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Abstract  

This thesis investigates the real-time energy optimization of battery powered vapor 

compression systems (VCS) for vehicles. Battery powered VCS are critical for maintaining 

passenger comfort in engine-off situations, and are especially important to long-haul truck 

drivers who sleep inside their vehicle overnight. However, one drawback of battery powered 

vehicle VCS is their short lifespan which may not provide cooling through the whole night 

while the vehicle engine is turned off. One reason for short system lifespan is suboptimal input 

selection; the combination of inputs to the VCS often yields a power consumption higher than 

necessary to generate the required vehicle cooling. This thesis proposes the use of extremum 

seeking control (ESC), a class of real-time model-free optimization algorithms, to determine 

the optimal combination of system inputs that minimizes the VCS power consumption while 

meeting given objectives. In order to determine algorithm efficacy, we implemented three 

different ESC algorithms (perturbation-ESC, least squares-ESC and recursive least squares-

ESC) on a simulated and physical integrated VCS (the VCS in conjunction with the battery 

pack and vehicle cabin). Simulation and experimental results demonstrate significant increases 

in energy efficiency and battery life through the use of these algorithms, with least squares-

ESC and recursive least squares-ESC being the most effective of the three.  
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Chapter 1       

Introduction 

This thesis explores the use of model-free real time optimization strategies to improve 

the energy efficiency of battery powered vehicle VCS (vapor compression systems). These 

systems, critical to maintaining passenger comfort, can be highly inefficient and their short 

battery lives present a significant barrier to mainstream adoption. The combinations of inputs 

to the system are often energy suboptimal; a different set of input combinations could 

potentially meet the same performance requirements at a reduced power consumption. One 

common method used to determine energy optimal inputs is to develop a model of the system 

to estimate these values. However, VCS have complex dynamics that can be difficult to 

replicate, and the system behavior may even change over time due to environmental effects. 

Optimization methods such as extremum seeking control (ESC) can determine optimal inputs 

without explicit system knowledge. Instead, this approach generates an estimate of the steady-

state cost function gradient and uses that to drive the system to its most efficient operating 

point. However, these techniques are often slow and complicated to implement, which can 

limit the use of these algorithms to industry experts and academics. This thesis investigates the 

development and use of intuitive and fast-performing ESC algorithms to improve the energy 

efficiency of battery powered vehicle VCS. 

1.1 Motivation 

Vehicle VCS are a ubiquitous staple of modern life, providing a comfortable driving 

experience regardless of the conditions outside. These systems are especially important to 
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long-haul truck drivers, who not only work long hours within the confines of their vehicle, but 

also sleep and spend much of their free time inside the vehicle cabin. Truck drivers have 

traditionally resorted to idling their vehicles in order to provide cooling or heating while not 

driving. However, vehicle idling is extremely energy inefficient, expensive and is a significant 

source of greenhouse gas emissions. One organization estimates the annual fuel cost of idling 

to be $3 billion dollars – the equivalent of burning 1,800 gallons of diesel [1]. Not surprisingly, 

around half of the states in the U.S. have some sort of law against idling – with more states 

soon to join this trend.  

 

Figure 1.1 States with laws on no idling [1]. 

A more efficient and cost effective alternative is to use a no-idle VCS, which is a battery 

powered air conditioning system that is charged while the vehicle drives and is commonly used 

to provide a comfortable sleeping environment while the truck is stopped for the night. 

However, one significant issue limiting the potential of no-idle systems is their relatively short 

battery life. In some cases, these systems only operate up to 6 hours before needing a recharge. 

This is an unacceptable to industry practitioners, who need a minimum of 8 hours of comfort 

while sleeping. One solution to this issue is to develop larger battery banks to meet these 

performance requirements. However, this does not address the underlying energy inefficiency. 

To do so, we need to take a closer look at system behavior and performance.      
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Modern VCS have a number of adjustable inputs, including the compressor speed, the 

evaporator and condenser fan speeds, and the expansion valve opening. A combination of these 

inputs generates corresponding outputs, the most important being the cooling capacity – or the 

amount of heat absorbed by the system, and the power consumption, which is the sum of the 

power consumed by the compressor and evaporator/condenser fans. Air conditioning literature 

has shown that a number of input combinations can yield the same cooling capacity; however, 

only one unique set of inputs will yield the same cooling capacity while consuming the least 

amount of power [2]. The question is – how can we determine what the optimal set of inputs 

are?  

One method of determining these inputs is by developing a dynamic model of the 

system. System models can give significant insight into the system behavior and can help 

estimate the optimal input values. However, precise modeling of VCS is extremely difficult: 

its dynamics are often highly complex, and the system behavior may even change over time 

due to equipment aging and environmental effects such as corrosion and fouling. Physics based 

modeling approaches – using dynamic equations to describe system behavior often require 

significant assumptions and simplifications in order to produce tractable solutions. 

Furthermore, these models often require users to tune parameter adjustment factors to match 

system behavior precisely. Black box system-identification methods, on the other hand, 

estimate system dynamics based on a range of given input and output data. However, this 

approach may only yield accurate results over a small range, and furthermore does not take 

into account changing system behavior over time. Thus, it is highly desirable to develop model-

free optimization schemes that can select the optimal system inputs in real time without prior 

knowledge of system behavior. 

1.2 Introduction to Extremum Seeking Control (ESC) 

As stated earlier, ESC is one of the most popular model-free optimization approaches 

used to improve system performance. This optimization method works by deriving an estimate 

of the system’s steady-state performance function gradient from the system’s input and output 

signals and uses it to drive the system inputs to values that minimize the system’s steady state 
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performance function (note that for proper minimization, performance function convexity with 

respect to inputs is a necessary condition). ESC can thus determine the system’s optimal inputs 

without having explicit knowledge of the system itself. However, this lack of knowledge comes 

at a cost: convergence to these optimal inputs is an inherently slow process. ESC traces its 

development to a paper written by LeBlanc in 1922 [3], but it was only until the early 21st 

century that ESC became a major field of research when Krstic and Wang published the first 

formal stability proof of ESC in 2000 [4]. ESC has since been utilized in a wide range of 

applications, from maximizing photovoltaic power point tracking [5], to increasing biomass 

production in reactions [6] to improving the energy capture of wind turbine systems [7]. In 

particular, there is a great deal of literature demonstrating ESC effectiveness in optimizing 

VCS performance due to the convex relationship between inputs and power consumption. A 

wide variety of ESC controllers, from perturbation based ESC [2] to time varying ESC [9], to 

least-squares based ESC [10] have demonstrated increases in energy efficiency while meeting 

given objectives. However, ESC has not yet been utilized to demonstrate battery life extension 

in battery-operated vehicle VCS, which is the main focus of this thesis.  

1.3 Organization of Thesis  

This thesis is organized as follows. Chapter 2 introduces the vapor-compression cycle, 

VCS design and the modeling of VCS components in Simulink. The thermal modeling and 

validation of a vehicle cabin model is also discussed, as well as the integration of the cabin 

model with the VCS model and common closed-loop temperature regulation strategies. 

Chapter 3 explains the mathematical basis behind perturbation and advanced ESC algorithms, 

as well as the specific applications to VCS. Chapter 4 discusses the implementation and results 

from implementing three different ESC algorithms on the simulated integrated system. Chapter 

5 details the development of the experimental integrated setup and ESC implementation on 

this system. The thesis concludes in Chapter 6 with a summary of research contributions and 

opportunities for future work.  
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Chapter 2     

Modeling, Operation and Control of Integrated 

Vapor Compression Systems  

 Before investigating the use of performance improving algorithms, we first need to 

understand the nature of the system being optimized and also understand common control 

strategies used on such systems. This chapter first introduces the standard four-component 

vapor-compression system. Next, we discuss the modeling and validation of an integrated no-

idle vehicle VCS: that is, the modeling of a VCS in conjunction with the vehicle cabin and 

battery pack in MATLAB/Simulink. This thesis provides a detailed, first-principles derivation 

of the cabin model, as it was developed specifically for this thesis. System model development 

is important because models can yield significant insight into system behavior and can be used 

to rapidly test and validate various control schemes, including ESC. Note that although ESC 

is referred to as a “model-free” control algorithm, this refers to the algorithm itself being model 

agnostic as opposed to being incompatible with a system model. After discussing the modeling 

of such systems, we detail the development of a simplified integrated experimental setup. 

Lastly, we examine the closed-loop control of both the modeled and experimental system and 

discuss opportunities for optimization.  

 

2.1 Introduction and Review of the Standard Four Component 

VCS 

On their most fundamental level, VCS’s are built for the purpose of heating or cooling 

a specific space. This thesis looks solely at the cooling application of such systems. The VCS 

cools an area by cycling a refrigerant to absorb heat from one area and then rejecting that heat 
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to another space. The most commonly used refrigerant is R-134a, but other refrigerants such 

as CO2 and R-1234yf have also been successfully used in vehicle VCS.  

Fig. 2.1 shows a schematic of the most basic VCS configuration along with its 

respective pressure-enthalpy (P-h) plot. From points 4 to 1, cool refrigerant flows through the 

evaporator and absorbs heat from the surrounding region. An evaporator blower blows warm 

air over the evaporator coils, facilitating this process. The refrigerant is compressed to a higher 

pressure and temperature as it passes through the compressor from points 1 to 2. Warm 

refrigerant passes through a condenser from points 2 to 3, where it rejects heat to its 

surroundings with the aid of a condenser fan. From points 3 to 4, the refrigerant passes through 

an expansion device where it decreases in pressure and temperature, and the cycle starts again.  

 

 

 

Figure 2.1 The standard four-component VCS along with its respective P-h plot. 

As seen in the P-h plot, a number of refrigerant phase changes occur during an ideal 

cycle. Most importantly, the refrigerant enters the evaporator as a two-phase fluid and leaves 

as a superheated vapor. This is important because most compressors are not designed to pump 

liquid refrigerant for long periods of time. The degree of refrigerant superheat at the evaporator 

outlet is an important quantity because it serves as a buffer from two-phase refrigerant entering 

the compressor.  

Traditionally, the VCS practitioner did not have the ability to adjust many of the system 

inputs. For example, components such as fans were powered by fixed speed motors. However, 
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modern VCS’s have a number of adjustable inputs that allow the user to tune system 

performance. The compressor, along with the evaporator and condenser fans are commonly 

powered by variable speed DC motors, giving the operator the ability to precisely adjust the 

component speeds. Some expansion devices, such as the electronic expansion valve (EEV), 

allow the user to control its aperture, thereby controlling the amount of refrigerant that flows 

through the device.  However, EEV’s are very expensive, and so this thesis considers the use 

of a thermostatic expansion valve (TXV) instead. The TXV is a spring-loaded expansion 

device that adjusts its aperture depending on refrigerant pressure at the evaporator outlet, 

among other things, in an effort maintain a constant evaporator superheat.   

2.2 Modeling of an integrated VCS 

Advances in computer modeling allow users to accurately simulate the behavior of 

complex dynamical systems. This is particularly important because modeling can give insight 

into system behavior without requiring a physical test-bed to derive meaningful results. 

Furthermore, modeling also allows the user to simulate scenarios significantly faster than in 

real-time. In this section, we model the cooling of a vehicle cabin using a battery-powered, no-

idle VCS in the MATLAB/Simulink environment. Specifically, this modeling effort attempts 

to replicate the typical application of the NITE Phoenix SSI (referred to in this thesis as the 

NITE), a no-idle air conditioning unit developed by Bergstrom Inc., an industry partner of the 

Air Conditioning and Refrigeration Center (ACRC) at the University of Illinois. The NITE is 

designed to provide cabin cooling for long-haul truck drivers overnight. The unit features a 

split condenser/evaporator design, where the condenser mounts outside the vehicle while the 

evaporator is housed inside the cabin to provide cooling. The unit delivers up to 2.2kW of 

cooling capacity and runs on a bank of four rechargeable lead-acid batteries with a run time of 

approximately 8 hours. [11]  
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Figure 2.2 A picture of the NITE Phoenix SSI [11]. The condenser coil and fan are 

housed in one unit (left), while all other components are housed in another (right). The 

units are connected together using long, flexible refrigerant tubes. 

There are four main sections of the integrated system: the four component VCS, the 

vehicle cabin, the battery pack and the evaporator blower/condenser fan. Each section is 

described in detail below. The integrated model demonstrates the ability of the VCS to cool 

the vehicle cabin and generate a power draw from a bank of lead-acid batteries. Set point 

commands determine nominal operating values for the compressor, condenser fan and 

evaporator blower. Fig. 2.3 depicts the integrated model in the MATLAB/Simulink 

environment.  
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Figure 2.3 A model of the integrated VCS developed in MATLAB/Simulink. The user 

determines set point values for the compressor, condenser fan and evaporator blower 

and sets the ambient conditions. Given these inputs, the vapor compression system 

generates a corresponding cooling capacity, absorbing heat from the vehicle cabin. 

2.2.1 The Vapor-Compression Model  

 Researchers in the Alleyne Research Group at the University of Illinois have developed 

Thermosys, a toolbox in MATLAB/Simulink used to simulate the dynamic behavior of vapor-

compression systems [12]. Each VCS component (compressor, condenser, etc.) is modeled as an 

independent block that sends and receives signals such as pressure, mass flow rate and enthalpy.  

Component blocks are connected together by routing signals accordingly. Fig. 2.4 outlines the standard 

four-component system developed using Thermosys.  
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Figure 2.4 A four-cycle VCS consisting of the evaporator, compressor, condenser and 

TXV constructed using Thermosys, a toolbox in MATLAB/Simulink. 

Heat exchangers such as the evaporator and condenser are modeled using a moving-

boundary volume approach in conjunction with mass and energy conservation equations, while 

components such as the compressor and expansion valve are modeled using algebraic 

equations due to their fast dynamics. Thermosys also contains other auxiliary components such 

as accumulators and receivers; however, this thesis only examines the use of the four main 

vapor-compression cycle components. A detailed derivation and analysis of these models can 

be found in [13]. 

Each block has a list of tunable parameters that the user provides in order to model the 

component after a specific device. The heat exchangers allow the user to define the thermal 

and physical characteristics of the refrigerant tube, as well as the airside and refrigerant side 

surface areas. Furthermore, adjustable heat transfer coefficient factors help match model 

outputs with experimental data. The TXV model allows the user to define properties such as 

the spring pressure and the bulb time constant.  The compressor model utilizes an empirical 

compressor performance map to define the volumetric and adiabatic compressor efficiencies 

for a given RPM and pressure ratio. This data is then used to calculate the compressor outlet 

states such as the enthalpy and mass flow rate. In addition, the compressor model allows users 

to define the compressor volume along with its outlet enthalpy time constant [28].  

One of the goals of this thesis was to model the VCS after the NITE system. However, 

while there were some opportunities to parameterize the component systems, a number of 
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issues prevented the full parameterization of the VCS model. The NITE’s condenser has an 

advanced microchannel design that is not currently congruent with the model structure in 

Thermosys, precluding its modeling. Modeling the TXV was not possible due to a lack of data 

available on its dimensions and performance characteristics. Modeling the NITE’s compressor 

proved highly difficult, especially the compressor’s performance map. In order to generate a 

compressor map, one needs to retrofit a compressor with pressure, temperature and mass flow 

rate transducers at the inlet and outlet to generate effective estimates of the volumetric and 

adiabatic compressor efficiencies. However, the physical NITE unit used in this thesis only 

had input/output temperature transducers along with a low-side pressure transducer, which is 

insufficient to generate a performance map. Therefore, the compressor model retained its 

original map. On the other hand, there was sufficient data available to modify most of the 

evaporator model’s parameters. Table 2.1 lists the NITE system parameters used in the 

Thermosys models. All other parameters are left as default, which are based on a VCS test 

stand in our laboratory at the University of Illinois. 
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Table 2.1 NITE Parameters used for VCS modeling 

Component Parameter Units Value 

E
v
a
p

o
ra

to
r 

Hydraulic Diameter m 6.33E-03 

Length of One Refrigerant Pass m 4.09 

Number of Parallel Passes   3 

Air Side Cross Sectional Area m^2 0.01844 

Air Contact Surface Area m^2 1.50 

Refrigerant Surface Area m^2 0.081 

Refrigerant Pass Cross Sectional Area m^2 3.15E-05 

C
o
m

p
re

ss
o
r
 

Compressor Volume m^3 7.1E-06 

 

Because most of the model parameters were not from the NITE system, it precludes 

the ability to determine how well the model can match the behavior of the actual system. The 

different characteristics between the simulated and experimental systems manifests itself in 

significant ways, as will be seen in Chapters 4 and 5 when we implement ESC on these 

systems.  Nevertheless, the model can still provide insight into how a VCS such as the NITE 

would respond to different inputs, changes in environmental conditions, or various control 

schemes. Furthermore, having models allow users to perform the above much more quickly 

than on an actual system, expediting control design. Thus, these models are sufficient for the 

purposes of this thesis effort.  
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2.2.2 Fan Models 

The evaporator blower and condenser fan are used to blow air over the evaporator and 

condenser coils respectively in order to enhance the heat absorption of the evaporator, and the 

heat rejection of the condenser. These models were developed to replicate the performance of 

the NITE’s evaporator blower and condenser fan. The reason for using a blower (also known 

as a centrifugal fan) for the evaporator is that blowers generate an increase in air pressure to 

overcome pressure drops in air ducts. 

 Fans and blowers operate similarly, using a DC motor to spin a series of blades that move air 

from one region to another at a certain velocity. The NITE system in particular allows the user 

to control the speed of this motor by sending a 0-255 PWM command. Because of the ease of 

data collection for these components, it is sufficient to model these devices based on 

experimental performance data. This was done by stepping the evaporator blower and 

condenser fan at different speeds and recording the corresponding power draw and mass flow 

rate using an anemometer. The evaporator blower and condenser fan performance data is 

depicted in Fig. 2.5 and 2.6 respectively.  

 

Figure 2.5 The mass flow rate and power draw of the evaporator blower over the 

nominal range of blower speeds commonly used during operation. 
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Figure 2.6 The mass flow rate and power draw of the condenser fan over the nominal 

range of condenser speeds commonly used during operation. 

This performance data was used to model these components in Simulink using a 

MATLAB function block, as shown in Fig. 2.7. These models output an air mass flow rate to 

their respective heat exchangers and output a power consumption. Mass flow rates are linearly 

interpolated while power is interpolated using a cubic (spline) function.  

 

Figure 2.7 The condenser fan and evaporator blower modeled in Simulink. 
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2.2.3 Electrical Model 

The electrical model has two purposes: calculating the total system power consumption 

and modeling the power draw from the NITE’s batteries. The fan models from Fig. 2.16 output 

a power draw, but the Thermosys compressor model does not by default. Thankfully, [17] 

generated a power map for the compressor model by collecting experimental power data from 

the compressor over a range of pressure ratios and RPM’s. The bottom of Fig. 2.8 depicts the 

compressor power map developed in Simulink.  

Four 12V lead-acid batteries connected in parallel power the NITE system. Bergstrom 

recommends the use of the Trojan AGM 31, a deep-cycle lead-acid battery that provides 

approximately 86 amp-hours each at peak performance [8]. Lead-acid batteries are well-

modeled using the battery model in the Simscape toolbox [29], and Fig. 2.8 illustrates the 

recommended NITE battery configuration.  The battery model allows the user to select the type 

of battery, along with specifying its capacity, voltage and dynamic characteristics. Because 

there was a lack of empirical data on the battery dynamics, the only user-defined parameters 

were the voltage, capacity and initial state of charge. Fig. 2.9 shows the battery parameter 

dialog box for the lead-acid battery.  The current draw from the batteries was calculated by 

dividing the power by 12 since we assume the battery operates at a constant 12V.  
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Figure 2.8 The electrical model developed in Simulink. The power consumption of all 

VCS components is divided by 12 to simulate the current draw on a bank of four lead-

acid batteries modeled after the Trojan AGM31 battery. Each battery outputs a 

voltage, percent state of charge and current. The compressor power map at the bottom 

of the figure is an empirical map that calculates the compressor power consumption as 

a function of the RPM and pressure ratio.  
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Figure 2.9 The battery parameter dialog box. The type of battery, along with nominal 

voltage, rated capacity and state of charge were based off the Trojan AGM-31, the 

recommended battery for no-idle vehicle VCS. 

2.2.4 Vehicle Cabin Model 

The cabin model was developed as part of this thesis effort, and its derivation will be 

discussed in detail. The cabin model is designed to simulate the dynamic temperature response 

of the vehicle cabin air to common external and internal heating and cooling loads, such as 

heating loads from solar radiation and from cooling loads such as the vehicle’s air conditioning 

system.  
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2.2.4.1 Literature Review 

Dynamic thermal modelling of vehicle cabins has been an area of significant research 

over the past several years due to increased awareness of thermal comfort issues in vehicles, 

as well as an increased interest in vehicle efficiency. The same principle also holds true for 

battery-powered truck VCS’s – they must be able to maintain an appropriate level of thermal 

comfort for vehicle occupants over the operating lifespan. Therefore, there is a clear need to 

develop a high-accuracy cabin model to determine whether thermal comfort needs are met 

during operation.  

There are two main approaches to cabin modelling in the literature: physics-based 

modeling and computational thermal modeling. The physics based modelling approach 

calculates the cabin air temperature using simple, fundamental heat transfer equations that 

model the heat flow between the cabin and the outside environment. In order to reduce 

calculation complexity, this approach often involves the use of simplifying assumptions such 

as using a lumped capacitance approach for calculating cabin air temperature (air has uniform 

properties). Marcos et al. wrote one of the most cited research papers using this approach in 

2014 [14]. The authors of the paper developed a first-principles model of the cabin thermal 

dynamics in Simulink. The authors considered four main heat loads affecting the cabin air 

temperature: incoming solar radiation through the windows ( )
windows

Q , conductive heat loads 

passing through the vehicle’s ceiling ( )
ceiling

Q , convective heat transfer between the vehicle’s 

internal surfaces and the cabin air ( )
base

Q  and the heat generation from human bodies ( )
human

Q

. The values for these heat loads are calculated at each time step. These heat loads are then 

used to solve for the new cabin air temperature using the following first order differential 

equation: 

 ,air p air air windows ceiling base human
m c T Q Q Q Q       (2.1)  
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Figure 2.10 A visual representation of the heat loads considered by [14]. 

On the other hand, computational thermal modeling refers to the use of high-fidelity 

specialized software that uses numerical methods to calculate the temperature evolution of the 

vehicle cabin. This method is much more computationally intensive than physics-based 

modeling but is more accurate as it does not make many simplifying assumptions. These 

models are often able to capture the spatial variation in temperature inside the vehicle, whereas 

the first-principles models cannot. 

 

Figure 2.11 A model of the temperature profile inside a vehicle cabin using a numerical 

CFD approach as seen in [18]. 
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2.2.4.2 Cabin Model Overview 

The cabin model developed in this thesis utilizes a physics based modeling approach 

similar to [14] due to its simplicity and relative accuracy. The cabin model takes in inputs such 

as ambient temperature, solar radiation and ambient wind velocity and returns the cabin air 

temperature along with other states such as the temperature of the roof, walls, windshield and 

side windows, as illustrated in Fig. 2.12 and Table 2.2 below. The cabin model also determines 

the air temperature at the evaporator inlet depending on the percentage recirculation specified 

by the user. Parameters such as vehicle dimensions, passenger occupancy and material 

properties can be adjusted to simulate the use of different types of vehicles and passenger 

loading scenarios, as seen in Fig. 2.13.   

 

Figure 2.12 The cabin model developed in Simulink. The block accepts inputs such as 

the ambient conditions and the cooling capacity, and outputs states such as the cabin air 

temperature and the temperature of the vehicle surfaces. 
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          Table 2.2 Cabin model inputs and outputs 

In
p

u
ts

 

I/O Units Description 

amb
v  m/s Ambient wind velocity 

sky
T  

C 

The temperature of the clouds, water vapor, and 

other atmospheric elements that make up the sky 

to which a surface can radiate heat. 

solarV  W/m^2 Vertical solar irradiance 

solarH  W/m^2 Horizontal solar irradiance 

refQ  W Cooling capacity of the VCS 

refm  kg/s Airflow from the VCS 

O
u

tp
u

ts
 

Heat 

Loads W 
Vector of heat loads on the vehicle cabin 

airT  C Internal cabin air temperature 

wsT  C 

Temperature of the windshield at five different 

points 

swT  C 

Conductive heat load transmitted through the 

vehicle roof 

roof
T  

C Conductive heat load through the side windows 

wall
T  C Conductive heat load through the side walls 

,evap iT  C Air temperature at the evaporator inlet 

base
T  C Temperature of the vehicle’s base 
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Figure 2.13 Parameter dialog for the cabin model. The user inputs values for the 

vehicle’s material properties, vehicle dimensions as well as the initial conditions.  

2.2.4.3 Cabin Model Derivation  

In order to simplify derivation and analysis, the following assumptions are made [14]:  

 

1) The air inside the vehicle cabin is considered as a lumped parameter (the air is 

assumed to have a uniform temperature). Although temperature gradients likely exist, 

a lumped parameter approach greatly simplifies calculations while maintaining 

sufficient model validity. 

 

2) No mass accumulation of air occurs inside the cabin. Any air that infiltrates the cabin 

or enters from the vehicle VCS ( )
ref

m  is matched by an air leakage term ( )
leak

m . This 

mass balance is illustrated in Fig. 2.14. 
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Figure 2.14. An illustration of the mass flow rates entering and leaving the cabin. The 

sum of the three air mass flow rates is zero. 

3) Radiative heat transfer between interior surfaces can be neglected. 

 

4) Vehicle windows are considered transparent, while all other vehicle surfaces are 

opaque to solar radiation. 

 

5) Incident solar radiation can be broken down into two components: horizontal and 

vertical radiation. The vehicle roof, which is considered flat, receives vertical radiation, 

while all other surfaces, considered as vertical, receive horizontal radiation.  

 

6) The vehicle base, consisting of the dashboard, seats, upholstery and other interior 

elements, has a thermal capacitance, baseC  and a dynamic temperature state baseT . The 

base receives all solar radiation transmitted through the vehicle’s windows. To simplify 

convective heat transfer calculations, the base is assumed to be flat.  

 

7) No heat enters the vehicle from any other means (i.e. heat transfer through the floor 

or heat from the vehicle engine).  

 

Using these simplifications in conjunction with mass and thermal conservation laws, 

the temperature dynamics of the vehicle cabin are governed by the following equation and 

illustrated by Fig. 2.15: 
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 , genair p air air ref infil surf base
m c T Q Q Q Q Q      (2.2)  

 

Figure 2.15 A visual illustration of the various thermal loads on the vehicle cabin. 

refQ , the cooling load provided by the vehicle’s evaporator, is defined by the following 

equation:  

  ,, evap op air airref ref
Q m c T T      (2.3)  

Ref [16] determined the heat generation of an average adult human to be 108W. Thus, the total 

heat generation is given by the following equation:  

 108*( )genQ occupancy     (2.4)  

infil
Q , the heat entering the cabin from infiltrating air, is defined by the following equation:  

  ,p air airinfil infil
Q m c T T      (2.5)  

infil
m  is a function of the outside air velocity and is calculated using 

0.8

3600infil ambm v . This 

formula is derived from the work done by Fletcher and Saunders determining the air infiltration 

rate for a variety of vehicles [15].  

base
Q  is the heat exchange between the vehicle’s base and the cabin air and is defined by the 

following equation:  

 
 airbase base base base

Q h A T T 
    (2.6)  
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Since the temperature of the base is a dynamic state, we then calculate the new temperature of 

the base by integrating the following dynamic equation:  

 base base base solar base
C T Q Q   (2.7) 

solar
Q  refers to the solar radiation transmitted through the vehicle’s windows, given by the 

equation solar window solar windows
Q H A where   is an adjustable parameter between 0 and 1 that 

accounts for radiative heat loss through the windows as well as for solar heat absorption by the 

interior surfaces. 
window
  represents the transmittance of the windows, 

solar
H  is the horizontal 

component of solar radiation on the window surfaces, and 
windows

A  is the sum of all window 

areas.  

surf
Q  refers to the 1-D transient conductive heat transfer through the vehicle’s exterior surfaces 

into the cabin air. 
surf

Q  is given by the following equation:  

 ws swsurf roof wall
Q Q Q Q Q        (2.8)  

wsQ  is the conductive heat transfer through the windshield, swQ  is the heat transfer through 

the vehicle’s side windows, 
roof

Q  is the heat transfer through the vehicle’s roof, and wall
Q  is 

the heat transfer through the vehicle’s side walls. Note that because truck cabins generally do 

not have a rear windshield, it was excluded from calculations but can be approximated by 

doubling the area of the windshield in the cabin model parameters. 

1-D transient heat conduction is governed by the following partial differential equation and 

outer and inner boundary condition, equations 2.9 – 2.11 respectively:  

 
   2

2

, ,1 dT x t d T x t

dt dx
  (2.9) 

 
 

      
4 4

0,
'' 0, 0,ext surrsolar

dT t
k q t h T t T T t T

dx
 

 
  

       (2.10) 

 
 

  int

,
,

dT L t
k h T L t T

dx
     (2.11) 
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Unfortunately, partial differential equations, especially with complex boundary 

conditions, are difficult to solve analytically. However, their solutions are approximated well 

by using discretization techniques and finite-difference methods. Finite-difference methods 

involve replacing derivatives in equations with discrete approximations. That is, the equations 

are solved at specific physical points within the material thickness. In this paper, we use the 

forward approximation finite difference method with a nodal energy balance to calculate the 

heat transfer through each of the four vehicle surfaces.  

2.2.4.3.1 Cabin Surface Discretization Procedure  

 

1) We spatially divide the given cabin surface thickness into five nodes with thermal 

conductivity k, thermal capacitance pc  and density  . We choose to discretize into 

five nodes because it accurately approximates the transient conduct through the 

surfaces without being too computationally intensive. The outer and inner nodes, 

labeled nodes 0 and 4 respectively, have thickness
2

x
 , while the interior nodes 1-

3 have thickness x . Fig. 2.16 illustrates the discretization process on the vehicle 

windshield.  

 

2) Apply an energy balance to each of the five nodes as visualized by Fig. 2.17 and 

formalized by the following equation:   

 
5

1
in out storage p

n

dT
q q E Vc

dt




    (2.12) 

3)  Evaluate all incoming and outgoing heat loads at time i and discretize the time 

derivative using the following forward approximation:  

 
1i i

i i idT dT dT

dt dt

 
  (2.13) 
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4) Solve for 1idT  at the outside node, the 3 interior nodes and the inner node, 

equations 2.14-2.16 respectively, and integrate to find new nodal temperature 

1iT    

 Node 0:      
1

4 4
0 0 1 0

0 0''
2

i i i i
i i i i

ext surrsolar

dT dT T Tc x
q k h T T T T

dt x







 
 
 

 
     


 (2.14) 

 Nodes 1-3: 
1

-1 1- --

2

i i i ii i
n nn n n nT T T TdT dTc x

k k
dt x x

 


 
 

 (2.15) 

 Node 4:  
1

3 44 4
4int2

i ii i
i i

air

T TdT dTc x
k h T T

dt x

  
  


 (2.16) 

5) Solve for the conductive heat loads using the following equation:  

  1
4int
i i

airsurf surf
Q h A T T   (2.17) 

6) After calculating the surface heat loads along with all other heat loads, airT  can be 

solved for using equation 2.2 and integrated to calculate the cabin air temperature

airT . 

 

 

Figure 2.16 Transient conduction through a windshield discretized into five nodes. 
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Figure 2.17 A visual example from [16] of the energy balance method applied to a 

discretized node. 

2.2.4.3.1.1 A Note on the Wall and the Roof 

Discretization becomes slightly more complicated when considering 1-D transient 

conduction through a heterogeneous thickness; that is, conduction through different material 

layers with different thicknesses. For example, [14] considers the roof of the vehicle to be 

composed of three different materials: steel, air and cotton, as seen as in Table 2.3. We utilize 

this material distribution in the cabin model as well. To deal with this, nodes 0 and 1 are defined 

to be steel, with thicknesses. Node 2 is defined to be air, and nodes 3 and 4 are considered as 

cotton. Since the materials have different thicknesses, the nodes will have different thicknesses 

as well as outlined in Fig. 2.18. Furthermore, we assume that the vehicle’s walls has the same 

material composition as the roof.  
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Table 2.3 The material dimensions, composition and 

properties of the roof thickness as defined by [14].   

Roof Material Thickness 

(m) 

Thermal Conductivity 

(W/m*K) 

Steel 0.5E-03 14.9 

Air 0.1E-03 2.6E-02 

Cotton 5E-03 0.06 

 

 

Figure 2.18 Transient heat conduction through the roof. Note that the nodes for steel, 

air and cotton are not uniform in thickness like for the windows. 

2.2.4.4 Defining Interior and Exterior Heat Transfer Coefficients 

The free convection heat transfer coefficient 
int

h  refers to the heat transfer between the 

inside surface of the vehicle and cabin air. It is assumed that because air currents are small 

within the vehicle, all convective heat transfer between the inside vehicle surface and cabin air 

occurs as free convection, which is buoyancy-driven fluid motion generated by temperature 

gradients. Note that future work may consider the effect that air conditioning airflow has on 

this assumption.  
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The Rayleigh number, a dimensionless parameter associated with buoyancy-driven 

fluid motion governs free convection. Along with the Rayleigh number, the orientation and 

dimensions of the surface in contact with the fluid has the biggest impact on the heat transfer 

coefficient value. 

The interior surface of the side windows, side walls and windshield can be approximated as a 

flat vertical plate. Note that this assumption is mostly true for trucks, but may not be true for 

cars or other vehicles with angled surfaces. The base of the vehicle is approximated as a flat 

horizontal surface.  

The free convection heat transfer coefficient for a flat vertical plate with length L and 

air thermal conductivity k is given by the following equation:  

 

2
(1/6)

int (9/16) (8/27)

0.387
0.825

[1 (0.492 / ) ]

k Ra
h

L Pr

 
  
 

 


 (2.18) 

where 
3

f

g TL
Ra

T 


 is the Rayleigh number and Pr is the Prandtl number of the fluid.  

           The heat transfer between the vehicle base with length L and the cabin air is dependent 

on three things: the Rayleigh number, the cabin air temperature and the base temperature.  

 

For 
airbase

T T  and 4 710 10Ra  :  

 

 1/4
int 0.54

k
h Ra

L
  (2.19) 

For 
airbase

T T and 7 1110 10Ra   

 1/3
int 0.15

k
h Ra

L
  (2.20) 

For 
air base

T T  

 1/5
int 0.52

k
h Ra

L
  (2.21) 
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The heat transfer between the vehicle ceiling and the cabin air is governed by the same 

equations as above if one replaces 
base

T  with roof
T and reverse the temperature inequality.  

          The exterior convective heat transfer exth  can be governed by three separate flow 

regimes: free, laminar and turbulent. As stated before, free convection refers to density driven 

fluid motion and its heat transfer is governed by the Rayleigh number. On the other hand, 

laminar and turbulent fluid motion refers to fluid moving with an externally induced velocity 

v  and the Reynolds number governs its heat transfer. In most instances, the flow on the exterior 

surfaces is either laminar or turbulent depending on the ambient wind speed.  

          For free convection on the roof, the heat transfer coefficients are governed by equations 

2.19-2.21, by replacing 
base

T  with roof
T . For free convection on all other exterior surfaces, 

including the windshield, side windows and side walls, the heat transfer coefficient is governed 

by equation 2.18.  

 

For laminar flow on all exterior surfaces ( 5Re 10
vL


  ) the heat transfer is governed by the 

following equation:  

 1/2 1/30.664Re Prext

k
h

L
  (2.22) 

For turbulent flow on all exterior surfaces ( 5Re 10
vL


  ):  

  4/5 1/30.037Re 871 Prext

k
h

L
   (2.23) 

2.2.4.5 Defining the Evaporator Inlet Temperature  

Another feature of the cabin model is the ability to determine the evaporator air inlet 

temperature depending on the air recirculation percentage desired by the user. Vehicles often 

recirculate 70-90% of the cabin air through the evaporator because cabin air is often cooler 

than the air outside, decreasing the heat load on the VCS. However, it is important that some 
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percentage of the air at the evaporator inlet be fresh to prevent an unhealthy buildup of 

CO2.The evaporator air inlet temperature is given by the following equation:  

 ,
r air

evap i
ref

m T m T
T

m
    (2.24) 

rm is the mass flow rate of the recirculated air and is defined by the following equation:  

 
/100

r

ref

recirc
m

m
  (2.25) 

where recirc is given as a percentage. 

m is the mass flow rate of the recirculated air and is defined by the following equation:  

 
100

100* ref

recirc
m

m



  (2.26) 

2.3 Open Loop Cabin Model Validation 

Proper open-loop validation of the cabin model would require comparing model 

outputs to experimental data collected from a vehicle. However, doing so would be very time 

intensive and is left for future work. Nevertheless, some model validity can be shown in two 

ways: 1) showing that the cabin temperature dynamics generally follow a first order response 

and 2) comparing cabin temperature data to experimental data found online for a given set of 

initial conditions.  

2.3.1 Simulation Parameters 

Before discussing the cabin model validation, it is important to establish the cabin 

model simulation parameters. Marcos et al. develop their thermal cabin model based on a four-

door BMW 1-series car and their paper contains a comprehensive list of all the vehicle’s 

parameters. A table of this data can be found below. On the other hand, our goal is to develop 

a model of a generic truck sleeper cabin. Obtaining vehicle dimensions for such was fairly 

straightforward using a datasheet for a ProStar® Sky-Rise truck found online [30]. However, 

the material properties and material thicknesses were not available for the truck. Therefore, we 
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used the parameters from [14] for all missing values. Furthermore, there are two exceptions to 

the above rules. Because [14] does not consider heat conduction from the walls, wall 

dimensions were not listed in the paper, so instead we estimated the dimensions based on 

images of the vehicle available online. Additionally, the base thermal capacitance value was 

taken from [20] because the value from [14] resulted in aberrant cabin temperature dynamics. 

Going forwards, the sleeper cab parameters listed in Table 2.5 will be used in all cabin model 

simulations in this thesis unless explicitly written otherwise.  
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Table 2.4 Cabin Model Parameters for a Four Door Vehicle used in [14]. 

Component Parameter Units Value 
M

a
te

ri
a
l 

P
ro

p
er

ti
es

 

Absorptivity of body  0.26 

Emissivity of body  0.9 

Thermal diffusivity of windshield m^2/s 3.40E-07 

Thermal conductivity of windshield W/(m*K) 1.4 

Thermal diffusivity of side window m^2/s 3.40E-07 

Thermal conductivity of side window W/(m*K) 1.4 

Absorptivity of window  0.2 

Emissivity of window  0.9 

Transmittance of window  0.45 

Area of base m^2 6 

Thermal capacitance of base J/K 5600 

Absorptivity of base  0.7 

V
eh

ic
le

 D
im

en
si

o
n

s 

Volume of cabin m^3 3.11 

Length of roof m 1.8 

Width of roof m 1.1 

Length of wall m 1.5 

Width of wall m 0.35 

Length of windshield m 0.63 

Width of windshield m 1.3 

Thickness of windshield m 6.00E-03 

Length of side window m 1.45 

Width of side window m 0.29 

Thickness of roof m 5.6E-03 

Thickness of side window m 6.00E-03 
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Table 2.5 Cabin Model Parameters for a Truck Cabin from [30]. 

Component Parameter Units Value 
M

a
te

ri
a
l 

P
ro

p
er

ti
es

 

Absorptivity of body  0.26 

Emissivity of body  0.9 

Thermal diffusivity of windshield m^2/s 3.40E-07 

Thermal conductivity of windshield W/(m*K) 1.4 

Thermal diffusivity of side window m^2/s 3.40E-07 

Thermal conductivity of side window W/(m*K) 1.4 

Absorptivity of window  0.2 

Emissivity of window  0.9 

Transmittance of window  0.45 

Area of base m^2 6 

Thermal capacitance of base J/K 5600 

Absorptivity of base  0.7 

V
eh

ic
le

 D
im

en
si

o
n

s 

Volume of cabin m^3 8.9 

Length of roof m 2.54 

Width of roof m 1.83 

Length of wall m 2.81 

Width of wall m 1.02 

Length of windshield m 0.808 

Width of windshield m 1.524 

Thickness of windshield m 6.00E-03 

Length of side window m 0.768 

Width of side window m 0.768 

Thickness of roof m 5.6E-03 

Thickness of side window m 6.00E-03 
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2.3.2 Open Loop Simulation Results 

The temperature dynamics of a given object is typically modeled by the following first 

order transfer function:  

 
( )

( ) 1
oT s T K

Q s s





 (2.27) 

where ( )T s  is the object’s temperature, oT  is the temperature of the object with no external 

heat loads, ( )Q s is the net heat load on the object, K is the transfer function gain, and 𝜏 is the 

system time constant. In essence, this equation states that for this transfer function, any change 

in temperature is proportional to the incident heat load on the object.  

To determine whether the cabin model follows this behavior, the relationship between 

heat loads and final temperature for the cabin model was explored. In particular, the 

dependence of final cabin temperature on passenger occupancy was examined. Because of the 

superposition principle of linear transfer functions, we can ignore the other system 

heating/cooling loads for the time being and look solely at the effect of increasing passenger 

occupancy on the change in final cabin temperature, which is equal to the product of K and 

( )Q s . As mentioned previously, each passenger produces approximately 108W of heat. 

Therefore, one would expect the change in cabin temperature to be proportional to passenger 

occupancy.  

For no passengers, the steady state cabin temperature is 9.47 .oT C   For N=2, N=3 

and N=4, the steady state temperatures are 16.6°𝐶, 20.4°𝐶 and 24.3°𝐶 respectively, as seen in 

Fig. 2.19. The proportional gain K for each passenger-loading scenario is 0.0333, 0.0340 and 

0.0347 respectively. The closeness of these K values indicates the high proportionality between 

the cabin temperature and passenger accuracy and suggests that equation 2.25 can accurately 

model the temperature dynamics of the cabin interior.  

Another characteristic of the first order response is the time constant that represents 

the   time it takes for the temperature to reach 63.2% of its final steady state value. For N=2, 
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N=3 and N=4, the time constants are  =373s,  =315s, and  = 229s respectively. The 

discrepancy between  values indicates that there are dynamic nonlinearities at play, but the 

relatively close time constants indicate that the cabin temperature can be generally modeled by 

a first order transfer function. Table 2.6 summarizes these results.  

 

Figure 2.19 Cabin air temperature for different number of vehicle occupants, N, given a 

cooling load of 1000refQ W  and an initial cabin temperature of 35 degrees.  

Table 2.6 Open Loop Cabin Temperature Dynamics. 

Number of 

Occupants 

(N) 

Occupant 

Heat Load 

(W) 

Final Cabin 

Temperature 

(°C) 

Gain (K) Time 

Constant (s) 

2 216 16.6 0.0333 373 

3 324 20.4 0.0340 315 

4 432 24.39 0.0347 229 
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2.3.3  Other Cabin Model Results  

Figures 2.20 and 2.21 below depict the cabin model response to varying solar and 

cooling loads respectively.  

 

Figure 2.20 Cabin air temperature over time for two different sets of horizontal and 

vertical solar radiation.  

 

Figure 2.21 Cabin air temperature over time given different evaporator cooling loads. 
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Fig. 2.22 illustrates the evolution of various cabin heat loads over time, with most of 

them reading steady state within one hour. Of all the cabin heat loads, baseQ  has the most unique 

heat load evolution over time. Initially, the base heat load is zero, because the simulation 

assumes that the cabin air and base temperature are the same to start. However, because all 

transmitted solar radiation is assumed to fall on the base, the base becomes much warmer than 

the surrounding air. As time goes on, the heat load settles as the cabin air and base reach their 

respective steady state temperatures.  

 

Figure 2.22 Evolution of cabin heat loads over time 
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Figure 2.23 All of the cabin heat loads over time, including the cooling capacity. 

2.3.4  Experimental Validation of Simulation Data  

Another validation method is to compare the cabin model temperature response to 

experimental data for a given set of environmental conditions. There is extensive literature on 

the rapid increase in vehicle cabin temperature of a closed vehicle on a hot, calm, sunny day 

due to the risk posed to small children and pets. One example of such data is shown in Fig. 

2.24. These conditions can be modeled by assuming a horizontal solar flux of 400W/m^2, a 

vertical solar flux of 800 W/m^2, which is typical of a clear summer day, and a light wind 

speed of 1 m/s. The sky temperature can be estimated by subtracting 20 degrees from the 

ambient temperature [19]. Furthermore, we assume the vehicle used in the experiment is 

similar to the four-door vehicle modeled in [14], thus we use the parameters listed in Table 2.4 

in this instance. A list of all inputs can be found in Table 2.7. The temperature evolution of the 

cabin model over an hour is compared to experimental data from for three different ambient 

temperatures. The results indicate a high level of model accuracy, as detailed in Table 2.8 and 

further illustrated in Fig. 2.25.  
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Figure 2.24 An estimate of the cabin air temperature of a closed vehicle on a hot 

summer day from [21] given a number of different ambient temperatures. 

Table 2.7 Inputs used for the Simulation Case Study 

Input Value 

Ambient wind (m/s) 1 

Sky Temp (C) 20sky ambT T   

Vertical Solar 

Irradiance (W/m^2) 

800 

Horizontal Solar 

irradiance (W/m^2) 

400 

Cooling Capacity 

(W) 

0 

Evaporator Air 

Supply (kg/s) 

0 
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Table 2.8. A Limited Validation for the Cabin Model, with an 

Average RMS Error under 2.5 Degrees F.  

 Time (Min)  Actual Cabin 

Temperature 

(°𝑭) 

Model Cabin 

Temperature 

(°𝑭) 

Error (°𝑭) 

𝑻𝟎 = 𝟕𝟎°𝑭 T = 20  99 94.93 -4.07 

T = 40  108 106.71 -1.3 

T = 60  113 112.91 -0.09 

𝑻𝟎 = 𝟖𝟎°𝑭 T = 20  109 104.74 -5.26 

T = 40  118 116.22 -1.78 

T = 60  123 122.23 -0.77 

𝑻𝟎 = 𝟗𝟎°𝑭 T = 20  119 114.55 -4.45 

T = 40  128 125.76 -2.24 

T = 60  133 131.58 -1.42 

 

 

Figure 2.25 Comparing the experimental data to the cabin model temperature over the 

course of an hour. Cabin model data closely matches the empirical data. 
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2.4 Overview of the Experimental System  

The experimental system is an integrated setup designed to replicate a no-idle VCS unit 

cooling a truck sleeper cabin. Some aspects of the integrated system were simplified due to 

time and budget constraints. For example, instead of cooling an actual vehicle cabin, we 

construct an insulated, enclosed rectangular space to cool. Furthermore, the main heat load 

imposed on the cabin originates only from internal infrared heat lamps as opposed to the 

dynamic combination of radiative, conductive and convective heat loads that vehicle cabins 

are subjected to in outdoor conditions. The clear differences between the experimental and 

simulated integrated systems precludes any cross validation between the two; however, the 

experimental system is similar enough in design that dynamic behavior and response reflects 

that of the NITE system in nominal operation. Fig. 2.26 highlights the key system components 

and a detailed explanation is presented below.  

 

 

Figure 2.26 A labeled picture of the experimental setup. 
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2.4.1 The NITE System 

As mentioned previously, the NITE system is a no-idle VCS unit developed by 

Bergstrom Inc, a company specializing in the development of cabin climate systems for trucks 

and other vehicles. The VCS used in this setup is the NITE Phoenix SSI, which is a battery 

operated VCS unit featuring a split condenser/evaporator system as seen in Fig. 2.27. The 

compressor, TXV and evaporator are enclosed in a single unit, with the evaporator blower 

attached to the side of the unit. The condenser coil and fan unit are enclosed in a unit together 

and are connected to the other unit via refrigerant tubes. The evaporator blower feeds cool air 

to the cabin via an outflow duct, and the warm evaporator air inflow is supplied via a 

recirculation duct from the cabin. In normal application, the condenser unit is housed outside 

in warm ambient conditions while the evaporator is placed inside the vehicle. In order to 

replicate the ambient heat load on the condenser coils, a 250W heat lamp is shone on the 

condenser coils as seen in Fig. 2.28.   

The NITE system is equipped with various sensors in order to monitor system behavior. 

In particular, LM35 analog temperature sensors were installed at the evaporator air inlet/outlet, 

the compressor inlet/outlet and a pressure transducer was installed at the compressor inlet. 

Importantly, the pressure and temperature readings at the compressor inlet are used to verify 

that the refrigerant is superheated prior to entering the compressor. 

The NITE system sends and receives signals using the CAN bus protocol, which is an 

automotive communication standard used by vehicle subsystems to communicate with each 

other. Using the CAN bus protocol, one can read messages from the NITE system such as 

component speeds as well as read any warning messages coming from the system. 

Furthermore, the NITE system’s compressor, condenser and evaporator fan speeds can be 

overridden by writing a CAN message to the system. This feature is crucial for closed-loop 

control of the system.   
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Figure 2.27 A labeled schematic of the NITE Phoenix SSI given by Bergstrom Inc. 

 

Figure 2.28 A picture of the condenser unit along with the 250W heating load. 

2.4.2 The Cabin  

The cabin is an 8ft x 4ft x 7ft enclosed space that is cooled by the NITE system. The 

cabin has a large volume of 6.3 cubic meters designed to emulate the volume inside a truck 

cabin. The cabin is constructed out of eight insulating foam board panels joined using heavy-
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duty tape and metal rods for stability. To replicate the heat loads on the cabin, two pairs of heat 

lamps are suspended inside the cabin, each generating 500W and 375W of heat respectively, 

as seen in Fig. 2.29. A small fan is placed inside the cabin to mix the inside air. Two LM35 

analog temperature sensors are suspended inside the cabin in order to generate an accurate 

estimate of the average cabin temperature, as seen in Fig. 2.30. One duct enters the cabin 

bringing in cool air from the evaporator, while the other duct recirculates warm cabin air from 

the cabin to the inlet of the NITE’s evaporator, as is done in standard practice.   

 

 

Figure 2.29 A picture of the 500W and 375W heat loads suspended inside the cabin. The 

500W heat load consists of two 250W heat lamps, while the 375W heat load consists of a 

250W and 125W heat lamp. Each heat load is individually controllable by the user 

depending on desired head load. Also seen is the cabin fan that mixes the air inside to 

increase temperature uniformity. 
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Figure 2.30 A picture taken inside the cabin, showing the two LM35 temperature 

sensors. Also visible is the evaporator outflow duct that brings cool air inside from the 

NITE system. 
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2.4.3 The Workstation  

The workstation consists of the computer as well as necessary components to process, 

send and receive data between the NITE and the computer. Fig. 2.31 outlines those 

components.   

 

Figure 2.31 A picture of the workstation components. The NI cRIO communicates to 

the NITE over CAN and receives analog signals from various system transducers.  The 

signal conditioning circuit, in conjunction with the 5V supply, powers the sensors and 

filters their outputs to reduce noise. The NITE User Interface is used to turn the NITE 

on or off. 

 

A National Instruments (NI) cRIO 9035 equipped with a CAN bus interface module 

(the NI-9862) is connected to the CAN bus cable from the NITE system. The cRIO is also 

equipped with the NI-9205 analog input module that receives data from the sensors after going 

through signal conditioning. In turn, the NI cRIO is connected to the computer over Ethernet. 

This configuration can be seen in detail in Fig. 2.32. 
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Figure 2.32 A close-up of the NI cRIO 9035 

 

All six sensors used in the system are analog sensors, which require signal conditioning 

in order to remove noise. The signal conditioning board, as seen in Fig. 2.31, contains six low-

pass filters to attenuate high-frequency noise. A 5V power supply is used to power all of the 

analog sensors. Table 2.9 lists all of the sensors used in this setup.   
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Table 2.9 Analog Sensors used in the Experimental Setup.  

 Sensor Name Location Purpose 

Sensor 1 TI LM35 Outlet of evaporator blower Record cabin temperature  

Sensor 2 TI LM35 Taped behind computer 

monitor 

Record cabin temperature 

Sensor 3 TI LM35 Inside cabin Estimate refrigerant temperature at 

compressor inlet 

Sensor 4 TI LM35 Inside cabin Estimate refrigerant temperature at 

compressor outlet  

Sensor 5 DWYER 628-

05 

Inserted in compressor inlet  Record low-side system pressure 

Sensor 6 TI LM35 Inlet of evaporator blower Record room (ambient) 

temperature 

Sensor 7 TI LM35 Taped to compressor inlet 

tube 

Approximate compressor inlet 

refrigerant temperature  

 

The NI cRIO and the computer communicate via the NI software package LabVIEW. 

This software package allows users to read CAN messages from the NITE and send user-

defined CAN messages to control the speed of its actuators (the speed of the compressor, 

condenser fan and evaporator blower is set by a user-defined PWM signal with a value between 

0-255). Furthermore, LabVIEW allows the user to read and manipulate analog signals sent 

from sensors. A basic LabVIEW file sending and receiving CAN signals and reading analog 

sensor data is shown in Fig. 2.33.  

 



 

 

 

51 

 

Figure 2.33 A basic script (called a VI) developed in LabVIEW that sends and receives 

CAN signals and also reads and manipulates analog sensor signals. 

2.5 Basic Control Strategies and Closed Loop Validation  

The main goal of a VCS is to regulate the temperature of a given space. A simple 

example of this is a thermostat: its goal is to keep the temperature of a room at a certain value. 

This raises some important questions. How do we control a VCS such that it regulates the 

temperature of a given space? What actuator(s) do we manipulate to achieve this goal? 

Furthermore, what control architecture do we utilize?  
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The main VCS output of interest is the cooling capacity, which is the amount of heat 

absorbed by the evaporator. The equation for the cooling capacity is defined as follows: 

 , , ,( )p air evap o evap iref refQ m c T T   (2.28) 

There are two variables that affect the value of refQ : the evaporator mass flow rate, refm and 

the temperature differential between the inlet and outlet air streams, , ,( )evap o evap iT T .The 

evaporator mass flow rate is controlled directly by the evaporator fan speed setting, while VCS 

literature shows that the air temperature differential is most correlated with the speed of the 

compressor [17].  As the compressor speed is increased, more heat is rejected through the 

condenser, which in turn leads to a cooler refrigerant being passed through the evaporator coils 

that absorbs more heat. The basic strategy commonly used in industry is to control the cooling 

capacity by only modulating the compressor speed. Hence, this section looks at the control of 

the VCS through compressor modulation with a constant evaporator speed, but future sections 

will address the important role that both components play in optimal cooling.  

2.5.1 Closed Loop Structure  

Fig. 2.34. details the common VCS control structure.   

 

Figure 2.34 A block diagram of closed loop control implemented on a VCS, where the 

controller aims to track a given reference temperature for the cabin. 
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The goal of this closed loop control architecture is to track a reference temperature 𝑅(𝑠) by 

measuring the tracking error and using a controller ( )cG s  to steer the cabin temperature to the reference 

value. The closed loop transfer function is described as follows:  

  
1

( ) ( ) ( ) ( ) ( ) ( ) ( )
1 ( ) ( )

m p p c

p c

Y s N s G s D s G s G s R s
G s G s

  


 (2.29) 

For this to be a robust control design, we need to determine whether the system can reject noise 

N(s), input disturbances D(s) and track the reference signal R(s) (note that noise and disturbances only 

apply to the experimental system). But before doing so, we need to determine the characteristics of 

( )pG s for the experimental system and also determine ( )cG s . ( )pG s is the plant model that 

characterizes the relationship between the compressor input and the cabin temperature. Prior simulation 

results indicated that ( )pG s is well modeled by a first order transfer function, and we use this model 

structure for deriving the physical cabin’s temperature dynamics. After characterizing the plant, we 

determine the robustness of the closed loop controller.  

2.5.2 Determining the Physical Cabin Model  

In order to determine the gain and time constant of the physical cabin model, we step the 

compressor speed at different values and observe the dynamic temperature response. In this case, the 

input to this system is the compressor PWM, a value between 0-255 which is proportional to the 

compressor RPM. The evaporator blower and condenser fan speeds were held constant at 160 and 70 

PWM respectively. To characterize the system dynamics, we observed the cabin temperature response 

to three different compressor speeds and determined its first order characteristics. The initial cabin 

temperature was set at 35 degrees C. Results are outlined in the following table and in Fig. 2.35.  
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Table 2.10 Open Loop Experimental Cabin 

Temperature Dynamics.  

Compressor 

PWM 

(0-255) 

Cooling 

Capacity 

(W) 

Final Cabin 

Temperature 

(°C) 

Gain 

(K) 

Time 

Constant 

(s) 

40 -1153 28.48 0.2178 201 

60 -1200 27.15 0.1308 218 

100 1231 26.30 0.0870 220 

 

 

Figure 2.35 Cabin temperature response to different compressor PWM speeds, starting 

from an initial temperature of 35 degrees C. 

Despite some gain variability, the results show that the cabin is modeled well by a first 

order system, just as the simulated cabin was modeled by a first order system. Averaging the 

gain and time constant values, we get the following physical cabin transfer function:  

 
( ) 0.1453

( )
( ) 1 213 1

o
p

T T s K
G s

U s s s


  

 
 (2.30) 
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2.5.3 Determining the Controller Transfer Function  

The controller transfer function, ( )cG s , is a user defined function designed to shape the closed loop 

system response. We examine two common control algorithms, proportional and proportional-integral 

control.  

Proportional control, also known as P control, outputs a control input to the plant that is 

proportional to the tracking error. The transfer function of such a controller is given as follows:  

 
( )

( )
( )

c p

U s
G s K

E s
   (2.31) 

where ( )pK s is the proportional gain. For some systems, P control may be sufficient to track a given 

reference signal. However, this is not the case for first order plants such as the cabin model. In fact, P 

control on a first order system results in a steady state error that is defined by the following equation: 

 
1

ss

p

R
e

K K



 (2.32) 

Proportional-integral control, also known as PI control, outputs a control input to the plant by 

sending a control input proportional to both the error and the error integral. By adding integral 

action, the steady state error is zero for first order systems. It is defined by the following 

equation.  

 
( )

( )
( )

i
c p

KU s
G s K

E s s
    (2.33) 

where ( )iK s is the integral gain.  

 

2.5.4 Closed Loop Simulation Results  

The first control algorithm used on the simulated system was P-control. As stated 

before, P-control should generate a steady state error for any given pK . Fig. 2.36 and 2.37 

shows the cabin temperature and compressor RPM respectively for three different proportional 
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gains. As seen below, proportional control fails to eliminate the steady state error, further 

validating the first order characterization of the cabin model.  

 

Figure 2.36 The cabin temperature over time for three different proportional gains. 

None of the proportional controllers successfully track the temperature set point, 

yielding a steady state error. 
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Figure 2.37 The compressor RPM over time for the three different proportional gains. 

The compressor RPM does not reach the speed necessary to cool the cabin to the 

temperature set point. 

On the other hand, utilizing PI control on a first order transfer plant should allow 

successful reference tracking. Figures 2.38 and 2.39 show the cabin temperature and 

compressor RPM respectively for the simulated system. As seen below, the cabin temperature 

quickly converges to the desired temperature set point of 20 degrees C, as the compressor RPM 

converges to the value necessary to maintain that temperature.  
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Figure 2.38 The simulated cabin temperature over time. The cabin temperature, 

initially at 35 degrees C, converges to the temperature set point in approximately 20 

minutes. 
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Figure 2.39 The compressor RPM over time. The compressor speed initially increases to 

pull down the cabin temperature and levels off once the cabin temperature reaches the 

desired value. 

2.5.5 Closed Loop Experimental Results  

The previous section demonstrated the ability of PI control to track a temperature 

reference, while P control was found to be insufficient due to steady state error. Despite the 

differences between the modeled and experimental system, we expect the same general trends 

to apply to the experimental system as well. Like before, we initialize the cabin temperature at 

35 degrees C and attempt to drive the temperature to a set point of 27 degrees C, given a cabin 

heat load of 875W. Fig. 2.40 and 2.41 shows the cabin temperature and compressor PWM over 

time when only using proportional control. As the simulation results predicted, the cabin 

temperature does not track the reference temperature.  
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Figure 2.40 The cabin temperature over time, along with the temperature set point. The 

cabin temperature fails to track the reference temperature, resulting in a steady state 

error. 

 

Figure 2.41 The compressor PWM over time. The compressor PWM is greatest at the 

beginning due to the large initial error between the cabin temperature and temperature 

reference. The PWM never reaches a high enough value to cool the cabin sufficiently 
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On the other hand, we expect the PI controller to track the temperature reference 

successfully based on theory and simulation results. This assumption holds true; Fig. 2.42 

shows the cabin temperature converging to the desired set point, while Fig. 2.43 shows the 

compressor PWM speeds converging to the necessary value to track the reference temperature.  

 

Figure 2.42 The cabin temperature over time, starting from an initial temperature of 35 

degrees C. The cabin temperature converges to the set point in roughly 30-40 minutes. 

 

Figure 2.43 The compressor PWM over time. The PWM initially increases to bring 

down the cabin temperature and stabilizes once the cabin temperature reaches the 

temperature set point. 
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It is clear that PI control successfully tracks a given reference signal. However, this is not the 

only important criteria in judging a control scheme’s effectiveness. An effective control scheme must 

also be robust to noise and input disturbances. To determine controller robustness, we first rewrite Eq. 

2.29, the closed loop transfer function. The closed loop transfer function is as follows:   

 
( ) ( ) ( )1

( ) ( ) ( ) ( )
1 ( ) ( ) 1 ( ) ( ) 1 ( ) ( )

p c p

m

p c p c p c

G s G s G s
Y s R s N s D s

G s G s G s G s G s G s
  

  
 (2.34) 

Eq. 2.34 shows that the plant output is a function of the reference signal ( )R s , the output noise 

( )Y s , and the input disturbance ( )D s . For the system to be robust to noise and disturbances, 

we need the transfer functions 
1

1 ( ) ( )p cG s G s
 and 

( )

1 ( ) ( )

p

p c

G s

G s G s
to have low gains for the 

respective noise and disturbance frequencies, effectively attenuating those signals. 

( )

1 ( ) ( )

p

p c

G s

G s G s
 is referred to as the sensitivity transfer function, ( )S s , while 

( )

1 ( ) ( )

p

p c

G s

G s G s
is 

referred to as the disturbance rejection transfer function, ( )D s . Substituting in the physical 

plant’s transfer function and controller transfer function with the same gains as used in the 

experimental system ( 0.5pK  , 0.25iK  ), we get the following disturbance rejection and 

sensitivity transfer functions, Eq. 2.35 and 2.36 respectively.  

 
2

3 2

0.1452

30.93 0.1452213 1( )
0.1452 0.25 45369 441.5 8.804 0.0363

1 0.5
213 1

s ssD s
s s s

s s

 
    

   
  

 (2.35) 

 
2

2

1 213
( )

0.1452 0.25 213 1.0726 0.0363
1 0.5

213 1

s s
S s

s s

s s


 

   
   

  

 (2.36) 

Fig. 2.44 and 2.45 show the bode plots of the disturbance rejection and sensitivity transfer 

functions respectively, generated using the bode command in MATLAB. The disturbance 

rejection transfer function clearly attenuates disturbances of all frequencies. On the other hand, 

the sensitivity transfer function indicates that the closed loop control attenuates most low-
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frequency signals, amplifies signals with frequencies in a narrow range (between 0.01 and 

0.025 rad/sec) and passes signals with frequencies higher than 0.025 rad/s. Because noise is 

generally a high frequency phenomenon, the transfer function passes most noise. However, 

this does not pose an issue because the low pass filter described in section 2.4.3 already 

attenuates most signal noise. Thus, the controller demonstrates robustness along with 

successful reference tracking.   

 

Figure 2.44 The bode plot of the disturbance rejection transfer function. The transfer 

function attenuates disturbances over all frequencies. 
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Figure 2.45 The bode plot of the sensitivity transfer function. The transfer function 

attenuates low frequency signals, amplifies a narrow range of signals with frequencies 

between 0.01 and 0.025 rad/s, and passes signals with frequencies higher than 0.025 

rad/s. The transfer function passes most noise, but this is permissible because noise is 

already attenuated due to prior signal conditioning 

2.6 Optimization Opportunities  

Thus far, we have demonstrated the operation, modeling and validation of an integrated 

VCS in simulation and experimentally. Furthermore, we have demonstrated the ability of PI 

control to regulate the cabin temperature, which is the main function of the vehicle VCS. 

However, one question remains: are we regulating the cabin temperature optimally? That is, 

are we regulating the cabin temperature while consuming as little power as possible? As 

touched on in section 2.5, the VCS cooling capacity is a function of the evaporator air mass 

flow rate and the inlet and outlet air temperature differential, which is correlated with the 

compressor speed. Thus far, we have looked at cabin temperature regulation by only 

manipulating the compressor speed, while keeping the blower speed constant. However, is that 

fixed blower speed optimal? Is there another combination of compressor and blower speeds 

that yields the same cooling capacity while consuming less power? How can we determine this 
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optimal combination? These questions are addressed in chapter 3, by examining the use of 

extremum seeking control, an algorithm that can determine the optimal combination of inputs 

that meets required objectives while minimizing power consumption. 
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Chapter 3      

Extremum Seeking Control  

Thus far, we have demonstrated the ability to control a VCS in order to regulate the 

temperature of a space. This is done by continually manipulating the compressor speed using 

a PI controller while leaving other inputs constant. However, some important questions remain. 

Is the cooling capacity unique with respect to the inputs? That is, are there other sets of VCS 

inputs that yield the same VCS cooling capacity? If so, is there a unique set of inputs that also 

minimizes the power consumption?  

Before analyzing VCS behavior, we need to understand the theory behind dynamic 

system optimization. We seek an optimization algorithm that can identify the system inputs 

that minimize a desired quantity. Gradient descent is a popular optimization algorithm that 

minimizes a function by moving in the direction opposite of the gradient value at a given point. 

However, we also need an algorithm that can perform optimization on a dynamic system with 

no prior knowledge of the system’s performance function gradient. Extremum seeking control 

(ESC) is one such class of optimization algorithms with a wide range of academic and 

industrial applications. We examine its theoretical underpinnings along with its applications to 

VCS optimization.  

3.1 Optimization via Gradient Descent 

We first begin by discussing the fundamentals behind mathematical optimization, 

which is broadly defined as the selection of an element that best meets some chosen criteria. 

Optimization is commonly used to determine the input(s) to a function that minimizes or 

maximizes its value. In this thesis, we only consider function minimization. Gradient descent 

is the most common optimization algorithm, and is used extensively in machine learning, 

finance and engineering applications. Gradient descent converges to the minimum of a desired 
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function by evaluating the function’s gradient at a given point, and then moving in the direction 

opposite to the gradient’s value. In order to simplify analysis, we make the following 

assumptions:  

 

1) The function of interest is globally convex: Mathematically, a function : nJ R R  

is globally convex 1 2, ,  R  if the following equation is true:  

 1 2 1 2[0,1]: ( (1 ) ) ( ) (1 ) ( )J J J              (3.1) 

In other words, the above statement states that for any two points 1 2,  , J evaluated at 

any convex combination of those two points should be no larger than the convex combination 

of the function values at the two points. Graphically, this means that if we connect two points 

on the function surface with a line, then the function must lie below this line between those 

points. A convex function in 2
R  is depicted in Fig. 3.1.  Furthermore, the convex function has 

a single, global minima *  such that ( *) ( )J J    R . The gradient at the minimum 

value ( *) 0J   .  
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Figure 3.1 A graphical illustration of a convex function. Between any two coordinates

1 1( , ( ))J  , and 2 2( , ( ))J   the function must lie below a line connecting these two points. 

Optimization is often performed on convex functions because otherwise we may never 

converge to a final value. We desire that convexity holds globally so that we always converge 

to a function’s lowest value rather than a local minima. An example of a non-convex function 

is shown in Fig. 3.2. The non-convex function shown has two local minima, and thus parts of 

the function lie above a line connecting two points on the function surface. Fig. 3.3 shows an 

example of a globally convex function in 3
R .  
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Figure 3.2 A non-convex function. A line drawn between two points on the function 

does not always lie above the function evaluated between those points. 

 

 

Figure 3.3 
2 2( , )f x y x xy y   is a globally convex function in 

3
R  with a minimum at 

(0,0) . 
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2) We assume 1J C  , or in other words, the first derivative of the function is 

continuous.  

 

3) For now, we assume the performance function J is a static function (i.e. J does not 

vary with respect to time). We also assume to know the value of the gradient for all

 . We talk more about how valid this assumption is further below.  

 

With these conditions in place, the gradient descent formula is given as following:  

 ( )J    (3.2) 

where  is a positive definite scaling matrix, and ( )J   is the gradient vector evaluated at . 

For the discrete scalar case, we can rewrite the gradient descent algorithm as follows:  

 1

1

n n

n

dJ
c

d
 






 
 
 

   (3.3) 

where c is a positive scaling constant.  

Fig. 3.4 illustrates the discrete gradient descent algorithm in action. For the first 

iteration, the value of the gradient at the initial value of   is very negative. Using the equation 

above, this results in a large positive increase in the value of  . For the second iteration, the 

gradient evaluated at the new value of   is less negative than before, resulting in a smaller 

positive increase in  . This process repeats until we converge to the minimum of J , where the 

gradient is zero.  
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Figure 3.4 A visual example of a discrete scalar gradient descent algorithm applied to

( )J  , a convex function in
2

R . The algorithm successfully converges to the value of   

that minimizes J . 

3.2 Gradient Estimation 

From the example above, it is clear that once we know the function’s gradient at a given 

point, converging to the optimal value is fairly straightforward. However, there are two issues 

to tackle before we can perform gradient descent on an actual system. The first problem is that 

we have no prior knowledge of the performance function, other than that we assume it to be 

convex. Therefore, we also have no knowledge a priori about the performance function 

gradient with respect to the system’s input(s). The second problem is that we have assumed 

that the performance function is static (i.e. the function does not change with respect to time). 

This, however, is not true for dynamic systems. The output of a dynamic system can depend 

on the rate of change of the system’s input, which has repercussions when performing gradient 

descent. If we descend towards the minimum too quickly, we could excite system dynamics 

that will throw off the gradient estimate and result in improper convergence. Thus, any changes 
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in the input must occur slowly enough that we do not generate a significant transient response 

in the system output. This is referred to as quasi-static or quasi-steady state behavior. Assuming 

a quasi-static system with respect to the input dynamics is referred to as a time scale 

separation.  

Fig. 3.5 illustrates the differences between a dynamic, quasi-static and a static output 

of a second order dynamic system 
2( ) / ( ) 1/ ( 0.01 1)Y s U s s s    for ( ) [0,2]U s  . The static 

system response is the plant’s DC gain over the input range, with a constant gradient

/ 1dY dU  . The quasi-static response is generated by slowly varying the input 0 to 2 over 100 

seconds, and follows the static response very closely. The dynamic response is generated by 

varying the input from 0 to 2 over 10 seconds. Changing the input this rapidly excites this 

system’s dynamics, and the output does not match the static or quasi-static response. The 

gradient thus does not approximate the static response’s gradient, precluding effective system 

optimization. 
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Figure 3.5 The static, quasi-static and dynamic responses of the second order transfer 

function 
2( ) / ( ) 1/ ( 0.01 1)Y s U s s s    for ( ) [0,2]U s  .  

Our optimization method must be able to identify the unknown performance function 

derivative at a given point and perform gradient descent without exciting the system’s 

dynamics. 

3.3 Extremum Seeking Control  

Extremum seeking control is one such algorithm that accomplishes these goals. The 

basic algorithm works by slowly perturbing the system’s input to generate a local gradient 

estimate of the quasi steady state performance function of a given nonlinear plant and uses it 

to perform gradient descent to determine the set of inputs that minimizes the function. ESC 

traces its origins to a paper written by LeBlanc in 1922 [3], and was used by industry 

practitioners in the 1950’s and 1960’s. After that, the popularity of ESC waned until the turn 
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of the century, when Krstic and Wang published a proof of stability for the classical 

perturbation ESC algorithm described below [4]. Since then, ESC has become highly popular 

in academia and industry. ESC has been used to optimize a wide range of systems, from 

maximizing photovoltaic power point tracking [5] to minimizing the power consumption of 

VCS [2], which we investigate in detail towards the end of this chapter.  

3.3.1 The Basic Single-Variable Perturbation ESC Algorithm  

Fig. 3.6 outlines the standard single-variable perturbation based ESC used to determine 

the optimal inputs to a general nonlinear plant ( , )x f x   that minimizes its associated convex 

performance function ( )y J x . For simplicity, we analyze the algorithm in continuous time, 

but later chapters will address discrete implementation of this algorithm in software. The 

derivation presented below was sourced from [31].  

 

Figure 3.6 A block diagram of the classical perturbation ESC algorithm. 

The first step of perturbation ESC is to inject a low amplitude and low frequency dither 

signal, commonly a sinusoid sin( )a t , into the nominal plant input 0 . This generates a quasi-
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steady state sinusoidal output that contains information on the local performance function 

gradient. The plant output is approximated by the following equation:   

 0( ) sin( )y t y J a t   (3.4) 

where 0y is the nominal plant output, and J  is the local performance function gradient 
dJ

d
. 

Note that we assume we are perturbing the system slowly enough that the phase shift induced 

by the plant can be neglected. Next, the plant output passes through a high pass filter 

( )p

HP

s
H s

s 



, HP being the cutoff frequency, that removes the DC part of the response. 

The high pass filter output, ( )HPy t , is given by the following equation:  

 ( ) sin( )HP HP HPy t G J t    (3.5) 

where HPG is the high pass filter gain, given by 
2

1
( ( ))

1

HP p

HP

G mag H j




 

 
  
 

, and HP

is the filter phase shift, given by 1tan HP
HP






  
  

 
. The next step is to multiply the output by 

a demodulation signal sin( )a t to extract gradient information from the signal. After 

performing some trigonometric manipulation, the product of the two signals is given by the 

following equation:  

  
2

( ) cos( ) cos(2 )
2

HP HP HP

a
t G J t       (3.6) 

Although the integrator attenuates the high frequency component of ( )t , we pass the output 

through a low pass filter ( ) LP
p

LP

L s
s







 ,where LP  is the cutoff frequency, to further improve 

gradient estimation. Plugging in the formulas for HPG  and HP , we get the following low pass 

filter output.  
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  
2 2

1

2
( ) cos( ) cos(tan ( / ))

2 2 1 ( / )
HP HP HP

HP

a J a
t G J   

 


 


 (3.7) 

Using the trigonometric identity 1

2

1
cos(tan )

1




 


, we rewrite the above equation as 

follows:  

 

2 2

2 2
( )

2( )HP

a
t J




 

 
  

 
 (3.8) 

Armed with an estimate of the local performance function gradient, we can now 

perform gradient descent. We scale and integrate the derivative accordingly and obtain  . 

We add this term to the nominal input such that the new input to the plant moves towards the 

optimal value. Finally, we inject the sinusoid sin( )a t back into the input to repeat the process 

all over again. The new input to the plant is given as following:  

 0( ) sin( )t a t       (3.9) 

3.3.1.1 Choosing Algorithm Parameters 

For perturbation ESC to work well, we need to carefully choose the algorithm 

parameters. We consider the dither signal, filter design and integrator gain.  

Dither signal: As mentioned previously, the choice of the dither signal is very 

important. A sinusoidal dither is most common in literature, but other forms of dither signals 

such as square waves have been utilized successfully [17]. The dither signal must have a small 

amplitude relative to the plant gain and have a frequency slower than the dominant plant 

dynamics to ensure quasi-static (or quasi-steady state) performance. Varying the input too 

quickly may excite the plant which is problematic because the resulting system output may not 

be indicative of steady-state plant performance, and we may erroneously converge to 

suboptimal inputs.   

Filters: Filter design is also an important part of building an effective ESC. It is 

important for the high pass filter to attenuate the DC signal component, while passing the 
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sinusoidal plant response. On the other hand, we wish for the low pass filter to attenuate 

oscillating components while passing the low frequency gradient estimate. In general, literature 

suggests that setting HP LP     is sufficient [22].  

Integrator gain: The integrator gain k  determines the rate of adaption. Too high of a 

gain, and the system dynamics may be excited, while too small of a gain results in sluggish 

performance. For minimization, the gain should be negative, while for maximization, the gain 

should be positive. The integrator gain is often user-tuned through trial-and-error.  

3.3.2 Shortcomings of Perturbation ESC 

Perturbation ESC has been used to effectively optimize the behavior of a wide range of 

dynamic systems. However, there are some shortcomings of this approach. The first issue is 

that perturbation ESC has a large number of tunable parameters, from the integrator gain to the 

filter cutoff frequencies to the sinusoid’s characteristics. In order to achieve optimal 

convergence, the user must tune all of these parameters perfectly which is inherently difficult. 

The second problem is that using an oscillating dither signal results in practical, but not 

asymptotic stability around some optimal point. Although there are algorithms that 

asymptotically reduce the dither amplitude as one gets closer to the minimum value, this 

doesn’t address the other shortcomings of perturbation ESC. Lastly, perturbation ESC induces 

a sinusoid in the system’s output at a frequency slower than the plant dynamics. This signal is 

then filtered and averaged when generating a gradient estimate. However, averaging the effect 

of the perturbation on the system induces a second, slower time scale separation in the 

optimization procedure. This is problematic, especially when performing ESC on vapor 

compression systems due to their inherently slow dynamic behavior [9]. Convergence to the 

optimal value could take as long as several hours, which is not ideal. We thus seek a simple, 

yet effective ESC that doesn’t use a slowly varying perturbation to generate a gradient estimate. 

One such method is referred to as least squares based extremum seeking and is described 

below.  
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3.3.3 Least Squares Based Extremum Seeking 

Least squares based extremum seeking is an ESC algorithm developed by Hunnekens 

et al. in 2014 [10]. The algorithm’s block diagram is outlined below.  

 

 

Figure 3.7 A closed loop block diagram of the algorithm described in [10]. 

This algorithm works by continually generating a first order least squares fit on a 

moving buffer of past performance data over the last T seconds. This least squares fit contains 

an estimate of the performance function gradient that can be used in a gradient descent 

algorithm to converge to the optimal value. Because no perturbation is utilized in this 

algorithm, the controller can achieve asymptotic stability with one less time scale separation 

than perturbation ESC, leading to potentially faster convergence [10]. We detail the 

algorithm’s fundamentals below.  

3.3.3.1 Least Squares 

The backbone of this algorithm is the least squares method.  Least squares is a well-

known method used to approximate the solution of an overdetermined system. We use the 

ordinary least squares method, where the approximate solution to an overdetermined system is 

a linear function of the form y m b  . This is also referred to as the line of best fit. We wish 

to determine the coefficients m and b that minimizes the sum of the distances squared between 
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the individual points and the approximate linear solution. This is done by projecting the vector 

of data points onto the subspace spanned by the linear function. An example of this is shown 

in Fig. 3.8.  

 

 

Figure 3.8 An example of ordinary least squares applied to a set of data points

1 1 2 2( , ), ( , )...( , )n ny y y   . We organize the data points into corresponding  and Y 

matrices, and then use a matrix projection operator 
1ˆ ( )T TY    to determine the 

linear coefficients that minimizes the sum of the squared distances between data points 

and the linear approximation. 

The least squares method easily lends itself to extremum seeking. If we have some 

available data on the performance function in some region over time T, we can easily generate 

a least squares fit on the data and obtain a gradient estimate, which is simply the parameter m 

from the last example. With this gradient estimate, we can perform gradient descent and 

determine a more optimal input value. We continuously repeat this procedure until we 

converge to the optimal value that minimizes the performance function.  

An important distinction between perturbation ESC and least squares ESC is that least 

squares ESC requires initialization. If the system is at steady state when the least squares ESC 

is activated, then the calculated gradient will be zero and the system will not adapt over time. 

However, if we set 
i

P

T
  , where P is a change in input value over a time period iT , and collect 

the resulting system power consumption over that period, we allow the controller to calculate 
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performance function gradient with respect to some input range prior to activating the 

controller (allowing it to send an input adjustment signal to the plant). Once it is activated, the 

controller starts with a good initial estimate of the performance function gradient and adjusts 

the input accordingly. This effectively sets the algorithm “in motion” and it will converge to 

the optimal value over time.  

3.3.3.2 Choosing Algorithm Parameters 

Unlike perturbation ESC, least squares ESC only has three parameters to tune: the 

integrator gain k, the time buffer length T and the controller initialization value P. Like before, 

we want the gain to be small enough to not excite the system dynamics but also be large enough 

so that behavior isn’t sluggish. We want the buffer length T to be small enough to yield a 

somewhat local least squares fit on a section of the performance function. On the other hand, 

we don’t want T to be so small that the controller becomes susceptible to noise or disturbances. 

And finally, we want the initialization value P to be small enough such that it doesn’t change 

the input too quickly, but large enough to generate a robust estimate of the performance 

function gradient.  

3.3.3.3 Issues with Least Squares ESC  

Despite the simplicity and ubiquity of the least squares approach, there are a few 

intrinsic problems with the algorithm. We detail these below.  

Computational expense: An issue with the current implementation of least squares is 

that computing the least squares solution is expensive, especially for large data buffers. 

Performing a matrix inverse on large data matrices isn’t a problem for a computer, but for 

smaller embedded controllers, this may prove to be a significant barrier to implementation. An 

ideal algorithm would not use costly computations every iteration.  

A lack of persistence of excitation: Another issue with the algorithm presented above 

is that estimating the gradient is only possible if there is enough data to generate a linear fit. 

This problem is avoided by initializing the controller as mentioned before, but if the values of 

  in the buffer were instead all the same or very close to one another at some point in time, 

then the linear fit could be undefined or erroneously large in magnitude. This could happen, 
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for example, when we get very close to the optimal input value. Furthermore, if the gradient 

measured at some time is zero, then the gradient descent algorithm would essentially be “turned 

off” for all future time. If the optimal function value changes over time, as is true for many real 

life dynamical systems, then gradient descent may not converge to the optimal value. 

Therefore, we need a persistently excited system to generate sufficiently data for all time t such 

that we can always generate accurate gradient estimates. For an arbitrary input signal ( )u s , 

persistence of excitation is defined as following:  

 2

0( )

t t

t

u s ds t


   (3.10) 

where t is an arbitrary time range, and 0 is a positive constant.  

With these problems in mind, we seek an algorithm that can generate a gradient 

estimate as quickly as least squares ESC can while minimizing computation cost and 

guaranteeing persistence of excitation. Recursive least squares is one such algorithm as is 

described below.  

3.3.4 Recursive Least Squares (RLS) ESC 

Recursive least squares ESC (also referred to as time varying ESC in the literature [32]), is an 

advanced, discretely implemented controller that utilizes a recursively formulated least squares 

algorithm to identify the performance function gradient and converge to the optimal value. This 

approach also entails one less time scale separation than classical perturbation ESC, which allows for 

fast convergence.  

3.3.4.1  Recursive Least Squares (RLS) Gradient Estimation with Forgetting Factor 

In traditional least squares, when receiving a new data point ( , )n ny  at time n, we have 

to recalculate the least squares solution for all n data points to determine the gradient m. This 

is an extremely expensive computation, especially when calculating the matrix inverse
1( )T  
 

for each time step. On the other hand, when receiving a new data point ( , )n ny  at time n, the 

RLS algorithm can recalculate the new performance function gradient only using the current 
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data and data from the previous time step, n-1. A detailed derivation of the RLS algorithm can 

be found in [23]. The RLS algorithm is as follows:  

 

 n new input value   (3.11) 

 ny newoutput value  (3.12) 

 1 1
1

1

1

1

T

n n n n
n n T

n n n

V V
V V

V

 

  
 





 
  

 
 (3.13) 

 
T

n n nV   (3.14) 

 1
ˆ

n n n ne y      (3.15) 

 1
ˆ ˆ

n n n ne     (3.16) 

 ˆ (1)n nm   (3.17) 

  is the forgetting factor, a value between 0-1 that exponentially reduces the weight of 

previous data points. A value closer to 0 means that we have a more local gradient fit, but too 

low of a value makes the algorithm susceptible to noise. A value closer to 1 is more robust to 

noise but the gradient estimate is often less accurate.  

A new variable introduced in the algorithm is V which is simply the projection operator 

1( )T  
 rewritten using the Woodbury Matrix identity. This identity saves us from re-

computing the matrix inverse every iteration. Again, more detail on this can be found in [23].   

In order to operate the algorithm recursively, we need to continually feed the values V and ̂

back into the algorithm once we have determined the new gradient value. We initialize the 

recursive algorithm by defining 0V and 0̂ . In many cases, setting 0V  as the identity matrix 

and 0̂ as a column vector of one’s prior to activating the controller is sufficient. However, 

generating good initial values of 0V and 0̂ can significantly accelerate gradient estimation. 

This can be done by using the initialization approach used in traditional least squares, by setting 
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i

P

T
   for some period of time iT   allowing the algorithm to determine the gradient value and 

then activating the algorithm, allowing it to adjust the input.   

With RLS being our new gradient estimator, the RLS ESC algorithm is illustrated as 

follows:  

 

Figure 3.9 A block diagram detailing the implementation of discrete RLS ESC on a 

sample plant. 

Persistence of excitation is achieved in this framework by injecting a small amplitude 

sinusoid sin( )a t  into the function input, as seen above, so that the input always varies by 

some amount, but not large enough to disrupt near-asymptotic converge to the optimal value. 

The input to the system is thus defined as 1 0
ˆ sin( )n n a t       .  

 It is clear that RLS ESC has a number of advantages over perturbation ESC. RLS ESC 

has theoretically fast performance while also incurring smaller computational costs than 

ordinary least squares ESC. Furthermore, the user only has to tune three algorithm parameters: 

the gain k, the forgetting factor   and the initialization constant P. This makes RLS ESC an 

attractive optimization algorithm. However, before we implement this algorithm on the 
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simulated or experimental VCS described in Chapter 2, we first need to parse the VCS 

literature to determine whether ESC is a viable optimization strategy for this class of systems, 

as well as to determine the specific control architecture used to achieve beneficial results.  

 3.4 ESC Applications to VCS  

The first substantive research paper written on the use of ESC on vapor compression 

systems was written by Burns and Laughman in 2012 [2]. Burns and Laughman observed that 

the cooling capacity of VCS was not unique with respect to its inputs; a number of different 

combination of evaporator fan and compressor speeds yielded the same cooling capacity. 

Furthermore, [2] determined that the power consumption, the performance metric of interest, 

was convex with respect to the input combinations. In other words, there was a unique 

combination of inputs that yielded a given cooling capacity while also minimizing the system’s 

power consumption. Fig 3.10 is a diagram from [2] illustrating power convexity with respect 

to the VCS input space.  

 

Figure 3.10 A graphical representation from [2] of power convexity with respect to the 

VCS input space. The convex function represents a constant VCS cooling capacity of

1000Q W . The goal of ESC is to minimize this function by going from a suboptimal 

input combination 0V  to minV . 
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Burns and Laughman then implemented a perturbation-based ESC on an experimental 

VCS setup that reduced the VCS power consumption by from 750W to 400W while 

maintaining a zone at a given reference temperature [2]. The ESC was added to an existing 

closed loop PI control architecture that maintains the zone temperature by manipulating the 

compressor speed (the same PI architecture was used to regulate cabin temperature in the 

previous chapter). Fig. 3.11 details the control architecture used in this paper. The stabilized 

VCS refers to PI control applied to the VCS such that it tracks a reference temperature. The 

ESC forms the “outer loop” of this control scheme as it slowly perturbs the stabilized system 

to search for the energy minimum. Since we assume our performance function is quasi-static, 

the PI control must be able to stabilize the system quickly in response to disturbances and 

changes in evaporator fan speeds without generating large transients that could throw off the 

ESC. Note that the condenser fan speed remains a constant value. 

 

Figure 3.11 The control architecture utilized by [2].  
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The ESC slowly perturbed the evaporator fan speed that was previously held constant. 

When the fan speed was increased, the cooling capacity also increased, resulting in a drop in 

zone temperature. To track the temperature set point, the PI controller decreases the 

compressor speed until the zone temperature tracked the temperature set point again. This new 

combination of compressor and evaporator fan speed yielded a lower power consumption than 

the prior input combination. The ESC interpreted the increase in fan speed with a decrease in 

power, generating a corresponding estimate of the cost function gradient and further increased 

the evaporator fan speed until the power consumption reached a minimum at 400W, 35% lower 

than its original value [2]. Fig 3.12 shows the experimental results from [2] showing the two 

actuator speeds converging to their respective optimal values while maintaining a constant 

zone temperature.  

 

Fig 3.12 Experimental results from [2]. Over the course of two hours, the ESC 

determines an optimal combination of compressor and evaporator fan speeds that 

minimizes the power consumption. Even as this process occurs, the VCS successfully 

keeps the room temperature at a pre-determined constant value. 

Since this paper was published, ESC has become widely utilized in the VCS controls 

community, with a proliferation of new algorithms and applications. ESC has been used to 

optimize VCS subcooling [22], maximize the COP of transcritical CO2 heat pumps [24], and 

minimize the power consumption of chilled water systems [25], to name a few examples. 

Advances in ESC algorithm design have also been leveraged to further improve VCS 

performance. Multivariable ESC is one such example of this, where the controller 
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simultaneously modulates more than one actuator. For VCS’s, this often entails modulating 

both the evaporator and condenser fans, whereas traditional ESC modulates one fan speed 

while often holding the other constant. Some examples of multivariable ESC use on a VCS 

can be found in [26] or [27]. The use of RLS ESC (also referred to in the literature as time-

varying ESC) also extends to VCS. Burns et al. applied a time-varying ESC approach on a 

VCS by modulating the evaporator fan speed while using the compressor to control a zone 

temperature, an architecture similar to his paper in 2012 [9]. Using time varying ESC resulted 

in convergence to optimal parameters in under an hour, as opposed to two hours for 

perturbation ESC [9]. These experimental results validate the use of ESC on VCS, and 

experimentally validate the faster convergence of time varying ESC over perturbation ESC.  

3.5 Optimization of No-Idle VCS 

ESC has been established as a viable and effective optimization strategy through 

theoretical analysis and experimental validation performed on a wide range of vapor 

compression systems. The next step, naturally, is to determine whether these results also extend 

to no-idle battery operated VCS such as the NITE. Can ESC minimize the power consumption 

of these types of systems, and maximize their battery life? We explore the implementation of 

ESC on the simulated system in Chapter 4, and implementation of ESC on the experimental 

setup in Chapter 5. In particular, we examine the use of single variable perturbation ESC, least 

squares and RLS ESC on these systems, as all three of these techniques are simple to 

implement and the literature has established their efficacy.  
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Chapter 4     

Extremum Seeking Control on the Simulated 

Integrated NITE System 

After detailing the simulated and experimental integrated NITE system in Chapter 2, 

and analyzing ESC and its applications in Chapter 3, we now have the tools to implement ESC 

on the simulated and physical system.  This chapter will detail implementation in simulation, 

while the following chapter will discuss experimental implementation.   

The basic VCS control scheme presented at the end of chapter 2 was PI control 

regulation of the cabin temperature by compressor speed modulation. We utilize this control 

architecture because, as outlined in section 2.5, the compressor speed directly affects VCS 

cooling capacity. However, the evaporator fan speed, an actuator that also directly influences 

the cooling capacity, remained constant. We now know from literature that VCS power 

consumption is convex with respect to these two inputs for a given cooling capacity [2]. That 

is, there exists an optimal combination of these two actuators that simultaneously minimizes 

power consumption and achieves desired temperature regulation. For our system, this means 

that determining the optimal input combination could extend battery life while meeting 

passenger cooling requirements. Researches have utilized various types of ESC on VCS in 

conjunction with PI control architecture to meet these two goals, as discussed towards the end 

of Chapter 3. Furthermore, research suggests that RLS and least squares (LS) ESC may 

converge to these inputs faster than perturbation ESC (P-ESC) can. We wish to determine 

whether these results hold true for the NITE system as well. In this chapter, we discuss the 

design, implementation and analysis of three different ESC algorithms (P-ESC, LS-ESC and 

RLS-ESC) on the simulated system.  
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4.1 NITE System Power Convexity 

ESC minimizes a function with respect to its inputs as long as this function is convex. 

Although [2] proved that VCS power is convex with respect to inputs, it is a useful to map out 

the NITE’s performance function ourselves prior to ESC implementation. Generating a 

performance function map will allow us to verify the convexity of the function and to learn the 

location and value of the function’s minimum. This way, we can know with certainty whether 

the algorithms tested in this chapter converge to the most optimal point.  

To determine this, we consider the following scenario: We have a modeled truck cabin 

initially at 35°C that we want to cool to 21°C. We have two vehicle occupants, an ambient 

temperature of 35°C and an air recirculation of 90%. The rest of the integrated model is 

parametrized as outlined in Chapter 2 for a sleeper cabin. Using basic PI control, we can 

modulate the compressor speed to pull down the cabin temperature to the desired value from 

T= 0 to 3000s, while keeping the evaporator fan speed fixed at some suboptimal value (note 

that the condenser fan is always fixed at 70PWM in this thesis since we are considering only 

single variable ESC). Once the cabin temperature reaches steady state, at T=3000s we start to 

slowly ramp the evaporator speed up at a rate of 0.001PWM/sec until T=30000s, as seen in 

Fig. 4.1. Increasing the blower speed increases the cooling capacity, which lowers the cabin 

temperature, resulting in the PI controller decreasing the compressor speed in order to track 

the set point, as also seen in Fig. 4.1.  This new combination of compressor and evaporator 

speeds yields a corresponding power consumption, shown in Fig. 4.2. Because the evaporator 

speed changes slowly, this procedure generates a quasi-steady state map of the system power 

consumption with respect to the compressor and blower speeds. We performed this procedure 

on the simulated system, and the power consumption was found to be mostly convex with 

respect to the two inputs; there was a unique combination of compressor and evaporator fan 

speeds, 1565rpm and 126-128PWM respectively, which minimized the total power 

consumption to roughly 523W while maintaining the vehicle cabin temperature at 21°C. Fig. 

4.3 illustrates the convex relationship between power and system inputs. Fig. 4.4 shows the 

cabin temperature over the course of the mapping procedure, and Fig. 4.5 depicts the PI 

controller implemented in simulation used to maintain the cabin temperature at the set point.  
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Figure 4.1 The change in compressor and blower speeds over the course of the mapping 

procedure. The large initial compressor RPM transient is a result of pulling down the 

cabin temperature to the set point. As the blower speed increases, the compressor speed 

decreases in order to maintain a constant cabin temperature.  

 

Figure 4.2 The total VCS power over time. The initial power transient is due to the high 

compressor speeds. From 3000 to 30000 seconds, the power curve can be approximated 

as a convex function.  
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Figure 4.3 The quasi-static system power curve with respect to the evaporator blower 

speed. As the blower speed increases, the compressor speed decreases in order to 

maintain a constant vehicle cabin temperature. The total power consumption is 

minimized around a blower speed of 126-128 PWM and a compressor speed of 1565 

RPM. 
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Figure 4.4 The cabin temperature over time, starting from an initial temperature of 

35°C. As the blower speed increases during the mapping process, the PI controller 

decreases the compressor speed to keep the cabin temperature at 21°C. 
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Figure 4.5 The PI controller utilized in simulation. 

4.1.1 A Note on the Condenser Fan Speed 

The condenser fan speed was held constant in the previous example, but what if we 

repeated the procedure above for the condenser fan instead while holding the evaporator speed 

constant? Would this also yield a convex relationship? The answer to this is no. As seen in Fig. 

4.6, the power is not convex with respect to the condenser fan speed (note that for the NITE’s 

condenser fan, lower PWM corresponds with a higher speed). Therefore, our intuition in using 

the evaporator blower as the primary input variable of interest is correct. Note that, as 

mentioned in the previous chapter, some researchers have used the condenser fan for 

optimization purposes, but we assume it remains a constant. NITE manufacturers set the 

condenser fan speed at a fixed 70PWM in operation.  
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Figure 4.6 Total power consumption with respect to the condenser fan speed is not 

convex. The evaporator blower is held at an arbitrary constant 153 PWM. 

4.2 Implementing ESC on the Simulated System  

Having demonstrated power convexity, we can now utilize ESC techniques to identify 

and converge to input combinations that minimize power consumption and extend battery life. 

We implement and examine the performance of the three types of ESC highlighted in the 

previous section: perturbation ESC (P-ESC), least squares ESC (LS-ESC) and recursive least 

squares ESC (RLS-ESC).  

The simulation scenario is similar to the one used to determine the power convexity 

earlier. The evaporator blower speed is initially set at an energy suboptimal 107PWM. From 0 

to 3000 seconds, we use PI control to pull down the cabin temperature from 35°C to 21°C. 

From 3000 seconds onwards, we turn on the ESC and allow it to determine the optimal set of 

inputs. Note that for both LS-ESC and RLS-ESC, we need to initialize the controller with data 

prior to activating the controller, as outlined in Chapter 3. In this case study, this is done by 

slowly increasing the blower speed from 107 to 112 PWM from 3000 to 5000 seconds. At 
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5000 seconds, the ESC is started by activating the "enable_adj" step function seen in the figures 

below. 

Table 4.1 lists all simulation parameters used for the three different ESC controllers. 

These values were chosen using the guidelines listed in the previous chapter along with trial 

and error to achieve the best possible performance for each algorithm. Figures 4.7, 4.8 and 4.9 

show the P-ESC, LS-ESC and RLS-ESC respectively implemented in Simulink. These 

algorithms output a change in evaporator speed “ESC_adj” that is sent to the evaporator blower 

Simulink block as highlighted Figure 4.10.  
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Table 4.1 ESC Parameters used in Simulation 

ESC 

METHOD 
Parameter Variable Value 

P
-E

S
C

 

High Pass Filter Cutoff Frequency HP  0.002 

Low Pass Filter Cutoff Frequency LP  0.001 

Integrator Gain k  -0.05 

Sinusoidal Dither Amplitude a  1 

Sinusoidal Dither Frequency   0.002 

R
L

S
-E

S
C

 

Forgetting Factor   0.997 

Integrator Gain k  -0.0006 

Initialization Time Range iT  2000s 

Initialization Input Range P  2 

Persistent Excitation Signal Amplitude a  0.01 

Persistent Excitation Signal Frequency   0.02 

L
S

-E
S

C
 

Data Buffer Length T  1000s 

Integrator Gain k  -0.00063 

Initialization Time Range iT  2000s 

Initialization Input Range P  2 

P
I 

Proportional Gain pK  5 

Integral Gain iK  2.5 
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Figure 4.7 P-ESC implemented in Simulink. The block receives the total system power 

and outputs an adjustment in the blower speed in the direction of a decrease in power. 

 

Figure 4.8 LS-ESC implemented in Simulink. The block receives the system power 

consumption and the blower speed. These two quantities are each stored in a 

corresponding data buffer which is used to generate a corresponding gradient value 

using the least squares algorithm. The gradient is then scaled and integrated to generate 

an evaporator speed adjustment used to minimize the power consumption. 
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Figure 4.9 The RLS algorithm implemented in Simulink. The algorithm receives the 

current evaporator blower speed and system power consumption, and uses the RLS 

algorithm to generate a corresponding gradient estimate that is scaled and integrated to 

generate an adjustment to the blower speed. 

 

Figure 4.10 The evaporator blower configuration in Simulink. The default speed is set 

at an energy suboptimal 107PWM. When implementing P-ESC, we use the manual 

switch to select the top case, which is a constant blower speed. However, when 

implementing RLS/LS-ESC, we select the bottom case, which ramps the blower speed 

from 107 to 112 PWM from 3000 to 5000 seconds. The ESC_adj tag is sent from the 

respective ESC algorithm chosen for the simulation, and adjusts the blower speed 

correspondingly to minimize the total power consumption. 
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4.3 Simulation Results  

All three ESC algorithms successfully converged to the optimal blower speed (126-128 

PWM) which minimizes the power consumption to roughly 523W. As expected, the RLS-

ESC/LS-ESC discovered the optimal blower speed fastest; both methods reached the optimal 

blower speed in roughly 4000 seconds when including the 2000 seconds needed to initialize 

the controller. On the other hand, P-ESC took 12000 seconds to reach the optimal blower 

speed. Fig. 4.11 shows the blower speeds over time for each of the three algorithms. Fig. 4.12 

shows the corresponding system power consumption over time, along with the power 

consumption of the suboptimal baseline case (PI control with the blower speed fixed at 

107PWM for all time). Fig. 4.13 depicts the compressor speeds for the three ESC algorithms, 

as well as for the baseline case. Fig. 4.14 shows the cabin temperature over time for the three 

ESC algorithms.  
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Figure 4.11 Blower speeds over time for the three ESC algorithms. All three algorithms 

start from a suboptimal 107PWM and converge to the optimal blower speed, with the 

RLS/LS-ESC algorithms converging faster than P-ESC. The small oscillations in the 

blower speed generated by LS-ESC is a benign byproduct of the relatively long time 

buffer length, which is ideal for dynamic systems with relatively long time constants. 
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Figure 4.12 The system power consumption over time for the three ESC cases, along 

with the power consumption of the baseline case. All three ESC algorithms converge to 

the minimal power consumption of 523W, while the suboptimal case yields a power 

consumption of 553W. 
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Figure 4.13 The compressor speeds corresponding to the three ESC approaches and the 

baseline case. All three ESC algorithms converge to the optimal compressor speed. 
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Figure 4.14 The cabin temperature over time once ESC is activated, along with the 

baseline case. All approaches track the cabin temperature very well with minimal 

deviations from the temperature setpoint. 

The above results demonstrate the successful implementation of ESC. However, the 

main purpose of ESC implementation in this case is to demonstate battery life extension. Fig. 

4.15. shows the battery state of charge over time for the four cases, and Fig. 4.16 summarizes 

the results by highlighting the battery run time for each of the four cases.  
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Figure 4.15 The battery state of charge over time for each of the four cases. The time it 

takes for the battery to drain to 0% charge for the PI, P-ESC, and RLS/LS-ESC cases is 

25,940s, 26,919s, and 27,158s resepectively. The P-ESC and RLS/LS-ESC algorithms 

yield a 3.7% and 4.7% increase in run time respectively. 

 

Figure 4.16 A bar plot depicting the runtime of the four cases in minutes. The P-ESC 

runs for 16 minutes longer than the baseline case, while the RLS/LS-ESC cases run for 

20 minutes longer than the baseline case. Again, this is a 3.7% and 4.7% increase in 

runtime respectively. 
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4.4 Summary and Next Steps  

  Thus far, we have demonstrated the use of ESC algorithms to minimize the power 

consumption of the simulated NITE system while maintaining the vehicle cabin temperature 

at a constant value. Simulation results show a 4.7% and 3.7% increase in battery life using 

RLS/LS-ESC and P-ESC respectively. These results validate the use of ESC to optimize VCS 

and also validate the superior performance of RLS/LS-ESC over P-ESC. While RLS/LS-ESC 

have virtually the same performance characteristics, RLS-ESC is much less computationally 

intensive than LS-ESC, and is also generally easier for a user to tune. With these results in 

hand, we now turn to the experimental system. Will these simulation results mirror ESC 

performance on the experimental system? How robust are these algorithms to noise and 

disturbances? What are the challenges of implementing these algorithms in LabVIEW instead 

of in Simulink? We discuss all of these questions and more in the next section.  
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Chapter 5     

Extremum Seeking Control on the Experimental 

Integrated NITE System  

In the previous chapter, we implemented ESC on the simulated integrated NITE 

system. Results showed that the use of ESC modestly improved energy efficiency and extended 

battery life. LS-ESC and RLS-ESC were the most effective at improving run time, with P-ESC 

also demonstrating some power savings over the baseline case. Naturally, the next step is to 

investigate whether these results predict ESC performance on the experimental integrated 

system as well. However, experimental implementation is not as straightforward: there are a 

number of fundamental differences between the simulated and experimental systems that need 

to be considered. For instance, the simulated system was developed entirely in 

MATLAB/Simulink while the experimental system interfaces with LabVIEW. Furthermore, 

unlike the simulated system, the experimental system is subject to noise and external 

disturbances which could affect controller performance. And lastly, we need to ensure that 

industry operators can easily understand and operate the software. Thus, in this chapter, we 

discuss the implementation of P-ESC, LS-ESC and RLS-ESC on the experimental system 

using LabVIEW with an emphasis on developing robust and intuitive controllers.   

5.1 ESC Development in LabVIEW  

 ESC algorithm complexity, along with the large number of tunable parameters often 

poses a significant barrier to adoption. To mitigate these factors, we developed an intuitive 

front panel user interface so that industry practitioners who do not have prior ESC experience 

can operate the controller effectively. The front panel can be seen in Fig. 5.1, and a detailed 

description is given below.  
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Figure 5.1 The LabVIEW front panel developed for ESC implementation on the 

physical system.  
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5.1.1 LabVIEW Front Panel Inputs 

  The inputs are the values chosen by the operator. Starting from the top, we set the 

desired cabin temperature set point. Below that, we select the desired control algorithm to use 

(P-ESC, LS-ESC and RLS-ESC), or lack thereof (None), and also set the PI controller gains 

used to regulate the cabin temperature. After determining which algorithm to use, we can now 

input the chosen controller’s parameters.  

P-ESC: The user determines the filter coefficients along with the dither characteristics 

and ESC gain. Note that because LabVIEW is normally operated in discrete time, we need to 

ensure the filter transfer function coefficients are that of a discrete, and not continuous transfer 

function.  

To go from a continuous to discrete function, use the c2d function in MATLAB and 

specify the time step length along with the conversion method of choice. This thesis utilizes a 

time step of 1 second along with a zero order hold approximation to obtain the discrete filter 

coefficients.  

LS-ESC: The user chooses the initialization time range length iT  by setting its start 

and end time, 2T  and 3T  respectively, along with the initialization input range P, data buffer 

length and ESC gain.  

RLS-ESC: Like with LS-ESC, the user sets the initialization time and input range. 

Additionally, the user determines the ESC gain, forgetting factor and also chooses the initial 

values of 0V  and 0 . Setting 0V  as the identity matrix and 0  as a vector of ones should be 

sufficient because, if the initialization time and input range are selected well, then the 

parameters should rapidly converge to the appropriate values prior to algorithm activation.  

Finally, we finish by selecting the experiment end time.  

5.1.2 LabVIEW Front Panel CAN Configuration  

Here, the user selects the module interface through which CAN communication will 

occur, as well as the specific messages to read or write. As mentioned in chapter 2, we utilize 

the NI 9862 module to communicate with the NITE. In the figure, CAN1 refers to the module’s 
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interface in the LabVIEW software; select it to communicate with that module specifically. 

CAN communication with the NITE is established by a document produced by Bergstrom 

specifying the message identifiers along with their payloads. Here, we read the NITE’s 

compressor speed, power consumption along with voltage and current, and write an override 

CAN message to set the initial speed of its actuators (evaporator blower, compressor and 

condenser fan) at the start of the experiment. As seen in the Fig. 5.1, there are a series of 

numbers in the override CAN frame. According to the NITE CAN communication document, 

the first number, 111 tells the NITE that this message will override its default component 

speeds. The numbers 140, 40 and 70 are the user determined PWM speeds of the blower, 

compressor and condenser fan respectively.  

The LabVIEW block diagram takes in all of these signals and manipulates them 

accordingly. In particular, the PI controller manipulates the compressor speed PWM and the 

ESC manipulates the evaporator blower speed as was implemented in the previous chapter. 

More detail on CAN communication and the specific LabVIEW code used can be found in 

Appendix B.  

5.1.3 LabVIEW Front Panel Outputs and Data  

As seen in the above figure, the front panel displays a number of pertinent outputs to 

the user. Starting from the top, we can read the elapsed experiment time, the system voltage, 

current and power draw, the temperature at a number of different locations as well as the PID 

adjustment signal, current evaporator blower speed and gradient estimates generated by 

RLS/LS-ESC. Furthermore, output data is also represented graphically as seen in the above 

figure, as well as in Fig. 5.2 below. Note that the battery chart seen above represents a 

“fictitious battery” since the NITE unit is hooked up to a wall power supply. This fictitious 

battery is based off of the energy capacity of the four Trojan AGM battery bank used by 

industry practitioners to power the NITE. We calculate the total energy capacity of the batteries 

assuming each battery supplies 80 amp hours of current at 12V, for a total energy capacity of 

13,824,000 Joules. We approximate a power draw by continually subtracting the system power 

consumption every second from this value until it reaches zero.  
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Figure 5.2 Additional graphs showing different temperature, pressure and component 

states of the integrated NITE system.  
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5.2 Determining NITE Power Convexity   

Similar to the procedure outlined in section 4.1 for the simulated NITE, we wish to 

determine whether the NITE’s power consumption is convex with respect to its inputs for a 

constant cabin temperature. We choose a similar scenario as before: we wish to minimize 

power while maintaining a cabin temperature of  22.5°C with a cabin heat load of 500W. From 

T = 0 to 3000s, we only use the PI controller to modulate the compressor speed to converge to 

the desired temperature and we keep the evaporator fan speed fixed at a suboptimal value of 

140 PWM. Once the cabin temperature reaches steady state, at T=3000s we start to slowly 

ramp the blower speed up at a rate of roughly 0.002 PWM/sec until T=27000s, as seen in Fig. 

5.3. As the blower speed increases, the compressor speed falls precipitously as also depicted 

in Fig. 5.3. Like in simulation, the power consumption was found to be convex with respect to 

the inputs. However, as Fig. 5.4. shows, the performance function here is much “steeper”; that 

is, the power consumption decreases by almost 200W going from the least optimal blower 

speed (530W at 140-145 PWM) to the most optimal blower speed (350-360W at 170-180 

PWM). The simulated system, on the other hand, only showed a drop of roughly 30W between 

its most optimal and suboptimal input combination. As mentioned in chapter 2, the discrepancy 

between the simulated and experimental system is due to a lack of full model parameterization, 

which prevented cross-validation. It is likely that the compressor by and large contributes most 

to this discrepancy because it consumes the most power and was also not parameterized aside 

from its volume owing to a lack of data on all of its states. Consequently, battery life extension 

may be much more significant for the physical unit since there is a lot more room for power 

savings. However, because VCS performance tends to vary from run to run, some variation in 

the shape and characteristics of the performance function can be expected. Fig. 5.5 shows the 

cabin temperature tracking the temperature set point well over the course of the experiment.  
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Figure 5.3 Component speeds over time. The compressor speed converges to roughly 

25-30 PWM.  

 

Figure 5.4 The NITE power consumption as a function of the blower speed. The 

relationship is convex, enabling real time optimization of this system.  
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Figure 5.5 Cabin temperature over time. The temperature set point was tracked well 

through the course of the experiment.  

5.3 Implementing ESC on the Experimental System  

With power convexity verified, we implement and analyze the performance of P-ESC, 

LS-ESC and RLS-ESC. We use the same heat load and cabin temperature set-point as before. 

The evaporator blower speed is again initially set at an energy suboptimal 140 PWM. For P-

ESC, we use PI control to regulate the cabin temperature for the first 3000 seconds, and activate 

the ESC algorithm from 3000 seconds onwards and allow it to determine the optimal 

combination of inputs. For LS-ESC/RLS-ESC, we follow the same procedure, except at 3000 

seconds, we instead perform the initialization procedure for iT   seconds and then activate the 

ESC.  

Table 5.1 lists all simulation parameters used for the three different ESC controllers. 

These values were chosen based on guidelines listed in the previous chapter along with trial 

and error to achieve the best possible performance. Note that the parameter values here are 

somewhat different than in simulation due to different system characteristics and additional 

factors affecting performance. For example, the PI gains used here are lower than those used 

in simulation to improve algorithm robustness to noise: high gain values increase controller 
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reactivity to disturbances in cabin temperature which could then excite system dynamics and 

interfere with ESC optimization. Note that disturbances and sensor noise induce a persistent 

excitation in signals, removing the need for an external persistent excitation signal for RLS-

ESC.  

Table 5.1 ESC Parameters used in Experimental Implementation 

ESC 

METHOD 
Parameter Variable Value 

P
-E

S
C

 

High Pass Filter Cutoff Frequency HP  0.0008 

Low Pass Filter Cutoff Frequency LP  0.0008 

Integrator Gain k  -0.002 

Sinusoidal Dither Amplitude a  2 

Sinusoidal Dither Frequency   0.0008 

R
L

S
-E

S
C

 

Forgetting Factor   0.9978 

Integrator Gain k  -0.002 

Initialization Time Range iT  2000s 

Initialization Input Range P  8 

Persistent Excitation Signal Amplitude a  N/A 

Persistent Excitation Signal Frequency   N/A 

L
S

-E
S

C
 

Data Buffer Length T  1000s 

Integrator Gain k  -0.0018 

Initialization Time Range iT  2000s 

Initialization Input Range P  8 

P
I 

Proportional Gain pK  1.5 

Integral Gain iK  0.12 

The LabVIEW code used to implement these algorithms can be found in Appendix B. 

To account for variation in environmental conditions, we ran each ESC algorithm twice.  



 

 

 

115 

5.4 Experimental Results   

Battery runtime results for the baseline and three ESC cases are shown in Table 5.2. 

All three ESC algorithms significantly reduced system power consumption through 

convergence to the optimal range of evaporator blower and compressor speeds. However, like 

in simulation, RLS-ESC/LS-ESC discovered the optimal blower speed fastest, resulting in 

larger increases in battery life (29.6%-34.6%) over P-ESC (22.7%-24.8%). RLS-ESC/LS-ESC 

reached the optimal blower speed in approximately 3000-4000 seconds when including the 

2000 seconds needed to initialize the controller. On the other hand, P-ESC took 10000-12000 

seconds to reach the optimal blower speed. In terms of minutes of additional runtime, RLS-

ESC/LS-ESC added roughly 138-152 minutes of run time, while P-ESC added 103-109 

minutes of runtime. Variations in results between runs for each controller were notable but 

were not very significant. Fig. 5.6 depicts the average battery life increase from the three 

algorithms graphically, and Fig. 5.7 illustrates the battery runtime for each algorithm for each 

run.  

Table 5.2 Battery runtime and percent increases over baseline for each algorithm. 

 

P-ESC LS-ESC RLS-ESC 

Run 1 Run 2 Run 1 Run 2 Run 1 Run 2 

Baseline Runtime (min) 454 439 437 466 444 449 

ESC Runtime (min) 557 548 589 604 589 601 

Battery run time increase 

(%) 22.7 24.8 34.6 29.6 32.7 33.8 
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Figure 5.6 Average percent increase in the battery runtime over each of the respective 

baseline cases.  

 

Figure 5.7 Battery runtime for each of the two runs performed for each algorithm, 

along with the respective baseline runtimes.  
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5.4.1 Analysis of each Run    

Figures 5.8 – 5.12 detail the battery charge, power draw, blower and compressor PWM, 

cabin temperature and ambient temperature over the course of P-ESC run 1. As seen in the 

figures below, prior to ESC activation, the initial blower speed is fixed at a suboptimal 140 

PWM. PI control raises the compressor PWM to 95 to track the cabin temperature setpoint, 

resulting in a baseline power draw of 507W. After ESC activation, the evaporator blower speed 

increases to roughly 160-165 PWM in 10000 seconds, resulting in a corresponding drop in 

compressor speed to 40-55 PWM and a new power consumption between 370-410W. Note 

that these component speeds converge slightly outside the optimal range of 170-180 PWM. 

One possible reason for this is that the slow gradient estimation intrinsic to P-ESC may make 

it more likely for the controller to “get stuck” once getting closer to the optimal region, where 

the gradient is "flatter". The cabin temperature set point is tracked very well, with small 

fluctuations no greater than 0.25 C  .  The ambient temperature in the room fluctuated 

between 24 24.5C C   .  

 

Figure 5.8 Battery charge vs. time for the first P-ESC run and its baseline case. 
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Figure 5.9 Power vs. time for the first P-ESC run.  

 

Figure 5.10 Component PWM vs. time for the first P-ESC run.  
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Figure 5.11 Cabin temperature vs. time for the first P-ESC run.  

 

Figure 5.12 Ambient temperature vs. time for the first P-ESC run.  

 

Figures 5.13 – 5.17 detail the battery charge, power draw, blower and compressor 

PWM, cabin temperature and ambient temperature over the course of the second P-ESC run. 

Like before, prior to ESC activation, the initial blower speed is fixed at a suboptimal 140 PWM. 

PI control raises the compressor PWM to 100 to track the cabin temperature set point, resulting 
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in a baseline power draw of 525W. After the ESC is activated, the evaporator blower speed 

increases to roughly 160-165 PWM in 10000 seconds, and the compressor speed decreases to 

40-60 PWM resulting in a new power consumption between 380-420W. Again, the controller 

showed some difficulty reaching the most optimal region of the performance function, and 

even moved outside of the optimal region towards the end. This may be due to the reasons 

listed previously, along with errors estimating the gradient due to disturbances. Nevertheless, 

the cabin temperature set point is tracked very well, with small fluctuations no greater than 

0.25 C  .  The ambient temperature in the room fluctuated between 24 24.5C C   .  

 

 

Figure 5.13 Battery charge vs. time for the second P-ESC run and its baseline case.  
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Figure 5.14 Power vs. time for the second P-ESC run.  

 

Figure 5.15 Component PWM vs. time for the second P-ESC run.  
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Figure 5.16 Cabin temperature vs. time for the second P-ESC run.  

 

Figure 5.17 Ambient temperature vs. time for the second P-ESC run.  
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Figures 5.18 – 5.22 show the battery charge, power draw, blower and compressor 

PWM, cabin temperature and ambient temperature over the course of the first LS-ESC run. As 

before, the initial blower speed is fixed at a suboptimal 140 PWM for 3000 seconds. PI control 

raises the compressor PWM to 107 to track the cabin temperature set point, resulting in a 

baseline power draw of 527W. From 3000 to 5000 seconds, the blower speed is slowly 

increased to initialize the controller with performance data, resulting in a decrease in 

compressor speed and power. After the ESC is activated at 5000 seconds, the evaporator 

blower speed increases to an energy optimal 165-180 PWM in 3000 seconds, resulting in a 

drop in compressor speed to 25-35 PWM and a new power consumption between 350-370W. 

Due to faster gradient estimation, the LS-ESC was able to converge to the true function 

minimum more rapidly than P-ESC. One interesting feature, however, was the increase in 

fluctuations in the compressor speed, blower speed and the cabin temperature especially, which 

increased to 0.5 C  . This may be a result of the large data buffer length used, which may 

result in the controller having more “inertia”, causing more oscillatory behavior around the 

performance function minimum. Decreasing the data buffer length increases susceptibility to 

noise and disturbances however, so this is a tradeoff to be balanced.  

 

Figure 5.18 Battery charge vs. time for the first LS-ESC run and its baseline case.  
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Figure 5.19 Power vs. time for the first LS-ESC run.  

 

Figure 5.20 Component PWM vs. time for the first LS-ESC run.  
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Figure 5.21 Cabin temperature vs. time for the first LS-ESC run.  

 

Figure 5.22 Ambient temperature vs. time for the first LS-ESC run. 
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Figures 5.23 – 5.27 depict the battery charge, power draw, blower and compressor 

PWM, cabin temperature and ambient temperature for LS-ESC run 2. This time, the baseline 

power consumption was 497W with a compressor speed between 80-90 PWM. Like before, 

after the ESC is activated, the evaporator blower speed increases to 160-175 PWM in 3000 

seconds, resulting in a drop in compressor speed to 25-40 PWM and a new power consumption 

between 350-370W. Interestingly, there were less oscillations this run. This may indicate that 

these oscillations are triggered by external disturbances or other transient factors. Furthermore, 

there were some disturbances in the ambient temperature initially, flattening out after a few 

thousand seconds.   

 

 

Figure 5.23 Battery charge vs. time for the second LS-ESC run and its baseline case.  
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Figure 5.24 Power vs. time for the second LS-ESC run.  

 

Figure 5.25 Component PWM vs. time for the second LS-ESC run.  
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Figure 5.26 Cabin temperature vs. time for the second LS-ESC run.  

 

Figure 5.27 Ambient temperature vs. time for the second LS-ESC run.  
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Figures 5.28 – 5.32 show the battery charge, power draw, blower and compressor 

PWM, cabin temperature and ambient temperature for RLS-ESC run 1. The baseline power 

consumption was 525W with a compressor speed around 105 PWM. Like for LS-ESC, we 

ramp the evaporator blower speed from 3000 to 5000 seconds and activate the ESC algorithm 

after. The evaporator blower speed quickly increases to roughly 180-190 PWM before settling 

around 175 PWM. This slight overshoot is a result of a large forgetting factor which improves 

sensitivity to noise at the expense of a slightly less accurate gradient estimate. The power 

consumption drops to 380W in roughly 3000 seconds and eventually settles around 350W, 

while the compressor speed drops to 35 PWM. Note that the plots generally look “smoother” 

and less oscillatory than LS-ESC. This is because RLS-ESC applies an exponentially decaying 

filter to all past performance data as opposed to LS-ESC which uses a fixed moving window 

of T seconds of data. The only exceptions are some oscillations evident in the cabin 

temperature and component speeds around 10500 and 27000 seconds. This may be the result 

of some disturbances. Other than that, the cabin temperature and ambient temperature behave 

well.  

 

Figure 5.28 Battery charge vs. time for the first RLS-ESC run and its baseline case.  
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Figure 5.29 Power vs. time for the first RLS-ESC run.  

 

Figure 5.30 Component PWM vs. time for the first RLS-ESC run. 
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Figure 5.31 Cabin temperature vs. time for the first RLS-ESC run.  

 

 

Figure 5.32 Ambient temperature vs. time for the first RLS-ESC run.  
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Figures 5.33 – 5.37 show the battery charge, power draw, blower and compressor 

PWM, cabin temperature and ambient temperature for RLS-ESC run 2. This time, the baseline 

power consumption was 515W with a compressor speed between 90-95 PWM. Like before, 

after ESC is activated, the evaporator blower speed increases quickly to 180-185 PWM, before 

settling to a speed around 160-165 PWM. The compressor speed drops to around 30 PWM and 

the power consumption drops to 330-350W over time. This time though, the cabin temperature 

showed more oscillatory behavior, although not to the extent seen in LS-ESC. The ambient 

temperature remained relatively constant through the duration of the experiment.   

 

Figure 5.33 Battery charge vs. time for the second RLS-ESC run and its baseline case.  
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Figure 5.34 Power vs. time for the second RLS-ESC run.  

 

Figure 5.35 Component PWM vs. time for the second RLS-ESC run. 
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Figure 5.36 Cabin temperature vs. time for the second RLS-ESC run.  

 

 

Figure 5.37 Ambient temperature vs. time for the second RLS-ESC run.  
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5.5 Concluding Remarks  

 By applying ESC to the experimental system using LabVIEW, we achieved significant 

reductions in power corresponding with a substantial increase in battery life. All three ESC 

algorithms were successful in minimizing system power while meeting temperature objectives, 

with LS-ESC and RLS-ESC demonstrating superior performance over P-ESC. When 

comparing the performance between these two algorithms, both algorithms extended the 

battery life by similar amounts amount; however, RLS-ESC tends to induce less oscillatory 

behavior in the actuator speeds. Therefore, we recommend the use of RLS-ESC when operating 

the NITE. The LabVIEW interface presented in this chapter is intuitive and easy to read, and 

tuning parameters is relatively straightforward for an industry practitioner.   
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Chapter 6     

Conclusion  

6.1 Thesis Summary and Contributions   

This thesis examined the use of ESC, a real time model free optimization method, to 

minimize the power consumption of a battery powered vehicle VCS. To that end, we developed 

a model of an integrated VCS in MATLAB/Simulink consisting of a VCS, battery pack, 

auxiliary fans and a vehicle cabin. In particular, we present a detailed derivation of the vehicle 

cabin model as it was specifically developed for this thesis. We then presented an open-loop 

validation of the cabin model based on energy conservation principles along with some limited 

validation against available experimental data. Next, we detailed the development of the 

integrated experimental system centered around the NITE, a no-idle battery powered VCS unit 

developed by Bergstrom. Basic closed loop validation and PI control on the experimental and 

simulated system was successfully performed. The latter half of this thesis focused on the 

theory behind ESC and its applications to VCS. We presented a thorough derivation and 

analysis of three different ESC algorithms and examined their respective tradeoffs. We then 

implemented ESC on the simulated and experimental integrated unit and achieved significant 

improvements in battery life.  

This thesis yields two main contributions. First, to the author’s knowledge, this thesis 

represents the first application of ESC on battery powered VCS. Second, we developed an 

intuitive user interface for industry operators to easy apply these algorithms to their systems.  

6.2 Future Work  

There are a number of opportunities for future work. First, there is much room to 

improve the models used in this thesis. For the cabin model, a number of parameters such as 

the vehicle wall thicknesses and material properties are currently hardcoded into the model and 
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could be parameterized. Secondly, it would be nice to have access to a physical vehicle cabin 

as part of an integrated experimental system instead of a generic enclosed space which was 

built for this thesis. Having access to a cabin would also be useful when performing 

experimental validation of the cabin model in order to ensure vehicle dimensions and material 

properties are as accurate as possible. Secondly, there was a lack of cross-validation between 

the simulated and physical integrated NITE system which was a result of the difficulties 

parameterizing simulated VCS components. Future work should address this gap in order to 

validate the efficacy of the models and have better predictions of ESC performance.  

There is also room for improvement when it comes to ESC implementation. This thesis 

only considers single-variable extremum seeking, modulating only the evaporator blower 

speed. However, the condenser fan speed, an important actuator, was left untouched. This 

means we may not be optimizing the system as well as it could have been. Future work should 

therefore examine the use of multivariable extremum seeking schemes.  

Lastly, all experimental testing was done in a room with mildly varying ambient 

conditions. In practical application, the NITE and cabin experience more rapidly changing 

environmental loads and disturbances. In particular, the NITE condenser fan is normally 

exposed to highly variable ambient conditions due to it being housed outside, whereas we 

simply shone a heat lamp on it to approximate an ambient heat load. Because ESC is a quasi-

steady state optimization algorithm, it could be significantly impacted by these variations and 

disturbances. Future work should examine ESC robustness and effectiveness with the NITE 

and cabin being subjected to more variable, real-world conditions.   
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Appendix A 

Simulink Diagrams and Code  

A.1 Cabin Model  

 A.1.1 Cabin Model Diagrams  

 

Figure A.1 Initialization of cabin model parameters  
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Figure A.2 Cabin Model mask parameters  
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Figure A.3 Underlying Simulink structure underneath cabin model mask.  

 

A.1.2 Cabin Model Code  

function 

[Q_loads,Tdot_air,Tdot_ws,Tdot_sw,Tdot_roof,Tdot_wall,Tdot_base,T_evap_in]  

= Room(v_amb,V_solar,T_air,T_ws,T_sw,... 
T_roof, T_wall,T_base,T_sky,H_solar,Number_occupants, Emissivity_body, 

Emissivity_window,... 
Transmittance_window,Volume_cabin, l_ws, w_ws, t_ws, k_ws, a_ws, l_sw, 

w_sw, t_sw, k_sw, a_sw,l_roof,w_roof,... 
l_wall, w_wall,Q_ref,me_supply, Absorptivity_body, Absorptivity_window, 

T_amb,recirculation,A_base, C_base,abs_base) 
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%%%%%%%%%%%%%%%%AIR PROPERTIES %%%%%%%%%%%%%%%%%%%%%% 
AirProp_T = [-40,-20,0,20,40,60]; 
AirProp_ka = [-73.15 -23.15 26.85 76.85 126.85];    
AirProp_rho = [1.516,1.395,1.293,1.204,1.127,1.059]; 
AirProp_v= [7.59,11.44,15.89,20.92,26.41]*(1e-6);   
AirProp_k = [18.1 22.3 26.3 30 33.8]*(1e-3); 
AirProp_a = [10.3 15.9 22.5 29.9 38.3]*(1e-6); 
AirProp_mu = [132.5 159.6 184.6 208.2 230.1]*(1e-7);  
rho_air = interp1(AirProp_T, AirProp_rho, T_air); 
a = interp1(AirProp_ka, AirProp_a, T_air); 
k_air = interp1(AirProp_ka, AirProp_k, T_air) ; 
v = interp1(AirProp_ka, AirProp_v, T_air); 
mu = interp1(AirProp_ka,AirProp_mu, T_amb) ; 

  
%internal cabin air properties  
Volume_air = Volume_cabin - Number_occupants*0.071;%0.071 = volume of 160 

pound human (m^3)  
m_air = Volume_air*rho_air; %mass of the air 
cp_air = 1007; %J/kg*K  
Pr = 0.707; %Prandtl Number  

  
%vehicle dimensions  
A_roof = l_roof*w_roof; 
A_sw = l_sw*w_sw;  
A_ws = l_ws*w_ws;  
A_wall = l_wall*w_wall; 
sigma = 5.67*10^-8; %stefan-boltzmann constant  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Calculate Conductive Windshield Heat Load% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
dx = t_ws/4; %discretize windshield width into 4 nodes.  
q_ws = H_solar*Absorptivity_window; %incident absorbed solar radiation  
Re_wse = rho_air*v_amb*l_ws/mu;  %Reynolds number of windshield  
Tf_wse = (T_amb + T_ws(1))/2 +273.15; %exterior film temperature 
l_c_ws = A_ws/(2*l_ws + 2*w_ws); %characteristic length A/P  
Ra_wse = abs(9.81*(1/Tf_wse)*(T_amb - T_ws(1))*(l_c_ws).^3/(v*a)); 

%rayleigh number 

  
%calculate external heat transfer coefficient  
if Re_wse == 0  

     
    Nu_wse = (0.825 + (0.387*Ra_wse.^(1/6))/(1 + 

(0.492/Pr)^(9/16)).^(8/27)).^2; 
    h_wse = Nu_wse*(k_air/l_ws); %(no wind) external free hxfr coefficient  

         

         
elseif Re_wse < 5*10^5  

     
    Nu_wse = 0.664*Re_wse.^(1/2)*Pr.^(1/3);  
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    h_wse = Nu_wse*(k_air/l_ws); %external laminar hxfr coefficient  

     
else 

     
    Nu_wse = (0.037*Re_wse.^(4/5) - 871)*Pr.^(1/3);  
    h_wse = Nu_wse*(k_air/l_ws); %external turbulent/transition hxfr 

coefficient  

     
end  

  

%Calculate inside windshield heat transfer coefficient  
Tf_ws = (T_ws(5) + T_air)/2 + 273.15; %Kelvin 
Ra_ws = abs(9.81*(1/Tf_ws)*(T_ws(5) - T_air)*(l_c_ws).^3/(v*a)) ;%interior 

rayleigh number 
Nu_ws = (0.825 + (0.387*Ra_ws.^(1/6))/(1 + (0.492/Pr)^(9/16)).^(8/27)).^2; 
h_ws = Nu_ws*(k_air/l_ws) ;%free convection hxfr coefficient for 

windshield interior 

  
%Finite Element Discretization of Windshield Thickness  
Tdot_ws = zeros(1,5);  
Tdot_ws(1) = (2*q_ws*a_ws)/(k_ws*dx) + (2*a_ws*h_wse/(k_ws*dx))*(T_amb-

T_ws(1)) + (2*a_ws/dx)*(T_ws(2)-T_ws(1)) +... 
(2*a_ws*Emissivity_window*sigma/(k_ws*dx))*((T_sky+273.15)^4-

(T_ws(1)+273.15)^4);  
Tdot_ws(2) = (a_ws/(dx^2))*(T_ws(1)-T_ws(2)) + (a_ws/(dx^2))*(T_ws(3)-

T_ws(2)); 
Tdot_ws(3) = (a_ws/(dx^2))*(T_ws(2)-T_ws(3)) + (a_ws/(dx^2))*(T_ws(4)-

T_ws(3)); 
Tdot_ws(4)= (a_ws/(dx^2))*(T_ws(3)-T_ws(4)) + (a_ws/(dx^2))*(T_ws(5)-

T_ws(4)); 
Tdot_ws(5) = (2*a_ws*h_ws/(k_ws*dx))*(T_air-T_ws(5)) + 

(2*a_ws)/(dx^2)*(T_ws(4)-T_ws(5));  
Q_ws = h_ws*A_ws*(T_ws(5) - T_air); %conductive heat transfer through 

windshield  

  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Calculate Conductive Side Window Heat Load% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
dx = t_sw/4; 
q_sw = H_solar*Absorptivity_window; 
Re_swe = rho_air*v_amb*l_sw/mu;   
l_c_sw = A_sw/(2*l_sw + 2*w_sw); %characteristic length A/P  

  
if Re_swe == 0  

     
    Tf_swe = (T_sw(1)+T_amb)/2 + 273.15; %film temperature 
    Ra_swe = abs(9.81*(1/Tf_swe)*(T_sw(1) - T_amb)*(l_c_sw).^3/(v*a)); 

%rayleigh number 
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    Nu_swe = (0.825 + (0.387*Ra_swe.^(1/6))/(1 + 

(0.492/Pr)^(9/16)).^(8/27)).^2; 
    h_swe = Nu_swe*(k_air/l_sw);  

        
elseif Re_swe < 5*10^5  

     
    Nu_swe = 0.664*Re_swe.^(1/2)*Pr.^(1/3);  
    h_swe = Nu_swe*(k_air/l_sw) ;%external laminar hxfr coefficient  

     
else 
    Nu_swe = (0.037*Re_swe.^(4/5) - 871)*Pr.^(1/3);  
    h_swe = Nu_swe*(k_air/l_sw) ;%external turbulent/transition hxfr 

coefficient  

     
end  

  
%include inner side window condition  
Tf_sw = (T_sw(5) + T_air)/2 + 273.15; %Kelvin 
Ra_sw = abs(9.81*(1/Tf_sw)*(T_sw(5) - T_air)*(l_c_sw).^3/(v*a)) ;%interior 

rayleigh number 
Nu_sw = (0.825 + (0.387*Ra_sw.^(1/6))/(1 + (0.492/Pr)^(9/16)).^(8/27)).^2; 
h_sw = Nu_sw*(k_air/w_sw) ;%free convection hxfr coefficient for 

windshield interior 

  
Tdot_sw = zeros(1,5);  
Tdot_sw(1) = (2*q_sw*a_sw)/(k_sw*dx)+(2*a_sw*h_swe/(k_sw*dx))*(T_amb-

T_sw(1)) + (2*a_sw/dx)*(T_sw(2)-T_sw(1)) + 

(2*a_sw*Emissivity_window*sigma/(k_sw*dx))*((T_sky+273.15)^4-

(T_sw(1)+273.15)^4);  
Tdot_sw(2) = (a_sw/(dx^2))*(T_sw(1)-T_sw(2)) + (a_sw/(dx^2))*(T_sw(3)-

T_sw(2)); 
Tdot_sw(3) = (a_sw/(dx^2))*(T_sw(2)-T_sw(3)) + (a_sw/(dx^2))*(T_sw(4)-

T_sw(3)); 
Tdot_sw(4)= (a_sw/(dx^2))*(T_sw(3)-T_sw(4)) + (a_sw/(dx^2))*(T_sw(5)-

T_sw(4)); 
Tdot_sw(5) = (2*a_sw*h_sw/(k_sw*dx))*(T_air-T_sw(5)) + 

(2*a_sw)/(dx^2)*(T_sw(4)-T_sw(5));  
Q_sw = h_sw*A_sw*(T_sw(5) - T_air); %conductive heat transfer through 

windshield  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Calculate Conductive Roof Heat Load% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
q_roof = V_solar*Absorptivity_body; 
l_c_roof = A_roof/(2*l_roof + 2*w_roof); %characteristic length A/P  
Tf_ceil = (T_air + T_roof(1))/2 + 273.15; %ceiling film temp (Kelvin) 
Re_roof = rho_air*v_amb*l_roof/mu; %reynolds number 
Ra_ceil = abs((9.81*(1/Tf_ceil)*(T_roof(5) - T_air)*(l_c_roof).^3)/(v*a)); 

  
if Re_roof == 0  
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    Tf_roof = (T_amb + T_roof(1))/2 + 273.15; %roof film temperature 

(Kelvin)  
    Ra_roof = abs((9.81*(1/Tf_roof)*(T_amb - 

T_roof(1))*(l_c_roof).^3)/(v*a)); %rayleigh number for roof 

  
    if T_roof(1) > T_amb   

         
        if Ra_roof < 10^7  

             

            Nu_roof = 0.54*Ra_roof^(1/4);   
            h_roof = Nu_roof*(k_air/l_c_roof); %free convection hxfr 

coefficient (laminar) 

             
        else  

             
            Nu_roof = 0.15*Ra_roof^(1/3);  
            h_roof = Nu_roof*(k_air/l_c_roof); %free convection hxfr 

coefficient (turbulent) 

             
        end  

         
    else 

         
        Nu_roof = 0.52*Ra_roof^(1/5);  
        h_roof = Nu_roof*(k_air/l_c_roof); %free convection hxfr 

coefficient  

      
    end  

         
elseif Re_roof < 5*10^5  

     
    Nu_roof = 0.664*Re_roof.^(1/2)*Pr.^(1/3);  
    h_roof = Nu_roof*(k_air/l_roof); %external laminar hxfr coefficient  

     

else 

     
    Nu_roof = (0.037*Re_roof.^(4/5) - 871)*Pr.^(1/3);  
    h_roof = Nu_roof*(k_air/l_roof); %external turbulent/transition hxfr 

coefficient  

     
end   
%inner ceiling heat transfer coefficient  

  
if T_roof(5) > T_air  

         
        Nu_ceil = 0.52*Ra_ceil^(1/5);  
        h_ceil = Nu_ceil*(k_air/l_c_roof) ; 

         
    else  
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        if Ra_ceil < 10^7  

             
            Nu_ceil = 0.54*Ra_ceil^(1/4);  
            h_ceil = Nu_ceil*(k_air/l_c_roof) ; 

             
        else  

             
            Nu_ceil = 0.15*Ra_ceil^(1/3);  
            h_ceil = Nu_ceil*(k_air/l_c_roof) ; 

             
        end 

         
end 

  

  
a_steel = 3.954e-6;  
k_steel = 14.9;  
a_cotton = 2.76e-8;  
k_cotton = 0.06;  
dx = 5e-4/1.5;  
dx1 = 1e-4;  
dx2 = 5e-3/1.5;  

  
Tdot_roof = zeros(1,5); 
Tdot_roof(1) = 

(2*q_roof*a_steel)/(k_steel*dx)+(2*a_steel*h_roof/(k_steel*dx))*(T_amb-

T_roof(1)) + (2*a_steel/dx)*(T_roof(2)-T_roof(1)) + 

(2*a_steel*Emissivity_body*sigma/(k_steel*dx))*((T_sky+273.15)^4-

(T_roof(1)+273.15)^4);  
Tdot_roof(2) = (a_steel/(dx^2))*(T_roof(1)-T_roof(2)) + 

(a_steel/(dx^2))*(T_roof(3)-T_roof(2)); 
Tdot_roof(3) = (a/(dx1^2))*(T_roof(2)-T_roof(3)) + (a/(dx1^2))*(T_roof(4)-

T_roof(3)); 
Tdot_roof(4)= (a_cotton/(dx2^2))*(T_roof(3)-T_roof(4)) + 

(a_cotton/(dx2^2))*(T_roof(5)-T_roof(4)); 
Tdot_roof(5) = (2*a_cotton*h_ceil/(k_cotton*dx2))*(T_air-T_roof(5)) + 

(2*a_cotton)/(dx2^2)*(T_roof(4)-T_roof(5)); 

  
Q_roof = h_ceil*A_roof*(T_roof(5)-T_air); 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Calculate Conductive Vehicle Side Walls Heat Load% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
q_wall = H_solar*Absorptivity_body;  
Re_walle = rho_air*v_amb*l_wall/mu;  %Reynolds number of sides  
Tf_walle = (T_amb + T_wall(1))/2 +273.15; %exterior film temperature 
l_c_wall = A_wall/(2*l_wall + 2*w_wall); %characteristic length A/P  
Ra_walle = abs(9.81*(1/Tf_walle)*(T_amb - T_wall(1))*(l_c_wall).^3/(v*a)); 

%rayleigh number 
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%Calculate outer side wall condition  

  
if Re_walle == 0 %free convection  

     
    Nu_walle = (0.825 + (0.387*Ra_walle.^(1/6))/(1 + 

(0.492/Pr)^(9/16)).^(8/27)).^2; 
    h_walle = Nu_walle*(k_air/l_wall); 

         

         

elseif Re_walle < 5*10^5 %laminar flow  

     
    Nu_walle = 0.664*Re_walle.^(1/2)*Pr.^(1/3);  
    h_walle = Nu_walle*(k_air/l_wall); %external laminar hxfr coefficient  

     
else %turbulent flow  

     
    Nu_walle = (0.037*Re_walle.^(4/5) - 871)*Pr.^(1/3);  
    h_walle = Nu_walle*(k_air/l_wall); %external turbulent/transition hxfr 

coefficient  

     
end 

  
%include inner side wall condition 
Tf_wall = (T_wall(5) + T_air)/2 + 273.15; %Kelvin 
Ra_wall = abs(9.81*(1/Tf_wall)*(T_wall(5) - T_air)*(l_c_wall).^3/(v*a)) 

;%interior rayleigh number 
Nu_wall = (0.825 + (0.387*Ra_wall.^(1/6))/(1 + 

(0.492/Pr)^(9/16)).^(8/27)).^2; 
h_wall = Nu_wall*(k_air/w_wall) ;%free convection hxfr coefficient for 

side wall interior 

  
%Finite element Method: Outer surface=1, Inner surface=5  
Tdot_wall = zeros(1,5); 
Tdot_wall(1) = 

(2*q_wall*a_steel)/(k_steel*dx)+(2*a_steel*h_walle/(k_steel*dx))*(T_amb-

T_wall(1)) + ... 
(2*a_steel/dx)*(T_wall(2)-T_wall(1)) + 

(2*a_steel*Emissivity_body*sigma/(k_steel*dx))*((T_sky+273.15)^4-

(T_wall(1)+273.15)^4);  
Tdot_wall(2) = (a_steel/(dx^2))*(T_wall(1)-T_wall(2)) + 

(a_steel/(dx^2))*(T_wall(3)-T_wall(2)); 
Tdot_wall(3) = (a/(dx1^2))*(T_wall(2)-T_wall(3)) + (a/(dx1^2))*(T_wall(4)-

T_wall(3)); 
Tdot_wall(4)= (a_cotton/(dx2^2))*(T_wall(3)-T_wall(4)) + 

(a_cotton/(dx2^2))*(T_wall(5)-T_wall(4)); 
Tdot_wall(5) = (2*a_cotton*h_wall/(k_cotton*dx2))*(T_air-T_wall(5)) + 

(2*a_cotton)/(dx2^2)*(T_wall(4)-T_wall(5)); 

  
Q_wall = h_wall*A_wall*(T_wall(5)-T_air);  
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%% Air flow to the evaporator inlet %%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%Assuming Mass flow is set by evaporator block and not initialized here.  
mdot_return = (recirculation/100)*me_supply; %recirculated room air 

through the evaporator. (kg/s) 
mdot_amb = (100-recirculation)/100*me_supply; %fresh air pulled through 

evaporator.  
T_evap_in = (T_amb*mdot_amb + T_air*mdot_return)/(mdot_amb + mdot_return); 

%Temperature of air @evaporator inlet. 

  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%% Vehicle Base Heat load %%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
    l_c_base = sqrt(A_base); %assuming the base is a square.  
    Tf_base = (T_air + T_base)/2 + 273.15; %roof film temperature (Kelvin)  
    Ra_base = abs((9.81*(1/Tf_base)*(T_air - 

T_base)*(l_c_base).^3)/(v*a)); %rayleigh number for base 

  
    if T_base > T_air   

         
        if Ra_base < 10^7  

             
            Nu_base = 0.54*Ra_base^(1/4);   
            h_base = Nu_base*(k_air/l_c_base); %free convection hxfr 

coefficient (Rayleigh laminar) 

             
        else  

             
            Nu_base = 0.15*Ra_base^(1/3);  
            h_base = Nu_base*(k_air/l_c_base); %free convection hxfr 

coefficient (Rayleigh turbulent) 

             
        end  

         
    else 

         
        Nu_base = 0.52*Ra_base^(1/5);  
        h_base = Nu_base*(k_air/l_c_base); %free convection hxfr 

coefficient  

         
    end  

  
Q_incident = Transmittance_window*(H_solar)*(2*A_sw + A_ws); %Transmitted 

Solar flux into Vehicle.  

  
Q_base = h_base*A_base*(T_base-T_air); %heat transfer b/w base and air.  
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Tdot_base = (1/(C_base))*(abs_base*Q_incident - Q_base); 

  
%%%%%%%%%%%%%%%%%%%%%%%% 
%%% Other Heat Loads %%% 
%%%%%%%%%%%%%%%%%%%%%%%% 

  
ACH = 0.8*v_amb; %rough ACH as a result of ambient air infiltration into 

the vehicle. See Flectcher and Saunders (1994) for more information.  
Q_infil = (ACH/3600)*(Volume_air*rho_air*cp_air)*(T_amb - T_air); %heat 

load as a result of infiltrating air  
Q_human = Number_occupants*108; %human heat load 
Tdot_air = (1/(m_air*cp_air))*(Q_base + Q_ws + 2*Q_sw + Q_roof + Q_human+ 

Q_infil + Q_ref +2*Q_wall); 
Q_loads = [Q_ws; 2*Q_sw; Q_roof; Q_infil; Q_human; Q_ref; 2*Q_wall; 

Q_base]; 

  

 

A.2 Auxiliary Models Code  

A.2.1 Condenser Fan Code  

function [mdot_cond,power_cond] = cond(fanspeed) 

  
fanspeeds = [120.0000 

100.0000 

85.0000 

70.0000 

60.0000 

50.0000 

40.0000 

20.0000]; %0-255 PWM 

  
flowrates = [0.304631598 
0.371971406 
0.422476112 
0.472980818 
0.506650622 
0.540320425 
0.573990229 
0.64132968]; %mass flowrates (kg/s) 

  
powers = [28 
40 
50 
64.5 
79 
89 
107 
134]; %Watts 
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mdot_cond = interp1(fanspeeds,flowrates,fanspeed,'linear');  

  
power_cond = interp1(fanspeeds,powers,fanspeed,'spline'); 

  
return  

A.2.2 Blower Fan Code  

function [mdot_evap,power_evap] = evap(fanspeed) 

  

  
fanspeeds = 195.0000 

190.0000 

180.0000 

170.0000 

160.0000 

150.0000 

140.0000 

130.0000 

120.0000 

110.0000 

100.0000]; %0-255 PWM 

  
flowrates = [0.108345398 
0.106956354 
0.100011136 
0.092510301 
0.0861207 
0.0797311 
0.073619308 
0.068340943 
0.063062578 
0.05191422 
0.0495544 
]; %mass flowrates (kg/s) 

  
powers = [147, 139, 119, 100, 86, 73, 59, 49, 41 35 28]; %Watts 

  
%mass flowrates (kg/s) 
mdot_evap = interp1(fanspeeds,flowrates,fanspeed,'linear');  
power_evap = interp1(fanspeeds,powers,fanspeed,'spline');  

  
return  
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A.3 Control Algorithm Code  

A.3.1 RLS Algorithm Code  

function [V1,B1,gradient] = fcn(evap,power,V0,B0,lambda) 
Xn = [evap 1]; %New evap fan data  
yn = power; %new power data  
V1 = (1/lambda)*(V0 - V0*transpose(Xn)*Xn*V0/(1+Xn*V0*transpose(Xn))); 
gamma_1 = V1*transpose(Xn); 
e = yn - Xn*B0; %new error  
B1= B0 + gamma_1*e; %new linear approx. coefficients  
gradient = B1(1); %obtain slope value  
return 

A.3.2 LS-ESC Code  

function gradient = fcn(power,evap)  
a = max(evap); %maximum evap value in data buffer  
b = min(evap); %mass flowrates (kg/s) 

  
coeff = polyfit(evap,power,1); %perform linear fit on data & obtain 

coefficients  
gradient = coeff(1); %obtain slope value  

  
if abs(a-b) ==0; %turn off gradient calculation if data is not rich enough  
    gradient=0;  
end  
return  
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Appendix B 

Experimental System Hardware and Software 

This section details the specific hardware and software configuration used in the 

development of the integrated experimental system.  

B.1 Experimental Hardware Setup  

The experimental system is outfitted with transducers, circuitry and data acquisition 

hardware to obtain relevant data such as temperature and pressure, as well as to facilitate 

communication between the NITE system and the computer. The National Instruments cRIO- 

9035 is the central piece of hardware that performs all of the above tasks and more. This data 

acquisition controller comes with a chassis which allows the user to add various I/O modules 

to send and receive different types of data. As discussed briefly in chapter 2 (see Fig. 2.32), 

this thesis uses the NI-9205 analog input module to read analog sensor data, and the NI-9862 

CAN module to send and receive CAN signals between the computer and the NITE system. 

We discuss each module’s setup and configuration below.  

B.1.1 NI-9205 Module Setup and Configuration 

The first step is to download all requisite software onto the NI cRIO. This is done using 

NI Max (Measurement and Automation Explorer), software which can be used to easily 

interface with NI hardware. Download and setup NI Max, and then browse to the module 

specific page on the National Instruments website to find the software needed. Insert the 

module into an empty chassis slot. Next, open up a new LabVIEW project file. In the project 

tree, right click on the project file (ends with .lvproj) and select new targets and devices. Under 

the Real-Time CompactRIO folder, the NI-cRIO in use should be listed there. Once adding it 

to the project tree, expand the Chassis sub-tree to view the NI 9205 module.  
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The NI 9205 Module has 32 analog input channels with high degrees of accuracy and 

protection from overvoltage. To read a signal, one simply needs to wire a sensor’s output signal 

to any of the 32 input channels (AI0-AI31) and wire the sensor ground to the module’s ground. 

To read this signal in the LabVIEW workspace, simply open the NI 9205 module sub-tree and 

drag the respective input channel into your VI file. Fig. B.1 illustrates this procedure.  

 

Figure B.1 Reading an analog input pin in LabVIEW by dragging it into the VI. 

B.1.2 Sensor Wiring Diagram  

The LM35 analog temperature sensor, along with the pressure sensor, are highly 

susceptible to noise and interference. Therefore, prior to sending the sensor’s output signal to 

the NI 9205, we pass them through a signal conditioning breadboard seen previously in Chapter 

2. This breadboard provides 5V power and a reference ground to the sensor’s power and ground 

pins respectively via a connection to an external 5V power supply, and also contains seven low 

pass filters through which each of the seven signals passes through to attenuate noise. The 

cutoff frequency of the low pass filters is approximately 7 Hz, which is low enough to attenuate 

most noise induced by power supplies and other external disturbances. Note that the pressure 

transducer is powered separately by the NITE’s 12V supply.  Fig B.2 shows the wiring diagram 

of the signal conditioning breadboard.  
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Figure B.2 Wiring schematic of the signal conditioning breadboard  

 

B.1.3 NI-9862 Module Setup and Configuration  

Setting up and configuring the NI-9862 to send and receive CAN signals is slightly 

more complicated than setting up the NI-9205. Thankfully, the procedure is well detailed in 
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the NI-XNET manual available online. Before summarizing the procedure, we first discuss the 

fundamentals of the CAN bus protocol.  

B.1.3.1 CAN Bus  

CAN bus is a communication protocol standard developed to facilitate communication 

between microcontrollers and other devices within a vehicle without the need for a supervisory, 

central host computer. CAN was first developed by Bosch in the 1980s and has since been 

ubiquitous in vehicle systems. The CAN bus protocol is standardized by ISO-11898.  

CAN utilizes a multi-master serial bus structure, where all vehicle microcontrollers and 

devices are all connected to a two wire bus. The wires are called CANH and CANL, the high 

and low voltage lines respectively. To send messages on the bus, microcontrollers modulate 

the high and low voltage lines accordingly which correspond to sending speicifc bits of data. 

The first part of a CAN message is referred to as the “identifier” which identifies the message 

source and also establishes its priority on the bus. The specific payload data then follows this 

identifier. Identifiers are important in order for microcontrollers to distinguish which messages 

it needs to pay attention or respond to since all data communication is visible to all devices on 

the CAN bus.  

Because the NITE system is used in vehicle systems, it too adheres to the CAN 

standard. For this thesis, Bergstrom provided a document listing all CAN messages sent and 

received by the NITE, as well as details on how often messages are sent and at what baud rate. 

There are three main messages of interest: the battery parameters message, the system 

broadcast message and the overriding command message. The battery parameters message tells 

us the NITE's voltage and current draw, the system broadcast message includes a variety of 

information such as component speed and the override command message allows the user to 

set the speed of the condenser fan, evaporator blower and compressor actuators.  

B.1.3.2 NI-9862 Setup  

The NI-9862 is a single port high speed CAN transceiver module with the ability to 

send and receive CAN signals. To connect the module to the existing CAN bus simply splice 

and solder the CAN-H and CAN-L lines from your system to the appropriate pins on the NI 
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9862 9-pin D-sub port. The NI-9862 requires a 9-30V power supply to operate, so solder the 

power and ground wires to the module's pins accordingly. Detailed diagrams and instructions 

can be found online in the getting started guide for the NI-9862 available on the NI website.  

Once the module is set up, configure the NI-9862 by following the procedure outlined 

in Chapter 2 of the NI-XNET manual. Specifically, closely follow the instructions under the 

“Getting started with CompactRIO” section to add the module to your LabVIEW project as 

done for the NI-9205.  

B.1.3.3 Reading, Writing and Manipulating CAN Frames in LabVIEW  

With the hardware set up, the next step is to use LabVIEW to read, write and manipulate 

CAN messages (also known as CAN frames). As discussed in Chapter 5, we wish to read the 

NITE’s power consumption and compressor speed, and also wish to write overriding messages 

to the NITE to control its actuators (the condenser fan, evaporator blower and compressor 

speeds). Given that we know what the messages are, how can we use LabVIEW to read and 

write such messages? A brief summary is presented below, but more detailed information is 

provided in Chapter 4 of the NI-XNET manual.  

First, make sure you have added the NI-XNET toolbox to your LabVIEW. Right click 

on the LabVIEW block diagram, select Measurement I/O, select XNET and then select the 

“Create Session” VI. This VI initializes a CAN session and also determines whether to read or 

write CAN frames. In most instances, one would select “Frame In Single Point” to read CAN 

frames, and “Frame Out Single Point” to write CAN frames. Having done that, the next step is 

to give the Create Session VI a list of frames to read or write and also select the CAN interface 

through which the signals will be sent. The name of the CAN interface can be found in NI-

MAX. To specify the frames to read/write, right click on the frame list control in the front 

panel and select “New XNET Database”. Select “New Cluster”. Select the desired protocol 

(CAN) and press ok. Now, specify the message’s name and baud rate (this is determined by 

the specific system one is interfacing with. The NITE’s baud rate is 250 kBaud). Now, one can 

add frames to read and write by right clicking on the cluster and selecting “Create Frame”. 

Some examples of this can be seen in B.3 – B.6 below.   
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Figure B.3 Defining the general frame properties of the NITE’s battery parameters 

message using data from Bergstrom.  
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Figure B.4 Defining the CAN signal’s specific properties.  
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Figure B.5 Defining the frame properties of the NITE override signal using data from 

Bergstrom.  
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Figure B.6 Defining the CAN signal’s specific properties.  

Having initialized the CAN reading/writing session, the next step is to connect the 

output of the Create Session VI to the corresponding CAN Write or Read VI, which is also 

found in the NI-XNET library in LabVIEW. To read data, use a for loop along with an 

unbundle by name function to unpack the data from the output of the CAN read VI. To write 

data, bundle all desired data using the bundle by name function and route the signal to the input 

of the CAN write VI. An example of reading and writing CAN frames can be seen in Fig. B.7 

below.  
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Figure B.7 Examples of reading and writing CAN messages sent from and to the NITE 

system respectively.  
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B.2 LabVIEW Code  

This section contains all of the LabVIEW code used to read sensor data, read and write 

CAN frames, and implement PI control and ESC.  
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Figure B.8 A picture of the entire VI block diagram 
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Figure B.9 Initialization of the VI block diagram.  
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Figure B.10 Reading analog sensor data consisting of temperature and pressure 

readings.  
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Figure B.11 Calculating cabin temperature by averaging previous readings to mitigate 

noise.  

 

 

Figure B.12 Reading a CAN message containing the NITE compressor speed.   

 

Figure B.13 Reading a CAN message containing the NITE current draw, voltage, and 

calculating the power. Power readings are averaged like with the cabin temperature to 

mitigate fluctuations.  
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Figure B.14 Implementing PI control on the cabin temperature by modulating the 

compressor speed.  

  

 

Figure B.15 Looking inside the PI control subVI.   
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Figure B.16 Sending the override CAN signal to the NITE. The PI control determines 

the message’s compressor speed, while ESC determines the message’s evaporator 

blower speed.  

 

Figure B.17 The ESC case structure. We can select between four different cases: None, 

P-ESC, LS-ESC and RLS-ESC. Here, we choose None where the blower speed is 

unchanged.  
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Figure B.18 The P-ESC algorithm case.  
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Figure B.19 The LS-ESC algorithm case. 
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Figure B.20 The RLS-ESC algorithm case. 

 

 

 

 

 


