
c© 2018 Karan Chawla

FULL SEASON NAVIGATION AND CONTROL OF ULTRA-COMPACT
AUTONOMOUS AG-BOT IN GPS DENIED ENVIRONMENT

BY

KARAN CHAWLA

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Aerospace Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2018

Urbana, Illinois

Adviser:

Assistant Professor Girish Chowdhary

ABSTRACT

This thesis describes perception and an autonomous navigation system for an ultra-lightweight

ground robot in agricultural fields. The system is designed for reliable navigation under clut-

tered canopies using only a 2-D Hokuyo UST-10LX LiDAR and an RTK GPS as the primary

sensors for navigation. Its purpose is to ensure that the robot can navigate through rows of

crops without damaging the plants in narrow row-based and high-leaf-cover semi-structured

crop plantations, such as corn (Zea mays), sorghum (Sorghum bicolor) and soybean (Glycine

max). The fundamental contributions of this work are a GPS-INS based reliable localization

system for the robot and a LiDAR-based navigation algorithm capable of rejecting outlying

measurements in the point-cloud due to plants in adjacent rows, low-hanging leaf cover, or

weeds. Finally, this work describes a behavior-based navigation architecture that enables

the system to autonomously traverse a breeding field throughout the planting season.

ii

To my parents, for their love and support.

iii

ACKNOWLEDGMENTS

I would like to first and foremost thank my parents and family, for fostering my curiosity

and having my back every time I failed. To my mother, for believing in me. To my father,

for sacrificing so much to provide me with opportunities, he never had. To my advisor, Dr.

Girish Chowdhary for his enthusiasm, encouragement, and support, and for giving me the

opportunity to work on this project. To Hunter Young, for the development of simulation.

To Nolan Replogle and Joey Byrnes, who offered their expert and candid advice during

my time in the lab. To Lukas Renker and Sri Theja Vuppala, for their help with testing

and debugging. And finally, to my friends who gave me the necessary distractions from my

research and made my stay in Champaign memorable.

iv

TABLE OF CONTENTS

LIST OF FIGURES . vi

LIST OF ABBREVIATIONS . viii

LIST OF SYMBOLS . x

CHAPTER 1 INTRODUCTION . 1
1.1 Motivation . 2
1.2 Related Work . 3
1.3 TerraSentia Robot . 7
1.4 Simulation Environment . 10
1.5 Objective and Approach . 10
1.6 Overview . 10

CHAPTER 2 STATE ESTIMATION AND LOCALIZATION 12
2.1 State Estimation using Extended Kalman Filter 12
2.2 Sensor Data . 13
2.3 Kinematic Equations for a Skid Steering Robot 14
2.4 Extended Kalman Filter . 16
2.5 Implementation and Results . 19

CHAPTER 3 AUTONOMOUS NAVIGATION . 24
3.1 Autonomous Navigation Architecture . 24
3.2 Early Season Navigation . 26
3.3 Late Season Navigation . 27
3.4 Control . 35
3.5 Perception Subsystem Configuration . 37
3.6 Results . 37

CHAPTER 4 CONCLUSION AND FUTURE WORK 41

CHAPTER 5 REFERENCES . 43

APPENDIX A ROS-GAZEBO SIMULATION . 47

v

LIST OF FIGURES

1.1 Gene sequencing costs from 2002 to 2016 [1] 3
1.2 Commercial ground robot platforms . 4
1.3 Weight-price comparison for different mobile robots available in the market

with Terrasentia . 5
1.4 TerraSentia CAD drawings with a suite of sensors. a. 1. Hukuyo UST-

10LX LiDAR sensor, 2. Embedded visual sensor, 3. 2-axes camera gimbal,
4. Li-Ion Battery Bay, 5. GNSS receiver b. Isometric view of the robot . . . 8

1.5 Comparison of the lidar measurements in a Sorghum field across different
seasons: (a) Early Season (b) Mid Season (c) Late Season 9

1.6 Comparison of the simulation environment and the real world: (a) Ter-
rasentia in the Gazebo simulation environment (b) Terrasentia in a corn
field . 10

2.1 Deriving the skid steer kinematics for Terrasentia robot 15
2.2 Illustration of the Prediction and Correction steps of EKF 18
2.3 Comparison of estimated x and y position with the GPS coordinates −

tested in the field . 21
2.4 Detailed view of the estimated position with the GPS coordinates 21
2.5 Comparison of estimated position with RTK GPS position: (a) Error in

the estimated x position with RTK GPS position as reference (b) Error in
the estimated y position with RTK GPS position as reference 22

2.6 EKF state estimates . 22
2.7 Uncertainty in state variables over 355 iterations of the EKF 23

3.1 High-level Navigation Architecture . 24
3.2 Utility of different sensors over the season 25
3.3 State Machine for modeling different Behaviors 26
3.4 GPS signal strength as the robot navigates through the field as the season

progresses, blue representing sensor reliability and red represents unreliability 27
3.5 An illustration of the crop cloud points and the lines generated by RANSAC

with the properties of the lines: a, bl, and br 28
3.6 Illustration showing the Out-Row turning maneuver by Terrasentia where

blue is In-Row state and orange is Out-Row state 36
3.7 Laser scan cloud pre and post-filtering (a) Raw laser scan (b) Filtered laser

scan showing the ROI . 37

vi

3.8 Testing environment: (a) View from the front camera (b) Testing environ-
ment setup for perception and autonomy . 38

3.9 Estimated row widths with RANSAC . 39
3.10 Estimated row widths after filtering with EKF 39
3.11 Computation time for row fitting algorithm(RANSAC & EKF) 40
3.12 Commanded yaw rate as the robot autonomously traverses a corn row(Row

Following State) and takes a turn(Turn State) 40

4.1 FCN detecting the row center and heading for vision based early-season
navigation . 42

A.1 An overview of ROS-Gazebo simulation environment 47
A.2 ROS HIL architecture . 48

vii

LIST OF ABBREVIATIONS

ARPA-E Advanced Research Project Agency-Energy

CAD Computer Aided Drawing

CMU Carnegie Melon University

COM Center of Mass

CSS Corn, Sorghum and Soybean

HIL Hardware In the Loop

IMU Inertial Measurement Unit

INS Inertial Navigation System

EKF Extended Kalman Filter

FCN Fully Connected Network

GNSS Global Navigation Satellite Systems

GPS Global Positioning System

KF Kalman Filter

PWM Pulse-Width Modulation

RANSAC Random Sampling Consensus

ROI Region of Interest

ROS Robot Operating System

PF Particle Filter

PLA Polylactic Acid

RGB Red Green Blue(color-space)

RTK Real Time Kinetic

viii

UAV Unmanned Aerial Vehicle

USB Universal Serial Bus

ix

LIST OF SYMBOLS

Cr point cloud to the right of COM at time step k

Cl point cloud to the left of COM at time step k

Ll left estimated line

Lr right estimated line

bl y intercept of Ll

br y intercept of Lr

a slope of the parallel lines Ll and Lr

Ll,k−1|k−1 initial state of the left line

Lr,k−1|k−1 Initial state of the right line

Ll,k|k−1 predicted state of the left line

Lr,k|k−1 predicted state of the right line

Ll,k|k updated state of the left line

Lr,k|k updated state of the right line

x

CHAPTER 1

INTRODUCTION

There has been an increased focus on automation in the agricultural industry for the past

several years, predominantly on the expensive and enormous farm machines that sow, fertil-

ize, and harvest commodity crops such as wheat, corn, and cotton. Specialty crops such as

strawberries, broccoli, and cabbage have recently become the target of robotics researchers

and startups due to the continued increase in labor costs in conjunction with the decrease

in labor availability, though harvesting these crops usually requires fine manipulation tasks,

and are therefore more difficult to automate.

Although the interest in smaller robots for precision agriculture has increased over the past

decade, the current cost of production and implementation, unfortunately, prevents these

systems from becoming more than just a line in a massive manufacturer’s R&D budget [2].

Small, compact and agile ground robots are currently more useful for plant scientists and

breeders, as their test and breeding fields tend to be orders of magnitude lower than typical

large commercial tracts that dominate nearly 40% of land in the U.S. [1].

Reliable autonomous navigation in cluttered and unstructured canopies of current agri-

cultural fields, where GNSS signals are unreliable and are the key to enabling low-cost,

light-weight, and compact agrarian robots. This scenario is especially real for small robots

that are designed to go under the canopy to obtain critical measurements of plant char-

acteristics or perform other management activities. Present generation large and massive

farm vehicles that have undergone automation operate over the canopy of the crop and use

RTK GPS to navigate through the fields. Autonomous navigation is then achieved merely

via waypoint following algorithms since GNSS is a reliable source for navigation above the

crop canopy. However, GNSS signal strength can be unreliable under the canopy due to

multi-path errors and signal attenuation.

In this thesis, we address the problem above of under-canopy autonomous navigation in

unstructured modern agricultural fields. We present the development and implementation

of several methods for localizing the robot globally and locally within crop rows (formed

by planting crops in straight parallel lines), and navigating them accordingly. The methods

described in this thesis, autonomously detect these rows and use adaptive guidance logic

1

to navigate the robot through unstructured fields, enabling it to collect data as it drives

through the rows while maintaining a fixed distance to one of the sides. The perception and

navigation stack described in this work also enables the robot to detect the end of the row

and guides it to move into the next row, allowing the system to be completely autonomous.

1.1 Motivation

1.1.1 TERRA Project

Sorghum, which is similar to corn, is a highly diverse plant with over 40,000 accessions.

This wide inter-accession variation offers tremendous potential for sorghum to be bred for

specialized purposes, such as biofuel, fodder, and even alcohol for human consumption [2].

Consequently, U.S. Department of Energy ARPA-E 1 began the TERRA program aimed at

facilitating the improvement in genetic gains of bio-energy sorghum through the develop-

ment and integration of high-throughput plant breeding technologies, and it is through this

program that the research presented here is funded [3].

1.1.2 Plant Breeding and Phenotyping

The traditional approach to plant breeding involves growing a large number of plant breeds

with a wide variety of traits and subsequently selecting plants that exhibit desirable charac-

teristics, and interbreeding those varieties to produce new generations with a combination

of these desirable characteristics.

Plant breeding in the 21st century is in many ways similar to the traditional process. More

importantly, as a result of the genomic revolution, the past ten years has seen a five order

of magnitude decrease in the cost of gene sequencing, significantly increasing the quantity of

genetic data available to plant scientists [4]. In contrast, the cost and speed of detecting and

quantifying the expression of genetic traits have remained unchanged, and as a consequence

plant scientists cannot take the full advantage of the more comfortable access to genetic

data.

To efficiently research successful genetic traits, plant scientists need to map the physio-

logical and morphological expressions (phenotypes) of a plant genotype to specific genetic

1The information, data, or work presented herein was funded in part by the Advanced Research Projects
Agency-Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-AR0000598. The views
and opinions of author expressed herein do not necessarily state or reflect those of United States Government
or any agency thereof.

2

Figure 1.1: Gene sequencing costs from 2002 to 2016 [1]

markers in the plant genome. If they are successful in establishing the relationship between

the phenotypes and genotypes, they reduce the need for a large number of iterations while

performing phenotyping experiments to achieve desirable characteristics. Unfortunately, the

rate at which plant scientists measure and analyze phenotypes is significantly lower than the

speed of research. This bottleneck is well-recognized by the research community, which has

termed it Phenotyping Bottleneck [4].

Research has shown that plants of the same genotype express phenotypic variation when

grown in the field as compared to a greenhouse setting. The end goal of a typical breeding

program is to develop seeds that will be used on farms; it follows that breeding trials need

to be performed in the field under expected environmental conditions to ensure the success

of the program [5].

Collecting phenotypes in the field is an arduous task, performed primarily by the plant

scientists and graduate students under hot, humid and pest-ridden conditions using rudimen-

tary tools such as calipers and yardsticks. Over the past ten years, a wide array of platforms

have been developed to automate and expedite the extraction of phenotypic information

from plants grown in field, including blimps [6], UAVs [7], over-row tractor platforms [8] [9],

and gantry systems [10]. Unfortunately, none of these platforms have been able to provide

data from beneath the crop canopy of a tall crop like bio-energy sorghum during the late

season.

1.2 Related Work

Lightweight and compact agricultural ground robots address the critical niche between the

heavy and over-sized agricultural equipment used in the modern day farms and human

utilized tools. They enable versatile applications in modern farms and enable location-

3

(a) Clearpath Husky [15]
(b) Robotnik Summit XL
[16]

(c) The Robotanist [2]

(d) Wine Robot, Naio Tech.
[18] (e) QinetiQ TALON [19]

(f) Omron Technologie Inc.
Seekur Jr. [20]

Figure 1.2: Commercial ground robot platforms

specific management and remote-sensing of crops. As such there have many ground robots

that have been investigated for agricultural purposes. Robotanist [2] is used for autonomous

phenotyping, Hall et al. introduces weed scouting robot AgBotII [11], Thorvald platform [12]

is designed to be a multi-purpose ground robot for seeding, weeding, and harvesting. Haibo

et al. present a wheat precision seeding robot [13], and Torgersen [14] provides in-depth

details for the design of the NMBU Mobile Robot. ClearPath Robotics Inc. has developed

a range of field-tested all-terrain robots, including the Grizzly, the Husky, and the Jackal.

These platforms have been used in a wide range of conditions, from mapping and navigating

in dense forests [15]. Robotnik S.L.L has developed several ground robots that have been

used to deploy sensors for precision agriculture, including the Guardian and Summit XL

[16]. Rowbot Systems has developed a platform that is designed to travel between crop rows

autonomously [17].

A critical difference between the robots above and the one considered for this work, is that

the latter is an order of magnitude lighter(just under 7 kg) compared to the former ones (over

100 kg). While a plethora of ground robots are available in the market, no other meet the

specific operative, feature, and performance requirements of the platform, nor do they offer

the modularity that will enable this platform to be successfully employed throughout the life

of the project.

4

Figure 1.3: Weight-price comparison for different mobile robots available in the market
with Terrasentia

A GNSS system, typically augmented with RTK differential correction, can provide highly

accurate latitude and longitude information provided it has an unobstructed view of GNSS

satellites. As was mentioned earlier, GNNS-based navigation systems have been used for

guiding autonomous agricultural tractors([21], [22], [23], [24]) and even smaller autonomous

over the canopy robots([25], [26]). However, GNSS receivers suffer from occlusion, atten-

uation, and multi-path errors under dense crop canopies. Additionally, GNSS based nav-

igation unless augmented with 2D/3D LiDAR, cannot detect obstacles such as animals,

humans, stubble, or other farm machines and hence provide automation, and not true au-

tonomy. In conclusion, complete and safe autonomy in agricultural environments cannot be

achieved with GNSS alone. Moreover, Rovira Mass et al. highlights that long-term naviga-

tions solution stability in agricultural fields cannot be granted as multi-path reflections and

signal-attenuation are unpredictable, requiring redundancy and continuous fail-sake checking

[27]. In conclusion, the aforementioned works may not have poor performance as a result of

the said GNSS issues as these platforms are big enough to have the GPS receiver well above

the canopy, the same cannot be expected when the vehicle goes under the canopy, such as

when operating in late season corn, soybean, and sorghum as in this thesis.

Localization and navigation in unstructured environments have been the focus of signif-

icant prior research, including agricultural environments. Traditionally, LiDAR has been

5

used in indoor applications, e.g., industrial and warehouse automation, the past decade has

brought down the cost of the LiDARs which has sparked interest in using such technology

in new areas such as real-time obstacle avoidance and navigation for mobile robots such

as autonomous cars, UAVs and agricultural robots. One research group from CMU used a

monocular RBG camera to localize and navigate between rows of an apple orchard [28]. The

same group from CMU also investigated using a 3D point cloud captured utilizing a LiDAR

sensor to again localize and navigate within an apple orchard. LiDAR has the advantage

of directly providing the robot with distance measurements, being less sensitive to the light

conditions of the environment and possessing an extended range compared to other sensors.

But when ground vegetation occludes tree trunks, Zhang et al. use a rotating 2-D LiDAR

to retrieve a 3-D point cloud and then perform localization and navigation [28]. Similarly,

Bell et al. use a Velodyne VLP16 to handle sparseness in structured pergola orchards [29].

Nevertheless, CSS crops significantly differ from orchards. Instead of well-defined tree

trunks in groves, weeds and hanging leaves can be easily mistaken with or even occlude the

stalks in these crops. Moreover, the standard spacing between the tree rows is a few meters

in orchards whereas it is around 0.8m in CSS crops. Hence, it is easy to find a dense and

cluttered environment in such crops, especially in later growth stages.

Hiremath et al. proposes a Particle Filter (PF) based navigation algorithm using a LiDAR

as the primary sensor [30]. The PF can handle various uncertainties, for example, noise

from uneven terrain and the varying colors, shapes, and sizes of the plants, and accurately

estimates the robot state in the navigation frame, such as the heading and lateral deviation.

However, this method is limited to crops smaller than 0.6m, which means that it does not

consider the later growth stage of CSS crops which results in substantial occlusion by leaves

and clutter.

Troyer et al. demonstrates a row-following platform using two single reading LiDAR

sensors [31]. It showed reasonable behavior in the indoor case, but the system fails to

perform well even on simulated cornrows(with PVC pipes as corn plants). Using only two

distance measurements, it will be tough to navigate the cluttered environments presented

by CSS crops.

Velasquez et al. present a LiDAR-based row following algorithm which is tested on sim-

ulated corn rows(potted corn plants) [32]. To generate the distance to rows, it considered

LiDAR readings inside a reasonably significant ROI in front of the robot without checking if

such points pertained to the row. Thus, it was prone to errors due to hanging leaves, weeds

or even unexpected objects such as a person walking in the neighboring lane.

In summary, navigating rows in modern row-crop agricultural environments considered in

this thesis remains a challenging problem due to the following open challenges:

6

• Lack of reliable GNSS under canopy: The canopy coverage greatly affects the signal

reception by onboard GPS receiver due to issues of occlusion, multi-path errors and

signal attenuation. For navigation purposes in crops with the standard lane width of

0.8m(30in), a navigation system with the error greater than a few centimeters may not

guarantee crop safety against collisions;

• Highly cluttered rows: Presence of weeds, leaves and even fallen stalks presents the

robot with a highly dynamic environment that can be erroneously perceived as part of

the crop rows. Moreover, such elements may restrict movement;

• Varying plant spacing and mildly varying lane width: Although the seeding process

can happen with centimeter-level accuracy and the seeds form equally spaced straight

lines, some of them may not germinate leaving gaps, and the stalks may not grow

straight up which leads to lodging. Thus, the lane width may not be constant through

the row and might change depending on how the plants have grown over the season;

• Frequent occlusion of LiDAR: LiDAR provides information about the distances to dif-

ferent objects in the surrounding. Thus its occlusion hinders the robot’s capability of

knowing its surroundings and therefore avoiding a collision. For example, overhang-

ing leaves that cover the sensor will cause sudden changes in distance measurements,

greatly affecting the quality of available information (Fig. 1c); 2-D point cloud: Single

layer LiDAR sensors are limited to a 2-D set of distance measurements. Therefore,

there is a huge loss of details, which for instance could be used to detect unwanted

features such as weeds and leaves.

1.3 TerraSentia Robot

This section describes the low cost, ultra-compact(0.35 m wide) and ultra-light(6.6 kg) 3D

printed agriculture robot TerraSentia [33]. It is a novel robot conceived to automate the

measurement of plant traits for efficient phenotyping. Because of its design, it does not

permanently damage plants even if it drives over them. However, having damaged plants

is not a desired situation, and hence such platform requires mechanisms capable of keeping

it in the clear paths. In this sense, the autonomous navigation system described in this

work allows the navigation within crop rows without hitting plants, and subsequently, it is

tested using the mentioned robot. Fig. 1.3a shows the CAD drawing of the robot with a

7

selection of available sensors and Fig. 1.4b depicts the isometric view of the system. Figure

1.3 compares the cost and weights of different autonomous platforms available in the market

with Terrasentia.

A brushed 12V DC motor with a 131.24:1 metal gearbox (Pololu Corporation, USA) drives

each of its four wheels - a two-motor set for left and another for the right side. Each two-

motor set is driven by one of the Sabertooth Motor Controller channels, whose nominal

supply current is 12A per channel. Furthermore, a two-channel Hall-effect encoder (Pololu

Corporation, USA) provides 64 counts per revolution for each motor, enabling wheel velocity

measurement. The self-tuning PID controller Kangaroo x2 Motion Controller(Dimension

Engineering, USA) uses this information to maintain desired angular, and linear velocity

commands.

In contrast with common practice in building agricultural robots ([25], [13], [12], [2]),

most of the mechanical parts, including wheels, are built through additive manufacturing

with PLA. The capability of controlling infill percentage enabled optimal stress distribution

throughout the structure, resulting in overall ultralight robot while preserving strength and

durability.

51

2

3

4

(a)

(b)

Figure 1.4: TerraSentia CAD drawings with a suite of sensors. a. 1. Hukuyo UST-10LX
LiDAR sensor, 2. Embedded visual sensor, 3. 2-axes camera gimbal, 4. Li-Ion Battery Bay,
5. GNSS receiver b. Isometric view of the robot

LiDAR sensor needs to be chosen based on the angular resolution, range and update rate

required. Consider a stalk with a nominal width of 0.01 m. This is a reasonable minimum

width for corn and sorghum, and for a robot in the middle of a 0.8 m lane width, sensor

measurements of stalks are in the range 0.2 m to 0.6 m for the next sidewards readings. In

this scenario, a 0.47 angular resolution provides at least two readings from the nearest stalks.

In cluttered environments, a sensor would be able to get distinguishable information for only

the next few meters. Nevertheless, an extended distance range would be useful for row end

8

maneuvers. Finally, the robot would traverse the crop with speeds not exceeding 1 m/s. At

this velocity for a robot in the middle of the lane with a heading error of 30 relative to the

rows, it takes around 0.6 s to hit a row. Therefore, it is reasonable to expect that sensor

updates its readings at least in the order of 0.1 s. Such sensor should be suitable for outdoor

applications. A sensor that complies with discussed requirements is Hokuyo UST-10LX, a

2-D LiDAR sensor which covers a 270 range with 0.25 angular resolution, maximum distance

reading of 30 m and 40 Hz update rate. Anecdotal experiments show that the under USD

2K o-the-shelf Hokuyo UST-10LX 2-D LiDAR provides similar results with the proposed

autonomy system. Although a 3-D LiDAR sensor would give a lot more information, its

price (at least USD 8K) and computational toll required for processing incoming data make

3-D LiDAR sensor less suitable for a small and low-cost robot as TerraSentia.

(a) (b) (c)

Figure 1.5: Comparison of the lidar measurements in a Sorghum field across different
seasons: (a) Early Season (b) Mid Season (c) Late Season

Given the single layer (2-D) nature of LiDAR Hokuyo UST-10LX’s point-cloud, the Li-

DAR’s vertical position must be such that the reading layer intersects the crop rows. More-

over, the sensor and other devices should be placed carefully to ensure the 270 angular

field-of-view of the LiDAR is not obstructed. These are the only two constraints in posi-

tioning the LiDAR. Other than these constraints, the position of the LiDAR in front of the

robot does not affect the algorithms presented here. For this work, the sensor is placed in

the front part of TerraSentia: In the center of the robot’s traverse axis for symmetry, 0.15

m to the front of the robot to avoid reading obstruction and 0.13 m above the soil.

An embedded 64bit minicomputer (1.2GHz quad-core Raspberry Pi 3 Model B) handles

measurement acquisition from sensors and generation of output signals to other embedded

devices. In particular, Raspberry Pi 3 acquires distance readings from Hokuyo UST-10LX

through USB2.0 using SCIP2.0 protocol, runs the proposed perception subsystem and gen-

erates desired control signals (i.e., desired angular and linear velocities), sent to Kangaroo

x2 Motion Controller as two PWM signals.

9

1.4 Simulation Environment

(a) (b)

Figure 1.6: Comparison of the simulation environment and the real world: (a) Terrasentia
in the Gazebo simulation environment (b) Terrasentia in a corn field

To enable fast development of navigation and control software, a simulation environment

was developed in Gazebo alongside ROS [34]. This not only expedited the development of

perception and navigation algorithms but also helped train the vision algorithms, as the

simulated environment closely matches the real fields, as shown in Fig. 1.6. A detailed

description of the simulation environment is presented in Appendix 1 for completeness.

1.5 Objective and Approach

The objective of this research is to develop a robust perception and navigation system for

the Terrasentia robot, discussed in the previous section so that it is capable of autonomously

traversing a typical CSS crop breeding plot, planted at a row spacing of about 0.8m or greater

from the initial planting through emergence of seedling until late season immediately prior

to harvest.

1.6 Overview

This thesis is organized as follows; in Chapter 2 we discuss various methods for localizing the

robot, both globally and concerning the rows, along with the results obtained during testing.

Chapter 3 discusses the autonomous navigation architecture along with the perception and

navigation algorithms that were realized as part of this research and the results obtained

10

during testing. Finally, Chapter 4 summarizes the results and contributions of this research,

and also provides future directions for research in the field of agricultural robotics.

11

CHAPTER 2

STATE ESTIMATION AND LOCALIZATION

Reliably traversing through the CSS crop fields can be a challenging task, even for a human

on foot. At some points in a particularly dense row, one can no longer rely on their eyes to

show the path; one instead has to push through the overhanging leaves and clutter under

the assumption that the rows as locally planted straight. Unfortunately, the fields in which

the robot navigates are continually growing and changing − we need a variety of navigation

algorithms to choose from using different sensor modalities to be robust to this dynamic

environment. In this chapter, we describe the development and implementation of a method

for accurately estimating the robot state through different parts of the field.

2.1 State Estimation using Extended Kalman Filter

The EKF is ubiquitous in robotics due to its ability to predict future states, approximate

non-observable states, and filter noisy sensor data reliably and quickly. It is also relatively

simple to implement and computationally efficient when compared with other probabilistic

state estimation techniques; each update requires time O(k2.4 +n2), where n is the dimension

of the state vector and k is the dimension of the measurement vector [35].

The states of an actual robot operating in the real world, such as its position and orien-

tation, can never be entirely known because physical systems are not perfect. Instead, it is

more useful to think of the robot existing in possible states, probabilistically. The Kalman

filter models these states using a Gaussian distribution where state uncertainty arises in

part due to process noise, measurement noise, and inaccuracies in the dynamics model of

the system, to name a few.

Using data from an array of sensors on the robot, along with a model of the robot kinemat-

ics we can accurately predict the pose of the robot over time using a fusion of all available

sensor and input commands, and can predict the final pose with more accuracy and certainty

that would have been possible using any individual sensor [35].

12

2.2 Sensor Data

Wheel encoders provide a reasonable estimate of linear velocity, but the very nature of skid-

steering platform requires the wheel slip when turning, beyond what is typically encountered

when operating on loose soil. When a wheel slips during a turn, encoder data from that

wheel is no longer a decent indication of the real-world movement of the robot, as we lose the

ability to accurately relate the rotational velocity of the robot with the linear and angular

velocity of the robot induced by that wheel. As a consequence, localizing only via wheel

encoders is only accurate until the wheels slip and the odometry estimate drifts rapidly after

the first slip is encountered.

However, the RTK GPS fixed on the top of Terrasentia, on the other hand, provides a

globally accurate position of the antenna of the robot and can accurately localize the robot

in the global frame, as long as the antenna is over the canopy. This is usually possible

early during the planting season, but the accuracy of RTK GPS deteriorates very quickly

as soon as the robot has to go under the canopy of the crops, due to multipath errors and

signal attenuation. Moreover, GPS cannot provide orientation data of the robot unless it

is mounted at an offset from the center of mass of the robot, in which case the orientation

becomes observable and can be predicted using EKF. GPS errors tend to manifest as discrete

jumps in the position that makes finding the exact orientation of the robot for navigation

difficult.

The onboard IMU provides us with three crucial pieces of information regarding the state

of the robot, namely, the angular velocities along the three axes from the rate gyroscope,

angular acceleration from the accelerometer and the direction from the magnetometer at

a very high update rate(> 100Hz). The accelerometer data provides globally reference

angular acceleration in the yaw, pitch and roll axis, which can be integrated to obtain the

angular velocity and also relative position of the robot, though significant noise limits the

usefulness of dead reckoning system solely using an accelerometer. The gyroscope provides

with globally referenced angular velocities in yaw, pitch and roll axis and can be integrated

to provide relative position of the robot, and is frequently used in conjugation with the

accelerometer to maintain a high level of confidence of the roll, pitch, and yaw angles of the

robot in the short term, but is unfortunately susceptible to drift over more extended period

of time. However, this drift can be corrected for by using sensor error models and estimating

the bias via the EKF. The magnetometer is used to prevent the drift of the gyroscope from

affecting the orientation estimate of the robot, and it can also be used to coarsely estimate

the orientation of the robot within the global reference frame. However, magnetometers are

unreliable as their accuracy depends on the magnetic field around the IMU, and since the

13

IMU is mounted at the very center of the robot, it experiences magnetic interference caused

due to DC current passing through various electric wires around it. Due to this reason, the

utility of magnetometer is limited, and it is not used for predicting the orientation of the

system.

Each of these sensors provides us with an estimate of the robot position in the global

frame or the local navigation frame with varying levels of confidence for different parts of

our final pose estimate. All the sensor data can be fused together using a Kalman Filter

to provide a more accurate estimate of the pose of the robot that can be obtained by any

sensor individually. Using an EKF to fuse the inputs of the robot with the measurements

from available sensors, we can quickly find a best possible estimate of the state of the robot,

with the important assumption that the linearization of the non-linearized system via a first-

order Taylor series expansion is sufficiently accurate, and all noise in the system is Gaussian

in nature.

2.3 Kinematic Equations for a Skid Steering Robot

As was discussed in the previous section, very accurate wheel position data is provided by

the Hall effect encoders present on each drive motor at a high update rate(>50 Hz), which

can be used to track the position of the robot in the short term. However, due to slipping,

uncorrected drift in position and yaw accumulates over time producing highly erroneous

results. Using the kinematics of a skid-steering robot, we can integrate this wheel position

data to recover the absolute position and heading in the global coordinate frame as well as

the wheel linear and angular velocities.

The encoders on each side of the robot provide position data, and since the left and right

wheels are not mechanically linked, the position data is first averaged, which gives us the

position estimate of the robot in the world frame. One possible solution to correcting the

inaccuracy in yaw caused by slipping is to weight the change in yaw and yaw rate according

to the current instantaneous center of rotation. In this case, however, a constant multiplier

to the yaw rate, λ, determined experimentally was used. The eventual value obtained for λ

was 0.12.

Using the change in the linear position of each side of the robot(xl and xr), we can calculate

the change in position and heading of the base in the robot coordinate frame as shown in

equations (2.1), (2.2), (2.3). Since the robot is non-holonomic, the robot cannot use its

actuators to translate along the y-dimension. Therefore ∆yb will always be zero.

14

Δxl

Δxr

xn

yn

Δψb

Δxb

xb

yb

Figure 2.1: Deriving the skid steer kinematics for Terrasentia robot

∆xb =
∆xl + ∆xr

2
(2.1)

∆yb = 0 (2.2)

∆ψb =
∆xr −∆xl

b
· λ (2.3)

Using the change in time between the wheel position measurements ∆t we can approximate

the velocity and yaw rate of the robot over that interval, as shown in equations (2.4) and

(2.5).

∆vb =
∆xb
∆t

=
∆xl + ∆xr

2 ·∆t
(2.4)

∆ωb =
∆ψb
∆t

=
∆xr −∆xl
b ·∆t

· λ (2.5)

Finally, equations (2.1) − (2.3) need to be transformed from the robot’s frame of reference

of the navigation frame (xn, yn and ψn). This is performed by moving the robot forward

along an arc described by the forward velocity and yaw rate of the robot, in the navigation

frame. This is shown in equations (2.6), (2.7), (2.8), where the ratio vb
ωb

is known as the

instantaneous radius of path curvature. These equations become computationally unstable

as the yaw rate approaches zero, therefore in the current implementation we perform a check

to use a different set of equations if the yaw rate is under a certain ε, as shown in equations

15

(2.9), (2.10), (2.11). The pose of the robot is updated every time sensor data is read from

the encoders, i.e., at about 50 Hz on Terrasentia.

xn(i) = xn(i−1) +
vb
ωb

(sin(4ψb − ψn(i))− sin(ψn(i))) (2.6)

yn(i) = yn(i−1) +
vb
ωb

(cos(4ψb − ψn(i))− cos(ψn(i))) (2.7)

ψn(i) = 4ψb + ψn(i−1)) (2.8)

xn(i) = xn(i−1) +4xb cos(ψ) (2.9)

yn(i) = yn(i−1) +4xb sin(ψ) (2.10)

ψn(i) = ψn(i−1) +4ψb (2.11)

2.4 Extended Kalman Filter

EKF linearizes the dynamics of the system by using first order Taylor expansions, whereas

Kalman filter uses linear kinematics. Therefore, we will briefly discuss Kalman filter before

discussing EKF. Kalman filter is a basic Gaussian filter algorithm for a small subset of

problems that can be adequately modeled with linear dynamics and measurement functions.

For each point in time, the belief of the state of the system is represented by a mean and

covariance. Consider the following system, where F (k) determines the dynamics of the

system, x(k) describes the full system state, G(k) describes how the inputs drive the system

dynamics, u(k) is the system input, y(k) is the system output, H(k) describes how state

vectors are mapped into outputs, and w(k) and v(k) are zero-mean Gaussian measurement

and process noise vectors, respectively.

x(k + 1) = F (x) · x(k) +G(k) · u(k) + v(k)y(k) = H(k) · x(k) + w(k)

Un-modeled disturbance such as slipping of wheels or friction that affects the system

dynamics is accounted for by Process noise. In the above equations, we have known input

u(k) and known output y(k), and given these, Kalman filter determines the best estimate

of the state at the next time step, given a previous estimate of the state. The derivation of

16

the following summary of Kalman filter is left to the reader and can be found in [35]. In the

following equations. P(k) is an estimate of the error covariance, and W (k) is the covariance

matrix of the sensor noise.

Prediction : x̂(k + 1|k) = F (k) · x̂(k|k) +G(k) · u(k)

P (k + 1|k) = F (k) · P (k|k) · F (k)T + V (k)

Update : x̂(k + 1|k + 1) = x̂(k + 1|k) +R · v

P (k + 1|k) = P (k + 1|k)−R ·H(k + 1) · P (k + 1|k)

where : v = y(k + 1)−H(k + 1) · x(k + 1|k)

S = H(k + 1) · P (k + 1|k) ·H(k + 1)T +W (k + 1)

R = P (k + 1|k) ·H(k + 1)T · S−1

The equations above make sure that the expected value of the error between x(k) and

x̂(k|k) is minimized at every time step k, which provides an optimal estimate of the state

x. Intuitively, R can be looked at as weight that accounts for the accuracy between the

predicted estimate and the measurement noise, where the confidence in the accuracy of the

sensor readings increase as R increases. If R is instead a low value, the Kalman filter, in

turn, reduces the influence of sensor data on the update of the belief of the current state. We

can, in turn, linearize the above equations about an estimate of the current state mean and

covariance. We approximate the nonlinear function with a linear function that is tangent to

the function at the mean of the Gaussian. We do this using a first order Taylor expansion,

calculating the Jacobian of f and h, and using those matrices to calculate R and P [35]. A

summary of the EKF is shown below for completeness.

17

1. Project the state ahead

2. Project the error covariance ahead

= g(, u)xk+1 xk

= + QPk+1 FkPkF
T

k

1. Compute the Kalman Gain

2. Update the estimate via measurement

3. Update the error covariance

=Kk PkJ
T

H(+ R)JHPkJ
T

H

−1

= + (− h())xk xk Kk zk xk

= (I −)Pk KkJH Pk

Prediction Update

Initialize onceP, R, Q, I are JacobiansJ

Figure 2.2: Illustration of the Prediction and Correction steps of EKF

System : x(k + 1) = f(x(k), u(k), k) + v(k)

y(k) = h(x(k), k) + w(k)

Prediction : x̂(k + 1|k) = f(x̂(k|k), u(k|k), k)

P (k + 1|k) = F (k) · P (k|k) · F (k)T + V (k)

where : F (k) =
∂f

∂x
|x=x̂(k|k)

Update : x̂(k + 1|k + 1) = x̂(k + 1|k) +R · v

P (k + 1|k) = P (k + 1|k)−R ·H(k + 1) · P (k + 1|k)

where : v = y(k + 1)− h(x(k + 1|k), k + 1)

S = H(k + 1) · P (k + 1|k) ·H(k + 1)T +W (k + 1)

R = P (k + 1|k) ·H(k + 1)T · S−1

H(k + 1) =
∂h

∂x
|x=x̂(k+1|k)

18

2.5 Implementation and Results

The EKF algorithm is tested with a Trimble Copernicus II as the GPS and a Razor 9dof IMU

which is mounted on a custom rig that aids in magnetic interference reduction and improves

signal quality by considerably filtering out low-frequency noise. We have configured the

algorithm to take into account the roll, pitch and yaw and their respective velocities from

the IMU, velocity and heading rate is computed using the wheel encoders.

Since the GPS is mounted at a distance from the center of mass of the robot(where the

IMU is mounted), we need to transform the position estimate from the GPS to the base

frame of the robot, as shown in Fig. 2.1. Using the roll, pitch, and yaw(φ, θ, ψ) obtained

in the previous section along with the GPS coordinates transformed to the UTM coordinate

system, the transformation matrix (T) between the navigation frame (xg, yg, zg) and the

GPS coordinate frame (xGPS, yGPS, zGPS) is computed using the yaw, pitch and roll (ψ, θ, φ)

convention, as shown in Eq. (2.17) [36]. c and s designate cos and sin functions respectively,

and x0, y0 and z0 are the GNSS receiver offsets from the COM of the robot.

T = trans(tGPS) ·Rz(ψ) ·Ry(θ) ·Rx(φ) (2.12)

trans(tGPS) =


1 0 0 tx

0 1 0 ty

0 0 1 tz

0 0 0 1

 (2.13)

Rz(ψ) =


cosψ − sinψ 0 0

sinψ cosψ 0 0

0 0 1 0

0 0 0 1

 (2.14)

Ry(θ) =


cos θ 0 sin θ 0

0 1 0 0

− sin θ 0 cos θ 0

0 0 0 1

 (2.15)

Rx(φ) =


1 0 0 0

0 cosφ − sinφ 0

0 sinφ cosφ 0

0 0 0 1

 (2.16)

19

T =


c(ψ)c(θ) −s(ψ)c(φ) + s(θ)s(φ)c(ψ) s(ψ)s(φ) + s(θ)c(ψ)c(φ) tx

s(ψ)c(θ) s(ψ)s(θ)s(φ) + c(ψ)c(φ) s(ψ)s(θ)s(φ)− s(φ)c(ψ) ty

−s(θ) s(φ)c(θ) c(θ)c(φ) tz

0 0 0 1

 (2.17)

The pose of the base frame of the robot is now determined by using the transformation

computed in Eq. (2.12) along with the position of the robot base in GPS coordinate frame

(rGPSp). Since the orientation of the GPS and the robot base are already aligned, this can

be simply treated as transforming a point between two coordinate frames and applying the

orientation of the GPS frame to the robot base frame as shown in Eq. (2.19) [36].

rgp = T · rGPSp rGPSp =


x0

y0

z0

1

 (2.18)


tx + x0c(ψ)c(θ) + y0 (−s(ψ)c(φ) + s(θ)s(φ)c(ψ)) + z0 (s(ψ)s(φ) + s(θ)c(ψ)c(φ))

ty + x0s(ψ)c(θ) + y0 (s(ψ)s(θ)s(φ) + c(ψ)c(φ)) + z0 (s(ψ)s(θ)s(φ)− s(φ)c(ψ))

tz − x0s(θ) + y0s(φ)c(θ) + z0c(θ)c(φ)

1

 (2.19)

For the current configuration of Terrasentia, the x0, y0 and z0 were 0.1524 m, 0, and

0.0508 m respectively. Prediction equations are mechanized using the high rate sensor which

is the IMU in this case, and the update part of the filter runs every time GPS data is

updated(≈ 10Hz). The EKF developed in the previous section was implemented from

scratch in C++ using Eigen [37] and Boost [38] libraries for handling matrix operations and

multi-threading respectively. Since the sensor data have different update rates, a blocking

queue is used to solve the producer-consumer problem so that the sensor data is consumed by

the EKF in the order it arrives in. Figure 2.3 and 2.4 show the comparison of the estimated

position with the GPS coordinates. The data used here was obtained while traversing an

uneven terrain outside DASLAB in Champaign, Illinois.

The localization error is shown in Fig. 2.5 which varies between 0 − 0.2m with a mean

error of 0.098m, which is within bounds for autonomous navigation. Figure 2.6 compares

the other estimated states of the filter with the measured values and Fig. 2.7 shows the

associated uncertainty associated with each state over 355 iterations.

20

Figure 2.3: Comparison of estimated x and y position with the GPS coordinates − tested
in the field

Figure 2.4: Detailed view of the estimated position with the GPS coordinates

21

(a) (b)

Figure 2.5: Comparison of estimated position with RTK GPS position: (a) Error in the
estimated x position with RTK GPS position as reference (b) Error in the estimated y
position with RTK GPS position as reference

Figure 2.6: EKF state estimates

22

Figure 2.7: Uncertainty in state variables over 355 iterations of the EKF

23

CHAPTER 3

AUTONOMOUS NAVIGATION

As was mentioned in Chapter 1, reliable autonomous navigation through a typical CSS crop

field is a challenging task. This can be attributed to two things: clutter due to overhanging

leaves and fallen branches which makes the environment highly unstructured and dynamic

and poor GNSS signal strength due to signal attenuation, occlusion and multi-path errors

which make GNSS guided waypoint following unreliable. The previous chapter dealt with

using an EKF to localize the robot in the field reliably, and this chapter describes the devel-

opment and implementation of the autonomous navigation architecture along with several

techniques to navigate either by following waypoints or by detecting the crop rows with the

help of a LiDAR.

3.1 Autonomous Navigation Architecture

Figure 3.1: High-level Navigation Architecture

This section describes the high-level architecture which was defined for the navigation

subsystem of the robot. The design takes into account the availability of GPS at different

24

Figure 3.2: Utility of different sensors over the season

times of the season and considers the field to be divided into adjacent plots, with a minimum

spacing of 0.72m between the plots. This was deemed necessary because it was essential to

have a clear transition from one state to another, as the robot navigates through the field.

Figure 3.3 shows the state machine where each behavior is modeled as a state that uses a

specific set of algorithms for perception and navigation.

For autonomous navigation, the breeding season is classified into two categories: early-

season and late-season. Early season is defined as when the plant height is lower than the

height of the GPS antenna, and the GPS signals are reliable for waypoint navigation. Late

season is described as when the plant height is higher than the height of the GPS antenna,

and the GPS is unreliable for in row navigation. During late season, a combination of GPS

waypoint navigation(in between plots) is used along with relative row following navigation

for traversing rows. Figure 3.1 shows the architecture that was defined for the autonomous

navigation through a CSS breeding field.

During late season, it is assumed that the robot starts in the row following state and is

placed at the center of the row. Detection of point cloud by LiDAR and successful detection

of parallel lines triggers the In-Row state of the system, and the robot begins traversing the

CSS crop rows.

To autonomously navigate a CSS breeding plot, the robot not only has to traverse a row

but also detect the end of the row and either take a turn into the adjacent row or navigate

25

to another row in the next breeding plot, based on the user settings.

In most modern breeding plots, the row width of all the rows is approximately the same

with a variance of about ±0.1 m. This is assumed to hold true for the end row turning

algorithm described in this work.

As the robot navigates through the row, the perception system estimates the row width

at each iteration and keeps track of the current average row width. Along with keeping

track of the average row width, the robot also keeps track of the average number of points

in the filtered point cloud scan, when it is traversing the row. The end-row state is detected

using a simple heuristic rule. If the average number of points identified by the LiDAR scan

decreases to < 15% of the value obtained during the In-Row state for a certain amount of

time, it transitions to the Out-Row state.

If the robot is programmed to go into the adjacent row, it generates a trajectory online to

navigate into the next row. However, if the robot is programmed to navigate to the row in

the next plot, as shown in Fig. 3.4, it uses pre-defined waypoints along with the perception

system to traverse between the plots. Since the GNSS signals are reliable in between two

plots, the state estimation quickly converges, and waypoint following is used.

Figure 3.3: State Machine for modeling different Behaviors

3.2 Early Season Navigation

Since the crop height is lower than the RTK-GPS receiver, position data from the GNSS is

used to navigate autonomously in the early season. Kayacan et al. develop a Safe Learning

Terrain Parameters-Based Nonlinear Model Predictive Control (SLTPB-NMPC) algorithm

for precise tracking of navigational waypoints in off-road terrain conditions [33]. A non-

26

Figure 3.4: GPS signal strength as the robot navigates through the field as the season
progresses, blue representing sensor reliability and red represents unreliability

linear moving horizon estimator is used to learn the terrain parameters using onboard robot

sensors for precise tracking of waypoints. SLTB-NMPC algorithm is thus used for early

season navigation and is mentioned here for completeness.

3.3 Late Season Navigation

3.3.1 Random Sampling Consensus

RANSAC is an iterative, non-deterministic algorithm that estimates parameters of a math-

ematical model from a set of observed data that may contain outliers when outliers are

accorded no influence on the values of the estimates. RANSAC randomly selects points

from the odometry corrected point cloud and fits two parallel lines, and then iteratively fits

new lines and compares the new estimates with the previously estimated lines based on the

distances of points.

RANSAC thus estimates a, br and bl for the odometry corrected point cloud, which com-

pletely define the two parallel lines estimating the crop rows. The equations of the lines to

be estimated can be written as follows:

27

Ll : y = ax+ bl

Lr : y = ax+ br
(3.1)

atan
−1

bl

br

Figure 3.5: An illustration of the crop cloud points and the lines generated by RANSAC
with the properties of the lines: a, bl, and br

R =
∑
i∈Cl

(yki − axki − bl)2 +
∑
i∈Cr

(yki − axki − br)2 (3.2)

Equation 3.2 defines the function that is minimized, to estimate the best fitting lines on

each side of the robot. To minimize Eq. 3.2, partial derivatives of R are taken with respect

to a, bl, br and set equal to zero.

28

∂R

∂a
=
∑
i∈Cl

2(yki − axki − bl)(−xki)+
∑
i∈Cr

2(yki − axki − br)(−xki) = 0

= 2a
∑
i∈Cl

(xki)
2 − 2

∑
i∈Cl

xkiyki+2bl
∑
i∈Cl

xki + 2m
∑
i∈Cr

(xki)
2

−2
∑
i∈Cr

xkiyki + 2bl
∑
i∈Cr

xki∑
i∈Cl,Cr

xkiyki = a
∑

i∈Cl,Cr

(xki)
2+bl

∑
i∈Cl

xki + br
∑
iinCr

xki

(3.3)

∂R

∂bl
=
∑
i∈Cl

2(yki − axki − cl)(−1) +
∑
i∈Cr

2(yki − axki − bl)(0) = 0

a
∑
i∈Cl

xki + bl
∑
i∈Cl

1 = bl
∑
i∈Cl

yki

a
∑
i∈Cl

xki + bl|Cl| = bl
∑
i∈Cl

yki

(3.4)

∂R

∂br
=
∑
i∈Cl

2(yki − axki − bl)(0) +
∑
i∈Cr

2(yki − axki − bl)(−1) = 0

a
∑
i∈Cr

xki + bl
∑
i∈Cr

1 = bl
∑
i∈Cr

yki

m
∑
i∈Cr

xki + bl|Cr| = bl
∑
i∈Cr

yki

(3.5)

Here |Cl| and |Cr| represent the size of the left and right point clouds, respectively. Equa-

tions 3.3 to 3.5 can then be solved together for a, bl and br. The final result is shown as follows:

a =

∑
i∈Cl

yki − bl|Cl|∑
i∈Cl

xki
(3.6)

br =

∑
i∈Cr

yki − a
∑

i∈Cr
xki

|Cr|
(3.7)

br =

∑
i∈Cr

yki −
∑

i∈Cr
xki

∑
i∈Cl

yki−bl|Cl|∑
i∈Cl

xki

|Cr|
(3.8)

29

Using Eq. 3.3 − 3.8 give us the following result for bl.

bl = (

∑
i∈Cl

yki
∑

i∈Cl,Cr
x2
ki∑

i∈Cl
xki

+ (

∑
i∈Cr

yki
|Cr|

−
∑

i∈Cr
xki
∑

i∈Cl
yki∑

i∈Cl
xki |Cr|

)
∑
i∈Cr

xki

−
∑

i∈Cl,Cr

xkiyki) ·
1

|Cl|
∑

i∈Cl,Cr
x2ki∑

i∈Cl
xki

−
∑

i∈Cl
xki −

∑
i∈Cr

xki |Cl|
∑

i∈Cr
xki∑

i∈Cl
xki |Cr|

(3.9)

RANSAC receives the odometry corrected point cloud and estimates the parallel line

equation parameters. It performs 20 iterations wherein it divides the point cloud into left

and right sides about the center of the base of the LiDAR, and selects random points from

these two subsets.

As the points are selected, they are added to the set of left or right point clouds, and the

summation values are logged such that the parameters could be estimated for the best fit

parallel lines. If the points that are selected don’t fit into the constraints set by either the

left set or the right set, or at least one side does not have any points in the set, the algorithm

breaks out of the loop. If this happens, a finite state machine sets the state of the machine

to turn mode, which is discussed at the beginning of this chapter.

Once the first estimate for the left and right line equation parameters are estimated, the

distance from each point in the left and right point clouds to the aforementioned best fit

lines is calculated. The distance to each of the two lines is calculated as follows:

Dl =
−axi + yi − bl√

a2 + 1

Dr =
−axi + yi − br√

a2 + 1

(3.10)

Using these equations, the line distance is calculated and is then compared to the inlier

threshold(which is determined experimentally), and if this distance is within the threshold,

the point is added to the left(or right) inlier point cloud set. With the updated point cloud

sets, new summation values are computed, and the line parameters are re-estimated. The

summation values are only added if each point cloud has at least one point and there are a

total of at least 3 points, in both the sets, together since this is the minimum number of

points required to estimate the line parameters.

Now, each of the points in the left, and right inlier point clouds has its squared distance

computed, from the respective line. The squared distances are summed up and divided by the

number of points to achieve the mean squared distance. The minimum mean squared distance

is tracked over all the iterations of the algorithm, and the line parameters corresponding to

30

the minimum mean squared distance is chosen as the final estimates. The line fitting method

discussed above is implemented in a RANSAC algorithm, as shown in Algorithm 1.

Data: Qk

Result: Ll and Lr

for a certain number of iterations do do
From Qk randomly select a set of points on the left side, Cl, and a set of points on

the right side, Cr, where, |Cl|, |Cr| ≥ 1 and |Cl|+ |Cr| ≥ 3, compute Ll and Lr

based on Eq. (3.6), (3.8) and (3.9);

Compute the distance from each point in Qk to Ll and Lr, select a set of inliers

from Qk on the left and right sides, respectively, replace Cl and Cr with the

selected inliers;

if |Cl| and |Cr| are both larger than a threshold then
recompute line parameters using the updated point cloud, then compute the

squared distance(SD) to each point in Cl from Ll, and, from each point in Cr

from Lr;

current section becomes this one;

if the mean SD smaller than a threshold then

Break;

end

end

Return Ll and Lr with the minimum mean SD found;

end
Algorithm 1: Line Fitting

3.3.2 Line Filtering

The fitted lines from the LiDAR point cloud contain a considerable amount of noise. To

deal with the noise, an EKF is used. The EKF has two parts − a prediction step and an

update step. The prediction step uses the vehicle’s odometry information and guides how

the line properties should change. The update step takes in a new data point, in this case, a

pair of parallel lines generated by RANSAC, which is then compared to the predicted lines

to obtain the filtered lines. The notation for this section is as follows:

The odometry provides the robot’s position in the world reference frame. However, it is

more relevant to use the robot’s position with respect to the rows for the motion model of

31

EKF. The reasoning behind this is that the line properties(a, bl, br) are computed relative to

the robot’s position.

world∆x =world xk|k −world xk−1|k−1

world∆y =world yk|k −world yk−1|k−1

world∆ψ =world ψk|k −world ψk−1|k−1

(3.11)

The equations 3.11 represent the change in the position and attitude of the robot in the

world reference frame. world∆x and world∆y can be used to calculate the distance traveled

by the robot regardless of the frame of reference as shown in the Eq. 3.12.

∆dist =
√

world∆x2 +world ∆y2 (3.12)

The robot attitude is localized with respect to the parallel rows’ orientation, ∆dist needs

to be transformed to that frame to be able to compute this change in heading of the robot.

lidar∆distx = ∆dist · cosworld ψ

lidar∆disty = ∆dist · sinworld ψ
(3.13)

ak−1|k−1 =
lidar∆disty
lidar∆distx

α = tan−1(ak−1|k−1)

(3.14)

Equation (3.14) represents the angle between the computed rows and the x-axis of the

robot, also referred to as the heading of the robot. It will be used to calculate the displace-

ment of the robot perpendicular to the rows, for predicting the row properties a, bl and, br

in the prediction step of the filter. The transformation from the LiDAR reference frame to

the row parallel coordinate system relies on this α. ‖ represents the coordinate system with

x-axis parallel to the tree rows and y-axis perpendicular to this. The equations that describe

this transformation is shown in Eq. (3.15).

‖∆distx =lidar ∆distx cosα +lidar ∆disty sinα

‖∆disty = −lidar∆distx sinα +lidar ∆disty cosα
(3.15)

32

3.3.3 Prediction

‖∆disty is used to predict the line parameters at time step k. The prediction equations are

summarized in Eq. (3.16).

ak|k−1 = tan(α−world ψ)

bl,k|k−1 = bl,k−1|k−1+lidar∆distx · sin(tan−1 ak−1|k−1)

−lidar∆disty · cos(tan−1 ak−1|k−1)

br,k|k−1 = br,k−1|k−1−lidar∆distx · sin(tan−1 ak−1|k−1)

+lidar∆disty · cos(tan−1 ak−1|k−1)

(3.16)

The prediction part of the filter also updated the prediction covariance associated with

the states of the filter. This is predicted using the covariance of process noise matrix,

previous state’s covariance matrix, and the state transition matrix. A summary of EKF filter

equations is presented in Chapter 2. The state transition matrix is derived via the Jacobian

of the predicted line properties in Eq. (3.16). The Jacobian thus derived is summarized in

Eq. (3.17) and Eq. (3.18).

Fl,k|k−1 =

 1
cos2(tan−1(ak−1|k−1))−world∆ψ

· 1
a2
k−1|k−1

+1
0

lidar∆distx−lidar∆disty

(a2
k−1|k−1

+1)
3
2

1

 (3.17)

Fr,k|k−1 =

 1
cos2(tan−1(ak−1|k−1))−world∆ψ

· 1
a2
k−1|k−1

+1
0

−lidar∆distx+lidar∆disty

(a2
k−1|k−1

+1)
3
2

1

 (3.18)

The process noise was defined to be constant and experimentally determined, as shown in

Eq. (3.19).

Qk−1 =

[
0.002 0

0 0.002

]
(3.19)

The covariance prediction equations are shown in Eq. (3.20). Pl,k|k−1 and Pr,k|k−1 are

initialized as identity matrices at the beginning of the filter and are subsequently updated

using these equations.

Pl,k|k−1 = Fl,k|k−1Pl,k−1|k−1F
T
l,k|k−1 +Qk−1

Pr,k|k−1 = Fr,k|k−1Pr,k−1|k−1F
T
r,k|k−1 +Qk−1

(3.20)

33

3.3.4 Update

The next step of the EKF is − Update. Here, the innovation/residual covariance matrix

is updated using the observation matrix H, the measurement noise matrix, R, and the

covariance matrix, P . These equations are summarized in Eq. 3.21.

Sl,k = Hl,kPl,k|k−1F
T
l,k|k−1 +Rk

Sr,k = Hr,kPr,k|k−1F
T
r,k|k−1 +Rk

(3.21)

After computing the Jacobian, the Hl,k and Hr,k are found to be 2x2 identity matrices.

The measurement noise matrix, R was computed using the specifications found for Hokuyo

UST-10LX LiDAR. The specifications state an accuracy of 0.02 m and the covariance matrix

is therefor the square of this value,

R =

[
0.0004 0

0 0.0004

]
Finally, the Kalman gain is computed using thus derived innovation matrix, together with

observation and prediction covariance matrices. It is calculated using the following equations:

Kl,k = Pl,k|k−1H
T
l,kS

−1
l,k

Kr,k = Pr,k|k−1H
T
r,kS

−1
r,k

(3.22)

The line predictions are updated using the Eq. (3.23), where a, bl, and br represent the

line parameters computed via RANSAC. Finally, the line prediction covariance is updated,

as shown in Eq. (3.24).

(
ak|k

bl,k|k

)
=

(
ak|k−1

bl,k|k−1

)
+Kl,k

(
a− ak|k−1

bl,k|k−1

)
(

ak|k

br,k|k

)
=

(
ak|k−1

br,k|k−1

)
+Kr,k

(
a− ak|k−1

br,k|k−1

) (3.23)

Pl,k|k = (I −Kl,kHl,k)Pl,k|k−1

Pr,k|k = (I −Kr,kHr,k)Pr,k|k−1

(3.24)

34

The Mahalanobis distance is a measure of how many standard deviations away, a point

p is from the distribution’s mean µ, and it is commonly used to detect outliers in linear

regression models. Here, we use Mahalanobis distance to determine whether the lines should

be predicted and updated or just predicted. This was useful in filtering out RANSAC lines

which were very different from the previous estimate. If either the computed distances in

Eq. (3.25) and (3.26) are above a certain threshold, the filter is not updated, and the new

line properties are only predicted [28].

dl =
[
a− ak|k−1 b− bl,k|k−1

]
P−1
l,k|k−1

[
a− ak|k−1

b− bl,k|k−1

]
(3.25)

dr =
[
a− ak|k−1 b− br,k|k−1

]
P−1
r,k|k−1

[
a− ak|k−1

b− br,k|k−1

]
(3.26)

3.4 Control

3.4.1 In-Row Control

The perception system developed in the previous section outputs the filtered parameters for

the row lines along with the estimated distances to the left and right sides of the robot. These

parameters are then used to maintain the heading of the robot for autonomous navigation

in Row−Following state. The cruise speed for row following is fixed and is set to an average

value of 0.25 m/s. For maintaining the heading of the robot, a simple PID controller is

implemented. The distances to the left and the right rows are used to compute the desired

heading of the system, as shown in Eq. (3.27). In this equation, bl and br are the line

parameters and ψ̇ is the current yaw rate estimate provided by state estimation described

in Chapter 2.

ψ̇n+1 = KP · (bl − br) +KD · ψ̇n (3.27)

To tune the PID controller, the robot’s response to different KP and KD values was

analyzed experimentally. The PID parameters can be tuned by system’s response to a step

function. Table 3.1 gives us some insight on how the system response changes to a step input

based on different types of control inputs. From this table, it is easy to see that although

we desire to minimize all of our observable parameters, it is not possible to do so. We often

optimize one parameter at the expense of another. Table 3.2 shows the values that were

35

Figure 3.6: Illustration showing the Out-Row turning maneuver by Terrasentia where blue
is In-Row state and orange is Out-Row state

obtained for the PID controller after tuning the system empirically.

Control Response Rise Time Settling Time Overshoot Steady State Error
KP Decreases No effect Increases Decreases
KD Decreases Increases Increases Eliminates
KI No effect Decreases Decreases No effect

Table 3.1: Control Response Effects

KP 8
KD 0.5
KI 0

Table 3.2: Tuned PID parameters for In-Row state

3.4.2 End-Row Turning Control

As was mentioned at the beginning of this chapter, as the robot traverses through the row,

it keeps track of the average row width and an average number of points in the filtered laser

scan. It uses these two parameters to generate semi-circular path at the end of the row,

assuming that the rows have approximately the same width in each breeding plot. Fig. 3.6

illustrates the path generation and following during the end-row turning maneuver. A simple

PD controller is used to control the turn yaw rate as shown in Eq. (3.27). The values for

KP and KD were empirically determined to be 2 and 0.1 respectively.

36

3.5 Perception Subsystem Configuration

This section presents the operation of the Perception subsystem as it was deployed during

the testing of the formulation developed in the previous section. It is assumed that the

robot starts at the center of a CSS breeding plot row. Terrasentia robot is deployed with a

LiDAR Hokuyo UST-10LX placed in the center of the front part of the robot, with the 2D

cloud plane parallel to the ground. The LiDAR cloud data is filtered before it is fed to the

perception subsystem with a bounding box filter to limit the readings within a rectangle of

width 0.8m and a length of 0.35m. Desired distance from the center of the robot is kept at

zero, i.e., the robot follows the center of the row. However, the algorithm can be configured

to maintain a certain distance from the center of the row. Figure 3.7a and 3.7b show the

raw and filtered LiDAR point cloud of a single scan in the cornfield.

(a) (b)

Figure 3.7: Laser scan cloud pre and post-filtering (a) Raw laser scan (b) Filtered laser
scan showing the ROI

3.6 Results

Using the RANSAC and EKF formulation developed in the previous section, the robot was

tested in the test environment shown in Fig. 3.8 using artificial corn. Artificial cornrows

were used to test and debug the perception and autonomy algorithms as the planting season

for CSS crops had not yet begun in Illinois. All the data presented here was collected online

while the whole perception and navigation stack was functional. This section describes these

tests.

Fig. 3.9 and 3.10 presents the accuracy of the row width using RANSAC and EKF

respectively. It can be seen that the errors significantly reduce after line filtering. Most

37

errors are within 2 cm range around the true value. Fig. 3.11 shows the average computation

time required by the perception stack on an Intel NUC with an i7 processor. On an average,

it takes a little under 0.4 seconds for the complete perception stack to estimate and filter

the row parameters.

Fig. 3.12 depicts the commanded yaw for row following and end-row turning. For testing

the state machine architecture, a two-state, state machine was devised wherein the robot

takes a turn once it has detected the end of row. For this test, the commanded velocity was

set to be 0.3m/s.

(a) (b)

Figure 3.8: Testing environment: (a) View from the front camera (b) Testing environment
setup for perception and autonomy

38

Figure 3.9: Estimated row widths with RANSAC

Figure 3.10: Estimated row widths after filtering with EKF

39

Figure 3.11: Computation time for row fitting algorithm(RANSAC & EKF)

Figure 3.12: Commanded yaw rate as the robot autonomously traverses a corn row(Row
Following State) and takes a turn(Turn State)

40

CHAPTER 4

CONCLUSION AND FUTURE WORK

The word ”TerraSentia” comes from terra which means Earth and sentia which means in-

telligent. One can conceive a swarm of these compact, agile and autonomous robots working

day and night endlessly in the agricultural fields and managing the crops. It’s possible to

develop adaptive algorithms that will enable such robots to make highly intelligent decisions

based on the sensor data and machine learning such as informing the scientist which regions

require detailed inspection, changing the swarm behavior based on the data collection over

the past month, semantic mapping of the agricultural fields so that the researcher can use

voice control to send commands to these robots, etc. Terrasentia does not exhibit these

capabilities, but the current system architecture can accommodate all of this additional

functionality.

Future work includes completely vision-based localization in the fields during the early

season, and more rigorous testing and validation of the perception and navigation stack in

real, cluttered CSS breeding fields. The former is essential for removing dependence from

high-cost RTK GNSS during the early season. An attempt for finding row lines using a deep

learning architecture − FCN was made. However, the localization errors regularly exceeded

the safety limits which would result in the robot striking the crop rows. Figure 4.1 shows the

output of this network during the early season. Further work towards semantic segmentation

and regression needs to be done, to make this robust.

Online trajectory generation and path optimization for obstacle avoidance need to be im-

plemented so that the robot can handle adverse situations better and get around obstacles in

the field. Although some work was done to use heuristics and computer vision to differentiate

between in-row and out-of-row states, these features need to be improved and unsupervised

learning needs to be incorporated so that the model does not need to be retrained for every

new field the robot encounters.

In this thesis, we present the work for designing an autonomous architecture for a small,

compact robot − Terrasentia along with developing sensor fusion, perception, and control

algorithms for autonomous navigation through the field. We outline the design process,

describe state estimation, and navigation algorithms we implemented that have been tested

41

Figure 4.1: FCN detecting the row center and heading for vision based early-season
navigation

and proven in both simulation and real-world testing environments.

42

CHAPTER 5

REFERENCES

[1] “Farms and farmland - numbers, acreage, ownership, and use,” 2014. [Online].
Available: https://goo.gl/vhJv8h

[2] T. Mueller-Sim, M. Jenkins, J. Abel, and G. Kantor, “The robotanist: a ground-based
agricultural robot for high-throughput crop phenotyping,” M.S. thesis, 2017.

[3] “Transportation energy resources from renewable agriculture (terra).” 2015. [Online].
Available: https: //arpa-e.energy.gov/?q=arpa-e-programs/terra,

[4] R. T. Furbank and M. Tester, “Phenomics–technologies to relieve the phenotyping bot-
tleneck,” Trends in plant science, vol. 16, no. 12, pp. 635–644, 2011.

[5] J. K. Conner, R. Franks, and C. Stewart, “Expression of additive genetic variances
and covariances for wild radish floral traits: comparison between field and greenhouse
environments,” Evolution, vol. 57, no. 3, pp. 487–495, 2003.

[6] F. Liebisch, N. Kirchgessner, D. Schneider, A. Walter, and A. Hund, “Remote, aerial
phenotyping of maize traits with a mobile multi-sensor approach,” Plant methods,
vol. 11, no. 1, p. 9, 2015.

[7] C. Z. Espinoza, S. Sankaran, M. O. Pumphrey, P. N. Miklas, A. H. Carter, G. J.
Vandemark, N. R. Knowles, L. R. Khot, S. Jarolmasjed, V. R. Sathuvalli et al., “Low-
altitude, high-resolution aerial imaging systems for row and field crop phenotyping: A
review,” 2015.

[8] P. Andrade-Sanchez, M. A. Gore, J. T. Heun, K. R. Thorp, A. E. Carmo-Silva, A. N.
French, M. E. Salvucci, and J. W. White, “Development and evaluation of a field-based
high-throughput phenotyping platform,” Functional Plant Biology, vol. 41, no. 1, pp.
68–79, 2014.

[9] S. C. Murray, L. Knox, B. Hartley, M. A. Méndez-Dorado, G. Richardson, J. A. Thomas-
son, Y. Shi, N. Rajan, H. Neely, M. Bagavathiannan et al., “High clearance phenotyping
systems for season-long measurement of corn, sorghum and other row crops to comple-
ment unmanned aerial vehicle systems,” in Autonomous Air and Ground Sensing Sys-
tems for Agricultural Optimization and Phenotyping, vol. 9866. International Society
for Optics and Photonics, 2016, p. 986607.

43

[10] N. Virlet, K. Sabermanesh, P. Sadeghi-Tehran, and M. J. Hawkesford, “Field scana-
lyzer: an automated robotic field phenotyping platform for detailed crop monitoring,”
Functional plant biology, vol. 44, no. 1, pp. 143–153, 2017.

[11] D. Hall, F. Dayoub, J. Kulk, and C. McCool, “Towards unsupervised weed scouting for
agricultural robotics,” in Robotics and Automation (ICRA), 2017 IEEE International
Conference on. IEEE, 2017, pp. 5223–5230.

[12] L. Grimstad, C. D. Pham, H. T. Phan, and P. J. From, “On the design of a low-
cost, light-weight, and highly versatile agricultural robot,” in Advanced Robotics and its
Social Impacts (ARSO), 2015 IEEE International Workshop on. IEEE, 2015, pp. 1–6.

[13] L. Haibo, D. Shuliang, L. Zunmin, and Y. Chuijie, “Study and experiment on a wheat
precision seeding robot,” Journal of Robotics, vol. 2015, p. 12, 2015.

[14] J. Torgersen, “Mobile agricultural robot: Independent four wheel ackerman steering,”
M.S. thesis, Norwegian University of Life Sciences, Ås, 2014.

[15] “Clearpath robotics, husky technical specifications.” [Online]. Available:
https://www.clearpathrobotics. com/husky-unmanned-ground-vehicle-robot/

[16] “Robotnik automation, sll. available mobile robots.” [Online]. Available:
http://www.robotnik.eu/ mobile-robots/

[17] K. Cavender-Bares and C. C. Bares, “Robotic platform and method for performing
multiple functions in agricultural systems,” Mar. 22 2016, uS Patent 9,288,938.

[18] “Naio technologies.” [Online]. Available: https://www.naio-
technologies.com/en/agricultural-equipment/vineyard-weeding-robot/

[19] “Qinetiq north america. talon.” [Online]. Available: https://www.qinetiq-
na.com/products/ unmanned-systems/talon/

[20] “Omron adept technologies, inc. omron adept re-
search robots technical speci-cations.” [Online]. Available:
http://www.mobilerobots.com/ResearchRobots/Specifications.aspx

[21] T. Bell, “Automatic tractor guidance using carrier-phase differential gps,” Computers
and electronics in agriculture, vol. 25, no. 1-2, pp. 53–66, 2000.

[22] M. Nørremark, H. W. Griepentrog, J. Nielsen, and H. T. Søgaard, “The development
and assessment of the accuracy of an autonomous gps-based system for intra-row me-
chanical weed control in row crops,” Biosystems Engineering, vol. 101, no. 4, pp. 396–
410, 2008.

[23] C. Zhang, N. Noguchi, and L. Yang, “Leader–follower system using two robot tractors
to improve work efficiency,” Computers and Electronics in Agriculture, vol. 121, pp.
269–281, 2016.

44

[24] H. Wang and N. Noguchi, “Autonomous maneuvers of a robotic tractor for farming,” in
System Integration (SII), 2016 IEEE/SICE International Symposium on. IEEE, 2016,
pp. 592–597.

[25] T. Bak and H. Jakobsen, “Agricultural robotic platform with four wheel steering for
weed detection,” Biosystems Engineering, vol. 87, no. 2, pp. 125–136, 2004.

[26] T. Bakker, K. van Asselt, J. Bontsema, J. Müller, and G. van Straten, “Autonomous
navigation using a robot platform in a sugar beet field,” Biosystems Engineering, vol.
109, no. 4, pp. 357–368, 2011.

[27] F. Rovira-Más, I. Chatterjee, and V. Sáiz-Rubio, “The role of gnss in the navigation
strategies of cost-effective agricultural robots,” Computers and electronics in Agricul-
ture, vol. 112, pp. 172–183, 2015.

[28] J. Zhang, A. Chambers, S. Maeta, M. Bergerman, and S. Singh, “3d perception for
accurate row following: Methodology and results,” in Intelligent Robots and Systems
(IROS), 2013 IEEE/RSJ International Conference on. IEEE, 2013, pp. 5306–5313.

[29] J. Bell, B. A. MacDonald, and H. S. Ahn, “Row following in pergola structured or-
chards,” in Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ International Con-
ference on. IEEE, 2016, pp. 640–645.

[30] S. A. Hiremath, G. W. Van Der Heijden, F. K. Van Evert, A. Stein, and C. J. Ter Braak,
“Laser range finder model for autonomous navigation of a robot in a maize field using
a particle filter,” Computers and Electronics in Agriculture, vol. 100, pp. 41–50, 2014.

[31] T. A. Troyer, S. Pitla, and E. Nutter, “Inter-row robot navigation using 1d ranging
sensors,” IFAC-PapersOnLine, vol. 49, no. 16, pp. 463–468, 2016.

[32] A. Velasquez, V. Higuti, H. Guerrero, and M. Becker, “Helvis-a small-scale agricultural
mobile robot prototype for precision agriculture,” in Proceedings of the 13th Interna-
tional Conference on Precision Agriculture (ICPA2016), St. Louis, MO, USA, vol. 31,
2016, pp. 1–18.

[33] T. B. Y. H. Kayacan, E. and G. Chowdhary, “High precision of an ultra-compact 3d
printed field robot in the presence of slip.” In International Conference on Robotics and
Automation, Brisbane, Australia. IEEE. Submitted., 2018.

[34] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger, R. Wheeler,
and A. Ng, “Ros: an open-source robot operating system,” in Proc. of the IEEE Intl.
Conf. on Robotics and Automation (ICRA) Workshop on Open Source Robotics, Kobe,
Japan, May 2009.

[35] S. Thrun and J. J. Leonard, “Simultaneous localization and mapping,” pp. 871–889,
2008.

[36] A. Kelly, Mobile Robotics: Mathematics, Models, and Methods. New York, NY, USA:
Cambridge University Press, 2013.

45

[37] G. Guennebaud, B. Jacob et al., “Eigen v3,” http://eigen.tuxfamily.org, 2010.

[38] J. Siek, L.-Q. Lee, and A. Lumsdaine, “Boost random number library,”
http://www.boost.org/libs/graph/, June 2000.

46

APPENDIX A

ROS-GAZEBO SIMULATION

A ROS interfaced Gazebo simulation was created to test and prototype the sensor fusion and

autonomy algorithms. Figure A.1 shows an overview of the Gazebo simulation environment.

Each block in this diagram represents a set of nodes that publish necessary data over ROS

topics, whereas the state machine is an Action/Client server which changes the state of the

robot as it navigates in the simulation.

State Machine

Feedback

IMU

LiDAR

GPS

Encoders

Cameras

Sensors

Perception Algorithms

MPC

Row
Following

Controller

Velocity Control

Attitude Control

Gazebo Simulation Environment

Figure A.1: An overview of ROS-Gazebo simulation environment

47

CMOS cameras

hardware
ELP USB Camera

software
usb_cam

data collection and obstacle avoidance

IMU

hardware
Razor 9dof IMU
software
razor_ros_driver
angular velocity and
acceleration

GPS

hardware
Trimble GPS
software
nmea_navsat_driver

Odometry System

ekf_localization

Fused position in the
odom frame that is
continuous and safe
for navigation.

navsat_transform

Fused localization
that jumps around a
bit due to GPS data
but will drift less

imu/data
(sensor_msgs/imu)

fix
(sensor_msgs/NavSatFix)

odometer/gps
(nav_msgs/Odometry)

global_odom/filtered
(nav_msgs/Odometry)

Waypoint Following

follow
multiple navigation
goals

State Machine

transitioning from
one state to
another

Row Following

autonomously
follow rows via
RANSAC + EKF

Autonomous System

LiDAR

provides distances to various obstacles in
the environment

hardware
Hokuyo UST-10LX

software
urg_node

Drive System

Drive joystick

hardware
XBox Controller
software
joy

drive the
robot

joystick actions
joy(sensor_msgs/Joy)

drive_teleop
button presses are
translated to motor
commands

simple_drive
motor commands are
converted to a simple
USB serial protocol
and sent to Roboclaw
which creates PWM
signals for motor
controllers

RViz
robot
visualization
tools

cmd_vel
(geometry_msgs/cmd_vel)

Figure A.2: ROS HIL architecture

48

