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ABSTRACT 

 According to the latest World Health Organization (WHO) statistics, breast cancer is the 

most common type of cancer among women worldwide (1). The WHO has further emphasized 

that early diagnosis and treatment are key in mitigating the burden of disease (2). In spite of this 

assessment, the standard histopathology of breast cancer still relies on manual microscopic 

examination of stained tissue. Being qualitative and manual in nature, this standard diagnostic 

procedure can suffer from inter-observer variation and low-throughput (3). In addition, stain 

variation between different samples and different laboratories creates problems for supervised 

image analysis methods for automated diagnosis. A quantitative, label-free and automatable 

microscopic modality for breast cancer diagnosis is, thus, needed to address these 

shortcomings in the standard method. 

 Furthermore, prognostic biomarkers are important tools used by clinicians in order assess 

the disease course in patients (4). Being correlated with outcomes, these markers allow 

pathologists to determine aggressiveness of disease and tailor treatment accordingly. However, the 

current set of biomarkers for breast cancer are ineffective in predicting outcomes in all patients 

and there is a need for additional markers of prognosis to better account for variation among 

individuals (5, 6). Microscopic and imaging tools for extracting new, quantitative biomarkers 

during breast histopathology are, thus, also desirable.  

 Although a number of new quantitative imaging modalities for diagnostic and prognostic 

evaluations have been proposed, a key challenge remains compatibility with the existing workflow 

for easier clinical translation. Quantitative methods that minimally affect the clinical pipeline 

already in place are expected to have a greater impact than those that require significant 

new infrastructure. 
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 During my graduate work I have approached these problems in modern breast 

histopathology by using quantitative phase imaging (QPI). QPI is a label-free microscopy 

technique where image contrast is generated by measuring the optical path-length difference 

(OPD) across the specimen. OPD refers to the product of the refractive index and thickness at a 

point in the field of view. Since this measurement relies on a physical property of tissue and is 

label-free, it provides an objective and potentially automatable basis for tissue assessment. We 

employ a QPI technique called Spatial Light Interference Microscopy (SLIM) for investigations 

carried out during this thesis research. 

The specific aims of my thesis research are: 

1. Label-free quantitative evaluation of breast biopsies using SLIM: In this work, we show by 

imaging a tissue microarray (TMA) that our QPI based method can separate benign and malignant 

cases by relying on tissue OPD based features. By employing image processing and statistical 

learning, we demonstrate a label-free quantitative diagnosis scheme that can provide an objective 

basis for tissue assessment. A quantitative method like this can also, potentially, be automated, 

reducing case-load for pathologists by automatically flagging problematic cases that require 

further investigation. 

2. Quantifying tumor adjacent collagen structure in breast tissue using SLIM: Recent 

evidence shows that the structure of tumor adjacent collagen fibers influences tumor progression. 

In particular, collagen fiber alignment and orientation can facilitate epithelial invasion to 

surrounding tissue (5). We demonstrate that SLIM can be used to detect this prognostic marker 

that in the past had been detected using Second Harmonic Generation Microscopy (SHGM). Our 
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SLIM based method improves on the SHGM based method in terms of throughput and the fact 

that cellular information can be obtained, in addition to collagen fiber structure, in a single image.   

3. Quantitative histopathology on stained tissue biopsies: The instruments and image analysis 

tools developed in Aims 1 and 2 are designed for unstained tissue biopsies. Since standard tissue 

histopathology inevitably requires staining, we aim to demonstrate that we can extend these tools 

to stained tissue biopsies. In this way, the standard diagnostic workflow will be minimally 

disrupted. In addition, from a single shot, both an OPD map and stained tissue bright field image 

will be obtainable for evaluation. We demonstrate that QPI images of stained tissue can be used to 

solve diagnostic and prognostic problems in breast tissue assessment, using quantitative markers. 
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CHAPTER 1: Introduction 

1.1 Background and Significance 

 According to the latest figures of the International Agency for Research on Cancer (IARC) 

– a part of the WHO – breast cancer is the most commonly diagnosed cancer among women in 

both the developed and the developing world (1). The American Cancer Society predicts that in 

2018 around 266,120 new cases of invasive breast cancer will be diagnosed among women in the 

United States (7). While mortality rates due to breast cancer within the US have been consistently 

falling over the years, rates of incidence have been on the rise (7). This rise in incidence means 

that an increasing number of follow-up patient investigations will be performed, increasing the 

case-load for pathology labs. Effective treatment strategies for breast cancer patients require timely 

diagnosis and prognosis of the disease. It has been reported that, in the US, the 5-year average 

survival rates for patients with invasive breast cancers increase from 90% to 99% when the disease 

is detected at a localized (non-metastatic) stage (8). In addition, for difficult and borderline cases 

there still exists disagreement between pathologists as to what the patient diagnosis should be (9, 

10). In this context, tools that improve on the standard histopathology method in terms of speed, 

sensitivity, specificity and timely diagnosis and treatment are vital for mitigating the burden of 

disease.  

 Standard histopathology of breast tissue involves microscopic examination of a stained 

tissue biopsy by a trained clinical pathologist. These biopsies are surgically obtained after the 

patient shows an abnormality during a screening procedure such as X-ray mammography. A 

number of tissue preparation steps occur between surgical extraction and pathologist evaluation. 

The tissue is dehydrated, fixed in formalin and embedded in paraffin. The resulting processed 

tissue is referred to as formalin fixed and paraffin embedded (FFPE) tissue (11). Next, thin sections 
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of tissue (4-5 μm) are prepared by serial sectioning of the tissue block using a microtome, in 

preparation for staining. Staining of tissue is a vital component of the processing since cells and 

tissues neither absorb nor scatter light significantly, leading to poor contrast under a conventional 

microscope, in the absence of staining. The most commonly used stain in a pathology lab is 

hematoxylin and eosin (H&E). The stain was first discovered in 1876 by Wissowzky and remains 

to this day the most commonly used contrast mechanism during histopathology (12). Hematoxylin 

stains the cell nuclei blue/purple whereas eosin stains proteins within tissue pink thus generating 

contrast for the cell cytoplasm as well as the extra-cellular matrix (13). After staining, the tissue 

section is examined under a microscope by a pathologist who looks for morphological 

abnormalities indicative of disease. If the presence of disease is suspected, a parallel section of 

tissue is stained with immunohistochemical (IHC) markers for converging to a final diagnosis. 

IHC staining has a higher specificity than H&E and can therefore be used to answer specific 

questions regarding tissue pathology (14). 

  This standard tissue assessment method has a number for shortcomings. First, the 

pathologist evaluation relies on qualitative information, which means that there can be inter-

observer variation during microscopic examination (9, 15). This is particularly challenging for 

borderline and difficult cases since, in the absence of quantification, agreement on the patient 

diagnosis is difficult to achieve. Second, the investigation is manual which leads to lower 

throughput that can potentially be achieved through automated or computer-aided analysis. 

Finally, the tissue preparation, especially stain intensity, can vary from lab to lab as well as from 

specimen to specimen (16-18). While trained pathologists are able to account for the resulting 

variations in image contrast, automated analysis through supervised learning schemes is made 

difficult in the absence of consistent image feature values (19). Even though a whole field, referred 
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to as “Digital Pathology”, has emerged out of the efforts to automate analysis of H&E stained 

tissue images, stain normalization is still an active area of research due to the lack of clear 

agreement on the best practices (20). 

 Another key challenge in breast pathology is tumor heterogeneity (21, 22). Breast tumors 

are more varied than other solid tumors resulting in large variations in responses to treatments 

between patients. For example, a number of breast cancer patients respond to hormonal therapies 

that target hormone receptors (HER2, estrogen and progesterone receptors) expressed by cells 

undergoing malignant transformation. However, for a molecular sub-type referred to as triple 

negative breast cancer, these therapies fail due to the absence of the hormone receptors in the cells 

being targeted (23). For these and other cases, pathologists rely on prognostic markers that are 

indicative of tumor aggressiveness and disease subtype. While effective in determining disease 

aggressiveness for a significant number of patients, due to disease heterogeneity, the current set of 

markers used for breast cancer prognosis (such as histological grade, hormone receptor status, Ki-

67 expression) are not able to determine disease course for all patients (5, 24). There is a need for 

expanding on the current set of markers in order to better predict outcomes and to tailor therapies 

to the needs of individuals based on their prognostication (6). As ever, these markers need to be 

quantitative and the assessment rapid and reproducible in order to be effectively used in the clinic 

(24). New histological markers can potentially play an important role in this regard and represent 

an opportunity. 

 Novel quantitative, label-free microscopy techniques can potentially address these 

limitations of/opportunities in standard histopathology of breast tissue. Relying on intrinsic 

contrast that is related to physical property of the tissue, these methods remove subjectivity from 

tissue assessment by relying on quantitative information (3). In addition, inconsistency in image 
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pixel values due to variations stain intensity, choice of white balancing method and illumination 

source variations are also minimized in label-free microscopy. This makes it easier to design and 

train machine learning classifiers that are able to rely on features that are consistent between 

training and deployment (25, 26). Automated image analysis through such classifiers can, 

therefore, also potentially improve the throughput of investigation (26). In addition, since these 

methods rely on new and different contrast mechanisms to those used in conventional microscopy, 

they can aid in the development of new image based markers (as yet unknown in traditional 

histopathology) for expanding on the current set of prognostic markers (5). A key design challenge 

in these new imaging modalities is compatibility with the current clinical pipeline for breast 

histopathology. Clinical translation will be difficult for modalities that require significant changes 

in the current method in terms of sample preparation and additional instrumentation. 

 QPI is a quantitative microscopy modality which generates contrast by mapping the optical 

path-length variation across the tissue specimen (27). In most cases QPI systems are built as add-

on modules to commercial microscopes and require minimal modifications in the current clinical 

diagnostic pipeline with regards to tissue processing and optical instrumentation. These systems 

also provide diffraction limited resolution and sub-nanometer sensitivity to tissue optical path-

length changes (27). Although a number of other imaging modalities have been developed and 

applied for quantitative histopathology, QPI has advantages over them in terms of resolution, speed 

and compatibility with the standard workflow in a pathology lab (see Section 2.5 for a detailed 

comparison of the different quantitative microscopy techniques used for histopathology).  

 In this thesis, I have attempted to use QPI to address the above-mentioned 

challenges/opportunities in histopathology of the breast. Making developments in both 
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instrumentation and computational tools, I have investigated a number of questions related to 

breast cancer diagnosis and prognosis as outlined below. 

1.2 Thesis Overview 

 This thesis is organized as follows. In Chapter 2 I provide an introduction to QPI, touching 

on the operating principle and the detection method. I also provide a comparison of QPI with other 

quantitative imaging techniques being used for tissue evaluation and review previous applications 

of QPI in clinical pathology. In Chapter 3, I discuss the application of QPI for qualitative 

evaluation of breast tissue. This is followed by Chapter 4 where this evaluation is conducted using 

quantitative markers and a supervised learning scheme for detecting malignancy in breast tissue  

images is introduced. In Chapter 5 I discuss a proof-of-principle study where we demonstrated that 

QPI can be used for detecting orientation of collagen fibers in breast tissue. The tools we developed 

in this work have applications in developing imaging markers for breast cancer prognosis. In 

Chapter 6, the imaging of stained tissue using QPI is introduced and it is demonstrated that the 

diagnostic and prognostic markers (shown to be effective in the earlier chapters on unstained 

tissue) are extendable to QPI maps of stained tissue. I end my thesis with Chapter 7 which explores 

the future questions that can be addressed in the field of breast histopathology using QPI, 

employing the instruments and algorithms developed in this thesis work. 
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Chapter 2: Quantitative Phase Imaging (QPI) 

 

2.1 Introduction 

Transparent specimen such as cells and tissues do not absorb or scatter light significantly 

and, thus, are difficult to resolve using intensity based detectors (such as CCD cameras, 

photodetectors, the human eye etc.)(28). One option for imaging such specimen is to generate 

exogenous contrast by using dyes and fluorescent molecules. However, not only do exogenous 

agents result in variability from sample to sample but fluorescence can lead to photo-toxicity and 

photo-bleaching (29). In 1942, Nobel laureate Fritz Zernike developed the phase contrast 

microscope, which generated intrinsic contrast in images by leveraging the phase of the 

electromagnetic field (30). While widely adopted by microscopists world-wide for label-free 

imaging, phase contrast images only provide qualitative information. The field of QPI was born 

out of attempts to quantitate the contrast generating mechanism in phase contrast microscopy. 

The interaction of light with transparent specimen (such as cells and tissues) involves a 

change in the phase of the electromagnetic field with respect to some reference. This phase shift 

is proportional to the integral, along the light propagation direction, of the difference between the 

refractive index of the specimen and that of the surrounding medium. Denoting the light 

propagation direction as the 𝑧-axis, the phase map ( , )x y  is given by 

  

 ( )
( )

( )
,

0

2
,   [ , ,   ]  

h x y

s mx y n x y z n dz





= −   (2.1) 
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where ( ), ,sn x y z  is the refractive index of the specimen as function of space, mn  is the refractive 

index of the surrounding medium,   is the wavelength of the illumination source and the 

integration limits span the thickness of the specimen ( ),h x y  (27, 31). 

 Over the years, a number of studies have shown that the refractive index of a cell, ( ), ,celln x y  

has a strong dependence on its total protein concentration ( )  ,x y . This relationship is given by 

 ( ) ( ),   ,   cell soln x y n x y= +   (2.2) 

where soln  is the refractive index of the cytoplasmic solvent and proportionality constant   is 

called the refractive increment (31-34). Since for most applications the difference between the 

refractive index of the cytoplasmic solvent and the cell immersion media is negligible ( 0 soln n ) it 

can be shown that the cell dry mass density ( ),x y   is proptional to the phase map ( ),x y  as (31, 

32, 35) 

 ( ) ( ),     , .  
2

x y x y





 =   (2.3) 

 These remarkable results have motivated several studies on cell-cycle dependent growth, 

dynamics of intracellular transport as well as chemical composition of cells though measurement 

of ( ),x y  and ( ),x y  using QPI (31, 35-39). The work presented in this chapter is based on the 

work in Ref. (31). 

2.2 Detection: Off-axis and phase shifting interferometry 

 Bright field microscopes, generally used in pathology, are only able to measure the 

intensity of the electric field. This is because all detectors (CCD, CMOS, retina) produce signals 

that are proportional to the time averaged magnitude square of the electric field and, as a result, 

fail to capture the phase information (28, 40, 41). QPI systems on the other hand generally exploit 
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spatial or temporal interferometry that can then be used to obtain both the magnitude and phase 

information of the image field.  

 Systems employing spatial interferometry are known as off-axis interferometers because 

they involve interference between the sample wave ( , )sU x y  and a plane wave reference rU  that is 

incident at an angle     to the sample wave propagation direction. This process is illustrated in Fig. 

2.1 (a). The two waves interfere at the detector plane and the resulting intensity distribution or 

interferogram is given by 

( ) ( ) ( ) ( )(
2 2

, ,   2 , cos[   ,s r r sI x y U x y U U U x y qx x y= + + +                (2.4) 

where 
2

sin  q





=  is the modulation frequency. ( ),x y  can be extracted from the acquired 

interferogram in two different ways depending on the specifics of the optical setup. In the first 

method, ( ),I x y  is measured at a conjugate image plane so that ( ),sU x y   represents the in-focus 

complex image field. In such a case, ( ),x y  can be obtained from the interferogram by first 

isolating the cross term in Eq. (2.4) using band-pass filtering and then taking the Hilbert transform 

of the result, as detailed in ref. (42). In a variant of this method, the camera is placed at a distance 

d  from the conjugate image plane in which case   ( , )sU x y  is the out-of-focus image field. In this 

case the complex image field associated with the object is obtained by first extracting ( , )sU x y  

from ( ),I x y  through the same process as in the first method and then obtaining the focused image 

field by numerically propagating ( , )sU x y  through a distance d by convolving with a Fresnel 

wavelet (43-45). ( ),x y  can then be obtained as the argument of the in-focus image. 
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 Systems employing temporal interferometry are referred to as phase-shifting 

interferometers. In these systems, the phase difference between the sample wave  ( , )sU x y  and the 

reference wave ( , )rU x y  is changed or shifted. Various devices can be used for this purpose [mobile 

mirror, liquid crystal phase modulator (LCPM), acousto-optic modulator etc.]. This interaction is 

illustrated in Fig. 2.1 (b). Denoting this tunable phase shift by  , the resulting interferogram at the 

detector plane is given by 

 2 2( , ; ) | ( , ) | | | 2 | ( , ) || | [ ( , ) ].s r s rI x y U x y U U x y U cos x y  = + + −   (2.5) 

Unambiguous determination of ( , ),x y  using phase-shifting interferometry, requires four different 

modulations (four frames). A common choice is to use 0, , ,
2 2

 
 

−
=  to acquire these four frames 

which can then be used to determine ( ),x y  as  

 ( )
( ) ( )

1

, ;     , ;
2 2

,  tan
, ;0   , ;

I x y I x y

x y
I x y I x y

 




−

    
− −    

    =
− 

 
 

. (2.6) 
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Figure 2.1 Principles of interferometric detection in QPI: (a) Off-axis interferometry (b) Phase-

shifting interferometry. LCPM: Liquid Crystal Phase Modulator. 

 

 Both off-axis and phase-shifting interferometry have their respective advantages and 

disadvantages that influence their adoption in various applications. Off-axis systems allow single-

shot measurements, therefore, improving the achievable acquisition rate over phase-shifting 

systems. However, these systems have coherence and spatial sampling requirements that result in 

smaller fields-of-view and lower resolutions than comparable phase-shifting interferometers (46, 

47). For the investigations discussed in this thesis, a phase shifting interferometer called SLIM has 

been used. SLIM combines the space-bandwidth advantages of phase-shifting interferometers with 

other merits, discussed below. 
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2.3 Spatial Light Interference Microscopy (SLIM) 

 Among phase-shifting interferometers, SLIM has had a number of applications for label-

free quantitative histopathology (see Section 2.4). Figure 2.2 illustrates the SLIM optical setup 

which has been discussed in detail in previous publications (48, 49). The setup comprises of a 

module (CellVista SLIM Pro, Phi Optics, Inc.) coupled to the output port of a commercial phase 

contrast microscope (in this thesis research Carl Zeiss, Axio Observer Z1 was used). This 

compatibility with existing microscopes promises to reduce barriers to clinical adoption since 

optical microscopes are commonly available in pathology labs. In the SLIM module, the 

conjugate image plane outside the microscope is relayed onto a sCMOS camera (Andor, Zyla) 

using a 4f system comprising lenses L1 and L2. At the Fourier plane of L1, a spatial light modulator 

(SLM, Boulder Nonlinear Systems) is used to modulate the phase difference between the scattered 

and unscattered components of light in increments of π/2. Four different modulations are applied 

[Fig. 2.2 (b)] and the resulting phase image is reconstructed as discussed in ref. (48). Using a 

software platform developed in-house, the SLIM module has been upgraded with full-slide 

scanning capabilities (50, 51). The scanning speed of the SLIM imaging system can be assessed 

by comparing it with that of a commercial slide scanner. For example, the Zeiss Axio Scan.Z1 

slide scanner is able to scan a 15x15 mm2 area, at 0.22 μm/pixel sampling rate, in 240 s. The 

SLIM system scans the same area at 0.125 μm/pixel in 1638 s. Scanning at the same resolution 

as the Zeiss instrument would improve the speed of the SLIM system by a factor of (0.22/0.125)2 

= 3.1, to 528s (51). Thus, our SLIM scanner is only a factor of 2.2 slower than the commercial 

Zeiss scanner, which is remarkable, especially considering that we record 4 intensity images for 

each SLIM image.  
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 Since SLIM relies on the same microscope optics as standard histopathology, the 

transverse resolution of the two systems is the same. Being a common-path, white-light based 

system (27), SLIM offers a spatial sensitivity of 0.28 nm and temporal sensitivity of 0.029 nm in 

terms of OPD (48). For histopathology, this implies that subtle (nanometer scale) changes in tissue 

OPD are detectable, which are correlated with on-set of malignancy and prognosis, as 

demonstrated in later chapters. 

 

 

Figure 2.2 (a) The SLIM module added on to a commercial phase contrast microscope. (b) Four 

frames are acquired to compute one phase image by modulating the phase difference between 

scattered and incident light using a spatial light modulator (SLM). (c) An image of the whole 

slide scanned using SLIM. (d) Example of a TMA core SLIM image. (e) Bright field image of 

the same core after H&E staining. BS, beam splitter; L1-L2, lenses; IP, image plane. 
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2.4 Previous work on quantitative histopathology using QPI 

 Quantitative phase images of tissue biopsies report on the OPD across the tissue specimen 

(Eq. 2.1). OPD of tissue describes its nanoscale architecture which can be expected to vary between 

healthy and diseased tissue as well as between different disease types. This has motivated several 

histopathological investigations of different organs using QPI which I briefly review here.  

 A majority of these studies have focused on diagnosis i.e separating diseased and normal 

tissue. In (52) Wang et al. showed that the median and mode of SLIM phase images vary 

significantly between benign and malignant prostate tissue. They also reported that phase images 

are able to generate contrast for calcium oxalate micro-calcifications in breast tissue. These 

calcifications are important for a pathologist to detect from a clinical point of view but are not 

visible on standard H&E stained bright-field images. In (53), an off-axis QPI technique called 

Hilbert Phase Microscopy (HPM) was used to extract phase images of healthy and diseased mouse 

liver tissue. Using refractive index maps extracted from these phase images, by assuming constant 

known tissue thickness (see Eq. 2.1), the authors showed that the spatial standard deviation of 

these maps was significantly different between normal liver tissue and liver tissue with lysosomal 

storage disease. Refractive index maps, extracted using a QPI technique called Spatial Low-

coherence Quantitative Phase Microscopy (SL-QPM), were also used by the authors of (54) to 

show that malignant breast epithelial cells have on average higher refractive index than benign 

breast epithelial cells. Takabayashi et al. showed, once again using SLIM, that normal breast tissue 

has a smaller ‘disorder strength’ than malignant breast tissue (55). This parameter was once again 

measured using QPI-derived refractive index maps and is inversely related to the strength of tissue 

scattering (55).  QPI images have also been used for diagnosing colorectal cancer. In (50), the 
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authors used the median phase value of each gland within colorectal tissue, imaged using SLIM, 

to separate benign, dysplastic and malignant cases.  

 While (55) and (54) have characterized differences in refractive index and scattering 

between benign and malignant breast tissue, a formal model for automated, supervised 

classification of diseased and non-diseased cases, using QPI, has as yet not been reported and is 

one of the aims of this thesis research.  

 On the prognosis front, Sridharan et al. used SLIM images of prostate tissue biopsies to 

investigate how the scattering properties of tissue vary between patients having recurrence and 

non-recurrence after prostatectomy (56). Their analysis showed that scattering anisotropy, 

measured from phase maps using the scattering phase theorem (57), was higher in non-recurrent 

cases compared to recurrent cases. Nguyen et al. used SLIM phase maps of prostate tissue biopsies 

to come up with a model for classifying tumors according to their Gleason grade. They used 

supervised learning to automate the process of tumor scoring (25). In a study focused on 

determining the future risk of developing colorectal cancer, the authors in (58) generated depth-

resolved OPD maps of tissue biopsies using SL-QPM. Using statistical parameters measured from 

these maps, they separated patients at high risk of developing colorectal cancer from those at low 

risk. To our knowledge, little to no work has been done on breast cancer prognosis using QPI, 

which is one of the aims of this thesis research. 

2.5 Competing label-free quantitative microscopy techniques 

  A number of other label-free contrast generating mechanisms have been proposed in the 

past for quantitative histopathology.  The three mostly widely used ones are: Fourier Transform 

Infra-Red Spectroscopic (FTIR) imaging, Raman Spectroscopic (RS) imaging and SHGM. In this 
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section, we briefly compare and contrast these techniques with QPI, highlighting their relative 

merits and demerits. 

 FTIR relies on the difference in absorption spectra across the tissue specimen to generate 

contrast. The absorption spectra vary for different tissue components due to their different 

chemical compositions and, thus, different molecular vibrational modes (3, 59). In this way FITR 

imaging provides chemical specificity and multidimensional data and has been used for probing 

both diagnostic and prognostic questions related to prostate (3, 60), colon (61, 62) and breast 

cancer (63, 64). However, compared to conventional light microscopy FTIR has lower resolution 

and throughput. In addition, it faces challenges in terms of compatibility with the current 

diagnostic pipeline: both sample preparation and instrument optics vary significantly from those 

used in conventional microscopy. A separate dedicated scanner would need to be deployed if FTIR 

based disease markers are needed as a complement to traditional histopathology. 

 RS imaging measures the frequency shift caused by inelastic light scattering due to  unique 

molecular vibrational and rotational modes within different tissue components (65). Like FTIR it 

has the advantage of providing multidimensional spectral information with chemical specificity. 

Quantitative histopathology using RS imaging has been used for many studies including breast 

(66, 67) and bladder cancer diagnosis (68) as well as investigation of esophageal dysplasia (69). 

However, like FITR, RS imaging is slower than standard bright-field imaging and requires a 

specialized tissue scanner as well as different specimen preparation. 

 SHGM generates contrast in the tissue image by measuring light emitted by non-linearly 

active, non-centrosymmetric materials such as collagen. In these materials, two lower energy 

photons are up-converted to a single photon at twice the incident light frequency (70). In this way 

SHGM provides specificity to collagen in tissue, generating high contrast images that map out the 
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extracellular matrix organization. It has been used for tumor microenvironment investigations of 

breast (5, 71), pancreatic (72) and ovarian cancers (73). In addition to its specificity to collagen, 

SHGM also has the advantage that a standard H&E stained histology can be used as the sample. 

However, SHGM has lower throughput than conventional bright-field microscopy and would, 

once again, require a separate scanner/instrument if it were to be deployed as a histopathology tool 

in the clinic. In addition, since contrast in SHGM is generated only in non-cellular structures, the 

tumor edge cannot be discerned from the SHGM image and other modalities (such as bright-field 

H&E images) need to be combined with it in order to answer clinical questions.  

 In contrast with these methodologies, QPI is not as specific since contrast is generated in 

all structures that have a refractive index difference from their surroundings (27). However, QPI 

provides similar resolution and speed as standard histopathology and, especially in the case of 

SLIM, can be added-on as a functionality to microscopes already in existence in pathology labs. 

Thus far, the key barrier to clinical translation in QPI has been the need for an unstained tissue 

sample for histopathological analysis. This need poses additional sample preparation requirements 

in a clinic - if a pathologist needs QPI markers in addition to H&E based markers, they need to 

prepare a separate sample for QPI. It is, therefore, one of the aims of this thesis to demonstrate that 

QPI can also be performed on standard H&E stained histology to provide both phase maps and 

bright-field images in a single scan (Chapter 6). 
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CHAPTER 3: Breast cancer diagnosis using QPI – Qualitative Assessment 

3.1 Abstract 

 As discussed earlier, the standard practice in histopathology of breast cancers is to examine 

an H&E stained tissue biopsy under a microscope to diagnose whether a lesion is benign or 

malignant. This determination is made based on a manual, qualitative inspection making it subject 

to investigator bias and resulting in low throughput. Hence, a quantitative, label-free and high 

throughput diagnosis method is highly desirable. We present in this chapter preliminary results 

showing the potential of QPI for breast cancer screening and help with differential diagnosis. We 

generated phase maps of unstained breast tissue biopsies using SLIM. As a first step towards 

quantitative diagnosis based on SLIM, we carried out a qualitative evaluation of our label-free 

images. These images were shown to two pathologists who classified each case as either benign 

or malignant. This diagnosis was then compared against the diagnosis of the two pathologists on 

corresponding H&E stained tissue images and the number of agreements were counted. The 

agreement between SLIM and H&E based diagnosis was 88% for the first pathologist and 87% 

for the second. Our results demonstrate the potential and promise of SLIM for quantitative, label-

free and high throughput diagnosis. 

 

 

 

 

 

 



18 

 

3.2 Motivation and overview  

 As described in Chapters 1 and 2, quantitative histopathology of the breast is key to 

improving patient health outcomes as it provides an objective and potentially automatable basis 

for diagnosing disease. Thus, a QPI based diagnosis method can potentially improve on the current 

gold-standard of microscopic examination of stained tissue in terms of objectivity and throughput 

and provide additional information for difficult cases. In this chapter we present preliminary results 

that show the potential of a SLIM based technique for diagnosis of breast cancers. Specifically, 

the resolution and contrast of SLIM phase images for diagnostic purposes were evaluated 

qualitatively by two board certified pathologists. As outlined in detail in the following sections, 

using the standard H&E staining based diagnosis protocol as a benchmark, the success of the 

pathologists in carrying out diagnosis on SLIM images was measured. Our results provide an 

indication of the signal to noise ratio available to us for subsequent quantitative analyses for 

carrying out diagnosis based on the relative phase values of various tissue components. The work 

presented in this chapter is based on the work published in ref. (51). 

3.3 Experimental procedures 

3.3.1 TMA 

 The samples consisted of a TMA of cores constructed from breast tissue biopsies of 400 

different patients. Each biopsy was formalin fixed and paraffin embedded before sectioning it into 

slices of 4 μm thickness each, using a microtome. Two parallel, adjacent sections were selected 

from each biopsy and one of these sections was stained using H&E, leaving the other one 

unstained. Cores were then constructed for both the stained and unstained tissue and these were 

mounted on separate slides after de-paraffinization, using xylene as the mounting medium. The 
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stained samples were imaged used a bright field microscope and their images served as a reference 

for evaluating diagnosis on the unstained samples using SLIM. The slides were obtained from our 

collaborating pathologist at the University of Illinois at Chicago (UIC) Dr. Andre Balla. The 

procedures used in this study for conducting experiments using human subjects were approved by 

the Institute Review Board (IRB) at the University of Illinois at Urbana Champaign (IRB Protocol 

Number 13900). 

3.3.2 Slide scanning and mosaicking 

 The TMA was imaged using our SLIM imaging system (Figure 2.2), equipped with a 

40x/0.75 NA phase contrast objective. A slide scanning software, developed in-house in Visual 

C++, was used to obtain the raw images for the entire microscope slide (scanning area approx.  20 

mm x 45 mm) at high throughput (approx. 2 hrs per slide).  

 The phase maps were extracted from the acquired intensity images using a MATLAB-

based code. A C++-based code was used for stitching the mosaic for the entire slide and 

segmenting out each individual core for subsequent processing and analysis. As shown in Figure 

3.1, our processing allows the visualization of the entire TMA from the slide scale to the sub-

cellular scale within each core. As illustrated in Figure 3.1 (c), our label-free SLIM images clearly 

delineate the epithelial stromal boundary allowing for assessment of tumor malignancy.  
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Figure 3.1 (a) The SLIM image of an entire TMA slide (20 mm x 45 mm) scanned and stitched 

using software developed in-house. (b) Label-free SLIM image of a single TMA core delineating 

the boundary between the tumor and its extracellular environment. (c) Magnified image of region 

indicated in (b) clearly showing tumor cell nuclei and collagen fibers, specific to epithelial and 

stromal regions. 

 

 

3.3.3 Pathologist training procedure 

  In order to assess the diagnostic capabilities of our SLIM imaging modality, we asked two 

board certified pathologists to evaluate our SLIM images. For this preliminary study, we selected 

109 cores for evaluation and stacks of both SLIM and corresponding H&E images for these cores 

were assembled in ImageJ. Since pathologists are generally trained to recognize morphological 

features in H&E stained tissue, we performed a training step before the actual test. In this training 

step, out of the total cohort of 109 cores, 10 benign and 10 malignant cores (classified as such by 

a third board certified pathologist a priori) were chosen and their SLIM and H&E images were 

shown side by side to each pathologist. By comparing the SLIM and H&E images for each core, 

the pathologists were able to learn how to interpret the tissue morphological details from SLIM 
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phase maps. The total training time for each pathologist ranged from 10 – 15 minutes, 

approximately.  

  Figure 3.2 compares and contrasts how different tissue components are resolved in SLIM 

and H&E stained tissue images. Due to the fact that our system uses phase contrast illumination, 

SLIM images inherit some of the halo artifact that is characteristic of phase contrast images. This 

effect is due to the fact that some of the high spatial frequency components pass through the low 

spatial frequency or D.C region (ring) in the Fourier plane [Fig. 2.2 (c)]. As a result, negative phase 

values are observed at sharp edges in the SLIM phase images. Since the study presented here is 

based on visual interpretation of SLIM images by pathologists, the halo artifact does not affect our 

results because, as illustrated in Figure 3.2, the tissue morphology is not obscured by the presence 

of the halo artifact. Typically, for quantitative studies based on measuring physical parameters, we 

use halo removal algorithms developed in house to recover halo free quantitative phase images 

(74, 75) 
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Figure 3.2 Comparison between H&E stained bright field microscopy (top row) and SLIM 

(bottom row) images in their respective abilities to resolve tissue morphology for (a) benign and 

(b) malignant cases. The H&E images were obtained from stained sections that were adjacent to 

the unstained sections used for SLIM imaging. Color bars are in radians. 

 

3.3.4 Pathologist diagnosis using SLIM 

 After the completion of the training step, at the testing stage, each pathologist was first 

shown the stack of SLIM images for all of the 109 cores chosen. The pathologist classified each 

core as either benign or malignant. The process was repeated for the stack of H&E images for the 

same 109 cores. Using each pathologist’s diagnosis on the H&E stained cores as the gold standard, 

the success of diagnosis using SLIM images was measured by counting the number of agreements 

between SLIM and H&E based diagnoses. The entire exercise is schematically depicted in Figure 

3.3.  

 

 



23 

 

Figure 3.3 Diagnosis using SLIM images by pathologists and comparison with H&E based 

diagnosis. (a) The training step was performed prior to the experiment. For 20 cores out of the 

cohort of 109 cores in total, both SLIM and H&E images were shown side by side to each 

pathologist, training the pathologist to interpret morphology from SLIM images by comparing 

features with corresponding H&E images. (b) For the entire 109 core cohort, each pathologist 

classified a core as either benign or malignant by looking at their SLIM images. The process was 

repeated for H&E images and number of agreements between the two diagnoses were counted 

for each pathologist. 

 

3.4 Results 

 The results of the core classification carried out by the two pathologists on both SLIM and 

H&E images are summarized in Figure 3.4. As shown in Figures 3.4 (c) and (d), the success rate 

of diagnosis on SLIM images (considering diagnosis on H&E as the gold standard) for pathologist 

1 was 88% and that for pathologist 2 was 87%. As shown Figures 3.4 (a) and (b), the agreement 

between the two pathologists when rating SLIM images stood at 83% whereas the same for H&E 

images was much higher at 98%. The lower agreement between the two pathologists on SLIM 

images is not surprising when one takes into account the fact that, as part of their professional 
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training, pathologists are trained to interpret images of H&E stained tissue for a number of years 

whereas, for this experiment, the training time for SLIM images was only a few minutes. We 

expect the agreement between the diagnoses of the two pathologists on SLIM images to increase 

significantly with longer training in interpreting SLIM images.  

Figure 3.4 Confusion matrices showing results of qualitative diagnosis carried out by two 

pathologists on both SLIM and H&E stained tissue images for 109 cores. (a) Pathologist 

agreement on SLIM images. (b) Pathologist agreement on H&E images. (c) and (d) Agreement 

between ratings on SLIM and H&E images for each pathologist. 

 

3.5 Summary and Conclusion 

 The preliminary results discussed in this chapter show the capability of our label-free 

imaging modality of resolving morphological features relevant for diagnosis of breast cancer. 

While this qualitative analysis is promising, the actual research aim in this thesis is to leverage the 

tissue physical properties extracted by SLIM for quantitative analysis. This is addressed in Chapter 

4, for which the results of chapter 3 provide motivation - all that remains is to come up with the 
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appropriate feature extraction and supervised learning method in order to detect quantitative 

markers of malignancy automatically. 
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CHAPTER 4: Breast cancer diagnosis using QPI – Quantitative Assessment 

 

4.1 Abstract 

 

 Building on the evidence shown in the last chapter that SLIM images resolve 

morphological markers of malignancy we present in this chapter a quantitative method for label-

free breast tissue evaluation using SLIM. We rely on scattering, geometric and texture-based 

features, extracted from OPD maps of breast tissue. We demonstrated our method by imaging a 

TMA consisting of 68 different subjects - 34 with malignant and 34 with benign tissues. Three-

fold cross validation results showed a sensitivity of 94% and specificity of 85% for detecting 

cancer. Our disease signatures represent intrinsic physical attributes of the sample, independent of 

staining quality, facilitating classification through machine learning packages since our images do 

not vary from scan to scan or instrument to instrument.  
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4.2 Motivation and Overview 

 To date, a majority of quantitative image analyses on breast tissue biopsies have relied on 

color images of stained tissue. Image classification in these cases has involved computing a wide 

range of histological features including geometric features (76, 77), texture-related features (78, 

79) and radiometric features (78) (80, 81) [see (19) for a review of methods]. However, the feature 

extraction process relies heavily on tissue staining which can vary from sample to sample and 

instrument to instrument, affecting the robustness of the classifier (82). We present in this chapter 

a label-free QPI based approach which makes classification through machine learning easier since 

the instrument does not require calibration for inconsistency in pixel values due to variations in 

staining, tissue changes caused by harsh solvents etc. These advantages of QPI have already been 

leveraged to develop supervised learning methods for classifying erythrocytes infected with 

Plasmodium falciparum (83) and non-activated lymphocytes (84).  

 We demonstrate the quantitative analysis capabilities of our tissue evaluation system by 

imaging a TMA comprising 68 different cases (34 benign and 34 malignant). For each epithelial 

region (ER) within a tissue core, we extracted scattering, geometric, and texture-related markers 

of tissue malignancy from the SLIM maps (see Section 4.3 Materials and Methods). A linear-

discriminant analysis (LDA) classifier was trained to separate benign cases from malignant cases 

and three-fold cross validation was performed to measure the classification accuracy of the learned 

model (85, 86). Using validation by the Receiver Operating Characteristic (ROC) curve analysis, 

our results revealed a sensitivity of 94% and specificity of 85%. Our results are the first 

demonstration, to our knowledge, of using OPD based tissue markers for detecting malignancy in 

breast tissue, label-free.  The work presented in this chapter is based on the work published in ref. 

(87). 
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4.3 Materials and Methods 

4.3.1 SLIM optical system 

 We used the SLIM imaging system for this study, the working principle of which was 

described earlier in Section 2.3. Throughout our experiments, a 40x/0.75 NA phase contrast 

objective was used for imaging. At this sampling rate (6.2 pixels/ m ), the typical time for 

imaging a single tissue core (1 mm2 area) was approximately 12 sec. 

4.3.2 TMA 

 The TMA used for our study was purchased from US Biomax Inc. (Serial # BR-1002) with 

diagnosis for each case provided by the manufacturer through examination by a board certified 

pathologist. The TMA was obtained with all human subject information de-identified. Neither the 

authors of this work nor their institutions were involved in the collection of tissue. The TMA 

consisted of cores 1 mm in diameter and a section thickness of 5 µm. Standard FFPE histological 

preparation was used for each tissue block before extraction of cores. A xylene based mounting 

medium was used during cover-slipping. 

 The TMA consisted of 36 cases of infiltrating ductal carcinoma (IDC), 36 cases of tumor 

adjacent normal tissue and 10 cases of normal breast tissue derived from autopsy procedures (one 

core per case). Three of the tumor adjacent normal cores were obtained from the IDC cohort. The 

TMA was designed to mix approximately equal numbers of histologically normal and 

histologically invasive carcinoma cases. The post-mortem interval for autopsy cases was less than 

6 hours and after assembly the TMA was inspected for quality control and diagnosis by the 

manufacturer through review by a board certified pathologist. For final analysis we selected 34 

cores diagnosed as malignant and 34 cores diagnosed as normal (within which 28 were tumor 

adjacent normal and 6 were normal). Each of these final cores were selected based on whether the 
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core was intact and whether any epithelial tissue was present in the core (cores containing only 

stromal tissue were excluded).  

 A SLIM image of the whole TMA slide is illustrated in Fig. 2.2 (c). Figs. 2.2 (d) and (e) 

show, respectively, the phase map and the H&E stained tissue bright field image (henceforth 

referred to as ‘H&E image’) of one core. For obtaining a mosaic of the TMA, we used a C++ based 

stitching code, developed in-house (50). After staining the same tissue slide using standard 

protocols (13), H&E images of the TMA were acquired using a bright-field microscope (Carl 

Zeiss, Axio Observer Z1) outfitted with a color camera (Carl Zeiss, Axiocam MRC). The H&E 

images were used for qualitative evaluation only, to assist with annotation of epithelial regions in 

tissue, discussed below.  

4.3.3 Annotation of epithelium in tissue images 

 Each gland or continuous ER within each core was manually annotated using the region of 

interest (ROI) tool of ImageJ to allow feature extraction for each ER. A consistent criterion for 

annotation was used where groups of epithelial cells bounded by stroma on all sides were 

considered a single ER. Other tissue components within epithelium (such as lumen etc.) were 

considered part of the ER if bounded on all sides by epithelial cells. ERs from cores in the cancer 

cohort were labelled as malignant while those from cores in the normal cohort were labelled as 

benign. 

4.3.4 Extraction of geometric and scattering features 

 Malignant transformation in breast tissue affects the size, shape and density of epithelial 

cells as well as the shape and organization of epithelial tissue. As a result, both the geometry and 

scattering properties of an ER (tumor) are affected. We used ER perimeter curvature C , as well 

as the mean scattering length sl  as part of the feature set used for separating benign and malignant 
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tissue. The parameter extraction process is illustrated in Fig. 4.1 and a detailed description for each 

is provided below. 

 The extrinsic curvature C  of a two-dimensional plane curve ( , )x y , that is parametrized 

by Cartesian coordinates ( )x s  and ( )y s  with parameter s , is given by the expression (88) 
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where the 'x , 'y  and ''x , ''y  refer to the first and second derivatives in s  , respectively. In the 

above parametrization, s refers to each pixel comprising the curve ( , )x y , having coordinates ( )x s  

and ( )y s . This curvature can be interpreted as the magnitude of the rate of change of a vector 

tangent to ( , )x y . We computed C  for the perimeter ( , )x y  of each annotated ER by using an 

open source MATLAB code (89). The code approximates ( , )x y  as a polygon before computing 

C  for each point defining the ER perimeter, as described in Eq. (4.1). To speed up computation, 

the image of each core was first down-sampled from the raw image size of 8000 x 8000 to 2048 x 

2048 pixels. The sampling rate in the down-sampled image was 1.59 pixels/ m  and a bi-cubic 

interpolation technique was used for down-sampling. The perimeter ( , )x y was then further down-

sampled by a factor 20 (every 20th pixel was analyzed) before computing ( )C s  in order to remove 

any pixel level errors due to manual annotation. The median ER curvature C  was then used as a 

feature for separating benign and malignant cases. Figs. 4.1 (c) and (d) illustrate C  for 

representative benign and malignant ERs.  

 The scattering mean free path sl , is a bulk scattering parameter that defines the length scale 

over which a single scattering event occurs on average. Assuming that the tissue slice captures the 
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refractive index spatial fluctuation statistics, i.e., assuming statistical homogeneity, sl  can be 

computed through the scattering-phase theorem using the expression (57) 

 
var[ ( , )]

s

L
l

x y
= ,  (4.2) 

where ( , )x y  is the SLIM phase image, L  is the tissue section thickness and the operator  var .  

computes the spatial variance over a region. The sl  parameter has been used in the past for 

discriminating between benign and malignant prostate tissue (52). We first computed the image 

( , )sl x y  from the phase image ( , )x y  (8000 x 8000 pixels) using a variance filter kernel size of 149 

x 149 pixels, which equals the approximate diameter of 3 epithelial cells. The feature sl  was 

then computed by calculating the median of ( , )sl x y  over the ER area. This computation is 

illustrated in Figs. 4.1 (e) and (f). 
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Figure 4.1 Computing the geometric feature C  and scattering feature sl over each annotated 

ER. (a) and (b) H&E images of benign and malignant ERs, respectively. (c) and (d) SLIM 

images of the same benign and malignant ERs, respectively, illustrating ER curvature C . The 

median over ER C is used as the geometric feature for classification. (e) and (f) ( , )sl x y for 

benign and malignant ERs, respectively. The median over ER sl is used as the scattering 

feature for classification. 

 

4.3.5 Extraction of texture-related features 

 Benign and malignant epithelial tissues differ not only in cell morphology but also in the 

organization of their components, leading to different textures. Texture-related features have been 

used in the past for solving different classification problems in histopathology of cancers (19, 25). 

Our feature extraction follows the work done by Varma et al. (90) for classifying different 

materials based on their texture. The approach is illustrated in Fig. 4.2. Each TMA core phase 

image was first down sampled to 2048 x 2048 pixels from 8000 x 8000 pixels [Fig. 4.2 (a)]. A bi-

cubic interpolation was used for down-sampling and the sampling rate in the down-sampled image 

was 1.59 pixels/ m . The down-sampled core image was then filtered through a convolution with 
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the Leung-Malik (LM) filter bank [Fig. 4.2 (b)]. This filter bank consists of gradient filters (both 

odd and even) at different orientations and spatial scales (91) . In total, 58 different filters were 

used, generating a 58-dimensional response vector for each pixel in the core phase image [Fig. 4.2 

(c)]. The response vectors from ERs within each core were then randomly sampled (10000 vectors 

per core) to generate a smaller dataset for further processing. K-means clustering was then 

performed on the response vectors (number of clusters, K = 50) sampled from all cores within each 

training set (see Results and Discussion) and the computed cluster centroids were referred to as 

‘textons’ (90, 91).  K = 50 was chosen iteratively by repeatedly measuring the cross-validation 

AUC (see Results and Discussion, Section 4.4) and determining the number of clusters required 

to maximize it (to account for both overfitting and separation accuracy). Since each pixel in each 

core belongs to a texton, for each pixel the histogram of textons was generated for its vicinity 

(window size 60 x 60 pixels) and was used to characterize the local texture in that neighborhood. 

This way, a 50 dimensional feature vector T  was generated to characterize texture in a pixel’s 

neighborhood. An open source MATLAB code was used for generating the LM filter bank for this 

work (92).  
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Figure 4.2 Algorithm for computing the texture in a pixel’s neighborhood. (a)-(c) Generating the 

response of each pixel to an LM filter bank. (d) K-means clustering of response vectors, 

generated from all cores in the training set, in order to find 50 cluster centroids or textons. (e) 

Histogram of textons, within a pixel’s neighborhood, comprise the texture-related feature vector 

T for each pixel. 

 

 

4.3.6 Classifier training and validation 

 Since our work involves classifying each tumor within a tissue core as benign or malignant, 

a feature vector for each ER was next generated by concatenating geometric, scattering and 

texture-related features. This procedure is illustrated in Fig. 4.3. After pixel-wise computation of 

ER curvature C , scattering length sl  and texture vector T , the median of each feature was 

computed over each ER in a core and a combined 52 dimension feature vector was generated for 

training. For each ER, this feature vector was then used as a predictor for training an LDA classifier 

[Fig. 4.3 (a)]. Class labels, either benign or malignant, were used as the ground-truth for each ER 

during the training process. All ERs within cores deemed cancerous by the pathologist were 

labelled malignant and all ERs within cores deemed normal were labelled benign. 
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 The feature extraction for validation purposes, illustrated in Fig. 4.3 (b), followed a nearly 

identical procedure to that used during training. The only difference was that, instead of finding 

new textons (cluster centroids) for validation data, the texture feature vector T was computed by 

using the same textons as determined during training. As in training, a 52 dimensional feature 

vector was input to the LDA classifier which then used the model learned during training to 

generate a likelihood score for an ER being benign or malignant. Finally, the mean of the likelihood 

scores of all ERs within a core was computed and used as the likelihood score of a core being 

benign or malignant. These scores were then used to generate an ROC curve to select an operating 

point for separating benign and malignant cases (see Results and Discussion). For an annotated 

test core the total time required by our algorithm to generate a core likelihood score was 

approximately 2 minutes. This is in the absence of any parallelization of the computation through 

graphics processing unit (GPU) implementation which can significantly boost the computational 

throughput.  
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Figure 4.3 (a) Training and (b) Validation procedure for classifying ERs as benign or malignant. 

 

 

4.4 Results and Discussion 

 

 The classification results of our analysis are summarized in Fig. 4.4. In order to  evaluate 

the accuracy of our method, we performed three-fold cross-validation (93) as illustrated in Fig. 4.4 

(a). The total number of cases were divided into three (nearly) equal groups. In each trial, two 

groups were used for training while the remaining one was used for validation. Thus, three 

validation trials were performed, each time selecting a different validation/training set 

combination.  

 Figure 4.4 (b) illustrates the separation between benign and malignant ER feature vectors 

in one training set. In order to illustrate the data separation in 3 dimensions, we use principal 

component analysis (PCA) and represent the 50-dimensional feature vector T  through its first 

principal component PC1 T . The training space shows that scattering feature sl  has on average 

higher values for malignant ERs than for benign ERs. This finding is compatible with typical ER 

morphology in breast tissue since benign ERs are well differentiated, consisting of a number of 
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different structures including epithelial cells, lumen and myoepithelial cells (94). This 

heterogeneity of structure results in short mean scattering lengths as explained by a large variance 

in Eq. (4.2). Malignant ERs on the other hand consist of a monoclonal proliferation of cells, 

sometimes even showing sheets of poorly differentiated epithelial cells, resulting in smaller 

variance and larger sl  values (94).  These phenomena can also be observed in the examples given 

in Figs. 4.1 (e) and (f). In previous investigations on prostate cancer, it was shown that sl  has a 

lower value in malignant tissue than in benign tissue (52). That analysis, however, was carried out 

on larger areas of tissue where cellular organization can be different from the epithelial only 

regions we are studying in this work (52).  

 The median ER curvature C , on the other hand, generally has higher values for benign 

ERs than for malignant ERs. This is a result of the fact that the edge of a benign ER is constrained 

to follow a round or elliptical shape due to tubule formation [Figs. 4.1 (a) and (c)] (94). When 

malignant transformation occurs, this constraint is broken and the ER edge is more irregular. At 

the spatial scale of investigation we have used here (approx. 13 m ), the perimeter of the malignant 

ER is less rapidly varying, on average, than that of a benign ER. This geometric feature is similar 

to the previous measurement of the ER perimeter fractal dimension that has been used for 

histopathology (19, 76).  

 Fig. 4.4 (c) shows the separation between benign and malignant ERs in the validation 

feature space, where, qualitatively, the same separation trend is seen as in training. We show the 

results of only one of the three validation trials that were carried out. As described in Materials 

and Methods, the ER likelihood scores, generated by the classifier during validation, were 

averaged over each ER in order to obtain core-wise or case-wise scores.  The standard deviation 

of ER likelihood scores, within each core, had a mean value of 0.18, a median value of 0.19 and a 
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maximum value of 0.41 for the benign dataset (i.e across 34 cores). The same for the malignant 

dataset (again across 34 cores) were 0.17, 0.17 and 0.37, respectively. This indicates that the 

malignant cores consisted primarily (if not entirely) of malignant ERs since the variance of ER 

likelihood scores over them was similar to that over benign cores, which consisted entirely of 

benign ERs. In addition, while we treated all ERs within cancerous cores as malignant during 

training, removing any benign tissue from malignant cores, during classifier training, is likely to 

improve our accuracy rather than worsen it. 

 The core-wise likelihood scores from the 3 trials were then pooled together to generate the 

ROC curve illustrated in Figure 4.4 (d) (95). Our results indicate an area under the curve (AUC) 

of 0.91. The optimum operating point for classification was determined by using the standard 

method of assigning equal weight to the cost of misclassifying positives and the cost of 

misclassifying negatives (96). This resulted in a sensitivity of 0.94 and specificity of 0.85 for the 

three-fold cross validation. When the same analysis was repeated by using the median rather than 

the mean of the ER scores over each core (to get a case-wise score), it resulted in an AUC of 0.91 

and sensitivity and specificity of 0.94 and 0.82, respectively. While we use the standard method 

for determining the operating point here (which assigns equal cost to false negatives and false 

positives) in principle any operating point along the ROC curve can be chosen depending on the 

application (e.g 0.97 sensitivity and 0.77 specificity). Having said that, the higher sensitivity of 

0.94 is useful since it results in a smaller number of false negatives than false positives. Minimizing 

false negatives is more important than minimizing false positives since the latter only result in 

further investigations of the patient whereas the former constitute a missed diagnosis. A sensitive 

method is also useful in situations where a small biopsy specimen is available and detection of 

small amounts of malignant tissue visually is a challenge for the pathologist.  
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 Our results are significant because they are the first illustration of tissue OPD derived 

features being used to detect intrinsic markers of malignancy in breast tissue, using supervised 

learning. While previous works employing image analysis and supervised learning for detecting 

cancerous regions in H&E-stained tissue images have demonstrated good classifications AUCs 

(greater than 0.90) (19, 76, 97, 98), accounting for stain variation through normalization remains 

a challenge (82) due to a lack of universal agreement on the correct normalization method (19). 

Our label-free results, thus, eliminate an important factor affecting consistency of results between 

different samples and instruments whilst maintaining high sensitivity and specificity.    
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Figure 4.4 (a) Three-fold cross-validation procedure for evaluating classification accuracy. (b) 

Separation of benign and malignant ER feature vectors during training in 1 of 3 validation trials. 

(c) Separation of benign and malignant ER feature vectors during validation in 1 of 3 validation 

trials. (d) ROC curve for the 3 validation trials resulting in a sensitivity of 0.94 and specificity of 

0.85 at the optimum operating point. 

 

 

4.5 Summary and Conclusions 

 In summary, we presented in this chapter a new method for quantitative evaluation of tissue 

biopsies obtained from patients under investigation for breast cancer. Since our method relies on 

measurement of OPD maps, an intrinsic property of tissue, the basis for classification is objective 

and not subject to inter-observer variation. In the past much of quantitative histopathology has 

relied on analysis of stained tissue. However, stain variability continues to remain a grand 

challenge in applying computer algorithms across multiple H&E stained specimens. This fact is 
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well documented in the literature, as follows. In ref. (99), it is stated that: “On the technical side, 

one of the main challenges in the computational interpretation of digital slide images has to do 

with color variations in the tissue induced by differences in slide preparation, staining, and even 

whole slide scanners. Clearly decision support algorithms that aim to work on digital pathology 

images will have to contend with and be resilient to these variations.” In ref. (20) the authors state  

that “One of the major difficulties in breast cancer histopathology image analysis, particularly of 

H&E stained sections, is appearance variability.” As a final example, ref. (100) states “It is clear 

that an integral part of digital pathology that has yet to be resolved is colour standardization; in 

order to do so, further work is needed focusing upon fine-tuning colour calibration methods in 

relation to the effect on diagnosis.”  

Although OPD depends on tissue slice thickness which can vary slightly from section to 

section, previous studies on colorectal and prostate cancer, using SLIM, have indicated that 

variations in OPD due to cutting errors are insignificant (50, 101). These studies looked at the 

variation of median phase values and anisotropy in scattering between tissue slices having the 

same nominal thickness and reported insignificant differences. Despite this preliminary evidence, 

future studies where variation in our feature set is explicitly tested against tissue slice thickness 

variation are required. While in this work we have performed manual segmentation of epithelium, 

the automation of the entire process (including segmentation) is feasible and subject to future 

efforts.   

 While our cross-validation results show promising sensitivity and specificity, a number of 

further studies are proposed before clinical adoption of our method. First, our analysis needs to be 

further tested with separate training and testing tests, the latter being obtained from an independent 

laboratory and remaining unused during model development. Second, our feature set needs to be 
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applied to more clinically difficult cases since making frank benign versus frank malignant 

diagnoses is not currently a serious challenge for pathologists. However, our results demonstrate 

an important and necessary first step and we propose to apply our feature set, in future studies, to 

more challenging cases such as stratification of benign lesions as well as distinguishing ductal 

carcinoma in situ (DCIS) from benign atypical hyperplasia (BAH) (102, 103). Third, while we 

have applied our diagnosis method to cases of IDC, the most widely prevalent form of breast 

cancer, the applicability of the model to other histological sub-types (such as infiltrating lobular 

carcinoma) also needs to be explored. 

 While other label-free diagnosis methods have been proposed for these types of 

investigations, they affect the standard diagnostic pipeline in terms of either speed, resolution or 

compatibility with established workflow. SLIM, on the other hand, requires minimal changes to a 

conventional microscopic optical train due to its modular design. Even though in this study a 

research grade microscope was coupled to the SLIM module, in principle SLIM can be used with 

any phase contrast microscope. Furthermore, the SLIM instrument is less expensive than most 

commercial tissue scanners. Our results, although preliminary, are an important stepping stone 

towards extracting reliable novel markers that can provide pathologists adjunct information to 

H&E based markers for assessing difficult cases. In addition, computational pathology tools such 

as ours can help pathologists where the biopsy specimen is small and highly sensitive detection is 

desired. 
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CHAPTER 5: Quantifying collagen fiber orientation in breast tissue using QPI 

 

5.1 Abstract  

 Tumor progression in breast cancer is significantly influenced by its interaction with the 

surrounding stromal tissue. Specifically, the composition, orientation and alignment of collagen 

fibers in tumor-adjacent stroma affects tumor growth and metastasis. Most of the work done on 

measuring this prognostic marker has involved imaging of collagen fibers using SHGM, which 

provides label-free specificity. Here we show that SLIM is able to provide information on 

collagen-fiber orientation that is comparable to that provided by SHGM. Due to its wide-field 

geometry, the throughput of the SLIM system is much higher than that of SHGM and, because of 

the linear imaging, the equipment is simpler and significantly less expensive. Our results indicate 

that SLIM images can be used to extract important prognostic information from collagen fibers in 

breast tissue, potentially providing a convenient high throughput clinical tool for assessing patient 

prognosis. 
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5.2 Motivation and Overview 

 As explained earlier in Chapter 1, prognostic markers provide clinicians with important 

information about disease aggressiveness, cancer sub-type and expected patient outcomes (4). This 

allows these clinicians to make treatment decisions that best suit a patient’s disease state and avoid 

over-treatment (6, 24). Current markers, such as histological grade, hormone receptor status, tumor 

size etc., while useful for most patients, do not accurately predict outcomes for all patients. Thus, 

there is a need to expand on the current prognostic markers to account for biological variation 

among individuals (5, 6). 

 The role of adjacent stroma in mediating breast tumor initiation, progression, and invasion 

to surrounding tissue has been extensively discussed over the years (104-108). Tumor invasion 

into surrounding healthy tissue involves breaking down of the basement membrane and a 

desmoplastic response in the stroma. This response involves an increase in density of the 

extracellular matrix (ECM), marked by increased deposition of collagen, as well as recruitment of 

stromal cells (e.g. fibroblasts and inflammatory cells) to facilitate tumor growth (5, 105, 106). 

Using both mouse and in vitro models of mammary tissue, studies have also concluded that tumor 

progression is marked by re-alignment and re-orientation of collagen fibers (5, 109-111). For 

example, Conklin et al.  showed that the Tumor Adjacent Collagen Signature 3 (TACS3) correlates 

with lower disease-free and disease-specific survival in breast cancer patients (5, 112). TACS3 

refers to the histological marker involving aligned collagen fibers that are oriented perpendicularly 

to the tumor edge (5). 

 As described in Chapter 2, SHGM has emerged as a powerful technique for imaging 

collagen fibers in breast cancer adjacent stroma with sub-cellular resolution (113). SHGM 

measurement of the prognostic signature TACS3 was reported in ref. (5). Ambekar et al.  used 
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Fourier analysis on SHGM images to show that the collagen fibers in breast biopsies are more 

aligned in malignant  vs. pre-malignant and benign tissue (71). Riching et al.  used SHGM to image 

3D collagen gels to elucidate specific epithelial cell-fiber interactions that are responsible for 

enhancing tumor progression along aligned fibers in breast tissue (114). Other researchers have 

used image segmentation and machine learning tools to extract prognostic information from 

SHGM images of collagen fibers (115, 116).  

 SHGM maps the second-order non-linear susceptibility ( )2
   associated with non-

centrosymmetric molecules and thus probes fibrillar collagen structures with specificity (113). As 

detailed in Section 5.3, collagen generates a strong second-harmonic signal compared to the 

surrounding cellular structures, resulting in high imaging contrast (117). However, the low contrast 

of other cellular structures in SHGM images means that the tumor boundary is difficult to delineate 

and often other imaging modalities are required (116). Furthermore, since SHGM systems employ 

a laser point-scanning geometry, the imaging throughput is low and whole slide scanning of breast 

cancer tissue sections remains a tedious task.   

 In this chapter, we show that SLIM, in conjunction with basic image segmentation, is able 

to provide information on collagen-fiber orientation and alignment similar to that obtained using 

SHGM. In addition, SLIM generates contrast for epithelial cells as well, which can be used to 

detect tumor boundaries. Furthermore, compared to SHGM, the SLIM images are acquired at 

much higher throughput due to the wide-field geometry. Using both SLIM and SHGM, we imaged 

a TMA of breast biopsy cores consisting of both benign cases and malignant cases at different 

stages of the disease. Using the Fourier analysis method described in Section 5.5 we show that 

both SLIM and SHGM images generate similar histograms of fiber orientation angle.  
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 This chapter is organized as follows. In Section 5.3, we present the theoretical foundation 

for extracting second-order nonlinear response from phase-resolved linear imaging. Section 5.4 

describes the experimental details of the study, and Section 5.5 presents the results. Section 5.6 

summarizes and discusses these results. The work presented in this chapter is based on the work 

published in ref. (118). 

5.3 Theory 

 In this section we explain the theoretical motivation for using SLIM for collagen fiber 

analysis imaging by showing that the signal measured in SLIM is related to that measured in 

SHGM. The source of the signal measured in both modalities is the induced polarization P . To the 

second-order approximation, this can be related to the fundamental (incident) field E  as  

 ( ) ( ) ( ) ( )1 2 2  2 ,   = +P E E  (5.1) 

where ( )1
  is the first-order electric susceptibility, ( )2

  is the second-order nonlinear susceptibility 

and   is the optical frequency of the source (119). 

 The physical quantity measured in SLIM is the spatially-resolved linear response, 

( ) ( ) ( )1 2 2

0n n = −r   r  with n  being the refractive index of tissue, 0n  the refractive index of the 

immersion medium, and ( ),x y=r . Note that for low refractive index contrast, ( )1
  simplifies to 

( ) ( ) ( )1

0 02   .n n n   −  r r   The SLIM signal is the optical path-length map generated by the tissue 

slice 
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( ) ( )0 0n n t =  −  r r         

(1)

0

0

( )

2
t

n




r
      (5.2) 

where 0 2 /  =  is the wavenumber in vacuum, t  the local thickness of tissue, and   the 

wavelength of the illumination (27). 

 The physical quantity measured in SHGM is ( ) ( )2
2  , which relates to the SHG electric 

field ( )2SHG E  via (113, 119-121) 

 ( ) ( ) ( ) ( )22 2

02   2SHG     E E .                                 (5.3) 

 We can find a relationship between the ( ) ( )2
2    and ( ) ( )1

   signals measured by our two 

imaging methods by solving the equation of motion for the anharmonic oscillator describing 

microscopic charge displacement [see, for example, Section 1.4. in ref. (119)]. This leads to the 

expression  
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In Eq. (5.4), 
2

0

2 3

a m
A

N e
= , where a  is a constant that depends on the mechanical properties of the 

anharmonic oscillator model, N  the volume density of electric dipoles in the medium, 0  is the 

permittivity of free space,  m  the mass of an electron and  e  the elementary charge. Equation (5.4) 

indicates that the second-harmonic response is proportional to the squared of the linear response, 

which is measured directly by SLIM, namely 

 

 ( ) ( ) ( ) ( ) ( )2 1 2, 2 ~ , 2   , .      r r r       (5.5) 
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This relationship can then be used to re-write Eq. (5.1) in the form 

 ( ) ( ) ( ) ( ) ( )1 1 2 2  2   .     = +P E E  (5.6) 

In Eq. (5.6) the linear term generates the SLIM signal and provides contrast in both 

centrosymmetric and non-centrosymmetric structures. The quadratic term accounts for the SHGM 

signal and generates contrast only in non-centrosymmetric structures (119). Since the quadratic 

term has a dependence on ( ),x y , we anticipate that in non-centrosymmetric regions (collagen 

fibers) SLIM and SHGM images provide similar morphological information. However, before a 

comparison between the two can be made, the centrosymmetric information in SLIM (linear 

imaging) needs to be extracted out. In this work, we extract this information out using image 

processing techniques as discussed in the Section 5.5.  

5.4 Materials and Methods 

5.4.1 The SHGM and SLIM imaging systems 

 The optical setups for the two imaging modalities are illustrated in Fig. 5.1. The operating 

principle for the SLIM system was outlined in Section 2.3. While that for SHGM has been detailed 

in previous publications (71, 122), here we briefly describe it. 
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Figure 5.1 (a) Optical setup of the SLIM system, built as a module attached to the output port of 

a commercial phase contrast microscope. The insert shows an H&E image of TMA slide, as well 

as H&E and SLIM images of one of its cores. Scale bar: 200 µm. (b) Optical setup of the SHGM 

system. The insert shows an H&E image of the TMA slide as well as H&E and SHGM images of 

one of its cores. C, condenser. Ob, objective. TL, tube lens. IP, image plane. M, mirror. BS, 

beam splitter. SP, short pass. BP, band pass. SLM, spatial light modulator. 

 

 Figure 5.1 (b) illustrates the SHGM system. A Ti: Sapphire laser was used to produce 70-

fs pulses at an excitation wavelength of 780 nm and a repetition rate of 80 MHz. The beam was 

scanned onto the sample, and focused by a 20x/0.8 NA air-illumination Zeiss condenser. The 

transmitted beam was collected in the forward direction by a 40x/0.9 NA Zeiss objective and then 

passed through two filters. The first filter was a 680 nm short-pass filter (680 nm/SP-25) for 

blocking the laser light, and the second was a 390 nm band-pass filter (390 nm ± 18-25 nm) for 

selecting the second harmonic signal. In contrast to the wide-field CCD detector used in SLIM, 

SHGM uses a single point photodetector. More details regarding this particular SHGM system 
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have already been published in refs. (71) and (122). The acquisition rate for SHGM system was 

7 µ𝑠 per pixel while that for the SLIM system was 0.08 µ𝑠 per pixel. 

 

5.4.2 TMA  

 The breast TMA used in this study was purchased from US Biomax Inc. (Serial # T088b).  

The TMA was received from the manufacturer with all human subject information de-identified. 

Neither the authors of this work nor their institutions were involved in tissue collection. The TMA 

comprised of 24 cores from 6 different cases with 8 benign/normal and 16 malignant cases. The 

malignant cases included cores corresponding to three different stages of breast cancer: IIa, IIb 

and IIIa. The inserts of both Fig. 5.1 (a) and 5.1 (b) show an H&E image of the TMA. Also shown 

are H&E, SLIM and SHGM images of one of the cores in the TMA.  
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Figure 5.2. Morphological comparison between (a) Benign and (b) Malignant cores from 

patients at three different stages of disease as captured by SLIM, SHGM and H&E images. The 

square of the quantitative phase map in SLIM is referred to as SLIM2
, and is proportional to 

( )
2

1
 
 

. 

 

 Figure 5.2 shows H&E, SLIM and SHG images of 3 benign and 3 malignant cores, each at 

a different disease stage, as indicated. The SLIM images generate uniform contrast across the 

cores, including in cellular structures. SHGM images on the other hand generate contrast only in 

areas where collagen fibers are present. Note that the SHG signal is more sparse in the malignant 

cores versus benign cores due to the higher fraction of epithelial cells in the former, associated 

with tumor invasion into surrounding stroma. Row 2 of Figure 5.2 shows the square of the 

quantitative phase map ( ),x y  (SLIM2), for each core.  



52 

 

 

Figure 5.3. SLIM (a-c), SHGM (g-i) and H&E (j-l) images of both stromal and 

epithelial/stromal mixed tissue in a TMA core. Left-most (a,d,g,j) and right-most (c,f,i,l) 

columns show zoomed-in versions of the regions indicated on the core in the central column 

(b,e,h,k). As is evident from a comparison with the H&E images, the SLIM images show 

contrast in both stromal and epithelial regions where as the SHGM images only generate contrast 

in stromal regions. Segmented SLIM (d-f) images were obtained from the SLIM images by 

numerically removing the cellular structures and preserving the collagen fibers. 
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 Figure 5.3 provides a comparison between morphologies of stromal and epithelial tissue 

within one core, as revealed in H&E, SHGM and SLIM images. As shown in Figs. 5.3 (a) and (g), 

both SLIM and SHGM reveal qualitatively similar stromal structures. The situation is different in 

areas with epithelial tissue where SLIM images [Fig. 5.3 (c)] contain centrosymmetric structures 

such as epithelial cells, which are absent in SHGM images [Fig. 5.3 (i)]. The presence of these 

cellular structures is confirmed by the H&E stain, which shows cell nuclei in purple color [Fig. 5.3 

(l)]. In areas that are a mixture of cells and collagen fibers, quantifying fiber alignment and 

orientation from SLIM images requires segmentation of epithelial cells as discussed in detail in 

the next section. 

5.5 Results 

5.5.1 Decoupling isotropic from anisotropic signals in SLIM images 

 Prior to measuring collagen fiber orientation, the SLIM and SHGM images were registered 

and an image segmentation algorithm was used to remove isotropic structures from SLIM images, 

leaving behind the highly anisotropic collagen fibers. No information from the SHGM data was 

used for the segmentation of SLIM images.  

 To perform image registration, the SLIM images were first down-sampled, from 12000 x 

12000 to 9,216 x 9,216 pixels/core, to match the sampling of the SHGM images. These images 

were then co-registered using ImageJ by selecting control point pairs for each image, and matching 

them using transformation techniques (primarily translation and rotation).  

 The image segmentation algorithm used for removing isotropic cellular structures from 

SLIM images is schematically illustrated in Fig. 5.4.  Specifically, for each core image we first 

computed the response to the LM filter bank comprising gradient filters at 50 different orientations 

(90, 91). Each filter in the bank computed the directional image gradient by using the first 
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derivative of a Gaussian, oriented at 
50

j
 =  where j  = 0, 1, 2 ….. 49, from the horizontal axis in 

the image. The resulting stack of responses represented both the magnitude and direction of the 

local gradient or anisotropy in a pixel’s vicinity for each TMA core. The magnitude of these 

gradients was then normalized by the highest value in the stack and was summed along the stack 

(along the z-axis in Fig. 5.4). The resulting image represented the isotropy map of the tissue with 

higher values representing locally isotropic structures (background and cells) and lower values 

representing locally anisotropic structures (collagen fibers). This isotropy map was then low-pass 

filtered (Gaussian kernel of 15x15 pixels which is slightly larger than one epithelial cell) and the 

Otsu’s thresholding method was used to find the grayscale level separating anisotropic from 

isotropic pixels (123). The Otsu thresholding method dynamically sets the threshold by minimizing 

the intra-class variance and maximizing the inter-class variance under the assumption of a bio-

modal class histogram distribution. Since this method establishes a threshold based on the natural 

separation of isotropic and anisotropic pixels in the data, it can be applied to arbitrary SLIM images 

without prior training. After setting the isotropic pixels to zero we employed another round of low 

pass filtering (Gaussian kernel, 5x5 pixels) followed by thresholding to remove any remaining 

background pixels and obtain the label map. During this process, the maximum gradient along z 

for each pixel was also used for detecting the remaining background pixels and marking them for 

removal. The final segmentation map was then computed by using the label map as a mask. The 

segmentation algorithm was coded in MATLAB and a pre-published LM filter generator was used 

for the purpose (92). 
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Figure 5.4 The segmentation algorithm for removing isotropic structures from SLIM phase 

images. (a) SLIM phase map before segmentation (color bar in radians). (b) Response to LM 

filter bank. (c) Normalized isotropy map. (d) Binary label map. (e) Segmented SLIM image 

(color bar in radians). (f) and (g) represent zoomed-in portions of the SLIM and Segmented 

SLIM images respectively, showing an epithelial stromal boundary. The segmentation algorithm 

removes isotropic structures and preserves anisotropic signals associated with collagen fibers. 

 

 

 As apparent from comparing the SLIM and segmented SLIM images in Figs. 5.4 (f) and 

5.4 (g), the algorithm leads to over-segmentation, and sometimes collagen fibers that are isotropic 

at length scales equal to or smaller than the size of one epithelial cell are segmented out. In some 

cases, the segmentation algorithm may break up thin or twisting fibers. As shown in Section 5.4 

(c), these imperfections in segmentation are subdominant, and the local collagen orientation 

remains similar between SLIM and SHGM images. Furthermore, as demonstrated in refs. (5, 121, 

124), biomarkers for prognosis are based on average orientation of collagen over spatial scales that 
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are longer than those at which segmentation errors occur in our images. Thus, for the relevant 

clinical applications, sufficient information remains in the segmented SLIM images to measure 

fiber–orientation based bio-markers. Another important consideration for clinical applications is 

the relative orientation of tumor adjacent collagen fibers with the tumor boundary. While SLIM 

images can be segmented to digitally remove the epithelial cells, they clearly resolve epithelial 

structures, allowing determination of the tumor boundary orientation with respect to the collagen 

fibers.  
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Figure 5.5 The Fourier analysis procedure for computing collagen fiber orientation probability 

densities. (a) SLIM image. (b) Segmented SLIM image. (c) Orientation map of SLIM image. (d) 

SHGM image. (e) Orientation map of SHGM image. (f) Probability density of collagen fiber 

orientation 𝜃 computed from the SLIM orientation map in (c). (g) Bar chart showing the number 

of isotropic and anisotropic regions in segmented SLIM image. (h) Probability density of 

collagen fiber orientation 𝜃 computed from the SHGM orientation map in (e). (i) Bar chart 

showing the number of isotropic and anisotropic regions in SHGM image. The Pearson’s 

correlation 𝜌 between the probability densities for the two modalities is also shown. 
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5.5.2 Fourier analysis  

 Fourier analysis was carried out on SHGM and segmented SLIM images to extract collagen 

fiber orientation. Each image was sectioned into sub-image regions using grids (16×16, 32×32 or 

64×64), and the localized orientation per sub-image (which we call  ) was determined using the 

Fourier analysis technique outlined in ref. (121). Regions having a mean direction above a chosen 

threshold were referred to as anisotropic regions, while those under this threshold were labeled 

isotropic. In order to highlight preferred orientation in each sub-image, quiver plots were 

superimposed on anisotropic regions to give an orientation map. Histograms of   for anisotropic 

regions (number of bins = 32), and bar plots showing the isotropic and anisotropic region counts 

were also generated from these data. The   histograms were further normalized to obtain 

orientation probability densities ( )SHGP   and ( )SLIMP   .  Figure 5.5 shows the comparable results 

obtained for a selected pair of segmented SLIM and SHGM images. 

5.5.3 Comparison between SHGM and SLIM signals 

 Figure 6 shows the fiber orientation probability densities SHGP   and  SLIMP for three different 

cores, extracted from their respective SHGM and segmented SLIM images. As shown, the shapes 

of the density functions obtained from the two modalities are qualitatively similar for each of the 

cores. In order to obtain a quantitative measure of this similarity, the following procedure was 

used. The cross-correlation between SHGP  and  SLIMP was first obtained and the circular lag 

corresponding to maximum cross-correlation was computed. The two densities were then shifted 

relative to one another by this lag, such that any errors due to overall rotation between the two 

images are minimized. This alignment procedure is required for a fair comparison between the two 

densities because errors in registration of the images from the two modalities can cause one density 
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to be slightly shifted with respect to the other. After alignment, the Pearson’s correlation 

coefficient   between the two densities was computed as a quantitative measure of their similarity. 

The Pearson’s correlation measures the similarity of any two random variables X  and Y , and is 

defined as 

( )( )
.

x y

x y

E X Y 


 

 − −
 

=      (5.7) 

In Eq. 5.7, the operator   E  refers to the expected value and   and   are the mean and standard 

deviation of the random variable in question (125). The correlation coefficient   has values over 

the interval [-1, 1] with -1 referring to perfect negative correlation and 1 corresponding to perfect 

positive correlation. In our analysis, X  and Y refer to the probability densities SHGP  and  SLIMP .  

 The three cores in Fig. 5.6 belong to three different disease stages and, therefore, 

correspond to three different morphologies. As shown, the benign core shows the highest positive 

correlation between SHGP  and  SLIMP with   = 0.93, which decreases to 0.82 for the stage IIa 

malignant core. The lowest correlation is seen for the stage IIIa core which was computed as 0.71. 

This trend can be accounted for by the fact that a core from a patient at an advanced stage of 

disease is more likely to contain large amounts of epithelial tissue. A large proportion of epithelial 

tissue both suppresses the SHG signal and results in greater image segmentation errors in SLIM 

images due to the smaller amount of collagen involved, resulting in lower agreement between the 

two. In addition to the probability densities, the bar charts showing the number of isotropic and 

anisotropic cells counted by the Fourier analysis procedure, are also very similar for both imaging 

modalities as demonstrated in Fig. 5.6.  
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Figure 5.6. Comparison between the fiber orientation probability densities and bar charts 

counting number of isotropic and anisotropic regions for 3 different cores: SHGM (left column) 

and SLIM (right column). This comparison is shown for a benign core (a-b), malignant stage IIa 

core (c-d) and malignant Stage IIIa core (e-f). The similarity of SHGP and SLIMP  is measured for 

each case using the Pearson’s correlation coefficient  , as indicated. Scale bars: 200 µm.  

 

5.5.4 Measuring relative angles of tumor adjacent fibers using SLIM 

 While the results of the last section demonstrate that collagen fiber orientation is 

measurable using SLIM, collagen fiber based histological markers (for example TACS3) are based 

on relative angle r  between tumor adjacent fibers and the nearest point on the tumor or ER edge 

(5, 126).  This angle is schematically illustrated in Figure 5.7. To demonstrate that r  is measurable 

using SLIM, we used a MATLAB based open-source fiber analysis tool called “CurveAlign” (116, 



61 

 

127) and extracted r  for 34 benign and 34 malignant cases selected from a TMA. This the same 

TMA that was used for the study in Chapter 4. A description of CurveAlign and specifics of 

parameters used during fiber analysis are included in Section 6.4.7. As discussed in Section 4.3.3, 

all ERs within each core from this TMA had been manually annotated using the region-of-interest 

tool of ImageJ. Before fiber extraction and angle measurement, each ER was segmented out to 

ensure edges of epithelial cells did not interfere with fiber analysis. 

 

 

Figure 5.7 Fiber orientation relative to tumor edge for (a) Benign and (b) Malignant ERs. (c) 

Histogram of relative angles measured for 34 benign and 34 malignant cases, showing that on 

average higher relative angles are measured for malignant tumors. 
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 Figure 5.7 (a) and (b) show benign and malignant ER edges and orientations of fibers 

within their vicinity. Fibers within a distance of 64 m  from the ER edge were associated with 

each ER during this analysis. As is evident from these images, benign ERs have on average lower 

values of r  than malignant ERs. This is both due to the presence of the basement membrane 

around benign epithelium (which tracks its perimeter) but also because invasion in malignant 

epithelium can occur along collagen fibers (5). The results from all epithelium adjacent fibers 

within the 34 benign and 34 malignant cases are summarized in the histogram in Fig. 5.7 (c). As 

shown, there is statistically significant difference between the relative angles measured for benign 

and malignant tissue (determined using the two-sample Student’s T-test). Furthermore, the 

probability of higher values of r  is higher for malignant cases than for benign cases. These data 

agree with previous studies that have linked higher relative angles with worse prognosis (TACS3 

marker) and have suggested that collagen fibers oriented perpendicular to the tumor edge may 

serve as highways for epithelial cell invasion to surrounding tissue (5). 

5.6 Summary and Conclusion 

 Motivated by the relationship between ( )2
  and ( )1 2[ ]  (Section 5.2), we have presented 

experimental support for the hypothesis that measuring ( )1
   via phase-resolved imaging, can 

provide ( )2
  information, similar to that obtained in SHGM. Specifically, we have shown that, 

SHGM and segmented SLIM images measure quantitatively similar collagen fiber orientations in 

breast tissue. The conclusions are significant because collagen fiber alignment and orientation are 

potential markers for patient prognosis. We further showed that the relative orientation between 

tumor adjacent fibers and tumor edge, as measured by SLIM, is significantly different between 

cancerous and non-cancerous tissue. While in the past SHGM has been the method of choice for 
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measuring these biomarkers, our results demonstrate the potential of SLIM as a complementary 

method for this assessment. Clearly, compared to SHGM, SLIM lacks the specificity to collagen, 

as the phase image includes signals due to centrosymmetric molecules. As a result, a numerical 

post-processing procedure is necessary to eliminate the isotropic structures from the SLIM image. 

However, these isotropic signals, mainly from epithelial contributions, can be used to delineate the 

glands and potentially, tumor margins. These margins are difficult to detect in SHGM alone and 

other modalities are sometimes used (e.g., two-photon fluorescence microscopy) (117, 128).

 In comparing the optical setups of the two modalities, it is evident that SLIM benefits from 

common components, of much lower cost, compared to those needed in SHGM (e.g., halogen 

lamp vs. femtosecond laser). Furthermore, due to the full-field and continuous wave (CW) 

illumination, SLIM operates at much lower exposures and, thus, is non-perturbing to live cells and 

tissues. For example, SLIM imaging over multiple days without damage is possible (35). The 

acquisition rate of the SLIM system is 0.08 µ𝑠 per pixel as compared to 7 µ𝑠 per pixel for the state 

of the art SHGM system used here. Of course, SLIM signals do not depend on phase matching 

and, as such, the signals are always quantitatively related to the structure under investigation.  

 While we showed in this study that the relative fiber angle, measured using SLIM, is higher 

for cancerous tissue as compared with healthy tissue, future studies that specifically compare 

SLIM based fiber features between cancer patients that have different outcomes are needed. This 

is explored in the next chapter in Section 6.3.5. 

 

 

 

 



64 

 

Chapter 6: QPI of stained breast tissue biopsies 

 

6.1 Abstract 

 Thus far we have presented in this thesis QPI investigations that have relied on imaging of 

unstained tissue. Such an approach poses challenges in clinical adoption of QPI-based disease 

markers because stained tissue is typically assessed in a pathology lab. In this work, we show that 

phase maps of stained tissue, provided by QPI, can be leveraged to extract markers of disease in a 

manner similar to that shown for unstained tissue. We numerically correct for the effects of staining 

on tissue phase maps and show that features extracted from the resulting ‘normalized phase maps’ 

have similar values to those in corresponding unstained tissue. Our imaging system provides these 

maps and traditional bright-field images of stained tissue in a single acquisition. Thus, our 

instrument reduces barriers to clinical translation as a clinician can potentially obtain traditional 

markers of disease as well novel quantitative phase based markers simultaneously. We 

demonstrate the utility of our stained tissue analysis instrument by diagnosing breast cancer 

through supervised learning and measuring collagen fiber based prognostic markers in breast 

tissue. 
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6.2 Motivation and Overview 

  I have demonstrated in the previous three chapters that SLIM based features have utility 

for quantitative breast tissue diagnosis. I also demonstrated that collagen fiber structure can be 

assessed from SLIM images. In both cases, the analysis was performed on unstained tissue 

sections. Staining is an inevitable part of standard histopathology in a clinic so if a pathologist 

wants to look at SLIM based disease markers during investigations, they’ll need to obtain a 

separate dedicated, unstained tissue slice. We propose in this work to bridge this barrier to clinical 

translation in QPI by demonstrating that analyses previously done on unstained breast tissue 

biopsies can be extended to stained tissue. We modified SLIM (48) to provide both phase and 

bright-field microscopy images in a single acquisition. The resulting system is referred to a color 

spatial light interference microscopy (cSLIM). Next a TMA was imaged using SLIM and cSLIM 

before and after H&E staining, respectively. Both sets of raw phase images, ( , )x y , were then 

normalized numerically to obtain normalized phase images ( , )Z x y . For the same TMA core, 

( , )Z x y  maps showed excellent agreement pre- and post-staining indicating their stain 

independence. We further demonstrated that results from supervised learning based detection of 

breast cancer as well as extraction of stromal collagen fiber orientation using these normalized 

phase maps also produces similar results in stained and unstained tissues. Having shown that 

analyses developed for unstained biopsies are extendable to stained ones, we demonstrated the 

ability of our stained tissue analysis system to diagnose histologically difficult cases and to detect 

aligned collagen fiber-based prognostic markers that have been previously shown to correlate with 

outcomes in breast cancer patients. 
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6.3 Results and Discussion 

6.3.1 cSLIM optical setup and outputs 

 The cSLIM optical setup is illustrated in Fig. 6.1. The optical train is based on the 

previously described SLIM system (48) with two important modifications. First, in the place of 

the phase contrast microscope objective used in SLIM we employ a 40x/0.75 NA bright-field 

objective. The use of a bright field objective allows us to obtain typical H&E stained histology 

images that are the mainstay of breast histopathology in the clinic. The annular condenser ring is 

retained from the SLIM system. Second, the grayscale camera is replaced by a color RGB camera 

(Carl Zeiss Axiocam MRc) which provides red, green and blue spectral channels of information. 

The remainder of the system operates as previously described for SLIM:  The SLIM module 

(CellVista SLIM Pro, Phi Optics, Inc.) is placed at the output port of a commercial microscope. 

The conjugate image plane at the microscope output port is imaged onto the camera using a 4f 

system formed by lenses L1 and L2. At the Fourier plane of lens L1 an SLM (Boulder Nonlinear 

Systems) is used to modulate the phase difference between the scattered and incident components 

of light. As illustrated in Figs. 6.1 (c) and (d), four modulations, 0, / 2, , 3 / 2   = rad, are 

employed. For each modulation, we acquire three intensity frames corresponding to the red, green 

and blue channels of the camera: ( , ; ), ( , ; )R x y G x y   and ( , ; ),B x y   respectively. In each case, 

these channels are combined to obtain an equivalent grayscale intensity image using the formula 

 ( , ; ) 0.1 ( , ; ) 0.6 ( , ; ) 0.3 ( , ; )I x y R x y G x y B x y   = + + . (6.1)   

 The weighting attached to each channel was determined empirically and is related to the 

resulting wavelength at which phase modulation occurs between the scattered and incident light in 

cSLIM [see Section 6.4.3 of the Methods section for details]. Thus four intensity frames ( , ; )I x y   

are acquired for each phase map, ( , )x y , reconstruction. The phase reconstruction process using 
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these four frames is identical to that previously published for SLIM (48) and is typical of phase 

shifting interferometers (46).  

 The modifications to the original SLIM system required us to perform two calibration 

steps. First, SLM re-calibration was required to ensure that the correct value of   is used for each 

of the four frames (48). This was performed by configuring the SLM in amplitude mode and 

measuring the amplitude modulation in ( , ; )I x y   as a function of the SLM 8-bit grayscale input 

(48). The calibration curve for phase was then obtained by taking the Hilbert transform of the 

amplitude modulation curve [see Section 6.4.3 for details]. Second, the SLIM phase reconstruction 

algorithm includes the attenuation term pc  which is the factor by which incident light is attenuated 

with respect to the scattered light in a phase contrast objective. Since bright field objectives do not 

impart his attenuation, an equivalent attenuation bf was introduced numerically in place of pc in 

the SLIM phase reconstruction. The correct value of bf  was determined by imaging an unstained 

TMA core using both phase contrast and bright field objectives and tuning bf until the similarity 

between the phase maps from the two acquisitions was maximized [see Section 6.4.4]. The final 

value of 3.4bf = was then used for all subsequent phase reconstructions. 
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Figure 6.1 cSLIM optical setup. (a) A commercial microscope with phase contrast illumination 

and bright-field objective. (b) SLIM module placed at the microscope output port, equipped with 

color RGB camera. (c) Phase shifts imparted between scattered and incident light by the SLM in 

the Fourier plane of L1. (d) Four intensity frames obtained for each phase modulation by 

weighted sum of the red, green and blue channel images of the RGB camera. IP, image plane, 

SLM, spatial light modulator. 

 

 The typical raw outputs generated by the cSLIM system are illustrated in Fig. 6.2. Results 

are shown for an H&E stained TMA at the slide [Figs. 6.2 (a) and (d)], core [Figs. 6.2 (b) and (e)] 

and cellular scales [Figs. 6.2 (c) and (d)]. As shown, whole slide phase and bright-field microscopy 

images are obtainable in a single scan. The scan time for a single core (approx. 1 mm2
 area) was 

approx. 13 secs at a sampling rate of 7.4 pixels/ m . A key advantage of the cSLIM outputs is that 

perfectly registered standard histopathology and quantitative phase images are obtainable. This is 

significant in carrying out QPI studies with large cohorts since independent pathologist evaluation 

can be done on the same tissue rather than a parallel section. This ensures that a pathologist’s 

diagnosis matches precisely with markers extracted in QPI without the need for duplicate scanning 

of tissue section before and after staining. Furthermore, information from both channels (phase 
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and bright-field) can be combined for improving results of classification and segmentation 

problems for which algorithms related to both modalities have been published, separately thus far, 

in literature (19, 20, 25, 87). 

Figure 6.2 cSLIM outputs obtained by scanning a whole TMA slide. (a)-(c) H&E stained tissue 

bright-field images of whole slide, single core and epithelial region within core, respectively. 

(d)-(f) Raw phase maps of  whole slide, single core and epithelial region within core, 

respectively. 

 

6.3.2 Normalizing effects of staining 

 The spectrum of light is not identical between the SLIM and cSLIM systems – there is a 

difference in both the spectral width (determined by the coherence length cl ) as well as the central 

wavelength 0 . For the SLIM system 0 589 nm =  and 2.26cl m=  in air whereas for cSLIM, in 

the absence of tissue, 0 558 nm =  and 3.24cl m=  also in air [see Methods Section 6.4.3]. When 

stained tissue is present, the cSLIM spectrum the will vary even further due to absorption (refer to 

Appendix A for analysis of dispersion in tissue). As a result, phase maps extracted from stained 

and unstained tissue samples differ. To quantify this difference we imaged a TMA of breast tissue 
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biopsies before H&E staining using SLIM and after staining using cSLIM. We refer to this TMA 

as “TMA-1” in the rest of the chapter [refer to Methods Section 6.4.1 for details about TMA-1]. 

This is the same TMA that was used in ref. (87)  and Chapter 4 for separating normal and cancerous 

cases using SLIM based features. The raw phase maps ( , )x y  for one TMA core, before and after 

staining, are illustrated in Figs. 6.3 (a) and (b), respectively. It is evident that staining causes a 

reduction in phase values as well as the image contrast. These effects are also illustrated in the 

histograms of the two phase images in Fig. 6.3 (c) where the stained tissue histogram is noticeably 

narrower. To normalize these effects of staining we computed, for each core, the standard normal 

variable ( , )Z x y  from ( , )x y  using the equation 

 
( , )

( , )
x y

Z x y
 



−
=   (6.2) 

where  is the mean of ( , )x y  in the tissue region within each core image (after segmenting out 

background pixels) and  its standard deviation. Details about this computation, including 

removal of background pixels, are described in Methods, Section 6.4.5. 

 The results of this normalization procedure are shown in Figs. 6.3 (d) – (f). As shown, the 

normalized phase maps are visually very similar between stained and unstained tissue and the 

histograms seem to overlap almost perfectly. To quantify this similarity, the Pearson’s correlation 

coefficient   (125) was computed between the stained and unstained tissue histograms, both 

before and after phase normalization. As illustrated in Figs. 6.3 (c) and (f), the   values improved 

significantly due to the normalization procedure (were in fact almost equal to 1), indicating a very 

high degree of correlation. The   values for a total of 30 cores (15 cancerous and 15 normal, 

selected randomly from TMA-1), before and after normalization, are summarized in Fig. 6.3 (g). 

The bar heights represent mean values whereas the error bars represent the standard deviations 
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over the 30 cores. The ( , )Z x y  maps are, thus, consistently more similar before and after staining 

than ( , )x y maps indicating a stain independent signal in the normalized images. Benign and 

malignant tissue have different stain distributions due to differing proportions of epithelium and 

stroma as well as a different cellular phenotype. In addition, the cores used for this analysis were 

selected randomly from different parts of the TMA slide, meaning that their staining intensities 

can potentially vary due to local variations in staining agent concentration. Despite these sources 

of variation, our normalization technique is robust and works well across the cores considered. 
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Figure 6.3 Comparison of phase maps obtained from the TMA-1 before and after staining. (a) 

and (b) TMA core raw phase images before and after staining, respectively. (c) Histograms of 

the phase images in (a) and (b). The similarity of the two histograms is quantified by computing 

the Pearson’s correlation coefficient   between them. (d) and (e) Normalized phase maps for the 

same core before and after staining, respectively. (f) Histograms of the phase images in (d) and 

(e). The similarity of the two histograms is quantified by computing the Pearson’s correlation 

coefficient   between them. (g) Bar plots showing the mean value of Pearson’s correlation 

coefficient   between core histograms for raw and normalized phase maps. Error bars show the 

standard deviation over the 30 cores. 
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 Computation of ( , )Z x y  minimizes the difference between SLIM and cSLIM results 

because division by standard deviation removes the 1 /   dependence of the phase maps so that 

variations due to different 0  between the two systems, in absence of absorption in tissue, are 

minimized (for details see Appendix A). While dispersion in tissue (spatial variation of both 

wavelength and refractive index) is also expected to cause differences between these images, our 

detailed analysis of this phenomenon (included in Appendix A) showed that these changes are 

small. The fact that a global normalization is effective in removing the stain-related effects also 

indicates that dispersion in tissue is not a dominant effect (see Appendix A). 

 

6.3.3 Breast cancer diagnosis on stained tissue biopsies using supervised learning 

6.3.3.1 Classifying benign versus malignant cases 

As stated earlier, features extracted from SLIM images of unstained tissue have been 

shown to detect malignancy in different organs (50, 52, 87). In ref. (87) and Chapter 4  we 

developed a supervised learning method for breast cancer diagnosis that relied on three types 

of features extracted from SLIM images: the median gland or ER curvature C  , the median 

of mean scattering length within an ER sl   and the median texture vector for the ER T  . 

These features were extracted from and compared between benign and malignant ERs within 

a TMA (unstained TMA-1 was used in that study). 3-fold cross-validation results showed an 

AUC of 0.91 during ROC analysis of the classification (87). 

To demonstrate that this analysis can be extended to stained tissue cores, for the 15 

malignant and 15 benign cores selected from TMA-1 in the previous section, we assembled 

( , )Z x y  maps both before and after staining. Each core belonged to a different case/patient. All 

malignant cases were diagnosed as IDC whereas the all benign cases were diagnosed benign 
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without atypia (BWA) by a certified pathologist. From the ( , )Z x y  maps of each core, the same 

feature set  , ,sC l T       was extracted for each ER. Pathologist diagnosis for each ER 

was available and was used as the ground truth for training [see Section 6.4.1 for details]. The 

classification scheme developed for ( , )x y  in Chapter 4 was repeated for ( , )Z x y in both 

stained and unstained cases and the results were compared. Details of the feature extraction, 

training and validations steps, specific to this study, have been included in Methods, Section 

6.4.6. 

Figure 6.4 illustrates the diagnosis results obtained for stained and unstained tissue. 

Figs. 6.4 (a), (b), (d) and (e) compare ( , )Z x y for example benign and malignant ERs before 

and after staining. As shown, once again the images are very similar between the before and 

the after. In cSLIM, morphological details of these ERs are also available for traditional 

histopathological assessment through bright-field images [Figs. 6.4 (g) and (h)]. To test 

whether features derived from these ( , )Z x y  maps can detect malignancy in breast tissue, 3-

fold cross-validation was performed, consisting of three trials. ERs from all cores were pooled 

and divided into three equal sets and in each trial two sets were used for training and one set 

for validation. Figs. 6.4 (g) and (h) compare the values of the three features between unstained 

and stained ERs, for one training set. Since texture feature T   is multidimensional, it is 

represented by its first principal component in the plot. As is noticeable, the feature values 

have a similar distribution for both benign and malignant ERs between the unstained and 

stained cases. 

In each case, the probability scores for all ERs, generated by an LDA classifier in all 

three trials, were pooled together to generate an ROC curve for the cross-validation [see 

Section 6.4.6]. As shown in Fig. 6.4 (i), similar AUCs were measured for analysis on both 



75 

 

stained and unstained tissue using ( , )Z x y  maps, indicating that detection of malignancy is 

achievable at high accuracy using stained tissue biopsy phase maps. While the AUCs are 

similar, they are not identical. This can be attributed to the fact that the tissue morphology itself 

(while similar) is not identical between the two experiments since the process of removing the 

coverslip from the TMA slide and staining it results in some physical changes to the tissue 

biopsies, in addition to those due to staining.  

 

Figure 6.4 Comparison of diagnosis results between stained and unstained tissue using ( , )Z x y

maps. (a)-(b) ( , )Z x y images of an unstained and stained malignant ER, respectively (c) H&E 

stained bright-field image of the same malignant ER. (d)-(e) ( , )Z x y images of an unstained and 

stained benign ER, respectively. (f) H&E stained bright-field image of the same benign ER. (g)-

(h) Separation of benign and malignant ERs in feature space for stained and unstained tissue, 

respectively. (i) ROC curves for 3-fold cross-validation for classifying benign and malignant ERs. 
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6.3.3.2 Screening of high-risk and low-risk breast lesions using cSLIM 

Having demonstrated that our feature set has the ability to detect malignancy on stained 

tissue biopsies, we next applied our model to a more diagnostically challenging problem. 

Stratification of benign lesions in breast tissue during histopathology is a significant challenge 

for pathologists (15, 129, 130). One of the key questions is finding a consistent and quantitative 

basis for separating cases of benign atypical hyperplasia (BAH) from cases of BWA. QPI based 

markers can help pathologists during these borderline investigations by supplementing the 

information available in traditional histopathology with quantitative markers. To demonstrate 

that our feature set is capable of stratifying benign lesions, we imaged a second H&E stained 

TMA consisting of  9 cases of BAH (2 cores per case), 9 cases of IDC (2 cores per case) and  

17 cases of BWA (2-3 cores per case). We refer to this TMA as ‘TMA-2’ in the rest of the 

chapter. Details regarding TMA-2 are included in Section 6.4.1. TMA-2 was imaged using the 

cSLIM system and ( , )Z x y  maps for each core were assembled. Figs. 6.5 (a) and (b) show the 

bright-field and ( , )Z x y  maps for an ER with BAH, acquired by the cSLIM system. Examples 

of ERs diagnosed as BWA and IDC have already been shown in Fig. 6.4. 

The cores in TMA-2 were used to construct two groups: a high-risk group consisting 

of 18 cases (IDC and BAH) and a low-risk group consisting of 17 cases (BWA). This study 

design is illustrated in Fig. 6.5 (c). The data were partitioned in this way because diagnosis of 

BAH, while not considered a diagnosis of cancer, has clinical significance and patient follow-

up is carried out to ensure further progression of disease is prevented (129, 130). A patient 

diagnosed with BAH is, therefore, placed into a higher risk category than a patient diagnosed 

as BWA (129). Pathologist diagnosis for each ER was available within each case and was used 

as the ground-truth during analysis [see Methods, Section 6.4.1]. Using the same feature 
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extraction and training procedures as used to separate cancer from non-cancer in part (a) of 

this section, a binary classifier was developed for separating high-risk and low-risk groups. 

Once again 3-fold cross validation was employed to assess classifier accuracy. Classifier 

probability scores from all three trials were pooled together to generate an ROC curve for 

cross-validation [Methods, Section 6.4.6] which is illustrated in Fig. 6.5 (d). A cross-validation 

AUC of 0.81 was obtained for separating the high-risk and low-risk groups. Since pathologist 

agreement on BAH diagnosis through H&E stained tissue histopathology is low [concordance 

rate of 48% was reported in (15)] and often additional IHC based markers are needed to help 

with diagnosis (130), our cSLIM based markers can provide an additional channel of 

information to a pathologist, helping them determine whether or not the patient is high-risk 

and, thus, requires further investigations/procedures. 

 
Figure. 6.5 (a) Bright field and (b) Normalized phase image of a benign ER with atypical ductal 

hyperplasia. (c) Study design for screening out high-risk cases from low risk cases (d) ROC for 

separating high-risk ERs from low risk ERs. 
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6.3.4 Collagen fiber orientation measurement on stained tissue 

 The prognostic value of tumor-adjacent collagen signatures (TACS) in breast tissue has 

been demonstrated in a number of studies (5, 111). Traditionally, these markers have been 

measured using SHGM which provides chemical specificity to collagen. However SHGM has 

disadvantages in that the tumor edge is difficult to identify due to low contrast in cellular structures 

and the acquisition speed is slower than conventional microscopy due to a point-scanning 

geometry (118). We demonstrated in ref. (118) and in Chapter 5 that SLIM phase images of 

unstained tissue can be used to quantify collagen fiber orientation in breast tissue. Here we 

demonstrate that the relative angle r  between collagen fibers near an ER edge and the tangent to 

the nearest point on the edge itself is detectable on stained tissue biopsies. r  is schematically 

illustrated in Fig. 6.6. 

 For the 30 cases selected from TMA-1 (used in the previous two sections) we measured r  

in the ( , )Z x y maps of both stained and unstained tissue using an open source MATLAB based 

tool called CurveAlign (116) [see Methods Section 6.4.7 for details and parameter specifications]. 

All fibers within a distance of 63 m  from the ER edge were considered. This is within the range 

of the typical intercellular signaling distance reported in literature (116, 131). ERs in all cores were 

segmented out before computation of r  so that their cellular structures did not interfere with the 

process of collagen fiber extraction [see Section 6.4.2 of methods for details on ER segmentation].   

 Figure 6.6 compares the obtained results between unstained and stained tissue biopsies. 

Figures 6.6 (a) and (b) show the bright-field images of malignant and benign ERs whereas Figs. 

6.6 (c), (d), (f) and (g) illustrate the fiber orientation in their vicinity. As evident from these images, 

values of r  are on average higher for malignant tissue than for benign. Furthermore, the 

orientation measured on stained tissue qualitatively matches that measured on unstained. Figures 
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6.6 (e) and (h) show the histograms of r  measured for all tumor adjacent fibers within the 30 core 

dataset. Once again not only are the values comparable between stained and unstained tissue 

samples but also in both cases malignant ERs show a greater probability of forming higher angles 

with their adjacent fibers. These measurements agree with previous results in literature where it 

was demonstrated that higher values of r  are associated with more aggressive disease and that 

aligned collagen fibers, oriented perpendicularly to tumor edge, facilitate local invasion (5). The 

results here are also significant because collagen fiber based parameters show similar values 

between stained and unstained normalized phase maps. This means that prognostic markers related 

to stromal fibers too can, potentially, be evaluated using cSLIM while simultaneously having 

access to bright-field standard histopathology images (as demonstrated in the next section). 
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Figure 6.6 Comparison of relative collagen fiber angle r  between stained and unstained tissue 

biopsies. (a) and (b) Bright-field images of malignant and benign ERs, respectively. (c) and (d) 

Orientation of collagen fibers in stained tissue, in the vicinity of malignant and benign ERs, 

respectively. Fiber orientations are shown as green lines while the ER edge is marked in orange. 

(e) Normalized histogram of r  measured for all ERs within the stained tissue dataset (15 

malignant and 15 benign cores). (f) and (g) Orientation of collagen fibers in unstained tissue in 

the vicinity of malignant and benign ERs, respectively. Fiber orientations are shown as green 

lines while the ER edge is marked in orange. (h) Normalized histogram of r  measured for all 

ERs within the unstained tissue dataset (15 malignant and 15 benign cores). p-values in both 

cases were computed using the two-sample Student’s T-test. 

 

6.3.5 Quantifying aligned collagen fibers in stained tissue for prognosis  

 Having demonstrated in the last section that fiber extraction and orientation measurement 

is possible in cSLIM images of stained tissue, in this section we formally measure the prognostic 

marker TACS3. TACS3 refers to the presence of aligned collagen fibers that terminate at the tumor 

edge at high (near perpendicular) values of relative angle r . In Bredfeldt et al. (116), TACS3 was 
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measured using an automated, supervised learning scheme within a TMA imaged using SHGM. 

We imaged the same H&E stained TMA, referred to in the rest of the chapter as TMA-3, using 

cSLIM and extracted ( , )Z x y  maps for each core. The analysis method from ref. (116) was then 

repeated on these maps to demonstrate that cSLIM can also detect TACS3. Details regarding 

TMA-3 have previously been published and are summarized in Section 6.4.1.  

 TMA-3 comprised 196 cases (1 core per case) of IDC with disease free survival (DFS) and 

disease specific survival (DSS) information available for each case (5). Using open-source 

MATLAB based tools CT-FIRE (116, 127, 132) and CurveAlign, features were computed for each 

fiber that was within a distance of 100 m  from the tumor edge [see Section 6.4.9 for details on 

fiber extraction and feature computation]. Once again this distance was chosen bearing in mind 

the typical intercellular signaling distances reported in literature (131). For each core, the features 

extracted from each fiber were then combined to generate a feature vector for the core. Three core-

level features were found to be most informative in distinguishing TACS3 positive and negative 

patients: mean of    (mean nearest fiber alignment), mean of l  (nearest distance of fiber from 

tumor edge) and skewness of r .  These features are listed in the table in Fig. 6.7 (a). Their detailed 

description has already been published (116, 127) and is also described in Methods, Section 6.4.9. 

Feature vectors for 10 cores marked as TACS positive and 10 cores marked as TACS3 negative 

[based on pathologist consensus (5)] were used as predictors for training a linear Support Vector 

Machine (SVM) classifier. The classifier was then used to classify all 196 cores as either TACS3 

positive or TACS3 negative. Figure 6.7 (a) shows the difference in the feature means of groups 

classified as TACS3 positive and TACS3 negative. According to these mean values, cores 

classified as TACS3 positive have a higher probability of containing aligned fibers (high  )  that 

terminate at or near the tumor edge (low l ). Furthermore, these cores have r  histograms that are 
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more positively skewed, reflecting an asymmetry due to more instances of high r . These 

measurements agree with the pathologist definition of TACS3, indicating successful classification. 

 Survival analysis was carried out to test whether patients classified as TACS3 positive had 

significantly worse outcomes than those deemed TACS3 negative. Figure 6.7 summarizes the 

results of this analysis. Univariate cox proportional hazard regression and Kaplan-Meier estimates 

were used to compare survival between TACS3 positive and TACS3 negative cases. As shown in 

Fig. 6.7 (b), TACS3 positive patients had hazard ratios of greater than 2 and p-values < 0.05, 

representing a statistically significant chance of worse DSS and DFS outcomes. This trend is also 

evident in the Kaplan-Meier estimate of the DFS and DSS survival functions [Fig. 6.7 (c)] where 

TACS3 positive patients show significantly higher frequency of events. The p-values in this case 

were computed using the log-rank test (133). Finally we also computed the Pearson’s correlation 

coefficient   between the computationally generated TACS3 scores on cSLIM images and 

manual scores generated by pathologists [see ref. (5) for details] . As shown in Fig. 6.7 (d), a 

positive correlation was measured in each case, indicating that the automated analysis extracted 

the same or similar histological markers as were observed by the pathologists manually. 
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Figure 6.7. Results of survival analysis for TACS3 positive and TACS3 negative groups, 

classified based on fiber features measured from cSLIM ( , )Z x y  maps. (a) Fiber features found to 

be most informative in classifying cores as positive or negative. p  and n  refer to the mean of 

these features for the groups classified as positive and negative, respectively. (b) Results of the 

univariate cox proportional hazard regression with TACS3 status as variable. (c) Kaplan-Meier 

estimate of survival function for DSS and DFS. Vertical tic marks represent right-censoring events. 

The number of cores classified as TAC3 negative were 52 and those classified as TACS3 positive 

were 144. (d) Pearson’s correlation between the automated TACS3 scores and the 3 different 

manual pathologist scores (5).  

 

 Our results are significant because while TACS3 has been measured automatically using 

SHGM before, the cSLIM system provides important advantages over SHGM in terms of both 

speed and the fact that both phase and bright field images of epithelial tissue are obtainable in a 

single acquisition. As has been pointed out throughout this paper, a cSLIM based instrument will 

allow the assessment of traditional prognostic markers (e.g tumor grade and molecular subtype) as 

well as new prognostic markers (such as TACS3) in a single scan, posing modest new requirements 
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on instrument optics and no new requirements on sample preparation, compared with standard 

histopathology. 

6.4 Methods 

6.4.1 TMAs 

 TMA-1 was purchased unstained from US Biomax (Serial # BR1002) and comprised cases 

of IDC and normal benign tissue. The TMA was obtained from the manufacturer with all human 

subject identifiers removed and neither the author nor their institution were involved in the tissue 

collection. Details regarding this TMA have already been reported in ref. (87) and Chapter 4. For 

each case diagnosis was provided by the manufacturer’s board certified pathologist through 

examination of both H&E stained tissue and IHC makers, both on parallel sections of tissue. After 

acquiring SLIM images, the TMA was H&E stained for cSLIM imaging using standard protocols 

(13). Before staining, the coverslip was removed from the slide and post-staining the slide was re-

coverslipped using the same mounting medium as before (Xylene). As discussed in Results and 

Discussion, 15 cases of IDC and 15 cases of normal tissue (diagnosed as BWA by the 

manufacturer’s pathologist) were randomly selected from the TMA for the studies discussed in 

this chapter. 1 core per case was available. Each biopsy core had a diameter of 1 mm and thickness 

of 5 m . For the IDC cases, a second board certified pathologist also marked any benign regions 

within the tissue cores which were then excluded from the analysis. In this way, diagnosis of each 

ER within each core (BWA or IDC) was available. 

 TMA-2 was purchased, already H&E stained, from US Biomax (Serial # BR1003) and 

comprised cases of IDC, BAH and BWA. Within the BWA cases, cases of benign usual 

hyperplasia (BUH) were also available. The TMA was obtained from the manufacturer with all 

human subject identifiers removed and neither the author nor their institution were involved in the 
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tissue collection. This is the same TMA slide that was used in the study published in ref. (134). 

Each biopsy core had a diameter of 1 mm and thickness of 5 m . For all cases in TMA-2, diagnosis 

was provided by the manufacturer through inspection by a board certified pathologist. The 

diagnosis was based on inspection of H&E stained tissue as well as evaluation of IHC based 

markers, on a parallel tissue section. For each core, the tissue block from which it was extracted 

was also examined to ensure correct diagnosis had been reached for the core. Since pathologist 

agreement on cases of BWA and IDC is high [reported as 97.1 and 97.7% in (129)] while that for 

BAH is low [<50% in (129)] the cores diagnosed as BAH by the first pathologist were re-examined 

by a second board certified pathologist. The second pathologist confirmed the BAH diagnosis of 

the first pathologist. Since we classify each ER as high risk/low risk in our method, all high-risk 

cores (IDC and BAH) were also examined by the second pathologist for low-risk regions (benign 

lesions without atypia), which were removed from analysis. In this way diagnosis for each ER 

(low-risk or high-risk) was available for all cases within TMA-2. 

 TMA-3 was used in previous studies by Bredfeldt  et al. (116) and Conklin et al.(5). Details 

regarding patient profiles, tissue processing and core selection have already been described in ref.  

(5). The dataset used from the TMA consisted of 196 cores (1 core per patient) and patients were 

followed up for a median time of 6.2 years, ranging from 1-223 months in order to determine 

patient outcomes. DSS and DFS information was available for each patient. DSS was defined as 

the time from diagnosis to death from breast cancer or date of last follow up evaluation. DFS was 

defined as the time from date of diagnosis to the first date of recurrence. The TMA-3 was H&E 

stained using standard protocols (13), allowing for simultaneous acquisition of both normalized 

phase and bright-field images using the cSLIM system. All tissue and patient information were 

obtained after approval by IRB (5). 
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 Analysis of required sample size based on statistical power of 0.8 and two-sided p-value 

of 0.05 (using log-rank test) was performed using the method described in (135). Using the 10-

year survival fractions in the Kaplan-Meier curves (Fig. 6.7) to compute the Hazard Ratio (135), 

the required sample size was estimated as 
reqN  = 100 cases for DFS and 

reqN  = 150 for DSS.  

These are both smaller than the 196 cases we used in our study. During this analysis proportions 

of TACS3 positive and TACS3 negative cases were based on the results of the SVM classifier 

(Section 6.3.5). 

6.4.2 Epithelial tissue segmentation for feature extraction 

 For computation of epithelial features during supervised learning as well for measurement 

of relative fiber orientation, knowledge of the ER boundary is required. For TMA-1 and TMA-2, 

the ER boundaries were annotated in all the cores manually using the region-of-interest tool in 

ImageJ by using the H&E stained tissue bright-field images as a guide. Consistent criteria were 

used during annotation– groups of epithelial cells bounded by stroma on all side were considered 

a single ER. Other tissue components were considered part of the ER if surrounded on all sides by 

epithelial cells (87).  

 The ER segmentation procedure for TMA-3 has already been described in ref. (116). A 

supervised automated classification scheme, relying on features derived from tissue bright-field 

images, was used in that case. We used the same ER segmentation masks for the studies done in 

this chapter. Registration of ( , )Z x y  maps with segmentation masks was carried out by first 

registering the cSLIM bright-field images with the bright-field images from the original study. 

Speed-Up Robust Features (SURF)(136) were extracted on both sets of bright-field images and an 

affine transform for registering them was found. This transform was then applied to the ( , )Z x y  

maps to register them with the ER segmentation masks.  
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6.4.3 SLM calibration with RGB camera 

 SLIM requires SLM calibration so the correct phase modulation is applied between the 

scattered and incident components of light (48). This calibration is different for different light 

spectra due to the wavelength dependent nature of the SLM liquid crystal response. The spectra of 

light in SLIM and cSLIM are different in terms of both spectral width and central wavelength. 

This illustrated in Fig. 6.8. Fig. 6.8 (a) compares the measured spectra of two modalities. The 

spectrum in SLIM is simply that of the illumination source whereas to obtain the cSLIM spectrum 

one has to multiply the illumination spectrum with the spectral response of the red, green and blue 

channels of cSLIM [see Eq. (A.1) in Appendix A]. From these spectra, which were measured as a 

function of wavelength  , we obtain the frequency dependent spectra as function of angular 

frequency   (which requires re-sampling and rescaling)(48). By taking the Fourier transform of 

these frequency spectra we obtain the temporal autocorrelations for both modalities, shown in Fig. 

6.8 (b). The central wavelength 0  and the coherence length cl  extracted from these correlation 

functions are different: the cSLIM spectrum is slightly blue-shifted and the modality has a longer 

coherence length than the SLIM. cl  here is defined as the full-width half maximum (FWHM) of 

the envelope [dashed line in Fig. 6.8 (b)] of the autocorrelation function. 
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Figure 6.8 (a) Comparison of SLIM and cSLIM spectra. The raw spectra were normalized to 

make the sum over all wavelengths equal to 1. (b) Autocorrelation functions obtained by taking 

the Fourier transforms of the spectra in (a). (c) Amplitude (intensity) modulation curve obtained 

in cSLIM by configuring the SLM in amplitude mode. (d) Hilbert transform of the amplitude 

modulation curve in (c) provides the phase calibration. 

 

 For these reasons, recalibration of the SLM was required for the cSLIM system. After 

configuring the SLM in amplitude modulation mode (48), the 8 bit grayscale input to the SLM 

was scanned from 0-255. The corresponding amplitude modulation in ( ), ;I x y   was measured and 

each frame was averaged to generate a one dimensional amplitude modulation curve, shown in 

Fig. 6.8 (c). By taking the Hilbert transform of this curve, the SLM calibration curve, relating 

phase values to grayscale input, was obtained. The grayscale values corresponding to 

0, / 2, , 3 / 2   = rad were used in all imaging experiments.    
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6.4.4 Attenuation calibration for bright-field objective 

 Phase contrast objectives contain a phase plate in their back focal planes that not only 

introduces a / 2  rad phase shift between the unscattered light 0U  and scattered light 1U  but also 

imparts an attenuation factor 1

0

| |

| |
pc

U

U
 = . This factor is used during SLIM phase reconstruction 

while calculating the ratio of the amplitudes of the two interfering fields (48, 137). In our cSLIM 

experiments, we have used a bright-field objective that does not have this attenuating element. An 

equivalent value of attenuation, 
bf , was, therefore, used during phase reconstruction. 

bf was 

obtained through the following calibration procedure which is illustrated in Fig. 6.9. An unstained 

TMA core was imaged using cSLIM with both a phase contrast and bright-field objective. During 

phase reconstruction for the phase contrast case, the measured attenuation factor 1.97pc =  was 

used and the raw phase image ( , )x y  was obtained [Fig. 6.9 (c)]. For the bright-field case the 

equivalent attenuation 
bf  was numerically tuned and the phase ( , )x y was obtained for each 

bf . 

For each 
bf  the cross-correlation ( , )pc bfP P  between the probability distributions 

pcP  and 
bfP  of 

( , )x y in the phase contrast and bright-field cases, respectively, was measured (138). 
pcP  and 

bfP

were obtained by normalizing their respective image histograms (constructed with 512 bins each). 

As shown in Fig. 6.9 (b), ( , )pc bfP P maximizes at 3.4bf =  which was, thus, the value used for all 

subsequent imaging experiments. Fig. 6.9 (d) shows the phase image obtained using the bright-

field objective at 3.4bf = which has similar values to the corresponding phase contrast objective 

image [Fig. 6.9 (c)]. 
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Figure 6.9 (a) Attenuation 

pc  of the unscattered light 0U  with respect to scattered light 1U in a 

phase contrast objective. For imaging with a bright-field objective this term is introduced 

numerically, 
bf . (b) Cross-correlation   between the probability distributions 

pcP  and 
bfP  of the 

same unstained TMA core measured using phase contrast and bright-field objectives, 

respectively.   is measured for different values of bf and maximizes at bf = 3.4. (c) cSLIM 

image of the unstained tissue core obtained using a phase contrast objective with the measured 

value of attenuation 1.97pc = . (d) cSLIM image of the unstained tissue core obtained at the 

optimum value of 
bf = 3.4. 
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6.4.5 Procedure for stain normalization  

 As discussed in Results and Discussion Section 6.3.2, we extracted the normalized phase 

maps ( , )Z x y  from the raw phase maps ( , )x y generated by the cSLIM system, using Eq. (6.2). 

This computation is illustrated in Fig. 6.10. For each tissue core ( , )x y  map we first generated a 

segmentation mask [Fig. 6.10 (b)] using thresholding followed by morphological operations 

(morphological closing and removal of connected objects smaller than a certain number of pixels). 

A circular structural element for morphological closing was used and its diameter was determined 

iteratively. This mask was then used to calculate the mean   and standard deviation   of the 

foreground region in ( , )x y  (region occupied by tissue core). Finally, the ( , )Z x y image was 

computed for the core from these parameters as shown in Figs. 6.10 (c) and (d). 
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Figure 6.10. (a) Raw phase map of stained TMA core. (b) Mask for computation of   and   

over foreground pixels. (c)-(d) Computation of normalized phase map. 

 

6.4.6 Classification scheme for cancer diagnosis 

 The supervised classification of first benign versus malignant lesions, followed by low-risk 

versus high-risk lesions [Section 6.3.3 of Results and Discussion] is based on the procedure we 

reported in ref. (87) and described in Chapter 4. The procedure can be divided into three main 

steps: feature extraction, training and validation.  
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 During feature extraction, first maps of the ER curvature C , mean scattering length sl  and 

texture vector T  were extracted for each core within our datasets. The ER curvature C refers to 

the extrinsic curvature of a two-dimensional plane (in this case a benign or malignant ER) and can 

be construed as the magnitude of the rate of change of a vector tangent to the ER perimeter. We 

used an open-source MATLAB code to measure C  for each annotated ER (89). The mean 

scattering length sl  is the length-scale over which a single scattering event happens on average and 

can be computed from tissue phase images using the scattering-phase theorem (57). The texture 

vector T consists of frequencies of elements known as ‘textons’ within the vicinity of a pixel in 

the image. Textons have been shown to be effective measures of the unique texture surrounding a 

pixel (25, 90, 91).  For the straightforward benign versus malignant classification, contrary to our 

previous work where 50 textons were trained (resulting in a 50 dimensional vector T ), we trained 

30 textons due to the smaller size of the dataset (87). For classifying low-risk and high-risk lesions, 

once again 30 textons were trained. In each case, this number was obtained iteratively by 

measuring the cross-validation AUC (discussed below) while increasing the number of textons 

and stopping at the point where no improvement in AUC was noticed, to avoid overfitting. For 

feature extraction, all other parameters were identical to those used in ref. (87). 

 After pixel-wise computation of these features, the median over each ER was calculated 

for each feature  , ,sC l T      , using the ER masks obtained through manual segmentation 

[Section 6.4.2]. These were then concatenated to generate an overall (32 dimensional) feature 

vector for each ER. Using pathologist diagnosis for each ER as the class label (benign or malignant, 

low risk or high risk) and its overall feature vector as the predictor, an LDA classifier was trained. 

During validation, feature vectors for an unknown ER were input to the classifier which generated 

a likelihood score for the ER belonging to either class. The overall data set was partitioned into 



94 

 

three equal sets. Three validation trials were performed (3-fold cross validation) (93) and in each 

trial two sets were used for training and the remaining set for validation. The classifier performance 

was measured using ROC analysis. Likelihood scores for each ER, generated by the classifier from 

the three validation trials, were pooled together (95) to generate an overall ROC curve [Figs. 6.4 

(i) and 6.5 (d) ] and the area AUC was used as a metric for classifier accuracy.  

6.4.7 Fiber orientation extraction on TMA-1 using CurveAlign 

 In Results and Discussion Section 6.3.4, we compared r , the relative angle between the 

orientation of a collagen fiber and the tangent to the nearest point on the tumor edge (depicted in 

Fig. 6.6), between benign and malignant cases. The results were extracted using an open source 

MATLAB based tool called CurveAlign, algorithmic details of which have already been described 

in a number of publications (115, 116, 127, 139). For our analysis in Section 6.3.4, we chose the 

Curvelet Transform (CT) based fiber analysis method within CurveAlign. This method uses the 

curvelets provided by curvelet transformation (140) of the image to represent the edges of collagen 

fibers, without segmenting the individual fibers. From computation of these curvelets, thus, scale, 

location and relative orientation of each fiber can be calculated (127). Tiff files that contained 

masks of the ERs [obtained through manual annotation, described in Section 6.4.2] were used in 

the ‘Boundary Method’ field within CurveAlign. The fraction of coefficients to keep, during CT 

computation, was set at 0.005 and the distance from the tumor edge, up to which fibers are 

analyzed, was set to 100 pixels or approx. 63 m . Before extraction of r , ERs were segmented 

out from all the core images so that the cellular structures within them did not interfere with the 

process of fiber extraction during curvelet transformation. 
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6.4.8 TACS3 measurement on TMA-3 using CT-FIRE and CurveAlign 

 As described in Results and Discussion, for detecting the TACS3 prognostic marker on 

cSLIM ( , )Z x y  maps the same general method as used in ref. (116)  was employed. We summarize 

that analysis method here. First, the ERs within each core were segmented out using its 

corresponding segmentation mask [see Section 6.4.2].  This was carried out to ensure that during 

subsequent fiber segmentation, cell edges did not interfere. CT-FIRE was then used to segment 

out all fibers within the ( , )Z x y  map of each core. Default parameters, as outlined in the CT-FIRE 

manual(132), were used except for the parameters labelled “thresh_im2” and “s_xlinkbox” for 

which values were set to 30 and 5 respectively. These fiber segmentation maps, along with ER 

segmentation masks, were then input to CurveAlign for extraction of fiber features. Features were 

computed for all fibers that were a distance of 100 m  from the tumor edge.  In CurveAlign, the 

“CT-FIRE Fibers” fiber analysis method was chosen and the “TIFF Boundary” was chosen as the 

boundary method. CurveAlign extracts a total of 34 fiber features as part of its standard 

computation. These features are related to the fiber curvature, width, length, density, alignment, 

proximity to epithelium and relative angle to epithelial boundary (116). As discussed in the Results 

and Discussion, core-level statistics derived from 3 features (related to alignment, proximity to 

epithelium and relative angle) were found to be the best predictors of DSS and DFS. The first of 

these features was the mean nearest alignment  , defined as the mean of the alignment of a fiber 

to its nearest 2, 4, 8 and 16 fibers. The algorithm for measuring the alignment of a fiber to its 

nearest neighbors has already been described in (116). The second feature used was the distance 

of each fiber to the nearest ER boundary, denoted l . The final feature was the relative fiber angle 

r . Means of   and l  and skewness of r , over each core, were used as predictors for SVM 

training [Section 6.3.5 of Results and Discussion]. 
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 For survival analysis, the Kaplan-Meier estimate was computed using an open-source 

MATLAB code (141). 

 

6.5 Summary and Conclusion 

 In summary, we have presented in this chapter cSLIM, a tissue imaging modality that 

provides stain-independent, quantitative markers of disease while preserving traditional 

histopathology images. Our instrument makes clinical translation of our disease markers easier by 

posing no new sample preparation requirements and providing traditional and novel markers in a 

single acquisition. Due to its modular design, the cSLIM instrument also requires fewer additional 

optical components than other label-free techniques and has higher throughput. We demonstrated 

that cSLIM normalized phase maps are stain-independent by comparing the results of phase 

imaging of tissue before and after staining. We also demonstrated that diagnostic and prognostic 

markers relevant to breast cancer can be extracted from cSLIM images through automated machine 

learning techniques. Since these disease markers are quantitative, they eliminate subjectivity from 

tissue evaluation. Because the analysis is automated, disease markers can be obtained by 

pathologists rapidly and reproducibly. Furthermore, by providing a fast and convenient means of 

extracting stromal collagen based prognostic markers, our instrument can potentially help 

pathologists predict disease aggressiveness in patients for whom other more traditional disease 

markers fail.   
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Chapter 7: Thesis summary and future work 

 

In summary, I have presented in this thesis instrumentation and computational tools that address 

some key limitations of/opportunities in traditional breast histopathology.   

Traditional breast histopathology for diagnosis is qualitative and manual, resulting in inter-

observer disagreement especially in cases that are difficult and when the tissue sample is small. 

The automated diagnosis scheme introduced in Chapter 4 relies on OPD based markers to perform 

quantitative histopathology for diagnosis. Relying on physical properties of tissue, this method 

performs an objective assessment of patient health and, being automated, can improve upon the 

throughput of existing evaluation methods. Previous attempts to quantify disease signatures for 

diagnosis have relied heavily on analysis of stained-dependent signals in images of tissue. The 

effect of stain variation complicates the process of automated detection in these approaches. While 

other label-free modalities have shown promise for breast cancer diagnosis, QPI has advantages 

over them in terms of speed, resolution, cost-effectiveness and compatibility with existing 

infrastructure in pathology labs. Furthermore, as I have demonstrated in Chapter 6, QPI can be 

used to obtain a stain-independent phase signal from stained tissue as well, which makes QPI based 

approaches even more attractive for clinical translation, once again due to the minimal disruption 

caused in existing methods.  

Future studies on diagnosis, building on the methods and tools discussed in this thesis, need 

to be focused on two fronts. Firstly, while I have demonstrated that detection of IDC and 

stratification of benign lesions (with atypia vs without atypia) is feasible using QPI based imaging 

markers, other breast lesions need to be taken into consideration. Testing the algorithms described 

for diagnosis in Chapters 4 and 6 for classifying different invasive breast carcinomas (ductal, 
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lobular, tubular etc.) as well as for separating BAH from DCIS are important considerations for 

the future. Secondly, while we showed in Chapter 6 that breast cancer diagnosis on stained tissue 

is feasible using our OPD based feature set, the robustness of the approach needs to be tested 

against stain variation from slide to slide and laboratory to laboratory. Obtaining stained samples 

from different labs, with potentially different staining protocols, and testing the feature set on those 

samples would be an important next step. 

On the prognosis front I have demonstrated in this thesis that tumor adjacent collagen-

based prognostic markers can be detected using QPI of breast tissue. As discussed earlier, due to 

the heterogeneous nature of breast cancers, traditional prognostic markers do not provide sufficient 

information on disease aggressiveness for some patients and these novel markers can help 

pathologists make better treatment decisions for such patients. QPI provides a faster and more 

convenient means for extracting these stromal markers in tissue compared to other methods such 

as SHGM. I also demonstrated that algorithms used to extract collagen markers in unstained tissue 

biopsies also work for normalized phase images of stained tissue. Thus, detection of these markers 

on stained tissue not only obviates the need for additional sample preparation but also allows   

traditional epithelial prognostic markers to be observed simultaneously with markers in tumor 

adjacent stroma. 

Futures studies related to imaging of collagen-based tissue biomarkers, extracted using 

QPI, can potentially look at correlations of these markers with other prognostic indicators such as 

histological grade and tumor molecular subtype. These studies can shed further light on epithelial-

stromal interactions responsible for invasion and metastasis in breast tissue. Using the cSLIM 

system, which generates both bright-field and phase images of whole-slides rapidly, studies like 

these involving large patient cohorts are feasible. In addition, since the tumor microenvironment 
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influences tumor progression in carcinomas of other organs as well, analysis of collagen fibers in 

pancreatic, colon, ovarian and prostate cancer are also worth pursuing. Such analyses have already 

been performed to varying extents by other researchers (56, 72, 142) in the past but the algorithms 

and instrumentation discussed in this thesis provide an unprecedented ability to look at large case 

sets and merge traditional markers with novel ones. 
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Appendix A: Analysis of dispersion in stained tissue 

 

 

 As discussed in the main text, the spectra of SLIM and cSLIM are different due to the 

effect of the spectral responses of the red, green and blue channels of the cSLIM system. This 

results in different values of both central wavelength 0  and coherence length cl  for the two 

systems even in absence of a stained tissue sample [Fig. 6.8 (a) and (b)]. Due to differences in 

absorbance between different parts of H&E stained tissue, the cSLIM 0  and cl are expected to 

change even further. Our results show that normalization of both stained and unstained tissue maps 

[using Eq. (6.2) in the main text] accounts for the differences between the SLIM and cSLIM 

spectra, making results from both modalities very similar. We discuss in this section reasons for 

why this normalization removes the stain dependent signal from phase images. 

 To explore this we first compute the pixel-wise spectra of light detected by the RGB camera 

when an H&E stained tissue core is imaged.  From the bright-field image measured by the camera 

[illustrated in Fig. A.1 (a)] we extract the red, green and blue channel images, ( , ), ( , )R x y G x y  and 

( , ),B x y  respectively. By dividing each image by the average signal in a 30 x 30 pixel background 

region, we are able to obtain the transmission images for three channels: ( , ), ( , )R GT x y T x y  and 

( , )BT x y  [Fig. A.1 (b)]. Fig. A.1 (c) shows the spectral response of the cSLIM system, in the 

absence of tissue, for the red, green and blue channels [ ( ), ( )R GS S   and ( )BS  , respectively]. This 

response includes both the filter response of the camera as well as the weights attached to the three 

channels numerically during computation of the equivalent grayscale image ( , )I x y  [Eq. (6.1) in 

the main text]. Thus, the cSLIM spectrum for ( , )I x y is the sum 

 

  ( ) ( ) ( ) ( ) ( ) ( ) ( )cSLIM ill R ill G ill BS S S S S S S      = + +    (A.1) 
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where ( )illS   is the illumination source spectrum, which is also the spectrum for SLIM imaging. 

( )cSLIMS   and ( )illS   were also depicted earlier in Fig. 6.8 (a).  

 

 

 

Figure. A.1 (a) Bright-field image of a stained TMA core. (a) Transmission maps for the red, 

green and blue channels. (c) Spectral response of cSLIM for the red, green and blue channels. (d) 

cSLIM spectrum at each pixel computed using Eq. (S2). 

 

 Assuming constant values of transmission for each spectral channel per pixel [ ( , )RT x y , 

( , )GT x y  and ( , )BT x y ] the spectral response for each channel in the presence of stained tissue can 

be calculated as - ' ( , , ) ( ) ( , )i i iS x y S T x y =  where , ,i R G B= .  Multiplying each response by the 

illumination spectrum ( )illS   and summing them gives us the pixel-wise cSLIM spectrum in the 

presence of tissue as  
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 ' ( , , ) ( ) ' ( , , ) ( ) ' ( , , ) ( ) ' ( , , ).cSLIM ill R ill G ill BS x y S S x y S S x y S S x y      = + +   (A.2) 

  This 3d spectrum is illustrated in Fig. A.1 (d). 

From ' ( , , )cSLIMS x y   we can compute the central wavelength map 0 ( , )x y  for the tissue core. By 

subtracting the mean value of 0  in a 30 x 30 pixel background region from 0 ( , )x y , we obtain 

the wavelength shift image 0 ( , )x y , illustrated in Fig. A.2 (a). This image shows that dispersion 

(variation of 0 in x  and y ) due to tissue absorbance is small. This is quantified by the histogram 

(computed over the foreground region consisting of tissue only) in Fig. A.2 (b) which shows a 

mean shift of 2.3 nm with a standard deviation of 1.5 nm. Dispersion also causes changes in 

coherence length cl  across the tissue. The image ( , )cl x y  can be obtained from ' ( , , )cSLIMS x y   by 

computing its autocorrelation function through Fourier transformation and measuring the FWHM 

of the function’s envelope [see Section 6.4.3]. The shift in coherence length ( , )cl x y  can be 

extracted from ( , )cl x y  by subtracting from it the mean value of cl in a 30 x 30 pixel background 

region. ( , )cl x y is shown in Fig. A.2 (c) and its histogram is shown in Fig. A.2 (d). A mean shift 

in cl  of  81.0 nm−  and a standard deviation of 58.3 nm was measured through this analysis. 
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Figure A.2 (a) Wavelength shift across the tissue core due to dispersion. (b) Normalized 

histogram of the image in (a) over the foreground (tissue region). (c) Shift in coherence length 

across tissue core due to dispersion. (d) Normalized histogram of the image in (c) over the 

foreground (tissue region). (e) Dispersion (shift in refractive index) in the stained tissue core. (f) 

Normalized histogram of the image in (e) over the foreground (tissue region). 

 

 This spectral analysis sheds light on why a simple division by the standard deviation of 

( , )x y  results in the stain-independent map ( , )Z x y [Eq. (6.2) in main text]. To begin with the 

slight difference in central wavelength between SLIM and cSLIM (589 nm vs 558 nm, see Section 

6.4.3) would indicate that cSLIM should have different phase values even in the absence of tissue 

absorbance. However, division of ( , )x y  by its standard deviation removes the wavelength 

dependent 01 /   factor (27): 

  
0

2
( , ) ( , )x y n x y t





=   ,  (A.3a) 

 
 

 

( , ) ( , )
( , )

( , )

n x y mean n x y
Z x y

std n x y

−
= ,  (A.3b) 
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accounting for the central wavelength difference between cSLIM and SLIM. In Eq. (A.3a), 

0( , ) ( , )n x y n x y n = −  refers to the pixel-wise difference between the refractive index of the tissue 

( , )n x y  and that of the surrounding medium 0n . t  is the thickness of the tissue section, assumed 

for simplicity to be constant. This assumption is reasonable for tissue biopsies that are cut to thin 

(4-5 m ) sections for histopathology (52, 56).  Here it is also assumed that refractive index is 

independent of wavelength which is a reasonable assumption, in the absence of tissue absorbance, 

for the small difference in the two central wavelengths between SLIM and cSLIM. 

 However, in presence of stained tissue, 0  itself is x  and y  dependent and does not cancel 

out when ( , )x y  is divided by its standard deviation. The normalized phase image for cSLIM in 

this situation, Z  , is thus given by 

  

   

 

0 0

0 0

0

0

0

, , ( , ) , , ( , )

( , ) ( , )
, , ( , )

, , ( , )

( , )

n x y x y n x y x y
mean

x y x y
Z x y x y

n x y x y
std

x y

 

 






  
−  

  =
 
 
 

  (A.4a) 
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(A.4b) 

where cSLIM is the cSLIM central wavelength ( 0  = 558 nm) in the absence of tissue dispersion, 

0 is the shift in central wavelength caused by staining  and n  is the shift in tissue refractive 

index due to stain induced dispersion.  

 Eqs. A.4 (a) and A.4 (b) would indicate the need for a local normalization constant rather 

than the global one we have used in our study. However, if 0  and n  are small valued and/or 

have weak x  and y  dependence, Z Z  . As shown in Fig. A.2, the x  and y  dependence of 0  
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is small (standard deviation of 1.7 nm over the image). To determine this for n , the following 

procedure was employed. The 3d spectrum ' ( , , )cSLIMS x y  , was first rescaled and resampled to 

obtain the frequency spectrum ' ( , , )
cSLIM

S x y   where 
2 c




= , c  being the speed of light. The same 

was done to ( )cSLIMS   to obtain ( )cSLIMS  . The transmission spectrum ( , , )T x y   was then obtained 

as 

' ( , , )
( , , )

( )

cSLIM

cSLIM

S x y
T x y

S





= .      (A.5) 

 From the transmission spectrum, the refractive index ( , , )n x y   can be obtained by using the 

Hilbert transform relationship between the real and imaginary parts of the electric susceptibility 

(143, 144). The procedure for this is outlined in ref. (143). The resulting refractive index is 

determined only up to an additive constant since the Hilbert transform of a constant is zero. Since 

we have knowledge of the central wavelength at each pixel [given by 0 ( , )x y ], the refractive index 

map ( , )n x y  at this central wavelength can be computed from ( , , )n x y  . Finally, by subtracting the 

refractive index map in absence of dispersion, ( , , 558 )cSLIMn x y nm = , from ( , )n x y  we get the shift 

in refractive index due to tissue absorption ( , )n x y . This subtraction also accounts for the 

differences in additive constants across the ( , )n x y  map caused by the computation of an 

independent Hilbert transform per pixel. ( , )n x y  is shown in Fig. A.2 (e) whereas Fig. A.2 (f) 

shows its histogram, once again computed only over the foreground (tissue region). As shown, not 

only is there a small shift in refractive index due to dispersion in tissue but the x  and y  dependence 

is also weak (standard deviation of 6.6 x 10-4).   

 We, therefore, conclude that our normalization works well despite tissue dispersion 

because of the small change in 0 , and thus in refractive index n , across the tissue core. Any 
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constant (spatially invariant) changes in both wavelength and refractive index are accounted for in 

( , )Z x y  by subtraction by the mean and division by the standard deviation of the raw phase 

( , ).x y  
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