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Abstract

In this dissertation we study problems related to colorings of combinatorial structures both in the “classical”
finite context and in the framework of descriptive set theory, with applications to topological dynamics and
ergodic theory. This work consists of two parts, each of which is in turn split into a number of chapters.
Although the individual chapters are largely independent from each other (with the exception of Chapters 4
and 6, which partially rely on some of the results obtained in Chapter 3), certain common themes feature
throughout—most prominently, the use of probabilistic techniques.

In Chapter 1, we establish a generalization of the Lovász Local Lemma (a powerful tool in probabilistic
combinatorics), which we call the Local Cut Lemma, and apply it to a variety of problems in graph coloring.

In Chapter 2, we study DP-coloring (also known as correspondence coloring)—an extension of list
coloring that was recently introduced by Dvořák and Postle. The goal of that chapter is to gain some
understanding of the similarities and the differences between DP-coloring and list coloring, and we find many
instances of both.

In Chapter 3, we adapt the Lovász Local Lemma for the needs of descriptive set theory and use it to
establish new bounds on measurable chromatic numbers of graphs induced by group actions.

In Chapter 4, we study shift actions of countable groups Γ on spaces of the form AΓ, where A is a finite
set, and apply the Lovász Local Lemma to find “large” closed shift-invariant subsets X ⊆ AΓ on which the
induced action of Γ is free.

In Chapter 5, we establish precise connections between certain problems in graph theory and in descriptive
set theory. As a corollary of our general result, we obtain new upper bounds on Baire measurable chromatic
numbers from known results in finite combinatorics.

Finally, in Chapter 6, we consider the notions of weak containment and weak equivalence of probability
measure-preserving actions of a countable group—relations introduced by Kechris that are combinatorial in
spirit and involve the way the action interacts with finite colorings of the underlying probability space.

This work is based on the following papers and preprints: [Ber16a; Ber16b; Ber16c; Ber17a; Ber17b;
Ber17c; Ber18a; Ber18b], [BK16; BK17a] (with Alexandr Kostochka), [BKP17] (with Alexandr Kostochka
and Sergei Pron), and [BKZ17; BKZ18] (with Alexandr Kostochka and Xuding Zhu).
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Introduction ond overview

A typical combinatorial problem is that of coloring, i.e., assigning to each element of a given structure (for
instance, a graph) an element of some (usually finite or at most countable) set—a “color”—in a way that
fulfills a specific family of constraints. For example, one might require the colors of adjacent vertices in a
graph to be distinct. This setting is quite flexible and can take many different forms depending on the choice
of the underlying structure and the type of constraints that must be met. In this dissertation, we will encounter
coloring problems that appear in such diverse areas as (hyper)graph theory, probability theory, descriptive set
theory, ergodic theory, and topological dynamics.

When coloring problems are considered purely combinatorially, there is usually no loss of generality
in restricting one’s attention to finite structures. Indeed, coloring an infinite structure can often be reduced,
using a compactness argument, to coloring each of its finite substructures. The following is a prototypical
instance of this phenomenon:

Theorem (de Bruijn–Erdős [BE51, Theorem 1]). An infinite graph G is k-colorable if and only if every finite
subgraph of G is k-colorable.

Consequently, classical combinatorics mostly studies colorings of finite structures, such as finite graphs and
hypergraphs. Our contributions to this area constitute Part I of this dissertation.

Nevertheless, coloring infinite structures can also present unique challenges that are absent in the finite
setting. The source of these challenges is that infinite sets are often equipped with some extra data, such as a
topology or a measure. It is then reasonable (and, for some applications, necessary) to consider colorings which
not only satisfy the combinatorial constraints, but also behave well topologically or measure-theoretically.
With these additional requirements, compactness can no longer be used to directly reduce the problem to the
finite case. Here is perhaps the simplest concrete example:

Example. Fix some irrational α ∈ (0; 1) and consider the graph Gα with vertex set the half-open interval [0; 1)
whose edges connect the pairs of vertices x, y with y − x = ±α (mod 1). Combinatorially, Gα is simply a
disjoint union of (continuumly many) paths, infinite in both directions. In particular, Gα is 2-colorable. Note,
however, that in order to properly color Gα using two colors, one must select one of the two possible colorings
for each connected component of Gα. This can be easily done with the help of the Axiom of Choice, but the
Axiom of Choice itself gives no control over the regularity properties of the resulting coloring. Indeed, a
simple ergodicity argument shows that a proper 2-coloring of Gα can neither be Lebesgue measurable nor
Baire measurable (see, e.g., [CMT16, p. 2]). On the other hand, Gα has a Borel proper coloring with three
colors (see Fig. 1).

1



. . .
0 1α 2α 3α

Figure 1 – A Borel proper 3-coloring of Gα.

Questions regarding colorings that are both combinatorially nice and topologically ormeasure-theoretically
well-behaved are studied in descriptive combinatorics, a recently emerged area at the interface of descriptive
set theory and combinatorics that has deep connections to other fields such as ergodic theory and probability
theory. A comprehensive state-of-the-art survey of this subject can be found in [KM16]. It is remarkable that,
even though the problems in descriptive combinatorics possess a flavor distinctly different from those in finite
combinatorics, results in descriptive combinatorics are often proved by adapting some of the methods known
to work in the finite setting. Our contributions to descriptive combinatorics and related areas form Part II of
this dissertation.

Even though Parts I and II are self-contained and independent from each other, there are some common
themes that bind them together. Most prominently, throughout both parts we heavily rely on the so-called
probabilistic method, a set of combinatorial techniques that was pioneered by Erdős in the mid-1940s and
has since become absolutely indispensable. The classic introduction to this method is [AS00], and a large
selection of its applications to graph coloring can be found in [MR02]. The general premise of the probabilistic
method is that to prove the existence of an object with some properties, it suffices to verify that a random
object has the desired properties with positive probability. This approach has two important advantages. First,
it alleviates the burden of explicit construction, making it possible to work where there is little useful structure
to exploit. Second, it brings in a variety of powerful tools from probability theory, such as concentration of
measure, correlation inequalities, and the Lovász Local Lemma, to name a few. (The Lovász Local Lemma,
or the LLL for short, plays a particularly important role in this work: The only chapter where the LLL does
not make an appearance is Chapter 5, while Chapters 1 and 3 are specifically dedicated to strengthening and
extending the scope of the LLL.)

In the remainder of this introduction we give a brief chapter-by-chapter overview of this work.

Part I: The finite

Part I is based on the following papers and preprints: [Ber16b; Ber16c; Ber17b; Ber17c], [BK16; BK17a]
(with Alexandr Kostochka), [BKP17] (with Alexandr Kostochka and Sergei Pron), and [BKZ17; BKZ18]
(with Alexandr Kostochka and Xuding Zhu).

Chapter 1: The Local Cut Lemma

As we have already mentioned above, an important tool in probabilistic combinatorics is the so-called Lovász
Local Lemma (the LLL for short), which was introduced by Erdős and Lovász in their seminal paper [EL75].
Let B be a finite family of “bad” random events in a probability space, and suppose we wish to show that, with
positive probability, all the events in B can be avoided. This would be easy if the events in B were mutually

2



independent—but that usually does not happen in practice. However, often the dependencies between the
events in B can be somehow controlled, and if that is the case, then the LLL may be applied. For the precise
statement, see, e.g., [AS00, Lemma 5.1.1] or Theorem 1.1.1 below. (Throughout this dissertation, the LLL is
stated, in different forms, a total of at least five times.)

Recently, there has been a burst of activity surrounding the LLL and related topics, prompted by the
groundbreaking work of Moser and Tardos [MT10], who devised and algorithmic approach to the LLL. It
was observed, first by Grytczuk, Kozik, and Micek in their study of nonrepetitive sequences [GKM13], that
the Moser–Tardos method, originally developed as an alternative way of proving the LLL, often outperforms
the LLL when applied to concrete problems. This technique has become known as the entropy compression
method; see, e.g., [GKM13; Duj+15; EP13; GMP14].

Each time the entropy compression method is applied, a series of somewhat technical ad hoc calculations
is necessary. It is natural to wonder if there is a single “master theorem” that can replace these calculations.
Indeed, such a general theorem, called the Local Cut Lemma (the LCL for short), is the main result presented
in Chapter 1 (see Theorem 1.2.4). Interestingly, the proof of the LCL itself does not rely on the entropy
compression method; in other words, although the entropy compression method was necessary to discover the
new combinatorial results, it is not, in principle, needed to prove them.

The general statement of the LCL involves random cuts in directed graphs (hence the name), but for most
applications the following weaker version is sufficient. Let I be a finite set. A family A ⊆ Pow(I) of subsets
of I is downwards-closed if for each S ∈ A, Pow(S) ⊆ A. Let the boundary of A be

∂A B {i ∈ I : S ∈ A and S ∪ {i} < A for some S ⊆ I \ {i}}.

Let Ω be a probability space and let A : Ω→ Pow(Pow(I)) be a random variable. Usually, A is taken to be
the family of all sets S ⊆ I that are colored “properly” in a random coloring (according to some notion of
“properness”), and the goal is to prove that, with positive probability, I ∈ A, i.e., the entire coloring is “proper.”
For a random event B, a function τ : I → [1;+∞), and an element i ∈ I, define

σA
τ (B, i) B min

i∈X⊆I
max
Z⊆I\X

[
P[B|Z ∈ A] ·

∏
i∈X

τ(i)

]
.

Theorem 1.3.1. Let I be a finite set, let Ω be a probability space, and let A : Ω→ Pow(Pow(I)) be a random
variable such that, with probability 1, A is a nonempty downwards-closed family of subsets of I. For each
i ∈ I, let B(i) be a finite collection of random events in Ω such that whenever i ∈ ∂A, at least one of the
events in B(i) holds. If there is a function τ : I → [1;+∞) such that for all i ∈ I,

τ(i) > 1 +
∑

B∈B(i)

σA
τ (B, i),

then I ∈ A with positive probability.

The LLL becomes a special case of Theorem 1.3.1 under the assumptions that (1) the set A always
contains an inclusion-maximum element; and (2) each of the sets B(i) is a singleton, containing only one
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“bad” event. In typical applications, however, none of these assumptions are satisfied. In Chapter 1, after
stating and proving the LCL in full generality, we present short LCL-based proofs of several results that were
originally derived using the entropy compression method. We also present some new results that were first
obtained using the LCL: an improved lower bound on the number of edges in color-critical hypergraphs (see
§1.7), an interesting probabilistic statement regarding choice functions (see §1.8), and new upper bounds on
the acyclic chromatic index (see §1.9).

Chapter 2: DP-Coloring

In the 1970s, Vizing [Viz76] and independently Erdős, Rubin, and Taylor [ERT79] introduced an important
generalization of graph coloring called list coloring. In this setting, each vertex u ∈ V(G) is assigned a list
L(u) of colors that are available for that vertex. An L-coloring of G is a vertex coloring f of G that is proper
(i.e., adjacent vertices receive distinct colors) and satisfies f (u) ∈ L(u) for all u ∈ V(G). The list-chromatic
number χ`(G) is the smallest k such that G has an L-coloring whenever |L(u)| > k for all u ∈ V(G).

It is clear that ordinary graph coloring is a special case of list coloring (just make all lists equal to each
other); in particular, χ`(G) > χ(G) for any graph G. On the other hand, χ`(G) is not bounded above by any
function of χ(G). For instance, the list-chromatic number of the balanced complete bipartite graph Kn,n is
(1 + o(1)) log2(n) → ∞ as n→∞ (while χ(Kn,n) = 2 for all n).

Recently, Dvořák and Postle [DP15] generalized list coloring further by allowing the identifications
between the colors in the lists to vary from edge to edge. They called it correspondence coloring, here
referred to as DP-coloring for short.

Definition 2.1.1. Let G be a graph. A cover of G is a pair H = (L,H), consisting of a graph H and a
function L : V(G) → Pow(V(H)), satisfying the following requirements:

(C1) the sets {L(u) : u ∈ V(G)} form a partition of V(H);

(C2) for every u ∈ V(G), the graph H[L(u)] is complete;

(C3) if EH (L(u), L(v)) , �, then either u = v or uv ∈ E(G);

(C4) if uv ∈ E(G), then EH (L(u), L(v)) is a matching.

A cover H = (L,H) of G is k-fold if |L(u)| = k for all u ∈ V(G).

{R, B}

{R,G}

{R, B}

{B,G}

R

B

R

G

R

B

B

G

Figure 2 – A list assignment and the corresponding 2-fold cover.
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Recall that a set I ⊆ V(H) is independent if no edge joins two elements of I. Let H = (L,H) be a
cover of a graph G. An H -coloring is an independent set in H of size |V(G)|. The DP-chromatic number
χDP(G) is the smallest k such that G admits an H -coloring for every k-fold cover H .

H1 H2

Figure 3 – The 4-cycle is H1-colorable but not H2-colorable.

List coloring is a special case of DP-coloring (see Fig. 2), and, in particular, χDP(G) > χ`(G) for any
graph G. Some upper bounds on the list-chromatic number hold for the DP-chromatic number as well. For
instance, it is easy to see that χDP(G) 6 ∆ + 1 for any graph G of maximum degree ∆. On the other hand, the
only connected graphs G with χ`(G) = ∆ + 1 are cliques and odd cycles, while for DP-coloring, even cycles
also become sharpness examples (see Fig. 3).

In Chapter 2 we investigate how much of the classical theory of list coloring can be transferred to the
setting of DP-coloring. It turns out that, in general, DP-chromatic numbers are rather large: the DP-chromatic
number of any graph with average degree d is Ω(d/log(d)), i.e., close to linear in d (see Theorem 2.1.5). In
spite of this, known upper bounds on list-chromatic numbers often extend to DP-chromatic numbers. Notably,
by Johansson’s theorem [Joh96], triangle-free graphs G of maximum degree ∆ satisfy χ`(G) = O(∆/log∆).
The same asymptotic upper bound holds for χDP(G). Recently, Molloy [Mol17] refined Johansson’s result
to χ`(G) 6 (1 + o(1))∆/ln∆, and this improved bound, including the constant factor, also generalizes to
DP-colorings (see §2.3). Together, the above results have the following curious corollary:

Corollary 2.3.4. For every ∆-regular triangle-free graph G,

(1/2 − o(1))
∆

ln∆
6 χDP(G) 6 (1 + o(1))

∆

ln∆
.

Furthermore, there exist statements about list coloring whose only known proofs involve DP-coloring in
essential ways. For example, Dvořák and Postle originally introduced DP-coloring in order to show that every
planar graph without cycles of lengths 4 to 8 is 3-list-colorable [DP15, Theorem 1], answering a long-standing
open question. In §2.4, we extend Dirac’s lower bound on the number of edges in critical graphs [Dir57;
Dir74] to the framework of DP-colorings and completely classify the graphs that satisfy Dirac’s bound with
equality. This classification was only conjectural even in the list-coloring setting [KS02].

Yet, DP-coloring is remarkably different from list coloring in some respects. We only mention two
examples here, and several other ones can be found in Chapter 2. A classical result of Alon and Tarsi
[AT92, Corollary 3.4] asserts that every planar bipartite graph is 3-list-colorable, but this is not true for
DP-colorings—see Theorem 2.2.2. The Noel–Reed–Wu theorem [NRW15] states that if G is an n-vertex
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graph with χ(G) > (n − 1)/2, then χ`(G) = χ(G); Corollary 2.5.5 in §2.5 asserts that to obtain the same
conclusion for χDP(G), it is necessary to require χ(G) > n − Θ(

√
n).

Part II: The infinite

Part II is based on the following preprints: [Ber16a; Ber17a; Ber18a; Ber18b].

Chapter 3: Measurable versions of the Lovász Local Lemma

Along with developments in finite combinatorics described in Chapter 1, the Moser–Tardos algorithmic
approach to the Lovász Local Lemma spurred the study of various “constructive” aspects of the LLL. A salient
example is the computable LLL of Rumyantsev and Shen [RS14]. In Chapter 3, we investigate the behavior
of the LLL in the measurable setting. To motivate this work, let us first describe a specific application of our
general results.

Let X be a standard Borel space, equipped with a Polish topology τ and a probability measure µ, and
let G be a graph with vertex set X . (In all cases of interest, the vertex set of G has cardinality continuum.)
Suppose that we wish to find a proper coloring f : X → C of G with colors in a set C. If C is also a standard
Borel space (for instance, if it is countable), then we may restrict our attention to colorings f : X → C that
are—as functions—Borel, µ-measurable, or Baire measurable with respect to τ, leading to the definitions
of Borel, measurable, and Baire measurable chromatic numbers of G, denoted by χB(G), χM(G), and
χBM(G) respectively.

An ample supply of examples in descriptive combinatorics is provided by actions of countable groups.
Given a group action Γy X and a symmetric generating set S ⊆ Γ, define the corresponding “Cayley” graph
GS(X) with vertex set X by

E(GS(X)) B {(x, γ · x) : x ∈ X and γ ∈ S}.

Of particular interest is the situation when X is the free part of the shift action Γy [0; 1]Γ, in which case the
graph GS(X) is denoted by G∞(Γ, S).

γ1

γ2

Figure 4 – A fragment of the Cayley graph of F2.

Now consider the free group Fn on n generators γ1, . . . , γn. Let Sn B {γ±1
1 , . . . , γ±1

n } be the standard
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symmetric generating set for Fn and let Gn B G∞(Fn, Sn). Remarkably, for large n, the values χ(Gn), χB(Gn),
χM(Gn), and χBM(Gn) are all distinct:

χ(Gn) 2 Easily seen as Gn is acyclic.

χBM(Gn) 3 Conley–Miller [CM16].

χM(Gn) >
n

ln(2n)
; 6 2n Lyons–Nazarov [LN11] (lower bound);

Conley–Marks–Tucker-Drob [CMT16] (upper bound)

χB(Gn) 2n + 1 Kechris–Solecki–Todorcevic [KST99] (upper bound);
Marks [Mar16] (lower bound)

Table 1 – Chromatic numbers of the graph Gn.

Notice the gap in the third line of the above table. Lyons and Nazarov [LN11] posed the problem of determining
the correct order of magnitude of χM(Gn) as a function of n. A potential approach to answering their question
is as follows. By a result of Kim [Kim95], any finite graph G with no cycles of lengths 3 and 4 and of
maximum degree ∆ satisfies χ(G) 6 (1 + o(1))∆/ln∆. Since the (infinite) graph Gn is acyclic and 2n-regular
(see Fig. 4), if Kim’s theorem worked in the measurable setting, it would yield χM(Gn) 6 (2 + o(1))n/ln(2n),
which is asymptotically within a factor of 2 from the known lower bound. In Chapter 3, we successfully
implement this strategy:

Theorem (see Theorem 3.1.1). Let Γ be a countable group with a symmetric generating set S of size d. If the
Cayley graph of Γ with respect to S contains no cycles of lengths 3 and 4, then χM(G∞(Γ, S)) 6 (1+o(1))d/ln d.

Corollary 3.1.2. We have
n

ln(2n)
6 χM(Gn) 6 (2 + o(1))

n
ln(2n)

.

The LLL plays a crucial role in the proof of Kim’s theorem, so it is desirable to have a measurable
version of the LLL that can be used to transfer existing LLL-based arguments to the measurable setting. In
Chapter 3, we accomplish this goal in the case when the underlying structure is, in a certain sense, induced
by the [0; 1]-shift action of a countable group—see Theorem 3.5.6. Our general result is so powerful that
Theorem 3.1.1 follows simply by replacing the LLL with Theorem 3.5.6 everywhere in Kim’s original proof,
essentially without any further modifications. In a similar fashion one obtains bounds on various other
measurable coloring parameters, such as the measurable chromatic index (see Theorem 3.1.3). The statement
of our measurable LLL requires a few definitions, so we will not reproduce it in this introduction. However, it
is worth pointing out that it allows the LLL to be iterated, which is necessary to prove measurable analogs of
sophisticated results such as Kim’s theorem (and hence Theorem 3.1.1).

It is natural to wonder if the measurable LLL can be extended to probability measure-preserving actions
beyond the shift action. In this direction, we prove that, at least for amenable groups, the restriction to shift
actions is sharp: a probability measure-preserving action of a countably infinite amenable group satisfies the
measurable version of the LLL if and only if it admits a factor map to the [0; 1]-shift (see Theorems 3.6.1 and
3.6.1′). The proof combines the tools of the Ornstein–Weiss theory of entropy for actions of amenable groups
with concepts from computability theory, specifically, Kolmogorov complexity.
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Chapter 4: Building large free subshifts using the LLL

In Chapter 4 we apply the LLL to certain problems in topological dynamics. Let Γ be a countably infinite
group and let k ∈ N. A subshift is a closed shift-invariant subset of kΓ. It has been a matter of interest to
determine which groups Γ admit a nonempty subshift X that is free, i.e., such that the stabilizer of every
point x ∈ X under the shift action of Γ is trivial. It has been known at least since the early 1900s that such
a subshift exists for Γ = Z (the set of all cube-free1 sequences X ⊆ 2Z is a nonempty free subshift, for
example). After some partial results by Dranishnikov and Schroeder [DS07] and Glasner and Uspenskij
[GU09], the problem was fully resolved by Gao, Jackson, and Seward [GJS09; GJS16], who showed that
not only do nonempty free subshifts exist for all groups, but they are rather numerous: For any k > 2, every
nonempty shift-invariant open subset U ⊆ kΓ contains continuumly many pairwise disjoint nonempty free
subshifts [GJS16, Theorem 1.4.1].

The elements of kΓ can be thought of as colorings of Γ with k colors. If one defines a free subshift X ⊆ kΓ

as the set of all colorings that avoid a certain family of “bad” events, then the LLL may be used to prove that
X is nonempty. This approach was employed by Aubrun, Barbieri, and Thomassé [ABT16] to give a simple
alternative construction of a nonempty free subshift X ⊆ 2Γ for an arbitrary group Γ (while the original proof
of [GJS16, Theorem 1.4.1] due to Gao, Jackson, and Seward was quite technical).

The aim of Chapter 4 is to use the LLL in order to prove the existence of free subshifts that are not only
nonempty, but in fact rather “large” in various senses. Specifically, we investigate the following questions,
which are attributed by Gao, Jackson, and Seward to Juan Souto:

For a given group Γ, what is the largest possible Hausdorff dimension of a free subshift X ⊆ kΓ?

For groups Γ in which a notion of entropy exists, what is the largest possible entropy of a free
subshift X ⊆ kΓ?

Note that neither the Hausdorff dimension nor the entropy of a subshift X ⊆ kΓ can exceed log2 k. We answer
the above questions by showing that the Hausdorff dimension and the entropy of a free subshift can be made
arbitrarily close to this upper bound:

Theorem 4.1.3. Let U ⊆ kΓ be a nonempty shift-invariant open set. Then, for any h < log2 k:

(i) there exists a free minimal subshift X ⊆ U of Hausdorff dimension at least h;

(ii) if Γ is amenable, then there exists a free minimal subshift X ⊆ U of entropy at least h;

(iii) if Γ is sofic, then there exists a free subshift X ⊆ U whose entropy with respect to any sofic
approximation is at least h.

In fact, we define a novel LLL-inspired notion of size for a subshift, which we call breadth (see §4.3),
and show that it serves as a lower bound for various other notions of size and that a subshift whose breadth is
large enough must contain a free subshift—see Theorem 4.3.4. In the proof of Theorem 4.3.4, we use both
the usual LLL and one of its measurable versions established in Chapter 3, namely Corollary 3.5.7.

1A sequence w = . . . a−2a−1a0a1a2 . . . is cube-free if no finite subsequence is repeated in w three times in a row.
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Chapter 5: Baire measurable colorings of group actions

It is common for results in descriptive combinatorics to be based, in one way or another, on a known theorem
or a method that works in the finite setting (the results in Chapter 3 serve as an example). This suggests
that there might exist some precise correspondences between the finite and the infinite; the existence of a
well-behaved coloring of a certain kind could, perhaps, be equivalent to a finitary statement such as the
existence of an algorithm of a specific form to find such a coloring.

The goal of Chapter 5 is to confirm this suspicion for the problem of coloring the shift action of a
countable group Γ in a Baire measurable way. If the set of available colors is countable, for concreteness N,
then a coloring problem over Γ can be identified with a subshift Ω ⊆ NΓ, i.e., a closed shift-invariant set
whose elements are the “good” colorings of Γ (note that here the notion of a subshift is different from the
one used in Chapter 4; in particular, for the purposes of Chapter 5, a subshift need not be compact). Given a
continuous action Γy X of Γ on a Polish space, any coloring f : X → N gives rise to the Γ-equivariant map
π f : X → NΓ called the coding map (or the symbolic representation) and defined by

π f (x)(γ) B f (γ · x) for all x ∈ X and γ ∈ Γ.

A Baire measurable Ω-coloring is a Baire measurable function f : X → N such that π f (x) ∈ Ω for
comeagerly many x ∈ X , i.e., the coloring of a generic orbit is “good.” Let ShBM(X) denote the set of all
subshifts Ω such that X admits a Baire measurable Ω-coloring. It turns out that, apart from some trivial cases,
the set ShBM(X) is complete analytic (see Theorem 5.2.3); in particular, it is not Borel. Intuitively, this means
that there is no “easy” way to decide if a given coloring problem has a Baire measurable solution.

Nevertheless, we are able to describe the set ShBM([0; 1]Γ) purely combinatorially (where the action on
[0; 1]Γ is by shift). Roughly speaking, determining whether Ω ∈ ShBM([0; 1]Γ) is equivalent to settling a
question of the following form:

“Is it possible to decide, only using ‘local’ information, if a given coloring ϕ : S → N of a finite
subset S ⊆ Γ can be extended to a coloring ω ∈ Ω of the entire group?”

(∗)

Some interpretations of (∗) have already been investigated in graph theory, especially in relation with the
problem of jointly extending given partial colorings of finite subsets that are “sufficiently far apart” from each
other (see, e.g., [AKW05; Dvo+17; PT16]). We formalize this notion as the join property of subshifts (see
Definition 5.2.7), and the following result is obtained:

Theorem (see Theorem 5.2.10). The following are equivalent for a subshift Ω ⊆ NΓ:

(i) the shift action of Γ admits a Baire measurable Ω-coloring;

(ii) Ω ⊇ Ω′ for some subshift Ω′ with the join property.

Implication (ii)⇒ (i) of the above theorem can be used to derive bounds on Baire measurable chromatic
numbers from known results in finite combinatorics. For instance, a theorem of Postle and Thomas [PT16,
Theorem 8.10] yields the following:
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Corollary 5.2.11. Suppose that Γ is generated by a finite symmetric set S ⊆ Γ such that the corresponding
Cayley graph is planar. Let G B G∞(Γ, S). Then

χBM(G) 6


3 if G contains no cycles of lengths 3 and 4;

4 if G contains a cycle of length 4 but not of length 3;

5 otherwise.

Note that the best upper bounds on χBM(G) under the assumptions of Corollary 5.2.11 that follow from
previously known results are χBM(G) 6 7 in general and χBM(G) 6 5 if G contains no cycles of length 3;
these are implied by the work of Conley and Miller [CM16, Theorem B].

Chapter 6: Results on weak containment of probability measure-preserving actions

Let Γ be a countable group. In ergodic theory, one aims to classify measure-preserving actions Γy (X, µ)
of Γ on probability spaces. Unfortunately, the isomorphism relation between such actions is extremely
complicated, and so it is impossible to classify them up to isomorphism in any “reasonable” or “explicit” way.
Hence, it is natural to consider some coarser and, hopefully, better behaved equivalence relations. One such
relation—weak equivalence—was proposed by Kechris in [Kec10, Section 10(C)]. The definition of weak
equivalence is combinatorial and involves the way the action interacts with finite colorings of the underlying
probability space.

To define weak equivalence, we need to fix some notation first. Let α : Γy X be an action of Γ on a set
X and let f : X → k ∈ N be a finite coloring of X . Define an equivariant map π f : X → kΓ by

π f (x)(γ) B f (γ · x) for all x ∈ X and γ ∈ Γ.

Given a measure-preserving action α : Γy (X, µ) on a standard probability space (X, µ), an integer k ∈ N, a
Borel function f : X → k, a finite set S ⊆ Γ, and a map w : S → k, the frequency Φµ(α, f ,w) of w in (α, f )

with respect to µ is defined by

Φµ(α, f ,w) B µ({x ∈ X : π f (x) ⊇ w}).

Definition 6.1.1. Let α : Γy (X, µ) and β : Γy (Y, ν) be probability measure-preserving actions of Γ. We
say that α is weakly contained in β, in symbols α 4 β, if for every finite set S ⊆ Γ and for all ε > 0, the
following holds: Let k ∈ N and let f : X → k be a Borel function. Then there exists a Borel map g : Y → k

satisfying
|Φν(β, g,w) − Φµ(α, f ,w)| < ε for all w : S → k .

If simultaneously α 4 β and β 4 α, then α and β are said to be weakly equivalent, in symbols α ' β.

Due to the combinatorial nature of weak containment and weak equivalence, it is not surprising that an
essentially equivalent notion of local-global convergence was introduced independently in the theory of graph
limits [HLS14].
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Abért and Weiss [AW13] proved that the shift action Γ y [0; 1]Γ is weakly contained in every free
probability measure-preserving action of Γ. In §6.2, we strengthen this result by replacing the frequencies
Φµ(α, f ,w) with certain pointwise averages. In particular, we prove a purely Borel version of the Abért–Weiss
theorem in the case when Γ is a finitely generated group of subexponential growth (see Theorem 6.2.4).
The results in that section are derived using three different measurable versions of the LLL, two of which
are proved in Chapter 3, while the other one was established by Csóka, Grabowski, Máthé, Pikhurko, and
Tyros [Csó+16].

LetWΓ denote the set of all weak equivalence classes of measure-preserving actions of Γ on atomless
standard probability spaces and let FWΓ ⊆ WΓ be the subset of all weak equivalence classes of free actions.
A useful feature of weak equivalence is thatWΓ carries a natural compact metrizable topology, introduced by
Abért and Elek [AE11], and FWΓ is closed in this topology. There is a natural multiplication operation on
WΓ (induced by taking products of actions) that makesWΓ an Abelian semigroup. Burton, Kechris, and
Tamuz [BK17b, Theorem 10.37] showed that if Γ is amenable, thenWΓ is a topological semigroup, i.e., the
product mapWΓ ×WΓ →WΓ : (a, b) 7→ a × b is continuous. It is natural to wonder if the same is true for
every countable group Γ [BK17b, Problem 10.36]; however, in §6.3 we show that that is not the case for a
certain class of nonamenable groups Γ, including the non-Abelian free groups:

Theorem 6.3.7. Let d > 2 and let Γ 6 SLd(Z) be a subgroup that is Zariski dense in SLd(R).

(1) The map FWΓ → FWΓ : a 7→ a × a is discontinuous.

(2) There is b ∈ FWΓ such that the map FWΓ → FWΓ : a 7→ a × b is discontinuous.

In view of the above theorem and the result of Burton, Kechris, and Tamuz, it is tempting to conjecture
thatWΓ is a topological semigroup if and only if Γ is amenable. However, at this point we do not even know
whether multiplication of weak equivalence classes is discontinuous for every countable group that contains a
non-Abelian free subgroup.
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Notation and terminology

In this chapter we collect all of the basic notation and terminology that will be used throughout this dissertation.

Integers

We use N B {0, 1, . . .} to denote the set of all nonnegative integers and let N+ B N \ {0}. As is common
in set theory, each integer k ∈ N is identified with the k-element set {i ∈ N : i < k}. We view N and k as
discrete topological spaces.

Sets

For a set X , Pow(X) denotes the set of all subsets of X and [X]<∞ denotes the set of all finite subsets of X .
For a set A, we write Ac to indicate the complement of A, i.e., the set U \ A where U is some ambient set that
is understood from context. We use the expressions |S | and #S for the cardinality of a set S interchangeably.
(Most of the time, we only use |S |; the expression #S usually suggests that it is a random variable.) For sets X ,
Y , elements x ∈ X , y ∈ Y , and a subset A ⊆ X × Y , we use the following notation:

Ax B {y ∈ Y : (x, y) ∈ A} and Ay B {x ∈ X : (x, y) ∈ A}.

Functions

We identify every function f with its graph, i.e., with the set {(x, y) : f (x) = y}. This enables the use of
set-theoretic notation, such as ∩, ⊆, etc., for functions. The symbol � denotes the empty function as well as
the empty set. For a function f and a set S ⊆ dom( f ), we use f |S to denote the restriction of f to S.

For sets X and Y , the set of all functions f : X → Y is denoted by YX . We write f : X ⇀ Y to indicate
that f is a partial function from X to Y , i.e., a function of the form f : X ′→ Y with X ′ ⊆ X . The expression
[X → Y ]<∞ denotes the set of all partial maps f : X ⇀ Y with dom( f ) ∈ [X]<∞.

Graphs

Unless explicitly stated otherwise, by a graph we mean an undirected simple graph. Amultigraph is allowed
to have parallel edges but not loops. Directed graphs are referred to as digraphs and may or may not contain
parallel edges depending on the context. In Part I, all graphs are additionally assumed to be finite.

For a graph G, its vertex and edge sets are denoted by V(G) and E(G) respectively. For a subset
U ⊆ V(G), Uc B V(G) \U denotes the complement of U and G[U] is the subgraph of G induced by U. Let
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G −U B G[Uc]. For u ∈ V(G), let G − u B G − {u}. For a pair of subsets U1, U2 ⊆ V(G), EG(U1,U2) is
the set of all edges of G with one endpoint in U1 and the other one in U2, and G[U1,U2] is the subgraph of G

with vertex set U1 ∪U2 and edge set EG(U1,U2).
For u ∈ V(G), NG(u) denotes the set of all neighbors of u in G, and degG(u) B |NG(u)| is the degree of

u in G. Let NG[u] B NG(u) ∪ {u} denote the closed neighborhood of u. For r ∈ N, Nr
G(u) (resp. Nr

G[u])
denotes the set of all vertices whose distance from u is in {1, . . . , r} (resp. {0, 1, . . . , r}). For a subset
U ⊆ V(G), let NG(U) B

⋃
u∈U NG(u) and NG[U] B

⋃
u∈U NG[u]. The sets Nr

G(U) and Nr
G[U] are defined

similarly. We use ∆(G) and δ(G) to denote the maximum and the minimum degree of G, respectively.
Similarly to the above, if D is a digraph and u ∈ V(D), then we write

N+D(u) B {v ∈ V(D) : uv ∈ E(D)} and N−D(u) B {v ∈ V(D) : vu ∈ E(D)}

for the out- and the in-neighborhood of u respectively, and all the other expressions such as N+D[u], deg−D(u),
∆+(D), N+D(U) for U ⊆ V(D), etc. are defined accordingly.

Multigraphs

Let G be a multigraph. For vertices u, v ∈ V(G), we write eG(u, v) B |EG(u, v)| to indicate the number of
edges joining u and v. The degree of a vertex u ∈ V(G) is defined to be degG(u) B

∑
v∈V (G) eG(u, v).

Maximum average degree and degeneracy

A graph G is d-degenerate if δ(H) 6 d for every nonempty subgraph H of G. A digraph D is acyclic if it
does not contain a directed cycle. A finite graph G is d-degenerate if and only if there is an acyclic orientation
D of G with ∆+(D) 6 d. The maximum average degree of a finite graph G is defined by

mad(G) B max
H

2|E(H)|
|V(H)|

,

where the maximum is taken over all nonempty subgraphs H of G. If mad(G) 6 d, then G is d-degenerate.
On the other hand, if G is d-degenerate, then mad(G) 6 2d.

Independent sets and colorings

Let G be a graph. A set I ⊆ V(G) is independent if I ∩ NG(I) = �, i.e., if there are no u, v ∈ I with
uv ∈ E(G). A proper (vertex) coloring of G if a function f : V(G) → C, where C is a set whose elements
are referred to as colors, such that f (u) , f (v) for all uv ∈ E(G), i.e., the preimage of every color is an
independent set. The smallest cardinality of a set C such that there is a proper coloring f : V(G) → C is
called the chromatic number of G and is denoted by χ(G).

Similarly, a proper edge coloring of G is a function f : E(G) → C such that f (e) , f (h) whenever e,
h ∈ E(G) are two adjacent edges (we say that two edges in a graph are adjacent if they share an endpoint).
The smallest cardinality of a set C such that there is a proper edge coloring f : E(G) → C is called the
chromatic index of G and is denoted by χ′(G).
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Cycles

Let G be a graph. The girth g(G) of G is the length of the shortest cycle in G (if G is acyclic, then g(G) = +∞).
Depending on the context, we think of a cycle in G as either a subgraph of G, a set (or a sequence) of edges,
or a set (or a sequence) of vertices.

Special graphs

The complete graph on n vertices in denoted by Kn. The complete bipartite graph with parts of size n and m

is denoted by Kn,m. The cycle on n vertices is denoted by Cn.

Sums of graphs

If G1, . . . , Gk are graphs, then G1 + · · · + Gk is the graph with vertex set V(G1) ∪ . . . ∪ V(Gk) and edge set
E(G1) ∪ . . . ∪ E(Gk).

Blocks

A cut vertex in a connected graph G is a vertex u ∈ V(G) such that the graph G − u has at least two vertices
and is disconnected. We say that a connected graph G is 2-connected if |V(G)| > 3 and G has no cut vertices.
A block in a graph G is a maximal connected subgraph H of G that has no cut vertices. A block H in G is a
leaf block if V(H) contains at most one cut vertex of G.

Probability

We write P[A] to denote the probability of a random event A, and E[ξ] to denote the expectation of a random
variable ξ. If A and B are random events (in the same probability space), then P[A|B] denotes the conditional
probability of A given B. We adopt the convention that P[A|B] = 0 whenever P[B] = 0 (note that this way
the equality P[A ∧ B] = P[A|B] · P[B] is preserved).

Standard Borel spaces

Our references for descriptive set theory are [Kec95] and [Tse16].
A separable topological space is called Polish if its topology is induced by a complete metric. A standard

Borel space is a set X equipped with a σ-algebra B of Borel sets such that there is a Polish topology τ
on X whose Borel σ-algebra is B. Due to the Borel isomorphism theorem [Tse16, Theorem 13.10], all
countable standard Borel spaces are discrete and all uncountable ones are isomorphic to each other. A function
f : X → Y between standard Borel spaces is Borel if f -preimages of Borel subsets of Y are Borel in X .

A subset A of a standard Borel space X is analytic if it is the image of a Borel set under a Borel function.
Somewhat informally, a set is analytic if it can be defined using existential (but not universal) quantifiers
ranging over Borel sets. The complement of an analytic set is said to be co-analytic. If a set is both analytic
and co-analytic, then it is Borel [Tse16, Corollary 12.7].

The following fundamental result will be used without mention:
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Theorem (Luzin–Novikov theorem; [Kec95, Theorem 18.10]). Let X and Y be standard Borel spaces and
let A ⊆ X × Y be a Borel set such that for all x ∈ X , the set Ax is countable. Then A can be written as a
countable union A =

⋃∞
n=0 An, where the sets (An)

∞
n=0 are pairwise disjoint and for each n ∈ N and x ∈ X ,

|(An)x | 6 1. In particular, the set projX(A) B {x ∈ X : Ax , �} is Borel.

Informally, the Luzin–Novikov theorem implies that if a set is defined only using quantifiers ranging over
countable sets, then it is Borel.

Spaces of finite sets

If X is a standard Borel space, then [X]<∞ is also naturally equipped with a standard Borel structure. For
any standard Borel space X , there exists a Borel map f : [X]<∞ \ {�} → X such that f (S) ∈ S for all
S ∈ [X]<∞ \ {�}; for example, if < is a Borel linear ordering of X (which exists as X is Borel isomorphic to
R), then the function S 7→ min< S is Borel. If X and Y are standard Borel spaces, then [X → Y ]<∞ is also a
standard Borel space, which can be identified with a Borel subset of [X × Y ]<∞.

Measures

We use Prob(X) to denote the set of all probability Borel measures on a standard Borel space X . If
µ ∈ Prob(X), then the pair (X, µ) is called a standard probability space. A measure µ ∈ Prob(X) is
atomless if µ({x}) = 0 for all x ∈ X . The measure isomorphism theorem [Tse16, Theorem 10.6] asserts
that all atomless standard probability spaces (X, µ) are Borel isomorphic to each other.

If X is a standard Borel space and X ′ ⊆ X is a Borel set, then we identify Prob(X ′) with a subset
of Prob(X) in the natural way. In particular, given µ ∈ Prob(X ′), we also use µ to denote the extension of µ
to X (i.e., the pushforward ι∗(µ) of µ under the inclusion map ι : X ′→ X). Similarly, if µ ∈ Prob(X) and X ′

is µ-conull, then we use µ to denote the restriction of µ to X ′.
Analytic subsets of a standard Borel space X are universally measurable, i.e., µ-measurable for every

µ ∈ Prob(X) [Tse16, Corollary 14.10].
The Lebesgue probability measure on the unit interval [0; 1] is denoted by λ.

Group actions

Let Γ be a countable group. The identity element of Γ is denoted by 1Γ, or, if Γ is understood, simply by
1. All group actions, unless explicitly stated otherwise, are from the left. An action Γ y X is free if the
stabilizer of every point x ∈ X is trivial:

γ · x = x =⇒ γ = 1 for all γ ∈ Γ and x ∈ X .

Let α : Γy X and β : Γy Y be actions of Γ. A map π : X → Y is equivariant if it intertwines the actions,
i.e., if γ · π(x) = π(γ · x) for all γ ∈ Γ and x ∈ X .
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Measure-preserving actions

A probability measure-preserving (p.m.p.) action of a countable group Γ is an action of the form
α : Γ y (X, µ), where (X, µ) is a standard probability space and the measure µ is α-invariant. For p.m.p.
actions, we use the word “free” to mean “free almost everywhere.” In other words, we call a p.m.p. action
α : Γy (X, µ) free if

µ({x ∈ X : γ · x , x for all 1 , γ ∈ Γ}) = 1.

Shift actions

Let Γ be a countable group and let A be a set. The shift action σA : Γy AΓ is defined via

(γ · x)(δ) B x(δγ) for all γ, δ ∈ Γ and x ∈ AΓ .

Occasionally, we will also have to consider the right shift action AΓ x Γ, defined similarly by

(x · γ)(δ) B x(γδ) for all γ, δ ∈ Γ and x ∈ AΓ .

Whenever we refer to the shift action, for instance when talking about shift-invariant sets, the left shift action
must be understood, unless explicitly stated otherwise. If A is a topological space, then the shift actions
Γy AΓ and AΓ x Γ are continuous with respect to the product topology on AΓ.

The shift action Γy AΓ naturally extends to an action Γy [Γ→ A]<∞. Namely, for all w ∈ [Γ→ A]<∞

and γ ∈ Γ, let

dom(γ · w) B dom(w)γ−1 and (γ · w)(δ) B w(δγ) for all δ ∈ dom(γ · w).

The right shift action [Γ→ A]<∞ x Γ is defined similarly in the obvious way.

Equivalence relations

We identify an equivalence relation E on set X with the set of pairs {(x, y) : x E y}. In particular, if X is
a standard Borel space, then E is Borel if it is a Borel subset of X × X . We use X/E to denote the set of
all E-classes. A set X ′ ⊆ X is E-invariant if it is a union of E-classes; i.e., for all x ∈ X ′ and y ∈ X with
x E y, we have y ∈ X ′. For S ⊆ X , we use [S]E to denote the E-saturation of S, i.e., the smallest E-invariant
subset of X that contains S. For brevity, given x ∈ X , we write [x]E instead of [{x}]E .

We say that an equivalence relation E is countable if every E-class is countable. It follows from the
Luzin–Novikov theorem that if E is a countable Borel equivalence relation on a standard Borel space X , then
the E-saturation of every Borel subset of X is Borel.
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Part I

The finite
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1 | The Local Cut Lemma

1.1 Introduction

One of the most useful tools in probabilistic combinatorics is the so-called Lovász Local Lemma (the LLL
for short), which was proved by Erdős and Lovász in their seminal paper [EL75]. Roughly speaking, the
LLL asserts that, given a family B of random events whose individual probabilities are small and whose
dependency is somehow limited, there is a positive probability that none of the events in B happen. More
precisely:

Theorem 1.1.1 (Lovász Local Lemma, [AS00, Lemma 5.1.1]). Let B1, . . . , Bn be random events in a
probability space Ω. For each 1 6 i 6 n, let Γ(i) be a subset of {1, . . . , n} \ {i} such that the event Bi is
independent from the algebra generated by {Bj : j < Γ(i) ∪ {i}}. Suppose that there exists a function
µ : {1, . . . , n} → [0; 1) such that for every 1 6 i 6 n,

P[Bi] 6 µ(i)
∏
j∈Γ(i)

(1 − µ( j)).

Then

P

[
n∧
i=1
¬Bi

]
>

n∏
i=1
(1 − µ(i)) > 0.

Note that the probability P [
∧

i∈I ¬Bi], which the LLL bounds from below, is usually exponentially small
(in the parameter n). This contrasts with the more common situation when the probability of interest is not
only positive, but separated from zero. Although this property of the LLL makes it an indispensable tool in
proving combinatorial existence results, it also makes these results seemingly nonconstructive, since sampling
the probability space to find an object with the desired properties would usually take an exponentially long
expected time. A major breakthrough was made by Moser and Tardos [MT10], who showed that, in a special
framework for the LLL called the variable version (the name is due to Kolipaka and Szegedy [KS11]), there
exists a simple Las Vegas algorithm with expected polynomial runtime that searches the probability space for
a point which avoids all the events in B. Their algorithm was subsequently refined and extended to other
situations by several authors; see, e.g., [Peg14; KS11; AI14; CGH13].

This chapter is based on [Ber16b; Ber17c].
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The key ingredient of Moser and Tardos’s proof is the so-called entropy compression method (the name
is due to Tao [Tao09]). The idea of this method is to encode the execution process of the algorithm in such a
way that the original sequence of random inputs can be uniquely recovered from the resulting encoding. One
then proceeds to show that if the algorithm runs for too long, the space of possible codes becomes smaller
than the space of inputs, which leads to a contradiction.

Later it was discovered that applying the entropy compression method directly to a specific problem can
lead to better results than simply using the LLL. This approach, first introduced by Grytczuk, Kozik, and
Micek in their study of nonrepetitive sequences [GKM13], consists in constructing a randomized procedure
that solves a given combinatorial problem and then using an entropy compression argument to show that the
procedure runs in expected finite time. A wealth of new results have been obtained using this paradigm; see,
e.g., [Duj+15; EP13; GMP14]. Some of these examples are discussed in more detail in §1.3.

Note that the entropy compression method is indeed a “method” that one can use to attack a problem
rather than a general theorem that contains various combinatorial results as its special cases. It is natural to ask
if such a theorem exists, i.e., if there is a generalization of the LLL that implies the new combinatorial results
obtained using the entropy compression method. The goal of this chapter is to describe such a generalization,
which we call the Local Cut Lemma (the LCL for short). It is important to note that this result is purely
probabilistic and similar to the LLL in flavor. In particular, its short and simple probabilistic proof does not
use the entropy compression method. Instead, it estimates certain probabilities explicitly, in much the same
way as the original (nonconstructive) proof of the LLL does. We state and prove the LCL in §1.2. In §1.3 we
introduce a simplified special case of the LCL (namely Theorem 1.3.1), which turns out to be sufficient for
most applications. In fact, Theorem 1.3.1 already implies the classical LLL, as we show in §1.4. In §1.5 we
discuss one simple example (hypergraph coloring) which provides the intuition behind the LCL and serves
as a model for the more substantial applications described later. In §1.6 we show how to use the LCL to
prove upper bounds on the nonrepetitive chromatic number that were previously obtained using the entropy
compression method. In §1.7 we present an improved lower bound on the number of edges in color-critical
hypergraphs that was first derived using the LCL. In §1.8 we discuss a curious probabilistic corollary of the
LCL. Finally, we present some applications of the LCL to the acyclic edge coloring problem in §1.9.

1.2 The Local Cut Lemma: statement and proof

1.2.1 Statement of the LCL

To state the main result of this chapter, we need to fix some notation and terminology. In what follows, a
digraph always means a finite directed multigraph. Let D be a digraph with vertex set V and edge set E . For
x, y ∈ V , let E(x, y) ⊆ E denote the set of all edges with tail x and head y.

A digraph D is simple if for all x, y ∈ V , |E(x, y)| 6 1. If D is simple and |E(x, y)| = 1, then the unique
edge with tail x and head y is denoted by xy (or sometimes (x, y)). For an arbitrary digraph D, let Ds denote
its underlying simple digraph, i.e., the simple digraph with vertex set V in which xy is an edge if and only
if E(x, y) , �. The edge set of Ds is denoted by E s. For a subset F ⊆ E , let Fs ⊆ E s be the set of all edges
xy ∈ E s such that F ∩ E(x, y) , �. A set A ⊆ V is out-closed if for all xy ∈ E s, x ∈ A implies y ∈ A.
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Definition 1.2.1. Let D be a digraph with vertex set V and edge set E and let A ⊆ V be an out-closed set of
vertices. A set F ⊆ E of edges is an A-cut if if F contains at least one edge e ∈ E(x, y) for each xy ∈ E s

such that x < A and y ∈ A (see Fig. 5).

x0

x1 x2 x3

x4 x5 x6

x7

e1
e2

e3

e4
e5

e6

Figure 5 – A digraph D with an out-closed set A = {x0, x1, x2, x4}. Any A-cut must contain the edges
{e2, e5, e6} and at least one of {e3, e4}. For example, the set F = {e1, e2, e4, e5, e6} consisting of the dashed

edges forms an A-cut.

We say that a vertex z ∈ V is reachable from x ∈ V if D (or, equivalently, Ds) contains a directed xz-path.
The set of all vertices reachable from x is denoted by RD(x).

Definition 1.2.2. Let D be a digraph with vertex set V and edge set E . For a function ω : E s → [1;+∞) and
vertices x ∈ V and z ∈ RD(x), define

ω(x, z) B min

{
k∏
i=1

ω(zi−1zi) : x = z0 → z1 → . . .→ zk = z is a directed xz-path

}
.

Definition 1.2.3. Let D be a digraph with vertex set V and edge set E . Let Ω be a probability space and let
A : Ω→ Pow(V) and F : Ω→ Pow(E) be random variables such that with probability 1, A is an out-closed
set of vertices and F is an A-cut. Fix a function ω : E s → [1;+∞). For xy ∈ E s, e ∈ E(x, y), and z ∈ RD(y),
let

ρA,Fω (e, z) B P[e ∈ F |z ∈ A] · ω(x, z).

For e ∈ E(x, y), define the risk to e as

ρA,Fω (e) B min
z∈RD (y)

ρA,Fω (e, z).

We are now ready to state the main result of this chapter.

Theorem 1.2.4 (Local Cut Lemma). Let D be a digraph with vertex set V and edge set E . Let Ω be
a probability space and let A : Ω → Pow(V) and F : Ω → Pow(E) be random variables such that with
probability 1, A is an out-closed set of vertices and F is an A-cut. If a function ω : E s → [1;+∞) satisfies the
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following inequality for all xy ∈ E s:

ω(xy) > 1 +
∑

e∈E(x,y)

ρA,Fω (e), (1.2.1)

then for all xy ∈ E s,
P[y ∈ A] 6 P[x ∈ A] · ω(xy).

The following immediate corollary is the main tool used in combinatorial applications of Theorem 1.2.4:

Corollary 1.2.5. Let D, A, F,ω be as in Theorem 1.2.4. Let x ∈ V , z ∈ RD(x), and suppose thatP[z ∈ A] > 0.
Then

P[x ∈ A] >
P[z ∈ A]
ω(x, z)

> 0.

1.2.2 Proof of the LCL

In this section we prove Theorem 1.2.4. Let D, A, F be as in the statement of Theorem 1.2.4 and assume that
a function ω : E s → [1;+∞) satisfies

ω(xy) > 1 +
∑

e∈E(x,y)

ρA,Fω (e) (1.2.1)

for all xy ∈ E s. For each υ : E s → [1;+∞), let f (υ) : E s → [1;+∞) be defined by

f (υ)(xy) B 1 +
∑

e∈E(x,y)

ρA,Fυ (e).

Also, let f (0) B 1, where 0 and 1 denote the constant 0 and 1 functions respectively. Then (1.2.1) is
equivalent to

ω(xy) > f (ω)(xy). (1.2.2)

Note that the map f is monotone increasing, i.e., if υ(xy) 6 υ′(xy) for all xy ∈ E s, then f (υ)(xy) 6 f (υ′)(xy)

for all xy ∈ E s as well.
Let ω0 B 0 and let ωn+1 B f (ωn) for all n ∈ N. To simplify the notation, let ρn B ρA,Fωn

.

Claim 1.2.6. For all n ∈ N and xy ∈ E s,

ωn(xy) 6 ωn+1(xy). (1.2.3)

Proof. Induction on n. If n = 0, then (1.2.3) asserts that 0 6 1. Now suppose that (1.2.3) holds for some
n ∈ N. Then we have

ωn+1(xy) = f (ωn)(xy) 6 f (ωn+1)(xy) = ωn+2(xy),

as desired. �
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Claim 1.2.7. For all n ∈ N and xy ∈ E s,

ωn(xy) 6 ω(xy). (1.2.4)

Proof. Proof is again by induction on n. If n = 0, then (1.2.4) says that 0 6 ω(xy). Now suppose that (1.2.4)
holds for some n ∈ N. Then, using (1.2.2), we get

ωn+1(xy) = f (ωn)(xy) 6 f (ω)(xy) 6 ω(xy),

as desired. �

Since the sequence {ωn(xy)}∞n=0 is monotone increasing and bounded by ω(xy), it has a limit, so let

ω∞(xy) B lim
n→∞

ωn(xy).

We still have ω∞(xy) 6 ω(xy) for all xy ∈ E s, so it is enough to prove that for all xy ∈ E s,

P[y ∈ A] 6 P[x ∈ A] · ω∞(xy). (1.2.5)

We will derive (1.2.5) from the following lemma.

Lemma 1.2.8. For every n ∈ N and xy ∈ E s,

P[y ∈ A] 6 P[x ∈ A] · ωn(xy) + ωn+1(xy) − ωn(xy). (1.2.6)

If Lemma 1.2.8 holds, then we are done, since it implies that

P[y ∈ A] 6 lim
n→∞
(P[x ∈ A] · ωn(xy) + ωn+1(xy) − ωn(xy)) = P[x ∈ A] · ω∞(xy),

as desired.
To establish Lemma 1.2.8, we need the following claim.

Claim 1.2.9. Let n ∈ N and suppose that for all xy ∈ E s, (1.2.6) holds. Then for all x ∈ V and z ∈ RD(x),

P[z ∈ A] 6 P[x ∈ A] · ωn(x, z) + ωn+1(x, z) − ωn(x, z). (1.2.7)

The proof of Claim 1.2.9 uses the following simple algebraic inequality.

Claim 1.2.10. Let a1, . . . , ak , b1, . . . , bk be nonnegative real numbers with bi > max{ai, 1} for all 1 6 i 6 k.
Then

k∑
i=1

©«
i−1∏
j=1

aj
ª®¬ (bi − ai) 6

k∏
i=1

bi −
k∏
i=1

ai . (1.2.8)

Proof. Proof is by induction on k. If k = 1, then both sides of (1.2.8) are equal to b1 − a1. If the claim is
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established for some k, then for k + 1 we get

k+1∑
i=1

©«
i−1∏
j=1

aj
ª®¬ (bi − ai) =

k∑
i=1

©«
i−1∏
j=1

aj
ª®¬ (bi − ai) +

(
k∏
i=1

ai

)
bk+1 −

k+1∏
i=1

ai

6
k∏
i=1

bi −
k∏
i=1

ai +

(
k∏
i=1

ai

)
bk+1 −

k+1∏
i=1

ai

=

k+1∏
i=1

bi −
k+1∏
i=1

ai −

(
k∏
i=1

bi −
k∏
i=1

ai

)
(bk+1 − 1)

6
k+1∏
i=1

bi −
k+1∏
i=1

ai,

as desired. �

Proof of Claim 1.2.9. Let x = z0 → z1 → . . .→ zk = z be some directed xz-path in Ds. For 1 6 i 6 k, let

ai B ωn(zk−izk−i+1) and bi B ωn+1(zk−izk−i+1).

Note that bi > max{ai, 1}. Due to (1.2.6), we have

P[z ∈ A] 6 P[zk−1 ∈ A] · a1 + b1 − a1.

Similarly,
P[zk−1 ∈ A] 6 P[zk−2 ∈ A] · a2 + b2 − a2,

so
P[z ∈ A] 6 P[zk−2 ∈ A] · a1a2 + b1 − a1 + a1(b2 − a2).

Continuing such substitutions, we finally obtain

P[z ∈ A] 6 P[x ∈ A] ·
k∏
i=1

ai +
k∑
i=1

©«
i−1∏
j=1

aj
ª®¬ (bi − ai).

Using Claim 1.2.10, we get

P[z ∈ A] 6 P[x ∈ A] ·
k∏
i=1

ai +
k∏
i=1

bi −
k∏
i=1

ai .

Note that
k∏
i=1

ai =
k∏
i=1

ωn(zi−1zi) > ωn(x, z).
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Since P[x ∈ A] 6 1, this implies

P[z ∈ A] 6 P[x ∈ A] · ωn(x, z) +
k∏
i=1

bi − ωn(x, z). (1.2.9)

It remains to observe that inequality (1.2.9) holds for all directed xz-paths, so we can replace
∏k

i=1 bi by
ωn+1(x, z), obtaining

P[z ∈ A] 6 P[x ∈ A] · ωn(x, z) + ωn+1(x, z) − ωn(x, z),

as desired. �

Proof of Lemma 1.2.8. Induction on n. For n = 0, the lemma asserts that P[y ∈ A] 6 1. Now assume that
(1.2.6) holds for some n ∈ N and consider an edge xy ∈ E s. Since A is out-closed, x ∈ A implies y ∈ A, so

P[y ∈ A] = P[x ∈ A] + P[x < A and y ∈ A].

Since F is an A-cut, it contains at least one edge e ∈ E(x, y) whenever x < A and y ∈ A. Using the union
bound, we obtain

P[x < A and y ∈ A] 6
∑

e∈E(x,y)

P[e ∈ F and y ∈ A].

Thus,
P[y ∈ A] 6 P[x ∈ A] +

∑
e∈E(x,y)

P[e ∈ F and y ∈ A]. (1.2.10)

Let us now estimate P[e ∈ F and y ∈ A] for each e ∈ E(x, y). Consider any z ∈ RD(y). Since A is out-closed,
y ∈ A implies z ∈ A, so

P[e ∈ F and y ∈ A] 6 P[e ∈ F and z ∈ A] = P[e ∈ F |z ∈ A] · P[z ∈ A].

Due to Claim 1.2.9,
P [z ∈ A] 6 P[x ∈ A] · ωn (x, z) + ωn+1 (x, z) − ωn (x, z) ,

so

P[e ∈ F and y ∈ A] 6 P [e ∈ F |z ∈ A] ·
(
P[x ∈ A] · ωn (x, z) + ωn+1 (x, z) − ωn (x, z)

)
= P[x ∈ A] · ρn(e, z) + ρn+1(e, z) − ρn(e, z).

Since P[x ∈ A] 6 1 and ρn(e, z) > ρn(e), we get

P[e ∈ F and y ∈ A] 6 P[x ∈ A] · ρn(e) + ρn+1(e, z) − ρn(e).

The last inequality holds for every z ∈ RD(y), so we can replace ρn+1(e, z) by ρn+1(e), obtaining

P[e ∈ F and y ∈ A] 6 P[x ∈ A] · ρn(e) + ρn+1(e) − ρn(e). (1.2.11)
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Plugging (1.2.11) into (1.2.10), we get

P[y ∈ A] 6 P[x ∈ A] +
∑

e∈E(x,y)

(P[x ∈ A] · ρn(e) + ρn+1(e) − ρn(e)) .

The right-hand side of the last inequality can be rewritten as

P[x ∈ A] · ©«1 +
∑

e∈E(x,y)

ρn(e)
ª®¬ +

∑
e∈E(x,y)

ρn+1(e) −
∑

e∈E(x,y)

ρn(e)

=P[x ∈ A] · f (ωn)(xy) + f (ωn+1)(xy) − f (ωn)(xy)

=P[x ∈ A] · ωn+1(xy) + ωn+2(xy) − ωn+1(xy),

as desired. �

1.3 A special version of the LCL

In this section we introduce a particular and perhaps more intuitive set-up for the LCL that will be sufficient
for almost all applications discussed later.

Let I be a finite set. A family A ∈ Pow(Pow(I)) of subsets of I is downwards-closed if for each S ∈ A,
Pow(S) ⊆ A. The boundary ∂A of a downwards-closed family is defined to be

∂A B {i ∈ I : S ∈ A and S ∪ {i} < A for some S ⊆ I \ {i}}.

Suppose that Ω is a probability space and A : Ω → Pow(Pow(I)) is a random variable such that A is
downwards-closed with probability 1. Let B be a random event and let τ : I → [1;+∞) be a function. For a
subset X ⊆ I, let

τ(X) B
∏
i∈X

τ(i),

and
σA
τ (B, X) B max

Z⊆I\X
P[B|Z ∈ A] · τ(X).

Finally, for an element i ∈ I, let
σA
τ (B, i) B min

i∈X⊆I
σA
τ (B, X).

Theorem 1.3.1. Let I be a finite set. Let Ω be a probability space and let A : Ω→ Pow(Pow(I)) be a random
variable such that with probability 1, A is a nonempty downwards-closed family of subsets of I. For each
i ∈ I, let B(i) be a finite collection of random events such that whenever i ∈ ∂A, at least one of the events in
B(i) holds. Suppose that there is a function τ : I → [1;+∞) such that for all i ∈ I, we have

τ(i) > 1 +
∑

B∈B(i)

σA
τ (B, i). (1.3.1)

Then P[I ∈ A] > 1/τ(I) > 0.
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Proof. For convenience, we may assume that for each i ∈ I, the set B(i) is nonempty (we can arrange that by
adding the empty event to each B(i)). Let D be the digraph with vertex set Pow(I) and edge set

E B {ei,S,B : i ∈ I, S ⊆ I \ {i}, B ∈ B(i)},

where the edge ei,S,B goes from S ∪ {i} to S. Thus, we have

E s = {(S ∪ {i}, S) : i ∈ I, S ⊆ I \ {i}},

which implies that for S, Z ⊆ I,
Z ∈ RD(S) ⇐⇒ Z ⊆ S.

Moreover, if Z ⊆ S ⊆ I, then all directed (S, Z)-paths have length exactly |S \ Z |.
Since A is downwards-closed, it is out-closed in D. Let F : Ω → Pow(E) be the random set of edges

defined by
ei,S,B ∈ F ⇐⇒ B holds.

We claim that F is an A-cut. Indeed, consider any edge (S ∪ {i}, S) ∈ E s and suppose that we have
S ∪ {i} < A and S ∈ A. By definition, this means that i ∈ ∂A, so at least one event B ∈ B(i) holds. But then
ei,S,B ∈ F ∩ E(S ∪ {i}, S), as desired.

Let τ : I → [1;+∞) be a function satisfying (1.3.1) and letω : E s → [1;+∞) be given byω((S∪{i}, S)) B
τ(i). Note that for any Z ⊆ S ⊆ I, we have ω(S, Z) = τ(S \ Z).

Claim (A). Let i ∈ I, S ⊆ I \ {i}, and B ∈ B(i). Then

ρA,Fω (ei,S,B) 6 σ
A
τ (B, i).

Proof. Let X be a set with i ∈ X ⊆ I such that σA
τ (B, i) = σ

A
τ (B, X) and let Z B S \ X . We have

ρA,Fω (ei,S,B) 6 ρ
A,F
ω (ei,S,B, Z) = P[ei,S,B ∈ F |Z ∈ A] · ω(S ∪ {i}, Z)

= P[B|Z ∈ A] · τ((S ∪ {i}) \ Z).

Since (S ∪ {i}) \ Z ⊆ X and τ takes values in [1;+∞), we have τ((S ∪ {i}) \ Z) 6 τ(X), so

P[B|Z ∈ A] · τ((S ∪ {i}) \ Z) 6 P[B|Z ∈ A] · τ(X) 6 σA
τ (B, X) = σA

τ (B, i). a

Let (S ∪ {i}, S) ∈ E s. Using (1.3.1) and Claim (A), we obtain

ω((S ∪ {i}, S)) = τ(i) > 1 +
∑

B∈B(i)

σA
τ (B, i)

> 1 +
∑

B∈B(i)

ρA,Fω (ei,S,B) = 1 +
∑

e∈E(S∪{i },S)

ρA,Fω (e),
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i.e., ω satisfies (1.2.1). Thus, by Corollary 1.2.5,

P[I ∈ A] >
P[� ∈ A]
ω(I,�)

=
1
τ(I)

> 0,

as desired. (Here we are using that P[� ∈ A] = 1, which follows from the fact that with probability 1, A is
nonempty and downwards-closed.) �

1.4 The LCL implies the Lopsided LLL

In this section we use the LCL to prove the Lopsided LLL, which is a strengthening of the standard LLL.

Theorem 1.4.1 (Lopsided Lovász Local Lemma [ES91]). Let B1, . . . , Bn be random events in a probability
spaceΩ. For each 1 6 i 6 n, let Γ(i) be a subset of {1, . . . , n}\{i} such that for all Z ⊆ {1, . . . , n}\(Γ(i)∪{i}),
we have

P

[
Bi

�����∧
j∈Z

¬Bj

]
6 P[Bi]. (1.4.1)

Suppose that there exists a function µ : {1, . . . , n} → [0; 1) such that for every 1 6 i 6 n,

P[Bi] 6 µ(i)
∏
j∈Γ(i)

(1 − µ( j)). (1.4.2)

Then

P

[
n∧
i=1
¬Bi

]
>

n∏
i=1
(1 − µ(i)) > 0.

Proof. We will use Theorem 1.3.1. Set I B {1, . . . , n} and let I0 : Ω → Pow(I) and I1 : Ω → Pow(I) be
random variables defined by

I1 B {i ∈ I : Bi holds} and I0 B I \ I1.

Set A B Pow(I0). In other words, a set S ⊆ I belongs A if and only if
∧

i∈S ¬Bi holds. It follows that A

is a nonempty downwards-closed family of subsets of I and ∂A = I1 (i.e., i ∈ ∂A if and only if Bi holds).
Therefore, we can apply Theorem 1.3.1 with B(i) B {Bi} for each i ∈ I.

By (1.4.1), if i ∈ I and Z ⊆ I \ (Γ(i) ∪ {i}), then

P[Bi |Z ∈ A] = P

[
Bi

�����∧
j∈Z

¬Bj

]
6 P[Bi].

Thus, for any i ∈ I and τ : I → [1;+∞), we have

σA
τ (Bi, i) 6 σA

τ (Bi, Γ(i) ∪ {i}) = max
Z⊆I\(Γ(i)∪{i })

P[Bi |Z ∈ A] · τ(Γ(i) ∪ {i}) 6 P[Bi] · τ(Γ(i) ∪ {i}).
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Therefore, (1.3.1) holds as long as for each i ∈ I, we have

τ(i) > 1 + P[Bi] · τ(Γ(i) ∪ {i}). (1.4.3)

Suppose that µ : I → [0; 1) satisfies (1.4.2). Then τ(i) B 1/(1 − µ(i)) satisfies (1.4.3). Indeed,

1 + P[Bi] · τ(Γ(i) ∪ {i}) = 1 + P[Bi] ·
∏

j∈Γ(i)∪{i }

τ( j)

= 1 +
P[Bi]∏

j∈Γ(i)∪{i }(1 − µ( j))

[by (1.4.2)] 6 1 +
µ(Bi)

∏
j∈Γ(i)(1 − µ( j))∏

j∈Γ(i)∪{i }(1 − µ( j))

= 1 +
µ(i)

1 − µ(i)
=

1
1 − µ(i)

= τ(i),

Theorem 1.3.1 now yields

P

[
n∧
i=1
¬Bi

]
= P[I ∈ A] >

1
τ(I)

=
1∏n

i=1 τ(i)
=

n∏
i=1
(1 − µ(i)),

as desired. �

The above derivation of the Lopsided LLL from Theorem 1.3.1 clarifies the precise relationship between
the two statements. Essentially, Theorem 1.3.1 reduces to the classical LLL under the following two main
assumptions: (1) the set A contains an inclusion-maximum element; and (2) each of the setsB(i) is a singleton,
containing only one “bad” event. Neither of these assumptions is satisfied in the applications discussed later,
where the LCL outperforms the LLL.

1.5 First example: hypergraph coloring

In this section we provide some intuition behind the LCL using a very basic example: coloring uniform
hypergraphs with 2 colors.

LetH be a d-regular k-uniform hypergraph with vertex set V and edge set E , and suppose we want to
establish a relation between d and k that guarantees thatH is 2-colorable. A straightforward application of
the LLL gives the bound

e
2k−1 ((d − 1)k + 1) 6 1,

which is equivalent to

d 6
2k−1

ek
+ 1 −

1
k
. (1.5.1)

Let us now explain how to apply the LCL (in the simplified form of Theorem 1.3.1) to this problem.
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Choose a coloring ϕ : V → 2 uniformly at random. Define A ⊆ Pow(V) by

A B {S ⊆ V : there is no ϕ-monochromatic edge h ⊆ S}.

Clearly, A is downwards-closed, and, since we always have � ∈ A, A is nonempty. Moreover, V ∈ A if and
only if ϕ is a proper coloring ofH . Therefore, if we can apply Theorem 1.3.1 to show that P[V ∈ A] > 0,
thenH is 2-colorable.

In order to apply Theorem 1.3.1, we have to specify, for each v ∈ V , a finite family B(v) of “bad” random
events such that whenever v ∈ ∂A, at least one of the events in B(v) holds. Notice that if v ∈ ∂A, i.e., for
some S ⊆ V \ {v}, we have S ∈ A and S ∪ {v} < A, then there must exist at least one ϕ-monochromatic edge
h 3 v. Thus, we can set

B(v) B {Bh : v ∈ h ∈ E},

where the event Bh happens is and only if h is ϕ-monochromatic. SinceH is d-regular, |B(v)| = d.
We will assume that τ(v) = τ ∈ [1;+∞) is a constant function. In that case, for any S ⊆ V , τ(S) = τ |S |.

Let v ∈ V and let h ∈ E be such that h 3 v. To verify (1.3.1), we require an upper bound on the quantity
σA
τ (Bh, v). By definition,

σA
τ (Bh, v) = min

v∈X⊆V
σA
τ (Bh, X),

so it is sufficient to upper bound σA
τ (Bh, X) for some set X 3 v. Since

σA
τ (Bh, X) = max

Z⊆V\X
P[Bh |Z ∈ A] · τ |X |,

we just need to find a set X 3 v such that the conditional probability P[Bh |Z ∈ A] for Z ⊆ V \ X is easy to
bound. Moreover, we would like |X | to be as small as possible (to minimize the factor τ |X |).

Since the colors of distinct vertices are independent, the events Bh and “Z ∈ A” are independent whenever
Z ∩ h = �. Therefore, for Z ⊆ V \ h,

P[Bh |Z ∈ A] 6 P[Bh] =
1

2k−1 . (1.5.2)

(The inequality might be strict if P[Z ∈ A] = 0, in which case P[Bh |Z ∈ A] = 0 as well.) Thus, it is natural to
take X = h, which gives

σA
τ (Bh, v) 6 σ

A
τ (Bh, h) = max

Z⊆V\h
P[Bh |Z ∈ A] · τ |h | 6

τk

2k−1 .

Hence it is enough to ensure that τ satisfies

τ > 1 +
dτk

2k−1 .
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A straightforward calculation shows that the following condition is sufficient:

d 6
2k−1

k

(
1 −

1
k

)k−1
, (1.5.3)

or, a bit more crudely,

d 6
2k−1

ek
, (1.5.4)

which is almost identical to (1.5.1). The precise bound (1.5.3) is, in fact, better than (1.5.1) for k > 10.
We can improve (1.5.4) slightly by estimating σA

τ (Bh, v)more carefully. Observe that the inequality (1.5.2)
holds even if |Z ∩ h| = 1 (because fixing the color of one of the vertices in h does not change the probability
that h is monochromatic). Therefore, upon choosing any vertex u ∈ h \ {v} and taking X = h \ {u}, we obtain

σA
τ (Bh, v) 6 σ

A
τ (Bh, h \ {u}) = max

Z⊆(V\h)∪{u }
P[Bh |Z ∈ A] · τ |h\{u } | 6

τk−1

2k−1 .

Thus, it is enough to ensure that

τ > 1 +
dτk−1

2k−1 ,

which can be satisfied as long as

d 6
2k−1

e(k − 1)
. (1.5.5)

The bound (1.5.5) is better than (1.5.4) by a quantity of order Ω
(
2k

/
k2) . This is, of course, not a significant

improvement (and the bound is still considerably weaker than the best known result due to Radhakrishnan
and Srinivasan [RS00], namely d 6 ε2k/

√
k log k for some constant ε > 0). However, the observation that

helped us improve (1.5.4) to (1.5.5) highlights one of the important strengths of the LCL. The fact that
P[Bh |Z ∈ A] 6 1/2k−1 for all Z such that |Z ∩ h| 6 1 (and not only when Z ∩ h = �) contains information
beyond the individual probabilities of “bad” events and their dependencies, and the LCL has a mechanism for
putting that additional information to use. Similar ideas will reappear several times in later applications.

1.6 Nonrepetitive sequences and nonrepetitive colorings

A finite sequence a1a2 . . . an is nonrepetitive if it does not contain the same nonempty substring twice in
a row, i.e., if there are no s, 1 6 s 6 n − 1, and t, 1 6 t 6 b(n − s + 1)/2c, such that ak = ak+t for all
s 6 k 6 s + t − 1. A well-known result by Thue [Thu06] asserts that there exist arbitrarily long nonrepetitive
sequences of elements from {0, 1, 2}. The next theorem is a choosability version of Thue’s result. It was the
first example of a new combinatorial bound obtained using the entropy compression method that surpasses
the analogous bound provided by a direct application of the LLL.

Theorem 1.6.1 (Grytczuk–Przybyło–Zhu [GPZ11]; Grytczuk–Kozik–Micek [GKM13]). Let L1, L2, . . . , Ln

be a sequence of sets with |Li | > 4 for all 1 6 i 6 n. Then there exists a nonrepetitive sequence a1a2 . . . an
such that ai ∈ Li for all 1 6 i 6 n.
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Note that it is an open problem whether the same result holds for |Li | > 3.

Proof. This is the only example in this chapter where the LCL is applied directly, without reducing it to
Theorem 1.3.1. Let P be the directed path of length n with vertex set V B {v1, . . . , vn} and with edges of
the form (vi+1, vi) for all 1 6 i 6 n − 1. Choose a random sequence a1a2 . . . an by selecting each ai ∈ Li

uniformly and independently from each other. Define a set A ⊆ V as follows:

vi ∈ A ⇐⇒ a1a2 . . . ai is a nonrepetitive sequence.

Note that A is out-closed, P[v1 ∈ A] = 1, and vn ∈ A if and only if a1a2 . . . an is a nonrepetitive sequence.
Consider an edge (vi+1, vi) of P. If vi ∈ A but vi+1 < A, then there exist s and t such that

s + 2t − 1 = i + 1

and ak = ak+t for all s 6 k 6 s + t − 1 (i.e., asas+1 . . . ai+1 is a repetition). This observation motivates the
following construction. Let D be the digraph such that Ds = P, and for each (vi+1, vi) ∈ E(P) and s, t with
s + 2t − 1 = i + 1, there is a corresponding edge es,t ∈ E(D) going from vi+1 to vi. Let

es,t ∈ F ⇐⇒ ak = ak+t for all s 6 k 6 s + t − 1.

Then F is an A-cut (see Fig. 6). Note that for each fixed t > 1, there exists at most one s such that
s + 2t − 1 = i + 1, so there is at most one edge of the form es,t ∈ E(vi+1, vi), where E is the edge set of D.

a b a b c c a

v1 v2 v3 v4 v5 v6 v7e1,1 e2,1
e3,1

e1,2

e4,1

e2,2

e5,1

e3,2

e1,3

e6,1

e4,2

e2,3

Figure 6 – For n = 7 and a sequence a1a2a3a4a5a6a7 = ababcca, we have A = {v1, v2, v3} (since the first
4 letters contain a repetition) and F = {e1,2, e5,1} (due to the repetitions ababababababcca and ababcccccca).

A vertex vj is reachable from vi if and only if j 6 i. In particular, if s + 2t − 1 = i + 1, then vs+t−1 is
reachable from vi. Observe that the probability of ak = ak+t is at most 1/|Lk+t |, even if the value of ak is
fixed. Therefore, for es,t ∈ E(vi+1, vi), we have

P
[
es,t ∈ F

��vs+t−1 ∈ A
]
= P [ak = ak+t for all s 6 k 6 s + t − 1|vs+t−1 ∈ A]

6
s+t−1∏
k=s

1
|Lk+t |

6
1
4t
.

If ω(vi+1, vi) = ω ∈ [1;+∞) is a fixed constant, then for all i > j, ω(vi, vj) = ωi−j . In particular, if
s + 2t − 1 = i + 1, then

ω(vi+1, vs+t−1) = ω
t .
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Thus,

ρA,Fω (es,t ) 6 ρ
A,F
ω (es,t, vs+t−1) = P

[
es,t ∈ F

��vs+t−1 ∈ A
]
· ω(vi+1, vs+t−1) 6

ωt

4t
.

Hence, it is enough to find a constant ω ∈ [1;+∞) such that

ω > 1 +
∞∑
t=1

ωt

4t
=

1
1 − ω/4

,

where the last equality is subject to ω < 4. Setting ω = 2 completes the proof. �

A vertex coloring ϕ of a graph G is nonrepetitive if there is no path P in G with an even number of
vertices such that the first half of P receives the same sequence of colors as the second half of P, i.e., if there
is no path v1, v2, . . . , v2t of length 2t such that ϕ(vk) = ϕ(vk+t ) for all 1 6 k 6 t. The least number of colors
that is needed for a nonrepetitive coloring of G is called the nonrepetitive chromatic number of G and is
denoted by π(G).

The first upper bound on π(G) in terms of the maximum degree ∆(G) was given by Alon, Grytczuk,
Hałuszczak, and Riordan [Alo+02], who proved that there is a constant c such that π(G) 6 c∆(G)2. Originally
this result was obtained with c = 2e16. The constant was improved to c = 16 by Grytczuk [Gry07], and then
to c = 12.92 by Harant and Jendrol’ [HJ12]. All these results were based on the LLL.

Dujmović, Joret, Kozik, and Wood [Duj+15] managed to decrease the value of the aforementioned
constant c drastically using the entropy compression method. Namely, they lowered the constant to 1, or, to be
precise, they showed that π(G) 6 (1 + o(1))∆(G)2 (assuming ∆(G) → ∞).

The currently best known bound is given by the following theorem.

Theorem 1.6.2 (Gonçalves–Montassier–Pinlou [GMP14]). For a graph G with maximum degree ∆,

π(G) 6
⌈
∆

2 +
3

22/3∆
5/3 +

22/3∆5/3

∆1/3 − 21/3

⌉
.

Proof. Suppose that

k > ∆2 +
3

22/3∆
5/3 +

22/3∆5/3

∆1/3 − 21/3 . (1.6.1)

We will use Theorem 1.3.1 to show that G has a nonrepetitive k-coloring.
For brevity, let V B V(G) and E B E(G). Choose a k-coloring ϕ of G uniformly at random. Define a set

A ⊆ Pow(V) by
A B {S ⊆ V : ϕ is a nonrepetitive coloring of G[S]},

where G[S] denotes the induced subgraph of G with vertex set S. Note that A is downwards-closed and
nonempty with probability 1, and V ∈ A if and only if ϕ is a nonrepetitive coloring of G.

Consider any v ∈ V . If v ∈ ∂A, then there exists a path P 3 v of even length that is colored repetitively by
ϕ. Thus, we can set

B(v) B {BP : P 3 v is a path of even length},

where the event BP happens if and only if P is colored repetitively by ϕ.
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The number of events in B(v) corresponding to paths of some fixed length 2t is equal to the number of all
paths P of length 2t passing through v, which does not exceed t∆2t−1. Indeed, if P = v1, v2, . . . , v2t , then we
can assume v is one of the vertices v1, v2, . . . , vt , so there are t ways to choose the position of v on P. After
the position of v has been determined, we can select all other vertices one by one so that each time we are
choosing only from the neighbors of one of the previous vertices. Since the maximum degree of G is ∆, we
get the bound t∆2t−1, as desired.

We will assume τ(v) = τ ∈ [1;+∞) is a constant. We need to upper bound σA
τ (BP, v) for each v ∈ V

and a path P 3 v of length 2t. Let P′ be the half of P that contains v. Note that if Z ⊆ V \ P′, then
P[BP |Z ∈ A] 6 1/k t , since the coloring of P′ is independent from the coloring of Z . Therefore,

σA
τ (BP, v) 6 σ

A
τ (BP, P′) = max

Z⊆V\P′
P[BP |Z ∈ A] · τ |P

′ | 6
τt

k t
.

Hence, it is enough to ensure that there exists τ ∈ [1;+∞) such that

τ > 1 +
∞∑
t=1

t∆2t−1 ·
τt

k t
= 1 +

∆τ/k
(1 − ∆2τ/k)2

, (1.6.2)

where the last equality is subject to ∆2τ/k < 1. Setting y B ∆2τ/k, we can rewrite (1.6.2) as

k
∆2 >

1
y
+

1
∆(1 − y)2

. (1.6.3)

Following [GMP14], we take y = 1 − (2/∆)1/3, and (1.6.3) becomes

k
∆2 > 1 +

3
22/3∆1/3 +

22/3

∆2/3 − (2∆)1/3
,

which is true by (1.6.1). �

1.7 Color-critical hypergraphs

A hypergraph H is (k + 1)-critical if it is not k-colorable, but each of its proper subhypergraphs is. Call
a hypergraph H true if all its edges have size at least 3. It is interesting to know what the least possible
number of edges in a (k + 1)-critical true hypergraph on n vertices is. The best known constructions due to
Abbott and Hare [AH89] and Abbott, Hare, and Zhou [AHZ94] contain roughly (k − 1)n edges. This bound is
asymptotically tight for k →∞, as the following theorem due to Kostochka and Stiebitz asserts:

Theorem 1.7.1 (Kostochka–Stiebitz [KS00]). Every (k + 1)-critical true hypergraph with n vertices contains
at least (k − 3k2/3)n edges.

Here we improve this result, obtaining the following new bound:

Theorem 1.7.2. Every (k + 1)-critical true hypergraph with n vertices contains at least (k − 4
√

k)n edges.
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Proof. Our proof is essentially the same as the proof of Theorem 1.7.1 given in [KS00]. The only difference
is that we replace the application of the LLL by an application of the LCL.

Let H be a (k + 1)-critical true hypergraph with n vertices. Denote V B V(H) and E B E(H). Let
c B 4

√
k. Fix some positive constant z (to be determined later). Let g : N+ → R be given by

g(t) B


1 − z−1 if t = 1;

21−t z−1 if t > 1.

Inductively construct a sequence (Vi)
m
i=0, where 0 6 m 6 n, of subsets of V according to the following rule.

Let V0 B V . If there is a vertex v ∈ Vi such that∑
h∈E:
h3v

g(|h ∩ Vi |) > k − c, (1.7.1)

then select one such vertex, denote it by vi, and let Vi+1 B Vi \ {vi}. Otherwise let m B i and stop.
If m = n, then

|E | =
∑
h∈E

1 >
∑
h∈E

|h |∑
j=1

g( j) =
n−1∑
i=0

∑
h∈E:
h3vi

g(|h ∩ Vi |) > (k − c)n,

as desired. Now suppose that m < n. Let V ′ B Vm. Since V ′ is nonempty, the hypergraphH − V ′ obtained
fromH by deleting the vertices in V ′ is k-colorable. Fix a proper k-coloring ψ ofH − V ′ and extend it to
a k-coloring ϕ ofH by choosing a color for each vertex in V ′ uniformly and independently from all other
vertices. Let A ⊆ Pow(V ′) be given by

A B {S ⊆ V ′ : there is no ϕ-monochromatic edge h ⊆ (V \ V ′) ∪ S}.

Note that A is downwards-closed and P[� ∈ A] = 1 (because the coloring ψ of V \V ′ is proper). We will use
Theorem 1.3.1 to prove that P[V ′ ∈ A] > 0, which will be a contradiction sinceH is not k-colorable.

For v ∈ V ′, let
B(v) B {Bh : v ∈ h ∈ E},

where the event Bh happens if and only if h is ϕ-monochromatic. Clearly, if v ∈ ∂A, then at least one of the
events Bh ∈ B(v) holds.

Let τ(v) = τ ∈ [1;+∞) be a constant function. Consider some Bh ∈ B(v). There are two cases. First
suppose that h * V ′. Note that such h is ϕ-monochromatic if and only if h \ V ′ is ψ-monochromatic
and ϕ(u) = ψ(w) for all u ∈ h ∩ V ′ and w ∈ h \ V ′. Therefore, for each such h and for Z ⊆ V ′ \ h,
P[Bh |Z ∈ A] 6 P[Bh] 6 1/k |h∩V ′ |. Thus,

σA
τ (Bh, v) 6 σ

A
τ (Bh, h ∩ V ′) = max

Z⊆V ′\h
P[Bh |Z ∈ A] · τ |h∩V

′ | 6
τ |h∩V

′ |

k |h∩V ′ |
.

If, on the other hand, h ⊆ V ′, then choose an arbitrary vertex u ∈ h \ {v} and consider Z ⊆ (V ′ \ h) ∪ {u}.
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(This idea is analogous to the one we discussed in §1.5.) Since fixing the color of u does not change the
probability that h is monochromatic, we have P[Bh |Z ∈ A] 6 1/k |h |−1, so

σA
τ (Bh, v) 6 σ

A
τ (Bh, E \ {u}) = max

Z⊆(V ′\h)∪{u }
P[Bh |Z ∈ A] · τ |h\{u } | 6

τ |h |−1

k |h |−1 .

For a vertex v ∈ V ′, let

at (v) B |{h ∈ E : v ∈ h * V ′, |h ∩ V ′ | = t}|;

bt (v) B |{h ∈ E : v ∈ h ⊆ V ′, |h| = t}|.

To apply Theorem 1.3.1, it is enough to guarantee that there exists a constant τ ∈ [1;+∞) such that for all
v ∈ V ′,

τ > 1 +
∞∑
t=1

at (v)
τt

k t
+

∞∑
t=3

bt (v)
τt−1

k t−1 . (1.7.2)

Since V ′ is the last set in the sequence (Vi)
m
i=0, no vertex in V ′ satisfies (1.7.1). In other words, for all v ∈ V ′,

∞∑
t=1

at (v)g(t) +
∞∑
t=3

bt (v)g(t) < k − c. (1.7.3)

Let
αt (v) B at (v)g(t);

βt (v) B bt (v)g(t).

Then (1.7.3) can be rewritten as

γ(v) B
∞∑
t=1

αt (v) +

∞∑
t=3

βt (v) < k − c,

and (1.7.2) turns into

τ > 1 +
∞∑
t=1

αt (v) ·
1

g(t)

( τ
k

) t
+

∞∑
t=3

βt (v) ·
1

g(t)

( τ
k

) t−1
,

which, after substituting the actual values for g, becomes

τ > 1 + α1(v) ·
z

z − 1
τ

k
+

∞∑
t=2

αt (v) ·
1
2

z
(
2τ
k

) t
+

∞∑
t=3

βt (v) · z
(
2τ
k

) t−1
. (1.7.4)

We can view the right-hand side of (1.7.4) as a linear combination of variables αt (v), βt (v). If we assume that

4τ
k
>

1
z − 1

,
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then the largest coefficient in this linear combination is z (2τ/k)2 (the coefficient of β3(v)). Thus, it is enough
to find τ, z satisfying the following two inequalities:

4τ
k
>

1
z − 1

; (1.7.5)

τ > 1 +
4zτ2(k − c)

k2 . (1.7.6)

(Inequality (1.7.6) is obtained by replacing all coefficients on the right hand side of (1.7.4) by the largest one
and using the fact that γ(v) < k − c.) If we choose

z =
k
4τ
+ 1,

then (1.7.5) is satisfied, while (1.7.6) becomes

τ > 1 +
4τ2(k − c)

k2

(
k
4τ
+ 1

)
= 1 +

k − c
k

τ +
4(k − c)

k2 τ2.

Thus, we just have to make sure that the following inequality has a solution τ:

4(k − c)
k2 τ2 −

c
k
τ + 1 6 0.

This is true if and only if c2 > 16(k − c); in particular, c = 4
√

k works. Therefore, ϕ is a proper k-coloring of
H with positive probability. This contradiction completes the proof. �

1.8 Choice functions

Let U1, . . . , Un be a collection of pairwise disjoint nonempty finite sets. A choice function F is a subset of⋃n
i=1 Ui such that for all 1 6 i 6 n, |F ∩Ui | = 1. A partial choice function P is a subset of

⋃n
i=1 Ui such

that for all 1 6 i 6 n, |P ∩Ui | 6 1. For a partial choice function P, let

dom(P) B {i : P ∩Ui , �}.

Thus, a choice function F is a partial choice function with dom(F) = {1, . . . , n}.
Let F be a choice function and let P be a partial choice function. We say that P occurs in F if P ⊆ F,

and we say that F avoids P if P does not occur in F. Many natural combinatorial problems (especially ones
related to coloring) can be stated using the language of choice functions. For instance, consider a graph G

with vertex set {1, . . . , n}. Fix a positive integer k and let Ui B {(i, c) : 1 6 c 6 k} for each 1 6 i 6 n. For
each edge i j ∈ E(G) and 1 6 c 6 k, define a partial choice function Pc

i j B {(i, c), ( j, c)}. Then a proper
vertex k-coloring of G can be identified with a choice function F such that none of {Pc

i j}i j∈E(G),16c6k occur
in F. Another problem that has a straightforward formulation using choice functions is the k-SAT (which also
serves as a standard example of a problem that can be approached with the LLL).
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Amultichoice function M is simply a subset of
⋃n

i=1 Ui (one should think of it as a generalized choice
function where one is allowed to choose multiple or zero elements from each set). For a multichoice function
M , let Mi B M ∩Ui. Again, we say that a partial choice function P occurs in a multichoice function M if
P ⊆ M. Suppose that we are given a family P1, . . . , Pm of nonempty “forbidden” partial choice functions.
For a multichoice function M , the i-th defect of M (notation: defi(M)) is the number of indices j such that
i ∈ dom(Pj) and Pj occurs in M . Observe that there exists a choice function F that avoids all of P1, . . . , Pm

if and only if there exists a multichoice function M such that for all 1 6 i 6 n,

|Mi | > 1 + defi(M). (1.8.1)

Indeed, if F avoids all of P1, . . . , Pm, then F itself satisfies (1.8.1). On the other hand, if M satisfies (1.8.1),
then, for every i, there is an element xi ∈ Mi that does not belong to any Pj occurring in M. Therefore,
{xi}ni=1 is a choice function that avoids all of P1, . . . , Pm, as desired.

The main result of this section is that, in fact, it is enough to establish (1.8.1) on average for some random
multichoice function M .

Theorem 1.8.1. Let U1, . . . , Un be a collection of pairwise disjoint nonempty finite sets and let P1, . . . , Pm

be a family of nonempty partial choice functions. Let Ω be a probability space and let Mi : Ω→ Pow(Ui),
1 6 i 6 n, be a collection of mutually independent random variables. Set M B

⋃n
i=1 Mi . If for all 1 6 i 6 n,

E|Mi | > 1 + E defi(M), (1.8.2)

then there exists a choice function F that avoids all of P1, . . . , Pm.

Proof. For x ∈
⋃n

i=1 Ui, let p(x) B P[x ∈ M]. Then

E|Mi | =
∑
x∈Ui

p(x).

Since the variables Mi, 1 6 i 6 n, are independent,

P[Pj ⊆ M] =
∏
x∈Pj

p(x).

Therefore, if Ni B { j : i ∈ dom(Pj)},

E defi(M) =
∑
j∈Ni

P[Pj ⊆ M] =
∑
j∈Ni

∏
x∈Pj

p(x).

Thus, (1.8.2) is equivalent to ∑
x∈Ui

p(x) > 1 +
∑
j∈Ni

∏
x∈Pj

p(x). (1.8.3)
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Let τ(i) B
∑

x∈Ui
p(x) and let q(x) B p(x)/τ(i) for all x ∈ Ui. Then (1.8.3) can be rewritten as

τ(i) > 1 +
∑
j∈Ni

∏
x∈Pj

q(x) · τ(dom(Pj)). (1.8.4)

We will only use the numerical condition (1.8.4), ignoring its probabilistic meaning. Construct a random
choice function F (in a new probability space) as follows: Choose an element x ∈ Ui with probability q(x),
making the choices for different Ui’s independently (this definition is correct, since

∑
x∈Ui

q(x) = 1). Set
I B {1, . . . , n} and define a random subset A ⊆ Pow(I) as follows:

A B {S ⊆ I : no Pj with dom(Pj) ⊆ S occurs in F}.

Then A is a nonempty downwards-closed family of subsets of I, and I ∈ A if and only if F avoids all of P1,
. . . , Pm. For i ∈ I, let

B(i) B {Bj : j ∈ Ni},

where the event Bj happens if and only if Pj ⊆ F. Clearly, if i ∈ ∂A, then there is some j ∈ Ni such that
Pj ⊆ F, so we can apply Theorem 1.3.1.

Consider any i ∈ I and j ∈ Ni. Since P[Bj] =
∏

x∈Pj
q(x), we have

σA
τ (Bj, i) 6 σA

τ (Bj, dom(Pj)) = max
Z⊆I\dom(Pj )

P[Bj |Z ∈ A] · τ(dom(Pj))

6 P[Bj] · τ(dom(Pj)) =
∏
x∈Pj

q(x) · τ(dom(Pj)).

Therefore, in this case (1.8.4) implies (1.3.1), yielding P [I ∈ A] > 0, as desired. �

1.9 New bounds for the acyclic chromatic index

1.9.1 Acyclic edge coloring: definitions and results

An edge coloring of a graph G is called an acyclic edge coloring if it is proper (i.e. adjacent edges receive
different colors) and every cycle in G contains edges of at least three different colors (there are no bichromatic
cycles in G). The least number of colors needed for an acyclic edge coloring of G is called the acyclic
chromatic index of G and is denoted by a′(G). The notion of acyclic (vertex) coloring was first introduced
by Grünbaum [Grü73]. The edge version was first considered by Fiamčik [Fia78], and independently by Alon,
McDiarmid, and Reed [AMR91].

As in the case of nonrepetitive colorings, it is quite natural to ask for an upper bound on the acyclic
chromatic index of a graph G in terms of its maximum degree ∆(G). Since a′(G) > χ′(G) > ∆(G), where
χ′(G) denotes the ordinary chromatic index of G, this bound must be at least linear in ∆(G). The first linear
bound was given by Alon et al. [AMR91], who showed that a′(G) 6 64∆(G). Although it resolved the
problem of determining the order of growth of a′(G) in terms of ∆(G), it was conjectured that the sharp bound
should be much lower.
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Conjecture 1.9.1 (Fiamčik [Fia78]; Alon–Sudakov–Zaks [ASZ01]). For every graph G, a′(G) 6 ∆(G) + 2.

Note that the bound in Conjecture 1.9.1 is only one more than Vizing’s bound on the chromatic index of
G. However, this elegant conjecture is still far from being proven.

The first major improvement to the bound a′(G) 6 64∆(G) was made by Molloy and Reed [MR98], who
proved that a′(G) 6 16∆(G). This bound remained the best for a while, until Ndreca, Procacci, and Scoppola
[NPS12] managed to improve it to a′(G) 6 d9.62(∆(G) − 1)e. Again, first bounds for a′(G) were obtained
using the LLL. The bound a′(G) 6 d9.62(∆(G) − 1)e by Ndreca et al. used an improved version of the LLL
due to Bissacot, Fernández, Procacci, and Scoppola [Bis+11].

The best current bound for a′(G) in terms of ∆(G) was obtained by Esperet and Parreau via the entropy
compression method.

Theorem 1.9.2 (Esperet–Parreau [EP13]). For every graph G with maximum degree ∆, a′(G) 6 4(∆ − 1).

We present a proof of Theorem 1.9.2 using the LCL in §1.9.2.
The probability that a cycle would become bichromatic in a random coloring is less if the cycle is longer.

Thus, it should be easier to establish better bounds on the acyclic chromatic index for graphs with high enough
girth. Indeed, Alon et al. [ASZ01] showed that if g(G) > c1∆(G) log∆(G), where c1 is some universal
constant, then a′(G) 6 ∆(G) + 2. They also proved that if g(G) > c2 log∆(G), then a′(G) 6 2∆(G) + 2. This
was later improved by Muthu, Narayanan, and Subramanian [MNS07] in the following way: For every ε > 0,
there exists a constant c such that if g(G) > c log∆(G), then a′(G) 6 (1 + ε)∆(G) + o(∆(G)).

We shall consider the case when g(G) is bounded below by some constant independent of ∆(G). The
first bounds of such type were given by Muthu et al. [MNS07], who proved that a′(G) 6 9∆(G) if g(G) > 9,
and a′(G) 6 4.52∆(G) if g(G) > 220. Esperet and Parreau [EP13] not only improved both these estimates
even in the case of arbitrary g(G), but they also showed that a′(G) 6 d3.74(∆(G) − 1)e if g(G) > 7,
a′(G) 6 d3.14(∆(G) − 1)e if g(G) > 53, and, in fact, for every ε > 0, there exists a constant c such that if
g(G) > c, then a′(G) 6 (3 + ε)∆(G) + o(∆(G)).

Using the LCL, we improve these bounds further. Namely, we establish the following:

Theorem 1.9.3. Let G be a graph with maximum degree ∆ and let H be some bipartite graph. If G does not
contain H as a subgraph, then a′(G) 6 3∆ + o(∆).

Remark. We originally established Theorem 1.9.3 in the case when H is the 4-cycle. We are grateful to
Louis Esperet and Rémi de Verclos for pointing out that essentially the same proof works for any bipartite H.

Remark. The o(∆) term in the statement of Theorem 1.9.3 depends on H. In fact, our proof shows that for
the complete bipartite graph Kk,k , it is of the order O

(
∆1−1/2k ) .

Theorem 1.9.4. For every ε > 0, there exists a constant c such that for every graph G with maximum degree
∆ and g(G) > c, we have a′(G) 6 (2 + ε)∆ + o(∆).

Remark. The bound of the last theorem was recently improved to a′(G) 6 (1 + ε)∆ + o(∆) by Cai, Perarnau,
Reed, and Watts [Cai+17] using a different (and much more sophisticated) argument.

We prove Theorems 1.9.3 and 1.9.4 in §§1.9.3 and 1.9.4 respectively.

39



1.9.2 Proof of the Esperet–Parreau bound

Here we prove Theorem 1.9.2. Let G be a graph of maximum degree ∆. For brevity, let E B E(G). Choose a
4(∆ − 1)-edge coloring ϕ of G uniformly at random. Call a cycle C of length 2t ϕ-bichromatic if C = e1, e2,
. . . , e2t and ϕ(e2i−1) = ϕ(e2t−1), ϕ(e2i) = ϕ(e2t ) for all 1 6 i 6 t − 1. Let

A B {S ⊆ E : ϕ is an acyclic edge coloring of G[S]},

where G[S] is the graph obtained from G by removing all the edges outside S. Note that with probability 1,
A is a nonempty downwards-closed family of subsets of E , and E ∈ A if and only if ϕ is an acyclic edge
coloring of G.

Consider any e ∈ E . If e ∈ ∂A, then either there exists an edge e′ adjacent to e such that ϕ(e) = ϕ(e′), or
there exists a ϕ-bichromatic cycle C 3 e of even length. The crucial idea of [EP13] (which is credited to
Jakub Kozik by the authors) is to handle 4-cycles and cycles of length at least 6 separately. Set

B(e) B {BC : C 3 e is a cycle of length 2t > 6} ∪ {Be},

where

1. BC happens if and only if the cycle C is ϕ-bichromatic;

2. Be happens if and only if either there exists an edge e′ adjacent to e such that ϕ(e) = ϕ(e′), or there
exists a ϕ-bichromatic 4-cycle C 3 e.

Again, we will assume that τ(e) = τ ∈ [1;+∞) is a constant. Consider the event Be ∈ B(e) of the second
kind. We will estimate the probability P[Be |Z ∈ A] for Z ⊆ E \ {e} using the following claim, which also
plays a crucial role in the original proof by Esperet and Parreau.

Claim 1.9.5. Suppose that some edges of G are properly colored. If e ∈ E is uncolored, then there exist at
most 2(∆ − 1) ways to color e so that the resulting coloring either is not proper, or contains a bichromatic
4-cycle going through e.

Proof. Denote the given proper partial coloring by ψ and let e = uv. Let L1 (resp. L2) be the set of colors
appearing on the edges incident to u (resp. v). The coloring becomes not proper if e is colored using a color
from L1 ∪ L2, so there are |L1 ∪ L2 | such options. Suppose that coloring e with color c creates a bichromatic
4-cycle uvxy. Then c = ψ(xy) and ψ(vx) = ψ(uy). Hence, the number of such colors c is at most the number
of pairs of edges vx, uy such that ψ(vx) = ψ(uy). Note that, since ψ is proper, there can be at most one pair
vx, uy such that ψ(vx) = ψ(uy) = c′ for a particular color c′. Therefore, the total number of such pairs is
exactly |L1 ∩ L2 |. Thus, there are at most |L1 ∪ L2 | + |L1 ∩ L2 | = |L1 | + |L2 | 6 2(∆ − 1) “forbidden” colors
for e, as desired. �

Using Claim 1.9.5, we obtain

P[Be |Z ∈ A] 6
2(∆ − 1)
4(∆ − 1)

=
1
2
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for all Z ⊆ E \ {e}. Therefore,

σA
τ (Be, e) 6 σA

τ (Be, {e}) = max
Z⊆E\{e}

P[Be |Z ∈ A] · τ | {e} | 6
τ

2
.

Now we need to deal with the events of the form BC ∈ B(e). Note that there are at most (∆ − 1)2t−2

cycles of length 2t passing through e. Therefore, the number of events in B(e) corresponding to cycles of
length 2t is at most (∆ − 1)2t−2. Consider any such event BC . Suppose that C = e1, e2, . . . , e2t , where e1 = e.
Then BC happens if and only if ϕ(e2i−1) = ϕ(e2t−1) and ϕ(e2i) = ϕ(e2t ) for all 1 6 i 6 t − 1. Even if the
colors of e2t−1 and e2t are fixed, the probability of this happening is 1/(4(∆ − 1))2t−2. Due to this observation,
if C ′ B {e1, e2, . . . , e2t−2} and Z ⊆ E \ C ′, then P[BC |Z ∈ A] 6 1/(4(∆ − 1))2t−2. Therefore,

σA
τ (BC, e) 6 σA

τ (BC,C ′) = max
Z⊆E\C′

P[BC |Z ∈ A] · τ |C
′ | 6

τ2t−2

(4(∆ − 1))2t−2 .

Putting everything together, it is enough to find a constant τ ∈ [1;+∞) such that

τ > 1 +
∞∑
t=3
(∆ − 1)2t−2 ·

τ2t−2

(4(∆ − 1))2t−2 +
τ

2
= 1 +

(τ/4)4

1 − (τ/4)2
+
τ

2
,

where the last equality is valid if τ/4 < 1. Setting τ = 2(
√

5 − 1) completes the proof.

1.9.3 Graphs with a forbidden bipartite subgraph

Combinatorial lemmas

For this section we assume that a bipartite graph H is fixed. In particular, all constants that we mention depend
on H. We will use the following version of the Kővari–Sós–Turán theorem.

Theorem 1.9.6 (Kővari, Sós, Turán [KST54]). Let G be a graph with n vertices and m edges that does not
contain the complete bipartite graph Kk,k as a subgraph. Then m 6 O(n2−1/k) (assuming that n→∞).

Corollary 1.9.7. There exist positive constants α and δ such that if a graph G with n vertices and m edges
does not contain H as a subgraph, then m 6 αn2−δ .

In what follows we fix the constants α and δ from the statement of Corollary 1.9.7.

Lemma 1.9.8. There is a positive constant β such that the following holds. Let G be a graph with maximum
degree ∆ that does not contain H as a subgraph. Then for any two vertices u, v ∈ V(G), the number of
uv-paths of length 3 in G is at most β∆2−δ .

Proof. Suppose that uxyv is a uv-path of length 3 in G. Then x ∈ NG(u) and y ∈ NG(v), and hence
xy ∈ E(G[NG(u) ∪ NG(v)]). Note that any edge xy ∈ E(G[NG(u) ∪ NG(v)]) can possibly give rise to at most
two different uv-paths of length 3 (namely uxyv and uyxv). Therefore, the number of uv-paths of length
3 in G cannot exceed 2|E(G[NG(u) ∪ NG(v)])|. Since |V(G[NG(u) ∪ NG(v)])| 6 2∆, by Corollary 1.9.7
we have that |E(G[NG(u) ∪ NG(v)])| 6 α(2∆)2−δ , so the number of uv-paths of length 3 in G is at most(
23−δα

)
∆2−δ . �
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In what follows we fix the constant β from the statement of Lemma 1.9.8.

Lemma 1.9.9. Let G be a graph with maximum degree ∆ that does not contain H as a subgraph. Then for
any edge e ∈ E(G) and for any integer k > 4, the number of cycles of length k in G that contain e is at most
β∆k−2−δ .

Proof. Suppose that e = uv ∈ E(G). Note that the number of cycles of length k that contain e is not greater
than the number of uv-paths of length k − 1. Consider any uv-path ux1 . . . xk−2v of length k − 1. Then
ux1 . . . xk−4 is a path of length k − 4, and xk−4xk−3xk−2v is a path of length 3. There are at most ∆k−4 paths
of length k − 4 starting at u, and, given a path ux1 . . . xk−4, the number of xk−4v-paths of length 3 is at most
β∆2−δ . Hence the number of uv-paths of length k − 1 is at most ∆k−4 · β∆2−δ = β∆k−2−δ . �

Probabilistic set-up

Let G be a graph with maximum degree ∆ that does not contain H as a subgraph. Let E B E(G). Fix some
constant c and let ϕ be a (2 + c)∆-edge coloring of G chosen uniformly at random. As in §1.9.2, we let

A B {S ⊆ E : ϕ is an acyclic edge coloring of G[S]},

and set
B(e) B {BC : C 3 e is a cycle of even length} ∪ {Be},

where

1. BC happens if and only if the cycle C is ϕ-bichromatic;

2. Be happens if and only if there exists an edge e′ adjacent to e such that ϕ(e) = ϕ(e′).

Let τ(e) = τ ∈ [1;+∞) be a constant. Since the colors of different edges are independent, for any Z ⊆ E \ {e},
we have

P[Be |Z ∈ A] 6 2∆ ·
1

(2 + c)∆
=

2
2 + c

.

Hence,
σA
τ (Be, e) 6 σA

τ (Be, {e}) = max
Z⊆E\{e}

P[Be |Z ∈ A] · τ | {e} | 6
2τ

2 + c
.

The same analysis as in §1.9.2 shows that for any cycle C 3 e of length 2t, we have

σA
τ (BC, e) 6

τ2t−2

((2 + c)∆)2t−2 .

Using Lemma 1.9.9, we see that to apply Theorem 1.3.1, it suffices to find a constant τ ∈ [1;+∞) such that

τ > 1 +
∞∑
t=2

β∆2t−2−δτ2t−2

((2 + c)∆)2t−2 +
2τ

2 + c
= 1 + β∆−δ

(τ/(2 + c))2

1 − (τ/(2 + c))2
+

2τ
2 + c

, (1.9.1)
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where the last equality holds whenever τ/(2 + c) < 1. If we denote y = τ/(2 + c), then (1.9.1) turns into

c >
1
y
+ β∆−δ

y2

1 − y2 . (1.9.2)

Now if c = 1 + ε for any given ε > 0, then we can take 1/y = 1 + ε/2. For this particular value of y, we have

β∆−δ
y2

1 − y2 −−−−→∆→∞
0,

so for ∆ large enough, β∆−δ y2/(1 − y2) 6 ε/2, and (1.9.2) is satisfied. This observation completes the proof
of Theorem 1.9.3. A more precise calculation shows that (1.9.2) can be satisfied for c = 1 + ε as long as
ε > γ∆−δ/2 for some absolute constant γ.

1.9.4 Graphs with large girth

Breaking short cycles

The proof of Theorem 1.9.4 proceeds in two steps. Assuming that the girth of G is large enough, we first
show that there is a proper edge coloring of G using (2 + ε/2)∆ colors with no “short” bichromatic cycles
(where “short” means of length roughly log∆). Then we use the remaining ε∆/2 colors to break all the “long”
bichromatic cycles.

We start with the following observations analogous to Lemmas 1.9.8 and 1.9.9.

Lemma 1.9.10. Let G be a graph with maximum degree ∆ and girth g > 2r , where r > 2. Then for any two
vertices u, v ∈ V(G), the number of uv-paths of length r in G is at most 1.

Proof. If there are two uv-paths of length r , then their union forms a closed walk of length 2r , which means
that G contains a cycle of length at most 2r . �

Lemma 1.9.11. Let G be a graph with maximum degree ∆ and girth g > 2r , where r > 2. Then for any edge
e ∈ E(G) and for any integer k > 4, the number of cycles of length k in G that contain e is at most ∆k−r−1.

Proof. Suppose that e = uv ∈ E(G). Note that the number of cycles of length k that contain e is not greater
than the number of uv-paths of length k − 1. Consider any uv-path ux1 . . . xk−2v of length k − 1. Then
ux1 . . . xk−r−1 is a path of length k − r − 1, and xk−r−1xk−r . . . xk−2v is a path of length r . There are at most
∆k−r−1 paths of length k − r − 1 starting at u, and, given a path ux1 . . . xk−r−1, the number of xk−r−1v-paths
of length r is at most 1. Hence the number of uv-paths of length k − 1 is at most ∆k−r−1. �

Lemma 1.9.12. For every ε > 0, there exists a positive constant aε such that the following holds. Let G

be a graph with maximum degree ∆ and girth g > 2r, where r > 2. Then there is a proper edge coloring
of G using at most (2 + ε)∆ + o(∆) colors that contains no bichromatic cycles of length at most 2L, where
L B aε(r − 2) log∆ + 1.
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Proof. We work in a probabilistic setting similar to the one used in the proof of Theorem 1.9.3 (see §1.9.3 for
the notation used), but this time

A B {S ⊆ E(G) : ϕ is a proper edge coloring of G[S] with no bichromatic cycles of length at most 2L}.

Then, taking into account Lemma 1.9.11, (1.9.1) is replaced by

τ > 1 +
L∑

t=r+1

∆2t−r−1τ2t−2

((2 + c)∆)2t−2 +
2τ

2 + c
= 1 + ∆−r+1

L∑
t=r+1

( τ

2 + c

)2t−2
+

2τ
2 + c

. (1.9.3)

If y B τ/(2 + c), then (1.9.3) becomes

c >
1
y
+ ∆−r+1

L∑
t=r+1

y2t−3.

Note that if y > 1 and L 6 ∆, then we have

L∑
t=r+1

y2t−3 6
L∑

t=r+1
y2L−3 = (L − r)y2L−3 6 ∆y2L−3,

so it is enough to get

c >
1
y
+ ∆−r+2y2L−3.

Now take y = 2/ε and c = ε. We need

ε

2
> ∆−r+2

(
2
ε

)2L−3
,

i.e.,

L 6
(
2 log

2
ε

)−1
(r − 2) log∆ + 1,

and we are done. �

Breaking long cycles

To deal with “long” cycles we need a different random procedure. A similar procedure was analyzed in
[MNS07] using the LLL.

Lemma 1.9.13. For every ε > 0, there exist positive constants bε and dε such that the following holds. Let
G be a graph with maximum degree ∆ and let ψ : E → C be a proper edge coloring of G. Then there is a
proper edge coloring ϕ : E → C ∪ C ′ such that

– |C ′ | = ε∆ + o(∆);
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– if a cycle is ϕ-bichromatic, then it was ψ-bichromatic;

– there are no ϕ-bichromatic cycles of length at least L, where L B bε log∆ + dε .

Proof. Let C ′ be a set of colors disjoint from C with |C ′ | = c∆. Set E B E(G). Fix some 0 < p < 1 and
construct a random edge coloring ϕ in the following way: For each edge e ∈ E either do not change its color
with probability 1 − p, or choose for it one of the new colors, each with probability p/|C ′ | = p/(c∆). Let

A B {S ⊆ E : ϕ|S satisfies the conditions of the lemma},

where ϕ|S denotes the restriction of ϕ to S. The set A is out-closed, � ∈ A with probability 1, and E ∈ A if
and only if ϕ satisfies the conditions of the lemma.

For each e ∈ E , let

B(e) B {BI
e,e′ : e′ is an edge adjacent to e}

∪ {BII
C : C 3 e is a ψ-bichromatic cycle of length at least L}

∪ {BIII
C : C 3 e is a cycle of even length}

∪ {BIV
e,C : C is a cycle, C = e1, e2, . . . , e2t with e1 = e and ψ(e1) = ψ(e3) = . . . = ψ(e2t−1)}

∪ {BV
e,C : C is a cycle, C = e1, e2, . . . , e2t with e1 = e and ψ(e2) = ψ(e4) = . . . = ψ(e2t )},

where

1. BI
e,e′ happens if and only if ϕ(e) = ϕ(e

′) ∈ C ′;

2. BII
C happens if and only if ϕ(e′) = ψ(e′) for all e′ ∈ C;

3. BIII
C happens if and only if C is ϕ-bichromatic and ϕ(e′) ∈ C ′ for all e′ ∈ C;

4. BIV
e,C

happens if and only if C is ϕ-bichromatic and ϕ(e2k−1) = ψ(e2k−1), ϕ(e2k) ∈ C ′ for all 1 6 k 6 t;

5. BV
e,C

happens if and only if C is ϕ-bichromatic and ϕ(e2k−1) ∈ C ′, ϕ(e2k) = ψ(e2k) for all 1 6 k 6 t.

It is easy to see that the situations described above exhaust all possible circumstances under which e ∈ ∂A.
Let us proceed to estimate the contributions of the events of different types to the right-hand side of

(1.3.1). From now on, we assume that τ ∈ [1;+∞) is a constant.
Type I. For Z ⊆ E \ {e, e′}, we have

P[BI
e,e′ |Z ∈ A] = P[ϕ(e) = ϕ(e′) ∈ C ′ |Z ∈ A] 6

p2

c∆
,

so
σA
τ (B

I
e,e′, e) 6 σA

τ (B
I
e,e′, {e, e

′}) 6
p2τ2

c∆
.

Since there are fewer than 2∆ edges adjacent to any given edge e, the events of the first type contribute at most

2∆ ·
p2τ2

c∆
= 2c

( pτ
c

)2
(1.9.4)
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to the right-hand side of (1.3.1).
Type II. For Z ⊆ E \ C, we have

P[BII
C |Z ∈ A] = P [ϕ(e′) = ψ(e′) for all e′ ∈ C |Z ∈ A] 6 (1 − p) |C | .

Therefore,
σA
τ (B

II
C, e) 6 σ

A
τ (B

II
C,C) 6 (1 − p) |C |τ |C | .

If we further assume that (1 − p)τ < 1, then

σA
τ (B

II
C, e) 6 ((1 − p)τ)L .

Finally, note that there are fewer than ∆ cycles that contain a given edge e and are ψ-bichromatic (because the
second edge on such a cycle determines it uniquely). Therefore, the events of this type contribute at most

∆((1 − p)τ)L (1.9.5)

to the right-hand side of (1.3.1).
Type III. For Z ⊆ E \ C, we have

P[BIII
C |Z ∈ A] = P [C is ϕ-bichromatic and ϕ(e′) ∈ C ′ for all e′ ∈ C |Z ∈ A] 6

p |C |

(c∆) |C |−2 .

Therefore,

σA
τ (B

III
C , e) 6 σ

A
τ (B

III
C ,C) 6

p |C |τ |C |

(c∆) |C |−2 .

There can be at most ∆2t−2 cycles of length 2t containing a given edge e. Hence, if we assume that pτ/c < 1,
then the events of the third type contribute at most

∞∑
t=2

∆
2t−2 ·

p2tτ2t

(c∆)2t−2 = c2
∞∑
t=2

( pτ
c

)2t
= c2 (pτ/c)

4

1 − (pτ/c)2
(1.9.6)

to the right-hand side of (1.3.1).
Type IV. For Z ⊆ E \ C, we have

P[BIV
e,C |Z ∈ A] 6

p |C |/2(1 − p) |C |/2

(c∆) |C |/2−1 .

Therefore,

σA
τ (B

IV
e,C, e) 6 σ

A
τ (B

IV
e,C,C) 6

p |C |/2(1 − p) |C |/2

(c∆) |C |/2−1 · τ |C | .

If we further assume that (1 − p)τ < 1, then

σA
τ (B

IV
e,C, e) 6

p |C |/2τ |C |/2

(c∆) |C |/2−1 .
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There can be at most ∆t−1 cycles C of length 2t containing a given edge e such that every second edge in C is
colored the same by ψ. (See Fig. 7. Solid edges retain their color from ψ, which must be the same for all of
them. The arrows indicate the t − 1 edges that must be specified in order to fully determine the cycle). Hence,
if we assume that pτ/c < 1, then the events of the fourth type contribute at most

∞∑
t=2

∆
t−1 ·

ptτt

(c∆)t−1 6 c
∞∑
t=2

( pτ
c

) t
= c
(pτ/c)2

1 − pτ/c
(1.9.7)

to the right-hand side of (1.3.1).
Type V. The same analysis as for Type IV (see Fig. 8) shows that the contribution of the events of this

type to the right-hand side of (1.3.1) is at most

c
(pτ/c)2

1 − pτ/c
, (1.9.8)

provided that (1 − p)τ < 1 and pτ/c < 1.

e

Figure 7 – Type IV

e

Figure 8 – Type V

Adding together (1.9.4), (1.9.5), (1.9.6), (1.9.7), and (1.9.8), it is enough to have the following inequality:

τ > 1 + 2c (pτ/c)2 + ∆((1 − p)τ)L + c2 (pτ/c)
4

1 − (pτ/c)2
+ 2c

(pτ/c)2

1 − pτ/c
, (1.9.9)

under the assumptions that (1 − p)τ < 1 and pτ/c < 1. Denote y B pτ/c. Then (1.9.9) turns into

c
p
>

1
y
+ 2cy + c2 y3

1 − y2 + 2c
y

1 − y
+
∆

y

(
c(1 − p)

p
y

)L
,

and we have the conditions y < 1 and y < p/(c(1 − p)). Let c = ε. We can assume that ε satisfies

2ε2 +
ε5

1 − ε2 +
2ε2

1 − ε
6
ε

4
.

Take y = ε. Then it is enough to have

ε

p
>

1
ε
+
ε

4
+
∆

ε

(
ε2(1 − p)

p

)L
. (1.9.10)
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Let pε B ε/(ε/2 + 1/ε). Note that

pε
ε(1 − pε)

=
1(

ε

2
+

1
ε

) (
1 − ε

/(
ε

2
+

1
ε

) ) = 1
1
ε
−
ε

2

> ε,

so this choice of pε does not contradict our assumptions. Then (1.9.10) becomes

ε

4
>
∆

ε

(
ε2(1 − pε)

pε

)L
,

which is true provided that

L >
(
log

(
pε

ε2(1 − pε)

))−1 (
log∆ + log

4
ε2

)
,

and we are done. �

Finishing the proof

To finish the proof of Theorem 1.9.4, fix ε > 0. By Lemma 1.9.12, if g(G) > 2r , where r > 2, then there is a
proper edge coloring ψ of G using at most (2 + ε/2)∆ + o(∆) colors that contains no bichromatic cycles of
length at most L1 B 2aε/2(r − 2) log∆ + 2. Applying Lemma 1.9.13 to this coloring gives a new coloring ϕ
that uses at most (2 + ε)∆ + o(∆) colors and contains no bichromatic cycles of length at most L1 (because
there were no such cycles in ψ) and at least L2 B bε/2 log∆ + dε/2. If r − 2 > bε/2/(2aε/2) and ∆ is large
enough, then L1 > L2, and ϕ must be acyclic. This observation completes the proof.

Concluding remarks

We conclude with some remarks on why it seems difficult to get closer to the desired bound a′(G) 6 ∆(G)+ 2
using the same approach as in the proof of Theorem 1.9.4. Observe that in the proof of Theorem 1.9.4
(specifically in the proof of Lemma 1.9.12) we reserve 2∆ colors for making a coloring proper and use only
c∆ “free” colors to make this coloring acyclic. Essentially, Theorem 1.9.4 asserts that c can be made as small
as ε + o(1), provided that g(G) is large enough. It means that the only way to improve the linear term in our
bound is to reduce the number of reserved colors, in other words, to implement in the proof some Vizing-like
argument. Unfortunately, we do not know how to prove Vizing’s theorem by a relatively straightforward
application of the LLL (or any analog of it). On the other hand, using a more sophisticated technique (similar
to the one used by Kahn [Kah00] in his celebrated proof that every graph is (1 + o(1))∆-edge-list-colorable),
Cai et al. [Cai+17] managed to obtain the bound a′(G) 6 (1 + ε)∆ + o(∆), which is very close to the desired
a′(G) 6 ∆(G) + 2.
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2 | DP-Coloring

2.1 DP-coloring: definitions and overview

List coloring is a generalization of ordinary graph coloring that was introduced independently by Viz-
ing [Viz76] and Erdős, Rubin, and Taylor [ERT79]. Let C be a set of colors. A list assignment for a graph
G is a function L : V(G) → Pow(C). If |L(u)| = k for every vertex u ∈ V(G), then L is called a k-list
assignment. A proper coloring f : V(G) → C is called an L-coloring if f (u) ∈ L(u) for each u ∈ V(G). The
list-chromatic number χ`(G) of G is the smallest k ∈ N such that G admits an L-coloring for every k-list
assignment L for G. An immediate consequence of this definition is that χ`(G) > χ(G) for all graphs G,
since ordinary coloring is the same as L-coloring with L(u) = C for all u ∈ V(G). On the other hand, it is
well-known that the gap between χ(G) and χ`(G) can be arbitrarily large; for instance, χ(Kn,n) = 2, while
χ`(Kn,n) = (1 + o(1)) log2(n) → ∞ as n→∞.

In this chapter we study a further generalization of list coloring that was recently introduced by Dvořák
and Postle [DP15]; they called it correspondence coloring, and we call it DP-coloring for short. In the
setting of DP-coloring, not only does each vertex get its own list of available colors, but also the identifications
between the colors in the lists can vary from edge to edge.

Definition 2.1.1. Let G be a graph. A cover of G is a pair H = (L,H), consisting of a graph H and a
function L : V(G) → Pow(V(H)), satisfying the following requirements:

(C1) the sets {L(u) : u ∈ V(G)} form a partition of V(H);

(C2) for every u ∈ V(G), the graph H[L(u)] is complete;

(C3) if EH (L(u), L(v)) , �, then either u = v or uv ∈ E(G);

(C4) if uv ∈ E(G), then EH (L(u), L(v)) is a matching.

A cover H = (L,H) of G is k-fold if |L(u)| = k for all u ∈ V(G).

Remark. The matching EH (L(u), L(v)) in Definition 2.1.1(C4) does not have to be perfect and, in particular,
is allowed to be empty.

This chapter is based on [Ber16c; Ber17b; BK16; BK17a; BKP17; BKZ17; BKZ18]. Parts of this work are joint with Alexandr
Kostochka, Sergei Pron, and Xuding Zhu.
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Definition 2.1.2. Let G be a graph and let H = (L,H) be a cover of G. An H -coloring of G is an
independent set in H of size |V(G)|.

Remark. By definition, if H = (L,H) is a cover of G, then {L(u) : u ∈ V(G)} is a partition of H into
|V(G)| cliques. Therefore, an independent set I ⊆ V(H) is an H -coloring of G if and only if |I ∩ L(u)| = 1
for all u ∈ V(G).

Remark. Suppose that G is a graph, H = (L,H) is a cover of G, and G′ is a subgraph of G. In such situations,
we will allow a slight abuse of terminology and speak of H -colorings of G′ (even though, strictly speaking,
H is not a cover of G′), meaning H ′-colorings of G′, where H ′ is the cover of G′ obtained by removing
from H all the vertices that are in L(u) for some u < V(G′) and all the edges that are in EH (L(u), L(v)) for
some u , v, uv < E(G′).

Definition 2.1.3. Let G be a graph. The DP-chromatic number χDP(G) of G is the smallest k ∈ N such
that G admits an H -coloring for every k-fold cover H of G.

Example 2.1.4. Figure 9 shows two distinct 2-fold covers of the 4-cycle C4. Note that C4 admits an
H1-coloring but not an H2-coloring. In particular, χDP(C4) > 3. On the other hand, it can be easily seen
that χDP(G) 6 ∆(G) + 1 for any graph G, and so we have χDP(C4) = 3. A similar argument demonstrates
that χDP(Cn) = 3 for any cycle Cn of length n > 3.

H1 H2

Figure 9 – Two distinct 2-fold covers of a 4-cycle.

Plesnevič and Vizing [PV65] proved that a graph G admits a proper k-coloring if and only if the Cartesian
product G�Kk contains an independent set of size |V(G)|. A version of their construction shows that list
coloring is a special case of DP-coloring and, in particular, χDP(G) > χ`(G) for all graphs G.

u1

u2

u3

u4

L(u1) = {1, 2}
L(u2) = {1, 3}
L(u3) = {1, 2}
L(u4) = {2, 3} L ′(u1) =

{
(u1, 1)
(u1, 2)

L ′(u2) =

{
(u2, 3)
(u2, 1)

(u3, 1)
(u3, 2)

}
= L ′(u3)

(u4, 2)
(u4, 3)

}
= L ′(u4)

Figure 10 – A graph with a 2-list assignment and the corresponding 2-fold cover.
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More precisely, let G be a graph and suppose that L : V(G) → Pow(C) is a list assignment for G, where
C is a set of colors. Let H be the graph with vertex set

V(H) B {(u, c) : u ∈ V(G) and c ∈ L(u)},

in which two distinct vertices (u, c) and (v, d) are adjacent if and only if either u = v, or else, uv ∈ E(G) and
c = d. For each u ∈ V(G), set

L ′(u) B {(u, c) : c ∈ L(u)}.

Then H B (L ′,H) is a cover of G, and there is a natural bijective correspondence between the L-colorings
and the H -colorings of G: If f : V(G) → C is an L-coloring of G, then the set I f B {(u, f (u)) : u ∈ V(G)}

is an H -coloring of G. Conversely, given an H -coloring I of G, |I ∩ L ′(u)| = 1 for all u ∈ V(G), so we can
define an L-coloring fI : V(G) → C by the property (u, fI (u)) ∈ I ∩ L ′(u) for all u ∈ V(G).

Some upper bounds on list-chromatic number hold for DP-chromatic number as well. For instance, it is
easy to see that χDP(G) 6 d + 1 for any d-degenerate graph G. Dvořák and Postle [DP15] observed that for
any planar graph G, χDP(G) 6 5 and, moreover, χDP(G) 6 3 if G is a planar graph of girth at least 5 (these
statements are extensions of classical results of Thomassen [Tho94; Tho95] on list colorings).

Furthermore, there are statements about list coloring whose only known proofs involve DP-coloring in
essential ways. For example, the reason why Dvořák and Postle originally introduced DP-coloring was to
prove that every planar graph without cycles of lengths 4 to 8 is 3-list-colorable [DP15, Theorem 1], thus
answering a long-standing question of Borodin [Bor13, Problem 8.1]. Another example is discussed in §2.4,
where Dirac’s theorem on the minimum number of edges in critical graphs [Dir57; Dir74] is extended to the
framework of DP-colorings, yielding a solution to the problem, posed by Kostochka and Stiebitz [KS02], of
classifying list-critical graphs that satisfy Dirac’s bound with equality.

On the other hand, DP-coloring and list coloring are also strikingly different in some respects. Importantly,
the DP-chromatic number of a graph cannot be too small:

Theorem 2.1.5. If G is a graph of maximum average degree d > 2, then χDP(G) > d/(2 ln d).

Proof. After passing to a subgraph, we may assume that the average degree of G itself is d. Set n B |V(G)|

and m B |E(G)|. Then we have m = dn/2. Fix an arbitrary integer k 6 d/(2 ln d). Let {L(u) : u ∈ V(G)}

be a collection of pairwise disjoint sets of size k. Define X B
⋃

u∈V (G) L(u), and build a random graph H

with vertex set X by making each L(u) a clique and putting, independently for each uv ∈ E(G), a uniformly
random perfect matching between L(u) and L(v). Let H B (L,H) denote the resulting random k-fold cover
of G.

Consider an arbitrary set I ⊆ X with |I ∩ L(u)| = 1 for all u ∈ V(G). Since the matchings corresponding
to different edges of G are drawn independently from each other, we have

P [I is independent in H] = (1 − 1/k)m 6 exp(−m/k).
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There are kn possible choices for I, so

P [G is H -colorable] 6 exp(−m/k) · kn = (exp(−d/(2k)) · k)n.

It remains to notice that
exp(−d/(2k)) · k 6 k/d < 1,

as long as d >
√

e ≈ 1.64. �

Theorem 2.1.5 shows that the DP-chromatic number of a graph grows very quickly with the average
degree and is only a logarithmic factor away from the trivial upper bound χDP(G) 6 d + 1 for d-degenerate G.
Theorem 2.1.5 must be compared with the celebrated result of Alon [Alo00] that the list-chromatic number of
a graph G with maximum average degree d is Ω(log d).

In spite of this, known upper bounds on list-chromatic numbers often have the same order of magnitude
as in the DP-coloring setting. Notably, by Johansson’s theorem [Joh96], triangle-free graphs G of maximum
degree ∆ satisfy χ`(G) = O(∆/log∆). The same asymptotic upper bound holds for χDP(G); see §2.3 for
further discussion.

The goal of this chapter is to study the properties of DP-coloring, and in particular to gain some
understanding of the similarities and the differences between DP-coloring and list coloring. We start in
§2.2 by showing that certain classical results on list coloring do not generalize to the DP-coloring setting.
Then, in §2.3, we prove a version of Johansson’s theorem (in the strengthened form established recently by
Molloy [Mol17]) for DP-coloring. The proof approach described there is interesting in its own right, even for
ordinary or list coloring. In §2.4 we investigate lower bounds on the number of edges in DP-critical graphs.
Some of the results there are new even for list-critical graphs (but we do not know how to prove them without
using DP-coloring). In §2.5 we show that for every n-vertex graph G whose chromatic number χ(G) is “close”
to n, the DP-chromatic number of G equals χ(G) (this is a DP-version of the Noel–Reed–Wu theorem for list
coloring [NRW15]). Finally, in §2.6 we consider the fractional analog of DP-coloring and show that for a
fairly large class of graphs, fractional DP-chromatic number is very tightly controlled by maximum average
degree.

2.2 Some differences between DP-coloring and list coloring

2.2.1 Statements of results

Important tools in the study of list coloring that do not generalize to the framework of DP-coloring are
the orientation theorems of Alon and Tarsi [AT92] and the closely related Bondy–Boppana–Siegel lemma
(see [AT92]). Indeed, they can be used to prove that even cycles are 2-list-colorable, while the DP-chromatic
number of any cycle is 3, regardless of its length (see Example 2.1.4). In this section we demonstrate the failure
in the context of DP-coloring of two other list-coloring results whose proofs rely on either the Alon–Tarsi
method or the Bondy–Boppana–Siegel lemma.

A well-known application of the orientation method is the following result:
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Theorem 2.2.1 (Alon–Tarsi [AT92, Corollary 3.4]). Every planar bipartite graph is 3-list-colorable.

We show that Theorem 2.2.1 does not hold for DP-colorings (note that every planar triangle-free graph is
3-degenerate, hence 4-DP-colorable):

Theorem 2.2.2. There exists a planar bipartite graph G with χDP(G) = 4.

This answers a question of Grytczuk (personal communication, 2016). We prove Theorem 2.2.2 in §2.2.2.
Our second result concerns edge colorings. Recall that the line graph Line(G) of a graph G is the graph

with vertex set E(G) such that two vertices of Line(G) are adjacent if and only if the corresponding edges of
G share an endpoint. The chromatic number, the list-chromatic number, and the DP-chromatic number of
Line(G) are called the chromatic index, the list-chromatic index, and the DP-chromatic index of G and
are denoted by χ′(G), χ′`(G), and χ

′
DP(G) respectively. The following hypothesis is known as the Edge List

Coloring Conjecture and is a major open problem in graph theory:

Conjecture 2.2.3 (Edge List Coloring Conjecture, see [BM08, Conjecture 17.8]). For every graph G,
χ′`(G) = χ′(G).

In an elegant application of the orientation method, Galvin [Gal95] verified the Edge List Coloring
Conjecture for bipartite graphs:

Theorem 2.2.4 (Galvin [Gal95]). For every bipartite graph G, χ′`(G) = χ′(G) = ∆(G).

We show that this famous result fails for DP-coloring; in fact, it is impossible for a d-regular graph G

with d > 2 to have DP-chromatic index d:

Theorem 2.2.5. If d > 2, then every d-regular graph G satisfies χ′DP(G) > d + 1.

We prove Theorem 2.2.5 in §2.2.3.
Vizing [Viz64] proved that the inequality χ′(G) 6 ∆(G) + 1 holds for all graphs G. He also conjectured

the following weakening of the Edge List Coloring Conjecture:

Conjecture 2.2.6 (Vizing). For every graph G, χ′`(G) 6 ∆(G) + 1.

We do not know if Conjecture 2.2.6 can be extended to DP-colorings:

Problem 2.2.7. Do there exist graphs G with χ′DP(G) > ∆(G) + 2?

In §2.2.4 we discuss two natural ways to define edge-DP-colorings for multigraphs. According to one of
them, the DP-chromatic index of the multigraph Kd

2 with two vertices joined by d parallel edges is 2d.

2.2.2 Proof of Theorem 2.2.2

In this subsection we construct a planar bipartite graph G with DP-chromatic number 4. The main building
block of our construction is the graph Q shown in Figure 11 on the left, i.e., the skeleton of the 3-dimensional
cube. Let F = (L, F) denote the cover of Q shown in Figure 11 on the right.
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Figure 11 – The graph Q (left) and its cover F (right).

Lemma 2.2.8. The graph Q is not F -colorable.

Proof. Suppose, towards a contradiction, that I is an F -coloring of Q. Since L(a) = {x}, we have x ∈ I,
and, similarly, y ∈ I. Since z1 is the only vertex in L(c1) that is not adjacent to x or y, we also have z1 ∈ I,
and, similarly, z2 ∈ I. This leaves only 2 vertices available in each of L(d1), L(d2), L(d3), and L(d4), and it is
easy to see that these 8 vertices do not contain an independent set of size 4 (cf. the cover H2 of the 4-cycle
shown in Figure 9 on the right). �

Consider 9 pairwise disjoint copies of Q, labeled Qi j for 1 6 i, j 6 3. For each vertex u ∈ V(Q), its copy
in Qi j is denoted by ui j . Let Fi j = (Li j, Fi j) be a cover of Qi j isomorphic to F . Again, we assume that the
graphs Fi j are pairwise disjoint and use ui j to denote the copy of a vertex u ∈ V(F) in Fi j . Let G be the graph
obtained from the (disjoint) union of the graphs Qi j by identifying the vertices a11, . . . , a33 to a new vertex
a∗ and the vertices b11, . . . , b33 to a new vertex b∗. Let H be the graph obtained from the union of the graphs
Fi j by identifying, for each 1 6 i, j 6 3, the vertices xi1, xi2, xi3 to a new vertex xi and the vertices y1j , y2j ,
y3j to a new vertex yj . Define the map L∗ : V(G) → Pow(V(H)) as follows:

L∗(u) B


Li j(u) if u ∈ V(Qi j);

{x1, x2, x3} if u = a∗;

{y1, y2, y3} if u = b∗.

Then H B (L∗,H) is a 3-fold cover of G. We claim that G is not H -colorable. Indeed, suppose that I is an
H -coloring of G and let i and j be the indices such that {xi, yj} ⊂ I. Then I induces an Fi j-coloring of Qi j ,
which cannot exist by Lemma 2.2.8. Since G is evidently planar and bipartite, the proof of Theorem 2.2.2 is
complete.
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2.2.3 Proof of Theorem 2.2.5

Let d > 2 and let G be an n-vertex d-regular graph. If χ′(G) = d + 1, then χ′DP(G) > d + 1. Thus, from
now on we will assume that χ′(G) = d. In particular, n is even. Indeed, a proper coloring of Line(G)
is the same as a partition of E(G) into matchings, and if n is odd, then d matchings can cover at most
d(n − 1)/2 < dn/2 = |E(G)| edges of G.

Let uv ∈ E(G) and let G′ B G − uv. Our argument hinges on the following simple observation:

Lemma 2.2.9. Let C be a set of size d and let f : E(G′) → C be a proper coloring of Line(G′). For each
w ∈ {u, v}, let fw denote the unique color in C not used in coloring the edges incident to w. Then fu = fv.

Proof. For each c ∈ C, let Mc ⊆ E(G′) denote the matching formed by the edges e with f (e) = c. Then
|Mc | 6 n/2 for all c ∈ C. Moreover, by definition, max{|Mfu |, |Mfv |} 6 n/2 − 1. Thus, if fu , fv, then

dn
2
− 1 = |E(G′)| =

∑
c∈C

|Mc | 6
dn
2
− 2;

a contradiction. �

Let Z/dZ denote the additive group of integers modulo d and let H be the graph with vertex set

V(H) B E(G) × (Z/dZ),

in which the following pairs of vertices are adjacent:

– (e, i) and (e, j) for e ∈ E(G) and i, j ∈ Z/dZ with i , j,

– (e, i) and (h, i) for eh ∈ E(Line(G′)) and i ∈ Z/dZ,

– (uv, i) and (uv′, i) for uv′ ∈ E(G′) and i ∈ Z/dZ;

– (uv, i) and (u′v, i + 1) for u′v ∈ E(G′) and i ∈ Z/dZ.

For each e ∈ E(G), let L(e) B {e} × (Z/dZ). Then H B (L,H) is a d-fold cover of Line(G). We claim
that Line(G) is not H -colorable (which proves Theorem 2.2.5). Indeed, suppose that I is an H -coloring of
Line(G). For each e ∈ E(G′), let f (e) denote the unique element of Z/dZ such that (e, f (e)) ∈ I. Then f is a
proper coloring of Line(G′) with Z/dZ as its set of colors. Let i be the unique element of Z/dZ that is not
used in coloring the edges incident to u. Then the only element of L(uv) that can, and therefore must, belong
to I is (uv, i). On the other hand, Lemma 2.2.9 implies that i is also the unique element of Z/dZ that is not
used in coloring the edges incident to v, and, in particular, for some u′v ∈ E(G′), f (u′v) = i + 1. Since (uv, i)
and (u′v, i + 1) are adjacent vertices of H, I is not an independent set, which is a contradiction.

2.2.4 Edge-DP-colorings of multigraphs

One can extend the notion of DP-coloring to loopless multigraphs. The definitions are almost identical; the
only difference is that in Definition 2.1.1, (C4) is replaced by the following:
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(C4′) If u and v are connected by t > 1 edges in G, then EH (L(u), L(v)) is a union of t matchings.

An interesting property of DP-coloring of multigraphs is that the DP-chromatic number of a multigraph
may be larger than its number of vertices. For example, the multigraph K t

k
obtained from the complete graph

Kk by replacing each edge with t parallel edges satisfies

χDP(K t
k) = ∆(K

t
k) + 1 = tk − t + 1.

Similarly to the case of simple graphs, the line graph Line(G) of a multigraph G is the graph with vertex
set E(G) such that two vertices of Line(G) are adjacent if and only if the corresponding edges of G share
at least one endpoint. Notice that, in particular, Line(G) is always a simple graph. Sometimes, instead of
Line(G), it is more natural to consider the line multigraph MLine(G), where if two edges of G share both
endpoints, then the corresponding vertices of MLine(G) are joined by a pair edges. Line multigraphs were
used, e.g., in the seminal paper by Galvin [Gal95] and also in [BKW97; BKW98].

Somewhat surprisingly, Shannon’s bound χ′(G) 6 3∆(G)/2 [Sha49] on the chromatic index of a
multigraph G does not extend to χDP(MLine(G)). Indeed, if G � Kd

2 , i.e., if G is the 2-vertex multigraph
with d parallel edges, then MLine(G) � K2

d
, so

χDP(MLine(G)) = χDP(K2
d) = 2d − 1 = 2∆(G) − 1.

This is in contrast with the result in [BKW97] that χ′`(G) 6 3∆(G)/2 for every multigraph G. However, we
conjecture that the analog of Shannon’s theorem holds for line graphs:

Conjecture 2.2.10. For every multigraph G, χDP(Line(G)) 6 3∆(G)/2.

2.3 The Johansson–Molloy theorem for DP-coloring

2.3.1 Statements of results

The starting point of this section is the following is a celebrated result of Johansson [Joh96]:

Theorem 2.3.1 (Johansson [Joh96]). There exists a positive constant C such that for every triangle-free
graph G with maximum degree ∆,

χ`(G) 6 (C + o(1))
∆

ln∆
.

Remark. Throughout this section, we use o(1) to indicate a function of ∆ that approaches 0 as ∆→∞.

Johansson originally proved Theorem 2.3.1 with C = 9. Subsequently, Pettie and Su [PS15] improved the
bound to C = 4. Very recently, Molloy [Mol17] reduced the constant to C = 1:

Theorem 2.3.2 (Molloy [Mol17, Theorem 1]). For every triangle-free graph G with maximum degree ∆,

χ`(G) 6 (1 + o(1))
∆

ln∆
.
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The two main new ideas that allowed Molloy to dramatically simplify Johansson’s proof and establish
Theorem 2.3.2 are:

– a new coupon collector-type result [Mol17, Lemma 6] with elements drawn uniformly at random from
possibly distinct sets; and

– the use of the entropy compression method instead of iterated applications of the Lovász Local Lemma.

The entropy compression method was already discussed in some detail in Chapter 1; see §1.1 for references.
It is an algorithmic approach to the Lovász Local Lemma that was developed by Moser and Tardos [MT10]
and has since found many applications, especially in the study of graph coloring. One may wonder however
why the entropy compression method should be significantly superior to the Local Lemma when applied
specifically to the problem of coloring triangle-free graphs. Indeed, there is a lot of “slackness” in the way the
Local Lemma is used in Johansson’s proof of Theorem 2.3.1: certain events happen with exponentially small
probabilities, even though a polynomial upper bound would have sufficed. In other words, the “bottleneck” in
the proof is not the Local Lemma per se, but rather some expectation/concentration details. Thus, it may
appear surprising that using a better alternative to the Local Lemma leads to improvements in this particular
case.

The goal of this section is to show that the intuition outlined in the previous paragraph is, in fact, accurate:
one can replace the entropy compression method in Molloy’s proof of Theorem 2.3.2 by the standard Local
Lemma. This makes the argument particularly short and straightforward, as it removes the need for the
technical analysis of a randomized recoloring procedure.

The main novelty in our version of the proof consists in choosing a partial proper coloring f of G uniformly
at random (see Lemma 2.3.9). Note that the colors of individual vertices under f are highly dependent, so
understanding the behavior of f at first appears rather difficult. That is why one usually assigns colors to the
vertices of G independently from each other. But independence comes at a price: It is impossible to ensure
that the resulting coloring is proper away from a very small part of the graph. This necessitates an iterative
approach, forcing one to repeat the procedure several times until a sufficiently large proportion of the vertices
has been colored. Our main observation is that, despite the dependencies, it is still possible to use the Local
Lemma to directly analyze a uniformly random partial proper coloring, thus obviating the need for iteration.

Using the Local Lemma instead of the entropy compression is the only significant difference between
our argument and the original proof of Theorem 2.3.2 due to Molloy. In particular, we need a coupon
collector-type lemma (Lemma 2.3.10), which is, essentially, a rephrasing of [Mol17, Lemma 6]. Nevertheless,
to make the presentation self-contained, we include all (or most of) the details.

In addition to simplifying Molloy’s proof, we also verify the conclusion of Theorem 2.3.2 for DP-coloring:

Theorem 2.3.3. For every triangle-free graph G with maximum degree ∆,

χDP(G) 6 (1 + o(1))
∆

ln∆
.

Theorem 2.3.3 combined with Theorem 2.1.5 bounds rather tightly the DP-chromatic number of triangle-
free regular graphs:
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Corollary 2.3.4. For every ∆-regular triangle-free graph G,

(1/2 − o(1))
∆

ln∆
6 χDP(G) 6 (1 + o(1))

∆

ln∆
.

Another result of Johansson asserts that χ`(G) = O(∆(G) ln ln∆(G)/ln∆(G)) if G is Kr -free for some
fixed r > 4. Molloy [Mol17, Theorem 2] also gave a new short proof of this bound with explicit dependence
on r . In §2.3.3, we extend it to DP-coloring:

Theorem 2.3.5. There exists a positive constant C such that for any r > 4 and for every Kr -free graph G

with maximum degree ∆,
χDP(G) 6 C

r∆ ln ln∆
ln∆

.

We make no attempt to optimize the constant factor in Theorem 2.3.5. It is conjectured [AKS99,
Conjecture 3.1] that the correct upper bound for fixed r should be of the order O(∆/ln∆).

The main technical step in the proof of Theorem 2.3.5 is Lemma 2.3.12. It is similar to [Mol17, Lemma 12];
however, it is necessary to modify the proof of [Mol17, Lemma 12] somewhat in order to adapt it for the
DP-coloring framework, since, in contrast to list coloring, a DP-coloring of a graph cannot be naturally
represented as a partition of its vertex set into independent subsets.

2.3.2 Proof of Theorem 2.3.3

Probabilistic tools

We use the following “lopsided” version of the Symmetric LLL:

Lemma 2.3.6 (Lovász Local Lemma; see [AS00, p. 65]). Let I be a finite set. For each i ∈ I, let Bi be a
random event. Suppose that for every i ∈ I, there is a set Γ(i) ⊆ I such that |Γ(i)| 6 d and for all Z ⊆ I \ Γ(i),

P

[
Bi

�����∧
j∈Z

¬Bj

]
6 p.

If 4pd 6 1, then P [
∧

i∈I ¬Bi] > 0.

In a more commonly used version of the LLL, each event Bi is mutually independent from the events
Bj with j < Γ(i) ∪ {i} (cf. Theorem 1.1.1). Lemma 2.3.6 has exactly the same proof, but it makes no
independence requirements. This will be crucial for its application in the proof of Lemma 2.3.9.

We will need a version of Chernoff bounds for negatively correlated random variables, introduced by
Panconesi and Srinivasan [PS97]. We say that {0, 1}-valued random variables X1, . . . , Xn are negatively
correlated if for all S ⊆ {1, . . . , n},

P [Xi = 1 for all i ∈ S] 6
∏
i∈S

P [Xi = 1] .

58



Lemma 2.3.7 (Chernoff bounds; see [PS97] and [Mol17, Lemma 3]). Let X1, . . . , Xn be {0, 1}-valued
random variables and let Yi B 1 − Xi . Set X B

∑n
i=1 Xi . If the variables Y1, . . . , Yn are negatively correlated,

then
P [X 6 (1 − δ)E[X]] 6 exp

(
−δ2E[X]/2

)
for any 0 < δ < 1.

If the variables X1, . . . , Xn are negatively correlated, then

P [X > (1 + δ)E[X]] 6 exp (−δE[X]/3) for any δ > 1.

Additional notation

Let G be a graph and letH = (L,H) be a cover of G. ForU ⊆ V(G), let L(U) B
⋃

u∈U L(u). Define H∗ to be
the spanning subgraph of H such that an edge xy ∈ E(H) belongs to E(H∗) if and only if x and y are in different
parts of the partition {L(u) : u ∈ V(G)}. For clarity, and to emphasize the dependence on L, wewrite deg∗H (x)
instead of degH∗(x). The domain of an independent set I in H is dom(I) B {u ∈ V(G) : I ∩ L(u) , �}. Let
GI B G − dom(I) and let HI = (LI,HI ) denote the cover of GI defined by

HI B H − NH [I] and LI (u) B L(u) \ NH (I) for all u ∈ V(GI ).

By definition, if I ′ is an HI -coloring of GI , then I ∪ I ′ is an H -coloring of G. Recall that for U ⊆ V(G), we
write Uc B V(G) \U to indicate the complement of U.

The proof

We will reduce Theorem 2.3.3 to the following result of Haxell [Hax01]:

Lemma 2.3.8 (Haxell [Hax01]). Let H = (L,H) be a cover of a graph G. If there is a positive integer ` such
that |L(u)| > ` for all u ∈ V(G) and deg∗H (x) 6 `/2 for all x ∈ V(H), then G is H -colorable.

Under the stronger assumption deg∗H (x) 6 `/8 for all x ∈ V(H), Lemma 2.3.8 can be proved using
a standard LLL-based argument (this weaker version of Lemma 2.3.8 is also sufficient for our purposes;
see [MR02, Theorem 4.3] and [Mol17, Lemma 4] for two of its incarnations in the list coloring setting).

Standing assumptions. For the rest of the proof, fix 0 < ε < 1, a triangle-free graph G of sufficiently large
maximum degree ∆, and a k-fold cover H = (L,H) of G with k = (1 + ε)∆/ln∆. Set ` B ∆ε/2.

In view of Lemma 2.3.8, it suffices to establish the following:

Lemma 2.3.9. The graph H contains an independent set I such that:

(i) |LI (u)| > ` for all u ∈ V(GI ); and

(ii) deg∗HI
(x) 6 `/2 for all x ∈ V(HI ).

To prove Lemma 2.3.9, we need a variant of [Mol17, Lemma 6]:
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Lemma 2.3.10. Fix a vertex u ∈ V(G) and an independent set J ⊆ L(NG[u]c). Let I ′ be a uniformly random
independent subset of LJ (NG(u)) and let I B J ∪ I ′. Then:

(a) P [|LI (u)| < `] 6 ∆−3/8; and

(b) P
[
there is x ∈ LI (u) with deg∗HI

(x) > `/2
]
6 ∆−3/8.

The proof of Lemma 2.3.10 is virtually identical to that of [Mol17, Lemma 6], so we first show how to
derive Lemma 2.3.9 from Lemma 2.3.10 (this is the new ingredient in our version of Molloy’s argument).

Proof of Lemma 2.3.9 (assuming Lemma 2.3.10). Choose an independent set I in H uniformly at random.
(Since the domain of I may be a proper subset of V(G), in the context of list coloring this is equivalent to
choosing a uniformly random partial proper coloring.) The following immediate observation plays a key role
in the proof:

Fix U ⊆ V(G) and an independent set J ⊆ L(Uc). Then the random variable I ∩ L(U),
conditioned on the event {I ∩ L(Uc) = J}, is uniformly distributed over the independent
subsets of LJ (U).

(2.3.1)

For each u ∈ V(G), let Bu denote the event

Bu B {u < dom(I) and either |LI (u)| < ` or there is x ∈ LI (u) with deg∗HI
(x) > `/2}.

Clearly, if none of the events Bu happen, then I satisfies the conclusion of Lemma 2.3.9.
For each u ∈ V(G), set Γ(u) B N3

G
[u]. Since |Γ(u)| 6 ∆3, to apply the LLL, it remains to verify that for

all Z ⊆ Γ(u)c,

P

[
Bu

�����∧
v∈Z

¬Bv

]
6 ∆−3/4.

By definition, the outcome of any Bv is determined by the set I ∩ L(N2
G[v]). If v < Γ(u), then the distance

between u and v is at least 4, so N2
G[v] ⊂ NG(u)c. Therefore, the set I ∩ L(NG(u)c) determines the outcome

of every Bv with v < Γ(u). Hence, it suffices to prove that

P
[
Bu

��I ∩ L(NG(u)c) = J
]
6 ∆−3/4 for all independent J ⊆ L(NG(u)c).

To that end, fix a vertex u ∈ V(G) and an independent set J ⊆ L(NG(u)c). Wemay assume that u < dom(J), i.e.,
J ⊆ L(NG[u]c) (otherwise the event Bu is incompatible with {I ∩ L(NG(u)c) = J}). Let I ′ B I ∩ L(NG(u)).
By (2.3.1), the variable I ′, under the condition {I ∩ L(NG(u)c) = J}, is uniformly distributed over the
independent subsets of LJ (NG(u)). Thus, we are in the situation described by Lemma 2.3.10, and so

P
[
Bu

��I ∩ L(NG(u)c) = J
]
6 ∆−3/8 + ∆−3/8 = ∆−3/4,

as desired. �
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Proof of Lemma 2.3.10. Define

p0 B P [|LI (u)| < `] and p1 B P
[
there is x ∈ LI (u) with deg∗HI

(x) > `/2
]
.

Let • be a special symbol distinct from all the elements of V(H). Since G is triangle-free, the set NG(u) is
independent, so EH (L(v), L(w)) = � for any two distinct v, w ∈ NG(u). Hence, I ′ can be constructed via the
following procedure:

For each v ∈ NG(u), uniformly at random select an element xv from LJ (v) ∪ {•}.

– If xv = •, then leave I ′ ∩ L(v) empty;

– otherwise, set I ′ ∩ L(v) B {xv}.

For x ∈ L(u), let Ñ(x) denote the set of all vertices v ∈ NG(u) such that NH (x) ∩ LJ (v) , �. Using this
notation, we obtain

P [x ∈ LI (u)] = P [I ′ ∩ NH (x) = �] =
∏

v∈Ñ (x)

(
1 −

1
|LJ (v)| + 1

)
.

Since |LJ (v)| > 1 for all v ∈ Ñ(x) and exp(−1/α) 6 1 − 1/(α + 1) 6 exp(−1/(α + 1)) for all α > 0,

exp ©«−
∑

v∈Ñ (x)

1
|LJ (v)|

ª®¬ 6 P [x ∈ LI (u)] 6 exp ©«−
∑

v∈Ñ (x)

1
|LJ (v)| + 1

ª®¬ . (2.3.2)

Now we can conclude

E [|LI (u)|] =
∑

x∈L(u)

P [x ∈ LI (u)] >
∑

x∈L(u)

exp ©«−
∑

v∈Ñ (x)

1
|LJ (v)|

ª®¬ .
Notice that ∑

x∈L(u)

∑
v∈Ñ (x)

1
|LJ (v)|

6
∑

v∈NG (u) :
LJ (v),�

∑
y∈LJ (v)

1
|LJ (v)|

6 degG(u) 6 ∆,

so, by the convexity of the exponential function,

∑
x∈L(u)

exp ©«−
∑

v∈Ñ (x)

1
|LJ (v)|

ª®¬ > k exp
(
−
∆

k

)
=
(1 + ε)∆

ln∆
· ∆−1/(1+ε) > 2`,

provided∆ is large enough. Putting everything together, we obtainE [|LI (u)|] > 2`. Since the indicator random
variables of the events {x < LI (u)} for x ∈ L(u) are easily seen to be negatively correlated, Lemma 2.3.7 gives

p0 6 P

[
|LI (u)| <

1
2
E [|LI (u)|]

]
6 exp

(
−

1
8
E [|LI (u)|]

)
6 exp (−`/4) < ∆−3/8,
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for large enough ∆. This proves (a).
To prove (b), we will show that for all x ∈ L(u),

px B P
[
x ∈ LI (u) and deg∗HI

(x) > `/2
]
6 ∆−4.

This is enough, as p1 6
∑

x∈L(u) px and |L(u)| = k < ∆/8 for large enough ∆. Let x ∈ L(u). The second
inequality in (2.3.2) implies

px 6 P [x ∈ LI (u)] 6 exp ©«−
∑

v∈Ñ (x)

1
|LJ (v)| + 1

ª®¬ ,
so we may assume

exp ©«−
∑

v∈Ñ (x)

1
|LJ (v)| + 1

ª®¬ > ∆−4, i.e.,
∑

v∈Ñ (x)

1
|LJ (v)| + 1

6 4 ln∆.

Then
E

[
deg∗HI

(x)
]
=

∑
v∈Ñ (x)

P [v < dom(I ′)] =
∑

v∈Ñ (x)

1
|LJ (v)| + 1

6 4 ln∆ 6 `/4,

for large enough ∆. The events {v < dom(I ′)} for v ∈ Ñ(x) are mutually independent, so the Chernoff bound
for independent {0, 1}-valued random variables yields

px 6 P
[
deg∗HI

(x) > `/2
]
6 P

[
deg∗HI

(x) > E
[
deg∗HI

(x)
]
+ `/4

]
6 exp (−`/12) 6 ∆−4,

for large enough ∆, as desired. �

2.3.3 Proof of Theorem 2.3.5

The general scheme of the argument is similar to that of the proof of Theorem 2.3.3.

Standing assumptions. Fix an integer r > 4, a Kr -free graph G of large maximum degree ∆, and a k-fold
cover H = (L,H) of G with k > 200r∆ log2 log2 ∆/log2 ∆. Set ` B ∆9/10.

The role of Lemma 2.3.9 is played by the following statement:

Lemma 2.3.11. The graph H contains an independent set I such that

|LI (u)| > ` for all u ∈ V(GI ) and ∆(GI ) < `.

Note that Lemma 2.3.11 readily implies Theorem 2.3.5, since the DP-chromatic number of a graph is
always at most one plus its maximum degree. Lemma 2.3.11 in turn follows from an analog of [Mol17,
Lemma 12] for DP-coloring:

Lemma 2.3.12. Fix a vertex u ∈ V(G) and an independent set J ⊆ L(NG[u]c). Let I ′ be a uniformly random
independent subset of LJ (NG(u)) and let I B J ∪ I ′. Then:
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(a) P [|LI (u)| < `] 6 ∆−3/8; and

(b) P
[
degGI

(u) > ` and |LI (v)| > ` for all v ∈ NGI (u)
]
6 ∆−3/8.

The derivation of Lemma 2.3.11 from Lemma 2.3.12 is almost verbatim identical to that of Lemma 2.3.9
from Lemma 2.3.10, and we do not spell it out here. To prove Lemma 2.3.12, we need a variant of a result
due to Shearer [She95] that was established by Molloy [Mol17, Lemma 11]. For a graph F, let ind(F) denote
the number of independent sets in F and let α(F) denote the median size of an independent set in F, i.e., the
supremum of all α > 0 such that F contains at least ind(F)/2 independent sets of size at least α. For λ > 0,
define

f (λ) B
log2 λ

2r log2 log2 λ
.

Lemma 2.3.13 ([Mol17, Lemma 11]). If F is a nonempty Kr -free graph, then α(F) > f (ind(F)).

Proof of Lemma 2.3.12. We start with the proof of (a). For each x ∈ L(u), the layer of x is the set

Λ(x) B LJ (NG(u)) ∩ NH (x).

The layer of x intersects each list L(v) for v ∈ NG(u) in at most one element. For distinct x, x ′ ∈ L(u), the
layers Λ(x) and Λ(x ′) are disjoint. However, in contrast to the situation in list coloring, H may contain edges
between Λ(x) and Λ(x ′) that are not covered by the cliques H[L(v)].

Let x ∈ L(u). For an independent set Q ⊆ LJ (NG(u)) \ Λ(x), let F(x,Q) denote the subgraph of H

induced by the vertices in Λ(x) with no neighbors in Q. The following observation is similar to (2.3.1) from
the proof of Lemma 2.3.9:

Fix x ∈ L(u) and an independent set Q ⊆ LJ (NG(u)) \ Λ(x). Then the random variable
I ′ ∩ Λ(x), conditioned on the event {I ′ \ Λ(x) = Q}, is uniformly distributed over the
independent sets in F(x,Q).

(2.3.3)

From (2.3.3), it follows that I ′ can be constructed via the following randomized procedure. Let x1, . . . , xk be
an arbitrary ordering of the set L(u). For each 1 6 i 6 k, let Λi B Λ(xi).

Let I0 be a uniformly random independent subset of LJ (NG(u)). Set s0 B 0 and t0 B 0.
Repeat the next steps for each 1 6 i 6 k:

– Let Fi B F(xi, Ii−1 \ Λi). Define si and ti as follows:

if ind(Fi) > ∆
1/20, then si B si−1 + 1 and ti B ti−1, while

if ind(Fi) 6 ∆
1/20, then si B si−1 and ti B ti−1 + 1.

– Let Si be a uniformly random independent set in Fi and let Ii B (Ii−1 \ Λi) ∪ Si.

Set I ′ B Ik .
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It is clear from (2.3.3) that the set I ′ constructed by the above procedure is uniformly distributed over the
independent subsets of LJ (NG(u)) (see also [Mol17, Lemma 12, Claim 1]).

Let a(1), a(2), . . . and b(1), b(2), . . . be two infinite random sequences of zeros and ones drawn
independently from each other, such that for all s and t, we have

P[a(s) = 1] = 1/2 and P[b(t) = 1] = ∆−1/20.

If the values I0, S1, . . . , Si−1 are fixed, then the corresponding conditional probability of {|Si | > α(Fi)} is at
least 1/2, while the conditional probability of {Si = �} is precisely 1/ind(Fi) (here we are using the fact that
the sets I0, S1, . . . , Si−1 fully determine Fi). Therefore, we can couple the distributions of the sequences a(1),
a(2), . . . and b(1), b(2), . . . with the randomized procedure described above in such a way that

if ind(Fi) > ∆
1/20 and a(si) = 1, then |Si | > α(Fi), while

if ind(Fi) 6 ∆
1/20 and b(ti) = 1, then Si = �.

(2.3.4)

The Chernoff bound for independent random variables implies that, with probability at least 1 − ∆−3/8,

|{1 6 s 6 k/2 : a(s) = 1}| > k/5 and |{1 6 t 6 k/2 : b(t) = 1}| > `. (2.3.5)

We claim that |LI (u)| > ` whenever (2.3.5) holds. Since sk + tk = k, we always have either sk > k/2 or
tk > k/2. If sk > k/2, then (2.3.4) and the first part of (2.3.5) imply that there are at least k/5 indices i such
that ind(Fi) > ∆

1/20 and |Si | > α(Fi). By Lemma 2.3.13, any such i satisfies

|Si | > α(Fi) > f (ind(Fi)) > f (∆1/20) >
log2 ∆

40r log2 log2 ∆
,

so in this case

|I ′ | =
k∑
i=1
|Si | >

k
5
·

log2 ∆

40r log2 log2 ∆
> ∆.

This is a contradiction, as |I ′ | 6 degG(u) 6 ∆. Thus, we must have tk > k/2. From (2.3.4) and the second
part of (2.3.5), we obtain that there are at least ` indices i such that ind(Fi) 6 ∆

1/20 and Si = �. But xi ∈ LI (u)

for any such i, so |LI (u)| > `, as desired. This completes the proof of (a).
To prove (b), consider any collection v1, . . . , v d`e of d`e distinct elements of NG(u). We claim that

P [vt < dom(I ′) and |LI (vt )| > ` for all 1 6 t 6 d`e] 6
1
d`e!

, (2.3.6)

which is enough as
(
∆

d`e

)
/d`e! < ∆−3/8 for large ∆. To show (2.3.6), consider an arbitrary independent set

Q ⊆ LJ (NG(u)) disjoint from L(vt ) for all 1 6 t 6 d`e. We either have |LJ (vt ) \ NH (Q)| < ` for some t, or
else, there exist at least d`e! ways to greedily choose elements xt ∈ LJ (vt ) so that Q ∪ {x1, . . . , x d`e} is an
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independent set. Therefore,

P
[
vt < dom(I ′) and |LI (vt )| > ` for all 1 6 t 6 d`e

�� I ′ \ L({v1, . . . , v d`e}) = Q
]
6

1
d`e!

.

Since Q is arbitrary, this yields (2.3.6). �

2.4 DP-critical graphs

2.4.1 Introduction

Critical graphs and the theorems of Brooks, Dirac, and Gallai

A graph G is said to be (k + 1)-vertex-critical if χ(G) = k + 1 but χ(G − u) 6 k for all u ∈ V(G). We will
only consider vertex-critical graphs, so for brevity we will call them simply critical. Since every graph G

with χ(G) > k contains a (k + 1)-critical subgraph, understanding the structure of critical graphs is crucial
for the study of graph coloring. We will only consider k > 3, the case k 6 2 being trivial (the only 1-critical
graph is K1, the only 2-critical graph is K2, and the only 3-critical graphs are odd cycles).

Let k > 3 and suppose that G is a (k + 1)-critical graph with n vertices and m edges. A classical problem
in the study of critical graphs is to understand how small m can be depending on n and k. Evidently, δ(G) > k;
in particular, 2m > kn. Brooks’s Theorem is equivalent to the assertion that the only situation in which
2m = kn is when G � Kk+1:

Theorem 2.4.1 (Brooks [Die00, Theorem 5.2.4]). Let k > 3 and let G be a (k + 1)-critical graph distinct
from Kk+1. Set n B |V(G)| and m B |E(G)|. Then 2m > kn.

Brooks’s theorem was subsequently sharpened by Dirac, who established a linear in k lower bound on the
difference 2m − kn:

Theorem 2.4.2 (Dirac [Dir57, Theorem 15]). Let k > 3 and let G be a (k + 1)-critical graph distinct from
Kk+1. Set n B |V(G)| and m B |E(G)|. Then

2m > kn + k − 2. (2.4.1)

Bound (2.4.1) is sharp in the sense that for every k > 3, there exist (k + 1)-critical graphs that satisfy
2m = kn + k − 2. However, for each k, there are only finitely many such graphs; in fact, they admit a simple
characterization, which we present below.

Definition 2.4.3. Let k > 3. A graph G is k-Dirac if its vertex set can be partitioned into three subsets V1,
V2, V3 such that:

– |V1 | = k, |V2 | = k − 1, and |V3 | = 2;

– the graphs G[V1] and G[V2] are complete;

– each vertex in V1 is adjacent to exactly one vertex in V3;
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– each vertex in V3 is adjacent to at least one vertex in V1;

– each vertex in V2 is adjacent to both vertices in V3; and

– G has no other edges.

We denote the family of all k-Dirac graphs by Dirk .

A typical member of Dirk is shown in Fig. 12.

V1 V2V3

Figure 12 – A typical k-Dirac graph.

Theorem 2.4.4 (Dirac [Dir74, Theorem, p. 152]). Let k > 3 and let G be a (k + 1)-critical graph distinct
from Kk+1. Set n B |V(G)| and m B |E(G)|. Then

2m = kn + k − 2 ⇐⇒ G ∈ Dirk .

As n goes to infinity, the gap between Dirac’s lower bound and the sharp bound increases. In fact,
Gallai [Gal63] observed that the asymptotic density of large (k + 1)-critical graphs distinct from Kk+1 is
strictly greater than k/2:

Theorem 2.4.5 (Gallai [Gal63]). Let k > 3 and let G be a (k + 1)-critical graph distinct from Kk+1. Set
n B |V(G)| and m B |E(G)|. Then

2m >
(
k +

k − 2
k2 + 2k − 2

)
n. (2.4.2)

Note, however, that Gallai’s bound (2.4.2) is stronger than (2.4.1) only for n at least quadratic in k.

List-critical graphs

A list assignment L for a graph G is called a degree list assignment if |L(u)| > degG(u) for all u ∈ V(G).
A fundamental result of Borodin [Bor79] and Erdős–Rubin–Taylor [ERT79], which can be seen as a
generalization of Brooks’s theorem to list colorings, provides a complete characterization of all graphs G that
are not L-colorable with respect to some degree list assignment L.

Definition 2.4.6. A Gallai tree is a connected graph in which every block is either a clique or an odd cycle.
A Gallai forest is a graph in which every connected component is a Gallai tree.
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Theorem 2.4.7 (Borodin [Bor79]; Erdős–Rubin–Taylor [ERT79, Theorem, p. 142]). Let G be a connected
graph and let L be a degree list assignment for G. If G is not L-colorable, then G is a Gallai tree; furthermore,
|L(u)| = degG(u) for all u ∈ V(G), and if u, v ∈ V(G) are two adjacent non-cut vertices, then L(u) = L(v).

Theorem 2.4.7 provides some useful information about the structure of critical graphs:

Corollary 2.4.8. Let k > 3 and let G be a (k + 1)-critical graph. Set

D B {u ∈ V(G) : degG(u) = k}.

Then G[D] is a Gallai forest.

Corollary 2.4.8 was originally proved by Gallai [Gal63] using a different method. It is crucial for the
proof of Gallai’s Theorem 2.4.5.

The definition of critical graphs can be naturally extended to list colorings. A graph G is said to be
L-critical, where L is a list assignment for G, if G is not L-colorable but for any u ∈ V(G), the graph G − u

is L-colorable. Note that if we set L(u) B {0, 1, . . . , k − 1} for all u ∈ V(G), then G being L-critical is
equivalent to it being (k + 1)-critical. Repeating the argument used to prove Corollary 2.4.8, we obtain the
following more general statement:

Corollary 2.4.9 (Kostochka–Stiebitz–Wirth [KSW96, Theorem 5]). Let k > 3 and let G be a graph. Suppose
that L is a k-list assignment for G such that G is L-critical. Set

D B {u ∈ V(G) : degG(u) = k}.

Then G[D] is a Gallai forest.

Corollary 2.4.9 can be used to prove a version of Gallai’s theorem for list-critical graphs:

Theorem 2.4.10 (Kostochka–Stiebitz–Wirth [KSW96, Theorem 6]). Let k > 3. Let G be a graph distinct
from Kk+1 and let L be a k-list assignment for G such that G is L-critical. Set n B |V(G)| and m B |E(G)|.
Then

2m >
(
k +

k − 2
k2 + 2k − 2

)
n.

On the other hand, list-critical graphs distinct from Kk+1 do not, in general, admit a nontrivial lower bound
on the difference 2m − kn that only depends on k (analogous to the one given by Dirac’s Theorem 2.4.2 for
(k + 1)-critical graphs). Consider the following example, presented in [KS02, p. 167]. Fix k ∈ N and let G be
the graph with vertex set {a0, . . . , ak, b0, . . . , bk} of size 2(k + 1) and edge set {aiaj, bibj : i , j} ∪ {a0b0}.
For each i ∈ [k], let L(ai) = L(bi) B {0, 1, . . . , k − 1}, and let L(a0) = L(b0) B {1, 2, . . . , k}. Then G is
L-critical; however, 2|E(G)| − k |V(G)| = 2.

Nonetheless, Theorem 2.4.2 can be extended to the list coloring framework if we restrict our attention to
graphs that do not contain Kk+1 as a subgraph:
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Theorem 2.4.11 (Kostochka–Stiebitz [KS02, Theorem 2]). Let k > 3. Let G be a graph and let L be a
k-list assignment for G such that G is L-critical. Suppose that G does not contain a clique of size k + 1. Set
n B |V(G)| and m B |E(G)|. Then

2m > kn + k − 2.

Kostochka and Stiebitz [KS02, Section 4] asked whether the conclusion of Theorem 2.4.4 also holds for list
critical graphs with no Kk+1 as a subgraph. We answer this question in the affirmative; see Corollary 2.4.17.

DP-critical graphs and the results of this section

A cover H = (L,H) of a graph G is a degree cover if |L(u)| > degG(u) for all u ∈ V(G). In §2.4.2 we
establish the following generalization of Theorem 2.4.7 (see Theorem 2.4.21):

Definition 2.4.12. A GDP-tree is a connected graph in which every block is either a clique or a cycle. A
GDP-forest is a graph in which every connected component is a GDP-tree.

Theorem 2.4.13. Let G be a connected graph and let H = (L,H) be a degree cover of G. If G is not
H -colorable, then G is a GDP-tree; furthermore, |L(u)| = degG(u) for all u ∈ V(G), and if u, v ∈ V(G) are
two adjacent non-cut vertices, then EH (L(u), L(v)) is a perfect matching.

Let G be a graph and letH = (L,H) be a cover of G. We say that G isH -critical if G is notH -colorable
but for any u ∈ V(G), the graph G − u is H -colorable, i.e., there exists an independent set I ⊆ V(H) such
that I ∩ L(v) , � for all v , u. Theorem 2.4.13 implies the following:

Corollary 2.4.14. Let k > 3 and let G be a graph. Suppose that H is a k-fold cover of G such that G is
H -critical. Set

D B {u ∈ V(G) : degG(u) = k}.

Then G[D] is a GDP-forest.

Corollary 2.4.14 yields an extension of Gallai’s theorem to DP-critical graphs:

Theorem 2.4.15. Let k > 3. Let G be a graph distinct from Kk+1 and let H be a k-fold cover of G such that
G is H -critical. Set n B |V(G)| and m B |E(G)|. Then

2m >
(
k +

k − 2
k2 + 2k − 2

)
n.

The derivation of Theorem 2.4.15 from Corollary 2.4.14 is essentially the same as the derivation of
Theorem 2.4.5 from Corollary 2.4.8. For completeness, we include the proof of Theorem 2.4.15 in §2.4.3.

The main result of this section is a generalization of Theorem 2.4.11 to DP-critical graphs. In fact, we
establish a sharp version that also generalizes Theorem 2.4.4:

Theorem 2.4.16. Let k > 3. Let G be a graph and let H be a k-fold cover of G such that G is H -critical.
Suppose that G does not contain a clique of size k + 1. Set n B |V(G)| and m B |E(G)|. If G < Dirk , then

2m > kn + k − 2.
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An immediate corollary of Theorem 2.4.16 is the following version of Theorem 2.4.4 for list colorings:

Corollary 2.4.17. Let k > 3. Let G be a graph and let L be a k-list assignment for G such that G is L-critical.
Suppose that G does not contain a clique of size k + 1. Set n B |V(G)| and m B |E(G)|. If G < Dirk , then

2m > kn + k − 2.

We prove Theorem 2.4.16 in §2.4.4. Our proof is inductive (we consider a smallest counterexample).
As often is the case, having a stronger inductive assumption (due to working with DP-critical and not just
list-critical graphs) allows for more flexibility in the proof. In particular, we do not know if our argument can
be adapted to give a “DP-free” proof of Corollary 2.4.17.

2.4.2 DP-degree-colorable multigraphs

In this subsection we prove Theorem 2.4.13. In fact, we do more and establish a version of Theorem 2.4.13
for multigraphs. It has already been noted in §2.2.4 that the notion of DP-coloring can be naturally extended
to loopless multigraphs by replacing (C4) in Definition 2.1.1 by the following:

(C4′) If u and v are connected by t > 1 edges in G, then EH (L(u), L(v)) is a union of t matchings.

We say that a multigraph G is DP-degree-colorable if G is H -colorable whenever H is a degree cover of
G. For a positive integer k and a multigraph G, let Gk denote the multigraph obtained from G by replacing
each edge in G with a set of k parallel edges (so G1 = G for every G). The next two lemmas demonstrate
two classes of multigraphs that are not DP-degree-colorable. The first of them exhibits multigraphs whose
DP-chromatic number exceeds the number of vertices. In particular, for each k > 2, the 2-vertex multigraph
Kk

2 has DP-chromatic number k + 1.

Lemma 2.4.18. The multigraph Kk
n is not DP-degree-colorable.

Proof. Let G B Kk
n . For each v ∈ V(G), let

L(v) B {(v, i, j) : i < n − 1, j < k},

and let
(v1, i1, j1)(v2, i2, j2) ∈ E(H) :⇐⇒ v1 = v2 or i1 = i2.

Then H B (L,H) is a cover of G and |L(v)| = k(n − 1) = degG(v) for all v ∈ V(G). We claim that G is not
H -colorable. Indeed, if I ⊆ V(H) is such that |I ∩ L(v)| = 1 for all v ∈ V , then for some distinct (v1, i1, j1),
(v2, i2, j2) ∈ I, we have i1 = i2. Thus, I is not an independent set. �

Lemma 2.4.19. The multigraph Ck
n is not DP-degree-colorable.

Proof. Let G B Ck
n . Without loss of generality, assume that V(G) = {0, 1, . . . , n− 1} and u and v are adjacent

if and only if |u − v | = 1 or {u, v} = {0, n − 1}. For each v ∈ V(G), let

L(v) B {(v, i, j) : i < 2, j < k},
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and let

(v1, i1, j1)(v2, i2, j2) ∈ E(H) :⇐⇒


v1 = v2; or
|v1 − v2 | = 1 and i1 = i2; or
{v1, v2} = {0, n − 1} and i1 = i2 + n − 1 (mod 2).

Then H B (L,H) is a cover of G and |L(v)| = 2k = degG(v) for all v ∈ V(G). We claim that G is not
H -colorable. Indeed, suppose that I = {(v, iv, jv)}n−1

v=0 ⊂ V(H) is an H -coloring of G. Without loss of
generality, we may assume that i0 = 0. Then for each v ∈ V(G), we have iv = v (mod 2). Thus,

i0 = in−1 + n − 1 (mod 2),

and so (1, i0, j0)(n − 1, in−1, jn−1) ∈ E(H). Therefore, I is not independent. �

The main result of this subsection is that the above lemmas describe all 2-connected multigraphs that are
not DP-degree-colorable (this is a generalization of Theorem 2.4.13):

Definition 2.4.20. A multi-GDP-tree is a connected multigraph in which every block is isomorphic to one
of the graphs Kk

n , Ck
n for some n and k.

Theorem 2.4.21. Let G be a connected multigraph and let H = (L,H) be a degree cover of G. If G is
not H -colorable, then G is a multi-GDP-tree; furthermore, |L(u)| = degG(u) for all u ∈ V(G), and if u,
v ∈ V(G) are two adjacent non-cut vertices, then EH (L(u), L(v)) is a union of eG(u, v) perfect matchings.

Proof of Theorem 2.4.21

We proceed via a series of lemmas.

Lemma 2.4.22. Suppose that G is a regular n-vertex multigraph whose underlying simple graph is a cycle.
Then G is not DP-degree-colorable if and only if G � Ck

n for some k.

Proof. Without loss of generality, assume that V(G) = {0, . . . , n − 1} and and u and v are adjacent if and only
if |u− v | = 1 or {u, v} = {0, n−1}. Suppose that G � Ck

n . Since G is regular, this implies that n is even and for
some distinct positive r , s ∈ N, we have eG(v, v + 1) = r for all even v < n and eG(0, n− 1) = eG(v, v + 1) = s

for all odd v < n − 1. Without loss of generality, assume s > r .
Let H = (L,H) be a cover of G such that |L(v)| = degG(v) = r + s for all v ∈ V(G). We will show that

G is H -colorable. For x ∈ L(0), say that a color y ∈ L(v) is x-admissible if there exists a set I ⊆ V(H)

that is independent in H − EH (L(0), L(n − 1)) such that |I ∩ L(u)| = 1 for all u 6 v and {x, y} ⊆ I. Let
Ax(v) ⊆ L(v) denote the set of all x-admissible colors in L(v). Clearly, for each x ∈ L(0), |Ax(1)| > s

and |Ax(2)| > r. Suppose that for some x ∈ L(0), |Ax(2)| > r. Since each color in L(3) has at most r

neighbors in L(2), Ax(3) = L(3). Similarly, Ax(v) = L(v) for all v > 3. In particular, Ax(n − 1) = L(n − 1).
Take any y ∈ L(n − 1) \ NH (x). Since y ∈ Ax(n − 1), there exists a set I ⊆ V(H) that is independent in
H − EH (L(0), L(n − 1)) such that |I ∩ L(u)| = 1 for all u ∈ V(G) and {x, y} ⊆ I. But then I is independent in
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H, so I is an H -coloring of G. Thus, we may assume that |Ax(2)| = r for all x ∈ L(0). Note that

L(2) \ Ax(2) = L(2) ∩
⋂

y∈Ax (1)
NH (y).

Therefore, L(2) ∩ NH (y) is the same set of size s for all y ∈ Ax(1). Since each vertex in L(2) has at most s

neighbors in L(1), the graph H[Ax(1) ∪ (L(2) \ Ax(2))] is a complete 2s-vertex graph. Since every vertex in
L(1) is x-admissible for some x ∈ L(0), H[L(1) ∪ L(2)] contains a disjoint union of at least two complete
2s-vertex graphs. Therefore, |L(1) ∪ L(2)| > 4s. But |L(1)| = |L(2)| = r + s < 2s; a contradiction. �

Lemma 2.4.23. Let G be a connected multigraph and suppose H = (L,H) is a degree cover of G such that
|L(v0)| > degG(v0) for some v0 ∈ V(G). Then G is H -colorable.

Proof. If |V(G)| = 1, the statement is clear. Now suppose G is a counterexample with the fewest vertices.
Consider the multigraph G′ B G − v0. For each v ∈ V(G′), let L ′(v) B L(v), and let H ′ B H − L(v0).
By construction, H ′ B (L ′,H ′) is a degree cover of G′. Moreover, since G is connected, each connected
component of G′ contains a vertex u adjacent in G to v0 and thus satisfying degG′(u) < degG(u). Hence,
by the minimality assumption, G′ is H ′-colorable. Let I ′ ⊆ V(H ′) be an H ′-coloring of G′. Then
|NG(I ′) ∩ L(v0)| 6 degG(v0), so L(v0) \ NG(I ′) , �. Thus, I ′ can be extended to an H -coloring I of G. �

Lemma 2.4.24. Let G be a connected multigraph and let H = (L,H) be a degree cover of G. Suppose
that there exist a vertex v1 ∈ V(G) and a color x1 ∈ L(v1) such that G − v1 is connected and for some
v2 ∈ V(G) \ {v1}, x1 has fewer than eG(v1, v2) neighbors in L(v2). Then G is H -colorable.

Proof. Let G′ B G − v1. For each v ∈ V(G′), let L ′(v) B L(v) \ NH (x1) and H ′ B H − L(v1) − NH (x1).
Then H ′ B (L ′,H ′) is a cover of G′. Moreover, for each v ∈ V(G′),

|L ′(v)| = |L(v)| − |L(v) ∩ NH (x1)| > degG(v) − eG(v, v1) = degG′(v),

and
|L ′(v2)| = |L(v2)| − |L(v2) ∩ NH (x1)| > degG(v2) − eG(v2, v1) = degG′(v2).

Since G′ is connected, Lemma 2.4.23 implies that G′ is H ′-colorable. But if I ′ ⊆ V(H ′) is an H ′-coloring
of G′, then I ′ ∪ {x1} is an H -coloring of G, as desired. �

Lemma 2.4.25. Suppose that G is a 2-connected multigraph and H = (L,H) is a degree cover of G. If G is
not (L,H)-colorable, then G is regular and for each pair of adjacent vertices v1, v2 ∈ V(G), the bipartite
graph H[L(v1), L(v2)] is eG(v1, v2)-regular.

Proof. Consider any two adjacent v1, v2 ∈ V(G). By Lemma 2.4.24, H[L(v1), L(v2)] is an eG(v1, v2)-regular
bipartite graph with parts L(v1), L(v2). Therefore, |L(v1)| = |L(v2)|, so degG(v1) = degG(v2), as desired.
Since G is connected and v1, v2 are arbitrary adjacent vertices in G, this means that G is regular. �

Lemma 2.4.26. Let G be a 2-connected multigraph. Suppose that u1, u2, w ∈ V(G) are distinct vertices such
that G − u1 − u2 is connected, eG(u1, u2) < eG(u1,w), and eG(u2,w) > 1. Then G is DP-degree-colorable.
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Proof. Suppose G is not H -colorable for some degree cover H = (L,H). First we show that

there are nonadjacent x1 ∈ L(u1), x2 ∈ L(u2) with NH (x1) ∩ NH (x2) ∩ L(w) , �. (2.4.3)

Consider any x2 ∈ L(u2). By Lemma 2.4.25, |L(w) ∩ NH (x2)| = eG(u2,w) > 1. Similarly, for each
y ∈ L(w) ∩ NH (x2),

|L(u1) ∩ NH (y)| = eG(u1,w) > eG(u1, u2) = |L(u1) ∩ NH (x2)|.

Thus, there exists some x1 ∈ (L(u1) ∩ NH (y)) \ (L(u1) ∩ NH (x2)). By the choice, x1 and x2 are nonadjacent
and y ∈ NH (x1) ∩ NH (x2) ∩ L(w). This proves (2.4.3).

Let x1 and x2 satisfy (2.4.3). Let G′ B G − u1 − u2. For each v ∈ V(G′), let

L ′(v) B L(v) \ (NH (x1) ∪ NH (x2)),

and
H ′ B H − L(u1) − L(u2) − NH (x1) − NH (x2).

Then G′ is connected and H ′ B (L ′,H ′) is a cover of G′ satisfying the conditions of Lemma 2.4.23 with w

in the role of v0. Thus G′ is H ′-colorable, and hence G is H -colorable, which is a contradiction. �

Lemma 2.4.27. Suppose that G is an n-vertex 2-connected multigraph that contains a vertex adjacent to all
the other vertices. Then either G � Kk

n for some k, or else, G is DP-degree-colorable.

Proof. Suppose that G is an n-vertex multigraph that is not DP-degree-colorable and assume that w ∈ V(G)

is adjacent to all the other vertices. If some distinct u1, u2 ∈ V(G) \ {w} are nonadjacent, then the triple u1,
u2, w satisfies the conditions of Lemma 2.4.26, so G is DP-degree-colorable. Hence any two vertices in G are
adjacent; in other words, the underlying simple graph of G is Kn. It remains to show that any two vertices in G

are connected by the same number of edges. Indeed, if u1, u2, u3 ∈ V(G) are such that eG(u1, u2) < eG(u1, u3),
then, by Lemma 2.4.26 again, G is DP-degree-colorable. �

Lemma 2.4.28. Suppose that G is a 2-connected n-vertex multigraph in which each vertex has at most 2
neighbors. Then either G � Ck

n for some k, or else, G is DP-degree-colorable.

Proof. Suppose that G is a 2-connected n-vertex multigraph in which each vertex has at most 2 neighbors
and that is not DP-degree-colorable. Then the underlying simple graph of G is a cycle and Lemma 2.4.25
implies that G is regular, so G � Ck

n by Lemma 2.4.22. �

Lemma 2.4.29. Suppose that G is a 2-connected n-vertex multigraph that is not DP-degree-colorable. Then
G � Kk

n or Ck
n for some k.

Proof. By Lemmas 2.4.27 and 2.4.28, we may assume thatG contains a vertex u such that 3 6 |NG(u)| 6 n−2.
Since G is 2-connected, G− u is connected. However, G− u is not 2-connected. Indeed, let v1 be any vertex in
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V(G) \ ({u} ∪ NG(u)) that shares a neighbor w with u. Due to Lemma 2.4.26 with u in place of v2, G − v1 − u

is disconnected, so v1 is a cut vertex in G − u.
Therefore, G − u contains at least two leaf blocks, say B1 and B2. For i ∈ {1, 2}, let xi be the cut vertex of

G − u contained in Bi. Since G itself is 2-connected, u has a neighbor vi ∈ Bi − xi for each i ∈ {1, 2}. Then
v1 and v2 are nonadjacent and G − u − v1 − v2 is connected. Since u has at least 3 neighbors, G − v1 − v2 is
also connected. Hence, we are done by Lemma 2.4.26 with u in the role of w. �

Lemma 2.4.30. Suppose that w ∈ V(G), G = G1 + G2, and V(G1) ∩ V(G2) = {w}. If G1 and G2 are not
DP-degree-colorable, then G is also not DP-degree-colorable.

Proof. For each i ∈ {1, 2}, letHi = (Li,Hi) be a degree cover of Gi such that Gi is notHi-colorable. Without
loss of generality, assume that L1(v1) ∩ L2(v2) = � for all v1 ∈ V(G1), v2 ∈ V(G2). For each v ∈ V(G), let

L(v) B


L1(v) if v ∈ V(G1) \ {w};

L2(v) if v ∈ V(G2) \ {w};

L1(w) ∪ L2(w) if v = w,

and let H B H1 + H2 + K(L(w)), where K(L(w)) denotes the complete graph with vertex set L(w). Then
H B (L,H) is a degree cover ofG. Suppose thatG isH -colorable and let I be anH -coloring ofG. Without
loss of generality, assume I ∩ L(w) ⊆ L1(w). Then I ∩ V(H1) is an H1-coloring of G1; a contradiction. �

Proof of Theorem 2.4.21. Lemmas 2.4.18, 2.4.19, and 2.4.30 show that if G is a multi-GDP-tree, then G is
not DP-degree-colorable.

Now assume that G is a connected multigraph that is not DP-degree-colorable. If G is 2-connected, then
we are done by Lemma 2.4.29. Therefore, we may assume that G has a cut vertex w ∈ V(G). Let G1 and
G2 be nontrivial connected subgraphs of G such that G = G1 + G2 and V(G1) ∩ V(G2) = {w}. It remains
to show that neither G1 nor G2 is DP-degree-colorable, since then we will be done by induction. Suppose
towards a contradiction that G1 is DP-degree-colorable. Let H = (L,H) be a degree cover of G. Due to
Lemma 2.4.23 applied to the connected components of G2 − w, there exists an H -coloring I2 of G2 − w. For
each v ∈ V(G1), let

L1(v) B L(v) \ NH (I2).

(Note that L1(v) = L(v) for all v ∈ V(G1) \ {w}.) Also, let

H1 B H


⋃
v∈V (G1)

L1(v)

 .
Then H1 B (L1,H1) is a degree cover of G1. Since G1 is DP-degree-colorable, it is H1-colorable. But if I1

is an H1-coloring of G1, then I1 ∪ I2 is an H -coloring of G.
The “furthermore” part of the theorem is a direct consequence of Lemmas 2.4.23 and 2.4.24. �
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2.4.3 Gallai’s theorem for DP-critical graphs

In this subsection we prove Theorem 2.4.15. The lemma below was proved for Gallai trees by Gallai himself
[Gal63]; the same proof works for GDP-trees as well.

Lemma 2.4.31 (ess. Gallai [Gal63]). Let k > 3 and let T be an n-vertex GDP-tree of maximum degree at
most k not containing Kk+1. Set n B |V(T)| and m B |E(T)|. Then

2m 6
(
k − 1 +

2
k

)
n. (2.4.4)

To establish Theorem 2.4.15, we use discharging. Let G be an n-vertex graph with m edges distinct from
Kk+1 and let H be a k-fold cover of G such that G is H -critical. Note that the minimum degree of G is at
least k. The initial charge of each vertex v ∈ V(G) is ch(v) B degG(v). The only discharging rule is this:

Each vertex v ∈ V(G) with degG(v) > k + 1 sends to each neighbor the charge k/(k2 + 2k − 2).

Denote the new charge of each vertex v by ch∗(v). We will show that∑
v∈V (G)

ch∗(v) >
(
k +

k − 2
k2 + 2k − 2

)
n. (2.4.5)

Indeed, if degG(v) > k + 1, then

ch∗(v) > degG(v) −
k

k2 + 2k − 2
· degG(v) > (k + 1)

(
1 −

k
k2 + 2k − 2

)
= k +

k − 2
k2 + 2k − 2

. (2.4.6)

Also, if T is any component of the subgraph G′ of G induced by the vertices of degree k, then∑
v∈V (T )

ch∗(v) > k |V(T)| +
k

k2 + 2k − 2
|EG(V(T),V(G) \ V(T))| .

Since T is a GDP-tree that does not contain Kk+1, by Lemma 2.4.31,

|EG(V(T),V(G) \ V(T))| > k |V(T)| −
(
k − 1 +

2
k

)
|V(T)| =

(
1 −

2
k

)
|V(T)|.

Thus, for every component T of G′, we have∑
v∈V (T )

ch∗(v) > k |V(T)| +
k

k2 + 2k − 2
·

(
1 −

2
k

)
· |V(T)| =

(
k +

k − 2
k2 + 2k − 2

)
|V(T)|.

Together with (2.4.6), this implies (2.4.5).

2.4.4 Sharp Dirac’s theorem for DP-critical graphs

In this subsection we prove Theorem 2.4.16.
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First observations

Set-up and notation From now on, we fix a counterexample to Theorem 2.4.16; more precisely, we fix the
following data:

• an integer k > 3;

• a graph G with n vertices and m edges such that:

– G < Dirk ;

– G does not contain a clique of size k + 1; and

– G satisfies the inequality
2m 6 kn + k − 2; (2.4.7)

• a k-fold cover H = (L,H) of G such that G is H -critical.

Furthermore, we assume that G is a counterexample with the fewest vertices.
For brevity, we denote V B V(G) and E B E(G). As usual, for a subset U ⊆ V , we use Uc to denote the

complement of U in V , i.e., Uc B V \U. For u ∈ V and U ⊆ V , set

deg(u) B degG(u) and degU (u) B |U ∩ NG(u)|.

For u ∈ V , set
ε(u) B deg(u) − k,

and for U ⊆ V , define
ε(U) B

∑
u∈U

ε(u).

Note that (2.4.7) is equivalent to
ε(V) 6 k − 2. (2.4.8)

Since G is H -critical, we have δ(G) > k, i.e., ε(u) > 0 for all u ∈ V . Let

D B {u ∈ V : deg(u) = k} = {u ∈ V : ε(u) = 0}.

Since ε(u) > 1 for every u ∈ Dc, (2.4.8) yields

|Dc | 6 k − 2.

By Corollary 2.4.14, G[D] is a GDP-forest. Furthermore, since n > k + 1, D , �.
From now on, we refer to the vertices of H as colors and to the independent sets in H as colorings. The

set of all independent sets in H is denoted by Ind(H). For I, I ′ ∈ Ind(H), we say that I ′ extends I if I ′ ⊇ I.
For I ∈ Ind(H), let

dom(I) B {u ∈ V : I ∩ L(u) , �}.
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Since G is H -critical, there is no coloring I with dom(I) = V , but for every proper subset U ⊂ V , there exists
a coloring I with dom(I) = U.

For I ∈ Ind(H) and u ∈ (dom(I))c, let

LI (u) B L(u) \ NH (I).

In other words, LI (u) is the set of all colors available for u in a coloring extending I. For u ∈ V and U ⊆ V , let

ϕU (u) B degU (u) − ε(u).

In particular, if u ∈ D, then ϕU (u) = degU (u). Note that

ϕU (u) = degU (u) − (deg(u) − k) = k − (deg(u) − degU (u)) = k − degUc(u).

Therefore, if I is a coloring such that dom(I) = Uc, then for all u ∈ U,

|LI (u)| > ϕU (u). (2.4.9)

A property of GDP-forests The following simple general property of GDP-forests will be quite useful:

Proposition 2.4.32. Let F be a nonempty GDP-forest of maximum degree at most k not containing a clique
of size k + 1. Then ∑

u∈V (F)

(k − degF (u)) > k, (2.4.10)

with equality only if F � K1 or F � Kk .

Proof. It suffices to establish the proposition for the case when F is connected, i.e., a GDP-tree. If F is
2-connected, i.e., a clique or a cycle, then the statement follows via a simple calculation. It remains to notice
that adding a leaf block to a GDP-tree of maximum degree at most k cannot decrease the quantity on the
left-hand side of (2.4.10). �

Corollary 2.4.33. Let U ⊆ D be the vertex set of a connected component of G[D]. Then

|EG(U,Dc)| > k,

with equality only if G[U] � Kk .

Proof. We have

|EG(U,Dc)| =
∑
u∈U

degDc(u) =
∑
u∈U

degUc(u) =
∑
u∈U

(k − degU (u)).

By Proposition 2.4.32 applied to G[U], the latter quantity is at least k, with equality only if G[U] � K1 or
G[U] � Kk . It remains to notice that G[U] � K1, since deg(u) = k for each u ∈ U, while |Dc | 6 k − 2. �
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Enhanced vertices The following definition will play a crucial role in our argument:

Definition 2.4.34. Let I be a coloring and let U B (dom(I))c. A vertex u ∈ U ∩ D is enhanced by I, or I

enhances u, if |LI (u)| > degU (u).

Remark. Note that, in the context of Definition 2.4.34, we always have |LI (u)| > degU (u).

The importance of Definition 2.4.34 stems from the following lemma:

Lemma 2.4.35. Let I be a coloring and let U B (dom(I))c.

(i) Suppose that I ′ is a coloring extending I. Let u ∈ (dom(I ′))c ∩ D. If u is enhanced by I, then it is also
enhanced by I ′.

(ii) Let U ′ ⊆ U ∩ D be a subset such that the graph G[U ′] is connected. Suppose that U ′ contains a
vertex enhanced by I. Then I can be extended to a coloring I ′ with dom(I ′) = Uc ∪U ′.

(iii) Suppose that I enhances at least one vertex in each component of G[U ∩ D]. Then I cannot be
extended to a coloring I ′ with dom(I ′) ⊇ Dc.

Proof. Since (i) is an immediate corollary of the definition and (ii) follows from Theorem 2.4.13, it only
remains to prove (iii). To that end, suppose, under the assumptions of (iii), that I ′ is a coloring extending
I with dom(I ′) ⊇ Dc. Reducing I ′ if necessary, we may arrange that dom(I ′) = Uc ∪ Dc. Then, by (i), I ′

enhances at least one vertex in each component of G[U ∩ D]. Applying (ii) to each connected component of
G[U ∩ D], we can extend I ′ to a coloring of the entire graph G; a contradiction. �

The next lemma gives a convenient sufficient condition under which a given coloring can be extended so
that the resulting coloring enhances a particular vertex:

Lemma 2.4.36. Let I be a coloring and let U B (dom(I))c. Let u ∈ U ∩ D and suppose that A ⊆ U ∩ NG(u)

is an independent set in G. Moreover, suppose that

min{ϕU (v) : v ∈ A} > 0 and
∑
v∈A

ϕU (v) > degU (u).

Then there is a coloring I ′ with dom(I ′) = Uc ∪ A that extends I and enhances u.

Proof. Since A is independent and for all v ∈ A, we have ϕU (v) > 0 (and hence, by (2.4.9), |LI (v)| > 0), any
coloring I ′ with dom(I ′) ⊆ Uc ∪ A can be extended to a coloring with domain Uc ∪ A. Therefore, it suffices
to find a coloring that extends I and enhances u and whose domain is contained in Uc ∪ A.

If u is enhanced by I itself, then we are done, so assume that |LI (u)| = degU (u). If for some v ∈ A,
there is x ∈ LI (v) with no neighbor in LI (u), then u is enhanced by I ∪ {x}, and we are done again. Thus,
we may assume that for every v ∈ A, the matching EH (LI (v), LI (u)) saturates LI (v). For each v ∈ A and
x ∈ LI (v), let f (x) denote the neighbor of x in LI (u). Since

∑
v∈A ϕU (v) > degU (u), and hence, by (2.4.9),∑

v∈A |LI (v)| > |LI (u)|, there exist distinct vertices v, w ∈ A and colors x ∈ LI (v), y ∈ LI (w) such that
f (x) = f (y). Then u is enhanced by the coloring I ∪ {x, y}, and the proof is complete. �
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Corollary 2.4.37. Suppose that u, u1, u2 ∈ D are distinct vertices such that uu1, uu2 ∈ E , while u1u2 < E .
Then the graph G[D] − u1 − u2 is disconnected.

Proof. Note that, since u, u1, u2 ∈ D, we have

ϕV (u1) = ϕV (u2) = k and deg(u) = k,

so, by Lemma 2.4.36, there exist x1 ∈ L(u1) and x2 ∈ L(u2) such that u is enhanced by the coloring {x1, x2}.
Since for all v ∈ Dc,

|L{x1,x2 }(v)| > |L(v)| − |{x1, x2}| = k − 2 > |Dc |,

we can extend {x1, x2} to a coloring I with dom(I) = {u1, u2} ∪ Dc. Due to Lemma 2.4.35(iii), at least
one connected component of the graph G[D] − u1 − u2 contains no vertices enhanced by I. Since, by
Lemma 2.4.35(i), I enhances u, G[D] − u1 − u2 is disconnected, as desired. �

We will often apply Lemma 2.4.36 in the form of the following corollary:

Corollary 2.4.38. Suppose that u ∈ D and let v1, v2 ∈ Dc ∩ NG(u) be distinct vertices such that v1v2 < E .
Let U ⊆ D be any set such that u ∈ U and the graph G[U] is connected. Then

either min{ϕU (v1), ϕU (v2)} 6 0,
or ϕU (v1) + ϕU (v2) 6 degU (u) + 2.

Proof. Notice that

ϕU∪{v1,v2 }(vi) = ϕU (vi) for each i ∈ {1, 2}, and degU∪{v1,v2 }
(u) = degU (u) + 2.

Therefore, is the claim fails, then we can first fix any coloring I with dom(I) = (U ∪ {v1, v2})
c, and then apply

Lemma 2.4.36 to extend it to a coloring I ′ with dom(I ′) = Uc that enhances u. Since G[U] is connected, such
a coloring cannot exist by Lemma 2.4.35(iii). �

The following observation can be viewed as an analog of Lemma 2.4.35(ii) for edges instead of vertices:

Lemma 2.4.39. Let I be a coloring and let U B (dom(I))c. Let U ′ ⊆ U ∩ D be a subset such that the graph
G[U ′] is connected and let u1, u2 ∈ U ′ be adjacent non-cut vertices in G[U ′]. Suppose that the matching
EH (LI (u1), LI (u2)) is not perfect. Then I can be extended to a coloring I ′ with dom(I ′) = Uc ∪U ′.

Proof. Follows from Theorem 2.4.13. �

Vertices of small degree Now we establish some structural properties that G must possess if the minimum
degree of the graph G[D] is “small” (namely at most 2).

Lemma 2.4.40. (i) The minimum degree of G[D] is at least 2.

(ii) If there is a vertex u ∈ D such that degD(u) = 2, then |Dc | = k − 2, u is adjacent to every vertex
in Dc, and ε(v) = 1 for all v ∈ Dc.
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(iii) If the graph G[D] has a connected component with at least 3 vertices of degree 2, then G[Dc] is a
disjoint union of cliques.

(iv) If the graph G[D] has a connected component with at least 4 vertices of degree 2, then G[Dc] � Kk−2.

Proof. (i) For each u ∈ D, we have

k − 2 > |Dc | > degDc(u) = k − degD(u),

so degD(u) > 2.
(ii) If u ∈ D and degD(u) = 2, then u has exactly k − 2 neighbors in Dc. Thus,

ε(Dc) = |Dc | = k − 2,

which implies all the statements in (ii).
(iii) Let U ⊆ D be the vertex set of a connected component of G[D] such that G[U] contains at least 3

vertices of degree 2. Suppose, towards a contradiction, that G[Dc] is not a disjoint union of cliques, i.e., there
exist distinct vertices v0, v1, v2 ∈ Dc such that v0v1, v0v2 ∈ E , while v1v2 < E . By (ii), each vertex in Dc is
adjacent to every vertex of degree 2 in G[D], |Dc | = k − 2, and ε(v) = 1 for all v ∈ Dc. Thus,

ϕU∪{v0,v1,v2 }(vi) = degU∪{v0,v1,v2 }
(vi) − ε(vi) > (3 + 1) − 1 = 3 for each i ∈ {1, 2}.

Fix any vertex u ∈ U such that degU (u) = 2. Then

degU∪{v0,v1,v2 }
(u) = 2 + 3 = 5.

Therefore, by Lemma 2.4.36, there exists a coloring I with domain

dom(I) = (U ∪ {v0, v1, v2})
c ∪ {v1, v2} = (U ∪ {v0})

c

that enhances u. By (2.4.9),

|LI (v0)| > ϕU (v0) = degU (v0) − ε(v0) > 3 − 1 = 2 > 0,

so I can be extended to a coloring I ′ with dom(I ′) = Uc. This contradicts Lemma 2.4.35(iii).
(iv) If U ⊆ D is the vertex set of a connected component of G[D] with at least 4 vertices of degree 2 and

v1, v2 ∈ Dc are distinct nonadjacent vertices, then we have

ϕU (vi) = degU (vi) − ε(vi) > 4 − 1 = 3 for each i ∈ {1, 2},

so for every vertex u ∈ U with degU (u) = 2, we have

ϕU (v1) + ϕU (v2) > 3 + 3 > 4 = degU (u) + 2;
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a contradiction to Corollary 2.4.38. �

Terminal sets The following definitions will be used throughout the rest of the proof.

Definition 2.4.41. A terminal set is a subset B ⊆ D such that G[B] is a leaf block in a connected component
of G[D]. For a terminal set B, CB ⊇ B denotes the vertex set of the connected component of G[D] that
contains B. A vertex u ∈ D is terminal if it belongs to some terminal set B and is not a cut-vertex in G[CB].

By definition, a terminal set contains at most one non-terminal vertex. Since G[D] is a GDP-forest, if B is
a terminal set, then G[B] is either a cycle or a clique. By Lemma 2.4.40(i), the cardinality of a terminal set is
at least 3.

Definition 2.4.42. A terminal set B is dense if G[B] is not a cycle; otherwise, B is sparse.

By definition, the cardinality of a dense terminal set is at least 4.
Our proof hinges on the following key fact:

Lemma 2.4.43. There exists a dense terminal set.

Proof. Suppose that every terminal set is sparse. Since every terminal set induces a cycle, each component of
G[D] contains at least 3 vertices of degree 2, and a component of G[D] with exactly 3 vertices of degree
2 must be isomorphic to a triangle. By Lemma 2.4.40(ii), each vertex in Dc is adjacent to every vertex of
degree 2 in G[D], |Dc | = k − 2, and ε(v) = 1 for all v ∈ Dc. Furthermore, by Lemma 2.4.40(iii)(iv), G[Dc] is
a disjoint union of cliques and, unless every component of G[D] is isomorphic to a triangle, G[Dc] � Kk−2.

Claim (A). G[Dc] � Kk−2.

Proof. Assume, towards a contradiction, that G[Dc] � Kk−2. Then every vertex in Dc has exactly (k + 1) −
(k − 3) = 4 neighbors in D. Therefore, the number of vertices of degree 2 in G[D] is at most 4. Since every
component of G[D] contains at least 3 vertices of degree 2, the graph G[D] is connected. Since |D | > 4,
G[D] is not a triangle. Thus, it contains precisely 4 terminal vertices of degree 2; i.e., it either is a 4-cycle, or
contains exactly two leaf blocks, both of which are triangles.

Case 1: G[D] is a 4-cycle. We will show that in this case G is H -colorable. First, we make the following
observation:

Let W4 denote the 4-wheel. Then χDP(W4) = 3. (2.4.11)

Indeed, let F = (M, F) be a 3-fold cover of W4 and suppose that W4 is not F -colorable. Let v ∈ V(W4) be
the center of W4 and let U B V(W4) \ {v} (so W4[U] is a 4-cycle). Define a function f : V(F) → M(v) by

f (x) = y :⇐⇒ (x = y) or (x < M(v) and xy ∈ E(F)).

Since degW4
(u) = 3 for all u ∈ U, Theorem 2.4.13 implies that f is well-defined. Since W4 is 3-colorable

(in the sense of ordinary graph coloring), there exist an edge u1u2 ∈ E(W4) and a pair of colors x1 ∈ M(u1),
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x2 ∈ M(u2) such that x1x2 ∈ E(F) and f (x1) , f (x2). Note that u1 , v since otherwise f (x1) = x1 = f (x2)

by definition. Similarly, u2 , v, so {u1, u2} ⊂ U. Let y B f (x2). Then x1 has no neighbor in M(u2) \ NF (y),
so {y} can be extended to an F -coloring of W4; a contradiction.

Let us now return to the graph G. Choose any vertex v ∈ Dc and let W B G[{v} ∪ D]. Note that W is
a 4-wheel. Fix an arbitrary coloring I ∈ Ind(H) with dom(I) = ({v} ∪ D)c. For all u ∈ {v} ∪ D, we have
|LI (u)| > k − (k − 3) = 3, so by (2.4.11), I can be extended to an H -coloring of the entire graph G.

Case 2: G[D] contains exactly two leaf blocks, both of which are triangles. Since each vertex in Dc has
only 4 neighbors in D, every non-terminal vertex in D has degree k in G[D]. Notice that every vertex of
degree k in G[D] is a cut-vertex. Indeed, if a vertex u ∈ D is not a cut-vertex in G[D], then the degree of any
cut-vertex in the same block as u strictly exceeds the degree of u (since the blocks of the GDP-tree G[D] are
regular graphs). Thus, either the two terminal triangles share a cut-vertex (and, in particular, k = 4), or else,
their cut-vertices are joined by an edge (and k = 3). The former option contradicts Corollary 2.4.37; the latter
one implies G ∈ Dir3. a

By Claim (A), G[Dc] is a disjoint union of at least 2 cliques. In particular, every connected component of
G[D] is isomorphic to a triangle. Suppose that G[D] has ` connected components (so |D | = 3`). If a vertex
v ∈ Dc belongs to a component of G[Dc] of size r , then its degree in G is precisely (r − 1) + 3`. On the other
hand, deg(v) = k + 1. Thus, k + 1 = (r − 1) + 3`, i.e., r = k − 3` + 2. In particular, |Dc | = k − 2 is divisible
by k − 3` + 2, so ` > 2.

Case 1: The set Dc is not independent, i.e., k − 3` + 2 > 2. Let T1, T2 ⊂ D (resp. C1, C2 ⊂ Dc) be the
vertex sets of any two distinct connected components of G[D] (resp. G[Dc]). For each i ∈ {1, 2}, fix a vertex
ui ∈ Ti and a pair of distinct vertices vi1, vi2 ∈ Ci. Set U B T1 ∪ T2 ∪ {v11, v12, v21, v22} and let I ∈ Ind(H)
be such that dom(I) = Uc. Note that

ϕU (v11) = ϕU (v21) = 7 − 1 = 6,

while degU (u1) = 6, so, by Lemma 2.4.36, there exist x11 ∈ LI (v11) and x21 ∈ LI (v21) such that

I ′ B I ∪ {x11, x21}

is a coloring that enhances u1. Now, upon setting U ′ B U \ {v11, v21}, we obtain

ϕU′(v12) = ϕU′(v22) = 6 − 1 = 5,

while degU′(u2) = 4, so, by Lemma 2.4.36 again, we can choose x12 ∈ LI ′(v12) and x22 ∈ LI ′(v22) so that

I ′′ B I ′ ∪ {x12, x22}

is a coloring that enhances both u1 and u2. However, the existence of such I ′′ contradicts Lemma 2.4.35(iii).
Case 2: The set Dc is independent, i.e., k − 3` + 2 = 1. In other words, we have k = 3` − 1. Since ` > 2,

we get k > 6 − 1 = 5, so |Dc | = k − 2 > 3. Let v1, v2, v3 ∈ Dc be any three distinct vertices in Dc and let
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T ⊂ D be the vertex set of any connected component of G[D]. Fix a vertex u ∈ T , set U B T ∪ {v1, v2, v3},
and let I ∈ Ind(H) be such that dom(I) = Uc. Note that

ϕU (v1) = ϕU (v2) = ϕU (v3) = 3 − 1 = 2,

while degU (u) = 5. Therefore, by Lemma 2.4.36, we can choose x1 ∈ LI (v1), x2 ∈ LI (v2), and x3 ∈ LI (v3)

so that
I ′ B I ∪ {x1, x2, x3}

enhances u. This observation contradicts Lemma 2.4.35(iii) and finishes the proof. �

Dense terminal sets and their neighborhoods

Outline of the proof Lemma 2.4.43 asserts that at least one terminal set is dense. In the remainder of the
proof of Theorem 2.4.16 we will explore the structural consequences of this assertion and eventually arrive at
a contradiction.

Definition 2.4.44. Let B be a terminal set. Let SB denote the set of all vertices in Bc that are adjacent to every
vertex in B and let TB B NG(B) \ (B ∪ SB).

By definition, SB ⊆ Dc; however, if B , CB, then TB ∩ D , �.

Lemma 2.4.45. Let B be a dense terminal set and let v ∈ TB. Then v has at least k − 1 neighbors outside of
B. If, moreover, there exist terminal vertices u0, u1 ∈ B such that u0v < E , u1v ∈ E , then v has at least k − 1
neighbors outside of CB.

Proof. Let u0, u1 ∈ B be such that u0v < E and u1v ∈ E . If one of u0, u1 is not terminal, then set U B B;
otherwise, set U B CB. Our goal is to show that v has at least k − 1 neighbors outside of U. Assume, towards
a contradiction, that degUc(v) 6 k − 2. Let I ∈ Ind(H) be such that dom(I) = (U ∪ {v})c. By (2.4.9), we have

|LI (v)| > ϕU (v) > k − (k − 2) = 2,

so let x1, x2 be any two distinct elements of LI (v). Since u0v < E , we have

LI∪{x1 }(u0) = LI∪{x2 }(u0) = LI (u0),

so, by Lemma 2.4.39, the matching EH (LI (u0), LI∪{xi }(u1)) is perfect for each i ∈ {1, 2}. This implies that the
unique vertex in LI (u1) that has no neighbor in LI (u0) is adjacent to both x1 and x2, which is impossible. �

The rest of the proof of Theorem 2.4.16 proceeds as follows. Consider a dense terminal set B. Roughly
speaking, Lemma 2.4.45 asserts that the vertices in TB must have “many” neighbors outside of B. Since the
degrees of the vertices in Dc cannot be too big, the vertices in TB should only have “very few” neighbors in B.
This implies that “most” edges between B and Dc actually connect B with SB. This intuition guides the proof
of Corollary 2.4.50, which asserts that G[B ∪ SB] is a clique of size k (however, the proof of Lemma 2.4.49,
the main step towards Corollary 2.4.50, is somewhat lengthy and technical).
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The fact that G is a minimum counterexample to Theorem 2.4.16 is only used once during the course
of the proof, namely in establishing Lemma 2.4.54, which claims that for a dense terminal set B, the graph
G[TB] is a clique. The proof of Lemma 2.4.54 is also the only time when it is important to work in the more
general setting of DP-colorings rather than just with list colorings. The proof proceeds by assuming, towards
a contradiction, that there exist two nonadjacent vertices v1, v2 ∈ TB, and letting G∗ be the graph obtained
from G by removing B and adding an edge between v1 and v2. Since G∗ has fewer vertices than G, it cannot
contain a counterexample to Theorem 2.4.16 as a subgraph. This fact can be used to eventually arrive at a
contradiction. En route to that goal we study the properties of a certain cover H ∗ of G∗, and that cover is not
necessarily induced by a list assignment, even if H is.

With Lemma 2.4.54 at hand, we can pin down the structure of G[SB ∪ TB] very precisely, which is done
in Lemmas 2.4.56 and 2.4.57 and in Corollary 2.4.58. The restrictiveness of these results precludes having
“too many” dense terminal sets; this is made precise by Lemma 2.4.59, which asserts that at least one terminal
set is sparse. However, due to Lemma 2.4.40, having a sparse terminal set leads to its own restrictions on the
structure of G[Dc], which finally yield a contradiction that finishes the proof of Theorem 2.4.16.

The set SB is large Here we prove that for any dense terminal set B, |SB | > k − |B| (see Lemma 2.4.48).

Lemma 2.4.46. Let B be a dense terminal set. If |SB | 6 k − |B| − 1, then the following statements hold:

(i) |SB | = k − |B| − 1;

(ii) Dc = SB ∪ (TB ∩ Dc);

(iii) |Dc | = |SB | + |TB ∩ Dc | = k − 2, and thus ε(v) = 1 for every v ∈ Dc;

(iv) every vertex in TB ∩ Dc has exactly k − 1 neighbors outside of B; and

(v) B , CB, and the cut vertex u0 ∈ B of G[CB] has no neighbors in TB ∩ Dc.

Proof. Let S B SB and let T B TB ∩ Dc. Set b B |B|, s B |S |, and t B |T |. Suppose that s 6 k − b − 1.
Since each terminal vertex in B has exactly k − (b − 1) − s neighbors in T , the number of edges between B

and T is at least (b− 1)(k − (b− 1) − s). Also, by Lemma 2.4.45, each vertex in T has at least k − 1 neighbors
in Bc. Hence,

ε(Dc) > ε(S) + ε(T)

> s + (b − 1)(k − (b − 1) − s) + (k − 1)t − kt

= s + (b − 1)(k − (b − 1) − s) − t .

Note that s + t 6 |Dc | 6 k − 2, so t 6 k − 2 − s. Therefore,

s + (b − 1)(k − (b − 1) − s) − t > 2s + (b − 1)(k − (b − 1) − s) − k + 2.
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Since b > 4, the last expression is decreasing in s, and hence

2s + (b − 1)(k − (b − 1) − s) − k + 2

> 2(k − b − 1) + (b − 1)(k − (b − 1) − (k − b − 1)) − k + 2

= k − 2.

On the other hand, ε(Dc) 6 k − 2. Hence, none of the above inequalities can be strict, yielding (i)–(v). �

Lemma 2.4.47. Let B be a dense terminal set. Suppose that v1, v2 ∈ SB are distinct vertices such that
v1v2 < E . Then the following statements hold:

(i) |Dc | = k − |B| + 1;

(ii) ε(v1) + ε(v2) = |B| − 1; and

(iii) ε(v) = 1 for every v ∈ Dc \ {v1, v2}.

Proof. Let b B |B|. Each terminal vertex u ∈ B has exactly k − b + 1 neighbors in Dc; in particular,
|Dc | > k − b + 1. By Corollary 2.4.38, we have

either min{ϕB(v1), ϕB(v2)} 6 0,
or ϕB(v1) + ϕB(v2) 6 b + 1.

In the case when ϕB(vi) 6 0 for some i ∈ {1, 2}, we have ε(vi) = b − ϕB(vi) > b, so

ε(v1) + ε(v2) > b. (2.4.12)

In the other case, i.e., when ϕB(v1) + ϕB(v2) 6 b + 1, we get

ε(v1) + ε(v2) = (b − ϕB(v1)) + (b − ϕB(v2)) > b − 1.

Hence
ε(Dc) > ε(v1) + ε(v2) + |Dc \ {v1, v2}| > (b − 1) + (k − b − 1) = k − 2. (2.4.13)

Since ε(Dc) 6 k − 2, (2.4.12) fails and none of the inequalities in (2.4.13) can be strict, yielding (i)–(iii). �

Lemma 2.4.48. Let B be a dense terminal set. Then |SB | > k − |B|.

Proof. Let S B SB and letT B TB∩Dc. Set b B |B|, s B |S |, and t B |T |. Suppose that s 6 k−b−1. Then,
by Lemma 2.4.46(i), s = k − b − 1. We claim that G[S] is a clique. Indeed, otherwise, by Lemma 2.4.47(i),
|Dc | = k − b + 1; on the other hand, by Lemma 2.4.46(iii), |Dc | = k − 2, so we get k − 2 = k − b + 1, i.e.,
b = 3, which contradicts the fact that B is dense.

By Lemma 2.4.46(iii), the degree of every vertex in Dc is exactly k + 1. Since each vertex in S has b

neighbors in B and s − 1 = k − b − 2 neighbors in S, it has exactly (k + 1) − b − (k − b − 2) = 3 neighbors in
(B ∪ S)c.
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By Lemma 2.4.46(v), B , CB. Let u0 denote the cut vertex in B and let B′ be any terminal subset of CB

distinct from B. Set b′ B |B′ |.
By Lemma 2.4.46(ii), t = |Dc | − s = (k − 2) − (k − b − 1) = b − 1 > 3; in particular, T , �. Due to

Lemma 2.4.46(iv)(v), every vertex in T has exactly k − 1 neighbors in Bc and is not adjacent to u0. Together
with Lemma 2.4.46(iii), this implies that each vertex in T has exactly (k + 1) − (k − 1) = 2 neighbors in
B \ {u0}. We have |B \ {u0}| = b− 1 > 3, so, by Lemma 2.4.45, every vertex in T has k − 1 neighbors outside
of CB. Therefore, there are no edges between T and CB \ B; in particular, there are no edges connecting T to
the terminal vertices in B′.

Consider any terminal vertex u ∈ B′. Since T , � and no edges connect u and T , deg(u) > 2; therefore,
B′ is a dense terminal set. By Lemma 2.4.46(ii), Dc = S ∪ T , so u has exactly k − b′ + 1 neighbors in S.
Thus, k − b − 1 = s > k − b′ + 1, i.e., b′ > b + 2 > 6. Let v be any neighbor of u in S. Since v has only
3 neighbors in (B ∪ S)c and b′ > 4, there exists another terminal vertex u′ ∈ B′ such that u′v < E . By
Lemma 2.4.45, v has at least k − 1 neighbors outside of CB′ = CB. Of those, s − 1 belong to S; since v has
only 3 neighbors outside of B ∪ S and is adjacent to u, it has at most 3 − 1 = 2 neighbors in (CB ∪ S)c. Hence,
k − 1 6 (s − 1) + 2 = (k − b − 2) + 2 = k − b, i.e., b 6 1, which is impossible. �

The graph G[SB]

Lemma 2.4.49. Let B be a dense terminal set. Then G[SB] is a clique.

Proof. Let S B SB and suppose that G[S] is not a clique, i.e., there exist distinct v1, v2 ∈ S such that v1v2 < E .
Without loss of generality, we may assume that deg(v1) > deg(v2). We will proceed via a series of claims,
establishing a precise structure of G[Dc], which will eventually lead to a contradiction. For the rest of the
proof, we set b B |B| and s B |S |. Recall that, by Lemma 2.4.47, we have the following:

(i) |Dc | = k − b + 1;

(ii) ε(v1) + ε(v2) = b − 1; and

(iii) ε(v) = 1 for every v ∈ Dc \ {v1, v2}.

Claim (A). Dc = S and B = CB.

Proof. Suppose, towards a contradiction, that there is a vertex v ∈ Dc \ S. Since, by Lemma 2.4.47(i),
|Dc | = k − b + 1, each terminal vertex in B is adjacent to every vertex in Dc. Therefore, degB(v) = b − 1 and,
due to Lemma 2.4.45, degBc(v) > k − 1. Then

ε(v) = deg(v) − k > (b − 1) + (k − 1) − k = b − 2 > 1;

a contradiction to Lemma 2.4.47(iii).
Since |S | = |Dc | = k − b + 1, every vertex in B has (b − 1) + (k − b + 1) = k neighbors in B ∪ S, so there

are no edges between B and D \ B; therefore, B = CB. a

Claim (B). The graph G[D] has no vertices of degree 2.
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Proof. Indeed, otherwise Lemma 2.4.40 would yield |Dc | = k − 2. Since |Dc | = k − b+ 1, this implies b = 3,
contradicting the denseness of B. a

Claim (C). s > 3, i.e., b 6 k − 2.

Proof. Suppose, towards a contradiction, that s = 2, i.e., S = {v1, v2}. We will argue that in this case
G ∈ Dirk . Since, by Lemma 2.4.47(i), s = k − b + 1, we have b = k − 1. In particular, since b > 4, we have
k > 5. By Lemma 2.4.47(ii), ε(S) = b − 1 = k − 2, so there are exactly (k − 2) + 2k − 2(k − 1) = k edges
between S and D \ B. Let U be any connected component of G[D] distinct from B. By Corollary 2.4.33, the
number of edges between U and S is at least k, with equality only if G[U] � Kk ; therefore, D \ B = U, and
we indeed have G[U] � Kk . Then every vertex in U has exactly one neighbor in S and each vertex in S has at
least two neighbors in U (for its degree is at least k + 1), yielding G ∈ Dirk , as desired. a

Claim (D). G[S \ {v1}] is a clique.

Proof. Suppose that for some distinct w1, w2 ∈ S \ {v1}, we have w1w2 < E . Applying Lemma 2.4.47(iii)
with w1 and w2 in place of v1 and v2, we obtain ε(v1) = 1. Since, by our choice, deg(v1) > deg(v2), and thus
ε(v1) > ε(v2), we get ε(v2) = 1 as well. But then 2 = ε(v1) + ε(v2) = b − 1, i.e., b = 3; a contradiction. a

Claim (E). degS(v1) = 0.

Proof. Suppose that v ∈ S \ {v1, v2} is adjacent to v1. Note that by Claim (D), v is also adjacent to v2. Let
U B B ∪ {v1, v2, v} and let u be any vertex in B. Note that

degU (u) = (b − 1) + 3 = b + 2.

On the other hand, since ε(v1) + ε(v2) = b − 1, for each i ∈ {1, 2}, we have ε(vi) 6 b − 2, so

ϕU (vi) = (b + 1) − ε(vi) > (b + 1) − (b − 2) = 3 > 0;

moreover,
ϕU (v1) + ϕU (v2) = 2(b + 1) − (b − 1) = b + 3 > b + 2.

Therefore, by Lemma 2.4.36, for any I ∈ Ind(H) with dom(I) = Uc, we can find x1 ∈ LI (v1) and x2 ∈ LI (v2)

such that u is enhanced by I ′ B I ∪ {x1, x2}. Note that

|LI ′(v)| > ϕB(v) = b − 1 > 0,

so I ′ can be extended to a coloring with domain Bc, which contradicts Lemma 2.4.35(iii). a

Claim (F). ε(v1) = b − 2 and ε(v) = 1 for all v ∈ S \ {v1}.

Proof. Consider any v ∈ S \ {v1}. By Claim (C), we can choose some v′ ∈ S \ {v1, v}. Due to Claim (E),
v1v
′ < E , so we can apply Lemma 2.4.47(iii) with v′ in place of v2 to obtain ε(v) = 1. In particular, ε(v2) = 1,

so ε(v1) = (b − 1) − ε(v2) = b − 2. a
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Claim (G). Every terminal set distinct from B induces a clique of size k.

Proof. Suppose that B′ is a terminal set distinct from B and b′ B |B′ | 6 k − 1. By Claim (B), B′ is dense.
Thus, by Lemma 2.4.48, |SB′ | > k − b′, i.e., S contains at least k − b′ vertices that are adjacent to every
vertex in B′. Consider v ∈ S \ {v1}. By definition, v has b neighbors in B; due to Claim (D), v also has
s− 2 = (k − b+ 1) − 2 = k − b− 1 neighbors in S. On the other hand, by Claim (F), deg(v) = k + 1. Therefore,

degD\B(v) = (k + 1) − b − (k − b − 1) = 2.

In particular, v cannot be adjacent to all the vertices in B′. Thus, SB′ = {v1} and |B′ | = k − 1. But

degD\B(v1) = ε(v1) + k − degB(v1) − degS(v1) = (b − 2) + k − b − 0 = k − 2 < k − 1;

a contradiction. a

Claim (H). There are exactly two terminal sets distinct from B.

Proof. Suppose D \B contains ` terminal sets. By Claim (G), the number of edges between S and the terminal
vertices of any terminal set B′ distinct from B is at least k − 1 and at most k. On the other hand, the number
of edges between S and D \ B is exactly (k − 2) + 2(k − b) = 3k − 2b − 2. Therefore,

`(k − 1) 6 3k − 2b − 2 6 `k,

so 1 6 ` 6 2. However, if ` = 1, then 3k − 2b − 2 6 k, so b > k − 1, which contradicts Claim (C). Thus,
` = 2, as desired. a

Now we are ready to finish the argument. Let B1 and B2 denote the only two terminal sets in D \ B, which,
by Claim (G), induce cliques of size k. We have D \ B = CB1 ∪ CB2 . Notice that v1 is adjacent to at least one
terminal vertex in B1 ∪ B2. Indeed, there are at least 2(k − 1) edges between S and the terminal vertices in
B1 ∪ B2, while each vertex in S \ {v1} has 2 neighbors in D \ B, providing in total only 2(k − b) edges.

Without loss of generality, assume that v1 is adjacent to at least one terminal vertex in B1. Since v1 has
only k − 2 neighbors in D \ B, Lemma 2.4.45 implies that v1 has at least k − 1 neighbors outside of CB1 .
Since v1 has only b 6 k − 2 neighbors outside of CB1 ∪ CB2 , we see that CB1 , CB2 and v1 has a neighbor
in CB2 . Since B1 and B2 are the unique terminal sets in CB1 and CB2 respectively, we have B1 = CB1 and
B2 = CB2 . Therefore, v1 is also adjacent to at least one terminal vertex in B2 and, hence, has at least k − 1
neighbors outside of B2.

Notice that 2k = |EG(B1 ∪ B2, S)| = 3k − 2b − 2, i.e., k = 2b + 2. Let di B degBi
(v1). Then for each

i ∈ {1, 2}, di > k − 1 − b. Since

b + d1 + d2 = deg(v1) = k + b − 2,

we obtain that k + b − 2 > b + 2(k − 1 − b), i.e., 2b > k, contradicting k = 2b + 2. �
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Corollary 2.4.50. Let B be a dense terminal set. Then G[B ∪ SB] is a clique of size k.

Proof. By Lemma 2.4.48, |B ∪ SB | > k; on the other hand, by Lemma 2.4.49, G[B ∪ SB] is a clique, so
|B ∪ SB | 6 k. �

Corollary 2.4.51. There does not exist a subset U ⊆ V of size k + 1 such that G[U] is a complete graph
minus an edge with the two nonadjacent vertices in Dc.

Proof. Suppose, towards a contradiction, that U is such a set and let v1, v2 ∈ U ∩ Dc be the two nonadjacent
vertices in U. Set B B U ∩ D. Note that |B| > |U | − |Dc | > (k + 1) − (k − 2) = 3.

Since for each u ∈ B, degU (u) = k, there are no edges between B and Uc. In particular, B = CB. If
|B| > 4, then B is a dense set and U = B ∪ SB, which is impossible due to Corollary 2.4.50. Therefore,
|B| = 3. Thus, |U \ B| = (k + 1) − 3 = k − 2, so Dc = U \ B. By Lemma 2.4.40(iii), G[Dc] is a disjoint union
of cliques. On the other hand, G[Dc] is a complete graph minus the edge v1v2. The only possibility then is
that |Dc | = 2, i.e., k = 4. Each vertex in Dc is of degree 5 and, therefore, has exactly 2 neighbors in D \ B.
By Lemma 2.4.43, there exists a dense terminal set B′ ⊆ D \ B. Since k = 4, we must have |B′ | = 4, so there
are 4 edges between B′ and Dc. This implies that D \ B = B′ and each vertex in Dc has exactly 2 neighbors in
B′. But then G ∈ Dir4. �

The graph G[TB] In this section we show that if B is a dense terminal set, then G[TB] is a clique. However,
in order for some of our arguments to go through, we need to establish some of the results for the more general
case when B is a terminal set such that G[B ∪ SB] is a clique of size k (i.e., G[B] can also be isomorphic to a
triangle).

Lemma 2.4.52. Let B be a terminal set such that G[B ∪ SB] is a clique of size k. Then every vertex in SB has
at most |B| − 1 neighbors outside of B ∪ SB.

Proof. Set S B SB. Let v ∈ S and suppose that v has d neighbors outside of B ∪ S. Then

ε(v) = degB∪S(v) + deg(B∪S)c(v) − k = (k − 1) + d − k = d − 1,

so, using that |S | = k − |B|, we obtain

k − 2 > ε(Dc) = ε(S) + ε(Dc \ S) > (d − 1) + (k − |B| − 1) + |Dc \ S |,

i.e., d 6 |B| − |Dc \ S |. But Dc \ S , �, since each terminal vertex in B has a neighbor in Dc \ S. �

Lemma 2.4.53. Let B be a terminal set such that G[B ∪ SB] is a clique of size k. Let I be a coloring with
dom(I) = (B ∪ SB)c. Then for any u ∈ B, |LI (u)| = k − 1, and for any two distinct u1, u2 ∈ B, the matching
EH (LI (u1), LI (u2)) is perfect.

Proof. Set S B SB. By Lemma 2.4.52, |LI (v)| > k − |B| + 1 for all v ∈ S. Since |S | = k − |B|, I can
be extended to a coloring I ′ with dom(I ′) = Bc. Therefore, due to Lemma 2.4.35(iii) and since G[B] is
connected, I does not enhance any u ∈ B, i.e., |LI (u)| = k − 1, as claimed. Now, let u1, u2 be two distinct
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vertices in B and suppose, towards a contradiction, that x ∈ LI (u1) has no neighbor in LI (u2). For each
v ∈ S, let L ′(v) B LI (v) \ NH (x). Then |L ′(v)| > k − |B| = |S | for all v ∈ S, so there is I ′ ∈ Ind(H) with
dom(I ′) = S such that I ′ ⊆

⋃
v∈S L ′(v). Then I ∪ I ′ is a coloring with domain Bc; moreover, x ∈ LI∪I ′(u1),

which implies that the matching EH (LI∪I ′(u1), LI∪I ′(u2)) is not perfect. Due to Lemma 2.4.39, I ∪ I ′ can be
extended to an H -coloring of G; a contradiction. �

Lemma 2.4.54. Let B be a terminal set such that G[B ∪ SB] is a clique of size k. Then G[TB] is a clique of
size at least 2.

Proof. Set S B SB and T B TB. First, observe that |T | > 2: Each vertex in B has a (unique) neighbor in T ;
thus, if |T | = 1, then the only vertex in T has to be adjacent to all the vertices in B, which contradicts the way
T is defined.

Now suppose that v1, v2 ∈ T are two distinct nonadjacent vertices. For each i ∈ {1, 2}, choose a neighbor
ui ∈ B of vi. Since every vertex in B has only one neighbor outside of B ∪ S, u1v2, u2v1 < E . Note that, by
Lemma 2.4.53, there are at least k − 1 edges between L(u1) and L(u2). Let H ′ be the graph obtained from H

by adding, if necessary, a single edge between L(u1) and L(u2) that completes a perfect matching between
those two sets. Let H∗ be the graph obtained from H by adding a matching M between L(v1) and L(v2) in
which x1 ∈ L(v1) is adjacent to x2 ∈ L(v2) if and only if there exist y1 ∈ L(u1), y2 ∈ L(u2) such that x1y1y2x2

is a path in H ′. Then H ∗ B (L,H∗) is a cover of the graph G∗ obtained from G by adding the edge v1v2.

Claim (A). There is no independent set I in H∗ with dom(I) = (B ∪ S)c.

Proof. Assume, towards a contradiction, that I is an independent set in H∗ such that dom(I) = (B ∪ S)c.
Since, in particular, I ∈ Ind(H), Lemma 2.4.53 guarantees that the edges of H between LI (u1) and LI (u2)

form a perfect matching of size k − 1. For each i ∈ {1, 2}, let yi be the unique element of L(ui) \ LI (ui). Then
y1y2 is an edge in H ′. However, since yi < LI (ui), the unique element of I ∩ L(vi), which we denote by xi,
is adjacent to yi in H. Therefore, x1y1y2x2 is a path in H ′, so x1x2 is an edge in H∗. This contradicts the
independence of I in H∗. a

Let W ⊆ (B ∪ S)c be an inclusion-minimal subset for which there is no independent set I in H∗ with
dom(I) = W . Since G is H -critical, G∗[W] is not a subgraph of G, so {v1, v2} ⊆ W . Since for all v ∈ W ,
deg(v) > degG∗[W ](v), we have

ε(W) >
∑
v∈W

(degG∗[W ](v) − k).

In particular, ∑
v∈W

(degG∗[W ](v) − k) 6 k − 2.

By the minimality of G, either G∗[W] ∈ Dirk , or else, G∗[W] contains a clique of size k + 1.
If G∗[W] ∈ Dirk , then ∑

v∈W

(degG∗[W ](v) − k) = k − 2.

Therefore, Dc ⊆ W and deg(v) = degG∗[W ](v) for all v ∈ W . The latter condition implies that the only
vertices in W that are adjacent to a vertex in B are v1 and v2; moreover, the only neighbor of v1 in B is u1
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and the only neighbor of v2 in B is u2. Since Dc ⊆ W , this implies S = � and T ∩ Dc ⊆ {v1, v2}. Therefore,
|B| = k − |S | = k. Each terminal vertex in B has a neighbor in T ∩ Dc, so the set of all terminal vertices in B

is a subset of {u1, u2}. Since k > 3, this implies k = |B| = 3 and u1, u2 are indeed the terminal vertices in B.
But then every vertex in Dc is adjacent both to u1 and to u2, contradicting the fact that v1 and v2 each have
only one neighbor among u1, u2.

Thus, G∗[W] contains a clique of size k + 1. Since G does not contain such a clique, there exists a set
U ⊆ (B ∪ S ∪ {v1, v2})

c of size k − 1 such that the graph G[U ∪ {v1, v2}] is isomorphic to Kk+1 minus the
edge v1v2. Note that U * Dc, since |Dc | 6 k − 2. Thus, the set B′ B U ∩ D is nonempty. Let S′ B U \ B′.
Each vertex in B′ has k neighbors in U ∪ {v1, v2}, so there are no edges between B′ and (U ∪ {v1, v2})

c.
Due to Corollary 2.4.51, {v1, v2} * Dc, so we may assume, without loss of generality, that v2 ∈ D and let
B∗ B B′ ∪ {v2}. Then G[B ∪ B∗] is a connected component of G[D], with u2v2 being a unique edge between
terminal sets B and B∗. Note that S′ = SB∗ and G[B∗ ∪ S′] is a clique of size k. Moreover, v1u2 < E and
{v1, u2} ∈ TB∗ . Thus, we can apply the above reasoning to B∗ in place of B and v1, u2 in place of v1, v2. As a
result, we see that G[B ∪ S ∪ {v1}] is isomorphic to Kk+1 minus the edge v1u2. Therefore,

ε(v1) > degB∪S(v1) + degB∗∪S′(v1) − k = (k − 1) + (k − 1) − k = k − 2.

Thus, Dc = {v1}, S = S′ = �, and |B| = |B∗ | = k. This implies that G ∈ Dirk . �

Corollary 2.4.55. Let B be a dense terminal set. Then G[TB] is a clique of size at least 2.

Proof. Follows from Corollary 2.4.50 and Lemma 2.4.54. �

The graph G[SB ∪ TB]

Lemma 2.4.56. Let B be a dense terminal set. Then:

(i) |TB | = 2;

(ii) Dc = SB ∪ (TB ∩ Dc);

(iii) each vertex in TB has exactly k − 1 neighbors outside of B; and

(iv) ε(v) = 1 for all v ∈ SB.

Proof. Let S B SB and T B TB. By Corollaries 2.4.50 and 2.4.55, G[S ∪ B] is a clique of size k and G[T] is
a clique of size at least 2.

Suppose that (i) does not hold, i.e., |T | > 3. Recall that, by Lemma 2.4.45, each vertex in T has at least
k − 1 neighbors outside of B. If T contains at most one vertex with exactly k − 1 neighbors outside of B, then

ε(S) + ε(T) > |S | +
∑
v∈T

deg(v) − k |T | > (k − |B|) + (|B| + k |T | − 1) − k |T | = k − 1;

a contradiction. Thus, there exist two distinct vertices v1, v2 ∈ T such that

degBc(v1) = degBc(v2) = k − 1.

90



Since |T | > 3 and every vertex in B has exactly one neighbor in T , there exists a vertex u0 ∈ B such that u0v1,
u0v2 < E . Also, we can choose a vertex u1 ∈ B with u1v1 ∈ E; note that u1v2 < E . Let I ∈ Ind(H) be such
that dom(I) = (B ∪ {v1, v2})

c. Then

ϕB∪{v1,v2 }(v1) = ϕB∪{v1,v2 }(v2) = k − (k − 2) = 2.

(Here we use that v1 and v2 are adjacent to each other.) Let x1, x2 be any two distinct elements of LI (v1) and
choose y1, y2 ∈ LI (v2) so that x1y1, x2y2 < E(H). Since

LI∪{x1,y1 }(u0) = LI∪{x2,y2 }(u0) = LI (u0),

and for each i ∈ {1, 2},
LI∪{xi,yi }(u1) = LI∪{xi }(u1),

Lemma 2.4.39 implies that for each i ∈ {1, 2}, the matching EH (LI (u0), LI∪{xi }(u1)) is perfect. But then the
unique vertex in LI (u1) that has no neighbor in LI (u0) is adjacent to both x1 and x2, which is impossible. This
contradiction proves (i).

In view of (i), we now have

ε(Dc) > ε(S) + ε(T) > (k − |B|) + (|B| + 2(k − 1)) − 2k = k − 2, (2.4.14)

so none of the inequalities in (2.4.14) can be strict. This yields (ii), (iii), and (iv). �

Lemma 2.4.57. Let B be a dense terminal set. Then B = CB.

Proof. Suppose, towards a contradiction, that B , CB. Then TB ∩ D , �. On the other hand, every terminal
vertex in B has a neighbor in TB ∩ Dc, so we also have TB ∩ Dc , �. By Lemma 2.4.56(i), |TB | = 2, so
TB C {v, u}, where v ∈ Dc and u ∈ D, with v adjacent to all the terminal vertices in B. By Lemma 2.4.56(ii),
Dc = SB ∪ {v}. By Corollary 2.4.50, G[B ∪ SB] � Kk ; in particular, |SB | = k − |B|. Therefore,

|Dc | = k − |B| + 1. (2.4.15)

LetB′ be any other terminal set such thatCB′ = CB. Note thatB′ is dense, since, otherwise, byLemma 2.4.40(ii),
|Dc | = k − 2, contradicting (2.4.15). Therefore, the above reasoning can be applied to B′ in place of B. In
particular, TB′ C {v

′, u′}, where v′ ∈ Dc and u′ ∈ D, with v′ adjacent to all the terminal vertices in B′.
Moreover, Dc = SB ∪ {v} = SB′ ∪ {v′}. Consider any vertex w ∈ Dc. If w ∈ SB′, then, by definition, w is
adjacent to every vertex in B′. If, on the other hand, w = v′, then w is adjacent to all the terminal vertices in
B′. In either case, w has at least |B′ | − 1 neighbors in B′. However, if w ∈ SB, then due to Lemma 2.4.56(iv),
w has exactly (k + 1) − (k − 1) = 2 neighbors outside of B ∪ SB. This implies that SB = �, and similarly
SB′ = �. Thus, v = v′ and |B| = |B′ | = k. Then v is adjacent to k − 1 terminal vertices in B′ and to u,
contradicting Lemma 2.4.56(iii). �

Corollary 2.4.58. Let B be a dense terminal set. Then Dc = SB ∪ TB.
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Proof. Follows immediately by Lemma 2.4.57 and Lemma 2.4.56(ii). �

Finishing the proof of Theorem 2.4.16

Lemma 2.4.59. There exists a sparse terminal set.

Proof. Suppose, towards a contradiction, that every terminal set is dense. Lemma 2.4.57 implies that in such
case every connected component of G[D] is a clique of size at least 4. Moreover, due to Corollary 2.4.58,
Corollary 2.4.50, and Lemma 2.4.56(i), the size of every connected component of G[D] is precisely
k − |Dc | + 2 C b. Note that due to Lemma 2.4.56(iii), the graph G[D] is disconnected.

Let B1 and B2 be the vertex sets of any two distinct connected components of G[D]. Lemma 2.4.56(iv)
implies that SB1 ∩ SB2 = �, since every vertex in SB1 has only 2 neighbors outside of B1 ∪ SB1 . Since, by
Corollary 2.4.58,

Dc = SB1 ∪ TB1 = SB2 ∪ TB2,

it follows that SB1 ⊆ TB2 and SB2 ⊆ TB1 . Therefore, |SB1 | 6 |TB2 |, i.e., k − b 6 2, which implies

b ∈ {k − 2, k − 1, k}.

Now it remains to consider the three possibilities.
Case 1: b = k − 2. Let B be the vertex set of any connected component of G[D]. Set TB C {v1, v2} and

let u1, u2 ∈ B be such that u1v1, u2v2 ∈ E . Choose any x ∈ L(v1). Note that |L{x }(v2)| > 2, so we can choose
y ∈ L{x }(v2) in such a way that EH (L{x,y }(u1), L{x,y }(u2)) is not a perfect matching. For all u ∈ D \ B, we
have |L{x,y }(u)| > k − 2 and the size of every connected component of G[D \ B] is k − 2. Therefore, there
exists a coloring I with dom(I) = D \ B such that I ∪ {x, y} ∈ Ind(H). But then

dom(I ∪ {x, y}) = (B ∪ SB)c,

and the matching EH (LI∪{x,y }(u1), LI∪{x,y }(u1)) is not perfect, contradicting Lemma 2.4.53.
Case 2: b = k − 1. Let B1 and B2 be the vertex sets of any two distinct connected components of G[D].

Let v be the unique vertex in SB1 . Then v ∈ TB2 (recall that SB1 ∩ SB2 = �), so, by Lemma 2.4.56(iii), v has
exactly k − 1 neighbors outside of B2. By Corollary 2.4.55, one of the neighbors of v is the other vertex in
TB2 . Therefore, v can have at most k − 2 neighbors in B1; a contradiction with the choice of v.

Case 3: b = k. In this case, G[Dc] � K2 and every vertex in D has exactly one neighbor in Dc, so there
are exactly k edges between Dc and every connected component of G[D]. On the other hand, if B is the vertex
set of a connected component of G[D], then, by Lemma 2.4.56(iii), there are exactly 2(k − 2) < 2k edges
between Dc and D \ B. Thus, the graph G[D \ B] is connected. Moreover, k > 4, for 2 · (3 − 2) = 2 < 3. Let
B′ B D \ B (so G[B′] is a clique of size k). Set Dc C {v1, v2} an let u1, u2 ∈ B, u′1, u′2 ∈ B′ be such that
u1v1, u2v2, u′1v1, u′2v2 ∈ E . Choose any x ∈ L(v1). Note that |L{x }(v2)| > 3. There is at most one element
y ∈ L{x }(v2) such that EH (L{x,y }(u1), L{x,y }(u2)) is a perfect matching; similarly for u′1 and u′2. Therefore,
there exists z ∈ L{x }(v2) such that neither EH (L{x,z }(u1), L{x,z }(u2)) nor EH (L{x,z }(u′1), L{x,z }(u′2)) are perfect
matchings. Thus, by Lemma 2.4.39, {x, z} can be extended to an H -coloring of G; a contradiction. �
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Now we are ready to finish the proof of Theorem 2.4.16. Let B be a dense terminal set (which exists
by Lemma 2.4.43) and let B′ be a sparse terminal set (which exists by Lemma 2.4.59). By Lemma 2.4.57,
B = CB and every terminal set in CB′ is sparse. In particular, G[CB′] contains at least 3 vertices of degree
2. Thus, by Lemma 2.4.40(ii), every vertex in Dc has at least 3 neighbors in CB′. On the other hand,
by Lemma 2.4.56(iv), a vertex in SB has only 2 neighbors in (B ∪ SB)c. Therefore, SB = �. Due to
Corollary 2.4.58, we obtain Dc = TB; thus, by Corollary 2.4.55 and Lemma 2.4.56(i), G[Dc] � K2. On the
other hand, by Lemma 2.4.40(ii), |Dc | = k − 2, so k = 4. But each vertex in TB has at least 4 neighbors outside
of B (1 in TB by Corollary 2.4.55 and 3 in CB′ by Lemma 2.4.40(ii)), which contradicts Lemma 2.4.56(iii).

2.4.5 Concluding remarks

Theorem 2.4.16 applies to DP-critical simple graphs. Meanwhile, bounding the difference 2|E(G)| − k |V(G)|

for DP-critical multigraphs G appears to be a challenging problem.

Definition 2.4.60. For k > 3, a k-brick is a k-regular multigraph whose underlying simple graph is either a
clique or a cycle and in which the multiplicities of all edges are the same.

Note that for a k-brick G, 2|E(G)| = k |V(G)|. According to Theorem 2.4.13, k-bricks are the only
k-DP-critical multigraphs with this property.

Theorem 2.4.16 fails for multigraphs, as the following example demonstrates. Fix an integer k ∈ N

divisible by 3 and let G be the multigraph with vertex set {0, 1, 2} such that eG(0, 1) = k/3 and eG(0, 2) =
eG(1, 2) = 2k/3, so we have 2|E(G)| − k |V(G)| = k/3. Let H be the graph with vertex set

{0, 1, 2} × {0, 1, 2} × {0, 1, . . . , k/3 − 1}

in which two distinct vertices (i1, j1, a1) and (i2, j2, a2) are adjacent if and only if one of the following three
(mutually exclusive) situations occurs:

1. {i1, i2} = {0, 1} and j1 = j2;

2. {i1, i2} , {0, 1} and j1 , j2; or

3. (i1, j1) = (i2, j2).

For each i ∈ {0, 1, 2}, let L(i) B {i} × {0, 1, 2} × {0, 1, . . . , k/3 − 1}. Then H B (L,H) is a k-fold cover
of G. We claim that G is not H -colorable. Indeed, suppose that I is an H -coloring of G and for each
i ∈ {0, 1, 2}, let I ∩ L(i) C {(i, ji, ai)}. By the definition of H, we have j0 , j1, while also j0 = j2 = j1,
which is a contradiction. It is also easy to check that G is H -critical and that it does not contain any k-brick
as a subgraph.

In light of the above example, we propose the following problem:

Problem 2.4.61. Let k > 3. Let G be a multigraph and letH be a k-fold cover of G such that G isH -critical.
Suppose that G does not contain any k-brick as a subgraph. What is the minimum possible value of the
difference 2|E(G)| − k |V(G)|, as a function of k?
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2.5 DP-colorings of graphs with high chromatic number

2.5.1 Introduction

It is well-known that the list chromatic number of a graph can significantly exceed its ordinary chromatic
number. On the other hand, Noel, Reed, and Wu [NRW15] established the following result, which was
conjectured by Ohba [Ohb02, Conjecture 1.3]:

Theorem 2.5.1 (Noel–Reed–Wu [NRW15]). Let G be an n-vertex graph with χ(G) > (n − 1)/2. Then
χ`(G) = χ(G).

For a graph G and s ∈ N, let J(G, s) denote the join of G and a copy of Ks, i.e., the graph obtained
from G by adding s new vertices that are adjacent to every vertex in V(G) and to each other. It is clear
from the definition that for all G and s, χ(J(G, s)) = χ(G) + s. Moreover, we have χ`(J(G, s)) 6 χ`(G) + s;
however, this inequality can be strict. Indeed, Theorem 2.5.1 implies that for every graph G and every
s > |V(G)| − 2χ(G) − 1,

χ`(J(G, s)) = χ(J(G, s)),

even if χ`(G) is much larger than χ(G). In view of this observation, it is interesting to consider the following
parameter:

Z`(G) B min{s ∈ N : χ`(J(G, s)) = χ(J(G, s))}, (2.5.1)

i.e., the smallest s ∈ N such that the list and the ordinary chromatic numbers of J(G, s) coincide. The
parameter Z`(G) was explicitly defined by Enomoto, Ohba, Ota, and Sakamoto in [Eno+02, page 65] (they
denoted it ψ(G)). Recently, Kim, Park, and Zhu (personal communication, 2016) obtained new lower bounds
on Z`(K2,n), Z`(Kn,n), and Z`(Kn,n,n). One can also consider, for n ∈ N,

Z`(n) B max{Z`(G) : |V(G)| = n}. (2.5.2)

The parameter Z`(n) is closely related to the Noel–Reed–Wu Theorem 2.5.1, since, by definition, there
exists a graph G on n + Z`(n) − 1 vertices whose ordinary chromatic number is at least Z`(n) and whose list
and ordinary chromatic numbers are distinct. The finiteness of Z`(n) for all n ∈ N was first established by
Ohba [Ohb02, Theorem 1.3]. Theorem 2.5.1 yields an upper bound Z`(n) 6 n − 5 for all n > 5; on the other
hand, a result of Enomoto, Ohba, Ota, and Sakamoto [Eno+02, Proposition 6] implies that Z`(n) > n−O(

√
n).

By analogy with (2.5.1) and (2.5.2), we consider the parameters

ZDP(G) B min{s ∈ N : χDP(J(G, s)) = χ(J(G, s))},

and
ZDP(n) B max{ZDP(G) : |V(G)| = n}.

The main result of this subsection is that for all graphs G, ZDP(G) is finite:
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Theorem 2.5.2. Let G be a graph with n vertices, m edges, and chromatic number k. Then ZDP(G) 6 3m.
Moreover, if δ(G) > k − 1, then

ZDP(G) 6 3m −
3
2
(k − 1)n.

Corollary 2.5.3. For all n ∈ N, ZDP(n) 6 3n2/2.

Note that the upper bound on ZDP(n) given by Corollary 2.5.3 is quadratic in n, in contrast to the linear
upper bound on Z`(n) implied by Theorem 2.5.1. The next result shows that the order of magnitude of ZDP(n)

is indeed quadratic:

Theorem 2.5.4. For all n ∈ N, ZDP(n) > n2/4 −O(n).

Corollary 2.5.3 and Theorem 2.5.4 also yield the following analog of Theorem 2.5.1 for DP-coloring:

Corollary 2.5.5. For n ∈ N, let r(n) denote the minimum r ∈ N such that for every n-vertex graph G with
χ(G) > r , we have χDP(G) = χ(G). Then

n − r(n) = Θ(
√

n).

We prove Theorem 2.5.2 in §2.5.2 and Theorem 2.5.4 in §2.5.3. The derivation of Corollary 2.5.5 from
Corollary 2.5.3 and Theorem 2.5.4 is straightforward; for completeness, we include it at the end of §2.5.3.

2.5.2 Proof of Theorem 2.5.2

For a graph G and a finite set A disjoint from V(G), let J(G, A) denote the graph with vertex set V(G) ∪ A

obtained from G be adding all edges with at least one endpoint in A (i.e., J(G, A) is a concrete representative
of the isomorphism type of J(G, |A|)).

First we prove the following more technical version of Theorem 2.5.2:

Theorem 2.5.6. Let G be a k-colorable graph. Let A be a finite set disjoint from V(G) and let H = (L,H)

be a cover of J(G, A) such that for all a ∈ A, |L(a)| > |A| + k. Suppose that

|A| >
3
2

∑
v∈V (G)

max{degG(v) + |A| − |L(v)| + 1, 0}. (2.5.3)

Then J(G, A) is H -colorable.

Proof. For a graph G, a set A disjoint from V(G), a cover H = (L,H) of J(G, A), and a vertex v ∈ V(G), let

σ(G, A,H , v) B max{degG(v) + |A| − |L(v)| + 1, 0}

and
σ(G, A,H ) B

∑
v∈V (G)

σ(G, A,H , v).
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Assume, towards a contradiction, that a tuple (k,G, A,H ) forms a counterexample which minimizes k,
then |V(G)|, and then |A|. For brevity, we will use the following shortcuts:

σ(v) B σ(G, A,H , v); σ B σ(G, A,H ).

Thus, (2.5.3) is equivalent to
|A| >

3σ
2
.

Note that |V(G)| and |A| are both positive. Indeed, if V(G) = �, then J(G, A) is just a clique with vertex set A,
so its DP-chromatic number is |A|. If, on the other hand, A = �, then (2.5.3) implies that |L(v)| > degG(v)+1
for all v ∈ V(G), so an H -coloring of G can be constructed greedily. Furthermore, χ(G) = k, since otherwise
we could have used the same (G, A,H ) with a smaller value of k.

For brevity, we write L(U) B
⋃

u∈U L(u) for U ⊆ V(G) ∪ A.

Claim (A). For every v ∈ V(G), the graph J(G − v, A) is H -colorable.

Proof. Consider any v0 ∈ V(G) and let G′ B G − v0. For all v ∈ V(G′), degG′(v) 6 degG(v), and thus
σ(G′, A,H , v) 6 σ(v). Therefore,

3
2
σ(G′, A,H ) 6

3σ
2
6 |A|.

By the minimality of |V(G)|, the conclusion of Theorem 2.5.6 holds for (k,G′, A,H ). In other words, J(G′, A)

is H -colorable, as claimed. a

Corollary (B). For every v ∈ V(G),

σ(v) = degG(v) + |A| − |L(v)| + 1 > 0.

Proof. Suppose that for some v0 ∈ V(G),

degG(v0) + |A| − |L(v0)| + 1 6 0,

i.e.,
|L(v0)| > degG(v0) + |A| + 1.

Using Claim (A), fix any H -coloring I of J(G − v0, A). Since v0 still has at least

|L(v0)| − (degG(v0) + |A|) > 1

available colors, I can be extended to an H -coloring of J(G, A) greedily; a contradiction. a

Claim (C). For every v ∈ V(G) and x ∈ L(A), there is y ∈ L(v) such that xy ∈ E(H).

Proof. Suppose that for some a0 ∈ A, x0 ∈ L(a0), and v0 ∈ V(G), we have L(v0) ∩ NH (x0) = �. Let
A′ B A \ {a0}, and for every w ∈ V(G) ∪ A′, let L ′(w) B L(w) \ NH (x0). Set H ′ B (L ′,H ′), where H ′
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is the subgraph of H induced by the union of the sets L ′(w) over w ∈ V(G) ∪ A′. Note that for all a ∈ A′,
we have |L ′(a)| > |A′ | + k, and for all v ∈ V(G), we have σ(G, A′,H ′, v) 6 σ(v). Moreover, by the choice
of x0, |L ′(v0)| = |L(v0)|, which, due to Corollary (B), yields σ(G, A′,H ′, v0) 6 σ(v0) − 1. This implies
σ(G, A′,H ′) 6 σ − 1, and thus

3
2
σ(G, A′,H ′) 6

3(σ − 1)
2

6 |A| −
3
2
< |A′ |.

By the minimality of |A|, the conclusion of Theorem 2.5.6 holds for (k,G, A′,H ′), i.e., the graph J(G, A′)

is H ′-colorable. By the definition of L ′, for any H ′-coloring I of J(G, A′), I ∪ {x0} is an H -coloring of
J(G, A). This is a contradiction. a

Corollary (D). k > 2.

Proof. Let v ∈ V(G) and consider any a ∈ A. Since, by Claim (C), each x ∈ L(a) has a neighbor in L(v), we
have

|L(v)| > |L(a)| > |A| + k .

Using Corollary (B), we obtain

0 6 degG(v) + |A| − |L(v)| 6 degG(v) − k,

i.e., degG(v) > k. Since V(G) , �, k > 1, which implies degG(v) > 1. But then χ(G) > 2, as desired. a

Claim (E). H does not contain a walk of the form x0y0x1y1x2, where

• x0, x1, x2 ∈ L(A);

• y0, y1 ∈ L(V(G));

• x0 , x1 , x2 and y0 , y1 (but it is possible that x0 = x2);

• the set {x0, x1, x2} is independent in H.

Proof. Suppose that such a walk exists and let a0, a1, a2 ∈ A and v0, v1 ∈ V(G) be such that x0 ∈ L(a0),
y0 ∈ L(v0), x1 ∈ L(a1), y1 ∈ L(v1), and x2 ∈ L(a2). Let A′ B A \ {a0, a1, a2}, and for every w ∈ V(G) ∪ A′,
let L ′(w) B L(w) \ NH (x0, x1, x2). Set H ′ B (L ′,H ′), where H ′ is the subgraph of H induced by the
union of the sets L ′(w) over w ∈ V(G) ∪ A′. Since {x0, x1, x2} is an independent set, for all a ∈ A′, we
have |L ′(a)| > |A′ | + k, while for all v ∈ V(G), we have σ(G, A′,H ′, v) 6 σ(v). Moreover, since for each
i ∈ {0, 1}, the set {x0, x1, x2} contains two distinct neighbors of yi, we have σ(G, A′,H ′, vi) 6 σ(vi) − 1.
Therefore, σ(G, A′,H ′) 6 σ − 2, and thus

3
2
σ(G, A′,H ′) 6

3(σ − 2)
2

6 |A| − 3 6 |A′ |.
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By the minimality of |A|, the conclusion of Theorem 2.5.6 holds for (k,G, A′,H ′), i.e., the graph J(G, A′) is
H ′-colorable. By the definition of L ′, for any H ′-coloring I of J(G, A′), I ∪ {x0, x1, x2} is an H -coloring
of J(G, A). This is a contradiction. a

Due to Corollary (D), we can choose a pair of disjoint independent sets U0, U1 ⊂ V(G) such that
χ(G −U0) = χ(G −U1) = k − 1. Choose arbitrary elements a1 ∈ A and x1 ∈ L(a1). By Claim (C), for each
u ∈ U0 ∪U1, there is a unique element y(u) ∈ L(u) adjacent to x1 in H (the uniqueness of y(u) follows from
the definition of a cover). Let

I0 B {y(u) : u ∈ U0} and I1 B {y(u) : u ∈ U1}.

Since U0 and U1 are independent sets in G, I0 and I1 are independent sets in H.

Claim (F). There exists an element a0 ∈ A \ {a1} such that L(a0) ∩ NH (I0) * NH (x1).

Proof. Assume that for all a ∈ A \ {a1}, we have L(a) ∩ NH (I0) ⊆ NH (x1). Let G′ B G −U0, and for each
w ∈ V(G′) ∪ A, let L ′(w) B L(w) \ NH (I0). By the definition of I0, L ′(a1) = L(a1) \ {x1}, so

|L ′(a1)| = |L(a1)| − 1 > |A| + (k − 1).

On the other hand, by our assumption, for each a ∈ A \ {a1}, we have

|L ′(a)| = |L(a) \ NH (I0)| > |L(a) \ NH (x1)| > |L(a)| − 1 > |A| + (k − 1).

Set H ′ B (L ′,H ′), where H ′ is the subgraph of H induced by the union of the sets L ′(w) over w ∈ V(G′)∪ A.
Since for all v ∈ V(G), σ(G′, A,H ′, v) 6 σ(v), the minimality of k implies the conclusion of Theorem 2.5.6
for (k − 1,G′, A,H ′); in other words, the graph J(G′, A) is H ′-colorable. By the definition of L ′, for any
H ′-coloring I of J(G′, A), I ∪ I0 is an H -coloring of J(G, A); this is a contradiction. a

Using Claim (F), fix some a0 ∈ A \ {a1} satisfying L(a0) ∩ NH (I0) * NH (x1), and choose any

x0 ∈ (L(a0) ∩ NH (I0)) \ NH (x1).

Since x0 ∈ NH (I0), we can also choose y0 ∈ I0 so that x0y0 ∈ E(H).

Claim (G). x0 < NH (I1).

Proof. If there were y1 ∈ I1 such that x0y1 ∈ E(H), then x0y0x1y1x0 would be a walk in H whose existence
is ruled out by Claim (E). a

Claim (H). There is an element a2 ∈ A \ {a0, a1} such that L(a2) ∩ NH (I1) * NH (x0, x1).

Proof. The proof is almost identical to the proof of Claim (F). Assume that for all a ∈ A \ {a0, a1}, we
have L(a) ∩ NH (I1) ⊆ NH (x0, x1). Let G′ B G − U1, A′ B A \ {a0}, and for each w ∈ V(G′) ∪ A′, let
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L ′(w) B L(w) \ NH ({x0} ∪ I1). By the definition of I1, L(a1) ∩ NH (I1) = {x1}, so

|L ′(a1)| > |L(a1)| − 2 > |A| + k − 2 = |A′ | + (k − 1).

On the other hand, by our assumption, for each a ∈ A \ {a0, a1}, we have

|L ′(a)| > |L(a) \ NH (x0, x1)| > |L(a)| − 2 > |A| + k − 2 = |A′ | + (k − 1).

SetH ′ B (L ′,H ′), where H ′ is the subgraph of H induced by the union of the sets L ′(w) overw ∈ V(G′)∪ A′.
Since for all v ∈ V(G), σ(G′, A′,H ′, v) 6 σ(v), the minimality of k implies the conclusion of Theorem 2.5.6
for (k − 1,G′, A′,H ′); in other words, the graph J(G′, A′) is H ′-colorable. By the definition of L ′, for any
H ′-coloring I of J(G′, A), I ∪ {x0} ∪ I1 is an H -coloring of J(G, A). This is a contradiction. a

Now we are ready to finish the proof of Theorem 2.5.6. Fix some a2 ∈ A \ {a0, a1} satisfying
L(a2) ∩ NH (I1) * NH (x0, x1), and choose any

x2 ∈ (L(a2) ∩ NH (I1)) \ NH (x0, x1).

Since x2 ∈ NH (I1), there is y1 ∈ I1 such that x2y1 ∈ E(H). Then x0y0x1y1x2 is a walk in H contradicting the
conclusion of Claim (E). �

Now it is easy to derive Theorem 2.5.2. Indeed, let G be a graph with n vertices, m edges, and chromatic
number k, let A be a finite set disjoint from V(G), and let H = (L,H) be a cover of J(G, A) such that for all
v ∈ V(G) and a ∈ A, |L(v)| = |L(a)| = χ(J(G, A)) = |A| + k. Note that

3
2

∑
v∈V (G)

max{degG(v) − |L(v)| + |A| + 1, 0} =
3
2

∑
v∈V (G)

max{degG(v) − k + 1, 0}.

If |A| > 3m, then

3
2

∑
v∈V (G)

max{degG(v) − k + 1, 0} 6
3
2

∑
v∈V (G)

degG(v) = 3m 6 |A|,

so Theorem 2.5.6 implies that J(G, A) is H -colorable, and hence ZDP(G) 6 3m. Moreover, if δ(G) > k − 1,
then

3
2

∑
v∈V (G)

max{degG(v) − k + 1, 0} =
3
2

∑
v∈V (G)

(degG(v) − k + 1) = 3m −
3
2
(k − 1)n,

so ZDP(G) 6 3m − 3
2 (k − 1)n, as desired. Finally, Corollary 2.5.3 follows from Theorem 2.5.2 and the fact

that an n-vertex graph can have at most
(n
2
)
6 n2/2 edges.

2.5.3 Proof of Theorem 2.5.4

We will prove the following precise version of Theorem 2.5.4:
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Theorem 2.5.7. For all even n ∈ N, ZDP(n) > n2/4 − n.

Proof. Let n ∈ N be even and let k B n/2 − 1. Note that n2/4 − n = k2 − 1. Thus, it is enough to exhibit an
n-vertex bipartite graph G and a k2-fold cover H of J(G, k2 − 2) such that J(G, k2 − 2) is not H -colorable.

Let G � Kn/2,n/2 be an n-vertex complete bipartite graph with parts X = {x, x0, . . . , xk−1} and Y =

{y, y0, . . . , yk−1}, where the indices 0, . . . , k − 1 are viewed as elements of the additive group Z/kZ of
integers modulo k. Let A be a set of size k2 − 2 disjoint from X ∪ Y . For each u ∈ X ∪ Y ∪ A, let

L(u) B {u} × (Z/kZ) × (Z/kZ).

Let H be the graph with vertex set

(X ∪ Y ∪ A) × (Z/kZ) × (Z/kZ)

in which the following pairs of vertices are adjacent:

– (u, i, j) and (u, i′, j ′) for all u ∈ X ∪ Y ∪ A and i, j, i′, j ′ ∈ Z/kZ such that (i, j) , (i′, j ′);

– (u, i, j) and (v, i, j) for all u ∈ {x, y} ∪ A, v ∈ NJ(G,A)(u), and i, j ∈ Z/kZ;

– (xs, i, j) and (yt, i + s, j + t) for all s, t, i, j ∈ Z/kZ.

It is easy to see that H B (L,H) is a cover of J(G, A). We claim that J(G, A) is not H -colorable. Indeed,
suppose that I is an H -coloring of J(G, A). For each u ∈ X ∪Y ∪ A, let i(u) and j(u) be the unique elements
of Z/kZ such that (u, i(u), j(u)) ∈ I. By the construction of H and since I is an independent set, we have

(i(u), j(u)) , (i(a), j(a))

for all u ∈ X ∪ Y and a ∈ A. Since all the k2 − 2 pairs (i(a), j(a)) for a ∈ A are pairwise distinct, (i(u), j(u))

can take at most 2 distinct values as u is ranging over X ∪Y . One of those 2 values is (i(y), j(y)), and if u ∈ X ,
then

(i(u), j(u)) , (i(y), j(y)),

so the value of (i(u), j(u)) must be the same for all u ∈ X; let us denote it by (i, j). Similarly, the value of
(i(u), j(u)) is the same for all u ∈ Y , and we denote it by (i′, j ′). It remains to notice that the vertices (xi′−i, i, j)

and (yj′−j, i′, j ′) are adjacent in H, so I is not independent. �

Now we can prove Corollary 2.5.5:

Proof of Corollary 2.5.5. First, suppose that G is an n-vertex graph with χ(G) = r that maximizes the
difference χDP(G) − χ(G). Adding edges to G if necessary, we may arrange G to be a complete r-partite
graph. Assuming 2r > n, at least 2r − n of the parts must be of size 1, i.e., G is of the form J(G′, 2r − n) for
some 2(n − r)-vertex graph G′. By Corollary 2.5.3, we have χDP(G) = χ(G) as long as 2r − n > 6(n − r)2,
which holds for all r > n − (1/

√
6 − o(1))

√
n. This establishes the upper bound r(n) 6 n −Ω(

√
n).
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On the other hand, due to Theorem 2.5.4, for each n, we can find a graph G with s vertices, where
s 6 (2 + o(1))

√
n, such that χDP(J(G, n − s)) > χ(J(G, n − s)). Since J(G, n − s) is an n-vertex graph, we get

r(n) > χ(J(G, n − s)) = χ(G) + n − s > n − (2 + o(1))
√

n = n −O(
√

n). �

2.6 Fractional DP-coloring

2.6.1 Introduction

In this section we introduce and study the fractional version of DP-coloring. We start with a brief review of
the classical concepts of fractional coloring and fractional list coloring. For a survey of the topic, see, e.g.,
[SU97, Chapter 3].

Let G be a graph. An (η, k)-coloring of G, where η ∈ [0; 1] and k ∈ N, is a map f : V(G) → Pow(k)
with the following properties:

(F1) for every vertex u ∈ V(G), we have | f (u)| > ηk;

(F2) for every edge uv ∈ E(G), we have f (u) ∩ f (v) = �.

For given k ∈ N, let

ϑ(G, k) B max{η ∈ [0; 1] : G admits an (η, k)-coloring}.

(The maximum is attained, as only the values of the form `/k for integer ` are relevant.) The fractional
chromatic number χ∗(G) of G is defined by

χ∗(G) B inf{ϑ(G, k)−1 : k ∈ N}. (2.6.1)

It is well-known [SU97, §3.1] that the infimum in (2.6.1) is actually a minimum: For every graph G, there is
some k ∈ N such that χ∗(G) = ϑ(G, k)−1. In particular, χ∗(G) is always a rational number.

Fractional coloring allows a natural list-version. Let G be a graph and let L be a list assignment for G. An
(η, L)-coloring of G, where η ∈ [0; 1], is a map f that associates to each u ∈ V(G) a subset f (u) ⊆ L(u) with
the following properties:

(FL1) for every vertex u ∈ V(G), we have | f (u)| > η |L(u)|;

(FL2) for every edge uv ∈ E(G), we have f (u) ∩ f (v) = �.

We say that L is a k-list assignment if |L(u)| = k for all u ∈ V(G). For given k ∈ N, let

ϑ`(G, k) B max{η ∈ [0; 1] : G admits an (η, L)-coloring for every k-list assignment L for G}.

The fractional list-chromatic number χ∗` (G) of G is defined by

χ∗` (G) B inf{ϑ`(G, k)−1 : k ∈ N}.
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Somewhat surprisingly, Alon, Tuza, and Voigt [ATV97] showed that χ∗` (G) = χ∗(G) for all graphs G and,
in fact, for each G, there is k ∈ N such that

χ∗` (G) = χ∗(G) = ϑ`(G, k)−1 = ϑ(G, k)−1.

(Recall that the list-chromatic number of a graph cannot be bounded above by any function of its ordinary
chromatic number.)

Now we proceed with our main definitions. Given a cover H = (L,H) of a graph G, we refer to the
edges of H connecting distinct parts of the partition {L(u) : u ∈ V(G)} as cross-edges. A subset S ⊆ V(H)

is quasi-independent if it spans no cross-edges.

Definition 2.6.1. Let H = (L,H) be a cover of a graph G and let η ∈ [0; 1]. An (η,H )-coloring of G is a
quasi-independent set S ⊆ V(H) such that |S ∩ L(u)| > η |L(u)| for all u ∈ V(G).

Definition 2.6.2. Let G be a graph. For k ∈ N, let

ϑDP(G, k) B max{η ∈ [0; 1] : G admits an (η,H )-coloring for every k-fold cover H of G}.

The fractional DP-chromatic number χ∗DP(G) is defined by

χ∗DP(G) B inf{ϑDP(G, k)−1 : k ∈ N}. (2.6.2)

Clearly, for any graph G, we have χ∗(G) 6 χ∗DP(G) 6 χDP(G). Our results described below imply that
both inequalities can be strict.

Since χDP(Cn) = 3 for any cycle Cn, a connected graph G satisfies χDP(G) 6 2 if and only if G is a tree.
The first result of this section is the characterization of graphs G with χ∗DP(G) 6 2:

Theorem 2.6.3. Let G be a connected graph. Then χ∗DP(G) 6 2 if and only if G contains no odd cycles and at
most one even cycle. Furthermore, if G contains no odd cycles and exactly one even cycle, then χ∗DP(G) = 2,
even though ϑDP(G, k)−1 > 2 for all k ∈ N (i.e., the infimum in (2.6.2) is not attained).

Theorem 2.6.3 shows that the Alon–Tuza–Voigt theorem does not extend to fractional DP-coloring, as
every connected bipartite graph G with |E(G)| > |V(G)| + 1 satisfies χ∗(G) = χ(G) = 2, while χ∗DP(G) > 2.
Theorem 2.6.3 also provides examples of graphs for which the infimum in (2.6.2) is not attained. However,
the following natural question remains open:

Problem 2.6.4. Do there exist graphs G for which χ∗DP(G) is irrational?

Recall that, by Theorem 2.1.5, χDP(G) = Ω(d/ln d), where d is the maximum average degree of G.
Using a similar argument, we can extend this asymptotic lower bound to the fractional setting:

Theorem 2.6.5. If G is a graph of maximum average degree d > 4, then χ∗DP(G) > d/(2 ln d).

From Theorem 2.6.5, it follows that χ∗DP(G) cannot be bounded above by any function of χ
∗(G), since

there exist bipartite graphs of arbitrarily high average degree.
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Note that every graph G with maximum average degree d is d-degenerate, i.e., it has an acyclic orientation
D with ∆+(D) 6 d. Our next result describes additional conditions on such an orientation D under which the
lower bound given by Theorem 2.6.5 is asymptotically tight.

Theorem 2.6.6. Suppose that a graph G has an acyclic orientation D such that

(D1) ∆+(D) 6 d; and

(D2) for all uv ∈ E(D), there is no directed uv-path of even length in D.

Then χ∗DP(G) 6 (1 + o(1))d/ln d.

Obviously, every orientation D of a bipartite graph G satisfies condition (D2) of Theorem 2.6.6. Hence,
we obtain the following:

Corollary 2.6.7. If G is a d-degenerate bipartite graph, then χ∗DP(G) 6 (1 + o(1))d/ln d.

The conclusion of Theorem 2.6.6 is interesting even for the ordinary fractional chromatic number,
especially since its requirements are satisfied by several known constructions of graphs with high girth
and high chromatic number. For example, consider the following scheme analyzed in [KN99] (based on
the Blanche Descartes construction of triangle-free graphs with high chromatic number). Start by setting
G1 B K2 and let D1 be an orientation of G1. When Gi and Di are defined for some i, take an |V(Gi)|-uniform
non-(i + 1)-colorable hypergraph Hi . Build Gi+1 by making V(Hi) an independent set, adding |E(Hi)| disjoint
copies of Gi, establishing a bijection between the copies of Gi and the edges of Hi, and joining each copy
to its corresponding edge via a perfect matching. Finally, let Di+1 be an orientation of Gi+1 obtained by
orienting each copy of Gi according to Di and directing every remaining edge towards its endpoint in V(Hi).
It is easy to show [KN99, Property 1] that χ(Gi) > i + 1 for all i, and it is clear from the construction that the
orientation Di is acyclic and the out-degree of every vertex in Di is at most i. Furthermore, the (undirected)
subgraph of Gi induced by the vertices reachable in Di from any given vertex u ∈ V(Gi), including u itself,
is acyclic; in particular, for all uv ∈ E(Di), the only directed uv-path is the single edge u → v. Therefore,
condition (D2) of Theorem 2.6.6 holds and we can conclude χ∗DP(Gi) 6 (1 + o(1))i/ln i. Note that the girth
of Gi can be made arbitrarily large by using hypergraphs of large girth in the construction.

Another related family of graphs of high chromatic number that falls under the conditions of Theorem 2.6.6
is described in [Alo+16, Theorem 3.4].

The above examples yield the following corollary:

Corollary 2.6.8. For all d, g ∈ N, there exists a graph Gd,g with chromatic number at least d, girth at least
g, and χ∗DP(Gd,g) 6 (1 + o(1))d/ln d.

Theorem 2.6.6 is related to the following open problem posed by David Harris:

Problem 2.6.9 (Harris [Har16]). Is it true that χ∗(G) = O(d/ln d) for any triangle-free graph G of maximum
average degree d?

The remainder of this section is organized as follows. First, we prove Theorem 2.6.5 in §2.6.2. Then, in
§2.6.3, we establish Theorem 2.6.3. Finally, §2.6.4 is dedicated to the proof of Theorem 2.6.6.

103



2.6.2 Proof of Theorem 2.6.5

What follows is a slight modification of the proof of Theorem 2.1.5. Let G be a graph of maximum average
degree d. After passing to a subgraph, we may assume that the average degree of G itself is d. Set n B |V(G)|

and m B |E(G)|. Then we have m = dn/2. Let η0 B 2 ln d/d. Our goal is to show that ϑDP(G, k) < η0

for all k ∈ N. To that end, fix arbitrary k ∈ N and let η B dη0ke/k. It is enough to prove ϑDP(G, k) < η.
Let {L(u) : u ∈ V(G)} be a collection of pairwise disjoint sets of size k. Define X B

⋃
u∈V (G) L(u), and

build a random graph H with vertex set X by making each L(u) a clique and putting, independently for
each uv ∈ E(G), a uniformly random perfect matching between L(u) and L(v). Let H B (L,H) denote the
resulting random k-fold cover of G. Consider an arbitrary set S ⊆ X with |S ∩ L(u)| = ηk for all u ∈ V(G).
Since the matchings corresponding to different edges of G are drawn independently from each other, we have

P [S is quasi-independent in H]

=
∏

uv∈E(G)

P [there are no cross-edges between S ∩ L(u) and S ∩ L(v)] = ©«
((1−η)k
ηk

)( k
ηk

) ª®¬
m

.

There are
( k
ηk

)n possible choices for S, so

P [G is (η,H )-colorable] 6 ©«
((1−η)k
ηk

)( k
ηk

) ª®¬
m (

k
ηk

)n
=

((
(1 − η)k
ηk

)d/2 ( k
ηk

)−(d/2−1)
)n
.

Thus, we only need to show that (
(1 − η)k
ηk

)d/2 ( k
ηk

)−(d/2−1)
< 1.

Notice that (
(1 − η)k
ηk

) (
k
ηk

)−1
=

ηk−1∏
i=0

(1 − η)k − i
k − i

6 (1 − η)ηk .

Additionally, (
k
ηk

)
6

(
e
η

)ηk
.

Therefore, (
(1 − η)k
ηk

)d/2 ( k
ηk

)−(d/2−1)
6

(
e(1 − η)d/2

η

)ηk
,

so it is enough to establish
e(1 − η)d/2 < η.

Since 1 − η 6 exp(−η), we have

e(1 − η)d/2 6 e · exp(−ηd/2) 6 ed−1 < η,

as long as d > ee/2 ≈ 3.89, as desired.
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2.6.3 Proof of Theorem 2.6.3

Lemma 2.6.10. If G is a graph such that |E(G)| > |V(G)| + 1, then χ∗DP(G) > 2.

Proof. Set n B |V(G)|. Without loss of generality, we may assume that |E(G)| = n+ 1. Let η0 ∈ (0; 1/2) be a
number close to 1/2 (it will be clear from the rest of the proof what value η0 should take). Our aim is to show
that for all k ∈ N, ϑDP(G, k) < η0. Fix k ∈ N and let η B dη0ke/k, so it suffices to show that ϑDP(G, k) < η.
We use the same approach and notation as in the proof of Theorem 2.6.5 (see §2.6.2). Thus, H = (L,H) is a
random k-fold cover of G, where V(H) = X , and if S ⊆ X is a set with |S ∩ L(u)| = ηk for all u ∈ V(G), then

P [S is quasi-independent in H] = ©«
((1−η)k
ηk

)( k
ηk

) ª®¬
n+1

,

so the probability that G is (η,H )-colorable is at most

©«
((1−η)k
ηk

)( k
ηk

) ª®¬
n+1 (

k
ηk

)n
=

(
(1 − η)k
ηk

)n+1 ( k
ηk

)−1
.

Note that (
(1 − η)k
ηk

)
=

(
(1 − η)k
(1 − 2η)k

)
6

(
e(1 − η)
1 − 2η

) (1−2η)k
,

Additionally, (
k
ηk

)
>

(
1
η

)ηk
.

Therefore, the probability that G is (η,H )-colorable is less than 1 provided that(
e(1 − η)
1 − 2η

) (1−2η)(n+1)
<

(
1
η

)η
.

It remains to notice that, as η→ 1/2, we have(
e(1 − η)
1 − 2η

) (1−2η)(n+1)
→ 1, while

(
1
η

)η
→
√

2. �

Lemma 2.6.11. If G is a cycle of even length, then χ∗DP(G) = 2, while ϑDP(G, k)−1 > 2 for all k ∈ N.

Proof. Let the vertex and the edge sets of G be {v1, . . . , vn} and {v1v2, v2v3, . . . , vnv1}. Given k ∈ N and a
permutation σ : {1, . . . , k} → {1, . . . , k}, we define a k-fold cover Hσ = (Lσ,Hσ) of G as follows. First, for
each 1 6 i 6 k, let

Lσ(vi) B {i} × {1, . . . , k}.

Then, for each 1 6 i < n, define

EHσ (Lσ(vi), Lσ(vi+1)) B {{(i, j), (i + 1, j)} : 1 6 j 6 k}.
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Finally, let
EHσ (Lσ(v1), L f (vn)) B {{(1, j), (n, σ( j))} : 1 6 j 6 k}.

It is clear that to determine ϑDP(G, k) it is enough to consider k-fold covers of the form Hσ for some σ.
Suppose that ϑDP(G, k) = 1/2 for some k ∈ N. Consider a permutation σ : {1, . . . , k} → {1, . . . , k} that

consists of a single cycle. Note that if X ⊆ {1, . . . , k} satisfies σ(X) = X , then X ∈ {�, {1, . . . , k}}. Let S be
a (1/2,Hσ)-coloring of G. For each 1 6 i 6 k, let

Si B { j : (i, j) ∈ S}.

Since S is quasi-independent, Si ∩ Si+1 = � for all 1 6 i < n. But we also have |Si | = |Si+1 | = k/2, so
Si+1 = {1, . . . , k} \ Si. Since n is even, we conclude that Sn = {1, . . . , k} \ S1. For every j ∈ S1, we have
σ( j) < Sn, which yields σ( j) ∈ S1. In other words, σ(S1) = S1. But then S1 ∈ {�, {1, . . . , k}}; a contradiction.

It remains to prove that for any η < 1/2, there is k ∈ N such that ϑDP(G, k) > η. Take a large odd integer
k and let σ : {1, . . . , k} → {1, . . . , k} be a permutation. Write σ as a product of disjoint cycles:

σ = π1 · · · πm.

We may rearrange the set {1, . . . , k} so that the support of each cycle πi is an interval {`i, . . . , ri}, and

πi(`i) = `i + 1, πi(`i + 1) = `i + 2, . . . , πi(ri) = `i .

Then σ(i) 6 i + 1 for all 1 6 i 6 k. Now let

X B {1, . . . , (k − 1)/2} and Y B {(k + 3)/2, . . . , k}.

Note that |X | = |Y | = (k − 1)/2, X ∩ Y = �, and σ(X) ∩ Y = �. Hence, if we define

S B {(i, j) : 1 6 i 6 n, j ∈ X if i is odd and j ∈ Y if i is even},

then S is a ((1 − 1/k)/2,Hσ)-coloring of G, and we are done. �

Proof of Theorem 2.6.3. Let G be a connected graph and suppose that χ∗DP(G) 6 2. Even the ordinary
fractional chromatic number of any odd cycle exceeds 2 (see [SU97, Proposition 3.1.2]), so G must be bipartite.
Furthermore, by Lemma 2.6.10, |E(G)| 6 |V(G)|, so G contains at most one even cycle. Conversely, suppose
that G contains no odd cycles and at most one even cycle. If G is acyclic, then χ∗DP(G) = χDP(G) 6 2. It
remains to consider the case when G contains a single even cycle. On the one hand, Lemma 2.6.11 shows that
ϑDP(G, k)−1 > 2 for all k ∈ N. On the other hand, G is obtained from an even cycle by repeatedly adding
vertices of degree 1, so we can combine the result of Lemma 2.6.11 with the following obvious observation to
conclude that χ∗DP(G) = 2:
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Observation. Let G be a graph and let u ∈ V(G). Suppose that

degG(u) 6 χ∗DP(G − u) − 1.

Then χ∗DP(G) = χ∗DP(G − u). �

2.6.4 Proof of Theorem 2.6.6

Let D be a digraph. We use R+D(u) to denote the set of all vertices v ∈ V(D) that are reachable from u via a
directed path of positive length (so D is acyclic if and only if u < R+D(u) for all u ∈ V(D)). Let R−D(u) denote
the set of all v ∈ V(D) such that u ∈ R+D(v). We write

R+D[u] B R+D(u) ∪ {u} and R−D[u] B R−D(u) ∪ {u}.

For a subset U ⊆ V(D), let

R+D(U) B
⋃
u∈U

R+D(u); R+D[U] B
⋃
u∈U

R+D[u],

and R−D(U) and R−D[U] are defined similarly. We use expressions |S | and #S for the cardinality of a set S

interchangeably (usually, #S suggests that it is a random variable).
Now we can begin the proof. Let G, D, and d be as in the statement of Theorem 2.6.6. For brevity, we set

V B V(G) and omit subscripts G and D in expressions such as NG(u), R−D[u], deg+D(u), etc. We will often
use the acyclicity of D to make inductive definitions or arguments by describing how to deal with a vertex u

provided that all v reachable from u have already been considered.
Fix ε ∈ (0; 1) and define η B (1 − ε) ln d/d. We will show that χ∗DP(G) 6 η

−1 if d is large enough (as a
function of ε).

Let H = (L,H) be a k-fold cover of G. Our aim is to show that if k is sufficiently large (where the
lower bound may depend on the entire graph G), then G has an (η,H )-coloring. For a set U ⊆ V , let
L(U) B

⋃
u∈U L(u) and let QI(U) denote the set of all quasi-independent sets contained in L(U).

Let F be the orientation of the cross-edges of H in which a cross-edge xy is directed from x to y if and
only if the vertices u, v ∈ V such that x ∈ L(u) and y ∈ L(v) satisfy uv ∈ E(D). Again, we omit subscripts H

and F in expressions such as NH [x], R+F (x), etc.
Given a set of probabilities p(u) ∈ [0; 1] for u ∈ V , we define random subsets S(u) ⊆ L(u) inductively as

follows. Consider u ∈ V and suppose that the sets S(v) for all v reachable from u have already been defined.
Independently for each x ∈ L(u), set

ξ(x) B


1 with probability p(u);

0 with probability 1 − p(u),
(2.6.3)

Define
L ′(u) B {x ∈ L(u) : N+(x) ∩ S(v) = � for all v ∈ N+(u)},
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and then
S(u) B {x ∈ L ′(u) : ξ(x) = 1}.

Note that for every u ∈ V , the set S(u) only depends on the random choices associated with the elements
of L(R+[u]). For each U ⊆ V , write S(U) B

⋃
u∈U S(u) and set S B S(V). By construction, S is always a

quasi-independent set. We will argue that, for a suitable choice of {p(u) : u ∈ V} and sufficiently large k,
|S(u)| > ηk for all u ∈ V with high probability.

We start with a positive correlation inequality.

Lemma 2.6.12. Let u ∈ V and define

A B R+[u] \ R−[N+[u]].

Let Q ∈ QI(A) and let Y ⊆ L(N+(u)). Then

P [y < S for all y ∈ Y | S(A) = Q] >
∏
y∈Y

P [y < S | S(A) = Q] .

Proof. Since nothing in the statement of the lemma depends on the vertices outside of R+[u], we may pass to
a subgraph and assume that V = R+[u]. Set

B B R−[N+[u]],

so B = V \ A. The lemma is trivially true if Y = �, so we may assume Y , �, and hence N+(u) , �.
Notice that the graph G[B] is bipartite. Indeed, consider any v ∈ B. Then, on the one hand, v is reachable

from u, and, on the other hand, there is a vertex w ∈ N+(u) reachable from v. We claim that if P1 and P2

are two directed uv-paths, then length(P1) ≡ length(P2) (mod 2). Indeed, let P3 be any directed vw-path. If
length(P1) . length(P2) (mod 2), then either P1 + P3 or P2 + P3 is a directed uw-path of even length, which
contradicts assumption (D2). Thus, we can 2-color the vertices in B based on the parity of the directed paths
leading from u to them.

Let {U1,U2} be a partition of B into two independent sets such that u ∈ U1. Define a random subset
Xξ ⊆ L(B) as follows:

Xξ B {x ∈ L(U1) : ξ(x) = 1} ∪ {x ∈ L(U2) : ξ(x) = 0}.

(Recall that ξ is defined in (2.6.3).) The set Xξ is obtained by independently selecting each element x ∈ L(B)

with probability q(x) given by

q(x) B


p(v) if x ∈ L(v) for v ∈ U1;

1 − p(v) if x ∈ L(v) for v ∈ U2.

To complete the construction of the set S, given that S(A) = Q, we only need to know the values ξ(x) for all
x ∈ L(B). Since all of them are determined by the set Xξ , we may, for fixed X ⊆ L(B), denote by SX the
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value S would take under the assumptions S(A) = Q and Xξ = X . For each x ∈ L(B), let

Fx B {X ⊆ L(B) : x ∈ SX}.

Recall that a family F of sets is increasing if whenever X1 ⊇ X2 ∈ F , we also have X1 ∈ F ; similarly, F is
decreasing if X1 ⊆ X2 ∈ F implies X1 ∈ F .

Claim (A). For each x ∈ L(U1), the family Fx is increasing; while for each x ∈ L(U2), the family Fx is
decreasing.

Proof. We argue inductively. Let v ∈ B and suppose that the claim has been verified for all x ∈ L(w) with
w ∈ B reachable from v. Consider any x ∈ L(v). We will give the proof for the case v ∈ U1, as the case
v ∈ U2 is analogous. By definition,

x ∈ S ⇐⇒ ξ(x) = 1 and y < S for all y ∈ N+(x). (2.6.4)

If x ∈ N−(Q), then Fx = � and there is nothing to prove. If, on the other hand, x < N−(Q), then (2.6.4) yields

Fx = {X ⊆ L(B) : x ∈ X} ∩
⋂

y∈N+(x)∩L(B)

F c
y ,

where F c
y denotes the complement of Fy . Each y ∈ N+(x) ∩ L(B) belongs to L(U2), so, by the inductive

assumption, the families Fy are decreasing, while their complements F c
y are increasing. Therefore, Fx is an

intersection of increasing families, so it is itself increasing. a

With Claim (A) in hand, the conclusion of the lemma follows from the fact that Y ⊆ L(U2) and a form of
the FKG inequality, tracing back to Kleitman [Kle66]:

Theorem 2.6.13 ([AS00, Theorem 6.3.2]). Let X be a random subset of a finite set I obtained by selecting
each i ∈ I independently with probability q(i) ∈ [0; 1]. If F and G are increasing families of subsets of I, then

P [X ∈ F and X ∈ G] > P [X ∈ F ] · P [X ∈ G] .

The same conclusion holds if F and G are decreasing. �

The next lemma gives a lower bound on the expected sizes of the sets S(u).

Lemma 2.6.14. Let α be a positive real number such that

(1 + α)2(1 − ε) < 1.

Then there exists a choice of {p(u) : u ∈ V} such that for all u ∈ V ,

E[#S(u)] = (1 + α)ηk .
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Proof. Let β ∈ (0; 1) be such that

1 − λ > exp (−(1 + α)λ) for all 0 < λ 6 β. (2.6.5)

We will frequently use the following form of the inequality of arithmetic and geometric means: Given
nonnegative real numbers λ1, . . . , λm and nonnegative weights w1, . . . , wm satisfying

∑m
i=1 wi = 1,

m∑
i=1

wiλi >
m∏
i=1

λwi

i . (2.6.6)

We define the values p(u) inductively. Let u ∈ V and assume that we have already defined p(v) for all v
reachable from u so that

E[#S(v)] = (1 + α)ηk and p(v) 6 β for all v ∈ R+(u).

We will show that in that case
E[#L ′(u)] > β−1(1 + α)ηk . (2.6.7)

After (2.6.7) is established, we can define

p(u) B
(1 + α)ηk
E[#L ′(u)]

,

which gives
E[#S(u)] = p(u)E[#L ′(u)] = (1 + α)ηk,

as desired, and, furthermore, p(u) 6 β, allowing the induction to continue.
Let

A B R+[u] \ R−[N+[u]].

We have
E[#L ′(u)] =

∑
Q∈QI(A)

E [#L ′(u) | S(A) = Q] · P [S(A) = Q] . (2.6.8)

Consider any Q ∈ QI(A). By the linearity of expectation,

E [#L ′(u) | S(A) = Q] =
∑

x∈L(u)

P [x ∈ L ′(u) | S(A) = Q]

=
∑

x∈L(u)

P
[
y < S for all y ∈ N+(x)

�� S(A) = Q
]
.

From Lemma 2.6.12 we derive∑
x∈L(u)

P
[
y < S for all y ∈ N+(x)

�� S(A) = Q
]
>

∑
x∈L(u)

∏
y∈N+(x)

P [y < S | S(A) = Q] ,
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which, by (2.6.6), is at least

k ©«
∏

x∈L(u)

∏
y∈N+(x)

P [y < S | S(A) = Q]ª®¬
1/k

.

After changing the order of multiplication, we get∏
x∈L(u)

∏
y∈N+(x)

P [y < S | S(A) = Q] >
∏

v∈N+(u)

∏
y∈L(v)

P [y < S | S(A) = Q] .

Now consider any v ∈ N+(u). Let
Av B A ∪ R+(v).

Since A ⊆ Av, the set S(A) is determined by S(Av), and hence∏
y∈L(v)

P [y < S | S(A) = Q] =
∏

y∈L(v)

∑
R∈QI(Av )

P [y < S | S(Av) = R] · P [S(Av) = R | S(A) = Q] .

Applying (2.6.6) again, we see that the last expression is at least∏
y∈L(v)

∏
R∈QI(Av )

(P [y < S | S(Av) = R])P[S(Av )=R | S(A)=Q]

=
∏

R∈QI(Av )

©«
∏

y∈L(v)

P [y < S | S(Av) = R]ª®¬
P[S(Av )=R | S(A)=Q]

. (2.6.9)

Note that the set L ′(v) is completely determined by S(Av). This allows us to introduce notation L ′R(v) for the
value of L ′(v) under the assumption S(Av) = R; or, explicitly,

L ′R(v) B L(v) \ N−(R).

Since v < Av, for fixed R ∈ QI(Av) and y ∈ L(v), we have

P [y < S | S(Av) = R] =


1 − p(v) if y ∈ L ′R(v);

1 otherwise.

Therefore, ∏
y∈L(v)

P [y < S | S(Av) = R] = (1 − p(v)) |L
′
R (v) | .
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Plugging this into (2.6.9), we obtain∏
y∈L(v)

P [y < S | S(A) = Q] >
∏

R∈QI(Av )

(1 − p(v)) |L
′
R (v) | ·P[S(Av )=R | S(A)=Q]

= (1 − p(v))
∑

R∈QI(Av ) |L
′
R (v) | ·P[S(Av )=R | S(A)=Q]

= (1 − p(v))E[#L
′(v) | S(A)=Q]

Since, by our assumption, p(v) 6 β, inequality (2.6.5) yields

(1 − p(v))E[#L
′(v) | S(A)=Q] > exp (−(1 + α)p(v)E [#L ′(v) | S(A) = Q])

= exp (−(1 + α)E [#S(v) | S(A) = Q]) .

This allows us to lower bound E [#L ′(u) | S(A) = Q] as

E [#L ′(u) | S(A) = Q] > k ©«
∏

v∈N+(u)

exp (−(1 + α)E [#S(v) | S(A) = Q])ª®¬
1/k

= k exp ©«−1 + α
k

∑
v∈N+(u)

E [#S(v) | S(A) = Q]ª®¬ .
Returning to (2.6.8), we conclude

E[#L ′(u)] > k
∑

Q∈QI(A)
exp ©«−1 + α

k

∑
v∈N+(u)

E [#S(v) | S(A) = Q]ª®¬ · P [S(A) = Q] .

Due to the convexity of the exponential function (or by (2.6.6) again), the last expression is at least

k exp ©«−1 + α
k

∑
v∈N+(u)

E [#S(v)]ª®¬ ,
which, since E[#S(v)] = (1 + α)ηk for all v ∈ N+(u) by assumption, finally becomes

k exp
(
−(1 + α)2η deg+(u)

)
> k exp

(
−(1 + α)2ηd

)
= kd−(1+α)

2(1−ε).

It remains to notice that, since (1 + α)2(1 − ε) < 1, the quantity d−(1+α)
2(1−ε) is asymptotically bigger than

β−1(1 + α)η = Θ(ln d/d). This finishes the proof of (2.6.7). �

Finally, we show that the sizes of the sets S(u) are highly concentrated.

Lemma 2.6.15. There is C > 0, depending on G but not on k, such that for all α > 0 and u ∈ V ,

P [|#S(u) − E[#S(u)]| > αk] 6 2 exp
(
−Cα2k

)
.
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Proof. We use the following concentration result:

Theorem 2.6.16 (Simple Concentration Bound [MR02, p. 79]). Let ζ be a random variable determined by
s independent trials such that changing the outcome of any one trial can affect ζ at most by c. Then

P[|ζ − Eζ | > t] 6 2 exp
(
−

t2

2c2s

)
.

The value #S(u) is determined by k |V | independent trials, namely by the values ξ(x) for x ∈ V(H), so, to
apply Theorem 2.6.16, we only need to establish the following:

Claim (A). Changing the value ξ(x) for some x ∈ V(H) can affect #S(u) at most by some amount c that
depends on G but not on k.

Proof. Suppose that x ∈ L(v) for some v ∈ V . The value ξ(x) can only affect y ∈ R−[x], so it suffices to
upper bound |R−[x] ∩ L(u)|. Let y = z1 → · · · → z` = x be a directed yx-path for some y ∈ L(u). For each
1 6 i 6 `, choose vi ∈ V so that zi ∈ L(vi). Then u = v1 → · · · → v` = v is a directed uv-path in D. Notice
that the uv-path v1 → · · · → v` uniquely identifies y = z1. Indeed, by definition, z` = x, so z`−1 must be the
unique neighbor of x in L(v`−1). Then z`−2 must be the unique neighbor of z`−1 in L(v`−2); and so on. Thus,
|R−[x] ∩ L(u)| does not exceed the number of directed uv-paths, which is independent of k. a

The conclusion of the lemma is now immediate. �

Now we can easily finish the proof of Theorem 2.6.6. Pick some α > 0 so that (1 + α)2(1 − ε) < 1 and
apply Lemma 2.6.14 to obtain {p(u) : u ∈ V} such that for all u ∈ V ,

E[#S(u)] = (1 + α)ηk .

Then
P [#S(u) < ηk] 6 2 exp

(
−Cα2η2k

)
,

where C is the constant from Lemma 2.6.15. Therefore,

P [S is not an (η,H )-coloring of G] 6 2n exp
(
−Cα2η2k

)
−−−−→
k→∞

0,

as desired.
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Part II

The infinite
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3 | Measurable versions of the Lovász Local Lemma

3.1 Introduction

3.1.1 Graph colorings in the Borel and measurable settings

In this chapter we investigate the extent to which some classical results in finite combinatorics can be
transferred to the measurable setting. Our main object of study will be the Lovász Local Lemma, which will
be discussed in some detail in the next subsection. We start with a “preview” of some particular applications
that our general techniques can provide.

We will be interested in the properties of Borel graphs; see [KM16] for a comprehensive survey of the topic.
A graph G on a standard Borel space X is Borel if its edge relation, i.e., the set {(x, y) ∈ X2 : xy ∈ E(G)},
is a Borel subset of X2. An important source of Borel graphs are Borel group actions. Let Γ be a countable
group acting by Borel automorphisms on a standard Borel space X . Denote this action by α : Γy X . Let
S ⊆ Γ be a generating set and define the graph G(α, S) on X via

xy ∈ E(G(α, S)) :⇐⇒ x , y and γ · x = y for some γ ∈ S ∪ S−1.

Then G(α, S) is locally countable and Borel.
For a Borel graph G on X , its Borel chromatic number (notation: χB(G)) is the smallest cardinality of a

standard Borel space Y such that G admits a Borel proper coloring f : X → Y . Borel chromatic numbers
were first introduced and systematically studied by Kechris, Solecki, and Todorcevic [KST99]. Clearly,
χ(G) 6 χB(G). One of the starting points of Borel combinatorics is the observation that this inequality can
be strict. In fact, Kechris, Solecki, and Todorcevic [KST99, Example 3.1] gave an example of an acyclic
locally countable Borel graph G such that χB(G) = 2ℵ0 (note that if G is acyclic, then χ(G) 6 2). On the
other hand, they showed [KST99, Proposition 4.6] that if ∆(G) is finite, then χB(G) 6 ∆(G) + 1, in analogy
with the finite case.

The bound χ(G) 6 ∆(G) + 1 is rather weak: recall that, by Brooks’s theorem, χ(G) 6 ∆(G) for all G

apart from a few natural exceptions [Die00, Theorem 5.2.4]. As it turns out, there is no hope for any result
along these lines in the Borel setting: Marks [Mar16, Theorem 1.3] showed that the Borel chromatic number

This chapter is based on [Ber16a].
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of an acyclic Borel graph G with maximum degree d ∈ N can attain the value d + 1 (and, in fact, any value
between 2 and d + 1).

Marks’s results indicate that the Borelness requirement is too restrictive to allow any interesting analogs
of classical coloring results. It is reasonable, therefore, to try asking for somewhat less. For instance, we
can only require that “most” of the graph should be colored, in an appropriate sense of the word “most.”
Natural candidates for such a notion of largeness are Baire category and measure. We say that a set X ′ ⊆ X is
G-invariant, where G is a graph on X , if G[X ′] is a union of connected components of G. If τ is a Polish
topology on X that is compatible with the Borel structure on X , then the τ-Baire-measurable chromatic
number of G is defined as follows:

χτ(G) B min{χB(G[X ′]) : X ′ is a τ-comeager G-invariant Borel subset of X}.

Similarly, if µ is a probability Borel measure on X , then the µ-measurable chromatic number of G is

χµ(G) B min{χB(G[X ′]) : X ′ is a µ-conull G-invariant Borel subset of X}.

Like χB(G), both χτ(G) and χµ(G) can exceed χ(G), even for locally finite acyclic graphs. A simple example
is the graph G B G(α, {1}), where α : Z y S1 is an irrational rotation action of Z on the unit circle S1.
Each component of G is a bi-infinite path, so G is acyclic; but an easy ergodicity argument shows that χτ(G),
χµ(G) > 2, where τ is the usual topology and µ is the Lebesgue probability measure on S1. (Since ∆(G) = 2,
[KST99, Proposition 4.6] yields χτ(G) = χµ(G) = χB(G) = 3.)

Nevertheless, Conley and Miller [CM16, Theorem B] showed that χτ(G) cannot differ from χ(G) “too
much”; specifically, they proved that for a locally finite Borel graph G on a standard Borel space X , if χ(G) is
finite, then χτ(G) 6 2χ(G) − 1 with respect to any compatible Polish topology τ on X . In particular, if G is
acyclic (or, more generally, χ(G) 6 2), then χτ(G) 6 3.

Our main focus in this chapter will be on µ-measurable chromatic numbers and µ-measurable analogs of
other combinatorial parameters (while some results pertaining to Baire measurable colorings will be presented
in Chapter 5). Conley, Marks, and Tucker-Drob [CMT16, Theorem 1.2] proved a µ-measurable analog of
Brooks’s theorem for graphs with maximum degree at least 3 (the example of an irrational rotation action
shows that Brooks’s theorem for graphs with maximum degree 2 does not hold in the measurable setting).
In particular, χµ(G) can be strictly less than χB(G). On the other hand, in contrast to Baire measurable
chromatic numbers, χµ(G) cannot be bounded above by any function of χ(G), as we explain below.

Let S be a finite set and let F (S) be the free group over S. Let α : F (S)y [0; 1]F (S) be the shift action of
F (S) on [0; 1]F (S) and set G B G(α, S). Let λ denote the Lebesgue measure on [0; 1] (we will use this notation
throughout) and set µ B λF (S). Off of a µ-null set, the action α is free, so every connected component of G

is an infinite 2|S |-regular tree and hence is 2-colorable. However, as Lyons and Nazarov [LN11] observed,
a result of Frieze and Łuczak [FŁ92] implies that χµ(G) > |S |/ln(2|S |) (see also [KM16, Theorem 5.44]).
In particular, χµ(G) → ∞ as |S | → ∞. Note that the group F (S) for |S | > 2 is nonamenable; in fact,
Conley and Kechris [CK13] mention that there are no known examples of graphs G induced by probability
measure-preserving actions of amenable groups such that χµ(G) > χ(G) + 1 (see [KM16, Problem 5.19]).
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Note that the best known upper bound on χµ(G) is 2|S | (given by the measurable Brooks’s theorem of
Conley–Marks–Tucker-Drob), so the orders of magnitude of the lower and upper bounds are different. Lyons
and Nazarov [LN11] asked what the correct value of χµ(G) should be. As an immediate corollary of one of
our general results (namely Theorem 3.5.6), we can show that |S |/ln(|S |) is the right order. In fact, we have
the following general theorem:

Theorem 3.1.1. Let Γ be a countable group with a finite generating set S ⊆ Γ. Denote d B |S ∪ S−1 |. Let
α : Γy (X, µ) be a p.m.p. action of Γ and set G B G(α, S). Suppose that α factors to the shift action Γy
([0; 1]Γ, λΓ). If g(G) > 4, then χµ(G) = O(d/ln d); furthermore, if g(G) > 5, then χµ(G) 6 (1 + o(1))d/ln d.

Corollary 3.1.2. Let S be a finite set of size k, let α : F (S)y [0; 1]F (S) be the [0; 1]-shift action of the free
group F (S), and let G B G(α, S). Then

(1 − o(1))
k

ln k
6 χλF (S)(G) 6 (2 + o(1))

k
ln k

. (3.1.1)

Note that, by a result of Bowen [Bow11, Theorem 1.1], any two nontrivial1 shift actions of F (S), where
|S | > 2, admit factor maps to each other, so (3.1.1) holds for any such action as well.

One can also consider edge colorings in the Borel or measurable setting. Naturally, for a Borel graph
G on a standard Borel space X , its Borel chromatic index χ′B(G) is the smallest cardinality of a standard
Borel space Y such that G admits a Borel proper edge coloring f : E(G) → Y . Clearly, χ′(G) 6 χ′B(G).
Marks [Mar16, Theorem 1.4] showed that the Borel chromatic index of an acyclic Borel graph G with
maximum degree d ∈ N can be as large as 2d − 1 (and this bound is tight—finding a proper edge coloring of
a graph with maximum degree d is equivalent to finding a proper vertex coloring of an auxiliary graph with
maximum degree 2d − 2).

One can define the µ-measurable chromatic index of a Borel graph G by analogy with its µ-measurable
chromatic number; namely,

χ′µ(G) B min{χ′B(G[X
′]) : X ′ is a µ-conull G-invariant Borel subset of X}.

Csóka, Lippner, and Pikhurko [CLP16, Theorem 1.4] proved that Vizing’s theorem holds measurably for
locally finite bipartite graphs and that χµ(G) 6 ∆(G) + o(∆(G)) in general, provided that the measure µ is
G-invariant. Theorem 3.5.6 gives a different proof of the second part of this result for graphs induced by shift
actions (with a slightly worse lower order term); moreover, it implies the following “list version”:

Theorem 3.1.3. For every d ∈ N, there exists k = d + o(d) such that the following holds. Let Γ be a countable
group with a finite generating set S ⊆ Γ such that |S ∪ S−1 | = d. For each γ ∈ S ∪ S−1, let L(γ) be a finite
set such that L(γ) = L(γ−1) and |L(γ)| > k for all γ ∈ S ∪ S−1. Let α : Γ y (X, µ) be a p.m.p. action of
Γ and let G B G(α, S). Suppose that α factors to the shift action Γ y ([0; 1]Γ, λΓ). Then there exists a
Γ-invariant µ-conull Borel subset X ′ ⊆ X and a Borel proper edge coloring f of G[X ′] such that for all
x ∈ X ′, f (x, γ · x) ∈ L(γ).

1Here, a probability measure ν is said to be nontrivial if it is not concentrated on a single point.
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One can further relax the conditions on a coloring to allow a small (but positive) margin of error. Let G

be a graph with vertex set X . For a map f : X → Y , define the defect set Def( f ) ⊆ X by

x ∈ Def( f ) :⇐⇒ f (x) = f (y) for some y ∈ NG(x).

In other words, a vertex x belongs to Def( f ) if and only if it shares a color with a neighbor. If the graph G is
Borel, then a Borel map f : X → Y is a (µ, ε)-approximately proper Borel coloring of G if µ(Def( f )) 6 ε.
The µ-approximate chromatic number of G (notation: apχµ(G)) is the smallest cardinality of a standard
Borel space Y such that for every ε > 0, there is a (µ, ε)-approximately proper Borel coloring f : X → Y of
G. Approximate chromatic numbers were studied extensively by Conley and Kechris [CK13]. In particular,
they proved that if G is induced by a measure-preserving action of a countable amenable group, then its
µ-approximate chromatic number is essentially determined by the ordinary chromatic number; more precisely,
for such G,

apχµ(G) = min{χ(G[X ′]) : X ′ is a µ-conull G-invariant Borel subset of X}.

However, the lower bound apχλF (S)(G(α, S)) > |S |/ln(2|S |), where α : F (S)y [0; 1]F (S) is the shift action of
the free group F (S) over a finite set S, still holds.

For an edge coloring f : E(G) → Y , let Def ′( f ) ⊆ X be given by

x ∈ Def ′( f ) :⇐⇒
∃y ∈ NG(x)∃z ∈ NG(y) (z , x and f (xy) = f (yz)); or
∃y ∈ NG(x)∃z ∈ NG(x) (z , y and f (xy) = f (xz)).

In other words, x ∈ Def ′( f ) if and only if x is incident to an edge that shares an endpoint with another edge
of the same color. The µ-approximate chromatic index apχ′µ(G) of a Borel graph G is defined similarly to
apχµ(G). As a corollary of our other general result (namely Theorem 3.4.1), Theorems 3.1.1 and 3.1.3 can be
generalized to arbitrary locally finite Borel graphs in the context of approximate colorings.

Theorem 3.1.4. Let G be a Borel graph on a standard Borel space X and suppose that ∆(G) = d ∈ N. Let µ
be a probability Borel measure on X . If g(G) > 4, then apχµ(G) = O(d/ln d); furthermore, if g(G) > 5, then
apχµ(G) 6 (1 + o(1))d/ln d.

Theorem 3.1.5. Let G be a Borel graph on a standard Borel space X and suppose that ∆(G) = d ∈ N. Let µ
be a probability Borel measure on X . Then apχ′µ(G) = d + o(d).

3.1.2 The Lovász Local Lemma and its applications

The Lovász Local Lemma, or the LLL, is a powerful probabilistic tool developed by Erdős and Lovász [EL75].
We refer to [AS00, Chapter 5] for background on the Lovász Local Lemma and its applications in combinatorics;
several other classical applications can be found, e.g., in [MR02]. In this chapter we will only use the LLL in
a somewhat restricted set-up that is described below. (For the full statement of the LLL, see Theorem 1.1.1.)

Let X be a set and consider any S ∈ [X]<∞. Even though X itself is just a set with no additional structure,
[0; 1]S is a standard Borel space equipped with the Lebesgue probability measure λS . We refer to the Borel
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subsets B ⊆ [0; 1]S as bad events over X . Every bad event is a subset of [X → [0; 1]]<∞. If B ⊆ [0; 1]S is
a nonempty bad event, then we call S the domain of B and write dom(B) B S; since B is nonempty, S is
determined uniquely. Set dom(�) B �. The probability of a bad event B is

P[B] B λdom(B)(B).

A function f : X → [0; 1] avoids a bad event B if there is no w ∈ B with w ⊆ f . An instance (of the LLL)
over X is a set B of bad events over X . A solution to an instance B is a map f : X → [0; 1] that avoids all
B ∈ B. For an instance B and a bad event B ∈ B, the neighborhood of B in B is

NB(B) B {B′ ∈ B \ {B} : dom(B′) ∩ dom(B) , �}.

The degree of B in B is
degB(B) B |NB(B)|.

Let
p(B) B sup

B∈B
P[B] and d(B) B sup

B∈B
degB(B).

An instance B is correct for the Symmetric LLL (the SLLL for short) if

e · p(B) · (d(B) + 1) < 1,

where e = 2.71 . . . denotes the base of the natural logarithm.

Theorem 3.1.6 (Erdős–Lovász [EL75]; Symmetric Lovász Local Lemma—finite case). Let B be an
instance of the LLL over a finite set X . If B is correct for the SLLL, then B has a solution.

The Symmetric LLL was introduced by Erdős and Lovász (with 4 in place of e) in their seminal
paper [EL75]; the constant was later improved by Lovász (the sharpened version first appeared in [Spe77]).
Theorem 3.1.6 is a special case of the SLLL in the so-called variable framework (the name is due to Kolipaka
and Szegedy [KS11]), which encompasses most typical applications (with a notable exception of the ones
concerning random permutations, see, e.g., [ES91]). For the full statement of the SLLL, see Lemma 2.3.6
or [AS00, Corollary 5.1.2] (deducing Theorem 3.1.6 from that is routine; see, e.g., [MR02, p. 41]).

Theorem 3.1.6 can be also extended to instances B with d(B) = ∞, provided that for B ∈ B, P[B]
decays sufficiently fast as |dom(B)| increases. An instance B is correct for the General LLL (the GLLL
for short), or simply correct, if the neighborhood of each B ∈ B is countable, and there exists a function
ω : B → [0; 1) such that for all B ∈ B,

P[B] 6 ω(B)
∏

B′∈NB(B)

(1 − ω(B′)).

Theorem 3.1.7 (General Lovász Local Lemma—finite case; [AS00, Lemma 5.1.1]). Let B be an instance
of the LLL over a finite set X . If B is correct for the GLLL, then B has a solution.
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A standard calculation (see [AS00, proof of Corollary 5.1.2]) shows that if an instance B is correct for
the SLLL, then it is also correct for the GLLL, hence the name “General LLL.”

Remark 3.1.8. If B is a correct instance of the LLL, then we may assume that dom(B) , � for all B ∈ B.
Indeed, there are only two bad events with empty domain: � and {�}. The event � is always avoided, so it
does not matter if � ∈ B or not. On the other hand, {�} cannot be avoided; in particular, if B is correct, then
{�} < B.

Remark 3.1.9. The definition of bad events can be naturally extended to include subsets of [X → Y ]<∞ for
standard probability spaces (Y, ν) other than ([0; 1], λ). Indeed, in standard combinatorial applications, Y

is often a finite set. However, any standard probability space (Y, ν) can be “simulated” by ([0; 1], λ), in the
sense that there exists a Borel map ϕ : [0; 1] → Y such that ϕ∗(λ) = ν. As far as the LLL is concerned, a set
B ⊆ [X → Y ]<∞ can be replaced by its “pullback” ϕ∗(B) ⊆ [X → [0; 1]]<∞ defined via

w ∈ ϕ∗(B) :⇐⇒ ϕ ◦ w ∈ B.

Therefore, no generality is lost when only working with subsets of [X → [0; 1]]<∞.

Theorems 3.1.6 and 3.1.7 also hold in the case when the ground set X is infinite. In most applications, one
may assume that each bad event B is an open subset of [0; 1]dom(B) and obtain infinitary analogs of the LLL
through standard compactness arguments (see, e.g., [AS00, Theorem 5.2.2]). Yet, a different proof is required
in general. Kun [Kun13, Lemma 13] showed that the infinite version of the LLL can be derived using the
effective approach developed by Moser and Tardos [MT10].

Theorem 3.1.10 (Kun [Kun13, Lemma 13]; General Lovász Local Lemma—infinite version). Let B be
an instance of the LLL over an arbitrary set X . If B is correct for the GLLL, then B has a solution.

Since the Moser–Tardos theory will play a crucial role in our investigation, we present its main tools,
including a proof of Theorem 3.1.10, in §3.2.

As a simple example, letH be a k-uniform hypergraphwith vertex set X , and recall that a proper 2-coloring
of H is a map f : X → 2 such that every edge e ∈ E(H) contains vertices of both colors. For e ∈ E(H), let
we,0, we,1 : e→ 2 denote the constant 0 and 1 functions respectively and define Be B {we,0,we,1}. Set

B B {Be : e ∈ E(H)}.

As explained in Remark 3.1.9, B can be viewed as an instance over X . The proper 2-colorings of H are
precisely the solutions to B. It is straightforward to check the conditions under which B is correct for the
SLLL, and, after an easy calculation, one recovers the following theorem due to Erdős and Lovász, which
historically was the first application of the LLL:

Theorem 3.1.11 (Erdős–Lovász [EL75]). Let H be a k-uniform hypergraph and suppose that every edge
of H intersects at most d other edges. If e(d + 1) 6 2k−1, then H is 2-colorable.2

2The best currently known bound that guarantees 2-colorability of H is d 6 c(k/ln k)1/22k for some positive absolute constant c,
due to Radhakrishnan and Srinivasan [RS00, Theorem 4.2]. Their proof also relies on the LLL.
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To illustrate the types of results one can obtain using the LLL, we describe a few other applications below.

Kim’s and Johansson’s theorems

Let G be a “sparse” graph, in that it does not contain any “short” cycles. Can one show that χ(G) is much
smaller than ∆(G), the bound given by Brooks’s theorem? It is well-known that there exist d-regular graphs
with arbitrarily large girth and with chromatic number at least (1/2 − o(1))d/ln d. After a series of partial
results by a number of researchers (see [JT95, Section 4.6] for a survey), Kim [Kim95] proved an upper bound
that (asymptotically) exceeds the lower bound only by a factor of 2:

Theorem 3.1.12 (Kim [Kim95]; see also [MR02, Chapter 12]). Let G be a graph with maximum degree
d ∈ N. If g(G) > 5, then χ(G) 6 (1 + o(1))d/ln d.

Shortly after, Johansson [Joh96] reduced the girth requirement and extended Kim’s result (modulo a
constant factor) to triangle-free graphs.

Theorem 3.1.13 (Johansson [Joh96]; see also [MR02, Chapter 13]). Let G be a graph with maximum degree
d ∈ N. If g(G) > 4, then χ(G) = O (d/ln d).

The proofs of Theorems 3.1.12 and 3.1.13 are examples of a particular general approach to coloring
problems. The key idea is to iterate applications of the LLL so that on each stage, the LLL produces only
a partial coloring of G—but this coloring is also made to satisfy some additional requirements. These
requirements allow the process to be repeated, until finally the uncolored part of the graph becomes so sparse
that a single application of the LLL (or a basic greedy algorithm) can finish the proof. Dealing with such
iterated applications of the LLL will be one of the major difficulties we will have to face in §3.5. An interested
reader is referred to [MR02] for an excellent exposition of both proofs.3

Kahn’s theorem

As mentioned in §3.1.1, Vizing’s theorem asserts that if ∆(G) is finite, then χ′(G) 6 ∆(G) + 1. There are
several known proofs of Vizing’s theorem, none of them using the LLL.

An important generalization of graph coloring is so-called list coloring; see §2.1 for its definition. The
following outstanding open problem concerns edge list colorings:

Conjecture 3.1.14 (Edge List Coloring Conjecture; see Conjecture 2.2.3 and [BM08, Conjecture 17.8]).
For every finite graph G, χ′`(G) = χ′(G), where χ′`(G) is the list chromatic index of G.

As a step towards settling Conjecture 3.1.14, Kahn [Kah00] proved the following asymptotic version of
Vizing’s theorem for list colorings:

Theorem 3.1.15 (Kahn [Kah00]; see also [MR02, Chapter 14]). Let G be a graph with maximum degree
d ∈ N. Then χ′`(G) = d + o(d).

3Recently, Molloy [Mol17] showed that the bound χ(G) 6 (1 + o(1))∆(G)/ln∆(G) from Theorem 3.1.12 holds for triangle-free
graphs as well. Unfortunately, the proof techniques used in [Mol17] cannot be adapted using our machinery. See §2.3 for more details.
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Note that, in contrast to Vizing’s theorem, Kahn’s proof is based on the LLL; in fact, it is similar to the
proofs of Kim’s and Johansson’s theorems in that it uses iterated applications of the LLL to produce partial
colorings with some additional properties. Note that Kahn’s theorem yields an LLL-based proof of the bound
χ′(G) = d + o(d) for ordinary edge colorings as well.

Nonrepetitive and acyclic colorings

The LLL can also be applied to produce upper bounds on more “exotic” types of chromatic numbers. Here we
only mention two examples (both of which have already been looked at in Chapter 1). A vertex coloring f

of a graph G is nonrepetitive if there is no path P in G with an even number of vertices such that the first
half of P receives the same sequence of colors as the second half of P, i.e., if there is no path v1, v2, . . . ,
v2t of length 2t such that f (vk) = f (vk+t ) for all 1 6 k 6 t. The least number of colors that is needed for
a nonrepetitive coloring of G is called the nonrepetitive chromatic number of G and is denoted by π(G).
The following theorem of Alon, Grytczuk, Hałuszczak, and Riordan [Alo+02] gives an upper bound on π(G)
in terms of ∆(G):

Theorem 3.1.16 (Alon–Grytczuk–Hałuszczak–Riordan [Alo+02, Theorem 1]). Let G be a graph with
maximum degree d ∈ N. Then π(G) = O(d2).

A proper (vertex) coloring f of a graph G is acyclic if every cycle in G receives at least three different
colors. The least number of colors needed for an acyclic proper coloring of G is called the acyclic chromatic
number of G and is denoted by a(G). In 1976, Erdős conjectured that a(G) = o(∆(G)2); 15 years later, Alon,
McDiarmid, and Reed [AMR91] confirmed Erdős’s hypothesis.

Theorem 3.1.17 (Alon–McDiarmid–Reed [AMR91, Theorem 1.1]). Let G be a graph with maximum degree
d ∈ N. Then a(G) = O(d4/3).

Each of Theorems 3.1.16 and 3.1.17 is proved via a single application of the LLL to a carefully constructed
correct instance.

3.1.3 Overview of the main results of this chapter

Let X be a standard Borel space. An instance B over X is Borel if⋃
B B {w ∈ [X → [0; 1]]<∞ : w ∈ B for some B ∈ B}

is a Borel subset of [X → [0; 1]]<∞. In general, given a correct Borel instance B over X , one cannot guarantee
the existence of a Borel solution [Con+16, Theorem 1.6]. Suppose, however, that µ is a probability Borel
measure on X . When can one ensure that there is a “large” (in terms of µ) Borel subset of X on which B

admits a Borel solution?

The Moser–Tardos theory

In our investigation, we rely heavily on the algorithmic approach to the LLL due to Moser and Tardos [MT10].
The original motivation behind Moser and Tardos’s work was to develop a randomized algorithm which, given
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a correct instance B over a finite set X , quickly finds a solution to B. It turns out that the Moser–Tardos
method naturally extends to the case when X is infinite, leading to the possibility of analogs of the LLL
that are “constructive” in various senses; a notable example is the computable version of the LLL due to
Rumyantsev and Shen [RS14]. In §3.2 we describe (a generalized version of) the Moser–Tardos algorithm
and consider its behavior in the Borel setting. The Moser–Tardos technique was first used in the measurable
framework in [Kun13].

A universal combinatorial structure—hereditarily finite sets

By definition, an instance of the LLL over a set X puts a set of constraints on a map f : X → [0; 1]. For
example, if X is the vertex set of a graph G, then by solving instances over X one finds vertex colorings of G

with desired properties. However, sometimes we want to consider edge colorings instead, or maybe maps
defined on some other combinatorial structures “built” from G, such as, say, paths of length 2, or cycles,
etc. Additionally, even when looking for vertex colorings, it is sometimes necessary to assign to each vertex
several colors at once, which can be viewed as replacing every element of X by finitely many “copies” of it
and coloring each “copy” independently. In order to cover all potential combinatorial applications, we enlarge
the set X , adding points for various combinatorial data that can be built from the elements of X . We call the
resulting “universal” combinatorial structure the amplification of X and denote it by HF(X) (here the letters
“HF” stand for “hereditarily finite”). Roughly speaking, the points of HF(X) correspond to all sets that can be
obtained from X by repeatedly taking finite subsets. The precise construction of HF(X) is described in §3.3.
All our results are stated for instances over HF(X); however, to simplify the current discussion, we will be
only talking about instances over X in this subsection.

Approximate LLL

The first main result of this chapter is the approximate LLL, which we state and prove in §3.4. Let X be a set.
For an instance B over X and a map f : X → [0; 1], the defect DefB( f ) of f with respect to B is the set of
all x ∈ X such that x ∈ dom(w) for some w ∈ B ∈ B with w ⊆ f . Thus, f is a solution to B if and only if
DefB( f ) = �. An instance B is locally finite if degB(B) < ∞ for all B ∈ B. For locally finite instances, we
prove the following:

Theorem 3.4.1 (Approximate LLL). Let B be a correct locally finite Borel instance over a standard
probability space (X, µ). Then for any ε > 0, there exists a Borel function f : X → [0; 1]with µ(DefB( f )) 6 ε.

Most (but not all) standard applications of the LLL only consider locally finite instances; for example, any
instance that is correct for the SLLL is locally finite. Among the examples listed in §3.1.2, Theorems 3.1.11,
3.1.12, 3.1.13, and 3.1.15 only use locally finite instances; in particular, Theorem 3.4.1 immediately
yields Theorems 3.1.4 and 3.1.5 on approximate chromatic numbers of Borel graphs. On the other hand,
Theorems 3.1.16 and 3.1.17 apply the LLL to instances that are in general not locally finite, as there can be
infinitely many paths or cycles passing through a given vertex in a locally finite graph.

We point out that in their recent study [Csó+16], carried out independently from this work, Csóka,
Grabowski, Máthé, Pikhurko, and Tyros use an approach similar to ours in order to establish a purely Borel
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version of the LLL for a class of instances satisfying stronger boundedness assumptions (namely having
uniformly subexponential growth).

Measure-preserving group actions

Our second main result is the measurable version of the LLL for probability measure-preserving actions of
countable groups, which we present in §3.5. It shows that under certain additional restrictions on the correct
instance B, one can find a Borel function that solves it on a conull subset—even when B is not locally finite.
To motivate these restrictions, consider a graph G on a set X . Combinatorial problems related to G usually
require solving instances of the LLL that possess the following two properties:

– the correctness of a solution can be verified separately within each component of G;

– the instance only depends on the graph structure of G, in other words, it is invariant under the
(combinatorial/abstract) automorphisms of G.

These two properties are captured in the following definition: Let α : Γ y (X, µ) be a p.m.p. action of a
countable group Γ and let Iα denote the set of all equivariant bijections ϕ : O → O′ between α-orbits. An
instance (of the LLL) over α is a Borel instance B over X such that:

– for all B ∈ B, dom(B) is contained within a single orbit of α; and

– the set B is (µ-almost everywhere) invariant under the functions ϕ ∈ Iα.

A basic measurable version of the LLL for probability measure-preserving group actions is as follows:

Corollary 3.5.7. Let α : Γ y (X, µ) be a p.m.p. action of a countable group Γ. Suppose that α factors to
the shift action Γy ([0; 1]Γ, λΓ) and let B be a correct instance over α. Then there exists a Borel function
f : X → [0; 1] with µ(DefB( f )) = 0.

Corollary 3.5.7 is sufficient for many applications; for instance, it yields measurable analogs of The-
orems 3.1.16 and 3.1.17. However, a more general result is required to derive Theorems 3.1.1 and 3.1.3.
As mentioned in §3.1.2, to establish their combinatorial counterparts (namely Theorems 3.1.12, 3.1.13,
and 3.1.15) the LLL is applied iteratively to a series of instances, with each next instance defined using the
solutions to the previous ones: Even though the very first instance B0 is invariant under all functions ϕ ∈ Iα,
as soon as a solution f0 to B0 is fixed, the next instance B1 is only guaranteed to be invariant under those
ϕ ∈ Iα that additionally preserve the value of f0, so Corollary 3.5.7 can no longer be used.

To formalize this complication, we define a game between two players, called the LLL Game. A run of
the LLL Game over an action α : Γy (X, µ) looks like this:

Player I B0 B1 . . . Bn . . .
Player II f0 f1 . . . fn . . .
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On his first turn, Player I chooses a correct instance B0 over α. Player II responds by choosing a µ-measurable
solution f0 to B0. Player I then picks a new correct Borel instance B1, this time only invariant under the
functions ϕ ∈ Iα that preserve f0. Player II must respond by finding a µ-measurable solution f1 to B1. On
the next step, Player I selects a correct Borel instance B2 invariant under the functions ϕ ∈ Iα that preserve
both f0 and f1; and so on. Player II wins if the game continues indefinitely and loses if at any step, she is
presented with an instance that has no µ-measurable solution. Our result, Theorem 3.5.6, asserts that Player II
has a winning strategy in this game:

Theorem 3.5.6 (Measurable LLL for group actions). Let α : Γy (X, µ) be a p.m.p. action of a countable
group Γ. If α factors to the shift action Γy ([0; 1]Γ, λΓ), then Player II has a winning strategy in the LLL
Game over α.

A partial converse

Finally, we turn to the following natural question:

Is it necessary to assume that α admits a factor map to the [0; 1]-shift action in order to establish
Theorem 3.5.6 and Corollary 3.5.7, or is this assumption just an artifact of our proof?

In §3.6, we demonstrate that, at least for amenable groups, this assumption is indeed necessary; furthermore,
a probability measure-preserving free ergodic action α of a countably infinite amenable group Γ factors to the
[0; 1]-shift action if and only if it satisfies the conclusion of Corollary 3.5.7. In fact, a much weaker version of
the LLL than Corollary 3.5.7 already yields a factor map to the [0; 1]-shift, which, in particular, shows that
Theorem 3.4.1 fails for instances that are not locally finite.

To establish these results, we combine the tools of the Ornstein–Weiss theory of entropy for actions of
amenable groups with concepts from computability theory. By a theorem of Ornstein and Weiss, a free
ergodic probability measure-preserving action α : Γ y (X, µ) of a countably infinite amenable group Γ
factors to the [0; 1]-shift action if and only if Hµ(α) = ∞, where Hµ(α) is the so-called Kolmogorov–Sinai
entropy of α. Intuitively, Hµ(α) measures how “unpredictable” or “random” the interaction of α with a Borel
map f : X → k ∈ N can be. Therefore, in proving a converse to Theorem 3.5.6, we have to apply the LLL
in order to exhibit Borel functions f whose behavior is highly “random.” Notice that entropy is a “global”
parameter that depends on f as a whole, while the LLL can only constrain a function “locally.” In other
words, we require a way to certify high entropy in a “local,” or “pointwise,” manner. To that end, we use
Kolmogorov complexity—a deterministic alternative to entropy defined in the language of computability
theory—to measure the “randomness” of a given Borel function at each point. The crux of our argument is
Lemma 3.6.8, which is of independent interest. It gives a lower bound on the Kolmogorov–Sinai entropy
of a Borel function in terms of the average value of its pointwise Kolmogorov complexity. The proof of
Lemma 3.6.8 invokes the result of Ornstein and Weiss concerning the existence of quasi-tilings in amenable
groups and is inspired by previous work of Brudno [Bru82] in the case of Z-actions.
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3.2 Moser–Tardos theory

As mentioned in the previous section, a major role in our arguments is played by ideas stemming from the
algorithmic proof of the LLL due to Moser and Tardos [MT10]. In this section we review their method and
introduce some convenient notation and terminology. Most results of this section are essentially present
in [MT10]; nevertheless, we include a fair amount of detail for completeness.

For the rest of this section, fix a set X and a correct instance B over X . Motivated by algorithmic
applications, Moser and Tardos only consider the case when the ground set X is finite; however, their technique
naturally extends to the case of infinite X .

Let dom(B) B {dom(B) : B ∈ B}. For the reasons explained in Remark 3.1.8, we may assume that
� < dom(B). For S ∈ dom(B), define

BS B
⋃
{B ∈ B : dom(B) = S} = {w : S → [0; 1] : w ∈ B for some B ∈ B}.

The correctness of B implies that the set {B ∈ B : dom(B) = S} is countable. Therefore, BS is a Borel
subset of [0; 1]S . For brevity, we write

P[S] B λS(BS).

(Note that this notation implicitly depends on B.)
We say that a family A of sets is disjoint if the elements of A are pairwise disjoint.

Definition 3.2.1 (Moser–Tardos process). A table is a map ϑ : X × N→ [0; 1]. Fix a table ϑ and consider
the following inductive construction:

Set t0(x) B 0 for all x ∈ X .

Step n ∈ N: Define

fn(x) B ϑ(x, tn(x)) for all x ∈ X and A′n B {S ∈ dom(B) : fn ⊇ w for some w ∈ BS}.

Choose An to be an arbitrary maximal disjoint subset of A′n and let

tn+1(x) B


tn(x) + 1 if x ∈ S for some S ∈ An;

tn(x) otherwise.

A sequence A = (An)
∞
n=0 of subsets of dom(B) obtained via the above procedure is called a Moser–Tardos

process with input ϑ.

Remark. Since each set An in a Moser–Tardos process is disjoint, for every x ∈ X with tn+1(x) > tn(x),
there is a unique set S ∈ An such that x ∈ S.

Proposition 3.2.2. Let A = (An)
∞
n=0 be a Moser–Tardos process. For n ∈ N, let

Xn B {x ∈ X : x ∈ S for some S ∈ An}.
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Then fn avoids all bad events B ∈ B with dom(B) ∩ Xn = �.

Proof. If dom(B) ∩ Xn = �, then dom(B) is disjoint from all S ∈ An. Since we assume dom(B) , �, this
implies dom(B) < An. By the choice of An, we then get dom(B) < A′n, as desired. �

Suppose thatA is a Moser–Tardos process. By definition, the sequence t0(x), t1(x), . . . is non-decreasing
for all x ∈ X . We say that an element x ∈ X isA-stable if the sequence t0(x), t1(x), . . . is eventually constant.
Let Stab(A) ⊆ X denote the set of all A-stable elements of X . For x ∈ Stab(A), define

t(x) B lim
n→∞

tn(x) and f (x) B ϑ(x, t(x)).

We have the following limit analog of Proposition 3.2.2:

Proposition 3.2.3. Let A = (An)
∞
n=0 be a Moser–Tardos process. Then f avoids all bad events B ∈ B with

dom(B) ⊆ Stab(A).

Proof. Fix B ∈ B with dom(B) ⊆ Stab(A) and choose n ∈ N so large that for all x ∈ dom(B), we have
t(x) = tn(x). Then f |dom(B) = fn |dom(B), and thus it remains to show that fn avoids B. Notice that dom(B)
is disjoint from all S ∈ An; indeed, if x ∈ dom(B) ∩ S for some S ∈ An, then tn+1(x) = tn(x) + 1, which
contradicts the choice of n. Now we are done by Proposition 3.2.2. �

For each S ∈ dom(B), define the index Ind(S,A) ∈ N ∪ {∞} of S in A by

Ind(S,A) B |{n ∈ N : S ∈ An}|.

Note that for all x ∈ X ,
lim
n→∞

tn(x) =
∑

S∈dom(B) : S3x
Ind(S,A), (3.2.1)

so x ∈ Stab(A) if and only if the expression on the right hand side of (3.2.1) is finite. Our goal therefore is to
obtain good upper bounds on the numbers Ind(S,A). To that end, we look at certain patterns in the table ϑ.

A pile is a nonempty finite set P of functions of the form τ : S → N with S ∈ dom(B), satisfying the
following requirements:

– the graphs of the elements of P are pairwise disjoint; in other words, for every pair of distinct functions
τ, τ′ ∈P and for each x ∈ dom(τ) ∩ dom(τ′), we have τ(x) , τ′(x);

– for every τ ∈ P and x ∈ dom(τ), either τ(x) = 0, or else, there is τ′ ∈ P with x ∈ dom(τ′) and
τ′(x) = τ(x) − 1.

The support of a pile P is the set
supp(P) B

⋃
τ∈P

dom(τ).

Note that supp(P) is a finite subset of X .
Let P be a pile and let τ, τ′ ∈P . We say that τ′ supports τ, in symbols τ′ ≺ τ, if there is an element

x ∈ dom(τ) ∩ dom(τ′) such that τ′(x) = τ(x) − 1. A pile P is neat if there does not exist a sequence of

127



0

1

2

τ1 τ1

τ3

τ3

τ4

τ5

τ2

τ3

τ4

τ2

τ4

x1 x2 x3 x4 x5
X

N

Figure 13 – P = {τ1, τ2, τ3, τ4, τ5} is a neat pile of height 4 with supp(P) = {x1, x2, x3, x4, x5} and
Top(P) = {τ5}.

functions τ1, τ2, . . . , τk ∈ P with k > 2 such that τ1 ≺ τ2 ≺ . . . ≺ τk ≺ τ1. Equivalently, P is neat if the
transitive closure of the relation ≺ on P is a (strict) partial order.

A top element in a pile P is any τ ∈ P for which there is no τ′ ∈ P with τ ≺ τ′. The set of all top
elements in P is denoted Top(P). Notice that if P is a neat pile, then Top(P) , �. The height h(P)

of a neat pile P is the largest k ∈ N such that there is a sequence τ1, . . . , τk ∈ P with τ1 ≺ . . . ≺ τk (so
necessarily h(P) > 1).

We say that a pile P appears in a table ϑ : X × N→ [0; 1] if for all τ ∈P , the map

dom(τ) → [0; 1] : x 7→ ϑ(x, τ(x))

belongs to Bdom(τ). For S ∈ dom(B), let Piles(S) denote the set of all neat piles P with Top(P) = {τ} such
that the unique top element τ of P satisfies dom(τ) = S. The index Ind(S, ϑ) ∈ N ∪ {∞} of S in ϑ is

Ind(S, ϑ) B |{P ∈ Piles(S) : P appears in ϑ}| .

The next proposition asserts that Ind(S, ϑ) > Ind(S,A) for any Moser–Tardos process A with input ϑ:

Proposition 3.2.4. Let A = (An)
∞
n=0 be a Moser–Tardos process with input ϑ and let S ∈ dom(B). If n ∈ N

is such that S ∈ A′n, then there exists a neat pile P ∈ Piles(S) of height precisely n + 1 that appears in ϑ. In
particular, Ind(S,A) 6 Ind(S, ϑ).

Proof. The “in particular” part follows, since for different n with S ∈ A′n, the neat piles given by the first part
of the proposition are distinct (they have distinct heights).

To prove the main statement, fix S ∈ dom(B) and n ∈ N with S ∈ A′n. Build P by “tracing back” the
steps of the Moser–Tardos process as follows. Start by setting P0 to be the one-element set {tn |S} and let
R0 B S. If k < n, then, after Rk ⊆ X is determined, define Pk+1 as the family of all maps of the form
tn−k−1 |S′, where S′ is an element of An−k−1 such that S′ ∩ Rk , �, and let Rk+1 B Rk ∪

⋃
Pk+1. Finally, let

P B P0 ∪ . . . ∪Pn. It is straightforward to check that P is a neat pile with support Rn that has all the
desired properties. �
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Given a table ϑ : X × N→ [0; 1], we say that an element x ∈ X is ϑ-stable if∑
S∈dom(B) : S3x

Ind(S, ϑ) < ∞.

The set of all ϑ-stable elements is denoted Stab(ϑ). Due to Proposition 3.2.4, Stab(ϑ) ⊆ Stab(A) for every
Moser–Tardos process A with input ϑ.

Now the strategy is to switch the order of summation and, instead of counting how many piles from
Piles(S) appear in a particular table ϑ, fix a pile P and estimate the probability that P appears in a table
ϑ chosen at random. For a given pile P , the restriction of ϑ to supp(P) × N fully determines whether P

appears in ϑ or not. Thus, we may let App(P) ⊆ [0; 1]supp(P)×N be the set such that

P appears in ϑ ⇐⇒ ϑ |(supp(P) × N) ∈ App(P).

It is easy to see that the set App(P) is Borel. Since the graphs of the elements of P are pairwise disjoint,
there is a simple expression for the Lebesgue measure of App(P); namely, we have

λsupp(P)×N (App(P)) =
∏
τ∈P

P[dom(τ)].

Now we are ready to state the cornerstone result of Moser–Tardos theory:

Theorem 3.2.5 (Moser–Tardos [MT10]). Let ω : B → [0; 1) be a function witnessing the correctness of B
and let S ∈ dom(B). Then ∑

P∈Piles(S)
λsupp(P)×N (App(P)) 6

∑
B∈B :

dom(B)=S

ω(B)
1 − ω(B)

. (3.2.2)

The proof of Theorem 3.2.5 using our notation can be found in [Ber16a, Appendix A]. The following
corollary is immediate:

Corollary 3.2.6. For all x ∈ X , we have∑
S∈dom(B) :

S3x

∑
P∈Piles(S)

λsupp(P)×N (App(P)) < ∞.

Proof. Let ω : B → [0; 1) witness the correctness of B. By Theorem 3.2.5, it suffices to check that the sum∑
S∈dom(B) :

S3x

∑
B∈B :

dom(B)=S

ω(B)
1 − ω(B)

=
∑
B∈B :

dom(B)3x

ω(B)
1 − ω(B)

(3.2.3)

is finite. We may assume that ω(B) = 0 whenever P[B] = 0. If for all B ∈ B with x ∈ dom(B), we have
P[B] = 0, then the sum (3.2.3) is 0 (hence finite). Otherwise, for some B0 ∈ B with x ∈ dom(B), we have
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P[B0] > 0, and thus the correctness of B implies∏
B∈NB(B0)

(1 − ω(B0)) > 0.

Therefore, ∑
B∈B :

dom(B)3x

ω(B) 6
∑

B∈NB(B0)

ω(B) < ∞. (3.2.4)

In particular, for all but finitely many events B ∈ B with x ∈ dom(B), we have ω(B) 6 1/2, so

ω(B)
1 − ω(B)

6 2ω(B).

Together with (3.2.4), this shows that the sum (3.2.3) is finite, as desired. �

The next corollary considers the case when the table ϑ is chosen randomly from [0; 1]X×N. (Note that the
product probability space ([0; 1]X×N, λX×N) is standard only if X is countable.)

Corollary 3.2.7. For each x ∈ X , we have∫
[0;1]X×N

∑
S∈dom(B) :

S3x

Ind(S, ϑ) d λX×N(ϑ) < ∞.

In particular,
λX×N({ϑ ∈ [0; 1]X×N : x ∈ Stab(ϑ)}) = 1.

Proof. Corollary 3.2.6 yields∫
[0;1]X×N

∑
S∈dom(B) :

S3x

Ind(S, ϑ) d λX×N(ϑ) =
∑

S∈dom(B) :
S3x

∫
[0;1]X×N

Ind(S, ϑ) d λX×N(ϑ)

=
∑

S∈dom(B) :
S3x

∑
P∈Piles(S)

λsupp(P)×N (App(P)) < ∞. �

We can now deduce the LLL in the form of Theorem 3.1.10. Since the set NB(B) is countable for each
B ∈ B, we may assume that X is countable. By Corollary 3.2.7, each x ∈ X satisfies

λX×N({ϑ ∈ [0; 1]X×N : x ∈ Stab(ϑ)}) = 1.

As X is countable, we obtain

λX×N({ϑ ∈ [0; 1]X×N : X = Stab(ϑ)}) = 1.

Choose any ϑ such that X = Stab(ϑ) and letA be anyMoser–Tardos process with input ϑ. Then Stab(A) = X

and Theorem 3.1.10 follows from Proposition 3.2.3.
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3.2.1 Moser–Tardos theory in the Borel setting

Let X be a standard Borel space. Recall that an instance B over X is Borel if
⋃

B is a Borel subset of
[X → [0; 1]]<∞. Notice that if B is a Borel instance over X , then dom(B) is an analytic subset of [X]<∞.4
A Moser–Tardos process A = (An)

∞
n=0 with Borel input ϑ : X × N → [0; 1] is Borel if each An is a Borel

subset of [X]<∞. Note that if A is a Borel Moser–Tardos process, then the associated maps tn : X → N and
fn : X → [0; 1] are Borel.

Proposition 3.2.8 (Borel Moser–Tardos processes). Let X be a standard Borel space and letB be a correct
Borel instance over X . Let ϑ : X × N → [0; 1] be a Borel table. Then there exists a Borel Moser–Tardos
process A with input ϑ.

Proof. We use the following result of Kechris and Miller:

Lemma 3.2.9 (Kechris–Miller [KM04, Lemma 7.3]; maximal disjoint subfamilies). Let X be a standard
Borel space and let A ⊆ [X]<∞ be a Borel set such that for every x ∈ X , the set {S ∈ A : x ∈ S} is countable.
Then there is a Borel maximal disjoint subset A0 ⊆ A.

On Step n of the Moser–Tardos process, we are given a Borel map fn : X → [0; 1], so the set

A′n B {S ∈ dom(B) : fn ⊇ w for some w ∈ BS} = {S ∈ dom(B) : fn |S ∈
⋃

B}

is Borel. Hence, we can use Lemma 3.2.9 to pick a Borel maximal disjoint subset An ⊆ A′n. �

3.3 Hereditarily finite sets

In this section we describe the construction of a “universal” combinatorial structure over a space X , whose
points encode various combinatorial data that can be built from the elements of X .

The set HF�(X) of all hereditarily finite sets over X is defined inductively as follows5:

– HF(0)(X) B X;

– HF(n+1)(X) B HF(n)(X) ∪ [HF(n)(X)]<∞ for all n ∈ N;

– HF�(X) B
⋃∞

n=0 HF(n)(X) (note that this union is increasing).

In other words, HF�(X) is the smallest set containing X that is closed under taking finite subsets. For
h ∈ HF�(X), the underlying set of h, in symbols Set(h), is defined inductively by:

– for x ∈ X , Set(x) B {x};

4In most applications, each bad event B ∈ B has positive probability. If that is the case, then dom(B) is actually a Borel subset of
[X]<∞ due to the “large section” uniformization theorem [Kec95, Corollary 18.7].

5Here we treat the points of X as urelements, i.e., not sets. Formally, we can replace X with, say, the diagonal

∆
N
X B {(x, x, x, . . .) : x ∈ X} ⊆ XN,

ensuring that no point in X is a finite set.
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– for h ∈ HF(n+1)(X) \HF(n)(X), Set(h) B
⋃

h′∈h Set(h′).

Equivalently, Set(h) is the smallest subset S of X such that h ∈ HF�(S). The amplification of X is

HF(X) B {h ∈ HF�(X) : Set(h) , �}.

If X is a standard Borel space, then so are HF�(X) and HF(X). The space HF(X) encodes the “combinatorics”
of X . For instance, HF(X) contains (as Borel subsets) the space X<∞ of all nonempty finite sequences
of elements of X and the space X × N, i.e., the union of countably many disjoint copies of X .6 In fact,
HF(X) ⊇ HF(X) × N, i.e., HF(X) contains “countably many disjoint copies of itself.” If G is a Borel graph
on X , then the edge set of G, viewed as a set of 2-element subsets of X , is also a Borel subset of HF(X). So
are other, more complicated, objects associated with G. For instance, the set of all cycles in G, i.e., the set of
all finite subsets C ⊆ E(G) whose elements form a cycle, is a Borel subset of HF(X).

If X ′ is a Borel subset of HF(X), then the inclusions

[X ′]<∞ ⊆ [HF(X)]<∞ and [X ′→ [0; 1]]<∞ ⊆ [HF(X) → [0; 1]]<∞

are Borel as well. Therefore, a Borel instance of the LLL over X ′ is also a Borel instance over HF(X). Because
of that, we will restrict our attention to instances over HF(X), and this will include various combinatorial
applications such as vertex coloring or edge coloring.

Functions between sets naturally lift to functions between their amplifications. Namely, given a map
ϕ : X → Y , define ϕ̃� : HF�(X) → HF�(Y ) inductively via:

– for x ∈ X , ϕ̃�(x) B ϕ(x);

– for h ∈ HF(n+1)(X) \HF(n)(X), ϕ̃�(h) B {ϕ̃�(h′) : h′ ∈ h}.

The amplification of ϕ is the map ϕ̃ : HF(X) → HF(Y ) given by

ϕ̃ B ϕ̃� |HF(X).

For S ∈ [X]<∞ \ {�}, we have ϕ̃(S) = ϕ(S) (where ϕ(S) denotes, as usual, the image of S under ϕ). If ϕ is
injective (resp. surjective), then ϕ̃ is also injective (resp. surjective).

3.4 Approximate LLL

In this section we state and prove the first main result of this chapter: the approximate LLL for Borel instances.
Let (X, µ) be a standard probability space. Suppose that B is a Borel instance over HF(X). For each

x ∈ X , consider the following set:

∂x(B) B {S ∈ dom(B) : x ∈ Set(h) for some h ∈ S}.

6To embed N in HF�(X), we use the standard von Neumann convention 0 = �, 1 = {�}, 2 = {�, {�}}, etc.
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We call ∂x(B) the shadow of B over x. We say that B is hereditarily locally finite if ∂x(B) is finite for all
x ∈ X . For a Borel map f : HF(X) → [0; 1], its defect with respect to B is the set

DefB( f ) B {x ∈ X : f |S ∈
⋃

B for some S ∈ ∂x(B)}.

Note that if B is hereditarily locally finite, then DefB( f ) is a Borel subset of X .

Theorem 3.4.1 (Approximate LLL). Let (X, µ) be a standard probability space and let B be a hereditarily
locally finite correct Borel instance over HF(X). Then for any ε > 0, there is a Borel map f : HF(X) → [0; 1]
with µ(DefB( f )) 6 ε.

3.4.1 Proof of Theorem 3.4.1

Let (X, µ) be a standard probability space and let B be a hereditarily locally finite correct Borel instance over
HF(X). Fix ε > 0. For S ∈ dom(B) and n ∈ N, let Pilesn(S) denote the set of all neat piles P ∈ Piles(S) of
height precisely n + 1. In particular, we have

Piles(S) =
∞⋃
n=0

Pilesn(S),

and the above union is disjoint. For n ∈ N, let Dn denote the set of all x ∈ X such that∑
S∈∂x (B)

∑
P∈Pilesn(S)

λsupp(P)×N (App(P)) > ε/2.

It is clear from the definition that the set Dn is analytic; in particular, it is µ-measurable.7 Due to Corollary 3.2.6
and the fact that B is hereditarily locally finite, each x ∈ X satisfies∑

S∈∂x (B)

∑
P∈Piles(S)

λsupp(P)×N (App(P)) < ∞.

Hence we can choose N ∈ N so large that µ(DN ) 6 ε/2.
Let G be the graph on HF(X) given by

h1h2 ∈ E(G) :⇐⇒ h1 , h2 and {h1, h2} ⊆ S for some S ∈ dom(B).

Clearly, G is analytic. Since B is hereditarily locally finite, G is locally finite. For n ∈ N, let Gn denote the
analytic graph on HF(X) in which distinct elements h1, h2 ∈ HF(X) are adjacent if and only if G contains a
path of length at most n joining h1 and h2 (in particular, G1 = G). Since G is locally finite, so is Gn for each
n ∈ N. Therefore, χB(Gn) 6 ℵ0 for all n ∈ N, so let c : HF(X) → N be a Borel proper coloring of G2(N+1).

7In fact, Dn is Borel. Indeed, if there is τ ∈ P with P[dom(τ)] = 0, then λsupp(P)×N (App(P)) = 0; and the set
{S ∈ [HF(X)]<∞ : P[S] > 0} is Borel due to the “large section” uniformization theorem [Kec95, Corollary 18.7].
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For a function ϑ : N × N→ [0; 1], define a map ϑc by

ϑc : HF(X) × N→ [0; 1] : (x, n) 7→ ϑ(c(x), n).

Note that ϑc is a Borel table in the sense of the Moser–Tardos algorithm on HF(X). Let Q be the set of all
pairs (x, ϑ) with x ∈ X and ϑ : N × N→ [0; 1] such that

there exist S ∈ ∂x(B) and P ∈ PilesN (S) such that P appears in ϑc .

By definition, Q is an analytic subset of X × [0; 1]N×N.8 Recall that for x ∈ X and ϑ : N × N→ [0; 1], we use
Qx and Qϑ to denote the corresponding fibers of Q.

Lemma 3.4.2. For all x ∈ X \ DN , we have λN×N(Qx) 6 ε/2.

Proof. If P is a neat pile with a unique top element τ, then for every τ′ ∈ P , there exists a sequence τ1,
. . . , τk ∈ P such that τ1 = τ

′, τk = τ, and τ1 ≺ . . . ≺ τk . In particular, dom(τi) ∩ dom(τi+1) , � for all
1 6 i < k, so the distance in G between any element of dom(τ′) and any element of dom(τ) is at most
k 6 h(P). Therefore, the distance in G between any two elements of supp(P) is at most 2h(P).

Fix any x ∈ X \ DN and let S ∈ ∂x(B) and P ∈ PilesN (S). Since h(P) = N + 1, the distance in G

between any two elements of supp(P) is at most 2(N + 1); in other words, any two distinct elements of
supp(P) are adjacent in G2(N+1). Therefore, the coloring c is injective on supp(P). Hence, the map

[0; 1]N×N → [0; 1]supp(P)×N : ϑ 7→ ϑc |(supp(P) × N)

is measure-preserving. Since

P appears in ϑc ⇐⇒ ϑc |(supp(P) × N) ∈ App(P),

we may conclude

λN×N({ϑ ∈ [0; 1]N×N : P appears in ϑc}) = λsupp(P)×N(App(P)).

Therefore,

λN×N(Qx) 6
∑

S∈∂x (B)

∑
P∈PilesN (S)

λN×N({ϑ ∈ [0; 1]N×N : P appears in ϑc})

=
∑

S∈∂x (B)

∑
P∈PilesN (S)

λsupp(P)×N(App(P)) 6 ε/2,

by the definition of DN . �

8Again, one can show that Q is actually Borel.
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Using Fubini’s theorem and Lemma 3.4.2, we get

(µ × λN×N)(Q) =
∫
X

λN×N(Qx) d µ(x) 6 µ(DN ) + (1 − µ(DN )) · ε/2 6 ε.

Therefore, Fubini’s theorem yields some ϑ : N × N → [0; 1] with µ(Qϑ) 6 ε. Fix any such ϑ and let
A = (An)

∞
n=0 be any Borel Moser–Tardos process with input ϑc. Let tn and fn denote the associated maps.

Lemma 3.4.3. DefB( fN ) ⊆ Qϑ .

Proof. If x ∈ DefB( fN ), then, by definition, there is S ∈ ∂x(B) such that fN |S ∈ BS , i.e., S ∈ A′N . By
Proposition 3.2.4, there is P ∈ PilesN (S) that appears in ϑc. Therefore, (x, ϑ) ∈ Q, as desired. �

Finally, we obtain µ(DefB( fN )) 6 µ(Qϑ) 6 ε, and the proof of Theorem 3.4.1 is complete.

3.5 The LLL for probability measure-preserving group actions

3.5.1 Definitions and the statement of the theorem

As discussed in this chapter’s introduction, we would like to establish a measurable version of the LLL for
Borel instances that, in a certain sense, “respect” some additional structure on the space X , specifically, an
action of a countable group Γ. To make this idea precise, we introduce L-systems—objects consisting of a
standard probability space equipped with a family of functions (“partial isomorphisms”) under which any
instance of the LLL that we might consider must be invariant. We then define the LLL Game over an L-system,
which captures the need for iterated applications of the LLL.

Equivalence relations

Given an equivalence relation E on a set X , we write (somewhat ambiguously)

[E]<∞ B {S ∈ [X]<∞ : S is contained in a single E-class}

and [E → Y ]<∞ B {w ∈ [X → Y ]<∞ : dom(w) ∈ [E]<∞}.

An instance (of the LLL) over E is an instance B over X such that dom(B) ⊆ [E]<∞.

Example 3.5.1 (Equivalence relations induced by graphs). Let G be a graph on a set X . We use EG to
denote the equivalence relation on X whose classes are the connected components of G.

Example 3.5.2 (Equivalence relations induced by group actions). Let α : Γy X be an action of a group
Γ on a set X . Then Eα denotes the corresponding orbit equivalence relation, i.e., the equivalence relation
whose classes are the orbits of α. Notice that if S ⊆ Γ is a generating set, then Eα = EG(α,S).
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Isomorphism structures

An isomorphism structure on an equivalence relation E on a set X is a family I of bijections between
E-classes which forms a groupoid9 whose set of objects is X/E; more precisely, the following conditions
must be fulfilled:

– for each C ∈ X/E , the identity map idC : C → C belongs to I;

– for each ϕ ∈ I, we have ϕ−1 ∈ I;

– for all ϕ, ψ ∈ I, if im(ϕ) = dom(ψ), then ψ ◦ ϕ ∈ I.

The following are the main examples of isomorphism structures we will be considering.

Example 3.5.3 (Isomorphism structures induced by graphs). Let G be a graph on a set X . Define the
isomorphism structure IG on EG as follows: A bijection ϕ : C1 → C2 between components C1 and C2 belongs
to IG if and only if it is an isomorphism between the graphs G[C1] and G[C2].

Example 3.5.4 (Isomorphism structures induced by group actions). Let α : Γ y X be an action of a
group Γ on a set X . The isomorphism structure Iα on Eα is defined as follows: A bijection ϕ : O1 → O2

between orbits O1 and O2 belongs to Iα if and only if it is Γ-equivariant, i.e., ϕ(γ · x) = γ · ϕ(x) for all
x ∈ O1 and γ ∈ Γ. Notice that if S ⊆ Γ is a generating set, then Iα ⊆ IG(α,S).

Let E be a Borel equivalence relation on a standard probability space (X, µ) and let I be an isomorphism
structure on E . We say that an instance B over E is I-invariant on a set X ′ ⊆ X if for all ϕ ∈ I with
dom(ϕ) ∪ im(ϕ) ⊆ X ′ and for all B ∈ B with dom(B) ⊆ im(ϕ), we have

{w ◦ ϕ : w ∈ B} ∈ B.

An instance B is µ-almost everywhere I-invariant if it is I-invariant on an E-invariant µ-conull Borel
subset X ′ ⊆ X .

L-Systems and instances of the LLL over them

An L-system10 is a tuple L = (XL, EL,IL, µL), where

– (XL, µL) is a standard probability space;

– EL is a countable Borel equivalence relation on XL;

– IL is an isomorphism structure on EL .

An instance (of the LLL) over an L-system L is a µL-almost everywhere IL-invariant Borel instance over
EL . A Borel map f : XL → [0; 1] is ameasurable solution to an instance B over L if DefB( f ) is contained
in an EL-invariant µL-null Borel subset of XL .

9A groupoid is a category in which every morphism has an inverse.
10“L” is for “Lovász.”

136



For a p.m.p. action α : Γ y (X, µ), let L(α, µ) denote the L-system (X, Eα,Iα, µ) induced by α. An
instance over L(α, µ) is simply a Borel instance over X such that the domain of each bad event B ∈ B is
contained within a single α-orbit and B is (µ-almost everywhere) invariant under the Γ-equivariant bijections
between the orbits of α.

Amplifications and expansions

Before we can state the main result of this section, we need a few more definitions describing how to build
new L-systems from old ones.

Let E be an equivalence relation on a set X . Define (somewhat ambiguously)

HF(E) B {h ∈ HF(X) : Set(h) ∈ [E]<∞}.

The amplification of E is the equivalence relation Ẽ on HF(E) defined by

h1 Ẽ h2 :⇐⇒ [Set(h1)]E = [Set(h2)]E .

In other words, Ẽ is the equivalence relation on HF(E) whose classes are the sets HF(C) with C ∈ X/E . For
a bijection ϕ : C1 → C2 between E-classes, we may extend it to a bijection ϕ̃ : HF(C1) → HF(C2) between
the corresponding Ẽ-classes. The amplification of an isomorphism structure I on E is the isomorphism
structure Ĩ on Ẽ given by

Ĩ B {ϕ̃ : ϕ ∈ I}.

Given an L-system L = (X, E,I, µ), its amplification is the L-system

HF(L) B (HF(E), Ẽ, Ĩ, µ).

Notice that the measure in HF(L) is the same as in L and is concentrated on X ⊆ HF(X).
Another way of obtaining new L-systems is via expansions. Let I be an isomorphism structure on an

equivalence relation E on a set X . Given a partial map f : X ⇀ Y , the expansion of I by f is the subset
I[ f ] ⊆ I defined as follows:

I[ f ] B {ϕ ∈ I : f (x) = f (ϕ(x)) for all x ∈ dom(ϕ)}.

Here the equality “ f (x) = f (ϕ(x))” should be interpreted as a shorthand for:

“Either {x, ϕ(x)} ⊆ dom( f ) and f (x) = f (ϕ(x)), or else, {x, ϕ(x)} ∩ dom( f ) = �.”

For an L-system L = (X, E,I, µ) and a Borel map f : X ⇀ Y , the expansion of L by f is the L-system

L[ f ] B (X, E,I[ f ], µ).

The term “expansion” conveys the following intuition: If I is thought of as a family of isomorphisms between
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certain substructures of X , then expanding I by f corresponds to adding f to X as a new “predicate” whose
values must be preserved by isomorphisms.

The LLL game

As we mentioned previously, many combinatorial arguments contain iterated applications of the LLL, where
the output of a previous iteration can be used to create an instance for the next one. To accommodate such
arguments, we introduce the following definition.

Definition 3.5.5 (LLL Game). The LLL Game over an L-system L is played as follows. Set L0 B L. On
Step n ∈ N, Player I chooses a correct instance Bn over Ln. Player II must respond by playing a measurable
solution fn to Bn and setting Ln+1 B Ln[ fn]. Player I wins if Player II does not have an available move on
some finite stage of the game; Player II wins if the game continues indefinitely. A run of the LLL Game looks
like this:

Player I B0 B1 . . . Bn . . .
Player II f0 f1 . . . fn . . .

One can think of the LLL Game as a struggle between a malevolent combinatorial proof (Player I) and a
descriptive set theorist (Player II), who wants to adapt this proof to the measurable setting. The proof consists
of a series of steps, each of which is an application of the LLL. The goal of Player II is to perform these steps
measurably; however, she might not know what the steps are in advance, and each time she solves an instance
of the LLL, her solution may be “used against her” in creating new instances.

With Definition 3.5.5 at hand, we are finally ready to state the main result of this section:

Theorem 3.5.6 (Measurable LLL for group actions). Let α : Γy (X, µ) be a p.m.p. action of a countable
group Γ. If α factors to the shift action Γy ([0; 1]Γ, λΓ), then Player II has a winning strategy in the LLL
Game over HF(L(α, µ)).

A very specific case of Theorem 3.5.6 is given by the following immediate corollary:

Corollary 3.5.7. Let α : Γy (X, µ) be a p.m.p. action of a countable group Γ. Suppose that α factors to the
shift action Γy ([0; 1]Γ, λΓ) and let B be a correct instance over L(α, µ). Then there exists a Borel function
f : X → [0; 1] with µ(DefB( f )) = 0.

3.5.2 Outline of the proof

Let G denote the class of all L-systems of the form L(α, µ), where α : Γy (X, µ) is a measure-preserving
action of a countable group Γ on a standard probability space (X, µ) that factors to the [0; 1]-shift action of Γ.
Let L be the class of all L-systems such that Player II has a winning strategy in the LLL Game over HF(L).
Our goal is to show G ⊆ L . To that end, we will introduce an intermediate class C such that G ⊆ C ⊆ L .

Our strategy for showing that C ⊆ L will be to ensure that C has the following two properties:

(A1) if L ∈ C , then HF(L) ∈ C ;
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(A2) if L ∈ C and B is a correct instance over L, then there exists a measurable solution f to B such that
L[ f ] ∈ C .

The above conditions imply that C ⊆ L . Indeed, due to Property (A1), it is enough to show that for every
L ∈ C , Player II has a winning strategy in the LLL Game overL. The existence of such strategy is guaranteed
by Property (A2), since, provided that Ln ∈ C , Player II can always find a measurable solution fn to Bn such
that Ln+1 = Ln[ fn] ∈ C .

It is easy to see that Property (A1) fails for G . For instance, if L = (X, E,I, µ) ∈ G , then the measure
µ is E-invariant, while it is not even Ẽ-quasi-invariant. To overcome this complication, we will introduce
countable Borel groupoids—algebraic structures more general than countable groups—and their actions on
standard Borel spaces. Every Borel action of a countable Borel groupoid on a standard probability space
induces an L-system. We will also define shift actions of countable Borel groupoids, generalizing shift actions
of countable groups. Our choice for C will be the class of all L-systems that admit factor maps to L-systems
induced by shift actions of countable Borel groupoids (we define what a factor map between two general
L-systems is in §3.5.3).

3.5.3 Factors of L-systems

In this section we introduce the notion of a factor map between two L-systems. It will allow us to transfer
instances of the LLL from a given L-system to a simpler or better-behaved one.

Definition 3.5.8 (Factors). Let L1 = (X1, E1,I1, µ1) and L2 = (X2, E2,I2, µ2) be L-systems. A Borel partial
map π : X1 ⇀ X2, defined on an E1-invariant µ1-conull Borel subset of X1, is called a factor map (notation:
π : L1 → L2) if the following requirements are fulfilled:

(i) π∗(µ1) = µ2;

(ii) the map π is class-bijective, i.e., for each E1-class C ⊆ dom(π), its image π(C) is an E2-class and the
restriction π |C : C → π(C) is a bijection;

(iii) for all E1-classes C1, C2 ⊆ dom(π), whenever ϕ2 ∈ I2 is a bijection between π(C1) and π(C2), there is
a bijection ϕ1 ∈ I1 between C1 and C2 that makes the following diagram commute:

C1 C2

π(C1) π(C2).

π

ϕ1

π

ϕ2

Proposition 3.5.9. Let L1 and L2 be L-systems with a factor map π : L1 → L2 between them. Then there
exists a factor map from HF(L1) to HF(L2).

Proof. Let π̃ : HF(dom(π)) → HF(XL2) be the amplification of π. Then the restriction of π̃ to the set
HF(EL1) ∩ dom(π̃) is a factor map from HF(L1) to HF(L2). �
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Lemma 3.5.10. Let L1 and L2 be L-systems with a factor map π : L1 → L2 between them. Then for
every correct instance B over L1, there exists a correct instance π(B) over L2 such that whenever f is a
measurable solution to π(B), the composition f ◦ π, possibly restricted to a smaller invariant conull Borel
subset, is a measurable solution to B.

Proof. For i ∈ {1, 2}, let Li C (Xi, Ei,Ii, µi). Suppose that B is a correct instance over L1. Restricting π to
a smaller E1-invariant µ1-conull Borel subset of X1 if necessary, we arrange that B1 is I1-invariant on dom(π)
and im(π) is a Borel subset of X2. Then we replace X1 and X2 by their invariant conull Borel subsets dom(π)
and im(π) respectively. Thus, we now assume that π : X1 → X2 is defined everywhere and is surjective.

Consider any B ∈ B. Since dom(B) is contained within a single E1-class, the restriction

π |dom(B) : dom(B) → π(dom(B))

is bijective; in particular, the inverse

(π |dom(B))−1 : π(dom(B)) → dom(B)

is well-defined. Let
π(B) B {w ◦ (π |dom(B))−1 : w ∈ B}.

Then π(B) is a bad event over X2 with domain π(dom(B)). Define

π(B) B {π(B) : B ∈ B}.

It is routine to check that π(B) is as desired. The only non-trivial step is to show that π(B) is Borel; to that
end, observe that the set

⋃
π(B) is both analytic and co-analytic, as for w ∈ [E1 → [0; 1]]<∞,

w ∈
⋃
π(B) ⇐⇒ ∃S ∈ [E1]

<∞ (π(S) = dom(w) and w ◦ (π |S) ∈
⋃

B)

⇐⇒ ∀S ∈ [E1]
<∞ (π(S) = dom(w) =⇒ w ◦ (π |S) ∈

⋃
B) . �

For a class C of L-systems, define the class C ∗ by

L ∈ C ∗ :⇐⇒ L admits a factor map to L ′ for some L ′ ∈ C ,

so C ∗ ⊇ C and (C ∗)∗ = C ∗. Let C be a class of L-systems satisfying the following two conditions:

(B1) if L ∈ C , then HF(L) ∈ C ∗;

(B2) if L ∈ C and B is a correct instance over L, then there exists a measurable solution f to B such that
L[ f ] ∈ C ∗.

Due to Proposition 3.5.9 and Lemma 3.5.10, if C satisfies the above conditions, then C ∗ has Properties (A1)
and (A2) from §3.5.2, and hence C ⊆ C ∗ ⊆ L .
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3.5.4 Countable Borel groupoids and their actions

Definition 3.5.11 (Countable Borel groupoids). A countable Borel groupoid (R, Γ) is a structure consisting
of a standard Borel space R together with a countable set Γ and Borel maps

a : Γ × R→ R : (γ, r) 7→ γ · r (action);
c : Γ2 × R→ Γ : (γ, δ, r) 7→ γ ◦r δ (composition);
id : R→ Γ : r 7→ 1r (identity);

and inv : Γ × R→ Γ : (γ, r) 7→ γ−1
r (inverse),

satisfying the following axioms:

– consistency: for all γ, δ ∈ Γ and r ∈ R, γ · (δ · r) = (γ ◦r δ) · r;
– associativity: for all γ, δ, ε ∈ Γ and r ∈ R, γ ◦r (δ ◦r ε) = (γ ◦ε ·r δ) ◦r ε;
– identity: for all r ∈ R and γ ∈ Γ, 1r · r = r and 1γ ·r ◦r γ = γ ◦r 1r = γ;
– inverse: for all r ∈ R and γ ∈ Γ, γ−1

r ◦r γ = 1r and γ ◦γ ·r γ
−1
r = 1γ ·r .

ε · r δ · (ε · r)

r γ · (δ · (ε · r))

δ

γε

γ◦r (δ◦r ε)

δ◦r ε

ε · r δ · (ε · r)

r γ · (δ · (ε · r))

δ

γ◦ε ·r δ γε

(γ◦ε ·r δ)◦r ε

Figure 14 – Associativity: the dashed arrows must coincide.

Any countable group Γ can be canonically viewed as a countable Borel groupoid in the following way.
Let R B {r} be a single point. For each γ ∈ Γ, set γ · r B r . Now we just transfer compositions, the identity,
and inverses directly from the group (we use 1Γ to denote the identity element of Γ):

γ ◦r δ B γδ; 1r B 1Γ; and γ−1
r B γ−1. (3.5.1)

A more general class of examples is given by Borel actions of countable groups. Let α : Γy R be a Borel
action of a countable group Γ on a standard Borel space R. Then (R, Γ) can be endowed with the structure
of a countable Borel groupoid as follows: Set γ · r B γ ·α r for all γ ∈ Γ, r ∈ R, and define compositions,
identities, and inverses via (3.5.1) (i.e., in a way that does not depend on r ∈ R).

An interesting example of a countable Borel groupoid is produced by “bundling” all countable groups into
a single algebraic structure. Let G be the standard Borel space of all countably infinite groups with ground set
N (which can be viewed as a Borel subset of the Cantor space 2N3). Define a countable Borel groupoid (G,N)
as follows: For each n ∈ N and Γ ∈ G, let n · Γ B Γ. Now set

n ◦Γ m to be the product of n and m as elements of Γ;
1Γ to be the identity element of Γ;
n−1
Γ

to be the inverse of n in Γ.
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The following proposition is a useful and easy-to-check condition that guarantees that a certain structure
is a countable Borel groupoid.

Proposition 3.5.12. Let R be a standard Borel space and let E be a countable Borel equivalence relation
on R. Let Γ be a countable set and let a : Γ × R→ R : (γ, r) 7→ γ · r be a Borel function. Suppose that for
each r ∈ R, the map γ 7→ γ · r is a bijection between Γ and [r]E . Then there is a unique countable Borel
groupoid structure on (R, Γ) with a as its action map.

Proof. For r1, r2 ∈ R with r1 E r2, let ε(r1, r2) denote the unique element ε ∈ Γ such that r2 = ε · r1. The only
consistent way to turn (R, Γ) into a countable Borel groupoid is as follows:

γ ◦r δ B ε(r, γ · (δ · r)); 1r B ε(r, r); and γ−1
r B ε(γ · r, r).

A straightforward verification shows that the above definition satisfies all the axioms. �

Now we proceed to the definition of Borel actions of countable Borel groupoids.

Definition 3.5.13 (Actions). Let (R, Γ) be a countable Borel groupoid. A (Borel) action (ρ, α) of (R, Γ) on a
standard Borel space X is a pair of Borel maps ρ : X → R and α : Γ × X → X : (γ, x) 7→ γ ·α x satisfying the
following conditions:

– equivariance: for all x ∈ X and γ ∈ Γ, ρ(γ ·α x) = γ · ρ(x);
– identity: for all x ∈ X , 1ρ(x) ·α x = x;
– compatibility: for all x ∈ X and γ, δ ∈ Γ γ ·α (δ ·α x) = (γ ◦ρ(x) δ) ·α x.

As with group actions, we will usually simply write γ · x for γ ·α x.

Clearly, a (left) group action Γ y X is also a countable Borel groupoid action if Γ is understood as a
countable Borel groupoid. Now suppose that a countable group Γ acts (in a Borel way) on a standard Borel
space R. Viewing (R, Γ) as a countable Borel groupoid, consider an action (ρ, α) of (R, Γ) on some space
X . By the identity and the compatibility conditions in Definition 3.5.13, α is an action of Γ on X , while the
equivariance condition stipulates that the map ρ : X → R must be Γ-equivariant. Thus, a Borel action of
(R, Γ) is the same as a Γ-space equipped with a Borel Γ-equivariant map to R. If (G,N) is the countable Borel
groupoid of all countable groups, then an action of (G,N) on X consists of a Borel map ρ : X → G and a
Γ-action on ρ−1(Γ) for each Γ ∈ G.

Definition 3.5.14 (Shift actions). Let (R, Γ) be a countable Borel groupoid and let Y be a standard Borel
space. The Y -shift action (ρ, α) : (R, Γ) y R × YΓ is defined as follows: For each (r, ϑ) ∈ R × YΓ, set
ρ(r, ϑ) B r , and for γ ∈ Γ, define

γ ·α (r, ϑ) B (γ · r, ϑ′), where ϑ′(δ) B ϑ(δ ◦r γ) for all δ ∈ Γ.

It is routine to check that the Y -shift action as defined above is indeed an action of (R, Γ). We give the
proof here to help the reader get familiar with the definitions. The equivariance condition is satisfied trivially.
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For the identity condition, observe that if x = (r, ϑ) ∈ R × YΓ, then

1ρ(x) · x = 1r · (r, ϑ) = (1r · r, ϑ′) = (r, ϑ′),

where for each δ ∈ Γ,
ϑ′(δ) = ϑ(δ ◦r 1r ) = ϑ(δ),

so ϑ′ = ϑ, as desired. Finally, for the compatibility condition, we have

γ · (δ · x) = γ · (δ · (r, ϑ)) = γ · (δ · r, ϑ′) = (γ · (δ · r), ϑ′′) = ((γ ◦r δ) · r, ϑ′′),

where for each ε ∈ Γ,

ϑ′′(ε) = ϑ′(ε ◦δ ·r γ) = ϑ((ε ◦δ ·r γ) ◦r δ) = ϑ(ε ◦r (γ ◦r δ)),

so γ · (δ · x) = (γ ◦r δ) · x, as desired.
Note that for a countable group Γ, Definition 3.5.14 is equivalent to the usual definition of the Y -shift

action of Γ.
By analogy with group actions, we can define L-systems corresponding to actions of countable Borel

groupoids. Namely, let (ρ, α) : (R, Γ) y X be a Borel action of a countable Borel groupoid (R, Γ) on a
standard Borel space X . Let Eα be the corresponding orbit equivalence relation on X , defined by

x Eα y :⇐⇒ γ · x = y for some γ ∈ Γ.

This is clearly a countable Borel equivalence relation. Note that Eα does not depend on ρ. Let I(ρ,α) denote
the isomorphism structure on Eα such that a bijection ϕ : C1 → C2 between Eα-classes C1, C2 belongs to
I(ρ,α) if and only if ϕ is (R, Γ)-equivariant, i.e., for all x ∈ C1 and γ ∈ Γ,

ρ(ϕ(x)) = ρ(x) and γ · ϕ(x) = ϕ(γ · x).

For µ ∈ Prob(X), let L(ρ, α, µ) denote the L-system (X, Eα,I(ρ,α), µ). In the case when |R| = 1, i.e., (R, Γ) is
a group, this definition coincides with the one given previously for group actions.

We will be mostly interested in the properties of L-systems induced by shift actions of countable Borel
groupoids. More precisely:

Definition 3.5.15 (Shift L-systems). A shift L-system is any L-system of the form L(ρ, α, µ × νΓ), where
(ρ, α) : (R, Γ)y R × YΓ is the Y -shift action of a countable Borel groupoid (R, Γ) for some standard Borel
space Y , µ ∈ Prob(R), and ν ∈ Prob(Y ) is atomless.

Thanks to the measure isomorphism theorem, it is enough to consider shift L-systems induced by the
[0; 1]-shift action of (R, Γ) with ν = λ. However, sometimes it will be more convenient to use other choices
for Y and ν; in particular, we will often assume that Y = [0; 1]S and ν = λS for some countable set S.
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3.5.5 Factors of L-systems induced by actions of countable Borel groupoids

Let (R, Γ) be a countable Borel groupoid and let (ρ, α) : (R, Γ)y X be a Borel action of (R, Γ) on a standard
Borel space X . The action (ρ, α) is free if for all x ∈ X and γ ∈ Γ,

γ · x = x ⇐⇒ γ = 1ρ(x).

The free part of (ρ, α) (notation: Free(ρ, α) or Free(X) if the action is clear from the context) is the largest
Eα-invariant subset of X on which the action is free. The free part of an action is always an invariant Borel
set. For µ ∈ Prob(X), an action is free µ-almost everywhere if its free part is µ-conull. By definition, if
x ∈ Free(X), then the map γ 7→ γ · x is a bijection between Γ and the orbit of x.

Proposition 3.5.16. Let (R, Γ) be a countable Borel groupoid and let µ ∈ Prob(R). LetY be a standard Borel
space and let ν ∈ Prob(Y ) be atomless. Then the Y -shift action of (R, Γ) is free (µ × νΓ)-almost everywhere.

Proof. It is enough to notice that Free(R×YΓ) ⊇ R× F, where F B {ϑ ∈ YΓ : ϑ : Γ→ Y is injective}. �

The next lemma will be useful in verifying that certain maps between L-systems induced by actions of
countable Borel groupoids are factor maps.

Lemma 3.5.17. Let (R, Γ) be a countable Borel groupoid and let

(ρ1, α1) : (R, Γ)y X1 and (ρ2, α2) : (R, Γ)y X2

be two Borel actions of (R, Γ). Let µ1 ∈ Prob(X1) and µ2 ∈ Prob(X2). Suppose that (ρ2, α2) is µ2-almost
everywhere free. Let π : X1 ⇀ X2 be a measure-preserving (R, Γ)-equivariant Borel map defined on an
Eα1-invariant µ1-conull Borel subset of X1. Then π, possibly restricted to a smaller invariant conull Borel
subset of X1, is a factor map from L(ρ1, α1, µ1) to L(ρ2, α2, µ2).

Proof. For i ∈ {1, 2}, let Ei B Eαi and Ii B I(ρi,αi ). Let C ⊆ dom(π) be an E1-class. The equivariance
of π implies that π(C) is an E2-class. Since (ρ2, α2) is free µ2-almost everywhere, we may assume that
π(C) ⊆ Free(X2), in which case the map π |C : C → π(C) is a bijection.

It remains to check the existence of ϕ1 ∈ I1 that closes the following diagram:

C1 C2

π(C1) π(C2).

π

ϕ1

π

ϕ2

Again, since (ρ2, α2) is free µ2-almost everywhere, we may assume that the maps

π |C1 : C1 → π(C1) and π |C2 : C2 → π(C2)

are bijections. Since ϕ2 is (R, Γ)-equivariant,

ϕ1 B (π |C2)
−1 ◦ ϕ2 ◦ (π |C1)
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is an equivariant bijection from C1 to C2; in other words, ϕ1 ∈ I1, as desired. �

Let Γ be a countable group and let α1 : Γ y (X1, µ1) and α2 : Γ y (X2, µ2) be two probability
measure-preserving actions of Γ. If α2 is free µ2-almost everywhere, then, by Lemma 3.5.17, a factor
map π : (X1, µ1) → (X2, µ2) in the usual ergodic theory sense induces a factor map between the L-systems
L(α1, µ1) and L(α2, µ2).

3.5.6 Closure properties of the class of shift L-systems

In this subsection we show that the class of shift L-systems is closed under (certain) expansions and under
amplifications.

Lemma 3.5.18. Let (R, Γ) be a countable Borel groupoid and let L = L(ρ, α, µ×(λ2)Γ), where µ ∈ Prob(R),
be the shift L-system induced by the [0; 1]2-shift action of (R, Γ). Let Y be a standard Borel space and let

f : R × ([0; 1]2)Γ → Y

be a Borel function that does not depend on the third coordinate, i.e., for all r ∈ R and ϑ, ω, ω′ ∈ [0; 1]Γ,

f (r, ϑ, ω) = f (r, ϑ, ω′).

Then L[ f ] admits a factor map to a shift L-system.

Proof. Set Q B R× [0; 1]Γ. The [0; 1]-shift action of (R, Γ) on Q turns (Q, Γ) into a countable Borel groupoid
via

γ ◦(r,ϑ) δ B γ ◦r δ; 1(r,ϑ) B 1r ; and γ−1
(r,ϑ) B γ−1

r .

Let (σ, α′) denote the [0; 1]-shift action of (Q, Γ). If we identify ([0; 1]2)Γ with [0; 1]Γ × [0; 1]Γ in the natural
way, then

R × ([0; 1]2)Γ = R × [0; 1]Γ × [0; 1]Γ = Q × [0; 1]Γ,

and, in fact, α′ = α. By definition, for all r ∈ R and ϑ, ω ∈ [0; 1]Γ,

σ(r, ϑ, ω) = (r, ϑ),

so the value f (x) is determined by σ(x) for all x. Therefore, the identity function

id : R × ([0; 1]2)Γ → Q × [0; 1]Γ

is a factor map from L[ f ] to the shift L-system L ′ B L(σ, α, µ × λΓ × λΓ) induced by (σ, α). �

Lemma 3.5.19. If L is a shift L-system, then HF(L) factors to a shift L-system.

Proof. Suppose that L is induced by a shift action of a countable Borel groupoid (R, Γ). We will proceed
in three steps. First, we will construct a countable Borel groupoid (Q,∆), where ∆ = HF(Γ). Then we
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will show that HF(L) is induced by an (almost everywhere) free action of (Q,∆). Finally, we will define a
measure-preserving (Q,∆)-equivariant Borel map from this action to the [0; 1]-shift action of (Q,∆), which
will give us a desired factor map, thanks to Lemma 3.5.17.

Step 1. Let µ ∈ Prob(R) and consider the [0; 1]-shift action (R, Γ)y R × [0; 1]Γ. Let E denote the
induced orbit equivalence relation. Define

Q B HF(E |Free(R × [0; 1]Γ)) and ∆ B HF(Γ).

Note that for each x ∈ Free(R × [0; 1]Γ), the following map is a bijection between Γ and [x]E :

ϕx : Γ→ [x]E : γ 7→ γ · x.

Therefore, its amplification
ϕ̃x : HF(Γ) = ∆→ HF([x]E ) = [x]Ẽ

is a bijection between ∆ and [x]Ẽ . Fix a Borel map x0 : Q→ Free(R × [0; 1]Γ) such that x0(q) ∈ Set(q) for
all q ∈ Q, and let

ϕ̃q B ϕ̃x0(q).

Then for each q ∈ Q, the map ϕ̃q is a bijection from ∆ to [x0(q)]Ẽ = [q]Ẽ . For q ∈ Q and δ ∈ ∆, define

δ · q B ϕ̃q(δ).

Since ϕ̃q : ∆→ [q]Ẽ is a bijection for each q ∈ Q, by Proposition 3.5.12, (Q,∆) is equipped with a unique
countable Borel groupoid structure. It is useful to observe that

δ · q = ϕ̃q(δ) = ϕ̃x0(q)(δ) = δ · x0(q).

Step 2. Now we turn to the shift L-system L. Suppose that L = L(ρ, α, µ × (λ × ν)Γ), where

(ρ, α) : (R, Γ)y R × ([0; 1] × Y )Γ

is the ([0; 1] × Y )-shift action of (R, Γ), µ ∈ Prob(R), and ν ∈ Prob(Y ) is atomless. Here Y is an arbitrary
standard Borel space; we will specify a concrete choice for Y later. Let

F B Free(R × [0; 1]Γ) × YΓ .

Then F is a conull Eα-invariant Borel subset of Free(ρ, α). We will now define a free action of (Q,∆) on
H B HF(Eα |F) (which is a conull Ẽα-invariant Borel subset of HF(Eα)).

The construction is analogous to the one from Step 1. For each x ∈ F, define ϕx : Γ→ [x]Eα by

ϕx : Γ→ [x]Eα : γ 7→ γ · x.
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Then ϕx is a bijection between Γ and [x]Eα . Therefore, ϕ̃x : ∆→ [x]Ẽα is a bijection from ∆ to [x]Ẽα . Let
σ : F → Free(R × [0; 1]Γ) denote the projection on the first two coordinates, i.e.,

σ(r, ϑ, y) B (r, ϑ) for all (r, ϑ) ∈ Free(R × [0; 1]Γ) and y ∈ YΓ .

For every h ∈ H, we have σ̃(h) ∈ Q and the map σ |Set(h) : Set(h) → Set(σ̃(h)) is a bijection. Let x0(h) be
the unique element of Set(h) such that

σ(x0(h)) = x0(σ̃(h)).

Define ϕ̃h B ϕ̃x0(h). Then ϕ̃h : ∆→ [h]Ẽα is a bijection. Hence, if we let

β : ∆ × H : (δ, h) 7→ δ · h B ϕ̃h(δ),

then (σ̃, β) is a free action of (Q,∆) on H. Note that we again have

δ · h = ϕ̃h(δ) = ϕ̃x0(h)(δ) = δ · x0(h).

It is clear that the restriction of HF(L) to H coincides with L(σ̃, β, µ × (λ × ν)Γ).
Step 3. So far we have constructed a countable Borel groupoid (Q,∆) and a free action (σ̃, β) of (Q,∆)

that essentially (i.e., up to an invariant null set) induces the L-system HF(L). It remains to define a factor
map from that action to the L-system induced by the [0; 1]-shift action of (Q,∆).

Choose Y to be [0; 1]∆ and ν to be λ∆. Consider any h ∈ H. Suppose that x0(h) = (x, y), where
x ∈ Free(R × [0; 1]Γ) and y ∈ YΓ = ([0; 1]∆)Γ = [0; 1]Γ×∆. Define ξ(h) ∈ [0; 1] by

ξ(h) B y(1ρ(x), 1σ̃(h)).

Here ρ(x) ∈ R and σ̃(h) ∈ Q, so 1ρ(x) ∈ Γ and 1σ̃(h) ∈ ∆. Now define ξ∆ : H → [0; 1]∆ by setting, for all
h ∈ H and δ ∈ ∆,

ξ∆(h)(δ) B ξ(δ · h).

By construction, the map
(σ̃, ξ∆) : H → Q × [0; 1]∆

is (Q,∆)-equivariant. Due to Lemma 3.5.17, we only need to check that this map is measure-preserving.
Since we have the freedom to choose the measure on Q, we can take it to be

σ̃∗(µ × λ
Γ × λΓ×∆),

so we only have to show that
ξ∆∗ (µ × λ

Γ × λΓ×∆) = λ∆.
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Since µ × λΓ × λΓ×∆ is concentrated on F, it is enough to verify that

(ξ∆ |F)∗(µ × λΓ × λΓ×∆) = λ∆.

To this end, we will show that for each x ∈ Free(R × [0; 1]Γ), the map

ξ∆x : [0; 1]Γ×∆ → [0; 1]∆ : y 7→ ξ∆(x, y)

satisfies (ξ∆x )∗(λΓ×∆) = λ∆; an application of Fubini’s theorem then completes the proof.
Fix some x ∈ Free(R × [0; 1]Γ). For each δ ∈ ∆, let γx,δ be the unique element of Γ such that

x0(δ · x) = γx,δ · x.

Observe that the map
∆→ Γ × ∆ : δ 7→ (γx,δ, 1δ ·x)

is injective. Indeed, we have

ϕ̃x(δ) = δ · x = 1δ ·x · (δ · x) = 1δ ·x · x0(δ · x) = 1δ ·x · (γx,δ · x),

and the map ϕ̃x is injective. Let y ∈ [0; 1]Γ×∆. We have

x0(δ · (x, y)) = γx,δ · (x, y) = (γx,δ · x, y′) and σ̃(δ · (x, y)) = δ · x,

where y′ is a particular element of [0; 1]Γ×∆. Therefore,

ξ∆x (y)(δ) = ξ(δ · (x, y)) = y′(1ρ(γx, δ ·x), 1δ ·x) = y′(1γx, δ ·ρ(x), 1δ ·x).

Since
1γx, δ ·ρ(x) ◦ρ(x) γx,δ = γx,δ,

by the definition of the shift action, we get

y′(1γx, δ ·ρ(x), 1δ ·x) = y(γx,δ, 1δ ·x).

To summarize,
ξ∆x (y)(δ) = y(γx,δ, 1δ ·x).

In other words, ξ∆x acts as the projection on the set of coordinates {(γx,δ, 1δ ·x) : δ ∈ ∆}. Therefore, it pushes
λΓ×∆ forward to λ∆, as desired. �
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3.5.7 The Moser–Tardos algorithm for shift L-systems

In this subsection we use Moser–Tardos theory to show that any correct instance B over a shift L-system L
admits a measurable solution. To do this, we will reduce B to a family (Br )r ∈R of correct instances over the
(countable) set Γ indexed by the elements of R, where (R, Γ) is the countable Borel groupoid whose shift
action induces L.

Lemma 3.5.20. Let L be a shift L-system. Then every correct instance over L has a measurable solution.

Proof. Let (R, Γ) be a countable Borel groupoid, let µ ∈ Prob(R), and let (ρ, α) : (R, Γ)y R × [0; 1]Γ×N be
the [0; 1]N-shift action of (R, Γ). Let L B L(ρ, α, µ × λΓ×N). We use the following notation:

X B R × [0; 1]Γ×N, E B Eα, and I B I(ρ,α).

Suppose B is a correct instance over L. Due to Propositions 3.2.8 and 3.2.3, it is enough to show that there
exists a Borel table ξ : X × N→ [0; 1] such that

(µ × λΓ×N)({x ∈ X : γ · x ∈ Stab(ξ) for all γ ∈ Γ}) = 1. (3.5.2)

We claim that the map
ξ : X × N→ [0; 1] : ((r, ϑ), n) 7→ ϑ(1r )(n)

satisfies (3.5.2). Note that for every γ ∈ Γ,

ξ(γ · (r, ϑ), n) = ϑ(γ)(n).

For each x ∈ X , there is a surjection

ϕx : Γ→ [x]E : γ 7→ γ · x

from Γ onto [x]E . Since the action (ρ, α) is free almost everywhere, ϕx is bijective for almost all x ∈ X .
Hence, for almost every x ∈ X , the map ϕx can be used to define a correct instance Bx over Γ by “pulling
back” the restriction of B to [x]E . Formally, we set

Bx B {{ f ◦ ϕx : f ∈ B} : B ∈ B}.

Note that whenever r ∈ R and ϑ, ω ∈ [0; 1]Γ×N and both (r, ϑ) and (r, ω) belong to the free part of the action
(ρ, α), the map γ · (r, ϑ) 7→ γ · (r, ω) is a well-defined (R, Γ)-equivariant bijection between [(r, ϑ)]E and
[(r, ω)]E . Therefore, since B is almost everywhere I-invariant, the following definition makes sense for
almost all r ∈ R:

Br B B(r,ϑ) for almost all ϑ ∈ [0; 1]Γ×N.
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Now, for almost every r ∈ R and for all γ ∈ Γ, using Corollary 3.2.7, we obtain

λΓ×N({ϑ ∈ [0; 1]Γ×N : γ · (r, ϑ) is ξ-stable with respect to B})

= λΓ×N({ϑ ∈ [0; 1]Γ×N : γ is ϑ-stable with respect to Br }) = 1.

An application of Fubini’s theorem yields (3.5.2). �

3.5.8 Completing the proof of Theorem 3.5.6

Now we have all the necessary ingredients to prove the following generalization of Theorem 3.5.6:

Theorem 3.5.21 (Measurable LLL for shift L-systems). Let L be an L-system that admits a factor map to
a shift L-system. Then Player II has a winning strategy in the LLL Game over HF(L).

Proof. We need to verify that the class C of shift L-systems satisfies conditions (B1) and (B2) from §3.5.3.
Condition (B1) is given by Lemma 3.5.19. It remains to show that if L is a shift L-system and B is a correct
instance over L, then there is a measurable solution f to B such that L[ f ] factors to another shift L-system.

To that end, suppose that L is induced by the [0; 1]2-shift action of a countable Borel groupoid (R, Γ)
with measure µ × (λ2)Γ, where µ ∈ Prob(R). Consider the L-system L ′ induced by the [0; 1]-shift action of
(R, Γ) with measure µ × λΓ. The projection onto the first two coordinates, i.e., the map

π : R × [0; 1]Γ × [0; 1]Γ → R × [0; 1]Γ : (r, ϑ, ω) 7→ (r, ϑ),

is (R, Γ)-equivariant and measure-preserving, so, by Lemma 3.5.17, it is a factor map from L to L ′. Due to
Lemma 3.5.10, there is a correct instance π(B) over L ′ such that whenever f ′ is a measurable solution to
π(B), then f ′ ◦ π is a measurable solution to B (modulo an invariant null set). Lemma 3.5.20 does indeed
provide a measurable solution f ′ to π(B), so let f B f ′ ◦ π. By definition, f does not depend on the third
coordinate. Therefore, by Lemma 3.5.18, L[ f ] factors to a shift L-system, as desired. �

3.6 The converse of Theorem 3.5.6 for actions of amenable groups

Corollary 3.5.7 asserts that if a probability measure-preserving action α : Γy (X, µ) of a countable group Γ
factors to the [0; 1]-shift action, then every correct instance B over α admits a Borel solution µ-almost
everywhere. In this section we show that if Γ is amenable, then the converse also holds. In fact, we will prove
that even (seemingly) much weaker assumptions already imply the existence of a factor map to the [0; 1]-shift.

To articulate these weaker assumptions, we need a few definitions. An instanceB over a set X is ε-correct,
where 0 < ε 6 1, if the neighborhood of each B ∈ B is countable, and there exists a function ω : B → [0; 1)
such that for all B ∈ B,

P[B] 6 ε |dom(B) |ω(B)
∏

B′∈NB(B)

(1 − ω(B′)).
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Hence, correct is the same as 1-correct, and

B is ε-correct =⇒ B is ε′-correct whenever 0 < ε 6 ε′ 6 1.

An instance B over a set X is discrete if there exist a finite set S and a Borel function ϕ : [0; 1] → S such that
for all B ∈ B and w, w′ : dom(B) → [0; 1] with ϕ ◦ w = ϕ ◦ w′, we have

w ∈ B ⇐⇒ w′ ∈ B.

In other words, B is discrete if the bad events in B can be identified with subsets of [X → S]<∞, where S is
equipped with the probability measure ϕ∗(λ) (see Remark 3.1.9). Most instances of the LLL that appear in
combinatorial applications are discrete. If ϕ∗(λ) is the uniform probability measure on S, then B is said to be
uniformly discrete.

Given a graph G on a set X , an instance (or the LLL) over G is an instance B over X such that:

– for each B ∈ B, the (finite) graph G[dom(B)] is connected;

– if B ∈ B, S ⊆ X , and ϕ : S → dom(B) is an isomorphism between G[S] and G[dom(B)], then

{w ◦ ϕ : w ∈ B} ∈ B.

Note that if α : Γy X is an action of a countable group Γ generated by a set S ⊆ Γ, then every instance over
G(α, S) is in particular an instance over α.

Now we are ready to state the first version of the converse theorem.

Theorem 3.6.1. Let α : Γy (X, µ) be a free ergodic p.m.p. action of a countably infinite amenable group Γ.
Suppose that S ⊆ Γ is a finite generating set and let G B G(α, S). The following statements are equivalent:

(i) there exists ε ∈ (0; 1] such that for every ε-correct uniformly discrete Borel instance B over G, there is
a Borel map f : X → [0; 1] with µ(DefB( f )) < 1;

(ii) α factors to the shift action Γy ([0; 1]Γ, λΓ).

In general, the conclusion of Theorem 3.6.1 fails for infinite S. To see this, consider any free ergodic
p.m.p. action α : Γ y (X, µ) of a countably infinite amenable group Γ and set G B G(α, Γ). We claim
that for every correct Borel instance B over G, there is a Borel map f : X → [0; 1] with µ(DefB( f )) = 0,
regardless of the choice of α. Indeed,

E(G) = {xy : x Eα y and x , y},

so G only depends on the orbit equivalence relation Eα and not on the action α itself. Since, by a theorem
of Dye and Ornstein–Weiss [KM04, Theorem 10.7], all free ergodic p.m.p. actions of countable amenable
groups are orbit-equivalent, we may replace α by the [0; 1]-shift action and apply Corollary 3.5.7.
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However, by keeping track of slightly more information than just the graph G(α, S), one can still establish
an analog of Theorem 3.6.1 for infinite S (and in particular for groups that are not finitely generated). An
(S-)labeled graph on X is a family G = (Gγ)γ∈S of graphs on X indexed by the elements of a given countable
set S. Note that the edge sets E(Gγ) are not required to be disjoint, i.e., the same edge can receive more
than one label. A labeled graph G on a standard Borel space is Borel if each Gγ is Borel. An isomorphism
between labeled graphs G1 and G2 must preserve the labeling, i.e., it has to be an isomorphism between
each (G1)γ and (G2)γ individually. For an S-labeled graph G on X and a subset X ′ ⊆ X , let G[X ′] denote
the S-labeled graph on X ′ given by (G[X ′])γ B Gγ[X ′]. For an S-labeled graph G, its underlying graph
is the graph with the same vertex set as G and edge set

⋃
γ∈S E(Gγ). A labeled graph G is connected if its

underlying graph is connected. The definition of an instance over G extends verbatim to the case when G

is labeled. If α : Γy X is an action of a countable group Γ on a set X and S ⊆ Γ is a generating set, then
G`(α, S) denotes the S-labeled graph on X given by

xy ∈ E((G`(α, S))γ) :⇐⇒ x , y and (γ · x = y or γ · y = x).

Thus, the underlying graph of G`(α, S) is G(α, S). Now we have the following:

Theorem 3.6.1′. Let α : Γy (X, µ) be a free ergodic p.m.p. action of a countably infinite amenable group Γ.
Let S ⊆ Γ be a generating set and let G B G`(α, S). The following statements are equivalent:

(i) there exists ε ∈ (0; 1] such that for every ε-correct uniformly discrete Borel instance B over G, there is
a Borel map f : X → [0; 1] with µ(DefB( f )) < 1;

(ii) α factors to the shift action Γy ([0; 1]Γ, λΓ).

Notice that Theorems 3.6.1 and 3.6.1′ also demonstrate that the local finiteness requirement in the
statement of Theorem 3.4.1 is necessary.

3.6.1 Outline of the proof

The proofs of Theorems 3.6.1 and 3.6.1′ are almost identical, so we will present them simultaneously. We only
have to show the forward implication in both statements (the other direction is handled by Corollary 3.5.7).
Here we briefly sketch our plan of attack.

For simplicity, assume that Γ = Z and let α : Z y (X, µ) be a free ergodic p.m.p. action of Z.
There is a simple criterion, called Sinai’s factor theorem, that determines whether there is a factor map
π : (X, µ) → ([0; 1]Z, λZ): Such π exists if and only if α has infinite Kolmogorov–Sinai entropy. The
Kolmogorov–Sinai entropy of α is defined as follows. Consider any Borel function f : X → I to a finite set I.
The Shannon entropy of f measures how “uncertain” the value f (x) is when x ∈ X is chosen randomly
with respect to µ; formally,

hµ( f ) B −
∑
i∈I

µ( f −1(i)) log2 µ( f
−1(i)).

Now the action comes into play: Given x ∈ X and n ∈ N, we record the sequence of values

f ((−n) · x), f ((−n + 1) · x), . . . , f (n · x);
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this gives us a tuple of elements of I of length 2n + 1. Let fn : X → I2n+1 be the corresponding function.
We can compute the average amount of uncertainty in fn(x) per symbol; in other words, we can look at the
quantity hµ( fn(x))/(2n + 1). It turns out that, as n grows, this quantity decreases, so there exists a limit

Hµ(α, f ) B lim
n→∞

hµ( fn)
2n + 1

.

This limit is called the Kolmogorov–Sinai entropy of f with respect to α. The Kolmogorov–Sinai entropy
of the action α itself measures the “maximum level of uncertainty” that can be achieved with respect to α;
formally, it is defined as

Hµ(α) B sup
f

Hµ(α, f ),

where f is ranging over all Borel functions from X to a finite set. As mentioned previously, α factors to the
[0; 1]-shift action if and only if Hµ(α) = ∞.

How can we use the LLL to prove that Hµ(α) = ∞? By definition, we have to exhibit Borel functions f

with arbitrarily large values of Hµ(α, f ). But Hµ(α, f ) is, in some sense, a “global” parameter—it is defined
in terms of the measures of certain subsets of X—while instances of the LLL can only put “local” constraints
on the function f . However, high value of Hµ(α, f ) indicates that the functions fn behave very “randomly” or
“unpredictably.” Thus, what we need is a way to measure “randomness” or “unpredictability” deterministically,
which we can then apply to the values of fn at each point instead of looking at the function fn as a whole.

There is indeed a convenient deterministic analog of Shannon’s entropy, namely the so-called Kolmogorov
complexity. Roughly speaking, a finite sequence w of symbols has high Kolmogorov complexity if there is
no way to encode it by a significantly shorter sequence. Our instance of the LLL will require fn(x) to have
high Kolmogorov complexity for all n ∈ N and x ∈ X . We will show that solving this instance, even partially,
guarantees that Hµ(α, f ) must also be high.

The structure of the rest of this section is as follows. In §3.6.2 we list the necessary definitions and
preliminary results regarding the structure of amenable groups, Kolmogorov–Sinai entropy of their actions
(including the version of Sinai’s factor theorem with a general amenable group in place ofZ), and Kolmogorov
complexity. In §3.6.3 we prove the main lemma that connects Kolmogorov complexity and Kolmogorov–Sinai
entropy. Finally, §3.6.4 completes the proof by constructing a series of instances of the LLL whose solutions
necessarily have high Kolmogorov complexity and hence high Kolmogorov–Sinai entropy.

3.6.2 Preliminaries

Background on amenable groups

Recall that a countable group Γ is amenable if it admits a Følner sequence, i.e., a sequence (Fn)
∞
n=0 of

nonempty finite subsets of Γ such that for all γ ∈ Γ,

lim
n→∞

|γFn 4 Fn |

|Fn |
= 0, (3.6.1)
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where 4 denotes symmetric difference of sets. Note that if S ⊆ Γ is a generating set and (3.6.1) holds for all
γ ∈ S, then (Fn)

∞
n=0 is a Følner sequence (see [KM04, Remark 5.12]).

Proposition 3.6.2. Let Γ be a countably infinite amenable group and let S ⊆ Γ be a generating set. Let
G B Cay(Γ, S) denote the corresponding Cayley graph. Then Γ admits a Følner sequence (Fn)

∞
n=0 such that

every (finite) graph G[Fn] is connected.

Proof. Let γ0, γ1, . . . be a list of all the elements of S in an arbitrary order, possibly with repetitions (so the
list is infinite even if S is finite) and let (Fn)

∞
n=0 be a Følner sequence for Γ. By passing to a subsequence if

necessary, we can arrange that for all n ∈ N,

n∑
i=0

|γiFn 4 Fn |

|Fn |
6

1
n
. (3.6.2)

Suppose G[Fn] has kn connected components and let Fn,1, . . . , Fn,kn ⊆ Fn denote their vertex sets. For all
i ∈ N and 1 6 j1 < j2 6 kn, we have γiFn, j1 ∩ Fn, j2 = �, so

γiFn 4 Fn =

kn⋃
j=1
(γiFn, j 4 Fn, j), (3.6.3)

and the union on the right-hand side of (3.6.3) is disjoint. Therefore,

n∑
i=0

|γiFn 4 Fn |

|Fn |
=

∑kn
j=1

∑n
i=0 |γiFn, j 4 Fn, j |∑kn
j=1 |Fn, j |

.

If for all 1 6 j 6 kn, we have
n∑
i=0

|γiFn, j 4 Fn, j |

|Fn, j |
>

1
n
,

then ∑kn
j=1

∑n
i=0 |γiFn, j 4 Fn, j |∑kn
j=1 |Fn, j |

>

∑kn
j=1

1
n |Fn, j |∑kn

j=1 |Fn, j |
=

1
n
,

which contradicts (3.6.2). Hence, there is some 1 6 jn 6 kn such that

n∑
i=0

|γiFn, j 4 Fn, j |

|Fn, j |
6

1
n
.

Then (Fn, jn )
∞
n=0 is a desired Følner sequence consisting of connected sets. �

Corollary 3.6.3. Let Γ be a countably infinite amenable group and let S ⊆ Γ be a generating set. Let
G B Cay(Γ, S) denote the corresponding Cayley graph. Then Γ admits a Følner sequence (Fn)

∞
n=0 such that:

– for each n ∈ N, the graph Cay(Γ, S)[Fn] is connected;

– 1 ∈ F0 ⊂ F1 ⊂ . . ., where 1 is the identity element of Γ;
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–
⋃∞

n=0 Fn = Γ;

– limn→∞ |Fn |/log2 n = ∞.

Proof. Proposition 3.6.2 gives a Følner sequence (Fn)
∞
n=0 satisfying the first condition. Since Γ is infinite, we

have |Fn | → ∞ as n → ∞. If 1 < Fn for some n ∈ N, then choose any γ ∈ Fn and replace Fn with Fnγ
−1.

Now we construct a new sequence (F ′n)∞n=0 inductively. Let γ0, γ1, . . . be a list of all the elements of S in an
arbitrary order, possibly with repetitions. For n ∈ N, set Sn B {γ0, . . . , γn}. Let Bn denote the collection of
all the elements of Γ that can be expressed as products of at most n elements of Sn. Note that 1 ∈ Bn and the
graph Cay(Γ, S)[Bn] is connected. Let F ′0 B F0. On step n + 1, choose N large enough so that

|FN | > n ·

(
n∑
i=0
|F ′i | + |Bn | + log2 n

)
,

and define

F ′n+1 B FN ∪

n⋃
i=0

F ′i ∪ Bn.

Clearly, (F ′n)∞n=0 is a Følner sequence satisfying all the requirements. �

We will need a result of Ornstein and Weiss on the existence of quasi-tilings in amenable groups. A family
A1, . . . , Ak of finite sets is said to be ε-disjoint, ε > 0, if there exist pairwise disjoint subsets B1 ⊆ A1, . . . ,
Bk ⊆ Ak such that for all 1 6 i 6 k,

|Bi | > (1 − ε)|Ai |.

A finite set A is (1 − ε)-covered by A1, . . . , Ak if�����A ∩ k⋃
i=1

Ai

����� > (1 − ε)|A|.
Let Γ be a countable group and let A, A1, . . . , Ak be finite subsets of Γ. An ε-quasi-tiling of A by the sets
A1, . . . , Ak is a collection C1, . . . , Ck of finite subsets of Γ such that:

– for each 1 6 i 6 k, we have AiCi ⊆ A and the family of sets sets (Aiγ)γ∈Ci is ε-disjoint;

– the sets A1C1, . . . , AkCk are pairwise disjoint;

– A is (1 − ε)-covered by the sets A1C1, . . . , AkCk .

Theorem 3.6.4 (Ornstein–Weiss [OW87]; see also [WZ92, Theorem 2.6] and [ZCY16, Proposition 2.3]).
Let Γ be a countable amenable group and let (Fn)

∞
n=0 be a Følner sequence in Γ. Then for all ε > 0 and for

all n ∈ N, there exist k, `1, . . . , `k , m0 ∈ N with n 6 `1 < `2 < . . . < `k such that for each m > m0, there
exists an ε-quasi-tiling of Fm by F`1 , . . . , F`k .
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Background on Kolmogorov–Sinai entropy

An important invariant of an amenable probability measure-preserving system is its Kolmogorov–Sinai
entropy. It is usually defined in terms of finite Borel partitions; however, for our purposes it will be more
convenient to define it in terms of Borel functions to a finite set (the two notions are, of course, equivalent).

Let (X, µ) be a standard probability space. A (finite) coloring of X is a function f : X → I, where I is a
finite set. The Shannon entropy of a Borel finite coloring f : X → I is defined to be

hµ( f ) B −
∑
i∈I

µ( f −1(i)) log2 µ( f
−1(i)).

Here we adopt the convention that 0 · log2 0 = 0. Note that 0 6 hµ( f ) 6 log2 |I |.
Let α : Γy (X, µ) be a p.m.p. action of a countable amenable group Γ. For a finite coloring f : X → I

and a set F ∈ [Γ]<∞, let f F : X → IF denote the finite coloring defined by setting, for all x ∈ X and γ ∈ F,

f F (x)(γ) B f (γ · x).

The Kolmogorov–Sinai entropy of a Borel finite coloring f with respect to α is given by

Hµ(α, f ) B lim
n→∞

hµ( f Fn )

|Fn |
, (3.6.4)

where (Fn)
∞
n=0 is a Følner sequence in Γ. Due to a fundamental result of Ornstein and Weiss [OW87],

the limit in (3.6.4) always exists and is independent of the choice of (Fn)
∞
n=0. Note that we again have

0 6 Hµ(α, f ) 6 log2 |I |, where I is the range of f . The Kolmogorov–Sinai entropy of α is defined by

Hµ(α) B sup{Hµ(α, f ) : f is a Borel finite coloring of X}.

We will use the following special case of a generalization of Sinai’s factor theorem to actions of arbitrary
amenable groups proven by Ornstein and Weiss:

Theorem 3.6.5 (Ornstein–Weiss [OW87]). Let α : Γy (X, µ) be a free ergodic p.m.p. action of a countably
infinite amenable group Γ. Suppose that Hµ(α) = ∞. Then there exists a factor map π : (X, µ) → ([0; 1]Γ, λΓ)
to the [0; 1]-shift action of Γ.

Background on Kolmogorov complexity

We will use some basic properties of Kolmogorov complexity. Let 2∗ denote the set of all finite sequences of
zeroes and ones (including the empty sequence). For w ∈ 2∗, let |w | denote the length of w. For a partial
function D : 2∗ ⇀ 2∗, define the map KD : 2∗ → N ∪ {∞} via

KD(x) B inf{|w | : D(w) = x}.
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Given two partial functions D1, D2 : 2∗ ⇀ 2∗, we say that D1 minorizes D2 (notation: D1 6K D2) if there is
a constant c ∈ N such that for all x ∈ 2∗,

KD1(x) 6 KD2(x) + c.

Clearly, 6K is a preorder. If C is a class of partial functions 2∗ ⇀ 2∗, then D ∈ C is optimal in C if for all
D′ ∈ C , D 6K D′.

We restrict our attention to the class of all partial maps D : 2∗ ⇀ 2∗ that are computable relative to a fixed
oracle O (denote this class by CO). A cornerstone of the theory of Kolmogorov complexity is the following
observation:

Theorem 3.6.6 (Solomonoff–Kolmogorov; see [LV08, Lemma 2.1.1] and [UVS10, Theorem 1]). Fix an
oracle O. There exists a map D ∈ CO that is optimal in CO.

In the light of Theorem 3.6.6, we can define the Kolmogorov complexity of a word x ∈ 2∗ relative to an
oracle O to be

KO(x) B KD(x),

for some fixed optimal D ∈ CO. Note that if D, D′ ∈ CO are two optimal functions, then there is a constant
c ∈ N such that |KD(x) −KD′(x)| 6 c for all x ∈ 2∗; in this sense, the value KO(x) is defined up to an additive
constant.

The following property of Kolmogorov complexity will play a crucial role in our argument.

Proposition 3.6.7. Fix an oracle O. Let c, n ∈ N and let νn denote the uniform probability measure on 2n.
Then

νn({x ∈ 2n : KO(x) 6 n − c}) < 2−c+1.

Proof. Let D ∈ CO be the optimal function used in the definition of Kolmogorov complexity relative to O.
There are exactly 2n−c+1 − 1 sequences of zeroes and ones of length at most n − c, so there can be at most
2n−c+1 − 1 words x ∈ 2∗ with KO(x) = KD(x) 6 n − c. Therefore,

νn({x ∈ 2n : KO(x) 6 n − c}) 6
2n−c+1 − 1

2n
= 2−c+1 − 2−n < 2−c+1,

as desired. �

3.6.3 Kolmogorov complexity vs. Kolmogorov–Sinai entropy

For the rest of this section, we fix a countably infinite amenable group Γ, a generating set S ⊆ Γ, a standard
probability space (X, µ), and a free ergodic measure-preserving action α : Γ y X . We also fix a Følner
sequence (Fn)

∞
n=0 in Γ satisfying the requirements of Corollary 3.6.3, i.e., such that:

– for each n ∈ N, the graph Cay(Γ, S)[Fn] is connected;

– 1 ∈ F0 ⊂ F1 ⊂ . . ., where 1 is the identity element of Γ;

157



–
⋃∞

n=0 Fn = Γ;

– limn→∞ |Fn |/log2 n = ∞.

Let O be an oracle relative to which the following data are computable:

– the group structure of Γ and a fixed linear ordering < on Γ (we may assume, for instance, that the
ground set of Γ is N);

– the sequence (Fn)
∞
n=0 (meaning that the set {(γ, n) ∈ Γ × N : γ ∈ Fn} and the sequence (|Fn |)

∞
n=0 are

decidable relative to O).

Given a set F ∈ [Γ]<∞ and a function w : F → 2s, we can use the ordering on Γ to identify w with a
sequence of zeroes and ones of length s |F |. This identification enables us to talk about the Kolmogorov
complexity KO(w) of w. For a Borel coloring f : X → 2s, a point x ∈ X , and n ∈ N, let

fn(x) B f Fn (x).

Note that the map X × N→ N : (x, n) 7→ KO( fn(x)) is Borel.
The following lemma connects Kolmogorov complexity and Kolmogorov–Sinai entropy:

Lemma 3.6.8 (High complexity =⇒ high entropy). Let s ∈ N and let f : X → 2s be a Borel coloring of X .
Then

lim sup
m→∞

∫
X

KO( fm(x))
|Fm |

d µ(x) 6 Hµ(α, f ).

Proof. Our argument is inspired by the work of Brudno [Bru82], who established a close relationship between
Kolmogorov complexity and Kolmogorov–Sinai entropy in the case of Z-actions (see also [Mor15] for an
extension of Brudno’s theory to a wider class of amenable groups).

Fix ε ∈ (0; 1). Choose n ∈ N large enough so that for all ` > n,

hµ( f`)
|F` |

6 Hµ(α, f ) + ε.

For most of the proof, n and s will be treated as fixed constants. In particular, the implied constants in
asymptotic notation may depend on n and s.

Using Theorem 3.6.4, choose k, `1, . . . , `k , m0 ∈ N so that n 6 `1 < . . . < `k and for every m > m0, there
exists an ε-quasi-tiling of Fm by F`1 , . . . , F`k . For each m > m0, let Cm,1, . . . , Cm,k be an ε-quasi-tiling of
Fm by F`1 , . . . , F`k , chosen in such a way that the map

m 7→ (Cm,i)
k
i=1

is computable relative to O. (For instance, we can choose the sequence of finite sets Cm,1, . . . , Cm,k to be the
first in some computable ordering.)

We will now devise a binary code for pairs of the form (m,w), where m > m0 and w : Fm → 2s. The
decoding procedure for this code will be computable relative to O, so the length of the code will provide an
upper bound on the Kolmogorov complexity of w (modulo an additive constant).
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Let c0(m) be the sequence of dlog2 me ones followed by a single zero and let c1(m) be any fixed binary code
for the integer m of length exactly dlog2 me. Note that for any c ∈ 2∗, the pair (m, c) is uniquely determined by
c0(m)ac1(m)ac. Also note that

|c0(m)ac1(m)| 6 2 log2 m +O(1) = om→∞(|Fm |).

Consider the set

Λm B Fm \

k⋃
i=1

F`iCm,i .

We can view w |Λm as a binary word of length s |Λm |, which we denote by c2(m,w). Note that the length of
c2(m,w) is determined by m and satisfies

|c2(m,w)| = s |Λm | 6 εs |Fm |,

since Fm is (1 − ε)-covered by the family (F`iCm,i)
k
i=1.

For each 1 6 i 6 k and γ ∈ Cm,i, we can view

wi,γ B w |(F`iγ)

as a binary word of length s |F`i |. For each binary word u of length s |F`i |, let ηi,u(m,w) be the frequency of u

among the words of the form wi,γ, i.e., let

ηi,u(m,w) B |{γ ∈ Cm,i : wi,γ = u}|.

By definition, ∑
u

ηi,u(m,w) = |Cm,i |, (3.6.5)

where the summation is over all binary words of length s |F`i |. Since 0 6 ηi,u(m,w) 6 |Cm,i |, we can encode
ηi,u(m,w) by a binary word c3(m,w, i, u) of length exactly

dlog2(|Cm,i | + 1)e 6 log2 |Cm,i | +O(1) 6 log2 |Fm | +O(1),

so the length of c3(m,w, i, u) is determined by m. Let c3(m,w, i) denote the concatenation of all the words of
the form c3(m,w, i, u) with u ranging over the binary words of length s |F`i |, and let

c3(m,w) B c3(m,w, 1)a . . . ac3(m,w, k).

The length of c3(m,w) is at most O(log2 |Fm |) = om→∞(|Fm |).
Now we consider the word

wi B w |(F`iCm,i).
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Since wi is determined by the family (wi,γ : γ ∈ Cm,i), there are at most

|Cm,i |!∏
u ηi,u(m,w)!

options for wi, where the product is over all binary words of length s |F`i |. Due to Stirling’s formula and
equation (3.6.5), we have

log2

(
|Cm,i |!∏

u ηi,u(m,w)!

)
6 −|Cm,i |

∑
u

ηi,u(m,w)
|Cm,i |

log2

(
ηi,u(m,w)
|Cm,i |

)
.

Thus, provided that m and all the ηi,u(m,w)’s are given, wi can be encoded by a binary word c4(m,w, i) of
length ⌈

log2

(
|Cm,i |!∏

u ηi,u(m,w)!

)⌉
6 −|Cm,i |

∑
u

ηi,u(m,w)
|Cm,i |

log2

(
ηi,u(m,w)
|Cm,i |

)
+O(1).

Let
c4(m,w) B c4(m,w, 1)a . . . ac4(m,w, k).

The length of c4(m,w) is at most

−

k∑
i=1
|Cm,i |

∑
u

ηi,u(m,w)
|Cm,i |

log2

(
ηi,u(m,w)
|Cm,i |

)
+ om→∞(|Fm |).

Our code for (m,w) is the concatenation

code(m,w) B c0(m)ac1(m)ac2(m,w)ac3(m,w)ac4(m,w).

It is clear that code(m,w) uniquely determines m and w and, moreover, the map

code(m,w) 7→ (m,w)

is computable relative to O. Combining the above upper bounds for the lengths of c0(m), c1(m), c2(m,w),
c3(m,w), and c4(m,w), we get

|code(m,w)| 6 εs |Fm | −

k∑
i=1
|Cm,i |

∑
u

ηi,u(m,w)
|Cm,i |

log2

(
ηi,u(m,w)
|Cm,i |

)
+ om→∞(|Fm |).

Since KO(w) 6 |code(m,w)| +O(1), the same asymptotic upper bound holds for KO(w) as well.
Applying this analysis to a point x ∈ X , we obtain

KO( fm(x))
|Fm |

6 εs −
k∑
i=1

|Cm,i |

|Fm |

∑
u

ηi,u(m, fm(x))
|Cm,i |

log2

(
ηi,u(m, fm(x))
|Cm,i |

)
+ om→∞(1). (3.6.6)
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Claim (A). For each m > m0, 1 6 i 6 k, and a binary word u of length s |F`i |, we have∫
X

ηi,u(m, fm(x))
|Cm,i |

d µ(x) = µ( f −1
`i
(u)).

Proof. Recall that, by definition,

ηi,u(m,w) = |{γ ∈ Cm,i : wi,γ = u}| = |{γ ∈ Cm,i : w |(F`iγ) = u}|.

Notice that fm(x)|(F`iγ) = f`i (γ · x), so we have

ηi,u(m, fm(x)) = |{γ ∈ Cm,i : fm(x)|(F`iγ) = u}|

= |{γ ∈ Cm,i : f`i (γ · x) = u}|.

Therefore, ∫
X

ηi,u(m, fm(x))
|Cm,i |

d µ(x) =
1
|Cm,i |

∫
X

|{γ ∈ Cm,i : f`i (γ · x) = u}| d µ(x)

=
1
|Cm,i |

∫
X

|{γ ∈ Cm,i : f`i (x) = u}| d µ(x)

=
1
|Cm,i |

· |Cm,i | · µ( f −1
`i
(u)) = µ( f −1

`i
(u)),

where the second equality holds since µ is α-invariant. a

The function α 7→ −α log2 α is concave for 0 6 α 6 1, so, by Claim (A), for 1 6 i 6 k, we have

−

∫
X

∑
u

ηi,u(m, fm(x))
|Cm,i |

log2

(
ηi,u(m, fm(x))
|Cm,i |

)
d µ(x)

6 −
∑
u

∫
X

ηi,u(m, fm(x))
|Cm,i |

d µ(x) log2

(∫
X

ηi,u(m, fm(x))
|Cm,i |

d µ(x)
)

= −
∑
u

µ( f −1
`i
(u)) log2 µ( f

−1
`i
(u))

= hµ( f`i ).

Combining this with (3.6.6) gives∫
X

KO( fm(x))
|Fm |

d µ(x) 6 εs +
k∑
i=1

|Cm,i |

|Fm |
hµ( f`i ) + om→∞(1).

Recall that, by the choice of n,
hµ( f`)
|F` |

6 Hµ(α, f ) + ε
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for all ` > n. Since n 6 `1 < . . . < `k , we get∫
X

KO( fm(x))
|Fm |

d µ(x) 6 εs +
k∑
i=1

|Cm,i |

|Fm |
· |F`i |(Hµ(α, f ) + ε) + om→∞(1).

Since the sets (F`iCm,i)
k
i=1 are pairwise disjoint, and for each 1 6 i 6 k, the family of sets (F`iγ)γ∈Cm, i is

ε-disjoint, we have

|Fm | >
k∑
i=1
|F`iCm,i | > (1 − ε)

k∑
i=1
|F`i | |Cm,i |,

so ∫
X

KO( fm(x))
|Fm |

d µ(x) 6 εs +
1

1 − ε
(Hµ(α, f ) + ε) + om→∞(1). (3.6.7)

Since (3.6.7) holds for every ε ∈ (0; 1) and for every sufficiently large m, we finally obtain∫
X

KO( fm(x))
|Fm |

d µ(x) 6 Hµ(α, f ) + om→∞(1),

as desired. �

3.6.4 Building the instances

Define

G B


G(a, S) if S is finite;

G`(a, S) if S is infinite.

If S is finite, let Cay(Γ, S) denote the corresponding (unlabeled) Cayley graph; otherwise, assume that
Cay(Γ, S) is S-labeled. Fix ε ∈ (0; 1] such that for every ε-correct uniformly discrete Borel instance B over
G, there is a Borel map f : X → [0; 1] with µ(DefB( f )) < 1. Our goal is to show that Hµ(α) = ∞.

For each pair of nonnegative integers s, t ∈ N with s > t, we will construct a uniformly discrete Borel
instance B(s, t) over G. For convenience, we will view each bad event B ∈ B(s, t) as a set of partial maps in
[X → 2s]<∞ instead of the usual [X → [0; 1]]<∞.

For n ∈ N, let Gn B Cay(Γ, S)[Fn]. By the choice of the Følner sequence (Fn)
∞
n=0, each graph Gn is

connected. Given an isomorphism ϕ : Fn → X between the graphs Gn and G[im(ϕ)], let Bϕ(s, t) denote the
bad event with domain im(ϕ) consisting of all maps w : im(ϕ) → 2s such that

KO(w ◦ ϕ) 6 (s − t)|Fn |.

Let B(s, t) denote the collection of all bad events Bϕ(s, t) defined above. It is clear that B(s, t) is a uniformly
discrete Borel instance of the LLL over G. We will show that there is some t ∈ N such that for all s > t, the
instance B(s, t) is also ε-correct.

Set

d B


|S ∪ S−1 | if S is finite;

2 if S is infinite.
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Lemma 3.6.9. For all γ ∈ Fn and x ∈ X , the number of isomorphic embeddings ϕ : Fn → X of Gn into G

with ϕ(γ) = x does not exceed d |Fn |.

Proof. If S is finite, then ∆(G) 6 |S ∪ S−1 | = d; if S is infinite, then for any given δ ∈ S and any y ∈ X , the
graph G can contain at most 2 edges labeled by δ that are incident to y. Now the statement follows from the
connectedness of Gn. �

Lemma 3.6.10. Let B ∈ B(s, t) and k ∈ N. Then

|{B′ ∈ NB(s,t)(B) : |dom(B′)| = k}| 6 |dom(B)| · kdk .

Proof. If there is no n ∈ N with |Fn | = k, then there is nothing to prove, so suppose that |Fn | = k

(such n is unique since the sequence (Fn)
∞
n=0 is strictly increasing). Consider any B′ ∈ NB(s,t)(B) with

|dom(B′)| = k. Then B′ = Bϕ(s, t) for some embedding ϕ : Fn → X of Gn into G. As B′ ∈ NB(s,t)(B),
we have im(ϕ) ∩ dom(B) , �, i.e., there exist γ ∈ Fn and x ∈ dom(B) such that ϕ(γ) = x. Now we have
|dom(B)| choices for x, k choices for γ, and, by Lemma 3.6.9, at most dk choices for ϕ given γ and x. �

By Proposition 3.6.7, if B ∈ B(s, t) and |dom(B)| C n, then

P[B] < 2−tn+1.

In the light of Lemma 3.6.10, to show that B(s, t) is ε-correct, it suffices to find a sequence (ωn)
∞
n=1 with

each ωn ∈ [0; 1) such that for all n ∈ N,

2−tn+1 6 εnωn

∞∏
k=1
(1 − ωk)

nkdk

. (3.6.8)

Note that inequality (3.6.8) does not mention s; in other words, if it holds for some (ωn)
∞
n=1 and for all n ∈ N,

then B(s, t) is ε-correct for all s > t.
To solve (3.6.8), let δ > 0 be sufficiently small and set ωn B δn. For every n ∈ N, we have

1 − ωn > e−2ωn .

Moreover, if we choose δ < 1/d, then the series

∞∑
k=1

ωk kdk =

∞∑
k=1

k(δd)k

converges; denote its sum by c. Now we have

∞∏
k=1
(1 − ωk)

nkdk

> e−2cn,
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so (3.6.8) holds as long as
2−tn+1 6 εn · δn · e−2cn,

for which it suffices to have
t > 1 − log2(εδe−2c). (3.6.9)

Choose any t ∈ N that satisfies (3.6.9); for all s > t, the instance B(s, t) is ε-correct.
If B(s, t) is ε-correct, then there must exist a Borel map f : X → 2s with µ(DefB( f )) < 1. Since the

action α is ergodic, the set [X \ DefB( f )]Eα is conull (recall that for A ⊆ X , [A]Eα is the Eα-saturation of A,
i.e., the smallest α-invariant subset of X that contains A). We claim that for all x ∈ [X \ DefB( f )]Eα ,

lim inf
m→∞

KO( fm(x))
|Fm |

> s − t.

Indeed, let x ∈ X and let y ∈ X \ DefB( f ) be such that x Eα y. The sequence (Fn)n∈N is increasing and
exhaustive, so there is m0 ∈ N such that y ∈ Fm · x for all m > m0. Since y < DefB( f ), for each m > m0,
the restriction of f to Fm · x satisfies the constraints laid down by B(s, t). By definition, this means that
KO( fm(x)) > (s − t)|Fm |, as claimed.

Using Fatou’s lemma together with Lemma 3.6.8, we obtain

s − t 6
∫
X

lim inf
m→∞

KO( fm(x))
|Fm |

d µ(x)

6 lim inf
m→∞

∫
X

KO( fm(x))
|Fm |

d µ(x) (3.6.10)

6 lim sup
m→∞

∫
X

KO( fm(x))
|Fm |

d µ(x) 6 Hµ(α, f ).

Since for any s > t, we can find f such that (3.6.10) holds, Hµ(α) = ∞, as desired.
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4 | Building large free subshifts using the LLL

4.1 Introduction

In this chapter we apply the Lovász Local Lemma to some problems in topological dynamics. Throughout
this chapter, Γ is a countably infinite group with identity element 1.

Let k ∈ N. Then kΓ is a totally disconnected compact metrizable space equipped with the shift action of Γ.
A shift-invariant closed subset X ⊆ kΓ is called a subshift. A subshift X isminimal if X , � and there is no
subshift Y such that � , Y  X . A subshift X is free if the induced action Γy X is free, i.e., if the stabilizer
of every point x ∈ X is trivial. Glasner and Uspenskij [GU09, Problem 6.2] asked if every countable group
admits a nonempty free subshift and gave a positive answer for groups that are either Abelian or residually
finite [GU09, Theorem 5.1]. Somewhat earlier, Dranishnikov and Schroeder [DS07, Theorem 2] reached the
same conclusion for torsion-free hyperbolic groups. The problem was finally resolved in a tour de force by
Gao, Jackson, and Seward [GJS09; GJS16], who showed that not only do nonempty free subshifts exist for all
groups, but they are rather numerous: For any k > 2, every nonempty shift-invariant open subset U ⊆ kΓ

contains continuumly many pairwise disjoint nonempty free subshifts [GJS16, Theorem 1.4.1].
Seward and Tucker-Drob [ST16] further developed the techniques of [GJS09; GJS16] in order to establish

the following very strong result: If Γy X is a free Borel action of Γ on a standard Borel space X , then there
exists an equivariant Borel map π : X → 2Γ such that π(X) is a free subshift [ST16, Theorem 1.1]. (Here, and
in what follows, a horizontal line indicates topological closure.) This in particular implies that every countable
group admits a free subshift with an invariant probability measure, which answers a question raised by Gao,
Jackson, and Seward [GJS16, Problem 11.2.6]. Indeed, if the action Γy X preserves a probability measure
µ, then the pushforward π∗(µ) is an invariant probability measure on π(X).

For the rest of this chapter, fix an integer k > 2. We study how “large,” in various senses, a free subshift
X ⊆ kΓ can be. Specifically, we investigate the following questions, which are attributed by Gao, Jackson,
and Seward to Juan Souto:

Question 4.1.1 ([GJS16, Problem 11.2.5]). For a given group Γ, what is the largest possible Hausdorff
dimension of a free subshift X ⊆ kΓ?

Question 4.1.2 ([GJS16, Problem 11.2.4]). For groups Γ in which a notion of entropy exists, what is the
largest possible entropy of a free subshift X ⊆ kΓ?

This chapter is based on [Ber18a].
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The notions of Hausdorff dimension and (topological) entropy are reviewed in §4.2. To date, the largest
class of groups for which a well-developed theory of entropy exists is formed by the so-called sofic groups.
Entropy for measure-preserving actions of sofic groups was introduced by Bowen [Bow10] and then extended
to the topological setting by Kerr and Li [KL11]. For the smaller class of amenable groups, entropy was
introduced earlier by Keiffer [Kei75] (with important further developments by Ornstein and Weiss [OW87])
and is somewhat better behaved. Both the Hausdorff dimension and, if Γ is sofic, the entropy of kΓ are equal
to log2 k. We answer Questions 4.1.1 and 4.1.2 by showing that the Hausdorff dimension and, if Γ is sofic, the
entropy of a free subshift can be made arbitrarily close to this upper bound:

Theorem 4.1.3. Let U ⊆ kΓ be a nonempty shift-invariant open set. Then, for any h < log2 k:

(i) there exists a free minimal subshift X ⊆ U of Hausdorff dimension at least h;

(ii) if Γ is amenable, then there exists a free minimal subshift X ⊆ U of entropy at least h;

(iii) if Γ is sofic, then there exists a free subshift X ⊆ U whose entropy with respect to any sofic
approximation is at least h.

The main ingredient in our proof of Theorem 4.1.3 is the Lovász Local Lemma, or the LLL. For the
reader’s convenience, we give a brief review of the LLL in §4.4.2. Although the original proof of [GJS16,
Theorem 1.4.1] due to Gao, Jackson, and Seward is quite technical, Aubrun, Barbieri, and Thomassé [ABT16]
later employed the LLL to find a simple alternative construction of a nonempty free subshift X ⊆ 2Γ for an
arbitrary group Γ. Elek [Ele17] followed an approach based on nonrepetitive graph colorings and inspired
by [Alo+02] to obtain a new proof that there exist free subshifts with invariant probability measures under the
assumptions that Γ is finitely generated and sofic; Elek’s argument also relies heavily on the LLL.

The main result of this chapter is Theorem 4.3.4, of which Theorem 4.1.3 is a simple special case. We
state Theorem 4.3.4 in §4.3 after introducing some necessary definitions. In the remainder of this section we
give a brief informal overview of the statement of Theorem 4.3.4 without being precise about the technical
details.

In this chapter, we work with five notions of size for subshifts: Hausdorff dimension, entropy (with the
cases of amenable and general sofic groups treated somewhat differently), width, pointwise width, and breadth.
The former two are standard and reviewed in §4.2, while the latter three are defined in §4.3 and are crucial for
the statement of Theorem 4.3.4.

The width w(X) of a subset X ⊆ kΓ is defined in a way that is quite similar to the definition of
Hausdorff dimension, with the advantage of not requiring to choose a metric. It is not hard to see that for a
subshift X , w(X) is a lower bound for the Hausdorff dimension and, if Γ is amenable, the entropy of X (see
Proposition 4.3.3(i),(iii)). The pointwise width of a set X is defined via

w
∗(X) B inf

x∈X
min{w(Γ · x), w(x · Γ)}.

If X is a nonempty subshift with w∗(X) > h, then we have w(X) > h, and, moreover, w(Y ) > h for all
nonempty subshiftsY ⊆ X . Furthermore, ifw∗(X) is sufficiently large, namely strictly higher than (1/2) log2 k,
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then X must be free (see Proposition 4.3.3(iv)). In view of these considerations, finding subshifts of large
pointwise width becomes our primary objective.

The last notion of size for a subshift X that we introduce (and the last ingredient needed for the statement
of our main result) is its breadth b(X). The definition of breadth is directly informed by the requirements
of the LLL. In contrast to the other notions, it estimates the size of X in a somewhat roundabout way: by
measuring how “small” one can make a family of open sets whose translates cover the complement of X . The
main advantage of breadth is that it is usually easy to bound from below, since a lower bound on b(X) can be
witnessed by a single familyU of open sets.

Now we can state the main result of this chapter:

Theorem 4.3.4. Let X ⊆ kΓ be a subshift such that b(X) > 0. Then w(X) > b(X); moreover, for any
h < b(X), there exists a nonempty subshift X ′ ⊆ X with the following properties:

(i) the pointwise width of X ′ is at least h;

(ii) if Γ is sofic, then the entropy of X ′ with respect to any sofic approximation is at least h;

(iii) there exist an invariant probability measure µ on X ′ and a factor map

π : ([0; 1]Γ, λΓ) → (X ′, µ).

Theorem 4.1.3 easily follows from Theorem 4.3.4 since b(kΓ) = log2 k; the details are given in §4.3.

4.2 Preliminaries

Basic open sets

The topology on the space kΓ is generated by the basic open sets of the form

Uϕ B {x ∈ kΓ : x ⊃ ϕ}, where ϕ ∈ [Γ→ k]<∞ \ {�}.

Observe that each basic open set is also closed. Note that the space kΓ itself is not a basic open set (this
convention will simplify some of our definitions later). For X ⊆ kΓ and F ∈ [Γ]<∞ \ {�}, let

XF B {ϕ ∈ kF : X ∩Uϕ , �} = {x |F : x ∈ X}.

Hausdorff dimension

To define Hausdorff dimension, we must first fix a metric on kΓ. To that end, let γ0, γ1, . . . be an arbitrary
enumeration of the elements of Γ. For distinct x, y ∈ kΓ, let

dist(x, y) B 2−n, where n B min{i ∈ N : x(γi) , y(γi)}.

Of course, if x = y, then dist(x, y) B 0. Note that this metric is not shift-invariant and depends on the
choice of the enumeration γ0, γ1, . . . (in fact, the topology on kΓ is not induced by any invariant metric). For
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h ∈ [0;+∞), the h-dimensional Hausdorff content Ch(X) of a set X ⊆ kΓ is the infimum of all ε ∈ [0;+∞)
such that there is a cover B of X by open balls with∑

B∈B

diam(B)h = ε.

The Hausdorff dimension of X , denoted dimH (X), is given by

dimH (X) B inf{h ∈ [0;+∞) : Ch(X) = 0}.

The following observation is easy:

Proposition 4.2.1. We have dimH (kΓ) = log2 k and Clog2 k(X) = 0 for any subshift X  kΓ.

Entropy for amenable groups

Recall that a group Γ is called amenable if it admits a Følner sequence, i.e., a sequence of nonempty finite
subsets (Fn)

∞
n=0 such that

lim
n→∞

|γFn 4 Fn |

|Fn |
= 0 for all γ ∈ Γ.

If Γ is amenable, then the (topological) entropy h(X) of a nonempty subshift X ⊆ kΓ is given by

h(X) B lim
n→∞

log2 |XFn |

|Fn |
,

where (Fn)
∞
n=0 is a Følner sequence in Γ. By a fundamental result of Ornstein and Weiss [OW87], the above

limit always exists and is independent of the choice of the Følner sequence (Fn)
∞
n=0. The entropy of a subshift

obeys the following bounds:

Proposition 4.2.2. If Γ is amenable, then h(kΓ) = log2 k and h(X) < log2 k for any subshift X  kΓ.

Entropy for sofic groups

A pseudo-action of Γ on a set V is a map α : Γ × V → V : (γ, v) 7→ γ ·α v. We write α : Γ ỹV to indicate
that α is a pseudo-action of Γ on V . When α is understood, we usually simply write γ · v instead of γ ·α v.

Let α : Γ ỹV be a pseudo-action of Γ on a set V and let F ⊆ Γ. An element v ∈ V is F-proper (with
respect to α) if the following conditions are satisfied:

– identity: 1 · v = v;

– F-equivariance: γ · (δ · v) = (γδ) · v for all γ, δ ∈ F such that γδ ∈ F;

– F-freeness: γ · v = δ · v =⇒ γ = δ for all γ, δ ∈ F.

Let PropF (α) denote the set of all F-proper elements v ∈ V . Note that α is a free action if and only if
PropΓ(α) = V . If V is a finite set, then α is (ε, F)-faithful for ε > 0 and F ⊆ Γ if

|PropF (α)| > (1 − ε)|V |.
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A group Γ is called sofic if it admits a sofic approximation, i.e., a sequence (αn)∞n=0 of pseudo-actions
on nonempty finite sets such that for all ε > 0 and F ∈ [Γ]<∞, all but finitely many of the pseudo-actions αn
are (ε, F)-faithful.

Sofic groups were introduced by Gromov [Gro99] as a common generalization of amenable and residually
finite groups (the term “sofic” was coined somewhat later by Weiss [Wei00b]). In a major breakthrough,
Bowen [Bow10] generalized the notion of entropy from amenable to all sofic groups. Bowen’s work was
further extended by Kerr and Li [KL11], who, in particular, introduced sofic entropy to the topological setting
and proved the variational principle for actions of sofic groups. The presentation below is a slight modification
of [Bow17, Section 7].

Let α : Γ ỹV be a pseudo-action of Γ. For a function f : V → k, define the map π f : V → kΓ via

π f (v)(γ) B f (γ · v) for all v ∈ V and γ ∈ Γ.

Note that if α is an action, then the map π f : V → kΓ is equivariant; in general, we have

(γ · π f (v))(δ) = π f (γ · v)(δ) whenever γ, δ ∈ Γ and v is {γ, δ, δγ}-proper.

Let X ⊆ kΓ be a subshift and suppose that the set V is finite. An (ε, F)-approximate X-coloring of α, where
ε > 0 and F ∈ [Γ]<∞, is a function f : V → k such that

|{v ∈ V : π f (v)|F ∈ XF }| > (1 − ε)|V |.

The set of all (ε, F)-approximate X-colorings of α is denoted by Colε,F (X, α). Let

hε,F (X, α) B
log2 |Colε,F (X, α)|

|V |
.

If Colε,F (X, α) = �, then, by definition, hε,F (X, α) B −∞.
Now assume that Γ is sofic and let Σ = (αn)∞n=0 be a sofic approximation to Γ. The (topological) entropy

h(X, Σ) of a nonempty subshift X ⊆ kΓ with respect to Σ is given by

h(X, Σ) B inf
ε,F

lim sup
n→∞

hε,F (X, αn),

where ε ranges over the positive reals and F—over the finite subsets of Γ. If Γ is amenable, then we have
h(X, Σ) = h(X) for any sofic approximation Σ [Bow12; KL13]. In general, however, the value of h(X, Σ) may
depend on Σ. Nevertheless, we have the following:

Proposition 4.2.3 ([KL17, Propositions 10.28 and 10.29]). If Γ is sofic and Σ is a sofic approximation to Γ,
then h(kΓ, Σ) = log2 k and h(X, Σ) < log2 k for any subshift X  kΓ.

Note that Proposition 4.2.2 is a special case of Proposition 4.2.3.
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4.3 Main definitions and results

Width and pointwise width

For ϕ ∈ [Γ→ k]<∞ \ {�}, let
d(Uϕ) B 2−|ϕ | .

Note that we have 0 < d(U) 6 1/2 for every basic open set U. The value d(U) is preserved by the shift action
and thus can be viewed as a shift-invariant alternative to the diameter diam(U). For a familyU of basic open
sets and a parameter h ∈ [0;+∞), let ρh(U) B

∑
U∈U d(U)h and define

w(U) B inf{h ∈ [0;+∞) : ρh(U) 6 1}.

If the family U is finite and nonempty, then ρh(U), viewed as a function of h, is continuous and strictly
decreasing. Thus, w(U) for suchU is equal to the unique h ∈ [0;+∞) with ρh(U) = 1.

A cover of a set X ⊆ kΓ is a familyU of basic open sets such that X ⊆
⋃
U. The width of X , denoted

w(X), is defined via
w(X) B inf{w(U) : U is a cover of X}.

Notice the close analogy between this definition and that of dimH (X) (see also Proposition 4.3.3(i)). We will
frequently use the fact that, since the space kΓ is compact, to determine w(X) for a closed subset X ⊆ kΓ it is
enough to only consider finite covers of X .

The pointwise width of a set X ⊆ kΓ, denoted w∗(X), is given by

w
∗(X) B inf

x∈X
min{w(Γ · x), w(x · Γ)}.

Technically, we have w∗(�) = +∞ (even though w(�) = 0).

Proposition 4.3.1. The following statements are valid:

(i) If Y ⊆ X ⊆ kΓ, then w(Y ) 6 w(X) and w∗(Y ) > w∗(X).

(ii) If X ⊆ kΓ is a nonempty subshift, then w∗(X) 6 w(X).

Proof. Part (i) is clear, and for part (ii), notice that for every point x ∈ X , we have Γ · x ⊆ X , hence
w∗(X) 6 w(Γ · x) 6 w(X). �

Proposition 4.3.2. We have w(kΓ) = log2 k and w(X) < log2 k for any closed set X  kΓ.

Proof. Let ν denote the uniform probability measure on k and let X ⊆ kΓ be a closed set. Since the product
measure νΓ on kΓ is regular, we have

νΓ(X) = inf{νΓ(U) : U ⊆ kΓ is an open set with U ⊇ X}

= inf{νΓ(
⋃
U) : U is a finite cover of X}.

170



Since every finite family of basic open subsets of kΓ admits a finite refinement consisting of pairwise disjoint
basic open sets, we conclude that

νΓ(X) = inf{
∑

U∈U ν
Γ(U) : U is a finite cover of X}

= inf{
∑

U∈U d(U)log2 k : U is a finite cover of X}

= inf{ρlog2 k(U) : U is a finite cover of X}. (4.3.1)

The desired conclusion now follows since νΓ(kΓ) = 1 and νΓ(X) < 1 if X , kΓ. �

The next proposition confirms the importance of width and pointwise width as notions of size:

Proposition 4.3.3. If X ⊆ kΓ is a subshift, then:

(i) the Hausdorff dimension of X is at least w(X);

(ii) for every set F ∈ [Γ]<∞ \ {�}, we have log2 |XF |/|F | > w(X);

(iii) if Γ is amenable, then the entropy of X is a least w(X);

(iv) if w∗(X) > (1/2) log2 k, then X is free;

(v) if U ⊆ kΓ is a shift-invariant open set and w∗(X) > w(kΓ \U), then X ⊆ U.

Proof. (i) Let Ball(x, r) denote the open ball of radius r > 0 centered at a point x ∈ kΓ. If n ∈ N is such that
2−n−1 < r 6 2−n, then Ball(x, r) is a basic open set with d(Ball(x, r)) = diam(Ball(x, r)) = 2−n−1, and the
desired result follows.

(ii) The family {Uϕ : ϕ ∈ XF } is a cover of X with w({Uϕ : ϕ ∈ XF }) = log2 |XF |/|F |.
(iii) Follows from (ii).
(iv) It is enough to prove that w(x · Γ) 6 (1/2) log2 k for every point x ∈ kΓ with StΓ(x) , {1}. To that

end, suppose that 1 , γ ∈ StΓ(x). For each i < k, let ϕi : {1, γ} → k be the map given by ϕi(1) = ϕi(γ) B i.
Then {Uϕi : i < k} is a cover of x · Γ and w({Uϕi : i < k}) = (1/2) log2 k.

(v) For any x ∈ kΓ \U, we have Γ · x ⊆ kΓ \U, and hence w(Γ · x) 6 w(kΓ \U). �

Breadth

For a basic open set U and a parameter h ∈ (0;+∞), let

σh(U) B log2 d(U) · log2(1 − d(U)h).

Note that both log2 d(U) and log2(1 − d(U)h) are negative, so σh(U) > 0. It is often useful to keep in mind
that, when d(U) is small, we have

σh(U) ≈ log2 e · | log2 d(U)| · d(U)
h . (4.3.2)

If U = Uϕ for ϕ ∈ [Γ→ k]<∞ \ {�}, then (4.3.2) can be rewritten as

σh(U) ≈ log2 e · |ϕ| · 2−h |ϕ | .
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For large |ϕ|, the “main” term in the above expression is 2−h |ϕ | , which is equal to d(U)h. In other words, it is
usually safe to think of σh(U) as “almost” equal to d(U)h, modulo a small perturbation.

For a familyU of basic open sets and h ∈ (0;+∞), let σh(U) B
∑

U∈U σh(U) and define

b(U) B sup{h ∈ (0;+∞) : h + σh(U) < log2 k}. (4.3.3)

The value σh(U) is non-increasing as a function of h (we cannot say that it is strictly decreasing, but only
because it may be infinite). Due to this fact, the expression h + σh(U) appearing in (4.3.3) is not, in general,
a monotone function of h. By definition, if h + σh(U) > log2 k for all h ∈ (0;+∞), then b(U) = 0.

An action-cover of a set W ⊆ kΓ is a family U of basic open sets such that W ⊆
⋃
(Γ · U), i.e., the

translates of the sets inU cover W . The breadth of a set X ⊆ kΓ, denoted b(X), is given by

b(X) B sup{b(U) : U is an action-cover of kΓ \ X}.

In contrast to w(X), to determine b(X) for a subshift X we typically have to allow infinite families U. As
mentioned in the introduction, the notion of breadth is made useful by the fact that a lower bound on b(X) can
be witnessed by a single action-coverU of kΓ \ X . On the other hand, obtaining upper bounds on b(X) can be
more difficult. Indeed, a priori it is not even obvious that b(�) = 0. (However, this statement is true and is
part of our main result.)

The main result

At this point, after all the necessary definitions have been introduced, we restate our main result, for the
reader’s convenience:

Theorem 4.3.4. Let X ⊆ kΓ be a subshift such that b(X) > 0. Then w(X) > b(X); moreover, for any
h < b(X), there exists a nonempty subshift X ′ ⊆ X with the following properties:

(i) the pointwise width of X ′ is at least h;

(ii) if Γ is sofic, then the entropy of X ′ with respect to any sofic approximation is at least h;

(iii) there exist an invariant probability measure µ on X ′ and a factor map

π : ([0; 1]Γ, λΓ) → (X ′, µ).

With Theorem 4.3.4 in hand, it is easy to derive Theorem 4.1.3:

Proof. Fix a nonempty shift-invariant open set U ⊆ kΓ and let h < log2 k. Without loss of generality, we
may assume that

h > max{(1/2) log2 k, w(kΓ \U)}. (4.3.4)

Since, trivially, b(kΓ) = log2 k, Theorem 4.3.4 applied to kΓ yields a nonempty subshift X ⊆ kΓ such that
w∗(X) > h and, if Γ is sofic, the entropy of X with respect to any sofic approximation is at least h. From
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Proposition 4.3.3 and (4.3.4), it follows that X is free and X ⊆ U. Let Y ⊆ X be an arbitrary minimal subshift.
Since we also have w∗(Y ) > h, Proposition 4.3.3 implies that the Hausdorff dimension and, if Γ is amenable,
the entropy of Y are at least h. �

4.4 Proof of Theorem 4.3.4

For the purposes of the proof, we split Theorem 4.3.4 into two parts.

Lemma 4.4.1. Let X ⊆ kΓ be a subshift such that b(X) > 0. Then, for any h < b(X), there exists a subshift
X ′ ⊆ X such that b(X ′) > h and w∗(X ′) > h.

Note that Lemma 4.4.1 does not yet guarantee that X ′ , � (as w∗(�) = +∞). This is taken care of in
Lemma 4.4.2:

Lemma 4.4.2. Let X ⊆ kΓ be a subshift such that b(X) > 0. Then X , �; moreover,

(i) if Γ is sofic, then the entropy of X with respect to any sofic approximation is at least b(X);

(ii) there exist an invariant probability measure µ on X and a factor map

π : ([0; 1]Γ, λΓ) → (X, µ).

It is clear that Lemmas 4.4.1 and 4.4.2 combined yield Theorem 4.3.4. We prove Lemma 4.4.1 in §4.4.1
by constructing the required subshift X ′ explicitly. The proof of Lemma 4.4.2 crucially relies on the LLL. We
briefly review the required version of the LLL in §4.4.2 and then prove Lemma 4.4.2 in §4.4.3.

4.4.1 Proof of Lemma 4.4.1

Claim 4.4.3. Let F be a finite family of basic open sets with w(F ) < h. Then, for any ε > 0, there exist
familiesV andW of basic open sets such that

σh(V) < ε and σh(W) < ε,

and for all x ∈ kΓ \
⋃
V and y ∈ kΓ \

⋃
W, we have

Γ · x *
⋃
F and y · Γ *

⋃
F .

Proof. Below we only describe the construction of the familyV, as the familyW is built in virtually the
same way, the only difference being the use of the right instead of the left shift action.

Let Φ ⊂ [Γ→ k]<∞ be the (finite) set such that F = {Uϕ : ϕ ∈ Φ} and let ε > 0. Let N ∈ N be a large
integer (to be chosen later). Since Γ is infinite, we can find N elements γ1, . . . , γN ∈ Γ such that for all ϕ,
ψ ∈ Φ and 1 6 i < j 6 N , we have dom(ϕ)γi ∩ dom(ψ)γj = �. This implies that for all U1, . . . , UN ∈ F ,
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the set
⋂N

i=1(γ
−1
i ·Ui) is basic open with

d

(
N⋂
i=1
(γ−1

i ·Ui)

)
=

N∏
i=1

d(Ui). (4.4.1)

We claim that the familyV B {
⋂N

i=1(γ
−1
i ·Ui) : U1, . . . ,UN ∈ F } is as desired.

Suppose that some x ∈ kΓ \
⋃
V satisfies Γ · x ⊆

⋃
F . Then we can choose Ui ∈ F for each 1 6 i 6 N

so that γi · x ∈ Ui . But this yields x ∈
⋂N

i=1(γ
−1
i ·Ui) ∈ V, which is a contradiction. Hence, it only remains

to show that, if N is large enough, then σh(V) < ε. To that end, consider an arbitrary sequence U1, . . . ,
UN ∈ F . By (4.4.1), we have

σh

(
N⋂
i=1
(γ−1

i ·Ui)

)
= log2

N∏
i=1

d(Ui) · log2

(
1 −

N∏
i=1

d(Ui)
h

)
.

Let c1 B max{| log2 d(U)| : U ∈ F } and c2 B 2h | log2(1 − 2−h)|. (Note that the values c1 and c2 do not
depend on N .) We have �����log2

N∏
i=1

d(Ui)

����� =
����� N∑
i=1

log2 d(Ui)

����� 6 c1N,

and, since | log2(1 − a)| 6 c2 · a for all a ∈ [0; 2−h], we also have

log2

(
1 −

N∏
i=1

d(Ui)
h

)
6 c2 ·

N∏
i=1

d(Ui)
h .

Therefore,

σh

(
N⋂
i=1
(γ−1

i ·Ui)

)
6 c1c2 · N ·

N∏
i=1

d(Ui)
h .

Since w(F ) < h, we have ρh(F ) < 1, and hence

σh(V) 6 c1c2 · N ·
∑

U1,...,UN ∈F

N∏
i=1

d(Ui)
h = c1c2 · N · ρh(F )N −−−−−→

N→∞
0. �

Let X ⊆ kΓ be a subshift such that b(X) > 0 and let h < b(X). We may assume that h > 0 and that there
exists an action-coverU of kΓ \ X such that h +σh(U) < log2 k. Let F0, F1, . . . be an arbitrary enumeration
of all the finite families F of basic open sets satisfying w(F ) < h. For each n ∈ N, letVn andWn be the
families given by Claim 4.4.3 applied to the family Fn with

εn B
log2 k − h − σh(U)

2n+2 .

SetU ′ B U ∪
⋃∞

n=0(Vn ∪Wn). Then the subshift X ′ B kΓ \ (Γ · U ′) is as desired. Indeed, sinceU is an

174



action-cover of kΓ \ X , we have X ′ ⊆ kΓ \ (Γ · U) ⊆ X . Since

h + σh(U) +

∞∑
n=0
(σh(Vn) + σh(Wn))

< h + σh(U) +

∞∑
n=0

log2 k − h − σh(U)

2n+1 = log2 k,

we conclude that b(X ′) > h. Finally, if x ∈ kΓ satisfies w(Γ · x) < h or w(x · Γ) < h, then there exists an
index n ∈ N such that Γ · x ⊆

⋃
Fn or x · Γ ⊆

⋃
Fn. By the choice ofVn andWn, such x cannot belong to

X ′, and hence w∗(X ′) > h. The proof of Lemma 4.4.1 is complete.

4.4.2 The Lovász Local Lemma

For the full statement of the LLL, see Theorem 1.1.1 or [AS00, Lemma 5.1.1]. We will apply the LLL in the
framework similar to that described in Chapter 3, which we briefly review below for the reader’s convenience.

Let X be a set and let Φ ⊆ [X → k]<∞. Let Forb(Φ) denote the set of all maps f : X → k such that
f + ϕ for all ϕ ∈ Φ. For each ϕ ∈ Φ, let

N(ϕ,Φ) B {ψ ∈ Φ : dom(ϕ) ∩ dom(ψ) , �}.

We say that Φ is correct (for the LLL) if there is a function ω : Φ→ [0; 1) such that

k−|ϕ | 6 ω(ϕ)
∏

ψ∈N (ϕ,Φ)

(1 − ω(ψ)) for all ϕ ∈ Φ.

In this case ω is called a witness to the correctness of Φ.

Lemma 4.4.4 (Lovász Local Lemma). Let X be a set and let Φ ⊆ [X → k]<∞. If the set Φ is correct, then
Forb(Φ) , �. Furthermore, if X is finite and ω : Φ→ [0; 1) is a witness to the correctness of Φ, then

|Forb(Φ)| > k |X |
∏
ϕ∈Φ

(1 − ω(ϕ)).

For finite X , deducing Lemma 4.4.4 from Theorem 1.1.1 or [AS00, Lemma 5.1.1] is routine (see, e.g.,
[MR02, p. 41]). The infinite case is derived from the finite one via a straightforward compactness argument.
(Cf. Theorems 3.1.7 and 3.1.10.)

In order to establish (ii), we will use one of the measurable versions of the LLL proved in Chapter 3. Let
Φ ⊆ [Γ→ k]<∞. Then we have Forb(Φ) = kΓ \

⋃
ϕ∈Φ Uϕ . In particular, if the set Φ is shift-invariant, then

Forb(Φ) is a subshift. Let α : Γy (X, µ) be a measure-preserving action of Γ on a probability space (X, µ).
Given a shift-invariant set Φ ⊆ [Γ → k]<∞, a measurable solution to Φ over α is a measurable function
f : X → k such that for µ-almost all x ∈ X , the map

π f (x) : Γ→ k : γ 7→ f (γ · x)
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belongs to Forb(Φ).

Theorem 4.4.5 (see Corollary 3.5.7). Let Φ ⊆ [Γ → k]<∞ be a correct shift-invariant set. Then the shift
action Γy ([0; 1]Γ, λΓ) admits a measurable solution to Φ.

Corollary 4.4.6. LetΦ ⊆ [Γ→ k]<∞ be a correct shift-invariant set. Then there exist an invariant probability
measure µ on Forb(Φ) and a factor map

π : ([0; 1]Γ, λΓ) → (Forb(Φ), µ).

Proof. Let f : [0; 1]Γ → k be a measurable solution to Φ given by Theorem 4.4.5. We may then take π B π f

and µ B (π f )∗(λΓ). �

4.4.3 Proof of Lemma 4.4.2

Claim 4.4.7. LetU be a family of basic open sets and let h ∈ (0;+∞) be such that

h + σh(U) < log2 k . (4.4.2)

Let Φ ⊆ [Γ → k]<∞ be the set such that U = {Uϕ : ϕ ∈ Φ}. For each ϕ ∈ Γ · Φ, define ω(ϕ) B 2−h |ϕ |.
Then ω is a witness to the correctness of Γ · Φ.

Proof. Since ω is invariant under the shift action Γy Γ · Φ, we only have to verify that

k−|ϕ | 6 ω(ϕ)
∏

ψ∈N (ϕ,Γ ·Φ)

(1 − ω(ψ)) for all ϕ ∈ Φ.

Let ϕ ∈ Φ. By definition, N(ϕ, Γ ·Φ) is the set of all products of the form δ · ψ, where ψ ∈ Φ and δ ∈ Γ, with
the property that dom(ϕ) ∩ dom(δ · ψ) , �. This is equivalent to δ ∈ dom(ϕ)−1dom(ψ), so, for each choice
of ψ ∈ Φ, there are at most |dom(ϕ)−1dom(ψ)| 6 |ϕ| |ψ | possible choices for δ ∈ Γ. Using this observation
together with the shift-invariance of ω, we obtain

ω(ϕ)
∏

ψ∈N (ϕ,Γ ·Φ)

(1 − ω(ψ)) > ω(ϕ)
∏
ψ∈Φ

(1 − ω(ψ)) |ϕ | |ψ | .

It remains to show that
k−|ϕ | 6 ω(ϕ)

∏
ψ∈Φ

(1 − ω(ψ)) |ϕ | |ψ | . (4.4.3)

Plugging the definition of ω into (4.4.3), we get

k−|ϕ | 6 2−h |ϕ |
∏
ψ∈Φ

(1 − 2−h |ψ |) |ϕ | |ψ |,

which is equivalent to
k−1 6 2−h

∏
ψ∈Φ

(1 − 2−h |ψ |) |ψ | .
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Taking the logarithm on both sides turns the last inequality into

log2 k > h −
∑
ψ∈Φ

|ψ | · log2(1 − 2−h |ψ |).

But |ψ | = − log2(d(Uψ)) and 2−h |ψ | = d(Uψ)
h, so

−
∑
ψ∈Φ

|ψ | · log2(1 − 2−h |ψ |) =
∑
U∈U

log2(d(U)) · log2(1 − d(U)h) = σh(U),

and we are done by (4.4.2). �

Let X ⊆ kΓ be a subshift with b(X) > 0 and consider any action-cover U of kΓ \ X with b(U) > 0.
Let h ∈ (0;+∞) be such that h + σh(U) < log2 k. Note that U and h can be chosen so that h is as
close to b(X) as desired. Let Φ ⊆ [Γ → k]<∞ be the set such that U = {Uϕ : ϕ ∈ Φ}. According to
Claim 4.4.7, the set Γ ·Φ is correct for the LLL. Lemma 4.4.4 then implies that Forb(Γ ·Φ) , �; furthermore,
according to Corollary 4.4.6, there exist an invariant probability measure µ on Forb(Γ · Φ) and a factor map
π : ([0; 1]Γ, λΓ) → (Forb(Γ · Φ), µ). Since Forb(Γ · Φ) = kΓ \

⋃
(Γ · U) ⊆ X , we conclude that X , � and

part (ii) of Lemma 4.4.2 holds.
It remains to verify that if Γ is sofic, then the entropy of X with respect to any sofic approximation is at

least b(X). In fact, we will show that the entropy of Forb(Γ ·Φ) is at least h, which will yield the desired result
as Forb(Γ · Φ) ⊆ X and h can be made arbitrarily close to b(X). The idea is simple: Given a pseudo-action
α : Γ ỹV on a finite set V , we “copy” Γ · Φ over to V and build a set Φα ⊆ [V → k]<∞ such that every map
in Forb(Φα) is an approximate (Γ · Φ)-coloring of α; then we apply the LLL to obtain a lower bound on
|Forb(Φα)|. In the remainder of the proof, we work out the technical details of this approach.

Let ε > 0 and let F ∈ [Γ]<∞ \ {�}. Recall that for a subshift Y ⊆ kΓ, the set YF is defined by

YF B {ϕ ∈ kF : Y ∩Uϕ , �} = {y |F : y ∈ Y }.

By compactness, we can find a finite set S ∈ [Γ]<∞ such that

Forb(Γ · Φ)F = Forb(S · (Φ ∩ [S → k]<∞))F . (4.4.4)

We may assume that the set S is symmetric and contains 1. For each n ∈ N, let

Sn B {γ1 · · · γn : γ1, . . . , γn ∈ S}.

Let α : Γ ỹV be an (ε, S4)-faithful pseudo-action of Γ on a finite set V . We will show that

hε,F (Forb(Γ · Φ), α) > h.
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For each ϕ ∈ [Γ→ k]<∞ and v ∈ Propdom(ϕ)(α), define the map ϕv ∈ [V → k]<∞ by

dom(ϕv) B dom(ϕ) · v and ϕv(γ · v) B ϕ(γ) for all γ ∈ dom(ϕ),

and let
Φα B {ϕv : ϕ ∈ Φ ∩ [S → k]<∞, v ∈ PropS3(α)}.

Claim 4.4.8. We have Forb(Φα) ⊆ Colε,F (Forb(Γ · Φ), α).

Proof. Let f ∈ Forb(Φα). Note that for any v ∈ PropS4(α), we have S · v ⊆ PropS3(α), and therefore
π f (v) ∈ Forb(S · (Φ ∩ [S → k]<∞)). From (4.4.4) we conclude

|{v ∈ V : π f (v)|F ∈ Forb(Γ · Φ)F }| > |PropS4(α)| > (1 − ε)|V |. �

Recall that, according to Claim 4.4.7, the map

ω : Γ · Φ→ [0; 1) : ϕ 7→ 2−h |ϕ |

is a witness to the correctness of Γ · Φ. Define

ωα : Φα → [0; 1) : ψ 7→ 2−h |ψ | .

Claim 4.4.9. The map ωα is a witness to the correctness of Φα.

Proof. Consider any v ∈ PropS3(α) and ϕ ∈ Φ ∩ [S → k]<∞. We will define an injective map

ι : N(ϕv,Φα) → N(ϕ, Γ · Φ)

such that for all ψ ∈ N(ϕv,Φα), we have |ψ | = |ι(ψ)|. Since then we also have ωα(ψ) = ω(ι(ψ)), the desired
conclusion follows by Claim 4.4.7.

Suppose that ψu ∈ N(ϕv,Φα) for some u ∈ PropS3(α) and ψ ∈ Φ ∩ [S → k]<∞. Choose arbitrary
γ ∈ dom(ϕ) and δ ∈ dom(ψ) such that γ · v = δ · u and define

ι(ψu) B (γ
−1δ) · ψ.

Clearly, ι(ψu) ∈ N(ϕ, Γ · Φ) since γ ∈ dom(ι(ψu)). Also, we have |ψu | = |ψ | = |ι(ψu)|. Finally, the map ι is
injective, since it is invertible: ψu = (ι(ψu))v. Indeed, as v and u are both S3-proper, for every ζ ∈ dom(ψ),
we have

(ζδ−1γ) · v = ζ · (δ−1 · (γ · v)) = ζ · (δ−1 · (δ · u)) = ζ · u,

so ψu = (ι(ψu))v, as claimed. �
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From Claim 4.4.9 and Lemma 4.4.4, we obtain

|Forb(Φα)| > k |V |
∏
ψ∈Φα

(1 − ωα(ψ)) > k |V |
∏

ϕ∈Φ∩[S→k]<∞

∏
v∈Prop

S3 (α)

(1 − ωα(ϕv))

> k |V |
∏
ϕ∈Φ

(1 − 2−h |ϕ |) |V | .

Therefore, by Claim 4.4.8,

hε,F (Forb(Γ · Φ), α) =
log2 |Colε,F (Forb(Γ · Φ), α)|

|V |

>
log2 |Forb(Φα)|

|V |
> log2 k +

∑
ϕ∈Φ

log2(1 − 2−h |ϕ |).

But 2−h |ϕ | = d(Uϕ)
h and − log2(d(Uϕ)) = |ϕ| > 1, so

log2 k +
∑
ϕ∈Φ

log2(1 − 2−h |ϕ |) = log2 k +
∑
U∈U

log2(1 − d(U)h)

> log2 k −
∑
U∈U

log2(d(U)) · log2(1 − d(U)h)

= log2 k − σh(U) > h,

as desired.
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5 | Baire measurable colorings of group actions

5.1 Introduction

In Chapter 3 we encountered a family of results in descriptive combinatorics that follow by adapting
techniques from finite combinatorics. Such examples are numerous: in fact, most upper bounds in descriptive
combinatorics are, in one way or another, based on a known theorem or a method that works in the finite
setting. For example, in their seminal paper [KST99], Kechris, Solecki, and Todorcevic established [KST99,
Proposition 4.6] that a Borel graph G with finite maximum degree d admits a Borel proper coloring using
at most d + 1 colors. For a finite graph G, such a coloring can be found “greedily”: One simply considers
the vertices of G one by one and assigns to each vertex the first color not yet used on any of its neighbors;
since the total number of colors exceeds the maximum number of neighbors a vertex can have, there is always
at least one color available. In their proof of [KST99, Proposition 4.6], Kechris, Solecki, and Todorcevic
devised a Borel analog of this “greedy” algorithm.

Some techniques in finite combinatorics are more amenable to descriptive generalizations (more
constructive, one could say) than others. For instance, of the ways of obtaining matchings in graphs, the
arguments based on augmenting paths appear to be especially well-suited for the purposes of descriptive
combinatorics (see, e.g., [EL10; LN11]). In Chapter 3 we studied measurable versions of the Lovász Local
Lemma, and our arguments relied crucially on the algorithmic approach to the Local Lemma that was
developed by Moser and Tardos in the finite setting [MT10].

The above examples suggest that some precise correspondences between results in finite and descriptive
combinatorics might still be present; the existence of a well-behaved coloring of a certain kind could, perhaps,
be equivalent to a purely combinatorial statement such as the existence of a “greedy”-like algorithm to find
it. One of the main results of this chapter is Theorem 5.2.10, which confirms this suspicion for a particular
class of coloring problems and a specific notion of well-behavedness, namely Baire measurability (see
Definition 5.2.2).

An ample supply of examples in descriptive combinatorics is provided by actions of countable groups,
and that is the convenient framework in which we perform our investigation. This chapter therefore can be
considered a contribution to generic dynamics; see [Wei00a; SW15] for an introduction to the subject.

This chapter is based on [Ber17a].
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Basics of Baire category

Recall that a separable topological space is Polish if its topology is generated by a complete metric. Note that
a compact space is Polish if and only if it is metrizable. Most notions related to Baire category make sense for
a wider class of topological spaces (the so-called Baire spaces); however, to simplify the matters, we will
only talk about Polish spaces here. A subset of a Polish space is meager if it can be covered by countably
many nowhere dense sets; nonmeager if it is not meager; and comeager if its complement is meager. We say
that two sets A and B are equal modulo a meager set, or ∗-equal, in symbols A =∗ B, if their symmetric
difference A4 B is meager. A set is Baire measurable if it is ∗-equal to an open set.1 The meager sets form a
σ-ideal (i.e., meagerness is a notion of smallness), and the Baire measurable sets form a σ-algebra, which
contains all Borel sets (and much more). The cornerstone result of the Baire category theory is the Baire
category theorem, which asserts that a nonempty open subset of a Polish space is nonmeager; equivalently,
the intersection of countably many dense open subsets of a Polish space is dense. For a Baire measurable
set A and a nonempty open set U, we say that U forces A, or A is comeager in U, in symbols U  A, if the
difference U \ A is meager. The following way of phrasing the Baire category theorem is rather useful:

Proposition 5.1.1 (Baire alternative [Tse16, Proposition 9.8]). A Baire measurable subset of a Polish space
is either meager, or else, comeager in some nonempty open set.

A function f : X → Y from a Polish space X to a standard Borel space Y is Baire measurable if for all Borel
B ⊆ Y , the preimage f −1(B) is Baire measurable (as a subset of X). For more background on Baire category,
see [Kec95, Section 8] and [Tse16, Sections 6 and 9].

5.2 Main definitions and statements of results

5.2.1 Groups, group actions, and their colorings

Throughout this chapter, Γ denotes a countably infinite discrete group with identity element 1. We fix an
arbitrary proper2 right-invariant metric dist on Γ. Note that such a metric always exists. Indeed, if Γ is finitely
generated, then dist could be the word metric with respect to any finite generating set; in general, one can take

dist(γ, δ) B min{i1 + . . . + ik : ε±1
i1
· · · ε±1

ik
γ = δ},

where {ε1, ε2, . . .} = Γ is an enumeration of the elements of Γ in some order. Any two proper right-
invariant metrics on Γ are coarsely equivalent, so the specific choice of the metric will be irrelevant for our
purposes. We use Ball(γ, r) to denote the (closed) ball of radius r ∈ [0;+∞) around γ ∈ Γ. For S ⊆ Γ, let
Ball(S, r) B

⋃
γ∈S Ball(γ, r). For S, T ⊆ Γ, define

dist(S,T) B inf{dist(γ, δ) : γ ∈ S, δ ∈ T}.

1Sometimes meager sets are referred to as sets of first category; nonmeager—as of second category; comeager—as residual;
and Baire measurable—as having the property of Baire.

2Recall that a metric space is proper if every closed and bounded subset of it is compact. For discrete spaces, this is equivalent to
saying that every ball of finite radius is a finite set.
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Note that if α : Γy X is a continuous action of Γ on a Polish space X and A ⊆ X is comeager, then there
is a further comeager subset A′ ⊆ A that is α-invariant, namely A′ B

⋂
γ∈Γ(γ · A).

To discourse about colorings we need to fix a set of “colors”; for concreteness, we will use the discrete
space N in that role (although sometimes it might be more convenient to use a different countable discrete
space instead; for instance, we use N × N in the proof of Lemma 5.5.2). By a coloring of a set S we simply
mean a map ω : S → N. A combinatorial coloring problem over Γ is meant to specify which colorings of Γ
are considered “nice” or “acceptable.” We identify such coloring problems with subshifts:

Definition 5.2.1. A subshift is a subset of NΓ that is closed (in the product topology) and invariant under the
shift action. The set of all subshifts is denoted by Sh0(Γ,N), and the set of all nonempty subshifts is denoted
by Sh(Γ,N).

Remark. Note that the notion of a subshift given by Definition 5.2.1 is different from the one used in
Chapter 4. In particular, for the purposes of this chapter, a subshift need not be compact.

Let α : Γy X be an action of Γ on a set X . Each coloring of X then gives rise to a family of colorings of
Γ parameterized by the elements of X . Specifically, given f : X → N and x ∈ X , we define π f (x) : Γ→ N by

π f (x)(γ) B f (γ · x).

It is clear that the map π f : X → NΓ is equivariant. Conversely, for each equivariant function π : X → NΓ,
there is a unique coloring f : X → N such that π = π f , namely the one given by f (x) B π(x)(1) for all x ∈ X .
The map π f is called the symbolic representation, or the coding map, for the dynamical system (X, Γ, α, f ).

The following definition identifies our main objects of study:

Definition 5.2.2. Let α : Γ y X be a continuous action of Γ on a Polish space X . Given a subshift
Ω ∈ Sh0(Γ,N), a Baire measurable Ω-coloring of α (or of X , if α is clear from the context) is a Baire
measurable function f : X → N such that the preimage ofΩ under π f is comeager. The set of allΩ ∈ Sh0(Γ,N)

such that α admits a Baire measurable Ω-coloring is denoted by ShBM(α,N).

Remark. Clearly, ShBM(α,N) ⊆ Sh(Γ,N), unless X = �.

Remark. In view of the bijective correspondence f ←→ π f between colorings and equivariant functions,
Definition 5.2.2 can be equivalently restated in purely dynamical terms as follows:

A continuous action α : Γy X admits a Baire measurable Ω-coloring if and only if there exists a Baire
measurable map π : X → Ω which is equivariant on a comeager set.

5.2.2 Example: proper graph colorings

Even though our framework concerns groups and group actions rather than graphs, there is a standard way of
associating a graph to a (finitely generated) group and to each of its free actions (and we have already used
it in Chapter 3). Namely, assume that Γ is generated by a finite symmetric subset S with 1 < S. For a free
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continuous action α : Γy X on a Polish space X , let G(α, S) denote the graph induced by α, i.e., the graph
with vertex set X and edge set

{(x, δ · x) : x ∈ X and δ ∈ S}.

Since α is free, every connected component ofG(α, S) is isomorphic to the Cayley graphCay(Γ, S); specifically,
for x ∈ X , the map γ 7→ γ · x is an isomorphism from Cay(Γ, S) onto the connected component of G(α, S)

containing x (which coincides with the α-orbit of x).
For k ∈ N, let PrCol(k, S) denote the set of all proper k-colorings of Cay(Γ, S), i.e., all functions

ω : Γ → k such that ω(γ) , ω(δγ) whenever γ ∈ Γ and δ ∈ S. It is clear that PrCol(k, S) is a subshift.
The smallest k such that PrCol(k, S) , � is called the chromatic number of Cay(Γ, S) and is denoted by
χ(Cay(Γ, S)), or simply χ(Γ, S).

Since every vertex in Cay(Γ, S) has exactly |S | neighbors, it is immediate that

χ(Γ, S) 6 |S | + 1.

Furthermore, by Brooks’s theorem [Die00, Theorem 5.2.4], we have

χ(Γ, S) 6 |S | for |S | > 2.

For a free continuous action α : Γ y X on a Polish space X , the smallest k such that PrCol(k, S) ∈
ShBM(α,N) is called the Baire measurable chromatic number of G(α, S) and is denoted by χBM(G(α, S)),
or simply χBM(α, S). Clearly,

χBM(α, S) > χ(Γ, S) for X , �.

A somewhat surprising result of Conley and Miller [CM16, Theorem B] implies that χBM(α, S) is also upper
bounded by a function of χ(Γ, S); more precisely,

χBM(α, S) 6 2χ(Γ, S) − 1. (5.2.1)

Another important result concerning Baire measurable chromatic numbers is a (Baire) measurable version of
Brooks’s theorem due to Conley, Marks, and Tucker-Drob [CMT16, Theorem 1.2(2)], which implies that,
similarly to the situation with ordinary chromatic numbers,

χBM(α, S) 6 |S | for |S | > 2.

5.2.3 A completeness result

The aim of this chapter is to make progress towards the understanding of the structure of the sets ShBM(α,N).
The first natural question to ask is, how complex, in descriptive set-theoretic terms, is ShBM(α,N), as a subset
of Sh0(Γ,N)?

First, we have to make Sh0(Γ,N) a Polish or, at least, a standard Borel space. It is straightforward to check
that Sh0(Γ,N) is a Borel subset of the Effros standard Borel space F (NΓ) and as such is itself standard Borel
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(for more details on the Effros space see [Kec95, §12.C] and [Tse16, §13.D]). Furthermore, in §5.3 we put a
natural Polish topology on Sh0(Γ,N) (which results in the same Borel σ-algebra).

Let α : Γ y X be a free continuous action of Γ on a nonempty Polish space X . We say that α is
generically smooth if there is a Baire measurable map f : X → R such that for all x, y ∈ X ,

f (x) = f (y) ⇐⇒ y = γ · x for some γ ∈ Γ.

For smooth actions, descriptive and finite combinatorics essentially coincide; in particular, it is easy to show
that if α is generically smooth, then ShBM(α,N) = Sh(Γ,N) (see Lemma 5.4.7). In other words, from the
point of view of descriptive combinatorics, smooth actions are trivial and it is only interesting to consider
non-smooth ones.

We show that in the non-smooth case, ShBM(α,N) is a complete analytic subset of Sh0(Γ,N); in particular,
it is not Borel. Informally, this means that there is no hope for an “explicit” description of the subshifts Ω for
which a given non-smooth action α admits a Baire measurable Ω-coloring.

Theorem 5.2.3. Let α be a free continuous action of Γ on a nonempty Polish space. Then

– either α is generically smooth, in which case ShBM(α,N) = Sh(Γ,N);

– or else, the set ShBM(α,N) is complete analytic.

We prove Theorem 5.2.3 in §5.4. En route to proving Theorem 5.2.3, we show that the set of all Baire
measurable maps between two Polish spaces, taken modulo the equivalence relation of equality on a comeager
set, can be naturally turned into a standard Borel space (see §5.4.1); this construction appears to be new and
of independent interest.

5.2.4 A combinatorial characterization of ShBM(σ,N)

The following result was first established by Keane for the 2- and the 3-shift and subsequently generalized by
Weiss [Wei00a]:

Theorem 5.2.4 (Keane–Weiss [Wei00a, Theorem 2]). Let X , Y be Polish spaces of cardinality at least 2.
Then the shift actions σX : Γy XΓ and σY : Γy YΓ are generically isomorphic; i.e., there exist comeager
shift-invariant subsets X ′ ⊆ XΓ, Y ′ ⊆ YΓ with an equivariant homeomorphism π : X ′→ Y ′ between them.

Remark. Theorem 2 in [Wei00a] is stated for zero-dimensional spaces only. The result for general Polish
spaces follows since every Polish space contains a comeager zero-dimensional subspace.

Theorem 5.2.4 allows us to refer, when meager sets may be ignored, to the shift action σ, meaning any
shift action σX : Γy XΓ for a Polish space X of cardinality at least 2. Note that this is in striking contrast to
the situation in measurable dynamics.

We associate with each subshift a certain countable object, which we call a Γ-ideal.

Definition 5.2.5. A subset I ⊆ [Γ → N]<∞ is called a Γ-ideal if it is invariant under the action of Γ on
[Γ→ N]<∞ and closed under restrictions (i.e., if ϕ ⊆ ϕ′ ∈ I, then ϕ ∈ I).
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Definition 5.2.6. For a subshift Ω ∈ Sh0(Γ,N), a map ϕ ∈ [Γ→ N]<∞ is called a finite Ω-coloring if there
exists a coloring ω ∈ Ω extending ϕ. The set of all finite Ω-colorings is denoted by Fin(Ω).

Clearly, for any Ω ∈ Sh0(Γ,N), the set Fin(Ω) is a Γ-ideal. However, not every Γ-ideal arises in this way.
We call the Γ-ideals of the form Fin(Ω) extendable and characterize them combinatorially in §5.3. There we
also assemble a “dictionary” of some correspondences between subshifts and extendable Γ-ideals. They are
useful, for example, in defining the topology on Sh0(Γ,N).

The second main result of this article is a purely combinatorial description of the set ShBM(σ,N). Roughly
speaking, we show that determining whether there exists a Baire measurable Ω-coloring of σ is equivalent to
settling a question of the following form:

“Is it possible to decide whether a given partial coloring ϕ ∈ [Γ→ N]<∞ belongs
to Fin(Ω) only using ‘local’ information?”

(∗)

This question is rather natural, and some of its versions have already been studied in finite combinatorics with
no connection to descriptive set theory. One particular interpretation of (∗), which is of special interest in
graph theory, is the problem of jointly extending given pre-colorings of substructures that are sufficiently
far apart from each other. There is an extensive literature on this subject; see [Alb96; AKW05; Dvo+17;
PT16] for a small sample. We formalize this idea in Definition 5.2.7 as the join property of subshifts.
Definition 5.2.8 isolates the class of local subshifts; locality is stronger than the join property (see Remark
after Definition 5.2.8).

Let I ⊆ [Γ → N]<∞ be a Γ-ideal. A function R : I → [0;+∞) is invariant if R(γ · ϕ) = R(ϕ) for all
ϕ ∈ I and γ ∈ Γ. We say that ϕ, ψ ∈ I are R-separated if

dist(dom(ϕ), dom(ψ)) > R(ϕ) + R(ψ).

Definition 5.2.7. Let I ⊆ [Γ → N]<∞ be a Γ-ideal. We say that I has the join property if there is an
invariant function R : I→ [0;+∞) such that for all k ∈ N, if ϕ1, . . . , ϕk ∈ I are pairwise R-separated, then
ϕ1 ∪ . . . ∪ ϕk ∈ I. A subshift Ω ∈ Sh0(Γ,N) has the join property if so does the Γ-ideal Fin(Ω).

Remark. For k = 0, we interpret the above definition to mean that � ∈ I; in other words, a Γ-ideal with the
join property is necessarily nonempty.

Given ϕ ∈ [Γ→ N]<∞, an element γ ∈ Γ, and a radius r ∈ [0;+∞), define

ϕ[γ, r] B ϕ|(dom(ϕ) ∩ Ball(γ, r)).

Let I ⊆ [Γ→ N]<∞ be a Γ-ideal. Given a function r : N→ [0;+∞), we say that ϕ : [Γ→ N]<∞ is r-locally
in I if for each γ ∈ dom(ϕ),

ϕ[γ, r(ϕ(γ))] ∈ I.

The set of all ϕ ∈ [Γ→ N]<∞ that are r-locally in I is denoted by Locr (I). Note that since I is closed under
restrictions, we have Locr (I) ⊇ I for all r : N→ [0;+∞).
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Definition 5.2.8. Let I ⊆ [Γ→ N]<∞ be a Γ-ideal. We say that I is local if I = Locr (I) for some function
r : N→ [0;+∞). A subshift Ω ∈ Sh0(Γ,N) is local if so is the Γ-ideal Fin(Ω).

Remark. Notice that every local Γ-ideal has the join property. Indeed, suppose that I ⊆ [Γ → N]<∞ is
a local Γ-ideal and let r : N → [0;+∞) be a function such that I = Locr (I). Define an invariant map
R : I→ [0;+∞) by

R(ϕ) B sup{r(ϕ(γ)) : γ ∈ dom(ϕ)}.

Let ϕ1, . . . , ϕk ∈ I be pairwise R-separated and set ϕ B ϕ1 ∪ . . . ∪ ϕk . Consider an arbitrary element
γ ∈ dom(ϕ). Then γ ∈ dom(ϕi) for a unique 1 6 i 6 k. Since ϕ1, . . . , ϕk are pairwise R-separated, for each
j , i, we have

Ball(γ, R(ϕi)) ∩ dom(ϕj) = �.

Since r(ϕ(γ)) = r(ϕi(γ)) 6 R(ϕi), we conclude that

ϕ[γ, r(ϕ(γ))] ⊆ ϕ[γ, R(ϕi)] = ϕi[γ, R(ϕi)] ⊆ ϕi ∈ I.

Therefore, ϕ ∈ Locr (I). As Locr (I) = I, we obtain ϕ ∈ I, as desired.

We need one last definition:

Definition 5.2.9. If Ω, Ω′ ∈ Sh0(Γ,N) are subshifts, then Ω is reducible to Ω′, in symbols Ω < Ω′, if there
is a map ρ : N→ N, called a reduction, such that for all ω ∈ Ω′, we have ρ ◦ ω ∈ Ω.

Remark. A special case of reducibility is whenΩ ⊇ Ω′. Indeed, ifΩ ⊇ Ω′, then the identity map idN : N→ N

is a reduction from Ω to Ω′. This explains the orientation of the symbol “<.”

Remark. If Ω < Ω′ and Ω′ ∈ ShBM(α,N) for some continuous action α : Γ y X on a Polish space X ,
then Ω ∈ ShBM(α,N) as well. Indeed, if ρ : N→ N is a reduction from Ω to Ω′ and f : X → N is a Baire
measurable Ω′-coloring of α, then ρ ◦ f is a Baire measurable Ω-coloring of α.

Finally, we are ready to state our result:

Theorem 5.2.10. The following statements are equivalent for a subshift Ω ∈ Sh0(Γ,N):

(i) Ω ∈ ShBM(σ,N);

(ii) Ω ⊇ Ω′ for some subshift Ω′ with the join property;

(iii) Ω < Ω′ for some local subshift Ω′.

We prove Theorem 5.2.10 in §5.5.

5.2.5 Some corollaries

As mentioned previously, the join property and its analogs have been an object of study in graph theory
(although Definition 5.2.7 does not appear to have been explicitly articulated before). In particular, implication
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(ii) =⇒ (i) of Theorem 5.2.10 can be used to derive bounds on Baire measurable chromatic numbers from
known results in finite combinatorics. For instance, deep results of Postle and Thomas [PT16] yield the
following:

Corollary 5.2.11. Suppose that Γ is generated by a finite symmetric set S ⊂ Γ with 1 < S such that the
corresponding Cayley graph G B Cay(Γ, S) is planar. Then

χBM(σ, S) 6


3 if G contains no cycles of lengths 3 and 4;

4 if G contains a cycle of length 4 but not of length 3;

5 otherwise.

(5.2.2)

Proof. Assume that Γ and S satisfy the above assumptions and let k denote the quantity on the right hand
side of (5.2.2). The fact that PrCol(S, k) is a subshift with the join property is a consequence of [PT16,
Theorem 8.10]. �

Note that the best upper bounds for χBM(σ, S) under the assumptions of Corollary 5.2.11 that follow
from previously known results are χBM(σ, S) 6 7 in general and χBM(σ, S) 6 5 if Cay(Γ, S) contains no
cycles of length 3; these follow from combining [CM16, Theorem B] (see (5.2.1) above) with the Four Color
Theorem [Die00, Theorem 5.1.1] and Grötzsch’s theorem [Die00, Theorem 5.1.3] respectively. The proof of
[PT16, Theorem 8.10] due to Postle and Thomas is quite difficult.

Locality of a subshift is often rather easy to check, which makes condition (iii) of Theorem 5.2.10 a
convenient tool for constructing subshifts in ShBM(σ,N) with additional interesting properties. To illustrate
this, in §5.5.4 we prove the following:

Corollary 5.2.12. There exists a free continuous action α of Γ on a Polish space such that

ShBM(α,N) 6⊇ ShBM(σ,N).

We find Corollary 5.2.12 somewhat surprising. Indeed, due to Theorem 5.2.4, all non-trivial shift actions
of Γ admit exactly the same types of Baire measurable colorings. Analogous statements hold in the purely
Borel context and in the context of approximate measure colorings; the former follows from a result of Seward
and Tucker-Drob [ST16, Theorem 1.1], the latter—from the Abért–Weiss theorem on weak containment of
Bernoulli shifts [AW13, Theorem 1]. However, both in the Borel and in the approximate measure frameworks,
the shift actions are actually the hardest ones to color (which also follows from [ST16, Theorem 1.1] and
[AW13, Theorem 1]), whereas, as Corollary 5.2.12 asserts, that is not the case in the Baire category setting.

5.3 Extendable Γ-ideals

Due to their combinatorial nature, we sometimes find working with Γ-ideals more convenient than referring
to subshifts directly. In this section we summarize some useful correspondences between the two kinds of
objects. Most statements made here follow readily from definitions.
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Given a Γ-ideal I ⊆ [Γ→ N]<∞, an I-coloring is a map ω : Γ→ N such that

ω |S ∈ I for all S ∈ [Γ]<∞.

The set of all I-colorings is denoted Col(I). It is clear that Col(I) ⊆ NΓ is a subshift.

Definition 5.3.1. A Γ-ideal I ⊆ [Γ→ N]<∞ is extendable if for every ϕ ∈ I and γ ∈ Γ \ dom(ϕ), there is a
color c ∈ N such that ϕ ∪ {(γ, c)} ∈ I.

Proposition 5.3.2. Let I ⊆ [Γ→ N]<∞ be a Γ-ideal. The following statements are equivalent:

– I = Fin(Ω) for some Ω ∈ Sh0(Γ,N);

– I is extendable.

If I is extendable, then the subshift Ω ∈ Sh0(Γ,N) such that I = Fin(Ω) is unique, namely Ω = Col(I).

The proof of Proposition 5.3.2 is straightforward, and we do not spell it out here.
Note that the set Ext(Γ,N) of all extendable Γ-ideals is a Gδ subset of the power set of [Γ→ N]<∞. By

Alexandrov’s theorem [Kec95, Theorem3.11],Ext(Γ,N) is Polish in its relative topology. The bijection between
Ext(Γ,N) and Sh0(Γ,N), given by the maps Col : Ext(Γ,N) → Sh0(Γ,N) and Fin : Sh0(Γ,N) → Ext(Γ,N),
allows us to transfer the Polish topology from Ext(Γ,N) to Sh0(Γ,N), thus turning Sh0(Γ,N) into a Polish
space. Explicitly, the Polish topology on Sh0(Γ,N) is generated by the open sets of the form

{Ω ∈ Sh0(Γ,N) : ϕ ∈ Fin(Ω)} and {Ω ∈ Sh0(Γ,N) : ϕ < Fin(Ω)},

where ϕ is ranging over [Γ→ N]<∞.
The next definition is the analog of Definition 5.2.9 for Γ-ideals:

Definition 5.3.3. If I, I′ ⊆ [Γ→ N]<∞ are Γ-ideals, then I is reducible to I′, in symbols I < I′, if there
is a map ρ : N→ N, called a reduction, such that for all ϕ ∈ I′, we have ρ ◦ ϕ ∈ I.

The following statements are also straightforward:

Proposition 5.3.4. Let Ω, Ω′ ∈ S0(Γ,N). Then

– Ω ⊇ Ω′ if and only if Fin(Ω) ⊇ Fin(Ω′); and

– Ω < Ω′ if and only if Fin(Ω) < Fin(Ω′).

Finally, given a Γ-ideal I and a continuous action α : Γy X on a Polish space X , a Baire measurable
I-coloring of α is the same as a Baire measurable Col(I)-coloring of α.
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5.4 Proof of Theorem 5.2.3

5.4.1 The space of Baire measurable functions

For the rest of this subsection (save Corollary 5.4.5), we fix a Polish space X and a standard Borel space Y .
Two Baire measurable functions f , g : X → Y are equal on a comeager set, or ∗-equal, in symbols f =∗ g,
if the set {x ∈ X : f (x) = g(x)} is comeager. The set of all Baire measurable functions from X to Y , taken
modulo the equivalence relation of ∗-equality, is denoted by nX,Yo. For a nonempty open set U ⊆ X and a
Borel subset A ⊆ Y , let

nU, Ao B { f ∈ nX,Yo : U  f −1(A)}.

Let Baire denote the σ-algebra on nX,Yo generated by the sets of the form nU, Ao for all nonempty open
U ⊆ X and Borel A ⊆ Y .

Theorem 5.4.1. The measurable space (nX,Yo,Baire) is standard Borel.
A σ-algebraS on a set Z separates points if for all z, z′ ∈ Z , if z , z′, then there exists A ∈ S such that

z ∈ A and z′ < A.

Lemma 5.4.2. The σ-algebra Baire separates points.

Proof. Suppose that f , g ∈ nX,Yo are not ∗-equal, i.e., the set {x ∈ X : f (x) , g(x)} is nonmeager. Fix
an arbitrary Polish topology on Y that generates its Borel σ-algebra. By [Kec95, Theorem 8.38], there
is a comeager subset X ′ ⊆ X such that the restricted functions f |X ′, g |X ′ are continuous. Then the set
{x ∈ X ′ : f (x) , g(x)} is also nonmeager, and hence nonempty. Consider any x0 ∈ X ′ with f (x0) , g(x0)

and let V , W ⊂ Y be disjoint open neighborhoods of f (x0) and g(x0) respectively. By the continuity of
f |X ′ and g |X ′, there exists an open neighborhood U ⊆ X of x0 such that f (x) ∈ V and g(x) ∈ W for all
x ∈ U ∩ X ′. This yields f ∈ nU,Vo and g ∈ nU,Wo. As nU,Vo ∩ nU,Wo = �, and so g < nU,Vo, the proof
is complete. �

Lemma 5.4.3. LetU be a countable basis for the topology on X consisting of nonempty open sets, and letA
be a countable basis for the Borel σ-algebra on Y . Then Baire is generated by the family of sets

nU,Ao B {nU, Ao : U ∈ U, A ∈ A}.

Proof. Since for U0, U1, . . . ∈ U and A ∈ A, we have

n
∞⋃
i=0

Ui, Ao =
∞⋂
i=0

nUi, Ao,

the σ-algebra Baire is generated by the sets nU, Ao with U ∈ U. Since we also have

nU, Aco = ⋂
{nV, Aoc : V ∈ U, V ⊆ U},
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where (·)c denotes set complement, and

nU,
∞⋂
i=0

Aio =
∞⋂
i=0

nU, Aio,

we conclude that Baire is indeed generated by the sets nU, Ao with U ∈ U and A ∈ A. �

Proposition 5.4.4. Let (Z,S) be a measurable space such that the σ-algebraS separates points. LetA ⊆ S
be a countable generating set forS. For each z ∈ Z , define ϑz : A → 2 as follows:

ϑz(A) B


1 if z ∈ A;

0 if z < A.

Let Θ denote the image of Z under the map z 7→ ϑz . Then (Z,S) is standard Borel if and only if Θ is a Borel
subset of the product space 2A .

Proof. Let B B B(2A) denote the Borel σ-algebra on 2A . Since S separates points, the map z 7→ ϑz is
injective; by construction, it is therefore an isomorphism of measurable spaces (Z,S) and (Θ,B|Θ), where
B|Θ is the relative σ-algebra on Θ. Thus, (Z,S) is standard Borel if and only if so is (Θ,B|Θ); by the
Luzin–Suslin theorem [Kec95, Theorem 15.1], the latter condition is equivalent to Θ being a Borel subset of
2A . �

Proof of Theorem 5.4.1. LetU be a countable basis for the topology X consisting of nonempty open sets.
Using the Borel isomorphism theorem [Kec95, Theorem 15.6], we can choose a zero-dimensional compact
metrizable topology on Y that generates its Borel σ-algebra; let A be a countable basis for that topology
consisting of sets that are simultaneously open and closed.

For each f ∈ nX,Yo, define ϑf : U ×A → 2 as follows:

ϑf (U, A) B


1 if U  f −1(A);

0 if U 1 f −1(A),

and let Θ denote the image of nX,Yo under the map f 7→ ϑf . In view of Lemmas 5.4.2, 5.4.3, and
Proposition 5.4.4, we only need to show that Θ is a Borel subset of the product space 2U×A .

Let Θ′ denote the set of all functions ϑ : U ×A → 2 satisfying the following two requirements:

(1) for all k ∈ N, U1, . . . , Uk ∈ U, and A1, . . . , Ak ∈ A,

if U1 ∩ . . . ∩Uk , � and ϑ(U1, A1) = . . . = ϑ(Uk, Ak) = 1,
then A1 ∩ . . . ∩ Ak , �;

(2) for all U ∈ U and A ∈ A, if ϑ(U, A) = 0, then there exist V ∈ U and B ∈ A such that

V ⊆ U, B ∩ A = �, and ϑ(V, B) = 1.
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Note that Θ′ is evidently a Borel (in fact, Gδ) subset of 2U×A .

Claim (A). Θ ⊆ Θ′.

Proof. Let f ∈ nX,Yo. We need to show that ϑf satisfies conditions (1) and (2).

(1) If U1, . . . , Uk ∈ U and A1, . . . , Ak ∈ A are such that

U1 ∩ . . . ∩Uk , � and ϑf (U1, A1) = . . . = ϑf (Uk, Ak) = 1,

then U1 ∩ . . . ∩Uk is nonempty open and

U1 ∩ . . . ∩Uk  f −1(A1) ∩ . . . ∩ f −1(Ak) = f −1(A1 ∩ . . . ∩ Ak),

implying that f −1(A1 ∩ . . . ∩ Ak) is nonmeager, and hence A1 ∩ . . . ∩ Ak , �.

(2) Let U ∈ U and A ∈ A be such that ϑf (U, A) = 0, i.e., U 1 f −1(A). The sets inA are simultaneously
open and closed; in particular, the complement of A is open and hence equal to the union of all B ∈ A with
B ∩ A = �. Therefore, for some B ∈ A with B ∩ A = �, the set U ∩ f −1(B) is nonmeager. By the Baire
alternative, there is V ∈ U such that V ⊆ U and V  f −1(B), i.e., ϑf (V, B) = 1. a

Claim (B). Θ′ ⊆ Θ.

Proof. Let ϑ ∈ Θ′. We need to find a function f ∈ nX,Yo such that ϑf = ϑ. For each x ∈ X , let

Ax B {A ∈ A : ϑ(U, A) = 1 for some U ∈ U with U 3 x}.

Note that Ax is a family of closed subsets of the compact space Y , and condition (1) implies that it has the
finite intersection property; therefore, Rx B

⋂
Ax is a nonempty compact set. The set

R B {(x, y) ∈ X × Y : y ∈ Rx}

is Borel (in fact, closed) in X ×Y , so by [Kec95, Theorem 28.8], there exists a Borel map f : X → Y such that
f (x) ∈ Rx for all x ∈ X . We claim that ϑf = ϑ for any such f . Indeed, let U ∈ U and A ∈ A. If ϑ(U, A) = 1,
then for all x ∈ U,

f (x) ∈ Rx ⊆ A,

so U ⊆ f −1(A), and thus ϑf (U, A) = 1. On the other hand, if ϑ(U, A) = 0, then, by (2), there exist sets V ∈ U

and B ∈ A such that
V ⊆ U, B ∩ A = �, and ϑ(V, B) = 1.

By the previous argument, ϑf (V, B) = 1, i.e., V  f −1(B). Since B ∩ A = �, this implies U 1 f −1(A), and so
ϑf (U, A) = 0. a

Together, Claims (A) and (B) yield Θ = Θ′; in particular, Θ is Borel. �
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Corollary 5.4.5. Let α : Γy X be a continuous action of Γ on a Polish space X . Then the set ShBM(α,N) is
analytic.

Proof. It is routine to check that the set

Hom(α, σN) B {π ∈ nX,NΓo : π is equivariant on a comeager set}

is a Borel subset of nX,NΓo; furthermore, the set

{(π,Ω) ∈ Hom(α, σN) × Sh0(Γ,N) : π−1(Ω) is comeager}

is a Borel subset of Hom(α, σN) × Sh0(Γ,N). As

ShBM(α,N) = {Ω ∈ Sh0(Γ,N) : π−1(Ω) is comeager for some π ∈ Hom(α, σN)},

we see that ShBM(α,N) is analytic. �

5.4.2 Smoothness

Let X be a Polish (or, more generally, standard Borel) space. A Borel equivalence relation E on X is smooth
if there is a Borel function f : X → R such that for all x, y ∈ X ,

f (x) = f (y) ⇐⇒ x and y are E-equivalent.

A set T ⊆ X is a transversal for E if every E-class intersects T in exactly one point. The following useful
proposition follows from the Luzin–Novikov theorem:

Proposition 5.4.6 ([Tse16, Proposition 20.6]). Let E be a Borel equivalence relation on a Polish space X .
Suppose that every E-class is countable. Then the following statements are equivalent:

– E is smooth;

– there exists a Borel transversal T ⊆ X for E .

Given a continuous action α : Γy X on a Polish space X , let Eα denote the induced orbit equivalence
relation, i.e., the equivalence relation on X whose classes are precisely the orbits of α. The definition of
generic smoothness for actions of Γ from §5.2.3 then can be phrased as follows:

A continuous action α : Γy X is generically smooth if and only if there exists a comeager α-invariant
Borel subset X ′ ⊆ X such that the relation Eα restricted to X ′ is smooth.

Lemma 5.4.7. If α is a generically smooth free continuous action of Γ on a nonempty Polish space, then
ShBM(α,N) = Sh(Γ,N).

Proof. Let α : Γ y X be as in the statement of the lemma. The inclusion ShBM(α,N) ⊆ Sh(Γ,N) is clear
as X , �. To prove the other inclusion, consider any nonempty subshift Ω ∈ Sh(Γ,N) and let ω ∈ Ω
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be an arbitrary coloring. After discarding a meager set if necessary, we may assume that Eα is smooth;
Proposition 5.4.6 then gives a Borel transversal T ⊆ X for Eα. Since α is free, for each x ∈ X , there is a
unique element γx ∈ Γ such that (γx)−1 · x ∈ T . Set f (x) B ω(γx) for all x ∈ X . Then for all x ∈ X ,

π f (x) = γx · ω ∈ Ω,

i.e., f is a desired Baire measurable Ω-coloring of α. �

The remainder of this section is dedicated to proving the “hard” part of Theorem 5.2.3: the completeness
of the set ShBM(α,N) for generically non-smooth α.

Let Ω ∈ Sh0(Γ,N) be a subshift. We say that Ω is easy if Ω ∈ ShBM(α,N) for every free continuous
action α of Γ on a Polish space; we say that Ω is hard if Ω ∈ ShBM(α,N) only for generically smooth α.

Lemma 5.4.8. Let Ω ∈ Sh0(Γ,N) be a subshift. Suppose that for each ω ∈ Ω, there is some c ∈ N such that
the set {γ ∈ Γ : ω(γ) = c} contains precisely one element. Then Ω is hard.

Proof. For each ω ∈ Ω, let

cω B min{c ∈ N : |{γ ∈ Γ : ω(γ) = c}| = 1}.

Define a Borel set T ⊆ Ω by
T B {ω ∈ Ω : cω = ω(1)}.

Let α : Γ y X be a continuous action of α on a Polish space X and suppose that f : X → N is a Baire
measurable Ω-coloring of α. After passing to a comeager subset if necessary, we may assume that the map f

is Borel and X = (π f )−1(Ω). Then (π f )−1(T) is a Borel transversal for Eα. �

Lemma 5.4.9. Let Ω0, Ω1, . . . ∈ Sh0(Γ,N) be a countable sequence of hard subshifts. If Ω B
⋃∞

i=0Ωi is a
subshift, then Ω is also hard.

Proof. Let α : Γy X be a continuous action of α on a Polish space X and suppose that f : X → N is a Baire
measurable Ω-coloring of α. Set Xi B (π f )

−1(Ωi). After discarding a meager subset if necessary, we may
assume that the map f is Borel and X = (π f )−1(Ω) =

⋃∞
i=0 Xi. Passing to an even further comeager subset,

we may assume that the relation Eα restricted to each Xi is smooth. Using Proposition 5.4.6, we obtain Borel
transversals Ti ⊆ Xi for the restricted relations. Let

S0 B T0;
Si+1 B Ti+1 \

⋃i
j=0 Xj for all i ∈ N,

and set S B
⋃∞

i=0 Si. Then S a Borel transversal for Eα. �

5.4.3 Combinatorial lemmas

In this subsection we describe the main combinatorial construction behind our proof of Theorem 5.2.3.
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Lemma 5.4.10. Let (d0, d1, . . .) ∈ [0;+∞)N be a sequence such that a ball of radius d0 in Γ contains at least 2
elements, and for each c ∈ N, a ball of radius dc+1 in Γ contains two disjoint balls of radius dc . Suppose that
ω : Γ→ N is a coloring such that for all c ∈ N,

inf{dist(γ, δ) : γ, δ ∈ Γ, γ , δ, ω(γ) = ω(δ) = c} > 2dc .

Then ω uses infinitely many colors, i.e., the set {ω(γ) : γ ∈ Γ} is infinite.

Proof. We use induction on c to show that any ball of radius dc in Γ contains an element γ with ω(γ) > c.
For c = 0, the assertion follows from the fact that each ball of radius d0 contains at least 2 elements, and
it is impossible for both of them to have color 0, since the distance between any two distinct elements γ, δ
with ω(γ) = ω(δ) = 0 is strictly greater than 2d0. Now assume that the assertion has been verified for some c

and consider any ball of radius dc+1. It contains two disjoint balls of radius dc, so it must, by the inductive
hypothesis, contain two distinct elements γ, δ with ω(γ), ω(δ) > c. As dist(γ, δ) 6 2dc+1, it is impossible to
have ω(γ) = ω(δ) = c + 1, so at least one of ω(γ), ω(δ) exceeds c + 1. �

Remark. Besides its application in the proof of Theorem 5.2.3, Lemma 5.4.10 will be used once more in the
proof of Corollary 5.2.12.

Let α : Γy X be a free action of Γ. For x, y ∈ X , write

dist(x, y) B


dist(1, γ) if γ ∈ Γ is such that γ · x = y;

∞ if x and y are in different α-orbits.

Due to the right-invariance of the metric dist, for all x ∈ X and γ, δ ∈ Γ, we have

dist(γ · x, δ · x) = dist(γ, δ).

The next lemma is essentially a restatement of [MU16, Lemma 3.1]; we include its proof here for completeness.

Lemma 5.4.11 (ess. Marks–Unger [MU16, Lemma 3.1]). Let α : Γy X be a free continuous action of Γ on
a nonempty Polish space X . Then for every sequence (d0, d1, . . .) ∈ [0;+∞)N, there exists a Baire measurable
coloring f : X → N such that for all c ∈ N,

inf{dist(x, y) : x, y ∈ X, x , y, f (x) = f (y) = c} > dc .

Proof. It suffices to show that there exists a partial Baire measurable map f : X ⇀ N defined on a comeager
subset of X and such that for all c ∈ N,

inf{dist(x, y) : x, y ∈ dom( f ), x , y, f (x) = f (y) = c} > dc . (5.4.1)

For c ∈ N, let Gc denote the graph with vertex set X and edge set

{(x, y) ∈ X × X : x , y and dist(x, y) 6 dc}.
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The graph Gc is Borel (closed, in fact), and the neighborhood of every vertex in Gc is finite, so Gc admits a
Borel proper N-coloring. For each c ∈ N, we fix one such coloring ηc : X → N.

Given a sequence s = (s0, s1, . . .) ∈ N
N, define a partial function fs : X ⇀ N as follows:

fs(x) B the smallest c ∈ N such that ηc(x) = sc, if such exists.

Note that for any s ∈ NN, (5.4.1) is satisfied with f = fs. Indeed, if x, y ∈ X are distinct and such that
fs(x) = fs(y) = c, then, by definition, ηc(x) = ηc(y) = sc , so xy < E(Gc), i.e., dist(x, y) > dc . As the map fs
is Borel, it remains to prove that for some s ∈ NN, the set

{x ∈ X : fs(x) is defined}

is comeager. Due to the Kuratowski–Ulam theorem [Kec95, Theorem 8.41], it suffices to show that for all
x ∈ X , the set

{s ∈ NN : fs(x) is defined} = {s ∈ NN : sc = ηc(x) for some c ∈ N}

is comeager in NN, which is indeed the case as it is open and dense. �

Now we combine Lemmas 5.4.10 and 5.4.11 to prove the main technical result of this subsection:

Lemma 5.4.12. There exist a nonempty compact metrizable space H with no isolated points, a dense
countable subset H0 ⊂ H, and a continuous map H → Sh0(Γ,N) : h 7→ Ωh such that

– for all h ∈ H0, the subshift Ωh is hard; and

– for all h ∈ H \ H0, the subshift Ωh is easy.

Proof. Let N ∪ {∞} be the compactification of N obtained by adding the point∞ so that the neighborhood
filter of∞ is generated by the sets {n ∈ N ∪ {∞} : n > m} with m ranging over N. Let H denote the set of
all nondecreasing sequences in (N ∪ {∞})N, which we write as h = (h0, h1, . . .). Being a closed subset of a
compact metrizable space, H itself is compact and metrizable, and it is easy to see that H contains no isolated
points. Let

H0 B {h ∈ H : hc = ∞ for some c ∈ N}.

Evidently, H0 is a dense countable subset of H.
Fix a sequence (d0, d1, . . .) ∈ [0;+∞)N such that a ball of radius d0 in Γ contains at least 2 elements, and

for each c ∈ N, a ball of radius dc+1 in Γ contains two disjoint balls of radius dc (such a sequence exists since
Γ is infinite, while every ball of finite radius in Γ is finite). For h ∈ H, let Ωh denote the set of all colorings
ω : Γ→ N such that for all c ∈ N,

inf{dist(γ, δ) : γ, δ ∈ Γ, γ , δ, ω(γ) = ω(δ) = c} > max{2dc + 1, hc}.

The set Ωh is a subshift; furthermore, the map h 7→ Ωh is continuous, since determining whether given
ϕ ∈ [Γ→ N]<∞ belongs to Fin(Ωh) only involves checking bounds on hc for finitely many colors c ∈ N.
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If h ∈ H \ H0, then Ωh is easy by Lemma 5.4.11. Now suppose h ∈ H0 and consider any ω ∈ Ωh. By
Lemma 5.4.10, the set {ω(γ) : γ ∈ Γ} is infinite. As h ∈ H0, all but finitely many entries in h are equal to∞;
therefore, there is some c ∈ N such that hc = ∞ and ω(γ) = c for some γ ∈ Γ. Since ω ∈ Ωh, if hc = ∞, then
there is at most a single element γ ∈ Γ with ω(γ) = c. Therefore, Ωh is hard by Lemma 5.4.8. �

5.4.4 The space of compact sets and a final reduction

The last step in our argument is inspired by the dichotomy theorem for co-analytic σ-ideals of compact sets
due to Kechris, Louveau, and Woodin [Kec95, Theorem 33.3], which asserts that such a σ-ideal is either
Gδ , or else, complete co-analytic. The Kechris–Louveau–Woodin dichotomy theorem is proved using a
result of Hurewicz (see Theorem 5.4.13 below), which we will utilize in much the same way in our proof of
Theorem 5.2.3.

Before stating Hurewicz’s theorem, we need to introduce some notation and terminology. Let X be a
Polish space. We use K(X) to denote the set of all compact subsets of X . The set K(X) is equipped with the
Vietoris topology, which is generated by the open sets of the form

{C ∈ K(X) : C ∩U , �} and {C ∈ K(X) : C ⊆ U},

where U is ranging over the open subsets of X . The space K(X) is itself Polish [Kec95, Theorem 4.25].
For more background on the Vietoris topology and related concepts, see [Kec95, Section 4.F] and [Tse16,
Section 3.D].

Theorem 5.4.13 (Hurewicz [Kec95, Exercise 27.4(ii)]). Let X be a Polish space and let A ⊆ X be a subset
which is Gδ but not Fσ . Then the set {C ∈ K(X) : C ∩ A , �} is complete analytic.

Lemma 5.4.14. If C ⊆ Sh0(Γ,N) is a compact set, then
⋃
Ω∈C Ω is a subshift. Furthermore, the map

K(Sh0(Γ,N)) → Sh0(Γ,N) : C 7→
⋃
Ω∈C Ω

is continuous.

Proof. Let C ∈ K(Sh0(Γ,N)). The set
⋃
Ω∈C Ω is clearly shift-invariant. Consider any ω ∈

⋃
Ω∈C Ω (the bar

denotes topological closure). There exist a sequence of subshifts Ω0, Ω1, . . . ∈ C and a sequence of colorings
ω0 ∈ Ω0, ω1 ∈ Ω1, . . . such that limi→∞ ωi = ω. Since C is compact, we may pass to a subsequence and
assume that the sequence Ω0, Ω1, . . . converges to a limit Ω∞ ∈ C. Consider any S ∈ [Γ]<∞ and let ϕ B ω |S.
As ω = limi→∞ ωi, we have

ϕ = ωi |S for all sufficiently large i ∈ N.

This implies
ϕ ∈ Fin(Ωi) for all sufficiently large i ∈ N,

and thus, ϕ ∈ Fin(Ω∞). Therefore, ω ∈ Ω∞, and hence,⋃
Ω∈C Ω =

⋃
Ω∈C Ω,
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i.e., the set
⋃
Ω∈C Ω is closed, and hence, it is a subshift. The continuity of the map C 7→

⋃
Ω∈C Ω then

follows immediately from the definitions of the topologies on Sh0(Γ,N) and K(Sh0(Γ,N)). �

Now we have all the necessary tools to finish the proof of Theorem 5.2.3.

Proof of Theorem 5.2.3. Let α : Γy X be a free continuous action of Γ on a nonempty Polish space X . As
observed in Corollary 5.4.5, the set ShBM(α,N) is analytic. The case of generically smooth α is handled in
Lemma 5.4.7, so it remains to show that if α is not generically smooth, then ShBM(α,N) is complete.

Let H and H0 be as in Lemma 5.4.12 and let H → Sh0(Γ,N) : h 7→ Ωh be a continuous function such that

– for all h ∈ H0, the subshift Ωh is hard; and

– for all h ∈ H \ H0, the subshift Ωh is easy.

Since continuous images of compact spaces are compact, for each C ∈ K(H), we have

{Ωh : h ∈ C} ∈ K(Sh0(Γ,N));

moreover, the map
K(H) → K(Sh0(Γ,N)) : C 7→ {Ωh : h ∈ C}

is continuous. Using Lemma 5.4.14, we can then define a continuous functionK(H) → Sh0(Γ,N) by sending
each C ∈ K(H) to the subshift ΩC B

⋃
h∈C Ωh. Notice that if C ∩ (H \ H0) , �, then ΩC ⊇ Ωh for some

h ∈ H \ H0, so ΩC is easy and, in particular, ΩC ∈ ShBM(α,N). On the other hand, if C ∩ (H \ H0) = �, i.e.,
if C ⊆ H0, then ΩC is a union of countably many hard subshifts, so, by Lemma 5.4.9, it is itself hard; since α
is not generically smooth, this implies ΩC < ShBM(α,N). Therefore,

C ∩ (H \ H0) , � ⇐⇒ ΩC ∈ ShBM(α,N). (5.4.2)

Since H \ H0 is the complement of a dense countable subset of a nonempty Polish space H with no isolated
points, it is Gδ but not Fσ; thus, by Theorem 5.4.13, the set

{C ∈ K(H) : C ∩ (H \ H0) , �} (5.4.3)

is complete analytic. It remains to notice that, by (5.4.2), the map C 7→ ΩC is a continuous reduction of the
complete analytic set (5.4.3) to ShBM(α,N). �

5.5 Proof of Theorem 5.2.10

We break proving Theorem 5.2.10 up into three steps, each corresponting to one of the implications

(i) =⇒ (ii) =⇒ (iii) =⇒ (i).

Using observations made in §5.3, we phrase and prove each implication in terms of Γ-ideals rather than
subshifts. Finally, we deduce Corollary 5.2.12 in §5.5.4.
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5.5.1 Extendable Γ-ideals with the join property from Baire measurable colorings

Lemma 5.5.1. Let I ⊆ [Γ→ N]<∞ be a Γ-ideal. If σ admits a Baire measurable I-coloring, then there is
an extendable Γ-ideal I′ ⊆ I with the join property.

Proof. Using Theorem 5.2.4, identify σ with the shift action σN : Γy NΓ. For ϕ ∈ [Γ→ N]<∞, let

Uϕ B {ω ∈ N
Γ : ω ⊃ ϕ}.

Note that {Uϕ : ϕ ∈ [Γ→ N]<∞} is a basis for the topology on NΓ consisting of nonempty clopen sets.
Let I ⊆ [Γ → N]<∞ be a Γ-ideal and let f : NΓ → N be a Baire measurable I-coloring of NΓ. Set

π B π f and define
I
′ B {ϕ ∈ [Γ→ N]<∞ : the set π−1(Uϕ) is nonmeager}.

It is clear that I′ is a Γ-ideal and, by the choice of f , we have I′ ⊆ I.
We claim that I′ is extendable. Indeed, let ϕ ∈ I′ and γ ∈ Γ \ dom(ϕ). For each c ∈ N, set

ϕc B ϕ ∪ {(γ, c)}. We need to show that ϕc ∈ I′ for some c ∈ N. To that end, notice that

π−1(Uϕ) =
⋃
c∈N

π−1(Uϕc ). (5.5.1)

Since ϕ ∈ I′, the set on the left-hand side of (5.5.1) is nonmeager; thus, at least one of the sets whose union
is taken on the right-hand side of (5.5.1) must also be nonmeager, as desired.

To finish the proof of the lemma, it remains to show that I′ has the join property. Define an invariant
map R : I′ → [0;+∞) as follows: For each ϕ ∈ I′, set R(ϕ) to be the smallest R ∈ N such that there is
a map ψ : Ball(dom(ϕ), R) → N with Uψ  π

−1(Uϕ). (Such R exists since the set π−1(Uϕ) is nonmeager.)
Suppose that ϕ1, . . . , ϕk ∈ I′ are pairwise R-separated and let ϕ B ϕ1 ∪ . . . ∪ ϕk . For each 1 6 i 6 k,
choose ψi : Ball(dom(ϕi), R(ϕi)) → N so that Uψi  π

−1(Uϕi ). Since ϕ1, . . . , ϕk are pairwise R-separated,
for all i , j, we have

dom(ψi) ∩ dom(ψj) = Ball(dom(ϕi), R(ϕi)) ∩ Ball(dom(ϕj), R(ϕj)) = �,

so ψ B ψ1 ∪ . . . ∪ ψk is a function in [Γ→ N]<∞. Then

Uψ = Uψ1 ∩ . . . ∩Uψk
 π−1(Uϕ1) ∩ . . . ∩ π

−1(Uϕk
) = π−1(Uϕ).

Therefore, the set Uϕ is nonmeager, i.e., ϕ ∈ I′, as desired. �

5.5.2 Reducing extendable Γ-ideals with the join property to local ones

Lemma 5.5.2. Every extendable Γ-ideal with the join property is reducible to a local extendable Γ-ideal.

Proof. Let I ⊆ [Γ → N]<∞ be an extendable Γ-ideal with the join property and let R : I → [0;+∞) be
an invariant function such that whenever k ∈ N and ϕ1, . . . , ϕk ∈ I are pairwise R-separated, we have
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ϕ1 ∪ . . . ∪ ϕk ∈ I. We may assume that R is monotone increasing, i.e., for all ϕ, ϕ′ ∈ I,

ϕ ⊆ ϕ′ =⇒ R(ϕ) 6 R(ϕ′).

Otherwise we can replace R with the map R̃ : I→ [0;+∞) defined by

R̃(ϕ) B sup{R(ϕ′) : ϕ′ ⊆ ϕ}.

We will explicitly construct a local extendable Γ-ideal I′ such that I < I′. It will be more convenient to
view I′ as a subset of [Γ → (N × N)]<∞ rather than [Γ → N]<∞ (of course, we can turn it into a subset of
[Γ→ N]<∞ using a bijection between N × N and N). Let π1, π2 : N × N→ N denote the projection maps:

π1(h, c) B h and π2(h, c) B c for all (h, c) ∈ N × N.

Given ϕ ∈ [Γ→ (N × N)]<∞, an element γ ∈ Γ, a radius r ∈ [0;+∞), and a threshold h ∈ N, define

ϕ[γ, r; h] B ϕ|{δ ∈ dom(ϕ) ∩ Ball(γ, r) : (π1 ◦ ϕ)(δ) 6 h}.

By definition, ϕ[γ, r; h] ⊆ ϕ[γ, r]. Let I′ denote the set of all partial maps ϕ ∈ [Γ→ (N × N)]<∞ such that
the following holds for all γ ∈ dom(ϕ): If we let h B (π1 ◦ ϕ)(γ) and ψ B π2 ◦ (ϕ[γ, 3h; h]), then

dom(ψ) ⊆ Ball(γ, h); ψ ∈ I; and R(ψ) 6 h.

Evidently, I′ is invariant under the action Γy [Γ→ (N × N)]<∞. Moreover, since the map R is monotone
increasing, I′ is closed under restrictions; in other words, I′ is a Γ-ideal. By definition,

I
′ = Locr (I′) for r : N × N→ [0;+∞) : (h, c) 7→ 3h.

It remains to verify that I′ is extendable and I < I′.

Claim (A). Let ϕ ∈ I′ and let

h B sup{(π1 ◦ ϕ)(γ) : γ ∈ dom(ϕ)}.

Then ϕ can be written as a union ϕ = ϕ1 ∪ . . . ∪ ϕk for some k ∈ N and ϕ1, . . . , ϕk ∈ I′ with the following
properties:

– for each 1 6 i 6 k, the map ψi B π2 ◦ ϕi belongs to I;

– for each 1 6 i 6 k, we have R(ψi) 6 h;

– the maps ψ1, . . . , ψk are pairwise R-separated.

Proof. The proof is by induction on |dom(ϕ)|. If ϕ = �, then the claim holds vacuously with k = 0. Now
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suppose that ϕ , �. Then there is γ0 ∈ dom(ϕ) such that (π1 ◦ ϕ)(γ0) = h. Set

ϕ0 B ϕ[γ0, 3h]; ψ0 B π2 ◦ ϕ0; and ϕ′ B ϕ \ ϕ0.

By the choice of h, we have ϕ[γ0, 3h; h] = ϕ0. Thus, by the definition of I′,

dom(ψ0) ⊆ Ball(γ0, h); ψ0 ∈ I; and R(ψ0) 6 h.

Applying the inductive hypothesis to ϕ′, we can write ϕ′ = ϕ1 ∪ . . . ∪ ϕk for some ϕ1, . . . , ϕk ∈ I′ with the
following properties:

– for each 1 6 i 6 k, the map ψi B π2 ◦ ϕi belongs to I;

– for each 1 6 i 6 k, we have R(ψi) 6 h;

– the maps ψ1, . . . , ψk are pairwise R-separated.

It remains to show that ψ0 is R-separated from each ψi with 1 6 i 6 k. Suppose, towards a contradiction, that
for some 1 6 i 6 k,

dist(dom(ψ0), dom(ψi)) 6 R(ψ0) + R(ψi) 6 2h.

Let γ ∈ dom(ψ0) be such that dist(γ, dom(ψi)) 6 2h. Since dom(ψ0) ⊆ Ball(γ0, h), we obtain

dist(γ0, dom(ψi)) 6 dist(γ0, γ) + dist(γ, dom(ψi)) 6 h + 2h = 3h.

On the other hand, by construction, dom(ψi) ∩ Ball(γ0, 3h) = �. This contradiction completes the proof. a

Consider any ϕ ∈ I′ and let ϕ = ϕ1 ∪ . . . ∪ ϕk be a decomposition of ϕ given by Claim (A). For each
1 6 i 6 k, let ψi B π2 ◦ ϕi. Then every ψi belongs to I and ψ1, . . . , ψk are pairwise R-separated. By the
choice of R, this yields

π2 ◦ ϕ = ψ1 ∪ . . . ∪ ψk ∈ I.

Therefore, π2 is a reduction of I to I′.
Finally, to see that I′ is extendable, let ϕ ∈ I′ and let γ ∈ Γ \ dom(ϕ). Set ψ B π2 ◦ ϕ. We already know

that ψ ∈ I. Since I is extendable, there is c ∈ N such that ψ ′ B ψ ∪ {(γ, c)} ∈ I. Choose h ∈ N so large that
the following statements are true:

h > R(ψ ′); h > (π1 ◦ ϕ)(δ) for all δ ∈ dom(ϕ); and Ball(γ, h) ⊇ dom(ψ ′).

Then ϕ ∪ {(γ, (h, c))} ∈ I′, as desired. �

5.5.3 Baire measurable colorings from locality and extendability

Before proceeding with the last part of the proof of Theorem 5.2.10, we introduce some terminology and
notation related to partial (but not necessarily finite) maps ϕ : Γ ⇀ N. The set of all such maps is denoted
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by [Γ→ N]. A partial map ϕ : Γ ⇀ N can be viewed as a (total) function ϕ : Γ→ N ∪ {undefined}, where
“undefined” is a special symbol distinct from all the elements of N. In that way,

[Γ→ N] is the same as (N ∪ {undefined})Γ,

and the latter set carries the product topology (the topology on N ∪ {undefined} is discrete) and is equipped
with the shift action of Γ. Note that [Γ→ N]<∞ is a countable dense subset of [Γ→ N] and NΓ is a closed
subset of [Γ→ N].

Similarly to the notation we use for finite partial functions, given ϕ ∈ [Γ→ N], an element γ ∈ Γ, and a
radius r ∈ [0;+∞), let

ϕ[γ, r] B ϕ|(dom(ϕ) ∩ Ball(γ, r)).

By definition, ϕ[γ, r] ∈ [Γ→ N]<∞.
Let I ⊆ [Γ→ N]<∞ be a Γ-ideal. A partial I-coloring is a map ϕ ∈ [Γ→ N] such that

ϕ|S ∈ I for all S ∈ [dom(ϕ)]<∞.

The set of all partial I-colorings is denoted by [Γ→ N]I. Note that

[Γ→ N]I ∩ [Γ→ N]<∞ = I and [Γ→ N]I ∩ NΓ = Col(I).

If I is local and r : N→ [0;+∞) is a function such that I = Locr (I), then for all ϕ ∈ [Γ→ N],

ϕ ∈ [Γ→ N]I ⇐⇒ ϕ[γ, r(ϕ(γ))] ∈ I for all γ ∈ dom(ϕ). (5.5.2)

Lemma 5.5.3. If I is a local extendable Γ-ideal, then σ admits a Baire measurable I-coloring.

Proof. Let I ⊆ [Γ → N]<∞ be a local extendable Γ-ideal and let r : N → [0;+∞) be a function such that
I = Locr (I).

Using Theorem 5.2.4, identify σ with the shift action σ2N : Γy (2N)Γ and then replace it by the product
action (σ2)

N : Γ y (2Γ)N (the spaces (2N)Γ and (2Γ)N are equivariantly homeomorphic). We will find an
equivariant Borel map π : (2Γ)N → [Γ → N]I such that the set π−1(NΓ) is comeager. This will yield the
desired result since given such π, any function f : (2Γ)N → N with f (x) = π(x)(1) for all x ∈ π−1(NΓ) is a
Baire measurable I-coloring of (2Γ)N.

For x ∈ 2Γ, the support of x is the set

supp(x) B {γ ∈ Γ : x(γ) = 1}.

Set X B (2Γ)N. We write the elements of X as sequences of the form x = (x0, x1, . . .).
Fix a sequence (c0, c1, . . .) ∈ N

N in which every c ∈ N appears infinitely many times and set

Ri B sup{r(c0), . . . , r(ci−1)}.
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For each x ∈ X , define a sequence of partial maps πi(x) ∈ [Γ→ N] inductively as follows:

Step 0: Set π0(x) B �.
Step i + 1: Let Si(x) denote the set of all γ ∈ Γ such that

– πi(x)(γ) is not defined;

– Ball(γ, 2Ri) ∩ supp(xi) = {γ}; and

– πi(x)[γ, 2Ri] ∪ {(γ, ci)} ∈ I.

For all γ ∈ Γ, set

πi+1(x)(γ) B


πi(x)(γ) if πi(x)(γ) is defined;

ci if γ ∈ Si(x);

undefined otherwise.

By construction, for all x ∈ X , we have

� = π0(x) ⊆ π1(x) ⊆ . . . ,

so we can define π∞(x) ∈ [Γ→ N] via

π∞(x) B
∞⋃
i=0

πi(x).

It is clear that the maps πi : X → [Γ→ N] are equivariant. Notice that they are also continuous. Indeed, the
value πi(x)(γ)—including whether or not it is defined—is determined by the restrictions of the first i functions
x0, . . . , xi−1 to the finite set Ball(γ, 2R0 + · · · + 2Ri−1). Being a pointwise limit of equivariant continuous
functions, the map π∞ : X → [Γ→ N] is equivariant and Borel.

Claim (A). For all x ∈ X , we have π∞(x) ∈ [Γ→ N]I.

Proof. Let x ∈ X . Since π∞(x) is the union of the increasing sequence π0(x) ⊆ π1(x) ⊆ . . ., it is sufficient
(and necessary) to establish that πi(x) ∈ [Γ → N]I for all i ∈ N. We proceed by induction on i. The base
case is trivial since π0(x) = � ∈ I by definition (recall that I is local, hence nonempty). Now suppose
that πi(x) ∈ [Γ → N]I and consider the partial map πi+1(x). By (5.5.2), it is enough to show that for all
γ ∈ dom(πi+1(x)),

πi+1(x)[γ, r(πi+1(x)(γ))] ∈ I.

By construction, πi+1(x) takes values in the set {c0, . . . , ci}. Therefore,

r(πi+1(x)(γ)) 6 Ri for all γ ∈ dom(πi+1(x)).
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Thus, it suffices to prove that for all γ ∈ dom(πi+1(x)),

πi+1(x)[γ, Ri] ∈ I.

Consider any γ ∈ dom(πi+1(x)). If Ball(γ, Ri) ∩ Si(x) = �, then

πi+1(x)[γ, Ri] = πi(x)[γ, Ri] ∈ I

by the inductive hypothesis. Now assume that δ ∈ Ball(γ, Ri) ∩ Si(x). Then Ball(γ, Ri) ⊆ Ball(δ, 2Ri), so it
is enough to show

πi+1(x)[δ, 2Ri] ∈ I.

As δ ∈ Si(x), we have πi+1(x)(δ) = ci and

δ ∈ Ball(δ, 2Ri) ∩ Si(x) ⊆ Ball(δ, 2Ri) ∩ supp(xi) = {δ},

which implies
πi+1(x)[δ, 2Ri] = πi(x)[δ, 2Ri] ∪ {(δ, ci)} ∈ I. a

Thus, the above construction produces an equivariant Borel map π∞ : X → [Γ → N]I. To finish the
argument, it remains to show that the set (π∞)−1(NΓ) is comeager. We have

(π∞)
−1(NΓ) = {x ∈ X : π∞(x)(γ) is defined for all γ ∈ Γ}

=
⋂
γ∈Γ

{x ∈ X : π∞(x)(γ) is defined},

so we only need to verify that for each γ ∈ Γ, the set {x ∈ X : π∞(x)(γ) is defined} is comeager. To that end,
consider any γ ∈ Γ and write

{x ∈ X : π∞(x)(γ) is defined} =
∞⋃
i=0
{x ∈ X : πi(x)(γ) is defined}.

By the continuity of πi for all i ∈ N, the sets {x ∈ X : πi(x)(γ) is defined} are open. Therefore, their union
is open as well; it remains to show that it is dense. Let U ⊆ X be a nonempty open subset. We need to find
an element x ∈ U such that π∞(x)(γ) is defined. By passing to a smaller open subset if necessary, we may
assume that U is of the form

U = U0 × · · · ×Ui−1 × 2Γ × 2Γ · · · ,

for some nonempty open subsets U0, . . . , Ui−1 ⊆ 2Γ. Notice that the set of all functions Γ→ 2 with finite
support is dense in 2Γ; therefore, for each 0 6 k < i, we can choose yk ∈ Uk so that supp(yk) is finite. Let

A B {x ∈ X : xk = yk for all 0 6 k < i}.

By the choice of y0, . . . , yi−1, we have � , A ⊆ U. Since for all x ∈ X , the value πi(x) is determined by the
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first i functions x0, . . . , xi−1, we can define ϕ ∈ [Γ→ N]I by

ϕ B πi(x) for some (hence all) x ∈ A.

If γ ∈ dom(ϕ), then π∞(x)(γ) is defined for all x ∈ A and we are done, so assume that γ < dom(ϕ). Since

dom(ϕ) ⊆ supp(x0) ∪ . . . ∪ supp(xi−1),

the domain of ϕ is finite, i.e., ϕ ∈ I. The Γ-ideal I is extendable, so there is c ∈ N such that

ψ B ϕ ∪ {(γ, c)} ∈ I.

By the choice of the sequence (c0, c1, . . .), there is some index j > i such that cj = c. For all i 6 k < j,
set yk : Γ → 2 to be the constant 0 function, and set yj : Γ → 2 to be the characteristic function of the
one-element set {γ}. Let

B B {x ∈ X : xk = yk for all 0 6 k 6 j}.

Then � , B ⊆ A, and for all x ∈ B, we have πj+1(x) = ψ, in particular, π∞(x)(γ) is defined. �

5.5.4 Proof of Corollary 5.2.12

A continuous action α of Γ on a compact space is minimal if every α-orbit is dense. It follows from a result
of Gao, Jackson, and Seward [GJS16, Theorem 1.4.1] that Γ admits a free minimal action on a nonempty
compact metrizable space. (For more information on the Gao–Jackson–Seward theorem, see Chapter 4.)

Recall the following notation, introduced in §5.4.3: For a free action α : Γy X and x, y ∈ X , write

dist(x, y) B


dist(1, γ) if γ ∈ Γ is such that γ · x = y;

∞ if x and y are in different α-orbits.

Given x ∈ X and A ⊆ X , let
dist(x, A) B inf{dist(x, y) : y ∈ A}.

Lemma 5.5.4. Let α : Γ y X be a free minimal action of Γ on a nonempty compact metrizable space X .
Suppose that A ⊆ X is a nonmeager Baire measurable set. Then there exists a radius R ∈ [0;+∞) such that
the set {x ∈ X : dist(x, A) 6 R} is comeager.

Proof. By the Baire alternative, there is nonempty open U ⊆ X such that U  A. Since α is minimal, we
have X =

⋃
γ∈Γ(γ ·U). As X is compact, there is a radius R ∈ [0;+∞) such that

X =
⋃
γ∈Ball(1,R)(γ ·U).

Therefore, the set
X ′ B

⋃
γ∈Ball(1,R)(γ · A)
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is comeager. It remains to notice that dist(x, A) 6 R for all x ∈ X ′. �

Proof of Corollary 5.2.12. Let α : Γy X be any free minimal action of Γ on a nonempty compact metrizable
space X . We will explicitly construct a Γ-ideal I ⊆ [Γ → N]<∞ such that σ admits a Baire measurable
I-coloring, while α does not.

Fix a sequence (d0, d1, . . .) ∈ [0;+∞)N such that a ball of radius d0 in Γ contains at least 2 elements, and
for each c ∈ N, a ball of radius dc+1 in Γ contains two disjoint balls of radius dc (such a sequence exists since
Γ is infinite, while every ball of finite radius in Γ is finite). For each c ∈ N, choose Dc ∈ [0;+∞) so that the
set {γ ∈ Γ : 2dc < dist(1, γ) 6 Dc} contains a ball of radius dc.

Let I denote the set of all partial maps ϕ ∈ [Γ→ N]<∞ such that the following holds for all γ ∈ dom(ϕ):
If we let c B ϕ(γ), then for all δ ∈ dom(ϕ),

(1) if dist(γ, δ) 6 2dc, then ϕ(δ) , c;

(2) if 2dc < dist(γ, δ) 6 Dc, then ϕ(δ) > c.

Clearly, I is a Γ-ideal. By definition, we have

I = Locr (I) for r : N→ [0;+∞) : c 7→ Dc,

so I is local. Consider any ϕ ∈ I and γ ∈ Γ \ dom(ϕ). Choose c ∈ N so large that the following statements
are true:

c > ϕ(δ) for all δ ∈ dom(ϕ) and Ball(γ, 2dc) ⊇ dom(ϕ).

Then ϕ ∪ {(γ, c)} ∈ I. This shows that I is extendable. Using Theorem 5.2.10, we then conclude that σ
admits a Baire measurable I-coloring.

Now suppose, towards a contradiction, that f : X → N is a Baire measurable I-coloring of α. Let c0 ∈ N

be any color such that the set A B f −1(c0) is nonmeager. By Lemma 5.5.4, there is a radius R ∈ [0;+∞) such
that the set {x ∈ X : dist(x, A) 6 R} is comeager. Since the set (π f )−1(Col(I)) is also comeager, we can
choose x ∈ X so that

π f (x) ∈ Col(I) and dist(γ · x, A) 6 R for all γ ∈ Γ.

Let ω B π f (x). Since ω ∈ Col(I), Lemma 5.4.10 implies that the set {ω(γ) : γ ∈ Γ} is infinite; in particular,
it contains an element c such that c > c0 and dc > R. Take any γ ∈ Γ with ω(γ) = c. By the choice of Dc,
there is some δ ∈ Γ satisfying

Ball(δ, R) ⊆ Ball(δ, dc) ⊆ {ε ∈ Γ : 2dc < dist(γ, ε) 6 Dc}.

Since ω ∈ Col(I), we have ω(ε) > c for all ε ∈ Ball(δ, R); in particular, there is no ε ∈ Ball(δ, R) with
ω(ε) = c0. But then dist(δ · x, A) > R; a contradiction. �
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6 | Results on weak containment of probability measure-pre-
serving actions

6.1 Weak containment and weak equivalence

Throughout this chapter, Γ denotes a countably infinite group with identity element 1. The concepts of weak
containment and weak equivalence of p.m.p. actions of a countable group Γ were introduced by Kechris
in [Kec10, Section 10(C)]. They were inspired by the analogous notions for unitary representations and are
closely related to the so-called local-global convergence in the theory of graph limits [HLS14]. Roughly
speaking, a p.m.p. action α : Γ y (X, µ) is weakly contained in another p.m.p. action β : Γ y (Y, ν), in
symbols α 4 β, if the interaction between any finite measurable coloring of X and a finite collection of
elements of Γ can be simulated, with arbitrarily small error, by a measurable coloring ofY (see Definition 6.1.1).
If both α 4 β and β 4 α, then α and β are said to be weakly equivalent, in symbols α ' β.

The relation of weak equivalence is much coarser than the conjugacy relation, which makes it relatively
well-behaved. On the other hand, several interesting parameters associated with p.m.p. actions—such as their
cost, type, etc.—turn out to be invariants of weak equivalence. Due to these favorable properties, the relations
of weak containment and weak equivalence have attracted a considerable amount of attention in recent years.
For a survey of the topic, see [BK17b].

A number of equivalent definitions of weak containment exist, and several of them can be found in [BK17b,
§§2.1, 2.2]. We use a slight variation of the characterization given in [BK17b, Theorem 2.5(iv)], due to Abért
and Weiss [AW13, Lemma 8] (see also [Tuc15, Proposition 3.6]). Let α : Γy X be an action of Γ on a set X

and let f : X → k ∈ N be a finite coloring of X . Define an equivariant map π f : X → kΓ by

π f (x)(γ) B f (γ · x) for all x ∈ X and γ ∈ Γ.

Given a p.m.p. action α : Γy (X, µ), k ∈ N, a Borel function f : X → k, and a map w ∈ [Γ → k]<∞, the
(global) frequency Φµ(α, f ,w) of w in (α, f ) with respect to µ is defined by

Φµ(α, f ,w) B µ({x ∈ X : π f (x) ⊇ w}). (6.1.1)

This chapter is partially based on [Ber18b].
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Definition 6.1.1. Let α : Γ y (X, µ) and β : Γ y (Y, ν) be p.m.p. actions of Γ. We say that α is weakly
contained in β, in symbols α 4 β, if for every S ∈ [Γ]<∞ and for all ε > 0, the following holds: Let k ∈ N

and let f : X → k be a Borel function. Then there exists a Borel map g : Y → k satisfying

|Φν(β, g,w) − Φµ(α, f ,w)| < ε for all w : S → k .

If simultaneously α 4 β and β 4 α, then α and β are said to be weakly equivalent, in symbols α ' β.

Burton [Bur16, Corollary 4.2] (see also [BK17b, Theorem 3.3]) proved that if Γ is infinite, then there
exist continuumly many distinct weak equivalence classes. Glasner, Thouvenot, and Weiss [GTW06]
and independently Hjorth (unpublished) proved that the pre-order of weak containment has a maximum
element (see [BK17b, Theorem 3.1]). A complementary result of Abért and Weiss [AW13, Theorem 1] (see
also [BK17b, Theorem 3.5]) asserts that the shift action σ B σ[0;1] : Γy ([0; 1]Γ, λΓ) is minimum among all
free p.m.p. actions of Γ:

Theorem 6.1.2 (Abért–Weiss [AW13, Theorem 1]). If α : Γ y (X, µ) is a free p.m.p. action of Γ, then
σ 4 α.

In §6.2 we strengthen and generalize Theorem 6.1.2 by replacing the frequencies defined in (6.1.1) by
certain pointwise averages. Our results in that section serve as further applications of the Lovász Local
Lemma and its measurable analogs in ergodic theory.

A useful feature of weak equivalence is that the set of all weak equivalence classes carries a natural
compact metrizable topology, introduced by Abért and Elek [AE11]. In §6.3 we study how this topology
interacts with taking products of actions and show that for a certain family of groups, including the non-Abelian
free groups, multiplication of weak equivalence classes is a discontinuous operation.

6.2 Pointwise analogs of the Abért–Weiss theorem

6.2.1 Definitions and results

Let α : Γy X be a Borel action of Γ on a standard Borel space X . Let k ∈ N and let f : X → k be a Borel
function. Fix x ∈ X and � , D ∈ [Γ]<∞. For a map w ∈ [Γ → k]<∞, the local frequency Φx,D(α, f ,w)

of w in (α, f ) with respect to (x,D) is defined by

Φx,D(α, f ,w) B
|{δ ∈ D : π f (δ · x) ⊇ w}|

|D |
. (6.2.1)

There is an obvious relationship between local and global frequencies:

Proposition 6.2.1. Let α : Γ y (X, µ) be a p.m.p. action of Γ. Let k ∈ N and let f : X → k be a Borel
function. If � , D ∈ [Γ]<∞, then for all w ∈ [Γ→ k]<∞, we have

Φµ(α, f ,w) =
∫
X

Φx,D(α, f ,w) d µ(x).
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Proof. Follows from the α-invariance of µ. �

Given the following data:

– Borel actions α : Γy X and β : Γy Y ;

– Borel maps f : X → k and g : Y → k;

– S ∈ [Γ]<∞ and ε > 0;

– µ ∈ Prob(X) and � , D ∈ [Γ]<∞,

let AS,ε(α, f , µ; β, g,D) denote the set of all points y ∈ Y satisfying

|Φy,D(β, g,w) − Φµ(α, f ,w)| < ε for all w : S → k .

Due to Proposition 6.2.1, if ν is a β-invariant probability Borel measure on Y , then for any w : S → k,

|Φν(β, g,w) − Φµ(α, f ,w)| < ε + 1 − ν(AS,ε(α, f , µ; β, g,D)),

so if the measure of the setAS,ε(α, f , µ; β, g,D) is close to 1, then g approximates well the statistics of f and
thus can be used as a witness to the weak containment α 4 β.

We need one last definition before stating our first result. An action α : Γy X is S-free, where S ⊆ Γ, if

γ · x = δ · x =⇒ γ = δ for all γ, δ ∈ S and x ∈ X .

Thus, “free” is the same as “Γ-free.” The following statement is a natural pointwise refinement of the
Abért–Weiss Theorem 6.1.2 (recall that σ B σ[0;1] : Γy ([0; 1]Γ, λΓ) denotes the [0; 1]-shift action of Γ):

Theorem 6.2.2. Let k ∈ N and let f : [0; 1]Γ → k be a Borel function. Fix S ∈ [Γ]<∞ and ε > 0. There exist
S′ ∈ [Γ]<∞ and n ∈ N such that for all D ∈ [Γ]<∞ with |D | > n, the following holds: Let α : Γy X be an
(S′ ∪ D)-free Borel action of Γ on a standard Borel space X and let µ ∈ Prob(X). Then for any δ > 0, there
exists a Borel map g : X → k satisfying

µ(AS,ε(σ, f , λΓ;α, g,D)) > 1 − δ.

The measure µ in the statement of Theorem 6.2.2 is not required to be α-invariant (or even α-quasi-
invariant). We also emphasize that the averaging set D in Theorem 6.2.2 does not depend on the choice of
δ. We do not know if, in general, Theorem 6.2.2 also holds with δ = 0. However, it does so under certain
conditions described in our next two results.

Notice that Theorem 6.2.2 is meaningful even when it is applied with α = σ. In that case, it can be further
strengthened by taking δ = 0 and, moreover, by ensuring that the map g can be obtained by adjusting the
given function f on a set of arbitrarily small measure. Given a standard probability space (X, µ) and Borel
functions f , g : X → k, define

distµ( f , g) B µ({x ∈ X : f (x) , g(x)}).
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Theorem 6.2.3. Let k ∈ N and let f : [0; 1]Γ → k be a Borel function. Fix S ∈ [Γ]<∞ and ε > 0. There
exists n ∈ N such that for every D ∈ [Γ]<∞ with |D | > n, there is a Borel map g : [0; 1]Γ → k satisfying

distλΓ ( f , g) < ε and λΓ(AS,ε(σ, f , λΓ;σ, g,D)) = 1.

Remark. The usual Abért–Weiss Theorem 6.1.2 can be combined with Theorem 6.2.3 to derive the case of
Theorem 6.2.2 for actions that are free and measure-preserving.

Expression (6.2.1) makes sense for an arbitrary Borel action α : Γ y X and does not require fixing a
probability measure on X . It is therefore natural to ask for a purely Borel pointwise version of Theorem 6.1.2,
and indeed, we establish such a version for finitely generated groups of subexponential growth and, more
generally, for uniformly subexponential Borel actions. Let α : Γy X be a Borel action of Γ on a standard Borel
space X . We say that α is uniformly subexponential if for every S ∈ [Γ]<∞ and for all ε > 0, there is n0 ∈ N

such that for all n > n0 and for all x ∈ X , |Sn · x | 6 (1+ε)n, where Sn B {γ1 · · · γn : γi ∈ S for all 1 6 i 6 n}.
For example, if Γ is a finitely generated group of subexponential growth, then every action of Γ is uniformly
subexponential.

Theorem 6.2.4. Let k ∈ N and let f : [0; 1]Γ → k be a Borel function. Fix S ∈ [Γ]<∞ and ε > 0. There exist
S′ ∈ [Γ]<∞ and n ∈ N such that for all D ∈ [Γ]<∞ with |D| > n, the following holds: Let α : Γ y X be a
uniformly subexponential (S′ ∪ D)-free Borel action of Γ on a standard Borel space X . Then there exists a
Borel map g : X → k satisfying

AS,ε(σ, f , λΓ;α, g,D) = X .

It is important to point out that, even though groups of subexponential growth are amenable, the averaging
set D in the statement of Theorem 6.2.4 is not assumed to be a Følner set.

We derive Theorems 6.2.2, 6.2.3, and 6.2.4 from a single combinatorial statement, namely Lemma 6.2.10,
combined with three different measurable versions of the Lovász Local Lemma, two of which were proved in
Chapter 3 (see Theorem 3.4.1 and Corollary 3.5.7) and the other one was established by Csóka, Grabowski,
Máthé, Pikhurko, and Tyros in [Csó+16].

6.2.2 Review of the LLL and its measurable analogs

We will use the Symmetric LLL, see [AS00, Corollary 5.1.2] and Lemma 2.3.6. We will apply the LLL in
the framework similar to that described in Chapter 3 and in §4.4.2, which we review below for the reader’s
convenience.

The Symmetric LLL

Let X be a set and let k ∈ N. Consider any S ∈ [X]<∞. A subset B ⊆ kS is called a bad event over X

with domain dom(B) B S (by convention, dom(�) B �). By definition, every bad event is a subset of
[X → k]<∞. The probability of a bad event B is

P[B] B
|B|
k |S |

.
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A function f : X → k avoids a bad event B if there is no w ∈ B with w ⊆ f . An instance (of the LLL) over
X is a set B of bad events over X . A solution to an instance B is a map f : X → k that avoids all B ∈ B.
For an instance B and a bad event B ∈ B, the neighborhood of B in B is

NB(B) B {B′ ∈ B \ {B} : dom(B′) ∩ dom(B) , �}.

The degree of B in B is degB(B) B |NB(B)|. Let

p(B) B sup
B∈B

P[B] and d(B) B sup
B∈B

degB(B).

An instance B is correct for the Symmetric LLL (the SLLL for short) if

e · p(B) · (d(B) + 1) < 1,

where e = 2.71 . . . denotes the base of the natural logarithm.

Theorem 6.2.5 (Symmetric Lovász Local Lemma; cf. Theorem 3.1.6). Let B be an instance of the LLL
over a set X . If B is correct for the SLLL, then B has a solution.

For finite X , deducing Theorem 6.2.5 from the usual [AS00, Corollary 5.1.2] is routine (see, e.g., [MR02,
p. 41]). The infinite case is derived from the finite one via a straightforward compactness argument.

Measurable versions of the LLL for group actions

Now we describe the measurable analogs of the LLL that we will need to prove Theorems 6.2.2, 6.2.3, and
6.2.4. For simplicity, we will confine the current presentation to the case when the underlying combinatorial
structure is induced by a Borel group action.

Let α : Γy X be a Borel action of Γ on a standard Borel space X and let k ∈ N. For f : X ⇀ k, write

π f (x)(γ) B f (γ · x) for all x ∈ X and γ ∈ Γ such that γ · x ∈ dom( f ),

thus extending the same notation for total functions f : X → k. Let Φ ⊆ [Γ→ k]<∞ be a bad event over Γ.
For x ∈ X , define

Bx(Φ, α) B {w : (dom(Φ) · x) → k : πw(x) ∈ Φ}.

Then Bx(Φ, α) is a bad event with domain dom(Φ) · x (assuming it is nonempty; otherwise the domain of
Bx(Φ, α) is �). Define the instance B(Φ, α) over X as follows:

B(Φ, α) B {Bx(Φ, α) : x ∈ X}.

By definition, a map f : X → k is a solution to B(Φ, α) if and only if π f (x) avoids Φ for all x ∈ X . Given a
function f : X → k, its defect DefΦ( f , α) with respect to Φ is the set of all x ∈ X such that π f (x) does not
avoid Φ. Thus, f is a solution to B(Φ, α) if and only if DefΦ( f , α) = �.

The following result is a corollary of Theorem 3.4.1:
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Theorem 6.2.6 (see Theorem 3.4.1). Let α : Γy X be a Borel action of Γ on a standard Borel space X and
let k ∈ N. Let Φ ⊆ [Γ→ k]<∞ be a bad event over Γ and suppose that the instance B(Φ, α) is correct for the
SLLL. Then, for any µ ∈ Prob(X) and δ > 0, there exists a Borel function f : X → k with µ(DefΦ( f , α)) < δ.

If α = σ, then we can say more:

Theorem 6.2.7 (see Corollary 3.5.7). Let k ∈ N and let Φ ⊆ [Γ→ k]<∞ be a bad event over Γ. Suppose that
the instance B(Φ, σ), restricted to the free part of σ, is correct for the SLLL. Then there is a Borel function
f : [0; 1]Γ → k with λΓ(DefΦ( f , σ)) = 0.

Finally, the following purely Borel version of the LLL was proved by Csóka, Grabowski, Máthé, Pikhurko,
and Tyros [Csó+16]:

Theorem 6.2.8 (Csóka–Grabowski–Máthé–Pikhurko–Tyros [Csó+16]). Let α : Γ y X be a uniformly
subexponential Borel action of Γ on a standard Borel space X and let k ∈ N. Let Φ ⊆ [Γ → k]<∞ be a
bad event over Γ and suppose that the instance B(Φ, α) is correct for the SLLL. Then B(Φ, α) has a Borel
solution f : X → k.

6.2.3 Proofs of Theorems 6.2.2, 6.2.3, and 6.2.4

Let us start with some notation. For k ∈ N, define a map fk : kΓ×N → k by

fk(x) B x(1, 0) for all x : Γ × N→ k .

The space kΓ×N can be identified with (kN)Γ, and so it is equipped with the shift action σ̃k B σkN of Γ. Let
µk be the measure on kΓ×N obtained as the power of the uniform probability measure on k.

Lemma 6.2.9. Let k ∈ N. Fix S ∈ [Γ]<∞ and ε > 0. There exists n ∈ N such that for all D ∈ [Γ]<∞ with
|D | > n, the following statements hold:

(i) Letα : Γy X be an (S∪D)-free Borel action of Γ on a standard Borel space X and let µ ∈ Prob(X).
Then for any δ > 0, there exists a Borel map g : X → k satisfying

µ(AS,ε(σ̃k, fk, µk ;α, g,D)) > 1 − δ.

(ii) There is a Borel map g : kΓ×N → k satisfying

distµk ( fk, g) < ε and µk(AS,ε(σ̃k, fk, µk ; σ̃k, g,D)) = 1.

(iii) Let α : Γy X be a uniformly subexponential (S ∪ D)-free Borel action of Γ on a standard Borel
space X . Then there exists a Borel map g : X → k satisfying

AS,ε(σ̃k, fk, µk ;α, g,D) = X .
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Proofs of Theorems 6.2.2, 6.2.3, and 6.2.4 (assuming Lemma 6.2.9). Let k ∈ N and let f : [0; 1]Γ → k be a
Borel function. Fix S ∈ [Γ]<∞. Owing to the measure isomorphism theorem, we may replace [0; 1] by 2N and
assume that f is a function from 2Γ×N to k. Upon changing f on a set of arbitrarily small measure, we can
arrange f to be continuous (this uses the fact that the space 2Γ×N is zero-dimensional). This means that there
exist R ∈ [Γ]<∞ and ` ∈ N such that the value f (x) for x : Γ × N→ 2 only depends on the restriction of x to
R × `. Set m B 2` . Consider the equivariant bijection 2Γ×N → mΓ×N that maps each x : Γ × N→ 2 to the
function x ′ : Γ × N→ m given by

x ′(γ, i) B (x(γ, im), x(γ, im + 1), . . . , x(γ, im + m − 1)) for all γ ∈ Γ and i ∈ N.

We use this bijection to replace the underlying space 2Γ×N by mΓ×N, after which for every x : Γ × N→ m,
the value f (x) is fully determined by the restriction of π fm (x) to R. It remains to set S′ B RS and apply
Lemma 6.2.9 to the function fm with S′ in place of S and with a small enough ε. �

In the remainder of this subsection, we prove Lemma 6.2.9. Fix k ∈ N, � , S ∈ [Γ]<∞, and ε > 0. For
� , D ∈ [Γ]<∞, let Φ(D) ⊆ [Γ→ k]<∞ denote the bad event over Γ consisting of all functions w : SD→ k

such that for some u : S → k, ���� |{δ ∈ D : (δ · w) ⊇ u}|
|D |

−
1

k |S |

���� > ε.
By definition, if α : Γy X is a Borel action of Γ on a standard Borel space X and g : X → k is a Borel map,
then we have

AS,ε(σ̃k, fk, µk ;α, g,D) = X \ DefΦ(D)(g, α). (6.2.2)

Lemma 6.2.10. There exists n ∈ N such that for all D ∈ [Γ]<∞ with |D | > n and for every (S ∪ D)-free
action α : Γy X , the instance B(Φ(D), α) is correct for the SLLL.

Proof. Let � , D ∈ [Γ]<∞ and let α : Γy X be an (S ∪ D)-free action of Γ. Set Φ B Φ(D), B B B(Φ, α),
and Bx B Bx(Φ, α) for all x ∈ X . By definition,

NB(Bx) = {By ∈ B \ {Bx} : (SD · y) ∩ (SD · x) , �}.

Since (SD · y) ∩ (SD · x) , � if and only if y ∈ (SD)−1SD · x, we obtain

degB(Bx) 6 |(SD)−1SD| − 1 6 |S |2 |D |2 − 1.

(We subtracted 1 since y cannot be equal to x.) Hence d(B) 6 |S |2 |D|2 − 1.
Now we need to bound p(B). To that end, we will use the following concentration result:

Theorem 6.2.11 (Simple Concentration Bound; [MR02, p. 79]). Let ζ be a random variable determined
by s independent trials such that changing the outcome of any one trial can affect ζ at most by c. Then

P[|ζ − Eζ | > t] 6 2 exp
(
−

t2

2c2s

)
.
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Consider any x ∈ X . Fix u : S → k and choose w : (SD · x) → k uniformly at random. Since α is S-free,
for each y ∈ D · x, we have

P[πw(y) ⊇ u] =
1

k |S |
.

Therefore, since α is also D-free,

E[|{y ∈ D · x : πw(y) ⊇ u}|] =
∑

y∈D ·x

P[πw(y) ⊇ u] =
|D |
k |S |

.

For any z ∈ SD · x, if w, v : (SD · x) → k agree on (SD · x) \ {z}, then

{y ∈ D · x : πw(y) ⊇ u} 4 {y ∈ D · x : πv(y) ⊇ u} ⊆ S−1 · z.

Since |S · z | = |S |, we may apply the Simple Concentration Bound with parameters s B |SD · x | 6 |S | |D |,
c B |S |, and t B ε |D | to obtain

P

[����|{y ∈ D : πw(y) ⊇ u}| −
|D |
k |S |

���� > ε |D |
]
6 2 exp

(
−ε2 |D |

2|S |3

)
,

and hence,

P[Bx] 6 2k |S | exp
(
−ε2 |D |

2|S |3

)
,

and the same upper bound is satisfied by p(B). Therefore, B is correct for the SLLL as long as

e · 2k |S | exp
(
−ε2 |D |

2|S |3

)
· |S |2 |D |2 < 1,

which holds whenever |D | is sufficiently large. �

The combination of (6.2.2) and Lemma 6.2.10 with Theorems 6.2.6, 6.2.7, and 6.2.8 immediately yields
most of Lemma 6.2.9. The only claim that remains to be verified is that in part (ii), the function g : kΓ×N → k

can be chosen so that distµk ( fk, g) < ε. The argument for this is somewhat more difficult and involves
reviewing the proof of the measurable LLL in the form of Theorem 6.2.7.

The key tool used to prove Theorem 6.2.7 is theMoser–Tardos algorithm that was developed by Moser
and Tardos in [MT10]. In §3.2, we gave a thorough presentation of their approach. Here we outline, very
briefly, only the most relevant details of Moser–Tardos theory as it applies to our current situation.

Let Φ ⊆ [Γ → k]<∞ be a bad event. For x ∈ kΓ×N, let Bx B Bx(Φ, σ̃k) and let B denote the instance
B(Φ, σ̃k) restricted to the free part of σ̃k . It is not hard to see [AS00, proof of Corollary 5.1.2] that if B is
correct for the SLLL, then

p(B) 6
1

d(B) + 1

(
1 −

1
d(B) + 1

)d(B)
. (6.2.3)

We say that a number ω ∈ [0; 1) is a witness to the correctness of B if

p(B) 6 ω(1 − ω)d(B). (6.2.4)
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In particular, from (6.2.3) we see that 1/(d(B) + 1) is a witness to the correctness of B.
Consider the following inductive construction:

Set t0(x) B 0 for all x ∈ kΓ×N.

Step i ∈ N: Define

gi(x) B x(1, ti(x)) for all x ∈ kΓ×N and A′i B {x ∈ kΓ×N : gi ⊇ w for some w ∈ Bx}.

Choose Ai to be an arbitrary Borel maximal subset of A′i with the property that

(dom(Φ) · x) ∩ (dom(Φ) · y) = � for all distinct x, y ∈ Ai .

(Such Ai exists by [KST99, Proposition 4.2].) Let

ti+1(x) B


ti(x) + 1 if x ∈ dom(Φ) · y for some y ∈ Ai;

ti(x) otherwise.

A sequence A = (Ai)
∞
i=0 obtained via the above procedure is called a Borel Moser–Tardos process. Note

that, by definition, the map g0 always coincides with fk .
Let A = (Ai)

∞
i=0 be a Borel Moser–Tardos process. The sequence t0(x), t1(x), . . . is non-decreasing for

all x ∈ kΓ×N. We say that x ∈ kΓ×N is A-stable if the sequence t0(x), t1(x), . . . is eventually constant. Let
Stab(A) ⊆ kΓ×N denote the set of all A-stable elements. For x ∈ Stab(A), define

t(x) B lim
n→∞

tn(x) and g(x) B x(1, t(x)). (6.2.5)

In is easy to verify (see Proposition 3.2.3) that if dom(Φ) · x ⊆ Stab(A), then x < DefΦ(g, σ̃k). Define the
index Ind(x,A) ∈ N ∪ {∞} of x ∈ kΓ×N in A by

Ind(x,A) B |{i ∈ N : x ∈ Ai}|.

Note that for all x ∈ kΓ×N,
lim
i→∞

ti(x) =
∑

y∈(dom(Φ))−1 ·x

Ind(y,A), (6.2.6)

so x ∈ Stab(A) if and only if the expression on the right hand side of (6.2.6) is finite.

Theorem 6.2.12 (Moser–Tardos [MT10]; cf. Theorem 3.2.5). Let ω ∈ [0; 1) be a witness to the correctness
of B. Then, for any Borel Moser–Tardos process A,∫

kΓ×N
Ind(x,A) d µk(x) 6

ω

1 − ω
. (6.2.7)

To establish Lemma 6.2.9(ii), we will use the following corollary of Theorem 6.2.12:
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Corollary 6.2.13. Let ω ∈ [0; 1) be a witness to the correctness of B. There exists a Borel map g : kΓ×N → k

satisfying
distµk ( fk, g) 6 |dom(Φ)|

ω

1 − ω
and µk(DefΦ(g, σ̃k)) = 0.

Proof. LetA = (Ai)
∞
i=0 be an arbitrary Borel Moser–Tardos process and let g : kΓ×N → k be given by (6.2.5).

From (6.2.6) and Theorem 6.2.12, we get∫
kΓ×N

lim
i→∞

ti(x) d µk(x) =
∫
kΓ×N

∑
y∈(dom(Φ))−1 ·x

Ind(y,A) d µk(x)

[since the measure µk is shift-invariant] = |dom(Φ)|
∫
kΓ×N

Ind(x,A) d µk(x)

6 |dom(Φ)|
ω

1 − ω
< ∞.

In particular, µk(Stab(A)) = 1. This implies that µk(DefΦ(g, σ̃k)) = 0. Furthermore, if x ∈ Stab(A) and
g(x) , fk(x), then t(x) > 0. Thus,

distµk ( fk, g) 6 µk({x ∈ Stab(A) : t(x) > 0}) 6
∫

Stab(A)
t(x) d µk(x) 6 |dom(Φ)|

ω

1 − ω
. �

With Corollary 6.2.13 in hand, we can finish the proof of Lemma 6.2.9:

Proof of Lemma 6.2.9(ii). Let � , D ∈ [Γ]<∞. Set Φ B Φ(D). Let Bx B Bx(Φ, σ̃k) for all x ∈ kΓ×N and let
B denote the instance B(Φ, σ̃k) restricted to the free part of σ̃k . In the light of Corollary 6.2.13, we just need
to argue that if |D | is sufficiently large, then there is a witness ω ∈ [0; 1) to the correctness of B such that

|S | |D |
ω

1 − ω
< ε, (6.2.8)

where ε is a given positive number. Take ω B |S |−2 |D |−2. If |D | is large enough, then this choice of ω
satisfies (6.2.8), so it is only left to make sure that ω is a witness to the correctness of B. Recall that from the
proof of Lemma 6.2.10 we have

p(B) 6 2k |S | exp
(
−ε2 |D |

2|S |3

)
and d(B) 6 |S |2 |D |2 − 1.

Therefore, to establish (6.2.4), it suffices to prove

2k |S | exp
(
−ε2 |D |

2|S |3

)
6

1
|S |2 |D |2

(
1 −

1
|S |2 |D|2

) |S |2 |D |2−1
. (6.2.9)

Note that, since |S |2 |D |2 > 2, we have (1 − |S |−2 |D |−2) |S |
2 |D |2−1 > e−1, and hence (6.2.9) is implied by

2k |S | exp
(
−ε2 |D |

2|S |3

)
6

1
e|S |2 |D |2

,

which holds whenever |D | is sufficiently large. �
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6.3 Multiplication of weak equivalence classes

6.3.1 The space of weak equivalence classes

For a standard probability space (X, µ) and k ∈ N+, let Meask(X, µ) denote the space of all measurable maps
f : X → k, equipped with the pseudometric

distµ( f , g) B µ({x ∈ X : f (x) , g(x)}).

Let α : Γy (X, µ) be a p.m.p. action of Γ. For S ∈ [Γ]<∞, k ∈ N+, and f ∈ Meask(X, µ), define

ϑS,k(α, f ) : S × k × k → [0; 1]

by setting, for all γ ∈ S and i, j < k,

ϑS,k(α, f )(γ, i, j) B µ({x ∈ X : f (x) = i, f (γ · x) = j}).

Thus, ϑS,k(α, f ) is a vector in the unit cube QS,k B [0; 1]S×k×k . For F ⊆ Meask(X, µ), let

ϑS,k(α, F) B {ϑS,k(α, f ) : f ∈ F},

and define ϑS,k(α) to be the closure of the set ϑS,k(α,Meask(X, µ)) in QS,k . Using this notation, we have the
following characterization of weak containment:

Proposition 6.3.1 ([BK17b, §2.2(1)]). Let α and β be p.m.p. actions of Γ. Then α 4 β if and only if for
all S ∈ [Γ]<∞ and k ∈ N+, ϑS,k(α) ⊆ ϑS,k(β). Hence, α ' β if and only if for all S ∈ [Γ]<∞ and k ∈ N+,
ϑS,k(α) = ϑS,k(β).

In view of Proposition 6.3.1, we refer to the sequence

[α] B (ϑS,k(α))S,k,

where S and k run over [Γ]<∞ and N+ respectively, as the weak equivalence class of α. Let

WΓ B {[α] : α : Γy (X, µ), where (X, µ) is atomless}.

A weak equivalence class a ∈ WΓ is free if a = [α] for some free p.m.p. action α (recall that for p.m.p.
actions, “free” means “free almost everywhere”). Define

FWΓ B {a ∈ WΓ : a is free}.

Theorem 6.3.2 ([BK17b, Theorem 3.4]). Let α and β be p.m.p. actions of Γ. If α is free and α 4 β, then β is
also free. In particular, if a ∈ FWΓ, then all p.m.p. actions α with [α] = a are free.
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We now proceed to define the topology onWΓ. For S ∈ [Γ]<∞ and k ∈ N+, the cube QS,k = [0; 1]S×k×k

is equipped with the∞-metric:

dist∞(u, v) = ‖u − v‖∞ B max
γ,i, j
|u(γ, i, j) − v(γ, i, j)|.

Let K(QS,k) denote the set of all nonempty compact subsets of QS,k . For C ∈ K(QS,k), let

Ballε(C) B {u ∈ QS,k : dist∞(u,C) < ε}.

Define the Hausdorff metric on K(QS,k) by

distH (C1,C2) B inf{ε > 0 : C1 ⊆ Ballε(C2) and C2 ⊆ Ballε(C1)}.

This metric makesK(QS,k) into a compact space [Kec95, Theorem 4.26]. By definition, for any p.m.p. action
α, we have ϑS,k(α) ∈ K(QS,k), soWΓ is a subset of the compact metrizable space∏

S,k

K(QS,k),

where the product is over all S ∈ [Γ]<∞ and k ∈ N+, and as such,WΓ inherits a relative topology. The
following fundamental result is due to Abért and Elek:

Theorem 6.3.3 (Abért–Elek [AE11, Theorem 1]; see also [BK17b, Theorem 10.1]). The setWΓ is closed in∏
S,k K(QS,k). In other words, the spaceWΓ is compact.

The subspace FWΓ is also compact:

Theorem 6.3.4 ([BK17b, Corollary 10.7]). The set FWΓ is closed inWΓ.

It is useful to note that the map ϑS,k(α,−) is Lipschitz:

Proposition 6.3.5. Let α : Γy (X, µ) be a p.m.p. action of Γ. If k ∈ N+ and f , g ∈ Meask(X, µ), then, for
any S ∈ [Γ]<∞,

dist∞(ϑS,k(α, f ), ϑS,k(α, g)) 6 2 · distµ( f , g).

Proof. Take any γ ∈ S and i, j < k and let

A B {x ∈ X : f (x) = i, f (γ · x) = j} and B B {x ∈ X : g(x) = i, g(γ · x) = j}.

Then, by definition,

|ϑS,k(α, f )(γ, i, j) − ϑS,k(α, g)(γ, i, j)| = |µ(A) − µ(B)| 6 µ(A 4 B).

If x ∈ A 4 B, then f (x) , g(x) or f (γ · x) , g(γ · x), so µ(A 4 B) 6 2 · distµ( f , g), as desired. �
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6.3.2 The semigroup structure onWΓ

The product of two p.m.p. actions α : Γy (X, µ) and β : Γy (Y, ν) is the action

α × β : Γy (X × Y, µ × ν), given by γ · (x, y) B (γ · x, γ · y).

It can be easily seen that the weak equivalence class of α × β is determined by the weak equivalence classes of
α and β (for completeness, we include a proof of this fact—see Corollary 6.3.12), hence there is a well-defined
multiplication operation onWΓ, namely

[α] × [β] B [α × β].

Equipped with this operation,WΓ is an Abelian semigroup and FWΓ is a subsemigroup (in fact, an ideal) in
WΓ. We are interested in the following natural question:

Question 6.3.6 ([BK17b, Problem 10.36]). IsWΓ a topological semigroup? In other words, is the map
WΓ ×WΓ →WΓ : (a, b) 7→ a × b continuous?

Burton, Kechris, and Tamuz answered Question 6.3.6 positively when the group Γ is amenable [BK17b,
Theorem 10.37]. A crucial role in their argument is played by the identification of the spaceWΓ for amenable
Γ with the space of the so-called invariant random subgroups of Γ [BK17b, Theorem 10.6]. Note that the
continuity of multiplication on the subspace FWΓ for amenable Γ is a triviality, since if Γ is amenable, then
FWΓ contains only a single point [BK17b, p. 15]. On the other hand, if Γ is nonamenable, then FWΓ has
cardinality continuum [Tuc15, Remark 4.3].

In this section we give a negative answer to Question 6.3.6 for a certain class of nonamenable groups Γ,
including the non-Abelian free groups:

Theorem 6.3.7. Let d > 2 and let Γ 6 SLd(Z) be a subgroup that is Zariski dense in SLd(R).

(1) The map FWΓ → FWΓ : a 7→ a × a is discontinuous.

(2) There is b ∈ FWΓ such that the map FWΓ → FWΓ : a 7→ a × b is discontinuous.

As observed in [BK17b, §10.2], part (1) of Theorem 6.3.7 yields the following corollary:

Corollary 6.3.8. There exists a countable group ∆ with a normal subgroup Γ C ∆ of index 2 such that the co-
induction mapWΓ →W∆ is discontinuous.

Proof. Let d > 2 and let Γ 6 SLd(Z) be any Zariski dense subgroup. Set ∆ B Γ × (Z/2Z) and identify Γ
with a normal subgroup of ∆ of index 2 in the obvious way. Then, for any p.m.p. action α of Γ, the restriction
of the co-induced action CInd∆

Γ
(α) back to Γ is isomorphic to α × α. Since the restriction mapW∆ →WΓ is

continuous [BK17b, Proposition 10.10], Theorem 6.3.7(1) forces the co-induction mapWΓ →W∆ to be
discontinuous. For details, see [BK17b, §10.2]. �
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In view of Theorem 6.3.7 and the result of Burton, Kechris, and Tamuz, it is tempting to conjecture that
WΓ is a topological semigroup if and only if Γ is amenable. However, at this point we do not even know
whether multiplication of weak equivalence classes is discontinuous for every countable group that contains a
non-Abelian free subgroup.

Our proof of Theorem 6.3.7 provides explicit examples of sequences of p.m.p. actions that witness the
discontinuity of multiplication onWΓ. We describe one such example here. Let d > 2 and let Γ 6 SLd(Z)

be a Zariski dense subgroup. For a prime p, let Zp denote the ring of p-adic integers. Then SLd(Zp) is an
infinite profinite group. Since SLd(Z) naturally embeds in SLd(Zp), we may identify Γ with a subgroup of
SLd(Zp) and consider the left multiplication action αp : Γy SLd(Zp), which we view as a p.m.p. action by
putting the Haar probability measure on SLd(Zp). Let ap denote the weak equivalence class of αp. Using
the compactness ofWΓ, we can pick an increasing sequence of primes p0, p1, . . . such that the sequence
(api )i∈N converges inWΓ to some weak equivalence class a. Then it follows from our results that the sequence
(api × api )i∈N does not converge to a × a, thus demonstrating that multiplication onWΓ is discontinuous.

The main tools that we use to prove Theorem 6.3.7 come from the study of expansion properties in finite
groups of Lie type, specifically the groups SLd(Z/nZ) for n ∈ N+. Our primary reference for this subject is
the book [Tao15].

The rest of this section is organized as follows. In §6.3.3, we introduce the terminology pertaining to step
functions and use it in §6.3.4 to prove Theorem 6.3.14, an explicit criterion for continuity of multiplication,
which is of some independent interest. The proof of Theorem 6.3.7 is presented in §6.3.5.

6.3.3 Step functions

In this subsection we establish some basic facts pertaining to step functions on products of probability spaces.
In particular, we show that multiplication is a well-defined operation onWΓ.

To begin with, we need a few definitions. Let (X, µ) and (Y, ν) be standard probability spaces and let k,
N ∈ N+. We call a map f ∈ Meask(X × Y, µ × ν) an N-step function if there exist

g ∈ MeasN (X, µ), h ∈ MeasN (Y, ν), and ϕ : N × N → k,

such that f = ϕ ◦ (g, h), i.e., we have

f (x, y) = ϕ(g(x), h(y)) for all x ∈ X and y ∈ Y .

Let Stepk,N (X, µ;Y, ν) ⊆ Meask(X × Y, µ × ν) denote the set of all N-step functions and let

Stepk(X, µ;Y, ν) B
⋃
N ∈N+

Stepk,N (X, µ;Y, ν). (6.3.1)

The maps in Stepk(X, µ;Y, ν) are called step functions. Note that the union in (6.3.1) is increasing. It is a
basic fact in measure theory that the set Stepk(X, µ;Y, ν) is dense in Meask(X × Y, µ × ν).

It will be useful to have a concrete description of the vectors of the form ϑS,k(α × β, f ), where f is a step
function. To that end, we introduce the following operation:

219



Definition 6.3.9. Let k, N ∈ N+ and ϕ : N × N → k. Given S ∈ [Γ]<∞ and vectors u, v ∈ RS×N×N , the
ϕ-convolution u ∗ϕ v ∈ RS×k×k of u and v is given by the formula

(u ∗ϕ v)(γ, i, j) B
∑

(a,b)∈ϕ−1(i)

∑
(c,d)∈ϕ−1(j)

u(γ, a, c) · v(γ, b, d).

The next proposition is an immediate consequence of the definitions:

Proposition 6.3.10. Let α : Γy (X, µ) and β : Γy (Y, ν) be p.m.p. actions of Γ. Let k, N ∈ N+ and

g ∈ MeasN (X, µ), h ∈ MeasN (Y, ν), and ϕ : N × N → k .

Set f B ϕ ◦ (g, h). Then, for any S ∈ [Γ]<∞,

ϑS,k(α × β, f ) = ϑS,N (α, g) ∗ϕ ϑS,N (β, h).

It is useful to note that the ϕ-convolution operation is Lipschitz on QS,N :

Proposition 6.3.11. Let k, N ∈ N+ and ϕ : N × N → k. For all S ∈ [Γ]<∞ and u, v, ũ, ṽ ∈ QS,N ,

dist∞(u ∗ϕ v, ũ ∗ϕ ṽ) 6 N4 · (dist∞(u, ũ) + dist∞(v, ṽ)).

Proof. Since
dist∞(u ∗ϕ v, ũ ∗ϕ ṽ) 6 dist∞(u ∗ϕ v, ũ ∗ϕ v) + dist∞(ũ ∗ϕ v, ũ ∗ϕ ṽ),

it suffices to prove the inequality when, say, v = ṽ. To that end, take γ ∈ S and i, j < k. We have

|(u ∗ϕ v)(γ, i, j) − (ũ ∗ϕ v)(γ, i, j)| 6
∑

(a,b)∈ϕ−1(i)

∑
(c,d)∈ϕ−1(j)

|u(γ, a, c) − ũ(γ, a, c)| · v(γ, b, d)

6 |ϕ−1(i)| · |ϕ−1( j)| · dist∞(u, ũ) 6 N4 · dist∞(u, ũ). �

Corollary 6.3.12. If α, α̃, and β are p.m.p. actions of Γ and α 4 α̃, then α × β 4 α̃ × β. In particular, the
multiplication operation onWΓ is well-defined.

Proof. Let α : Γy (X, µ), α̃ : Γy (X̃, µ̃), and β : Γy (Y, ν) be p.m.p. actions of Γ and suppose that α 4 α̃.
Take any S ∈ [Γ]<∞ and k ∈ N+. ByProposition 6.3.5 and sinceStepk(X, µ;Y, ν) is dense inMeask(X×Y, µ×ν),
it suffices to show that for all f ∈ Stepk(X, µ;Y, ν) and ε > 0, there is f̃ ∈ Meask(X̃ × Y, µ̃ × ν) such that

dist∞(ϑS,k(α × β, f ), ϑS,k(α̃ × β, f̃ )) < ε.

Let N ∈ N+, g ∈ MeasN (X, µ), h ∈ MeasN (Y, ν), and ϕ : N × N → k be such that f = ϕ ◦ (g, h). Since
α 4 α̃, there is a map g̃ ∈ MeasN (X̃, µ̃) with

dist∞(ϑS,N (α, g), ϑS,N (α̃, g̃)) < εN−4.
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From Propositions 6.3.10 and 6.3.11, it follows that the map f̃ B ϕ ◦ (g̃, h) is as desired. �

6.3.4 A criterion of continuity

The purpose of this subsection is to establish an explicit necessary and sufficient condition for the continuity
of multiplication on the space of weak equivalence classes.

Recall that a subset Y of a metric space X is called an ε-net if for every x ∈ X , there is y ∈ Y such that
the distance between x and y is less than ε.

Lemma/Definition 6.3.13. Let α : Γy (X, µ) and β : Γy (Y, ν) be p.m.p. actions of Γ. For any S ∈ [Γ]<∞,
k ∈ N+, and ε > 0, there exists N ∈ N+ such that the set

ϑS,k(α × β, Stepk,N (X, µ;Y, ν))

is an ε-net in ϑS,k(α × β). We denote the smallest such N by NS,k(α, β, ε).
Furthermore, the value NS,k(α, β, ε) is determined by the weak equivalence classes of α and β, so we can

define NS,k([α], [β], ε) B NS,k(α, β, ε).

Proof. By Proposition 6.3.5 and since Stepk(X, µ;Y, ν) is dense in Meask(X × Y, µ × ν), the set

ϑS,k(α × β, Stepk(X, µ;Y, ν))

is dense in ϑS,k(α × β). The existence of NS,k(α, β, ε) then follows since ϑS,k(α × β) is compact.
To prove the “furthermore” part, let α̃ : Γy (X̃, µ̃) and β̃ : Γy (Ỹ, ν̃) be p.m.p. actions of Γ such that

α ' α̃ and β ' β̃. Set N B NS,k(α, β, ε). We have to show that

NS,k(α̃, β̃, ε) 6 N .

Take any u ∈ ϑS,k(α̃ × β̃). Corollary 6.3.12 implies that ϑS,k(α̃ × β̃) = ϑS,k(α × β), so, by the choice of N ,
there is f ∈ Stepk,N (X, µ;Y, ν) such that

δ B ε − dist∞(u, ϑS,k(α × β, f )) > 0.

Let g ∈ MeasN (X, µ), h ∈ MeasN (Y, ν), and ϕ : N ×N → k be such that f = ϕ ◦ (g, h). Since we have α ' α̃
and β ' β̃, there exist maps g̃ ∈ MeasN (X̃, µ̃) and h̃ ∈ MeasN (Ỹ, ν̃) with

dist∞(ϑS,N (α̃, g̃), ϑS,N (α, g)) + dist∞(ϑS,N (β̃, h̃), ϑS,N (β, h)) < δN−4.

Set f̃ B ϕ ◦ (g̃, h̃). Then f̃ ∈ Stepk,N (X̃, µ̃; Ỹ, ν̃), and, from Propositions 6.3.10 and 6.3.11, it follows that

dist∞(u, ϑS,k(α̃ × β̃, f̃ )) < ε.

Since u was chosen arbitrarily, this concludes the proof. �
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Now we can state the main result of this subsection:

Theorem 6.3.14. Let C ⊆ WΓ ×WΓ be a closed set. The following statements are equivalent:

(1) the map C →WΓ : (a, b) 7→ a × b is continuous;

(2) for all S ∈ [Γ]<∞, k ∈ N+, and ε > 0, there is N ∈ N+ such that for all (a, b) ∈ C,

NS,k(a, b, ε) 6 N .

Proof. We start with the implication (1) =⇒ (2). Suppose that (1) holds and assume that for some S ∈ [Γ]<∞,
k ∈ N+, and ε > 0, there is a sequence of pairs (an, bn) ∈ C with NS,k(an, bn, ε) −→ ∞. Since C is compact,
we may pass to a subsequence so that (an, bn) −→ (a, b) ∈ C. By (1), we then also have an × bn −→ a × b.
Set N B NS,k(a, b, ε/3).

Let αn : Γ y (Xn, µn), βn : Γ y (Yn, νn), α : Γ y (X, µ), and β : Γ y (Y, ν) be representatives of the
weak equivalence classes an, bn, a, and b respectively. We claim that NS,k(αn, βn, ε) 6 N for all sufficiently
large n ∈ N, contradicting the choice of (an, bn). Indeed, take any u ∈ ϑS,k(αn × βn). If n is large enough,
then there is v ∈ ϑS,k(α × β) such that

dist∞(u, v) < ε/3.

By the choice of N , there is a step function f ∈ Stepk,N (X, µ;Y, ν) such that

dist∞(v, ϑS,k(α × β, f )) < ε/3.

Let g ∈ MeasN (X, µ), h ∈ MeasN (Y, ν), and ϕ : N × N → k be such that f = ϕ ◦ (g, h). If n is large enough,
then there exist maps g̃ ∈ MeasN (Xn, µn) and h̃ ∈ MeasN (Yn, νn) satisfying

dist∞(ϑS,N (αn, g̃), ϑS,N (α, g)) + dist∞(ϑS,N (βn, h̃), ϑS,N (β, h)) < εN−4/3.

Let f̃ B ϕ ◦ (g̃, h̃). From Propositions 6.3.10 and 6.3.11, it follows that

dist∞(u, ϑS,k(αn × βn, f̃ )) < ε/3 + ε/3 + N4 · (εN−4/3) = ε,

as desired.
Now we proceed to the implication (2) =⇒ (1). Suppose that (2) holds and let (an, bn), (a, b) ∈ C be such

that (an, bn) −→ (a, b). We have to show that an × bn −→ a × b. Let αn : Γ y (Xn, µn), βn : Γ y (Yn, νn),
α : Γ y (X, µ), and β : Γ y (Y, ν) be representatives of the weak equivalence classes an, bn, a, and b
respectively. We must argue that for any S ∈ [Γ]<∞, k ∈ N+, and ε > 0 and for all sufficiently large n ∈ N,

ϑS,k(α × β) ⊆ Ballε(ϑS,k(αn × βn)); (6.3.2)

ϑS,k(αn × βn) ⊆ Ballε(ϑS,k(α × β)). (6.3.3)

To prove (6.3.2), let N B NS,k(α, β, ε/2) and consider any u ∈ ϑS,k(α × β). By the choice of N , there is
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a step function f ∈ Stepk,N (X, µ;Y, ν) such that

dist∞(u, ϑS,k(α × β, f )) < ε/2.

Let g ∈ MeasN (X, µ), h ∈ MeasN (Y, ν), and ϕ : N × N → k be such that f = ϕ ◦ (g, h). If n is large enough,
then there exist maps g̃ ∈ MeasN (Xn, µn) and h̃ ∈ MeasN (Yn, νn) satisfying

dist∞(ϑS,N (αn, g̃), ϑS,N (α, g)) + dist∞(ϑS,N (βn, h̃), ϑS,N (β, h)) < εN−4/2.

Let f̃ B ϕ ◦ (g̃, h̃). From Propositions 6.3.10 and 6.3.11, it follows that

dist∞(u, ϑS,k(αn × βn, f̃ )) < ε/2 + N4 · (εN−4/2) = ε,

i.e., u ∈ Ballε(ϑS,k(αn × βn)), as desired. Notice that this argument did not involve assumption (2).
To prove (6.3.3), we use (2) and choose N so that NS,k(αn, βn, ε) 6 N for all n ∈ N. Consider any

u ∈ ϑS,k(αn × βn). Then there is a step function f ∈ Stepk,N (Xn, µn;Yn, νn) such that

dist∞(u, ϑS,k(αn × βn, f )) < ε/2.

Let g ∈ MeasN (Xn, µn), h ∈ MeasN (Yn, νn), and ϕ : N × N → k be such that f = ϕ ◦ (g, h). If n is large
enough, then there exist maps g̃ ∈ MeasN (X, µ) and h̃ ∈ MeasN (Y, ν) satisfying

dist∞(ϑS,N (α, g̃), ϑS,N (αn, g)) + dist∞(ϑS,N (β, h̃), ϑS,N (βn, h)) < εN−4/2.

Let f̃ B ϕ ◦ (g̃, h̃). From Propositions 6.3.10 and 6.3.11, it follows that

dist∞(u, ϑS,k(α × β, f̃ )) < ε/2 + N4 · (εN−4/2) = ε,

i.e., u ∈ Ballε(ϑS,k(α × β)), and we are done. �

6.3.5 Proof of Theorem 6.3.7

Expansion in SLd(Z/nZ)

For n ∈ N+, we use πn to indicate reduction modulo n in various contexts. That is, we slightly abuse notation
and give the same name to the residue maps

πn : Z→ Z/nZ, πn : SLd(Z) → SLd(Z/nZ), etc.

Let G be a nontrivial finite group. For A, S ⊆ G, the boundary1 of A with respect to S is

∂(A, S) B {a ∈ A : Sa * A}.

1For our purposes it will be more convenient to consider the vertex rather than the edge boundary.
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The Cheeger constant h(G, S) of G with respect to S is given by

h(G, S) B min
A

|∂(A, S)|
|A|

,

where the minimum is taken over all nonempty subsets A ⊆ G of size at most |G |/2. Notice that we have
h(G, S) > 0 if and only if S generates G. Indeed, let 〈S〉 be the subgroup of G generated by S. If 〈S〉 , G, then
|〈S〉| 6 |G |/2, while ∂(〈S〉, S) = �, hence h(G, S) = 0. Conversely, if h(G, S) = 0, then there is a nonempty
proper subset A  G closed under left multiplication by the elements of S. This means that A is a union of
right cosets of 〈S〉, and thus 〈S〉 , G.

Theorem 6.3.15 (Bourgain–Varjú [BV12, Theorem 1]). Let d > 2 and let S ∈ [SLd(Z)]
<∞ be a finite

symmetric subset such that the subgroup 〈S〉 of SLd(Z) generated by S is Zariski dense in SLd(R). Then
there exist n0 ∈ N

+ and ε > 0 such that for all n > 2, if gcd(n, n0) = 1, then

h(SLd(Z/nZ), πn(S)) > ε.

Theorem 6.3.15 is an outcome of a long series of contributions by a number of researchers; for more
background, see [BV12; Tao15] and the references therein.

A finite group G is called D-quasirandom, where D > 1, if every nontrivial unitary representation of G

has dimension at least D (a representation ρ of G is nontrivial if ρ(a) , 1 for some a ∈ G). This notion was
introduced by Gowers [Gow08]. For a map ζ : G→ C, we write

Eζ B
1
|G |

∑
x∈G

ζ(x), ‖ζ ‖∞ B max
x∈G
|ζ(x)|, and ‖ζ ‖2 B

√∑
x∈G

|ζ(x)|2.

Given ζ , η : G→ C, define the convolution ζ ∗ η : G→ C of ζ and η by the formula

(ζ ∗ η)(x) B
∑
ab = x

ζ(a)η(b),

where the sum is taken over all pairs of a, b ∈ G such that ab = x.

Theorem 6.3.16 ([Tao15, Proposition 1.3.7]). Let G be a finite group and let ζ , η : G→ C. Suppose that G

is D-quasirandom. If Eζ = Eη = 0, then

‖ζ ∗ η‖2 6

√
|G |
D
‖ζ ‖2‖η‖2.

In order to apply Theorem 6.3.16, we will need the following variation of Frobenius’s lemma:

Proposition 6.3.17 (cf. [Tao15, Lemma 1.3.3]). Let d, n > 2 and let p be the smallest prime divisor of n.
Then the group SLd(Z/nZ) is (p − 1)/2-quasirandom.

Proof. The statement is trivial for p = 2, so assume that p is odd. Write n as a product of powers of distinct
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primes: n = pk1
1 · · · p

kr
r . Then, by the Chinese remainder theorem,

SLd(Z/nZ) � SLd(Z/p
k1
1 Z) × · · · × SLd(Z/pkrr Z).

Since the product of D-quasirandom groups is again D-quasirandom [Tao15, Exercise 1.3.2], it is enough to
consider the case when r = 1 and n = pk .

Let ρ be a nontrivial finite-dimensional unitary representation of SLd(Z/pkZ). By [HO89, Theorem 4.3.9],
the group SLd(Z/pkZ) is generated by the elementary matrices, i.e., those that differ from the identity
matrix in precisely one off-diagonal entry. Thus, there exists an elementary matrix e ∈ SLd(Z/pkZ) such
that ρ(e) , 1. Without loss of generality, we may assume that e is of the form

e =

©«
1 a · · · 0
0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

ª®®®®®®¬
,

where 0 , a ∈ Z/pkZ. Choose e so as to maximize the power of p that divides a. Let λ be an arbitrary
eigenvalue of ρ(e) not equal to 1 (such λ exists since ρ(e) , 1 and is unitary). We have

ep =

©«
1 pa · · · 0
0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

ª®®®®®®¬
,

so, by the choice of e, ρ(e)p = ρ(ep) = 1. Hence, λp = 1, so the values λ, λ2, . . . , λp−1 are pairwise distinct.
Let b ∈ N+ be an integer coprime to p and let c B b2. Since b is invertible in Z/pkZ, we can form a
diagonal matrix h ∈ SLd(Z/pkZ) with entries (b, b−1, 1 . . . , 1). Then h−1 is the diagonal matrix with entries
(b−1, b, 1, . . . , 1), and we have

heh−1 =

©«
1 ca · · · 0
0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

ª®®®®®®¬
= ec .

This shows that e and ec are conjugate in SLd(Z/pkZ), and hence ρ(e) and ρ(e)c are conjugate as well.
Since λc is an eigenvalue of ρ(e)c , it must also be an eigenvalue of ρ(e). It remains to notice that there exist
(p − 1)/2 choices for c that are distinct modulo p (corresponding to the (p − 1)/2 nonzero quadratic residues
modulo p), so ρ(e) must have at least (p − 1)/2 distinct eigenvalues, which is only possible if the dimension
of ρ is at least (p − 1)/2. �
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The main lemma

For the rest of §6.3.5, fix d > 2 and let Γ be a subgroup of SLd(Z) that is Zariski dense in SLd(R).
For n > 2, define Gn B SLd(Z/nZ). Let αn : Γy Gn be the action given by

γ · x B πn(γ)x for all γ ∈ Γ and x ∈ Gn.

We view αn as a p.m.p. action by equipping Gn with the uniform probability measure (to simplify notation,
we will avoid mentioning this measure explicitly).

The group Γ has a Zariski dense finitely generated subgroup (by Tits’s theorem [Tit72, Theorem 3], such
a subgroup can be chosen to be free of rank 2), so fix an arbitrary finite symmetric set S ∈ [Γ]<∞ such that the
group 〈S〉 is Zariski dense in SLd(R). Fix n0 ∈ N

+ and ε > 0 provided by Theorem 6.3.15 applied to S and let

δ B
ε

32|S |
.

Define u ∈ [0; 1]S×2×2 by setting, for all γ ∈ S and i, j < 2,

u(γ, i, j) B


1/2 if i = j;

0 if i , j .

The heart of the proof of Theorem 6.3.7 lies in the following lemma:

Lemma 6.3.18. Let n, m > 2 be such that n divides m and gcd(m, n0) = 1. Let p be the smallest prime divisor
of n and let

N B

⌊
1
25

√
p − 1

⌋
.

Assume that N > 1. Then u ∈ ϑS,2(αn × αm), yet for all f ∈ Step2,N (Gn; Gm), we have

dist∞(u, ϑS,2(αn × αm, f )) > δ.

In particular, NS,2(αn, αm, δ) > N .

Proof. Let proj2 : Gn×Gm → Gm denote the projection on the second coordinate. Note that, by definition, the
map proj2 is equivariant. Since n divides m, there is a well-defined reduction modulo n map πn : Gm → Gn,
and it is surjective. For z ∈ Gn, define

Oz B {(x, y) ∈ Gn × Gm : x = πn(y)z}.

Evidently, the set Oz is (αn × αm)-invariant. Furthermore, the map proj2 establishes an equivariant bijection
between Oz and Gm. Since gcd(m, n0) = 1, Theorem 6.3.15 implies that the action αm is transitive, and hence
so is the restriction of the action αn × αm to Oz . Thus, the orbits of αn × αm are precisely the sets Oz for
z ∈ Gn.
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Given a subset Z ⊆ Gn, define fZ : Gn × Gm → 2 by

fZ (x, y) B


0 if πn(y)−1x < Z;

1 if πn(y)−1x ∈ Z .

The functions of the form fZ for Z ⊆ Gn are precisely the (αn × αm)-invariant maps Gn × Gm → 2.
Now we can show that u ∈ ϑS,2(αn × αm). The group Gn contains an element of order 2, namely the

diagonal matrix with entries (−1,−1, 1, . . . , 1), so |Gn | is even. Hence, for any set Z ⊂ Gn of size exactly
|Gn |/2, we have ϑS,2(αn × αm, fZ ) = u, as desired.

For z ∈ Gn and A ⊆ Oz , define the boundary of A by

∂A B {(x, y) ∈ A : S · (x, y) * A}.

Suppose that |A| 6 |Gm |/2 (note that |Gm | = |Oz |). Then, since proj2 establishes an equivariant bijection
between Oz and Gm, Theorem 6.3.15 yields

|∂A| > ε |A|. (6.3.4)

Claim (A). Let f : Gn × Gm → 2 be such that

dist∞(u, ϑS,2(αn × αm, f )) < δ. (6.3.5)

Then there is a set Z ⊆ Gn such that dist( f , fZ ) < 1/16.

Proof. For each γ ∈ S, let

Bγ B {(x, y) ∈ Gn × Gm : f (x, y) , f (γ · x, γ · y)},

and define B B
⋃
γ∈S Bγ. By (6.3.5), for any γ ∈ S, we have

|Bγ |
|Gn | |Gm |

= ϑS,2(αn × αm, f )(γ, 0, 1) + ϑS,2(αn × αm, f )(γ, 1, 0) < 2δ,

and therefore
|B| < 2δ |S | |Gn | |Gm | =

ε

16
|Gn | |Gm |.

We will show that the set

Z B {z ∈ Gn : f (x, y) = 1 for at least |Gm |/2 pairs (x, y) ∈ Oz}

is as desired. Define
A B {(x, y) ∈ Gn × Gm : f (x, y) , fZ (x, y)},

so dist( f , fZ ) = |A|/(|Gn | |Gm |). Take any z ∈ Gn. By the definition of Z , we have |A ∩ Oz | 6 |Gm |/2, and
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hence, by (6.3.4),
|∂(A ∩ Oz)| > ε |A ∩ Oz |.

Note that ∂(A ∩ Oz) ⊆ B ∩ Oz , so we have

|B ∩ Oz | > |∂(A ∩ Oz)| > ε |A ∩ Oz |.

Hence,
|A| =

∑
z∈Gn

|A ∩ Oz | 6
∑
z∈Gn

ε−1 |B ∩ Oz | = ε−1 |B| <
1
16
|Gn | |Gm |.

In other words, dist( f , fZ ) < 1/16, as claimed. a

For ζ : Gn → C and ξ : Gm → C, define ζ ~ ξ : Gn → C by the formula

(ζ ~ ξ)(x) B
∑

aπn(b)= x

ζ(a)ξ(b),

where the sum is taken over all pairs of a ∈ Gn and b ∈ Gm such that aπn(b) = x. We will need the following
corollary of Theorem 6.3.16 and Proposition 6.3.17:

Claim (B). Let ζ , η : Gn → C and ξ : Gm → C. Then

‖(ζ ∗ η) ~ ξ − (Eζ)(Eη)(Eξ)|Gn | |Gm |‖∞ 6

√
2|Gm |

p − 1
‖ζ ‖2‖η‖2‖ξ‖2.

Proof. This is a variant of [Tao15, Exercise 1.3.12]. After subtracting its expectation from each function, we
may assume that Eζ = Eη = Eξ = 0. By the Cauchy–Schwarz inequality, we have

‖(ζ ∗ η) ~ ξ‖∞ 6

√
|Gm |

|Gn |
‖ζ ∗ η‖2‖ξ‖2,

while Theorem 6.3.16 and Proposition 6.3.17 yield

‖ζ ∗ η‖2 6

√
2|Gn |

p − 1
‖ζ ‖2‖η‖2. a

We use Claim (B) to prove that invariant maps are hard to approximate by step functions:

Claim (C). Let f ∈ Step2,N (Gn; Gm) and Z ⊆ Gn. Suppose that min{|Z |, |Gn | − |Z |} > |Gn |/4. Then
dist( f , fZ ) > 1/8.

Proof. Let g : Gn → N , h : Gm → N , and ϕ : N × N → 2 be such that f = ϕ ◦ (g, h). For i < N , set
Xi B g−1(i). Thus, {Xi : i < N} is a partition of Gn into N pieces. Given i < N and j < 2, let

Yi, j B {y ∈ Gm : ϕ(i, h(y)) = j} = {y ∈ Gm : f (x, y) = j for all x ∈ Xi}.
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Note that Yi,0 ∪ Yi,1 = Gm. Define

A B {(x, y) ∈ Gn × Gm : f (x, y) , fZ (x, y)},

so dist( f , fZ ) = |A|/(|Gn | |Gm |). Let 1Gn be the identity element of Gn, and for each set F ⊆ Gn, let
1F : Gn → 2 denote the indicator function of F. Then, for any i < N , we have

|(Xi × Yi,0) ∩ A| = |{(x, y) ∈ Xi × Yi,0 : fZ (x, y) = 1}|

= |{(z, x, y) ∈ Z × Xi × Yi,0 : zx−1πn(y) = 1Gn }|

= ((1Z ∗ 1X−1
i
) ~ 1Yi,0)(1Gn ).

By Claim (B), the last expression is at least

|Z | |Xi | |Yi,0 |
|Gn |

−

√
2|Gm | |Z | |Xi | |Yi,0 |

p − 1
>
|Xi | |Yi,0 |

4
−

√
2

p − 1
|Gn | |Gm |.

Similarly, we have

|(Xi × Yi,1) ∩ A| >
|Xi | |Yi,1 |

4
−

√
2

p − 1
|Gn | |Gm |,

and hence

|(Xi × Gm) ∩ A| >
|Xi | |Gm |

4
−

√
8

p − 1
|Gn | |Gm |.

Therefore,

|A| =
∑
i<N

|(Xi × Gm) ∩ A| >

(
1
4
− N

√
8

p − 1

)
|Gn | |Gm | >

1
8
|Gn | |Gm |,

and thus dist( f , fZ ) > 1/8, as desired. a

It remains to combine Claims (A) and (C). Suppose that f ∈ Step2,N (Gn; Gm) satisfies

dist∞(u, ϑS,2(αn × αm, f )) < δ.

By Claim (A), there is a set Z ⊆ Gn such that dist( f , fZ ) < 1/16. By Proposition 6.3.5, we have

dist∞(u, ϑS,2(αn × αm, fZ )) < δ + 2 · (1/16) < 1/4.

In particular, for any γ ∈ S,

|Z |
|Gn |

= ϑS,2(αn × αm, fZ )(γ, 1, 1) > u(γ, 1, 1) − 1/4 = 1/4,

i.e., |Z | > |Gn |/4, and, similarly, |Gn | − |Z | > |Gn |/4. Therefore, by Claim (C), dist( f , fZ ) > 1/8, which is a
contradiction. The proof of Lemma 6.3.18 is complete. �
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Finishing the proof

We say that N ⊆ N+ is a directed set if N is infinite and for any two elements n1, n2 ∈ N , there is some
m ∈ N divisible by both n1 and n2. Each directed set N ⊆ N+ gives rise to an inverse system consisting of
the groups (Gn)n∈N together with the homomorphisms πn : Gm → Gn for every pair of n, m ∈ N such that
n divides m. The inverse limit of this system is an infinite profinite group, which we denote by GN . For
example, if we let

N(p) B {p, p2, p3, . . .}

for some prime p, then GN(p) � SLd(Zp), where Zp is the ring of p-adic integers.
IfN ⊆ N+ is a directed set, then SLd(Z) naturally embeds into GN , so we can identify Γ with a subgroup

of GN . This allows us to consider the left multiplication action αN : Γy GN . As the group GN is compact,
we can equip GN with the Haar probability measure and view αN as a p.m.p. action. Clearly, the action αN
is free. Note that for each n ∈ N , there is a well-defined reduction modulo n map πn : GN → Gn, which
is equivariant and pushes the Haar measure on GN forward to the uniform probability measure on Gn. In
particular, αn is a factor of αN , and hence αn 4 αN .

The following is a direct consequence of Lemma 6.3.18:

Lemma 6.3.19. LetN ,M ⊆ N+ be directed sets such thatN ⊆ M and gcd(m, n0) = 1 for all m ∈ M. Let p

be the smallest prime number that divides an element of N and let

N B

⌊
1
25

√
p − 1

⌋
.

Assume that N > 1. Then u ∈ ϑS,2(αN × αM), yet for all f ∈ Step2,N (GN ; GM), we have

dist∞(u, ϑS,2(αN × αM, f )) > δ.

In particular, NS,2(αN, αM, δ) > N .

Proof. To prove that u ∈ ϑS,2(αN × αM), take any n ∈ N , n > 2. Since αn 4 αN , αM , it follows from
Corollary 6.3.12 that αn × αn 4 αN × αM , and, by Lemma 6.3.18, we obtain

u ∈ ϑS,2(αn × αn) ⊆ ϑS,2(αN × αM).

Now suppose that some f ∈ Step2,N (GN ; GM) satisfies

dist∞(u, ϑS,2(αN × αM, f )) < δ. (6.3.6)

Let g ∈ MeasN (GN), h ∈ MeasN (GM), and ϕ : N × N → 2 be such that f = ϕ ◦ (g, h). After modifying the
maps g and h on sets of arbitrarily small measure, we can arrange that there exist integers n ∈ N and m ∈ M

and functions g̃ : Gn → N and h̃ : Gm → N such that

g = g̃ ◦ πn and h = h̃ ◦ πm.
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Using Propositions 6.3.10 and 6.3.11, we can ensure that inequality (6.3.6) is still valid after this modification.
We may furthermore assume that n > 2 and n divides m (the last part uses that N ⊆ M andM is a directed
set). Let f̃ B ϕ ◦ (g̃, h̃). Then f̃ ∈ Step2,N (Gn; Gm) and

ϑS,2(αn × αm, f̃ ) = ϑS,2(αN × αM, f ).

But the existence of such f̃ contradicts Lemma 6.3.18. �

Now we can complete the proof of Theorem 6.3.7:

Proof of Theorem 6.3.7. Recall that Γ is a Zariski dense subgroup of SLd(Z) with d > 2; S is a finite
symmetric subset of Γ such that the group 〈S〉 is still Zariski dense; n0 ∈ N+ and ε > 0 are given by
Theorem 6.3.15 applied to S; and δ = ε/(32|S |).

(1) By Lemma 6.3.19, we have

lim
p prime

NS,2(αN(p), αN(p), δ) = ∞.

The desired conclusion follows by applying Theorem 6.3.14 to the set C B {(a, a) : a ∈ FWΓ}.
(2) LetM B {m ∈ N+ : gcd(m, n0) = 1}. ThenM is a directed set, and we claim that b B [αM] is as

desired. Indeed, by Lemma 6.3.19, we have

lim
p prime

NS,2(αN(p), αM, δ) = ∞,

so it remains to apply Theorem 6.3.14 to the set C B {(a, b) : a ∈ FWΓ}. �
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