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Abstract

We present the Tweets2Cube system that uncovers the patterns underlying people’s spa-

tiotemporal activities from massive online social media. Tweets2Cube organizes unstruc-

tured social media records into a multi-dimensional data cube along three dimensions: (1)

what is the user’s activity; (2) where does that activity occur; and (3) when does that activity

occur. As such, the end users can use simple queries to retrieve task-relevant sub-corpus from

the data cube in a flexible way. Moreover, Tweets2Cube consists of a set of spatiotempo-

ral modeling algorithms, which can be readily applied to the retrieved data for extracting

knowledge about people’s activities in the physical world. Such algorithms jointly model

location, time, and text and are capable of discovering a variety of patterns, such as routine

spatiotemporal activities, unusual events, and mobility patterns. With Tweets2Cube, the

end users can interactively retrieve task-relevant social media and choose appropriate spa-

tiotemporal modeling algorithms for knowledge acquisition, which makes Tweets2Cube

highly useful for downstream tasks like disaster relief, targeted advertising, and location-

based recommendation.
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Chapter 1: Introduction

Today’s world is being explored in a human-centric and digitalized manner. Every day,

billions of people go to different places in the world and broadcast their and others’ activities

on social media platforms (e.g., Facebook, Twitter, Instagram). The confluence of people’s

offline activities and online interactions sheds light on utilizing massive social media for

modeling people’s activities in the physical world. Nevertheless, while people are good

at producing such massive social media, they often struggle to digest it and gain useful

knowledge due to its highly unstructured and multifaceted nature.

We present Tweets2Cube, a system that allows users to interactively extract action-

able knowledge about people’s spatiotemporal activities from massive social media. With

Tweets2Cube, one is able to answer questions like: (1) What are the typical activities at

a given location and time? (2) Can we detect emergent events (e.g., disasters, social unrest)

at their onsets? and (3) What are the patterns underlying people’s daily movements?

To acquire actionable spatiotemporal knowledge from social media, Tweets2Cube fea-

tures a structuring-and-mining framework. First, it contains a multi-dimensional structuring

module, which discovers the latent structures of social media and organizes the massive so-

cial media into a multi-dimensional data cube along three dimensions: (1) topic — what is

the user’s activity; (2) location — where does that activity occur; and (3) time — when does

that activity occur. From the data cube, the end users can easily retrieve task-relevant social

media data (e.g., protest-related tweets in Chicago in 2017 ) with simple queries. The sec-

ond module of Tweets2Cube consists of a collection of spatiotemporal mining algorithms

[1, 2, 3]. By jointly modeling text, location, and time, these algorithms extract a variety of

patterns underlying people’s activities, including: (1) routine spatiotemporal activities; (2)

unusual events; and (3) mobility patterns.

With a user-friendly Web interface, the Tweets2Cube system is versatile and easy to

use. An end user can use simple queries to retrieve relevant sub-corpus in the data cube

that meet his/her information needs. The user can further select different mining algorithms

and apply them on the retrieved data to build corresponding spatiotemporal models. Based

on the map-based visualization, the user can further refine his/her queries and explore the

spatiotemporal patterns underlying people’s activities in an interactive way.

The contributions of Tweets2Cube are: (1) an interactive system that uncovers the

patterns underlying people’s spatiotemporal activities from massive social media; (2) a multi-

dimensional structuring module that extracts structured information from social media, and

(3) a collection of spatiotemporal models that allows end users to explore different kinds of
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spatiotemporal patterns for downstream tasks. (4) a new event detection module based on

deep learning.

The rest of this thesis is organized as following: (1) In section 2, we will briefly go over the

system design. (2) In section 3, we will introduce related work of automatically taxonomy

construction and phrase mining. (3) In section 4, the detailed design of the Web interface

is explained. (4) In section 5, we will explore how TaxonGen[4] is adopted on tweets stream

and some modifications we have made to improve its performance. (5) In section 6, we will

introduce our new deep learning model on phrase mining. In section 7, we will show some

experiments that are realted to TaxonGen and the deep learning model. (6) Section 8 is

Conclusion.
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Chapter 2: System overview

2.1 ARCHITECTURE.

Figure 2.1 shows the architecture of the Tweets2Cube system. In Tweets2Cube,

we monitor the Twitter Streaming API1 and collect publicly streaming tweets. To extract

spatiotemporal knowledge from Twitter data, Tweets2Cube consists of two major com-

ponents: a multi-dimensional structuring module and a multi-dimensional mining module.

The former discovers the latent structures of social media and organize all the social media

records into a three-dimensional (location, time, topic) cube structure. The latter includes a

collection of spatiotemporal models for: (1) activity discovery; (2) event detection; and (3)

mobility modeling. We introduce the details of the two components in the following.

2.2 MULTI-DIMENSIONAL STRUCTURING.

The multi-dimensional structuring module is designed to automatically organize massive

social media into a three-dimensional (topic-location-time) data cube. The first key step is

to define the structure of such a data cube. While the location and time dimensions have

natural structures (e.g., country-state-city), the structure for the topic dimension is hidden.

To address this issue, a general solution is to automatically construct a taxonomy from the

corpus. A taxonomy organizes information in a general to specific pattern. By constructing

such a hierarchical structure, users can easily search for their interesting topics from top to

bottom. In our system, we have adopted TaxonGen[4], a topical concept taxonomy algo-

rithm, on tweets. The algorithm is made up of two steps. (1). We first extract structured

information (entities, noun phrases, etc.) from unstructured social media with an existing

NLP tool [5]. (2). Based on the distributed representations [6] of such phrases, we apply

hierarchical spherical clustering [7] on them in a top-down manner to generate a topic hi-

erarchy, and the center phrase of each node is selected as the label for the corresponding

topic.

However, there are several limitations of TaxonGen if we apply it directly on tweets stream.

First, tweets steam, unlike traditional large text corpora, are more sparse and unstructured.

People tend to include more specific information in tweets and ignore those general informa-

tion, which makes the general-specific topic hierarchy hard to build. Secondly, TaxonGen

picks the closest phrase to the center of the cluster as representative. This method works

1https://dev.twitter.com/rest/public
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Figure 2.1: The architecture of the Tweets2Cube system.

on academic publications but not on tweets because word distributions of tweets are unbal-

anced as stated previously. Thirdly, TaxonGen uses word2vec [6] to determine the syntactic

similarity of words. It’s also worth to explore how the algorithm performs with semantic sim-

ilarity. To address these issues, we proposed following solutions: 1) A new encoder-decoder

model to predict non-existing keyphrases from tweets based on existing hashtags.The idea

of mining non-existing keyphrases was first porposed by meng et al. in 2017 [8], which is

explained in detail in section 3.2. 2) A new center picking algorithm that relies on both

the distance to the center and the weighting of words in the corpus. The algorithm shows

significant improvement in center picking. 3) A new graph embedding algorithm [9] that

brings us more topical clusters.

After we build the hierarchical taxonomy for text, the second key step for Tweets2Cube

is to allocate all the social media records into the multi-dimensional cube. To achieve this,

we embed all the labels, terms, and records into the same latent space, by constructing

a co-occurrence graph among them and applying graph embedding techniques [9]. With

the generated embeddings, we choose the closest label for each record based on directional

similarities. Since this section is not part of my work, I won’t go in detail for it.
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2.3 MULTI-DIMENSIONAL MINING.

The multi-dimensional mining module includes a set of spatiotemporal models for dis-

covering different kinds of spatiotemporal patterns. These models integrate location, time,

and text in the modeling process, thereby enabling the end users to obtain a comprehensive

where-when-what view about people’s activities. Specifically, the multi-dimensional mining

module consists of four models: (1) The first is a activity discovery model that allows users

to retrieve routine activities at different locations and time. The discovery model is under-

pinned by a cross-modal representation learning procedure, which discovers the spatial and

temporal hotspots underlying people’s activities and embeds location, time, and text into

the latent space [1]. (2) The second is an event detection model, which accepts a query time

window from the user and extracts all the unusual events occurring in that window based on

temporal analysis [2]. (3) The third is a mobility pattern mining model, which uncovers the

sequential regularities behind people’s daily movements. The mobility model is developed

by discovering different users groups and training group-level hidden Markov model [3]. The

mobility model can also support predicting the next location a user tends to visit based on

his/her current trajectory. (4) The last is a deep learning model that emphasizes on phrase

mining and event detection. The model accepts a query, which is similar to [2], predicts

phrases by a encoder-decoder model, and group text corpus by the predicted phrases. Un-

like tradition phrase mining model, which typically mining quality words in the corpus and

reorganized them to form quality phrases, the encoder-decoder model is not only able to

mine quality phrases from the text, but also can predicts phrases that are not existing in

the corpus.
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Chapter 3: Related Work

3.1 AUTOMATICALLY TAXONOMY CONSTRUCTION

3.1.1 Pattern-based methods

Hearst proposed a method to automatically extract the hyponymy lexical relation, from

unrestricted text in 1992[10]. Numerous lexical-pattern-based methods were developed

to extract relations from world wide web corpus [11, 12, 13] or knowledge base, such as

Wikipedia[14, 15]. Agichtein et al. proposed the Snowball framework to generate patterns

and extract tuples from plain-text documents in 2000 [16] . Zhu et al. improved the per-

formance of Snowball framework by add statistic techniques, such as l1-regularized feature

selection [17]. Carlson et al. built a never-ending language learner that could extract, or

read, information from the web to populate a growing structured knowledge base in 2010

[18]. Nakashole et al. built PATTY, a system that organized relational patterns into tax-

onomy by parsing leveraging semantic types in 2012 [19]. Jiang et al. proposed [20] a

context-aware segmentation method to discover high-quality typed textual patterns from

large corpus effectively [20].

Although there are many success in patten-based methods, the low recall and the require-

ment of pre-defined rules or patterns make them not scalable in tweets stream.

3.1.2 Clustering-based methods

Generally speaking, cluster-based methods first learning words or phrases representation

and then group words or phrases that have high similarity. There have been various methods

on word representation learnings. Bansal et al. build a inducing hypernym taxonomies by

using a probabilistic graphical model formulation [21]. Fu et al. developed a method to iden-

tify whether candidate word pair has hypernymhyponym relation by the word-embedding-

based semantic projections between words and their hypernyms in 2014 [22]. Luu invented

a dynamic weighting neural network to learn term embeddings based on not the contextual

information between hypernyms and hyponyms [23]. However, those methods are not good

enough for learning word representation of tweets stream because words in tweets don’t have

hypernym-hyponym relations. In addition, there are always new words, which are related

to specific events in a certain period, that would not occur previously. Thus, previous word

representation learning cannot be directly applied on our task.
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For clustering techique, Davis et al. proposed a cluster separation measure in 1979 [24].

Yang et al. applied an ontology metric, a score indicating semantic distance, to automatic

taxonomy induction tasks in 2009 [25]. Liu et al. hierarchically cluster keywords into a

taxonomy by Bayesian rose tree [26]. Wang et al. proposed a phrase-centric framework for

topical hierarchy generation via recursive clustering and ranking [27]. Blei et al. developed

a generative probabilistic model for hierarchical structures and adopted Chinese restaurant

process to hierarchy partitions. [28]. Downey et al. invented Sparse Backoff Tree to ef-

fectively infer accurate topic spaces of over a million topics [29]. All those methods have

shown great effectiveness on clustering, but none of them really handles the hierarchical

topic clustering, which separates phrases of detailed topics from general topics.

3.1.3 Supervised methods

There are also supervised methods for taxonomy constructions. General supervised meth-

ods first train a model to classify whether pairs of words into relation and non-relation

categories based on either human-annotated data or other knowledge base. However, there

are such knowledge in raw tweets stream. In section 6, I will present a new method that

uses hashtags in tweets to build pairs of words, which have relation, without much human

effort.

3.2 AUTOMATICALLY KEYPHRASE EXTRACTION

Automatically keyphrase extraction usually consists of two steps. The first step is to

generate keyphrases from text corpus and the second step is to rank quality keyphrases by

certain mertric.

There are several methods to extract keyphrases based on some lexical patterns. Turney

et al. developed a topical keyphase extraction by decision tree in 2000 [30]. Liu et al. mined

phrases by selecting word sequences which matched certain POS tagger patterns [31]. El-

Kishky et al. adopted frequent pattern mining to select phrases from corpus [32]. However,

all those methods are limited on our task because of the undetermined number of topics

and the low frequency of repeated phrases in tweets stream. Another popular keyphrase

extraction method based on knowledge base, such as Wikipedia. Shang et al. proposed

AutoPhrase, which is a framework that mine quality phrases based on existing knowledge

based. AutoPhrase recognizes titles from Wikipedia as quality keyphrases, and mines phrases

that are similar to them [33]. Our deep learning model follows the idea of AutoPhrase, and

converts hashtags in tweets to keyphrases.
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The second step is to rank keyphrases by quality. There are various measures of quality.

Tomokiyo et al. presented a new approach to extracting phrases based on statistical language

model [34]. The method used pointwise KL-divergence between multiple language models

for scoring both phraseness and informativeness, which can be unified into a single score to

rank extracted phrases [34]. Liu et al. proposed a framework to integrate phrase extraction

and phrasal segmentation, which mutually enhance each other [35]. In our task, the quality

of keyphrases is related to the TaxonGen algorithm that focuses on the popularity and

concentration, which is explained in detail in section 5.

3.3 ENCODER-DECODER MODEL

Sutskever first brought deep learning to sequence-to-sequence learning tasks in 2014 [36].

Later, Cho et al. proposed the Encoder-Decoder model to solve neural machine transla-

tion problems in 2014 [37]. The method solves variable-length translation problems in an

end-to-end fashion, and achieved great success in many baseline experiments. Due to the

effectiveness and flexibility of the Encoder-Decoder model, it has been applied to various

NLP taks. Rush et al., Nallapati et al. and Abigail et al. have brought it to text sum-

marization [38, 39, 40]. Researchers have also explored different algorithms to improve its

performance. Bahdanau et al. proposed the attention mechanism that allows the decoder

to automatically learn weighting of inputs from each time step of the encoder rather than

simply decode everything from the last time step.

The Encoder-Decoder model is first brought to automatically keyphrase extraction by

Meng et al. in 2017 [8]. They combined the Encoder-Decoder model with copy mechanism,

which enables the decoder to extract phrases with out of vocabulary words by selecting words

directly from input [41]. Although the copy mechanism relied on the term frequency in long

text, the encoder-decoder model itself is a good model to predict non-existing keyphrases

from short text.
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Chapter 4: Web Interface

In this section, I described my user-friendly web interface. I first give an overview of it

in section 4.1. In section 4.2, I introduce some spatiotemporal models that are supported in

our interface and demonstrate some example usages of our web interface.

4.1 DESIGN OVERVIEW

The web interface is composed of two parts, which are the front-end and the back-end.

The front-end handles all the visualization and user inputs. Figure 4.1 shows the homepage

of our web interface. Before trying any spatiotemporal model, users need to first set up the

three dimensions (Time, Location and Topic) of Tweets2Cube by clicking the blue button

at the top-right corner. Figure 4.2 and figure 4.3 shows the form of those three dimensions.

The form is made up of three parts. The first part asks users to select a specific range for the

dataset. The second part allows user to define a country-state-city-area tuple that reflects

users’ preference. The last part allows user to select topics that they are interested in.

Once the dimension of Tweets2Cube is set up, the back-end automatically filters tweets

and train the corresponding model. Then, all available models can be select from the drop-

down menu at the top.

4.2 SPATIOTEMPORAL MODEL INTRODUCTION

4.2.1 Activity Discovery

The activity model is developed by Zhang et al. in 2017, which can models the spatial

and temporal hotspots underlying people’s activities [1]. Figure 4.1 shows the input to this

model, where users are allowed to choose any combination of one or two inputs. The model is

made up of two major components. The first component detects both spatial and temporal

hotspots based on kernel density. The second component combines location, time and text to

form a heterogeneous information network and learns the joint embedding from the network.

Figure 4.4 gives an example query with keywords ”beach”. The model returns a combina-

tion of location, keywords and time that are closely related to the query. As shown in the

figure 4.4, most location points are near the pacific ocean, which are famous beaches in Los

Angeles. Top keywords either are famous beach names, such as ”Redondo beach”, or they

represent some activities around beach like cruisin. The top time is around later afternoon,

9



Figure 4.1: Tweets2Cube Web Interface Homepage

Figure 4.2: Tweets2Cube Time and
Location Setup Figure 4.3: Tweets2Cube Topic Setup
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Figure 4.4: Tweets2Cube Activity Discovery

which is also the most common time people go to beach and enjoy the good time there.

4.2.2 Event Detection Model

The event detection model is developed by Zhang et al. in 2016, which provides effective

and real-time local event detection from geo-tagged tweet streams [2]. The model uses a

novel authority measure to capture geo-topic relation among tweets [2]. The model first

detects pivots, which are representative tweets for certain events, and group similar tweets

around pivots to form a cluster. An updating module monitors new tweets stream and

replace old piovts by new events.

The model requires a time window as the input. Figure 4.5 gives an example of event

detection in our web interface. Users first specify a time window by using the date selector

at the top, and the model summarizes all special events in that time window and display

them at the front end. In figure 4.5, we set the time window between Sep 18th 2014 and Sep

20th 2018. A Dodger’s baseball game have been detected. The place is at Dodger’s stadium,

which is exactly the home court of Los Angeles Dodgers. From the tweet, we can infer that

people come to support the Dodgers’ team with their friends.

11



Figure 4.5: Tweets2Cube Event Detection

4.2.3 Mobility Pattern Discovery

In this section, we will introduce two mobility pattern discovery model. The first one

is a mobility pattern based on the activity discovery model above, which detects mobility

patterns among different social groups [42]. The second one is a mobility pattern based RNN

sequence prediction that can be used in many recommendation system.

User Specific Mobility Pattern Discovery

The user specific mobility pattern model discovers two mobility patterns for different social

groups [42]. The first one is a sequential pattern that indicates the mobility flow of a specific

group. For example, a general mobility flow for UIUC CS students may be from Grainger

Library to Siebel building. The second mobility pattern is a frequent triplet, which indicates

life style for a specific group such as college students loves go to bar during Friday evening.

The model consists of three steps. The first step is based on the heterogeneous information

network in section 4.2.1, however, the network is made up of four different types of nodes,

which are user, time, location and text. After learning the embedding for each type of

node from the network, users will be clustered into different groups and keyphrases will be

extracted from each group as the semantic analysis. The last step is to detect the hotspots

for each user group. Embeddings of location and text will be combined linearly and then

12



Figure 4.6: Tweets2Cube User Mobility Pattern - Group Information

hierarchically clustered. Each hotspot should not only be close in physical dimension but

should also share similar interests.

In figure 4.6, we show a group who are interested in sports and Hollywood. As we can

see from the table, repesentative words of hotspot 3 are Dodgers, and stadium, which are

typically sport related. Figure 4.7 reflects a mobility flow from stadium to nightclub. A

possible explaination for this mobility flow could be some sports fan go to night club to

celebrate the winning of their team. Figure 4.8 shows some frequent life style for this group.

As we can see, in addition to game, this group also loves night club lives.

Sequence Prediction

The sequence prediction model is developed by Yao et al. in 2017, which predicts the next

location that users want to visit based on the previous information trajectory. The model

combines embedding of location, time, and text information from users’ previous trajectory

13



Figure 4.7: Tweets2Cube User Mobility Pattern - Sequential Pattern
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Figure 4.8: Tweets2Cube User Mobility Pattern - Frequent Triplet
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Figure 4.9: Tweets2Cube Sequence Prediction

and predict the next location. Figure 4.9 shows an animation of this model. In the figure,

blue markers show the original trajectory. Green trajectory are locations that have already

been predicted in the previous time step. The red location is the place predicted at the

current time step based on previous trajectory.
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Chapter 5: Automatically Taxonomy Construction

In this section, I introduce the TaxonGen algorithm and how to apply it to tweets stream.

I start with reviewing the detail of the algorithm. I will then go over some existing issue in

TaxonGen and the solution to them.

5.1 TAXONGEN DETAIL

The input to TaxonGen has two parts: 1) A corpus Document, which is a tweet stream

T ; and 2) a set of seed terms V. To generate V, venue categories from FourSquare are first

transformed into keyphrases. Next, phrases and words of T, which are similar to keyphrases

from FourSquare, are picked and form the initial V.

Algorithm 1 shows the process of TaxonGen. Starting from the whole tweet stream T, and

seed terms V, seed terms are clustered into k sub topics by the Spherical KMeans algorithm.

For each subtopic, CaseOLAP filters out general terms that should not be included in the

subtopic, picks a center word ci, which is the most representative word for this subtopic,

and selects a new set of seed terms that are close to the center word ci. The process will

be repeated until no more general terms are removed from all subtopics. Then, TaxonGen

is applied on every subtopic to form a hierarchical structure. The local embedding module

calculates the new representation for seed terms in every subtopic, which makes them more

distinguishable. Currently, SkipGram is used in the local embedding moduel.

However, there are two issue if TaxonGen is directly applied on the tweets stream. The

first one is the embedding algorithm. While SkipGram measures syntactic similarity, tweets

are really unstructured and may not contain that much syntactic information. Instead,

it’s worth trying graph embedding, which measures semantic similarity among words. The

second issue is the center pick algorithm. Unlike normal text corpora, where general words

occurs more often than specific words, tweets are more sparse and specific. The current

center pick algorithm picks the phrase that is closed to the center of the cluster, which

doesn’t works well on tweets. In the next two section, solution to these two issues are

discussed.

5.2 GRAPH EMBEDDING IN TAXONGEN

As discussed in last section, tweets are unstructured and it’s worth trying semantic em-

bedding in TaxonGen. Line, which focuses on the co-occurrence of words or phrases, is

17



Algorithm 5.1 TaxonGen algorithm

1: Input: Tweet stream T, and Seed Term V
2: Output: A hierarchical k-ary tree that each node in the tree represents a topical cluster

of phrases
3: procedure TaxonGen(T, V, k)
4: while True do
5: V1, V2, . . . , Vk ← Spherical-KMeans(V, K)
6: for i from 1 to k do
7: Ti, vi, ci ← CaseOLAP(Vi)

8: T
′ ← T1 ∪ T2 ∪ . . . TK

9: if T = T
′
then

10: break
11: T = T

′

12: for i from 1 to k do
13: vi = Local-Embedding(Ti, vi)
14: ci.children = TaxonGen(Ti, vi, k)

15: C ← c1, c2, . . . , ck
16: return C

used in the local embedding module [9]. A phrase-phrase co-occurrence graph is constructed

by simple counting the co-occurrence of every pair of phrases in every tweet. The first or-

der proximity, which indicates the similarity of nodes that have direct edges among them,

is used because some adjectives or general terms can co-occur with many different nouns

which causes many noises in the second order proximity [9].

5.3 NEW CENTER PICK ALGORITHM

Figure 5.1 shows a food related topic cluster that is built by the TaxonGen algorithm with

graph embedding. The hierarchy doesn’t show a general-specific pattern. Specific nouns,

like salad, pasta, and food, and adjectives, like spicy, are at the root level. However, general

nouns, like food, restaurant, and cuisine are in child cluster of the root. As discussed in

section 5.1, the issue is caused because the content of tweets are more specific, which means

the number of more specific terms are more than the number of general terms. Thus, specific

words take the dominant position inside a cluster, which makes the center is surrounded with

specific terms, and general terms are further to the center. Table 5.1 gives an example of

the distance of some terms to the center. The distance between specific terms, like salmon

and salad, and center are around 0.1, while the distance between general terms and center,

like food and brunch, are around 0.3 to 0.4.
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Figure 5.1: A Food Related Topic Cluster in Taxonomy

Table 5.1: Words distance to center - Food cluster
Word Distance

salmon 0.094
soup 0.110
salad 0.113
pasta 0.114
food 0.276

cuisine 0.299
bbq 0.384

brunch 0.474

The insight for addressing this issue is that, a representative center should not only close

to center but also be popular in this cluster. Hence, the popularity is measured by counting

the number of co-occurrence a word and all other words in the cluster. Then, the word with

most co-occurrence that are within a distance threshold, r, is picked as the new center of

the cluster.
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Chapter 6: Deep Event Detection

In this section, I introduce our deep learning model, which is basically an encoder-decoder

model, on event detection. Unlike tradition event detection models relies on location clus-

tering, the model first uses phrase mining to detect topics on tweets stream. Then, tweets in

each topic will be grouped by location. In this thesis, I focused on the phrase mining part.

First I give a simple introduction to the method.

6.1 METHOD OVERVIEW

The Encoder-Decoder model has widely been used in many NLP tasks, such as NMT, text

summarization and etc. Meng et al. combined the Encoder-Decoder model with the copy

mechanism to keyphrase extraction in 2017 [8, 41]. Based on Meng’s work, I come up with

the idea to use the Encoder-Decoder model to group tweets by events. The major challenge

for this task is the lack of event tags in tweets. To resolve this issue, I come up a new method

to build event tags of tweets based on some popular hashtags. The algorithm consists of

two steps. The first step is an online process step that the Encoder-Decoder model predicts

event tags for tweets stream. The second step is to group tweets with same event tags.

6.2 PROBLEM DEFINITION

Given a tweets steam of N tweets, the ith tweet contains (ti, hi), where ti represents the

tweet text and hi = (hi1, hi2, . . . , hin) contains n possible hashtags. Both ti and ∀ hij are

sequence of words:

ti = ti1, ti2, . . . , tilti

hij = hij1, hij2, . . . , hijlhij

lti and lhij
are the length of the tweet text ti and hashtag hij. Each pair of (ti, hij) is fed

into the Encoder-Decoder model, where ti is the input to the encoder and hij is the target

of the decoder output. For the purpose of simplicity, (t, h) is used to denote every pair of

inputs in the rest of this section.
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6.3 ENCODER-DECODER MODEL AND ATTENTION MECHANISM

Both encoder and decoder are implemented with RNN. The basic idea of the Encoder-

Decoder model is to train the vector representation for every word in the text sequence,

and the decoder decodes the vector representation from every time step. The attention

mechanism is firstly proposed by Bahdanau et al. in 2014 [43]. Traditional decoder only

takes the vector representation from the last time step and decode the output sequence from

it. Storing all information in a single vector representation is hard and Bahdanau proposed

that the vector presentation from every time of the encoder should be considered. The

attention mechanism gives an weight to every vector representation and automatically align

the weight so that the model can locate relevant components [43].

Every encoder input t = (t1, t2, . . . , tn), where n is the total number of time steps, is

transformed into o = (o1, o2, . . . , on) and by h = (h1, h2, . . . , hn) iterating through the

following equation at every time step i:

oi, hi = f(hi−1, ti) (6.1)

where f is a non-linear activation function, oi is the output of the encoder and hi is the

hidden state.

Every decoder takes hn, which is the last hidden state from encoder and denoted as l0,

as its initial hidden state. For every time step j, attention cj is generated by the following

equation:

cj = g(sj−1, lj−1, o) (6.2)

where sj−1 is output and lj−1 is the hidden state at the previous time step of the decoder. o

is the summary of all vector representation from the encoder. g is a combination of several

non-linear functions that will be explained in detail in the next section. After attention cj

is calculated, sj is calculated as following:

sj, lj = f(lj−1, cj) (6.3)

s = (s1, s2, . . . , sm) is then transformed into a text sequence. Both encoder and decoder

are trained in an end-to-end fashion. During evaluation phase, we applied beam search in

decoder to select the top k phrases for each tweet text.
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6.4 MODEL DETAILS

Our Encoder is implemented by a bi-directional GRU since it has better performance,

which is proved by previous studies [37, 43]. The non-linear activation function using in

encoder is ReLU.

A simple forward GRU is applied in our decoder model. The detail of the attention

mechanism, which is cj in equation 5.2, is implemented as following:

αji =
exp(sj−1, oi)∑T
k=1 exp(sj−1, ok)

cj =
T∑
i=1

αji × lj−1

(6.4)

where o = (o1, o2, . . . , oT ) is the output from encoder, sj−1 is the output of the decoder at

previous time step and lj−1 is the hidden state of the decoder from the previous time step.
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Chapter 7: Experiments

7.1 TAXONGEN EXPERIMENTS

7.1.1 Experiment Setup

The dataset used in the experiment is: a tweets stream from LA. Venue categories from

FourSquare are used to initialize seed terms for TaxonGen. For the SkipGram, TaxonGen

is experimented with words, and hashtags. Then, we experimented TaxonGen with graph

embedding and the new center pick algorithm.

7.1.2 TaxonGen with SkipGram

In this section, we demonstrate the topical taxonomies generated by TaxonGen with dif-

ferent types of terms. A 2-level topic taxonomy is built for words, and hashtags.

Figure 7.1 shows parts of the taxonomy generated by TaxonGen with words. As shown

in Figure 7.1, given the tweet stream, TaxonGen detects 5 topics, which are website, game,

accessories, bus, and education. Labels for all topics have good quality at this level and

all of them are common topics that people would love to post on Twitter. Words in every

cluster are also coherent and closely related to the representative term. Then, we can see how

TaxonGen splits these two topics into more specific topic. Taking accessories as an example,

TaxonGen successfully find 5 major topics in accessories, which are salon, dresses, leather,

shoes, and photography. The only flaw is photography, which is not a directly related topic

to accessories. However, since there are many pictures of accessories on fashion magazines,

photography is still an acceptable topic.

Figure 7.2 shows another taxonomy generated by TaxonGen but in the term of hashtags.

Compared to taxonomy with words, taxonomy of hashtags also have close coherent relations

in every topic but the parent-child relationship doesn’t strictly follow a general-specific

pattern. Given the tweets stream, TaxonGen detects 7 topics at the first level, which are

#beach, #itfdb, #beer, #vintage, #concert, #dessert, and #food. Taking #beach as an

example, all other hashtags that are in this topic are obviously closely related to #beach, for

example #beachday, and #venicebeach. However, the subtopic of #beach aren’t all closely

related to it, like #biking that has hashtags which are more closely related to sports not

beach. The reason is probably because SkipGram focuses on syntactic similarity that makes

#biking are more closely related to other sports hashtags.
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Figure 7.1: Tweet Taxonomy generated by TaxonGen under topics ’*’ (level 1), ’website’
(level 2), and ’accessories’ (level 2)
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Figure 7.2: Tweet Taxonomy generated by TaxonGen under topics ’*’ (level 1), ’#beach’
(level 2), and ’#concert’ (level 2)
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Figure 7.3: Tweet Taxonomy generated by TaxonGen with Line(Graph Embedding)

7.1.3 TaxonGen with Graph Embedding

Figure 7.3 shows a taxonomy generated by TaxonGen with graph embedding. Compared

to SkipGram, graph embedding detects more topics in both width and depth. At level 1,

eight topics are detected, which are bar, game, police, radio, vintage, real, education, and

food. Compared to SkipGram, terms in every topic are more meaningful and specific. Taking

the game topic as an example, graph embedding detects not only general terms like playoff

and baseball but also more specific terms such as mlb. It is reasonable because we count the

co-occurrence for every pair of terms in a tweet, however, SkipGram only considers terms in

the context window.

Nonetheless, the incapability to distinguish between quality nouns and adjectives or phrases

makes some noise in the taxonomy. Taking the food topic as an example, adjectives like spicy

and yummy, which occurs frequently when people talk about food, have been selected in

the topic. However, those adjectives don’t bring much meaningful information because they

co-occur with many different words. Another issue is the phrase. Taking the dim topic,

which is a subtopic of food, as an example, it’s quite straight forward the dim sum should

be considered as a single phrase but not two separate terms. Thus, it’s worth exploring how

to identify phrases during the taxongen construction.
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7.2 DEEP EVENT DETECTION EXPERIMENTS

7.2.1 Experiment Setup

The dataset in the experiment is a tweets stream from LA, which is generated by pick

some popular hashtags and convert them to event tags. For the encoder, a GRU with 3

layers is used. Adam optimizer is used for both encoder and decoder during training phase.

7.2.2 Qualitative Analysis

Table 7.1 shows three events, which are MLB, NBA, and Foodie, that our model detects

on the LA tweets stream. Within each event, 5 top-ranked tweets are picked. In the first

topic, all 5 tweets have specifically contains hashtags, words, and phrases that are related to

MLB. For example, all 5 tweets are related to LA Dodgers. Popular hashtags like #Dodgers

occurs frequently. For the second topic, all tweets are relevant to NBA. The the first and

the fourth tweets are about LA Clippers, and the second and the third are about LA Lakers.

Both are NBA teams in LA. The last event is about Foodie, which refers to people who

enjoying delicious food. As shown in the table, recommendations of different kinds of food

have been proposed. For example, the fourth tweet recommends a Japanese food restaurant

that offers yummy ramen.

Although our models detects events and top-ranked tweets in each event is coherent, our

model suffers a low recall issue for more than 90% of tweets. Figure 7.4 shows the histogram

of recall score vs. number of tweets. Since every tweet may have more than one event

tag, the top 5 predicted event tags are picked to measure the recall score. As shown in

the figure, 26,000 tweets have 0 recall, which means none event tags is correctly predicted

. Only about 1,111 tweets have all event tags predicted correct. A possible reason for the

low recall maybe caused by the imbalance distribution of the training datasets. The original

dataset is randomly splited into a 7:3 ration, where 70% of data are used as training data.

It is possible that event tags, like MLB and NBA, occurs more frequently in the training

dataset, which makes the model overfit them. Another possible reason is the OOV issue

in the testing dataset. As we discuss in section 5, tweets are unstructured and there are

always new words or phrases coming every day. The model currently ignores all OOV words

and only uses words that shown in the training dataset. If a tweet contains too much OOV

words, then the truncated tweets may lose lots of information, which could lead to a bad

prediction.
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Figure 7.4: Recall Score vs. Number of Tweets on LA dataset
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Table 7.1: Events Detection from LA tweets stream by the Encoder-Decoder Model
Events Tweets

MLB #WeLoveLA #Dodgers Los Angeles Dodgers plan to start
Clayton Kershaw on short rest in NLDS Game
#Dodgers baseball gods not kind today. Kershaw loses.
Braun wins. Dodger fans were tested. But they will per-
severe.
#Dodgers win or lose this umpire is pretty bad... equally
stinky regardless of team. He also LOVES to throw the ball
back to the pitcher.
@Dodgers #Dodgers Crazy call at the plate and scoreboard
has been wrong 3 times tonight re: strike/ball count. Hope
we get a run out if it!
@DodgersNation: #Dodgers lineup: 2B Gordon SS Ramirez
1B Gonzalez RF Kemp LF Crawford CF Ethier 3B Turner C
Ellis P Haren

NBA #WeLoveLA #Clippers Gameday Thread: Portland Trail
Blazers vs. Los Angeles Clippers - Blazer’s Edge
#Lakers #GoLakers Lakers GM Mitch Kupchak says plan is
to manage Kobe Bryant’s minutes
#Lakers #GoLakers Kobe Bryant To Operate Offense From
Below Free Throw Line
#WeLoveLA #Clippers Ray Allen rumors: Doc Rivers says
Allen won’t join the Los Angeles Clippers
IF I PLAY OR COACH FOR THE HAWKS IM MAD
AT THE AMOUNT OF LAKER FANS IN THE CROWD.
#ESPN #nba #FanNight #LakersvsHawks #lakerfans

Foodie A couple of good ways to use chefkate’s homemade nut but-
ters... On #glutenfree rice cakes with fresh
#SantaMonica Bus. Park 12+ #foodtruck #lunch with park-
ing! Serving our new #ShishitoPeppers bowl and wild hot
#salmon
Yellow curry with chard, bell pepper, onions and mushrooms
on top of quinoa. #MeatlessMonday #vegan #curry
Hippie Ramen comes w/wavy thicker noodles than the
thin ones Tatsu usually serves. #food #ramen #sawtelle
#losangeles
Try our King Tut wrap filled with grilled chicken
breast, sauted onion and tomato & falafel. #foodie
#MiddleEastFood #LateNight #Hollywood
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Chapter 8: Conclusion

In this thesis, I have demonstrated the Tweets2Cube system. Tweets2Cube helps

users to organize unstructured social media resource into structred cube along time, location

and time dimensions. It also offers users multiple spatiotemporal models to explore different

mobility patterns and text summarization. As shown in our experiments, all models offers

acceptable result.

However, there are still improvement that can be made. First of all, the taxonomy model

mines more specific information due to the characteristic of tweets. The encoder-decoder

model predicts non-existing phrases from tweets, which can be used to supplement general

information for tweets. There can be an online tweets processing phase that uses the encoder-

decoder model to predict general phrases, such as sports and food, for each tweet. The

TaxonGen algorithm is then applied on pre-processed tweets to build the Taxonomy.

It’s also worth exploring different algorithm for taxonomy construction. TaxonGen uses

hierarchical clustering to build the k-ary tree structure. It may also be interesting to check

how hierarchical graph partition algorithm performs on this problem.
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