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Abstract

A new shock-capturing upwind numerical solver (i.e. forward solver) and an adjoint sensitivity analysis

framework for the two-phase two-fluid model are developed and verified. Both the numerical solver and the

adjoint sensitivity analysis framework are based on an analytical analysis of the two-phase two-fluid model.

The challenge (due to the arbitrary equation of state) in the analytical analysis of the two-phase system

is overcome by introducing several new auxiliary variables. With the help of new auxiliary variables and

thermodynamic transformations, the Jacobian matrix of the system can be simplified to a well-structured

form, which is convenient for an analytical analysis. Approximate eigenvalues and eigenvectors are obtained

using the difference in the thermodynamic properties of liquid and gas phases. The approximate eigenvalues

and eigenvectors are essential for constructing the upwind numerical solver, because they provide correct

upwind information of the system. Both the numerical solver and the adjoint sensitivity analysis framework

are verified with several numerical tests.

For the forward tests, the results show that the solver is stable, accurate, and robust. Results from the

new solver are in a very good agreement with either analytical solution or measurement data. The grid

convergence study shows that the solver using a Roe-type numerical flux is first-order accurate in space and

the solver using a WENO-type numerical flux is at least second-order accurate in space. For the adjoint tests,

the results show that the adjoint sensitivity analysis framework works well for both steady-state problems and

time-dependent problems. The adjoint sensitivities (with respect to initial conditions, boundary conditions,

or physical model parameters) are verified by either analytical sensitivities or forward sensitivities.

A critical and unique feature of the new solver is that the formulation does not depend on the form of

equation of state, which ensures that the solver is applicable to practical two-phase flow problems, such as

a boiling pipe. The successful application of the solver to a boiling pipe is very encouraging, as it opens up

the possibility of applying many other advanced methods to two-phase flow problems.
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Chapter 1

INTRODUCTION

Two-phase flows are of great importance in reactor safety analysis. Development of appropriate mathematical

models for two-phase flows is complicated because of the complex nature of two-phase flows, which originates

from the existence of moving interfaces and significant discontinuities (in fluid properties) near the interface

[1]. It is noted that many of two-phase systems have a common geometrical structure. Two-phase flows

can be classified into different flow regimes according to the structure of interface, such as separated flow,

mixed flow, and dispersed flow [1]. Mathematical models for two-phase flows depend on the flow regimes.

For example, considering the flow of two phases, the velocity of one phase may be different from the other.

For some systems, the liquid and vapor have comparable velocities; while in other systems, the liquid and

vapor are completely separated. Various mathematical models have been derived, some with one momentum

equation for the mixture while others with a separate momentum equation for each phase. In the mixture

model, one momentum equation is used. In contrast, the two-fluid model treats the two phases separately,

requiring two sets of governing equations. The more general model is the two-phase two-fluid model, which

is proposed by averaging local field equations for each phase [1]. For transient two-phase flows, the two-fluid

model offers a more general and detailed description than the mixture model. The focus of this thesis is

the development of a new numerical solver and an adjoint sensitivity analysis framework for the two-phase

two-fluid model.

This chapter gives a brief introduction to the motivation for developing a new numerical solver and an

adjoint sensitivity analysis framework for the two-phase two-fluid model.

1.1 Existing numerical solvers

Several two-phase flow system codes, such as RELAP [2] and TRAC [3], were developed to simulate the

two-phase flow problems in a nuclear power plant. The TRAC/RELAP Advanced Computational Engine

(TRACE) [4] is the latest in a series of advanced systems codes developed by the U.S. Nuclear Regulatory

Commission (NRC). It combines the capabilities of the NRC’s four main system codes (TRAC-P, TRAC-B,
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RELAP5, and RAMONA) into one modernized computational tool. Similarly, the RELAP5 series of codes

has been developed at the Idaho National Laboratory (INL) under the sponsorship of the U.S. Department of

Energy and U.S. NRC. RELAP5-3D [5] is the latest in the RELAP5 series of codes. TRACE and RELAP5-

3D have a lot in common. Both codes use the same two-phase two-fluid model. Both codes employ the

semi-implicit-based numerical methods to solve the partial differential equations with the Finite Volume

Method (FVM). TRACE employs the so-called Stability Enhancing Two-Step (SETS) method [6], which

avoids the Courant stability limit on the time step but has relatively high numerical diffusion. RELAP5-3D

employs the so-called Semi-Implicit and Nearly-Implicit scheme. Semi-Implicit method is limited by the

material Courant limit; while the Nearly-Implicit method is not limited by the Courant limit.

In these codes, the basic numerical method is the the first order donor cell differencing method on

a staggered grid. Numerical dissipation and various degree of implicitness are necessary to stabilize the

numerical method. Recently, there is a trend to solve the two-phase two-fluid model with a fully implicit

method with the help of a Jacobian Free Newton Krylov (JFNK) solver. Abu Saleem [7] and Zou [8, 9]

obtained encouraging success with this method.

Most of previous methods use a staggered grid. For numerical methods based on a staggered grid,

scalar quantities (e.g. void fraction and pressure) are calculated at cell centers while vector quantities (e.g.

velocity) are calculated at the cell boundaries. Because of this difference, the mass and energy equations are

discretized differently than the momentum equations, which makes the notations for the discretized equations

very complicated. Solving the two-phase two-fluid model with these methods is already very complicated;

trying to develop an adjoint sensitivity analysis framework based on these methods is even more challenging.

This is the main motivation for developing a new numerical solver, which is mathematically consistent,

algebraically simpler, and numerically more accurate and stable than the existing solvers.

1.2 Adjoint sensitivity analysis

Analysis of uncertainty is critical for code Verification and Validation (V&V) [10]. V&V is usually defined

as a primary means to assess the accuracy and reliability of simulations. Verification is separated into

two different types: code verification and solution verification. The code verification assesses the reliability

of software code, while the solution verification deals with the numerical accuracy of the computational

model. In comparison, validation assesses the physical modeling accuracy of a computational simulation by

comparing with the experimental data. Conceptually, verification is the process that ensures the physical

models are correctly solved by the computer code, while validation is the process that ensures the physical
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models are suitable for predicting desired phenomena.

The reliability of predictions of the system codes is closely related to the validation of their physical

models. For example, the accuracy of void fraction prediction in a Boiling Water Reactor (BWR) is very

important, because void fraction has a significant effect on the reactivity, pressure drop, critical heat flux,

and many other phenomena which are relevant for reactor safety. The uncertainties of code predictions

should be provided, which require an uncertainty analysis by propagating the input uncertainties to the

output predictions.

An important step in uncertainty analysis is the sensitivity analysis of the response of interest to various

uncertain input parameters. Common approach to calculate the sensitivity includes regression-based meth-

ods and variance-based methods [11, 12]. However, these methods require solving the system of interest (e.g.

two-phase flow) multiple times, sometimes 100s of times, which is expensive in terms of computational time.

An alternative approach to compute sensitivities is the adjoint method. The use of adjoint method for

computing sensitivities came up in nuclear science in the 1940s [13]. Later, the adjoint method was applied

to fluid flow for the optimization of a wing design [14]. The cost of solving an adjoint equation is comparable

to the cost of solving the original (forward) equation. However, once the adjoint solution is available, the

sensitivity to an arbitrary number of input parameters can be calculated with little effort, which offers a

powerful tool for calculating sensitivities to a large number of uncertain input parameters. However, to the

author’s best knowledge, successful application of adjoint sensitivity analysis to nuclear thermal-hydraulics

simulations is rare, which is the main motivation for developing an adjoint sensitivity analysis framework in

this thesis.

1.3 Overview of Organization

The organization of this thesis is as follows.

Chapter 2 presents a brief introduction to the basic two-phase two-fluid model. The first-half of this

chapter presents the derivation of the one-dimensional two-phase two-fluid model. The second-half of this

chapter introduces the models and closure correlations.

Chapter 3 presents the formulations for dealing with the arbitrary Equation Of State (EOS). Starting

from the general relations between thermodynamic properties, new auxiliary variables are introduced to

simplify the analysis. The International Association for the Properties of Water and Steam industrial

formulation (IAPWS-IF97) [15], which is used to obtain the properties of water and steam, is implemented

and verified. This chapter is essential for performing the analytic analysis to the two-phase two-fluid model
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and for applying the new numerical solver to practical two-phase flow problems.

Chapter 4 presents the analytical analysis to the two-phase two-fluid model, including a characteristic

analysis and a dispersion analysis. The characteristic analysis provides the essential basis for constructing

the numerical solver.

Chapter 5 presents the details of constructing the numerical solver. The solver is tested with several

benchmark problems, including a periodic pipe problem, a shock-tube problem, and a boiling pipe problem.

Chapter 6 presents the details of formulating the adjoint sensitivity analysis framework for the two-

phase two-fluid model. The framework is tested with two problems: a time-dependent periodic problem and

a steady-state boiling pipe problem.

Chapter 7 summarizes the research and recommends several possible improvements and extensions to

the current work.
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Chapter 2

TWO-PHASE TWO-FLUID MODEL

In this chapter, the details of the two-phase two-fluid governing equation are given. Starting from the general

balance equation, the general three-dimensional (3D) two-phase two-fluid model is derived by performing

a time average to the general balance equation; then, the 3D two-phase two-fluid model is simplified for

one-dimensional (1D) problems by performing an area average in the transverse direction.

2.1 Introduction

The difficulty in modeling of the two-phase flow arises from the existence of moving and deforming interfaces

between the two phases [1, 7]. Fluid properties near these interfaces are discontinuous and flow fields are

complicated. The conceptual model for a single-phase flow is well established in terms of field equations

describing the conservation laws of mass, momentum, and energy. The liquid and gas phase in a two-phase

flow could be seen as single-phase continuum separated by the interface. The field equations for the single-

phase flow could be applied to the liquid and gas continuum, which is the so-called local instant formulation.

However, for most two-phase flow problems where many interfaces exist, the local instant formulation is not

a realistic approach. A macroscopic formulation based on a proper averaging is necessary. In the following

section, the derivation of the macroscopic formulation is presented. Note that the derivation and justification

of the two-phase two-fluid model is not the focus of this thesis. Most of the concept and derivation given in

Sec. 2.2 are generalized from Ishii’s original derivations [1].
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2.2 Three-dimensional two-phase two-fluid model

2.2.1 General phasic balance equation

The general balance equation for phase k can be written by introducing the fluid density ρk, the efflux Jk,

and the body source φk of any quantity ψk defined for a unit mass. The general balance equation is

∂ρkψk
∂t

+∇ · (ρkψkvk) = ∇ · Jk + ρkφk (2.1)

where the first term is the rate of the quantity (ψk), the second term is the rate of convection. The right-hand

side terms represent the surface flux and the volume source. The conservation equations for phasic mass,

momentum, and energy are

∂ρk
∂t

+∇ ·
(
ρkvk

)
= 0 (2.2a)

∂ρkvk
∂t

+∇ ·
(
ρkvkvk

)
= −∇pk +∇ · Tk + ρkg (2.2b)

∂ρkEk
∂t

+∇ ·
(
ρkEkvk

)
= −∇ · qk −∇ ·

(
pkvk

)
+∇ ·

(
Tk · vk

)
+ ρkg · vk + q̇k (2.2c)

where Ek is the specific total energy, Tk is the viscous stress tensor, qk is the heat flux, and q̇k is the body

heating. In addition to the specific total energy (Ek), the specific internal energy (ek), specific enthalpy

(hk), and specific total enthalpy (Hk) are also used in the following equations. These variables are related

by

Ek ≡ ek +
v2
k

2
(2.3a)

Hk ≡ hk +
v2
k

2
= ek +

pk
ρk

+
v2
k

2
(2.3b)

2.2.2 Time average and weighted average

The general two-phase two-fluid field equations are obtained by performing a time average to the phasic

balance law, Eq. (2.1). Throughout the derivations, the following definitions will be used.

Definition 2.1. The state density functions of the k-phase (Mk) and the interface (Ms) are defines as

Mk

(
x, t
)
≡ 1,Ms

(
x, t
)
≡ 0, If a point is occupied by the k-phase (2.4a)

Mk

(
x, t
)
≡ 0,Ms

(
x, t
)
≡ 1, If a point is occupied by the interface (2.4b)
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Definition 2.2. A general function of the k-phase (Fk) at the averaging point (x0) is defined as

Fk
(
x0, t0

)
≡Mk

(
x0, t0

)
F (2.5)

Definition 2.3. The Eulerian time average (F ) of the general function is defined as

F
(
x0, t0

)
≡ lim
δ→0

1

∆t

∫
∆t

F
(
x0, t

)
dt (2.6)

where δ is the thickness of the interface and ∆t is a fixed time interval. As stated by Ishii: “∆t is taken to

be large enough to smooth out the local variations of the properties yet small compared to the macroscopic

time constant of the unsteadiness of the bulk flow” [1].

Definition 2.4. The local void fraction of k-phase (αk) is defined as the time average of the phasic state

density function

αk ≡ lim
δ→0

1

∆t

∫
∆t

Mk

(
x0, t

)
dt =

∆tk
∆t

(2.7)

where ∆tk is the time when the position is occupied by k-phase during the integration time interval (∆t).

Physically, αk represents a probability of finding k-phase in point (x0).

Definition 2.5. The phase average (F k) of the general function is defined as

F k
(
x0, t0

)
≡ lim
δ→0

1

∆tk

∫
∆tk

Fk
(
x0, t

)
dt =

∆t

∆tk
lim
δ→0

1

∆t

∫
∆t

Fk
(
x0, t0

)
dt =

F k
αk

(2.8)

Definition 2.6. The mass weighted average (ψ̂k) of a quantity is defined as

ψ̂k ≡
ρkψk
ρk

=
ρkψk
ρk

(2.9)

Because of the difference between the time average of derivatives and the derivatives of time average, the

time average of a quantity will produce several terms that represent the summation at the interface, i.e.

∂Fk
∂t

=
∂F k
∂t0
− 1

∆t

∑
j

1

vni
Fknk · vi (2.10a)

∇Fk = ∇F k +
1

∆t

∑
j

1

vni
nkFk (2.10b)

where nk is the outward unit normal vector at the k-phase side of the interface and vni is the velocity in the

normal direction. The summation is over all interfaces during the time interval ∆t. A special case of the
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above equation is for the derivative of the local void fraction, i.e.

∂αk
∂t

=
1

∆t

∑
j

1

vni
nk · vi (2.11a)

∇αk = − 1

∆t

∑
j

1

vni
nk (2.11b)

which will be used later in the interfacial mass, momentum, and energy transfer equation.

2.2.3 Time average of the general phasic balance law

The general two-phase two-fluid field equations are obtained by performing a time average to the phasic

balance law, Eq. (2.1). The time average of Eq. (2.1) gives

∂ρkψk
∂t

+∇ ·
(
ρkψkvk

)
= −∇ · Jk + ρkφk + Ik (2.12)

where Ik is the interfacial transfer term that represents the difference between time average of derivatives

and the derivatives of time average,

Ik =
1

∆t

∑
j

1

vni

[
nk · ρkψk

(
vk − vi

)
+ nk · Jk

]
(2.13)

Using previous definitions for the phase average and mass weighted average, we obtain

ρkψk = αkρkψk = αkρkψ̂k

ρkψkvk = αkρkψkvk = αkρkψ̂kvk = αkρkψ̂kv̂k + αkJTk

Jk = αkJk

ρkφk = αkρkφk = αkρkφ̂k

(2.14)

where JTk represents the difference between the average of product and the product of average. It is defined

as

ρkψ̂kvk ≡ ρkψ̂kv̂k + JTk (2.15)

Using Eq. (2.14), the time averaged balance law is written as

∂αkρkψ̂k
∂t

+∇ ·
(
αkρkψ̂kv̂k

)
= −∇ · αk

(
Jk + JTk

)
+ αkρkφ̂k + Ik (2.16)
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The time averaged field equations for the two-phase two-fluid model are

∂αkρk
∂t

+∇ ·
(
αkρkv̂k

)
= Iρ,k (2.17a)

∂αkρkv̂k
∂t

+∇ ·
(
αkρkv̂kv̂k

)
=−∇

(
αkpk

)
+∇ ·

[
αk
(
Tk + TTk

)]
+ αkρkg + Iv,k (2.17b)

∂αkρkÊk
∂t

+∇ ·
(
αkρkÊkv̂k

)
=−∇ ·

(
αkpkv̂k

)
+∇ ·

[
αk
(
Tk + TTk

)
· v̂k

]
(2.17c)

−∇ ·
[
αk
(
qk + qTk

)]
+ αkρkg · v̂k + IE,k

where Iρ,k, Iv,k, and IE,k denote the interfacial transfer terms in mass, momentum, and energy equation,

respectively. The internal heating q̇k has been neglected because it is not important for most two-phase flow

problems. In the momentum equation, TTk represents the turbulent flux tensor which is defined as

TTk ≡ −ρkv
′
kv

′
k, with v

′

k ≡ vk − v̂k (2.18)

In the energy equation, Êk consists of the standard internal energy, kinetic energy, and the turbulent kinetic

energy

Êk ≡ êk +
v̂2
k

2
+

(̂
v

′
k

)2
2
≈ êk +

v̂2
k

2
(2.19)

where the approximation is made because the turbulent kinetic energy is relatively small compared to the

internal energy. The qTk consists of the turbulent energy convection and the turbulent work

qTk ≡ −ρk
(
ek +

v2
k

2

)
v

′
k − Tk · v

′
k + pkv

′
k (2.20)

2.2.4 Interfacial transport

The interfacial transfer terms, Iρ,k, Iv,k, and IE,k, in Eq. (2.17) are

Γk ≡ Iρ,k = −
∑
j

aijṁk (2.21a)

Iv,k = −
∑
j

aij
(
ṁkvk + pknk − nk · Tk

)
= Γkv̂ki + pki∇αk −∇αkTki + Mik (2.21b)

IE,k = −
∑
j

aij
[
ṁkEk − nk ·

(
pkvk

)
+ nk ·

(
T · vk

)
+ nk · qk

]
(2.21c)

= Γk
(
ĥki + v̂ki · v̂k −

v̂2
k

2

)
− pki

∂αk
∂t
−∇αk ·

(
Tki · v̂ki

)
+ Mik · v̂ki + aiq

′′

ki +WT
ki
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where WT
ki is the turbulent flux of work due to drag force, which is often negligible. ai is the volumetric

interfacial area concentration and ṁk is the rate of mass loss per interfacial area. They are defined as

ai =
∑
j

aij , with aij =
1

∆t

1

vni,j
(2.22)

ṁk = nk · ρk
(
vk − vi

)
(2.23)

Mik is the total generalized drag force defined as

Mik
.
=
∑
j

aij
(
pki − pk

)
nk +

∑
j

aijnk ·
(
Tk − Tki

)
(2.24)

where the variables with subscript ki represent the interfacial area averaged variables. The interfacial area

average is defined as

F ki ≡
∑
j aijFk∑
j aij

(2.25)

F̂ki ≡
∑
j aijṁkFk∑
j aijṁk

(2.26)

Substituting Eq. (2.21) into Eq. (2.17), we obtain the field equations for the two-phase two-fluid model

∂αkρk
∂t

+∇ ·
(
αkρkv̂k

)
= Γk (2.27a)

∂αkρkv̂k
∂t

+∇ ·
(
αkρkv̂kv̂k

)
=−∇

(
αkpk

)
+∇ ·

[
αk
(
Tk + TTk

)]
+ αkρkg (2.27b)

+ Γkv̂ki + pki∇αk −∇αk · Tki + Mik

∂αkρkÊk
∂t

+∇ ·
(
αkρkÊkv̂k

)
=−∇ ·

(
αkpkv̂k

)
+∇ ·

[
αk
(
Tk + TTk

)
· v̂k

]
−∇ ·

[
αk
(
qk + qTk

)]
(2.27c)

+ αkρkg · v̂k + Γk
(
ĥki + v̂ki · v̂k −

v̂2
k

2

)
− pki

∂αk
∂t
−∇αk ·

(
Tki · v̂ki

)
+ Mik · v̂ki + aiq

′′

ki +WT
ki

Two more equations relating the phasic void fraction and physical pressure are required to close the

system. They are

αl + αg = 1 (2.28a)

f
(
pl, pg

)
= 0 (2.28b)
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where f
(
pl, pg

)
is a general function relating the phasic pressure.

2.2.5 Determinism of two-phase two-fluid model

Let the unknown variables be

W =
[
αk, pk, T k, v̂k

]
, for k = l, g (2.29)

where T k is the temperature of k-phase.

For each phase, the following unspecified variables are found in Eq. (2.27). For analysis purposes, we

separate them into 3 groups:

• Thermodynamic properties:
[
ρk, êk, ĥk

]
• Bulk average variables:

[
Tk,TTk ,qk,qTk

]
• Interfacial average variables:

[
v̂ki, pki, ρki, ĥki, ai,Γk,Tki,Mik, q

′′

ki,W
T
ki

]
The thermodynamic properties, which are functions of the unknown variables, are specified by the EOS.

In practice, the EOS is given by specifying the Gibbs free energy as a function of pressure and temperature,

i.e.

ĝk = g
(
pk, T k

)
(2.30)

Then, the density, internal energy, and enthalpy of each phase are obtained by

ρk =

[
∂g

∂p

(
T k, pk

)]−1

(2.31a)

êk = ĝk − T k
[
∂g

∂T

(
T k, pk

)]
− pk

[
∂g

∂p

(
T k, pk

)]
(2.31b)

ĥk = ĝk − T k
[
∂g

∂T

(
T k, pk

)]
(2.31c)

The bulk average variables and the interfacial average variables need to be modeled with closure cor-

relations. Closure correlations for the general 3D two-phase two-fluid model are complicated, which are

neglected in this thesis. The closure correlations will be given for the simplified 1D two-phase two-fluid

model.

2.2.6 Transformation of two-phase two-fluid model

For analysis purposes, we separate the terms in Eq. (2.27) into the following groups:
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• Arithmetic Function (AF) of unknown variables

[
Γk, αkρkgk,Mik, αkρkg · v̂k,Γk

(
ĥki + v̂i · v̂k −

v̂2
k

2

)
,Mik · v̂i, aiq̂

′′

ki,W
T
ki

]
(2.32)

where we assume that
[
Γk, v̂ki,Mik, ĥki, aiq̂

′′

ki,W
′′

ki

]
could be modeled as arithmetic functions of the

unknown variables.

• First-order Temporal Partial derivative (TP1) of unknown variables

[∂αkρk
∂t

,
∂αkρkv̂k

∂t
,
∂αkρkÊk

∂t
, pki

∂αk
∂t

]
(2.33)

• First-order Spatial Partial derivative (SP1) of unknown variables

[
∇ ·
(
αkρkv̂k

)
,∇ ·

(
αkρkv̂kv̂k

)
,∇
(
αkpk

)
, pki∇αk,∇ ·

(
αkρkÊkv̂k

)
,∇ ·

(
αkpkv̂k

)]
(2.34)

• Second-order Spatial Partial derivative (SP2) of unknown variables

{
∇ ·
[
αk
(
Tk + TTk

)]
,∇ ·

[
αk
(
qk + qTk

)]
,∇ ·

[
αk
(
Tk + TTk

)
· v̂k

]}
(2.35)

where we assume Tk and TTk are modeled as functions of velocity gradient, qk and qTk are modeled as

functions of temperature gradient.

• Mixed Spatial Partial derivative (M-SP1) of unknown variables

[
∇αk · Tki,

(
∇αk · Tki

)
· v̂ki

]
(2.36)

In general, different discretization methods will be applied to terms in different groups. For now, we

rewrite Eq. (2.27) by placing all SP1 and TP1 terms on the left-hand side and placing AF, SP2, and M-SP1
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terms on the right-hand side, i.e.

∂αkρk
∂t

+∇ ·
(
αkρkv̂k

)
= Γk (2.37a)

∂αkρkv̂k
∂t

+∇ ·
(
αkρkv̂kv̂k + αkpkI

)
− pki∇αk = ∇ ·

[
αk
(
Tk + TTk

)]
+ αkρkg (2.37b)

+ Γkv̂ki −∇αk · Tki + Mik

∂αkρkÊk
∂t

+∇ ·
(
αkρkÊkv̂k + αkpkv̂k

)
+ pki

∂αk
∂t

= ∇ ·
[
αk
(
Tk + TTk

)
· v̂k

]
−∇ ·

[
αk
(
qk + qTk

)]
(2.37c)

+ αkρkg · v̂k + Γk
(
ĥki + v̂ki · v̂k −

v̂2
k

2

)
−∇αk ·

(
Tki · v̂ki

)
+ Mik · v̂ki + aiq

′′

ki +WT
ki

The two-phase two-fluid model is split into four parts:

• Conservative part with operator CCC†

CCC†W =


∂αkρk
∂t +∇ ·

(
αkρkv̂k

)
∂αkρkv̂k

∂t +∇ ·
(
αkρkv̂kv̂k + αkpkI

)
∂αkρkÊk

∂t +∇ ·
(
αkρkÊkv̂k + αkpkv̂k

)
 (2.38)

This part is conservative and can be written in the common form of a conservation law.

• Non-conservative part with operator NNN †

NNN †W =


0

−pki∇αk

pki
∂αk

∂t

 (2.39)

This part is non-conservative and can not be written in the common form of a conservation law.

• Second-order diffusive part with operator DDD†

DDD†W =


0

∇ ·
[
αk
(
Tk + TTk

)]
∇ ·
[
αk
(
Tk + TTk

)
· v̂k

]
−∇ ·

[
αk
(
qk + qTk

)]
 (2.40)
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• Arithmetic source part and mixed part with operator AAA†

AAA†W =


Γk

αkρkg + Γkv̂ki + Mik −∇αk · Tki

αkρkg · v̂k + Γk
(
ĥki + v̂ki · v̂k − v̂2

k

2

)
+
(
Mik −∇αk · Tki

)
· v̂ki + aiq

′′

ki +WT
ki

 (2.41)

Then, the two-phase two-fluid model is written as

GGG†W = CCC†W +NNN †W −DDD†W −AAA†W = 000 (2.42)

where GGG† is defined as the operator for the whole system.

2.3 One-dimensional two-phase two-fluid model

2.3.1 Area average and void fraction weighted area average

The 1D two-phase two-fluid model is obtained by performing an area average over the cross-section normal

to the main flow direction, i.e. the x-direction in this thesis.

Definition 2.7. The area average of a general function is defined as

〈
F
〉
≡ 1

A

∮
A

FdS (2.43)

where A is the area of the cross-section.

Definition 2.8. The void fraction weighted area average of a general function is defined as

〈〈
Fk
〉〉
≡
〈
αkFk

〉〈
αk
〉 (2.44)

During the area average, the phasic density in the cross-section is assumed to be uniform, i.e.

ρk = ρk ≈
〈
ρk
〉
≈
〈〈
ρk
〉〉

(2.45)

This assumption is valid for most practical two-phase flow problems because the transverse pressure gradient

within a channel is relatively small.
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2.3.2 Area average of the two-phase two-fluid model

The transverse velocity components (vk and wk) are assumed to be negligible compared to the component

(uk) in the main flow direction. The area average of the conservative part gives

〈
CCC†W

〉
≈


∂
〈
αk

〉
ρk

∂t +
∂
〈
αk

〉
ρk

〈〈
ûk

〉〉
∂x

∂
〈
αk

〉
ρk

〈〈
ûk

〉〉
∂t +

∂
(
Cuk

〈
αk

〉
ρk

〈〈
ûk

〉〉2
+
〈
αk

〉〈〈
pk

〉〉)
∂x

∂
〈
αk

〉
ρk

〈〈
Êk

〉〉
∂t +

∂Chk

〈
αk

〉
ρk

〈〈
Ĥk

〉〉〈〈
ûk

〉〉
∂x

 (2.46)

where Cuk and Chk are the distribution parameters for the momentum flux and energy flux, respectively.

Cuk represents the effect of the transverse void and velocity profiles on the area average of the momentum

flux. Chk represents the effect of the transverse void and enthalpy profile on the area average of the energy

flux. Mathematically, these distribution parameters are important when the transverse velocity profile and

enthalpy profile are not flat; in practice, Cuk and Chk are assumed to be unity. This assumption is also used

in TRACE and RELAP5-3D. Thus, these distribution parameters are dropped in the following analysis. In

addition, the following approximations are made

〈〈
Êk
〉〉
≈
〈〈
êk
〉〉

+

〈〈
ûk
〉〉2

2
(2.47a)

〈〈
Ĥk

〉〉
≈
〈〈
êk
〉〉

+

〈〈
ûk
〉〉2

2
+

〈〈
pk
〉〉〈〈

ρk
〉〉 (2.47b)

The area average of the non-conservative part gives

〈
NNN †W

〉
≈


0

−
〈〈
pki
〉〉∂〈αk

〉
∂x〈〈

pki
〉〉∂〈αk

〉
∂t

 (2.48)

The area average of the second-order diffusive part gives

〈
DDD†W

〉
≈


0

∂
〈
αk

〉〈〈
τk,xx+τT

k,xx

〉〉
∂x − 4αkwτkw

D

−∂
〈
αk

〉(
qkx+qTkx

)
∂x +

ξhαkwq
′′
kw

A +
∂
〈
αk

〉〈〈
τk,xx+τT

k,xx

〉〉〈〈
ûk

〉〉
∂x − 4αkwτkw

〈〈
ûk

〉〉
D

 (2.49)

where τkw is the mean viscous stress near the wall, αkw is the mean void fraction near the wall, D is the

hydraulic diameter, ξh is the heated perimeter, q
′′
kw is the wall heat flux, and A is the heated wall surface

area.
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The area average of the arithmetic part gives

〈
AAA†W

〉
≈

〈
Γk
〉

〈
αk
〉
ρkgx +

〈
Γk
〉〈〈

ûki
〉〉

+
〈
Md
k

〉
〈
αk
〉
ρkgx

〈〈
ûk
〉〉

+
〈
Γk
〉(〈〈

ĥki
〉〉

+
〈〈
ûki
〉〉〈〈

ûk
〉〉
−
〈〈
ûk

〉〉2
2

)
+
〈
aiq

′′
ki

〉
+
〈
Md
k

〉〈〈
uk
〉〉

+
〈
WT
ki

〉


(2.50)

where
〈
Md
k

〉
is the total interfacial shear force given by

〈
Md
k

〉
=
〈
Mik −∇αk · Tki

〉
x

(2.51)

The area average equations are closed with three more jump conditions [1],

∑
k=l,g

〈
Γk
〉

= 0 (2.52a)

∑
k=l,g

〈
Md
k

〉
= 0 (2.52b)

∑
k=l,g

(〈
Γk
〉〈〈

ĥki
〉〉

+
〈
aiq

′′
ki

〉)
= 0 (2.52c)

2.3.3 One-dimensional two-phase two-fluid model

The average operators are dropped to simplify the expression of the 1D two-phase two-fluid model,

〈
ψ
〉
⇒ ψ, for ψ = αk,Γk〈〈

ψ
〉〉
⇒ ψ, for ψ = pk, pki, uk, uki, ek, hk, hki, τk, τ

T
k , qk, q

T
k〈〈

ψ̂
〉〉
⇒ ψ, for ψ = uk, uki, ek, hk, hki, Ek, Hk

(2.53)

The following variables are defined

fik ≡
〈
Md
k

〉
(2.54a)

fwk ≡
4αkwτkw

D
(2.54b)

Qik ≡
〈
aiq

′′
ki

〉
(2.54c)

Qwk ≡
ξhαkwq

′′
kw

A
(2.54d)

16



The following approximations are made

Cuk ≈ 1 and Chk ≈ 1 (2.55a)〈
WT
ki

〉
≈ 0 (2.55b)

Then, the 1D two-phase two-fluid model is simplified to

∂αkρk
∂t

+
∂αkρkuk

∂x
= Γk (2.56a)

∂αkρkuk
∂t

+
∂
(
αkρku

2
k + αkpk

)
∂x

− pki
∂αk
∂x

=
∂αk

(
τk,xx + τTk,xx

)
∂x

+ αkρkgx − fwk + fik + Γkuki

(2.56b)

∂αkρkEk
∂t

+
∂
(
αkρkEkuk + αkpkuk

)
∂x

+ pki
∂αk
∂t

= −
∂αk

(
qkx + qTkx

)
∂x

+
∂αk

(
τk,xx + τTk,xx

)
uk

∂x
(2.56c)

+Qwk +Qik + αkρkgxuk − fwkuk + fikuk

+ Γk
(
hki + ukiuk −

u2
k

2

)
The spatial partial derivatives related to the normal viscous stress and heat flux are negligible compared to

the other terms in the right-hand side. These terms will be dropped in the following analysis. This treatment

is also used by TRACE and RELAP5-3D,

∂αkρk
∂t

+
∂αkρkuk

∂x
= Γk (2.57a)

∂αkρkuk
∂t

+
∂
(
αkρku

2
k + αkpk

)
∂x

− pki
∂αk
∂x

= αkρkgx − fwk + fik + Γkuki (2.57b)

∂αkρkEk
∂t

+
∂
(
αkρkEkuk + αkpkuk

)
∂x

+ pki
∂αk
∂t

= Qwk +Qik + Γkhki (2.57c)

+
(
fik − fwk + αkρkgx + Γkuki

)
uk − Γk

u2
k

2

The basic 1D two-phase two-fluid model assumes that all pressure terms are equal, i.e. pl = pg = pli = pgi.
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Let p be the equal pressure, Eq. (2.57) is transformed into

∂αlρl
∂t

+
∂αlρlul
∂x

= −Γg (2.58a)

∂αlρlul
∂t

+
∂
(
αlρlu

2
l + αlp

)
∂x

− p∂αl
∂x

= αlρlgx − fwl + fi − Γguli (2.58b)

∂αlρlEl
∂t

+
∂
(
αlρlElul + αlpul

)
∂x

+ p
∂αl
∂t

= Qwl +Qil − Γghli (2.58c)

+
(
fi − fwl + αlρlgx − Γguli

)
ul + Γg

u2
l

2
∂αgρg
∂t

+
∂αgρgug
∂x

= Γg (2.58d)

∂αgρgug
∂t

+
∂
(
αgρgu

2
g + αgp

)
∂x

− p∂αg
∂x

= αgρggx − fwg − fi + Γgugi (2.58e)

∂αgρgEg
∂t

+
∂
(
αgρgEgug + αgpug

)
∂x

+ p
∂αg
∂t

= Qwg +Qig + Γghgi (2.58f)

+
(
−fi − fwg + αgρggx + Γgugi

)
ug − Γg

u2
g

2

In Eq. (2.58), Γl is replaced with −Γg, fil is replaced with fi, and fig is replaced with −fi because of the

interface jump conditions

Γl + Γg = 0 (2.59a)

fil + fig =
〈
Md
l

〉
+
〈
Md
g

〉
= 0 (2.59b)

The 1D two-phase two-fluid model, Eq. (2.58), can be written in a compact vector form as

∂U

∂t
+
∂F

∂x
+ Pix

∂αg
∂x

+ Pit
∂αg
∂t

= S (2.60)

where U is the vector of conservative variables, F is the vector of flux variables, Pix and Pit are the vectors

related to the interfacial average pressure terms, and S is the vector of source terms. They are defined as

U ≡



αlρl

αlρlul

αlρlEl

αgρg

αgρgug

αgρgEg


,F ≡



αlρlul

αlρlu
2
l + αlp

αlρlElul + αlpul

αgρgug

αgρgu
2
g + αgp

αgρgEgug + αgpug


,Pix ≡



0

p

0

0

−p

0


,Pit ≡



0

0

−p

0

0

p


(2.61)
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S ≡



−Γg

αlρlgx − fwl + fi − Γguli

Qwl +Qil − Γghli +
(
fi − fwl + αlρlgx − Γguli

)
ul + Γg

u2
l

2

Γg

αgρggx − fwg − fi + Γgugi

Qwg +Qig + Γghgi +
(
−fi − fwg + αgρggx + Γgugi

)
ug − Γg

u2
g

2


(2.62)

In the following analysis,
(
∂U/∂t + ∂F/∂x

)
is called the conservative part. This part comes directly from

the time average of instant phasic balance equation [1] and has the form of a conservation law.
(
Pit∂αg/∂t+

Pix∂αg/∂x
)

is called the non-conservative part. This part comes from the interfacial transfer terms [1] and

can not be written in the form of a conservation law. As was discussed by Dinh [16], the conservative part

can also be written in an equivalent integral form, which admits a discontinuity solution in a weak sense. In

the contrary, the non-conservative cannot be written in an integral form, which makes the construction of a

weak solution to discontinuity questionable.

Eq. (2.60) will be the starting point of the work in this thesis. In the following chapters, the statement

about “basic two-phase two-fluid model” is meant to Eq. (2.60).

2.3.4 Alternative form of the one-dimensional two-phase two-fluid model

Apart from the conservative form of the two-phase two-fluid model, Eq. (2.57), there are several important

transformations. A good review of the transformed equations can be found in [1].

Equation of motion

By using the continuity equation, the momentum equation can be transformed into

αlρl
∂ul
∂t

+ αlρlul
∂ul
∂x

= −αl
∂pl
∂x

+
(
pli − pl

)∂αl
∂x

+ αlρlgx + fi − fwl − Γg
(
uli − ul

)
(2.63a)

αgρg
∂ug
∂t

+ αgρgug
∂ug
∂x

= −αg
∂pg
∂x

+
(
pgi − pg

)∂αg
∂x

+ αgρggx − fi − fwg + Γg
(
ugi − ug

)
(2.63b)

This form of momentum equation is the preferred form for numerical solvers using a staggered grid, such as

TRACE and RELAP5-3D. This form is not used in our numerical solver because it is difficult to construct

a shock-capturing upwind solver with this form.
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Internal energy equation

The kinetic energy can be subtracted from the total energy equation to obtain the so called internal energy

equation

∂αlρlel
∂t

+
∂αlρlelul

∂x
+ pli

∂αl
∂t

+ pl
∂αlul
∂x

= Qwl +Qil − Γghli (2.64a)

∂αgρgeg
∂t

+
∂αgρgegug

∂x
+ pgi

∂αg
∂t

+ pg
∂αgug
∂x

= Qwg +Qig + Γghgi (2.64b)

This form of energy equation is also the preferred form for numerical solvers using a staggered grid, such

as TRACE and RELAP5-3D. This form is not used in our numerical solver because the pk∂αkuk/∂x term

adds more difficulties to discretize the equation and construct appropriate numerical fluxes.

Enthalpy equation

Another form of the energy equation is the enthalpy equation

∂αlρlhl
∂t

+
∂αlρlhlul

∂x
+
(
pli − pl

)∂αl
∂t

+ αl

(
∂pl
∂t

+ ul
∂pl
∂x

)
= Qwl +Qil − Γghli (2.65a)

∂αgρghg
∂t

+
∂αgρghgug

∂x
+
(
pgi − pg

)∂αg
∂t

+ αg

(
∂pg
∂t

+ ug
∂pg
∂x

)
= Qwg +Qig + Γghgi (2.65b)

This form is not used in our numerical solver because the ∂pk/∂t+ uk∂pk/∂x terms add more difficulties to

discretize the equation and construct appropriate numerical fluxes.

Two-phase two-fluid model in RELAP5-3D and TRACE

The two-phase two-fluid six-equation model used by RELAP5-3D and TRACE is often written as

∂αlρl
∂t

+
∂αlρlul
∂x

= −Γg (2.66a)

αlρl
∂ul
∂t

+ αlρlul
∂ul
∂x

+ αl
∂p

∂x
= αlρlgx + fi − fwl − Γg

(
uli − ul

)
(2.66b)

∂αlρlel
∂t

+
∂αlρlelul

∂x
+ p

∂αl
∂t

+ p
∂αlul
∂x

= Qwl +Qil − Γwh
′

l − Γigh
∗
l (2.66c)

∂αgρg
∂t

+
∂αgρgug
∂x

= Γg (2.66d)

αgρg
∂ug
∂t

+ αgρgug
∂ug
∂x

+ αg
∂p

∂x
= αgρggx − fi − fwg + Γg

(
ugi − ug

)
(2.66e)

∂αgρgeg
∂t

+
∂αgρgegug

∂x
+ p

∂αg
∂t

+ p
∂αgug
∂x

= Qwg +Qig + Γwh
′

g + Γigh
∗
g (2.66f)
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where Γw, Γig, h
′

k, and h∗k are quantities related to vapor generation, which will be discussed later in Sec.

2.4.2. Eq. (2.66) is a convenient set of equations for RELAP5-3D and TRACE.

Discussion of different energy equations

Note that there are 3 sets of energy equations, i.e. internal energy equation Eq. (2.64), enthalpy equation

Eq. (2.65), and total energy equation Eq. (2.58). These 3 sets of equations are mathematically equivalent

but numerically different. The internal energy equation and enthalpy equation are convenient for RELAP5-

3D and TRACE; however, the total energy equation, which is written in a conservative form, is preferred in

our numerical solver. A conservative form is essential for constructing a shock-capturing upwind numerical

solver. The advantages and disadvantages of the total energy equation (i.e. the conservative form) are listed

below for future study.

Advantages:

1. The governing equation is in a conservative form. The numerical solver (if formulated appropriately)

is inherently conservative even for problems with discontinuities. It is very difficult to construct a

numerical solver that ensures the conservation of conservative variables using a non-conservative form.

2. For single-phase flows, the eigenvalues and eigenvectors of the conservative form are structured and

well documented. For two-phase flows, the eigenvalues and eigenvectors are found to be very similar

to that of single-phase flows, as will be seen in Chapter 4.

3. In the total energy equation, the non-conservative term, which is not included in the flux vector,

is p∂αk/∂t. This non-conservative term is related to the temporal derivative instead of a spatial

derivative. In general, the non-conservative spatial derivative is more difficult to handle numerically.

Disadvantages:

1. The total energy equation is not commonly solved in the existing system codes, e.g. RELAP5-3D and

TRACE. The existing closure correlations for the internal energy equation or enthalpy equation might

not be appropriate for the total energy equation. Because the closure correlations in this work are

based on RELAP3-3D, the effect of the different energy equation to the solution is not known.

2. The additional mechanical energy in the total energy equation brings in uncertainties to the temper-

ature of two phases. For problems where the wall and interfacial heat flux are much larger than the

mechanical energy, this problem is not significant; however, for problems where the wall and interfacial

heat transfer flux are small, the uncertainties in the additional terms (e.g. fiug) would be propagated

to the temperature of two phases.
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2.4 One-dimensional models and correlations

This section gives a brief introduction to the models and correlations that are necessary for simulating real

two-phase flow problems. The models and correlations are based on RELAP5-3D theory manual [5, 17, 18,

19]. The justifications and discussions to the models and correlations are not provided because they are not

the main objective of this thesis. The general structure for modeling the source terms is summarized here

to provide an overall picture and help understand the features and limitations of the two-phase two-fluid

model.

2.4.1 Flow regime map

The vertical flow is the focus of this thesis. The flow regime map for a vertical flow is a three-dimensional

function of the void fraction (αg), average mixture velocity (um), and the wall superheat. In RELAP5-3D, the

vertical flow regime map consists of bubbly (BBY), slug (SLG), annular mist (ANM), and dispersed/droplet

mist (MPR) flows in the pre-CHF regime; inverted annular (IAN), inverted slug (ISL), and mist (MST)

flows in post-dryout; and vertically stratified flow for sufficiently low mixture velocity. In this thesis, the

flow regime map is a simplified version of the RELAP5-3D flow regime map, see page 3-9 of RELAP5-3D

code manual [19].

Start

um ≤ uTB

um ≤ 0.5uTBStratified

Transition

α ≤ 0.001

α ≤ αBS

α ≤ αDE

α ≤ αSA

α ≤ αAM

α < 1.0

1-φ liquid
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SLG/ANM

ANM

MPR

1-φ gas

y

n

y
n
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n
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Figure 2.1: Flowchart for determining the vertical flow regime map for pre-CHF
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Figure 2.1 shows the simplified flow regime map. It contains only vertical flow in pre-CHF conditions,

which covers all test problems considered in this thesis. The average mixture velocity is defined as

um =
Gm
ρm

(2.67)

where Gm is the mass flux of the mixture and ρm is the density of the mixture, they are defined as

Gm = αlρl|ul|+ αgρg|ug| (2.68a)

ρm = αlρl + αgρg (2.68b)

The critical velocity determining if the flow is stratified is modeled as

uTB = 0.35

√
gD
(
ρl − ρg

)
ρl

(2.69)

where g is the gravitational constant and D is the hydraulic diameter.

The void fraction plays an important role in determining the flow regime. The transition criteria are

modeled as

αBS = Interp
(
Gm; 2000, 3000, α∗BS , 0.5

)
(2.70a)

αSA = max
[
αmin
AM ,min

(
αfcrit, α

e
crit, α

max
BS

)]
(2.70b)

αDE = max
(
αBS , αSA − 0.05

)
(2.70c)

αAM = 0.9999 (2.70d)

where Interp() is an interpolation function which is defined as

Interp(x; x1, x2, y1, y2) ≡


y1, if x ≤ x1

y1 + y2−y1
x2−x1

(
x− x1

)
, if x1 < x < x2

y2, if x ≥ x2

(2.71)
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and the other parameters in Eq. (2.70) are modeled as

α∗BS = max

0.25 min

1.0,

0.045D

√
g
(
ρl − ρg

)
σ

8
 , 10−3

 (2.72a)

αfcrit = min

 1

ug

√
gD
(
ρl − ρg

)
ρg

, 1.0

 for upflow (2.72b)

= 0.75 for downflow and countercurrent flow

αecrit = min

3.2

ug

[√
gσ
(
ρl − ρg

)
ρ2
g

]1/4

, 1.0

 (2.72c)

αmin
AM = 0.5 (pipe) or 0.8 (bundles) (2.72d)

αmax
BS = 0.9 (2.72e)

where σ is the surface tension of the interface.

2.4.2 Interfacial mass transfer

The source vector for the two-phase two-fluid model is

S =



−Γg

αlρlgx − fwl + fi − Γguli

Qwl +Qil − Γghli +
(
fi − fwl + αlρlgx − Γguli

)
ul + Γg

u2
l

2

Γg

αgρggx − fwg − fi + Γgugi

Qwg +Qig + Γghgi +
(
−fi − fwg + αgρggx + Γgugi

)
ug − Γg

u2
g

2


(2.73)

where the following variables need to be specified with either models or correlations

• uki, hki: interfacial averaged velocity and specific enthalpy for k-phase

• Γg: net vapor generation rate

• fi: interfacial friction between two phases

• fwk: wall friction to k-phase

• Qik: interface to k-phase heat flux (interfacial heat flux)

• Qwk: wall to k-phase heat flux (wall heat flux)
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The vapor generation rate (or condensation) consists of two parts, vapor generation due to energy ex-

change (Γig) and vapor generation due to the wall heat transfer effect (Γw). Each of the vapor generation

(or condensation) processes involves interfacial heat transfer effect. Thus, in the phasic energy equation, the

phasic enthalpy carried by the vapor generation term is also divided into two parts: (h∗l , h
∗
g) for the phasic

enthalpy carried by Γig and (h
′

l, h
′

g) for the phasic enthalpy carried by Γw. The vapor generation rate, phasic

enthalpy, and the interfacial heat flux are related by

Qil − Γghli = Qil − Γwh
′

l − Γigh
∗
l (2.74a)

Qig + Γghgi = Qig + Γwh
′

g + Γigh
∗
g (2.74b)

The interfacial heat transfer terms (Qil and Qig) include the heat transfer from the fluid states to the

interface due to interface energy exchange in the bulk and in the thermal boundary layer near the wall. In

practice, they are modeled as

Qil = Hil

(
Tsat − Tl

)
− Γw

(
h

′

g − h
′

l

)
(2.75a)

Qig = Hig

(
Tsat − Tg

)
(2.75b)

where Hil and Hig are the volumetric interface-to-liquid and interface-to-gas heat transfer coefficients, re-

spectively.

Γw is determined by the method proposed by Lahey [20], combined with Saha-Zuber correlation [21].

When the flow is in boiling conditions,

Γw = Mul · awallq
′′

wl

max
(
h′
g − h

′
l, 104J/kg

) (2.76)

where q
′′

wl is the wall heat flux to the fluid, awall is the volumetric heated surface area, and Mul is the fraction

of the wall heat flux that is accounting for the Γw term. The details of Mul are referred to page 4-193 of

RELAP5-3D code manual [19]. The phasic enthalpies, h
′

l and h
′

g, are modeled as

h
′

l = hl, h
′

g = hg,sat for Γw ≥ 0 (2.77a)

h
′

l = hl,sat, h
′

g = hg for Γw < 0 (2.77b)

Γig is determined by

Γig = −
Hil

(
Tsat − Tl

)
+Hig

(
Tsat − Tg

)
h∗g − h∗l

(2.78)
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where the phasic enthalpies, h∗l and h∗g, are modeled as

h∗l = hl, h∗g = hg,sat for Γig ≥ 0 (2.79a)

h∗l = hl,sat, h∗g = hg for Γig < 0 (2.79b)

In the momentum equation and energy equation, the interfacial averaged velocities, uli and ugi, are

modeled as

ui ≡ ugi ≈ uli =

 ul, for Γg ≥ 0

ug, for Γg < 0
(2.80)

Finally, the source vector is written as

S =



−Γg

αlρlgx − fwl + fi − Γgui

Qwl +Qil − Γwh
′

l − Γigh
∗
l +

(
fi − fwl + αlρlgx − Γgui

)
ul + Γg

u2
l

2

Γg

αgρggx − fwg − fi + Γgui

Qwg +Qig + Γwh
′

g + Γigh
∗
g +

(
−fi − fwg + αgρggx + Γgui

)
ug − Γg

u2
g

2


(2.81)

2.4.3 Interfacial friction

Drift flux model

The drift flux approach is used to model the interfacial friction in bubbly and slug flow in a vertical flow.

The interfacial friction between the two phases is modeled as

fi = Ci|uR|uR

Ci =
αgα

3
l

(
ρl − ρg

)
g sinφj

|ugj |ugj

uR = C1ug − C0ul

(2.82)

where g is the gravitational constant, φj is the inclination angle of the flow, ugj is the vapor/gas drift

velocity, uR is the relative velocity, and Ci is the friction coefficient. The relative velocity includes the effect

of profile slip distribution by introducing two distribution coefficients, C1 and C0. These two coefficients

account for the effect of a non-flat void fraction profile in the transverse cross-section and they are related
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by

C1 =
1− C0αg

αl
(2.83)

The remaining variables, the vapor/gas drift velocity and distribution coefficient C0, are modeled with the

EPRI correlation [22],

C0 =
L

K0 +
(
1−K0

)
αrg

(2.84a)

ugj = 1.41C

[
gσ
(
ρl − ρg

)
ρ2
l

]1/4

(2.84b)

where L, K0, r, and C are parameters that requires additional correlations, see section 6.1 of RELAP5-3D

code manual [19].

Drag coefficient model

The drag coefficient approach is used to model the interfacial friction in all flow regimes other than vertical

bubbly and slug flows. The interfacial friction between the two phases is modeled as

fi = Ci|uR|uR

Ci =
1

8
ρcSFalgCD

uR = ug − ul

(2.85)

where ρc is the density of the continuous phase, CD is the drag coefficient, alg is the volumetric interfacial

area concentration, and SF is the shape factor which is assumed to be unity. The drag coefficient (CD)

and the volumetric interfacial area concentration (alg) have different correlations depending on the flow

regimes, see page 6-3 of RELAP5-3D code manual [19]. For a vertical annular mist flow (ANM), which is

characterized by a liquid film along the wall and a vapor/gas core containing entrained liquid droplets, the

friction coefficient contains two parts,

CANM
i =

1

8
ρgalg,annCD,ann +

1

8
ρgalg,drpCD,drp (2.86)

For a vertical dispersed (droplet, mist) flow (MPR), which is characterized by continuous vapor with en-

trained liquid droplets, the friction coefficient is

CMPR
i =

1

8
ρgalg,drpCD,drp (2.87)
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2.4.4 Wall friction

The wall friction terms account for the pressure loss due to the wall shear force. The two-phase multiplier

approach is used to model the total friction. The phasic wall friction components are calculated by appor-

tioning the total friction to the two phases using a technique derived from the Lockhart-Martinelli model,

see page 3-177 of RELAP5-3D code manual [5]. Specifically, the two-phase multiplier approach models the

two-phase pressure drop with (
∂p

∂x

)
2φ

= φ2
l

(
∂p

∂x

)
l

= φ2
g

(
∂p

∂x

)
g

(2.88)

where (∂p/∂x)l and (∂p/∂x)g are the liquid-alone and the gas-alone pressure drop; φl and φg are the liquid-

alone and gas-alone two-phase friction multipliers. The liquid-alone and gas-alone pressure drop are modeled

with the friction factor approach

(
∂p

∂x

)
l

=
1

2D
λ

′

lρlα
2
l u

2
l (2.89a)(

∂p

∂x

)
g

=
1

2D
λ

′

gρgα
2
gu

2
g (2.89b)

where λ
′

l and λ
′

g are the friction factors modeled with,

λ
′

l = FrictionFactor

(
αlρlD|ul|

µl

)
(2.90a)

λ
′

g = FrictionFactor

(
αgρgD|ug|

µg

)
(2.90b)

where µl and µg are the viscosity of liquid and gas phase. The function ’FrictionFactor()’ is used to calculate

the friction factor with a given Reynolds number,

FrictionFactor
(
Re
)
≡



64
Re , 0 ≤ Re ≤ 2200(
3.75− 8250

Re

)(
λ3000 − λ2200

)
+ λ2200, 2200 < Re < 3000[

−2.0 log10

(
ε

3.7D + 2.51

Re
[
1.14−2.0 log10

(
ε
D + 21.25

Re0.9

)])]−2

, Re ≥ 3000

(2.91)

where λ2200 and λ3000 are friction factors for Re = 2200 and Re = 3000, respectively.

The correlation between the two-phase friction multiplier is

φ2
l = 1 +

C

χ
+

1

χ2
and φ2

g = χ2 + Cχ+ 1 (2.92)
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where C is the correlation coefficient and χ is the Lockhart-Martinelli ratio defined as

φ2
l ≡

(
∂p
∂x

)
l(

∂p
∂x

)
g

=
φ2
g

χ2
(2.93)

Combining Eq. (2.88), Eq. (2.89), and Eq. (2.92), the two-phase pressure drop is expressed as

(
∂p

∂x

)
2φ

=
1

2D

(
λ

′

lρlα
2
l u

2
l + λ

′

gρgα
2
gu

2
g + C

√
λ

′
lρlα

2
l u

2
l

√
λ′
gρgα

2
gu

2
g

)
(2.94)

The two-phase pressure drop is then partitioned to each phase with

fwl =
αlZ2

αg + αlZ2

(
∂p

∂x

)
2φ

(2.95a)

fwg =
αg

αg + αlZ2

(
∂p

∂x

)
2φ

(2.95b)

Z2 =
λlρlu

2
l

λlρlu2
l + λgρgu2

g

(2.95c)

where λl and λg are friction factors calculated with a different set of Reynolds number

λl = FrictionFactor

(
ρlD|ul|
µl

)
(2.96a)

λg = FrictionFactor

(
ρgD|ug|
µg

)
(2.96b)

2.4.5 Interfacial heat transfer

The interfacial heat transfer in the bulk fluid involves both heat and mass transfer. Temperature-gradient-

driven bulk interfacial heat transfer is computed between each phase and the interface. The temperature

of the interface is assigned at the saturation temperature. Heat transfer correlation for each side of the

interface needs to be provided. Since both the superheated and the subcooled temperature are allowed,

the heat transfer may be either into or away from the interface. All of the thermal energy transferred to

the interface contributes to vaporization. Conversely, all of the thermal energy transferred away from the

interface contributes to condensation. In other words, a superheated liquid and a superheated vapor/gas

contribute to vaporization, while a subcooled liquid and a subcooled vapor/gas contribute to condensation.

The net rate of mass transfer is determined by summing the contributions, positive and negative, from

each side of the interface. Volumetric heat transfer coefficient (W/m3K) is defined for four conditions:

superheated liquid (SHL), subcooled liquid (SCL), superheated vapor/gas (SHG), and subcooled vapor/gas
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(SCG) for each flow regime.

The volumetric heat transfer coefficient (Hik) is modeled as

Hik = alg
kk
L

Nu = alghik (2.97)

where

• Hik: volumetric interfacial heat transfer coefficient for k-phase. [W/(m3 ·K)]

• kk: thermal conductivity of k-phase. [W/(m ·K)]

• L: characteristic length. [m]

• alg: volumetric interfacial area concentration. [m2/m3]

• hik: interfacial heat transfer coefficient for k-phase. [W/(m2 ·K)]

The correlations for the volumetric interfacial area concentration and the interfacial heat transfer coef-

ficient depend on flow regimes. The interfacial heat transfer in the transition regime is modeled through

interpolation. The correlations for the interfacial heat transfer model are developed with two general guide-

lines: (a) the superheated liquid and subcooled vapor are not stable; (b) the vapor is assumed to be at the

saturation temperature.

Bubbly flow

In a bubbly flow, the bubbles are viewed as spheres. The heat transfer coefficients are modeled as

Hil =
(
algF2F3

){
max

[
−12kl
πdb

∆Tsl
ρlCp,l
ρghlg

β,
kl
db

(
2.0 + 0.74Re0.5

b

)]
+ 0.4|ul|ρlCp,lF1

}
, for SHL (2.98a)

Hil =
F3F5hlgρlρgαbub

ρl − ρg
, for SCL (2.98b)

Hig = higalgF6F7, hig = 104W/m2 ·K, for SHG (2.98c)

Hig = higalgF6F7, hig = 104W/m2 ·K, for SCG (2.98d)

where F1 to F7 require additional sub-models, see 4-10 of RELAP5-3D code manual [19]. The specification

of the volumetric heat transfer coefficients, Hil and Hig, requires an estimate of the volumetric interfacial

area concentration (alg). For a bubbly flow,

alg =
3.6αg
do

= 0.72
αgρl

(
ug − ul

)2
σ

(2.99)
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Note that the heat transfer coefficient for SHG and SCG is made large to drive the vapor/gas temperature

toward the saturation temperature.

Slug flow

In a slug flow, the interfacial heat transfer can be divided into two parts: (a) the heat transfer between the

large Taylor bubbles and the liquid surrounding them, and (b) the heat transfer between the small bubbles

in the liquid slug and their host liquid. The heat transfer contains the effect of these two parts. The total

bulk heat transfer coefficient is

Hik = Hik,Tb +Hik,bub (2.100)

the correlations for different states are

Hil = 3.0× 106a∗lg,TbαTb +Hil,bub, for SHL (2.101a)

Hil = 1.18942Re0.5
l Pr0.5

l

kl
D
a∗lg,TbαTb +Hil,bub, for SCL (2.101b)

Hig =
(
2.2 + 0.82Re0.5

g

)kg
D
a∗lg,TbαTb + higF6

(
1− αTb

)
alg,bub, for SHG (2.101c)

Hig = higF6a
∗
lg,TbαTb + higF6

(
1− αTb

)
alg,bub, for SCG (2.101d)

where αTb is the average void fraction and a∗lg,Tb is the average volumetric interfacial area concentration

for the Taylor bubble. The details for modeling αTb and a∗lg,Tb are given in page 4-15 of RELAP5-3D code

manual [19]. The correlations for the contribution of bubbles in the liquid slug are based on those for a

bubbly flow. Note that the heat transfer coefficient for SHL and SCG is made large to drive the temperature

quickly toward the saturation temperature.

Annular mist flow

For an annular mist flow, the interfacial heat transfer results from two sources: (a) the heat transfer between

the annular liquid film and vapor/gas core, and (b) the heat transfer between the vapor/gas core and the

entrained liquid droplets. The overall volumetric heat transfer coefficient is

Hik = Hik,ann +Hik,drp (2.102)
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the correlations for different states are

Hil = 3.0× 106alg,annF10 +
kl
dd
alg,drpF12F13, for SHL (2.103a)

Hil = 10−3ρlCp,l|ul|alg,annF10 +
kl
dd
alg,drpF13, for SCL (2.103b)

Hig = 0.023
kg
D

Re0.8
g alg,annF10 +

kg
dd

(
2.0 + 0.5Re0.5

d

)
alg,drp, for SHG (2.103c)

Hig = higalg,annF10F6 + higalg,drpF6, for SCG (2.103d)

where dd is the characteristic droplet diameter, alg,ann is the average interfacial area in the annular liquid

film region, and alg,drp is the average interfacial area in the entrained liquid droplets region. The details

for modeling dd, alg,ann, and alg,drp are on page 4-22 of RELAP5-3D code manual [19]. Similarly, the

correlations for SHL and SCG are developed to drive the superheated liquid and the subcooled vapor/gas

to saturation temperature.

Dispersed (droplet, mist) flow

In a dispersed (droplet, mist) flow, the droplets are viewed as spheres. The interfacial heat transfer is from

the entrained droplets to the surrounding vapor/gas. The correlations for different states are

Hil =
kl
dd
algF12F13F23, for SHL (2.104a)

Hil =
kl
dd
algF13F23, for SCL (2.104b)

Hig =
kg
dd

(
2.0 + 0.5Re0.5

d

)
algF24, for SHG (2.104c)

Hig = higalgF6F24, for SCG (2.104d)

where alg is the interfacial area for the entrained droplets and dd is the characteristic droplet diameter. The

details for modeling alg and dd are given in page 4-44 of RELAP5-3D code manual [19].

2.4.6 Wall heat transfer

When the solid surface has a convective boundary condition, the wall heat flux must be calculated. Ex-

perimentally, the wall heat transfer coefficient is determined by obtaining the experimental heat flux and

dividing it by a wall-to-reference-temperature difference. The general expression for the total wall heat flux
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is

q
′′

wall = hwg,g
(
Tw−Tg

)
+hwg,spt

(
Tw−Tspt

)
+hwg,spp

(
Tw−Tspp

)
+hwl,l

(
Tw−Tl

)
+hwl,spt

(
Tw−Tspt

)
(2.105)

where

• hwg,g: heat transfer coefficient to vapor/gas, with the vapor/gas temperature as the reference temper-

ature (W/m2K).

• hwg,spt: heat transfer coefficient to vapor/gas, with the saturation temperature at total pressure as the

reference temperature (W/m2K). Since we do not consider the non-condensable gas, the total pressure

is the same as the vapor partial pressure, which is also the local pressure.

• hwg,spp: heat transfer coefficient to vapor/gas, with the saturation temperature at vapor partial pres-

sure as the reference temperature (W/m2K). Since we do not consider the non-condensable gas, the

total pressure is the same as the vapor partial pressure, which is also the local pressure.

• hwl,l: heat transfer coefficient to liquid, with the liquid temperature as the reference temperature

(W/m2K).

• hwl,spt: heat transfer coefficient to liquid, with the saturation temperature at total pressure as the

reference temperature (W/m2K).

Note that only one or two of the heat transfer coefficients are nonzero in most flow regimes. For example,

during nucleate boiling, hwl,l and hwl,spt are nonzero, all other terms are zero. The exception is at high void

fraction where hwg,g has a value to smooth the transition to vapor/gas cooling, see page 4-72 of RELAP5-3D

code manual [19]. In this thesis, Tsat is used to denote the saturation temperature. The difference between

the total pressure and vapor partial pressure is ignored since there is no non-condensable gas.

A boiling curve is used to govern the selection of heat transfer correlations for heat transfer from the wall

to the fluid, see page 4-76 of RELAP5-3D code manual [19]. Figure 2.2 is the simplified version of the boiling

curve logic. As is seen, much of the boiling curve logic is based on void fraction, liquid temperature, and

wall surface temperature. Unlike RELAP5-3D which has many more modes to cover different geometries

and system conditions, we only provide heat transfer modes relevant to a vertical flow in a pipe

• M2: Single-phase liquid convection

• M3/M4: Subcooled/saturated nucleate boiling

• M5/M6: Subcooled/saturated transition boiling
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Figure 2.2: Flowchart for determining the wall heat transfer mechanism

• M7/M8: Subcooled/saturated film boiling

• M9: Single-phase gas convection

• M10/M11: Condensation

For simplifications, for problems where the wall temperature is not of interest and the flow is in pre-CHF

region, the wall heat transfer correlations are not enabled. In this case, all wall heat flux is assumed to be

transferred to the liquid phase, i.e.

Qwl = awallq
′′

wall, and Qwg = 0 (2.106)

where awall is the volumetric heated surface area and q
′′

wall is the total wall heat flux, which is determined

by the heating power.

Convection

For the single-phase liquid (M2) and single-phase gas (M9) mode, the classical single-phase convection models

are used. Correlations for forced turbulent convection, forced laminar convection, and natural convection are

provided. The maximum heat transfer coefficient from these three correlations is used to ensure a smooth
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transition, i.e.

Nu ≡ hD

k
= max



4.36, for forced laminar convection

0.023Re0.8Pr0.4, for forced turbulent convection[
0.825 +

0.387
(

RaL

)1/8
1+( 0.492

Pr )
9/16

]8/27

, for natural convection

(2.107)

where the correlation for the forced turbulent convection is the classical Dittus-Boelter correlation, which

is also used in other heat transfer modes; Re, Pr, and Ra are the Reynolds number, Prandtl number, and

Rayleigh number, respectively. The dimensionless numbers used in the correlations are evaluated with either

liquid or gas properties depending on the heat transfer mode, see page 4-76 of RELAP5-3D code manual

[19].

Subcooled/saturated nucleate boiling

The Chen correlation is used for the subcooled and the saturated nucleate boiling (M3 and M4). The nucleate

boiling correlation considers a macroscopic convection term and a microscopic boiling term. Though the

correlation was based on the saturated liquid, it is also used for the subcooled liquid by using the bulk liquid

temperature as the reference temperature for the convective part of the correlation.

q
′′

wall = hmac
(
Tw − Tl

)
F + hmic

(
Tw − Tsat

)
S, for subcooled nucleate boiling (2.108a)

q
′′

wall = hmac
(
Tw − Tsat

)
F + hmic

(
Tw − Tsat

)
S, for saturated nucleate boiling (2.108b)

where F is the Reynolds number factor and S is suppression factor. Details about F and S are given in page

4-96 of RELAP5-3D code manual [19]. hmac accounts for the convective part that is modeled with the Ditus-

Boelter correlation, and hmic accounts for the microscopic boiling which is modeled with the Foster-Zuber

correlation

hmic = 0.00122

(
k0.79
l C0.45

p,l ρ
0.49
l g0.25

c

σ0.5µ0.29
l h0.24

lg ρ0.24
g

)(
∆Tw

)0.24(
∆p
)0.75

(2.109)

where gc is the gravitational conversion factor that equals to unity in SI units, hlg is the enthalpy difference

between the liquid and gas phase, and

∆Tw = Tw(wall temperature)− Tsat(saturation temperature based on total pressure) (2.110a)

∆p = psat(saturation pressure based on wall temperature)− p(local total pressure) (2.110b)
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Subcooled/saturated transition boiling

For the transition boiling (M5 and M6), the same correlation is applied to both the subcooled and the

saturated flow. The calculated heat flux for transition boiling is applied to post-CHF heat transfer. The

total wall heat flux is obtained from components describing the wall-to-liquid heat flux and wall-to-vapor/gas

heat flux,

q
′′

wall = q
′′

CHFAlMl + hwg,g
(
Tw − Tg

)(
1−AlMl

)
(2.111)

where q
′′

CHF is the critical heat flux, hwg,g is the heat transfer coefficient to vapor/gas obtained with Dittus-

Bolter correlation, Al is the fraction of wetted surface area, and Ml is the vertical stratification and mixture

tracking model multipliers. Details of q
′′

CHF, Al, and Ml are given in page 4-100 of RELAP5-3D code manual

[19].

Subcooled/saturated film boiling

The film boiling (M7 and M8) is described by heat transfer mechanisms that occur in an inverted annular flow,

slug flow, and dispersed flow. The wall-to-fluid heat transfer mechanisms are conduction across a vapor/gas

film blanket next to a heated wall, convection to flowing vapor/gas and between the liquid droplets, and

radiation across the film to a continuous liquid blanket or dispersed mixture of liquid droplets and vapor/gas.

Details are given in page 4-103 of RELAP5-3D code manual [19].

Critical heat flux

RELAP5-3D uses the 1986 AECL-UO Critical Heat Flux Lookup Table [23] to evaluate the critical heat

flux. The table was made based on tube data normalized to a tube with an inside diameter of 0.008 m.

Correction factors are used to allow its use in other sized tubes and in rod bundles. The AECL-UO table

is a three-dimensional table covering 15 pressures from 0.1 to 20.0 MPa, 14 values of mass flux from 0.0 to

7500.0 kg/m2s, and 21 equilibrium qualities from -0.5 to 1.0.

2.5 Conclusion

In this chapter, the general 3D two-phase two-fluid model is derived from the instant balance law for each

phase. Then, an area average to the 3D two-phase two-fluid model is performed to obtain the 1D two-phase

two-fluid model, which will be used in the following chapters. Different forms of the 1D two-phase two-fluid

model are explained and the conservative form is chosen as the starting point for constructing the numerical
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solver in the following chapters. A brief introduction to the physical models and correlations is included in

the second-half of this chapter.

37



Chapter 3

EQUATION OF STATE

A major challenge in simulating realistic two-phase flow problems is the complex properties of real water and

steam. In practice, the properties of water and steam are formulated as complicated functions of pressure and

temperature. There is not a simple form of EOS that can to be used for realistic two-phase flow problems.

Because of the complexity in the EOS, analytical analysis to the two-phase two-fluid model is either rare

or mathematically very complicated. In this chapter, we will try to overcome this challenge and provide

formulations for the analytical analysis in the following chapters.

3.1 Introduction

As was already seen in Eq. (2.57), the two-phase two-fluid model requires explicitly the density, specific

internal energy, and specific enthalpy. Choosing the phasic pressure and temperature as unknown variables,

we need to provide formulations to calculate the density, specific internal energy, and specific enthalpy with

given pressure and temperature. Choosing the phasic pressure and temperature as unknown variables and

expanding the temporal partial derivative terms in continuity equation and energy equation, we obtain

∂αlρl
∂t

= ρl
∂αl
∂t

+ αl

[(
∂ρl
∂Tl

)
pl

∂Tl
∂t

+

(
∂ρl
∂pl

)
Tl

∂pl
∂t

]
(3.1a)

∂αgρg
∂t

= ρg
∂αg
∂t

+ αg

[(
∂ρg
∂Tg

)
pg

∂Tg
∂t

+

(
∂ρg
∂pg

)
Tg

∂pg
∂t

]
(3.1b)

∂αlρlel
∂t

= el
∂αlρl
∂t

+ αlρl

[(
∂el
∂Tl

)
pl

∂Tl
∂t

+

(
∂el
∂pl

)
Tl

∂pl
∂t

]
(3.1c)

∂αgρgeg
∂t

= eg
∂αgρg
∂t

+ αgρg

[(
∂eg
∂Tg

)
pg

∂Tg
∂t

+

(
∂eg
∂pg

)
Tg

∂pg
∂t

]
(3.1d)
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Thus, 8 more partial derivatives are needed to solve for the phasic pressure and temperature. These 8 partial

derivatives are

x11 ≡
(
∂ρl
∂Tl

)
pl

, x12 ≡
(
∂ρl
∂pl

)
Tl

(3.2a)

x21 ≡
(
∂ρg
∂Tg

)
pg

, x22 ≡
(
∂ρg
∂pg

)
Tg

(3.2b)

y11 ≡
(
∂el
∂Tl

)
pl

, y12 ≡
(
∂el
∂pl

)
Tl

(3.2c)

y21 ≡
(
∂eg
∂Tg

)
pg

, y22 ≡
(
∂eg
∂pg

)
Tg

(3.2d)

where 8 new variables are defined for brevity. Note that notation x and y here has no relation to the spatial

position. As will be seen in the following sections, more similar variables will show up, which requires

appropriate thermodynamic relations for simplification purposes.

3.2 Thermodynamic relations

3.2.1 Thermodynamic potential

A thermodynamic potential is a scalar quantity that is used to represent the thermodynamic state of a

system [24]. The main thermodynamic potential that has a physical interpretation is the internal energy.

For brevity reasons, the subscript k in the following derivations is ignored. The relations given in the

following sections are valid for both liquid and gas phases. The standard form of the fundamental equation

of state is given by relating the specific internal energy (e) to the specific entropy (s) and the specific volume

(v)

e = e
(
s, v
)

(3.3)

Note that the specific volume is the inverse of the density, i.e. v = 1/ρ. Then, the temperature and pressure

are defined as

T =

(
∂e

∂s

)
v

, p = −
(
∂e

∂v

)
s

(3.4)
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Two other thermodynamic potentials are used in this thesis: the specific enthalpy (h) and the specific Gibbs

free energy (g). These two potentials are obtained by the following Legendre transformations

h = e+ pv (3.5a)

g = e− Ts+ pv (3.5b)

The specific internal energy (e), specific enthalpy (h), specific Gibbs free energy (g), specific entropy (s), and

specific volume (v) are called extensive variables. The pressure (p) and temperature (T ) are called intensive

variables. The physical importance of these three thermodynamic potentials are reflected in the following

processes [24]:

• When the entropy and volume of a closed system are held constant, the internal energy decreases and

reaches a minimum value at equilibrium.

• When the pressure and volume of a closed system are held constant, the enthalpy decreases and reaches

a minimum value at equilibrium.

• When the temperature and pressure of a closed system are held constant, the Gibbs free energy

decreases and reaches a minimum value at equilibrium.

The variables that are held constant in these processes are called the natural variables of that potential,

e.g. entropy and volume are the natural variables of internal energy. In short, the specific internal energy,

specific enthalpy, and the specific Gibbs free energy are expressed as

e = e(s, v) (3.6a)

h = h(p, v) (3.6b)

g = g(T, p) (3.6c)

The natural variables are important because if a thermodynamic potential is given as a function of its natural

variables, all other thermodynamic properties of the system can be found from partial derivatives of that

potential with respect to its natural variables.
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3.2.2 Mathematics of thermodynamics

Consider a function z(x, y), which defines a relation between x, y, and z. Then,

(
∂x

∂y

)
z

= −
(
∂x

∂z

)
y

·
(
∂z

∂y

)
x

= −

(
∂z
∂y

)
x(

∂z
∂x

)
y

(3.7)

This equation will be used extensively in the following transformations. For example, applying Eq. (3.7) to

the functions e(s, v), h(p, v), and g(p, T ), we obtain

(
∂s

∂v

)
e

= −
(
∂e

∂v

)
s

·
(
∂s

∂e

)
v

(3.8a)(
∂p

∂v

)
h

= −
(
∂h

∂v

)
p

·
(
∂p

∂h

)
v

(3.8b)(
∂p

∂T

)
g

= −
(
∂g

∂T

)
p

·
(
∂p

∂g

)
T

(3.8c)

Now, let’s consider the 1D two-phase two-fluid model without the source term, i.e.

∂U

∂t
+
∂F

∂x
+ Pix

∂αg
∂x

+ Pit
∂αg
∂t

= 0 (3.9)

Eq. (3.9) contains explicitly the density, specific internal energy, specific enthalpy, and the pressure; but, Eq.

(3.9) does not contain explicitly the specific entropy and the temperature. Thus, the specific enthalpy is a

more natural thermodynamic potential for analysis purposes rather than specific internal energy or specific

Gibbs free energy.

Taking p and v (or ρ) as independent variables, Eq. (3.9) involves the following partial derivatives

(
∂e

∂p

)
v

,

(
∂e

∂v

)
p

,

(
∂h

∂p

)
v

,

(
∂h

∂v

)
p

(3.10a)(
∂e

∂p

)
ρ

,

(
∂e

∂ρ

)
p

,

(
∂h

∂p

)
ρ

,

(
∂h

∂ρ

)
p

(3.10b)

Note that these partial derivatives are not very informative. Without appropriate transformations, these

partial derivatives make the analytical analysis in the following chapter very complicated. Using the relation
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h = e+ pv, v = 1/ρ, and the mathematical identity in Eq. (3.7), we can obtain

(
∂p

∂e

)
ρ

= −

(
∂ρ
∂h

)
p(

∂ρ
∂p

)
h

+ 1
ρ

(
∂ρ
∂h

)
p

(3.11a)

(
∂p

∂ρ

)
e

=
1 + p

ρ2

(
∂ρ
∂h

)
p(

∂ρ
∂p

)
h

+ 1
ρ

(
∂ρ
∂h

)
p

(3.11b)

The following two new auxiliary variables are defined to relate the partial derivatives in Eq. (3.10)

γ ≡

(
∂ρ
∂p

)
h(

∂ρ
∂p

)
h

+ 1
ρ

(
∂ρ
∂h

)
p

(3.12a)

a2 ≡ 1(
∂ρ
∂p

)
h

+ 1
ρ

(
∂ρ
∂h

)
p

(3.12b)

We can check that the partial derivative in Eq. (3.10) can be related through a and γ, i.e.

(
∂p

∂h

)
ρ

=
ρ
(
γ − 1

)
γ

(3.13a)(
∂p

∂ρ

)
h

=
a2

γ
(3.13b)(

∂p

∂e

)
ρ

= ρ
(
γ − 1

)
(3.13c)(

∂p

∂ρ

)
e

= a2 − p

ρ

(
γ − 1

)
=
p

ρ
+
ρa2 − γp

ρ
(3.13d)

Eq. (3.13) is important, because it tells that all partial derivatives, excluding these related to temperature,

can be expressed as simple functions of two auxiliary variables, a and γ. Of great importance is the physical

meaning of a and γ. Through similar thermodynamic transformations, we obtain the following relations

a2 ≡ 1(
∂ρ
∂p

)
h

+ 1
ρ

(
∂ρ
∂h

)
p

=
1(
∂ρ
∂p

)
s

(3.14a)

γ ≡

(
∂ρ
∂p

)
h(

∂ρ
∂p

)
h

+ 1
ρ

(
∂ρ
∂h

)
p

=

(
∂ρ
∂p

)
h(

∂ρ
∂p

)
s

(3.14b)

Eq. (3.14a) shows that a is the isentropic speed of sound. Eq. (3.14b) shows that γ is the ratio of

compressibility in an isenthalpic process (or throttling process) to the compressibility in an isentropic process.

If the material is an ideal gas, γ is equal to the ratio of specific heat capacity. However, for a real gas, γ is
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in general different than the ratio of specific heat capacity. For real water and steam, Figure 3.4 shows the

behavior of a and γ for different pressure and temperature.

For further simplifications, we will define the following dimensionless variable

ε =
ρa2 − γp

p
(3.15)

For an ideal gas, we find that εg = 0 and for a real gas, e.g. steam, εg is a small number close to zero. εl is

in general a large positive number. For real water and steam, Figure 3.4 shows the behavior of εl and εg for

different pressure and temperature. Using Eq. (3.15), Eq. (3.13c) and Eq. (3.13d) are transformed into

(
∂p

∂e

)
ρ

= ρ
(
γ − 1

)
,

(
∂p

∂ρ

)
e

=
p

ρ

(
1 + ε

)
(3.16)

The importance of these new auxiliary variables (especially, a, γ, and ε) is that they simplify significantly

the Jacobian matrix in the following chapter. The application of these new auxiliary variables are given in

Appendix A.

3.3 Properties of water and steam

In this thesis, the liquid and gas phases are taken to be water and steam, respectively. In the two-phase

two-fluid model, because the right-hand side source terms are modeled as functions of the temperature, we

choose the Gibbs free energy as the thermodynamic potential to specify the EOS. All partial derivatives

shown in Sec. 3.2 can be obtained through thermodynamic transformations with respect to the Gibbs free

energy. Table 3.1 lists the thermodynamic properties and mechanical properties of water and steam that are

needed. These properties are obtained with the International Association for the Properties of Water and

Steam (IAPWS-IF97) industrial formulation [15].

3.3.1 IAPWS: Thermodynamic properties of water and steam

The IAPWS-IF97 consists of a set of equations for different regions, including the subcooled water region

(region 1), the superheated steam region (region 2, 5), the saturation line (region 4), and the critical region

(region 3). These regions are shown in Figure 3.1. In this thesis, we implemented the region in the red box

which covers part of region 1, region 2, and region 4, i.e.

273.15K ≤ T ≤ 1073.15K, 611.675Pa ≤ p ≤ 16.529MPa (3.17)
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Table 3.1: Thermodynamic and mechanical properties of water and steam

Variable Property name Variable Property name
T Temperature Cp Specific isobaric heat capacity

p Pressure
(
∂ρ
∂T

)
p

–

v Specific volume
(
∂ρ
∂p

)
T

–

ρ Density
(
∂e
∂T

)
p

–

e Specific internal energy
(
∂e
∂p

)
T

–

h Specific enthalpy k Thermal conductivity
s Specific entropy µ Viscosity
g Specific Gibbs free energy σ Surface tension
a Adiabatic speed of sound
γ Gamma coefficient

Figure 3.1: Schematic of IAPWS-IF97 for the thermodynamic properties of water and steam
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This selected region covers the normal conditions in nuclear reactor thermal-hydraulic simulations.

The EOS in region 1 and region 2 is specified by the specific Gibbs free energy, which is implemented as

a function of pressure and temperature, i.e.

g = g
(
T, p

)
(3.18)

All other thermodynamic properties are derived from this equation using appropriate combination of the

specific Gibbs free energy and its derivatives. For brevity, we will define the following variables

g1 ≡
(
∂g

∂T

)
p

, g2 ≡
(
∂g

∂p

)
T

, g11 ≡
(
∂2g

∂T 2

)
p

, g22 ≡
(
∂2g

∂p2

)
T

, g12 ≡
(
∂2g

∂T∂p

)
(3.19)

Relations between the relevant thermodynamic properties and the specific Gibbs free energy are

v = ρ−1 = g2 (3.20a)

e = g− Tg1 − pg2, h = g− Tg1 (3.20b)

a2 =
Tv2g11

Tg2
12 − Tg11g22

, γ =
Tg2

12 − Tg11g22 − vg12

Tg2
12 − Tg11g22

(3.20c)

Cp = −Tg11 (3.20d)(
∂ρ

∂T

)
p

= − 1

v2
g12,

(
∂ρ

∂p

)
T

= − 1

v2
g22 (3.20e)(

∂e

∂T

)
p

= −Tg11 − pg12,

(
∂ρ

∂T

)
p

= −Tg12 − pg22 (3.20f)

The region 4 (saturation line) specifies the boundary between region 1 (subcooled water) and region 2

(superheated steam). The saturation line is given by an implicit quadratic function of the saturation pressure

(psat) and the saturation temperature (Tsat),

x2y2 + n1x
2y + n2x

2 + n3xy
2 + n4xy + n5x+ n6y

2 + n7y + n8 = 0 (3.21)

where

x =

(
psat
p∗

)1/4

, y =
Tsat
T ∗

+
n9

Tsat/T ∗ − n10
(3.22)

where p∗ = 1MPa and T ∗ = 1K; the coefficients n1 to n10 are given in IAPWS-IF97 [15].
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3.3.2 IAPWS: Viscosity of ordinary water substance

The correlating equation for the shear viscosity of pure water substance is represented as

µ̄ = µ̄0

(
T̄
)
× µ̄1

(
T̄ , ρ̄

)
× µ̄2

(
T̄ , ρ̄

)
(3.23)

where the first factor µ̄0 represents the viscosity in the dilute-gas limit, the second factor µ̄1 represents the

contribution to viscosity due to finite density, and the third factor µ̄2 represents the critical enhancement

of the viscosity. Details of these three factors are specified in IAPWS-IF97 [15]. The IAPWS-IF97 is used

to determine the density when the state point is specified by the temperature and pressure or other state

variables. The dimensionless variables in Eq. (3.23) are defined as

T̄ = T/T ∗, with T ∗ = 647.096K (3.24a)

ρ̄ = ρ/ρ∗, with ρ∗ = 322.0kg ·m−3 (3.24b)

µ̄ = µ/µ∗, with µ∗ = 1.00× 10−6Pa · s (3.24c)

Eq. (3.23) is valid in the following ranges

0 < p < pt and 273.16K ≤ T ≤ 1173.15K (3.25a)

pt < p < 300 MPa and Tm
(
p
)
≤ T ≤ 1173.15K (3.25b)

where Tm is the pressure-dependent melting temperature and pt is the triple-point pressure.

3.3.3 IAPWS: Surface tension of ordinary water substance

The correlating equation for the surface tension of pure water substance is represented as

σ = 235.8 · τ1.26
(
1− 0.625τ

) [
mN/m

]
(3.26)

where

τ = 1− T/Tc, with Tc = 647.096 K (3.27)

This correlating equation is valid for temperature between the triple point (0.01 ◦C ) and the reference

temperature Tc. The correlating equation for the surface tension depends only on the temperature. In

practice, this temperature is the saturation temperature of water and steam. When the pressure is specified
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as input to obtain surface tension, a saturation temperature corresponding to the given pressure is calculated

at first with IAPWS-IF97.

3.3.4 IAPWS: Thermal conductivity of ordinary water substance

The correlating equation for the thermal conductivity of pure water substance is represented as

k̄ = k̄0

(
T̄
)
× k̄1

(
T̄ , ρ̄

)
+ k̄2

(
T̄ , ρ̄

)
(3.28)

where the first factor k̄0 represents the thermal conductivity in the dilute-gas limit, the second factor k̄1

represents the contribution to thermal conductivity due to finite density, and the third additive contribution

k̄2 represents the critical enhancement of the thermal conductivity. Details of these three factors are specified

in [15]. The IAPWS-IF97 is used to determine the density when the state point is specified by the temperature

and pressure or other state variables. The dimensionless variables in Eq. (3.28) are defined as

T̄ = T/T ∗, with T ∗ = 647.096K (3.29a)

ρ̄ = ρ/ρ∗, with ρ∗ = 322.0kg ·m−3 (3.29b)

k̄ = k/k∗, with k∗ = 1.00× 10−3W ·K−1 ·m−1 (3.29c)

Eq. (3.28) is valid in the following ranges

0 < p < pt and 273.16K ≤ T ≤ 1173.15K (3.30a)

pt < p < 100 MPa and Tm
(
p
)
≤ T ≤ 1173.15K (3.30b)

where Tm is the pressure-dependent melting temperature and pt is the triple-point pressure.

3.4 Implementation and computer program verification

The C++ programming language is used to implement the correlating equations discussed in previous

sections. First, we implement the correlating equations in a continuous form, which we call IAPWS-C.

Because the correlating equations have to be evaluated extensively in the numerical solver, we implement a

tabulated version of the correlating equations, which we call IAPWS-T. For the tabulated version IAPWS-T,

the properties of water and steam are pre-calculated with IAPWS-C at a set of design points
(
Ti, pj

)
and

then a bi-linear interpolation scheme is used to interpolate values at other states. For the range specified
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Table 3.2: Program verification table for thermodynamic properties of water and steam with IAPWS-C

Variable T = 300K, p = 3MPa T = 500K, p = 3MPa
Reference IAPWS-C Reference IAPWS-C

v : m3/kg 1.00215168 E-03 1.00215167(97) E-03 1.20241800E-03 1.20241800(34) E-03
h : kJ/kg 1.15331273 E+02 1.15331273(02) E+02 9.75542239E+02 9.75542239(10) E+02
e : kJ/kg 1.12324818 E+02 1.12324817(98) E+02 9.71934985E+02 9.71934985(09) E+02
s : kJ/kg 3.92294792 E-01 3.92294792(40) E-01 2.58041912 2.58041912(01)
a : m/s 1.50773921 E+03 1.50773920(97) E+03 1.24071337E+02 1.24071337(31) E+03
Cp : kJ/(kg K) 4.17301218 4.17301218(41) 4.65580682 4.65580682(21)

in Eq. (3.17), 545 design points are used for temperature and 565 design points are used for pressure.

Verification of both IAPWS-C and IAPWS-T is performed. The results of IAPWS-C are compared with

the reference values given in the specification [15]. The results of IAPWS-T are compared with the results

of IAPWS-C.

Table 3.3: Program verification table for the viscosity of water and steam with IAPWS-C

T (K) ρ : kg/m3 Reference µ : µPa · s IAPWS-C µ : µPa · s
298.15 998.0 889.735100 889.735100(15)
298.15 1200.0 1437.649467 1437.649466(69)
373.15 1000.0 307.883622 307.883622(34)
433.15 1.0 14.538324 14.538324(48)
433.15 1000.0 217.685358 217.685358(26)
873.15 1.0 32.619287 32.619286(97)
873.15 100.0 35.802262 35.802261(72)
873.15 600.0 77.430195 77.430195(23)

Table 3.4: Program verification table for the surface tension of water and steam with IAPWS-C

T (K) Reference σ : mN/m IAPWS-C σ : mN/m
273.16 75.65 75.64(61)
323.15 67.94 67.94(39)
373.15 58.91 58.91(19)
423.15 48.74 48.74(13)
473.15 37.67 37.67(45)
523.15 26.04 26.04(30)
573.15 14.36 14.35(96)

Table 3.5: Program verification table for the thermal conductivity of water and steam with IAPWS-C

T (K) ρ : kg/m3 Reference k : mW/(m ·K) IAPWS-C k : mW/(m ·K)
298.15 0.0 18.4341883 18.4341883(50)
298.15 998.0 607.712868 607.712867(59)
298.15 1200.0 799.038144 799.038143(56)

Table 3.2, Table 3.3, Table 3.4, and Table 3.5 show the verification of IAPWS-C for thermodynamic

properties, viscosity, surface tension, and thermal conductivity, respectively. As expected, the results from
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Table 3.6: Program verification table for properties of water and steam with IAPWS-C and IAPWS-T

Variable IAPWS-C IAPWS-T IAPWS-C IAPWS-T
T = 325.17K, p = 1.2525MPa T = 583.87K, p = 1.2525MPa

ρ : kg/m3 9.876168(69) E+02 9.876163(90) E+02 4.786684(19) 4.786688(78)
e : kJ/kg 2.176144(42) E+02 2.176144(88) E+02 2.806656(19) E+03 2.806655(77) E+03
h : kJ/kg 2.188826(47) E+02 2.188826(46) E+02 3.068319(58) E+03 3.068319(51) E+03
a : m/s 1.549400(03) E+03 1.549395(74) E+03 5.822827(13) E+02 5.822826(61) E+02
γ 1.270658(07) 1.270654(55) 1.299694(80) 1.299694(89)
Cp : kJ/(kg K) 4.177399(70) 4.177401(58) 2.171046(63) 2.171048(08)
k : mN/m 6.434786(66) E+02 6.433170(15) E+02 4.661400(94) E+01 4.590544(58) E+01
µ : µPa s 5.286551(92) E+02 5.289837(78) E+02 2.063717(08) E+01 2.061687(93) E+01

T = 345.08K, p = 5.2525MPa T = 648.24K, p = 5.2525MPa
ρ : kg/m3 9.789240(94) E+02 9.789239(03) E+02 1.920055(78) E+01 1.920068(78) E+01
e : kJ/kg 3.000020(02) E+02 3.000020(20) E+02 2.855556(45) E+03 2.855554(70) E+03
h : kJ/kg 3.053675(86) E+02 3.053676(27) E+02 3.129116(21) E+03 3.129114(38) E+03
a : m/s 1.567040(62) E+03 1.567039(13) E+03 5.929655(29) E+02 5.929644(71) E+02
γ 1.347295(17) 1.347293(89) 1.296541(03) 1.296540(37)
Cp : kJ/(kg K) 4.178251(62) 4.178251(99) 2.571846(38) 2.571881(52)
k : mN/m 6.640030(48) E+02 6.638393(08) E+02 5.881207(16) E+01 5.747597(16) E+01
µ : µPa s 3.944396(02) E+02 3.947377(60) E+02 2.329529(93) E+01 2.325797(22) E+01
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Figure 3.2: IAPWS-C: Surface tension of water/steam in saturation conditions
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IAPWS-C are consistent with the reference values.

Table 3.6 shows the verification of IAPWS-T. Results from IAPWS-T are compared with results from

IAPWS-C. Figure 3.2 also shows the comparison of IAPWS-C and IAPWS-T surface tension at saturation

conditions. As expected, the results from IAPWS-T are consistent with the results from IAPWS-C. For

reference, Figure 3.3, Figure 3.4, and Figure 3.5 show the properties of water and steam at different states.
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Figure 3.3: IAPWS-C: properties of water and steam I.
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Figure 3.4: IAPWS-C: properties of water and steam II.
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Figure 3.5: IAPWS-C: properties of water and steam III
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3.5 Conclusion

In this chapter, a few new auxiliary variables are introduced to overcome the challenge in analyzing the two-

phase two-fluid model with a complex EOS. Through thermodynamic transformations, it is found that the

partial derivatives related to the two-phase two-fluid model can be replaced by simple algebraic functions of

these new auxiliary variables. These new auxiliary variables are critical for simplifying the Jacobian matrix

of the two-phase two-fluid model in the following chapter.

The EOS and the properties of water and steam are implemented with the help of the specific Gibbs

free energy. Once the specific Gibbs free energy and its partial derivatives (with respect to pressure and

temperature) are given, it is shown that all thermodynamic properties of water and steam can be written as

functions of the specific Gibbs free energy and its partial derivatives. The EOS is implemented for practical

application in nuclear reactor thermal-hydraulic simulations and verified.
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Chapter 4

ANALYTIC ANALYSIS

4.1 Introduction

The two-phase two-fluid model originates from the conservation laws for phasic mass, momentum, and energy.

The governing equation has the form of a hyperbolic Partial Differential Equation (PDE). Analytical analysis,

especially the characteristic analysis, of the PDE is essential for understanding the behavior of the system

and constructing a stable solver. From the mathematical point of view, an analytical analysis to the system

provides the dynamic behavior of the system under different conditions; from the numerical point of view,

an analytical analysis provides the upwind information of the system, which is essential to construct a stable

and accurate numerical solver.

This chapter presents a detailed characteristic analysis and dispersion analysis of the two-phase two-fluid

model with the help of EOS formulations given in Chapter 3.

4.2 Review of notions

4.2.1 Quasi-linear system

The 1D two-phase two-fluid model belongs to a general systems of first-order partial differential equations

of the form [25]

∂ui
∂t

+

m∑
j=1

aij
(
u1, · · · , um;x, t

)∂uj
∂x

+ si
(
u1, · · · , um;x, t

)
= 0, for i = 1, · · · ,m (4.1)

which is a system of m equations with m unknowns (ui) that depends on space (x) and time (t). System

(4.1) can be written in a matrix form

∂U

∂t
+ A

∂U

∂x
+ S = 0 (4.2)
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where

U =



u1

u2

...

um


,A =



a11 · · · a1m

a21 · · · a2m

...
...

...

am1 · · · amm


,S =



s1

s2

...

sm


(4.3)

System (4.2) is linear when entries of coefficient matrix A and vector S do not depends on unknown vector

U; system (4.2) is called quasi-linear [25] when the coefficient matrix A is a function of the unknown vector

U, i.e. A = A
(
U
)
. The quasi-linear system is in general a system of non-linear equations. Two simplest

examples of system (4.2) are the linear advection equation

∂u

∂t
+ a

∂u

∂x
= 0 (4.4)

and the inviscid Burgers equation

∂u

∂t
+ u

∂u

∂x
= 0 (4.5)

Definition 4.1. Conservation laws. Conservation laws are partial differential equations that can be

written into the form

∂U

∂t
+
∂F
(
U
)

∂x
= S (4.6)

where U is the vector of conserved variables, S is the vector of source terms, and F
(
U
)

is the vector of

fluxes

U =



u1

u2

...

um


,F =



f1

f2

...

fm


=



f1

(
u1, · · · , um

)
f2

(
u1, · · · , um

)
...

fm
(
u1, · · · , um

)


(4.7)

An example of the conservation law is the one-dimensional Euler equation for single-phase gas

∂ρ

∂t
+
∂ρu

∂x
= 0 (4.8a)

∂ρu

∂t
+
∂
(
ρu2 + p

)
∂x

= 0 (4.8b)

∂ρE

∂t
+
∂
(
ρuE + pu

)
∂x

= 0 (4.8c)

where ρ is the density, u is the velocity, p is the pressure, and E = e+ u2/2 is the specific total energy. In a
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vector form,

UEuler =


ρ

ρu

ρE

 ,FEuler =


ρu

ρu2 + p

ρuE + pu

 (4.9)

Definition 4.2. Jacobian matrix. The Jacobian matrix of the flux function F
(
U
)

is the matrix A
(
U
)

defined as

A
(
U
)
≡ ∂F

∂U
=



∂f1/∂u1 · · · ∂f1/∂um

∂f2/∂u1 · · · ∂f2/∂um
...

...
...

∂fm/∂u1 · · · ∂fm/∂um


(4.10)

For example, the Jacobian matrix of the Euler equation is

AEuler =


0 1 0

−u2 +
[
a2 +

(
γ − 1

)(
u2 −H

)]
2u−

(
γ − 1

)
u γ − 1

−uH + u
[
a2 +

(
γ − 1

)(
u2 −H

)]
H −

(
γ − 1

)
u2 u+

(
γ − 1

)
u

 (4.11)

where H = E + p/ρ is the specific total enthalpy. We omit the derivation of this Jacobian matrix, because

it is a straightforward simplification of the Jacobian matrix for a two-phase system, which will be derived

later. Two auxiliary variables, a and γ, are defined by Eq. (3.12) of Chapter 3.

The conservation laws can be written in a quasi-linear form

∂U

∂t
+
∂F

∂x
=
∂U

∂t
+ A

∂U

∂x
= S (4.12)

Definition 4.3. Eigenvalues/eigenvectors. The eigenvalues λi and right eigenvectors Ki of a matrix A

are defined by

AKi = λiKi (4.13)

For example, the eigenvalues and eigenvectors of the Jacobian matrix Eq. (4.11) are

λ1 = u− a, λ2 = u, λ3 = u+ a (4.14)

K1 =


1

u− a

H − ua

 ,K2 =


1

u

H − γ∗a2

 ,K3 =


1

u+ a

H + ua

 , (4.15)
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where γ∗ = 1/
(
γ − 1

)
.

Definition 4.4. Hyperbolic system. A system is said to be hyperbolic if the Jacobian matrix A has m real

eigenvalues, λ1, · · · , λm, and a set of m linearly independent right eigenvectors, K1, · · · ,Km. The system

is said to be strictly hyperbolic if the eigenvalues are all distinct [25]. The strict hyperbolicity implies

hyperbolicity, because real and distinct eigenvalues ensure the existence of a set of linearly independent

eigenvectors. Conversely, if the Jacobian matrix has imaginary eigenvalue(s), the system is said to be

non-hyperbolic. For example, the one-dimensional Euler equation is strictly hyperbolic because all three

eigenvalues are real and distinct.

Definition 4.5. Diagonalizable system. A matrix A is said to be diagonalizable if A can be decomposed

to

A = KDK−1 (4.16)

where

D = Diag
(
λ1, · · · , λm

)
(4.17a)

K =

(
K1 . . . Km

)
(4.17b)

where ‘Diag’ is an operator that forms a diagonal matrix with a given vector. The diagonal elements of

D are the eigenvalues of A and the columns of K are the right eigenvectors of A. A system is said to be

diagonalizable if the Jacobian matrix A is diagonalizable. For example, the one-dimensional Euler equation

is diagonalizable with

D =


u− a 0 0

0 u 0

0 0 u+ a

 ,K =


1 1 1

u− a u u+ a

H − ua H − γ∗a2 H + ua

 , (4.18)

Note that K is invertible because the three column vectors are linearly independent.

4.2.2 General Fourier analysis

Now, we start the analytical analysis of the 1D two-phase two-fluid model. Recall that the 1D two-phase

two-fluid model in a vector form is

∂U

∂t
+
∂F

∂x
+ Pix

∂αg
∂x

+ Pit
∂αg
∂t

= S (4.19)
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where U, F, Pix, Pit, and S are given in Eq. (2.61) of Chapter 2. In general, U is a function of space (x)

and time (t); F, Pix, and Pit are explicit functions of U, but do not depend explicitly on x and t; S is a

function of U and might depend explicitly on x and t. Thus, we obtain

U = U
(
x, t
)
,F = F

(
U
)
,Pix = Pix

(
U
)
,Pit = Pit

(
U
)
,S = S

(
U;x, t

)
(4.20)

Assuming all unknown variables are smooth enough to obtain partial derivatives, we transform the equation

into a quasi-linear form (
I + Ait,nc

)∂U

∂t
+
(
Ac + Aix,nc

)∂U

∂x
= S (4.21)

where

Ac ≡
∂F

∂U
,Aix,nc ≡ Pix

∂αg
∂U

,Aix,nc ≡ Pit
∂αg
∂U

(4.22)

where Ac is the matrix from the conservative part of the system; Aix,nc and Ait,nc are the matrices from

the non-conservative part of the system. As will be seen later,
(
I + Ait,nc

)
is in general invertible, so we

transform the quasi-linear equation into

∂U

∂t
+ A

∂U

∂x
= S∗ (4.23)

where A is the Jacobian matrix of the system and S∗ is the new source vector

A =
(
I + Ait,nc

)−1(Ac + Aix,nc
)
,S∗ =

(
I + Ait,nc

)−1
S (4.24)

We will perform a dispersion analysis to study the dynamic character of the two-phase two-fluid model.

The dispersion relationship is obtained by linearizing the system about an initial state and using a general

Fourier representation for each solution component [26]. The local linear dynamic character of Eq. (4.23)

can be investigated by this method for a known state U0. The linear differential equation for the behavior

of the perturbation, φφφ = U−U0, is

∂
(
U0 +φφφ

)
∂t

+ A0

∂
(
U0 +φφφ

)
∂x

= S∗
(
U0 +φφφ;x, t

)
(4.25)

which gives

∂U0

∂t
+ A0

∂U0

∂x
+
∂φφφ

∂t
+ A0

∂φφφ

∂x
= S∗0 + S0φφφ (4.26)
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where S0 =
(
I + Ait,nc

)−1

0

(
∂S/∂U

)
0
. Since U0 is a known state of the system, we have

∂U0

∂t
+ A0

∂U0

∂x
= S∗0 (4.27)

Subtracting Eq. (4.27) from Eq. (4.26), the equation for the perturbation is

∂φφφ

∂t
+ A0

∂φφφ

∂x
= S0φφφ (4.28)

Assuming the perturbation has a solution in the form of a traveling wave [26], i.e.

φφφ = φφφ0 exp
[
i
(
kx− ωt

)]
(4.29)

where k is the wave number, ω is the frequency, and φφφ0 is the initial amplitude of the perturbation. Substi-

tuting Eq. (4.29) into Eq. (4.28), we obtain

− iωφφφ0 + ikA0φφφ0 = S0φφφ0 (4.30)

Assuming k is non-zero, we change Eq. (4.30) to the following form

(
A0 +

i

k
S0 −

ω

k
I
)
φφφ0 = 0 (4.31)

Eq. (4.31) is a homogeneous linear system of equations. The condition for φφφ0 to have a non-trivial solution

is that the determinant of the coefficient matrix is zero, i.e.

det

(
A0 +

i

k
S0 −

ω

k
I
)

= 0 (4.32)

Let λ = ω/k, we see that λ is the eigenvalue of A0 + i/kS0. For each non-zero value of k, Eq. (4.32) gives a

corresponding value of ω and λ. Let

ω = ωR + iωI (4.33a)

λ = λR + iλI (4.33b)

where the subscript R and I denote the real and imaginary part. For ω and λ, the imaginary part governs

growth or decay of the Fourier component (depending on its sign) and the real part governs the speed
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of propagation of the Fourier component. For finite λ in the k → ∞ limit, Eq. (4.32) reduces to the

characteristic equation and λ reduces to the characteristic eigenvalue of the system. For finite value of k,

the imaginary part of λ and ω are in general non-zero. The analytical analysis starts with the characteristic

analysis for k →∞.

4.3 Characteristic analysis

The characteristic analysis corresponds to k → ∞ or S0 = 0. To ensure the system is well-posed, the

eigenvalues of the system are required to be real. The eigenvalues are determined by

det (A− λI) = 0 (4.34)

The key issue in the characteristic analysis is deriving and simplifying the matrices, Ac, Aix,nc, and Ait,nc,

such that analytical eigenvalue/eigenvectors can be derived.

4.3.1 Characteristic analysis: Jacobian matrix

The Jacobian matrix of the system is defined as

A =
(
I + Ait,nc

)−1(Ac + Aix,nc
)

(4.35)

Following the derivation and simplification given in the Appendix A, we obtain the matrixes Ac, Aix,nc,

and Ait,nc, they are

Ac =



0 1 0 0 0 0

−u2
l + βlc

h
l 2ul − βlcul βlc

1
l σlc

h
g −σlcug σlc

1
g

−ulHl + ulβlc
h
l Hl − ulβlcul ul + ulβlc

1
l σlulc

h
g −σlulcug σlulc

1
g

0 0 0 0 1 0

σgc
h
l −σgcul σgc

1
l −u2

g + βgc
h
g 2ug − βgcug βgc

1
g

σgugc
h
l −σgugcul σgugc

1
l −ugHg + ugβgc

h
g Hg − ugβgcug ug + ugβgc

1
g


(4.36)
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Aix,nc =



0 0 0 0 0 0

−αgτlchl αgτlc
u
l −αgτlc1l αlτgc

h
g −αlτgcug αlτgc

1
g

0 0 0 0 0 0

0 0 0 0 0 0

αgτlc
h
l −αgτlcul αgτlc

1
l −αlτgchg αlτgc

u
g −αlτgc1g

0 0 0 0 0 0


(4.37)

Ait,nc =



0 0 0 0 0 0

0 0 0 0 0 0

αgτlc
h
l −αgτlcul αgτlc

1
l −αlτgchg αlτgc

u
g −αlτgc1g

0 0 0 0 0 0

0 0 0 0 0 0

−αgτlchl αgτlc
u
l −αgτlc1l αlτgc

h
g −αlτgcug αlτgc

1
g


(4.38)

where we used the following auxiliary variables

chl ≡ a2
l +

(
γl − 1

)(
u2
l −Hl

)
; chg ≡ a2

g +
(
γg − 1

)(
u2
g −Hg

)
(4.39a)

cul ≡
(
γl − 1

)
ul; cug ≡

(
γg − 1

)
ug (4.39b)

c1l ≡ γl − 1; c1g ≡ γg − 1 (4.39c)

βl ≡
1 + αlεg

1 + αgεl + αlεg
; βg ≡

1 + αgεl
1 + αgεl + αlεg

(4.39d)

σl ≡
αlεl

1 + αgεl + αlεg
; σg ≡

αgεg
1 + αgεl + αlεg

(4.39e)

τl ≡
1

1 + αgεl + αlεg
; τg ≡

1

1 + αgεl + αlεg
(4.39f)

where al, ag, γl, γg, εl, and εg are defined in Eq. (3.12) and Eq. (3.15) of Chapter 3.

4.3.2 Characteristic analysis: conservative part

We start the analysis with the matrix Ac, which represents the conservative part of the governing equation.

Let λc and Kc be the eigenvalue and right eigenvector of Ac. Note that λc and Kc are not the eigenvalue

and eigenvector of the complete system, because the non-conservative part is missing, see Eq. (4.35) and

Eq. (4.36). The eigenvalue analysis is performed with the symbolic calculation software Mathematica [27].
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The characteristic polynomial of Ac given by Mathematica is

Pc
(
λc
)

=
(
λc − ul

)(
λc − ug

){[(
λc − ul

)2 − βla2
l

][(
λc − ug

)2 − βga2
g

]
− σlσga2

l a
2
g

}
(4.40)

where the subscript c denotes that the characteristic polynomial is derived for the matrix Ac. This charac-

teristic polynomial is surprisingly simple because of the algebraic transformations we made to the Jacobian

matrix with the help of auxiliary variables, including ak, γk, βk, and σk.

Pc
(
λc
)

has two simple eigenvalues, ul and ug, which represent the convection of liquid- and gas-phase

enthalpy; however, the other four eigenvalues are more complicated. Fortunately, we can obtain accurate

approximation by taking into account the different thermodynamic properties of liquid- and gas-phase,

especially εl and εg. For water and steam, εg is a small value close to zero while εl is a large positive value,

see Figure 3.4. Another special example is the ideal gas, for which εg = 0 in any conditions. Thus, we obtain

the following approximation

εg ≈ 0

εl � 1

⇒ σg =
αgεg

1 + αgεl + αlεg
≈ 0 (4.41)

This approximation means that, in matrix Ac, the coupling effect of the lower triangular block containing

σg is not significant. Substituting σg ≈ 0 into Eq. (4.36), we find that the eigenvalues are

λc,1 ≈ ul −
√
βlal;λc,2 = ul;λc,3 ≈ ul +

√
βlal (4.42a)

λc,4 ≈ ug −
√
βgag;λc,5 = ug;λc,6 ≈ ug +

√
βgag (4.42b)
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and the right eigenvectors are

K1,c ≈



1

ul −
√
βlal

Hl −
√
βlalul

0

0

0


,K2,c ≈



1

ul

Hl − γ∗l a2
l

0

0

0


,K3,c ≈



1

ul +
√
βlal

Hl +
√
βlalul

0

0

0



K4,c ≈



q4

q4λc,4

q4

[
Hl − u2

l + ulλc,4
]

1

ug −
√
βgag

Hg −
√
βgagug


,K5,c ≈



0

0

0

1

ug

Hg − γ∗ga2
g


,K6,c ≈



q6

q6λc,6

q6

[
Hl − u2

l + ulλc,6
]

1

ug +
√
βgag

Hg +
√
βgagug



(4.43)

where γ∗l = 1/
(
γl − 1

)
and γ∗g = 1/

(
γg − 1

)
. q4 and q6 are two auxiliary variables defined as

q4 ≡
σla

2
g(

λc,4 − λc,1
)(
λc,4 − λc,3

) ; q6 ≡
σla

2
g(

λc,6 − λc,1
)(
λc,6 − λc,3

) (4.44)

The right eigenvector matrix can thus be approximated as

Kc ≈
(

K1,c K2,c K3,c K4,c K5,c K6,c

)
(4.45)

Note that though Kc is neither the exact eigenvector matrix of Ac nor the exact eigenvector matrix of the

system, it provides very accurate upwind information of the system.

A series of numerical tests are performed to verify the approximations by comparing the exact eigenvalues

calculated with Eq. (4.40) with the approximate eigenvalues calculated with Eq. (4.42). Table 4.1 lists the

test conditions for the verification. The test matrix covers a wide range of void fraction, pressure (in MPa),

temperature (in K), and density (in kg/m3). The liquid velocity and gas velocity are kept constant in all

cases, i.e. ul = 2.0 m/s and ug = 5.0 m/s. For test case 1 to 5, the liquid is a subcooled water and the gas is

a superheated steam; for test case 6 to 10, the liquid and the gas are at saturation temperature. Table 4.2,

Table 4.3, and Table 4.4 show the comparison of exact eigenvalues (λec,i, i = 1, 3, 4, 6) to the approximate

eigenvalues (λac,i, i = 1, 3, 4, 6) for αg = 0.001, αg = 0.2, and αg = 0.999, respectively. We see that the
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approximate eigenvalues are very close to the exact eigenvalues for all test cases. At low void fraction, the

maximum relative eigenvalue difference is 0.4%, most of the eigenvalues are within 0.2%; at intermediate

void fraction, the maximum relative eigenvalue difference is 1.4%, most of the eigenvalues are within 0.2%;

at high void fraction, the maximum relative eigenvalue difference is less than 0.1%. This confirms that

approximation given in Eq. (4.41) is valid.

Table 4.1: Verification of approximate eigenvalues of Ac: test matrix

Case p Tl Tg ρl ρg al ag γl γg εl εg
1 0.1 300.0 500.0 996.56 0.44 1503.13 548.30 1.148 1.308 2.25E+04 -3.41E-04
2 0.5 300.0 500.0 996.74 2.21 1503.76 542.92 1.149 1.306 4.51E+03 -1.43E-03
3 1.0 300.0 500.0 996.96 4.53 1504.56 535.67 1.149 1.303 2.26E+03 -2.38E-03
4 5.0 300.0 600.0 998.74 20.39 1510.93 561.17 1.153 1.297 4.55E+02 -1.22E-02
5 10.0 300.0 600.0 1000.95 49.77 1518.93 503.35 1.158 1.280 2.30E+02 -1.95E-02
6 0.1 372.8 372.8 958.64 0.59 1545.45 472.05 1.424 1.312 2.29E+04 3.90E-03
7 0.5 425.0 425.0 915.28 2.67 1461.95 493.80 1.514 1.297 3.91E+03 4.53E-03
8 1.0 453.0 453.0 887.13 5.15 1391.64 500.89 1.537 1.288 1.72E+03 3.00E-03
9 5.0 537.1 537.1 777.36 25.35 1088.43 498.18 1.519 1.273 1.83E+02 -1.41E-02
10 10.0 584.1 584.1 688.41 55.45 847.74 472.46 1.451 1.263 4.80E+01 -2.57E-02

Table 4.2: Verification of approximate eigenvalues of Ac: exact vs approximate eigenvalues for αg = 0.001

Case λec,1 λac,1 λec,3 λac,3 λec,4 λac,4 λec,6 λac,6
1 -308.00 -307.92 312.00 311.92 -543.26 -543.31 553.26 553.31
2 -313.66 -314.75 317.70 318.75 -467.75 -467.02 477.71 477.02
3 -539.10 -537.99 549.17 547.99 -637.51 -638.44 641.44 642.44
4 -486.61 -488.57 496.55 498.57 -660.34 -658.89 664.40 662.89
5 -531.61 -530.86 541.62 540.86 -830.68 -831.16 834.67 835.16
6 -494.89 -495.62 504.89 505.62 -843.57 -843.14 847.58 847.14
7 -559.91 -558.54 569.91 568.54 -1247.63 -1248.24 1251.62 1252.24
8 -496.93 -496.19 506.93 506.19 -997.38 -997.75 1001.37 1001.75
9 -503.48 -502.39 513.49 512.39 -1364.75 -1365.16 1368.75 1369.16
10 -473.78 -473.34 483.78 483.34 -825.34 -825.59 829.34 829.59

Table 4.3: Verification of approximate eigenvalues of Ac: exact vs approximate eigenvalues for αg = 0.2

Case λec,1 λac,1 λec,3 λac,3 λec,4 λac,4 λec,6 λac,6
1 -20.40 -20.39 24.40 24.39 -543.30 -543.30 553.30 553.30
2 -48.06 -48.03 52.06 52.03 -537.92 -537.92 547.92 547.92
3 -68.76 -68.69 72.76 72.69 -530.66 -530.67 540.66 540.67
4 -155.62 -154.79 159.61 158.79 -555.96 -556.20 565.97 566.20
5 -220.09 -217.96 224.06 221.96 -497.49 -498.43 507.52 508.43
6 -20.84 -20.87 24.84 24.87 -467.06 -467.05 477.06 477.05
7 -50.24 -50.33 54.24 54.33 -488.81 -488.79 498.80 498.79
8 -73.00 -73.09 77.00 77.09 -495.91 -495.89 505.91 505.89
9 -175.81 -174.68 179.80 178.68 -492.85 -493.26 502.86 503.26
10 -259.43 -255.89 263.36 259.89 -465.96 -467.92 476.03 477.92

63



Table 4.4: Verification of approximate eigenvalues of Ac: exact vs approximate eigenvalues for αg = 0.999

Case λec,1 λac,1 λec,3 λac,3 λec,4 λac,4 λec,6 λac,6
1 -8.02 -8.02 12.02 12.02 -543.30 -543.30 553.30 553.30
2 -8.22 -8.22 12.22 12.22 -467.05 -467.05 477.05 477.05
3 -20.41 -20.41 24.41 24.41 -537.92 -537.92 547.92 547.92
4 -21.39 -21.39 25.39 25.39 -488.80 -488.80 498.80 498.80
5 -29.69 -29.69 33.69 33.69 -530.67 -530.67 540.67 540.67
6 -31.60 -31.60 35.60 35.60 -495.89 -495.89 505.89 505.89
7 -68.80 -68.80 72.80 72.80 -556.17 -556.17 566.17 566.17
8 -78.35 -78.35 82.35 82.35 -493.18 -493.18 503.18 503.18
9 -98.04 -98.04 102.04 102.04 -498.35 -498.35 508.35 508.35
10 -119.14 -119.14 123.14 123.14 -467.46 -467.46 477.46 477.46

4.3.3 Characteristic analysis: system

Basic two-phase two-fluid model

Recall that the Jacobian matrix of the system is

A =
(
I + Ait,nc

)−1(Ac + Aix,nc
)

(4.46)

The derivation of A is complicated, it is shown in Appendix A. However, we find that the characteristic

polynomial of A can be simplified to a convenient form. Let λ and K be the eigenvalue and eigenvector of A.

The eigenvalue analysis is performed with the symbolic calculation software Mathematica. The characteristic

polynomial of A given by Mathematica is

P
(
λ
)

=
(
λ− ul

)(
λ− ug

){[(
λ− ul

)2 − β∗l a2
l

][(
λ− ug

)2 − β∗ga2
g

]
− β∗l β∗ga2

l a
2
g

}
(4.47)

where

β∗l =
αlρga

2
g

αlρga2
g + αgρla2

l

, β∗g =
αgρla

2
l

αlρga2
g + αgρla2

l

(4.48)

To study the eigenvalues, we define the following 4th-order polynomial

P4

(
λ
)

=
(
λ− λ−l

)(
λ− λ+

l

)(
λ− λ−g

)(
λ− λ+

g

)
− β∗l β∗ga2

l a
2
g (4.49)

where

λ−l = ul −
√
β∗l al; λ+

l = ul +
√
β∗l al

λ−g = ug −
√
β∗gag; λ+

g = ug +
√
β∗gag

(4.50)
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The features of this polynomial are

• If αg = 0, then β∗g = 0 and β∗l = 1; the system degenerates to single-phase liquid and P4

(
λ
)

has two

meaningful roots, ul − al and ul + al.

• If αg = 1, then β∗g = 1 and β∗l = 0; the system degenerates to single-phase gas and P4

(
λ
)

has two

meaningful roots, ug − ag and ug + ag.

• If 0 < αg < 1, then 0 < β∗g < 1 and 0 < β∗l < 1; the system is mixed with two phases and the

characteristic polynomial is a general 4th-order polynomial, see Figure 4.1. For analysis purposes, let

u1, u2, u3, and u4 denote the increasing order of λ−g , λ−l , λ+
l , and λ+

g

u1 ≤ u2 ≤ u3 ≤ u4 (4.51)

For problems where αg is non-negligible and the relative velocity is small, we have in fact that λ−g ≤

λ−l ≤ λ+
l ≤ λ+

g . Because β∗l and β∗g are non-zero, λ−g , λ−l , λ+
l , and λ+

g are not roots of P4

(
λ
)
. P4

(
λ
)

always has two real roots: one in
(
−∞, u1

)
and the other one in

(
u4,+∞

)
. Because

P4

(
λ = u2

)
= −β∗l β∗ga2

l a
2
g < 0

P4

(
λ = u3

)
= −β∗l β∗ga2

l a
2
g < 0

(4.52)

depending on the sign of the local maximum value in
(
u2, u3

)
, P4

(
λ
)

may have another two real roots,

two equal real roots, or two complex roots. The sign of the local maximum value is determined by the

relative velocity. Let Pmax
4 be the local maximum value in

(
u2, u3

)
Pmax

4 = max
λ∈
(
u2,u3

)P4

(
λ
)

(4.53)

we can check that

Pmax
4 = 0, for |ug − ul| = 0

< 0, for 0 < |ug − ul| ≤
√
β∗l al +

√
β∗gag

(4.54)

which means that the remaining two roots are either two equal real values for ug = ul or two complex

values for 0 < |ug − ul| ≤
√
β∗l al +

√
β∗gag. For larger relative velocity, the two roots transition from

two complex roots, to two equal real roots, and finally to two distinct real roots. For example, we can
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check that if |ug − ul| ≥
√
β∗l al +

√
β∗gag + 4

√
β∗l β

∗
ga

2
l a

2
g, we have

Pmax
4 ≥ P4

(
λ =

u2 + u3

2

)
=

√
β∗l
√
β∗galag

16

[
β∗l β

∗
galag + 4 4

√
β∗l β

∗
ga

2
l a

2
g

(√
β∗l al +

√
β∗gag

)]
> 0

(4.55)

which means there are two real roots in interval
(
u2, u3

)
.
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Figure 4.1: Characteristic polynomial of the basic two-phase two-fluid model

Thus, we obtain the following well-known facts [28, 16] about the basic two-phase two-fluid model

• If αg = 0 or αg = 1, the system degenerates to single-phase liquid or single-phase gas. The system is

hyperbolic.

• If 0 < αg < 1 and ul = ug, the system has 6 real eigenvalues and is hyperbolic.

• If 0 < αg < 1, ul 6= ug, and |ug − ul| ≤
√
β∗l al +

√
β∗gag, the system has 4 real eigenvalues and two

complex eigenvalues. The system is non-hyperbolic.

• If 0 < αg < 1, ul 6= ug, and |ug − ul| >
√
β∗l al +

√
β∗gag, the system transitions from having 4 real

eigenvalues to 6 real eigenvalues.

Isothermal case

In previous characteristic analysis found in the literature, most researchers ignore the energy equation

because the energy equation does not affect the dynamic character of the two-phase flow equations [26], i.e.

its hyperbolicity. As a special case of our previous analysis, we also provide the analysis without the energy

equation, which is called the isothermal case. For the isothermal case, the phase change is ignored and the
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governing equation is

∂αlρl
∂t

+
∂αlρlul
∂x

= 0 (4.56a)

∂αlρlul
∂t

+
∂
(
αlρlu

2
l + αlp

)
∂x

− p∂αl
∂x

= αlρlgx − fwl + fi (4.56b)

∂αgρg
∂t

+
∂αgρgug
∂x

= 0 (4.56c)

∂αgρgug
∂t

+
∂
(
αgρgu

2
g + αgp

)
∂x

− p∂αg
∂x

= αgρggx − fwg − fi (4.56d)

The phasic density is determined by ρk = ρk
(
p
)
. Following a similar derivation given in Appendix A, the

Jacobian matrix of the system is found to be

Aiso =



0 1 0 0

−u2
l + β∗l a

2
l 2ul σ∗l a

2
g 0

0 0 1 0

σ∗ga
2
l 0 −u2

g + β∗ga
2
g 2ug


(4.57)

where al and ag are isothermal speed of sound defined as

a2
l ≡

(
∂ρl
∂p

)−1

; a2
g ≡

(
∂ρg
∂p

)−1

(4.58)

and

β∗l ≡
αlρga

2
g

αlρga2
g + αgρla2

l

; β∗g ≡
αgρla

2
l

αlρga2
g + αgρla2

l

(4.59a)

σ∗l ≡
αlρla

2
l

αlρga2
g + αgρla2

l

; σ∗g ≡
αgρga

2
g

αlρga2
g + αgρla2

l

(4.59b)

Let λ be the eigenvalue. The characteristic polynomial for the isothermal case is found to be

Piso
(
λ
)

=
[(
λ− ul

)2 − β∗l a2
l

][(
λ− ug

)2 − β∗ga2
g

]
− β∗l β∗ga2

l a
2
g (4.60)

Note the Piso
(
λ
)

in Eq. (4.60) has the same form as P4

(
λ
)

in Eq. (4.47). From this analysis, we see that the

characteristic polynomial for the isothermal case is very similar to the general case, though the definition

of speed of sound is different. The analysis performed for the general case can be applied exactly to the

isothermal case.
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4.3.4 Characteristic analysis: hyperbolicity regularization

There are two common methods to hyperbolize the basic two-phase two-fluid model: interfacial pressure

correction [29] and virtual mass force [30]. These two methods can be written in a general form as

∂αlρl
∂t

+
∂αlρlul
∂x

= Scl (4.61a)

∂αlρlul
∂t

+
∂
(
αlρlu

2
l + αlp

)
∂x

− p∂αl
∂x
− Fδ = Sml (4.61b)

∂αlρlel
∂t

+
∂αlρlelul

∂x
+ p

∂αl
∂t

+ p
∂αlul
∂x

= Sel (4.61c)

∂αgρg
∂t

+
∂αgρgug
∂x

= Scg (4.61d)

∂αgρgug
∂t

+
∂
(
αgρgu

2
g + αgp

)
∂x

− p∂αg
∂x

+ Fδ = Smg (4.61e)

∂αgρgeg
∂t

+
∂αgρgegug

∂x
+ p

∂αg
∂t

+ p
∂αgug
∂x

= Seg (4.61f)

Note that we always add/remove the same amount of force from the liquid-phase momentum equation and

remove/add the same amount to the gas-phase momentum equation. This ensures that we get the correct

mixture equation when the two momentum equations are added. The interfacial pressure correction and

virtual mass force are

Fδ = δp
∂αg
∂x

, for interfacial pressure correction (4.62a)

Fδ = Cvm

[
∂
(
ug − ul

)
∂t

+ ul
∂ug
∂x
− ug

∂ul
∂x

]
, for virtual mass force (4.62b)

In Eq. (4.62), δp is the interfacial pressure correction that has the dimension of pressure and Cvm is the

virtual mass that has the dimension of density.

Interfacial pressure correction

The first common method to hyperbolize the system is the interfacial pressure correction, used in CATHARE

code [29]. With Eq. (4.61) and Eq. (4.62a), following the derivation given in Appendix A, the characteristic

polynomial of the system is found to be

P
(
λ
)

=
(
λ− ul

)(
λ− ug

){[(
λ− ul

)2 − β∗l a2
l

][(
λ− ug

)2 − β∗ga2
g

]
− β∗l β∗ga2

l a
2
g + f

(
δp
)
a2
l a

2
g

}
(4.63)
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where

β∗l =
αl
[
ρga

2
g −

(
γg − 1

)
δp
]

+ αgδp

αl
[
ρga2

g −
(
γg − 1

)
δp
]

+ αg
[
ρla2

l −
(
γl − 1

)
δp
] (4.64a)

β∗g =
αg
[
ρla

2
l −

(
γl − 1

)
δp
]

+ αlδp

αl
[
ρga2

g −
(
γg − 1

)
δp
]

+ αg
[
ρla2

l −
(
γl − 1

)
δp
] (4.64b)

f
(
δp
)

=
δp

αl
[
ρga2

g −
(
γg − 1

)
δp
]

+ αg
[
ρla2

l −
(
γl − 1

)
δp
] (4.64c)

Extensive algebraic transformations are performed to obtain Eq. (4.63). We define the following 4th-order

polynomial to study the eigenvalues

P4

(
λ; δp

)
= P 0

4

(
λ; δp

)
+ f

(
δp
)

(4.65)

where

P 0
4

(
λ; δp

)
=

1

a2
l a

2
g

(
λ− λ−l

)(
λ− λ+

l

)(
λ− λ−g

)(
λ− λ+

g

)
(4.66)

The behavior of P4

(
λ; δp

)
is shown on Figure 4.2. It contains two parts: the first part P 0

4

(
λ; δp

)
determines

the shape of the characteristic polynomial; the second part f
(
δp
)

is the perturbation to the characteristic

polynomial. When δp is small, f
(
δp
)

is approximately a linear function of δp.
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Figure 4.2: Characteristic polynomial of the system with interfacial pressure correction

If the interfacial pressure correction δp is to be used for regularization purpose, we would require that δp

is large enough to ensure the characteristic polynomial has all real eigenvalues. The condition is: the local
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maximum value of P4

(
λ; δp

)
in interval

(
u2, u3

)
is non-negative, i.e.

Pmax
4

(
δp
)

= max
λ∈
(
u2,u3

)P4

(
λ; δp

)
≥ 0 (4.67)

Let δcrp be the critical value of the correction that satisfy

Pmax
4

(
δcrp
)

= max
λ∈
(
u2,u3

)P4

(
λ; δcrp

)
= 0 (4.68)

Finding the local maximum value and δcrp analytically is complicated; however, δcrp can be found numerically

with little computational effort.

For problems where |ug − ul| is much smaller than the phasic speed of sound, the interfacial pressure

correction is much smaller than phasic pressure and such correction is physically realistic. When |ug − ul|

is comparable to the phasic speed of sound, interfacial pressure correction is on the order of the phasic

pressure, which is difficult to justify.

Using Eq. (4.68), we can study the behavior of the interfacial pressure correction at different physical

conditions. Among all possible variables, the void fraction and the relative velocity are important. In the

following numerical tests, we keep the liquid velocity at 0 and change the gas velocity through a relative

Mach number (Mr), which is defined as

Mr =
|ug − ul|√

β∗l al +
√
β∗gag

(4.69)

Table 4.5 lists the physical conditions for the numerical tests.

Table 4.5: Physical conditions for studying δcrp

Primary variables Auxiliary variables
Pressure (MPa) 15. εl 154.76
Liquid velocity (m/s) 0. εg -0.012664
Liquid temperature (K) 300. al (m/s) 1526.9
Gas temperature (K) 700. ag (m/s) 576.66
Liquid density (kg/m3) 1003.1 γl 1.1629
Gas density (kg/m3) 57.941 γg 1.2971

Regardless of the validity of the interfacial pressure correction, Figure 4.3a shows δcrp as a function of

void fraction and relative Mach number. The value of δcrp in the figure is normalized by the phasic pressure.

As a function of void fraction, δcrp is zero in the single-phase limit; δcrp is non-zero for two-phase system

when the relative velocity is non-zero. As a function of Mr, δcrp increases with Mr until it reaches the phasic

pressure. When Mr is larger than 1, δcrp decreases with Mr until it reaches 0.
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Figure 4.3: Normalized interfacial pressure correction δcrp as a function of void fraction and relative Mach
number. The interfacial pressure correction is normalized by the phasic pressure.

Table 4.6: Eigenvalues of the system with/without interfacial pressure correction

Case |ug − ul| αg δp λ4 λ6 λ1 λ3

1 10. 0.01 0 -1107.80 1110.78 8.51 -3.56i 8.51 +3.56i
2 10. 0.01 δcrp -1107.80 1110.78 8.51 8.51
3 10. 0.10 0 -679.41 692.57 3.42 -4.74i 3.42 +4.74i
4 10. 0.10 δcrp -679.40 692.56 3.42 3.42
5 10. 0.50 0 -581.21 600.12 0.55 -2.27i 0.55 +2.27i
6 10. 0.50 δcrp -581.21 600.12 0.55 0.54
7 10. 0.99 0 -566.81 586.80 0.01 -0.24i 0.01 +0.24i
8 10. 0.99 δcrp -566.81 586.80 0.01 0.00

9 100. 0.01 0 -1095.97 1126.03 84.97 -35.59i 84.97 +35.59i
10 100. 0.01 δcrp -1095.43 1125.47 84.99 84.98
11 100. 0.10 0 -625.33 756.34 34.50 -47.04i 34.50 +47.04i
12 100. 0.10 δcrp -623.51 755.00 34.25 34.25
13 100. 0.50 0 -497.74 686.28 5.73 -22.91i 5.73 +22.91i
14 100. 0.50 δcrp -497.41 686.11 5.65 5.65
15 100. 0.99 0 -476.88 676.76 0.06 -2.45i 0.06 +2.45i
16 100. 0.99 δcrp -476.88 676.76 0.06 0.06

17 500. 0.01 0 -1064.01 1247.90 408.06 -175.19i 408.06 +175.19i
18 500. 0.01 δcrp -1051.16 1235.58 407.80 407.79
19 500. 0.10 0 -485.95 1097.75 194.10 -194.29i 194.10 +194.29i
20 500. 0.10 δcrp -443.18 1087.98 177.60 177.59
21 500. 0.50 0 -225.75 1079.06 73.35 -119.05i 73.35 +119.05i
22 500. 0.50 δcrp -205.21 1077.78 63.72 63.71
23 500. 0.99 0 -84.61 1076.68 3.96 -22.73i 3.96 +22.73i
24 500. 0.99 δcrp -84.90 1076.68 4.11 4.11
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We compare the interfacial pressure correction obtained from Eq. (4.68) with the correction used in

CATHARE code

δCATHARE
p =

αlαgρlρg
αlρg + αgρl

(
ug − ul

)2
(4.70)

The comparison is shown in Figure 4.3b. We see that δCATHARE
p is not large enough at high void fraction

and is larger than the phasic pressure when the relative Mach number is high.

Table 4.6 lists the eigenvalues of the system calculated with Eq. (4.47) and with the interfacial pressure

correction. The eigenvalues of the system are calculated with different combinations of void fraction and

relative velocity. For the odd cases, δp = 0, which reduces to the basic two-phase two-fluid model; for the

even cases, δp = δcrp . We see from the table that the interfacial pressure correction works as expected to

bring the two complex eigenvalues (λ1 and λ3) to real values. The two real eigenvalues (λ4 and λ6) stay

real.

Virtual mass force

Another common method to make the system hyperbolic is adding a virtual mass force to the phasic

momentum equations. For simplicity, we will show analysis and results for the isothermal case. Combining

Eq. (4.61) and Eq. (4.62b), following the derivation given in Appendix A, the Jacobian matrix for the

isothermal system is found to be

Aiso,vm =
(
I + Avmt

)−1Aiso (4.71)

where Avmt accounts for the effect of time derivatives in the virtual mass force. We obtain

(
I + Avmt

)−1
=



1 0 0 0

ηlul

1+ηl+ηg

1+ηg
1+ηl+ηg

− ηgug

1+ηl+ηg

ηg
1+ηl+ηg

0 0 1 0

− ηlul

1+ηl+ηg

ηl
1+ηl+ηg

ηgug

1+ηl+ηg

1+ηl
1+ηl+ηg


(4.72)

Performing the matrix-matrix multiplication, we obtain the Jacobian matrix of the system

Aiso,vm =



0 1 0 0

−u2
l + βvl a

2
l − κvl uluR 2ul + κvl uR σvl a

2
g − κvguguR κvguR

0 0 1 0

σvga
2
l + κvl uluR −κvl uR −u2

g + βvga
2
g + κvguguR 2ug − κvguR


(4.73)
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Eq. (4.72) and Eq. (4.73) use the following auxiliary variables

κvl ≡
ηl

1 + ηl + ηg
, κvg ≡

ηg
1 + ηl + ηg

(4.74a)

βvl ≡
β∗l +

(
β∗l + σ∗g

)
ηg

1 + ηl + ηg
, βvg ≡

β∗g +
(
β∗g + σ∗l

)
ηl

1 + ηl + ηg
(4.74b)

σvl ≡
σ∗l +

(
β∗g + σ∗l

)
ηg

1 + ηl + ηg
, σvg ≡

σ∗g +
(
β∗l + σ∗g

)
ηl

1 + ηl + ηg
(4.74c)

where β∗l , β∗g , σ∗l , and σ∗g are auxiliary variables defined in Eq. (4.59). ηl, ηg, and uR are additional auxiliary

variables defined as

ηl ≡
Cvm
αlρl

, ηg ≡
Cvm
αgρg

, uR ≡ ug − ul (4.75)

Let λ be the eigenvalue. The characteristic polynomial is found with Mathematica

Piso,vm
(
λ;Cvm

)
=
[(
λ− ul

)2 − βvl a2
l

][(
λ− ug

)2 − βvga2
g

]
− σvl σvga2

l a
2
g + f

(
λ;Cvm

)
(4.76)

where

f
(
λ;Cvm

)
= uR

{
κvg
(
λ− ug

)[(
λ− ul

)2 − (βvl + σvg
)
a2
l

]
− κvl

(
λ− ul

)[(
λ− ug

)2 − (βvg + σvl
)
a2
g

]}
(4.77)
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Figure 4.4: Behavior of characteristic polynomial Piso,vm
(
λ;Cvm

)
with and without virtual mass

Figure 4.4 shows the behavior of Piso,vm
(
λ;Cvm

)
. For the case without the virtual mass force, the

characteristic polynomial might have two complex roots; for the case with the virtual mass force, the
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characteristic polynomial has 4 reals roots if the virtual mass is large enough. The following analysis gives

the condition for Cvm to ensure the characteristic polynomial has 4 real roots.

Assuming that the virtual mass is positive, we can check that

Piso,vm
(
ul;Cvm

)
= −

αlρga
2
ga

2
l

(
ug − ul

)2(
αlρga2

g + αgρla2
l

)(
1 + ηl + ηg

) ≤ 0 (4.78a)

Piso,vm
(
ug;Cvm

)
= −

αgρla
2
l a

2
g

(
ug − ul

)2(
αlρga2

g + αgρla2
l

)(
1 + ηl + ηg

) ≤ 0 (4.78b)

For analysis purposes, we denote u1 = min
(
ul, ug

)
and u2 = max

(
ul, ug

)
. Eq. (4.78) shows that Piso,vm

(
λ;Cvm

)
has at least two reals roots: one in interval

(
−∞, u1

)
and the other one in interval (u2,+∞). The other two

roots, if they are real, they should be in the interval (u1, u2). Because of Eq. (4.78), we know that if the

local maximum value of Piso,vm
(
λ;Cvm

)
in (u1, u2) is non-negative, then there are two real roots in (u1, u2),

which gives the condition

max
λ∈(u1,u2)

Piso,vm (λ;Cvm) ≥ 0 (4.79)

We obtain the critical value Ccrvm when Eq. (4.79) is satisfied. Finding Ccrvm analytically from Eq. (4.79) is

complicated. However, we find that Toumi [30] gave a good approximation to Ccrvm. The approximation is

CToumi
vm = 2αlαg

√
αlαgρlρg (4.80)

We can prove that CToumi
vm is sufficient. Let

u0 =
ul + ug

2
+
ug − ul

2

ρ0

ρ0 + 2ρs

(
1− 2

αgρl
ρ0

)
=
ul + ug

2
+
ug − ul

2

αlρg − αgρl
ρ0 + 2ρs

(4.81)

We can check that u0 ∈ (u1, u2). Evaluating Piso,vm
(
λ;Cvm

)
with λ = u0 and Cvm = CToumi

vm , we obtain

Piso,vm
(
u0;CToumi

vm

)
=

ρ2
0 + 4

(
ρ2
s + ρ0ρs

)(
ρ0 + 2ρs

)4(
ρlρg + 2ρmρs

)(αl − αg)2αlαgρ2
l ρ

2
g

(
ug − ul

)4 ≥ 0 (4.82)

where

ρ0 = αlρg + αgρl (4.83a)

ρm = αlρl + αgρg (4.83b)

ρs =
√
αlαgρlρg (4.83c)
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Combining Eq. (4.78) with Eq. (4.82), we know that if Cvm = CToumi
vm , then there are two real roots on

interval
(
u1, u2

)
, one in

(
u1, u0

)
and another one in

(
u0, u2

)
. Eq. (4.80) shows that the critical virtual

mass does not depend on the relative velocity, which is different than the interfacial pressure correction that

increases greatly with the relative velocity.
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Figure 4.5: Critical virtual mass as a function of void fraction

Figure 4.5 shows the comparison of critical virtual mass calculated with Eq. (4.79) and Eq. (4.80). It

is interesting to note that CToumi
vm is very close to the critical value Ccrvm. Though we prove that CToumi

vm is

sufficient, it is difficult to prove that CToumi
vm is also necessary.

Based on the previous analysis, we know that Eq. (4.79) is guaranteed to make the system hyperbolic.

However, virtual mass force has a major drawback: the eigenvalues of the system are significantly shifted,

which can be seen in Figure 4.4. Addition of virtual mass force changes the shape of characteristic polynomial

(due to change in βvl and βvg ), and the two real eigenvalues (related to the speed of sound) are shifted toward

the phasic velocity. This drawback is shown in the following numerical tests.

Table 4.7 lists the eigenvalues of the isothermal system calculated with Eq. (4.76) and with the virtual

mass force. The test conditions are shown in Table 4.5. The virtual mass force is not enabled in the odd

cases, which correspond to the basic two-phase two-fluid model; the virtual mass force is added to the system

in the even cases. From the table, we see that the virtual mass force works as expected to make the two

complex eigenvalues (λ1 and λ3) real. The two real eigenvalues (λ4 and λ6) remain real but are shifted by

the virtual mass force (sometimes significantly). Because the virtual mass is larger for the cases when void

fraction is close to 0.5, we see that the shift in these two eigenvalues is very large for cases 3-6, 11-14, and

19-22. The two complex eigenvalues (λ1 and λ3) are made real except for case 10 and case 18. For these

two cases, λ1 and λ3 are still complex but with very small imaginary parts. This is because of the numerical
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Table 4.7: Eigenvalues of the system with and without virtual mass force: eigenvalues

Case |ug − ul| αg Cvm λ4 λ6 λ1 λ3

1 10. 0.01 0 -1107.80 1110.78 8.51 -3.56i 8.51 +3.56i
2 10. 0.01 Ccrvm -1075.07 1076.47 7.05 7.06
3 10. 0.10 0 -679.41 692.57 3.42 -4.74i 3.42 +4.74i
4 10. 0.10 Ccrvm -527.89 532.66 4.19 4.19
5 10. 0.50 0 -581.21 600.12 0.55 -2.27i 0.55 +2.27i
6 10. 0.50 Ccrvm -393.21 403.21 1.92 1.95
7 10. 0.99 0 -566.81 586.80 0.01 -0.24i 0.01 +0.24i
8 10. 0.99 Ccrvm -564.85 584.75 0.23 0.24
9 100. 0.01 0 -1095.97 1126.03 84.97 -35.59i 84.97 +35.59i
10 100. 0.01 Ccrvm -1069.39 1083.45 70.44 -0.08i 70.44 +0.08i
11 100. 0.10 0 -625.33 756.34 34.50 -47.04i 34.50 +47.04i
12 100. 0.10 Ccrvm -509.02 557.16 41.33 42.00
13 100. 0.50 0 -497.74 686.28 5.73 -22.91i 5.73 +22.91i
14 100. 0.50 Ccrvm -352.25 452.20 17.74 21.07
15 100. 0.99 0 -476.88 676.76 0.06 -2.45i 0.06 +2.45i
16 100. 0.99 Ccrvm -476.17 675.01 1.89 3.03
17 500. 0.01 0 -1064.01 1247.90 408.06 -175.19i 408.06 +175.19i
18 500. 0.01 Ccrvm -1052.51 1135.58 342.38 -1.96i 342.38 +1.96i
19 500. 0.10 0 -485.95 1097.75 194.10 -194.29i 194.10 +194.29i
20 500. 0.10 Ccrvm -460.69 739.64 176.72 194.10
21 500. 0.50 0 -225.75 1079.06 73.35 -119.05i 73.35 +119.05i
22 500. 0.50 Ccrvm -240.40 737.32 62.48 134.36
23 500. 0.99 0 -84.61 1076.68 3.96 -22.73i 3.96 +22.73i
24 500. 0.99 Ccrvm -145.93 1095.00 3.55 78.00
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error in calculating the Ccrvm and the eigenvalues.

4.4 Dispersion analysis

In previous sections, the characteristic analysis is performed for the 1D two-phase two-fluid model. As

is well known, the basic two-phase two-fluid model is in general ill-posed with complex eigenvalues. Two

common hyperbolicity regularization methods, interfacial pressure correction and virtual mass force, are

studied analytically. Regardless of the physical validity of these two methods, we see that both methods are

capable of making the system hyperbolic. However, both methods have drawbacks: the interfacial pressure

correction is very large for large relative velocity; the virtual mass force depends weakly on the relative

velocity, but it changes significantly the shape of the characteristic polynomial and the magnitude of the two

real eigenvalues, especially for the case where the void fraction is close to 0.5. It is very difficult to justify

the regularization methods.

The characteristic analysis corresponds to the case where the wave number k → ∞ or S0 = 0. For the

case with finite wave number and non-trivial source, we need to perform a dispersion analysis. This allows

to study the effect of algebraic source terms on the stability of the system. Unlike the characteristic analysis

where we can perform analytical analysis, it is very difficult to perform the dispersion analysis analytically

because of two reasons: 1) the source terms are in general problem-dependent and are complicated non-

linear functions of the unknown variables; 2) the dispersion analysis requires finding roots of a complex

characteristic polynomial. Thus, we will derive the dispersion relation analytically as much as possible and

then solve it numerically. As mentioned earlier, the energy equation does not affect the dynamic character

of the two-phase system, we will perform the dispersion analysis for the isothermal system.

Recall that the governing equation for the isothermal system is

∂αlρl
∂t

+
∂αlρlul
∂x

= 0 (4.84a)

∂αlρlul
∂t

+
∂
(
αlρlu

2
l + αlp

)
∂x

− p∂αl
∂x

= αlρlgx − fwl + fi (4.84b)

∂αgρg
∂t

+
∂αgρgug
∂x

= 0 (4.84c)

∂αgρgug
∂t

+
∂
(
αgρgu

2
g + αgp

)
∂x

− p∂αg
∂x

= αgρggx − fwg − fi (4.84d)

which is in general ill-posed due to the complex eigenvalues discussed before. The isothermal system with

the mathematical hyperbolicity regularization, e.g. interfacial pressure correction or virtual mass force, is
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generalized to

∂αlρl
∂t

+
∂αlρlul
∂x

= 0 (4.85a)

∂αlρlul
∂t

+
∂
(
αlρlu

2
l + αlp

)
∂x

− p∂αl
∂x
− Fδ = αlρlgx − fwl + fi (4.85b)

∂αgρg
∂t

+
∂αgρgug
∂x

= 0 (4.85c)

∂αgρgug
∂t

+
∂
(
αgρgu

2
g + αgp

)
∂x

− p∂αg
∂x

+ Fδ = αgρggx − fwg − fi (4.85d)

For the following analysis, the regularization force Fδ is controlled by

Fδ = φvmC
cr
vm

[
∂
(
ug − ul

)
∂t

+ ul
∂ug
∂x
− ug

∂ul
∂x

]
+ φpδ

cr
p

∂αg
∂x

(4.86)

where φp and φvm are two dimensionless variables. Depending on the values of φp and φvm, we have the

following 4 cases that are important to study

• φp = 0 and φvm = 0. No correction is added to the basic two-phase two-fluid model.

• φp > 0 and φvm = 0. Interfacial pressure correction is added to the to the basic two-phase two-fluid

model.

• φp = 0 and φvm > 0. Virtual mass force is added to the basic two-phase two-fluid model.

• φp > 0 and φvm > 0. Both interfacial pressure correction and virtual mass force are added to the basic

two-phase two-fluid model.

4.4.1 Dispersion analysis: interfacial and wall friction models

The starting point for the dispersion analysis is

det

(
A0 +

i

k
S0 −

ω

k
I
)

= 0 (4.87)

In this case, A0 is the matrix derived in Eq. (4.73) and S0 is

S0 =
(
I + Avmt

)−1

0

(
∂S

∂U

)
0

(4.88)

where
(
I + Avmt

)−1
is shown in Eq. (4.72). To proceed, we have to provide the source vector S, which

requires models for the interfacial friction and wall friction. We will use the models discussed in Chapter
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2. For simplicity, the drag coefficient model is used for the interfacial friction

fi =
1

8
ρcalgCD|uR|uR (4.89)

where uR is the relative velocity, ρc is the density of continuous phase, alg is the volumetric interfacial area

concentration, and CD is the drag coefficient. For this dispersion analysis, we take

ρc = ρl, alg =
3.6αg
do

(4.90)

where do is the characteristic diameter, which we will set to a constant value. Finally, the interfacial friction

is

fi = Kiαgρl|uR|uR, where Ki =
3.6

8do
CD (4.91)

For simplicity, we simplify the wall friction to

fwl =
1

2D
αl

(
λlαlρlu

2
l + λgαgρgu

2
g

)
(4.92a)

fwg =
1

2D
αg

(
λlαlρlu

2
l + λgαgρgu

2
g

)
(4.92b)

We take λl, λg, and D as constants. Finally, the wall friction to use is

fwl = αl

(
Kwlαlρlu

2
l +Kwgαgρgu

2
g

)
, where Kwl =

λl
2D

(4.93a)

fwg = αg

(
Kwlαlρlu

2
l +Kwgαgρgu

2
g

)
, where Kwg =

λg
2D

(4.93b)

Combining Eq. (4.89) and Eq. (4.93), we obtain

∂S

∂U
=



0 0 0 0

s21 s22 s23 s24

0 0 0 0

s41 s42 s43 s44


(4.94)
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where

s21 = gx + αlKwlu
2
l +Ki

αg
αl

(
ug − ul

)(
ug + ul

)
− c0αga2

l (4.95a)

s22 = −2αlKwlul − 2Ki
αg
αl

(
ug − ul

)
(4.95b)

s23 = αlKwgu
2
g − 2Ki

ρl
ρg

(
ug − ul

)
ug + c0αla

2
g (4.95c)

s24 = −2αlKwgug + 2Ki
ρl
ρg

(
ug − ul

)
(4.95d)

s41 = αgKwlu
2
l −Ki

αg
αl

(
ug − ul

)(
ug + ul

)
+ c0αga

2
l (4.95e)

s42 = −2αgKwlul + 2Ki
αg
αl

(
ug − ul

)
(4.95f)

s43 = gx + αgKwgu
2
g + 2Ki

ρl
ρg

(
ug − ul

)
ug − c0αla2

g (4.95g)

s44 = −2αgKwgug − 2Ki
ρl
ρg

(
ug − ul

)
(4.95h)

where c0 is an auxiliary variable

c0 =
αl

(
Kwlαlρlu

2
l +Kwgαgρgu

2
g

)
+Kiρl

(
ug − ul

)2
αl
(
αlρga2

g + αgρla2
l

) (4.96)

Now we are ready to proceed with the numerical analysis.

4.4.2 Dispersion analysis: results

We are interested in the imaginary part of ω, denoted by ωI , as a function of wave number k. Table 4.8 lists

Table 4.8: Physical conditions for the dispersion analysis

Variable Value Variable Value
αg 0.2 p: (MPa) 5.52
ρl: (kg/m3) 788.47 ρg: (kg/m3) 28.168
ul: (m/s) 2.0 ug: (m/s) 3.0
al: (m/s) 1121.6 ag: (m/s) 496.14
Kwl 0.77485 Kwg 0.80268
Ki 317.68 CD 0.47655

the test conditions for this analysis. The values of these variables are taken from a boiling pipe experiment,

which will be discussed in the following chapter. Figure 4.6 and Figure 4.7 show the behavior of the growth

factor (ωI). The system has 4 eigenvalues for each wave number k, the maximum value of the imaginary
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parts is taken to be the growth factor, that is

ωI = max
(
ω1,I , ω2,I , ω3,I , ω4,I

)
(4.97)
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Figure 4.6: Effect of interfacial pressure correction (a) and virtual mass force (b) on the growth factor
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constant.

Figure 4.6 shows the effect of interfacial pressure correction and virtual mass force on the growth factor.

As expected, the basic two-phase two-fluid model has positive growth factor and the growth factor increases

with the wave number, which means that the system does not represent the short-wavelength phenomena

[26], such as the dissipative viscous effect. When the interfacial pressure correction or virtual mass is
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sufficiently large, we find that the growth factor becomes negative values, meaning the system is stable

with short-wavelength phenomena. However, because the growth factor depends on the problem-dependent

source terms, it is very difficult to specify how large the interfacial pressure correction or virtual mass is

sufficient.

Numerical tests show that the interfacial friction helps reduce the growth factor. Figure 4.7 shows the

growth factor as a function of the interfacial friction. When increasing the drag coefficient, the growth

factor with interfacial pressure correction and virtual mass force has an interesting behavior. The growth

factor decrease to a minimum as the drag coefficient is small, then increase to a maximum, and finally

decrease gradually. It is worth mentioning that Pokharna [26] performed a similar dispersion analysis of the

isothermal system. Our results are consistent with their results.

4.5 Conclusion

In this chapter, the Jacobian matrix of the two-phase two-fluid model is derived. The Jacobian matrix is

simplified to a well-structured form with the help of a few auxiliary variables defined in Chapter 3. The

derivation and simplification are general for arbitrary EOS. Based on the simplified Jacobian matrix, an

analytical characteristic analysis and dispersion analysis to the two-phase two-fluid model are performed.

The characteristic analysis starts with the conservative part of the model. Analytical eigenvalues and

eigenvectors of the conservative part are obtained with a reasonable approximation to the Jacobian matrix.

Verification shows that the approximation is acceptable. The characteristic analysis to the complete model

shows that the model is in general non-hyperbolic when the relative velocity is non-zero. Hyperbolicity

regularization using the interfacial pressure correction and the virtual mass force is studied analytically. The

minimum interfacial pressure correction and virtual mass force to ensure hyperbolicity is studied analytically

and numerically. A dispersion analysis is performed for the two-phase two-fluid model using the physical

conditions of a boiling pipe problem. The dispersion analysis shows that the basic two-phase two-fluid model

gives positive growth factor for waves of all wavelength. Regardless of the validity of the interfacial pressure

correction or virtual mass force, the dispersion analysis shows that both the interfacial pressure correction

and the virtual mass force help reduce the growth factor. When the interfacial pressure correction or virtual

mass force are large enough, the growth factor could be reduced to negative values, which means the system

is stable for waves of all wavelength. However, the physical justification for the interfacial pressure correction

or virtual mass force is difficult.
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Chapter 5

FORWARD SOLVER

5.1 Introduction

A numerical method based on the first order donor cell differencing and a staggered grid is used in most

two-phase flow system codes, such as RELAP [2], TRAC [3], and CATHARE [31]. In these system codes,

inherent numerical dissipation and various degree of implicitness are necessary to stabilize the method. As

is discussed in previous chapters, notations and discretization for these solvers are very complicated.

The development of shock-capturing upwind schemes started in early 1980s for single-phase hyperbolic

systems (Euler equation of gas dynamics) by many pioneering researchers, such as Godunov [32], Roe [33],

van Leer [34], and Osher [35]. The research and applications of shock-capturing upwind schemes were

mainly in the aeronautical industry and in the Computational Fluid Dynamics (CFD) field. Exact or

approximate Riemann solver is at the heart of most shock-capturing upwind schemes. Among different

approximate Riemann solvers, the Roe-type approximate Riemann solver is the most popular one. The

advanced discretization methods in CFD field include Weighted Essentially-Non-Oscillatory (WENO) [36,

37, 38, 39] and Discontinuous Galerkin Finite Element Method (DG-FEM) [40, 41, 42]. Among these

advanced methods, the WENO-type method is both mathematically and numerically simple. The extension

of shock-capturing upwind methods, especially the Roe-type method and the WENO-type method, to the

two-phase two-fluid model is the focus of this chapter.

The challenge in constructing a shock-capturing upwind solver for the two-phase system is that the

eigenvalue analysis is difficult because of the coupling between the two phases and the complex EOS. Sev-

eral shock-capturing upwind schemes have been proposed for the two-phase two-fluid six-equation model.

Toumi [30] proposed an approximate Riemann solver using Roe’s approach assuming the liquid being non-

compressible; Yeom [43] also proposed a stable upwind scheme based on the Harten, Lax, and van Leer

(HLL) Riemann solver using the stiffened EOS; Chang [44] proposed the Advection Upwind Splitting Method

(AUSM) method using stiffened EOS. Many of these schemes were based on a specific form of EOS, espe-

cially the stiffened EOS. However, the stiffened EOS is not general enough for practical two-phase problems,
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e.g. a boiling pipe, and applications of these solvers to practical two-phase problems are not seen in the

literature. In this chapter, we are going to develop a new scheme, based on a Roe-type and a WENO-type

numerical flux, for the two-phase two-fluid model using arbitrary EOS.

5.2 Review of numerical methods for conservation law

This section gives a review of numerical methods for solving a conservation law. The numerical methods for

single-phase Euler equation are used as examples.

5.2.1 Discretization

For 1D problems, the spatial discretization is shown in Figure 5.1. In this thesis, we consider uniform spatial

discretization. The physical domain is divided into N cells. The cell center is denoted with an index i and

the cell boundaries are denoted with i± 1/2, for i = 1, · · · , N . All unknown variables are stored in the cell

center (collocated mesh). On each side of the physical domain, ghosts cells are used to deal with boundary

conditions.

Figure 5.1: Schematic of the 1D spatial discretization

In time domain, the time step is denoted with n = 0, 1, 2, · · · . The time step is determined by the

Courant-Friedrichs and Lewy (CFL) condition

∆t = CFL
∆x

λmax
(5.1)

where 0 < CFL ≤ 1 is a predetermined number and λmax is the maximum wave speed (or eigenvalue) at the

current time step.
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5.2.2 Conservative method

The one-dimensional conservation law (without source) is

∂U

∂t
+
∂F

∂x
= 0 (5.2)

where U is the vector of conservative variables and F is the vector of fluxes. To distinguish the conservative

variables with the physical variables, i.e.
(
αg, p, Tl, Tg, ul, ug

)
, we will use W to denote the vector of physical

variables. In this thesis, we will focus on conservative methods.

Definition 5.1. Conservative method. A conservative method for the conservation law, Eq. (5.2), is a

numerical method of the form

Un+1
i = Un

i −
∆t

∆x

[
F̂i+ 1

2
− F̂i− 1

2

]
(5.3)

where

F̂i+ 1
2

= Fi+ 1
2

(
Un
i−lL , · · · ,U

n
i+lR

)
(5.4)

where lL and lR are two non-negative integers. F̂i±1/2 is the numerical flux, which is an approximation to the

exact flux. For a conservative method, a fundamental requirement on the numerical flux is the consistency

condition

Fi+ 1
2

(
U, · · · ,U

)
= F

(
U
)

(5.5)

For example, the numerical flux of the Lax-Friedrichs method is given by

F̂LF
i+ 1

2
=

1

2

(
Fni + Fni+1

)
− 1

2
λmax

(
Un
i+1 −Un

i

)
(5.6)

In this thesis, two type of numerical flux are constructed: a Roe-type low-order numerical flux and a

WENO-type high-order numerical flux, denoted by F̂Roe
i+1/2 and F̂WENO

i+1/2 , respectively. We take the single-

phase Euler equation as an example to explain the concept in these two numerical fluxes.

5.2.3 Roe-type numerical flux

The governing equation and the associated Jacobian matrix of Euler equation are given in Eq. (4.8) and Eq.

(4.10) of Chapter 4. Let A be the Jacobian matrix, D be the diagonal matrix containing the eigenvalues,
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and K be the right eigenvector matrix whose columns are the eigenvectors. Recall that

D =


u− a 0 0

0 u 0

0 0 u+ a

 ,K =


1 1 1

u− a u u+ a

H − ua H − γ∗a2 H + ua

 (5.7)

where γ∗ =
(
γ − 1

)−1
and

A = KDK−1 (5.8)

In the expression of the Roe-type numerical flux, the following matrix |A| is commonly used

|A| = K|D|K−1, with |D| =


|u− a| 0 0

0 |u| 0

0 0 |u+ a|

 (5.9)

The Roe-type numerical flux is constructed by

F̂Roe
i+ 1

2
=

1

2

(
Fni + Fni+1

)
− 1

2
|Ã|
(
Un
i+1 −Un

i

)
(5.10)

where Ã is the Jacobian matrix evaluated at an intermediate state Ũ (or W̃). The Roe-type numerical

flux contains two parts: the first part
(
Fni + Fni+1

)
/2 is the classical central flux, which is unconditionally

unstable even for linear advection problems; the second part, |Ã|
(
Un
i+1 −Un

i

)
/2, gives the correction to the

central flux by removing characteristic waves moving in the wrong direction.

The remaining task is to find an appropriate intermediate state for evaluating Ã. The intermediate state

is often found with the Roe-Pike method [25, 45], which requires the intermediate state satisfying

Un
i+1 −Un

i =

3∑
m=1

c̃mK̃m (5.11a)

Fni+1 − Fni =

3∑
m=1

c̃mλ̃mK̃m (5.11b)

where c̃m are the coefficients when decomposing Un
i+1−Un

i to the eigenvectors. Note that c̃m, λ̃m, and K̃m

are all evaluated at the intermediate state. For the cell boundary where Ui and Ui+1 are not close, finding

the intermediate state is in fact non-trivial for an arbitrary EOS [45]. For brevity, we leave the derivation

86



in Appendix B. The conclusion is that by taking the following intermediate state

ρ̃ =
√
ρiρi+1 (5.12a)

ũ = ωiui + ωi+1ui+1 (5.12b)

H̃ = ωiHi + ωi+1Hi+1 (5.12c)

h̃ = ωihi + ωi+1hi+1 (5.12d)

γ̃ = ωiγi + ωi+1γi+1 (5.12e)

ã = ωiai + ωi+1ai+1, if ∆p = 0 and ∆h = 0 (5.12f)

=

[
∆ρ

γ̃∆p−
(
γ̃ − 1

)
ρ̃∆h

]−1/2

, otherwise

where ωi and ωi+1 are weights defined as

ωi =

√
ρi√

ρi +
√
ρi+1

, ωi+1 =

√
ρi+1√

ρi +
√
ρi+1

(5.13)

we can show that Eq. (5.11a) and Eq. (5.11b) are satisfied with the following coefficients

c̃1 =
1

2ã2

(
∆p− ρ̃ã∆u

)
(5.14a)

c̃2 = ∆ρ−∆p/ã2 (5.14b)

c̃3 =
1

2ã2

(
∆p+ ρ̃ã∆u

)
(5.14c)

where ∆ρ = ρi+1 − ρi, ∆u = ui+1 − ui, and ∆p = pi+1 − pi.

Once the intermediate state and the coefficients c̃m are found, the Roe-numerical flux can be transformed

into

F̂Roe
i+ 1

2
=

1

2

(
Fni + Fni+1

)
− 1

2

3∑
m=1

c̃m|λ̃m|K̃m (5.15)

Eq. (5.15) is preferable to Eq. (5.10) because it avoids constructing the eigenvector matrix, constructing

the inverse of eigenvector matrix, and performing the matrix-vector product required by Eq. (5.10).

5.2.4 WENO-type numerical flux

The WENO scheme [36, 37, 38, 39] is based on the ENO (essentially non-oscillatory) scheme [46]. The key

idea of the ENO scheme is to use the smoothest stencil among several candidates to approximate the fluxes

at cell boundaries to obtain a high order accuracy and avoid spurious oscillations. The cell-average version
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of the ENO scheme involves a procedure of reconstructing points values from cell averages. Later, Shu and

Osher [36] developed the flux version of the ENO scheme. The WENO scheme of Liu, Osher, and Chan [47]

is another way to obtain a high order accuracy. The idea of WENO scheme is that a convex combination

of all the candidate stencils is used to approximate the numerical flux instead of using only the smoothest

one. Each of the candidate stencils is assigned a weight to achieve the high-order accuracy in smooth regions

and to avoid oscillations near discontinuities. Like ENO schemes, there are two versions of WENO schemes

[38, 48, 49]: cell-average version and flux version. We will formulate our numerical flux based on the flux

version of WENO schemes, because it requires fewer EOS evaluations than the cell-average version.

WENO reconstruction procedure

The WENO scheme is based on a WENO reconstruction procedure, see Figure 5.2. The WENO scheme

uses a convex combination of three candidate stencils, i.e. S0 =
(
xi−2, xi−1, xi

)
, S1 =

(
xi−1, xi, xi+1

)
, and

S2 =
(
xi, xi+1, xi+2

)
, to approximate the numerical flux at the cell boundary xi+1/2.

Figure 5.2: Schematic of the WENO reconstruction procedure

Let f be a scalar flux function. The approximate numerical flux at the cell boundary xi+1/2 from WENO

reconstruction procedure is

f̂i+ 1
2

= WenoRS
(
fi−2, fi−1, fi, fi+1, fi+2

)
=

2∑
k=0

ωkqk
(
fi+k−2, fi+k−1, fi+k

)
(5.16)

where WenoRS
()

is the reconstruction function. qk is the interpolation function and ωk is the weight of k-th

stencil. qk is defined by

qk
(
g0, g1, g2

)
=

2∑
m=0

akmgm (5.17)

where akm for k,m = 0, 1, 2 are constant coefficients given by Jiang [38]. Table 5.1 lists the coefficients akm.
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Table 5.1: Constant coefficients akm used in the WENO reconstruction procedure

akm m = 0 m = 1 m = 2
k = 0 1/3 -7/6 11/6
k = 2 -1/6 5/6 1/3
k = 3 1/3 5/6 -1/6

The weight ωk is

ωk =
θk

θ0 + θ1 + θ2
, with θk =

Ck(
ε+ ISk

)2 (5.18)

where Ck is the optimal weight. In [38], C0 = 1/10, C1 = 6/10, and C2 = 3/10 are used. ε = 10−6 is a

positive real number to avoid the denominator becoming zero. ISk is the smoothness measurement of the

flux function in the k-th candidate stencil,

IS0 =
13

12

(
fi−2 − 2fi−1 + fi

)2
+

1

4

(
fi−2 − 4fi−1 + 3fi

)2
(5.19a)

IS1 =
13

12

(
fi−1 − 2fi + fi+1

)2
+

1

4

(
fi−1 − fi+1

)2
(5.19b)

IS2 =
13

12

(
fi − 2fi+1 + fi+2

)2
+

1

4

(
3fi − 4fi+1 + fi+2

)2
(5.19c)

The details of defining the weights of the stencils are referred to [38]. The key idea is: for each stencil, the

weight is assigned a very small positive value if a discontinuity is detected in that stencil; if no discontinu-

ities are detected in all three stencils, the weights are assigned to achieve optimal accuracy. The WENO

reconstruction procedure is problem independent and works like a interpolation procedure for any scalar

functions.

WENO-type numerical flux for a non-linear system

We take the Euler equation as an example to explain the procedure for constructing a WENO-type numerical

flux for a non-linear system. The WENO reconstruction procedure does not take into account the upwind

information, which is however required by the numerical flux. To account for the upwind information, Jiang

[38] suggest using the flux vector splitting approach. At first, the flux in the cell center is split into positive

and negative parts

Fi = F+
i + F−i , for each i (5.20)

The flux should be split such that F+
i contains waves moving in the positive direction and F−i contains waves

moving in the negative direction. Then, the WENO reconstruction procedure is applied to the two parts to
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give F̂+
i+1/2 and F̂−i+1/2. Finally, the numerical flux is obtained with

FWENO
i+ 1

2
= F̂+

i+ 1
2

+ F̂−
i+ 1

2

(5.21)

In practice, the most common flux splitting approach is the Lax-Friedrichs flux splitting

F±i =
1

2

(
Fi ± λmaxUi

)
, for each i (5.22)

where λmax is the maximum wave speed or eigenvalue at a time level.

The WENO reconstruction procedure works for a scalar flux function, the natural approach in construct-

ing F̂+
i+1/2 and F̂−i+1/2 would be the component-by-component reconstruction. However, for problems that

contain strong discontinuities, the component-by-component reconstruction is not effective in the sense that

spurious solutions exist near the discontinuities. In this case, Jiang [38] suggest applying the reconstruction

in characteristic space. The reconstruction in characteristic space will be used in this thesis.

We take the positive part as an example to explain the reconstruction process. The procedure for the

negative part is analogous. Let K̃ be the intermediate eigenvector matrix used in the Roe-type numerical

flux, the reconstruction has three steps. First, the split flux vector is projected into the characteristic space

by (
FFF+
i−2,FFF

+
i−1,FFF

+
i ,FFF

+
i+1,FFF

+
i+2

)
= K̃−1 ·

(
F+
i−2,F

+
i−1,F

+
i ,F

+
i+1,F

+
i+2

)
(5.23)

Second, in the characteristic space, the WENO reconstruction procedure is applied component-by-component

to get the flux at the cell boundary, i.e.

FFF+
i+ 1

2 ,m
= WenoRS

(
FFF+
i−2,m,FFF

+
i−1,m,FFF

+
i,m,FFF

+
i+1,m,FFF

+
i+2,m

)
, for m = 1, 2, 3 (5.24)

Third, the flux at the cell boundary is projected back to the normal space by

F+
i+ 1

2

= K̃ · FFF+
i+ 1

2

(5.25)

F+
i+1/2 is then used in Eq. (5.21).

5.2.5 Third-order Total Variation Diminishing Runge-Kutta method

The third-order Total Variation Diminishing (TVD) Runge-Kutta (RK3) method is often used with the

WENO-type numerical flux to integrate the system of ordinary equations in time. For ease of notations, we
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suppose the system is written as

∂U

∂t
= LLL†

(
U
)

(5.26)

where LLL† contains the spatial differential operator and the source vector. The RK3 method is given by

U∗ = Un + ∆tLLL†
(
Un
)

(5.27a)

U∗∗ =
3

4
Un +

1

4
U∗ +

1

4
∆tLLL†

(
U∗
)

(5.27b)

Un+1 =
1

3
Un +

2

3
U∗∗ +

2

3
∆tLLL†

(
U∗∗

)
(5.27c)

where U∗ and U∗∗ are conservative vectors at two intermediate steps.

5.3 Numerical solver for two-phase two-fluid model

In previous sections, we introduced two numerical flux for solving the 1D conservation law for single-phase

problems: the Roe-type numerical flux and the WENO-type numerical flux. In this section, we extend these

two numerical flux to the 1D two-phase two-fluid model.

Recall that the one-dimensional two-phase two-fluid model is

∂U

∂t
+
∂F

∂x︸ ︷︷ ︸
Conservative parts

+ Pix
∂αg
∂x

+ Pit
∂αg
∂t︸ ︷︷ ︸

Non-conservative parts

= S︸︷︷︸
Source

(5.28)

where U is the vector of conservative variables. In practice, we need to solve for the physical variables,

denoted by W. For the two-phase two-fluid model, the physical variables are

W =

(
αg p Tl Tg ul ug

)T
(5.29)

where the superscript T denote the transpose operator. Note that we assume the pressure of liquid and gas

phases are equal.

The RK3 method is used to integrate the system in time. Here, we take the first step in RK3 method as

an example to explain the process. After discretizing the equation in time and space, we get

LLL†
(
Un
i

)
= −

F̂i+ 1
2
− F̂i− 1

2

∆x
−Pn

ix,i

αng,i+1 − αng,i−1

2∆x
−Pn

it,i

αng,i − α
n−1
g,i

∆t
+ Sni (5.30)

where F̂i+1/2 and F̂i−1/2 are the numerical fluxes, a Roe-type or a WENO-type numerical flux.
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Note that we approximate the non-conservative part with a simple finite difference approximation. This

approximation inherently requires the void fraction being smooth. For problems where the void fraction

contains discontinuities, this approximation will cause issues on a very fine mesh. In other words, because

the p∂αg/∂x part is non-conservative, constructing a weak solution to a discontinuity is problematic [16].

In our numerical tests, we observe that it is possible to approximate the ∂αg/∂x with a high-order central

or one-side finite difference scheme when the WENO-type numerical flux is used. However, the difficulties

in determining the ghost cell quantities make high-order finite difference schemes less preferable, because

inappropriate ghost cell quantities could easily corrupt the solutions in the physical domain. Applying the

central second-order approximation to ∂αg/∂x will eventually degrade the WENO-type scheme to second-

order accurate in space.

After each time step, we need to transform the conservative variables (U) into physical variables (W).

This transformation is non-linear because of the complicated EOS. In this thesis, the transformation is

handled by

Un+1
i −Un

i = (Aw)
n
i

(
Wn+1

i −Wn
i

)
(5.31)

where Aw = ∂U/∂W. Then, we obtain

Wn+1
i = Wn

i +
(
A−1

w

)n
i

(
Un+1
i −Un

i

)
(5.32)

The details of Aw and A−1
w are given in Appendix D.

The remaining task is to construct the numerical flux at the cell boundaries. We constructed two types

of numerical flux: a Roe-type flux and a WENO-type flux.

5.3.1 Roe-type numerical flux

The conservative part matrix Ac of the two-phase two-fluid model is given in Eq. (4.36) of Chapter 4.

Like the numerical flux for the Euler equation, the Roe-type numerical flux for the two-phase system is

constructed with

F̂Roe
i+ 1

2
=

1

2

(
Fni + Fni+1

)
− 1

2
|Ãc|

(
Un
i+1 −Un

i

)
(5.33)

or equivalently,

F̂Roe
i+ 1

2
=

1

2

(
Fni + Fni+1

)
− 1

2

6∑
m=1

c̃m|λ̃c,m|K̃c,m (5.34)

where λc,m and Kc,m are the m-th eigenvalue and eigenvector of the matrix Ac. As was discussed in Sec. 4.3,

we are not able to obtain the exact eigenvalues and eigenvectors of Ac. In practice, we use the approximation
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made in Eq. (4.42) and Eq. (4.43), i.e.

λc,1 ≈ ul −
√
βlal;λc,2 = ul;λc,3 ≈ ul +

√
βlal (5.35a)

λc,4 ≈ ug −
√
βgag;λc,5 = ug;λc,6 ≈ ug +

√
βgag (5.35b)

and the right eigenvectors are approximated as

K1,c ≈



1

ul −
√
βlal

Hl −
√
βlalul

0

0

0


,K2,c ≈



1

ul

Hl − γ∗l a2
l

0

0

0


,K3,c ≈



1

ul +
√
βlal

Hl +
√
βlalul

0

0

0



K4,c ≈



q4

q4λc,4

q4

[
Hl − u2

l + ulλc,4
]

1

ug −
√
βgag

Hg −
√
βgagug


,K5,c ≈



0

0

0

1

ug

Hg − γ∗ga2
g


,K6,c ≈



q6

q6λc,6

q6

[
Hl − u2

l + ulλc,6
]

1

ug +
√
βgag

Hg +
√
βgagug



(5.36)

where γ∗l = 1/
(
γl − 1

)
and γ∗g = 1/

(
γg − 1

)
. q4 and q6 are two auxiliary variables defined as

q4 ≡
σla

2
g(

λc,4 − λc,1
)(
λc,4 − λc,3

) ; q6 ≡
σla

2
g(

λc,6 − λc,1
)(
λc,6 − λc,3

) (5.37)

The right eigenvector matrix can thus be approximated as

Kc ≈
(

K1,c K2,c K3,c K4,c K5,c K6,c

)
(5.38)

Like what is done for the Euler equation, the variables, c̃m, λ̃c,m, and K̃c,m, are evaluated at an appro-
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priate intermediate state. Following the Roe-Pike’s method, the intermediate state should satisfy

Un
i+1 −Un

i =

6∑
m=1

c̃mK̃c,m (5.39a)

Fni+1 − Fni =

6∑
m=1

c̃mλ̃c,mK̃c,m (5.39b)

However, because of the complexity of the two-phase two-fluid model, it is very complicated to find the exact

intermediate state. In addition, because the eigenvalues and eigenvectors are approximate, finding the exact

intermediate state will not improve the numerical solution much. Based on the similarity of λc and Kc to

that of the Euler equation, we propose to use the following intermediate variables

φ̃k = ωk,iφk,i + ωk,i+1φk,i+1, for φ = u,H, h, a, γ, σ, β and k = l, g (5.40)

where ωk,i and ωk,i+1 are the weights defined by

ωk,i =

√
αk,iρk,i

√
αk,iρk,i +

√
αk,i+1ρk,i+1

, ωk,i+1 =

√
αk,i+1ρk,i+1

√
αk,iρk,i +

√
αk,i+1ρk,i+1

(5.41)

After specifying the intermediate variables, the coefficients c̃m are found by solving Eq. (5.39a). The

procedure for solving c̃m is given in Appendix C. Finally, the numerical flux is constructed with Eq.

(5.34). As will be shown in the following numerical tests, the Roe-type numerical flux works well even for

problems with strong discontinuities.

5.3.2 WENO-type numerical flux

For the two-phase two-fluid model, the procedure for constructing the WENO-type numerical flux is the

same as the procedure shown in Eq. (5.20) to Eq. (5.25). The difference is that the dimension of vectors

and matrices increases from 3 to 6 and the eigenvector matrix K̃ is replaced with K̃c, which is approximated

with Eq. (5.38).

5.4 Numerical tests

A numerical solver is developed using the numerical method described in previous sections. As was discussed

in Chapter 4, the basic two-phase two-fluid model has two complex eigenvalues when the relative velocity is

non-zero. From a mathematical point of view, the two complex eigenvalues make the system ill-posed; from

a numerical point of view, the numerical solver tends to give non-physical oscillations near discontinuities

94



when the spatial discretization is fine enough. The numerical tests will show that the interfacial pressure

correction helps at least reduce the non-physical oscillations.

For testing purposes, we will use the interfacial pressure correction

Fδ = φpp
∂αg
∂x

(5.42)

where φp is a dimensionless variable representing the normalized interfacial pressure correction. Because the

physical justification for the interfacial pressure correction is difficult, we are unable to tell how large the

correction should be. What we can claim is how the numerical solution behaves when a certain interfacial

pressure correction is used. In our numerical tests, φp is evaluated with

φp = max

{(
δcrp
p

)
1

, · · · ,
(
δcrp
p

)
N

}
(5.43)

where the maximum value is found over all cells. The value given by Eq. (5.43) ensures that the system is

hyperbolic in the whole domain. To test the effect of this regularization on the numerical solution, we will

enable or disable this regularization in the numerical tests. To distinguish the difference, we will use the

legend ‘ROE-IP’ (or ‘WENO-IP’) for the results when the interfacial pressure correction is enabled.

As was discussed in Chapter 4, the virtual mass force can also hyperbolize the basic two-phase two-

fluid model. But we will not consider the virtual mass force in our numerical tests for two reasons: 1) the

addition of virtual mass force changes significantly the eigenvalues of the basic two-phase two-fluid model

even for a small relative velocity; 2) the addition of virtual mass force adds extra difficulties to the numerical

solver, because it requires constructing two extra upwind numerical fluxes. Unlike the ∂αg/∂x term, the

discretization of the virtual mass force is non-trivial.

5.4.1 Periodic pipe

This is a periodic problem which is introduced for testing purposes. The problem has initially smooth

solution in the whole pipe; after a certain time, discontinuities will be formed. The smooth solution of this

problem is used to study the order of accuracy of Roe-type and WENO-type scheme. The source vector is

ignored for this problem, i.e. S = 0.

The periodic pipe is filled with water and steam, see Figure 5.3. The length of the pips is L = 10 m.

Initially, in the whole pipe, the void fraction is αg = 0.75; the velocity of liquid and gas phase are 0; and the
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temperature of liquid and gas are 300 K and 700 K. The initial pressure has a sinusoidal profile

p
(
x
)

= p0 + p1 sin
(
k02π

x

L

)
(5.44)

where p0 = 7.5 MPa, p1 = 1.0 MPa, and k0 = 1. Keeping the void fraction, liquid/gas velocity, and

liquid/gas temperature at constants, the solution is completely determined by 3 parameters, p0, p1, and k0.

Figure 5.3: Schematic of a periodic pipe

Order of accuracy of Roe-type and WENO-type scheme

This test is to study the order of accuracy of Roe-type and WENO-type scheme. Both Roe-type and

WENO-type scheme are run with CFL = 0.8. The numerical solution at t = 5 ms is used to calculate the

discretization error. Since we do not have an exact solution, the solution from the WENO-type scheme

using 6400 cells is used as the reference solution. As will be seen in the results, the WENO-type scheme

converges very fast in space and the solution with 6400 cells almost reach the machine precision. We will

use the L2-norm to quantify the discretization error. The L2-norm of a general function f in the physical

domain [x1, x2] is calculated by

‖DEN‖2 =

√
1

x2 − x1

∫ x2

x1

(
fN − freference

)2
dx (5.45)

where DEN denotes the discretization error of a numerical solution using N cells.

Figure 5.4 and Figure 5.5 show the numerical solution at 5 ms and 50 ms, respectively. Though the

initial solution is smooth, discontinuities are formed when time goes on. We can find that the solution

from WENO-type scheme converges rapidly to the reference solution, even 50 cells are enough to capture

the correct profile. In the contrast, the solution from the Roe-type scheme converges slowly. The Roe-type
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Figure 5.4: Solution of the periodic pipe problem at 5 ms. The reference solution is obtained with WENO-
type scheme using 6400 cells.
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Figure 5.5: Solution of periodic pipe problem at 50 ms. The reference solution is obtained with WENO-type
scheme using 1600 cells.
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scheme requires a much finer mesh to capture the correct profile.

Figure 5.6 and Table 5.2 show the L2-norm and the order of accuracy for the 6 physical variables. The

solution at 5 ms is used to obtain the L2-norm. We see that the order of accuracy of Roe-type scheme and

WENO-type scheme are approximately 1 and 3. For the WENO-type scheme, when the mesh is fine enough

(larger than 100 cells), L2-norm of the discretization error does not reduce much when we further refine the

mesh, because the numerical solution is so close to the reference solution that the truncation error tends to

affect.
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Figure 5.6: L2-norm of discretization errors of different variables at 5 ms.

5.4.2 Shock-tube

This problem was originally introduced by Toumi [30]. The objective of this problem is to show that the

solver can handle discontinuities and large differences between the two phases. The shock-tube is of 10 m in

length and has a diaphragm in the middle (x = 5 m), which separates the left and right states. Both ends

of the tube are kept closed, see Figure 5.7. The original initial conditions used by Toumi for left and right

state pressure are 20 MPa and 10 MPa, which are close to the critical pressure of water/steam mixture.

We modify the left and right state pressure to lower values, 15 MPa and 7.5 MPa, to avoid the critical

water/steam region. Properties of liquid and gas are obtained from the IAPWS-IF97 formulation [15]. The
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Table 5.2: Observed order of accuracy of Roe-type scheme and WENO-type scheme

N αg: (L2, order) p: (L2, order) ul: (L2, order) ug: (L2, order) ρl: (L2, order) ρg: (L2, order)

ROE
12 8.91E-05 – 1.38E+05 – 4.13E-01 – 1.57E+01 – 6.01E-02 – 3.45E-01 –
25 4.29E-05 1.00 6.89E+04 0.95 2.31E-01 0.79 8.78E+00 0.79 2.99E-02 0.95 1.70E-01 0.97
50 2.17E-05 0.98 3.47E+04 0.99 1.24E-01 0.90 4.74E+00 0.89 1.51E-02 0.99 8.54E-02 0.99
100 1.10E-05 0.98 1.74E+04 1.00 6.43E-02 0.95 2.46E+00 0.94 7.55E-03 1.00 4.27E-02 1.00
200 5.53E-06 0.99 8.70E+03 1.00 3.27E-02 0.97 1.25E+00 0.97 3.78E-03 1.00 2.13E-02 1.00
400 2.77E-06 0.99 4.35E+03 1.00 1.65E-02 0.99 6.33E-01 0.99 1.89E-03 1.00 1.07E-02 1.00

WENO
12 2.16E-05 – 1.30E+04 – 2.60E-02 – 8.24E-01 – 5.60E-03 – 3.09E-02 –
25 2.90E-06 2.74 1.10E+03 3.36 2.17E-03 3.38 6.57E-02 3.45 4.72E-04 3.37 2.84E-03 3.25
50 2.83E-07 3.35 1.20E+02 3.19 2.64E-04 3.04 7.42E-03 3.15 4.99E-05 3.24 3.40E-04 3.06
100 4.28E-08 2.73 1.66E+01 2.86 4.19E-05 2.66 1.03E-03 2.85 6.14E-06 3.02 5.33E-05 2.68
200 2.82E-08 0.60 6.65E+00 1.32 1.31E-05 1.68 4.02E-04 1.35 2.68E-06 1.20 3.03E-05 0.82
400 1.98E-08 0.51 2.52E+00 1.40 4.68E-06 1.48 1.54E-04 1.38 1.07E-06 1.32 1.27E-05 1.25

source vector is ignored for this problem, i.e. S = 0.

Figure 5.7: Schematic of two-phase shock-tube problem

The initial conditions for this test are listed in Table 5.3. Because the temperature of the two phases are

not explicitly shown in this problem, we will report the density of the two phases. Numerical solution at 5

ms will be discussed.

Table 5.3: Initial conditions for two-phase shock-tube problem

Primary variables Auxiliary variables
Left Right Left Right

αg 0.25 0.1 al (m/s) 1526.9 1514.9
p (MPa) 15.0 7.5 ag (m/s) 576.66 613.83
ρl (kg/m3) 1003.1 999.85 γl 1.1629 1.1555
ρg (kg/m3) 57.941 25.527 γg 1.2971 1.2944
ul (m/s) 0.0 0.0 εl 154.76 304.8
ug (m/s) 0.0 0.0 εg -0.01266 -0.01198

Test 1: wave structure

This test is to study the wave structure of the two-phase shock-tube problem and the performance of the

numerical solver.
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The relative velocity of this problem is not small and the solution contains very strong discontinuities,

which make the ill-posedness issue very severe. Without a proper hyperbolicity regularization, we observed

numerically that the oscillations near the middle discontinuities are so large that the numerical solver fails

(e.g. non-physical void fraction and pressure are produced) for simulations with more than 100 cells. For

testing purposes, we bring in the interfacial pressure correction. For this problem, to ensure the system is

hyperbolic in the whole tube, the normalized interfacial pressure correction is φp = 0.126, which means the

interfacial pressure correction is comparable to the phasic pressure.
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Figure 5.8: Solution of two-phase shock-tube problem at 5 ms.

Both the Roe-type scheme and the WENO-type scheme are run with CFL = 0.8. For comparison, the

numerical solution from Roe-type scheme using 20000 cells is used as the reference solution. Figure 5.8

shows the numerical solution from both schemes at 5 ms. Taking the gas-phase velocity as an example,

Figure 5.9 shows the grid convergence of both schemes. We see that both schemes work well. The WENO-

type scheme is not oscillation-free near discontinuities, because the WENO-type scheme is only Essentially

Non-Oscillatory [36, 37].

For ease of explanation, let λm, for m = 1, · · · , 6 be the eigenvalues of the system, which are shown in

Figure 5.10. The 6 characteristic waves associated with the eigenvalues are shown in Figure 5.11. λ1 is a

left-moving rarefaction wave with a head and tail speed about -49.78 m/s and -14.81 m/s; λ2 is a contact
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wave with a wave speed about zero, which represents the convection of liquid-phase enthalpy; λ3 is a right-

moving rarefaction wave with a head and tail speed about 101.1 m/s and 88.63 m/s; λ4 is a left-moving

rarefaction wave with head and tail speed about -612.8 m/s and -508.1 m/s; λ5 is a contact wave with a

wave speed about 234.3 m/s, which represents the convection of gas-phase enthalpy; λ6 is a right-moving

shock wave with a shock speed about 788.8 m/s.
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Figure 5.9: Grid convergence of Roe-type scheme and WENO-type scheme for gas-phase velocity
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Figure 5.10: Eigenvalues of the two-phase shock-tube problem. Eigenvalues are obtained with the reference
solution

Test 2: two-phase coupling effect and two-phase to single-phase transition

Ignoring the source vector, the two-phase two-fluid model degenerates to the single-phase Euler equation

when the void fraction approaches 0 or 1. The solution from the two-phase flow solver should approach

the solution from a single-phase flow solver when the void fraction approaches 0 or 1. This test is designed

to study the two-phase coupling and the two-phase to single-phase transition behavior. The test setup is
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Figure 5.11: Wave structure of the shock-tube problem. Results are obtained with reference solution.

the same as in Test 1, except that the initial void fraction is uniform in the entire tube and is varying to

approach 0 (down to 0.0001) or 1 (up to 0.99) for different cases. For comparison, a separate single-phase

flow solver is constructed with the Roe-type numerical flux. The details of the single-phase flow solver are

omitted here because it is a straightforward simplification of the two-phase flow solver.
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Figure 5.12: Two-phase coupling factors as a function of void fraction

The coupling effect of two phases is more important at a small void fraction, which could be explained by

the two-phase coupling factors (β∗l and β∗g ), which are defined in Eq. (4.48). Figure 5.12 shows the typical

profile of the two-phase coupling factors as a function of void fraction. We can see that β∗l and β∗g change

rapidly when the void fraction increases from 0 to about 0.1.

The Roe-type numerical scheme is run to t = 5 ms with CFL = 0.8 and 3200 cells. Figure 5.13 shows the

gas-phase solution for different cases. When the void fraction approaches 1, the liquid phase has little effect
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Figure 5.13: Two-phase to single-phase gas transition.

0 1 2 3 4 5 6 7 8 9 10

x: (m)

7

8

9

10

11

12

13

14

15

16

P
re

ss
u

re
: 

(M
P

a)

α  = 0.1
α  = 0.01
α  = 0.001
α  = 0.0001
Single-phase liquid

(a) p

0 1 2 3 4 5 6 7 8 9 10

x: (m)

0

1

2

3

4

5

6

7

8

L
iq

u
id

 v
el

o
ci

ty
: 

(m
/s

)

(b) ul

0 1 2 3 4 5 6 7 8 9 10

x: (m)

999.5

1000

1000.5

1001

1001.5

1002

1002.5

1003

1003.5

L
iq

u
id

 d
en

si
ty

: 
(k

g
/m

3
)

(c) ρl

0 1 2 3 4 5 6 7 8 9 10

x: (m)

111

111.2

111.4

111.6

111.8

112

112.2

L
iq

u
id

 s
p

ec
if

ic
 in

te
rn

al
 e

n
er

g
y:

 (
kJ

/k
g

)

(d) el

Figure 5.14: Two-phase to single-phase liquid transition.
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on the gas phase and the solution approaches the solution of the single-phase flow solver. The single-phase

part is the classical Sod’s test problem [25] for a real gas. Figure 5.14 shows the liquid-phase solution for

different cases. Because the speed of sound in liquid phase is higher, solution is shown at 2 ms to capture

all waves. When the void fraction approaches 0, the solution approaches the solution of the single-phase

flow solver. The single-phase part is the classical Sod’s test problem for a real liquid. As is expected, our

two-phase solver is capable of transiting to a single-phase solver when the void fraction approaches 0 or 1,

which gives us more confidence on the numerical solution.

5.4.3 Boiling pipe

A series of electrically heated experiments were performed in the early 1960s to investigate the void fraction

profile in vertical tubes. The Christensen Test 15 [50, 18] is used to test the capability of our numerical

solver for simulating a practical problem. Figure 5.15 is a schematic of the test facility. The test section

was a 1.27 m high rectangular tube with a 1.11 x 4.44 cm cross-section. The tube was heated by passing

an electrical current through the tube wall. A series of seven tests were conducted to investigate the void

fraction profile based on different inlet conditions. The boundary conditions for Test 15 are: pressure = 5.52

MPa, power = 70 kW, inlet velocity = 1.15 m/s, and inlet subcooling =12.5 K.

The test section is modeled with a 1D vertical pipe. The hydraulic diameter of the pipe is D = 1.776 cm.

The experimental and initial conditions are shown in Table 5.4. We use a non-zero initial void fraction (0.01)

to avoid the phase appearance/disappearance issue. Let i1 and iN be the index of the first and last cell in

the physical domain. At the inlet, the pressure in the ghost cells are taken to be the values in ith1 cell; all

other variables in the ghost cells are kept at inlet values. At the outlet, the pressure in the ghost cells are

kept at the outlet values; all other variables in the ghost cells are taken to be the values in the ithN cell.

Table 5.4: Experiment and initial conditions for Christensen Test 15

Experiment conditions Initial conditions
Pipe height 1.27 m – –
Hydraulic diameter (D) 1.776 cm – –
Heated surface area (awall) 225.225 m−1 Void fraction 0.01
System pressure 5.52 MPa Pressure 5.52 MPa
Heating power 70 kW Liquid temperature 530.9 K

Equivalent wall heat flux (qwall) 0.49656 MW/m
2

Gas temperature 543.4 K
Inlet mass flux 906.6 kg/(m2s) Liquid velocity 1.15 m/s
Inlet subcooling 12.5 K Gas velocity 1.15 m/s

Properties of water and steam are obtained from the IAPWS-IF97 formulation. The source vector is
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Figure 5.15: Schematic of the Christensen test facility and the simplified 1D problem

modeled as

S =



−Γg

−αlρlg − fwl + fi − Γgui

Qwl +Qil − Γwh
′

l − Γigh
∗
l +

(
fi − fwl − αlρlg − Γgui

)
ul + Γg

u2
l

2

Γg

−αgρgg − fwg − fi + Γgui

Qwg +Qig + Γwh
′

g + Γigh
∗
g +

(
−fi − fwg − αgρgg + Γgui

)
ug − Γg

u2
g

2


(5.46)

where Γg is the net vapor generation rate due to wall vapor generation (Γw) and bulk vapor generation

(Γig), ui is the interface velocity, fi is the interfacial friction, fwk is the phasic wall friction, Qik is the

phasic interfacial heat flux, Qwk is the phasic wall heat flux, h
′

k is the phasic enthalpy carried by the wall

vapor generation, and h∗k is the phasic enthalpy carried by the bulk vapor generation. Correlations based on

RELAP5-3D code manual [5, 19] are used to model these quantities, see Sec. 2.4.

The solver is run to reach steady-state with CFL = 0.8. The finest mesh has 800 cells. Figure 5.16 shows

the numerical solution of 6 physical variables. Unlike the shock-tube problem, where the solution contains

discontinuities, the solution of this problem is smooth. Considering the simplified correlations for the source

vector, we think the solution from our numerical solver is in a good agreement with the measurement data.

The numerical solution from the Roe-type scheme and the WENO-type scheme are consistent with each
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Figure 5.16: Solution of Christensen Test 15 at steady-state. 800 cells are used for Roe-type and WENO-type
scheme.
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Figure 5.17: Mesh convergence of Roe-type scheme for Christensen Test 15
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Figure 5.18: Mesh convergence of WENO-type scheme for Christensen Test 15
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Figure 5.19: Mesh convergence of total mass flux for Christensen Test 15

other, except for the solution near the inlet and outlet boundaries. The treatment of boundary conditions for

the WENO-type scheme is complicated. Even for the simpler Euler equation with an ideal EOS, where the

characteristics of the system are well known, the treatment of boundary conditions is non-trivial. Existing

well-known boundary treatment schemes are mostly based on the characteristics of the system, such as the

non-reflecting boundary condition scheme [51, 52] and Inverse Lax-Wendroff boundary condition scheme

[48, 49]. Most of these schemes work for problems where the EOS is simple enough and the characteristics of

the system are analytically well-known. For the two-phase two-fluid model with a real EOS, a characteristics-

based boundary treatment scheme is very complicated and is not the focus of this thesis.

Taking the void fraction and pressure as examples, Figure 5.17 and Figure 5.18 show the grid convergence
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of both schemes. We can see that the WENO-type scheme converges faster than the Roe-type scheme. Taking

the results from Roe-type scheme as an example, Figure 5.19 shows the mesh convergence of the total mass

flux. We see that the total mass flux converges when refining the mesh and the total mass flux is conserved

in the pipe for the finest mesh.

5.5 Conclusion

In this chapter, a new forward solver is developed for the two-phase two-fluid model based on two numerical

fluxes: a Roe-type numerical flux and a WENO-type numerical flux. Both numerical fluxes are based on

the analytical eigenvalues and eigenvectors given in Chapter 4.

The new forward solver is tested with a few benchmark problems: periodic pipe, shock-tube, and the

Christensen boiling pipe problem. The solver is shown to be stable even for problems that contain discon-

tinuities. The Roe-type scheme is shown to be first-order accurate in space; the WENO-type scheme is

shown to be at least second-order accurate in space. Numerically, it is observed that the Roe-type scheme

is more robust than the WENO-type scheme, because the boundary conditions for the WENO-type scheme

are more difficult to treat. Improvements to the boundary conditions should help improve the robustness of

the WENO-type scheme and achieve higher spatial accuracy.

108



Chapter 6

ADJOINT SENSITIVITY
ANALYSIS

6.1 Introduction

An important step in uncertainty analysis is the sensitivity analysis of a response to the uncertain input

parameters. Common approach to calculate the sensitivity includes regression-based methods and variance-

based methods [11, 12]. However, these methods require solving the system of interest multiple times,

sometimes 100s of times, which is very expensive in terms of computational cost. An alternative approach to

calculate sensitivities is the adjoint method. The cost of solving an adjoint equation is comparable to the cost

of solving the original (forward) equation. However, once the adjoint solution is available, the sensitivity to

different parameters can be calculated with little effort, which offers a powerful tool for efficient calculation

of sensitivities to a large number of uncertain input parameters.

There is a long history of the use of the adjoint method in optimal control theory. The use of adjoint

method for computing sensitivities came up in nuclear science in the 1940s [13]. Later, the adjoint method

became popular in computational fluid dynamics [14]. Within the field of aeronautical computational fluid

dynamics, the use of adjoint method has been pioneered by Jameson [53, 54, 55, 56]. Adjoint problems

arise naturally in the formulation of optimal aerodynamic design and optimal error control [14, 57, 58, 59].

Adjoint solution provides the linear sensitivities of an objective (or response) function (e.g. lift or drag) to

a number of design variables. These sensitivities can then be used to drive an optimization procedure. In

a sequence of papers, Jameson and co-authors developed the adjoint approach for the potential flow, the

Euler equation, and the Navier-Stokes equation [53, 54, 55, 56].

In CFD field, the application of adjoint method to optimal aerodynamic design was very successful.

However, to the author’s best knowledge, successful application of ajoint method to sensitivity analysis in

two-phase flow simulations is rare. Cacuci performed a local adjoint sensitivity analysis to RELAP5/MOD3.2

[13, 60, 61]; this approach is tied to the very specific RELAP5 numerical discretization. An application of

Cacuci’s approach is illustrated by Petruzzi [62], where the approach is applied to the blowdown of a gas

from a pressurized vessel.
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In this chapter, an adjoint sensitivity analysis framework is developed for the two-phase two-fluid model.

The framework is based on the stable forward numerical solver, which is discussed in the previous chapter.

6.2 Adjoint sensitivity analysis

6.2.1 Adjoint sensitivity analysis: general framework

Let GGG† be the operator that represents the governing equation of the forward problem, e.g. the two-phase

two-fluid model. Let W be the field variables, e.g. the vector of physical variables. For the forward

problem, there are usually a few parameters, denoted by ωωω, that affect the flow field, e.g. the physical model

parameters and boundary conditions. Suppose the governing equation is written as

GGG†
(
W,ωωω

)
= 0 (6.1)

Let R† be the operator that measures the response of interest (R), e.g. the void fraction at certain location.

The response could be expressed as

R = R†
(
W,ωωω

)
(6.2)

In the following analysis, vectors and matrices are defined such that the multiplications shown in the following

equations are the inner product.

Let δ be the variation operator. A change in the parameter (δωωω) will cause a change in the governing

equation (
∂GGG†

∂W

)
ωωω

δW +

(
∂GGG†

∂ωωω

)
W

δωωω = 0 (6.3)

Separately, δωωω will also cause a change in the response

δR =

(
∂R†

∂W

)
ωωω

δW +

(
∂R†

∂ωωω

)
W

δωωω (6.4)

Note that δR/δωωω is the sensitivity of interest. From Eq. (6.3), we see that δωωω will cause a change δW.

For the perturbation-based methods, δW needs to be calculated by solving the governing equation, which is

usually expensive. For the adjoint method, the idea is to remove the dependency of δR on δW by combining

Eq. (6.3) and Eq. (6.4) using the Lagrange multiplier approach.

Let φφφ be the vector of Lagrange multiplier, which is a vector of free variables. Multiplying the transpose
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of the Lagrange multiplier to Eq. (6.3), we obtain

φφφT
[(

∂GGG†

∂W

)
ωωω

δW +

(
∂GGG†

∂ωωω

)
W

δωωω

]
= 0 (6.5)

Since the right-hand side of Eq. (6.5) is zero, we can subtract Eq. (6.5) from Eq. (6.4) without changing

the value of δR, i.e.

δR =

(
∂R†

∂W

)
ωωω

δW +

(
∂R†

∂ωωω

)
W

δωωω −φφφT
[(

∂GGG†

∂W

)
ωωω

δW +

(
∂GGG†

∂ωωω

)
W

δωωω

]
(6.6)

We rewrite Eq. (6.6) as

δR =

[(
∂R†

∂W

)
ωωω

−φφφT
(
∂GGG†

∂W

)
ωωω

]
δW +

[(
∂R†

∂ωωω

)
W

−φφφT
(
∂GGG†

∂ωωω

)
W

]
δωωω (6.7)

For simplicity, we will drop the subscripts ωωω and W in the partial derivatives,

δR =

(
∂R†

∂W
−φφφT ∂G

GG†

∂W

)
δW +

(
∂R†

∂ωωω
−φφφT ∂G

GG†

∂ωωω

)
δωωω (6.8)

Because the Lagrange multiplier (φφφ) is a vector of free variables, it can be chosen such that

∂R†

∂W
−φφφT ∂G

GG†

∂W
= 0 (6.9)

which is the so-called adjoint equation. The Lagrange multiplier (φφφ) given by Eq. (6.9) is the so-called

adjoint solution.

Because of the adjoint equation Eq. (6.9), the change in the response becomes

δR =

(
∂R†

∂ωωω
−φφφT ∂G

GG†

∂ωωω

)
δωωω (6.10)

The advantage of Eq. (6.10) is that it is independent of δW, which means that the sensitivity of the

response to an arbitrary number of input parameters can be determined without the need for additional

forward calculations.

The adjoint equation Eq. (6.9) and the response equation Eq. (6.10) are problem dependent. There are

two fundamental guidelines in formulating the adjoint problem, i.e.

• Rule 1: The adjoint solution (or Lagrange multiplier) is a vector of free variables. The adjoint solution

can be chosen to satisfy any conditions to accomplish Rule 2.
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• Rule 2: The adjoint problem should be formulated to remove the dependency of change in the response

to change in the field variables.

6.2.2 Adjoint sensitivity analysis: two-phase two-fluid model

We will focus on the 1D two-phase two-fluid model. Recall that the two-phase two-fluid model is

∂U

∂t
+
∂F

∂x
+ Pix

∂αg
∂x

+ Pit
∂αg
∂t
− S = 0 (6.11)

The Pit∂αg/∂t term makes the notations for adjoint sensitivity analysis very complicated. For simplicity,

we will drop the Pit∂αg/∂t term because it can be handled by the matrix Ait, which is given in Eq. (4.38)

of Chapter 4. The derivation starts with

∂U

∂t
+
∂F

∂x
+ Pix

∂αg
∂x
− S = 0 (6.12)

Let W be the vector of physical variables and ωωω be the vector of input parameters. The source term is in

general a function of W and ωωω, i.e.

S = S
(
W,ωωω

)
(6.13)

In this thesis, we will study a response R at the time t1 that can be written as

R
(
t1
)

=
1

2

∫ x1

x0

[
q
(
t1
)
− qd

(
t1
)]2

dx (6.14)

where q is the quantity of interest and qd is the design value of q. Thus, R represents the error in the

prediction of q. For brevity, we use 〈∗〉x to denote the integration in space, 〈∗〉t to denote the integration

in time, and 〈∗〉xt to denote the double integration in space and time. The integration in time is from t0 to

time t1 and the integration in space is from x0 to x1.

Following this notation, Eq. (6.14) is transformed into

R =
1

2

〈(
q − qd

)2|t1〉
x

(6.15)

where |t1 means the integrand is evaluated at the time t1. Performing the variation operator to the response

function, we get

δR =
〈(
q − qd

)
δq|t1

〉
x

(6.16)
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Let φφφ be the Lagrange multiplier. From Eq. (6.12), we obtain

φφφT δ

(
∂U

∂t
+
∂F

∂x
+ Pix

∂αg
∂x
− S

)
= 0 (6.17)

which can be transformed into

∂φφφT δU

∂t
− ∂φφφT

∂t
δU +

∂φφφT δF

∂x
− ∂φφφT

∂x
δF

+
∂φφφTPixδαg

∂x
−
(
∂φφφT

∂x
Pix +φφφT

∂Pix

∂x

)
δαg +φφφT

∂αg
∂x

δPix −φφφT δS = 0

(6.18)

Integrating Eq. (6.18) over t0 to t1 in time and x0 to x1 in space, we obtain

〈
φφφT δU|t1 −φφφT δU|t0

〉
x

+
〈
φφφT
(
δF + Pixδαg

)
|x1 −φφφT

(
δF + Pixδαg

)
|x0
〉
t

+

〈
−∂φ

φφT

∂t
δU− ∂φφφT

∂x
δF−

(
∂φφφT

∂x
Pix +φφφT

∂Pix

∂x

)
δαg +φφφT

∂αg
∂x

δPix −φφφT δS
〉
xt

= 0
(6.19)

For ease of notations, we define the following vectors and matrices

A0 =

(
∂U

∂W

)T
,A1 =

(
∂F

∂W
+ Pix

∂αg
∂W

)T
,A2 =

(
∂Pix

∂x

∂αg
∂W

− ∂Pix

∂W

∂αg
∂x

+
∂S

∂W

)T
Q = −

(
q − qd

)( ∂q

∂W

)T (6.20)

The details of the coefficient matrices, A0, A1, and A2, are given in Appendix E. Then, Eq. (6.16) and

Eq. (6.19) are transformed into

δR =
〈
−QT δW|t1

〉
x

(6.21)

〈
φφφTAT0 δW|t1 −φφφTAT0 δW|t0

〉
x

+
〈
φφφTAT1 δW|x1 −φφφTAT1 δW|x0

〉
t

−
〈(

∂φφφT

∂t
AT0 +

∂φφφT

∂x
AT1 +φφφTAT2

)
δW

〉
xt

−
〈
φφφT

∂S

∂ωωω
δωωω

〉
xt

= 0
(6.22)

Dividing Eq. (6.22) by t1 − t0 and subtracting the result from Eq. (6.21), we obtain

δR =
1

t1 − t0

〈(
∂φφφT

∂t
AT0 +

∂φφφT

∂x
AT1 +φφφTAT2 −QT

)
δW

〉
xt︸ ︷︷ ︸

P1

+
1

t1 − t0

〈
φφφT

∂S

∂ωωω
δωωω

〉
xt︸ ︷︷ ︸

P2

+
1

t1 − t0
〈
φφφTAT0 δW|t0 −φφφTAT0 δW|t1

〉
x︸ ︷︷ ︸

P3

+
1

t1 − t0
〈
φφφTAT1 δW|x0 −φφφTAT1 δW|x1

〉
t︸ ︷︷ ︸

P4

(6.23)
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For steady-state problems, taking t1 →∞, Eq. (6.23) is reduced to

δR =

〈(
∂φφφT

∂x
AT1 +φφφTAT2 −QT

)
δW

〉
x︸ ︷︷ ︸

P1

+

〈
φφφT

∂S

∂ωωω
δωωω

〉
x︸ ︷︷ ︸

P2

+φφφTAT1 δW|x0 −φφφTAT1 δW|x1︸ ︷︷ ︸
P4

(6.24)

As will be discussed in the following section, P1 will specify the PDE for the adjoint problem, P2 will specify

the contribution of the source vector to the change in the response, P3 will specify the initial condition of

the adjoint problem, and P4 will specify the boundary condition of the adjoint problem.

Time-dependent problem

For time-dependent problems, the adjoint sensitivity analysis for general boundary conditions is complicated.

We will use a simple periodic boundary condition for test purposes. The adjoint problem is determined by

the 4 parts in Eq. (6.23): P1, P2, P3, and P4.

P1: This part gives the adjoint equation. To remove the dependency of the response on the change in

the physical variables, we chose the adjoint solution such that

∂φφφT

∂t
AT0 +

∂φφφT

∂x
AT1 +φφφTAT2 = QT (6.25)

Taking the transpose of Eq. (6.25), we obtain the adjoint equation

A0
∂φφφ

∂t
+ A1

∂φφφ

∂x
+ A2φφφ = Q (6.26)

P2: This part does not depend on the change in the physical variables. It accounts for the change in the

response, because the source term is an explicit function of the parameters of interest.

P3: This part deals with the initial condition of the forward and adjoint equation. To remove the

dependency of the response on the change in the physical variables, we chose the adjoint solution at time t1

to be

φφφ = 0, at time t1 (6.27)

Then, P3 becomes

P3 =
1

t1 − t0
〈
φφφTAT0 δW|t0

〉
x

(6.28)

δW at time t0 is known because it represents the change in the initial conditions of forward problems. Once

the adjoint solution at time t0 is determined, Eq. (6.28) is completely specified.
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P4: This part accounts for the change in the response due to the change in the boundary conditions. This

part also determines the appropriate boundary conditions for the adjoint equation. After some algebraic

manipulations, we rewrite P4 as

P4 =
1

t1 − t0
〈(
B1δαg +B2δp+B3δTl +B4δTg +B5δul +B6δug

)
|x0
〉
t

− 1

t1 − t0
〈(
B1δαg +B2δp+B3δTl +B4δTg +B5δul +B6δug

)
|x1
〉
t

(6.29)

where B1 to B6 are functions of φφφ that results from φφφTAT1 . We show the details of B1 to B6 in Appendix

E.

For time-dependent adjoint sensitivity analysis, we consider a periodic boundary condition. If we apply

a periodic boundary condition to the adjoint equation, i.e.

φφφ
(
x, t
)

= φφφ
(
x+ x1 − x0, t

)
(6.30)

then, we obtain

φφφ|x0 = φφφ|x1 (6.31)

and

P4 = 0, for periodic BC (6.32)

To summarize, for time-dependent problems with a periodic boundary condition, the adjoint problem is

specified by

A0
∂φφφ

∂t
+ A1

∂φφφ

∂x
+ A2φφφ = Q (6.33)

with

φφφ
(
x, t1

)
= 0, and φφφ

(
x, t
)

= φφφ
(
x+ x1 − x0, t

)
(6.34)

The change in the response is reduced to

δR =
1

t1 − t0

〈
φφφT

∂S

∂ωωω
δωωω

〉
xt

+
1

t1 − t0
〈
φφφTAT0 δW|t0

〉
x

(6.35)

From Eq. (6.35), we can get the sensitivities of R to different input parameters.
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Steady-state problem

For steady-state problems, the adjoint equation is specified by removing the dependency of δW in P1, i.e.

Ass
1

∂φφφ

∂x
+ Ass

2 φφφ = Qss (6.36)

where the superscript ‘ss’ denotes that the quantities are evaluated at steady-state.

We consider the boundary conditions used in the boiling pipe problem: at the inlet (x = x0), void

fraction, liquid temperature, gas temperature, liquid velocity, and gas velocity are kept at constant values;

at the outlet (x = x1), the pressure is kept at a constant value, i.e.

αg, Tl, Tg, ul, ug are constant at x = x0 (6.37a)

p are constant at x = x1 (6.37b)

When the boundary conditions are changed (i.e. different constant values), we know that

δαg, δTl, , δTg, δul, δug are known at x = x0 (6.38a)

δp is known at x = x1 (6.38b)

If we apply the following boundary conditions to the adjoint solution

Bss
2

(
φφφ
)

= 0, for x = x0 (6.39a)

Bss
1

(
φφφ
)

= 0, Bss
3

(
φφφ
)

= 0, Bss
4

(
φφφ
)

= 0, Bss
5

(
φφφ
)

= 0, Bss
6

(
φφφ
)

= 0, for x = x1 (6.39b)

then, P4 is reduced to

P4 =
(
Bss

1 δαg +Bss
3 δTl +Bss

4 δTg +Bss
5 δul +Bss

6 δug
)
|x0 −

(
Bss

2 δp
)
|x1 (6.40)

Once the adjoint solution is known, P4 is completely specified by Eq. (6.38) and Eq. (6.40).

To summarize, for steady problems with boundary conditions given by Eq. (6.37), the adjoint problem

is specified by

Ass
1

∂φφφ

∂x
+ Ass

2 φφφ = Qss (6.41)
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with

Bss
2

(
φφφ
)

= 0 for x = x0 (6.42a)

Bss
1

(
φφφ
)

= 0, Bss
3

(
φφφ
)

= 0, Bss
4

(
φφφ
)

= 0, Bss
5

(
φφφ
)

= 0, Bss
6

(
φφφ
)

= 0, for x = x1 (6.42b)

The change in the response is reduced to

δR =

〈
φφφT

∂S

∂ωωω
δωωω

〉ss

x

+
(
Bss

1 δαg +Bss
3 δTl +Bss

4 δTg +Bss
5 δul +Bss

6 δug
)
|x0 −

(
Bss

2 δp
)
|x1 (6.43)

From Eq. (6.43), we can obtain the sensitivities of R to different inut parameters.

6.3 Numerical tests

6.3.1 Time-dependent problem

Problem description

The periodic pipe problem discussed in Sec. 5.4.1 is used to test the time-dependent adjoint sensitivity

analysis framework. Recall that the problem is driven by the following initial pressure

p
(
x
)

= p0 + p1 sin
(
k0

2π

L
x
)

(6.44)

Keeping the initial conditions for the other variables (void fraction, liquid/gas temperature, liquid/gas

velocity) unchanged, the solution of the system at a certain time is completely determined by 3 parameters,

p0, p1, and k0. Let qd
(
t1
)

be the design solution at time t1, which corresponds to a design parameter set(
pd0, p

d
1, k

d
0

)
. The problem is to find the correct parameter set

(
pd0, p

d
1, k

d
0

)
from an initial guess. In this test,

we choose the following parameter set

pd0 = 7.5 MPa, pd1 = 1.0 MPa, kd0 = 1.0 (6.45)

The problem could be converted to an equivalent optimization problem: finding the parameter set
(
pd0, p

d
1, k

d
0

)
that minimizes the following response function

R
(
t1; p0, p1, k0

)
=

1

2

∫ x1

x0

[
q
(
t1; p0, p1, k0

)
− qd

(
t1
)]2

dx (6.46)
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In practice, the optimization could be performed iteratively with

pm+1
0 = pm0 −R

(
t1; pm0 , p

m
1 , k

m
0

)( ∂R
∂p0

)−1

(6.47a)

pm+1
1 = pm1 −R

(
t1; pm0 , p

m
1 , k

m
0

)( ∂R
∂p1

)−1

(6.47b)

km+1
0 = km0 −R

(
t1; pm0 , p

m
1 , k

m
0

)( ∂R
∂k0

)−1

(6.47c)

The key point is to evaluate the sensitivities ∂R/∂p0 , ∂R/∂p1, and ∂R/∂k efficiently. Recall that the change

in the response function is given by

δR =
1

t1 − t0

〈
φφφT

∂S

∂ωωω
δωωω

〉
xt

+
1

t1 − t0
〈
φφφTAT0 δW|t0

〉
x

(6.48)

Since the source vector for this problem is zero, Eq. (6.48) is simplified to be

δR =
1

t1 − t0
〈
φφφTAT0 δW|t0

〉
x

(6.49)

The perturbation in the initial condition is

δW|t0 =



0

δp0 + δp1 sin
(
k0

2π
L x
)

+ p1 cos
(
k0

2π
L x
)

2π
L xδk0

0

0

0

0


=

[
δp0 + δp1 sin

(
k0

2π

L
x
)

+ p1
2π

L
x cos

(
k0

2π

L
x
)
δk0

]
e2

(6.50)

where e2 is a column vector whose second component is 1 while other components are 0. Combining Eq.

(6.49) and Eq. (6.50), we obtain

∂R

∂p0
=

1

t1 − t0
〈
φφφTAT0 e2

〉
x

(6.51a)

∂R

∂p1
=

1

t1 − t0

〈
sin
(
k0

2π

L
x
)
φφφTAT0 e2

〉
x

(6.51b)

∂R

∂k0
=

1

t1 − t0

〈
p1

2π

L
x cos

(
k0

2π

L
x
)
φφφTAT0 e2

〉
x

(6.51c)
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Once the adjoint solution at t0 is known, the sensitivities in Eq. (6.47) are completely specified by Eq.

(6.51).

Adjoint solution

Recall that the adjoint equation for the time-dependent problem is

A0
∂φφφ

∂t
+ A1

∂φφφ

∂x
+ A2φφφ = Q (6.52)

In practice, Eq. (6.52) is discretized as

An0,i
φφφni −φφφ

n−1
i

∆t
+ An1,i

φφφni+1 −φφφni−1

2∆x
+ An2,iφφφni = Qn

i (6.53)

The adjoint solution is updated in time with

φφφn−1
i = φφφni −∆t

(
An0,i

)−1
(

Qn
i − An1,i

φφφni+1 −φφφni−1

2∆x
− An2,iφφφni

)
(6.54)

One ghost cell on each side of boundaries is used to handle the periodic boundary conditions. Different with

the forward equation, the adjoint equation should start from time t1 and integrate back to time t0.

A forward simulation is required to prepare the coefficient matrices and source vectors in Eq. (6.52). For

this test, we are interested in the solution at t1 = 0.001 s starting from t0 = 0 s. As is discussed in previous

chapter, the WENO-type scheme works very well for the periodic pipe problem, which means we can use a

coarse mesh to obtain an accurate solution. To save computational resources, we will use the WENO-type

scheme to solve the forward problem. The following results could also be obtained with the Roe-type scheme

using a much finer mesh. Both the forward and adjoint equation are solved with 400 cells and a constant

time step, ∆t = 10−6 s.

The pressure at time t1 is chosen to evaluate the response function, i.e.

R
(
t1; p0, p1, k0

)
=

1

2

∫ x1

x0

[
p
(
t1; p0, p1, k0

)
− pd

(
t1
)]2

dx (6.55)

This way, the source vector in Eq. (6.52) is

Q = −
(
p− pd

)
e2 (6.56)
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Optimization process

Three separate tests are performed to find p0, p1, and k0, respectively. Initial value for p0 is 8.0 MPa, initial

value for p1 is 1.5 MPa, and initial value for k0 is 1.5. For each separate test, the values of the uninterested

parameters are kept at the design values.
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Figure 6.1: Adjoint solution for the first iteration of test A. p0 = 8.0 MPa, p1 = 1.0 MPa, and k0 = 1.0.
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Figure 6.2: Adjoint solution for the first iteration of test B. p0 = 7.5 MPa, p1 = 1.5 MPa, and k0 = 1.0.

For reference, Figure 6.1, Figure 6.2, and Figure 6.3 show the adjoint solution for the first iteration of

the three tests. Taking pressure, liquid velocity, and gas velocity as examples, Figure 6.4, Figure 6.5, and

Figure 6.6 show the convergence of the numerical solution to the design one as iteration increases. Note

that for test A, the numerical solution of liquid and gas velocity changes little when the iteration increases,

this is because the liquid and gas velocity are determined by the gradient of initial pressure, which does not
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Figure 6.3: Adjoint solution for the first iteration of test C. p0 = 7.5 MPa, p1 = 1.0 MPa, and k0 = 1.5.

depend on p0. As is expected, the numerical solution converges to the design solution as iteration increases,

which verifies the adjoint sensitivity analysis framework.
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Figure 6.4: Convergence of numerical solution for Test A
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Figure 6.5: Convergence of numerical solution for Test B.

The iteration results are given in Table 6.1, Table 6.2, and Table 6.3, respectively. We can see that these

three parameters converge to the design values, see the 5th columns. In addition to the optimization results,
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Figure 6.6: Convergence of numerical solution for Test C.

the last column in each table gives a verification of the calculated adjoint sensitivities. The verification

is based on an important feature of the response function: the design values (p0, p1, or k0) give a local

minimum of the response function, see Figure 6.7

Figure 6.7: Schematic of the response function and the verification scheme

Let ω denotes the parameter of interest, i.e. p0, p1, or k0. Let δω be the perturbation of the parameter

from the design value ωd. Since ωd gives a local minimum, we have the following approximation

R
(
t1;ωd + δω

)
≈ R

(
t1;ωd

)
+

1

2

(
∂2R

∂ω2

)
ω=ωd

(
δω
)2

(6.57)

Taking the first-order derivative of Eq. (6.57) and evaluating the derivative at ω = ωd + δω, we obtain

(
∂R

∂ω

)
ωd+δω

≈
(
∂2R

∂ω2

)
ω=ωd

δω (6.58)

Substituting Eq. (6.58) into Eq. (6.57) and canceling the second-order derivative term, we obtain

R
(
t1;ωd + δω

)
≈ R

(
t1;ωd

)
+

1

2

(
∂R

∂ω

)
ωd+δω

δω (6.59)
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Since R
(
t1;ωd

)
= 0, we have

δω ≈ −
2R
(
t1;ωd + δω

)(
∂R
∂ω

)
ωd+δω

(6.60)

Eq. (6.60) shows that if the sensitivities are correct and the perturbation is small enough, the design

parameter could be obtained accurately with 1 iteration, i.e.

pd0 ≈ p∗0 = pm0 − 2R
(
t1; pm0 , p

m
1 , k

m
0

)( ∂R
∂p0

)−1

(6.61a)

pd1 ≈ p∗1 = pm1 − 2R
(
t1; pm0 , p

m
1 , k

m
0

)( ∂R
∂p1

)−1

(6.61b)

kd0 ≈ k∗0 = km0 − 2R
(
t1; pm0 , p

m
1 , k

m
0

)( ∂R
∂k0

)−1

(6.61c)

The comparison of p∗0, p∗1, and k∗0 to the design values provides a good verification scheme to the adjoint

sensitivities. As is shown in Table 6.1, Table 6.2, and Table 6.3, p∗0, p∗1, and k∗0 are very close to the design

values. We have a good confidence in the adjoint sensitivities. Note that in Table 6.3, because the initial

guess is too far away from the design value, k∗0 in the first iteration is far away from the design value.

Table 6.1: Results of optimization Test A for finding p0. p1 and k0 are kept at the design values.

Iter. m Rm
(
∂R/∂p0

)m
pm0 pm+1

0 p∗0 (verification)
0 1.25E+00 5.01E+00 8.00000 7.75030 7.50061
1 3.13E-01 2.51E+00 7.75030 7.62548 7.50065
2 7.88E-02 1.26E+00 7.62548 7.56309 7.50065
3 1.99E-02 6.38E-01 7.56309 7.53189 7.50067
4 5.09E-03 3.26E-01 7.53189 7.51629 7.50067
5 1.33E-03 1.70E-01 7.51629 7.50849 7.50066
6 3.61E-04 9.20E-02 7.50849 7.50457 7.50063
7 1.06E-04 5.30E-02 7.50457 7.50260 7.50058
8 3.38E-05 3.30E-02 7.50260 7.50158 7.50056
9 1.28E-05 2.30E-02 7.50158 7.50104 7.50046
10 5.41E-06 1.74E-02 7.50104 7.50073 7.50042
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Table 6.2: Results of optimization Test B for finding p1. p0 and k0 are kept at the design values.

Iter. m Rm
(
∂R/∂p1

)m
pm1 pm+1

1 p∗1 (verification)
0 5.37E-01 2.62E+00 1.50000 1.29525 1.09050
1 1.87E-01 1.65E+00 1.29525 1.18164 1.06792
2 7.08E-02 1.11E+00 1.18164 1.11757 1.05358
3 2.97E-02 8.01E-01 1.11757 1.08054 1.04345
4 1.39E-02 6.24E-01 1.08054 1.05825 1.03595
5 7.28E-03 5.18E-01 1.05825 1.04420 1.03015
6 4.19E-03 4.51E-01 1.04420 1.03491 1.02563
7 2.61E-03 4.07E-01 1.03491 1.02848 1.02208
8 1.74E-03 3.77E-01 1.02848 1.02386 1.01924
9 1.22E-03 3.55E-01 1.02386 1.02042 1.01697
10 8.94E-04 3.38E-01 1.02042 1.01777 1.01513

Table 6.3: Results of optimization Test C for finding k0. p0 and p1 are kept at the design values.

Iter. m Rm
(
∂R/∂k0

)m
km0 km+1

0 k∗0 (verification)
0 4.01E+00 5.11E+00 1.50000 0.71447 -0.07107
1 1.42E+00 -9.67E+00 0.71447 0.86153 1.00859
2 3.80E-01 -5.34E+00 0.86153 0.93270 1.00388
3 1.02E-01 -3.29E+00 0.93270 0.96360 0.99450
4 3.13E-02 -2.00E+00 0.96360 0.97927 0.99494
5 1.04E-02 -1.24E+00 0.97927 0.98770 0.99613
6 3.73E-03 -7.99E-01 0.98770 0.99237 0.99704
7 1.45E-03 -5.47E-01 0.99237 0.99502 0.99767
8 6.20E-04 -4.00E-01 0.99502 0.99657 0.99811
9 2.95E-04 -3.14E-01 0.99657 0.99751 0.99845
10 1.56E-04 -2.61E-01 0.99751 0.99810 0.99870

6.3.2 Steady-state problem

Problem description

The boiling pipe problem studied in Sec. 5.4.3 is used to test the adjoint sensitivity analysis framework

for steady-state problems. As was mentioned, the source vector is modeled as

S =



−Γg

−αlρlg − fwl + fi − Γgui

Qwl +Qil − Γwh
′

l − Γigh
∗
l +

(
fi − fwl − αlρlg − Γgui

)
ul + Γg

u2
l

2

Γg

−αgρgg − fwg − fi + Γgui

Qwg +Qig + Γwh
′

g + Γigh
∗
g +

(
−fi − fwg − αgρgg + Γgui

)
ug − Γg

u2
g

2


(6.62)

124



The responses of interest for this problem are chosen to be

R
(
q
)

=
1

2

∫ x1

x0

(
qss − qss

d

)2
dx, for q = αg, p, Tl, Tg, ul, ug (6.63)

where qss
d denotes the design solution. Note that different q gives a different response function. q could also

be any other quantities that depend on the physical variables, e.g. the total mass flux. Let αss
g , pss, T ss

l ,

T ss
g , uss

l , and uss
g be the steady-state solution of the boiling pipe problem. For testing purposes, we choose

the following ad-hoc design solution

αss
g,d = αss

g + 0.05 (6.64a)

pss
d = pss + 104 (6.64b)

T ss
l,d = T ss

l + 1.0 (6.64c)

T ss
g,d = T ss

g + 1.0 (6.64d)

uss
l,d = uss

l + 0.1 (6.64e)

uss
g,d = uss

g + 0.1 (6.64f)

We are going to study the sensitivities of the response to parameters in the source terms and the boundary

conditions.

To perturb the source terms, we introduce the following 8 multiplicative parameters

D ← ωDD (6.65a)

qwall ← ωqwqwall (6.65b)

Qwl ← qwallωη, Qwg ← qwall(1− ωη) (6.65c)

fi ← ωfifi (6.65d)

fwl ← ωfwlfwl (6.65e)

fwg ← ωfwgfwg (6.65f)

Hil ← ωHilHil (6.65g)

Hig ← ωHigHig (6.65h)

Physically, ωD represents the perturbation in the hydraulic diameter, ωqwall represents the perturbation

in the total wall heat flux, ωη represent the change in the partition of total wall heat flux to liquid and
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gas phase, ωfi represents the perturbation in the interfacial friction, ωfwl represents the perturbation in

the wall friction to liquid, ωfwg represents the perturbation in the wall friction to gas, ωHil represents the

perturbation in the interface-to-liquid heat transfer coefficient, and ωHig represents the perturbation in the

interface-to-gas heat transfer coefficient. The nominal values for these multiplicative parameters are 1.0.

To perturb the boundary conditions, we introduce the following additive parameters

αg,inlet ← 0.01 + δαg,inlet (6.66a)

poutlet ← 5.52 MPa + δpoutlet (6.66b)

Tl,inlet ← 530.9 K + δTl,inlet (6.66c)

ul,inlet ← 1.15 m/s + δul,inlet (6.66d)

Physically, δαg,inlet represents the perturbation in the inlet void fraction, δpoutlet represents the perturbation

in the outlet pressure, δTl,inlet represents the perturbation in the inlet subcooling, and δul,inlet represents

the perturbation in the inlet mass flux. The nominal values for the perturbations are 0.0.

Let ω be the parameter of interest. We are interested in quantifying the following sensitivities related to

the source terms

∂R
(
q
)

∂ω
, for q = αg, p, Tl, Tg, ul, ug and ω = ωD, ωqw, ωη, ωfi, ωfwl, ωfwg, ωHil, ωHig (6.67)

and the following sensitivities related to the boundary conditions

∂R
(
q
)

∂ω
, for q = αg, p, Tl, Tg, ul, ug and ω = αg,inlet, poutlet, Tl,inlet, ul,inlet (6.68)

Forward sensitivity analysis

To provide reference values to the adjoint sensitivities, we perform a forward sensitivity analysis. The

forward sensitivity analysis is performed by simulating the boiling pipe problem with the Roe-type scheme

multiple times with perturbed parameters (multiplicative or additive parameters). Table 6.4 lists the test

matrix for the forward simulations. For each parameter, the problem is simulated twice with the given lower

and upper bounds of the corresponding parameter. A total of 25 forward simulations (1 base case and 2 for

each of 12 parameters) are required.

Taking the void fraction (αg) and liquid velocity (ul) as two examples, Figure 6.8 and Figure 6.9 show the

results of the forward simulations. The perturbation in the void fraction and the liquid velocity are reported
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Table 6.4: Test matrix for the forward sensitivity analysis

Source parameters Boundary condition parameters
Case name parameters lower/upper bound Case name parameters lower/upper bound

S1 ωD 0.95, 1.05 BC1 αg,inlet 0.008, 0.012
S2 ωqw 0.95, 1.05 BC2 poutlet : MPa 5.519, 5.521
S3 ωη 0.98, 1.00 BC3 Tl,inlet : K 530.4, 531.4
S4 ωfi 0.95, 1.05 BC4 ul,inlet : m/s 1.10, 1.20
S5 ωfwl 0.95, 1.05
S6 ωfwg 0.95, 1.05
S7 ωHil 0.95, 1.05
S8 ωHig 0.75, 1.25

in Figure 6.8 and Figure 6.9. The forward sensitivities are calculated with a finite difference method, i.e.

∂R
(
q
)

∂ω
≈
R
(
q;ωupper

)
−R

(
q;ωlower

)
ωupper − ωlower

(6.69)

The calculated forward sensitivities are shown in Table 6.5 to compare with the adjoint sensitivities.
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Figure 6.8: Perturbation in the void fraction due to the perturbation in source terms and boundary con-
ditions. Each subfigure represents perturbation in the void fraction due to the corresponding parameter of
interest.
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Figure 6.9: Perturbation in the liquid velocity due to the perturbation in source terms and boundary
conditions. Each subfigure represents perturbation in the liquid velocity due to the corresponding parameter
of interest.

Adjoint sensitivity analysis

The adjoint equation given in Eq. (6.41) is solved to obtain the adjoint solution φφφ. To solve for the adjoint

solution φφφ, we need to prepare the coefficient matrices and vectors, including Ass
1 , Ass

2 , and Qss. These

matrices and vectors are obtained with the nominal steady-state solution. Once these matrices and vectors

are available, Eq. (6.41) can be solved easily since it is a linear equation. In practice, Eq. (6.41) is discretized

as

Ass
1,i

φφφi+1 −φφφi−1

2∆x
+ Ass

2,iφφφi = Qss
i (6.70)

Eq. (6.70) is then assembled to form a system of linear equations for solving φφφ. For each q, e.g. q = αg,

there is one set of adjoint solution. Let φm, m = 1, · · · , 6, be the mth component of the adjoint solution

vector φφφ. Taking the void fraction (q = αg) and the liquid velocity (q = ul) as two examples, Figure 6.10

and Figure 6.11 show the adjoint solution for these two responses. Note that there is a non-smooth region,

around x = 0.15 m, in the adjoint solution. This non-smooth solution is caused by the change of sign in

the relative velocity. The relative velocity is important in calculating the source terms, because it is used in

modeling the average bubble diameter and the interfacial area concentration. As an example, Figure 6.12

shows the profile of the liquid velocity, gas velocity, ∂Γg/∂ug (used in the adjoint equation), and φ5 in the
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pipe. From Figure 6.12, we can see that the non-smooth solution happens in the location where the relative

velocity changes its sign.
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Figure 6.10: Adjoint solution for q = αg.
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Figure 6.11: Adjoint solution for q = ul.
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After obtaining the adjoint solution, the adjoint sensitivities are calculated with Eq. (6.43), i.e.

∂R
(
q
)

∂ω
=

〈
φφφT

∂S

∂ω

〉ss

x

, for ω = ωD, ωqw, ωη, ωfi, ωfwl, ωfwg, ωHil, ωHig (6.71)

and

∂R
(
q
)

∂αg,inlet
= Bss

1 (6.72a)

∂R
(
q
)

∂poutlet
= −Bss

2 (6.72b)

∂R
(
q
)

∂Tl,inlet
= Bss

3 (6.72c)

∂R
(
q
)

∂ul,inlet
= Bss

5 (6.72d)

The adjoint sensitivities are given in Table 6.5, which also includes the forward sensitivities. Comparison

of adjoint sensitivities to the forward sensitivities is also shown in Figure 6.13, where the magnitude of

forward sensitivities and adjoint sensitivities are compared. For most cases, the adjoint sensitivities match

the forward sensitivities very well, which verifies the adjoint sensitivity analysis framework. However, when

the response is not sensitive to the parameters of interest, the adjoint sensitivities do not match the forward

sensitivities well. This is reasonable. If the response is not sensitive to the parameters, the perturbation in

the response is negligible and the numerical noise dominates both the forward sensitivities and the adjoint

130



Table 6.5: Comparison of sensitivities from forward sensitivity analysis and adjoint sensitivity analysis

Parameters Method q = αg q = p q = Tl q = Tg q = ul q = ug

ωD
Forward 3.28E-02 2.09E-06 3.10E-05 8.47E-09 1.83E-01 3.04E-01
Adjoint 3.41E-02 1.47E-06 2.66E-05 2.05E-07 1.79E-01 2.56E-01

ωqw
Forward -1.55E-02 -7.90E-07 -1.80E-05 -3.17E-09 -8.95E-02 -1.39E-01
Adjoint -1.94E-02 -3.94E-07 -1.00E-05 -5.69E-08 -1.06E-01 -1.66E-01

ωη
Forward 1.25E-02 2.97E-08 -3.08E-05 1.86E-05 4.93E-02 8.63E-02
Adjoint 1.20E-02 1.68E-08 -2.96E-05 -1.96E-04 5.85E-02 9.23E-02

ωfi
Forward -6.48E-04 -7.43E-08 3.60E-08 -3.45E-10 -3.84E-03 7.41E-03
Adjoint -6.01E-04 3.37E-09 3.72E-08 2.22E-10 -3.86E-03 8.01E-03

ωfwl
Forward 1.61E-04 -4.27E-07 -4.38E-08 -1.80E-09 1.02E-03 -1.87E-03
Adjoint 1.66E-04 -4.50E-07 -4.22E-08 -6.11E-08 1.07E-03 -1.74E-03

ωfwg
Forward -9.95E-06 -2.68E-08 -1.61E-09 -1.28E-10 -6.97E-05 1.37E-04
Adjoint -1.02E-05 -2.65E-08 -1.70E-09 -3.91E-09 -7.13E-05 1.48E-04

ωHil
Forward 3.11E-04 1.01E-09 -7.91E-07 -1.77E-12 1.30E-03 2.23E-03
Adjoint 2.59E-04 -4.99E-09 -7.02E-07 -6.30E-10 1.11E-03 1.87E-03

ωHig
Forward -1.65E-10 1.25E-14 -1.11E-13 -4.61E-11 -8.21E-10 -3.12E-09
Adjoint -2.53E-08 3.47E-12 4.41E-12 -5.83E-10 -1.69E-08 -1.64E-07

αg,inlet
Forward -3.40E-02 2.40E-06 -1.40E-05 1.02E-08 4.52E-02 -1.60E-02
Adjoint -4.04E-02 2.76E-06 -1.33E-05 3.90E-07 2.78E-02 -1.75E-02

poutlet
Forward 1.15E-08 -3.75E-10 -2.71E-11 -1.75E-12 5.48E-08 2.14E-08
Adjoint 1.56E-09 -3.79E-10 -4.98E-11 -5.18E-11 2.64E-09 1.53E-08

Tl,inlet
Forward -8.50E-04 -1.92E-08 -1.98E-06 -7.00E-11 -3.93E-03 -6.58E-03
Adjoint -8.90E-04 1.51E-09 -1.83E-06 -4.53E-11 -4.24E-03 -7.01E-03

ul,inlet
Forward 1.52E-02 -2.27E-06 9.92E-06 -9.53E-09 -9.54E-02 -4.32E-02
Adjoint 1.53E-02 -1.15E-06 8.99E-06 -1.52E-07 -9.72E-02 -3.03E-02
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Figure 6.13: Comparison of forward sensitivities to adjoint sensitivities. Absolute values of forward and
adjoint sensitivities are plotted. s represent cases where the forward and adjoint sensitivities have the same
sign; n represent cases where the forward and adjoint sensitivities have different sign; straight line denotes
that the forward sensitivities are equal to the adjoint sensitivities.
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sensitivities, especially when the sensitivity value is below 10−7. Column-wise, for q = p, the adjoint

sensitivities to the source parameters (ωfi, ωHil, and ωHig) do not match the forward sensitivities well,

because the pressure depends weakly on these three parameters. The same issue happen with q = Tg,

because the gas temperature is at the saturation temperature of local pressure and depends weakly on the

parameters of interest. Row-wise, the same issue happens with the source parameters ωHig.

The response is in general sensitive to the boundary conditions but not sensitive to several the phys-

ical model parameters, e.g. interfacial heat transfer coefficients. These sensitivities represent the multi-

dimensional gradients of the response function to the parameters of interest. If high-quality measurement

data is available, the adjoint sensitivities can be used to improve the physical models, e.g. with a calibration

method. Another application of the adjoint sensitivities is to propagate the uncertainty in the parameters

of interest to the response function. Because the adjoint sensitivities to all parameters are obtained with 1

forward simulation, a significant amount of computational time will be saved.

6.4 Conclusion

In this chapter, an adjoint sensitivity analysis framework is developed for the two-phase two-fluid model.

The adjoint sensitivity analysis framework is based on the forward numerical solver developed in Chapter

5.

The adjoint sensitivity analysis framework is divided into two parts corresponding to time-dependent

problems and the steady-state problems. In this thesis, the time-dependent adjoint sensitivity analysis

is used for testing purposes. For simplicity, the time-dependent adjoint sensitivity analysis is derived with

periodic boundary conditions. The steady-state adjoint sensitivity analysis is derived with practical boundary

conditions.

The time-dependent adjoint sensitivity analysis is tested with the periodic pipe problem to find the design

parameters. The steady-state adjoint sensitivity analysis is tested with the boiling pipe problem to calculate

sensitivities of responses to several input parameters, including physical model parameters and boundary

conditions. For both tests, the adjoint sensitivities are shown to match very well with either analytical

sensitivities or forward sensitivities, which verifies the current adjoint sensitivity analysis framework.
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Chapter 7

SUMMARY AND FUTURE WORK

7.1 Summary

In this thesis, a new shock-capturing upwind numerical solver and an adjoint sensitivity analysis framework

for the two-phase two-fluid model are developed. Both the forward solver and the adjoint sensitivity analysis

are verified extensively with several benchmark problems.

The forward solver is based on analytical eigenvalues and eigenvectors of the two-fluid model. The treat-

ment of arbitrary EOS is essential to perform an analytical analysis to the two-phase two-fluid model. The

challenge in the analytical analysis (due to the arbitrary EOS) is overcome by introducing a few auxiliary

variables. Through thermodynamic and algebraic transformations, the Jacobian matrix of the system is

simplified to a simple and well-structured form, which is convenient for the analytical analysis. Approximate

eigenvalues and eigenvectors of the conservative part are obtained by exploiting the difference in the thermo-

dynamic properties of liquid and gas phases. The eigenvalues and eigenvectors are essential for constructing

the forward numerical solver, because they provide accurate upwind information of the system.

Based on the analytical eigenvalues and eigenvectors, a Roe-type and a WENO-type numerical flux are

constructed to provide appropriate upwind numerical flux to the forward solver. The solver is tested with

three benchmark problems: a periodic problem, the two-phase shock-tube problem, and the Christensen

boiling pipe problem. Because of the analytical eigenvalues and eigenvectors, the solver is algebraically very

simple. The results show that the solver is stable, accurate, and robust. The grid convergence study shows

that the Roe-type scheme is first-order accurate in space and the WENO-type solver is at least second-order

accurate in space.

The basic two-phase two-fluid model assumes all pressure terms are equal. In this case, the two-phase

system has two complex eigenvalues when the relative velocity is non-zero. From mathematical point of

view, the two complex eigenvalues make the system ill-posed; from numerical point of view, when the spatial

discretization is fine enough to distinguish the characteristic waves related to the two complex eigenvalues,

the numerical solver tends to give non-physical oscillations. This issue is more severe when the absolute
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value of relative velocity is comparable to the speed of sound, because the magnitude of the imaginary part

of the two complex eigenvalues becomes too large. Numerically, it is found that the regularization using the

interfacial pressure correction helps at least reduce the non-physical oscillations near discontinuities.

A critical and unique feature of the forward solver is that the formulation does not depend on the form

of EOS, which ensures that the solver is applicable to practical two-phase problems, such as a boiling pipe.

The successful application of the new solver to a boiling pipe is very encouraging, because it opens up

the possibility of applying many other advanced methods (e.g. WENO, DG-FEM, etc) to nuclear reactor

thermal-hydraulic simulations.

An adjoint sensitivity analysis framework for the two-phase flow problems is developed based on the

new forward solver. The adjoint sensitivity analysis is formulated for both time-dependent and steady-state

problems. The adjoint sensitivity analysis framework for both time-dependent and steady-state problems

is verified. The adjoint sensitivities to different parameters of interest are verified by either analytical

sensitivities or forward sensitivities. The key feature of the current adjoint sensitivity analysis framework

is that it is based on the continuous form of the forward equation and is algebraically very simple. The

connection between the forward problem and the adjoint problem is through the coefficient matrices. The

application of this method to other two-phase flow problems should be straightforward.

7.2 Future work

7.2.1 Issues and future work in forward solver

The current forward solver provides the essential framework for developing a mathematically consistent,

algebraically simple, and numerically accurate and robust solver for realistic thermal-hydraulic simulations.

However, there are some issues in the current forward solver:

1. The current solver uses very small time step because of the CFL condition, it is not suitable for long

time transient simulations in the real-world reactor safety analysis. The current solver is not very

robust. It is based on an explicit method and the stiffness of the source terms has not been considered,

which might cause an issue.

2. Though second-order spatial accuracy is achieved with the WENO-type numerical flux, the WENO-

type scheme is not as robust as the Roe-type scheme.

3. The current solver works for two-phase flows only. It is not capable of simulating the appearance and

disappearance of either phase.
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4. The current solver uses a simple boundary condition treatment, it might affect the numerical solution

and degrade the accuracy of the solver.

These issues have to be solved in the future. Here are potential solutions to these issues:

1. A fully-implicit scheme is recommended to avoid the time step limit and improve the robustness of the

current explicit scheme. The fully implicit scheme is recommended to be solved with a Jacobian-Free

Newton-Krylov (JFNK) method. Fully implicit schemes for two-phase flows have been proposed and

studied by many researchers. Recently, the JFNK method becomes popular as a nonlinear solver.

Mousseau [63] did the pioneering work to apply the JFNK method to two-phase flows. Applications

of the JFNK method to two-phase flows can be seen in [64, 65, 8, 66, 9]. Encouraging and promising

results have been shown by Zou and his coworkers [8, 66, 9], where the fully implicit scheme is used to

solve realistic two-phase flow problems.

2. To achieve a high-order accuracy, it is recommended to explore numerical procedures for converting

the first-order Roe-type numerical flux to a high-order one. Because the current solver has a direct

link, i.e. a Roe-type numerical flux, to the existing schemes for single-phase flows, it is recommended

to seek for a mature high-resolution scheme in single-phase flows and extend it to two-phase flows.

Mature high-resolution schemes are not rare for single-phase flows. A through review of these schemes

can be found in [67, 68]. Among these high-resolution schemes, the Monotone Upstream Scheme

for Conservation Laws (MUSCL) of Van Leer [34], the Total-Variation-Diminishing (TVD) scheme of

Harten [69], and the Essentially Non-Oscillatory (ENO) scheme of Harten and Osher [46] are the most

well known. Among these schemes, the TVD scheme of Harten [69] seems a natural choice since it

requires little extra work given a working forward solver and a robust Roe-type numerical flux.

3. Phase appearance and disappearance issue is a major challenge in two-phase flow simulations. The

discontinuity in the void fraction due to the appearance and disappearance of one phase puts a strict

requirement on the robustness of the numerical scheme. It is recommended to explore a numerical

treatment, such as truncating the void fraction numerically, to solve this issue. However, the numerical

treatment might not be optimal and more analytical work on the numerical scheme is required to solve

this issue.

4. It is recommended to implement a characteristics-based boundary condition treatment to the forward

solver. The approximate eigenvalues and eigenvectors might be used to treat the boundary conditions

in the characteristic space.
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In addition to solve the previous issues, there are some important and valuable extension to the current

forward solver:

1. It is recommended to explore the possibility of solving the two-phase two-fluid model with the auxiliary

form of the governing equations, e.g. the enthalpy equation. The current forward solver is based on

a conservative form of the two-phase two-fluid model, which might not be appropriate for simulating

problems when the change in the temperature of the liquid/gas phases is significantly smaller than

the change in the velocity of liquid/gas phases. Analytical work on the change in the eigenvalues,

eigenvectors, and numerical fluxes is required.

2. It is recommended to explore the possibility of solving the 2D or 3D two-phase two-fluid model within

the current framework. The eigenvalues and eigenvectors of the 2D or 3D model are similar to the

1D model. There are three difficulties. The first difficulty lies in providing the closure correlations

for the 2D or 3D model, e.g. the multi-dimensional interfacial friction model and multi-dimensional

interfacial heat flux model. The second difficulty lies in the numerical treatment of the high-dimensional

geometry, which changes significantly the data structure in the forward solver. The third difficulty lies

in extending the 1D numerical flux to 2D or 3D, which is non-trivial.

3. It is recommended to extend the current solver for real-world reactor safety analysis. Adding the

capability of simulating more complex two-phase flow problems requires extensive extra numerical

work to the current solver.

7.2.2 Issues and future work in adjoint sensitivity analysis

There are also some issues in the current adjoint sensitivity analysis framework. The issues are listed below:

1. The current adjoint sensitivity analysis relies on numerical coefficient matrices. The effect of the

truncation error to the adjoint sensitivities is not fully studied.

2. The current adjoint sensitivity analysis works with a specific form of the response function, which

measures the quantify of interest in the whole domain. The local (e.g. in a certain location) information

of the quantity of interest is not considered.

3. The current adjoint sensitivity analysis for time-dependent problems is only valid for problems with

periodic boundary conditions. It can not be applied directly to the real-world transient simulations in

reactor safety analysis. Effect of the time-dependent boundary conditions to the system has not been

studied.
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4. The current adjoint equation is solved with a basic finite difference method, which might not be robust

enough for applications to more complex problems.

These issues have to be solved in the future. Here are potential solutions to these issues:

1. It is recommended to obtain analytical coefficient matrices. For realistic problems where the source

terms are modeled with complicated closure correlations, it is recommended to provide approximate co-

efficient matrices instead. This is non-trivial but important, because the analytical coefficient matrices

can also be used in the forward solver when an implicit method is used.

2. It is recommended to develop an adjoint sensitivity analysis framework that is general for other kinds

of response function. Besides the method used in the current adjoint sensitivity analysis, it is valuable

to explore the possibility of applying the discrete adjoint method [70] to two-phase flow simulations.

3. It is recommended to study the effect of the time-dependent boundary conditions to the two-phase

system using the adjoint method.

4. It is recommended to explore the possibility of solving the adjoint equation with a more robust method,

e.g. an implicit method. This study is recommended to do only after a robust forward implicit solver

is available.
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Appendix A

DERIVATIONS OF JACOBIAN
MATRIX

Recall that the Jacobian matrix of the system is defined as

A =
(
I + Ait,nc

)−1(Ac + Aix,nc
)

(A.1)

with

Ac ≡
∂F

∂U
,Aix,nc ≡ Pix

∂αg
∂U

,Aix,nc ≡ Pit
∂αg
∂U

(A.2)

Recall that U is the vector of conservative variables, F is the vector of fluxes, Pix and Pit are the vectors

related to the averaged interfacial pressure. The vectors in Eq. (A.2) are

U ≡



αlρl

αlρlul

αlρlEl

αgρg

αgρgug

αgρgEg


,F ≡



αlρlul

αlρlu
2
l + αlp

αlρlElul + αlpul

αgρgug

αgρgu
2
g + αgp

αgρgEgug + αgpug


,Pix ≡



0

pi

0

0

−pi

0


,Pit ≡



0

0

−pi

0

0

pi


(A.3)

For ease of notations, we write U and F as

U ≡



x1

x2

x3

x4

x5

x6


=



αlρl

αlρlul

αlρlEl

αgρg

αgρgug

αgρgEg


,F ≡



y1

y2

y3

y4

y5

y6


=



αlρlul

αlρlu
2
l + αlp

αlρlElul + αlpul

αgρgug

αgρgu
2
g + αgp

αgρgEgug + αgpug


(A.4)
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Then,

Ac ≡



∂y1
∂x1

∂y1
∂x2

∂y1
∂x3

∂y1
∂x4

∂y1
∂x5

∂y1
∂x6

∂y2
∂x1

∂y2
∂x2

∂y2
∂x3

∂y2
∂x4

∂y2
∂x5

∂y2
∂x6

∂y3
∂x1

∂y3
∂x2

∂y3
∂x3

∂y3
∂x4

∂y3
∂x5

∂y3
∂x6

∂y4
∂x1

∂y4
∂x2

∂y4
∂x3

∂y4
∂x4

∂y4
∂x5

∂y4
∂x6

∂y5
∂x1

∂y5
∂x2

∂y5
∂x3

∂y5
∂x4

∂y5
∂x5

∂y5
∂x6

∂y6
∂x1

∂y6
∂x2

∂y6
∂x3

∂y6
∂x4

∂y6
∂x5

∂y6
∂x6


(A.5)

Aix,nc ≡



0 0 0 0 0 0

pi
∂αg

∂x1
pi
∂αg

∂x2
pi
∂αg

∂x3
pi
∂αg

∂x4
pi
∂αg

∂x5
pi
∂αg

∂x6

0 0 0 0 0 0

0 0 0 0 0 0

−pi ∂αg

∂x1
−pi ∂αg

∂x2
−pi ∂αg

∂x3
−pi ∂αg

∂x4
−pi ∂αg

∂x5
−pi ∂αg

∂x6

0 0 0 0 0 0


(A.6)

Ait,nc ≡



0 0 0 0 0 0

0 0 0 0 0 0

−pi ∂αg

∂x1
−pi ∂αg

∂x2
−pi ∂αg

∂x3
−pi ∂αg

∂x4
−pi ∂αg

∂x5
−pi ∂αg

∂x6

0 0 0 0 0 0

0 0 0 0 0 0

pi
∂αg

∂x1
pi
∂αg

∂x2
pi
∂αg

∂x3
pi
∂αg

∂x4
pi
∂αg

∂x5
pi
∂αg

∂x6


(A.7)

The difficulty lies in deriving these partial derivatives with arbitrary EOS and simplifying them to suitable

forms. Taking a close look at these partial derivatives, we find that the following partial derivatives are

essential

∂p

∂xm
,
∂αg
∂xm

, for m = 1, · · · , 6 (A.8)

Because xm’s contain the density and specific internal energy, which are related to pressure through the

EOS, we know that the EOS has to be used in deriving ∂p
∂xm

and
∂αg

∂xm
.

Let ∆ denotes the operator for the change in variables. Note that in the derivations, ∆ will also denote

the infinitesimal change, which is often denoted with operator ’d’. The derivations start with

∆x1 = ∆(αlρl) = αl∆ρl − ρl∆αg = αl

(
∂ρl
∂p

∆p+
∂ρl
∂el

∆el

)
− ρl∆αg

∆x4 = ∆(αgρg) = αg∆ρg + ρg∆αg = αg

(
∂ρg
∂p

∆p+
∂ρg
∂eg

∆eg

)
+ ρg∆αg

(A.9)
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Solving for ∆p and ∆αg from Eq. (A.9), we get

∆p =
ρl∆x4 + ρg∆x1 −

(
αgρl

∂ρg
∂eg

∆eg + αlρg
∂ρl
∂el

∆el

)
αgρl

∂ρg
∂p + αlρg

∂ρl
∂p

∆αg =
αl

∂ρl
∂p ∆x4 − αg ∂ρg∂p ∆x1 − αgαl

(
∂ρl
∂p

∂ρg
∂eg

∆eg − ∂ρg
∂p

∂ρl
∂el

∆el

)
αgρl

∂ρg
∂p + αlρg

∂ρl
∂p

(A.10)

Taking ∆p as an example, we show the process of simplifications. Multiplying ∂p
∂ρl

∂p
∂ρg

to the nominator and

denominator of ∆p in Eq. (A.10) and using the mathematical relations

∂p

∂ρl

∂ρl
∂p

= 1, and
∂p

∂ρg

∂ρg
∂p

= 1 (A.11)

we get

∆p =

∂p
∂ρl

∂p
∂ρg

[
ρl∆x4 + ρg∆x1 −

(
αgρl

∂ρg
∂eg

∆eg + αlρg
∂ρl
∂el

∆el

)]
αgρl

∂p
∂ρl

+ αlρg
∂p
∂ρg

(A.12)

By using the mathematical relations

∂p

∂eg
= − ∂p

∂ρg

∂ρg
∂eg

∂p

∂el
= − ∂p

∂ρl

∂ρl
∂el

(A.13)

Eq. (A.12) is further transformed into

∆p =

∂p
∂ρl

∂p
∂ρg

[ρl∆x4 + ρg∆x1] + αgρl
∂p
∂ρl

∂p
∂eg

∆eg + αlρg
∂p
∂ρg

∂p
∂el

∆el

αgρl
∂p
∂ρl

+ αlρg
∂p
∂ρg

= c1∆x1 + c2∆x4 + c3∆el + c4∆eg

(A.14)

where c1, c2, c3, and c4 are auxiliary variables used for ease of notations , they are defined as

c1 ≡
ρg

∂p
∂ρl

∂p
∂ρg

αgρl
∂p
∂ρl

+ αlρg
∂p
∂ρg

c2 ≡
ρl

∂p
∂ρl

∂p
∂ρg

αgρl
∂p
∂ρl

+ αlρg
∂p
∂ρg

c3 ≡
αlρg

∂p
∂ρg

∂p
∂el

αgρl
∂p
∂ρl

+ αlρg
∂p
∂ρg

c4 ≡
αgρl

∂p
∂ρl

∂p
∂eg

αgρl
∂p
∂ρl

+ αlρg
∂p
∂ρg

(A.15)

140



The partial derivatives ∂p
∂ρl
, ∂p∂ρg ,

∂p
∂el
, and ∂p

∂eg
in Eq. (A.15) are not very informative and will make the

matrices in Eq. (A.5), Eq. (A.6), and Eq. (A.7) very complicated. For simplifications, we replace

∂p
∂ρl
, ∂p∂ρg ,

∂p
∂el
, and ∂p

∂eg
with

∂p

∂el
= ρl

(
γl − 1

)
(A.16a)

∂p

∂ρl
= a2

l −
p

ρl

(
γl − 1

)
(A.16b)

∂p

∂eg
= ρg

(
γg − 1

)
(A.16c)

∂p

∂ρg
= a2

g −
p

ρg

(
γg − 1

)
(A.16d)

which is derived in Eq. (3.13) of Chapter 3 for general EOS. Then, Eq. (A.15) is further transformed into

c1 =
1

ρl

[
ρla

2
l − p

(
γl − 1

)][
ρga

2
g − p

(
γg − 1

)]
αg
[
ρla2

l − p
(
γl − 1

)]
+ αl

[
ρga2

g − p
(
γg − 1

)]
c2 =

1

ρg

[
ρla

2
l − p

(
γl − 1

)][
ρga

2
g − p

(
γg − 1

)]
αg
[
ρla2

l − p
(
γl − 1

)]
+ αl

[
ρga2

g − p
(
γg − 1

)]
c3 =

αlρl
(
γl − 1

)[
ρga

2
g − p

(
γg − 1

)]
αg
[
ρla2

l − p
(
γl − 1

)]
+ αl

[
ρga2

g − p
(
γg − 1

)]
c4 =

αgρg
(
γg − 1

)[
ρla

2
l − p

(
γl − 1

)]
αg
[
ρla2

l − p
(
γl − 1

)]
+ αl

[
ρga2

g − p
(
γg − 1

)]
(A.17)

Dividing the nominator and denominator in Eq. (A.17) by p and using the definitions of εl and εg, Eq.

(A.17) is further transformed into

c1 =

[
a2
l −

p
ρl

(
γl − 1

)](
1 + εg

)
1 + αgεl + αlεg

c2 =

[
a2
g −

p
ρg

(
γg − 1

)](
1 + εl

)
1 + αgεl + αlεg

c3 =
αlρl

(
γl − 1

)(
1 + εg

)
1 + αgεl + αlεg

c4 =
αgρg

(
γg − 1

)(
1 + εl

)
1 + αgεl + αlεg

(A.18)

In short, for arbitrary EOS, we can obtain

∆p =

[
a2
l −

p
ρl

(
γl − 1

)](
1 + εg

)
1 + αgεl + αlεg

∆x1 +

[
a2
g −

p
ρg

(
γg − 1

)](
1 + εl

)
1 + αgεl + αlεg

∆x4

+
αlρl

(
γl − 1

)(
1 + εg

)
1 + αgεl + αlεg

∆el +
αgρg

(
γg − 1

)(
1 + εl

)
1 + αgεl + αlεg

∆eg

(A.19)
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Eq. (A.19) tells that once we obtain the relations of ∆el and ∆eg to the change in the conservative variables,

i.e. ∆xm, we can get the required partial derivatives ∂p
∂xm

easily.

We will take ∂p
∂x1

as an example to show the derivation process. When ∆x1 is the only changing variable

while other conservative variables are kept constant, we have

∆x1 = ∆x1

∆x2 = ∆
(
x1ul

)
= ∆x1ul + x1∆ul = 0

∆x3 = ∆
(
x1El

)
= ∆x1El + x1

(
∆el + ul∆ul

)
= 0

∆x4 = 0

∆x5 = ∆
(
x4ug

)
= ∆x4ug + x4∆ug = 0

∆x6 = ∆
(
x4Eg

)
= ∆x4Eg + x4

(
∆eg + ug∆ug

)
= 0

(A.20)

which gives

∆x1 = ∆x1

∆x4 = 0

∆el =
(
u2
l − El

)∆x1

x1

∆eg = 0

(A.21)

Replacing Eq. (A.21) back into Eq. (A.19), we get

∆p =

[
a2
l −

p
ρl

(
γl − 1

)](
1 + εg

)
1 + αgεl + αlεg

∆x1 +
αlρl

(
γl − 1

)(
1 + εg

)
1 + αgεl + αlεg

(
u2
l − El

)∆x1

x1

=

(
1 + εg

)
1 + αgεl + αlεg

[
a2
l +

(
γl − 1

)(
u2
l −Hl

)]
∆x1

(A.22)

Thus, we get

∂p

∂x1
=

(
1 + εg

)
1 + αgεl + αlεg

[
a2
l +

(
γl − 1

)(
u2
l −Hl

)]
(A.23)

Following the same process, we can get

∂αg
∂x1

= −1

p

αg
1 + αgεl + αlεg

[
a2
l +

(
γl − 1

)(
u2
l −Hl

)]
(A.24)

When the other conservative variables are taken to be the changing variables, the partial derivatives ∂p
∂xm

,
∂αg

∂xm
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for m = 2, 3, 4, 5, 6 can be obtained similarly. They are found to be

∂p

∂x1
=

(
1 + εg

)
1 + αgεl + αlεg

[
a2
l +

(
γl − 1

)(
u2
l −Hl

)]
(A.25a)

∂p

∂x2
= −

(
1 + εg

)
1 + αgεl + αlεg

[(
γl − 1

)
ul

]
(A.25b)

∂p

∂x3
=

(
1 + εg

)
1 + αgεl + αlεg

[(
γl − 1

)]
(A.25c)

∂p

∂x4
=

(
1 + εl

)
1 + αgεl + αlεg

[
a2
g +

(
γg − 1

)(
u2
g −Hg

)]
(A.25d)

∂p

∂x5
= −

(
1 + εl

)
1 + αgεl + αlεg

[(
γg − 1

)
ug

]
(A.25e)

∂p

∂x6
=

(
1 + εl

)
1 + αgεl + αlεg

[(
γg − 1

)]
(A.25f)

and

∂αg
∂x1

= −1

p

αg
1 + αgεl + αlεg

[
a2
l +

(
γl − 1

)(
u2
l −Hl

)]
(A.26a)

∂αg
∂x2

= −1

p

−αg
1 + αgεl + αlεg

[(
γl − 1

)
ul

]
(A.26b)

∂αg
∂x3

= −1

p

αg
1 + αgεl + αlεg

[(
γl − 1

)]
(A.26c)

∂αg
∂x4

=
1

p

αl
1 + αgεl + αlεg

[
a2
l +

(
γl − 1

)(
u2
l −Hl

)]
(A.26d)

∂αg
∂x5

=
1

p

−αl
1 + αgεl + αlεg

[(
γl − 1

)
ul

]
(A.26e)

∂αg
∂x6

=
1

p

αl
1 + αgεl + αlεg

[(
γl − 1

)]
(A.26f)

The two matrices, Aix,nc and Ait,nc, are completely specified by Eq. (A.26).

As for the matrix Ac, we will take ∂y2
∂x1

as an example to show the derivation process. Following previous

process, we have

∆y2 = ∆
(
αlρlu

2
l + αlp

)
= ∆

(
x1u

2
l

)
+ αl∆p+ p∆αl

= u2
l∆x1 + 2x1ul∆ul + αl∆p− p∆αg

(A.27)

From Eq. (A.20), we get

∆ul = −∆x1

x1
ul (A.28)
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Replacing Eq. (A.28) to Eq. (A.27), we get

∆y2 = −u2
l∆x1 + αl∆p− p∆αg (A.29)

Thus we get

∂y2

∂x1
= −u2

l + αl
∂p

∂x1
− p∂αg

∂x1

= −u2
l +

1 + αlεg
1 + αgεl + αlεg

[
a2
l +

(
γl − 1

)(
u2
l −Hl

)] (A.30)

Following similar derivations, we can get all partial derivatives in Ac.

In practice, for simplification purpose, we define the following auxiliary variables

chl ≡ a2
l +

(
γl − 1

)(
u2
l −Hl

)
; chg ≡ a2

g +
(
γg − 1

)(
u2
g −Hg

)
(A.31a)

cul ≡
(
γl − 1

)
ul; cug ≡

(
γg − 1

)
ug (A.31b)

c1l ≡ γl − 1; c1g ≡ γg − 1 (A.31c)

βl ≡
1 + αlεg

1 + αgεl + αlεg
; βg ≡

1 + αgεl
1 + αgεl + αlεg

(A.31d)

σl ≡
αlεl

1 + αgεl + αlεg
; σg ≡

αgεg
1 + αgεl + αlεg

(A.31e)

τl ≡
pi
p

1

1 + αgεl + αlεg
; τg ≡

pi
p

1

1 + αgεl + αlεg
(A.31f)

Then the matrices, Ac, Aix,nc, and Ait,nc, are found to be

Ac =



0 1 0 0 0 0

−u2
l + βlc

h
l 2ul − βlcul βlc

1
l σlc

h
g −σlcug σlc

1
g

−ulHl + ulβlc
h
l Hl − ulβlcul ul + ulβlc

1
l σlulc

h
g −σlulcug σlulc

1
g

0 0 0 0 1 0

σgc
h
l −σgcul σgc

1
l −u2

g + βgc
h
g 2ug − βgcug βgc

1
g

σgugc
h
l −σgugcul σgugc

1
l −ugHg + ugβgc

h
g Hg − ugβgcug ug + ugβgc

1
g


(A.32)
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Aix,nc =



0 0 0 0 0 0

−αgτlchl αgτlc
u
l −αgτlc1l αlτgc

h
g −αlτgcug αlτgc

1
g

0 0 0 0 0 0

0 0 0 0 0 0

αgτlc
h
l −αgτlcul αgτlc

1
l −αlτgchg αlτgc

u
g −αlτgc1g

0 0 0 0 0 0


(A.33)

Ait,nc =



0 0 0 0 0 0

0 0 0 0 0 0

αgτlc
h
l −αgτlcul αgτlc

1
l −αlτgchg αlτgc

u
g −αlτgc1g

0 0 0 0 0 0

0 0 0 0 0 0

−αgτlchl αgτlc
u
l −αgτlc1l αlτgc

h
g −αlτgcug αlτgc

1
g


(A.34)

The remaining task is to obtain the Jacobian matrix of the system, i.e. A. Since the matrices Ac, Aix,nc,

and Ait,nc have been obtained, the Jacobian matrix A is obtained by the symbolic calculation software

Mathematica. The Jacobian matrix is found to be

A =



0 1 0 0 0 0

−u2
l + βsl c

h
l 2ul − βsl cul βsl c

1
l σsl c

h
g −σsl cug σsl c

1
g

a31 a32 a33 a34 a35 a36

0 0 0 0 1 0

σsgc
h
l −σsgcul σsgc

1
l −u2

g + βsgc
h
g 2ug − βsgcug βsgc

1
g

a61 a62 a63 a64 a65 a66


(A.35)
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with

a31 =
1

∆nc

[(
1 + αlc

1
l τg
)(
βlulc

h
l − ulHl

)
+ αgτl

(
βsl c

u
l c
h
l − cul u2

l

)
+ αlτlc

h
l

(
c1gσgug − σsgcug

)]
a32 =

1

∆nc

[(
1 + αlc

1
l τg
)(
Hl − βlcul ul

)
+ αgτl

(
2cul ul − βsl cul cul − chl

)
− αlτlcul

(
c1gσgug − σsgcug

)]
a33 =

1

∆nc

[(
1 + αlc

1
l τg
)(
ul + βlc

1
l ul
)

+ αgτl
(
c1l c

u
l β

s
l

)
+ αlτlc

1
l

(
c1gσgug − σsgcug

)]
a34 =

1

∆nc

{(
1 + αlc

1
l τg
)(
σlulc

h
g

)
+ αgτl

(
σsl c

u
l c
h
g

)
+ αlτl

[
c1gug

(
βgc

h
g −Hg

)
− cug

(
βsgc

h
g − u2

g

)]}
a35 = − 1

∆nc

{(
1 + αlc

1
l τg
)(
σlulc

u
g

)
+ αgτl

(
σsl c

u
l c
u
g

)
+ αlτl

[
cug
(
2ug − βsgug

)
− c1g

(
Hg − βgcugug

)
− chg

]}
a36 =

1

∆nc

{(
1 + αlc

1
l τg
)(
σlulc

1
g

)
+ αgτl

(
σsl c

u
l c

1
g

)
+ αlτl

[
c1g
(
ug + βgc

1
gug
)
− c1gβsgcug

]}
(A.36)

and

a61 =
1

∆nc

{(
1 + αgc

1
gτl
)(
σgugc

h
l

)
+ αlτg

(
σsgc

u
g c
h
l

)
+ αgτg

[
c1l ul

(
βlc

h
l −Hl

)
− cul

(
βsl c

h
l − u2

l

)]}
a62 = − 1

∆nc

{(
1 + αgc

1
gτl
)(
σgugc

u
l

)
+ αlτg

(
σsgc

u
g c
u
l

)
+ αgτg

[
cul
(
2ul − βsl ul

)
− c1l

(
Hl − βlcul ul

)
− chl

]}
a63 =

1

∆nc

{(
1 + αgc

1
gτl
)(
σgugc

1
l

)
+ αlτg

(
σsgc

u
g c

1
l

)
+ αgτg

[
c1l
(
ul + βlc

1
l ul
)
− c1l βsl cul

]}
a64 =

1

∆nc

[(
1 + αgc

1
gτl
)(
βgugc

h
g − ugHg

)
+ αlτg

(
βsgc

u
g c
h
g − cugu2

g

)
+ αgτgc

h
g

(
c1l σlul − σsl cul

)]
a65 =

1

∆nc

[(
1 + αgc

1
gτl
)(
Hg − βgcugug

)
+ αlτg

(
2cugug − βsgcug cug − chg

)
− αgτgcug

(
c1l σlul − σsl cul

)]
a66 =

1

∆nc

[(
1 + αgc

1
gτl
)(
ug + βgc

1
gug
)

+ αlτg
(
c1gc

u
gβ

s
g

)
+ αgτgc

1
g

(
c1l σlul − σsl cul

)]
(A.37)

where the following auxiliary variables are used

∆nc = 1 + αg
(
γl − 1

)
τl + αg

(
γg − 1

)
τg

βsl = βl − αgτl;βsg = βg − αlτg

σsl = σl + αlτg;σ
s
g = σg + αgτl

(A.38)
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Appendix B

ROE-PIKE INTERMEDIATE STATE
FOR SINGLE-PHASE SYSTEM

The fundamental requirement to the Roe-Pike intermediate state is

UR −UL =

3∑
m=1

c̃mK̃m (B.1a)

FR − FL =

3∑
m=1

c̃mλ̃mK̃m (B.1b)

where λm and Km are the eigenvalues and eigenvectors of the Jacobian matrix of Euler system. Before

seeking the intermediate state for two general states UL, UR, we at first study two close states.

Decomposition of two close states UL, UR

Consider two states UL, UR (left and right) that are close and seek c1, c2, c3, such that

∆U =

3∑
m=1

cmKm (B.2)

to within O
(
∆2
)
, where ∆

(
·
)

=
(
·
)
R
−
(
·
)
L

. Writing Eq. (B.2) in full we have

∆ρ = c1 + c2 + c3 (B.3a)

∆
(
ρu
)

= c1
(
u− a

)
+ c2u+ c3

(
u+ a

)
(B.3b)

∆
(
ρE
)

= c1
(
H − ua

)
+ c2

(
H − γ∗a2

)
+ c3

(
H + ua

)
(B.3c)

Solving for c1, c2, c3 from Eq. (B.3), we get

c1 =
1

2γ∗a2

{[
u
(
u+ γ∗a

)
−
(
H − γ∗a2

)]
∆ρ−

(
u+ γ∗a

)
∆
(
ρu
)

+ ∆
(
ρE
)}

(B.4a)

c2 =
1

γ∗a2

[(
H − u2

)
∆ρ− u∆

(
ρu
)
−∆

(
ρE
)]

(B.4b)

c3 =
1

2γ∗a2

{[
u
(
u− γ∗a

)
−
(
H − γ∗a2

)]
∆ρ−

(
u− γ∗a

)
∆
(
ρu
)

+ ∆
(
ρE
)}

(B.4c)
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Within O
(
∆2
)
, for two close states UL, UR, we have

∆
(
ρu
)

= u∆ρ+ ρ∆u (B.5a)

∆
(
ρE
)

= E∆ρ+ ρ∆e+ ρu∆u (B.5b)

Recall from Chapter 3 that the definitions of a and γ give

(∂p
∂e

)
ρ

= ρ
(
γ − 1

)
(B.6a)(∂p

∂ρ

)
e

= a2 − p

ρ

(
γ − 1

)
(B.6b)

which gives

∆p =
[
a2 − p

ρ

(
γ − 1

)]
∆ρ+ ρ

(
γ − 1

)
∆e (B.7)

Replacing Eq. (B.5) and Eq. (B.6) back to Eq. (B.3), we get to

c1 =
1

2a2

(
∆p− ρa∆u

)
(B.8a)

c2 = ∆ρ−∆p/a2 (B.8b)

c3 =
1

2a2

(
∆p+ ρa∆u

)
(B.8c)

Note that Eq. (B.8) are consistent with Glaister’s result [45] though we took different ways in representing

the Jacobian matrix and eigenvectors. And to within O
(
∆2
)
, we can check that

∆F =

3∑
m=1

cmλmKm (B.9)

Thus, for two close states, we have found c1, c2, c3 as in Eq. (B.8) for a general EOS such that

∆U =

3∑
m=1

cmKm (B.10a)

∆F =

3∑
m=1

cmλmKm (B.10b)

to within O
(
∆2
)
.
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Decomposition of two general states UL, UR

For two general states, UL and UR, that are not necessarily close, we would like to seek the intermediate

values of ρ̃, ũ, H̃, ã, γ̃ such that Eq. (B.1) holds. Let

UR −UL =


∆ρ

∆
(
ρu
)

∆
(
ρE
)
 =


ρR − ρL

ρRuR − ρLuL

ρRER − ρLEL

 (B.11a)

FR − FL =


∆
(
ρu
)

∆
(
ρu2 + p

)
∆
(
ρuH

)
 =


ρRuR − ρLuL

ρRu
2
R − ρLu2

L + pR − pL

ρRHRuR − ρLHLuL

 (B.11b)

Expanding the requirement in Eq. (B.1) in full, we get

∆ρ = c̃1 + c̃2 + c̃3 (B.12a)

∆
(
ρu
)

= c̃1
(
ũ− ã

)
+ c̃2ũ+ c̃3

(
ũ+ ã

)
(B.12b)

∆
(
ρE
)

= c̃1
(
H̃ − ũã

)
+ c̃2

(
H̃ − γ̃∗ã2

)
+ c̃3

(
H̃ + ũã

)
(B.12c)

∆
(
ρu
)

= c̃1
(
ũ− ã

)
+ c̃2ũ+ c̃3

(
ũ+ ã

)
(B.12d)

∆
(
ρu2 + p

)
= c̃1

(
ũ− ã

)2
+ c̃2ũ

2 + c̃3
(
ũ+ ã

)2
(B.12e)

∆
(
ρuH

)
= c̃1

(
H̃ − ũã

)(
ũ− ã

)
+ c̃2

(
H̃ − γ̃∗ã2

)
ũ+ c̃3

(
H̃ + ũã

)(
ũ+ ã

)
(B.12f)

with

c̃1 =
1

2ã2

(
∆p− ρ̃ã∆u

)
(B.13a)

c̃2 = ∆ρ−∆p/ã2 (B.13b)

c̃3 =
1

2ã2

(
∆p+ ρ̃ã∆u

)
(B.13c)
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To be clear, note that ∆ρ = ρR − ρL, ∆p = pR − pL, and ∆u = uR − uL might not be small. With Eq.

(B.12a), Eq. (B.12b), and Eq. (B.12c), we have

∆ρ = c̃1 + c̃2 + c̃3 (B.14a)

∆p = ã2
(
c̃1 + c̃3

)
(B.14b)

∆u =
ã

ρ̃

(
c̃3 − c̃1

)
(B.14c)

Eq. (B.12a) is satisfied because of Eq. (B.14a); while Eq. (B.12b) is the same as Eq. (B.12d). Thus the

intermediate state must make sure Eq. (B.12c) to Eq. (B.12f) are satisfied. From Eq. (B.12d) and Eq.

(B.14), we obtain

∆
(
ρu
)

= ũ
(
c̃1 + c̃2 + c̃3

)
+ ã
(
c̃3 − c̃1

)
⇒ ∆

(
ρu
)

= ũ∆ρ+ ρ̃∆u

(B.15)

From Eq. (B.12e) and Eq. (B.14), we obtain

∆
(
ρu2
)

+ ∆p = ũ2
(
c̃1 + c̃2 + c̃3

)
+ 2ũã

(
c̃3 − c̃1

)
+ ã2

(
c̃3 + c̃1

)
= ũ2∆ρ+ 2ρ̃ũ∆u+ ∆p

⇒ ∆
(
ρu2
)

= ũ2∆ρ+ 2ρ̃ũ∆u

(B.16)

Substituting ρ̃ from Eq. (B.16) into Eq. (B.15), we get a quadratic equation for ũ

ũ2∆ρ− 2ũ∆
(
ρu
)

+ ∆
(
ρu2
)

= 0 (B.17)

Only one solution of ũ from Eq. (B.17) is productive, that is

ũ =
∆
(
ρu
)
−
√[

∆
(
ρu
)]2 −∆ρ∆

(
ρu2
)

∆ρ
(B.18)

which gives

ũ =

√
ρLuL +

√
ρRuR√

ρL +
√
ρR

(B.19)

Substituting ũ back into Eq. (B.15), we get

ρ̃ =
√
ρLρR (B.20)
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With Eq. (B.19) and Eq. (B.20), we can obtain the following mathematical identity

∆
(
ρuφ

)
= ũ∆

(
ρφ
)

+ ρ̃∆u

√
ρLφL +

√
ρRφR√

ρL +
√
ρR

(B.21)

where φ could be any quantity. Now we need to determine the remaining variables H̃, ã, and γ̃. Using Eq.

(B.14), we rewrite Eq. (B.12c) and Eq. (B.12f) as

∆
(
ρE
)

=
(
H̃ − γ̃∗ã2

)
∆ρ+ ũρ̃∆u+ γ̃∗∆p (B.22a)

∆
(
ρuH

)
= ũ

(
H̃ − γ̃∗ã2

)
∆ρ+

(
H̃ + ũ2

)
ρ̃∆u+ ũ

(
1 + γ̃∗

)
∆p (B.22b)

Substituting φ = H into Eq. (B.21), we obtain

∆
(
ρuH

)
= ũ∆

(
ρH
)

+ ρ̃∆u

√
ρLHL +

√
ρRHR√

ρL +
√
ρR

= ũ∆
(
ρE
)

+ ũ∆p+ ρ̃∆u

√
ρLHL +

√
ρRHR√

ρL +
√
ρR

(B.23)

Substituting Eq. (B.22a) into Eq. (B.23) and then comparing Eq. (B.23) with Eq. (B.22b), we get

H̃ρ̃∆u = ρ̃∆u

√
ρLHL +

√
ρRHR√

ρL +
√
ρR

(B.24)

which gives

H̃ =

√
ρLHL +

√
ρRHR√

ρL +
√
ρR

(B.25)

which means if H̃ is given by Eq. (B.25), Eq. (B.22b) and Eq. (B.12f) are satisfied.

We have one more equation, Eq. (B.22a), to satisfy. Replacing ∆
(
ρu2
)

= ũ2∆ρ + 2ρ̃ũ∆u into Eq.

(B.22a), we get

∆
(
ρe
)

=
(
H̃ − 1

2
ũ2 − γ̃∗ã2

)
∆ρ+ γ̃∗∆p (B.26)

Noting that h = e+ p/ρ, Eq. (B.26) is equivalent to

∆
(
ρh
)

= ∆
(
ρe
)

+ ∆p =
(
H̃ − 1

2
ũ2 − γ̃∗ã2

)
∆ρ+ γ̃∗∆p+ ∆p (B.27)

By taking the choice that

h̃ =

√
ρLhL +

√
ρRhR√

ρL +
√
ρR

(B.28)
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We get

∆
(
ρh
)

= ρ̃∆h+ h̃∆ρ (B.29)

and Eq. (B.27) is simplified to

∆p =
γ̃ − 1

γ̃
ρ̃∆h+

ã2

γ̃
∆ρ (B.30)

which is consistent with the definitions of a and γ as the two states are close, as is seen in Eq. (3.13a) and

Eq. (3.13b) of Chapter 3. We transform Eq. (B.30) into

∆ρ =
γ̃

ã2
∆p− γ̃ − 1

ã2
ρ̃∆h (B.31)

which gives that relation of the change in density to the change in pressure and specific enthalpy (or tem-

perature) that the intermediate state has to satisfy. From Chapter 3, especially Figure 3.4, we know that

γ is almost a linear function of pressure and temperature (or enthalpy), thus to be consistent with other

intermediate variables, we take

γ̃ =

√
ρLγL +

√
ρRγR√

ρL +
√
ρR

(B.32)

And then ã is determined by

ã =

[
∆ρ

γ̃∆p−
(
γ̃ − 1

)
ρ̃∆h

]−1/2

(B.33)

In case ∆p = 0 and ∆h = 0, we have

ã = aL = aR, and γ̃ = γL = γR (B.34)

To conclude, by taking the following intermediate state

ρ̃ =
√
ρLρR (B.35a)

ũ = ωLuL + ωRuR (B.35b)

H̃ = ωLHL + ωRHR (B.35c)

h̃ = ωLhL + ωRhR (B.35d)

γ̃ = ωLγL + ωRγR (B.35e)

ã = ωLaL + ωRaR, if ∆p = 0 and ∆h = 0 (B.35f)

=

[
∆ρ

γ̃∆p−
(
γ̃ − 1

)
ρ̃∆h

]−1/2

, otherwise
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with ωL and ωR being the weights defined as

ωL =

√
ρL√

ρL +
√
ρR
, ωR =

√
ρR√

ρL +
√
ρR

(B.36)

we can show that the fundamental requirement in Eq. (B.1) is satisfied with coefficients

c̃1 =
1

2ã2

(
∆p− ρ̃ã∆u

)
(B.37a)

c̃2 = ∆ρ−∆p/ã2 (B.37b)

c̃3 =
1

2ã2

(
∆p+ ρ̃ã∆u

)
(B.37c)

where ∆ρ = ρR − ρL, ∆u = uR − uL, and ∆p = pR − pL.
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Appendix C

ROE-PIKE INTERMEDIATE
STATE FOR TWO-PHASE SYSTEM

Recall that the Roe-type numerical flux for the two-phase system is

F̂Roe
i+ 1

2
=

1

2

(
Fni + Fni+1

)
− 1

2
|Ãc|

(
Un
i+1 −Un

i

)
(C.1)

Or equivalently,

F̂Roe
i+ 1

2
=

1

2

(
Fni + Fni+1

)
− 1

2

6∑
m=1

c̃m|λ̃c,m|K̃c,m (C.2)

where λc,m and Kc,m is the m-th eigenvalue and eigenvector of the matrix Ac. As discussed in previous

chapter, we are not able to obtain analytically the exact eigenvalues and eigenvectors of Ac. In practice, we

use the approximations made in Eq. (4.42) and Eq. (4.43), i.e.

λc,1 ≈ ul −
√
βlal;λc,2 = ul;λc,3 ≈ ul +

√
βlal (C.3a)

λc,4 ≈ ug −
√
βgag;λc,5 = ug;λc,6 ≈ ug +

√
βgag (C.3b)
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and the right eigenvectors are approximated with

K1,c ≈



1

ul −
√
βlal

Hl −
√
βlalul

0

0

0


,K2,c ≈



1

ul

Hl − γ∗l a2
l

0

0

0


,K3,c ≈



1

ul +
√
βlal

Hl +
√
βlalul

0

0

0



K4,c ≈



q4

q4λc,4

q4

[
Hl − u2

l + ulλc,4
]

1

ug −
√
βgag

Hg −
√
βgagug


,K5,c ≈



0

0

0

1

ug

Hg − γ∗ga2
g


,K6,c ≈



q6

q6λc,6

q6

[
Hl − u2

l + ulλc,6
]

1

ug +
√
βgag

Hg +
√
βgagug



(C.4)

where γ∗l = 1/
(
γl − 1

)
and γ∗g = 1/

(
γg − 1

)
. And q4 and q6 are two auxiliary variables defined as

q4 ≡
σla

2
g(

λc,4 − λc,1
)(
λc,4 − λc,3

) ; q6 ≡
σla

2
g(

λc,6 − λc,1
)(
λc,6 − λc,3

) (C.5)

As is required in single-phase system, the fundamental requirement to the Roe-Pike intermediate state

is

UR −UL =

6∑
m=1

c̃mK̃c,m (C.6a)

FR − FL =

6∑
m=1

c̃mλ̃c,mK̃c,m (C.6b)
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Expanding the requirement in Eq. (C.6) in full, we get

∆
(
αlρl

)
= c̃1 + c̃2 + c̃3 + c̃4q̃4 + c̃6q̃6 (C.7a)

∆
(
αlρlul

)
= c̃1

(
ũl −

√
β̃lãl

)
+ c̃2ũl + c̃3

(
ũl +

√
β̃lãl

)
+ c̃4q̃4

(
ũg −

√
β̃gãg

)
+ c̃6q̃6

(
ũg +

√
β̃gãg

)
(C.7b)

∆
(
αlρlEl

)
= c̃1

(
H̃l −

√
β̃lũlãl

)
+ c̃2

(
H̃l − γ̃∗l ã2

l

)
+ c̃3

(
H̃l +

√
β̃lũlãl

)
(C.7c)

+ c̃4q̃4

[
H̃l − ũ2

l + ũl
(
ũg −

√
β̃gãg

)]
+ c̃6q̃6

[
H̃l − ũ2

l + ũl
(
ũg +

√
β̃gãg

)]
∆
(
αgρg

)
= c̃4 + c̃5 + c̃6 (C.7d)

∆
(
αgρgug

)
= c̃4

(
ũg −

√
β̃gãg

)
+ c̃5ũg + c̃6

(
ũg +

√
β̃gãg

)
(C.7e)

∆
(
αgρgEg

)
= c̃4

(
H̃g −

√
β̃gũgãg

)
+ c̃5

(
H̃g − γ̃∗g ã2

g

)
+ c̃6

(
H̃g +

√
β̃gũgãg

)
(C.7f)

and

∆
(
αlρlul

)
= c̃1

(
ũl −

√
β̃lãl

)
+ c̃2ũl + c̃3

(
ũl +

√
β̃lãl

)
+ c̃4q̃4

(
ũg −

√
β̃gãg

)
+ c̃6q̃6

(
ũg +

√
β̃gãg

)
(C.8a)

∆
(
αlρlu

2
l + αlp

)
= c̃1

(
ũl −

√
β̃lãl

)2
+ c̃2ũ

2
l + c̃3

(
ũl +

√
β̃lãl

)2
(C.8b)

∆
(
αlρlulHl

)
= c̃1

(
H̃l −

√
β̃lũlãl

)(
ũl −

√
β̃lãl

)
+ c̃2

(
H̃l − γ̃∗l ã2

l

)
ũl

+ c̃3
(
H̃l +

√
β̃lũlãl

)(
ũl +

√
β̃lãl

)
+ c̃4q̃4

[
H̃l − ã2

l + ũl
(
ũg −

√
β̃gãg

)](
ũl −

√
β̃lãl

)
+ c̃6q̃6

[
H̃l − ã2

l + ũl
(
ũg +

√
β̃gãg

)](
ũl +

√
β̃lãl

)
(C.8c)

∆
(
αgρgug

)
= c̃4

(
ũg −

√
β̃gãg

)
+ c̃5ũg + c̃6

(
ũg +

√
β̃gãg

)
(C.8d)

∆
(
αgρgu

2
g + αgp

)
= c̃4

(
ũg −

√
β̃gãg

)2
+ c̃5ũ

2
g + c̃6

(
ũg +

√
β̃gãg

)2
(C.8e)

∆
(
αgρgugHg

)
= c̃4

(
H̃g −

√
β̃gũgãg

)(
ũg −

√
β̃gãg

)
+ c̃5

(
H̃g − γ̃∗g ã2

g

)
ũg

+ c̃6
(
H̃g +

√
β̃gũgãg

)(
ũg +

√
β̃gãg

)
(C.8f)

Finding exactly the intermediate state from Eq. (C.7) and Eq. (C.8) is difficult. And, because the eigenvalues

and eigenvectors are only approximated values, finding exactly the intermediate state does not gains much.

We propose to use approximate intermediate state.

Taking a close look at Eq. (C.7), Eq. (C.8), and Eq. (B.12), we observe that, except for the additional

void fraction αk and coupling factors βk, there are great similarities among them. For example, Eq. (B.12a)

has the same form as Eq. (C.7d), Eq. (B.12b) has the same form as Eq. (C.7e), and Eq. (B.12c) has
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the same form as Eq. (C.7f). Because of the similarities, we would expect that the intermediate state for

two-phase system should have a similar form as the intermediate state for the single-phase system. Thus,

we propose to use the following intermediate variables

φ̃k = ωk,Lφk,L + ωk,Rφk,R, for k = l, g and φ = u,H, a, γ, β, σ (C.9)

with

ωk,L =

√
αk,Lρk,L

√
αk,Lρk,L +

√
αk,Rρk,R

, ωk,R =

√
αk,Rρk,R

√
αk,Lρk,L +

√
αk,Rρk,R

, for k = l, g (C.10)

Once the intermediate variables are specified by Eq. (C.9), we can solve for the coefficients c̃m from

Eq. (C.7). The expression for the coefficients c̃m is messy to write explicitly. We provide the procedure for

calculating them.

The procedure start with

∆u4 = αg,Rρg,R − αg,Lρg,L

∆u5 = αg,Rρg,Rug,R − αg,Lρg,Lug,L

∆u6 = αg,Rρg,REg,R − αg,Lρg,LEg,L

∆u54 = ∆u5 −
(
ũg −

√
β̃gãg

)
∆u4

∆u64 = ∆u6 −
(
H̃g −

√
β̃gũgãg

)
∆u4

(C.11)

Substituting Eq. (C.11) into Eq. (C.7d), Eq. (C.7e), and Eq. (C.7f) , we get

c̃5 =
(
γ̃g − 1

) ũg∆u54 −∆u64

ã2
g

c̃6 =
∆u54

2β̃gãg
− c̃5

2

c̃4 = ∆u4 − c̃6 − c̃5

(C.12)

Since c̃4, c̃5, and c̃6 are found, we can substitute them back into Eq. (C.7a), Eq. (C.7b), and Eq. (C.7c) to
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solve for c̃1, c̃2, and c̃3. Let

∆u1 = αl,Rρl,R − αl,Lρl,L − c̃4q̃4 − c̃6q̃6

∆u2 = αl,Rρl,Rul,R − αl,Lρl,Lul,L − c̃4q̃4

(
ũg −

√
β̃gãg

)
− c̃6q̃6

(
ũg +

√
β̃gãg

)
∆u3 = αl,Rρl,REl,R − αl,Lρl,LEl,L − c̃4q̃4

[
H̃l − ũ2

l + ũl
(
ũg −

√
β̃gãg

)]
− c̃6q̃6

[
H̃l − ũ2

l + ũl
(
ũg +

√
β̃gãg

)]
∆u21 = ∆u2 −

(
ũl −

√
β̃lãl

)
∆u1

∆u31 = ∆u3 −
(
H̃l −

√
β̃lũlãl

)
∆u1

(C.13)

Substituting Eq. (C.13) to Eq. (C.7a), Eq. (C.7b), and Eq. (C.7c), we get

c̃2 =
(
γ̃l − 1

) ũl∆u21 −∆u31

ã2
l

c̃3 =
∆u21

2β̃lãl
− c̃2

2

c̃1 = ∆u1 − c̃3 − c̃2

(C.14)

Finally, the Roe-type numerical flux is completely specified by Eq. (C.2) using the respective variables

given in Eq. (C.9), Eq. (C.12), and Eq. (C.14).
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Appendix D

U-W TRANSFORM

Recall that U is the vector of conservative variables and W is the vector of primitive/physical variables

U =



αlρl

αlρlul

αlρlEl

αgρg

αgρgug

αgρgEg


,W =



αg

p

Tl

Tg

ul

ug


(D.1)

The small changes in U and W are related by

∆U = Aw∆W, with Aw ≡
∂U

∂W
(D.2)

The derivation of Aw matrix is straightforward, which we omit for brevity. Let

x11 =

(
∂ρl
∂p

)
Tl

, x12 =

(
∂ρl
∂Tl

)
p

(D.3a)

x21 =

(
∂ρg
∂p

)
Tg

, x22 =

(
∂ρg
∂Tg

)
p

(D.3b)

y11 =

(
∂el
∂p

)
Tl

, y12 =

(
∂el
∂Tl

)
p

(D.3c)

y21 =

(
∂eg
∂p

)
Tg

, y22 =

(
∂eg
∂Tg

)
p

(D.3d)
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The Aw matrix is obtained to be

Aw =



−ρl αlx11 αlx12 0 0 0

−ρlul αlulx11 αlulx12 0 αlρl 0

−ρlEl αl(Elx11 + ρly11) αl(Elx12 + ρly12) 0 αlρlul 0

ρg αgx21 0 αgx22 0 0

ρgug αgugx21 0 αgugx22 0 αgρg

ρgEg αg(Egx21 + ρgy21) 0 αg(Egx22 + ρgy22) 0 αgρgug


(D.4)

In practice, the inverse of Aw is required to obtain ∆W with

∆W = A−1
w ∆U (D.5)

The inverse matrix A−1
w is found with Mathematica to be

A−1
w =



a11 a12 a13 a14 a15 a16

a21 a22 a23 a24 a25 a26

a31 a32 a33 a34 a35 a36

a41 a42 a43 a44 a45 a46

− ul

αlρl
1

αlρl
0 0 0 0

0 0 0 − ug

αgρg
1

αgρg
0


(D.6)
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with

a11 = −
αg
[(
El − u2

l

)
x12 + ρly12

]
t2

ρlC
, a12 = −αgulx12t2

ρlC
, a13 =

αgx12t2
ρlC

a14 =
αl
[(
Eg − u2

g

)
x22 + ρgy22

]
t1

ρgC
, a15 =

αlugx22t1
ρgC

, a16 = −αlx22t1
ρgC

a21 = −
ρg
[(
El − u2

l

)
x12 + ρly12

]
y22

ρlC
, a22 = −ρgulx12y22

ρlC
, a23 =

ρgx12y22

ρlC

a24 = −
ρl
[(
Eg − u2

g

)
x22 + ρgy22

]
y12

ρgC
, a25 = −ρlugx22y12

ρgC
, a26 =

ρlx22y12

ρgC

a31 =
αlρg

[(
El − u2

l

)
x11 + ρly11

]
y22 − αgρl

(
El − u2

l

)
t2

αlρlC
, a32 =

ul
(
αlρgx11y22 − αgρlt2

)
αlρlC

a33 = −αlρgx11y22 − αgρlt2
αlρlC

a34 =
ρl
[(
Eg − u2

g

)
x22 + ρgy22

]
y11

ρgC
, a35 =

ρlugx22y11

ρgC
, a36 = −ρlx22y11

ρgC

a41 =
ρg
[(
El − u2

l

)
x12 + ρly12

]
y21

ρlC
, a42 =

ρgulx12y21

ρlC
, a43 = −ρgx12y21

ρlC

a44 =
αgρl

[(
Eg − u2

g

)
x21 + ρgy21

]
y12 − αlρg

(
Eg − u2

g

)
t1

αgρgC
, a45 =

ug
(
αgρlx21y12 − αlρgt1

)
αgρgC

a46 = −αgρlx21y12 − αlρgt1
αgρgC

(D.7)

where t1, t2, and C are auxiliary variables used for ease of notations. They are defined as

t1 = x12y11 − x11y12

t2 = x22y21 − x21y22

C = αlρgt1y22 + αgρlt2y12

(D.8)
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Appendix E

COEFFICIENT MATRICES

The coefficient matrix A0 and its inverse in the adjoint equation is

A0 ≡
(
∂U

∂W

)T
= ATw (E.1)

A−1
0 =

(
A−1

w

)T
(E.2)

where Aw and A−1
w are given in Appendix D.

The coefficient matrix A1 in the adjoint equation is

A1 ≡
(
∂F

∂W
+ Pix

∂αg
∂W

)T
=

−ρlul −ρlu2
l − p+ pi −ρlulHl ρgug ρgu

2
g + p− pi ρgugHg

αlulx11 αl
(
1 + u2

l x11

)
αlul

(
Elx11 + ρly11 + 1

)
αgugx21 αg

(
1 + u2

gx21

)
αgug

(
Egx21 + ρgy21 + 1

)
αlulx12 αlu

2
l x22 αlul

(
Elx12 + ρly12

)
0 0 0

0 0 0 αgugx22 αgu
2
gx22 αgug

(
Egx22 + ρgy22

)
αlρl 2αlρlul αlρl

(
Hl + u2

l

)
0 0 0

0 0 0 αgρg 2αgρgug αgρg
(
Hg + u2

g

)



(E.3)

where x11, x12, x21, x22, y11, y12, y21, and y22 are variables defined in Appendix D.

The coefficient matrix A2 in the adjoint equation is
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The functions B1

(
φφφ
)

to B6

(
φφφ
)
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where x11, x12, x21, x22, y11, y12, y21, and y22 are variables defined in Appendix D.
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