
© 2018 Bolun Qi

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/161953267?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

BUILDING DRYVR : A VERIFICATION AND CONTROLLER SYNTHESIS ENGINE
FOR CYBER-PHYSICAL SYSTEMS AND SAFETY-CRITICAL AUTONOMOUS

VEHICLE FEATURES

BY

BOLUN QI

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2018

Urbana, Illinois

Adviser:

Associate Professor Sayan Mitra

ABSTRACT

To test safety of autonomous vehicles, large corporations have raced to log millions of
miles of test driving on public roads. While this can improve confidence in such systems,
testing alone cannot establish of absence of failure scenarios. In fact, it has also been re-
ported that the amount of data required to guarantee a probability of 10−9 fatality per
hour of driving would require 109 hours of driving [1] [2], which is roughly in the order
of thirty billion miles. Formal verification can give guarantees about absence of failures
and potentially reduce the amount of testing needed significantly.

Simulation based verification is a promising approach to provide formal safety guar-
antees to Cyber-Physical Systems (CPS). However, existing verification tools rely on the
explicit mathematical models of the system. Detailed mathematical models are often not
available or are too complex for formal verification tools. To address this issue, the DryVR
approach for verification is presented in [3]. DryVR views a cyber-physical system as a
combination of a white-box transition graph and a black-box simulator. This alleviates
the need for complete mathematical models, but at the same time exploits models when
they are available. A verification algorithm for directed acyclic time-dependent transition
graph is also presented in [3].

In this thesis, we present the detailed construction of the DryVR tool with several new
functionalities, which includes: (a) verification on state-dependent cyclic transition graph
with guard and reset functions; (b) controller synthesis that searches transition graph for
given reach-avoid specification; (c) interface that allows user to connect DryVR with ar-
bitrary black-box simulators, and (d) integration with Jupyter Notebook [4]. We also
present a case study for autonomous vehicle system in this thesis, and DryVR comes
with verification and controller synthesis examples to illustrate its capabilities. The eval-
uation of included examples is presented in later chapter shows that both verification and
controller synthesis are promising starting point for DryVR to become a comprehensive
verification and synthesis toolbox for practical CPS.

ii

To my parents, for their love and support.

iii

ACKNOWLEDGMENTS

I would like to thank my adviser Professor Sayan Mitra of the ECE Department at
UIUC. He has helped me in many aspects of research and life. He guided me to the veri-
fication area and motivated me to work hard on the road of computer science. This work
would be impossible without his help.

I would also like to thank Chuchu Fan for providing tremendous support to my gradu-
ate life. She helped me choosing and solving research problems and guided me to explore
the unknown. Also Chuchu designed and implemented the algorithm for discrepancy
function and reach tube calculation, and DryVR is built based on her algorithm.

Thanks to Professor Mahesh Viswanathan, Professor Parasara Sridhar Duggirala, Matthew
Potok, Suket Karanwat on the work of C2E2 verification tool. Also I would like to appre-
ciate Minghao Jiang and Rongzhou Li for their work on DryVR verification tool. Thanks
also to my lab mates Ritwika Ghosh, Nicole Chan, Hussein Sibale and Yixiao Lin that I
have spent the last two years together. And thanks to Carol Wisniewski for the help she
gives at CSL.

Thanks to my parents for their unconditional mental and financial supporting of my
education in United States. Also Thanks to all my roommates, gym mates and game
mates who helped me to ease my stress.

Finally, I would like to thank my girlfriend Xiaoyu Wang, for bringing a lot of happi-
ness to my life.

This research was supported in part by a research grant from NSF (CSR 1422798)

iv

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1
1.1 Motivation . 1
1.2 Background . 1
1.3 Related work . 4
1.4 Thesis contribution and overview . 7

CHAPTER 2 PRELIMINARIES . 9
2.1 Transition graphs . 9
2.2 Trajectories . 10
2.3 Black-box simulator . 10
2.4 Discrepancy function . 11
2.5 Hybrid systems . 11

CHAPTER 3 VERIFICATION IN DRYVR . 13
3.1 Input and output . 13
3.2 Reachtube computation . 14
3.3 Verification algorithm . 16
3.4 Autonomous vehicle benchmarks . 18
3.5 Experiments on verification . 23
3.6 Conclusion . 24

CHAPTER 4 CONTROLLER SYNTHESIS IN DRYVR 26
4.1 Controller synthesis example . 26
4.2 Input and output . 26
4.3 Controller synthesis algorithm . 28
4.4 Experiments on controller synthesis . 31
4.5 Conclusion . 32

CHAPTER 5 INTERACTION WITH DRYVR . 33
5.1 Connecting black-box simulator . 33
5.2 DryVR configuration . 34
5.3 Connecting DryVR with Jupyter notebook . 34
5.4 Conclusion . 35

CHAPTER 6 CONCLUSION AND FUTURE WORK 38

REFERENCES . 39

v

CHAPTER 1: INTRODUCTION

1.1 MOTIVATION

A small failure in a system can sometimes lead to catastrophic consequences. For exam-
ple, the recent crash of Uber self-driving vehicle [5] has led to public fears of autonomous
cars. A pedestrian crossing a road was unfortunately killed in the incidence, and Uber
had to stop road tests which may significantly slow down the evolution of self-driving
technology. Another example is the recent recall on Tesla vehicles [6]. Tesla has issued
a recall on 123,000 of its Model S sedans due to the risk of power steering. This is about
half of the vehicles that Tesla has ever built, and will cost Tesla nearly 10 million dollars.

Control systems in modern vehicles are examples of a more general class of systems
called cyber-physical systems (CPS). Cyber-physical systems are systems that integrated
computation, networking, and physical processes. Physical processes are couped with
software and sensing using networks, and the software is used to control the physical en-
vironment. The autonomous driving system and the power steering system are examples
of cyber-physical systems because the system interacts with physical environments and
controlled by software. Other examples of CPS include smart grid, medical monitoring,
robotic systems, and avionics.

Power steering, anti-lock brakes, adaptive cruise control, lane-following are all exam-
ples of CPS, and a fully autonomous vehicle (AV) will have many such subsystems. To
check the reliability of CPS, testing is performed to find bugs in the system. While test-
ing can help identify bugs and defects, it cannot prove that the system is bug-free. To
ensure the absence of bugs in the system, one possible approach is to use formal veri-
fication. Formal verification checks all possible behaviors of the system and proves the
absence of bugs. Therefore, we are motivated to build a formal verification tool for CPS
and safety-critical control systems in autonomous vehicles.

1.2 BACKGROUND

Verifying CPS is challenging since the system involves both software and physical en-
vironments. The software evolves in discrete steps, and these steps bring influences to the
evolution of the physical processes. However, the state of physical environments evolves

1

continuously with time, which is usually modeled using ordinary differential equations
(ODEs). The combination of discrete and continuous steps makes formal verification
challenging. CPS with bounded uncertainty in the initial set is even more challenging.
This is because there is an uncountably infinite number of states in the initial set, which
can lead to infinite numbers of behaviors of the system. Verifying such system would
require checking the system whether all of these infinite numbers of executions satisfy
the given safety specification or not. Searching for an execution that violates the safety
specification is usually infeasible due to a large number of executions.

1.2.1 Verification with explicit models

For most verification tools, the system model and specification must be expressed in a
mathematical framework. For example, timed automata [7] are used to model real-time
systems. The software is modeled as a finite state machine, and real-value clock variables
are used to model timers and stopwatches. The transitions of the finite state machine
are defined by guards and reset functions, where guard functions compare clocks values
and integers to decide to enable or disable transitions. The framework to model timed
automata was introduced in [7]. Rectangular hybrid automata (RHA) is an extension
to timed automata with skewed clocks, where the rate of evolution of a clock variable
is an interval (ex. ẋ ∈ [a, b]). Both timed automaton and RHA are a sub-class of hy-
brid automata. Hybrid automata are designed to handle the more involved behavior of
continuous variables. Continuous variables of hybrid automata are ODEs that can be
either linear or non-linear. Hybrid automata have been used to model and analyze a va-
riety of embedded systems including air traffic control systems, vehicle control systems
and robots. Popular frameworks for modeling CPS as hybrid automata are Hybrid Au-
tomata [8] and Hybrid Input/Output Automata (HIOA) [9].

Many verification tools have been developed over last two decades require the system
to be described in one of the above formalisms. UPPAAL [10] and Kronos [11] verify
timed automata. HyTech [12] and Passel [13] [14] are verification tools for rectangu-
lar hybrid automata (RHA). SpaceEx [15] and Phaver [16] are designed to handle hy-
brid systems with linear ODEs. More general non-linear hybrid systems are handled by
Flow* [17], d/dt [18], Ariadne [19], dReach [20] and C2E2 [21]. All these tools are limited
to verify CPS with explicit mathematical models.

2

Figure 1.1: Aircraft electrical power generation and distribution systems.

1.2.2 Real world systems

For real-world cyber-physical systems, nice mathematical models describing the tran-
sitions and trajectories are often not available or are outside the reach of existing formal
analysis tools. Real word control systems are composed of a mix of simulation code,
look-up tables, differential equations, and diagrams. Extracting clean mathematical mod-
els from these descriptions is time-consuming and sometimes impractical. As an exam-
ple, an aircraft electrical power generation and distribution system [22] modeled using
Simulink [23] is shown in Figure 1.1. The system is composed of multiple components,
and each component is composed of multiple sub-components, and each sub-component
is composed of look-up tables, simulation code, etc. Another modeling environment is
CarSim [24], which is an industrial scale vehicle simulator used by many vehicle man-
ufacturers. The interface of CarSim is shown in Figure 1.2. Each vehicle model has
hundreds of components and thousands of parameters. Again, extracting mathemati-
cal models for such a vehicle is impractical.

To address this issue, the DryVR verification approach [3] is to verify hybrid systems
without complete knowledge of system dynamics. DryVR views a CPS as a combina-
tion of a white-box transition graph for mode switch information and a black-box sim-
ulator for generating simulation traces. The paper [3] presents an algorithm to verify
systems that are described by this combination of white-box (transition graph) and black-
box (simulator). It relieves users from extracting mathematical models from complicated

3

Figure 1.2: CarSim: mechanical simulation.

systems. However, the previous version of DryVR [3] only supported transition graphs
that are directed and acyclic with timing-based transitions. This is a serious limitation for
modeling state dependent transitions and models with loops across discrete modes.

1.3 RELATED WORK

1.3.1 Verification

There are two groups of techniques used to verify CPS, which are algorithmic and
proof-theoretic. PVS [25] is a theorem prover for high order logic. It has been shown
in [26] [27] [28] that certain classes of hybrid models can be formalized in its language,
and then the PVS prover can be used to check invariants and simulation properties. While
this is a very general method, it is hard to automate as there is limited support for auto-
matic reasoning about real arithmetic in PVS. KeYmaera [29] is an automated and interac-
tive theorem prover. It supports first-order dynamic logical for hybrid program [30] [31],
which is a program notation for hybrid systems. KeYmaera also supports hybrid systems
with non-linear differential equations, nonlinear discrete jumps, differential inequalities

4

and nondeterministic discrete or continuous inputs. KeYmaera implements automatic
proof strategies that decompose the hybrid system specification symbolically, and the
level of automation is up to 100% depending on the problem. Case studies show that
KeYmaera can be used to verify train control systems [32], vehicle control systems [33]
and air traffic control systems [34] [35].

Algorithmic verification tools perform automatic verification using model checking.
These algorithms take as input a hybrid automata and specifications and return whether
the specification is satisfied or not. These verifications tools can be divided into four
categories based on the type of automata they are designed to handle.

Timed automata UPPAAL [10] and Kronos [11] verify timed automata based on an al-
gorithm that is introduced in [36]. The paper [36] establishes that verifying an invariant
property of timed automata is PSPACE-complete.

Rectangular hybrid automata HyTech [12] and Passel [13] [14] are verification tools
for rectangular hybrid automata (RHA). The algorithm of Hytech is established in [37],
where it establishes that verifying invariant properties for RHA is undecidable. Passel
attempts to automatically prove safety properties of networks of arbitrarily many in-
teracting copies of a template hybrid automaton with rectangular dynamics. It uses a
combination of invariant synthesis and inductive invariant proving.

Linear hybrid automata SpaceEx [15] and Phaver [16] are designed to handle hybrid
systems with linear ODEs. Both Phaver and SpaceEx verify systems by computing nu-
merical over-approximations. Phaver uses convex polyhedron to represent the reachable
set, and the number of vertices in a convex polyhedron increases exponentially with re-
spect to the dimensions of the system. Therefore Phaver does not work well with high
dimensional systems. SpaceEx, the current state of art verification tool for linear hybrid
systems, presents an efficient and scalable reachability algorithm. SpaceEx uses support
functions [38] as its data structure for representing the reachable states, where support
function has increased the scope of linear systems that can be verified to hundreds of
state variables.

Non-linear hybrid automata Non-linear hybrid systems are handled by Flow* [17],
d/dt [18], Ariadne [19], dReach [20] and C2E2 [21]. Flow* [17] and d/dt [18] use sym-
bolic models for computing the reachable states to infer the safety of the system. Ari-

5

adne [19] uses numerical analysis to compute the reachable states in an approximate
way. dReach [20] encodes the dynamic of the system as a formula and the safety ver-
ification problem as an SMT instance. dReach solves the SMT instance using its solver
to verify the safety of the system. C2E2, the current state of art verification tool for both
linear and non-linear hybrid systems, implements the simulation-based verification ap-
proach described in [21]. It uses discrepancy function to calculate the over-approximate
reachable states of the system and gives soundness and relative completeness guarantees.

However, all tools are limited to verify CPS with explicit mathematical models. d/dt [18]
and HyTech [12] are based on decidability results. SpaceEx [15], Flow* [17] and Ari-
adne [19] produce over-approximate reachable states based on symbolic computation.
dReach [20] uses approximated decision procedures for fragments of first-order logic.
C2E2 [21] is a simulation-based verification tool but still, rely on the ODEs of the system
to compute the reachable states. Unlike these verification tools, DryVR is able to verify
CPS without the need for explicit mathematical models.

1.3.2 Controller synthesis

One of the new functionalities in this version of DryVR is controller synthesis. Con-
troller synthesis in DryVR finds the white-box transition graph for a given black-box sim-
ulator and a reach-avoid specification. Its algorithm is based on rapidly-exploring ran-
dom trees (RRT) [39]. RRT is an algorithm designed to efficiently search high-dimensional
spaces by randomly building a space-filling tree. That is, a rapidly-exploring random tree
is iteratively expanded by applying different control inputs that drive the system toward
randomly picked points. The RRT algorithm has been successfully applied to solve plan-
ning problems for dynamical systems. The paper [40] presented the first randomized ap-
proach to kinodynamic planning using RRT. The paper [41] proposed a randomized path
planning architecture for dynamical systems in the presence of both fixed and moving
obstacles. The paper [42] presented an efficient and general algorithm for nonlinear feed-
back control synthesis in nonlinear underactuated systems like bipedal walking based on
RRT. The paper [43] used RRT to perform motion planning of aerial robot with dynamic
constraints. The paper [44] introduced an algorithm to connect exploring trees using tra-
jectory optimization methods. This algorithm efficiently reaches the exact goal of motion
planning rather than halting when reaches a tolerance distance to the goal.

6

Variations of RRT algorithm are also introduced and applied to motion planning prob-
lems. The paper [45] presented Dynamic-Domain RRT algorithm, which significantly
boosts the performance of the RRT algorithm by controlling the sample space. The pa-
per [46] introduced RRT-connect algorithm for path planning, which is an efficient algo-
rithm designed specifically for path planning problems that involve no differential con-
straints. The paper [47] presented RRT* algorithm, which claimed to achieve convergence
towards the optimal solution thus ensuring asymptotic optimality along with probabilis-
tic completeness. However, it may take infinite time to find the optimized path and the
converging rate is low. The paper [48] introduced RRT*-Smart, which is designed to ac-
celerate the converging rate of RRT* algorithm.

1.4 THESIS CONTRIBUTION AND OVERVIEW

This thesis is focused on building DryVR 2.0 with several new functionalities. This
includes (a) extended verification functionality to handle state-dependent cyclic tran-
sition graph with guards and reset functions; (b) controller synthesis that searches the
white-box transition graph for a given black-box simulator and a reach-avoid specifica-
tion; (c) python interface that allows users to connect DryVR with arbitrary black-box
simulators written in any programming languages; (d) integration with Jupyter Note-
book [4].

This version of DryVR is designed to handle state dependent transitions and reset on
direct cyclic transition graphs. Lots of new features are implemented to accommodate
this more general transition graph. This includes procedures for computing the reach-
able states intersecting with guards, transforming a set of states under reset, and a new
dynamic refinement strategy for finding counter-examples quickly. With the new imple-
mentation, now DryVR can handle more general hybrid models, for example, compli-
cated traffic scenarios where the vehicles control strategies heavily rely on the relative
distance with other vehicles while the complex dynamics of the vehicles are wrapped in
a black-box.

The second new functionality is the controller synthesis, which automatically finds the
white-box transition graph for a given black-box simulator and a reach-avoid specifica-
tion. That is, given the inputs as the black-box simulator, the initial set, unsafe regions,
target region, and a time bound T , DryVR controller synthesis returns a transition graph

7

which defines a sequence of mode switches such that all executions of the resulting sys-
tem reach the target within the time bound T , while maintaining a safe distance from
the unsafe regions. The controller synthesis in DryVR makes randomized algorithms for
planning available to systems with black-box models without complete model informa-
tion. This function also frees-up users from tediously creating transition graphs manually.

This version of DryVR also comes with a python interface (function) that allows users
to connect DryVR with arbitrary black-box simulators built with any programming lan-
guages, tools, and frameworks, where the old version is restricted to Python and Simulink
models. Furthermore, this version of DryVR can be used in Jupyter Notebook [4]. The
Jupyter Notebook serves as the user interface for DryVR, where users can visualize the
verification process and interact with the reachtube or the counter-example that gener-
ated after the verification.

To demonstrate the applicability of the tool presented, we present a case study of au-
tonomous vehicle examples and the tool comes with 26 verification examples and 6 con-
troller synthesis examples and the evaluation of the examples is a part of the thesis. These
examples demonstrate the capability of the tool. The evaluation gives promising results,
which shows that DryVR can be applied to more realistic CPS.

The rest of the thesis is organized as follows. In Chapter 2, we provide background
knowledges that will be used in the thesis. In Chapter 3, we give an overview of verifi-
cation in DryVR and show the experiment results. In Chapter 4, we give an overview of
controller synthesis in DryVR. In Chapter 5, we show the procedure of building the inter-
face that connects the DryVR and black-box simulators and the procedure of connecting
DryVR with Jupyter notebook [4]. And in Chapter 6, we conclude our work and explore
the possible future directions.

8

CHAPTER 2: PRELIMINARIES

Suppose the system has a set of modes L and n continuous variables. A white-box tran-
sition graph G defines mode switches, where the transition graph is a directed graph. Its
vertices contain mode information, and its edges represent the allowed switches. Switch
conditions (guards) and reset functions are on the edge label. The black-box simulator is
viewed as a set of trajectories TL in Rn with respect to each mode in L. The dynamic of
the system is a black-box to DryVR, but DryVR has access to a simulator that can generate
sampled data points on an individual trajectory for a given initial state and mode.

2.1 TRANSITION GRAPHS

A transition graph defines the mode switches over the finite set of modes of the sys-
tem. A transition graph is a labeled directed graph G = 〈L,V , E , vlab, elab〉 where (a) L is
a finite set of names for the discrete modes of the system; (b) V is the set of vertices of the
transition graph; (c) E ⊆ V ×V is the set of edges; (d) vlab : V → L is the labeling function
that labels vertices with their crossroading modes; (e) elab is the labeling function the la-
bels each edge with its guard and reset functions.

This version of DryVR supports both directed acyclic transition graphs (DAG) and di-
rected cyclic transition graphs. For DAG, there is a nonempty subset Vinit ⊆ V of vertices
with no incoming edges, so DryVR uses topological sort to find initial location of G, Linit
= {`|∃v ∈ Vinit, vlab(v) = `}. For cyclic transition graphs, users have to specify the initial
vertex Vinit. The number of mode switches for DAG in reachability analysis is limited by
the number of vertices V in the transition graph, but the number of mode switches for
cyclic graphs is bound by the time horizon T . Ideally, it should also be bounded by the
number of mode switches along any path, but this is currently not implemented. There-
fore, the tool may not terminate if the model has Zeno behavior.

Consider a thermostat control system with a single continuous variable temp that mod-
els the room temperature with two modes ON and OFF. The system turns on the ther-
mostat when the room temperature drops below 70 Fahrenheit, and it turns off the ther-
mostat when the temperature is above 75 Fahrenheit. The transition graph of the system
is shown in Figure 2.1. The labels in edges are the guard functions that specify when a
transition is enabled. The transition occurs when the guard is satisfied.

9

Figure 2.1: Transition graph for thermostat control system.

ON

OFF

temp==75

temp==70

2.2 TRAJECTORIES

The continuous evolution of the variables is modeled by trajectories. Let n be the num-
ber of continuous variables in the hybrid system. A trajectory for a n-dimensional system
can be expressed as a continuous function of the form T : [0, T]→ Rn, where T ≥ 0. T .dom
represents the domain of the T , which is the time interval [0, T] of the trajectory. T .fstate
represents the initial state of the trajectory, which can also denoted as T (0). T .lstate rep-
resents the last state of the trajectory, which can be denoted as T (T) and T .ltime = T . L
is a finite set of names for the discrete modes of the hybrid system, and each trajectory is
labeled by a mode from L. A labeled trajectory is a tuple 〈T , `〉where ` ∈ L.

2.3 BLACK-BOX SIMULATOR

DryVR is designed to handle complicated control systems where the dynamics of sys-
tems are treated as black-boxes. DryVR uses a black-box simulator to generate a set
of labeled trajectories TL in Rn for given initial states, modes and a sequence of time
points from t0 to tk. The black-box simulator returns a sequence of states sim(x0, `, t1),,
sim(x0, `, tk) such that there exists 〈T , `〉 ∈ TL with T .fstate = x0 and sim(x0, `, ti) = T (ti)

for i ∈ 1, ..., k.

10

Figure 2.2: Discrepancy function.

2.4 DISCREPANCY FUNCTION

The sensitivity of trajectories is formalized by the notion of a discrepancy function β

[49]. A discrepancy function bounds the distance between two neighboring trajectories
as a function of the distance between initial states and time. The discrepancy function
is shown in figure 2.2. Given a time domain T and the trajectories 〈T 1, `〉 and 〈T 2, `〉
starting from initial state x1 and x2 respectively, the discrepancy function is a uniformly
continuous function β of x1, x2, and their time domain T . A continuous function β :

Rn × Rn × R≥0 → R≥0 is the discrepancy function if for any t ∈ T , the function β bounds
the distance between two trajectories as follows:

|T 1(t)− T 2(t)| ≤ β(x1, x2, t)

The function also converges to 0 when the distance between x1 and x2 converges to 0 as
follows:

lim|x1−x2|→0β(x1, x2, t) = 0

The discrepancy function can be used to compute over-approximated reachable states.

2.5 HYBRID SYSTEMS

An n-dimension hybrid system H described as a combination of a black-box simula-
tor and a white-box transition graph. H is a tuple H = 〈L,Θ, G, TL〉, where (a) L is a
finite set of names for the discrete modes; (b) Θ ⊆ Rn is a compact set of initial states;
(c) G = 〈L,V , E , elab〉 is a transition graph; (d) TL is a set of deterministic trajectories as

11

generated by the black-box simulator.

A state of H is a point in Rn × L, where the set of initial states denoted as Θ × Linit.
Given an initial state (T (0), linit), an execution of the system is the sequence of trajectories
exec(T (0), linit) = 〈T l1(t), l1〉 · · · 〈T lk(t), lk〉 such that (1) l1 ∈ Linit, T l1(0) = T (0), (2) l1, · · · , lk
follows the E in transition graph, (3) for each consecutive trajectory, T i.lstate = T i+1.fstate,
and (4) for each i > 1, there is an edge e ∈ E : vi−1 → vi with the edge label elab, where
vi−1 is the mode li−1 and vi is the mode li. T li−1

stops at a state where the guard on elab

met, and T li starts with a state defined by the corresponding reset function of elab.

Finally, the set of all executions of the system is denoted as ExecsH. A state 〈x, `〉 is
reachable if there exists an execution that reaches this state at some time t. We denote all
reachable states of the hybrid system H as ReachH. In the next chapter, we will discuss
the verification approach to hybrid systems that are composed of white-box transition
graphs and black-box simulators. That is, given an unsafe set U, how to decide whether
ReachH

⋂
U = ∅.

12

CHAPTER 3: VERIFICATION IN DRYVR

3.1 INPUT AND OUTPUT

Verification in DryVR takes a hybrid system H that is composed of a white-box tran-
sition graph G and a black-box simulator. In addition to H, we also supply a time
bound T and a safety specification (also known as unsafe set U ⊆ Rn × L). The task
for DryVR is to decide whether ReachH

⋂
U = ∅. DryVR either returns "SAFE" and an

over-approximation of the reach set, or it returns "UNSAFE" and a counter-example exe-
cution. It is also possible for DryVR to return "UNKNOWN" when the refinement reaches
the limit that is specified by users.

The verification input for DryVR is a JSON file. The format is listed in Figure 3.1, which
includes the following parameters:

• vertex V (list of string) is a list of vertices with their corresponding mode name.

• edge E (list of tuple of int) is a list of edges that connect vertices in the transition
graph, a edge is defined as a tuple (i,j) where it connects vi and vj .

• variables (list of string) is a list of the names for continuous variables in the system.

• guards (list of string) is a list of guard functions corresponding to each edge.

• resets (list of string) is a list of reset functions corresponding to each edge.

• initialSet Θ (list of list of float) consists of two arrays that specify the initial set for
the hybrid system. The first array is the lower bound and the second array is the
upper bound of variables in the system.

• initialVertex vinit (int) is an integer that specifies the initial vertex. This field is
optional if the transition graph is DAG;

• unsafeSet U (string) is an unsafe set. It can be either specified per mode or all
modes.

• timeHorizon T (float) is a time bound for the verification.

• directory (string) is the file path for the black-box simulator.

13

Figure 3.1: DryVR verification input format

{
"vertex": [transition graph verteices labels (modes)],
"edge": [transition graph edges],
"variables": [the name of variables in the system],
"guards": [guard functions],
"resets": [reset functions],
"initialSet": [two arrays defining the lower and upper bound of

↪→ each variable],
"initialVertex": initial vertex to start verification,
"unsafeSet": @[mode name]:[unsafe region],
"timeHorizon": time bound for the verification,
"directory": directory of the folder which contains the

↪→ simulator for black-box system,
"bloatingMethod": bloating method, which can be either "PW" or

↪→ "GLOBAL",
"kvalue": k-value that used by piecewise bloating function

}

• bloatingMethod (string) specifies the type of discrepancy function used to calculate
the reachable states. It can be either global discrepancy "GLOBAL" or piece-wise
discrepancy "PW".

• kvalue (list of float) is a list of parameters used in piece-wise discrepancy function,
which is specified per variable.

An example of the input file is shown in Figure 3.2, where the corresponding transition
graph is shown in Figure 2.1. Kvalue is not specified in this input file since the bloating-
Method is set to the global discrepancy function.

3.2 REACHTUBE COMPUTATION

Reachtube computation is a subproblem for formal verification. Finding a reachtube
for the set of trajectories TL in a given mode is a difficult problem. Previous simulation-
based verification tools with TL generated by white-box models approximate reachtubes
using sensitivity analysis of ODEs. Since DryVR does not have access to dynamics of the
system, it uses probabilistic method for estimating sensitivity from the black-box simula-
tor.

14

Figure 3.2: Input file for thermostat controller

{
"vertex": ["On","Off"],
"edge": [[0,1],[1,0]],
"variables": ["temp"],
"guards": ["temp==70", "temp==75"],
"resets": ["", ""],
"initialSet": [[75.0],[76.0]],
"initialVertex": "On",
"unsafeSet": "@On:temp>91@Off:temp>91",
"timeHorizon": 3.5,
"directory": "examples/Thermostats",
"bloatingMethod": "GLOBAL",

}

The sensitivity of trajectories is formalized by the notion of discrepancy functions.
Since DryVR does not have the ODEs for the system, it uses a probabilistic algorithm
to find the discrepancy function with only simulation traces. The algorithm is based on
PAC learning linear separators [50] and is explained in [3]. The discrepancy function is
used to bloat simulation trajectories such that bloated tubes over-approximate the reach-
able states from the initial set Θ. The bloated reachtube is represented using a sequence
of hyper-rectangles. The probabilistic algorithm has a probabilistic guarantee that for any
ε, δ ∈ R+, if the number of simulations is more than [1

ε
ln 1

δ
], the learned discrepancy func-

tion has an error smaller than ε, with the probability greater than 1− δ.

We have done several experiments with the algorithm for dozens of models with com-
plex trajectories, where we draw random states in initial sets to simulate and learn a
discrepancy function, and draw another random set of 1000 initial states to perform sim-
ulations to validate the learned discrepancy function. The experiment results show that
10 to 20 simulation traces are adequate for computing discrepancy functions. DryVR uses
10 simulations by default, and users can tune the number of simulations to get better re-
sults.

15

3.3 VERIFICATION ALGORITHM

We present an algorithm to solve the verification problem in this section. We intro-
duce an algorithm V erify (Algorithm 1) which takes as an input a hybrid system H =

〈L,Θ, G, TL〉, an unsafe set U , a time bound T and an initial vertex vinit (if the transition
graph is not a DAG). DryVR returns "SAFE" with a reachtube, "UNSAFE" with a counter-
example or "UNKNOWN" if the refinement reaches the refinement threshold.

clacReachTube(l,Θ, T, TL) computes the reachtube for a given mode l, an initial set Θ

and a time bound T . It uses the black-box simulator to generate the simulation traces
and learn the discrepancy function to calculate the reachtube. This function returns the
reachtube RT , which is a sequence of hyper-rectangles.

checkGuard(RT, g) checks the guard g over the reachtube RT . The guard can be spec-
ified as any linear or nonlinear predicate on the state variables or time. DryVR imple-
ments guard checking using Z3 SMT solver [51]. Therefore, the guard function must be
expressions that are recognizable by the Z3 solver. This function handles guard check-
ing with the following steps: (1) for each hyper-rectangle in the reachtube, Z3 checks if
the hyper-rectangle intersects with the guard; (2) the function marks rectangles that are
intersected with the guard, and then combine all marked hyper-rectangles to a single
hyper-rectangle; (3) all rectangles in the reachtube that cross over the guard are aban-
doned. This is because all guards are treated as urgent in DryVR. The function returns
a set of states rc and the truncated reachtube. If no hyper-rectangle intersects with the
guard, the function returns rc = ∅ and the original reachtube.

resetSet(rc, r) transforms a set of states rc under the reset function r. Reset functions
are linear functions that can be either deterministic or non-deterministic. A deterministic
reset is expressed as x′ = Ax + b on elab. Non-deterministic resets are expressed as inter-
vals defining the lower and upper bounds. x′[i] ∈ [lower_bound[i], upper_bound[i]], is
the linear expression for ith variable that needs a reset. DryVR uses Sympy [52] to map rc
according to the reset function. The mapped set is collected and returned as the initial set
for the next vertex.

checkReachTube(RT,U) checks the safety of the reachtube with a given unsafe set.
For each hyper-rectangle in the reachtube, Z3 checks if the hyper-rectangle is intersected
with or fully contained in the unsafe set. If any hyper-rectangle in the reachtube is fully

16

contained in the unsafe set, the function returns "UNSAFE", and otherwise if there exist
hyper-rectangles that have non-empty intersections with the unsafe set, the function re-
turns "UNKNOWN". If none of these conditions hold, the function returns "SAFE".

refine(Θ) refines the a given initial set. The refinement function splits the initial set into
two smaller initial sets. The dimension it splits is the dimension with largest δ, where δi
denotes the width of variable i in the initial set.

The V erify Algorithm 3.1 proceeds as follows:

• Push the Θ to an initial set list Inits (Line 1).

• Check the size of the initial set list and return "UNKNOWN" if the size is larger than
user-defined refinement threshold thres (Line 2).

• Pop the last initial set Θ from Inits (Line 5).

• Get the mode label using the vlab function for the given vertex vinit (Line 6).

• Calculate the reachtube RT with given parameters (Line 7).

• Assign an empty list to the next successors list SUCC, The element in SUCC is a
tuple 〈nextθ, nextv, nextT 〉, where nextθ is the initial set, nextv is the vertex, and
nextT is the remaining time bound (Line 8).

• Assign a null value to the longest reachtube LRT (Line 9).

• For each successor vertex that the current vertex connects, get the guard and reset
functions using the edge labeling function elab. Calculate the next initial set nextθ
for next vertex and pushing the tuple 〈nextθ, nextv, nextT 〉 to SUCC list if the nextθ
is not null. Finally, overwrite the LRT if the currentRT is longer than the LRT (Line
10).

• Calculate the reachtube and assign it to LRT if LRT is null (It happens when the
current vertex has no outgoing edges) (Line 18).

• Check the safety of LRT with the given unsafe set. Returning "UNSAFE" if the
checking result is "UNSAFE". Refine the current initial set is the checking result is
"UNKNOWN" (Line 20).

17

• If the checking result is "SAFE", for every tuple 〈nextθ, nextv, nextT 〉 in the SUCC,
recursively call the V erify function. If any of them returns "UNSAFE", then the
function returns "UNSAFE". If any of them returns "UNKNOWN", mark the flag
safety to "UNKNOWN". Finally, returning "SAFE" if flag safety is still "SAFE",
otherwise refining the current initial set (Line 27).

Suppose the refinement threshold thres is set to∞, the V erify Algorithm 3.1 guaran-
tees to be sound and complete if the learned discrepancy function for each mode is cor-
rect. The algorithm requires the clacReachTube function returns an over-approximation
of all reachable states of the system from the initial set, which leads to the soundness of
the algorithm since the discrepancy function used to calculate the reachtube satisfies this
property. The system is safe if Algorithm 3.1 outputs "SAFE", where the reachable states
do not intersect with the unsafe set. If it outputs "UNSAFE", then there exist at least one
unsafe trajectory that starts from the initial set Θ. The algorithm also requires that as
the size of the initial set gets smaller, the value of the discrepancy function will become
smaller, which guarantees the algorithm will terminate. The discrepancy function also
satisfies this property and leads to the relative completeness result. Algorithm 3.1 always
terminates and output "SAFE" if the system is robustly safe, or outputs "UNSAFE" if there
is a trajectory starting from initial set that is robustly unsafe. Combining this algorithm
with the probabilistic correctness of the learning discrepancy algorithm, we can conclude
this algorithm provides a probabilistic guarantee.

The complete verification process proceeds as follows: (a) randomly draw SIMUTEST-
NUM number of points in the initial set, where SIMUTESTNUM is a user value; (b) DryVR
runs a hybrid simulation for each randomly picked point and checks the safety for the
generated trajectory; (c) if hybrid simulation results are safe, DryVR uses V erify algo-
rithm to check the safety of the entire initial set.

3.4 AUTONOMOUS VEHICLE BENCHMARKS

We have created several benchmarks for autonomous driving control systems, which
include common scenarios on the road such as lane merging. The hybrid system of each
scenario is constructed using a model with several vehicles. The decision of the vehicles
are determined by the mode in the transition graph, and the detailed dynamics of each
vehicle comes from a black-box simulator.

18

Algorithm 3.1 Verify(vinit,Θ, G, TL,U , T)

1: Inits← {Θ}
2: while len(Inits) > 0 do
3: if len(Inits) > thres then
4: return UNKOWN
5: Θ← Inits.pop()
6: l← vlab(vinit)
7: RT ← clacReachTube(l,Θ, T, TL)
8: SUCC ← {}
9: LRT ← ∅

10: for nextv ∈ G.succ(vinit) do
11: g, r ← elab(G.edges(vinit, nextv))
12: rc, RT ← checkGuard(RT, g)
13: nextθ ← resetSet(rc, r)
14: if nextθ is not ∅ then
15: SUCC ← SUCC ∪ 〈nextθ, nextv, T −RT.ltime〉
16: if LRT.ltime < RT.ltime then
17: LRT ← RT
18: if LRT is ∅ then
19: LRT ← clacReachTube(l,Θ, T , TL)

20: safety ← checkReachTube(LRT,U)
21: if safety is UNSAFE then
22: return UNSAFE
23: else if safety is UNKNOWN then
24: θ1, θ2 ← refine(Θ)
25: Inits← Inits ∪ θ1, θ2
26: continue
27: else
28: for nextθ, nextv, nextT ∈ SUCC do
29: ret← V erify(nextv, nextθ,G, TL,U , nextT)
30: if ret is UNSAFE then
31: return UNSAFE
32: else if safety is UNKNOWN then
33: safety ← UNKNOWN
34: if safety is UNKNOWN then
35: θ1, θ2 ← refine(Θ)
36: Inits← Inits ∪ θ1, θ2
37: continue
38: return SAFE

19

Each vehicle is composed of several continuous variables, such as x,y-coordinates of the
vehicle and its velocity, heading and steering angle. Each vehicle can be controlled by two
input signals: throttle and steering speed. We define different modes to control the vehi-
cle by choosing appropriate values for the throttle and the steering speed value for each
mode. The modes include (a) cruise: moving forward with constant speed; (b) speedup:
moving forward while accelerating constantly; (c) brake: moving forward while deceler-
ating constantly; (d) turnleft: performing left lane switch; (e) turnright: performing right
lane switch.

For each scenario, we analyze the x,y position of the vehicle (sx, sy) and the velocity
of the vehicle in x and y direction (vx, vy). The following scenarios are constructed by
defining appropriate sets of initial states and transition graphs labeled by modes of mul-
tiple vehicles. The safety requirement for these scenarios is that each vehicle needs to
keep a safe distance between other vehicles. The scenarios include (a) AutoPassing: Ve-
hicle A starts behind vehicle B in the right lane. And vehicle A performs a series of mode
switches to overtake vehicle B. (b) Merge: Vehicle A in the left lane is behind vehicles B
and C in the right lane. Vehicle A tries to merge in between vehicles B and C. If vehicle
B starts to accelerate when vehicle A performs a lane merge, then vehicle A chooses to
merge behind vehicle B. The transition graphs for Merge and AutoPassing scenarios are
shown in Figure 3.3, 3.4 where the mode of each vehicle is indicated by the vertex label
and the transition condition (guards) and reset functions are indicated by the edge label.

Figure 3.5 shows the plots of the reachtube computed for the AutoPassing scenario.
Vehicle B starts in front of vehicle A and stays in cruise mode, and vehicle A performs
a series of mode switches to overtake vehicle B based on its distance to vehicle B and
time. Vehicle A is initially at sxa = 0, sya ∈ [−1.0,−0.9], and vehicle B is initially at
sxb = 0, syb ∈ [−22.0,−21.9]. Both vehicles have the same initial velocity sya = syb = −1.0.
The figure shows the vehicles’ x and y positions. Vehicle A switches to the left lane and
passes vehicle B and then switches back to right lane while B remains in the right lane at
a constant speed. The unsafe set |sxa − sxb| < 2&|sya − syb| < 2 is proved to be disjoint
from the reachtube.

Table 3.1 summarizes the verification results obtained using DryVR. The initial position
is specified in the table for each vehicle and all vehicles have the same initial velocity
sy = −1.0. TH in the table is the time horizon. Refine is the number of the refinement
in verification, where "-" means the system is unsafe from hybrid simulations. For all

20

Figure 3.3: Transition graph for Merge.

Acc

Cruise

Cruise

TurnR

Cruise

Cruise

Cruise

Cruise

Cruise

Dec

Acc

Cruise

TurnR

Cruise

Cruise

10 <= syb − sya <= 10.1

10 <= t <= 11.0
vxa = 1.0

1.0 <= t <= 1.1 10.0 <= sya − syb <= 10.1

10.0 <= t <= 11.0
vxa = 1.0

21

Figure 3.4: Transition graph for AutoPassing.

Acc

Cruise

TurnL

Cruise

Acc

Cruise

Dec

Cruise

TurnR

Cruise

Cruise

Cruise

5.0 <= syb − sya <= 5.1

10.0 <= t <= 11.0

6.0 <= t <= 7.0

6.0 <= t <= 7.0

10 <= t <= 11.0

22

Figure 3.5: AutoPassing scenario verification result. The mode label is shown at the top.
Red tube is Vehicle A and green tube is Vehicle B. Top:sya, syb. Bottom:sxa, sxb.

examples, the unsafe set is |sxa − sxb| < 2&|sya − syb| < 2 and DryVR is able to verify the
safety of the hybrid system and gives counter-example if the system is not safe.

3.5 EXPERIMENTS ON VERIFICATION

Other than autonomous vehicle benchmarks, we tested DryVR with more than two
dozen systems. These systems include (a) mixed-signal circuit models with hundreds of
nonlinear terms and both time and state-dependent transitions [53]; (b) high dimensional
linear systems that derived from fields such as civil engineering and robotics [54]; (c) a
set of 2 7 dimensional benchmarks [55].

Table 3.2 summarizes the verification performance using DryVR and Flow* [17]. These
experiments were performed on a laptop with Intel Core i7-6600U CPU and 16 GB RAM.
The comparison may not be fair since Flow* gives a hard guarantee while DryVR gives
a hard guarantee under the assumption that the discrepancy function is correct. The
assumption is empirically observed to hold. The Simu field indicates the running time
for one hybrid simulation and total time indicates the running time for the verification.
For most 2-7 dimensional benchmark examples, DryVR outperforms Flow* in terms of
running time. Flow* is not able to verify circuits examples with complicated dynamics
in our tests, and it reports exceptions during verification. For high dimensional linear
systems, Flow* failed to get a result within 3 hours. DryVR is straightforward to use. It’s

23

Table 3.1: Verification result.

Scenario TH Initial Set Refine Safe running time

AutoPassing 50
sya ∈ [−1.0,−0.9]
syb ∈ [−22.0,−21.9]

sxa = sxb = 0
13 yes 72.69s

AutoPassing 50
sya ∈ [−1.0,−0.9]
syb ∈ [−5.0,−4.0]
sxa = sxb = 0

- no 0.51s

Merge 30

sya ∈ [0.5, 1.0]
syb ∈ [−1.0,−0.5]
syc ∈ [−32.0,−31.0]

sxa = −3
sxb = sxc = 0

34 yes 117.27s

Merge 30

sya ∈ [0.5, 1.0]
syb ∈ [−1.0,−0.5]
syc ∈ [−20.0,−19.0]

sxa = −3
sxb = sxc = 0

1 no 8.09s

easy to code-up new examples and get verification results once users have the Python
function that allows DryVR to execute the black-box simulator. The Python simulation
function that connects to the black-box simulator is discussed in Chapter 5.

3.6 CONCLUSION

In this chapter, we have presented the algorithm for verifying a hybrid system com-
posed of a white-box transition graph and a black-box simulator. We also proved its
theoretical guarantees namely soundness and relative completeness. We then presented
a case study of autonomous vehicles. The case study demonstrates that DryVR is capable
of verifying realistic CPS without the need for explicit mathematical models. We conclude
this chapter with the performance analysis of standard benchmark examples.

24

Table 3.2: Verification performance table.

Model Dim Simu (s) Total Time(s) Flow*(s)
Biological model I 7 0.01 0.04 66.4
Biological model II 7 0.01 0.04 223.4
Coupled Vanderpol 4 0.03 0.14 1038.3
Spring pendulum 4 0.05 0.16 1377.5
Roessler 3 0.02 0.36 17.1
Lorentz system 3 0.34 1.07 316.7
Lac operon 2 0.47 171.35 44.2
Lotka-Volterra 2 0.02 0.10 3.9
Buckling column 2 0.04 0.43 26.4
Jet engine 2 0.07 12.1s 6.8
Brusselator 2 0.10 3.02 5.2
Vanderpol 2 0.05 2.92 6.4
Vehicle platoon 3 9 0.32 4.28 21.08
Uniform nor sigmoid 3 120.91 1314.22 Exception
Uniform inverter loop 2 10.94 278.56 Exception
Uniform inverter sigmoid 2 24.87 246.76 Exception
Uniform nor ramp 3 173.77 1765.55 Exception
Uniform or ramp 4 176.70 1778.87 Exception
Uniform or sigmoid 4 168.75 2186.00 Exception
Clamped beam 348 540.80 5717.63 Time out
Building model 48 3.28 20.24 Time out
Partial differential equation 20 12.05 41.21 Time out
FOM 20 12.18 40.90 Time out
Motor control system 8 5.22 17.89 Time out
International space station 25 79.99 243.60 Time out

25

CHAPTER 4: CONTROLLER SYNTHESIS IN DRYVR

4.1 CONTROLLER SYNTHESIS EXAMPLE

A 5x5 arena is shown in Figure 4.1, where a yellow region represents the initial set Θ,
a green region represents the target set T , and red regions and area outside of arena are
the unsafe set U . A black-box robot model with eight modes "UP", "DOWN", "LEFT",
"RIGHT", "UPLEFT", "UPRIGHT", "DOWNLEFT", "DOWNRIGHT" is placed in the ini-
tial set. Each mode indicates a direction that the robot can try to move in. Starting from
the initial set, the robot should reach the target set within 10 seconds and avoid collid-
ing with the unsafe set. The robot should stay in a mode for at least 1 second before it
transit to another mode. The task for DryVR is to find a transition graph that meets such
specification.

4.2 INPUT AND OUTPUT

For controller synthesis, the input to DryVR is (1) a list of available modes L; (2) a
black-box simulator TL; (3) the initial set Θ; (4) the unsafe regions U ; (5) the target set
T ; (6) a time bound T ; (7) a minimum dwell time tmin The input (1),(2) and (3) forms a
hybrid system H without a transition graph G. The task for DryVR is to find a transi-
tion graph G such that for the resulting hybrid system H = 〈L,Θ, G, TL〉, all executions
starting from the initial set, will reach the target set within the bounded time T , and will
not intersect with any unsafe regions U . The resulting transition graph will stay in one
vertex for a least tmin second before it transit to another vertex. DryVR either returns a
computed time-dependent transition graph G if it finds one, or "FAIL" otherwise.

The json input format is shown in Figure 4.2, which includes the following parameters:

• modes L (list of string) is a list of available modes for the black-box simulator.

• variables (list of string) is a list of the names for continuous variables in the system.

• initialSet Θ (list of list of float) consists of two arrays that specify the initial set for
the hybrid system. The first array is the lower bound and the second array is the
upper bound of variables in the system.

• goalSet T (string) is a Z3 [51] expression that specifies the target set.

26

Figure 4.1: Controller synthesis of black-box robot. A yellow region represents the initial
set Θ, a green region represents the target set T , and red regions and area outside of
arena are the unsafe set U . The blue tube is the reachtube

27

Figure 4.2: DryVR controller synthesis input format.

{
"modes": [available modes],
"variables": [the name of variables in the system],
"initialSet": [two arrays defining the lower and upper bound of

↪→ each variable],
"goalSet": target region,
"unsafeSet": @[mode name]:[unsafe region],
"timeHorizon": time bound for resulting transition graph,
"directory": directory of the folder which contains the

↪→ simulator for black-box system,
"minTimeThres": minimal dwell time,
"goal":[[variables in goal set],[lower bound][upper bound]]

}

• unsafeSet U (string) is the unsafe set. It can be either specified per mode or all
modes.

• timeHorizon T (float) is the time bound. The resulting transition graph will end in
T seconds.

• directory (string) is the file path for the black-box simulator.

• minTimeThres tmin (float) is the minimum dwell time. The number of transitions is
bounded by [T/tmin].

• goal T (list of list) is the goal set in a different form. It is a 3-tuple where the first
element is the list of variables in the target set, and the second and third elements
define the lower and upper bound for each variable.

The Figure 4.3 shows the JSON input file for the example we discussed in Section 4.1.
The white-box transition graph found by DryVR’s controller synthesis algorithm is shown
in Figure 4.4.

4.3 CONTROLLER SYNTHESIS ALGORITHM

The synthesis algorithm used in DryVR is based on rapidly-exploring random trees al-
gorithm (RRT) [39]. We introduce an algorithmGraphSearch (Algorithm 4.1) which takes
as an input a list of available modes L, a black-box simulator TL, a current mode Lcur, an

28

Figure 4.3: Input file for robot controller synthesis.

{
"modes":["UP", "DOWN", "LEFT", "RIGHT", "UPLEFT", "UPRIGHT", "

↪→ DOWNLEFT", "DOWNRIGHT"],
"variables":["x","y","vx","vy"],
"initialSet":[[1.0,1.0,1.0,1.0],[1.1,1.0,1.0,1.0]],
"unsafeSet":"@Allmode:Or(And(x>=2.0, x<3.0, y>=3.0, y<=4.0),

↪→ And(x>=3.0, x<=4.0, y>=2.0, y<3.0), x<0, x>5, y<0, y>5)",
"goalSet":"And(x>=3.0, x<=4.0, y>=3.0, y<=4.0)",
"timeHorizon":10.0,
"minTimeThres":1.0,
"directory":"examples/carinmaze",
"goal":[["x","y"],[3.0,3.0],[4.0,4.0]]

}

Figure 4.4: Transition graph for the robot example.

29

initial set Θ, an unsafe set U , a target set T , a time bound T and a minimal dwell time tmin.
This algorithm either returns "true" if it finds the transition graph or "false" otherwise.

getSafeTube(RT,U) truncates the reachtube before its first collision with the unsafe set.
For each hyper-rectangle in the reachtube RT , Z3 SMT solver [51] checks the intersection
between the hyper-rectangle and the unsafe set U . Once a hyper-rectangle intersects with
the unsafe set, the function truncates the reachtube, keeps the hyper-rectangles before the
first intersected one, and returns the resulting reachtube.

reachTarget(RT, T) checks if the reachtube reaches the target region. For each hyper-
rectangle in the reachtube RT , Z3 checks the intersection between the hyper-rectangle
and the target set T . The function returns "true" if there is a hyper-rectangle that is fully-
contained in the target set.

randomPick(RT, tmin) randomly picks RANDSECTIONNUM number of sets along the
reachtube RT , where RANDSECTIONNUM is a constant parameter specified by users.
Each picked set’s time interval is larger than tmin second. This function returns a list of
randomly picked sets RS.

sortByDistance(RS, T) takes a list of sets RS and sorts the sets based on their Eu-
clidean distance to the target set T and returns the sorted list.

shuffle(L) shuffles the list of available modes and returns the shuffled list.

The GraphSearch Algorithm 4.1 proceeds as follows:

• check if the remaining time bound T is larger than minimal dwell time tmin(Line 1).

• Calculate the reachtube with the given mode Lcur, the initial set Θ and the time
bound T (Line 3).

• Truncate the reachtube before its first collision with the unsafe set U (Line 4).

• Check if the truncated reachtube still holds the minimal dwell time constraint (Line
5).

• Check if the reachtube reaches the target set T (Line 7).

• Randomly pick RANDSECTIONNUM sets along the reachtube RT (Line 9).

30

• Sort the list of randomly picked small sets RST (Line 10).

• Shuffle all available modes (Line 11).

• For each set in the RS and for each mode in the shuffled modes, calculate the re-
maining time and call the GraphSearch function recursively to proceed (Line 12).

DryVR usesGraphSearch function with Lcur set to l for all l in L. Therefore, the controller
synthesis in DryVR does not require users to give an initial mode.

Algorithm 4.1 GraphSearch(L, TL,Lcur,Θ, U, T , T, tmin)

1: if T < tmin then
2: return false
3: RT ← clacReachTube(Lcur,Θ, T, TL)
4: RT ← getSafeTube(RT,U)
5: if RT.ltime < tmin then
6: return false
7: if reachTarget(RT, T) is true then
8: return true
9: RS ← randomPick(RT, tmin)

10: RS ← sortByDistance(RS, T)
11: modes← shuffle(L)
12: for set in RS do
13: for mode in modes do
14: remainT ← T − set.ltime
15: if GraphSearch(L, TL,mode, set, U, T , remainT, tmin) is true then
16: return true
17: return false

The synthesis algorithm is sound if the learned discrepancy function is correct. That is,
given the synthesized transition graph, any execution of the hybrid system reaches the
target set T without colliding with the unsafe set U . The algorithm returns "Fail" if it does
not find a transition graph. Returning "Fail" does not mean the transition graph does not
exist with the given specification since the algorithm is non-deterministic.

4.4 EXPERIMENTS ON CONTROLLER SYNTHESIS

We have tested the performance of the controller synthesis on 6 control synthesis exam-
ples, and the results are shown in Table 4.1. These examples include (a) a vehicle collision
avoidance system, where the vehicle needs to switch a lane to avoid an obstacle in front

31

Table 4.1: Control synthesis performance table.

Example Dim T (s) tmin(s) Running time(s)
Vehicle 4 50 2.0 1896.26
Robot 4 10.0 1.0 98.93
Motion plan 3 6.0 1.0 4.55
DC motor 2 1.0 0.1 0.35
Room heating 3 25.0 2.0 2.66
Pendulum 2 2.0 0.2 6.06

of the vehicle and switch back afterward; (b) a robot must find a path in the maze; (c) a
robot must reach a target while avoid colliding with a large obstacle[56]; (d) a DC motor
where the speed of the motor needs to be regulated in a certain range [56]; (e) a room
heating problem, where the controller must keep the temperature of 3 rooms around 21
Celsius [57]; (f) an inverted pendulum must be stabilized around the unstable equilib-
rium point [57]. The algorithm is able to find transition graphs for these examples, but
the algorithm is non-deterministic and the running time varies in different executions for
the same example. Typically these examples can be complete in few minutes. We ran
each example five times to record the average running time.

4.5 CONCLUSION

In this chapter, we presented the input format for DryVR controller synthesis. We then
presented controller synthesis algorithm, which automatically finds the white-box transi-
tion graph for a given black-box simulator and a reach-avoid specification. We conclude
this chapter with the performance analysis of standard controller synthesis benchmark
examples.

32

CHAPTER 5: INTERACTION WITH DRYVR

5.1 CONNECTING BLACK-BOX SIMULATOR

DryVR is an open source project written in Python programming language. To connect
arbitrary black-box simulators, users have to provide a Python simulation function to
DryVR. DryVR uses the simulation function to get simulation traces from the black-box
simulator. The input to the simulation function is an initial condition, a mode label l and
a time bound T , and the output is a simulation trace Sim. The simulation trace is a 2-
dimensional list of float numbers, the first index indicates the number of steps, and the
second index indicates the variable in the system. The "0" for the second index in the Sim
is always the time. For example, Sim[0][1] is a float value of the first variable in the system
at the first time step and Sim[1][0] is a float value of the time at the second time step.

The Python simulation function signature is shown in Listing 5.1. Users should pro-
vide a function with the same name and input order. DryVR will search this simulation
function in the user provided directory. There is no limitation on the implementation
of the simulation function as long as it returns the simulation trace Sim with given for-
mat. DryVR has successfully verified hybrid systems with different kinds of simulators.
For example, the simulation function for the circuits example [53] we showed in sec-
tion 3.5 uses a shell script to invoke an executable that compiled using ODEINT simula-
tor [58] and returns output traces to DryVR. For a spacecraft model [59], TC_Simulate
function connects a simulink [60] model and generates simulation results using it. De-
tailed guidance for creating the TC_Simulate is available at DryVR’s manual http:
//dryvr-02.readthedocs.io/en/latest/dryvr’s_language.html

1 def TC_Simulate(Modes,initialCondition,time_bound):

2 Sim = /*interact with black box simulator*/

3 return Sim

Listing 5.1: Black-box simulation function

33

5.2 DRYVR CONFIGURATION

DryVR allows users to tune some parameters to get better verification and controller
synthesis results. Available parameters are:

• SIMUTESTNUM (default value:1) is the number of hybrid simulations, which is
introduced in section 3.3;

• SIMTRACENUM (default value:10) is the number of simulations used to learn the
discrepancy function;

• REFINETHRES (default value:10) is the refinement threshold in the verification al-
gorithm;

• RANDSECTIONNUM (default value:3) is the number of random sets picked in the
reachtube in controller synthesis algorithm.

These parameters can be changed in the configuration file located in DryVR source code
folder.

5.3 CONNECTING DRYVR WITH JUPYTER NOTEBOOK

Jupyter Notebook [4] extends the console-based interactive shell, providing a web-
based application suitable for capturing the whole computation process and allows users
to communicate with the result. It has two components:(a) A web application: Jupyter
notebook launches a local server so that users can access documents using a browser,
where documents contain text, mathematics, computations and rich media representa-
tions of objects. (b) Notebook documents: a representation of all contents visible in the
web application, such as inputs and outputs of the computations, text, mathematics and
rich media representations of objects.

Connecting DryVR with Jupyter notebook has several benefits, which including (a) use
DryVR as a python library; (b) store and load computation results using notebook doc-
uments; (c) visualize the verification process; (d) interact with the reachtube or counter-
example after the verification.

An example of notebook document is shown in Listing 5.3. The example proceeds as
following:(a) import the verify function from DryVR and the TC_Simulate function (Line

34

1); (b) enable the interactive mode of Matplotlib [61] in notebook to visualize the verifi-
cation process; (c) write the input file we introduced in Section 3.1 as a python dictionary
object (Line 4); (d) write the optional configuration parameters as a python dictionary
object (Line 13); (e) verify the example with the given input, the simulation function and
the configuration parameters (Line 16).

1 from src.core.dryvrmain import verify

2 from *simulator directory*\ import TC_Simulate

3 %matplotlib notebook

4 args = {

5 "vertex":["On","Off","On"],

6 "edge":[[0,1],[1,2]],

7 "variables":["temp"],

8 "guards":["And(t>1.0,t<=1.1)","And(t>1.0,t<=1.1)"],

9 "initialSet":[[75.0],[76.0]],

10 "unsafeSet":"@On:temp>91@Off:temp>91",

11 "timeHorizon":3.5,

12 }

13 config = {

14 "SIMUTESTNUM":2

15 }

16 reach = verify(args, TC_Simulate, paramConfig=config)

Listing 5.2: DryVR in Jupyter notebook

During the verification, Jupyter notebook will display a live transition graph in its in-
terface with the remaining time bound, which is shown in Figure 5.1. The red vertex
is the current vertex, and the graph gets updated when a transition happens. The ver-
ify function returns a reachtube object contains the reachtube if the system is safe, or a
counter-example if the system is unsafe. The reachtube object has functionalities such as
filtering and plotting.

5.4 CONCLUSION

In this chapter, we first showed the way of constructing a Python simulation function
that connects DryVR and black-box simulators. By creating the python simulation func-
tion, users can use DryVR to verify CPS modeled with arbitrary programming languages,

35

Figure 5.1: Live transition graph. Red vertex is the vertex DryVR is verifying currently.

36

software, and frameworks. We then presented user-configurable parameters in DryVR so
that users can make changes to these parameters to get better verification and controller
synthesis results. We finally showed the way of using DryVR in Jupyter notebook, which
allows users to visualize the verification process, interact with the verification results, and
store computation results.

37

CHAPTER 6: CONCLUSION AND FUTURE WORK

We presented DryVR in this thesis, which is a tool that performs verification and con-
troller synthesis on CPS without the need for explicit mathematical models. The hybrid
system that DryVR handles is a combination of a white-box transition graph and a black-
box simulator. Both verification and controller synthesis rely on the algorithm to find
discrepancy functions with pure simulation traces [3]. The correctness of the discrepancy
function hold with a high probability. Assuming that the discrepancy function is correct,
the verification and synthesis results are sound.

We evaluated the performance of verification and controller synthesis. And we com-
pared the verification performance between DryVR and Flow*. Results show that DryVR
outperformed Flow* significantly on most examples, especially on models with higher
dimension or with complex dynamics. The performance for controller synthesis is highly
non-deterministic, but most scenarios can be completed within few minutes.

We showed how to build Python simulation function to connect DryVR with arbitrary
black-box simulators so that users can verify more general and complicated systems. We
also presented the way of connecting DryVR with Jupyter Notebook to make DryVR
straightforward to use. Users can use DryVR interactively in the Jupyter Notebook, and
all the computation results will be stored in the document.

The future directions of DryVR include: (a) extends DryVR’s functionality to synthe-
size for temporal logic; (b) design a web-based user interface and building a web-based
backed to utilize the strong computation power of web services; (c) implement RRT* al-
gorithm for controller synthesis to find more optimized transition graphs.

38

REFERENCES

[1] P. Koopman and M. Wagner, “Challenges in autonomous vehicle testing and valida-
tion,” SAE International Journal of Transportation Safety, vol. 4, no. 1, pp. 15–24, 2016.

[2] S. Shalev-Shwartz, S. Shammah, and A. Shashua, “On a formal model of safe and
scalable self-driving cars,” arXiv preprint arXiv:1708.06374, 2017.

[3] C. Fan, B. Qi, S. Mitra, and M. Viswanathan, “Dryvr: Data-driven verification and
compositional reasoning for automotive systems,” in International Conference on Com-
puter Aided Verification. Springer, 2017, pp. 441–461.

[4] T. Kluyver, B. Ragan-Kelley, F. Pérez, B. E. Granger, M. Bussonnier, J. Frederic, K. Kel-
ley, J. B. Hamrick, J. Grout, S. Corlay et al., “Jupyter notebooks-a publishing format
for reproducible computational workflows.” in ELPUB, 2016, pp. 87–90.

[5] M. della Cava, “Uber self-driving car kills arizona pedestrian, realizing worst fears
of the new tech,” USA TODAY. [Online]. Available: https://www.usatoday.com/
story/tech/2018/03/19/uber-self-driving-car-kills-arizona-woman/438473002/

[6] B. Raven, “Tesla recalls 123k model s sedans due to corrosion risks in
winter conditions,” MICHIGAN AUTOMOTIVE NEWS. [Online]. Available:
http://www.mlive.com/auto/index.ssf/2018/04/tesla_model_s_recall.html

[7] R. Alur and D. L. Dill, “A theory of timed automata,” Theoretical computer science,
vol. 126, no. 2, pp. 183–235, 1994.

[8] R. Alur, C. Courcoubetis, T. A. Henzinger, and P.-H. Ho, “Hybrid automata: An algo-
rithmic approach to the specification and verification of hybrid systems,” in Hybrid
systems. Springer, 1993, pp. 209–229.

[9] S. Mitra, “A verification framework for hybrid systems,” Ph.D. dissertation, Mas-
sachusetts Institute of Technology, 2007.

[10] J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson, and W. Yi, “UppaalâĂŤa tool suite
for automatic verification of real-time systems,” in International Hybrid Systems Work-
shop. Springer, 1995, pp. 232–243.

[11] M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, and S. Yovine, “Kronos: A
model-checking tool for real-time systems,” in International Symposium on Formal
Techniques in Real-Time and Fault-Tolerant Systems. Springer, 1998, pp. 298–302.

[12] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi, “Hytech: A model checker for hybrid
systems,” International Journal on Software Tools for Technology Transfer, vol. 1, no. 1-2,
pp. 110–122, 1997.

[13] T. T. Johnson and S. Mitra, “Anonymized reachability of rectangular hybrid au-
tomata networks,” Formal Modeling and Analysis of Timed Systems (FORMATS), 2014.

39

[14] T. T. Johnson, Uniform verification of safety for parameterized networks of hybrid automata.
University of Illinois at Urbana-Champaign, 2013.

[15] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R. Ripado, A. Gi-
rard, T. Dang, and O. Maler, “Spaceex: Scalable verification of hybrid systems,” in
International Conference on Computer Aided Verification. Springer, 2011, pp. 379–395.

[16] G. Frehse, “Phaver: Algorithmic verification of hybrid systems past hytech,” in In-
ternational workshop on hybrid systems: computation and control. Springer, 2005, pp.
258–273.

[17] X. Chen, E. Ábrahám, and S. Sankaranarayanan, “Flow*: An analyzer for non-linear
hybrid systems,” in CAV. Springer, 2013, pp. 258–263.

[18] E. Asarin, T. Dang, and O. Maler, “The d/dt tool for verification of hybrid systems,”
in International Conference on Computer Aided Verification. Springer, 2002, pp. 365–370.

[19] A. Balluchi, A. Casagrande, P. Collins, A. Ferrari, T. Villa, and A. L. Sangiovanni-
Vincentelli, “Ariadne: a framework for reachability analysis of hybrid automata,”
in In: Proceedings of the International Syposium on Mathematical Theory of Networks and
Systems.(2006. Citeseer, 2006.

[20] S. Kong, S. Gao, W. Chen, and E. Clarke, “dreach: δ-reachability analysis for hybrid
systems,” in International Conference on Tools and Algorithms for the Construction and
Analysis of Systems. Springer, 2015, pp. 200–205.

[21] P. S. Duggirala, S. Mitra, M. Viswanathan, and M. Potok, “C2e2: a verification tool
for stateflow models,” in International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems. Springer, 2015, pp. 68–82.

[22] “Aircraft electrical power generation and distribution,”
https://www.mathworks.com/help/physmod/sps/examples/
aircraft-electrical-power-generation-and-distribution.html, accessed: 2018-04-
19.

[23] “Model-based design: From concept to code,” https://www.mathworks.com/
products/simulink.html, accessed: 2018-04-08.

[24] R. Benekohal and J. Treiterer, “Carsim: Car-following model for simulation of traffic
in normal and stop-and-go conditions,” Transportation research record, no. 1194, 1988.

[25] S. Owre, J. M. Rushby, and N. Shankar, “Pvs: A prototype verification system,” in
International Conference on Automated Deduction. Springer, 1992, pp. 748–752.

[26] S. Mitra and K. M. Chandy, “A formalized theory for verifying stability and conver-
gence of automata in PVS,” in TPHOLs, ser. Lecture Notes in Computer Science, vol.
5170. Springer, 2008, pp. 230–245.

40

[27] S. Mitra, “A verification framework for hybrid systems,” Ph.D. dissertation, Mas-
sachusetts Institute of Technology, Cambridge, MA, USA, 2007.

[28] H. Lim, D. K. Kaynar, N. A. Lynch, and S. Mitra, “Translating timed I/O automata
specifications for theorem proving in PVS,” in FORMATS, ser. Lecture Notes in Com-
puter Science, vol. 3829. Springer, 2005, pp. 17–31.

[29] A. Platzer and J.-D. Quesel, “Keymaera: A hybrid theorem prover for hybrid sys-
tems (system description),” in International Joint Conference on Automated Reasoning.
Springer, 2008, pp. 171–178.

[30] A. Platzer, “Differential dynamic logic for verifying parametric hybrid systems,”
in International Conference on Automated Reasoning with Analytic Tableaux and Related
Methods. Springer, 2007, pp. 216–232.

[31] A. Platzer, “Differential dynamic logic for hybrid systems,” Journal of Automated Rea-
soning, vol. 41, no. 2, pp. 143–189, 2008.

[32] A. Platzer and J.-D. Quesel, “European train control system: A case study in formal
verification,” in International Conference on Formal Engineering Methods. Springer,
2009, pp. 246–265.

[33] S. M. Loos, A. Platzer, and L. Nistor, “Adaptive cruise control: Hybrid, distributed,
and now formally verified,” in International Symposium on Formal Methods. Springer,
2011, pp. 42–56.

[34] A. Platzer and E. M. Clarke, “Formal verification of curved flight collision avoidance
maneuvers: A case study,” in International Symposium on Formal Methods. Springer,
2009, pp. 547–562.

[35] J.-B. Jeannin, K. Ghorbal, Y. Kouskoulas, R. Gardner, A. Schmidt, E. Zawadzki, and
A. Platzer, “A formally verified hybrid system for the next-generation airborne col-
lision avoidance system,” in International Conference on Tools and Algorithms for the
Construction and Analysis of Systems. Springer, 2015, pp. 21–36.

[36] R. Alur and D. L. Dill, “Automata-theoretic verification of real-time systems,” Formal
Methods for Real-Time Computing, pp. 55–82, 1996.

[37] R. Alur, T. A. Henzinger, and P.-H. Ho, “Automatic symbolic verification of embed-
ded systems,” IEEE Transactions on Software Engineering, vol. 22, no. 3, pp. 181–201,
1996.

[38] C. Le Guernic and A. Girard, “Reachability analysis of linear systems using support
functions,” Nonlinear Analysis: Hybrid Systems, vol. 4, no. 2, pp. 250–262, 2010.

[39] S. M. LaValle, “Rapidly-exploring random trees: A new tool for path planning,”
1998.

41

[40] S. M. LaValle and J. J. Kuffner Jr, “Randomized kinodynamic planning,” The interna-
tional journal of robotics research, vol. 20, no. 5, pp. 378–400, 2001.

[41] E. Frazzoli, M. A. Dahleh, and E. Feron, “Real-time motion planning for agile au-
tonomous vehicles,” Journal of Guidance, Control, and Dynamics, vol. 25, no. 1, pp.
116–129, 2002.

[42] R. Tedrake, “Lqr-trees: Feedback motion planning on sparse randomized trees,”
2009.

[43] J. Kim and J. P. Ostrowski, “Motion planning a aerial robot using rapidly-exploring
random trees with dynamic constraints,” in Robotics and Automation, 2003. Proceed-
ings. ICRA’03. IEEE International Conference on, vol. 2. IEEE, 2003, pp. 2200–2205.

[44] F. Lamiraux, E. Ferré, and E. Vallée, “Kinodynamic motion planning: Connecting
exploration trees using trajectory optimization methods,” in Robotics and Automation,
2004. Proceedings. ICRA’04. 2004 IEEE International Conference on, vol. 4. IEEE, 2004,
pp. 3987–3992.

[45] A. Yershova, L. Jaillet, T. Siméon, and S. M. LaValle, “Dynamic-domain rrts: Efficient
exploration by controlling the sampling domain,” in Robotics and Automation, 2005.
ICRA 2005. Proceedings of the 2005 IEEE International Conference on. IEEE, 2005, pp.
3856–3861.

[46] J. J. Kuffner and S. M. LaValle, “Rrt-connect: An efficient approach to single-query
path planning,” in Robotics and Automation, 2000. Proceedings. ICRA’00. IEEE Interna-
tional Conference on, vol. 2. IEEE, 2000, pp. 995–1001.

[47] S. Karaman and E. Frazzoli, “Incremental sampling-based algorithms for optimal
motion planning,” Robotics Science and Systems VI, vol. 104, p. 2, 2010.

[48] J. Nasir, F. Islam, U. Malik, Y. Ayaz, O. Hasan, M. Khan, and M. S. Muhammad, “Rrt*-
smart: A rapid convergence implementation of rrt,” International Journal of Advanced
Robotic Systems, vol. 10, no. 7, p. 299, 2013.

[49] P. S. Duggirala, S. Mitra, and M. Viswanathan, “Verification of annotated models
from executions,” in Proceedings of the Eleventh ACM International Conference on Em-
bedded Software. IEEE Press, 2013, p. 26.

[50] A. B. Kurzhanski and P. Varaiya, “Ellipsoidal techniques for reachability analysis:
internal approximation,” Systems & control letters, vol. 41, no. 3, pp. 201–211, 2000.

[51] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,” Tools and Algorithms for
the Construction and Analysis of Systems, pp. 337–340, 2008.

[52] D. Joyner, O. Čertík, A. Meurer, and B. E. Granger, “Open source computer algebra
systems: Sympy,” ACM Communications in Computer Algebra, vol. 45, no. 3/4, pp.
225–234, 2012.

42

[53] J. Maier, “Modeling the cmos inverter using hybrid systems,” E182 - Institut für
Technische Informatik; Technische Universität Wien, Tech. Rep. TUW-259633, 2017.
[Online]. Available: http://publik.tuwien.ac.at/files/publik_259633.pdf

[54] H.-D. Tran, L. V. Nguyen, and T. T. Johnson, “Large-scale linear systems from order-
reduction (benchmark proposal),” in 3rd Applied Verification for Continuous and Hybrid
Systems Workshop (ARCH), Vienna, Austria, 2016.

[55] “Benchmarks of continuous and hybrid systems,” https://ths.rwth-aachen.
de/research/projects/hypro/benchmarks-of-continuous-and-hybrid-systems/, ac-
cessed: 2018-01-29.

[56] M. Mazo Jr, A. Davitian, and P. Tabuada, “Pessoa: A tool for embedded controller
synthesis.” in CAV, vol. 6174. Springer, 2010, pp. 566–569.

[57] H. Ravanbakhsh and S. Sankaranarayanan, “Robust controller synthesis of switched
systems using counterexample guided framework,” in Embedded Software (EM-
SOFT), 2016 International Conference on. IEEE, 2016, pp. 1–10.

[58] K. Ahnert and M. Mulansky, “Odeint–solving ordinary differential equations in
c++,” in AIP Conference Proceedings, vol. 1389, no. 1. AIP, 2011, pp. 1586–1589.

[59] N. Chan and S. Mitra, “Verified hybrid lq control for autonomous spacecraft ren-
dezvous,” 2017.

[60] M. Grant, S. Boyd, and Y. Ye, “Cvx: Matlab software for disciplined convex program-
ming,” 2008.

[61] J. D. Hunter, “Matplotlib: A 2d graphics environment,” Computing in science & engi-
neering, vol. 9, no. 3, pp. 90–95, 2007.

43

