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ABSTRACT 

 

This work contains analysis of directionally oriented material with heterogeneity across the spacial 

domain, between materials, and over time. Composite material containing directionally oriented 

material have become a necessity in the world of structural, mechanical, aerospace, and material 

engineering design. To account for the thermomechanical curing processes that these materials 

undergo when dealing with highly heterogeneous materials can cause deformation and eventually 

damage to the overall structure of the material. There are two methods discussed throughout the 

document: mixture theory to discuss the evolving curing and thermal effects on the structural 

behavior of a fiber reinforced laminate structure and a Discontinuous Galerkin method with return 

mapping algorithms to allow for damage when undergoing large deformation to be analyzed along 

the interface of heterogeneous materials. These two methods are collectively used to find 

weaknesses and faults in newly discovered fibrous and directionally oriented materials. 
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 CHAPTER 1: INTRODUCTION  

 

Fabrication of fiber-reinforced polymer matrix composites involves a number of complex 

interdependent processes. First, the mixing of thermoset polymer ingredients, resin and hardener, 

is achieved via a stochastic but finite sequence of folding, stretching, and cutting events [9].  

Secondly, selective chemical affinity of the embedded material towards these constituents can 

enhance their separation.  Thirdly, the cross-linking reactions are exothermic, and consequently 

self-catalyzing.  Even autoclave treatment does not prevent the development of temperature 

gradients due to the difference between the thermal conductivities of polymer matrix and the 

embedded material [18].  This in turn results in differential chemical reactions along the interface 

and development of a composite with spatially inhomogeneous physical properties.  Finally, upon 

extraction from autoclave, due to material mismatch, differential residual stresses are developed 

that can cause local debonding and crack propagation along these interfaces [19].  The properties 

of the interphase region are especially difficult to predict, unless their detailed constitutional 

history is known. 

In this thesis we have investigated two aspects of processing and performance of composites. The 

first aspect that deals with processing of composites and involves chemo-mechanical stress fields 

employs a mixture theory based model. This model employs homogenization ideas, and while 

discrete representation of fibers and matrix is suppressed, the individual constituents are 

represented via independent momentum, energy, and mass balance equations to represent the 

evolution of the individual constituents. The constituents interact amongst themselves via 

interactive force fields that augment the momentum balance equations. The mixture model is 
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locally homogeneous, but globally heterogeneous, and the properties of the constituents evolve as 

a function of chemical reactions locally at that point.  

The performance modeling aspect of laminated and fibrous composites investigates the inter-

material debonding and delamination. The interfacial interaction at the common interface is treated 

via a discrete modeling approach that is based on precise description of the two material 

subdomains via boundary fitted meshes. At the common interfacial boundary between the 

materials, interfacial coupling terms are introduced, that are derived by embedding DG ideas in 

the CG framework via the variational multiscale method. 

1.1  MATRIX CHEMICAL CURING 

A literature review reveals that several theoretical models and associated numerical schemes have 

been developed for structure-functional modeling and analysis of components made of composite 

materials [26,27,38,43]. The complexity of the process involved in the manufacturing of these 

engineered materials has been a challenge for the development of adequate numerical methods for 

process modelling. For example, in composite manufacturing, the fiber-resin mixture is subjected 

to a cure cycle under high temperature, initiating cross-linking polymerization in resin to produce 

a structurally hard composite [9]. The properties of the final product as well as its performance 

characteristics depend on the properties of constituents, processing parameters such as cure time, 

cure temperature, cure pressure and the chemical reaction in the resin. Due to the preferential 

adsorption of fibers, the chemical composition of resin near the fiber surface is different in 

comparison to the bulk resin. During curing, due to this change in constituent composition an 

interphase material is formed near the fiber surface. Of special significance is the network based 

curing model for polymers and their composites by Waas et. al. [9,18,19]. These works also show 
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that a micromechanics model, with several renditions of packing geometries can accurately present 

the interaction between fiber and matrix and thus can be used to evaluate the interfacial tractions 

in the "interphase region", or in a regions of a coating, e.g., as in ceramic matrix composites. 

Although numerical methods that involve explicit modeling of constituents and individual tracking 

of fiber/matrix/interphase result in a precise description of the composite, they result in a high cost 

of computation when applied at the structural or component level [43]. Mixture theory on the other 

hand provides reduced order models that are computationally economical at the mesoscopic level. 

From amongst the various mixture theories, the ones that yield locally homogeneous but globally 

heterogeneous models for multi-constituent materials, thereby allowing co-occupancy while still 

keeping track of kinematics and kinetics of individual phases (constituents) emerge as the most 

attractive alternative. In such mixture models each spatial point is occupied by all the constituents 

simultaneously. This assumption avoids the need to track/follow individual spatial points 

corresponding to individual constituents by capturing the mixture response macroscopically 

through constitutive models. These locally homogeneous but globally heterogeneous models 

reduce the cost of computation when compared to discrete modeling of individual components. 

Bowen et al. [5] presented a thermomechanical theory for diffusion in mixtures of elastic materials. 

Bedford et al. [4] proposed a multi-continuum theory for composite materials, where the material 

particles of different constituents are grouped together at reference configuration to define a 

composite particle. Though these constituent particles occupy different spatial points as the 

material deforms, the interactions between constituents are evaluated in the reference 

configuration using the composite particle. This concept is employed in the present work to model 

the interactive force fields [12,16]. 
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1.2 INTERFACIAL DEBONDING AND DAMAGE 

In recently years, composites have been widely used in many engineering structures. As the 

material is inhomogeneous and anisotropic, actual modeling of the composite structures under 

different loading conditions are crucial [6]. For laminated composite material, in order to 

determine the in-plane elastic response, the lamination theory (LT) gives rise to the analytical 

technique. [44]. Later on, Pipes and Pagano [42] have proposed a finite –difference solution 

technique to obtain the stress and displacement distribution for layers with different orientations. 

Masud and Panahandeh [34] present a finite –element formulation of shells for the analysis of 

composite laminates.  

For laminated composites especially, debonding between each layer is of interest [24]. An accurate 

modeling of the debonding phenomena across the inter-laminar surfaces is required. For modeling 

of debonding and damage, a classical approach is cohesive zone method [1,3,17,25,48].  For 

intrinsic cohesive zone method, it is shown in the literature that additional elastic stiffness is 

introduced which upsets the consistency and results in an inaccurate representation of the interface 

and the numerical simulation.  

The basis of the methods developed in Masud’s group is the theory of stabilized methods that is 

now a well-established framework for developing finite element formulations with enhanced 

stability and accuracy and applied to a wide range of problems in engineering and sciences [11,28- 

32,35,36,40]. With the objective of developing a general framework for local failure at material 

interfaces, Masud and coworkers developed a Lagrange multiplier method, in the context of small 

strains, for continuity of fields across embedded interfaces [50,53]. Variational multiscale method 

(VMS) [20,35] is adopted to eliminate the Lagrange multipliers which have the connotation of the 
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interfacial traction field. In an allied effort a finite strain interface formulation for multi-material 

interfaces in the finite strain regime was developed in [25]. 

In this thesis we have employed the methods developed in [49] where a stabilized formulation for 

finite strain interface without damage is presented. The notion of inelastic residual gap  was 

introduced in [49]. This method and code has been used to show the numerical simulations in this 

thesis. Problems with laminated composite materials are simulated. Both homogenous material 

and anisotropic material are used in this thesis. The stabilized formulation [7] is also applied for 

problems to track the debonding of the interfaces for single and multiple particle inclusions 

problems.  
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CHAPTER 2: MIXTURE THEORY MODEL FOR INTERPHASE EVOLUTION AND 

CURING 

 

This chapter is based on the theory developed and presented in Gajendran et el [13]. We employ 

the computer program developed in that effort to carry out some interesting numerical simulations 

that highlight the underpinnings of the method developed in [12,13]. The code has been 

implemented in a parallel computing environment, using the supercomputing facilities available 

at the University of Illinois, and employing openMP environment [21]. In addition, we have 

adapted a thermal model for evolution of spatially variable mechanical properties of the 

manufactured material. With the help of numerical simulations, we highlight the time evolving 

anisotropy in the evolving material.  

Before we present the numerical results, we first present a synopsis of Hari et al [13].  

2.1  FLUID-SOLID CURING MIXTURE MODEL 

Hall and Rajagopal [15] have proposed a mixture theory model for diffusion of a chemically 

reacting fluid through an anisotropic solid. The model is based on the maximization of the rate of 

entropy production constraint, considering anisotropic effective reaction rates and the limits of 

diffusion-dominated (diffusion of the reactants is far more rapid than the reaction) and reaction-

dominated processes (the reaction is far more rapid than the diffusion of the reactants). Earlier, 

Kannan and Rajagopal [22] had developed a constrained mixture model (no relative motion 

between constituents) for chemically reacting components that included stoichiometric equations, 

to study the complicated problem of vulcanization of rubber. Modifications to the Hall and 

Rajagopal model [15], as complemented by Hall [14], were employed in Gajendran et al [13] for 
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the formation and evolution of an interphase material contribution to an initially two-constituent 

material where all constituents are in the solid phase. In this model, the properties of the matrix 

constituent neighboring the fiber-matrix interface evolve during a cure cycle, and the reaction 

process model is associated with an anisotropic tensor that provides coupling of chemical reaction 

and mechanical stresses.  

As there is no interconversion of mass between matrix and fiber material, conservation of mass for 

the matrix and fiber/reinforcement can be given as,  

 m m m

RJ 
 (2.1) 

 r r r

RJ 
 (2.2) 

where the superscripts m, r refer to matrix and fiber/reinforcement, respectively. ,m r

R R   are the 

apparent reference densities of matrix and fiber with respect to the reference mixture volume, 

respectively. Conservation of linear momentum for the two constituent is written as, 

 DIV
m

m m m m m D

Dt
   

v
T b I

 
(2.3) 

 DIV
r

r r r r r D

Dt
   

v
T b I

 
(2.4) 

To keep the presentation concise, the superscript  ,m r  is used to represent both matrix m 

and reinforcement r. In (2.3) and (2.4) T  is the Cauchy stress, b is the body force and I  is the 

interactive force acting on the 
th  component in the mixture. According to Newton’s third law, 

the interactive force acting between the matrix and fiber follows the relation,  
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 r m I I
 (2.5) 

 

2.1.1 Constitutive relations based on maximization of rate of dissipation 

The thermodynamic system of the mixture [14,15] comprised of two solid constituents was 

assumed to be defined by the following set of state variables. 

 
   
s téë ùû = s F m,F r ,rm,rr ,q ,G{ } téë ùû   (2.6) 

where F


 is the deformation gradient of the 
th component,   is the extent of chemical reaction 

in current configuration and   is the temperature of the mixture. In application of eqn. (2.6), it is 

implied, as is normally true in composites, that the densities are negligibly weak functions of 

deformation; thus a limited range of volumetric deformations is implied.  The actual densities of 

the converted and unconverted matrix regions are assumed to be quite similar, while the associated 

material properties of the two regions need not be.  

The Helmholtz free energy function of the mixture [14,15] is defined as:  

 
   
y =y s t( )é

ë
ù
û =y F m,F r ,rm,rr ,q ,G{ }  (2.7) 

In the component form, the mixture Helmholtz free energy function is given as, 

 

  

ry = rmy m + r ry r

r = rm + r r

 

 (2.8) 

where 
  is the Helmholtz free energy function of the 

th component and   is the mixture 

density. 
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From a set of admissible class of constitutive relations, the following relations are obtained [14,15] 

by enforcing the maximum rate of dissipation constraint. These relations also correspond to the 

case [15] where the volume additivity constraint is not required.  

   1




















 mr

r
mm

T

m

mm g 








F
FT

 

 (2.9) 

  
T

m
r r r r m r

r
g

 
   



   
      

   
1T F

F
 

(2.10) 
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r

mm gg

































 F

F
F

F
I

 

(2.11) 

where 
 and g

are the entropy and chemical potential  of the 
th  component of the mixture. 

The chemical potential of the 
th  constituent in (2.9) is given as  

 g











  
(2.12) 

 

2.1.2 Constitutive Model for the Mixture 

Gajendran et al [13] consider a constitutive model wherein the thermal field has pronounced effect 

on the evolving mechanical field, while the reverse coupling of the mechanical field with the 

thermal field is considered weak. The constitutive relations (2.9)-(2.11) are modified based on the 

specified constitutive equations and the interphase model. The reduced form of Helmholtz 

functionals for the matrix and fiber are: 
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            
2

11
],,[

2020 mmmmmmm

m

T

mm atratrt 








 RR IEIEE 




 

 (2.13) 

Using (2.12)-(2.13) and (2.7)-(2.8) in (2.9), the matrix stress can be rewritten as,  

    
2( )

T m
T

m m m m

m m

   
   

  
T F F I

E
 (2.14) 

and additionally, assuming an additive decomposition of m into thermoelastic and inelastic parts 

yields:  

 

 

    0 0           2

m
m

m m

m m
m m m m m m m

R Rm m

T

tr a a

 



      



 


 


             

E E

E I I E I
E

 

  (2.15) 

where 
m  is the coupling term between the matrix strain and the extent of chemical reaction. R  

is the reference temperature, m

T  is the matrix true density and 
0 , ,m m ma    are matrix material 

constants. The last term in (2.15) is taken in a hereditary form: 

   0 0 0 0 01
, ,

m
m m c c c c

OP IJOP IJm m

IJ T

E k K d m d d
E

     



                    

 

(2.16) 

In (2.16), 0,ck     is the bulk modulus of the composite which is a function of the converted 

matrix (interphase) density and the extent of reaction and is defined as 0

1,c ck c      and 1c  

is a constant of proportionality, 0

OPQRK   
 (with major and minor symmetries) is the stiffness of 

the interphase material,  0,c cm     is a function of the converted matrix density as well as the 
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extent of reaction, and  c

OP    is the interphase coefficient of thermal expansion. In the current 

implementation of the model, thermal expansion is ignored and therefore the second term in (2.16) 

is neglected. 

Likewise, the Helmholtz free energy function of the reinforcement in reference coordinates 

accounts for the effect of thermal field on the mechanical properties of the fibrous constituent, 

while ignoring thermal expansion effects. Using (2.12) and (2.7) in (2.10), the reinforcement stress 

can be rewritten as:  

 
 

 
T

T
r r r

r

 
  

 
T F F

E
 

(2.17) 

In the absence of drag force between solid constituents under isothermal conditions, and neglecting 

the contribution to the interactive force due to matrix and fiber chemical potentials, the interactive 

force acting on the matrix (2.11) can be further simplified as in Hall [14]: 

 : :
r m m r

m m r

m r

   



  
    

  
I F F

F F
 

(2.18) 

2.2 WEAK FORM AND LINEARIZATION OF GOVERNING EQUATIONS 

The spaces of trial solutions for the matrix and reinforcement are: 

   1: | ,   on  m m nsd m m m

t t t ut tH        
 (2.19) 

   1: | ,   on  r r nsd r r r

t t t ut tH        
 (2.20) 
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The spaces of weighting functions for the matrix 
m

 and reinforcement 
r

are the homogeneous 

and time independent counterparts of the corresponding spaces of trial solutions m

t
and r

t
, 

respectively. 

Taking the inner product of (2.3) and (2.4) with the corresponding weighting functions and 

integrating over the domain leads to the weighted residual form: 

  , 0i ij j i iw T b I d    


   
 

(2.21) 

where   represents both matrix and fiber. Integrating (2.21) by parts and using divergence 

theorem yields the weak form for the mixture model which is stated as: Given the boundary 

conditions m r   on  u and the initial conditions, find m m

t  and  r r

t , such that 

  , 0,      ,i j ij i i i iw T d w b d w I d m r       
  

      
 

(2.22) 

An important issue in mixture theory based models is the Neumann boundary conditions where 

the constituents need to be tied in a self-consistent fashion to simulate the response of a material 

where constituents are fully bonded. The methods employed in the numerical simulations shown 

in this thesis have employed a finite strain finite element method for consistent tying of the 

constituents at the boundaries via a variational formulation that finds roots in the VMS method 

[12]. 

A good overview of the class of stabilized methods is provided in [28] and first applications of 

these methods in the domain of solid and structural mechanics is presented in [11]. A literature 

review reveals the classes of stabilized finite element methods that have been developed for mixed 

field elasticity problems [37,51]. A new class of stabilized methods finds roots in the Variational 
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Multiscale framework [29,30,33,35,36] wherein it is shown in [36] that stabilized displacement 

formulations have an equivalence with the classical F-bar method [49]. We have employed interior 

stabilized method in this work.  

2.3 THE CURING MODEL 

2.3.1  The Matrix Curing model 

In fiber reinforced polymeric composites, fiber materials are often oriented to provide the designed 

structural properties in the desired direction. These fiber materials are interlocked with a weaker 

material (a thermoset resin) and allowed to cure through a polymerization process. The matrix 

material is comprised of resin and hardener and catalysts are usually present in the hardener to 

accelerate cure. Because of chemical reactions, the viscosity of the thermoset increases and 

ultimately cross linking occurs due to growth and branching of chains, leading to an increase in 

the molecular mass. A model for resin kinetics and evolution of composite properties during curing 

for glass-polyester composites is presented in Ruiz and Trochu [45,46]. 

            ,r agp c agp r r gE T E T E T E T F W T        (2.23) 

where 

 

 
 

 
 

   

     

1 2

1 2

ˆˆ
,    

cosh cosh

ˆ ˆexp  

ˆexp ,   exp
ˆ1

agpc
c agpb b

r

g

r g g g

EE
E T E T

a T a T

F c d e

b
W T h T T a

 



 

  

 
    

   

(2.24) 
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In (2.23)  ,rE T   is the resin elastic modulus which is a function of the temperature field,  is 

the degree of cure, and T is the glass transition temperature. 
1 2

ˆ ˆ ˆ, , , , , , ,g c agpa a c d b E E  are 

constitutive parameters. We embed this model within the mixture theory framework in the context 

of finite strain finite element method. The parametric values employed for the numerical 

implementation of the model are obtained from [45,46].  

For the mixture theory described in Section 2.1.2, the evolution of matrix properties is given by 

the interphase evolution function  0K  . In the mixture model, this function is defined as the 

derivative of the Ruiz model for evolution of Young’s modulus with respect to the cure parameter. 

Accordingly, by taking the functional form of  0K   to be the first derivative of  ,rE T   given 

in (2.23), we embed the Ruiz and Trochu [45,46] model in equation (2.16) of the mixture theory 

presented in Section 2.1.2 

       0 r r r
c agp r

E F W
K E T E T W F

   
     

     
(2.25) 

In the present thesis we have employed the Kamal-Sourour kinetic model [43] for use in the 

evolution of matrix stress via equation (2.14). 

  
2

0 0 0

1 2 1K K    
        (2.26)  

where 1K  and 2K  are the rate constants. Further details can be reached in Gajendran et al [12]. 
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2.3.2 Adapting a Temperature Dependent Matrix Curing Model from Experimental 

Composites 

An experimental process called Brillouin Light Scattering (BLS)[23] allows numerical analysis to 

be performed on a new class of composite materials similar to that analyzed in Heinrich et al. [18]. 

This material experienced high temperature chemical reaction to cure the system. Using a 

Levenberg-Marquardt nonlinear curve fit over the first 220 minutes of data at 316C, the time 

dependent model for longitudinal modulus has been proposed in the following format: 

  /1 tM a e b ct    
 

(2.27) 

From (2.28), the constants are defined as: a = 1.695GPa, b = 3.816GPa, τ = 10min, and  

c = -0.0028min-1. Likewise, the degree of cure includes a first order time dependent reaction such 

that 

  /1 tA e   
 

(2.28) 

In eqn. (2.29), the constant A=0.85 as derived from atomistic simulations [18] and represents the 

maximum degree of cure achieved by the material. Using equations (2.27) and (2.28) as the 

reference experimental data, all future calculations will be calibrated to the two time dependent 

equations. 

With the initial model prepared through the experimental data on the new material, the cure 

expresses singular dependence on time, so an additional model implementation is necessary to 

introduce an additional dependency on temperature. For this reason, the Kamal-Sourour format of 

the Arrhenius equations[18, 43] are adapted in a way similar to equation (2.27). The curing process 

has a kinetic process of the form 
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  0 0,f T    (2.29) 

Here, T is defined as the temperature which makes the function representing the evolution of cure 

non-negative. The temperature-dependent function,  0,f T  , has been proposed to have the 

following form: 

     0 0 0

1 2, ( ) ( ) 1
nm

f T K T K T         (2.30) 

 1
1 1( ) exp

E
K T A

TR

 
  

 
 (2.31) 

 2
2 2(T) A exp

E
K

TR

 
  

 
 (2.32) 

Where m and n are power constants, R is the gas constant, A1 and A2 are frequency like constants, 

and 1E  and 2E  are the activation energies [18]. 

For the reactionary case for the current material, the equation (2.30) can be simplified to depend 

on a single reaction coefficient by setting K2(T) to zero. The adjustment is justified since K2(T) 

contributes weakly to the behavior of the overall model [10]. Also, a first order reaction is used 

since there is no experienced delay of the curing in the reaction of the material. Therefore, the 

power constant, n, is set equal to one to create a simplified Temperature dependency from the time 

dependent curing model as found in equation (2.28) [10]. This is shown in the following form: 

  0 0

1( ) 1K T    (2.33) 
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 1
1 1 exp

E
K A

TR

 
  

   
(2.34) 

Similarly, 0  is the degree of cure, T is the temperature (in Kelvin), R is the gas constant, A1 is 

used to represent a frequency constant, and ΔE1 shows the activation energy for the system. By 

taking the derivative of equation (2.28) and introducing the time dependent curing models into 

equation (2.33), the following equivalence is shown: 

 1exp ( ) 1 exp
A t t

K T A A
     

                  

(2.35) 

Equation (2.35) has a simple solution when the curing constant, A=1 even though the experimental 

analysis of the material has a curing constant at A=0.85. For the sake of numerical analysis, the 

current calculations will be presented using the simplified A=1 solution. The maximum degree of 

cure is then set at 1.0 instead of 0.85. Solving equation (2.35) yields: 

 1

1
(T)K 

  
(2.36) 

Plugging in equation (2.34) into equation (2.36) allows a solution set to be shown for calculating 

ΔE1 and A1. 

 1
1

1
exp

E
A

TR

 
  

   
(2.37) 

 1 1ln( )E TR A  
 (2.38) 

Therefore, for the simplified model, any combination of ΔE1 and A1 that satisfies equation (2.38) 

will have a solution for the curing evolution equation. The presented values obtained for ΔE1 and 

A1, for this case, are 7.3x104 J/mol and 2.9x105 min-1 respectively. 
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Within a time dependent loop, using the constants found in equation (2.38), the degree of cure is 

updated through the use of the updating implementation of Backward Euler expressed as: 

 
0 0 0

1 ( )n n dt    (2.39) 

In going from loading step n to n+1, 0  is the change in the degree of cure with respect to time as 

calculated in equation (2.33) and dt is the change in time step from 0

n  to 0

1n . By combining 

equations (2.27) and (2.28), an equation for the Longitudinal modulus can be created that has a 

dependency on degree of cure instead of time. The importance for this change allows for the 

temperature dependency modeled in the cure to adopt a temperature dependency in the 

Longitudinal modulus through the resulting equation. 

 
0

0 0( ) ln 1
a

M b c
A A

 
       

 
 (2.40) 

Note that the curing constant from eqn. (2.29) is shown by A=1, while the modulus constants, τ, 

a, b, and c are adapted from the same values used in eqn. (2.28) to reflect the results from the 

temperature dependent model. After calculating the longitudinal modulus, the scaling factor, 

A*=0.85, is introduced. Since the calculations of the Longitudinal modulus are correct based on 

the curing constant A=1, the scaling factor is only used on the degree of cure to scale the model to 

match the experimental results such that 

 
0* * 0

1 1n nA     (2.41) 

Note that 0*

1n  will have a maximum degree of cure at the scaling factor A*. The resulting degree 

of cure and longitudinal modulus is shown in Fig. 2-1. 
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(a) 

 
(b) 

Fig. 2-1: The degree of cure (a) and longitudinal modulus (b) for the first 180 minutes of curing 

at 316C. The solid line is the curve fitted data with time dependency while the dotted line is the 

adapted Kamal-Sourour Model to include Temperature dependency to the curing model. 
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From the derivation for the longitudinal modulus, the generalized Cauchy relationship between the 

longitudinal and shear moduli is presented in the proceeding relation [23]: 

 
3

M B
G




 
(2.42) 

In Equation (2.42), the constant B is set to approximately 3 for epoxy. The calculation of 

longitudinal and shear allows us to calculate the Young’s modulus and Poisson’s ratio which is 

shown in the following form [23]: 

 
(3 4 )G M G

E
M G




  
(2.43) 

 
2

2( )

M G

M G


 

  
(2.44) 

Using equations (2.43) and (2.44), the Elastic Modulus and Poisson’s ratio are used to calculate 

the Cauchy stress, the strain displacement matrix, and the Matrix of Material Moduli. 

Remark: In this work temperature is treated as a given field. For the case of a coupled chemo-

mechano-thermal model where temperature evolution takes place, a stabilized form for the thermal 

field as presented in [2] can be adopted. 

 

2.4 NUMERICAL RESULTS AND MODEL VALIDATION 

2.4.1  Temperature Dependency on Adapting a New Curing Mixture Model 

Since the addition of the Temperature dependence has proven to show equivalence to the original 

proposed data from eqns. (2.28) and (2.29), the expected material properties should hold if 

temperature changes across the spacial domain in the newly implemented model. In Fig. 2-2, the 
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degree of cure and Longitudinal modulus is shown over the first 180 minutes. As expected, the 

speed of curing increased as the composite material undergoes higher temperatures and decreases 

as the material experiences lower temperatures. Adjusting from the original experimental data, the 

maximum degree of cure has been redefined to be a value of 1.0, and the new model exhibits a 

similar horizontal asymptote for maximum curing across all applied temperature levels. For the 

longitudinal modulus distribution shown in Fig. 2-2b, as temperature increases, the magnitude of 

the gradient also increases with respect to time. The increase in the gradient shows that the 

longitudinal modulus grows and decays at a faster rate to reflect the increased rate of curing. 

 

Remark: The adjustment to the maximum cure to 1.0 instead of 0.85 has been made for several 

reasons:  

1. The Temperature dependent model already shows consistency to that of the experimental 

data. 

2. Since the degree of cure in the experimental data does not exceed 0.85, it makes more 

sense to have the maximum degree of cure at 1.0. 

3. The longitudinal modulus is modeled after the degree of cure having a maximum value of 

1.0 which allows the A* factor to be removed from all future implementation of the 

coded model.  
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(a) 

 
(b) 

Fig. 2-2: The degree of cure (a) and longitudinal modulus (b) for the first 180 minutes of curing. 

The black line shows the experimental temperature used to create the time dependent model with 

3 temperature variations above and below the original fitted model. 
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According to Fig. 2-3, the temperature variations do not cause any deviation in the plotted 

correlation between longitudinal modulus versus cure in addition to shear modulus versus cure. 

After 180 minutes, the only major difference is shown at the end where the modulus has evolved 

more at higher temperatures since it has cured at a faster rate. Since the generalized Cauchy 

relationship was used between the Longitudinal modulus and the Shear modulus for the same 

degree of cure as shown in equation (2.42), the evolution trend of the two curves have a similar 

shape. Also, the large drop in elastic modulus as the degree of cure approaches 1.0 represents how 

this class of materials [18] has an inverse reaction when the material nears full curing as opposed 

to the initial, practically linear, trend. 

 
(a) 

Fig. 2-3: The longitudinal (a) and shear (b) modulus as a function of degree of cure for the first 

180 minutes. The black line shows the Temperature used in the time dependent model with 3 

temperature variations above and below the original fitted model. 
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Fig. 2-3: (cont.) 

 
(b) 

 

As the temperature increased to 345C, the degree of cure reached its maximum value within 

machine precision at approximately 150 minutes. Because the new temperature dependent model 

has the longitudinal modulus depend entirely on the degree of cure, the longitudinal modulus also 

experiences no change after the 150 minute mark. However, the longitudinal modulus proposed 

by equation (2.27), should continue to change in time even as the degree of cure reaches a 

horizontal asymptote at the full cure of 1.0. To validate the inferred discrepancy, the model was 

ran for the first 500 minutes in hopes to compare the original time dependent and the newly 

developed temperature dependent models at 316C as shown in Fig. 2-4. 

Based on Fig. 2-4a, the temperature dependent model fits well to the degree of cure over time with 

minimal difference between the two models for the first 500 minutes. As expected in the 
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comparison of the longitudinal moduli between the two models from Fig. 2-4b, the time dependent 

model continues on the original trajectory after 325 minutes while the temperature dependent 

model no longer changes since the cure no longer changes, as shown in equation (2.40). 

Remark: Despite the difference between the two models, the temperature dependent model still 

correlates to the experimental data and is physically sound based on the following reasons: 

1. The experimental data used the first 220 minutes to capture the time dependent model. 

Any part of the new model does not show obvious changes from eqn. (2.27) until after 

the analyzed time period. 

2. When the material reaches the maximum degree of cure, the longitudinal modulus should 

no longer change with respect to time. 

3. If the curve fitted data continued to cure for an extended period of time, based on the 

current trajectory, the model would eventually reach a negative elastic modulus. At this 

point the model would be physically impossible. 

 
(a) 

Fig. 2-4: The degree of cure (a) and longitudinal modulus (b) as a function of time over the first 

500 minutes. The solid line is the time dependent curing model with time dependency while the 

dotted line is the adapted Kamal-Sourour Model to include Temperature dependency to the 

curing model. Note that the maximum degree of cure of 0.85 is used to compare the two models. 
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Fig. 2-4: (cont.) 

 
(b) 

 

Since the prior data gathered in Fig. 2-2b and 2-4b shows a point where the longitudinal modulus 

no longer changes with respect to time for two different temperature fields, the various temperature 

fields were plotted out to the first 500 minutes with respect to time, as found in Fig. 2-5. Here, 

when the material at each temperature reaches its full degree of cure, the longitudinal modulus is 

found to be a consistent value between the temperature fields. The plot also demonstrates a 

predicted time when any future heating of the material would demonstrate little to no effect on the 

degree of cure and longitudinal modulus. As seen in the trend found in Fig. 2-2b, the highest 

temperature field in Fig. 2-5b is the first to reach full curing and demonstrate no change in the 

longitudinal modulus followed by the next highest temperature field and so on. 
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(a) 

 
(b) 

Fig. 2-5: The degree of cure (a) and longitudinal modulus (b) for the first 500 minutes of curing. 

The black line shows the Temperature used in the time dependent model with 3 temperature 

variations above and below the original fitted model. 
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2.4.2 Adapting the Spatial dependent Temperatures for a lower temperature profile 

To account for small differences in the temperature (±50C) across the spacial domain, the 

Arrhenius equation has been coded to determine the mixture stresses and interactive forces across 

the spacial domain for varying degree of cure and longitudinal modulus. However, if the reduced 

Kamal-Sourour model for 316C, adapted from the time dependent experimental curve fit in eqns. 

(2.28) and (2.29), experiences lower temperature fields (i.e. 200C), the curing model never 

reaches the full expected curing value. Therefore, the experimental analysis of this material data 

in the similar class of materials as [18] does not match the new model. Since the longitudinal 

modulus has been coded to have a strict dependency on the curing behavior, the longitudinal 

modulus, also, does not reflect the projected time dependent model. To allow for accurate analysis 

of a lower temperature profile, a similar adaptation can be used to determine new coefficients for 

equations (2.27) and (2.34) applied to a lower temperature profile by doing a curve fit of the 

projected values at 200C for the experimental results for the longitudinal modulus over time. Even 

though the time dependent equation for the longitudinal modulus change to adapt to the new 

temperature profile, the maximum degree of cure is still at 1.0 to show the maximum cure that the 

material experiences at the new temperature with a similar time dependent profile as equation 

(2.28). The Levenberg-Marquardt nonlinear curve fit for the first 220 minutes of data at 200C is 

used to calculate the new constants. 

From the longitudinal modulus equation (2.27), the new adapted constants for the 200C 

temperature profiles are a = 1.633GPa, b = 4.714GPa, τ = 10min, and c = -0.0055min-1. Using the 

new longitudinal modulus equation, a simultaneous curve fitting plot is used to calculate the new 

Arrhenius equation coefficients found in equation (2.34). For 200C, the two coefficients are 
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A1=1.05e+6 and ΔE1= 6.38e+4. By using the same A* to show the consistency between the curing 

behavior at the lower temperature, this allows us to show whether the adapted Kamal-Sourour 

model of the Arrhenius equation [10,18] works for the lower temperature profile as shown in Fig. 

2-6. Notice how the scaled curing behavior for the lower temperature profile range yields a new 

longitudinal modulus which can have various temperatures across the spacial domain. Therefore, 

the modeling for this material is adapted to having a working temperature distribution along the 

spacial domain for Temperatures ranging from 150C to 250C as well as 266C to 366C. 

 
(a) 

Fig. 2-6: The degree of cure (a) and longitudinal modulus (b) for the first 180 minutes of curing 

at 200C. The solid line is the curing model with time dependency while the solid line is the 

adapted Kamal-Sourour Model to include Temperature dependency to the curing model. 
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Fig. 2-6: (cont.) 

 
(b) 

 

Since the correlation between the two models for the degree of cure and longitudinal modulus has 

been shown at the constant temperature field of 200C, the temperature can be adjusted in the 

Kamal-Sourour Model to include the new behaviors experienced by varying the temperature across 

the spacial domain. Shown in Fig. 2-7, the change in temperature has a similar effect to the degree 

of cure and longitudinal modulus plots where the speed that the material cures increases as the 

temperature increases which causes the longitudinal modulus to develop at a faster rate. Some 

differences develop between the two models that are worth mentioning. First of all, the same 

change in temperature at the lower temperature field causes larger changes in the response in the 

degree of cure and longitudinal modulus than experienced in the higher temperature field. Next, 

the larger changes cause the higher temperature variations to develop faster as well as the lower 

temperature variations to develop slower than what occurred at 316C. Due to the increased speed 
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in the degree of cure for the higher variations, the “plateau” for the longitudinal modulus is reached 

at a faster time than the higher temperature field. Finally, when the material is considered to be 

fully cured, the “plateau” occurs at a lower longitudinal modulus than the higher temperature 

model. 

 
(a) 

Fig. 2-7: The degree of cure (a) and longitudinal modulus (b) for the first 180 minutes of curing 

at 200C. The black line shows the Temperature in the time dependent model with 3 temperature 

variations above and below the original fitted model. 
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Fig. 2-7: (cont.) 

 
(b) 

 

2.4.3 Performance modeling for a single ply. 

To test a mesh model for a single ply plate with an x-direction from -30 to +30, y-direction from -

10 to +10, and the thickness of the material to go from 0 to 0.625, a parabolic temperature profile 

is applied along the domain where the maximum temperature of 316C is applied along the faces 

with the normal of the plane in the direction of positive and negative x-axis and the minimum 

temperature at 296C when the x component is equal to 0. From Fig. 2-8, two points are analyzed 

at the maximum temperature and the minimum temperature to test the performance modeling of 

the system. These points will be used to show the effects of the degree of cure and longitudinal 

modulus over time due to differences in the temperature domain over the spacial domain. For this 

problem, the fitted constants at 316C are plugged into the equations for the longitudinal modulus 

and Kamal-Sourour model which updates our degree of cure. 
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Fig. 2-8: Parabolic temperature distribution for a single ply laminate with the minimum 

temperature located along point A at 296C (569K) and the maximum temperature located along 

point B at 316C (589K). 

 

Based on the parabolic temperature distribution in Fig. 2-8, the direct impact on the degree of cure 

and the longitudinal modulus are shown along three different time steps to show the development 

for the fibrous composite material overtime and are shown in Fig. 2-9. For Fig. 2-9a, the 

longitudinal modulus and degree of cure seem to have nearly the identical profile distribution 

where the areas corresponding to high temperature fields experienced curing first followed by 

areas experienced to lower temperatures. At 100 minutes as found in Fig. 2-9b, the degree of cure 

has reached nearly 100 percent where the longitudinal modulus has begun to invert the distribution 

where the low temperature locations correspond to the higher points of longitudinal modulus. 

However, at this point, the variation between points A and B have little variance across the domain. 
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When looking at Fig. 2-9c, corresponding to 300 minutes of curing, not only does the additional 

exposure to heat after the material is fully cured cause the longitudinal modulus to decrease, but 

the variation between the longitudinal modulus at areas of high temperature and the longitudinal 

modulus at areas of low temperature increase as well. 

 

(a) 

Fig. 2-9: Degree of cure at the longitudinal modulus at 30 minutes (a), 100 minutes (b), and 300 

minutes (c) for a parabolic temperature distribution for a single ply laminate. The scale for the 

degree of cure ranges from 0 (referring to no curing in the material) and 1 (showing that the 

material is fully cured. Likewise, the scale for the longitudinal modulus ranges from 3.800 GPa 

(the minimum elastic modulus value) and 5.400 GPa (the maximum elastic modulus value). 
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Fig. 2-9: (cont.) 

 

(b) 

 

(c) 

 

With the understanding of how the distribution develops throughout the entire domain, the 

variation between areas of high temperature and low temperature can be plotted and compared as 
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shown in Fig. 2-10. For the degree of cure, the higher temperature location corresponding to point 

B cures at a higher rate which corresponds to the previous distribution data in Fig. 2-2. For the 

longitudinal modulus, point B has a higher correlated longitudinal modulus until about 50 minutes 

when the two points invert. This behavior demonstrates the decay of the longitudinal modulus 

starts to compromise the areas of high temperature while the areas of low temperature is being 

developed. In addition, since the longitudinal modulus is decaying at a faster rate for the higher 

temperatures, the variation in the longitudinal modulus increases between points A and B which 

matches the behavior exhibited in Fig. 2-9b and 2-9c. Since the material behavior has been 

correlated to experimental data, the axial loading and corresponding mixture stresses of the 

material can be determined through a two material coupling system. 

 
(a) 

Fig. 2-10: The degree of cure (a) and longitudinal modulus (b) for the first 300 minutes for the 

two corresponding point in the parabolic temperature profile. The blue line is the degree of cure 

and longitudinal modulus at point A while the red line is the degree of cure and longitudinal 

modulus at point B. 
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Fig. 2-10: (cont.) 

 
(b) 

2.4.4 Curing and coupled chemo-mechanical evolution in a plate with hole 

This test case presents three dimensional implementation of the cure and interphase evolution 

model employing quadratic brick elements. The constitutive model is tri-axial, however it is 

implemented in the three dimensional kinematic context. We consider a graphite-epoxy composite 

prismatic domain of dimensions 60×20×0.625  mm with a circular hole of radius 1.0 mm. The 

nodes are appropriately constrained at 0x   plane to avoid rigid body motion. The properties of 

this pre-impregnated composite with fiber orientation of zero degrees are shown in Table 2-1. 

Initially, the resin is assumed to have a very low elastic modulus. Composite is then allowed to 

cure until the matrix reaches a fully cured state of 0.99. A prescribed temperature field is applied 

(Fig. 2-11a) to model the effects of the thermal field during the curing process. The temperature 

field is assumed to have a constant value of 413 K along the entirety of the plate. It is assumed that 

the temperature of the mixture and its components are equal and constant with respect to time, 
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while it varies spatially over the domain. The lamina is subjected to an axial traction of 2 MPa at 

30x =   plane in the axial direction until the matrix reaches a cure value of 0.99. The data is 

analyzed with a time step of 25 seconds. Load is gradually increased from zero to 2 MPa at time 

25 sec, and is then held constant till time 300 sec.  Once the matrix is fully cured, the laminate is 

unloaded.  

Fig. 2-11 (a,b) shows the normalized thickness around the circumference. As time evolves, curing 

results in increase and elastic modulus and the evolving mechanical properties get manifested via 

the evolving stress. Fig. 2-11a shows 3E-05 change in the normalized thickness around the 

circumference, and this change in shape is attributed to the initial tensile force applied to the 

specimen. Fig. 2-11b shows the zoomed view which highlights the elastic recovery due to increase 

in internal resistive force that is attributed to the increase in the magnitude of the elastic modulus 

that recovers the deformation under the given constant load, as shown by plots at 100, 200 and 300 

seconds.  
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(a) 

 

(b) 

Fig. 2-11: Evolution of the normalized circumferential thickness change between (a) initiation of 

curing at time 0 25t = sec to time when curing is complete T 300t = sec, (b) zoomed view of the 

plate in the zone where applied load causes stress concentration. 
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Likewise, Fig. 2-12 shows that there is 8E-05 difference in the normalized radius of the circle due 

to the applied loading. As curing progresses, the increasing modulus of elasticity of the material 

results in elastic recovery under the constant tensile force. It is important to note that this recovery 

of the geometric configuration is a function of the mechanical strains induced by the chemical 

reactions. 

 

(a) 

Fig. 2-12: Evolution of the normalized radius change between (a) initiation of curing at time 

0 25t = sec to time when curing is complete T 300t = sec, (b) zoomed view of the plate in the 

zone where applied load causes stress concentration. 
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Fig. 2-12: (cont.) 

 

(b) 

 

To study the performance modeling aspect due to spatial variation in the material properties after 

curing, an axial traction of 2 MPa is applied at 30x =   plane. The hoop stress vs applied traction 

ratio along the circumference of the hole is compared with the exact solution provided in [19].  

Table 2-1 Material properties of the lamina. 

    (MPa)   (MPa)   (MPa) L (MPa) T (MPa)    

(kg/mm3) 

Volume

Fraction 

Fiber 1.314E+04 -3.86E+03 2.252E+05 9.674E+03 3.531E+03 1550E-09 0.7 

Matrix 3.4315 - - 2.2877 - 1200E-09 0.3 
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Fig. 2-13 presents the temperature profile, degree of cure and elastic modulus at 300 seconds of 

the cure cycle. Fig. 2-13b shows that the matrix material cures faster in the region where 

temperature is higher in comparison to the regions of the lamina with cooler temperatures, as 

shown in Figure 12a.  It is assumed that the prescribed temperature field is slowly-varying and 

thermal conductivity is sufficiently low such that the dissipative effects of heat conduction can be 

neglected. Fig. 2-13c shows the elastic modulus distribution of the matrix material at 300 seconds. 

The matrix elastic modulus peaks at the areas corresponding to the lowest prescribed temperature 

field, while it has a lower elastic modulus at the fully cured regions. Though the curing rate is 

faster at the higher temperatures, the distribution in Fig. 2-13c is due to the fact that the fully cured 

matrix elastic modulus at higher temperature is lower due to thermal softening than the region 

where the temperature is cooler by 20 K. 

Fig. 2-14a shows the evolution of curing at 50, 100, 120, 200 and 300 seconds along a line that 

runs tangent to the top of the hole along the length of the domain. Material regions corresponding 

to a higher prescribed temperature cures faster as compared to the regions of lower temperatures 

across the domain. Fig. 2-14b shows the evolution in the elastic modulus in the matrix material at 

50, 100, 120, 200 and 300 seconds. A non-uniform distribution of the elastic modulus can be 

observed along the length of the domain that can be attributed to two contributing factors: (i) 

degree of cure, and (ii) temperature. On one hand the elastic modulus decrease with increase in 

temperature even for fully cured material, while on the other hand time required to achieve 

complete curing is longer in regions with lower temperature. These two competing mechanisms 

lead to spatially varying elastic modulus over the domain. The matrix axial stress shown in Figure 

2-14c follows a similar trend and we see high surface stresses near the hole. 
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Fig. 2-15 shows the matrix axial stress profile across the domain at 300 seconds. It can be seen 

that the axial stress is higher in the region around the hole, where the tensile stress is 4.786 MPa 

for an applied normal traction of 2 MPa in the axial direction. 

 

(a) Temperature profile across the domain 

 

(b) Spatial distribution of the degree of cure. 

 

Fig. 2-13: Temperature (a), cure (b), and matrix modulus (c) distribution at 300 seconds. 
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Fig. 2-13 (cont.) 

 

(c) Spatial distribution of modulus of the matrix constituent. 

 

 

 

(a) Cure along the length of the domain. 

Fig. 2-14: Spatial variation of cure, matrix modulus and matrix axial stress at 50, 100, 120, 200, 

and 300 seconds. This analysis has been taken along the domain tangent to the top of the hole. 
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Fig. 2-14: (cont.) 

 

(b) Matrix elastic modulus along the domain. 

 

(c) Matrix Axial Stress along the length of domain.  
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Fig. 2-15: Matrix axial stress at 300 seconds in the cure cycle. 

 

Fig. 2-16: Matrix modulus of a fully cured matrix for degree of cure = 0.99 

            

(a) Composite axial stress 

Fig. 2-17: Composite axial stress of the fully cured composite at 200 MPa loading 
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Fig. 2-17: (cont.) 

      

(b) Composite axial stress - zoomed view. 

 

 

 

(a) Interactive force in X direction. 

Fig. 2-18: Interactive force of a fully cured composite at 200 MPa loading. 
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Fig. 2-18: (cont.) 

 

(b) Interactive force in Y direction. 

 

   

(a) Hoop stress vs applied traction. 

Fig. 2-19: Variation of the hoop stress and matrix modulus along the circumference of the hole. 
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Fig. 2-19: (cont.) 

 

(b) Matrix elastic modulus. 

 

Fig. 2-16 shows distribution of the matrix modulus once the matrix is nearly fully cured, where 

the degree of cure reaches a value of 0.99 at every spatial point in the domain. This is a 

representative simulation that shows the effect of curing on the distribution of the resin properties 

in the manufactured composite due to the imposed temperature distribution heat treatment. The 

fully cured composite is subjected to an axial loading of 200 MPa at 30x =   plane. Fig. 2-17 

shows the composite axial stress contour in the lamina, where the maximum axial stress of 1.36e3 

MPa occurs at the point that is at 900 along the circumference of the hole with respect to the axial 

direction. Fig. 2-18a and 2-18b shows the interactive force profile in X and Y direction 

respectively. In the current presentation of the model, the interfaces are considered as tightly 

bounded and no relative slipping is allowed between the constituents at the domain boundaries. 

This restriction can be removed by introducing a slip-function or sliding-function that permits 
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relative sliding between fiber and matrix and reflected via the interactive force field. The evolution 

equation for slip and/or debonding would get reflected in the Lagrange multiplier and when 

embedded in the variational equation, it will accommodate the proportioning of the applied edge 

tractions amongst the two constituents while accounting for the evolving damage at the edge.  

Fig. 2-19a shows the distribution of the hoop stress along the circumference of the hole vs applied 

axial traction for fiber orientation of 00 degree for two cases: (i) At 300 seconds of cure cycle, 

where an axial traction of 2 MPa is applied, (ii) For a fully cured material, where axial traction of 

200 MPa is applied. As the material model employed in this work is nonlinear elastic and as shown 

in Fig. 2-19b, the temperature variation along the circumference of the hole is almost constant, the 

hoop stress vs applied traction for both the materials overlap each other and compare well with the 

exact solution. 

2.4.5 Addition of Gaseous Voids into the Plate with Hole 

As the liquid epoxy undergoes high temperature curing in the material, gas bubbles form as heat 

is applied to the material. The matrix epoxy continues to harden into a gel and solid, yet some of 

the gas bubbles can get trapped into the new homogenous composite material. The gas bubbles 

weaken the Elastic modulus in the system which can cause voids and potential damage to the new 

mixture material. By estimating the percentage of the material that contains the gas bubble, these 

voids can show the deficiency of the modulus in the location of the formed voids. Using user 

defined locations in the same resin material as defined in Table 2-1, the material can be observed 

to find if the addition of these gaseous voids are critical to the failure of the material. Fig. 2-20 

shows the Elastic modulus at 100, 200, 300 seconds. Notice that while the material continues to 

cure, the voids become more apparent. The increased awareness as the material hardens is due to 



51 
 

the larger discrepancy between the matrix resin and the gaseous void. Fig. 2-21 shows the effects 

of the void through the thickness of the material. 

 

(a) Matrix Elastic modulus at 100 seconds 

 

(b) Matrix Elastic modulus at 200 seconds 

Fig. 2-20: Evolution of the matrix elastic modulus around the hole at 100, 200 and 300 seconds 

with a void along the top and the left side of the hole. 
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Fig. 2-20: (cont.) 

 

(c) Matrix Elastic modulus at 300 seconds 

 

 

 

Fig. 2-21: Cross section view of the void through the thickness of the plate. The Plate has been 

cut along the x=0 plane. 

 

Fig. 2-22 shows the plot of the elastic modulus around the hole. The plot identifies the voids 

through spikes of lower modulus values at 90 and 180 degrees where the voids are located. Here 

the void at 90 degrees would be detrimental to the infrastructure of the plate since it occurs in the 
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area of high composite axial stress as shown in Fig. 2-17 while the void at 180 degrees is less 

crucial to the integrity of the system. 

 

Fig. 2-22: The Elastic modulus around the hole after 300 seconds of curing. The locations of the 

voids are identified and circled in red. 
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CHAPTER 3: FINITE STRAIN INTERFACE STABILIZATION FOR 

DISCONTINUITIES IN MULTI-CONSTITUENT MATERIALS 

 

This chapter presents an interesting class of test problems that have been carried out with a 

computer code developed in Chen et al [7]. The theoretical foundations of the method presented 

in Truster et al [49] lie in finite deformation elasticity and a merger of DG finite element methods 

with CG methods. The synopsis of Chen et al [7] is as follows. 

3.1 GOVERNING EQUATIONS AND MIXED INTERFACIAL WEAK FORM 

As stated in [7], the reference configuration and the deformed configuration of the two domains 

connecting together with interfaces I  is shown in Fig. 3-1. At interfaces, the two domains can 

develop interfacial gaps. As stated in [7], an open bounded region sdn
  consist of two disjoint 

regions (1)  and (2)  by an interface I  as shown in Fig. 3-1. The two bodies deform according 

to the motion  ( ) ,t
X  that maps the reference configuration onto the current configuration, 

 ( ) ,tx X  where   represents different domains as 1 and 2.  
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(a)                                    (b)  

Fig. 3-1: Domain   with interface I  [7]. The deformed configurations are given by (1)  and 

(2) : (a) Reference configuration; (b) Current configuration. 

 

The equilibrium equations with the existence of the Lagrange multiplier field and the interface gap 

or debonding are given as follows. 

  ( ) ( ) ( ) ( ) ( )DIV in , 1,2o

        0P F B  (3.1) 

 
( ) ( ) ( )

Ion \ , 1,2      X  (3.2) 

 
(1) (2)

Ion  ζ   (3.3) 

 
(1) (1)

Ion   0λ P N  (3.4) 

 
(2) (2)

Ion    0P N λ  (3.5) 

. In (3.1) to (3.5), ( )
P  is the first Piola-Kirchhoff stress tensor, 

( )

o

  is the mass density, ( )
B  is 

the body force vector, , ( )  is the deformation map form either domain 1 or domain 2 and ( )
N  is 
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the unit outward normal vector at the region boundary I . The Lagrange multiplier λ  is introduced 

to enforce the equilibrium of tractions (3.4) –(3.5). 

Multiplying equilibrium equations (3.1) to (3.5) by weighting function 
( )

o

η  and applying the 

divergence theorem, the associated weak form is expressed as follows: Find 

 (1) (2) (1) (2), ,   λ   such that for all  (1) (2) (1) (2), ,o o    η η : 

 
( ) ( )

I

2 2
( ) ( ) ( ) ( ) ( )

1 1

GRAD : d d d 0o o o oV V A
 

    

 


  

 

       η P B η λ η  (3.6) 

  
I

d 0A


    μ ζ  (3.7) 

As stated in [7], eqn. (3.7) weakly enforces the jump continuity where    
(1) (2)

   is the 

jump operator defined  at interface I . The appropriate function spaces contained in the weak 

forms (3.6) and (3.7) are given as in [7]: 

      sd

( )
I

( ) ( ) ( ) 1 ( ) ( ) ( ) ( ) ( )

\
, det 0,

n

H


       

 
     
 

F X     (3.8) 

   sd

( )
I

( ) ( ) ( ) 1 ( ) ( )

\
,

n

o o o oH


    

 
    
 

0η η η  (3.9) 

  
sd1

2

I

n

H
       

λ λ  (3.10) 

Using the VMS method, the stabilized interface formulation and the corresponding linearization 

are derived in [7] and summarized below. 
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 

      

 

( )

2
( ) ( ) ( ) ( ) ( ) ( ) ( )

1

, GRAD : d

d GRAD : d

d 0

I I

I

o o o o

o o

o s

R V

A A

A



      








 



    

      

    



 



η η P η B

η P N η N ζ

η τ ζ







A  (3.11)  

 
 

  

  

     

     

( )

I

I

I

I

2
( ) ( ) ( ) ( ) ( ) ( )

1

, ; GRAD : :GRAD d

d :GRAD d

GRAD : d

GRAD : :GRAD d

I

o o

o s o

o

o n

o

K V

A A

A

A

dA



     










 







  

       

   

       

 
      



 







Ξ

η u η u

η τ u η u N

η N u

η u N ζ n

T η n T u
T





A

A

A  

(3.12)  

 

3.2 INTERFACIAL CONSTITUTIVE MODELS AND CORRESPONDING 

RETURN MAPPING ALGORITHMS 

In the finite element implementation of constitutive models that are based on internal variable 

formulism, the stabilized formulations are derived in [7]. To model the debonding of laminated 

composites, the evolution of inelastic gap or debonding terms need to be accommodated. The 

constitutive model is considered local and therefore enforced pointwise. The yield condition, 

damage evolution flow rule, and consistency condition at the Gauss points are strongly enforced 

along the interface. The residual gap ζ  and hardening variable Q  are treated as internal variables. 

In order to track the evolution of these internal variables, the return mapping algorithm which is 

adopted from Simo and Hughes [47] is developed in [7]. Details of the return mapping algorithm 

as well as the yield functions for the case of tension are described below. Further details can be 

seen in Chen et al [7]. 
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3.2.1 The Tension Model 

The yield criterion in tension is defined via the following isotropic linear softening model: 

    , cf Q P Q  T T  (3.13)  

where cP  is the critical stress at which debonding initiates, and Q  is the softening stress. The 

relation between the tensile stress and the inelastic gap is shown in Fig. 3-2. The interfacial traction 

T is as follows:  

    :  s
T PN τ ζ  (3.14)  

The flow rule and hardening law under the assumption of isotropy are derived as follows: 

 
 f  ζ T

Normality

,            
cQ H   

(3.15)  

where the normality condition f   T n T T  defines the unit vector in the direction of the 

interface traction, :c c cH P   is the negative slope of the softening curve shown in Fig. 3-2, and 

c  is the critical residual gap. The update formula for the hardening or softening parameter Q  

under the interface damage flow rule and the debonding gap can be shown under the following 

equations: 

 1 1n n nf    
T

ζ ζ   (3.16) 

 

 1 1n n Q nf    Q Q D  (3.17) 

By combining the yield function f  with the Kuhn-Tucker form, the current formulation results in 

the constitutive framework [52]. 
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Fig. 3-2: Constitutive behavior in tension [7]. 

 

3.2.2 Return Mapping for Damage under Tensile Loading 

To develop the return mapping algorithm, one needs to focus at a Gauss point along the interface 

int . The previous converged state variables are defined  as  , ,n n nQζ . In order to compute the 

variables 1nζ  and 1nQ   such that the damage yield criterion is satisfied, the return mapping 

algorithm is developed in [7] and presented in this thesis for completion. . The interface traction 

can be employed by plugging in the interface damage flow rule (3.16) as: 

        1 1n n nf         s s s

TT PN τ ζ PN τ ζ τ   (3.18)  

From the flow rule evaluated at time 1nt   we have: 

 
1 1

1 1

1 1

n n
n n

n n

f
 

 

 


   


T

T T
n

T T
 (3.19)  

Substituting into (3.16), we make the following observations on the magnitude and direction of 

the trial and resultant interface tractions: 

 1 1

tr

n n    s
T T τ     (3.20)  
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where    1

tr

n n   s
T PN τ ζ  is based on the last converged value of the gap function. 

Further details of the model are presented in Box 3.1 below, and interested reader is directed to 

Chen et al [7] for mathematical derivations. 

Box 3-1: Return mapping algorithm for damage evolution under tensile loading [7]. 

 STEP 1: Database at int x :  ,n nQ . 

 STEP 2: Given the stress and displacement jump at int x :   ,PN   

 STEP 3: Compute the trial stress and test for inelastic damage evolution 

    1

tr

n n   s
T PN τ ζ  (3.21)  

  1 1

tr tr

n n c nf P Q   T  (3.22)  

   IF 
1 0tr

nf    THEN 

         Elastic step: Set    
1 1

tr

n n 
  & EXIT 

   ELSE 

         Damage evolution step: Proceed to STEP 4. 

   ENDIF 

 STEP 4: Return mapping 

 
 

tr

1 0n

c

f

H
   

s
τ

 (3.23)  

 1 1n n n  ζ ζ n  (3.24)  

 1 1n n c Q nQ Q H f      (3.25)  

 1 1 1

tr

n n n    s
T T τ n  (3.26)  
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3.3 NUMERICAL RESULTS 

3.3.1 Strain Density function for neo-Hookean material 

This section investigates the performance of the proposed interface method across a range of 

deformation modes. We have employed standard linear Lagrange polynomials and three-

dimensional test problems are considered.  A common neo-Hookean material model is employed, 

and the strain energy density function is given as follows: 

       
21 1

tr 3 ln 1
2 2

TW J J      F F F  (3.27)  

Simulations with simple Neo-Hookean materials and anisotropic materials are presented in the 

following sections. Composite laminates and particle inclusions are tested and compared with the 

literature for stress and displacement field and further debonding is simulated.  

3.3.2 Damage inflicted on a Simple Neo-Hookean 3D Bar 

The first test case consists of a 3D bar that has 2x2x20 elements with each element being a 1x1x1 

cube. The standard Neo-Hookean material has an Elastic modulus of 5,000 MPa and a Poisson’s 

ratio of 0.25.  The left end corresponding to x=0 is fixed in the x, y, and z directions. The right 

end, which corresponds to x=20, has a positive z-displacement boundary condition along the top 

edge while there is a negative z-displacement boundary condition along the bottom edge. As the 

displacement increases, damage will begin to occur once the interface tractions reach a stress value 

of 100 MPa with 
c =2mm as marked out in Fig. 3-2. After each load step, an additional 1% of the 

material thickness is displaced in the vertical direction at the right end of the bar. Fig. 3-3 shows 

the deformation of the delamination on the bar after 50, 100, 150, and 200 load steps to show the 

large deformation experienced after damage. The axial stress in the z direction shows that the 

laminar material tries to remain cohesive until the applied displacement causes a force in the 
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applied direction away from the interface. Fig. 3-4 compares the applied displacement to the length 

of the delamination along the axial direction of the bar. After each element experiences 

delamination, the amount of applied displacement along the right end is recorded to see the trend. 

As shown in Fig. 3-4, each addition delaminated element requires increased displacement to show 

a nonlinear trend for delamination. 

 

(a) Step 50 

 

(b) Step 100 

Fig. 3-3: The transverse axial stress for the 3D bar showing the deformation of the material after 

(a) 1mm, (b) 2mm, (c) 3mm, and (d) 4mm displacement in the vertical direction along the right 

end of the bar.  
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Fig. 3-3: (cont.) 

 

(c) Step 150 

 

 

(d) Step 200 
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Fig. 3-4: The applied displacement for the resultant length of delamination of the 3D bar. 

 

To show the ability for the damage model to endure extreme amounts of shear and rotations, the 

next problem takes the same 3D bar, but applies rotational displacement boundary conditions on 

the nodes along the free end of the Bar to induce large torsion on the bar. For this case, damage is 

initiated once the interface tractions reach a stress value of 500 MPa with the same 
c =2mm to 

allow for large rotation before the frictional damage model takes effect. As shown in the deformed 

configuration in Fig. 3-5, the 3D bar undergoes 270 rotation (3 quarter turns) to show the 

evolution of the shear stress throughout the length of the bar. The damage appears to take place 

along the interface closest to the fixed end of the bar due to the rapid change in the shear stress 

along the YZ plane which lands parallel to the applied rotation. Since the primary damage occurs 

along this interface, Fig. 3-6 shows the inside interfaces for the left and right surfaces for the 
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interface that is undergoing damage. Notice how the magnitudes and direction of these two sets of 

stress are different to cause large damage to occur. 

 
(a) 

 
(b) 

Fig. 3-5: The shear stress parallel to the axis of rotation. (a) shows the entire bar while (b) is a 

zoomed view at the damaged elements near the fixed end. The circle highlights the location 

where damage is initiated. 
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(a)      (b) 

Fig. 3-6: The stress parallel to the axis of rotation is (a) shown for the interface of elements near 

the fixed end of the bar and (b) shown for the other interface for the elements one layer away 

from the fixed end where damage occurs. 

 

3.3.3 Fiber Push-Out test for a Two Fiber Pure Bending Problem 

A beam with dimensions 1x2x10mm containing two directionally-oriented fibers along the length 

of the beam experiences a fixed end along the base of the beam while the top of the beam is used 

to cause bending by enforcing a displacement boundary condition in the positive y-direction. The 

mesh for this beam contains 3900 B8 brick elements. As shown in Table 3-1, the fiber is prescribed 

to have and elastic modulus that is four times larger than the surrounding matrix material. Even 

though the Poisson’s ratio is identical for both materials, the large discrepancy for the elastic 

modulus between the two materials should cause friction to occur between the fiber and the matrix 

as the plate begins to bend. Due to the nature of the code, the beam is able to bend over 135 and 

demonstrates large deformation and slight twisting as the plate begins to bend as a reaction of the 

fiber matrix bending. As shown in Fig. 3-7, the shear stress parallel to the axis of bending is shown 

at 45, 90, and 135 degrees of bending between the top interface and the bottom interface. At this 

point, the magnitude of the shear stress along the two sides of the bending beam demonstrates why 

the beam experiences an increased twist as the beam continues to bend. 
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Table 3-1: Material properties for the two materials and the interface for the pure bending 

problem 

Material E (MPa) ν 
max  (MPa) 

c  (mm) 

Matrix 2000 0.3 - - 

Fiber 8000 0.3 - - 

Interface - - 300 20 

 

 
   (a)       (b) 

 
(c) 

Fig. 3-7: Analysis of the shear stress parallel to the YZ plane of bending. The shear distribution 

for the beam can be shown at (a) 45 degrees, (b) 90 degrees, and (c) 135 degrees of bending from 

the original orientation of the top face. 

 

Due to the large difference in the elastic modulus between the fiber and matrix, the friction between 

the matrix and fiber causes the final deformation of the fiber to push-in or push-out depending on 
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whether the fiber is oriented on the inside or outside of the central axis of bending. Fig. 3-8 shows 

the change in the fiber orientation with the axial stress that causes the plate to bend in addition to 

the shear stress parallel to the axis of bending. Here, the opposite magnitudes of stress between the 

two fiber causes the twisting and the phenomena of the fibrous deformation in comparison to the 

matrix deformation. Due to the difference of these two stresses between the fibers, the twisting is 

shown from the axial stress and the push in is shown in the shear stress parallel to the axis of 

bending. 

 
(a) 

Fig. 3-8: The zoomed view of the fiber along the interface of bending showing the fiber push-in 

and push-out. The phenomena is shown through (a) the axial stress along the x-axis which is 

transverse to the direction of bending and (b) the shear stress parallel to the axis of bending. 
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Fig. 3-8: (cont.) 

 
(b) 

 

3.3.4 Axial Stretching on Materials with Spherical Particle Inclusions 

To begin the analysis of an epoxy with embedded spherical particles, a single spherical particle 

that takes up 5% of the total volume is centered in a cubic epoxy. The particle is set to be 0.5mm 

in diameter and has the same material properties of a glass bead while the surrounding epoxy has 

a material behavior similar to that of vinyl and takes up the rest of the cube. To replicate the 

experimental results found in [8], the material parameters are replicated by using the values found 

in Table 3-2. The cube is then fixed on one end and displacement is uniformly applied on the 

opposite end of the cube to cause the material to undergo axial deformation. 

Table 3-2: Material properties for the two materials and the interface for the Single particle 

inclusion problem 

Material E (GPa) ν 
max  (MPa) 

c  (mm) 

Vinyl Epoxy 3.5 0.35 - - 

Glass Bead 70 0.25 - - 

Interface - - 50 0.2 
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Since the applied displacement can relate applied strain to the amount of damage on the interface 

of the material, the stress strain relation for 500 micrometers from Fig. 14 of [8] is used to convert 

the applied stress of the material into the percent strain through a quadratic regression line such 

that 

 2a b c      (3.28) 

where a = 1.190e-4, b = 0.02454, and c = 0.012494. With this conversion itself, the experimental 

data could have about 1% relative error, but it allows us to recreate Fig. 21 from [8]. Here the 

debonding angle is compared to the percent strain applied on the system. By calibrating 
max  to 

initiate damage at the same time as the experimental damage and 
c  was used to calibrate the 

second point to verify the damage trend of the particle angle which completes the user defined 

parameters located in Table 3-2. To analyze the numerical results, the cube is sliced down the 

center of the cube and the damage is measured as the angle from the right edge to the tip of the 

crack along the interface of the two materials as found in Fig. 3-9. 

 

Fig. 3-9: The angle measured along the center slice of the cube to quantify the amount of damage 

taking place at the interface between the vinyl epoxy and the glass bead particle. 

θ 
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The information found through the postprocess analysis of the angle of axial damage along the 

interface is then able to be measured in comparison to the percent strain versus angle plotted in 

[8]. To account for the preserved physics within our method, three separate refinements of the 

mesh is used to show that the refined mesh converges to the experimental and expected results for 

the material. The four sets of results are compared in Fig. 3-10 and provide converging results to 

the expected solution. However, it is important to note that the meshing for the T4 tetrahedral 

elements in the sphere, even though refinement was set by the user, was non-uniform. Therefore, 

the resulting curves for the mesh refinements are not perfectly smooth, but is still able to capture 

the physical elements of the experimental data. The expectation of further refinement should 

recover the physical behavior of the material. For the refinement, the Coarse mesh has been defined 

as having 12 elements from the top of the sphere to the bottom of the sphere along the surface of 

the 180 degree arc while the intermediate mesh has 20 elements and the fine mesh has 45 elements 

along the same arc. This allows for data points to be taken every 15 degrees, 9 degrees and 4 

degrees respectively. 
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Fig. 3-10: The experimental results are plotted in black while the three lines represent the coarse 

mesh, intermediate mesh, and the fine mesh which converge toward the experimental data. 

 

After showing that the data has comparable results to the physical behavior of the experimental 

data found in [8], the axial stress can be analyzed throughout the process of damage to demonstrate 

the areas of high stress and show if those areas correspond to the areas of expected damage in the 

mesh. Similar to the calculations for the damage angle, a slice has been taken out of the center of 

the mesh and the axial stress has been shown at three points in Fig. 3-11. In this figure, the areas 

of high stress are concentrated at the areas of future crack propagation along the interface of the 

two materials. In addition, the difference of stress values among the remaining undamaged portion 

of the interface becomes larger between the epoxy and glass bead. Another observation is that the 

location near the interface where damage has taken place starts to receive less stress which matches 

the model setup in Fig. 3-2. 
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(a) 

 
(b) 

Fig. 3-11: The axial stress for the interacting spherical particle and matrix for (a) 0.9% strain, (b) 

1.2% strain, and (c) 1.6% strain. 

 

 

 

 

 

 



74 
 

Fig. 3-11: (cont.) 

 
(c) 

 

Since axial loading on the system has portrayed physical results for the glass-epoxy composite, 

another problem to consider is if random spherical inclusions were added to the cubic matrix 

structure. For this example problem, spherical inclusions were added at random until twenty 

percent of the total material consisted of the particle material. The geometry for this problem used 

a cubic domain of 100x100x100mm. The material parameters for this problem were adjusted and 

shown in Table 3-3 to see how the damage is effected by the softer particle material. After the 

particle to matrix geometry is set, axial loading was implemented throughout the material with 

similar boundary conditions to the single particle problem except multiple particles are contained 

within the cubic geometry as shown in Fig. 3-12. 
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Table 3-3: Material properties for the two materials and the interface for the multiple particle 

inclusion problem 

Material E (GPa) ν 
max  (MPa) 

c  (mm) 

Matrix 4 0.4 - - 

Particle 40 0.33 - - 

Interface - - 200 20 

 

Fig. 3-12: The ParMat parameter shows the Matrix as a value of 1 and the particle as a value of 

2. For this case, the two materials are easily distinguishable and all the spherical inclusions touch 

the surface of the sphere. 

 

Similar to the single particle case the stress in the direction of axial loading demonstrates the 

locations where damage is likely to occur. Due to the higher value of the stress value required for 

damage to occur and only a ten times larger elastic modulus of the particle material as compared 

to the matrix, less damage is expected but should still be noticeable. Fig. 3-13 shows the axial 

stress which can identify the location of several particles due to the difference in deformation 

response to the applied axial loading. For Fig. 3-13b, by zooming into the particle, the deformation 

along the interface becomes more noticeable. Also, the layout of the particles causes a change in 

the response of the deformation of the other particles embedded in the cube. Fig. 3-14 shows the 
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cube at the right interface where the load is being applied. However, the particles have been 

removed to show the impact that the inclusions have had on the response of the matrix material. 

The areas of higher concentrated axial stress are located near the points parallel to the axis of 

loading. 

 
(a) 

 

(b) 

Fig. 3-13: The axially loaded system for 1 percent strain where the left surface is fixed and the 

right surface has been displaced. (a) shows the top and front face where the particles can be 

easily identified while (b) shows a zoomed view of the damage along the interface of the 

particle. 
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Fig. 3-14: The edge where the displacement is prescribed, but the particles are removed so that 

the matrix material can be analyzed. 

 

3.3.5 Delamination of anisotropic laminar composite materials 

Thus far, the damage model has undergone delamination, torsion, bending, and composite 

delamination. To account for directionally oriented material, the following strain energy density 

function will be used for the following laminar analysis [36]. 

 

  2

1 1 2 4( ( ) 3) ( ( , ) 3) ( 1)
2

3(1 2 )

W C I C I J

E

     









C C C A

 (3.29) 

Where the first invariant 
1( ) ( )I trC C  is incorporated and the invariant 

4I  A C A  includes the 

orientation of the fibers through the orientation vector  cos sin 0
T

  A  with α as the angle 

between the x-axis and the direction of the fibers. Based on the user defined parameters for the 

elastic modulus, Poisson’s ratio, and fiber coefficients: C1 and C2, the anisotropic fibrous class of 

materials can be evaluated.  For the first anisotropic test case, a rectangular laminar material with 

geometry ranging from 0-60mm along the x-axis, 0-20mm along the y-axis, and 0-2.5 along the z-

axis (Fig. 3-15) has axial displacement applied along the +x interface while the –x interface is held 
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fixed. The two ply laminate contains fibers oriented in the direction of +45/-45 degrees from the 

longitudinal axis of the ply which will cause torsional bending effects of the fibrous materials to 

cause small amounts of delamination along the edges of the material. The mesh refinement for this 

case uses 12x20x4 quadratic brick elements (X by Y by Z) through the laminar composite. 

 

(a) 

 
(b) 

Fig. 3-15: The mesh refinement for the anisotropic file is shown. (a) shows the top laminate 

denoted as material 2 oriented with +45 degrees  (b) shows the XZ plane for the material with 4 

elements through the thickness where material 1 is shown in blue and material 2 is shown in red. 

 

To check the backwards compatibility for the material model, a 1% strain is applied in the axial 

direction along the +/- X surfaces with the material defined parameters shown in Table 3-4. The 

axial loading in this structure will cause torsion in the interaction between the layers of 
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perpendicular orientation. To apply a comparison to the four ply laminate test case presented in 

[39,41,42], the following boundary conditions are applied. 

 
(0, , ) ; (60, , ) ; (30,10,0) 0;

(30,10, ) 0; ( , ,0) 0

x x x

y z

u y z d u y z d u

u z u x y

   

 
 (3.30) 

Where d is the prescribed displacement to provide the one percent strain in the system. Note that 

these boundary conditions hold the assumption that there will be no vertical displacement along 

the bottom of the ply to account for perfect symmetry. By setting the yield stress, max , to be an 

extremely high value, damage is ensured to remain idle such that the stresses and displacements 

prior to the delamination can be compared to previous numerical data [39,41,42] under 1% axial 

strain (Fig. 3-16). 

Table 3-4: Material properties for the two lamina for the axial loaded anisotropic problem 

Material E (GPa) ν C1 C2 α (degrees) 

Top Lamina 138 0.21 500 525 45 

Bottom Lamina 138 0.21 500 525 -45 

 

For this case, Fig. 3-16a demonstrates the axial displacement along the normalized width on the 

top lamina where x=30mm. Due to the orientation of the top lamina, the axial deformation along 

the center line of the material orients itself to elongate to the orientation of the fiber. For this test 

case, the displacements correlate to the results from [39,41]. In Fig. 3-16b, the same line along the 

top lamina is analyzed with regards to the three stress corresponding to the axis of applied stress. 

The results for the material have correlating results to [42], but have smaller magnitudes along the 

edges which prevent the capturing of the edge effects. After further mesh refinement along near 

the +/- y surfaces, these edge effects would be captured. Another reason that the edge effects 

demonstrate differences is due to the assumption of symmetry between the top two layers and the 

bottom two layers of the four ply lamina system made by the boundary condition in (3.30). 
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(a) 

 
(b) 

Fig. 3-16: (a) The axial displacement along the center line of the top laminate. (b) The primary 

stresses of the material along the center line of the top laminate. 

 



81 
 

Because the axial stretching for the two ply lamina shows compatible results to the previous 

numerical data, another test case can be run with anisotropic material to ensure delamination to 

demonstrate the versatility of energy functionals on the damage model. For the following test, the 

same geometry was used except the mesh has twice as many elements oriented in the y-direction. 

The two-ply system is given the following boundary conditions: 

 
1 2(0, , ) 0; (60, , ) 0.1* ; (60, , 2.5) ;

(0,10, ) 0; ( ,10, (0 0.5)) 0

x x z

y z

u y z u y z d u y d

u z u x

  

  
 (3.31) 

Where 1d  is the displacement in the x-direction in proportion to the length of the material and 2d  

is the displacement in the z-direction in proportion to the thickness of the material. Each load step 

one thousandth of the length and one hundredth of the thickness is applied to the system and 

corresponds to the applied displacements: 1d  and 2d , respectively. For this case the material 

parameters are shown in Table 3-5. In addition, the damage parameters for the interface elements 

are set such that max 0.2   and 0.2c   to ensure that the evolution of damage can be captured. 

Table 3-5: Material properties for the two lamina for the delamination anisotropic problem 

Material E (GPa) ν C1 C2 α (degrees) 

Top Lamina 1.38 0.21 0.500 0.525 45 

Bottom Lamina 138 0.21 50 52 -45 

 

For the sake of this problem, the bottom layer has been made stiffer to resist the displacement 

applied along the top surface and increase the damage to occur. Fig. 3-17 shows the progression 

of the z-displacement of the material over while Fig. 3-18 analyzes the axial stress distribution plot 

in the z-direction. Because of the applied boundary conditions along the center strip, the 

delamination propagates from the center of the interface and works its way out toward the corners. 

Looking at Fig. 17b, the edges that are still attached at the interface cause the bottom ply to bend 
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upwards, and in Fig. 3-17c, the top plate is shown to even experience less displacement on the 

edges due to the interactions of the two lamina at the interface. By Fig. 3-17d, the front face of 

elements have been completely delaminated from each other, yet the interaction of the second row 

of elements still causes some vertical displacements of the material along the edge in the bottom 

lamina. When analyzing the stresses in Fig. 3-18, it is important to note that the bottom ply 

experiences the majority of the stress due to the large discrepancy in the material parameters 

between the two laminar material. For Fig. 3-18a, the central strip of elements fixed at the bottom 

cause the delamination and can be shown when the stress is obviously less below the interface 

where damage has occurred. However, in Fig. 3-18 (b,c) the stress in the z direction continues to 

grow for the bottom laminate where the material is still impacted by the applied displacement on 

the top ply. After complete delamination has taken place, the stress along the edges in Fig. 3-18d  

 
 

(a) 

 
(b) 

Fig. 3-17: The free edge of the material showing the displacement in the z-direction at (a) step 5, 

(b) step 10, (c) step 14, and (d) step 19. 
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Fig. 3-17: (cont.) 

 

(c) 

 

(d) 

 

 

(a) 

 

(b) 

Fig. 3-18: The zz   for the free end of the material for (a) step 5, (b) step 10, (c) step 14, and (d) 

step 19. 
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Fig. 3-18: (cont.) 

 

(c) 

 

(d) 

 

begins to dissipate as the material on the bottom is no longer impacted by the stresses in the top 

layer. To isolate the impact of the fibers in the delaminated material, Fig. 3-19 and Fig. 3-20 have 

extracted only the elements from the bottom lamina for the last step that the front face of elements 

is attached on the edges and the step where the front edge is no longer effected by the interface 

boundary conditions. In Fig. 3-19a, the z-displacement shows that the material is not fixed 

symmetrically to the top lamina along the interface. Due to the strain energy density function and 

the orientation of the bottom fibers, the left side of the material is stiffer and will cause the 

delamination to propagate faster that the right side of the material. As the layer of elements 

becomes fully debonded with the top lamina, the vertical displacement no longer plays as large of 

a role as seen in Fig. 19-b.  Similarly, by looking at the axial stresses in the z-direction as shown 

in Fig. 20, the stress begins to dissipate in the front row of elements as the material becomes fully 
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debonded at the top interface. Also, the dissipation of the stress in the front row of elements begins 

to play a role in the transmission of stress to the proceeding rows of elements. 

 
(a) 

 
(b) 

Fig. 3-19: The z displacement for the interface of the bottom ply at (a) step 14  (b) step 19. 
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(a) 

 

(b) 

Fig. 3-20: The zz   for the interface of the bottom ply at (a) step 14  (b) step 19. 

 

To demonstrate the impact of the delamination on the inner element layers, Fig. 3-21 shows the z-

displacement of the delamination on the free edge of the laminate material except the outer element 

layer has been removed. Likewise, Fig. 3-22 shows the axial stress in the z-direction for the 

delamination on the free edge of the laminate material with a single layer of outer elements 

removed. Therefore, the surface on the positive x-axis shown in Fig. 3-21 is located along the line 

x=55mm instead of 60 mm. For step 14 and 19, the delamination continues to grow in the second 

layer of elements initially in the center of the ply due to the center strip of boundary conditions 
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and similarly propagates towards the edges. Since the delamination still happens toward the center 

of the material, located at four times the depth of the laminate, the propagation for the debonding 

happens in the axial direction as well as the transversal direction. Due to the material being located 

further away from the initial damage, the inelastic gap for the material is less than the free edge. 

In Fig. 3-21, it is important to notice that the displacement in the bottom layer reduces after the 

debonding takes place along the interface. Similarly, the axial stress in the z-direction (Fig. 3-22) 

demonstrates a similar unloading in the material after the debonding takes place. 

 

(a) 

 

(b) 

Fig. 3-21: The z-displacement for the two ply laminate material with the element closest to the 

free edge removed at (a) step 14 and (b) step 19. 
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(a) 

 

(b) 

Fig. 3-22: The z-displacement for the two ply laminate material with the element closest to the 

free edge removed at (a) step 14 and (b) step 19. 
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CHAPTER 4: CONCLUSION 

 

After analyzing the thermal effects, curing effects, and damage effects on multi-constituent 

material, the analysis of the physical behavior, points of failure, and weak areas along the material 

domain are able to be identified. Due to the immense amount of versatility of this model, a variety 

of geometries, delamination, torsion, plate bending, and particle inclusion have been modeled to 

show the robustness of the model to undergo large deformation while maintaining the physical 

behavior of the material. Since the two models represent two separate failure points observed for 

complex composite materials, recommended future work consists of combining the two models 

which allows for simultaneous process and performance modeling of systems that experience large 

deformations and interface damage between laminar materials. 
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