(© 2018 by Guojun Hu. All rights reserved.



ADJOINT SENSITIVITY ANALYSIS OF THE TWO-PHASE TWO-FLUID MODEL
BASED ON AN APPROXIMATE RIEMANN SOLVER

BY

GUOJUN HU

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Nuclear, Plasma, and Radiological Engineering
in the Graduate College of the
University of Illinois at Urbana-Champaign, 2018

Urbana, Illinois

Doctoral Committee:

Associate Professor Tomasz Kozlowski, Chair
Assistant Professor Caleb Brooks

Dr. Brian F. Jewett

Professor James F. Stubbins

Professor Rizwan Uddin



Abstract

A new shock-capturing upwind numerical solver (i.e. forward solver) and an adjoint sensitivity analysis
framework for the two-phase two-fluid model are developed and verified. Both the numerical solver and the
adjoint sensitivity analysis framework are based on an analytical analysis of the two-phase two-fluid model.

The challenge (due to the arbitrary equation of state) in the analytical analysis of the two-phase system
is overcome by introducing several new auxiliary variables. With the help of new auxiliary variables and
thermodynamic transformations, the Jacobian matrix of the system can be simplified to a well-structured
form, which is convenient for an analytical analysis. Approximate eigenvalues and eigenvectors are obtained
using the difference in the thermodynamic properties of liquid and gas phases. The approximate eigenvalues
and eigenvectors are essential for constructing the upwind numerical solver, because they provide correct
upwind information of the system. Both the numerical solver and the adjoint sensitivity analysis framework
are verified with several numerical tests.

For the forward tests, the results show that the solver is stable, accurate, and robust. Results from the
new solver are in a very good agreement with either analytical solution or measurement data. The grid
convergence study shows that the solver using a Roe-type numerical flux is first-order accurate in space and
the solver using a WENO-type numerical flux is at least second-order accurate in space. For the adjoint tests,
the results show that the adjoint sensitivity analysis framework works well for both steady-state problems and
time-dependent problems. The adjoint sensitivities (with respect to initial conditions, boundary conditions,
or physical model parameters) are verified by either analytical sensitivities or forward sensitivities.

A critical and unique feature of the new solver is that the formulation does not depend on the form of
equation of state, which ensures that the solver is applicable to practical two-phase flow problems, such as
a boiling pipe. The successful application of the solver to a boiling pipe is very encouraging, as it opens up

the possibility of applying many other advanced methods to two-phase flow problems.
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Chapter 1

INTRODUCTION

Two-phase flows are of great importance in reactor safety analysis. Development of appropriate mathematical
models for two-phase flows is complicated because of the complex nature of two-phase flows, which originates
from the existence of moving interfaces and significant discontinuities (in fluid properties) near the interface
[1]. It is noted that many of two-phase systems have a common geometrical structure. Two-phase flows
can be classified into different flow regimes according to the structure of interface, such as separated flow,
mixed flow, and dispersed flow [1]. Mathematical models for two-phase flows depend on the flow regimes.
For example, considering the flow of two phases, the velocity of one phase may be different from the other.
For some systems, the liquid and vapor have comparable velocities; while in other systems, the liquid and
vapor are completely separated. Various mathematical models have been derived, some with one momentum
equation for the mixture while others with a separate momentum equation for each phase. In the mixture
model, one momentum equation is used. In contrast, the two-fluid model treats the two phases separately,
requiring two sets of governing equations. The more general model is the two-phase two-fluid model, which
is proposed by averaging local field equations for each phase [1]. For transient two-phase flows, the two-fluid
model offers a more general and detailed description than the mixture model. The focus of this thesis is
the development of a new numerical solver and an adjoint sensitivity analysis framework for the two-phase
two-fluid model.

This chapter gives a brief introduction to the motivation for developing a new numerical solver and an

adjoint sensitivity analysis framework for the two-phase two-fluid model.

1.1 Existing numerical solvers

Several two-phase flow system codes, such as RELAP [2] and TRAC [3], were developed to simulate the
two-phase flow problems in a nuclear power plant. The TRAC/RELAP Advanced Computational Engine
(TRACE) [4] is the latest in a series of advanced systems codes developed by the U.S. Nuclear Regulatory
Commission (NRC). It combines the capabilities of the NRC’s four main system codes (TRAC-P, TRAC-B,



RELAP5, and RAMONA) into one modernized computational tool. Similarly, the RELAP5 series of codes
has been developed at the Idaho National Laboratory (INL) under the sponsorship of the U.S. Department of
Energy and U.S. NRC. RELAP5-3D [5] is the latest in the RELAPS5 series of codes. TRACE and RELAP5-
3D have a lot in common. Both codes use the same two-phase two-fluid model. Both codes employ the
semi-implicit-based numerical methods to solve the partial differential equations with the Finite Volume
Method (FVM). TRACE employs the so-called Stability Enhancing Two-Step (SETS) method [6], which
avoids the Courant stability limit on the time step but has relatively high numerical diffusion. RELAP5-3D
employs the so-called Semi-Implicit and Nearly-Implicit scheme. Semi-Implicit method is limited by the
material Courant limit; while the Nearly-Implicit method is not limited by the Courant limit.

In these codes, the basic numerical method is the the first order donor cell differencing method on
a staggered grid. Numerical dissipation and various degree of implicitness are necessary to stabilize the
numerical method. Recently, there is a trend to solve the two-phase two-fluid model with a fully implicit
method with the help of a Jacobian Free Newton Krylov (JFNK) solver. Abu Saleem [7] and Zou [8, 9]
obtained encouraging success with this method.

Most of previous methods use a staggered grid. For numerical methods based on a staggered grid,
scalar quantities (e.g. void fraction and pressure) are calculated at cell centers while vector quantities (e.g.
velocity) are calculated at the cell boundaries. Because of this difference, the mass and energy equations are
discretized differently than the momentum equations, which makes the notations for the discretized equations
very complicated. Solving the two-phase two-fluid model with these methods is already very complicated;
trying to develop an adjoint sensitivity analysis framework based on these methods is even more challenging.
This is the main motivation for developing a new numerical solver, which is mathematically consistent,

algebraically simpler, and numerically more accurate and stable than the existing solvers.

1.2 Adjoint sensitivity analysis

Analysis of uncertainty is critical for code Verification and Validation (V&V) [10]. V&V is usually defined
as a primary means to assess the accuracy and reliability of simulations. Verification is separated into
two different types: code verification and solution verification. The code verification assesses the reliability
of software code, while the solution verification deals with the numerical accuracy of the computational
model. In comparison, validation assesses the physical modeling accuracy of a computational simulation by
comparing with the experimental data. Conceptually, verification is the process that ensures the physical

models are correctly solved by the computer code, while validation is the process that ensures the physical



models are suitable for predicting desired phenomena.

The reliability of predictions of the system codes is closely related to the validation of their physical
models. For example, the accuracy of void fraction prediction in a Boiling Water Reactor (BWR) is very
important, because void fraction has a significant effect on the reactivity, pressure drop, critical heat flux,
and many other phenomena which are relevant for reactor safety. The uncertainties of code predictions
should be provided, which require an uncertainty analysis by propagating the input uncertainties to the
output predictions.

An important step in uncertainty analysis is the sensitivity analysis of the response of interest to various
uncertain input parameters. Common approach to calculate the sensitivity includes regression-based meth-
ods and variance-based methods [11, 12]. However, these methods require solving the system of interest (e.g.
two-phase flow) multiple times, sometimes 100s of times, which is expensive in terms of computational time.

An alternative approach to compute sensitivities is the adjoint method. The use of adjoint method for
computing sensitivities came up in nuclear science in the 1940s [13]. Later, the adjoint method was applied
to fluid flow for the optimization of a wing design [14]. The cost of solving an adjoint equation is comparable
to the cost of solving the original (forward) equation. However, once the adjoint solution is available, the
sensitivity to an arbitrary number of input parameters can be calculated with little effort, which offers a
powerful tool for calculating sensitivities to a large number of uncertain input parameters. However, to the
author’s best knowledge, successful application of adjoint sensitivity analysis to nuclear thermal-hydraulics
simulations is rare, which is the main motivation for developing an adjoint sensitivity analysis framework in

this thesis.

1.3 Overview of Organization

The organization of this thesis is as follows.

Chapter 2 presents a brief introduction to the basic two-phase two-fluid model. The first-half of this
chapter presents the derivation of the one-dimensional two-phase two-fluid model. The second-half of this
chapter introduces the models and closure correlations.

Chapter 3 presents the formulations for dealing with the arbitrary Equation Of State (EOS). Starting
from the general relations between thermodynamic properties, new auxiliary variables are introduced to
simplify the analysis. The International Association for the Properties of Water and Steam industrial
formulation (IAPWS-IF97) [15], which is used to obtain the properties of water and steam, is implemented

and verified. This chapter is essential for performing the analytic analysis to the two-phase two-fluid model



and for applying the new numerical solver to practical two-phase flow problems.

Chapter 4 presents the analytical analysis to the two-phase two-fluid model, including a characteristic
analysis and a dispersion analysis. The characteristic analysis provides the essential basis for constructing
the numerical solver.

Chapter 5 presents the details of constructing the numerical solver. The solver is tested with several
benchmark problems, including a periodic pipe problem, a shock-tube problem, and a boiling pipe problem.

Chapter 6 presents the details of formulating the adjoint sensitivity analysis framework for the two-
phase two-fluid model. The framework is tested with two problems: a time-dependent periodic problem and
a steady-state boiling pipe problem.

Chapter 7 summarizes the research and recommends several possible improvements and extensions to

the current work.



Chapter 2

TWO-PHASE TWO-FLUID MODEL

In this chapter, the details of the two-phase two-fluid governing equation are given. Starting from the general
balance equation, the general three-dimensional (3D) two-phase two-fluid model is derived by performing
a time average to the general balance equation; then, the 3D two-phase two-fluid model is simplified for

one-dimensional (1D) problems by performing an area average in the transverse direction.

2.1 Introduction

The difficulty in modeling of the two-phase flow arises from the existence of moving and deforming interfaces
between the two phases [1, 7]. Fluid properties near these interfaces are discontinuous and flow fields are
complicated. The conceptual model for a single-phase flow is well established in terms of field equations
describing the conservation laws of mass, momentum, and energy. The liquid and gas phase in a two-phase
flow could be seen as single-phase continuum separated by the interface. The field equations for the single-
phase flow could be applied to the liquid and gas continuum, which is the so-called local instant formulation.
However, for most two-phase flow problems where many interfaces exist, the local instant formulation is not
a realistic approach. A macroscopic formulation based on a proper averaging is necessary. In the following
section, the derivation of the macroscopic formulation is presented. Note that the derivation and justification
of the two-phase two-fluid model is not the focus of this thesis. Most of the concept and derivation given in

Sec. 2.2 are generalized from Ishii’s original derivations [1].



2.2 Three-dimensional two-phase two-fluid model

2.2.1 General phasic balance equation

The general balance equation for phase k can be written by introducing the fluid density pg, the eflux Jy,

and the body source ¢y, of any quantity v, defined for a unit mass. The general balance equation is

Oprr,
ot

where the first term is the rate of the quantity (1), the second term is the rate of convection. The right-hand
side terms represent the surface flux and the volume source. The conservation equations for phasic mass,

momentum, and energy are

Ipy

Y (evi) =0 (2.20)
0
p;:k + V- (pkvkvk) = —Vpr +V - Ty + prg (2.2b)
oprF

where Ey is the specific total energy, Ty is the viscous stress tensor, qy is the heat flux, and ¢; is the body
heating. In addition to the specific total energy (F%), the specific internal energy (ey), specific enthalpy

(hk), and specific total enthalpy (Hj) are also used in the following equations. These variables are related

by
v2
Ekzek—i—?k (23&)
Ho=hp+ Yk — ey BE L VE (2.3b)
BNt 5 = e or 9 .

2.2.2 Time average and weighted average

The general two-phase two-fluid field equations are obtained by performing a time average to the phasic

balance law, Eq. (2.1). Throughout the derivations, the following definitions will be used.

Definition 2.1. The state density functions of the k-phase (M}) and the interface (M;) are defines as

M;, (x, t) =1, M, (x7 t) =0, If a point is occupied by the k-phase (2.4a)

M (x,t) =0, M (x,t) =1, If a point is occupied by the interface (2.4b)



Definition 2.2. A general function of the k-phase (F}) at the averaging point (x¢) is defined as

Fk(Xo,to) = Mk(Xo,to)F (25)

Definition 2.3. The Eulerian time average (F) of the general function is defined as

— 1
F (%0, to) = %i_r%E/AtF(xo,t)dt (2.6)

where § is the thickness of the interface and At is a fixed time interval. As stated by Ishii: “At is taken to
be large enough to smooth out the local variations of the properties yet small compared to the macroscopic

time constant of the unsteadiness of the bulk flow” [1].

Definition 2.4. The local void fraction of k-phase (ay) is defined as the time average of the phasic state

density function

A,

.1

where Aty is the time when the position is occupied by k-phase during the integration time interval (At).
Physically, «y, represents a probability of finding k-phase in point (xq).

Definition 2.5. The phase average (F'x) of the general function is defined as

= 1 At 1 Fp
F tg) = lim — F t)dt = — lim — F; to)dt = — 2.
k (%0, to) lim Aiy /Atk i (%0, ) Aty s /At & (%0, t0) o (2.8)
Definition 2.6. The mass weighted average (12;6) of a quantity is defined as
G = PE% _ Plgﬁk (2.9)

Pk Pk

Because of the difference between the time average of derivatives and the derivatives of time average, the

time average of a quantity will produce several terms that represent the summation at the interface, i.e.

OF}, OF, 1 1
L A Fyng - v; 2.10
Bt 8150 At zj: Uni Rk ( a)

1 1
VF=VFi+ < Ej: v—mnka (2.10b)

where ny is the outward unit normal vector at the k-phase side of the interface and v,; is the velocity in the

normal direction. The summation is over all interfaces during the time interval At. A special case of the



above equation is for the derivative of the local void fraction, i.e.

8ak 1 1

- j v, (2.11a)
\Y ! > ! (2.11b)
= —— n .

ok At — Uni g

which will be used later in the interfacial mass, momentum, and energy transfer equation.

2.2.3 Time average of the general phasic balance law

The general two-phase two-fluid field equations are obtained by performing a time average to the phasic

balance law, Eq. (2.1). The time average of Eq. (2.1) gives

Opr i

ot + V- (pkwkvk) =-V- jk + pe®r + Ik (2.12)

where I}, is the interfacial transfer term that represents the difference between time average of derivatives

and the derivatives of time average,

Z i (0 - petor (Vi — Vi) +1p - Ji ] (2.13)

Un,
J

Using previous definitions for the phase average and mass weighted average, we obtain

Pk = Qpprtr = PRk

PROEVE = QprEVE = Qb UnVi = i UrVe + apdl
" (2.14)
Jk = Oéka

PLPr = QPR Or = Oékﬁkak

where J{ represents the difference between the average of product and the product of average. It is defined

as

ﬁkzbk.vk = ﬁkq/;,ﬁk + J{ (215)
Using Eq. (2.14), the time averaged balance law is written as

3011@51@1;1@

ot +V- (Oékﬁk&;k{’;) =-V-q (jk + Jz) + akﬁk@?ﬁk + Iy, (2.16)



The time averaged field equations for the two-phase two-fluid model are

dawp, - -
a;tpk +V. (akﬁkvk) =1,k (2.17a)
PV =~ o~y — = . _
o TV (arPrVive) = = V(axpy) + V- [on (T + Ty )] + onppg + Lk (2.17b)
doup E o _ _ R
% + V- (arppErVi) = — V- (abpVi) + V- [ (T + T ) - V] (2.17¢)

— V- [ou(q + qf)] +ouppg Vi +Ip

where I, 1, Iy 1, and Ig denote the interfacial transfer terms in mass, momentum, and energy equation,
respectively. The internal heating ¢ has been neglected because it is not important for most two-phase flow

problems. In the momentum equation, ']1‘;*: represents the turbulent flux tensor which is defined as

T} = —pv, v}, with V;C =vVvi — Vi (2.18)

In the energy equation, Ek consists of the standard internal energy, kinetic energy, and the turbulent kinetic

energy
52 72 52
o —~ v A\ ~ \4
Ekzek+7k+(§) zekJr?k (2.19)

where the approximation is made because the turbulent kinetic energy is relatively small compared to the

internal energy. The q} consists of the turbulent energy convection and the turbulent work

2
\4 ’ e -7
ai = —pr(ex + ?k)vk — Ty - vy, + PV, (2.20)

2.2.4 Interfacial transport

The interfacial transfer terms, I, s, Iy x, and Igk, in Eq. (2.17) are

Tp=1,=— Zaijmk (2.21a)
J
Iv,k: = — Z Q5 (mkvk + prg — N - Tk) = Fkai —i—]:)kiVak — Vakfki + M (221b)
J
Igr=— Zaij [Br — 0k - (pevie) + g - (T vi) + 1 - qi (2.21c)
J
~ ~ 6126 — Oay = ~ =" T
=T (hii + Vii - Vie — 7) Py Vo, - (Thi - Vii) + Mg - Vi + aiqr; + Wi



where W is the turbulent flux of work due to drag force, which is often negligible. a; is the volumetric

interfacial area concentration and 1y is the rate of mass loss per interfacial area. They are defined as

. 1 1
a; = ; (D) with Q5 = Kt .y (222)
’fn,k = 1Ng - Pk (Vk - Vi) (2.23)
M, is the total generalized drag force defined as
M. = Z Qi (ﬁkz — pk)nk + Z aijny - (Tk — Tkz) (224)

J J

where the variables with subscript k¢ represent the interfacial area averaged variables. The interfacial area

average is defined as

= - Ay 3y

Fri = M (2.25)
> @i

~ - Ay s F

B, = 2 gt Fi (2.26)

Zj aijmk

Substituting Eq. (2.21) into Eq. (2.17), we obtain the field equations for the two-phase two-fluid model

aogtpk +V. (a,j,ﬁk) =T (227&)
8 PV =S50 = — —
% + V- (eppVieVi) = — V(axpy,) + V - [ (Tr + T{)] + QPLE (2.27b)
+ T3 Vii + D Var — Vay, - ﬁm + M
8ak§k1§k -~ o — — T R _ .
5 + V- (wppExVi) = = V- (upp Vi) + V- [0 (Te + T ) - Vi) = V- [ (@ +a)]  (2:27¢)
~ 52
+ pyg i+ D (i + Vi - 91— o)

_ aak — R R "
T PriTg T Vag - (Thi - Vii) + Mig - Vi + @iy + Wi

Two more equations relating the phasic void fraction and physical pressure are required to close the

system. They are

a+a,=1 (2.28a)

f(B1p,) = (2.28b)

10



where f (ﬁl,ﬁg) is a general function relating the phasic pressure.

2.2.5 Determinism of two-phase two-fluid model

Let the unknown variables be

W = [ak,ﬁk,?k,if\k], for k=1Ig (2.29)

where ?k is the temperature of k-phase.

For each phase, the following unspecified variables are found in Eq. (2.27). For analysis purposes, we

separate them into 3 groups:

e Thermodynamic properties: [ﬁk,é\k,/ﬁk]
e Bulk average variables: ﬁk,'ﬂ‘ﬂﬁmqg]
e Interfacial average variables: [Vki,ﬁkijki,ﬁki,ai,Fk,ﬁki,Mik,ﬁki, W,g;]

The thermodynamic properties, which are functions of the unknown variables, are specified by the EOS.

In practice, the EOS is given by specifying the Gibbs free energy as a function of pressure and temperature,
ie.

Gk = 0(Pe T) (2.30)

Then, the density, internal energy, and enthalpy of each phase are obtained by

= |08 = !

Pr = {%(Tk,pk)} (2.31a)
. =T0a= .1 - [0g= _

er =0k — Tk {a;(Tmpk)] — D [ngy (Tk,pk-)} (2.31b)
~ = T18g = _

he =8k — Tk [a;(T’“p’“)] (2.31c)

The bulk average variables and the interfacial average variables need to be modeled with closure cor-
relations. Closure correlations for the general 3D two-phase two-fluid model are complicated, which are

neglected in this thesis. The closure correlations will be given for the simplified 1D two-phase two-fluid
model.
2.2.6 Transformation of two-phase two-fluid model

For analysis purposes, we separate the terms in Eq. (2.27) into the following groups:

11



e Arithmetic Function (AF) of unknown variables

<2
_ _ ~ ¥ o
{Tk, P8k Mk, 08 - Oks Lo (i + Vi - Vi — 7’“), My - Vi, a5G, W;;";} (2.32)

where we assume that [Fk,Gki,Mik,ﬁki, aﬁgi, W,;;] could be modeled as arithmetic functions of the

unknown variables.

e First-order Temporal Partial derivative (TP1) of unknown variables

e First-order Spatial Partial derivative (SP1) of unknown variables
{v (kP ), V - (kD 959k ), V(aiBy) B Vo, V - (0B Exy), V - (akgza,ﬁk)} (2.34)
e Second-order Spatial Partial derivative (SP2) of unknown variables
(V- Jow(Te+TD)], V- [ @+ af)], V- o (Te +TF) - 9] } (2.35)

where we assume Tk and Tg are modeled as functions of velocity gradient, q, and qg are modeled as

functions of temperature gradient.

e Mixed Spatial Partial derivative (M-SP1) of unknown variables
{Vak Ty, (Vay ﬁlm) : Vm} (2.36)

In general, different discretization methods will be applied to terms in different groups. For now, we

rewrite Eq. (2.27) by placing all SP1 and TP1 terms on the left-hand side and placing AF, SP2, and M-SP1

12



terms on the right-hand side, i.e.

dau.py,

ot + V- (akﬁ,ﬁk) =Ty (2373“)
O ppV - _ _ = _
% +V. (akﬁkvkvk + akﬁkﬂ) — D Vo, =V - [ak (']I‘;c + Tf)] + aEpLg (2.37b)
+ T ¥h — Vg - Tpi + My,
aak‘ﬁkﬁk = 5 ~ = ~ = 80ék; _ = T S = T
o +V. (OékpkEka + akpkvk) —l—pkiﬁ =V. [Ozk (Tk + Tk) : Vk] -V. [ak (qk + qk)} (2.37¢)
R 52
+ app8 - Vi + i (hii + Vii - Vi — %)

—Vay - (T}a . sz) + My, - il\kl + aﬁ,ﬂ- + W]z;

The two-phase two-fluid model is split into four parts:

e Conservative part with operator C*

Baaktﬁk 1+V- (akﬁkvk)
CW = | 22009 4 G (0,5, 9,9 I (2.38)
ot EPRVEVE + QD ) :

Bakﬁ Ek = 5 -~ = ~
T’“ + V- (Otk-pkEka + ozkpkvk)
This part is conservative and can be written in the common form of a conservation law.

e Non-conservative part with operator N'f

0
N'W = | -5,V (2.39)

= O«
Pri Ttk

This part is non-conservative and can not be written in the common form of a conservation law.

e Second-order diffusive part with operator DT

DIW = V- [k (T + TT) (2.40)

V- [ox(Ti +TF) - 94] = V- [ (@, + af)]

—
[E—

13



e Arithmetic source part and mixed part with operator Af

I
AW = appR8 + LV + My, — Vay, Thi (2.41)

7 ~ o~ e ~ 02“ —_— ~ ://
kP8 - Vi + Tk (hri + Vi - Vi — ) + (Mg — Vo - Tii) - Vi + aiGy; + W
Then, the two-phase two-fluid model is written as
GI'W =C'W + NTW - D'W — ATW =0 (2.42)

where G is defined as the operator for the whole system.

2.3 One-dimensional two-phase two-fluid model

2.3.1 Area average and void fraction weighted area average

The 1D two-phase two-fluid model is obtained by performing an area average over the cross-section normal

to the main flow direction, i.e. the z-direction in this thesis.

Definition 2.7. The area average of a general function is defined as

(F) = % f{ FdS (2.43)
A

where A is the area of the cross-section.

Definition 2.8. The void fraction weighted area average of a general function is defined as

(o)
Fi)) = 2.44
<< ’<?>> < ak> ( )
During the area average, the phasic density in the cross-section is assumed to be uniform, i.e.
pr = P = (pr) = ((Pr)) (2.45)

This assumption is valid for most practical two-phase flow problems because the transverse pressure gradient

within a channel is relatively small.

14



2.3.2 Area average of the two-phase two-fluid model

The transverse velocity components (v, and wy) are assumed to be negligible compared to the component

(ug) in the main flow direction. The area average of the conservative part gives

oo oo )on(3)
(W) = | Hendonl(@) | o(cuon)nd(5)"+(on) () (2.46)

ox

oo ((B)) | scron)on (7)) (5)

ox

where Cyi and Chy are the distribution parameters for the momentum flux and energy flux, respectively.
Cyr represents the effect of the transverse void and velocity profiles on the area average of the momentum
flux. Chy represents the effect of the transverse void and enthalpy profile on the area average of the energy
flux. Mathematically, these distribution parameters are important when the transverse velocity profile and
enthalpy profile are not flat; in practice, Cyx and Chj are assumed to be unity. This assumption is also used
in TRACE and RELAP5-3D. Thus, these distribution parameters are dropped in the following analysis. In

addition, the following approximations are made

(B ~ (o) + KL 72
((H)) =~ (&) + <<a'2“>>2 + §<p’“>> (2.47b)

The area average of the non-conservative part gives

0
NTW) ~ —((Pra)) 2 ;;> (2.48)

(B K2

The area average of the second-order diffusive part gives

0
(D'W) ~ a<ak><<?g;,+rgw>> o (2.49)
o) @utal) | gonnal, | How)(Froatrilon)) (@) doruFrw ((n))
ox A ox D

where Ty, is the mean viscous stress near the wall, ay,, is the mean void fraction near the wall, D is the
hydraulic diameter, &, is the heated perimeter, @ is the wall heat flux, and A is the heated wall surface

area.

15



The area average of the arithmetic part gives
<ATW> =~

(Ce) (2.50)
(k) prga + (Ti){(Tri)) + (M)

(e )) + (O () + (@) ((5)) = S () + Q) )} + (WED

where <M ,f) is the total interfacial shear force given by
(M) = (M, = Vay - Tpi),, (2.51)
The area average equations are closed with three more jump conditions [1],

> (Ty)=0 (2.52a)

(M) =0 (2.52D)
> (Te) (i) + (i) =0 (2.52¢)

k=l,g
2.3.3 Omne-dimensional two-phase two-fluid model

The average operators are dropped to simplify the expression of the 1D two-phase two-fluid model,

(Y) =, for ¢ =agTy

<l

<< >> = wa for /¢ = pkapkivukvukivek7hkvhkiaTkaTqukﬂqg (253)

<<1Z>>=>1/% for Y = ug, upq, ex, hiy hiy B, Hy,

The following variables are defined

fir = (M) (2.54a)
A0k T kw

= kD k (2.54b)

Qi = (aiqy,) (2.54c)
ghakwf

wk = T 2.54d

K 1 (2.54d)

16



The following approximations are made

Cuk ~1 and Chk ~1 (255&)

(W) =0 (2.55b)

Then, the 1D two-phase two-fluid model is simplified to

0oy pr; n Oayprur,

=T 2.56
ot or k (2.562)
0 O(apru? + arpr b Ok (Thwa + Ti 4n
QP + ( EOR T kpk) - pmﬂ = ( = b ) + akprge — for + fir + Tt
ot ox ox ox

(2.56b)

dorpi By O(cwprBrun + cwpiu)  Oan Do (ghe + i) | 00 (Thwo + T ) Uk (2.560)
ot O Pz = o or '

+ Quk + Qi + arprgzur, — fwrtr + firug
2

+ T (i + wpius, — %)

The spatial partial derivatives related to the normal viscous stress and heat flux are negligible compared to
the other terms in the right-hand side. These terms will be dropped in the following analysis. This treatment

is also used by TRACE and RELAP5-3D,

Oau pr; n Oaypruy

=T 2.
ot or k (2.572)
O, prt O pru? + apr A
hORTh ( b ) — Phi = appre — fuk + fik + Thtig (2.57b)
ot ox ox
OayprE O(agprErur + apprug O
kgtk by ( o ) +pki87tk = Quk + Qir + I'ihy; (2.57¢)

2
u
+ (fik = fuk + arprge + Trups ) ur, — Fk?k

The basic 1D two-phase two-fluid model assumes that all pressure terms are equal, i.e. p; = py = pi; = Py;i-

17



Let p be the equal pressure, Eq. (2.57) is transformed into

Oaypr  Oaypruy

=-T 2.
ot o g (2.58a)
daypruy 8(qulul2 + Oélp) Ooy .
ot + O 7p% = P19z — fwl + f’L - Fgulz (258b)
daupE,  OoupBrug + cupuy) Doy
ot + Oz +pﬁ - le + Qzl - thlz (258C)

2
u
+ (fi = fut + c1prge — Dgupi)ug + Fg?l

dagpg | Dagpgug

Bt 20t T, (2.58d)
Dagpguy | O(agpguy + agp) dag
ot + D — P, = QgPgls — fuwg — fi + Tgug; (2.58e)
90000Fy | Noopaata ¥ 0upts) | 005 o g, +Tyhy (2.58)
2
+ (=i = fug + @gpgge + Tgtigi)ug — Fg?g

In Eq. (2.58), I'; is replaced with —I'y, fi; is replaced with f;, and f;, is replaced with —f; because of the

interface jump conditions

I +T, =0 (2.59a)

fi+ fig = (M) + (MY =0 (2.59b)

The 1D two-phase two-fluid model, Eq. (2.58), can be written in a compact vector form as

ou OF oa oo
S+ -+ P2+ Py—L = 2.
ot T oz TPy TP =S (2.60)

where U is the vector of conservative variables, F' is the vector of flux variables, P;, and P;; are the vectors

related to the interfacial average pressure terms, and S is the vector of source terms. They are defined as

QP Qpiug 0 0
2
QP o puy + agp P 0
aipr agprEpug + agpuy 0 —p
U= JF = P = Py = (2.61)
QgPg QgPgllg 0 0
QgPgllg Qg pgus + agp -p 0
agpgEy agpgEqug + agpugy 0 p
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_Fg
ap1ge — fur + fi — Lguii

uz

Qui + Qi — Tghui + (fi = fur + cupige — Tguii)uy + Lg%

r

0]
Il

(2.62)

g
AgPgGx — fwg — fi+ Fgugi
Qug + Qig + T'ghgi + (_fi — fuwg + QgPg9z + Fg“!ﬂ)“g —Iy

S
M‘m N

In the following analysis, (OU/0t + OF /0x) is called the conservative part. This part comes directly from
the time average of instant phasic balance equation [1] and has the form of a conservation law. (P;;0ag/0t+
P;,0a,/ am) is called the non-conservative part. This part comes from the interfacial transfer terms [1] and
can not be written in the form of a conservation law. As was discussed by Dinh [16], the conservative part
can also be written in an equivalent integral form, which admits a discontinuity solution in a weak sense. In
the contrary, the non-conservative cannot be written in an integral form, which makes the construction of a
weak solution to discontinuity questionable.

Eq. (2.60) will be the starting point of the work in this thesis. In the following chapters, the statement

about “basic two-phase two-fluid model” is meant to Eq. (2.60).

2.3.4 Alternative form of the one-dimensional two-phase two-fluid model

Apart from the conservative form of the two-phase two-fluid model, Eq. (2.57), there are several important
transformations. A good review of the transformed equations can be found in [1].

Equation of motion

By using the continuity equation, the momentum equation can be transformed into

ouy ouy opy Oay
upr - + ity = — o5 + (pi — pl)% + upige + fi = fwr — Tg(wi — w) (2.63a)
ou ou op Oa
agpgaitg + O‘ngUgT; = *Oégaf; + (pgi — pg)—am‘q + agpgge — fi — fug + Tg(ugi — ug) (2.63Db)

This form of momentum equation is the preferred form for numerical solvers using a staggered grid, such as
TRACE and RELAPS5-3D. This form is not used in our numerical solver because it is difficult to construct

a shock-capturing upwind solver with this form.
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Internal energy equation

The kinetic energy can be subtracted from the total energy equation to obtain the so called internal energy

equation

Oaypre;  Oaypreju; Oay 3Oézul
T A, = w i P hl 2.64
o + O + 5 + =Qui + Qi — Tyl (2.64a)
Oagpgey  Ooagpgeqiy Oayg (%zgug
ot o Poigy T Pap, = Qua T Qg T Tghy (2.64b)

This form of energy equation is also the preferred form for numerical solvers using a staggered grid, such
as TRACE and RELAP5-3D. This form is not used in our numerical solver because the prOagui /0 term
adds more difficulties to discretize the equation and construct appropriate numerical fluxes.

Enthalpy equation

Another form of the energy equation is the enthalpy equation

Oayprhy  Oayprhiuy Oay I apl
% T ar T (p1i — pl)ﬁ ta| 5t = Qui + Qi — Tghy; (2.65a)
dagpsh Oagpyhgt o« dp 8p
g@tg “ gﬁgxg g+(pgi_pg)3tg+ag<8tg+ 969 :Qw9+Qi9+th9i (2-65b)

This form is not used in our numerical solver because the 9py /0t + urdpy/Ox terms add more difficulties to

discretize the equation and construct appropriate numerical fluxes.

Two-phase two-fluid model in RELAP5-3D and TRACE

The two-phase two-fluid six-equation model used by RELAP5-3D and TRACE is often written as

daypr | Dayprug
—— =-T 2.
ot oz g (2.66a)
Ouy Oy 0
uprg; TP - Lty ap = aipige + fi — fur — Ty (wi — w) (2.66b)
aalplel 8alplelul 804[ 8alul ’
= lw i — Dwhy — Tight 2.66
o T o P TP gy T @utQu v~ Fighi (2.66¢)
dagpy | Dagpyug
=r 2.66d
ot oz g (2.66d)
ou ou op
O‘gpgaitg + O‘gpgugaixg + Yoy — QaPgde fi = fug + Tg(ugi — ug) (2.66¢)
Oagpgey  Oagpgeqiig Oay Oagug /
v — . = Quw ig + Twhy +Tighy 2.66f
ot ar TP TPy — Quet Qg+ Tuhy + Tighy (2-66f)
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where I'y,, I';g, h;c, and hj, are quantities related to vapor generation, which will be discussed later in Sec.

2.4.2. Eq. (2.66) is a convenient set of equations for RELAP5-3D and TRACE.

Discussion of different energy equations

Note that there are 3 sets of energy equations, i.e. internal energy equation Eq. (2.64), enthalpy equation
Eq. (2.65), and total energy equation Eq. (2.58). These 3 sets of equations are mathematically equivalent
but numerically different. The internal energy equation and enthalpy equation are convenient for RELAPS5-
3D and TRACE; however, the total energy equation, which is written in a conservative form, is preferred in
our numerical solver. A conservative form is essential for constructing a shock-capturing upwind numerical
solver. The advantages and disadvantages of the total energy equation (i.e. the conservative form) are listed
below for future study.

Advantages:

1. The governing equation is in a conservative form. The numerical solver (if formulated appropriately)
is inherently conservative even for problems with discontinuities. It is very difficult to construct a

numerical solver that ensures the conservation of conservative variables using a non-conservative form.

2. For single-phase flows, the eigenvalues and eigenvectors of the conservative form are structured and
well documented. For two-phase flows, the eigenvalues and eigenvectors are found to be very similar

to that of single-phase flows, as will be seen in Chapter 4.

3. In the total energy equation, the non-conservative term, which is not included in the flux vector,
is pOay/0t. This non-conservative term is related to the temporal derivative instead of a spatial

derivative. In general, the non-conservative spatial derivative is more difficult to handle numerically.
Disadvantages:

1. The total energy equation is not commonly solved in the existing system codes, e.g. RELAP5-3D and
TRACE. The existing closure correlations for the internal energy equation or enthalpy equation might
not be appropriate for the total energy equation. Because the closure correlations in this work are

based on RELAP3-3D, the effect of the different energy equation to the solution is not known.

2. The additional mechanical energy in the total energy equation brings in uncertainties to the temper-
ature of two phases. For problems where the wall and interfacial heat flux are much larger than the
mechanical energy, this problem is not significant; however, for problems where the wall and interfacial
heat transfer flux are small, the uncertainties in the additional terms (e.g. f;uq) would be propagated

to the temperature of two phases.
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2.4 One-dimensional models and correlations

This section gives a brief introduction to the models and correlations that are necessary for simulating real
two-phase flow problems. The models and correlations are based on RELAP5-3D theory manual [5, 17, 18,
19]. The justifications and discussions to the models and correlations are not provided because they are not
the main objective of this thesis. The general structure for modeling the source terms is summarized here
to provide an overall picture and help understand the features and limitations of the two-phase two-fluid

model.

2.4.1 Flow regime map

The vertical flow is the focus of this thesis. The flow regime map for a vertical flow is a three-dimensional
function of the void fraction (¢), average mixture velocity (u,), and the wall superheat. In RELAP5-3D, the
vertical flow regime map consists of bubbly (BBY), slug (SLG), annular mist (ANM), and dispersed/droplet
mist (MPR) flows in the pre-CHF regime; inverted annular (IAN), inverted slug (ISL), and mist (MST)
flows in post-dryout; and vertically stratified flow for sufficiently low mixture velocity. In this thesis, the
flow regime map is a simplified version of the RELAP5-3D flow regime map, see page 3-9 of RELAP5-3D

code manual [19].

Start

[ < urs F5{ o <0001 {120 Tiquid
y n

| Stratified |<y—{ um < 0.5urp ‘ ‘ o < aps }_y% BBY |
n

n

Transition ‘ a < apg }_y){ SLG |
n
=
n

(o< aan F-[ANM]

n
a<10 F-[NPR]|
n

1-¢ gas

Figure 2.1: Flowchart for determining the vertical flow regime map for pre-CHF
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Figure 2.1 shows the simplified flow regime map. It contains only vertical flow in pre-CHF conditions,

which covers all test problems considered in this thesis. The average mixture velocity is defined as

Uy = Cm (2.67)

Pm

where G, is the mass flux of the mixture and p,, is the density of the mixture, they are defined as

G = aupi|wg] + agpglugl (2.68a)

Pm = Qupr+ Qgpy (2.68b)

The critical velocity determining if the flow is stratified is modeled as

D —
urp = 0.35() L Pa) (p/l) o) (2.69)
1

where g is the gravitational constant and D is the hydraulic diameter.

The void fraction plays an important role in determining the flow regime. The transition criteria are

modeled as

aps = Interp(G,; 2000, 3000, a4, 0.5) (2.70a)
asa = max[ai}, min(af,,,, af,, OBE)] (2.70b)
apEg = max(aBS,aSA — 0.05) (2.70¢)
aan = 0.9999 (2.70d)

where Interp() is an interpolation function which is defined as

y1, if x<x

Interp(x;x1,X2,y1,¥2) = ¢ w1 + L8 (z — ), if 21 <2< (2.71)

T2—T1

Y2, if x>0
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and the other parameters in Eq. (2.70) are modeled as

8
apg = max ¢ 0.25min | 1.0, [ 0.045D M , 1073 (2.72a)
\ o

1 [gD(pi — py)

afm-t =min{ —/——* 1.0 for upflow (2.72b)
Ug Pg
=0.75 for downflow and countercurrent flow
1/4
3.2 olp; —
af., = min{ = M 1.0 (2.72¢)
Ug 3
i — 0.5 (pipe) or 0.8 (bundles) (2.72d)
AR = 0.9 (2.72e)
where o is the surface tension of the interface.
2.4.2 Interfacial mass transfer
The source vector for the two-phase two-fluid model is
-I

g
a1p19z — fwi + fi — Dguis
2
le + Qil - thli + (fz - fwl + apigs — Fguli)ul + Fg%

g_ (2.73)

Ly

QgPgGx — fwg — fi+ Fgugi
Qug + Qig + T'ghgi + (_fi = fuwg + Qgpggz + Fg“m’)“g —Iy

v ‘:e:w

where the following variables need to be specified with either models or correlations
® uy;, hy;: interfacial averaged velocity and specific enthalpy for k-phase
e I';: net vapor generation rate
e f;: interfacial friction between two phases
o fui: wall friction to k-phase
e (Q;r: interface to k-phase heat flux (interfacial heat flux)

e Qui: wall to k-phase heat flux (wall heat flux)

24



The vapor generation rate (or condensation) consists of two parts, vapor generation due to energy ex-
change (I';4) and vapor generation due to the wall heat transfer effect (I',). Each of the vapor generation
(or condensation) processes involves interfacial heat transfer effect. Thus, in the phasic energy equation, the
phasic enthalpy carried by the vapor generation term is also divided into two parts: (h7, h;) for the phasic

enthalpy carried by I';; and (h;, h;) for the phasic enthalpy carried by I',,. The vapor generation rate, phasic

enthalpy, and the interfacial heat flux are related by

Qi — Tghii = Qi — Dowhy — Tight (2.74a)

Qig + Dghgi = Qig + Tuwhy, + Tighy (2.74b)

The interfacial heat transfer terms (Q; and Q;4) include the heat transfer from the fluid states to the
interface due to interface energy exchange in the bulk and in the thermal boundary layer near the wall. In

practice, they are modeled as

Qit = Hit(Toar — T1) — Ty (hy — ) (2.752)

Qig = Hig (Tsat - Tg) (275b)

where H; and H;g4 are the volumetric interface-to-liquid and interface-to-gas heat transfer coeflicients, re-
spectively.
Iy, is determined by the method proposed by Lahey [20], combined with Saha-Zuber correlation [21].

When the flow is in boiling conditions,

"

Awallq
T, = Mul- el 2.76
v (B — By, 1047 /kg) (2.76)

where q/u:l is the wall heat flux to the fluid, a4 is the volumetric heated surface area, and Mul is the fraction
of the wall heat flux that is accounting for the I',, term. The details of Mul are referred to page 4-193 of
RELAP5-3D code manual [19]. The phasic enthalpies, h; and h;], are modeled as

hy=hy, hy=hgsa forly >0 (2.77a)

hy = hisar, hy=hy for T, <0 (2.77D)

I';g is determined by
. — _Hi (Tsat - CZ—‘l) + Hig(Tsat - Tg) (2 78)
g h* — h* .
g l
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where the phasic enthalpies, hj and hy, are modeled as

;= hy, h; =hg st forI'iyg >0 (2.79a)

hi = hisat, hy=hy for Tjy <0 (2.79b)

In the momentum equation and energy equation, the interfacial averaged velocities, w; and ug;, are

modeled as

uy, forT'g>0
Ui = Ugs = Ul = (280)
ug, forI'y <0

Finally, the source vector is written as

_Fg
Q1p19e — fwi + fi — Fgui
’ w2
le + Qil - thl - 1_‘igh/l* + (fz - f’wl + aupigz — Fg”i)“l + FgTI

S = (2.81)
r

)
QAgPgGr — fuwg — fi + Tgu;
Qug + Qig + th_:] + Figh:; + (_fi — Juwg + agpgga + Fgui)ug -TIy

£
M‘m S

2.4.3 Interfacial friction

Drift flux model

The drift flux approach is used to model the interfacial friction in bubbly and slug flow in a vertical flow.

The interfacial friction between the two phases is modeled as

fi = Cilug|ur

ozgoz? (pl — pg)g sin ¢

|t g;]ug;

Ci= (2.82)

ur = Crug — Couy

where g is the gravitational constant, ¢; is the inclination angle of the flow, uy; is the vapor/gas drift
velocity, ug is the relative velocity, and C; is the friction coefficient. The relative velocity includes the effect
of profile slip distribution by introducing two distribution coefficients, C; and Cjy. These two coefficients

account for the effect of a non-flat void fraction profile in the transverse cross-section and they are related
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by
o 1-— C()Oég
= ”

Ch (2.83)

The remaining variables, the vapor/gas drift velocity and distribution coefficient Cy, are modeled with the

EPRI correlation [22],

L
Co = 2.84
T Ko+ (1- Ko)as (2.842)

(i =rs)]""
ug; = 1.41C [gg plpz Po ]
l

(2.84D)

where L, Ky, r, and C are parameters that requires additional correlations, see section 6.1 of RELAP5-3D

code manual [19].

Drag coefficient model

The drag coefficient approach is used to model the interfacial friction in all flow regimes other than vertical

bubbly and slug flows. The interfacial friction between the two phases is modeled as

fi = Cilug|ur

1
Ci= gpcSFalgCD (2.85)

UR = Ug — Uy

where p. is the density of the continuous phase, Cp is the drag coeflicient, a;, is the volumetric interfacial
area concentration, and Sg is the shape factor which is assumed to be unity. The drag coefficient (Cp)
and the volumetric interfacial area concentration (a;y) have different correlations depending on the flow
regimes, see page 6-3 of RELAP5-3D code manual [19]. For a vertical annular mist flow (ANM), which is
characterized by a liquid film along the wall and a vapor/gas core containing entrained liquid droplets, the
friction coefficient contains two parts,

CANM

1 1
= gpgalg,annCD,ann + gpgalg,drpOD,drp (286)

For a vertical dispersed (droplet, mist) flow (MPR), which is characterized by continuous vapor with en-

trained liquid droplets, the friction coefficient is

1
Cz‘MPR = gpgalg,drpCD,drp (2.87)
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2.4.4 'Wall friction

The wall friction terms account for the pressure loss due to the wall shear force. The two-phase multiplier
approach is used to model the total friction. The phasic wall friction components are calculated by appor-
tioning the total friction to the two phases using a technique derived from the Lockhart-Martinelli model,

see page 3-177 of RELAP5-3D code manual [5]. Specifically, the two-phase multiplier approach models the

dp a2 @ _ 2 @
(‘%f)w =¥ <6x>l =% (817)9 (2.88)

where (Op/0x), and (Op/0x) , are the liquid-alone and the gas-alone pressure drop; ¢; and ¢, are the liquid-

two-phase pressure drop with

alone and gas-alone two-phase friction multipliers. The liquid-alone and gas-alone pressure drop are modeled

with the friction factor approach

8p 1 ’
l

8p 1
g

where )\2 and )\lg are the friction factors modeled with,

/ D
A; = FrictionFactor (alpl|ul|> (2.90a)
H
!’ D
A, = FrictionFactor <agpg|ug> (2.90b)
Hg

where 1 and p, are the viscosity of liquid and gas phase. The function FrictionFactor()’ is used to calculate

the friction factor with a given Reynolds number,

$.0<Re <2200

FrictionFactor(Re) = (3.75 — 8229) (A3000 — A2200) + A2200, 2200 < Re < 3000 (2.91)

2
—2.01 =5 251 Re > 3000
[ ©810 (3‘7’3 t e [1.14-2.010g,, (5+2123 ) | =

where Aa209 and Azggo are friction factors for Re = 2200 and Re = 3000, respectively.

The correlation between the two-phase friction multiplier is

c 1
¢l2:1+;+?and¢§:><2+0x+l (2.92)
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where C' is the correlation coefficient and y is the Lockhart-Martinelli ratio defined as

¢ = (%>l _% (2.93)

(52)
g

Combining Eq. (2.88), Eq. (2.89), and Eq. (2.92), the two-phase pressure drop is expressed as

6}7 1 / ’ , ;
(%)M == (Alma?uf + Agpgolul + C\/Alplafu%\/Agpgagug> (2.94)

The two-phase pressure drop is then partitioned to each phase with

fur = agiliiZQ <§§>2¢ (2.952)
fug = ﬁ <g§>2¢ (2.95b)
Zy = m (2.95¢)
where \; and ), are friction factors calculated with a different set of Reynolds number
A, = FrictionFactor <pllZle|> (2.96a)
Ay = FrictionFactor (pglj|%> (2.96b)
g

2.4.5 Interfacial heat transfer

The interfacial heat transfer in the bulk fluid involves both heat and mass transfer. Temperature-gradient-
driven bulk interfacial heat transfer is computed between each phase and the interface. The temperature
of the interface is assigned at the saturation temperature. Heat transfer correlation for each side of the
interface needs to be provided. Since both the superheated and the subcooled temperature are allowed,
the heat transfer may be either into or away from the interface. All of the thermal energy transferred to
the interface contributes to vaporization. Conversely, all of the thermal energy transferred away from the
interface contributes to condensation. In other words, a superheated liquid and a superheated vapor/gas
contribute to vaporization, while a subcooled liquid and a subcooled vapor/gas contribute to condensation.
The net rate of mass transfer is determined by summing the contributions, positive and negative, from
each side of the interface. Volumetric heat transfer coefficient (W/m3K) is defined for four conditions:

superheated liquid (SHL), subcooled liquid (SCL), superheated vapor/gas (SHG), and subcooled vapor/gas
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(SCG) for each flow regime.

The volumetric heat transfer coefficient (H;) is modeled as
ki,
Hiy, = alngu = aghik (2.97)

where

e H;j: volumetric interfacial heat transfer coefficient for k-phase. [W/(m? - K)]

kr: thermal conductivity of k-phase. [W/(m - K)]

e L: characteristic length. [m]

ajg: volumetric interfacial area concentration. [m?/m?]

hir: interfacial heat transfer coefficient for k-phase. [W/(m? - K)]

The correlations for the volumetric interfacial area concentration and the interfacial heat transfer coef-
ficient depend on flow regimes. The interfacial heat transfer in the transition regime is modeled through
interpolation. The correlations for the interfacial heat transfer model are developed with two general guide-
lines: (a) the superheated liquid and subcooled vapor are not stable; (b) the vapor is assumed to be at the

saturation temperature.

Bubbly flow

In a bubbly flow, the bubbles are viewed as spheres. The heat transfer coefficients are modeled as

12k Coi

Hy = (a1, FaF) {max[—dlA i h’ ﬁ, (2 0+ 0.74Re}: )} +o.4|ul|plcp,lF1}, for SHL ~ (2.98a)
Tap lg

F3Fsh "
H; = —37501gFLlgTbub LgPLPg Y b, for SCL (298b)
PL— Pg
H;y = higaigFsFr, hiy = 10°W/m? - K, for SHG (2.98¢)
H;y = higaiyFeFr, hig = 10*W/m? - K, for SCG (2.98d)

where F to F7 require additional sub-models, see 4-10 of RELAP5-3D code manual [19]. The specification
of the volumetric heat transfer coefficients, H; and H;g4, requires an estimate of the volumetric interfacial

area concentration (aiq). For a bubbly flow,

3.6ay _ 0.72agpl (ug — ug)2

0 g

Qg = (299)
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Note that the heat transfer coefficient for SHG and SCG is made large to drive the vapor/gas temperature

toward the saturation temperature.

Slug flow

In a slug flow, the interfacial heat transfer can be divided into two parts: (a) the heat transfer between the
large Taylor bubbles and the liquid surrounding them, and (b) the heat transfer between the small bubbles
in the liquid slug and their host liquid. The heat transfer contains the effect of these two parts. The total

bulk heat transfer coefficient is

Hi = Hiro + Hig pup (2.100)
the correlations for different states are

H; =30x 106afg7TbaTb + Hip bups for SHL (2.101&)

0.5p..0.5 ky *
H; = 1.18942Rel PI‘l Balg,TbaTb + Hil,bubv for SCL (2101b)

kg
H;, = (2.2 + 0.82Re2'5)5galg,TbaTb + higFs (1 — osz)ang,ub, for SHG (2.101c¢)
Hig = higF6a2kg)TbaTb + higFe(l — Osz)alg’bub, for SCG (2,101(1)

where a7y is the average void fraction and aj, rp 1s the average volumetric interfacial area concentration
for the Taylor bubble. The details for modeling ary, and aj, 7, are given in page 4-15 of RELAP5-3D code
manual [19]. The correlations for the contribution of bubbles in the liquid slug are based on those for a
bubbly flow. Note that the heat transfer coefficient for SHL and SCG is made large to drive the temperature

quickly toward the saturation temperature.

Annular mist flow

For an annular mist flow, the interfacial heat transfer results from two sources: (a) the heat transfer between
the annular liquid film and vapor/gas core, and (b) the heat transfer between the vapor/gas core and the

entrained liquid droplets. The overall volumetric heat transfer coefficient is

Hy, = Hik',ann + Hik,drp (2102)
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the correlations for different states are

ky

Hy = 3.0 x 10%a14 ann F1o + d—dalg,drpFwFlg, for SHL (2.103a)
Hy = 107%p,Cp 1 |ui|arg.ann Fro + %alg,d,.pﬂg, for SCL (2.103b)
H;, = 0.023%Reg~8alg,me - I;—z(z.o +0.5Re] ) aig,rp, for SHG (2.103c)
H;y = higaig,annF10Fs + higaig,arpFs, for SCG (2.103d)

where dg is the characteristic droplet diameter, a;g qnn is the average interfacial area in the annular liquid
film region, and a4 4rp is the average interfacial area in the entrained liquid droplets region. The details
for modeling dg, aig,ann, and aigqrp are on page 4-22 of RELAP5-3D code manual [19]. Similarly, the
correlations for SHL and SCG are developed to drive the superheated liquid and the subcooled vapor/gas

to saturation temperature.

Dispersed (droplet, mist) flow

In a dispersed (droplet, mist) flow, the droplets are viewed as spheres. The interfacial heat transfer is from

the entrained droplets to the surrounding vapor/gas. The correlations for different states are

k
Hil = ElalgFlgFlgF23, for SHL (2104&)
d
k
H; = dflalgFlgFgg, for SCL (2104b)
d
k
Hiy = EZ(Z'O +0.5Re] ) aigFoa, for SHG (2.104c)
Hiy = higalgF6F24a for SCG (2104(1)

where a4 is the interfacial area for the entrained droplets and dq is the characteristic droplet diameter. The

details for modeling a;, and d4 are given in page 4-44 of RELAP5-3D code manual [19].

2.4.6 Wall heat transfer

When the solid surface has a convective boundary condition, the wall heat flux must be calculated. Ex-
perimentally, the wall heat transfer coefficient is determined by obtaining the experimental heat flux and

dividing it by a wall-to-reference-temperature difference. The general expression for the total wall heat flux
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is
q;;all = hwg,g (Tw _Tg) +hwg,spt (Tw _Tspt) +hwg,spp (Tw _Tspp) +hwl,l (Tw _:rl) +hwl,spt (Tw _Tspt) (2105)

where

® hygq4 heat transfer coefficient to vapor/gas, with the vapor/gas temperature as the reference temper-

ature (W/m?K).

® hyg spt: heat transfer coeflicient to vapor/gas, with the saturation temperature at total pressure as the
reference temperature (W/m?K). Since we do not consider the non-condensable gas, the total pressure

is the same as the vapor partial pressure, which is also the local pressure.

® hyg sppt heat transfer coefficient to vapor/gas, with the saturation temperature at vapor partial pres-
sure as the reference temperature (W/m?K). Since we do not consider the non-condensable gas, the

total pressure is the same as the vapor partial pressure, which is also the local pressure.

® hyu: heat transfer coefficient to liquid, with the liquid temperature as the reference temperature

(W/m?K).

® Nyl spt: heat transfer coefficient to liquid, with the saturation temperature at total pressure as the

reference temperature (W/m?K).

Note that only one or two of the heat transfer coefficients are nonzero in most flow regimes. For example,
during nucleate boiling, h.,; and h;,sp¢ are nonzero, all other terms are zero. The exception is at high void
fraction where hy,4, 4 has a value to smooth the transition to vapor/gas cooling, see page 4-72 of RELAP5-3D
code manual [19]. In this thesis, Tsq¢ is used to denote the saturation temperature. The difference between
the total pressure and vapor partial pressure is ignored since there is no non-condensable gas.

A boiling curve is used to govern the selection of heat transfer correlations for heat transfer from the wall
to the fluid, see page 4-76 of RELAP5-3D code manual [19]. Figure 2.2 is the simplified version of the boiling
curve logic. As is seen, much of the boiling curve logic is based on void fraction, liquid temperature, and
wall surface temperature. Unlike RELAP5-3D which has many more modes to cover different geometries

and system conditions, we only provide heat transfer modes relevant to a vertical flow in a pipe
e M2: Single-phase liquid convection
e M3/M4: Subcooled/saturated nucleate boiling

e M5/M6: Subcooled/saturated transition boiling
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M2: Single-phase liquid convection

M3/M4: Subcooled/saturated nucleate boiling

@ M5/M6: Subcooled /saturated transition boiling
M7/MS8: Subcooled/saturated film boiling

v MO9: Single-phase gas convection
4@ ot M10/M11: Condensation
n
— T a<01 | [a>09 | i
n n
— a<10 | [Ty > Tuar + 100 ——— ¥
n n
[M2]  |M10] |Mi11] ‘qNB>CHF}—y>‘QTB>C]FB}7n
n y
G, K w<i,, K8 Bei, |
n n n

IM3]  |m4| |[M5] [Me] |M7| [M8] [M9]

Figure 2.2: Flowchart for determining the wall heat transfer mechanism

e M7/M8: Subcooled/saturated film boiling
e M9: Single-phase gas convection
e M10/M11: Condensation

For simplifications, for problems where the wall temperature is not of interest and the flow is in pre-CHF
region, the wall heat transfer correlations are not enabled. In this case, all wall heat flux is assumed to be

transferred to the liquid phase, i.e.

Qui = Gwaltuars 20d Qug = 0 (2.106)

where a.,q is the volumetric heated surface area and q:u: o1 is the total wall heat flux, which is determined

by the heating power.

Convection

For the single-phase liquid (M2) and single-phase gas (M9) mode, the classical single-phase convection models
are used. Correlations for forced turbulent convection, forced laminar convection, and natural convection are

provided. The maximum heat transfer coefficient from these three correlations is used to ensure a smooth
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transition, i.e.

4.36, for forced laminar convection

Nu = % — max 0.023Re%®Pr%4,  for f(;r/c;d turbulent convection (2.107)
0‘387(RaL)1/8
0.825 + oy |

for natural convection

where the correlation for the forced turbulent convection is the classical Dittus-Boelter correlation, which
is also used in other heat transfer modes; Re, Pr, and Ra are the Reynolds number, Prandtl number, and
Rayleigh number, respectively. The dimensionless numbers used in the correlations are evaluated with either
liquid or gas properties depending on the heat transfer mode, see page 4-76 of RELAP5-3D code manual
[19].

Subcooled/saturated nucleate boiling

The Chen correlation is used for the subcooled and the saturated nucleate boiling (M3 and M4). The nucleate
boiling correlation considers a macroscopic convection term and a microscopic boiling term. Though the
correlation was based on the saturated liquid, it is also used for the subcooled liquid by using the bulk liquid

temperature as the reference temperature for the convective part of the correlation.

1"

GQwail = Pmac (Tw - Tl)F + homic (Tw — TSat)S, for subcooled nucleate boiling (2.108a)

"

Gwait = Pmac(Tw = Tsat) F + hinic(Tw — Tsat) S, for saturated nucleate boiling (2.108b)

where F' is the Reynolds number factor and S is suppression factor. Details about F' and S are given in page
4-96 of RELAP5-3D code manual [19]. hyqc accounts for the convective part that is modeled with the Ditus-
Boelter correlation, and h,,;. accounts for the microscopic boiling which is modeled with the Foster-Zuber

correlation
£0-79(70.45 ,0.49 /0.25

1 1 PUT Y 0.24 0.75
hmie = 0.00122 05 Oé29h0'24 0.24 (ATw) (Ap) (2.109)
O [y lg Pg

where g, is the gravitational conversion factor that equals to unity in SI units, h;, is the enthalpy difference

between the liquid and gas phase, and

AT, = T, (wall temperature) — T4+ (saturation temperature based on total pressure) (2.110a)

Ap = psqt(saturation pressure based on wall temperature) — p(local total pressure) (2.110b)
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Subcooled/saturated transition boiling

For the transition boiling (M5 and M6), the same correlation is applied to both the subcooled and the
saturated flow. The calculated heat flux for transition boiling is applied to post-CHF heat transfer. The
total wall heat flux is obtained from components describing the wall-to-liquid heat flux and wall-to-vapor/gas
heat flux,

Gt = Gonp My + hug.g (Tw — Ty) (1 — A M) (2.111)

where goyp is the critical heat flux, h,, 4 is the heat transfer coefficient to vapor/gas obtained with Dittus-
Bolter correlation, A; is the fraction of wetted surface area, and M; is the vertical stratification and mixture
tracking model multipliers. Details of qéHF, Ay, and M, are given in page 4-100 of RELAP5-3D code manual
[19].

Subcooled/saturated film boiling

The film boiling (M7 and M8) is described by heat transfer mechanisms that occur in an inverted annular flow,
slug flow, and dispersed flow. The wall-to-fluid heat transfer mechanisms are conduction across a vapor/gas
film blanket next to a heated wall, convection to flowing vapor/gas and between the liquid droplets, and
radiation across the film to a continuous liquid blanket or dispersed mixture of liquid droplets and vapor/gas.

Details are given in page 4-103 of RELAP5-3D code manual [19].

Critical heat flux

RELAP5-3D uses the 1986 AECL-UO Critical Heat Flux Lookup Table [23] to evaluate the critical heat
flux. The table was made based on tube data normalized to a tube with an inside diameter of 0.008 m.
Correction factors are used to allow its use in other sized tubes and in rod bundles. The AECL-UO table
is a three-dimensional table covering 15 pressures from 0.1 to 20.0 MPa, 14 values of mass flux from 0.0 to

7500.0 kg/m?s, and 21 equilibrium qualities from -0.5 to 1.0.

2.5 Conclusion

In this chapter, the general 3D two-phase two-fluid model is derived from the instant balance law for each
phase. Then, an area average to the 3D two-phase two-fluid model is performed to obtain the 1D two-phase
two-fluid model, which will be used in the following chapters. Different forms of the 1D two-phase two-fluid

model are explained and the conservative form is chosen as the starting point for constructing the numerical
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solver in the following chapters. A brief introduction to the physical models and correlations is included in

the second-half of this chapter.
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Chapter 3

EQUATION OF STATE

A major challenge in simulating realistic two-phase flow problems is the complex properties of real water and
steam. In practice, the properties of water and steam are formulated as complicated functions of pressure and
temperature. There is not a simple form of EOS that can to be used for realistic two-phase flow problems.
Because of the complexity in the EOS, analytical analysis to the two-phase two-fluid model is either rare
or mathematically very complicated. In this chapter, we will try to overcome this challenge and provide

formulations for the analytical analysis in the following chapters.

3.1 Introduction

As was already seen in Eq. (2.57), the two-phase two-fluid model requires explicitly the density, specific
internal energy, and specific enthalpy. Choosing the phasic pressure and temperature as unknown variables,
we need to provide formulations to calculate the density, specific internal energy, and specific enthalpy with
given pressure and temperature. Choosing the phasic pressure and temperature as unknown variables and

expanding the temporal partial derivative terms in continuity equation and energy equation, we obtain

Ooup _ | O Opi) OTi  (Opi Op
ot P T <0T1>pl ot + (3})1 . Ot (3-1a)
9agpg _ Doy O\ 9Ty (Opg) Py
o~ P too |\, o +on, . ot (3.1b)
daypre daupy Oey o1 dey Oy
= —) =4+ (=) = 1
o o ¢ (a:n)m a <8pl)Tl 8t] (8.1c)
Oagpgeq Oagpg Oeg 0T, Oegy Opg
= —9) L4 (=) =L 1
9 €g ot + agpg aT, N ot + 81, . ot (3.1d)
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Thus, 8 more partial derivatives are needed to solve for the phasic pressure and temperature. These 8 partial

derivatives are

where 8 new variables are defined for brevity. Note that notation x and y here has no relation to the spatial
position. As will be seen in the following sections, more similar variables will show up, which requires

appropriate thermodynamic relations for simplification purposes.

3.2 Thermodynamic relations

3.2.1 Thermodynamic potential

A thermodynamic potential is a scalar quantity that is used to represent the thermodynamic state of a
system [24]. The main thermodynamic potential that has a physical interpretation is the internal energy.
For brevity reasons, the subscript k£ in the following derivations is ignored. The relations given in the
following sections are valid for both liquid and gas phases. The standard form of the fundamental equation
of state is given by relating the specific internal energy (e) to the specific entropy (s) and the specific volume
(v)

e= e(s,v) (3.3)

Note that the specific volume is the inverse of the density, i.e. v =1/p. Then, the temperature and pressure

- (5), @),

are defined as
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Two other thermodynamic potentials are used in this thesis: the specific enthalpy (k) and the specific Gibbs

free energy (g). These two potentials are obtained by the following Legendre transformations

h=e+pv (3.5a)

g=e—Ts+pv (3.5b)

The specific internal energy (e), specific enthalpy (h), specific Gibbs free energy (g), specific entropy (s), and
specific volume (v) are called extensive variables. The pressure (p) and temperature (7') are called intensive
variables. The physical importance of these three thermodynamic potentials are reflected in the following

processes [24]:

e When the entropy and volume of a closed system are held constant, the internal energy decreases and

reaches a minimum value at equilibrium.

e When the pressure and volume of a closed system are held constant, the enthalpy decreases and reaches

a minimum value at equilibrium.

e When the temperature and pressure of a closed system are held constant, the Gibbs free energy

decreases and reaches a minimum value at equilibrium.

The variables that are held constant in these processes are called the natural variables of that potential,
e.g. entropy and volume are the natural variables of internal energy. In short, the specific internal energy,

specific enthalpy, and the specific Gibbs free energy are expressed as

e=e(s,v) (3.6a)
h = h(p,v) (3.6b)
g=29(T,p) (3.6¢)

The natural variables are important because if a thermodynamic potential is given as a function of its natural
variables, all other thermodynamic properties of the system can be found from partial derivatives of that

potential with respect to its natural variables.
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3.2.2 Mathematics of thermodynamics

Consider a function z(z,y), which defines a relation between z, y, and z. Then,

ERNORCES
dy) . 0z), \oy), (%), '

This equation will be used extensively in the following transformations. For example, applying Eq. (3.7) to

the functions e(s,v), h(p,v), and g(p,T'), we obtain

@i)e - @Z)S ' <?Z)U (3.82)
(g};)h T ((;Z)p ' <§Z>ﬂ (3.8b)

0 0 0
()., @
g p 9/
Now, let’s consider the 1D two-phase two-fluid model without the source term, i.e.

ouU n 8j JrPiIBag P Oay

ot T or TP, tPug =0 (3.9)

Eq. (3.9) contains explicitly the density, specific internal energy, specific enthalpy, and the pressure; but, Eq.
(3.9) does not contain explicitly the specific entropy and the temperature. Thus, the specific enthalpy is a
more natural thermodynamic potential for analysis purposes rather than specific internal energy or specific
Gibbs free energy.

Taking p and v (or p) as independent variables, Eq. (3.9) involves the following partial derivatives

&) @), &) G), 6109
@), @), @) (@), 60

Note that these partial derivatives are not very informative. Without appropriate transformations, these

partial derivatives make the analytical analysis in the following chapter very complicated. Using the relation
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h=e+pv, v =1/p, and the mathematical identity in Eq. (3.7), we can obtain

(%)
h
((’?p) =— L (3.11a)
), @
P)n P h P
1+ % (%)
(gp) - ! P (3.11b)
p). (@ L1 @)
P)n p \ Oh P
The following two new auxiliary variables are defined to relate the partial derivatives in Eq. (3.10)
(%)
— P/ h
= 3.12
T ® "
op h P h P
a’ = L (3.12b)
.1 8)
op h p \ Oh
We can check that the partial derivative in Eq. (3.10) can be related through a and 7, i.e.
op — M (3.13a)
onj, 5y
2
<5‘p) —_— (3.13b)
o)y
9p
£\ = -1 3.13
( 8e)p p(y—1) (3.13¢)
(5}7) :az,fﬁ(y,l):?,ﬁrw (3.134d)
op). p p p

Eq. (3.13) is important, because it tells that all partial derivatives, excluding these related to temperature,

can be expressed as simple functions of two auxiliary variables, a and . Of great importance is the physical

meaning of a and . Through similar thermodynamic transformations, we obtain the following relations

1 1
a’= = (3.14a)
ORIICORR) N
(), (),
= = (3.14b)
@), 3 ()

Eq. (3.14a) shows that a is the isentropic speed of sound. Eq.

(3.14b) shows that 7 is the ratio of

compressibility in an isenthalpic process (or throttling process) to the compressibility in an isentropic process.

If the material is an ideal gas, 7y is equal to the ratio of specific heat capacity. However, for a real gas, = is
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in general different than the ratio of specific heat capacity. For real water and steam, Figure 3.4 shows the
behavior of ¢ and ~ for different pressure and temperature.

For further simplifications, we will define the following dimensionless variable

_ pa—p
P

€ (3.15)

For an ideal gas, we find that ¢, = 0 and for a real gas, e.g. steam, €, is a small number close to zero. ¢; is
in general a large positive number. For real water and steam, Figure 3.4 shows the behavior of ¢; and ¢, for

different pressure and temperature. Using Eq. (3.15), Eq. (3.13¢) and Eq. (3.13d) are transformed into

(3) =rt-n. (5) =20+ (3.10

The importance of these new auxiliary variables (especially, a, 7, and ¢) is that they simplify significantly
the Jacobian matrix in the following chapter. The application of these new auxiliary variables are given in

Appendix A.

3.3 Properties of water and steam

In this thesis, the liquid and gas phases are taken to be water and steam, respectively. In the two-phase
two-fluid model, because the right-hand side source terms are modeled as functions of the temperature, we
choose the Gibbs free energy as the thermodynamic potential to specify the EOS. All partial derivatives
shown in Sec. 3.2 can be obtained through thermodynamic transformations with respect to the Gibbs free
energy. Table 3.1 lists the thermodynamic properties and mechanical properties of water and steam that are
needed. These properties are obtained with the International Association for the Properties of Water and

Steam (IAPWS-IF97) industrial formulation [15].

3.3.1 TAPWS: Thermodynamic properties of water and steam

The IAPWS-IF97 consists of a set of equations for different regions, including the subcooled water region
(region 1), the superheated steam region (region 2, 5), the saturation line (region 4), and the critical region
(region 3). These regions are shown in Figure 3.1. In this thesis, we implemented the region in the red box

which covers part of region 1, region 2, and region 4, i.e.
273.15K < T < 1073.15K, 611.675Pa < p < 16.529MPa (3.17)
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Table 3.1: Thermodynamic and mechanical properties of water and steam

Variable Property name Variable Property name
T Temperature Cp Specific isobaric heat capacity
P Pressure (%’,) -
P
v Specific volume (%Z) -
T
p Density (g—;)p -
e Specific internal energy (%;) -
T
h Specific enthalpy k Thermal conductivity
s Specific entropy I Viscosity
g Specific Gibbs free energy o Surface tension
a Adiabatic speed of sound
vy Gamma coeflicient

A
p/MPa 27315K < T < 1073.15K
611.675Pa < p < 16.529 MPa
100 —
1 3 2
50 —
5
)/
| >
273:15 623.15 1073.15 2273.15

Figure 3.1: Schematic of TAPWS-IF97 for the thermodynamic properties of water and steam
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This selected region covers the normal conditions in nuclear reactor thermal-hydraulic simulations.
The EOS in region 1 and region 2 is specified by the specific Gibbs free energy, which is implemented as
a function of pressure and temperature, i.e.

g=2g9(T,p) (3.18)

All other thermodynamic properties are derived from this equation using appropriate combination of the

specific Gibbs free energy and its derivatives. For brevity, we will define the following variables

_ (O _(0g _ (9% _ (9% _ [ g
gl_<8T>p’gQ_<3p>T’gu_(8Tz p7922— 87)2 T7912— 6‘T78p (3.19)

Relations between the relevant thermodynamic properties and the specific Gibbs free energy are

v=plt=g, (3.20a)
e=g—Tg1—pg2, h=g-Tg (3.20b)
Tv? Tg2, - T —
o2 = . V7911 4= g12 _ 911922 — V@12 (3.20¢)
Tgiy — T'g11922 Tgiy — T'g11922
Cp = —Tgn (320(1)
Jdp 1 Jdp 1
oy 1 s - 3.20
<(‘3T>p 52912, <3P>T 52922 (3.20e)
Oe dp
o = _T _ _ =T — 3.20f
(8T>p g11 — PY12, <8T)p g12 — PP22 ( )

The region 4 (saturation line) specifies the boundary between region 1 (subcooled water) and region 2
(superheated steam). The saturation line is given by an implicit quadratic function of the saturation pressure

(psat) and the saturation temperature (Tsq:),

x2y2 + n1x2y + n2x2 + ngxy2 + ngxy + nsx 4 n6y2 +nyy+ng =0 (3.21)
where
1/4
DPsat Tsat g
T = , Y= +— 3.22
< p* ) T* Tsat/T* — Nio ( )

where p* = 1MPa and T* = 1K the coefficients n; to nyo are given in IAPWS-TF97 [15].
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3.3.2 TAPWS: Viscosity of ordinary water substance

The correlating equation for the shear viscosity of pure water substance is represented as

fi = fio(T) x i (T, p) x iz (T, p) (3.23)

where the first factor fip represents the viscosity in the dilute-gas limit, the second factor fi; represents the
contribution to viscosity due to finite density, and the third factor i, represents the critical enhancement
of the viscosity. Details of these three factors are specified in IAPWS-IF97 [15]. The IAPWS-IF97 is used
to determine the density when the state point is specified by the temperature and pressure or other state

variables. The dimensionless variables in Eq. (3.23) are defined as

T=T/T*, with T*=647.096K (3.24a)
p=p/p*, with p*=322.0kg -m 3 (3.24b)
i=p/p*, with p* =1.00x 107%Pa-s (3.24c)

Eq. (3.23) is valid in the following ranges

0<p<p and 273.16K <T <1173.15K (3.25a)

pr < p <300 MPa and T, (p) < T <1173.15K (3.25b)

where T, is the pressure-dependent melting temperature and p; is the triple-point pressure.

3.3.3 TAPWS: Surface tension of ordinary water substance

The correlating equation for the surface tension of pure water substance is represented as

o =2358-7"2(1-0.6257) [mN/m] (3.26)

where

7=1-T/T,, with T,=647.096 K (3.27)

This correlating equation is valid for temperature between the triple point (0.01 °C ) and the reference
temperature T.. The correlating equation for the surface tension depends only on the temperature. In

practice, this temperature is the saturation temperature of water and steam. When the pressure is specified
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as input to obtain surface tension, a saturation temperature corresponding to the given pressure is calculated

at first with TJAPWS-IF97.

3.3.4 TAPWS: Thermal conductivity of ordinary water substance

The correlating equation for the thermal conductivity of pure water substance is represented as

k= ko(T) x 1 (T, p) + ko (T, ) (3.28)

where the first factor kg represents the thermal conductivity in the dilute-gas limit, the second factor ki
represents the contribution to thermal conductivity due to finite density, and the third additive contribution
ko represents the critical enhancement of the thermal conductivity. Details of these three factors are specified
in [15]. The IAPWS-IF97 is used to determine the density when the state point is specified by the temperature

and pressure or other state variables. The dimensionless variables in Eq. (3.28) are defined as

T =T/T*, with T*=647.096K (3.29a)
p=p/p*, with p*=322.0kg -m> (3.29b)
k=k/k*, with k*=1.00x10°W.-K ' - m™! (3.29¢)

Eq. (3.28) is valid in the following ranges

0<p<p and 273.16K <T <1173.15K (3.30a)

p: <p <100 MPa and T, (p) < T <1173.15K (3.30b)

where T, is the pressure-dependent melting temperature and p; is the triple-point pressure.

3.4 Implementation and computer program verification

The C++ programming language is used to implement the correlating equations discussed in previous
sections. First, we implement the correlating equations in a continuous form, which we call IAPWS-C.
Because the correlating equations have to be evaluated extensively in the numerical solver, we implement a
tabulated version of the correlating equations, which we call TAPWS-T. For the tabulated version IAPWS-T,
the properties of water and steam are pre-calculated with TAPWS-C at a set of design points (E, pj) and

then a bi-linear interpolation scheme is used to interpolate values at other states. For the range specified
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Table 3.2: Program verification table for thermodynamic properties of water and steam with IAPWS-C

Variable T = 300K, p = 3MPa T = 500K, p = 3MPa
Reference TAPWS-C Reference TAPWS-C
v m3/kg 1.00215168 E-03 1.00215167(97) E-03 1.20241800E-03 1.20241800(34) E-03
h:kJ/kg 1.15331273 E402 1.15331273(02) E+02 | 9.75542239E+02  9.75542239(10) E4-02
e: kJ/kg 1.12324818 E+02  1.12324817(98) E4+02 | 9.71934985E+02 9.71934985(09) E+02
s: kJ/kg 3.92294792 E-01 3.92294792(40) E-01 2.58041912 2.58041912(01)
a:m/s 1.50773921 E+03  1.50773920(97) E4+03 | 1.24071337E+02 1.24071337(31) E+03
Cp 1 kJ/(kg K) | 4.17301218 4.17301218(41) 4.65580682 4.65580682(21)

in Eq. (3.17), 545 design points are used for temperature and 565 design points are used for pressure.
Verification of both IAPWS-C and TAPWS-T is performed. The results of IAPWS-C are compared with
the reference values given in the specification [15]. The results of IAPWS-T are compared with the results

of IAPWS-C.

Table 3.3: Program verification table for the viscosity of water and steam with IAPWS-C

T (K) p:kg/m® Reference p: uPa-s IAPWS-C u: pPa-s
298.15 998.0 889.735100 889.735100(15)
298.15 1200.0 1437.649467 1437.649466(69)
373.15 1000.0 307.883622 307.883622(34)
433.15 1.0 14.538324 14.538324(48)
433.15 1000.0 217.685358 217.685358(26)
873.15 1.0 32.619287 32.619286(97)
873.15 100.0 35.802262 35.802261(72)
873.15 600.0 77.430195 77.430195(23)

Table 3.4: Program verification table for the surface tension of water and steam with IAPWS-C

T (K) Reference 0 : mN/m ITAPWS-C o : mN/m
973.16 75.65 75.64(61)
323.15 67.94 67.94(39)
373.15 58.91 58.91(19)
423.15 48.74 48.74(13)
473.15 37.67 37.67(45)
523.15 26.04 26.04(30)
573.15 14.36 14.35(96)

Table 3.5: Program verification table for the thermal conductivity of water and steam with IAPWS-C

T (K) p:kg/m3 Reference k: mW/(m-K) TAPWS-C k: mW/(m - K)
298.15 0.0 18.4341883 18.4341883(50)
298.15 998.0 607.712868 607.712867(59)
298.15  1200.0 799.038144 799.038143(56)

Table 3.2, Table 3.3, Table 3.4, and Table 3.5 show the verification of IAPWS-C for thermodynamic

properties, viscosity, surface tension, and thermal conductivity, respectively. As expected, the results from
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Table 3.6: Program verification table for properties of water and steam with IAPWS-C and TAPWS-T

Variable TAPWS-C TAPWS-T TAPWS-C TAPWS-T

T = 325.17K, p = 1.2525MPa T = 583.87K, p = 1.2525MPa
p: kg/m® 9.876168(69) E+02 9.876163(90) B+02 | 4.786684(19) 4.786688(78)
e kJ/kg 2.176144(42) E+02  2.176144(88) E+02 | 2.806656(19) E+03  2.806655(77) E+03
h:kJ/kg 2.188826(47) E+02  2.188826(46) E+02 | 3.068319(58) E+03  3.068319(51) E+03
a:m/s 1.549400(03) E403  1.549395(74) E+03 | 5.822827(13) E+02  5.822826(61) E++02
5 1.270658(07) 1.270654(55) 1.299694(80) 1.299694(89)
C, :kJ/(kg K) | 4.177399(70) 4.177401(58) 2.171046(63) 2.171048(08)
k: : mN/m 6.434786(66) E+02  6.433170(15) E+02 | 4.661400(94) E+01  4.590544(58) E+01
i pPas 5.286551(92) E+02  5.280837(78) E+02 | 2.063717(08) E+01  2.061687(93) E+01

T = 345.08K, p = 5.2525MPa T = 648.24K, p = 5.2525MPa
o+ kg/m® 9.789240(94) E+02  9.789239(03) B+02 | 1.920055(78) E+01 1.920068(78) E+01
e kJ/kg 3.000020(02) E+02  3.000020(20) E+02 | 2.855556(45) E+03  2.855554(70) E+03
h:kJ/kg 3.053675(86) E+02  3.053676(27) E+02 | 3.129116(21) E+03  3.129114(38) E+03
a:m/s 1.567040(62) E4+03  1.567039(13) E+03 | 5.929655(29) E+02  5.920644(71) E+02
5 1.347295(17) 1.347293(89) 1.296541(03) 1.296540(37)
C, :kJ/(kg K) | 4.178251(62) 4.178251(99) 2.571846(38) 2.571881(52)
k:mN/m 6.640030(48) E+02  6.638393(08) E+02 | 5.881207(16) E+01  5.747597(16) E+01
[ pPas 3.944396(02) E+02  3.947377(60) E+02 | 2.329529(93) E+01  2.325797(22) E+01

70
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Figure 3.2: IAPWS-C: Surface tension of water/steam in saturation conditions
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TAPWS-C are consistent with the reference values.

Table 3.6 shows the verification of IAPWS-T. Results from TAPWS-T are compared with results from
TAPWS-C. Figure 3.2 also shows the comparison of IAPWS-C and IAPWS-T surface tension at saturation
conditions. As expected, the results from TAPWS-T are consistent with the results from TAPWS-C. For

reference, Figure 3.3, Figure 3.4, and Figure 3.5 show the properties of water and steam at different states.
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Figure 3.3: TAPWS-C: properties of water and steam 1.
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3.5 Conclusion

In this chapter, a few new auxiliary variables are introduced to overcome the challenge in analyzing the two-
phase two-fluid model with a complex EOS. Through thermodynamic transformations, it is found that the
partial derivatives related to the two-phase two-fluid model can be replaced by simple algebraic functions of
these new auxiliary variables. These new auxiliary variables are critical for simplifying the Jacobian matrix
of the two-phase two-fluid model in the following chapter.

The EOS and the properties of water and steam are implemented with the help of the specific Gibbs
free energy. Once the specific Gibbs free energy and its partial derivatives (with respect to pressure and
temperature) are given, it is shown that all thermodynamic properties of water and steam can be written as
functions of the specific Gibbs free energy and its partial derivatives. The EOS is implemented for practical

application in nuclear reactor thermal-hydraulic simulations and verified.
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Chapter 4

ANALYTIC ANALYSIS

4.1 Introduction

The two-phase two-fluid model originates from the conservation laws for phasic mass, momentum, and energy.
The governing equation has the form of a hyperbolic Partial Differential Equation (PDE). Analytical analysis,
especially the characteristic analysis, of the PDE is essential for understanding the behavior of the system
and constructing a stable solver. From the mathematical point of view, an analytical analysis to the system
provides the dynamic behavior of the system under different conditions; from the numerical point of view,
an analytical analysis provides the upwind information of the system, which is essential to construct a stable
and accurate numerical solver.

This chapter presents a detailed characteristic analysis and dispersion analysis of the two-phase two-fluid

model with the help of EOS formulations given in Chapter 3.

4.2 Review of notions

4.2.1 Quasi-linear system

The 1D two-phase two-fluid model belongs to a general systems of first-order partial differential equations

of the form [25]

8(;? +jz=;aij(u1,--- ,um;x,t)%+si(u1,~-- ,um;x,t) =0, fori=1,---,m (4.1)

ox

which is a system of m equations with m unknowns (u;) that depends on space (x) and time (¢). System
(4.1) can be written in a matrix form

A= 4s=0 (4.2)
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where

U aixz - G1m S1
U2 a1 -+ G2m 52

U= A= S = (4.3)
Um Am1 e Amm Sm

System (4.2) is linear when entries of coefficient matrix A and vector S do not depends on unknown vector
U; system (4.2) is called quasi-linear [25] when the coefficient matrix A is a function of the unknown vector
U, ie. A= A(U). The quasi-linear system is in general a system of non-linear equations. Two simplest

examples of system (4.2) are the linear advection equation

ou ou

hatied — 4.4

ot + “or 0 (44)
and the inviscid Burgers equation

Ju ou

e - — 4.

5 +u o 0 (4.5)

Definition 4.1. Conservation laws. Conservation laws are partial differential equations that can be

written into the form
ou OF(U)
ot or

=S (4.6)

where U is the vector of conserved variables, S is the vector of source terms, and F(U) is the vector of

fluxes
Ui fl fl(u17"'7u7n)
U= % F = é = ﬁw”fwm (4.7)
U, fm fm(uh"' 7Um)

An example of the conservation law is the one-dimensional Euler equation for single-phase gas

dp  Opu
a + E = O (48&)

opu | O(pu®+p)
F A T (4:8b)

OpE  9(puE + pu) B
ot =0 (4.8¢)

where p is the density, u is the velocity, p is the pressure, and E = e+ u?/2 is the specific total energy. In a
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vector form,

p pu
UEuler = puU s FEuler = pu2 +p (49)
pE puE + pu

Definition 4.2. Jacobian matrix. The Jacobian matrix of the flux function F(U) is the matrix A(U)

defined as
8f1/8u1 cee afl/aum
. OF 8f2/8u1 s 8f2/8um
A(U) =50 = _ _ . (4.10)
For example, the Jacobian matrix of the Euler equation is
0 1 0
Apuer = | —u?*+[a®+ (v =1)(v*—H)] 2u—(y-1)u v—1 (4.11)

—uH+u[a2+(7—1)(u2—H)] H—(’y—l)u2 u+(7—1)u

where H = E + p/p is the specific total enthalpy. We omit the derivation of this Jacobian matrix, because
it is a straightforward simplification of the Jacobian matrix for a two-phase system, which will be derived
later. Two auxiliary variables, a and =, are defined by Eq. (3.12) of Chapter 3.

The conservation laws can be written in a quasi-linear form

oU OF _9U 90U _

ot Tar ot Thas =8 (4.12)

Definition 4.3. Eigenvalues/eigenvectors. The eigenvalues A; and right eigenvectors K; of a matrix A
are defined by
AK; = MK, (4.13)

For example, the eigenvalues and eigenvectors of the Jacobian matrix Eq. (4.11) are

M=u—a,Xa=uX\3=u-+a (4.14)
1 1 1
Ki=| u—0a | . K= U K=\ u+a |, (4.15)
H —ua H — ~y*a? H 4 ua
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where v* =1/(y - 1).

Definition 4.4. Hyperbolic system. A system is said to be hyperbolic if the Jacobian matrix A has m real
eigenvalues, A1,- -, A\, and a set of m linearly independent right eigenvectors, Ky, --- ,K,,. The system
is said to be strictly hyperbolic if the eigenvalues are all distinct [25]. The strict hyperbolicity implies
hyperbolicity, because real and distinct eigenvalues ensure the existence of a set of linearly independent
eigenvectors. Conversely, if the Jacobian matrix has imaginary eigenvalue(s), the system is said to be
non-hyperbolic. For example, the one-dimensional Euler equation is strictly hyperbolic because all three

eigenvalues are real and distinct.

Definition 4.5. Diagonalizable system. A matrix A is said to be diagonalizable if A can be decomposed

to
A =KDK™* (4.16)
where
D = Diag(A1, -+, Am) (4.17a)
K — (K - Km> (4.17h)

where ‘Diag’ is an operator that forms a diagonal matrix with a given vector. The diagonal elements of
D are the eigenvalues of A and the columns of K are the right eigenvectors of A. A system is said to be
diagonalizable if the Jacobian matrix A is diagonalizable. For example, the one-dimensional Euler equation

is diagonalizable with

u—a 0 0 1 1 1
D=1 0 «w 0 [ K=] u-a u uta | (4.18)
0 0 u+a H—ua H—~*® H+wua

Note that K is invertible because the three column vectors are linearly independent.

4.2.2 General Fourier analysis

Now, we start the analytical analysis of the 1D two-phase two-fluid model. Recall that the 1D two-phase

two-fluid model in a vector form is

ou OF oo
o, b,
ot T or Thigy T

Oay _

ol =S (4.19)
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where U, F, P, P;;, and S are given in Eq. (2.61) of Chapter 2. In general, U is a function of space ()
and time (t); F, P;;, and P;; are explicit functions of U, but do not depend explicitly on = and ¢; S is a

function of U and might depend explicitly on x and ¢. Thus, we obtain
U= U(:c,t),F = F(U),Pim =P, (U),Pit =Py (U), S = S(U;x,t) (4.20)

Assuming all unknown variables are smooth enough to obtain partial derivatives, we transform the equation
into a quasi-linear form
ou ou

(H + A&it,nc) E + (Ac + Aiw,nc) % =S (421)

where

F
giUv Aiz,nc = sz%, Aiz’nc = Pzt% (422)

A, =
ou

where A, is the matrix from the conservative part of the system; A;; . and A;; . are the matrices from
the non-conservative part of the system. As will be seen later, (]I + Ait’nc) is in general invertible, so we

transform the quasi-linear equation into
ou ou
A —

5 tAg =S (4.23)

where A is the Jacobian matrix of the system and S* is the new source vector

—1 " —1
A= (]I + Ait,nc) (Ac + Aiw,nc)y S* = (]I + Ait,nc) S (424)

We will perform a dispersion analysis to study the dynamic character of the two-phase two-fluid model.
The dispersion relationship is obtained by linearizing the system about an initial state and using a general
Fourier representation for each solution component [26]. The local linear dynamic character of Eq. (4.23)
can be investigated by this method for a known state Ugy. The linear differential equation for the behavior

of the perturbation, ¢ = U — Uy, is

0 (UO + ¢)
ot

6(U0 + ¢)

A
+ 8o ox

= S*(Ug + ¢ 2, 1) (4.25)

which gives
90U ., dUo 0 o9

a5 T OW‘FE‘FAO%:SO_"SO(b (4.26)
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where S = (H + Ait’nc)gl (8S/8U)O. Since Uy is a known state of the system, we have

U, Uy .
5 Tho =S (4.27)

Subtracting Eq. (4.27) from Eq. (4.26), the equation for the perturbation is
=4 Aoix = So¢ (4.28)
Assuming the perturbation has a solution in the form of a traveling wave [26], i.e.
@ = ¢g exp [Z (k:z: — wt)] (4.29)

where k is the wave number, w is the frequency, and ¢ is the initial amplitude of the perturbation. Substi-

tuting Eq. (4.29) into Eq. (4.28), we obtain
- iw¢0 + ikAo(ﬁo = So¢0 (430)
Assuming k is non-zero, we change Eq. (4.30) to the following form

1 w
A —Sg — =1 = 4.31
<0+k0 k)fﬁo 0 (4.31)

Eq. (4.31) is a homogeneous linear system of equations. The condition for ¢g to have a non-trivial solution

is that the determinant of the coefficient matrix is zero, i.e.
det (Ao + %So - :11) =0 (4.32)

Let A = w/k, we see that A is the eigenvalue of Ag + i/kSy. For each non-zero value of k, Eq. (4.32) gives a

corresponding value of w and \. Let

W= wr + iwy (4.33a)

A=Ap+i\ (4.33b)

where the subscript R and I denote the real and imaginary part. For w and A, the imaginary part governs

growth or decay of the Fourier component (depending on its sign) and the real part governs the speed
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of propagation of the Fourier component. For finite A in the k& — oo limit, Eq. (4.32) reduces to the
characteristic equation and A reduces to the characteristic eigenvalue of the system. For finite value of k,
the imaginary part of A and w are in general non-zero. The analytical analysis starts with the characteristic

analysis for &k — oo.

4.3 Characteristic analysis

The characteristic analysis corresponds to & — oo or Sy = 0. To ensure the system is well-posed, the

eigenvalues of the system are required to be real. The eigenvalues are determined by
det (A= XI)=0 (4.34)

The key issue in the characteristic analysis is deriving and simplifying the matrices, A., Ajz ne, and Ay e,

such that analytical eigenvalue/eigenvectors can be derived.

4.3.1 Characteristic analysis: Jacobian matrix

The Jacobian matrix of the system is defined as
A= (T4 Aine) " (Ae+ Aspne) (4.35)

Following the derivation and simplification given in the Appendix A, we obtain the matrixes A, Az ne,

and Aj; p¢, they are

0 1 0 0 0 0
—u? + Bic 2u; — Bictt Bict Ulcg —oicy Ulc}]
A —u Hy + ul,Blcf Hy —wpicf w+ ulﬁgcll alulcg —oucy Ululc_}]
‘ 0 0 0 0 1 0
ogch —ogc) o4t —u? + ﬁgcg 2ug — Bycy Bycy
ogugch —0gUgCy OgugCl —ugHy + ug,é’gcg Hy —ugfyct g+ ugfycy
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0
—OéngC?
0
Aiz,nc =
0
agTich

0

0

0
O[ng C{L
Ait,nc =
0

0

h
—QgTIC

0 0
1
agTicl  —QgTC
0 0
0 0
_ u 1
agTIC]  QgTIC
0 0
0 0
0 0
_ U 1
agTIC! QT
0 0
0 0
U _ 1
Qg TIC) g TIC

where we used the following auxiliary variables

B

T =

o = (= 1)w;
cl1 =y -1
1+ aey

?
1+ age + gy

e

;
1+ age + aigg

1

-
1+ age + aigg

Og

Tg

0 0
angcZ —QTyCy
0 0
0 0
—angcg angcg
0 0
0 0
0 0
—angc;‘ QTgCy
0 0
0 0
angch‘ —angc;‘

0
Ty,
0
0

—ozlrgcé

—ozm'gc;
0
0

OéngC;

ag+ (v — 1) (ug — Hy)

('Yg - 1)“9

1+ a4
1+ ager + gy
QgEg
1+ age +agy
1
1+ age; + aigg

where a;, ag, i, Vg, €1, and ¢4 are defined in Eq. (3.12) and Eq. (3.15) of Chapter 3.

4.3.2 Characteristic analysis: conservative part

(4.37)

(4.38)

(4.39)
(4.39D)
(4.39¢)

(4.39d)
(4.39)

(4.39f)

We start the analysis with the matrix A., which represents the conservative part of the governing equation.

Let A\; and K. be the eigenvalue and right eigenvector of A.. Note that A, and K. are not the eigenvalue

and eigenvector of the complete system, because the non-conservative part is missing, see Eq. (4.35) and

Eq. (4.36). The eigenvalue analysis is performed with the symbolic calculation software Mathematica [27].
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The characteristic polynomial of A, given by Mathematica is

Pa(Ae) = (e = w) (0 = ug) { [ (A = w)” = Bra}| [ (A = wy)” = By02| = muogafa?} (4.40)

where the subscript ¢ denotes that the characteristic polynomial is derived for the matrix A.. This charac-
teristic polynomial is surprisingly simple because of the algebraic transformations we made to the Jacobian
matrix with the help of auxiliary variables, including ax, V¢, Bk, and og.

P, ()\C) has two simple eigenvalues, u; and 1y, which represent the convection of liquid- and gas-phase
enthalpy; however, the other four eigenvalues are more complicated. Fortunately, we can obtain accurate
approximation by taking into account the different thermodynamic properties of liquid- and gas-phase,
especially €; and €,. For water and steam, ¢4 is a small value close to zero while ¢; is a large positive value,
see Figure 3.4. Another special example is the ideal gas, for which €, = 0 in any conditions. Thus, we obtain
the following approximation

eq =0
g S, = 9% g (4.41)
e >1 1+ age; + aggy

This approximation means that, in matrix A., the coupling effect of the lower triangular block containing

o4 is not significant. Substituting o, ~ 0 into Eq. (4.36), we find that the eigenvalues are

Aol R up — / Brag; Aeg = ups Ae 3 = up + /By (4.42a)
Aca R Ug — \/Pglg; Aes = Ugs Aes = Ug + 1/ Pglg (4.42b)
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and the right eigenvectors are

1 1 1
u — /B up up + v/ Bra
H;, — v/ Biaju H; —~jaf H; + VBiayw
KLc ~ \/7 7K2,c ~ T 7K3,c ~ \/7
0 0 0
0 0 0
0 0 0
(4.43)
q4 0 s
qaAca 0 g6 c,6
K, ~ qa[Hy — uf + w4 K~ 0 Koo~ a6 [Hy — ui + whc ]
1 1 1
ug — /Bgag Ug ug ++/Bgag
Hy — \/Bgagug H, —’y;ag Hy + \/Bgagig
where v/ =1/ (71 — 1) and y; =1 / (vg - 1). g4 and ¢ are two auxiliary variables defined as
2 2
crlag Jlag
qs = ;o 4 = (4.44)
(>\c,4 - )\c,l) ()\0,4 - )\573) ()\c,(i - )\c,l) (>\c,6 - )\C,B)
The right eigenvector matrix can thus be approximated as
KC ~ <K1,c K2,c K3,c K4,c KS,C KG,C) (445)

Note that though K. is neither the exact eigenvector matrix of A. nor the exact eigenvector matrix of the
system, it provides very accurate upwind information of the system.

A series of numerical tests are performed to verify the approximations by comparing the exact eigenvalues
calculated with Eq. (4.40) with the approximate eigenvalues calculated with Eq. (4.42). Table 4.1 lists the
test conditions for the verification. The test matrix covers a wide range of void fraction, pressure (in MPa),
temperature (in K), and density (in kg/m?®). The liquid velocity and gas velocity are kept constant in all
cases, i.e. 4; = 2.0 m/s and uy = 5.0 m/s. For test case 1 to 5, the liquid is a subcooled water and the gas is
a superheated steam; for test case 6 to 10, the liquid and the gas are at saturation temperature. Table 4.2,

Table 4.3, and Table 4.4 show the comparison of exact eigenvalues (AS

c,i?

i1 =1,3,4,6) to the approximate

eigenvalues (¢ ;,i = 1,3,4,6) for ay = 0.001, ay = 0.2, and o, = 0.999, respectively. We see that the
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approximate eigenvalues are very close to the exact eigenvalues for all test cases. At low void fraction, the

maximum relative eigenvalue difference is 0.4%, most of the eigenvalues are within 0.2%; at intermediate

void fraction, the maximum relative eigenvalue difference is 1.4%, most of the eigenvalues are within 0.2%;

at high void fraction, the maximum relative eigenvalue difference is less than 0.1%. This confirms that

approximation given in Eq. (4.41) is valid.

Table 4.1: Verification of approximate eigenvalues of A.: test matrix

Case | p T T, Pl Pg a g ol Yq €1 Eg
1 0.1 300.0 500.0 996.56 0.44 1503.13 54830 1.148 1.308 2.25E+04 -3.41E-04
2 0.5 300.0 500.0 996.74 2.21 1503.76 542.92 1.149 1.306 4.51E+03 -1.43E-03
3 1.0 300.0 500.0 996.96 4.53 1504.56 535.67 1.149 1.303 2.26E403 -2.38E-03
4 5.0 300.0 600.0 998.74 20.39 1510.93 561.17 1.153 1.297 4.55E+02 -1.22E-02
5 10.0 300.0 600.0 1000.95 49.77 151893 503.35 1.158 1.280 2.30E+02 -1.95E-02
6 0.1 3728 3728 958.64 0.59 154545 472.05 1.424 1.312 2.29E+04 3.90E-03
7 0.5 425.0 425.0 915.28 2.67 1461.95 493.80 1.514 1.297 3.91E+03 4.53E-03
8 1.0 453.0 453.0 887.13 5.15 1391.64 500.89 1.537 1.288 1.72E4+03 3.00E-03
9 5.0 537.1 537.1 777.36 25.35 1088.43 498.18 1.519 1.273 1.83E+02 -1.41E-02
10 | 10.0 584.1 584.1 688.41 5545 847.74 47246 1.451 1.263 4.80E4+01 -2.57E-02

Table 4.2: Verification of approximate eigenvalues of A.: exact vs approximate eigenvalues for ay = 0.001

Case Aot A1 )‘2,3 )‘5,3 cd 4 o6 )‘g,G
1 -308.00 -307.92 312.00 311.92  -543.26  -543.31 553.26 553.31
2 -313.66 -314.75 317.70 318.75  -467.75  -467.02 477.71 477.02
3 -539.10 -537.99 549.17 547.99  -637.51 -638.44  641.44  642.44
4 -486.61 -488.57 496.55 498.57 -660.34  -658.89 664.40 662.89
5 -531.61 -530.86 541.62 540.86 -830.68  -831.16 834.67  835.16
6 -494.89 -495.62 504.89 505.62  -843.57  -843.14  847.58 847.14
7 -559.91 -558.54 569.91 568.54 -1247.63 -1248.24 1251.62 1252.24
8 -496.93 -496.19 506.93 506.19 -997.38  -997.75 1001.37 1001.75
9 -503.48 -502.39 513.49 512.39 -1364.75 -1365.16 1368.75 1369.16
10 -473.78 -473.34 483.78 483.34  -825.34  -825.59 829.34  829.59

Table 4.3: Verification of approximate eigenvalues of A.: exact vs approximate eigenvalues for ay = 0.2

Case

e
c,1

a
c,1

e
c,3

a
c,3

e
c,4

a
c,4

e
c,6

a
c,6

© 00 O Ui W N+

—
o

-20.40
-48.06
-68.76
-155.62
-220.09
-20.84
-50.24
-73.00
-175.81
-259.43

-20.39
-48.03
-68.69
-154.79
-217.96
-20.87
-50.33
-73.09
-174.68
-255.89

24.40
52.06
72.76
159.61
224.06
24.84
54.24
77.00
179.80
263.36

24.39
52.03
72.69
158.79
221.96
24.87
54.33
77.09
178.68
259.89

-543.30
-537.92
-530.66
-555.96
-497.49
-467.06
-488.81
-495.91
-492.85
-465.96

-543.30
-5637.92
-530.67
-556.20
-498.43
-467.05
-488.79
-495.89
-493.26
-467.92

553.30
547.92
540.66
565.97
507.52
477.06
498.80
505.91
502.86
476.03

553.30
047.92
540.67
566.20
508.43
477.05
498.79
505.89
503.26
477.92
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Table 4.4: Verification of approximate eigenvalues of A.: exact vs approximate eigenvalues for oy = 0.999

Case Aea Aea o3 Aes Ao Ao A6 A6
1 -8.02 -8.02 12.02 12.02 -543.30 -543.30 553.30 553.30
2 -8.22 -8.22 12.22 12.22  -467.05 -467.05 477.05 477.05
3 -20.41 -20.41 24.41 24.41 -537.92 -537.92 547.92 547.92
4 -21.39  -21.39 25.39 25.39 -488.80 -488.80 498.80 498.80
5 -29.69  -29.69 33.69 33.69 -530.67 -530.67 540.67 540.67
6 -31.60  -31.60 35.60 35.60 -495.89 -495.89 505.89 505.89
7 -68.80  -68.80 72.80 72.80 -556.17 -556.17 566.17 566.17
8 -78.35  -78.35 82.35 82.35 -493.18 -493.18 503.18 503.18
9 -98.04  -98.04 102.04 102.04 -498.35 -498.35 508.35 508.35
10 -119.14  -119.14 123.14 123.14 -467.46 -467.46 477.46 477.46

4.3.3 Characteristic analysis: system
Basic two-phase two-fluid model

Recall that the Jacobian matrix of the system is
A= (T4 Aine) (Ao + Aip ne) (4.46)

The derivation of A is complicated, it is shown in Appendix A. However, we find that the characteristic
polynomial of A can be simplified to a convenient form. Let A and K be the eigenvalue and eigenvector of A.
The eigenvalue analysis is performed with the symbolic calculation software Mathematica. The characteristic

polynomial of A given by Mathematica is
P(A) = (A= u) (A= ug) {[ (A =) = Braf| | (A = uy)” = Bya2| - 7 Bjata2 | (4.47)

where
apea’ « 2
* 1Pg g * gP1a;

B = 4.48
Oélpga_?; + O‘gplal2 g O‘lpgag + O‘gplal2 ( )

To study the eigenvalues, we define the following 4*"-order polynomial

PLA) = (A=X)A=X) (A=A (A= A)) — B Byaia (4.49)

where

No=w—/Brag N =+ /Bra

(4.50)
Ay =ug—/Bsag; )\;' =ug +4/Bray
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The features of this polynomial are

e If ay =0, then §; = 0 and 8] = 1; the system degenerates to single-phase liquid and Py ()\) has two

meaningful roots, u; — a; and u; + a;.

o If ay =1, then 85 =1 and 3] = 0; the system degenerates to single-phase gas and P, ()\) has two

meaningful roots, u, — a, and u, + a,.
) Ug g g g

e If 0 < ay <1, then 0 < 7 < 1and 0 < B < 1; the system is mixed with two phases and the
characteristic polynomial is a general 4*P-order polynomial, see Figure 4.1. For analysis purposes, let

u1, Uz, uz, and uy denote the increasing order of Ay AL )\f, and )\3‘
w1 < ug <uz < uy (4.51)

For problems where « is non-negligible and the relative velocity is small, we have in fact that A <
A< A< Ay . Because B/ and S are non-zero, A, A, Af, and Af are not roots of Py(X). Py(X)

always has two real roots: one in (foo, ul) and the other one in (U4, +oo). Because

Py(A=us) = —B; Biaja2 <0
e (4.52)

P, ()\ = us) = —ﬁl*ﬁ;a?az <0

depending on the sign of the local maximum value in (uz, u;),), Py ()\) may have another two real roots,
two equal real roots, or two complex roots. The sign of the local maximum value is determined by the

relative velocity. Let P;"®* be the local maximum value in (u2, ’LL3)

PP = max Py()) (4.53)

Aeluz,us

we can check that

P =0, for |ug—w|=0
(4.54)

<0, for O<|ug—ul\§\/ﬂ?az+ Biag

which means that the remaining two roots are either two equal real values for uy, = u; or two complex
values for 0 < |uy, —w| < \/Bfa; + /Biay. For larger relative velocity, the two roots transition from

two complex roots, to two equal real roots, and finally to two distinct real roots. For example, we can
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check that if |ug —w| > \/Bfar + /Byag + ,4/Bl*,6’;;a12a§, we have

+ B/ By
Pinax ZP4 (A: Uz . u3) _ \/T\{Eazlag [ﬂ;ﬁ;ala9+4m<\/ﬁ?al+ \/ﬁgag>:| >0

(4.55)

which means there are two real roots in interval (uz, u;;).

0.1

=== 4 real roots
0.08 =4 real roots: 2 equal roots
= 2 real roots + 2 complex roots

0.06 [
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Figure 4.1: Characteristic polynomial of the basic two-phase two-fluid model

Thus, we obtain the following well-known facts [28, 16] about the basic two-phase two-fluid model

o If oy =0 or ay = 1, the system degenerates to single-phase liquid or single-phase gas. The system is

hyperbolic.
o If 0 < ayg <1 and u; = ug, the system has 6 real eigenvalues and is hyperbolic.

o If 0 < ay <1, uw # ug, and |ug —w| < /Bfar + \/Bsag, the system has 4 real eigenvalues and two

complex eigenvalues. The system is non-hyperbolic.
o If 0 < ag < 1, w # ugy, and |ug — wi| > /Bfa; + | /Byag, the system transitions from having 4 real
eigenvalues to 6 real eigenvalues.
Isothermal case

In previous characteristic analysis found in the literature, most researchers ignore the energy equation
because the energy equation does not affect the dynamic character of the two-phase flow equations [26], i.e.
its hyperbolicity. As a special case of our previous analysis, we also provide the analysis without the energy

equation, which is called the isothermal case. For the isothermal case, the phase change is ignored and the
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governing equation is

Oayp;  Oaypruy

i oy (4.56a)
aag;lul N 6(0zmm§x+ arp) *P% = wpige — fui + f; (4.56b)
6cggtpg 8ag8/;gug —0 (4.56¢)

aaggug . 8(Oégpg:;§:+ agp) p% — ypyGe — fug — fi (4.56d)

The phasic density is determined by pr = px (p) Following a similar derivation given in Appendix A, the

Jacobian matrix of the system is found to be

0 1 0 0
—u? + Bra? 2y ora? 0
Aiso = : t L (457)
0 0 1 0
U;a% 0 —ug + 5;(13 2ug

where a; and a4 are isothermal speed of sound defined as

—1
ag—@if) 2

(88’;‘7 ) - (4.58)

and

2 2
. QPga . Qgp1a
QPglg + QgP1a; QPgag + QgP1a;
2 a0 a2
of = —O;lplal 5, Op = —;pg L (4.59b)
QPgag + 0gP1a; Qipgay + 0gpPra;
Let X be the eigenvalue. The characteristic polynomial for the isothermal case is found to be
2 * 2 * * %
Piso(N) = [(A = w)” = Bt ] [(A = uy)” = Ba2] - B Bjata? (4.60)

Note the Py, () in Eq. (4.60) has the same form as P4 () in Eq. (4.47). From this analysis, we see that the
characteristic polynomial for the isothermal case is very similar to the general case, though the definition
of speed of sound is different. The analysis performed for the general case can be applied exactly to the

isothermal case.
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4.3.4 Characteristic analysis: hyperbolicity regularization

There are two common methods to hyperbolize the basic two-phase two-fluid model: interfacial pressure

correction [29] and virtual mass force [30]. These two methods can be written in a general form as

8?;[ 8aé/;zw e (4.61a)

aoég;zul n 3(0‘lplgli+ ip) —p% _Fy =8 (4.61b)
30418/2161 n 30&15;61%1 p% +pag;’“l =S¢ (4.61c)
30<8gtpg 30%29% — 5 (4.61d)

aagaptgug . a(agpggiJr agp) p% L =87 (4.61¢)
80%;;969 aagg,;egug +p% n aOégxug — 5 (4.61f)

Note that we always add/remove the same amount of force from the liquid-phase momentum equation and
remove/add the same amount to the gas-phase momentum equation. This ensures that we get the correct
mixture equation when the two momentum equations are added. The interfacial pressure correction and

virtual mass force are

0
Fs =4, aa , for interfacial pressure correction (4.62a)
x
O(ug —u 0 0
Fs =Cym M + ulﬂ — . for virtual mass force (4.62b)

ot or  9or |’

In Eq. (4.62), ¢, is the interfacial pressure correction that has the dimension of pressure and Ciy, is the

virtual mass that has the dimension of density.

Interfacial pressure correction

The first common method to hyperbolize the system is the interfacial pressure correction, used in CATHARE
code [29]. With Eq. (4.61) and Eq. (4.62a), following the derivation given in Appendix A, the characteristic

polynomial of the system is found to be

P()\) = ()\ — ul) ()\ - ug) { [()\ — ul)2 — ﬁl*a?] {()\ — ug)2 - ;aﬂ — ﬁ;‘ﬁ;a?ag + f(5p)al2a§} (4.63)
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where

* Q [Pga?; - (79 - 1)517] + g0y
— 4.64a
A aTos@ = (0 — D8] + gl — (= 13, ot
agpai — (v — 1)6,] + ud,
g — 0 4.64b
Y [Pgaf] - (79 - 1)517] tag [Pla% - (71 - 1)51)} ( )
1)
0,) = P 4.64c
TO0) = Trsas = G = 8] + g lona? — (= 103 (1610

Extensive algebraic transformations are performed to obtain Eq. (4.63). We define the following 4'"-order

polynomial to study the eigenvalues

Py(X;6,) = PP(X;6,) + £(6p) (4.65)
where
PYAG) = 5 (A= A7) (A= AF) (A= 2 ) (A= A7) (4.66)
al ag

The behavior of Py ()\; 5,,) is shown on Figure 4.2. It contains two parts: the first part P ()\; 5p) determines
the shape of the characteristic polynomial; the second part f(ép) is the perturbation to the characteristic

polynomial. When §, is small, f (5p) is approximately a linear function of J,.

- =P
—P,)

T
1
\
1
1
1
1
1
1
1
1
\
\
),
|}

Normalized polynomial

A (m/s)

Figure 4.2: Characteristic polynomial of the system with interfacial pressure correction

If the interfacial pressure correction d, is to be used for regularization purpose, we would require that ¢,

is large enough to ensure the characteristic polynomial has all real eigenvalues. The condition is: the local
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maximum value of Py (/\; (5p) in interval (ug, ug) is non-negative, i.e.

PP(6,) = max  Pi(\;6,) >0 (4.67)

AE (UQ ,ug)

Let 6," be the critical value of the correction that satisfy

PPX(6e7) = max  Py(X657) =0 (4.68)
A€ (U2 ,u3
Finding the local maximum value and 3" analytically is complicated; however, 65" can be found numerically
with little computational effort.

For problems where |u, — w;| is much smaller than the phasic speed of sound, the interfacial pressure
correction is much smaller than phasic pressure and such correction is physically realistic. When |ug — ]
is comparable to the phasic speed of sound, interfacial pressure correction is on the order of the phasic
pressure, which is difficult to justify.

Using Eq. (4.68), we can study the behavior of the interfacial pressure correction at different physical
conditions. Among all possible variables, the void fraction and the relative velocity are important. In the
following numerical tests, we keep the liquid velocity at 0 and change the gas velocity through a relative

Mach number (Mr), which is defined as

lug —

~ VBrat /Bag

Mr

(4.69)

Table 4.5 lists the physical conditions for the numerical tests.

Table 4.5: Physical conditions for studying d;"

Primary variables Auxiliary variables
Pressure (MPa) 15. & 154.76
Liquid velocity (m/s) 0. g4 -0.012664
Liquid temperature (K) 300. a; (m/s) 1526.9
Gas temperature (K) 700. a4 (m/s) 576.66
Liquid density (kg/m3)  1003.1 1.1629
Gas density (kg/m?) 57.941 ~, 1.2971

Regardless of the validity of the interfacial pressure correction, Figure 4.3a shows 47" as a function of
void fraction and relative Mach number. The value of ;" in the figure is normalized by the phasic pressure.
As a function of void fraction, 45" is zero in the single-phase limit; J," is non-zero for two-phase system
when the relative velocity is non-zero. As a function of Mr, 67" increases with Mr until it reaches the phasic

pressure. When Mr is larger than 1, §;" decreases with Mr until it reaches 0.
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Figure 4.3: Normalized interfacial pressure correction d;" as a function of void fraction and relative Mach
number. The interfacial pressure correction is normalized by the phasic pressure.

Table 4.6: Eigenvalues of the system with/without interfacial pressure correction

Case | |ug — Qg dp A4 A6 M A3
1 10. 0.01 0 -1107.80 1110.78 8.51 -3.56i1 8.51 +3.56i1
2 10. 0.01 5? -1107.80 1110.78 8.51 8.51
3 10. 0.10 0 -679.41 692.57 3.42 -4.741 3.42 +4.74i
4 10. 0.10 (51? -679.40 692.56 3.42 3.42
5 10. 050 O -581.21 600.12 0.55 -2.271 0.55 +2.27i
6 10. 0.50 5,? -581.21 600.12 0.55 0.54
7 10. 099 0 -566.81 586.80 0.01 -0.24i 0.01 4+0.24i
8 10. 0.99 (5;7' -566.81 586.80 0.01 0.00
9 100. 0.01 0 -1095.97 1126.03 84.97 -35.59i1 84.97 4+35.59i
10 100. 0.01 (5? -1095.43 1125.47 84.99 84.98
11 100. 0.10 0 -625.33 756.34 34.50 -47.04i 34.50 +47.04i
12 100. 0.10 (5§T -623.51 755.00 34.25 34.25
13 100. 050 O -497.74 686.28 5.73 -22.91i 5.73 +22.91i
14 100. 0.50 5zc,r -497.41 686.11 5.65 5.65
15 100. 099 0 -476.88 676.76 0.06 -2.45i 0.06 +2.451
16 100. 0.99 (53 -476.88 676.76 0.06 0.06
17 500. 0.01 0 -1064.01 1247.90 408.06 -175.191 408.06 +175.191
18 500. 0.01 5§T -1051.16  1235.58 407.80 407.79
19 500. 0.10 0 -485.95  1097.75 194.10 -194.291 194.10 +194.29i
20 500. 0.10 5§T -443.18  1087.98 177.60 177.59
21 500. 050 O -225.75  1079.06  73.35 -119.05i1 73.35 +119.051
22 500. 0.50 (5;r -205.21  1077.78 63.72 63.71
23 500. 099 0 -84.61 1076.68 3.96 -22.73i 3.96 +22.731
24 500. 0.99 (5IC,T -84.90 1076.68 4.11 4.11
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We compare the interfacial pressure correction obtained from Eq. (4.68) with the correction used in

CATHARE code

SOATHARE _ _M%XPPg ()2 4.70
¢ apy Loy o~ ) (4.70)

SSATHARE s not large enough at high void fraction

The comparison is shown in Figure 4.3b. We see that
and is larger than the phasic pressure when the relative Mach number is high.

Table 4.6 lists the eigenvalues of the system calculated with Eq. (4.47) and with the interfacial pressure
correction. The eigenvalues of the system are calculated with different combinations of void fraction and
relative velocity. For the odd cases, 6, = 0, which reduces to the basic two-phase two-fluid model; for the
even cases, 0, = 0,". We see from the table that the interfacial pressure correction works as expected to

bring the two complex eigenvalues (A; and A3) to real values. The two real eigenvalues (A4 and Ag) stay

real.

Virtual mass force

Another common method to make the system hyperbolic is adding a virtual mass force to the phasic
momentum equations. For simplicity, we will show analysis and results for the isothermal case. Combining
Eq. (4.61) and Eq. (4.62b), following the derivation given in Appendix A, the Jacobian matrix for the
isothermal system is found to be

Aiso,vm = (H + Avmt) _1Aiso (471)

where A,,,; accounts for the effect of time derivatives in the virtual mass force. We obtain

1 0 0 0
nLug 1+ng _ _Nglg Mg
(H+A'Umt)_1 _ | I+mtng T+mi+ng T+m+ng  T+m+ng (4.72)
0 0 1 0
UK Nglg 1+m

_ m
1+m+ng  14+mi+ng 1+mi+ng 14+m+ng

Performing the matrix-matrix multiplication, we obtain the Jacobian matrix of the system

0 1 0 0
2 2 2
—uj + Blaj — kjwur 2w + Kjugr Ul”ag — mguguR nZuR
Aiso,vm = (473)
0 0 1 0
v 2 v v 2 v 2 v v
040 + Ky wuR —K[UR —ug + Bgag + KgUgUR 2ug — KgUR
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Eq. (4.72) and Eq. (4.73) use the following auxiliary variables

v o m v — 779
K=, R = — 4743,
P 14+ T T+ ( )
* + * —|—O'* * + * —|—O'*
quj = 61 (ﬂl g)ng’ ,B;] = 59 (Bg l)nl (474b)
L+m+n L4-m 41
o} = L (ﬁg l)ng, oy = g (ﬁl g)m (4.74c)
1+m 414 L+m+ng

where S}, 8, o}, and o are auxiliary variables defined in Eq. (4.59). mi, ng, and up are additional auxiliary

variables defined as

Ny = . UR =Ug — W (4.75)

Let X be the eigenvalue. The characteristic polynomial is found with Mathematica
2 v 2 v v U
Pisorwm(Xi Com) = [(A =w)® = Braf| | (A = uy)” = Bya2| — ofoyatal + F(XiCom)  (4.76)
where

T8 Com) = ur {ry (A= ug) [(A\ = w)” = (87 + op)ad] = s (A —w) [(A = wy)” = (85 +07)a2] }  (477)

0.6

= = Novirtual mass (C_=0)
051 —— With virtual mass (C,_+0) |
%1074

0.4 §

S Y
03 10

' -15
02F -200 0 200

0.1 \

Normalized characteristic polynomial

Figure 4.4: Behavior of characteristic polynomial P ym ()\; C’Um) with and without virtual mass

Figure 4.4 shows the behavior of Pjs, ym ()\; Cvm). For the case without the virtual mass force, the

characteristic polynomial might have two complex roots; for the case with the virtual mass force, the
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characteristic polynomial has 4 reals roots if the virtual mass is large enough. The following analysis gives
the condition for C,,, to ensure the characteristic polynomial has 4 real roots.

Assuming that the virtual mass is positive, we can check that

2
Pisorum (w5 Com) = — @1y (g = 1) <0 (4.784)
iso,um y Cum (Ollpgag T Oégpla?) (1 T m T 779) >

2 2 2
agpaia(ug — )
Pi@ vm ;Cvm = - J g S 0 4.78b
s0, (Ug ) (angaﬁ-i—agpza?)(l-#m-#ng) ( )

For analysis purposes, we denote u; = min(ul, ug) and us = max(ul, ug). Eq. (4.78) shows that Pjs um (/\; C’vm)
has at least two reals roots: one in interval (—oo, ul) and the other one in interval (us, +00). The other two
roots, if they are real, they should be in the interval (uj,us). Because of Eq. (4.78), we know that if the
local maximum value of Pjsy ym (/\; Cvm) in (u1,us2) is non-negative, then there are two real roots in (uy, us),
which gives the condition

max  Pisovm (A; Cym) >0 (4.79)
AE (u1,u2)

We obtain the critical value C¢"

vm

when Eq. (4.79) is satisfied. Finding C¢, analytically from Eq. (4.79) is

complicated. However, we find that Toumi [30] gave a good approximation to CS/ . The approximation is

OFoumi — 90 v\ /i pipg (4.80)

We can prove that C;Lo"™ ig sufficient. Let

uo:ul+ug+ug—ul 00 (1_204ng>

_ Uy + Ug Ug — U X Pg — OgP]
2 2 o +2p9

We can check that ug € (u1,uz). Evaluating Pjsoum ()\; Cvm) with A = ug and C,,, = Clo"mi we obtain

p§ +4(p2 + pops)

Piso,om (uo; Cym™) = 1 (o — ag)zalagplng (ug — “1)4 >0 (4.82)
(P04 2ps) (pipg + 2pmps)
where
po = Qupg + agpy (4.83a)
Pm = QupL+ Qgpy (4.83b)

Ps = /010G PIpg (4.83c)
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Combining Eq. (4.78) with Eq. (4.82), we know that if C,,, = CIo%m then there are two real roots on
interval (U17U2)7 one in (ul,uo) and another one in (U()7’U,2). Eq. (4.80) shows that the critical virtual
mass does not depend on the relative velocity, which is different than the interfacial pressure correction that

increases greatly with the relative velocity.
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Figure 4.5: Critical virtual mass as a function of void fraction

Figure 4.5 shows the comparison of critical virtual mass calculated with Eq. (4.79) and Eq. (4.80). It
is interesting to note that C;L0"™ is very close to the critical value C" . Though we prove that CLoW™mi jg
sufficient, it is difficult to prove that C1o%m! is also necessary.

Based on the previous analysis, we know that Eq. (4.79) is guaranteed to make the system hyperbolic.
However, virtual mass force has a major drawback: the eigenvalues of the system are significantly shifted,
which can be seen in Figure 4.4. Addition of virtual mass force changes the shape of characteristic polynomial
(due to change in 87" and (;), and the two real eigenvalues (related to the speed of sound) are shifted toward
the phasic velocity. This drawback is shown in the following numerical tests.

Table 4.7 lists the eigenvalues of the isothermal system calculated with Eq. (4.76) and with the virtual
mass force. The test conditions are shown in Table 4.5. The virtual mass force is not enabled in the odd
cases, which correspond to the basic two-phase two-fluid model; the virtual mass force is added to the system
in the even cases. From the table, we see that the virtual mass force works as expected to make the two
complex eigenvalues (A; and A3) real. The two real eigenvalues (A4 and Ag) remain real but are shifted by
the virtual mass force (sometimes significantly). Because the virtual mass is larger for the cases when void
fraction is close to 0.5, we see that the shift in these two eigenvalues is very large for cases 3-6, 11-14, and
19-22. The two complex eigenvalues (A; and A3) are made real except for case 10 and case 18. For these

two cases, A1 and Ag are still complex but with very small imaginary parts. This is because of the numerical
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Table 4.7: Eigenvalues of the system with and without virtual mass force: eigenvalues

Case | |ug —w| ag Cym A X6 M A3
1 10. 0.01 0 -1107.80 1110.78 8.51 -3.56i 8.51 +3.56i
2 10. 0.01 C¢, -1075.07 1076.47 7.05 7.06
3 10. 0.10 0 -679.41 692.57 3.42 -4.74i 3.42 +4.74i
4 10. 0.10 C¢g, -527.89 532.66 4.19 4.19
5 10. 0.50 0 -581.21 600.12 0.55 -2.271 0.55 +2.27i
6 10. 0.50 C¢or -393.21 403.21 1.92 1.95
7 10. 0.99 0 -566.81 586.80 0.01 -0.24i 0.01 +0.24i
8 10. 0.99 C&, -564.85 584.75 0.23 0.24
9 100. 0.01 0 -1095.97 1126.03 84.97 -35.591 84.97 +35.59i
10 100. 0.01 C¢gr -1069.39 1083.45 70.44 -0.08i 70.44 +0.08i
11 100. 0.10 0 -625.33 756.34 34.50 -47.04i 34.50 +47.04i
12 100. 0.10 C¢&, -509.02 557.16 41.33 42.00
13 100. 0.50 0 -497.74 686.28 5.73 -22.911 5.73 +22.91i
14 100. 0.50 C¢5r,  -352.25 452.20 17.74 21.07
15 100. 0.99 0 -476.88 676.76 0.06 -2.45i 0.06 +2.45i
16 100. 0.99 C¢.  -476.17 675.01 1.89 3.03
17 500. 0.01 0 -1064.01 1247.90 408.06 -175.191  408.06 +175.19i
18 500. 0.01 Cgr, -1052.51 1135.58 342.38 -1.96i 342.38 +1.96i
19 500. 0.10 0 -485.95  1097.75 194.10 -194.291 194.10 +194.29i
20 500. 0.10 C¢&, -460.69 739.64 176.72 194.10
21 500. 0.50 0 -225.75  1079.06  73.35 -119.051 73.35 +119.05i1
22 500. 0.50 C¢&,  -240.40 737.32 62.48 134.36
23 500. 0.99 0 -84.61 1076.68 3.96 -22.73i 3.96 +22.73i
24 500. 099 (O -145.93  1095.00 3.55 78.00

vm
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error in calculating the CS7. and the eigenvalues.

4.4 Dispersion analysis

In previous sections, the characteristic analysis is performed for the 1D two-phase two-fluid model. As
is well known, the basic two-phase two-fluid model is in general ill-posed with complex eigenvalues. Two
common hyperbolicity regularization methods, interfacial pressure correction and virtual mass force, are
studied analytically. Regardless of the physical validity of these two methods, we see that both methods are
capable of making the system hyperbolic. However, both methods have drawbacks: the interfacial pressure
correction is very large for large relative velocity; the virtual mass force depends weakly on the relative
velocity, but it changes significantly the shape of the characteristic polynomial and the magnitude of the two
real eigenvalues, especially for the case where the void fraction is close to 0.5. It is very difficult to justify
the regularization methods.

The characteristic analysis corresponds to the case where the wave number &k — oo or Sy = 0. For the
case with finite wave number and non-trivial source, we need to perform a dispersion analysis. This allows
to study the effect of algebraic source terms on the stability of the system. Unlike the characteristic analysis
where we can perform analytical analysis, it is very difficult to perform the dispersion analysis analytically
because of two reasons: 1) the source terms are in general problem-dependent and are complicated non-
linear functions of the unknown variables; 2) the dispersion analysis requires finding roots of a complex
characteristic polynomial. Thus, we will derive the dispersion relation analytically as much as possible and
then solve it numerically. As mentioned earlier, the energy equation does not affect the dynamic character
of the two-phase system, we will perform the dispersion analysis for the isothermal system.

Recall that the governing equation for the isothermal system is

Oaypy n Oaypruy

i 1Py (4.84a)
aal@ilw n 3(@1011;1-1— ap) *P% = upige — fui + f; (4.84Db)
86(;gtpg n 304%/;9% —0 (4.84c)

aaggug .\ 8(069/79:;%:4‘ agp) p% — 0ypygs — fug — f (4.84d)

which is in general ill-posed due to the complex eigenvalues discussed before. The isothermal system with

the mathematical hyperbolicity regularization, e.g. interfacial pressure correction or virtual mass force, is
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generalized to

Oayp; n Oaypruy

n 1 (4.85a)
aag:ul + 8(ammgzx+ ap) 7p% — Fs = cupigs — fur + fi (4.85b)
30(;gtpg 30@:929% —0 (4.85¢)

8agaptgug . a(agpggiJr agp) p% Py = aypoge — fug — fi (4.85d)

For the following analysis, the regularization force Fjy is controlled by

A(ug — uy) N Oug o or O0g

F<5 = ¢Um05:n D al‘

where ¢, and ¢, are two dimensionless variables. Depending on the values of ¢, and ¢,,, we have the
following 4 cases that are important to study
e ¢, =0 and ¢,, = 0. No correction is added to the basic two-phase two-fluid model.

e ¢, > 0 and ¢y = 0. Interfacial pressure correction is added to the to the basic two-phase two-fluid

model.
o ¢, =0 and ¢, > 0. Virtual mass force is added to the basic two-phase two-fluid model.
e ¢, > 0 and ¢, > 0. Both interfacial pressure correction and virtual mass force are added to the basic

two-phase two-fluid model.

4.4.1 Dispersion analysis: interfacial and wall friction models

The starting point for the dispersion analysis is

7 w
A Sy — =27 ) = 4.
det ( o+ kSO A ) 0 ( 87)

In this case, A is the matrix derived in Eq. (4.73) and Sy is

S
So = (I+ Apme)y (8U> (4.88)
0

where (]I + Avmt)_l is shown in Eq. (4.72). To proceed, we have to provide the source vector S, which

requires models for the interfacial friction and wall friction. We will use the models discussed in Chapter
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2. For simplicity, the drag coefficient model is used for the interfacial friction

1
Ji= gpcalgCD|UR|uR (4.89)

where up is the relative velocity, p. is the density of continuous phase, a;4 is the volumetric interfacial area

concentration, and Cp is the drag coefficient. For this dispersion analysis, we take

3.6ay
Pc =PI, Qg = d
o

(4.90)

where d,, is the characteristic diameter, which we will set to a constant value. Finally, the interfacial friction

is

3.6
fi = Kiagpilur|ur, where K; = gCD (4.91)
o
For simplicity, we simplify the wall friction to
1 2 2
ful = Eal ()\lalplul + )\gagpgug) (4.92a)
1
Jwg = 5p% ()\lal,olu? + )\gagpgu§> (4.92b)

We take )\;, Ay, and D as constants. Finally, the wall friction to use is

A
Jwl = qq (lealplu? + ngagpgu;), where K, = i (4.93a)
A
fuws = g Kpioupiu? + Kygagpou? ), where Ky, = —% 4.93b
g g 1 gQgPgly 9= 5D
Combining Eq. (4.89) and Eq. (4.93), we obtain
0 0 0 0
oS S21 S22 S23  S24
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where

$21 = 9o + a Kyiuj + Ki%; (ug — w) (ug +w) — coaga; (4.95a)
§22 = —200 K ity — QK%‘I’ (g — w) (4.95b)
S93 = alegug — 2Kip% (ug — ul)ug + cooqag (4.95¢)
Soq = =204 Kygug + QKZ-% (ug — ul) (4.95d)
g
s41 = g Kpui — Ki%l’(ug — ) (ug +w) + coogaj (4.95¢)
S42 = =20 Kypiup + 2Kii—‘j(ug — ul) (4.95f)
543 = gy + ongwguf7 + 2K¢ﬁ% (ug —w)ug — cooqag (4.95g)
Saq = =205 K pgug — 2Kiﬂ(ug — ul) (4.95h)

g

where c¢q is an auxiliary variable

2
oy (leozlpluf + ngOéngUﬁ) + Kipi(ug — w)
co = - - (4.96)
(67} (ozlpgag + ozgplal)

Now we are ready to proceed with the numerical analysis.

4.4.2 Dispersion analysis: results

We are interested in the imaginary part of w, denoted by wy, as a function of wave number k. Table 4.8 lists

Table 4.8: Physical conditions for the dispersion analysis

Variable Value  Variable Value
ay 0.2 p: (MPa) 5.52

pi: (kg/m3) 78847  p,: (kg/m3)  28.168
uy: (m/s) 2.0 ug: (m/s) 3.0

a;: (m/s) 1121.6  ag: (m/s) 496.14
Ky 0.77485  Kyyg 0.80268
K; 317.68 Cp 0.47655

the test conditions for this analysis. The values of these variables are taken from a boiling pipe experiment,
which will be discussed in the following chapter. Figure 4.6 and Figure 4.7 show the behavior of the growth

factor (wy). The system has 4 eigenvalues for each wave number k, the maximum value of the imaginary
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parts is taken to be the growth factor, that is

wr = max(w171,w2,1,w371,w4,1) (4.97)
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Figure 4.6: Effect of interfacial pressure correction (a) and virtual mass force (b) on the growth factor

Basic model

Virtual mass force k=100

.
o7 = Y pa—— .

v
1
H

\ Interfacial pressure correction 4

Growth factor: w,

.10 I I I I I I
0 005 01 015 02 025 03 035 04 045 05

Drag coefficient: C b

Figure 4.7: Effect of interfacial friction on the growth factor. Wall friction and gravity force are kept
constant.

Figure 4.6 shows the effect of interfacial pressure correction and virtual mass force on the growth factor.
As expected, the basic two-phase two-fluid model has positive growth factor and the growth factor increases
with the wave number, which means that the system does not represent the short-wavelength phenomena

[26], such as the dissipative viscous effect. When the interfacial pressure correction or virtual mass is
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sufficiently large, we find that the growth factor becomes negative values, meaning the system is stable
with short-wavelength phenomena. However, because the growth factor depends on the problem-dependent
source terms, it is very difficult to specify how large the interfacial pressure correction or virtual mass is
sufficient.

Numerical tests show that the interfacial friction helps reduce the growth factor. Figure 4.7 shows the
growth factor as a function of the interfacial friction. When increasing the drag coefficient, the growth
factor with interfacial pressure correction and virtual mass force has an interesting behavior. The growth
factor decrease to a minimum as the drag coefficient is small, then increase to a maximum, and finally
decrease gradually. It is worth mentioning that Pokharna [26] performed a similar dispersion analysis of the

isothermal system. Our results are consistent with their results.

4.5 Conclusion

In this chapter, the Jacobian matrix of the two-phase two-fluid model is derived. The Jacobian matrix is
simplified to a well-structured form with the help of a few auxiliary variables defined in Chapter 3. The
derivation and simplification are general for arbitrary EOS. Based on the simplified Jacobian matrix, an
analytical characteristic analysis and dispersion analysis to the two-phase two-fluid model are performed.
The characteristic analysis starts with the conservative part of the model. Analytical eigenvalues and
eigenvectors of the conservative part are obtained with a reasonable approximation to the Jacobian matrix.
Verification shows that the approximation is acceptable. The characteristic analysis to the complete model
shows that the model is in general non-hyperbolic when the relative velocity is non-zero. Hyperbolicity
regularization using the interfacial pressure correction and the virtual mass force is studied analytically. The
minimum interfacial pressure correction and virtual mass force to ensure hyperbolicity is studied analytically
and numerically. A dispersion analysis is performed for the two-phase two-fluid model using the physical
conditions of a boiling pipe problem. The dispersion analysis shows that the basic two-phase two-fluid model
gives positive growth factor for waves of all wavelength. Regardless of the validity of the interfacial pressure
correction or virtual mass force, the dispersion analysis shows that both the interfacial pressure correction
and the virtual mass force help reduce the growth factor. When the interfacial pressure correction or virtual
mass force are large enough, the growth factor could be reduced to negative values, which means the system
is stable for waves of all wavelength. However, the physical justification for the interfacial pressure correction

or virtual mass force is difficult.
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Chapter 5

FORWARD SOLVER

5.1 Introduction

A numerical method based on the first order donor cell differencing and a staggered grid is used in most
two-phase flow system codes, such as RELAP [2], TRAC [3], and CATHARE [31]. In these system codes,
inherent numerical dissipation and various degree of implicitness are necessary to stabilize the method. As
is discussed in previous chapters, notations and discretization for these solvers are very complicated.

The development of shock-capturing upwind schemes started in early 1980s for single-phase hyperbolic
systems (Euler equation of gas dynamics) by many pioneering researchers, such as Godunov [32], Roe [33],
van Leer [34], and Osher [35]. The research and applications of shock-capturing upwind schemes were
mainly in the aeronautical industry and in the Computational Fluid Dynamics (CFD) field. Exact or
approximate Riemann solver is at the heart of most shock-capturing upwind schemes. Among different
approximate Riemann solvers, the Roe-type approximate Riemann solver is the most popular one. The
advanced discretization methods in CFD field include Weighted Essentially-Non-Oscillatory (WENO) [36,
37, 38, 39] and Discontinuous Galerkin Finite Element Method (DG-FEM) [40, 41, 42]. Among these
advanced methods, the WENO-type method is both mathematically and numerically simple. The extension
of shock-capturing upwind methods, especially the Roe-type method and the WENO-type method, to the
two-phase two-fluid model is the focus of this chapter.

The challenge in constructing a shock-capturing upwind solver for the two-phase system is that the
eigenvalue analysis is difficult because of the coupling between the two phases and the complex EOS. Sev-
eral shock-capturing upwind schemes have been proposed for the two-phase two-fluid six-equation model.
Toumi [30] proposed an approximate Riemann solver using Roe’s approach assuming the liquid being non-
compressible; Yeom [43] also proposed a stable upwind scheme based on the Harten, Lax, and van Leer
(HLL) Riemann solver using the stiffened EOS; Chang [44] proposed the Advection Upwind Splitting Method
(AUSM) method using stiffened EOS. Many of these schemes were based on a specific form of EOS, espe-

cially the stiffened EOS. However, the stiffened EOS is not general enough for practical two-phase problems,
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e.g. a boiling pipe, and applications of these solvers to practical two-phase problems are not seen in the
literature. In this chapter, we are going to develop a new scheme, based on a Roe-type and a WENO-type

numerical flux, for the two-phase two-fluid model using arbitrary EOS.

5.2 Review of numerical methods for conservation law

This section gives a review of numerical methods for solving a conservation law. The numerical methods for

single-phase Euler equation are used as examples.

5.2.1 Discretization

For 1D problems, the spatial discretization is shown in Figure 5.1. In this thesis, we consider uniform spatial
discretization. The physical domain is divided into N cells. The cell center is denoted with an index ¢ and
the cell boundaries are denoted with ¢ +1/2, for i = 1,--- , N. All unknown variables are stored in the cell

center (collocated mesh). On each side of the physical domain, ghosts cells are used to deal with boundary

conditions.
Control volume
[ ] [} [} [ ] [ ] [ Q [}

i-1 i i+1

i i-1/2 i+1/2 i

Ghost cells : Ghost cells

L

i I i
Physical domain

Figure 5.1: Schematic of the 1D spatial discretization

In time domain, the time step is denoted with n = 0,1,2,---. The time step is determined by the

Courant-Friedrichs and Lewy (CFL) condition

Ax

Amax

At = CFL

(5.1)

where 0 < CFL < 1 is a predetermined number and A\jax is the maximum wave speed (or eigenvalue) at the

current time step.
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5.2.2 Conservative method

The one-dimensional conservation law (without source) is

U | OF

ot + oz (5.2)

where U is the vector of conservative variables and F is the vector of fluxes. To distinguish the conservative
variables with the physical variables, i.e. (ag, 0,17, Ty, uy, ug), we will use W to denote the vector of physical

variables. In this thesis, we will focus on conservative methods.

Definition 5.1. Conservative method. A conservative method for the conservation law, Eq. (5.2), is a

numerical method of the form

At [ .
n+1 n
Ut = U - [Fipy —Fiy] (5.3)
where
Fi+% =F 1 (Ui, Ul,) (5.4)

where [, and [g are two non-negative integers. F;4 /5 is the numerical flux, which is an approximation to the
exact flux. For a conservative method, a fundamental requirement on the numerical flux is the consistency
condition

F.y (U, .U) = F(U) 5.5)

For example, the numerical flux of the Lax-Friedrichs method is given by

. 1 1
LF
Fii= §(FZL +Fy) - §Amax( 1~ Up) (5.6)
In this thesis, two type of numerical flux are constructed: a Roe-type low-order numerical flux and a
WENO-type high-order numerical flux, denoted by ﬁf{ff /2 and Fﬁ?%q respectively. We take the single-

phase Euler equation as an example to explain the concept in these two numerical fluxes.

5.2.3 Roe-type numerical flux

The governing equation and the associated Jacobian matrix of Euler equation are given in Eq. (4.8) and Eq.

(4.10) of Chapter 4. Let A be the Jacobian matrix, D be the diagonal matrix containing the eigenvalues,
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and K be the right eigenvector matrix whose columns are the eigenvectors. Recall that

u—a 0 0 1 1 1
D= 0 uw 0 | K=]u-0a u u+a (5.7)
0 0 u+a H—ua H-—~*?> H+ua
where v* = (’y— 1)_1 and
A =KDK™! (5.8)

In the expression of the Roe-type numerical flux, the following matrix |A| is commonly used

lu—al 0O 0
Al=KPK, with D= | o | o (59)

The Roe-type numerical flux is constructed by

Roe
Fi+%

1 -
(Fi +F7 ) — §\A|(U?+1 -U}) (5.10)

N | =

where A is the Jacobian matrix evaluated at an intermediate state U (or W). The Roe-type numerical
flux contains two parts: the first part (F} 4+ FI")/2 is the classical central flux, which is unconditionally
unstable even for linear advection problems; the second part, |A| (U;L+1 — UZI) /2, gives the correction to the
central flux by removing characteristic waves moving in the wrong direction.

The remaining task is to find an appropriate intermediate state for evaluating A. The intermediate state

is often found with the Roe-Pike method [25, 45], which requires the intermediate state satisfying

3
Ui - Uf = EmKm (5.11a)
m=1
3 ~ ~
m=1

where ¢, are the coefficients when decomposing U?, ; — U7 to the eigenvectors. Note that ¢, S\m, and Km
are all evaluated at the intermediate state. For the cell boundary where U; and U,;;1 are not close, finding

the intermediate state is in fact non-trivial for an arbitrary EOS [45]. For brevity, we leave the derivation
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in Appendix B. The conclusion is that by taking the following intermediate state

p = /Pibit1 (5.12a)

U = Wity + Wip1Uit1 (5.12b)

H = w;H; + w1 Hiy (5.12c)

h = wihi + wit1hiz (5.12d)

¥ = WiV + Wit1Vit1 (5.12e)

4 = w;a; + Wit10i41, if Ap=0and Ah=0 (5.12f)
Ap —1/2

, otherwise

Ap — (7 — 1) pAh
where w; and w;11 are weights defined as

Wi

N v/ Pi _ vV Pi+1
= W= — (5.13)
VPi T /Pit1 VPi T /Pit1

we can show that Eq. (5.11a) and Eq. (5.11b) are satisfied with the following coefficients

- 1 ~
¢ = ﬁ(Ap — palu) (5.14a)
¢ = Ap — Ap/a* (5.14b)
- 1 -
= 53 (Ap + padu) (5.14c)

where Ap = p;11 — pi, Au = u;41 — ug, and Ap = pir1 — ;.
Once the intermediate state and the coefficients ¢,, are found, the Roe-numerical flux can be transformed
into

mRoe
FH%

3
(FP+F ) = = ) émlAmlKnm (5.15)

N | —

Eq. (5.15) is preferable to Eq. (5.10) because it avoids constructing the eigenvector matrix, constructing

the inverse of eigenvector matrix, and performing the matrix-vector product required by Eq. (5.10).

5.2.4 WENO-type numerical flux

The WENO scheme [36, 37, 38, 39] is based on the ENO (essentially non-oscillatory) scheme [46]. The key
idea of the ENO scheme is to use the smoothest stencil among several candidates to approximate the fluxes

at cell boundaries to obtain a high order accuracy and avoid spurious oscillations. The cell-average version
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of the ENO scheme involves a procedure of reconstructing points values from cell averages. Later, Shu and
Osher [36] developed the flux version of the ENO scheme. The WENO scheme of Liu, Osher, and Chan [47]
is another way to obtain a high order accuracy. The idea of WENO scheme is that a convex combination
of all the candidate stencils is used to approximate the numerical flux instead of using only the smoothest
one. Each of the candidate stencils is assigned a weight to achieve the high-order accuracy in smooth regions
and to avoid oscillations near discontinuities. Like ENO schemes, there are two versions of WENO schemes
[38, 48, 49]: cell-average version and flux version. We will formulate our numerical flux based on the flux

version of WENO schemes, because it requires fewer EOS evaluations than the cell-average version.

WENO reconstruction procedure

The WENO scheme is based on a WENO reconstruction procedure, see Figure 5.2. The WENO scheme
uses a convex combination of three candidate stencils, i.e. Sy = (.Ti_Q,xi_l,.Ti), S = (xl-_l,xi,xzq_l), and

So = (:cl-, Titl, xi+2), to approximate the numerical flux at the cell boundary ;14 /2.

i+1 i+2

Figure 5.2: Schematic of the WENO reconstruction procedure

Let f be a scalar flux function. The approximate numerical flux at the cell boundary x;; /5 from WENO

reconstruction procedure is

2
fH% = WenoRS(fi—2, fi—1, fi: fis1, fire) = Zkak(fiJrkuafiJrkflafiJrk) (5.16)

k=0

where WenoRS () is the reconstruction function. g is the interpolation function and wy is the weight of k-th

stencil. ¢ is defined by

2
(90, 91,92) = Z AkmYm (5.17)
m=0

where ag,, for k,m = 0, 1,2 are constant coefficients given by Jiang [38]. Table 5.1 lists the coeflicients agyy,.
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Table 5.1: Constant coefficients ax,, used in the WENO reconstruction procedure

Ay, m=0 m=1 m=2
k=20 1/3 -7/6 11/6
k=2 -1/6 5/6 1/3
k=3 1/3 5/6 -1/6

The weight wy, is
S 0o+ 01 + 0o

Ck

with 6= ———
g (€+Isk)2

W (5.18)

where Cj, is the optimal weight. In [38], Cy = 1/10, C; = 6/10, and Cy = 3/10 are used. ¢ = 1076 is a
positive real number to avoid the denominator becoming zero. ISy is the smoothness measurement of the

flux function in the k-th candidate stencil,

ISy = %(fi—z —2fia+ £) + i(fi—2 —4fiii+3f) (5.19a)
IS, = g(fi,l -2fi+ fi+1)2 + %(fifl - fi+1)2 (5.19b)
IS, = g(fz —2fip1+ fi+2)2 + i(3fz —4fi1 + fi+2)2 (5-19¢)

The details of defining the weights of the stencils are referred to [38]. The key idea is: for each stencil, the
weight is assigned a very small positive value if a discontinuity is detected in that stencil; if no discontinu-
ities are detected in all three stencils, the weights are assigned to achieve optimal accuracy. The WENO
reconstruction procedure is problem independent and works like a interpolation procedure for any scalar

functions.

WENO-type numerical flux for a non-linear system

We take the Euler equation as an example to explain the procedure for constructing a WENO-type numerical
flux for a non-linear system. The WENO reconstruction procedure does not take into account the upwind
information, which is however required by the numerical flux. To account for the upwind information, Jiang
[38] suggest using the flux vector splitting approach. At first, the flux in the cell center is split into positive
and negative parts

F,=F +F;, foreachi (5.20)

The flux should be split such that Fj contains waves moving in the positive direction and F;  contains waves

moving in the negative direction. Then, the WENO reconstruction procedure is applied to the two parts to
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give FL/Q and ﬁi+1/2‘

Finally, the numerical flux is obtained with
WENO _ o+ -
Fi+% 7Fi+%+Fi+% (5.21)
In practice, the most common flux splitting approach is the Lax-Friedrichs flux splitting

Ff=_(F; AmaxUi), for each i (5.22)

N |

where A ax is the maximum wave speed or eigenvalue at a time level.

The WENO reconstruction procedure works for a scalar flux function, the natural approach in construct-
ing F;FH /2 and F;H /2 would be the component-by-component reconstruction. However, for problems that
contain strong discontinuities, the component-by-component reconstruction is not effective in the sense that
spurious solutions exist near the discontinuities. In this case, Jiang [38] suggest applying the reconstruction
in characteristic space. The reconstruction in characteristic space will be used in this thesis.

We take the positive part as an example to explain the reconstruction process. The procedure for the
negative part is analogous. Let K be the intermediate eigenvector matrix used in the Roe-type numerical
flux, the reconstruction has three steps. First, the split flux vector is projected into the characteristic space
by

(FioFry FrFh, Fhy) =R (FL, FE FFFF FL) (523)

Second, in the characteristic space, the WENO reconstruction procedure is applied component-by-component

to get the flux at the cell boundary, i.e.

F = WenoRS(F; 5 .. Fi 1, Fi,

i+%7m i—=2,m’Y i—1m>Y i,m>

FiromFiom), for m=1,273 (5.24)
Third, the flux at the cell boundary is projected back to the normal space by

+ _R.Ft+
Fl.,=K-F.

f (5.25)

F is then used in Eq. (5.21).

Jr
i+1/2

5.2.5 Third-order Total Variation Diminishing Runge-Kutta method

The third-order Total Variation Diminishing (TVD) Runge-Kutta (RK3) method is often used with the

WENO-type numerical flux to integrate the system of ordinary equations in time. For ease of notations, we
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suppose the system is written as

U
5= L1 (V) (5.26)

where L' contains the spatial differential operator and the source vector. The RK3 method is given by

U* =U" + AL (U") (5.27a)
1 1
U™ = %U" +7U"+ ZAt[,T (U*) (5.27b)
1 2 2
Ut = 20" 4 20T gAtCT (U™) (5.27¢)

where U* and U** are conservative vectors at two intermediate steps.

5.3 Numerical solver for two-phase two-fluid model

In previous sections, we introduced two numerical flux for solving the 1D conservation law for single-phase
problems: the Roe-type numerical flux and the WENO-type numerical flux. In this section, we extend these
two numerical flux to the 1D two-phase two-fluid model.

Recall that the one-dimensional two-phase two-fluid model is

ou OF 8ag 5‘04577
o Tar TPeg P =S

Source

(5.28)

Conservative parts  Non-conservative parts

where U is the vector of conservative variables. In practice, we need to solve for the physical variables,

denoted by W. For the two-phase two-fluid model, the physical variables are

T
WZ(ag p T Ty w ug> (5.29)

where the superscript T denote the transpose operator. Note that we assume the pressure of liquid and gas
phases are equal.
The RK3 method is used to integrate the system in time. Here, we take the first step in RK3 method as

an example to explain the process. After discretizing the equation in time and space, we get

_ n n—1

F, 1 i1 a. . —a, . —al
T(ur) = — it3 —3 P” . g,i+1 gi—1 pr 90 g% Sn
L ( 7 ) 2.7) 1,1 9 2 T w1t At —+ ) (530)

where Fi+1 /2 and F, /2 are the numerical fluxes, a Roe-type or a WENO-type numerical flux.
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Note that we approximate the non-conservative part with a simple finite difference approximation. This
approximation inherently requires the void fraction being smooth. For problems where the void fraction
contains discontinuities, this approximation will cause issues on a very fine mesh. In other words, because
the pday/Ox part is non-conservative, constructing a weak solution to a discontinuity is problematic [16].

In our numerical tests, we observe that it is possible to approximate the Oay/0x with a high-order central
or one-side finite difference scheme when the WENO-type numerical flux is used. However, the difficulties
in determining the ghost cell quantities make high-order finite difference schemes less preferable, because
inappropriate ghost cell quantities could easily corrupt the solutions in the physical domain. Applying the
central second-order approximation to da,/0x will eventually degrade the WENO-type scheme to second-
order accurate in space.

After each time step, we need to transform the conservative variables (U) into physical variables (W).
This transformation is non-linear because of the complicated EOS. In this thesis, the transformation is
handled by

Uit - U7 = (A)] (Wi - Wp) (5.31)

where Ay, = OU/OW. Then, we obtain
Wi = Wi (A0 (U - o) (5.32)

The details of A, and A,! are given in Appendix D.
The remaining task is to construct the numerical flux at the cell boundaries. We constructed two types

of numerical flux: a Roe-type flux and a WENO-type flux.

5.3.1 Roe-type numerical flux

The conservative part matrix A, of the two-phase two-fluid model is given in Eq. (4.36) of Chapter 4.
Like the numerical flux for the Euler equation, the Roe-type numerical flux for the two-phase system is

constructed with

oe 1 n A n n
BIS = S (FI 4 Fly) — oA (U7, — U7) (5.33)
or equivalently,
6
1 1 <
Roe n ~
F1+2 5(F +F7) — 3 Z Em|Aeom | Ke.m (5.34)

where A, and K ,, are the m-th eigenvalue and eigenvector of the matrix A.. As was discussed in Sec. 4.3,

we are not able to obtain the exact eigenvalues and eigenvectors of A.. In practice, we use the approximation
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made in Eq. (4.42) and Eq. (4.43), i.e.

Al g — V/ Brag Aep = up Aez =+ v/ i (5.35a)
Aca R Ug — \/Bggi Acs = Ugi Aco R ug + V Bgag (535b)

and the right eigenvectors are approximated as

1 1 1
u — /By U u + /By
Ky, ~ H; — /Braiw Ko~ Hy —~fa? Ky~ Hy + /Braw
0 0 0
0 0 0
0 0 0
(5.36)
qa 0 6
qaAca 0 g6 \c,6
K., ~ qa[Hi — uf + whe 4] K~ 0 Koo ~ g6 [Hi — uf + whc ]
1 1 1
ug —+/Byay Ug ug + 1/ Byay
Hy — \/Bgagug H, —’y;ag Hy + \/Bgagug
where 7/ =1/ (71 — 1) and y5 =1 / (vg - 1). g4 and ¢ are two auxiliary variables defined as
2 2
- alag - Jlag
q4 = o 96 = (5.37)
(>\c,4 - )\c,l) ()\0,4 - )\5,3) ()\5,6 - )\c,l) (>\c,6 - )\C,B)
The right eigenvector matrix can thus be approximated as
KC ~ <K1,c K2,c K3,c K4,c KS,C KG,C) <538)

Like what is done for the Euler equation, the variables, ¢, S\C,m, and IN(Qm, are evaluated at an appro-
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priate intermediate state. Following the Roe-Pike’s method, the intermediate state should satisfy

6
U?—&-l - UIL = Z 6m.I{c,m (539&)
m=1
6
F?—&-l - FIL = Z 6m)‘c,ch,m (539b)
m=1

However, because of the complexity of the two-phase two-fluid model, it is very complicated to find the exact
intermediate state. In addition, because the eigenvalues and eigenvectors are approximate, finding the exact
intermediate state will not improve the numerical solution much. Based on the similarity of A\, and K, to

that of the Euler equation, we propose to use the following intermediate variables
ék = wk7i¢k:,i + wk,i+1¢k7i+1a for ¢ =u, H7 h7 a,, o, /6 and k = l) g (540)

where wy, ; and wy ;41 are the weights defined by

Ok, iPk,i Ok i+1Pk,i+1
Wk,i+1 = (541)

w = y
V/,iPk,i + \/Qk,it1Pk,i+1 VO%,iPkyi + \/Ok,it1Pk,i+1

ki

After specifying the intermediate variables, the coefficients ¢,, are found by solving Eq. (5.39a). The
procedure for solving ¢, is given in Appendix C. Finally, the numerical flux is constructed with Eq.
(5.34). As will be shown in the following numerical tests, the Roe-type numerical flux works well even for

problems with strong discontinuities.

5.3.2 WENO-type numerical flux

For the two-phase two-fluid model, the procedure for constructing the WENO-type numerical flux is the
same as the procedure shown in Eq. (5.20) to Eq. (5.25). The difference is that the dimension of vectors
and matrices increases from 3 to 6 and the eigenvector matrix K is replaced with K., which is approximated

with Eq. (5.38).

5.4 Numerical tests

A numerical solver is developed using the numerical method described in previous sections. As was discussed
in Chapter 4, the basic two-phase two-fluid model has two complex eigenvalues when the relative velocity is
non-zero. From a mathematical point of view, the two complex eigenvalues make the system ill-posed; from

a numerical point of view, the numerical solver tends to give non-physical oscillations near discontinuities
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when the spatial discretization is fine enough. The numerical tests will show that the interfacial pressure
correction helps at least reduce the non-physical oscillations.

For testing purposes, we will use the interfacial pressure correction

Oay

where ¢, is a dimensionless variable representing the normalized interfacial pressure correction. Because the
physical justification for the interfacial pressure correction is difficult, we are unable to tell how large the
correction should be. What we can claim is how the numerical solution behaves when a certain interfacial

pressure correction is used. In our numerical tests, ¢, is evaluated with

el (5) - (5).)

where the maximum value is found over all cells. The value given by Eq. (5.43) ensures that the system is
hyperbolic in the whole domain. To test the effect of this regularization on the numerical solution, we will
enable or disable this regularization in the numerical tests. To distinguish the difference, we will use the
legend ‘ROE-IP’ (or ‘WENO-IP’) for the results when the interfacial pressure correction is enabled.

As was discussed in Chapter 4, the virtual mass force can also hyperbolize the basic two-phase two-
fluid model. But we will not consider the virtual mass force in our numerical tests for two reasons: 1) the
addition of virtual mass force changes significantly the eigenvalues of the basic two-phase two-fluid model
even for a small relative velocity; 2) the addition of virtual mass force adds extra difficulties to the numerical
solver, because it requires constructing two extra upwind numerical fluxes. Unlike the day/0x term, the

discretization of the virtual mass force is non-trivial.

5.4.1 Periodic pipe

This is a periodic problem which is introduced for testing purposes. The problem has initially smooth
solution in the whole pipe; after a certain time, discontinuities will be formed. The smooth solution of this
problem is used to study the order of accuracy of Roe-type and WENO-type scheme. The source vector is
ignored for this problem, i.e. S =0.

The periodic pipe is filled with water and steam, see Figure 5.3. The length of the pips is L = 10 m.

Initially, in the whole pipe, the void fraction is oy = 0.75; the velocity of liquid and gas phase are 0; and the
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temperature of liquid and gas are 300 K and 700 K. The initial pressure has a sinusoidal profile

P(x) = po + py sin (ko277 (5.44)

where pg = 7.5 MPa, p; = 1.0 MPa, and kg = 1. Keeping the void fraction, liquid/gas velocity, and

liquid/gas temperature at constants, the solution is completely determined by 3 parameters, pg, p1, and ko.

Figure 5.3: Schematic of a periodic pipe

Order of accuracy of Roe-type and WENO-type scheme

This test is to study the order of accuracy of Roe-type and WENO-type scheme. Both Roe-type and
WENO-type scheme are run with CFL = 0.8. The numerical solution at ¢ = 5 ms is used to calculate the
discretization error. Since we do not have an exact solution, the solution from the WENO-type scheme
using 6400 cells is used as the reference solution. As will be seen in the results, the WENO-type scheme
converges very fast in space and the solution with 6400 cells almost reach the machine precision. We will
use the Lo-norm to quantify the discretization error. The La-norm of a general function f in the physical

domain [z, x9] is calculated by

”:DEN”2 = \/ ! /w2 (fN - freference)zdm (545)

To — I z1

where DEy denotes the discretization error of a numerical solution using N cells.

Figure 5.4 and Figure 5.5 show the numerical solution at 5 ms and 50 ms, respectively. Though the
initial solution is smooth, discontinuities are formed when time goes on. We can find that the solution
from WENO-type scheme converges rapidly to the reference solution, even 50 cells are enough to capture

the correct profile. In the contrast, the solution from the Roe-type scheme converges slowly. The Roe-type
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Figure 5.4: Solution of the periodic pipe problem at 5 ms. The reference solution is obtained with WENO-
type scheme using 6400 cells.
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Figure 5.5: Solution of periodic pipe problem at 50 ms. The reference solution is obtained with WENO-type
scheme using 1600 cells.
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scheme requires a much finer mesh to capture the correct profile.

Figure 5.6 and Table 5.2 show the Ly-norm and the order of accuracy for the 6 physical variables. The
solution at 5 ms is used to obtain the La-norm. We see that the order of accuracy of Roe-type scheme and
WENO-type scheme are approximately 1 and 3. For the WENO-type scheme, when the mesh is fine enough
(larger than 100 cells), Lo-norm of the discretization error does not reduce much when we further refine the

mesh, because the numerical solution is so close to the reference solution that the truncation error tends to

affect.
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Figure 5.6: Lo-norm of discretization errors of different variables at 5 ms.

5.4.2 Shock-tube

This problem was originally introduced by Toumi [30]. The objective of this problem is to show that the
solver can handle discontinuities and large differences between the two phases. The shock-tube is of 10 m in
length and has a diaphragm in the middle (z = 5 m), which separates the left and right states. Both ends
of the tube are kept closed, see Figure 5.7. The original initial conditions used by Toumi for left and right
state pressure are 20 MPa and 10 MPa, which are close to the critical pressure of water/steam mixture.
We modify the left and right state pressure to lower values, 15 MPa and 7.5 MPa, to avoid the critical

water /steam region. Properties of liquid and gas are obtained from the IAPWS-IF97 formulation [15]. The
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Table 5.2: Observed order of accuracy of Roe-type scheme and WENO-type scheme

N [ ay: (L, order) p: (Lg, order) up: (Lo, order)  wg: (Lo, order)  pg: (Lo, order)  pg: (Lo, order)
ROE

12 | 8.91E-05 - 1.38E+05 - 4.13E-01 - 1.57E+01 - 6.01E-02 - 3.45E-01 -

25 | 4.29E-05 1.00 6.89E4+04 0.95 2.31E-01 0.79 8.78E4+00 0.79 2.99E-02 0.95 1.70E-01 0.97
50 | 2.17E-05 0.98 3.47E+4+04 0.99 1.24E-01 0.90 4.74E400 0.89 1.51E-02 0.99 8.54E-02 0.99
100 | 1.10E-05 0.98 1.74E4+04 1.00 6.43E-02 0.95 246E400 0.94 7.55E-03 1.00 4.27E-02 1.00
200 | 5.53E-06 0.99 &8.70E4+03 1.00 3.27E-02 0.97 1.25E400 0.97 3.78E-03 1.00 2.13E-02 1.00
400 | 2.77E-06  0.99 4.35E403 1.00 1.65E-02 0.99 6.33E-01 0.99 1.89E-03 1.00 1.07E-02 1.00
WENO

12 | 2.16E-05 - 1.30E+04 - 2.60E-02 - 8.24E-01 - 5.60E-03 - 3.09E-02 -

25 | 2.90E-06 2.74 1.10E4+03 3.36 2.17E-03 3.38 6.57E-02 3.45 4.72E-04 3.37 2.84E-03 3.25
50 | 2.83E-07 3.35 1.20E+02 3.19 2.64E-04 3.04 7.42E-03 3.15 4.99E-05 3.24 3.40E-04 3.06
100 | 4.28E-08 2.73 1.66E+01 286 4.19E-05 2.66 1.03E-03 2.85 6.14E-06 3.02 5.33E-05 2.68
200 | 2.82E-08 0.60 6.65E4+00 1.32 1.31E-05 1.68 4.02E-04 1.35 2.68E-06 1.20 3.03E-05 0.82
400 | 1.98E-08 0.51 2.52E400 1.40 4.68E-06 1.48 1.54E-04 138 1.07E-06 1.32 1.27E-05 1.25

source vector is ignored for this problem, i.e. S = 0.

\vDiaphragm, removed at t=0s

Closed High pressure Low pressure Sl

ond end

Left length=5m Right length = 5 m

Figure 5.7: Schematic of two-phase shock-tube problem

The initial conditions for this test are listed in Table 5.3. Because the temperature of the two phases are
not explicitly shown in this problem, we will report the density of the two phases. Numerical solution at 5
ms will be discussed.

Table 5.3: Initial conditions for two-phase shock-tube problem

Primary variables Auxiliary variables

Left Right Left Right
Oy 0.25 0.1 a; (m/s) 1526.9 1514.9
p (MPa) 15.0 7.5 ag (m/s)  576.66 613.83
pi (kg/m3)  1003.1 999.85 | v 1.1629  1.1555
py (kg/m?®)  57.941 25527 | v, 1.2971 1.2944
u; (m/s) 0.0 0.0 €l 154.76 304.8
ug (m/s) 0.0 0.0 Eg -0.01266 -0.01198

Test 1: wave structure

This test is to study the wave structure of the two-phase shock-tube problem and the performance of the

numerical solver.
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The relative velocity of this problem is not small and the solution contains very strong discontinuities,
which make the ill-posedness issue very severe. Without a proper hyperbolicity regularization, we observed
numerically that the oscillations near the middle discontinuities are so large that the numerical solver fails
(e.g. non-physical void fraction and pressure are produced) for simulations with more than 100 cells. For
testing purposes, we bring in the interfacial pressure correction. For this problem, to ensure the system is
hyperbolic in the whole tube, the normalized interfacial pressure correction is ¢, = 0.126, which means the

interfacial pressure correction is comparable to the phasic pressure.
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Figure 5.8: Solution of two-phase shock-tube problem at 5 ms.

Both the Roe-type scheme and the WENO-type scheme are run with CFL = 0.8. For comparison, the
numerical solution from Roe-type scheme using 20000 cells is used as the reference solution. Figure 5.8
shows the numerical solution from both schemes at 5 ms. Taking the gas-phase velocity as an example,
Figure 5.9 shows the grid convergence of both schemes. We see that both schemes work well. The WENO-
type scheme is not oscillation-free near discontinuities, because the WENO-type scheme is only Essentially
Non-Oscillatory [36, 37].

For ease of explanation, let \,,, for m = 1,--- |6 be the eigenvalues of the system, which are shown in
Figure 5.10. The 6 characteristic waves associated with the eigenvalues are shown in Figure 5.11. A; is a

left-moving rarefaction wave with a head and tail speed about -49.78 m/s and -14.81 m/s; Ay is a contact
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wave with a wave speed about zero, which represents the convection of liquid-phase enthalpy; A3 is a right-
moving rarefaction wave with a head and tail speed about 101.1 m/s and 88.63 m/s; A4 is a left-moving
rarefaction wave with head and tail speed about -612.8 m/s and -508.1 m/s; A5 is a contact wave with a
wave speed about 234.3 m/s, which represents the convection of gas-phase enthalpy; Ag is a right-moving

shock wave with a shock speed about 788.8 m/s.
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Figure 5.9: Grid convergence of Roe-type scheme and WENO-type scheme for gas-phase velocity
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Figure 5.10: Eigenvalues of the two-phase shock-tube problem. Eigenvalues are obtained with the reference
solution

Test 2: two-phase coupling effect and two-phase to single-phase transition

Ignoring the source vector, the two-phase two-fluid model degenerates to the single-phase Euler equation
when the void fraction approaches 0 or 1. The solution from the two-phase flow solver should approach
the solution from a single-phase flow solver when the void fraction approaches 0 or 1. This test is designed

to study the two-phase coupling and the two-phase to single-phase transition behavior. The test setup is
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Figure 5.11: Wave structure of the shock-tube problem. Results are obtained with reference solution.

the same as in Test 1, except that the initial void fraction is uniform in the entire tube and is varying to
approach 0 (down to 0.0001) or 1 (up to 0.99) for different cases. For comparison, a separate single-phase
flow solver is constructed with the Roe-type numerical flux. The details of the single-phase flow solver are
omitted here because it is a straightforward simplification of the two-phase flow solver.

........
1 0000000000000

09| J

Figure 5.12: Two-phase coupling factors as a function of void fraction

The coupling effect of two phases is more important at a small void fraction, which could be explained by
the two-phase coupling factors (8] and ), which are defined in Eq. (4.48). Figure 5.12 shows the typical
profile of the two-phase coupling factors as a function of void fraction. We can see that 5" and 37 change
rapidly when the void fraction increases from 0 to about 0.1.

The Roe-type numerical scheme is run to ¢ = 5 ms with CFL = 0.8 and 3200 cells. Figure 5.13 shows the

gas-phase solution for different cases. When the void fraction approaches 1, the liquid phase has little effect
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on the gas phase and the solution approaches the solution of the single-phase flow solver. The single-phase
part is the classical Sod’s test problem [25] for a real gas. Figure 5.14 shows the liquid-phase solution for
different cases. Because the speed of sound in liquid phase is higher, solution is shown at 2 ms to capture
all waves. When the void fraction approaches 0, the solution approaches the solution of the single-phase
flow solver. The single-phase part is the classical Sod’s test problem for a real liquid. As is expected, our
two-phase solver is capable of transiting to a single-phase solver when the void fraction approaches 0 or 1,

which gives us more confidence on the numerical solution.

5.4.3 Boiling pipe

A series of electrically heated experiments were performed in the early 1960s to investigate the void fraction
profile in vertical tubes. The Christensen Test 15 [50, 18] is used to test the capability of our numerical
solver for simulating a practical problem. Figure 5.15 is a schematic of the test facility. The test section
was a 1.27 m high rectangular tube with a 1.11 x 4.44 cm cross-section. The tube was heated by passing
an electrical current through the tube wall. A series of seven tests were conducted to investigate the void
fraction profile based on different inlet conditions. The boundary conditions for Test 15 are: pressure = 5.52
MPa, power = 70 kW, inlet velocity = 1.15 m/s, and inlet subcooling =12.5 K.

The test section is modeled with a 1D vertical pipe. The hydraulic diameter of the pipe is D = 1.776 cm.
The experimental and initial conditions are shown in Table 5.4. We use a non-zero initial void fraction (0.01)
to avoid the phase appearance/disappearance issue. Let i1 and iy be the index of the first and last cell in
the physical domain. At the inlet, the pressure in the ghost cells are taken to be the values in it" cell; all
other variables in the ghost cells are kept at inlet values. At the outlet, the pressure in the ghost cells are

kept at the outlet values; all other variables in the ghost cells are taken to be the values in the 25{,‘ cell.

Table 5.4: Experiment and initial conditions for Christensen Test 15

Experiment conditions Initial conditions
Pipe height 1.27 m - -
Hydraulic diameter (D) 1.776 cm - -
Heated surface area (@wqir) 225.225 m~! Void fraction 0.01
System pressure 5.52 MPa Pressure 5.52 MPa
Heating power 70 kW Liquid temperature 530.9 K
Equivalent wall heat flux (gyau) 0.49656 MW/ m? | Gas temperature 543.4 K
Inlet mass flux 906.6 kg/(m?s) Liquid velocity 1.15 m/s
Inlet subcooling 12.5 K Gas velocity 1.15 m/s

Properties of water and steam are obtained from the TAPWS-IF97 formulation. The source vector is
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Figure 5.15: Schematic of the Christensen test facility and the simplified 1D problem

modeled as

T,
—auprg — fur + fi —Tgu;
Qui + Qir — Tuhy — Tight + (fi = fur — cuprg — Tgui)u + Fg%?
Ly

(5.46)

—QgPgg — fwg - fz + Fgui
’ u2
ng + Qig + thg + Fzgh; + (_fz - fwg — Qgpgg + Fgui)ug - ngg

where T'; is the net vapor generation rate due to wall vapor generation (I'y,) and bulk vapor generation
(Tig), u; is the interface velocity, f; is the interfacial friction, f,x is the phasic wall friction, @ is the
phasic interfacial heat flux, Q. is the phasic wall heat flux, h;C is the phasic enthalpy carried by the wall
vapor generation, and hj, is the phasic enthalpy carried by the bulk vapor generation. Correlations based on
RELAP5-3D code manual [5, 19] are used to model these quantities, see Sec. 2.4.

The solver is run to reach steady-state with CFL = 0.8. The finest mesh has 800 cells. Figure 5.16 shows
the numerical solution of 6 physical variables. Unlike the shock-tube problem, where the solution contains
discontinuities, the solution of this problem is smooth. Considering the simplified correlations for the source
vector, we think the solution from our numerical solver is in a good agreement with the measurement data.

The numerical solution from the Roe-type scheme and the WENO-type scheme are consistent with each
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Figure 5.19: Mesh convergence of total mass flux for Christensen Test 15

other, except for the solution near the inlet and outlet boundaries. The treatment of boundary conditions for
the WENO-type scheme is complicated. Even for the simpler Euler equation with an ideal EOS, where the
characteristics of the system are well known, the treatment of boundary conditions is non-trivial. Existing
well-known boundary treatment schemes are mostly based on the characteristics of the system, such as the
non-reflecting boundary condition scheme [51, 52] and Inverse Lax-Wendroff boundary condition scheme
[48, 49]. Most of these schemes work for problems where the EOS is simple enough and the characteristics of
the system are analytically well-known. For the two-phase two-fluid model with a real EOS, a characteristics-
based boundary treatment scheme is very complicated and is not the focus of this thesis.

Taking the void fraction and pressure as examples, Figure 5.17 and Figure 5.18 show the grid convergence
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of both schemes. We can see that the WENO-type scheme converges faster than the Roe-type scheme. Taking
the results from Roe-type scheme as an example, Figure 5.19 shows the mesh convergence of the total mass
flux. We see that the total mass flux converges when refining the mesh and the total mass flux is conserved

in the pipe for the finest mesh.

5.5 Conclusion

In this chapter, a new forward solver is developed for the two-phase two-fluid model based on two numerical
fluxes: a Roe-type numerical flux and a WENO-type numerical flux. Both numerical fluxes are based on
the analytical eigenvalues and eigenvectors given in Chapter 4.

The new forward solver is tested with a few benchmark problems: periodic pipe, shock-tube, and the
Christensen boiling pipe problem. The solver is shown to be stable even for problems that contain discon-
tinuities. The Roe-type scheme is shown to be first-order accurate in space; the WENO-type scheme is
shown to be at least second-order accurate in space. Numerically, it is observed that the Roe-type scheme
is more robust than the WENO-type scheme, because the boundary conditions for the WENO-type scheme
are more difficult to treat. Improvements to the boundary conditions should help improve the robustness of

the WENO-type scheme and achieve higher spatial accuracy.
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Chapter 6

ADJOINT SENSITIVITY
ANALYSIS

6.1 Introduction

An important step in uncertainty analysis is the sensitivity analysis of a response to the uncertain input
parameters. Common approach to calculate the sensitivity includes regression-based methods and variance-
based methods [11, 12]. However, these methods require solving the system of interest multiple times,
sometimes 100s of times, which is very expensive in terms of computational cost. An alternative approach to
calculate sensitivities is the adjoint method. The cost of solving an adjoint equation is comparable to the cost
of solving the original (forward) equation. However, once the adjoint solution is available, the sensitivity to
different parameters can be calculated with little effort, which offers a powerful tool for efficient calculation
of sensitivities to a large number of uncertain input parameters.

There is a long history of the use of the adjoint method in optimal control theory. The use of adjoint
method for computing sensitivities came up in nuclear science in the 1940s [13]. Later, the adjoint method
became popular in computational fluid dynamics [14]. Within the field of aeronautical computational fluid
dynamics, the use of adjoint method has been pioneered by Jameson [53, 54, 55, 56]. Adjoint problems
arise naturally in the formulation of optimal aerodynamic design and optimal error control [14, 57, 58, 59].
Adjoint solution provides the linear sensitivities of an objective (or response) function (e.g. lift or drag) to
a number of design variables. These sensitivities can then be used to drive an optimization procedure. In
a sequence of papers, Jameson and co-authors developed the adjoint approach for the potential flow, the
Euler equation, and the Navier-Stokes equation [53, 54, 55, 56].

In CFD field, the application of adjoint method to optimal aerodynamic design was very successful.
However, to the author’s best knowledge, successful application of ajoint method to sensitivity analysis in
two-phase flow simulations is rare. Cacuci performed a local adjoint sensitivity analysis to RELAP5/MOD3.2
[13, 60, 61]; this approach is tied to the very specific RELAP5 numerical discretization. An application of
Cacuci’s approach is illustrated by Petruzzi [62], where the approach is applied to the blowdown of a gas

from a pressurized vessel.
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In this chapter, an adjoint sensitivity analysis framework is developed for the two-phase two-fluid model.

The framework is based on the stable forward numerical solver, which is discussed in the previous chapter.

6.2 Adjoint sensitivity analysis

6.2.1 Adjoint sensitivity analysis: general framework

Let G' be the operator that represents the governing equation of the forward problem, e.g. the two-phase
two-fluid model. Let W be the field variables, e.g. the vector of physical variables. For the forward
problem, there are usually a few parameters, denoted by w, that affect the flow field, e.g. the physical model

parameters and boundary conditions. Suppose the governing equation is written as
G'(W,w) =0 (6.1)

Let R be the operator that measures the response of interest (R), e.g. the void fraction at certain location.

The response could be expressed as

R=7RI(W,w) (6.2)

In the following analysis, vectors and matrices are defined such that the multiplications shown in the following
equations are the inner product.

Let § be the variation operator. A change in the parameter (dw) will cause a change in the governing

equation
oG oG _
(29) s (%) o ”
Separately, dw will also cause a change in the response
OR = LRT OW + LRT ow (6.4)
\OW / ow ) '

Note that dR/dw is the sensitivity of interest. From Eq. (6.3), we see that dw will cause a change JW.
For the perturbation-based methods, §W needs to be calculated by solving the governing equation, which is
usually expensive. For the adjoint method, the idea is to remove the dependency of R on 6§ W by combining
Eq. (6.3) and Eq. (6.4) using the Lagrange multiplier approach.

Let ¢ be the vector of Lagrange multiplier, which is a vector of free variables. Multiplying the transpose
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of the Lagrange multiplier to Eq. (6.3), we obtain

og' og"
" K) SW + ( Sw| =0 (6.5)
ow /J 0w )
Since the right-hand side of Eq. (6.5) is zero, we can subtract Eq. (6.5) from Eq. (6.4) without changing

the value of R, i.e.

ORT OR! T oGt oGt
We rewrite Eq. (6.6) as
_[(oRf r [ 0G1 OR' o (0GT
n=|(Gw), ¢ (w) v+ (&), (5 ), )= 60
For simplicity, we will drop the subscripts w and W in the partial derivatives,
OR'! T Al ORT TagT

Because the Lagrange multiplier (¢) is a vector of free variables, it can be chosen such that

oRrRt oGt
_ A 6.9
oW oW (6:9)
which is the so-called adjoint equation. The Lagrange multiplier (@) given by Eq. (6.9) is the so-called
adjoint solution.
Because of the adjoint equation Eq. (6.9), the change in the response becomes
ORT oGt
SR=(—F——¢" =6 6.10
( Ow ¢ Ow ) v (6.10)
The advantage of Eq. (6.10) is that it is independent of W, which means that the sensitivity of the
response to an arbitrary number of input parameters can be determined without the need for additional
forward calculations.
The adjoint equation Eq. (6.9) and the response equation Eq. (6.10) are problem dependent. There are

two fundamental guidelines in formulating the adjoint problem, i.e.

e Rule 1: The adjoint solution (or Lagrange multiplier) is a vector of free variables. The adjoint solution

can be chosen to satisfy any conditions to accomplish Rule 2.

111



e Rule 2: The adjoint problem should be formulated to remove the dependency of change in the response

to change in the field variables.

6.2.2 Adjoint sensitivity analysis: two-phase two-fluid model

We will focus on the 1D two-phase two-fluid model. Recall that the two-phase two-fluid model is

ou oF Oa Ox
9U L L p 9% p 9% g 11
ot Tor e Th ity (6.11)

The P00, /0t term makes the notations for adjoint sensitivity analysis very complicated. For simplicity,
we will drop the P;;0c, /0t term because it can be handled by the matrix A;;, which is given in Eq. (4.38)

of Chapter 4. The derivation starts with

8£+8£+P 80ég

ot " ag TFPugy 570 (6.12)

Let W be the vector of physical variables and w be the vector of input parameters. The source term is in
general a function of W and w, i.e.

S =S(W,w) (6.13)
In this thesis, we will study a response R at the time ¢; that can be written as

R(n) = [ fa(t) ~ aa(tr) "o (6.14)

0

where ¢ is the quantity of interest and g4 is the design value of q. Thus, R represents the error in the
prediction of ¢. For brevity, we use (x)_ to denote the integration in space, (x), to denote the integration
in time, and (x)_, to denote the double integration in space and time. The integration in time is from ¢o to
time ¢; and the integration in space is from x( to x;.

Following this notation, Eq. (6.14) is transformed into

R= <(q*qd)2|t1>z (6.15)

N |

where |** means the integrand is evaluated at the time t;. Performing the variation operator to the response

function, we get

oR = <(q - qd)(iq\t1>m (6.16)
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Let ¢ be the Lagrange multiplier. From Eq. (6.12), we obtain

ou OF Oay
5+ = +Puw—r2—8S) = 1
¢ BN + 7 + 833 0 (6.17)
which can be transformed into
T T T§F T
99" U  0¢ 6U+8¢6 08 SF
ot ot ox Ox (6.18)
Tp. T P. .
§ T (00 p g0 s, 1 gt X5, 7S =0
ox ox ox
Integrating Eq. (6.18) over ty to t; in time and z( to x1 in space, we obtain
(¢"6U[" — ¢"5U[") + (¢ (6F + Pigboyy)[* — ¢" (OF + Pipdarg)[*0),
6.19)
06T 0T o7 0P, - da (
———6U — 6F — P, ) —L6P;, —¢T0S) =
+< ol oz oz LT gy )0t Gy 9705) =0
For ease of notations, we define the following vectors and matrices
au\" OF dag\ " P, By OPi 0oy,  0S \©
Ao = (aw) A= (aw +Piﬂfaw) A2 = ( 9z OW ~ OW oz aw) 620)

Q=—(q—q) (;&,)T

The details of the coefficient matrices, Ay, A, and Ag, are given in Appendix E. Then, Eq. (6.16) and
Eq. (6.19) are transformed into
SR =(-Q"oW|")_ (6.21)

(pTATOW " — @TATSW) + (¢"ATSW|™ — ¢TA1T5W|””°>t

opT a¢ oS - (6.22)
- << at AT 8 ¢TAT) W>zt <¢T6w>1:t =0

Dividing Eq. (6.22) by t; — to and subtracting the result from Eq. (6.21), we obtain

1 8¢T T 6¢T T T T 1 TaS
oR t1t0<< or ho T g AT A —QT JOW m+t17t0 ¢ v/

1 P2 (6.23)

1
i (T AJSW|" — ¢TA§5W|“>$ +

1 x Z1
T (GTATOWT — gTATIWI™),

+t1—

P3 P4
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For steady-state problems, taking t; — oo, Eq. (6.23) is reduced to

OR = <(8¢TA1T + o7 AT — QT> 5W>

oS T AT
I 1 1 xo T1
- —|—<¢ 5w>x—|—¢ AT IW|™0 — ¢ A] IW| (6.24)

Py

x

P1 P2

As will be discussed in the following section, P; will specify the PDE for the adjoint problem, Po will specify
the contribution of the source vector to the change in the response, P3 will specify the initial condition of

the adjoint problem, and P4 will specify the boundary condition of the adjoint problem.

Time-dependent problem

For time-dependent problems, the adjoint sensitivity analysis for general boundary conditions is complicated.
We will use a simple periodic boundary condition for test purposes. The adjoint problem is determined by
the 4 parts in Eq. (6.23): Py, Pg, P3, and Py.
P1: This part gives the adjoint equation. To remove the dependency of the response on the change in
the physical variables, we chose the adjoint solution such that
opT opT

WAOT + %Af +¢TAl = QT (6.25)

Taking the transpose of Eq. (6.25), we obtain the adjoint equation

+ Al% +Ap=Q (626)

¢
By

P5: This part does not depend on the change in the physical variables. It accounts for the change in the
response, because the source term is an explicit function of the parameters of interest.

P3: This part deals with the initial condition of the forward and adjoint equation. To remove the
dependency of the response on the change in the physical variables, we chose the adjoint solution at time ¢,
to be

¢ =0, attimet; (6.27)

Then, P3 becomes
1
t — to

P3 = (@"AFOW]") (6.28)

OW at time tg is known because it represents the change in the initial conditions of forward problems. Once

the adjoint solution at time ¢q is determined, Eq. (6.28) is completely specified.
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P4: This part accounts for the change in the response due to the change in the boundary conditions. This
part also determines the appropriate boundary conditions for the adjoint equation. After some algebraic
manipulations, we rewrite P4 as
1
t —to

1
t1 —to

Py <(B150ég + Bydp + B3dT; + B40T, + Bsdu; + B65ug)|x°>t

(6.29)

<(Bl5ag + Bydp + B30T, + B4(5Tg + Bsdu; + Bﬁéug) |$1>t

where B to Bg are functions of ¢ that results from ¢” AT. We show the details of B; to Bs in Appendix
E.
For time-dependent adjoint sensitivity analysis, we consider a periodic boundary condition. If we apply

a periodic boundary condition to the adjoint equation, i.e.

¢ (z,t) = (x + 21 — 20, 1) (6.30)
then, we obtain
¢|zo — ¢|$1 (631)
and
P4, =0, for periodic BC (6.32)

To summarize, for time-dependent problems with a periodic boundary condition, the adjoint problem is

specified by

o¢ o
Ag— +A1— + Aspp = .
0+ hi P+ ad=Q (6:33)
with
¢(Jc,t1) =0, and ¢(x,t) = ¢(m + 1z — xo,t) (6.34)
The change in the response is reduced to
1 708 1 T AT ‘
= — Ay oW .
SR — <¢ 8w6w>m + r— (¢" Ag W) (6.35)

From Eq. (6.35), we can get the sensitivities of R to different input parameters.
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Steady-state problem

For steady-state problems, the adjoint equation is specified by removing the dependency of dW in Py, i.e.

0
A?% + AT = Q" (6.36)

where the superscript ‘ss’ denotes that the quantities are evaluated at steady-state.
We consider the boundary conditions used in the boiling pipe problem: at the inlet (x = (), void
fraction, liquid temperature, gas temperature, liquid velocity, and gas velocity are kept at constant values;

at the outlet (x = x1), the pressure is kept at a constant value, i.e.

ag, T, Ty, u,uy  are constant at x = xg (6.37a)

p are constant at x = a3 (6.37b)

When the boundary conditions are changed (i.e. different constant values), we know that

dagy, 0Ty, ,0T,, 0wy, du,  are known at = = xg (6.38a)

0p is known at x = 1 (6.38b)

If we apply the following boundary conditions to the adjoint solution

B(¢) =0, for x=ux (6.392)
BY¥(¢) =0,B5°(¢) = 0,B7(¢) =0,B(¢) =0,B5°(¢) =0, for z=um (6.39b)

then, P4 is reduced to
Py = (B0 + B30T} + BP6T, + B 0w + B oug) ™ — (B5*6p)|™ (6.40)

Once the adjoint solution is known, P4 is completely specified by Eq. (6.38) and Eq. (6.40).
To summarize, for steady problems with boundary conditions given by Eq. (6.37), the adjoint problem
is specified by
o¢

ATSC + AT = QT (6.41)
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with

B (¢) =0 for z=ux (6.42a)
B (q)) =0,B5 (¢) =0,B} (¢) =0,B3® (¢) =0,Bg (qS) =0, for z=u (6.42b)
The change in the response is reduced to
T as > SS SS SS SS SS x SS xr
R=(¢ %&u + (B1 dag + B0T) + B 6T, + B 0w + Bg 5ug)| o — (32 5p)| 1 (6.43)
x

From Eq. (6.43), we can obtain the sensitivities of R to different inut parameters.

6.3 Numerical tests

6.3.1 Time-dependent problem
Problem description

The periodic pipe problem discussed in Sec. 5.4.1 is used to test the time-dependent adjoint sensitivity
analysis framework. Recall that the problem is driven by the following initial pressure

2
p(z) =po+p1 sin(kO%z) (6.44)

Keeping the initial conditions for the other variables (void fraction, liquid/gas temperature, liquid/gas
velocity) unchanged, the solution of the system at a certain time is completely determined by 3 parameters,
po, p1, and k. Let qq4 (tl) be the design solution at time ¢;, which corresponds to a design parameter set
(pg7 P, kg). The problem is to find the correct parameter set (pg, pd, k‘g) from an initial guess. In this test,

we choose the following parameter set
pd = 7.5 MPa, p{ = 1.0 MPa, k§ = 1.0 (6.45)

The problem could be converted to an equivalent optimization problem: finding the parameter set (pg, pd, k:g)

that minimizes the following response function

x1

1
R(t1:po.p1, ko) = 5/ [q(t15p0, 1, ko) — qa(t1)]*d (6.46)

Zo
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In practice, the optimization could be performed iteratively with

OR\ ™'

po = pf = R(tung, ot k') <ap0) (6.47)
- OR\ ™!

Pt = p — R(ts i 0t k) <8p1) (6.47b)
OR\

kgt = kgt — R(ts gt o7 k) <8k0> (6.47c)

The key point is to evaluate the sensitivities 9R/0py , OR/Op1, and OR/Ok efficiently. Recall that the change

in the response function is given by

1 oS 1
SR = =6 TAGSW™ 4
R t1 —to <¢ ow w>mt+t1—t0 (87 AgoWI™), (6.48)

Since the source vector for this problem is zero, Eq. (6.48) is simplified to be

1
t1 — 1o

OR = (¢"AG W) (6.49)

The perturbation in the initial condition is

0
0po + dp1 sin(ko 2%9:) +m cos(ko 2%:1:) 2%:1:51{0
SWto = 0
(6.50)
0

0

[ 2 2 2 i
= |dpo + Op1 sin(kofﬂx) +p1 %x COS(kofﬂ—lL')(sko e

where e, is a column vector whose second component is 1 while other components are 0. Combining Eq.

(6.49) and Eq. (6.50), we obtain

OR 1 T AT

— = Aje 6.51a
6p0 t1 —to <¢ 0 2>:c ( )
orR 1 . 27 T

aipl = tl _ tO <Sln(k0L$)¢ AO 92>$ (651b)
OR 1 2m 2 a7

—_— = — — A .51
pTra— <p1 T CL‘COS(k‘o T ac)q& 0 e2>m (6.51c)

118



Once the adjoint solution at ty is known, the sensitivities in Eq. (6.47) are completely specified by Eq.
(6.51).

Adjoint solution

Recall that the adjoint equation for the time-dependent problem is

¢ ¢
Ag— + A — 4+ Ay = 6.52
05y + 90 + A0 =0Q ( )
In practice, Eq. (6.52) is discretized as
o — 7! Py — Py
AR T ) A" T L AN " = Q" .
Gim ap TR A, TAuel = Q (6:53)

The adjoint solution is updated in time with

b1 — iy

n—1 _ 4n n_*l no__ AT
¢i - ¢Z At(AO,Z) <Qz Al,z AT

- A;ﬁiqs?) (6.54)

One ghost cell on each side of boundaries is used to handle the periodic boundary conditions. Different with
the forward equation, the adjoint equation should start from time ¢; and integrate back to time ¢;.

A forward simulation is required to prepare the coefficient matrices and source vectors in Eq. (6.52). For
this test, we are interested in the solution at ¢; = 0.001 s starting from tg = 0 s. As is discussed in previous
chapter, the WENO-type scheme works very well for the periodic pipe problem, which means we can use a
coarse mesh to obtain an accurate solution. To save computational resources, we will use the WENO-type
scheme to solve the forward problem. The following results could also be obtained with the Roe-type scheme
using a much finer mesh. Both the forward and adjoint equation are solved with 400 cells and a constant
time step, At =107 s.

The pressure at time t; is chosen to evaluate the response function, i.e.

1 [
R(t1;po, p1, ko) = 5/ [p(t1; po, p1, ko) —pd(h)]zdﬂ? (6.55)
Zo
This way, the source vector in Eq. (6.52) is
Q=—(p—pa)es (6.56)
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Optimization process

Three separate tests are performed to find pg, p1, and kg, respectively. Initial value for pg is 8.0 MPa, initial
value for p; is 1.5 MPa, and initial value for kg is 1.5. For each separate test, the values of the uninterested
parameters are kept at the design values.

Test A

6 1 -10 Py -13 3
6.5 x10 4 x 10 45 %10

55

4.5

@ =)
& N o N
ud
w @ IS

~
A

25

0 5 10 0 5 10 0 5 10
4 [ 8 [ 10 b
34 x10 1 x 10 22 %10
-3.6 0.5 21
2
-3.8 0
1.9
-4 -0.5 18
-4.2 -1 17
0 5 10 0 5 10 0 5 10
X:m

Figure 6.1: Adjoint solution for the first iteration of test A. pyp = 8.0 MPa, p; = 1.0 MPa, and kg = 1.0.

TestB
¢2

X
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x
o
S)
©

-13 3
10 6 & 10

0 5 10 0 5 10 0 5 10
x10™ 4 x107 s %1070 s
2 05 2
0
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2
4 0.5 2
6 -1 -4
0 5 10 0 5 10 0 5 10
X:m

Figure 6.2: Adjoint solution for the first iteration of test B. pg = 7.5 MPa, p; = 1.5 MPa, and kg = 1.0.

For reference, Figure 6.1, Figure 6.2, and Figure 6.3 show the adjoint solution for the first iteration of
the three tests. Taking pressure, liquid velocity, and gas velocity as examples, Figure 6.4, Figure 6.5, and
Figure 6.6 show the convergence of the numerical solution to the design one as iteration increases. Note
that for test A, the numerical solution of liquid and gas velocity changes little when the iteration increases,

this is because the liquid and gas velocity are determined by the gradient of initial pressure, which does not
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Figure 6.3: Adjoint solution for the first iteration of test C. pg = 7.5 MPa, p; = 1.0 MPa, and kg = 1.5.

depend on pg. As is expected, the numerical solution converges to the design solution as iteration increases,

which verifies the adjoint sensitivity analysis framework.

Test A Test A

/|

Pressure: MPa

0.2

Liquid velocity: m/s
°
Gas velocity: m/s

0.4

0.6

6.5 0.8
0 1 2 3 4 5 6 7 8 9 10 4 1 2 3 4 5 6 7 8 9 10
x:m x:m
(a) p (b) w

Figure 6.4: Convergence of numerical solution for Test A

TestB

Pressure: MPa
Liquid velocity: m/s
Gas velocity: m/s

(b) w

Figure 6.5: Convergence of numerical solution for Test B.

The iteration results are given in Table 6.1, Table 6.2, and Table 6.3, respectively. We can see that these

5th

three parameters converge to the design values, see the columns. In addition to the optimization results,
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TestC TestC
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(b) w (c) ug

Figure 6.6: Convergence of numerical solution for Test C.

the last column in each table gives a verification of the calculated adjoint sensitivities. The verification
is based on an important feature of the response function: the design values (pg, p1, or ko) give a local

minimum of the response function, see Figure 6.7

~
v

Figure 6.7: Schematic of the response function and the verification scheme

Let w denotes the parameter of interest, i.e. pg, p1, or kg. Let dw be the perturbation of the parameter

from the design value wy. Since wy gives a local minimum, we have the following approximation

1 (0’R 2
R{trswa+ ) ~ RB(tian) + & <W>w-wd (5) (6.57)

Taking the first-order derivative of Eq. (6.57) and evaluating the derivative at w = wq + dw, we obtain

OR 0’R
wq+ow W=wq

Substituting Eq. (6.58) into Eq. (6.57) and canceling the second-order derivative term, we obtain
1 /0R
R(tl;wd + 5w) ~ R(tl;wd) + = = ow (6.59)
2\0w )/, 150
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Since R(t1;wd) =0, we have

ow ~ —

(8R

%)wd-ﬁ—&u

2R(t1; wq + 5w)

(6.60)

Eq. (6.60) shows that if the sensitivities are correct and the perturbation is small enough, the design

parameter could be obtained accurately with 1 iteration, i.e.

d o % m ..om o.m 1.m OR -
Do = Py = Do —2R(t1,p0 by Y. ) Do
Po

P~ pt =p" —2R(t1; pf", P k') (

ki~ kg = ki* — 2R (t1;pg", pY" k") (

OR

o
R
kg

(6.61a)
(6.61D)

(6.61c)

The comparison of pg, pi, and kj to the design values provides a good verification scheme to the adjoint

sensitivities. As is shown in Table 6.1, Table 6.2, and Table 6.3, p§, p;, and kg are very close to the design

values. We have a good confidence in the adjoint sensitivities. Note that in Table 6.3, because the initial

guess is too far away from the design value, kg in the first iteration is far away from the design value.

Table 6.1: Results of optimization Test A for finding pg. p; and k¢ are kept at the design values.

Tter. m R™ (8R / Bpo) i j2 pg’Hl pg (verification)
0 1.25E4-00 5.01E4-00 8.00000 7.75030 7.50061
1 3.13E-01 2.51E+4-00 7.75030  7.62548 7.50065
2 7.88E-02 1.26E4+00  7.62548 7.56309 7.50065
3 1.99E-02 6.38E-01 7.56309 7.53189 7.50067
4 5.09E-03 3.26E-01 7.53189 7.51629 7.50067
) 1.33E-03 1.70E-01 7.51629 7.50849 7.50066
6 3.61E-04 9.20E-02 7.50849  7.50457 7.50063
7 1.06E-04 5.30E-02  7.50457 7.50260 7.50058
8 3.38E-05 3.30E-02  7.50260 7.50158 7.50056
9 1.28E-05 2.30E-02  7.50158 7.50104 7.50046

10 5.41E-06 1.74E-02  7.50104 7.50073 7.50042
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Table 6.2: Results of optimization Test B for finding p;. pg and kg are kept at the design values.

Tter. m R™ (0R/op:)™ PP P pi (verification)
0 5.37E-01  2.62E400  1.50000 1.29525 1.09050
1 1.87E-01 1.656E4+00  1.29525 1.18164 1.06792
2 7.08E-02 1.11E400 1.18164 1.11757 1.05358
3 2.97E-02 8.01E-01 1.11757  1.08054 1.04345
4 1.39E-02 6.24E-01 1.08054 1.05825 1.03595
5 7.28E-03 5.18E-01 1.05825 1.04420 1.03015
6 4.19E-03 4.51E-01 1.04420 1.03491 1.02563
7 2.61E-03 4.07E-01 1.03491 1.02848 1.02208
8 1.74E-03 3.77E-01 1.02848 1.02386 1.01924
9 1.22E-03 3.55E-01 1.02386  1.02042 1.01697
10 8.94E-04 3.38E-01 1.02042 1.01777 1.01513

Table 6.3: Results of optimization Test C for finding kg. po and p; are kept at the design values.

Tter. m R™ (0R/0ko)™ ki EpTh kg (verification)
0 4.01E+00 5.11E+00  1.50000 0.71447 -0.07107
1 L42E+00  -9.67E+00  0.71447 0.86153 1.00859
2 3.80E-01  -5.34E+00 0.86153 0.93270 1.00388
3 1L.02E-01  -3.29E4+00  0.93270  0.96360 0.99450
4 3.13E-02  -2.00E+00 0.96360 0.97927 0.99494
5 L04E-02  -1.24E4+00  0.97927 0.98770 0.99613
6 3.73E-03  -7.99E-01  0.98770  0.99237 0.99704
7 1.45B-03  -5.47E-01  0.99237  0.99502 0.99767
8 6.20E-04  -4.00E-01  0.99502  0.99657 0.99811
9 2.95E-04  -3.14E-01  0.99657 0.99751 0.99845
10 1.56E-04  -2.61E-01  0.99751 0.99810 0.99870

6.3.2 Steady-state problem
Problem description

The boiling pipe problem studied in Sec. 5.4.3 is used to test the adjoint sensitivity analysis framework

for steady-state problems. As was mentioned, the source vector is modeled as

_Fg
—oupig — fuwr + fi = Tgu;
’ uw?
Qui + Qit — L'why — Lighy + (fi — fwl — cuprg — Fgui)ul + =

S = (6.62)

Ly

—agpgg — fuwg — fi + Tgu;
/ u2
Qug + Qig + Twhy + Tighy + (_fi — Jwg — agpgg + Fgui)ug —Ty3
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The responses of interest for this problem are chosen to be

1

1
R(q) = i/ (qss - q?ls)zdxv for ¢= ag,p, I1, Ty, g, uyg (663)
Zg

where ¢}’ denotes the design solution. Note that different ¢ gives a different response function. ¢ could also

be any other quantities that depend on the physical variables, e.g. the total mass flux. Let of, p*™, T7*,

T, up®, and ug’ be the steady-state solution of the boiling pipe problem. For testing purposes, we choose

the following ad-hoc design solution

agq = ay +0.05 (6.64a)
s =p™ +10* (6.64b)
7y =17 +10 (6.64c)
=T 4 1.0 (6.64d)
upy = u® + 0.1 (6.64¢)
uyy = uy +0.1 (6.64f)

We are going to study the sensitivities of the response to parameters in the source terms and the boundary
conditions.

To perturb the source terms, we introduce the following 8 multiplicative parameters

D« wpD (6.65a)
Gwall < WqwGwall (6.65b)
Qui < GualiWn, Qug < quat(1 — wy) (6.65c¢)
fi —wyrifi (6.65d)
fut = wpwt fwr (6.65¢)
Jwg < Wiwg fuwg (6.65f)
Hi <~ wraHiy (6.65g)
Hiy + wmigHig (6.65h)

Physically, wp represents the perturbation in the hydraulic diameter, wgwaqu represents the perturbation

in the total wall heat flux, w, represent the change in the partition of total wall heat flux to liquid and
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gas phase, wy; represents the perturbation in the interfacial friction, wy,,; represents the perturbation in
the wall friction to liquid, wy.g represents the perturbation in the wall friction to gas, wpy represents the
perturbation in the interface-to-liquid heat transfer coeflicient, and wg;4 represents the perturbation in the
interface-to-gas heat transfer coefficient. The nominal values for these multiplicative parameters are 1.0.

To perturb the boundary conditions, we introduce the following additive parameters

g intet + 0.01 + 8oty niet (6.662)
Doutlet < 5.52 MPa + dpoutlet (6.66b)
T} intet < 530.9 K+ 0T inlet (6.66¢)
Upinlet < 1.15 m/S 4 0uy inlet (6.66d)

Physically, dcg inlet represents the perturbation in the inlet void fraction, dpoutier represents the perturbation
in the outlet pressure, 677 iniet represents the perturbation in the inlet subcooling, and 6wy inlet represents
the perturbation in the inlet mass flux. The nominal values for the perturbations are 0.0.

Let w be the parameter of interest. We are interested in quantifying the following sensitivities related to

the source terms

OR(q)
ow '’

for qzag,p,Tz,Tg,ul,ug and W = Wp,Wqw, Wy, Wfi, Wfwl, Wfwg, WHil, WHig (667)

and the following sensitivities related to the boundary conditions

OR(q)
Ow '’

for q=Qg, D, T‘b Tg7 Ug, Ug and w= Qg inlet Poutlet CZ-‘l,inle‘w U inlet (668)

Forward sensitivity analysis

To provide reference values to the adjoint sensitivities, we perform a forward sensitivity analysis. The
forward sensitivity analysis is performed by simulating the boiling pipe problem with the Roe-type scheme
multiple times with perturbed parameters (multiplicative or additive parameters). Table 6.4 lists the test
matrix for the forward simulations. For each parameter, the problem is simulated twice with the given lower
and upper bounds of the corresponding parameter. A total of 25 forward simulations (1 base case and 2 for
each of 12 parameters) are required.

Taking the void fraction (ag4) and liquid velocity (u;) as two examples, Figure 6.8 and Figure 6.9 show the

results of the forward simulations. The perturbation in the void fraction and the liquid velocity are reported
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Table 6.4: Test matrix for the forward sensitivity analysis

Source parameters Boundary condition parameters
Case name parameters lower/upper bound | Case name  parameters lower/upper bound

S1 wp 0.95, 1.05 BC1 Qg inlet 0.008, 0.012

S2 Waw 0.95, 1.05 BC2 Doutles : MPa 5.519, 5.521

S3 Wy 0.98, 1.00 BC3 Tl intes = K 530.4, 531.4

S4 Wi 0.95, 1.05 BC4 U inlet © 1M/S 1.10, 1.20

S5 Wl 0.95, 1.05

S6 Wiwg 0.95, 1.05

S7 WHil 0.95, 1.05

S8 WHig 0.75, 1.25

in Figure 6.8 and Figure 6.9. The forward sensitivities are calculated with a finite difference method, i.e.

OR(q) N R(¢; Wupper)

- R(Q;wlower)

Oow

(6.69)

Wupper — Wlower

The calculated forward sensitivities are shown in Table 6.5 to compare with the adjoint sensitivities.

Perturbation in the void fraction
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Figure 6.8: Perturbation in the void fraction due to the perturbation in source terms and boundary con-
ditions. Each subfigure represents perturbation in the void fraction due to the corresponding parameter of

interest.
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Perturbation in the liquid velocity

Figure 6.9: Perturbation in the liquid velocity due to the perturbation in source terms and boundary
conditions. Each subfigure represents perturbation in the liquid velocity due to the corresponding parameter
of interest.

Adjoint sensitivity analysis

The adjoint equation given in Eq. (6.41) is solved to obtain the adjoint solution ¢. To solve for the adjoint
solution ¢, we need to prepare the coefficient matrices and vectors, including A3, A$’, and Q. These
matrices and vectors are obtained with the nominal steady-state solution. Once these matrices and vectors
are available, Eq. (6.41) can be solved easily since it is a linear equation. In practice, Eq. (6.41) is discretized

as
ssl¢i+1 — @i 1
L,i 2Ax

+ AF¢i = QF (6.70)
Eq. (6.70) is then assembled to form a system of linear equations for solving ¢. For each ¢, e.g. ¢ = ay,
there is one set of adjoint solution. Let ¢,,, m = 1,---,6, be the m'™ component of the adjoint solution
vector ¢. Taking the void fraction (¢ = ay) and the liquid velocity (¢ = u;) as two examples, Figure 6.10
and Figure 6.11 show the adjoint solution for these two responses. Note that there is a non-smooth region,
around z = 0.15 m, in the adjoint solution. This non-smooth solution is caused by the change of sign in
the relative velocity. The relative velocity is important in calculating the source terms, because it is used in

modeling the average bubble diameter and the interfacial area concentration. As an example, Figure 6.12

shows the profile of the liquid velocity, gas velocity, OT'y/0u, (used in the adjoint equation), and ¢s in the
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pipe. From Figure 6.12, we can see that the non-smooth solution happens in the location where the relative
velocity changes its sign.

Adjoint solution for q = ag
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Figure 6.10: Adjoint solution for ¢ = ay.
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Figure 6.11: Adjoint solution for ¢ = u;.
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Figure 6.12: Cause of the non-smooth adjoint solution. The magnitude of 0I'y/0u, and ¢5 are normalized
for comparison.

After obtaining the adjoint solution, the adjoint sensitivities are calculated with Eq. (6.43), i.e.

(’)lgiq) — <¢TZS>ZS7 for w =wp,wWquw,wn, Wi, Wiwl, Wrwg, WHil, WHig (6.71)
and
m = Br (6.722)
aapifzzt =-By (6.72b)
aaz{ii(jzt =By’ (6.72¢)
m = B3 (6.72d)

The adjoint sensitivities are given in Table 6.5, which also includes the forward sensitivities. Comparison
of adjoint sensitivities to the forward sensitivities is also shown in Figure 6.13, where the magnitude of
forward sensitivities and adjoint sensitivities are compared. For most cases, the adjoint sensitivities match
the forward sensitivities very well, which verifies the adjoint sensitivity analysis framework. However, when
the response is not sensitive to the parameters of interest, the adjoint sensitivities do not match the forward
sensitivities well. This is reasonable. If the response is not sensitive to the parameters, the perturbation in

the response is negligible and the numerical noise dominates both the forward sensitivities and the adjoint
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Table 6.5: Comparison of sensitivities from forward sensitivity analysis and adjoint sensitivity analysis

Parameters Method q=aoyg q=0p q="1T q="1T, q = q=1uq
Forward | 3.28B-02 2.09E-06 3.10E-05 8.47E-09 1.83E-01  3.04E-01
wD Adjoint | 3.41B-02 1.47BE-06 2.66E-05 2.05E-07 1.79E-01  2.56E-01
Forward | -1.55B-02 -7.90E-07 -1.80E-05 -3.17E-09 -8.95E-02 -1.39E-01
Waw Adjoint | -1.94B-02 -3.94E-07 -1.00E-05 -5.69E-08 -1.06E-01 -1.66E-01
Forward | 1.25B-02 2.97E-08 -3.08E-05 1.86E-05 4.93E-02  8.63E-02
“n Adjoint | 1.20E-02 1.68E-08 -2.96E-05 -1.96E-04 5.85E-02  9.23E-02
Forward | -6.48E-04 -7.43E-08  3.60E-08 -3.45E-10 -3.84E-03  7.41E-03
Wi Adjoint | -6.01E-04  3.37E-09  3.72E-08  2.22E-10 -3.86E-03  8.01E-03
Forward | 1.61B-04 -4.27E-07 -4.38E-08 -1.80E-09 1.02E-03 -1.87E-03
Wil Adjoint | 1.66E-04 -4.50E-07 -4.22B-08 -6.11E-08 1.07E-03 -1.74E-03
Forward | -9.95E-06 -2.68E-08 -1.61E-09 -1.28E-10 -6.97E-05 1.37E-04
Wiwg Adjoint | -1.02E-05 -2.65E-08 -1.70E-09 -3.91E-09 -7.13E-05 1.48E-04
Forward | 3.11E-04 1.01E-09 -7.91E-07 -1.77E-12 1.30E-03  2.23E-03
WHil Adjoint | 2.59E-04 -4.99E-09 -7.02E-07 -6.30E-10 1.11E-03  1.87E-03
Forward | -1.65E-10  1.25B-14 -1.11E-13 -4.61E-11 -8.21E-10 -3.12E-09
WHig Adjoint | -2.53B-08  3.47E-12  4.41E-12 -5.83E-10 -1.69E-08 -1.64E-07
Forward | -3.40E-02  2.40E-06 -1.40E-05 1.02E-08 4.52E-02 -1.60E-02
Qg,inlet Adjoint | -4.04E-02  2.76E-06 -1.33E-05 3.90E-07  2.78E-02 -1.75E-02
Forward | 1.15B-08 -3.75B-10 -2.71E-11 -1.75E-12  5.48E-08  2.14E-08
Poutlet Adjoint | 1.56E-09 -3.79E-10 -4.98E-11 -5.18E-11  2.64E-09  1.53E-08
T Forward | -8.50E-04 -1.92B-08 -1.98E-06 -7.00E-11 -3.93E-03 -6.58E-03
Linlet Adjoint | -8.90E-04  1.51E-09 -1.83E-06 -4.53E-11 -4.24E-03 -7.01E-03
Forward | 1.52B-02 -2.27B-06 9.92E-06 -9.53E-09 -9.54E-02 -4.32E-02
Ui inlet Adjoint | 1.53E-02 -1.15E-06 8.99E-06 -1.52E-07 -9.72E-02 -3.03E-02
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Figure 6.13: Comparison of forward sensitivities to adjoint sensitivities. Absolute values of forward and
adjoint sensitivities are plotted. A represent cases where the forward and adjoint sensitivities have the same
sign; M represent cases where the forward and adjoint sensitivities have different sign; straight line denotes
that the forward sensitivities are equal to the adjoint sensitivities.
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sensitivities, especially when the sensitivity value is below 10~7. Column-wise, for ¢ = p, the adjoint
sensitivities to the source parameters (wy;,wri, and wpig) do not match the forward sensitivities well,
because the pressure depends weakly on these three parameters. The same issue happen with ¢ = T,
because the gas temperature is at the saturation temperature of local pressure and depends weakly on the
parameters of interest. Row-wise, the same issue happens with the source parameters wgig.

The response is in general sensitive to the boundary conditions but not sensitive to several the phys-
ical model parameters, e.g. interfacial heat transfer coefficients. These sensitivities represent the multi-
dimensional gradients of the response function to the parameters of interest. If high-quality measurement
data is available, the adjoint sensitivities can be used to improve the physical models, e.g. with a calibration
method. Another application of the adjoint sensitivities is to propagate the uncertainty in the parameters
of interest to the response function. Because the adjoint sensitivities to all parameters are obtained with 1

forward simulation, a significant amount of computational time will be saved.

6.4 Conclusion

In this chapter, an adjoint sensitivity analysis framework is developed for the two-phase two-fluid model.
The adjoint sensitivity analysis framework is based on the forward numerical solver developed in Chapter
5.

The adjoint sensitivity analysis framework is divided into two parts corresponding to time-dependent
problems and the steady-state problems. In this thesis, the time-dependent adjoint sensitivity analysis
is used for testing purposes. For simplicity, the time-dependent adjoint sensitivity analysis is derived with
periodic boundary conditions. The steady-state adjoint sensitivity analysis is derived with practical boundary
conditions.

The time-dependent adjoint sensitivity analysis is tested with the periodic pipe problem to find the design
parameters. The steady-state adjoint sensitivity analysis is tested with the boiling pipe problem to calculate
sensitivities of responses to several input parameters, including physical model parameters and boundary
conditions. For both tests, the adjoint sensitivities are shown to match very well with either analytical

sensitivities or forward sensitivities, which verifies the current adjoint sensitivity analysis framework.
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Chapter 7

SUMMARY AND FUTURE WORK

7.1 Summary

In this thesis, a new shock-capturing upwind numerical solver and an adjoint sensitivity analysis framework
for the two-phase two-fluid model are developed. Both the forward solver and the adjoint sensitivity analysis
are verified extensively with several benchmark problems.

The forward solver is based on analytical eigenvalues and eigenvectors of the two-fluid model. The treat-
ment of arbitrary EOS is essential to perform an analytical analysis to the two-phase two-fluid model. The
challenge in the analytical analysis (due to the arbitrary EOS) is overcome by introducing a few auxiliary
variables. Through thermodynamic and algebraic transformations, the Jacobian matrix of the system is
simplified to a simple and well-structured form, which is convenient for the analytical analysis. Approximate
eigenvalues and eigenvectors of the conservative part are obtained by exploiting the difference in the thermo-
dynamic properties of liquid and gas phases. The eigenvalues and eigenvectors are essential for constructing
the forward numerical solver, because they provide accurate upwind information of the system.

Based on the analytical eigenvalues and eigenvectors, a Roe-type and a WENO-type numerical flux are
constructed to provide appropriate upwind numerical flux to the forward solver. The solver is tested with
three benchmark problems: a periodic problem, the two-phase shock-tube problem, and the Christensen
boiling pipe problem. Because of the analytical eigenvalues and eigenvectors, the solver is algebraically very
simple. The results show that the solver is stable, accurate, and robust. The grid convergence study shows
that the Roe-type scheme is first-order accurate in space and the WENO-type solver is at least second-order
accurate in space.

The basic two-phase two-fluid model assumes all pressure terms are equal. In this case, the two-phase
system has two complex eigenvalues when the relative velocity is non-zero. From mathematical point of
view, the two complex eigenvalues make the system ill-posed; from numerical point of view, when the spatial
discretization is fine enough to distinguish the characteristic waves related to the two complex eigenvalues,

the numerical solver tends to give non-physical oscillations. This issue is more severe when the absolute
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value of relative velocity is comparable to the speed of sound, because the magnitude of the imaginary part
of the two complex eigenvalues becomes too large. Numerically, it is found that the regularization using the
interfacial pressure correction helps at least reduce the non-physical oscillations near discontinuities.

A critical and unique feature of the forward solver is that the formulation does not depend on the form
of EOS, which ensures that the solver is applicable to practical two-phase problems, such as a boiling pipe.
The successful application of the new solver to a boiling pipe is very encouraging, because it opens up
the possibility of applying many other advanced methods (e.g. WENO, DG-FEM, etc) to nuclear reactor
thermal-hydraulic simulations.

An adjoint sensitivity analysis framework for the two-phase flow problems is developed based on the
new forward solver. The adjoint sensitivity analysis is formulated for both time-dependent and steady-state
problems. The adjoint sensitivity analysis framework for both time-dependent and steady-state problems
is verified. The adjoint sensitivities to different parameters of interest are verified by either analytical
sensitivities or forward sensitivities. The key feature of the current adjoint sensitivity analysis framework
is that it is based on the continuous form of the forward equation and is algebraically very simple. The
connection between the forward problem and the adjoint problem is through the coefficient matrices. The

application of this method to other two-phase flow problems should be straightforward.

7.2 Future work

7.2.1 Issues and future work in forward solver

The current forward solver provides the essential framework for developing a mathematically consistent,
algebraically simple, and numerically accurate and robust solver for realistic thermal-hydraulic simulations.

However, there are some issues in the current forward solver:

1. The current solver uses very small time step because of the CFL condition, it is not suitable for long
time transient simulations in the real-world reactor safety analysis. The current solver is not very
robust. It is based on an explicit method and the stiffness of the source terms has not been considered,

which might cause an issue.

2. Though second-order spatial accuracy is achieved with the WENO-type numerical flux, the WENO-

type scheme is not as robust as the Roe-type scheme.

3. The current solver works for two-phase flows only. It is not capable of simulating the appearance and

disappearance of either phase.
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4. The current solver uses a simple boundary condition treatment, it might affect the numerical solution

and degrade the accuracy of the solver.
These issues have to be solved in the future. Here are potential solutions to these issues:

1. A fully-implicit scheme is recommended to avoid the time step limit and improve the robustness of the
current explicit scheme. The fully implicit scheme is recommended to be solved with a Jacobian-Free
Newton-Krylov (JFNK) method. Fully implicit schemes for two-phase flows have been proposed and
studied by many researchers. Recently, the JFNK method becomes popular as a nonlinear solver.
Mousseau [63] did the pioneering work to apply the JENK method to two-phase flows. Applications
of the JFNK method to two-phase flows can be seen in [64, 65, 8, 66, 9]. Encouraging and promising
results have been shown by Zou and his coworkers [8, 66, 9], where the fully implicit scheme is used to

solve realistic two-phase flow problems.

2. To achieve a high-order accuracy, it is recommended to explore numerical procedures for converting
the first-order Roe-type numerical flux to a high-order one. Because the current solver has a direct
link, i.e. a Roe-type numerical flux, to the existing schemes for single-phase flows, it is recommended
to seek for a mature high-resolution scheme in single-phase flows and extend it to two-phase flows.
Mature high-resolution schemes are not rare for single-phase flows. A through review of these schemes
can be found in [67, 68]. Among these high-resolution schemes, the Monotone Upstream Scheme
for Conservation Laws (MUSCL) of Van Leer [34], the Total-Variation-Diminishing (TVD) scheme of
Harten [69], and the Essentially Non-Oscillatory (ENO) scheme of Harten and Osher [46] are the most
well known. Among these schemes, the TVD scheme of Harten [69] seems a natural choice since it

requires little extra work given a working forward solver and a robust Roe-type numerical flux.

3. Phase appearance and disappearance issue is a major challenge in two-phase flow simulations. The
discontinuity in the void fraction due to the appearance and disappearance of one phase puts a strict
requirement on the robustness of the numerical scheme. It is recommended to explore a numerical
treatment, such as truncating the void fraction numerically, to solve this issue. However, the numerical
treatment might not be optimal and more analytical work on the numerical scheme is required to solve

this issue.

4. Tt is recommended to implement a characteristics-based boundary condition treatment to the forward
solver. The approximate eigenvalues and eigenvectors might be used to treat the boundary conditions

in the characteristic space.
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In addition to solve the previous issues, there are some important and valuable extension to the current

forward solver:

1. It is recommended to explore the possibility of solving the two-phase two-fluid model with the auxiliary
form of the governing equations, e.g. the enthalpy equation. The current forward solver is based on
a conservative form of the two-phase two-fluid model, which might not be appropriate for simulating
problems when the change in the temperature of the liquid/gas phases is significantly smaller than
the change in the velocity of liquid/gas phases. Analytical work on the change in the eigenvalues,

eigenvectors, and numerical fluxes is required.

2. It is recommended to explore the possibility of solving the 2D or 3D two-phase two-fluid model within
the current framework. The eigenvalues and eigenvectors of the 2D or 3D model are similar to the
1D model. There are three difficulties. The first difficulty lies in providing the closure correlations
for the 2D or 3D model, e.g. the multi-dimensional interfacial friction model and multi-dimensional
interfacial heat flux model. The second difficulty lies in the numerical treatment of the high-dimensional
geometry, which changes significantly the data structure in the forward solver. The third difficulty lies

in extending the 1D numerical flux to 2D or 3D, which is non-trivial.

3. It is recommended to extend the current solver for real-world reactor safety analysis. Adding the
capability of simulating more complex two-phase flow problems requires extensive extra numerical

work to the current solver.

7.2.2 Issues and future work in adjoint sensitivity analysis

There are also some issues in the current adjoint sensitivity analysis framework. The issues are listed below:

1. The current adjoint sensitivity analysis relies on numerical coefficient matrices. The effect of the

truncation error to the adjoint sensitivities is not fully studied.

2. The current adjoint sensitivity analysis works with a specific form of the response function, which
measures the quantify of interest in the whole domain. The local (e.g. in a certain location) information

of the quantity of interest is not considered.

3. The current adjoint sensitivity analysis for time-dependent problems is only valid for problems with
periodic boundary conditions. It can not be applied directly to the real-world transient simulations in
reactor safety analysis. Effect of the time-dependent boundary conditions to the system has not been

studied.
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4. The current adjoint equation is solved with a basic finite difference method, which might not be robust

enough for applications to more complex problems.
These issues have to be solved in the future. Here are potential solutions to these issues:

1. Tt is recommended to obtain analytical coefficient matrices. For realistic problems where the source
terms are modeled with complicated closure correlations, it is recommended to provide approximate co-
efficient matrices instead. This is non-trivial but important, because the analytical coefficient matrices

can also be used in the forward solver when an implicit method is used.

2. It is recommended to develop an adjoint sensitivity analysis framework that is general for other kinds
of response function. Besides the method used in the current adjoint sensitivity analysis, it is valuable

to explore the possibility of applying the discrete adjoint method [70] to two-phase flow simulations.

3. It is recommended to study the effect of the time-dependent boundary conditions to the two-phase

system using the adjoint method.

4. Tt is recommended to explore the possibility of solving the adjoint equation with a more robust method,
e.g. an implicit method. This study is recommended to do only after a robust forward implicit solver

is available.
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Appendix A

DERIVATIONS OF JACOBIAN
MATRIX

Recall that the Jacobian matrix of the system is defined as

A= (T4 Aipne) " (Be+ Asgne) (A1)
with
OF Oa Oda
At: = o7 A’LCD nc sz g ) A’LZ ne = Pz -2 .
au’ U You (4.2)

Recall that U is the vector of conservative variables, F is the vector of fluxes, P;, and P;; are the vectors

related to the averaged interfacial pressure. The vectors in Eq. (A.2) are

aip QP 0 0
Qi prug cupruf + aup Di 0

U= apiEy Fo apEju + agpuy P, = 0 P, = —Di (A3)
QgpPg QgPgllg 0 0
QgPgllg agpgu_?] + agp —pi 0
agpgEg agpgEgug + agpug 0 Di

For ease of notations, we write U and F as

1 Qipi Y1 arprug
g Qupruy Y2 upui + cgp
U= N aiprEy F= ys | _ api EBjug + agpuy (A4)
T4 QgPyg Ya QgPgllg
Zs5 QgPglg Ys O‘gpgug +agp
Z6 agPgEy Yo g PgEgug + agpug
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Then,

Oy1  Oy1 9yir 9yi  9yr  Owna
oxq Oxo Oxs Oxyg oxs dxe

Oys  Oyz  Oy2 Oy2  Oya Oy
Oz Oxo Ox3 Oxy Oxs Oxg

Oys Oys Oys Oys Oys Oys

Ac = Oz Oxo Ox3 Oxy Oxs Oxg (A5)

Oys Oys Oya Oya Oysa Ouya

oxq Oxo Oxs Oxy oxs Oxg

Oys  Oys Oys Oys  Oys  Ous
8.’1:1 8;82 Bxg 0{£4 0:£5 Bxc,

Oye Oye Oye Oys OyYs O9ys

01‘1 01‘2 81‘3 81‘4 81‘5 01‘(‘,

0 0 0 0 0 0
0 0 I6] I6] l6] 6]
Di aif Di 8‘;;7 Di azg Di azi Di 335 Di 3(;2
A 0 0 0 0 0 0 (A6)
iz,ne = .
0 0 0 0 0 0
1o} 1o} 0 I6] I6] I6]
“Piget “Piggt “Piggr “Digg ~Digee —Pigg.
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
(026} (026} Ja Ja Ja Ja
Aitmc — —Di azf —Pi amz —Pi 395; —Pi ami —Pi amg —Pi 396: (A?)
0 0 0 0 0 0
0 0 0 0 0 0
9ag Oag Oay 9ag 9oy 9oy

Pi dz1 Pi Oz Pi Ox3 Pi Ox4 Di Ozs Di Oz
The difficulty lies in deriving these partial derivatives with arbitrary EOS and simplifying them to suitable
forms. Taking a close look at these partial derivatives, we find that the following partial derivatives are

essential
Op Oay
0%y, Oxm,

, form=1,---,6 (A.8)

Because x,,’s contain the density and specific internal energy, which are related to pressure through the

day

and 7.
0T,

EOS, we know that the EOS has to be used in deriving ?f

O,
Let A denotes the operator for the change in variables. Note that in the derivations, A will also denote

the infinitesimal change, which is often denoted with operator ’d’. The derivations start with

0 0
Az = Alagpr) = qAp; — pAag = oy ﬂAp + ﬂAel — piAoy
op de;

9y

I Ap + apgAeg) + pgAay

Azy = Alagpg) = agApg + pgAay = ay < ap De
g
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Solving for Ap and Aagy from Eq. (A.9), we get

prAzT + pgAxl - (agpl Bey Aeg + aipg ael Ael)

Ap
d
aqpl ap + upg g

3pl 8pg
Op Oey

9pi

3
Y 9pg 8oL A g

Axy — aga—"Axl — gy ( Aeg — on De,

)

(A.10)

A«
9 9
agma + upg g

Taking Ap as an example, we show the process of simplifications. Multiplying 5 6p ap

denominator of Ap in Eq. (A.10) and using the mathematical relations

dp 0 Op 0
PP _ 1, and L %P9
dpy Op dpy Op
we get
op A A 9pg A 9oL A
b g | AT+ pArs — (gt Aeg + aupy gt Aey

Ap

to the nominator and

(A.11)

Op op
Qg1 5/)1 + aupy Dpg

By using the mathematical relations

O _ 9p Opy
Oegy Opg Oeg
op _ 9 9p
8@; apl 861

Eq. (A.12) is further transformed into

Op
Op1 OP

[0iAzy + pgAzy] + aqpl 85 ae P ANey + apg ! Op (%L

Ap =

(A.12)

(A.13)

Qg1 87/)1 + aupg apg

= 1Az + oAy + c3Aep + caley

where c¢1, co, c3, and ¢4 are auxiliary variables used for ease of notations

Op Op
pg 0pi Opg

Op
Qg1 sz + aipg AP

Op Op
p L sz Opg

9Op op
Qg1 aﬂz + aypg Er

Op Op
0‘!/’9 dp, Der

9p Op
APl am T upg Opg

Op Op
Qg Pl dp; Oey

op Op
agplapl + o ®1Pg3,,

C1

C2

€3

Cq4
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(A.14)

, they are defined as

(A.15)



The partial derivatives %’ 887”7 %’ and 687” in Eq. (A.15) are not very informative and will make the
l g9 g

matrices in Eq. (A.5), Eq. (A.6), and Eq. (A.7) very complicated. For simplifications, we replace

Op 0Op  Op andaanWith
g

Op1? Opg’ ey’
% — ol —1) (A.16a)
;Z:ag_ggn_g (A.16b)
;’i = py(1s 1) (A.16¢)
(;9; — a2 p%(% 1) (A.16d)

which is derived in Eq. (3.13) of Chapter 3 for general EOS. Then, Eq. (A.15) is further transformed into

oL pai —p(n = 1)]lpgag —p(hg —1)]
L mag[paf —p(y = 1)) + [pga — (75— 1)]
o L [[maz —25(71 )})] [pga[g (s (— V)] :

Py aglpiai —p(vi—1)] + o v —1
i)l (o~ 1) o
= aalpa? —pln—1)] + [Pg ~ (7 —1)]

. 9Py (19 = 1) [paf —p(n —1)]

aglpai —p(n —1)] + ar[pgaZ —p(vy — 1)]

Dividing the nominator and denominator in Eq. (A.17) by p and using the definitions of ¢; and ¢4, Eq.

(A.17) is further transformed into

ot = E -1 (1+<)

1+ age; + aigy
(2 = 2(3 - 1)] (1 +2)

1+ ager + oy (A.18)
_ap(n—1)(1+¢)

1+ age + agy

_ %Py (v - (1 +e)
1+ age + agy

C1 —

Cy =

In short, for arbitrary EOS, we can obtain

@ = 2(n-1)](1 te) 2= 2 (3, - 1)] 1 v,

P T T age + aue, ' 1+ ager + gy (A.19)
I apr(n = 1) (1 +¢) Ae; + agpg (1 — 1) (L +e) Ae
1+ age; + aigy 1+ age + aggy g
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Eq. (A.19) tells that once we obtain the relations of Ae; and Aeg to the change in the conservative variables,

i.e. Ax,,, we can get the required partial derivatives 6‘1—” easily.

We will take ;—i as an example to show the derivation process. When Az, is the only changing variable

while other conservative variables are kept constant, we have

Axl = A1‘1
Azxy = A(aclul) = Aziu; +21Au; =0

Axz = A(xlEl) =An1E; + 21 (Ael + ulAul) =0

(A.20)
A$4 =0
Azs = A(x4ug) = Azqug + x4Aug =0
Azxg = A(ac4Eg) =AxyEy + x4 (Aeg + ugAug) =0
which gives
A.Il = Al‘l
A$4 =0
Az (A.21)
Ael = (ul2 - El)Tll
Aey =0
Replacing Eq. (A.21) back into Eq. (A.19), we get
2_ P _
e 0 = 2 (n-1)](1+¢,) pp s Q100 =) (14 &) e gy Ao
1+ age + ey ! 1+ age; + ey ! Yo (A.22)
(1+¢) [ 2 2
=—— la; + —1)(uf — H }Am
1+ age + ey ! (W )( ! l) !
Thus, we get
op (1+¢) [ 2 2
—_— = —1 —H } A.23
Or1 1+ age +agy “ar (,Yl )(UI l) ( )
Following the same process, we can get
Oay 1 Qg 9 9
—2 = -1 — H } A.24
02, S —— {az + (= 1) (uj 1) (A.24)

When the other conservative variables are taken to be the changing variables, the partial derivatives a‘zf , g;g
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for m = 2,3,4,5,6 can be obtained similarly. They are found to be

2o O -y - ) (A.250)
= T s £ [0 R
2o [ -5 - )] (r250
% . _Hgg;il)%] [ (A.25¢)
%06 - HS;;Z)% [ (A.25f)
and
o = et [+ (- D (e - ) (4.262)
g% _ —;Ha;‘i% (0 - 1) (A.26b)
R LR
Bet = p T Ty L0011 (4200

The two matrices, Az ne and Ay ., are completely specified by Eq. (A.26).
As for the matrix A., we will take g—ﬁﬁ as an example to show the derivation process. Following previous

process, we have

Ays = A(ozlplulz + alp) = A(wlu?) + o Ap + pAqy
(A.27)

= ulQAxl + 2z 1w Ay + g Ap — pAay

From Eq. (A.20), we get
Ay = ——y (A.28)
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Replacing Eq. (A.28) to Eq. (A.27), we get

Ayy = —ufAzy + ajAp — pAay

Thus we get
0ya 9 dp Oay
31‘1 - +a18z1 p&zl
1
_ 7UZ2 + + OélEg

1+ age; + aggy

[alQ + (’yl — 1) (U12 - Hl)}

Following similar derivations, we can get all partial derivatives in A..

In practice, for simplification purpose, we define the following auxiliary variables

c=y-1;
1+ aqey
1+ age; + gy’
Q€ ,
1+ age; + gy’
Pi 1

:?lJragleralsg’

B =
g =

U

h_ 2 2
Cyg =ag+ ('yg — 1) (ug — Hg)
cy = (79 1)ug
c; =941

1+ a4
Bg=
1+ agze + agy
€
o4 = %%
1+ agze; + aigy
_ D 1

Tg = ——FT———
T7 p 1+ ager + aigy

Then the matrices, A, Ajz ne, and Ag¢ ne, are found to be

0 1 0
2 h 1
—uj + Bic 2u; — Bictt Bie
h 1
—u Hy +wBic Hy—wBicy  uw +wBic
A, =
0 0 0
UgC{L —04¢) Ugcll
h U 1
OglgC —OglUgCy OglgC

0 0
O'lCZ —Ulcg
h U
alulcg —Ululcg
0 1
2 h U
—ug + Bgcqy 2ug — Bycy

h U
—ugHy + ugﬁgcg H, — ugﬁgcg
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(A.29)
(A.30)
(A.31a)
(A.31Db)
(A.31c)
(A.31d)
(A.31e)
(A.31f)
0
Ulc_(l]
Ululcé
0
Bycy
Ug + ugﬁgc}]
(A.32)



Aiz,nc =

Ait,nc =

h
—QgTIC

h
—QgTIC

U
QgTC

1
—QgTIC

OéngCg

—OngCZ

angcg

—angc;‘

Ty,

OéngC;

(A.33)

(A.34)

The remaining task is to obtain the Jacobian matrix of the system, i.e. A. Since the matrices A, Az ne,

and Aj; ,. have been obtained, the Jacobian matrix A is obtained by the symbolic calculation software

Mathematica. The Jacobian matrix is found to be

0

a3

0
S
050

ag1

1

2 s h ;
—uj + B¢} 2w — B¢t

a32

0
S .U
=0

ag2

0
Bier
ass
0

sl

lopde

g

ag3
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2 s .h
ug + Bgcg 2ug

ag4

S u

—ojc,

aszs

ags

_ As
)

(A.35)



with

as1 = Alm [ (1 + el my) (Brwe) — wiHy) + agm(Biei'e) — ¢iui) + amnef (cyogu, — USCZ)]

aso = Aln(' [ (1 + aueyy) (Hy — Bicywr) + agm (2¢iw — Bicicl — ¢f') — aumc (Clagug U;CZ)]

azz = Al,w [ (14 aueimy) (w + Bicjw) + agm(cie B7) + aumiet (C_},Ugug - 0505)}

azs = Alm{ (1+ cueyrg) (orwc)) + agmi(ofeicl) + aumi[cyug (Bgcy — Hy) — ci(Bch — “3)]}

055 = — Alm {1+ onctmy) (o) + agm(ofeies) +arm[e (2uy — Bgug) — ch(Hy — Byciug) — ]}

aze = Alm{(l + ey 79) (o1wiey) + agm(ofci'ey) + aumi[eg (ug + Bycgug) — c}]ﬁ;c;]}

(A.36)

and

1
agr = {(1 + agc;n) (Ugugcl ) + a7y (0’ c c?) + ayTy [cllul (Blcl Hl) — (Bl o — u%)] }

P>
3

ag2 = {(1 +agye, Tl) (ogugci’) + iy (agc;cf) + ag7y [c? (2w — ﬂful) —c (Hl — Blcful) — cﬂ}
a3 = N { (1+ agc 1) (gguger) + auty (o5e Cll) +agry[e] (w + fieyur) — Cllﬁlscﬂ}
ags = Alm [ 1 + agcgn Bgug }; ugHg) + ang( M gCZ — cgu ) + ongch (cllalul - Ulscf)]
ags = Alm [ 1 + agc Tl H 590 ug) + a7y (20 Ug — ,Bgcgcg — cg) — angc“; (cllalul — afcf)}
ags = Alm [ 1 + agcgn ug + ﬁgcgug) + a7y (clcgﬁ ) + angcsl7 (cllalul — ch}‘)}
(A.37)
where the following auxiliary variables are used
Ape=1+ays(m—1)7+ag(vy —1)7g
B =B —agmi; By = By — auty (A.38)

o] =01+ g0, =04+ QT
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Appendix B

ROE-PIKE INTERMEDIATE STATE
FOR SINGLE-PHASE SYSTEM

The fundamental requirement to the Roe-Pike intermediate state is

3

UR - UL = Z émf{m (B.la)
m=1
3 ~ ~
Fr—F. = Z EmAmKom (B.1b)
m=1

where A\, and K,, are the eigenvalues and eigenvectors of the Jacobian matrix of Euler system. Before

seeking the intermediate state for two general states Uy, Ug, we at first study two close states.

Decomposition of two close states Uy, Upg

Consider two states U, Ug (left and right) that are close and seek ¢y, ¢o, ¢, such that
3
AU = Z emKom (B.2)
m=1

to within O(AQ), where A() = (-)R — ()L Writing Eq. (B.2) in full we have

Ap=-cy +co+c3 (B.3a)
A(pu) = c1(u—a) + cou+ c3(u+ a) (B.3b)
A(pE) = (H — ua) + co (H — 'y*aQ) + c3 (H + ua) (B.3c)

Solving for c¢1, ¢ca, cs from Eq. (B.3), we get

1 = goiy { [wlu-+ v°) = (1 =276 A = (w7 @) M) + A (o) (B.4a)
co = 'y*laQ [(H —u?)Ap — ul(pu) — A(pE)} (B.4b)
= Tlag { [U(u —v'a) — (H - W*GQ)} Ap— (u—7"a)A(pu) + A(pE)} (B.4c)
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Within O(A2), for two close states Ur, Ug, we have

A(pu) = ulp + pAu (B.5a)

A(pE) = EAp + pAe + pulu (B.5b)

Recall from Chapter 3 that the definitions of @ and v give

(%)p =p(v-1) (B.Ga)
-

which gives
Ap = {aQ_ %(7— 1)}Ap+p(7—1)Ae (B.7)

Replacing Eq. (B.5) and Eq. (B.6) back to Eq. (B.3), we get to

1
= ﬁ(Ap — palu) (B.8a)
ca = Ap — Ap/a® (B.8b)
1
¢ =55 (Ap + paAu) (B.8¢)

Note that Eq. (B.8) are consistent with Glaister’s result [45] though we took different ways in representing

the Jacobian matrix and eigenvectors. And to within O(Az), we can check that

3
AF =Y cndmKn (B.9)
m=1

Thus, for two close states, we have found ¢y, ¢o, ¢z as in Eq. (B.8) for a general EOS such that

3
AU = > cnKp (B.10a)
m=1
3
AF = > cpmAnKp, (B.10b)
m=1

to within O(Az) .
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Decomposition of two general states Uy, Up

For two general states, Uy and Upg, that are not necessarily close, we would like to seek the intermediate

values of p, @, H,a,% such that Eq. (B.1) holds. Let

Ap PR~ PL
Ur—-UL= A(pu) = | pPRUR — pLUL
A(pE) prER — pLEL
A(pu) PRUR — PLUL
Fr—Fr=[A(pu®+p) | = | pru% — pLui + pr — b1
A(puH) prHRuR — prHrur

Expanding the requirement in Eq. (B.1) in full, we get

with
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(B.11a)

(B.11b)

(B.12a)
(B.12b)
(B.12c)
(B.12d)
(B.12e)

(B.12f)

(B.13a)

(B.13b)

(B.13c)



To be clear, note that Ap = pr — pr, Ap = pr — pr, and Au = ur — uz, might not be small. With Eq.
(B.12a), Eq. (B.12b), and Eq. (B.12¢), we have

Ap = 51 + 52 + 53 (B14a)

Ap =@ (&1 + &) (B.14b)

Au=2(e5— &) (B.14c)
p

Eq. (B.12a) is satisfied because of Eq. (B.14a); while Eq. (B.12b) is the same as Eq. (B.12d). Thus the
intermediate state must make sure Eq. (B.12c¢) to Eq. (B.12f) are satisfied. From Eq. (B.12d) and Eq.

(B.14), we obtain

A(pu) = ﬂ(&l + 52 + 53) + a(&g - 51)

(B.15)
= A(pu) =ulp+ pAu
From Eq. (B.12e) and Eq. (B.14), we obtain
A(pu?) + Ap = @* (&1 + & + &3) + 2aa(és — é1) + a* (83 + &)
= @ Ap + 2puAu + Ap (B.16)
= A(pu2) = @*Ap + 2puAu
Substituting p from Eq. (B.16) into Eq. (B.15), we get a quadratic equation for @
WP Ap — 20\ (pu) + A(qu) =0 (B.17)
Only one solution of @ from Eq. (B.17) is productive, that is
2
Ap) — [A ()] — 2pA ()
= (B.18)
Ap
which gives
5= VPLUL + V/PRUR (B.19)
VPL + /PR
Substituting @ back into Eq. (B.15), we get
p=/PLPR (B.20)
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With Eq. (B.19) and Eq. (B.20), we can obtain the following mathematical identity

Aput) = (o) + por LTV (B.21)

where ¢ could be any quantity. Now we need to determine the remaining variables H, a, and ~. Using Eq.

(B.14), we rewrite Eq. (B.12c) and Eq. (B.12f) as

A(pE) = (H — 7*a*) Ap + @pAu + 7" Ap (B.22a)

A(puH) = @(H — 5*a*) Ap + (H + &%) pAu + @(1 + ) Ap (B.22b)

Substituting ¢ = H into Eq. (B.21), we obtain

A(puH) = il (pH) + pau VP VPRI

VPL + /PR (B.23)
vprH v/ PrH '
— A (pE) + alp + pAu Y LI T VPRIR
VPL T /PR
Substituting Eq. (B.22a) into Eq. (B.23) and then comparing Eq. (B.23) with Eq. (B.22b), we get
. H H
BpAu = pAgYPEL T VPRIR (B.24)
VPL + /PR
which gives
- Hp + /prH
- YPLIL + VPrIR (B.25)
VPL + /PR

which means if H is given by Eq. (B.25), Eq. (B.22b) and Eq. (B.12f) are satisfied.

We have one more equation, Eq. (B.22a), to satisfy. Replacing A(pu2) = @2Ap + 2puAu into Eq.
(B.22a), we get
@ — 7 a*)Ap+ 7 Ap (B.26)

Noting that h = e+ p/p, Eq. (B.26) is equivalent to

-1
A(ph) = A(pe) + Ap = (H — 5112 —F@*)Ap+ 7 Ap+ Ap (B.27)
By taking the choice that
- h h
j_ VPLhL + VPRIR (B.28)
VPL + /PR

151



We get
A(ph) = pAh + hAp (B.29)

and Eq. (B.27) is simplified to

-1 a2
Ap = %ﬁAh + %Ap (B.30)

which is consistent with the definitions of a and ~ as the two states are close, as is seen in Eq. (3.13a) and

Eq. (3.13b) of Chapter 3. We transform Eq. (B.30) into

. S 1
Ap = %Apf 2 5—PAR (B.31)

which gives that relation of the change in density to the change in pressure and specific enthalpy (or tem-
perature) that the intermediate state has to satisfy. From Chapter 3, especially Figure 3.4, we know that
v is almost a linear function of pressure and temperature (or enthalpy), thus to be consistent with other

intermediate variables, we take

VPLYL + \/PRVR (B.32)
VPL + /PR '

’3/:

And then a is determined by

A —-1/2
. P
a= |- ~ ~ (B.33)
[VAP -(5- l)pAh]
In case Ap =0 and Ah = 0, we have
a=ar=ag, and J=7L =R (B.34)
To conclude, by taking the following intermediate state
p=/PLPR (B.35a)
U = WrUr, + WRUR (B.35b)
I;[ZOJLHL +wrHER (B.35¢)
h= wrhr +wrhr (B.35d)
¥ =wryL + WRrYR (B.35¢)
a4 =wrar, + wrag, if Ap=0and Ah=0 (B.35f)

—1/2

, otherwise
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with wy, and wr being the weights defined as

__ Ve VPR (B.36)
VoL +er T JpL + /PR ‘

wr

we can show that the fundamental requirement in Eq. (B.1) is satisfied with coefficients

1

¢ = 577 (Ap — padu) (B.37a)

Gy = Ap — Ap/a® (B.37b)
1

G5 = ﬁ(Ap + palu) (B.37¢)

where Ap = pr — pr, Au=ugr —ur, and Ap = pr — pr.
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Appendix C

ROE-PIKE INTERMEDIATE
STATE FOR TWO-PHASE SYSTEM

Recall that the Roe-type numerical flux for the two-phase system is

1
FEE‘; = §(F" +FpP ) — |A (U}, —UY) (C.1)
Or equivalently,
6
1 1 o
Fios = S (FE+FL) — o > e Kem (C.2)
m=1

where A, and K. ., is the m-th eigenvalue and eigenvector of the matrix A.. As discussed in previous
chapter, we are not able to obtain analytically the exact eigenvalues and eigenvectors of A.. In practice, we

use the approximations made in Eq. (4.42) and Eq. (4.43), i.e.

Al Uy — A/ Biag; Aep = Uy Aez = up + /i (C.3a)
Aed R Ug — £/ Bglgi Aes = Ug; Ao & Ug + \/Bgag (C.3b)
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and the right eigenvectors are approximated with

ch%

s

K4c%

)

where v/ =1/ (71 — 1) and y; =1 / (vg - 1). And ¢4 and gg are two auxiliary variables defined as

1
u — /By
H;, — /By
0
0

0

qa

Q4)\c,4

qa[Hy — uf + wihe

1

Ug — \/E)ag

Hy — \/@agug

5K2,c ~

5K5,c ~

2

crlag

uy

2
H; — v a;

* 2
Hy —~ygag

Q4E(

>\c,4 - )\c,l) ()\0,4 - )\C,S) ;

d6 =

3K3,c ~

aK6,c ~

1
w + /B
Hy + VBiaw
0
0

0

q6

Q6,6

1

Ug + \/@ag

2

Jlag

()\c,(i - )\c,l) (>\c,6 - )\0,3)

a6 [Hi — ui + wihc ]

Hgy + \/Bgagug

(C.5)

As is required in single-phase system, the fundamental requirement to the Roe-Pike intermediate state

is

m=1

6
UR - UL = Z Emf(c,m

6
FR - FL = Z Emj\c,mf{gm

m=1

155

(C.6a)

(C.6b)



Expanding the requirement in Eq. (C.6) in full, we get

A(oupy) = & + G + C3 + Cada + Cos (C.7a)
Alagprw) = & (i — \/Eal) + Goty + &3t + \/ Bidn) + 4Ga (g — \/B:ag) + G686 (g + 1/ Byay) (C.Tb)
AlupE) = & (H —\ Bitud) + é(H — A7ad) + & (H, + \/ Briua) (C.7¢)

+ EaGa[Hy — @F + iy (g — \/B:ag)] + Gods [H; — @} + 1y (g + 1/ Bedy) ]
Alagpg) =&+ &5 + & (C.7d)

g — \/E&g) + E5iig + 6 (g + £/ Bydy) (C.7e)

H, - \/B:agag) + & (Hy — 45a2) + &6 (Hy + £/ Byiigay) (C.7f)

Aloupyug) = é (ay — \/Edz) + Gty + &3 (T +\/ By

+ Eada (g — \/B:ag) + Gods (g + 1/ Byy) (C.8a)
A(apiu + oup) = & (@ — \/Eal)2 + &t} + &3 (1 + \ﬁal)2 (C.8b)

A(qululHl) = 51( ~l - \/ENZCNU) ('LNLZ - \/Edl) + 52 (gl - /i/l*d?)ﬂl

+ s (Hy + 1/ Brtud) (@ + 1/ Buda)

+ Eodo [Hy — af + @ (g + \/gag)} (i + £/ Brdr) (C.8c¢)

Alagpguy) = (g — \/B;ig) + E5ily + 6 (Tg + \/ Byiy) (C.8d)

A(agpgu? + agp) = & (g — \/B:dg)2 + &2 + Z ity + \/Bigag)2 (C.8e)
A(agpgugHy) = é4(Hy — \/B;agag) (g — \/51%) + & (Hy — 5al)ig

+ & (Hy + \/B:agag) (itg + 1/ Byiiy) (C.8f)

Finding exactly the intermediate state from Eq. (C.7) and Eq. (C.8) is difficult. And, because the eigenvalues
and eigenvectors are only approximated values, finding exactly the intermediate state does not gains much.
We propose to use approximate intermediate state.

Taking a close look at Eq. (C.7), Eq. (C.8), and Eq. (B.12), we observe that, except for the additional
void fraction ay and coupling factors S, there are great similarities among them. For example, Eq. (B.12a)

has the same form as Eq. (C.7d), Eq. (B.12b) has the same form as Eq. (C.7e), and Eq. (B.12c) has
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the same form as Eq. (C.7f). Because of the similarities, we would expect that the intermediate state for
two-phase system should have a similar form as the intermediate state for the single-phase system. Thus,

we propose to use the following intermediate variables

(rgk = wk,L¢k,L + wk,R¢k,R7 for k = lvg and (rb =u, Ha aa’}/aﬁaa (Cg)

with

(0% (0%
Ok, LPK, L /K, RPk,R fork=1.g (C.10)

We,L = kR =
VO LPkL + \/Ok.RPER VO LPk,L T \/Ok,RPK.R

Once the intermediate variables are specified by Eq. (C.9), we can solve for the coefficients ¢,, from
Eq. (C.7). The expression for the coefficients é,, is messy to write explicitly. We provide the procedure for
calculating them.

The procedure start with

Aug = ag,RPg,R ~ Qg,LPg,L
Aus = g, RPg,RUG,R — Olg,LPg,LUg,L

Aug = ag rpg REg R — Qg LPg L Eqg L (C.11)
AU54 = A'LL5 — (’Zlg — 1/ Bgdg)A’UJ4

Augy = Aug — (ﬁg - Bgag&g)A“‘l
Substituting Eq. (C.11) into Eq. (C.7d), Eq. (C.7e), and Eq. (C.7f) , we get

ﬂgA’U,54 — Au64

Cs = (5/9 - 1) &3
A _

Gg = 2t %5 (C.12)
2Bqa4

E4=AU4—56—E5

Since ¢4, ¢5, and ¢g are found, we can substitute them back into Eq. (C.7a), Eq. (C.7b), and Eq. (C.7¢) to
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solve for ¢, és, and ¢é3. Let

Aui = airpi,r — M, LPI,L — C4qs — Cee

Auy =y gpi,RULR — U, LPLLULL — Cada (g — \/ﬁi%) — 6o (g + \/B;dg)

Aug = ayrpi,RELR — 0,01,0E1 L — Cada [FII —af + (g — \/ﬂTg&g)] — Co (6 [Hz —df + 1 (Gg + /S’g&gﬂ
Aug; = Aug — (ﬂl - \/E&I)Aul

Augy = Aug — (ﬁl - Blﬂldl)Aul

(C.13)
Substituting Eq. (C.13) to Eq. (C.7a), Eq. (C.7b), and Eq. (C.7c), we get
&2 _ (’3/[ . 1) UZAUQ1~; A’U,gl
a
Gy = Dl O (C.14)
264, 2

éleul—ég—ég

Finally, the Roe-type numerical flux is completely specified by Eq. (C.2) using the respective variables
given in Eq. (C.9), Eq. (C.12), and Eq. (C.14).
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Appendix D

U-W TRANSFORM

Recall that U is the vector of conservative variables and W is the vector of primitive/physical variables

apy Qy
apprug p

U— aupr By W 1 1)
QgPg 1,
Qg Pglyg Uy
agpgEy Ug

The small changes in U and W are related by

ou
AU = A AW, with A, = —— D.2
wi W (D.2)

The derivation of A, matrix is straightforward, which we omit for brevity. Let

Y11 = (gj;)ﬂ, Y12 = (g%)p (D.3¢)
Y21 = (?)Tg7 Y22 = (g;i)p (D.3d)
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The A, matrix is obtained to be

—pl [e7X AN
—pPiuy QupT
—pE;  a(Eixy + piyn)

Pg Qga1

Pgllg QglUgl21

a(Eyzi2 + pryi2)

peEg  ag(Egxo1 + pgyar)

Qpr12

0
0
0

QrUIT12

ag(Egxa2 + pgyaz)

In practice, the inverse of A, is required to obtain AW with

The inverse matrix A, is found with Mathematica to be

a11

a21

a3

41

uy
Pl

a12

a22

a32

42

aLpl

0

a13
a23
a33

43
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AW = A'AU

a14

24

a34

(44

Ug
QXgPg

0
0

QgT22

ais
a2s5
ass

45

0

QXgPg

AgUgT22

a16
a26
a36

Q46

0

o o o O

QgPg

QgPglg




with

ag[(Er — uf)z12 + pryjra] to

ajp = — 0C @
a[(Eg — u)xaa + pgy]th
a14 = y 415
pgC
Pg [(El - U%)xlz + Ply12]y22
ag1 = — y 22
pC
pi[(By — u2) o + pgyaz |12
a4 = , A25
pgC
_aipg [(Ez - UIQ)JJH + Plyn}ym — Qgp| (El - u%)t2
asy = apmC ) @32
ass
pi[(Eg — u2) 22 + pgyz]yn
azq = ) @35
e
Pg [(El - U%)Ilz + ply12]y21
ag1 = y 42
pC
agpi[(Ey — u3) a1 + pgy |y1a — aipg(Eg — ul)ty
aqq4 = agp,C , A45
9Py

a46 =

Qgux12ls gl
 pC s = pC
QUgTaoty Tty

pgC o= peC

PgiT12Y22 _ PgT12Y22
a0 "™ T 0
_ PrugT22y12 _ PiZ22Y12

pgC e pgC
Uy (alpgxnym - Oégpth)
a;pC
_ upgT11Y22 — Qgprto
a;pC
PiUgT22Y11 a3 = _ Prr22y11
pgC pgC
PgUiT12Y21 _ PgT12¥y21
pC TR T T
ug (gma21y12 — Cupgty)
agpeC
_ QgpiTa1Y12 — Qupgly
agpeC

where t1, to, and C are auxiliary variables used for ease of notations. They are defined as

t1 = T12Y11 — T11Y12

to = To2Y21 — T21Y22

C = aipgt1y22 + agpitayia
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Appendix E

COEFFICIENT MATRICES

The coefficient matrix Ay and its inverse in the adjoint equation is

au\"
Ao= (- =AT E.1
o= () A% (6.1)
-1 _\T
Agt = (ALY (E.2)
where A, and A_! are given in Appendix D.
The coefficient matrix A; in the adjoint equation is
OF dag \ ¥
A=|—+P,—2) =
oW oW
—prug —prui —p+pi —prug H, Pglig Pyl +p — pi pgugHg
auT1 al(l + u%:l;n) oy (Elzl;n + piy11 + 1) QglgTa1 ag(l + ’11,3:1:21) Qgllg (ng21 + pgy21 + 1) ( )
E.3
QT Uy o (Eiwis + piyz) 0 0 0
0 0 0 QgUyT20 Ul agug (Egzas + pgy22)
apy 20 pruy oupr(Hy + u) 0 0 0
0 0 0 QgpPg 204 pglig Qg pg (Hg + ug)

where 11, 12, X21, L22, Y11, Y12, Y21, and yoo are variables defined in Appendix D.

The coefficient matrix Ay in the adjoint equation is

= (0P 00y 0P Doy 0S\'
2=\ or OW  OW 0z ' OW

o 2 g o -2 o asf syt as; 95, 957 05,
oz oz day day day  Oay day day
0 — day 0 0 day 0 aSy os" 0S¢ 35’; 05;" 95;
ox ox op op op op p Jp
0 0 00 0 o0 85 as™  asc 9SS 9s™  9se (E.4)
_ b 4|9 on on 9L 9L O
P 1o 0 0 0 0 0 asp osit osg 955 957 955
oT, o1, 0T, 0T, 0T, 0T,
as; as;  asc  9sSg  asy aSg
0 0 0 0 0 0 Ouy Ouy 6uj ouy ouy ouy
0 0 00 0 0 O5; oS 95. 9%, D5, 05

Ouyg Ouyg Oug Oug Oug Jdug
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The functions B, (¢) to Bg (¢) are

Bi(¢) = —prwdr — (pruf +p — pi) b2 — prwH 93 + pgugds + (Pguz +p—pi)ds + pgugHyde
B (¢) = cqwmiidr + aq(1+ ujzrr) g2 + cww (Erzns + piynn + 1) g3

+ agugTa1ds + ag (1 + ulwar)ds + agug (Egzar + pgya + 1) s

Bs(¢) = cqywmiagn + apuiwiade + apu (i + piyiz) és
By(¢) = agugzaods + agu§x22¢5 + agug (Egwoz + pgyos) ds
Bs(¢) = aipidr + 20upruds + cqpr (Hy + ui) s

By ($) = agpya + 204pgugbs + agpy (Hy + uj) ds

where x11, 12, X21, L22, Y11, Y12, Y21, and yoo are variables defined in Appendix D.
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