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Abstract	
Octave-band sound pressure level is the preferred measure for continuous environmental noise 

monitoring over raw audio because accepted standards and devices exist, these data do not 

compromise voice privacy, and thus an octave-band sound meter can legally collect data in 

public. By setting up an experiment that continuously monitors octave-band sound pressure level 

in a residential street, we show daily noise-level patterns correlated to human activities. Directly 

applying well-known anomaly detection algorithms including one-class support vector machine, 

replicator neural network, and principal component analysis based anomaly detection shows low 

performance in the collected data because these standard algorithms are unable to exploit the 

daily patterns. Therefore, principal component analysis anomaly detection with time-varying 

mean and the covariance matrix over each hour, is proposed in order to detect abnormal acoustic 

events in the octave band measurements of the residential-noise-monitoring application. The 

proposed method performs at 0.83 in recall, 0.88 in precision and 0.85 in F-measure on the 

evaluation data set. 
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1. Introduction	
 
Environmental noise influences quality of life [1], [ 2]. Cars, planes, and commercial bustle can 

disturb sleep, create stress or hearing problems, and impact cognitive development in children. 

Another aspect of environmental noise is that it is directly related to human activities and 

lifestyles. As shown in Figure 1.1, a daily noise level pattern monitored near a road reveals the 

association between environmental noise and human activity. From midnight to early morning 

corresponding to the sleeping time of many families, the average noise level is low compared to 

the rest of the day. After that the average noise level increases due to the need to commute 

between house and school or workplaces. Variations in the noise level are significant between 

day time and night time. Therefore, monitoring and analyzing the environmental noise has been 

an active research area for decades [3]-[6]. 

 

Figure	1.1	A	daily	noise	level	pattern	monitored	near	a	road.	Both	short-term	fluctuations	and	long-term	variation	across	the	
day	are	apparent.			

 
One important tool for environmental noise analysis is anomaly or outlier detection, in which a 

generative process for the daily noise pattern is defined to provide the typical noise 

characteristics of a particular area, and anomalies are points, or events, that are unlikely 

generated by the generative model. Since long-term monitoring always yields a massive amount 

of data, researchers and analysts cannot investigate every single data point. Hence, anomalies 

mark potentially interesting events and instances that merit further investigation. As examples, 
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anomalies in residential streets might include police or ambulance sirens, car crashes, or people 

shouting and screaming. If surveillance cameras are also installed, anomalies in environmental 

noise could selectively trigger raw audio and camera recording and transmission, reducing 

network traffic and data storage. 

Anomaly detection in acoustic environmental noise faces several challenges. First, in order to 

protect speech privacy, the algorithm should only be applied on coarse measures such as noise 

intensity, octave band, or one-third-octave band measurements [7] over intervals considerably 

larger than phoneme duration, but not directly to the raw audio. Secondly, the normal and 

anomaly definitions are time-dependent at a given monitored area, because noise-level patterns 

change over time as shown in Figure 1.1. Thirdly, if octave bands or one-third-octave bands are 

used, the algorithm has to work on high-dimensional data. 

Fortunately, the variation of acoustic noise strongly relates to human activities; therefore, it is 

reasonable to assume 24-hour periodicity on generative models in an urban setting. The 

periodicity suggests means for reducing the complexity of the anomaly detection algorithm. 

This thesis applies well-known approaches in anomaly detection including one-class support 

vector machine (SVM), replicator neural network (RNN), and principal-component-analysis 

based anomaly detection to a continuous octave-band noise intensity monitor in a residential 

area, before proposing a time-varying principal-component-analysis-based anomaly detection 

which improves the performance significantly. The proposed method treats measurements at 

each hour independently. At each hour, typical measurements are approximately generated by a 

multivariate Gaussian distribution, and anomalies are input samples which are unlikely to be 

present under the corresponding normative distribution.   

The rest of this thesis is organized as follows. Chapter 2 surveys related works in 

environmental noise monitoring and analysis. Chapter 3 provides background about octave band 

measurement; Gaussian, log-normal, and chi-squared distributions; principal component analysis 

(PCA); anomaly detection algorithms including PCA based anomaly detection, one-class SVM, 

and RNN; and an evaluation framework. Chapter 4 discusses the data collected in the study. 

Chapter 5 presents the proposed method in detail. Chapter 6 evaluates the performance of the 

suggested algorithm. Lastly, Chapter 7 draws conclusions and discusses about directions for 

further work. 
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2. Related	Works	
 
Many works in environmental noise monitoring recently have focused on detection and 

classification of acoustic events. Salamon and Bello [8] designed a convolutional deep neural 

network which has “3 convolutional layers interleaved with 2 pooling operations, followed by 2 

fully connected (dense) layers”. In the preprocessing steps, Salamon and Bello [9] transform raw 

audio data into log-scaled mel-spectrogram representation before extracting time-frequency 

patches as input for the networks. Scream and gunshot detection are the topic of study of 

Valenzise et al. [10]. The authors converted 23 ms audio frames into feature vectors including 

zero-crossing rate (ZCR), mel-frequency cepstral coefficients (MFCC), and some other spectral 

and distribution- based measurements before using two independent Gaussian mixture models to 

discriminate gunshots and screams from environmental noise respectively. Matrix factorizations 

such as non-negative matrix factorization (NMF), principal component analysis (PCA) and their 

variants seeking good representations of environmental acoustic scenes are examined in by Bisot 

et al. [11]. 

   In addition, anomaly detection of acoustic events have been studied. Ntalampiras et al. [12] use 

a Gaussian Mixture Model (GMM) to form statistical representations of normal events, 

thresholding the likelihood of the incoming data based on selected anomalies returned by the 

GMM. Chakrabarty and Elhilali [13] apply a Restricted Boltzmann machine (RBM) and 

conditional RBM as the generative model of the acoustic environment, and anomalies are 

identified based on their likelihood.  

   In all of the aforementioned works, transient acoustic events are subjects for classification and 

detection. In other words, the acoustic scene must always be represented with sufficient 

information that can reconstruct the corresponding raw audio. Therefore, these approaches may 

not be easily deployed in public environments due to privacy concerns about human speech. 

   Fortunately, environmental noise monitoring by means of sound pressure level, octave band, 

one-third-octave-band measurements can be conducted in public areas. Hardware and 

infrastructure is available for up to city-scale noise monitoring with reasonable cost. Mydlarz et 

al. [14], [15] implement a low-cost microelectromechanical systems (MEMS) microphone array 

(less than $100 USD per sensor node) that complies with the standard IEC 61672-1[16] for 

electroacoustic sound level meters. In addition, Mydlarz et al. [15] provide a sensor network 

designed for city-scale deployment. Hence, we believe that in many cases, classification and 
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detection applied for environmental monitoring should start with the assumption that only sound-

pressure levels over at least one second intervals are available as inputs. 

Given this survey of related works, our contributions can be summarized as follows: First, the 

study is conducted under the assumption that only octave-band sound pressure level is available 

as raw data. Secondly, the nonstationary nature of sound levels in residential areas and their daily 

patterns are illustrated. Thirdly, different anomaly detection algorithms applied to a continuously 

monitoring sound pressure level data set are reported.  Lastly, the extension of robust PCA-

anomaly detection [17] by introducing piecewise constant mean and covariance parameters in 

multivariate Gaussian distribution of the generative model produces an anomaly detection that 

can adapt to the dynamics of residential noise level. 
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3. Background		
 

This chapter provides the theoretical framework for the discussion and explanations in the 

following chapters. Octave-band measures are introduced, followed by discussion of statistical 

properties including the normal, log-normal, and chi-square distributions before principal 

component analysis (PCA) is considered. Next, anomaly detection techniques comprising PCA-

based anomaly detections, one-class support vector machine (SVM), and replicator neural 

network (RNN) are studied. Lastly, performance metrics of anomaly detection algorithms 

consisting of recall, precision, and F-measure are introduced. 

3.1	Octave	Band		
 
As stated in ANSI S1.43-1997 (r 2007) [7], a sound-pressure-level meter can split the frequency 

sprectrum into octave bands and provide measurements of the average energy level of each band 

over intervals of one second. Therefore, it is approved by US law to collect octave-band 

mesurements in public environments, since there is no known method to reconstruct the speech 

information from these mesurements.  

   In addition, intensive scientific study of human speech has determined that the information as 

to both the words spoken and the speaker’s identity are carried in the fine spectro-temporal 

(time-frequency) structure of the signal.  Therefore, if we sufficiently undersample in this 

domain (or in another domain from which this information is provably irrecoverable), the 

speech/speaker are fundamentally irrecoverable. 

   Furthermore, the noise level at octave bands provides richer information than a single noise 

intensity at the same sampling rate, and it saves processing resources since it can be implemented 

on hardware. 

   In this thesis, the raw audio is collected in order to validate the results of analysis; therefore, 

we need to transform audio data into octave band features as shown in Figure 3.1. Raw audio 

data are split into overlapped frames. At each frame, signal energy is presented in the form of 

octave band components. Applying Parseval’s theorem and signal processing theory [18], an 

octave band component can be calculated by summing the squares of the fast Fourier transform 

(FFT) magnitudes corresponding to the cutoff frequencies of that octave band and then dividing 

by the length of the FFT block; the cutoff frequencies for each octave band are approximately 
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equal to the standard specification in [7]. In the final step, the average of these octave-band 

components over data frames equivalent to T seconds of recording provides the octave-band 

vector of interest. Note that there are extra calibrations and scaling steps [7], [19] in order to 

generate the actual sound pressure level; however, without loss of generality, the analysis in this 

thesis can skip these steps because all the data is measured from a single microphone with a 

stationary setting.    

 

3.2	The	Gaussian	Distribution	
 
A widely used distribution of continuous radom variables which plays an important role in this 

thesis is the Gaussian distribution, also known as the normal distribution [20], [21]. In one-

dimensional random variables 𝑋, the probability density function of a Gaussian random variable 

is defined as 

 
 

𝑝# 𝑥 𝜇, 𝜎( =
1
2𝜋𝜎(

𝑒.
/
(01 2.3

1
	 3.1  

 
where 𝜇 is the mean,	𝜎( is the variance and 𝑥	is a realization of 𝑋. If a normal distribution has 

the mean 𝜇 of zero and the variance 𝜎( of one, then the distribution is called standard normal. 

When an N-dimensional random variable 𝑿 is studied, the probability density function 

becomes 

 

𝑝𝑿 𝒙 𝝁, 𝜮 =
1

2𝜋
;
( 𝜮

/
(
𝑒.

/
( 𝒙.𝝁 <𝜮=> 𝒙.𝝁 	 3.2  

 
where 𝝁 and 𝜮 are an N-dimensional mean vector and NxN covariance matrix respectively. |𝜮| 

represents the determinant of 𝜮, and 𝒙 is a realization of random vector 𝑿. The Gaussian random 

FFT 

Overlapped Frames of 
Raw audio samples Square 

FFT’s 
magnitude 

Sum up energy in 
each octave band 

and then divide by 
frame length  

Take average of each 
energy band every T 
seconds  

Octave-
band 
vectors 

Figure	3.1	Transformation	of	raw	audio	data	into	octave-band	features.	First,	raw	audio	data	are	split	into	overlapped	
frames.	At	each	frame,	signal	energy	is	present	in	the	form	of	octave-band	components	before	going	to	the	last	stage.	In	
the	final	step,	the	average	of	these	octave-band	components	over	data	frames	equivalent	to	T	seconds	of	recording	

provides	the	octave-band	vector	of	interest.	



7	
		

vector parameterized by 𝝁 and 𝜮  is often denoted as 𝑁(𝝁, 𝜮). In the special case, where 𝜮 is a 

diagonal matrix having 𝜎/(, … , 𝜎;( as diagonal elements, elements  𝑋/ …𝑋; of  vector 𝑋 become 

independent random variables. Therefore the probablity density function can reduce to the form 

of Equation (3.3) [20]. 

 

𝑝𝑿 𝒙 𝝁, 𝜮 = 𝑝 𝑥D 𝜇D, 𝜎D(
;

EF/

3.3  

 

where  

𝒙 = 𝑥/ …𝑥; G 3.4  

 

𝝁 = 𝐸 𝑿 = 𝜇/ …𝜇; G 3.5  

 

𝜮 = 𝐸 𝑿 − 𝝁 𝑿 − 𝝁 𝑻 =

𝜎/( 0 ⋯ 0
0 𝜎(( ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝜎;(

3.6  

 

Note that 𝐸[𝒙] denotes the expectation of random vector 𝑿. Definition and properties of the 

expection can be found in [20] and [21]. 

   In the general case, 𝜮 is a positive-definite matrix, so it can be factorized into the form of 

Equation (3.7) [22]: 

𝜮 = 𝑼𝜦𝑼𝑻	 3.7  

where 𝜦 is a diagonal matrix and 𝑼 is an NxN dimenisional matrix which contains an 

orthonormal basis for an N-dimensional real vector space; 𝑼𝑻𝑼 = 𝑰, where 𝑰 is the identity 

matrix. 

Let us consider vector 𝒁 in N-dimensional space taking the form of Equation (3.8). It can be 

shown that 𝒁 has a Gaussian distribution because the sum of  linearly scaled Gaussian random 

variables produces another Gaussian random variable [20]. 
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𝒁 =
𝑧/
⋮
𝑧;

= 𝑼𝑻𝑿 3.8  

 

𝐸 𝒁 = 𝐸 𝑼𝑻𝑿 = 𝑼𝑻𝐸 𝑿 = 𝑼𝑻𝝁	 3.9  

 

𝐸 𝒁 − 𝐸 𝒁 𝒁 − 𝐸 𝒁 G = 𝐸 𝑼G 𝑿 − 𝝁 𝑿 − 𝝁 𝑻𝑼  

= 𝑼𝑻𝐸 𝑿 − 𝝁 𝑿 − 𝝁 𝑻 𝑼 

= 𝑼𝑻𝜮𝑼 

= 𝑼𝑻𝑼𝜦𝑼𝑻𝑼 

= 𝜦 3.10  

 

   Furthermore, the components 𝑍/ …𝑍; of vector 𝒁 are independent random variables; the 

covariance matrix of random vector 𝒁 is the diagonal matrix 𝜦. In other words, 𝒁 is the Gaussian 

random vector 𝑁(𝑼𝑻𝝁, 𝜦). The linear transfomation from vector 𝑿 to vector 𝒁 is also known as 

the decorrelation of the Gaussian random variable; this transformation also provides a 

probablistic interpretation for PCA disscussed in Section 3.5.1. 

3.3	The	Log-normal	Distribution		
 
The sample space of a Gaussian random variable is the set of real numbers 𝑅; therefore, the 

Gaussian distribution is sometimes not directly suitable for a generative model of a non-negative 

data set. In such cases, the log-normal distribution could be a reasonable choice because the 

realization of a log-normal random variable is a positive number. A similar argument holds when 

modeling a high-dimensional data set. 

   Formally, the log-normal random variable 𝑌 is the random variable whose lograrithm has a 

Gaussian distribution [23]. In other words, if 𝑌 is a log-normal random variable, then 𝑋 = ln𝑌 is 

a Gaussian random variable.The probability density function of the log-normal distribution is 

given by 

 

𝑝a 𝑦 𝜇, 𝜎() =
1

𝑦𝜎 2𝜋
𝑒.

cde.3 1

(01 				, 𝑥 > 0 3.11  
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where 𝜇 and 𝜎( are the mean and variance of the Gaussian variable 𝑋 = ln𝑌. 

Figure 3.2 shows examples of log-normal distributions with different parameter values. From 

these examples, it can be clearly seen that the log-normal distribution is a very plausible model 

for positive heavy-tailed data sets with appropriate choice of parameters.  

   In a similar manner, if 𝑿 = 𝑋/ …𝑋; G is an N-dimensional Gaussian random vector, then 𝑌 =

𝑒# =
𝑒#>
⋮

𝑒#g	
	is a multivariate log-normal random vector [24].  

   The log-normal distribution has been successfully applied in different fields such as modeling 

the time to repair a maintainable system in reliability analysis [25], and modeling the firing rate 

across a population of neurons [26], [27]. As shown in Chapters 4 and 5, this thesis presents 

another application of the log-normal distribution.   

  
 

 
Figure	3.2	Examples	of	log-normal	distributions	with	different	parameters.	

 

3.4	The	Chi-Squared	Distribution		
 
   Chi-squared or 𝜒( distribution is another well-known distribution related to the normal 

distribution. The chi-squared distribution, which plays an important role in statistics and 

hypothesis testing [28], is formally defined as follows. 

If 𝑋/ …𝑋i are independent, standard normally distributed, then random variable Q shown in 

Equation (3.12) has chi-squared distribution and is denoted as 𝑄~𝜒( 𝑘 , where k is called the 
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number of degrees of freedom.The chi-squared probability density function is defined in 

Equation (3.13), and examples of chi-squared denistiy functions with different degrees of 

freedoom are shown in Figure 3.3. 

 

𝑄 = 𝑋D(	
i

DF/

3.12  

 

𝑝m 𝑞 𝑘 =
𝑞
i
(./𝑒.

o
(

2
i
(	Γ 𝑘

2

	, 𝑓𝑜𝑟		𝑞 > 0 3.13  

 

where  

 

𝛤 𝛼 = 𝑥v./𝑒2𝑑𝑥	
xy

z

3.14  

 

is called the gamma function. 

 

 
Figure	3.3	Chi-squared	probability	density	functions	with	various	degrees	of	freedoms.	
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In addition, the cumulative distribution function (CDF) of the chi-squared distribution is given in 

Equation (3.15): 

 

𝐹m 𝑞 𝑘 = 𝑃m 𝑄 ≤ 𝑞 =
𝛾 𝑘
2 ,
𝑞
2

𝛤 𝑘
2

	, for	𝑞 > 0 3.15  

 

where  

 

𝛾 𝑠, 𝑥 = 𝑡�./𝑒.�𝑑𝑡		
2

z

3.16  

 

Lastly, given k degrees of freedom, the chi-squared value of p-value, 𝜒i( 𝑝 , is defined as  

 

𝜒i( 𝑝 = 𝑞	such	that	𝑃m 𝑄 > 𝑞 = 1 − 𝐹m 𝑞 𝑘 = 𝑝, 𝑝 ∈ [0,1] 3.17  

 

3.5	Principal	Component	Analysis		
 
The principal component analysis (PCA) is a linear dimension-reduction method also known as 

the Karhunen–Loève transform in stochastic settings [20], [29], [30]. Namely, given an N-

dimensional random vector 𝑿 with mean vector 𝝁 ∈ 𝑹𝑵and a multivariate distribution P, and 

letting 𝒀 = 𝑨(𝑿 − 𝝁) and 𝑿 = 𝑩𝒀 + 𝝁 where 𝐴 is an 𝑅×𝑁 matrix and 𝑩 is an 𝑁×𝑅 matrix (R £ 

N), the PCA task is finding matrices A and B such that the cost function in Equation (3.18) is 

minimized. 

 

𝐽 𝑨, 𝑩 = 𝐸𝑷 𝑿 − 𝑿 ( = 𝐸 𝑿 − 𝑿 𝑻 𝑿 − 𝑿 3.18  

 

where 𝐸𝑷[∙] denotes the expectation operator over the multivariate distribution P.  

Letting 𝜮 = 𝐸𝑷[ 𝑿 − 𝝁 𝑿 − 𝝁 G] be the covariance matrix of random vector X, from 

Equation (3.7), the covariance matrix can be rewritten as 
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𝜮 = 𝑼𝜦𝑼𝑻	 3.19  

 

where 𝑼𝑻𝑼 = 𝑰, and 𝜦 is a diagonal matrix with a nonnegative diagonal element. Without loss 

of generality, 𝜦 can be written as  

 

𝜦 =

𝜆/ 0 ⋯ 0
0 𝜆( ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝜆;

, with			𝜆/ ≥ 𝜆( … ≥ 𝜆; ≥ 0 3.20  

 

Let 𝑼𝟏 …	𝑼𝑵 be the column vectors forming matrix U, then 𝑼𝒊	is an eigenvector corresponding 

to eigenvalue 𝜆D of the covariance matrix. Namely, 𝜮𝑼𝒊 = 𝜆D𝑼𝒊	[22].	 

   It can be shown that 𝐽 𝑨, 𝑩  is minimized when matrix A equals the transpose of matrix B, 

𝑨 = 𝑩𝑻and matrix B is formed by the first R (R £ N) eigenvectors, 𝑩 =	 [𝑼𝟏 …𝑼𝑹] [20]. 

Therefore,	𝑼𝟏, … , 𝑼𝑵 are also called principal components. In addition, while they are in general 

uncorrelated random variables, the elements of 𝒀 = 𝑨(𝑿 − 𝝁) are independent random variables 

if P is a Gaussian distribution.   

   Intuitively, PCA can be easily understood by first looking at Figure 3.4, in which sample data 

is translated to the origin and then rotated in order to align with the axes by 𝒁 = 𝑼𝑻 𝑿 − 𝝁 . 

After that, components which have larger variances are selected. For example, if the dimension 

of the sample data in Figure 3.4 is reduced to one, then 𝒀 = [𝑍/]  and 𝐴G = 𝐵 = [𝑼𝟏]. Note that 

the PCA discussion has so far assumed knowledge of the 𝑼 orthonormal basis; however, in 

reality, this basis can be efficiently solved by singular value decomposition (SVD) given the 

covariance matrix [22]. 
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Figure	3.4	An	Intuitive	explanation	of	principal	component	analysis.	The	left	plot	shows	the	sample	data	generated	by	a	two-

dimensional	Gaussian	random	vector,	and	the	right	plot	shows	the	translated	and	rotated	sample	data	in	PCA.			

Finally, let us consider Figure 3.5, where the sample data after removing the mean are 

weighted and projected onto principal components as shown in Equation (3.21). As a result, the 

elements of random vector Q are uncorrelated and have unit variance. In other words, the 

covariance matrix of random vector Q is the identity matrix. The transformation from random 

vector X to random vector Q provides a foundation for explaining PCA-based anomaly detection 

in Section 3.6. 

 

𝑸 = (	𝛴.
/
()𝑼𝑻 𝑿 − 𝝁 	 3.21  

 

 
Figure	3.5	The	left	plot	shows	the	sample	data	generated	for	a	two-dimensional	Gaussian	random	vector,	and	the	right	plot	

shows	the	scaled	projections	of	sample	data	on	the	principal	components.	
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3.6	Anomalies	and	Anomaly	Detection	
 
Anomalies are patterns of data which do not follow a well-defined notion of typical behaviors. 

Figure 3.6 demonstrates a simple example of anomalies in a two-dimensional data set. The data 

show two normal regions as blue dots, while anomalies are red dots which are far away from 

normal regions. 

Anomaly detection techinques often try to find a mapping from data instances into scores or 

ranking numbers. An analyst can either declare a few instances with top scores or choose a 

threshold to select anomalies. Classification-based, neural-network-based, statistical and spectral 

approaches are common solutions for anomaly detection problems operating in high-dimensional 

unlabeled data (unsupervised learning settings) [17].  

   In classification-based techniques, algorithms try to learn the boundary of the typical points; 

a testing instance is anomalous if it lies outside the normal boundary. Classification-based works 

best if the training data do not contain anomalies. One-class SVM and its variants are the 

mainstream techniques because with the kernel trick SVM can learn a complex non-linear 

boundary. In addition, one-class SVM has been successfully applied to several anomaly 

detection applications [31-33]. In unsupervised settings, the training data may contain anomalies, 

so the anomaly score can be assigned as a signed distance from the decision boundary; the points 

lying within the boundary have positive scores and points lying outside the boundary have 

negative scores [34]. 

   In neural-network-based techniques, anomalies are assumed to have a small fraction 

compared to typical data in a given set of data; therefore the weights in the hidden layer of the 

neural net are influenced mainly by the typical behaviors of the generating process. During the 

learning phase, the data are compressed into hidden layers of the neural network. In the testing 

phase data are reconstructed from the trained network. The errors between the input data and the 

reconstructed data are used as scores of anomaly detections [17]. Even though deep 

convolutional neural network based techniques have been developed [35], we believe that a large 

training data set is required for applying deep neural networks. Therefore, given the size of 

experimental data in this study, we select a replicator neural network (RNN), a simple but 

powerful and widely-used neural network [36-37], to apply to our observed data. 

   In statistical anomaly detection techniques, a stochastic generative model of the observed 

data is estimated. Anomalies are data instances occurring in the low probability of region of the 
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stochastic model. If a multivariate Gaussian distribution closely approximates the distribution of 

a given training data set, then robust principal component analysis (PCA) based anomaly 

detection is an appropriate choice. In addition, if typical data instances and anomalies appear to 

be different in a lower dimensional subspace, the PCA-based technique also provides a tool to 

find the lower dimension subspace of interest. In other words, PCA-based anomaly detection 

algorithm is also a key technique in spectral based anomaly detection [17]. 

	

Figure	3.6	An	example	of	anomalies	in	a	two-dimensional	data	set.	

   Next, the detailed background knowledge for PCA-based anomaly detection, one-class SVM, 

and RNN are presented. 

3.6.1	PCA-based	anomaly	detection		
 

In PCA-based anomaly detection, data can be either generated by a multivariate Gaussian 

distribution or embedded into a lower-dimensional subspace in which anomalies appear 

significantly different from the normal instances. 

The general procedure of PCA-based anomaly detection starts by estimating principal 

components of the covariance matrix of the training data, or matrix U in Equation (3.19). In the 

testing phase, each point is assigned an anomaly score based on the point distance from the 

principal components. Specifically, if column vectors 𝑈/ …𝑈; are principal components 

corresponding to eigenvalues 𝜆/ ≤ ⋯ ≤ 𝜆E of training data covariance matrix 𝜮, and 𝝁 is the 
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mean vector of the training data, the anomaly score of a point 𝒙 = [𝑥/	𝑥( …𝑥;]𝑻 is given by 

Equation (3.22): 

 

𝑆 𝒙 =
( 𝑈𝒊 𝑻(𝒙 − 𝝁))(

𝜆D
	

o

𝒊F𝟏

, 𝑞 ≤ 𝑁	 3.22  

 

If the assumption that typical data X is a Gaussian random vector, it can be verified that  

£¤
< #.3
¥¤

 is a standard normal distribution. Thus, S(X) has the chi-squared distribution of q 

degrees of freedom, 𝜒( 𝑞 ,	by definition in Equation (3.12). As a result, by applying Equation 

(3.17), a point x is anomalous if   

 

𝑆 𝑥 ≥ 𝜒o( 𝑝 	 3.23 	 

 

In practice, the mean vector and covariance matrix of the training data with M samples are 

estimated by a maximum-likelihood estimator as shown in Equations (3.24) and (3.25) [20]. 

 

𝝁 =
1
𝑀

𝑥i

§

iF/

	 3.24  

 

𝜮 =
1
𝑀

(𝒙𝒌 − 𝝁) (𝒙𝒌 − 𝝁 G
§

iF/

3.25  

3.6.2	One-class	SVM	
 
Given a data set 𝐷 = 𝒙/ …𝒙ª , 𝒙D ∈ 𝑹𝑵 having m data points in N- dimensional space, and a 

transformation 𝜙:𝑅; → 𝐹 which project the data into a feature space F, one-class SVM learns a 

decision boundary by maximizing the separation between the data points and the origin in the 

transformed space [34]. More precisely, the decision boundary has the form given by  

 

𝑔 𝑥 = 𝒘G𝜙 𝑥 − 𝑝	 3.26  
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where 𝒘 ∈ 𝑹𝑵is weight vector and 𝑝 is a bias term; the primary objective of one-class SVM is 

given by Equation (3.27) 

min
𝒘,±,²

𝒘 (

2
− 𝑝 +

1
𝑣𝑚

𝜉D

ª

DF/

	 3.27  

subject	to ∶ 𝒘G𝜙 𝒙D ≥ 𝑝 − 𝜉D, 𝜉D ≥ 0		 

where 𝜉D	is a slack variable for point 𝑥D; the slack variable provides a relaxation for a point which 

can lie outside of the decision boundary. 𝑝 is the distance from the decision boundary to the 

origin in the feature space, and 𝑣 is the upper bound of the fraction of the anomalies in the data 

set [34]. The optimization in Equation (3.27) is transformed into its dual form as given by [33] 

 

min
¥

1
2

𝜆D𝑘 𝒙𝒊, 𝒙𝒋 𝜆»

ª

»F/

ª

DF/

	 3.28  

subject	to:		0 ≤ 𝜆D ≤
1
𝑚𝑣

	, 𝜆D

ª

DF/

= 1 

where 𝑘 𝒙𝒊, 𝒙𝒋 = 𝜙 𝒙𝒊 	 ∙ 𝜙 𝒙𝟐  is the dot product of points 𝑥D, 𝑥» in the feature space, and 

decision boundary becomes [33] 

𝑔 𝒙 = 	 𝜆D𝑘 𝒙𝒊, 𝒙 − 𝑝
ª

DF/

3.29  

Note that from Equations (3.28) and (3.29), only the kernel 𝑘 𝒙𝒊, 𝒙𝒋  needs to be defined without 

knowing the transformation 𝜙 𝒙  explicitly. In addition, the Gaussian kernel as defined in 

Equation (3.30) is used to guarantee the existence of the decision boundary g(x) because data 

transformed with Gaussian kernel lies in same quadrant; given any two points in the data set, its 

Gaussian kernel output is non-negative. 

𝑘 𝒙𝒊, 𝒙 = exp −
𝒙𝒊 − 𝒙

(

2𝜎(
3.30  

where 𝜎 is the parameter of the kernel function. Small values of 𝜎 could lead to overtraining 

(memorizing training set D) and many support vectors which are points x such that g(x) equals to 

one, while large values of 𝜎 can ignore particular characteristics of the data set. For 
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implementation, we will start with 𝜎 = 0.01 and increase it gradually until the number of 

support vectors does not decline significantly [34]. 

In one-class SVM g(x) can be used as the anomaly score; if a point x has its g(x) value is close 

to zero or negative, it is potentially an anomaly. 

Finally, MATLAB machine learning and statistical toolbox [38] is used for solving the 

Equation (3.28) with the Gaussian kernel in order to implement one-class SVM.  

3.6.3	Replicator	neural	network		
 
The replicator neural network was first introduced by Hawkins et al. [36]. The network structure 

includes three hidden layers between the input and output layers. In addition, the output layer has 

the same size as the input layer. However, Ciesielski and Ha [39] later discovered that using one 

hidden layer can provide equivalent performance. Therefore, we will explore the replicator 

neural network with one hidden layer as shown in Figure 3.7. 

 

 
Figure	3.7	A	fully	connected	replicator	network	with	one	hidden	layer	

Let 𝑤D»
(À) be the weight that joins the input node i of layer l and output node j of layer l+1, and let 

𝑁À be number of nodes in the layer l. The values of the hidden layer and output layer are defined 

in Equation (3.31) and (3.32) respectively as follows: 

 



19	
	

𝑧» = 𝑎 𝑤D»
/ 𝑥D + 𝑏»	

/
;>

DF/

	 3.31 	 

 

𝑦» = 𝑎 𝑤D»
( 𝑧D + 𝑏»	

(
;1

DF/

3.32  

where 𝑏»
À 	denotes the bias term for node j in layer l, and 𝑎	(∙) denotes an activation function 

applied to the hidden layer. In RNN, a sigmoid function as shown in equation (3.33) is used as 

the activation function [37]. 

   

𝑎 𝑥 =
1

1 + 𝑒.2
	 3.33  

   During the training phase, given a training set 𝐷 = 𝒙(/) …	𝒙(;) , 	𝒙(») ∈ 𝑹𝑵𝟏,	the network 

parameters are derived by minimizing overall the least-squared error as shown in Equation 

(3.34): 

 

min
Ã¤Ä

> ,Ã¤Ä
1 ,ÅÄ

> ,ÅÄ
1

(𝑥D
(») − 𝑦D

(»))(
;>

DF/

;

»F/

3.34  

Note that the objective function in Equation (3.34) is non-convex because of the sigmoid 

activation function; therefore, numerical methods for optimizing this objective function only 

guarantee a local minimum, but not the global minima.  

   In the testing phrase, if the error, in Equation (3.35), between the input 𝒙 = 𝑥/ …𝑥;>
𝑻
 and its 

reconstruction 𝒚 = 	 [𝑦/ …𝑦;>] through the RNN is larger than some threshold, the point x is 

declared as an anomaly. 

𝑒 𝒙 = (𝑥D − 𝑦D)(
;>

DF/

3.35  

   For implementation of the RNN algorithm, we select the MATLAB neural network toolbox 

[40] to solve Equation (3.24). Furthermore, the number of nodes in the hidden layer in the RNN 

is selected empirically for best performance given a specific application or training set. 
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3.7	Performance	Measures		

 
Precision, recall and F-measure are common methods for preformance evaluation of an anomaly 

detection algorithm [41]. Given a data set 𝐷, which has M instances of true anomalies, an 

anomaly detection algorithm can declare K instances of D as anomalies, but only T instances 

(𝑇 ≤ 𝐾, 𝑇 ≤ 𝑀) belong to the true anomaly group. As a result, the precision, recall and F-

measure of the alogrithm are defined respectively as  

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	
𝑇
𝐾
	 3.36  

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇
𝑀

3.37  

 

𝐹ªÍÎ�ÏÐÍ = 2 ∙
𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
𝑅𝑒𝑐𝑎𝑙𝑙 + 	𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

3.38  

 

Intuitively, high precision means the algorithm detects more relevant than irrelevant intances, 

while high recall refers to the alogrithm’s ability to return most of the relevant instances. On the 

other hand, the F-measure is an attempt to combine precsion and recall into a single number, 

where a larger number represents the better performance. 
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4. The	Collected	Data	
 
In the experiment, we are interested in abnormal acoustic scenes instead of transient events. In 

the context of street noise, acoustic scenes are selected as 10 seconds of audio data. Therefore, 

the observed data set 𝑫 = 𝒙𝟏,…𝒙𝑵 , 𝒙𝒊 ∈ 𝑹𝟖 is a sequence of non-overlapped 10-second-

averages of octave-band noise levels. The first octave band cuts off at 62.5 Hz and 125 Hz while 

the last one starts at 8 kHz and ends at 16 kHz. The data were collected by setting up an 

omnidirectional microphone facing a section of a one-way street in a residential area. In this 

experiment, the raw data are kept for performance evaluation in Chapter 6. In addition, in the 

context of this thesis, given a measurement 𝒙𝒊, its noise intensity or noise level is referred to as 

𝑦D = 𝒙𝒊
( = 𝑥/D( + ⋯+ 𝑥ÔD( , 	𝒙𝒊 = 𝑥/D … 𝑥ÔD G	 4.1  

 

   Given that the collected data started at 7pm, by inspecting the noise-level patterns plotted in 

Figure 4.1 and Figure 4.2, one can observe the repetitive patterns which strongly relate to human 

activities; the noise level is generally low during nighttime with fewer variations than during 

daytime when the level goes up and varies more. Furthermore, in this situation, the noise level is 

mainly influenced by the amount of vehicle traffic at the area of recording. 

   Analysis of the collected data suggests that the generative model of the data measurements is 

nonstationary. Figure 4.3 presents the histogram of the noise intensities, while Figure 4.4 depicts 

the histograms of noise intensities grouped by hours. It can be clearly seen that the distributions 

in Figure 4.4 are very different from the overall distribution in Figure 4.3. Therefore, a time-

varying process is required for modeling data generation. 

   Furthermore, the distribution of values in each band is also time-varying. The clues can be seen 

in Figures 4.5 and 4.6 which show histograms of noise level in the frequency band from 250 to 

500 Hz and the frequency band from 500 to 1000 Hz, respectively. The means and variances of 

these distributions tend to decrease during nighttime and early morning while they increase from 

early morning to midday.  

   Lastly, the acquired measurements strongly relate to human activities in the surroundings. 

These activities are generally subject to schedules such as kids going to school at 8-9 am, people 

going to work from 9am-10am, etc. Hence, the data collected at a given hour can be assumed to 

be independent from that collected at other hours, thereby leading to the proposed method of 
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modeling typical data patterns presented in Chapter 5. 

 

 
Figure	4.1	The	collected	octave-band	log-normed	vector	sequence	for	eight	consecutive	days.	Note	that	the	value	of	each	

element	of	the	octave	band	vector	is	in	log	scale;	the	starting	time	of	the	collected	data	is	7pm.		

 

 
Figure	4.2	The	noise	intensity	corresponding	to	collected	octave-band	vectors;	the	starting	time	of	the	collected	data	is	7pm.	
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Figure	4.3	The	histogram	of	log	noise	level	intensity	values	of	the	collected	data.	These	data	appear	to	be	generated	by	a	tri-

modal	distribution.	

 
Figure	4.4	The	histogram	of	log	noise	level	values	of	the	collected	data	grouped	by	hours;	the	first	block	is	from	19h	to	20h	in	

the	top	left	plot.	These	data	can	be	closely	approximated	by	a	single	log-normal	distribution	for	each	hour.	
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Figure	4.5	The	histograms	of	log	noise-level	at	the	frequency	band	from	250	to	500	Hz	grouped	by	hours;	the	first	block	is	

from	19h	to	20h	in	the	top	left	plot.		

  

 
Figure	4.6	The	histograms	of	log	noise-level	at	the	frequency	band	from	500	to	1000	Hz	grouped	by	hours;	the	first	block	is	

from	19h	to	20h	in	the	top	left	plot.	
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5. Proposed	Method	
 
As shown later in Chapter 6, given the collected measurements, in unsupervised learning setting, 

one-class SVM does not perform as well as RNN or PCA. In addition, the boundary decision of 

the one-class SVM is sensitive to anomalies in the evaluated data set thereby leading to lower 

performance than the other techniques. On the other hand, PCA-based anomaly detection and 

RNN perform similarly in this case; however, applying these two techniques directly does not 

exploit the daily pattern and the changes in distribution over a day as pointed out in the previous 

chapter. Therefore, one could suggest that the collected data is split into hours before applying 

either PCA based anomaly detection or RNN independently for each hour. 

   Noting that many histogram instances, especially from morning to late afternoon hours (from 

7am to 6 pm), show signatures of Gaussian distributions for both noise intensities in Figure 4.4 

and octave-band measurements in Figures 4.5 and 4.6. As a consequence, approximating the 

generative model of observed data at each hour of a day by a Gaussian distribution is very 

natural. Furthermore, RNN with its modeling flexibility is not guaranteed to capture full 

characteristics of a Gaussian distributed data set, because numerical solvers only return a local 

minima solution for its objective function; Section 3.6.3 notes that the objective function are 

non-convex. Thus, extension of PCA-based anomaly detection with its probabilistic 

interpretation provides a more robust and stable solution. Indeed, the evaluations in Chapter 6 

also show that applying PCA-based techniques independently for each hour of the collected data 

provides better performance than using RNN in a similar setting.  

   For the above mentioned reasons, we proposed the following method. At a given time n, 

𝑿(𝑛) = 𝑿𝟏 𝑛 …𝑿𝟖 𝑛 𝑻 is drawn from a log-normal distribution such that 

𝒁 𝒏 = log 𝑿(𝑛) ~	𝑁 𝝁 𝑛 , 𝜮(𝑛) 	 5.1  

where 𝑁 𝝁 𝑛 , 𝜮(𝑛) 	is a multivariate Gaussian with time-varying mean vector, 𝝁 𝑛 , and 

covariance matrix 𝜮(𝑛). In this model, 𝝁(𝑛) and 𝜮 𝑛  are approximated as piecewise constant 

and periodic over 24 hours; their values only change over each hour. There are three reasons 

which lead to this approximation. First, human activities are subject to schedule, which probably 

causes the daily patterns as shown in Figure 4.2. Second, if one takes a closer look at a particular 

day, one sees a slow variation of the underlying statistic, even nearly stationary for some hours 
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as shown in Figure 5.1 for noise-level intensities or Figure 5.2 for intensities at a particular band 

in octave-band measurements. Last but foremost, by letting 𝝁 𝑛 	and 𝜮 𝑛  be piecewise 

constant, the complexity of the model is reduced significantly because within an hour, 𝝁(𝑛) and 

𝜮 𝑛  become constant and can be independently estimated by Equations (3.24) and (3.25) given 

the data samples which belong to that hour. In addition, a piecewise constant function provides 

some degrees of freedom to model a time-varying function. The quicker a piecewise constant 

function can change values, the closer it approximates a target function; therefore, if a larger set 

of data could be collected, our model parameters, 𝝁(𝑛) and 𝜮 𝑛 , can be varied much faster, 

such as every 10 minutes, while they are reliably estimated. 

   After assuming the generative model as a stationary Gaussian distribution within an hour 

block, the anomaly detection technique described in Section 3.4 can be applied independently for 

each hour. In addition, to avoid small noise intensities or quiet points being marked as anomalies, 

the noise intensity of an anomaly,	𝒙(n), has to satisfy Equation (5.2) as well as Equation (3.23) 

𝒙𝑻 𝑛 	 ∙ 𝒙 𝑛 ≥ 𝐸[𝒙𝑻 𝑛 	 ∙ 𝒙 𝑛 ] 5.2  

where  

𝐸[𝒙𝑻 𝑛 	 ∙ 𝒙 𝑛 ] =
1
𝑀

𝒙𝑻 𝑘 ∙ 𝒙 𝑘
�Îª²ÀÍ�	DE	×ØÏÐ	»

 

if n belongs to hour j and M is the number of samples collected in hour j. 

   In summary, if column vectors 𝑈/(𝑛)…𝑈;(𝑛) are principal components corresponding to 

eigenvalues 𝜆/ 𝑛 ≤ ⋯ ≤ 𝜆E(n) of covariance matrix 𝜮(n), the anomaly score of a point 𝒙 𝑛 =

[𝑥/ 𝑛 	𝑥((𝑛)…𝑥Ô(𝑛)]𝑻 is given by Equation (5.3). 

𝑆 𝒙 𝑛 =
𝑈𝒊 𝒏

𝑻 log 𝒙 𝒏 − 𝝁 𝒏
𝟐

𝜆D(𝑛)
	

o

𝒊F𝟏

, 𝑞 ≤ 𝑁	 5.3  

𝒙(n) is an anomaly if the following condition in Equation (5.4) is valid: 

𝟏 𝒙𝑻 𝑛 	) ∙ 𝒙 𝒏 ) ≥ 𝐸[𝒙𝑻 𝑛 	 ∙ 𝒙 𝑛 ] ∙ 𝑆 𝑥 ≥ 𝜒o( 𝑝 	 5.4  
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and given n within hour j across training data, 𝝁(𝑛) and	𝜮(n) are estimated as  

𝝁 𝒏 =
1
𝑀

𝑙𝑜𝑔(𝒙𝒌)
�Îª²ÀÍ�	DE	×ØÏÐ	»	

5.5  

𝜮 𝑛 =
1
𝑀

(𝑙𝑜𝑔(𝒙i) − 𝝁(𝒏)) (𝑙𝑜𝑔(𝒙i) − 𝝁 𝒏 G

𝒔Îª²ÀÍ�	DE	×ØÏÐ	»	

5.6  

where 𝑀 is the number of samples belonging to hour j. Note that 𝑈/(𝑛)…𝑈;(𝑛) and 

𝜆/(𝑛)…𝜆((n) are also piecewise constant. 

 

Figure	5.1	Sound	intensity	measures	over	one	day.	From	4.5	to	4.8,	data	samples	seem	to	be	generated	by	a	stationary	
statistic.	
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Figure	5.2	Intensities	at	the	band	from	250	to	500	Hz	in	octave	measurements.	From	4.5	to	4.8,	data	points	seem	to	be	

generated	by	a	stationary	statistic.	
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6. 	Evaluation	
 
The performance of the proposed method is evaluated by using the eight-day continuously 

recorded data which contains labelled anomalies including ambulances, police cars, loud 

vehicles and other unexpected sounds. Extra police and ambulance vehicle sounds are also 

injected from the SONYC data set [42], [43]. We believe residents will regard acoustic scenes 

having these types of sound as abnormal and unpleasant moments; police and ambulance sirens, 

especially, can strongly correlate to accidents or crimes happening in the residential area.  

   Each sound clip from the SONYC data set is sampled at 16 kHz, so its corresponding octave- 

band values cannot include the measurement from 8 kHz to 16 kHz. Therefore, the injected 

sound needs to go through an up-sampling-by-two operation [18] before being added at random 

temporal positions to the recorded data. In order to simulate the settings of the recorded data, the 

injected anomalies are also scaled by the ratio of the average energy of ambulance and police 

siren sounds in the recordings to that of the injected data. 

 
Figure	6.1	Recall	measures	for	regular	PCA	anomaly	detection	and	the	proposed	method	for	various	numbers	of	principal	

components	selected.	

Detection performance is presented by precision, recall and F-measure for different numbers of 

principal components. For comparison, the performance of the proposed algorithm is compared 

to the traditional PCA-based anomaly detection presented in Section 3.6.1. Note that the p-value 

in Equation (3.23) is set to 0.982 for evaluations.  
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Figure	6.2	Precision	measures	for	regular	PCA	anomaly	detection	and	the	proposed	method	for	various	numbers	of	principal	

components	selected.	

 
Figure	6.3	F-measures	for	regular	PCA	anomaly	detection	and	the	proposed	method	for	various	numbers	of	principal	

components	selected.	

 
Figures 6.1, 6.2, and 6.3 show evaluation results. First, the more principal components 

selected, the better the performances of all methods, as shown in Figure 6.3. Recall that the 

performance of the proposed method increases gradually as the number of selected components 

increases, while the corresponding precision measures slightly fluctuate around 0.82 beyond five 

principal components selected. The proposed method outperforms the regular PCA-based 
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anomaly detection by at least 10% on all measures for a given number of principal components, 

and the best performance occurs when all principal components are selected.  

In comparison with other anomaly detection techniques presented in Section 3.6, one-class 

SVM is calibrated for the given data set with the parameter for Gaussian kernel in Equation 

(3.30) 𝜎 = 1.242 and the model parameter in Equation (3.27) 𝑣 = 0.01. Replicator neural 

network (RNN) with five hidden nodes is applied to the whole training set while RNN with six 

hidden nodes is applied to each hour of the training set; the size of the hidden layer in the RNN 

are selected by adding hidden nodes until the performance does not increase significantly. Note 

that the criterion in Equation (5.5) for avoiding marking measurements with low energy as 

anomalies is applied to all implemented algorithms for fair comparison. 

 
Table	6.1.	The	Performance	comparison	of	the	proposed	method	against	one-class	SVM,	RNN,	and	regular	PCA-based	

anomaly	detection	algorithms	

Method Precision Recall F-measure 

One-class support vector machine (SVM) 0.59 0.53 0.56 

Replicator neural network (RNN) 0.75 0.66 0.70 

Regular PCA-based anomaly detection 0.75 0.67 0.71 

RNN trained for each hour 0.79 0.82 0.80 

The proposed Method 0.89 0.81 0.84 

 

Table 6.1 shows the best performance result we could achieve for each algorithm. One-class 

SVM has the lowest performance on the given data set because when anomalies are present in 

the training data, the learned discriminative boundary covers them and causes performance to 

degrade. RNN and regular PCA-based anomaly detection have similar performances and their 

performances are significantly better than the one-class SVM technique; however, they still fall 

behind our proposed techniques by more than 10% in all measures. Furthermore, when RNN is 

applied independently for each hour, its performance improves significantly and is only 4% 

lower than the performance of the proposed method in F-measure. The difference between the 

performance of RNN trained for each hour and the proposed method can be explained by the fact 

that when data is split into hours for modeling the generative process, the underlying distribution 

closely approximates a Gaussian distribution as shown in Chapter 3, and PCA-based anomaly 
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detection is the optimal method if the training data are normally distributed. Furthermore, RNN 

can model flexible distributions, but only local minima of its RNN can be returned by numerical 

solvers.  

For completeness, receiver operating characteristic (ROC) curves [44] of the algorithms in 

Table 6.1 are plotted in Figure 6.4; the ROC curve of the proposed technique is above all the 

ROC curves of the other algorithms when the probability of false alarm is less than 0.25, while 

the ROC curve of one-class SVM is the lowest. The ROC curves of regular PCA-based anomaly 

detection and RNN applied to the whole data set are very similar. The ROC curves also show 

that RNN performance improves significantly when it is applied independently into each hour of 

the evaluated data set. Note that in Figure 6.4, the probability of false alarm is equal to 

subtracting the precision measure in Equation (3.26) from one, while the probability of detection 

is equivalent to the recall measure defined in Equation (3.27).  

As a closing remark, given that 0.6% of the evaluation data set of the continuous eight-day 

record are anomalies, the precision of 0.89 means only 0.066% of the data instances are false 

alarms or triggered incorrectly as anomalies as shown in Equation 6.1. Thus, the proposed 

algorithm has a false-alarm rate of roughly four times per hour and the capability of discovering 

81% of anomalies presented in the evaluation set.  

0.006 ∙ 1 − 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 	 ∙ 100% = 0.066%	 6.1  

 

 
Figure	6.4	Receiver	operating	characteristic	curves	for	the	algorithm	in	Table	6.1	
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7. Conclusion	and	Further	Work		
 
Directly applying traditional anomaly detection algorithms such as the PCA-based technique, 

one-class SVM, and RNN do not provide the best solution for SPL type measurements in the 

problem of environmental noise monitoring in a residential area as presented in Table 6.1 and 

Figure 6.4. When modifying the original models in order to exploit the daily patterns and the 

non-stationarity of the experimental data, the performances increase significantly. For example, 

RNN trained by each hour outperforms its original model by 10 % percent in F-measures, and 

the proposed extension of regular PCA anomaly detection boosts the performance up by 14% in 

F-measures. 

   In fact, when data is normally distributed, PCA-based anomaly detection provides the optimal 

solution for anomaly detection, and the histogram of the observed data at each hour can be 

closely approximated by Gaussian distributions thereby leading to the introduction of time 

varying models for mean and variances over one-hour intervals in the proposed method. In other 

words, the presented technique treats the collected data in log scale at each hour independently 

and models its generation by a multivariate Gaussian and detects anomalies accordingly. Despite 

the simplicity of the proposed method, it can reach 0.85 F-measure with 0.83 recall and 0.89 

precision without dimension reduction, and outperform regular PCA-based anomaly detection, 

RNN and one-class SVM. In addition, the technique is suitable for high-dimensional data 

because it only adds extra parameters linearly with increasing dimension of the data, thereby 

reducing the number of samples required for parameter estimation. 

   Besides an anomaly detection method, this thesis also introduces a practical setup for real-

world environmental noise monitoring. By collecting 10-second average octave band noise level, 

the required bandwidth and memory for data storage and communication are reduced 

significantly, while the low resolution of the collected data strengthens privacy protection. 

Therefore, the system can potentially be deployed and scaled easily in residential areas without 

legal restrictions by consuming battery and solar power. Furthermore, this thesis shows that 

octave-band measurements provide sufficient information for detecting unknown anomalies 

which may include interesting sound events such as police and ambulance sirens, and large-

vehicle engines. 
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   In future work, data from various residential areas need to be collected for testing with the 

proposed techniques. In addition, a question of interest is how the proposed technique can work 

or be extended if multiple microphones could be deployed in a given area. 
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