

© 2018 Sunny Sharma

EXTREMUM SEEKING CONTROL OF BATTERY POWERED VAPOR

COMPRESSION SYSTEMS FOR VEHICLES

BY

SUNNY SHARMA

THESIS

Submitted in partial fulfillment of the requirements

for the degree of Master of Science in Mechanical Engineering

in the Graduate College of the

University of Illinois at Urbana-Champaign, 2018

Urbana, Illinois

 Adviser:

 Professor Andrew Alleyne

ii

Abstract

This thesis investigates the real-time energy optimization of battery powered vapor

compression systems (VCS) for vehicles. Battery powered VCS are critical for maintaining

passenger comfort in engine-off situations, and are especially important to long-haul truck

drivers who sleep inside their vehicle overnight. However, one drawback of battery powered

vehicle VCS is their short lifespan which may not provide cooling through the whole night

while the vehicle engine is turned off. One reason for short system lifespan is suboptimal input

selection; the combination of inputs to the VCS often yields a power consumption higher than

necessary to generate the required vehicle cooling. This thesis proposes the use of extremum

seeking control (ESC), a class of real-time model-free optimization algorithms, to determine

the optimal combination of system inputs that minimizes the VCS power consumption while

meeting given objectives. In order to determine algorithm efficacy, we implemented three

different ESC algorithms (perturbation-ESC, least squares-ESC and recursive least squares-

ESC) on a simulated and physical integrated VCS (the VCS in conjunction with the battery

pack and vehicle cabin). Simulation and experimental results demonstrate significant increases

in energy efficiency and battery life through the use of these algorithms, with least squares-

ESC and recursive least squares-ESC being the most effective of the three.

iii

To my family, friends, and teachers.

iv

Acknowledgements

First and foremost, I would like to thank my adviser Dr. Andrew Alleyne for his

immense support and guidance over the past two years. Rarely do you find an adviser who is

entirely committed to his or her students’ success above all else. I have learned so much from

Dr. Alleyne and I am fortunate to have had an adviser so intelligent, patient, caring and devoted

to helping me achieve my life and career goals.

I would like to thank Aaron Sullivan from Bergstrom Inc. for his help in understanding

and troubleshooting the experimental system used in this thesis. Aaron was always willing to

take time out of his busy schedule to patiently answer my questions, for which I am immensely

grateful. This thesis could not have been completed without his help, and I aspire to be a mentor

like Aaron when I join the work force.

I would be remiss to not acknowledge my lab mates, past and present, in the Alleyne

Research Group. You all have made my graduate school experience special. I will always

remember the memories we shared together and I am honored to call you my friends. To the

senior lab members, Justin, Herschel, Bryan, and Matt, thank you for the mentorship and

guidance you provided me. Thanks to Malia, Oyuna, Ashley, Spencer K., Nate, and Pamela,

the labmates one year above me, for making the transition to graduate school as smooth and as

fun as possible. Thanks to Spencer I. and Sarah, my fellow members of 3S , for all of the fun

memories we made and for pretending like we were still in undergrad. Thanks to Chris and

Donald, the future of ARG, for being such great friends and lunch buddies. A special thank

you to Sarah for all of her support over the past two years.

Last, but not least, a big thank you to my family. My parents are my biggest inspiration,

and I would (literally) not be here without you. You raised me to be hardworking, honest,

empathetic and humble, and I hope I have made you proud. To my sister, thank you for always

being my biggest supporter. You give me the confidence to believe in myself and always push

me to be the best that I can be.

v

Table of Contents

LIST OF FIGURES ... VIII

LIST OF TABLES ... XIX

CHAPTER 1 INTRODUCTION .. 1

1.1 Motivation .. 1

1.2 Introduction to Extremum Seeking Control (ESC) .. 3

1.3 Organization of Thesis ... 4

CHAPTER 2 MODELING, OPERATION AND CONTROL OF INTEGRATED

VAPOR COMPRESSION SYSTEMS ... 5

2.1 Introduction and Review of the Standard Four Component VCS 5

2.2 Modeling of an Integrated VCS ... 7

2.2.1 The Vapor-Compression Model .. 9

2.2.2 Fan Models ... 13

2.2.3 Electrical Model .. 15

2.2.4 Vehicle Cabin Model .. 17

2.3 Open Loop Cabin Model Validation .. 32

2.3.1 Simulation Parameters .. 32

2.3.2 Open Loop Simulation Results ... 36

2.3.3 Other Cabin Model Results ... 38

2.3.4 Experimental Validation of Simulation Data .. 40

2.4 Overview of the Experimental System ... 43

2.4.1 The NITE System .. 44

2.4.2 The Cabin .. 45

2.4.3 The Workstation .. 48

2.5 Basic Control Strategies and Closed Loop Validation ... 51

2.5.1 Closed Loop Structure ... 52

vi

2.5.2 Determining the Physical Cabin Model .. 53

2.5.3 Determining the Controller Transfer Function .. 55

2.5.4 Closed Loop Simulation Results ... 55

2.5.5 Closed Loop Experimental Results ... 59

2.6 Optimization Opportunities .. 64

CHAPTER 3 EXTREMUM SEEKING CONTROL ... 66

3.1 Optimization via Gradient Descent .. 66

3.2 Gradient Estimation .. 71

3.3 Extremum Seeking Control .. 73

3.3.1 The Basic Single-Variable Perturbation ESC Algorithm .. 74

3.3.2 Shortcomings of Perturbation ESC ... 77

3.3.3 Least Squares Based Extremum Seeking .. 78

3.3.4 Recursive Least Squares (RLS) ESC .. 81

3.4 ESC Applications to VCS .. 84

3.5 Optimization of no-idle VCS ... 87

CHAPTER 4 EXTREMUM SEEKING CONTROL ON THE SIMULATED

INTEGRATED NITE SYSTEM .. 88

4.1 NITE System Power Convexity ... 89

4.1.1 A Note on the Condenser Fan Speed .. 93

4.2 Implementing ESC on the Simulated System .. 94

4.3 Simulation Results .. 99

4.4 Summary and Next Steps ... 105

CHAPTER 5 EXTREMUM SEEKING CONTROL ON THE EXPERIMENTAL

INTEGRATED NITE SYSTEM .. 106

5.1 ESC development in LabVIEW ... 106

5.1.1 LabVIEW Front Panel Inputs .. 108

5.1.2 LabVIEW Front Panel CAN Configuration .. 108

5.1.3 LabVIEW Front Panel Outputs and Data .. 109

5.2 Determining NITE Power Convexity ... 111

vii

5.3 Implementing ESC on the Experimental System ... 113

5.4 Experimental Results .. 115

5.4.1 Analysis of each Run ... 117

5.5 Concluding Remarks .. 135

CHAPTER 6 CONCLUSION .. 136

6.1 Thesis Summary and Contributions ... 136

6.2 Future Work ... 136

REFERENCES ... 138

APPENDIX A SIMULINK DIAGRAMS AND CODE .. 141

A.1 Cabin Model .. 141

A.1.1 Cabin Model Diagrams .. 141

A.1.2 Cabin Model Code ... 143

A.2 Auxiliary Models Code ... 151

A.2.1 Condenser Fan Code .. 151

A.2.2 Blower Fan Code .. 152

A.3 Control Algorithm Code .. 153

A.3.1 RLS Algorithm Code ... 153

A.3.2 LS-ESC Code ... 153

APPENDIX B EXPERIMENTAL SYSTEM HARDWARE AND SOFTWARE 154

B.1 Experimental Hardware Setup ... 154

B.1.1 NI-9205 Module Setup and Configuration ... 154

B.1.2 Sensor Wiring Diagram .. 155

B.1.3 NI-9862 Module Setup and Configuration ... 156

B.2 LabVIEW Code ... 164

viii

List of Figures

Figure 1.1 States with laws on no idling [1]. .. 2

Figure 2.1 The standard four-component VCS along with its respective P-h plot. 6

Figure 2.2 A picture of the NITE Phoenix SSI [11]. The condenser coil and fan are

housed in one unit (left), while all other components are housed in another

(right). The units are connected together using long, flexible refrigerant tubes. 8

Figure 2.3 A model of the integrated VCS developed in MATLAB/Simulink. The

user determines set point values for the compressor, condenser fan and

evaporator blower and sets the ambient conditions. Given these inputs, the vapor

compression system generates a corresponding cooling capacity, absorbing heat

from the vehicle cabin. .. 9

Figure 2.4 A four-cycle VCS consisting of the evaporator, compressor, condenser and

TXV constructed using Thermosys, a toolbox in MATLAB/Simulink. 10

Figure 2.5 The mass flow rate and power draw of the evaporator blower over the

nominal range of blower speeds commonly used during operation. 13

Figure 2.6 The mass flow rate and power draw of the condenser fan over the nominal

range of condenser speeds commonly used during operation. 14

Figure 2.7 The condenser fan and evaporator blower modeled in Simulink. 14

Figure 2.8 The electrical model developed in Simulink. The power consumption of all

VCS components is divided by 12 to simulate the current draw on a bank of four

lead-acid batteries modeled after the Trojan AGM31 battery. Each battery

outputs a voltage, percent state of charge and current. The compressor power

map at the bottom of the figure is an empirical map that calculates the

compressor power consumption as a function of the RPM and pressure ratio. 16

ix

Figure 2.9 The battery parameter dialog box. The type of battery, along with nominal

voltage, rated capacity and state of charge were based off the Trojan AGM-31,

the recommended battery for no-idle vehicle VCS. .. 17

Figure 2.10 A visual representation of the heat loads considered by [14]. 19

Figure 2.11 A model of the temperature profile inside a vehicle cabin using a

numerical CFD approach as seen in [18]. ... 19

Figure 2.12 The cabin model developed in Simulink. The block accepts inputs such as

the ambient conditions and the cooling capacity, and outputs states such as the

cabin air temperature and the temperature of the vehicle surfaces. 20

Figure 2.13 Parameter dialog for the cabin model. The user inputs values for the

vehicle’s material properties, vehicle dimensions as well as the initial conditions. 22

Figure 2.14. An illustration of the mass flow rates entering and leaving the cabin. The

sum of the three air mass flow rates is zero. ... 23

Figure 2.15 A visual illustration of the various thermal loads on the vehicle cabin............... 24

Figure 2.16 Transient conduction through a windshield discretized into five nodes. 27

Figure 2.17 A visual example from [16] of the energy balance method applied to a

discretized node. ... 28

Figure 2.18 Transient heat conduction through the roof. Note that the nodes for steel,

air and cotton are not uniform in thickness like for the windows. 29

Figure 2.19 Cabin air temperature for different number of vehicle occupants, N, given

a cooling load of 1000refQ W  and an initial cabin temperature of 35 degrees. 37

Figure 2.20 Cabin air temperature over time for two different sets of horizontal and

vertical solar radiation. .. 38

Figure 2.21 Cabin air temperature over time given different evaporator cooling loads. 38

Figure 2.22 Evolution of cabin heat loads over time .. 39

Figure 2.23 All of the cabin heat loads over time, including the cooling capacity. 40

Figure 2.24 An estimate of the cabin air temperature of a closed vehicle on a hot

summer day from [21] given a number of different ambient temperatures. 41

x

Figure 2.25 Comparing the experimental data to the cabin model temperature over the

course of an hour. Cabin model data closely matches the empirical data. 42

Figure 2.26 A labeled picture of the experimental setup. ... 43

Figure 2.27 A labeled schematic of the NITE Phoenix SSI given by Bergstrom Inc. 45

Figure 2.28 A picture of the condenser unit along with the 250W heating load. 45

Figure 2.29 A picture of the 500W and 375W heat loads suspended inside the cabin.

The 500W heat load consists of two 250W heat lamps, while the 375W heat load

consists of a 250W and 125W heat lamp. Each heat load is individually

controllable by the user depending on desired head load. Also seen is the cabin

fan that mixes the air inside to increase temperature uniformity. 46

Figure 2.30 A picture taken inside the cabin, showing the two LM35 temperature

sensors. Also visible is the evaporator outflow duct that brings cool air inside

from the NITE system. .. 47

Figure 2.31 A picture of the workstation components. The NI cRIO communicates to

the NITE over CAN and receives analog signals from various system

transducers. The signal conditioning circuit, in conjunction with the 5V supply,

powers the sensors and filters their outputs to reduce noise. The NITE User

Interface is used to turn the NITE on or off. ... 48

Figure 2.32 A close-up of the NI cRIO 9035.. 49

Figure 2.33 A basic script (called a VI) developed in LabVIEW that sends and

receives CAN signals and also reads and manipulates analog sensor signals. 51

Figure 2.34 A block diagram of closed loop control implemented on a VCS, where

the controller aims to track a given reference temperature for the cabin. 52

Figure 2.35 Cabin temperature response to different compressor PWM speeds,

starting from an initial temperature of 35 degrees C. ... 54

Figure 2.36 The cabin temperature over time for three different proportional gains.

None of the proportional controllers successfully track the temperature set point,

yielding a steady state error. ... 56

xi

Figure 2.37 The compressor RPM over time for the three different proportional gains.

The compressor RPM does not reach the speed necessary to cool the cabin to the

temperature set point. .. 57

Figure 2.38 The simulated cabin temperature over time. The cabin temperature,

initially at 35 degrees C, converges to the temperature set point in approximately

20 minutes. .. 58

Figure 2.39 The compressor RPM over time. The compressor speed initially increases

to pull down the cabin temperature and levels off once the cabin temperature

reaches the desired value... 59

Figure 2.40 The cabin temperature over time, along with the temperature set point.

The cabin temperature fails to track the reference temperature, resulting in a

steady state error. .. 60

Figure 2.41 The compressor PWM over time. The compressor PWM is greatest at the

beginning due to the large initial error between the cabin temperature and

temperature reference. The PWM never reaches a high enough value to cool the

cabin sufficiently ... 60

Figure 2.42 The cabin temperature over time, starting from an initial temperature of

35 degrees C. The cabin temperature converges to the set point in roughly 30-40

minutes. ... 61

Figure 2.43 The compressor PWM over time. The PWM initially increases to bring

down the cabin temperature and stabilizes once the cabin temperature reaches

the temperature set point. .. 61

Figure 2.44 The bode plot of the disturbance rejection transfer function. The transfer

function attenuates disturbances over all frequencies. .. 63

Figure 2.45 The bode plot of the sensitivity transfer function. The transfer function

attenuates low frequency signals, amplifies a narrow range of signals with

frequencies between 0.01 and 0.025 rad/s, and passes signals with frequencies

higher than 0.025 rad/s. The transfer function passes most noise, but this is

permissible because noise is already attenuated due to prior signal conditioning 64

xii

Figure 3.1 A graphical illustration of a convex function. Between any two coordinates

1 1(, ())J  , and 2 2(, ())J  the function must lie below a line connecting these

two points. ... 68

Figure 3.2 A non-convex function. A line drawn between two points on the function

does not always lie above the function evaluated between those points. 69

Figure 3.3
2 2(,)f x y x xy y   is a globally convex function in 3

R with a minimum

at (0,0) . .. 69

Figure 3.4 A visual example of a discrete scalar gradient descent algorithm applied to

()J  , a convex function in 2
R . The algorithm successfully converges to the

value of  that minimizes J . .. 71

Figure 3.5 The static, quasi-static and dynamic responses of the second order transfer

function
2() / () 1/ (0.01 1)Y s U s s s   for () [0,2]U s  . .. 73

Figure 3.6 A block diagram of the classical perturbation ESC algorithm. 74

Figure 3.7 A closed loop block diagram of the algorithm described in [10]. 78

Figure 3.8 An example of ordinary least squares applied to a set of data points

1 1 2 2(,), (,)...(,)n ny y y   . We organize the data points into corresponding and

Y matrices, and then use a matrix projection operator
1ˆ ()T TY    to

determine the linear coefficients that minimizes the sum of the squared distances

between data points and the linear approximation. ... 79

Figure 3.9 A block diagram detailing the implementation of discrete RLS ESC on a

sample plant. ... 83

Figure 3.10 A graphical representation from [2] of power convexity with respect to

the VCS input space. The convex function represents a constant VCS cooling

capacity of 1000Q W . The goal of ESC is to minimize this function by going

from a suboptimal input combination 0V to minV . .. 84

Figure 3.11 The control architecture utilized by [2]. .. 85

xiii

Fig 3.12 Experimental results from [2]. Over the course of two hours, the ESC

determines an optimal combination of compressor and evaporator fan speeds that

minimizes the power consumption. Even as this process occurs, the VCS

successfully keeps the room temperature at a pre-determined constant value. 86

Figure 4.1 The change in compressor and blower speeds over the course of the

mapping procedure. The large initial compressor RPM transient is a result of

pulling down the cabin temperature to the set point. As the blower speed

increases, the compressor speed decreases in order to maintain a constant cabin

temperature. .. 90

Figure 4.2 The total VCS power over time. The initial power transient is due to the

high compressor speeds. From 3000 to 30000 seconds, the power curve can be

approximated as a convex function. .. 90

Figure 4.3 The quasi-static system power curve with respect to the evaporator blower

speed. As the blower speed increases, the compressor speed decreases in order to

maintain a constant vehicle cabin temperature. The total power consumption is

minimized around a blower speed of 126-128 PWM and a compressor speed of

1565 RPM. .. 91

Figure 4.4 The cabin temperature over time, starting from an initial temperature of

35°C. As the blower speed increases during the mapping process, the PI

controller decreases the compressor speed to keep the cabin temperature at 21°C. 92

Figure 4.5 The PI controller utilized in simulation. .. 93

Figure 4.6 Total power consumption with respect to the condenser fan speed is not

convex. The evaporator blower is held at an arbitrary constant 153 PWM. 94

Figure 4.7 P-ESC implemented in Simulink. The block receives the total system

power and outputs an adjustment in the blower speed in the direction of a

decrease in power. ... 97

Figure 4.8 LS-ESC implemented in Simulink. The block receives the system power

consumption and the blower speed. These two quantities are each stored in a

corresponding data buffer which is used to generate a corresponding gradient

xiv

value using the least squares algorithm. The gradient is then scaled and

integrated to generate an evaporator speed adjustment used to minimize the

power consumption. .. 97

Figure 4.9 The RLS algorithm implemented in Simulink. The algorithm receives the

current evaporator blower speed and system power consumption, and uses the

RLS algorithm to generate a corresponding gradient estimate that is scaled and

integrated to generate an adjustment to the blower speed. ... 98

Figure 4.10 The evaporator blower configuration in Simulink. The default speed is set

at an energy suboptimal 107PWM. When implementing P-ESC, we use the

manual switch to select the top case, which is a constant blower speed. However,

when implementing RLS/LS-ESC, we select the bottom case, which ramps the

blower speed from 107 to 112 PWM from 3000 to 5000 seconds. The ESC_adj

tag is sent from the respective ESC algorithm chosen for the simulation, and

adjusts the blower speed correspondingly to minimize the total power

consumption. ... 98

Figure 4.11 Blower speeds over time for the three ESC algorithms. All three

algorithms start from a suboptimal 107PWM and converge to the optimal blower

speed, with the RLS/LS-ESC algorithms converging faster than P-ESC. The

small oscillations in the blower speed generated by LS-ESC is a benign

byproduct of the relatively long time buffer length, which is ideal for dynamic

systems with relatively long time constants. ... 100

Figure 4.12 The system power consumption over time for the three ESC cases, along

with the power consumption of the baseline case. All three ESC algorithms

converge to the minimal power consumption of 523W, while the suboptimal

case yields a power consumption of 553W. .. 101

Figure 4.13 The compressor speeds corresponding to the three ESC approaches and

the baseline case. All three ESC algorithms converge to the optimal compressor

speed. .. 102

xv

Figure 4.14 The cabin temperature over time once ESC is activated, along with the

baseline case. All approaches track the cabin temperature very well with

minimal deviations from the temperature setpoint. .. 103

Figure 4.15 The battery state of charge over time for each of the four cases. The time

it takes for the battery to drain to 0% charge for the PI, P-ESC, and RLS/LS-

ESC cases is 25,940s, 26,919s, and 27,158s resepectively. The P-ESC and

RLS/LS-ESC algorithms yield a 3.7% and 4.7% increase in run time

respectively. .. 104

Figure 4.16 A bar plot depicting the runtime of the four cases in minutes. The P-ESC

runs for 16 minutes longer than the baseline case, while the RLS/LS-ESC cases

run for 20 minutes longer than the baseline case. Again, this is a 3.7% and 4.7%

increase in runtime respectively. ... 104

Figure 5.1 The LabVIEW front panel developed for ESC implementation on the

physical system. .. 107

Figure 5.2 Additional graphs showing different temperature, pressure and component

states of the integrated NITE system. ... 110

Figure 5.3 Component speeds over time. The compressor speed converges to roughly

25-30 PWM. .. 112

Figure 5.4 The NITE power consumption as a function of the blower speed. The

relationship is convex, enabling real time optimization of this system. 112

Figure 5.5 Cabin temperature over time. The temperature set point was tracked well

through the course of the experiment. ... 113

Figure 5.6 Average percent increase in the battery runtime over each of the respective

baseline cases. ... 116

Figure 5.7 Battery runtime for each of the two runs performed for each algorithm,

along with the respective baseline runtimes. .. 116

Figure 5.8 Battery charge vs. time for the first P-ESC run and its baseline case. 117

Figure 5.9 Power vs. time for the first P-ESC run. ... 118

Figure 5.10 Component PWM vs. time for the first P-ESC run. .. 118

xvi

Figure 5.11 Cabin temperature vs. time for the first P-ESC run. .. 119

Figure 5.12 Ambient temperature vs. time for the first P-ESC run. 119

Figure 5.13 Battery charge vs. time for the second P-ESC run and its baseline case........... 120

Figure 5.14 Power vs. time for the second P-ESC run. .. 121

Figure 5.15 Component PWM vs. time for the second P-ESC run. 121

Figure 5.16 Cabin temperature vs. time for the second P-ESC run. 122

Figure 5.17 Ambient temperature vs. time for the second P-ESC run. 122

Figure 5.18 Battery charge vs. time for the first LS-ESC run and its baseline case. 123

Figure 5.19 Power vs. time for the first LS-ESC run.. 124

Figure 5.20 Component PWM vs. time for the first LS-ESC run... 124

Figure 5.21 Cabin temperature vs. time for the first LS-ESC run. 125

Figure 5.22 Ambient temperature vs. time for the first LS-ESC run. 125

Figure 5.23 Battery charge vs. time for the second LS-ESC run and its baseline case. 126

Figure 5.24 Power vs. time for the second LS-ESC run. .. 127

Figure 5.25 Component PWM vs. time for the second LS-ESC run. 127

Figure 5.26 Cabin temperature vs. time for the second LS-ESC run. 128

Figure 5.27 Ambient temperature vs. time for the second LS-ESC run. 128

Figure 5.28 Battery charge vs. time for the first RLS-ESC run and its baseline case. 129

Figure 5.29 Power vs. time for the first RLS-ESC run. .. 130

Figure 5.30 Component PWM vs. time for the first RLS-ESC run. 130

Figure 5.31 Cabin temperature vs. time for the first RLS-ESC run. 131

Figure 5.32 Ambient temperature vs. time for the first RLS-ESC run. 131

Figure 5.33 Battery charge vs. time for the second RLS-ESC run and its baseline

case. ... 132

Figure 5.34 Power vs. time for the second RLS-ESC run. ... 133

Figure 5.35 Component PWM vs. time for the second RLS-ESC run. 133

Figure 5.36 Cabin temperature vs. time for the second RLS-ESC run. 134

Figure 5.37 Ambient temperature vs. time for the second RLS-ESC run. 134

Figure A.1 Initialization of cabin model parameters .. 141

xvii

Figure A.2 Cabin Model mask parameters ... 142

Figure A.3 Underlying Simulink structure underneath cabin model mask. 143

Figure B.1 Reading an analog input pin in LabVIEW by dragging it into the VI. 155

Figure B.2 Wiring schematic of the signal conditioning breadboard 156

Figure B.3 Defining the general frame properties of the NITE’s battery parameters

message using data from Bergstrom. .. 159

Figure B.4 Defining the CAN signal’s specific properties. .. 160

Figure B.5 Defining the frame properties of the NITE override signal using data from

Bergstrom. ... 161

Figure B.6 Defining the CAN signal’s specific properties. .. 162

Figure B.7 Examples of reading and writing CAN messages sent from and to the

NITE system respectively. .. 163

Figure B.8 A picture of the entire VI block diagram .. 165

Figure B.9 Initialization of the VI block diagram... 166

Figure B.10 Reading analog sensor data consisting of temperature and pressure

readings. .. 167

Figure B.11 Calculating cabin temperature by averaging previous readings to mitigate

noise. ... 168

Figure B.12 Reading a CAN message containing the NITE compressor speed. 168

Figure B.13 Reading a CAN message containing the NITE current draw, voltage, and

calculating the power. Power readings are averaged like with the cabin

temperature to mitigate fluctuations. .. 168

Figure B.14 Implementing PI control on the cabin temperature by modulating the

compressor speed. ... 169

Figure B.15 Looking inside the PI control subVI. .. 169

Figure B.16 Sending the override CAN signal to the NITE. The PI control determines

the message’s compressor speed, while ESC determines the message’s

evaporator blower speed. .. 170

xviii

Figure B.17 The ESC case structure. We can select between four different cases:

None, P-ESC, LS-ESC and RLS-ESC. Here, we choose None where the blower

speed is unchanged. .. 170

Figure B.18 The P-ESC algorithm case. ... 171

Figure B.19 The LS-ESC algorithm case. .. 172

Figure B.20 The RLS-ESC algorithm case. .. 173

xix

List of Tables

Table 2.1 NITE Parameters used for VCS modeling .. 12

Table 2.2 Cabin model inputs and outputs.. 21

Table 2.3 The material dimensions, composition and properties of the roof thickness

as defined by [14]. ... 29

Table 2.4 Cabin model parameters for a four door vehicle used in [14]. 34

Table 2.5 Cabin Model parameters for a truck cabin from [30]. .. 35

Table 2.6 Open loop cabin temperature dynamics.. 37

Table 2.7 Inputs used for the simulation case study ... 41

Table 2.8. A limited validation for the cabin model, with an average RMS error under

2.5 degrees F. .. 42

Table 2.9 Analog sensors used in the experimental setup. ... 50

Table 2.10 Open look experimental cabin temperature dynamics. ... 54

Table 4.1 ESC parameters used in simulation .. 96

Table 5.1 ESC parameters used in experimental implementation .. 114

Table 5.2 Battery runtime and percent increases over baseline for each algorithm. 115

1

Chapter 1

Introduction

This thesis explores the use of model-free real time optimization strategies to improve

the energy efficiency of battery powered vehicle VCS (vapor compression systems). These

systems, critical to maintaining passenger comfort, can be highly inefficient and their short

battery lives present a significant barrier to mainstream adoption. The combinations of inputs

to the system are often energy suboptimal; a different set of input combinations could

potentially meet the same performance requirements at a reduced power consumption. One

common method used to determine energy optimal inputs is to develop a model of the system

to estimate these values. However, VCS have complex dynamics that can be difficult to

replicate, and the system behavior may even change over time due to environmental effects.

Optimization methods such as extremum seeking control (ESC) can determine optimal inputs

without explicit system knowledge. Instead, this approach generates an estimate of the steady-

state cost function gradient and uses that to drive the system to its most efficient operating

point. However, these techniques are often slow and complicated to implement, which can

limit the use of these algorithms to industry experts and academics. This thesis investigates the

development and use of intuitive and fast-performing ESC algorithms to improve the energy

efficiency of battery powered vehicle VCS.

1.1 Motivation

Vehicle VCS are a ubiquitous staple of modern life, providing a comfortable driving

experience regardless of the conditions outside. These systems are especially important to

2

long-haul truck drivers, who not only work long hours within the confines of their vehicle, but

also sleep and spend much of their free time inside the vehicle cabin. Truck drivers have

traditionally resorted to idling their vehicles in order to provide cooling or heating while not

driving. However, vehicle idling is extremely energy inefficient, expensive and is a significant

source of greenhouse gas emissions. One organization estimates the annual fuel cost of idling

to be $3 billion dollars – the equivalent of burning 1,800 gallons of diesel [1]. Not surprisingly,

around half of the states in the U.S. have some sort of law against idling – with more states

soon to join this trend.

Figure 1.1 States with laws on no idling [1].

A more efficient and cost effective alternative is to use a no-idle VCS, which is a battery

powered air conditioning system that is charged while the vehicle drives and is commonly used

to provide a comfortable sleeping environment while the truck is stopped for the night.

However, one significant issue limiting the potential of no-idle systems is their relatively short

battery life. In some cases, these systems only operate up to 6 hours before needing a recharge.

This is an unacceptable to industry practitioners, who need a minimum of 8 hours of comfort

while sleeping. One solution to this issue is to develop larger battery banks to meet these

performance requirements. However, this does not address the underlying energy inefficiency.

To do so, we need to take a closer look at system behavior and performance.

3

Modern VCS have a number of adjustable inputs, including the compressor speed, the

evaporator and condenser fan speeds, and the expansion valve opening. A combination of these

inputs generates corresponding outputs, the most important being the cooling capacity – or the

amount of heat absorbed by the system, and the power consumption, which is the sum of the

power consumed by the compressor and evaporator/condenser fans. Air conditioning literature

has shown that a number of input combinations can yield the same cooling capacity; however,

only one unique set of inputs will yield the same cooling capacity while consuming the least

amount of power [2]. The question is – how can we determine what the optimal set of inputs

are?

One method of determining these inputs is by developing a dynamic model of the

system. System models can give significant insight into the system behavior and can help

estimate the optimal input values. However, precise modeling of VCS is extremely difficult:

its dynamics are often highly complex, and the system behavior may even change over time

due to equipment aging and environmental effects such as corrosion and fouling. Physics based

modeling approaches – using dynamic equations to describe system behavior often require

significant assumptions and simplifications in order to produce tractable solutions.

Furthermore, these models often require users to tune parameter adjustment factors to match

system behavior precisely. Black box system-identification methods, on the other hand,

estimate system dynamics based on a range of given input and output data. However, this

approach may only yield accurate results over a small range, and furthermore does not take

into account changing system behavior over time. Thus, it is highly desirable to develop model-

free optimization schemes that can select the optimal system inputs in real time without prior

knowledge of system behavior.

1.2 Introduction to Extremum Seeking Control (ESC)

As stated earlier, ESC is one of the most popular model-free optimization approaches

used to improve system performance. This optimization method works by deriving an estimate

of the system’s steady-state performance function gradient from the system’s input and output

signals and uses it to drive the system inputs to values that minimize the system’s steady state

4

performance function (note that for proper minimization, performance function convexity with

respect to inputs is a necessary condition). ESC can thus determine the system’s optimal inputs

without having explicit knowledge of the system itself. However, this lack of knowledge comes

at a cost: convergence to these optimal inputs is an inherently slow process. ESC traces its

development to a paper written by LeBlanc in 1922 [3], but it was only until the early 21st

century that ESC became a major field of research when Krstic and Wang published the first

formal stability proof of ESC in 2000 [4]. ESC has since been utilized in a wide range of

applications, from maximizing photovoltaic power point tracking [5], to increasing biomass

production in reactions [6] to improving the energy capture of wind turbine systems [7]. In

particular, there is a great deal of literature demonstrating ESC effectiveness in optimizing

VCS performance due to the convex relationship between inputs and power consumption. A

wide variety of ESC controllers, from perturbation based ESC [2] to time varying ESC [9], to

least-squares based ESC [10] have demonstrated increases in energy efficiency while meeting

given objectives. However, ESC has not yet been utilized to demonstrate battery life extension

in battery-operated vehicle VCS, which is the main focus of this thesis.

1.3 Organization of Thesis

This thesis is organized as follows. Chapter 2 introduces the vapor-compression cycle,

VCS design and the modeling of VCS components in Simulink. The thermal modeling and

validation of a vehicle cabin model is also discussed, as well as the integration of the cabin

model with the VCS model and common closed-loop temperature regulation strategies.

Chapter 3 explains the mathematical basis behind perturbation and advanced ESC algorithms,

as well as the specific applications to VCS. Chapter 4 discusses the implementation and results

from implementing three different ESC algorithms on the simulated integrated system. Chapter

5 details the development of the experimental integrated setup and ESC implementation on

this system. The thesis concludes in Chapter 6 with a summary of research contributions and

opportunities for future work.

5

Chapter 2

Modeling, Operation and Control of Integrated

Vapor Compression Systems

 Before investigating the use of performance improving algorithms, we first need to

understand the nature of the system being optimized and also understand common control

strategies used on such systems. This chapter first introduces the standard four-component

vapor-compression system. Next, we discuss the modeling and validation of an integrated no-

idle vehicle VCS: that is, the modeling of a VCS in conjunction with the vehicle cabin and

battery pack in MATLAB/Simulink. This thesis provides a detailed, first-principles derivation

of the cabin model, as it was developed specifically for this thesis. System model development

is important because models can yield significant insight into system behavior and can be used

to rapidly test and validate various control schemes, including ESC. Note that although ESC

is referred to as a “model-free” control algorithm, this refers to the algorithm itself being model

agnostic as opposed to being incompatible with a system model. After discussing the modeling

of such systems, we detail the development of a simplified integrated experimental setup.

Lastly, we examine the closed-loop control of both the modeled and experimental system and

discuss opportunities for optimization.

2.1 Introduction and Review of the Standard Four Component

VCS

On their most fundamental level, VCS’s are built for the purpose of heating or cooling

a specific space. This thesis looks solely at the cooling application of such systems. The VCS

cools an area by cycling a refrigerant to absorb heat from one area and then rejecting that heat

6

to another space. The most commonly used refrigerant is R-134a, but other refrigerants such

as CO2 and R-1234yf have also been successfully used in vehicle VCS.

Fig. 2.1 shows a schematic of the most basic VCS configuration along with its

respective pressure-enthalpy (P-h) plot. From points 4 to 1, cool refrigerant flows through the

evaporator and absorbs heat from the surrounding region. An evaporator blower blows warm

air over the evaporator coils, facilitating this process. The refrigerant is compressed to a higher

pressure and temperature as it passes through the compressor from points 1 to 2. Warm

refrigerant passes through a condenser from points 2 to 3, where it rejects heat to its

surroundings with the aid of a condenser fan. From points 3 to 4, the refrigerant passes through

an expansion device where it decreases in pressure and temperature, and the cycle starts again.

Figure 2.1 The standard four-component VCS along with its respective P-h plot.

As seen in the P-h plot, a number of refrigerant phase changes occur during an ideal

cycle. Most importantly, the refrigerant enters the evaporator as a two-phase fluid and leaves

as a superheated vapor. This is important because most compressors are not designed to pump

liquid refrigerant for long periods of time. The degree of refrigerant superheat at the evaporator

outlet is an important quantity because it serves as a buffer from two-phase refrigerant entering

the compressor.

Traditionally, the VCS practitioner did not have the ability to adjust many of the system

inputs. For example, components such as fans were powered by fixed speed motors. However,

7

modern VCS’s have a number of adjustable inputs that allow the user to tune system

performance. The compressor, along with the evaporator and condenser fans are commonly

powered by variable speed DC motors, giving the operator the ability to precisely adjust the

component speeds. Some expansion devices, such as the electronic expansion valve (EEV),

allow the user to control its aperture, thereby controlling the amount of refrigerant that flows

through the device. However, EEV’s are very expensive, and so this thesis considers the use

of a thermostatic expansion valve (TXV) instead. The TXV is a spring-loaded expansion

device that adjusts its aperture depending on refrigerant pressure at the evaporator outlet,

among other things, in an effort maintain a constant evaporator superheat.

2.2 Modeling of an integrated VCS

Advances in computer modeling allow users to accurately simulate the behavior of

complex dynamical systems. This is particularly important because modeling can give insight

into system behavior without requiring a physical test-bed to derive meaningful results.

Furthermore, modeling also allows the user to simulate scenarios significantly faster than in

real-time. In this section, we model the cooling of a vehicle cabin using a battery-powered, no-

idle VCS in the MATLAB/Simulink environment. Specifically, this modeling effort attempts

to replicate the typical application of the NITE Phoenix SSI (referred to in this thesis as the

NITE), a no-idle air conditioning unit developed by Bergstrom Inc., an industry partner of the

Air Conditioning and Refrigeration Center (ACRC) at the University of Illinois. The NITE is

designed to provide cabin cooling for long-haul truck drivers overnight. The unit features a

split condenser/evaporator design, where the condenser mounts outside the vehicle while the

evaporator is housed inside the cabin to provide cooling. The unit delivers up to 2.2kW of

cooling capacity and runs on a bank of four rechargeable lead-acid batteries with a run time of

approximately 8 hours. [11]

8

Figure 2.2 A picture of the NITE Phoenix SSI [11]. The condenser coil and fan are

housed in one unit (left), while all other components are housed in another (right). The

units are connected together using long, flexible refrigerant tubes.

There are four main sections of the integrated system: the four component VCS, the

vehicle cabin, the battery pack and the evaporator blower/condenser fan. Each section is

described in detail below. The integrated model demonstrates the ability of the VCS to cool

the vehicle cabin and generate a power draw from a bank of lead-acid batteries. Set point

commands determine nominal operating values for the compressor, condenser fan and

evaporator blower. Fig. 2.3 depicts the integrated model in the MATLAB/Simulink

environment.

9

Figure 2.3 A model of the integrated VCS developed in MATLAB/Simulink. The user

determines set point values for the compressor, condenser fan and evaporator blower

and sets the ambient conditions. Given these inputs, the vapor compression system

generates a corresponding cooling capacity, absorbing heat from the vehicle cabin.

2.2.1 The Vapor-Compression Model

 Researchers in the Alleyne Research Group at the University of Illinois have developed

Thermosys, a toolbox in MATLAB/Simulink used to simulate the dynamic behavior of vapor-

compression systems [12]. Each VCS component (compressor, condenser, etc.) is modeled as an

independent block that sends and receives signals such as pressure, mass flow rate and enthalpy.

Component blocks are connected together by routing signals accordingly. Fig. 2.4 outlines the standard

four-component system developed using Thermosys.

10

Figure 2.4 A four-cycle VCS consisting of the evaporator, compressor, condenser and

TXV constructed using Thermosys, a toolbox in MATLAB/Simulink.

Heat exchangers such as the evaporator and condenser are modeled using a moving-

boundary volume approach in conjunction with mass and energy conservation equations, while

components such as the compressor and expansion valve are modeled using algebraic

equations due to their fast dynamics. Thermosys also contains other auxiliary components such

as accumulators and receivers; however, this thesis only examines the use of the four main

vapor-compression cycle components. A detailed derivation and analysis of these models can

be found in [13].

Each block has a list of tunable parameters that the user provides in order to model the

component after a specific device. The heat exchangers allow the user to define the thermal

and physical characteristics of the refrigerant tube, as well as the airside and refrigerant side

surface areas. Furthermore, adjustable heat transfer coefficient factors help match model

outputs with experimental data. The TXV model allows the user to define properties such as

the spring pressure and the bulb time constant. The compressor model utilizes an empirical

compressor performance map to define the volumetric and adiabatic compressor efficiencies

for a given RPM and pressure ratio. This data is then used to calculate the compressor outlet

states such as the enthalpy and mass flow rate. In addition, the compressor model allows users

to define the compressor volume along with its outlet enthalpy time constant [28].

One of the goals of this thesis was to model the VCS after the NITE system. However,

while there were some opportunities to parameterize the component systems, a number of

11

issues prevented the full parameterization of the VCS model. The NITE’s condenser has an

advanced microchannel design that is not currently congruent with the model structure in

Thermosys, precluding its modeling. Modeling the TXV was not possible due to a lack of data

available on its dimensions and performance characteristics. Modeling the NITE’s compressor

proved highly difficult, especially the compressor’s performance map. In order to generate a

compressor map, one needs to retrofit a compressor with pressure, temperature and mass flow

rate transducers at the inlet and outlet to generate effective estimates of the volumetric and

adiabatic compressor efficiencies. However, the physical NITE unit used in this thesis only

had input/output temperature transducers along with a low-side pressure transducer, which is

insufficient to generate a performance map. Therefore, the compressor model retained its

original map. On the other hand, there was sufficient data available to modify most of the

evaporator model’s parameters. Table 2.1 lists the NITE system parameters used in the

Thermosys models. All other parameters are left as default, which are based on a VCS test

stand in our laboratory at the University of Illinois.

12

Table 2.1 NITE Parameters used for VCS modeling

Component Parameter Units Value

E
v
a
p

o
ra

to
r

Hydraulic Diameter m 6.33E-03

Length of One Refrigerant Pass m 4.09

Number of Parallel Passes 3

Air Side Cross Sectional Area m^2 0.01844

Air Contact Surface Area m^2 1.50

Refrigerant Surface Area m^2 0.081

Refrigerant Pass Cross Sectional Area m^2 3.15E-05

C
o
m

p
re

ss
o
r

Compressor Volume m^3 7.1E-06

Because most of the model parameters were not from the NITE system, it precludes

the ability to determine how well the model can match the behavior of the actual system. The

different characteristics between the simulated and experimental systems manifests itself in

significant ways, as will be seen in Chapters 4 and 5 when we implement ESC on these

systems. Nevertheless, the model can still provide insight into how a VCS such as the NITE

would respond to different inputs, changes in environmental conditions, or various control

schemes. Furthermore, having models allow users to perform the above much more quickly

than on an actual system, expediting control design. Thus, these models are sufficient for the

purposes of this thesis effort.

13

2.2.2 Fan Models

The evaporator blower and condenser fan are used to blow air over the evaporator and

condenser coils respectively in order to enhance the heat absorption of the evaporator, and the

heat rejection of the condenser. These models were developed to replicate the performance of

the NITE’s evaporator blower and condenser fan. The reason for using a blower (also known

as a centrifugal fan) for the evaporator is that blowers generate an increase in air pressure to

overcome pressure drops in air ducts.

 Fans and blowers operate similarly, using a DC motor to spin a series of blades that move air

from one region to another at a certain velocity. The NITE system in particular allows the user

to control the speed of this motor by sending a 0-255 PWM command. Because of the ease of

data collection for these components, it is sufficient to model these devices based on

experimental performance data. This was done by stepping the evaporator blower and

condenser fan at different speeds and recording the corresponding power draw and mass flow

rate using an anemometer. The evaporator blower and condenser fan performance data is

depicted in Fig. 2.5 and 2.6 respectively.

Figure 2.5 The mass flow rate and power draw of the evaporator blower over the

nominal range of blower speeds commonly used during operation.

0

0.02

0.04

0.06

0.08

0.1

0.12

0

20

40

60

80

100

120

140

160

95 115 135 155 175 195

M
as

s
fl

o
w

 r
at

e
 (

kg
/s

)

P
o

w
er

 (
W

)

Evaporator Blower PWM (0-255)

NITE Evaporator Blower Performance Curve

Power Mass flow rate

14

Figure 2.6 The mass flow rate and power draw of the condenser fan over the nominal

range of condenser speeds commonly used during operation.

This performance data was used to model these components in Simulink using a

MATLAB function block, as shown in Fig. 2.7. These models output an air mass flow rate to

their respective heat exchangers and output a power consumption. Mass flow rates are linearly

interpolated while power is interpolated using a cubic (spline) function.

Figure 2.7 The condenser fan and evaporator blower modeled in Simulink.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0

20

40

60

80

100

120

140

160

20 40 60 80 100 120

M
as

s
fl

o
w

 r
at

e
(k

g/
s)

P
o

w
er

 (
W

)

Condenser Fan PWM (0-255)

NITE Condenser Fan Performance Curve

Mass flow rate Power

15

2.2.3 Electrical Model

The electrical model has two purposes: calculating the total system power consumption

and modeling the power draw from the NITE’s batteries. The fan models from Fig. 2.16 output

a power draw, but the Thermosys compressor model does not by default. Thankfully, [17]

generated a power map for the compressor model by collecting experimental power data from

the compressor over a range of pressure ratios and RPM’s. The bottom of Fig. 2.8 depicts the

compressor power map developed in Simulink.

Four 12V lead-acid batteries connected in parallel power the NITE system. Bergstrom

recommends the use of the Trojan AGM 31, a deep-cycle lead-acid battery that provides

approximately 86 amp-hours each at peak performance [8]. Lead-acid batteries are well-

modeled using the battery model in the Simscape toolbox [29], and Fig. 2.8 illustrates the

recommended NITE battery configuration. The battery model allows the user to select the type

of battery, along with specifying its capacity, voltage and dynamic characteristics. Because

there was a lack of empirical data on the battery dynamics, the only user-defined parameters

were the voltage, capacity and initial state of charge. Fig. 2.9 shows the battery parameter

dialog box for the lead-acid battery. The current draw from the batteries was calculated by

dividing the power by 12 since we assume the battery operates at a constant 12V.

16

Figure 2.8 The electrical model developed in Simulink. The power consumption of all

VCS components is divided by 12 to simulate the current draw on a bank of four lead-

acid batteries modeled after the Trojan AGM31 battery. Each battery outputs a

voltage, percent state of charge and current. The compressor power map at the bottom

of the figure is an empirical map that calculates the compressor power consumption as

a function of the RPM and pressure ratio.

17

Figure 2.9 The battery parameter dialog box. The type of battery, along with nominal

voltage, rated capacity and state of charge were based off the Trojan AGM-31, the

recommended battery for no-idle vehicle VCS.

2.2.4 Vehicle Cabin Model

The cabin model was developed as part of this thesis effort, and its derivation will be

discussed in detail. The cabin model is designed to simulate the dynamic temperature response

of the vehicle cabin air to common external and internal heating and cooling loads, such as

heating loads from solar radiation and from cooling loads such as the vehicle’s air conditioning

system.

18

2.2.4.1 Literature Review

Dynamic thermal modelling of vehicle cabins has been an area of significant research

over the past several years due to increased awareness of thermal comfort issues in vehicles,

as well as an increased interest in vehicle efficiency. The same principle also holds true for

battery-powered truck VCS’s – they must be able to maintain an appropriate level of thermal

comfort for vehicle occupants over the operating lifespan. Therefore, there is a clear need to

develop a high-accuracy cabin model to determine whether thermal comfort needs are met

during operation.

There are two main approaches to cabin modelling in the literature: physics-based

modeling and computational thermal modeling. The physics based modelling approach

calculates the cabin air temperature using simple, fundamental heat transfer equations that

model the heat flow between the cabin and the outside environment. In order to reduce

calculation complexity, this approach often involves the use of simplifying assumptions such

as using a lumped capacitance approach for calculating cabin air temperature (air has uniform

properties). Marcos et al. wrote one of the most cited research papers using this approach in

2014 [14]. The authors of the paper developed a first-principles model of the cabin thermal

dynamics in Simulink. The authors considered four main heat loads affecting the cabin air

temperature: incoming solar radiation through the windows ()
windows

Q , conductive heat loads

passing through the vehicle’s ceiling ()
ceiling

Q , convective heat transfer between the vehicle’s

internal surfaces and the cabin air ()
base

Q and the heat generation from human bodies ()
human

Q

. The values for these heat loads are calculated at each time step. These heat loads are then

used to solve for the new cabin air temperature using the following first order differential

equation:

 ,air p air air windows ceiling base human
m c T Q Q Q Q   (2.1)

19

Figure 2.10 A visual representation of the heat loads considered by [14].

On the other hand, computational thermal modeling refers to the use of high-fidelity

specialized software that uses numerical methods to calculate the temperature evolution of the

vehicle cabin. This method is much more computationally intensive than physics-based

modeling but is more accurate as it does not make many simplifying assumptions. These

models are often able to capture the spatial variation in temperature inside the vehicle, whereas

the first-principles models cannot.

Figure 2.11 A model of the temperature profile inside a vehicle cabin using a numerical

CFD approach as seen in [18].

20

2.2.4.2 Cabin Model Overview

The cabin model developed in this thesis utilizes a physics based modeling approach

similar to [14] due to its simplicity and relative accuracy. The cabin model takes in inputs such

as ambient temperature, solar radiation and ambient wind velocity and returns the cabin air

temperature along with other states such as the temperature of the roof, walls, windshield and

side windows, as illustrated in Fig. 2.12 and Table 2.2 below. The cabin model also determines

the air temperature at the evaporator inlet depending on the percentage recirculation specified

by the user. Parameters such as vehicle dimensions, passenger occupancy and material

properties can be adjusted to simulate the use of different types of vehicles and passenger

loading scenarios, as seen in Fig. 2.13.

Figure 2.12 The cabin model developed in Simulink. The block accepts inputs such as

the ambient conditions and the cooling capacity, and outputs states such as the cabin air

temperature and the temperature of the vehicle surfaces.

21

 Table 2.2 Cabin model inputs and outputs

In
p

u
ts

I/O Units Description

amb
v m/s Ambient wind velocity

sky
T

C

The temperature of the clouds, water vapor, and

other atmospheric elements that make up the sky

to which a surface can radiate heat.

solarV W/m^2 Vertical solar irradiance

solarH W/m^2 Horizontal solar irradiance

refQ W Cooling capacity of the VCS

refm kg/s Airflow from the VCS

O
u

tp
u

ts

Heat

Loads W
Vector of heat loads on the vehicle cabin

airT C Internal cabin air temperature

wsT C

Temperature of the windshield at five different

points

swT C

Conductive heat load transmitted through the

vehicle roof

roof
T

C Conductive heat load through the side windows

wall
T C Conductive heat load through the side walls

,evap iT C Air temperature at the evaporator inlet

base
T C Temperature of the vehicle’s base

22

Figure 2.13 Parameter dialog for the cabin model. The user inputs values for the

vehicle’s material properties, vehicle dimensions as well as the initial conditions.

2.2.4.3 Cabin Model Derivation

In order to simplify derivation and analysis, the following assumptions are made [14]:

1) The air inside the vehicle cabin is considered as a lumped parameter (the air is

assumed to have a uniform temperature). Although temperature gradients likely exist,

a lumped parameter approach greatly simplifies calculations while maintaining

sufficient model validity.

2) No mass accumulation of air occurs inside the cabin. Any air that infiltrates the cabin

or enters from the vehicle VCS ()
ref

m is matched by an air leakage term ()
leak

m . This

mass balance is illustrated in Fig. 2.14.

23

Figure 2.14. An illustration of the mass flow rates entering and leaving the cabin. The

sum of the three air mass flow rates is zero.

3) Radiative heat transfer between interior surfaces can be neglected.

4) Vehicle windows are considered transparent, while all other vehicle surfaces are

opaque to solar radiation.

5) Incident solar radiation can be broken down into two components: horizontal and

vertical radiation. The vehicle roof, which is considered flat, receives vertical radiation,

while all other surfaces, considered as vertical, receive horizontal radiation.

6) The vehicle base, consisting of the dashboard, seats, upholstery and other interior

elements, has a thermal capacitance, baseC and a dynamic temperature state baseT . The

base receives all solar radiation transmitted through the vehicle’s windows. To simplify

convective heat transfer calculations, the base is assumed to be flat.

7) No heat enters the vehicle from any other means (i.e. heat transfer through the floor

or heat from the vehicle engine).

Using these simplifications in conjunction with mass and thermal conservation laws,

the temperature dynamics of the vehicle cabin are governed by the following equation and

illustrated by Fig. 2.15:

24

 , genair p air air ref infil surf base
m c T Q Q Q Q Q     (2.2)

Figure 2.15 A visual illustration of the various thermal loads on the vehicle cabin.

refQ , the cooling load provided by the vehicle’s evaporator, is defined by the following

equation:

  ,, evap op air airref ref
Q m c T T  (2.3)

Ref [16] determined the heat generation of an average adult human to be 108W. Thus, the total

heat generation is given by the following equation:

 108*()genQ occupancy (2.4)

infil
Q , the heat entering the cabin from infiltrating air, is defined by the following equation:

  ,p air airinfil infil
Q m c T T  (2.5)

infil
m is a function of the outside air velocity and is calculated using

0.8

3600infil ambm v . This

formula is derived from the work done by Fletcher and Saunders determining the air infiltration

rate for a variety of vehicles [15].

base
Q is the heat exchange between the vehicle’s base and the cabin air and is defined by the

following equation:

 airbase base base base

Q h A T T 
 (2.6)

25

Since the temperature of the base is a dynamic state, we then calculate the new temperature of

the base by integrating the following dynamic equation:

 base base base solar base
C T Q Q  (2.7)

solar
Q refers to the solar radiation transmitted through the vehicle’s windows, given by the

equation solar window solar windows
Q H A where  is an adjustable parameter between 0 and 1 that

accounts for radiative heat loss through the windows as well as for solar heat absorption by the

interior surfaces.
window
 represents the transmittance of the windows,

solar
H is the horizontal

component of solar radiation on the window surfaces, and
windows

A is the sum of all window

areas.

surf
Q refers to the 1-D transient conductive heat transfer through the vehicle’s exterior surfaces

into the cabin air.
surf

Q is given by the following equation:

 ws swsurf roof wall
Q Q Q Q Q    (2.8)

wsQ is the conductive heat transfer through the windshield, swQ is the heat transfer through

the vehicle’s side windows,
roof

Q is the heat transfer through the vehicle’s roof, and wall
Q is

the heat transfer through the vehicle’s side walls. Note that because truck cabins generally do

not have a rear windshield, it was excluded from calculations but can be approximated by

doubling the area of the windshield in the cabin model parameters.

1-D transient heat conduction is governed by the following partial differential equation and

outer and inner boundary condition, equations 2.9 – 2.11 respectively:

   2

2

, ,1 dT x t d T x t

dt dx
 (2.9)

 

      
4 4

0,
'' 0, 0,ext surrsolar

dT t
k q t h T t T T t T

dx
 

 
  

      (2.10)

 

  int

,
,

dT L t
k h T L t T

dx
    (2.11)

26

Unfortunately, partial differential equations, especially with complex boundary

conditions, are difficult to solve analytically. However, their solutions are approximated well

by using discretization techniques and finite-difference methods. Finite-difference methods

involve replacing derivatives in equations with discrete approximations. That is, the equations

are solved at specific physical points within the material thickness. In this paper, we use the

forward approximation finite difference method with a nodal energy balance to calculate the

heat transfer through each of the four vehicle surfaces.

2.2.4.3.1 Cabin Surface Discretization Procedure

1) We spatially divide the given cabin surface thickness into five nodes with thermal

conductivity k, thermal capacitance pc and density  . We choose to discretize into

five nodes because it accurately approximates the transient conduct through the

surfaces without being too computationally intensive. The outer and inner nodes,

labeled nodes 0 and 4 respectively, have thickness
2

x
 , while the interior nodes 1-

3 have thickness x . Fig. 2.16 illustrates the discretization process on the vehicle

windshield.

2) Apply an energy balance to each of the five nodes as visualized by Fig. 2.17 and

formalized by the following equation:

5

1
in out storage p

n

dT
q q E Vc

dt




   (2.12)

3) Evaluate all incoming and outgoing heat loads at time i and discretize the time

derivative using the following forward approximation:

1i i

i i idT dT dT

dt dt

 
 (2.13)

27

4) Solve for 1idT  at the outside node, the 3 interior nodes and the inner node,

equations 2.14-2.16 respectively, and integrate to find new nodal temperature

1iT 

 Node 0:      
1

4 4
0 0 1 0

0 0''
2

i i i i
i i i i

ext surrsolar

dT dT T Tc x
q k h T T T T

dt x







 
 
 

 
     


 (2.14)

 Nodes 1-3:
1

-1 1- --

2

i i i ii i
n nn n n nT T T TdT dTc x

k k
dt x x

 


 
 

 (2.15)

 Node 4:  
1

3 44 4
4int2

i ii i
i i

air

T TdT dTc x
k h T T

dt x

  
  


 (2.16)

5) Solve for the conductive heat loads using the following equation:

  1
4int
i i

airsurf surf
Q h A T T  (2.17)

6) After calculating the surface heat loads along with all other heat loads, airT can be

solved for using equation 2.2 and integrated to calculate the cabin air temperature

airT .

Figure 2.16 Transient conduction through a windshield discretized into five nodes.

28

Figure 2.17 A visual example from [16] of the energy balance method applied to a

discretized node.

2.2.4.3.1.1 A Note on the Wall and the Roof

Discretization becomes slightly more complicated when considering 1-D transient

conduction through a heterogeneous thickness; that is, conduction through different material

layers with different thicknesses. For example, [14] considers the roof of the vehicle to be

composed of three different materials: steel, air and cotton, as seen as in Table 2.3. We utilize

this material distribution in the cabin model as well. To deal with this, nodes 0 and 1 are defined

to be steel, with thicknesses. Node 2 is defined to be air, and nodes 3 and 4 are considered as

cotton. Since the materials have different thicknesses, the nodes will have different thicknesses

as well as outlined in Fig. 2.18. Furthermore, we assume that the vehicle’s walls has the same

material composition as the roof.

29

Table 2.3 The material dimensions, composition and

properties of the roof thickness as defined by [14].

Roof Material Thickness

(m)

Thermal Conductivity

(W/m*K)

Steel 0.5E-03 14.9

Air 0.1E-03 2.6E-02

Cotton 5E-03 0.06

Figure 2.18 Transient heat conduction through the roof. Note that the nodes for steel,

air and cotton are not uniform in thickness like for the windows.

2.2.4.4 Defining Interior and Exterior Heat Transfer Coefficients

The free convection heat transfer coefficient
int

h refers to the heat transfer between the

inside surface of the vehicle and cabin air. It is assumed that because air currents are small

within the vehicle, all convective heat transfer between the inside vehicle surface and cabin air

occurs as free convection, which is buoyancy-driven fluid motion generated by temperature

gradients. Note that future work may consider the effect that air conditioning airflow has on

this assumption.

30

The Rayleigh number, a dimensionless parameter associated with buoyancy-driven

fluid motion governs free convection. Along with the Rayleigh number, the orientation and

dimensions of the surface in contact with the fluid has the biggest impact on the heat transfer

coefficient value.

The interior surface of the side windows, side walls and windshield can be approximated as a

flat vertical plate. Note that this assumption is mostly true for trucks, but may not be true for

cars or other vehicles with angled surfaces. The base of the vehicle is approximated as a flat

horizontal surface.

The free convection heat transfer coefficient for a flat vertical plate with length L and

air thermal conductivity k is given by the following equation:

2
(1/6)

int (9/16) (8/27)

0.387
0.825

[1 (0.492 /)]

k Ra
h

L Pr

 
  
 

 


 (2.18)

where
3

f

g TL
Ra

T 


 is the Rayleigh number and Pr is the Prandtl number of the fluid.

 The heat transfer between the vehicle base with length L and the cabin air is dependent

on three things: the Rayleigh number, the cabin air temperature and the base temperature.

For
airbase

T T and 4 710 10Ra  :

 1/4
int 0.54

k
h Ra

L
 (2.19)

For
airbase

T T and 7 1110 10Ra 

 1/3
int 0.15

k
h Ra

L
 (2.20)

For
air base

T T

 1/5
int 0.52

k
h Ra

L
 (2.21)

31

The heat transfer between the vehicle ceiling and the cabin air is governed by the same

equations as above if one replaces
base

T with roof
T and reverse the temperature inequality.

 The exterior convective heat transfer exth can be governed by three separate flow

regimes: free, laminar and turbulent. As stated before, free convection refers to density driven

fluid motion and its heat transfer is governed by the Rayleigh number. On the other hand,

laminar and turbulent fluid motion refers to fluid moving with an externally induced velocity

v and the Reynolds number governs its heat transfer. In most instances, the flow on the exterior

surfaces is either laminar or turbulent depending on the ambient wind speed.

 For free convection on the roof, the heat transfer coefficients are governed by equations

2.19-2.21, by replacing
base

T with roof
T . For free convection on all other exterior surfaces,

including the windshield, side windows and side walls, the heat transfer coefficient is governed

by equation 2.18.

For laminar flow on all exterior surfaces (5Re 10
vL


 ) the heat transfer is governed by the

following equation:

 1/2 1/30.664Re Prext

k
h

L
 (2.22)

For turbulent flow on all exterior surfaces (5Re 10
vL


 ):

  4/5 1/30.037Re 871 Prext

k
h

L
  (2.23)

2.2.4.5 Defining the Evaporator Inlet Temperature

Another feature of the cabin model is the ability to determine the evaporator air inlet

temperature depending on the air recirculation percentage desired by the user. Vehicles often

recirculate 70-90% of the cabin air through the evaporator because cabin air is often cooler

than the air outside, decreasing the heat load on the VCS. However, it is important that some

32

percentage of the air at the evaporator inlet be fresh to prevent an unhealthy buildup of

CO2.The evaporator air inlet temperature is given by the following equation:

 ,
r air

evap i
ref

m T m T
T

m
   (2.24)

rm is the mass flow rate of the recirculated air and is defined by the following equation:

/100

r

ref

recirc
m

m
 (2.25)

where recirc is given as a percentage.

m is the mass flow rate of the recirculated air and is defined by the following equation:

100

100* ref

recirc
m

m



 (2.26)

2.3 Open Loop Cabin Model Validation

Proper open-loop validation of the cabin model would require comparing model

outputs to experimental data collected from a vehicle. However, doing so would be very time

intensive and is left for future work. Nevertheless, some model validity can be shown in two

ways: 1) showing that the cabin temperature dynamics generally follow a first order response

and 2) comparing cabin temperature data to experimental data found online for a given set of

initial conditions.

2.3.1 Simulation Parameters

Before discussing the cabin model validation, it is important to establish the cabin

model simulation parameters. Marcos et al. develop their thermal cabin model based on a four-

door BMW 1-series car and their paper contains a comprehensive list of all the vehicle’s

parameters. A table of this data can be found below. On the other hand, our goal is to develop

a model of a generic truck sleeper cabin. Obtaining vehicle dimensions for such was fairly

straightforward using a datasheet for a ProStar® Sky-Rise truck found online [30]. However,

the material properties and material thicknesses were not available for the truck. Therefore, we

33

used the parameters from [14] for all missing values. Furthermore, there are two exceptions to

the above rules. Because [14] does not consider heat conduction from the walls, wall

dimensions were not listed in the paper, so instead we estimated the dimensions based on

images of the vehicle available online. Additionally, the base thermal capacitance value was

taken from [20] because the value from [14] resulted in aberrant cabin temperature dynamics.

Going forwards, the sleeper cab parameters listed in Table 2.5 will be used in all cabin model

simulations in this thesis unless explicitly written otherwise.

34

Table 2.4 Cabin Model Parameters for a Four Door Vehicle used in [14].

Component Parameter Units Value
M

a
te

ri
a
l

P
ro

p
er

ti
es

Absorptivity of body 0.26

Emissivity of body 0.9

Thermal diffusivity of windshield m^2/s 3.40E-07

Thermal conductivity of windshield W/(m*K) 1.4

Thermal diffusivity of side window m^2/s 3.40E-07

Thermal conductivity of side window W/(m*K) 1.4

Absorptivity of window 0.2

Emissivity of window 0.9

Transmittance of window 0.45

Area of base m^2 6

Thermal capacitance of base J/K 5600

Absorptivity of base 0.7

V
eh

ic
le

 D
im

en
si

o
n

s

Volume of cabin m^3 3.11

Length of roof m 1.8

Width of roof m 1.1

Length of wall m 1.5

Width of wall m 0.35

Length of windshield m 0.63

Width of windshield m 1.3

Thickness of windshield m 6.00E-03

Length of side window m 1.45

Width of side window m 0.29

Thickness of roof m 5.6E-03

Thickness of side window m 6.00E-03

35

Table 2.5 Cabin Model Parameters for a Truck Cabin from [30].

Component Parameter Units Value
M

a
te

ri
a
l

P
ro

p
er

ti
es

Absorptivity of body 0.26

Emissivity of body 0.9

Thermal diffusivity of windshield m^2/s 3.40E-07

Thermal conductivity of windshield W/(m*K) 1.4

Thermal diffusivity of side window m^2/s 3.40E-07

Thermal conductivity of side window W/(m*K) 1.4

Absorptivity of window 0.2

Emissivity of window 0.9

Transmittance of window 0.45

Area of base m^2 6

Thermal capacitance of base J/K 5600

Absorptivity of base 0.7

V
eh

ic
le

 D
im

en
si

o
n

s

Volume of cabin m^3 8.9

Length of roof m 2.54

Width of roof m 1.83

Length of wall m 2.81

Width of wall m 1.02

Length of windshield m 0.808

Width of windshield m 1.524

Thickness of windshield m 6.00E-03

Length of side window m 0.768

Width of side window m 0.768

Thickness of roof m 5.6E-03

Thickness of side window m 6.00E-03

36

2.3.2 Open Loop Simulation Results

The temperature dynamics of a given object is typically modeled by the following first

order transfer function:

()

() 1
oT s T K

Q s s





 (2.27)

where ()T s is the object’s temperature, oT is the temperature of the object with no external

heat loads, ()Q s is the net heat load on the object, K is the transfer function gain, and 𝜏 is the

system time constant. In essence, this equation states that for this transfer function, any change

in temperature is proportional to the incident heat load on the object.

To determine whether the cabin model follows this behavior, the relationship between

heat loads and final temperature for the cabin model was explored. In particular, the

dependence of final cabin temperature on passenger occupancy was examined. Because of the

superposition principle of linear transfer functions, we can ignore the other system

heating/cooling loads for the time being and look solely at the effect of increasing passenger

occupancy on the change in final cabin temperature, which is equal to the product of K and

()Q s . As mentioned previously, each passenger produces approximately 108W of heat.

Therefore, one would expect the change in cabin temperature to be proportional to passenger

occupancy.

For no passengers, the steady state cabin temperature is 9.47 .oT C  For N=2, N=3

and N=4, the steady state temperatures are 16.6°𝐶, 20.4°𝐶 and 24.3°𝐶 respectively, as seen in

Fig. 2.19. The proportional gain K for each passenger-loading scenario is 0.0333, 0.0340 and

0.0347 respectively. The closeness of these K values indicates the high proportionality between

the cabin temperature and passenger accuracy and suggests that equation 2.25 can accurately

model the temperature dynamics of the cabin interior.

Another characteristic of the first order response is the time constant that represents

the time it takes for the temperature to reach 63.2% of its final steady state value. For N=2,

37

N=3 and N=4, the time constants are  =373s,  =315s, and  = 229s respectively. The

discrepancy between  values indicates that there are dynamic nonlinearities at play, but the

relatively close time constants indicate that the cabin temperature can be generally modeled by

a first order transfer function. Table 2.6 summarizes these results.

Figure 2.19 Cabin air temperature for different number of vehicle occupants, N, given a

cooling load of 1000refQ W  and an initial cabin temperature of 35 degrees.

Table 2.6 Open Loop Cabin Temperature Dynamics.

Number of

Occupants

(N)

Occupant

Heat Load

(W)

Final Cabin

Temperature

(°C)

Gain (K) Time

Constant (s)

2 216 16.6 0.0333 373

3 324 20.4 0.0340 315

4 432 24.39 0.0347 229

38

2.3.3 Other Cabin Model Results

Figures 2.20 and 2.21 below depict the cabin model response to varying solar and

cooling loads respectively.

Figure 2.20 Cabin air temperature over time for two different sets of horizontal and

vertical solar radiation.

Figure 2.21 Cabin air temperature over time given different evaporator cooling loads.

39

Fig. 2.22 illustrates the evolution of various cabin heat loads over time, with most of

them reading steady state within one hour. Of all the cabin heat loads, baseQ has the most unique

heat load evolution over time. Initially, the base heat load is zero, because the simulation

assumes that the cabin air and base temperature are the same to start. However, because all

transmitted solar radiation is assumed to fall on the base, the base becomes much warmer than

the surrounding air. As time goes on, the heat load settles as the cabin air and base reach their

respective steady state temperatures.

Figure 2.22 Evolution of cabin heat loads over time

40

Figure 2.23 All of the cabin heat loads over time, including the cooling capacity.

2.3.4 Experimental Validation of Simulation Data

Another validation method is to compare the cabin model temperature response to

experimental data for a given set of environmental conditions. There is extensive literature on

the rapid increase in vehicle cabin temperature of a closed vehicle on a hot, calm, sunny day

due to the risk posed to small children and pets. One example of such data is shown in Fig.

2.24. These conditions can be modeled by assuming a horizontal solar flux of 400W/m^2, a

vertical solar flux of 800 W/m^2, which is typical of a clear summer day, and a light wind

speed of 1 m/s. The sky temperature can be estimated by subtracting 20 degrees from the

ambient temperature [19]. Furthermore, we assume the vehicle used in the experiment is

similar to the four-door vehicle modeled in [14], thus we use the parameters listed in Table 2.4

in this instance. A list of all inputs can be found in Table 2.7. The temperature evolution of the

cabin model over an hour is compared to experimental data from for three different ambient

temperatures. The results indicate a high level of model accuracy, as detailed in Table 2.8 and

further illustrated in Fig. 2.25.

41

Figure 2.24 An estimate of the cabin air temperature of a closed vehicle on a hot

summer day from [21] given a number of different ambient temperatures.

Table 2.7 Inputs used for the Simulation Case Study

Input Value

Ambient wind (m/s) 1

Sky Temp (C) 20sky ambT T 

Vertical Solar

Irradiance (W/m^2)

800

Horizontal Solar

irradiance (W/m^2)

400

Cooling Capacity

(W)

0

Evaporator Air

Supply (kg/s)

0

42

Table 2.8. A Limited Validation for the Cabin Model, with an

Average RMS Error under 2.5 Degrees F.

 Time (Min) Actual Cabin

Temperature

(°𝑭)

Model Cabin

Temperature

(°𝑭)

Error (°𝑭)

𝑻𝟎 = 𝟕𝟎°𝑭 T = 20 99 94.93 -4.07

T = 40 108 106.71 -1.3

T = 60 113 112.91 -0.09

𝑻𝟎 = 𝟖𝟎°𝑭 T = 20 109 104.74 -5.26

T = 40 118 116.22 -1.78

T = 60 123 122.23 -0.77

𝑻𝟎 = 𝟗𝟎°𝑭 T = 20 119 114.55 -4.45

T = 40 128 125.76 -2.24

T = 60 133 131.58 -1.42

Figure 2.25 Comparing the experimental data to the cabin model temperature over the

course of an hour. Cabin model data closely matches the empirical data.

43

2.4 Overview of the Experimental System

The experimental system is an integrated setup designed to replicate a no-idle VCS unit

cooling a truck sleeper cabin. Some aspects of the integrated system were simplified due to

time and budget constraints. For example, instead of cooling an actual vehicle cabin, we

construct an insulated, enclosed rectangular space to cool. Furthermore, the main heat load

imposed on the cabin originates only from internal infrared heat lamps as opposed to the

dynamic combination of radiative, conductive and convective heat loads that vehicle cabins

are subjected to in outdoor conditions. The clear differences between the experimental and

simulated integrated systems precludes any cross validation between the two; however, the

experimental system is similar enough in design that dynamic behavior and response reflects

that of the NITE system in nominal operation. Fig. 2.26 highlights the key system components

and a detailed explanation is presented below.

Figure 2.26 A labeled picture of the experimental setup.

44

2.4.1 The NITE System

As mentioned previously, the NITE system is a no-idle VCS unit developed by

Bergstrom Inc, a company specializing in the development of cabin climate systems for trucks

and other vehicles. The VCS used in this setup is the NITE Phoenix SSI, which is a battery

operated VCS unit featuring a split condenser/evaporator system as seen in Fig. 2.27. The

compressor, TXV and evaporator are enclosed in a single unit, with the evaporator blower

attached to the side of the unit. The condenser coil and fan unit are enclosed in a unit together

and are connected to the other unit via refrigerant tubes. The evaporator blower feeds cool air

to the cabin via an outflow duct, and the warm evaporator air inflow is supplied via a

recirculation duct from the cabin. In normal application, the condenser unit is housed outside

in warm ambient conditions while the evaporator is placed inside the vehicle. In order to

replicate the ambient heat load on the condenser coils, a 250W heat lamp is shone on the

condenser coils as seen in Fig. 2.28.

The NITE system is equipped with various sensors in order to monitor system behavior.

In particular, LM35 analog temperature sensors were installed at the evaporator air inlet/outlet,

the compressor inlet/outlet and a pressure transducer was installed at the compressor inlet.

Importantly, the pressure and temperature readings at the compressor inlet are used to verify

that the refrigerant is superheated prior to entering the compressor.

The NITE system sends and receives signals using the CAN bus protocol, which is an

automotive communication standard used by vehicle subsystems to communicate with each

other. Using the CAN bus protocol, one can read messages from the NITE system such as

component speeds as well as read any warning messages coming from the system.

Furthermore, the NITE system’s compressor, condenser and evaporator fan speeds can be

overridden by writing a CAN message to the system. This feature is crucial for closed-loop

control of the system.

45

Figure 2.27 A labeled schematic of the NITE Phoenix SSI given by Bergstrom Inc.

Figure 2.28 A picture of the condenser unit along with the 250W heating load.

2.4.2 The Cabin

The cabin is an 8ft x 4ft x 7ft enclosed space that is cooled by the NITE system. The

cabin has a large volume of 6.3 cubic meters designed to emulate the volume inside a truck

cabin. The cabin is constructed out of eight insulating foam board panels joined using heavy-

46

duty tape and metal rods for stability. To replicate the heat loads on the cabin, two pairs of heat

lamps are suspended inside the cabin, each generating 500W and 375W of heat respectively,

as seen in Fig. 2.29. A small fan is placed inside the cabin to mix the inside air. Two LM35

analog temperature sensors are suspended inside the cabin in order to generate an accurate

estimate of the average cabin temperature, as seen in Fig. 2.30. One duct enters the cabin

bringing in cool air from the evaporator, while the other duct recirculates warm cabin air from

the cabin to the inlet of the NITE’s evaporator, as is done in standard practice.

Figure 2.29 A picture of the 500W and 375W heat loads suspended inside the cabin. The

500W heat load consists of two 250W heat lamps, while the 375W heat load consists of a

250W and 125W heat lamp. Each heat load is individually controllable by the user

depending on desired head load. Also seen is the cabin fan that mixes the air inside to

increase temperature uniformity.

47

Figure 2.30 A picture taken inside the cabin, showing the two LM35 temperature

sensors. Also visible is the evaporator outflow duct that brings cool air inside from the

NITE system.

48

2.4.3 The Workstation

The workstation consists of the computer as well as necessary components to process,

send and receive data between the NITE and the computer. Fig. 2.31 outlines those

components.

Figure 2.31 A picture of the workstation components. The NI cRIO communicates to

the NITE over CAN and receives analog signals from various system transducers. The

signal conditioning circuit, in conjunction with the 5V supply, powers the sensors and

filters their outputs to reduce noise. The NITE User Interface is used to turn the NITE

on or off.

A National Instruments (NI) cRIO 9035 equipped with a CAN bus interface module

(the NI-9862) is connected to the CAN bus cable from the NITE system. The cRIO is also

equipped with the NI-9205 analog input module that receives data from the sensors after going

through signal conditioning. In turn, the NI cRIO is connected to the computer over Ethernet.

This configuration can be seen in detail in Fig. 2.32.

49

Figure 2.32 A close-up of the NI cRIO 9035

All six sensors used in the system are analog sensors, which require signal conditioning

in order to remove noise. The signal conditioning board, as seen in Fig. 2.31, contains six low-

pass filters to attenuate high-frequency noise. A 5V power supply is used to power all of the

analog sensors. Table 2.9 lists all of the sensors used in this setup.

50

Table 2.9 Analog Sensors used in the Experimental Setup.

 Sensor Name Location Purpose

Sensor 1 TI LM35 Outlet of evaporator blower Record cabin temperature

Sensor 2 TI LM35 Taped behind computer

monitor

Record cabin temperature

Sensor 3 TI LM35 Inside cabin Estimate refrigerant temperature at

compressor inlet

Sensor 4 TI LM35 Inside cabin Estimate refrigerant temperature at

compressor outlet

Sensor 5 DWYER 628-

05

Inserted in compressor inlet Record low-side system pressure

Sensor 6 TI LM35 Inlet of evaporator blower Record room (ambient)

temperature

Sensor 7 TI LM35 Taped to compressor inlet

tube

Approximate compressor inlet

refrigerant temperature

The NI cRIO and the computer communicate via the NI software package LabVIEW.

This software package allows users to read CAN messages from the NITE and send user-

defined CAN messages to control the speed of its actuators (the speed of the compressor,

condenser fan and evaporator blower is set by a user-defined PWM signal with a value between

0-255). Furthermore, LabVIEW allows the user to read and manipulate analog signals sent

from sensors. A basic LabVIEW file sending and receiving CAN signals and reading analog

sensor data is shown in Fig. 2.33.

51

Figure 2.33 A basic script (called a VI) developed in LabVIEW that sends and receives

CAN signals and also reads and manipulates analog sensor signals.

2.5 Basic Control Strategies and Closed Loop Validation

The main goal of a VCS is to regulate the temperature of a given space. A simple

example of this is a thermostat: its goal is to keep the temperature of a room at a certain value.

This raises some important questions. How do we control a VCS such that it regulates the

temperature of a given space? What actuator(s) do we manipulate to achieve this goal?

Furthermore, what control architecture do we utilize?

52

The main VCS output of interest is the cooling capacity, which is the amount of heat

absorbed by the evaporator. The equation for the cooling capacity is defined as follows:

 , , ,()p air evap o evap iref refQ m c T T  (2.28)

There are two variables that affect the value of refQ : the evaporator mass flow rate, refm and

the temperature differential between the inlet and outlet air streams, , ,()evap o evap iT T .The

evaporator mass flow rate is controlled directly by the evaporator fan speed setting, while VCS

literature shows that the air temperature differential is most correlated with the speed of the

compressor [17]. As the compressor speed is increased, more heat is rejected through the

condenser, which in turn leads to a cooler refrigerant being passed through the evaporator coils

that absorbs more heat. The basic strategy commonly used in industry is to control the cooling

capacity by only modulating the compressor speed. Hence, this section looks at the control of

the VCS through compressor modulation with a constant evaporator speed, but future sections

will address the important role that both components play in optimal cooling.

2.5.1 Closed Loop Structure

Fig. 2.34. details the common VCS control structure.

Figure 2.34 A block diagram of closed loop control implemented on a VCS, where the

controller aims to track a given reference temperature for the cabin.

53

The goal of this closed loop control architecture is to track a reference temperature 𝑅(𝑠) by

measuring the tracking error and using a controller ()cG s to steer the cabin temperature to the reference

value. The closed loop transfer function is described as follows:

  
1

() () () () () () ()
1 () ()

m p p c

p c

Y s N s G s D s G s G s R s
G s G s

  


 (2.29)

For this to be a robust control design, we need to determine whether the system can reject noise

N(s), input disturbances D(s) and track the reference signal R(s) (note that noise and disturbances only

apply to the experimental system). But before doing so, we need to determine the characteristics of

()pG s for the experimental system and also determine ()cG s . ()pG s is the plant model that

characterizes the relationship between the compressor input and the cabin temperature. Prior simulation

results indicated that ()pG s is well modeled by a first order transfer function, and we use this model

structure for deriving the physical cabin’s temperature dynamics. After characterizing the plant, we

determine the robustness of the closed loop controller.

2.5.2 Determining the Physical Cabin Model

In order to determine the gain and time constant of the physical cabin model, we step the

compressor speed at different values and observe the dynamic temperature response. In this case, the

input to this system is the compressor PWM, a value between 0-255 which is proportional to the

compressor RPM. The evaporator blower and condenser fan speeds were held constant at 160 and 70

PWM respectively. To characterize the system dynamics, we observed the cabin temperature response

to three different compressor speeds and determined its first order characteristics. The initial cabin

temperature was set at 35 degrees C. Results are outlined in the following table and in Fig. 2.35.

54

Table 2.10 Open Loop Experimental Cabin

Temperature Dynamics.

Compressor

PWM

(0-255)

Cooling

Capacity

(W)

Final Cabin

Temperature

(°C)

Gain

(K)

Time

Constant

(s)

40 -1153 28.48 0.2178 201

60 -1200 27.15 0.1308 218

100 1231 26.30 0.0870 220

Figure 2.35 Cabin temperature response to different compressor PWM speeds, starting

from an initial temperature of 35 degrees C.

Despite some gain variability, the results show that the cabin is modeled well by a first

order system, just as the simulated cabin was modeled by a first order system. Averaging the

gain and time constant values, we get the following physical cabin transfer function:

() 0.1453

()
() 1 213 1

o
p

T T s K
G s

U s s s


  

 
 (2.30)

26

27

28

29

30

31

32

33

34

35

0 200 400 600 800 1000

C
ab

in
 T

em
p

 (
°C

)

Time (s)

Cabin Temperature vs Time for Different Compressor
Speeds

Comp PWM = 30 Comp PWM = 60 Comp PWM = 100

55

2.5.3 Determining the Controller Transfer Function

The controller transfer function, ()cG s , is a user defined function designed to shape the closed loop

system response. We examine two common control algorithms, proportional and proportional-integral

control.

Proportional control, also known as P control, outputs a control input to the plant that is

proportional to the tracking error. The transfer function of such a controller is given as follows:

()

()
()

c p

U s
G s K

E s
  (2.31)

where ()pK s is the proportional gain. For some systems, P control may be sufficient to track a given

reference signal. However, this is not the case for first order plants such as the cabin model. In fact, P

control on a first order system results in a steady state error that is defined by the following equation:

1

ss

p

R
e

K K



 (2.32)

Proportional-integral control, also known as PI control, outputs a control input to the plant by

sending a control input proportional to both the error and the error integral. By adding integral

action, the steady state error is zero for first order systems. It is defined by the following

equation.

()

()
()

i
c p

KU s
G s K

E s s
   (2.33)

where ()iK s is the integral gain.

2.5.4 Closed Loop Simulation Results

The first control algorithm used on the simulated system was P-control. As stated

before, P-control should generate a steady state error for any given pK . Fig. 2.36 and 2.37

shows the cabin temperature and compressor RPM respectively for three different proportional

56

gains. As seen below, proportional control fails to eliminate the steady state error, further

validating the first order characterization of the cabin model.

Figure 2.36 The cabin temperature over time for three different proportional gains.

None of the proportional controllers successfully track the temperature set point,

yielding a steady state error.

57

Figure 2.37 The compressor RPM over time for the three different proportional gains.

The compressor RPM does not reach the speed necessary to cool the cabin to the

temperature set point.

On the other hand, utilizing PI control on a first order transfer plant should allow

successful reference tracking. Figures 2.38 and 2.39 show the cabin temperature and

compressor RPM respectively for the simulated system. As seen below, the cabin temperature

quickly converges to the desired temperature set point of 20 degrees C, as the compressor RPM

converges to the value necessary to maintain that temperature.

58

Figure 2.38 The simulated cabin temperature over time. The cabin temperature,

initially at 35 degrees C, converges to the temperature set point in approximately 20

minutes.

59

Figure 2.39 The compressor RPM over time. The compressor speed initially increases to

pull down the cabin temperature and levels off once the cabin temperature reaches the

desired value.

2.5.5 Closed Loop Experimental Results

The previous section demonstrated the ability of PI control to track a temperature

reference, while P control was found to be insufficient due to steady state error. Despite the

differences between the modeled and experimental system, we expect the same general trends

to apply to the experimental system as well. Like before, we initialize the cabin temperature at

35 degrees C and attempt to drive the temperature to a set point of 27 degrees C, given a cabin

heat load of 875W. Fig. 2.40 and 2.41 shows the cabin temperature and compressor PWM over

time when only using proportional control. As the simulation results predicted, the cabin

temperature does not track the reference temperature.

60

Figure 2.40 The cabin temperature over time, along with the temperature set point. The

cabin temperature fails to track the reference temperature, resulting in a steady state

error.

Figure 2.41 The compressor PWM over time. The compressor PWM is greatest at the

beginning due to the large initial error between the cabin temperature and temperature

reference. The PWM never reaches a high enough value to cool the cabin sufficiently

26

27

28

29

30

31

32

33

34

35

0 500 1000 1500 2000 2500 3000 3500

C
ab

in
 T

em
p

 (
°C

)

Time (s)

Cabin Temp vs Time, P Control (Kp = 2)

Cabin Temp Temp Setpoint

40

42

44

46

48

50

52

54

56

58

0 500 1000 1500 2000 2500 3000 3500

C
o

m
p

 P
W

M

Time (s)

Comp PWM, P control (Kp = 2)

61

On the other hand, we expect the PI controller to track the temperature reference

successfully based on theory and simulation results. This assumption holds true; Fig. 2.42

shows the cabin temperature converging to the desired set point, while Fig. 2.43 shows the

compressor PWM speeds converging to the necessary value to track the reference temperature.

Figure 2.42 The cabin temperature over time, starting from an initial temperature of 35

degrees C. The cabin temperature converges to the set point in roughly 30-40 minutes.

Figure 2.43 The compressor PWM over time. The PWM initially increases to bring

down the cabin temperature and stabilizes once the cabin temperature reaches the

temperature set point.

26

28

30

32

34

0 500 1000 1500 2000 2500 3000 3500 4000

C
ab

in
 T

em
p

 (
°C

)

Time (s)

Cabin Temp vs Time, PI Control (Kp = 0.50, Ki = 0.25)

Cabin Temp Temp Setpoint

40

50

60

70

80

90

100

0 500 1000 1500 2000 2500 3000 3500 4000

C
o

m
p

 P
W

M

Time (s)

Comp PWM vs Time, PI Control (Kp = 0.50, Ki = 0.25)

62

It is clear that PI control successfully tracks a given reference signal. However, this is not the

only important criteria in judging a control scheme’s effectiveness. An effective control scheme must

also be robust to noise and input disturbances. To determine controller robustness, we first rewrite Eq.

2.29, the closed loop transfer function. The closed loop transfer function is as follows:

() () ()1

() () () ()
1 () () 1 () () 1 () ()

p c p

m

p c p c p c

G s G s G s
Y s R s N s D s

G s G s G s G s G s G s
  

  
 (2.34)

Eq. 2.34 shows that the plant output is a function of the reference signal ()R s , the output noise

()Y s , and the input disturbance ()D s . For the system to be robust to noise and disturbances,

we need the transfer functions
1

1 () ()p cG s G s
 and

()

1 () ()

p

p c

G s

G s G s
to have low gains for the

respective noise and disturbance frequencies, effectively attenuating those signals.

()

1 () ()

p

p c

G s

G s G s
 is referred to as the sensitivity transfer function, ()S s , while

()

1 () ()

p

p c

G s

G s G s
is

referred to as the disturbance rejection transfer function, ()D s . Substituting in the physical

plant’s transfer function and controller transfer function with the same gains as used in the

experimental system (0.5pK  , 0.25iK ), we get the following disturbance rejection and

sensitivity transfer functions, Eq. 2.35 and 2.36 respectively.

2

3 2

0.1452

30.93 0.1452213 1()
0.1452 0.25 45369 441.5 8.804 0.0363

1 0.5
213 1

s ssD s
s s s

s s

 
    

   
  

 (2.35)

2

2

1 213
()

0.1452 0.25 213 1.0726 0.0363
1 0.5

213 1

s s
S s

s s

s s


 

   
   

  

 (2.36)

Fig. 2.44 and 2.45 show the bode plots of the disturbance rejection and sensitivity transfer

functions respectively, generated using the bode command in MATLAB. The disturbance

rejection transfer function clearly attenuates disturbances of all frequencies. On the other hand,

the sensitivity transfer function indicates that the closed loop control attenuates most low-

63

frequency signals, amplifies signals with frequencies in a narrow range (between 0.01 and

0.025 rad/sec) and passes signals with frequencies higher than 0.025 rad/s. Because noise is

generally a high frequency phenomenon, the transfer function passes most noise. However,

this does not pose an issue because the low pass filter described in section 2.4.3 already

attenuates most signal noise. Thus, the controller demonstrates robustness along with

successful reference tracking.

Figure 2.44 The bode plot of the disturbance rejection transfer function. The transfer

function attenuates disturbances over all frequencies.

64

Figure 2.45 The bode plot of the sensitivity transfer function. The transfer function

attenuates low frequency signals, amplifies a narrow range of signals with frequencies

between 0.01 and 0.025 rad/s, and passes signals with frequencies higher than 0.025

rad/s. The transfer function passes most noise, but this is permissible because noise is

already attenuated due to prior signal conditioning

2.6 Optimization Opportunities

Thus far, we have demonstrated the operation, modeling and validation of an integrated

VCS in simulation and experimentally. Furthermore, we have demonstrated the ability of PI

control to regulate the cabin temperature, which is the main function of the vehicle VCS.

However, one question remains: are we regulating the cabin temperature optimally? That is,

are we regulating the cabin temperature while consuming as little power as possible? As

touched on in section 2.5, the VCS cooling capacity is a function of the evaporator air mass

flow rate and the inlet and outlet air temperature differential, which is correlated with the

compressor speed. Thus far, we have looked at cabin temperature regulation by only

manipulating the compressor speed, while keeping the blower speed constant. However, is that

fixed blower speed optimal? Is there another combination of compressor and blower speeds

that yields the same cooling capacity while consuming less power? How can we determine this

65

optimal combination? These questions are addressed in chapter 3, by examining the use of

extremum seeking control, an algorithm that can determine the optimal combination of inputs

that meets required objectives while minimizing power consumption.

66

Chapter 3

Extremum Seeking Control

Thus far, we have demonstrated the ability to control a VCS in order to regulate the

temperature of a space. This is done by continually manipulating the compressor speed using

a PI controller while leaving other inputs constant. However, some important questions remain.

Is the cooling capacity unique with respect to the inputs? That is, are there other sets of VCS

inputs that yield the same VCS cooling capacity? If so, is there a unique set of inputs that also

minimizes the power consumption?

Before analyzing VCS behavior, we need to understand the theory behind dynamic

system optimization. We seek an optimization algorithm that can identify the system inputs

that minimize a desired quantity. Gradient descent is a popular optimization algorithm that

minimizes a function by moving in the direction opposite of the gradient value at a given point.

However, we also need an algorithm that can perform optimization on a dynamic system with

no prior knowledge of the system’s performance function gradient. Extremum seeking control

(ESC) is one such class of optimization algorithms with a wide range of academic and

industrial applications. We examine its theoretical underpinnings along with its applications to

VCS optimization.

3.1 Optimization via Gradient Descent

We first begin by discussing the fundamentals behind mathematical optimization,

which is broadly defined as the selection of an element that best meets some chosen criteria.

Optimization is commonly used to determine the input(s) to a function that minimizes or

maximizes its value. In this thesis, we only consider function minimization. Gradient descent

is the most common optimization algorithm, and is used extensively in machine learning,

finance and engineering applications. Gradient descent converges to the minimum of a desired

67

function by evaluating the function’s gradient at a given point, and then moving in the direction

opposite to the gradient’s value. In order to simplify analysis, we make the following

assumptions:

1) The function of interest is globally convex: Mathematically, a function : nJ R R

is globally convex 1 2, ,  R if the following equation is true:

 1 2 1 2[0,1]: ((1)) () (1) ()J J J             (3.1)

In other words, the above statement states that for any two points 1 2,  , J evaluated at

any convex combination of those two points should be no larger than the convex combination

of the function values at the two points. Graphically, this means that if we connect two points

on the function surface with a line, then the function must lie below this line between those

points. A convex function in 2
R is depicted in Fig. 3.1. Furthermore, the convex function has

a single, global minima * such that (*) ()J J    R . The gradient at the minimum

value (*) 0J   .

68

Figure 3.1 A graphical illustration of a convex function. Between any two coordinates

1 1(, ())J  , and 2 2(, ())J  the function must lie below a line connecting these two points.

Optimization is often performed on convex functions because otherwise we may never

converge to a final value. We desire that convexity holds globally so that we always converge

to a function’s lowest value rather than a local minima. An example of a non-convex function

is shown in Fig. 3.2. The non-convex function shown has two local minima, and thus parts of

the function lie above a line connecting two points on the function surface. Fig. 3.3 shows an

example of a globally convex function in 3
R .

69

Figure 3.2 A non-convex function. A line drawn between two points on the function

does not always lie above the function evaluated between those points.

Figure 3.3
2 2(,)f x y x xy y   is a globally convex function in

3
R with a minimum at

(0,0) .

70

2) We assume 1J C , or in other words, the first derivative of the function is

continuous.

3) For now, we assume the performance function J is a static function (i.e. J does not

vary with respect to time). We also assume to know the value of the gradient for all

 . We talk more about how valid this assumption is further below.

With these conditions in place, the gradient descent formula is given as following:

 ()J   (3.2)

where  is a positive definite scaling matrix, and ()J  is the gradient vector evaluated at .

For the discrete scalar case, we can rewrite the gradient descent algorithm as follows:

 1

1

n n

n

dJ
c

d
 






 
 
 

  (3.3)

where c is a positive scaling constant.

Fig. 3.4 illustrates the discrete gradient descent algorithm in action. For the first

iteration, the value of the gradient at the initial value of  is very negative. Using the equation

above, this results in a large positive increase in the value of  . For the second iteration, the

gradient evaluated at the new value of  is less negative than before, resulting in a smaller

positive increase in  . This process repeats until we converge to the minimum of J , where the

gradient is zero.

71

Figure 3.4 A visual example of a discrete scalar gradient descent algorithm applied to

()J  , a convex function in
2

R . The algorithm successfully converges to the value of 

that minimizes J .

3.2 Gradient Estimation

From the example above, it is clear that once we know the function’s gradient at a given

point, converging to the optimal value is fairly straightforward. However, there are two issues

to tackle before we can perform gradient descent on an actual system. The first problem is that

we have no prior knowledge of the performance function, other than that we assume it to be

convex. Therefore, we also have no knowledge a priori about the performance function

gradient with respect to the system’s input(s). The second problem is that we have assumed

that the performance function is static (i.e. the function does not change with respect to time).

This, however, is not true for dynamic systems. The output of a dynamic system can depend

on the rate of change of the system’s input, which has repercussions when performing gradient

descent. If we descend towards the minimum too quickly, we could excite system dynamics

that will throw off the gradient estimate and result in improper convergence. Thus, any changes

72

in the input must occur slowly enough that we do not generate a significant transient response

in the system output. This is referred to as quasi-static or quasi-steady state behavior. Assuming

a quasi-static system with respect to the input dynamics is referred to as a time scale

separation.

Fig. 3.5 illustrates the differences between a dynamic, quasi-static and a static output

of a second order dynamic system
2() / () 1/ (0.01 1)Y s U s s s   for () [0,2]U s  . The static

system response is the plant’s DC gain over the input range, with a constant gradient

/ 1dY dU  . The quasi-static response is generated by slowly varying the input 0 to 2 over 100

seconds, and follows the static response very closely. The dynamic response is generated by

varying the input from 0 to 2 over 10 seconds. Changing the input this rapidly excites this

system’s dynamics, and the output does not match the static or quasi-static response. The

gradient thus does not approximate the static response’s gradient, precluding effective system

optimization.

73

Figure 3.5 The static, quasi-static and dynamic responses of the second order transfer

function
2() / () 1/ (0.01 1)Y s U s s s   for () [0,2]U s  .

Our optimization method must be able to identify the unknown performance function

derivative at a given point and perform gradient descent without exciting the system’s

dynamics.

3.3 Extremum Seeking Control

Extremum seeking control is one such algorithm that accomplishes these goals. The

basic algorithm works by slowly perturbing the system’s input to generate a local gradient

estimate of the quasi steady state performance function of a given nonlinear plant and uses it

to perform gradient descent to determine the set of inputs that minimizes the function. ESC

traces its origins to a paper written by LeBlanc in 1922 [3], and was used by industry

practitioners in the 1950’s and 1960’s. After that, the popularity of ESC waned until the turn

74

of the century, when Krstic and Wang published a proof of stability for the classical

perturbation ESC algorithm described below [4]. Since then, ESC has become highly popular

in academia and industry. ESC has been used to optimize a wide range of systems, from

maximizing photovoltaic power point tracking [5] to minimizing the power consumption of

VCS [2], which we investigate in detail towards the end of this chapter.

3.3.1 The Basic Single-Variable Perturbation ESC Algorithm

Fig. 3.6 outlines the standard single-variable perturbation based ESC used to determine

the optimal inputs to a general nonlinear plant (,)x f x  that minimizes its associated convex

performance function ()y J x . For simplicity, we analyze the algorithm in continuous time,

but later chapters will address discrete implementation of this algorithm in software. The

derivation presented below was sourced from [31].

Figure 3.6 A block diagram of the classical perturbation ESC algorithm.

The first step of perturbation ESC is to inject a low amplitude and low frequency dither

signal, commonly a sinusoid sin()a t , into the nominal plant input 0 . This generates a quasi-

75

steady state sinusoidal output that contains information on the local performance function

gradient. The plant output is approximated by the following equation:

 0() sin()y t y J a t  (3.4)

where 0y is the nominal plant output, and J  is the local performance function gradient
dJ

d
.

Note that we assume we are perturbing the system slowly enough that the phase shift induced

by the plant can be neglected. Next, the plant output passes through a high pass filter

()p

HP

s
H s

s 



, HP being the cutoff frequency, that removes the DC part of the response.

The high pass filter output, ()HPy t , is given by the following equation:

 () sin()HP HP HPy t G J t   (3.5)

where HPG is the high pass filter gain, given by
2

1
(())

1

HP p

HP

G mag H j




 

 
  
 

, and HP

is the filter phase shift, given by 1tan HP
HP






  
  

 
. The next step is to multiply the output by

a demodulation signal sin()a t to extract gradient information from the signal. After

performing some trigonometric manipulation, the product of the two signals is given by the

following equation:

  
2

() cos() cos(2)
2

HP HP HP

a
t G J t      (3.6)

Although the integrator attenuates the high frequency component of ()t , we pass the output

through a low pass filter () LP
p

LP

L s
s







 ,where LP is the cutoff frequency, to further improve

gradient estimation. Plugging in the formulas for HPG and HP , we get the following low pass

filter output.

76

  
2 2

1

2
() cos() cos(tan (/))

2 2 1 (/)
HP HP HP

HP

a J a
t G J   

 


 


 (3.7)

Using the trigonometric identity 1

2

1
cos(tan)

1




 


, we rewrite the above equation as

follows:

2 2

2 2
()

2()HP

a
t J




 

 
  

 
 (3.8)

Armed with an estimate of the local performance function gradient, we can now

perform gradient descent. We scale and integrate the derivative accordingly and obtain  .

We add this term to the nominal input such that the new input to the plant moves towards the

optimal value. Finally, we inject the sinusoid sin()a t back into the input to repeat the process

all over again. The new input to the plant is given as following:

 0() sin()t a t      (3.9)

3.3.1.1 Choosing Algorithm Parameters

For perturbation ESC to work well, we need to carefully choose the algorithm

parameters. We consider the dither signal, filter design and integrator gain.

Dither signal: As mentioned previously, the choice of the dither signal is very

important. A sinusoidal dither is most common in literature, but other forms of dither signals

such as square waves have been utilized successfully [17]. The dither signal must have a small

amplitude relative to the plant gain and have a frequency slower than the dominant plant

dynamics to ensure quasi-static (or quasi-steady state) performance. Varying the input too

quickly may excite the plant which is problematic because the resulting system output may not

be indicative of steady-state plant performance, and we may erroneously converge to

suboptimal inputs.

Filters: Filter design is also an important part of building an effective ESC. It is

important for the high pass filter to attenuate the DC signal component, while passing the

77

sinusoidal plant response. On the other hand, we wish for the low pass filter to attenuate

oscillating components while passing the low frequency gradient estimate. In general, literature

suggests that setting HP LP    is sufficient [22].

Integrator gain: The integrator gain k determines the rate of adaption. Too high of a

gain, and the system dynamics may be excited, while too small of a gain results in sluggish

performance. For minimization, the gain should be negative, while for maximization, the gain

should be positive. The integrator gain is often user-tuned through trial-and-error.

3.3.2 Shortcomings of Perturbation ESC

Perturbation ESC has been used to effectively optimize the behavior of a wide range of

dynamic systems. However, there are some shortcomings of this approach. The first issue is

that perturbation ESC has a large number of tunable parameters, from the integrator gain to the

filter cutoff frequencies to the sinusoid’s characteristics. In order to achieve optimal

convergence, the user must tune all of these parameters perfectly which is inherently difficult.

The second problem is that using an oscillating dither signal results in practical, but not

asymptotic stability around some optimal point. Although there are algorithms that

asymptotically reduce the dither amplitude as one gets closer to the minimum value, this

doesn’t address the other shortcomings of perturbation ESC. Lastly, perturbation ESC induces

a sinusoid in the system’s output at a frequency slower than the plant dynamics. This signal is

then filtered and averaged when generating a gradient estimate. However, averaging the effect

of the perturbation on the system induces a second, slower time scale separation in the

optimization procedure. This is problematic, especially when performing ESC on vapor

compression systems due to their inherently slow dynamic behavior [9]. Convergence to the

optimal value could take as long as several hours, which is not ideal. We thus seek a simple,

yet effective ESC that doesn’t use a slowly varying perturbation to generate a gradient estimate.

One such method is referred to as least squares based extremum seeking and is described

below.

78

3.3.3 Least Squares Based Extremum Seeking

Least squares based extremum seeking is an ESC algorithm developed by Hunnekens

et al. in 2014 [10]. The algorithm’s block diagram is outlined below.

Figure 3.7 A closed loop block diagram of the algorithm described in [10].

This algorithm works by continually generating a first order least squares fit on a

moving buffer of past performance data over the last T seconds. This least squares fit contains

an estimate of the performance function gradient that can be used in a gradient descent

algorithm to converge to the optimal value. Because no perturbation is utilized in this

algorithm, the controller can achieve asymptotic stability with one less time scale separation

than perturbation ESC, leading to potentially faster convergence [10]. We detail the

algorithm’s fundamentals below.

3.3.3.1 Least Squares

The backbone of this algorithm is the least squares method. Least squares is a well-

known method used to approximate the solution of an overdetermined system. We use the

ordinary least squares method, where the approximate solution to an overdetermined system is

a linear function of the form y m b  . This is also referred to as the line of best fit. We wish

to determine the coefficients m and b that minimizes the sum of the distances squared between

79

the individual points and the approximate linear solution. This is done by projecting the vector

of data points onto the subspace spanned by the linear function. An example of this is shown

in Fig. 3.8.

Figure 3.8 An example of ordinary least squares applied to a set of data points

1 1 2 2(,), (,)...(,)n ny y y   . We organize the data points into corresponding and Y

matrices, and then use a matrix projection operator
1ˆ ()T TY    to determine the

linear coefficients that minimizes the sum of the squared distances between data points

and the linear approximation.

The least squares method easily lends itself to extremum seeking. If we have some

available data on the performance function in some region over time T, we can easily generate

a least squares fit on the data and obtain a gradient estimate, which is simply the parameter m

from the last example. With this gradient estimate, we can perform gradient descent and

determine a more optimal input value. We continuously repeat this procedure until we

converge to the optimal value that minimizes the performance function.

An important distinction between perturbation ESC and least squares ESC is that least

squares ESC requires initialization. If the system is at steady state when the least squares ESC

is activated, then the calculated gradient will be zero and the system will not adapt over time.

However, if we set
i

P

T
  , where P is a change in input value over a time period iT , and collect

the resulting system power consumption over that period, we allow the controller to calculate

80

performance function gradient with respect to some input range prior to activating the

controller (allowing it to send an input adjustment signal to the plant). Once it is activated, the

controller starts with a good initial estimate of the performance function gradient and adjusts

the input accordingly. This effectively sets the algorithm “in motion” and it will converge to

the optimal value over time.

3.3.3.2 Choosing Algorithm Parameters

Unlike perturbation ESC, least squares ESC only has three parameters to tune: the

integrator gain k, the time buffer length T and the controller initialization value P. Like before,

we want the gain to be small enough to not excite the system dynamics but also be large enough

so that behavior isn’t sluggish. We want the buffer length T to be small enough to yield a

somewhat local least squares fit on a section of the performance function. On the other hand,

we don’t want T to be so small that the controller becomes susceptible to noise or disturbances.

And finally, we want the initialization value P to be small enough such that it doesn’t change

the input too quickly, but large enough to generate a robust estimate of the performance

function gradient.

3.3.3.3 Issues with Least Squares ESC

Despite the simplicity and ubiquity of the least squares approach, there are a few

intrinsic problems with the algorithm. We detail these below.

Computational expense: An issue with the current implementation of least squares is

that computing the least squares solution is expensive, especially for large data buffers.

Performing a matrix inverse on large data matrices isn’t a problem for a computer, but for

smaller embedded controllers, this may prove to be a significant barrier to implementation. An

ideal algorithm would not use costly computations every iteration.

A lack of persistence of excitation: Another issue with the algorithm presented above

is that estimating the gradient is only possible if there is enough data to generate a linear fit.

This problem is avoided by initializing the controller as mentioned before, but if the values of

 in the buffer were instead all the same or very close to one another at some point in time,

then the linear fit could be undefined or erroneously large in magnitude. This could happen,

81

for example, when we get very close to the optimal input value. Furthermore, if the gradient

measured at some time is zero, then the gradient descent algorithm would essentially be “turned

off” for all future time. If the optimal function value changes over time, as is true for many real

life dynamical systems, then gradient descent may not converge to the optimal value.

Therefore, we need a persistently excited system to generate sufficiently data for all time t such

that we can always generate accurate gradient estimates. For an arbitrary input signal ()u s ,

persistence of excitation is defined as following:

 2

0()

t t

t

u s ds t


  (3.10)

where t is an arbitrary time range, and 0 is a positive constant.

With these problems in mind, we seek an algorithm that can generate a gradient

estimate as quickly as least squares ESC can while minimizing computation cost and

guaranteeing persistence of excitation. Recursive least squares is one such algorithm as is

described below.

3.3.4 Recursive Least Squares (RLS) ESC

Recursive least squares ESC (also referred to as time varying ESC in the literature [32]), is an

advanced, discretely implemented controller that utilizes a recursively formulated least squares

algorithm to identify the performance function gradient and converge to the optimal value. This

approach also entails one less time scale separation than classical perturbation ESC, which allows for

fast convergence.

3.3.4.1 Recursive Least Squares (RLS) Gradient Estimation with Forgetting Factor

In traditional least squares, when receiving a new data point (,)n ny at time n, we have

to recalculate the least squares solution for all n data points to determine the gradient m. This

is an extremely expensive computation, especially when calculating the matrix inverse
1()T  

for each time step. On the other hand, when receiving a new data point (,)n ny at time n, the

RLS algorithm can recalculate the new performance function gradient only using the current

82

data and data from the previous time step, n-1. A detailed derivation of the RLS algorithm can

be found in [23]. The RLS algorithm is as follows:

 n new input value  (3.11)

 ny newoutput value (3.12)

 1 1
1

1

1

1

T

n n n n
n n T

n n n

V V
V V

V

 

  
 





 
  

 
 (3.13)

T

n n nV  (3.14)

 1
ˆ

n n n ne y     (3.15)

 1
ˆ ˆ

n n n ne    (3.16)

 ˆ (1)n nm  (3.17)

 is the forgetting factor, a value between 0-1 that exponentially reduces the weight of

previous data points. A value closer to 0 means that we have a more local gradient fit, but too

low of a value makes the algorithm susceptible to noise. A value closer to 1 is more robust to

noise but the gradient estimate is often less accurate.

A new variable introduced in the algorithm is V which is simply the projection operator

1()T  
 rewritten using the Woodbury Matrix identity. This identity saves us from re-

computing the matrix inverse every iteration. Again, more detail on this can be found in [23].

In order to operate the algorithm recursively, we need to continually feed the values V and ̂

back into the algorithm once we have determined the new gradient value. We initialize the

recursive algorithm by defining 0V and 0̂ . In many cases, setting 0V as the identity matrix

and 0̂ as a column vector of one’s prior to activating the controller is sufficient. However,

generating good initial values of 0V and 0̂ can significantly accelerate gradient estimation.

This can be done by using the initialization approach used in traditional least squares, by setting

83

i

P

T
  for some period of time iT allowing the algorithm to determine the gradient value and

then activating the algorithm, allowing it to adjust the input.

With RLS being our new gradient estimator, the RLS ESC algorithm is illustrated as

follows:

Figure 3.9 A block diagram detailing the implementation of discrete RLS ESC on a

sample plant.

Persistence of excitation is achieved in this framework by injecting a small amplitude

sinusoid sin()a t into the function input, as seen above, so that the input always varies by

some amount, but not large enough to disrupt near-asymptotic converge to the optimal value.

The input to the system is thus defined as 1 0
ˆ sin()n n a t       .

 It is clear that RLS ESC has a number of advantages over perturbation ESC. RLS ESC

has theoretically fast performance while also incurring smaller computational costs than

ordinary least squares ESC. Furthermore, the user only has to tune three algorithm parameters:

the gain k, the forgetting factor  and the initialization constant P. This makes RLS ESC an

attractive optimization algorithm. However, before we implement this algorithm on the

84

simulated or experimental VCS described in Chapter 2, we first need to parse the VCS

literature to determine whether ESC is a viable optimization strategy for this class of systems,

as well as to determine the specific control architecture used to achieve beneficial results.

 3.4 ESC Applications to VCS

The first substantive research paper written on the use of ESC on vapor compression

systems was written by Burns and Laughman in 2012 [2]. Burns and Laughman observed that

the cooling capacity of VCS was not unique with respect to its inputs; a number of different

combination of evaporator fan and compressor speeds yielded the same cooling capacity.

Furthermore, [2] determined that the power consumption, the performance metric of interest,

was convex with respect to the input combinations. In other words, there was a unique

combination of inputs that yielded a given cooling capacity while also minimizing the system’s

power consumption. Fig 3.10 is a diagram from [2] illustrating power convexity with respect

to the VCS input space.

Figure 3.10 A graphical representation from [2] of power convexity with respect to the

VCS input space. The convex function represents a constant VCS cooling capacity of

1000Q W . The goal of ESC is to minimize this function by going from a suboptimal

input combination 0V to minV .

85

Burns and Laughman then implemented a perturbation-based ESC on an experimental

VCS setup that reduced the VCS power consumption by from 750W to 400W while

maintaining a zone at a given reference temperature [2]. The ESC was added to an existing

closed loop PI control architecture that maintains the zone temperature by manipulating the

compressor speed (the same PI architecture was used to regulate cabin temperature in the

previous chapter). Fig. 3.11 details the control architecture used in this paper. The stabilized

VCS refers to PI control applied to the VCS such that it tracks a reference temperature. The

ESC forms the “outer loop” of this control scheme as it slowly perturbs the stabilized system

to search for the energy minimum. Since we assume our performance function is quasi-static,

the PI control must be able to stabilize the system quickly in response to disturbances and

changes in evaporator fan speeds without generating large transients that could throw off the

ESC. Note that the condenser fan speed remains a constant value.

Figure 3.11 The control architecture utilized by [2].

86

The ESC slowly perturbed the evaporator fan speed that was previously held constant.

When the fan speed was increased, the cooling capacity also increased, resulting in a drop in

zone temperature. To track the temperature set point, the PI controller decreases the

compressor speed until the zone temperature tracked the temperature set point again. This new

combination of compressor and evaporator fan speed yielded a lower power consumption than

the prior input combination. The ESC interpreted the increase in fan speed with a decrease in

power, generating a corresponding estimate of the cost function gradient and further increased

the evaporator fan speed until the power consumption reached a minimum at 400W, 35% lower

than its original value [2]. Fig 3.12 shows the experimental results from [2] showing the two

actuator speeds converging to their respective optimal values while maintaining a constant

zone temperature.

Fig 3.12 Experimental results from [2]. Over the course of two hours, the ESC

determines an optimal combination of compressor and evaporator fan speeds that

minimizes the power consumption. Even as this process occurs, the VCS successfully

keeps the room temperature at a pre-determined constant value.

Since this paper was published, ESC has become widely utilized in the VCS controls

community, with a proliferation of new algorithms and applications. ESC has been used to

optimize VCS subcooling [22], maximize the COP of transcritical CO2 heat pumps [24], and

minimize the power consumption of chilled water systems [25], to name a few examples.

Advances in ESC algorithm design have also been leveraged to further improve VCS

performance. Multivariable ESC is one such example of this, where the controller

87

simultaneously modulates more than one actuator. For VCS’s, this often entails modulating

both the evaporator and condenser fans, whereas traditional ESC modulates one fan speed

while often holding the other constant. Some examples of multivariable ESC use on a VCS

can be found in [26] or [27]. The use of RLS ESC (also referred to in the literature as time-

varying ESC) also extends to VCS. Burns et al. applied a time-varying ESC approach on a

VCS by modulating the evaporator fan speed while using the compressor to control a zone

temperature, an architecture similar to his paper in 2012 [9]. Using time varying ESC resulted

in convergence to optimal parameters in under an hour, as opposed to two hours for

perturbation ESC [9]. These experimental results validate the use of ESC on VCS, and

experimentally validate the faster convergence of time varying ESC over perturbation ESC.

3.5 Optimization of No-Idle VCS

ESC has been established as a viable and effective optimization strategy through

theoretical analysis and experimental validation performed on a wide range of vapor

compression systems. The next step, naturally, is to determine whether these results also extend

to no-idle battery operated VCS such as the NITE. Can ESC minimize the power consumption

of these types of systems, and maximize their battery life? We explore the implementation of

ESC on the simulated system in Chapter 4, and implementation of ESC on the experimental

setup in Chapter 5. In particular, we examine the use of single variable perturbation ESC, least

squares and RLS ESC on these systems, as all three of these techniques are simple to

implement and the literature has established their efficacy.

88

Chapter 4

Extremum Seeking Control on the Simulated

Integrated NITE System

After detailing the simulated and experimental integrated NITE system in Chapter 2,

and analyzing ESC and its applications in Chapter 3, we now have the tools to implement ESC

on the simulated and physical system. This chapter will detail implementation in simulation,

while the following chapter will discuss experimental implementation.

The basic VCS control scheme presented at the end of chapter 2 was PI control

regulation of the cabin temperature by compressor speed modulation. We utilize this control

architecture because, as outlined in section 2.5, the compressor speed directly affects VCS

cooling capacity. However, the evaporator fan speed, an actuator that also directly influences

the cooling capacity, remained constant. We now know from literature that VCS power

consumption is convex with respect to these two inputs for a given cooling capacity [2]. That

is, there exists an optimal combination of these two actuators that simultaneously minimizes

power consumption and achieves desired temperature regulation. For our system, this means

that determining the optimal input combination could extend battery life while meeting

passenger cooling requirements. Researches have utilized various types of ESC on VCS in

conjunction with PI control architecture to meet these two goals, as discussed towards the end

of Chapter 3. Furthermore, research suggests that RLS and least squares (LS) ESC may

converge to these inputs faster than perturbation ESC (P-ESC) can. We wish to determine

whether these results hold true for the NITE system as well. In this chapter, we discuss the

design, implementation and analysis of three different ESC algorithms (P-ESC, LS-ESC and

RLS-ESC) on the simulated system.

89

4.1 NITE System Power Convexity

ESC minimizes a function with respect to its inputs as long as this function is convex.

Although [2] proved that VCS power is convex with respect to inputs, it is a useful to map out

the NITE’s performance function ourselves prior to ESC implementation. Generating a

performance function map will allow us to verify the convexity of the function and to learn the

location and value of the function’s minimum. This way, we can know with certainty whether

the algorithms tested in this chapter converge to the most optimal point.

To determine this, we consider the following scenario: We have a modeled truck cabin

initially at 35°C that we want to cool to 21°C. We have two vehicle occupants, an ambient

temperature of 35°C and an air recirculation of 90%. The rest of the integrated model is

parametrized as outlined in Chapter 2 for a sleeper cabin. Using basic PI control, we can

modulate the compressor speed to pull down the cabin temperature to the desired value from

T= 0 to 3000s, while keeping the evaporator fan speed fixed at some suboptimal value (note

that the condenser fan is always fixed at 70PWM in this thesis since we are considering only

single variable ESC). Once the cabin temperature reaches steady state, at T=3000s we start to

slowly ramp the evaporator speed up at a rate of 0.001PWM/sec until T=30000s, as seen in

Fig. 4.1. Increasing the blower speed increases the cooling capacity, which lowers the cabin

temperature, resulting in the PI controller decreasing the compressor speed in order to track

the set point, as also seen in Fig. 4.1. This new combination of compressor and evaporator

speeds yields a corresponding power consumption, shown in Fig. 4.2. Because the evaporator

speed changes slowly, this procedure generates a quasi-steady state map of the system power

consumption with respect to the compressor and blower speeds. We performed this procedure

on the simulated system, and the power consumption was found to be mostly convex with

respect to the two inputs; there was a unique combination of compressor and evaporator fan

speeds, 1565rpm and 126-128PWM respectively, which minimized the total power

consumption to roughly 523W while maintaining the vehicle cabin temperature at 21°C. Fig.

4.3 illustrates the convex relationship between power and system inputs. Fig. 4.4 shows the

cabin temperature over the course of the mapping procedure, and Fig. 4.5 depicts the PI

controller implemented in simulation used to maintain the cabin temperature at the set point.

90

Figure 4.1 The change in compressor and blower speeds over the course of the mapping

procedure. The large initial compressor RPM transient is a result of pulling down the

cabin temperature to the set point. As the blower speed increases, the compressor speed

decreases in order to maintain a constant cabin temperature.

Figure 4.2 The total VCS power over time. The initial power transient is due to the high

compressor speeds. From 3000 to 30000 seconds, the power curve can be approximated

as a convex function.

91

Figure 4.3 The quasi-static system power curve with respect to the evaporator blower

speed. As the blower speed increases, the compressor speed decreases in order to

maintain a constant vehicle cabin temperature. The total power consumption is

minimized around a blower speed of 126-128 PWM and a compressor speed of 1565

RPM.

92

Figure 4.4 The cabin temperature over time, starting from an initial temperature of

35°C. As the blower speed increases during the mapping process, the PI controller

decreases the compressor speed to keep the cabin temperature at 21°C.

93

Figure 4.5 The PI controller utilized in simulation.

4.1.1 A Note on the Condenser Fan Speed

The condenser fan speed was held constant in the previous example, but what if we

repeated the procedure above for the condenser fan instead while holding the evaporator speed

constant? Would this also yield a convex relationship? The answer to this is no. As seen in Fig.

4.6, the power is not convex with respect to the condenser fan speed (note that for the NITE’s

condenser fan, lower PWM corresponds with a higher speed). Therefore, our intuition in using

the evaporator blower as the primary input variable of interest is correct. Note that, as

mentioned in the previous chapter, some researchers have used the condenser fan for

optimization purposes, but we assume it remains a constant. NITE manufacturers set the

condenser fan speed at a fixed 70PWM in operation.

94

Figure 4.6 Total power consumption with respect to the condenser fan speed is not

convex. The evaporator blower is held at an arbitrary constant 153 PWM.

4.2 Implementing ESC on the Simulated System

Having demonstrated power convexity, we can now utilize ESC techniques to identify

and converge to input combinations that minimize power consumption and extend battery life.

We implement and examine the performance of the three types of ESC highlighted in the

previous section: perturbation ESC (P-ESC), least squares ESC (LS-ESC) and recursive least

squares ESC (RLS-ESC).

The simulation scenario is similar to the one used to determine the power convexity

earlier. The evaporator blower speed is initially set at an energy suboptimal 107PWM. From 0

to 3000 seconds, we use PI control to pull down the cabin temperature from 35°C to 21°C.

From 3000 seconds onwards, we turn on the ESC and allow it to determine the optimal set of

inputs. Note that for both LS-ESC and RLS-ESC, we need to initialize the controller with data

prior to activating the controller, as outlined in Chapter 3. In this case study, this is done by

slowly increasing the blower speed from 107 to 112 PWM from 3000 to 5000 seconds. At

95

5000 seconds, the ESC is started by activating the "enable_adj" step function seen in the figures

below.

Table 4.1 lists all simulation parameters used for the three different ESC controllers.

These values were chosen using the guidelines listed in the previous chapter along with trial

and error to achieve the best possible performance for each algorithm. Figures 4.7, 4.8 and 4.9

show the P-ESC, LS-ESC and RLS-ESC respectively implemented in Simulink. These

algorithms output a change in evaporator speed “ESC_adj” that is sent to the evaporator blower

Simulink block as highlighted Figure 4.10.

96

Table 4.1 ESC Parameters used in Simulation

ESC

METHOD
Parameter Variable Value

P
-E

S
C

High Pass Filter Cutoff Frequency HP 0.002

Low Pass Filter Cutoff Frequency LP 0.001

Integrator Gain k -0.05

Sinusoidal Dither Amplitude a 1

Sinusoidal Dither Frequency  0.002

R
L

S
-E

S
C

Forgetting Factor  0.997

Integrator Gain k -0.0006

Initialization Time Range iT 2000s

Initialization Input Range P 2

Persistent Excitation Signal Amplitude a 0.01

Persistent Excitation Signal Frequency  0.02

L
S

-E
S

C

Data Buffer Length T 1000s

Integrator Gain k -0.00063

Initialization Time Range iT 2000s

Initialization Input Range P 2

P
I

Proportional Gain pK 5

Integral Gain iK 2.5

97

Figure 4.7 P-ESC implemented in Simulink. The block receives the total system power

and outputs an adjustment in the blower speed in the direction of a decrease in power.

Figure 4.8 LS-ESC implemented in Simulink. The block receives the system power

consumption and the blower speed. These two quantities are each stored in a

corresponding data buffer which is used to generate a corresponding gradient value

using the least squares algorithm. The gradient is then scaled and integrated to generate

an evaporator speed adjustment used to minimize the power consumption.

98

Figure 4.9 The RLS algorithm implemented in Simulink. The algorithm receives the

current evaporator blower speed and system power consumption, and uses the RLS

algorithm to generate a corresponding gradient estimate that is scaled and integrated to

generate an adjustment to the blower speed.

Figure 4.10 The evaporator blower configuration in Simulink. The default speed is set

at an energy suboptimal 107PWM. When implementing P-ESC, we use the manual

switch to select the top case, which is a constant blower speed. However, when

implementing RLS/LS-ESC, we select the bottom case, which ramps the blower speed

from 107 to 112 PWM from 3000 to 5000 seconds. The ESC_adj tag is sent from the

respective ESC algorithm chosen for the simulation, and adjusts the blower speed

correspondingly to minimize the total power consumption.

99

4.3 Simulation Results

All three ESC algorithms successfully converged to the optimal blower speed (126-128

PWM) which minimizes the power consumption to roughly 523W. As expected, the RLS-

ESC/LS-ESC discovered the optimal blower speed fastest; both methods reached the optimal

blower speed in roughly 4000 seconds when including the 2000 seconds needed to initialize

the controller. On the other hand, P-ESC took 12000 seconds to reach the optimal blower

speed. Fig. 4.11 shows the blower speeds over time for each of the three algorithms. Fig. 4.12

shows the corresponding system power consumption over time, along with the power

consumption of the suboptimal baseline case (PI control with the blower speed fixed at

107PWM for all time). Fig. 4.13 depicts the compressor speeds for the three ESC algorithms,

as well as for the baseline case. Fig. 4.14 shows the cabin temperature over time for the three

ESC algorithms.

100

Figure 4.11 Blower speeds over time for the three ESC algorithms. All three algorithms

start from a suboptimal 107PWM and converge to the optimal blower speed, with the

RLS/LS-ESC algorithms converging faster than P-ESC. The small oscillations in the

blower speed generated by LS-ESC is a benign byproduct of the relatively long time

buffer length, which is ideal for dynamic systems with relatively long time constants.

101

Figure 4.12 The system power consumption over time for the three ESC cases, along

with the power consumption of the baseline case. All three ESC algorithms converge to

the minimal power consumption of 523W, while the suboptimal case yields a power

consumption of 553W.

102

Figure 4.13 The compressor speeds corresponding to the three ESC approaches and the

baseline case. All three ESC algorithms converge to the optimal compressor speed.

103

Figure 4.14 The cabin temperature over time once ESC is activated, along with the

baseline case. All approaches track the cabin temperature very well with minimal

deviations from the temperature setpoint.

The above results demonstrate the successful implementation of ESC. However, the

main purpose of ESC implementation in this case is to demonstate battery life extension. Fig.

4.15. shows the battery state of charge over time for the four cases, and Fig. 4.16 summarizes

the results by highlighting the battery run time for each of the four cases.

104

Figure 4.15 The battery state of charge over time for each of the four cases. The time it

takes for the battery to drain to 0% charge for the PI, P-ESC, and RLS/LS-ESC cases is

25,940s, 26,919s, and 27,158s resepectively. The P-ESC and RLS/LS-ESC algorithms

yield a 3.7% and 4.7% increase in run time respectively.

Figure 4.16 A bar plot depicting the runtime of the four cases in minutes. The P-ESC

runs for 16 minutes longer than the baseline case, while the RLS/LS-ESC cases run for

20 minutes longer than the baseline case. Again, this is a 3.7% and 4.7% increase in

runtime respectively.

432

448

452

420

425

430

435

440

445

450

455

PI P-ESC RLS-ESC/LS-ESC

Ti
m

e
(m

in
)

Simulated Battery Runtime

105

4.4 Summary and Next Steps

 Thus far, we have demonstrated the use of ESC algorithms to minimize the power

consumption of the simulated NITE system while maintaining the vehicle cabin temperature

at a constant value. Simulation results show a 4.7% and 3.7% increase in battery life using

RLS/LS-ESC and P-ESC respectively. These results validate the use of ESC to optimize VCS

and also validate the superior performance of RLS/LS-ESC over P-ESC. While RLS/LS-ESC

have virtually the same performance characteristics, RLS-ESC is much less computationally

intensive than LS-ESC, and is also generally easier for a user to tune. With these results in

hand, we now turn to the experimental system. Will these simulation results mirror ESC

performance on the experimental system? How robust are these algorithms to noise and

disturbances? What are the challenges of implementing these algorithms in LabVIEW instead

of in Simulink? We discuss all of these questions and more in the next section.

106

Chapter 5

Extremum Seeking Control on the Experimental

Integrated NITE System

In the previous chapter, we implemented ESC on the simulated integrated NITE

system. Results showed that the use of ESC modestly improved energy efficiency and extended

battery life. LS-ESC and RLS-ESC were the most effective at improving run time, with P-ESC

also demonstrating some power savings over the baseline case. Naturally, the next step is to

investigate whether these results predict ESC performance on the experimental integrated

system as well. However, experimental implementation is not as straightforward: there are a

number of fundamental differences between the simulated and experimental systems that need

to be considered. For instance, the simulated system was developed entirely in

MATLAB/Simulink while the experimental system interfaces with LabVIEW. Furthermore,

unlike the simulated system, the experimental system is subject to noise and external

disturbances which could affect controller performance. And lastly, we need to ensure that

industry operators can easily understand and operate the software. Thus, in this chapter, we

discuss the implementation of P-ESC, LS-ESC and RLS-ESC on the experimental system

using LabVIEW with an emphasis on developing robust and intuitive controllers.

5.1 ESC Development in LabVIEW

 ESC algorithm complexity, along with the large number of tunable parameters often

poses a significant barrier to adoption. To mitigate these factors, we developed an intuitive

front panel user interface so that industry practitioners who do not have prior ESC experience

can operate the controller effectively. The front panel can be seen in Fig. 5.1, and a detailed

description is given below.

107

Figure 5.1 The LabVIEW front panel developed for ESC implementation on the

physical system.

108

5.1.1 LabVIEW Front Panel Inputs

 The inputs are the values chosen by the operator. Starting from the top, we set the

desired cabin temperature set point. Below that, we select the desired control algorithm to use

(P-ESC, LS-ESC and RLS-ESC), or lack thereof (None), and also set the PI controller gains

used to regulate the cabin temperature. After determining which algorithm to use, we can now

input the chosen controller’s parameters.

P-ESC: The user determines the filter coefficients along with the dither characteristics

and ESC gain. Note that because LabVIEW is normally operated in discrete time, we need to

ensure the filter transfer function coefficients are that of a discrete, and not continuous transfer

function.

To go from a continuous to discrete function, use the c2d function in MATLAB and

specify the time step length along with the conversion method of choice. This thesis utilizes a

time step of 1 second along with a zero order hold approximation to obtain the discrete filter

coefficients.

LS-ESC: The user chooses the initialization time range length iT by setting its start

and end time, 2T and 3T respectively, along with the initialization input range P, data buffer

length and ESC gain.

RLS-ESC: Like with LS-ESC, the user sets the initialization time and input range.

Additionally, the user determines the ESC gain, forgetting factor and also chooses the initial

values of 0V and 0 . Setting 0V as the identity matrix and 0 as a vector of ones should be

sufficient because, if the initialization time and input range are selected well, then the

parameters should rapidly converge to the appropriate values prior to algorithm activation.

Finally, we finish by selecting the experiment end time.

5.1.2 LabVIEW Front Panel CAN Configuration

Here, the user selects the module interface through which CAN communication will

occur, as well as the specific messages to read or write. As mentioned in chapter 2, we utilize

the NI 9862 module to communicate with the NITE. In the figure, CAN1 refers to the module’s

109

interface in the LabVIEW software; select it to communicate with that module specifically.

CAN communication with the NITE is established by a document produced by Bergstrom

specifying the message identifiers along with their payloads. Here, we read the NITE’s

compressor speed, power consumption along with voltage and current, and write an override

CAN message to set the initial speed of its actuators (evaporator blower, compressor and

condenser fan) at the start of the experiment. As seen in the Fig. 5.1, there are a series of

numbers in the override CAN frame. According to the NITE CAN communication document,

the first number, 111 tells the NITE that this message will override its default component

speeds. The numbers 140, 40 and 70 are the user determined PWM speeds of the blower,

compressor and condenser fan respectively.

The LabVIEW block diagram takes in all of these signals and manipulates them

accordingly. In particular, the PI controller manipulates the compressor speed PWM and the

ESC manipulates the evaporator blower speed as was implemented in the previous chapter.

More detail on CAN communication and the specific LabVIEW code used can be found in

Appendix B.

5.1.3 LabVIEW Front Panel Outputs and Data

As seen in the above figure, the front panel displays a number of pertinent outputs to

the user. Starting from the top, we can read the elapsed experiment time, the system voltage,

current and power draw, the temperature at a number of different locations as well as the PID

adjustment signal, current evaporator blower speed and gradient estimates generated by

RLS/LS-ESC. Furthermore, output data is also represented graphically as seen in the above

figure, as well as in Fig. 5.2 below. Note that the battery chart seen above represents a

“fictitious battery” since the NITE unit is hooked up to a wall power supply. This fictitious

battery is based off of the energy capacity of the four Trojan AGM battery bank used by

industry practitioners to power the NITE. We calculate the total energy capacity of the batteries

assuming each battery supplies 80 amp hours of current at 12V, for a total energy capacity of

13,824,000 Joules. We approximate a power draw by continually subtracting the system power

consumption every second from this value until it reaches zero.

110

Figure 5.2 Additional graphs showing different temperature, pressure and component

states of the integrated NITE system.

111

5.2 Determining NITE Power Convexity

Similar to the procedure outlined in section 4.1 for the simulated NITE, we wish to

determine whether the NITE’s power consumption is convex with respect to its inputs for a

constant cabin temperature. We choose a similar scenario as before: we wish to minimize

power while maintaining a cabin temperature of 22.5°C with a cabin heat load of 500W. From

T = 0 to 3000s, we only use the PI controller to modulate the compressor speed to converge to

the desired temperature and we keep the evaporator fan speed fixed at a suboptimal value of

140 PWM. Once the cabin temperature reaches steady state, at T=3000s we start to slowly

ramp the blower speed up at a rate of roughly 0.002 PWM/sec until T=27000s, as seen in Fig.

5.3. As the blower speed increases, the compressor speed falls precipitously as also depicted

in Fig. 5.3. Like in simulation, the power consumption was found to be convex with respect to

the inputs. However, as Fig. 5.4. shows, the performance function here is much “steeper”; that

is, the power consumption decreases by almost 200W going from the least optimal blower

speed (530W at 140-145 PWM) to the most optimal blower speed (350-360W at 170-180

PWM). The simulated system, on the other hand, only showed a drop of roughly 30W between

its most optimal and suboptimal input combination. As mentioned in chapter 2, the discrepancy

between the simulated and experimental system is due to a lack of full model parameterization,

which prevented cross-validation. It is likely that the compressor by and large contributes most

to this discrepancy because it consumes the most power and was also not parameterized aside

from its volume owing to a lack of data on all of its states. Consequently, battery life extension

may be much more significant for the physical unit since there is a lot more room for power

savings. However, because VCS performance tends to vary from run to run, some variation in

the shape and characteristics of the performance function can be expected. Fig. 5.5 shows the

cabin temperature tracking the temperature set point well over the course of the experiment.

112

Figure 5.3 Component speeds over time. The compressor speed converges to roughly

25-30 PWM.

Figure 5.4 The NITE power consumption as a function of the blower speed. The

relationship is convex, enabling real time optimization of this system.

10
30
50
70
90

110
130
150
170
190

0 5000 10000 15000 20000 25000C
o

m
p

o
n

en
t

P
W

M
 (

0
-2

5
5

)

Time (s)

Component PWM vs. Time

Evaporator Blower PWM Compressor PWM

300

350

400

450

500

550

140 150 160 170 180 190

P
o

w
er

 (
W

)

Evaporator Blower PWM

NITE Power vs. Blower PWM

113

Figure 5.5 Cabin temperature over time. The temperature set point was tracked well

through the course of the experiment.

5.3 Implementing ESC on the Experimental System

With power convexity verified, we implement and analyze the performance of P-ESC,

LS-ESC and RLS-ESC. We use the same heat load and cabin temperature set-point as before.

The evaporator blower speed is again initially set at an energy suboptimal 140 PWM. For P-

ESC, we use PI control to regulate the cabin temperature for the first 3000 seconds, and activate

the ESC algorithm from 3000 seconds onwards and allow it to determine the optimal

combination of inputs. For LS-ESC/RLS-ESC, we follow the same procedure, except at 3000

seconds, we instead perform the initialization procedure for iT seconds and then activate the

ESC.

Table 5.1 lists all simulation parameters used for the three different ESC controllers.

These values were chosen based on guidelines listed in the previous chapter along with trial

and error to achieve the best possible performance. Note that the parameter values here are

somewhat different than in simulation due to different system characteristics and additional

factors affecting performance. For example, the PI gains used here are lower than those used

in simulation to improve algorithm robustness to noise: high gain values increase controller

21

21.5

22

22.5

23

23.5

24

0 5000 10000 15000 20000 25000

Te
m

p
er

at
u

re
 (

°C
)

Time (s)

Cabin Temperature vs. Time

Cabin Temperature Temperature Setpoint

114

reactivity to disturbances in cabin temperature which could then excite system dynamics and

interfere with ESC optimization. Note that disturbances and sensor noise induce a persistent

excitation in signals, removing the need for an external persistent excitation signal for RLS-

ESC.

Table 5.1 ESC Parameters used in Experimental Implementation

ESC

METHOD
Parameter Variable Value

P
-E

S
C

High Pass Filter Cutoff Frequency HP 0.0008

Low Pass Filter Cutoff Frequency LP 0.0008

Integrator Gain k -0.002

Sinusoidal Dither Amplitude a 2

Sinusoidal Dither Frequency  0.0008

R
L

S
-E

S
C

Forgetting Factor  0.9978

Integrator Gain k -0.002

Initialization Time Range iT 2000s

Initialization Input Range P 8

Persistent Excitation Signal Amplitude a N/A

Persistent Excitation Signal Frequency  N/A

L
S

-E
S

C

Data Buffer Length T 1000s

Integrator Gain k -0.0018

Initialization Time Range iT 2000s

Initialization Input Range P 8

P
I

Proportional Gain pK 1.5

Integral Gain iK 0.12

The LabVIEW code used to implement these algorithms can be found in Appendix B.

To account for variation in environmental conditions, we ran each ESC algorithm twice.

115

5.4 Experimental Results

Battery runtime results for the baseline and three ESC cases are shown in Table 5.2.

All three ESC algorithms significantly reduced system power consumption through

convergence to the optimal range of evaporator blower and compressor speeds. However, like

in simulation, RLS-ESC/LS-ESC discovered the optimal blower speed fastest, resulting in

larger increases in battery life (29.6%-34.6%) over P-ESC (22.7%-24.8%). RLS-ESC/LS-ESC

reached the optimal blower speed in approximately 3000-4000 seconds when including the

2000 seconds needed to initialize the controller. On the other hand, P-ESC took 10000-12000

seconds to reach the optimal blower speed. In terms of minutes of additional runtime, RLS-

ESC/LS-ESC added roughly 138-152 minutes of run time, while P-ESC added 103-109

minutes of runtime. Variations in results between runs for each controller were notable but

were not very significant. Fig. 5.6 depicts the average battery life increase from the three

algorithms graphically, and Fig. 5.7 illustrates the battery runtime for each algorithm for each

run.

Table 5.2 Battery runtime and percent increases over baseline for each algorithm.

P-ESC LS-ESC RLS-ESC

Run 1 Run 2 Run 1 Run 2 Run 1 Run 2

Baseline Runtime (min) 454 439 437 466 444 449

ESC Runtime (min) 557 548 589 604 589 601

Battery run time increase

(%) 22.7 24.8 34.6 29.6 32.7 33.8

116

Figure 5.6 Average percent increase in the battery runtime over each of the respective

baseline cases.

Figure 5.7 Battery runtime for each of the two runs performed for each algorithm,

along with the respective baseline runtimes.

117

5.4.1 Analysis of each Run

Figures 5.8 – 5.12 detail the battery charge, power draw, blower and compressor PWM,

cabin temperature and ambient temperature over the course of P-ESC run 1. As seen in the

figures below, prior to ESC activation, the initial blower speed is fixed at a suboptimal 140

PWM. PI control raises the compressor PWM to 95 to track the cabin temperature setpoint,

resulting in a baseline power draw of 507W. After ESC activation, the evaporator blower speed

increases to roughly 160-165 PWM in 10000 seconds, resulting in a corresponding drop in

compressor speed to 40-55 PWM and a new power consumption between 370-410W. Note

that these component speeds converge slightly outside the optimal range of 170-180 PWM.

One possible reason for this is that the slow gradient estimation intrinsic to P-ESC may make

it more likely for the controller to “get stuck” once getting closer to the optimal region, where

the gradient is "flatter". The cabin temperature set point is tracked very well, with small

fluctuations no greater than 0.25 C  . The ambient temperature in the room fluctuated

between 24 24.5C C   .

Figure 5.8 Battery charge vs. time for the first P-ESC run and its baseline case.

118

Figure 5.9 Power vs. time for the first P-ESC run.

Figure 5.10 Component PWM vs. time for the first P-ESC run.

20

40

60

80

100

120

140

160

180

0 5000 10000 15000 20000 25000 30000

C
o

m
p

o
n

en
t

P
W

M
 (

0
-2

5
5

)

Time (s)

Component PWM vs. Time, P-ESC Run 1

Evaporator PWM Compressor PWM

119

Figure 5.11 Cabin temperature vs. time for the first P-ESC run.

Figure 5.12 Ambient temperature vs. time for the first P-ESC run.

Figures 5.13 – 5.17 detail the battery charge, power draw, blower and compressor

PWM, cabin temperature and ambient temperature over the course of the second P-ESC run.

Like before, prior to ESC activation, the initial blower speed is fixed at a suboptimal 140 PWM.

PI control raises the compressor PWM to 100 to track the cabin temperature set point, resulting

21

21.5

22

22.5

23

23.5

24

0 5000 10000 15000 20000 25000 30000

Te
m

p
er

at
u

re
 (

°C
)

Time (s)

Cabin Temp vs. Time, P-ESC Run 1

Cabin Temperature Temperature Setpoint

23

23.5

24

24.5

25

25.5

26

0 5000 10000 15000 20000 25000 30000

Te
m

p
er

at
u

re
 (

°C
)

Time (s)

Ambient Temp vs. Time, P-ESC Run 1

120

in a baseline power draw of 525W. After the ESC is activated, the evaporator blower speed

increases to roughly 160-165 PWM in 10000 seconds, and the compressor speed decreases to

40-60 PWM resulting in a new power consumption between 380-420W. Again, the controller

showed some difficulty reaching the most optimal region of the performance function, and

even moved outside of the optimal region towards the end. This may be due to the reasons

listed previously, along with errors estimating the gradient due to disturbances. Nevertheless,

the cabin temperature set point is tracked very well, with small fluctuations no greater than

0.25 C  . The ambient temperature in the room fluctuated between 24 24.5C C   .

Figure 5.13 Battery charge vs. time for the second P-ESC run and its baseline case.

121

Figure 5.14 Power vs. time for the second P-ESC run.

Figure 5.15 Component PWM vs. time for the second P-ESC run.

122

Figure 5.16 Cabin temperature vs. time for the second P-ESC run.

Figure 5.17 Ambient temperature vs. time for the second P-ESC run.

123

Figures 5.18 – 5.22 show the battery charge, power draw, blower and compressor

PWM, cabin temperature and ambient temperature over the course of the first LS-ESC run. As

before, the initial blower speed is fixed at a suboptimal 140 PWM for 3000 seconds. PI control

raises the compressor PWM to 107 to track the cabin temperature set point, resulting in a

baseline power draw of 527W. From 3000 to 5000 seconds, the blower speed is slowly

increased to initialize the controller with performance data, resulting in a decrease in

compressor speed and power. After the ESC is activated at 5000 seconds, the evaporator

blower speed increases to an energy optimal 165-180 PWM in 3000 seconds, resulting in a

drop in compressor speed to 25-35 PWM and a new power consumption between 350-370W.

Due to faster gradient estimation, the LS-ESC was able to converge to the true function

minimum more rapidly than P-ESC. One interesting feature, however, was the increase in

fluctuations in the compressor speed, blower speed and the cabin temperature especially, which

increased to 0.5 C  . This may be a result of the large data buffer length used, which may

result in the controller having more “inertia”, causing more oscillatory behavior around the

performance function minimum. Decreasing the data buffer length increases susceptibility to

noise and disturbances however, so this is a tradeoff to be balanced.

Figure 5.18 Battery charge vs. time for the first LS-ESC run and its baseline case.

124

Figure 5.19 Power vs. time for the first LS-ESC run.

Figure 5.20 Component PWM vs. time for the first LS-ESC run.

125

Figure 5.21 Cabin temperature vs. time for the first LS-ESC run.

Figure 5.22 Ambient temperature vs. time for the first LS-ESC run.

21

21.5

22

22.5

23

23.5

24

0 5000 10000 15000 20000 25000 30000 35000

Te
m

p
er

at
u

re
 (

°C
)

Time (s)

Cabin Temperature vs. Time, LS-ESC Run 1

Cabin Temperature Temperature Setpoint

22

22.5

23

23.5

24

24.5

25

25.5

26

0 5000 10000 15000 20000 25000 30000 35000

Te
m

p
er

at
u

re
 (

°C
)

Time (s)

Ambient Temperature vs. Time, LS-ESC Run 1

126

Figures 5.23 – 5.27 depict the battery charge, power draw, blower and compressor

PWM, cabin temperature and ambient temperature for LS-ESC run 2. This time, the baseline

power consumption was 497W with a compressor speed between 80-90 PWM. Like before,

after the ESC is activated, the evaporator blower speed increases to 160-175 PWM in 3000

seconds, resulting in a drop in compressor speed to 25-40 PWM and a new power consumption

between 350-370W. Interestingly, there were less oscillations this run. This may indicate that

these oscillations are triggered by external disturbances or other transient factors. Furthermore,

there were some disturbances in the ambient temperature initially, flattening out after a few

thousand seconds.

Figure 5.23 Battery charge vs. time for the second LS-ESC run and its baseline case.

127

Figure 5.24 Power vs. time for the second LS-ESC run.

Figure 5.25 Component PWM vs. time for the second LS-ESC run.

128

Figure 5.26 Cabin temperature vs. time for the second LS-ESC run.

Figure 5.27 Ambient temperature vs. time for the second LS-ESC run.

21

21.5

22

22.5

23

23.5

24

0 5000 10000 15000 20000 25000 30000 35000

Te
m

p
er

at
u

re
 (

°C
)

Time (s)

Cabin Temperature vs. Time, LS-ESC Run 2

Cabin Temp Temp Setpoint

129

Figures 5.28 – 5.32 show the battery charge, power draw, blower and compressor

PWM, cabin temperature and ambient temperature for RLS-ESC run 1. The baseline power

consumption was 525W with a compressor speed around 105 PWM. Like for LS-ESC, we

ramp the evaporator blower speed from 3000 to 5000 seconds and activate the ESC algorithm

after. The evaporator blower speed quickly increases to roughly 180-190 PWM before settling

around 175 PWM. This slight overshoot is a result of a large forgetting factor which improves

sensitivity to noise at the expense of a slightly less accurate gradient estimate. The power

consumption drops to 380W in roughly 3000 seconds and eventually settles around 350W,

while the compressor speed drops to 35 PWM. Note that the plots generally look “smoother”

and less oscillatory than LS-ESC. This is because RLS-ESC applies an exponentially decaying

filter to all past performance data as opposed to LS-ESC which uses a fixed moving window

of T seconds of data. The only exceptions are some oscillations evident in the cabin

temperature and component speeds around 10500 and 27000 seconds. This may be the result

of some disturbances. Other than that, the cabin temperature and ambient temperature behave

well.

Figure 5.28 Battery charge vs. time for the first RLS-ESC run and its baseline case.

0

20

40

60

80

100

0 5000 10000 15000 20000 25000 30000 35000

B
at

te
ry

 C
h

ar
ge

 (
%

)

Time (s)

Battery Percentage vs. Time, RLS-ESC Run 1

RLS-ESC Baseline (PI)

130

Figure 5.29 Power vs. time for the first RLS-ESC run.

Figure 5.30 Component PWM vs. time for the first RLS-ESC run.

131

Figure 5.31 Cabin temperature vs. time for the first RLS-ESC run.

Figure 5.32 Ambient temperature vs. time for the first RLS-ESC run.

132

Figures 5.33 – 5.37 show the battery charge, power draw, blower and compressor

PWM, cabin temperature and ambient temperature for RLS-ESC run 2. This time, the baseline

power consumption was 515W with a compressor speed between 90-95 PWM. Like before,

after ESC is activated, the evaporator blower speed increases quickly to 180-185 PWM, before

settling to a speed around 160-165 PWM. The compressor speed drops to around 30 PWM and

the power consumption drops to 330-350W over time. This time though, the cabin temperature

showed more oscillatory behavior, although not to the extent seen in LS-ESC. The ambient

temperature remained relatively constant through the duration of the experiment.

Figure 5.33 Battery charge vs. time for the second RLS-ESC run and its baseline case.

133

Figure 5.34 Power vs. time for the second RLS-ESC run.

Figure 5.35 Component PWM vs. time for the second RLS-ESC run.

134

Figure 5.36 Cabin temperature vs. time for the second RLS-ESC run.

Figure 5.37 Ambient temperature vs. time for the second RLS-ESC run.

135

5.5 Concluding Remarks

 By applying ESC to the experimental system using LabVIEW, we achieved significant

reductions in power corresponding with a substantial increase in battery life. All three ESC

algorithms were successful in minimizing system power while meeting temperature objectives,

with LS-ESC and RLS-ESC demonstrating superior performance over P-ESC. When

comparing the performance between these two algorithms, both algorithms extended the

battery life by similar amounts amount; however, RLS-ESC tends to induce less oscillatory

behavior in the actuator speeds. Therefore, we recommend the use of RLS-ESC when operating

the NITE. The LabVIEW interface presented in this chapter is intuitive and easy to read, and

tuning parameters is relatively straightforward for an industry practitioner.

136

Chapter 6

Conclusion

6.1 Thesis Summary and Contributions

This thesis examined the use of ESC, a real time model free optimization method, to

minimize the power consumption of a battery powered vehicle VCS. To that end, we developed

a model of an integrated VCS in MATLAB/Simulink consisting of a VCS, battery pack,

auxiliary fans and a vehicle cabin. In particular, we present a detailed derivation of the vehicle

cabin model as it was specifically developed for this thesis. We then presented an open-loop

validation of the cabin model based on energy conservation principles along with some limited

validation against available experimental data. Next, we detailed the development of the

integrated experimental system centered around the NITE, a no-idle battery powered VCS unit

developed by Bergstrom. Basic closed loop validation and PI control on the experimental and

simulated system was successfully performed. The latter half of this thesis focused on the

theory behind ESC and its applications to VCS. We presented a thorough derivation and

analysis of three different ESC algorithms and examined their respective tradeoffs. We then

implemented ESC on the simulated and experimental integrated unit and achieved significant

improvements in battery life.

This thesis yields two main contributions. First, to the author’s knowledge, this thesis

represents the first application of ESC on battery powered VCS. Second, we developed an

intuitive user interface for industry operators to easy apply these algorithms to their systems.

6.2 Future Work

There are a number of opportunities for future work. First, there is much room to

improve the models used in this thesis. For the cabin model, a number of parameters such as

the vehicle wall thicknesses and material properties are currently hardcoded into the model and

137

could be parameterized. Secondly, it would be nice to have access to a physical vehicle cabin

as part of an integrated experimental system instead of a generic enclosed space which was

built for this thesis. Having access to a cabin would also be useful when performing

experimental validation of the cabin model in order to ensure vehicle dimensions and material

properties are as accurate as possible. Secondly, there was a lack of cross-validation between

the simulated and physical integrated NITE system which was a result of the difficulties

parameterizing simulated VCS components. Future work should address this gap in order to

validate the efficacy of the models and have better predictions of ESC performance.

There is also room for improvement when it comes to ESC implementation. This thesis

only considers single-variable extremum seeking, modulating only the evaporator blower

speed. However, the condenser fan speed, an important actuator, was left untouched. This

means we may not be optimizing the system as well as it could have been. Future work should

therefore examine the use of multivariable extremum seeking schemes.

Lastly, all experimental testing was done in a room with mildly varying ambient

conditions. In practical application, the NITE and cabin experience more rapidly changing

environmental loads and disturbances. In particular, the NITE condenser fan is normally

exposed to highly variable ambient conditions due to it being housed outside, whereas we

simply shone a heat lamp on it to approximate an ambient heat load. Because ESC is a quasi-

steady state optimization algorithm, it could be significantly impacted by these variations and

disturbances. Future work should examine ESC robustness and effectiveness with the NITE

and cabin being subjected to more variable, real-world conditions.

138

References

[1] Blackburn Energy, “Could your Truck be Idling Illegally?” [Online]. Available:

https://blackburnenergy.com/idling_against_the_law

[2] D. J. Burns and C. Laughman, “Extremum Seeking Control for Energy Optimization

of Vapor Compression Systems,” pp. 1–7, 2012.

[3] M Leblanc. Sur l'électrification des chemins de fer au moyen de courants alternatifs

de fréquence élevée. Revue Générale de l'Electricité, 1922.

[4] M. Krstić and H.-H. Wang, “Stability of extremum seeking feedback for general

nonlinear dynamic systems,” Automatica, vol. 36, no. 4, pp. 595–601, 2000.

[5] R. Leyva, C. Alonso, I. Queinnec, a Cid-Pastor, D. Lagrange, and L. Martinez-

Salamero, “MPPT of photovoltaic systems using extremum-seeking control,” IEEE

Trans. Aerosp. Electron. Syst., vol. 42, no. 1, pp. 249–258, 2006.

[6] M. Guay, D. Dochain, and M. Perrier, “Adaptive extremum seeking control of

continuous stirred tank bioreactors with unknown growth kinetics,” Automatica, vol.

40, no. 5, pp. 881–888, 2004.

[7] J. Creaby, Y. Li, and J. E. Seem, “Maximizing Wind Turbine Energy Capture using

Multivariable Extremum Seeking Control,” Wind Eng., vol. 33, pp. 361–387, 2009.

[8] Trojan Battery, “Battery Specifications.” [Online]. Available:

http://www.trojanbattery.com/product/31-agm/

[9] D. J. Burns, W. K. Weiss, and M. Guay, “Realtime setpoint optimization with time-

varying extremum seeking for vapor compression systems,” Proc. Am. Control Conf.,

vol. 2015–July, pp. 974–979, 2015.

[10] B. G. B. Hunnekens, M. A. M. Haring, N. Van De Wouw, and H. Nijmeijer, “A

dither-free extremum-seeking control approach using 1st-order least-squares fits for

gradient estimation,” Proc. IEEE Conf. Decis. Control, vol. 2015–February, no.

February, pp. 2679–2684, 2014.

139

[11] Bergstrom Inc., “NITE SSI.” [Online]. Available: https://us.bergstrominc.com/nite-

ssi/

[12] A. Alleyne, “THERMOSYS 4 Toolbox,” University of Illinois at Urbana-Champaign,

no. March, 2012. [Online]. Available: http://arg.mechse.illinois.edu/thermosys

[13] B. P. Rasmussen and A. G. Alleyne, “Dynamic modeling and advanced control of air

conditioning and refrigeration systems,” Ph.D. dissertation, 2006.

[14] D. Marcos, F. J. Pino, C. Bordons, and J. J. Guerra, “The development and validation

of a thermal model for the cabin of a vehicle,” Appl. Therm. Eng., vol. 66, no. 1–2,

pp. 646–656, 2014.

[15] B. Fletcher and C. Saunders, “Air change in stationary and moving motor vehicles,”

J. Hazard. Mater., vol. 38, no. 2, pp. 243–256, 1994.

[16] F. P. Incropera, T. L. Bergman, A. S. Lavine, and D. P. DeWitt, Fundamentals of

Heat and Mass Transfer. 2011.

[17] B. D. Keating, “Model-Free Real-Time Optimization for Vapor Compression

Systems,” 2017.

[18] I. Bayraktar, “Computational simulation methods for vehicle thermal management,”

Appl. Therm. Eng., vol. 36, no. 1, pp. 325–329, 2012.

[19] S. Aigarni and D. Nutter, “Survey of sky effective temperature models applicable to

building envelope radiant heat transfer,” ASHRAE Trans., vol. 121, no. October, pp.

351–363, 2015.

[20] M. A. Fayazbakhsh and M. Bahrami, “Comprehensive Modeling of Vehicle Air

Conditioning Loads Using Heat Balance Method,” no. x, 2013.

[21] AVMA, “Pets in Vehicles.” [Online].

https://www.avma.org/public/PetCare/Pages/pets-in-vehicles.aspx

[22] J. P. Koeln and A. G. Alleyne, “Optimal subcooling in vapor compression systems

via extremum seeking control: Theory and experiments,” Int. J. Refrig., vol. 43, pp.

14–25, 2014.

[23] Otexts, “7.3.1 Recursive Least Squares.” [Online]. Available:

https://www.otexts.org/1582

140

[24] B. Hu, Y. Li, F. Cao, and Z. Xing, “Extremum seeking control of COP optimization

for air-source transcritical CO2heat pump water heater system,” Appl. Energy, vol.

147, pp. 361–372, 2015.

[25] X. Li, Y. Li, J. E. Seem, and P. Li, “Dynamic modeling and self-optimizing operation

of chilled water systems using extremum seeking control,” Energy Build., vol. 58, pp.

172–182, 2013.

[26] L. Dong, Y. Li, B. Mu, and Y. Xiao, “Self-optimizing control of air-source heat pump

with multivariable extremum seeking,” Appl. Therm. Eng., vol. 84, pp. 180–195,

2015.

[27] Y. Xiao, Y. Li, and J. E. Seem, “Multi-variable Extremum Seeking Control for Mini-

split Air-conditioning System,” Int. Refrig. Air Cond. Conf., 2014.

[28] H. Pangborn, “Dynamic Modeling, Validation, and Control for Vapor Compression

Systems,” 2015.

[29] Mathworks, “Battery.” [Online]. Available:

https://www.mathworks.com/help/physmod/sps/powersys/ref/battery.html

[30] International Trucks, “Prostar.” [Online]. Available:

https://www.internationaltrucks.com/trucks/prostar

[31] G. Gelbert, J. P. Moeck, C. O. Paschereit, and R. King, “Advanced algorithms for

gradient estimation in one- and two-parameter extremum seeking controllers,” J.

Process Control, vol. 22, no. 4, pp. 700–709, 2012.

[32] M. Guay and D. Dochain, “A time-varying extremum-seeking control approach,”

Automatica, vol. 51, pp. 356–363, 2015.

141

Appendix A

Simulink Diagrams and Code

A.1 Cabin Model

 A.1.1 Cabin Model Diagrams

Figure A.1 Initialization of cabin model parameters

142

Figure A.2 Cabin Model mask parameters

143

Figure A.3 Underlying Simulink structure underneath cabin model mask.

A.1.2 Cabin Model Code

function

[Q_loads,Tdot_air,Tdot_ws,Tdot_sw,Tdot_roof,Tdot_wall,Tdot_base,T_evap_in]

= Room(v_amb,V_solar,T_air,T_ws,T_sw,...
T_roof, T_wall,T_base,T_sky,H_solar,Number_occupants, Emissivity_body,

Emissivity_window,...
Transmittance_window,Volume_cabin, l_ws, w_ws, t_ws, k_ws, a_ws, l_sw,

w_sw, t_sw, k_sw, a_sw,l_roof,w_roof,...
l_wall, w_wall,Q_ref,me_supply, Absorptivity_body, Absorptivity_window,

T_amb,recirculation,A_base, C_base,abs_base)

144

%%%%%%%%%%%%%%%%AIR PROPERTIES %%%%%%%%%%%%%%%%%%%%%%
AirProp_T = [-40,-20,0,20,40,60];
AirProp_ka = [-73.15 -23.15 26.85 76.85 126.85];
AirProp_rho = [1.516,1.395,1.293,1.204,1.127,1.059];
AirProp_v= [7.59,11.44,15.89,20.92,26.41]*(1e-6);
AirProp_k = [18.1 22.3 26.3 30 33.8]*(1e-3);
AirProp_a = [10.3 15.9 22.5 29.9 38.3]*(1e-6);
AirProp_mu = [132.5 159.6 184.6 208.2 230.1]*(1e-7);
rho_air = interp1(AirProp_T, AirProp_rho, T_air);
a = interp1(AirProp_ka, AirProp_a, T_air);
k_air = interp1(AirProp_ka, AirProp_k, T_air) ;
v = interp1(AirProp_ka, AirProp_v, T_air);
mu = interp1(AirProp_ka,AirProp_mu, T_amb) ;

%internal cabin air properties
Volume_air = Volume_cabin - Number_occupants*0.071;%0.071 = volume of 160

pound human (m^3)
m_air = Volume_air*rho_air; %mass of the air
cp_air = 1007; %J/kg*K
Pr = 0.707; %Prandtl Number

%vehicle dimensions
A_roof = l_roof*w_roof;
A_sw = l_sw*w_sw;
A_ws = l_ws*w_ws;
A_wall = l_wall*w_wall;
sigma = 5.67*10^-8; %stefan-boltzmann constant

%%%
%Calculate Conductive Windshield Heat Load%
%%%

dx = t_ws/4; %discretize windshield width into 4 nodes.
q_ws = H_solar*Absorptivity_window; %incident absorbed solar radiation
Re_wse = rho_air*v_amb*l_ws/mu; %Reynolds number of windshield
Tf_wse = (T_amb + T_ws(1))/2 +273.15; %exterior film temperature
l_c_ws = A_ws/(2*l_ws + 2*w_ws); %characteristic length A/P
Ra_wse = abs(9.81*(1/Tf_wse)*(T_amb - T_ws(1))*(l_c_ws).^3/(v*a));

%rayleigh number

%calculate external heat transfer coefficient
if Re_wse == 0

 Nu_wse = (0.825 + (0.387*Ra_wse.^(1/6))/(1 +

(0.492/Pr)^(9/16)).^(8/27)).^2;
 h_wse = Nu_wse*(k_air/l_ws); %(no wind) external free hxfr coefficient

elseif Re_wse < 5*10^5

 Nu_wse = 0.664*Re_wse.^(1/2)*Pr.^(1/3);

145

 h_wse = Nu_wse*(k_air/l_ws); %external laminar hxfr coefficient

else

 Nu_wse = (0.037*Re_wse.^(4/5) - 871)*Pr.^(1/3);
 h_wse = Nu_wse*(k_air/l_ws); %external turbulent/transition hxfr

coefficient

end

%Calculate inside windshield heat transfer coefficient
Tf_ws = (T_ws(5) + T_air)/2 + 273.15; %Kelvin
Ra_ws = abs(9.81*(1/Tf_ws)*(T_ws(5) - T_air)*(l_c_ws).^3/(v*a)) ;%interior

rayleigh number
Nu_ws = (0.825 + (0.387*Ra_ws.^(1/6))/(1 + (0.492/Pr)^(9/16)).^(8/27)).^2;
h_ws = Nu_ws*(k_air/l_ws) ;%free convection hxfr coefficient for

windshield interior

%Finite Element Discretization of Windshield Thickness
Tdot_ws = zeros(1,5);
Tdot_ws(1) = (2*q_ws*a_ws)/(k_ws*dx) + (2*a_ws*h_wse/(k_ws*dx))*(T_amb-

T_ws(1)) + (2*a_ws/dx)*(T_ws(2)-T_ws(1)) +...
(2*a_ws*Emissivity_window*sigma/(k_ws*dx))*((T_sky+273.15)^4-

(T_ws(1)+273.15)^4);
Tdot_ws(2) = (a_ws/(dx^2))*(T_ws(1)-T_ws(2)) + (a_ws/(dx^2))*(T_ws(3)-

T_ws(2));
Tdot_ws(3) = (a_ws/(dx^2))*(T_ws(2)-T_ws(3)) + (a_ws/(dx^2))*(T_ws(4)-

T_ws(3));
Tdot_ws(4)= (a_ws/(dx^2))*(T_ws(3)-T_ws(4)) + (a_ws/(dx^2))*(T_ws(5)-

T_ws(4));
Tdot_ws(5) = (2*a_ws*h_ws/(k_ws*dx))*(T_air-T_ws(5)) +

(2*a_ws)/(dx^2)*(T_ws(4)-T_ws(5));
Q_ws = h_ws*A_ws*(T_ws(5) - T_air); %conductive heat transfer through

windshield

%%%
%Calculate Conductive Side Window Heat Load%
%%%

dx = t_sw/4;
q_sw = H_solar*Absorptivity_window;
Re_swe = rho_air*v_amb*l_sw/mu;
l_c_sw = A_sw/(2*l_sw + 2*w_sw); %characteristic length A/P

if Re_swe == 0

 Tf_swe = (T_sw(1)+T_amb)/2 + 273.15; %film temperature
 Ra_swe = abs(9.81*(1/Tf_swe)*(T_sw(1) - T_amb)*(l_c_sw).^3/(v*a));

%rayleigh number

146

 Nu_swe = (0.825 + (0.387*Ra_swe.^(1/6))/(1 +

(0.492/Pr)^(9/16)).^(8/27)).^2;
 h_swe = Nu_swe*(k_air/l_sw);

elseif Re_swe < 5*10^5

 Nu_swe = 0.664*Re_swe.^(1/2)*Pr.^(1/3);
 h_swe = Nu_swe*(k_air/l_sw) ;%external laminar hxfr coefficient

else
 Nu_swe = (0.037*Re_swe.^(4/5) - 871)*Pr.^(1/3);
 h_swe = Nu_swe*(k_air/l_sw) ;%external turbulent/transition hxfr

coefficient

end

%include inner side window condition
Tf_sw = (T_sw(5) + T_air)/2 + 273.15; %Kelvin
Ra_sw = abs(9.81*(1/Tf_sw)*(T_sw(5) - T_air)*(l_c_sw).^3/(v*a)) ;%interior

rayleigh number
Nu_sw = (0.825 + (0.387*Ra_sw.^(1/6))/(1 + (0.492/Pr)^(9/16)).^(8/27)).^2;
h_sw = Nu_sw*(k_air/w_sw) ;%free convection hxfr coefficient for

windshield interior

Tdot_sw = zeros(1,5);
Tdot_sw(1) = (2*q_sw*a_sw)/(k_sw*dx)+(2*a_sw*h_swe/(k_sw*dx))*(T_amb-

T_sw(1)) + (2*a_sw/dx)*(T_sw(2)-T_sw(1)) +

(2*a_sw*Emissivity_window*sigma/(k_sw*dx))*((T_sky+273.15)^4-

(T_sw(1)+273.15)^4);
Tdot_sw(2) = (a_sw/(dx^2))*(T_sw(1)-T_sw(2)) + (a_sw/(dx^2))*(T_sw(3)-

T_sw(2));
Tdot_sw(3) = (a_sw/(dx^2))*(T_sw(2)-T_sw(3)) + (a_sw/(dx^2))*(T_sw(4)-

T_sw(3));
Tdot_sw(4)= (a_sw/(dx^2))*(T_sw(3)-T_sw(4)) + (a_sw/(dx^2))*(T_sw(5)-

T_sw(4));
Tdot_sw(5) = (2*a_sw*h_sw/(k_sw*dx))*(T_air-T_sw(5)) +

(2*a_sw)/(dx^2)*(T_sw(4)-T_sw(5));
Q_sw = h_sw*A_sw*(T_sw(5) - T_air); %conductive heat transfer through

windshield

%%%
%Calculate Conductive Roof Heat Load%
%%%

q_roof = V_solar*Absorptivity_body;
l_c_roof = A_roof/(2*l_roof + 2*w_roof); %characteristic length A/P
Tf_ceil = (T_air + T_roof(1))/2 + 273.15; %ceiling film temp (Kelvin)
Re_roof = rho_air*v_amb*l_roof/mu; %reynolds number
Ra_ceil = abs((9.81*(1/Tf_ceil)*(T_roof(5) - T_air)*(l_c_roof).^3)/(v*a));

if Re_roof == 0

147

 Tf_roof = (T_amb + T_roof(1))/2 + 273.15; %roof film temperature

(Kelvin)
 Ra_roof = abs((9.81*(1/Tf_roof)*(T_amb -

T_roof(1))*(l_c_roof).^3)/(v*a)); %rayleigh number for roof

 if T_roof(1) > T_amb

 if Ra_roof < 10^7

 Nu_roof = 0.54*Ra_roof^(1/4);
 h_roof = Nu_roof*(k_air/l_c_roof); %free convection hxfr

coefficient (laminar)

 else

 Nu_roof = 0.15*Ra_roof^(1/3);
 h_roof = Nu_roof*(k_air/l_c_roof); %free convection hxfr

coefficient (turbulent)

 end

 else

 Nu_roof = 0.52*Ra_roof^(1/5);
 h_roof = Nu_roof*(k_air/l_c_roof); %free convection hxfr

coefficient

 end

elseif Re_roof < 5*10^5

 Nu_roof = 0.664*Re_roof.^(1/2)*Pr.^(1/3);
 h_roof = Nu_roof*(k_air/l_roof); %external laminar hxfr coefficient

else

 Nu_roof = (0.037*Re_roof.^(4/5) - 871)*Pr.^(1/3);
 h_roof = Nu_roof*(k_air/l_roof); %external turbulent/transition hxfr

coefficient

end
%inner ceiling heat transfer coefficient

if T_roof(5) > T_air

 Nu_ceil = 0.52*Ra_ceil^(1/5);
 h_ceil = Nu_ceil*(k_air/l_c_roof) ;

 else

148

 if Ra_ceil < 10^7

 Nu_ceil = 0.54*Ra_ceil^(1/4);
 h_ceil = Nu_ceil*(k_air/l_c_roof) ;

 else

 Nu_ceil = 0.15*Ra_ceil^(1/3);
 h_ceil = Nu_ceil*(k_air/l_c_roof) ;

 end

end

a_steel = 3.954e-6;
k_steel = 14.9;
a_cotton = 2.76e-8;
k_cotton = 0.06;
dx = 5e-4/1.5;
dx1 = 1e-4;
dx2 = 5e-3/1.5;

Tdot_roof = zeros(1,5);
Tdot_roof(1) =

(2*q_roof*a_steel)/(k_steel*dx)+(2*a_steel*h_roof/(k_steel*dx))*(T_amb-

T_roof(1)) + (2*a_steel/dx)*(T_roof(2)-T_roof(1)) +

(2*a_steel*Emissivity_body*sigma/(k_steel*dx))*((T_sky+273.15)^4-

(T_roof(1)+273.15)^4);
Tdot_roof(2) = (a_steel/(dx^2))*(T_roof(1)-T_roof(2)) +

(a_steel/(dx^2))*(T_roof(3)-T_roof(2));
Tdot_roof(3) = (a/(dx1^2))*(T_roof(2)-T_roof(3)) + (a/(dx1^2))*(T_roof(4)-

T_roof(3));
Tdot_roof(4)= (a_cotton/(dx2^2))*(T_roof(3)-T_roof(4)) +

(a_cotton/(dx2^2))*(T_roof(5)-T_roof(4));
Tdot_roof(5) = (2*a_cotton*h_ceil/(k_cotton*dx2))*(T_air-T_roof(5)) +

(2*a_cotton)/(dx2^2)*(T_roof(4)-T_roof(5));

Q_roof = h_ceil*A_roof*(T_roof(5)-T_air);

%%%
%Calculate Conductive Vehicle Side Walls Heat Load%
%%%

q_wall = H_solar*Absorptivity_body;
Re_walle = rho_air*v_amb*l_wall/mu; %Reynolds number of sides
Tf_walle = (T_amb + T_wall(1))/2 +273.15; %exterior film temperature
l_c_wall = A_wall/(2*l_wall + 2*w_wall); %characteristic length A/P
Ra_walle = abs(9.81*(1/Tf_walle)*(T_amb - T_wall(1))*(l_c_wall).^3/(v*a));

%rayleigh number

149

%Calculate outer side wall condition

if Re_walle == 0 %free convection

 Nu_walle = (0.825 + (0.387*Ra_walle.^(1/6))/(1 +

(0.492/Pr)^(9/16)).^(8/27)).^2;
 h_walle = Nu_walle*(k_air/l_wall);

elseif Re_walle < 5*10^5 %laminar flow

 Nu_walle = 0.664*Re_walle.^(1/2)*Pr.^(1/3);
 h_walle = Nu_walle*(k_air/l_wall); %external laminar hxfr coefficient

else %turbulent flow

 Nu_walle = (0.037*Re_walle.^(4/5) - 871)*Pr.^(1/3);
 h_walle = Nu_walle*(k_air/l_wall); %external turbulent/transition hxfr

coefficient

end

%include inner side wall condition
Tf_wall = (T_wall(5) + T_air)/2 + 273.15; %Kelvin
Ra_wall = abs(9.81*(1/Tf_wall)*(T_wall(5) - T_air)*(l_c_wall).^3/(v*a))

;%interior rayleigh number
Nu_wall = (0.825 + (0.387*Ra_wall.^(1/6))/(1 +

(0.492/Pr)^(9/16)).^(8/27)).^2;
h_wall = Nu_wall*(k_air/w_wall) ;%free convection hxfr coefficient for

side wall interior

%Finite element Method: Outer surface=1, Inner surface=5
Tdot_wall = zeros(1,5);
Tdot_wall(1) =

(2*q_wall*a_steel)/(k_steel*dx)+(2*a_steel*h_walle/(k_steel*dx))*(T_amb-

T_wall(1)) + ...
(2*a_steel/dx)*(T_wall(2)-T_wall(1)) +

(2*a_steel*Emissivity_body*sigma/(k_steel*dx))*((T_sky+273.15)^4-

(T_wall(1)+273.15)^4);
Tdot_wall(2) = (a_steel/(dx^2))*(T_wall(1)-T_wall(2)) +

(a_steel/(dx^2))*(T_wall(3)-T_wall(2));
Tdot_wall(3) = (a/(dx1^2))*(T_wall(2)-T_wall(3)) + (a/(dx1^2))*(T_wall(4)-

T_wall(3));
Tdot_wall(4)= (a_cotton/(dx2^2))*(T_wall(3)-T_wall(4)) +

(a_cotton/(dx2^2))*(T_wall(5)-T_wall(4));
Tdot_wall(5) = (2*a_cotton*h_wall/(k_cotton*dx2))*(T_air-T_wall(5)) +

(2*a_cotton)/(dx2^2)*(T_wall(4)-T_wall(5));

Q_wall = h_wall*A_wall*(T_wall(5)-T_air);

150

%%
%%% Air flow to the evaporator inlet %%%
%%

%Assuming Mass flow is set by evaporator block and not initialized here.
mdot_return = (recirculation/100)*me_supply; %recirculated room air

through the evaporator. (kg/s)
mdot_amb = (100-recirculation)/100*me_supply; %fresh air pulled through

evaporator.
T_evap_in = (T_amb*mdot_amb + T_air*mdot_return)/(mdot_amb + mdot_return);

%Temperature of air @evaporator inlet.

%%
%%% Vehicle Base Heat load %%%
%%

 l_c_base = sqrt(A_base); %assuming the base is a square.
 Tf_base = (T_air + T_base)/2 + 273.15; %roof film temperature (Kelvin)
 Ra_base = abs((9.81*(1/Tf_base)*(T_air -

T_base)*(l_c_base).^3)/(v*a)); %rayleigh number for base

 if T_base > T_air

 if Ra_base < 10^7

 Nu_base = 0.54*Ra_base^(1/4);
 h_base = Nu_base*(k_air/l_c_base); %free convection hxfr

coefficient (Rayleigh laminar)

 else

 Nu_base = 0.15*Ra_base^(1/3);
 h_base = Nu_base*(k_air/l_c_base); %free convection hxfr

coefficient (Rayleigh turbulent)

 end

 else

 Nu_base = 0.52*Ra_base^(1/5);
 h_base = Nu_base*(k_air/l_c_base); %free convection hxfr

coefficient

 end

Q_incident = Transmittance_window*(H_solar)*(2*A_sw + A_ws); %Transmitted

Solar flux into Vehicle.

Q_base = h_base*A_base*(T_base-T_air); %heat transfer b/w base and air.

151

Tdot_base = (1/(C_base))*(abs_base*Q_incident - Q_base);

%%%%%%%%%%%%%%%%%%%%%%%%
%%% Other Heat Loads %%%
%%%%%%%%%%%%%%%%%%%%%%%%

ACH = 0.8*v_amb; %rough ACH as a result of ambient air infiltration into

the vehicle. See Flectcher and Saunders (1994) for more information.
Q_infil = (ACH/3600)*(Volume_air*rho_air*cp_air)*(T_amb - T_air); %heat

load as a result of infiltrating air
Q_human = Number_occupants*108; %human heat load
Tdot_air = (1/(m_air*cp_air))*(Q_base + Q_ws + 2*Q_sw + Q_roof + Q_human+

Q_infil + Q_ref +2*Q_wall);
Q_loads = [Q_ws; 2*Q_sw; Q_roof; Q_infil; Q_human; Q_ref; 2*Q_wall;

Q_base];

A.2 Auxiliary Models Code

A.2.1 Condenser Fan Code

function [mdot_cond,power_cond] = cond(fanspeed)

fanspeeds = [120.0000

100.0000

85.0000

70.0000

60.0000

50.0000

40.0000

20.0000]; %0-255 PWM

flowrates = [0.304631598
0.371971406
0.422476112
0.472980818
0.506650622
0.540320425
0.573990229
0.64132968]; %mass flowrates (kg/s)

powers = [28
40
50
64.5
79
89
107
134]; %Watts

152

mdot_cond = interp1(fanspeeds,flowrates,fanspeed,'linear');

power_cond = interp1(fanspeeds,powers,fanspeed,'spline');

return

A.2.2 Blower Fan Code

function [mdot_evap,power_evap] = evap(fanspeed)

fanspeeds = 195.0000

190.0000

180.0000

170.0000

160.0000

150.0000

140.0000

130.0000

120.0000

110.0000

100.0000]; %0-255 PWM

flowrates = [0.108345398
0.106956354
0.100011136
0.092510301
0.0861207
0.0797311
0.073619308
0.068340943
0.063062578
0.05191422
0.0495544
]; %mass flowrates (kg/s)

powers = [147, 139, 119, 100, 86, 73, 59, 49, 41 35 28]; %Watts

%mass flowrates (kg/s)
mdot_evap = interp1(fanspeeds,flowrates,fanspeed,'linear');
power_evap = interp1(fanspeeds,powers,fanspeed,'spline');

return

153

A.3 Control Algorithm Code

A.3.1 RLS Algorithm Code

function [V1,B1,gradient] = fcn(evap,power,V0,B0,lambda)
Xn = [evap 1]; %New evap fan data
yn = power; %new power data
V1 = (1/lambda)*(V0 - V0*transpose(Xn)*Xn*V0/(1+Xn*V0*transpose(Xn)));
gamma_1 = V1*transpose(Xn);
e = yn - Xn*B0; %new error
B1= B0 + gamma_1*e; %new linear approx. coefficients
gradient = B1(1); %obtain slope value
return

A.3.2 LS-ESC Code

function gradient = fcn(power,evap)
a = max(evap); %maximum evap value in data buffer
b = min(evap); %mass flowrates (kg/s)

coeff = polyfit(evap,power,1); %perform linear fit on data & obtain

coefficients
gradient = coeff(1); %obtain slope value

if abs(a-b) ==0; %turn off gradient calculation if data is not rich enough
 gradient=0;
end
return

154

Appendix B

Experimental System Hardware and Software

This section details the specific hardware and software configuration used in the

development of the integrated experimental system.

B.1 Experimental Hardware Setup

The experimental system is outfitted with transducers, circuitry and data acquisition

hardware to obtain relevant data such as temperature and pressure, as well as to facilitate

communication between the NITE system and the computer. The National Instruments cRIO-

9035 is the central piece of hardware that performs all of the above tasks and more. This data

acquisition controller comes with a chassis which allows the user to add various I/O modules

to send and receive different types of data. As discussed briefly in chapter 2 (see Fig. 2.32),

this thesis uses the NI-9205 analog input module to read analog sensor data, and the NI-9862

CAN module to send and receive CAN signals between the computer and the NITE system.

We discuss each module’s setup and configuration below.

B.1.1 NI-9205 Module Setup and Configuration

The first step is to download all requisite software onto the NI cRIO. This is done using

NI Max (Measurement and Automation Explorer), software which can be used to easily

interface with NI hardware. Download and setup NI Max, and then browse to the module

specific page on the National Instruments website to find the software needed. Insert the

module into an empty chassis slot. Next, open up a new LabVIEW project file. In the project

tree, right click on the project file (ends with .lvproj) and select new targets and devices. Under

the Real-Time CompactRIO folder, the NI-cRIO in use should be listed there. Once adding it

to the project tree, expand the Chassis sub-tree to view the NI 9205 module.

155

The NI 9205 Module has 32 analog input channels with high degrees of accuracy and

protection from overvoltage. To read a signal, one simply needs to wire a sensor’s output signal

to any of the 32 input channels (AI0-AI31) and wire the sensor ground to the module’s ground.

To read this signal in the LabVIEW workspace, simply open the NI 9205 module sub-tree and

drag the respective input channel into your VI file. Fig. B.1 illustrates this procedure.

Figure B.1 Reading an analog input pin in LabVIEW by dragging it into the VI.

B.1.2 Sensor Wiring Diagram

The LM35 analog temperature sensor, along with the pressure sensor, are highly

susceptible to noise and interference. Therefore, prior to sending the sensor’s output signal to

the NI 9205, we pass them through a signal conditioning breadboard seen previously in Chapter

2. This breadboard provides 5V power and a reference ground to the sensor’s power and ground

pins respectively via a connection to an external 5V power supply, and also contains seven low

pass filters through which each of the seven signals passes through to attenuate noise. The

cutoff frequency of the low pass filters is approximately 7 Hz, which is low enough to attenuate

most noise induced by power supplies and other external disturbances. Note that the pressure

transducer is powered separately by the NITE’s 12V supply. Fig B.2 shows the wiring diagram

of the signal conditioning breadboard.

156

Figure B.2 Wiring schematic of the signal conditioning breadboard

B.1.3 NI-9862 Module Setup and Configuration

Setting up and configuring the NI-9862 to send and receive CAN signals is slightly

more complicated than setting up the NI-9205. Thankfully, the procedure is well detailed in

157

the NI-XNET manual available online. Before summarizing the procedure, we first discuss the

fundamentals of the CAN bus protocol.

B.1.3.1 CAN Bus

CAN bus is a communication protocol standard developed to facilitate communication

between microcontrollers and other devices within a vehicle without the need for a supervisory,

central host computer. CAN was first developed by Bosch in the 1980s and has since been

ubiquitous in vehicle systems. The CAN bus protocol is standardized by ISO-11898.

CAN utilizes a multi-master serial bus structure, where all vehicle microcontrollers and

devices are all connected to a two wire bus. The wires are called CANH and CANL, the high

and low voltage lines respectively. To send messages on the bus, microcontrollers modulate

the high and low voltage lines accordingly which correspond to sending speicifc bits of data.

The first part of a CAN message is referred to as the “identifier” which identifies the message

source and also establishes its priority on the bus. The specific payload data then follows this

identifier. Identifiers are important in order for microcontrollers to distinguish which messages

it needs to pay attention or respond to since all data communication is visible to all devices on

the CAN bus.

Because the NITE system is used in vehicle systems, it too adheres to the CAN

standard. For this thesis, Bergstrom provided a document listing all CAN messages sent and

received by the NITE, as well as details on how often messages are sent and at what baud rate.

There are three main messages of interest: the battery parameters message, the system

broadcast message and the overriding command message. The battery parameters message tells

us the NITE's voltage and current draw, the system broadcast message includes a variety of

information such as component speed and the override command message allows the user to

set the speed of the condenser fan, evaporator blower and compressor actuators.

B.1.3.2 NI-9862 Setup

The NI-9862 is a single port high speed CAN transceiver module with the ability to

send and receive CAN signals. To connect the module to the existing CAN bus simply splice

and solder the CAN-H and CAN-L lines from your system to the appropriate pins on the NI

158

9862 9-pin D-sub port. The NI-9862 requires a 9-30V power supply to operate, so solder the

power and ground wires to the module's pins accordingly. Detailed diagrams and instructions

can be found online in the getting started guide for the NI-9862 available on the NI website.

Once the module is set up, configure the NI-9862 by following the procedure outlined

in Chapter 2 of the NI-XNET manual. Specifically, closely follow the instructions under the

“Getting started with CompactRIO” section to add the module to your LabVIEW project as

done for the NI-9205.

B.1.3.3 Reading, Writing and Manipulating CAN Frames in LabVIEW

With the hardware set up, the next step is to use LabVIEW to read, write and manipulate

CAN messages (also known as CAN frames). As discussed in Chapter 5, we wish to read the

NITE’s power consumption and compressor speed, and also wish to write overriding messages

to the NITE to control its actuators (the condenser fan, evaporator blower and compressor

speeds). Given that we know what the messages are, how can we use LabVIEW to read and

write such messages? A brief summary is presented below, but more detailed information is

provided in Chapter 4 of the NI-XNET manual.

First, make sure you have added the NI-XNET toolbox to your LabVIEW. Right click

on the LabVIEW block diagram, select Measurement I/O, select XNET and then select the

“Create Session” VI. This VI initializes a CAN session and also determines whether to read or

write CAN frames. In most instances, one would select “Frame In Single Point” to read CAN

frames, and “Frame Out Single Point” to write CAN frames. Having done that, the next step is

to give the Create Session VI a list of frames to read or write and also select the CAN interface

through which the signals will be sent. The name of the CAN interface can be found in NI-

MAX. To specify the frames to read/write, right click on the frame list control in the front

panel and select “New XNET Database”. Select “New Cluster”. Select the desired protocol

(CAN) and press ok. Now, specify the message’s name and baud rate (this is determined by

the specific system one is interfacing with. The NITE’s baud rate is 250 kBaud). Now, one can

add frames to read and write by right clicking on the cluster and selecting “Create Frame”.

Some examples of this can be seen in B.3 – B.6 below.

159

Figure B.3 Defining the general frame properties of the NITE’s battery parameters

message using data from Bergstrom.

160

Figure B.4 Defining the CAN signal’s specific properties.

161

Figure B.5 Defining the frame properties of the NITE override signal using data from

Bergstrom.

162

Figure B.6 Defining the CAN signal’s specific properties.

Having initialized the CAN reading/writing session, the next step is to connect the

output of the Create Session VI to the corresponding CAN Write or Read VI, which is also

found in the NI-XNET library in LabVIEW. To read data, use a for loop along with an

unbundle by name function to unpack the data from the output of the CAN read VI. To write

data, bundle all desired data using the bundle by name function and route the signal to the input

of the CAN write VI. An example of reading and writing CAN frames can be seen in Fig. B.7

below.

163

Figure B.7 Examples of reading and writing CAN messages sent from and to the NITE

system respectively.

164

B.2 LabVIEW Code

This section contains all of the LabVIEW code used to read sensor data, read and write

CAN frames, and implement PI control and ESC.

165

Figure B.8 A picture of the entire VI block diagram

166

Figure B.9 Initialization of the VI block diagram.

167

Figure B.10 Reading analog sensor data consisting of temperature and pressure

readings.

168

Figure B.11 Calculating cabin temperature by averaging previous readings to mitigate

noise.

Figure B.12 Reading a CAN message containing the NITE compressor speed.

Figure B.13 Reading a CAN message containing the NITE current draw, voltage, and

calculating the power. Power readings are averaged like with the cabin temperature to

mitigate fluctuations.

169

Figure B.14 Implementing PI control on the cabin temperature by modulating the

compressor speed.

Figure B.15 Looking inside the PI control subVI.

170

Figure B.16 Sending the override CAN signal to the NITE. The PI control determines

the message’s compressor speed, while ESC determines the message’s evaporator

blower speed.

Figure B.17 The ESC case structure. We can select between four different cases: None,

P-ESC, LS-ESC and RLS-ESC. Here, we choose None where the blower speed is

unchanged.

171

Figure B.18 The P-ESC algorithm case.

172

Figure B.19 The LS-ESC algorithm case.

173

Figure B.20 The RLS-ESC algorithm case.

