) · Ph⊥

= nθ(1− 3θ)
[
‖h‖4

4 · I + 2 ‖h‖4
4 · hh

> − 3 · diag(h�2)
]
. (5.4)

Details of the derivation of (5.3) and (5.4) can be found in Appendix C.1.1.

At a stationary point of EL′′(h) on Sn−1, the Riemannian gradient is zero.

Since ∥∥∥E∇̂L′′(h)
∥∥∥ = nθ(1− 3θ)

√
‖h‖6

6 − ‖h‖
8
4

= nθ(1− 3θ)

√ ∑
1≤j<k≤n

h2
(j)h

2
(k)(h

2
(j) − h2

(k))
2, (5.5)

all nonzero entries of a stationary point h0 have the same absolute value.

Equivalently, h0(j) = ±1/
√
r if j ∈ Ω and h0(j) = 0 if j /∈ Ω, for some r ∈ [n]

and Ω ⊂ [n] such that |Ω| = r. Without loss of generality (as justified below),

we focus on stationary points that satisfy h0(j) = 1/
√
r if j ∈ {1, 2, . . . , r} and

h0(j) = 0 if j ∈ {r + 1, . . . , n}. The Riemannian Hessian at these stationary

points is

EĤL′′(h0) =
nθ(1− 3θ)

r

[
2
r
1r×r − 2Ir 0r×(n−r)

0(n−r)×r In−r

]
. (5.6)

When r = 1, h0 = [1, 0, 0, . . . , 0]>, we have EĤL′′(h0) = nθ(1 − 3θ)Ph⊥0 .

This Riemannian Hessian is positive definite on the tangent space,

min
z:‖z‖=1
z⊥h0

z>EĤL′′(h0)z = nθ(1− 3θ) > 0. (5.7)
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Therefore, stationary points with one nonzero entry are local minima.

When r > 1, the Riemannian Hessian has at least one strictly negative

eigenvalue:

min
z:‖z‖=1
z⊥h0

z>EĤL′′(h0)z = −2nθ(1− 3θ)

r
< 0. (5.8)

Therefore, stationary points with more than one nonzero entry are strict

saddle points, which, by definition, have at least one negative curvature

direction on Sn−1. One such negative curvature direction satisfies z(1) =

(r − 1)/
√
r(r − 1), z(j) = −1/

√
r(r − 1) for j ∈ {2, 3, . . . , r}, and z(j) = 0

for j ∈ {r + 1, . . . , n}.
The Riemannian Hessian at other stationary points (different from the

above stationary points by permutations and sign changes) can be computed

similarly. By (5.4), a permutation and sign changes of the entries in h0 has

no effect on the bounds in (5.7) and (5.8), because the eigenvector z that

attains the minimum undergoes the same permutation and sign changes as

h0.

Next, in Lemma 5.2.3, we show that the properties of positive definiteness

and negative curvature not only hold at the stationary points, but also hold

in their neighborhoods defined as follows.

Definition 5.2.2. We say that a point h is in the (ρ, r)-neighborhood of a

stationary point h0 of EL′′(h) with r nonzero entries, if
∥∥h�2 − h�2

0

∥∥
∞ ≤

ρ
r
.

We define three sets:

H′′1 := {Points in the (ρ, 1)-neighborhoods of stationary points

with 1 nonzero entry},

H′′2 := {Points in the (ρ, r)-neighborhoods of stationary points

with r > 1 nonzero entries},

H′′3 := Sn−1\(H′′1 ∪H′′2).

Clearly, H1 ∩ H2 = ∅ for ρ < 1/3, hence H′′1, H′′2, and H′′3 form a partition

of Sn−1.

Lemma 5.2.3. Assume that positive constants θ < 1/3, and ρ < 10−3. Then

108



◦ For h ∈ H′′1,

min
z:‖z‖=1
z⊥h

z>EĤL′′(h)z ≥ nθ(1− 3θ)(1− 24
√
ρ) > 0. (5.9)

◦ For h ∈ H′′2,

min
z:‖z‖=1
z⊥h

z>EĤL′′(h)z ≤ −
nθ(1− 3θ)(2− 24

√
ρ)

r
< 0. (5.10)

◦ For h ∈ H′′3,

∥∥∥E∇̂L′′(h)
∥∥∥ ≥ θ(1− 3θ)ρ2

n
> 0. (5.11)

Lemma 5.2.3, and all other lemmas, are proved in Appendix C.

Deviation of L′′ from EL′′. As the number N of channels increases, the

objective function L′′ asymptotically converges to its expected value EL′′.
Therefore, we can establish the geometric structure of L′′ based on its simi-

larity to EL′′. To this end, we give the following result.

Lemma 5.2.4. Suppose that θ < 1/3. There exist constants c2, c
′
2 > 0

(depending only on θ), such that: if N > c2n9

ρ4 log n
ρ
, then with probability at

least 1− e−c′2n,

sup
h∈Sn−1

∥∥∥∇̂L′′(h)− E∇̂L′′(h)
∥∥∥ ≤ θ(1− 3θ)ρ2

4n
,

sup
h∈Sn−1

∥∥∥ĤL′′(h)− EĤL′′(h)
∥∥∥ ≤ θ(1− 3θ)ρ2

n
.

By Lemma 5.2.4, the deviations from the corresponding expected values of

the Riemannian gradient and Hessian due to a finite number of random xi’s

are small compared to the bounds in Lemma 5.2.3. Therefore, the Rimannian

Hessian of L′′ is still positive definite in the neighborhood of local minima,

and has at least one strictly negative eigenvalue in the neighborhood of strict

saddle points; and the Riemannian gradient of L′′ is nonzero for all other

points on the sphere. Since L′ and L′′ differ only by an orthogonal matrix
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transformation of their argument, the geometric structure of L′ is identical

to that of L′′ up to a rotation on the sphere.

Difference between L and L′. Recall that L asymptotically converges

to L′ as N increases. The following result bounds the difference for a finite

N .

Lemma 5.2.5. Suppose that 1
n
≤ θ < 1

3
. There exist constants c3, c

′
3 > 0

(depending only on θ), such that: if N > c3κ8n8

ρ4 log n, then with probability at

least 1− n−c′3,

sup
h∈Sn−1

∥∥∥∇̂L(h)− ∇̂L′(h)
∥∥∥ ≤ θ(1− 3θ)ρ2

4n
,

sup
h∈Sn−1

∥∥∥ĤL(h)− ĤL′(h)
∥∥∥ ≤ θ(1− 3θ)ρ2

n
.

We use (C>f Cf )
1/2C−1

f H = {(C>f Cf )1/2C−1
f h : h ∈ H} to denote the rota-

tion of a set H by the orthogonal matrix (C>f Cf )
1/2C−1

f . Define the rotations

of H′′1, H′′2, and H′′3:

H1 := (C>f Cf )
1/2C−1

f H
′′
1,

H2 := (C>f Cf )
1/2C−1

f H
′′
2,

H3 := (C>f Cf )
1/2C−1

f H
′′
3.

(5.12)

Combining Lemmas 5.2.3, 5.2.4, and 5.2.5, and the rotation relation be-

tween L′ and L′′, we have:

◦ For h ∈ H1, the Riemannian Hessian is positive definite:

min
z:‖z‖=1
z⊥h

z>ĤL(h)z ≥ nθ(1− 3θ)(1− 24
√
ρ− 2ρ2

n2
) > 0.

◦ For h ∈ H2, the Riemannian Hessian has a strictly negative eigenvalue:

min
z:‖z‖=1
z⊥h

z>ĤL(h)z ≤ −
nθ(1− 3θ)(2− 24

√
ρ− 2rρ2/n2)

r
< 0.
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◦ For h ∈ H3, the Riemannian gradient is nonzero:∥∥∥∇̂L(h)
∥∥∥ ≥ θ(1− 3θ)ρ2

2n
> 0.

Clearly, all the local minima of L(h) on Sn−1 belong to H1, and all the other

stationary points are strict saddle points and belong to H2. The bounds

in Theorem 5.2.1 on the Riemannian Hessian and the Riemannian gradient

follows by setting

c(n, θ, ρ) :=
θ(1− 3θ)ρ2

2n
. (5.13)

We complete the proof of Theorem 5.2.1 by giving the following result

about H1.

Lemma 5.2.6. If h∗ ∈ H1, then for some j ∈ [n],

‖CfRh∗ ± ej‖ ≤ 2
√
ρ.

5.3 Optimization Method

5.3.1 Guaranteed First-Order Optimization Algorithm

Second-order methods over a Riemannian manifold are known to be able

to escape saddle points, for example, the trust region method [75], and the

negative curvature method [84]. Recent works proposed to solve dictionary

learning [74], and phase retrieval [72] using these methods, without any spe-

cial initialization schemes. Thanks to the geometric structure (Section 5.2)

and the Lipschitz continuity of the objective function for our multichannel

blind deconvolution formulation (Section 5.1), these second-order methods

can recover signed shifted versions of the ground truth without special ini-

tialization.

Recently, first-order methods have been shown to escape strict saddle

points with random initialization [77, 78]. In this chapter, we use the mani-

fold gradient descent algorithm studied by Lee et al. [76]. One can initialize
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the algorithm with a random h(0), and use the following iterative update:

h(t+1) = A(h(t)) := PSn−1

(
h(t) − γ∇̂L(h(t))

)
. (5.14)

Each iteration takes a Riemannian gradient descent step in the tangent space,

and does a retraction by normalizing the iterate (projecting onto Sn−1). Us-

ing the geometric structure introduced in Section 5.2, and some technical re-

sults in [75, 76], the following result gives a theoretical guarantee for manifold

gradient descent for our formulation of MSBD: convergence to an accurate

estimate (up to the inherent sign and shift ambiguity) of the true solution.

Theorem 5.3.1. Suppose that the geometric structure in Theorem 5.2.1 is

satisfied. If manifold gradient descent (5.14) is initialized with a random h(0)

drawn from a uniform distribution on Sn−1, and the step size is chosen as

γ = 1
128n3 , then (5.14) converges to a local minimum of L(h) on Sn−1 almost

surely. It particular, after at most T = 4096n8

θ2(1−3θ)2ρ4 iterations, h(T ) ∈ H1.

Moreover, for some j ∈ [n]

∥∥CfRh(T ) ± ej
∥∥ ≤ 2

√
ρ.

One can further bound the recovery error of the signal and the channels

as follows.

Corollary 5.3.2. If the conditions of Theorem 5.3.1 are satisfied, then the

recovered f̂ and x̂i (i = 1, 2, . . . , N) in (5.1) and (5.2), computed using the

output of manifold gradient descent ĥ = h(T ), satisfy

‖x̂i ± Sj(xi)‖
‖xi‖

≤ 2
√
ρn,∥∥∥f̂ ± S−j(f)

∥∥∥
‖f‖

≤
2
√
ρn

1− 2
√
ρn
,

for some j ∈ [n].

Theorem 5.3.1 and Corollary 5.3.2 show that, with a random initialization

and a fixed step size, manifold gradient descent outputs, in polynomial time,

a solution that is close to a signed and shifted version of the ground truth.
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5.3.2 Proof of the Algorithm Guarantee

We first establish that after T steps, the iterate h(T ) ∈ H1 ∪H2, by applying

[75, Theorem 4]. To this end, one needs to show that (C1) L(h) has a

finite lower bound, and that (C2) the function L̂(z) := L( h+z
‖h+z‖) (defined

on {z : z ⊥ h}) is well approximated by its first-order Taylor expansion at

z = 0. We verify conditions (C1) and (C2) in the following lemmas.

Lemma 5.3.3. For all h ∈ Sn−1, −4n3 ≤ L(h) ≤ 0, ‖∇L(h)‖ ≤ 16n3,

‖HL(h)‖ ≤ 48n3.

Lemma 5.3.4. Let L̂(z) := L( h+z
‖h+z‖). Then for all z ⊥ h,

∣∣L̂(z)− L̂(0)− 〈z,∇L̂(0)〉
∣∣ ≤ 64n3 ‖z‖2 .

By [75, Theorem 4] and Lemmas 5.3.3 and 5.3.4, manifold gradient decent

(5.14) with a fixed step size γ = 1/(2× 64n3) achieves
∥∥∥∇̂L(h(t))

∥∥∥ < τ after

t = 2[L(h(0))−minh∈Sn−1 L(h)]/(γτ 2) iterations. Setting τ = θ(1−3θ)ρ2/(2n)

and T = 4096n8/[θ2(1− 3θ)2ρ4], it follows that

∥∥∥∇̂L(h(t))
∥∥∥ < θ(1− 3θ)ρ2

2n
= c(n, θ, ρ)

after t ≥ T iterations. By Theorem 5.2.1, we have {h(t)}t≥T ⊂ H1 ∪ H2.

Since the distance between every pair of points h1 ∈ H1 and h2 ∈ H2 satisfies

‖h1 − h2‖ � γ
∥∥∥∇̂L(h(t))

∥∥∥, the iterates {h(t)}t≥T all belong toH1 or all belong

to H2, and cannot jump from one set to the other.

Next, we show that if the initialization h(0) follows a random distribution

on Sn−1, then h(T ) ∈ H1 almost surely, by applying [76, Theorem 2]. To this

end, we verify that (C3) the strict saddle points are unstable fixed points of

(5.14), and that (C4) the differential of A(·) in (5.14) is invertible.

Let h′ := A(h) = PSn−1(h − γ∇̂L(h)). The differential DA(h) defined in

[76, Definition 4] is

DA(h) = Ph′⊥Ph⊥ [I − γĤL(h)]Ph⊥ . (5.15)

At strict saddle points ∇̂L(h) = 0 and h′ = h. Because, as we have shown,

ĤL(h) has a strictly negative eigenvalue, it follows from [76, Proposition 8]

that DA(h) has at least one eigenvalue larger than 1. Therefore, strict saddle
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points are unstable fixed points of (5.14) (see [76, Definition 5]), i.e., (C3)

is satisfied.

We verify (C4) in the following lemma.

Lemma 5.3.5. For step size γ = 1
128n3 , and all h ∈ Sn−1, we have det(DA(h)) 6=

0.

Since conditions (C3) and (C4) are satisfied, by [76, Theorem 2], the

set of initial points that converge to strict saddle points have measure 0.

Therefore, a random h(0) uniformly distributed on Sn−1 converges to a local

minimum almost surely. Hence {h(t)}t≥T ⊂ H1. By Lemma 5.2.6,

∥∥CfRh(T ) ± ej
∥∥ ≤ 2

√
ρ,

for some j ∈ [n].

5.4 Extensions

We believe that our formulation and/or analysis can be extended to other

scenarios that are not covered by our theoretical guarantees.

◦ Bernoulli–sub-Gaussian channels. As stated at the beginning of Sec-

tion 5.2, the Bernoulli-Rademacher assumption (A1) is a special case of

the Bernoulli–sub-Gaussian distribution, which simplifies our analysis.

Similar bounds can be established for general sub-Gaussian distribu-

tions.

◦ Jointly sparse channels. This is a special case where the supports of xi

(i = 1, 2, . . . , N) are identical. Due to the shared support, the xi’s are

no longer independent. In this case, one needs a more careful analysis

conditioned on the joint support.

◦ Complex signal and channels. We mainly consider real signals in this

chapter. However, a similar approach can be derived and analyzed for

complex signals. We discuss this extension in the rest of this section.

Empirical evidence that our method works in these scenarios is provided in

Section 5.5.3.
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For complex f, xi ∈ Cn, one can solve the following problem:

min
h∈Cn

1

N

N∑
i=1

φ(Re(CyiRh)) + φ(Im(CyiRh)), s.t. ‖h‖ = 1,

where R := ( 1
θnN

∑N
i=1C

H
yi
Cyi)

−1/2 ∈ Cn×n, and (·)H represents the Hermitian

transpose. If one treats the real and imaginary parts of h separately, then

this optimization in Cn can be recast into R2n, and the gradient with respect

to Re(h) and Im(h) can be used in first-order methods. This is related to

Wirtinger gradient descent algorithms (see the discussion in [103]). The

Riemannian gradient with respect to h is

P(R·h)⊥

( 1

N

N∑
i=1

RHCH
yi
wi(h)

)
,

where wi(h) represents the following complex vector:

wi(h) = ∇φ(Re(CyiRh)) +
√
−1∇φ(Im(CyiRh)),

and P(R·h)⊥ represents the projection onto the tangent space at h in S2n−1 ⊂
R2n:

P(R·h)⊥z = z − Re(hHz) · h.

In the complex case, one can initialize the manifold gradient descent algo-

rithm with a random h(0), for which [Re(h(0))>, Im(h(0))>]> follows a uniform

distribution on S2n−1.

5.5 Numerical Experiments

5.5.1 Deconvolution with Synthetic Data

In this section, we examine the empirical performance of manifold gradient

descent (5.14) in solving the multichannel sparse blind deconvolution prob-

lem (P1). We synthesize {xi}Ni=1 following the Bernoulli-Rademacher model,

and synthesize f following a Gaussian distribution N(0n×1, In). In all exper-

iments, we run manifold gradient descent for T = 100 iterations, with a fixed

step size of γ = 0.1.
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Recall that the desired h is a signed shifted version of the ground truth,

i.e., CfRh = ±ej (j ∈ [n]) is a standard basis vector. Therefore, to evaluate

the accuracy of the output h(T ), we compute CfRh
(T ) with the true f , and

declare successful recovery if∥∥CfRh(T )
∥∥
∞

‖CfRh(T )‖
> 0.95,

or equivalently, if

max
j∈[n]

∣∣cos∠
(
CfRh

(T ), ej
)∣∣ > 0.95.

We compute the success rate based on 100 Monte Carlo instances.

In the first experiment, we fix θ = 0.1 (sparsity level, mean of the Bernoulli

distribution), and run experiments with n = 32, 64, . . . , 256 and N = 32,

64, . . . , 256 (see Figure 5.3(a)). In the second experiment, we fix n = 256,

and run experiments with θ = 0.02, 0.04, . . . , 0.16 and N = 32, 64, . . . , 256

(see Figure 5.3(d)). The empirical phase transitions suggest that, for sparsity

level relatively small (e.g., θ < 0.12), there exist a constant c > 0 such that

manifold gradient descent can recover a signed shifted version of the ground

truth with N ≥ cnθ.

In the third experiment, we examine the phase transition with respect to

N and the condition number κ of f , which is the ratio of the largest and

smallest magnitudes of its DFT. To synthesize f with specific κ, we generate

the DFT f̃ of f that is random with the following distribution: (1) the DFT

f̃ is symmetric, i.e., f̃(j) = f̃(n+2−j), so that f is real; (2) the phase of f̃(j)

follows a uniform distribution on [0, 2π), except for the phases of f̃(1) and

f̃(n/2+1) (if n is even), which are always 0, for symmetry; and (3) the gains of

f̃ follows a uniform distribution on [1, κ]. We fix n = 256 and θ = 0.1, and

run experiments with κ = 1, 2, 4, . . . , 128 and N = 32, 64, . . . , 256 (see Figure

5.3(g)). The phase transition suggests that the number N for successful

empirical recovery is not sensitive to the condition number κ.

Manifold gradient descent is robust against noise. We repeat the above

experiments with noisy measurements: yi = xi ~ f + σεi, where εi follows a

Gaussian distribution N(0n×1, In). The phase transitions for σ = 0.01
√
nθ

(SNR ≈ 40 dB) and σ = 0.1
√
nθ (SNR ≈ 20 dB) are shown in Figures 5.3(b),

5.3(e), 5.3(h), and Figures 5.3(c), 5.3(f), 5.3(i), respectively. For reasonable

noise levels, the number N of noisy measurements we need to accurately
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Figure 5.3: Empirical phase transition (grayscale values represent success
rates). The first row shows the phase transitions of N versus n, given that
θ = 0.1. The second row shows the phase transitions of N versus θ, given
that n = 256. The third row shows the phase transitions of N versus κ,
given that n = 256 and θ = 0.1. The first column shows the results for the
noiseless case. The second column shows the results for SNR ≈ 40 dB. The
third column shows are the results for SNR ≈ 20 dB.

117



recover a signed shifted version of the ground truth is roughly the same as

with noiseless measurements.

5.5.2 2D Deconvolution

Next, we run a numerical experiment with blind image deconvolution. Sup-

pose the circular convolutions {yi}Ni=1 (Figure 5.4(c)) of an unknown image

f (Figure 5.4(a)) and unknown sparse channels {xi}Ni=1 (Figure 5.4(b)) are

observed. The recovered image f̂ (Figure 5.4(d)) is computed as follows:

f̂ = F−1
[
F(Rh(T ))�−1

]
,

where F denotes the 2D DFT, and h(T ) is the output of manifold gradient

descent (5.14), with a random initialization h(0) that is uniformly distributed

on the sphere.

Figure 5.4 shows that, although the sparse channels are completely un-

known and the convolutional observations have corrupted the image beyond

recognition, manifold gradient descent is capable of recovering a shifted ver-

sion of the (negative) image, starting from a random point on the sphere (see

the image recovered using a random initialization in Figure 5.4(d), and then

corrected with the true sign and shift in Figure 5.4(e)). In this example, all

images and channels are of size 64× 64, the number of channels is N = 256,

and the sparsity level is θ = 0.01. We run T = 100 iterations of manifold

gradient descent with a fixed step size γ = 0.05. The accuracy
‖CfRh(t)‖∞
‖CfRh(t)‖

as a function of iteration number t is shown in Figure 5.4(f), and exhibits a

sharp transition at a modest number (≈ 80) of iterations.

5.5.3 Jointly Sparse Complex Gaussian Channels

In this section, we examine the performance of manifold gradient descent

when Assumption (A1) is not satisfied, and the channel model is extended

as in Section 5.4. More specifically, we consider f following a Gaussian

distribution CN(0n×1, In), i.e., the real and imaginary parts are independent

following N(0n×1, In/2). And we consider {xi}Ni=1 that are:

◦ Jointly s-sparse: The joint support of {xi}Ni=1 is chosen uniformly at

118



(a) (b) (c)

(d) (e)

0 50 100

0.2

0.4

0.6

0.8

1

t

‖C
f
R
h

(t
)
‖ ∞

‖C
f
R
h

(t
)
‖

(f)

Figure 5.4: Multichannel blind image deconvolution. (a) True image. (b)
Sparse channels. (c) Observations. (d) Recovered image using manifold
gradient descent. (e) Recovered image with sign and shift correction. (f)
The accuracy as a function of iteration number. All images and channels in
this figure are of the same size (64× 64).

random on [n].

◦ Complex Gaussian: The nonzero entries of {xi}Ni=1 follow a complex

Gaussian distribution CN(0, 1).

We compare manifold gradient descent (with random initialization) with

three blind calibration algorithms that solve MSBD in the frequency domain:

truncated power iteration [4] (initialized with f (0) = e1 and x
(0)
i = 0), an off-

the-grid algebraic method [123] (simplified from [30]), and an off-the-grid

optimization approach [92].

We fix n = 128, and run experiments for N = 16, 32, 48, · · · , 128, and

s = 2, 4, 6, . . . , 16. We use f and f̂ to denote the true signal and the recovered

signal, respectively. We say the recovery is successful if2∥∥∥F−1
[
F(f)�F(f̂)�−1

]∥∥∥
∞∥∥∥F−1

[
F(f)�F(f̂)�−1

]∥∥∥ > 0.7. (5.16)

2A perfect recovery f̂ is a scaled shifted version of f , for which F−1
[
F(f)�F(f̂)�−1

]
is a scaled shifted Kronecker delta.
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By the phase transitions in Figure 5.5, manifold gradient descent and trun-

cated power iteration are successful when N is large and s is small. Although

truncated power iteration achieves higher success rates when both N and s

are small, it fails for s > 8 even with a large N . On the other hand, manifold

gradient descent can recover channels with s = 16 when N ≥ 80.3 In compar-

ison, the off-the-grid methods are based on the properties of the covariance

matrix 1
N

∑N
i=1 yiy

H
i , and require larger N (than the first two algorithms) to

achieve high success rates.
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Figure 5.5: Empirical phase transition of N versus s, given that n = 128.
(a) Manifold gradient descent. (b) Truncated power iteration [4]. (c)
Off-the-grid algebraic method [123]. (d) Off-the-grid optimization approach
[92].

5.5.4 MSBD with a Linear Convolution Model

In this section, we empirically study MSBD with a linear convolution model.

Suppose the observations yi = x′i ∗ f ′ ∈ Rn (i = 1, 2, . . . , N) are linear

convolutions of s-sparse channels x′i ∈ Rm and a signal f ′ ∈ Rn−m+1. Let

3By our theoretical prediction, manifold gradient descent can succeed for s = 40 < n
3

provided that we have a sufficiently large N .
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xi ∈ Rn and f ∈ Rn denote the zero-padded versions of x′i and f . Then

yi = x′i ∗ f ′ = xi ~ f.

In this section, we show that one can solve for f and xi using the optimiza-

tion formulation (P1) and the manifold gradient descent algorithm, without

knowledge of the length m of the channels.

We compare our approach to the subspace method based on cross con-

volution [55], which solves for the concatenation of the channels as a null

vector of a structured matrix. For fairness, we also compare to an alterna-

tive method that takes advantage of the sparsity of the channels, and finds a

sparse null vector of the same structured matrix as in [55], using truncated

power iteration [44, 1].4

In our experiments, we synthesize f ′ using a random Gaussian vector fol-

lowing N(0(n−m+1)×1, In−m+1). We synthesize s-sparse channels xi such that

the support is chosen uniformly at random, and the nonzero entries are in-

dependent following N(0, 1). We denote the zero-padded versions of the true

signal and the recovered signal by f and f̂ , and declare success if (5.16)

is satisfied. We study the empirical success rates of our method and the

competing methods in three experiments:

◦ N versus s, given that n = 128 and m = 64.

◦ N versus m, given that n = 128 and s = 4.

◦ N versus n, given that m = 64 and s = 4.

The phase transitions in Figure 5.6 show that our manifold gradient descent

method consistently has higher success rates than the competing methods

based on cross convolution. The subspace method and the truncated power

iteration method are only successful when m is small compared to n, while

our method is successful for a large range of m and n. The sparsity prior

exploited by truncated power iteration improves the success rate over the

subspace method, but only when the sparsity level s is small compared to m.

In comparison, our method, given a sufficiently large number N of channels,

can recover channels with a much larger s.

4For an example of finding sparse null vectors using truncated power iteration, we refer
the readers to our previous paper [1, Section II].
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Figure 5.6: Empirical phase transition of MSBD with a linear convolution
model. The first row shows the phase transitions of N versus s. The second
row shows the phase transitions of N versus m. The third row shows the
phase transitions of N versus n. The first column shows the results for
manifold gradient descent. The second column shows the results for the
subspace method [55]. The third column shows are the results for truncated
power iteration.
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5.5.5 Super-Resolution Fluorescence Microscopy

Manifold gradient descent can be applied to deconvolution of time resolved

fluorescence microscopy images. The goal is to recover sharp images xi’s

from observations yi’s that are blurred by an unknown PSF f .

We use a publicly available microtubule dataset [66], which contains N =

626 images (Figure 5.7(a)). Since fluorophores are are turned on and off

stochastically, the images xi’s are random sparse samples of the 64×64 micro-

tubule image (Figure 5.7(b)). The observations yi’s (Figures 5.7(c), 5.7(d))

are synthesized by circular convolutions with the PSF in Figure 5.7(i). The

recovered images (Figures 5.7(e), 5.7(f)) and kernel (Figure 5.7(j)) clearly

demonstrate the effectiveness of our approach in this setting.

Blind deconvolution is less sensitive to instrument calibration error than

non-blind deconvolution. If the PSF used in a non-blind deconvolution

method fails to account for certain optic aberration, the resulting images

may suffer from spurious artifacts. For example, if we use a miscalibrated

PSF (Figure 5.7(k)) in non-blind image reconstruction using FISTA [121],

then the recovered images (Figures 5.7(g), 5.7(h)) suffer from serious spuri-

ous artifacts.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

Figure 5.7: Super-resolution fluorescence microscopy experiment using
manifold gradient descent. (a) True images. (b) Average of true images. (c)
Observed images. (d) Average of observed images. (e) Recovered images
using blind deconvolution. (f) Average of recovered images using blind
deconvolution. (g) Recovered images using non-blind deconvolution and a
miscalibrated PSF. (h) Average of recovered images using non-blind
deconvolution and a miscalibrated PSF. (i) True PSF. (j) Recovered PSF
using blind deconvolution. (k) Miscalibrated PSF used in non-blind
deconvolution. All images in this figure are of the same size (64× 64).
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CHAPTER 6

CONCLUSION

In Chapter 2, we studied the identifiability of blind deconvolution problems

with subspace or sparsity constraints. The sample complexity results in

Section 2.2 are, to within a small additive term of at most five samples,

optimal. Our results are derived with generic bases or frames, which means

they are invalid only on a set of Lebesgue measure zero. If we assume that the

bases or frames are drawn from any distribution that is absolutely continuous

with respect to the Lebesgue measure on the space of bases or frames, then

the results hold almost surely. Furthermore, if the bases or frames follow a

distribution specified in Chapter 2, then under the same sample complexities,

the recovery is not only unique with probability 1, but also stable with high

probability against small perturbations in the measurements. These results

provide the first tight sample complexity bounds, without large constants or

log factors, for unique or stable recovery in blind deconvolution. They are

fundamental to the blind deconvolution problem, independent of algorithms.

Despite the fact that, under the sufficient conditions in Chapter 2, the

degenerate set of bases or frames has Lebesgue measure zero, it is unclear

whether commonly used bases and frames (e.g., standard basis, wavelets)

belong to the degenerate set. Therefore, it is an interesting open problem to

show optimal sample complexity results for these bases and frames.

In Chapter 3, we addressed the identifiability of the BGPC problem with

subspace or joint sparsity constraint, up to scaling. We provided sufficient

conditions for identifiability that feature optimal (resp. near optimal) sam-

ple complexities for the subspace constraint case (resp. the joint sparsity

constraint case). These results are for generic vectors or matrices, and are

violated only for a set of Lebesgue measure zero. We did not address the

stability of BGPC in Chapter 3. The regime under which the problem can

be solved stably is an interesting open problem.

In Chapter 4, we formulated the BGPC problem as an eigenvector problem,
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and proposed to solve BGPC using power iteration, and solve BGPC with

a sparsity structure using truncated power iteration. We give theoretical

guarantees for the subspace case with a near optimal sample complexity, and

for the joint sparsity case with a suboptimal sample complexity. Numerical

experiments show that both power iteration and truncated power iteration

can recover the unknown gain and phase, and the unknown signal, using a

near optimal number of samples. It is an open problem to obtain theoretical

guarantees with optimal sample complexities, for truncated power iteration

that solves BGPC with joint sparsity or sparsity constraints.

In Chapter 5, we studied the geometric structure of multichannel sparse

blind deconvolution over the unit sphere. Our theoretical analysis reveals

that local minima of a sparsity promoting smooth objective function corre-

spond to signed shifted version of the ground truth, and saddle points have

strictly negative curvatures. Thanks to the favorable geometric properties

of the objective, we can simultaneously recover the unknown signal and un-

known channels from convolutional measurements using manifold gradient

descent with a random initialization. In practice, many convolutional mea-

surement models are subsampled in the spatial domain (e.g., image super-

resolution) or in the frequency domain (e.g., radio astronomy). Studying the

effect of subsampling on the geometric structure of multichannel sparse blind

deconvolution is an interesting problem for future work.
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APPENDIX A

LEMMAS FOR CHAPTER 2

A.1 Concentration of Measure

Lemma A.1.1. Suppose a ∈ Rm1 and b ∈ Rm2 are independent random

vectors, following uniform distributions on RBRm1 and RBRm2 , respectively.

If a matrix M ∈ Rm1×m2 satisfies ` ≤ ‖M‖2 ≤ L, then

P
[∣∣aTMb

∣∣ ≤ ρ
]
≤ ρf(ρ, `, L,R),

where f(ρ, `, L,R) satisfies limρ→0
log f(ρ,`,L,R)

log 1
ρ

= 0.

Proof. Suppose the singular value decomposition (SVD) of M is

M = UΣV T ,

where U ∈ Rm1×m1 and V ∈ Rm2×m2 are orthogonal matrices, and Σ ∈
Rm1×m2 satisfies ` < Σ(1,1) = ‖M‖2 < L. Let ã := UTa, and b̃ := V T b, then ã

and b̃ are also independent random vectors, following uniform distributions

on RBRm1 and RBRm2 , respectively.

Therefore,

P
[∣∣aTMb

∣∣ ≤ ρ
]

= P
[∣∣∣ãTΣb̃

∣∣∣ ≤ ρ
]

=

∫
RBRm1

dã
∫
RBRm2

db̃ 1
(
|ãTΣb̃| ≤ ρ

)
∫
RBRm1

dã
∫
RBRm2

db̃

=
1

VRm1 (R) · VRm2 (R)

∫
RBRm1−1

dã(2:m1)

∫
RBRm2−1

db̃(2:m2) φ(ã, b̃), (A.1)

where VRm1 (R) =
∫
RBRm1

dã denotes the volume of a ball of radius R in Rm1 ,
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and

φ(ã, b̃) (A.2)

=

∫ R

−R
dã(1)

∫ R

−R
db̃(1) 1

(
|ãTΣb̃| ≤ ρ

)
· 1
(
|ã(1)|2 ≤ R2 −

∥∥ã(2:m1)
∥∥2

2

)
· 1
(
|b̃(1)|2 ≤ R2 −

∥∥∥b̃(2:m2)
∥∥∥2

2

)
≤
∫ R

−R
dã(1)

∫ R

−R
db̃(1)1

(
|ã(1)b̃(1)

+
1

‖M‖2

ã(2:m1)TΣ(2:m1,2:m2)b̃(2:m2)| ≤ ρ

‖M‖2

)

≤
∫ R

−R
dã(1) min

{∫ ∞
−∞

db̃(1)1

(
|b̃(1) + θ(ã, b̃(2:m2))| ≤ ρ

‖M‖2 |ã(1)|

)
,

∫ R

−R
1 db̃(1)

}
(A.3)

≤
∫ R

−R
dã(1) min

(
2ρ

‖M‖2 |ã(1)|
, 2R

)
(A.4)

=
4ρ

‖M‖2

(
1 + ln

‖M‖2R
2

ρ

)
≤ 4ρ

`

(
1 + ln

LR2

ρ

)
. (A.5)

In (A.3), θ(ã, b̃(2:m2)) = 1
‖M‖2ã(1) ã

(2:m1)TΣ(2:m1,2:m2)b̃(2:m2) does not affect the

integral. Substituting (A.5) into (A.1), we obtain

P
[∣∣aTMb

∣∣ ≤ ρ
]
≤ 4ρ · VRm1−1(R) · VRm2−1(R)

` · VRm1 (R) · VRm2 (R)

(
1 + ln

LR2

ρ

)
.

Define

f(ρ, `, L,R) :=
4 · VRm1−1(R) · VRm2−1(R)

` · VRm1 (R) · VRm2 (R)

(
1 + ln

LR2

ρ

)
.

Clearly, limρ→0
log f(ρ,`,L,R)

log 1
ρ

= 0.

Lemma A.1.1 is a simplified version of [27, Lemma 4], with improved con-

stants. Although [27, Lemma 4] has a better bound in terms of its dependence

on ρ when the rank of M is larger than 1, our simplified bound does not affect
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our proof of identifiability in any negative way. As a bonus, we can deduce

stability results directly from the simplified proof of identifiability.

Next, we derive a similar concentration of measure bounds for the complex

case. Despite the similarity between the proofs of Lemmas A.1.1 and A.1.2,

the latter is not a direct consequence of the former.

Lemma A.1.2. Suppose a ∈ Cm1 and b ∈ Cm2 are independent random

vectors, following uniform distributions on RBCm1 and RBCm2 , respectively.

If a matrix M ∈ Cm1×m2 satisfies ` ≤ ‖M‖2 ≤ L, then

P
[∣∣a∗Mb

∣∣ ≤ ρ
]
≤ ρ2g(ρ, `, L,R),

where g(ρ, `, L,R) satisfies limρ→0
log g(ρ,`,L,R)

log 1
ρ

= 0.

Proof. The proof follows steps mostly analogous to those in the proof of

Lemma A.1.1 by replacing the real field by the complex field. Here, we

define ã := UTa, and b̃ := V ∗b. It follows that (A.1) – (A.3) apply, with

the real field replaced by the complex field, and the interval of integration

[−R,R] replaced by the disk in the complex plane RBC1 . Then (A.4) – (A.5)

are replaced by

φ(ã, b̃) ≤
∫
RBC1

dã(1) min

(
πρ2

‖M‖2
2 |ã(1)|2

, πR2

)

=
π2ρ2

‖M‖2
2

(
1 + 2 ln

‖M‖2R
2

ρ

)
≤ π2ρ2

`2

(
1 + 2 ln

LR2

ρ

)
.

In a manner analogous to the proof of Lemma A.1.1, it follows that

P
[∣∣a∗Mb

∣∣ ≤ ρ
]
≤ π2ρ2 · VCm1−1(R) · VCm2−1(R)

`2 · VCm1 (R) · VCm2 (R)

(
1 + 2 ln

LR2

ρ

)
.

Here we use VCm1 (R) =
∫
RBCm1

dã to denote the volume of a ball of radius

R in Cm1 . Define

g(ρ, `, L,R) :=
π2 · VCm1−1(R) · VCm2−1(R)

`2 · VCm1 (R) · VCm2 (R)

(
1 + 2 ln

LR2

ρ

)
. (A.6)

Clearly, limρ→0
log g(ρ,`,L,R)

log 1
ρ

= 0.
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A.2 Useful Lemmas about Minkowski Dimension

Lemma A.2.1. Let ΩX and ΩY be nonempty bounded subsets of a normed

vector space. Then dimB(ΩX − ΩY) ≤ dimB(ΩX ) + dimB(ΩY).

Proof. We cover ΩX and ΩY with balls of radius ρ centered at {xi}
NΩX (ρ)

i=1

and {yi}
NΩY (ρ)

i=1 , respectively. Given any point x− y ∈ ΩX − ΩY , we can find

centers of the above covering, xi1 and yi2 , such that

‖x− xi1‖ ≤ ρ, ‖y − yi2‖ ≤ ρ.

Hence,

‖(x− y)− (xi1 − yi2)‖ ≤ ‖x− xi1‖+ ‖y − yi2‖ ≤ 2ρ.

Therefore, the set ΩX −ΩY can be covered by NΩX (ρ)NΩY (ρ) balls of radius

2ρ centered at points (like xi1 − yi2) generated by the centers {xi}
NΩX (ρ)

i=1 and

{yi}
NΩY (ρ)

i=1 . It follows that

N(ΩX−ΩY )(2ρ) ≤ NΩX (ρ)NΩY (ρ).

We then bound the Minkowski dimension:

dimB(ΩX − ΩY) = lim sup
ρ→0

logN(ΩX−ΩY )(2ρ)

log 1
2ρ

≤ lim sup
ρ→0

logNΩX (ρ)NΩY (ρ)

log 1
2ρ

≤ lim sup
ρ→0

logNΩX (ρ)

log 1
2ρ

+ lim sup
ρ→0

logNΩY (ρ)

log 1
2ρ

= dimB(ΩX ) + dimB(ΩY).

Lemma A.2.2. Let ΩX and ΩY be nonempty bounded subsets of Cm1 and

Cm2, respectively. Let ΩM = {xyT : x ∈ ΩX , y ∈ ΩY} ⊂ Cm1×m2. Then

dimB(ΩM) ≤ dimB(ΩX ) + dimB(ΩY).

Proof. Since ΩX and ΩY are bounded, there exists a large enough constant

L such that

ΩX ⊂ LBCm1 , ΩY ⊂ LBCm2 .

We cover ΩX and ΩY with balls of radius ρ centered at the following two sets
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of points, respectively:

{xi}
NΩX (ρ)

i=1 ⊂ LBCm1 , {yi}
NΩY (ρ)

i=1 ⊂ LBCm2 .

Given any point xyT ∈ ΩM, we can find centers of the above coverings, xi1

and yi2 , such that

‖x− xi1‖2 ≤ ρ, ‖y − yi2‖2 ≤ ρ.

Then

∥∥xyT − xi1yTi2∥∥F
=
∥∥xyT − xi1yT + xi1y

T − xi1yTi2
∥∥

F

≤ ‖x− xi1‖2 ‖y‖2 + ‖y − yi2‖2 ‖xi1‖2 ≤ 2Lρ.

Therefore, the set ΩM can be covered by NΩX (ρ)NΩY (ρ) balls in Cm1×m2 of

radius 2Lρ, centered at the rank-1 matrices (like xi1y
T
i2

) generated by the

centers of the coverings of ΩX and ΩY . It follows that

NΩM(2Lρ) ≤ NΩX (ρ)NΩY (ρ). (A.7)

Therefore,

dimB(ΩM) = lim sup
ρ→0

logNΩM(2Lρ)

log 1
2Lρ

≤ lim sup
ρ→0

logNΩX (ρ)NΩY (ρ)

log 1
2Lρ

≤ lim sup
ρ→0

logNΩX (ρ)

log 1
2Lρ

+ lim sup
ρ→0

logNΩY (ρ)

log 1
2Lρ

= dimB(ΩX ) + dimB(ΩY).

Lemma A.2.3. Let ΩX be a nonempty bounded subset of Cm. Let Re(ΩX ) =

{Re(x) : x ∈ ΩX}, and Im(ΩX ) = {Im(x) : x ∈ ΩX}. Then dimB(ΩX ) ≤
dimB(Re(ΩX )) + dimB(Im(ΩX )).

Proof. The real and imaginary parts Re(ΩX ) and Im(ΩX ) are bounded sub-

sets of Rm. There exists a large enough constant L such that

Re(ΩX ), Im(ΩX ) ⊂ LBRm .
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We cover Re(ΩX ) and Im(ΩX ) with balls of radius ρ centered at the following

two sets of points, respectively:

{
xRe
i

}NRe(ΩX )(ρ)

i=1
,
{
xIm
i

}NIm(ΩX )(ρ)

i=1
⊂ LBRm .

Given any point x ∈ ΩX , we can find centers of the above coverings, xRe
i1

and

xIm
i2

, such that

∥∥Re(x)− xRe
i1

∥∥
2
≤ ρ,

∥∥Im(x)− xIm
i2

∥∥
2
≤ ρ.

Let xc = xRe
i1

+
√
−1xIm

i2
. Then

‖x− xc‖2 =

√∥∥Re(x)− xRe
i1

∥∥2

2
+
∥∥Im(x)− xIm

i2

∥∥2

2
≤
√

2ρ.

Therefore, the set ΩX can be covered by NRe(ΩX )(ρ)NIm(ΩX )(ρ) balls in Cm

of radius
√

2ρ, centered at the complex vectors (like xc) generated by the

centers of the coverings of Re(ΩX ) and Im(ΩX ). It follows that

NΩX (
√

2ρ) ≤ NRe(ΩX )(ρ)NIm(ΩX )(ρ). (A.8)

Therefore,

dimB(ΩX ) = lim sup
ρ→0

logNΩX (
√

2ρ)

log 1√
2ρ

≤ lim sup
ρ→0

logNRe(ΩX )(ρ)NIm(ΩX )(ρ)

log 1√
2ρ

≤ lim sup
ρ→0

logNRe(ΩX )(ρ)

log 1√
2ρ

+ lim sup
ρ→0

logNIm(ΩX )(ρ)

log 1√
2ρ

= dimB(Re(ΩX )) + dimB(Im(ΩX )).
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APPENDIX B

PROOFS OF LEMMAS IN CHAPTER 4

B.1 Gap in Eigenvalues

Proof of Lemma 4.4.1. We have

D∗D = IN ⊗ (A∗A), (B.1)

D∗Es =


λ1a1·a

>
1·x·1 · · · λnan·a

>
n·x·1

...
. . .

...

λ1a1·a
>
1·x·N · · · λnan·a

>
n·x·N

 , (B.2)

E∗sEs =


|λ1|2a>1·XX∗a1·

. . .

|λn|2a>n·XX∗an·

 . (B.3)

Under Assumptions 4.3.1 and 4.3.3, we have

ED∗D = INm, (B.4)

ED∗Es =
1

n
xλ>, (B.5)

EE∗sEs =
1

n
‖X‖2

F diag([|λ1|2, . . . , |λn|2]) =
1

n
diag([|λ1|2, . . . , |λn|2]). (B.6)

Set α =
√
n, we have

EBs =

[
INm

1√
n
xλ>

1√
n
λx∗ diag([|λ1|2, . . . , |λn|2])

]
,
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and

EΩTηBsΩ
∗
Tη =

[
INs

1√
n
ΩTxxλ

>

1√
n
λx∗Ω∗Tx diag([|λ1|2, . . . , |λn|2])

]
= P ∗QP,

where

P = diag([11,Ns, λ
>]),

Q =

[
INs

1√
n
ΩTxx1>n,1

1√
n
1n,1x

∗Ω∗Tx In

]
.

The matrix Q has eigenvalues 0, 1, 1, . . . , 1, 2. The eigenvectors corresponding

to 0 and 2 are µ = [(ΩTxx)>,−1>n,1/
√
n]>/
√

2 and [(ΩTxx)>,1>n,1/
√
n]>/
√

2,

respectively. Any vector orthogonal to these two vectors is an eigenvector of

Q corresponding to 1. It follows that Q+µµ∗−INs+n is positive semidefinite.

Since µ is a null vector of Q, we have P−1µ is a null vector of P ∗QP (note

that ΩTηη =
√

2P−1µ). Therefore, the smallest eigenvalue of the positive

semidefinite matrix P ∗QP is 0.

Next, we bound the largest eigenvalue of P ∗QP , which satisfies

max
‖z‖2≤1

‖P ∗QPz‖2 ≤
√

1 + δ max
‖Pz‖2≤

√
1+δ
‖QPz‖2

= (1 + δ) max
‖z‖2≤1

‖Qz‖2 ≤ 2(1 + δ), (B.7)

where the first inequality follows from Assumption 4.3.2, and the second

inequality follows from the largest eigenvalue of Q.

Next, we bound the second smallest eigenvalue of P ∗QP , which satisfies

min
z⊥P−1µ, ‖z‖2≥1

‖P ∗QPz‖2

≥
√

1− δ min
Pz⊥(PP ∗)−1µ, ‖Pz‖2≥

√
1−δ
‖QPz‖2

= (1− δ) min
z⊥(PP ∗)−1µ, ‖z‖2≥1

‖Qz‖2

≥ (1− δ) min
z⊥(PP ∗)−1µ, ‖z‖2=1

‖(INs+n − µµ∗)z‖2

= (1− δ) min
z⊥(PP ∗)−1µ, ‖z‖2=1

√
1− |µ∗z|2

= (1− δ) |µ
∗(PP ∗)−1µ|
‖(PP ∗)−1µ‖2

≥ (1− δ)2

1 + δ
, (B.8)
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where the first and third inequalities follow from Assumption 4.3.2, and the

second inequality is due to the fact that Q+µµ∗− INs+n is positive semidef-

inite.

By (B.7) and (B.8), all nonzero eigenvalues of EΩTηBsΩ
∗
Tη

reside in the

interval [ (1−δ)2

1+δ
, 2(1 + δ)].

B.2 Bounds of Perturbation Due to Randomness in A

Proof of Lemma 4.4.3. We prove only the joint sparsity case. One can prove

the subspace case by replacing s with m and getting rid of the union bound.

It is well-known that, for sufficiently large n, a Gaussian random matrix

satisfies RIP [113]. Here, we use a bound for real Gaussian random matrices

[124], and present its extension to complex Gaussian random matrices. Let

T ⊂ [m] denote an index set of cardinality s, i.e., |T | = s < n. Let Â :=

[Re(A)Ω∗T , Im(A)Ω∗T ]. By [124, Theorem 2.13],

P
[∥∥∥2Â∗Â− I2s

∥∥∥ ≤ 3
(√2s

n
+ ε
)]
≥ 1− 2 exp

(
−nε

2

2

)
.

Note also that

ΩTA
∗AΩ∗T = ΩTRe(A)>Re(A)Ω∗T

+
√
−1ΩTRe(A)>Im(A)Ω∗T

−
√
−1ΩT Im(A)>Re(A)Ω∗T

+ ΩT Im(A)>Im(A)Ω∗T .

‖ΩTA
∗AΩ∗T − Is‖ ≤

∥∥ΩTRe(A)>Re(A)Ω∗T − Is/2
∥∥

+
∥∥ΩTRe(A)>Im(A)Ω∗T

∥∥
+
∥∥ΩT Im(A)>Re(A)Ω∗T

∥∥
+
∥∥ΩT Im(A)>Im(A)Ω∗T − Is/2

∥∥
≤ 4

∥∥∥Â∗Â− I2s/2
∥∥∥ .
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It follows that

P
[
‖ΩTA

∗AΩ∗T − Is‖ ≤ 6
(√ s

n
+ ε
)]
≥ 1− 2 exp

(
−nε

2

2

)
.

Therefore, there exist constants C1, c1 > 0, such that

P
[
‖ΩTA

∗AΩ∗T − Is‖ ≤ C1

√
s

n
logm, ∀T s.t. |T | = s

]
≥ 1− 2

(
m

s

)
exp
(
−
(C1

6
− 1
)2 s

2
logm

)
≥ 1−m−c1s,

where the first inequality follows from a union bound, and setting ε =

(C1

6
−1)

√
s
n

logm; the second inequality follows from Stirling’s approximation(
m
s

)
≤
(
em
s

)s
.

We obtain Lemma 4.4.3 by applying the above bound to every diagonal

block of the block diagonal matrix ΩTxD
∗DΩ∗Tx .

Proof of Lemma 4.4.4. By a consequence of the Hanson-Wright inequality

(see [125, Theorem 2.1], and its complexification in [125, Section 3.1]), there

exists an absolute constant c′2 such that

P
[∣∣√n∥∥X>ak·∥∥2

− 1
∣∣ ≤ ε

]
≥ 1− 2 exp

(
− c′2ε

2

‖X‖2

)
. (B.9)

Set ε = C ′2 ‖X‖
√

log n for some C ′2 > 0, then by a union bound, there exists

an absolute constant c2 > 0 such that

P
[∣∣√n∥∥X>ak·∥∥2

− 1
∣∣ ≤ C ′2 ‖X‖

√
log n, ∀k ∈ [n]

]
≥ 1− n−c2 . (B.10)

By Assumption 4.3.2,

P
[
|λk|2

∣∣a>k·XX∗ak· − 1

n

∣∣ ≤ (2C ′2 + C ′22 )(1 + δ)

n

·max
{
‖X‖

√
log n, ‖X‖2 log n

}
, ∀k ∈ [n]

]
≥ 1− n−c2 . (B.11)
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The spectral norm ‖X‖ is bounded in Assumption 4.3.3:

Subspace case: ‖X‖2 ≤ (1 + θ) max{ 1

N
,

1

m
},

Joint sparsity case: ‖X‖2 ≤ (1 + θ) max{ 1

N
,

1

s0

}.

Therefore, Lemma 4.4.4 follows from (B.3), (B.6), and (B.11).

Proof of Lemma 4.4.5. By (B.2), the columns of D∗Es are independent ran-

dom vectors. Define

φk :=


ak·a

>
k·x·1

ak·a
>
k·x·2
...

ak·a
>
k·x·N

 .
Then D∗Es = [φ1, φ2, . . . , φn]diag(λ). Next, we bound the spectral norm

of the random matrix Φ − EΦ, where Φ := [φ1, φ2, . . . , φn], using matrix

Bernstein inequality [115, Theorem 1.6]. We need the following bounds to

proceed:

(1) A bound on ‖φk − Eφk‖2.

First, by [125, Theorem 2.1 and Section 3.1], there exists a constant c′3

P
[∣∣√n ‖ak·‖2 −

√
m
∣∣ ≤ ε

]
≥ 1− 2 exp(−c′3ε2).

By a union bound over all k ∈ [n], there exists a constant C ′3 such that

P
[∣∣√n ‖ak·‖2 −

√
m
∣∣ ≤ C ′3

√
log n, ∀k ∈ [n]

]
≥ 1− 2n exp

(
−c′3C ′23 log n

)
≥ 1− n−c2 . (B.12)

Note that

‖Eφk‖2 =
1

n
‖X‖F =

1

n
,

‖φk‖2 ≤ ‖ak·‖2

∥∥X>ak·∥∥2
.

By (B.10) and (B.12), there exists a constant C ′′3 , such that with probability
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at least 1− 2n−c2 ,

‖φk − Eφk‖2

≤ C ′′3
n

max
{√

m,
√

log n
}

max
{

1,

√
log n

N
,

√
log n

m

}
≤ C ′′3

√
m

n
,

for all k ∈ [n], where the second inequality uses the assumption that min{N,m} >
log n.

(2) A bound on ‖E[(Φ− EΦ)∗(Φ− EΦ)]‖.
One should observe that

E[(φk − Eφk)∗(φk − Eφk)] =
m

n2
,

E[(φk − Eφk)∗(φk′ − Eφk′)] = 0,

for k 6= k′. Therefore,

E[(Φ− EΦ)∗(Φ− EΦ)] =
m

n2
In,

‖E[(Φ− EΦ)∗(Φ− EΦ)]‖ =
m

n2
.

(3) A bound on ‖E[(Φ− EΦ)(Φ− EΦ)∗]‖.
Since {φk}nk=1 are i.i.d. random vectors,

E[(Φ− EΦ)(Φ− EΦ)∗]

=
n∑
k=1

E[(φk − Eφk)(φk − Eφk)∗]

= nE[(φ1 − Eφ1)(φ1 − Eφ1)∗]

= n[E(φ1φ
∗
1)− (Eφ1)(Eφ1)∗]

=
1

n
(X>X ⊗ Im).

By Assumption 4.3.3, in the subspace case,

‖E[(Φ− EΦ)(Φ− EΦ)∗]‖ =
1

n

∥∥X>X∥∥ ≤ 1 + θ

n
max{ 1

N
,

1

m
}.

Given the above bounds, we apply the matrix Bernstein inequality [115,
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Theorem 1.6] as follows:

P
[
‖Φ− EΦ‖ ≤ ε

∣∣∣ ‖φk − Eφk‖2 ≤ R, ∀k ∈ [n]
]

≥ 1− (Nm+ n) exp
(
− ε2/2

σ2 +Rε/3

)
,

where

σ2 = max
{m
n2
,
1 + θ

nN
,
1 + θ

nm

}
,

R =
C ′′3
√
m

n
.

It follows that

P
[
‖Φ− EΦ‖ ≤ ε

]
≥ 1− (Nm+ n) exp

(
− ε2/2

σ2 +Rε/3

)
− 2n−c2 ,

where the last term 2n−c2 bounds the probability that ‖φk − Eφk‖2 > R for

some k. Hence there exist constants C3, c3 > 0 such that

P
[
‖Φ− EΦ‖ ≤ C3√

1 + δ
max

{√ log(Nm+ n)

nN
,√

log(Nm+ n)

nm
,

√
m log(Nm+ n)

n

}]
≥ 1− n−c3 .

Lemma 4.4.4 follows from the above bound, and

‖ΩTxD
∗Es − EΩTxD

∗Es‖ = ‖Φ− EΦ‖ ‖diag(λ)‖ ≤
√

1 + δ ‖Φ− EΦ‖ .

Proof of Lemma 4.4.6. We introduce some notations for this proof. We use

Bn
p and BSm,np

to denote unit balls in Cn with `p norm, and in Cm×n with

Schatten p norm, respectively. The projection on the support set T is denoted

by ΠT . For a set A of matrices, dF(A) and dop(A) denote the radii of A in

the Frobenius norm and in the spectral norm, respectively. We use γ2(A, ‖·‖)
the γ2 functional of A, which is another way to quantify the size of A [116,

Section 2.2]. These are key quantities in the upper bound of the supremum

of an asymmetric second-order process [116, Theorem 2.3], which we use to

prove Lemma 4.4.6.

139



Note that

max
T⊂[m]
|T |=s

‖ΩTxD
∗Es − EΩTxD

∗Es‖ = max
T⊂[m]
|T |=s

max
v∈BmN2

(IN⊗ΠT )v=v

max
u∈Bn2

|v∗Φu− Ev∗Φu|,

(B.13)

where Φ = D∗Es. Let z =
√
n[a∗1·, . . . , a

∗
n·]
>. Then z follows CN (0mn,1, Imn)

and v∗Φu is written as a quadratic form in z as follows:

v∗Φu =
n∑
k=1

N∑
j=1

uka
>
k·x·jv

∗
·jak· = z∗(diag(u)⊗ ΠT0)

( 1

n
In ⊗XV ∗

)
z, (B.14)

where u = [u1, . . . , un]>, v = [v>·1, . . . , v
>
·N ]>, V = [v·1, . . . , v·N ], and T0 = {i ∈

[m]|
∥∥e>i X∥∥2

> 0} denotes the row support of X = [x·1, . . . , x·N ].

Let

A = {Au|u ∈ Bn
2 },

and

B = {Bv|v ∈ BmN
2 , (IN ⊗ ΠT )v = v},

where Au and Bv are left and right factors in the quadratic form in (B.14),

i.e.,

Au = diag(u)⊗ ΠT0 ,

and

Bv =
1

n
In ⊗XV ∗.

Then (B.13) is equivalent to

sup
Au∈A

sup
Bv∈B

|z∗AuBvz − Ez∗AuBvz|,

which is a supremum of an asymmetric second-order process. We use the

result on suprema of asymmetric second-order chaos processes by Lee and

Junge [116, Theorem 2.3], which extends the original result by Krahmer et

al. [126] to asymmetric cases.

Next, we compute the key quantities, given as functions of A and B, which

we need to apply [116, Theorem 2.3]. Let Au ∈ A. Since |T0| ≤ s0, we have

‖Au‖F =
√
s0 ‖u‖2 ≤

√
s0
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and the radius of A in the Frobenius norm satisfies

dF(A) ≤
√
s0.

On the other hand,

‖Au‖ = ‖u‖∞ ≤ 1,

which implies that the radius of A in the spectral norm satisfies

dop(A) ≤ 1.

Moreover, for Au, A
′
u ∈ A, we have

‖Au − Au′‖ = ‖u− u′‖∞ .

Therefore, by the Dudley’s inequality [127],

γ2(A, ‖·‖) .
∫ ∞

0

√
logN(A, ‖·‖ ; t)dt

≤
∫ ∞

0

√
logN(Bn

2 , ‖·‖∞ ; t)dt

.
∫ ∞

0

√
logN(Bn

1 , ‖·‖2 ; t)dt

. log3/2 n,

where the third step follows from the entropy duality result by Artstein et al.

[128] and the last step follows from Maurey’s empirical method [129] (also see

[130, Lemma 3.1]). Collecting the above estimates shows that the relevant

quantities are given by

γ2(A, ‖·‖)(dF(A) + γ2(A, ‖·‖)) + dF(A)dop(A)

. max{
√
s0 log3/2 n, log3 n},

dop(A)(γ2(A, ‖·‖) + dF(A)) . max{
√
s0, log3/2 n},

dop(A)2 ≤ 1.

Next we consider the other set B. Let Bv ∈ B. Then

‖Bv‖F =
1√
n
‖XV ∗‖F ≤

1√
n
‖X‖ ‖V ‖F =

1√
n
‖X‖ .
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Therefore

dF(B) ≤ 1√
n
‖X‖ .

On the other hand,

‖Bv‖ =
1

n
‖XV ∗‖ ≤ 1

n
‖X‖ ‖V ‖ ,

which implies

dop(B) ≤ 1

n
‖X‖ .

Moreover, for Bv, Bv′ ∈ B, we have

‖Bv −Bv′‖ ≤
1

n
‖X‖ ‖V − V ′‖ ,

where V ′ = [v′·1, . . . , v
′
·N ] and v′ = [v′>·1 , . . . , v

′>
·N ]>. Therefore,

γ2(B, ‖·‖)

.
1

n
‖X‖

∫ ∞
0

√
logN(∪|T |=sΠTBSm,N2

, ‖·‖Sm,N∞ ; t)dt

≤ 1

n
‖X‖

∫ 1

0

√
logN(∪|T |=sΠTBSm,N2

, ‖·‖Sm,N∞ ; t)dt

≤ 1

n
‖X‖

∫ 1

0

√
log

∑
|T |=s

N(ΠTBSm,N2
, ‖·‖Sm,N∞ ; t)dt

≤ 1

n
‖X‖

∫ 1

0

√
s logm+ logN(BSs,N2

, ‖·‖Ss,N∞ ; t)dt

≤ 1

n
‖X‖

(√
s logm+

∫ 1

0

√
logN(BSs,N2

, ‖·‖Ss,N∞ ; t)dt
)

.
1

n
‖X‖

√
s+N log(sN +m),

where the last step follows from Lemma B.2.1. Therefore, the parameters for

B are estimated as

γ2(B, ‖·‖)(dF(B) + γ2(B, ‖·‖)) + dF(B)dop(B)

.
1

n2
‖X‖2 ((s+N) log2(sN +m) +

√
s+N

√
n log(sN +m)),

dop(B)(γ2(B, ‖·‖) + dF(B)) .
1

n2
‖X‖2 (

√
s+N log(sN +m) +

√
n),

dop(B)2 ≤ 1

n2
‖X‖2 .
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According to [116, Theorem 2.3], the optimal upper bound is obtained

as the geometric mean of the dominant parameters for the two sets. More

precisely, the suprema is (up to an absolute constant) no larger than

s
1/4
0 (s+N)1/4(

√
n+
√
s+N)1/2

n
· ‖X‖ log3 n log(sN +m)

with probability 1− n−c3 . By Assumptions 4.3.2 and 4.3.3,

|λk| ≤
√

1 + δ,

‖X‖ ≤ max
{√1 + θ

N
,

√
1 + θ

s0

}
,

which completes the proof.

Lemma B.2.1.∫ ∞
0

√
logN(BSm,N2

, tBSm,N∞
)dt .

√
m+N log(mN).

Proof of Lemma B.2.1. First, by the dual entropy result by Artstein et al.

[128], we have

logN(BSm,N2
, tBSm,N∞

) . logN(BSm,N1
, tBSm,N2

).

Then we approximate the S1 ball as a polytope using a trick proposed by

Junge and Lee [130]. Let R be the set of all rank-1 matrices in the unit

sphere of Sm,N2 . Then BSm,N1
is the absolute convex hull of R. We construct

an ε-net ∆m of the sphere Sm−1. Then

|∆m| ≤
(

1 +
2

ε

)m
.

For an arbitrary f ∈ Sm−1, we have a sequence {fl}∞l=1 ⊂ ∆m such that

f =
∞∑
l=1

αlfl,

and
∞∑
l=1

|αl| ≤
1

1− ε
.
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The existence of such a sequence follows from the optimality of the con-

struction of the net. Similarly we construct an ε-net ∆N ⊂ SN−1 of SN−1.

Then

|∆N | ≤
(

1 +
2

ε

)N
.

For an arbitrary g ∈ SN−1, we have a sequence {gk}∞k=1 ⊂ ∆N such that

g =
∞∑
k=1

βkgk

and
∞∑
k=1

|βk| ≤
1

1− ε
.

Therefore,

fg∗ =
∞∑

l,k=1

αlβkflg
∗
k

and
∞∑

l,k=1

|αl||βk| ≤
( 1

1− ε

)2

.

We can choose ε so that ( 1

1− ε

)2

≤ 2

and

1 +
2

ε
≤ 8.

Let ∆m,N = ∆m ×∆N . Then

log(|∆m,N |) ≤ (m+N) log 8

and

BSm,N1
⊂ 2absconv(∆m,N).

Now, it suffices to compute∫ ∞
0

√
logN(2absconv(∆m,N), tBSm,N2

)dt.
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Then use a change of variable and get∫ ∞
0

√
logN(2absconv(∆m,N), tBSm,N2

)dt

= 2

∫ ∞
0

√
logN(absconv(∆m,N), tBSm,N2

)dt.

Let ∆m,N = {q1, . . . , qM}, where M = |∆m,N |. Define linear mapping Q :

`M1 → `mN2 by Q(ei) = vec(qi) for i = 1, . . . ,M . Since ‖vec(qi)‖2 = ‖qi‖S2
= 1

for all i, we have ∥∥Q : `M1 → `mN2

∥∥ = 1.

Note∫ ∞
0

√
logN(absconv(∆m,N), tBSm,N2

)dt =

∫ ∞
0

√
logN(Q(BM

1 ), tB`mN2
)dt.

By a version of Maurey’s empirical method (see for example [130, Proposition

3.2]), we have∫ ∞
0

√
logN(Q(BM

1 ), tB`mN2
)dt .

√
logM log(mN) .

√
m+N log(mN).

This completes the proof.

B.3 Bounds of Perturbation Due to Noise

Proof of Lemma 4.4.8. Bear in mind that the columns of Ψ := D∗En, which

we denote by {ψk}nk=1, are independent random vectors with zero mean:

ψk :=


ak·wk1

ak·wk2

...

ak·wkN

 .

We bound ‖D∗En‖ using the matrix Bernstein inequality [115, Theorem 1.6].

We need the following bounds:

(1) A bound on ‖ψk‖2.

Since

‖ψk‖2 ≤ ‖ak·‖2 ‖wk·‖2
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By (B.12), and m > log n,

‖ψk‖2 ≤ (C ′3 + 1)

√
m

n
×
√
N max

k∈[n],j∈[N ]
|wkj|,

with probability at least 1− n−c2 .

(2) A bound on ‖EΨ∗Ψ‖.
Since

EΨ∗Ψ =
m

n
diag([‖w1·‖2

2 , ‖w2·‖2
2 , . . . , ‖wk·‖

2
2]),

we have

‖EΨ∗Ψ‖ =
m

n
max
k∈[n]
‖wk·‖2

2 ≤
mN

n
max

k∈[n],j∈[N ]
|wkj|2.

(3) A bound on ‖EΨΨ∗‖.
Since

EΨΨ∗ =
∑
k∈[n]

1

n
diag([|wk1|2, |wk2|2, . . . , |wkN |2])⊗ Im,

we have

‖EΨΨ∗‖ =
1

n
max
j∈[N ]

∑
k∈[n]

|wkj|2 ≤ max
k∈[n],j∈[N ]

|wkj|2.

Given the above bounds, we completes the proof using the matrix Bern-

stein inequality (similar to the proof of Lemma 4.4.5). There exist constants

C4, c4 > 0 such that

‖D∗En‖ = ‖Ψ‖ ≤ C4 max
{√

log(Nm+ n),√
Nm

n
log(Nm+ n)

}
max

k∈[n],j∈[N ]
|wkj|,

with probability at least 1− n−c4 .

Proof of Lemma 4.4.9. Note that

max
T⊂[m]
|T |=s

‖ΩTxD
∗En‖ = max

T⊂[m]
|T |=s

max
v∈BmN2

(IN⊗ΠT )v=v

max
u∈Bn2

|v∗Ψu|,
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where

Ψ = D∗En =
[
IN ⊗ a1· . . . IN ⊗ an·

]
w1·

. . .

wn·

 .
Let z =

√
n[a∗1·, . . . , a

∗
n·]
>. Then z is a standard Gaussian vector, and

v∗Ψu =
1√
n

(11,n ⊗ v∗)(En ⊗ Im)(diag(u)⊗ Im)z.

Let

qu,v :=
1√
n

(diag(u)∗ ⊗ Im)(E∗n ⊗ Im)(1n,1 ⊗ v).

The L2 metric is given by

d((u, v), (u′, v′)) =
√
E(q∗u,vz − q∗u′,v′z)2 = ‖qu,v − qu′,v′‖2 .

Indeed,

d((u, v), (u′, v′))

≤ d((u, v), (u, v′)) + d((u, v′), (u′, v′))

≤ ‖diag(u− u′)‖∞ ‖En‖ ‖v‖2 + ‖diag(u′)‖∞ ‖En‖ ‖v − v′‖2

≤ ‖diag(u− u′)‖∞ ‖En‖+ ‖En‖ ‖v − v′‖2 .

Let Γs = {v ∈ BmN
2 : T ⊂ [m], |T | = s, (IN ⊗ ΠT )v = v}. By Dudley’s

theorem (see e.g., [127, Theorem 11.17]), we have

E sup
T⊂[m]
|T |=s

sup
v∈BmN2

(IN⊗ΠT )v=v

sup
u∈Bn2

v∗Ψu

≤ 24

∫ ∞
0

√
logN(Γs ×Bn

2 , d(·); ε)dε

≤ 24 ‖En‖
(∫ ∞

0

√
logN(Γs, ‖·‖2 ; ε)dε+

∫ ∞
0

√
logN(Bn

2 , ‖·‖∞ ; ε)dε
)

≤ 24 ‖En‖
(∫ ∞

0

√
logN(Γs, ‖·‖2 ; ε)dε+

∫ ∞
0

√
logN(Bn

1 , ‖·‖2 ; ε)dε
)

. ‖En‖ (
√
s logm+

√
Ns+ log3/2 n).

By an extension of Dudley’s inequality to moments [131, Section 8.9, page
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263], (
E sup
T⊂[m]
|T |=s

sup
v∈BmN2

(IN⊗ΠT )v=v

sup
u∈Bn2

|v∗Ψu|p
)1/p

. ‖En‖ (
√
s logm+

√
Ns+ log3/2 n)

√
p.

By a variation of Markov’s inequality [131, Proposition 7.11], there exist

absolute constants C4, c4 > 0 such that

sup
T⊂[m]
|T |=s

sup
v∈BmN2

(IN⊗ΠT )v=v

sup
u∈Bn2

|v∗Ψu|

≤ C4 ‖En‖ (
√
s logm+

√
Ns+ log3/2 n)

√
log n,

with probability at least 1− n−c4 .

Therefore, Lemma 4.4.9 follows from

‖En‖ = max
k∈[n]
‖wk·‖2 ≤

√
N max

k∈[n],j∈[N ]
|wkj|.

Proof of Lemma 4.4.10. If assumptions 4.3.1 – 4.3.3 are satisfied, then by

(B.10),

‖yk·‖2 ≤
(C ′2 + 1)

√
1 + δ√

n
max

{
1, ‖X‖

√
log n

}
for all k ∈ [n], with probability at least 1− n−c2 .

Since

E∗sEn = diag([y∗1·w1·, y
∗
2·w2·, . . . , y

∗
n·wn·]),

there exist constants C5 = (C ′2 + 1)
√

(1 + δ)(1 + θ) > 0 such that

‖E∗sEn‖ ≤ max
k
‖yk·‖2 ×

√
N max

k∈[n],j∈[N ]
|wkj|

≤ C5√
1 + θ

√
N

n
max

{
1, ‖X‖

√
log n

}
max

k∈[n],j∈[N ]
|wkj|,

with probability at least 1 − n−c2 . Therefore, Lemma 4.4.10 follows from

Assumption 4.3.3.
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Proof of Lemma 4.4.11. Lemma 4.4.11 follows from

E∗nEn = diag([‖w1·‖2
2 , ‖w2·‖2

2 , . . . , ‖wn·‖
2
2]).

B.4 Scalar Concentration Bounds

Proof of Lemma 4.4.12. We prove these inequalities using the Hoeffding’s

inequality.

For all j ∈ [N ], ` ∈ [m], and k ∈ [n],

∣∣|ak`a>k·x·j|2 − E|ak`a>k·x·j|2
∣∣

≤ |ak`|2|a>k·x·j|2 +
1

n2
(‖x·j‖2

2 + |x`j|2)

≤ C ′6
log(nm)

n
·
‖x·j‖2

2 log(nN)

n
+

2 ‖x·j‖2
2

n2

≤
(C ′6 + 2) ‖x·j‖2

2 log2(nmN)

n2
,

where the third line is true with probability at least 1−n−c′6 for some absolute

constant c′6. We show this by applying a Chernoff bound and a union bound

to |ak`|2, and applying the Hanson-Wright inequality (B.9) and a union bound

to |a>k·x·j|2. Then it follows from the Hoeffding’s inequality and a union

bound, that there exist absolute constants C6, c6 > 0 such that for all j ∈ [N ]

and ` ∈ [m] we have (4.20).

Similarly, for all j ∈ [N ], ` ∈ [m], and k ∈ [n],

|ak`|2|a>k· x·j| ≤ C ′6
log(nm)

n
·
‖x·j‖2

√
log(nN)√
n

,

with probability at least 1−n−c′6 . By the Hoeffding’s inequality and a union

bound, we have (4.21). Here we use the following facts: By Assumption

4.3.3, ‖x·j‖ ≥
√

1−θ
N

, and by Assumption 4.3.4, maxk∈[n],j∈[N ] |wkj| ≤ CW√
nN

.

For ` ∈ [m] and k ∈ [n],

|ak`|2 − E|ak`|2 ≤ C ′6
log(nm)

n
,
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with probability at least 1−n−c′6 . By the Hoeffding’s inequality and a union

bound, we have (4.22).

150



APPENDIX C

PROOFS FOR CHAPTER 5

C.1 Proofs for Section 5.2

C.1.1 Derivation of (5.3) and (5.4)

Recall that

∇L′′(h) =
1

N

N∑
i=1

∇′′i ,

HL′′(h) =
1

N

N∑
i=1

H ′′i ,

where ∇′′i := C>xi∇φ(Cxih), and H ′′i = C>xiHφ(Cxih)Cxi .

For the Bernoulli-Rademacher model in (A1), we have

E∇′′i(j) = −E
n∑
s=1

xi(1+s−j)

( n∑
t=1

xi(1+s−t)h(t)

)3

= −n
(
θh3

(j) + 3θ2h(j)

∑
`6=j

h2
(`)

)
= −nθ(1− 3θ)h3

(j) − 3nθ2h(j),

where the last line uses the fact that
∑n

j=1 h
2
(j) = ‖h‖ = 1. Therefore, the

gradient and the Riemannian gradient are

E∇L′′(h) = −nθ(1− 3θ)h�3 − 3nθ2h,

E∇̂L′′(h) = Ph⊥E∇L′′(h) = nθ(1− 3θ)(‖h‖4
4 · h− h

�3).
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Similarly, we have

EH ′′i(jk) = −3E
n∑
s=1

xi(1+s−j)xi(1+s−k)

( n∑
t=1

xi(1+s−t)h(t)

)2

= −3n×

θh2
(j) + θ2

∑
`6=j h

2
(`) if j = k

2θ2h(j)h(k) if j 6= k

= −3n
[
θ2δjk + θ(1− 3θ)h2

(j)δjk + 2θ2h(j)h(k)

]
.

The Hessian and the Riemannian Hessian are

EHL′′(h) = −3n
[
θ2I + θ(1− 3θ)diag(h�2) + 2θ2hh>

]
,

EĤL′′(h) = Ph⊥EHL′′(h)Ph⊥ − h>E∇L′′(h) · Ph⊥

= nθ(1− 3θ)
[
‖h‖4

4 · I + 2 ‖h‖4
4 · hh

> − 3 · diag(h�2)
]
.

C.1.2 Proofs of Lemmas in Section 5.2

Proof of Lemma 5.2.3. We first investigate the Riemannian Hessian at points

in H′′1 and H′′2. Without loss of generality, we consider points close to the

representative stationary point h0 = [1/
√
r, . . . , 1/

√
r, 0, . . . , 0]. We have

|h2
(j) − 1/r| ≤ ρ/r, ∀j ∈ {1, 2, . . . , r},

h2
(j) ≤ ρ/r, ∀j ∈ {r + 1, . . . , n},
n∑

j=r+1

h2
(j) = 1−

r∑
j=1

h2
(j) ≤ ρ.

Therefore,

‖h− h0‖ ≤

√
r ×

(1−
√

1− ρ√
r

)2
+ ρ ≤

√
2ρ, (C.1)

∥∥∥∥∥diag(h�2)− 1

r

[
Ir

0(n−r)×(n−r)

]∥∥∥∥∥ ≤ ρ

r
, (C.2)
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and ∥∥∥∥∥hh> − 1

r

[
1r×r

0(n−r)×(n−r)

]∥∥∥∥∥ ≤ 2 ‖h− h0‖ ≤ 2
√

2ρ. (C.3)

We also bound ‖h‖4
4 as follows:

‖h‖4
4 ≤ r × (1 + ρ)2

r2
+ min

{
(n− r)× ρ2

r2
,

ρ2

n− r

}
≤ 1 + 2ρ+ 2ρ2

r
,

‖h‖4
4 ≥ r × (1− ρ)2

r2
≥ 1− 2ρ+ ρ2

r
.

Since ρ < 10−3 < 1/2, ∣∣∣‖h‖4
4 −

1

r

∣∣∣ ≤ 3ρ

r
. (C.4)

Next we obtain bounds on the Riemannian curvature of EL′′ at points

h ∈ H′′1 or h ∈ H′′2 by bounding its deviation from the Riemannian curvature

at a corresponding stationary point h0. By (C.2), (C.3), (C.4), and the

expressions in (5.4), (5.6):∥∥∥EĤL′′(h)− EĤL′′(h0)
∥∥∥

≤ nθ(1− 3θ)
[3ρ

r
+ 2× 3ρ+ 2

√
2ρ

r
+ 3× ρ

r

]
=
nθ(1− 3θ)

r
(12ρ+ 4

√
2ρ). (C.5)
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It follows that∣∣∣ min
z:‖z‖=1
z⊥h

z>EĤL′′(h)z − min
z:‖z‖=1
z⊥h0

z>EĤL′′(h0)z
∣∣∣

≤
∣∣∣ min
z:‖z‖=1
z⊥h

z>EĤL′′(h)z − min
z:‖z‖=1
z⊥h

z>EĤL′′(h0)z
∣∣∣

+
∣∣∣ min
z:‖z‖=1
z⊥h

z>EĤL′′(h0)z − min
z:‖z‖=1
z⊥h0

z>EĤL′′(h0)z
∣∣∣

≤
∥∥∥V >EĤL′′(h)V − V >EĤL′′(h0)V

∥∥∥+
∥∥∥V >EĤL′′(h0)V − V >0 EĤL′′(h0)V0

∥∥∥
≤
∥∥∥EĤL′′(h)− EĤL′′(h0)

∥∥∥+ 2
∥∥∥EĤL′′(h0)

∥∥∥ · ‖V − V0‖

≤ nθ(1− 3θ)

r
(12ρ+ 4

√
2ρ) + 2× 2nθ(1− 3θ)

r
×
√

2ρ

=
nθ(1− 3θ)

r
(12ρ+ 8

√
2ρ)

≤
nθ(1− 3θ)(24

√
ρ)

r
, (C.6)

where V, V0 ∈ Rn×(n−1) satisfy: (I) the columns of V (resp. V0) form an

orthonormal basis for the tangent space at h (resp. h0); (II) ‖V − V0‖ ≤
√

2ρ.

We construct V and V0 as follows, for the non-trivial case where h 6= h0.

Suppose the columns of V∩ ∈ Rn×(n−2) form an orthonormal basis for the

intersection of the tangent spaces at h and at h0. Let c := 〈h, h0〉 < 1,

and let h′ := 1√
1−c2 (h0 − ch) and h′0 := 1√

1−c2 (ch0 − h). It is easy to verify

that V := [V∩, h
′] and V0 := [V∩, h

′
0] satisfy (I). To verify (II), we have

‖V − V0‖ = ‖h′ − h′0‖ = 1−c√
1−c2 ‖h+ h0‖ = ‖h− h0‖ ≤

√
2ρ.

Positive definiteness (5.9) follows from (5.7) and (C.6). Negative curvature

(5.10) follows from (5.8) and (C.6).

Next, we prove contrapositive of (5.11), i.e., suppose∥∥∥E∇̂L′′(h)
∥∥∥ < θ(1− 3θ)ρ2/n

for some h ∈ Sn−1, then we show h ∈ H′′1 ∪ H′′2. First, it follows from∥∥∥E∇̂L′′(h)
∥∥∥ < θ(1− 3θ)ρ2/n, and the expression in (5.5), that for all j, k ∈

[n],

h2
(j)h

2
(k)(h

2
(j) − h2

(k))
2 <

ρ4

n4
.

As a result, |h2
(j) − h2

(k)| < ρ/n if h2
(j) ≥ ρ/n and h2

(k) ≥ ρ/n.
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Let Ω := {j : h2
(j) ≥ ρ/n} ⊂ [n], and r := |Ω|. Then

h2
(j) < ρ/n ≤ ρ/r, ∀j /∈ Ω, (C.7)

and

1− (n− r) · ρ
n
<
∑
j∈Ω

h2
(j) ≤ 1. (C.8)

In addition, |h2
(j)−h2

(k)| < ρ/n for j, k ∈ Ω. Therefore, for k ∈ Ω, h2
(k) is close

to the average 1
r

∑
j∈Ω h

2
(j):∣∣∣h2

(k) −
1

r

∑
j∈Ω

h2
(j)

∣∣∣ < ρ/n, ∀k ∈ Ω. (C.9)

By (C.8) and (C.9), for k ∈ Ω:

h2
(k) ≤

1

r
+
ρ

n
≤ 1 + ρ

r
,

h2
(k) ≥

1− (n− r) · ρ
n

r
− ρ

n
=

1− ρ
r

.

Therefore, ∣∣∣h2
(k) −

1

r

∣∣∣ ≤ ρ

r
, ∀k ∈ Ω. (C.10)

It follows from (C.7) and (C.10) that h is in the (ρ, r)-neighborhood of a

stationary point h0, where h0(j) = 1/
√
r if j ∈ Ω and h0(j) = 0 if j /∈ Ω.

Clearly, such an h belongs to H′′1 ∪ H′′2. By contraposition, any point h ∈
H′′3 = Sn−1\(H′′1 ∪H′′2) satisfies (5.11).

Proof of Lemma 5.2.4. For any given h ∈ Sn−1 one can bound the deviation

of the gradient (or Hessian) from its mean using matrix Bernstein inequality

[115]. Let Sε be an ε-net of Sn−1. Then |Sε| ≤ (3/ε)n [127, Lemma 9.5]. We

can then bound the deviation over Sn−1 by a union bound over Sε.

Define ∇′′i := C>xi∇φ(Cxih), and H ′′i = C>xiHφ(Cxih)Cxi . For the Bernoulli-
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Rademacher model in (A1), we have |xi(j)| ≤ 1. Therefore,

∣∣∇′′i(j)∣∣ =
∣∣∣ n∑
s=1

xi(1+s−j)

( n∑
t=1

xi(1+s−t)h(t)

)3∣∣∣
≤ n

( n∑
t=1

|h(t)|
)3

≤ n2
√
n,

∣∣H ′′i(jk)

∣∣ =
∣∣∣3 n∑

s=1

xi(1+s−j)xi(1+s−k)

( n∑
t=1

xi(1+s−t)h(t)

)2∣∣∣
≤ 3n

( n∑
t=1

|h(t)|
)2

≤ 3n2.

It follows that ‖∇′′i ‖ ≤ n3, and ‖H ′′i ‖ ≤ ‖H ′′i ‖F ≤ 3n3.

Our goal is to bound the following average of independent random terms

with zero mean:

∇L′′(h)− E∇L′′(h) =
1

N

N∑
i=1

(
∇′′i − E∇′′i

)
.

HL′′(h)− EHL′′(h) =
1

N

N∑
i=1

(
H ′′i − EH ′′i

)
.

Since ‖∇′′i ‖ ≤ n3, we have

‖∇′′i − E∇′′i ‖ ≤ 2n3,

N∑
i=1

E ‖∇′′i − E∇′′i ‖
2

= N(E ‖∇′′i ‖
2 − ‖E∇′′i ‖

2
) ≤ Nn6,

∥∥∥ N∑
i=1

E(∇′′i − E∇′′i )(∇′′i − E∇′′i )>
∥∥∥ ≤ N(E ‖∇′′i ‖

2
+ ‖E∇′′i ‖

2
) ≤ 2Nn6.

By the rectangular version of the matrix Bernstein inequality [115, Theorem
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1.6], and a union bound over Sε,

P
[
sup
h∈Sε
‖∇L′′(h)− E∇L′′(h)‖ ≤ τ

]
≥ 1−

(3

ε

)n
(n+ 1) exp

( −N2τ 2/2

2Nn6 + 2n3Nτ/3

)
. (C.11)

Similarly, since ‖H ′′i ‖ ≤ 3n3, we have

‖H ′′i − EH ′′i ‖ ≤ 6n3,∥∥∥ N∑
i=1

E(H ′′i − EH ′′i )2
∥∥∥ ≤ N

∥∥EH ′′2i − (EH ′′i )2
∥∥ ≤ 2N(3n3)2 = 18Nn6.

By the symmetric version of the matrix Bernstein inequality [115, Theorem

1.4], and a union bound over Sε,

P
[
sup
h∈Sε
‖HL′′(h)− EHL′′(h)‖ ≤ τ

]
≥ 1−

(3

ε

)n
(2n) exp

( −N2τ 2/2

18Nn6 + 6n3Nτ/3

)
. (C.12)

Choose τ = θ(1−3θ)ρ2

8n
, and ε = τ

6n3 = θ(1−3θ)ρ2

48n4 . By (C.11) and (C.12), there

exist constants c2, c
′
2 > 0 (depending only on θ), such that: if N > c2n9

ρ4 log n
ρ
,

then with probability at least 1− e−c′2n,

sup
h∈Sε
‖∇L′′(h)− E∇L′′(h)‖ ≤ τ =

θ(1− 3θ)ρ2

8n
,

sup
h∈Sε
‖HL′′(h)− EHL′′(h)‖ ≤ τ =

θ(1− 3θ)ρ2

8n
.

To finish the proof, we extrapolate the concentration bounds over Sε to all

points in Sn−1. For any h ∈ Sn−1, there exists h′ ∈ Sε such that ‖h− h′‖ ≤
ε. Furthermore, thanks to the Lipschitz continuity of the gradient and the

Hessian,

‖∇′′i (h)−∇′′i (h′)‖

≤ ‖Cxi‖ ·
√
n(3 ‖xi‖2) · ‖xi‖ ‖h− h′‖

≤ 3n3ε,
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‖H ′′i (h)−H ′′i (h′)‖

≤ ‖Cxi‖
2 · (6 ‖xi‖) · ‖xi‖ ‖h− h′‖

≤ 6n3ε,

where 3 ‖xi‖2 and 6 ‖xi‖ are the Lipschitz constants of (·)3 and 3(·)2 on the

interval [−‖xi‖ , ‖xi‖]. We also use the fact that |xi(j)| < 1, hence ‖xi‖ ≤
√
n

and ‖Cxi‖ ≤ n. As a consequence,

sup
h∈Sn−1

‖∇L′′(h)− E∇L′′(h)‖

≤ sup
h∈Sε
‖∇L′′(h)− E∇L′′(h)‖+ 2 max

i∈[n]
sup

‖h−h′‖≤ε
‖∇′′i (h)−∇′′i (h′)‖

≤ τ + 6n3ε = 2τ =
θ(1− 3θ)ρ2

4n
,

sup
h∈Sn−1

∥∥∥∇̂L′′(h)− E∇̂L′′(h)
∥∥∥

≤ sup
h∈Sn−1

‖∇L′′(h)− E∇L′′(h)‖

≤ θ(1− 3θ)ρ2

4n
.

Similarly,

sup
h∈Sn−1

‖HL′′(h)− EHL′′(h)‖

≤ sup
h∈Sε
‖HL′′(h)− EHL′′(h)‖+ 2 max

i∈[n]
sup

‖h−h′‖≤ε
‖H ′′i (h)−H ′′i (h′)‖

≤ τ + 12n3ε = 3τ =
3θ(1− 3θ)ρ2

8n
,

sup
h∈Sn−1

∥∥∥ĤL′′(h)− EĤL′′(h)
∥∥∥

≤ sup
h∈Sn−1

‖HL′′(h)− EHL′′(h)‖+ sup
h∈Sn−1

‖∇L′′(h)− E∇L′′(h)‖

≤ θ(1− 3θ)ρ2

n
.

Proof of Lemma 5.2.5. We have E 1
θnN

∑N
i=1C

>
xi
Cxi = I. We first bound
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∥∥∥ 1
θnN

∑N
i=1 C

>
xi
Cxi − I

∥∥∥ using the matrix Bernstein inequality. To this end,

we bound the spectral norm of E(C>xiCxi)
2, the eigenvalues of which can be

computed using the DFT of xi. The eigenvalue corresponding to the t-th

frequency satisfies

E
[( n∑

k=1

e−
√
−1(k−1)t/nxi(k)

)( n∑
k=1

e
√
−1(k−1)t/nxi(k)

)]2

= E
( n∑
k=1

x2
i(k) +

∑
1≤k<j≤n

2 cos((j − k)t/n)xi(j)xi(k)

)2

≤ nθ +
n(n− 1)

2
× 4θ2 + n(n− 1)θ2

= nθ + 3n(n− 1)θ2.

Therefore,

∥∥∥ N∑
i=1

E
( 1

θn
C>xiCxi − I

)2∥∥∥
= N

∥∥∥ 1

θ2n2
E(C>xiCxi)

2 − I
∥∥∥

≤ N

θ2n2

∥∥E(C>xiCxi)
2
∥∥+N

≤ N

θ2n2
(nθ + 3n(n− 1)θ2) +N

≤ N

θn
+ 3N +N

≤ 5N.

We also have∥∥∥∥ 1

θn
C>xiCxi − I

∥∥∥∥ ≤ 1

θn
‖Cxi‖

2 + 1 ≤ n2

θn
+ 1 ≤ n2 + 1.

By the matrix Bernstein inequality [115, Theorem 1.4],

P
[∥∥∥ 1

θnN

N∑
i=1

C>xiCxi − I
∥∥∥ ≤ τ

]
≥ 1− 2n exp

( −N2τ 2/2

5N + (n2 + 1)Nτ/3

)
.

Set τ = θ(1−3θ)ρ2

200n4κ4 . Then there exist constants c3, c
′
3 > 0 (depending only on
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θ) such that: if N > c3n8κ8

ρ4 log n, then with probability at least 1− n−c′3 ,

∥∥∥ 1

θnN

N∑
i=1

C>xiCxi − I
∥∥∥ ≤ θ(1− 3θ)ρ2

200n4κ4
. (C.13)

Next, we bound
∥∥CfR− Cf (C>f Cf )−1/2

∥∥ (similar to the proofs of [71,

Lemma 15] and [132, Lemma B.2]). Define Q := 1
θnN

∑N
i=1C

>
xi
Cxi . Then

∥∥CfR− Cf (C>f Cf )−1/2
∥∥

=
∥∥Cf (C>f QCf )−1/2 − Cf (C>f Cf )−1/2

∥∥
≤ σ1(Cf ) ·

∥∥(C>f QCf )
−1/2 − (C>f Cf )

−1/2
∥∥

≤ σ1(Cf )

∥∥(C>f QCf )
−1 − (C>f Cf )

−1
∥∥

σn
(
(C>f Cf )

−1/2
) (C.14)

= σ2
1(Cf )

∥∥(C>f QCf )
−1 − (C>f Cf )

−1
∥∥

≤ σ2
1(Cf )

σ2
n(Cf )

∥∥(C>f Cf )(C
>
f QCf )

−1 − I
∥∥

= κ2
∥∥∥[I + (C>f (Q− I)Cf )(C

>
f Cf )

−1
]−1

− I
∥∥∥

≤ κ2

∥∥C>f (Q− I)Cf
∥∥∥∥(C>f Cf )

−1
∥∥

1−
∥∥C>f (Q− I)Cf

∥∥∥∥(C>f Cf )
−1
∥∥ (C.15)

≤ κ4‖Q− I‖
1− 1/2

≤ θ(1− 3θ)ρ2

100n4
. (C.16)

The inequality (C.14) follows from the fact ([133, Theorem 6.2]) that, for

positive definite A and B,

∥∥A−1/2 −B−1/2
∥∥ ≤ ‖A−1 −B−1‖

σn(A−1/2 +B−1/2)
≤ ‖A

−1 −B−1‖
σn(B−1/2)

,

which in turn follows from the identity

(A−1/2−B−1/2)(A−1/2+B−1/2)+(A−1/2+B−1/2)(A−1/2−B−1/2) = 2(A−1−B−1).

The inequality (C.15) is due to the fact that ‖(I + A)−1 − I‖ ≤ ‖(I + A)−1‖ ‖A‖ ≤
‖A‖

1−‖A‖ for ‖A‖ < 1. The last line (C.16) follows from (C.13) and

∥∥C>f (Q− I)Cf
∥∥∥∥(C>f Cf )

−1
∥∥ ≤ κ2 ‖Q− I‖ < 1

2
.
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The rest of Lemma 5.2.5 follows from the Lipschitz continuity of the ob-

jective function. Define U := CfR, and U ′ := Cf (C
>
f Cf )

−1/2, which is an

orthogonal matrix. We have

‖CfR‖ = ‖U‖ ≤ ‖U ′‖+ ‖U − U ′‖ < 2. (C.17)

Recall that for the Bernoulli-Rademacher model, ‖xi‖ ≤
√
n and ‖Cxi‖ ≤ n.

Then the difference of the gradients of L(h) = 1
N

∑N
i=1 φ(CxiUh) and L′(h) =

1
N

∑N
i=1 φ(CxiU

′h) can be bounded as follows:

‖∇L(h)−∇L′(h)‖

≤ max
i∈[n]

∥∥U>C>xi∇φ(CxiUh)− U ′>C>xi∇φ(CxiU
′h)
∥∥

≤ max
i∈[n]

∥∥U>C>xi∇φ(CxiUh)− U>C>xi∇φ(CxiU
′h)
∥∥

+ max
i∈[n]

∥∥U>C>xi∇φ(CxiU
′h)− U ′>C>xi∇φ(CxiU

′h)
∥∥

≤ max
i∈[n]
‖U‖ ‖Cxi‖ ·

√
n[3(‖U‖ ‖xi‖)2] · ‖U − U ′‖ ‖xi‖

+ max
i∈[n]
‖U − U ′‖ ‖Cxi‖ ·

√
n ‖xi‖3

≤ 25
√
n ·max

i∈[n]
‖Cxi‖ ‖xi‖

3 ‖U − U ′‖

≤ 25n3 ‖U − U ′‖ ,

where the third inequality follows from the fact that ∇φ(·) is Lipschitz con-

tinous and bounded on compact sets – the Lipschitz constant of (·)3 on the

interval [−‖U‖ ‖xi‖)2, ‖U‖ ‖xi‖)2] is 3(‖U‖ ‖xi‖)2, and the upper bound of

|(·)3| on the interval [−‖xi‖ , ‖xi‖] is ‖xi‖3. Similarly the difference of the
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Hessians can be bounded as follows:

‖HL(h)−HL′(h)‖

≤ max
i∈[n]

∥∥U>C>xiHφ(CxiUh)CxiU − U ′>C>xiHφ(CxiU
′h)CxiU

′∥∥
≤ max

i∈[n]

∥∥U>C>xiHφ(CxiUh)CxiU − U>C>xiHφ(CxiU
′h)CxiU

∥∥
+ max

i∈[n]

∥∥U>C>xiHφ(CxiU
′h)CxiU − U ′>C>xiHφ(CxiU

′h)CxiU
∥∥

+ max
i∈[n]

∥∥U ′>C>xiHφ(CxiU
′h)CxiU − U ′>C>xiHφ(CxiU

′h)CxiU
′∥∥

≤ max
i∈[n]
‖U‖2 ‖Cxi‖

2 · [6(‖U‖ ‖xi‖)] · ‖U − U ′‖ ‖xi‖

+ max
i∈[n]
‖U − U ′‖ ‖U‖ ‖Cxi‖

2 · [3 ‖xi‖2]

+ max
i∈[n]
‖U − U ′‖ ‖Cxi‖

2 · [3 ‖xi‖2]

≤ 57 ·max
i∈[n]
‖Cxi‖

2 ‖xi‖2 ‖U − U ′‖

≤ 57n3 ‖U − U ′‖ ,

where the third inequality uses the Lipschitz constant and upper bound of

3(·)2.

It follows from (C.16) and the above bounds that

sup
h∈Sn−1

∥∥∥∇̂L(h)− ∇̂L′(h)
∥∥∥

≤ sup
h∈Sn−1

‖∇L(h)−∇L′(h)‖

≤ 25n3 ‖U − U ′‖ ≤ θ(1− 3θ)ρ2

4n
.

sup
h∈Sn−1

∥∥∥ĤL(h)− ĤL′(h)
∥∥∥

≤ sup
h∈Sn−1

‖HL(h)−HL′(h)‖+ sup
h∈Sn−1

‖∇L(h)−∇L′(h)‖

≤ 100n3 ‖U − U ′‖ ≤ θ(1− 3θ)ρ2

n
.

Proof of Lemma 5.2.6. The set H′′1 equals the union of (ρ, 1)-neighborhoods
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of {±ej}nj=1, and the columns of C−1
f = Cg are the shifted versions of the

inverse filter g. Therefore, by (C.1), every point h∗ ∈ (C>f Cf )
1/2C−1

f H′′1
satisfies ∥∥Cf (C>f Cf )−1/2h∗ ± ej

∥∥ ≤√2ρ,

for some j ∈ [n]. It follows that

‖CfRh∗ ± ej‖

≤
∥∥CfRh∗ − Cf (C>f Cf )−1/2h∗

∥∥+
∥∥Cf (C>f Cf )−1/2h∗ ± ej

∥∥
≤ θ(1− 3θ)ρ2

100n4
+
√

2ρ

≤ 2
√
ρ,

where the second to last line follows from (C.16), and the last line follows

from θ(1− 3θ)ρ2/(100n4) < (2−
√

2)
√
ρ.

C.2 Proofs for Section 5.3

Proof of Lemma 5.3.3. Clearly, L(h) ≤ 0 for all h ∈ Sn−1. For the Bernoulli-

Rademacher model in (A1), we have ‖xi‖ ≤
√
n and ‖Cxi‖ ≤ n. Therefore,

φ(CyiRh) = −1

4
‖CxiCfRh‖

4
4

≥ −n
4

(‖xi‖ ‖CfRh‖)4

≥ −4n3,

where the first inequality follows from the Cauchy-Schwarz inequality, and

the second inequality follows from ‖CfRh‖ ≤ ‖CfR‖ ≤ 2 (see (C.17)). Then

L(h) = 1
N

∑N
i=1 Li ≥ −4n3.

We can bound the the norm of ∇L(h) and HL(h) similarly. To bound

‖∇L(h)‖, we observe that

∣∣(C>xi∇φ(CyiRh))(j)

∣∣ ≤ ‖xi‖ ‖∇φ(CyiRh)‖

≤ ‖xi‖ ×
√
n(‖xi‖ ‖CfRh‖)3

≤
√
n ‖xi‖4 ‖CfR‖3

≤ 8n2
√
n,
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and hence

‖∇L(h)‖ =

∥∥∥∥∥ 1

N

N∑
i=1

R>C>yi∇φ(CyiRh)

∥∥∥∥∥
≤
∥∥R>C>f ∥∥

∥∥∥∥∥ 1

N

N∑
i=1

C>xi∇φ(CyiRh)

∥∥∥∥∥
≤
∥∥R>C>f ∥∥×√n max

i∈[N ], j∈[n]

∣∣(C>xi∇φ(CyiRh))(j)

∣∣
≤ 16n3.

To bound ‖HL(h)‖, we have

∣∣(C>xiHφ(CyiRh)Cxi)(jk)

∣∣ ≤ ‖xi‖2 ‖Hφ(CyiRh)‖

≤ ‖xi‖2 × 3(‖xi‖ ‖CfRh‖)2

≤ 3 ‖xi‖4 ‖CfR‖2

≤ 12n2,

and hence

‖HL(h)‖ =

∥∥∥∥∥ 1

N

N∑
i=1

R>C>yiHφ(CyiRh)CyiR

∥∥∥∥∥
≤
∥∥R>C>f ∥∥

∥∥∥∥∥ 1

N

N∑
i=1

C>xiHφ(CyiRh)Cxi

∥∥∥∥∥ ‖CfR‖
≤ ‖CfR‖2 × n max

i∈[N ], j∈[n], k∈[n]

∣∣(C>xiHφ(CyiRh)Cxi)(jk)

∣∣
≤ 48n3.

Proof of Lemma 5.3.4. For z ⊥ h, and h′ = h+z
‖h+z‖ = h+z√

1+‖z‖2
, L̂(z) = L(h′),

L̂(0) = L(h), and ∇L̂(0) = ∇̂L(h). By the mean value theorem, there exists a

convex combination h′′ of h and h′ such that L(h′)−L(h) = 〈h′−h,∇L(h′′)〉,
and a convex combination of h′′′ of h and h′′ such that ∇L(h′′) − ∇L(h) =
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HL(h′′′)(h′′ − h). It follows that

∣∣L(h′)− L(h)− 〈z, ∇̂L(h)〉
∣∣

=
∣∣〈h′ − h,∇L(h′′)〉 − 〈z,∇L(h)〉

∣∣
≤
∣∣〈h′ − h− z,∇L(h′′)〉

∣∣+
∣∣〈z,∇L(h′′)−∇L(h)〉

∣∣
≤ ‖z‖2

1 +
√

1 + ‖z‖2
‖∇L(h′′)‖+ ‖z‖ ‖HL(h′′′)‖ ‖h′′ − h‖

≤ ‖z‖
2

2
× 16n3 + 48n3 ‖z‖ ‖h− h′‖

≤ 64n3 ‖z‖2 ,

where the third inequality follows from Lemma 5.3.3, and the last inequality

follows from the fact that ‖h− h′‖ ≤ ‖z‖.

Proof of Lemma 5.3.5. Suppose the columns of matrix V ∈ Rn×(n−1) (resp.

V ′ ∈ Rn×(n−1)) form a orthonormal basis for the tangent subspace at h (resp.

h′). Then a matrix representation of DA(h) in (5.15) as a mapping from the

tangent space of h to the tangent space at h′ with respect to the bases of

these spaces is V ′>V (In−1 − γV >ĤL(h)V ).

Note that |det(V ′>V )| does not depend on the specific choice of orthogonal

bases V and V ′ (multiplication by an orthonormal matrix does not change

|det(·)|). Therefore, we consider the following construction of V and V ′.

Suppose the columns of V∩ ∈ Rn×(n−2) form an orthonormal basis for the

intersection of the tangent spaces at h and at h′. Let c := 〈h, h′〉 < 1, then it

is easy to verify that V := [V∩,
1√

1−c2 (h′− ch)] and V ′ := [V∩,
1√

1−c2 (ch′−h)]

are valid orthonormal bases. It follows that

|det(V ′>V )| =

∣∣∣∣∣ In−2 0(n−2)×1

01×(n−2) c

∣∣∣∣∣ = |c|.

Since 〈h, h′〉 = 〈h, h − γ∇̂L(h)〉/
∥∥∥h− γ∇̂L(h)

∥∥∥ = ‖h‖2 /
∥∥∥h− γ∇̂L(h)

∥∥∥ =

1/
∥∥∥h− γ∇̂L(h)

∥∥∥ > 0, we have |det(V ′>V )| = |〈h, h′〉| > 0.

By Lemma 5.3.3, for all h ∈ Sn−1,∥∥∥ĤL(h)
∥∥∥ ≤ ‖HL(h)‖+ ‖∇L(h)‖

≤ 48n3 + 16n3 = 64n3.
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Therefore In−1 − γV >ĤL(h)V is strictly positive definite for γ < 1/(64n3).

It follows that

|det(DA(h))| = |det(V ′>V )| · |det
(
In−1 − γV >HL(h)V

)
| > 0.

Proof of Corollary 5.3.2. Since
∥∥∥CfRĥ± ej∥∥∥ ≤ 2

√
ρ for some j ∈ [n], by the

Cauchy-Schwarz inequality∥∥∥F(f)�F(Rĥ)−F(∓ej)
∥∥∥
∞
≤
√
n
∥∥∥CfRĥ± ej∥∥∥ ≤ 2

√
ρn. (C.18)

Equivalently, the circular convolution operators satisfy

∥∥CfCRĥ − C∓ej∥∥ ≤ 2
√
ρn.

It follows that

‖x̂i ± Sj(xi)‖ =
∥∥∥CyiRĥ± Sj(xi)∥∥∥

=
∥∥CfCRĥxi − C∓ejxi∥∥ ≤ ∥∥CfCRĥ − C∓ej∥∥ · ‖xi‖

≤ 2
√
ρn · ‖xi‖ .

It follows from (C.18) that

|F(f)(k) ×F(Rĥ)(k) − e
±
√
−1(j−1)(k−1)

n | ≤ 2
√
ρn,

for all k ∈ [n]. Therefore,

|F(Rĥ)(k)| ≥
1− 2

√
ρn

|F(f)(k)|
.

Since mink∈[n] |F(Rĥ)(k)| = σn(CRĥ), and maxk∈[n] |F(f)(k)| = ‖F(f)‖∞ ≤√
n ‖f‖, we have

σn(CRĥ) ≥
1− 2

√
ρn

√
n ‖f‖

.

Combining the above bound with the following∥∥∥CRĥ(f ± Sj(f̂))
∥∥∥ =

∥∥∥CfRĥ± ej∥∥∥ ≤ 2
√
ρ,
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we have ∥∥∥f̂ ± S−j(f)
∥∥∥ =

∥∥∥f ± Sj(f̂)
∥∥∥

≤

∥∥∥CRĥ(f ± Sj(f̂))
∥∥∥

σn(CRĥ)
≤ 2
√
ρ×

√
n ‖f‖

1− 2
√
ρn

=
2
√
ρn

1− 2
√
ρn
· ‖f‖ .
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