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ABSTRACT 

Two by one (2 × 1) optically coupled electrically isolated vertical cavity surface emitting 

laser (VCSEL) arrays have been studied both theoretically and experimentally. Because of the 

tunable gain/loss profile in the array, the coupled laser system is non-Hermitian in analogy with 

non-Hermitian quantum mechanics. The experimentally observed optical mode tuning and beam 

steering are inherently connected to the non-Hermiticity of the system. Theoretical investigation 

of the mode tuning mechanism is conducted first by coupled mode analysis, and then in a more 

comprehensive coupled rate equation analysis. The theoretical analysis reveals the unique mode 

tuning mechanism in coupled VCSEL arrays and is shown to be in excellent agreement with 

experimental characterization. Experimentally, 2 × 1 optically coupled electrically isolated 

VCSEL arrays have been designed, fabricated, and characterized. We perform two-dimensional 

characterizations by varying the two independently controlled injection currents into each array 

and recording the laser output power, spectra, near-field intensity profile, and far-field intensity 

profile. Two-dimensional maps of the output optical power, interference visibility, and beam 

steering angles versus the two injection currents are plotted as concise representations of the 

mode tuning behavior controlled by the current tuning. Arrays with built-in asymmetry between 

the two lasers demonstrate that the mode tuning behavior can also be engineered by the degree of 

asymmetry. The coupling coefficient is extracted from the characterizations. The theoretical and 

experimental investigations presented in this work reveal the unique mode tuning mechanism in 

weakly coupled diode laser arrays and will guide the future pursuit of improved functionalities in 

coupled VCSEL arrays. 
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CHAPTER 1: INTRODUCTION 

Coherently coupled semiconductor laser arrays have been studied experimentally and 

theoretically for more than four decades [1-11]. In addition to efforts towards achieving higher 

brightness and larger two-dimensional (2D) coherent arrays [12-16], another direction of recent 

research is focused on understanding and engineering of the interaction between two lasers under 

controlled nonuniformity between them [4, 17-31], which is the main theme of this dissertation. 

Through the mutual coupling and interaction between two semiconductor lasers, intriguing 

functionalities that are unique and often superior to those available from single lasers have been 

demonstrated. Examples include electronic control of emission angle steering [9, 17, 18, 20, 32], 

enhancements of modulation bandwidth [33-37], superior side-mode suppression [26, 38], and 

enhanced sensing sensitivities [39, 40]. However, to further improve the observed functionalities 

in a controlled, scalable and uniform manner, we face challenges on both theoretical 

considerations and experimental implementation, both of which motivate the work here. 

Among the numerous reports exploring the interaction between two semiconductor 

lasers, a recent focus of research is the recognition of and emphasis on the tunable gain/loss 

profile in the coupled system [26, 30, 41-45]. Previously, coupled mode analysis mostly focused 

on the frequency detuning between resonators without emphasizing gain/loss contrast between 

them [46-49] with a rare exception [50]. In the past decade, the effects of gain/loss contrast 

between resonators have been extensively explored in the context of parity-time (PT) symmetry 

and non-Hermiticity in analogy to non-Hermitian quantum mechanics [26, 51-53]. Throughout 

this dissertation, we will repeatedly represent the gain/loss contrast between two coupled vertical 

cavity surface emitting lasers (VCSELs) in the form of non-Hermitian coupling matrix. In 

Chapter 2, we identify the gain/loss contrast between coupled VCSELs as the origin of beam 
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steering (relative phase tuning) and analyze coupled diode laser arrays in the context of non-

Hermitian photonics and PT symmetry [30, 54-56]. We discuss non-Hermiticity induced by the 

gain/loss contrast between two cavities, and also report non-Hermitian coupling induced by 

complex coupling coefficients [57]. 

In addition to recognizing the presence of gain/loss profile in coupled diode laser arrays, 

we present the first detailed analysis on the origin of gain/loss profile in coupled diode laser 

arrays [31]. For weakly coupled diode laser arrays, defined as the strength of optical coupling 

between cavities being weaker than the cavity loss rate (i.e., |𝜅| < 1/𝜏𝑝), we demonstrate that 

gain/loss contrast between the two cavities originates from the cavity frequency detuning 

between them. This counterintuitive conclusion is the result of the interaction between photons 

and injected carriers that is unique in coupled semiconductor diode lasers. This unique mode 

tuning mechanism is inherently nonlinear, due to the presence of lasing threshold, gain pinning, 

and amplitude-phase coupling in diode lasers [58]. Because of the limitations of linear coupled 

mode theory, we present coupled rate equations analysis as the foundation for modeling these 

mode tuning mechanisms in Chapter 3 [31]. Note that the origin of relative phase tuning and 

beam steering in coupled lasers in the past has had two seemingly contradictory explanations. 

One opinion is that the phase tuning originates from the difference in modal gain of lasers [18], 

while the other opinion is that it originates from the resonant frequency detuning between 

cavities [25]. In Chapter 3 we show that the two theories do not conflict and can be unified in 

coupled rate equation analysis [31].  

Besides analyzing the steady-state mode tuning and mode engineering in coupled diode 

lasers, the coupled rate equation analysis is also capable of analyzing the small-signal dynamics 
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of the coupled laser array, including stability of the steady-state modes and high-speed 

modulation response, outlined in Chapter 4. 

On the experimental side, the work described in this dissertation builds upon previous 

research on optically coupled electrically isolated VCSEL arrays [27, 32, 36, 59-61]. At the 

University of Illinois, 2 × 1 coherently coupled VCSEL arrays emitting at nominally 850 and 

980 nm have been studied both experimentally and theoretically for more than a decade [8-10, 

22, 23, 25, 27, 30, 35, 36, 60, 62, 63]. The device designs discussed in this dissertation employ 

photonic crystal (PhC) patterns for transverse mode confinement and stacked ion-implantation 

for carrier confinement and electrical isolation between individual lasers. Prior research on 

individual ion-implanted PhC VCSELs has shown that with proper design of the PhC pattern and 

ion-implantation apertures size, the individual VCSELs emit single-mode radiation over a large 

injection current range [64-67]. The VCSEL device designs in this dissertation utilized the 

designs from the prior research, which have been optimized for single-fundamental mode 

emission in each VCSEL as well as strong optical coupling between the two VCSEL elements of 

the array [8-10, 35, 36, 60, 62]. 

Electrical isolation between devices enables individual control of the carrier injection into 

each cavity. Previous research has shown that we can tune the array from two independent lasers 

into coherent phase-locking operation (phase synchronization between lasers) with the formation 

of a coherent supermode across both array elements by controlling the frequency detuning 

between the VCSELs through tuning the injection currents [27, 60]. Thus, when the VCSELs are 

phase-locked, they are also mutually coherent, as evident in the interference patterns in the far-

field intensity profile [22, 23, 63]. When the VCSELs are phase-locked, we can also tune the 
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relative phase between them by varying the injection currents, which leads to beam steering in 

the far field [23, 32, 68, 69].  

The mode tuning described above for 2 element arrays has previously been characterized 

mostly when one of the injection currents is fixed and the other is varied. In Chapter 5, we 

present 2-dimensional (2D) characterizations of coherence and phase tuning when both injection 

currents are swept continuously. Previously undocumented phenomena have been revealed: for 

example the decrease of the coupling region and the increase of beam steering sensitivity with 

increasing bias, and the different mode tuning behavior near threshold versus above threshold. 

We have also observed a decrease in threshold current and an increase in output power due to 

optical coupling, which suggests non-Hermitian (active) coupling. We demonstrate that the mode 

tuning behavior can be engineered by intentionally introducing built-in symmetry between the 

two coupled lasers [56, 70]. Finally, by combining the theoretical analysis and experimental 

characterizations, we extract the coupling coefficient from the characterizations of the arrays, 

and is also included in Chapter 5.  

The work presented in this dissertation is an advancement in the understanding and 

engineering of the interaction between two diode lasers. Chapters 2, 3 and 4 present theoretical 

methods in the modeling of coupled laser arrays, from the simple non-Hermitian coupled mode 

theory, to the coupled rate equations. Chapter 5 presents experimental progress on 

characterizations of the array operation and engineering the array operation through built-in 

asymmetries. The summary of this Dissertation and possible future research directions are 

included in Chapter 6. 
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CHAPTER 2: COUPLED MODE THEORY AND NON-HERMITICITY 

Coupled mode theory (CMT) is an essential tool in the study of coupled waveguides or 

resonators [1-4]. It has been used to investigate coupled laser arrays including coupled VCSEL 

arrays [5-8]. In this chapter, I will show that CMT offers a simple explanation of the origin of 

phase and intensity tuning that we experimentally observe in coupled laser arrays [7, 9-11]. 

Notions of parity-time (PT) symmetry and non-Hermiticity can be defined in CMT, in analogy to 

the non-Hermitian Hamiltonian in quantum mechanics [12-17]. This analogy has not only made 

photonics an experimentally accessible system to emulate non-Hermitian quantum mechanics, 

but it has also inspired numerous novel device designs and functionalities in photonics [15, 18-

21]. However, it will be shown that CMT requires gain/loss contrast and frequency detuning as 

input parameters, both of which are challenging to measure or control in experiments. This issue 

will be addressed in Chapter 3 by incorporating the coupled rate equations, an approach that is 

based on CMT yet also takes carrier dynamics into consideration. 

In this chapter, we first introduce the coupled mode theory in a side-by-side coupled laser 

system with a brief statement of definitions and assumptions. The detailed derivation of CMT 

from Maxwell’s equations can be found in Appendix A. We then introduce the concept of non-

Hermiticity, PT symmetry, and exceptional points in the context of CMT. The dependence of 

coupled mode on the frequency detuning and gain contrast between two resonators will be 

illustrated. Non-Hermiticity as the origin of beam steering will be shown. After establishing the 

language of CMT and non-Hermiticity, we will look into different systems for which CMT can 

be used, which includes coupled resonators without gain/loss profile (Section 2.3), coupled lasers 

with gain/loss profile (Section 2.4), and passive index-antiguided coupling (Section 2.5). We 

categorize the coupled system with the Hermiticity/non-Hermiticity of the coupling matrix, and 
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show different kinds of non-Hermiticity. In addition to the non-Hermiticity induced by gain/loss 

contrast between two lasers, we also show the situations when the coupling coefficient induces 

non-Hermiticity, due to the gain splitting between normal modes.  

Herein we emphasize that the coupling coefficient may not always be real and positive, 

as is the case for passive evanescent coupling. The coupling coefficient is real-valued when the 

gain/loss in the array is uniform, or can be approximated as uniform within each cavity (for 

example in index-guided lasers where gain-guiding is negligible). In general, the coupling 

coefficients are complex numbers and should be interpreted as the splitting between complex 

frequencies of the two coupled modes (normal modes of the composite system). Any gain/loss 

mechanism that favors the in-phase mode (suppresses the out-of-phase mode) would introduce a 

negative imaginary part in the coupling coefficient, while any gain/loss mechanism that favors 

the out-of-phase mode would introduce a positive imaginary part. Also, the real part of the 

coupling coefficient may be negative, which we discuss in the index-antiguided coupling case. 

2.1 Temporal coupled mode theory 

Coupled mode theory was originally introduced in evanescently coupled index-guided 

waveguides [1, 2]. Although it has been shown to work well for gain-guided laser and even 

index-antiguided lasers as well [7, 22], here we introduce the concept in the context of two 

evanescently coupled index-guided lasers. Although edge-emitting semiconductor lasers have 

significant device structure differences with VCSELs, these differences are irrelevant for the 

construction of a simple model for laterally coupled VCSELs. Later in this chapter, we will 

discuss the generalization of coupled mode theory in index-antiguided lasers and in systems with 

nonuniform gain/loss profile. 
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In a system of two index-guided lasers that are laterally coupled (i.e. the coupling occurs 

perpendicular to the direction of light propagation), we can approximate this system with a 2D 

model in the spirit of the effective index method [23]. The effective index profile 𝜖𝐶(𝑥, 𝑧) is 

sketched in Figure 2.1(a). The two coupled lasers are modeled as two index-guided stripe 

waveguides coupled in the x-direction and propagating in the z-direction, with high-reflectivity 

mirrors terminating the waveguides at 𝑧 = 0 and 𝑧 = −𝐿. In other words, the longitudinal modes 

are in the z-direction and transverse modes are in the x-direction.   

(a)  

(b)  

(c)  

Figure 2.1: (a) Permittivity profile for the coupled laser array in a two-dimensional model, i.e., 

𝜖𝐶(𝑥, 𝑧). (b) Permittivity profile when cavity B is absent, i.e., 𝜖𝐴(𝑥, 𝑧). (c) Permittivity profile 

when cavity A is absent, i.e., 𝜖𝐵(𝑥, 𝑧). 
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With this index profile, we further simplify the problem by assuming that each laser only 

has emission in a single optical mode. Then the total electric field in the array can be expanded 

using the individual laser modes as the basis functions: 

ℰ𝑡𝑜𝑡(𝑥, 𝑧, 𝑡) = 𝑢𝐴(𝑥, 𝑧)ℰ𝐴(𝑡) + 𝑢𝐵(𝑥, 𝑧)ℰ𝐵(𝑡) (2.1) 

where 𝑢𝐴(𝑥, 𝑧) and  𝑢𝐵(𝑥, 𝑧) are the basis functions (i.e., spatial mode profiles when Laser A and 

B are isolated), and ℰ𝐴,𝐵(𝑡) are the complex field amplitudes that describe the temporal variation.  

[ℰ𝐴,𝐵(𝑡) can be further identified as ℰ𝐴,𝐵(𝑡) = 𝐸𝐴,𝐵(𝑡)𝑒
−𝑖𝜔𝑡 = |𝐸𝐴,𝐵(𝑡)|𝑒

−𝑖𝜙𝐴,𝐵(𝑡)𝑒−𝑖𝜔𝑡, where 

we can factor out the slowly varying envelope 𝐸𝐴,𝐵(𝑡) from the fast oscillating 𝑒−𝑖𝜔𝑡 term.] The 

terms ℰ𝐴,𝐵(𝑡) are the unknown variables describing the coupled modes and their temporal 

evolution that we want to solve using the coupled mode theory. The ℰ𝐴,𝐵(𝑡) are governed by the 

coupled mode equations: 

ℰ̇𝐴 = −𝑖𝜔𝐴ℰ𝐴 + 𝛾𝐴ℰ𝐴 + 𝑖𝜅𝐴𝐵ℰ𝐵 (2.2) 

ℰ̇𝐵 = −𝑖𝜔𝐵ℰ𝐵 + 𝛾𝐵ℰ𝐵 + 𝑖𝜅𝐵𝐴ℰ𝐴 (2.3) 

where 𝜔𝐴,𝐵 are the local resonant frequencies of cavity A and B, 𝛾𝐴,𝐵 are the local modal 

gain/loss in cavities A and B (positive represents gain, negative represents loss), and 𝜅𝐴𝐵,𝐵𝐴 are 

the coupling coefficients. Equations (2.2) and (2.3) can also be derived from Maxwell’s 

equations, the details of which are given in Appendix A. 

For evanescent coupling, arising for example from the index profile shown in Figure 

2.1(a), we have 

𝜅𝐴𝐵 =
𝜔

2

∫ 𝑢𝐴
∗(𝜖𝐶 − 𝜖𝐵)𝑢𝐵𝑑𝑥

∞

−∞

∫ 𝑢𝐴
∗𝜖𝐴𝑢𝐴𝑑𝑥

∞

−∞

≡
𝜔

2

⟨𝑢𝐴|𝜖𝐶 − 𝜖𝐵|𝑢𝐵⟩

⟨𝑢𝐴|𝜖𝐴|𝑢𝐴⟩
 (2.4) 

𝜅𝐵𝐴 =
𝜔

2

∫ 𝑢𝐵
∗ (𝜖𝐶 − 𝜖𝐴)𝑢𝐴𝑑𝑥

∞

−∞

∫ 𝑢𝐵
∗ 𝜖𝐵𝑢𝐵𝑑𝑥

∞

−∞

=
𝜔

2

⟨𝑢𝐵|𝜖𝐶 − 𝜖𝐴|𝑢𝐴⟩

⟨𝑢𝐵|𝜖𝐵|𝑢𝐵⟩
 (2.5) 
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where 𝜖𝐴,𝐵(𝑥) are the cross-sectional index profile for the isolated lasers, sketched in Figure 

2.1(b) and (c) respectively. We have dropped the dependence on 𝑧 in 𝜖𝐶,𝐴,𝐵(𝑥) because they are 

invariant along the 𝑧-axis in this simple model, and hence 𝜅𝐴𝐵,𝐵𝐴 are also invariant along the 𝑧-

axis. 

In a compact form, we can write Equations (2.2) and (2.3) as 

𝑑

𝑑𝑡
�̅� = −𝑖�̿��̅� (2.6) 

where �̅� ≡ [
ℰ𝐴
ℰ𝐵
], �̿� ≡ [

𝜔𝐴 + 𝑖𝛾𝐴 −𝜅𝐴𝐵
−𝜅𝐵𝐴 𝜔𝐵 + 𝑖𝛾𝐵

]. We call �̿� the coupling matrix. We will show in 

the following paragraphs that eigenvectors of �̿� represent normal modes in the coupled laser 

array, and the eigenvalues of �̿� are the complex-valued frequencies of the normal modes.  

Demanding that the field amplitudes be time-harmonic, i.e.,   

�̅� ≡ [
ℰ𝐴
ℰ𝐵
] = [

𝐸𝐴
𝐸𝐵
] 𝑒−𝑖𝜔𝑡 ≡ �̅�𝑒−𝑖𝜔𝑡 (2.7) 

 and that  𝐸𝐴,𝐵 have no temporal dependence, Equation (2.6) becomes an eigenvalue problem: 

�̿��̅� = 𝜔�̅� (2.8) 

The eigenvalue 𝜔 represents the complex frequency of the normal modes, with real part 

representing the angular frequency and imaginary part representing the gain/loss coefficient. The 

eigenvector �̅�  represents the composition of the normal modes, which are superpositions of the 

two individual modes of the isolated lasers. For example, in the case of two identical passive 

lossless resonators that are evanescently coupled (discussed in Section 2.3),  �̿� = [
𝜔0 −𝜅
−𝜅 𝜔0

]. 

The eigenvectors of �̿� are �̅� = [
1
1
] and [

1
−1
], representing the symmetrical (𝐸+ = 𝑢𝐴 + 𝑢𝐵) and 

anti-symmetrical (𝐸_ = 𝑢𝐴 − 𝑢𝐵) normal modes. The eigenvalues are 𝜔 = 𝜔0 ∓ 𝜅, with no 
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imaginary component, which is consistent with the frequency splitting due to coupling and the 

assumption that the system is passive and lossless. 

In general, the eigenvalue equation (2.8) has solution as 

𝜔 =
𝜔𝐴 + 𝜔𝐵

2
+
𝑖(𝛾𝐴 + 𝛾𝐵)

2
± [𝜅𝐴𝐵𝜅𝐵𝐴 + (

𝜔𝐴 − 𝜔𝐵
2

)
2

− (
𝛾𝐴 − 𝛾𝐵
2

)
2

+ 𝑖
(𝜔𝐴 − 𝜔𝐵)(𝛾𝐴 − 𝛾𝐵)

2
]

1
2

 

 

 

(2.9) 

and �̅� can be calculated from eigenvalues by  

𝐸𝐵
𝐸𝐴
=

−𝑖𝜅𝐵𝐴
𝑖(𝜔 − 𝜔𝐵) + 𝛾𝐵

 (2.10) 

In the context of coupled VCSEL arrays, the magnitude |𝐸𝐵/𝐸𝐴| controls the near field intensity 

profile of the coupled mode, while the phase 𝐴𝑟𝑔(𝐸𝐵/𝐸𝐴) determines the relative phase 

difference between the fields emitted from the two array elements, which overall leads to beam 

steering in the far field (i.e. off normal-axis propagation direction) [7, 10, 24]. Equations (2.9) 

and (2.10) take simpler forms when there is only gain contrast or frequency detuning, as 

discussed in detail in Refs. [23, 25-27], for example. We will apply these discussions later in the 

context of coupled VCSEL arrays to explain how gain/loss contrast induces phase tuning and 

how frequency detuning induces near field intensity tuning.  

It is convenient to categorize coupled resonator arrays according to the mathematical 

properties of �̿�, and doing so can provide mathematical insight. For example, passive coupled 

resonators (lossless or with uniform loss) have real-valued �̿�, hence the eigenvectors are real and 

the relative phase between two resonators is either 0 or 𝜋, which is not tunable. On the other 

hand, two coupled lasers with gain/loss contrast between cavities would have a complex and 

non-Hermitian �̿�. A matrix is said to be Hermitian if it is equal to its adjoint (i.e.�̿� = �̿�†). The 
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identification of a non-Hermitian �̿� inherently provides the explanation for the phase tuning 

(beam steering) that has been observed for decades [9, 28, 29], and also provides new 

perspective. Non-Hermitian �̿� predicts intriguing new properties, such as operation around 

exceptional points which possess collapsed identical modes [20, 21, 30]. 

2.2 Non-Hermiticity, parity-time symmetry, and exceptional points 

We see that Equation (2.6) has the same form as the Schrödinger equation in quantum 

mechanics: (
𝑑

𝑑𝑡
𝜓 = −

𝑖

ℏ
 �̂�𝜓), with the coupling matrix �̿� playing the same role as the 

Hamiltonian, �̂�. This shared mathematical form enables an analogy between two coupled 

resonators and a quantum-mechanical system. Parity-time (PT) symmetry and non-Hermiticity 

can be defined in analogy to non-Hermitian quantum mechanics [12, 31]. In this dissertation, we 

define the Hermiticity/non-Hermiticity of the system according to the Hermiticity/non-

Hermiticity of the coupling matrix �̿�. This is in analogy with the Hamiltonian of a quantum 

particle inhabiting a coordinate axis that consists of just the two points 𝑥 = ±1 (in which case 

the Hamiltonian is also a 2 × 2 matrix) [31]. When there is no gain/loss in the system (i.e., 

everything is passive and energy is conserved), �̿� is Hermitian (i.e., �̿�† = �̿�, 𝛾𝐴 = 𝛾𝐵 = 0, 

𝜅𝐴𝐵 = 𝜅𝐵𝐴
∗ ) [23, 32]. With the addition of gain/loss into the system, �̿� is in general non-

Hermitian. Two origins of non-Hermiticity, namely gain/loss contrast that can introduce nonzero 

𝛾𝐴,𝐵 and/or non-Hermitian coupling (i.e., 𝜅𝐴𝐵 ≠ 𝜅𝐵𝐴
∗ ), will both be discussed in the following 

sections.  

PT symmetry is a special type of non-Hermiticity that has been a focus of research 

recently because of its intriguing properties. If we introduce precisely balanced gain/loss into two 

cavities that are otherwise identical (i.e., 𝜔𝐴 = 𝜔𝐵, 𝛾𝐴 = −𝛾𝐵) and assuming that the gain/loss 
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are uniform within each cavity, then �̿� is non-Hermitian but remains PT symmetric (i.e., �̿�† ≠

�̿�, �̂��̂��̿� = �̿� ). 

The parity operator �̂� flips the signs of all spatial coordinates. Within the formulism of 

coupled mode theory [i.e. Equation (2.6)], it switches subscript 𝐴 with 𝐵. The time-reversal 

operator �̂� reverses the sign of time (i.e., 𝑡 → −𝑡). When the coupled mode equation is 

considered, time reversal is equivalent to complex conjugation 𝑖 →  −𝑖. This is formally in 

analogy with quantum mechanics theory, but also it has an intuitive meaning in optics: it 

interchanges gain with loss. The total effect of �̂��̂� operation on �̿� is  

[�̂��̂��̿�]
𝑚,𝑛

= �̿�3−𝑚,3−𝑛
∗  (2.11) 

where 𝑚, 𝑛 = 1,2 are the matrix indexes. In other words, if  

�̿� = [
𝜔𝐴 + 𝑖𝛾𝐴 −𝜅𝐴𝐵
−𝜅𝐵𝐴 𝜔𝐵 + 𝑖𝛾𝐵

] 

then we have 

�̂��̂��̿� = [
𝜔𝐵 − 𝑖𝛾𝐵 −𝜅𝐵𝐴

∗

−𝜅𝐴𝐵
∗ 𝜔𝐴 − 𝑖𝛾𝐴

] (2.11𝑏) 

PT symmetric �̿� requires that �̂��̂��̿� = �̿�, which requires 

{

𝜔𝐴 = 𝜔𝐵
𝛾𝐴 = −𝛾𝐵
𝜅𝐴𝐵 = 𝜅𝐵𝐴

∗
 (2.12) 

In general, Hermitian matrix �̿� has real spectra and orthogonal eigenvectors, while non-

Hermitian �̿� may have complex spectra and non-orthogonal eigenvectors. PT symmetry is a 

special kind of non-Hermiticity because PT-symmetric �̿�  may also have real spectra. When the 

system possesses unbroken PT symmetry, meaning that both the system and its eigenmodes are 

PT symmetric, the spectra are real. On the other hand, when the system possesses broken PT 

symmetry, meaning that �̿� is PT symmetric but its eigenmodes are not, the spectra are complex. 
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Moreover, PT-symmetric �̿� may have collapsed eigenvectors, meaning that the two sets of 

eigenvectors become identical and no longer span a 2D vector space. This collapse of 

eigenvectors happens under certain conditions and are called exceptional points. Intriguing 

phenomena including enhanced sensing sensitivity have been demonstrated around the 

exceptional points [20, 21]. When the coupling coefficients are real and symmetrical (i.e., 𝜅𝐴𝐵 =

𝜅𝐵𝐴 = 𝜅), exceptional points are at 𝜔𝐴 = 𝜔𝐵, 𝛾𝐴 − 𝛾𝐵 = ±2𝜅. More generally, exceptional 

points can be identified when Equation (2.9) has two identical roots, meaning that  

𝜅𝐴𝐵𝜅𝐵𝐴 + (
𝜔𝐴 −𝜔𝐵

2
)
2

− (
𝛾𝐴 − 𝛾𝐵
2

)
2

+ 𝑖
(𝜔𝐴 − 𝜔𝐵)(𝛾𝐴 − 𝛾𝐵)

2
= 0 (2.13) 

Now let us see how the coupled modes �̅� vary with gain/loss contrast and frequency 

detuning in �̿�. For simplicity we set the coupling coefficients to be symmetric, real valued, and 

positive: 𝜅𝐴𝐵 = 𝜅𝐵𝐴 = 𝜅 > 0. This is equivalent to assuming negligible deviation in the coupling 

coefficients from the case of two evanescently coupled passive resonators. This assumption will 

be justified and further discussed in the following sections. 

When the two laser resonators of the array have different native resonant frequencies, but 

experience no gain/loss contrast (i.e., 𝛾𝐴 = 𝛾𝐵 = 0,𝜔𝐴 ≠ 𝜔𝐵), the coupling matrix �̿� is real and 

symmetrical (also Hermitian). The wavelength, modal gain, and field amplitude ratio (both 

magnitude and phase) of the coupled modes are derived from the eigenvalues and eigenvectors 

of �̿� and are illustrated in Figure 2.2 [17]. This is the situation often described in textbooks, for 

example in [23]. The frequency detuning between the two native resonances changes the 

coupled-mode intensity distribution, such that the out-of-phase mode has more intensity in the 

cavity with higher natural resonant frequency, while the in-phase mode has more intensity in the 

cavity with lower natural resonant frequency. The degree of intensity distribution asymmetry 

increases with frequency detuning as shown in Figure 2.2(c). The fact that the eigenvector �̅� is 
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purely real for a real �̿� means no phase tuning or beam steering is induced since the phases 

remain constant as gain contrast varies, as shown in Figure 2.2(d) [17]. 

 

Figure 2.2: Effects of the frequency detuning on (a) wavelengths of the coupled modes; (b) gain 

of the coupled modes; (c) ratio of the field magnitudes in two cavities; and (d) relative phase 

between the fields in two cavities [17]. 

When the two resonators of the array have identical native resonant frequency, but 

experience gain contrast, i.e., 𝜔𝐴 = 𝜔𝐵, 𝛾𝐴 ≠ 𝛾𝐵, it is found that �̿� is non-Hermitian but PT 

symmetric. In this case the dependence of the coupled modes with varying gain contrast is 

illustrated in Figure 2.3. Notice that in Figure 2.3 there are bifurcation points at the onset of 

degeneracy with further variation of gain contrast [Figures 2.3(a) and (d)] or at the onset of 

multiple solutions from degeneracy with further gain contrast [Figures 2.3(b) and (c)]. The 

bifurcation points are the exceptional points at Δ𝛾 = ±2𝜅. The exceptional points separate the 

regimes of unbroken PT symmetry and broken PT symmetry. When |Δ𝛾| < 2𝜅, the array 

possesses unbroken PT symmetry, meaning that both the system and the eigenmodes are PT 

symmetric. The unbroken-PT-symmetric eigenmodes can be written as �̅� = [
1
𝑒𝑖𝜙

] with balanced 

intensity distribution. When |Δ𝛾| > 2𝜅, the array possesses broken PT symmetry, meaning that 

the system is PT symmetric but its eigenmodes are not. The broken-PT-symmetric eigenmodes 

can be written as �̅� = [
1

±𝑖𝑒𝜃
], with unbalanced intensity distribution and a ±

𝜋

2
 relative phase. If 

we can control Δ𝛾 and increase Δ𝛾 from zero, we will first be in the unbroken PT symmetry 

regime, where the relative phase is tuned but the relative intensity between two cavities stays 
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balanced. As the gain contrast Δ𝛾 increases further, we hit the exceptional points where the 

amount of relative phase tuning is at its maximum, 𝜋/2. Upon obtaining the π/2 phase tuning 

limit, further increase of the gain contrast results in driving the array into the PT symmetry 

broken regime, where the relative phase is pinned at π/2 [see Figure 2.3(d)] while the intensity 

distribution of the coupled modes becomes asymmetric [see Figure 2.3(c)]. Previously in the 

experimental characterization of coupled laser arras, it was reported that the phase tuning does 

not exceed the limit of ±π/2; see for example Refs. [10, 24, 28]. 

It has also been observed in previous experiments that the mutual coherence between the 

cavities decreases when the π/2 phase tuning limit is reached [10, 24]. This loss of mutual 

coherence can be expected as the coupled modes become asymmetric and spatially concentrate 

into each of the single cavities, resulting in the simultaneous lasing of both coupled modes. The 

distinctive feature already mentioned in Figure 2.3 is the appearance of exceptional points or 

branching points at  𝛾𝐵 − 𝛾𝐴 = ±2𝜅, where the two eigenmodes collapse. Because of this 

collapse of eigenmodes, in Figure 2.3(b) and Figure 2.3(c) the modes are not labeled as in-phase 

or out-of-phase to avoid confusion; unlike the case in Figure 2.4, the coupled modes cannot be 

traced back across the exceptional point to be identified as in-phase or out-of-phase modes. 

 

Figure 2.3: Effect of gain contrast without frequency detuning on (a) wavelengths of the coupled 

modes; (b) gain of the coupled modes; (c) ratio of the field magnitudes in two cavities; and (d) 

relative phase between the fields in two cavities [17]. 

When both gain contrast and frequency detuning exist, the coupled modes are controlled 

by the interplay between frequency detuning and gain contrast. Although this is the most 
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complicated case, often it realistically corresponds to our VCSEL arrays analyzed in Chapter 5. 

In the coupled VCSEL diode arrays, both frequency detuning and simultaneously gain contrast 

can be driven by asymmetric current injection into the resonators of the array. If we take both the 

frequency detuning and the gain contrast to be linearly dependent on the injection current 

difference (this assumption is not accurate and will be improved in Chapter 3), the dependence of 

the eigenmodes in this situation are illustrated in Figure 2.4. The perfect degeneracies evident in 

the ideal PT-symmetric case (Figure 2.3) do not exist when frequency detuning is present. Also 

note that the gain of the in-phase mode is higher than the out-of-phase mode when the current 

injection difference is nonzero in Figure 2.4(b). This is because the change of intensity 

distribution of the in-phase mode, as a result of simultaneous frequency detuning and gain 

contrast, enhances its spatial overlap with the spatially non-uniform gain, while the intensity 

distribution change of the out-of-phase mode does the opposite. Whether it is the in-phase mode 

or out-of-phase mode that gets higher gain depends on the sign of (𝜔𝐴 −𝜔𝐵)(𝛾𝐴 − 𝛾𝐵). For the 

out-of-phase mode to have higher gain requires the local resonant frequency to increase with 

increasing local gain, for example if carrier induced index suppression dominates the thermal 

effect. It has been known that evanescently coupled VCSEL arrays tend to operate in the out-of-

phase mode due to less spatial overlap with the lossy inter-element area, although for most 

applications the in-phase mode is preferred. The gain discrimination preference for the in-phase 

mode suggests that with sufficiently large current injection difference, the mode may hop from 

out-of-phase mode to in-phase mode, offering a novel modal control method and 

reconfigurability. This mode hopping behavior is observed experimentally and discussed in Ref 

[17]. Figure 2.4(d) also illustrates that the phase tuning limit is less than π/2. Hence to achieve 
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the theoretical limit of π/2 phase tuning, one must minimize the frequency detuning 

accompanying the spatially non-uniform pumping. 

 

Figure 2.4: Effect of co-existing gain contrast and frequency detuning on (a) wavelengths of the 

coupled modes; (b) gain of the coupled modes; (c) ratio of the field magnitudes in two cavities; 

and (d) relative phase between the field in two cavities. It is assumed that the local changes of 

gain and frequency are both linearly dependent on the current difference, with Δ𝛾 = −4Δ𝜔, and 

the maximum gain contrast at the edge of the graphs are Δ𝛾𝑚𝑎𝑥 = 4𝜅 [17]. 

Using coupled mode theory with a non-Hermitian coupling matrix introduced in this 

section, we are able to explain the experimentally observed near-field intensity tuning, relative 

phase tuning, and mode hopping behavior (all discussed in Chapter 5) with a small set of 

parameters [17]. We have also experimentally identified PT-symmetry-breaking modes that have 

�̅� = [
1
𝑖𝑒𝜃

], as is also discussed in Chapter 5 and Ref. [17].  

2.3 Coupling matrix in evanescently coupled passive resonators 

For passive resonators in the geometry of Figure 2.1, if the loss in the system is negligible 

(i.e., passive high-Q resonators) or if the loss is a uniform background, then the coupling 

coefficients are real-valued, because 𝜖𝐶(𝑥) and 𝜖𝐴,𝐵(𝑥) are real and 𝑢𝐴,𝐵(𝑥) can always be 

chosen to be real-valued [and they should be chosen that way so that the phase information is 

solely represented by the complex-valued temporally oscillating ℰ𝐴,𝐵(𝑡)]. As discussed in 

Appendix A, when the loss is a uniform background, we include it in the constant background 

conductivity 𝜎 instead of 𝜖𝐶(𝑥) and 𝜖𝐴,𝐵(𝑥). When the loss/gain profile is not uniform, for 

example, when there exists gain-guiding, then we have complex 𝜖𝐶(𝑥) and 𝜖𝐴,𝐵(𝑥). For index-
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guided evanescent coupling, when the amount of gain-guiding is negligible, we have real-valued 

𝜖𝐶(𝑥) and 𝜖𝐴,𝐵(𝑥), and the coupling coefficient is real. Furthermore, energy conservation 

requires that 𝜅𝐴𝐵 = 𝜅𝐵𝐴
∗  [23], which yields 𝜅𝐴𝐵 = 𝜅𝐵𝐴 ≡ 𝜅 in case of real coupling coefficients. 

We will show next that in index-guided evanescent coupling, the coupling coefficient is also 

always positive. 

When the two waveguides in Figure 2.1 are identical, the two normal modes of the array 

are either symmetrical (ℰ𝐴 = ℰ𝐵) or anti-symmetrical (ℰ𝐴 = −ℰ𝐵). Their frequencies are slightly 

different, with 

𝜔− − 𝜔+ = 2𝜅 (2.14) 

where 𝜔−,+ are the resonant frequencies of the anti-symmetrical and symmetrical normal modes, 

respectively. The anti-symmetrical mode (i.e., out-of-phase mode) has a null between the two 

resonators, while the symmetrical mode (i.e., in-phase mode) does not. This intuitively suggests 

that the anti-symmetrical mode is a higher-order normal mode, and hence it has lower effective 

index and higher frequency, which makes 𝜅 positive according to Equation (2.14). When it 

comes to index-antiguiding discussed in Section 2.5, we will see that the anti-symmetrical mode 

may also have one less node than the symmetrical mode, which leads to negative coupling 

coefficient. 

To recap, the coupling coefficients in evanescently coupled passive resonators (lossless 

or with uniform loss) are real, positive, and symmetrical.  

When the system is lossless, it is obvious that 𝛾𝐴 = 𝛾𝐵 = 0, and that the coupling matrix 

�̿� is real and symmetrical (also Hermitian). When uniform loss exists, we have 𝛾𝐴 = 𝛾𝐵 = 𝛾 <

0. However, we can extract a common loss factor 𝑒𝛾𝑡 from the temporal dependence of the field 

amplitudes, and then �̿� is Hermitian. Because the behavior of the coupled system is often 
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independent of this common loss 𝛾, it is convenient to reestablish �̿� as Hermitian. In the scope 

of this dissertation, when we claim that �̿� is Hermitian or PT-symmetric, we always allow 

ourselves to extract a common gain/loss factor. When non-Hermiticity is discussed, this sort of 

“gauge transformation” is often allowed [15, 18]. 

2.4 Coupling matrix in coupled lasers with gain/loss profile 

From the previous section, we see that the coupling coefficients in coupled passive 

resonators (lossless or with uniform loss) are real, positive, and symmetrical. The coupling 

matrix �̿� is real and symmetrical (also Hermitian). In this section we will see how the situation 

changes when we include a gain/loss profile in the coupled system. Let us first look at the 

various types of gain/loss situations, and how we can treat them within coupled mode theory. For 

details of the derivations, please refer to Appendix A.  

First of all, we assume the mirror loss is spatially invariant and, as discussed in Appendix 

A, it is included in the theory through the spatially invariant conductivity σ. In fact, for any loss 

that is a constant background in the system, we include it in the constant conductivity 𝜎 (and also 

in the photon lifetime 𝜏𝑝). Spatially invariant loss does not introduce non-Hermiticity (at least 

not in an interesting way), so we extract it out of the coupling matrix. 

The gain/loss present in the individual cavities that result from photons interacting with 

the active medium will be tunable through the concentrations of electron-hole pairs injected into 

each cavity. In ion-implanted photonic-crystal coupled VCSEL arrays, discussed in more detail 

in Chapter 5 and Ref. [33], the electron-hole pairs are laterally confined in the cavity of each 

element and cannot cross the insulating area between the two lasers. Thus a difference in carrier 

concentrations will introduce non-Hermiticity through nonzero 𝛾𝐴 − 𝛾𝐵. To the first-order 

approximation of index-guiding, the gain/loss in each cavity is approximated as uniformly 
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distributed across the cavity mode [𝑢𝐴,𝐵(𝑥, 𝑧)] and is included in 𝑃𝐴,𝐵(𝑡). In other words, it is 

approximated that the gain/loss does not disturb the mode profile 𝑢𝐴,𝐵(𝑥, 𝑧), but merely 

introduces an imaginary part in the frequency [23], which is equivalent to gain/loss being 

spatially uniform across each 𝑢𝐴,𝐵(𝑥, 𝑧) (but not necessarily uniform across the composite 

system). Carrier densities in the individual cavities control 𝑃𝐴,𝐵(𝑡) and 𝑃𝐴,𝐵(𝑡), which determines 

𝛾𝐴,𝐵. This is the main experimental control we have for tuning the coupled mode. It introduces 

non-Hermiticity through 𝑖𝛾𝐴,𝐵, but the coupling coefficients are still real and Hermitian (i.e., 

𝜅𝐴𝐵 = 𝜅𝐵𝐴 and are both real) when the actual spatial profile of gain/loss is neglected. 

For a gain/loss profile that is not uniformly distributed in the individual cavities, they are 

included in 𝜖𝐴,𝐵(𝑥) and/or 𝜖𝑟(𝑥). This kind of gain/loss profile introduces non-Hermiticity 

through complex non-Hermitian coupling coefficients [34, 35]. There are two cases that 

introduce complex coupling coefficient, depending upon the location of the gain/loss profile. 

Consider gain-guiding in an individual laser. When gain-guiding becomes comparable to the 

index-guiding, it perturbs the individual laser mode profiles 𝑢𝐴,𝐵(𝑥) and hence should be 

included in 𝜖𝐴,𝐵(𝑥) and 𝜖𝐶(𝑥). The other case is any gain/loss that is in the coupling region, 

which may not be strong enough to perturb 𝑢𝐴,𝐵(𝑥), but induces gain splitting between normal 

modes [36]. For example, loss in the coupling region typically suppresses the in-phase mode 

while it favors the out-of-phase mode [37], which introduces a positive imaginary part in the 

coupling coefficient. For this type of gain/loss, when it is weak compared to the real index 

profile, it could be conveniently treated by considering it only in 𝜖𝐶(𝑥) but not in 𝜖𝐴,𝐵(𝑥). In the 

following, these two types of gain/loss that introduce complex coupling coefficient will be 

discussed. 
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Complex-valued coupling coefficients in gain-guided lasers have been studied previously 

[22, 38]. The evaluation of coupling coefficients can be carried out using Equation (2.4) and 

(2.5), with 𝜖𝐶(𝑥), 𝜖𝐴,𝐵(𝑥), 𝑢𝐴,𝐵(𝑥) all being complex-valued. The complex coupling coefficients 

can be understood with two intuitive interpretations. The first interpretation is through the phase 

delay in the wave propagation between cavities. Optical modes in gain-guided lasers have a 

curved phase-front [39]. (In comparison, index-guided lasers have a flat phase-front.) In other 

words, the optical wave propagates not only in the 𝑧-direction, but also laterally in the 𝑥-

direction, and the projection of 𝑘 vector in the lateral direction (𝑘𝑥) has a real-valued component. 

(In comparison, in evanescent coupling between two index-guided lasers, 𝑘𝑥 is purely imaginary 

in the coupling region between the two laser cores.) The existence of a real component in 𝑘𝑥 in 

the coupling region can be interpreted as a phase delay when the electro-magnetic waves travel 

from one cavity to another. This phase delay can be expressed by rewriting the coupled mode 

equations in an equivalent form to Equations (2.2) and (2.3): 

ℰ̇𝐴 = −𝑖𝜔𝐴ℰ𝐴 + 𝛾𝐴ℰ𝐴 + 𝑖|𝜅𝐴𝐵|ℰ𝐵(𝑡 − 𝜏𝐴𝐵) (2.15𝑎) 

ℰ̇𝐵 = −𝑖𝜔𝐵ℰ𝐵 + 𝛾𝐵ℰ𝐵 + 𝑖|𝜅𝐵𝐴|ℰ𝐴(𝑡 − 𝜏𝐵𝐴) (2.15𝑏) 

where the coupling coefficients can be entirely real and the phase angles in the coupling 

coefficients are absorbed to the time delays 𝜏𝐴𝐵,𝐵𝐴.  

The second interpretation of the complex coupling coefficient is through the gain splitting 

between the normal modes. When the two resonators have no detuning and no gain/loss contrast 

(𝜔𝐴 = 𝜔𝐵, 𝛾𝐴 = 𝛾𝐵), the frequency splitting between the two normal modes is simply twice the 

coupling coefficient, as stated in Equation (2.14) for the discussion of two passive identical 

resonators. When there is a spatially dependent gain/loss profile in the system, the two normal 

modes experience different amounts of gain/loss. We express gain/loss of the normal modes as 
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the imaginary part of the complex frequencies of the normal modes, and hence we have [36, 40, 

41] 

(𝜔− − 𝜔+) + 𝑖(𝛾− − 𝛾+) = 2𝜅 = 2(𝜅𝑟 + 𝑖𝜅𝑖) (2.16) 

where 𝛾−,+ are the gain/loss experienced by the anti-symmetrical and symmetrical normal modes, 

and 𝜅𝑟 and 𝜅𝑖 are the real and imaginary parts of the coupling coefficient. In particular, the 

imaginary part of the coupling coefficient represents the gain splitting between the two coupled 

modes 

𝜅𝑖 =
1

2
(𝛾− − 𝛾+) (2.17) 

Positive 𝜅𝑖 means the out-of-phase mode experiences larger gain or smaller loss, while negative 

𝜅𝑖 means that the in-phase mode is preferred. In other words, for positive (negative) 𝜅𝑖, the out-

of-phase (in-phase) mode would have a lower lasing threshold. We will quantitatively show this 

result in Chapter 3 where threshold and carrier injections are taken into consideration in the 

coupled rate equation analysis. This gain splitting between coupled modes plays an important 

role in the dynamics of the arrays as well [41], which we will also explore in Chapter 3. 

The non-Hermitian coupling introduced by the gain splitting between normal modes can 

be illustrated with a simple model. We sketch the cross-sectional index profile of two coupled 

resonators in Figure 2.5. The two coupled lasers are index-guided and identical, and we 

introduce a small amount of loss between the two cavities. As a simple illustration, we set this 

loss profile to be a Dirac delta function  

𝐼𝑚𝑔[𝜖𝐶(𝑥)] = 𝛬𝜖0𝛿(𝑥) (2.18) 

with dimensionless parameter 𝛬. (A positive imaginary component in 𝜖𝐶(𝑥) represents loss, 

while a negative value represents gain.) The loss is sufficiently weak and far from the waveguide 
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cores, so that it does not perturb 𝑢𝐴,𝐵(𝑥) from that of the lossless waveguides. From Equation 

(2.4) and (2.5) we obtain 

𝜅𝐴𝐵 = 𝜅𝐵𝐴 = 𝜅𝑟 + 𝑖
𝜔𝜖0𝛬

2

|𝑢𝐴(𝑥 = 0)|
2

⟨𝑢𝐴|𝜖𝐴|𝑢𝐴⟩
 (2.19) 

with a nonzero 𝜅𝑖, proportional to the strength of the loss 𝛬 and the intensity of the 𝑢𝐴 (or 𝑢𝐵) at 

𝑥 = 0 where the loss is introduced. 

 

Figure 2.5: Permittivity profile of two coupled index-guided lasers with a 𝛿-function loss in the 

coupling region. 

Alternatively, we can calculate the gain splitting between the in-phase and out-of-phase 

normal modes by looking at the composite structure. The out-of-phase mode is unaffected by the 

𝑖𝛬𝜖0𝛿(𝑥) loss because it has no intensity at 𝑥 = 0, while the in-phase mode experiences loss that 

equals to 𝛾+. From 

∇2𝐸+(𝑥) +
𝑅𝑒[𝜖𝐶(𝑥)]𝜔

2

𝑐2
𝐸+(𝑥) = 0 

∇2𝐸+(𝑥) +
𝑅𝑒[𝜖𝐶(𝑥)](𝜔 + 𝑖𝛾+)

2

𝑐2
𝐸+(𝑥) = −

𝑖Λϵ0𝛿(𝑥)𝜔
2

𝑐2
𝐸+(𝑥) 

applying ⟨𝐸+| to both sides, and recognizing that 𝛾+ ≪ 𝜔, we obtain 

𝛾+ = −
𝜔

2

⟨𝐸+|𝛬𝜖0𝛿(𝑥)|𝐸+⟩

⟨𝐸+|𝜖𝐶|𝐸+⟩
 (2.20). 

By setting 𝐸+(𝑥) = 𝑢𝐴(𝑥) + 𝑢𝐵(𝑥), we can see that Equations (2.20) and (2.19) lead to an 

identical result: 
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𝜅𝑖 =
1

2
(𝛾_ − 𝛾+) =

𝜔𝜖0𝛬

2

|𝑢𝐴(0)|
2

⟨𝑢𝐴|𝜖𝐴|𝑢𝐴⟩
 (2.21) 

Equation (2.21) is an illustration of how gain/loss in the coupling region introduces an imaginary 

component in the coupling coefficient that is proportional to the strength of gain/loss, 

represented by 𝛬 in Equation (2.18). When the gain/loss is weak and/or far away from the 

waveguide cores, it neither perturbs the mode profiles nor introduces a curved phase front, yet it 

still results in an imaginary component in the coupling coefficients (i.e., non-Hermitian 

coupling) by splitting the gain/loss of the normal modes. The overlap-integral formula for 

coupling coefficient [Equations (2.4) and (2.5)] yields the same result as calculating the gain 

splitting between normal modes. 

2.5 Coupling coefficient in index-antiguided coupling 

Utilizing refractive index antiguiding to create leaky-wave coupling is a technique that 

has been widely studied and employed in the pursuit of high-power phase-locked semiconductor 

laser arrays [42-48]. However, the coupling coefficient in index-antiguided coupling is rarely 

discussed. While directly solving the composite structure is more accurate than using coupled 

mode theory, there are occasions when we cannot afford the exact solution. An example would 

be when we have tunable gain/loss contrast or frequency detuning between the two coupled 

waveguides/resonators, especially when the tuning is dynamic. This motivates us to at least 

qualitatively discuss the coupling coefficient for index-antiguided coupling. 

Because the coupling coefficient in index-antiguided coupling is relatively unexplored, 

the following discussion is organized into subsections. We consider the system of two laterally 

coupled index-antiguided waveguides, where the spatial coupling coefficients have units of 

cm−1, while the temporal coupling coefficients between two resonators that we have discussed 
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in the previous sections have units of s−1. The temporal coupling coefficient is simply related to 

the spatial coupling coefficient by 

𝜅𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 = 𝜅𝑠𝑝𝑎𝑡𝑖𝑎𝑙𝑣𝑔 (2.22) 

where 𝑣𝑔 is the group velocity. If dispersion (as a type of nonlinearity) is not included in the 

model, then we can also use  

𝜅𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 = 𝜅𝑠𝑝𝑎𝑡𝑖𝑎𝑙𝑣𝑝ℎ𝑎𝑠𝑒 (2.22𝑏) 

where 𝑣𝑝ℎ𝑎𝑠𝑒 is the phase velocity. In this simple waveguide model we terminate the waveguides 

with mirrors to convert to optical resonators. 

2.5.1 Introduction to index-antiguided coupling 

Compared with evanescent optical coupling [1, 2, 49], antiguided leaky-wave coupling 

has several distinct features [45]: the waveguide cores have lower index than their surroundings, 

and thus the effective indices of the coupled modes are lower than the core material index values. 

Hence between the waveguide cores in the higher index region there exist leaky travelling waves 

with real transverse wavevectors, instead of only evanescent waves. Antiguided optical coupling 

has several benefits as compared to evanescent coupling. First, the coupling strength of leaky-

wave coupling does not decay exponentially over distance, which means the coupling will 

remain strong over a much longer distance than in evanescent coupling [50-52]. Secondly, 

antiguided coupling at its lateral resonance condition is parallel coupling instead of nearest 

neighbor coupling, which, in an array with larger number of elements, maximizes the intermodal 

discrimination, promotes coherence across the whole array, and has graceful degradation [53, 

54]. As we discuss in Subsection 2.5.3, there are design conditions where the antiguided 

coupling coefficient is relatively invariant against separation and refractive index variation, 

which relaxes fabrication tolerance. Lastly, in properly designed coupled diode laser arrays, 
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index-antiguiding promotes stable in-phase coupled mode over the out-of-phase mode [46, 47, 

55-57], and experimentally it has enabled record-high 2 W of in-phase coherent power achieved 

in a 20-element antiguided semiconductor laser array [56]. 

Recent studies involving temporal modulation of coupled arrays have shown intriguing 

dynamical properties when either the array elements or the coupling coefficients are under 

modulation. Examples include modulation bandwidth enhancement in coupled vertical cavity 

surface emitting laser (VCSEL) arrays [33, 58-60], indirect interband photonic transition and 

nonreciprocity in electrically driven coupled silicon waveguides [61], and effective magnetic 

field for photons and the emergence of topologically protected edge states in a resonator lattice 

[62]. To understand the influence of index-antiguiding on the dynamical property of coupled 

arrays, evaluation of the coupling coefficient is an initial step. However, the majority of the 

previous theoretical treatments of antiguided arrays use the exact solution of the composite 

waveguide, rather than coupled mode theory (CMT), so the coupling coefficient is rarely 

included (except for [38, 52]). 

Here we analyze the coupling coefficient in a passive antiguided waveguide array [63]. 

We show that both the sign and magnitude of the coupling coefficient can be controlled by the 

distance and refractive index between the two coupled waveguide cores. We further confirm that 

the sign of coupling is of critical importance when the two waveguides are coherently excited 

[64]. The ability to reverse the sign of the coupling is illustrated by the reversal of power transfer 

direction in a two-section waveguide, and it opens up possibilities to synthesize more 

complicated behaviors in 2D coupled lattices, for example gauge transformation and topological 

effects [64].  
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Previously, the coupling coefficient in index-antiguided gain-guided waveguides has 

been evaluated by calculating the overlap integral between the individual waveguide modes [38, 

52]. The coupled waveguide structure studied in this section is completely passive and lacks gain 

guiding. It is enabled by the reflecting termination boundaries [65]. We evaluate the coupling 

coefficients by solving the composite waveguide modes, rather than through the overlap integral 

between the individual waveguides. The overlap integral evaluation of coupling coefficient 

offers insight into the physics underpinning the sign flip of the coupling coefficient, but may give 

erroneous results, described in Appendix B.  

The discussion next is organized as follows. Subsection 2.5.2 introduces the structure of 

the coupled waveguide under study and the coupled mode formalism. In Subsection 2.5.3, the 

analysis of coupling coefficient is presented. Subsection 2.5.4 presents the numerical study of a 

two-section waveguide which illustrates a reversal of the power transfer direction as a result of 

the sign flipping in the coupling coefficient. Appendix B describes why the overlap integral for 

evaluation of the coupling coefficient offers insight, but is inaccurate for passive antiguided 

structures. 

2.5.2 Antiguided coupled waveguides 

Figure 2.6 shows the transverse structure and refractive index profile of the antiguided 

pair of parallel waveguides that is considered. Two low-index cores are separated by a high-

index spacing layer. The transverse cladding serves as a reflective termination to eliminate the 

radiation loss where the thickness of the edge layer is designed to maintain lateral resonance 

[65]. For 850 nm wavelength and the index step indicated in Figure 2.6(b), the edge layer 

thickness is around 1.8 m. With reflective termination, the cores are coupled through leaky-

wave coupling but the pair of waveguides considered together is not leaky, hence the 
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eigenmodes of the array (normal modes) are guided and have no interaction with the boundary of 

the calculation domain. This enforces the overall system to be lossless. 

 

Figure 2.6: (a) Sketch and refractive index profile of an antiguided 2x1 waveguide array. (b) An 

example of the intensity profile of the resulting in-phase leaky-coupled mode [63]. 

When analyzing antiguided leaky-wave-coupled arrays without temporal modulation, an 

exact solution of the normal modes of the composite array structure is preferred over using 

coupled-mode theory, because the individual (antiguided) waveguides do not support guided 

modes and the coupling is strong [66].  Nonetheless, CMT can be quantitatively correct if we 

wisely choose the basis modes (no significant excitation to modes outside the linear space 

expanded by the basis modes) and it offers intuitive insight [7]. On the other hand, dynamical 

properties of the arrays involving stability or temporal modulation would be challenging and 

computationally expensive if calculated from the exact solutions. Evaluation of the coupling 

coefficient and its parametric dependence is essential for understanding and controlling such 

dynamical properties in antiguided arrays. The coupling coefficient determines the response of 

the array eigenmodes to frequency detuning and gain detuning. More specifically, the magnitude 

of the coupling coefficient determines how sensitive the systems are to the detuning, while the 

sign (or phase) of the coupling coefficient determines the direction of the response [17].  
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For simplicity, we limit our analysis to two identical waveguides with transverse-

electrical (TE) polarization. We evaluate the spatial coupling coefficients (in units of 𝑐𝑚−1) 

through the separation of propagation constants between the two array normal modes, as 

𝜅𝐴𝐵 = 𝜅𝐵𝐴 = 𝜅 =
𝛽+ − 𝛽−

2
(2.23) 

where 𝛽+ (𝛽−) is the propagation constant of the symmetric (antisymmetric) normal mode. 

Equation (2.23) is the equivalent form of Equation (2.14) in the spatial domain. We treat 𝜅 as a 

signed value rather than assuming it to be positive, similar to the interpretation in Ref. [64]. The 

array normal modes are solved numerically using a one-dimensional (1D) finite difference 

frequency domain (FDFD) method [67]. For two identical waveguides, Equation (2.23) is valid 

in the context of both conventional power-orthogonal CMT and the more rigorous power-

nonorthogonal CMT [23, 68]. For the latter, Equation (2.23) is accurate up to the second order of 

small cross power and self-coupling coefficients [68], meaning that the coupling coefficients 

extracted here are accurate even if non-orthogonal CMT with self-coupling coefficients and 

cross-power terms is used for dynamical analysis. 

2.5.3 Evaluation of the coupling coefficient in antiguided arrays 

For antiguided coupled waveguides, the modes of interest are the ones that exist in the 

waveguide cores (rather than in the spacing or edges) and they do not have the highest effective 

index (i.e., they are higher order modes). To identify these coupled modes of interest, one way is 

to calculate the confinement factor (intensity overlap with the core regions) and select the pair of 

modes with the largest confinement factors. These two modes need to also correlate with the in-

phase (the electric fields in the waveguides have the same phase and hence there is an odd 

number of near-field fringes between the waveguides) and the out-of-phase coupled modes (the 
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electric fields in the waveguides have a –phase relative shift and hence there is an even number 

of near-field fringes between the waveguides). 

In Figure 2.7(a) we plot the “dispersion” relation of the normal mode propagation 

constants 𝛽 versus inter-element spacing thickness 𝑑ℎ, for the structure sketched in Figure 2.6. 

Shown in Figure 2.7(b) are the normal mode intensity profiles at the points labeled by (i)-(ix) in 

Figure 2.7(a). The pair of modes that have the minimum difference of propagation constant 

between them are denoted by blue and red dots in Figure 2.7(a), while black dots denote adjacent 

higher order normal modes. A principal result of our investigation is that we can identify the pair 

of coupled antiguided modes from the dispersion curves, such as shown in Figure 2.7(a). If we 

calculate the propagation constants of all the normal modes and look at the differences between 

them, the pair of coupled antiguided modes [the ones with largest confinement factors, see 

Figure 2.7(c)] will have the smallest difference between their propagation constants. As can be 

observed in Figure 2.7(a)-(c), the mode numbers corresponding to the pair of coupled modes will 

change with the spacing layer thickness. For example, with 𝑑ℎ = 1300 nm, mode 4 and 5 are the 

closest together along the dispersion curve and they have the largest confinement factor. For 𝑑ℎ 

= 3480 nm (5680 nm), mode 5 and 6 (6 and 7) are identified as the coupled modes for the same 

reason. In addition, notice that the near-field profiles of the pair of coupled modes shown in 

Figure 2.7(b) correspond to the in- and out-of-phase modes, as defined above. 

This minimum difference of propagation constants implies that beating between the 

coupled modes during propagation determines the long-distance power transfer. The other modes 

in the array [for example the higher-order normal modes (iii), (vi), and (ix), labeled by black dots 

in Figure 2.7(a)] are not of practical importance, first because they have poor overlap with  
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Figure 2.7: (a) Dispersion curves of the normal mode propagation constants vs. the inter-element 

spacing thickness 𝑑ℎ. In-phase (out-of-phase) coupled modes are denoted by red (blue) dots, and 

the sign of the coupling is indicated. (b) Mode intensity profiles at the points labeled by (i) – (ix) 

in the dispersion curves. (c) Confinement factor of normal modes (i.e., intensity overlap with the 

waveguide cores). The pairs of coupled antiguided modes (with largest confinement factor and 

smallest separation in 𝛽) are circled by dashed red lines. The mode numbers (1 to 10) are in the 

order of decreasing propagation constants. Note that mode profile (iii), (vi), and (ix) have decent 

confinement factors, but they are still poorly excited by Gaussian excitation due to the high-order 

field profile in the cores (i.e., poor field overlap with the Gaussian) [51, 63]. 
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Gaussian excitation in the cores and hence are not excited efficiently. In addition, these modes 

have poor phase matching. 

In Figure 2.7(a) and comparing the corresponding modes in Figure 2.7(b), note that at 𝑑ℎ 

= 1300 nm and 5680 nm, the out-of-phase mode has larger propagation constant than the in-

phase one, while around 3480 nm, the in-phase mode has larger propagation constant. From 

Equation (2.23), this means that the sign of coupling coefficient is negative for the first case, and 

is positive for the latter. As we will show in Subsection 2.5.4, the sign of the coupling coefficient 

has no effect on the power transfer if the excitation is only in one core. However, if both cores 

are excited coherently, the sign of coupling coefficient determines the direction of power flow. 

The sign of the coupling coefficient is also important in eigenmode tuning caused by frequency 

or gain detuning [17].  

The coupling coefficient is expected to be real in the passive structure under study, from 

either the power conservation point of view or from Equation (2.23) noting that both 𝛽+ and 𝛽− 

are real. The magnitude of the coupling coefficient can be taken as half of the propagation 

constant difference (Δ𝛽/2) between the closest separate modes, and the sign of coupling 

coefficient corresponds to whether the in-phase or the out-of-phase mode has the larger 

propagation constant. The coupling coefficient is thus extracted from the “dispersion curves” of 

Figure 2.7(a) and is plotted in Figure 2.8(a). The refractive index of the spacing layer also causes 

variation of the coupling coefficient in a similar manner and is plotted in Figure 2.8(b). Note the 

refractive index of the spacing layer could be dynamically varied in experiments, enabling 

dynamical control of the magnitude and sign of the coupling coefficient. Figure 2.8(a) shows that 

the magnitude of the coupling coefficient is quasi-periodic over the inter-element separation 

instead of an exponential decay that arises from evanescent coupling. Exploiting this property, it 
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has been proposed that remote couplers can be realized [50]. We also see that around the 

minimum coupling points in Figure 2.8 (known as anti-resonance in [66]), the coupling 

coefficient, , is relatively invariant against variation of both the spacing layer thickness and its 

refractive index, making these design points attractive for fabrication tolerance. 

At the local maxima of the coupling coefficient [around 𝑑ℎ = 2360 nm and 4560 nm in 

Figure 2.8(a)], the sign of  is not well-defined, as there are three modes whose propagation 

constants are equally spaced. These points correspond to the lateral resonances in [66] where the 

intermodal discrimination is the largest, and is known to be beneficial for coherent single-mode 

operation of antiguided laser diode arrays. Three-mode beating occurs at these resonant 

conditions but they can be approximately predicted by the commonly used two-mode beating 

equations [69].  

 

Figure 2.8: Magnitude and sign of the coupling coefficient versus inter-element spacing layer (a) 

thickness and (b) refractive index. Blue and red dots indicate the points that are simulated in 

Subsection 2.5.4 [63]. 
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Previous studies of the coupling coefficient in antiguided structures primarily utilized the 

overlap integral formula derived from CMT [38, 52]. In Appendix B, we show that while the 

overlap integral offers an intuitive physical picture of the origin of coupling sign flipping, it is 

erroneous when applied to the passive antiguided structure. It produces inaccurate values of the 

coupling coefficient and false zero crossings that should not exist. 

2.5.4 Wave propagation and reversal of the power transfer direction 

Power transfer caused by the beating between two coupled modes in an antiguided leaky-

wave-coupled waveguide is shown in Figure 2.9. This is the analog to evanescent coupling 

between parallel waveguides found in directional couplers or Mach-Zhender interferometers 

[70]. Wave propagation is simulated by finite element method using the commercial software 

COMSOL. Only the two coupled modes were included in this simulation. In practice, excitation 

with a Gaussian input in one waveguide core will excite additional modes, but only to a small 

extent [51]. We see that by tuning the index of the spacing layer, the coupling length, defined as 

the length for complete power transfer, can be changed. The coupling length is inversely 

proportional to the magnitude of coupling coefficient. Extraction of the coupling coefficient from 

Figure 2.9(b)-(d) is in good agreement with Figure 2.8(b). Comparing Figure 2.9(b) which has 

negative coupling coefficient to Figure 2.9(d) which has positive coupling coefficient, we see 

that the sign of coupling does not affect the power transfer if only one core is excited. 

To illustrate the consequence of changing the sign of the coupling coefficient, we 

simulate the wave propagation in a pair of waveguides with two sections, as shown in Figure 

2.10(a). The coupling coefficients in the two sections have the same magnitude but opposite 

sign. At the interface between the two sections in Figure 2.10(b), if there is no coupling sign 

change, the power transfer would continue towards the lower waveguide. But because of the  
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Figure 2.9: Wave propagation and power transfer in antiguided coupled waveguides. (a) Top 

view of the waveguide structure. (b)-(d) Electric field intensity when propagating to the right for 

three different antiguiding regions that result in negative [(b) and (c)] or positive [(d)] coupling 

coefficients. The three index profiles correspond to the three points labeled in Figure 2.8(b) [63].  

 

 

Figure 2.10: Wave propagation and power transfer showing reversal of the power transfer 

direction in a two-section waveguide. (a) The waveguide structure with two sections of equal , 

but opposite sign. (b) Intensity of the electric field while propagating to the right [63]. 
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change of sign for the coupling coefficient, power is refocused back to the upper waveguide. In 

other words, the second section was excited by a coherent field across both ports at the interface, 

and the sign of coupling determines the direction of power flow. Additional modes are also 

excited in the second section besides the two coupled modes; however, we still see complete 

power transfer because the additional modes are not strongly excited and they have poor phase 

matching to the coupled modes. 

2.5.5 Summary of index-antiguided coupling 

This section has shown how the coupling coefficient between a pair of waveguides with 

anti-guiding coupling varies with the inter-element separation and refractive index. With 

increasing separation or refractive index, the magnitude of coupling coefficient varies quasi-

periodically, with maxima at lateral resonances and minima at anti-resonances. The variation of 

the coupling coefficient is large near lateral resonances and relatively small at anti-resonances, 

suggesting improved fabrication tolerance around the anti-resonance points. The sign of coupling 

coefficient also changes each time we cross the lateral resonant conditions (𝜅 maxima). The sign 

flipping can also be accomplished dynamically by varying the refractive index between 

waveguide cores, without the necessity of adding an auxiliary detuned waveguide as in 

evanescent coupling [64]. Reversal of the power transfer direction in a two-section antiguided 

waveguide is an interferometric verification of the coupling sign flipping. The primary 

disadvantage of antiguided versus evanescent coupling is the inherent multi-mode nature of the 

array. Coupling to other higher-order guided modes may occur in addition to the coupling 

between the two desired beating modes, and suppression of this coupling may be necessary to 

make anti-guided coupling more attractive for making directional couplers that utilize the 

improved fabrication tolerances. 
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The approach described herein for extracting the coupling coefficient could be used to 

study of the stability and modulation response in antiguided arrays. For more accurate modeling 

of the dynamical response, the use of power non-orthogonal CMT should be applied especially 

for asymmetrical arrays [68]. For arrays with more than two cores, the antiguided leaky-wave 

coupling can be either nearest neighbor or parallel coupling depending on whether the array is 

designed at the anti-resonant condition or resonant condition [66].  

2.6 Summary 

To summarize this chapter, we have shown that the coupling between two resonators can 

be described using coupled mode theory with a 2×2 coupling matrix �̿�. The normal modes of 

the array are superpositions of the individual cavity modes, and the superposition composition �̅� 

is the eigenvector of the coupling matrix �̿�. The complex frequencies of the normal modes (the 

real part being the angular frequency and the imaginary part being the gain/loss) are the 

eigenvalues of �̿�. The coupled array can be categorized according to the categorization of �̿�, 

including Hermitian, non-Hermitian, and PT-symmetric as a specific kind of non-Hermitian.  

For coupled resonators without gain/loss or with constant gain/loss, �̿� is real and 

symmetric (also Hermitian). The eigenvectors of �̿� are real-valued, meaning that the relative 

phase between the field in the two cavities is fixed at 0 or 𝜋. The eigenvalues of �̿� are also real-

valued, meaning that the two normal modes experience no gain splitting between them. For 

evanescent coupling, the coupling coefficients are always real and positive, while for index-

antiguided coupling, the coupling coefficients can be either positive or negative. 

For two coupled resonators with non-uniform gain/loss, �̿� is in general complex and 

non-Hermitian. Gain/loss contrast between the two resonators contributes to the imaginary parts 
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of the diagonal elements in �̿�, while gain/loss splitting between the two normal modes 

contributes to the imaginary parts of the off-diagonal elements in �̿� (i.e., non-Hermitian 

coupling). Non-Hermitian coupling manifests itself when the in-phase mode and out-of-phase 

mode have different lasing thresholds, evident in Chapter 3 and 4. In this chapter, we have 

illustrated how gain-guiding in the individual lasers or gain/loss in the coupling region induces 

non-Hermitian coupling. 

Note that the coupled mode theory discussed in this section all belong to the conventional 

coupled mode theory, where self-coupling and cross-power are assumed to be negligible. When 

the coupling is weak and the two coupled cavities are similar, the conventional coupled mode 

theory functions well. But when the two coupled cavities are dissimilar or when the coupling is 

strong, ignoring the self-coupling and cross-power leads to inherent inconsistency regarding 

power conservation and reciprocity [4, 68]. This is the limitation of conventional coupled mode 

theory. The possibility of applying power-nonorthogonal CMT motivates future work. 
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CHAPTER 3: COUPLED RATE EQUATION ANALYSIS: THE STEADY-STATE 

SOLUTIONS 

Coupled mode theory (CMT), discussed in Chapter 2, has been well developed to 

describe the coupled optical modes and the mutual coherence in coupled laser arrays [1-5]. 

However, to determine the coupled mode from CMT it requires knowledge of the frequency 

detuning Δ𝜔 and the gain contrast Δ𝛾 between cavities, which are challenging to measure and 

are not directly controlled in coupled diode laser arrays. To overcome this challenge, we have 

developed and adopted coupled rate equation (CRE) analysis, which takes the carrier injection 

rates and the cavity frequency detuning (different from the total frequency detuning Δ𝜔) as 

independent variables. CRE analysis combines the coupled mode theory with the standard 

semiconductor laser rate equations, and has been used for the study of temporal dynamics of 

optically coupled semiconductor laser arrays [6, 7]. In addition to capturing the temporal 

dynamics, the CRE analysis also incorporates carrier-induced nonlinearities [8, 9], for example, 

the gain saturation and the amplitude-phase coupling (i.e., nonzero linewidth enhancement factor 

resulting from carrier-induced frequency shift) [6, 10]. In this chapter, we will show that these 

nonlinearities are critical not only for temporal dynamics, but also for the control of steady-state 

coupled modes. By solving the steady-state coupled rate equations (SSCREs), we can elucidate 

the control mechanism for the array normal modes (both the intensity profile and the relative 

phase between cavities). We show for the first time that the control mechanism is governed by 

the carrier-induced nonlinearities, and the inclusion of carrier densities is thus crucial in our 

analysis.  

The phase tuning mechanism in optically coupled semiconductor lasers has been a 

question of longstanding interest [11-15]. In the case of a real-valued coupling coefficient (for 
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example arising from passive evanescent coupling), coupled mode theory predicts that the gain 

contrast between lasers causes phase tuning, while the frequency detuning between cavities 

results in asymmetrical intensity distribution (see Chapter 2 Section 2.2 and Ref. [11, 15, 16]). 

On the other hand, previous CRE analysis concluded precisely the opposite in that frequency 

detuning was found to cause phase variation but has negligible effect on intensity distribution [7, 

14]. The latter is also in agreement with experimental observations suggesting that the frequency 

detuning causes the relative phase tuning [17]. In this chapter, by carefully accounting for the 

cavity detuning and the total frequency detuning, we show that the two perspectives, in fact, do 

not contradict. We define the cavity frequency detuning ΔΩ to be the frequency detuning that 

excludes the contribution from the amplitude-phase coupling, and we define the total frequency 

detuning Δ𝜔 to be the detuning that includes the amplitude-phase coupling, which is dependent 

on the actual carrier density distribution in the array. We show that clearly distinguishing ΔΩ 

from Δ𝜔 is important in understanding coupled semiconductor lasers, and is the key to 

maintaining consistency between CMT and CRE analysis. 

In this chapter we also apply our CRE analysis to parity-time (PT) symmetry and 

exceptional points in this optically coupled non-Hermitian system. When the laser array has a 

non-Hermitian coupling matrix �̿�, we say the array is non-Hermitian, in the sense of non-

Hermitian coupled mode theory or non-Hermitian effective Hamiltonian in a photonic dimer (see 

Chapter 2 Section 2.2 and [15, 18-20]). Comparing with previous PT symmetry analysis where 

gain saturation and frequency perturbation have also been considered [21-25], we show that the 

amplitude-phase coupling is another nonlinearity that can play a critical role in optically coupled 

semiconductor lasers in the weak coupling regime. As an addition to the well-known pump-

induced PT symmetry breaking and exceptional points [18, 21], we demonstrate PT symmetry 
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breaking induced exclusively by cavity detuning, as well as exceptional points induced by 

judiciously combining unequal pumping and cavity detuning. For exceptional points, herein we 

are referring to the points where the two optical modes collapse [26, 27], although the concept of 

exceptional points can also be extended to other eigenvalue problems [9]. 

3.1 Coupled rate equations 

Assuming the two lasers in the array are similar (i.e., they are identical except the 

frequency detuning and different carrier injection rates), the coupled rate equations (CREs) can 

be written as [6, 7] 

𝑑𝐸𝐴
𝑑𝑡

=
1

2
𝛤𝑣𝑔𝑎diff(𝑁𝐴 − 𝑁𝑡ℎ)(1 − 𝑖𝛼𝐻)𝐸𝐴 + 𝑖(𝜔 − 𝛺𝐴)𝐸𝐴 + 𝑖𝜅𝐸𝐵 (3.1) 

𝑑𝐸𝐵
𝑑𝑡

=
1

2
𝛤𝑣𝑔𝑎diff(𝑁𝐵 − 𝑁𝑡ℎ)(1 − 𝑖𝛼𝐻)𝐸𝐵 + 𝑖(𝜔 − 𝛺𝐵)𝐸𝐵 + 𝑖𝜅𝐸𝐴 (3.2) 

𝑑𝑁𝐴,𝐵
𝑑𝑡

= 𝑃𝐴,𝐵 −
𝑁𝐴,𝐵
𝜏𝑁

− 𝑣𝑔[𝑔𝑡ℎ + 𝑎𝑑𝑖𝑓𝑓(𝑁𝐴,𝐵 −𝑁𝑡ℎ)]|𝐸𝐴,𝐵|
2

(3.3) 

where 𝛤 is the confinement factor, 𝑣𝑔 the group velocity, 𝑎diff the differential gain, 𝑁𝑡ℎ is the 

threshold carrier density when the lasers are isolated (same for A and B), 𝛼𝐻 the linewidth 

enhancement factor, 𝜔 the frequency of the optical mode (the normal mode), 𝑁𝐴,𝐵 the carrier 

densities in cavity A and B respectively. 𝐸𝐴,𝐵(𝑡) are the slowly varying envelopes of the electric 

fields in cavity A and B. [The total electric field in the composite system is ℰ𝑡𝑜𝑡(𝑥, 𝑧, 𝑡) =

𝑢𝐴(𝑥, 𝑧)𝐸𝐴(𝑡)𝑒
−𝑖𝜔𝑡 + 𝑢𝐵(𝑥, 𝑧)𝐸𝐵(𝑡)𝑒

−𝑖𝜔𝑡. We normalize 𝑢𝐴,𝐵 so that |𝐸𝐴,𝐵|
2
 are the photon 

densities with units of 𝑐𝑚−3.] Ω𝐴,𝐵 are the cavity resonant frequencies of the individual lasers 

when they are isolated and when their carrier densities are pinned at the threshold value (i.e., 

𝑁𝐴,𝐵 = 𝑁𝑡ℎ). This definition of Ω𝐴,𝐵 may seem particular, but it is very important to recognize 

that the actual cavity resonant frequencies (we denote as 𝜔𝐴,𝐵) are dependent on the local carrier 
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densities in the cavities. 𝜅 is the coupling coefficient, and based on the assumption that the two 

lasers are almost identical, we have also assumed the coupling coefficients to be symmetrical 

(i.e., 𝜅𝐴𝐵 = 𝜅𝐵𝐴 = 𝜅). 

Equations (3.1)-(3.2) are equivalent to the coupled mode equations (2.2) and (2.3) in 

chapter 2 if we recognize [28]: 

ℰ𝐴,𝐵(𝑡) = 𝐸𝐴,𝐵(𝑡)𝑒
−𝑖𝜔𝑡 (3.4) 

𝛾𝐴,𝐵 =
1

2
𝛤𝑣𝑔𝑎diff(𝑁𝐴,𝐵 − 𝑁𝑡ℎ) (3.5) 

𝜔𝐴,𝐵 = Ω𝐴,𝐵 + 𝛼𝐻𝛾𝐴,𝐵 (3.6) 

Equation (3.6) describes the total frequency shift which includes the contribution from the  

carrier density variation (and hence variations in 𝛾𝐴,𝐵), which is an important nonlinearity in 

semiconductor lasers, often called the amplitude-phase coupling [6, 10]. When the lasers are 

isolated, we always have 𝛾𝐴,𝐵 = 0 and 𝜔𝐴,𝐵 = Ω𝐴,𝐵, because of the gain pinning (modal gain 

always balances modal loss in steady state, resulting in zero net gain). However, in coupled laser 

arrays, because of the energy transfer between the lasers through optical coupling (to be 

discussed below), we often have 𝛾𝐴,𝐵 ≠ 0 and 𝜔𝐴,𝐵 ≠ Ω𝐴,𝐵. Note that although we often control 

Ω𝐴,𝐵 through external parameters (temperature, cavity design, etc.), we do not have direct control 

over the carrier densities, hence 𝜔𝐴,𝐵 are often not directly controlled. 

Equation (3.3) describes the carrier density dynamics, where 𝜏𝑁 is the carrier lifetime, 

𝑔𝑡ℎ is the threshold gain, 𝑃𝐴,𝐵 are the carrier injection rates, which are proportional to the 

injection currents 𝐼𝐴,𝐵 [28]: 

𝑃𝐴,𝐵 = 𝜂𝑖
𝐼𝐴,𝐵
𝑞𝑉

(3.7) 
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where 𝜂𝑖 is the carrier injection efficiency, 𝑞 is the elementary electron charge, 𝑉 is the volume 

of active region. 

To connect better with the experimental parameters, we also point out the threshold 

condition regarding device and material parameters [28]: 

𝑣𝑔𝛤𝑔𝑡ℎ =
1

𝜏𝑝
=
𝜔

𝑄
 = 𝑣𝑔Γ𝑎𝑑𝑖𝑓𝑓(𝑁𝑡ℎ − 𝑁𝑡𝑟) (3.8) 

where 𝜏𝑝 is the photon lifetime, 𝑄 is the cavity quality factor, 𝑁𝑡𝑟 is the material transparency 

carrier density (defined as when stimulated emission balances stimulated absorption). 

The CREs can be written in a more elegant manner if we define dimensionless (rescaled) 

variables [6, 7]. We have followed the rescaling used in [7], which defines the normalized carrier 

densities 𝑀𝐴,𝐵, pump rates 𝑄𝐴,𝐵, and field magnitudes 𝑌𝐴,𝐵 as:  

𝑀𝐴,𝐵 ≡ 1 + 𝑣𝑔𝛤𝑎diff𝜏𝑝(𝑁𝐴,𝐵 − 𝑁𝑡ℎ) (3.9) 

𝑄𝐴,𝐵 ≡ 𝐶𝑄 (
𝐼𝐴,𝐵
𝐼𝑡ℎ

− 1) +
𝐼𝐴,𝐵
𝐼𝑡ℎ

  (3.10) 

𝑌𝐴,𝐵 ≡ √𝑣𝑔 𝑎diff𝜏𝑁|𝐸𝐴,𝐵| (3.11) 

where 𝐼𝐴,𝐵 are the injected currents, 𝐼𝑡ℎ is the threshold current (same for A and B), 𝐶𝑄 is the 

constant relating the injected currents to the normalized pump parameters, defined as 𝐶𝑄 ≡

𝑎diff𝑁𝑡𝑟

𝑔𝑡ℎ
. The normalized parameters have very intuitive scales: their values at transparency and 

threshold conditions are simply 𝑀𝐴,𝐵𝑡𝑟 = 0, 𝑀𝐴,𝐵𝑡ℎ = 1, 𝑄𝐴,𝐵𝑡𝑟 = 0, 𝑄𝐴,𝐵𝑡ℎ = 1, where the 

subscript 𝑡𝑟 denotes transparency and 𝑡ℎ denotes threshold.  

The coupled rate equations are now written in the rescaled variables as 

𝑑𝑌𝐴
𝑑𝑡

=
1

2𝜏𝑝
(𝑀𝐴 − 1)𝑌𝐴 − (𝜅𝑟𝑠𝑖𝑛𝜙 + 𝜅𝑖 cos𝜙)𝑌𝐵 (3.12) 
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𝑑𝑌𝐵
𝑑𝑡

=
1

2𝜏𝑝
(𝑀𝐵 − 1)𝑌𝐵 + (𝜅𝑟𝑠𝑖𝑛𝜙 − 𝜅𝑖 cos𝜙)𝑌𝐴 (3.13) 

𝑑𝜙 

𝑑𝑡
=
𝛼𝐻
2𝜏𝑝

(𝑀𝐴 −𝑀𝐵) − ΔΩ + 𝜅𝑟𝑐𝑜𝑠𝜙 (
𝑌𝐴
𝑌𝐵
−
𝑌𝐵
𝑌𝐴
) + 𝜅𝑖𝑠𝑖𝑛𝜙 (

𝑌𝐴
𝑌𝐵
+
𝑌𝐵
𝑌𝐴
) (3.14) 

𝑑𝑀𝐴,𝐵
𝑑𝑡

=
1

𝜏𝑁
[𝑄𝐴,𝐵 −𝑀𝐴,𝐵(1 + 𝑌𝐴,𝐵

2 )] (3.15) 

In addition to using the rescaled variables, we have also defined 𝜙 ≡ 𝜙𝐵 − 𝜙𝐴, ΔΩ ≡ ΩB − Ω𝐴,  

𝜅 = 𝜅𝑟 + 𝑖𝜅𝑖. All variables are real-valued in Equations (3.12)-(3.15). We have dropped the 

global phase and have kept only the relative phase 𝜙, as the global phase can be arbitrarily 

defined. The detailed derivation from the original coupled rate equations in complex-valued 

physical variables [Equations (3.1)-(3.3)] to the rescaled and real-valued dimensionless variables 

[Equations (3.12)-(3.15)] is presented in Appendix A or in Ref. [7].  

As an aside for the benefit of readers, we also want to point out that there is another 

rescaling approach that has been previously used, for example in Refs. [6, 8, 9, 14], where the 

rescaled variables are excess pumping rate 𝑃, excess carrier density 𝑍, electric field amplitude 𝑋.   

Compared with the normalization adopted in this chapter, the transformation is: 

{
 
 
 

 
 
 𝑋 =

𝑌

√2

𝑃 =
𝑄 − 1

2

𝑍 =
𝑀 − 1

2Ω
𝜂 = 𝜅𝜏𝑝

 (3.16) 

where Ω ≡ √2𝑃
𝜏𝑝

𝜏𝑁
. Equations (3.16) are valuable if comparing results between papers in the 

literature. 
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3.2 Weakly coupled semiconductor laser arrays: the qualitative description 

Unlike the case of a single isolated laser, where its steady-state carrier density above 

threshold is pinned at the threshold value 𝑁𝑡ℎ, the carrier densities in each coupled laser in the 

array can be different from 𝑁𝑡ℎ. For example, one laser may have its carrier density higher than 

𝑁𝑡ℎ, while the other laser has lower than 𝑁𝑡ℎ. In other words, the total carrier density and the 

gain of the normal mode are expected to be pinned at lasing threshold, but the local carrier 

densities 𝑁𝐴,𝐵 and the local gain 𝛾𝐴,𝐵 do not necessarily pin. Because of the amplitude-phase 

coupling (see Equation 3.6), the difference in carrier densities or the difference of gain between 

cavities (𝑁𝐵 − 𝑁𝐴, or 𝛾𝐵 − 𝛾𝐴) will also contribute to the total frequency detuning: 

Δ𝜔 ≡ 𝜔𝐵 − 𝜔𝐴 = ΔΩ+ 𝛼𝐻Δ𝛾 (3.17) 

All frequency tuning mechanisms (e.g. thermal tuning of the cavity index) are included in 𝛺𝐴,𝐵, 

except for the amplitude-phase coupling. Amplitude-phase coupling is separately treated in 

Equation (3.17) by the term 𝛼𝐻Δ𝛾. By adopting this definition, all the externally controllable 

frequency tuning mechanisms are included in ΔΩ. When the lasers are not coupled, Ω𝐴,𝐵 and 

𝜔𝐴,𝐵 are always the same because of gain (carrier density) pinning. But when the lasers are 

optically coupled, Ω𝐴,𝐵 and 𝜔𝐴,𝐵 will be different. When the lasers are optically coupled, we can 

still vary Ω𝐴,𝐵 with thermal index tuning for example, but 𝜔𝐴,𝐵 will differ from Ω𝐴,𝐵, because the 

laser array has the freedom of redistributing its carrier densities through photon-mediated energy 

transfer between elements as discussed later. 

Setting the time derivatives in Equations (3.12) – (3.15) to zero, we get SSCREs, which 

are five algebraic equations with five real-valued unknowns (𝑌𝐴,𝐵, 𝜙,𝑀𝐴,𝐵). We consider the 

pump parameters 𝑄𝐴,𝐵 and the cavity detuning ΔΩ to be experimentally controlled and 

measurable. The terms 𝑄𝐴,𝐵 are directly related to the injected currents through Equation (3.10), 
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and ΔΩ can be measured by extrapolating the frequency shift in the uncoupled region [14, 29], 

illustrated in Figure 3.1.  

 

Figure 3.1: Wavelength control by current tuning (𝐼𝐵 was being tuned, 𝐼𝐴 was fixed). Blue 

crosses are data points and the red dashed line is extrapolation of the data points. Inside the 

coupling region (roughly when there is only a single spectral peak), extrapolation gives us ΔΩ, 

but not Δ𝜔. 

The notional relationship between the coupled mode theory and the coupled rate 

equations is illustrated in the drawing as Figure 3.2. In CMT, the input variables are Δ𝜔 and Δ𝛾. 

Assuming real-valued 𝜅, CMT says that Δ𝜔 controls the intensity distribution and Δ𝛾 controls 

the relative phase. In coupled rate equations, the input variables are 𝑄𝐴,𝐵 and ΔΩ. How they 

control the coupled mode depends on the strength of the coupling coefficient, as discussed in the 

following section. In CRE analysis, nonlinearities in the system are included (shown by the 

orange arrows in Figure 3.2), and they turn out to have critical roles in the mode control. The two 

theories are consistent, where CMT can be thought of as the core of CRE analysis. 

In general, there are no analytical solutions to the SSCREs when we consider the pump rates 

𝑄𝐴,𝐵 and the cavity detuning ΔΩ as input parameters and solve for (𝑌𝐴,𝐵, 𝜙,𝑀𝐴,𝐵), because 

transcendental equations are involved [8]. Approximate analytical solutions to the SSCREs can 

be found for equal pumping (𝑄𝐴 = 𝑄𝐵) assuming very weak coupling (|𝜅| ≪ 1/𝜏𝑝), as reported 

in Ref. [7]. However, in coupled lasers with coupling coefficient comparable to the cavity loss  
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Figure 3.2: Illustration of how coupled rate equations relate to the coupled mode theory (real-

valued 𝜅 is assumed). 

rate, which is the case for VCSEL arrays [14, 30], this approximation is not valid. Numerical 

root search is used when analytical solutions are not available. In addition to solving for the 

coupled optical modes, we also examine the tuning mechanism by calculating the gain contrast 

𝛥𝛾 and the total frequency detuning 𝛥𝜔 between cavities. They are related to the carrier density 

distribution through the following equations: 

Δ𝛾 ≡ 𝛾𝐵 − 𝛾𝐴 =
𝑀𝐵 −𝑀𝐴
2𝜏𝑝

 (3.18) 

Δ𝜔 ≡ 𝜔𝐵 − 𝜔𝐴 = ΔΩ +
𝛼𝐻
2𝜏𝑝

(MB −MA) (3.19) 

The device parameters used in this dissertation are included in Table 3.1 and are taken as: 

𝛼𝐻 = 4, 𝜏𝑝 = 2ps, 𝑎diff = 5 × 10
−16cm2, 𝑁𝑡𝑟 = 2 × 10

18cm−3, 𝑛𝑔 = 4, Γ = 0.04, 𝐶𝑄 = 0.6, 

which are typical values for VCSELs [28] and are listed in Table 3.1. Two values for the 

coupling coefficient are considered, which we denote as Array 1 and Array 2 in the following  
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Table 3.1: List of variables. Only those denoted by orange appear in the rescaled (normalized) 

CREs. 

Symbol Parameter/Variables Units Value 

𝓔𝑨,𝑩(𝒕) Electric fields in cavity A and B (oscillate 
at optical frequencies) 

m−3/2 - 

𝑬𝑨,𝑩(𝒕) Electric fields (the slowly varying 
envelope) 

m−3/2 - 

𝜞 Confinement factor - 0.04 

𝒏𝒈 Group index - 4 

𝑐 Speed of light m s−1 3 × 108m/s 

𝒗𝒈 Group velocity m s−1 = 𝑐/𝑛𝑔 

𝒂𝐝𝐢𝐟𝐟 Differential gain m2 5 × 10−16cm2 

𝑵𝑨,𝑩 Carrier density m−3 - 

𝑵𝑨,𝑩𝒕𝐡 Threshold carrier density m−3 - 

𝑵𝒕𝒓 Transparency carrier density m−3 2 × 1018 cm−3 

𝜶𝑯 Linewidth enhancement factor - 4 

𝜴𝑨,𝑩 Cavity resonant frequency 
(excluding amplitude-phase coupling) 

s−1 - 

𝝎𝑨,𝑩 Total resonant frequency 
(including everything) 

s−1  - 

𝒈𝑨,𝑩 Modal gain s−1   

𝜸𝑨,𝑩 Net gain (loss) ≡ 𝑔𝐴,𝐵 − 1/𝜏𝑝 s−1   

𝑷𝑨,𝑩 Pump rate m−3s−1 - 

𝒈𝒕𝐡 Threshold gain m−1 
=

1

𝜏𝑝𝑣𝑔𝛤
 

𝑪𝑸 Pump parameter constant - 0.6 

𝝉𝑵 Carrier lifetime s−1 - 

𝝉𝒑 Cavity photon lifetime s 2 ps 

𝜿 Coupling coefficient s−1 Device 1: 𝜅 = 1 ×
109rad/s; Device 2: 𝜅 =

30 × 109rad/s 

𝚫𝛀 ≡ Ω𝐵 − Ω𝐴, passive-cavity frequency 
detuning 

s−1 - 

𝝓 ≡ 𝜙𝐵 − 𝜙𝐴, relative phase between two 
lasers 

- - 

𝑸𝑨,𝑩 Dimensionless pump parameter - - 

𝑴𝑨,𝑩 Dimensionless carrier parameter - - 

𝒀𝑨,𝑩 Dimensionless field magnitude - - 

𝚫𝝎 ≡ 𝜔𝐵 − 𝜔𝐴, total frequency detuning s−1 - 

𝚫𝜸 ≡ 𝛾𝐵 − 𝛾𝐴, gain contrast s−1 - 
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analysis. Array 1 has 𝜅 = 1 × 109rad/s =
0.002

𝜏𝑝
≪

1

𝜏𝑝
, while Array 2 has 𝜅 = 30 × 109rad/s =

0.06

𝜏𝑝
. Array 1 is in the limit of very weak coupling, while the coupling in Array 2 is stronger, 

being an experimentally estimated value for the coupled VCSEL arrays that have been 

characterized in this dissertation and in Ref. [14]. Note that both cases are in the weak coupling 

regime, meaning that the photons leak out of the system faster than interacting with the other 

cavity (𝜅 < 1/𝜏𝑝). Other optically coupled laser systems, such as index-guided ring coupled ring 

lasers, are found to have strong coupling, 𝜅 > 1/𝜏𝑝 [18, 19]. Also note that both Array 1 and 

Array 2 have real-valued coupling coefficient, i.e., 𝜅𝑖 = 0. In coupled diode laser arrays, it is 

often that 𝜅𝑖 ≠ 0, especially if we want to promote one of the coupled modes and suppress the 

other one to obtain single coupled-mode and hence a phased array. However, we choose to first 

demonstrate the physics when 𝜅 is real for its clear physical picture. In Sections 3.3-3.5, 𝜅 is 

assumed to be real. The effect of nonzero 𝜅𝑖 is discussed only in Section 3.6.  

3.3 Very weakly coupled array under equal pumping (real 𝜿) 

We first consider Array 1 consisting of two semiconductor lasers that are very weakly 

coupled and equally pumped (𝑄𝐴 = 𝑄𝐵). The approximate analytical solution to the SSCREs 

(accurate to the first order of small 𝜏𝑝𝜅) was reported in Ref. [7], and is repeated here (for real-

valued 𝜅): 

𝑠𝑖𝑛𝜙 ≅
ΔΩ

2𝛼𝐻𝜅
 (3.20) 

𝑀𝐴 ≅ 1 + 2𝜏𝑝𝜅𝑠𝑖𝑛𝜙 (3.21) 

𝑀𝐵 ≅ 1 − 2𝜏𝑝𝜅𝑠𝑖𝑛𝜙 (3.22) 

𝑌𝐴
2 ≅ 𝑄(1 − 2𝜏𝑝𝜅𝑠𝑖𝑛𝜙) − 1 (3.23) 
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𝑌𝐵
2 ≅ 𝑄(1 + 2𝜏𝑝𝜅𝑠𝑖𝑛𝜙) − 1 (3.24) 

Note that although there are also another two sets of solutions with very asymmetrical 

intensity distributions that mathematically satisfy the SSCREs [8], such modes are not realistic 

solutions in weakly coupled arrays, as discussed in Appendix C, and we ignore those two sets of 

solutions and only focus on the realistic solutions. From Equations (3.21)-(3.22), we know the 

carrier density distribution of the array as a function of cavity detuning ΔΩ. Using Equations 

(3.18) and (3.19), we can calculate the gain contrast and the total frequency detuning between 

cavities: 

Δ𝛾 ≅ −
𝛥𝛺

𝛼𝐻
 (3.25) 

Δ𝜔 ≅ 0 (3.26) 

Equations (3.25)- (3.26) demonstrate that the cavity detuning ΔΩ induces a proportional gain 

contrast Δ𝛾, but the total frequency detuning Δ𝜔 is negligibly small. This cavity-detuning-

induced gain contrast elucidates why the two explanations for the origin of phase tuning do not 

contradict. From the coupled mode theory perspective, it is the gain contrast Δ𝛾 that controls the 

phase tuning, and the total frequency detuning Δ𝜔 controls the intensity distribution [15]. But 

from the CRE perspective, we see that the cavity frequency detuning ΔΩ induces a proportional 

gain contrast Δ𝛾, and hence it influences the beam steering through the induced gain contrast. On 

the other hand, the total frequency detuning Δ𝜔 is almost zero due to the balancing between ΔΩ 

and 𝛼𝐻Δ𝛾. Hence ΔΩ controls the beam steering through the lever of Δ𝛾, but it has little effect on 

the intensity distribution. The consistency between coupled mode theory and CRE will be 

explained in further detail in the next sections. The key to maintaining this consistency is clearly 

distinguishing the two frequency detunings Δ𝜔 and ΔΩ, defined in Equations (3.17) and (3.19). 
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When calculating eigenmodes of the laser array using coupled mode theory, the input is 

gain contrast Δ𝛾 and total frequency detuning Δ𝜔, neither of which can be easily measured 

experimentally. Hence an advantage of CRE analysis is that the input parameters are the cavity 

detuning ΔΩ and the pump rates 𝑄𝐴,𝐵, which are both experimentally accessible.  

We also solve SSCREs numerically and plot the solution versus ΔΩ in Figure 3.3. Figures 

3.3(a) and (b) agree well with Equations (3.25) and (3.26), respectively, with Figure 3.3(b) 

revealing detailed variations of Δ𝜔 beyond the first order approximate of Equation (3.26). 

Figures 3.3(c) and (d) also agree well with Equations (3.20) and (3.23)-(3.24), respectively.  

Tuning of the relative phase is expressed as 𝑠𝑖𝑛𝜙 ≅ ΔΩ/(2𝛼𝐻𝜅) in Equation (3.20). For 

each ΔΩ, there are two solutions of 𝜙, which are 𝜙+ = arcsin (
𝛥𝛺

2𝛼𝐻𝜅
) and 𝜙− = 𝜋 −

arcsin (
𝛥𝛺

2𝛼𝐻𝜅
). From the definition of the 𝑎𝑟𝑐𝑠𝑖𝑛 function, 𝜙+ ∈ [−𝜋/2, 𝜋/2 ], while 𝜙− ∈

[𝜋/2, 3𝜋/2 ]. When  ΔΩ = 0, we have 𝜙+ = 0 and 𝜙− = 𝜋, as the in-phase and out-of-phase 

mode. When  ΔΩ ≠ 0, we have a tilted in-phase mode and tilted out-of-phase mode, labeled by + 

and – respectively. Other variables in the solution are labeled in accordance to 𝜙, making one 

solution the set of [Δ𝛾+, Δω+, (
𝑌𝐵

𝑌𝐴
)
+
, 𝜙+] and the other solution corresponding to the set of 

[Δ𝛾−, Δω−, (
𝑌𝐵

𝑌𝐴
)
−
, 𝜙−].  

The CRE analysis inherently has coupled mode theory embedded, so we can check 

consistency through the calculation of eigenmodes using couple mode theory with Δ𝛾+,− and 

Δ𝜔+,− as input parameters. Coupled mode theory predicts two eigenmodes for Δ𝛾+, Δ𝜔+ and 

another two for Δ𝛾−, Δ𝜔−. However, only one out of the two eigenmodes for each set of Δγ, Δ𝜔 

is consistent with the steady-state carrier rate equations, while the other eigenmode is not a valid 

solution. For example, if Δ𝛾+, Δ𝜔+ are used as the input for coupled mode theory, the calculated 
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eigenmodes are a tilted in-phase solution (−𝜋/2 < 𝜙 < 𝜋/2) and a tilted out-of-phase solution 

(𝜋/2 < 𝜙 < 3𝜋/2). The tilted-in-phase solution satisfies Equation (3.15) automatically, while 

the tilted-out-of-phase solution does not. Similarly, for Δ𝛾−, Δ𝜔−, only the tilted out-of-phase 

mode satisfies the carrier rate equation. In short, for the optical mode to be a solution of the 

SSCREs, not only does the mode need to be a solution of coupled mode theory, it also needs to 

have a self-consistent carrier density distribution that satisfies the rate equations. 

When |ΔΩ| > 2𝛼𝐻𝜅, there are no steady-state solutions. Therefore, we can identity the 

cavity detuning range of ΔΩ ∈ [−2𝛼𝐻𝜅, 2𝛼𝐻𝜅] to correspond to the mutual injection locking 

range. From Equation (3.20) this can be understood as the requirement of 𝑠𝑖𝑛𝜙 < 1 for real 𝜙. 

To the best of our knowledge, this expression of the locking range first appeared in Ref. [14] and 

was later formally derived in Ref. [7].  

 

Figure 3.3: Numerical solutions of the SSCREs for Array 1 (very weak coupling, 𝜅 =
0.002/𝜏𝑝). (a) Induced gain contrast; (b) total frequency detuning; (c) relative phase; (d) field 

magnitude ratio between two cavities are plotted versus the cavity detuning ΔΩ. For |ΔΩ| <
2𝛼𝐻𝜅 there are two sets of solutions, labeled as + and – respectively. In (a) and (d) the two 

solutions are too close to distinguish in the plot. The pump parameters are set to 𝑄𝐴 = 𝑄𝐵 = 3.2, 

corresponding to 𝐼𝐴 = 𝐼𝐵 = 2.375 𝐼𝑡ℎ [31]. 
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We consider the gain contrast induced by cavity detuning, shown in Figure 3.3(a). This 

gain contrast consists of equal amounts of optical gain and loss in the two cavities: 𝛾𝐴 ≅

ΔΩ/(2𝛼𝐻)  and 𝛾𝐵 = −γA. The existence of loss arises from the gain saturation. In other words, 

the optical loss arises from insufficient carrier density to maintain the excess amount of photons 

in the cavity. Intuitively, the connection between cavity detuning and the induced gain contrast 

can be understood as follows: with the existence of frequency detuning, the intensity distribution 

of the array eigenmodes becomes asymmetric, and this asymmetry in photon numbers in each 

cavity results in asymmetric depletion rates of carriers (similar to the spatial hole burning in a 

single laser). In turn, the carrier densities become asymmetric, which creates gain contrast. 

Mathematically, self-consistent solutions to the SSCREs are found to have equal gain and loss in 

each cavity while the frequency detuning is almost balanced out.  

When the array has gain/loss contrast between the two cavities (i.e. Δ𝛾 ≠ 0), we say the 

array is non-Hermitian. The energy transfer via optical coupling between two cavities does not 

exist within a Hermitian coupled array. This will be revisited in the next section, where we will 

see that the maximum magnitude of energy transfer scales with the coupling coefficient and thus 

it explains the different behavior observed in Array 2 compared to Array 1.  

This cavity-detuning-induced gain and loss suggests another way of obtaining PT 

symmetry and exceptional points. In fact, in the limit of very weak coupling, the array under 

equal pumping nearly exhibits PT symmetry, in the sense that Δ𝜔 ≅ 0 to the first order of 𝜏𝑝𝜅. 

However, to reach exact PT symmetry and the exceptional points, tuning of the pump rates is 

necessary, as discussed in the following sections. 
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3.4 Weakly coupled arrays under unequal pumping (real 𝜿) 

For unequal pumping into the two lasers, because a general analytical solution is not 

available, we solve SSCREs numerically using a numerical root search. The two cases of very 

weak coupling (Array 1) and moderate coupling (Array 2) are compared under the conditions of 

cavity detuning ΔΩ (horizontal axis in Figures 3.4 and 3.5) and one of the pump rates 𝑄𝐵  

(vertical axis in Figures 3.4 and 3.5) are varied. The in-phase modes for Array 1 and 2 are plotted 

in Figure 3.4 and Figure 3.5, respectively, where the color scales in the plots corresponds to the 

induced gain contrast, frequency detuning, relative phase, and the magnitude of the field ratio 

between the elements. The red lines show where the array is PT symmetric, which is discussed in 

greater detail in the next section. The out-of-phase modes are plotted in the Appendix D. 

In the case of very weak coupling presented in Figure 3.4, from the color gradient we see 

that varying 𝑄𝐵 has little effect on the gain contrast Δ𝛾 or the relative phase 𝜙 [Figure 3.4(a) and 

3.4(c)], but it does control the total frequency detuning Δ𝜔 and the field magnitude ratio (𝑌𝐵/𝑌𝐴) 

[Figure 3.4(b) and 3.4(d)]. The gain contrast and the relative phase are mostly controlled by the 

cavity detuning ΔΩ, evident from the color gradient in Figures 3.4(a) and 3.4(c) being mostly 

along the horizontal direction. The in-phase solutions to the SSCREs for moderate coupling are 

shown in Figure 3.5. Similar to the case of very weak coupling, varying the pump parameter 𝑄𝐵 

still has little effect on gain contrast or phase tuning. However, the total frequency detuning Δ𝜔 

and the field magnitude ratio are now controlled by both the 𝑄𝐵 and ΔΩ, which is different from 

the case of very weak coupling. 

For both Array 1 and Array 2, we find a finite region where steady-state solutions exist 

(represented by the colored regions in Figures 3.4 and 3.5), which we identify as the locking  
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Figure 3.4: The tilted in-phase solution for Array 1 (𝜅 = 0.002/𝜏𝑝). (a) Induced gain contrast; 

(b) total frequency detuning; (c) relative phase; and (d) field magnitude ratio versus the cavity 

detuning and pump parameter 𝑄𝐵, while 𝑄𝐴 is fixed at 3.2. The pump parameters correspond to 

having 𝐼𝐴 fixed at 2.375 𝐼𝑡ℎ, while 𝐼𝐵 varies from 1.625 𝐼𝑡ℎ to 3.125 𝐼𝑡ℎ. Red lines show where 

the array is PT symmetric [31]. 

 

Figure 3.5: The tilted in-phase solution for Array 2 (𝜅 = 0.06/𝜏𝑝). (a) Induced gain contrast; (b) 

total frequency detuning; (c) relative phase; and (d) field magnitude ratio versus the cavity 

detuning and pump parameter 𝑄𝐵. Again, 𝑄𝐴 is fixed at 3.2, while 𝑄𝐵 varies from 2 to 4.4. The 

locations labeled with numbers (i)-(iv) correspond to the schematics in Figure 3.6. Red lines 

show where the array is PT symmetric [31].  
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region for the two lasers. Outside the locking region, no steady-state solution exists, which 

suggests either multi-mode lasing or temporally chaotic behavior [7, 32]. The horizontal width of 

the coupling region (|𝛥𝛺|𝑚𝑎𝑥) in Figures 3.4(a) and 3.5(a) changes slightly with varying 𝑄𝐵, and 

is approximately constant with |𝛥𝛺|𝑚𝑎𝑥 ≅  2𝛼𝐻𝜅. 

The tilted out-of-phase solutions are plotted in Appendix D. Their response to the tuning 

of ΔΩ and 𝑄𝐵 is similar to the in-phase solutions plotted in Figures 3.4 and 3.5. In coupled 

VCSEL arrays, experimentally tuning the injected currents into each laser corresponds to varying 

both 𝑄𝐴,𝐵 and the ΔΩ at the same time. The magnitude of injection current not only changes the 

pump parameters 𝑄𝐴,𝐵, but also varies the cavity resonance frequency Ω𝐴,𝐵 through ohmic 

heating and the refractive index temperature dependence. Hence varying the injection currents is 

equivalent to moving along a given line or trajectory on the 2D maps shown in Figures 3.4 and 

3.5. 

The different behaviors of very weak coupling (Array 1) and moderate coupling (Array 

2) can be interpreted from the perspective of energy conservation and energy transfer. In the very 

weak coupling limit (Array 1 in Figure 3.4), because the energy transfer between two lasers is 

very limited, we have approximate energy conservation in each laser. This means that in the very 

weak coupling limit, 𝑌𝐵/𝑌𝐴 is almost solely determined by 𝑄𝐵/𝑄𝐴, because the carrier injection 

rate (proportional to 𝑄𝐵,𝐴) needs to balance the carrier depletion rate, which is proportional to 

number of photons in the cavity (proportional to 𝑌𝐵,𝐴
2 ). However, when the optical coupling 

between cavities becomes stronger, the photon-mediated energy transfer between cavities can 

disturb this balance. For example, for Array 2 in Figure 3.5, 𝑌𝐵
2/𝑌𝐴

2 can be as large as 1.4 when 

𝑄𝐵/𝑄𝐴 = 1, meaning that the photons in cavity B come not only from carriers injected into B, 

but also from carriers injected into cavity A. This energy transfer is connected to the gain/loss 
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contrast between cavities. The cavity with more photons than injected carriers is interpreted as a 

lossy cavity, and it gains energy from the other cavity through optical coupling. The cavity that 

provides energy to the other cavity through optical coupling is interpreted to possess net gain. 

 There are four cases under equal and unequal pumping that can be considered, and these 

cases are schematically depicted in Figure 3.6. The sizes of arrows in Figure 3.6 illustrate the 

magnitude of energy flows associated with the processes of carrier injection, stimulated 

emission, and optical output from end mirrors of the cavities. The sizes of boxes and circles 

illustrate the carrier densities 𝑀𝐴,𝐵 and photon densities 𝑌𝐴,𝐵
2 . Four steady-state solutions, (i)-(iv), 

are shown in Figure 3.6, which correspond to the four operating points labeled in Figure 3.5. 

Solution (i) is where the array is under equal pumping and zero cavity detuning. The array is 

Hermitian because there is no net gain or loss in either cavity. Solution (ii) is with equal pumping 

but nonzero cavity detuning ΔΩ, and the array is non-Hermitian due to gain/loss contrast induced 

by the cavity detuning. Although the pump rates into each cavity are the same in this situation, 

nonzero cavity detuning induces asymmetry in photon densities, which in turn affects the carrier 

depletion rate and results in asymmetric carrier densities. Also note the net energy flow from 

cavity A into cavity B through optical coupling. This energy flow is necessary for power 

conservation, which can be examined by summing up all the energy flows in and out of each 

reservoir. Solution (iii) is with nonequal pumping and zero cavity detuning. In this case, the 

steady-state solution shows Δ𝛾 ≅ 0, meaning that the array is approximately Hermitian. In other 

words, differential pumping does not induce significant non-Hermiticity. At last, solution (iv) is 

with judiciously chosen unequal pumping and cavity detuning that makes the array PT 

symmetric.  
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Figure 3.6: Illustration of the distributions of carrier densities, photon densities, gain/loss, and 

energy flows at points labeled by (i)-(iv) in Figure 3.5. Sizes of the boxes, circles, and arrows 

illustrate the asymmetry in carrier densities, photon densities, and energy flows (in the processes 

of carrier injection, stimulated emission, optical coupling, and optical output) [31]. 

 

3.5 PT symmetry and exceptional points (real 𝜿) 

As discussed in Section 2.2, for two identical resonators coupled through a real coupling 

coefficient 𝜅, the system is invariant under  �̂��̂� if 𝜔𝐴 = 𝜔𝐵, and 𝛾𝐴 = −𝛾𝐵 [15, 18-21, 33]. 

However, when the system is PT symmetric (i.e., �̂��̂��̿� = �̿�), the eigenmodes of the system may 

not be PT-symmetric. It would be designated “unbroken PT symmetry” if both the system and 

the eigenmodes are PT-symmetric. On the other hand, it would be designated “broken PT 

symmetry” when the system is PT-symmetric but the eigenmodes are not. It is known that 

unbroken PT symmetry happens when Δ𝛾 < 2𝜅, while PT symmetry is spontaneously broken 

when Δ𝛾 > 2𝜅. At Δ𝛾 = 2𝜅, which is known as the exceptional points, the two eigenmodes 

collapse. Recently, improved sensing functionality has been predicted and demonstrated around 

the exceptional points [26, 27]. 

Points with 𝜔𝐴 = 𝜔𝐵 are labeled in red in Figures. 3.4 and 3.5, which correspond to 

where the array exhibits PT symmetry. In Figure 3.7, we specifically denote unbroken and 

broken PT symmetry regimes as blue and red lines; notice that the exceptional points occur at 

their intersections. Here the gain contrast arises from equal gain and loss (i.e., 𝛾𝐴 = −𝛾𝐵), 
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meaning that it is naturally PT symmetric without the necessity of “gauge transformation” that 

was mentioned in Section 2.2.  

Along the line of unbroken PT symmetry, there are two sets of solutions to the SSCREs. 

At the exceptional points, the two sets of solutions collapse to the same values. Along the broken 

PT symmetry lines, there is only one set of solution to the SSCREs that satisfies both the coupled 

mode theory and the carrier density rate equations. Analytical solutions to the SSCREs are 

available along the line of unbroken PT symmetry, as discussed in the following. 

Operating the laser array at the exceptional point requires judiciously chosen pump ratio 

and cavity detuning. In most coupled diode laser arrays, since the pump ratio and cavity detuning 

are both controlled by the same experimental parameter, i.e. the injection currents, it can be 

challenging to find and operate the array at its exceptional point. However, the PT symmetry-

breaking mode is relatively easy to achieve as long as there is sufficient cavity detuning to drive 

the array to the boundary of locking region (for example see Figure 3.1). We note also that the 

broken PT symmetry can be achieved by exclusively cavity detuning (with equal pumping). 

 

Figure 3.7: Location of unbroken PT symmetry (blue curves), broken PT symmetry (red curves) 

and exceptional points (black points) on the 2D parameter space of (𝑄𝐵, ΔΩ) for (a) very weak 

coupling (Array 1) and (b) moderate coupling (Array 2) [31].  

A further observation is that the two sets of solutions to the SSCREs are generally 

different from each other, but they converge to the same solution along the lines of broken PT 
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symmetry. Along the line of unbroken PT symmetry, the two sets of solutions share the same 

values of Δ𝛾, Δ𝜔, 𝑌𝐵/𝑌𝐴, but not 𝜙. Instead, they have 𝜙+ + 𝜙− = 𝜋. This observation is 

discussed more detail in Appendix D. 

The condition of unbroken PT symmetry can be found analytically in the 2D parameter 

space of 𝑄𝐵  and ΔΩ (for example in Figures 3.4, 3.5, 3.6, D.1 and D.2): 

𝑄𝐵
𝑄𝐴

=
1 − 2𝜏𝑝𝜅𝑠𝑖𝑛𝜙

1 + 2𝜏𝑝𝜅𝑠𝑖𝑛𝜙
 

ΔΩ = 2𝛼𝐻𝜅𝑠𝑖𝑛𝜙 

𝜙 ∈ (−
𝜋

2
,
𝜋

2
) 

Exceptional points are located at the ends of the unbroken PT symmetry region, 

expressed as 

𝑄𝐵
𝑄𝐴

=
1 ∓ 2𝜏𝑝𝜅

1 ± 2𝜏𝑝𝜅
 

ΔΩ = ±2𝛼𝐻𝜅 

Along the line of unbroken PT symmetry, we have analytical solution to the steady-state 

coupled rate equations:  

Δω+,− = 0  

Δ𝛾+,− = −
ΔΩ

αH
 

𝑠𝑖𝑛𝜙 =
ΔΩ

2𝛼𝐻𝜅
 

𝑀𝐴 = 1 + 2𝜏𝑝𝜅𝑠𝑖𝑛𝜙 

𝑀𝐵 = 1 − 2𝜏𝑝𝜅𝑠𝑖𝑛𝜙 

𝑌𝐴
2 = 𝑌𝐵

2 =
1

2
(𝑄𝐴 + 𝑄𝐵 − 2) 
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This solution takes the same form as the approximate analytical solution for the weakly 

coupled equally pumped array that was reported in Ref. [7] and repeated as (3.20)-(3.24) in 

Section 3.3. This can be understood by noting that when the coupling coefficient approaches zero 

(𝜏𝑝𝜅 → 0), the line of unbroken PT symmetry converges to the line of 𝑄𝐵 = 𝑄𝐴. This solution is 

also consistent with the analytical expressions in Ref. [8], where a general analytical expression 

has been provided in an inverse form to what we have solved for (system parameters in terms of 

optical mode characteristics).  

3.6 Nonzero imaginary part in the coupling coefficient 

3.6.1 Gain splitting and threshold splitting 

As we have discussed in Chapter 2, the imaginary part of the coupling coefficient 

represents the gain splitting between the two normal modes. It originates from a nonuniform 

gain/loss profile in the system, for example arising from gain-guiding confinement, or gain/loss 

in the coupling region. Gain/loss in the coupling region overlaps differently with the in-phase 

mode versus the out-of-phase mode, and this difference splits the gain/loss experienced by the 

in-phase and out-of-phase normal modes. The direct result of gain splitting is a threshold 

difference between the modes, which we refer to as “threshold splitting”. Due to the difference in 

modal gain that the two normal modes experience, they have different threshold carrier densities.  

When the two lasers are symmetrical (i.e., ΔΩ = 0, 𝑄𝐴 = 𝑄𝐵 = 𝑄), the normal modes are 

either symmetrical (𝑀𝐴 = 𝑀𝐵 = 𝑀+, 𝑌𝐴 = 𝑌𝐵 = 𝑌+, and 𝜙 = 0) or anti-symmetrical (𝑀𝐴 =

𝑀𝐵 = 𝑀−, 𝑌𝐴 = 𝑌𝐵 = 𝑌−, and 𝜙_ = 𝜋). When there is no imaginary part in the coupling 

coefficient, the threshold carrier densities for the two normal modes are 𝑀+ = 𝑀_ = 1, which 

means that the two normal modes have the same threshold carrier density, and it is the same as 
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the threshold of an isolated laser. In other words, the coupling does not vary the threshold carrier 

density. 

On the other hand, when there exists nonzero imaginary part in the coupling coefficient, 

say 𝜅𝑖 < 0, meaning that the in-phase mode is preferred according to our definition [Equation 

(2.17)], we have 

𝑀+ = 1 + 2𝜏𝑝𝜅𝑖 (3.27) 

𝑀_ = 1 − 2𝜏𝑝𝜅𝑖 (3.28) 

Because 𝜅𝑖 < 0 we have 𝑀+ < 1 < 𝑀_, meaning the in-phase normal mode has lower threshold 

than the threshold of an isolated laser (which is 1), and the out-of-phase normal mode has higher 

threshold than that of an isolated laser. In other words, the coupling between the lasers has the 

effect of reducing the threshold for the in-phase mode (to less than that of an isolated laser), and 

increasing the threshold for the out-of-phase mode. This behavior will be shown in the 

experimental characterization in Chapter 5. 

This threshold splitting favors one of the normal modes over the other. The mutual 

coherence between the lasers can be associated with this threshold splitting. When only one 

normal mode is lasing, we have perfect coherence; when both normal modes are lasing with 

equal intensity, we have zero coherence; when both normal modes are lasing but with unequal 

intensity, we have partial coherence. This argument has also been quantitatively established in 

stochastic coupled mode theory for the study of partial coherence in coupled laser arrays [5]. 

3.6.2 Non-Hermitian coupling and non-Hermiticity 

Complex coupling coefficient itself can make the coupling matrix �̿� non-Hermitian [34, 

35]. In our case  
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�̿� = [
𝜔𝐴 + 𝑖𝛾𝐴 −𝜅𝑟 − 𝑖𝜅𝑖
−𝜅𝑟 − 𝑖𝜅𝑖 𝜔𝐵 + 𝑖𝛾𝐵

] 

and �̿� is not Hermitian, neither is it PT-symmetric.  

With the existence of 𝜅𝑖 ≠ 0, the influences of Δ𝜔 and Δ𝛾 on the normal modes are 

mixed. It is found that Δ𝜔 contributes to both the intensity asymmetry and beam steering, and Δ𝛾 

contributes to both the intensity asymmetry and beam steering as well. More importantly, an 

exceptional point will not occur for Δ𝜔 = 0, Δ𝛾 = ±2𝜅 anymore. Instead, from Equation (2.13), 

we see that the exceptional points are at 

Δ𝜔2 − Δ𝛾2 + 4(𝜅𝑟
2 − 𝜅𝑖

2) = 0 (3.29) 

Δ𝜔Δ𝛾 + 4𝜅𝑟𝜅𝑖 = 0 (3.30) 

From Equation (3.30), we see that unless 𝜅𝑖 = 0, operating the array at an exceptional point 

mode requires simultaneously both gain contrast Δ𝛾 and frequency detuning Δ𝜔. An example 

illustration of the eigenmode dependence on Δ𝜔 and Δ𝛾 is presented in Figure 3.8. The left 

column [(a)-(c)] corresponds to when the coupling coefficient is real-valued, while the right 

column [(d)-(f)] shows the cases when the coupling coefficient is complex.  



73 

 

 

Figure 3.8: Array eigenmode dependence (blue and red curves) on Δ𝜔 and Δ𝛾. The left column 

[(a)-(c)] correspond to real-valued coupling coefficients, while the right column [(d)-(f)] 

correspond to complex-valued coupling coefficients. Exceptional points are labeled as EP. 

 

3.7 Summary 

Mode tuning in coupled semiconductor lasers has been studied by solving the steady-state 

coupled rate equations. When the coupling coefficient is real-valued, we show that, depending on 

the strength of coupling compared to the cavity loss rate, the coupled array responds differently 

to unequal pumping and cavity detuning. When 𝜅 ≪ 1/𝜏𝑝, which is the limit of very weak 

coupling, the cavity detuning induces a gain contrast, but the frequency detuning is almost 

completely balanced out by the frequency shift from the asymmetric carrier distribution. In the 

moderate coupling case (𝜅 = 0.06/𝜏𝑝), the frequency detuning is partially balanced out. In either 

weak or moderate coupling, gain contrast is more effectively introduced by the cavity detuning 

than by the difference in pump rates, and the relative phase between two lasers is controlled by 

the cavity detuning, through the lever of induced gain contrast.  
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In the limit of very weak coupling, the tuning of intensity ratio between lasers is 

controlled almost solely by the pump rate difference, as expected from the conservation of 

energy and particle numbers in each cavity. In moderate coupling, because of the photon-

mediated energy transfer between cavities, the particle number conservation should be 

considered in terms of the whole array instead of the individual cavities, and the intensity ratio is 

controlled by both the pump rate difference and ΔΩ. This summary is illustrated in Figure 3.9. 

 

Figure 3.9: Mode control comparison between very weakly coupled laser arrays and moderately 

coupled arrays (real 𝜅). 

We have also shown that to achieve the modes that correspond to unbroken PT symmetry 

or exceptional points in the semiconductor arrays with weak or moderate coupling, judiciously 

chosen cavity detuning and unequal pump rates are required. However, broken PT symmetry is 

less challenging to achieve, and it is possible to drive the array to PT symmetry breaking by 

exclusively cavity detuning. 

Finally, we discussed the physical effects related to the imaginary component in the 

coupling coefficient (i.e., 𝜅𝑖), for example the threshold splitting between in-phase mode and 

out-of-phase modes. This observation leads to a practical approach to extract 𝜅𝑖 in experiments. 
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Measurements of the threshold splitting (and hence the existence of 𝜅𝑖) will be reported in 

Chapter 5, as extracted from the output power versus current (L-I) characteristics of the coupled 

VCSEL arrays. We also point out that the existence of 𝜅𝑖 changes the mode control mechanism 

and the location of exceptional points on the 2D (Δ𝜔, Δ𝛾) plane. 

The results presented in the chapter have important implications for mode control in 

coupled semiconductor laser arrays, as well as the search for PT symmetry and exceptional 

points in such systems. The stability of the steady-state modes will be discussed in the next 

chapter. 
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CHAPTER 4: COUPLED RATE EQUATION ANALYSIS: SMALL-SIGNAL 

DYNAMICS 

In Chapter 3 we solved the steady-state coupled rate equations (SSCREs) and obtained 

the steady-state solutions [1]. An important question regarding the steady-state solutions is if 

they are stable [2, 3]. In other words, if there is a small perturbation applied to the steady-state 

solution, will the perturbation decay (stable) or grow (unstable) over time. In this chapter we will 

address this question by studying the small-signal dynamics of the array. By studying the 

temporal evolution of a small perturbation that is added into the steady-state solution, we can not 

only obtain the stability of the steady-state solution, but also calculate the small-signal response 

of the array under external modulation [4, 5]. 

4.1 Differential analysis of the coupled rate equations 

From the coupled rate equations [e.g. Equations (3.12)-(3.15)], if we add a small 

perturbation to the steady-state solution, the temporal evolution of this small perturbation follows 

this linear differential equation: 

𝑑

𝑑𝑡

[
 
 
 
 
𝛥𝑌𝐴
𝛥𝑌𝐵
𝛥𝜙
𝛥𝑀𝐴
𝛥𝑀𝐵]

 
 
 
 

=

[
 
 
 
 
 
𝐴𝑌𝐴𝑌𝐴 𝐴𝑌𝐴𝑌𝐵 𝐴𝑌𝐴𝜙 𝐴𝑌𝐴𝑀𝐴

0

𝐴𝑌𝐵𝑌𝐴 𝐴𝑌𝐵𝑌𝐵 𝐴𝑌𝐵𝜙 0 𝐴𝑌𝐵𝑀𝐵

𝐴𝜙𝑌𝐴 𝐴𝜙𝑌𝐵 𝐴𝜙𝜙 𝐴𝜙𝑀𝐴
𝐴𝜙𝑀𝐵

𝐴𝑀𝐴𝑌𝐴 0 0 𝐴𝑀𝐴𝑀𝐴
0

0 𝐴𝑀𝐵𝑌𝐵 0 0 𝐴𝑀𝐵𝑀𝐵]
 
 
 
 
 

[
 
 
 
 
𝛥𝑌𝐴
𝛥𝑌𝐵
𝛥𝜙
𝛥𝑀𝐴
𝛥𝑀𝐵]

 
 
 
 

+
1

𝜏𝑁

[
 
 
 
 
0
0
0
𝛥𝑄𝐴
𝛥𝑄𝐵]

 
 
 
 

(4.1) 

where 

[
 
 
 
 
𝛥𝑌𝐴
𝛥𝑌𝐵
𝛥𝜙
𝛥𝑀𝐴
𝛥𝑀𝐵]

 
 
 
 

 is the small perturbation and Δ𝑄𝐴,𝐵 represents the external current modulation, if it 

exists. Equation (4.1) is the small-signal (differential) analysis of the coupled rate equations, 
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similar to the small-signal analysis in an isolated diode laser [4, 5]. The steady-state solution  

[
 
 
 
 
𝑌𝐴
𝑌𝐵
𝜙
𝑀𝐴
𝑀𝐵]
 
 
 
 

 (dependent on the DC bias) determines the matrix �̿�, whose terms are defined as  

�̿� ≡

[
 
 
 
 
 
𝐴𝑌𝐴𝑌𝐴 𝐴𝑌𝐴𝑌𝐵 𝐴𝑌𝐴𝜙 𝐴𝑌𝐴𝑀𝐴

0

𝐴𝑌𝐵𝑌𝐴 𝐴𝑌𝐵𝑌𝐵 𝐴𝑌𝐵𝜙 0 𝐴𝑌𝐵𝑀𝐵

𝐴𝜙𝑌𝐴 𝐴𝜙𝑌𝐵 𝐴𝜙𝜙 𝐴𝜙𝑀𝐴
𝐴𝜙𝑀𝐵

𝐴𝑀𝐴𝑌𝐴 0 0 𝐴𝑀𝐴𝑀𝐴
0

0 𝐴𝑀𝐵𝑌𝐵 0 0 𝐴𝑀𝐵𝑀𝐵]
 
 
 
 
 

 

𝐴𝑌𝐴𝑌𝐴 =
1

2𝜏𝑝
(𝑀𝐴 − 1) 

𝐴𝑌𝐴𝑌𝐵 = −(𝜅𝑟𝑠𝑖𝑛𝜙 + 𝜅𝑖𝑐𝑜𝑠𝜙) 

𝐴𝑌𝐴𝜙 = 𝑌𝐵(𝜅𝑖𝑠𝑖𝑛𝜙 − 𝜅𝑟𝑐𝑜𝑠𝜙) 

𝐴𝑌𝐴𝑀𝐴
=
𝑌𝐴
2𝜏𝑝

 

𝐴𝑌𝐵𝑌𝐴 = 𝜅𝑟𝑠𝑖𝑛𝜙 − 𝜅𝑖𝑐𝑜𝑠𝜙 

𝐴𝑌𝐵𝑌𝐵 =
1

2𝜏𝑝
(𝑀𝐵 − 1) 

𝐴𝑌𝐵𝜙 = 𝑌𝐴(𝜅𝑟𝑐𝑜𝑠𝜙 + 𝜅𝑖𝑠𝑖𝑛𝜙) 

𝐴𝑌𝐵𝑀𝐵
=
𝑌𝐵
2𝜏𝑝

 

𝐴𝜙𝑌𝐴 =
𝜅𝑟𝑐𝑜𝑠𝜙 + 𝜅𝑖𝑠𝑖𝑛𝜙

𝑌𝐵
+
𝑌𝐵

𝑌𝐴
2
(𝜅𝑟𝑐𝑜𝑠𝜙 − 𝜅𝑖𝑠𝑖𝑛𝜙) 

𝐴𝜙𝑌𝐵 =
−𝜅𝑟𝑐𝑜𝑠𝜙 + 𝜅𝑖𝑠𝑖𝑛𝜙

𝑌𝐴
−
𝑌𝐴

𝑌𝐵
2
(𝜅𝑟𝑐𝑜𝑠𝜙 + 𝜅𝑖𝑠𝑖𝑛𝜙) 

𝐴𝜙𝜙 = −𝜅𝑟𝑠𝑖𝑛𝜙 (
𝑌𝐴
𝑌𝐵
−
𝑌𝐵
𝑌𝐴
) + 𝜅𝑖𝑐𝑜𝑠𝜙 (

𝑌𝐴
𝑌𝐵
+
𝑌𝐵
𝑌𝐴
) 
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𝐴𝜙𝑀𝐴
=
𝛼𝐻
2𝜏𝑝

 

𝐴𝜙𝑀𝐵
= −

𝛼𝐻
2𝜏𝑝

 

𝐴𝑀𝐴𝑌𝐴 = −
2𝑀𝐴𝑌𝐴
𝜏𝑁

 

𝐴𝑀𝐴𝑀𝐴
= −

1 + 𝑌𝐴
2

𝜏𝑁
 

𝐴𝑀𝐵𝑌𝐵 = −
2𝑀𝐵𝑌𝐵
𝜏𝑁

 

𝐴𝑀𝐵𝑀𝐵
= −

1 + 𝑌𝐵
2

𝜏𝑁
 

For a steady state solution to be stable, all eigenvalues of �̿� need to have negative real parts. By 

evaluating the eigenvalues of �̿� we can check the stability of the steady-state solutions that we 

have previously obtained in Chapter 3. Eigenvalues of �̿� are also the poles in the small-signal 

modulation response. 

4.2 Stability of the steady-state solutions 

As an example and a validation for our approach to the array stability, we calculate the 

array stability under ΔΩ = 0, 𝑄𝐴 = 𝑄𝐵 = 𝑄, because this is the situation that has been previously 

solved analytically [2]. We first solve SSCREs with ΔΩ and 𝑄𝐴,𝐵 as the input, and (𝑌𝐴,𝐵, 𝜙,𝑀𝐴,𝐵) 

as outputs. Then from the steady-state solutions (𝑌𝐴,𝐵, 𝜙,𝑀𝐴,𝐵) we evaluate �̿� and calculate the 

eigenvalues of �̿�. If all the eigenvalues of �̿� have negative real parts, then the steady-state 

solution is stable. Otherwise, if there exist eigenvalue(s) of  �̿� that have positive real part, the 

steady-state solution is unstable (i.e., random small perturbations will blow up over time) [6]. 
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We first validate our calculation against a case that has been analytically solved:  ΔΩ = 0 

and 𝑄𝐴 = 𝑄𝐵 = 𝑄. The stability condition of in-phase and out-of-phase modes are [2]: 

𝜅 >
𝛼𝐻
𝜏𝑝

𝑄 − 1

2𝑄
 (in-phase) (4.2) 

𝜅 <
𝑄

2𝛼𝐻𝜏𝑁
 (out-of-phase) (4.3) 

The stability maps (for the in-phase and the out-of-phase mode respectively) are plotted in Figure 

4.1, where the yellow region represents stable and the blue region represents unstable. The 

analytical expressions [Equations (4.2) and (4.3)] are shown as red dashed lines, and we see 

excellent agreement. 

 

Figure 4.1: Stability of the array under zero detuning and equal injection (ΔΩ = 0, 𝑄𝐴 = 𝑄𝐵 =
𝑄). The yellow region is where the array is stable, while the blue region is where the array is 

unstable. The horizontal axis is the common pump parameter 𝑄 and the vertical axis is the 

strength of the coupling (𝜅𝜏𝑝) in logarithmic scale. The red dashed lines are the analytical 

criteria [Equations (4.1) and (4.2)] from [2]. 
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4.3 Small-signal response under external current modulation 

With external small-signal modulation of the input current(s), we have nonzero 𝛥𝑄𝐴 

and/or 𝛥𝑄𝐵. For a sinusoidal modulation at frequency 𝜔𝑚, we have 

𝛥𝑄𝐴(𝑡) = 𝑄𝐴𝑚𝑒
−𝑖𝜔𝑚𝑡 

𝛥𝑄𝐵(𝑡) = 𝑄𝐵𝑚𝑒
−𝑖𝜔𝑚𝑡 

𝛥𝑌𝐴(𝑡) = 𝑌𝐴𝑚𝑒
−𝑖𝜔𝑚𝑡 

𝛥𝑌𝐵(𝑡) = 𝑌𝐵𝑚𝑒
−𝑖𝜔𝑚𝑡 

𝛥𝜙(𝑡) = 𝜙𝑚𝑒
−𝑖𝜔𝑚𝑡 

𝛥𝑀𝐴(𝑡) = 𝑀𝐴𝑚𝑒
−𝑖𝜔𝑚𝑡  

𝛥𝑀𝐵(𝑡) = 𝑀𝐵𝑚𝑒
−𝑖𝜔𝑚𝑡 

and hence we have 
𝑑

𝑑𝑡
→ −𝑖𝜔𝑚. Note that 𝜔𝑚 in this situation is the frequency of the temporal 

evolution of the perturbation rather than the frequency of the optical mode (which is 𝜔). 

Replacing 
𝑑

𝑑𝑡
 with −𝑖𝜔𝑚, we have 

−𝑖𝜔𝑚

[
 
 
 
 
𝑌𝐴𝑚
𝑌𝐵𝑚
𝜙𝑚
𝑀𝐴𝑚
𝑀𝐵𝑚]

 
 
 
 

𝑒−𝑖𝜔𝑚𝑡 = �̿�

[
 
 
 
 
𝑌𝐴𝑚
𝑌𝐵𝑚
𝜙𝑚
𝑀𝐴𝑚
𝑀𝐵𝑚]

 
 
 
 

𝑒−𝑖𝜔𝑚𝑡 +
1

𝜏𝑁

[
 
 
 
 
0
0
0
𝑄𝐴𝑚
𝑄𝐵𝑚]

 
 
 
 

𝑒−𝑖𝜔𝑚𝑡 

which yields 

(�̿� + 𝑖𝜔𝑚𝐼)̿�̅� = −
1

𝜏𝑁
𝐽 ̅

where 𝐼 ̿is the identity matrix, and 

�̅� ≡

[
 
 
 
 
𝑌𝐴𝑚
𝑌𝐵𝑚
𝜙𝑚
𝑀𝐴𝑚
𝑀𝐵𝑚]
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𝐽 ̅ ≡

[
 
 
 
 
0
0
0
𝑄𝐴𝑚
𝑄𝐵𝑚]

 
 
 
 

 

Using Cramer’s rule, we can solve for the magnitude of the electric field perturbation in cavity 

A, YAm: 

YAm = −
1

τNΛ |

|

0 𝐴𝑌𝐴𝑌𝐵 𝐴𝑌𝐴𝜙 𝐴𝑌𝐴𝑀𝐴
0

0 𝐴𝑌𝐵𝑌𝐵 + 𝑖𝜔 𝐴𝑌𝐵𝜙 0 𝐴𝑌𝐵𝑀𝐵

0 𝐴𝜙𝑌𝐵 𝐴𝜙𝜙 + 𝑖𝜔 𝐴𝜙𝑀𝐴
𝐴𝜙𝑀𝐵

𝑄𝐴𝑚 0 0 𝐴𝑀𝐴𝑀𝐴
+ 𝑖𝜔 0

𝑄𝐵𝑚 𝐴𝑀𝐵𝑌𝐵 0 0 𝐴𝑀𝐵𝑀𝐵
+ 𝑖𝜔

|

|
 

where  

Λ ≡ |�̿� + 𝑖𝜔𝐼|̿ =
|

|

𝐴𝑌𝐴𝑌𝐴 + 𝑖𝜔 𝐴𝑌𝐴𝑌𝐵 𝐴𝑌𝐴𝜙 𝐴𝑌𝐴𝑀𝐴
0

𝐴𝑌𝐵𝑌𝐴 𝐴𝑌𝐵𝑌𝐵 + 𝑖𝜔 𝐴𝑌𝐵𝜙 0 𝐴𝑌𝐵𝑀𝐵

𝐴𝜙𝑌𝐴 𝐴𝜙𝑌𝐵 𝐴𝜙𝜙 + 𝑖𝜔 𝐴𝜙𝑀𝐴
𝐴𝜙𝑀𝐵

𝐴𝑀𝐴𝑌𝐴 0 0 𝐴𝑀𝐴𝑀𝐴
+ 𝑖𝜔 0

0 𝐴𝑀𝐵𝑌𝐵 0 0 𝐴𝑀𝐵𝑀𝐵
+ 𝑖𝜔

|

|
 

Similarly, we can solve for the magnitudes of the perturbations in the electric field in 

cavity B (𝑌𝐵𝑚), in the relative phase between cavities (𝜙𝑚), and in the carrier densities (𝑀𝐴𝑚,𝐵𝑚) 

YBm = −
1

τNΛ |

|

𝐴𝑌𝐴𝑌𝐴 + 𝑖𝜔 0 𝐴𝑌𝐴𝜙 𝐴𝑌𝐴𝑀𝐴
0

𝐴𝑌𝐵𝑌𝐴 0 𝐴𝑌𝐵𝜙 0 𝐴𝑌𝐵𝑀𝐵

𝐴𝜙𝑌𝐴 0 𝐴𝜙𝜙 + 𝑖𝜔 𝐴𝜙𝑀𝐴
𝐴𝜙𝑀𝐵

𝐴𝑀𝐴𝑌𝐴 𝑄𝐴𝑚 0 𝐴𝑀𝐴𝑀𝐴
+ 𝑖𝜔 0

0 𝑄𝐵𝑚 0 0 𝐴𝑀𝐵𝑀𝐵
+ 𝑖𝜔

|

|
 

𝜙m = −
1

τNΛ |

|

𝐴𝑌𝐴𝑌𝐴 + 𝑖𝜔 𝐴𝑌𝐴𝑌𝐵 0 𝐴𝑌𝐴𝑀𝐴
0

𝐴𝑌𝐵𝑌𝐴 𝐴𝑌𝐵𝑌𝐵 + 𝑖𝜔 0 0 𝐴𝑌𝐵𝑀𝐵

𝐴𝜙𝑌𝐴 𝐴𝜙𝑌𝐵 0 𝐴𝜙𝑀𝐴
𝐴𝜙𝑀𝐵

𝐴𝑀𝐴𝑌𝐴 0 𝑄𝐴𝑚 𝐴𝑀𝐴𝑀𝐴
+ 𝑖𝜔 0

0 𝐴𝑀𝐵𝑌𝐵 𝑄𝐵𝑚 0 𝐴𝑀𝐵𝑀𝐵
+ 𝑖𝜔

|

|
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𝑀𝐴𝑚 = −
1

τNΛ |

|

𝐴𝑌𝐴𝑌𝐴 + 𝑖𝜔 𝐴𝑌𝐴𝑌𝐵 𝐴𝑌𝐴𝜙 0 0

𝐴𝑌𝐵𝑌𝐴 𝐴𝑌𝐵𝑌𝐵 + 𝑖𝜔 𝐴𝑌𝐵𝜙 0 𝐴𝑌𝐵𝑀𝐵

𝐴𝜙𝑌𝐴 𝐴𝜙𝑌𝐵 𝐴𝜙𝜙 + 𝑖𝜔 0 𝐴𝜙𝑀𝐵

𝐴𝑀𝐴𝑌𝐴 0 0 𝑄𝐴𝑚 0

0 𝐴𝑀𝐵𝑌𝐵 0 𝑄𝐵𝑚 𝐴𝑀𝐵𝑀𝐵
+ 𝑖𝜔

|

|
 

𝑀𝐵𝑚 = −
1

τNΛ |

|

𝐴𝑌𝐴𝑌𝐴 + 𝑖𝜔 𝐴𝑌𝐴𝑌𝐵 𝐴𝑌𝐴𝜙 𝐴𝑌𝐴𝑀𝐴
0

𝐴𝑌𝐵𝑌𝐴 𝐴𝑌𝐵𝑌𝐵 + 𝑖𝜔 𝐴𝑌𝐵𝜙 0 0

𝐴𝜙𝑌𝐴 𝐴𝜙𝑌𝐵 𝐴𝜙𝜙 + 𝑖𝜔 𝐴𝜙𝑀𝐴
0

𝐴𝑀𝐴𝑌𝐴 0 0 𝐴𝑀𝐴𝑀𝐴
+ 𝑖𝜔 𝑄𝐴𝑚

0 𝐴𝑀𝐵𝑌𝐵 0 0 𝑄𝐵𝑚

|

|
 

From these equations we can extract the small signal frequency response when either one 

of the injection currents is modulated or when both currents are modulated. When one of the 

lasers is under small signal current modulation, we set 𝑄𝐵𝑚 = 0 and calculate |
𝑌𝐴𝑚

𝑄𝐴𝑚
| and |

𝑌𝐵𝑚

𝑄𝐴𝑚
|. 

Most conveniently the small signal response is found by determining the poles and zeros of 𝑌𝐴𝑚 

and 𝑌𝐵𝑚 numerically. 

4.4 Stability and modulation response at the exceptional points 

At the exceptional points (assuming that 𝜅𝑖 = 0), the steady-state solution is: 

𝜙 = ±
𝜋

2
 

𝑌𝐴 = 𝑌𝐵 = 𝑌 

𝑀𝐴 = 1 ± 2𝜏𝑝𝜅𝑟 

𝑀𝐵 = 1 ∓ 2𝜏𝑝𝜅𝑟 

which leads to  

𝐴𝑌𝐴𝑌𝐴 = 𝐴𝑌𝐵𝑌𝐴 = ±𝜅𝑟 

𝐴𝑌𝐴𝑌𝐵 = 𝐴𝑌𝐵𝑌𝐵 = ∓𝜅𝑟 

𝐴𝑌𝐴𝑀𝐴
= 𝐴𝑌𝐵𝑀𝐵

=
𝑌

2𝜏𝑝
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𝐴𝜙𝑀𝐴
=
𝛼𝐻
2𝜏𝑝

 

𝐴𝜙𝑀𝐵
= −

𝛼𝐻
2𝜏𝑝

 

𝐴𝑀𝐴𝑌𝐴 = −
2(1 ± 2𝜏𝑝𝜅𝑟)𝑌

𝜏𝑁
 

𝐴𝑀𝐵𝑌𝐵 = −
2(1 ∓ 2𝜏𝑝𝜅𝑟)𝑌

𝜏𝑁
 

𝐴𝑀𝐴𝑀𝐴
= 𝐴𝑀𝐵𝑀𝐵

= −
1 + 𝑌2

𝜏𝑁
 

𝐴𝑌𝐴𝜙 = 𝐴𝑌𝐵𝜙 = 𝐴𝜙𝑌𝐴 = 𝐴𝜙𝑌𝐵 = 𝐴𝜙𝜙 = 0 

and hence 

�̿� =

[
 
 
 
 
 
 
 
 
 
 
 ±𝜅𝑟 ∓𝜅𝑟 0

𝑌

2𝜏𝑝
0

±𝜅𝑟 ∓𝜅𝑟 0 0
𝑌

2𝜏𝑝

0 0 0
𝛼𝐻
2𝜏𝑝

−
𝛼𝐻
2𝜏𝑝

−
2(1 ± 2𝜏𝑝𝜅𝑟)𝑌

𝜏𝑁
0 0 −

1 + 𝑌2

𝜏𝑁
0

0 −
2(1 ∓ 2𝜏𝑝𝜅𝑟)𝑌

𝜏𝑁
0 0 −

1 + 𝑌2

𝜏𝑁 ]
 
 
 
 
 
 
 
 
 
 
 

 

At the exceptional pint, it can be observed that �̿� is a singular matrix (|�̿�| = 0). The 

eigenvectors of singular matrix �̿� are thus not unique, as we can always add [0, 0, 𝑥, 0, 0]𝑇 to any 

eigenvector and it would still be an eigenvector. In the future, it will be interesting to study the 

consequence of this singularity at the exceptional points by examination of the asymptotic 

behavior of the array as it approaches an exceptional point. 
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CHAPTER 5: EXPERIMENTAL STUDY OF THE 2 × 1 COUPLED VCSEL ARRAYS 

In this chapter we describe the experimental study of 2 × 1 coherently coupled VCSEL 

arrays. Coherently coupled semiconductor laser arrays have been experimentally studied for 

almost 5 decades [1-7]. At the University of Illinois, 2 × 1 coherently coupled VCSEL arrays 

have been studied both experimentally and theoretically for more than a decade [5, 7-18]. The 

VCSEL device designs presented here have benefited from inherited parameters determined 

from the exploration and optimization by prior students in the Photonics Device Research Group, 

not only from the study of coherently coupled VCSEL arrays, but also from single ion-implanted 

photonic crystal (PhC) VCSELs [19-22]. 

We first introduce the design and fabrication of an optically coupled electrically isolated 

2x1 VCSEL array [16, 23-25]. Next, we will discuss the experimental characterization of the 

arrays at room temperature and under continuous wave (CW) operation. Comprehensive 

characterizations of the mode tuning behavior via independent control of both injection currents 

(𝐼𝐴 and 𝐼𝐵) are the primary experimental result [24]. Electronic steering of the far field emission 

angle is observed, as a consequence of the gain/loss tuning (non-Hermiticity) in the array. 

Optical power versus injection currents (L-I) and far-field intensity profiles are measured in a 

two-dimensional fashion (at every combination of 𝐼𝐴 and 𝐼𝐵) using LabVIEW automation. Near-

field intensity profiles and optical spectra are also measured at locations of interest.  

Extraction of the coupling coefficient from experimental measurements has long been of 

interest, and is discussed here in Section 5.4. Lastly, we present experimental results on 

controlling the mode tuning behavior with designed asymmetrical arrays [24, 25]. The degree of 

asymmetry serves as an additional array control parameter, in addition to the current tuning. 
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5.1 Design and fabrication 

An example cross-sectional sketch and top image are shown in Figure 5.1 of a 2 x 1 

coherently coupled VCSEL array that has been designed, fabricated, and characterized at the 

University of Illinois. The optical cavities of the two lasers are defined by the two epitaxial 

distributed Bragg reflector (DBR) mirrors in the longitudinal direction and by the PhCs in the 

transverse direction. The PhC pattern is a hexagonal lattice of etched holes with 𝑏/𝑎 ratio of 0.6, 

where 𝑏 is the diameter of the holes and 𝑎 is the center-to-center distance between nearest holes 

[22, 26]. A single missing PhC hole in the hexagonal pattern forms a cavity. The etched holes in 

PhC patterns reduce the effective index surrounding the cavity and offer index confinement, 

similar to the PhC fibers [27]. In addition, the PhCs introduce scattering loss in the cladding area, 

which offers loss-induced confinement and suppression of the higher-order modes [21], all of 

which enable single-fundamental-mode lasing operation in an individual PhC VCSEL [28]. The 

center-to-center distance between the two cavities is √3𝑎. The two holes in the coupling region 

(between the two cavities) are reduced in diameter (and because of their smaller diameter, they 

are also etched shallower during ICP-RIE) to enhance the lateral coupling [8, 20]. The nominal 

diameter of the normal holes is 𝑏 = 3 μm, while the nominal diameter of the reduced holes is 

2 μm. Note that the “nominal diameter” represents the diameter in the mask design. The actual 

diameters of holes for the fabricated devices are typically smaller than the nominal values due to 

imperfect pattern transformation during photolithography and etching. 

The electrical apertures which confine the injected currents into the array elements are 

defined by multiple steps of proton-implantations at various acceleration energies (100 keV to 

330 keV) and oxygen-implantation (50 keV to 300 keV) [29]. The nominal diameter of the 

implantation apertures is 7 μm, which equals to the nominal optical aperture formed by the PhC 
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defect (2𝑎 − 𝑏 = 7 μm). The actual diameters of the implant apertures tend to be smaller than 

those on the photomask, because of the oblique sidewall of photoresist mask and the lateral 

scattering (straggle) of the implanted ions. To increase the overlap between the un-implanted 

cavity and the top anode electrode (to reduce series resistance), we increase the implant aperture 

overlap over the anode electrode to ~4 μm by extending the un-implanted area underneath the 

anodes. The injection currents into each cavity, 𝐼𝐴 and 𝐼𝐵, can be individually tuned, with 

typically > 1 MΩ electrical isolation between the two top anode electrodes. Polyimide 

planarization is used to position both the anode and cathode contacts at the top surface with large 

contact pads for easier and more consistent on-wafer probing. Multiple VCSEL array samples 

emitting nominally at 850nm have been fabricated using the semiconductor processing tools 

within the Micro and Nanotechnology Laboratory at the University of Illinois. A complete 

fabrication process Follower is disclosed in Appendix E. 

 

Figure 5.1: (a) Cross-sectional sketch and (b) scanning electron microscopy image of a 2 x 1 

coherent VCSEL array. 

 

5.2 Characterization 

Because the array injection currents 𝐼𝐴 and 𝐼𝐵 can be individually and independently 

tuned, all 2 x 1 VCSEL array characterizations can be represented with 2D graphs with 𝐼𝐴 and 𝐼𝐵 
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as the two coordinate axes, and the measured quantity represented by a color scale. For example, 

Figure 5.2(a) is a 2D representation of the L-I characterization where the 𝑥- and 𝑦-axis represent 

𝐼𝐴 and 𝐼𝐵, and the color scale represents the output optical power at a specific combination of 

(𝐼𝐴, 𝐼𝐵). Because of the large parameter space (and the need to sometimes perform high resolution 

scans), measurements have been automated with a LabVIEW program controlling two Keithley 

236 precision current sources and recording the measurements (or one Keithley and one 

semiconductor parametric analyzer in the case of L-I characterizations).  

The injection currents vary the carrier injection rates (𝑄𝐴,𝐵) into the cavities, and also 

they tune the resonance frequencies of the cavities (Ω𝐴,𝐵) through Joule heating and the 

temperature dependence of refractive index in semiconductors. The cavity frequency detuning 

(ΔΩ = Ω𝐵 − Ω𝐴) varies linearly with Δ𝐼 = 𝐼𝐵 − 𝐼𝐴, as evident in Figure 5.2(d). From the coupled 

rate equation analysis presented in Chapter 3, we know that if we want the VCSEL array to lase 

in a coherent coupled mode, their frequency detuning has to be within ΔΩ ≲ |𝜅𝑖 + 𝛼𝐻𝜅𝑟| [30, 

31]. When the two VCSELs are coherently coupled (phase-locked), the relative phase between 

two cavities is controlled by ΔΩ. 

When the two lasers are phase-locked, we can also say that the two lasers lase in a single 

coherent supermode [14]. The single coherent supermode which extends into both optical 

cavities, is more efficiently pumped than two independent and incoherent individual modes. 

Evidence of this can be seen along the diagonal of Figure 2(a) above the lasing threshold. Note 

the “ridge” of increased output power and the decrease in threshold that occurs when the two 

currents are approximately equal. This increase in output power and decrease in lasing threshold 

when coherently coupled is evidence of an imaginary component in the coupling coefficient 

(non-Hermitian coupling), which will be discussed in Section 5.4.  
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When the lasers are phase-locked, we observe an interference pattern in the far field. The 

visibility of the interference pattern, defined as 𝑣𝑖𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 =
𝐼𝑚𝑎𝑥−𝐼𝑚𝑖𝑛

𝐼𝑚𝑎𝑥+𝐼𝑚𝑖𝑛
, is approximately the 

magnitude of the mutual coherence between the two lasers when their individual intensities are 

not too different [32]. Unitary visibility corresponds to perfect mutual coherence while zero 

visibility implies completely incoherent and spatially separate modes. Visibility between zero 

and one is partial coherence, which can arise as a result of the coexistence of in-phase and out-

of-phase coupled modes [7, 10]. We plot the far-field interference visibility versus the two 

injection currents in Figure 5.2(b) which clearly elucidates the locking region along the diagonal 

of the plot where the interference visibility approaches 1. Within the locking region, the relative 

phase between the two lasers can be tuned by the injection currents, leading to beam steering 

[13]. Shown in Figure 5.2(c) is the plot of beam steering angle (angle of the far-field intensity 

maximum) versus injection currents. Note that at higher bias levels, beam steering becomes 

much more sensitive to the current tuning, compared to near threshold. The different beam 

steering behavior near threshold versus at higher bias levels is discussed in detail in Section 5.3. 

The array lasing wavelength is measured using an optical spectrum analyzer (OSA) with 

0.02 nm spectral resolution. Shown in Figure 5.2(d) is a plot of the lasing wavelength when 𝐼𝐴 is 

fixed and 𝐼𝐵 is varied through the locking region. Within the locking region, the spectrum shows 

single peak, corresponding to the coherent coupled mode, while outside of the locking region, 

the two lasers in the array lase in localized modes at distinct wavelengths [13, 14]. (However, we 

must note that in Figure 5.2(d), we know that the two lasers are mutually locked and emit mostly 

in a single coupled mode when 3.40 mA < 𝐼𝐵 < 3.64 mA not because we see only one spectral 

peak, but because we performed far-field measurements at the same time, shown later in Figure 

5.7. Spectral measurements with OSAs are often not a good characterization of the locking 
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region, due to the low resolution of OSA not being able to resolve closely spaced lasing 

wavelengths when they are ≲ 0.08 𝑛𝑚 apart. This means that if the coupling coefficient is ≲

1010 𝑟𝑎𝑑/𝑠, the OSA may show only one spectral peak when the two lasers have close but 

distinct lasing wavelength and are not coherently coupled, or if both the in-phase and out-of-

phase modes lase simultaneously. The best way to characterize the locking region would be 

either the far-field visibility measurement or a fine spectral measurement with the frequency 

resolution at least 0.1 ×
|𝜅|

2𝜋
.) 

The frequency tuning for both cavities apparent in Figure 5.2(d) mostly results from Joule 

heating and the temperature dependence of refractive index [33]. While increasing 𝐼𝐵 mostly 

increases the temperature (and hence wavelength) of laser B in Figure 5.2(d), there is a small 

amount of thermal crosstalk evident in the wavelength shift of laser A. The cavity frequency 

detuning between the two cavities (i.e., ΔΩ), controlled by 𝐼𝐵 in a linear fashion, is an important 

control parameter in coupled laser arrays. The cavity frequency detuning ΔΩ determines the 

gain/loss contrast between the lasers through the nonlinearities in semiconductor cavities, as 

discussed in Chapter 3 [31]. From Figure 5.2(d), although we cannot resolve much detail within 

the locking region, we can very well determine ΔΩ by linear extrapolation of the wavelength 

tuning that is measured unambiguously outside the locking region. 
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Figure 5.2: Characterizations of a 2x1 VCSEL array emitting at 850 nm. (a) Output power versus 

injection currents (L-I). (b) Far-field interference fringe visibility versus injection currents. (c) 

Beam steering angle (of far-field intensity maximum) versus injection currents. (d) Lasing 

wavelength versus injection current 𝐼𝐵, while 𝐼𝐴 is fixed at 3.9 mA. The red line in (b) labels 

where the spectral measurement in (d) was taken. In (c), the beam steering angle is plotted only 

when the far field visibility is > 0.2, otherwise the area is plotted as white. The steering direction 

towards laser B is defined as positive angle. 

 

5.3 Experimental observation of non-Hermiticity 

As discussed in Chapter 2, coupled VCSEL arrays are intrinsically non-Hermitian in the 

sense that there is often gain/loss contrast between the two cavities (𝛾𝐴 ≠ 𝛾𝐵), and the coupling 

coefficient could be non-Hermitian (𝜅𝐴𝐵 ≠ 𝜅𝐵𝐴
∗ ), either of which makes the coupling matrix �̿� 
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non-Hermitian (�̿�  ≠ �̿�†). Relative phase tuning between the two elements, resulting in beam 

steering, is a direct result of the non-uniform gain/loss profile in the array, which manifest as 

complex and non-Hermitian �̿�.  

Extensive characterization of the optical modes has been conducted on multiple 2 x 1 

coherent VCSEL arrays and 2D plots are obtained for L-I, far-field visibility, beam steering 

angle, and spectral data on frequency detuning, such as shown in Figure 5.2. There are several 

observations that can be made. Close to lasing threshold, the injection current varies both the 

relative intensity and relative phase between cavities. However, at higher bias above threshold, 

the array shows only phase tuning without intensity tuning, and the lasing mode often switches 

between in-phase and out-of-phase around the phase tuning maxima. The coupling coefficient in 

the array decreases at higher bias levels, leading to the decrease of locking region and the 

increase of phase tuning sensitivity. The coupling coefficient in these coupled laser arrays may 

be a complex number due to gain splitting, which will be discussed in Section 5.4. 

Different mode tuning behavior is observed when the array is biased near threshold 

versus at higher bias. First, the width of the locking region decreases with increasing bias level, 

as evident in Figure 5.2(b). Figure 5.3 illustrates the example of tuning of coherent mode when 

both lasers are biased near their thresholds (~1.1 𝐼𝑡ℎ), while Figure 5.4 shows the tuning of 

coherent mode when both lasers are subject to higher bias levels (~1.4 𝐼𝑡ℎ). The coherent mode 

can be expressed as �̅� = [
1

√𝑅𝑒𝑖𝜙
] , where 𝑅 is the near-field intensity ratio, and 𝜙 is the relative 

phase. From the near-field intensity measurements, we can extract 𝑅. From the relationship 

between far field and near field, we can also experimentally extract 𝜙 and the magnitude of 

mutual coherence [12]. The summary of 𝑅,  𝜙, and the degree of coherence is shown in Figures 

5.3(b) and 5.4(b). Near threshold, both 𝑅 and 𝜙 are found to be tuned by the current. At high bias 
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currents, 𝑅 is close to 1 and invariant against current tuning, consistent with coupled modes that 

resemble �̅� = [
1
𝑒𝑖𝜙

] as predicted by PT symmetric non-Hermiticity. Under the bias condition 

labeled as (vii) in Figure 5.4, the array is at the exceptional point with �̅� = [
1
−𝑖
]. 

Comparing Figure 5.3 and Figure 5.4, we also see that the phase tuning is more sensitive 

to the current tuning at higher bias levels. Because the amount of frequency detuning induced by 

current tuning is measured to be almost the same between low bias and high bias ( Δ𝜆/Δ𝐼 =

0.460 nm/mA near 3.8 mA and 0.468 𝑛m/mA near 5mA), the more sensitive phase tuning at 

higher bias suggests that the coupling coefficient is smaller at higher bias, which is consistent 

with the smaller locking region.  

At high bias levels, we also observe that the lasing mode switches from a high coherence 

in-phase mode to a low coherence out-of-phase mode, for example near the exceptional point 

labeled as point (vii) in Figure 5.4. The decrease of coherence is likely due to multi-coherent-

mode operation. The wavelength splitting between in-phase and out-of-phase mode is below the 

resolution of our OSA, so this multi-coherent-mode operation cannot be measured in spectral 

measurements. The launch of the second coherent mode is similar to the launch of higher order 

modes in individual VCSELs due to spatial hole burning [29]. The carriers that are not 

effectively depleted by the dominating coherent mode will accumulate and the extra carriers may 

start a secondary lasing mode. Like in the case of spatial hole burning, the launch of the 

secondary mode is observed at high injection currents, while being rare near threshold. 
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Figure 5.3: Tuning of the coherent mode near threshold (~1.1 𝐼𝑡ℎ) with one injection current 

fixed and the other current varied. (a) Far field and (b) near field profiles tuned by the current. (c) 

Summary of extracted relative phase, degree of coherence, and near field intensity ratio.  



97 

 

 

 

Figure 5.4: Tuning of the coherent mode at a higher bias above threshold (~1.4 𝐼𝑡ℎ) with one 

injection current fixed and the other current varied. (a) Far field and (b) near field profiles tuned 

by the current. (c) Summary of extracted relative phase, degree of coherence, and near field 

intensity ratio.  
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In addition to the phase tuning and the non-Hermitian coupling that we have shown, we 

also observe modes with broken PT-symmetry (�̅� = [
1

±𝑖𝑒∓𝜃
], i.e., 𝑌𝐴 ≠ 𝑌𝐵, 𝜙 = ±𝜋/2). The 

observed near-field and far-field measurements are compared to the theory in Figure 5.5 [17]. As 

discussed in Chapter 3, PT-symmetry breaking is relatively easy to achieve simply by driving ΔΩ 

to the boundary of the locking region, regardless of the values of 𝑄𝐴,𝐵.  

           

Figure 5.5: Measured (a) near field and (b) far field of the mode with broken PT-symmetry, 

compared with the simulated (c) near field and (d) far field of the �̅� = [
1
𝑖𝑒−𝜃

] eigenmode [17]. 

 

5.4 Experimental extraction of the coupling coefficient 

5.4.1 The existence of imaginary component in the coupling coefficient 

The presence of an imaginary component in the coupling coefficient is evident in the 2D 

L-I characteristics of the arrays such as shown in Figure 5.2(a). The imaginary component 𝜅𝑖 

represents the gain splitting between the in-phase and the out-of-phase supermodes, as discussed 

in Chapter 2. In coupled laser arrays, the gain splitting manifests as a difference in the lasing 

thresholds, which we refer to as “threshold splitting”, discussed using coupled rate equation 

analysis in Chapter 3. It was found in Chapter 3 that the amount of threshold splitting is 

proportional to the magnitude of 𝜅𝑖: 

𝑀+
(th) = 1 + 2𝜏𝑝𝜅𝑖 (5.1) 

M−
(th) = 1 − 2𝜏𝑝𝜅𝑖 (5.2) 
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where 𝑀+
(th)

 (M−
(th)) is the dimensionless threshold carrier density of the in-phase (out-of-phase) 

coupled mode. Note that each individual laser has the threshold carrier density of 𝑀𝐴,𝐵
(𝑡ℎ) = 1. 

Because of the threshold splitting, the coupled array has lower threshold carrier density than the 

isolated lasers when the array is coherently coupled. In other words, the coherent mode is more 

efficiently pumped than the incoherent modes. This causes the output power of the array to show 

an increase due to the phase locking (coherent coupling), compared with the output power of the 

array when the two lasers are not coupled due to large frequency detuning. This increase in 

output power due to the decrease of threshold carrier density is visible on the 2D L-I graphs, for 

example in Figures 5.2(a) and 5.6. 

L-I and visibility characteristics of two different arrays are compared in Figure 5.6. The 

L-I characteristics indicate different magnitudes of 𝜅𝑖 for the two arrays. Both arrays are in-phase 

coupled and have similar coherent regions. However, optical output of the left array in Figure 

5.6(a) is less affected by the coupling, compared with the right array in Figure 5.6(b). The 

“ridge” in the L-I characteristics is less visible for the left array compared with the one on the 

right. This is an indication that the threshold splitting due to coupling is smaller for the left array 

and hence it has smaller 𝜅𝑖. The power increase (or threshold decrease) due to coupling is more 

obvious in Figure 5.6 (b), suggesting larger 𝜅𝑖 for the right array. The change of threshold carrier 

density for the coupled array is 

Δ𝑀 ≡ 𝑀+
(𝑡ℎ) −𝑀𝐴,𝐵

(𝑡ℎ) = 2𝜏𝑝𝜅𝑖 (5.3) 

The change of output power is proportional to the change of threshold, and it can be used 𝜅𝑖: 

|𝜅𝑖| ≅
1

2𝜏𝑝

Δ𝑃

ℎ + 𝑃
 (5.4) 
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where 𝑃 is the optical output power of the array, Δ𝑃 is the power increase due to coherent 

coupling, 𝜏𝑝 is the photon lifetime, ℎ is a constant (with unit of W) that depends on the photon 

lifetime, carrier lifetime, and differential gain in the lasers. Equation (5.4) is a method for 

extracting the imaginary component in the coupling coefficient. The sign of 𝜅𝑖 is determined 

separately. When in-phase (out-of-phase) mode dominates, 𝜅𝑖 < 0 (> 0). 

 

Figure 5.6: Comparison of two 2 x 1 VCSEL arrays. (a)-(b) L-I characteristics of two arrays 

(referred to as “left array” and “right array”) indicating different magnitudes of 𝜅𝑖. (c)-(d) Far-

field interference visibility maps of the two arrays and example far-field intensity profiles 

(insets), showing both arrays are in-phase coupled and have similar coherent regions. Different 

magnitudes of 𝜅𝑖 are evident from the fact the coupling region is less visible for the array in its 

L-I characteristics (a) and coherence locking range (c). 

Origin of the imaginary component in the coupling coefficient is the non-uniform 

gain/loss profile in the coupled laser array, as discussed in Chapter 2. For example, gain in the 

coupling region introduces negative 𝜅𝑖 while loss in the coupling region introduces positive 𝜅𝑖. 

This suggests that 𝜅𝑖 can be dynamically controlled if we can influence the carrier injection in 
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the coupling region. For example in a 3x1 linear VCSEL array, we can use the middle element 

to control the coupling between the two outer elements [23]. 

5.4.2 Extraction of the coupling coefficient from mode tuning and mode stability 

As we have studied in Chapter 3, the relative phase tuning that leads to beam steering is 

controlled by the cavity frequency detuning ΔΩ. With the coupling coefficient being complex in 

general, the phase tuning sensitivity [i.e. d𝜙/𝑑(ΔΩ)] is governed by the factor (𝜅𝑖 + 𝛼𝐻𝜅𝑟) [30]: 

  𝑠𝑖𝑛𝜙 ≅
ΔΩ

2(𝜅𝑖 + 𝛼𝐻𝜅𝑟)
  (5.5) 

The factor (𝜅𝑖 + 𝛼𝐻𝜅𝑟) can be extracted from the slope of phase tuning versus ΔΩ, since 

(𝜅𝑖 + 𝛼𝐻𝜅𝑟) ≅
1

2

d(ΔΩ)

d(sin𝜙)
 (5.6) 

From the numerical simulations presented in Chapter 3, we find that Equation (5.6) holds not 

only for very weakly coupled arrays, but also for moderately weakly coupled arrays. Moreover, 

we find that most coupled VCSEL arrays have moderately weak coupling strength (𝜅 =

1010~1011rad/s), as shown in the following calculation and in previous studies [13]. 

Figure 5.7 shows an example extraction of the coupling coefficient from the phase tuning 

measurements, performed on the same 2x1 coherent VCSEL array characterized in Figure 5.2. 

The coupling coefficient is extracted along the bias condition shown by the vertical red line in 

Figure 5.2(b). Hence 𝐼𝐴 is fixed at 3.9 mA and 𝐼𝐵 is tuned from 3.40 mA to 3.64 mA. The values 

of cavity frequency detuning ΔΩ vary linearly with 𝐼𝐵, as extrapolated from the spectral 

measurements shown in Figure 5.2(d). We extract the relative phase between cavities (𝜙𝐵 − 𝜙𝐴) 

and the magnitude of coherence from the near-field and far-field measurements [12], plotted in 

Figure 5.7.  Only the four data points with almost perfect coherence (pure in-phase mode) are 

used in the extraction of coupling coefficient. From the slope in Figure 5.7(b), we extracted 
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(𝜅𝑖 + 𝛼𝐻𝜅𝑟) ≅ −3.8 × 10
10 rad/s. Note that the value of (𝜅𝑖 + 𝛼𝐻𝜅𝑟) is negative. The sign of 

(𝜅𝑖 + 𝛼𝐻𝜅𝑟) determines the beam steering direction, according to Equation (5.5). 

 

Figure 5.7: Extraction of the coupling coefficient in the 2x1 coherent VCSEL array also depicted 

in Figure 5.2 using Equation (5.6): (a) degree of coherence and intensity ratio (𝑌𝐵
2/𝑌𝐴

2) versus ΔΩ 

(and 𝐼𝐵); (b) (𝜙𝐵 − 𝜙𝐴) and sin (𝜙𝐵 − 𝜙𝐴) versus ΔΩ. The measurement was done with 𝐼𝐴 fixed 

and 𝐼𝐵 varied from 3.40 mA t 3.64 mA [at the red line in Figure 5.2(b)]. The ΔΩ = Ω𝐵 − Ω𝐴 

value is obtained from the extrapolation in Figure 5.2(d). ΔΩ varies linearly with 𝐼𝐵 as evident in 

Figure 5.2(d). 

One observation regarding the beam steering direction is that for the majority of the 

arrays we characterized, the direction of the output beam steers to the element with increasing 

current, no matter whether it is in-phase coupled or out-of-phase coupled, for example see Ref. 

[12]. This is somewhat surprising, because both the coupled mode theory and the coupled rate 

equations with real coupling coefficient suggest that the in-phase mode and out-of-phase mode 

should steer in opposite directions (see Chapters 2 and 3). Our tentative explanation for this 

phenomenon is that for in-phase arrays, (𝜅𝑖 + 𝛼𝐻𝜅𝑟) is negative, while for out-of-phase arrays, 

(𝜅𝑖 + 𝛼𝐻𝜅𝑟) is positive. The switch of sign in the term (𝜅𝑖 + 𝛼𝐻𝜅𝑟) is due to the switch of sign 

in 𝜅𝑖. For an array that naturally emits in the in-phase coherent mode, it is likely that the in-phase 

mode is preferred by the gain splitting and threshold splitting, which means 𝜅𝑖 < 0. On the other 

hand, for an array that emits in the out-of-phase coherent mode, the out-of-phase mode is 
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preferred (in-phase mode suppressed), which translates to 𝜅𝑖 > 0. If |𝜅𝑖| > |𝛼𝐻𝜅𝑟|, then the sign 

of 𝜅𝑖 determines the overall sign of (𝜅𝑖 + 𝛼𝐻𝜅𝑟), which in turn determines the beam steering 

direction. In our opinion, it is likely that the in-phase array and out-of-phase array often have 

(𝜅𝑖 + 𝛼𝐻𝜅𝑟) of opposite signs (and that they often have |𝜅𝑖| > |𝛼𝐻𝜅𝑟|), which is the reason that 

the same beam steering direction is often found for both modes. 

After extracting the quantity (𝜅𝑖 + 𝛼𝐻𝜅𝑟) from the slope of the phase tuning relative to 

the frequency detuning, we still do not know the specific values of 𝜅𝑖 and 𝛼𝐻𝜅𝑟 .  Further means 

to additionally constrain the values of 𝜅𝑖 and 𝜅𝑟 are necessary. We propose two approaches to 

determine the relative values of 𝜅𝑖 and 𝜅𝑟. One way is to use Equation (5.4) to extract the value 

of 𝜅𝑖 from the degree of “active coupling” observed in the 2D L-I characterization, as discussed 

in Section 5.3. The other approach is to simulate the stability of the array and find out the 

combinations of 𝜅𝑟 and 𝜅𝑖 that produce a stable coupled mode.  

5.5 Controlling the mode tuning behavior by introducing built-in asymmetry 

As we have shown in the characterizations of the 2x1 VCSEL array, we can control the 

optical mode by tuning the injection currents 𝐼𝐴,𝐵. However, this mode tuning is not ideal, 

because ideally we would want to individually control 𝑄𝐴,𝐵 and ΔΩ, which are the two 

independent control parameters for the array. Controlling two parameters with a single control 

dial (current tuning) limits us to a certain trajectory on the 2D parameter space of (Δ𝑄, ΔΩ), 

instead of being able to access the entire parameter space. This motivates us to introduce another 

control dial into the system as an addition to the current tuning. Here, we introduce built-in array 

asymmetry as the additional control parameter to engineer the mode tuning behavior. We 

consider what is introduced here a form of high-level mode engineering, since what is being 

engineered is not only the mode, but also the general behavior of how the modes are tuned. 
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We introduce built-in asymmetry into the index profile that defines the cavities of the 

elements, as evident in the lithographic mask designs, shown in Figure 5.8 [24, 25]. There are 

two types of asymmetries that are introduced in the 2x1 VCSEL arrays: asymmetry in the PhC 

patterns [Figure 5.8(a)] and asymmetry in ion-implantation aperture diameters [Figure 5.8(b)]. 

We denote the asymmetry in PhC holes by Δ𝑏 and the asymmetry in ion-implantation diameters 

by Δ𝐷. The degrees of asymmetry, Δ𝑏 and Δ𝐷, control the mode tuning behavior. 

 

Figure 5.8: Designs of asymmetrical 2x1 VCSEL arrays. (a) Asymmetrical hole diameter in the 

PhC pattern. (b) Asymmetrical ion-implantation aperture diameters. 

Shown in Figure 5.9 are the far-field visibility maps for three arrays with different 

degrees of asymmetry (Δ𝑏 = 0.15, 0, −0.2 μm respectively). It is shown that the location of the 

high coherence region (coupling region) in the 2D plot is controlled by the degree of asymmetry 

Δ𝑏. In Figure 5.10, we plot the beam steering angle (the absolute value) versus 𝐼𝐴 and 𝐼𝐵, and 

show that the tuning of beam steering angle is influenced by Δ𝑏 as well. For a symmetrical array, 

the region with highest coherence (bright yellow region in the coherence map) is the region with 

normal-angle emission (dark blue region in the bear steering map); both are along the center of 
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the high coherence region. However, in an asymmetrcal array, we often find that the modes with 

highest coherence are the beam-steered modes (with off-axis emission) instead of the 𝜙 = 0 

modes, as evident in Figure 5.10(d). No obvious influence was observed from implantation 

aperture diameter offset. Hence it appears that asymmetry in the photonic crystal structure, 

potentially is manifest as a means to control the coupling coefficient. Figure 5.10 suggests that 

variation in the effective refractive index profile surrounding the cavities in the array will 

influence the modal behavior such that asymmetric current injection creates the highest coherent 

single supermode. 

 

 

Figure 5.9: Controlling the location of coupling region with asymmetrical photonic crystal 

patterns with Δ𝑏 equal to (a) 0.15 μm; (b) ≈ 0 μm; and (c) −0.2 μm.  
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Figure 5.10: Absolute value of the beam steering angle versus 𝐼𝐴 and 𝐼𝐵 for (a) Δ𝑏 = 0.15 μm; 

(b) Δ𝑏 = 0; (c) Δ𝑏 = −0.2 μm; (d) example far fields for Δ𝑏 = 0.15 μm, showing that the array 

has high-coherence beam-steered modes and a low-coherence normal-angle mode, which is 

different from the modes of the symmetrical arrays. 
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5.6 Summary 

In summary, we have characterized 2 × 1 coherently coupled VCSEL arrays by concise 

2D characterizations, where the variable space is (𝐼𝐴, 𝐼𝐵). The mode tuning behavior (i.e. the 

tuning of optical mode through variation of the current) is represented in 2D color graphs of 

optical output power, far-field interference visibility, and beam steering angle all as a function of 

(𝐼𝐴, 𝐼𝐵). It is observed that the width of the high coherence region decreases with higher bias and 

the beam steering becomes more sensitive to the current tuning at higher bias, both suggesting 

that the coupling coefficient decreases with higher bias, because both the width of the phase-

locking region and the beam steering sensitivity are controlled by 𝛼𝑖 + 𝛼𝐻𝜅𝑟. 

To study the different mode tuning behavior near threshold and high above threshold, we 

extract the coherent mode �̅� = [
1

√𝑅𝑒𝑖𝜙
] from the near-field and far-field measurements. It is 

shown that near threshold (~1.1 𝐼𝑡ℎ), 𝑅 and 𝜙 are simultaneously tuned by the injection currents, 

while at higher bias (~1.4 𝐼𝑡ℎ) the modes resemble �̅� = [
1
𝑒𝑖𝜙

], with 𝜙 being tuned and 𝑅 fixed at 

1. Moreover, we experimentally identify modes with broken PT-symmetry (�̅� = [
1

±𝑖𝑒∓𝜃
]) and 

modes at the exceptional point (�̅� = [
1
±𝑖
]). 

We also extracted the coupling coefficient of the array around 𝐼~1.2 𝐼𝑡ℎ from the slope of 

beam steering angle versus the cavity frequency detuning and show that (𝜅𝑖 + 𝛼𝐻𝜅𝑟) ≅

−38 × 109 rad/s. As future work we outlined approaches to further determine the values of 𝜅𝑖 

and 𝜅𝑟 separately. The existence of nonzero 𝜅𝑖 can be quantitatively examined from the power 

increase due to coupling in the 2D LI characteristics. Lastly, we showed that by introducing 

asymmetry in the design of coupled VCSEL arrays, the mode tuning behavior can be engineered. 
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The location of the coherence locking region can be shifted away from the diagonal in a 

controlled manner, and the beam steering behavior becomes asymmetrical too. 
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CHAPTER 6: CONCLUSION AND FUTURE WORK 

6.1 Conclusion 

In this dissertation, we have presented a comprehensive study of 2 × 1 coherently 

coupled VCSEL arrays in the context of non-Hermitian photonics and mode engineering. 

On the theoretical side, we have presented the analogy between coupled laser arrays and 

non-Hermiticity [including parity-time (PT) symmetry] in quantum mechanics. Two coupled 

lasers can be described using coupled mode theory with a 2 × 2 coupling matrix �̿�. With the 

presence of non-uniform gain/loss profile in the coupled laser array, the coupling matrix �̿� is in 

general a complex and non-Hermitian matrix. Relative phase tuning, the origin of beam steering 

in the far-field intensity profile, is a result of the gain/loss profile in the system and the non-

Hermiticity of �̿�. In Chapter 2, we have described two types of gain/loss profile, which should 

be treated differently within the formalism of coupled mode theory and the coupling matrix �̿�. 

The gain/loss contrast between two cavities (that are uniform within each cavity) induces non-

Hermiticity through the diagonal elements in �̿� by introducing imaginary components in the 

local resonant frequencies. On the other hand, gain/loss profiles that are non-uniform within each 

cavity (for example if the lasers are gain-guided) induce non-Hermiticty through the off-diagonal 

elements by introducing imaginary components in the coupling coefficients. Gain/loss localized 

in the coupling region also introduces imaginary components in the coupling coefficients by 

introducing gain splitting between the in-phase and out-of-phase modes. This in turn opens the 

possibility of dynamically modulating the array between the in- and out-of-phase modes. 

When applying coupled mode theory to the experimentally observed tuning of the 

coherent mode, there is an inherent aspect of the problem that coupled mode theory itself does 

not address, namely the interaction between the photons and the carriers injected. Lasers are not 
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simply waveguides with either gain or loss, but rather are inherently nonlinear devices because 

of the interaction between photons and the gain medium, evident in the existence of lasing 

threshold. However, coupled mode theory is inherently a linear theory, so it cannot capture the 

nonlinear behavior of lasers. Stated in another way, the coupled mode theory requires the 

frequency detuning and gain/loss contrast between cavities as input parameters to calculate the 

coupled mode, but neither can be directly controlled or measured in coupled diode lasers. To 

address this problem, we employ coupled rate equation analysis, which includes carrier density 

dynamics (treated by rate equations) in addition to the coupled mode theory.  

In Chapter 3, we presented the coupled rate equation analysis for 2 × 1 coupled laser 

arrays. The coupled rate equation analysis takes carrier injection rates (𝑄𝐴,𝐵) and the cavity 

frequency detuning ΔΩ as input parameters, which are both experimentally controllable. In 

coupled VCSEL arrays, both 𝑄𝐴,𝐵 and ΔΩ are linearly dependent on the injection currents. Note 

that we have defined ΔΩ to be different from the total frequency detuning Δω between the two 

cavities. The total frequency detuning Δω is the input parameter required by coupled mode 

theory, while ΔΩ is only part of Δω (the amplitude-phase coupling contribution is excluded). 

Clearly distinguishing ΔΩ and Δω is crucial to maintain the consistency between conclusions 

drawn from coupled mode theory and from coupled rate equation analysis.  

Using coupled rate equation analysis, we show that depending on the strength of optical 

coupling compared to the cavity loss rate, the coupled laser array exhibits different response to 

the tuning of 𝑄𝐴,𝐵 and ΔΩ. Coherently coupled VCSEL arrays as designed and fabricated for this 

dissertation belong to the weak coupling regime (i.e., |𝜅| < 1/𝜏𝑝). In the weak coupling regime, 

assuming real-valued 𝜅, the cavity detuning ΔΩ induces a gain contrast, and the relative phase 

between two lasers is controlled by the cavity detuning ΔΩ through the lever of induced gain 
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contrast. This detuning-induced gain contrast is a unique mode tuning mechanism in weakly 

coupled semiconductor laser arrays. We have also identified the required 𝑄𝐴,𝐵 and ΔΩ to achieve 

PT symmetry and exceptional points in weakly coupled laser arrays. 

In addition to the study of mode tuning, we also apply coupled rate equations to the study 

of small-signal dynamics of the coupled modes, including the stability of the modes and the 

small-signal modulation response under external current modulation. We have shown that at the 

exceptional points, the dynamics of the non-Hermitian arrays are undetermined, and warrant 

future investigation. 

The experimental study of 2 × 1 optically coupled electrically isolated VCSEL arrays is 

summarized in Chapter 5. Because we have independent control over the two injection currents 

𝐼𝐴 and 𝐼𝐵 into cavities A and B, characterization of the arrays is particularly conducive to 2D 

plots with both 𝐼𝐴 and 𝐼𝐵 varied. Concise 2D characterizations of light-versus-current, far-field 

interference visibility, and beam-steering angle have been presented to illustrate the mode tuning 

behavior. The coherence region (where the two lasers are mutually coherent and interfere in the 

far field) is very evident in the 2D far-field interference visibility map. It is observed that the 

width of the high coherence region decreases with higher bias and the beam steering becomes 

more sensitive to the current tuning at higher bias, both suggesting that the coupling coefficient 

decreases with higher bias. From near-field and far-field characterizations, we extract the 

coupled mode and the relative phase between cavities. Near the lasing threshold, the coupled 

mode resembles  �̅� = [
1

√𝑅𝑒𝑖𝜙
], with both the intensity ratio between cavities (𝑅) and the relative 

phase (𝜙) being tuned by the currents. At higher bias levels, the coupled mode resembles �̅� =
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[
1
𝑒𝑖𝜙

], with 𝜙 being tuned and 𝑅 fixed at 1. Moreover, we identify modes with broken PT 

symmetry (�̅� = [
1

±𝑖𝑒∓𝜃
]) and modes at the exceptional point (�̅� = [

1
±𝑖
]). 

We experimentally extract the coupling coefficient of coherent VCSEL arrays from the 

slope of beam steering angle versus the cavity frequency detuning and estimate that 

(𝜅𝑖 + 𝛼𝐻𝜅𝑟) ≅ −38 × 10
9 rad/s. We also outlined the approach to further determine the values 

of 𝜅𝑖 and 𝜅𝑟 separately. The existence of nonzero 𝜅𝑖 can be quantitatively examined from the 

power increase due to coupling in the 2D LI characteristics. 

Finally, we showed that by introducing asymmetry in the design of coupled VCSEL 

arrays, the mode tuning behavior can be engineered. The location of the coherence locking 

region can be shifted away from the diagonal in a controlled manner, and the beam steering 

behavior becomes asymmetrical too. 

The work presented in this dissertation represents a step forward in the understanding and 

engineering of coherently coupled VCSEL arrays. Modeling coupled VCSEL arrays as nonlinear 

non-Hermitian photonic dimers reveals the unique mode tuning mechanism and can serve as a 

new foundation for device modeling, which can lead to improved array designs and novel 

operating schemes. Experimentally, comprehensive characterizations of the 2 × 1 coupled 

VCSEL arrays have been carried out, revealing the mode tuning details and answering long 

posed questions. Future research guided by this dissertation may lead to novel mode control and 

improved dynamical modulation in coupled laser arrays. 

6.2 Future work 

Throughout this dissertation future work has been proposed. Here we summarize. First of 

all, the coupling coefficient is a parameter of great interest, in both the modeling of mode tuning 
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and the modeling of small-signal dynamics. Using the method outlined in Section 5.4, it should 

be possible to determine both the real and imaginary components of the coupling coefficient. The 

accurate value of coupling coefficient would benefit future modeling and lead to better designs 

of the arrays.  

In addition, the coupling coefficient (both the real and the imaginary components) is 

expected to be dynamically controllable if we can locally control current injection into the 

coupling region. This could be straightforwardly studied using 3 × 1 arrays with the middle 

element serving as the coupling region [1]. Varying the pumping in the middle element (below 

its threshold) should tune the coupling coefficient between the two outer lasers. The variation of 

the coupling coefficient would be evident from the 2D L-I and visibility maps (using  𝐼1 and 𝐼3 

as the two axes while 𝐼2 is fixed at various values). By observing how the value of 𝐼2 changes the 

2D maps, or performing coupling coefficient extraction at each 𝐼2 value, we can quantitatively 

describe the control of coupling coefficient. 

Lastly, the calculation for small-signal dynamics setup in Chapter 4 is a powerful tool for 

modeling the high-speed modulation of coherent VCSEL arrays. It describes two VCSELs that 

are mutually injection locked with no assumptions of master or slave. It is a numerical method 

with the flexibility of employing simultaneous frequency detuning, gain/loss contrast, and 

complex-valued coupling coefficient. It would be interesting to see the modulation response of 

the non-Hermitian arrays and how non-Hermiticity affects the modulation response, for example 

the modulation response near the exceptional points. The small signal calculation also offers the 

ability to model different modulation schemes, say modulating the two VCSELs simultaneously 

with in-phase (𝑄𝐴𝑚 = 𝑄𝐵𝑚) or out-of-phase (𝑄𝐴𝑚 = −𝑄𝐵𝑚, push-pull modulation [2]) 

sinusoidal currents. 
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APPENDIX A: DERIVATION OF THE COUPLED MODE THEORY AND THE 

COUPLED RATE EQUATIONS 

A.1 Coupled mode theory 

Although laterally coupled VCSEL arrays are complex 3D structures, we can 

approximate their behavior with a simpler 2D model in the spirit of effective index method. The 

2D model is sketched below. The two coupled VCSELs are modeled as two index-guided stripe 

waveguides coupled in x direction and propagating in z direction, with high reflectivity mirrors 

terminating the waveguides at 𝑧 = 0 and 𝑧 = −𝐿. In other words, the longitudinal modes are in z 

direction and transverse modes are in x direction.  

For TE-polarized field [excited by TE polarization 𝑷(𝑥, 𝑧) = 𝑃(𝑥, 𝑧)�̂� ], the field 

components are  

𝑬(𝑥, 𝑧, 𝑡) = 𝐸(𝑥, 𝑧, 𝑡) �̂� 

𝑯(𝑥, 𝑧, 𝑡) = 𝐻𝑥(𝑥, 𝑧, 𝑡)�̂� + 𝐻𝑧(𝑥, 𝑧, 𝑡)�̂� 

From Maxwell’s equations we can derive the scalar wave equation for TE-polarized electric field 

as 

∇2𝐸(𝑥, 𝑧, 𝑡) =
𝜖𝐶(𝑥, 𝑧)

𝑐2
�̈�(𝑥, 𝑧, 𝑡) + 𝜇0𝜎�̇�(𝑥, 𝑧, 𝑡) + 𝜇0�̇�(𝑥, 𝑧, 𝑡) (A. 1) 

where ∇2=
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑧2
, �̈� =

𝜕2𝐸

𝜕𝑡2
, �̇� =

𝜕𝐸

𝜕𝑡
, �̇� =

𝜕𝑃

𝜕𝑡
, 𝜖𝐶 is the relative permittivity of the composite 

system consisting of two lasers, 𝑐 is the speed of light in vacuum, 𝜇0 is the vacuum permeability, 

and 𝜎 is the conductivity (here assumed to be independent of 𝑥 and 𝑧) representing the spatially 

invariant loss in the cavity (for example mirror loss at the ends of cavities). The interaction 

between the electric field and the active media is represented through the polarization 𝑃.  
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Now we want to expand the electric field with spatial basis functions 𝑢𝑚
𝐴 (𝑥, 𝑧) and  

𝑢𝑚′
𝐵 (𝑥, 𝑧) that represent individual cavity modes in laser A and B respectively. A set of resonant 

modes, 𝑢𝑚
𝐴 (𝑥, 𝑧)𝑒−𝑖𝜔𝑚𝑡, exist for VCSEL cavity A when cavity B is absent [with permittivity 

profile shown in Figure A.1(b)], and 𝑢𝑚′
𝐵 (𝑥, 𝑧)𝑒−𝑖𝜔𝑚′𝑡 is supported when there is cavity B only 

[Figure A.1(c)]. For VCSELs, only one longitudinal mode overlaps with the gain spectrum. For 

the transverse modes, in the simplest (and often experimentally achievable) case, the laser emits 

in only one transverse mode. In this simplest situation, the basis functions consist of only two 

modes: 𝑢𝐴(𝑥, 𝑧) ≡ 𝑢𝑇𝐸0
𝐴 (𝑥) sin(𝑘𝑧

𝐴𝑧) and  𝑢𝐵(𝑥, 𝑧) ≡ 𝑢𝑇𝐸0
𝐵 (𝑥) sin(𝑘𝑧

𝐵𝑧), where 𝑢𝑇𝐸0
𝐴 (𝑥) and 

𝑢𝑇𝐸0
𝐵 (𝑥) are the fundamental transverse TE mode profiles, sin(𝑘𝑧

𝐴𝑧) and sin(𝑘𝑧
𝐵𝑧)  are the 

longitudinal mode profiles. We can expand the total field in the composite structure as 

(a)  

(b)  

(c)  

Figure A.1: (a) Permittivity profile for the coupled VCSEL array in a two-dimensional model; 

(b) Permittivity profile when cavity B is absent; (c) permittivity profile when cavity A is absent. 
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𝐸(𝑥, 𝑧, 𝑡) = 𝑢𝐴(𝑥, 𝑧)|𝐸𝐴(𝑡)|𝑒
−𝑖𝜙𝐴(𝑡)−𝑖𝜔𝑡 + 𝑢𝐵(𝑥, 𝑧)|𝐸𝐵(𝑡)|𝑒

−𝑖𝜙𝐵(𝑡)−𝑖𝜔𝑡 

or simply  

𝐸(𝑥, 𝑧, 𝑡) = 𝑢𝐴(𝑥, 𝑧)𝐸𝐴(𝑡)𝑒
−𝑖𝜔𝑡 + 𝑢𝐵(𝑥, 𝑧)𝐸𝐵(𝑡)𝑒

−𝑖𝜔𝑡 (A. 2) 

where 𝐸𝐴,𝐵(𝑡) ≡ |𝐸𝐴,𝐵(𝑡)|𝑒
−𝑖𝜙𝐴,𝐵(𝑡) are the complex field amplitudes that are slowly varying 

compared to 𝑒−𝑖𝜔𝑡. Similarly, we can write the polarization as 

𝑝(𝑥, 𝑧, 𝑡) = 𝑢𝐴(𝑥, 𝑧)𝑝𝐴(𝑡)𝑒
−𝑖𝜙𝐴(𝑡)−𝑖𝜔𝑡 + 𝑢𝐵(𝑥, 𝑧)𝑝𝐵(𝑡)𝑒

−𝑖𝜙𝐵(𝑡)−𝑖𝜔𝑡 (A. 3) 

where 𝑝𝐴,𝐵(𝑡) are also complex-valued and slowly varying. The real part of 𝑝𝐴.𝐵(𝑡)  represents 

the polarization that is in-phase with the electric field, while the imaginary part of 𝑝𝐴.𝐵(𝑡) 

represents the polarization that is 𝜋/2 out of phase with the electric field. Later we will see that 

𝑅𝑒(𝑝𝐴,𝐵) represents the carrier suppression of index and 𝐼𝑚(𝑝𝐴,𝐵) represents the gain/loss from 

stimulated emission/absorption [1].  

Note that by writing the polarization in the form of Equation (A.3), we have assumed that 

the polarization shares the same spatial profile as the electric field in each cavity. In other words, 

the gain/loss and index change represented by 𝑝(𝑥, 𝑧, 𝑡) are assumed to be uniformly distributed 

within each individual cavity mode 𝑢𝐴,𝐵(𝑥, 𝑧) here. Although strictly speaking the gain (in the 

active region) and loss (in the cladding or other unpumped region) profile are not uniform in the 

individual laser, as a first-order perturbation theory, we treat the gain/loss as a perturbation on 

top of the real-valued index-guiding profile. We assume that the gain/loss profile is weak 

compared to the unperturbed real-valued index profile so that it does not vary the optical mode 

profile [𝑢𝐴,𝐵(𝑥, 𝑧)] but rather only adds an imaginary part to the resonant frequency of the mode 

[2]. This assumption is consistent with the index-guiding nature of the laser (instead of being 

gain-guided). By making this assumption, we have effectively ignored the spatial profile of 

gain/loss and treat it as uniformly distributed across the mode profile 𝑢𝐴,𝐵(𝑥, 𝑧), which is why 
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we can expand the polarization in the form of Equation (A.3). Any gain/loss profile that is not 

uniform within the individual cavities should be included in 𝜖𝐶,𝐴,𝐵(𝑥, 𝑧) as an imaginary 

component - for example if the lasers are gain-guided, or if there is gain/loss located between the 

two cavities, as discussed in Section 2.4. 

Now we want to rewrite the wave equation, Equation (A.1), with the electric field and 

polarization represented by the expansions in Equation (A.2) and (A.3). With slowly varying 

approximation, which says |�̇�𝐴,𝐵| ≪ 𝜔|𝐸𝐴,𝐵|, |�̇�𝐴,𝐵| ≪ 𝜔|𝑝𝐴,𝐵|, |�̇�𝐴,𝐵| ≪ 𝜔 (hence |�̈�𝐴,𝐵| ≪

𝜔|�̇�𝐴,𝐵|, |�̈�𝐴,𝐵| ≪ 𝜔|�̇�𝐴,𝐵|, etc.), we have 

∇2𝐸(𝑥, 𝑧, 𝑡) = (∇2𝑢𝐴)𝐸𝐴(𝑡)𝑒
−𝑖𝜔𝑡 + (∇2𝑢𝐵)𝐸𝐵(𝑡)𝑒

−𝑖𝜔𝑡 (A. 4) 

�̈�(𝑥, 𝑧, 𝑡) = 𝑢𝐴𝑒
−𝑖𝜔𝑡(�̈�𝐴 − 2𝑖𝜔𝐸�̇� − 𝜔

2𝐸𝐴) + 𝑢𝐵𝑒
−𝑖𝜔𝑡(�̈�𝐵 − 2𝑖𝜔𝐸�̇� − 𝜔

2𝐸𝐵) 

≅ 𝑒−𝑖𝜔𝑡(−2𝑖𝜔𝑢𝐴�̇�𝐴 − 𝜔
2𝑢𝐴𝐸𝐴 − 2𝑖𝜔𝑢𝐵�̇�𝐵 − 𝜔

2𝑢𝐵𝐸𝐵) (A. 5) 

𝜎�̇�(𝑥, 𝑧, 𝑡) = 𝑢𝐴𝑒
−𝑖𝜔𝑡(𝜎�̇�𝐴 − 𝑖𝜔𝜎𝐸𝐴) + 𝑢𝐵𝑒

−𝑖𝜔𝑡(𝜎�̇�𝐵 − 𝑖𝜔𝜎𝐸𝐵) 

≅ 𝑒−𝑖𝜔𝑡𝜎(−𝑖𝜔𝑢𝐴𝐸𝐴 − 𝑖𝜔𝑢𝐵𝐸𝐵) (A. 6) 

�̈�(𝑥, 𝑧, 𝑡) = 𝑒−𝑖𝜔𝑡(𝑢𝐴�̈�𝐴𝑒
−𝑖𝜙𝐴 − 2𝑖𝑢𝐴�̇�𝐴�̇�𝐴𝑒

−𝑖𝜙𝐴 − 𝑖𝑢𝐴𝑝𝐴�̈�𝐴𝑒
−𝑖𝜙𝐴 − 𝑢𝐴𝑝𝐴�̇�𝐴�̇�𝐴𝑒

−𝑖𝜙𝐴

+ 𝑢𝐵�̈�𝐵𝑒
−𝑖𝜙𝐵 − 2𝑖𝑢𝐵�̇�𝐵�̇�𝐵𝑒

−𝑖𝜙𝐵 − 𝑖𝑢𝐵𝑝𝐵�̈�𝐵𝑒
−𝑖𝜙𝐵 − 𝑢𝐵𝑝𝐵�̇�𝐵�̇�𝐵𝑒

−𝑖𝜙𝐵

− 2𝑖𝜔𝑢𝐴�̇�𝐴𝑒
−𝑖𝜙𝐴 − 2𝜔𝑢𝐴𝑝𝐴�̇�𝐴𝑒

−𝑖𝜙𝐴 − 2𝑖𝜔𝑢𝐵�̇�𝐵𝑒
−𝑖𝜙𝐵 − 2𝜔𝑢𝐵𝑝𝐵�̇�𝐵𝑒

−𝑖𝜙𝐵

− 𝜔2𝑢𝐴𝑝𝐴𝑒
−𝑖𝜙𝐴 − 𝜔2𝑢𝐵𝑝𝐵𝑒

−𝑖𝜙𝐵) 

≅ 𝑒−𝑖𝜔𝑡(−𝜔2𝑢𝐴𝑝𝐴𝑒
−𝑖𝜙𝐴 − 𝜔2𝑢𝐵𝑝𝐵𝑒

−𝑖𝜙𝐵) (A. 7) 

In the expression of �̈�(𝑥, 𝑧, 𝑡), we keep terms to the order of 𝜔�̇�𝐴, while in the expression of 

𝜎�̇�(𝑥, 𝑧, 𝑡) and �̈�(𝑥, 𝑧, 𝑡), we drop the terms with first order time derivatives of 𝐸, 𝑝 and 𝜙 and 

only keep terms to the order of 𝐸𝐴,𝐵 and 𝑝𝐴,𝐵, because 𝜇0𝜎�̇�(𝑥, 𝑧, 𝑡) and 𝜇0�̇�(𝑥, 𝑧, 𝑡) represent 

loss and gain, and they are small quantities compared to ∇2𝐸(𝑥, 𝑧, 𝑡) and 
𝜖𝐶(𝑥,𝑧)

𝑐2
�̈�(𝑥, 𝑧, 𝑡) [3]. 
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Taking Equations (A.4)-(A.7) into Equation (A.1), we have  

(∇2𝑢𝐴 +
𝜖𝐶
𝑐2
𝜔2𝑢𝐴)𝐸𝐴 + (∇

2𝑢𝐵 +
𝜖𝐶
𝑐2
𝜔2𝑢𝐵)𝐸𝐵 + 2𝑖𝜔

𝜖𝐶
𝑐2
(𝑢𝐴�̇�𝐴 + 𝑢𝐵�̇�𝐵)

+𝑖𝜔𝜇0𝜎(𝑢𝐴𝐸𝐴 + 𝑢𝐵𝐸𝐵) + 𝜔
2𝜇0(𝑢𝐴𝑝𝐴 + 𝑢𝐵𝑝𝐵) = 0 (A. 8)

 

From the definition of 𝑢𝐴 and 𝑢𝐵 being the resonant mode for the individual waveguides, we 

know that they satisfy Maxwell’s equations given the individual laser permittivity profile 

𝜖𝐴(𝑥, 𝑧) and 𝜖𝐵(𝑥, 𝑧) shown in Figures A.1(b) and (c): 

∇2𝑢𝐴,𝐵(𝑥, 𝑧) +
𝜖𝐴,𝐵(𝑥, 𝑧)

𝑐2
Ω𝐴,𝐵
2 𝑢𝐴,𝐵(𝑥, 𝑧) = 0 (A. 9) 

where Ω𝐴,𝐵 are the resonant frequencies of cavity A and B respectively. Later, after we introduce 

the carrier densities, we will clarify that Ω𝐴,𝐵 should be defined as the resonant frequencies for a 

specific carrier density, and we will define Ω𝐴,𝐵 as the resonant frequencies at threshold carrier 

densities. 

Taking ∇2𝑢𝐴,𝐵(𝑥, 𝑧) = −
𝜖𝐴,𝐵

𝑐2
Ω𝐴,𝐵
2 𝑢𝐴,𝐵(𝑥, 𝑧) into Equation (A.8), we have 

(𝜖𝐶𝜔
2 − 𝜖𝐴𝛺𝐴

2)𝑢𝐴𝐸𝐴 + (𝜖𝐶𝜔
2 − 𝜖𝐵𝛺𝐵

2)𝑢𝐵𝐸𝐵 + 2𝑖𝜔𝜖𝐶(�̇�𝐴𝑢𝐴 + �̇�𝐵𝑢𝐵)

+𝑖𝜔𝑐2𝜇0𝜎(𝐸𝐴𝑢𝐴 + 𝐸𝐵𝑢𝐵)  + 𝜔
2𝑐2𝜇0(𝑢𝐴𝑝𝐴 + 𝑢𝐵𝑝𝐵) = 0  (A. 10)

 

Multipling Equation (A.10) by 𝑢𝐴
∗(𝑥, 𝑧) and integrating over 𝑥 from −∞ to ∞, we get 

𝐸𝐴∫ 𝑢𝐴
∗(𝜖𝐶𝜔

2 − 𝜖𝐴𝛺𝐴
2)𝑢𝐴𝑑𝑥

∞

−∞

+ 𝐸𝐵∫ 𝑢𝐴
∗(𝜖𝐶𝜔

2 − 𝜖𝐵𝛺𝐵
2)𝑢𝐵𝑑𝑥

∞

−∞

+ 2𝑖𝜔�̇�𝐴∫ 𝑢𝐴
∗𝜖𝐶𝑢𝐴𝑑𝑥

∞

−∞

+2𝑖𝜔�̇�𝐵∫ 𝑢𝐴
∗𝜖𝐶𝑢𝐵𝑑𝑥

∞

−∞

+ 𝑖𝜔𝑐2𝜇0𝜎 (𝐸𝐴∫ 𝑢𝐴
∗𝑢𝐴𝑑𝑥

∞

−∞

+ 𝐸𝐵∫ 𝑢𝐴
∗𝑢𝐵𝑑𝑥

∞

−∞

)

+𝜔2𝑐2𝜇0 (𝑝𝐴∫ 𝑢𝐴
∗𝑢𝐴𝑑𝑥

∞

−∞

+ 𝑝𝐵∫ 𝑢𝐴
∗𝑢𝐵𝑑𝑥

∞

−∞

) = 0 (A. 11)

 

We treat ∫ 𝑢𝐴
∗𝑢𝐵𝑑𝑥

∞

−∞
≡ ⟨𝑢𝐴|𝑢𝐵⟩ as a small perturbation and drop the terms that are 

higher-order to ⟨𝑢𝐴|𝑢𝐵⟩. For example, 2𝑖𝜔�̇�𝐵 ∫ 𝑢𝐴
∗𝜖𝑟𝑢𝐵𝑑𝑥

∞

−∞
,  𝑖𝜔𝑐2𝜇0𝜎𝐸𝐵 ∫ 𝑢𝐴

∗𝑢𝐵𝑑𝑥
∞

−∞
 and 

𝜔2𝑐2𝜇0𝑝𝐵 ∫ 𝑢𝐴
∗𝑢𝐵𝑑𝑥

∞

−∞
 are dropped because they are second order terms (contain multiplication 
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of two small quantities). More specifically, 2𝑖𝜔�̇�𝐵 ∫ 𝑢𝐴
∗𝜖𝑟𝑢𝐵𝑑𝑥

∞

−∞
 is second order because 

𝜔�̇�𝐵 ≪ 𝜔2𝐸𝐵, and also ∫ 𝑢𝐴
∗𝜖𝐶𝑢𝐵𝑑𝑥

∞

−∞
 is small: 

2𝑖𝜔�̇�𝐵∫ 𝑢𝐴
∗𝜖𝐶𝑢𝐵𝑑𝑥

∞

−∞

≪ 𝐸𝐵𝜔
2∫ 𝑢𝐴

∗(𝜖𝐶 − 𝜖𝐵)𝑢𝐵𝑑𝑥
∞

−∞

~𝐸𝐵∫ 𝑢𝐴
∗(𝜖𝐶𝜔

2 − 𝜖𝐵𝛺𝐵
2)𝑢𝐵𝑑𝑥

∞

−∞

 

Equation (A.11) then turns into  

𝐸𝐴∫ 𝑢𝐴
∗(𝜖𝐶𝜔

2 − 𝜖𝐴𝛺𝐴
2)𝑢𝐴𝑑𝑥

∞

−∞

+ 𝐸𝐵∫ 𝑢𝐴
∗(𝜖𝐶𝜔

2 − 𝜖𝐵𝛺𝐵
2)𝑢𝐵𝑑𝑥

∞

−∞

+ 2𝑖𝜔�̇�𝐴⟨𝑢𝐴|𝜖𝐶|𝑢𝐴⟩ +

𝑖𝜔𝑐2𝜇0𝜎𝐸𝐴⟨𝑢𝐴|𝑢𝐴⟩ + 𝜔
2𝑐2𝜇0𝑝𝐴⟨𝑢𝐴|𝑢𝐴⟩ = 0 (A. 12)

    

where we used notations ⟨𝑢𝐴|𝑢𝐴⟩ ≡ ∫ 𝑢𝐴
∗𝜖𝑟𝑢𝐴𝑑𝑥

∞

−∞
 and ⟨𝑢𝐴|𝜖𝐶|𝑢𝐴⟩ ≡ ∫ 𝑢𝐴

∗𝜖𝐶𝑢𝐴𝑑𝑥
∞

−∞
. 

Furthermore, we also know that |𝜔 − 𝛺𝐴,𝐵| ≪ 𝜔,𝛺𝐴,𝐵 when the coupling happens. 

Hence, we can use 𝜖𝐶𝜔
2 − 𝜖𝐵𝛺𝐵

2 ≅ 𝜔2(𝜖𝐶 − 𝜖𝐵) in the cross-coupling term: 

𝐸𝐵 ∫ 𝑢𝐴
∗(𝜖𝐶𝜔

2 − 𝜖𝐵𝛺𝐵
2)𝑢𝐵𝑑𝑥

∞

−∞
≅ 𝐸𝐵𝜔

2 ∫ 𝑢𝐴
∗(𝜖𝐶 − 𝜖𝐵)𝑢𝐵𝑑𝑥

∞

−∞
≡ 𝐸𝐵𝜔

2⟨𝑢𝐴|𝜖𝐶 − 𝜖𝐵|𝑢𝐵⟩ 

In the self-coupling term, we need to use a more accurate approximation 𝛺𝐴 ≅ 𝜔
2 − 2𝜔(𝜔 −

𝜔𝐴) because the self-coupling term is a 0-th order term. Then we have  

𝐸𝐴∫ 𝑢𝐴
∗(𝜖𝐶𝜔

2 − 𝜖𝐴𝛺𝐴
2)𝑢𝐴𝑑𝑥

∞

−∞

= 𝐸𝐴∫ 𝑢𝐴
∗𝑢𝐴{𝜖𝐶𝜔

2 − 𝜖𝐴[𝜔
2 − 2𝜔(𝜔 − 𝛺𝐴) + (𝜔 − 𝛺𝐴)

2]}𝑑𝑥
∞

−∞

 

≅ 𝐸𝐴∫ 𝑢𝐴
∗𝑢𝐴[(𝜖𝐶 − 𝜖𝐴)𝜔

2 + 2𝜔𝜖𝐴(𝜔 − 𝛺𝐴)]𝑑𝑥
∞

−∞

 

= 𝐸𝐴𝜔
2∫ 𝑢𝐴

∗𝑢𝐴(𝜖𝐶 − 𝜖𝐴)𝑑𝑥
∞

−∞

+ 𝐸𝐴2𝜔(𝜔 − 𝛺𝐴)∫ 𝑢𝐴
∗𝑢𝐴𝜖𝐴𝑑𝑥

∞

−∞

 

≅ 𝐸𝐴2𝜔(𝜔 − 𝛺𝐴)∫ 𝑢𝐴
∗𝑢𝐴𝜖𝐴𝑑𝑥

∞

−∞

 (A. 13) 

where we have dropped the second order term 𝐸𝐴𝜔
2 ∫ 𝑢𝐴

∗𝑢𝐴(𝜖𝐶 − 𝜖𝐴)𝑑𝑥
∞

−∞
. 𝜖𝐶 − 𝜖𝐴 is nonzero 

only within cavity B, and 𝑢𝐴(𝜖𝐶 − 𝜖𝐴) ≪ 𝑢𝐵 within cavity B. Hence ∫ 𝑢𝐴
∗𝑢𝐴(𝜖𝐶 − 𝜖𝐴)𝑑𝑥

∞

−∞
≪

∫ 𝑢𝐴
∗𝑢𝐵𝑑𝑥

∞

−∞
. 



123 

 

Now Equation (A.12) turns into 

𝐸𝐴2𝜔(𝜔 − 𝛺𝐴)⟨𝑢𝐴|𝜖𝐴|𝑢𝐴⟩ + 𝐸𝐵𝜔
2⟨𝑢𝐴|𝜖𝐶 − 𝜖𝐵|𝑢𝐵⟩ + 2𝑖𝜔�̇�𝐴⟨𝑢𝐴|𝜖𝐶|𝑢𝐴⟩ + 

𝑖𝜔𝑐2𝜇0𝜎𝐸𝐴⟨𝑢𝐴|𝑢𝐴⟩ + 𝜔
2𝑐2𝜇0𝑝𝐴⟨𝑢𝐴|𝑢𝐴⟩ = 0 (A. 14)

 

Using the approximation ⟨𝑢𝐴|𝜖𝑟|𝑢𝐴⟩ ≅ ⟨𝑢𝐴|𝜖𝐴|𝑢𝐴⟩, as we have previously argued that 

⟨𝑢𝐴|𝜖𝑟 − 𝜖𝐴|𝑢𝐴⟩ is a second order term, we have 

�̇�𝐴 = 𝑖(𝜔 − 𝛺𝐴)𝐸𝐴 + 𝑖
𝜔

2

⟨𝑢𝐴|𝜖𝐶 − 𝜖𝐵|𝑢𝐵⟩

⟨𝑢𝐴|𝜖𝐴|𝑢𝐴⟩
𝐸𝐵 −

𝜎

2𝜖0

⟨𝑢𝐴|𝑢𝐴⟩

⟨𝑢𝐴|𝜖𝐴|𝑢𝐴⟩
𝐸𝐴 + 𝑖

𝜔

2𝜖0

⟨𝑢𝐴|𝑢𝐴⟩

⟨𝑢𝐴|𝜖𝐴|𝑢𝐴⟩
𝑝𝐴 (A. 15) 

Although it is phenomenological and a bit arbitrary, we use −
𝜎

2𝜖0

⟨𝑢𝐴|𝑢𝐴⟩
⟨𝑢𝐴|𝜖𝐴|𝑢𝐴⟩

𝐸𝐴 to 

represent cavity loss (mirror loss), and use 𝑖
𝜔

2𝜖0

⟨𝑢𝐴|𝑢𝐴⟩
⟨𝑢𝐴|𝜖𝐴|𝑢𝐴⟩

𝑝𝐴 to represent the gain/loss related to 

the stimulated emission/absorption and the carrier induced index change. We can write the cavity 

loss as 

−
𝜎

2𝜖0

⟨𝑢𝐴|𝑢𝐴⟩

⟨𝑢𝐴|𝜖𝐴|𝑢𝐴⟩
= −

𝛾𝐸
2

(A. 16) 

where 𝛾𝐸 is the mirror loss rate. We can write the polarization term as  

𝑖
𝜔

2𝜖0

⟨𝑢𝐴|𝑢𝐴⟩

⟨𝑢𝐴|𝜖𝐴|𝑢𝐴⟩
𝑝𝐴 = 𝑖

𝜔

2
𝜒𝐸𝐴 = 𝑖

𝜔

2
𝜒′𝐸𝐴 −

𝜔

2
𝜒′′𝐸𝐴 (A. 17) 

by defining 𝑝𝐴 ≡ 𝜖𝑒𝑓𝑓𝜖0𝜒𝐸𝐴 where 𝜖𝑒𝑓𝑓 ≡
⟨𝑢𝐴|𝜖𝐴|𝑢𝐴⟩
⟨𝑢𝐴|𝑢𝐴⟩

 is the effective permittivity, 𝜒 = 𝜒′ + 𝑖𝜒′′ 

is the effective susceptibility. 𝜒′ represents carrier induced index change (amplitude phase 

coupling) and 𝜒′′ represents inter-band emission/absorption (gain/loss). Although 𝜒 = 𝜒′ + 𝑖𝜒′′ 

can be calculated ab inito [1], it is also convenient to write Equation (A.16) and (A.17) using 

experimentally measured parameters [4]: 

−
𝜎

2𝜖0

⟨𝑢𝐴|𝑢𝐴⟩

⟨𝑢𝐴|𝜖𝐴|𝑢𝐴⟩
+ 𝑖

𝜔

2𝜖0

⟨𝑢𝐴|𝑢𝐴⟩

⟨𝑢𝐴|𝜖𝐴|𝑢𝐴⟩
𝑝𝐴 =

𝛤𝑣𝑔𝑎diff

2
(𝑁𝐴 − 𝑁𝑡ℎ)(1 − 𝑖𝛼𝐻)𝐸𝐴 (A. 18) 
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where 𝛤 is the confinement factor, 𝑣𝑔 the group velocity, 𝑎diff the differential gain of active 

material, 𝑁𝐴 the carrier density in laser A, 𝑁𝑡ℎ the threshold carrier density (assumed to be the 

same for both laser A and B), and 𝛼𝐻 the linewidth enhancement factor. Equation (A.18) equals 

zero when 𝑁𝐴 = 𝑁𝑡ℎ, meaning that the carrier-induced index change (hence carrier-induced 

frequency shift) is also zero, which is consistent with our definition that 𝛺𝐴 is the resonant 

frequency at threshold carrier density level. 

Taking Equation (A.18) into (A.15), we arrive at 

�̇�𝐴 = 𝑖(𝜔 − 𝛺𝐴)𝐸𝐴 + 𝑖𝜅𝐴𝐵𝐸𝐵 +
𝛤𝑣𝑔𝑎𝑑𝑖𝑓𝑓

2
(𝑁𝐴 − 𝑁𝑡ℎ)(1 − 𝑖𝛼𝐻)𝐸𝐴 (A. 19) 

where 𝜅𝐴𝐵 ≡
𝜔

2

⟨𝑢𝐴|𝜖𝐶 − 𝜖𝐵|𝑢𝐵⟩
⟨𝑢𝐴|𝜖𝐴|𝑢𝐴⟩

. 

Similarly, we have 

�̇�𝐵 = 𝑖(𝜔 − 𝛺𝐵)𝐸𝐵 + 𝑖𝜅𝐵𝐴𝐸𝐴 +
𝛤𝑣𝑔𝑎𝑑𝑖𝑓𝑓

2
(𝑁𝐵 − 𝑁𝑡ℎ)(1 − 𝑖𝛼𝐻)𝐸𝐵 (A. 20) 

where  

𝜅𝐵𝐴 ≡
𝜔

2

⟨𝑢𝐵|𝜖𝐶 − 𝜖𝐴|𝑢𝐴⟩

⟨𝑢𝐵|𝜖𝐵|𝑢𝐵⟩
(𝐴20𝑏). 

Equations (A.19) and (A.20) are the temporal coupled mode equations for two side-by-

side coupled lasers. In terms of real-valued variables (𝐸𝐴,𝐵 = |𝐸𝐴,𝐵|𝑒
𝑖𝜙𝐴,𝐵 , 𝜅𝐴𝐵 = 𝜅𝐵𝐴 = 𝜅𝑟 +

𝑖𝜅𝑖), we have 

𝑑|𝐸𝐴|

𝑑𝑡
=
1

2
𝛤𝑣𝑔𝑎𝑑𝑖𝑓𝑓(𝑁𝐴 − 𝑁𝑡ℎ)|𝐸𝐴| − [𝜅𝑖 𝑐𝑜𝑠(𝜙𝐵 − 𝜙𝐴) + 𝜅𝑟 𝑠𝑖𝑛(𝜙𝐵 − 𝜙𝐴)]|𝐸𝐵| (A. 21) 

𝑑|𝐸𝐵|

𝑑𝑡
=
1

2
𝛤𝑣𝑔𝑎𝑑𝑖𝑓𝑓(𝑁𝐵 − 𝑁𝑡ℎ)|𝐸𝐵| − [𝜅𝑖 cos(𝜙𝐵 − 𝜙𝐴) − 𝜅𝑟 sin(𝜙𝐵 − 𝜙𝐴)]|𝐸𝐴| (A. 22) 

𝑑(𝜙𝐵 − 𝜙𝐴)

𝑑𝑡
= −(Ω𝐵 − ΩA) +

1

2
𝛼𝐻𝛤𝑣𝑔𝑎𝑑𝑖𝑓𝑓(𝑁𝐴 − 𝑁𝐵)

+𝜅𝑟 cos(𝜙𝐵 − 𝜙𝐴) (|
𝐸𝐴
𝐸𝐵
| − |

𝐸𝐵
𝐸𝐴
|) + 𝜅𝑖 sin(𝜙𝐵 − 𝜙𝐴) (|

𝐸𝐴
𝐸𝐵
| + |

𝐸𝐵
𝐸𝐴
|) (A. 23)

 



125 

 

[Equations (A.21)-(A.23) are obtained by taking 𝐸𝐴,𝐵 = |𝐸𝐴,𝐵|𝑒
𝑖𝜙𝐴,𝐵 , 𝜅𝐴𝐵 = 𝜅𝐵𝐴 = 𝜅𝑟 + 𝑖𝜅𝑖 into 

Equations (A.19) and (A.20). Then separately write equations for the terms that are in-phase with 

𝑒𝑖𝜙𝐴  and the terms that are in-phase with 𝑖𝑒𝑖𝜙𝐴 .] 

The coupling coefficients have been taken to be symmetrical (𝜅𝐴𝐵 = 𝜅𝐵𝐴) on the ground 

that we are assuming that the two lasers are identical except for the different injection rates and 

the frequency detuning. As a first-order perturbation theory we see that the frequency detuning 

does not change the coupling coefficient. 𝜅 is taken to be complex in general, with 𝜅𝑟 

representing the frequency splitting between the in-phase and out-of-phase coupled modes, while 

𝜅𝑖 represents the gain splitting between them [5].  

A.2 Coupled rate equations 

Coupled rate equations consist of the coupled mode Equations (A.21) - (A.23) and the 

carrier density rate equation 

𝑑𝑁𝐴,𝐵
𝑑𝑡

= 𝑃𝐴,𝐵 −
𝑁𝐴,𝐵
𝜏𝑁

− 𝑣𝑔[𝑔𝑡ℎ + 𝑎𝑑𝑖𝑓𝑓(𝑁𝐴,𝐵 −𝑁𝑡ℎ)]|𝐸𝐴,𝐵|
2
 (A. 24) 

where 𝑃𝐴,𝐵 are the carrier injection rates with unit of cm−3s−1, 𝜏𝑁 is the carrier lifetime, 𝑔𝑡ℎ is 

the threshold gain. Also note that we choose the normalization of 𝐸𝐴,𝐵(𝑡) to be that |𝐸𝐴,𝐵(𝑡)|
2
 are 

the photon densities with unit of cm−3.  

We have followed [4] and defined the dimensionless carrier densities 𝑀𝐴,𝐵, 

dimensionless pump rates 𝑄𝐴,𝐵, and dimensionless field magnitudes 𝑌𝐴,𝐵 as:  

𝑀𝐴,𝐵 ≡ 1 + 𝑣𝑔𝛤𝑎𝑑𝑖𝑓𝑓𝜏𝑝(𝑁𝐴,𝐵 − 𝑁𝑡ℎ) (A. 25) 

𝑄𝐴,𝐵 ≡ 1 + 𝑣𝑔𝛤𝑎𝑑𝑖𝑓𝑓𝜏𝑝(𝑃𝐴,𝐵𝜏𝑁 −𝑁𝑡ℎ) (A. 26) 

𝑌𝐴,𝐵 ≡ √𝑣𝑔𝑎𝑑𝑖𝑓𝑓𝜏𝑁|𝐸𝐴,𝐵| (A. 27) 
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From Equation (A.26) we have 𝑄𝐴,𝐵 = 𝐶𝑄 (
𝑃𝐴,𝐵

𝑃𝑡ℎ
− 1) +

𝑃𝐴,𝐵

𝑃𝑡ℎ
= 𝐶𝑄 (

𝐼𝐴,𝐵

𝐼𝑡ℎ
− 1) +

𝐼𝐴,𝐵

𝐼𝑡ℎ
, where 𝐶𝑄 is 

the constant relating injected currents to normalized pump parameters, defined as 𝐶𝑄 ≡
𝑎diff𝑁𝑡𝑟

𝑔𝑡ℎ
. 

𝑁𝑡𝑟 is the transparency carrier density, 𝐼𝐴.𝐵 are injected currents and 𝐼𝑡ℎ is the threshold current. 

The threshold gain 𝑔𝑡ℎ is related to photon lifetime by 𝑣𝑔𝛤𝑔𝑡ℎ = 𝑣𝑔Γ𝑎𝑑𝑖𝑓𝑓(𝑁𝑡ℎ − 𝑁𝑡𝑟) =
1

𝜏𝑝
=

𝛾𝐸 + 𝑣𝑔𝛼0, where 𝛼0 is the absorption coefficient from the unpumped cladding. The normalized 

parameters at transparency and threshold conditions are simply: 𝑀𝐴,𝐵𝑡𝑟 = 0, 𝑀𝐴,𝐵𝑡ℎ = 1, 

𝑄𝐴,𝐵𝑡𝑟 = 0, 𝑄𝐴,𝐵𝑡ℎ = 1, where the subscript 𝑡𝑟 denotes transparency and 𝑡ℎ denotes threshold. In 

terms of the dimensionless variables, coupled rate equations are written as 

𝑑𝑌𝐴
𝑑𝑡

=
1

2𝜏𝑝
(𝑀𝐴 − 1)𝑌𝐴 − (𝜅𝑟𝑠𝑖𝑛𝜙 + 𝜅𝑖 cos𝜙)𝑌𝐵 (A. 28) 

𝑑𝑌𝐵
𝑑𝑡

=
1

2𝜏𝑝
(𝑀𝐵 − 1)𝑌𝐵 + (𝜅𝑟𝑠𝑖𝑛𝜙 − 𝜅𝑖 cos𝜙)𝑌𝐴 (A. 29) 

𝑑𝜙 

𝑑𝑡
=
𝛼𝐻
2𝜏𝑝

(𝑀𝐴 −𝑀𝐵) − ΔΩ + 𝜅𝑟𝑐𝑜𝑠𝜙 (
𝑌𝐴
𝑌𝐵
−
𝑌𝐵
𝑌𝐴
) + 𝜅𝑖𝑠𝑖𝑛𝜙 (

𝑌𝐴
𝑌𝐵
+
𝑌𝐵
𝑌𝐴
) (A. 30) 

𝑑𝑀𝐴,𝐵
𝑑𝑡

=
1

𝜏𝑁
[𝑄𝐴,𝐵 −𝑀𝐴,𝐵(1 + 𝑌𝐴,𝐵

2 )] (A. 31) 

where 𝜙 = 𝜙𝐵 − 𝜙𝐴, Δ = Ω𝐵 − Ω𝐴. 

Equations (A.28)-(A.31) are the coupled rate equations. In the future, if we want to study 

asymmetrical arrays with different quality factors, we will need to modify these equations to 

incorporate different photon lifetimes and different threshold carrier densities between two 

lasers. 
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APPENDIX B: EVALUATION OF THE ANTIGUIDING COUPLING COEFFICIENT 

VIA OVERLAP INTEGRAL 

The overlap integral formulation can be used to calculate the coupling coefficient [1-4]. 

We show below that in our passive antiguided structure, it offers insight but is inaccurate.  

When the refractive index profile is passive, conventional CMT says that the coupling 

coefficient can be expressed as 

𝜅𝐵𝐴 = 
𝑘0
2

2𝛽𝐵

∫ 𝐸𝐴(𝑥)𝛥𝜖𝐵(𝑥)𝐸𝐵(𝑥)𝑑𝑥
+∞

−∞

∫ 𝐸𝐵(𝑥)2𝑑𝑥
+∞

−∞

 (B. 1) 

where 𝑘0 is the vacuum wavenumber, 𝛽𝐵 the propagation constant in waveguide B, Δ𝜖𝐵(𝑥) the 

index profile of waveguide B, and 𝐸𝐴,𝐵(𝑥) are the amplitude profiles of the individual waveguide 

modes in waveguide A and B, respectively. When the fields and the index profiles are real-

valued, we see Equation (B.1) is consistent with Equation (A.30b) in Appendix A. We have 

chosen 𝐸𝐴,𝐵(𝑥) to be real since the structure we study is completely passive. [When there exists a 

complex-valued index profile, meaning there is nonuniform gain/loss present, Equation (A.30b) 

should be used instead of Equation (B.1).] To evaluate this overlap integral, we should define 

Δ𝜖𝐴,𝐵(𝑥) first, so that we can solve for 𝐸𝐴,𝐵(𝑥). Our definition of Δ𝜖𝐴(𝑥) is shown by the blue 

outlines in Figure B.1(a), by assuming the absence of the waveguide B. Similarly, Δ𝜖𝐵(𝑥) is 

defined in the same fashion (not shown). The separation between two waveguides is chosen to 

support positive coupling in index profile (i) and negative coupling in index profile (ii). The 

mode profiles 𝐸𝐴,𝐵(𝑥) are calculated by a 1D numerical FDFD mode solver, shown by red and 

black lines in Figure B.1(a). Comparing the mode profiles in Figure B.1(a), it can be observed 

that in (i) 𝐸𝐴(𝑥) and 𝐸𝐵(𝑥) have the same sign at the center of waveguide B, while in (ii) they 

have opposite signs. Because of this, the overlap integral (and hence the coupling coefficient) is 



129 

 

positive in (i) and negative in (ii). In other words, the phase delay caused by lateral leaky-wave 

propagation, 𝑘𝑡 ∙ 𝑑, is 0 and π respectively for the in-phase and out-of-phase coupling. This 

offers insight into the physics of coupling sign control from the leaky-wave propagation point of 

view. 

 

Figure B.1: (a) Individual waveguide index profile Δ𝜖𝐴(𝑥) (blue) and the two individual 

waveguide mode profiles 𝐸𝐴,𝐵(𝑥) (red and black), for inter-element separation equal to (i) 3500 

nm or (ii) 5800 nm. (b) Absolute value and (c) signed value of the coupling coefficients 

calculated from the overlap integral (red) compared with the values extracted from exact solution 

of normal modes (black). The two points correspond to the two cases shown in (a).  



130 

 

 

Figure B.2: Intensity profile of the two coupled modes in the antiguided coupled waveguide, 

showing that the in-phase and out-of-phase normal modes have their intensity peaks at slightly 

different locations in the core. Center of the cores are labeled by the black dashed lines. 

However, the value of 𝜅𝐵𝐴 calculated by the overlap integral [red curves in Figures B.1 

(b) and B.1(c)] shows a noticeable amount of error compared with the value extracted from exact 

solutions. More importantly, it shows qualitatively wrong behavior by having zero crossings. 

There can be no zero crossings for 𝜅𝐵𝐴, because mathematically there are no degenerate states in 

the one-dimensional passive (Hermitian) system. This error arises from the definition of 𝐸𝐴,𝐵(𝑥). 

Examination of the intensity distribution of the coupled modes from the exact solution of 

composite waveguide structure, shown in Figure B.2, shows that the intensity peaks for the in-

phase and out-of-phase mode are slightly shifted in opposite directions from the middle of the 

waveguide cores. Thus, a better choice of basis modes is required if the overlap integral formula 

is to be used for the antiguided coupling coefficient calculation. 
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APPENDIX C: THE OTHER TWO SETS OF SOLUTIONS TO THE STEADY-STATE 

COUPLED RATE EQUATIONS 

When solving the steady-state coupled rate equations (SSCREs), in addition to the two 

sets of solutions discussed in the main text, there are another two sets of solutions that to our 

knowledge were first recognized in Ref. [1]. These interesting modes remain asymmetrical even 

when the system is completely symmetrical (i.e. 𝑄𝐴 = 𝑄𝐵 = 𝑄, ΔΩ = 0). However, when the 

coupling is weak (i.e. 𝜏𝑝𝜅 ≪ 1), those modes have very asymmetrical intensity distribution 

unless 𝑄𝐴,𝐵 ≈ 1 (i.e. pump levels very close to threshold). Since we need to consider above-

threshold situations, they are not realistic modes and are ignored in our analysis. These two 

modes can be numerically identified and plotted in Figures C.1 and C.2 as the green curves. At 

equal pumping and zero cavity detuning (i.e. 𝑄𝐴 = 𝑄𝐵 = 𝑄, ΔΩ = 0), one of the modes is 

approximately  

𝑌𝐵
𝑌𝐴
≅
𝑄 − 1

2𝜏𝑝𝜅
√𝛼𝐻

2 + 1 ≫ 1 

𝑀𝐴 ≅ 𝑄 

𝑀𝐵 ≅ 1 

𝜙 ≅ tan−1(1/𝛼𝐻) 

and the other mode is  

𝑌𝐴
𝑌𝐵
≅
𝑄 − 1

2𝜏𝑝𝜅
√𝛼𝐻

2 + 1 ≫ 1 

𝑀𝐴 ≅ 1 

𝑀𝐵 ≅ 𝑄 

𝜙 ≅ − tan−1(1/𝛼𝐻) 
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Figure C.1: Numerical solutions of the SSCREs for Array 1 (very weak coupling, 𝜅 = 0.002/𝜏𝑝) 

that include the two asymmetrical modes (K1 and K2): (a) Induced gain contrast; (b) total 

frequency detuning; (c) relative phase; (d) field magnitude ratio between two cavities are plotted 

versus the cavity detuning ΔΩ. The pump parameters are set to 𝑄𝐴 = 𝑄𝐵 = 3.2, corresponding to 

𝐼𝐴 = 𝐼𝐵 = 2.375 𝐼𝑡ℎ. 

 

 

Figure C.2: Numerical solutions of the SSCREs for Array 2 (moderately weak coupling, 𝜅 =
0.06/𝜏𝑝) that include the two asymmetrical modes (K1 and K2): (a) Induced gain contrast; (b) 

total frequency detuning; (c) relative phase; (d) field magnitude ratio between two cavities are 

plotted versus the cavity detuning ΔΩ. The pump parameters are set to 𝑄𝐴 = 𝑄𝐵 = 3.2, 

corresponding to 𝐼𝐴 = 𝐼𝐵 = 2.375 𝐼𝑡ℎ. 
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The extremely asymmetrical intensity distribution and the large Δ𝛾 are results of a cavity 

being almost completely empty of photons while the carrier density in that cavity accumulates to 

unrealistically high above the threshold carrier density. This is likely unrealistic because the 

factors ignored in the coupled rate equations (CREs), for example the spontaneous emission and 

multi-mode lasing in an individual cavity, would start being significant and the simplified CREs 

that we use would not be valid anymore. 

 

C.1 References 
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2017. 

  



135 

 

APPENDIX D: OUT-OF-PHASE SOLUTION OF THE COUPLED RATE EQUATIONS 

AND ITS CONVERGENCE TO THE IN-PHASE SOLUTION 

We discuss the out-of-phase mode and the convergence of the tilted in-phase and tilted 

out-of-phase optical modes of coupled laser arrays. Similar to Figures 3.4 and 3.5 that show the 

in-phase mode, we plot the out-of-phase mode in Figures D.1 and D.2, for Array 1 and Array 2 

respectively. 

One further observation can be made by calculating the difference between the tilted out-

of-phase mode and the tilted in-phase mode, namely |Δ𝛾− − Δ𝛾+|, |Δ𝜔− − Δ𝜔+|, (𝜙− − 𝜙+), 

and |(
YB

YA
)
−
− (

YB

YA
)
+
| , as shown in Figures D.3 and D.4. It can be observed that the two sets of 

solutions converge to the same value along the lines of broken PT symmetry, located at the 

boundary of the locking region. [For (𝜙− − 𝜙+), converging to 2𝜋 is equivalent to converging to 

0.] Along the line of unbroken PT symmetry (see Figure 3.5), Δ𝛾, Δ𝜔,  and 𝑌𝐵/𝑌𝐴 from the two 

sets of solutions converge to the same value, but not 𝜙. From the property of the unbroken PT 

symmetric modes, we know that 𝜙+ + 𝜙− = 𝜋. In other words, Δ𝛾, Δ𝜔, and 𝑌𝐵/𝑌𝐴 of the two 

sets of solutions converge when the array has either broken or unbroken PT symmetry, while 𝜙+ 

and 𝜙− converge only when the array has broken PT symmetry. The underlying mathematical 

structure of the solutions, which may be responsible for the converging behavior along the 

broken PT symmetry lines, is interesting for future study. It can be observed from the numerical 

solutions that |𝛥𝜔+ − 𝛥𝜔−| and |𝛥𝛾+ − 𝛥𝛾−| are linearly related and the line depicting broken 

PT symmetry might be a branch cut if we take linear combinations of Δ𝜔 and 𝛥𝛾 to be the real 

and imaginary part of a complex variable. 
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Figure D.1: The tilted-out-of-phase solution for Array 1 (𝜅 = 0.002/𝜏𝑝): (a) Induced gain 

contrast; (b) total frequency detuning; (c) relative phase; and (d) field magnitude ratio versus the 

cavity detuning and pump parameter 𝑄𝐵, while 𝑄𝐴 is fixed at 3.2. The pump parameters 

correspond to having 𝐼𝐴 fixed at 2.375 𝐼𝑡ℎ, while 𝐼𝐵 varies from 1.625 𝐼𝑡ℎ to 3.125 𝐼𝑡ℎ. Red lines 

show where the array is PT symmetric. 

 

 

Figure D.2: The tilted-out-of-phase solution for Array 2 (𝜅 = 0.06/𝜏𝑝): (a) Induced gain 

contrast; (b) total frequency detuning; (c) relative phase; and (d) field magnitude ratio versus the 

cavity detuning and pump parameter 𝑄𝐵. Again, 𝑄𝐴 is fixed at 3.2, while 𝑄𝐵 varies from 2 to 4.4. 

Red lines show where the array is PT symmetric. 

Although we find the two solutions to SSCREs will collapse anywhere along the lines of 

broken PT symmetry, this collapsing is different from the eigenmode collapse occurring at the 

exceptional points. At the exceptional points, the coupled mode equations predict two collapsed  
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Figure D.3: Plot of the difference between the tilted-out-of-phase and tilted-in-phase solutions 

(Array 1, very weak coupling): (a) Absolute difference between the gain contrast |Δ𝛾− − Δ𝛾+|; 
(b) absolute difference between the total frequency detuning |Δ𝜔− − Δ𝜔+|; (c) difference 

between the relative phase (𝜙− − 𝜙+); (d) absolute difference between the field magnitude ratio 

|(
YB

YA
)
−
− (

YB

YA
)
+
|. 

 

Figure D.4: Plot of the difference between the tilted-out-of-phase and tilted-in-phase solutions 

(Array 2, moderate coup): (a) Absolute difference between the gain contrast |Δ𝛾− − Δ𝛾+|; (b) 

absolute difference between the total frequency detuning |Δ𝜔− − Δ𝜔+|; (c) difference between 

the relative phase (𝜙− − 𝜙+); (d) absolute difference between the field magnitude ratio 

|(
YB

YA
)
−
− (

YB

YA
)
+
|. 
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eigenmodes. Anywhere else along the lines of broken PT symmetry, the coupled mode equations 

predict two linearly independent eigenmodes, but only one of them satisfies the carrier rate 

equations. 
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APPENDIX E: COHERENT ARRAY PROCESS FOLLOWER 

Sample Name:  

 

 

Include notes on backside of pages (e.g. for different samples note difference in recipe, 

measured thickness, etc.) 

  

Process Order:  Mesa+PhC (DoC), Stacked Implant Aperture (DoC), Top Contact (DoC), 

[optional: Bottom Contact (CoD)], Planarization (DoC), Fan Metal (CoD)  

 

0. ______Cleave and Clean    Cleave, take ID photo, degrease (Acetone, IPA,  

DI, IPA) and N2 dry. 

No identification scratch/label on backside, reduces 

durability 

 

1. ______SiO2 Deposition:    Degrease 

  ~ 4000 Å – Time: ______ min, Rate: ______ Å/min 

    (750 seconds at low dep rate on Trion for 4000 Å) 

  Thickness: ______Å (ellipsometer) 

 

2. ______Mesa + PhC     Degrease 

    photolithography    Dehydration bake (110 oC for 5 min) 

     (note for ALL bakes use a transfer/carrier wafer) 

 HMDS spin (30 s 4000 rpm)  

       AZ5214 spread (3 s 500 rpm) 

       AZ5214 spin (30 s 4000 rpm) 

  Edge bead removal      

  Bake (110 oC for 45 s) 

  Mask: Coherent Array - Implant / Mesa & PhC - BJT  

(5/13/16) 

  Expose: 30 s (aligner A at 9 mW/cm2) 

  Power: ______W; Time: ______s 

  Develop in AZ327 MIF (~ 50-55 s): _______s 

 

3. ______SiO2 Etch:     O2 plasma descum (250W for 3min) 

       CF4 RIE for > 4000 Å (~ 22 min) 

       Time: _______min  

       Make sure field conducts before proceeding! If  

     not, more etching is required before PR removal. 

  Remove PR mask (Acetone, IPA, DI, IPA) 

  Alpha-step:  _______µm 
 

4. ______Stacked implant aperture photolithography: 
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(Double spin resist!)    

(Do not leave 9260 double-spinned undeveloped overnight)  

(Pay special care to the PR sidewall during development. Stop development before the field is 

totally clear to preserve straight sidewall. Then use O2 plasma to clear up the field.) 

 

  Degrease 

  Dehydration bake (110 oC for 5 min) 

  NO HMDS spin, double spin better without it 

  Apply photoresist AZ9260 for spin #1 

  AZ9260 spread (5 s 500 rpm) 

  AZ9260 spin (30 s 4000 rpm) 

  Soft-bake (110 oC for 3 min) 

  Edge bead removal (3 min on C, 1min30s AZ421K 1:3 

dilution, and swab) 

  Apply photoresist AZ9260 again, spin #2 

  AZ9260 spread (5 s 500 rpm) 

  AZ9260 spin (30 s 4000 rpm) 

  Soft-bake (110 oC for 3 min) 

  Edge bead removal (3 min on C, 4 min AZ421K 1:3, and 

swab) 

  Mask: Coherent Array - Implant / Mesa & PhC - BJT 

(5/13/16) 

       Expose: 4 min (aligner A at 9 mW/cm2) 

  Power: ______W; Time: ______s 

  Develop in AZ421K 1:2 (~ 3 min 50 s): _______s 

  O2 plasma descum (500W for 5 min) 

  Goal (~9-11 µm) Alpha-step:  _______µm 

  (Optional) UV harden on Aligner A for 10 minutes (no 

bake after UV) 

 

5. ______Send for implant:        Kroko Stacked H+ implant, 7° tilt 

protons 330 keV 5x1014 /cm2 

protons 300 keV 5x1014 /cm2 

protons 260 keV 5x1014 /cm2 

protons 210 keV 5x1014 /cm2 

protons 160 keV 5x1014 /cm2 

protons 100 keV 5x1014 /cm2 

oxygen 300 keV 5x1013 /cm2 

oxygen 150 keV 5x1013 /cm2 

oxygen   50 keV 5x1013 /cm2 

 

6. ______Remove implant PR:   O2 plasma descum (1000W for 8 min) 

  Boiling acetone soak (40 °C)  
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  Squirt gun 

  Swab unimportant area (edges) 

  Repeat steps above until sample is clean (make take 3 

repetitions) 

 

7. ______ICP Etch:     Clean ICP-RIE using O2 

  Use ICP-RIE SiCl4/Ar recipe and reflectometry setup 

       Etch according to required etch depth 

   (Optional surface treatment: 1:1 HCl:DI 1min, 10 min 

DI decanting, Hydrogen plasma) 

  Etch according to required etch depth 

         May require calibration etch of blank piece 

         Stop at GaAs/high signal layer 4 DBR pair past active 

       Time: _______min (rate: ________Å/min) 

       Alpha-step:  _______µm 

 

(Optional Step– For semi-insulating substrates use a bottom contact, otherwise do broad-area 

backside contact and no photolithography) 

8. ______Bottom contact    Degrease  

     photolithography:    Dehydration bake (110 °C for 5 min)  

 HMDS spin (30 s 4000 rpm) 

 AZ4330 spread (3 s 500 rpm) 

 AZ4330 spin (30 s 5000 rpm) 

 Bake (95 oC for 90 sec)  

 Edge bead removal – 1.5 min on Aligner C  

 Ensure edges are clear/clean 

  Mask: (Not ordered yet) 

 Expose: 60 sec (aligner A at 9 mW/cm2) 

 Power: ______W; Time: ______s  

 Develop in AZ 400K (~ 60 s): _____s 

 

9. ______Bottom contact (n):    O2 plasma descum (300W for 2 min) 

  Dip in 1:10 NH4OH:DI for 20 s 

  DI rinse (10 min) 

       Target:  400 Å Au-Ge / 200 Å Ni / 1500 Å Au 

         Actual:  ____Å Au-Ge / ____Å Ni / _____Å Au 
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10. ______Metal Liftoff:    Boiling acetone (40 oC) / Squirt gun 

 

11. ______SiO2 mask removal:   CF4 RIE for < 4000 Å (~ 15 min) (see color) 

       Check if the mesas conduct  

  Continue etching 2 or 3 min increments until  

     mesas conduct  

  Time: _______min 

 

12. ______Top contact (LOR process. Never use acetone after LOR is applied. Use Remover PG 

to remove LOR.)   

 

  Degrease 

  Dehydration bake (110 oC for 5 min) 

       LOR30B spread (4 s 400 rpm) 

       LOR30B spin (60 s 4000 rpm) 

  Edge beam removal with Remover PG    

  Bake (170 oC for 5 min), clean edges 

  AZ5214 spread (3 s 500 rpm) 

       AZ5214 spin (30 s 4000 rpm) 

  Bake (110 oC for 45 s) 

  Edge bead removal (1min on Aligner C, 1min 327 MIF, 

optional: swab edges with 327 MIF) 

  Mask: Coherent Array - Planarization / Top Metal - 

BJT (5/13/16) 

  Expose: 25 s (aligner A at 9 mW/cm2) 

  Power: ______W; Time: ______s 

  Reversal bake (110 oC for 45 s) 

  Flood exposure 45 s (aligner A at 9 mW/cm2) 

  Develop in AZ 327 MIF (~ 40 s):____s   

  Bake (125 oC for 1 min) 

  Develop in AZ 400K 1:4 (~1min):____min 

  Check pattern: small LOR undercut desired 

 

13. ______Top contact (p):    O2 plasma descum (300W for 2 min) 

       DI rinse (10 min) 

  Dip in 1:10 NH4OH:DI for 20 s 

       Target:  150 Å Ti / 1600 Å Au 

         Actual:  ______Å Ti / ______Å Au 

 

14. ______Metal Liftoff:    Remover PG soak #1 ~ 30min 

  Remover PG soak #2 (in another beaker) ~ 5min 

 IPA soak ~ 1 min 

 IPA rinse, DI rinse, IPA rinse 
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15. ______Contact annealing    410 oC for > 1 min using oxidation furnace 

 

16. ______Test     Check for lasing and electrical isolation 

 

17. ______Planarization (PI):    Degrease 

   (polyimide)    Dehydration bake (125 °C for 3 min)  

  NMP ramp (250 rpm/sec) 

  NMP spin (60 s 5000 rpm) 

  HD 4104 ramp (300 rpm/sec) 

  HD 4104 spin (60 s 2600 rpm) 

       Edge bead removal with razor blade 

       Backside clean (PA.401D and PA.400R swab) 

         !!! Wait for PA.400R on backside to dry before bake! 

       Bake (90 oC for 100 sec + 100 oC for 100 sec more) 

       Alpha-step edge bead: ________μm 

  Mask: Coherent Array - Planarization / Top Metal 

BJT (5/13/16) 

  Expose: 13 sec (Aligner C, I-line 365 nm at 9 W/cm2) 

         (Dose of 117 mJ/cm2) 

  Wait > 5 min 

       Develop with PA.401D: _______s (50 s) 

       Rinse with PA.400R: _______s (30 s) (No DI) 

                                                              Alpha-step: _____ μm (double required height) 

  PI cure on Recipe 3 (PI should shrink down by ~ 50%) 

(ramp up 10 oC /min – 150 oC soak 20 min) 

(ramp up 4 oC /min – 250 oC soak 30 min) 

(ramp up 4 oC /min – 300 oC soak 3 hr) 

(ramp down 10 oC /min – 25 oC soak 3 hr) 

                               Alpha-step: Field _____μm, Mesa crown _____μm,  

    Via crown _____μm 

  CF4 RIE: RF 20%, 35mT, 60% O2, 10% CF4 

    (etch rate of 0.16-0.2 μm/min) 

  Time: _____min,  Rate: _____ μm/min 

     (etch until openings are clear)  

  Alpha-step: _____μm 

 

18. ______Fan metal      Degrease 

      photolithography:     Dehydration bake (125 °C for 3 min)  

 HMDS spin (30 s 4000 rpm)  

 AZ9260 spread (3 s 500 rpm) 

 AZ9260 spin (30 s 5000 rpm) 

 Bake (110 oC for 4 min 20 s) 
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 Edge bead removal – 2 min on C, 1 min AZ400K 1:2 

  Mask: Coherent Array – Fan Metal – BJT (08/15/16) 

 Expose: 3 min (aligner A at 9 mW/cm2) 

 Power: ______W; Time: ______s  

 Develop in AZ 400K 1:2 (~ 60 s): _____s 

 

19. ______Fan metal (p):    O2 plasma descum (300W for 2 min) 

       DI rinse (10 min) 

       Target:  150 Å Ti / 10000 Å Au 

         Actual:  ______Å Ti / ______Å Au 

 

20. ______Metal Liftoff:    Boiling acetone (40 oC) / Squirt gun 

 

21. ______Test 

 


