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ABSTRACT

Bilinear inverse problems (BIPs), the resolution of two vectors given their im-
age under a bilinear mapping, arise in many applications. Without further
constraints, BIPs are usually ill-posed. In practice, parsimonious structures
of natural signals (e.g., subspace or sparsity) are exploited. However, there
are few theoretical justifications for using such structures for BIPs. We con-
sider two types of BIPs, blind deconvolution (BD) and blind gain and phase
calibration (BGPC), with subspace or sparsity structures. Our contributions
are twofold: we derive optimal identifiability conditions, and propose efficient
algorithms that solve these problems.

In previous work, we provided the first algebraic sample complexities for
BD that hold for Lebesgue almost all bases or frames. We showed that for
BD of a pair of vectors in C", with subspace constraints of dimensions m; and
mg, respectively, a sample complexity of n > myms is sufficient. This result is
suboptimal, since the number of degrees of freedom is merely m;+msy—1. We
provided analogous results, with similar suboptimality, for BD with sparsity
or mixed subspace and sparsity constraints. In Chapter 2, taking advantage
of the recent progress on the information-theoretic limits of unique low-rank
matrix recovery, we finally bridge this gap, and derive an optimal sample
complexity result for BD with generic bases or frames. We show that for
BD of an arbitrary pair (resp. all pairs) of vectors in C", with sparsity
constraints of sparsity levels s; and sy, a sample complexity of n > s; + s9
(resp. n > 2(s1 + $2)) is sufficient. We also present analogous results for BD
with subspace constraints or mixed constraints, with the subspace dimension
replacing the sparsity level. Last but not least, in all the above scenarios, if
the bases or frames follow a probabilistic distribution specified in Chapter 2,
the recovery is not only unique, but also stable against small perturbations
in the measurements, under the same sample complexities.

In previous work, we proposed studying the identifiability in bilinear in-
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verse problems up to transformation groups. In particular, we studied sev-
eral special cases of blind gain and phase calibration, including the cases of
subspace and joint sparsity models on the signals, and gave sufficient and
necessary conditions for identifiability up to certain transformation groups.
However, there were gaps between the sample complexities in the sufficient
conditions and the necessary conditions. In Chapter 3, under a mild assump-
tion that the signals and models are generic, we bridge the gaps by deriving
tight sufficient conditions with optimal or near optimal sample complexities.

Recently there has been renewed interest in solutions to BGPC with care-
ful analysis of error bounds. In Chapter 4, we formulate BGPC as an eigen-
value/eigenvector problem, and propose to solve it via power iteration, or in
the sparsity or joint sparsity case, via truncated power iteration (which we
show is equivalent to a sparsity-projected gradient descent). Under certain
assumptions, the unknown gains, phases, and the unknown signal can be
recovered simultaneously. Numerical experiments show that power iteration
algorithms work not only in the regime predicted by our main results, but
also in regimes where theoretical analysis is limited. We also show that our
power iteration algorithms for BGPC compare favorably with competing al-
gorithms in adversarial conditions, e.g., with noisy measurement or with a
bad initial estimate.

A problem related to BGPC is multichannel blind deconvolution (MBD)
with a circular convolution model, i.e., the recovery of an unknown signal
f and multiple unknown filters x; from circular convolutions y; = x; ® f
(t = 1,2,...,N). In Chapter 5, we consider the case where the x;’s are
sparse, and convolution with f is invertible. Our nonconvex optimization
formulation solves for a filter A on the unit sphere that produces sparse out-
puts y; ®h. Under some technical assumptions, we show that all local minima
of the objective function correspond to the inverse filter of f up to an in-
herent sign and shift ambiguity, and all saddle points have strictly negative
curvatures. This geometric structure allows successful recovery of f and x;
using a simple manifold gradient descent algorithm with random initializa-
tion. Our theoretical findings are complemented by numerical experiments,
which demonstrate superior performance of the proposed approach over the

previous methods.
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CHAPTER 1

INTRODUCTION

Bilinear inverse problems (BIPs), i.e., the simultaneous recovery of two vari-
ables x and y given bilinear measurement z = A(x,y), have attracted much
attention recently [1]. However, theoretical understanding of the identifiabil-
ity — or uniqueness of the solution to a BIP has been lacking until recently.
Furthermore, there has been tremendous interest in efficient algorithms for
BIPs with theoretical guarantees. In this dissertation, we present near op-
timal identifiability results for two BIPs, blind deconvolution (BD) [2] and
blind gain and phase calibration (BGPC) [3]. We also study guaranteed ef-
ficient algorithms for BGPC [4], and for a related problem — multichannel
blind deconvolution (MBD).

1.1 Blind Deconvolution

Blind deconvolution (BD) is the bilinear inverse problem of recovering the
signal and the filter simultaneously given the their convolutioin or circular
convolution. It arises in many applications, including blind image deblurring
[5], blind channel equalization [6], speech dereverberation [7], and seismic
data analysis [8]. Without further assumptions, BD is an ill-posed problem,
and does not yield a unique solution. In Chapter 2, we focus on subspace
or sparsity assumptions on the signal and the filter. These priors, which
render BD better-posed by reducing the search space, were shown to be
effective constraints or regularizers in various applications [9, 10, 11, 12,
13, 14]. However, despite the success in practice, the theoretical results on
uniqueness in BD with a subspace or sparsity constraint are limited.
Recently, the “lifting” scheme — recasting bilinear or quadratic inverse
problems, such as blind deconvolution and phase retrieval, as rank-1 matrix

recovery from linear measurements — has attracted considerable attention



[14, 15]. Choudhary and Mitra [16] showed that identifiability in BD (or in
any bilinear inverse problem) hinges on the set of rank-2 matrices in a certain
nullspace. In particular, they showed a negative result that the solution to
BD with a canonical sparsity prior, that is, sparsity over the natural basis, is
not identifiable [17]. However, the authors did not analyze the identifiability
of signals that are sparse over other dictionaries. Eldar et al. [18] derived
tight sufficient conditions for low-rank matrix recovery. However, the authors
did not exploit any sparsity priors, and the results do not apply to structured
measurements that arise in BD.

Using the lifting framework, Ahmed et al. [14], Ling and Strohmer [19],
and Lee et al. [20, 21] proposed algorithms to solve BD with with sub-
space constraints, mixed constraints, and sparsity constraints, respectively.
Chi [22] solved BD with mixed constraints, where the sparse spikes do not
necessarily lie on a grid.! They all showed successful recovery using convex
programming or alternating minimization, which implies identifiability and
stability. These results are constructive, being demonstrated by establish-
ing performance guarantees of algorithms. However, the guarantees are only
shown to hold with high probability. The probability of failure is nonzero,
and decays in a power-law form as the size of the problem increases.

In previous work [23], we addressed the identifiability up to scaling in single
channel blind deconvolution under subspace or sparsity constraints. We pre-
sented the first algebraic sample complexities for BD with fully deterministic
signal models. In particular, we showed that for BD of a pair of vectors in
C", with generic subspace constraints of dimensions m; and ms, the bilinear
mapping is injective if n > mymsy. This sufficient condition is suboptimal for
two reasons. First, it has been shown that the information-theoretic limit
(necessary condition) of such a problem is n > mj+mgy—1 [24, Theorem V.1].
Secondly, the number of degrees of freedom in the unknown pair of vectors is
my +ms — 1. Similarly, the sample complexities for BD with sparsity or with
mixed constraints are n > 2s15, and n > 2s;ms, respectively, where s; and
so denote the sparsity levels of the signal and the filter. Here the cost for the
unknown support is an extra factor of 2. These results suffer from the same

suboptimality as the results for the subspace constraints, in comparison to

!The off-grid signal in [22] is not sparse over a fixed dictionary, and hence should not
be confused with the setting in Chapter 2. The identifiability result corresponding to this
scenario is an interesting open problem.



the number of degrees of freedom of the continuous-valued unknowns.

In Chapter 2, we finally bridge this gap. We show nearly optimal sufficient
conditions for identifiability and stability in blind deconvolution that match
the number of degrees of freedom in the unknowns. Results are given for
the cases of subspace constraints, sparsity constraints, or mixed constraints,
and for complex or real signal and filter. For example, a sample complexity
of n > s1 + 5o is sufficient to recover a pair of signals, which are s; and -
sparse with respect to generic dictionaries, from their circular convolution.
This sufficient condition almost matches the necessary condition in [24]. The
results of Chapter 2 provide the first tight sample complexity bounds, without
large constants or log factors, for unique and stable recovery in BD. Such tight
bounds were not achieved (either for unique or for stable recovery) in any of
the previous works [14, 19, 21, 22].

The tight sample complexities in the identifiability results apply to Lebesgue
almost all bases or frames.? Given a sufficient number of measurements, the
conditions for unique recovery are violated only on a set of Lebesgue measure
zero. In this sense, these results are deterministic, requiring no probabilistic
assumptions. As an immediate corollary though, if the bases or frames are
drawn from any probability distribution that is absolutely continuous with
respect to the Lebesgue measure (e.g., the entries are jointly Gaussian with a
non-singular covariance, or i.i.d. following a uniform distribution, etc.), then
the results in Chapter 2 hold: they imply that the signal and the filter are
identifiable with probability 1, which is better than being identifiable with
high probability as in previous works [14, 19, 21, 22].

The unique recovery results are complemented by matching stability re-
sults. If the bases or frames follow a distribution specified later in Chapter 2,
then under the same sample complexities as in the identifiability results, the
recovery is stable with high probability against small perturbations in the
measurements. In Chapter 2, the probability of failure decays in an expo-
nential form as the size of the problem increases, faster than the power-law
decay in previous works [14, 19, 21, 22].

Although all the main results of Chapter 2 are stated and proved for 1D

circular convolution, they translate to 2D or higher-dimensional circular con-

2Results of similar nature, in that they apply to “almost all” objects of interest, have
been derived for FIR multichannel deconvolution [25] and for low-rank matrix recovery
[18].



volutions, by replacing the 1D discrete Fourier transform (DFT) with 2D or
higher-dimensional DFTs. These sample complexity bounds are theoretical
confirmations that subspace and sparsity assumptions are effective regular-
izers for blind deconvolution problems, such as blind image deblurring and
blind channel equalization. The solutions are indeed unique and stable as
long as the number of measurements exceeds the number of unknowns. Al-
though the emphasis of Chapter 2 is not on any practical method, it provides
a guideline for solving BD with subspace or sparsity priors. Algorithms that
succeed only in regimes with suboptimal dependence on subspace dimensions
or sparsity levels (e.g., requiring a sample complexity of n = Q(sysq) to re-
cover a pair of signals of s; and s3), are not due to a fundamental limitation,
but due to the suboptimality of the method or its analysis. On the other
hand, our results encourage the pursuit of algorithms that are guaranteed to
succeed in the optimal regime [14, 26, 21].

One of the main technical tools for the derivation of our results are results
on information-theoretic limits of low-rank matrix recovery. Inspired by the
brilliant work of Riegler et al. [27] on such limits for real matrix recovery
from noise-free observations, we extend the results to complex matrix recov-
ery from noisy observations, and apply them to blind deconvolution. The
contributions of our extension include: (i) we refine the covering number ar-
gument used in [27] to achieve stability under the same sample complexity;
(ii) we provide a simpler proof that gets rid of some unnecessary technicali-
ties; (iii) we derive a concentration of measure bound with better constants,
and an analogous result in the complex case, which is a non-trivial extension.
These results may be of independent interest.

After our paper [2] was submitted and posted on arXiv, Kech and Krah-
mer [28] proved slightly improved identifiability and stability results for blind
deconvolution using techniques from algebraic geometry. Their sample com-
plexities, proved to be both necessary and sufficient, differ from ours by an
additive term of at most five samples. For example, we show that a sample
complexity of n > 2(s; + s3) is sufficient for the uniform identifiability of
every pair of signals of sparsity s; and s, respectively. In comparison, Kech
and Krahmer gave an optimal bound n > 2(s; + s9) — 2, which differs from
our sample complexity by three samples. For BD with sparsity constraints,
Kech and Krahmer only considered undercomplete or square dictionaries, in

contrast to our analysis, which applies also to overcomplete dictionaries.
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1.2 Blind Gain and Phase Calibration

Blind gain and phase calibration (BGPC) is a bilinear inverse problem that
arises in many applications. It is the joint recovery of an unknown gain
and phase vector A € C" and signal vectors ¢1, ¢o,...,0n € C" given the
entrywise product Y = diag(\)®, where ® = [¢, ¢, ..., dn] € C*N. An
example of BGPC is the joint estimation of albedo® and the lighting con-
ditions in inverse rendering [29]. Another example is the joint recovery of
source signals, and unknown gains and phases of sensors, in array processing
[30], where the directions of arrival of source signals are properly discretized
using a grid. Multichannel blind deconvolution (with the circular convolu-
tion model), i.e., the joint recovery of the signal and multiple channels, is
also a BGPC problem. BGPC has been studied extensively, and numerous
solutions have been proposed, in the context of direction of arrival estimation
131, 32, 33, 34, 35] or radar imaging [36, 37].

1.2.1 Identifiability

One of the fundamental questions is: When does BGPC admit a unique solu-
tion? Despite the massive research efforts in BGPC, there are few results on
identifiability in terms of sample complexity. Several works provided partial
answers to the uniqueness of BGPC in the context of certain applications. In
each of these works, the problem formulation and treatment were tailored to
the application. For example, Nguyen et al. [29] showed a sufficient condition
for unique inverse rendering. Morrison et al. [38] proposed an algorithm for
synthetic aperture radar (SAR) autofocus and showed a necessary condition
for their algorithm. Both problems fall into the category of BGPC problems
with subspace constraints.

In previous work [1, 39], by deriving general necessary and sufficient con-
ditions for identifiability in a bilinear inverse problem up to a transformation
group, we addressed the uniqueness in all BGPC problems in a common
framework. Results were derived for several different scenarios, and were
given in terms of sample complexities: the number of samples required for

a unique solution. In particular, we considered the subspace constraint and

3Albedo, also known as reflection coefficient, is the ratio of reflected radiation from a
surface to incident radiation upon it.



joint sparsity constraint scenarios for the signals, and derived sufficient con-
ditions for the identifiability up to scaling (or other groups of equivalence
transformations). We also gave necessary conditions in the form of tight
lower bounds on sample complexities. The sufficient conditions and the nec-
essary conditions coincide in some cases, but have gaps in other cases, which
lead to some conjectures on how to bridge these gaps.

A limitation of the previous works [1, 39], is that the sample complexities
in the sufficient conditions are suboptimal. For example, for BGPC with a
subspace constraint of dimension m, the sample complexity in the sufficient
condition is N > m. However, the necessary condition says that the sample
complexity only needs to satisfy N > ﬁ This less demanding sample
complexity coincides with the bound obtained by counting the number of
degrees of freedom and the number of measurements, and also agrees with
the empirical phase transition [1]. The sufficient condition for identifiability
in BGPC with a joint sparsity constraint at sparsity level s suffers from
similar suboptimality: the sufficient condition is N > s, versus the necessary
condition N > =1

n—s’

In Chapter 3, we close the gaps between the sufficient and necessary con-
ditions. In the subspace constraint scenario, the subspace model and the
signals are assumed to be generic. Then we show that the sample complexity
in the necessary condition is actually sufficient for almost all signals. There-
fore, the sample complexity is optimal. This proves one of our conjectures
in [1]. We also generalize this result to the joint-sparsity case, and derive
a sample complexity that is near optimal. These results provide favorable
uniqueness bounds for real-world applications. For example, in sensor array
processing, if the number of sensors is four times the number of sources, then
our results imply that two snapshots are sufficient to calibrate the gains and

phases.

1.2.2 Efficient Solution

There exists a long line of research regarding the solutions for each application
of BGPC. However, fundamental sample complexities for the uniqueness of
solutions to BGPC [1, 3], and error bounds for efficient algorithms [40, 41]

have been established only recently. A main drawback of the guaranteed



algorithms of [40, 41] is that the recovery error is sensitive to the choice of
certain linear constraints. We refer readers to Section 4.1.4 for a detailed
discussion of prior art.

In Chapter 4, we overcome the drawbacks of previous algorithms by re-
formulating the BGPC problem as an eigenvalue/eigenvector problem. In
the subspace case, we use algorithms that find principal eigenvectors such as
the power iteration algorithm (also known as the power method) [42, Sec-
tion 8.2.1], to find the concatenation of the gain and phase vector and the
vectorized signal matrix in the form of the principal component of a struc-
tured matrix. In the sparsity case, the problem resembles sparse principal
component analysis (sparse PCA) [43]. We then propose to solve the sparse
eigenvector problem using truncated power iteration [44].

The main contribution of Chapter 4 is the theoretical analysis of the error
bounds of power iteration and truncated power iteration for BGPC in the
subspace and joint sparsity cases, respectively. When the measurement ma-
trix is random, and the signals and the noise are adversarial, our algorithms
stably recover the unknown gains and phases, and the unknown signals with
high probability under near optimal sample complexities. Since truncated
power iteration relies on a good initial estimate, we also propose a simple
initialization algorithm, and prove that the output is sufficiently good under
certain technical conditions. The fundamental estimates derived in Chapter
4 can be applied to other algorithms for BGPC, and possibly to algorithms
for similar problems.

We complement the theoretical results with numerical experiments, which
show that the algorithms can indeed solve BGPC in the optimal regime. We
also demonstrate that the algorithms are robust against noise and an inaccu-
rate initial estimate. Experiments with different initialization schemes show
that our initialization algorithm significantly outperforms the baseline. Then
we apply the power iteration algorithm to inverse rendering, and showcase

its effectiveness in real-world applications.

1.3 Multichannel Sparse Blind Deconvolution

Blind deconvolution, which aims to recover unknown vectors x and f from

their convolution y = x ® f, has been extensively studied, especially in the



context of image deblurring [5, 45, 46, 47]. Recently, algorithms with theo-
retical guarantees have been proposed for single channel blind deconvolution
(14, 19, 22, 26, 21, 48, 49]. In order for the problem to be well-posed, these
previous methods assume that both x and f are constrained, to either reside
in a known subspace or be sparse over a known dictionary. However, these
methods cannot be applied if f (or x) is unconstrained, or does not have a
subspace or sparsity structure.

In many applications in communications [50], imaging [51], and computer
vision [52], convolutional measurements y; = x; ® f are taken between a
single signal (resp. filter) f and multiple filters (resp. signals) {z;},. We
call such problems multichannel blind deconvolution (MBD).* Importantly,
in this multichannel setting, one can assume that only {z;}¥ , are structured,
and f is unconstrained. While there has been abundant work on single chan-
nel blind deconvolution (with both f and x constrained), research in MBD
(with f unconstrained) is relatively limited. Traditional MBD works as-
sumed that the channels z;’s are FIR filters [53, 54, 55] or IIR filters [56],
and proposed to solve MBD using subspace methods. Despite the fact that
MBD with a linear (i.e., standard, non-circular) convolution model is known
to have a unique solution under mild conditions [25], the problem is gen-
erally ill-conditioned [57]. Recent works improved the conditioning of such
problems by introducing subspace or low-rank structures for the multiple
channels [57, 58].

In Chapter 5, while retaining the unconstrained form of f, we consider a
different structure of the multiple channels {z;}Y,: sparsity. The resulting
problem is termed multichannel sparse blind deconvolution (MSBD). The
sparsity structure arises in many real-world applications.

Opportunistic underwater acoustics: Underwater acoustic channels
are sparse in nature [59]. Estimating such sparse channels with an array of
receivers using opportunistic sources (e.g., shipping noise) involves a blind
deconvolution problem with multiple unknown sparse channels [60, 61].

Reflection seismology: Thanks to the layered earth structure, reflec-
tivity in seismic signals is sparse. It is of great interest to simultaneous
recover the filter (also known as the wavelet), and seismic reflectivity along

the multiple propagation paths between the source and the geophones [62].

4Since convolution is a commutative operation, we use “signal” and “filter” interchange-
ably.



Functional MRI: Neural activity signals are composed of brief spikes
and are considered sparse. However, observations via functional magnetic
resonance imaging (fMRI) are distorted by convolving with the hemodynamic
response function. A blind deconvolution procedure can reveal the underlying
neural activity [63].

Super-resolution fluorescence microscopy: In super-resolution fluo-
rescence microscopic imaging, photoswitchable probes are activated stochas-
tically to create multiple sparse images and allow microscopy of nanoscale
cellular structures [64, 65]. One can further improve the resolution via a com-
putational deconvolution approach, which mitigates the effect of the point
spread function (PSF) of the microscope [66]. It is sometimes difficult to
obtain the PSF (e.g., due to unknown aberrations), and one needs to jointly
estimate the microscopic images and the PSF [67].

Previous approaches to MSBD have provided efficient iterative algorithms
to compute maximum likelihood (ML) estimates of parametric models of the
channels {x;}¥, [61], or maximum a posteriori (MAP) estimates in various
Bayesian frameworks [62, 52|. However, these algorithms usually do not have
theoretical guarantees or sample complexity bounds.

Recently, guaranteed algorithms for MSBD have been developed. Wang
and Chi [41] proposed a convex formulation of MSBD based on ¢; minimiza-
tion, and gave guarantees for successful recovery under the condition that
f has one dominant entry that is significantly larger than other entries. In
our previous work [4], we solved a nonconvex formulation using projected
gradient descent (truncated power iteration), and proposed an initialization
algorithm to compute a sufficiently good starting point. However, in that
work, theoretical guarantees were derived only for channels that are sparse
with respect to a Gaussian random dictionary, but not channels that are
sparse with respect to the standard basis.

We would like to emphasize that, while earlier papers on MBD [53, 54,
55, 56] consider a linear convolution model, more recent guaranteed methods
for MSBD [41, 4] consider a circular convolution model. By zero padding
the signal and the filter, one can rewrite a linear convolution as a circular
convolution. In practice, circular convolution is often used to approximate
a linear convolution when the filter has a compact support or decays fast
[68], and the signal has finite length or satisfies a circular boundary condition

[45]. The accelerated computation of circular convolution via the fast Fourier
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transform (FFT) is especially beneficial in 2D or 3D applications [45, 67].

Multichannel blind deconvolution with a circular convolution model is also
related to blind gain and phase calibration [1, 69, 70, 40]. Suppose that
a sensing system takes Fourier measurements of unknown signals and the
sensors have unknown gains and phases, i.e., §; = diag(f)Fx;, where x; are
the targeted unknown sparse signals, F is the discrete Fourier transform
(DFT) matrix, and the entries of f represent the unknown gains and phases
of the sensors. The simultaneous recovery of f and x;’s is equivalent to
MSBD in the frequency domain.

In Chapter 5, we consider MSBD with circular convolution. In addition to
the sparsity prior on the channels {z;} ,, we impose, without loss of general-
ity, the constraint that f has unit 5 norm, i.e., f is on the unit sphere. (This
eliminates the scaling ambiguity inherent in the MBD problem.) We show
that our sparsity promoting objective function has a nice geometric land-
scape on the the unit sphere: (S1) all local minima correspond to signed
shifted versions of the desired solution, and (S2) the objective function is
strongly convex in neighborhoods of the local minima, and has strictly nega-
tive curvature directions in neighborhoods of local maxima and saddle points.
Similar geometric analysis has been conducted for dictionary learning [71],
phase retrieval [72], and single channel sparse blind deconvolution [49]. Re-
cently, Mei et al. [73] analyzed the geometric structure of the empirical risk
of a class of machine learning problems (e.g., nonconvex binary classification,
robust regression, and Gaussian mixture model). Chapter 5 is the first such
analysis for MSBD.

Properties (S1) and (S2) allow simple manifold optimization algorithms to
find the ground truth in the nonconvex formulation. Unlike the second-order
methods in previous works [74, 72|, we take advantage of recent advances in
the understanding of first-order methods [75, 76], and prove that a simple
manifold gradient descent algorithm, with random initialization and a fixed
step size, can accurately recover a signed shifted version of the ground truth
in polynomial time almost surely. This is the first guaranteed algorithm for
MSBD that does not rely on restrictive assumptions on f (e.g., dominant
entry [41], spectral flatness [4]), or on {z;}¥, (e.g., jointly sparse, Gaussian
random dictionary [4]).

Recently, many optimization methods have been shown to escape saddle

points of objective functions with benign landscapes, e.g., gradient descent
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(77, 78], stochastic gradient descent [79], perturbed gradient descent [80],
Natasha [81, 82], and FastCubic [83]. Similarly, optimization methods over
Riemannian manifolds that can escape saddle points include manifold gradi-
ent descent [76], the trust region method [74, 72], and the negative curvature
method [84]. Our main result shows that these algorithms can be applied to

MSBD thanks to the favorable geometric properties of our objective function.
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CHAPTER 2

IDENTIFIABILITY AND STABILITY IN
BLIND DECONVOLUTION

2.1 Problem Statement

2.1.1 Notations

We use lower-case letters x, y, z to denote vectors, and upper-case letters
D and E to denote matrices. We use F' to denote the normalized (unitary)
discrete Fourier transform (DFT) matrix. Unless otherwise stated, all vectors
are column vectors. The dimensions of all vectors and matrices are made
clear in the context. We use superscript letters to denote subvectors or
submatrices. For example, the scalar 2\) represents the jth entry of z. The
vector DU*) represents the jth row of the matrix D. The colon notation
is borrowed from MATLAB. The transpose and conjugate transpose to a
matrix A are denoted by AT and A*, respectively. The inner product of two
matrices A and M are denoted by (A, M) = trace(A*M). We use ||-||, to
denote the ¢, “norm”, or number of nonzero entries. We use ||-||, to denote
the {5 norm of a vector or the spectral norm of a matrix, and ||-|| to denote
the Frobenious norm of a matrix. We use ® to denote entrywise product.
Circular convolution is denoted by ®.

We say a subset (2, of a linear vector space is a cone, if for every M € )y,
and every o > 0, the scaled vector cM € Qu. The real and imaginary
parts of a complex vector are denoted by Re(z) and Im(x), respectively.
If Qy is a subset of C™, then we use Re(Qx) = {Re(z) : € Qx}, and
Im(Qy) = {Im(z) : € Qx} to denote the real and imaginary parts of Q.
The unit ball in R™ (with respect to the f5 norm) centered at the origin is
denoted by Bgm. Then x4+ RBgrm denotes the ball in R™ of radius R centered
at z. Similarly, the unit ball in C"™*™2 (with respect to the Frobenius norm)
centered at the origin is denoted by Bgmyxm,. Then M + RBgmyxm, denotes
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the ball in C™>*™2 of radius R centered at M. We use Vem (R) = fRB@m dz to
denote the volume of a ball of radius R in C™. Here, the multiple integral of
a real-valued function f(z) over Qx C C™ is defined as the multiple integral
of f(y™m™ 4 /=Tytmti2m)) over {y € R¥™ : y(tm) 4 /—Tylmti2m) Q.
We say a property holds for (Lebesgue) almost all vectors/matrices, or
generic vectors/matrices, if the property holds for all vectors/matrices except

for a set of Lebesgue measure zero.

2.1.2 Blind Deconvolution

In this chapter, we study the blind deconvolution (BD) problem with the
circular convolution model. It is the joint recovery of two vectors uy € C™
and vy € C", namely the signal and the filter,! given their circular convolution
2z = ug ® vy, subject to subspace or sparsity constraints. The constraint sets
O and €2y, are subsets of C". With these definitions, the BD problem is

written as follows:

Find (u,v),
st. u®v =z,

UGQL{,UGQv.

We further assume that the constraint sets, which add to BD the prior
information of the signal and the filter, are subspaces or sets of sparse vectors
over a dictionary. For example, in blind image deblurring, the image (signal)
can be assumed to be sparse over a dictionary (e.g., wavelets). The point
spread function (filter) either has a small support and hence belongs to a
subspace, or follows a simple parametric model that can be linearized by
manifold embedding [85]. Another example is blind echo cancellation, where
one can model a multipath channel as a sparse vector. With channel coding,
the transmitted signal resides in the column space of the coding matrix. For
more examples of subspace or sparsity priors in BD, we refer the readers
to [14, 19, 21, 26] and the references therein. Specifically, we consider the

following scenarios for the constraints:

1. (Subspace Constraints) The signal u and the filter v reside in lower-

'Due to symmetry, the name “signal” and “filter” can be used interchangeably.
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dimensional subspaces spanned by the columns of D € C™™ and
E € C™™2 respectively, with my, my < n. The matrices D and E
have full column ranks. The signal u = Dx for some x € C™. The

filter v = Fy for some y € C™2.

2. (Sparsity Constraints) The signal u and the filter v are sparse over given
dictionaries formed by the columns of D € C"*™ and F € C™*™2  with
sparsity level s; and s, respectively. Here m; and msy do not have to be
smaller than n. The matrices D and E are bases or frames that satisfy
the spark condition [86]: the spark, namely the smallest number of
columns that are linearly dependent, of D (resp. E) is greater than 2s;
(resp. 2s2). The signal u = Dx for some € C™ with ||z||o < s;. The
filter v = Ey for some y € C™ with ||y|lo < so.

3. (Mized Constraints) The signal u is sparse over a given dictionary D €
Cm*™and the filter v resides in a lower-dimensional subspace spanned
by the columns of £ € C™*™2 with my < n. The matrix D satisfies the
spark condition, and E has full column rank. The signal u = Dz for
some x € C™ with [|z]|o < s1. The filter v = Ey for some y € C™2.2

In all three scenarios, the vectors z, y, and z reside in Euclidean spaces
C™, C™ and C". Given the measurement z = (Dzg) ® (Eyp), the blind

deconvolution problem can be rewritten in the following form:

(BD)  Find (z,y).
s.t. (Dz)® (Ey) = z,
x € Qy, y € y.

If D and F satisfy the full column rank condition or the spark condition, then
the uniqueness of (u,v) is equivalent to the uniqueness of (z,y). Indeed, the
full rank or spark conditions are satisfied for Lebesgue almost all D and E.
Therefore, the results about the recovery of (z,y) in BD with generic bases
or frames imply the corresponding results for (u,v). For simplicity, we will
discuss problem (BD) from now on. The constraint sets {2y and €2y depend

on the constraints on the signal and the filter. For subspace constraints, {2y

2We can also consider the scenario where u resides in a subspace spanned by the columns
of D, and v is sparse over E. By symmetry, the analysis will be almost identical, and thus
omitted.
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and €2y are C™ and C™2, respectively. For sparsity constraints, {2y and 2y

are {x € C™ : ||z]|o < s1} and {y € C" : ||y||o < s2}, respectively.

2.1.3 Identifiability up to Scaling

An important question concerning the blind deconvolution problem is to
determine when it admits a unique solution. The BD problem suffers from
scaling ambiguity. For any nonzero scalar ¢ € C such that oxg € Qx and
Lyy € Qy, (D(owy)) ® (E(Zyo)) = (D) ® (Eyo) = z. Therefore, BD does
not yield a unique solution if Qy, €2y contain such scaled versions of z, yo
(which is the case for the subspace or sparsity constraint sets in the previous
section). Any valid definition of unique recovery in BD must address this
issue. Our approach is as follows. If every solution (z,y) is a scaled version
of (xg,0), then we say that (zg, o) can be uniquely identified up to scaling.?
We also consider the case when this property is satisfied by all pairs (o, yo)

of interest. Thus we define identifiability as follows.
Definition 2.1.1.

1. Weak identifiability: We say that the pair (zo,yo) € Qx X Qy, in
which xo # 0 and yo # 0, is identifiable up to scaling, if every solution

(x,y) € Qx X Qy satisfies v = oxg and y = %yo for some nonzero o.

2. Strong identifiability: We say that the set Qx x 2y is identifiable
up to scaling, if every pair (zo,vyo) € Qx X Qy that satisfies xo # 0 and
Yo # 0 1s identifiable up to scaling.

For blind deconvolution, there exists a linear operator Gpg : C™*™2 — C"
such that

Gpr(ry") = (Dx) ® (Ey). (2.1)

Given the measurement z = Gpp(zoyl ) = (Dxg) ® (Eyo), one can recast the

BD problem as the recovery of the rank-1 matrix My = oyl € Qpu = {xy” :

3Unconstrained BD also suffers from shift ambiguity. If the signal and the filter are
circularly shifted by ¢ and —¢, respectively, their circular convolution remains the same.
However, the BD problem with generic basis or frames does not suffer from shift ambiguity.
If the signal and the filter are shifted, then they no longer reside in the same generic
subspaces, or are no longer sparse with respect to the same generic dictionaries, as before.
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x € Qx,y € Qy}. Using this so-called “lifting” [14] procedure, the lifted BD

problem has the following form:

(Lifted BD) Find M,
s.t. QDE(M) =z,
M € Q.

The uniqueness of M is equivalent to the identifiability of (z¢, yo) up to scal-
ing. In (Lifted BD), weak identifiability means the recovery of My is unique,
or My is the only point in 2, that maps to Gpr(My). Strong identifiability
means the recovery of all matrices in {2, is unique, that is Gpg is injective
on Qy, i.e., there exists Gop 1 Gpp(Qum) — Q.

Since 2y and €2y are cones, the lifted constraint set {2, is also a cone.
As shown later, for the linear operator Gpr and the cone constraint set
Oz, identifiability on Q4 is essentially the same as identifiability on the
constraint set restricted to the unit ball Qa () Bemyxm,. From now on, we

use the shorthand notation

QB = QM ﬂgcmlxmg. (22)

Hence 0Qp = Q[ 0Bemyxms .

2.1.4 Stable Recovery

Noise is ubiquitous in real-world applications. In a noisy setting, the mea-
surement in matrix recovery is z = Gpp(Mo) + £, where My = xoy; denotes
the true rank-1 matrix, and £ denotes noise or other perturbation in the
measurement. In order to estimate M, from the measurement z, we consider

the following constrained least squares problem:

(Noisy BD) ngl \Gpe(M) — 2|,

s.t. M € oQpg,

where 0Qp = {zy” : © € Qu,y € Qy, ||ay”||, < o}. For all practical pur-
poses, the solution to a blind deconvolution problem is bounded. Therefore,

we solve (Noisy BD) subject to the constraint set restricted to a ball, whose
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radius o is sufficiently large. For example, o can be set based on conservative
upper estimates of the energy of xy and yj.

We introduce the following two notions of stability of recovery:
Definition 2.1.2.

1. Single point stability: We say that the recovery of My € o)z,
using measurement operator Gpg and constraint set oSlg, is stable,
if for all M € oQp such that ||Gpe(M) — Gpr(Mo)|, < J, we have
[M — My, <e.

2. Uniform stability: We say that the recovery on oSz is uniformly
stable if for all My, My € 0$Qp that satisfy ||Gpr(Mi) — Gpe(Ms)]|, < 6,
we have ||[My — M|, <e.

In both definitions, € = €(6) is a function of 0 that vanishes as § approaches
0.

It is easy to see that the stability as defined above, would guarantee the
accuracy of the constrained least squares estimation. Let M; = z1y! denote
the solution to (Noisy BD). Suppose the perturbation ¢ is small, i.e., |||, < 2
for some small § > 0. Then the deviation of Gpg(M;) from Gpp(My) is small,

ie.,

1Gpe(Mi1) — Gpr(Mo)ll,
<||Gpr(M) — 2|, + |z — Gpr(Mo)l|,
<2|Gpr(Mo) — 2|, = 2§, < 9.

By the definition of single point stability (or uniform stability), we have
| My — M|, < e(6), which is also a small quantity.

If the recovery of M, is stable, then for every ¢ > 0, there exists 6 > 0
such that for every M € oQpg that satisfies ||Gpg(M) — Gpr(Mo)|l, < 0,
we have | M — My||, < e. If the recovery is uniformly stable on €23, then
for every € > 0, there exists 6 > 0 such that for all My, My € 0€g that
satisty ||Gpe(Mi) — Gpe(Ms)|, < 6, we have ||My — M|, < e. If Gpg
satisfies strong identifiability, i.e., Gpg is invertible when restricted to Qu,
then single point stability at M, implies that QB}E is continuous at Gpg(Mp).
Finally uniform stability on o€l implies that G5}, is uniformly continuous

on gDE(O'QB).
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Suppose {2, is a cone, and we need to evaluate stability on o€l =
Qu o Bemixmy. We can scale My and the radius of the ball by % simul-
taneously. If for all M € Qg such that HQDE(M) — QDE(%)H2 < 9, we have
| M — %Hz < ¢(6), then for all M € oQp such that ||Gpr(M) — Gpr(M)|, <
8, we have ||M — Mol||, < oe(2). Therefore, we only need to consider the
stability of recovery on the constraint set restricted to the unit ball, (5.

In the next section, we present the main results on the identifiability and
stability in blind deconvolution, i.e., the optimal sample complexities that
guarantee unique and stable recovery in (Lifted BD) and (Noisy BD), respec-

tively.

2.2  Main Results

We present the weak and strong identifiability results for blind deconvolution
in Section 2.2.1, and present single point and uniform stable recovery results
in Section 2.2.2. These results are proved in Section 2.4, which depends

heavily on the matrix recovery results in Section 2.3.

2.2.1 Identifiability Results

Subspace membership and sparsity have been used as priors in blind de-
convolution for a long time. Previous works either use these priors without
theoretical justification [9, 10, 11, 12, 13], or impose probabilistic models and
show successful recovery with high probability [14, 19, 21, 22]. The sufficient
conditions for the identifiability in BD in our prequel paper [23] are (except
for a special class of so-called sub-band structured signals or filters) subop-
timal. In this section, we present sufficient conditions for identifiability in
BD, as defined in Section 2.1.1, with minimal assumptions. First, the weak
identifiability results in the following theorem are sharp to within an additive

term of two samples.

Theorem 2.2.1 (Weak Identifiability). If n > d, then for Lebesgue almost
all D € C™™ qnd E € C"™ ™2 the pair (zo,Y0) € Qax X Qy (0 #0, yo #0)
is identifiable up to scaling. Here, d is the sample complexity bound, which is
mi+ms, S1+ms, and s1+ s9 in the subspace, mixed, and sparsity constraints

scenarios, respectively.
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The above sufficient condition is appealing since it approaches the informa-
tion-theoretic limit of blind deconvolution. For example, it has been shown
that the necessary condition for blind deconvolution (or any bilinear inverse
problem) with two unknown vectors of sparsity s; and sy is n > s1 + s9 —
1, which is a fundamental limit [24, Theorem V.1]. Therefore, to within
two samples difference, our sufficient sample complexity presented above is
optimal. Moreover, our sample complexity almost matches the number of
degrees of freedom in the unknowns, which is my + mo — 1, 51 + my — 1,
and s; + so — 1, for BD with subspace, mixed, and sparsity constraints,
respectively.

This result is a sufficient condition for weak identifiability. Unlike our
results on BD with generic bases or frames in [23], which guarantee the
injectivity of the bilinear mapping of circular convolution, this result only
guarantees the identifiability of one pair (xg,yo) in the constraint set. A
sufficient condition for strong identifiability, which applies uniformly to all
pairs (xg,yo) in the constraint set, is presented next. In comparison to the
optimal result in Theorem 2.2.1, the cost for strong identifiability is a factor

of 2 in the sample complexity.

Theorem 2.2.2 (Strong Identifiability). If n > 2d, then for Lebesgue almost
all D € C™ and E € C™™2 all pairs (xo,y0) € Qax X Qy (xo #0, yo #0)

are identifiable up to scaling. Here, d is the same as in Theorem 2.2.1.

Interestingly, the sample complexity of Theorem 2.2.2 doubles that of The-
orem 2.2.1. The extra samples are reasonable: (1) weak identifiability means
that any one point other than (xg, o) must map to a point different from
(Dzo) ® (Eyp); (2) strong identifiability means that any two distinct points
in the set must map to different points in C*. A similar phenomenon in
compressed sensing is well known: weak recovery of an s-sparse vector re-
quires s+ 1 generic samples [87], but strong recovery (injectivity) requires 2s
generic samples [86].

The above results hold true for Lebesgue almost all complex matrices D
and F. However, in many real-world applications, both the signal and the
filter are real vectors. Therefore, it is worthwhile to consider the special case
where D € R™™ F € R r € R™, and y € R™. We show that the

same sample complexities still hold in this special case.
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Theorem 2.2.3. In the case where D, E, x, and y are real, the sample
complexities in Theorems 2.2.1 and 2.2.2 hold for Lebesque almost all D €
R™ ™ and E € R™*™2,

The proofs of Theorems 2.2.1 and 2.2.2 are presented in Section 2.4.1, and
depend on Theorem 2.3.2, Corollaries 2.3.6 and 2.3.7, and Lemma 2.4.1. The-
orem 2.2.3 is proved similarly in Section 2.4.2, with a variation of Theorem
2.3.2, i.e., Lemma 2.4.2.

All the results hold for Lebesgue almost all matrices D and E. When
the sample complexity is met, the identifiability is violated only on a set
of Lebesgue measure zero in the space of matrices D and E. Therefore, if
D and E are drawn from a distribution that is absolutely continuous with
respect to the Lebesgue measure (e.g., D and FE are independent random
matrices whose entries are i.i.d. following a Gaussian distribution), then the

identifiability result holds almost surely.

2.2.2 Stability Results

The previous section gives the sample complexities that guarantee the identi-
fiability in BD. Next, we show that the same sample complexity can guarantee
stability. Recall that Gpg and Qg are defined in (2.1) and (2.2), respectively.
Here we only consider single point stability and uniform stability on €,
which correspond to Definition 2.1.2 with ¢ = 1. As argued before, stability

on {1z implies stability on an arbitrary bounded set.

Theorem 2.2.4. Assume that D € C"™™ and E € C"™2 are indepen-

dent random matrices, such that the random vectors {(FD)U9*}"_ are i.i.d.

following a uniform distribution on RBcmi, and {(FE’)(J":)*}?:1 are i.i.d. fol-

lowing a uniform distribution on RBgcms.

1. Ifn>d and§ < \/nR?, then with probability at least 1—0’(%—1)”*‘[(6%)”,

we have single point stability on ()g.

2. Ifn > 2d and § < \/nR?, then with probability at least 1—0’/(%)"*251(5%)”,

we have uniform stability on Q.

Here, d is the same sample complexity bound as in Theorems 2.2.1 and 2.2.2.

Except for a log factor, C' and C" only depend on n, mi, mso, s1, and Ss.
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Table 2.1: A summary of the constants in Theorem 2.2.4.

d Cl C”
Subspace constraints mq + mo nff . %
Mixed constraints S1 4 mo (™) 2 L (™) 4 %
Sparsity constraints S1+ 89 (T:ll) 2 (’:22) 2 % (Tll ) 4 (’:22 ) 4 7(;0_)2’;

35
and C" in the scenarios of subspace, mized, or sparsity constraints are sum-

Define C' = 648 mqyms (1 +2In 2ﬁR2>. The explicit expressions for d, C’,

marized in Table 2.1.

Theorem 2.2.4 is proved in Section 2.4.3. Its proof hinges on a key step
(2.8) in the proof of Lemma 2.3.3, which is also crucial to the proofs of the
identifiability results.

The stability results of Theorem 2.2.4 correspond to the identifiability
results for the complex case, in Theorems 2.2.1 and 2.2.2. Similar stability
results can be derived for the case where D, F, x, and y are real, which
correspond to the identifiability results in Theorem 2.2.3. They are omitted
here for brevity.

In the discussion below, we interpret the single point stability result in
Theorem 2.2.4. The uniform stability result can be interpreted similarly.
Here, to make sure that the probability of stable recovery 1 —C’ (g—i)”_d(i)”

2
is non-trivial, let ¢ = () > C'2n (%)a, where a =1 — £ € (0,1), and £(0)
vanishes as 0 approaches 0.

Reconstruction signal-to-noise ratio (RSNR) and measurement signal-to-

noise ratio (MSNR) are defined respectively by:

[ Moll3
RSNR = ————,
|M — Moll3

1Gpe(M) — Gpr(Mo)ll;

Consider the case when the error bounds are tight: ||M — M|, = ¢, and
|\Gpe(M) — Gpr(Mo)||, = 6. Since the matrix M resides in the unit ball,
RSNR is on the order of %. Since {(FD)(J":)*};L:1 and {(llfﬂE)(j’:)*]»"}:1 are
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uniformly distributed on balls of radius R, the norm of the measurement
Gpr(My) is on the order of R%. Hence MSNR is on the order of ?—24. Theorem
2.2.4 can then be interpreted as follows: the probability of failure (unstable
reconstruction) is roughly RSNR"™ - MSNR~("=9)

Let €(0) = C'2 (%)%, where @ = 1 — %, then the probability of single
point stability in Theorem 2.2.4 reduces to 1 — (%)”_d. If n > d, then as §
approaches 0, the recovery error £(J) vanishes, and the probability 1— (%)”*d
converges to 1. This means that if D and F are random with the distributions
specified in Theorem 2.2.4, then the recovery of M is unique with probability
1, which is also a corollary of Theorem 2.2.1.

Next, we establish stability for the special case where the operator Gpg is

an isometry in the mean. Given any matrix M = xy’, we have

GrpGpe(M) =nY (FD)U)*(FD)Y) M(FE))"(FE)G:),

j=1

the expectation of which is

E[GhrGpr(M)]

n? 2

2

E [H(FD)U*)*

2 .
-E[ FE)G) }M
i 2 E[lleE)
n? miR?2  moR?

mime my+2 mg+2

The first line follows from the fact that the distribution of (FD)U*)* and
(FE)U9* are independent and isotropic. The second line is due to the
fact that (FD)U)* and (FE)U)* are uniformly distributed on RBem; and

1
RBcms, respectively. It follows that by setting R = <WM) ¥ we have
E[GhpGpe(M)] = M.
Next, as an example, we analyze the uniform stability of the subspace

constraints scenario, with this special choice of R. This will provide insight
B

Y

into how the constants vary with n, m;, and my. Let £(J) = 20" (%)
where f = 1 — w Substituting the expressions for R and C”, and
ignoring the log factor, we have €(d) = O <(m1m2)#n§56>. By Theorem

2.2.4, in the subspace constraints scenario, if n > 2(m; +my), i.e., 5 € (0,1),
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then with probability at least 1 — 0.25", we have

1-8 B

My — Maly < (maimso) 2 n2 ||Gpp(Mi) — Gpp(Ms)|; ,

for all My, My € Q. Hence, Q’E)}E is Holder continuous of order 5 on Gpp(£25).
We conclude this section by emphasizing the differences between the iden-
tifiability results in Section 2.2.1 and the stability results in Section 2.2.2:

1. The identifiability results address the identifiability on cone constraint
sets, whereas the stability results address the stability on the same
constraint sets restricted to a ball of an arbitrary but finite radius.
From a practical point of view, because the radius can be arbitrarily

large, this restriction is of no significant consequence.

2. The identifiability results hold for generic (Lebesgue almost all) matri-
ces D and E. The stability results hold with high probability when D

and FE follow some specific distributions.

2.3 Identifiability in Low-Rank Matrix Recovery

Using the lifted formulation, blind deconvolution with subspace or sparsity
constraints has been reduced to the recovery, subject to constraints, of a
rank-1 matrix from linear measurements that have a particular structure.
The identifiability question in BD is thus reduced to identifiabilty in the
latter recovery problem. In this section we address the more general question
of identifiability in low-rank matrix recovery. Our results express the sample
complexity for identifiability in terms of the Minkowski dimension of the set
in which the matrix to be recovered lives. These results are applied to the
BD problem in Section 2.4 to derive the main results of this chapter.
Recently, Riegler et al. [27] derived sample complexity results for low-
rank matrix recovery, and for the recovery of matrices of low description
complexity, that match the number of degrees of freedom. They consid-
ered the case where the matrices are real. Define the measurement operator

A: Rmixmz s R7 g9

2= A(My) = [(Ay, My) , (A, My) - -+, (A, Mp)]" € R™,
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where A; € R™>*™2 (7 =1,2,---,n) denote the measurement matrices. De-
noting by Qy C R™*™2 the constraint set (which is assumed to be nonempty

and bounded) for the unknown matrix, the matrix recovery problem is

(MR)  Find M,
st. AM) = z,
M € Qpm.

The conditions for unique solution to the matrix recovery problem (MR) are
expressed in terms of the Minkowski dimension of the constraint set 2,

which is defined as follows.

Definition 2.3.1. The lower and upper Minkowski dimensions of the nonempty
bounded set 1y C R™*™2 qre

dimp (Qpn) = liminfw,
p—0 lOg ;
log N, (p)

dimp(Qy) = lim sup

1 )
p—0 log 2

where Ng,,(p) denotes the covering number of Qp given by

NQM(p) = mln{k eN: QM - U (Mz +pBRm1><m2), M; € leme}.

1<i<k

If dimp () = dimp(Qy), then it is simply called the Minkowski dimension,
denoted by dimp(Qu).

The Minkowski dimension of the constraint set {254 can be used to represent
its description complexity. Riegler et al. showed that the solution to (MR) is
unique if the sample complexity is greater than the description complexity.
For almost all measurement matrices A, Ay, -+, A, € R"*™2_the recovery
of My € Qaq is unique if n > dimp(2x¢) (see [27, Theorem 1]). An even
more amazing result is that the same sample complexity can be achieved
by rank-1 measurement matrices. For almost all a; € R™ and b; € R™
(j =1,2,--- ,n), the recovery of My € Q4 from measurements <ajb§-p, M0> =
al Mobj (j =1,2,--- ,n) is unique if n > dimp(Qx¢) (see [27, Theorem 2 and

Lemma 3]).
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In this section, we state and prove the extension of this result to the case
where the matrices are complex. The Minkowski dimension of the constraint
set of complex matrices 2y C C™*™2 can be defined as in Definition 2.3.1,
with the real number field R replaced by the complex number field C. As will
be shown in the next section, by simply changing the number field from real to
complex, the Minkowski dimension of a set doubles. Meanwhile, by taking
n complex-valued measurements, the number of real-valued measurements
also doubles (from n to 2n). Theorem 2.3.2 shows that, together with the
fact that the Minkowski dimension doubles for the complex case, we need the
same number of complex-valued measurements in complex matrix recovery
as we need real-valued measurements in real matrix recovery.

Before the rigorous statement and proof, we provide an intuitive explana-
tion for why the sample complexity matches the Minkowski dimension, which
also serves as a road map to our proof. Weak or strong identifiability for al-
most all measurement operators means that the set of degenerate {a;, b;}7_,
that map some nonzero matrix to zero, has Lebesgue measure zero. Alterna-
tively, we can show that the set of “bad” {a;, b;}}_, that map some nonzero
matrix to some point in a small ball of radius d, has Lebesgue measure that
vanishes as 0 approaches zero. This Lebesgue measure turns out to be pro-
portional to two quantities — the covering number of the constraint set {24
with balls of radius 9, and the volume of a ball of § in the ambient space C" of
measurements, i.e., the measure is roughly proportional to (%)dimB(QM) 6%,

Therefore, it vanishes as ¢ approaches zero if 2n > dimg ().

Theorem 2.3.2. Suppose the set Qg C C™*™2 45 non-empty and bounded.
For almost all sets of vectors a; € C™ and b; € C"™ (j =1,2,--- ,n), there
does not exist a matriz M € Qp\{0} such that {a;b¥, M) = a3 Mb; =0 for
j=12 - n, if 2n > dimg(Qp().

Proof. We prove Theorem 2.3.2 using the following lemma.

Lemma 2.3.3. Suppose the set Qg C C™*™2 s non-empty and bounded.
Let the vectors {a;}%_, and {b;}7_, be independent random vectors, where
{a;}j—y are d.i.d. following a uniform distribution on RBcmi, and {b;}}_,
are i.i.d. following a uniform distribution on RBcms. If 2n > dimg(Qu),
then

P =P [3M € Qu\{0}, s.t. aMb; =0 for j=1,--- ,n] =0.
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We use A (Q, {a;}7_;, {b;}7-;) to denote the event that there exists M € Q
such that ajMb; =0 for j = 1,2,--- ,n. Here, we prove that such an event
does not happen for almost all {a;}"_,,{b;}}—, by proving it happens with
probability zero for random {a;}%_,, {b;}}_, following uniform distributions,
thanks to the equivalence between the uniform measure and the Lebesgue
measure. To be more specific, restricted to the same support RBemi X RBcms,
the Lebesgue measure is absolutely continuous with respect to the uniform
distribution.* If the probability of the event A (Qu\{0}, {a;}7_,, {b;}}—,) is
zero, then the Lebesgue measure of the set of {a;}7_; and {b;}}_,, over which
the event happens, is zero too. It follows that, for almost all a; € RBcmi and
bj € RBems (j = 1,2,--+ ,n), the event A (Qu\{0}, {a;}j_;, {b;}}=,) does
not happen. This argument is true for arbitrary radius R. Hence if 2n >
dimp (), then by Lemma 2.3.3 the event A (Qu\{0}, {a;}j_;, {05}7-1)
does not happen, and therefore this event does not happen for almost all
aj € C™ and b; € C™ (j = 1,2,--- ,n), i.e., there does not exist a matrix
M € Q\{0} such that a;be_j =0 for j =1,2,---,n. Therefore, we only
need to prove Lemma 2.3.3, thus completing the proof of Theorem 2.3.2. [

Proof of Lemma 2.3.3. The set Q\{0} can be written as

Qu\0} = | Qs (2.3)

LeZ+*

where Qpq = {M € Qu: + < ||M]|, < L}. By a union bound, we have

PS ZPLa

LeZt

1
L

where
Py =P [3M € Qup, s.t. ajMb; =0 for j =1,2,--- ,n].

In order to show that P = 0, it suffices to prove that P, =0 for all L € Z*.
Let L be an arbitrary positive integer. We form a minimal cover of Q2 1,
NQM,L(p)

with balls of radius p centered at the points {M, 1 ;},_; . These points

may or may not be in Qa4 ;. However, by the minimality of the cover, the

“Because the uniform measure is also absolutely continuous with respect to the
Lebesgue measure, the two measures are equivalent.
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intersection of €2 with each ball is nonempty, hence there exists another
NQM L(p)

set of points { pLZ}Z | such that
M; L,i € QM,L ﬂ(Mp,L,i + pB(le ><m2>,

for i = 1,2,---, NQMyL(p). Now we cover Qu,; with balls of radius 2p

centered at {M 1 ;}, QlM o+ (p), which are points in Q1 (a property that will

be needed for inequality (2.8) below), because
(MP»LJ' + pBleme) (M//)Lz + 2pB(Cm1><m2)7

and

Q/\/LL C U (Mp,L,i + pB(le Xmg) C U (M;)L i + 2PB(Cm1 xmg).

1<i<Na, , (0) 1<i<Na,, , (0)

Defining § = R%p, we have

NQML(P)
Py < Z [aMe M1+ 2pBemsoms ),

st aiMb; =0 for j=1,2,--- n} (2.4)
NQM,L(p)
< IP’[HM € (M}, + 20Bemims),
=1
s.t. ,n] (2.5)
NQM,L(/))
< P[\a*M;,le | <36 forj=1,2,---, } (2.6)
=1
NQM,L(p) n
- HIP’[]a*Ml’)le | < 35} (2.7)
i=1 =1
6 2n 1 n

Inequality (2.4) uses a union bound. The event in (2.4) implies the event in

(2.5), which then implies the event in (2.6). Inequality (2.6) is due to the
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following chain of inequalities, of which the last is implied by |a;fM E| < d:

* !
a; M, r;

B <650y — M + a5
< lla;ll, ”M,ng - MHQ 165/, + |G;ME‘
< laglly M2, — M, sl + |25

<2R’p+d = 30.

Equation (2.7) is due to the independence between random vector pairs
{aj, bj}j_;. Inequality (2.8) uses the fact that Nq,  (p) < Na,(p) =
Nq,, (%), and the concentration of measure inequality [P [ a;M ")7 LZE‘ < 5} <
62g(6, %, L,R) in Lemma A.1.2 in Appendix A.1. (By construction, M) ;,
as points in Quq, satisfy the norm bounds % < HM;MH2 < L.) Here
g(5,%,L, R) is a function of § defined in (A.6) in Appendix A.1 , which
logg(&,%,L,R) —0
log% -
Next, we show that (2.8) implies P, = 0. Assume the contrary, i.e. P > 0.
Since Pp, does not depend on §, we have lim inf% = 0. By (2.8) and the
5

6—0
assumed sample complexity 2n > dimp(Qp),

satisfies lim
6—0

log P
0 = lim inf o8 1L
5—0 log 5
5 1
< lim irlflog Na,, (ﬁ) +2n 10g(351) +mnlogg(36, 7, L, R)
5—0 log 5

= dimg () — 2n < 0,

which is a contradiction. Since L is arbitrary, we have Py, = 0 for all L € Z*.

This completes the proof of Lemma 2.3.3. O
Corollaries 2.3.4 and 2.3.5 are direct consequences of Theorem 2.3.2.

Corollary 2.3.4 (Weak Identifiability, Bounded). Suppose the constraint
set 1y C C™>™M2 4s nonempty and bounded. For almost all a; € C™ and
bj e C™ (j =1,2,--- ,n), the recovery of My from measurements <aijT, M0>
(G =1,2,--- n)is unique if 2n > dimp(Qaq).

Proof. Define the set Qu — My = {M; — My|M; € Q). Saying that the
recovery of My from a;‘fMob_j (j = 1,2,---,n) is unique, is equivalent to
saying that there does not exist a matrix M in (2 — Mp)\{0} such that
(a;bT , M) =0 (j =1,2,--- ,n).
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Since the set Qyy — My is the shift of the set Q2 by My, we have that
dimg (20 — My) = dimp(Qpq). Therefore, Corollary 2.3.4 follows from The-
orem 2.3.2. ]

Corollary 2.3.5 (Strong Identifiability, Bounded). Suppose the constraint
set Qpg C C™>™2 4s nonempty and bounded. For almost all a; € C™ and
bj € C™ (j = 1,2,---,n), the recovery of all matrices My € Qnq from

measurements <ajb;fp,M0> (j=1,2,---,n) is unique if n > dimp(Qp).

Proof. Define the set Qg — Qu = {My — M| My, My € Qp}. Saying that
the recovery of all matrices in 2, is unique, is equivalent to saying that
there does not exist a matrix M in (Qu— Q) \{0} such that (a;b7, M) =0
(j=1,2,--- ,n).

By Lemma A.2.1 in Appendix A.2,

dimp (Qp — Q) < dimp(Qp — Q) < 2dimp ().

Therefore, Corollary 2.3.5 follows from Theorem 2.3.2. O

The proof of Theorem 2.3.2 is adapted from the proofs of [27, Theorem 2

and Lemma 3]. We make several refinements to this approach:

1. We simplify the expression of Q,(\{0} as a union of subsets (see (2.3)).
We define the subsets only by the spectral norm bounds, and remove
technical discussions unrelated to our analysis of identifiability. This

simplification also results in an easy proof of stability in Section 2.4.3.

2. We adjust the radius of balls in the covering number argument from
§ to /R? (see (2.4) — (2.8)). This does not make any difference to
the identifiability results, but has a big impact on the stability results.
As will be shown by the proofs in Section 2.4.3, this change of radius
results in tighter error bounds in Section 2.2.2, which can be interpreted

in terms of signal-to-noise ratios.

3. We extend the analysis from the real case to the complex case, thus
enabling its application to blind deconvolution. Despite the similarity
in proofs, the extension is not a trivial application of the canonical
isomorphism between C" and R?" (see Lemmas A.1.1 and A.1.2 in
Appendix A.1).
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The proofs in this chapter can serve as a simpler proof of the sample
complexity for the real matrix recovery problem, which is n > dimg(Q),

by making the following modifications:

1. Changing the number field from complex to real.

2. Using a different concentration of measure inequality in (2.8):

T /
J Mp,L,i

P[[a? M) b <] <3767, L. R),

which is formally stated and proved in Lemma A.1.1, where f(J, %, L,R)
log f(S,% L,R)

is a function of § that satisfies (lsirr(l) logl’ — = 0. Hence Pr <
— o
No,, (%) (30)"f(30,%,L,R)". If n > dimy(Qu), then Py = 0 for

all L € Z.

Owing to the linearity of the measurements in the matrix recovery problem,
the above results can be easily extended to the case where the constraint set
is a cone. To avoid verbosity, we only prove Corollary 2.3.6. Corollary 2.3.7

can be proved in a similar fashion.

Corollary 2.3.6 (Weak Identifiability, Unbounded). Suppose the constraint
set Qpg C C™*™2 s q cone. For almost all a; € C™ and b; € C™ (j =
1,2,--+,n), the recovery of My from measurements <ajb?,M0> = a;MOb_j
(j=1,2,--+ n)is unique if 2n > dimy(Qg), where Qg = Qg [ Bemyxms -

Corollary 2.3.7 (Strong Identifiability, Unbounded). Suppose the constraint
set Qp C C™*™2 4s a cone. For almost all a; € C™ and b; € C™
(j =1,2,---,n), the recovery of all matrices My € Qg from measurements
<ajb]T,M0> = a;fMOb_j (j = 1,2,---,n) is unique if n > dimp(Qp), where
Qp = Q) Bemixms .

Proof of Corollary 2.5.6. We prove uniqueness by contradiction. Suppose
that the recovery of M is not unique, i.e., there exists M; € Q, such that
{abT, M) = {a;bT, M) (j = 1,2, ,n). Let o := 2max{||Mo|lp, | Mi]p} >

0. Since {2, is a cone, we have

1 1
— My, —M, € Qp,
o g

1 1 ,
<aa’b]r’ EM1> - <ajbgrv;M0>> J=12---,n.
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Therefore, when the matrix recovery problem is restricted to a nonempty
bounded constraint set €53, the recovery of %Mo is not unique. This, however,

contradicts the sample complexity 2n > dimy(Qg) and Corollary 2.3.4. [

Corollaries 2.3.6 and 2.3.7 show that the solution to the matrix recovery
problem with a cone constraint set is unique, if the solution to the corre-

sponding problem restricted to the unit ball is unique.

2.4  Proof of the Main Results

2.4.1 Proof of Theorems 2.2.1 and 2.2.2

The identifiability of (xg, yo) up to scaling in (BD) is equivalent to the unique-
ness of My = zoyd in (Lifted BD). Note that

z = Gpp(My) = (Dxy) ® (Eyo) = VnF*[(FDxo) ® (FEyp)],

(F2)W) = (FD)9)zo(FE)U)y,

-

n
= (FD)%aqyd (FE)9 = a3 Mab;,

where a; = (FD)U** is the conjugate transpose of the jth row of F'D, and
b; = (FE)U9)* is the conjugate transpose of the jth row of FE. Rewriting
(Lifted BD) in the frequency domain:

(Lifted BD); Find M,
st. a;Mb; = —(F2)Y, 1<j<n,

NG

M e Qn = {zy" 2 € Qr,y € W}

Clearly, the constraint set (4 is a cone. Since a; = (FD)U)* and b; =
(FE)U* there exists a bijection between the pair (D, E) € C™™ x Cr>m2
and the set of vector pairs {a; € C™ b; € C™}7_,. By Corollary 2.3.6,
the recovery of My is unique for almost all D € C**™ and F € C**™=2
if 2n > dimp(Qp). By Corollary 2.3.7, the recovery of all matrices in {2
is unique for almost all D € C™™ and EF € C"™2 if n > di_mB(QB).
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Hence, Theorems 2.2.1 and 2.2.2 follow from the upper bounds on Minkowski

dimensions in Lemma 2.4.1.

Lemma 2.4.1. The upper Minkowski dimensions of Qg = Q[ ) Bemixms
in (Lifted BD) with subspace, mized, and sparsity constraints are bounded by
2(my +ma), 2(s1 +ms), and 2(s1 + s2), respectively.

Proof of Lemma 2.4.1. For simplicity, we only prove the upper bound for the
mixed constraint set. The bounds for the other two scenarios can be proved

in a similar fashion. First of all,

Qp = {zy" : 3 € Qu,y € Qy, Hfl??/T”F <1}
= {xyT HNS QXay c Qy7 HxH2 < 17 HyH2 < 1}
={ay’ 12 € QXﬂchl,y € Qyﬂ[)’cmz}.

By Lemmas A.2.2 and A.2.3, we have

dimp Q[ ) Bemixms )

< dimp (Qx [ Bem) + dimp(Qy () Ber)

< dimp (Re (QX N B@m» + dimp, (Im (QX N Bm))

+ dimp, <Re (Qy N BCm)) + dimp (Im (Qy N ch2)> . (2.9)

Recall that, in the mixed constraints scenario, the filter satisfies a subspace
constraint, and Qy = C™2. The restriction to the unit ball is Qy [ Beme =
Bema, whose real and imaginary parts are Bgms. By a standard volume

argument (see [88, Lemma 4.1)),

Voo < (2) 7 w1 (2.10)
Hence
dimp (Re (Qy N ch2>) — dimp, <1m (Qy N chg))
= dimp(Bgms ) = lim supw < lim sup ms log% =my. (2.11)
p—0 log 7 p—0 0g

Meanwhile, the signal satisfies a sparsity constraint, and Qy = {z € C™ :
llz|llo < s1}. The restriction to the unit ball is Qx (\Bemi = {x € C™
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llzllo < s1,]|z|l2 < 1}, whose real and imaginary parts are

Re (QX N Bm) — Im (QX N chl)

= {z e R™ :lzflo < 1, [Jxf2 <1},

which is the union of unit balls in s;-dimensional subspaces. Denote this set

by I'",. By a standard volume argument,

s1,1°
3 S1 S1 3 S1
Nle (p) S (ml) <_) S (%> (_) ) vp S ]-7
s1,1 S1 P S1 P
where the second inequality follows from Stirling’s approximation. Hence
dim (Re (QX M Bem )) — dimp (Im (QX (M Bem ))

o Tl )
= dimg(I'}")) = limsup——————— < limsup s n
’ p—0 log 2 p—0 log &

3emq
S1

log % + log

(2.12)

Combining (2.9), (2.11), and (2.12), we have that the upper Minkowski di-

mension of the mixed constraint set is bounded by 2(s; + ma). O

2.4.2 Proof of Theorem 2.2.3

Next, we prove Theorem 2.2.3, which establishes results corresponding to
those of Theorems 2.2.1 and 2.2.2 in the case where D, F, x, and y are real.
When D are E are real matrices, a; = (FD)U)* and b; = (FE)U)* are
complex vectors, but they are no longer generic. Therefore, Corollaries 2.3.6

and 2.3.7 cannot be applied directly to this case.

Proof of Theorem 2.2.3. By (2.9) in the proof of Theorem 2.4.1, when z, y,
and M = zy” are real, the Minkowski dimensions of the restricted constraint
sets are half those in Theorem 2.4.1. For subspace, mixed, and sparsity
constraints, the upper Minkowski dimensions of the restricted constraint sets
are bounded by m +ms, s1 +ms, and s; + sg, respectively. To maintain the
same sample complexities, we need to show a result analogous to Theorem
2.3.2, in which a; = (FD)U)* and b; = (FE)U)* D and E are real matrices,
and n > dimp(Qaq) is sufficient.
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Lemma 2.4.2. Suppose Qg C R™*™2 4s a nonempty bounded set. Let D €
R™™ gnd E € R™™2 q; = (FD)U)* and b; = (FE)U)* (j=1,2,--+ n).
For almost all D € R™™ and E € R" ™2, there does not exist a matriz
M € Qu\{0} such that <ajbjT,M> = a;‘»Mb_j =0 forj =1,2,---,n, if
n > dimp (Qu).

The proof of Lemma 2.4.2 is very similar to that of Theorem 2.3.2. In fact,
the only difference is the following: the mapping between the real matrices
D, E and the complex vectors {a;}7_,, {b;}}—, is no longer a bijection. The
vectors a; and b; are real vectors. Due to the conjugate symmetry of DFT,
the vectors a; and a,12—; is a conjugate pairs, i.e. a; = Gp12—;. The same
is true for b; and b,49_;. Therefore, (roughly) the first half of the DFT

measurements contain all the information of real-valued unknowns. There
(n1+1)/21 {bj}[(_"frl)/z].

exists a bijection between D, E and the vectors {a;} ;
Due to this subtlety, in the probabilistic argument (analogous to Lemma
2.3.3) we assume {CLJ};(Er el {bj}][(:"fr D721 are independent random vectors

as follows:

e When n is even, {a1, az i} and {b1, bn i} are real random vectors fol-
lowing uniform distributions on RBgrm: and RBgm., respectively. The
vectors {a; }j%:2 and {b, }]-%:2 are complex random vectors following uni-
form distributions on RBcm: and RBems, respectively.

e When n is odd, a; and b; are real random vectors following uniform dis-

ntl
tributions on RBgm: and RBgms, respectively. The vectors {a;},2, and
n+l
{b;};2, are complex random vectors following uniform distributions on

RBcmi and RBcms, respectively.

We apply corresponding changes to the proof of Lemma 2.3.3. (As before,
we define § = pR%.) When bounding the probability P;, (2.7) and (2.8) now

become:
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e When n is even,

i=1  j=1
<Ny (2 (36£(36 1y R))*- ((30)%9(36 = R))*™
-~ QM R2 7L7 ) g ’L’ b
— Noy, () (307430, . L R)? - 930, % L, )37
— IVQum R2 o i g A ’

e When n is odd,
Noyy 1 (p) 2L
Pr< > [P llain b, < 30]

i=1  j=1
<Ny (2 (36 (36 1y R)) - ((36)%9(36 1z R))%1
> VO R2 LT "L
— Noy, () 367 £(36, 2, 1, R) - 9(36, %, L, )7
- Qaq R2 ’L’ ; g 7L7 ) .

Whether n is even or odd, we have P, = O(NQM (%) 5"). By the same
argument as in the proof of Lemma 2.3.3, the sample complexity is n >
dimg Q). L

2.4.3 Proof of Theorem 2.2.4

In this section, we establish the stability results in blind deconvolution. The

measurement in (Noisy BD) can be rewritten in the frequency domain:

1 R
%<F£)(J) = alMob; + £v),
where My = zoyd, a; = (FD)U* b, = (FE)U)* and € = = F¢. Define
linear operator A(M) by A(M) = [a}Mb, a3Mbs, - -- ,afLME}T. We rewrite
(Noisy BD) in the frequency domain:

1 ; | .
(FZ)(J) — (FD)(]")xO(FE)(]")yO +

s0) —

(Noisy BD);  min. [|A(M) — 2]},

s.t. M € oQpg,
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where 05 = {zy” : v € Qx,y € Qy, xyTHF <o}
Note that
1
A(M) = %FQDE(M%
1
[AMM)]l, = % 1GpE(M)]l, -

The single point stability result in the subspace constraints scenario in Theo-
rem 2.2.4 follows from Lemma 2.4.3 | with every 0 replaced by \%. All other

cases can be proved using similar lemmas, which we omit here for brevity.

Lemma 2.4.3. In (Noisy BD); with subspace constraints, assume that the
random vectors {a;}_, are i.i.d. following a uniform distribution on RBcmi,
and {b;}j_, are i.i.d. following a uniform distribution on RBcm,. Let the
true matriz be My € Qp = Q[ Bemixme = {xy? 1 2 € Bemi,y € Beme }. If
n>m; +my and § < R2, then with probability at least

2R2 n 52 n—mi—msa 1 n
1-— (648 MMy <1 + 21n §)> (ﬁ) (5—2) ,
for all M € Qg such that ||A(M) — A(My)ll, <6, we have | M — M|, < €.

To ensure that the probability bound is nontrivial, we insist that

AV

Since the right-hand size vanishes as ¢ approaches 0, the above lemma guar-

antees stable recovery in (Noisy BD);. Next, we prove this lemma, exploiting

a key result in the proof of Lemma 2.3.3.

Proof of Lemma 2.4.3. We need to bound the following probability of stabil-
ity:
P, =P [VM € Qp, it |AM) — A(Mp)|l, < 8, then || M — My, < 5]
1 - IP’[HM € Qp, st. [JAM) — A(Mo)|l, < 6, and ||M — M|, > a}
—1- IP’[EIM € Qp— My, st. | M|, > e and |AM)|, < 5}
=1 — Py,
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where the probability of failure Py satisfies:

J [aM € Qp— My, st. | M|, > e and |JAM)|, <6

gp[aM € O — My, st |[M]|, > e and [aiMb;| < 6,5 = 1,2, ,n

<Ng, (%) (36)*"g(36,¢,2, R)" (2.13)
< <6ﬁR2)2m1+2m2 (35)>
- 5

(Clmem () e
= (6\/§R2)Qm1+2m2 (36)2" - (% <1 +21In 23-?))71 (2.15)

R2\ 2mteme mim 2R2\\"
<= 2)27(38)%" . [ =2 (14 2In ——
_(5) (6v/2)*(30) (€2R4 +2In =

52 n—mi—msa 1 n 2R2 n
YL (o (120 2))

Inequality (2.13) follows from (2.8), with the norm bounds ¢ < ||M|, < 2. In
(2.14), the bound on the covering number of Qp = Q[ Bemixms = {xy” :
x € Bemi,y € Bem: } is derived as follows:

() <30 () e o)
< (NB]le (f;}p}) (NBR*“? (%ER?)) _—
() ) ((59) ) (%)

where the first two inequalities follow from (A.7), (A.8) in Appendix A.2,
and the third inequality follows from (2.10) and the assumption § < R?. The
expression for g(39, %, 2, R) is given by (A.6) in Appendix A.1. Recall that
Vemi (R) denotes the volume of a ball of radius R in C"™. Equation (2.15)
follows from the fact that Vim (R) = Viem (R) = Z-E"  That completes the

m!

proof. O
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CHAPTER 3

IDENTIFIABILITY IN BLIND GAIN AND
PHASE CALIBRATION

3.1 Problem Statement

3.1.1 Notations

We use upper-case letters A, X and Y to denote matrices, and lower-case
letters to denote vectors. The diagonal matrix with the elements of vector A
on the diagonal is denoted by diag(\). The vector formed by a concatenation
of the columns of X is denoted by vec(X). Matrices I, and F,, denote the
identity matrix and the discrete Fourier transform (DFT') matrix of size nxn.
Unless otherwise stated, all vectors are column vectors. The dimensions of all
vectors and matrices are made clear in the context. The circular convolution
is denoted by ®. The Kronecker product of two matrices is denoted by ®.
The entrywise product is denoted by @». The range space of the conjugate
transpose of a matrix D is denoted by R*(D) = R(D*), and the nullspace
of D is denoted by N(D). The orthogonal complement of a subspace V is
denoted by V*. Given a vector x € C", span(z) denotes the one-dimensional
subspace of C" spanned by z, and =+ denotes its orthogonal complement.
We use j, k to denote indices, and J, K to denote index sets. If a matrix
or a vector has dimension n, then an index set J is a subset of {1,2,...,n}.
The cardinality of J is denoted by |J|, and the complement of J is denoted
by J¢. Superscript letters denote subvectors or submatrices. For example,
the submatrix A% has size |.J| x |K| and consists of the entries indexed
by J x K. Borrowing the colon notation from MATLAB, the vector AG*)

represents the kth column of matrix A.
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3.1.2 The BGPC Problem

Blind gain and phase calibration (BGPC) is the following constrained bilinear

inverse problem given the measurement Y = diag(\g)®y:

Find (A, ®),
s.t. diag(A\)® =Y,
A€ Qp, ey,

where A € 2y C C" is the unknown gain and phase vector, and ® € Qg C
C™¥ is the signal matrix. In this chapter, we impose no constraints on A,
ie, Q) = C". As for the matrix ®, we impose subspace or joint sparsity
constraints. In both scenarios, ® can be represented in the factorized form
¢ = AX, where the columns of A € C™™ form a basis or a frame (an
overcomplete dictionary), and X € Qy € C™ is the matrix of coordinates.
The constraint set becomes Qg = {® = AX : X € Qy}. Under some mild
conditions' on A, the uniqueness of ® is equivalent to the uniqueness of X.
For simplicity, we treat the following problem as the BGPC problem from

now O1.

(BGPC) Find (A, X),
s.t. diag(\)AX =Y,
AeC" X € Qy.

We consider two scenarios in this chapter:

(1) Subspace constraints: The signals represented by the columns of @
reside in a low-dimensional subspace spanned by the columns of a known
matrix A. The matrix A is tall (n > m) and has full column rank. The
constraint set is Oy = C™*V,

(2) Joint sparsity constraints: The columns of ® are jointly sparse over a
known dictionary A, where A is a square matrix (n = m) or a fat matrix

(n < m). The constraint set Qy is

Qxr = {X € C™" : X has at most s nonzero rows}.

!Under a subspace constraint, A is required to have full column rank. Under a joint
sparsity constraint, A is required to satisfy the spark condition [86]. Both conditions are
satisfied by a generic A.
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In other words, the columns of X are jointly s-sparse.

In the rest of this chapter, we address the identifiability in the above BGPC
problem. In BGPC, the constraint sets {2, and {2y are cones — they are closed
under scalar multiplication. For any nonzero scalar o, the pairs (Ao, Xo) and
(oA, £X0) map to the same Y and therefore are non-distinguishable. This
problem is said to suffer from scaling ambiguity. The set {(0 Ao, 2X) : 0 # 0}
is an equivalence class of solutions generated by a group of scaling transfor-
mations. The solution (Ao, Xo) is said to be identifiable up to scaling if every
solution to BGPC is a scaled version of (g, Xg) in that equivalent class. In
this chapter, we answer the following question: Under what conditions is the
solution (Ao, X) unique up to scaling?

Our results are stated in terms of sample complexities, which are the num-
bers of data samples or measurements needed for unique recovery of the
solutions. They are given by inequalities describing the conditions that need
to be satisfied by the problem parameters, n, m, s, and N. The numbers n
and m denote the length of the signals and the dimension of the subspace
in which they are assume to reside, in the subspace constraint scenario. The
sparsity level s is the number (out of m) of nonzero rows of X in the joint
sparsity scenario. Finally, the number of signals captured (number of columns
of Y and @) is denoted by N. Since it is often difficult to acquire a large
number of signals, it is desirable to have sample complexities that requires
small N. We defer the reader to Section 3.1.3 for a detailed discussion of

these quantities in specific applications.

3.1.3 Applications

This section gives a detailed account of the applications of BGPC. Table 3.1
summarizes what parameters n, m, s, and N represent in these applications.

Subspace Constraint: In inverse rendering [29], the columns of ¥V =
diag(\)® represent images under different lighting conditions, where A rep-
resents the unknown albedos,? and the columns of ® represent the intensity
maps of incident light under different conditions. The columns of A are the
first several spherical harmonics extracted from the 3D model of the object.

They form a basis of the low-dimensional subspace in which the intensity

2In inverse rendering, albedos are real and positive. We ignore this extra information
here for simplicity.
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maps reside.

Multichannel blind deconvolution with the circular convolution model also
falls into this category. The measurement Y ¢) = diag(\)®() can be also
written as:

FAY 6D = (E-I\) @ (F1otd),

The vector A represents the DF'T of the signal, the columns of ® represent
the DFTs of the impulse responses of the channels, and the columns of Y
represent the DFTs of the channel outputs. The columns of F,'A form a
basis for the low-dimensional subspace in which the impulse responses of the
channels reside. For example, when the multiple channels are FIR filters that
share the same support J, they reside in a low-dimensional subspace whose
basis is Fi7!A = I¢7). By symmetry, the roles of signals and channels can
be switched. In channel encoding, when multiple signals are encoded by the
same tall matrix £, they reside in a low-dimensional subspace whose basis is
F'A = E. In this case, the vector X represents the DFT of the channel.

Joint Sparsity Constraint: In sensor array processing with uncalibrated
sensors, the vector A represents unknown gains and phases of the sensors, and
the columns of ® represent snapshots captured at different time instants,
assuming unit gain and zero phase for all sensors. Consider a scene with ra-
diating sources whose positions (directions of arrival in the far-field scenario)
are discretized, using a grid of m positions. Then each column of A € C™"*™
represents the array response to a single source at one position on the grid.
With only s < m unknown sources, each column of ® is the superposition of
the same s columns of A. It follows that the columns of the source matrix X
have a common support determined by the source positions, and are jointly
s-sparse.

If the impulse responses in multichannel blind deconvolution are jointly
sparse over the dictionary F;'A, then as argued in the subspace constraints
case, the vector A, the columns of ®, and the columns of Y represent the
DFTs of the signal, the impulse responses, and the channel outputs, respec-
tively. By symmetry, the roles of signals and channels can be switched. For
example, in hyperspectral imaging, image samples at different frequencies in
the light spectrum are likely to share the same discontinuities, and be jointly
sparse over the same dictionary. If all image samples are corrupted with the

same blurring kernel, then the deblurring procedure is a BGPC problem with

41



Table 3.1: Physical meanings of the problem parameters in applications.

Inverse Sensor Array Multichannel Blind
Rendering Processing Deconvolution
n | # pixels # sensors Length of the signal
4 spherical 4 positions on Dimension of the channel
m . . subspace
harmonics the grid .
(subspace constraint)
< 4 sources C.hgnnel spa.ursmy levell
(joint sparsity constraint)
N | # images # snapshots # channels

joint sparsity constraints.

SAR autofocus [38] is a special multichannel blind deconvolution problem,
where X represents the SAR image and A = F' is the 1D DFT matrix. The
entries in A represent the phase error in the Fourier imaging data, which
varies only along the cross-range dimension.? If the coverage of the image is
extended by oversampling the Fourier domain in the cross-range dimension,
the rows of the image X corresponding to the region that is not illuminated
by the antenna beam will be composed of zeros. Thus, the SAR image X

can be modeled as a matrix with jointly sparse columns.

3.2  Main Results

3.2.1 BGPC with a Subspace Constraint

We first consider identifiability in BGPC with a subspace constraint. The
measurement in the following problem is Y = diag(A\g)AXy. The known
matrix A € C™™ is tall (n > m), and therefore the columns of ® = AX
reside in a low-dimensional subspace. The corresponding constraint sets are
Qp = C" and Qyp = C™ N hence the problem is unconstrained with respect
to A and X.

In a previous work [1], we showed that N > m is sufficient to guarantee

3In SAR autofocus, the entries of the phase error A have unit moduli. We ignore this
extra information here for simplicity.
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identifiability when A, \g, and X, are generic. However, numerical experi-
ments show that when ﬁ < N < m, the solution can still be identifiable
(see [1, Section 3.3]). In this section, we explore the regime where g, Xo,
and A are generic, and ﬁ < N < m. We prove the following sufficient

condition for the identifiability of (Ao, Xy) up to scaling.

Theorem 3.2.1. In the BGPC problem with a subspace constraint, if n > m
n_l < N < m, then for almost all \y € C", almost all X, € C™V,

n—m

and
and almost all A € C"™ the pair (Ao, Xo) is identifiable up to an unknown
scaling.

n—1
n—m

The sample complexity required by this theorem, N > , is much less

demanding than the condition N > m in our previous results [1, Theorem
3.3 and Corollary 3.4]. In fact, this sample complexity is optimal, since it
matches the sample complexity in the necessary condition [1, Proposition
3.5]. It suggests that if m < %, i.e., the dimension of the subspace is less
than half the ambient dimension, then N = 2 signal vectors are sufficient to
recover (Ao, Xo) uniquely. This result provides a favorable bound for real-
world applications. For example, the typical dimension of the intensity map
subspace in inverse rendering is m = 9, which is really small when compared
to the size of the images (e.g., n = 256 x 256 = 21¢). Therefore, having two
images under different lighting conditions is sufficient for the uniqueness of
the solution. We will prove this result in Section 3.3.1.

When the sample complexity is achieved, for almost all \g, Xy, and A,
the solution (Mg, Xo) is unique up to scaling. In other words, this result is
violated only for (Ao, Xo, A) on a subset of C* x C™*N x C™™ that has
Lebesgue measure zero. If (A, Xy, A) is random, following a distribution
that is absolutely continuous with respect to the Lebesgue measure (e.g.,
the entries of \g, Xy, and A are i.i.d. following a Gaussian distribution),
then the solution to BGPC is identifiable up to scaling with probability 1.
Moreover, the degenerate set of (Ao, Xo, A) that fails the test, is an algebraic
variety, which is not dense in the ambient space. In real-world applications,
Ao and AXj represent natural signals, which are not likely to belong to the
particular lower-dimensional manifold of degeneracy.

As shown later in the proof of Theorem 3.2.1, the identifiability hinges on

the following conditions:

1. There are no zero rows in AXj, and all the entries of \y are nonzero.
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2. The matrix in (3.2), which is a function of A and Xy, has full column

rank.

For a given combination of Ay, Xy, and A, one can test whether the above
conditions are satisfied. Figure 3.1 shows the test results of random ),
Xo, and A, whose entries are generated as i.i.d. Gaussian random variables
N(0,1). We fix n = 20, and check Conditions 1 and 2 for different values

of (m, N). Here, white (resp. black) means that the conditions are satisfied

n—1
n—m’

(resp. are not satisfied). The red line represents the boundary N =
The test results remain the same for 20 independent random experiments,
which is consistent with the fact that Conditions 1 and 2 are satisfied for
random Gaussian vectors and matrices with probability 1 when the sample

L is achieved.
m

complexity N > =

) 10 15
m

Figure 3.1: Verification of the identifiability conditions in 1 and 2 for
random (g, Xo, A) € C" x C™*N x C™™. The white (resp. black) region
means that the conditions are satisfied (resp. are not satisfied) for all 20
trials. The red line represents the boundary N = (n —1)/(n —m)
corresponding to the necessary and sufficient condition in Theorem 3.2.1.

3.2.2 BGPC with a Joint Sparsity Constraint

Next, consider identifiability in BGPC with a joint sparsity constraint. The
measurement is Y = diag(A\g) AXo. The columns of A € C*"*™ form a basis or
frame for the signals. There are s nonzero rows in Xy, and the corresponding

constraint set is

Qx = {X € C™" : X has at most s nonzero rows}.
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In a previous work [1], sufficient conditions for the uniqueness of the solu-
tion to the above problem were derived for some special cases (e.g., A = F).
A sample complexity N > s was established as sufficient for these special
cases. However, when )y, Xy, and A are generic, a less demanding sufficient
condition can be proved using essentially the same argument as in the proof

of Theorem 3.2.1. The proof is presented in Section 3.3.3.

Theorem 3.2.2. In the BGPC problem with a joint sparsity constraint, if
—L < N < s, then for almost all \y € C", almost all X, € C™N

n
n—2s —

with s nonzero rows, and almost all A € C"*™ | the pair (Ao, Xo) is identifiable

n > 2s and

up to an unknown scaling.

n—1
n—2s

condition [1] of N > s, when the sparsity level s is much smaller than the

The sample complexity N > is far superior to the previous sufficient

ambient dimension n. For example, if s < 7, then N = 2 is sufficient. In
sensor array processing, the number of sources s is often much smaller than
the number of sensors n. Therefore, only two snapshots are needed to recover
the unknown gains and phases uniquely. This is especially significant when
the working conditions of the sensor array and/or the source locations vary
over time, and it needs to be re-calibrated continuously. One can achieve
higher temporal resolution by solving BGPC using fewer snapshots.

Next, we compare the sample complexity in the sufficient condition of The-
orem 3.2.2 to a necessary condition for this scenario. Suppose the support
of Xy is known, then the joint sparsity constraint reduces to a subspace con-
straint. By the necessary condition for the subspace scenario [1, Proposition

3.5], it follows that a necessary condition for the joint sparsity scenario is

N > 2=l The sample complexity in the sufficient condition of Theorem

n—s’

322, N > 5:218, nearly matches the necessary condition when the sparsity
level s is small compared to signal length n. Indeed, when n > 4s, the above
sufficient and necessary conditions both reduce to N > 2. When n > 3s, the
necessary condition reduces to N > 2, and the sufficient condition reduces

to N > 3, which is off by 1.
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3.3 Proof of the Main Results

3.3.1 Proof of Theorem 3.2.1

First, BGPC is a bilinear inverse problem. Theorem 2.8 [1] stated equivalent
conditions for identifiability in bilinear inverse problems up to some trans-
formation groups. Specializing this result to the identifiability in BGPC up

to scaling, we have the following lemma.

Lemma 3.3.1. In BGPC, the pair (A, Xo) € Qa X Qx (Ao # 0, Xy #0) is

wdentifiable up to scaling if and only if the following two conditions are met:

1. If diag(A)AX, = diag(Ag)AXy for some (A, X1) € Qp X Qx, then

X, =0Xy for some nonzero o.
2. If diag(A1) AXo = diag(Ao)AXy for some A\ € Qy, then A\ = \g.

We first show that Condition 2 holds: that is, if Xy is given, then the
recovery of )y is unique. Note that for almost all matrices A € C"*™ and
Xy € C™N there are no zero rows in the product AX,. It follows that, if
diag(M\g) AXy = diag(A\)AXy for some \; € C*, then \; = A.

By Lemma 3.3.1, to complete the proof, we only need to show that Con-
dition 1 also holds for generic \g, Xo, and A.* Suppose there exists (A, X;)
such that diag(A\g)AX, = diag(A;)AX;. Consider the k-th row on both sides

of the equation, which can be written as
(In ® A®Nvec( XA = (Iy @ A®))vec(X)AW.

Now, for almost all \g, Xy, and A, the left-hand side is nonzero. Therefore

A1 and X, are nonzero. It follows that

()

Svee(Xo) =0,
1

(Iyn® A(k’:)) (Vec(Xl) —

and hence,
vee(X1) € N(Iy @ A®)) 4 span(vec(Xy)).

4We use arguments similar to those used for the proof of [23, Theorem 4.2].
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Next, we project vec(X;) onto the orthogonal complement of span(vec(X)).

It follows that

P

vec

(XO)LVGC(Xl) :VeC(Xl) - Pspan(vec(Xo))VeC(Xl)
€ N(Iy ® A%)) 4 span(vec(Xy)).

For linear vector spaces V; and Vs, Vi + V= (Vi-(V3-)*. Using the fact
that N (Iy @ AFNL = R*(Iy @ A®)), and span(vec(Xy))t = vec(Xo)*, we
have

Pec(xo)rvee(X) € (R*(Iy @ Ak) ﬂvec(XO)L)L,

for k =1,2,...,n. Taking note of the fact that
Pee(x0)2 vee(X1) € vee(Xo)™,

we have

Py veeXa) 6vec<Xo>lﬂ( N (R*(fN@A@»ﬂ)ﬂvec(Xw).

k=1,2,....,n
(3.1)
Since

Ak 90 0 |

0 A& o0 .. 0
IyoA®)I=| 0 0 A& . 0 |,
0 0 0 Ak
VeC(Xo)* = [X(g’l)* Xé:72)* X((),g)* o X((),N)* ’

it is easy to verify that, for almost all A and X,, the intersection of the
row space of Iy ® A%®?) and the orthocomplement of vec(Xy) is an (N — 1)-

dimensional subspace:

R*(Iny @ A®) (Y vee(Xo)™ = R* (D(A®), Xy))

47



where the matrix D(A®) X;) € CV=D*mN g 3 function of A%**) and Xj:

—Y2 M 0 ... 0
— 0 .. 0
DA, X = | T T T e,

and v, = A(k’:)Xé:’j) for y = 1,2,..., N. For generic matrices A and X,
D(A®) | X;) has full row rank, which is N — 1. By (3.1),

vec(Xo)*
D(A0) | Xo)
Pvec(Xo)iveC(Xl) eN D(A(Z:)? XO) . (32)

D(A™) | X,)

We have the following claim, to be proved in Section 3.3.2.

Claim 3.3.2. For almost all X and A, if n > m and

the matriz in (3.2) has full column rank, which is mN .

”:nll < N < m, then

n

Given this claim, for almost all Xy and A,
Pvec(Xo)iveC(Xl) = 0.

Therefore, X; resides in the 1-dimensional subspace in C™*¥ spanned by
Xp, i.e., X1 = 0Xy. Recall that X; is nonzero, hence o # 0, establishing
Condition 2 in Lemma 3.3.1, thus proving Theorem 3.2.1.

3.3.2 Proof of Claim 3.3.2

We prove that the matrix in (3.2) has full column rank for almost all X
and A that satisfy n > m and ﬁ < N < m. By the definition of matrix
D(A®) | X;), we have D(A®) | X;)vec(Xy) = 0. Hence the first row vec(Xp)*
is orthogonal to the rest of the rows in the matrix in (3.2). Therefore, we

only need to show the rank of the following matrix is at least mN — 1 for
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almost all X, and A:

D(AM™) | X)

Using the basic result in algebraic geometry that a polynomial function
from C" to C is either identically zero, or nonzero almost everywhere, it
follows easily that the rank of D(A, Xy) is at least mN — 1 for almost all A
and Xy, if the rank is mN — 1 for at least one choice of A and X;.> The rest
of the proof is an explicit construction of A and X, that satisfies this rank
condition.

The matrix X, € C™* is a tall matrix (N < m), hence one can choose
Xy as the first N columns of I,,. The matrix A € C"*™ is also tall (n > m),
therefore one can choose A as a subset of m columns from F,,. The first N
columns are AN = FHMY) e pick m — N columns out of FUN T ag
AGNFEm) i 3 manner such that there are no blocks of consecutive N columns
except for the first N columns. To satisfy this condition, the columns FNTY
and F"" must not be picked.® This can be demonstrated by Figure 3.2. This
can be done because (n —m)N >n — 1.

Given this choice of Xy and A,

_Oékfl 0
—a2k=1) 1 ... 0

D(A™) X,) = . L | eA®)
—aWN-Dk=1) o 1

where o = e~ 5= One can view D(A, Xy) as a block matrix with n blocks,
one on top of the other. Each block itself is a block matrix with (N —1) x N
blocks.

5Indeed, if D(A7 )~(0) has rank mN — 1 for some A and )N(O, then there exists a subset
K of mN — 1 columns such that D(A, Xo)%) has full column rank. By [25, Lemma 1],
for almost all A and Xy, we have D(A, X)) has full column rank, and hence D(A, X)
has rank at least mN — 1.

6Because of the circular nature of the DFT matrix, the first column and the last column
of F,, are also considered “consecutive”.
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The m columns that form A

AN

<N <N <N <N <N

L o

\\ ‘\' / I/// ’
The remaining n — m columns from F,

Figure 3.2: Construction of the matrix A from the DFT matrix F,.

Consider the left null vector w € C"™ =1 of the matrix D(A, X,). Suppose

_ T
w = [wl,l, Ww12,...,W N-1,W2,1,W22,...,Wa N-15...,Wn1,Wn2,--- awn,Nfl] )

and w*D(A, Xy) = 0. Then we have

é (Z o=V ) Al = 0, (3.3)

Wi A% =0, for j=1,2,...,N — 1. (3.4)
k=1

In order to show that D(A, Xy) has rank mN — 1, we need to prove that
there are exactly M =n(N —1) — (mN — 1) =nN —mN —n + 1 linearly

independent left null vectors w. This number is greater than or equal to zero
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because N > ”__7}1. Consider the following matrix:

w11 Wi2 ... WiN-1

Wa,1 W22 ... W2N-1
W =

Wnp,1 Wp2 ... WpN-1

By (3.4), the columns of W are orthogonal to the columns of A. Recall that
the columns of A are a subset of the columns of F,,. We use A, € C**(n—m)
to denote the matrix whose columns are the complement set of columns, i.e.,
the remaining n — m columns in F,, that are not picked. Then W = A, Q
for some Q € C(—)x(N-1),

Next, we show that there are exactly M linearly independent matrices @)
such that W = A, @ satisfies (3.3). Consider the following vector v € C"

whose entries are the coefficients in (3.3):

N-1 _5.90
j .
Zjﬂ QW

N-1 1 N-1
=7 .
Zj 1 o w27.7

V= ' — Z Femt1=0) o )
Z;V 11 o ](n_l)wn,j
n—-m N-—1 '
=3 S (FFD 0 AR, (3.5)

i=1  j=1

By (3.3), v is also orthogonal to the columns in A. Therefore, there exists a

vector p € C"™ such that

v=Ap= Z A( D (3.6)

By (3.5) and (3.6), we have

=

].
1

n—m n—m

=1 =1 3

The entrywise product of two columns in Fj, is still a column in F,. In
particular, if j, > j;, then EU"H) @ pliz) — plz=i) - Therefore,

{F (ot1=9) o A( N "' are N — 1 consecutive columns of F, on the left of
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A(ji). Hence every term in the sum of (3.7) contains a column of F,.
Next, we investigate which columns of F}, are included in this sum. Based

on the way we partition F), into A and A, , at least one column in any /N con-

;,N+1:n)

secutive columns in F} must belong to A, (see Figure 3.2). The only

exception is that, between Fi"™ and FN ™. which are adjacent columns
in A,,” there are N columns FEN), Therefore, when ¢ = 2,3,...,n —m,
the columns {F,({’"H_j ) ® A(i’i) ;V:]l sweep to the left of A(ji), and “fill the

gap” by covering all the columns between A(ji) and A(fifl). In general, since
the gap between A(L’i_l) and A(i’i) could be smaller than N — 1, there could

be overlaps of columns. When ¢ = 1, since A(i’l) = TS:’NH), the columns
{Eg“"“fj) ® /4&’1)}?[:’11 are FZY) - Therefore F5Y is not included in this

sum. In summary;,

PN U o)} e
i.e., the (n —m)+ (n—m)(N —1) terms in the sum of (3.7) actually contain
n — 1 distinct columns of F,,. It follows that there are (n—m)+ (n—m)(N —
1)—(n—1) = nN —mN —n+ 1 = M linearly independent choices of
the coefficient vector [vec(Q)",p"]". We denote these linearly independent
vectors by [vec(Qr)",pi]", k=1,2,..., M.
Next we prove that Qq,Qs,...,Qy are linearly independent. We argue

by contradiction. Suppose they are linearly dependent, and there exists
b1, Ba, ..., Bar such that

M
Z BrQr = 0. (3.8)
k=1
Then,
M M M n—m N-1 . ) o
Ay <Z 5kp1c) = Bdipe=Y_ B Y (Fir o AT
k=1 k=1 k=1 =1 j=1
n—m N-1 ' M o
S e (Baat) o
=1 j=1 k=1

The second equation follows from (3.7), and the last equation follows from

"Recall that Fn:’") and F,({’NH) are not picked for A, and are the last and the first
columns of A .
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(3.8). Since the matrix A; has full column rank, we have

M

Z Bipr = 0. (3.9)
k=1
Equations (3.8) and (3.9) suggest that [vec(Qx)",pl]"(k =1,2,..., M) are
linearly dependent, which causes a contradiction. Therefore, Q1, Q2, ..., Qs
are linearly independent. There exist exactly M linearly independent left
null vectors for D(A, Xy). Therefore, D(A, Xo) has rank mN — 1 for the
special choice of A and X, which completes the proof.

3.3.3 Proof of Theorem 3.2.2

First, by the same argument as in the proof of Theorem 3.2.1, if X is
given, the recovery of )y is unique. Again by Lemma 3.3.1, we only need
to show that for generic A\, Xo, and A, if there exists (A, X7) such that
diag(M\g) AXy = diag(A\)AX, then X; = 00X for some nonzero o.

We start by fixing the supports of X, and X;. Suppose diag(Ag)AXy =
diag(A1)AXy, and Jy and J; are the row supports (the index set on which the
rows of a matrix are nonzero) of X, and X7, respectively, and |Jo| = |J1| = s.
Then focus on the following equation, containing the nonzero rows of X, and
Xq:

diag(A0>A(:vJ0UJl)X(()JOUJl,:) _ diag<)\1)A(:,JoUJl)Xl(JoUJl,:).

Obviously, the cardinality of the set Jy | Ji is at most 2s. Let ¢ = | Jo |J J1| <
2s. We can show that X\°Y7) = 5 x (U7 for some nonzero o, following
the same steps as in the proof of Theorem 3.2.1, with Claim 3.3.2 replaced
by the following claim:

Claim 3.3.3. For almost all Xy with row support Jy and almost all A, if
n > 2s > and 2=L < N < s, then the following matriz has full column

n—2s —
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rank, which is N : ) i

Vec(XO(JOUJI’:))*
D(A(l,Jo U Jl)7 XéJO U J1,:))

D(A@HUM, xRV | (3.10)

D(A(H,J() U Jl)7 X(()JO U J1,:))

The proof of Claim 3.3.3 uses arguments similar to those in the proof
of Claim 3.3.2: an explicit construction of AG0UJ1) and XéJOUJI’:) that
satisfies a rank condition described below. Here, one cannot choose every
entry of X(()J0 U1 freely, since it has only s nonzero rows. Let ) be an £ x ¢
permutation matrix, such that the first s rows of QXSJOUJ“) are nonzero.
Then we apply the construction of A and X in the the proof of Claim 3.3.2,
to AGHUMO=1 and QX(SJOUJ“). For example, we choose X(()JOUJ“) such
that QX(()JO U4 is the first N < s columns of I ¢. Then by the proof of Claim
3.3.2, the following matrix has full column rank ¢N:

Vec(QXéJOUJl’:))*
D(AGDUM Q-1 Qx FoU)
D(A(Q’JUUJI)Q_l,QX((]JOUJ“)) ) (3.11)

D(AmP UM Q-1 QXSJO U Jlﬂ))

We complete the proof of Claim 3.3.3 by making the following observation:
(3.11) is a permutation of the columns of (3.10), and the two matrices have
the same rank.

We continue the proof of Theorem 3.2.2. We have established that

Xl(JO U Jl,:) _ O_XéJo U Jl,:)

for some nonzero o. Recall that the other rows of X, and X; are zero. Hence
X, = 0Xj. Therefore, for almost all \y and A, and almost all X, whose row
support is Jp, the solution (A1, X;), for which the support of X7 is Ji, satisfies
that X1 = 0 Xy and \; = },)\o- There are a finite number of choices for the
supports Jy and J, (T)2 choices to be exact. Therefore, we can complete

the proof by enumerating over all possible choices for J; and J;.
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CHAPTER 4

BLIND GAIN AND PHASE CALIBRATION
VIA SPARSE SPECTRAL METHODS

4.1 Introduction

4.1.1 Notations

We use AT, A, and A* to denote the transpose, the complex conjugate,
and the conjugate transpose of a matrix A, respectively. The k-th entry of a
vector A is denoted by Ax. The j-th column, the k-th row (in a column vector
form), and the (k, j)-th entry of a matrix A are denoted by a.;, ax., and ay;,
respectively. Upper script ¢ in a vector () denotes the iteration number in an
iterative algorithm. We use I,, to denote the identity matrix of size n xn, and
1, ., and 0,,,, to denote the matrices of all ones and all zeros of size n x m,
respectively. The i-th standard basis vector is denoted by e;, whose ambient
dimension is clear in the context. The ¢, norm and ¢, “norm” of a vector x are
denoted by |[x|,, and ||z|,, respectively. The Frobenius norm and the spectral
norm of a matrix A are denoted by || A/ and || A||, respectively. The support

of a sparse vector x is denoted by supp(z). The vector vec(X) denotes

the concatenation of the columns of X = [z.4,2.2,...,2z.5], L., vec(X) =
[z, 2}, ..., 2]]T. A diagonal matrix with the entries of vector z on the

diagonal is denoted by diag(x). The Kronecker product is denoted by ®@. We
use 2 to denote the relation greater than up to log factors. We use [n] to
denote the set {1,2,...,n}. For an index set T, the projection operator onto
T is denoted by Ily, and the operator that restricts onto 7' is denoted by
Qr. We use these operator notations for different spaces, and the ambient

dimensions will be clarified in the context.
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4.1.2 Problem Formulation

In this section, we introduce the BGPC problem with a subspace constraint or
a sparsity constraint. Suppose A € C™*™ is the known measurement matrix,
and A € C" is the vector of unknown gains and phases, the k-th entry of which
is A, = |A\xe¥=1%r. Here, |A\;| and o), denote the gain and phase of the k-th
sensor, respectively. The BGPC problem is the simultaneous recovery of A

and the unknown signal matrix X € C™*¥ from the following measurement:
Y = diag(\)AX + W, (4.1)

where W € C™¥ is the measurement noise. The (k,j)-th entry in the

measurement y; has the following expression:
T
Ykj = )\k Q. X.j + Wi -

Clearly, BGPC is a bilinear inverse problem. The solution (A, X) suffers
from scaling ambiguity, i.e., (A/o,0X) generates the same measurements as
(A, X)), and therefore cannot be distinguished from it. Despite the fact that
the solution can have other ambiguity issues, in this chapter, we consider
the generic setting where the solution suffers only from scaling ambiguity
[3].1 Even in this setting, the solution is not unique, unless we exploit the
structure of the signals. In this chapter, we solve the BGPC problem under
two scenarios — BGPC with a subspace structure, and BGPC with sparsity.

(1) Subspace case: Suppose that the known matrix A is tall (n > m) and
has full column rank. Then the columns of AX reside in the low-dimensional
subspace spanned by the columns of A. The problem is effectively uncon-
strained with respect to X.

(2) Sparsity case: Suppose that A is a known dictionary with m > n,
while the columns of X are sg-sparse, i.e., |z;[|, < s for all j € [N]. A
variation of this setting is that the columns of X are jointly s¢-sparse, i.e.,
there are at most sy nonzero rows in X. In this case, the subspace constraint
on AX no longer applies, and one must solve the problem with a sparsity (or

joint sparsity) constraint.

!An example of another ambiguity is a shift ambiguity when A is the discrete Fourier
transform matrix [1, 41]. For a generic matrix A, the solution to BGPC does not suffer
from shift ambiguity.
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Table 4.1: Comparison of sample complexities with prior work.

Subspace | Joint Sparsity | Sparsity
n>m n > 2s
Unique Recovery [3] . _01 -~
Nph| Nz
nzm
Least Squares [40] ~ _ _
N=>1
>
¢, Minimization [41] - - a0
NZzn
> >
This Paper nam xS0 _
N21 | N2 s

Note: n, N, m and sg represent the number of sensors, the number of snapshots, the subspace
dimension, and the sparsity level, respectively.

The BGPC problem arises in applications including inverse rending, sensor
array processing, multichannel blind deconvolution, and SAR autofocus. We
refer the reader to our previous work [3, Section I1.C] for a detailed account of
applications of BGPC. For consistency, from now on, we use the convention
in sensor array processing, and refer to n and N as the numbers of sensors

and snapshots, respectively.

4.1.3 Our Contributions

We reformulate BGPC as the problem of finding the principal eigenvector of
a matrix (or operator). In the subspace case, this can be solved using any
eigen-solver, e.g., power iteration (Algorithm 1). In the sparsity case, we
propose to solve this problem using truncated power iteration (Algorithm 2).

Our main results can be summarized as follows.

Theorem 4.1.1. Under certain assumptions on A, X\, X, and W, one can
solve the BGPC' problem with high probability using:

(1) Subspace case: algorithms that find the principal eigenvector of a
certain matriz, e.g., power iteration, if n 2 m and N 2 1.

(2) Joint sparsity case: truncated power iteration with a good initial-
ization, if n 2 so and N 2 /So.

In Table 4.1, we compare the above results with the sample complexities

for unique recovery in BGPC [3], and previous guaranteed algorithms for
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BGPC in the subspace and sparsity case [40, 41]. In the subspace case,
power iteration solves BGPC using optimal (up to log factors) numbers of
sensors and snapshots. These sample complexities are comparable to the
least squares method in [40]. Moreover, we show that power iteration is
empirically more robust against noise than least squares.

Truncated power iteration solves BGPC with a joint sparsity structure,
with an optimal (up to log factors) number of sensors, and a slightly sub-
optimal (within a factor of /sy and log factors) number of snapshots. In
comparison, the ¢; minimization method for the sparsity case of BGPC uses
a similar number of sensors, but a much larger number of snapshots. Numer-
ical experiments show that truncated power iteration empirically succeed, in
both the joint sparsity case and the more general sparsity case, in the optimal
regime.

The success of truncated power iteration relies on a good initial estimate
of X and A\. We propose a simple initialization algorithm (Algorithm 3) with

the following guarantee.

Theorem 4.1.2. Under additional assumptions on the absolute values of the
nonzero entries in X, our initialization algorithm produces a sufficiently good
estimate of X and X ifn = s3. (We do not require any additional assumption

on the number N of snapshots.)

Despite the above scaling law predicted by theory, numerical experiments

suggest that our initialization scheme is effective when n = sq.

4.1.4 Related Work

BGPC arises in many real-world scenarios, and previous solutions have mostly
been tailored to specific applications such as sensor array processing [30, 89,
90], sensor network calibration [69, 91|, synthetic aperture radar autofocus
[38], and computational relighting [29]. However, the previous methods do
not have theoretical guarantees in the forms of quantitative error bounds.
The idea of solving BGPC by reformulating it into a linear inverse problem,
which is a key idea in this chapter, has been proposed by many prior works
(69, 38, 29]. In particular, Bilen et al. [70] provided a solution to BGPC with
high-dimensional but sparse signals using ¢; minimization. However, such

methods have not been carefully analyzed until recently. Ling and Strohmer
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[40] derived an error bound for the least squares solution in the subspace case
of BGPC. In this chapter, the power iteration method has sample complexi-
ties comparable to those of the least squares method [40], and is empirically
more robust to noise than the latter. Wang and Chi [41] gave a theoretical
guarantee for /; minimization that solves BGPC in the sparsity case, where
they assumed that A is the discrete Fourier transform (DFT) matrix and X
is random following a Bernoulli-sub-Gaussian model. In this chapter, we give
a guarantee for truncated power iteration under the assumption that A is a
complex Gaussian random matrix, and X is jointly sparse, well-conditioned,
and deterministic. In this sense, we consider an adversarial scenario for the
signal X. Our sample complexity results require a near optimal number n
of sensors, and a much smaller number N of snapshots. Moreover, truncated
power iteration is more robust against noise and inaccurate initial estimate
of phases. Very recently, Eldar et al. [92] proposed new methods for BGPC
with signals whose sparse components may lie off the grid. Similar to earlier
work on blind calibration of sensor arrays [30], these methods rely on empir-
ical covariance matrices of the measurements and therefore need a relatively
large number of snapshots.

A problem related to BGPC is multichannel blind deconvolution (MBD).
Most previous works on MBD consider linear convolution with a finite im-
pulse response (FIR) filter model (see [53, 54], and a recent stabilized method
[57, 58]). In comparison, BGPC is equivalent to MBD with circular convo-
lution and a subspace model or a sparsity model, akin to some recent studies
[40, 41]. BGPC is more general in the sense that: (a) linear convolution
can be rewritten as circular convolution via zero-padding the signal and the
filter; (b) the FIR filter model is a special case of the subspace model.

To position BGPC in a more broad context, it is a special bilinear inverse
problem [1], which in turn is a special case of low-rank matrix recovery from
incomplete measurements [93, 94, 28, 24]. A resurgence of interest in bilinear
inverse problems was pioneered by the recent studies in single-channel blind
deconvolution of signals with subspace or sparsity structures, where both the
signal and the filter are structured [14, 19, 21, 22, 26].

Another related bilinear inverse problem is blind calibration via repeated
measurements from multiple different sensing operators [95, 96, 97, 98, 99,
100]. Since blind calibration with repeated measurements is in principle an
easier problem than BGPC [40], we believe our methods for BGPC and our
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theoretical analysis can be extended to this scenario.

Also related is the phase retrieval problem [101], where there only exists
uncertainty in the phases (and not the gains) of the sensing system. An
active line of work solves phase retrieval with guaranteed algorithms (see
(15, 102, 103, 104, 105, 106, 107] and [108] for a recent review).

The error bounds of power iteration and truncated power iteration have
been analyzed in general settings, e.g., in [42, Section 8.2.1] and [44]. These
previous results hinge on spectral properties of matrices such as gaps be-
tween eigenvalues, which do not translate directly to sample complexity re-
quirements. This chapter undertakes analysis specific to BGPC. We relate
spectral properties in BGPC to some technical conditions on A\, A, X, and
W, and derive recovery error under near optimal sample complexities. We
also adapt the analysis of sparse PCA [44] to accommodate a structured
sparsity constraint in BGPC.

BGPC and our proposed methods are non-convex in nature. In particular,
our truncated power iteration algorithm can be interpreted as projected gra-
dient descent for a non-convex optimization problem. There have been rapid
developments in guaranteed non-convex methods [109] in a variety of do-
mains such as matrix completion [110, 111, 112], dictionary learning [71, 74],
blind deconvolution [21, 26|, and phase retrieval [103, 102, 72]. It is a com-
mon theme that carefully crafted non-convex methods have better theoretical
guarantees in terms of sample complexity than their convex counterparts, and
often have faster implementations and better empirical performance. This

chapter is a new example of such superiority of non-convex methods.

4.2 Power Iteration Algorithms for BGPC

Next, we describe the algorithms we use to solve BGPC. In Section 4.2.1, we
introduce a simple trick that turns the bilinear inverse problem in BGPC to
a linear inverse problem. In Sections 4.2.2 and 4.2.3, we introduce the power
iteration algorithm we use to solve BGPC with a subspace structure, and the
truncated (or sparse) power iteration algorithm we use to solve BGPC with

sparsity, respectively.
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4.2.1 From Bilinearity to Linearity

We use a simple trick to turn BGPC into a linear inverse problem [69].
Without loss of generality, assume that A\, # 0 for k& € [n]. Indeed, if any
sensor has zero gain, then the corresponding row in Y is all zero or contains
only noise, and we can simply remove the corresponding row in (4.1). Let ~

denote the entrywise inverse of A, i.e., v, = 1/ for k € [n]. We have
ding(7)Y, = AX, (12)

where Y; = diag(A) AX is the noiseless measurement. Equation (4.2) is linear
in all the entries of 7 and X. The bilinear inverse problem in (A, X) now
becomes a linear inverse problem in (v, X'). In practice, since only the noisy
measurement Y is available, one can solve diag(y)Y ~ AX.

This technique was widely used to solve BGPC with a subspace structure,
in applications such as sensor network calibration [69], synthetic aperture
radar autofocus [38], and computational relighting [29]. Recently, Ling and
Strohmer [40] analyzed the least squares solution to (4.2). Wang and Chi
[41] considered a special case where A is the DFT matrix, and analyzed the
solution of a sparse X by minimizing the ¢; norm of A~'diag(y)Y.

We use the same trick in our algorithms. Define

Iy ® aI
D = : : (4.3)
In® CLI.
Y1
E = . (4.4)
Yn.

We can decompose F into E = Eg + E,, where

)\1XTCL1.
ES = c. X ,
X Ta,.
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wW1.

E, =
W,
Define also )
D*D oD*FE
B = , (4.5)
aE*D o’E*E
[ DD aD*E,
By = ,
aE:D o*ErE,

where « is a nonzero constant specified later.

Clearly, (4.2) can be rewritten as
Dx — Eyy =0,

where z = vec(X). Equivalently, n = [z7,—v"/a]" is a null vector of Bi.
When certain sufficient conditions are satisfied, n is the unique null vector
of B;. For example, if A\, A, and X are in general positions in C"*, C*"*™

C™* N respectively, then N > ﬁ snapshots are sufficient to guarantee

and
uniqueness of the solution to BGPC in the subspace case. We refer readers
to our work on the identifiability in BGPC for more details [1, 3].

Since only the noisy matrix B is accessible in practice, one can instead
find the minor eigenvector, i.e., the eigenvector corresponding to the smallest
eigenvalue of B. The rest of this section focuses on algorithms that find such
an eigenvector of B, with no constraint (in the subspace case), or with a

sparsity constraint (in the sparsity case).

4.2.2 Power Iteration for BGPC with a Subspace Structure

In the subspace case (n > m), we solve for the minor eigenvector of the
positive definite matrix B. In Section 4.3, we derive an upper bound on the
error between this eigenvector and the true solution 7.

The minor eigenvector of B can be computed by a variety of methods.
Here, we propose an algorithm that remains computationally efficient for

large scale problems. By eigenvalue decomposition, the null vector of B is
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identical to the principal eigenvector of

for a large enough constant 3. This eigenvector can be computed using the
power iteration algorithm (see Algorithm 1).

The size of G is (Nm+n) x (Nm+mn). An advantage of Algorithm 1 over
an eigen-solver that decomposes G, is that one does not need to explicitly
compute the entries of G to iteratively apply it to a vector. Furthermore,
rather than O((Nm + n)?), by the structure of D and E, the per iteration
time complexity of applying the operator G to a vector is only O(mnN). This
can be further reduced if A and A* are linear operators with implementations
faster than O(mn).

The rule of thumb for selecting parameter « is that the /5 norms of the
columns of D be close to those of «E so that G in (4.6) exhibits good spectral
properties for power iterations. A safe choice for § is || B||, which may be
conservatively large in some cases, but works well in practice. In Section
4.3, we discuss our choice of parameters «, 3 under certain normalization
assumptions (see Remark 4.3.6).

Algorithm 1 converges to the principal eigenvector of GG, as long as the
initial estimate n(® is not orthogonal to that eigenvector. This insensitivity
to initialization is a privilege not shared by the sparsity case (see Section
42.3).

Algorithm 1: Power Iteration for BGPC
Input: A € C™™, Y € C™ initial estimate n(®©) ¢ CNm+»
Output: n® e CNm+»
Parameters: o, 8
Compute operator G : CN™" — CNm+7 by (4.3), (4.4), (4.5), (4.6)
t+1
repeat
Compute 7™ = Gnt=1/||Gp=V ||,
t«t+1
until convergence criterion is met
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4.2.3 Truncated Power Iteration for BGPC with Sparsity

When 2 < n < m, [D,aE] € CN™Nm+n) g 5 fat matrix, and the null space
of B has dimension at least 2. Therefore, there exist at least two linearly
independent eigenvectors corresponding to the largest eigenvalue of G. To
overcome the ill-posedness, one can leverage the sparsity structure in X to
make the solution to the eigenvector problem unique.

Let TI4(z) denote the projection of a vector x onto the set of s-sparse
vectors. It is computed by setting to zero all but the s entries of z of the
largest absolute values. Let IT,(X) denote the projection of a matrix X onto
the set of matrices whose columns are jointly s-sparse. This projection is
computed by setting to zero all but the s rows of X of the largest ¢, norms.
We define two projection operators on n = [z7, —yT/a]" that will be used

repeatedly in the rest of this chapter:

ﬁs(n) = [Hs(m.l)T, HS(:E.Q)T, .. ,HS(:zc.N)T7 —VT/a]T,
I (1) = [vec(IT,(X)) ", =" /o] ™.

For the sparsity case of BGPC, we adapt the eigenvector problem in Section
4.2.2 by adding a sparsity constraint:

max 7n"Gn
n
st lnlly =1, (4.7)
Hso(n) =1

This nonconvex optimization is very similar to the sparse PCA problem.
The only difference lies in the structure of the sparsity constraint. In sparse
PCA, the principal component is so-sparse. In (4.7), the vector i consists of
Sp-sparse vectors .1, Z.o, ..., .y, and a dense vector —v/a.

To solve (4.7), we adopt a sparse PCA algorithm called truncated power
iteration [44], and revise it to adapt to the sparsity structure of BGPC (see
Algorithm 2). One can choose parameters a and [ using the same rules as
in Section 4.2.2. Note that we use a sparsity level s; > sg in this algorithm,
for two reasons: (a) in practice, it is easier to obtain an upper bound on the
sparsity level instead of the exact number of nonzero entries in the signal;

and (b) the ratio sg/s; is an important constant in the main results, con-
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trolling the trade-off between the number of measurements and the rate of
convergence.

For the joint sparsity case, we use essentially the same algorithm, with ﬁsl
replaced by ﬁ; -

Since (4.7) is a nonconvex optimization problem, a good initialization 7(®)
is crucial to the success of Algorithm 2. Algorithm 3 outlines one such
initialization. We denote by Ily, the projection onto the support set 7,
which sets to zero all rows of D*FE but the s; rows of the largest ¢, norms in
each block. (The j-th block of D*E consists of m contiguous rows indexed
by {(j — 1)m + £}4cm)-) Then the normalized left and right singular vectors
u and v of Il D*E are computed as initial estimates for x and A. We use
1./v to denote the entrywise inverse of v except for zero entries, which are
kept zero. In Section 4.3, we further comment on how to choose a proper

initial estimate 7(® (see Remark 4.3.11).

Algorithm 2: Truncated Power Iteration for BGPC with Sparsity
Input: A € C™™, Y € C™! initial estimate n(® e CNm+»
Output: ) ¢ CN™m+»

Parameters: o, 3, s;
Compute operator G : CN™F" — CN™n by (4.3), (4.4), (4.5), (4.6)
t+1
repeat
Compute 7 = Gp=1/ ||Gp=Y||,
Compute 7 =TT, (7)/ || L., ()

t«t+1
until convergence criterion is met

2

4.2.4 Alternative Interpretation as Projected Gradient
Descent

Algorithms 1 and 2 can be interpreted as gradient descent and projected
gradient descent, respectively. Next, we explain such equivalence using the
sparsity case as an example.

Recall that BGPC is linearized as [D &E] n = 0. Relaxing the sparsity
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Algorithm 3: Initialization for Truncated Power Iteration
Input: A € CV™, Y € C™N
Output: initial estimate n® e CNm+»
Parameters: s;
Compute matrix D*E € CN™*" by (4.3), (4.4)
T,« 0
for j € [N] do
Compute the row norms Hdik((j—l)m—s—é)E ’2 for ¢ € [m]
Find subset T; C [m] (|T;] = s1) s.t. for £ € T; and ¢ € [m]\T}:

2 G-nymrnElly = (|4 G-nmren Bl

Merge support T, < T, |J (T; + {(j — 1)m})
end
Compute the principal left and right singular vectors u, v of Il;;, D*E

N 4 [u, —(L/vT)/n]T
7 1 |7,

level from sq to s1, the optimization in (4.7) is equivalent to:

1 2
min — H [D aE] 77”
n 2 2
st lnll, =1,

I, (n) = n.
The gradient of the objective function at n*~1) is

D*

D E} (t=1) — gy t-1)
o E* [ o n n

Each iteration of projected gradient descent consists of two steps:
(i) Gradient descent with a step size of 1//:

10

1 1

=Y __RB = —G Y

U U nt
B B

(ii) Projection onto the constraint set, i.e., the intersection of a cone (I, (n) =
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n) and a sphere (|[p]l, = 1):

1 = I, )/ [T, ()

2

Clearly, the two steps are identical to those in each truncated power itera-
tion except for a different scaling in Step (i), which, due to the normalization

in Step (ii), is insignificant.

4.3  Main Results

In this section, we give theoretical guarantees for Algorithms 1 and 2 in the
subspace case and in the joint sparsity case, respectively. We also give a

guarantee for the initialization by Algorithm 3.

4.3.1 Main Assumptions

We start by stating the assumptions on A, A\, X and W, which we use

throughout this section.

Assumption 4.3.1. A is a complex Gaussian random matrix, whose entries
are i.i.d. following CN(0,2). Equivalently, the vectors {ay.}p_, are i.i.d.
following CN' (01, £ 1,,).

Assumption 4.3.2. The vector A has “flat” gains in the sense that 1 — 9§ <
Ae]? < 1+6 for some § € (0,1).

Assumption 4.3.3. The matriv X € C™ s normalized and has good

conditioning, i.e., | X||p = 1, and for some 6 € (0, 1) we have:

e Subspace case:

min{||[NX*X — Iy|, [mXX* — L]} < 0,

e Joint sparsity case:

min{||[NX*X — Iy|, ||soQn X X*Qy — I, ||} <6,
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where Qr denotes the operator that restricts a matrix to the row support T,
and Ty == {i € [m] HeiTX”2 > 0} (|To| = so) is the row support of X.

Assumptions 4.3.1 — 4.3.3 can be relaxed in practice.

e The complex Gaussian distribution in Assumption 4.3.1 can be relaxed
to CN(0,0%) for any o4 > 0. We choose the particular scaling 03 =
1/n, because then A satisfies the restricted isometry property (RIP)
[113], i.e., (1 — &) [|z]]3 < ||Az||2 < (14 6,) ||z||5 for some d, € (0,1),

when n is large compared to the number s of nonzero entries in x.

e The gains can center around any ¢ > 0, i.e., o(1—49) < |\i]? < o(1+96).
Due to bilinearity, we may assume that \;’s are centered around 1

without loss of generality by solving for (A\/o, 0. X).

e The Frobenius norm || X||p of matrix X can be any positive number.
If ||X ||z is known, one can scale X to have unit Frobenius norm be-
fore solving BGPC. In practice, the norm of X is generally unknown.
However, due to Assumptions 4.3.1 (RIP) and 4.3.2 (“flat” gains), we

have

| diag(A) AX |
1 X1e

V(A =06)(1-6) < <1 +6)(1+9).

Hence ||Y || is a good surrogate for ||X || in noiseless or low noise
settings, and one can scale X by 1/||Y|| to achieve the desired scal-
ing. The slight deviation of || X||/|Y]lz from 1 does not have any
significant impact on our theoretical analysis. Therefore, we assume

| Xz =1 to simply the constants in our derivation.

e The conditioning of X can also be relaxed. When N is large, one can
choose a subset of N’ < N columns in Y, such that the matrix formed
from the corresponding columns of X has good conditioning. When
noise amplification is not of concern (noiseless or low noise settings), one
can choose a preconditioning matrix H € C"*¥ such that X’ = XH
is well conditioned, and then solve the BGPC with Y/ =Y H.

In summary, we can manipulate the BGPC problem and make it approxi-
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mately satisfy our assumptions. For example, (4.1) can be rewritten as:

A
||Y11LI||FYH = diag ) <\/ﬁlgAA) (rj;ﬁ’:XH) + ﬁwn

. . . 1 1
We can run Algorithms 1 and 2 with input WA and WYH , and solve

for % and ﬁ@;‘ﬁ*‘X H. The above manipulations do not have any significant
F

impact on the solution, or on our theoretical analysis. However, by making

these assumptions, we eliminate some tedious and unnecessary discussions.
We also need an assumption on the noise level.
Assumption 4.3.4. The noise term W satisfies

Cw
vVnN

o Subspace case: maxjcp je[n] |Wij| <
e Joint sparsity case: maxjcp) jein | Wij| < %
for an absolute constant Cy > 0.

In the subspace case, the assumption on the noise level is very mild. Be-
cause under Assumptions 4.3.1 — 4.3.3, [|diag(\)AX ||p < /(1 +d5)(1 +0),

the noise term W, which satisfies |[W ||y < Cw, can be on the same order in

terms of Frobenius norm as the clean signal diag(\)AX.
Finally, the following assumption is required for a theoretical guarantee of

the initialization.

Assumption 4.3.5. For all j € [N], there exists T; C supp(z.;) C [m], such
that for all ¢ € T},

Jzgl® S w

15~ 50’

for some absolute constant w, and

ZZ’E[m]\TJf |z

|52

>~ UX,

for some small absolute constant éx € (0,1).

Assumption 4.3.5 says that the support of z.; can be partitioned into two
subsets. The absolute values of the entries in the first subset T} are sufficiently
large. Moreover, the total energy (sum of squares of the entries) in the

second subset is small compared to the squared norm of z.;. For example,
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the assumption is satisfied in the following special case: T = supp(z.;)
(therefore zp; = 0 for ¢ € [m]\T}), and the absolute values of the nonzero
entries are all comparable, e.g., xy; = i%

Before introducing our main results, we disclose the choice of parameters

« and [ for our theoretical analysis of Algorithms 1 and 2.

Remark 4.3.6. When Assumptions 4.3.1 — 4.5.3 are satisfied, we choose
a=+/n and = 3/2.

4.3.2 A Perturbation Bound for the Eigenvector Problem

Next, we introduce a key result, a perturbation bound for the eigenvector
problem, which is used to derive error bounds for power iteration algorithms.

Let {T;}IL, denote subsets of [m], such that |T}| = s and supp(z.;) C Tj.
We define T, C [Nm] and T;, C [Nm + n] as follows:

7= U (@ + (G- hm)). (43)

JE[N]

=T, | J(In] + {Nm}). (4.9)

Recall that Q7 restricts a vector to the support 7', and hence 27.)p is the
projection operator onto the support T'. Clearly, we have x = Q7. Qr,x, and
n = Qf Qr,n. In the subspace case discussed in Theorem 4.3.7, we have
s=m,T; = [m], T, = [Nm], and T,, = [Nm + n|. In the joint sparsity case,

we have T} =Ty = --- = Ty. We set |T;| = s = so + 251, which we justify
later in the analysis of truncated power iteration.
Let
..
0=
171l

denote the normalized version of 7, which is the eigenvector of B, and EB;
corresponding to eigenvalue 0. Let 7 denote the principal eigenvector of G.
In the joint sparsity case, let 77, denote the principal eigenvector of Qr, GQ}W,
where T' =T, = --- = Ty, |T| = s, and the support of 7 is a subset of T,
defined in (4.9).

In Algorithms 1 and 2 and in our analysis, vectors 7, 7, and n®) are nor-
malized to unit norm. However, multiplication by a scalar of unit modulus

is a remaining ambiguity, i.e., the set {e¥=1%7 : ¢ € [0,27)} is an equiva-
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lence class for 7. Our main results use d(n,n’) = min,, He\/j“’n -7

to
2
denote the distance between n and 7', which is a metric on the set of such

equivalence classes.

Theorem 4.3.7 (Subspace Case). Let a = \/n, and suppose Assumptions
4.8.1 = 4.8.4 are satisfied with § < 1/3 and a sufficiently small absolute
constant Cyy > 0. Then there exist absolute constants ¢,C,C’ > 0, such that

if

a {mlogQ(Nm +n) log(Nm+n) log(Nm+n)
X
n ’ N ’ m

} <O, (4.10)

then with probability at least 1 — 2n=¢ — e~ ™,

di, 1) < A,
where
/
A= 18_035 max{v, v*}, (4.11)
and
v:=vnN max _|wgl. (4.12)
ke[n],j€[N]

We defer the proof to Section 4.5, and summarize the mathematical tools
we use here. By the Davis-Kahan sin # Theorem [114], the error d(7), 7) in the
eigenvector is bounded if there exists a sufficiently large spectral gap between
the two largest (in terms of absolute values) eigenvalues of G = I — B. We
divide this task into two parts: (1) show that there exists a large spectral gap
in B —EB; (2) prove that || B — EB|| is small using concentration of measure
inequalities, e.g., the matrix Bernstein inequality [115, Theorem 1.6].

When m is large (e.g., m > n), (4.10) does not hold, hence the perturbation
bound of the eigenvector 7 of G in Theorem 4.3.7 is no longer true. We can,
however, bound the perturbation of the eigenvectors of submatrices of GG

uniformly.

Theorem 4.3.8 (Joint Sparsity Case). Let a = \/n and s = sg + 251,
and suppose Assumptions 4.3.1 — 4.3.4 are satisfied with § < 1/3 and a suffi-

ciently small absolute constant Cy, > 0. Then there exist absolute constants
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¢, C,C" >0, such that if

max{ (s + N)log®nlog®(sN 4+m) +/slog®nlog(sN +m)

n ’ N ’
4 2
log® nlog (3N+m)} <c (413)
So
then with probability at least 1 — 2n=¢ — m™,
d(ir,. Qi) < A,
where
~ 8C'
A = Y max{N*?v, 12}, (4.14)

and v is defined in (4.12).

The main challenge in the joint sparsity case is that, instead of bounding
the spectral norm of B —EB, one must bound the “sparse” norm of B—EB,
i.e., the maximum spectral norm of all principal submatrices whose row (and
column) support is T, defined by (4.9). Since B — EB can be broken down
into the sum of several terms, we give a uniform bound over all submatri-
ces on each term. For any given term, we adopt one of two approaches,
whichever provides a tighter bound: (1) we bound the spectral norm of an
individual submatrix, and apply a union bound over all submatrices; (2) we
use a variational form of the sparse norm, and apply a bound on the suprema
of second order chaos [116, Theorem 2.3].

The error bounds for Algorithms 1 and 2 in the next section rely on The-
orems 4.3.7 and 4.3.8, and existing analysis of power iteration [42] and trun-
cated power iteration [44]. Additionally, the perturbation bounds in this
section are of independent interest. In particular, Theorem 4.3.7 shows that
if the assumptions and the prescribed sample complexities in (4.10) are satis-
fied, then with high probability the principal eigenvector 7 of GG is an accurate
estimate of the vector 7 that concatenates the unknown variables. It gives an
error bound for any algorithm that finds the principal eigenvector of G. On
the other hand, while Theorem 4.3.8 does not directly guarantee the success
of any particular algorithm, it can be used to analyze other algorithms that

find the sparse principal component of G, similar to the analysis of Algorithm
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2 in Theorem 4.3.10.

4.3.3 FError Bounds for the Power Iteration Algorithms

In this section, we give performance guarantees for Algorithms 1 and 2 under
the assumptions stated in Section 4.3.1. Under the conditions in Theorem
4.3.9 (resp. Theorem 4.3.10), the iterates in Algorithm 1 (resp. Algorithm
2), in the noiseless case, converge linearly to the true solution. In the noisy

case, the recovery error is proportional to the noise level.

Theorem 4.3.9 (Subspace Case). Suppose Assumptions 4.3.1 — 4.3.4 are
satisfied with 6 < 1/4 and a sufficiently small absolute constant Cy > 0. Let
a = +/n, and B = 3/2. Assume that & = |i*n®| > 0. Then there exist
absolute constants ¢,C,C" > 0, such that if (4.10) is satisfied, then with
probability at least 1 — 2n=¢ — e~ the iterates in Algorithm 1 satisfy

d(n”, 0) < pld(n®, 9) + 24,

where A is defined in (4.11), and

pi= {1—%[1— (;f—ggﬂg(ug)}m. (4.15)

Theorem 4.3.9 shows that the power iteration algorithm requires n =
O(mlog?(Nm + n)) sensors and N = O(log(Nm + n)) snapshots to suc-
cessfully recover X and A. This agrees, up to log factors, with the sample
complexity required for the uniqueness of (A, X) in the subspace case, which
isn>mand N > 2=L [3].

Next, we compare Theorem 4.3.9 with a similar error bound for the least
squares approach by Ling and Strohmer [40, Theorem 3.5]. The sample com-
plexity in Theorem 4.3.9 matches the numbers required by the least squares
approach n = O(mlog®(Nm +n)) and N = O(log*(Nm + n)) (up to one
log factor). One caveat in the least squares approach is that, apart from the
linear equation (4.2), it needs an extra linear constraint to avoid the trivial
solution v = 0, X = 0. Unfortunately, as revealed by [40, Theorem 3.5], in
the noisy setting, the recovery error by the least squares approach is sensitive
to this extra linear constraint. Our numerical experiments (Section 4.6) show

that power iteration outperforms least squares in the noisy setting.
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Theorem 4.3.10 (Joint Sparsity Case). Suppose Assumptions 4.3.1 —
4.8.4 are satisfied with 6 < 1/4 and a sufficiently small absolute constant
Cw > 0. Let « = /n, f = 3/2, s > s¢ in Algorithm 2, and define
s = 8o + 2s1. Then there exist absolute constants ¢,C,C" > 0, such that
if |*n©] > & + A for some € € (0,1), and (4.13) is satisfied, then with
probability at least 1 — 2n~° — m™°, the iterates in Algorithm 2 for the joint

sparsity case satisfy
(™, i) < pdn®, 0) + =,
P

where A is defined in (4.14), and p < 1 has the following expression:

250\ 1/2
pimp (12,2 + 207 (4.16)
S1 S1
and p is defined in (4.15).

Theorem 4.3.10 is only valid when p < 1. With the choice s; = 2s,

when ¢ approaches 0, and & approaches 1, the convergence rate p is roughly
%\/ 14+ 2+ 2~ 0.62. We discuss a more realistic scenario next.

Remark 4.3.11. A good initialization for A alone is usually sufficient. Sup-
pose one has a good initial estimate for the gains and phases, i.e., \ satisfies
Ar — eV 71| < \/T+0 — 1 for known phase estimates {pp}p_,. One can
initialize Algorithm 2 with n® = [0}, |, e V7l e VIen] T then when
A is negligible (noiseless or low noise settings), & in Theorem 4.3.10 can
be set to 1/\/m For example, if § = 0.05 and s; > 10sq, then
p < 1. Since we do not attempt to optimize the constants in this chapter, the

constants in this exemplary scenario are conservative.

Theorem 4.3.10 states that for Algorithm 2 to recover A and a jointly
sparse X, it is sufficient to have n = O(sglog®nlog?(soN + m)) sensors
and N = O(,/50log” nlog(soN + m)) snapshots. In comparison, the (up to
a factor of 2) optimal sample complexity for unique recovery in the joint
sparsity case is n > 2s; and N > n”_—’zio [3]. Hence, the number of sensors
required in Theorem 4.3.10 is (up to log factors) optimal, but the number
of snapshots required is suboptimal. Another drawback is that these results

apply only to the joint sparsity case, and not to the more general sparsity
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case. However, we believe these drawbacks are due to artifacts of our analysis.
For both the joint sparsity case and the sparsity case, we have Nn complex-
valued measurements, and Nsy+n — 1 complex-valued unknowns. One may
expect successful recovery when n and N are (up to log factors) on the
order of sg and 1, respectively. In fact, numerical experiments in Section 4.6
confirms that truncated power iteration successfully recovers A and X in this
regime for the more general sparsity case.

Wang and Chi [41] analyzed the performance of ¢; minimization for BGPC
in the sparsity case, where they assumed that A is the DF'T matrix, and X
is a Bernoulli-sub-Gaussian random matrix. Their sample complexity for
¢, minimization is n = O(s) and N = O(nlog*n). The success of their
algorithm relies on a restrictive assumption that Ay ~ 1, which is analogous
to the dependence of our algorithm on a good initialization of A\. In the next
section, we show that such dependence can be relaxed under some additional

conditions using the initialization provided by Algorithm 3.

4.3.4 A Theoretical Guarantee of the Initialization

The next theorem shows that, under certain conditions, Algorithm 3 recovers
the locations of the large entries in X correctly, and yields an initial estimate
n© that satisfies |17*n®] > 1 — 24 (close to 1).

Theorem 4.3.12 (Initialization). Suppose Assumptions 4.3.1 — 4.3.5 are
satisfied. Then there exist absolute constants C", " > 0, such that if

n > C"s2log’(nmN),

then with probability at least 1—n~<", for all j € [N] the set T} in Assumption
4.8.51s a subset of T in Algorithm 3. Additionally, in the joint sparsity case,
if sample complezity (4.13) is satisfied with a sufficiently large C', Assump-
tion 4.3.4 is satisfied with a sufficiently small Cy, and Assumption 4.3.5 is
satisfied with a sufficiently small 0x, then ny produced by Algorithm 3 will
satisfy that |1*n9| is arbitrarily close to

2
n®2 + [ Ally 115

>1—20.
2 2 2
2+ IR B /n o+ 2
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By Theorem 4.3.12, the constant £ in Theorem 4.3.10 can be set to 1 — 26
in a low noise setting. For § < 0.19, this constant ¢ is larger than the one in
Remark 4.3.11, and allows p < 1 for more choices of s;.

Our guarantee for the initialization requires that the number n of sensors
scales quadratically (up to log factors) in the sparsity sg, which seems sub-
optimal. Similar suboptimal sampling complexities show up in sparse PCA
[117] and sparse phase retrieval [102, 104, 118].

In the joint sparsity case, instead of estimating the supportsof x.1,z.9,..., 2.5

separately, one can estimate the row support of X directly by sorting

2.

| G-1ymie Bl
JE[N]

for ¢ € [m] and finding the s; largest. In this case, Assumption 4.3.5 can
be changed to: There exists a subset 7" of large rows (in terms of /5 norm),

such that for all £ € T",
Zje[N] |x€j|2
X%

w

Z )
S0

and )
Zje[N],é’e[m]\T’ |

<x.
2
1 X[e

In this case, the subset 7" can be identified and an initialization n® can be
computed under the same conditions as in Theorem 4.3.12, which can be

proved using the same arguments.

4.4  Fundamental Estimates

To prove the main results, we must first establish some fundamental estimates
specific to BGPC. Proofs of some lemmas in this section can be found in

Appendix B.

4.4.1 A Gap in Eigenvalues

A key component in establishing a perturbation bound for an eigenvector
problem (e.g., Theorem 4.3.7) is bounding the gap between eigenvalues.

Lemma 4.4.1 gives us such a bound.
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Lemma 4.4.1. Suppose Assumptions 4.3.1 — 4.3.3 are satisfied and o =
Vn. Then the smallest eigenvalue of IEQTnBSQ"‘ﬂ7 is 0, and the rest of the

eigenvalues reside in the interval [(11;65)2, 2(1496)].

4.4.2 Perturbation Due to Randomness in A

Next, we show that Qr, BSQ%], whose randomness comes from A, is close to

its mean EQ7, BSQ*T77 under certain conditions.

Lemma 4.4.2. Suppose Assumptions 4.3.1 — 4.5.3 are satisfied, and o =
V/n. For any constant g > 0, there exist absolute constants C,c > 0, such
that:

e Subspace case: If (4.10) is satisfied with C, then
|Bs —EB;|| < 05

with probability at least 1 —n=¢ — e~ ™.

e Joint sparsity case: If (4.13) is satisfied with C, then

|or,B.03, - B0, B,

)SCSB

for allTy = --- =Ty and T, defined in (4.9), with probability at least

C cS

1—n"°¢—m .

Proof of Lemma 4.4.2. Recall that

O, D*DSY, /iy, D*E,

Or, B, =
" | VRE:DQ;.  nE‘E,

It follows that

HQTW B, — EQy, B,

|

< ||Qz, D* DY, — EQq, D* DY || (4.17)
+n||EXE, — RE!E|| (4.18)
+ 2/ ||Qp, D*Ey — EQp, D*Ey|| . (4.19)
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Lemma 4.4.2 follows from the bounds on the spectral norms in (4.17) — (4.19)
in Lemmas 4.4.3 — 4.4.6, respectively. O

Lemma 4.4.3. Suppose Assumption 4.3.1 is satisfied, then there exist abso-

lute constants C,c; > 0, such that:

|D*D —ED*D|| < C1/ =,
n

—c1m

e Subspace case:

with probability at least 1 — e

e Joint sparsity case: For any {T;}}_, and T, defined in (4.8),

|07, D* D, — EQy, D*DO;, || < C,s /zlogm,

S

with probability at least 1 — m™%.

Lemma 4.4.4. Suppose Assumptions 4.3.1 — 4.3.3 are satisfied, then there

exist absolute constants Co,co > 0, such that

e Subspace case:

Co logn [logn logn logn
E!E,~ EE;E| < = max{y /257, /=0, 280, 250
| B F, — EE:E,| < =2 max{ (/<87 282 C8% 28

e Joint sparsity case:

Co logn [logn logn logn
E!F, - EE;E,|| < = max{ , 2R 52
1B~ EE; B < 2 max{ <25, /250, 220, 28

Cc2

with probability at least 1 — n~

Lemma 4.4.5 (Subspace Case). Suppose Assumptions 4.3.1 — 4.53.3 are
satisfied, and min{ N, m} > logn, then there exist absolute constants C3, c3 >

0, such that

log(N
|D* By~ ED"E,| < Cymax{ Log(Nm + n)
niN
log(Nm +n) /mlog(Nm + n) }
nm ’ n ’
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with probability at least 1 —n~3.

Lemma 4.4.6 (Joint Sparsity Case). Suppose Assumptions 4.5.1 — 4.53.3
are satisfied, then there exist absolute constants Cs,c3 > 0, such that for all
T = =T,

|Qr, D*Ey — EQqp, D* E|

_ syl (s + N)YA(/n + /5 ¥ V)2
N nmin{,/30, VN}

log® nlog(sN +m),

with probability at least 1 —n=.

4.4.3 Perturbation Due to Noise

We established some fundamental estimates regarding Bs in Sections 4.4.1
and 4.4.2. In this section, we turn to perturbation caused by noise. By the
definitions of B, Bs, F, Es, and FE,, we have

B = Bs + By,
where
| o aD*E,
" laED o2(EE,+ ErE,+ E*E,)
Therefore,

Or, BuS,

0 CVQTQE D~ En
aBIDY.  a2(ErE, + EiE, + B1E,)

Lemma 4.4.7 gives an upper bound on the spectral norm of the perturba-

tion from noise.

Lemma 4.4.7. Suppose Assumptions 4.3.1 — 4.5.3 are satisfied. Let o = \/n
and let v be defined by (4.12). Then there exist absolute constants ¢, C,C" > 0
such that:

e Subspace case: If (4.10) is satisfied, then with probability at least

79



| Bal| < C" max{v, v*}.

Additionally, for any constant dy > 0, there exists an absolute constant
Cw > 0, if Assumption 4.5.4 is satisfied with Cyy, then the above bound
becomes

Bl < dw

e Joint sparsity case: If (4.13) is satisfied, then with probability at

least 1 —n=¢
HQT"BHQ*T" ‘ < ' max{N*?v, v*}
for all Ty = --- = Ty and T, defined in (4.9). Additionally, for any

constant oy > 0, there exists an absolute constant Cy, > 0, if Assump-

tion 4.3.4 is satisfied with Cyy, then the above bound becomes

HQTW B3,

| <ow
Proof. To complete the proof, we bound the spectral norms of Qg D*FE,,
EXE,, and E}F, in Lemmas 4.4.8, 4.4.10, and 4.4.11, respectively. O

Lemma 4.4.8 (Subspace Case). Suppose Assumption 4.5.1 is satisfied,

and m > logn, then there exist absolute constants Cy,cy > 0, such that

N
HD*EHHgC4max{\/log(Nm+n),\/Tmlog(Nm—i—n)} max _|wg;l,

k€[n],j€[N]

with probability at least 1 — n~

Lemma 4.4.9 (Joint Sparsity Case). Suppose Assumption 4.3.1 is sat-
isfied, then there exist absolute constants Cy,cy > 0, such that for all Ty =
oo =Ty,

|Qr, D*Ey|| < 04(\/5]\/ + +/sNlogm + 1/ N log® n) -y/logn maXN] | W],

keln],j€l

with probability at least 1 — n=.
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Lemma 4.4.10. Suppose Assumptions 4.3.1 — 4.3.3 are satisfied, then there

exist absolute constants Cs, c5 > 0, such that

e Subspace case:

| N /1 1
|EXEL|| < Cs maX ogn ogn max |wy,],
ke [n],7€[N]

e Joint sparsity case:

1 1
| EXEL|| <C'5\/ maX 1Ly —— Ogn A/ ogn max |wy;l,
So ken]]E[N

with probability at least 1 —n=.

Lemma 4.4.11.

E*E,|| < N |2
IBEal < N max

4.4.4 Scalar Concentration

We now introduce a few scalar concentration bounds that are useful in the
proof of Theorem 4.3.12.

Lemma 4.4.12. Suppose Assumptions 4.3.1 — 4.3.4 is satisfied, then there
ezist absolute constants Cg,ce > 0, such that for all j € [N] and £ € [m], we

have

. _ Cs ||lz.;||2 log® (nmN
Z (Mkakeah-ﬁ - El)‘kakea;x-jp) <= H J||2n3/2 ( ), (4.20)
ke[n]

_ 1 Csllz)l, log? (nmN
Z)\kakfalda;x-jwkj < Il tog ) max  |wy;]
n keln],j€[N]
ke[n]
< Glw 22 ]I5 log®(nm.N)

- V1 —0n?? 7

(4.21)
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and

Ce log?(nmN)
_ 2 — 2 6 108 2
Z ([axewn;|* — Elarw,|?) | < 172 peinax |whj|
ke[n]

CoCiy |13 log? (nmN)

(4.22)

= (1— 0)n3/? ’

with probability at least 1 —n=°.

4.5 Proofs of the Main Results

4.5.1 Proof of the Perturbation Bound for the Eigenvector
Problem

In this section, we prove Theorem 4.3.7. Theorem 4.3.8 can be proved simi-

larly.

Proof of Theorem 4.3.7. First,
G = BInmin — B = (BInmin — EBs) — (Bs — EBs) — B,. (4.23)

Lemma 4.4.1 establishes a gap in the eigenvalues of the matrix EB; — the
smallest and the second-smallest eigenvalues of EB; are separated by a gap

of at least

(1)
149
Therefore, the gap between the largest and the second-largest eigenvalues
of BInmin — EBs is at least 1 — 36. By Lemmas 4.4.2 and 4.4.7, there
exist absolute constants ¢, C, C’, Cy, > 0 such that if all the assumptions are
satisfied, then with probability at least 1 — 2n=¢ — e=“",

>1-30>0.

1—-30
I(Bs = EBy) + Bul| < [|Bs = EBy[| + [|Bul| = —;—, (4.24)

| Ball < €' max{v, v*}. (4.25)
Recall that 7 is the principal eigenvector of SIn;,+n — EBs. By the Davis-
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Kahan sin # Theorem ([114]; see also [42, Theorem 8.1.12]), (4.24) and (4.25)
imply

. oo 4 .
sin Z(1), 7)) < T35 |(Bs — EBs + Bu)ill,

AC"
1-30

< 1Bull < max{v, °},

1-36
where the second inequality is due to Bsn = EBn = 0.
Theorem 4.3.7 follows from the above bound, and the fact that

£(n, 1)
2

d(1,7) = /2 — 2cos Z(1,1) = 2sin < 2sin Z(1, 7).

]

One can prove Theorem 4.3.8 using the same steps as in the proof of
Theorem 4.3.7, by restricting rows and columns of matrices to the support

T, and applying the corresponding uniform bounds on submatrices.

4.5.2 Proof of the Error Bound for Algorithm 1

Proof of Theorem 4.53.9. Recall that the largest eigenvalue of 51y, 1n, — EB;

ispg—0= %, and all other eigenvalues reside in the interval [% —2(1+9), % —

(111632]. By Lemmas 4.4.2 and 4.4.7, there exist constants ¢, C, Cy, > 0 such
that
1—9)2
(B, ~ BB + Byl < 1B, ~ BB+ B, < minf5, 5200 455 -1},

with probability at least 1 — 2n=¢ — e=“". By (4.23), the largest eigenvalue
of G is |G|| > 2 — 4, the corresponding eigenvector is 7, and all the other
cigenvalues of G reside in the interval [—1 — 36, 2 + 34].

Next, we establish the convergence rate of power iterations for BGPC. By

the eigenvalue decomposition of G and the Pythagorean theorem,

G = |Gl 9,

_ . 1 2 .
lem=]| < ¢ IGIP @02 + (5 +38) (1= lirn=P).
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Therefore,

74| = 7G|

lGntn,
G i n“~Y)]
\/I|G|| [ D12 + (5 + 30)2(1 — [y 2)
e (t— 1
> i’ (L£68y2 -
\/\77 nODP 4 (5 g R
= i) — -
V== <m> ) (1= lirDp2)
1 1+66
> |t t=1) [1 20— 2\ (1 _ [k (t—1)|2
> [N+ 5 (1= (G5 ) A=l P,
where the last inequality is due to \/11: > 1+ %z for z € (0,1). It follows
that
[ =1l < [1 =" V]]
1 1466,
1—-(1- V(1 [ ] 4.26
x[ S (1= G DI+ i) (4.26)
Clearly, ! _, is monotonically increasing unless = 0. By the
v, {1 0 y g i*n© y
definition £ = ] ()], the convergence rate in (4.26) is bounded by p? < 1.

It follows that
L= 12 00N < p[1 = [0V < p* - [L= |0 @|).
Hence
d(i, ") < p* - d(in®).
By Theorem 4.3.7, for 7 =0,...,t
d(1), 1) < A.
It follows from the triangle inequality that

d(n,n") < p' - d(i,n'?) + 2A.
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4.5.3 Proof of the Error Bound for Algorithm 2

Proof of Theorem 4.3.10. In the joint sparsity case, any iterate

1 = [T, O fa]

satisfies that z(7) is the concatenation of jointly sparse {x . In the t-th
iteration, we define a support set T that has cardinality s = s + 251, and

satisfies

supp(z U supp(z U supp(z T,

for all j € [N]. Define T\" using (4.8) and (4.9) with T} = --- = Ty =
T® . Next, we focus on the submatrix QT@) GQ*T@) and subvectors QT(tm and

QT(tm(t), etc. Since the supports of n®) and 7 are subsets of Tét), we have
|7 <t>QT(t t)’ = |77*77(t)’-

We prove by induction that {|*n(™|}t_, is monotonically increasing (until
it crosses a threshold specified later in the proof). Suppose {|7*n(|}.24 is
monotonically increasing. Next, we prove

i@ > i),

By the assumption that [17*n©| > € + A and Theorem 4.3.8, we have

1750 Qom0 2 [ 0] = d(Qon, iiggo)
>¢+A-A=c¢

Following the same steps in the proof of Theorem 4.3.9, we obtain a bound
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for 7*) similar to (4.26):

[1— |ﬁ;5t> QTpﬁ(t)H

1 1+60

| (t—1) = . 2
‘ﬁ;ﬁ)QTn@m(t—l)’(l + ]ﬁ;ét) QTQ”U(LU\)}
1 1460
< _ |7 =D [ _t_ 2 }

= p[1 = litgo2pon )
where p is defined in (4.15). It follows that
A FOY < oL d(h (t—1)
(o, Qo) < p-dijgm, Qron™ 7).
We use the perturbation bound in Theorem 4.3.8 one more time:

d(Qpon, Qi) < p-d(Qpon, Qpon'™V) + 24,

1— [7#i®] < py/1 = [iprptD] + V2A. (4.27)

Next, we show that the truncation step amplifies the error only by a small

Equivalently,

factor. The vector II, (") is the projection of (") onto the set of structured

sparse vectors, and 1) is the normalized version. We define three index sets

T, = supp(1) \supp(n™),
T, = supp (1)) [ | supp(n®),

T, = supp(n')\supp (7).

By the Cauchy-Schwarz inequality;,

i iOP < Q570 + |95,

|T| 2
IT,| HQTan(t)HQ’

<1-|jQni, <1-

where the last inequality is due to projection rule, i.e., ﬁsl(ﬁ(” ) keeps the

largest entries of 7*) (in the part corresponding to ). Since |T.|/|T.| > s1/50,
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we have

S . ~
7], < \ /520 = biraop) (425)
Also by the Cauchy-Schwarz inequality,

701 < (||Qz, 77|, 11979l + || Q5,57 195,191l,)°

~(t) : )12 2 )
< (0nd®], 12m,l, + /1 = l0n70 21— |95, )
<1 — (|77, = 19z.7ll,)*

It follows that
192z 1ll, < (@7, + /1 = lFa®. (4.29)

By (4.28) and (4.29),

7] — 1T, ()] < 1" (7@ — TL, (7))

~ ol il < (/2 + 2o - praor. @

By (4.27) and (4.30),
V1= 0] < /1= i T, (7))
< /1= i \/ + )0 i)

</1- |7'7*ﬁ(t)|\/1—|—2< @+@>
S1 S

1

2 ~
< p\/l 42,20 4 2200 /1 — [pnt-D] + VI0A
S1 S1
< py/1 = D] + VI10A.

Therefore, {|7*n™|}!_, indeed monotonically increases unless /1 — |i*n(™)|
reaches vI0A /(1 — p) for some 7. The proof by induction is complete.

It follows that
) i : VI0A
V1= @] < pty/1 =l © \+ —
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or equivalently N
N 2v/5A

A, n”) < 7 n®) + T

4.5.4 Proof of the Guarantee for Algorithm 3

Proof of Theorem 4.3.12. We first show that, under the conditions in The-
orem 4.3.12, the support T} in Algorithm 3 contains Tj C supp(x.;) in As-
sumption 4.3.5. To this end, we prove that the norms of the rows of D*FE
indexed by T} are larger than those outside supp(x.;). For a fixed j € [N],
the j-th block of D*E is indexed by the set (j — 1)m + [m]. Therefore, the

goal is to show that

2 2
in ||d%; Ej. > d’: nE
tey I1(G-m+0) I, Ceimsann(e.) [Catm—cyal
or equivalently,
. N 2 —_— 2
min AreYgi|~ > max ArerYgi| .
CeT] ICG%] | F yk]l £'e[m]\supp(z.;) k;] ‘ k ykj|
Since ) .
_ 2
Blaranl® = Ik 3 + o) + gl
it suffices to show that for all £ € T} and (" € [m],
1 _ _
E Z |)\k|2|x€j|2 > 2‘ Z (|akg//ykj|2 — E|ak5uykj|2) ‘ (431)

k€[n) k€[n]

Recall that

T
Ykj = /\kak,m.j + Wi -
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By the triangle inequality and Lemma 4.4.12, for all j € [N] and ¢ € [m],

> ([@w | — Ellaml?)|

ke[n]

Z (\)\ka_kga;x.jﬁ — E\)\ka_ua;,:v.jP) ‘

keln]

+ 2 Z Re (Akakga_uag,x.jw_,ﬁ>

keln]

|3 (s - Elamu,l?)
k€(n]

<

Cw \* [l log’ (nmN)
n3/2 >

with probability at least 1 — n=%.

By Assumptions 4.3.2 and 4.3.5, if we plug the above result into (4.31),
then the following sample complexity is sufficient for Algorithm 3 to correctly
identify the subsets 77 (j € [N]) with probability at least 1 —n=%:

n

2C C
1/2 6 w
7 o= 9) (H V=0

Thus the first half of Theorem 4.3.12 is proved.
Given that the support 7} covers the large entries indexed by TJ{,

2
) s0 log®(nmN).

1 1 1
HEHTID*E ——z\T|| = H—HTI:UAT -
n n n
146 (1+0)0x
< |l — ) [zpj]? < — (4.32)

FEIN) L E[mM\T}
We also have

Iy, D*E — Elly, D*E|
< |97, D" Es — EQq, D" Eg|| + ||Q, D" ||

1 * *
< E(HQTWBSQTW - Q,EBQ;,

] + HQTWBHQ}W

b

< %(53 T o), (4.33)

where the last inequality follows from Lemmas 4.4.2 and 4.4.7, given that the
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conditions of Theorem 4.3.10 are satisfied. By the triangle inequality, and
(4.32) and (4.33),

1
HHTID*E — —z\'
n

< %(53 + 0w + /(1 +6)dx),

where dp can be made arbitrarily small by a sufficiently large C' in (4.13),
dw can be made arbitrarily small by a sufficiently small Cy, in Assumption
4.3.4, and the last term can be made arbitrarily small by a sufficiently small
0x in Assumption 4.3.5. Therefore, the first left and right singular vectors u
and v can become arbitrarily close to x and to A/ [|A[|, (up to a global phase

factor, i.e., a constant of unit modulus), respectively, and |17*n(®)| approaches

2
2 + Al 17115

2 2 2
V2 IR 2 n o+

The inequality follows from Assumption 4.3.2, i.e., V1 — 0 < |A\g] < V149,
and 1/v/14 06 < |yw| =1/| | < 1/v/1 —0. O

> 1 — 2.

4.6 Numerical Experiments

In this section, we test the empirical performance of Algorithm 1 and Algo-
rithm 2.

4.6.1 Subspace Case: Power Iteration vs. Least Squares

In Algorithm 1, we choose o = y/n, and 8 = || B|| (computed using another
power iteration on B). We compare Algorithm 1 with the least squares
approach in [40, Section 3.3], where ; = 1 is used to avoid the trivial solution.

We generate A € C™*™ as a complex Gaussian random matrix, whose
entries are drawn independently from CN(0, 1), i.e., the real and imaginary
part are drawn independently from A/(0, %) The unknown gains and phases

A are generated as follows:

Ap = eV 1k (1 + (V140 — 1)em“"§<), Vk € [n], (4.34)
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Figure 4.1: Mlustration of Ay in the complex plane.

such that A\ is on a small circle of radius v/1+ 8 — 1 centered at a point
on the unit circle, and ¢, and ¢j, are drawn independently from a uniform
distribution on [0, 27). Figure 4.1 visualizes one such synthesized \; in the
complex plane. We set 6 = 0.1 in all the numerical experiments. The entries
of X € C™ are drawn independently from CN(0, ﬁ), so that the Frobe-
nius norm of X is approximately 1. In the noisy setting, we generate complex
C™ N whose entries are drawn from CN(0, %)
We define measurement signal-to-noise ratio (MSNR) and recovery signal-to-
noise ratio (RSNR) as:

white Gaussian noise W €

[ diag(A) AX g

MSNR = 20log;, W] ,
F

RSNR = —10log,(2 — 2|7*n¥|).

We test the two approaches at four noise levels: oy = 0, 0.1, 0.2, and 0.5,
which roughly correspond to MSNR of oo, 20 dB, 14 dB, and 6 dB. At these
noise levels, we say the recovery is successful if the RSNR exceeds 30 dB, 20
dB, 14 dB, 6 dB, respectively. The success rates do not change dramatically
as functions of these thresholds. In the experiments, we set n = 128, N = 16,
and m = 8,16,24,...,64. For each m, we repeat the experiments 100 times
and compute the empirical success rates, which are shown in Figure 4.2.

As seen in Figure 4.2(a), both power iteration and least squares achieve
perfect recovery in the noiseless setting. However, as seen in Figures 4.2(b) —
4.2(d), power iteration is clearly more robust against noise than least squares,
whose performance degrades more severely in the noisy settings.

The empirical phase transitions of power iteration are shown in Figure 4.3.
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Figure 4.2: Subspace case: The empirical success rates of power iteration
(blue solid line) and least squares (red dashed line). The x-axis represents
m, and the y-axis represents the empirical success rate. (a) — (d) are the
results with oy = 0, 0.1, 0.2, and 0.5, respectively.

We fix N = 16 and plot the phase transition with respect to n and m (Figure
4.3(a)); we then fix n = 2m and plot the phase transition with respect to N
and m (Figure 4.3(b)). Clearly, to achieve successful recovery, n must scale
linearly with m, but N can be small compared to m and n. This confirms the
sample complexity in Theorem 4.3.9, of n 2 m and N 2 1. Careful readers
may notice in Figure 4.3(b) that for N = 5 the success rates at m < 16 are
worse than those at m > 16. This seemingly peculiar phenomenon is caused
by a small n = 2m, which does not belong to the large number regime

associated with a high probability.

256

ot

192 4
128 3
64 2
64 128 192 256 16 32 48 64
(a) (b)

Figure 4.3: The empirical phase transition of power iteration. Grayscale
represents success rates, where white equals 1, and black equals 0. (a) The
x-axis represents m, and the y-axis represents n. (b) The z-axis represents
m, and the y-axis represents N.
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4.6.2 Sparsity Case: Truncated Power Iteration vs. ¢;
Minimization
In the sparsity case, we use the same setup described in the previous section,

except for the signal X. The supports of the sg-sparse columns of X are

chosen uniformly at random, and the nonzero entries follow CN (0, leo ). This
unstructured sparsity case is more challenging than the joint sparsity case in
Theorem 4.3.10.

In Algorithm 2, we choose « = /n, and 8 = ||B]||. In all the experi-
ments, we assume that the sparsity level sy is known, and set s; = 2s( for
convenience. A more sophisticated scheme that decreases s; as the iteration
number increases may lead to better empirical performance [44].

For the experiment we suppose that the phases {¢ }7_; in (4.34) are avail-
able, and let

O = [emVTler eV len] T (4.35)

denote the initial estimate of +, which is close to but different from the true
7, i.e., the entrywise inverse of A in (4.34). See Figure 4.1 for an illustration
of A\, V&, and v,io). Then we initialize Algorithm 2 with ® = [0, ,, 7@ T]".

We compare Algorithm 2 with an ¢; minimization approach. Wang and
Chi [41] adopted an approach tailored for the case where A is the DFT
matrix and Ay =~ 1. They use a linear constraint Zke[n} vx = n to avoid the
trivial solution of all zeros. For fair comparison, we revise their approach to
accommodate arbitrary A and A. The revised approach uses the alternating
direction method of multipliers (ADMM) [119] to solve the following convex

optimization problem:?

min - [vec(X)],

s.t. diag(y)Y = AX,
7(0)*7 =n.
Here, (9 is the initial estimate of v defined in (4.35), and used as initializa-

tion in our Algorithm 2 in this comparison.

2In the noisy setting, one could replace the linear constraint diag(y)Y = AX with
an ellipsoid constraint ||diag(y)Y — AX||p < e. However, the parameter ¢ needs to be
adjusted with noise levels. For fair comparison of robustness to noise, we use the linear
constrained ¢; minimization in the noisy setting (similar to [41]).
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We conduct numerical experiments with the same four noise levels and
criterion for successful recovery as in Section 4.6.1. In the experiments, we set
n =128, m = 256, N = 16, and sy = 8, 16,24, ...,64. For each sy, we repeat
the experiments 100 times and compute the empirical success rates, which
are shown in Figure 4.4. In the noiseless case (Figure 4.4(a)), ¢; minimization
achieves a slightly higher success rate near the phase transition. However,
truncated power iteration is more robust against noise than ¢; minimization,
which breaks down completely at the higher noise levels (Figures. 4.4(b) —
4.4(d)).

Figure 4.4(a) clearly shows that truncated power iteration recovers n suc-
cessfully when n = 128, N = 16, and sy = 32. This suggests that truncated
power iteration may succeed when n and N are (up to log factors) on the
order of sg and 1, respectively. However, while the scaling with the number
of sensors n agrees with Theorem 4.3.10, success with such small number of

snapshots N is not guaranteed by our current theoretical analysis.

1

0.5

Il Il Il .*J L Il ‘\1 L L L L
8 16 24 32 40 48 56 64 8 16 24 32 40 48 56 64

(a) (b)

8.16 24 32 40 48 56 64 8.16 24 32 40 48 56 64

() (d)

Figure 4.4: Sparsity case: The empirical success rates of truncated power
iteration (blue solid line) and ¢; minimization (red dashed line). The z-axis
represents sg, and the y-axis represents the empirical success rate. (a) — (d)
are the results with oy = 0, 0.1, 0.2, and 0.5, respectively.

Next, we assume that only a subset of the phases {¢y }}_; are available, and
examine to what extent Algorithm 2 and ¢; minimization depend on a good
initial estimate of 7. In the numerical results shown in Figure 4.5, we consider
only the noiseless setting of BGPC with sparsity, and set s = 4,8,12,...,32.
In Figures 4.5(a) and 4.5(b), we replace 1/2 and 3/4 of {¢ }}_; with random
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phases, respectively, and use the resulting bad estimate 79 in Algorithm 2
and /1 minimization. As seen in Figure 4.5, truncated power iteration is less

dependent on accurate initial estimate of .

0 1 1 1 1 1 1 0 L LI hy I
4 8 12 16 20 24 28 32 4 8 12 16 20 24 28 32

(a) (b)

Figure 4.5: Sparsity case: The empirical success rates of truncated power
iteration (blue solid line) and ¢; minimization (red dashed line), with bad
initial estimate of the phases. The z-axis represents sy, and the y-axis
represents the empirical success rate. (a) and (b) are the results for which
1/2 and 3/4 of {¢y}7_, are initialized with random phases.

We repeat the above experiments for the joint sparsity case, where we
replace II,, in Algorithm 2 with IT, .- We also replace the £; norm |[vec(X)||,

in the competing approach with a mixed norm:

X0 = 3 (3 b))

Le[m] jJE[N]

which is a well-known convex method for the recovery of jointly sparse signals.
The results for different noise levels and for inaccurate v(*) are shown in
Figures 4.6 and 4.7, respectively. In the joint sparsity case, truncated power
iteration is robust against noise, but seems less robust against errors in the
initial phase estimate. We conjecture that the failure of Algorithm 2 in
the joint sparsity case is due to the restriction of ﬁ; .- By projecting onto
jointly sparse supports, the algorithm is likely to converge prematurely to
an incorrect support. When compared to the results in Figures 4.7(a) and
4.7(b), Figures 4.7(c) and 4.7(d) show that using II,, instead of ﬁ’Sl in the
first half of the iterations indeed improves the performance of Algorithm 2
in the joint sparsity case. In the rest of the experiments, we use ﬁsl during
the first half of the iterations in Algorithm 2 for the joint sparsity case.
Next, we plot the phase transitions for truncated power iteration. We fix
N = 16 and m = 2n and plot the empirical phase transition with respect to n
and s (sparsity case in Figure 4.8(a), and joint sparsity case in Figure 4.8(c));

we then fix n = 4s9 and m = 2n and plot the empirical phase transition with
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Figure 4.6: Joint sparsity case: The empirical success rates of truncated
power iteration (blue solid line) and mixed minimization (red dashed line).
The z-axis represents sg, and the y-axis represents the empirical success
rate. (a) — (d) are the results with oy = 0, 0.1, 0.2, and 0.5, respectively.
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Figure 4.7: Joint sparsity case: The empirical success rates of truncated
power iteration with II}, (blue solid line) and mixed minimization (red
dashed line), with bad initial estimate of the phases. The z-axis represents
S0, and the y-axis represents the empirical success rate. (a) and (b) are the
results for which 1/2 and 3/4 of {¢,}}_, are initialized with random
phases. In (c) and (d), we repeat the experiments, but use II,, instead of

H;l in the first half of the iterations.
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respect to N and sy (sparsity case in Figure 4.8(b), and joint sparsity case
in Figure 4.8(d)). It is seen that, to achieve successful recovery, n must scale
linearly with sg, but N can be small compared to sqg and n. On the one hand,
the scaling law n 2 s in Theorem 4.3.10 is confirmed by Figure 4.8; on the
other hand, N 2 /5o seems conservative and might be an artifact of our
proof techniques. We have yet to come up with a theoretical guarantee that
covers the more general sparsity case, or requires a less demanding sample
complexity N 2 1. In Figures 4.8(b) and 4.8(d), the success rates at smaller
so are lower than those at a larger sy, because the number of sensors n = 4s

is too small to yield a high probability.

256
192
128

64

256
192
128

64

Figure 4.8: The empirical phase transition of truncated power iteration.
Grayscale represents success rates, where white equals 1, and black equals
0. (a) Sparsity case: The z-axis represents sg, and the y-axis represents n.
(b) Sparsity case: The z-axis represents sg, and the y-axis represents N. (c)
Joint sparsity case: The x-axis represents sy, and the y-axis represents n.

(d) Joint sparsity case: The z-axis represents sg, and the y-axis represents
N.

4.6.3 Sparsity Case: Initialization

In this section, we examine the quality of the initialization produced by
Algorithm 3 by comparing it with two different initializations: (i) the good
initialization 7(®) = [O]T\,m’l,v(O)T]T aided by side information on the phase

in Section 4.6.2; and (i) a baseline initialization n© = [0{,, 1, 1,]7. We
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use the same setting as in Section 4.6.2, except that N = 32. We let oy =
0.1, and claim the recovery is successful if the RSNR exceeds 20 dB. In the
experiment for the joint sparsity case, for the reason mentioned in Section
4.6.2, we ignore the joint sparsity structure and estimate the support of
different columns of X independently in the initialization and during the
first half of the iterations. Only in the second half of the iterations, we use
the projection ﬁ’s , onto jointly sparse supports.

Figure 4.9 shows that, although the initialization provided by Algorithm
3 is not as good as the accurate initialization with side information, it is far
better than the baseline. Figure 4.10 shows the empirical phase transition
with respect to n and sy, when Algorithm 3 is used to initialize truncated
power iteration (sparsity case in Figure 4.10(a), and joint sparsity case in
Figure 4.10(b)). The results suggest that when n scales linearly with sy,
Algorithm 3 can provide a sufficiently good initialization for truncated power
iteration. For example, in 4.10(a), the success rate is 1 when n = 256 and
sgp = 20. Therefore, the sample complexity n = s2 in Theorem 4.3.12 could

be overly conservative and an artifact of our analysis.

0----&---!---A mssdmmm. L
2 4 6 8 10 12 14 16
(b)

Figure 4.9: The empirical success rates of truncated power iteration with
the initialization in Algorithm 3 (blue solid line), with a baseline
initialization n® = [0, 1,1} ,]" (red dashed line), and with the accurate
initialization n'® = [0§,, ,7®T]" with side information in Section 4.6.2
(black dash-dot line). The z-axis represents sg, and the y-axis represents
the empirical success rate. (a) is the result for the sparsity case, and (b) is
the result for the joint sparsity case.

4.6.4 Application: Inverse Rendering

In this section, we apply the power iteration algorithm to the inverse render-
ing problem in computational relighting — given images of an object under

different lighting conditions (Figure 4.11(a)), and the surface normals of the
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Figure 4.10: The empirical phase transition of truncated power iteration
with the initialization in Algorithm 3. The z-axis represents sg, and the
y-axis represents n. (a) is the result for the sparsity case, and (b) is the
result for the joint sparsity case.

object (Figure 4.11(b)), the goal is to recover the albedos (also known as
reflection coefficients) of the object surface and the lighting conditions. In
this problem, the columns of Y = diag(A\)AX € R™¥ represent images
under different lighting conditions, which are the products of the unknown
albedo map A € R™ and the intensity maps of incident light under different
conditions AX. For Lambertian surfaces, it is reasonable to assume that
the intensity of incident light resides in a subspace spanned by the first nine
spherical harmonics computed from the surface normals [29], which we de-
note by the columns of A € R™?. Then the columns of X are the coordinates
of the spherical harmonic expansion, which parameterize the lighting condi-
tions. We can solve for A and X using Algorithm 1. Our approach is similar
to that of Nguyen et al. [29], which also formulates inverse rendering as an
eigenvector problem. Despite the fact that the two approaches solve for the
eigenvectors of different matrices, they yield identical solutions in the ideal
scenario where the model is exact and the solution is unique.

In our experiment, we obtain N = 12 color images and the surface normals
of an object under different lighting conditions,® and we compute the first
m = 9 spherical harmonics. We apply Algorithm 1 to each of the three color
channels, and the albedo map recovered using 200 power iterations is shown
in Figure 4.11(c). We also compute new images of the object under new
lighting conditions (Figure 4.11(d)).

3The images are downloaded from https://courses.cs.washington.
edu/courses/csep576/05wi/projects/project3/project3.htm on September 16, 2017.
The surface normals are computed using the method described in the same webpage.
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(d)

Figure 4.11: Inverse rendering and relighting. (a) We use 12 images of the
object under different lighting conditions. (b) The surface normals. The
three dimensions of the normal vectors are represented by the RGB
channels of the color image. (c¢) The recovered albedo map. (d) Computed
images of the object under new lighting conditions.
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CHAPTER 5

MULTICHANNEL SPARSE BLIND
DECONVOLUTION VIA MANIFOLD
GRADIENT DESCENT

5.1 MSBD on the Sphere

5.1.1 Notations

We use [n] as a shorthand for the index set {1,2,...,n}. We use z(;) to denote
the j-th entry of x € R", and H;;) to denote the entry of H € R™ " in the
j-th row and k-th column. The superscript in A®*) denotes iteration number
in an iterative algorithm. Throughout the chapter, if an index j ¢ [n], then
the actual index is computed as modulo of n. The circulant matrix whose
first column is z is denoted by C,. We use 0;; to denote the Kronecker delta
(0, = 01if j # k and 6, = 1 if j = k). The entrywise product between
vectors z and y is denoted by x ®y, and the entrywise k-th power of a vector
x is denoted by x®*. We use ||-|| to denote the £, norm (for a vector), or the
spectral norm (for a matrix). We use Re(-) and Im(-) to denote the real and

imaginary parts of a complex vector or matrix.

5.1.2 Problem Statement

In MSBD, the measurements y1, 9o, ..., yn € R™ are the circular convolutions
of unknown sparse vectors xq, xa,...,zy € R™ and an unknown vector f €
R", i.e., y; = 2; ® f. In this chapter, we solve for {z;}" , and f from {y;} .
One can rewrite the measurement as Y = CyX, where Y = [y1,vy2,...,yn]
and X = [x1,29,...,2y] are n X N matrices. Without structures, one can
solve the problem by choosing any invertible circulant matrix C'y and compute
X = C;lY. The fact that X is sparse narrows down the search space.
Even with sparsity, the problem suffers from inherent scale and shift am-

biguities. Suppose S; : R" — R" denotes a circular shift by j positions,
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ie., Sj(x)wy = w—y for j,k € [n]. Note that we have y; = z; ® f =
(aS;(z;)) ® (a*S_;(f)) for every nonzero a € R and j € [n]. Therefore,
MSBD has equivalent solutions generated by scaling and circularly shifting
{zi}iz, and f.

Throughout this chapter, we assume that the circular convolution with the
signal f is invertible, i.e., there exists a filter g such that f ® g = e; (the
first standard basis vector). Equivalently, C; is an invertible matrix, and the
DFT of f is nonzero everywhere. Since y; ® g = x; ® f ® g = x;, one can find

g by solving the following optimization problem:

N
1
(P0) min NZHC%MO, s.t. h#0.
1=1

heR™
The constraint eliminates the trivial solution that is 0. If the solution to
MSBD is unique up to the aforementioned ambiguities, then the only mini-

mizers of (P0) are h = aS;g (a # 0, j € [n]).

5.1.3 Smooth Formulation

Minimizing the non-smooth ¢y “norm” is usually challenging. Instead, one
can choose a smooth surrogate function for sparsity, which can be minimized
using first-order or second-order optimization methods.

Here, we make two observations: (1) one can eliminate scaling ambiguity
by restricting h to the unit sphere S™~!; (2) sparse recovery can be achieved
by maximizing the “spikiness” ||-||; [120]. Based on these observations, we

adopt the following optimization problem:

N
. 1
(P1) min —WZHCyiRhHi, sit. ||h]| = 1.
i=1

heR™

The matrix R = (52 i, €L C,,) "2 € R™" is a preconditioner, where 0
is a parameter that is proportional to the sparsity level of {x;}¥ . In Section
5.2, under specific probabilistic assumptions on {z;}¥,, we explain how the
preconditioner R works.

Problem (P1) can be solved using first-order or second-order optimization

methods over Riemannian manifolds. The main result of this chapter pro-
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vides a geometric view of the objective function over the sphere S™~! (see
Figure 5.2). We show that some off-the-shelf optimization methods can be
used to obtain a solution & close to a scaled and circularly shifted version of
the ground truth. Specifically, h satisfies CfRiL ~ +e; for some j € [n], i.e.,

Rh is approximately a signed and shifted version of the inverse of f. Given

solution A to (P1), one can recover f and z; (i = 1,2,...,N) as follows:!
f=FF(RR)], (5.1)
i; = C,, Rh. (5.2)

5.2  Global Geometric View

5.2.1 Main Result

In this chapter, we assume that {z;}, are random sparse vectors, and f is

invertible:

(A1) The channels {z;}, follow a Bernoulli-Rademacher model. More pre-
cisely, x;(j) = Ay; Bij, where {A;;, B;j }ic[n],jen) are independent random
variables, B;;’s follow a Bernoulli distribution Ber(#), and A;;’s follow a

Rademacher distribution (taking values 1 and —1, each with probability
1/2).

(A2) The circular convolution with the signal f is invertible. We use x to
max; |(F )l
ming [(Ff) x|’
i.e., the ratio of the largest and smallest magnitudes of the DFT. This
o1(Cy)

is also the condition number of the circulant matrix Cy, i.e. kK = on(Cr)"

denote the condition number of f, which is defined as x =

The Bernoulli-Rademacher model is a special case of the Bernoulli-sub-
Gaussian models. The derivation in this chapter can be repeated for other
sub-Gaussian nonzero entries, with different tail bounds. We use the Rademacher

distribution for simplicity.

LAn alternative way to recover a sparse vector x; given the recovered f and the mea-
surement y;, is to solve the non-blind deconvolution problem. For example, one can solve

2
+ Aljz|l; using FISTA [121]. We omit

the analysis of such a solution in this chapter, and focus on the simple reconstruction
Z; = Cy, Rh.

the sparse recovery problem min, % HC’ 7T = yl’
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Let o(z) = —1 |z||;. Tts gradient and Hessian are defined by Vg(x)j) =
, and Hy(z )(]k —3230;. Then the objective function in (P1) is

1 N
= NZ (C,,RR),

where R = (52 3o, €/ C,,)"Y/%. The gradient and Hessian are

N
1
Vi(h) = > R'C,V4(CyRh),
=1

N
Hi(h) = % SR HY(Cy RR)Cy, R.

=1

Since L(h) is to be minimized over S"~!, we use optimization methods over
Riemannian manifolds [122]. To this end, we define the tangent space at
he S !as{ze€R": 2 L h} (see Figure 5.1). We study the Riemannian
gradient and Riemannian Hessian of L(h) (gradient and Hessian along the

tangent space at h € S"71):

Vi(h) = PV (h),
Hy(h) = Py HL(R) Py — (Vi(h), h) Py,

where P,. = I —hh' is the projection onto the tangent space at h. We refer

the readers to [122] for a more comprehensive discussion of these concepts.

-
S

Figure 5.1: A demonstration of the tangent space of S®~1 at h, the origin of
which is translated to h. The Riemannian gradient and Riemannian
Hessian are defined on tangent spaces.

The toy example in Figure 5.2 demonstrates the geometric structure of the
objective function on S™7!. (As shown later, the quantity EL"(h) is, up to
an unimportant rotation of the coordinate system, a good approximation to

L(h).) The local minima correspond to signed shifted versions of the ground
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Figure 5.2: Geometric structure of the objective function over the sphere.
For n = 3, we plot the following quantities on the sphere S?: (a) EL”(h),

(b) HE@L,,(h) ) and (c) min, 1y s(_1 2 EHpn(h)z.

truth (Figure 5.2(a)). The Riemannian gradient is zero at stationary points,
including local minima, saddle points, and local maxima of the objective
function when restricted to the sphere S"! (Figure 5.2(b)). The Riemannian
Hessian is positive definite in the neighborhoods of local minima, and has at
least one strictly negative eigenvalue in the neighborhoods of local maxima
and saddle points (Figure 5.2(c)). We say that a stationary point is a “strict
saddle point” if the Riemannian Hessian has at least one strictly negative
eigenvalue. The Riemannian Hessian is negative definite in the neighborhood
of a local maximum. Hence, local maxima are strict saddle points. Our
main result Theorem 5.2.1 formalizes the observation that L(h) only has two
types of stationary points: (1) local minima, which are close to signed shifted

versions of the ground truth, and (2) strict saddle points.

Theorem 5.2.1. Suppose Assumptions (A1) and (A2) are satisfied, and the
Bernoulli probability satisfies % <0< % Let k be the condition number of f,

let p < 1073 be a small tolerance constant. There exist constants ¢, ¢} > 0

(depending only on 0), such that: if N > nrlax{clp’}9 log 2, Cl’;#log n}, then

with probability at least 1 —n~, every local minimum h* in (P1) is close to

a signed shifted version of the ground truth. ILe., for some j € [n]:
|CrRR" £ e < 24/p.

Moreover, one can partition S"~! into three sets Hi, Ha, and Hs that satisfy
(for some ¢(n,0,p) >0):

o L(h) is strongly convex in Hy, i.e., the Riemannian Hessian is positive
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definite:

.ﬂa'i'nlzTHL(h)z > ¢(n, 0, p) > 0.
Zin

o L(h) has negative curvature in Ha, i.e., the Riemannian Hessian has a

strictly negative eigenvalue:

~

min z' Hp(h)z < —c(n, 6, p) < 0.

iz =1
zlh

o L(h) has a descent direction in Hs, i.e., the Riemannian gradient is

nonzero:

H%L(h)H > ¢(n, 0, p) > 0.

Clearly, all the stationary points of L(h) on S™1 belong to Hy or Hy. The
stationary points in Hi are local minima, and the stationary points in Ho
are strict saddle points. The sets Hy, Ha, Hs are defined in (5.12), and the
positive number ¢(n, 0, p) is defined in (5.13).

We only consider the noiseless case in Theorem 5.2.1. One can extend
our analysis to noisy measurements by bounding the perturbation of the
objective function caused by noise. In Section 5.5, we verify by numerical

experiments that the formulation in this chapter is robust against noise.

5.2.2  Proof of the Main Result

Note that R = (525 sz\il C’;C'yl.)*l/2 asymptotically converges to (CfTC'f)’l/2

as N increases. Therefore, L(h) can be approximated by

N 1 N

> o(Cy(CFCy) V) = N > 4(Co,Cy(CfCp)7M0).

=1 i=1

1
L'(h)=—

(h) =%
Since Cf(C’]TC’f)_l/ 2 is an orthogonal matrix, one can study the following
objective function by rotating on the sphere h’' = Cf(C}—Cf)_l/2h:

1 N

L) = = 3 o(Cul).

i=1
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Our analysis consists of three parts: (1) geometric structure of EL", (2)
deviation of L” (or its rotated version L') from its expectation EL”, and (3)
difference between L and L'.

Geometric structure of EL”. By the Bernoulli-Rademacher model

(A1), the Riemannian gradient for h € S"~! is computed as
EV v (h) = Py EV 0 (h) = nf(1 — 30)(||h||3 - b — h®?). (5.3)
The Riemannian Hessian is

EH . (h) = Py EH i (h) Py — K EV i(h) - Py
=nf(1 —30)[||h]]y - T + 2|y - hh" — 3 - diag(h®?)]. (5.4)

Details of the derivation of (5.3) and (5.4) can be found in Appendix C.1.1.
At a stationary point of EL”(h) on S"~!, the Riemannian gradient is zero.

Since
HEW@H = n6(1 = 30)\/ 1] — 1]

1—39\/ > B2 nE (k2 — b)), (5.5)

1<j<k<n

all nonzero entries of a stationary point hy have the same absolute value.
Equivalently, hojy = +£1//r if j € Q and hyj) = 0 if j ¢ Q, for some r € [n]
and © C [n] such that || = r. Without loss of generality (as justified below),
we focus on stationary points that satisfy ho;y = 1//rifj € {1,2,...,7} and
hoyy = 01if j € {r+1,...,n}. The Riemannian Hessian at these stationary

points is

9(1 - 36) Losr — 21, Orx(nfr)

(n—r)xr n—r

(5.6)

When r = 1, hg = [1,0,0,...,0]", we have EHp(he) = nf(1 — 30) Pt

This Riemannian Hessian is positive definite on the tangent space,

min 2TEH . (ho)z = nf(1 — 36) > 0. (5.7)
oLk
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Therefore, stationary points with one nonzero entry are local minima.
When r > 1, the Riemannian Hessian has at least one strictly negative

eigenvalue:

~ 2n0(1 — 36
min z EHpn(ho)z = _ 2601 = 36) <
z:||z||=1 T
i

0. (5.8)

Therefore, stationary points with more than one nonzero entry are strict
saddle points, which, by definition, have at least one negative curvature
direction on S"7'. One such negative curvature direction satisfies z(;) =
(r = 1)/\/r(r=1), 2y = =1/y/r(r = 1) for j € {2,3,...,7}, and 2 = 0
forje{r+1,...,n}.

The Riemannian Hessian at other stationary points (different from the
above stationary points by permutations and sign changes) can be computed
similarly. By (5.4), a permutation and sign changes of the entries in hy has
no effect on the bounds in (5.7) and (5.8), because the eigenvector z that
attains the minimum undergoes the same permutation and sign changes as
ho.

Next, in Lemma 5.2.3, we show that the properties of positive definiteness
and negative curvature not only hold at the stationary points, but also hold

in their neighborhoods defined as follows.

Definition 5.2.2. We say that a point h is in the (p,r)-neighborhood of a
stationary point hy of EL"(h) with r nonzero entries, if Hh®2 — hSﬂHOO <t

We define three sets:

1= {Points in the (p,1)-neighborhoods of stationary points
with 1 nonzero entry},
H5 = {Points in the (p,r)-neighborhoods of stationary points
with v > 1 nonzero entries},

HY = S\ (H] UHY).

Clearly, Hi N Ha = O for p < 1/3, hence HY, HY, and HY form a partition
of S™1.

Lemma 5.2.3. Assume that positive constants 0 < 1/3, and p < 1072, Then
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o For h € HY,

min 2 EHp»(h)z > nf(1 —30)(1 — 24,/p) > 0. (5.9)

z:]|z]|=1
zLlh

o For h € HY,
z:ﬁ;‘i‘gl ZT]EﬁL”(h)Z < _n9(1 — 39):2 —24,/p) 0 (510)

Lh

o For h € Hj,
[EV )| = oA =30 _ (511)

n

Lemma 5.2.3, and all other lemmas, are proved in Appendix C.

Deviation of L” from EL”. As the number N of channels increases, the
objective function L” asymptotically converges to its expected value EL”.
Therefore, we can establish the geometric structure of L” based on its simi-

larity to EL”. To this end, we give the following result.

Lemma 5.2.4. Suppose that 0 < 1/3. There exist constants co,cly > 0
(depending only on 0), such that: if N > ci)—Zg log%, then with probability at

A
least 1 — e™%",

~ ~ 0(1 — 30)p*

sup VL//(h) - EVL//(h)H S (—)p,
hesn—1 in

. . 8(1 — 30)p?

sup HL//(h) — ]EH[//(}L)H S u
hesn—1 n

By Lemma 5.2.4, the deviations from the corresponding expected values of
the Riemannian gradient and Hessian due to a finite number of random z;’s
are small compared to the bounds in Lemma 5.2.3. Therefore, the Rimannian
Hessian of L” is still positive definite in the neighborhood of local minima,
and has at least one strictly negative eigenvalue in the neighborhood of strict
saddle points; and the Riemannian gradient of L” is nonzero for all other

points on the sphere. Since L' and L” differ only by an orthogonal matrix
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transformation of their argument, the geometric structure of L’ is identical
to that of L” up to a rotation on the sphere.
Difference between L and L’. Recall that L asymptotically converges

to L' as N increases. The following result bounds the difference for a finite

N.

Lemma 5.2.5. Suppose that % <0< % There exist constants cs,cy > 0

(depending only on ), such that: if N > ‘33’;# logn, then with probability at
least 1 — n~,

~ ~ 0(1 — 30)p?

sup || Vo (h) = V()| < b = 30)r” . i
heSn—1 n

~ ~ — 2

sup || Br(n) - HL,(;,)H < (1 —30)p"
hesn—1 n

We use (C7Cp)2Cr"H = {(C]Cy)V2C h - h € M} to denote the rota-
tion of a set ‘H by the orthogonal matrix (C'fTC’f)l/QC'f_l. Define the rotations
of HY, Hj, and HY:

Hi = (C]Cp)2CF Y,
My = (Cf Cp)'PCF s, (5.12)
Hs = (C} Cp)VPC S,

Combining Lemmas 5.2.3, 5.2.4, and 5.2.5, and the rotation relation be-

tween L' and L”, we have:

o For h € H;y, the Riemannian Hessian is positive definite:

N 2p°
min =T HL(h)z 2 nf(1 = 30)(1 — 245~ 25) > 0,
ZZ||[= n
zlh

o For h € Hs, the Riemannian Hessian has a strictly negative eigenvalue:

~ 0(1—30)(2—24 — 2rp?/n?
r”n|i‘nlzTHL(h)z < _né A Vo= 2t/ <0.
z:|z||= r
zLlh
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o For h € Hs, the Riemannian gradient is nonzero:

- 6(1 — 36)p*
i 2 21520
HVL( || 2 2n

> 0.

Clearly, all the local minima of L(h) on S™! belong to H1, and all the other
stationary points are strict saddle points and belong to Hs. The bounds
in Theorem 5.2.1 on the Riemannian Hessian and the Riemannian gradient

follows by setting

001 —30)"

o (5.13)

c(n,0,p) =

We complete the proof of Theorem 5.2.1 by giving the following result
about H;.

Lemma 5.2.6. If h* € Hy, then for some j € [n],

IR £ €] < 2/p.

5.3  Optimization Method

5.3.1 Guaranteed First-Order Optimization Algorithm

Second-order methods over a Riemannian manifold are known to be able
to escape saddle points, for example, the trust region method [75], and the
negative curvature method [84]. Recent works proposed to solve dictionary
learning [74], and phase retrieval [72] using these methods, without any spe-
cial initialization schemes. Thanks to the geometric structure (Section 5.2)
and the Lipschitz continuity of the objective function for our multichannel
blind deconvolution formulation (Section 5.1), these second-order methods
can recover signed shifted versions of the ground truth without special ini-
tialization.

Recently, first-order methods have been shown to escape strict saddle
points with random initialization [77, 78]. In this chapter, we use the mani-

fold gradient descent algorithm studied by Lee et al. [76]. One can initialize
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the algorithm with a random h(®), and use the following iterative update:
R = A(RD) = Pgar (B9 =4V (D)), (5.14)

Each iteration takes a Riemannian gradient descent step in the tangent space,
and does a retraction by normalizing the iterate (projecting onto S™'). Us-
ing the geometric structure introduced in Section 5.2, and some technical re-
sults in [75, 76], the following result gives a theoretical guarantee for manifold
gradient descent for our formulation of MSBD: convergence to an accurate

estimate (up to the inherent sign and shift ambiguity) of the true solution.

Theorem 5.3.1. Suppose that the geometric structure in Theorem 5.2.1 is
satisfied. If manifold gradient descent (5.14) is initialized with a random h(®)
drawn from a uniform distribution on S™ ', and the step size is chosen as
Y = 133, then (5.14) converges to a local minimum of L(h) on S™~! almost

4096n°__ isergtions, hT) € H,.

surely. It particular, after at most T = P(1-30)%

Moreover, for some j € [n]
|CrRE™ £ ;]| < 2¢/p.

One can further bound the recovery error of the signal and the channels

as follows.

Corollary 5.3.2. If the conditions of Theorem 5.3.1 are satisfied, then the
recovered f and &; (i =1,2,...,N) in (5.1) and (5.2), computed using the
output of manifold gradient descent h=hT), satisfy

I ﬂlt‘igu(xz)H N
|75 _ 2y

TN

for some j € [n].

Theorem 5.3.1 and Corollary 5.3.2 show that, with a random initialization
and a fixed step size, manifold gradient descent outputs, in polynomial time,

a solution that is close to a signed and shifted version of the ground truth.
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5.3.2 Proof of the Algorithm Guarantee

We first establish that after T steps, the iterate hT) € H, UHs, by applying
(75, Theorem 4]. To this end, one needs to show that (C1) L(h) has a
finite lower bound, and that (C2) the function L(z) = L(”ijn) (defined
on {z : z L h}) is well approximated by its first-order Taylor expansion at

z = 0. We verify conditions (C1) and (C2) in the following lemmas.

Lemma 5.3.3. For all h € S"', —4n3 < L(h) < 0, |[Vo(h)| < 16n3,
|Hr(h)| < 48n3.

Lemma 5.3.4. Let L(z) == L(:222.). Then for all = L h,
|L(2) = L(0) = (2, V(0))] < 64n® |12

By [75, Theorem 4] and Lemmas 5.3.3 and 5.3.4, manifold gradient decent
(5.14) with a fixed step size v = 1/(2 x 64n?) achieves @L(h(t))H < 7 after
t = 2[L(h®))—minyegn-1 L(h)]/(y7?) iterations. Setting 7 = 6(1—36)p%/(2n)
and T = 4096n8/[0*(1 — 30)%p], it follows that

6(1 — 30)p?

HﬁL(h(t)) 2n

‘ < =¢(n,0,p)

after t > T iterations. By Theorem 5.2.1, we have {h(t)}tET C Hi U Hs.
Since the distance between every pair of points h; € H; and hy € Hs satisfies
lh1 — hol >~ ’ Vi (h®)]], the iterates {h(®},~1 all belong to H; or all belong

to Hs, and cannot jump from one set to the other.

Next, we show that if the initialization h(® follows a random distribution
on S"! then h") € H; almost surely, by applying [76, Theorem 2]. To this
end, we verify that (C3) the strict saddle points are unstable fixed points of
(5.14), and that (C4) the differential of A(-) in (5.14) is invertible.

Let ' = A(h) = Psn-1(h — vﬁL(h)). The differential D.A(h) defined in
[76, Definition 4] is

DA(R) = Py Pyi[I — vHy(h)| Py (5.15)

At strict saddle points @L(h) =0 and A’ = h. Because, as we have shown,
H r(h) has a strictly negative eigenvalue, it follows from [76, Proposition §]

that DA(h) has at least one eigenvalue larger than 1. Therefore, strict saddle
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points are unstable fixed points of (5.14) (see [76, Definition 5]), i.e., (C3)
is satisfied.

We verify (C4) in the following lemma.

Lemma 5.3.5. For step sizey = and allh € S™™', we have det(DA(h)) #

0.

1
128n3 7

Since conditions (C3) and (C4) are satisfied, by [76, Theorem 2|, the
set of initial points that converge to strict saddle points have measure 0.
Therefore, a random ~(®) uniformly distributed on S™! converges to a local

minimum almost surely. Hence {h()},>7 C H;. By Lemma 5.2.6,
Cor™ £ < 27

for some j € [n].

5.4 Extensions

We believe that our formulation and/or analysis can be extended to other

scenarios that are not covered by our theoretical guarantees.

o Bernoulli-sub-Gaussian channels. As stated at the beginning of Sec-
tion 5.2, the Bernoulli-Rademacher assumption (A1) is a special case of
the Bernoulli-sub-Gaussian distribution, which simplifies our analysis.
Similar bounds can be established for general sub-Gaussian distribu-

tions.

o Jointly sparse channels. This is a special case where the supports of z;
(1=1,2,...,N) are identical. Due to the shared support, the z;’s are
no longer independent. In this case, one needs a more careful analysis

conditioned on the joint support.

o Complex signal and channels. We mainly consider real signals in this
chapter. However, a similar approach can be derived and analyzed for

complex signals. We discuss this extension in the rest of this section.

Empirical evidence that our method works in these scenarios is provided in
Section 5.5.3.
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For complex f,z; € C", one can solve the following problem:

N
min %Zmae(cyﬁh)) + o(Im(Cy R)), st [[h] =1,

heCn -
=1

where R = (57 SN ClC,,)7Y? € €™ and ()" represents the Hermitian
transpose. If one treats the real and imaginary parts of h separately, then
this optimization in C" can be recast into R?", and the gradient with respect
to Re(h) and Im(h) can be used in first-order methods. This is related to
Wirtinger gradient descent algorithms (see the discussion in [103]). The

Riemannian gradient with respect to h is

N
1
i=1
where w;(h) represents the following complex vector:
wi(h) = V4(Re(Cy, Rh)) + V=1V, (Im(Cy, Rh)),

and Pg.p)1 represents the projection onto the tangent space at i in S =1
R2";
Pgpyrz =z — Re(h"z) - h.

In the complex case, one can initialize the manifold gradient descent algo-

rithm with a random A for which [Re(h(®) T, Tm(h(®)T]T follows a uniform

distribution on S?"~1.

5.5 Numerical Experiments

5.5.1 Deconvolution with Synthetic Data

In this section, we examine the empirical performance of manifold gradient
descent (5.14) in solving the multichannel sparse blind deconvolution prob-
lem (P1). We synthesize {z;}; following the Bernoulli-Rademacher model,
and synthesize f following a Gaussian distribution N(0,,x1, I,,). In all exper-
iments, we run manifold gradient descent for 7' = 100 iterations, with a fixed

step size of v = 0.1.
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Recall that the desired h is a signed shifted version of the ground truth,
i.e., CyRh = £e; (j € [n]) is a standard basis vector. Therefore, to evaluate
the accuracy of the output A7), we compute Cth(T) with the true f, and

declare successful recovery if

R,
[CrRRD| ~

or equivalently, if
max|cosL(Cth(T), ej)‘ > 0.95.

j€n]
We compute the success rate based on 100 Monte Carlo instances.

In the first experiment, we fix § = 0.1 (sparsity level, mean of the Bernoulli
distribution), and run experiments with n = 32, 64, ..., 256 and N = 32,
64, ..., 256 (see Figure 5.3(a)). In the second experiment, we fix n = 256,
and run experiments with § = 0.02,0.04,...,0.16 and N = 32,64, ...,256
(see Figure 5.3(d)). The empirical phase transitions suggest that, for sparsity
level relatively small (e.g., § < 0.12), there exist a constant ¢ > 0 such that
manifold gradient descent can recover a signed shifted version of the ground
truth with N > ¢né.

In the third experiment, we examine the phase transition with respect to
N and the condition number s of f, which is the ratio of the largest and
smallest magnitudes of its DFT. To synthesize f with specific k, we generate
the DFT f of f that is random with the following distribution: (1) the DFT
f is symmetric, i.e., f(j) = f(n+2_]~), so that f is real; (2) the phase of f(j)
follows a uniform distribution on [0, 27), except for the phases of f(l) and
f(n /2+1) (if n is even), which are always 0, for symmetry; and (3) the gains of
f follows a uniform distribution on [1,x]. We fix n = 256 and 6 = 0.1, and
run experiments with k = 1,2,4,...,128 and N = 32,64, ...,256 (see Figure
5.3(g)). The phase transition suggests that the number N for successful
empirical recovery is not sensitive to the condition number .

Manifold gradient descent is robust against noise. We repeat the above
experiments with noisy measurements: y; = x; ® f + oe;, where ¢; follows a
Gaussian distribution N (0,1, [,). The phase transitions for o = 0.01v/nb
(SNR ~ 40dB) and o = 0.1v/nf (SNR = 20 dB) are shown in Figures 5.3(b),
5.3(e), 5.3(h), and Figures 5.3(c), 5.3(f), 5.3(i), respectively. For reasonable

noise levels, the number N of noisy measurements we need to accurately
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Figure 5.3: Empirical phase transition (grayscale values represent success
rates). The first row shows the phase transitions of N versus n, given that
6 = 0.1. The second row shows the phase transitions of N versus 6, given
that n = 256. The third row shows the phase transitions of N versus k,
given that n = 256 and 6 = 0.1. The first column shows the results for the

noiseless case. The second column shows the results for SNR ~ 40 dB. The

third column shows are the results for SNR ~ 20 dB.
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recover a signed shifted version of the ground truth is roughly the same as

with noiseless measurements.

5.5.2 2D Deconvolution

Next, we run a numerical experiment with blind image deconvolution. Sup-
pose the circular convolutions {y;}Y, (Figure 5.4(c)) of an unknown image
f (Figure 5.4(a)) and unknown sparse channels {z;}¥, (Figure 5.4(b)) are

observed. The recovered image f (Figure 5.4(d)) is computed as follows:
f=FFRR)O,

where F denotes the 2D DFT, and h(") is the output of manifold gradient
descent (5.14), with a random initialization h(®) that is uniformly distributed
on the sphere.

Figure 5.4 shows that, although the sparse channels are completely un-
known and the convolutional observations have corrupted the image beyond
recognition, manifold gradient descent is capable of recovering a shifted ver-
sion of the (negative) image, starting from a random point on the sphere (see
the image recovered using a random initialization in Figure 5.4(d), and then
corrected with the true sign and shift in Figure 5.4(e)). In this example, all
images and channels are of size 64 x 64, the number of channels is N = 256,

and the sparsity level is § = 0.01. We run T' = 100 iterations of manifold
[[Cs RO
[ rRO]|
as a function of iteration number ¢ is shown in Figure 5.4(f), and exhibits a

gradient descent with a fixed step size v = 0.05. The accuracy

sharp transition at a modest number (= 80) of iterations.

5.5.3 Jointly Sparse Complex Gaussian Channels

In this section, we examine the performance of manifold gradient descent
when Assumption (A1) is not satisfied, and the channel model is extended
as in Section 5.4. More specifically, we consider f following a Gaussian
distribution CN (0,1, I,,), i.e., the real and imaginary parts are independent
following N(0,,x1,I,,/2). And we consider {z;}¥, that are:

o Jointly s-sparse: The joint support of {z;}¥, is chosen uniformly at
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Figure 5.4: Multichannel blind image deconvolution. (a) True image. (b)
Sparse channels. (c¢) Observations. (d) Recovered image using manifold
gradient descent. (e) Recovered image with sign and shift correction. (f)
The accuracy as a function of iteration number. All images and channels in
this figure are of the same size (64 x 64).

random on [n].

o Complex Gaussian: The nonzero entries of {z;}¥, follow a complex
Gaussian distribution C'N(0, 1).

We compare manifold gradient descent (with random initialization) with
three blind calibration algorithms that solve MSBD in the frequency domain:
truncated power iteration [4] (initialized with £ = e, and xEO) =0), an off-
the-grid algebraic method [123] (simplified from [30]), and an off-the-grid
optimization approach [92].

We fix n = 128, and run experiments for N = 16,32,48,--- 128, and
s=2,4,6,...,16. We use f and fto denote the true signal and the recovered

signal, respectively. We say the recovery is successful if?
e GERGES]N
|7 F o Fp|

2A perfect recovery f is a scaled shifted version of f, for which F—! [F(f)oF( f o1
is a scaled shifted Kronecker delta.

> 0.7. (5.16)
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By the phase transitions in Figure 5.5, manifold gradient descent and trun-
cated power iteration are successful when N is large and s is small. Although
truncated power iteration achieves higher success rates when both N and s
are small, it fails for s > 8 even with a large N. On the other hand, manifold
gradient descent can recover channels with s = 16 when N > 80.3 In compar-
ison, the off-the-grid methods are based on the properties of the covariance
matrix + Zf\;l vyl and require larger N (than the first two algorithms) to

achieve high success rates.

128 - 128 -
96 - 96 -
=
64 - Sl
32 - 32 -
I i I I I
12 16
S

4 8

(a)

128 - 128
96 - 96 -
= 64 - = 64 -
32 - 32 -

4 8 12 16
s

()

Figure 5.5: Empirical phase transition of NV versus s, given that n = 128.
(a) Manifold gradient descent. (b) Truncated power iteration [4]. (c)
Off-the-grid algebraic method [123]. (d) Off-the-grid optimization approach
92].

5.5.4 MSBD with a Linear Convolution Model

In this section, we empirically study MSBD with a linear convolution model.
Suppose the observations y; = z x f' € R" (i = 1,2,...,N) are linear

convolutions of s-sparse channels x; € R™ and a signal f € R"™". Let

3By our theoretical prediction, manifold gradient descent can succeed for s = 40 < g
provided that we have a sufficiently large N.
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x; € R" and f € R" denote the zero-padded versions of z; and f. Then
yi=aixf=x;®f.

In this section, we show that one can solve for f and x; using the optimiza-
tion formulation (P1) and the manifold gradient descent algorithm, without
knowledge of the length m of the channels.

We compare our approach to the subspace method based on cross con-
volution [55], which solves for the concatenation of the channels as a null
vector of a structured matrix. For fairness, we also compare to an alterna-
tive method that takes advantage of the sparsity of the channels, and finds a
sparse null vector of the same structured matrix as in [55], using truncated
power iteration [44, 1].4

In our experiments, we synthesize f’ using a random Gaussian vector fol-
lowing N (0 —m+1)x1, In—m+1). We synthesize s-sparse channels x; such that
the support is chosen uniformly at random, and the nonzero entries are in-
dependent following N (0,1). We denote the zero-padded versions of the true
signal and the recovered signal by f and f , and declare success if (5.16)
is satisfied. We study the empirical success rates of our method and the

competing methods in three experiments:

o N versus s, given that n = 128 and m = 64.
o N versus m, given that n = 128 and s = 4.

o N versus n, given that m = 64 and s = 4.

The phase transitions in Figure 5.6 show that our manifold gradient descent
method consistently has higher success rates than the competing methods
based on cross convolution. The subspace method and the truncated power
iteration method are only successful when m is small compared to n, while
our method is successful for a large range of m and n. The sparsity prior
exploited by truncated power iteration improves the success rate over the
subspace method, but only when the sparsity level s is small compared to m.
In comparison, our method, given a sufficiently large number N of channels,

can recover channels with a much larger s.

4For an example of finding sparse null vectors using truncated power iteration, we refer
the readers to our previous paper [1, Section II].
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Figure 5.6: Empirical phase transition of MSBD with a linear convolution
model. The first row shows the phase transitions of NV versus s. The second
row shows the phase transitions of N versus m. The third row shows the
phase transitions of N versus n. The first column shows the results for
manifold gradient descent. The second column shows the results for the
subspace method [55]. The third column shows are the results for truncated
power iteration.
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5.5.5 Super-Resolution Fluorescence Microscopy

Manifold gradient descent can be applied to deconvolution of time resolved
fluorescence microscopy images. The goal is to recover sharp images z;’s
from observations y;’s that are blurred by an unknown PSF f.

We use a publicly available microtubule dataset [66], which contains N =
626 images (Figure 5.7(a)). Since fluorophores are are turned on and off
stochastically, the images x;’s are random sparse samples of the 64 x 64 micro-
tubule image (Figure 5.7(b)). The observations y;’s (Figures 5.7(c), 5.7(d))
are synthesized by circular convolutions with the PSF in Figure 5.7(i). The
recovered images (Figures 5.7(e), 5.7(f)) and kernel (Figure 5.7(j)) clearly
demonstrate the effectiveness of our approach in this setting.

Blind deconvolution is less sensitive to instrument calibration error than
non-blind deconvolution. If the PSF used in a non-blind deconvolution
method fails to account for certain optic aberration, the resulting images
may suffer from spurious artifacts. For example, if we use a miscalibrated
PSF (Figure 5.7(k)) in non-blind image reconstruction using FISTA [121],
then the recovered images (Figures 5.7(g), 5.7(h)) suffer from serious spuri-

ous artifacts.
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Figure 5.7: Super-resolution fluorescence microscopy experiment using
manifold gradient descent. (a) True images. (b) Average of true images. (c)
Observed images. (d) Average of observed images. (e) Recovered images
using blind deconvolution. (f) Average of recovered images using blind
deconvolution. (g) Recovered images using non-blind deconvolution and a
miscalibrated PSF. (h) Average of recovered images using non-blind
deconvolution and a miscalibrated PSF. (i) True PSF. (j) Recovered PSF
using blind deconvolution. (k) Miscalibrated PSF used in non-blind
deconvolution. All images in this figure are of the same size (64 x 64).
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CHAPTER 6

CONCLUSION

In Chapter 2, we studied the identifiability of blind deconvolution problems
with subspace or sparsity constraints. The sample complexity results in
Section 2.2 are, to within a small additive term of at most five samples,
optimal. Our results are derived with generic bases or frames, which means
they are invalid only on a set of Lebesgue measure zero. If we assume that the
bases or frames are drawn from any distribution that is absolutely continuous
with respect to the Lebesgue measure on the space of bases or frames, then
the results hold almost surely. Furthermore, if the bases or frames follow a
distribution specified in Chapter 2, then under the same sample complexities,
the recovery is not only unique with probability 1, but also stable with high
probability against small perturbations in the measurements. These results
provide the first tight sample complexity bounds, without large constants or
log factors, for unique or stable recovery in blind deconvolution. They are
fundamental to the blind deconvolution problem, independent of algorithms.

Despite the fact that, under the sufficient conditions in Chapter 2, the
degenerate set of bases or frames has Lebesgue measure zero, it is unclear
whether commonly used bases and frames (e.g., standard basis, wavelets)
belong to the degenerate set. Therefore, it is an interesting open problem to
show optimal sample complexity results for these bases and frames.

In Chapter 3, we addressed the identifiability of the BGPC problem with
subspace or joint sparsity constraint, up to scaling. We provided sufficient
conditions for identifiability that feature optimal (resp. near optimal) sam-
ple complexities for the subspace constraint case (resp. the joint sparsity
constraint case). These results are for generic vectors or matrices, and are
violated only for a set of Lebesgue measure zero. We did not address the
stability of BGPC in Chapter 3. The regime under which the problem can
be solved stably is an interesting open problem.

In Chapter 4, we formulated the BGPC problem as an eigenvector problem,
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and proposed to solve BGPC using power iteration, and solve BGPC with
a sparsity structure using truncated power iteration. We give theoretical
guarantees for the subspace case with a near optimal sample complexity, and
for the joint sparsity case with a suboptimal sample complexity. Numerical
experiments show that both power iteration and truncated power iteration
can recover the unknown gain and phase, and the unknown signal, using a
near optimal number of samples. It is an open problem to obtain theoretical
guarantees with optimal sample complexities, for truncated power iteration
that solves BGPC with joint sparsity or sparsity constraints.

In Chapter 5, we studied the geometric structure of multichannel sparse
blind deconvolution over the unit sphere. Our theoretical analysis reveals
that local minima of a sparsity promoting smooth objective function corre-
spond to signed shifted version of the ground truth, and saddle points have
strictly negative curvatures. Thanks to the favorable geometric properties
of the objective, we can simultaneously recover the unknown signal and un-
known channels from convolutional measurements using manifold gradient
descent with a random initialization. In practice, many convolutional mea-
surement models are subsampled in the spatial domain (e.g., image super-
resolution) or in the frequency domain (e.g., radio astronomy). Studying the
effect of subsampling on the geometric structure of multichannel sparse blind

deconvolution is an interesting problem for future work.
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APPENDIX A

LEMMAS FOR CHAPTER 2

A.1 Concentration of Measure

Lemma A.1.1. Suppose a € R™ and b € R™ are independent random
vectors, following uniform distributions on RBrmi and RBgm., respectively.
If a matriz M € R™>*™2 satisfies { < || M|, < L, then

P [|a"Mb| < p] < pf(p,(. L, R),

where f(p, ¢, L, R) satisfies lim,_, log fp.t,LR) _ ).

log %

Proof. Suppose the singular value decomposition (SVD) of M is
M=UxVT,

where U € R"™>*™ and V € R™2*™2 are orthogonal matrices, and > €
R™*™2 satisfies £ < 20D = | M||, < L. Let @ == UTa, and b :== Vb, then &
and b are also independent random vectors, following uniform distributions
on RBgm: and RBgm., respectively.

Therefore,

P [a"Mb] < p]
[ <
S 4 g, 01 (18758 < p)

fRBle d&fRB]RmQ db
1 . .
= da®m) / db®™m) ¢(a,b), (Al
Vi (R) - Vana (R) / ‘ o@0), (A1)

RB]le -1 RBRmQ —1

where Vgm: (R) = [ R5,m, 40 denotes the volume of a ball of radius R in R™,
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and

¢(a,b)
R R B 5

- / da® / v 1 (|asz| < p)
—R —R

(1))2 < R2 2m1) 6(1) 2 < R2 . B(Q:mg)
1(Jat)] 0™

/da/db(b

5(2m) Ty (2m1,2ma) ] 2m2’_ P )

)

_|_

HMH2

R 0o
< da™ min / dp1 (]6<1>+9(~ @m2))| < 4),
/_R { oo M|, |a™)|
R ~
/ 1 dp™ (A.3)
-R

1M1]],

< / Y W min( 2R (A.4)
~Jor 1M ]|, @™}’
M 2
_ A (1+1n I ||2R)
1M]], p
4p LR?
1+In =22, A5
o ( L ) (A.5)

In (A.3), 6(a,b?™)) = ”M”—Da@ )Ty (2ma,2m2) h(2m2) qoes not affect the

integral. Substituting (A.5) into (A.1), we obtain

B [Ja”Mb| < p] < 0 Vet () Vinaa (R) ( LRQ) .

1+In——
£ Vemi (R) - Vema (R) P

Define

4 . Vle—l(R) . Vng—l(R) (1 + ln L__R2> '

f(pv& L’ R) = 0 Vle (R) ' Vng (R) P

1ogf(MLR) —0. []

Clearly, lim, o =4 o8 1

Lemma A.1.1 is a simplified version of [27, Lemma 4], with improved con-
stants. Although [27, Lemma 4] has a better bound in terms of its dependence

on p when the rank of M is larger than 1, our simplified bound does not affect

128



our proof of identifiability in any negative way. As a bonus, we can deduce
stability results directly from the simplified proof of identifiability.

Next, we derive a similar concentration of measure bounds for the complex
case. Despite the similarity between the proofs of Lemmas A.1.1 and A.1.2,

the latter is not a direct consequence of the former.

Lemma A.1.2. Suppose a € C™ and b € C™ are independent random
vectors, following uniform distributions on RBcmi and RBcms, respectively.
If a matrizc M € C™>*™2 satisfies { < || M|, < L, then

P

a*Mb| < p| < p?g(p,¢, L, R),

10gg(p7é7LvR) — O
log % ’

where g(p, ¢, L, R) satisfies lim,_,q
Proof. The proof follows steps mostly analogous to those in the proof of
Lemma A.1.1 by replacing the real field by the complex field. Here, we
define @ == U@, and b := V*b. It follows that (A.1) — (A.3) apply, with
the real field replaced by the complex field, and the interval of integration
[—R, R] replaced by the disk in the complex plane RBc1. Then (A.4) — (A.5)

are replaced by

¢(a,b) < / da) mi s R?
a,b) < a’’mm|{ ——s————, T
RB 17115 la)?

2.2 2 2.2 2
:Lp2<1+21n 1], £ ) <I? (1+21nLR).
1215 p l p

In a manner analogous to the proof of Lemma A.1.1, it follows that

P [ < 7T2p2 . chl—l(R) . chg—l(R) ( LRQ)

a*Mb| < p| < 142In 2=
| <] 2 Vem (R) - Vs (R) P

Here we use Vemi (R) = | RBomy da to denote the volume of a ball of radius
R in C™. Define

7'(2 . V(C'ml—l(R) . V(C'mgfl(R) ( LRQ)
A, L, R) = 1+2In . A6
9o )= TE Ve (R) Vo (B) P (4.6)

log g(p,¢,L,R) —0. O

Clearly, lim, o =" -
P
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A.2 Useful Lemmas about Minkowski Dimension

Lemma A.2.1. Let Qx and €2y be nonempty bounded subsets of a normed
vector space. Then dimp(Qx — Qy) < dimp(Qx) + dimp(Qy).

Proof. We cover Qy and €2y with balls of radius p centered at {xz}fvff“ ®)

N,
and {y;},7 (p), respectively. Given any point z —y € Qx — {2y, we can find

centers of the above covering, x;, and y;,, such that

2 =zl <o, Ny —yioll < p-
Hence,
(@ —=y) = (@i, — i)l < llw— i || + [y — wiol| < 2p.

Therefore, the set 0y — €2y can be covered by Nq,(p)Na, (p) balls of radius

2p centered at points (like z;, — v;,) generated by the centers {xz}f\iﬂlx » 4

{yz}f\gy (p). It follows that

Niar-0y)(20) < Na,(p)Nay, (p).

We then bound the Minkowski dimension:

log Niay—ay)(2p)

dimg(Qx — Qy) = limsup

p—0 log 2%)
log IV, N log N log IV,
< lim sup 28 Vo (p)1 o (P) sup og—ni{(p) T lim sup 28 Y0 (p)
p—0 log 5, p—0 0g 5, p—0 log 5,
= dimp(Qx) + dimp(Qy).
O

Lemma A.2.2. Let Qx and €y be nonempty bounded subsets of C™ and
C™2, respectively. Let Qp = {ay? : v € Qu,y € Qyp} € C™*m2. Then
dl_mB<QM) < dl_mB<Qx) +di_mB(Qy).

Proof. Since Qy and {2y are bounded, there exists a large enough constant
L such that
Qy C LB(cm1, Qy C LBgms,.

We cover 2y and 2y with balls of radius p centered at the following two sets
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of points, respectively:
N, N,
{xi}i:QIX () C LB(Cm1 > {yi}izﬂly (°) C LB(Cmg .

Given any point 2y’ € Qu, we can find centers of the above coverings, z;,

and v;,, such that

|z — 23], < ps |y — i |l5 < p.

Then

T T _ T T T T
Joy" = zayillp = oy = 2ay” +2ay” —zays ||

<l =i [ly lylly + 1y = v lla [l [, < 2Lp.

Therefore, the set 2y can be covered by N, (p)Nq, (p) balls in C™*™2 of
radius 2Lp, centered at the rank-1 matrices (like xilyg ) generated by the

centers of the coverings of {2y and y. It follows that

Na,,(2Lp) < Na, (p)Nay,(p). (A.7)
Therefore,
_ log N (2L
Trit () = lim sup 22 (2L7)
p—0 IOgm
log N N, log N, log NV,
< lim sup 0g QX(P)l 2y (p) < limsup 0g QA{(P) + lim sup 0g Q){(P)
p—0 log 575 p—0 log s p—0 log s

- dl_mB(Q)() + dl_mB(Qy)

U

Lemma A.2.3. Let Qx be a nonempty bounded subset of C™. Let Re(Qx)
{Re(z) : € Qx}, and Im(Qx) = {Im(z) : = € Qx}. Then dimp(Qy)
dl_mB(Re(Qx)) + dl_mB(Im(Q/y))

IN

Proof. The real and imaginary parts Re(Qx) and Im({2y) are bounded sub-

sets of R™. There exists a large enough constant L such that

Re(Qx),Im(Qx) C LBR"L.
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We cover Re(Q2x) and Im(€2y) with balls of radius p centered at the following

two sets of points, respectively:

{afe} o0, {aln} o0 C L.

Re

Given any point x € {2y, we can find centers of the above coverings, z;* and

2™, such that
IRete) — el < p. [tmGe) = 22, < p

Let z. = xf}e + /- :cIm Then

— .l = \/||Re(e) — 2|2 + ||Im(z) — a2 < V2p.

Therefore, the set Qx can be covered by Nreor)(p)Nm@x)(p) balls in C™
of radius v/2p, centered at the complex vectors (like z.) generated by the
centers of the coverings of Re(Q2y) and Im(Qy). It follows that

Na,(V2p) < Nie)(p) Nim(a) (p)- (A.8)
Therefore,
- log N, 2
dimp(Qx) = lim supw
p—0 log V2p
log Nge N
< lim sup 08 IVR, (QX)</0)1 I (QX)</0)
p—0 log 75
log Nge log Nip
< limsup 2B R@n(O) i 108 NimGa (2)
p—0 log NeT p—0 log 75

— dimp(Re(Qx)) + dimp (Im(Qy)).
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APPENDIX B

PROOFS OF LEMMAS IN CHAPTER 4

B.1 Gap in Eigenvalues

Proof of Lemma 4.4.1. We have

D*D =1y ® (A*A), (B.1)
)\16L_1.CLIZL’.1 cee )\na_n.a;x.l

D*E, = : : , (B.2)
Maralzn o AGna, TN

I\ 20l X X*ar

E'E, = . (B.3)

I\o|?a,) X X~a,

Under Assumptions 4.3.1 and 4.3.3, we have

ED*D = Iy, (B.4)
ED'E, — %Mr’ (B.5)
EEE, = | X[ ding(IN [, A7) = ~diag(Inf, A7), (B6)
Set a = y/n, we have
EB,— | " v
i \/Lﬁ)\x* diag([Ai[% -, A2 ]
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and

N [Ns LQTI$)\T "
EQr, By, = | | < . G 2 o | = P7QP,
\/—E)\x QF  diag([[A\i]%, ..., [Aal?])
where
P = diag([11,ns,A"]),
INs LQsz]_;Lr
Q - [ 1 * ()% vr ! ’

The matrix () has eigenvalues 0,1,1,...,1,2. The eigenvectors corresponding

to 0 and 2 are 1 = [(Qp,2)", 1], /A" /VZ and [(Qr,2), 1], /v /V2,
respectively. Any vector orthogonal to these two vectors is an eigenvector of
@ corresponding to 1. It follows that Q)+ pup* — I s, is positive semidefinite.
Since p is a null vector of @, we have P~y is a null vector of P*QP (note
that Qr,n = V2P~ '1). Therefore, the smallest eigenvalue of the positive
semidefinite matrix P*QP is 0.
Next, we bound the largest eigenvalue of P*Q) P, which satisfies

max [|[P*QPz||, <+V1+§ max Pz
||z||2§1H QP Wie: 1+(SHQ [

= (1+9) max 1Qzl; < 2(1+9), (B.7)
z|[5<
where the first inequality follows from Assumption 4.3.2, and the second
inequality follows from the largest eigenvalue of Q).

Next, we bound the second smallest eigenvalue of P*()P, which satisfies

min [[P'QPz|,

z2LP~1p, [lz]p21

>V1-9 min |QPz|l,
PzL(PP*)~1u, [|Pz||y>V1-6
=(1-9) min 1Q=]l,

2L(PP*) " p, [|z]lp=1

>(1-6 i INgpn — puit*
2 (1=0) | ppmin I vsen = )2l

=(1-94 min 1 —|u*z|?
0 L op B ot ald
e (PP*) | (1= 0)°

—(1-3 ,
@Ry, = 1

(B.8)
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where the first and third inequalities follow from Assumption 4.3.2, and the
second inequality is due to the fact that Q + pup* — Insin is positive semidef-

inite.
By (B.7) and (B.8), all nonzero eigenvalues of E(r, B}, reside in the
interval [(11166)2, 2(140)]. O

B.2 Bounds of Perturbation Due to Randomness in A

Proof of Lemma 4.4.3. We prove only the joint sparsity case. One can prove
the subspace case by replacing s with m and getting rid of the union bound.

It is well-known that, for sufficiently large n, a Gaussian random matrix
satisfies RIP [113]. Here, we use a bound for real Gaussian random matrices
[124], and present its extension to complex Gaussian random matrices. Let
T C [m] denote an index set of cardinality s, ie., |T| = s < n. Let A ==
[Re(A)Q, Im(A)$2]. By [124, Theorem 2.13],

2

< 3(@%)} >1— 2exp<—%>.

P[Hﬁ*ﬁ— I,

Note also that

QrA*AQL = QrRe(A) TRe(A)Q
+ v/ =1Q7Re(A) "Im(A)Q
—V/—=1Q7Im(A) TRe(A)Q
+ QpIm(A) "Tm(A)Q

1QrA*AQ; — L|| < [|QrRe(A) "Re(A) — 1,/2||
+ ||Q27Re(A) "Tm(A)Q;,
+ || Q27Im(A) "Re(A)Q7 ||
+ || QrIm(A) "Tm(A)Q; — /2|
<4 H?L*E— 125/2H .
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It follows that

llora a; - 1 <6(1[2 +¢)] 21 - 20(-"5).

Therefore, there exist constants C', ¢y > 0, such that

P[HQTA*AQ*T — L] < Oy /% logm, VT s.t. |T| = 5]
>1-— 2(:}) exp(—(% — 1>2§logm>

where the first inequality follows from a union bound, and setting ¢ =
(% —1)4/ log m; the second inequality follows from Stirling’s approximation
(1) < (=)

We obtain Lemma 4.4.3 by applying the above bound to every diagonal
block of the block diagonal matrix Q7, D* D7 . O

Proof of Lemma 4.4.4. By a consequence of the Hanson-Wright inequality
(see [125, Theorem 2.1], and its complexification in [125, Section 3.1]), there

exists an absolute constant ¢}, such that

/-2

P||Val|XTaxl,~ 1] <e] 2 1_2exp(_|’c§”2). (B.9)

Set e = C4 || X || v/log n for some C4 > 0, then by a union bound, there exists

an absolute constant ¢s > 0 such that
IP’U\/HHXTak‘”Q —1| < Cy|IX|| logn, Vk € [n]] >1-n"  (B.10)

By Assumption 4.3.2,

1 20! 2\(1
PlInaL XX - 1| < CAT LD

-maX{HXH Vlog 7, ||X|]210gn}, Vk € [n]}
Z 1 _ n*C2. (Bll)
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The spectral norm || X is bounded in Assumption 4.3.3:

1 1
Sub s IXIP< (146 =, =
ubspace case: || X[ < (1+ )maX{N’m}’

1

1
Joint sparsity case: [|X|* < (1+6) max{ﬁ, —1}
So

Therefore, Lemma 4.4.4 follows from (B.3), (B.6), and (B.11). O

Proof of Lemma /4.4.5. By (B.2), the columns of D*E; are independent ran-

dom vectors. Define
Tk

T
Q- T.o
O =

ap.ap .y

Then D*E; = [¢1, 09, ..., ¢n|diag(N). Next, we bound the spectral norm
of the random matrix ® — E®, where ® := [¢1, ¢, ..., P,], using matrix
Bernstein inequality [115, Theorem 1.6]. We need the following bounds to
proceed:

(1) A bound on ||¢y — Egyl,.

First, by [125, Theorem 2.1 and Section 3.1], there exists a constant ¢

P||[vallaxll, - vim| < e > 1-2exp(~de?).

By a union bound over all k € [n], there exists a constant C such that

P[|\/ﬁ||ak.||2 — V/m| < C4\/logn, Vk € [n]}
> 1 —2nexp(—c;Cy logn)

>1—n", (B.12)

Note that .

™
n

1
IExll, = ~ Xl =
Il < llawlls || X T ar]], -

By (B.10) and (B.12), there exists a constant C¥%, such that with probability
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at least 1 — 2n=°2,

|0% — Ebi [l

<C_§,’ {\/_ \/1—} {1 [logn /logn}
=7, max m, ogn ¢ max y —N s m
< Cy/m

— n )

for all k € [n], where the second inequality uses the assumption that min{ N, m} >
log n.

(2) A bound on |E[(® — E®)* (P — ED)]|.

One should observe that

E[(¢x — Edn)" (6 — En)] = =5,

El(¢x — Edr)"(¢r — Edp)] =0,
for k #£ k’. Therefore,

m

E[(® ~E®)(? ~E®)] = 1,

2

|E[(® - E®)*(@ — E®)]| = .

(3) A bound on |[|[E[(® — E®)(® — E®)*]||.

Since {¢x}}_, are i.i.d. random vectors,
E[(® — EP)(P — Ed)”]
= El(¢r — Er)(dr — Edi)’]
k=1

= nE[(¢1 — Ed1) (1 — Ed1)"]
= n[E(¢107) — (E¢1)(Epq)"]

1 —
= (XTX®1I,).
n

By Assumption 4.3.3, in the subspace case,

[E[@ ~ B2)(@ ~ B2)| = ~ X TX] <~ max{1, 1),

Given the above bounds, we apply the matrix Bernstein inequality [115,
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Theorem 1.6] as follows:

P[|® ~ EQ| < el llén — Eoull, < R, Vk € [n]
e?/2 )

>1—(Nm+n) exp(—

02+ Re/3
where
aQ—max{ﬁ 1+0 1—|—9}
N n?2’ nN ' nm
R= VM

n
It follows that

£?/2 e

where the last term 2n~“ bounds the probability that ||¢, — E¢y|, > R for

some k. Hence there exist constants Cs, c3 > 0 such that

Cs log(Nm + n)
Pl||® - E®| < _—
19— B <~ max{ /=T

log(Nm +n) /mlog(Nm + n) }] N
nm ’ n - '

Lemma 4.4.4 follows from the above bound, and
17, D" Es — EQq, D™ Ey|| = ||® — E@|| [|diag(A)]] < v146][® — EP.

]

Proof of Lemma 4.4.6. We introduce some notations for this proof. We use
B and Bgmn to denote unit balls in C" with £, norm, and in C™*" with
Schatten p norm, respectively. The projection on the support set 1" is denoted
by IIr. For a set A of matrices, dp(A) and d,,(A) denote the radii of A in
the Frobenius norm and in the spectral norm, respectively. We use 73(A, [|-]|)
the 9 functional of A, which is another way to quantify the size of A [116,
Section 2.2]. These are key quantities in the upper bound of the supremum
of an asymmetric second-order process [116, Theorem 2.3], which we use to

prove Lemma 4.4.6.
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Note that

max ||Qp, D*E; — EQp, D*Eg|| = max  max  max [v"®u — Ev*dul,
TC[m] TC[m] UeBg"N u€ By
|T|=s IT|=s (InQTlz)v=0

(B.13)

where ® = D*E,. Let z = \/nfa},...,a’]". Then z follows CN (0.1, Inn)

and v*®u is written as a quadratic form in z as follows:

n N
. R 1 .
v Py = Z Zuka;x.jv_jak. = 2" (diag(u) ® HTO)(ﬁ]n ® XV )z, (B.14)

k=1 j=1
where u = [uy,...,u,) ", v=[v],..., o],V =[vy,...,0on],and Ty = {i €
[m]]| HeiTXH2 > 0} denotes the row support of X = [z.1,...,z.x].
Let
A={A,lu € By},
and

B={B,ve B, (Iy®Ip)v=uv},

where A, and B, are left and right factors in the quadratic form in (B.14),
ie.,
A, = diag(u) @ I,

and

B, = ll'n ® XV*.
n

Then (B.13) is equivalent to

sup sup |z"A,Byz — Ez*A,B,z|,

A,E€A ByEB
which is a supremum of an asymmetric second-order process. We use the
result on suprema of asymmetric second-order chaos processes by Lee and
Junge [116, Theorem 2.3], which extends the original result by Krahmer et
al. [126] to asymmetric cases.

Next, we compute the key quantities, given as functions of A and B, which

we need to apply [116, Theorem 2.3]. Let A, € A. Since |Ty| < sy, we have

[Aulle = V30 [[ull, < V0
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and the radius of A in the Frobenius norm satisfies

dp(A) < /5.

On the other hand,
[Aull = [Jull, <1,

which implies that the radius of A in the spectral norm satisfies
dop(A) < 1.
Moreover, for A,, A!, € A, we have
[Au = Awll = [lu — /|l -

Therefore, by the Dudley’s inequality [127],

(AL ) < / Viog NTA T 0ydt
< log N(BY, ||| ; t)dt
| Ve Bz 0
S [ floeNBp | Hstar
0

<Slog??m,

where the third step follows from the entropy duality result by Artstein et al.
[128] and the last step follows from Maurey’s empirical method [129] (also see

(130, Lemma 3.1]). Collecting the above estimates shows that the relevant
quantities are given by

(A, |- (de (A) + 72 (A, [I-1) + di (A)dop (A)

< max{/so log®?n, log®n},
dop(A) (12 (A, [[1]) + dr(A)) S max{y/so, log*?n},
dop(A)* < 1.

Next we consider the other set B. Let B, € B. Then

1 . 1 1
IBulle = = 1XVlle < —= IX 1 IVl = = X1
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Therefore .
d < — || X/ .
(B) < = I1X]|

On the other hand,
1 L1
1B = IXV] < XV,

which implies
1
To(B) <~ |IX]]

Moreover, for B, B,, € B, we have
1 /
1By = Bur|l < — I XIHIV = VI,

where V' = [v/},...,v/y] and v/ = [v/], ..., v/{]". Therefore,

2B, 11D

1 o
STIXN [ flog NUmeaT B, g 0t
0

1 1
< IXI [\ fos N B e 0t
0

1 1
s \/log S NI By, | g s )t

IA

IT|=s

1 1
<2 IXI [ fologm +log N(Bg |

1 1
< —1X|| ( slogm +/ \/log N(Bgsv, |||l gs.v ;t)dt)
n 0 2 %

1
< - | X|| Vs + Nlog(sN +m),

where the last step follows from Lemma B.2.1. Therefore, the parameters for

B are estimated as
Y2(B, || ) (dr (B) +72(B, ||]]) + dr (B)dop(B)
< 5 X (5 V) log?(sN -+ m) + V5 + N/ log(sN + m)),
dop(B)(72(B, [|-]|) + dr(B)) < % IX|1? (Vs + Nlog(sN + m) + v/n),

1
dop(B)? < | X,
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According to [116, Theorem 2.3|, the optimal upper bound is obtained
as the geometric mean of the dominant parameters for the two sets. More

precisely, the suprema is (up to an absolute constant) no larger than

1/4 N4 /s - N)1/2
s (s+N) Y+ Vst N) 2 | X || log® nlog(sN + m)
n

with probability 1 — n~%. By Assumptions 4.3.2 and 4.3.3,

|/\k|§ \/1+67

1+6 1+6
i < macf 1
X1 < max{y/ 5= /=

which completes the proof. O

Lemma B.2.1.

/ \/log N(Bgnn, tBgn)dt < V/m+ N log(mN).
0 2 -

Proof of Lemma B.2.1. First, by the dual entropy result by Artstein et al.
[128], we have

Then we approximate the S; ball as a polytope using a trick proposed by
Junge and Lee [130]. Let R be the set of all rank-1 matrices in the unit
sphere of S5V, Then BS;n,N is the absolute convex hull of R. We construct
an e-net A, of the sphere S™~!. Then

!Am|§(1+g)m
€

For an arbitrary f € S™ !, we have a sequence {f;}7°, C A,, such that

= Z afi,
I=1

and
oo

>l <

=1
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The existence of such a sequence follows from the optimality of the con-
struction of the net. Similarly we construct an e-net Ay C SV of SVN-L,
Then

N

For an arbitrary g € SV~ we have a sequence {g;}7°, C Ay such that

9=">_ Bo
k=1

and .

S G <

-1

k=1

Therefore,
f9" = Z oSy figy,
Lk=1

and

> farlaid < (=)

Lk=1

We can choose € so that

and

Let Am,N = Am X AN. Then
log(|Amn|) < (m+ N)log8

and
Bgmn C 2absconv(A,, n).

Now, it suffices to compute

/ \/log N (2absconv(A,, n), tBS;n,N)dt.
0
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Then use a change of variable and get

/ \/log N (2absconv(A,, n), tBgm.~)dt
0 2

:2/ \/IOgN(abSCOHV(Am,N),tBSm,N)dt.
0 2

Let Apuny = {@1,--.,qu}, where M = |A,, n|. Define linear mapping Q ;
(" — 05N by Q(e;) = vec(q;) fori = 1,..., M. Since ||vec(q)l, = ||glls, =
for all 7z, we have

1Q: e — ep¥]| = 1.

Note

/ \/logN absconv(A,, ), tBg mN )dt = / \/logN ), By )dt.

By a version of Maurey’s empirical method (see for example [130, Proposition
3.2]), we have

/ \/logN M), tBypn )dt S \/log M log(mN) < vVm + N log(mN).

This completes the proof. O

B.3 Bounds of Perturbation Due to Noise

Proof of Lemma 4.4.8. Bear in mind that the columns of ¥ := D*FE,,, which

we denote by {¢y}7_;, are independent random vectors with zero mean:

Q. W1
_ Af. W2
Yy =

Qp W N

We bound || D*E,, || using the matrix Bernstein inequality [115, Theorem 1.6].
We need the following bounds:
(1) A bound on |1k,

Since

[Pklly < Ml [y [[wr]l
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By (B.12), and m > logn,

lnlly < (G5 + 1)y [~ x VN max Jwgl,

k€[n],j€[N]

with probability at least 1 — n~=%.

(2) A bound on |EU*¥||.

Since

* m ..
BV W = ;dlag([llwrﬂg Awally s lww 15D,
we have N
m
BT = - max fJuw. I3 < = max fuwyl®

N k€[n],j€[N]

(3) A bound on |[|[EWW*|.

Since
1
DNVAVASES —di 2 2 2
> Cdiag([lwial, fwiel®, . [wiy ) © L,
ke[n]
we have
HIE\IHII*H——maXZIwA < | max w2

€[N 2 [n],7€[N]

Given the above bounds, we completes the proof using the matrix Bern-
stein inequality (similar to the proof of Lemma 4.4.5). There exist constants
C4, ¢y > 0 such that

1D Ey|| = [|¥]| < Cy max{ log(Nm + n),

Nm
S e (N } 1,
plos(Nmtn) g, max, lowl

with probability at least 1 — n=%. O]

Proof of Lemma 4.4.9. Note that

max |Qr, D*E,|| = max  max  max [v*"Wul,
TC[m] TC[m] wveBpN ueBjy
|T|=s |T|=s s (IN®Ir)v=v
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where

wW1.
U=D'E, = |Iyou ... Iyou,
W,
Let z = +/nla},...,a*]". Then z is a standard Gaussian vector, and
W = (11, ® v*)(En @ L) (ding(u) © L)z
v YU = —= n QU n m m)~-
NG 1, g

Let

1
fup = (i)' © L) (5 @ 1)Ly @ 0).

The Ly metric is given by

A((w,v), (1) = (G2 = 0,02 = luw = dur -

Indeed,

d((u,v), (u',0))
< d((u,v), (u,0")) + d((u, v'), (u',0))

< ||diag(u — u') [ [|Eul (0], + [[diag(u)
< ||diag(u — u')

| Ealllv ="l

oo |

| Enll + 1 Eull [0 =",

oo

oo |

Let Ty ={ve BN : T C[m], |T| =s, (Iy®Ilp)v =v}. By Dudley’s
theorem (see e.g., [127, Theorem 11.17]), we have

E sup sup sup v*Wu
TC[m] wveBPN ueBy
IT|=s (Iy®Tr)v=v

< 24/ V0og N(T'y x By, d(-); €)de
0
<2 ([ flos MOl lsade+ [ \log V(B . ende)
0 0

0 0
g ||En” (\/@—{— VINs -+ 1Og3/2 n)

By an extension of Dudley’s inequality to moments [131, Section 8.9, page
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263),

1/p
(E sup sup  sup |v*\Ilu]p>
TClm] wveBpN  ueBy
IT|=s (In®Ilp)v=0

S| Eall (v/slogm + V' Ns 4 log®? n)/p.

By a variation of Markov’s inequality [131, Proposition 7.11], there exist

absolute constants Cy, ¢4 > 0 such that

sup sup  sup |[v*Wu|
TC[m] wveBpRN ueBy
IT|=s (InQIlz)v=0

< Cy || Eall (v/slogm + V' Ns +log®? n)y/logn,

with probability at least 1 — n=.

Therefore, Lemma 4.4.9 follows from

Bl = max el < VA _mase ],

]

Proof of Lemma 4.4.10. 1f assumptions 4.3.1 — 4.3.3 are satisfied, then by
(B.10),

ChL+1DvV14+6
ol < T w1, ) g

for all k£ € [n], with probability at least 1 — n~=.
Since

EZE, = diag([yj.wr., ys.w2., . .., Yp.wn.]),

there exist constants C5 = (C5 + 1)4/(1 4 60)(1 + 6) > 0 such that

EIE,| <
1Bl < masc il x VN _mas o

1X 1 } 1,
< o ma{ LX) Viogn ) _max fu

with probability at least 1 — n=%. Therefore, Lemma 4.4.10 follows from
Assumption 4.3.3. O]
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Proof of Lemma 4.4.11. Lemma 4.4.11 follows from

« . 2 2 2
En By = diag([[[wi [l [lwa I3 - - [lwn [5])-

B.4 Scalar Concentration Bounds

Proof of Lemma 4.4.12. We prove these inequalities using the Hoeffding’s
inequality.
For all j € [N], ¢ € [m], and k € [n],
|[@rear.a* — Elamag.a.,||

1 2
< lae|?|ag.z ;| + ﬁ(”%’”g + |ze;]%)

log(nm) _||#,llylog(nN) , 2 |zl

n n n?
(Ct +2) |45 log” (nmN)
TL2

<

<

I

where the third line is true with probability at least 1 —n % for some absolute
constant cz. We show this by applying a Chernoff bound and a union bound
to |are|?, and applying the Hanson-Wright inequality (B.9) and a union bound
to |a,z;|>. Then it follows from the Hoeffding’s inequality and a union
bound, that there exist absolute constants Cg, ¢g > 0 such that for all j € [N]
and ¢ € [m]| we have (4.20).

Similarly, for all j € [N], £ € [m], and k € [n],

2 T ,log(nm) ||z.[, v/log(nV)
|ane|*|ay. z.5] < Cg : :
n \/ﬁ

with probability at least 1 —n~%. By the Hoeffding’s inequality and a union

bound, we have (4.21). Here we use the following facts: By Assumption

4.3.3, ||z > 1/%52, and by Assumption 4.3.4, maxyepn) je(n] |wk;| < \ZZLN

For ¢ € [m| and k € [n],

log(nm
|ake]® — Elag|* < Cé%7
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with probability at least 1 —n~%. By the Hoeffding’s inequality and a union
bound, we have (4.22). O
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APPENDIX C

PROOFS FOR CHAPTER 5

C.1 Proofs for Section 5.2

C.1.1 Derivation of (5.3) and (5.4)

Recall that

1 N

Vir(h) =5 D Vi,

=1

1 N
Hun(h) = 5 SO H!.
=1

where V/ := C] V4(Cy,h), and H! = C Hy(Cy,h)Cy,.

For the Bernoulli-Rademacher model in (A1), we have

n n 3
EVi, = —E Z Ti(14s—j) (Z xi(lJrsft)h(t))
s=1 t=1
— —n(0nf) +30%h) >0ty )
L£j

= —nf(1 — 30)h{; — 3n6°hy;),

where the last line uses the fact that » 7 h%j) = ||h|| = 1. Therefore, the

gradient and the Riemannian gradient are

EV i (h) = —nf(1 — 30)h®* — 3n6°h,
EV (k) = Py EV 10 (h) = nf(1 — 30) (| h|% - h — B®3).
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Similarly, we have

2
H//]k) 3EZ Ti(145—5)Vi(1+s—k) (Z Li(14s— t )
2 2 2 s
Ongyy + 62> 02 hiyy L=k
292h(j)h(k) it j £k
= —-3n [92(5jk + 9(1 — 39)h?j)5jk + 292h(j)h(k)] .

= —-3n X

The Hessian and the Riemannian Hessian are

EHp(h) = —3n[0°] + 0(1 — 30)diag(h®?) + 26°hh '],
EH . (h) = Py BH i (h) Py — h"EV 0 (h) - Py
=nf(1 —30)[||hlly - T + 2|y - hh" — 3 - diag(h®?)].

C.1.2 Proofs of Lemmas in Section 5.2

Proof of Lemma 5.2.3. We first investigate the Riemannian Hessian at points
in HY and Hj. Without loss of generality, we consider points close to the
representative stationary point hg = [1/4/r,...,1/4/r,0,...,0]. We have

hey — 1/l < p/r,  Vie{L2,...r}
hiy <p/r,  Vie{r+1,...,n},

Zh2)_1 Zh < p.

j=r+1
Therefore,
1—+/1-—
1= holl < y[rx (—=—L)+p < V2, (C.1)
N
1|7,
diag(h®?) — - <2 (C.2)
r O(nfr)x(nfr) r
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and

R P
hhT——[ . ] < 2||h — holl < 24/2p. (C.3)
r O(n—r)x(n—r)
We also bound ||A[[; as follows:
1 2 2 2 1 2 2 2
it < e S minf -y £, LY < LH2O R
r 2’ n—r T

1—p)? _1-2 2
T r

Since p < 1073 < 1/2,

Ay -~ < 2. (1)

Next we obtain bounds on the Riemannian curvature of EL” at points
h € HY or h € Hj by bounding its deviation from the Riemannian curvature
at a corresponding stationary point hg. By (C.2), (C.3), (C.4), and the
expressions in (5.4), (5.6):

HEE(L,,(h) - EﬁLu(ho)H

2/2p
§n«9(1—39)[%+2x Wﬂaxg
o(1 — 30
= %(mpjuwm. (C.5)

153



It follows that

i TEH . (h)z — mﬁnlzTEﬁL/,(ho)z‘
z:||z]|=1 z:||z||=
zl zLlhg

TEH . (h)z — min ZTEﬁL//(hO)z’

z:lz)|=1 z|[z[=1
zLlh zlh
+ | min 2 "EHpi(hg)z — min 2z EHp»(hy)z
2lzl|=1 2lsl|=1
zlh z1lhg

< HVTEﬁLN(h)v _ VTEﬁL/,(hO)VH n HVTJEﬁIL,,(hO)V - %TE?[L,,(hO)VOH
< |[E8L(h) = B (ho)|| + 2 |[EEL o) | - 1V = Vol

o(1 2n6(1 — 30
< MO0 =39) oyt 4/30) + 2 % M % \/2p

- ”9“%@2/) +8v/2%)
nb(1— 36)(24./7)

r

(C.6)

where V, Vy € R™ =1 satisfy: (I) the columns of V (resp. V;) form an
orthonormal basis for the tangent space at h (resp. hg); (II) ||V — Vol < /2p.
We construct V' and V; as follows, for the non-trivial case where h # hy.
Suppose the columns of V4, € R™*(®=2) form an orthonormal basis for the
intersection of the tangent spaces at h and at ho. Let ¢ = (h,hy) <
and let b/ == \/7<h0 ch) and hy = ﬁ(cho — h). Tt is easy to Verify
that V' = [V, A'] and Vy = [V, h{] satisfy (I). To verify (II), we have
IV = Vall = W = Rl = =55 [1h + hol| = [lh = holl < v/25.

Positive definiteness (5.9) follows from (5.7) and (C.6). Negative curvature
(5.10) follows from (5.8) and (C.6).

Next, we prove contrapositive of (5.11), i.e., suppose
HE@LH(h)H < 0(1—30)p%/n

for some h € S"! then we show h € H U HY. First, it follows from
‘ E%Lu(h)H < 8(1 — 36)p%/n, and the expression in (5.5), that for all j, k

(],

o

Wiy hin (Bl = hiw)” < -

As a result, |hf;y — hy| < p/nif bt > p/n and by > p/n.
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Let Q:={j: h%j) > p/n} C [n], and r == |Q|. Then

and

p
1—(n— L E )
(n—r) n< h (C.8)

JEQN

In addition, |h%j) - h%k | < p/n for j, k € Q. Therefore, for k € Q, h%k) is close
to the average 3~ ¢ hi;:

1
2 2
‘huf) ==

JEQ

Vk € Q. (C.9)

By (C.8) and (C.9), for k € Q:

l-(n—r)-2 p 1-p
h2 > mn L A—
(k) = T n T
Therefore,
2 1 P
higy — " < o Vk € Q. (C.10)

It follows from (C.7) and (C.10) that h is in the (p,r)-neighborhood of a
stationary point hg, where hojy = 1/4/r if j € Q and hojy = 0 if j ¢ Q.
Clearly, such an h belongs to ‘HY U Hj. By contraposition, any point h €
Hy = S\ (H] UHY) satisfies (5.11). O

Proof of Lemma 5.2.4. For any given h € S"~! one can bound the deviation
of the gradient (or Hessian) from its mean using matrix Bernstein inequality
[115]. Let S, be an e-net of S™1. Then |S.| < (3/¢)" [127, Lemma 9.5]. We
can then bound the deviation over S”~! by a union bound over S..

Define V} := C, V(Cy,h), and H}' = C] Hys(Cy,h)Cy,. For the Bernoulli-
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Rademacher model in (A1), we have |z;;)| < 1. Therefore,

n n 3
|V;’(j)‘ = ‘in(l+s—j) (Z xi(1+s—t)h(t)> ‘
s=1 t=1

n 3
< n(Z Ih(t>l)
t=1
< n’v/n,

n n 2
H{Ejk)} = ‘3 Z Ti(14-5—7)Vi(1+s—k) (Z Ii(1+s—t)h(t)> ’
s=1 t=1
" 2
< 37’&(2 |h<t)!>
t=1

< 3n?.
It follows that [|V/]| < n®, and | H!|| < || H/||y < 3n.

Our goal is to bound the following average of independent random terms

with zero mean:

N
1
Vin(h) —EVr(h) = + Z (V) —EVY).

1
Hyp(h) = EHyo (h) = Z (H! —EH).
Since [|V7]| < n®, we have
IVi —EVY|| <20,

N
ZE IV — BV = NE|V!|* ~ [EVY|*) < N,
HZE (V! —EV)(V/ ~EV))T|| < NE V! + [EV/IP) < 2N

By the rectangular version of the matrix Bernstein inequality [115, Theorem
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1.6], and a union bound over S,

P[sup V1 (h) — EV0(h)]| < 7]
hESE

21 (2) oo g

(C.11)
Similarly, since ||H/|| < 3n?®, we have
|7} — EH]|| < 6n°,
N
HZE(H;’ - ]EH{’)QH < N|EH? — (EH?|| < 2N(3n%)? = 18Nn°.
i=1

By the symmetric version of the matrix Bernstein inequality [115, Theorem

1.4], and a union bound over S,

P[Sup ||HL”(h') — EHL//(h)|| S 7_:|
heSe

—N'T/2 ) (C.12)

3\
>1- (-) 2 (
= c) 2 e\ g e /3

Choose 7 = 9(1;:;6)”2, and € = 5 = %. By (C.11) and (C.12), there
exist constants ¢z, ¢4, > 0 (depending only on 6), such that: if N > C;’Zg log %,

then with probability at least 1 — e~%",

6(1 — 30)p?
sup ||V (h) — EV o (h)|| < 7 = %,
heSe n

0(1 — 30)p*
sup ||y (h) — EHpo(h)| < 7 = 22=30)p
heSe 3n

To finish the proof, we extrapolate the concentration bounds over S, to all
points in S"~1. For any h € S"!, there exists h’ € S, such that |h — /| <
€. Furthermore, thanks to the Lipschitz continuity of the gradient and the

Hessian,

IV (h) — Vi (W)l
< Coll - V(3 llal?) - will I|h — 1|
< 3n’e,
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|H'(h) — H'(h)]|
<N ColI? - (6 [Jazal]) - [l || o — 2|
< 6n36,

where 3 ||z;]|* and 6 ||z;]| are the Lipschitz constants of (-)® and 3(-)% on the
interval [— ||z;| , ||@;||]. We also use the fact that |z;;)| < 1, hence ||z;|| < /n

and ||Cy,]] < n. As a consequence,

sup [|Vpo(h) = EV i (h)]|

hesn—1
< sup [|Vpr(h) = EVpr(h)|| +2max sup [[Vi(h) — V{(#)]|
hES. i€n] ||h—r|<e
0(1 — 30)p?
§T+6n36:27':—( 3)p7
4n
sup %y/(h) - E%L//(h)H
hesn—1
< sup [[Vipr(h) —EV L (h)|
heSn—1
_ 2
< 6(1—30)p .

- 4n

Similarly,

sup |[[Hps(h) —EHp (h)]

hesSn—1
< sup |[Hp(h) — EHpo(h)|| +2max sup [ H(h) — H' ()|
hES. i€[n] ||h—n'||<e
30(1 — 360)p?
§T+12n36:37':—( g ) ,
n

sup [/_.]\-L//<h) — EﬁL“(h)H
hesSn—1
< sup |Hy(h) — BHp )| + sup [V5(h) — BV (8]
hesn—1 hesSn—1
o 2
< 6(1—30)p ‘

n

]

Proof of Lemma 5.2.5. We have Ezl- SV CTC, = I. We first bound
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%LN Zfil C; Cp, —1 H using the matrix Bernstein inequality. To this end,
we bound the spectral norm of IE(C; C.,)?, the eigenvalues of which can be
computed using the DFT of x;. The eigenvalue corresponding to the t-th

frequency satisfies

E [(Z e_ﬁ(k_nt/nxi(k)) (Z eﬁ(k—l)t/na:i(k))] 2

k=1 k=1

_E(le(k + > 2cos((j — k)t/n)x J>~’Uz(k>2

1<k<j<n
-1
§n9+¥x492+n(n—1)02

=nf + 3n(n — 1)6°.

Therefore,

[ (grone wz—f)QH

s
< X lcre ]+ 5
< e (n + 3n(n — 1)0*) + N
< —+3N+N

on
< 5N.

We also have

2

T

I 7
— T

By the matrix Bernstein inequality [115, Theorem 1.4],

1 —N272/2
P[HGn—N ;C;C“ - IH = T] =1- 2”eXp<5N+ (n? + 1)NT/3>'

0(1-30)p?
200n4k4 -

Set 7 = Then there exist constants c3, ¢4 > 0 (depending only on
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0) such that: if N > 032# log n, then with probability at least 1 — n =<,

0(1—360)p
C, —IH . 1
H@nN ZC : 200n4/14 (C.13)

Next, we bound ||CyR — C’f(CfTCf)*l/QH (similar to the proofs of [71,
Lemma 15] and [132, Lemma B.2]). Define Q = 52+ SN C, Cy,. Then

|CrR = CH(CfCp)T 2]

= |CH(CFQCH) TV = Cr(CfCp)72|

< o1(Cy) - [[(CQCH) ™2 = (Cf Cp) 72|
1(CFQCH)™ = (CiCy) ™|

<o) (T ) (C.14)
:ﬁmm”@ﬂxw*—«ﬁﬂrw
o?(Cy)
E azfcfc liciencreen™ 1|
= /<;2H [I + (Cf (Q —1)Cy)(Cy Cf)_l]_ - IH
= llcf@-nallcicn |
~ o 1-lef@ - noglllicien o
Al@ -1l 00— 30)p? (C.16)

SET 1R S T 1oon

The inequality (C.14) follows from the fact ([133, Theorem 6.2]) that, for
positive definite A and B,

-1 _ p-1 -1 _ p-1
V2| < A7 =B  _ A =B

-1/2 —
HA B Un(A_1/2+B_1/2> - 0'n<B—1/2) )

which in turn follows from the identity
(A71/2_B71/2)(A71/2_|_Bfl/2)_'_(Afl/Z_i_Bfl/Q)(Afl/Z_Bfl/Q) — Z(Afl_Bfl).

The inequality (C.15) is due to the fact that |[(I + A)~' — || < ||(I + A7 || A <

Lol for | A|| < 1. The last line (C.16) follows from (C.13) and

leF@ - eyl efen | < w1 < 5.
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The rest of Lemma 5.2.5 follows from the Lipschitz continuity of the ob-
jective function. Define U := CyR, and U’ := C¢(C{Cy)~"/?, which is an
orthogonal matrix. We have

ICsRI = U < U + 11U = U] < 2. (C.17)

Recall that for the Bernoulli-Rademacher model, ||z;|| < v/n and ||Cy,|| < n.
Then the difference of the gradients of L(h) = + Zf;l ¢(Cp,Uh) and L'(h) =
~ S #(C,,U'h) can be bounded as follows:

IVL(h) = Vi (h)]|
< max ||U"C, V4(Cy,UR) — U C, Vo (Cr, U'D) ||

1€[n]

< max ||U"C, V4(C,,UR) — U C, V4(C,,U'R)||

i€[n]

+max ||UTC, V(C,,U'R) = U'TC Vy(Co, U'R)||

i€[n]

< max [|U[| || C,
1€[n]

NABUN )] | = U] ]
+max U = U] Co| - Vit

lzl* 1T = U]

< 25y/n - max |G,
en

< 26m° ||U = U'|],
where the third inequality follows from the fact that V(-) is Lipschitz con-
tinous and bounded on compact sets — the Lipschitz constant of (-)* on the

interval [— ||U||l|z:])2, |U || |z:]])?] is 3(||U]| ||:]])?, and the upper bound of

(-)3] on the interval [— ||z, ||lz;]]] is ||=;]|*. Similarly the difference of the
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Hessians can be bounded as follows:

|HL(h) = Hp(R)]|
< max ||UTCT Hy(C,,UR)C, U — U'T G Hy(C,, U'h)C, U |

i€[n]

< max ||U"C, Hy(C,UR)C,,U — U C Hy(Co,U'R)Cy U ||

i€[n]

+max ||U"C} Hy(C,,U'h)C,o,U — U C, Hy(Co,, U'h)C,,U||

i€[n]

+max ||U'TC, Hy(Cy,U'h)Cop, U — U'TC Hy(Co, U'h)Cy U |

i€[n]

S 6T lall)] - 1T = U7 ]

< max [[U]*||C,
i€[n]

+max |0 = U U - (8 s

2 2
+max U = U G 3 ]
< 57 max 1| |l |* 1T = U
1€e|n
< 570 |lU = U],
where the third inequality uses the Lipschitz constant and upper bound of

3(-)2.

It follows from (C.16) and the above bounds that

sup ||VL(h) — %L/(h)H
hesn—1
< sup [[Vi(h) =V (h)]
hesn—1
6(1 — 30)p*
<25n* |U = U'|| < %
sup fAIL(h) - ﬁL/(h)H
hesn—1
< sup [[Hp(h) = Hy(h)| + sup [[Vi(h) = Vi (h)]
hesSn—1 hesn—1
0(1 — 30)p?

< 100n° ||U —U'|| <

]

Proof of Lemma 5.2.6. The set ‘H{ equals the union of (p, 1)-neighborhoods
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of {j:ej };}:17

inverse filter g. Therefore, by (C.1), every point h* € (C}—Cf)l/QC;lH,{

satisfies

and the columns of C'f_l = (), are the shifted versions of the

lCscien ™2 +e < V3

for some j € [n]. It follows that

|CrRR" £ ¢l
< ||CsRh* — (Jf(o}of)—l/%* +|[CHCTCp) T PR £ ey
0(1 — 36)p°

S T oom T V2o

< 2\/p,

where the second to last line follows from (C.16), and the last line follows

from (1 — 360)p*/(100n*) < (2 — V2)/p. O

C.2 Proofs for Section 5.3

Proof of Lemma 5.3.3. Clearly, L(h) < 0 for all h € S"!. For the Bernoulli-
Rademacher model in (A1), we have ||z;]| < v/n

T

1
&(Cy Rh) =~ |1C:,CrRA;

v

n
— 3zl ICrRA])*

Z _4n37

where the first inequality follows from the Cauchy-Schwarz inequality, and
the second inequality follows from ||C;Rh|| < ||CyR|| < 2 (see (C.17)). Then

L(h) = ¥ sz\il Li > —4n®.
We can bound the the norm of V(h) and Hp(h) similarly. To bound
IVL(Rh)||, we observe that

(CLV6(CyRR) )| < Nl IV 6(Cy RR)|
< Jlzall x va(|lz|l [CRR)?
< v |zl *los )P
< 8n*/n,
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and hence

IVL(h) =

N

1

¥ 2 RTCV4(Cy Rh)
i=1

N
< R OT|l| 5 D2 CLvu(Cy B

i=1

< [[RTCF | x v _max  [(C;Vo(CyRR)))|

1€[N], j€[n]

< 16n°.
To bound ||Hy(h)]|, we have

|(C Hy(Cy RR)Co, )y | < Nlill” 1 Ho (Cy R
< lll” x 3(l|ill 1y RAII)
<3 laill* | Cr BRI

< 12n?,
and hence
L
i=1
L
<|[RTCT ||| D_ ChHo(Cp RR)Cs, ||| C1R|
i=1
< ||CsR|? Cl Hy(CyRh)Cy,)(
SICHRIF xn_ max |7 HlCo RI)C )
< 48n3.
[
Proof of Lemma 5.3.4. For z L h, and I/ = t2 = Itz T (2) = L(K),

L VRN P
L(0) = L(h), and V3(0) = V(h). By the mean value theorem, there exists a

convex combination h” of h and b’ such that L(h')— L(h) = (W' —h, V(R")),
and a convex combination of A" of h and h” such that V(h") — V(h) =
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Hp(h")(h" — h). It follows that

|[L(W) = L(h) = (=, V(W)
W= h,Vi(h")) = (= V(b))

I
I

< [ —h =z, V(K")| + [(z, VL(R") = VL(h))]
2
z
< L yu )+ el s ) i
L+4/14 ]z

2
< @ x 1603 + 480 ||z |h — /|

< 64n° |||,

where the third inequality follows from Lemma 5.3.3, and the last inequality
follows from the fact that ||h — R/|| < ||z O

Proof of Lemma 5.3.5. Suppose the columns of matrix V € R™ ™1 (resp.
V' € R™(™=1) form a orthonormal basis for the tangent subspace at h (resp.
h'). Then a matrix representation of DA(h) in (5.15) as a mapping from the
tangent space of h to the tangent space at h’ with respect to the bases of
these spaces is V'V (I,,_1 — vV T HL(R)V).

Note that |det(V’T V)| does not depend on the specific choice of orthogonal
bases V' and V' (multiplication by an orthonormal matrix does not change
|det(-)|). Therefore, we consider the following construction of V' and V.
Suppose the columns of V5 € R™ (™2 form an orthonormal basis for the
intersection of the tangent spaces at h and at h'. Let ¢ :== (h,h') < 1, then it
is easy to verify that V = [V}, ﬁ(h’ —ch)] and V' := [V, ———(ch/ — h)]

V1-=c2
are valid orthonormal bases. It follows that

Lico O
det(V/TV)| = | T2 TR

= |el.

01><(n—2) C

Since (h,h') = (h, h—’YﬁL(h»/Hh_fV@L(h)H - HhH2/Hh_7§L(h)H -

1/ Hh - 'yﬁL(h)H > 0, we have |det(V'TV)| = [(h, }')| > 0.
By Lemma 5.3.3, for all h € S™71,

| Am)|| < N+ 192
< 48n° + 16n° = 64n°.
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Therefore I,,_1 — 7VTﬁIL(h)V is strictly positive definite for v < 1/(64n?).
It follows that

det(DA(R))| = |det(V'TV)| - |det (L1 — vV Hr(h)V)| > 0.

]

Proof of Corollary 5.3.2. Since CfRiz tej
Cauchy-Schwarz inequality

< 2,/p for some j € [n], by the

|75y 0 F(R) - Frep)|_ < va|crrixe,

<2y/pn.  (C.18)
Equivalently, the circular convolution operators satisfy

|CsCri — Ce; || < 2¢/Pm.
It follows that

[ £ 85 (@a)ll = |[Cou b £ S(a2)

— 0y Cp = e < €5 Crg — | - ]

< 2y/pn - |||
It follows from (C.18) that
~ EV-IG-D)(k—1)
\F ([ x F(RR)gy —e™ 7 [ < 2y/pn,

for all k € [n]. Therefore,

) 1—2,/pm
F(Rh —
PR = 5T

Since minyep |F(RR) @] = 04(Cpi), and maxgep [F(Hal = I1F(F)]o <

V7 £l we have C
1—2
Coi) 2 g

Combining the above bound with the following

|enits £ 8:0)| = ||orri+e;

<245,
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we have

| x50 =|r+s0)|
Newv=sd] _, ~ vmin

- 0,(Cry,) - 1—-2./pn
2, /pm
= =7l
v pn
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