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Abstract

This dissertation aims at developing sophisticated finite-element based nu-

merical algorithms for efficient electromagnetic modeling and design of com-

posite materials, fast frequency-domain scattering analysis of electrically

large problems on massive parallelized computers, and efficient broadband

analysis of resonant waveguide structures. To these ends, first, an interface-

enriched generalized finite-element method (IGFEM) is introduced for elec-

tromagnetic analysis of heterogeneous materials. To avoid using conformal

meshes, the method assigns generalized degrees of freedom at material inter-

faces to capture the discontinuities of the field and its derivatives, and main-

tains the same level of solution accuracy and computational complexity as the

standard FEM based on conformal meshes. The fixed mesh nature combined

with an analytical sensitivity analysis significantly reduces the computational

cost in gradient-based shape optimization. Second, an efficient parallelization

strategy is proposed for the domain decomposition based dual-primal finite-

element tearing and interconnecting (FETI-DP) algorithm. Load balancing,

global, neighboring, inter-processor communication minimization, and pre-

conditioning techniques are adopted to improve the computational and paral-

lel efficiency. An inhomogeneous truncation boundary condition is presented

to enable the FETI-DP simulation of a stratified medium. The parallel FETI-

DP algorithm is also combined with a fast near- to far-field transformation

and a linear interpolation technique for efficient vectorial field imaging of

electrically large objects. Finally, a hybrid technique that consists of the

time- and frequency-domain computations and model-order reduction strat-

egy is developed for the efficient simulations of resonant waveguide structures.

Numerous results are presented to demonstrate the accuracy, efficiency, and

capability of the proposed methods.
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Chapter 1

Introduction

Because of its strong adaptability to complex structures, highly inhomoge-

neous materials, and ability to achieve higher-order numerical accuracy, the

finite-element method (FEM) for electromagnetic analysis has experienced

tremendous progress in the past few decades [1–3]. While early developments

were mainly focused on higher-order vector basis functions (VBFs) [4–6],

truncation boundary conditions [7–10], hybrid simulation techniques [11–14],

and transient analysis to accurately model various electromagnetic prob-

lems [10, 15–17], current developments of the FEM place more emphasis on

extending its capability to simulate and optimize advanced materials with

complicated internal structures [18–21], utilizing computer clusters to model

electrically large and complex targets [22–30], and performing multiphysics

and multiscale simulation of real-life engineering applications [31–35]. In this

dissertation, we present our progress on the first two topics and on the devel-

opment of new hybrid methods for broadband analysis of resonant waveguide

structures.

1.1 Modeling of Composite Materials

The continued evolution of lighter, stronger, and more efficient systems in

civil, industrial, and military applications has fostered a long-standing drive

to develop novel sophisticated composite materials [36–38]. To analyze the

structural, thermal, and electromagnetic properties of these heterogeneous

materials, the FEM is usually adopted for its strong adaptability to complex

geometries and high numerical accuracy [3, 39–49]. At the material inter-

faces where the field normally exhibits C0-continuity, the FEM has to resort

to meshes that are conformal with the interfaces to yield an accurate repre-

sentation of the solution. However, it is generally acknowledged that creating
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a conformal mesh inside a complex object with high quality elements is non-

trivial, especially in three-dimensional (3-D) problems [50]. There are also

other occasions, such as crack growth simulations [44,51], shape/topology op-

timizations [45,46,52,53], and transient field analysis [47,54], where the gener-

ation of multiple conformal meshes needed to capture the geometric changes

is cumbersome, expensive and sometimes impractical. The repeated creation

of conformal meshes from scratch can even undermine the robustness of the

standard FEM in certain mechanical applications because of the violation of

local energy conservation [51], and might compromise the overall numerical

solution accuracy in multi-physics analysis or co-simulations [31–33].

One possible method that can address the preceding issue of creating (mul-

tiple) conformal meshes is the generalized FEM (GFEM), which is based on

point clouds/partition of unity instead of tessellation [42, 48, 49, 55]. As it

is intensively studied in structural and thermal problems and has been in-

troduced in computational electromagnetics for solving scattering/reflection

from perfect electrically conducting (PEC) objects [42, 55], it is a promising

approach for alleviating the problem of mesh generation. However, such an

approach is not appropriate for electromagnetic analysis of highly inhomoge-

neous media, as is often the case in the composite material analysis. Another

approach that can eliminate creating conformal meshes and re-meshing ge-

ometries repeatedly is the fully overlapping domain decomposition method

(DDM) [46]. By separating the discretization of the fine geometrical de-

tail region from the uniform background region, one can employ the detail

region solution as an equivalent source for the background region and the

background region solution as a boundary condition for the detail region,

and solve these two problems iteratively until a desired accuracy is achieved.

Although the conditioning issues associated with the high aspect ratios of

the elements in the two different regions have been tackled and an accept-

able accuracy has been achieved, the detail region problem, the background

region problem, and the coupling between the two regions must be solved

many times to yield a converged solution, which makes this method time-

consuming. The third approach, which we refer to as the subdivision FEM,

is to explicitly intersect material interfaces with a background mesh and sub-

divide those non-conformal elements at the material interfaces into several

conformal sub-elements, where non-conformal means that the mesh does not

conform to material interfaces. Although it is quite straightforward and free
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of problems like those that appear in the aforementioned two approaches,

this approach introduces some extra unknowns and often generates highly

irregular elements, thus giving rise to a significantly deteriorated FEM sys-

tem matrix. Another simple approach is to employ basis functions defined

only on the original background mesh and to consider the effect of differ-

ent materials inside a non-conformal element by performing integration over

sub-regions defined by material properties. However, the failure to represent

the C0-continuous field along material interfaces results in a low accuracy.

Recently, an interface-enriched generalized FEM (IGFEM) has been devel-

oped to alleviate the aforementioned issues of generating conformal meshes

inside highly inhomogeneous domains and repetitively creating meshes with

morphing geometries [40, 43, 56]. By enriching the solution space with basis

functions associated with generalized degrees of freedom (DoFs) at the inter-

sections of material interfaces and finite elements, this method uses meshes

that do not conform to the material interfaces while achieving a level of

accuracy comparable to that of the standard FEM with conformal meshes.

Although the method has been initially introduced to solve structural and

thermal problems with nodal basis functions, it can be extended to analyze

electromagnetic problems where VBFs are prevalent, and this extension is

one of the main objectives of this dissertation.

The advantages of the IGFEM over the standard FEM are more pro-

nounced in shape/topology optimizations. Combined with a gradient-based

shape optimizer and an analytical evaluation of sensitivities of the objective

functions and constraints, the IGFEM can significantly speed up the opti-

mization process due to its fixed mesh nature, where the so-called design

velocity field only needs to be calculated at material interfaces [21]. The

application of IGFEM in the gradient-based shape optimization of electro-

magnetic problems is another objective of this dissertation.

1.2 Modeling of Electrically Large and Complex

Targets

The FEM has been demonstrated for decades to be a versatile approach to

modeling complicated materials/systems with high numerical accuracy [1,3].

Unfortunately, due to the requirement of a volumetric discretization, the
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FEM often yields a linear system with millions or even billions of unknowns

for modern engineering applications such as for phased-antenna array analy-

sis, radar signature prediction of electrically large objects, and full-wave syn-

thesis of on-board circuit design. The domain decomposition-based FEMs

have been therefore developed to enable large-scale electromagnetic simula-

tions [22–24,57,58], among which the dual-primal finite-element tearing and

interconnecting (FETI-DP) algorithm for electromagnetic analysis has been

shown to be highly powerful because of its numerical stability and potential

scalability [22,23].

The FETI-DP algorithm divides an entire computational domain into

many nonoverlapping subdomains and enforces transmission conditions at

the subdomain interfaces to form an equivalent order-reduced interface prob-

lem. Once the interface problem is solved, the original problem is converted

into fully decoupled subdomain problems which can be solved with a high

scalability. The interface problem is usually solved by a Krylov subspace

method in order to analyze very large problems and exploit the power of

high-performance computer clusters. To accelerate the iterative convergence

of the interface problem, a global coarse system, which relates only primal

unknowns at the corner edges of the subdomain interfaces and functions

as a multigrid coarse correction, is constructed and solved using a direct

solver [22,23,59,60]. Due to the global communication overhead of explicitly

forming the coarse system and the relatively poor parallel performance of di-

rect solvers on distributed computing systems, the achieved parallel efficiency

with an increasing number of computation nodes for the previous parallel

FETI-DP implementation is limited, especially when simulating large-scale

complex problems involving a large number of corner unknowns. Hence, to

address the bottleneck in the parallel solution of the global coarse corner

system is another major objective of this dissertation.

The application of the parallel FETI-DP algorithm to simulate various

challenging and electrically large objects is also a topic of this dissertation.

One of the most challenging yet important problems in computational elec-

tromagnetics is the scattering analysis of objects above, straddling, and/or

embedded in a stratified medium. Such problems are typically found in patch

antenna design, interconnect and monolithic microwave integrated circuit

simulations, biomedical imaging, nondestructive testing, target identifica-

tion, geophysical exploration, and remote sensing [61–63]. Integral-equation
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(IE) based methods with a multilayer Green’s function are usually adopted to

simulate these problems [2,62,64]. Although these methods are very accurate,

the numerical evaluation of the multilayer Green’s function is very difficult

and prone to have convergence issues. Moreover, the IE based methods are

not efficient for analyzing highly inhomogeneous structures. Therefore, this

dissertation also aims at developing a truncation boundary condition for the

parallel FETI-DP algorithm to enable large-scale scattering analysis with the

presence of a stratified medium.

Another challenging problem is the numerical modeling of coherent op-

tical microscopes, which are widely used in scientific research and indus-

trial applications, such as medical imaging [65, 66], optical lithography [67],

semiconductor inspection [68] and metrology [69]. Because of the expensive

computational costs, from the near-field modeling of the scatterers, to the

far-field transformation, and finally to the calculation of images, past sim-

ulations were limited to electrically small objects [70]. However, at optical

frequencies, many samples are at least tens of wavelengths or even more than

hundreds of wavelengths in size. Hence, to develop an efficient and system-

atic numerical modeling of optical microscopes for the imaging of electrically

large objects is one of the research topics of this dissertation as well.

1.3 Modeling of Resonant Waveguide Structures

Efficient broadband modeling of resonant waveguide devices, such as filters,

multiplexers, and power dividers, can significantly reduce the design periods,

and therefore has been an important research topic for decades [3,10,71–81].

Early developments were mainly focusing on the equivalent circuit theory and

mode matching (MM) method, which typically have a low solution accuracy

or convergence problems [71–75]. In the past few years, hybrid algorithms

that combine the efficiency of the MM method and flexibility of the full-

wave simulation techniques were proposed [79, 80]. Although these high-

fidelity algorithms can handle rather complicated structures, the broadband

analysis is usually inefficient since the calculations are normally performed in

the frequency domain. As an alternative to the frequency-domain methods,

a time-domain algorithm can be used to analyze the broadband responses.

However, the number of time marching steps is often prohibitively large for

5



highly resonant devices. To alleviate the aforementioned issues, an accurate

and efficient hybrid algorithm that combines the rigorous full-wave finite-

element time-domain (FETD) [3,81] method with the generalized scattering

matrix (GSM) technique is investigated in this dissertation.

Unlike the broadband simulation of resonant waveguide microwave devices,

the broadband monostatic simulation of electromagnetic scattering from a

large and deep open cavity [82–100] is even more challenging due to the large

electrical size of the geometry and wide angle sweep. Despite the signifi-

cant progress in computational electromagnetics over the years, the efficient

broadband monostatic analysis of large and deep cavities with high fidelity

is still rare in the literature. The well-known finite element-boundary inte-

gral (FEBI) method [95–98] is efficient for fast monostatic radar cross-section

(RCS) calculation. Unfortunately, its efficiency deteriorates quickly with a

larger cavity aperture and is ineffective for a broadband RCS analysis. The

DDMs [90, 91, 93, 94] are also popular for the scattering analysis of a large

and deep cavity. These methods can harness the power of parallel comput-

ing; because they are frequency-domain methods, the iterative solution in the

DDMs is not efficient for the monostatic RCS calculation or for a broadband

sweep. Therefore, the final goal of this dissertation is to develop a hybrid

time- and frequency-domain computation technique and the model-order re-

duction strategy to efficiently compute the broadband monostatic RCS of a

large and deep open cavity.

1.4 Organization

The remainder of this dissertation is organized as follows. Chapters 2 and 3

present the IGFEM formulations for two- and three-dimensional problems.

Numerical examples are then provided to study the method’s accuracy, h-

refinement convergence, computational complexity, and system matrix condi-

tioning. Engineering applications are simulated to demonstrate the capability

of the proposed method. Chapter 4 applies the IGFEM to the gradient-based

shape optimization problems. The formulations for the analytical sensitivity

analysis are derived, followed by several numerical examples to demonstrate

the efficiency of the proposed optimizer. Chapter 5 introduces an efficient

parallelization of the FETI-DP algorithm for large-scale electromagnetic sim-

6



ulations. Specifically, load balancing among various parallelization stages, a

tailored communication-avoiding iterative solver for the global coarse cor-

ner system, preconditioning for the iterative solver, and nonblocking com-

munications are discussed in detail. Several large numerical examples are

simulated to demonstrate the accuracy, scalability, and capability of the par-

allel scheme. Chapter 6 applies the parallel FETI-DP algorithm to model

the scattering from a stratified medium. The truncation boundary condition

and fast far-field calculation equations for a stratified medium are derived

and numerical examples are presented to verify the solution accuracy. Chap-

ter 7 applies the parallel FETI-DP algorithm to the modeling of coherent

optical microscopes. The formulations for imaging using far-field results are

presented, followed by several verification examples and electrically large ex-

amples to demonstrate the efficiency and capability of the systematic imaging

scheme. Chapter 8 introduces a hybrid FETD-GSM technique for accurate

and efficient broadband analysis of highly resonant microwave devices. The

formulations for the FETD method, time-domain waveguide port boundary

condition (WPBC), and cascading of GSM are presented. Several waveguide

filters are given to demonstrate the accuracy and efficiency of this hybrid

technique. Chapter 9 presents a broadband monostatic RCS and inverse syn-

thetic aperture radar (ISAR) calculation of large and deep open cavities. The

FETD method with the complex-frequency shifted perfectly matched layers

(CFS-PML) for waveguide port truncation, inhomogeneous eigen-solver, and

ISAR imagery is discussed. Different open cavity structures are presented to

demonstrate the accuracy and efficiency of the proposed algorithm. Finally,

the conclusion of this dissertation is drawn in Chapter 10, together with the

discussion of future work.
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Chapter 2

Interface-Enriched Generalized FEM for 2-D
Problems

2.1 Introduction

Composite materials are made by combining two or more significantly dif-

ferent materials to explore certain properties that are not available in each

individual material, such as higher strength- and/or stiffness-to-weight ratio,

reduced fatigue, increased or reduced thermal insulation, or even possession

of multifunctionality [101, 102]. In recent years, composite materials have

experienced rapid evolution and found enormous applications in almost ev-

ery aspect of human life (automotive, aerospace, wind energy, body armor,

furniture, sporting goods, marine, electronics, and communication). In fact,

taking aerospace applications for example, the proportion of composite on

structural weight has increased 20-fold in the past four decades and 2-fold

in the past ten years, as illustrated in Fig. 2.1. Unfortunately, due to the

complexity of the internal structures, the standard FEM, which is based

on conformal meshes, is not efficient for electromagnetic modeling of such

composite materials.

In this chapter, we introduce the IGFEM, which was initially developed for

solving thermal and structural problems using nodal basis functions, to solve

the curl-curl wave equation using VBFs. In Section 2.2, we present the basic

formulation for the electromagnetic problem of interest and a brief introduc-

tion of the VBFs. We then discuss the proposed enriched VBFs and illustrate

their implementation in Section 2.3. In Section 2.4, we study the accuracy,

h-refinement convergence, computational complexity, and condition number

of the resultant system matrix by analyzing the scattering of a dielectric slab

in free space and a circular inclusion in free space. Finally, two application

examples involving four sinusoidal micro-channels and fifty-six circular inclu-

sions, respectively, are simulated in Section 2.5 to demonstrate the capability
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of the proposed method.

2.2 Problem Description

Given an inhomogeneous and source-free medium shown schematically in Fig.

2.2 with material properties specified by permittivity ε and permeability µ,

the frequency-domain Maxwell’s equations are

∇× E = −jωµH, (2.1)

∇×H = jωεE, (2.2)

where E is the total electric field, H is the total magnetic field, and ω is

the angular frequency. The time dependence ejωt has been assumed and is

suppressed throughout this dissertation [39].

From (2.1) and (2.2), we can derive a partial differential equation to be

solved by the FEM:

∇×
(

1

µr

∇× E

)
− k2

0εrE = 0, (2.3)

where µr = µ/µ0, εr = ε/ε0, k0 = ω
√
µ0ε0, and ε0 and µ0 are two physical

constants defined as the permittivity and permeability of free space. To make

the solution unique in the desired computational domain, proper boundary

conditions must be applied. The Dirichlet, Neumann, and Robin boundary

conditions are respectively represented by

n̂× E = P on ∂ΩD, (2.4)

n̂×
(

1

µr

∇× E

)
= Q on ∂ΩN , (2.5)

n̂×
(

1

µr

∇× E

)
+ j

k0

ηr

n̂× (n̂× E) = U on ∂ΩR, (2.6)

where P, Q, and U are known quantities, and ηr =
√
µr/εr. For PEC

and perfect magnetic conductor (PMC) boundaries, both P and Q vanish.

To simulate wave propagation in an infinite homogeneous space, either an

absorbing boundary condition (ABC) or a perfectly matched layer (PML) is

required to truncate the computational domain [3, 7, 8, 39]. Although ABC
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has a larger numerical reflection than does PML, especially at a large oblique

incident angle, its simplicity and ease of implementation have won it wide

popularity. In this chapter, we choose ABC to truncate the computational

domain. For the first-order ABC, the quantity U in the Robin boundary

condition becomes

U ≈ n̂×
(

1

µr

∇× Einc

)
+ j

k0

ηr

n̂×
(
n̂× Einc

)
. (2.7)

In the standard FEM procedure, the unknown electric field intensity E is

expanded as

E =
N∑
i=1

αiNi, (2.8)

where Ni are the vector basis functions associated with each element edge, αi

are the corresponding unknown coefficients, and N is the number of vector

basis functions defined over the entire computational domain. By employing

Galerkin’s method, a linear system is formed:

[K] {α} = {b}, (2.9)

where

Kij =

∫
Ω

[
1

µr

(∇×Ni) · (∇×Nj)− k2
0εrNi ·Nj

]
dΩ

+ j
k0

ηr

∫
∂ΩR

(n̂×Ni) · (n̂×Nj) dΓ,

(2.10)

bi =

∫
∂ΩR

(n̂×Ni) ·
(

1

µr

∇× Einc + j
k0

ηr

n̂× Einc

)
dΓ. (2.11)

The resulting sparse linear system can be conveniently solved by either

an iterative or a direct solver [103–105]. After the unknown coefficients are

determined, other desired physical quantities, for instance power reflection

coefficient, can be readily evaluated. A challenging problem, as is well known,

is that standard FEM solutions only guarantee the field with C0-continuity.

When a non-conformal mesh, such as that illustrated in Fig. 2.2, is adopted

for the FEM solution, the standard FEM fails to capture the discontinuities of

the normal derivative of the field’s tangential component. These discontinu-

ities, which are caused by the difference in the adjacent material properties,

result in a poor numerical accuracy. This issue has been alleviated recently
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with a new interface-enriched generalized FEM (IGFEM) [40,43], where extra

basis functions are introduced at the material interfaces to enrich the solu-

tion space and retrieve the “missing” field information. This kind of scheme

has been shown to be effective and efficient in various thermal and structural

applications [40, 43]. However, using this method to solve electromagnetic

problems creates a challenge to extend the enrichment ideas from the nodal

to the VBFs. There are mainly three difficulties: 1) where we should define

the enriched VBFs; 2) what the expressions of the enriched VBFs are; and

3) how many enriched VBFs are required. These issues are addressed in the

next section.

2.3 Vector Basis Functions and Their Enrichment

To better illustrate the basic idea of IGFEM, let us first review triangular

and quadrilateral elements that are commonly adopted in the standard two-

dimensional FEM. For a triangle with three vertices (x1, y1), (x2, y2), (x3, y3)

in the xy-coordinate system and (0, 0), (1, 0), (0, 1) in the ξη-coordinate sys-

tem, the linear form that maps the triangle from the ξη-system to the xy-

system is given by

[
x

y

]
=

[
x1 x2 x3

y1 y2 y3

]
·

 1− ξ − η
ξ

η

 . (2.12)

The first-order curl-conforming VBFs defined on each edge of the triangle

are expressed as [3] N1

N2

N3

 =

 (1− η)∇ξ + ξ∇η
−η∇ξ + ξ∇η

−η∇ξ − (1− ξ)∇η

 ◦
 l12

l23

l31

 , (2.13)

where lij =
√

(xi − xj)2 + (yi − yj)2 and ◦ denotes the Hadamard product.

Similarly, for a quadrilateral with four vertices (x1, y1), (x2, y2), (x3, y3),

(x4, y4) in the xy-coordinate system and (−1,−1), (1,−1), (1, 1), (−1, 1) in

the ξη-coordinate system, the bilinear form that maps the quadrilateral from
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the ξη-system to the xy-system is given by

[
x

y

]
=

[
x1 x2 x3 x4

y1 y2 y3 x4

]
·


(1− ξ)(1− η)/4

(1 + ξ)(1− η)/4

(1 + ξ)(1 + η)/4

(1− ξ)(1 + η)/4

 . (2.14)

The first-order curl-conforming VBFs defined on each edge of the quadrilat-

eral are given by [3]
N1

N2

N3

N4

 =


(1− η)∇ξ/4
(1 + ξ)∇η/4
−(1 + η)∇ξ/4
−(1− ξ)∇η/4

 ◦

l12

l23

l34

l41

 . (2.15)

It is worth mentioning that each of these VBFs has a constant tangential

component along the associated edge and a linear normal component along

other edges. In electromagnetics, the field inside a region can be uniquely

determined as long as the tangential component of the field is uniquely de-

fined [39]. Although the divergence-free property would be satisfied by the

VBFs for a triangular element, it turns out that for an arbitrary quadrilateral

the divergence is not necessarily zero [3]. Fortunately, numerical results in-

dicate that the non-zero divergence of the quadrilateral basis functions does

not significantly affect the solution accuracy, as will also be observed in the

numerical examples provided in Sections 2.4 and 2.5.

At material interfaces, one expects a gradient discontinuity of the tangen-

tial component of the electric field. It is obvious that an enriched VBF,

defined along the intersection of an element coincident with the material in-

terface, with a constant tangential component along the intersection and no

tangential component along other edges, would capture the normal deriva-

tive discontinuity of the tangential field while at the same time preserving

tangential field continuity along other edges. With the enriched VBF de-

scribed above, the electric field inside an arbitrary element can be uniformly

expressed as

E =
N∑
i=1

αiNi +
Nen∑
i=1

βiN
en
i , (2.16)

where βi and Nen are the unknown coefficients and total number of the
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enriched VBF Nen
i . In a triangular element, Nen

i is given by

Nen = NC1 + NC2, (2.17)

where NC1 and NC2 are VBFs defined along the intersection within the first

and second children elements, respectively. Two different scenarios of the

enriched VBF are demonstrated in Fig. 2.3. It is observed that the enriched

VBF has a constant tangential component along the material interface and

no tangential component along other edges. Besides that, the proposed en-

riched VBF enjoys several advantages on the implementation aspects: 1)

Since the enrichment only occurs at the intersection of an element and a

material interface, it adds a minimal number of extra unknowns to the orig-

inal linear system in order to retrieve the missing field information caused

by material mismatch. 2) Due to the fact that an enriched basis function

never coincides with the geometry boundary, the proposed method avoids

potential difficulties in assigning the prescribed values of the tangential field

along Dirichlet boundaries.

2.4 Accuracy and Convergence Study

To investigate the accuracy and convergence of the proposed IGFEM, the

L2-norm of the solution error, expressed as

∥∥E− Eh
∥∥
L2(Ω)

=

√∫
Ω

‖E− Eh‖2 dΩ, (2.18)

is calculated and compared with those obtained from the standard FEM with

conformal meshes. In the above equation, E is the exact solution obtained by

the analytical solution and Eh is the numerical solution calculated by either

IGFEM or the standard FEM with respect to the mesh size h.

In many real applications, the power reflection coefficient RP , defined as

RP = R2
E =

‖Esca‖2

‖Einc‖2 , (2.19)

is usually the only measurable or accessible quantity, where RE stands for

the field reflection coefficient, Esca and Einc are the scattered and incident
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fields, respectively. Hence, in the following examples, we calculate the power

reflection coefficient and compare it with the analytical solution whenever

possible.

The method proposed in this chapter, which is similar to the subdivision

FEM in the sense that both of these two methods divide the background

triangular mesh into sub-triangular and quadrilateral meshes with the ma-

terial interface, may introduce certain sub-elements with extremely small

sizes and/or poor aspect ratios. It is therefore important to investigate how

severely the final system matrix will be deteriorated by those sub-elements.

A good factor to characterize a system matrix [K] is its condition number,

which can be defined as

κ ([K]) =
σmax ([K])

σmin ([K])
, (2.20)

where σmax ([K]) and σmin ([K]) are maximal and minimal singular values

of [K] respectively. To systematically study the condition of the system

matrix generated by IGFEM and demonstrate its superiority in handling

sub-elements with very small sizes and/or highly irregular shapes, in the

following two verification examples, we calculate the condition numbers of

system matrices generated from both the IGFEM and the subdivision FEM,

and compare them with those from the standard FEM system matrices.

For all the numerical examples, the uniform incident plane wave is illu-

minated from the left of the object and propagates towards the right. The

polarization of the incident electric field resides in the xy-plane. The FEM

resultant linear system is usually rather ill-conditioned, which is challenging

to solve using iterative methods without constructing an effective precondi-

tioner [3, 106]. In this chapter, the linear systems are solved by the highly

efficient direct solver PARDISO [105]. The computations are carried out in

double float precision on a laptop with 8-GB memory and one Intel Core

i7-3720QM CPU.

2.4.1 Dielectric Slab in Free Space

The first example considered here is an infinitely large dielectric slab placed in

free space and illuminated by a plane wave, as shown in Fig. 2.4. To simulate

the infinite region, the top and bottom boundaries are enforced as PEC. The
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first-order ABC is adopted to truncate the computational domain at the

left and right boundaries. The dielectric slab is 2/15λ0 × λ0 with respect

to the frequency at 1 GHz. The total computational domain is 2λ0 × λ0.

The material properties of the dielectric slab are µ1 = µ0 and ε1 = (3 −
j4)ε0, respectively. Fig. 2.5a shows the IGFEM solution of the total electric

field under a 1-GHz incident plane wave with a mesh size of λ0/15. For

comparison, the total electric field obtained using the standard FEM with

the same mesh size is depicted in Fig. 2.5b. As can be seen from Fig. 2.5,

even with a non-conformal mesh, the IGFEM captures the normal derivative

discontinuity at the material interface.

For an infinitely large dielectric slab with thickness d, the electric field

reflection coefficient for a normal incident plane wave is

RE = R01
1− e−j2k1d

1−R2
01e
−j2k1d

, (2.21)

where

R01 =
ε1k0 − ε0k1

ε1k0 + ε0k1

, k1 = ω
√
µ1ε1, d =

2

15
λ0. (2.22)

Figure 2.6a shows the comparisons of the power reflection coefficients calcu-

lated from IGFEM, the standard FEM, and the analytical solution with the

frequencies ranging from 0.01 to 1 GHz. An excellent agreement is observed

between the analytical and numerical solutions. The convergence rate of the

L2-norm of the field solution error with respect to the mesh size h is given

in Fig. 2.6b. As shown there, the IGFEM yields a convergence rate similar

to that of the standard FEM, with a slightly better precision for larger mesh

sizes.

Besides achieving a comparable solution accuracy, the IGFEM, without re-

quiring a mesh conforming to the material interfaces, also maintains the same

level of computational complexity as the standard FEM. As depicted in Fig.

2.7a, the memory consumption and total computational time for both the

IGFEM and the standard FEM are nearly the same. The condition numbers

of system matrices generated by the standard FEM, IGFEM, and subdi-

vision FEM are systematically studied in Fig. 2.7b. For this verification

problem, structured background meshes are adopted so that sub-elements

with poor aspect ratios will never be created even when their sizes are ex-

tremely small. Since the IGFEM evaluates the integrations involved in the

15



stiffness and mass matrices calculations over the background mesh, and the

vector basis functions are normalized to have a unitary tangential compo-

nent, the IGFEM generated system matrices should have condition numbers

approximately equal to those of the standard FEM generated system matri-

ces, as is apparent in Fig. 2.7b. The subdivision FEM, however, performing

the integrations over each sub-elements, has much higher condition numbers

when very small sub-elements are created.

2.4.2 Dielectric Cylinder in Free Space

The second example is the scattering of an infinitely long dielectric cylinder

in free space. The radius of the cylinder is λ0/3 and the total computational

domain is 5λ0 × 5λ0, both with respect to the free-space wavelength at 10

GHz, as shown in Fig. 2.8a. The material properties of the dielectric cylinder

are given as µ1 = µ0 and ε1 = 4ε0. To truncate the simulation domain, all

four boundaries are enforced as ABC. The analytical solution for this problem

is [39]: (i) For the field outside the dielectric cylinder:

Eρ =
1

k0ρ

∞∑
n=0

(−j)n−1n sin(nφ)δn
[
Jn(k0ρ)− anH(1)

n (k0ρ)
]
, (2.23)

Eφ =
∞∑
n=0

(−j)n−1 cos(nφ)δn

[
J ′n(k0ρ)− anH(1)

n

′
(k0ρ)

]
. (2.24)

(ii) For the field inside the dielectric cylinder:

Eρ =
1

k1ρ
√
εr

∞∑
n=0

(−j)nn sin(nφ)bnδnJn(k1ρ), (2.25)

Eφ = ηr

∞∑
n=0

(−j)n cos(nφ)bnδnJ
′
n(k1ρ). (2.26)
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where εr = ε1/ε0, ηr = 1/
√
εr, and ρ is the radius of the cylinder. The

coefficients an, bn and δn are given by

an =
J ′n(k0a)Jn(k1a)− ηrJn(k0a)J ′n(k1a)

H
(1)
n

′
(k0a)Jn(k1a)− ηrH

(1)
n (k0a)J ′n(k1a)

, (2.27)

bn =
2

πk0a

1

H
(1)
n

′
(k0a)Jn(k1a)− ηrH

(1)
n (k0a)J ′n(k1a)

, (2.28)

δn = 1 for n = 0 and δn = 2 for n 6= 0. (2.29)

In the above expressions, Jn(x) stand for the Bessel functions of the first kind

of order n, H
(1)
n (x) stand for the Hankel functions of the first kind of order

n, J ′n(x) and H
(1)
n

′
are the first derivative of Jn(x) and H

(1)
n (x), respectively.

The convergence rate of the L2-norm of the field solution error with respect

to the mesh size h is shown in Fig. 2.8b. Since the first-order ABC introduces

a certain error at an oblique incident angle which increases with an increasing

incident angle [3], the error caused by ABC becomes dominant when the mesh

is refined. Therefore, the L2-norm of the field solution error does not scale as

the theoretical expectation for very fine meshes. Nevertheless, the IGFEM

still yields a precision comparable to that of the standard FEM, especially

when the mesh size is large.

Figure 2.9a shows the IGFEM solution of the total electric field under a

10-GHz incident plane wave with a mesh size of λ0/15. For comparison,

Fig. 2.9b shows the electric field at the same frequency and with the same

mesh size obtained with the standard FEM. As is apparent there, a good

agreement is achieved between IGFEM and FEM solutions.

The peak memory usage and total solution time for both the standard

FEM and the IGFEM are plotted in Fig. 2.10a, indicating that the IGFEM

does not increase computational complexity much to achieve the same so-

lution accuracy as the standard FEM. The condition numbers of the FEM

system matrices are investigated in Fig. 2.10b. For this verification problem,

unstructured background meshes are used to make sure that sub-elements

with poor aspect ratios and very small sizes will be created. Although sub-

elements with irregular shapes inevitably deteriorate the system matrices, the

IGFEM manages to increase the condition numbers only a little bit while the

subdivision FEM increases the condition numbers dramatically, both com-

pared with those from the standard FEM.
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2.5 Applications

In this section, we present two more complex examples to demonstrate the

capability of the IGFEM in analyzing electromagnetic problems in hetero-

geneous materials. Emphasis is placed on capturing the total electric field

distribution and the power reflection coefficient.

2.5.1 Heterogeneous Material with Multiple Microvascular
Channels

The first example is inspired by the recently developed multi-functional mi-

crovascular composites [37, 38]. By circulating various fluids inside the mi-

crovascular channels, this new class of material has many potential aerospace

applications in active cooling, self-healing, health monitoring, and electro-

magnetic stealth.

The specific problem considered here, as shown in Fig. 2.11, is a PEC-

backed polynaphthalene material with four sinusoidal microvascular channels

inside. The top and bottom boundaries are enforced as PEC to mimic the

spatial periodicity of the material distribution. The left boundary is set as

ABC to truncate the infinite computational domain. The free-space region

(ε0) and background material region (ε1 = 2.2ε0) both have a dimension of

5λ0×5λ0, making the total computational domain 10λ0×5λ0, where λ0 is the

free-space wavelength of the incident plane wave at 1.5 GHz frequency. The

incident field is polarized in the E direction and propagates in the k direction,

which are shown in Fig. 2.11. The geometry configuration and material

properties of the sinusoidal microvascular channels are listed in Table 2.1.

The computed field solution using IGFEM with a mesh size of λ0/40 is

given in Fig. 2.12. As is apparent there, the normal derivative discontinuity

of the tangential field at material interfaces is well captured by IGFEM. It

is worth mentioning that, with about 280,000 degrees of freedom, the total

computational time is less than 5.9 seconds. The power reflection coefficient,

evaluated with frequencies ranging from 0.01 to 1.5 GHz, is depicted in Fig.

2.13. Since the background material is lossless and the attenuation caused by

the sinusoidal microchannels is very small in the low-frequency regime due

to their small diameters and low-loss properties, most of the incident power

is reflected back by the PEC. The strong oscillations in the mid-frequency
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regime are caused by the multi-reflections between material interfaces.

2.5.2 Heterogeneous Material with Multiple Circular
Inclusions

The second example is motivated by the development of a particulate com-

posite, composed of a glass matrix with ellipsoid alumina inclusion for high-

temperature applications [107]. Since these materials are usually coated on

objects for thermal insulation or heat dissipation, it is important to analyze

their influences on the electromagnetic scattering properties of the original

objects, especially for the military objects which have a severe restriction on

the reflection of radar waves.

The problem considered here, illustrated in Fig. 2.14, is a PEC-backed

composite material containing 56 circular inclusions that have various diam-

eters and material properties. An ABC is adopted along the left boundary

to truncate the infinite computational domain. A PEC is enforced for the

top and bottom boundaries to mimic the spatial periodicity of the mate-

rial distribution. The free-space region (ε0) and background material region

(ε1/ε0 = 3 − j0.1) both have a dimension of 10λ0 × 15λ0, making the total

computational domain 20λ0×15λ0, where λ0 is the free-space wavelength of a

3-GHz incident plane wave. The incident field is polarized in the E direction

and propagates in the k direction, as shown in Fig. 2.14. The geometrical

configurations and material properties of the circular inclusions are listed in

Table 2.2.

With the smallest circular inclusions having a radius of only λ0/5, the

total computational domain is uniformly discretized by planar triangular

patches with size of λ0/20. Figure 2.15 shows the computed total electric

field distribution using IGFEM under an incident plane wave at 3 GHz. As

observed from the figure, IGFEM successfully captures the normal derivative

discontinuity of the tangential field caused by material mismatch. Although

the number of the degrees of freedom is more than 400,000, the total solution

time is less than 9 seconds. The power reflection coefficient, evaluated with

frequencies ranging from 0.01 to 3 GHz, is depicted in Fig. 2.16. Since the

background material and the inclusions are much more lossy than those in

the previous example, the power reflection coefficient decreases rapidly when
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the frequency increases. The strong oscillation in the low-frequency regime

is caused by the multi-reflections between material interfaces. In the high-

frequency regime, most of the insignificant reflections are absorbed by the

lossy materials leaving only several leading reflections. Hence, the power

reflection coefficient curve is much flatter and tends to be a constant.

2.6 Summary

In this chapter, we presented an IGFEM for solving electromagnetic scatter-

ing problems from targets with highly inhomogeneous materials. To avoid

creating conformal meshes within a complex computational domain and

preparing multiple meshes during optimization, we introduced enrichment

VBFs that are defined over the discretized elements intersected by a mate-

rial interface to capture the normal derivative discontinuity of the tangential

field component. We analyzed the properties of the enrichment functions

and constructed them directly from a linear combination of the VBFs of the

sub-elements. Then we presented several numerical examples to verify the

algorithm with analytical solutions and demonstrate its h-refinement con-

vergence rate. We showed that the proposed IGFEM is able to achieve the

same level of accuracy as the standard FEM without the need for conformal

meshes. Finally, we analyzed two more complex examples, with multiple

microvascular channels and circular inclusions of different radii, to illustrate

the capability of the introduced approach in handling heterogeneous media

with complex-shape material interfaces.
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2.7 Figures and Tables
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Figure 2.1: Composite proportion on structural weight of aerospace
systems.

Figure 2.2: An inhomogeneous region illuminated by a uniform incident
plane wave. The plane wave is polarized in the Einc direction and
propagates along the k direction, where Einc stands for the incident electric
field. The object Ω consists of several heterogeneous materials. Dirichlet,
Neumann, and Robin boundary conditions are applied along ∂ΩD, ∂ΩN ,
and ∂ΩR, respectively. The outward unit normal direction of the boundary
∂Ω is denoted as n̂. Non-conformal elements, which cross the material
interfaces, are also depicted.
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(a) (b)

Figure 2.3: Field distribution of the enriched basis function for two different
scenarios. For both cases, the enriched VBF has a constant tangential
component along the material interface and no tangential component along
other edges. (a) A triangular element is divided into a sub-triangle and a
sub-quadrilateral. (b) A triangular element is divided into two
sub-triangles.

Figure 2.4: A plane wave illuminates a lossy slab placed in free space. The
dielectric slab is 2/15λ0 thick and ε1 = (3− j4)ε0. The slab is 1/75λ0 right
offset of the middle of the computational domain. The total computational
domain is 2λ0 × λ0. The top and bottom boundaries are enforced as PEC
while the left and right boundaries are set as ABC. The left and right insets
show a part of the conformal and non-conformal meshes, both of which
have a mesh size of λ0/15.
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(a)

(b)

Figure 2.5: Total electric field distribution for the test problem shown in
Fig. 2.4. The 1-GHz incident plane wave comes from the left boundary and
propagates towards the right boundary. Both of the fields are calculated
with a mesh size of λ0/15. (a) IGFEM solution. (b) Standard FEM
solution.
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Figure 2.6: Power reflection coefficient and L2-norm of the field solution
error of an infinitely large lossy slab for the test problem shown in Fig. 2.4.
(a) Power reflection coefficient with respect to the frequency. (b) L2-norm
of the field solution error with respect to the mesh size h.
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Figure 2.7: Computational complexity and condition number of the system
matrix of an infinitely large lossy slab for the test problem shown in Fig.
2.4. (a) Peak memory usage and total solution time with respect to the
mesh size h. (b) Condition number of the system matrix with respect to
the mesh size h.
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Figure 2.8: A plane wave illuminates an infinitely long dielectric cylinder
placed in free space. The radius of the dielectric cylinder is λ0/3 and
ε1 = 4ε0. The total computational domain is 5λ0 × 5λ0. All the boundaries
are enforced as ABC. (a) Geometrical configuration. The conformal and
non-conformal meshes, both with a mesh size of λ0/15, are depicted in the
left and right insets, respectively. (b) L2-norm of the field solution error
with respect to the mesh size h.
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(a)

(b)

Figure 2.9: Total electric field distribution for the test problem shown in
Fig. 2.8a. The 10-GHz incident plane wave comes from the left boundary
and propagates towards the right boundary. Both of the fields are
calculated with a mesh size of λ0/15. (a) IGFEM solution. (b) Standard
FEM solution.
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(b)

Figure 2.10: Computational complexity and condition number of the
system matrix of an infinitely long dielectric cylinder for the test problem
shown in Fig. 2.8a. (a) Peak memory usage and total solution time with
respect to the mesh size h. (b) Condition number of the system matrix
with respect to the mesh size h.
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Figure 2.11: Geometrical configurations of the heterogeneous material with
four sinusoidal microchannels of different wavelengths. The diameter of the
microvascular channels is 0.05λ0, where λ0 is the free-space wavelength with
respect to the 1.5-GHz plane wave. The dimension of the total
computational domain is 10λ0× 5λ0. The left boundary is set as ABC while
the others are all enforced as PEC. The detailed configurations and material
properties of the sinusoidal channels are presented in Table 2.1. The inset
shows a part of the non-conformal mesh used in the IGFEM simulation.

Figure 2.12: Magnitude of the total electric field for the test problem shown
in Fig. 2.11. The incident plane wave propagates from left to right. The
field is calculated using the IGFEM with a uniform, nonconforming mesh
size of λ0/40.
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Figure 2.13: Power reflection coefficient with respect to frequency for the
test problem shown in Fig. 2.11.

Figure 2.14: Geometrical configurations of the heterogeneous material with
56 circular inclusions. The radii of the inclusions range from 0.2λ0 to 0.7λ0,
where λ0 is the free-space wavelength with respect to the 3-GHz incident
plane wave. The dimension of the total computational domain is
20λ0 × 15λ0. The left boundary is enforced as ABC while the others are all
set as PEC. The detailed configurations and material properties of the
circular inclusions are provided in Table 2.2. The inset shows a part of the
non-conformal mesh used in the IGFEM simulation.
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Figure 2.15: Total electric field magnitude for the test problem shown in
Fig. 2.14 for a 3-GHz right-traveling incident plane wave. The field is
calculated using IGFEM with a mesh size of λ0/20.
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Figure 2.16: Power reflection coefficient with respect to frequency for the
test problem shown in Fig. 2.14.
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Table 2.1: Geometry configurations and material properties of the
sinusoidal microvascular channels.

Channel ID 1 2 3 4

Wavelength / λ0 8/5 3/5 2 3/5
Diameter / λ0 0.05 0.05 0.05 0.05

Amplitude / λ0 0.125 0.2 0.125 0.2
Permittivity / ε0 5.8-j0.01 6.4-j0.03 7-j0.02 4.8-j0.05

Table 2.2: Geometry configurations and material properties of the circular
inclusions (inclusion ID ranges from 2 to 7).

Inclusion ID 2 3 4 5 6 7

Radius / λ0 0.02 0.03 0.04 0.05 0.06 0.07
Permittivity / ε0 1 7-j0.1 5-j0.2 6.2-j0.1 4-j0.4 6.8-j0.5
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Chapter 3

Interface-Enriched Generalized FEM for 3-D
Problems

3.1 Introduction

The IGFEM alleviates the geometrical complexity of discretizing the complex

features by using a virtual model based on finite elements that do not need

to conform with material interfaces, yet provide the same level of accuracy

as the standard FEM using conformal meshes. Encouraged by the success

of extending the IGFEM from structural and thermal analysis with nodal

basis functions to electromagnetic analysis with VBFs for 2-D problems in

Chapter 2 [18,40,43], we further extend the IGFEM to 3-D full-wave analy-

sis. Since the formulation of the IGFEM for 2-D problems, together with a

convergence/accuracy study and a conditioning comparison of this method

with the subdivision FEM, has been reported previously in Chapter 2, we

place more emphasis in this chapter on the application of this method for

modeling composite materials with randomly distributed inclusions and/or

intricate internal geometries.

The rest of this chapter is organized as follows. In the next section, we

present the basic formulation describing the periodic radiation condition

(PRC) used to simulate composite periodic materials. In Section 3.3, we

present the extension of the enrichment ideas from the 2-D IGFEM based

on triangular elements to the 3-D IGFEM based on tetrahedral elements.

A short discussion about the advantages of the IGFEM over the subdivi-

sion FEM, together with the comparison of the condition numbers of their

elemental matrices, is also provided. We then study in Section 3.4 the h-

refinement convergence, computational complexity, and condition numbers

of the resultant system matrices by analyzing two reference problems: re-

flection of a dielectric slab backed by a PEC boundary and scattering by a

dielectric sphere in free space. In Section 3.5, we first present the simulation
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results of scattering from a monolayer dielectric sphere array to verify the

implementation of the PRC, the specular reflection coefficient calculation,

and the accuracy of the IGFEM. We then present the results for three engi-

neering problems to demonstrate the capability of the proposed method to

handle electromagnetic analysis of periodic composite materials with com-

plex micro-structures.

3.2 Problem Description and FEM Formulation

To simulate objects with periodicity in the xy-plane with periodic length

vector T = (x̂Tx + ŷTy + ẑ0), as shown schematically in Fig. 3.1, a periodic

boundary condition (PBC) has to be implemented together with an accurate

PRC in the nonperiodic direction [3]:

E(r + T)ejkinc
0 ·T = E(r), r ∈ ∂ΩPBC, (3.1)

n̂×∇× E(r)− S (E) = Q(r), r ∈ ∂ΩPRC, (3.2)

where the wave vector kinc
0 = k̂inck0 = x̂kinc

x0 + ŷkinc
y0 + ẑkinc

z0 . In this implemen-

tation, the PBC on ∂ΩPBC given in (3.1) is applied on the four side surfaces

of a periodic unit cell to enforce the field dependence stated by Floquet’s

theorem [108], and the PRC on ∂ΩPRC defined in (3.2) is employed on the

top and bottom surfaces of the unit cell for truncation, with the boundary

excitation Q related to the incident field by

Q =

−2jk0η0n̂×Hinc, top surface,

0, bottom surface.
(3.3)

The surface integral S (E), which represents the magnetic field generated by

the equivalent magnetic sources on the PRC, can be expressed as

S (E) = 2k2
0n̂×

∞∑
p,q=−∞

˜̄Gpq · (n̂× Ẽpq)e
−j(kxpx+kyqy), (3.4)
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where ˜̄Gpq represents the periodic dyadic Green’s function in the spectral

domain, expressed as

˜̄Gpq = − j

2k2
0

√
k2

0 − k2
xp − k2

yq

[
k2

0 − k2
xp −kxpkyq

−kxpkyq k2
0 − k2

yq

]
. (3.5)

In (3.4) and (3.5), kxp and kyq are the Floquet harmonics of order p and q,

which can be systematically written as

kij = ki0 −
2πj

Ti
, i = {x, y} and j = {p, q}. (3.6)

The term Ẽpq required by the surface integral S(E) is the Fourier expansion

of the electrical field in the spectral domain and is given by

Ẽpq =
1

TxTy

∫
∂ΩPRC

Eej(kxpx+kyqy)dr. (3.7)

To approximate the solution of the boundary value problem (BVP) de-

fined by (2.3)-(2.6), (3.1) and (3.2), a weak-form representation is derived by

multiplying (2.3) by a testing function E and integrating over Ω:∫
Ω

[
µ−1

r (∇× E) · (∇× E)− k2
0εrE · E

]
dr

= −
∮
∂Ω

E · (n̂×∇× E)dr.

(3.8)

By following the standard FEM procedure, the unknown electric field E is

expanded in terms of a set of VBFs {Ni} [3]

E =
N∑
i=1

EiNi, (3.9)

where {Ei} are the corresponding unknown coefficients and N denotes the

total number of DoFs. By substituting (3.9) into (3.8) and applying pertinent

boundary conditions, a linear system is formed:

[K] {E} = {f}, (3.10)

where {f} is the known vector associated with the incident field. The re-
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sulting matrix [K] for problems without boundary conditions (3.1) and (3.2)

is highly sparse and symmetric. However, when periodic structures are con-

sidered, the matrix [K] is partially sparse and partially full if higher-order

Floquet modes are included in (3.2), and it also loses symmetry for oblique

incidences because of (3.1) [109]. Nevertheless, the resulting linear system

can still be solved conveniently by an efficient direct solver for either sce-

nario [104,105]. For the standard FEM, the field solution obtained with the

aforementioned procedure is accurate provided that a mesh conformal to the

internal geometries is used. For a non-conformal mesh, where tetrahedra are

crossed by material interfaces, the standard FEM produces the field solution

with a poor numerical accuracy since it cannot represent the discontinuities

of the field and its derivatives along the material interfaces. The IGFEM has

been, therefore, proposed to alleviate this drawback [18,40,43,56]. By intro-

ducing additional basis functions associated with material interfaces to enrich

the FEM solution space, the IGFEM can correctly resolve the discontinuities

of the field and its derivatives even without a conformal mesh. The exten-

sion of the IGFEM from thermal and structural problems with nodal basis

functions to 2D electromagnetic analysis with VBFs was discussed in [18].

In the next section, we extend the enrichment idea to the more challenging

3D case.

3.3 Vector Basis Functions and Enrichment

For the sake of clarity and without losing generality, let us assume that the

computational domain is discretized into tetrahedra which are not necessarily

conforming to the internal geometries. We further assume that the internal

structures are smooth and non-overlapping so that, when the dimensions

of the tetrahedra are small enough, each element is at most intersected by

one material interface. Under these three assumptions, four distinct scenar-

ios are possible for a tetrahedron interacting with a material interface, as

schematically displayed in Fig. 3.2.

The tangential component of the field exhibits a gradient discontinuity

along a material interface. To interpolate the field without resorting to con-

formal meshes, one possible approach is to enrich the solution space S by
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employing the IGFEM [18] as

S = span{Ni}+ span{Nen
i }, (3.11)

where span{Ni} is the standard FEM solution space and span{Nen
i } is the

enriching solution space that is associated with material interfaces. The

enriching solution space should satisfy the following three criteria: (1) it

can capture the gradient discontinuity of the tangential field component at

material interfaces; (2) it can represent the discontinuity of the normal field

component caused by material mismatch; and (3) it should not introduce

any tangential field component along other edges so that the tangential field

continuity condition will not be violated. It is obvious that an enriching

solution space spanned by H(curl) conforming basis functions is adequate

to retrieve the “missing” field information. In this thesis, we construct the

enriching solution space

span{Nen
i } = span{NS1

i }+ span{NS2
i } (3.12)

to satisfy these three criteria, where NS1
i and NS2

i are respectively VBFs asso-

ciated with the first and the second sub-elements that share a common edge,

as illustrated in Fig. 3.2. The sub-elements can be tetrahedral, prismatic,

and pyramidal, and the construction of the VBFs for such elements can be

found in [4,110,111]. To make this chapter self-contained so that readers are

able to implement the proposed algorithm conveniently, we list the formulae

of the VBFs for the three elements here. For each element, we construct its

VBFs {Wi} in the ξηζ-coordinate system (the simplex coordinate system).

Once {Wi} in the simplex coordinate system are available, it is fairly easy to

obtain the VBFs {Ni} and curl of the VBFs {∇×Ni} in the xyz-coordinate

system (the physical coordinate system) via the following expressions [110]:

Ni = J−1Wi,

∇×Ni =
JT

det(J)
∇×Wi,

(3.13)

where J is the Jacobian matrix that connects the simplex and physical coor-
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dinate systems, and can be calculated from

J =
∂(x, y, z)

∂(ξ, η, ζ)
=


∂x
∂ξ

∂y
∂ξ

∂z
∂ξ

∂x
∂η

∂y
∂η

∂z
∂η

∂x
∂ζ

∂y
∂ζ

∂z
∂ζ

 . (3.14)

It is worth noting that the gradient operator is w.r.t. the physical coordinates

in ∇×Ni but w.r.t. the simplex coordinates in ∇×Wi.

3.3.1 Vector Basis Functions for a Tetrahedron

The isoparametric transformation that maps a tetrahedral element from the

simplex coordinate system to the physical coordinate system can be written

as

r =
4∑
i=1

λiri (3.15)

for the case shown in Fig. 3.3, where ri is a row vector specified by the

location of vertex i in the physical coordinate system and λ is a vector with

each of its entries associating with a surface in the simplex coordinate system:

λ = [1− ξ − η − ζ, ξ, η, ζ]. (3.16)

Letting ∇λi be a column vector, the Jacobian matrix J is given by

J =
4∑
i=1

∇λi · rT
i . (3.17)

The VBF associated with an arbitrary edge e can be formulated as [4]

λe1∇λe2 − λe2∇λe1 , (3.18)

where e1 and e2 are the two vertexes of the edge e.

3.3.2 Vector Basis Functions for a Prism

For a prismatic element, as illustrated in Fig. 3.4, the transformation that

maps a point (ξ, η, ζ) in the simplex coordinate system to the point r =
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(x, y, z) in the physical coordinate system can be expressed as

r = β1

3∑
i=1

λiri + β2

6∑
i=4

λiri, (3.19)

where λi and βi, which are associated with a vertical and a horizontal surface,

respectively, are given by

λ1 = λ4 = 1− ξ − η,

λ2 = λ5 = ξ,

λ3 = λ6 = η,

β1 = 1− ζ,

β2 = ζ.

(3.20)

Following the definition in (3.14), the Jacobian matrix J for a prismatic

element is readily derived as

J =
3∑
i=1

(λi∇β1 + β1∇λi) · rT
i +

6∑
i=4

(λi∇β2 + β2∇λi) · rT
i . (3.21)

The VBF for a horizontal edge e, with e1 and e2 denoting its two vertices

and ef representing the horizontal opposite face, can be formulated as [111]

(λe1∇λe2 − λe2∇λe1)βef . (3.22)

For a vertical edge e, the VBF is [111]

λef∇β2, (3.23)

where ef describes the face that does not contain any vertex of the edge e.

3.3.3 Vector Basis Functions for a Pyramid

The transformation for a pyramidal element shown in Fig. 3.5 can be ex-

pressed as

r =
5∑
i=1

λiri, (3.24)
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where λi are the nodal basis functions and are given by [110]

λ =

[
β1β2

1− ζ
,
β2β3

1− ζ
,
β3β4

1− ζ
,
β4β1

1− ζ
, ζ

]
, (3.25)

and βi are parameters associated with triangular faces and are given by

β =
1

2
[1− ξ − ζ, 1− η − ζ, 1 + ξ − ζ, 1 + η − ζ] . (3.26)

With the mapping function defined in (3.24), it is trivial to obtain the

Jacobian matrix J for a pyramidal element:

J =
5∑
i=1

∇λi · rT
i . (3.27)

The VBF associated with a horizontal edge e can be expressed as [110]

λe1∇(λe2 + λe3)− λe2∇(λe1 + λe4), (3.28)

where e1 and e2 are the two vertices of the edge e, and e3 and e4 are respec-

tively the adjacent vertices of e2 and e1 that reside on the horizontal edges

other than the edge e. For a non-horizontal edge e, the VBF can be written

as [110]

λe1∇λ5 − λ5∇λe1 , (3.29)

where e1 is one of the vertices of e that belongs to the horizontal plane.

In our implementation, all the VBFs are normalized to have a unit tangen-

tial component for better conditioning of the resultant system matrix. It is

worth noting that, because of the weak or strong discontinuities exhibited in

the enriched elements, the conventional quadrature rule that directly applies

to a tetrahedron is no longer accurate enough for evaluating the stiffness

and mass matrices. A common practice is to perform integration over each

sub-element and add up the contributions from the sub-elements to form an

accurate final quadrature [56]. The quadrature rules for various elements

have been systematically studied and can be found in [112].

The unique feature that distinguishes the IGFEM from the subdivision

FEM and makes it a better choice is the definition of the VBFs on the non-

conformal elements. Unlike the subdivision FEM that defines the VBFs on

40



sub-elements, the IGFEM defines the VBFs on the original tetrahedral ele-

ments. Consequently, when sub-elements with an extremely small size are

created, entries in certain rows and columns of the subdivision FEM system

matrix are trivial because of the small volumes associated with the support-

ing sub-elements, which inevitably lead to a significantly poorly conditioned

system. In contrast, the conditioning of the IGFEM generated system matrix

is barely affected since the integration domains are the original tetrahedra.

Even if sub-elements with a poor aspect ratio are encountered, where some

VBFs tend to be prone to produce a rank-deficient system, the IGFEM still

outperforms the subdivision FEM because it has fewer DoFs related to the

ill-shaped sub-elements. The above analysis can be easily verified through

evaluating the condition number of the system matrix obtained by an en-

riched element, as shown in Fig. 3.6, and also by the numerical examples

described in Section 3.5.

Figure 3.6 shows the condition number for the two most common scenar-

ios when an interface passes through a tetrahedron. The functional under

consideration is

L =

∫
Ω

[
(∇× E) · (∇× E)− k2

0E · E
]
dr, (3.30)

which is discretized respectively by the standard FEM, the IGFEM, and the

subdivision FEM. The dimension of the tetrahedron, normalized with the

free-space wavelength λ0, is also displayed. The intersection points, which

are represented by black dots, are controlled by the variable t ∈ [δ, 1− δ]λ0,

where δ = 10−10. As observed from the figures, the IGFEM produces much

better conditioned system matrices than the subdivision FEM in both of

these scenarios.

3.4 Convergence and Conditioning Study

The IGFEM proposed in this chapter aims at facilitating the electromagnetic

analysis of 3-D problems with a high geometric complexity. Without resort-

ing to meshes that conform to internal geometries, the IGFEM introduces

enrichment VBFs at the material interfaces to represent the discontinuities

of the field and its derivatives caused by adjacent material mismatch. Since
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sub-elements with very small sizes and/or poor aspect ratios are occasionally

created, it is necessary to investigate the accuracy, h-refinement convergence,

and conditioning of the proposed IGFEM.

The conditioning of the system matrix [K] generated by the three different

FEM schemes is characterized by its condition number, which is defined

as [113]

κ ([K]) = ‖[K]‖1

∥∥[K]−1
∥∥

1
. (3.31)

Note that the matrix 1-norm is adopted for the evaluation of the condition

number since it is less computationally intensive than the spectral norm [113].

For all of the following numerical examples, the standard FEM is based

on meshes that conform to the internal geometries, whereas the subdivision

FEM and IGFEM are based on background meshes which are created without

considering the internal structures and hence do not necessarily conform to

the material interfaces. The resulting linear systems are solved by the highly

efficient direct solver PARDISO [105]. The computations are carried out in

single float precision on a Cisco computer cluster with each computing node

configured with 256-GB memory and two Intel Xeon E5-2680 v2 CPUs.

3.4.1 Dielectric Slab Backed by a PEC Boundary

The first example considered here is an infinitely large dielectric slab backed

by a PEC boundary and illuminated by a uniform plane wave, as shown in

Fig. 3.7. The incident wave is polarized in the x direction and propagates

in the z direction. To mimic the infinite region, the top and bottom surfaces

are enforced as PEC boundary, and the front and back surfaces are enforced

as PMC boundary. The first-order ABC is employed to truncate the compu-

tational domain at the left boundary. The dimensions of the dielectric slab

and the total computational domain are λ0 × λ0 × λ0 and λ0 × λ0 × 2λ0,

respectively. The nonmagnetic material property of the dielectric slab is

specified by ε1 = (3 − j)ε0, where ε0 is the free-space permittivity. For the

IGFEM and subdivision FEM simulations, the entire computational domain

is meshed into tetrahedra without any specification of the dielectric-air in-

terface. For the standard FEM simulations, the interface is specified before

the mesh generation so that the mesh is conformal with the interface.

The convergence rate of the L2-norm of the field solution error with re-
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spect to the number of DoFs is depicted in Fig. 3.8a. The reference solution

of the electric field in the computational domain is derived from the power

reflection coefficient, which is given by a closed-form expression in [3]. As

the number of DoFs increases from 4,800 to 7.3 million, and the mesh size

h accordingly decreases from λ0/6 to λ0/100, the IGFEM shows a conver-

gence rate comparable to that of the standard FEM and a higher numerical

accuracy than the subdivision FEM, especially when sub-elements with very

small sizes and/or poor aspect ratios are encountered. Despite the fact that

the IGFEM needs to determine intersections between the tetrahedra and the

material interface and introduces extra DoFs at material interfaces to retrieve

“missing” field information, Fig. 3.8a indicates that such an additional cost

is trivial and the computational complexity is essentially the same as that of

the standard FEM. The condition numbers of the system matrices generated

by different FEM schemes are shown in Fig. 3.8b. Obviously, the proposed

IGFEM is less sensitive to the quality of the sub-elements and outperforms

the subdivision FEM in maintaining a well-conditioned system matrix.

3.4.2 Dielectric Sphere in Free Space

The second example involves the scattering of a dielectric sphere in free space.

As shown in Fig. 3.9, the sphere has a diameter of 1.0λ0 and is placed at the

center of a cubic box, whose edge length is set as 3.3λ0. The material proper-

ties of the nonmagnetic sphere and the cubic box are taken to be ε1 = 2.56ε0

and ε0, respectively. The ABC is applied at the six surfaces of the cube to

truncate the computational domain. The incident plane wave travels in the z

direction and is polarized in the x direction. Similar to the first example, the

entire computational domain is discretized into tetrahedral elements with-

out considering the spherical interface for the IGFEM and subdivision FEM

simulations. For the standard FEM simulation, however, the internal geom-

etry is specified before the mesh generation so that the created tetrahedra

conform to the spherical interface.

The convergence rate of the L2-norm of the field solution error, the total so-

lution time, and the condition number of the system matrix, all with respect

to the number of DoFs, are displayed in Fig. 3.10. The reference closed-form

solution can be found in [39]. For this test problem, the mesh size h ranges
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from λ0/6 to λ0/50, and the corresponding number of DoFs ranges from 5,600

to 11.7 million. As in the first test problem, the IGFEM using non-conformal

meshes yields a solution accuracy similar to that of the standard FEM us-

ing conformal meshes. The IGFEM also maintains the same computational

complexity even though it has to identify intersections at material interfaces.

The comparison of the condition numbers of the system matrices generated

by the three different FEM schemes (Fig. 3.10b) shows that the IGFEM

produces system matrices with much smaller condition numbers than those

associated with the subdivision FEM.

3.5 Application to Periodic Structures

In the preceding section, the proposed IGFEM using non-conformal meshes

has been shown to have the same level of solution accuracy as the standard

FEM that uses conformal meshes. In this section, we apply the IGFEM to

simulate periodic structures which arise from a variety of composite materi-

als. For electromagnetic modeling of the composite materials, the specular

reflection coefficient is usually preferred to characterize the macroscopic, i.e.,

homogenized, material properties. The specular reflection coefficient R, eval-

uated at the top surface of the periodic structure, can be obtained by taking

the ratio of the scattered magnetic field Hsca
00 in the fundamental mode to the

incident magnetic field, where Hsca
00 can be calculated as

Hsca
00 = Hinc − 2j

k0

η0

˜̄G00 · (E× n̂). (3.32)

3.5.1 Monolayer of Dielectric Sphere Array

The verification example considered here is the reflection from a monolayer

periodic array consisting of dielectric spheres with radius r that are positioned

in a cubic lattice with periodic length d. The dielectric constant of the

spheres is taken to be εr = 3, and the radius of the spheres is specified by

r/d = 0.4. The PRC is placed at the top and bottom surfaces for truncation.

Practically, the infinite summation in (3.4) is always truncated with a finite

number of Floquet modes. A sufficient number of modes has to be included

to effectively absorb the propagating and evanescent waves that impinge
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on the PRC. Fortunately, numerical tests indicate that the magnitude of the

Floquet harmonics decreases rapidly with increasing p and q and an inclusion

of modes up to the fourth order (|p| ≤ 4 and |q| ≤ 4) in this case is typically

enough to produce convergent results.

Figure 3.11 depicts the power reflection coefficient as a function of the

free-space wavelength λ0. The plane wave is obliquely incident on the sphere

array at an angle of θinc = 20◦ and φinc = 0◦. To resolve the field variation

in the dielectric spheres, the computational domain is discretized by tetra-

hedra with a mesh size of λ0/30. The reflection coefficients calculated under

transverse-magnetic (TM) and transverse-electric (TE) polarizations are re-

spectively displayed in Figs. 3.11a and 3.11b together with the reference

theoretical results extracted from Fig. 2 in [114]. It is worth mentioning

that the cut-off frequency for the first high-order mode at the given incident

angle corresponds to d/λ0 = 0.745, and we intentionally increase d/λ0 to 0.8

to make sure that higher-order Floquet modes are excited so that the effec-

tiveness of the PRC can be fully demonstrated. The good agreement between

the IGFEM and analytical results in Fig. 3.11 not only confirms that the

formulas for the PRC and the specular reflection coefficient calculation are

implemented correctly, but also demonstrates the accuracy of the proposed

IGFEM.

3.5.2 Composite Material with Spherical Particles

Motivated by the desire to develop materials with given properties, composite

materials with inclusions of various types and shapes have been the focus of

multiple studies [107]. The problem considered here is a particular composite,

which consists of a polyethylene matrix (εr = 2.25−j0.00225) and 65 spherical

inclusions with three different radii, as displayed in Fig. 3.12a. Among all

these particles, 24 of them are made of silicon nitrate (εr = 7) with a radius

of 0.04λ0, 27 of them are FR4 epoxy particles (εr = 4.4 − j0.088) with a

radius of 0.06λ0, and the rest are made of alumina (εr = 9.2 − j0.0736)

with a radius of 0.08λ0. The composite material is periodic in the x and y

directions. The PBC is applied on the four sides of the unit cell and the PRC

is applied on both the top and bottom surfaces. The unit cell has dimensions

of λ0 × λ0 × 0.5λ0 and is discretized into non-conforming tetrahedra of size
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λ0/50.

The computed field distribution using the IGFEM for the normally inci-

dent TM polarized plane wave is displayed in Fig. 3.12b. As can be seen, the

IGFEM captures the discontinuities of the field and its derivatives at mate-

rial interfaces. Figure 3.13a presents the specular field reflection coefficient

as a function of the incident angles, showing a good agreement between the

IGFEM and standard FEM results. The small discrepancies are believed to

be caused by the geometrical discretization error. In fact, the conformal mesh

for the standard FEM contains 544,376 tetrahedral elements while the back-

ground mesh for the IGFEM has only 368,097 tetrahedral elements despite

that the same mesh size is adopted for generating the two meshes. Since the

IGFEM and the standard FEM use two completely different sets of meshes,

and multi-reflections and higher-order Floquet modes co-exist in the com-

putational domain, a sufficiently fine mesh together with enough truncation

terms in (3.4) is necessary to produce a better agreement. The mesh gener-

ation times for the conformal mesh and the background mesh are 20.5 and

11.2 seconds, respectively. Because the IGFEM uses a background mesh that

has a smaller number of elements, the total solution time for the IGFEM is

8.7 hours as opposed to 11.2 hours for the standard FEM using a conformal

mesh.

Because the IGFEM produces accurate results without resorting to confor-

mal meshes, the proposed approach is particularly attractive when dealing

with problems with constantly changing internal structures, such as those

encountered in the electromagnetic analysis of a random medium. To take

into account the randomness of the spatial distribution of the inclusions,

many unit cells have to be considered for the computation of the statistics of

homogenized properties. In Fig. 3.13b, 33 different spatial arrangements of

the 65 spherical inclusions are studied to investigate the effect of the random-

ness on the field reflection. All the IGFEM simulations are performed with

a single non-conforming background mesh, thereby greatly simplifying this

statistical analysis. Each set of specular reflection coefficient curves consists

of 91 incident angles and takes less than 9 hours to sweep all these angles. As

can be observed from the figure, the variations of the reflection coefficients

generally increase with decreasing incident angles. Large variations are also

exhibited at certain incident angles where resonance modes are believed to

be excited.
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3.5.3 Composite Material with Ellipsoidal Inclusions

The second example involves a particulate composite composed of a glass

matrix with ellipsoidal alumina inclusions for high-temperature applications

[107]. Since this kind of material is commonly coated on targets for thermal

insulation, and because the targets are normally exposed to an electromag-

netic environment, it is necessary to study their reflection of electromag-

netic waves. The test problem, illustrated in Fig. 3.14, is based on a unit

cell of the glass/alumina composite material, where the material properties

of the alumina particles and the glass matrix are respectively specified by

εr = 9.2 − j0.0736 and εr = 5.5. The unit cell, with 45 ellipsoids embedded,

has a dimension of λ0×λ0× 2
3
λ0 and is uniformly discretized into tetrahedral

elements with the mesh size h = λ0/50. The PBC is enforced at the four

sides and the PRC is applied on the top and bottom surfaces as truncation.

All of the ellipsoidal particles are randomly distributed in the unit cell with

their axes arbitrarily oriented and their shape described by

x̃2 + ỹ2

3 + 0.8e−z̃2
+
z̃2

32
= 1, (3.33)

where the particle coordinates (x̃, ỹ, z̃) are normalized with the free-space

wavelength λ0.

The IGFEM evaluated electric field distribution under a normally incident

TM polarized plane wave, and the field reflection coefficients for 15 config-

urations with incident angle θinc sweeping from 0◦ to 90◦, are displayed in

Figs. 3.15a and 3.15b, respectively. Because of the irregular shapes of the

ellipsoids, the commercial software CUBIT [115] fails to generate a conformal

mesh for this problem. In contrast, the IGFEM, which does not rely on a con-

formal mesh, takes less than 1 second to determine the intersections on the

material interfaces even though the background mesh contains 453,059 tetra-

hedra. For each configuration, the IGFEM needs approximately 9.5 hours to

produce the reflection coefficient curves for 91 incident angles. The reflection

curves shown in Fig. 3.15b are generally smoother than those depicted in Fig.

3.13b, especially for large oblique incidences. This phenomenon might be due

to the smaller dielectric contrast in the glass/alumina composite material. It

is interesting to note that the glass/alumina composite material exhibits a

large angle range (from 50◦ to 75◦) of low reflectivity for TM polarization.
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3.5.4 Microvascular Composite Material

The last problem is driven by the recent development of multi-functional

microvascular composite materials [38]. By circulating different fluids along

the micro-channels, this composite material can be effectively used for heat

dissipation, energy storage, self-healing, or even to dynamically modulate

material property. The application problem, shown in Fig. 3.16a, consists

of a plexiglass matrix (εr = 3.4 − j0.0034) with eight embedded sinusoidal

channels filled with ethylene glycol (εr = 7 − j5.46). The wavy channels,

with a cross section radius of 0.06λ0 and a geometrical periodicity of λ0, are

infinitely long in the x direction and are periodically stacked in the y direction

with a center-to-center distance of 0.18λ0. The unit cell is taken to have a

size of 1.5λ0 × 0.72λ0 × 0.6λ0 and is uniformly discretized into tetrahedral

elements with the mesh size specified as λ0/50 without any consideration of

the micro-channels. The PRC is applied on the top and bottom surfaces to

truncate the computational domain from the free space. The sides of the

unit cell are set as PBC to emulate the infinite array in the xy plane.

The IGFEM calculated field reflection coefficients for the TM and TE

polarizations are depicted in Fig. 3.16b. Since the internal structures are

well ordered and free of random small inclusions that could potentially induce

strong multi-reflections, the reflection coefficient curves are very smooth. The

standard FEM solutions are not provided because of the difficulty of creating

a conformal mesh for such a complex geometry, especially of assigning the

PBC at surfaces that are perpendicular to the x axis. It is worth mentioning

that even with such complex material interfaces, the IGFEM takes less than 3

seconds to find all the intersections, which is trivial compared to the 12 hours

of the total solution time for sweeping 91 incident angles from 0◦ to 90◦. The

electric field distributions for the TM and TE polarizations are shown in Figs.

3.17a and 3.17b, respectively. Again, as expected, the IGFEM successfully

captured the discontinuities of the field and its derivatives.

3.6 Summary

In this chapter, we presented a 3-D IGFEM for accurate and efficient electro-

magnetic analysis of composite materials. To eliminate the requirement of

generating conformal meshes for geometrically complex domains, we enriched
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the FEM solution space at material interfaces to capture the discontinuities

of the field and its derivatives. We then discussed the construction of the

enriching solution space and analyzed its advantages over the subdivision-

based FEM. Several verification examples were then presented to investigate

the conditioning, accuracy, and h-refinement convergence rate of the pro-

posed IGFEM. The investigation showed that the IGFEM is not sensitive to

the quality of the sub-elements and it maintains the same level of solution ac-

curacy and computational complexity as the standard FEM based on confor-

mal meshes. Finally, we presented three application problems with complex

internal structures to demonstrate the ability of the proposed method to effi-

ciently analyze highly inhomogeneous composite materials, without needing

to create multiple meshes for problems with randomly distributed inclusions.

3.7 Figures

Figure 3.1: A monolayer periodic array illuminated by a uniform plane
wave. The plane wave has an incident angle of (θinc, φinc) and propagates
with a wave vector of kinc

0 . The periodic lengths of the primitive cell are Tx
and Ty in the x and y directions, respectively.
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Figure 3.2: Four scenarios for the intersection of a material interface with a
tetrahedron. The VBFs, defined on the edges of the original tetrahedron,
are numbered in boxes. The enriched VBFs, defined on the edges of the
material interface, are numbered in circles.

Figure 3.3: (a) Tetrahedral element in the physical coordinate system. (b)
Tetrahedral element in the simplex coordinate system.
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Figure 3.4: (a) Prismatic element in the physical coordinate system. (b)
Prismatic element in the simplex coordinate system.

Figure 3.5: (a) Pyramidal element in the physical coordinate system. (b)
Pyramidal element in the simplex coordinate system.
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Figure 3.6: Condition number of an enriched tetrahedral element using
different FEM schemes. The coordinates of the four vertices of the
tetrahedron, normalized with the free-space wavelength λ0, are specified by
the standard 3-simplex. The condition number of the matrix [L] is
evaluated as a function of intersection position, which is controlled by t. (a)
A tetrahedron is divided into a sub-tetrahedron and a sub-prism. (b) A
tetrahedron is divided into two sub-prisms.
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Figure 3.7: A plane wave propagates normally into a PEC-backed lossy
dielectric slab with electric field polarized in the x direction. The PEC and
PMC boundaries are respectively enforced at the surfaces perpendicular to
the x and y axes to emulate the infinite dielectric slab. The left surface is
truncated by an ABC. The right figure illustrates the intersected meshes at
the planar material interface in the subdivision FEM and IGFEM
simulations with the background mesh size h = λ0/6.
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Figure 3.8: L2-norm of the field solution error, total solution time, and
condition number of the system matrix for the test problem shown in Fig.
3.7. (a) L2-norm of the field solution error and total solution time with
respect to the number of DoFs. Note that the total solution time includes
time for estimating the condition number and calculating L2-norm of the
field solution error. The meshing time for these three FEM schemes is not
included in the total solution time. (b) Condition number of the system
matrix with respect to the number of DoFs.
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Figure 3.9: A plane wave illuminates a dielectric sphere in free space. The
computational domain is truncated by an ABC. The right figure shows
nonconforming tetrahedral elements with a size of λ0/10, used in the
subdivision FEM and IGFEM simulations, as they intersect the spherical
interface.
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Figure 3.10: L2-norm of the field solution error, total solution time, and
condition number of the system matrix for the test problem shown in Fig.
3.9. (a) L2-norm of the field solution error and total solution time with
respect to the number of DoFs. Note that the total solution time includes
time for estimating the condition number and calculating L2-norm of the
field solution error. The meshing time for these three FEM schemes is not
included in the total solution time. (b) Condition number of the system
matrix with respect to the number of DoFs.
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Figure 3.11: Power reflection coefficient versus the free-space wavelength λ0

of a monolayer array of dielectric spheres with εr = 3 and r/d = 0.4. The
incident angle of the plane wave is θinc = 20◦ and φinc = 0◦. (a) TM
polarization. (b) TE polarization.
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(a)

(b)

Figure 3.12: Geometrical configuration and electric field distribution of a
composite material unit cell with 65 spherical particles. The particles, with
different radii and material properties, are randomly distributed in the unit
cell. (a) Spatial arrangements of the inclusions in the unit cell. (b)
Magnitude of the electrical field for a normally incident TM polarized plane
wave.
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Figure 3.13: Field reflection coefficient for the problem shown in Fig. 3.12a.
(a) Comparison between the IGFEM and the standard FEM results. (b)
Field reflection coefficients for 33 different spatial arrangements of the
spherical particles.
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Figure 3.14: Geometrical configuration of a glass/alumina composite
material unit cell with 45 ellipsoidal inclusions. The ellipsoids are randomly
arranged and their principal axes are arbitrarily oriented. The right figure
displays the profile of the ellipsoid with its major- and minor-axes specified
by 0.2λ0 and 0.13λ0, respectively.
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Figure 3.15: Field distribution and reflection coefficient for the problem
shown in Fig. 3.14. (a) Magnitude of the electric field for a normally
incident TM polarized plane wave. (b) Field reflection coefficients for 15
configurations of the periodic unit cell of the composite.
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Figure 3.16: Geometrical configuration of a composite material unit cell
with eight sinusoidal channels and field reflection coefficient of the infinite
periodic array. The channels, filled with ethylene glycol, are embedded in a
plexiglass matrix. (a) Spatial arrangements of the eight wavy channels. (b)
Field reflection coefficient as a function of incident angles.

62
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(b)

Figure 3.17: Magnitude of the electrical field for a normally incident plane
wave illuminating the application problem shown in Fig. 3.16a. (a) TM
polarization. (b) TE polarization.
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Chapter 4

IGFEM for Gradient-Based Shape
Optimization

4.1 Introduction

Optimization of electromagnetic problems has been discussed in the literature

for a while and a wide variety of methods have been proposed [20,116]. These

approaches can be grouped into two main categories: evolutionary algorithms

and gradient-based methods. Based on the natural principles of mutation

and selection, evolutionary algorithms such as genetic algorithms (GAs) have

been adopted for electromagnetic device optimization [116]. While GAs offer

the potential to search for global optima even in the presence of many de-

sign variables, they are often prohibitively expensive. While not necessarily

guaranteeing a convergence to a global optimum, gradient-based optimiza-

tion techniques based on the analytical evaluation of the sensitivity of the

objective functions and constraints with respect to the design variables are

often considered as the approach of choice due to their high efficiency, when

the initial design is close to the optimal [20].

To model complex materials/systems with a high numerical accuracy, a

gradient-based shape optimization using the FEM is preferred. However,

the standard FEM relies on a conformal mesh to achieve a high solution

accuracy. Even if the structure shapes have small variations, a new conformal

mesh has to be recreated from scratch, which is cumbersome and expensive.

In addition, the remeshing process also compromises the efficiency of the

optimizer since the so-called design velocity field term has to be evaluated

over all the nodes in the computational domain instead of only those residing

on the modified interfaces.

In this chapter, we adopt a gradient-based shape optimization scheme,

which was recently developed for structural/thermal problems [21], using the

IGFEM to remove the remeshing issue and accelerate the evaluation of the

64



design velocity field term. The BVPs for radar signature prediction, reflec-

tion and transmission from a periodic composite material and S-parameters

evaluation in waveguide devices are discussed. The derivatives of the en-

riched bases and their gradients with respect to the design variables, which

are required in the IGFEM-based analytical sensitivity analysis, are derived.

Three numerical examples are presented to demonstrate the efficiency of this

optimizer.

4.2 Formulation

For the sake of simplicity, let us consider 2D electromagnetic problems for the

gradient-based shape optimization. The governing equation, with φ = Ez,

can be written as

∇ ·
(

1

µr

∇φ
)

+ k2
0εrφ = 0, (4.1)

together with the Dirichlet, Neumann, and Robin boundary conditions

φ = φD on ∂ΩD, (4.2)

n̂ ·
(

1

µr

∇φ
)

= φN on ∂ΩN , (4.3)

n̂ ·
(

1

µr

∇φ
)

+ γ(φ) = q on ∂ΩR, (4.4)

where φD and φN are the prescribed values, q is the known excitation, and

γ(φ) is a function of φ and its forms depend on specific problems.

4.2.1 Radar Signature Prediction

For scattering analysis with the first-order ABC enforced on the boundaries

for truncation, as illustrated in Fig. 2.2, q and γ(φ) are given by

q = n̂ · ∇φinc + jk0φ
inc, (4.5)

γ(φ) = jk0φ, (4.6)

where φinc is the incident plane wave. Once the field inside the computational

domain is determined, the radar signature (or echo width) can be evaluated
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through the near-field to far-field transformation. For a unit-power plane

wave incidence, the echo width can be written as [3]

σ2D = lim
ρ→∞

k0

4

∣∣∣∣∮
∂Ω

[
n̂′ · ρ̂φ(ρ′)− 1

jk0

n̂′ · ∇′φ(ρ′)

]
ejk0ρ̂·ρ′

dρ′
∣∣∣∣2 . (4.7)

4.2.2 Reflection and Transmission from Periodic Structures

Consider a structure that is periodic in the x-direction illuminated by an

incident plane wave polarized in the z-direction, as demonstrated in Fig.

4.1. According to Floquet’s theorem [108], the field satisfies the PBC

φ(x+ Tx, y) = φ(x, y)e−jkincx Tx (4.8)

between adjacent unit cells, where Tx is the periodic length. In the non-

periodic direction, the field satisfies the Robin boundary condition with

q = −j2kinc
y φinc, (4.9)

γ(φ) =
1

Tx

∞∑
m=−∞

jkyme−jkxmx

∫
Tx

φejkxmxdx (4.10)

at the upper boundary, where

kxm = kinc
x −

2πm

Tx
and kym =

√
k2

0 − k2
xm. (4.11)

At the bottom boundary, γ(φ) remains the same except that the source

term q vanishes. The reflection coefficient in the specular direction and the

transmission coefficient in the forward direction are respectively given by

R =
1

Tx

∫
Tx

(φ− φinc)dx and T =
1

Tx

∫
Tx

φdx. (4.12)

4.2.3 S-Parameters Calculation in Filter Analysis

Most of the waveguide filters work at the fundamental mode. To simulate

such structures, the waveguide port boundary condition (WPBC) is usually

adopted for truncation since it can absorb all the waveguide modes [3,10,117].

When the WPBC is placed far enough away from geometrical discontinuities,
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as the one shown in Fig. 4.2, the field at waveguide ports can be simply

expressed as the summation of the incident and reflected fundamental mode.

At an active port, the WPBC satisfies the Robin boundary condition with

q = 2jkxφ
inc, (4.13)

γ(φ) = jkxφ, (4.14)

where φinc is the fundamental modal incidence, kx =
√
k2

0 − k2
y, ky = π/a,

and a is the dimension of the port. For a passive port, q vanishes because

no incident field is applied. Once the field in the computational domain

is obtained, the reflection and transmission coefficients can be respectively

calculated through

R =
φ− φinc

φinc
and T =

φ

φinc
. (4.15)

4.3 Analytical Sensitivity Analysis

For most electromagnetic problems, the objective function is not a direct

function of design parameters. Hence, a general shape optimization problem

can be written as [21]

min
d

g (U(X(d))) ,

such that: hi (d) ≤ 0 for i ∈ [1, l],

di,min ≤ di ≤ di,max for i ∈ [1,m],

and K(X(d))U(X(d)) = F(X(d)),

(4.16)

where g is the objective function to minimize, hi denotes the constraint

function, X is the nodal coordinate vector at quadrature points, d is the

design variable vector, and K, U, and F are respectively the IGFEM system

matrix, unknown vector, and excitation vector. In our analysis, g, hi, X, and

d are all real-valued, and K, U, and F are complex-valued.

The sensitivity analysis of the objective and constraint functions is con-

ducted by an analytical discrete derivative approach. Taking the objective
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function, for instance, the analytical sensitivity can be derived as

dg

ddi
=

(
∂g

∂<{U}

)T
∂<{U}
∂di

+

(
∂g

∂={U}

)T
∂={U}
∂di

=

(
∂g

∂<{U}

)T

<
{
∂U

∂di

}
+

(
∂g

∂={U}

)T

<
{
−j
∂U

∂di

}
= <

{(
∂g

∂<{U}

)T
∂U

∂di

}
+ <

{
−j

(
∂g

∂={U}

)T
∂U

∂di

}

= <

{(
∂g

∂<{U}
+ j

∂g

∂={U}

)H
∂U

∂di

}
,

(4.17)

where ∂g/∂<{U} and ∂g/∂={U} are explicitly evaluated. To evaluate ∂U/∂di,

we start from differentiating the finite-element system with respect to each

of the design variables di, resulting in a series of pseudo problems

∂K

∂di
U + K

∂U

∂di
=
∂F

∂di
. (4.18)

Note that the right-hand side is vanishing because the boundary of the com-

putational domain does not change with design parameters during the opti-

mization process. Hence, the sensitivity can be simplified as

dg

ddi
= −

(
∂g

∂U

)T

K−1∂K

∂di
U. (4.19)

To evaluate ∂K/∂di, we need to determine the system matrix first. In

FEM, the elemental system matrix is expressed as

Ke =

∫
Ωe

1

µr

BTBdr− k2
0

∫
Ωe

εrN
TNdr +

∫
∂Ωe

ζ(N)dr, (4.20)

where ζ(N) is the line integrand introduced by the Robin boundary condition,

and N and B are respectively the basis functions and their gradients, which

are given by

N = [Np Nc] and B =
∂N

∂X
, (4.21)

with Np representing the original basis functions defined on the background

finite elements and Nc denoting the enriched basis functions defined on the
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material interfaces. The evaluation of ∂Ke/∂di is given by

∂Ke

∂di
=

∫
Ωe

1

µr

(
∂BTB

∂di
+ BTB∇ ·Vi

)
dr

− k2
0

∫
Ωe

εr

(
∂NTN

∂di
+ NTN∇ ·Vi

)
dr

=

∫
Ωe

1

µr

(
BT∂B

∂di
+
∂BT

∂di
B + BTB∇ ·Vi

)
dr

− k2
0

∫
Ωe

εr

(
NT∂N

∂di
+
∂NT

∂di
N + NTN∇ ·Vi

)
dr,

(4.22)

with the design velocity field Vi defined as

Vi =
∂X

∂di
= Nc

∂Xc

∂di
. (4.23)

In (4.23), Xc is the vertex coordinate vector of a child element, as illustrated

in Fig. 4.3, which shows the isoparametric mappings for evaluating the basis

functions over the the second child element. It is worth mentioning that the

line integral term in Ke does not contribute in the derivation of (4.22) since

the outmost boundary of the computational domain is fixed. Moreover, we

utilize
∂µ−1

r

∂di
= 0 and

∂εr
∂di

= 0 (4.24)

to further simplify (4.22) since material properties do not change with di at

integration points. For an enriched element, the derivatives of basis functions

with respect to the design parameters are expressed as

∂N

∂di
=

[
∂Np

∂di

∂Nc

∂di

]
, (4.25)

where
∂Np

∂di
=
∂rp

∂di

∂Np

∂rp

=
∂X

∂di

∂rp

∂X

∂Np

∂rp

= ViJ
−1
p

∂Np

∂rp

= ViBp

(4.26)
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and
∂Nc

∂di
= 0. (4.27)

In the derivation of (4.26), rp is the coordinate vector in the master parent

element and Jp is the Jacobian matrix of the parent element. Since the basis

function vector Nc is evaluated on the quadrature points of the child master

element, which does not change with the design parameters, (4.27) is zero.

Similarly, the derivatives of the gradient of basis functions with respect to

the design parameters are expressed as

∂B

∂di
=

[
∂Bp

∂di

∂Bc

∂di

]
, (4.28)

where
∂Bp

∂di
= 0 (4.29)

and
∂Bc

∂di
=
∂J−1

c

∂di

∂Nc

∂rc

= −J−1
c

∂Jc

∂di
J−1

c

∂Nc

∂rc

= −J−1
c

∂Nc

∂rc

∂Xc

∂di
J−1

c

∂Nc

∂rc

= −Bc
∂Xc

∂di
Bc.

(4.30)

Because Bp is a constant for a linear triangle element, (4.29) vanishes. In

the derivation of (4.30), rc is the coordinate vector of quadrature points in

the master child element and Jc is the Jacobian matrix of the child element.

Now it remains to calculate the velocity of the enriched nodes (∂Xc/∂di)

in order to perform an analytical sensitivity analysis. Assume a material

interface, described by

y0 = S(x0,d), (4.31)

intersects an finite-element edge, described by

y0 = ax0 + b, (4.32)
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at X0 = (x0, y0). The velocity of the enriched node is expressed as

∂Xc

∂di
=

∂S/∂di
a− ∂S/∂x

[1 a]T . (4.33)

Once the sensitivity of the objective and constraint functions are evalu-

ated, the design variables can be updated through an optimizer, for instance,

MATLAB’s fmincon function, which provides increments opposite the gra-

dient directions.

4.4 Numerical Results

In this section, we present three numerical examples to verify and demon-

strate the efficiency of the gradient-based shape optimization using IGFEM.

4.4.1 Echo Width of a Dielectric Cylinder

To verify the proposed scheme, we consider a simple problem, which is to

optimize the radius of a dielectric cylinder to achieve the desired echo width

(σ2D). As shown in Fig. 4.4, the cylinder, with a radius a and εr = 4, is

placed at the center of a computational domain of 4λ0× 4λ0 and illuminated

by a uniform plane wave, where λ0 is the free-space wave length. The compu-

tational domain is discretized into 58,896 triangles without considering the

geometry of the cylinder. The IGFEM-calculated σ2D is compared with the

analytical solution in Fig. 4.5, showing a good agreement. The objective

function defined as

g = −σ2D/λ0, (4.34)

is adopted to optimize a with a bound a ∈ [0.65, 0.8]λ0. Figure 4.6 depicts

the convergence history of the proposed method with a starting from 0.65λ0.

Apparently, the proposed method converges in less than 10 iterations with

the optimal a = 0.738λ0, which gives the minimum of the objective function,

i.e., the largest σ2D of 5.98λ0.
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4.4.2 Transmission from a Composite with Elliptical
Inclusions

In this example, the objective is to minimize the transmission coefficient

of a composite material that is periodic in the x-direction. The unit cell,

as illustrated in Fig. 4.7, has a square region of 6.5λ0 × 6.5λ0, with four

embedded elliptical inclusions whose major and minor axes are respectively

0.6λ0 and 0.3λ0. The entire computational domain is discretized into 160,714

triangular elements, without considering the presence of the four elliptical in-

clusions. The relative permittivities for the background matrix and inclusions

are 2.0 − j0.001 and 3.4 − j1.0, respectively. The incident plane wave prop-

agates in the negative y-direction from the top of the composite material.

The design parameters for the ith inclusion are its orientation θi and center

coordinates (xi, yi). The bounds for the design parameters are

0 ≤ θi ≤ π, 0.5λ0 ≤ xi ≤ 5.6λ0, and 0.5λ0 ≤ yi ≤ 5.6λ0. (4.35)

To avoid inclusions overlapping with each other, six constraints are applied

to the center coordinates of the inclusions

dij =
√

(xi − xj)2 + (yi − yj)2 ≥ 1.3λ0 for i 6= j. (4.36)

The initial design, with the four elliptical inclusions intentionally posi-

tioned horizontally at the bottom of the unit cell to produce a very large

transmission, is shown in Fig. 4.8a. During the optimization process, the

inclusions gradually rotate themselves to the vertical direction and spread

vertically to enhance the absorption of electromagnetic waves, as depicted in

Figs. 4.8a–f. It is also obvious that the optimizer is eventually stuck into

a local minimum since the bottom two inclusions did not split apart in the

vertical direction. The convergence history of the objective function with

respect to iteration for the first trial is given in Fig. 4.9, which shows a fast

convergence rate for the first 13 iterations followed by trapping into a local

minimum.

Since the gradient-based shape optimization does not guarantee conver-

gence to the global optimum, it is necessary to try several initial guesses.

Figure 4.10 shows the convergence history with nine different initial guesses.

As expected, different initial guesses converge to their own local minimum.
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Figure 4.11 plots three different initial guesses and their corresponding final

designs to demonstrate shape changes in the optimization process.

4.4.3 S-Parameter of a Waveguide Filter with Dielectric Posts

The last example in this chapter is motivated by the broad applications of di-

electric materials in the microwave communication systems. Because of their

low-loss, temperature-stable, and high-permittivity characteristics, dielectric

materials are critical to the miniaturization of satellite and broadcasting

equipment, and to many other wireless systems [118–121]. Figure 4.2 shows

an H-plane evanescent mode filter with circular dielectric resonators (εr = 24)

designed to have a pass-band centered at 11 GHz with 300 MHz bandwidth

and return losses greater than 23 dB [121]. To achieve these specifications,

one of the possible designs was given by [121], with a = 19.05 mm, W = 8

mm, R1 = 0.777 mm, R2 = 2.169 mm, L1 = 2.4179 mm, L2 = 10.182 mm,

and L3 = 10.9919 mm. In this example, we offset the locations and radii

of the posts in the reference design by certain values to test if the proposed

method can still converge to the original design. Because of the symmetry in

the x- and y-directions, only four design parameters need to be considered,

i.e., the y coordinates (y1, y2) and radii (R1, R2) of the first two dielectric

posts. Letting

V∗ = [y∗1, y
∗
2, R

∗
1, R

∗
2] (4.37)

be the reference design variable vector, we choose

V0 = V∗ − [0.05, 0.05, 0.05, 0.05] (4.38)

as the initial guess and

[−0.1,−0.1,−0.1,−0.1] ≤ V0 −V∗ ≤ [0.1, 0.1, 0.1, 0.1] (4.39)

as the bounds for the design variables. The objective is to minimize the

root-mean-square error (RSME) between the calculated S11 and reference

S∗11, where the RSME is given by

RSME =

√√√√ 1

N

N∑
n=1

(S11 − S∗11)2 (4.40)
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with N representing the number of frequency sampling points.

The entire computational domain, without considering the four dielectric

posts, is discretized into 451,192 triangles. The convergence histories of the

objective function and design parameters are plotted in Fig. 4.12, which only

need 16 iterations to converge to the reference design. The detailed evolution

of S11 during the optimization process is depicted in Fig. 4.13, showing more

information about how the calculated S11 approaches the reference S∗11.

To further demonstrate the effectiveness of the proposed optimizer, we

choose another initial guess

V0 = V∗ + [0.05, 0.05, 0.05, 0.05], (4.41)

with the rest of the settings unchanged. The convergence histories and evo-

lution of S11 for the new initial guess are plotted in Figs. 4.14 and 4.15,

respectively. As expected, the design parameters quickly converge to the

reference values.

It is worth mentioning that, like all the other gradient-based shape opti-

mization methods, the proposed method also requires the initial guess to be

close enough to the optima to converge to the desired values. For problems

with multiple local minima and large searching ranges, it is more practical to

adopt evolutionary algorithms to roughly estimate several initial guesses and

then utilize the proposed method to accelerate the convergence to the global

minimum. Alternatively, one can subdivide the large searching range and ap-

ply the proposed optimizer to the smaller ranges to increase the possibility

of finding the optimal design parameters.

4.5 Summary

A gradient-based shape optimization scheme combined with the IGFEM is

proposed to efficiently optimize electromagnetic problems. To avoid mesh

distortion and the expensive process of repeatedly creating a conformal mesh

for each design configuration, the problem geometry is projected onto a

fixed background mesh that is not necessarily conformal to the geometry.

The IGFEM, with an enriched solution space in nonconformal elements, is

adopted for an accurate electromagnetic simulation. An analytical sensi-
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tivity analysis is presented to compute the derivatives of the objective and

constraint functions. Because of the fixed background mesh, the design ve-

locity field term in the sensitivity analysis is evaluated only at the geom-

etry interfaces, and the efficiency of this method is significantly enhanced.

Three numerical examples are presented to verify the proposed method and

to demonstrate its efficiency.

4.6 Figures

Figure 4.1: One-dimensional periodic structure.

Figure 4.2: A waveguide filter with dielectric posts.
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Figure 4.3: Mappings used to evaluate the bases at an integration point X.
fc(rc) maps the master element Ωc to the integration element Ω2

e, and fp(rp)
maps the master element Ωp to the physical element Ωe.

Figure 4.4: Scattering analysis of a dielectric cylinder in the free space.
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Figure 4.5: Echo width of a dielectric cylinder versus its normalized radius.
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Figure 4.6: Convergence history of the objective function and design
variable for the dielectric cylinder optimization problem.
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Figure 4.7: A composite unit cell with four elliptical inclusions illuminated
by a uniform plane wave from the top.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.8: Geometry changes with iterations for the first trial. (a)
Iteration 0. (b) Iteration 5. (c) Iteration 10. (d) Iteration 25. (e) Iteration
40. (f) Iteration 53.
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Figure 4.9: Convergence history for the composite unit cell during the first
try.
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Figure 4.10: Convergence histories for the composite unit cell with nine
tries.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.11: Initial guesses and final designs for different trials. (a) Trial 1
initial guess. (b) Trial 1 final design. (c) Trial 5 initial guess. (d) Trial 5
final design. (e) Trial 9 initial guess. (f) Trial 9 final design.
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Figure 4.12: Convergence histories for the optimization of the waveguide
filter with four dielectric posts using V0 = V∗ − [0.05, 0.05, 0.05, 0.05] as the
initial guess. (a) Objective function. (b) Design parameters.
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Figure 4.13: Evolution of S11 for the waveguide filter with four dielectric
posts using V0 = V∗ − [0.05, 0.05, 0.05, 0.05] as the initial guess. (a)
Iteration 0. (b) Iteration 3. (c) Iteration 6. (d) Iteration 9. (e) Iteration 12.
(f) Iteration 16.
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Figure 4.14: Convergence histories for the optimization of the waveguide
filter with four dielectric posts using V0 = V∗ + [0.05, 0.05, 0.05, 0.05] as the
initial guess. (a) Objective function. (b) Design parameters.
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Figure 4.15: Evolution of S11 for the waveguide filter with four dielectric
posts using V0 = V∗ + [0.05, 0.05, 0.05, 0.05] as the initial guess. (a)
Iteration 0. (b) Iteration 3. (c) Iteration 6. (d) Iteration 9. (e) Iteration 12.
(f) Iteration 13.
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Chapter 5

Parallel FETI-DP Alogrithm for Large-Scale
Electromagnetic Analysis

5.1 Introduction

Modern engineering applications, such as for phased-antenna array analysis,

radar signature prediction of electrically large objects, and full-wave synthe-

sis of on-board circuit design, tend to produce a linear system with millions or

even billions of unknowns after a volumetric discretization, which is very chal-

lenging for the FEM to solve. The domain decomposition-based FETI-DP

algorithm has been therefore developed to enable large-scale electromagnetic

simulations [22,23].

The FETI-DP algorithm divides an entire computational domain into

many non-overlapping subdomains and enforces Robin transmission condi-

tions at the subdomain interfaces to form an equivalent order-reduced in-

terface problem. To accelerate the iterative convergence of the interface

problem, a global coarse system, which relates only primal unknowns at the

corner edges of the subdomain interfaces, is constructed and solved as a pre-

conditioner for the interface problem. Due the complexity of the FETI-DP

algorithm and the large difference between the sizes of the interface and the

global coarse problems, the parallel efficiency of the previous parallel FETI-

DP implementation is limited with an increasing number of computation

nodes, especially when a large global coarse system is involved [23].

In this chapter, we present an efficient parallelization of the FETI-DP

algorithm for large-scale electromagnetic simulations. The proposed paral-

lelization strategy has an excellent load balance with minimized subdomain

interfaces. We parallelize the solution of the interface problem by using

the generalized minimal residual (GMRES) method [103] to achieve a fast

convergence rate. In the GMRES method, we adopt the iterative classical

Gram-Schmidt (ICGS) algorithm with a selective reorthogonalization scheme
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to generate the Krylov subspace so that the orthogonality of the computed

basis is preserved and the issue associated with the global communication

involved in orthogonalization is alleviated [122]. For the solution of the

global coarse problem, we adopt another Krylov subspace method, which is

a communication-avoiding biconjugate gradient stabilized (CA-BICGSTAB)

method [123], to efficiently parallelize the computation and minimize the

global communication overhead for explicitly forming the coarse system and

updating coarse problem solutions. Based on the highly sparse pattern of the

global coarse system, we further develop a sparse preconditioner to improve

the convergence rate of the iterative solution. Finally, we present numerical

examples to demonstrate the accuracy, scalability, and capability of our new

parallel implementation of the FETI-DP algorithm by simulating the radar

signature of a lossless dielectric sphere and a PEC airplane and analyzing

the radiation pattern of a large Vivaldi antenna array.

5.2 FETI-DP Formulation

The BVP to be considered is governed by the vector wave equation with

the first-order ABC. The ABC is employed here for the sake of simplicity,

and other types of boundary conditions, such as PEC, PMC, and wave port

boundary conditions [81], can be easily incorporated as well. With domain

decomposition, the computational domain V is decomposed into many sub-

domains V s (s = 1, 2, . . . , Ns), whose surfaces are denoted as Ss. For each Ss,

the portion that interfaces with neighboring subdomains is denoted as Γs.

To make the subdomain interfaces as transparent as possible for the electric

field, we enforce the second-order transverse-electric transmission condition

(SOTC-TE) at subdomain interfaces [25,26,28,29]:

n̂s ×
(

1

µr

∇× Es

)
+ αsn̂s × (n̂s × Es)− βs∇× [n̂s(∇× Es)n] = Λs on Γs.

(5.1)

The parameter αs is set as αs = jk0

√
εsqr µ

sq
r for the interface between the sth

and qth subdomains, where εsqr and µsqr are respectively the average relative

permittivity and permeability given by εsqr = (εsr +εqr)/2 and µsqr = (µsr +µqr)/2.

The parameter βs can be determined based on the smallest mesh size and the

order of basis functions employed on the subdomain interfaces to account for
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all the evanescent modes supported by the interface mesh. More specifically,

βs = −j/(k0

√
εsqr µ

sq
r +k̃), k̃ = −j

√
k2

max − k2
0ε
sq
r µ

sq
r , and kmax = π/hmin, where

hmin denotes the smallest mesh size on the subdomain interface [25,26,28].

With the BVP defined above, the finite element discretization of the sub-

domain V s yields the matrix equationK
s
ii Ks

ib Ks
ic

Ks
bi Ks

bb +M s
bb Ks

bc

Ks
ci Ks

cb Ks
cc



Es

i

Es
b

Es
c

 =


f si

f sb
f sc

−


0

λsb +M s
bcE

s
c

λsc

 , (5.2)

where the finite element submatrices and subvectors are defined as

[Ks
uv] =

∫
V s

[
1

µr

{∇ ×Ns
u} · {∇ ×Ns

v}T − k2
0εr{Ns

u} · {Ns
v}T

]
dV

+ jk0

∫
Ss∩So

{n̂s ×Ns
u} · {n̂s ×Ns

v}TdS,

[M s
bv] =

∫
Γs

[
αs{n̂s ×Ns

b} · {n̂s ×Ns
v}T + βs{∇ ×Ns

b}n · {∇ ×Ns
v}T
n

]
dS,

{f su} =− jk0

∫
Ss∩So

{n̂×Ns
u} ·

(
η0H

inc − n̂× Einc
)

dS,

{λsb} =

∫
Γs
{Ns

b} ·ΛsdS,

{λsc} =jk0η0

∫
Γs
{n̂s ×Ns

c} ·HdS.

(5.3)

In (5.3), both of the subscripts u and v can be i, b, and c. We adopt the i, b,

and c notations to represent the interior unknowns which are not associated

with any subdomain interfaces, the interface unknowns which are associated

with interfaces that are shared by two subdomains, and the corner unknowns

which are associated with edges that are shared by at least three subdomains,

respectively. Two sets of interface unknowns (Lagrange multipliers) are used

for each interface and each subdomain maintains its own interface unknowns.

From (5.2), two equations involving the interface and corner unknowns on

the subdomain interface can be obtained:

{Es
b} = [Rs

br]{Es
r }

= [Rs
br][K

s
rr]
−1
(
{f sr } − [Rs

br]
T{λsb} −

(
[Ks

rc] + [Rs
br]

T[M s
bc]
)
{Es

c}
)
,

(5.4)
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([Ks
cc]− [Ks

cr][K
s
rr]
−1
(
[Ks

rc] + [Rs
br]

T[M s
bc]
))
{Es

c}

= {f sc } − {λsc} − [Ks
cr][K

s
rr]
−1
(
{f sr } − [Bs

br]
T{λsb}

)
,

(5.5)

where [Rs
br] is a sparse Boolean matrix to extract the interface unknowns

{Es
b} out of the unknowns {Es

r }, which is defined as {Es
r } = {Es

i E
s
b}T.

Other matrices and vectors are defined as

[Ks
rr] =

[
Ks

ii Ks
ib

Ks
bi Ks

bb +M s
bb

]
,

[Ks
rc] =

[
Ks

ic

Ks
bc

]
,

[Ks
cr] =

[
Ks

ci Ks
cb

]
,

{f sr } =

{
f si

f sb

}
.

(5.6)

Assembling (5.5) over all subdomains yields a global corner-related finite

element system

[K̃cc]{Ec} = {f̃c}+ [K̃cb]{λb}, (5.7)

where

[
K̃cc

]
=

Ns∑
s=1

[
K̃s

cc

]
=

Ns∑
s=1

[Bs
c ]T([Ks

cc]− [Ks
cr][K

s
rr]
−1([Ks

rc] + [Rs
br]

T[M s
bc]))[B

s
c ],

[K̃cb] =
Ns∑
s=1

[K̃s
cb] =

Ns∑
s=1

[Bs
c ]T[Ks

cr][K
s
rr]
−1[Rs

br]
T[Qs],

{f̃c} =
Ns∑
s=1

{f̃ sc } =
Ns∑
s=1

[Bs
c ]T({f sc } − [Ks

cr][K
s
rr]
−1{f sr }).

(5.8)

In (5.8), the Boolean matrix [Bs
c ] is to extract the corner unknowns {Es

c}
in subdomain s from the global corner unknown {Ec}, and [Qs] is a projec-

tion Boolean matrix to select the subdomain dual unknown {λsb} from the

global dual-unknown {λb}. The matrix [K̃cc] is a sparse nonsymmetric ma-

trix representing the global corner unknown related system. Note that {λsc}
in all subdomains are canceled out by

∑Ns

s=1[Bs
c ]T{λsc} = 0, after enforcing

the Neumann continuity condition at the corner.

To couple the fields across the subdomain interfaces, we enforce the tan-
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gential continuity for the electric and magnetic fields in a weak sense through

(5.1):

Λs
b+Λq

b = (αs+αq)n̂s×(n̂s × Es
b)−(βs+βq)∇×[n̂s(∇×Es

b)n] on Γsq. (5.9)

Taking the sth subdomain as reference, we test (5.9) with {Ns
b} and integrate

over Γsq to obtain

{λsb}q + {λqb}s = −2[M q
bc]s{E

q
c}s − 2[M q

bb]s{Eq
b}s. (5.10)

Note that {•}s and [•]s are the subvector and submatrix of vector {•} and

matrix [•], respectively, with unknowns defined on Γs. To derive (5.10), a

conformal mesh is assumed such that the following relations hold on Γsq:

αs = αq, βs = βq, n̂s = −n̂q, {Ns
b} = {Nq

b}, and {Eq
c}s = {Es

c}q. Equation

(5.10) can be reduced by eliminating {Eq
b} using (5.4) and the result is

{λsb}q+([T qs ]− 2[F q
bb]s) {λqb}+2 ([M q

bc]s[B
q
c ]s − [F q

bc]s) {Ec} = −2[M q
bb]s{dqb}s,

(5.11)

where
[F q

bb] =[M q
bb][Rq

br][K
q
rr]
−1[Rq

br]
T,

[F q
bc] =[M q

bb][Rq
br][K

q
rr]
−1([Kq

rc] + [Rq
br]

T[M q
bc])[B

q
c ],

{dqb} =[Rq
br][K

q
rr]
−1{f qr },

(5.12)

and [T qs ] is a projection Boolean matrix employed to extract the interface

unknowns defined on Γsq from those defined on Γq.

Now we assemble (5.11) for all the subdomains to obtain the global inter-

face system

[K̃bb]{λb}+ [K̃bc]{Ec} = {f̃b}, (5.13)

where

[
K̃bb

]
=[I] +

Ns∑
s=1

[Qs]T
∑

q∈neighbor(s)

[T sq ]T([T qs ]− 2[F q
bb]s)[Q

q],

[K̃bc] =2
Ns∑
s=1

[Qs]T
∑

q∈neighbor(s)

[T sq ]T ([M q
bc]s[B

q
c ]s − [F q

bc]s) ,

{f̃b} =− 2
Ns∑
s=1

[Qs]T
∑

q∈neighbor(s)

[T sq ]T[M q
bb]s{dqb}s.

(5.14)
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By combining (5.7) and (5.13) to eliminate {Ec}, a global interface equation

for {λb} is derived:(
[K̃bb] + [K̃bc][K̃cc]

−1[K̃cb]
)
{λb} = {f̃b} − [K̃bc][K̃cc]

−1{f̃c}, (5.15)

which can be solved by using a Krylov subspace method. After {λb} is solved,

{Ec} can be obtained from (5.7) and the electric field inside each subdomain

can be obtained by solving (5.4). Once the electric field is computed every-

where, the interested quantities such as the RCS and radiation patterns can

be evaluated.

5.3 Parallel Implementation

For large-scale engineering problems, we have to parallelize the FETI-DP

algorithm to harness the power of computer clusters so that the solution can

be obtained within a reasonable time. In this section, the parallel imple-

mentation of the FETI-DP algorithm is described. The preprocessing part,

which consists of mesh partition and job distribution, is discussed first since

it is vital to achieve a high parallel efficiency. This is followed by a detailed

discussion of the parallelization of the interface and coarse problems. Al-

though the presented formulation is restricted to conformal meshes for the

sake of clarity, the proposed parallel strategy can be readily extended to

mesh-nonconformal and/or geometry-nonconformal problems [27,28].

5.3.1 Parallel Preprocessing

In parallel computation, there are two key factors that affect the scalability:

load balance and communication overhead. The load balance can be achieved

by decomposing the original computational domain into many subdomains

which have similar sizes and shapes. While it is clear that subdomains with

different sizes undermine the load balance, it it less obvious that subdomains

with various shapes can deteriorate the load balance as well. To see this, let

us compare the memory requirements and computation times for factorizing

the system matrices of the three subdomains with geometrical configura-

tions illustrated in Fig. 5.1. The volumes of the subdomains are exactly the
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same although their shapes are very different. Specifically, the subdomain

(a) has a dimension of 0.2λ0 × 0.2λ0 × 12.8λ0, the subdomain (b) has a di-

mension of 1.6λ0 × 1.6λ0 × 0.2λ0, and the subdomain (c) has a dimension

of 0.8λ0 × 0.8λ0 × 0.8λ0. A mesh size of 0.1λ0 is used for discretization and

each of the subdomain is discretized into 2,560 tetrahedra. The system ma-

trices are factorized by the direct solver PARDISO [105]. Figure 5.2 shows

the numbers of DoFs, peak memory consumptions, and factorization times

for the three subdomain system matrices with H(curl) conforming basis func-

tions having an order ranging from 1 to 4. It is apparent that even though the

subdomains have similar numbers of DoFs, the computational expenses vary

significantly. In fact, the factorization times for these three cases are different

by more than 5 times when 4th-order basis functions are used. This large

difference in factorization times is due to the different sparse patterns of the

subdomain matrices because of their different shapes. Therefore, to achieve

a good load balance, not only the numbers of DoFs of the subdomains, but

also their shapes, should be similar. Once the load balance is achieved, the

communication overhead is mainly related to the neighboring communication

and this can be reduced by minimizing subdomain interfaces. Theoretically,

an effective mesh decomposer should generate subdomains with similar sizes

and shapes as well as minimize subdomain interfaces. Unfortunately, the

domain partition problem is NP-complete [124] and therefore to find an opti-

mal partition is extremely time-consuming. In this work, we adopt METIS to

decompose the original computational domain because of its fast processing

speed and high quality of generated subdomains [125].

The efficiency of the FETI-DP algorithm is also closely related to subdo-

main sizes or the number of DoFs in each subdomain. For larger subdomain

sizes, the subdomain interfaces are generally reduced and hence fewer re-

sources are required to solve the interface problem. However, the computa-

tional cost involved in the factorization of the subdomain matrices increases

with respect to the subdomain sizes. Similarly, for subdomains with smaller

sizes, although the computation time and memory consumption for factoriza-

tion decrease, the resources required by the interface problem are increased.

It is observed that subdomains with a number of DoFs between 7,000 ∼
25,000 generally gives the most efficient FETI-DP solution [23]. Note that a

computing architecture with a different balance of computational, memory,

and communication resources than conventional architectures may result in
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a different optimal number of DoFs per subdomain.

Another issue associated with the efficient parallelization of the FETI-DP

algorithm at the preprocessing stage is to distribute subdomains to proces-

sors. As discussed in the previous paragraph, the subdomain sizes cannot

be too large. For electrically large problems, the original computational do-

main would be divided into a large number of subdomains which can easily

exceed the number of processors. Therefore, it is necessary to assign sub-

domains in close proximity to the same processor in order to minimize the

inter-processor communication. In our implementation, a graph, whose nodes

represent subdomain numbers and edges represent subdomain connectivity,

is constructed. The graph is then partitioned by METIS into Np parts, where

Np is the number of processors used in the parallel computation. After that,

the subdomains in each part of the graph are assigned to the same processor.

Once the subdomains are distributed to the processors, the following ma-

trices and vectors can be calculated in each processor without any commu-

nication:

• Subdomain system matrices: [Ks
rr], [Ks

rc], [Ks
cr], and [Ks

cc].

• Subdomain projection matrices: [M s
bb] and [M s

bc].

• Subdomain intermediate matrices: [Ks
rr]
−1, [K̃s

cc], [K̃s
cb], [F s

bb], and [F s
bc].

• Subdomain excitation vectors: {f sr }, {f sc }, {f̃ sc }, and {dsb}.

5.3.2 Parallel Interface Problem Implementation

The interface problem (5.15) is generally partially dense, partially sparse, and

indefinite. For large problems, it is desirable to solve it using an iterative

method in parallel. To evaluate the required matrix-vector multiplication

(MVP)

{δ} =
(

[K̃bb] + [K̃bc][K̃cc]
−1[K̃cb]

)
{λb}, (5.16)
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we first split the MVP into four sub-MVPs:

{t} = [K̃cb]{λb},

{u} = [K̃cc]
−1{t},

{v} = [K̃bc]{u},

{w} = [K̃bb]{λb},

(5.17)

where {λb}, {t}, {u}, {v}, and {w} are global vectors that will never be

explicitly formed. We adopt these notations merely for the sake of convenient

expressions. With these, the global MVP can then be determined by

{δ} = {w}+ {v}. (5.18)

To illustrate the parallel MVP implementation, we further define local

vectors {tp}, {up}, {vp}, and {wp} on processor p, which correspond to the

global vectors {t}, {u}, {v}, and {w}, respectively. To calculate {t} on

a distributed machine, each processor carries out the local MVP with the

local [K̃cb] and the local dual interface unknowns {λb}. In order to obtain

a complete {tp}, a summation reduction and a redistribution operation have

to be performed for those corner unknowns shared by different processors.

The communication cost for this part is negligible since the message length is

small and the data exchange is restricted to a few neighboring subdomains.

Once {t} is determined, the intermediate vector {u} can be evaluated by

solving the global coarse system. The efficient calculation of {u} in parallel

involves more effort and will be discussed in the next subsection.

The evaluation of {v} and {w} involves computing the
∑

q∈neighbor(s)[T
s
q ]T

operator, which requires data exchanges between neighboring subdomain in-

terfaces. Fortunately, the mesh partition and job distribution scheme in the

preprocessing part assigns subdomains in close proximity to the same pro-

cessor. Hence, most of the data exchanges occur inside a processor instead of

across different processors. To further reduce the communication overhead,

these data exchanges are implemented using non-blocking communication

message passing interface (MPI) functions to overlap communication with

computation.

The large, indefinite, and nonsymmetric interface problem poses a grand

challenge even for the Krylov subspace based iterative solvers. In this work,
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the GMRES method is implemented for solving (5.15) because of its robust-

ness and fast convergence. For the parallel GMRES method, a well-known

bottleneck of efficiency is the dot-product calculation required for the con-

struction of the Krylov subspace. In our implementation, the ICGS scheme

is implemented to maintain the orthogonality quality of the Krylov subspace

and to reduce the amount of global communication involved in the compu-

tation of the dot product [122].

5.3.3 Parallel Coarse Problem Implementation

The evaluation of {u}, which is equivalent to solving [K̃cc]{u} = {t}, is also

known as the global coarse problem [3]. The main difference between the

global coarse problem and the global interface problem, besides the rank of

the system matrices, is the definition of DoFs. In the interface problem, each

dual DoF uniquely belongs to a subdomain, which makes it easy to distribute

the dual DoFs among processors. However, in the global coarse problem, the

corner DoFs are primal DoFs associated with corner edges that are shared

by more than two subdomains. Because of this overlap of local corner DoFs

in the adjacent subdomains, efficient parallelization of an iterative solver to

solve the global coarse problem is not straightforward.

In the past, the coarse problem in the FETI-DP algorithm is mainly solved

by a direct solver [23,59,60]. Depending on the size of the coarse problem, two

direct solution approaches are commonly implemented. The first approach,

which we refer to as the direct serial scheme (DSS), stores a copy of [K̃cc]

locally and then factorizes the matrix repeatedly in each processor. Since ev-

ery processor maintains a complete factorization, only one MPI allreduce has

to be performed in an interface MVP, which obtains the corner DoFs from

all processors and then redistributes them. The disadvantage of this method

is that the factorization is performed completely in serial and repeated by

all processors, which significantly undermines the efficiency of the FETI-DP

algorithm unless the factorization and forward/backward substitution times

are negligible. The other approach, which we refer to as the direct parallel

scheme (DPS), solves the global coarse problem through a parallel sparse

direct solver. For coarse systems with relatively large sizes where the DSS

is no longer effective, the DPS is normally implemented as an alternative.
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Unfortunately, due to the difference of several orders of magnitude in the

matrix sizes of the coarse and interface systems, the coarse problem usually

requires far fewer processors than the interface problem in order to be solved

efficiently. This issue not only complicates the DPS implementation but also

requires an algorithm to determine an optimal number of processors needed

to be assigned to the parallel direct solver. Even if this issue can be resolved,

the global communication overhead of forming the global corner matrix [K̃cc]

and the relatively poor parallel performance of direct solvers, especially the

forward/backward substitution operations, compromise significantly the par-

allel efficiency when a large number of processors are employed for parallel

computation.

In this work, we design a parallel iterative scheme (PIS) which is tailored

for the coarse problem. In the parallel scheme, processor p maintains its local

corner system, the local corner DoFs {up} to update the local MVP {tp}, and

another set of the corner DoFs {up}′ to compute the dot product, where {up}′

is a subset of {up}. Since the global corner matrix [K̃cc] is never explicitly

formed and the construction of local corner matrices needs no data exchanges,

the communication overhead can be reduced significantly as opposed to using

a direct solver. To perform the MVP, only neighboring communication is

required, which can be efficiently carried out by non-blocking communication

techniques.

Because of the two sets of DoFs we introduced in the coarse problem, it is

rather difficult to incorporate the parallel GMRES method developed for the

interface problem to solve the coarse problem. Fortunately, the coarse prob-

lem is relatively well-conditioned and the BICGSTAB method [126] can give

a satisfactory convergence rate. The drawback of the BICGSTAB method

when parallelized on a large number of processors is the excessive global

communication. To achieve a high parallel efficiency for solving the global

coarse problem, we adopt the CA-BICGSTAB method [123], which performs

one global communication in l MVPs instead of four in every MVP in the

BICGSTAB method, where l is a user defined integer, which is chosen to be

2 in our simulations. For completeness, the adopted CA-BICGSTAB method

is listed in Algorithm 1.

Since the global coarse problem has to be iteratively solved in each in-

terface MVP, the convergence of the coarse problem significantly affects

the efficiency and scalability of the FETI-DP algorithm. Several auxiliary
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Algorithm 1 Communication-avoiding BICGSTAB (CA-BICGSTAB)
method [123]

Require: Initial approximation x0 for solving Ax = b, let p0 := r0 := b−Ax0

1: Choose r̃ arbitrarily such that δ0 := (r̃, r0) 6= 0
2: Compute the Boolean matrix T4l+1,4l+1 with Ti,i−1 = 1 where i =

2, . . . , 2l + 1, 2l + 3, . . . , 4l + 1.
3: for m := 0, l, 2l, . . . , until convergence do
4: Compute V with columns a basis for K2l+1(A, pm) +K2l(A, rm)
5: Compute [G, g] := V T[V, r̃]
6: Initialize a0 := [1, 01,4l]

T, c0 := [01,2l+1, 1, 01,2l−1]T, and e0 := 04l+1,1

7: for j := 0 to l − 1 do
8: αm+j := (g, cj)/(r̃, Taj)
9: tj := cj − αm+jTaj

10: Check ‖qj‖2 := (tj, Gtj)
1/2 for convergence

11: ωm+j := (tj, GT tj)/(Ttj, T tj)
12: ej+1 := ej + αm+jaj + ωm+jtj
13: cj+1 := tj − ωm+jTtj
14: Check ‖rj+1‖2 := (cj+1, Gcj+1)1/2 for convergence
15: βm+j := αm+j/ωm+1(g, cj+1)/(g, cj)
16: aj+1 := cj+1 + βm+j(aj − ωm+jTaj)
17: end for
18: [pm+l, rm+l, xm+l − xm] := V [al, cl, el]
19: end for
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wave-based coarse problem preconditioners have been developed for solving

Helmholtz problems [127,128] and recently a global plane wave deflation pre-

conditioner has been proposed to improve the iterative convergence of the

coarse problem by alleviating the influences of the cutoff and/or near cutoff

modes in the vicinity of domain interfaces [129]. Although these precon-

ditioners are quite effective, the construction and application to the coarse

problem introduce some communication overhead which eventually compro-

mises the parallel efficiency with a large number of processors. In this thesis,

we propose a simple yet effective preconditioner, which is constructed di-

rectly from the global corner matrix, to improve the iterative convergence of

the coarse problem. The global corner matrix [K̃cc], which is similar to the

higher-order FEM matrix generated by super elements with DoFs associated

with edges, exhibits a highly sparse pattern and block diagonally dominant

entries. To utilize these properties, a diagonal preconditioner

[M ] = diag
(

[K̃cc]
)

(5.19)

is constructed to improve the convergence rate of the CA-BICGSTAB method

without introducing any communication overhead.

5.4 Numerical Results

To demonstrate the accuracy, scalability, and capability of the proposed par-

allel strategy, the problems of electromagnetic scattering of a lossless dielec-

tric sphere, a PEC airplane, and radiation of a Vivaldi antenna array are

simulated in this section. The subdomain system matrices are factorized

by the direct sparse solver PARDISO. The interface problems are solved by

the GMRES method with a projection size of 30 and a stopping criterion

of 10−3. The coarse problems are solved using the DSS, DPS, and the pro-

posed parallel scheme for performance comparison. The direct solver used

in the DSS and DPS is also PARDISO, which is one of the most efficient

direct solvers. For the proposed scheme, the CA-BICGSTAB method with a

stopping criterion of 10−4 and initial guesses of zero is adopted. The compu-

tations are carried out in double float precision on a Cisco cluster with each

node configured with 256 GB memory and 2 Intel Xeon E5-2680 v2 CPUs.

98



5.4.1 Lossless Dielectric Sphere

A well-known fact for the FEM is that its iterative solution of an EM problem

involving lossless dielectric objects is very expensive because a large number

of iterations is required. Since the parallel scheme we proposed for the global

coarse problem solves the problem iteratively, it is very important to inves-

tigate the efficiency and scalability of the proposed method in solving these

challenging problems where the convergence is difficult to achieve.

The problem considered is electromagnetic scattering by a lossless dielec-

tric sphere with εr = 4 and a radius of 2λ0, enclosed by a cubic air box with

an edge length of 10λ0, where λ0 is the free-space wavelength. The computa-

tional domain is first discretized into 713,270 curvilinear tetrahedral elements

and then partitioned into 400 subdomains using METIS. The third-order hi-

erarchal vector basis functions are adopted to expand the electrical field and

the dual unknowns on the subdomain interfaces, which finally yields 35,145

corner DoFs, 943,563 dual DoFs, and 14,319,180 total DoFs. The problem

geometry, METIS partitioned subdomains, and corner edges are depicted in

Fig. 5.3, where 20 colors are used to represent the subdomains and to ensure

that neighboring subdomains have different colors.

The computational statistics for the simulations using three different cor-

ner parallelization schemes, i.e. DSS, DPS-ν, and PIS, are listed in Table 5.1,

where ν is the number of cores used in the DPS. For each problem, we use

various cores for the DPS simply to determine the most efficient DPS since

the performance of the DPS is problem and iteration (the forward/backward

substitutions are less scalable than the factorization) dependent. In Table

5.1, the time for the tearing part contains subdomain system matrix and vec-

tor assembly time, subdomain factorization time, and intermediate matrix

and vector calculation time. The corner preprocessing time contains the time

for reducing and factorizing the global corner system, which is zero for the

PIS. The self-explanatory corner solution time, interface solution time, and

total random access memory (RAM) consumed are also included in Table

5.1. For all the computational statistics presented in Table 5.1, the diagonal

preconditioner is used and its negligible construction time is contained in the

corner solution time.

It can be seen from Table 5.1 that the proposed PIS requires the least total

RAM consumption and solution time for almost all the test cases. In contrast,
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the DSS is the most computationally expensive scheme due to the relatively

large corner system. The performance of the DPS-ν is processor dependent

and is optimal when ν = 16. The total solution time and parallel efficiency

versus the number of computing cores are depicted in Fig. 5.4, where the

parallel efficiency is calculated using a baseline of the total solution time of

16 cores. The parallel efficiency, defined in a strong scaling fashion by fixing

the problem size and increasing the number of computing cores, is given by

Parallel efficiency =
qTmin

q

pTp
× 100%, (5.20)

where Tmin
q is the smallest runtime on q cores (in this case, q = 16 and the

parallel scheme is the DPS-16) and Tp is the runtime using p cores with

various parallel schemes. Although METIS does not produce subdomains

with the same size or shape, we still achieve a parallel efficiency of 70% when

400 cores are employed in the parallel computation and the PIS is used to

solve the corner problem. Figure 5.5a compares the computed bistatic RCS

values for the HH and VV polarizations with those obtained from Mie series

solutions, showing good agreement. The convergence history of the interface

problem and the first corner problem with and without the proposed diagonal

preconditioner is shown in Fig. 5.5b. The GMRES solution of the interface

problem converges in 192 iterations for all the three coarse problem parallel

schemes whether or not the diagonal preconditioner is applied. Without the

diagonal preconditioner, the number of iterations for each coarse problem

solution is about 388 and the total solution time using the PIS with 400

cores employed in the parallel computing is 163.2 seconds, but when the

preconditioner is turned on, these two numbers are reduced to 38 and 66.6,

respectively.

5.4.2 PEC Airplane

The second example is the simulation of electromagnetic scattering by a PEC

airplane, as shown in Fig. 5.6, which has a body length of 35λ0 and a wing

span of approximately 38λ0. The ABC is placed 3λ0 away from the nearest

parts of the airplane, thus creating a total computational domain with a size

of 41λ0 × 44λ0 × 17λ0. The vertical polarized plane wave is incident toward
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the nose of the airplane with a frequency of 0.3 GHz. The computational

domain is decomposed into 4,096 subdomains by METIS and the partitioned

subdomains and corner edges are illustrated in Fig. 5.7. With a mesh size

of 0.3λ0 to discretize the computational domain and third-order vector basis

functions to expand the electric field, this problem yields 321,618 corner

DoFs, 6,545,181 interface dual DoFs, and 79,120,149 total DoFs.

The detailed computational statistics for the simulation are listed in Table

5.2. Because the corner system for the FETI-DP with the SOTE-TC is

nonsymmetric due to the introduction of the matrix {M s
bc} and the matrix

size is relatively large for this problem, the DSS scheme, which keeps a local

copy of the global coarse matrix and its factorization in each processor, is

too memory expensive and cannot be carried out with 512 cores. For parallel

computing with 64 cores, neither of the two direct solver based corner solution

schemes can be carried out with the available memory. When the number

of computing cores increases to 128, the DPS-32 and DPS-64 schemes start

to work. As the number of cores increases to 256, the DPS-128 becomes

feasible. It is apparent in Table 5.2 that both the total solution time and the

total RAM consumption for the PIS are only about 1/5 of those used by the

DPSs.

The total solution time and parallel efficiency versus the number of com-

puting cores are shown in Fig. 5.8, where the parallel efficiency is calculated

using a baseline of the total solution time of 64 cores. Even though the

airplane model is rather geometrically complex, our parallelized FETI-DP

algorithm using the PIS still achieves a good load-balance and a parallel effi-

ciency of about 80% when 512 cores are used for parallel computation, which

is much higher than those of the direct solver based parallel corner solution

schemes.

The computed bistatic RCS curve for the VV polarization using the par-

allel FETI-DP algorithm is plotted in Fig. 5.9a, where the plane wave is

incident from the backside. The convergence history of the interface prob-

lem and the first corner problem with and without the proposed diagonal

preconditioner is shown in Fig. 5.9b. The GMRES solution of the interface

problem converges in 149 iterations irrespective of corner solution schemes.

Without the diagonal preconditioner, the number of iterations for each coarse

problem solution is about 354 and the total solution time using the PIS with

512 cores employed in the parallel computing is 546.9 seconds, and when the
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preconditioner is turned on, these two number are reduced to 26 and 187.6,

respectively.

Finally, to demonstrate the capability of our parallel scheme for very large

problems, we double the frequency and refine the mesh with a mesh size of

0.15λ0. The computational domain is decomposed into 8,192 subdomains

by METIS. Again, the third-order vector basis functions are adopted to

expand the electric field and dual DoFs. With such a discretization, this

problem yields 1,090,398 corner DoFs, 34,661,595 interface dual DoFs, and

612,666,975 total DoFs. The computation is carried out on 64 compute nodes

where 32 of them are the same as those used in the previous test cases and

the remaining 32 nodes are configured with Intel Xeon E5-2680 v3 CPUs

with each node having 256 GB memory installed on board. With 1,024 cores

employed for parallel computing, the total solution time is 9,665.6 seconds

and the total RAM consumption is 10,778.6 GB. The calculated bistatic

RCS with VV polarization in the XOY plane is given in Fig. 5.10a. The

convergence history for the interface problem and the first corner problem is

shown in Fig. 5.10b. The interface problem converges to a residue of 10−3 in

288 iterations. With the diagonal preconditioner turned on, the first corner

problem takes only 52 MVPs to converge to a residue of 10−4.

5.4.3 Vivaldi Antenna Array

The third example is designed to explore the scalability of the proposed

parallel strategy to deal with large-scale antenna array radiation problems. A

96×96 Vivaldi array, mounted on an infinite ground plane and fed by a TEM

mode at 3 GHz at the coaxial ports, is simulated using different numbers of

cores. The geometrical configuration of the Vivaldi antenna array element

is shown in Fig. 5.11. The length, width, and thickness of the substrate

are 33.3 mm, 34.0 mm, and 1.27 mm, respectively. The lossless substrate

has a relative permittivity of 6.0, and the radius of the hollow circle is 2.5

mm. The half width of the slot line varies with z according to an exponential

function given by w(z) = 0.25e0.123z. The excitation is a TEM mode through

a coax feed with an inner radius 0.375 mm and an outer radius 0.875 mm

from the ground. The dielectric filling of the coax feed is assumed to be air.

The antenna array is arranged periodically in the x- and y-directions and the
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periodic lengths are 36 mm in both directions. The detailed configuration of

the Vivaldi antenna can be found in [27]. First-order vector basis functions

are used in the simulation, which yields 108,300 corner DoFs, 4,218,000 dual

DOFs, and 162,761,436 total DoFs, respectively.

The detailed computational statistics are listed in Table 5.3. It is observed

from the table that the proposed parallel scheme performs better than the

direct solver based corner solution schemes in terms of total solution time

and total RAM consumption. The total solution time and parallel efficiency

versus the number of computing cores are shown in Fig. 5.12, where the

parallel efficiency is calculated using a baseline of the total solution time of

64 cores with the PIS used as corner problem solver. Because of the ex-

cellent load-balance and tailored parallel corner solver, the achieved parallel

efficiency using the PIS is about 98.2% even when 512 cores are used for

parallel computation. The normalized radiation patterns in the E- and H-

planes, computed using the parallel FETI-DP algorithm, are plotted in Fig.

5.13a. The convergence history for the interface problem and the first corner

problem is shown in Fig. 5.13b. The interface problem converges to a residue

of 10−3 in 36 iterations irrespective of corner problem solvers. Without the

diagonal preconditioner, the number of iterations for each coarse problem

solution is about 14 and the total solution time using the PIS with 512 cores

employed for parallel computing is 56.3 seconds, and when the preconditioner

is turned on, these two numbers are reduced to 13 and 56.1, respectively. The

diagonal preconditioner is not effective in this example because the corner

system is already well conditioned.

5.5 Summary

In this chapter, we presented an efficient parallelization of the FETI-DP algo-

rithm for large-scale electromagnetic simulations. For the parallel preprocess-

ing, we discussed partitioning the mesh into subdomains with similar sizes

and shapes in order to achieve a good load balance, and distributing the sub-

domains in close proximity to the same processor to minimize inter-processor

communication. We then described a parallel GMRES algorithm to solve the

global interface problem iteratively, enhanced with the ICGS orthogonaliza-

tion scheme to reduce global communication. For the global coarse problem,
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we adopted a parallel CA-BICGSTAB method to reduce global communi-

cation. Based on the highly sparse pattern of the global coarse system, we

developed a diagonal preconditioner to improve the iterative convergence. In

both GMRES and CA-BICGSTAB iterative solutions, we employed the non-

blocking communication approach to alleviate neighboring communication

overhead. Finally, we presented three numerical examples to demonstrate

the accuracy, scalability, and capability of our new parallelized FETI-DP al-

gorithm for electromagnetic modeling of general objects and antenna arrays.

5.6 Figures and Tables

Figure 5.1: Subdomains with the same number of elements but different shapes.
(a) Subdomain size is 0.2λ0 × 0.2λ0 × 12.8λ0. (b) Subdomain size is
1.6λ0 × 1.6λ0 × 0.2λ0. (c) Subdomain size is 0.8λ0 × 0.8λ0 × 0.8λ0.
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Figure 5.2: Comparison of the computational expenses for the three subdomains
shown in Fig. 5.1, with the order of basis functions ranging from 1 to 4.

Figure 5.3: (a) Geometrical configuration of a dielectric sphere in a cubic box.
(b) METIS generated 400 subdomains. (c) Corner edges shared by more than
two subdomains.
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Figure 5.4: Total solution time and parallel efficiency for the simulation of the
lossless dielectric sphere scattering problem with 400 subdomains. (a) Total
solution time. (b) Parallel efficiency.
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Figure 5.5: Bistatic RCS and convergence history for the simulation of the
lossless dielectric sphere scattering problem with 400 subdomains. (a)
Bistatic RCS. (b) Convergence history.
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Figure 5.6: Geometrical configuration of the airplane model. The airplane has a
body length of 35λ0 and a wing span of approximately 38λ0. The ABC is placed
3λ0 away from the nearest parts of the airplane, thus creating a total
computational domain having a size of 41λ0 × 44λ0 × 17λ0.

Figure 5.7: Illustrations of the METIS partitioned subdomains and corner
edges. (a) METIS generated 4,096 subdomains. (c) Corner edges shared by
more than two subdomains.
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Figure 5.8: Total solution time and parallel efficiency for the simulation of the
PEC airplane scattering problem with 4,096 subdomains. (a) Total solution time.
(b) Parallel efficiency.
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Figure 5.9: Bistatic RCS and convergence history for the simulation of the
PEC airplane scattering problem with 4096 subdomains. (a) Bistatic RCS.
(b) Convergence history.
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Figure 5.10: Bistatic RCS and convergence history for the simulation of the
PEC airplane scattering problem with a refined mesh and 8,192
subdomains. (a) Bistatic RCS. (b) Convergence history.
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Figure 5.11: Geometrical configuration of the Vivaldi antenna array
element.
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Figure 5.12: Total solution time and parallel efficiency for the simulation of the
antenna radiation problem with 9,216 subdomains. (a) Total solution time. (b)
Parallel efficiency.
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Figure 5.13: Radiation pattern and convergence history for the simulation
of the 96× 96 Vivaldi antenna array radiation problem with 9,216
subdomains. (a) Normalized radiation patterns in the E- and H-planes. (b)
Convergence history.
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Table 5.1: Computational statistics for the simulation of a lossless dielectric
sphere. The units for time and RAM are second and GB, respectively.

Cores Schemes Tearing Preproc Corner Interface RAM

16

PIS 834.0 0 84.5 297.2 105.9
DSS 830.4 163.6 97.7 291.5 181.5

DPS-8 826.8 39.8 48.5 290.8 123.6
DPS-16 820.6 31.7 29.5 290.5 135.2

100

PIS 152.2 0 23.8 48.8 125.3
DSS 153.1 164.6 97.4 51.2 568.9

DPS-8 150.5 41.8 38.9 49.1 175.3
DPS-16 150.4 32.9 32.1 48.9 180.9
DPS-32 150.6 28.5 38.5 49.2 198.7

200

PIS 81.7 0 15.0 25.2 148.6
DSS 82.4 164.9 97.6 27.3 1,036.7

DPS-8 81.2 43.0 42.3 26.1 219.5
DPS-16 82.0 33.9 36.5 26.0 240.4
DPS-32 82.2 30.2 50.1 26.4 260.2

400

PIS 42.7 0 10.7 13.2 194.4
DSS 43.6 164.6 97.6 16.4 1,961.2

DPS-8 43.1 46.5 48.5 15.9 295.7
DPS-16 43.2 37.3 44.8 15.9 303.8
DPS-32 43.2 32.5 61.3 16.1 331.6

Table 5.2: Computational statistics for the simulation of a PEC airplane.
The units for time and RAM are second and GB, respectively.

Cores Schemes Tearing Preproc Corner Interface RAM
64 PIS 809.8 0 110.2 268.2 575.9

128
PIS 429.0 0 66.3 135.5 642.9

DPS-32 445.5 507.3 198.1 155.1 1,350.9
DPS-64 462.0 389.5 182.1 153.3 1,637.8

256

PIS 226.9 0 44.5 69.1 778.1
DPS-32 233.7 517.2 226.3 81.3 2,349.1
DPS-64 232.2 381.5 213.6 81.4 2,577.9
DPS-128 231.6 321.4 326.9 85.7 3,030.0

512

PIS 118.8 0 33.2 35.6 1,046.8
DPS-32 125.2 601.1 233.3 48.9 4,867.2
DPS-64 124.9 444.4 291.4 51.6 5,104.3
DPS-128 122.5 390.4 413.5 51.8 5,508.2
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Table 5.3: Computational statistics for the radiation analysis of the 96× 96
Vivaldi antenna array. The units for time and RAM are second and GB,
respectively.

Cores Schemes Tearing Preproc Corner Interface RAM

64

PIS 352.8900 0 2.332063 85.9429 572.973
DSS 353.5815 17.5509 8.192367 86.2966 689.200

DPS-8 353.7420 7.0230 6.368232 86.1198 577.381
DPS-16 352.8243 7.0271 5.463646 85.7934 579.856
DPS-32 353.2942 6.7688 5.137395 86.1316 585.458

128

PIS 176.3970 0 1.426960 42.9950 613.484
DSS 176.8389 17.7447 8.182873 44.1861 845.940

DPS-8 177.0296 7.7915 7.405171 43.6508 618.002
DPS-16 176.5317 8.4699 7.473077 43.4259 626.055
DPS-32 176.7146 7.9734 6.946350 43.3867 626.065

256

PIS 88.2693 0 0.912756 21.6059 694.211
DSS 88.6631 17.6649 8.163121 25.3189 1,159.12

DPS-8 88.7056 7.7423 8.490517 22.3531 698.801
DPS-16 88.5287 7.4408 8.521982 22.1860 701.283
DPS-32 88.4724 7.1301 10.168981 22.2799 706.866

512

PIS 44.3770 0 0.921072 10.8632 856.344
DSS 44.6863 18.2575 8.184400 12.0435 1,785.54

DPS-8 44.7830 9.5801 12.036145 12.1694 861.048
DPS-16 44.7675 8.6039 13.417057 12.1601 863.484
DPS-32 44.7571 9.9491 15.724576 12.2621 869.052
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Chapter 6

Scattering from Objects on a Stratified
Medium

6.1 Introduction

Scattering analysis of objects above, straddling, and/or embedded in a strat-

ified medium is one of the most challenging yet important problems in the

computational electromagnetics community. Typical applications of scatter-

ing from stratified media are commonly found in patch antenna design, in-

terconnect and monolithic microwave integrated circuit simulations, biomed-

ical imaging, nondestructive testing, target identification, geophysical explo-

ration, and remote sensing [61–63]. Traditional modeling of such problems

is often performed using integral-equation based methods with a multilayer

Green’s function [2, 62, 64]. Although these methods yield very accurate re-

sults, the numerical evaluation of the multilayer Green’s function is very dif-

ficult and prone to convergence issues. Moreover, the integral-equation based

methods are not efficient for analyzing highly inhomogeneous structures.

In this chapter, we develop an inhomogeneous ABC for the finite-element

truncation. Similar to the traditional first-order ABC, the proposed inhomo-

geneous ABC can be easily incorporated into the existing FEM frameworks.

Using the parallel FETI-DP algorithm developed in the previous chapter,

the proposed boundary condition enables large-scale simulations of problems

with a stratified medium. For electrically large objects, the far-field cal-

culations can be prohibitively expensive, especially in the vectorial imaging

process where far-fields need to be evaluated billions of times in order to form

a sharp image for an object even with a dimension of 100-wavelength [70].

Therefore, a fast far-field calculation approach, based on the idea of MLFMA,

is developed for the stratified medium. Finally, numerical examples are pre-

sented to demonstrate the solution accuracy and large-scale simulation ca-

pability of the proposed method.
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6.2 Formulation

In this section, the inhomogeneous ABC in a stratified medium is derived.

The fast far-field calculation using MLFMA is discussed subsequently. Since

the inhomogeneous ABC can be as easily incorporated into the parallel FETI-

DP algorithm as the traditional ABC, the discussion about this part is omit-

ted.

6.2.1 Inhomogeneous ABC in a Stratified Medium

The inhomogeneous ABC for a stratified medium can be obtained simply

by modifying the traditional ABC in free-space with the desired material

properties

n̂×
(

1

µm
∇× E

)
+jω

1

ηm
n̂× (n̂× E) =

n̂×
(

1

µm
∇× Einc

)
+ jω

1

ηm
n̂× (n̂× Einc).

(6.1)

Although the expression is fairly simple, the incident field Einc is no longer

the plane wave in the free-space. To get the incident field analytically, let us

consider an M -layer medium placed in the XY plane with the permittivity

and permeability in each layer denoted by εm and µm (m = 1, 2, . . . ,M),

as illustrated in Fig. 6.1. With a uniform plane wave propagating towards

the origin, the solution within the mth layer, without the presence of the

scatterers, can be expressed as the summation of forward and backward

waves. Depending on the polarizations, Einc has different forms.

6.2.2 φ̂-polarization

For a φ̂-polarized plane wave incidence, the electric field in the mth-layer can

be represented by the summation of the forward and backward waves

Eφ
m = φ̂Aφm

[
1 +Rφ

me−j(kr
m−ki

m)·r
]

e−jki
m·r, (6.2)

where Aφm and Rφ
m are the magnitude of the forward electric field and the

reflection coefficient of electric field in the mth layer, respectively, and ki
m
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and kr
m are the wave vectors of the forward and backward waves, which are

given by

ki
m = −x̂kxm − ŷkym − ẑkzm, (6.3)

kr
m = −x̂kxm − ŷkym + ẑkzm, (6.4)

with

kxm = kM sin θ cosφ, (6.5)

kym = kM sin θ sinφ, (6.6)

kzm =
√
k2
m − k2

M sin2 θ, (6.7)

ηm =
√
µm/εm, (6.8)

km = ω
√
µmεm. (6.9)

Note that the phase matching condition is used in (6.5) and (6.6). For a

plane wave with e−jk·r phase delay, we have

H =
1

ωµ
k× E. (6.10)

Hence, the corresponding magnetic field in the mth layer can be written as

Hφ
m =

1

ωµm
Aφm

[
ki
m + kr

mR
φ
me−j(kr

m−ki
m)·r
]
× φ̂e−jki

m·r. (6.11)

By enforcing that the tangential fields be continuous across the (m + 1)th

interface between the mth and (m + 1)th layers, we obtain the recursive

formulation for Rφ
m+1 and Aφm+1

Rφ
m+1 =

Rφ
m+1,m +Rφ

me−2jkzmzm+1

1 +Rφ
m+1,mR

φ
me−2jkzmzm+1

e2jkzm+1zm+1 , (6.12)

Aφm+1 = Aφm
ejkzmzm+1 +Rφ

me−jkzmzm+1

ejkzm+1zm+1 +Rφ
m+1e−jkzm+1zm+1

, (6.13)

where zm+1 denotes the position of the interface and the Fresnel reflection

coefficient Rφ
m+1,m is

Rφ
m+1,m =

µmk
z
m+1 − µm+1k

z
m

µmkzm+1 + µm+1kzm
. (6.14)
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6.2.3 θ̂-polarization

For a θ̂-polarized plane wave incidence, the magnetic field in the mth-layer

can be represented by the summation of the forward and backward waves

Hθ
m = φ̂

1

ηm
Aθm

[
−1 +Rθ

me−j(kr
m−ki

m)·r
]

e−jki
m·r, (6.15)

where Aθm and Rθ
m are the magnitude of the forward magnetic field and

the reflection coefficient of the magnetic field in the mth layer, respectively.

Using the plane wave equation

E = − 1

ωε
k×H, (6.16)

the corresponding electric field in the mth layer can be written as

Eθ
m =

1

km
Aθm

[
ki
m − kr

mR
θ
me−j(kr

m−ki
m)·r
]
× φ̂e−jki

m·r. (6.17)

By enforcing that the tangential fields be continuous across the (m + 1)th

interface between the mth and (m + 1)th layers, we obtain the recursive

formulation for Rθ
m+1 and Aθm+1

Rθ
m+1 =

Rθ
m+1,m +Rθ

me−2jkzmzm+1

1 +Rθ
m+1,mR

θ
me−2jkzmzm+1

e2jkzm+1zm+1 , (6.18)

Aθm+1 = Aθm
ηm+1

ηm

ejkzmzm+1 −Rθ
me−jkzmzm+1

ejkzm+1zm+1 −Rθ
m+1e−jkzm+1zm+1

, (6.19)

where zm+1 denotes the position of the interface and the Fresnel reflection

coefficient Rθ
m+1,m is

Rθ
m+1,m =

εm+1k
z
m − εmkzm+1

εm+1kzm + εmkzm+1

. (6.20)

The evaluation of (6.12) and (6.18) requires the reflection coefficients at

the bottom layer as initial values. If an infinite ground plane is present at

z = z1 in the bottom layer, we have

Rφ
1 = Rθ

1 = −e2jkz1z1 . (6.21)
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Otherwise, if the bottom layer extends to the negative infinity, we have

Rφ
1 = Rθ

1 = 0. (6.22)

6.2.4 Fast Far-Field Calculation

The proposed inhomogeneous ABC can be implemented by replacing the

traditional ABC in the parallelized FETI-DP algorithm proposed in the pre-

vious chapter to enable large-scale simulations. Once the equivalent electric

and magnetic surface currents are obtained, the scattered far-fields can be

calculated using the multilayer Green’s function. A simpler approach is to

employ the Rayleigh-Carson reciprocity theorem∫
V

Esc · J2dr =

∫
S

(E2 · Js −H2 ·Ms)dr (6.23)

in the far-field calculation, where J2 denotes an arbitrary electric current and

E2 and H2 are the electric and magnetic fields radiated by J2 in the presence

of the multilayer media. Choosing an infinitesimal electric current element,

either θ-polarized or φ-polarized, and placing it at the observation point in

the far zone, we can compute the electric field Eθ,φ
m and the magnetic field Hθ,φ

m

in the presence of the multilayer media without the scatterers, where Eθ
m and

Hθ
m are due to the θ-polarized electric current element, and Eφ

m and Hφ
m are

due to the φ-polarized electric current element. In the backscatter case, Eθ
m,

Hθ
m, Eφ

m, and Hφ
m are given in (6.17), (6.15), (6.2), and (6.11), respectively.

Hence, from the reciprocity theorem, we can obtain the scattered far-field in

the free-space as

Esc
θ,φ(r) = −j

k0η0

4πr

∫
S

[
Js · Eθ,φ

m −Ms ·Hθ,φ
m

]
dr′. (6.24)

The direct evaluation of (6.24) can be prohibitively expensive for elec-

trically large objects, since it requires O(PQ) operations, where P and Q

respectively represent the number of field and source points on the far-field

plane and the inhomogeneous ABC surface S. To speed up the far-field cal-

culation, the MLFMA was adopted to reduce the computational complexity

to O(P logQ) [2]. In the context of MLFMA, the surface S is enclosed by a

box, which is then partitioned into eight sub-boxes. Each sub-box is recur-
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sively partitioned until the smallest boxes are about one quater-wavelength

in size. The boxes with the same size are grouped as a level, with level 0

and L representing the largest and smallest box(es), respectively. Inside each

smallest box, the radiation patterns, produced by the equivalent electric cur-

rent Js and magnetic current Ms, are gathered to the box center rm. After

that, the radiation patterns at the current box center rm are gathered to the

center of their parent box rp
m by multiplying the phase shifting ejk·(rm−rpm).

This radiation pattern gathering process keeps going until the center of the

largest cube is reached. Finally, the scattered far-fields can be very efficiently

obtained by the spectral interpolation of the radiation patterns at the largest

cube center.

It is worth mentioning that the spectral sampling rate in each level of the

boxes is significantly higher than the traditional MLFMA developed for free-

space scattering analysis due to the highly oscillating Rθ,φ
m terms, especially

when the thick dielectric layers are encountered. The high spectral sampling

rate in the inhomogeneous MLFMA inevitably undermines the efficiency of

far-field calculation. Fortunately, for a specific working frequency and struc-

ture of the stratified medium, Rθ,φ
m are only determined by the observation

angle. Hence, the efficient far-field calculation can be decomposed into two

parts: the forward wave contribution and backward wave contribution. The

forward wave contribution is calculated the same as the traditional MLFMA.

The backward wave contribution is carried out in two steps. In the first step,

the Rθ,φ
m terms are not considered during the aggregation process so that the

spectral sampling rate is kept the same as the traditional MLFMA’s sampling

rate. In the second step, after aggregating to the top level, the interpolated

radiation patterns at the desired observation angle are multiplied by Rθ,φ
m to

produce the correct far fields.

6.3 Numerical Results

In this section, three verification examples are first presented to demonstrate

the solution accuracy of our proposed method. After verifications, an elec-

trically large example is simulated to show the capability of the proposed

method for a large-scale scattering analysis with the presence of a stratified

medium.
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6.3.1 A PEC Sphere above an Infinite Ground Plane

The first verification example is the scattering from a PEC sphere above an

infinite ground plane, as shown in Fig. 6.2. The sphere has a radius of 0.2 m

and is 0.3 m above the ground. An inhomogeneous ABC box with edge length

of 1.0 m is used to truncate the computational domain. The incident plane

wave propagates towards the negative z-direction at frequency 1 GHz. With

a mesh size of 0.15 m, the computational domain is discretized into 4,003

curvilinear tetrahedral elements. The parallel FETI-DP algorithm is used to

simulate this example on six cores with each core handling one subdomain.

The convergence histories for the φφ- and θθ-polarizations are given in Fig.

6.3, which both converge to 10−3 in 25 iterations. The calculated bistatic

RCS results are plotted in Fig. 6.4, both showing a good agreement with

FEKO’s simulation results.

6.3.2 A Dielectric Sphere on a Stratified Medium

The second verification example is a dielectric sphere sitting on a two-layered

medium, whose geometrical configurations are given in Fig. 6.5. The di-

electric sphere, with a radius of 1 m and a relative permittivity of 4.0, is

surrounded by an air box with dimensions of 8 m × 8 m × 5 m. Beneath the

dielectric sphere is a two-layered medium with each layer having a thickness

of 1 m. The relative permittivity for the bottom layer is 6.5− j0.6 and 2.56

for the other layer. The working frequency is set to 100 MHz. The compu-

tational domain is discretized into 170,969 curvilinear tetrahedral elements

with a mesh size about 0.5λ. The calculations were performed by the parallel

FETI-DP code with 24 cores and 96 subdomains. The convergence histories

for the two different polarizations with and without an infinite ground plane

are depicted in Fig. 6.6. Because the ground plane increases the multi-

reflections between layers, a slowdown in the convergence rate is observed

for the cases with an infinite ground plane. The bistatic RCS figures with

and without the presence of the ground plane are shown in Figs. 6.7 and

6.8, respectively. As can be seen, all the figures show an excellent agreement

with FEKO’s simulation results.
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6.3.3 A Dielectric Cuboid over a Stratified Medium

The final verification example is a dielectric cuboid over a stratified medium,

as given in Fig. 6.9. The cuboid, with the relative permittivity of 4.0 and

dimensions of 2 m × 2 m × 0.5 m, is placed 0.1 m above a two-layered

medium. The top layer (εr = 2.56) of the stratified medium is 1 m thick and

the bottom layer (εr = 6.5− j0.6) is 1.5 m thick. The computational domain

is truncated by an inhomogeneous ABC with the dimensions of 5 m × 5 m

× 4.6 m. The incident plane wave illuminates the scatterer in the normal

direction at 300 MHz. The computational domain is discretized into 138,368

curvilinear tetrahedral elements and then partitioned into 96 subdomains for

the parallel FETI-DP computation. The convergence histories are plotted

in Fig. 6.10 for the two different polarizations with and without an infinite

ground plane. Since the bottom layer is lossy and thick, the infinite ground

plane has small effect on the convergence rate. The bistatic RCS figures with

and without the presence of the ground plane are respectively plotted in Figs.

6.11 and 6.12, all overlapping with the corresponding FEKO’s simulation

results. Because the fields are significantly attenuated when they reach to

the position of the infinite ground plane, we see very close agreement between

the RCS results with and without the ground plane.

6.3.4 Scattering from a Microring Resonator

After three verification examples, we simulate a mircoring resonator to demon-

strate the capability of our proposed method in handling large-scale scatter-

ing analysis with the presence of a stratified medium. The ring resonator, as

illustrated in Fig. 6.13, has an inner radius of 4.5 µm and an outer radius

of 5.5 µm. The top layer of the ring is made of Si3N4 with a thickness of 0.4

µm. The bottom layer of the ring is made of SiO2 with a thickness of 0.1

µm. The waveguide bus, with a 1-um width, has exactly the same configu-

rations as the ring in the vertical direction. The smallest distance between

the ring and the bus is 0.55 µm. Both the ring and the bus are sitting on a

two-layered dielectric substrate, with the top (SiO2) and bottom (Si) layers

measuring at 2.9 µm and 0.1375 µm in the vertical direction, respectively.

The air box on the top of the SiO2 substrate has a thickness of 1.05 µm. The

entire computational domain, which is enclosed by the inhomogeneous ABC,
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is 14 µm × 15.5 µm × 4.0875 µm.

With the interested free-space wavelength of 0.55 µm, this example yields

5,121,590 curvilinear tetrahedral elements and 101,706,582 total DoFs when

third-order vector basis functions are adopted to represent the unknown field.

With 1,920 subdomains and 240 cores employed in the parallel computing,

the computational times for the φφ- and θθ-polarizations are 14.1 and 16.9

minutes, respectively. The peak memory consumption for both cases is 1.04

TB. The convergence histories are plotted in Fig. 6.14; both converged to

10−3 in less than 250 iterations. The calculated bistatic RCS results for the

φφ- and θθ-polarizations are depicted in Fig. 6.15. As is apparent there, the

MLFMA accelerated far-field calculation produces the same results as the

direct evaluation of (6.24) even for such a large-scale problem.

6.4 Summary

In this chapter, we presented an inhomogeneous ABC to efficiently perform

scattering analysis with the presence of a stratified medium. We derived

the analytical expressions for the incident field in the right-hand side of the

inhomogeneous ABC. We adopted the parallel FETI-DP algorithm to en-

able large-scale electromagnetic simulations. We also developed an MLFMA-

based fast far-field calculation approach to reduce the computational com-

plexity when a large number of far-field points need to be evaluated. We then

presented three verification examples to demonstrate the solution accuracy

of our proposed method. Finally, we presented an electrically large example

to demonstrate the capability of this method for large-scale electromagnetic

modeling of objects in a stratified medium.
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6.5 Figures

Figure 6.1: Scattering analysis of objects in a stratified medium.
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Figure 6.2: A PEC sphere above an infinite ground plane.
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Figure 6.3: Convergence history for the simulation of the PEC sphere above
an infinite ground plane.
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Figure 6.4: Bistatic RCS of the PEC sphere above an infinite ground plane.
(a) φφ polarization. (b) θθ polarization.
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Figure 6.5: A dielectric sphere on a two-layered medium.
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Figure 6.6: Convergence history for the simulation of the dielectric sphere
on a two-layered medium.
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Figure 6.7: Bistatic RCS of the dielectric sphere on a two-layer medium.
(a) φφ polarization. (b) θθ polarization.

130



0 10 20 30 40 50 60 70 80 90

Theta (degrees)

-15

-10

-5

0

5

10

15

20

25

B
is

ta
tic

 R
C

S
 (

dB
sm

)

FETI-DP-MLFMA-
FEKO-

(a)

0 10 20 30 40 50 60 70 80 90

Theta (degrees)

-15

-10

-5

0

5

10

15

20

25

B
is

ta
tic

 R
C

S
 (

dB
sm

)

FETI-DP-MLFMA-
FEKO-

(b)

Figure 6.8: Bistatic RCS of the dielectric sphere on a two-layer medium
with an infinite ground plane. (a) φφ polarization. (b) θθ polarization.
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Figure 6.9: A dielectric cuboid over a two-layered medium.
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Figure 6.10: Convergence history for the simulation of the dielectric cuboid
over a two-layered medium.
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Figure 6.11: Bistatic RCS of the dielectric cuboid over a two-layer medium.
(a) φφ polarization. (b) θθ polarization.
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Figure 6.12: Bistatic RCS of the dielectric cuboid over a two-layered
medium with an infinite ground plane. (a) φφ polarization. (b) θθ
polarization.
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Figure 6.13: A microring resonator on a two-layered substrate.
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Figure 6.14: Convergence history for the simulation of the microring
resonator on a two-layered substrate.
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Figure 6.15: Bistatic RCS of the microring resonator. (a) φφ polarization.
(b) θθ polarization.
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Chapter 7

Vectorial Imaging of Electrically Large Objects
in Coherent Optical Microscopes

7.1 Introduction

Optical microscope systems are widely used in scientific research and in-

dustrial applications. Examples span many fields including medical imag-

ing [65,66], cell biology [130], optical lithography [67], semiconductor inspec-

tion [68] and metrology [69], and material characterization [131]. To design

an imaging system that is optimized for these diverse applications, it is nec-

essary to understand how to calculate the image of an arbitrary scattering

object. It is now well-understood that for the case of a small numerical aper-

ture (NA) objective (NA<0.6), paraxial approximation is adequate to be

applied in mimicking the wave propagation through an optical system [132].

The paraxial limitation is a result of using the Fresnel approximation and

a thin lens model; thus, it allows fast numerical computation through use

of the fast Fourier transform (FFT) algorithm [133]. However, the high NA

objective lenses used widely in modern optical systems cannot be adequately

described by the scalar diffraction theory. Instead, a rigorous vectorial imag-

ing model is required.

To model the vectorial images of objects, several approaches have been pro-

posed. Judkins and Ziolkowski introduced a 2-D model that employed the

finite-difference time-domain (FDTD) method to model a Gaussian beam

scattered by conducting thin film gratings, after which the scattered field

was analyzed by a Fraunhoffer based near- to far-field transform [134]. Liu

et al. calculated the incident light and near- to far-field transform using Fres-

nel diffraction [135]. Török et al. proposed to perform a vectorial far-field

transformation on an arbitrary field followed by the application of Debye-

Wolf integral [70]. However, each approach above lacks a degree of rigor or

generality. Recently, Munro and Török [137] proposed a comprehensive and
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rigorous vectorial imaging model that is capable of computing the image of

an arbitrary object in both transmission and reflection modes. This model,

which consists of the illumination light modeling, the numerical computation

of scattered field with respect to the object, the near- to far-field transforma-

tion and field re-sampling by the m-theory [136], and the image calculation

based on geometrical optics approximation and Debye-Wolf integral, paves

an intuitive way for researchers to understand the underlying physics. How-

ever, the introduced FDTD method used for modeling the light scattering by

the object and the m-theory and Debye-Wolf induced an extremely massive

number of integrals of Bessel functions, which inevitably give rise to the huge

expenditure of computing resources even when dealing with electrically small

objects. These inherent drawbacks tremendously hinder the widespread ap-

plication of this vectorial imaging model in various areas; examples include

computational lithography [138,139] and large-scale optical wafer inspection

and metrology [68,140–144].

For this topic, we propose an elegant scheme to renovate the cumbersome

vectorial imaging model step by step. Specifically, the scattered near-fields

of an object are computed by the domain decomposition based FETI-DP

algorithm. With a Robin-type SOTC-TE to ensure transparent energy flows

between subdomain interfaces and a global coarse corner system to improve

the iterative convergence of the FETI-DP solution, this method has numer-

ically proven to be very accurate, efficient, and stable. Combined with the

developed parallel scheme in Chapter 5, the FETI-DP method is able to solve

problems with tens of millions DoFs on computer clusters with more than

1000 cores. The obtained near-fields are then processed by the MLFMA [2]

to produce the far-fields at a computational cost of O(Nf logNn) instead of

the traditional O(NnNf ), where Nn and Nf are the number of near- and

far-field points, respectively. The evaluated far-fields are treated as multi-

ple equivalent magnetic dipoles (EMDs), with their images calculated by the

Debye-Wolf integral. The time-consuming integration of the highly oscillat-

ing Bessel functions involved in the Debye-Wolf integral, especially when the

object is electrically large, is accelerated by a fast linear interpolation, which

not only significantly reduces the memory overhead but also improves the

overall computation speed by thousands of times.

The remainder of this chapter is organized as follows. Section 7.2 in-

troduces the formulations in computing the image of an arbitrary object.
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Since the parallel FETI-DP algorithm for the near-field simulation and the

MLMFA for the fast near-field to far-field transformation are already covered

in the previous chapters, here we only describe the imaging formulation us-

ing the Debye-Wolf integral and its acceleration via a linear interpolation. In

Section 7.3, we present several examples to demonstrate the capability and

efficiency of the proposed comprehensive scheme in imaging of electrically

large objects. Finally we draw the conclusions in Section 7.4.

7.2 Formulation

7.2.1 CCD Imagery from Far-Fields

Given a typical 4f system, as illustrated in Fig. 7.1, the image field E at

position rd = (xd, yd, zd) on the CCD plane due to an EMD p positioned at

rp = (xp, yp, zp) on the far-field plane can be calculated using the Debye-Wolf

integral [70]

Ex = px [I0(r) + I2(r) cos 2φ] + pyI2(r) sin 2φ, (7.1)

Ey = py [I0(r)− I2(r) cos 2φ] + pxI2(r) sin 2φ, (7.2)

Ez = 2j [pxI1(r) cosφ+ pyI1(r) sinφ] , (7.3)

where

r =
√

(xd − βxp)2 + (yd − βyp)2, (7.4)

sinφ =
yd − βyp

r
, (7.5)

cosφ =
xd − βxp

r
, (7.6)

with β being the magnification factor, which is given by

β = −f2

f1

= −sin θ1

sin θ2

. (7.7)
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In (7.1)-(7.3), the three integrations I0(r), I1(r), and I2(r) are respectively

given by

I0(r) =

∫ π

π−α
s(θ2)(cos θ1 + cos θ2)J0(kr sin θ2)dθ2, (7.8)

I1(r) =

∫ π

π−α
s(θ2) sin θ2J1(kr sin θ2)dθ2, (7.9)

I2(r) =

∫ π

π−α
s(θ2)(cos θ1 − cos θ2)J2(kr sin θ2)dθ2, (7.10)

where

s(θ2) =

√
cos θ2

cos θ1

sin θ2e−jk(zd cos θ2−zp cos θ1), (7.11)

and α is related to the magnification factor and numerical aperture by

−β sinα = NA. (7.12)

7.2.2 Linear Interpolation-Based Fast Integration

The three integrations I0(r), I1(r), and I2(r) are very challenging to evaluate

because of their highly oscillating kernels, especially for an electrically large

object in a high-NA system. Moreover, each of these integrations needs to

be evaluated with different r for MN times, where M is the number of

far-field sampling points and N is the number of the CCD image sampling

points. Here, the integration at a given r is performed using adaptive high-

order Gauss quadrature so that a high-precision result can be achieved. To

avoid the direct evaluation of (7.8)-(7.10), an efficient linear interpolation

technique is adopted. Specifically, for a given problem, the maximum r can be

predetermined using (7.4). Since Bessel functions vary on the order of sin(x),

where x is is the argument, the total number of equidistant interpolation

points is given by

Ninterp = 30
rmaxk sinα

2π
, (7.13)

where 30 is the sampling points per period.
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7.3 Numerical Results

In this section, we present two examples to verify our CCD imaging code,

followed by several electrically large examples to fully demonstrate the capa-

bility of the proposed method.

7.3.1 Resolution Limit Study

The first verification example is to investigate the resolution limit. The

geometries considered here are two sub-wavelength dielectric spheres placed

in free space, each with a radius of λ0/15 and a relative permittivity of 4.0, as

illustrated in Fig. 7.2. The spheres are enclosed by an ABC with dimensions

of 1.0λ0 × 3.0λ0 × 1.0λ0. The sampling rate of the far-field points is 1/λ0

at the plane that is 1000λ0 above the scatterers. The 4f system used in this

example has a NA of 0.85.

The generated CCD images for the two sub-wavelength dielectric spheres

with different center-to-center distances (d = 0.5λ0, 1.0λ0, and 2.0λ0) under

the θ-polarized plane wave illumination are given in Fig. 7.3, together with

the power intensity plots along line x = 0. As shown in those figures, the

CCD imagery cannot distinguish the two spheres when the center-to-center

distance is 0.5λ0. At d = 1.0λ0, the two spheres on the CCD image are

well detected. As d increases to 2.0λ0, we observe that the hot spots are

farther apart. The artifact at the center of the CCD image is believed due

to interference.

7.3.2 An L-Shaped PEC Object

The second verification example is the CCD imaging of an L-shpaed PEC

object. As shown in Fig. 7.4, the smallest and largest features of that

object are 1λ0 and 3λ0, respectively. According to our previous resolution

limit study, this L-shaped PEC object should be well resolved in the CCD

image. Figure 7.5 shows the calculated far-field plot and the CCD image. As

expected, the L-shaped geometry is clearly shown in the CCD image. The

flipped image is due to the 4f system.
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7.3.3 A PEC UI Logo

After two verification examples with relatively small electrical sizes, we start

to investigate the capability of our proposed method in imaging electrically

large objects. To this end, A PEC UI logo, as depicted in Fig. 7.6, is modeled

here. The electrical sizes of this object are 66λ0 × 86λ0, with the smallest

feature having a dimension of 1λ0. The computation time is 11 hours with

1,900 cores employed in the parallel computing. The generated CCD image,

which is flipped in order to compare more easily with the physical geometry,

is given in Fig. 7.7, showing all details of the real structure.

7.3.4 A PEC USAF Target

The next electrically large example is a PEC USAF target, fabricated for

testing the resolution of optical imaging systems. The target, as illustrated

in Fig. 7.8, is 100λ0 in length and width. The finest feature dimension is

0.28λ0. With 1,700 cores employed for computation, the total solution time

is 19 hours. The calculated CCD image, flipped in the x and y directions,

is depicted in Fig. 7.9. As is apparent there, the CCD image is a good rep-

resentation of the physical structure, even though the finest features cannot

be resolved.

7.3.5 Sub-Wavelength Defect Detection of Nanopatterned
Semiconductor Wafer

After two verifications of electrically large examples, it is time to apply the

developed method to engineering problems for sub-wavelength defect de-

tection of a semiconductor wafer with nanopatterns. A defect present in

nanopatterns significantly affects the functionality of the whole system. Op-

tical microscopy is an effective and nondestructive inspection technique to be

performed during nanofabrication in order to maintain a high yield. Under-

standing its sensitivity through numerical simulation can provide guidance

for designing an optimized inspection system.

The problem considered, as shown in Fig. 7.10, is a wafer with polysilicon

nanopatterns (grey) and a single isolated polysilicon defect (red) of size 20

nm by 160 nm on a silicon substrate (blue). The coordinates of the defect
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center are x = 400 nm and y = 800 nm. The nanopatterns, which are peri-

odic, consist of two different lines that are 20 nm in width, 120 or 260 nm

in length, and 110 nm in height. The lines are arranged to form a 0.8 µm

by 0.8 µm unit cell, which repeats in a rhombic lattice pattern to form a

two-dimensional array [68]. The simulation domain has an area of 6.4 µm

by 6.4 µm. The refractive indices of the polysilicon and silicon substrate

(6.4µm×6.4µm×0.1µm) are 4.84− j0.64 and 5.48− j0.25, respectively, at the

wavelength of 532 nm. A rectangular box (6.4µm×6.4µm×0.4µm) is placed

over the substrate, where an absorbing boundary condition is assigned for

truncation. The entire domain is discretized into 1,689,312 curvilinear tetra-

hedra and partitioned into 128 subdomains. Third-order hierarchal vector

bases are adopted to expand the unknown electric field and dual variable,

which yields 32,196,297 unknowns to approximate the electric field.

Figures 7.11a and 7.11b show the log-scaled far-field power of the nanopat-

terned wafer without and with a defect. The far-field power difference is

plotted in Fig. 7.11c. The signal-to-noise ratio (SNR), defined as the power

of the field difference over the power of a defect-free wafer, is about 10−8,

which is too small for practical detection. Even if an extremely sensitive

device can cope with this small SNR, it is impossible to accurately locate the

defect because of the spread hot spot in Fig. 7.11c. The SNR can be sig-

nificantly enhanced by a 4f system. Figures 7.12a and 7.12b show the CCD

images in terms of the magnitude of the electric field for the nanopatterned

wafer without and with a defect. Although they look almost identical, their

images differ, as is depicted in Fig. 7.12c, which clearly shows the location

of the defect. Moreover, the SNR is about 10−2, which is large enough for

use in real applications.

7.4 Summary

In this chapter, we proposed a systematic scheme to efficiently model a 4f sys-

tem with the vectorial imaging technique. We adopted the parallel FETI-DP

algorithm to solve the near-field of electrically large objects and an MLFMA

accelerated near-field to far-field transformation to significantly reduce the

computational cost. After that, we developed a linear interpolation technique

to speed up the evaluation of the Debye-Wolf integrals in the imaging formu-
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lation. We then numerically studied the resolution limit and presented three

verification examples to demonstrate the accuracy and large-scale imaging

capability of the proposed scheme. Finally, we presented the imaging of a

nanopatterned semiconductor wafer to illustrate the potential of this scheme

in detecting sub-wavelength defects.

7.5 Figures

Figure 7.1: Schematic diagram of a typical 4f system.

Figure 7.2: Geometry for two sub-wavelength dielectric spheres in the free
space.
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Figure 7.3: CCD images and power intensity plots for the two
sub-wavelength dielectric spheres with difference center-to-center distances.
(a) and (b) d = 0.5λ0. (c) and (d) d = 1.0λ0. (e) and (f) d = 2.0λ0.
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Figure 7.4: An L-shaped PEC object.

(a)

(b)

Figure 7.5: Far-field and CCD image of the L-shaped PEC object. The unit
for the x and y coordinates is λ0. (a) Log-scaled far-field power. (b) CCD
image.
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Figure 7.6: Geometry of the UI logo.

Figure 7.7: CCD image of the UI logo.
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Figure 7.8: Geometry of the USAF target.

Figure 7.9: CCD image of the USAF target.
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Figure 7.10: Geometry of a nanopatterned semiconductor wafer with a
defect (red).

(a)

Figure 7.11: Log-scaled far-field power for the nanopatterned
semiconductor wafer. The unit for the x and y coordinates is µm and the
unit for the color bars is dB. (a) Wafer without a defect. (cont.)
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(b)

(c)

Figure 7.11 continued: (b) Wafer with a defect. (c) Difference between (a)
and (b).
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(a)

(b)

Figure 7.12: CCD images for the nanopatterned semiconductor wafer. The
unit for the x and y coordinates is m. The unit of the color bars is volt per
meter. (a) Wafer without a defect. (b) Wafer with a defect. (cont.)
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Figure 7.12 continued: (c) Difference between (a) and (b).
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Chapter 8

FETD-GSM for Waveguide Devices

8.1 Introduction

Accurate and efficient broadband modeling of resonant waveguide structures

can significantly facilitate the design and optimization of microwave and

millimeter-wave devices, such as filters, multiplexers, and power dividers [71],

and hence has been an important topic in the computational electromagnet-

ics community for decades [3, 10, 71–81]. Early development of waveguide

device analysis was based on the equivalent circuit theory, where waveguide

discontinuities/junctions were represented by resistors, capacitors, inductors,

and transformers with the consideration of only the fundamental mode, and

the network synthesis theory was then applied to analyze the lumped cir-

cuit model [71–73]. Despite its simplicity and minimal computational effort,

the equivalent circuit theory suffered from serious accuracy problems mainly

because of the neglect of higher-order modes induced in the proximity of

discontinuities. The consequence of low accuracy in the prototype design in-

evitably led to the time-consuming trial-and-error adjustments. To improve

the solution accuracy, the MM method was proposed to take into account

higher-order mode coupling effects, junction effects, and finite thickness of

inclusions [74,75]. With the field inside the computational domain expanded

by waveguide modes and tangential continuity enforced at discontinuities,

the MM method was shown to be highly accurate with a low computational

cost and it quickly dominated in waveguide device modeling [74–78]. How-

ever, due to the difficulty of deriving analytical waveguide modes, the MM

method has found most applications in canonical geometries, such as rect-

angular, circular, coaxial circular, and elliptical waveguides. Even though

numerical waveguide modes can be evaluated for noncanonical geometries by

solving an eigenvalue problem, the MM method generally suffers from the
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well-known convergence problem [74].

In the past few years, benefitting from the significant improvement of

computing facilities and fast development of full-wave numerical methods,

a large volume of research literature has been devoted to advanced hybrid al-

gorithms that combine the efficiency of the MM method and flexibility of the

finite-element (FE), finite-difference (FD), and method of moments (MoM)

techniques [79,80]. To simulate a realistic waveguide device with a high com-

plexity using these hybrid algorithms, the device is usually first divided into

several building blocks; each block is then modeled by a FE, FD, or MoM

technique and represented by a GSM; and finally all GSMs are cascaded to

form the global GSM of the full device. Although these high-fidelity algo-

rithms can handle building blocks with arbitrarily shaped cross-sections and

rather complicated internal structures and materials, the broadband analy-

sis is usually very time-consuming since the space discretization techniques

are typically performed in the frequency domain. The asymptotic waveform

evaluation (AWE) [145], which was originally developed for high-speed cir-

cuit analysis with a lower-order approximation of the system response to

reduce computational complexity, has been adopted to alleviate the tedious

frequency-sweep problem [2]. However, the AWE is also generally acknowl-

edged for its spurious ringing and accuracy issues [146,147].

An alternative to fast frequency sweep for a broadband characterization

is to employ a time-domain algorithm such as the FDTD [148], the FETD

[3, 81], and the time-domain integral equation (TDIE) method [149, 150] to

perform a simulation directly in the time domain and then convert the time-

domain solution into the frequency domain by the FFT afterwards. This

approach is highly efficient for nonresonant devices. But for highly reso-

nant devices, it requires an extremely large number of time marching steps

because of a very slow decay of energy trapped in the devices. Although

some signal processing techniques, such as Prony’s method [151, 152], au-

toregressive method [153], and Padé approximation [154], can be employed

to extract late-time responses to avoid their direct calculation, a sufficient

number of time marching steps is still required to allow the waves propagat-

ing through an entire device a few times to capture the resonant character-

istics of the device. Furthermore, the solution is limited by the accuracy of

the parameters extracted from the calculations performed. Note that for an

implicit algorithm such as the FETD and TDIE, one has to solve a global
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system matrix in each time step. Since the solution time is not linearly pro-

portional to the size of the system matrix, the total computation time can

increase significantly when the device to be simulated is electrically large.

The alternating-direction-implicit FDTD (ADI-FDTD) [155], which solves a

tridiagonal system equation without too restrictive a stability requirement,

on the other hand, seems to be a good candidate. Unfortunately, in addition

to its relatively poor accuracy of geometrical modeling, the ADI-FDTD has

been shown to be a dissipative algorithm and some terms of its truncation

error grow with the square of the time increment multiplied by the spatial

derivatives of the field, which give rise to a large numerical error when the

time step is beyond the Courant limit even though the key temporal features

may be adequately resolved [148,156].

In this chapter, we propose an accurate and efficient hybrid algorithm

that combines the rigorous full-wave FETD method [3,10,81] with the GSM

technique to alleviate the aforementioned issues. We first decompose the

original resonant device into several subdomains and apply the time-domain

WPBC [10] to the subdomain interfaces so that there is no strong resonance

in the subdomains and consequently there is no need for an excessively large

number of time marching steps to capture late-time responses. With curvi-

linear tetrahedral elements to discretize waveguide geometries and internal

inclusions with high fidelity, higher-order basis functions to effectively re-

duce numerical dispersion errors, and WPBC to perfectly absorb any desired

waveguide modes at subdomain interfaces with arbitrary shapes, the FETD

analysis of the subdomains can be accurately and efficiently performed. The

subdomains are then represented by broadband GSMs, which are evaluated

from the FFT of the time-domain results. Finally, we cascade the extracted

subdomain GSMs to obtain the global broadband GSM for the entire struc-

ture. Since the subdomains are fully decoupled, the proposed algorithm en-

ables the use of nonconformal meshes and parallel computing to respectively

reduce the mesh generation burden and effectively speed up simulations. Al-

though the WPBC adopted in this chapter requires homogeneous subdomain

interfaces, where the supported waveguide modes may consist of transverse

electromagnetic (TEM), transverse electric (TE), and transverse magnetic

(TM) waves, the proposed FETD-GSM methodology is applicable to more

general waveguides with hybrid modes and even with frequency-dependent

materials loaded when perfectly matched layers (PML) [3] are used to trun-
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cate subdomain interfaces.

The rest of the chapter is organized as follows. In Section 8.2, we formulate

the WPBC truncated FETD equations and the modal analysis of an arbitrary

cross-section. After that, we discuss the calculation and cascading of GSMs.

We then present three engineering applications for accuracy and efficiency

demonstration of the proposed hybrid algorithm in Section 8.3. Finally, we

conclude in Section 8.4.

8.2 Formulation

The proposed hybrid algorithm combines the FETD method and GSM tech-

nique to efficiently analyze resonant devices. In this section, we present the

formulation and implementation details for the FETD method equipped with

the WPBC as truncation for subdomain interfaces, numerical modal analysis

of an arbitrary cross-section, and the cascading of adjacent subdomain GSMs

with various number of ports. We also include the expressions of high-order

interpolatory nodal bases and hierarchal vector bases adopted in the modal

analysis and the FETD method, respectively, for completeness.

8.2.1 Finite-Element Time-Domain Method

Consider a source-free computational domain with material properties speci-

fied by permittivity ε, permeability µ, and conductivity σ. The time-domain

vector wave equation that governs the electric field E(r, t) can be expressed

as [3]

∇×
(

1

µ
∇× E

)
+ ε

∂2E

∂t2
+ σ

∂E

∂t
= 0. (8.1)

To ensure a unique solution, proper boundary conditions have to be pre-

scribed at the surface S that bounds the computational domain, among which

the Dirichlet and Robin boundary conditions are the most common ones:

n̂× E = 0, r ∈ SD, (8.2)

n̂×
(

1

µ
∇× E

)
+ P (E) = Uinc, r ∈ SR, (8.3)
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where n̂ is the outward unit normal vector of S, P (E) denotes a func-

tional of E, and Uinc represents the boundary excitation. For microwave

and millimeter-wave device simulations, the WPBC is preferred because it

provides perfect absorbtion of waveguide modes without introducing extra

degrees of freedom (DoFs), and therefore it is more accurate than absorbing

boundary conditions (ABC) and more efficient than PML [3, 10, 81]. The

WPBC can be expressed in the form of (8.3) with

P (E) =−
∞∑
m=1

em

∫
SR

em ·
[
∂E

c∂t
+ Lm(t) ∗ E

]
dr, (8.4)

Uinc =n̂×
(

1

µ
∇× Einc

)
+ P (Einc), (8.5)

where em represents the mth waveguide mode, which can be TEM, TE, or

TM, c = 1/
√
µε is the speed of light in medium, Einc is typically a time-

domain incident mode, and the time-domain function Lm(t) associated with

the mth mode is defined as

Lm(t) =
kcm

t

J1(κ)u(t) TE modes,

[J1(κ)− κJ0(κ)]u(t) TM modes,
(8.6)

in which kcm is the mth cutoff wavenumber, u(t) denotes the unit step func-

tion, and Jn(κ) represents the Bessel function of order n with the argument

κ = kcmct.

To solve the governing equation (8.1) together with the boundary condi-

tions defined in (8.3), the electric field E(r, t) is first spatially discretized

as

E(r, t) =
N∑
j=1

Njej(t), (8.7)

where N is the number of DoFs, ej(t) is the jth DoF at time t, and Nj is the

jth vector basis function, whose expression will be discussed in detail later.

In the FETD formulation, the Galerkin method is usually adopted, where
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Ni is used to test the governing equation (8.1) to yield the weak-form∫
V

[
1

µ
(∇×Ni) · (∇× E) + εNi ·

∂2E

∂t2

]
dr

+

∫
V

σNi ·
∂E

∂t
dr =

∮
S

n̂ ·
(

Ni ×
1

µ
∇× E

)
dr.

(8.8)

By substituting the spatial discretization (8.7) into (8.8) and utilizing the

boundary conditions defined in (8.3)–(8.5), a matrix representation is derived

as

[T ]
d2{e}

dt2
+ [B]

d{e}
dt

+ [S]{e}

+
∞∑
m=1

[Qm]Lm(t) ∗ {e} = {f},
(8.9)

where

Tij =

∫
V

εNi ·Njdr, (8.10)

Sij =

∫
V

1

µ
(∇×Ni) · (∇×Nj)dr, (8.11)

Bij =

∫
V

σNi ·Njdr +
1

µc

∞∑
m=1

ΦimΦjm, (8.12)

Qm
ij =

1

µ
ΦimΦjm, (8.13)

fi =
2

µ
Φim

[
d

cdt
f inc(t) + Lm(t) ∗ f inc(t)

]
. (8.14)

In (8.13) and (8.14), Φim is defined as the projection of the mth mode onto

the ith vector basis function

Φim =

∫
SR

Ni · emdr, (8.15)

and the temporal incidence f inc(t) is defined as a modulated Gaussian pulse

f inc(t) = exp
[
−(t− t0)2/τ 2

]
cos [2πf0(t− t0)] , (8.16)

where f0 is the central frequency, t0 is the time delay, and τ is a bandwidth-

related constant. To resolve the temporal variation, f inc(t) is uniformly dis-

cretized with a time step ∆t = 1/(60f0). Furthermore, τ is specified as
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1.25/f0 to carry out a broadband simulation. The time delay t0 is set as 6/f0

such that the incidence has a vanishing value at t = 0.

Finally, it remains to temporally discretize the time-domain variables ej(t)

to formulate a time-marching scheme. The Newmark-beta method [157],

which uses central differencing for the first and second derivatives and a

weighted average for the undifferentiated quantities, is best suited for this

purpose because it has a second-order accuracy and unconditional stability.

With the application of the Newmark-beta method, a fully discretized matrix

equation is generated:

[K0]{e}n+1 = {b}n − [K1]{e}n − [K2]{e}n−1, (8.17)

where

[
K0
]

=
1

∆t2
[T ] +

1

2∆t
[B] +

1

4
[S] +

1

4

∞∑
m=1

[Qm]L0
m, (8.18)

[
K1
]

=
1

∆t2
[T ] +

1

2
[S], (8.19)[

K2
]

=
1

∆t2
[T ]− 1

2∆t
[B] +

1

4
[S], (8.20)

{b}n ={f}n − 1

4

∞∑
m=1

[Qm] (Ln,sm + 2Lnm) ∗ {e}n

− 1

4

∞∑
m=1

[Qm]Ln−1
m ∗ {e}n−1. (8.21)

In the above equations, Lnm is an n-entry time-domain sequence discretized

from Lm(t) and Ln,sm is defined as the sequence of Ln+1
m with its first entry

L0
m removed. More specifically, Ln,sm satisfies the following relationship:

Ln+1
m = {L0

m, Ln,sm }. (8.22)

It is worth mentioning that since the subsystem matrices [Qm] contributed

by the WPBC are fully populated, [K0] and [K1] are partially sparse and par-

tially dense. Fortunately, the number of DoFs on the ports is far smaller than

the total number of DoFs. Together with the symmetry of the system ma-

trices, (8.17) can still be efficiently solved by a sparse direct solver [104,105].

The computational efficiency can be improved if only one propagating mode

is excited at a waveguide port, as is the case for most waveguide device anal-
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yses, where the devices are designed to work at the fundamental mode. For

such a scenario, an ABC-like boundary condition is derived by utilizing the

relationship between the electric and magnetic modal fields, which becomes

P (E) =n̂× n̂×
[
∂E

c∂t
+ Lm(t) ∗ E

]
, (8.23)

Uinc =n̂×
(

1

µ
∇× Einc

)
+ P (Einc)

=
2

µ
em

[
d

cdt
f inc(t) + Lm(t) ∗ f inc(t)

]
. (8.24)

The convolution in the right-hand-side (RHS) calculation in (8.21) remains

time-consuming when a large number of time steps is involved since a direct

evaluation requires O(N2
t ) operations, where Nt is the number of tempo-

ral unknowns. Fortunately, the recursive FFT, which subdivides the time-

domain sequences recursively into small intervals and exploits FFT to speed

up convolutions between intervals whenever possible, could be applied to al-

leviate this issue with a computational complexity of O(Nt log2Nt) [158–160].

8.2.2 Modal Profiles

The implementation of WPBC needs modal profiles evaluated at the waveg-

uide cross-sections. Although analytical modal profiles for canonical waveg-

uide structures have been well established [3,75–78,81], numerical modal pro-

files are often desirable for waveguides with an arbitrary cross-section. For a

homogeneous cross-section SR, the potential φ satisfies the scalar Helmholtz

equation [161]

(∇2
t + k2

cm)φ = 0 inSR, (8.25)

where ∇t represents the transverse gradient operator.

Depending on the structure of the cross-section, different boundary condi-

tions have to be enforced for (8.25) to produce the desired modes. For the

TEM mode, which exhibits no cut-off frequencies, i.e., kcm = 0, the boundary

condition is given by

φ = Vi on Γi, (8.26)

where Γ =
⋃

Γi is the line contour of SR and Vi is the prescribed potential.
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The potential φ is discretized using high-order nodal basis functions Ni as

φ =

N∑̀
i=1

φiNi, (8.27)

with φi representing the ith nodal coefficient and N` denoting the number

of nodal DoFs. By using the Galerkin method, a discretized linear matrix

equation is derived as

[A] {φ} = {b}, (8.28)

where the nonvanishing matrix entries Aij are given by

Aii = 1 i ∈ Γ, (8.29)

Aij =

∫
SR

∇tφi · ∇tφjdr i /∈ Γ, (8.30)

and the nonvanishing RHS is given by

bi = Vj i ∈ Γj. (8.31)

For the TE and TM modes, where their boundary conditions are respec-

tively expressed as

∂φ

∂n
= 0 for TE modes, (8.32)

φ = 0 for TM modes, (8.33)

the matrix representation can be uniformly written as

[A]{φ} = k2
cm[M ]{φ}, (8.34)

where

Aij =

∫
SR

∇tφi · ∇tφjdr, (8.35)

Mij =

∫
SR

φiφjdr. (8.36)

Note that DoFs are not defined on boundaries for the TM modes.

The resultant system equation (8.28) and the eigenvalue problem (8.34) are
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solved by PARDISO [105] and FEAST [162], respectively. Once the potential

is evaluated, the electric modal function can be computed from

em =

n̂×∇tφ TE modes,

−∇tφ TEM/TM modes,
(8.37)

where em is normalized with the subdomain interface area∫
SR

em · emdr = 1. (8.38)

It is well known that (8.34) suffers from the mode ambiguity issue even for

nondegenerate modes. More specifically, if eigenvector {φ} is associated with

kcm, so is {−φ}. The problem becomes even worse for a circular cross-section

where an eigenvector rotated by an arbitrary angle is still associated with the

same eigenvalue. The mode ambiguity will lead to incorrect solutions for the

proposed FETD-GSM algorithm where ports sharing the same cross-section

are required to have the same modal profiles. To obviate the ambiguity

issue, the modal profiles at a given cross-section are solved and stored in

prior, and accessed by the FETD-GSM solver afterwards whenever needed.

As a byproduct of this remedy, the meshes for the eigensolver and FETD-

GSM solver at the port cross-sections can be completely nonconformal, which

makes the solvers very flexible in choosing discretizations and basis functions.

8.2.3 Basis Functions

In the aforementioned eigensolver and FETD-GSM solver, nodal and vector

basis functions are employed to expand the potential and electric field, re-

spectively. For the sake of completeness, the expressions for the two bases

are listed bellow. The second-order bases are used to achieve a balance be-

tween the computational efficiency and solution accuracy for the simulation

of microwave and millimeter-wave waveguide devices, where the structure

typically has sharp geometrical discontinuities and dimensions on the order

of a wavelength.
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Interpolatory Nodal Basis Functions

Let the barycentric coordinate ξi represent the zero-coordinate surface of the

ith edge of a triangle or ith face of a tetrahedron [5]. The second-order

Lagrangian interpolation polynomial for the vertex i is

φi = ξi(2ξi − 1), (8.39)

and the edge middle node i is

φi = 4ξjξk, (8.40)

where j and k are the corresponding edge vertices [3].

Hierarchal Vector Basis Functions

Because of their p-adaption capability, hierarchal vector bases have been

very popular among the computational electromagnetics community to al-

low mixed basis orders within the same mesh while preserving tangential

continuity [3, 4, 6, 81]. These bases provide nonoverlapping gradient and ro-

tational subspaces for irrotational and solenoidal vectorial field components,

respectively. For the mixed second-order bases, following [4], the rotational

and gradient parts associated with an edge with vertices i and j are respec-

tively given by

Nr
ij = ξi∇ξj − ξj∇ξi, (8.41)

Ng
ij = ∇(ξiξj), (8.42)

and the rotational basis associated with a face is expressed as

Nr
ijk = ξi∇(ξjξk)− 2ξjξk∇ξi, (8.43)

where i, j, and k are the face vertices.
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8.2.4 Generalized Scattering Matrix

In a microwave and millimeter-wave waveguide device analysis, the key quan-

tities to characterize device performance are scattering parameters. For

waveguide devices with potentially multi-modes, the GSM is usually of in-

terest, and its entries are defined as

Snmji = bjn/a
i
m, (8.44)

where aim denotes the frequency-domain modal amplitude for the mth mode

at port i and bjn denotes the modal amplitude for the nth mode at port j.

The frequency-domain modal amplitudes are calculated by the FFT of the

time-domain modal amplitudes. At port SR, the mth time-domain modal

amplitude Am(t) is given by

Am(t) =

∫
SR

E · emdr. (8.45)

Since directly calculating the GSM of a resonant structure using a time-

domain method is very time-consuming, as discussed earlier, we propose a

hybrid method that partitions a resonant device into several nonresonant

subdomains to be solved by the FETD method, and then cascade the subdo-

main GSMs to form the global GSM for the original device in the frequency

domain. The cascading equation can be obtained by first separating waves at

a port into incoming and outgoing waves and then matching tangential field

continuity with adjacent subdomains. Depending on the partition, the cas-

cading equation varies. Fortunately, for many waveguide devices, cascading

subdomain GSMs can be categorized into three groups: a) two-port two-

port cascading, b) three-port one-port cascading, and c) three-port two-port

cascading, as illustrated in Fig. 8.1.

The global GSM for cascading two two-port subdomains is given by

S11 = Sa12G12S
b
11S

a
21 + Sa11, (8.46)

S12 = Sa12G12S
b
12, (8.47)

S21 = Sb21H21S
a
21, (8.48)

S22 = Sb21H21S
a
22S

b
12 + Sb22, (8.49)
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where

Gij =
[
I− SbiiS

a
jj

]−1
, (8.50)

Hij =
[
I− SaiiS

b
jj

]−1
. (8.51)

Note that I is an identity matrix in (8.50) and (8.51). The global GSM for

cascading a three-port subdomain with a one-port subdomain, which is very

common in compact band-rejection filter designs, can be formulated as

Sij = Saij + Sai3G13S
b
11S

a
3j, (8.52)

where 1 ≤ i, j ≤ 2. The cascading of a three-port subdomain with a two-port

subdomain is of particular interest in power divider and diplexer/multiplexer

designs, and is expressed as

Sij = Saij + Sai2G12S
b
11S

a
2j, (8.53)

Si2 = Sai2G12S
b
i2, (8.54)

S2i = Sb21H21S
a
2i, (8.55)

S22 = Sb22 + Sb21H21S
a
22S

b
12, (8.56)

where i, j ∈ {1, 3}.

8.3 Numerical Results

In this section, we present three examples to demonstrate the accuracy and

efficiency of the proposed hybrid FETD-GSM algorithm for a broadband full-

wave analysis of resonant devices. The resonant devices are decomposed into

several subdomains so that resonance in each subdomain can be eliminated

or significantly suppressed. To minimize the number of modes to truncate

each subdomain, which is critical to achieving high efficiency for the pro-

posed algorithm, the decomposed interfaces are located where geometrical

discontinuities are not present and hence only propagating modes and a few

evanescent modes need to be considered. For each example, the same mesh

size and temporal step size are used in both the conventional FETD method

and FETD-GSM algorithm for performance comparison. The resultant sym-
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metric system matrices are stored with only the upper triangular entries and

factorized by the direct sparse solver PARDISO [105]. The simulations are

terminated when the signal power of each mode, normalized with the peak

power of the incident mode, reduces to −60 dB, where the signal power for

the mth mode is defined as

Pm(t) = 20 log10 |Am(t)| . (8.57)

In our numerical examples, all the computations are carried out in double

float precision on a computing node configured with 256 GB memory and two

Intel Xeon E5-2680 v2 CPUs in a sequential mode. The time for computing

numerical modes is negligible and will not be mentioned in all the examples.

8.3.1 Dual-Mode Circular Cavity Filter

The first example is a dual-mode circular cavity filter [163]. The filter, il-

lustrated in Fig. 8.2, consists of a circular waveguide (length: 100 mm and

radius: 12 mm) which is linked to the input and output rectangular waveg-

uide ports (19.05 mm by 9.525 mm by 10 mm) through two rectangular

coupling slots (9.7 mm by 3 mm by 1 mm). The entire structure is dis-

cretized into 28,136 curvilinear tetrahedral elements with a mesh size of 2.4

mm. A broadband TE10 signal is chosen as excitation. To resolve the highly

resonant field in the device, the temporal step size is set to 1.3 ps, which is

approximately 1/60 of the period of the central frequency at 12.5 GHz. With

the conventional FETD method, the recorded time-domain signal powers at

the two ports are depicted in Fig. 8.3a in logarithmic scales, where the ports

on the left and right sides are respectively referred to as port 1 and port 2

for simplicity. Because the energy trapped in the lossless circular waveguide

decays slowly, 46,000 time marching steps have been performed to let the

signal powers reduce to −60 dB.

The excessively long simulation required to fully capture the late-time re-

sponse of such a resonant device significantly compromises the efficiency of

the conventional FETD method. To eliminate the resonance and hence re-

duce the number of time marching steps, we decompose the circular cavity

filter evenly into two nonresonant subdomains as illustrated in Fig. 8.2. Al-

though four propagating modes (TE11-even, TE11-odd, TE21, and TM01) are
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supported at the interface when the frequency of interest rises to 15 GHz, it

is apparent that only the TE11-even mode can be effectively excited for the

TE10 mode incidence. The simulated time-domain signal powers for the half

structure with the TE10 and TE11-even mode incidences respectively applied

on port 1 and port 2 are plotted in Figs. 8.3b and 8.3c. As opposed to the

simulation of the entire filter with 46,000 time steps, only 7,400 time steps

need to be carried out to reduce the signal powers to −60 dB for the TE10

mode incidence and 6,400 time steps for the TE11-even mode incidence. The

corresponding frequency-domain responses for the two incidences are given

in Fig. 8.4, with the difference between the magnitudes of S12 and S21 rep-

resenting the modal power conversion loss between the TE10 and TE11-even

modes. Due to the geometrical symmetry, the GSM of the right half section

can be readily obtained by swapping port 1 with port 2. By cascading the

GSMs of the two subdomains, the final S21 for the entire filter is plotted in

Fig. 8.5, together with the conventional FETD result and the measurement.

The excellent agreement between these three results validates not only the

accuracy of our conventional FETD method but also that of the proposed

FETD-GSM algorithm.

The computational statistics of using the conventional FETD method and

the proposed FETD-GSM algorithm to simulate the circular cavity filter are

summarized in Table 8.1. Since the cavity filter is evenly divided into two sub-

domains, each subdomain has approximately half the number of DoFs of the

whole structure. In fact, the WPBC introduced at the center of the filter to

suppress resonance only contributes 418 DoFs, which is negligible compared

with the total number of DoFs. The random access memory (RAM) con-

sumption, which is supposed to be super-linear for general three-dimensional

problems solved by a sparse direct solver, is actually linear since the struc-

ture is quasi-one-dimensional and the decomposition is along the longitudinal

direction. Because the strong resonance of the circular cavity is significantly

suppressed in the half structure simulation, the number of time marching

steps is greatly reduced, which results in a speedup of 6.88.
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8.3.2 Hybrid Folded Filter

Next, we consider the simulation of a five-pole hybrid folded filter centered at

12.6 GHz with a bandwidth of 400 MHz [164]. To provide a steep out-of-band

rejection and minimize the signal interference in adjacent channels, the filter

must introduce an attenuation of 35 dB in an adjacent channel separated

by 130 MHz from the lower passband edge, and at least 100 dB between

8.7 and 11 GHz. Figure 8.6 shows one physical design that can satisfy all

the electrical specifications with the introduction of two trisections to provide

transmission zeros both close to the passband and far from it. The filter ports

and cavities are implemented with standard WR-75 waveguides, and the

detailed dimensions can be found in [164]. The entire structure is discretized

into 119,558 curvilinear tetrahedra with an adaptive mesh size from 0.3 mm

for fine features to 1.5 mm for the smooth parts. The fundamental TE10

mode is chosen as the excitation signal and the temporal step size is set to

1.6 ps. Figure 8.7a shows the two ports’ recorded time-domain signal powers,

which take 130,000 time marching steps to decrease to −60 dB.

To reduce the number of time marching steps, we decompose the hybrid

folded filter into four less-resonant sections as illustrated in Fig. 8.6. The

subdomain interfaces are particularly chosen at places where the fields have

the least variation so that even one single TE10 mode is sufficient to retrieve

subdomain GSMs accurately. The simulated time-domain signal powers for

the four subdomains with the TE10 mode incidence respectively applied on

port 1 and port 2 are plotted in Figs. 8.7b–8.7i. Apparently, the signal pow-

ers in the subdomains decay much faster to the threshold in less than 28 ns

even for the worst case compared with the signal powers in the full structure,

which require more than 200 ns. The FFT calculated subdomain GSMs are

provided in Figs. 8.8a–8.8d for reference. Due to reciprocity (S12 = ST
21), we

observe the overlap of the magnitude curves of S12 and S12. Considering the

passive and lossless nature of the subdomains, it is trivial to conclude that

the magnitudes of S11 and S22 should also be equal, as is clearly demonstrated

by Figs. 8.8a–8.8d. It is worth mentioning that although S11 and S22 have

an equal magnitude, their values are typically different unless the structure

under consideration is geometrically symmetric. After cascading the subdo-

main GSMs, the global S-parameters based on the FETD-GSM algorithm

are plotted against the conventional FETD results and the measurements in
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Fig. 8.8e, showing a good agreement.

The computational statistics of using the conventional FETD method and

the proposed hybrid FETD-GSM algorithm to simulate the hybrid folded fil-

ter are listed in Table 8.2. The maximum memory footprint decreases from

7.96 GB for the whole structure to 2.85 GB for the second subdomain. Be-

cause resonance is isolated in each subdomain, the number of time marching

steps is significantly reduced and a speedup of 6.59 is obtained.

8.3.3 In-Line Pure E-Plane Band-Stop Filter

The last example simulated is an in-line pure E-plane band-stop filter [165].

With band-rejection cavities coupled to the main rectangular waveguide,

these compact band-stop in-line filters are essential in applications where a

specific narrow frequency band needs to be strongly attenuated, for instance,

to reject the spurious harmonic frequencies of the output of high-power non-

linear amplifiers. Figure 8.9 illustrates the geometrical configurations of the

filter simulated in this section with its detailed dimensions listed in [165].

The entire structure is discretized into 146,476 curvilinear tetrahedra with

an adaptive mesh size from 0.07 mm for fine features to 0.6 mm for the

smooth parts. A broadband TE10 mode is used as the excitation at port 1

and the temporal step size is set to 0.57 ps. Figure 8.10a depicts the two

ports’ simulated time-domain signal powers, which take 103,000 time march-

ing steps to decrease to −60 dB.

To study the efficiency of the FETD-GSM algorithm, we divide the in-line

pure E-plane band-stop filter into 12 nonresonant sections (Fig. 8.9) and use

a single TE10 mode at each waveguide port to simulate the subdomain S-

parameter matrices. Due to the limited space, only the time-domain signal

powers for the first three subdomains are plotted in Figs. 8.10b–8.10f, where

port 3 denotes the top/bottom port of a three-port structure. Obviously,

the FETD-GSM algorithm uses many fewer time marching steps to reduce

the signal powers to −60 dB than the conventional FETD with the direct

full structure simulation. Finally, the conventional FETD method, hybrid

FETD-GSM algorithm, and HFSS calculated frequency-domain responses

are compared in Fig. 8.11, showing good agreement.

The computational statistics of using the conventional FETD method and
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the proposed FETD-GSM algorithm to simulate the in-line pure E-plane

band-stop filter are listed in Table 8.3. The maximum memory footprint

decreases from 8.77 GB for the whole structure to 1.84 GB for the third

subdomain. Because resonance is greatly suppressed in each subdomain, the

number of time marching steps is significantly reduced, resulting in a speedup

of 11.53.

8.4 Summary

In this chapter, we presented an accurate and efficient hybrid algorithm that

combines the FETD method with the GSM technique to quickly character-

ize broadband frequency responses of highly resonant waveguide devices. To

obviate the necessity of an excessive number of temporal unknowns to fully

capture late-time responses, we decomposed the original resonant device into

several less-resonant subdomains with the aid of an accurate WPBC at the

subdomain interfaces so that an accurate FETD analysis can be efficiently

performed for each subdomain. We discussed in detail the formulation and

implementation of the WPBC truncated FETD method and derived equa-

tions for cascading broadband generalized scattering matrices obtained from

the time-domain simulation of multi-port structures. Finally, we demon-

strated the accuracy and efficiency of the proposed hybrid algorithm by

modeling three engineering application examples. The proposed FETD-GSM

algorithm can be extended to model more general waveguides with hybrid

modes and frequency-dependent materials when the WPBC is replaced with

PML.
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8.5 Figures and Tables

Figure 8.1: Cascading GSMs of two subdomains. (a) Two-port two-port
cascading. (b) Three-port one-port cascading. (c) Three-port two-port
cascading.

Figure 8.2: Geometry of a dual-mode circular cavity filter with
WR75-waveguide input and output ports, two rectangular coupling slots,
and a circular cavity. The filter is decomposed evenly into two subdomains,
represented by two colors, for the FETD-GSM simulation.
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Figure 8.3: Time-domain signal powers Pm for the dual-mode circular
cavity filter simulation. Port 1 and port 2 respectively denote the left port
and the right port in both full structure and half structure simulations. (a)
Full structure simulation with the TE10 mode excited at the port 1. (b)
Half structure simulation with the TE10 mode excited at port 1. (cont.)
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Figure 8.3 continued: (c) Half structure simulation with the TE11-even
mode excited at port 2.
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Figure 8.4: Frequency-domain responses for the half structure simulation
with TE10 mode and TE11-even mode excited at port 1 and port 2,
respectively.
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Figure 8.5: Frequency-domain responses for the dual-mode circular cavity
filter.

Figure 8.6: Geometry of the hybrid folded filter. The filter is decomposed
into four subdomains, represented by different colors, for the FETD-GSM
simulation. The subdomains are labeled as 1, 2, 3, and 4 from left to right.
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Figure 8.7: Time-domain signal powers for the hybrid folded filter
simulation. Port 1 and port 2 respectively represent the left port and the
right port in both full structure and subdomain simulations. (a) Full
structure simulation with the TE10 mode excited at port 1. (b) Subdomain
1 simulation with the TE10 mode excited at port 1. (cont.)
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Figure 8.7 continued: (c) Subdomain 1 simulation with the TE10 mode
excited at port 2. (d) Subdomain 2 simulation with the TE10 mode excited
at port 1. (cont.)
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Figure 8.7 continued: (e) Subdomain 2 simulation with the TE10 mode
excited at port 2. (f) Subdomain 3 simulation with the TE10 mode excited
at port 1. (cont.)
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Figure 8.7 continued: (g) Subdomain 3 simulation with the TE10 mode
excited at port 2. (h) Subdomain 4 simulation with the TE10 mode excited
at port 1. (cont.)
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Figure 8.7 continued: (i) Subdomain 4 simulation with the TE10 mode
excited at port 2.
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Figure 8.8: Frequency-domain responses for the hybrid folded filter. (a)
Subdomain 1 responses. (cont.)
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Figure 8.8 continued: (b) Subdomain 2 responses. (c) Subdomain 3
responses. (cont.)
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Figure 8.8 continued: (d) Subdomain 4 responses. (e) Full structure
responses.
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Figure 8.9: Geometry of the in-line pure E-plane band-stop filter. The filter
is decomposed into 12 subdomains consisting of one-port, two-port, and
three-port components.

0 10 20 30 40 50 60

-60

-40

-20

0

S
ig

na
l p

ow
er

 (d
B

)

t (ns)

 Port 1
 Port 2

(a)

Figure 8.10: Time-domain signal powers for the in-line pure E-plane
band-stop filter simulation. Port 1 and port 2 respectively represent the left
port and the right port in both full structure and subdomain simulations,
and port 3 denotes the top/bottom port of a three-port structure in
subdomain simulations. (a) Simulation of the full structure. (cont.)
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Figure 8.10 continued: (b) Simulation of subdomain 1 with incidence at
port 1. (c) Simulation of subdomain 2. (cont.)
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Figure 8.10 continued: (d) Simulation of subdomain 3 with the incidence
applied on port 1. (e) Simulation of subdomain 3 with the incidence
applied on port 2. (cont.)
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Figure 8.10 continued: (f) Simulation of subdomain 3 with the incidence
applied on port 3.
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Figure 8.11: Frequency-domain responses of the in-line pure E-plane
band-stop filter.
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Table 8.1: Computational statistics of the circular cavity filter.

Geo/Src DoFs RAM (GB) Nt Total time (s)
Whole/Port1 188,332 1.66 46,000 7,551
Half/Port1 94,584 0.83 7,400 593
Half/Port2 94,584 0.83 6,400 505

Table 8.2: Computational statistics of the hybrid folded filter.

Geo/Src DoFs RAM (GB) Nt Total time (s)
Whole/Port1 700,516 7.96 130,000 108,360
Sub1/Port1 115,610 1.15 8,500 1,001
Sub1/Port2 115,610 1.15 4,200 460
Sub2/Port1 373,144 2.85 17,000 4,700
Sub2/Port2 373,144 2.85 15,000 4,087
Sub3/Port1 220,950 1.86 13,000 2,390
Sub3/Port2 220,950 1.86 13,000 2,393
Sub4/Port1 103,492 0.97 3,700 369
Sub4/Port2 103,492 0.97 9,300 1,035
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Table 8.3: Computational statistics of the in-line pure E-plane band-stop filter.

Geo/Src DoFs RAM (GB) Nt Total time (s)
Whole/Port1 977,386 8.77 103,000 90,460
Sub1/Port1 50,052 0.51 1,600 96
Sub1/Port2 50,052 0.51 1,600 96
Sub2/Port1 23,102 0.22 1,500 37
Sub3/Port1 213,068 1.84 4,300 781
Sub3/Port2 213,068 1.84 4,300 797
Sub3/Port3 213,068 1.84 3,500 639
Sub4/Port1 132,236 1.29 3,800 518
Sub4/Port2 132,236 1.29 3,800 528
Sub4/Port3 132,236 1.29 3,200 429
Sub5/Port1 20,964 0.23 1,400 42
Sub6/Port1 26,774 0.27 1,500 47
Sub7/Port1 172,944 1.65 3,600 615
Sub7/Port2 172,944 1.65 3,600 620
Sub7/Port3 172,944 1.65 3,100 531
Sub8/Port1 159,762 1.46 2,900 431
Sub8/Port2 159,762 1.46 2,900 440
Sub8/Port3 159,762 1.46 3,000 446
Sub9/Port1 16,152 0.17 1,300 26
Sub10/Port1 9,518 0.07 1,400 8
Sub11/Port1 110,842 0.91 1,500 145
Sub11/Port2 110,842 0.91 1,600 154
Sub11/Port3 110,842 0.91 2,400 230
Sub12/Port1 51,306 0.52 1,600 95
Sub12/Port1 51,306 0.52 1,600 98
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Chapter 9

FETD-GSM for Cavity Scattering

9.1 Introduction

Fast computation of electromagnetic scattering from a large and deep open

cavity with high fidelity and efficiency has been a challenging problem in

computational electromagnetics for the past four decades [82–100]. This

problem is even more pronounced when broadband monostatic responses are

desired, such as those required in ISAR imaging [166–169]. Early research

was mainly focused on edge diffraction and ray tracing based high-frequency

asymptotic methods to predict the RCS of a cavity with a simple struc-

ture and a large electrical size [82–85]. When cavities become geometrically

complicated, these high-frequency approximations deteriorate in the solution

accuracy. To circumvent this issue and enable the analysis of cavities with

complex materials, rigorous full-wave numerical methods and their hybrid

variants, combined with either an asymptotic technique or another full-wave

method, were gradually introduced [2,3,86–91,148]. Over the years, benefit-

ting from the development of fast and efficient full-wave algorithms to reduce

the memory consumption and computation cost [2, 3, 148], electromagnetic

scattering from cavities with moderate electrical sizes can be modeled with

a high accuracy. The reader is referred to [99] and the references therein for

a comprehensive review of computational methods developed in the past for

open cavity scattering analyses.

Despite this significant progress, computation of broadband monostatic

RCS of a large and deep open cavity is still very challenging. In [98], a

tailored direct solver was proposed to efficiently model cavity scattering us-

ing the FEBI method. The solver exploits the unique features of the FEBI

system and the waveguide structure of a large and deep cavity to eliminate

the interior FE unknowns starting from the bottom of the cavity and leave
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only the aperture unknowns in the system for a fast monostatic RCS cal-

culation. This algorithm was later enhanced by incorporating higher-order

curl-conforming basis functions to expand the unknown field [95,97] and ex-

tended to more general cases to account for inhomogeneous coatings [96].

For a specific mesh discretization scheme, the memory consumption is solely

determined by the cavity’s cross-section. It is observed that the solution time

scales linearly with the cavity’s depth and the method is computationally ef-

ficient for cavities with a cross-section smaller than 100 square wavelengths.

Unfortunately, the efficiency of this method deteriorates quickly for cavities

with a larger cross-section because the solution time increases exponentially

with the cross-section of the cavity. Furthermore, this method cannot be

well parallelized to harness the parallel processing power of modern com-

puter clusters and is ineffective for a broadband RCS analysis.

As an alternative approach, the domain decomposition method (DDM)

has also been proposed for the scattering analysis of a large and deep cav-

ity. A straightforward strategy is to partition the deep cavity into several

subdomains along the depth direction, and then employ a full-wave solver to

deal with each subdomain independently. After that, generalized admittance

or scattering matrices (GAMs/GSMs) are extracted from each subdomain

and cascaded to represent the behavior of the original cavity [90, 91]. How-

ever, due to its requirements for discretization and basis functions, the GAM

method demonstrated potential only for fairly small and simple cavities [90].

The GSM method [91], on the other hand, removed the requirements in the

GAM method by using modal bases at the subdomain interfaces. Unfortu-

nately, its solution accuracy, especially at large incident angles, is significantly

limited by the subdomain GSMs where higher-order modal effects must be

simulated very accurately in order to account for modal power coupling in

a general cavity. Later on, a more sophisticated DDM-based FEBI method

was proposed to simulate large and deep cavities with the MLFMA accel-

eration [93]. Unlike the previous DDMs that completely decouple the sub-

domains, this method divides a cavity into several layers and eliminates the

interior unknowns of each layer based on the local Schur complement to form

a coupled global interface problem that involves FE unknowns on the layer-to-

layer interfaces and the BI unknowns on the aperture. The coupled interface

problem is then solved iteratively until a convergence criterion is satisfied.

More recently, an advanced BI-based DDM was also proposed for scattering
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analysis of large and deep cavities [94]. By introducing surface traces of the

electric and magnetic fields as unknowns, a multi-trace combined field in-

tegral equation was developed for the subdomain boundary-value problems,

together with an optimized multiplicative Schwarz preconditioner to speed

up the iterative convergence. Although electrically large cavities can be sim-

ulated by these full-wave DDM solvers via coupled interface problems, the

iterative convergence is still an issue when the large and deep cavity is loss-

less (or has a small interior loss). More seriously, being a frequency-domain

method the iterative solution is not efficient for the monostatic RCS calcu-

lation or for a broadband sweep.

In this chapter, we propose a hybrid algorithm that combines the FETD

method [3] and GSM technique to efficiently simulate large and deep cavities

by exploiting the waveguide-like structure of the open cavities and adopt-

ing waveguide modes as basis functions to expand the electric field at the

cavity aperture. With the FETD transient simulations, a broadband GSM

is extracted to represent the scattering characteristics of the original cavity.

Since the dimensions of the GSM are significantly smaller than those of the

system equation directly resulting from the FE discretizations, monostatic

RCS calculations can be performed very efficiently. For the FETD simulation,

the complex-frequency shifted perfectly matched layers (CFS-PML) [170] are

employed as the truncation for the cavity aperture so that all the waveguide

modes will be appropriately absorbed. The ABC is placed at the outmost

boundaries of CFS-PMLs to further improve the absorption and increase the

time marching stability. Moreover, unlike the FEBI-based methods which

generate a partially full system matrix that is difficult to store and solve, the

resultant system matrix from the ABC-backed CFS-PML is purely sparse,

which enables the simulation of very large and deep open cavity scattering

problems.

The rest of this chapter is organized as follows. In Section 9.2, we formulate

the eigenvalue problems for general waveguide ports and the FETD method

with ABC and CFS-PML truncations. Afterwards, we describe the calcula-

tion of the scattered field and approaches to improve the computational effi-

ciency. In Section 9.3, we validate the proposed algorithm by comparing the

simulation results of scattering from two straight cavities with measurements,

and present two complicated structures to further demonstrate its solution

accuracy and efficiency for the broadband wide-angle scattering simulation
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and ISAR imagery. Finally, we conclude in Section 9.4.

9.2 Formulation

The proposed hybrid algorithm combines the FETD method and GSM tech-

nique to efficiently analyze large and deep open cavities. In this section, we

present the formulation and implementation for the numerical modal analy-

sis of an arbitrary cross-section and the FETD method with an ABC-backed

CFS-PML truncation for transient simulations. We then present the broad-

band monostatic RCS evaluation and ISAR imagery using a broadband GSM

obtained from the FETD solution. Finally, we discuss the issue of selecting

dominant scattering modes to improve the efficiency of this hybrid algorithm.

9.2.1 Modal Profiles at Waveguide Ports

The proposed method relies on the modal profiles to expand the electric field

at the aperture of the cavity as well as the field at the interfaces between

subdomains when a domain decomposition algorithm [117] is employed. For

a general waveguide cross section S with material properties specified by the

relative permittivity εr and permeability µr, the electric field E is governed

by the source-free vector Helmholtz equation

∇×
(

1

µr

∇× E

)
= k2

0εrE, (9.1)

and is subject to the Dirichlet boundary condition

n̂× E = 0 (9.2)

on a PEC boundary, where k0 is the free-space wavenumber and n̂ is the

outward unit normal vector on the boundary of S. Assuming that the elec-

tric field has the e−γz dependence, where γ is the propagating constant, the

electric field and the ∇ operator can be decomposed into transverse and

ẑ components. A generalized eigenvalue system can then be derived from
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(9.1) [171] [
H + A/Θ2 G

GT B

]{
et

ez

}
=

Θ2 + γ2

Θ2

[
H G

GT B

]{
et

ez

}
, (9.3)

in which

Aij =

∫
S

[
1

µr

(∇t×Ni) · (∇t×Nj)− k2
0εrNi ·Nj

]
dr, (9.4)

Bij =

∫
S

[
1

µr

∇tφi · ∇tφj − k2
0εrφiφj

]
dr, (9.5)

Hij =

∫
S

1

µr

Ni ·Njdr, (9.6)

Gij =

∫
S

1

µr

Ni · ∇tφjdr, (9.7)

Θ2 = k2
0µmaxεmax, (9.8)

and E is expanded by NV hierarchical vector bases Ni and NN hierarchical

nodal bases φi [4]

E = γ

NV∑
i=1

et,iNi + ẑ

NN∑
i=1

ez,iφi. (9.9)

Note that µmax and εmax in (9.8) are respectively the maximum relative per-

meability and permittivity on the waveguide port.

The resultant generalized eigenvalue problem is solved by the FEAST

eigensolver [162], which adopts the idea from the density-matrix represen-

tation and contour integration technique in quantum mechanics to achieve

high robustness, accuracy, and scalability. However, the eigenvalue system

suffers from DC spurious modes (γ = 0 and {ez} 6= 0), as can be observed

from the second equation of (9.3). To remove the undesired spurious modes,

a constraint

{ez} = −[B]−1[GT]{et} (9.10)

is applied to rectify the normal electric field with the tangential component

in each matrix-vector product iteration of the FEAST eigensolver.
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9.2.2 FETD Method with ABC-Backed CFS-PML

Once the modal profiles at a cavity aperture are obtained, they can be used

to launch modal incidences and retrieve a broadband GSM that characterizes

the scattering properties of the cavity. To perform a transient simulation,

we first formulate the time-domain vector wave equation with the CFS-PML

materials [3]

∇×
[

1

µ
L2 · (∇× E)

]
+ εL1 · E + σe

∂E

∂t
= −∂Jimp

∂t
, (9.11)

where ε = εrε0 and µ = µrµ0 with ε0 and µ0 the free-space permittivity

and permeability, σe denotes the material conductivity, and Jimp represents

the impressed current which is obtained by multiplying a modal profile by

a modulated Gaussian pulse. The CFS-PML based constitutive tensors L1

and L2 in (9.11) are respectively given by [3]

L1 = κ·
[
∂2

∂t2
I+J

∂

ε0∂t
+

1

ε20
K1−

1

ε30
K2 · e−

σ
ε0
t
u(t)∗

]
, (9.12)

L2 = κ−1 ·
[
I− 1

ε0
J · e−

τ
ε0
t
u(t)∗

]
, (9.13)

with

κ = κ(x̂x̂+ ŷŷ) + κ−1ẑẑ, (9.14)

I = x̂x̂+ ŷŷ + ẑẑ, (9.15)

J = σκ−1(x̂x̂+ ŷŷ − ẑẑ), (9.16)

K1 = −ασκ−1(x̂x̂+ ŷŷ) + σκ−1(σκ−1 + α)ẑẑ, (9.17)

K2 = −α2σκ−1(x̂x̂+ ŷŷ) + σκ−1(σκ−1 + α)2ẑẑ, (9.18)

σ = αx̂x̂+ αŷŷ + (σκ−1 + α)ẑẑ (9.19)

τ = (σκ−1 + α)(x̂x̂+ ŷŷ) + αẑẑ. (9.20)

In (9.12) and (9.13), u(t)∗ represents the time-domain convolution with the

unit step function and ε0 instead of ε is adopted to avoid the accumulation

of electric charges at material interfaces [148]. Note in (9.14)-(9.20) that the

CFS-PML is placed in the XY plane to absorb waves travelling in the ±ẑ
directions. The CFS-PML parameters κ, σ, and α can be adjusted for the

performance of absorption [148]. For waveguide ports not placed in the XY
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plane, a transformation of the constitutive tensors is required [172]

L
′
1 = RTL1R, L

′
2 = RL2R

T (9.21)

to absorb waves travelling in the desired directions, where R is a unitary

rotation matrix.

To further improve the absorption of waveguide modes and increase the

time marching stability, the ABC

n̂×
(

1

µ
∇× E

)
+

√
ε

µ

∂

∂t
(n̂× n̂× E) = 0 (9.22)

is applied to truncate the CFS-PML. Using the standard Galerkin method

for spatial discretization, a matrix equation is yielded

[T ]

{
d2E

dt2

}
+ [R]

{
dE

dt

}
+ [S]{E} − {h}+ {g} = {b}, (9.23)

where

Tij =

∫
V

εNi · κ ·Njdr, (9.24)

Rij =

∫
V

σeNi ·Njdr +

∫
V

εrNi · κ · J ·Njdr

+

∫
SABC

µ0

√
ε

µ
(n̂×Ni) · (n̂×Nj)dr, (9.25)

Sij =

∫
V

1

µ
(∇×Ni) · κ−1 · (∇×Nj)dr

+

∫
V

ε

ε20
Ni · κ ·K1 ·Njdr, (9.26)

hi =

∫
V

ε

ε30
Ni · κ ·

N∑
j=1

K2 · e−
σ
ε0
t ·Nju(t) ∗ Ej(t)dr, (9.27)

gi =

∫
V

1

µε0
(∇×Ni) · κ−1

·
N∑
j=1

J · e−
τ
ε0
t · (∇×Nj)u(t) ∗ Ej(t)dr, (9.28)

bi =−
∫
V

Ni ·
∂Jimp

∂t
dr. (9.29)

To perform a time-domain simulation, it remains to temporally discretize
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(9.23) to form a time marching scheme. The Newmark-beta method is imple-

mented for the proposed hybrid algorithm to achieve a second-order temporal

accuracy and unconditional stability [157].

It is worth mentioning that the CFS-PML is essentially a uniaxial anisotropic

material [173], which has different attenuations for different field components.

Hence, we use full-order curl-conforming bases to better resolve the field in

the CFS-PML region so that the time marching stability of the proposed algo-

rithm can be significantly improved [174]. Computationally, the shifted poles

in the CFS-PML constitutive tensors give rise to the time-consuming convo-

lutions in (9.27) and (9.28), even though {hi} and {gi} are non-vanishing only

in the CFS-PML medium. Fortunately, the convolutions can be implemented

in a recursive fashion to reduce the computational cost remarkably [174].

9.2.3 RCS Calculation and ISAR Imagery

In the proposed hybrid FETD-GSM algorithm, the incident and reflected

fields are both expanded by the same set of modal bases {ui}

Einc =
M∑
i=1

aiui, Eref =
M∑
i=1

biui, (9.30)

where the coefficients for incident modes ai are expressed as

ai =

∫
S

ui · Eincdr. (9.31)

The coefficients for the incident and reflected modal fields are related via the

GSM [Sij]

{bi} = [Sij]{aj}, (9.32)

where

Sji =

∫
S

uj · (Etot
i − Einc

i )dr∫
S

ui · Einc
i dr

. (9.33)

In (9.33), Etot
i and Einc

i are the total and incident fields with the launching of

the ith modal incidence. Once the broadband GSM is obtained, the reflected

modal coefficients can be calculated through (9.32) and then the reflected

field from the second equation in (9.30).
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The RCS contributed by the interior of an open cavity is calculated as

σ = lim
r→∞

4πr2 |Esca(r)|2

|Einc(r)|2
, (9.34)

where the scattered far-field Esca(r) is given by

Esca(r) ≈ jk0
e−jk0r

4πr

∫
S

r̂ × (r̂ × η0Js + Ms)e
jk0r̂·r′dr′. (9.35)

In (9.35), η0 denotes the free-space intrinsic impendence, Js is the equiva-

lent electric current on the cavity aperture which can be approximated by

the physical optics (PO) technique and vanishes when an infinite ground

plane is present, and Ms is the equivalent magnetic current on the cavity

aperture which is directly evaluated using the reflected field [98]. A straight-

forward implementation of (9.35) can be computationally expensive when

the numbers of source points M and field points N are very large. The

MLFMA is adopted to reduce the computational complexity from O(MN)

to O(N logM) [2].

The broadband wide-angle scattered fields can be further processed to

produce ISAR images, which are important for target identification, recog-

nition, and classification [166–169]. The ISAR imagery is usually formed on

the two-dimensional (2D) range and cross-range plane via [169]

ISAR(x, y) =
1

∆

∫ θ2

θ1

∫ k2

k1

p̂ · Esca(k, θ)e j2(kxx+kyy)dkdθ, (9.36)

where Esca(k, θ) is the scattered field represented in the k-θ plane with [θ1, θ2]

and [k1, k2] respectively denoting the angle and wavenumber sweeping ranges,

p̂ is the polarization of interested, ∆ = (k2 − k1)(θ2 − θ1), kx = k cos θ, and

ky = k sin θ. Again, the direct evaluation of (9.36) is expensive. A more

efficient approach is to resample the scattered field in the kx-ky plane so that

the FFT can be utilized to accelerate the imaging process [169].

9.2.4 Dominant Scattering Modes

Theoretically, all the modes should be considered at the waveguide port in

order to form a complete set of bases. However, because of the finite element
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discretization, not all the modes can be resolved. In addition, modes with

large attenuation constants tend to contribute less in the RCS predictions.

Hence, we use the following criteria in the modal profile calculations:

0 ≤ Θ2 + γ2

Θ2
≤ 1. (9.37)

Since each modal basis has to be launched as an incidence, the number of

modes plays an important role in the efficiency of the proposed algorithm.

Fortunately, only a portion of the modes calculated with (9.37) contribute

significantly to the RCS. Since {ai} in (9.31) is a function of frequency, in-

cident angle, polarization, and modal index, we sweep all the parameter

combinations to find the dominant modes. More specifically, the modal pow-

ers

Pi = 20 log10 |ai| (9.38)

are normalized with the most dominant mode, and all the modes with nor-

malized modal power below −60 dB are eliminated from the computation.

Since higher frequencies require more modes and, more importantly, since

modes calculated at lower frequencies are a subset of those calculated at

higher frequencies, we can use the highest frequency of interest when per-

forming the parameter sweep.

9.3 Numerical Results

In this section, we first present two straight open-cavity scattering examples

to validate the hybrid FETD-GSM algorithm. After that, another two well-

known structures with more complicated geometries are simulated to demon-

strate the capabilities of the proposed algorithm for broadband monostatic

RCS calculation of large and deep open cavities. Based on the far-fields,

the ISAR images are processed to investigate the effects of geometrical con-

figurations and internal lossy coatings on target signatures. For numerical

simulation, the computational domain is discretized into curvilinear tetrahe-

dra with mixed and full 2nd-order curl-conforming basis functions to expand

the electric field in the FE and CFS-PML regions, respectively. The reflection

from the CFS-PML is set to −45 dB to achieve a balance between artificial

reflection and time marching stability. In each time step, the linear system
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is solved by the direct sparse solver PARDISO [105]. The calculations are

carried out in double float precision on a 96-node Cisco cluster, with each

computing node configured with two Intel Xeon E5-2680 CPUs and 256-GB

memory.

9.3.1 Validation I–Square Duct Cavity

The first validation example is the scattering from a square duct cavity with

interior dimensions of 2.75 inches× 2.75 inches× 27.0 inches. The measured

broadband monostatic RCS data are plotted in Fig. 9.1 for 10–18 GHz.

The simulation results, carried out using 110 modes, are displayed in Fig.

9.2, showing a good correlation with the measurements. The discrepancy is

mainly due to the different color schemes used in the plotting software, the

interference of the environment in the measurement, and the fact that the

exterior scattering and edge diffraction are not included in the simulation.

9.3.2 Validation II–Circular Cavity

The next example simulates the scattering from a circular cavity to further

validate the proposed hybrid algorithm. The cavity has a radius of 12 inches

and a depth of 60 inches. Since the highest frequency of interest is 5 GHz, 509

modal bases are employed in the numerical simulations. The measured and

simulated results are plotted in Figs. 9.3 and 9.4, respectively, again showing

a good agreement between the two results except for the discrepancy noted

earlier.

9.3.3 Channel Duct Cavity

After the two validation examples with straight geometries, we now demon-

strate the capabilities of the proposed algorithm for more complicated struc-

tures and apply the obtained broadband wide-angle scattered fields to the

ISAR imagery. The first example considered here is an elongated PEC cavity

called Channel Duct [91]. The Channel Duct has an elliptical cross section

(major and minor radii are respectively 118.03 mm and 58.77 mm) at its

aperture, which gradually evolves to a circular shape (radius is 92.35 mm)
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at its termination, as illustrated in Fig. 9.5. The cavity has a depth of 1360

mm in the z-direction. Since the highest frequency of interest for the sim-

ulation is 16 GHz, the geometry is discretized into curvilinear tetrahedral

elements with a size of 9.375 mm, which results in 6,836,838 total DoFs.

In the simulation, the cavity aperture is truncated by a 25-mm thick ABC-

backed CFS-PML. The time step size is set to 1.0 ps and the number of time

steps is 32,000. With 360 dominant modes to expand the electric field at the

cavity aperture, the entire simulation was carried out on 90 computing nodes

in 112 hours.

The calculated monostatic RCS results at 16 GHz in the Y Z plane are

plotted in Fig. 9.6, together with the frequency-domain FEBI and measure-

ment results [92]. Overall, the agreement between the three sets of results

is very good, especially for the FEBI and hybrid FETD-GSM results. The

discrepancy with the experimental data at large incident angles is caused by

the imperfect measurement and the fact that the exterior scattering and edge

diffraction are not included in the FEBI and FETD-GSM simulations. The

broadband wide-angle monostatic RCS results in the XZ plane from 6 GHz

to 16 GHz are plotted in Fig. 9.7, with the presence of an infinite ground

plane around the aperture. Because of the geometrical symmetry in the XZ

plane, the obtained RCS results are also symmetrical. Since one of the main

strengths of this hybrid algorithm is its ability to perform fast broadband

wide-angle sweep far-field computations, which makes the ISAR imagery pos-

sible, Fig. 9.8 shows the generated ISAR images together with the aperture

and termination information of the physical cavity. Apparently, the aper-

ture location and its dimension along the x-direction are correctly captured.

The termination location is also predicted accurately because at the normal

incidence the wave propagates approximately in a straight direction, due to

the large cross section of the cavity as compared to the wavelength, and thus

reaches the termination and gets reflected directly. However, its dimension

cannot be accurately predicted because of the waveguide mode effect. The

images in the cross range are caused by the higher-order modes excited by

the incident waves from large oblique directions and their multiple bounces

during propagation in the cavity. Note that since the cavity is not curved in

the x-direction, all the cross-range images appear at or behind the physical

location of the termination.

By changing the observation plane, other cavity dimensions can be revealed
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in the RCS and ISAR images. To see this, the broadband RCS results in

the Y Z plane for the Channel Duct cavity with an infinite ground plane are

depicted in Fig. 9.9, showing nonsymmetric scattering patterns due to the

nonsymmetric geometry along the y-direction. The corresponding ISAR im-

ages are shown in Fig. 9.10. Clearly, the aperture location and its dimension

along the y-direction are accurately identified. As expected, the predicted

termination size is enlarged due to the more pronounced waveguide mode

effect because of the narrower dimension of the aperture in the y-direction,

even though the termination location is still correctly predicted for the rea-

son elaborated above. On comparing with Fig. 9.8, it is obvious that the

electromagnetic waves now experience the curvature effect in the Y Z plane.

Consequently, at large cross ranges, the predicted cavity depth is smaller

than the physical depth in the z-direction due to the “early” reflections at

large incident angles (the waves reflected before reaching the termination).

For some open cavities such as jet engine inlets, there is no ground plane

surrounding the cavity aperture. The effect of the ground plane can be

removed by including the PO current Js in the calculation of (9.35). To

study the effect of an infinite ground plane on the RCS results and ISAR

images, Fig. 9.11 presents the broadband RCS results in the XZ plane of

the Channel Duct cavity without a ground plane. On comparing with Fig.

9.7, it is obvious that without an infinite ground plane the RCS at and near

normal incidence is significantly reduced. The corresponding ISAR images

are shown in Fig. 9.12, which shows that the cavity aperture is virtually

invisible in the ISAR images because the edge diffraction and scattering by

the external surfaces are not included in the RCS calculation. The computed

broadband RCS results in the Y Z plane without an infinite ground plane are

given in Fig. 9.13, and the corresponding ISAR images are given in Fig. 9.14,

clearly showing the significant effect of the curvature in the y-direction.

9.3.4 COBRA Cavity

The second example simulated is a curved cavity known as COBRA cavity

with a cross section of 84 mm × 110 mm and a z-direction depth of approx-

imately 437 mm [97], as illustrated in Fig. 9.15. For numerical simulation,

the cavity aperture is truncated by an ABC-backed CFS-PML with a thick-
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ness of 30 mm. The entire structure is discretized into curvilinear tetrahedral

elements with a mesh size of 8.5 mm, which is about 0.5 wavelength at the

highest frequency of 17.5 GHz. Although 157 modes are supported at the

highest frequency, only 113 dominant modes contribute to the RCS signif-

icantly and hence are considered in the calculations. The total number of

DoFs in the computational domain is 1,345,563. The time step size is set to

0.95 ps to resolve the higher-order modes and the number of time steps in

the simulation is 30,000. The calculation was carried out on 57 computing

nodes with 4.7 hours. The monostatic RCS results in the Y Z cut, simulated

with the presence of an infinite ground plane, are plotted in Fig. 9.16 from

6 GHz to 17.5 GHz, showing a slower frequency variation than the Chan-

nel Duct RCS results because the COBRA cavity is not as deep and large

as the Channel Duct. The processed ISAR images in Fig. 9.17 show the

correct cavity aperture location and dimension. It is also apparent in the

images that the multi-bounces of the fields inside the cavity lead to an en-

larged cross-range image. Because of the curved structure of the COBRA

cavity, electromagnetic waves propagate beyond the physical depth in the

z-direction. Hence, the predicted termination location is behind the physical

location, as illustrated in Fig. 9.17.

For low observable applications, open cavities are often coated with a radar

absorbing material on its internal surfaces. To study the effect of the coating

on the RCS and ISAR images, we place a 3-mm thick lossy dielectric (εr = 6.0

and σe = 4.4506 S/m) on the internal surfaces of the COBRA cavity. The

numerical discretization of this coated COBRA cavity results in 1,423,235

total DoFs and 684 modal bases. With 57 nodes employed in the parallel

computing, the total simulation time is 30.4 hours. Plotted in Fig. 9.18

are the broadband monostatic RCS results in the Y Z plane, which show a

significant RCS reduction compared with the results obtained for the PEC

COBRA cavity. The processed ISAR images are depicted in Fig. 9.19.

Although the correct aperture location and dimension are identified, the

termination information is not observable in the ISAR images because of

the absorption by the absorbing material, which is enhanced by the curved

structure that traps the field inside the cavity where the electromagnetic

energy is eventually dissipated in the internal coating.
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9.4 Summary

In this chapter, we proposed a hybrid algorithm that combines the FETD

method and GSM technique to efficiently compute the broadband monostatic

RCS of a large and deep open cavity. For this, we presented the formulation

and implementation details for the numerical modal analysis of arbitrary

cross-sections and the FETD method equipped with an ABC-backed CFS-

PML truncation for transient simulations. We then described the broad-

band monostatic RCS evaluation using GSM and discussed the selection of

dominant scattering modes to further improve the efficiency of this hybrid

algorithm. Finally, we presented two straight cavities to validate our algo-

rithm and then two complicated structures to demonstrate its accuracy and

efficiency for broadband monostatic RCS computation and ISAR imagery of

large and deep open cavities. In passing, we note that the efficiency of this

hybrid algorithm is the result not only of the hybridization of the FETD and

GSM, but also of the hybridization between the time- and frequency-domain

computations and the implied model-order reduction strategy.
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9.5 Figures

(a)

(b)

Figure 9.1: Measured broadband monostatic RCS (dBsm) for the square
duct cavity. (a) φφ polarization. (b) θθ polarization.
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(a)

(b)

Figure 9.2: Simulated broadband monostatic RCS (dBsm) for the square
duct cavity. (a) φφ polarization. (b) θθ polarization.
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(a)

(b)

Figure 9.3: Measured broadband monostatic RCS (dBsm) for the circular
cavity. (a) φφ polarization. (b) θθ polarization.
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(a)

(b)

Figure 9.4: Simulated broadband monostatic RCS (dBsm) for the circular
cavity. (a) φφ polarization. (b) θθ polarization.
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Figure 9.5: Geometry of the Channel Duct cavity.
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(b)

Figure 9.6: Monostatic RCS comparison of the Channel Duct cavity at 16
GHz in the Y Z plane. (a) φφ polarization. (b) θθ polarization.
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(a)

(b)

Figure 9.7: Broadband monostatic RCS (dBsm) in the XZ plane for the
Channel Duct cavity with an infinite ground plane. (a) φφ polarization. (b)
θθ polarization.
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(a)

(b)

Figure 9.8: ISAR images in the XZ plane for the Channel Duct cavity with
an infinite ground plane. (a) φφ polarization. (b) θθ polarization.
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(a)

(b)

Figure 9.9: Broadband monostatic RCS (dBsm) in the Y Z plane for the
Channel Duct cavity with an infinite ground plane. (a) φφ polarization. (b)
θθ polarization.
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(a)

(b)

Figure 9.10: ISAR images in the Y Z plane for the Channel Duct cavity
with an infinite ground plane. (a) φφ polarization. (b) θθ polarization.
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(a)

(b)

Figure 9.11: Broadband monostatic RCS (dBsm) in the XZ plane for the
Channel Duct cavity without an infinite ground plane. (a) φφ polarization.
(b) θθ polarization.
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(a)

(b)

Figure 9.12: ISAR images in the XZ plane for the Channel Duct cavity
without an infinite ground plane. (a) φφ polarization. (b) θθ polarization.
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(a)

(b)

Figure 9.13: Broadband monostatic RCS (dBsm) in the Y Z plane for the
Channel Duct cavity without an infinite ground plane. (a) φφ polarization.
(b) θθ polarization.
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(a)

(b)

Figure 9.14: ISAR images in the Y Z plane for the Channel Duct cavity
without an infinite ground plane. (a) φφ polarization. (b) θθ polarization.
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Figure 9.15: Geometry of the COBRA cavity.
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(a)

(b)

Figure 9.16: Broadband monostatic RCS (dBsm) in the Y Z plane for the
PEC COBRA cavity with an infinite ground plane. (a) φφ polarization. (b)
θθ polarization.
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(a)

(b)

Figure 9.17: ISAR images in the Y Z plane for the PEC COBRA cavity
with an infinite ground plane. (a) φφ polarization. (b) θθ polarization.
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(a)

(b)

Figure 9.18: Broadband monostatic RCS (dBsm) in the Y Z plane for the
coated COBRA cavity with an infinite ground plane. (a) φφ polarization.
(b) θθ polarization.
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(a)

(b)

Figure 9.19: ISAR images in the Y Z plane for the coated COBRA cavity
with an infinite ground plane. (a) φφ polarization. (b) θθ polarization.
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Chapter 10

Conclusion and Future Work

10.1 Conclusion

This dissertation is primarily focused on the development of an IGFEM for

efficient simulation and optimization of electromagnetic composite materi-

als, a parallel FETI-DP algorithm for large-scale electromagnetic scattering

analysis, and a hybrid FETD-GSM technique for fast broadband analysis of

resonant waveguide structures. The contribution of this research work and

the conclusion for each topic in the previous chapters are summarized as

follows.

10.1.1 Modeling of Composite Materials

An IGFEM is introduced for efficient 2-D and 3-D electromagnetic analyses of

heterogeneous materials. To alleviate the use of meshes that conform to the

material microstructures, thereby greatly reducing the burden of mesh gener-

ation, the method assigns generalized DoFs at material interfaces to capture

the discontinuities of the field and its derivatives. The generalized DoFs are

supported by enriched vector basis functions, which are constructed through

a linear combination of the vector basis functions from the sub-elements.

The IGFEM is shown not sensitive to the quality of the sub-elements and

maintains the same level of solution accuracy and computational complexity

as the standard FEM based on conformal meshes. The ability to work on a

fixed background mesh with morphing geometries makes this method very

attractive in statistical study of composite materials and in shape/topology

optimization. Therefore, a gradient-based shape optimization scheme com-

bined with the IGFEM is proposed to optimize electromagnetic problems.

The sensitivity analysis of the objective functions and constraints are ana-
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lytically derived instead of using a finite-difference scheme to reduce compu-

tational cost and numerical errors. Furthermore, the so-called design velocity

field in the sensitivity analysis is evaluated only at the material interfaces,

significantly speeding up the optimization process.

10.1.2 Scattering Analysis and CCD Imaging of Electrically
Large Objects

An efficient parallelization of the FETI-DP algorithm is presented for large-

scale electromagnetic simulations. To achieve a good load balance for parallel

computation, the original computational domain is decomposed into subdo-

mains with similar sizes and shapes. The subdomains are then distributed to

processors based on their close proximity to minimize inter-processor commu-

nication. The parallel GMRES, enhanced with the ICGS orthogonalization

scheme to reduce global communication, is adopted to solve the global inter-

face problem with a fast convergence rate. The global corner-related coarse

problem is solved iteratively with a parallel CA-BICGSTAB method to min-

imize global communication, and its convergence is accelerated by a diago-

nal preconditioner constructed from the coarse system matrix. To alleviate

neighboring communication overhead, the non-blocking communication ap-

proach is employed in both GMRES and CA-BICGSTAB iterative solutions.

To enable the scattering analysis of objects above, straddling, and/or em-

bedded in a stratified medium, an inhomogeneous ABC is developed for the

parallel FETI-DP algorithm. An MLFMA-based fast far-field calculation ap-

proach is implemented to reduce the computational complexity. With these

techniques, a systematic scheme to model a 4f imaging system is proposed.

The time-consuming Debye-Wolf integrals in the imaging formulation are ac-

celerated by a linear interpolation technique so that the large-scale vectorial

field imaging of an arbitrary object is possible.

10.1.3 Modeling of Resonant Waveguide Structures

A hybrid algorithm that combines the FETD method with the GSM tech-

nique is proposed to efficiently characterize the properties of wave propa-

gation in highly resonant waveguide devices and compute the broadband
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monostatic RCS of large and deep open cavities. To alleviate the problem

of an extremely large number of time steps required for a highly resonant

device, the algorithm first divides the device into several less resonant sub-

domains to reduce the number of time steps. The subdomain interfaces are

modeled with the WPBC to absorb any impinging waveguide modes. Each

subdomain is then represented by a broadband GSM, which is computed by

the FFT of the FETD solutions. The global GSM of the original resonant

device is obtained by cascading the subdomain GSMs. For an open cavity

scattering analysis, the time-domain CFS-PML is implemented to truncate

an arbitrary waveguide port. The broadband monostatic RCS is evaluated

using a broadband GSM obtained by the FETD solutions.

10.2 Future Work

The developed methods have been shown to be powerful and efficient, and

their potential applications are far beyond the examples demonstrated in this

dissertation. Several aspects of this research work can be extended in the

future to further improve the efficiency and capability of these methods.

10.2.1 More Efficient Modeling and Optimization of
Composite Materials

As shown in Chapters 2–4, the IGFEM significantly alleviates the expen-

sive process of creating meshes conformal to the complex internal structures.

However, for applications that have tiny geometrical features, sharp corners,

and/or high contrast materials, which are typically encountered in the design

of advanced multifunctional composite materials and compact waveguide fil-

ters, a sufficiently fine mesh is required to reduce the geometry discretization

error and resolve the field variation around those structures. Since the loca-

tions of the internal structures are constantly changing during a statistical

analysis and an optimization process, the current IGFEM uses a uniform

background mesh with a global minimal mesh size to ensure the accuracy of

the numerical simulations. Unfortunately, the global fine mesh significantly

increases the total number of DoFs and inevitably undermines the efficiency

of the IGFEM. A more natural way is to use a coarse background mesh and
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automatically refine the mesh in the regions needed to achieve a desired so-

lution accuracy with far fewer DoFs than the IGFEM with a global small

mesh size. The envisioned challenges associated with this adaptive meshing

technique are creating the refined elements with appropriate aspect ratios

and determining the level of refinements around the tiny features and sharp

corners. These challenges can be investigated in future work.

Because of the fixed mesh nature, it is computationally economical to

perform an analytical sensitivity analysis using IGFEM on the finite ele-

ments intersected with internal structures. This salient property has been

exploited by a gradient-based shape optimization scheme proposed in Chap-

ter 4. As a proof-of-concept, the proposed scheme was applied to various

2-D electromagnetic optimization problems using nodal basis functions and

has demonstrated its efficiency in terms of computational complexity and

convergence rate. The extension of the current optimization scheme to the

design of real-life 3-D applications is more important and rewarding. Since

H(curl)-conforming basis functions are normally adopted in the 3-D electro-

magnetic analyses to avoid spurious solutions, the difficulty is to perform the

sensitivity analysis analytically, which requires the derivation of the deriva-

tives of the bases and their curls with respect to the design parameters for

various finite elements (tetrahedra, prisms, and pyramids). The challenges

and potentially broad impacts of this work make it another future research

topic.

10.2.2 More Efficient Modeling of Coherent Optical
Microscopes

In Chapter 7, a systematic numerical modeling of coherent optical micro-

scopes was proposed, which consists of a near-field simulation with the par-

allel FETI-DP algorithm to enable large-scale scattering analyses, a near-

field to far-field transformation with the MLFMA to reduce the computa-

tional complexity, and a far-field to image process with a linear interpolation

to speed up the Debye-Wolf integrals. The proposed approach has demon-

strated its efficiency and capability by successfully imaging a general object

with a cross-section of 10,000 square wavelengths. However, the bottleneck

of the current method is that the number of far-field points is on the order
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of D4, where D is the dimension of the scatterer. Fortunately, for peri-

odic structures, such as a large-scale nanopatterned semiconductor wafer,

the computational cost can be significantly reduced by exploiting the period-

icity of the structure. To this end, a diffraction grating-based method [175]

is proposed as a future research direction for the fast vectorial imaging of

periodic structures, where only O(D2) far-field points need to be evaluated.

In the proposed new method, the entire semiconductor wafer, which con-

tains many nanopatterned unit cells that may have defective patterns, is

treated as a super cell. The super cell will be simulated using the parallel

FETI-DP algorithm with the PBC applied to the four sidewalls. Because of

the higher-order Bloch modes excited by the periodic structure, the tradi-

tional ABC is not effective for the truncation of the top and bottom surfaces.

The BI-based PRC implemented in Chapter 3 can absorb all the higher-order

modes. However, the BI-resultant full matrix is not preferred in the DDM-

based parallel FETI-DP algorithm. Therefore, the CFS-PML, which can also

absorb all the modes yet still produce a sparse system matrix, can be adopted

to truncate the non-periodic surfaces. The periodicity in the super cell can

be exploited by the FETI-DP algorithm to significantly reduce the memory

consumption and computational time. The Bloch modes can be adopted as

basis functions to expand the far fields. By using each Bloch mode as an

incidence, a GSM that characterizes the scattering property of the super cell

can be obtained. Since the image of each Bloch mode can be efficiently cal-

culated via a 2-D FFT, the real image of a scatterer can be easily obtained

by coherently summing up the contributions from all the Bloch modes.

10.2.3 More Accurate Modeling of Open Cavities

In Chapter 9, an efficient hybrid FETD-GSM algorithm was proposed for the

fast broadband monostatic RCS calculation and ISAR imagery of large and

deep open cavities. The proposed algorithm yields RCS results comparable to

those of the full-wave rigorous FEBI method, when the incident angles are less

than 60 degrees. At large incident angles, the discrepancy between the two

sets of results becomes obvious. The reason is that the edge diffraction effect

at the cavity aperture is not considered in the current hybrid FETD-GSM

algorithm and its contribution to the overall RCS can be dominant compared
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to the internal cavity scattering at large incident angles. To include the edge

diffraction effect and maintain the efficiency of the current algorithm in the

meanwhile, a BI-based method can be adopted in the hybrid FETD-GSM

algorithm for more accurate RCS computation. To be more specific, instead

of projecting the incident plane wave onto the modal bases at the cavity

aperture and then calculating the reflected field based on the extracted GSM,

a new algorithm can be proposed to adopt the GSM and BI as the inner and

outer boundary conditions for the cavity aperture, respectively. With the

broadband GSM, the system matrix only needs to be filled and factorized

once at each frequency point. What is more, because of a 2-D structure of the

cavity aperture, the dimensions of the aperture system matrix are very small,

and hence the broadband monostatic RCS results can be obtained with little

cost. With the aforementioned accuracy and efficiency, the proposed new

algorithm serves as a promising future research direction.
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Guided Wave Lett., vol. 8, no. 12, pp. 415–417, Dec. 1998.

[155] F. Zheng, Z. Chen, and J. Zhang, “Toward the development of a
three-dimensional unconditionally stable finite-difference time-domain
method,” IEEE Trans. Microwave Theory Tech., vol. 48, no. 9, pp.
1550–1558, Sep. 2000.
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