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ABSTRACT

Machine-learning models have been successfully applied to musical compo-

sition in a variety of forms, including audio classification, recognition, and

synthesis. The capability of algorithms to learn complex musical elements

allows composers to more deeply investigate the development of their aes-

thetic. Coupled with the history of interdisciplinary solutions found in com-

puter music and system aesthetics, this capability has led to an exploration

of the integration of machine learning and music composition. Composition

systems that take advantage of this integration have the opportunity to be

connected with algorithms in theory, application, and art.

In my systems, conditional restricted Boltzmann machines (CRBM) syn-

thesize musical timbre by learning autoregressive connections between the

current output, an abstracted non-linear hidden feature layer, and past out-

puts. This provides a creative space where composers can synthesize audio

spectra in collaboration with machines, defining novel creative systems that

explore compositional material in an abstract, non-linear paradigm.

By implementing CRBMs in timbral-synthesis composition systems, I pro-

vide concrete support that such an integration advances art through the

exploration of machine learning. I demonstrate this in a variety of audio syn-

thesis experiments validating the capabilities of two algorithmic structures

to synthesize and control timbre: a single layer conditional restricted Boltz-

mann machine (CRBM) and a single layer factored conditional restricted

Boltzmann machine (FCRBM). I start by accurately synthesizing specific

instrumental timbres and different musical pitches, demonstrating the aural

capabilities of directly using the algorithms. I then build from these exper-

iments, creating a set of compositional utilities that provide the composer

with a rich pallet to provoke aesthetic introspection. These compositional

utilities are then implemented in two music composition systems that syn-

thesize and control timbre in application, where the algorithms themselves
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are designed and manipulated as a means to realize artwork.

Through the creation of music composition systems that are able to ac-

curately synthesize and control musical timbre, I demonstrate these models

have the capability of provoking the aesthetic introspection of composers.

The resulting systems show the power and potential of integrating music

composition and machine learning, endorsing an interdisciplinary approach

to the development of art and technology.
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CHAPTER 1

INTRODUCTION

1.1 Research Issues and Concept

Machine-learning applications in music have opened music composition to

new methods of creativity. Sophisticated creative processes previously rele-

gated to the composer such as material generation, defining complex mapping

schemas, and managing higher order control of musical parameters can be

modeled effectively by algorithms. This has led to a liberation of technolog-

ical expression, expanding composers’ musical aesthetics while driving algo-

rithmic design in order to achieve that expression. These machine-learning

music composition applications are a natural progression of the interdisci-

plinary precedent set by system aesthetics and computer music. These fields

have leveraged the mutual development of creativity and technology, creat-

ing systems that expand the capabilities of participating agents through their

integration.

This technological liberation based in integrated research generates oppor-

tunities to create music composition systems that develop aesthetics through

the exploration and application of technology. These systems would chal-

lenge composers and their aesthetic approach, enriching composition in pre-

viously inaccessible ways, while defining algorithmic designs to meet their

artistic needs. For composers to take advantage of such systems, implemen-

tations need to be able to utilize their compositional capabilities effectively,

efficiently, and in application. I demonstrate an approach to developing in-

tegrated systems that realize the potential of these opportunities, creating

human-machine music composition systems for timbral synthesis and control.

Timbral analysis and the digital manipulation of sound quality has al-

lowed composers to delve deeply into their relationship with audio. From a

data perspective, timbre is a highly dimensional, dynamic time series that is
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broadly diverse across sonic spectra. Defining generalized systems that can

synthesize and control this space requires algorithms that can learn a flexible,

yet robust set of parameters for creative interaction.

In order to develop systems that would be able to achieve complex tim-

bral synthesis and control, I implemented conditional restricted Boltzmann

machines (CRBM) and factored conditional restricted Boltzmann machines

(FCRBM). CRBMs incorporate temporal elements into synthesis, using au-

toregressive relationships between past and current outputs to dynamically

generate time-related material. CRBMs are also capable of mapping highly

dimensional feature spaces into an organization of sigmoidal “energy” units,

providing a new perspective of the data and its underlying patterns. FCRBMs

extend the CRBM framework through the factorization of the algorithmic

interactions, providing more developed connections within the model and

providing composers with a method to direct synthesis externally. Musically,

this is realized through the deconstruction of timbral elements, defining spec-

tral features of sound at higher levels that can be used to synthesize, control,

or transform timbres.

While CRBMs and FCRBMs have been applied and developed in a variety

of research domains, the use of these algorithms in aesthetically concerned

realms, such as music composition, remains largely unexplored. This mo-

tivated me to develop timbral music composition systems that leverage the

unique capabilities of these algorithms, extending their use through appli-

cation. By doing so, I give composers the ability to synthesize and control

timbre, serving practical functionality in traditional synthesis applications

and empowering aesthetic explorations into machine-driven creativity.

The conceptual framework of this research is grounded in an aesthetic

perspective, focusing on enriching the creativity of artists through their in-

teraction with systems. Starting from the fundamental work of machine-

learning scientists, principally Graham Taylor and Geoffery Hinton, this per-

spective merges motivation from the theory of system aesthetics defined by

J. W. Burnham, the art of Hans Haacke and Lisa Jevbratt, and the work of

composers Iannis Xenakis, Kaija Saariaho, John Bischoff, and David Tudor.

From this conceptual base, I develop music composition systems that connect

humans and machines through the synthesis and control of dynamic timbres,

integrating the unique capabilities of CRBMs and FCRBMs with the insight

learned from these contexts.
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I demonstrate the capabilities of these algorithms in a series of traditional

synthesis and classification experiments. I test the ability to accurately syn-

thesize different instrumental timbres and pitches using two different algorith-

mic setups: several single layer CRBMs, testing the fundamental capability

of incorporating CRBMs with timbral synthesis; and a single layer FCRBM,

testing the capability of processing more complex abstract structures that

are user tunable. I show that CRBMs are particularly effective in these

traditional synthesis tasks, achieving accuracies of over 94% in the classifi-

cation of synthesized material. I also show that FCRBMs are effective in

modeling instrumental pitches, achieving accuracies of over 96% in classifica-

tion experiments, while additionally generating transitional material between

classes that was not specifically defined in the data.

From the accurate synthesis within these initial experiments, I then design

models to accomplish specific musical tasks, developing a series of composi-

tional utilities. These include manipulating the dynamic envelope of different

timbres, generating unique and dynamic soundscapes from primary source

material, and performing synthesis via stylistic label manipulation of the

algorithms.

From the initial experiments and the resulting compositional utilities, I

realize two timbral music composition systems, demonstrating the potential

of integrating algorithmic design with musical creation. I show the process

of composing from an abstract formal construct, using a network of CRBMs

and FCRBMs to translate dance choreography to timbral synthesis in the

collaborative work a performer’s perspective(2017). I show the capability

of CRBMs and FCRBMs to digitally synthesize and control a variety of

dynamic timbral textures from a limited audio vocabulary through multi-

modal interaction in the immersive art installation series is That(’s) all there

is(2016-2017).

Through the creation of these timbral music composition systems, com-

posers are able to develop more complex relationships between their use of

technology and their aesthetic. These more developed relationships challenge

composers to investigate their process, reconsider their interactions with tech-

nology, and redefine their perspectives on artistic control. By redefining their

compositional approach and delegating complex timbral synthesis and con-

trol to algorithms, composers can channel their technological concerns toward

aesthetic rather than logistic and technical proficiency, potentially develop-
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ing a new form of interaction that requires a different understanding of their

role in musical creation. These music composition systems expand the com-

poser’s aesthetic through machine-interaction, leading composers to embrace

the capabilities of such systems, bringing a more developed approach to music

technology, and integrating computational models with musical aesthetics.

To meet this approach, algorithms must be continually developed and de-

signed to adequately address such complex understandings. The implemen-

tation of CRBMs and FCRBMs in these systems provides a foundation for

building more complex models (e.g. deep belief nets) that further stretch

creative paradigms.

Through the demands of these music composition systems, technology is

used to address the complexity of timbral synthesis and control, providing

solutions that drive the design and application of CRBMs and FCRBMs and

enrich the aesthetic investigation of composers. By developing music compo-

sition systems that use these models effectively and efficiently in application,

I provide a compositional methodology that incorporates algorithms directly

into creativity, generating an approach to music composition that integrates

machine learning and art to advance aesthetic and computational concerns

of composers.

1.2 Outline of Dissertation

Chapter 2 provides an overview of the related research in applied machine-

learning and the supporting theory that led to the technical construction and

design of the CRBMs and the FCRBMs in my music composition systems,

showing how they are ideal algorithms to achieve timbral synthesis and con-

trol.

Chapter 3 provides an overview of the related work in art theory that mo-

tivates the integration of technological systems with aesthetics. Specifically,

I explore the theory of system aesthetics through the curation of J.W. Burn-

ham’s Software exhibition, the early systems work of Hans Haacke, and the

application of systems theory to Lisa Jevbratt Interspecies Collaborations.

I connect this system perspective to music, investigating formal (Xenakis),

timbal (Saariaho), and performative (Bischoff, Tudor) uses of timbral syn-
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thesis and control in music composition.

Chapter 4 demonstrates the capabilities of CRBMs and FCRBMs to achieve

complex timbral tasks. I articulate the specifications for the applied algo-

rithms in terms of data, model parameters, and general framework. I then

test the algorithms in a series of different experiments including two tradi-

tional synthesis tasks (synthesizing different instruments from the same mu-

sical family and different pitches from the same instrument) and the creation

of three sets of compositional utilities (manipulating dynamic envelopes, sus-

taining non-repeating generative timbres, synthesis and filtering using com-

poser chosen labels). From the results of these experiments, I show the

potential of using and designing these algorithms for musical composition.

Chapter 5 describes the implementation of two music composition systems

that utilize CRBMs and FCRBMs in the artworks a performer’s perspec-

tive(2017) and is That(’s) all there is(2016-2017), realizing the capability of

these algorithms to create complex, timbral synthesis and control systems

that are defined by the integration of machine learning and music composi-

tion.

Chapter 6 concludes by summarizing the findings of this research and dis-

cussing future directions for the integration of music composition with system

design and the development of these algorithms. I present the unique ad-

vantages demonstrated in the validation tasks, compositional utilities, and

creative work of this dissertation. I explore the potential contributions of this

research in musical and computational domains, pointing to specific growth

opportunities that result from the integration of system aesthetics, music

composition, and algorithmic application to address creative concerns.
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CHAPTER 2

BACKGROUND AND RELATED WORK IN
MACHINE LEARNING

In this chapter I describe the related work being done with non-linear, hid-

den layer, machine-learning algorithms, specifically focusing on applications

in the audio domain and my choice of CRBMs and FCRBMs as the foun-

dational algorithms for my timbral music composition systems. In section

2.1, I discuss previous research done in machine learning and applied data-

synthesis fields. In section 2.2, I describe the theoretical underpinnings of the

CRBM and the FCRBM, outlining why they are ideal algorithms for timbral

synthesis and control in music composition systems.

2.1 Background and Related Work in Machine

Learning

An artificial neural network is a statistical learning model that learns non-

linear representations of datasets, generating an approximate function that

generalizes mappings of an input space to an output space [1]. The use of such

a model, that develops connections directly from the data, opens composers

to algorithmic patterns untethered by human design. This machine-driven

vocabulary gives growth to new forms and explorations, not limited by human

conceived solutions, providing a fertile ground for expanding creativity. Non-

linear representations have been used in several different audio technology

applications such as gestural-audio interfaces [2] [3] [4], cybernetic musical

systems [5] [6], and musical parameter control [7] [8].

From this expanded vocabulary of machine-derived connections, composers

need ways to control mappings and outputs in order to facilitate their own

creativity effectively. The theoretical construction of these non-linear mod-

els provides a scaffold from which composers can process material to fit their

needs. The models learn hidden layers, an abstracted representation of the
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data consisting of a number of hidden units. Each hidden unit of the layer

activates according to an applied energy model [9], as is the case with the gen-

erative algorithm, the conditional restricted Boltzmann machine (CRBM).

The hidden layer of the CRBM gives the composer a way to interact with

the algorithms self-defined connections and the resulting data it synthesizes.

Learned abstractions provide a creative ground directly related to the data,

yet structured in a new, non-linear form, giving a different perspective from

which to explore aesthetic concerns. Investigating musical organization and

structure through technological applications has been a vital element of sev-

eral composers’ process (see 3.2.3) and a chief aim of my research. In CRBMs,

this abstract hidden space is affected by past frames of the data, with material

being grounded in autoregressive connections. These temporal connections

give CRBMs a direct correlation to time-series data, such as musical timbre,

and provide an entry to controlling non-linear models.

In CRBMs, the algorithm learns the connections/weights and respective

biases of the hidden layers using contrastive divergence (CD) to approxi-

mate the maximum-likelihood function in a tractable manner [10] [11]. The

tractability of this model is essential to processing and working with hugely

dimensional, time-series datasets practically, provoking deeper explorations

that would not be possible without this efficiency. Due to this capability,

CRBMs have been used successfully applied in several machine-learning tasks

such as handwritten digit recognition and generation [12] and facial recogni-

tion [13].

From CRBMs, a variety of algorithmic extensions have been developed,

such as Graham Taylor’s factored conditional restricted Boltzmann machine

(FCRBM) [14]. A FCRBM is a CRBM where intermediate layers of ‘factors’

are used to model the interactions between the internal parameters (i.e. the

visible, hidden, and feature units) of the algorithm. The inclusion of factor-

ization reintroduces a layer of human agency into the algorithms, learning

macro-stylistic tendencies that composers can tune during synthesis, similar

to the digital timbral synthesis and manipulation processes of past composers

(see 3.2.2). This gives composers a method of directing the algorithms with-

out restricting the expanded vocabulary generated by the algorithm.

The combinatorial nature of CRBMs and FCRBMs lend particularly well

to musical applications, specifically compositional perspectives. The autore-

gressive nature of the algorithms place its modeling and synthesis in direct
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parallel with the temporal environment of music. The models learn sev-

eral weights and biases in combination to create an appealing architecture of

horizontal (i.e. autoregressive/temporal) and vertical (i.e. hidden layer) con-

nections, providing composers with multiple levels to structure and formalize

their process and compositions.

Through the incorporation of the FCRBMs’ user-controlled factors, com-

posers are provided with an additional element of high-level control, giving

direct access to the connections between the current output and the inter-

nal parameters of the algorithm. This high level structure can be linked to

formal applications, as done in past music compositions (see 3.2.1), as well

as provide access to previously unexplored perspectives of the musical data

through the algorithm’s architecture. The augmentation of these formal as-

pects into a dynamic generative model provide the composer with a higher

structural control of a vocabulary of micro-consequences, incorporating al-

gorithms directly into formal compositional considerations.

While the majority of CRBM and FCRBM applications have been fo-

cused in recognition tasks, models that synthesize user-defined ‘styles,’ have

emerged [14]. My research delves deeper into these algorithms as a means of

facilitating material synthesis, digital control, and creative expansion. This

extended look into the theoretical construction of CRBMs and FCRBMs

highlight the opportunities to link these algorithmic structures to composi-

tional utility and expression.

2.2 Theoretical Construction of the CRBM and

FCRBM

CRBMs and FCRBMs are energy-based models that learn weights and biases

between data and user-defined elements, measuring the difference between

the expectation of the data generated from the training set, E[θdata], and

the expectation of the reconstruction of the data generated using a Gibbs

sampling algorithm (see 2.8), E[θrecon]. By measuring the difference between

the data and its reconstruction, the model is able to iteratively learn abstract

weights and biases that can be used to represent and synthesize new data.

In order to generate the E[θdata], samples from the training data are used

as the visible units (i.e. inputs) of the algorithm. These visible units are

8



used to determine the activations in the abstract hidden unit layer, using the

bias of the hidden units plus the sum of the weight matrix multiplied with

the visible units, run through a sigmoid function, to determine if the hidden

unit is ‘on’ (hj = 1) or ‘off’ (hj = 0) (explained and specifically shown in the

context of RBMs in equation 2.6).

In order to generate the E[θrecon], visible units are reconstructed using

the bias of the visible units plus the sum of the weight matrix multiplied

with the hidden units generated by the E[θdata] step. The hidden units are

determined from these reconstructions, using the same process as described

in the E[θdata] step (explained and specifically shown related to RBMs in

equation 2.8).

The difference of these expectations can then be used to update the weights

and biases of the model (i.e. RBM, CRBM, or FCRBM), iterating for a pre-

determined number of epochs or until an error function reaches a suitably

low threshold. Within each iteration of the difference, the estimation using

Markov chain Monte Carlo (MCMC) sampling will eventually converge to a

stationary distribution, thus we can expect the gradient to eventually con-

verge to zero. When the weights and biases are small, the MCMC converges

rapidly and we can approximate the gradient for the parameters.

Specifically, in the context of CRBMs and FCRBMs, the restricted nature

of the algorithms (i.e. no visible-visible and hidden-hidden connections, only

visible-hidden connections) allows for the model to use contrastive divergence

(CD) for learning the gradient due to the conditional independence of the

visible units with respect to each other and the conditional independence of

the hidden units with respect to each other. This provides an efficient and

tractable method for calculating the gradient of the weights and biases of

RBMs. The FCRBM is an extension of this framework, expanding the energy

based model of CRBM to incorporate stylistic, context-sensitive factors into

inference and learning.
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2.2.1 Energy-based Model Theory

Energy-based models [15] define a model’s probability distribution through

the energy function:

p(x) =
e−E(x)

Z
(2.1)

where Z is a normalization, partition function represented by:

Z =
∑
x

e−E(x) (2.2)

In a BM [16], the numerator can be defined as a probabilistic distribution

modeling the visible and hidden units, thus making the distribution:

p(v, h) =
e−E(v,h)

Z
(2.3)

where the energy function E(v, h) becomes:

E(v, h) = −
∑
ij

Wijvihj −
∑
i

aivi −
∑
j

bjhj (2.4)

The partition function Z becomes intractable to compute, as it becomes

the sum over all possible joint probabilities:

Z =
∑
v,h

E(v, h) (2.5)

2.2.2 Restricted Boltzmann Machine (RBM) Theory

A RBM [17] makes the partition function tractable by removing interactions

between hidden units, creating an estimation of the negative gradient based

on a fixed number of model samples, with connections that only exist between

the visible and hidden units. Due to the structure of RBMs, conditional

independence exists between hidden and visible units. Thus, a sample of the

negative distribution v, h can be estimated by attaching visible units to a

training vector and sampling the hidden units in parallel according to:

p(hj = 1|v) =
1

1 + e−bj−
∑

i Wijvi
(2.6)
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where the visible-hidden weight with the added hidden bias is run through

a logistic sigmoid function, generally represented as:

f(x) =
1

1 + e−x
(2.7)

Hidden units are then ‘activated’ (i.e. hj = 1), if the value is greater than

a random value. The corresponding positive distribution is calculated by

performing alternation Gibbs sampling, iterating between p(h|v) and:

p(vi = 1|h) =
1

1 + e−aj−
∑

j Wijhj
(2.8)

Performing this sampling using contrastive divergence[11] gives us the

learning updates of:

∆Wij ∝ 〈vihj〉data − 〈vihj〉recon (2.9)

∆bj ∝ 〈hj〉data − 〈hj〉recon (2.10)

∆ai ∝ 〈vi〉data − 〈vi〉recon (2.11)

The ability to learn an abstract representation of the data, (i.e. a set of

binary hidden units), provides a new perspective for composers. By learning

the connections between an abstract space (i.e. hidden units) and an audible

space (i.e. visible units), composers can manipulate, generalize, and organize

their aesthetic direction through an algorithmically defined paradigm. This

provides an approach that translates densely complex data such as timbre

into a more approachable form (as applied in 4.4.2). Like the artists exploring

systematic approaches to aesthetics (as detailed in 3.1), the RBM provides

an systemized approach to the synthesis and control of highly dimensional

artistic data.
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2.2.3 Conditional Restricted Boltzmann Machine (CRBM)
Theory

Figure 2.1: General architecture of a second order CRBM

While the RBM provides an abstracted space from which to create, general-

ize, and explore the data, it only learns connections between current hidden

units and current visible units. In a CRBM [13] [18], temporal information

is incorporated into the model by adding previous frames of the data as ad-

ditional fixed inputs, making autoregressive connections to current visible

and hidden units. This places the model in time, learning connections and

generating material with respect to the past. This autoregressive connection

provides a concrete parallel to musical considerations (see 3.2), adapting syn-

thesis and control to what has come before. Weights and biases learned with

this consideration provide composers with a structure that is based on tem-

poral relationships, giving access to the dynamic aspects of the algorithms

that are based concretely in time (see 4 for examples of experiments applying

these temporal considerations).

Transitioning from a RBM to a CRBM results in the energy function:

E(vt, ht|v<t) =
∑
i

viâi,t −
∑
ij

Wijvi,thj,t −
∑
j

b̂j,thj (2.12)

where given the current (vt) and past frames (v<t), the negative distribu-
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tion over hidden units becomes:

p(hj,t = 1|vt, v<t) =
1

1 + e−b̂j,t−
∑

i Wijvi,t
(2.13)

where b̂j,t is now:

b̂j,t = bj +
∑
k

Bkjvk,<t (2.14)

and the positive distributed reconstruction over visible units becomes:

p(vi,t|ht, v<t) = âi,t +
∑
j

Wijhj,t (2.15)

where âi,t is now:

âi,t = ai +
∑
k

Akivk,<t (2.16)

Now that multiple frames are incorporated into the model, the respective

updates are summed over all time steps and gives us the learning updates of:

∆Wij ∝
∑
t

(〈vi,thj,t〉data − 〈vi,thj,t〉recon) (2.17)

∆Aki ∝
∑
t

(〈vi,tvk,<t〉data − 〈vi,tvk,<t〉recon) (2.18)

∆Bkj ∝
∑
t

(〈hj,tvk,<t〉data − 〈hj,tvk,<t〉recon) (2.19)

∆ai ∝
∑
t

(〈vi,t〉data − 〈vi,t〉recon) (2.20)

∆bi ∝
∑
t

(〈hj,t〉data − 〈hj,t〉recon) (2.21)

where k is the number of steps for the reconstruction distribution, using

the training data for the visible units.

Generating audible data with respect to an abstracted hidden layer that

is also affected by the past demonstrates a more apparent correlation to the

musical forms of several systematic composers (see 3.2.3). In the realization

of music, sonic objects are not created to be in isolation but as a series of
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relational consequences within time, apparent at micro (e.g. dynamic enve-

lope construction, as explored in 4.4.1) and macro (e.g. composer control-

mappings or formal compositional construction, as explored in 5) scales. The

CRBM takes the theory of the RBM and places it in time, making it much

more powerful and appealing to temporally concerned composers.

2.2.4 Factored Conditional Restricted Boltzmann Machine
(FCRBM) Theory

Figure 2.2: General architecture of a FCRBM

In a FCRBM [14], an additional set of deterministic ‘factors’ are introduced.

These factors learn the interactions between the internal parameters of the

model (i.e. visible, hidden, past visible, and feature units), providing the

composer with a way to directly manipulate the algorithm through external

labels. This empowers composers to direct the algorithm as a fully integrated

component of the system, creating a relationship much more analogous to

collaborative opportunity rather than composer-centric limitations (see 3.1

for art theory basis).

By factorizing the algorithm, the resulting energy function becomes:

E(vt, ht|v<t) =
∑
i

viâi,t −
∑
f

∑
ij

W v
ifW

h
jfvi,thj,t −

∑
j

b̂j,thj (2.22)
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where the biases are also factored, making ât and b̂t:

âi,t = ai +
∑
m

∑
k

Av
imA

v<t

kmvk,<t (2.23)

b̂j,t = bj +
∑
n

∑
k

Bh
jnB

v<t

kn vk,<t (2.24)

In these biases, m and n relate to the factoring of direct connections A

and B.

With the model now factored, features controlled by labels are introduced,

allowing for a ’stylistic’ control of the interactions within the model, as ap-

plied in [19], [20], and [14]. These labels act as a channel of interaction

between composer and algorithm, providing an aesthetic access point for

cohesive, theoretically established data synthesis (see 5.1 and 5.2).

With the introduction of feature-label term zl,t and the replacement of

Wi,j with three different weight matrices representing visible (W v
if ) , hidden

(W h
jf ), and feature (W z

lf ) interactions, the energy function becomes:

E(vt, ht|v<t, yt) =
∑
i

viâi,t−
∑
f

∑
ijl

W v
ifW

h
jfW

z
lfvi,thj,tzl,t−

∑
j

b̂j,thj (2.25)

and the corresponding biases become:

âi,t = ai +
∑
m

∑
kl

Av
imA

v<t

kmA
z
lmvk,<tzl,t (2.26)

b̂j,t = bj +
∑
n

∑
kl

Bv
jnB

v<t

kn B
z
lnvk,<tzl,t (2.27)

In order to learn the hidden unit activations in the model with these label-

feature interactions, the negative distribution over the hidden units becomes:

p(hj,t = 1|vt, v<t, yt) =
1

1 + e−b̂j,t−
∑

f Wh
jf

∑
f

∑
i W

v
ijvi,t

∑
l W

z
lf zl,t

(2.28)

and the positive distributed reconstruction over visible units becomes:

p(vi,t|ht, v<t, yt) = âi,t +
∑
f

W v
if

∑
j

W h
jfhj,t

∑
l

W z
lfzl,t (2.29)
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The inclusion of the three term interactions changes the gradient update

rules to products that involve “the activity of the respective unit, and the

total input to the factor from each of the two other sets of units involved in

the three-way relationship [14],” which gives us the learning updates of:

∆W v
if ∝

∑
t

〈vi,t∑
j

W h
jfhj,t

∑
l

W z
lfzl,t

〉
data

−

〈
vi,t
∑
j

W h
jfhj,t

∑
l

W z
lfzl,t

〉
recon


(2.30)

∆W h
jf ∝

∑
t

(〈
hj,t
∑
i

W v
ifvi,t

∑
l

W z
lfzl,t

〉
data

−

〈
hj,t
∑
i

W v
ifvi,t

∑
l

W z
lfzl,t

〉
recon

)
(2.31)

∆W z
lf ∝

∑
t

(〈
zl,t
∑
i

W v
ifvi,t

∑
l

W h
jfhj,t

〉
data

−

〈
zl,t
∑
i

W v
ifvi,t

∑
l

W h
jfhj,t

〉
recon

)
(2.32)

∆Av
im ∝

∑
t

(〈
vi,t
∑
k

Av<t
km vk,<t

∑
l

Az
lmzl,t

〉
data

−

〈
vi,t
∑
k

Av<t
km vk,<t

∑
l

Az
lmzl,t

〉
recon

)
(2.33)

∆Av<t

km ∝
∑
t

(〈
vk,<t

∑
i

Av
imvi,t

∑
l

Az
lmzl,t

〉
data

−

〈
vk,<t

∑
i

Av
imvi,t

∑
l

Az
lmzl,t

〉
recon

)
(2.34)

∆Az
lm ∝

∑
t

(〈
zl,t
∑
i

Av
imvi,t

∑
l

Av<t

kmvk,<t

〉
data

−

〈
zl,t
∑
i

Av
imvi,t

∑
l

Av<t

kmvk,<t

〉
recon

)
(2.35)

∆Bh
jn ∝

∑
t

(〈
hj,t
∑
k

Bv<t

kn vk,<t

∑
l

Bz
lnzl,t

〉
data

−

〈
hj,t
∑
k

Bv<t

kn vk,<t

∑
l

Bz
lnzl,t

〉
recon

)
(2.36)
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∆Bv<t

kn ∝
∑
t

〈vk,<t

∑
j

Bh
jnhj,t

∑
l

Bz
lnzl,t

〉
data

−

〈
vk,<t

∑
j

Bh
jnhj,t

∑
l

Bz
lnzl,t

〉
recon


(2.37)

∆Bz
kn ∝

∑
t

〈zl,t∑
j

Bh
jnhj,t

∑
k

Bv<t
kn vk,<t

〉
data

−

〈
zl,t
∑
j

Bh
jnhj,t

∑
k

Bv<t
kn vk,<t

〉
recon


(2.38)

Additionally, the weights connecting the labels to the features can be

learned through back-propagation, with the gradients learned through CD

[14]. Updating this weight, R can be done with:

∆Rpl ∝
∑
t

(
〈Cl,typ,t〉data − 〈Cl,typ,t〉recon

)
(2.39)

where Cl,t is

∆Cl,t =
∑
f

W z
lf

∑
j

W v
ifvi,t

∑
j

W h
jfhj,t +

∑
m

Az
lm

∑
i

Av
imvi,t

∑
k

Av<t
km vk,<t+∑

n

Bz
ln

∑
j

Bh
jnhj,t

∑
k

Bv<t
kn vk,<t

(2.40)

The static hidden (bj) and visible biases (ai) are updated as in a regular

CRBM:

∆ai ∝
∑
t

(〈vi,t〉data − 〈vi,t〉recon) (2.41)

∆bi ∝
∑
t

(〈hj,t〉data − 〈hj,t〉recon) (2.42)

As a result of these factor and feature additions, the FCRBM becomes

an attractive algorithm for spectral synthesis and control. The time-based

hidden layer realized in the CRBM can be modulated by the composer, allow-

ing for the algorithm to be directed in synthesis without prescribing specific

outcomes. These capabilities present unique possibilities for synthesis and
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control, generating material that is dynamic yet controlled within the con-

fines of the composer’s intent.

2.2.5 Synthesis from Trained Models

After the weights and biases of the algorithms are learned, synthesis occurs

by initializing the model with sample data, defining model parameters, and

iterating through a set number of Gibbs sampling steps, going through a for-

ward pass of the trained model for the desired number of synthesized samples.

For the FCRBM, this results in first calculating the constant during inference

(a factored analog to the bias constant used in CRBMs) and constant during

reconstruction based on the learned parameters using the equations 2.26 and

2.27.

Using these constants, synthesized data is generated the same way that the

visible data is reconstructed in the learning steps of the algorithms. First,

the hidden units are generated from the learned weights (as done in equa-

tion 2.28) given an initialization sample equal to the order of the model,

iterating through a predetermined number of Gibbs sampling steps, and tak-

ing a mean-field approximation of those hidden units. With that mean-field

approximation, the hidden units are multiplied by learned feature and fac-

tor matrices, and the reconstruction constant is added (as done in equation

2.29) to synthesize a frame of the data. Successive frames of data are then

synthesized based on previously generated outputs.

2.3 Summary

In this chapter I described the foundational research that provides the basis

for the algorithms used in my timbral music composition systems, specifically

the CRBM and FCRBM energy models. From this established research, I

outlined the theoretical construction of these algorithms, providing insight

into the unique capabilities they posses that make them ideal algorithms for

synthesizing timbre in music composition systems.
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CHAPTER 3

BACKGROUND AND RELATED WORK IN
AESTHETICS AND ART THEORY

In this chapter, I connect the machine-learning base described in chapter

2 with artistic work, showing the aesthetic and conceptual development of

timbral music composition systems as a union of aesthetics and machine

learning. In section 3.1, I give an overview of system aesthetics, describing

its theoretical implications and the impact it has had on machine-driven

creativity, citing the theoretical and curatorial work of J.W. Burnham, the art

of Hans Haacke, and the work of Lisa Jevbratt. In section 3.2, I describe the

impact of music composers, Iannis Xenakis, Kaija Saariaho, John Bischoff,

and David Tudor, discussing how their work realizes systematic applications

in music, and directly motivates the technological and creative decisions that

define my research.

3.1 System Aesthetics

J.W. Burnham, in his work Systems Esthetics [21] and “The Aesthetics of In-

telligent Systems [22]”, provided the foundation for system aesthetics, merg-

ing the approach of artists and scientists of the 1970s with electronic in-

formation processing, creating “human enhancement through man-machine

relationships [22]” and transitioning from an object-oriented culture to a

systems-oriented culture, that is, from ‘things’ to “the way things are done

[21]”. The central objective of this enhancement was to be able to interact

creatively with computational systems, developing ”a dialogue where two sys-

tems gather and exchange information so as to change constantly the states

of each other [21].” Burnham further presented the need for a shift in our

relationship with machines:

The continued evolution of both communications and control

technology bodes a new type of aesthetic relationship, very differ-
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ent from the one-way communication of traditional art apprecia-

tion as we know it. A great deal of technological rationalization

has derived from this attitude, which has led us to think in terms

of human domination and environmental passivity. The change

that I perceive, however, encourages the recognition of man as an

integral of his environment.[22]

With this assessment of technology, Burnham outlines a central influence

on my research: if artists investigate their role as “an integral” of the sys-

tem rather than a dominant controller, more opportunities for considering

aesthetic investigations result. By focusing on the creative interactions of

human agents as part of a system (i.e. integrating machine agents, not

dominating them), aesthetic concepts and creativity can grow beyond the

one-way methodology of past artistic traditions. By allowing technology to

enter as an active component in the creative process rather than a passive

element, these types of systems incorporated the artist into the very envi-

ronment from which they work, developing a completely different and novel

creative paradigm.

Investigating the dynamics of this paradigm, through the parameter def-

inition of a largely automated process, defining the structural boundaries

of agent interactions, and designing a system architecture from an aesthetic

perspective, all provide fruitful opportunities for creativity and are especially

conducive to CRBM and FCRBM application. My research distinguishes it-

self from Burnham’s foundational concepts by expanding the human-machine

interactions, continuously developing from the exchange of information and

resulting feedback. Structural and technological limitations of Burhnam’s au-

tomated systems are circumvented by implementing CRBMs and FCRBMs,

algorithms capable of reacting to user input, past history of input, and it’s

own abstract formalism. These multiple components of the algorithm pro-

vide new opportunities for technological development and system aesthetic

exploration.

Burnham’s vision was realized in the curation of Software: Information

Technology: Its New Meaning for Art, an exhibition that highlighted a vari-

ety of technologies that focused on the “interaction between people and their

electronic and electromechanical surroundings [23].” Works throughout the

exhibition emphasized dynamic interactions between humans and machines:
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Composer [24] empowered composers and users to manipulate any number

of basic sonic elements of an audio synthesis system, creating an aural at-

mosphere of their own design; The Conversationalist [25] allowed people to

record stories inspired by stochastically chosen wordsets; Vision Substitution

System [26] coupled with Light Pattern Box (Electrochrome) [27] invited

users to sit in a chair that had 400 vibrators mounted on its back, transform-

ing camera data it into a tactile image and creating colored light patterns

autonomously or in response to a viewer’s rhythmic input.

3.1.1 Hans Haacke’s Open Systems

Another artist Burnham included in the exhibition was Hans Haacke [28]

[29] whose system work especially informs my research. Haacke’s early work

with open systems addressed concerns presented by incorporating algorithmic

and human agents in successful collaboration. His Photo-Electric Viewer-

Programmed Coordinate System [30] used a system of infrared light and

photo-resistors to allow for spectator’s to control lights placed above them in

the space, defining the experience by the spectator’s movement and attempt

to discover its underlying logic.

While not as technologically oriented, Haacke’s earlier exhibition at MIT

in 1967 [31], displayed similar systematic approaches, contemplating non-

human agency within systems. Wave(1965) invited observers to actively

participate in a system, setting a large, sealed plastic container of water sus-

pended from the ceiling in motion, thus animating the work directly through

their involvement. White Waving Line(1967) used a long, thin piece of fab-

ric, caught floating in a stream of air generated by a fan, creating an aero-

dynamic sculpture that was a result of Haacke’s design but out of his direct

control. Condensation Cube(1967), was a clear, sealed box is filled with a

small amount of water, where physical systems and natural processes act

upon each other within the human imposed structure.

This exploration of the underlying hidden structure of systems and using

that exploration as a means to create art is directly linked with my investi-

gation of the learned abstraction of algorithmically generated hidden layers

of CRBMs and FCRBMs. Intuiting the base logic of this abstraction occurs

through experience, interaction, and dialogue with the machine architecture.
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In such an environment, the consequences, resulting outputs, and process of

discovering these elements of the system contribute to its artistic value. Sim-

ilarly, my research provides a fertile ground for the exploration of the system,

specifically defining synthesis through external, composer-determined labels,

allowing for the composer to interact directly with the algorithm and ma-

terial it is synthesizing (see 5.2). Due to the non-linear nature of CRBMs

and FCRBMs, the activation of different hidden units results in a variety

of sonic consequences that are only realized through the exploration of that

abstraction (see 4.4). With Haacke’s open systems, problems are not ad-

dressed from a linear, direct perspective, but approached considering aspects

and relationships within the system. Components derive meaning from their

place and interaction within, very similar to the factorization of the FCRBM

(see 2.2.4).

The relationships developed from the composer’s interactions with other

elements of the system are at the very essence of my research. Consequences

of these interactions are subservient to further developing the relationships

between the elements, through mutual investigation and protocol. With this

emphasis on exploring relationships within an open system, composers are

able to reshape their role, finding creativity as an elemental participant,

exploring the various interactive contingencies between themselves and the

algorithmic components of their compositional system. Specific to this work,

the interactions of the composer with the algorithms becomes factorized, re-

sulting in timbral synthesis and control through the composer’s incorporation

into the system.

The application of systems to art has evolved rapidly beyond these initial

foundations and has become unavoidably present in most contemporary work

due to technology. The nature of systematic conception often becomes an

afterthought, avoiding the fundamental questions present in the creation of

system aesthetics and focusing on facilitating the most efficient utilities. By

working with CRBMs and FCRBMs that rely on a composer’s choices and its

own synthesis, I return to these questions. By focusing on the interactions of

composers with the algorithms in this context, I’ve developed a generalized

approach to creativity can be extended to composers working with timbral

music composition systems.
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3.1.2 Jevbratt’s Interspecies Collaboration

With the advancement of these complex human-machine interaction via sys-

tems, the role of the composer comes to the forefront. Wherein previously

the composer controlled creation through their aesthetic choices, the ceding

of more creative elements to technology shifts the human-centricity of art

to one of seeking balance within the system. With this shifting balance be-

tween composer and technological agents, new collaborative methods must

be developed in order to deepen our understanding of such human-machine

interactions.

Lisa Jevbratt’s work with Interspecies Collaboration[32] provides many

insightful guides to this end that parallel concepts present in my own re-

search. In the introduction to her course, she states the purpose and benefit

of working with non-human agents, opening ourselves to “learn things about

our world we (quite literally) cannot imagine” and “to acknowledge their

agency[...]to be our intellectual, emotional and spiritual partners in a quest

for a sustainable environment for all of us to thrive within [32].”

The parallels with human-computer collaboration, especially present in my

work with CRBMs and FCRBMs, are clear. By allowing algorithms to take

a larger share in the creative process, by acknowledging their ‘agency’ in

the artistic process, a more complex understanding of our artistic systems

is assumed, allowing for material creation beyond the isolated vision of a

composer. Expanding into this algorithmic agency empowers the human

composer, providing investigative means into a completely different creative

paradigm. Spawned from that paradigm are new ideas, a more developed

understanding of systematic interactions, and a rich complexity for aesthetic

growth. My timbral music composition systems generate material that is

directed by the user, but defined and fully realized through the relationships

within the system’s agents, composer and algorithms.

Beyond the conceptual motivation, Jevbratt provides four useful forms

which are used to develop agency in non-humans and are rich sources to

draw from for the human-machine interactions of my compositional systems:

protocol, a formalized rule system that defines the interactions between agents

within a system to generate an output; interference pattern, the co-existence

of two environments (whether they be physical, emotional, or semiotic), that

creates a new environment as a result of their interference; communication,
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the development of reactions and responses between agents, listening, ob-

serving, and absorbing input and figuring how to respond accordingly, trans-

ferring information in response to the information received; and limbic res-

onance, “a symphony of mutual exchange and internal adaptation whereby

two mammals become attuned to each other’s inner states [33].”

Jevbratt’s schema for non-human interaction provides a useful outline for

interactions with algorithms creatively. While her focus resides in the living,

species domain, there are clear parallels with human-computer interaction

that are present in my research, especially from a collaborative perspec-

tive. The utility of my systems are creative in nature rather than one of

straightforward functionality, opening composers to a completely different

and potentially rich paradigm to explore aesthetics.

3.2 Musical Composers

While the basis for this research begins with system aesthetics, its closest con-

ceptual relatives are found in musical composition, with composers address-

ing musical synthesis and control problems from a formal (Xenakis), timbral

(Saariaho), and systematic (Bischoff and Tudor) perspective. The work of

these composers displays the potential of integrating technological tools into

aesthetic development, striving to advance the capabilities of human-machine

interactions in concept and implementation. This potential can be uniquely

realized using CRBMs and FCRBMs, expanding how these composers ad-

dressed their respective compositional challenges.

3.2.1 Systematic Form Creation: Iannis Xenakis

Iannis Xenakis use of stochastic processes and probability in composition lend

itself directly to systematic music composition and developing technology to

address the resulting conceptual issues. His novel approaches to incorpo-

rating mathematics, linear programming, computational methodology, and

symbolic formalization of music composition blend seamlessly with the orga-

nizational and artistic framework laid forth by system aesthetics. His work

confronts many of the same structural and theoretical problems being ad-

dressed by artists working in systems (see 3.1, defining his process in terms
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of music as ”an organization of [...] elementary operations and relations be-

tween sonic entities or between functions of sonic entities [34].” CRBMs and

FCRBMs can be viewed from this lens, developing a series of algorithmic

operations with relation to the data.

His approach is articulated in Formalized Music [34]. Xenakis defines his

process of composition in eight fundamental phases:

1. Initial conceptions (intuitions, provisional or definitive data)

2. Definition of the sonic entities and of their symbolism com-

municable with the limits of possible means (sounds of musical

instruments, electronic sounds, noises, sets of ordered sonic ele-

ments, granular or continuous formations, etc.)

3. Definition of the transformations which these sonic entities

must undergo in the course of the composition (macrocomposi-

tion: general choice of logical framework, i.e., of the elementary

algebraic operations and the setting up of relations between enti-

ties, set, and their symbols as defined in 2.); and the arrangement

of these operations in lexicographic time with the aid of succes-

sion and simultaneity)

4.Microcomposition (choice and detailed fixing of the functional

or stochastic relations of the elements of 2.), i.e. algebra outside-

time, and algebra in-time

5. Sequential programming of 3. and 4. (the schema and pattern

of the work in its entirety)

6 Implementation of calculations, verifications, feedbacks, and

definitive modifications of the sequential program

7. Final symbolic result of the programming (setting out the

music on paper in traditional notation, numerical expressions,

graphs, or other means of solfeggio)

8. Sonic realization of the program (direct orchestral perfor-

mance, manipulations of the type of electromagnetic music, com-

puterized construction of the sonic entities and their transforma-

tions) [34].
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Using this process as a scaffold for human-machine collaboration, the bal-

ance of agency in my timbral composition systems can be defined. With

the exception of the first “initial conceptions” and final “sonic realizations,”

each of the phases can be achieved in my compositional systems by the design

of the composer, a collaborative effort between composer and algorithm, or

completely automated by the algorithm. In these phases, a weighted balance

between each agent seems most conducive to facilitating creativity. For ex-

ample, in the “definition of the transformations,” composers provide higher

level direction that could be experimented with, selecting the initiation data

for the CRBMs (see 4.2) and defining external labels for the FCRBM (see

4). The results of this experimentation change the initial conceptions of the

transformation, creating a human-machine feedback loop, where the com-

poser adjusts to the synthesis of the algorithms. This dialogue and resulting

development only occur in a system emphasizing interactivity and synthesis

of undefined material. My music composition systems provide that due to

their reliance on CRBMs and FCRBMs to autonomously generate timbral

textures with respect to the choices of the composer (see 5.1 and 5.2).

Coupled with this process, Xenakis noted the advantages presented by

computers to the compositional process, including the massive increase in

processing capabilities, the ability to operate freely from a higher level of

empowerment on musical material (i.e. form, input data), the ability to

share this musical form directly through the vernacular of programming, and,

through this dissemination, the ability for external composers, machines, and

performers to instill their own ‘personality’ in their use of the compositional

material.

He began realizing these ideas in the work ST/10-1, 080262 (1962), a

piece of stochastic instrumental music based on the scheme he designed for

the earlier work Achorripsis (1957) and programmed for the IBM-7090. In

the scheme, Xenakis defined a series of limits and rules for sonic sequences,

realizing them using a probabilistic approach to form, specifically following

Poisson’s Law. He argued that even though elements of the piece appear

aleatoric at first hearing, successive exposures to the piece form a rules-

network that the listener begins to hear, organize, and innately associate

with that composer’s version of the piece. This method turns the composer

into “a sort of pilot,” defining and supervising the controls of a “cosmic vessel

sailing in the space of sound, across sonic constellations and galaxies that he
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could formerly glimpse only as a distant dream, constituting a new musical

form [34].” After the initial composition of ST/10-1, 080262, other works

were written in a similar form including ST/48-1, 240162 for large orchestra,

Atrees for ten soloists, and Morisma-Amorisima for four soloists.

This directed piloting of material through probabilistic distributions draws

many conceptual parallels to the use of label driven factors in FCRBMs.

Much like Xenakis’ defined limits and probabilistic rules for sonic conse-

quence, my composition systems allow composers to direct the timbral output

to different textural centers and dynamic spectral events that are generated

by the algorithm (see 4.4.2, 4.4.3, 5). Arriving at these textural centers is

defined through the transitory capabilities of FCRBMs, continuously trans-

forming timbre using an overlapping, autoregressive timeframe, presenting a

machine generated, label induced shift of sounds. These textural transitions

can be extrapolated to larger, formal distinctions, through the use of multiple

layers of the compositional systems (as in 5.2) or in future work with deeper

networks (see 6.4).

3.2.2 Timbral Synthesis and Manipulation: Kaija Saariaho

Much of the compositional work of spectralist Kaija Saariaho deals directly

with manipulating timbre and sound processing. This navigation of the dy-

namic nature of audio transformations necessitates the development of tools

that allow for the timbral manipulation of soundscapes.

From this basis, she incorporates digital sound processing and synthesis

as a natural extension of her exploration of timbre. In Lohn, a work for so-

prano and electronics, she uses several transformation programs developed at

IRCAM to realize the composition including Chant programme (resonance),

AudioSculpt (cross-sythesis, phase-vocoder time stretching), and Spatialisa-

teur programme [35]. In Io, an electroacoustic work for large ensemble and

electronics, she accompanies and manipulates the ensemble’s sounds in real

time, digitally constructing soundscapes as a result of live processing with

electronics and extending timbres in combination with pre-recorded sounds

[36].

In Six Japanese Gardens, Saariaho even “voluntarily reduced” the percus-

sionist instrumental pallet, only for “the reduced colours [to be] extended
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with the addition of an electronics part.” The specific dimensionality re-

duction (similar to the reduction by abstracting data to the hidden layer as

explained in 6.2.1) of the performers responsibility for timbre “give[s] space

for the perception of rhythmic evolutions,” allowing for a deeper concep-

tual expression of the composer by the performer [37]. Saariaho shapes her

composition to the unique advantages presented by a percussionist (i.e. per-

ception of rhythmic development) and the electronics (i.e. timbral expansion

and transformation), creating an effective expression of her intent.

In each of her operatic works L’Amour de loin (2000), Adriana Mater

(2005), Emilie (2008), and Only the Sound Remains (2015), Saariaho desig-

nates specific timbral transformations of the vocalist, spatializing, amplify-

ing, and blending acoustic spectrum with digital, creating fused soundscapes

that are a direct result of technological capabilities. Conceptually, this fusion

can represent symbolic narrative elements (i.e. processing the voice to reflect

who the vocalist is thinking about in Emilie), augmented electro-acoustic

character (i.e. merging vocal soloist and with subtle electronic timbres in

L’Amour de loin and Adriana Mater) or practical expansions in timbre (i.e.

electronic amplification in all of the operas, repeated playback of audio sam-

ples or elongating acoustic sounds in Only the Sound Remains), resulting

from the interactions of the composite parts.

The composition of sonic consequences as the realization of the composer,

performer, and technological utility is the precise dynamic I wish to accom-

plish in my composition systems. This engagement of the agents of a system

to facilitate aesthetic goals is a direct extension of the systematic applications

developed by system aesthetics (see 3.1). Extending this engagement to one

of dynamic interaction (i.e. composer and algorithm relying on each other to

compose), rather than static facilitation (i.e. composer implementing direct

audio processing) is how my work evolves from Saariaho’s.

Prisma is a particularly illuminating creation by Saariaho, coupling a more

standard audio album of her work with interactive composition software. The

software provides the user with a collection of multimedia data, including

original texts, sounds, and videos, and invites them to “clarify the relation

between musical notation, the gesture of the performer, and the musical

result [38].”

While mainly serving the purpose to educate the listener on contemporary

composition techniques and promote a better understanding of her own work,
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Prisma also acts as a curated, compositional system displaying the capabili-

ties of aligning creative conception with technology. This system invites users

to compose freely in a variety of graphical representations (i.e. solfege syl-

lables, spectral depictions of timbre, amplitude variations), connecting their

understanding to interactions created by Saariaho. In this instance, unlike

her composed works mentioned above, Saariaho created a collaborative in-

termediary with the user through technology, balancing all three agents to

create a shared conceptual experience. This collaborative realization most

closely connects with my own implementation of CRBMs and FCRBMs in

artistic application (see 5.2).

3.2.3 Systematic Music Composition: John Bischoff and
David Tudor

John Bischoff’s current compositional work and former work with The Hub

[39] establishes a relationship with systems as part of the creative process and

performance, integrating the composer-performer directly into an interactive

computer network. The Hub composed through software and network design,

programming compositions through a set of interaction schemas resulting

in improvised performance. John Bischoff describes gives an example in a

description of his piece Perry Mason in East Germany :

Each of the six players runs a program of his own design which

constitutes a self sustaining musical process. Each program is

configured so that it can send three changing variables important

to its operation out to the Hub and also to receive three variables

from other players. Each player reads the variable put out by

three different performers, and sends out for use by three different

performers as well. This relationship of mutual influence results

in a network structures that often yields a special kind of musical

coherence. [40]

As their work extended, the members of The Hub began to exchange the

code of their electronic instruments, using computers directly in the syn-

thesis process. Complicated, non-linear relationships between the multiple

performers and the development of those relationships through computer
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instruments created a complex artistic performance system that my work

draws from. Specifically, the ability to factorize the FCRBM, learning the

connections between the composite elements of the algorithms and defin-

ing the protocol with which these elements interact draws directly from the

performative structures of Bischoff (see 5). The development of my compo-

sition systems have established of several algorithmic instruments that are

dependent on each other for musical synthesis. This has led to factoring be-

yond the individual algorithmic instruments, into an fully connected network

where the relationships of the ensemble are modeled and able to be composed

(see 5.2). These higher level structures draw directly from the theory and

work of the Hub.

Bischoff’s album The Glass Hand specifically works with transforming tim-

bres drawn randomly from MIDI synthesizers, creating sonic consequences

“built around sonic properties discovered in these MIDI devices and, as such

is derived from the electronic system itself [41].” This album more directly

drives my current work, providing evidence of systematic timbre transfor-

mations that use the internal dynamics of that synthesis to define the aural

outcomes. These ideas are realized in the manipulation of FCRBMs through

external labeling, providing the machine synthesis with an overarching in-

tent, but allowing the machine to map the timbral qualities of the sounds

and their transformations largely independent of the composer (see 4.4.3).

Additionally, the analog-electronic networks and systems of David Tudor

[42] develop and shift through their internal connections, characteristics, and

the resulting consequences of those connections. The compositional focus on

the development of the system provides an invaluable example of success-

fully addressing the complex nature of multi-layer, non-linear performance

systems in expressing aesthetic concerns. This is especially apparent in Tu-

dor’s Neural Synthesis [43].

In an attempt to develop a computer system emulating Tudor’s analog

electronic performance system, Forrest Warthman and Tudor began devel-

oping an approach to digital/analog synthesis in live performance. During

this work, they were introduced to a neural-network microchip that consisted

of “64 non-linear amplifiers with 10240 programmable connections [44]” that

could be interconnected with varying connection strength, mimicking neural

links. With the chip generating and routing signals across the performance

network, Tudor was able to interact and respond based on his own aesthetic
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choices, quickly generating complex sonic atmospheres in performance. These

atmospheres were only realized through interacting with the vast electronic

network of which he directed toward desired sonic textures. Similar to Xe-

nakis’ compositional piloting (see 3.2.1), Tudor provided himself as the higher

level control structure for the performance network, similarly finding parallels

with the FCRBMs’ user-labeled guidance (see 2.2.4).

As a composer, Tudor drew upon resources that are both flexible and

complex but ultimately reliant upon his ability to direct and manage the

network. He used custom-built modular electronic devices and his composi-

tional method employed musical as well as design and manufacturing strate-

gies. The choices of specific electronic components and their interconnections

defined each piece in both composition and performance. The music unfolds

through large gestures in time and space, macro-directed by the composer-

performer and micro-realized by the devices.

Ultimately, the very control and design that Tudor attempts is very similar

to the type of direction I attempt with CRBMs and FCRBMs in my compo-

sition systems (see 5.1 and see 5.2). I define the sonic textures through the

construction of audio material from which the algorithms define their inter-

actions. After the CRBMs learn this material and the connecting patterns

that will transform it accordingly, the directed manipulation of the textures

is reliant on the composer with either the external labeling of a FCRBM

or internal tuning of the algorithmic parameters, just as Tudor depended

on his personally constructed circuitry design and live performance interac-

tions with his networks. The interplay between the composer and the net-

work/algorithms cannot be divorced from the resulting sonic consequences,

realizing composition through design and human-machine collaboration.

3.3 Summary

In this chapter, I provided the art theory and concepts found in system aes-

thetics and music composition that motivate the creation of my timbral music

composition systems, articulating interdisciplinary methods of addressing in-

creasingly complex technological and artistic problems. Through the citation

of specific examples within these artistic domains and connecting them to the

unique capabilities of CRBMs and FCRBMs, I give a precedent for my re-
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search and the creation of timbral synthesis and control systems, showing

that the development of these creative systems is integrated with technology.
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CHAPTER 4

MODEL TESTS AND VALIDATION

In this chapter, I developed CRBMs and FCRBMs to perform timbral syn-

thesis and control tasks based on audio data, evaluating the algorithms’ per-

formance capabilities in a variety of experiments. In section 4.1, I describe

the general data preparation and testing process for the experiments. I then

describe three specific aspects of timbral synthesis I tested: modeling unique

instruments without segmentation in section 4.2, modeling different pitches

played by singular instruments in section 4.3, and creating compositional

utilities in section 4.4. These fundamental experiments algorithmically real-

ize compositional possibilities and create an efficient, systematic approach to

timbral synthesis and control.

4.1 General Testing Process

For testing and synthesis in these experiments, I trained CRBMs and FCRBMs

with spectral data generated from real audio. Using this audio training data,

I explored the internal parameters of the algorithms, seeking the optimal set

that would deliver the highest accuracies in the experiments while maintain-

ing computational efficiency.

4.1.1 Data Representation of Audio

For each experiment, I constructed a model to synthesize target classes, train-

ing that model using spectral representations of sample audio. To create the

spectral representations, I used a short-time Fourier transform (STFT) [45]

on the audio. With this STFT, I was able to adjust the number of samples

over which the STFT was computed (STFT window size), how frequently the

STFT was performed (hop), how the STFT windows overlapped (i.e STFT
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window size = 4096 with a hop = 4096, no overlap; STFT window size =

4096 with a hop = 2048, 50% overlap), and what type of tapering window (if

any) was applied to the STFT samples. This spectral data was then normal-

ized using the first bin produced in the STFT of all the audio samples and

standardized with the mean and standard deviation of the spectral data.

While I did not go deeply into testing ideal STFT parameters (i.e. STFT

window size, hop, overlap, tapering window), I did run all experiments with

two different STFT parameter settings (4096 frames with a 2048 hop and

a Hanning tapering window; 512 frames with a 256 hop and a Hanning

tapering window), resulting in very similar outcomes. In general, the larger

STFT window (4096/2048) resulted in higher average accuracies and more

efficient computation. Additionally, the 4096/2048 STFT has been used

in other CRBM applications that deal with audio and function similarly

to my research [46] [47]. Considering these factors, I report the result of

the experiments using a 4096/2048 STFT with a Hanning tapering window,

unless otherwise noted.

4.1.2 Internal Model Parameters

In comparing the performance of the different models, I tested two different

algorithms for the experiments: a single layer CRBM and a single layer

FCRBM. Each model had an adjustable number of hidden units, model order,

and number of contrastive divergence steps to be taken in learning. The

FCRBM had an adjustable number of factors and features to be used in

learning, attaching composer-defined labels to the different training classes.

While Hinton presents several empirically validated starting points for set-

ting the internal model parameters of CRBMs [48], a more thorough inves-

tigation, especially with regards to the audio domain and FCRBMs, would

be beneficial to my research. I extensively tested the internal model param-

eters (i.e. number of hidden units, number of features, number of factors)

and iteration numbers (i.e. steps of contrastive divergence, steps of Gibbs

sampling) of the algorithms, seeking the optimal set for accurate synthesis

in each experiment.

I divided the internal model parameters into three separate groups: dimen-

sionality reduction/dimRed, setting the value of the internal parameters to
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one fourth the number of features in the data; constant, setting the number

of parameters to the same as the number of features in the data; and aug-

mented, setting the value of the parameters to twice the number of features in

the data. For a 4096/2048 STFT, this resulted in dimRed = 512 parameters,

constant = 2049 parameters, and augmented = 4098 parameters.

For the number of iterations, I tested in three groups: one iteration (i.e.

CD and Gibbs steps = 1); five iterations, and twenty iterations. While

CD and Gibbs steps did not have to coincide, I chose these three groups as

indicators for further investigation dependent on the test results (for complete

list of model conditions tested, see B).

Learning was optimized by parallelizing and running the algorithm on the

graphic processing unit (GPU). Additionally, stochastic gradient descent in

the algorithms was optimized with ADAGRAD [49]. For details, technical

specifications, and justification for use, see A. For these experiments, training

was stopped after 3000 epochs in order to compare the performance across

the different algorithms and to determine the ideal parameter configuration

for each condition.

4.1.3 Model Synthesis and Evaluation

Once each model was trained, it synthesized the timbres it modeled (see

experiments 4.2 and 4.3) or created new, machine-synthesized timbres (see

experiment 4.4). While each test worked with unique initialization data rel-

ative to the task, several properties were shared across tests. The only input

from the composer included a number spectral frames equal to the order of

the model (i.e. order = 5, number of sample frames needed = 5) to ini-

tialize the algorithm, the number of frames to be synthesized, and, for the

FCRBM, a label for each corresponding frame. The resulting output was

then completely synthesized by the model without intervention. Initializa-

tion data was made into a spectral representation using an STFT with the

same parameters used in training. After the data had been synthesized, the

spectral output of the model was then run through an inverse fast-Fourier

transform (IFFT) with overlap and add, reverse data standardization and

normalization, and amplitude compression in order to create audio.

After generating the audio, the synthesis was classified using two sepa-
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rate models: multi-class binary support vector machines using one-versus-one

error-correcting output codes (ECOC(SVM)) and a multi-class naive Bayes

model (NB).

Error-correcting output codes take multi-class (more than two classes) clas-

sification and turns it into a number of binary classification tasks, in this case

using binary SVM classifiers. Given the number of unique classes (k), the

number of binary models used is equal to k(k-1)/2. I specifically used Mat-

lab’s fitceococ function to perform this classification. I chose this model as

it had been demonstrated to be a reliable and efficient classification method

for handling highly dimensional data in comparison to other multi-class ap-

proaches [50] [51] [52].

The multi-class NB model provided an additional method of classification

that provided a baseline for synthesis accuracy. I specifically used Matlab’s

fitcnb funcition to perform this classification. This model serves as a funda-

mental standard in statistical learning and has been frequently used for as a

baseline for comparing classification accuracies [53] [54].

The classifiers were trained with the complex magnitude of the STFT of

real audio samples, reflecting the different tests respective classes. For most

tests, I used at least 10 times the amount of training data as test/synthesized

data, but specifics varied according to tests. In order to evaluate a ground

truth for both of these models, I tested the trained models with real samples,

resulting in the accuracies reported in 4.1.

Table 4.1: Accuracies resulting from ground truth test on ECOC (SVM)
and NB models

Strings Winds Percussion Violin Scale Oboe Scale Bells Scale

.97/.81 1.00/.82 .86/.80 1.00/.97 1.00/.95 1.00/.93

The results of the ground truth tests show the superiority of the ECOC

(SVM) to the NB models in accurately classifying audio spectrum. In quali-

fying the classification results of the synthesis experiments, I anticipated that

sounds classified by the ECOC (SVM) would result in higher accuracies in

comparison to the NB models.
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4.1.4 CRBM Training Methodology

While FCRBMs is designed to model multiple classes directed by user-defined

labels, CRBMs rely on initialization data to orient synthesis. This led me

to initially test two separate implementations of CRBMs to model multiple

classes of data: a single model of all classes combined, relying on different

initialization data to synthesize the different audio classes (CRBMall) and

multiple, separate CRBMs trained for each unique class (CRBMsep). While

the performance of the CRBMsep had a higher accuracy more inline with

expectations of the model, being able to synthesize a variety of sounds related

to the classes, the CRBMall model tended to drive all synthesis toward a mix

of all the sounds, generating very similar timbres regardless of initialization.

I believe this was mainly due to the lack of learning done in the set/fixed

number of iterations. Given a higher number of epochs to train, the CRBMall

models performance improved. From these initial tests, I decided to only

report the accuracies resulting from CRBMsep, as it was able to achieve

desired tasks more accurately and in less time using a comparable number

of iterations in training.

The overall accuracy for the classification tests was measured as the cor-

rectly classified synthesis frames divided by the total number of frames classi-

fied. Thus, if a synthesized sample of 100 frames of ‘CLASS A’ was classified

as ‘CLASS A’ in 90 of the frames, the classification would be reported as

90% accurate.

4.2 Modeling Unique Instruments Without

Segmentation

For the first synthesis experiment, I attempted to synthesize unique instru-

ments without segmentation from the same musical families in three separate

groups: strings, woodwinds, and pitched percussion. For each of the families

I tested four different instruments playing the same pitch so as to emphasize

the unique timbral qualities of the instruments.
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4.2.1 Test Construction

For the parameters in this test, I set the STFT window size to 4096, the hop

to 2048 (i.e. 50 percent overlap), and applied a Hanning tapering window.

This resulted in a total of 2049 spectral features for each observation. From

the resulting STFT, the internal parameter settings were set to dimRed =

512 (r), constant = 2049 (c), augmented = 4098 (a). The order of the model

was set to 4 frames. Once trained, each model synthesized 50 frames of the

specified class, being initialized with data from that specified class.

For the string family, I synthesized the violin, viola, cello, and bass, all

playing the pitch A3. For classification, I created an ECOC(SVM) model

using 6 (k=4) binary classifiers and a multi-class NB assuming an unbounded

kernel distribution of the data, using a total of 703 STFT samples, evenly

distributed across the classes.

For the woodwind family, I synthesized the oboe, bassoon, clarinet, and

flute, all playing the pitch B4. For classification, I created an ECOC(SVM)

model using 6 (k=4) binary classifiers and a multi-class NB assuming an un-

bounded kernel distribution of the data, using a total of 1096 STFT samples,

evenly distributed across the classes.

For the pitched percussion family, I synthesized the xylophone (rosewood

mallet), marimba (yarn mallet), crotale (brass mallet), and bells (brass mal-

let), all playing the pitch A4. For classification, I created an ECOC(SVM)

model using 6 (k=4) binary classifiers and a multi-class NB assuming an un-

bounded kernel distribution of the data, using a total of 790 FFT samples,

evenly distributed across the classes.

4.2.2 Test Results

For complete results of the various conditions tested, see B.2. The tests re-

sulted in models performing with the highest accuracies given the conditions

in B.5.
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Table 4.2: Highest Resulting Models from Experiment 4.2 with Accuracies
from ECOC(SVM)/NB in comparison to ground truth (GT) accuracies.
Models are CRBM (C) or FCRBM (F) with reduced (r), constant (c), or
augmented (a) features sets using 1, 5, or 20 Gibbs steps.

Strings Accuracy Winds Accuracy Percussion Accuracy

Cr1 .95/.96 Cr20 .96/.79 Cr5 .96/.98

Fc1 .91/.85 Fc5 .86/.68 Fc20 .63/.67

GT .97/.81 GT 1.00/.82 GT .86/.80

4.2.3 Test Discussion

When looking at the criteria tested, a variety of outcomes resulted. In com-

parison to the ground truth accuracies, the CRBMs were able to perform

nearly as well as the ground truth tests, even outperforming them in the

percussion case. FCRBMs consistently underperformed the ground truth

and CRBM accuracies. From these results, it appears that CRBMs would

be ideal for modeling more subtle differences of timbre as found in similar

instruments (i.e. instruments from the same family) playing the same pitch.

This could be due to the exclusive nature of the CRBM models, training one

model for each class, providing a very focused algorithm that did not have

to generalize beyond a narrow set of sounds (i.e. each of the CRBMs was

only trained with the targeted data class, not needing to model beyond that

specific timbre).

FCRBM synthesis was most often incorrectly classified in the decay/silent

portions of the sound. In these spaces, the FCRBM synthesized what sounded

like an average of all the sounds it was modeling at a diminished amplitude.

In the training samples, the silence following the played pitch would sound the

most similar in comparison to the rest of the sound, thus be much more diffi-

cult to distinguish in synthesis. This potentially could be resolved by model-

ing silence as an additional class to the instruments, providing the FCRBMs

with a more precise reference to model. Classification results could also be

improved by segmenting training samples at a specific amplitude threshold

and training the algorithms with sounds that did not have silence. While

this may improve classification results, the resulting sound itself would most

likely sound less like the target classes, distorting the amplitude envelope
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beyond the unique characteristics of the instruments. For example, pitched

percussion produces a very specific amplitude envelope that very rapidly de-

cays. If the training samples were thresholded to sounds that exceeded a

specific amplitude, the samples would not reflect the percussive nature of

the instrument, eliminating the characteristic rapid decay (see 4.4.1 for an

exploration of compositional envelope manipulation).

In this decay, return to silence portion of the synthesized sounds, mod-

els would occasionally generate timbral material independent of the training

samples. This is especially evident in the pitched percussion, where a rapid

decay immediately follows the attack. This resulted in synthesis that pro-

duced a rapid succession of attacks as heard in the xylophone and marimba

samples in the Fc20 synthesis. While the sonic quality of the sound can be

heard as instrumentally distinct, the dissimilarity of the amplitude envelope

and the resulting difference in the sounds decay led to misclassified frames,

classifying those synthesized sounds with longer decay tails as ‘bells,’ as seen

in the confusion matrix for Fc20 (see 4.3).

Table 4.3: Resulting confusion matrix using ECOC(SVM) classification of
percussion timbres using the Fc20 algorithm

Fc20 Xylophone Marimba Crotale Bells

Xylophone 1 1 1 0

Marimba 2 8 0 0

Crotale 0 0 46 0

Bells 47 41 3 50

When given an augmented number of features to model the data, accuracy

dropped. Given this outcome and that each model was trained for a specific

number of epochs, it is clear that models with higher complexity required

more iterations to train more accurate models. For example, when a CRBM

with a string dataset using an augmented number of features with 1 step

contrastive divergence and Gibbs sampling (Ca1) was trained for 3000 epochs,

its synthesis achieved 25.5/29% accuracy in ECOC(SVM)/NB classification

tests where the majority of the synthesis was classified as a singular class

(see 4.4). When the test was repeated for 30,000 epochs, ten times the

iterations of the initial test, the Ca1 model’s synthesis achieved an accuracy

of 63.5/64.5%, with a much more evenly distributed classification than the
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initial test (see 4.4).

Table 4.4: Resulting confusion matrix using ECOC (SVM) classification of
violin timbres using the Ca1 algorithm for 3000 and 30,000 epochs

Ca13000 Violin Viola Cello Bass

Violin 7 10 0 10

Viola 0 3 9 0

Cello 43 37 41 40

Bass 0 0 0 0

Ca130000 Violin Viola Cello Bass

Violin 32 19 2 4

Viola 4 27 11 6

Cello 8 4 37 9

Bass 6 0 0 31

This level of accuracy was achieved by the a FCRBM for the same param-

eters (Fa1) in only 3000 epochs (65/66% accuracy, see B.2). This discrepancy

in performance occurs with multiple CRBMs that used the augmented pa-

rameter set (Ca1 = .23, Ca5 = .20, and Ca20 = .22). This suggests that

CRBMs perform better given specific parameter conditions while FCRBMs

generalize better as the complexity of the model increases. This is seen in

the variance of the resulting accuracies, with CRBMs having a wider range.

While the average accuracies of the algorithms are relatively close (CRBM =

.709 to FCRBM = .683 in ECOC (SVM) classification, see B.5), the variance

of CRBMs was much higher than the variance of FCRBMs (CRBM variance

= .05, see B.7 and FCRBM variance = .01, see B.4).

Where certain, more complex CRBMs needed more iterations to train, less

complex models performed highly accurate synthesis. For example, CRBMs

with the string family dataset using an augmented number of features with

20 steps of contrastive divergence and Gibbs sampling (Ca20) achieved a

24% accuracy in synthesis while a FCRBM modeling a dataset using a con-

stant number of features with 1 contrastive divergence and Gibbs step (Fc1)

achieved 91% accuracy in synthesis, using the same amount of training. Tak-

ing it a step further, a CRBM modeling the string family dataset with a re-
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duced number of features with 1 contrastive divergence and Gibbs step (Cr1)

was able to achieve 95% accuracy in synthesis (see B.6).

From a synthesis perspective, this shows that if the goal of the task is to

model a narrow range of specific timbres efficiently, one can use the simplest

model and achieve very high accuracies. If the task includes being able to

navigate between classes within the same model (arguably a more efficient

approach, as only one FCRBM would be needed to be trained as opposed

to 4 CRBMs), this also can be achieved at comparatively low levels of para-

metric complexity. The versatility in a singular multiple class model (i.e.

FCRBMs) is more appealing from a compositional perspective than using

multiple single class models (i.e. CRBMs) in that it allows for synthesizing

transitions between classes, different temporal-timbre blending approaches,

and a more continuous way to create different sounds (see 4.4.3).

In all cases for the FCRBMs, going from a reduced set to a constant set

of features achieved the same or improved accuracy in synthesis, on average

increasing the accuracy significantly (see B.4). Inversely, in every CRBM

test, going from a reduced set to a constant set of features reduced the

accuracy of synthesis (see B.7). This suggests that if the goal of the task

is to reduce the dimensions of timbre space, it can be achieved on a sound

to sound basis, but in order to obtain more accurate models for multi-class

synthesis, a comparable number of features to the presented dimensions of

the training data are necessary.

Augmenting dimensions in CRBMs did not necessarily improve synthesis,

at least at the tested number of training iterations (see B.7). This supports

a need for more training to accurately model higher complexity, as demon-

strated in previous results.

Beyond the highlighted issues with modeling sound decays and silence,

the CRBM and FCRBM did comparatively well in their idealized model

contexts, achieving accuracies that were very close to the ground truth tests.

In looking at an aggregate of the results across each of the tests, confusion

heat maps display a diagonal pattern, suggesting that the models were able

to accurately synthesis the different timbres across instruments (see B.2).

The clearest distinctions in training samples and synthesized sounds were

found in the attack portion of the training samples, and these portions of

synthesis were almost always classified accurately.

The results of this experiment provided concrete evidence that CRBMs
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and FCRBMs are capable of modeling subtle differences of timbre found

within musical instrument families. By investigating the internal parame-

ters of the algorithms, I was able to build upon previous, more generalized

research [48] and find optimal parameter sets specific to modeling timbre in

this context. This initial test also provided insight into how these algorithms

model the amplitude envelope of sounds, provoking an exploration into the

segmentation of synthesis (see 4.4.1). It also demonstrated what parts of the

sounds these algorithms were ideal for modeling, instigating compositional

forays into the synthesis of dynamic material with a sustained amplitude,

reoccurring patterns, and continuous, incremental evolutions of timbre (see

4.4.2).

4.3 Modeling Different Pitches of Singular Instruments

For my second experiment, I synthesized different pitches of singular instru-

ments without segmentation in three separate groups: a violin playing a G

major scale, an oboe playing a D major scale, and bells (brass mallet) play-

ing an A major scale. The scales were chosen in ranges that would limit

instrumental register shifts (violin and the oboe) and/or be in the middle

range of the instrument (oboe and bells).

4.3.1 Test Construction

For the parameters in this test, I set the STFT window size to 4096, the hop

to 2048 (i.e. 50 percent overlap), and applied a Hanning tapering window. As

in the previous test, this resulted in a total of 2049 spectral features for each

observation. From this, the internal parameter settings were set to dimRed

= 512 (r), constant = 2049 (c), augmented = 4098 (a). The order of the

model was set to 4 frames. Once trained, each model synthesized 50 frames

of the specified class, being initialized with data from that specified class.

For the G major scale played by a violin, I synthesized the following pitches:

G3, A3, B3, C4, D4, E4, F#4, and G4 . For classification, I created an

ECOC(SVM) model using 28 (k=8) binary classifiers and a multi-class NB

assuming an unbounded kernel distribution of the data, using a total of 1524

STFT samples, evenly distributed across the classes.
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For the D major scale played by an oboe, I synthesized the following

pitches: D4, E4, F#4, G4, A4, B4, C#5, and D5. For classification, I created

an ECOC(SVM) model using 28 (k=8) binary classifiers and a multi-class

NB assuming an unbounded kernel distribution of the data, using a total of

1128 STFT samples, evenly distributed across the classes.

For the A major scale played by the bells,, I synthesized the following

pitches: A4, B4, C#5, D5, E5, F#5, G#5, and A5 . For classification,

I created an ECOC(SVM) model using 28 (k=8) binary classifiers and a

multi-class NB assuming an unbounded kernel distribution of the data, using

a total of 3048 STFT samples, evenly distributed across the classes.

4.3.2 Test Results

For complete results of the various conditions tested, see B.6. The tests re-

sulted in models performing with the highest accuracies given the conditions

in 4.5.

Table 4.5: Highest Resulting Models From Experiment 4.3 with Accuracies
from ECOC/NB in comparison to ground truth (GT) accuracies. Models
are CRBM (C) or FCRBM (F) with reduced (r), constant (c), or
augmented (a) features sets using 1, 5, or 20 Gibbs steps. ‘*’ indicates
multiple models achieved the same accuracy.

Violin Scale Accuracy Oboe Scale Accuracy Bells Scale Accuracy

Cr1 .98/.79 Cr20 .94/.97 Cr1* 1.00/1.00

Fc5 .97/.76 Fc5 .96/.92 Fc20* 1.00/.99

GT 1.00/.97 GT 1.00/.95 GT 1.00/.93

4.3.3 Test Discussion

In comparison to 4.2, resulting accuracies improved across the tests. Even

though these tests involved more classes (8 versus 4), pitch as the discriminat-

ing feature was more distinct than the subtle instrumental differences within

musical families. This was shown in the resulting CRBM and FCRBM accu-

racies as well as the high classification accuracy in the ground truth testing.

Many similar results from the first experiment are paralleled in this experi-

ment: more complex models needed more iterations to achieve higher levels
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of accuracy, leading to lower accuracies in the more complex CRBM models

(i.e. the constant and augmented parameter sets); CRBMs achieved high ac-

curacies with reduced parameter sets; FCRBMs improved performance when

increasing the size of the internal model parameters from reducedDim to

constant.

One especially noticeable difference between the experiments was the over-

all improved performance of the FCRBMs. FCRBMs performed significantly

better than CRBMs on average (CRBM = .700 and the FCRBM = .873 us-

ing ECOC (SVM) classification, see B.9). This reinforces the idea above that

FCRBMs generalize better than CRBMs in multiclass tests, where models

become more complex and apply a more diverse set of training data. The

significant jumps in accuracy when increasing the number of features from

a reducedDim to a constant FCRBM (see B.8) complement this idea, and

can be accounted for given the need for a higher dimensioned abstraction to

effectively map more complex datasets.

As the number of CD/Gibbs steps increased, the average accuracy of the

algorithms’ synthesis improved (see B.9). These improvements in accuracy

were more in line with expectations, that models would be able to synthesize

more accurately if given more iterations to train and generate data. This is

in contrast to the first experiment where the lowest accuracies were found

after 5 iterations (see B.5).

Across the tests, the bells resulted in the highest accuracies, resulting in

perfect classification in some cases. This could be a result of the consistency

in the training data, with very little variation between training samples (i.e.

there is little difference between percussive instruments beyond the attack,

whereas violin and oboe can add vibrato or change timbral texture within

the sustained components of the sound), reinforcing the central attribute

that was being recognized, pitch. Wide vibratos and even variance in tuning

across the train samples resulted in a more diverse training set for the violin

and oboe, perhaps contributing to the less focused synthesis in comparison

to the bells.

Most importantly, CRBMs and FCRBMs were able to model several differ-

ent timbres with a higher accuracy when the modeled timbres were distinct.

In the first experiment, efforts were taken to isolate more subtle timbral dif-

ferences between instruments, keeping all sounds on the same pitch for each

test resulting in much smaller differences in their spectral representations.
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This led to samples that shared many similar characteristics, especially in

the harmonic instruments of the string and woodwind families where the

amplitude of the same harmonics significantly overlap.

In the second experiment, there were much clearer distinctions between the

audio classes. Overlapping harmonics were not as similar (i.e. a G3 and G4

from the violin shared many of the same harmonics, but the different pitches

had different amplitude distributions for those harmonics) and didn’t occur as

frequently as in the first experiment (i.e. in the first experiment, all classes

had overlapping harmonics, in the second experiment, only select pitches

overlapped). Using a training dataset with distinct timbral differences across

the classes demonstrated the capability of these algorithms to synthesize a

diverse range of timbres with high accuracies.

The results of the second experiment demonstrated another important

timbral quality to be considered when using these algorithms for synthe-

sis. While the synthesis from the first experiment resulted in higher accura-

cies when timbres were synthesized with sustained amplitudes, the synthesis

from the second experiment resulted in higher accuracies when synthesizing

clearly distinct timbres. Ideal sounds to synthesize and control composition-

ally using CRBMs and FCRBMs would have sustained amplitudes and be

timbrally distinct, providing the algorithms with a clear aural pallet from

which to compose its abstract representation. The second experiment con-

firmed trends in parameter selection found in the first experiment, giving a

clearer structure to what types of parameters work best for modeling timbre.

Through the results of the first two experiments, I developed a better un-

derstanding of what type of timbral data CRBMs and FCRBMs model well

and the corresponding parameter sets that provide the optimal synthesis of

that timbre. Using these findings as a foundation for synthesizing and con-

trolling musical timbre, I explored methods to leverage the unique capabilities

of these algorithms in the creation several compositional utilities.
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4.4 Compositional Utilities: Modeling Dynamic

Envelopes of Singular Instruments and Sustained

Dynamic Elements

For my final experiment, I created music composition utilities to synthesize

and control music timbre, building on the methods and insights gathered from

the first two experiments. Specifically, I manipulated synthesized sounds

through the design of the algorithms, creating machine-driven compositional

tools that allow composers to create sonic material and develop collaborative

interactions with the machine agents of the systems.

I focused on three utilities targeting aspects of music composition that I

felt would benefit from the unique capabilities of CRBMs and FCRBMs. I

started by modeling the dynamic envelopes of sounds, synthesizing the at-

tack, sustain, and release of singular instruments. I then synthesized distinct,

sustained textures with consistent amplitudes, extending timbral synthesis

within textures indefinitely. Finally, I designed a utility that synthesizes

machine-driven timbres and timbral transitions from limited composer direc-

tion, fully realizing the capability of the algorithms to autonomously create

timbres.

4.4.1 Dynamic Envelopes of Sounds

In order to explore the dynamic envelopes of sounds, I used samples from

three real instruments (a crotale, a violin, and a tam-tam) playing a single

pitch. I manually divided the instrumental samples into 3 different segments:

the attack, the sustain, and the release.

For the parameters in this test, I set the STFT window size to 512, the

hop to 256 (i.e. 50 percent overlap), and applied no tapering window. This

resulted in a total of 257 spectral features for each observation. From this,

the internal parameter settings were set to be constant (i.e. 257), the order

of the model was set to 15 frames, and used 1 step of CD/Gibbs sampling.

The first task was to accurately synthesize the modeled sounds without ma-

nipulating the durations of the envelope segments, providing labeled guidance

for the average number of frames for each envelope segment (i.e. if the aver-

age attack length of the training set was 25 frames, I synthesized 25 frames
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labeled as ‘attack’). The second task was to experiment with the lengths

of the different segments, providing labeled guidance that was much greater

than the average length of segments (i.e. if the average attack length of the

training set was 25 frames, I synthesized 50-100 frames labeled as ‘attack’),

hearing what effect this would have on the synthesized material.

For classification, I reconstructed sounds using the envelope segments and

classified them as complete samples of the instruments (i.e. crotale v tam-tam

v violin) as opposed to individual envelope segments. I chose to evaluate the

utility this way as it was more in line with the expectation of synthesis (i.e.

creating instrumental sounds that could be digitally manipulated via their

envelopes) and less susceptible to the manual marking of envelope segments.

I created an ECOC(SVM) model using 3 (k=3) binary classifiers and a multi-

class NB assuming an unbounded kernel distribution of the data, using a total

of 5733 STFT samples, evenly distributed across the classes.

In the first task, reconstructed sounds were successfully synthesized for

each instrument, being recognized with 100% accuracy as a crotale, violin,

and tam-tam respectively, without perceptible differences between real and

synthesized samples.

In the second task, I experimented with synthesizing different lengths of the

various envelope segments, attempting to synthesize sounds that possessed

similar timbral characteristics but were able to be extended in time. I found

the amplitude within the envelope segments of the training data greatly

affected the extent with which the synthesized audio could be accurately

recognized as the instrument it modeled, most evident in the sustain segment

of the envelope.

For example, the sustain of the crotale was able to be extended to four

times its average length due to the model learning a relatively even ampli-

tude from the training samples, with very little variance. This allowed the

model to synthesize a continuous, extended sustain segment, with a smooth

transition to the decay segment of the sound.

Unlike the crotale, the violin was only able to be extended to twice its av-

erage length, due to the model learning a slight crescendo during the sustain

segment of the training samples. When extending beyond this length, the

model augmented the crescendo to the point of distortion, effectively cre-

ated a completely different sound from the training data, unrecognizable as

a violin.

48

https://vimeo.com/248517590


The tam-tam was also only able to be extended to twice its average length,

but in contrast to the violin, this was due to the model learning a slight

decrescendo during the sustain segment. Unlike the violin which increased

amplitude to eventual distortion, the tam-tam sustain segment diminished to

an inaudible level, essentially incorporating decay elements into the extended

synthesis.

In classifying theses extended sustain sounds (a 4x crotale, a 2x violin, a

2x tam-tam), the models were able synthesize samples that were classified

with a 98.9% accuracy (see 4.6).

Table 4.6: Resulting confusion matrix using ECOC (SVM) classification for
extended synthesis of the sustain portion of the sounds based on dynamic
envelope

ASR Envelope Crotale Tam-Tam Violin

Crotale 959 4 0

Tam-Tam 0 4669 31

Violin 31 1 519

These learned developments were also present in the much less consistent

amplitudes of the attack and decay segments. Extended attack segments

quickly distorted beyond recognition whereas decay segments faded to silence

and remained there for the duration of the synthesized sample. While the

FCRBM was not able to synthesize extended attacks without distortion or

decays that remained audible from the training set, the sustain segment of

the envelope could be extended indefinitely, effectively creating a dynamic

synthesizer capable of being played across timbres.

The versatility of the FCRBM to adapt to a variety of envelope mappings

in different ways could be accounted for in adjusting the parameters of the

model itself and analyzing the defining characteristics of the sampled in-

struments’ original envelopes. With percussive instruments, where there is

an almost instantaneous decay after the attack, careful consideration has to

be given to what kind of sustain segment the model would be synthesizing.

Both the crotale and the tam-tam models were able to synthesize sustain

sounds very similar to the instruments they were modeling, but in doing so,

took away the characteristic ‘percussive’ envelope, effectively generating a

different type of instrument.
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The violin, with a much more well defined sustain segment that can in-

herently be extended indefinitely, took on the characteristics of the training

samples (i.e. a crescendo) creating a stylistic affect when extending synthe-

sis. A potential future direction for expanding these types of models would

be to train a variety of sustain styles (e.g. crescendo, even, decrescendo) that

could then be used to define the characteristics of the synthesis.

The exploration of controlling and synthesizing the envelopes of instrumen-

tal timbres provided a more developed perspective of how sustained textures

should be synthesized from a compositional perspective. The new evidence

from this utility, coupled with the results from the first two experiments,

provided a path to synthesize sustained timbres.

4.4.2 Sustained Timbre Synthesis for Composition

The results from the initial experiments led to the creation of a compositional

utility that dynamically synthesized sustainable timbral textures. In this

utility, the algorithms learned several different timbral textures that did not

decay, essentially synthesizing new material and continuous transitions from

a limited amount of data.

To test the utility’s capability of synthesizing sustained timbres, I com-

posed four different sonic timbres for training data. Each of the timbres

was designed to not have a distinct attack or decay portion, yet be dynamic

throughout its duration.

I trained a CRBM to synthesize each respective sonic timbre, resulting in 4

separate models. For the parameters of each timbral CRBM in this test, I set

the STFT window size to 4096, the hop to 2048 (i.e. 50 percent overlap), and

applied no tapering window. This resulted in a total of 2049 spectral features

for each observation. From this, the internal parameter settings were set to

be constant (i.e. 2049), the order of the model was set to 5 frames, and used 1

step of CD/Gibbs sampling. From these trained models, I synthesized audio

by providing initialization data. For these models, I synthesized double the

amount of sample frames I used for training (50 frames used to train each

CRBM for 100 frames of synthesis), to test if the model could continuously

synthesize the timbres, beyond the training set.

For classification, I created an ECOC(SVM) model using 6 (k=4) binary
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classifiers and a multi-class NB assuming an unbounded kernel distribution

of the data, using a total of 2000 STFT samples, evenly distributed across

the classes.

The resulting output effectively extended the audio of the original samples

and was classified with 95.75% accuracy (see 4.7). The synthesized audio did

not deviate from the original timbral envelope, allowing for the continuous

synthesis of material that sounded similar to the original samples and was

dynamically generated for a specified duration.

Table 4.7: Resulting confusion matrix using ECOC (SVM) classification for
synthesis of extended, sustained composed

Sustained Timbre Timbre A Timbre B Timbre C Timbre D

Timbre A 99 0 1 3

Timbre B 1 99 10 1

Timbre C 0 1 89 0

Timbre D 0 0 0 96

For a more dynamic example that took advantage of the previously tested

aspects of the algorithm, I modeled a different composed timbre, Timbre

C, which involved rapid changes in pitch across the sample. I synthesized

approximately two, four, and twenty times the original length of the train-

ing sample. The resulting synthesis organically evolved the sound, ending

with different timbres for each of lengths. The development of timbre that

systematically shifted from the original sample into a new sound due to the

generalizations learned by the algorithm bears resemblance to the networks

of Bischoff, Tudor, (see 3.2.3) and the genetic algorithms of Xenakis (see

3.2.1 and [34]) and minimalist composers [55] [56]. This presents the com-

poser with a utility that organically evolves sounds according to its own

definitions, presenting altered material for investigation and inspiration.

The capability of CRBMs in this utility to dynamically synthesize new

and evolving material, gives the composer a valuable asset to employ in their

compositional design. I used this utility in several of my own artistic works

(see 5) to generate continuous dynamic material.
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4.4.3 Transitional Synthesis through Hidden Layer and
Stylistic Label Manipulation

In all of the synthesis experiments, the theoretical construction of CRBMs

and FCRBMs resulted in the algorithms learning hidden feature representa-

tions of the input data (see 2.2.3 and 2.2.4 for definitions). These representa-

tions are applied in the first two compositional utilities where new material

is synthesized by the model through this abstraction, defining non-linear

paths from one data class to another independent of the composer (beyond

initialization and labeling).

When transitioning between timbres, FCRBMs use externally defined la-

bels for direction, providing the composer with a high level method to control

timbral synthesis without specifically defining it. This high-level composing

through machines is a powerful capability, paralleling many of the advan-

tages Xenakis sought with his computer works (see 3.2.1). I explored the

possibilities of a composer ‘piloted’ system by modeling two different, dis-

tinct timbres using a FCRBM, creating a transitional algorithm that would

synthesize both textures and a path between them.

In an initial test, transitioning between Timbre A and Timbre B, the al-

gorithm generated transitions that sounded very similar to a cross fade. The

two timbres were spectrally distinct from each other, with very little overlap

timbrally. This lack of overlap led to synthesis where the sounds faded in

and out as directed by the labels, without interference or the generation of

any new sounds for the sonic transition.

This is also heard in a second test, transitioning between Timbre C and

Timbre D. An interesting difference can be heard in the synthesized Timbre

D after the transition. A spectral artifact is held over from Timbre C that

is not present in the originally synthesized Timbre D, indicating that during

the transition period, audio remnants and algorithmic parameters of Timbre

C were present enough to become recursively aural in the new sound.

I explored this further in a third test where I modeled three separate sounds

that had elements of overlap in their spectra: a 440 Hz sine wave (a single

pitch, with no harmonics/overtones, based on the fundamental pitch A4),

a 440 Hz sawtooth wave (a single pitch with all the harmonics/overtones

having an amplitude of 1/harmonic number, based on the fundamental pitch

of A4) , and Timbre C from the second utility (see 4.4.2).
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Transitioning between the sine and sawtooth wave resulted in the respec-

tive addition (sine to saw) and subtraction (saw to sine) of the 440 Hz har-

monics, although the transition from sine to saw resulted in slightly different

amplitudes in the spectrum, altering the resulting timbre of the synthesized

saw. This change of timbre through transitional synthesis is even more pro-

nounced in the transition from Timbre C to the sawtooth wave. The more

spectrally diverse Timbre C generated a larger imbalance in the sawtooth

wave’s harmonics, creating a completely different sound as a result of the

autoregressive nature of the model. When sufficient energy is present in the

spectral features, they are reinforced in the progressing timbres, regardless

of whether they exist in the desired/labeled sound.

I further tested this capability through the construction of my final com-

positional utility: a singular FCRBM trained with 10 different timbres to be

used for synthesizing each timbre and the transitions between.

I first evaluated the utilities capability to synthesize each of the timbres,

using a similar testing process to 4.4.2. For the parameters of FCRBM in this

test, I set the STFT window size to 4096, the hop to 2048 (i.e. 50 percent

overlap), and applied no tapering window. This resulted in a total of 2049

spectral features for each observation. From this, the internal parameter

settings were set to be constant (i.e. 2049), the order of the model was set to

5 frames, and used 1 step of CD/Gibbs sampling. From this trained model,

I synthesized audio by providing initialization data and the desired label

for each given timbre. For this model, I synthesized double the amount of

sample frames I used for training (50 frames used to train each timbre of the

FCRBM for 100 frames of synthesis of each timbre).

For classification, I created an ECOC(SVM) model using 45 (k=10) binary

classifiers and a multi-class NB assuming an unbounded kernel distribution

of the data, using a total of 5000 STFT samples, evenly distributed across

the classes.

The resulting synthesis (synthesizing a singular class for a given number

of frames) using this model achieved a 98.60% accuracy in an ECOC (SVM)

classification test (see 4.8).
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Table 4.8: Resulting confusion matrix using ECOC (SVM) classification for
synthesis of straightforward synthesis in 10 class model

10 Class FCRBM Timbre A10 Timbre B10 Timbre C10 Timbre D10 Timbre E10 Timbre F10 Timbre G10 Timbre H10 Timbre I10 Timbre J10

Timbre A10 99 0 0 0 0 0 0 0 0 0

Timbre B10 0 99 0 0 0 0 0 0 0 0

Timbre C10 0 0 100 0 0 0 0 0 0 0

Timbre D10 1 0 0 100 0 0 0 0 1 0

Timbre E10 0 0 0 0 98 0 0 0 0 0

Timbre F10 0 0 0 0 1 99 0 0 0 0

Timbre G10 0 1 0 0 1 1 100 7 0 0

Timbre H10 0 0 0 0 0 0 0 93 0 0

Timbre I10 0 0 0 0 0 0 0 0 99 0

Timbre J10 0 0 0 0 0 0 0 0 0 100

From this 10 class base, I explored varying transitions between the different

classes of the algorithm, finding several interesting compositional possibilities

beyond crossfades and harmonic imbalances of the initial test with three

timbres. In one transition test, from a sine wave (Timbre A10) for 50 frames

to a saw wave (Timbre B10) for 50 frames, the initialization of an exclusive

frequency altered the weighted spread found in the saw wave, resulting in

a brief period of oscillation, eventually settling on an imbalanced overtone

structure favoring specific harmonics, and resulting in a new timbre.

By altering the number of frames to synthesize from each class, different

initializations of the transitions and autoregressive paths were synthesized,

creating new timbres dependent on where the transition occurred. I found

in one transition test, where I explored transitioning from a chirp (Timbre

E10) to a saw wave (Timbre B10) at different points across 100 frames of

synthesized data, only subtle variations resulted in the harmonic amplitudes

of the synthesized saw wave. Yet, in another test, transitioning from a chirp

(Timbre E10) to a motoring, noisy timbre (Timbre F10) at different points

across 100 frames of synthesized data, the resulting spectral changes were

pronounced and quite drastic.

In the transition between a buzzy noise timbre (Timbre H10) for 50 frames

and a chirp (Timbre E10) for 50 frames, aspects of the initial timbre were

inherited by the second timbre, resulting in an effect similar to a filter, func-

tionally merging the dominant frequency characteristics of Timbre E10 with

the inharmonic spectrum of Timbre H10.

By alternating between two classes, I could create different timbral tex-

tures. By alternating between a saw wave (Timbre B10) and a choral timbre

(Timbre I10), patterning the classes resulted in new sounds.

The variation across the synthesized timbres demonstrated the breadth
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and versatility of the FCRBM to synthesize and control complex spectral

spaces. From the base synthesis resulting from manipulating stylistic labels

and the hidden layer as an abstraction, a new compositional structure is

presented from which the composer can create. By manipulating the labeling

systems, thus the hidden layer, composers are able to access a new non-linear

mapping system, which can be used to create transitions between timbres or

new synthesized textures as a result of the model’s learned abstraction.

4.5 Summary

In this chapter, I demonstrated how CRBMs and FCRBMs can be used to

synthesize and control complex spectrum in a variety of contexts, gaining

insight into how these algorithms work and how they best can be applied in

music composition. I initially modeled timbres of musical instruments from

the same musical family playing the same pitch, showing how the algorithms

are able to synthesize subtle timbral differences, learning the ideal model

parameters to perform this synthesis and the characteristics need for contin-

uous timbral synthesis (i.e. sustained amplitudes). I then modeled different

pitches, showing how more distinct timbral differences can be modeled with

a higher accuracy, reinforcing the ideal model parameters found in the initial

experiment and providing deeper insight into what combinations of timbres

were ideal for synthesis. Finally, I created three sets of compositional util-

ities, exploring the creative capabilities of the algorithms to synthesize the

segmented dynamic envelope of a sound, a variety of dynamic, sustained

timbral textures, and new, machine-driven timbre via limited composer in-

teraction. The implementation of these models in these varying contexts

displayed the potential of CRBMs and FCRBMs for creating a systematic

approach to timbral synthesis and control.
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CHAPTER 5

APPLICATION IN ARTISTIC CONTEXTS

In this chapter, I describe two different compositional systems, implementing

CRBMs and FCRBMs in artistic contexts, building upon the findings in 4.

In section 5.1, I describe my work with a performer’s perspective, defining a

sonic choreography through the translation of dance movement. In section

5.2, I describe my installation series is That(’s) all there is, where participants

interact with pseudo-immersive, multi-modal feedback ecologies.
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5.1 Generating Timbral Atmospheres Through

Choreography in a performer’s perspective

Figure 5.1: Score excerpt from a performer’s perspective

a performer’s perspective is an interdisciplinary dance project created by

Shannon Cuykendall. In summarizing the project, Cuykendall states:

We explore ways to transmit a dance performer’s point of view

through the creation of an interactive documentary. Using quali-

tative and quantitative research methods, we gathered a broad

spectrum of data to understand the kinesthetic experience of

dancers in Judith Garay’s work, the fine line twisted angels. The

dancers’ data is presented through various forms and modes of
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interaction, providing audiences the opportunity to reflect, em-

pathize and understand the choreography through multiple lenses.

[57]

In this work, Cuykendall looks at how technology can “extend perceptions

of the physical body and translate dance movement into new forms that

transcend language [57],” seeking the interpretation of dance material by

different artists and data scientists. I was given movement data of three

dancers’ improvisations based on choreography established by Cuykendall

and given an opportunity to make a composition based on the material from

my perspective.

The data came in several streams: myo sensor measurements of acceler-

ation, electromyography (EMG), and angular velocities; a Microsoft Kinect

extrapolated skeleton frame; digital video from the Kinect and a GoPro.

Given these varying sources of highly dimensional data in specific contexts

(i.e. which dancer’s were performing when, in solo, duet, or trio, etc.), I

decided to use FCRBMs to synthesize and control timbral material based on

statistical measures of the dancer’s movement, wave form synthesis, and pa-

rameter definition of an array of granular synthesizers, driven by a metaphoric

choreography defined by the algorithms and guided by the formal decisions

of the composer. In order to create the compositional system to synthe-

size and control timbre in this way, I separated it into three parts: creating

generalized dancer representations of each dancer, generating source control

data and audio data using waveform synthesis based on measured statistics

from the sensor data; training a FCRBM for timbral texture choreography

using the audio from the dancer representations to synthesize timbres repre-

senting each dancer and transitions between these timbres; training a second

FCRBM for granular parameter choreography using the control data from

the dancer representations to generate control parameters for the granular

synthesizers.

I created separate statistical representations of each of the three dancers

from the initial data streams to create the dancer representation: a control

data stream based on normalized measures of the dancer’s improvisation and

source audio material generated from a combination of statistics at different

time rates through waveform synthesis (see 5.2). For each respective dancer, I

created a statistical representation of their movement as gathered by the sen-
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sors, taking a combination of windowed means and variances to measure the

respective dancer’s improvisation. This statistical representation was used as

source control data to be learned by an FCRBM to drive granular synthesis.

These statistical measures were also used to create waveforms through a va-

riety of frequency and amplitude modulations, translating dancer movement

into a statistically representative sonic timbre. This waveform was used as

source timbral data to be learned by a FCRBM to synthesize timbre. By cre-

ating isolated control and timbral representations of each dancers’ actions,

I was able to source parameter controls and sounds directly reflecting the

movement of the dancers, translating their improvised movement into audio.

Figure 5.2: Diagram of the transformation of sensor data into dancer
representations of control and timbral data

The resulting timbral data from each dancer representation was used to

train a FCRBM from which continuous, dynamic timbral combinations and

transitions could be algorithmically synthesized (see 5.3), resulting in the

timbral texture choreography synthesis module of the system. Each dancers’

timbral data was labeled and learned by the FCRBM, giving the composer

the ability orchestrate the dance ensemble, balancing and mixing the timbral

synthesis as a choreographer would direct group movement. Thus, the source

materials for the larger compositional form is chosen by the metaphoric com-

positional choreography, creating sonic dancers and compositional directions

from the initial improvisation material.

59

https://vimeo.com/245190998
https://vimeo.com/245190998


Figure 5.3: Diagram of using timbral data (green dotted lines) and
composer defined labels (orange dashed lines) to synthesize machine-driven
timbres resulting in the timbral texture choreography module.

In addition to this timbral data, I also took the control data from the dancer

representation and defined choreographic generalizations that the composer

could apply to an array of granular synthesizers [58] (see 5.4), resulting in

the granular parameter choreography control module of the system. This nor-

malized control data was learned by a FCRBM, which synthesized control

data and transitions based on composer defined labels. These synthesized

control parameters served as another vehicle for metaphoric choreography,

creating representations of the different dancers, that could be used as a

mapping schema for the next part of the module. This metaphoric chore-

ography was then mapped to a set of granular synthesis parameters using

another FCRBM, fully connecting the resulting granular synthesis to the

composer’s chosen choreography.
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Figure 5.4: Diagram of using control data (blue dotted lines) and composer
defined labels (orange dashed lines) to synthesize control data, then
mapping that control data (larger orange dashed line) to granular
synthesizer parameters (larger blue dotted line) resulting in the granular
parameter choreography module.

The resulting compositional system allows artists to compose sonic atmo-

spheres through choreographic metaphor (see 5.5), creating dynamic sonic

atmospheres that reflect dancers’ performance. The system takes choreogra-

phy and translates it into timbral manipulations of constructed waveforms

based on the dancers’ initial improvisations, generating sounds that it learned

in training, providing the composer with a new, machine-driven method of

generating aural consequence through the lens of choreography.
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Figure 5.5: Diagram of the complete compositional system architecture for
a performer’s perspective

This system is a realization of compositional influences through FCRBMs:

Xenakis’ composer as a pilot (see 3.2.1), directing control through dynam-

ically synthesized representations based on dancer’s movements; Saariaho’s

exploration of timbral expansion (see 3.2.2) through the extension of already

present contexts, providing the composer with sonic textures that would

adapt based on their decisions; Bischoff and Tudor’s multi-layered networks

(see 3.2.3), creating an interconnected control and timbral synthesis system,

reliant on each of its components to realize the composition.

To demonstrate this synthesis in application, I wrote three etudes [59] us-

ing the system. The resulting timbral synthesis is a dynamic sonic space that

is easily translatable to more complex forms using choreographic metaphor.

The development of this work inspired a deeper investigation into compre-

hensive model systems, which factor not only the internal elements of the

algorithms, but connect separate models to each other (see 6.3.1).
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5.2 Dynamic, Multi-Modal Audience Engagement in is

That(’s) all there is

Figure 5.6: User’s interacting with is That(’s) all there is

In the installation series, is That(’s) all there is, I created three multi-media

art installations at three separate events exploring the same venue: ,you

sound so familiar...(2016), to me..., as if i’ve heard this before(2016), and

...somewhere, right now(2017).

These installations incorporated observer’s movement into an interactive

visual and sonic atmosphere, creating a dynamic, feedback artistic ecology.

By gathering and analyzing observers’ movement features, elements of the

installation ‘reacted’ to the observers, relaying imagery and audio throughout

the environment. As the observer moved and interacted within the space,

they became integrated directly with the visual and aural elements, creating

a responsive feedback ecology, embracing the approach and concept of system

aesthetics (see 3.1).

The ecology included three main elements: movement analysis, audio syn-

thesis, and visual synthesis.

• For movement analysis, the installation three of Microsoft Kinect V2

to gather and pipe skeleton features to custom designed software where

movement analysis was performed in real-time. This analysis was trans-
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lated into control data, which directed the audio and visual synthesiz-

ers.

• For audio, the installation used automated, granular synthesizers, gen-

erating probabilistic responses to the movement analysis, setting the

parameters of the synths within stochastic response ranges, realized in

10.1 surround sound.

• For the visuals, the installation used a cluster of video synthesizers

projected onto three screens, generated by analyzing the spectrum of

the audio generated by granular synths.

In order to control and drive these elements, I relied on two separate mod-

ules that used CRBMs and FCRBMs: timbral texture module and control

parameter module.

The timbral texture module (shown in 5.7) was used to generate source tim-

bral textures offline used by the granular synthesizers in the ecology. Using

different audio samples created by analog electronic circuitry, three CRBMs

were trained to synthesize extended timbral textures. These textures were

labeled and used to train a FCRBM, which synthesizes timbres and spectral

transitions. The ultimate output of the module is three dynamic timbres

generated by the respective CRBMs (A, B, and C in 5.7) and six transitional

textures (A-B, A-C, and B-C in 5.7).
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Figure 5.7: Diagram of timbral texture module. Audio samples are learned
by CRBMs, which produce synthesize timbres (dark blue solid lines) and
train a FCRBM to learn transitions between those timbres (light blue solid
lines) as directed by composer labeling (orange dashed lines).

The control parameter module (shown in 5.8) is used to drive the control

parameter sets of two stochastic-range granular synthesizers. The stochastic-

range granular synthesizer is a synthesizer that take ranges of 5 different pa-

rameters (i.e. grain rate, grain length, grain pitch, grain amplitude, source

audio location) and generates a randomly selected feature set from those

ranges continuously for granular synthesis. For these ranges, I defined three

separate control parameter sets, labeled them, and trained a FCRBM to

synthesize these sets and transitions between them. The ultimate output

of the module is three static granular control parameter sets and six transi-

tions between each of those static parameter sets, used to drive the granular

synthesizers relative to the corresponding labels.
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Figure 5.8: Diagram of control parameter module. Composer determined
parameter sets (blue dotted line) and composer determined labels (orange
dashed lines) are used to train a FCRBM to synthesize granular control
parameter sets and the transitions between those sets.

The resulting modules were then used in the larger sonic ecology archi-

tecture (see 5.9). The granular synthesizers were sourced with the timbral

textures that were created using the timbral texture module before real-time,

observer interaction with the ecology. In order to access the different tim-

bres, the source audio location parameter of the granular synthesizer was

used to isolate specific sonic targets during the interactions (i.e. all audio

was collected in one sound file and specific points of that audio were used

for granular synthesis). The control parameter modules were driven by an

aggregate movement analysis and recognition algorithms that recognized dif-

ferent classes of movement within the ecology based on data gathered from

the Microsoft Kinects (V2).

The movement analysis and recognition algorithm analyzed group move-

ment features (i.e. the number of active bodies present in the ecology, their

relative positions, their average ‘energy,’ and the amount of time spent inter-

acting with the ecology) and made a probabilistic classification across three

predefined classes using a hierarchical hidden-Markov model [60] in real-time.

This probabilistic label was sent to the control parameter modules to drive

the FCRBM synthesis of control parameters for granular synthesizers. After

the resulting synthesis, the sound was diffused across an 10.1 surround sound

66

https://vimeo.com/245191024


system, according to an externally composed algorithm for each timbre.
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Figure 5.9: Diagram of is That(’s) all there is sonic ecology

The resulting multi-modal ecology is a culmination of the utilities and

research developed from this dissertation. The synthesized timbres and con-

trol values are a direct product of the compositional utilities developed in

4.4 (specifically see 4.4.2 and 4.4.3). The full integration of observer, com-

poser, and algorithm into one cohesive aesthetic system is a realization of the

concepts initially explored in system aesthetics (see 3.1, specifically 3.1.1)

and expanded by composers (see 3.2). The integration of systematic and

relevant musical ideologies with algorithmic design and architectural devel-

opment realizes the capability of CRBMs and FCRBMs to synthesize and

control complex timbral representations via music composition systems.

5.3 Summary

In this chapter, I described two compositional systems, a performer’s per-

spective and tis That(’s) all there is, realizing the full capabilities of CRBMs

and FCRBMs in facilitating complex timbral synthesis and control in artistic

contexts. The implementation of these systems is a clear progression from the

integration of the work of past machine-learning scientists (see 2.1), artists

(see 3), and the results of experimentation with the algorithms (see 4).
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CHAPTER 6

CONCLUSION AND FUTURE
DIRECTIONS

The work being done with algorithmic design and implementation in the field

of music composition is rich with possibility. In 6.1 I summarize the progres-

sion of my research, describing the context, motivation, and implementation

of using CRBMs and FCRBMs to synthesize and control timbre. In 6.2, I

describe additional technical capabilities these algorithms possess, providing

composers with a strong motivation for future use when working with digital

timbral synthesis. In 6.3, I explain how the theory of CRBMs and FCRBMs

lend themselves especially well to continuing to address formalistic and aes-

thetic problems in music composition. In 6.4, I discuss how composers can

build upon these algorithms for creative expression through the development

deep belief nets, extending their practice into non-linear interactions, multi-

modal mapping applications, and higher levels of abstraction. Finally, in 6.5,

I conclude with the larger effect of CRBMs and FCRBMs on musical syn-

thesis, showing how through the implementation of these algorithms provide

composers with a human-machine method to advancing their aesthetic.

6.1 Demonstrated Research Summary

The use of machine-learning technology in musical synthesis applications of-

fers composers new and novel methods of developing their own aesthetic,

as established in the application of the algorithms in audio and movement

domains (see 2.1). Artists (see 3.1, 3.1.1, and 3.1.2) and composers (see

3.2) have already created a foundation for using technological systems cre-

atively in order to advance their own intent. CRBMs and FCRBMs provide

a theoretical and practical base for exploring the use of algorithms for ad-

vancing musical composition, specifically in the area of timbral synthesis and

control. This is evident in the implementation of the algorithms to accu-
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rately synthesize unique instrumental timbres (see 4.2), pitches (see 4.3),

the dynamic envelope of sonic events (see 4.4.1), and continuous, dynamic

textures (see 4.4.2). Through these implementations, compositional systems

have been developed that facilitate aural realizations of machine agency, em-

powering composers and expanding their aesthetic (see 5). My research has

demonstrated that these algorithms possess the capabilities to create new

opportunities for timbral synthesis and control.

6.2 Technical Advantages Presented by these Models

CRBMs and FCRBMs by their very construction present several computa-

tional and technical advantages to the composer, specifically dimensionality

reduction, developing efficient synthesis via algorithms, and the generation of

audio material that is representative of the sound it models, yet continuously

dynamic and unique.

6.2.1 Dimensionality Reduction and Computational Efficient
Synthesis

By creating an abstract representation of the data, CRBM and FCRBM

can reduce the dimensionality of a dataset and still synthesize representative

data accurately (see 4). Through the generalization of data to a hidden unit

layer, the dimensionality of the data is reduced to the number of hidden units

in the layer. When synthesizing new material, these algorithms only need

the weights and biases that connect the internal parameters of the model to

synthesize new material.

From these components, the algorithms can synthesize dynamic timbres of

traditional instruments and composed sounds (see 4). In the demonstrated

experiments, the CRBM was able to use a reduced hidden layer abstraction

to accurately synthesize a timbre with a much higher dimensionality. Specifi-

cally, the reduced hidden units setting (512 hidden units) was able to generate

a spectral reconstruction (4096 features) with a very high accuracy (higher

than 95%). The contexts in which this was successful included modeling the

unique instruments of the strings (95%), woodwinds (96%), and pitched per-

cussion (96%), and modeling the different pitches of a violin(98%), an oboe
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(94%) and bells (100%). When working with compositional timbres, CRBMs

were able to achieve accuracies of higher than 96% using a constant set of

features (2049 hidden units).

While not performing as high as the CRBMs in the explicit synthesis exper-

iments (i.e. modeling a specific instrumental sound for a specific duration),

the capability of the FCRBM to encapsulate the characteristics of several

different timbres within the same model gives composers another technically

efficient utility for synthesizing dynamic timbres (see 4.4.2 and 4.4.3). In-

stead of training several different models for the same task (i.e. 8 CRBMs

to model the 8 scale steps), a composer can train a single model (i.e. one

FCRBM with 8 classes to model the 8 scale steps), in fewer iterations, making

the task more efficient in implementation.

In these cases, when the timbre being synthesized was sustained, data

could be generated on demand by the algorithm, presenting a much more

efficient method of manufacturing large amounts of data for other tasks.

6.2.2 Synthesizing Dynamic and Transitions Timbres

Beyond dimensionality reduction and computational efficiency, CRBMs and

FCRBMs provide composers with a method to synthesize continuous, dy-

namic textures at will. Timbres that would be costly and difficult to re-

produce, either due to the need for specialists/instrumentalists or the very

nature of the material being generated (e.g. stochastic analog circuitry, im-

provisation) could be generated by a composer to their desire, as seen in

the timbral synthesis of the compositional utilities (see 4.4) and the music

composition systems (see 5) I developed. These algorithms provide a way

to synthesize dynamic timbres that are similar yet not exact reproduction of

the original data, providing a richer pallet from which to compose.

The ability to synthesize timbres and factorize their connections using

FCRBMs enable the composer to synthesize transitions between several dif-

ferent timbres within a singular model (see 4.4.3)). This multi-class transi-

tional synthesis model derives its own method of synthesis from the guidance

of the composer, acting as a collaborative agent in the compositional process,

fully realizing concepts of system aesthetics (see 3.1). Several of the models

constructed for this purpose synthesized varied and interesting timbres that
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were not present in the original training samples, opening these systems to

deeper aesthetic explorations (see 4.4.2 and 4.4.3).

6.3 Aesthetic Expansion via Machine-Learning Theory

The compositional and aesthetic opportunities provoked by the successful

implementation of CRBMs and FCRBMs in music composition systems is

myriad and rich for exploration.

6.3.1 Composer Empowerment Through Algorithmic
Factorization

The ability to factorize interactions between the various components of FCRBM

models empowers composers with the ability to define and direct synthe-

sis from alternative modes. These algorithms can be coupled with external

multi-modal utilities such as gesture/movement recognition algorithms, mak-

ing mapping schemas that can be defined from a higher level (see 5.2). In

is That(’s) all there is, this resulted in fully immersive and intuitive inter-

action spaces where observers were able to move freely and focus on the

consequences of their actions, rather than their performance of a limited

vocabulary of interactions.

This factorization also addresses the data overload that can stunt creative

expression when attempting to synthesize and control complex material such

as musical timbre. The increasing complexity of digital interactions and

software utilities often require composers and artists to adopt entirely new

domains (i.e. computer science) or commit immense resources to realize

effective performance. In music composition, this is most noticeably demon-

strated in the instrumental performance of compositions from the New Com-

plexity [61] [62]. The ability to expand compositional expression and sonic

exploration through a mapping schema that does not require a performer

or composer to sacrifice the expertise of their own domain would be hugely

beneficial to expanding aesthetics and thought in musical composition, pro-

viding more opportunities to interact with complex musical paradigms, such

as timbral synthesis and control. FCRBMs are capable of providing such a

mapping schema, given further research.
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6.3.2 Mapping Performance to Non-Linear Structures

One of the most intriguing opportunities motivated by the experimental re-

sults of my research was the ability to map internal model parameters directly

to instrumental control systems, potentially making a synthesizer that could

be cued through the manipulation of the algorithm’s parameters. In CRBMs,

composers can transform machine synthesis through the manipulation of the

hidden layer activation distribution. After learning the model, composers

can bypass the visible layer input and activate the distribution of hidden

units directly, synthesizing data from a binary abstraction and creating non-

linear perspective of control. In FCRBMs, where a variety of timbres could

be generated from labeled input alone, the composer could directly trigger

dynamic timbres by changing labels.

A proposed future interface that explores these different methods of algo-

rithmic synthesis could be similar to a MIDI instrument, allowing composers

and musicians to change the algorithms’ parameters, whether they be labels

or hidden unit activations, directly in real time. Each mapping schema would

be direct yet provide two vastly different ways of exploring timbral synthesis,

providing non-linear gateways into dissecting sound.

I have begun to explore this potential in Improvisation for Vibraphonist

and Network (2017-2018), a telematic collaborative composition resulting

from the interaction between human agent and machine system. Using at-

tributes of latency, processing variability, and performer direction through

the abstracted hidden layer and labels of an FCRBM, I’ve created an im-

provised network that incorporates performative, non-linear elements into

synthesis. The composition uses the stylistic labeling of the FCRBM to map

a MIDI pitch organization from an electronic vibraphone to the timbral syn-

thesis of the algorithm. This provides the vibraphonist with the ability to

explore textural accompaniments to their own improvisations, without hav-

ing to abandon any of their performative practice.

A natural extension of this enhanced control paradigm is the develop-

ment of efficient multi-modal interactions. The translation of modes across a

common algorithmic vernacular (as Xenakis anticipated, see 3.2.1) provides

a creative system design that defines connections and interactions between

agents rather than their exclusive outcomes, as realized between user move-

ment and algorithmic sound synthesis in a performer’s perspective (see 5.1).
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Composers can delve deeper into mapping schema and generalized stylistic

connections of the models, directly exploring the non-linear structures of

the algorithms. Exploration of this space provides access to innumerable

combinations, each resulting in their own unique timbre. Navigating across

these timbres provides completely new methods of timbral deconstruction,

filtering, control, and synthesis.

6.4 Deep Learning Applications

Researchers have been able to efficiently train deep belief nets (DBN), using

multiple layers of CRBMs to learn continuous variables [63] [64]. Delving

even further into the formal components of the CRBM theory, these stacked

layers provide insight into the construction of the machine-learned connec-

tions, giving access to the elements of these patterns, opening them to manip-

ulation and further investigation. Such architectures generate deep feature

sets that are capable of a variety of applications such as modeling human

motion [65] [14], phone recognition [46], and acoustic modeling [47].

I have begun to explore deep learning application in musical timbre syn-

thesis (see C.1). In these explorations, the dFCRBM is a 2-layered net, with

each layer being a FCRBM. In addition to providing a more developed ab-

straction of the spectral representations, this additional layer also gives the

composer another set of labels and hidden units that can be manipulated

and organized for compositional purposes.

The deep learning architectures leave much to be desired as shown in their

performance with the experiments I used to validate the CRBM and FCRBM

(see C.1), but deep belief nets offer intriguing compositional capabilities, as

evident in the unique synthesis of the dFCRBM, the deeper, more complex

control structure of the network, and other successful implementations al-

ready done using CRBMs [64] [66] [63] [46] [47].

6.5 Final Thoughts

Machine-learning provides a path toward more powerful methods of mapping

and data synthesis. Composers can use these methods for creative expansion,
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as demonstrated in this research’s application of CRBMs and FCRBMs to

synthesize and control timbre . Micro-control aspects of composition, such

as defining the transitional interpolations between timbres and parameters

or generating unique, dynamic timbral material, can be relegated to the al-

gorithms. This liberates the composer’s process and allows for the focus

on macro-concepts aspects of their aesthetics, of intention and expression.

This fusion of composition with technological enhancement creates a code-

pendence that provides a direct path for creating music composition systems

that can achieve higher levels of expression.

From a larger view, the ability to compose from a system perspective that

incorporates human and machine agency, opens the composer to a new form

of creation that directly integrates aesthetic vision with contemporary tech-

nological thought. The composer is forced to analyze their process through

algorithmic interaction, the use of abstract compositional systems, and their

role as a human-agent within an open system. This analysis leads to a more

developed aesthetic, resulting in more informed compositional choices that

consider the design and application of the compositional systems that they

use.
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APPENDIX A

TECHNICAL CONSTRUCTION DETAILS

Working with immense multi-dimensional datasets forced me to consider

computational efficiency when implementing the algorithms. Through this

investigation, I found several opportunities to optimize performance and

learning with the algorithms, specifically moving learning from serial pro-

cessing on CPU to parallel processing on the GPU and optimizing stochastic

gradient descent.

A.1 Graphic Processing Unit (GPU)

The bulk of the processing in the FCRBM occurs in several simple matrix

operations on large feature sets. While a CPU is only able to utilize a few

cores in serial for this process, a GPU is designed to process a multitude

of smaller tasks simultaneously. Through the development of CUDA [67],

a high level parallel computing platform and programming model, code can

be sent straight to the GPU from the CPU. Abstractions of this method

have led to the implementation of many previously CPU implemented pro-

grams and code to run much more efficiently on the GPU [68], including an

implementation in Matlab [69]. This ultimately is a much more cost and

computationally efficient method for this research compared to parallelizing

the cope on multiple CPU cores.

In order to validate the efficiency of moving these algorithms from the CPU

to the GPU, I constructed a simple test. I modeled a singular dynamic timbre

using a FCRBM trained with spectral data derived from a 20 second audio

sample. I performed a STFT on the audio data using a STFT window size

of 4096, a hop of 2048 (50% overlap), and did not apply a tapering window,

resulting in 429 spectral samples. For the internal model parameters of the

FCRBM, I used 2000 hidden factors, hidden units, and hidden features, set
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the order of the model to 5, and used one step of contrastive divergence.

Using this data with these model parameters, I trained the same FCRBM

algorithm for 5000 epochs, processing on the CPU in the first instance and

on the GPU in the second, timing it using Matlab’s internal profiler. The

CPU I used was an Intel(R) Core(TM) i7-6700K CPU @ 4.00 GHz, which

has 4 cores on a machine that had 32 GB of memory. The GPU I used was

a NVIDIA GeForce GTX 1080, which has 2560 CUDA cores, on the same

machine.

In performing the same task using the same data, GPU usage dramatically

improved learning run-time (A.1).

Table A.1: Resulting runtimes of CPU and GPU in validation task

Processing Unit Total Run Time(min) Approx Time per Epoch (sec)

CPU 763.46 9.16
GPU 44.52 0.53

In looking more closely at where the majority of the time was spent in

processing, it was clear the FCRBM would perform better on the GPU. The

top 5 most costly operations in the code, accounting for approximately 34.7

% of the algorithm’s run-time, all involved large element-wise operations (i.e.

element-wise multiplication or division in combination with other operations)

on large multidimensional datasets (i.e. the autoregressive connections to

‘past’ data). For these specific tasks, it was evident that the GPU’s parallel

processing was advantageous to the CPU’s serial process.

A.2 Optimizing Stochastic Gradient Descent

In creating models to synthesize audio, a large and diverse feature set was

used. This feature set often created very volatile conditions for learning via

stochastic gradient descent (SGD), frequently resulting in models becoming

unstable and not learning parameters that could be used for synthesis. In

order to find a better method to learn models with greater stability, I inves-

tigated different ways to optimize and control SGD. While previous FCRBM

models [14] have utilized momentum [70], several other approaches have been

used to optimize SGD including a similarly static optimization like the Nes-
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terov accelerated gradient [71], and adaptive learning rate optimizers such as

Adagrad [49] and RMSprop [72].

Without any attempt to optimize SGD, the updates to a FCRBM’s param-

eters (θ) in learning would simply be updating the parameters at the previous

timestep (θt−1 in the opposite direction of the gradient a given function, given

a learning rate (η) set between 0.0 and 1.0:

θt = θt−1 − η ×∆θ (A.1)

When using momentum, the update adds a user determined portion of the

previous update (γ) to the current timestep’s update in an attempt to drive

the learning toward convergence:

vt = γvt−1 + η ×∆θ (A.2)

θt = θt−1 − vt (A.3)

The Nesterov accelerated gradient builds on the momentum method, cal-

culating the gradient on the anticipated future position of the parameters,

essentially correcting the updates at each timestep with respect to the ap-

proximated future parameters:

vt = γvt−1 + η ×∆(θ − γvt−1) (A.4)

θt = θt−1 − vt (A.5)

Adagrad adaptively updates each parameter with a different learning rate

depending on frequency of the parameter’s contribution to the cost of the

function, eliminating the need to manually set the learning rate. It does

this by adjusting the learning rate by the sum of the squares (Gt) of all the

previous gradients (plus a smoothing term of a respective parameter

θt = θt−1 −
η√

Gt + ε
×∆θ (A.6)

RMSprop focuses Adagrad, taking only a specified window of past gradi-

ents to temper the learning rates:
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E[∆θ2t ] = γE[∆θ2t−1] + (1− γ)∆θ2 (A.7)

θt = θt−1 −
η√

E[∆θ2t ] + ε
×∆θ (A.8)

In order to evaluate the efficiency of these optimizers in application, I

set up a test comparing the performance of each method by looking at the

convergence of the measured error (i.e. the difference between the actual

data and its reconstruction) and the resulting output.

I modeled a singular dynamic timbre using a FCRBM parallelized on the

GPU and trained with spectral data derived from a 20 second audio sample.

I performed a STFT on the audio data using a STFT window size of 4096, a

hop of 2048 (50% overlap), and did not apply a tapering window, resulting

in 429 spectral samples. For the internal model parameters of the FCRBM, I

used 2000 hidden factors, hidden units, and hidden features, set the order of

the model to 5, and used one step of contrastive divergence. Using this data

with these model parameters, I trained five separate FCRBM algorithms for

5000 epochs, testing performance using no SGD optimizer, momentum, the

Nesterov accelerated gradient, Adagrad, and RMSprop.

In implementing each of these optimization algorithms, Adagrad provided

the most improved and stable learning.
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Figure A.1: Error of SGD Optimizers over 5000 epochs

While both Adagrad and RMSprop had typically learning curves as they

reduced the error in the model, the performance of no optimizer, momentum,

and the Nesterov accelerated gradient were forced into atypical curves in

order to prevent instability in learning. In order to maintain stability, the

learning rates of the non-adaptive optimizers had to be dramatically reduced,

preventing the model from oscillating out of control. This shows an additional

advantage to optimizers using adaptive learning rates, as they are able to

defined and maintain stability throughout the course of learning.
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APPENDIX B

RESULTS OF VALIDATION
EXPERIMENTS

B.1 Complete List of Tested Models

Table B.1: Names and parameters of tested models

MODEL ALGORITHM
INTERNAL PARAMETERS

(numHid, numFac, numFeat)

ITERATIONS

(numCD, numGibbs

Cr1 CRBMsep redDim 1

Fr1 FCRBM redDim 1

Cc1 CRBMsep constant 1

Fc1 FCRBM constant 1

Ca1 CRBMsep augmented 1

Fa1 FCRBM augmented 1

Cr5 CRBMsep redDim 5

Fr5 FCRBM redDim 5

Cc5 CRBMsep constant 5

Fc5 FCRBM constant 5

Ca5 CRBMsep augmented 5

Fa5 FCRBM augmented 5

Cr20 CRBMsep redDim 20

Fr20 FCRBM redDim 20

Cc20 CRBMsep constant 20

Fc20 FCRBM constant 20

Ca20 CRBMsep augmented 20

Fa20 FCRBM augmented 20
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B.2 Test Results for Modeling Unique Instruments

Without Segmentation

strings	CRBM
Target→
Output				
↓

VIOLIN VIOLA CELLO BASS

VIOLIN 500 103 34 52 72.6%
27.4%

VIOLA 0 379 58 4 85.9%
14.1%

CELLO 144 123 629 128 61.4%
38.6%

BASS 156 195 79 616 58.9%
41.1%

62.5%
37.5%

47.4%
52.6%

78.6%
21.4%

77.0%
77.8%

66.38%
33.62%

Figure B.1: Confusion Matrix from Strings Test using error-correcting
output codes with support vector machines (ECOC) and naive bayes (NB)
classifiers on CRBM Synthesis of 4096/2048 FFT
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strings	FCRBM
Target→
Output				
↓

VIOLIN VIOLA CELLO BASS

VIOLIN 615 39 63 66 78.5%
21.5%

VIOLA 9 685 118 161 70.4%
29.6%

CELLO 194 81 704 105 64.9%
35.1%

BASS 82 95 15 568 74.7%
25.3%

68.3%
31.7%

76.1%
23.9%

78.2%
21.8%

63.1%
36.9%

71.44%
28.56%

Figure B.2: Confusion Matrix from Strings Test using ECOC and NB on
FCRBM Synthesis of 4096/2048 FFT

winds	CRBM
Target→
Output				
↓

OBOE BASSOON CLARINET FLUTE

OBOE 636 0 1 19 97.0%
3.0%

BASSOON 7 253 2 59 78.8%
21.2%

CLARINET 37 10 316 3 86.3%
13.7%

FLUTE 120 537 481 719 38.7%
61.3%

79.5%
20.5%

31.6%
68.4%

39.5%
60.5%

89.9%
10.1%

60.12%
39.88%

Figure B.3: Confusion Matrix from Woodwinds Test using ECOC and NB
on CRBM Synthesis of 4096/2048
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winds	FCRBM
Target→
Output				
↓

OBOE BASSOON CLARINET FLUTE

OBOE 695 0 0 31 95.7%
4.3%

BASSOON 0 389 39 59 79.9%
20.1%

CLARINET 124 74 628 94 68.3%
31.7%

FLUTE 81 437 233 716 48.8%
51.2%

77.2%
22.8%

43.2%
56.8%

69.8%
30.2%

79.5%
20.5%

67.44%
32.56%

Figure B.4: Confusion Matrix from Woodwinds Test using ECOC and NB
on FCRBM Synthesis of 4096/2048

PERCUSSION	CRBM

Target→
Output				
↓

XYLOPHONE MARIMBA CROTALE BELLS

XYLOPHONE 575 166 106 0 67.9%
32.1%

MARIMBA 95 632 5 4 85.9%
14.1%

CROTALE 17 0 666 33 93.0%
7.0%

BELLS 113 2 23 763 84.7%
15.3%

71.9%
28.1%

79.0%
21.0%

83.2%
16.8%

95.4%
4.6%

82.37%
17.63%

Figure B.5: Confusion Matrix from Pitched Percussion Test using ECOC
and NB on CRBM Synthesis of 4096/2048
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fcrbm

Target→
Output				
↓

XYLOPHONE MARIMBA CROTALE BELLS

XYLOPHONE 158 495 7 1 23.9%
76.1%

MARIMBA 53 200 0 0 79.1%
20.9%

CROTALE 312 1 882 64 70.1%
29.9%

BELLS 377 204 11 836 58.5%
41.5%

17.5%
82.5%

22.2%
77.8%

98.0%
2.0%

92.8%
7.2%

57.65%
42.35%

Figure B.6: Confusion Matrix from Pitched Percussion Test using ECOC
and NB on FCRBM Synthesis of 4096/2048
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Table B.2: Resulting accuracies of ECOC/NB on tested models

MODEL STRINGS WINDS PERCUSSION

Cr1 .95/.96 .89/.69 .90/.93

Fr1 .69/.59 .61/.53 .61/.71

Cc1 .74/.88 .57/.54 .87/.82

Fc1 .91/.85 .80/.68 .61/.55

Ca1 .25/.29 .52/.40 .63/.75

Fa1 .65/.66 .63/.48 .52/.52

Cr5 .91/.96 .87/.75 .96/.98

Fr5 .40/.20 .72/.61 .56/.47

Cc5 .62/.78 .52/.32 .90/.83

Fc5 .89/.85 .86/.68 .58/.55

Ca5 .18/.41 .52/.33 .56/.73

Fa5 .79/.66 .69/.52 .57/.53

Cr20 .93/.96 .96/.79 .73/.97

Fr20 .53/.67 .79/.83 .63/.56

Cc20 .79/.72 .96/.37 .84/.96

Fc20 .88/.84 .85/.67 .63/.67

Ca20 .24/.53 .56/.31 .77/.82

Fa20 .82/.83 .67/.49 .56/.52

Table B.3: Resulting accuracies of ECOC/NB on Cmodel

MODEL STRINGS WINDS PERCUSSION

Cr1 .95/.96 .89/.86 .90/.93

Cc1 .74/.88 .57/.54 .87/.82

Ca1 .25/.29 .52/.40 .63/.75

Cr5 .91/.96 .87/.75 .96/.98

Cc5 .62/.78 .52/.32 .90/.83

Ca5 .18/.41 .52/.33 .56/.73

Cr20 .93/.96 .96/.79 .73/.97

Cc20 .79/.72 .96/.37 .84/.96

Ca20 .24/.53 .56/.31 .77/.82
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Table B.4: Resulting accuracies of ECOC on Fmodel

MODEL STRINGS WINDS PERCUSSION

Fr1 .69/.59 .61/.53 .61/.71

Fc1 .91/.85 .80/.68 .61/.55

Fa1 .65/.66 .63/.48 .52/.52

Fr5 .40/.20 .72/.61 .56/.47

Fc5 .89/.85 .86/.68 .58/.55

Fa5 .79/.66 .69/.52 .57/.53

Fr20 .53/.67 .79/.83 .63/.56

Fc20 .88/.84 .85/.67 .63/.67

Fa20 .82/.83 .67/.49 .56/.52

Table B.5: Aggregate average accuracies of SVM/NB classifiers on models
and parameters

Model Accuracy NumPars Accuracy CD/Gibbs Accuracy

C .709/695 r .758/.731 1 .686/.657

F .683/619 c .768/.700 5 .672/.620

a .533/.563 20 .730/.695
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B.3 Test Results for Modeling Pitches of Individual

Instruments Without Segmentation

violin	Scale	CRBM
Target→
Output				
↓

G3 A3 B3 C4 D4 E4 F#4 G4

G3 618 259 270 241 174 260 255 338 25.6%
74.4%

A3 0 447 0 3 0 3 2 0 98.2%
1.8%

B3 1 48 419 64 12 28 35 6 68.4%
31.6%

C4 0 0 0 451 15 0 0 0 96.8%
3.2%

D4 0 0 0 1 572 10 14 0 95.8%
4.2%

E4 0 0 0 0 0 403 0 0 100.0%
0.0%

F#4 2 0 0 0 0 0 247 0 99.2%
0.8%

G4 279 157 222 142 127 203 276 556 28.3%
71.7%

68.7%
31.3%

49.1%
50.9%

46.0%
54.0%

50.0%
50.0%

63.5%
36.5%

44.3%
55.7%

29.8%
70.2%

61.8%
38.2%

51.86
48.14

Figure B.7: Confusion Matrix from Violin Pitches Test using ECOC and
NB on CRBM Synthesis of 4096/2048 FFT
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fcrbm

Target→
Output				
↓

G3 A3 B3 C4 D4 E4 F#4 G4

G3 833 240 64 18 43 69 81 251 52.1%
47.9%

A3 8 599 0 6 0 6 32 1 91.9%
8.1%

B3 2 49 829 58 28 78 13 18 77.1%
22.9%

C4 14 0 1 815 8 1 0 3 96.8%
3.2%

D4 5 5 2 3 821 28 0 0 95.0%
5.0%

E4 0 0 0 0 0 715 0 0 100.0%
0.0%

F#4 1 3 4 0 0 3 765 0 98.6%
1.4%

G4 37 4 0 0 0 0 9 627 92.6%
7.4%

92.6%
7.4%

66.6%
33.4%

92.1%
7.9%

90.5%
9.5%

91.2%
8.7%

79.4%
20.6%

85.0%
15.0%

69.7%
30.3%

83.39
16.61

Figure B.8: Confusion Matrix from Violin Pitches Test using ECOC and
NB on FCRBM Synthesis of 4096/2048 FFT

oboe	Scale	CRBM
Target→
Output				
↓

D4 E4 F#4 G4 A4 B4 C#4 D5

D4 891 525 560 472 158 88 414 601 24.0%
76.0%

E4 0 271 0 0 11 0 1 0 95.7%
4.3%

F#4 1 0 336 0 0 0 18 0 94.6%
5.4%

G4 3 0 1 426 0 0 1 22 94.0%
5.0%

A4 0 100 2 0 716 0 42 1 83.1%
16.9%

B4 0 4 0 0 0 802 0 0 99.5%
0.5%

C#5 0 0 0 2 7 4 396 0 96.8%
3.2%

D5 5 0 1 0 8 6 28 276 85.2%
14.8%

99.0%
1.0%

30.1%
69.9%

37.3%
62.7%

47.3%
52.7%

79.6%
20.4%

89.1%
10.9%

44.0%
56.0%

30.7%
69.3%

57.14
42.86

Figure B.9: Confusion Matrix from Oboe Pitches Test using ECOC and NB
on CRBM Synthesis of 4096/2048 FFT
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fcrbm

Target→
Output				
↓

D4 E4 F#4 G4 A4 B4 C#4 D5

D4 821 78 73 125 117 53 111 310 48.6%
51.4%

E4 0 615 0 3 12 1 2 0 97.1%
2.9%

F#4 26 7 701 3 63 3 11 29 83.1%
16.9%

G4 0 1 5 643 0 2 1 101 85.4%
14.6%

A4 1 62 26 28 687 0 28 2 82.4%
17.6%

B4 17 59 27 0 1 818 4 0 88.3%
11.7%

C#5 0 12 8 66 0 1 668 9 96.8%
3.2%

D5 35 66 60 32 20 22 75 449 59.2%
40.8%

91.2%
8.8%

68.3%
31.7%

77.9%
22.1%

71.4%
28.6%

76.3%
26.7%

90.9%
9.1%

74.2%
25.8%

49.9%
50.1%

75.03
24.97

Figure B.10: Confusion Matrix from Oboe Pitches Test using ECOC and
NB on FCRBM Synthesis of 4096/2048 FFT

Mallet	Scale	CRBM
Target→
Output				
↓

G3 A3 B3 C4 D4 E4 F#4 G4

G3 739 0 0 8 0 0 0 0 98.9%
1.1%

A3 7 880 0 0 0 0 0 13 97.8%
2.2%

B3 98 19 773 1 72 0 119 2 71.3%
28.7%

C4 56 1 127 899 82 0 120 24 68.7%
31.3%

D4 0 0 0 0 744 0 0 0 100.0%
0.0%

E4 0 0 0 0 0 900 0 0 100.0%
0.0%

F#4 0 0 0 0 0 0 652 11 98.3%
1.7%

G4 0 0 0 0 2 0 9 850 98.7%
1.3%

82.1%
17.9%

97.8%
2.2%

85.9%
14.1%

99.0%
1.0%

82.7%
17.3%

100.0%
0.0%

72.4%
27.6%

94.4%
5.6%

89.30%
10.70%

Figure B.11: Confusion Matrix from Bells Pitches Test using ECOC and
NB on CRBM Synthesis of 4096/2048 FFT
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Mallet	Scale	FCRBM
Target→
Output				
↓

D4 E4 F#4 G4 A4 B4 C#4 D5

A5 890 0 0 0 0 0 0 0 100.0%
0.0%

B5 10 879 0 0 0 0 0 4 98.4%
1.6%

C#6 0 0 870 0 0 0 0 27 97.0%
3.0%

D6 0 0 30 887 0 0 31 28 90.9%
9.1%

E6 0 17 0 11 900 6 3 0 96.0%
4.0%

F#6 0 4 0 1 0 893 0 0 99.4%
0.6%

G#6 0 0 0 1 0 0 866 7 99.0%
1.0%

A6 0 0 0 0 0 1 0 834 99.9%
0.1%

98.9%
1.1%

97.7%
2.3%

96.7%
3.3%

98.5%
1.5%

100.0%
0.0%

99.2%
0.8%

96.2%
3.8%

92.7%
7.3%

97.49%
2.51%

Figure B.12: Confusion Matrix from Bells Pitches Test using ECOC and
NB on FCRBM Synthesis of 4096/2048 FFT
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Table B.6: Resulting accuracies of ECOC/NB on tested models

MODEL VIOLIN SCALE OBOE SCALE BELLS SCALE

Cr1 .98/.79 .92/.97 1.00/1.00

Fr1 .54/.78 .64/.85 .88/.90

Cc1 .59/.52 .48/.33 1.00/1.00

Fc1 .97/.72 .93/.94 1.00/.99

Ca1 .23/.24 .34/.22 .93/.91

Fa1 .96/.89 .72/.95 1.00/.99

Cr5 .96/.67 .92/.95 1.00/1.00

Fr5 .81/.94 .50/.47 .96/.91

Cc5 .60/.45 .44/.43 .75/.62

Fc5 .97/.76 .96/.92 1.00/.98

Ca5 .20/.19 .42/.32 .78/.72

Fa5 .82/.72 .92/.93 1.00/.99

Cr20 .96/.67 .94/.97 1.00/1.00

Fr20 .81/.95 .57/.87 .99/.94

Cc20 .49/.38 .50/.44 .91/.76

Fc20 .96/.76 .94/.93 1.00/.99

Ca20 .22/.20 .40/.27 .92/.78

Fa20 .91/.82 .83/.92 1.00/.99

Table B.7: Resulting accuracies of ECOC/NB on Cmodel

MODEL VIOLIN SCALE OBOE SCALE BELLS SCALE

Cr1 .98/.79 .92/.97 1.00/1.00

Cc1 .59/.52 .48/.33 1.00/1.00

Ca1 .23/.24 .34/.22 .93/.91

Cr5 .96/.67 .92/.95 1.00/1.00

Cc5 .60/.45 .44/.43 .75/.62

Ca5 .20/.19 .42/.32 .78/.72

Cr20 .96/.67 .94/.97 1.00/1.00

Cc20 .49/.38 .50/.44 .91/.76

Ca20 .22/.20 .40/.27 .92/.78
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Table B.8: Resulting accuracies of ECOC/NB on Fmodel

MODEL VIOLIN SCALE OBOE SCALE BELLS SCALE

Fr1 .54/.78 .64/.85 .88/.90

Fc1 .97/.72 .93/.94 1.00/.99

Fa1 .96/.89 .72/.95 1.00/.99

Fr5 .81/.94 .50/.47 .96/.91

Fc5 .97/.76 .96/.92 1.00/.98

Fa5 .82/.72 .92/.93 1.00/.99

Fr20 .81/.95 .57/.87 .99/.94

Fc20 .96/.76 .94/.93 1.00/.99

Fa20 .91/.82 .83/.92 1.00/.99

Table B.9: Aggregate average accuracies of SVM/NB classifiers on models
and parameters

Model Accuracy NumPars Accuracy CD/Gibbs Accuracy

C .700/.622 r .854/.868 1 .782/.777

F .873/.881 c .805/.718 5 .778/.721

a .663/.699 20 .798/.758
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APPENDIX C

DEEP BELIEF NET EXPERIMENTS

C.1 An Implementation of a Deep Factored

Conditional Restricted Boltzmann Machine

(dFCRBM)

A dFCRBM learns connections across layers of the algorithms, in this case,

a given number of FCRBM, using the learned hidden representation at each

layer as input to the next layer, creating a deep belief net.

Each layer of the deep belief net is learned in steps, generating outputs

for each layer and using those outputs to learn deeper layer connections.

For example, the first layer of connected hidden units is learned the same

as a in a single layer FCRBM. The resulting connections are then used to

generate the hidden units as an output (similar to the role visible units take

in the first layer) to learn the connections to the second layer of hidden units,

where previous timesteps of the first layer of hidden units are used for the

autoregressive connections.

The equations for the dFCRBM are the same as those that are used for its

composite layers. For example, if the dFCRBM was a 2-layered net, with the

first layer consisting of a FCRBM and the second layer consisting of a CRBM,

the dFCRBM would first learn the necessary weights of the FCRBM as done

in 2.2.4 and then generate hidden units from equation 2.28 using these learned

weights. Those hidden unit outputs would then be used as visible/sample

data for the second layer CRBM to learn, using the same equations in 2.2.3.

Data is synthesized by doing a reconstructive pass forward, through both

layers of the dFCRBM, using the first layer’s output to drive the second

layer’s synthesis of the data.
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C.2 List of Tested Deep Models

Table C.1: Names and parameters of tested models

MODEL ALGORITHM
INTERNAL PARAMETERS

(numHid, numFac, numFeat)

ITERATIONS

(numCD, numGibbs

Dr1 dFCRBM redDim 1

Dc1 dFCRBM constant 1

Da1 dFCRBM augmented 1

Dr5 dFCRBM redDim 5

Dc5 dFCRBM constant 5

Da5 dFCRBM augmented 5

Dr20 dFCRBM redDim 20

Dc20 dFCRBM constant 20

Da20 dFCRBM augmented 20
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C.3 Test Results for Modeling Unique Instruments

Without Segmentation

strings	dFCRBM
Target→
Output				
↓

VIOLIN VIOLA CELLO BASS

VIOLIN 581 707 598 398 25.4%
74.6%

VIOLA 0 12 0 12 50.0%
50.0%

CELLO 136 44 133 33 38.4%
61.6%

BASS 183 138 169 457 48.3%
51.7%

64.6%
35.4%

1.3%
98.7%

14.8%
85.2%

50.8%
49.2%

32.85%
67.15%

Figure C.1: Confusion Matrix from Strings Test using ECOC and NB on
dFCRBM Synthesis of 4096/2048
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dfcrbm

Target→
Output				
↓

OBOE BASSOON CLARINET FLUTE

OBOE 638 339 246 453 38.1%
61.9%

BASSOON 0 21 21 18 35.0%
65.0%

CLARINET 74 67 58 3 28.7%
71.3%

FLUTE 188 473 575 426 25.6%
74.4%

70.9%
29.1%

2.3%
97.7%

6.4%
93.6%

47.3%
52.7%

31.75%
68.25%

Figure C.2: Confusion Matrix from Woodwinds Test using ECOC and NB
on dFCRBM Synthesis of 4096/2048

Target→
Output				
↓

XYLOPHONE MARIMBA CROTALE BELLS

XYLOPHONE 350 387 336 373 24.2%
75.8%

MARIMBA 199 255 0 0 56.2%
43.8%

CROTALE 209 111 564 421 43.2%
56.8%

BELLS 142 147 0 106 26.8%
73.2%

38.9%
61.1%

28.3%
71.7%

62.7%
37.3%

11.7%
88.3%

35.41%
64.58%

Figure C.3: Confusion Matrix from Pitched Percussion Test using ECOC
and NB on dFCRBM Synthesis of 4096/2048
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Table C.2: Resulting accuracies of ECOC/NB on tested models

MODEL STRINGS WINDS PERCUSSION

Dr1 .46/.25 .30/.28 .32/.25

Dc1 .42/.28 .31/.24 .38/.48

Da1 .47/.31 .38/.33 .61/.22

Dr5 .35/.19 .42/.28 .53/.39

Dc5 .29/.30 .39/.19 .46/.05

Da5 .17/.30 .35/.32 .53/.04

Dr20 .37/.22 .33/.31 .38/.18

Dc20 .50/.30 .27/.39 .42/.08

Da20 .51/.19 .29/.29 .63/.41

Table C.3: Resulting accuracies of ECOC on Dmodel

MODEL STRINGS WINDS PERCUSSION

Dr1 .46/.25 .30/.28 .32/.25

Dc1 .42/.28 .31/.24 .38/.48

Da1 .47/.31 .38/.33 .61/.22

Dr5 .35/.19 .42/.28 .53/.39

Dc5 .29/.30 .39/.19 .46/.05

Da5 .17/.30 .35/.32 .53/.04

Dr20 .37/.22 .33/.31 .38/.18

Dc20 .50/.30 .27/.39 .42/.08

Da20 .51/.19 .29/.29 .63/.41
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C.4 Test Results for Modeling Pitches of Individual

Instruments Without Segmentation
dfcrb

Target→
Output				
↓

G3 A3 B3 C4 D4 E4 F#4 G4

G3 614 311 172 211 319 406 276 393 22.7%
77.3%

A3 23 208 68 1 35 190 73 70 31.1%
68.9%

B3 0 83 359 0 1 52 0 1 72.4%
27.6%

C4 0 26 0 271 87 56 8 2 60.2%
39.8%

D4 0 59 16 314 431 20 1 7 50.8%
49.2%

E4 0 0 0 1 0 9 0 0 90.0%
10.0%

F#4 4 1 0 1 0 7 425 1 96.8%
3.2%

G4 259 212 285 101 27 90 117 426 28.1%
71.9%

68.2%
31.8%

23.1%
76.9%

39.9%
60.1%

30.1%
69.9%

47.9%
52.1%

1.1%
98.9%

47.2%
52.8%

47.3%
52.6%

38.47
61.53

Figure C.4: Confusion Matrix from Violin Pitches Test using ECOC and
NB on dFCRBM Synthesis of 4096/2048 FFT
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dfcrbm

Target→
Output				
↓

D4 E4 F#4 G4 A4 B4 C#4 D5

D4 774 734 324 538 516 579 593 492 17.0%
83.0%

E4 0 2 0 0 7 0 0 0 22.2%
77.8%

F#4 17 5 218 1 151 3 14 12 51.8%
48.2%

G4 2 1 12 201 0 0 6 100 62.4%
37.6%

A4 0 0 117 1 141 0 0 2 54.0%
46.0%

B4 28 77 46 9 16 252 0 0 58.9%
41.1%

C#5 0 19 15 8 0 1 210 2 82.3%
17.7%

D5 79 62 168 142 69 65 77 291 30.5%
69.5%

86.0%
14.0%

0.2%
99.8%

24.2%
75.8%

22.3%
77.7%

15.7%
84.3%

28.0%
72.0%

23.3%
76.7%

32.4%
67.6%

29.02
70.98

Figure C.5: Confusion Matrix from Oboe Pitches Test using ECOC and NB
on dFCRBM Synthesis of 4096/2048 FFT

Mallet	Scale	dFCRBM
Target→
Output				
↓

D4 E4 F#4 G4 A4 B4 C#4 D5

A5 760 703 632 698 658 640 677 513 14.4%
85.6%

B5 13 55 0 0 0 0 9 2 69.6%
30.4%

C#6 1 6 224 19 10 66 10 147 46.4%
53.6%

D6 102 82 3 126 0 0 76 8 31.7%
68.3%

E6 0 30 14 31 208 20 12 34 59.6%
40.4%

F#6 0 0 3 2 0 150 0 0 96.8%
3.2%

G#6 0 0 0 0 0 0 88 56 61.1%
38.9%

A6 0 0 0 0 0 0 4 116 96.7%
3.3%

86.8%
13.2%

6.3%
93.7%

25.6%
74.4%

14.4%
85.6%

23.7%
76.3%

17.1%
82.9%

10.0%
90.0%

13.2%
86.8%

24.64%
75.36%

Figure C.6: Confusion Matrix from Bells Pitches Test using ECOC and on
dFCRBM Synthesis of 4096/2048 FFT
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Table C.4: Resulting accuracies of ECOC on tested models

MODEL VIOLIN SCALE OBOE SCALE BELLS SCALE

Dr1 .30/.40 .21/.17 .18/.62

Dc1 .48/.60 .34/.39 .17/.16

Da1 .16/.12 .28/.21 .13/.15

Dr5 .27/.33 .26/.16 .29/.67

Dc5 .44/.52 .50/.43 .16/.17

Da5 .38/.52 .19/.14 .14/.18

Dr20 .22/.36 .27/.16 .30/.63

Dc20 .44/.54 .38/.35 .16/.17

Da20 .36/.57 .38/.34 .14/.17

Table C.5: Resulting accuracies of ECOC/NB on Dmodel

MODEL VIOLIN SCALE OBOE SCALE BELLS SCALE

Dr1 .30/.40 .21/.17 .18/.62

Dc1 .48/.60 .34/.39 .17/.16

Da1 .16/.12 .28/.21 .13/.15

Dr5 .27/.33 .26/.16 .29/.67

Dc5 .44/.52 .50/.43 .16/.17

Da5 .38/.52 .19/.14 .14/.18

Dr20 .22/.36 .27/.16 .30/.63

Dc20 .44/.54 .38/.35 .16/.17

Da20 .36/.57 .38/.34 .14/.17
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