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Abstract

The focus of this dissertation is on reducing the cost of Monte Carlo estimation for lattice-valued Markov

chains. We achieve this goal by manipulating the random inputs to stochastic processes (Poisson random

variables in the discrete-time setting and Poisson processes in continuous-time) such that they become

negatively correlated with some of their cohort while their individual marginal distributions are completely

unaltered. In this way, we preserve the convergence properties of the Law of Large Numbers, but mean

estimates, say, constructed from these sample paths exhibit dramatically reduced variance. The work is

comprised of three main parts. First, we introduce algorithms to reduce the simulation costs for discrete-time

Markov chains. We describe how to modify the simulation of sample trajectories that introduces negative

correlation while introducing no additional computational cost and that are compatible with existing codes.

We support this algorithm with theoretical results, including guarantee that such mean estimators will be

unbiased and consistent with respect to the discrete-time distribution. Further, we prove a recursive relation

that characterizes the evolution of mutual negative covariance over time in the general case as well as prove

a sufficient condition in the case of linear rate functions. Lastly, we present several numerical experiments

that demonstrate multiple orders-of-magnitude reduction in mean-square error (MSE) for both linear and

nonlinear reaction rate systems.

In the next part, we show how insights gained from the discrete-time case can be used to inform a

related approach in continuous-time. In these cases, we rely on a formulation of these lattice Markov

chains called the random-time change representation. This allows us to translate the general problem of

simulating anticorrelated trajectories of a given lattice Markov chain into the simpler problem of simulating

anticorrelated pairs of unit-rate Poisson processes, which are the fundamental source of randomness that

are input into random time-change representations. We systematically construct and analyze algorithms to

produce negatively correlated, identically distributed Poisson processes. We prove closed form expressions for

the MSE evolution of one of these systems, as well as present asymptotic performance lower bounds. We then

show how to use these anticorrelated Poisson processes to simulate exact, identically distributed stochastic

processes which are now significantly negatively correlated, and are thus suitable for variance-reduced Monte
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Carlo. Numerical experiments on both linear and nonlinear systems demonstrate order-of-magnitude cost

reduction. We also introduce error vs cost comparisons with existing standard methods.

Finally, we present extensions and refinements of the above algorithms. First is an approach to discrete-

time simulation (specifically for tau-leaping systems) that leverages insights gained from the continuous-time

approach in order to further strengthen the performance of the original algorithm in its weakest regime. This

algorithm inherits several desirable properties from the antithetic discrete-time simulation case. In addition,

we present numerical studies that show where this refinement outperforms the original algorithm. Finally,

we present extensions of the anticorrelated simulation algorithms into both model predictive control and

particle filtering.
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Chapter 1

Introduction

This dissertation is concerned with reducing the cost of Monte Carlo simulation of a large class of stochastic

systems with discrete state-spaces. Such systems, which we refer to as lattice Markov chains, include

counting processes, jump systems, and reaction networks. They are broadly applied in numerous areas

of research but are frequently intractable to analysis and exhibit inherent stochasticity that is difficult to

approximate with deterministic models. Consequently, simulating these systems numerically to study their

behavior and properties is frequently the best approach. Monte Carlo provides convergent estimates, but

frequently requires many sample paths to achieve a desired degree of accuracy. When system trajectories

become expensive to simulate, usually due to high-dimensionality or time-scale separation, the cost of Monte

Carlo estimation can become prohibitive. This work provides algorithms, approaches and theory that reduce

the variance (and thus the cost) of such estimators in order to dramatically reduce the number of sample

trajectories needed to produce accurate estimates. While anticorrelating two sample trajectories is not

inherently difficult (and is even trivial in the case of say Brownian motion), the key insight here is how

to entirely preserve the marginal distributions of trajectories such that they remain identical, regardless of

their particular system definitions or asymmetries. As we will show, these techniques can reduce estimator

variance by one or more orders-of-magnitude with no or minimal computational overhead increase.

Lattice Markov chains systems are significant in the stochastic simulation literature, with applications

including stochastic chemical systems [18], systems biology [40], aerosol modeling [33], gene expression

systems [8], and HIV infection [6]. They are particularly useful when the number of particles of a population

or one of its subspecies are small and are thus poorly approximated by large-concentration ODE limits.

While a few ad hoc techniques were devised to simulate such systems historically, the first generalized

algorithm was proposed by Gillespie [18] with the stochastic simulation algorithm (SSA). In the interim,

both as computational resources have grown exponentially and the inherent stochasticity of many systems has

become better understood [27], such methods have seen increased utility and development. As increasingly

complex models are developed, the cost of Monte Carlo simulation for their study can become prohibitive. To

address this issue, we seek algorithms to reduce the variance of unbiased Monte Carlo estimates, increasing

1



their accuracy for a fixed or reduced number of sample trajectories.

We direct our attention to two primary classes of simulation: lattice continuous-time Markov chains

(CTMCs) and lattice discrete-time Markov chains (DTMCs). Frequently, lattice CTMCs are of primary

interest to researchers due to their strong connection to physical systems, and lattice DTMCs often arise

as numerical approximations to CTMCs when their simulation costs become significant. For example, the

tau-leaping algorithm [19] is a widely used time-stepping method to approximately simulate lattice CTMCs

when one or more of their reactions occur very frequently. It yields a lattice DTMC. Our work presents

algorithms that either reduce the cost of Monte Carlo simulation for lattice CTMCs or for lattice DTMCs,

and the organization of the dissertation reflects this partition.

While the algorithms we present for continuous-time and discrete-time systems are distinct, they share a

common macroscopic approach. We aim to reduce the cost of Monte Carlo simulation, which traditionally

simulates independent, identically distributed (iid) sample paths to construct statistical estimates [34], by

modifying it to slightly relax the independence assumption. Namely, we seek to modify the simulation

algorithms used to draw trajectories such that small subsets of paths are negatively correlated with each

other. The result is that estimators constructed using these sample paths will have reduced variance,

sometimes by an order-of-magnitude or more. Importantly, none of our algorithms relax the identically

distributed condition of Monte Carlo simulation, nor do any of them alter the original process distribution.

The marginal distribution of any one of our anticorrelated paths must be identical to the iid version of the

system we are simulating, whether in continuous- or discrete-time. Even though many of the lattice DTMCs

we study will be biased approximations of lattice CTMCs, our algorithms will introduce no additional bias

by negatively correlating sample paths. We achieve this in both the continuous- and discrete-time cases

by manipulating the sources of random input to the models. In the continuous-time case, these can be

expressed as unit-rate Poisson processes, and in the discrete-time case these are Poisson random variables.

While DTMCs are frequently used to approximate CTMCs, we will present the discrete algorithms first as

they are more straightforward and illustrative. With the intuition they provide, we then present the more

involved CTMC algorithms.

In tau-leaping algorithms, the number of events within a time step are sampled from appropriate Poisson

distributions; it is the exact analog of a deterministic Euler approximation in time of a lattice CTMC. The

method was introduced by Gillespie [19], and is particularly desirable for the simulation of processes that

have at least some reaction channels which experience many transitions on short time scales. The discrete-

time approximation used in tau-leaping produces a biased lattice DTMC distribution with respect to the

original lattice CTMC distribution, but stability and convergence to the stochastic simulation algorithm

2



System SimulatorRNG

IC, parameters

Sample Mean Ψ̃t ≈ E[Xt]
U i Xj

t

Figure 1.1: Traditional Monte Carlo mean estimation using iid stochastic simulation. Here, iid sequences
{U1, U2, . . . } of standard uniform variates from a random number generator (RNG) drive a particular
discrete-time process simulation. These sources of randomness, combined with initial conditions (IC) and
system parameters, govern the system evolution, and are used to produce a sequence of iid sample paths
{Xj

t }Nj=1. This sequence is then used to compute the sample mean, Ψ̃t = 1
N

∑N
j=1 Xj

t , in order to approximate
E[Xt], the true mean of the process.

(SSA) [17, 18] (which simulates lattice CTMCs exactly) have been proven [31, 29] for sufficiently small

step-size τ . Significant work has been done to produce enhanced tau-leaping algorithms, including the

development of adaptive step size selection [11, 2] and implicit variants [30]. While we don’t present any

direct applications of the anticorrelated simulation techniques we present here to these more sophisticated

tau-leaping algorithms, we do believe that adaptations of the work in this dissertation are straightforwardly

applicable to several of these important refinements.

The methods we propose for discrete-time simulation require only the manipulation of uniform random

inputs to the “black-box” system dynamics, and thus are easily implemented in any typical code. This

feature of our approach is similar to that of other numerical algorithms that incorporate legacy simulation

codes in a modular fashion, such as the recursive projection method [37] and equation-free methods [22].

The flow of traditional independent, identically distributed (iid) Monte Carlo simulation for mean estimation

is shown in Figure 1.1, and is contrasted with Monte Carlo driven using our antithetically paired sample

paths, shown in Figure 1.2.

Of particular interest are mean estimators that dominate traditional iid Monte Carlo estimates, meaning

unbiased estimators whose MSE is lower than iid estimators over any operating parameters. Dominant mean

estimators avoid the need to tune a given technique to a particular application and also provide performance

guarantees. Over such a general class of models (with no apparent exploitable symmetries), a generalized

variance reduction via anticorrelation is challenging; analytical guarantees are difficult to achieve for the same

reason that Monte Carlo simulation is necessary, namely that such models are often analytically intractable.

In the continuous-time setting, the slow-scale SSA method [10] has been proposed to simulate fast

and slow dynamics in a separate but coupled fashion. Other variance reduction techniques applied to the

continuous simulation version of this class of processes include, for example the common random numbers and

common reaction path methods proposed in Rathinam et al. [32] and an efficient finite-difference technique
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RNG Sample Mean ΨANTI
t ≈ E[Xt]U i

X
(1),j
t

X
(2),j
t

Figure 1.2: Variance-reduced Monte Carlo mean estimation using antithetic stochastic simulation as an
alternative to the iid Monte Carlo estimation architecture shown in Figure 1.1. Again, a single stream
of standard uniform variates {U1, U2, . . . } drive a particular discrete-time process simulation to produce
a sequence of iid sample paths {X(1),j

t }Nj=1. Additionally, however, the corresponding antithetic standard
uniform sequence {1− U1, 1− U2, . . . } (itself a sequence of uniform variables on [0, 1]) is used as input for
another realization of the same discrete-time process simulation with the same initial conditions and reaction
rates to produce another iid sequence {X(2),j

t }Nj=1 of sample paths with identical marginal distribution. The

most important feature of these sequences is that, for any j, X
(1),j
t and X

(2),j
t are correlated for each t. When

this correlation is negative, their sample mean, ΨANTI
t = 1

2N

∑N
j=1

(
X

(1),j
t + X

(2),j
t

)
, will be an unbiased

estimator of the true mean E[Xt] and will have lower variance than Ψ̃t.

was proposed by Anderson [3], used to estimate parameter sensitivities. Anderson and Higham [4] have also

proposed a multilevel technique that reduces variance using a type of iterated control variates. For multiscale

systems in this class, exact, reduced cost sampling techniques using binning strategies [28] compatible with

the techniques of this work have been shown to be effective.

The algorithms we present for the simulation of lattice CTMCs exploit the random time-change repre-

sentation [14, 5] of a lattice CTMC in order to draw out their fundamental source of randomness: unit-rate

Poisson processes. We propose a pair of related algorithms for simulating negatively correlated pairs of

Poisson processes while preserving their marginal distributions. These anticorrelated Poisson process pairs

can then be used as random input into random time-change representations of lattice CTMCs to produce

negatively correlated sample paths of the lattice CTMC itself. These anticorrelated sample paths can then

be used to construct unbiased, reduced-variance Monte Carlo mean estimates of the lattice CTMC distribu-

tion. As in the lattice DTMC case, by manipulating random inputs alone, we avoid any interactions with

the particular system dynamics. Since the marginal distributions of our inputs are unchanged, and since we

ensure that all random inputs used to construct a single path are mutually independent, we can simulate

any such system without altering its dynamics or marginal distribution. Additionally, we will demonstrate

with numerical experiments that the resulting lattice CTMC pair has significant negative correlation, even

in nonlinear examples. While the algorithms we propose do result in some additional computational costs,
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the numerical cost-error studies we present show that the significant gains in performance still allow it to

remain competitive with standard methods such as next-reaction methods [15, 1].

In both the discrete- and continuous-time cases, our focus is on typical system behavior and we in-

voke no measure changes as in well-known variance reduction techniques like importance sampling [20] or

restarting [38]. In this work, we don’t address systems that include time-delays [7, 9, 1]. Further, we do

not directly address issues arising from time-scale separation between reaction channels [10]. Alternative

variance reduction approaches for stochastic simulation include common reaction path methods [32] and

finite-differencing [3]. Multi-level Monte Carlo methods [16] have been extended to and studied for this class

of processes [4].

The outline of the dissertation is as follows. In Chapter 2, we remind the reader of several important

mathematical background preliminaries that may be helpful in understanding the subsequent chapters. In

Chapter 3, we introduce the antithetic simulation of lattice DTMCs. First, in Section 3.1 we introduce the

algorithm to produce unbiased, variance-reduced mean estimators drawn for such systems. In this section,

we also provide some insights to the implementation of such algorithms in practice, perhaps on parallel high

performance computing architectures. We also define the error metrics we’ll use in the discrete-time cases in

this dissertation. Next, in Section 3.2, we present and prove several analytical results, including unbiasedness,

covariance evolution over time, and a sufficient condition for variance-reduction in the affine rates case.

Finally, in Section 3.3, we introduce three example systems and conduct numerical parameter studies to

demonstrate significant variance-reduction in each case. The three systems are tau-leaping approximations

of a gene expression system with affine rate functions, and two systems with nonlinear rate functions: a

coagulation system in the presence of gravitational settling and an HIV infection system.

In Chapter 4, we develop algorithms for the anticorrelated simulation of lattice CTMCs. We begin in

Section 4.1 by showing how to construct negatively correlated unit-rate Poisson processes using a pair of

algorithms, which we refer to as the endpoint technique and its refinement, the binomial-midpoint technique.

We also present analysis of the algorithms, including a closed form solution for the mean-squared error (MSE)

of the endpoint technique, as well as numerical studies of each algorithm to demonstrate their dependence on

operating parameters. Finally, in Section 4.2 we explain how these negatively correlated Poisson processes

can be used as input to the random time-change representation to produce negatively correlated, exact

realizations of lattice CTMC systems. We present as numerical examples the continuous-time versions of

the gene expression and coagulation systems used in Section 3.3.

In Chapter 5, we present a new framework for variance-reduced lattice DTMC simulation that extends

beyond antithetic simulation to any anticorrelated technique for generating Poisson random variables. In
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effect, this serves to de-couple the variance-reduction method from the dynamics of the system. In particular,

we can use this new paradigm to further reduce variance in the simulation of tau-leaping systems that ex-

perience few reactions-per-time-step. We present one possible implementation of anticorrelated tau-leaping,

based on the binomial midpoint technique in the continuous-time setting. In Section 5.2, we present the

results of numerical studies of this initial implementation, again for the tau-leaping versions of the affine

gene expression and nonlinear coagulation systems.

In Chapter 6, we present two other applications of variance-reduced simulation. In Section 6.1 we

discuss how antithetic simulation techniques can be applied the stochastic model predictive control problem

by reducing the cost of computing an estimated cost-to-go. This is particular useful for systems running

stochastic controllers online that are subject to strict computational constraints. In Section 6.2, we propose

a way to use antithetic discrete-time simulation to reduce the cost of the prediction step of bootstrap particle

filtering algorithms.

Finally, in Chapter 7 we summarize the results of the dissertation and present some possible future

directions for research.
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Chapter 2

Preliminaries

The inspiration for several of the algorithms we will present is the classical technique to sample antithetic

pairs of scalar random variables. For example, we may generate two Poisson-distributed random samples

(X1, X2) by defining

X1 := F−1
τ (U)

X2 := F−1
τ (1− U),

where U ∼ Unif[0, 1] is a uniform random variable and F−1
τ is the formal inverse of the Poisson cumulative

distribution function (CDF) with parameter τ . It’s easy to show that Cov (X1, X2) ≤ 0 for all τ [25]. We

will denote an antithetic draw from this distribution by (X1, X2)
anti∼ Pois(τ).

We will also use a related approach to simulate unit-rate Poisson process trajectories. Let Y (t) denote

a unit-rate Poisson process. For s < t, define N(s, t) := Y (t) − Y (s) to be its increment. Recall that the

unit-rate Poisson process is defined by three properties [35]:

• Y (0) = 0

• if s1 < t1 ≤ s2 < t2, then N(s1, t1) and N(s2, t2) are independent

• the increment is Poisson distributed with parameter t− s, i.e., N(s, t) ∼ Pois(t− s)

Further, recall that its arrival times conditioned on its value at the endpoints of any interval are uniformly

distributed throughout that interval, and, its increment within the interval, conditioned on the same values,

is binomially distributed. That is, for s < u < t,

N(s, u)| {Y (s), Y (t)} ∼ Binom
(

N(s, t),
u− s

t− s

)
.
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2.1 Lattice continuous-time Markov chains

The random time-change (RTC or Kurtz) representation [14] of a lattice CTMC expresses the process as a

linear combination of unit-rate Poisson processes, each run at different time-rates determined by the rate

functions and current state of the process. Consider a state vector X(t) ∈ ZD, t ∈ [0, T ]. If the process has

I event channels, each with propensity function ai(t, x), its RTC representation is given by

X(t) = x0 +
I∑

i=1

Y i

 t∫
0

ai(s,X(s)) ds

 νi. (2.1)

Here, {Y i}Ii=1 are independent, unit-rate Poisson processes and νi ∈ ZD, i = 1, . . . , I, are the state jump

vectors. That is, νi = X(t+)−X(t−) if the ith event channel experiences a transition at time t.

2.2 Lattice discrete-time Markov chains

Consider the random time-change (or Kurtz) representation (2.1) above. The evolution of such a process

can be studied alongside a corresponding a lattice discrete-time Markov chain. For fixed timestep increment

τ , consider the discrete-time approximation Xk ≈ X(τk) for k ∈ {0, . . . ,K}, where K := max{k : τk ≤ T}.

Then Xk evolves via

Xk+1 = Xk +
I∑

i=1

Si
k

(
ai
(
τk, Xk

)
τ
)
νi, (2.2)

where Si
k(λ) ∼ Pois(λ). For compactness, define λi(k, Xk) = ai

(
τk, Xk

)
τ and denote Si

k

(
λi(k, Xk)

)
by Si

k.

Allowing for an abuse of notation, let t replace k for the discrete-time index (used as a subscript), and (6.52)

becomes

Xt+1 = Xt +
I∑

i=1

Si
tν

i. (2.3)

The technique presented in this dissertation demonstrates how to produce unbiased, anticorrelated ensembles

of this discrete-time system (2.3) with respect to its own distribution. Variance-reduced simulation of the

continuous-time system (2.1) is possible by using the tau-leaping method of [19] to produce a corresponding

DTMC, but this introduces bias with respect to the CTMC distribution. Unbiased, variance-reduced simu-

lation of the lattice CTMC system is the subject of future work. The discrete time system evolves at each

timestep via a collection of independent, marginally-Poisson random variable draws with stochastic-valued

parameters. This structure is crucial in the construction of anticorrelated path ensembles drawn from (2.3),

as defined in Algorithm 1 below. Due to the discrete time approximation, there is a nonzero probability

of transition to a state outside of the domain of the continuous time system (e.g. a negative number of
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particles). We handle this using the method of [31] in the tau-leaping context, namely by truncating the

state to zero instead if it would transition to a negative state. For clarity, we restrict our attention to explicit

tau-leaping with fixed step size, though extension to implicit [30] and/or adaptive [11, 2] variants are are of

future interest.

2.3 Monte Carlo estimation of discrete-time systems

Our setting of interest is the Monte Carlo estimation of the mean behavior µt of a discrete-time stochastic

process Xt. The classical Monte Carlo approach is to draw M iid samples of the process to produce an

estimator Ψ̃M
t ≈ µt = E[Xt] (hereafter, the tilde will denote the use of iid simulation). Throughout the

dissertation, we will compare this iid approach to our anticorrelated approach, which produces an alternative

mean estimator ΨM
t , constructed from identically distributed but non-independent sample paths. We define

the iid mean-estimator Ψ̃M
t of a discrete-time stochastic process Xt ∈ RD to be the sample-mean of an iid

collection of M sample paths X̃
(r)
t ,

Ψ̃M
t :=

1
M

M∑
r=1

X̃
(r)
t . (2.4)

It is well established [34] that this is an unbiased mean-estimator that achieves the minimum variance

possible using iid samples. To reduce the MSE of estimators constructed from system samples, we must

reduce estimator variance. Indeed, these two quantities nearly coincide, as MSE can be expressed as a scaled

trace of the variance matrix. Specifically,

MSE(Ψ̃M
t ) = E[‖Ψ̃M

t − µt‖22]

= tr Var(Ψ̃M
t ) =

1
M

trVar(Xt). (2.5)

Of course, the MSE is reduced as the number of samples M increases, but more stochastic simulation

can come at a significant computational cost. Consider, however, our alternative ensemble X
(r)
t ∼ Xt for

r ∈ {1, . . . ,M} such that the sample paths are mutually correlated while still identically distributed. In

this case, we may reduce the variance of the estimator ΨM
t by ensuring that samples that compose it are

negatively correlated. Analytically, the variance of our proposed mean estimator,

ΨM
t :=

1
M

M∑
r=1

X
(r)
t , (2.6)
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can be expressed as

MSE(ΨM
t ) =

1
M

trVar(Xt) +
1

M2

∑
r 6=p

trCov(X(r)
t , X

(p)
t ) (2.7)

= MSE(Ψ̃M
t ) +

1
M2

∑
r 6=p

trCov(X(r)
t , X

(p)
t ). (2.8)

Thus if the paths {X(r)
t }Mr=1 are simulated in such a way to ensure mutual negative correlation between

different samples, the MSE of the correlated ensemble estimator will be less than the MSE of the iid estimator.

Note that, to generate any sufficiently accurate mean estimator, we may produce multiple iid realizations of

anticorrelated collections of M paths {X(r)}Mr=1. However, we need only analyze estimators produced from

a single collection of anticorrelated paths. In particular, for the purposes of antithetic mean estimation, the

inclusion of additional antithetic pairs in an ensemble will reduce the error of mean estimates similarly to

iid Monte Carlo, since pairs (X(r)
t , X

(r+1)
t ) are iid in r ∈ {1, 3, 5, . . . }. This fact is proven in Lemma 2. The

challenge, of course, is how to produce anticorrelated paths with correct marginal distributions without any

foreknowledge of the particular parameters of a stochastic system in a large class. The key motivation for

our approach lies in the random time-change representation of a lattice CTMC and its corresponding lattice

DTMC.
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Chapter 3

Discrete-time simulation

3.1 Constructing antithetic sample paths for lattice DTMCs

We now define the Markov process samples used in the pathwise mean estimators. Define M iid Monte

Carlo sample paths by

X̃(r) iid∼ X̃, r ∈ {1, . . . ,M} (3.1)

so that the random value of the rth sample path at time t is denoted X̃
(r)
t . Here, we explicitly construct

antithetic pairs of stochastic paths X(1), X(2) as our anticorrelated method of choice; for the details in

constructing stratified or hybrid ensembles of paths, see [24]. In each case, the analysis of variance reduction

ultimately hinges on the value of Cov(X(r1)
t , X

(r2)
t ) for r1 6= r2 and for t > 0.

To generate anticorrelated sample paths of the Markov chain, several adaptations of classical random

variable variance reduction techniques [34] are necessary. Since, in general, the parameter λi,(r) of the

Poisson random variable used to simulate the ith reaction channel of the Markov chain at time t depend on

the current state X
(r)
t , the Poisson variables used by different sample paths may have different parameters.

To produce unbiased sample paths for the Markov jump process, we produce antithetically paired random

inputs (which are Poisson when conditioned on the random state value) as shown in Algorithm 1. Here Fλ

is the Poisson CDF with parameter λ and F−1
λ (u) := inf{q : Fλ(q) ≥ u}. Using a result shown in [39],

this scheme is optimal for pairs of random variables with the same marginal distribution obtained via CDF

inversion. While these marginal Poisson samples will not have the same parameters in general, this scheme

is still a reasonable choice since the parameters are unknown a priori.

3.1.1 Implementation architecture

Implementing Monte Carlo simulations of large-scale stochastic systems often requires consideration of both

memory usage and parallelizability. While direct implementation of Algorithm 1 is sufficient for many

applications, in some situations it might not be desirable to store multiple trajectory instances simultaneously
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Algorithm 1 Constructing antithetic paths for lattice DTMC systems (2.3)

Intialize: X
(j)
0 ← x0

for t = 0 to T do
for i = 1 to I do

sample iid U i
t

iid∼ Unif(0, 1)
S

i,(1)
t ← F−1

λi(t,X
(1)
t )

(U i
t ) ∼ Pois(λi(t, X(1)

t ))

S
i,(2)
t ← F−1

λi(t,X
(2)
t )

(1− U i
t ) ∼ Pois(λi(t, X(2)

t ))

end for
for r ∈ {1, 2} do

X
(r)
t+1 ← X

(r)
t +

∑I
i=1 S

i,(r)
t νi

end for
end for

in memory or to utilize only one processor. An important feature of lattice DTMC systems is that, for given

system parameters and number of time steps, the number of uniform variates required to simulate a sample

path is fixed. As a result, we may reproduce a complete sequence of uniform random numbers, and thus

an entire trajectory, by storing or communicating the scalar state or seed of the pseudorandom number

generator (PRNG) instead of an entire sequence of random numbers, as shown in Figure 1.2. Furthermore,

an antithetic pair of sample trajectories needn’t be computed simultaneously. A single processor may

compute an antithetic pair of sample paths in series by storing the seed of the PRNG, avoiding the need to

simultaneously store two trajectories. Furthermore, an antithetic pair of trajectories can easily be computed

on separate processors with minimal communication overhead by simply passing each processor the PRNG

seed corresponding to the pair.

3.1.2 Lattice DTMC error quantification

We define the Mean Square Error (MSE) of an estimation method at time t to be

MSE
(
ΨM

t

)
= E

[∥∥∥ΨM
t − E[ΨM

t ]
∥∥∥2

2

]
, (3.2)

where ‖ · ‖2 denotes the Euclidean vector norm. As shown above, this estimator error is the trace of its

variance,

MSE
(
ΨM

t

)
= E

[∥∥∥ΨM
t − E[ΨM

t ]
∥∥∥2

2

]
= tr Var

(
ΨM

t

)
. (3.3)
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From this, we define our primary error measure, the pathwise MSE, given by

MSE
(
ΨM

)
= E

[∥∥∥ΨM − E[ΨM ]
∥∥∥2
]
, (3.4)

where ‖ · ‖ denotes the Frobenius matrix norm. The stepwise MSE is related to the pathwise MSE by

MSE
(
ΨM

)
=

T∑
t=0

MSE
(
ΨM

t

)
. (3.5)

3.2 Analytical results for pathwise variance reduction algorithms

A simple yet important first result is that the local relaxation of the independence assumption in the law of

large numbers does not sacrifice unbiasedness or consistency of a mean estimator. In the sequel, X(r) denotes

the rth member of a possibly correlated ensemble and {X(r),j}Mr=1 is the jth iid realization of a complete

M -element ensemble. In other words, the sequence of identically distributed sample paths X(r),j ∼ X, for

r ∈ {1, . . . ,M} and j ∈ {1, . . . , N} has the property that X(r1),j1 and X(r2),j2 are independent for j1 6= j2

and are not necessarily independent for j1 = j2. Using such a sequence, we may construct a mean estimator

ΨNM =
1

NM

N∑
j=1

M∑
r=1

X(r),j =:
1
N

N∑
j=1

ΨM,j .

Lemma 1. The mean estimator ΨNM is unbiased with respect to the lattice DTMC distribution (2.3) and,

for fixed M , is consistent in N .

Proof. Unbiasedness follows immediately by

E[ΨNM ] =
1

NM

N∑
j=1

M∑
r=1

E[X(r),j ] = E[X].

To prove consistency, note that while the path sequence {X(r),j , r = 1, . . . ,M, j = 1, . . . , N} is not iid, the

sequence {ΨM,j , j = 1, . . . , N} is iid and E[ΨM,j ] = E[X]. So by the strong law of large numbers, for any

fixed M, limN→∞ΨNM = E[X] almost surely.

Since such estimators are unbiased, reduction of their variance is tantamount to reduction of their MSE.

For estimators formed from anticorrelated collections of samples as above, the number of such collections

used to construct an estimator does not affect its performance relative to an iid estimator using the same

number of samples, as shown in the following Lemma.
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Lemma 2. For ΨNM constructed as above,

MSE
(
ΨNM

)
MSE

(
Ψ̃NM

) =
MSE

(
ΨM

)
MSE

(
Ψ̃M

) .

Proof. Again, using the fact that {ΨM,j , j = 1, . . . , N} is iid,

MSE
(
ΨNM

)
MSE

(
Ψ̃NM

) =
MSE

(
1
N

∑N
j=1 ΨM,j

)
MSE

(
1
N

∑N
j=1 Ψ̃M,j

) =
1
N MSE

(
ΨM,j

)
1
N MSE

(
Ψ̃M,j

) =
MSE

(
ΨM

)
MSE

(
Ψ̃M

) .

In particular, we may analyze any antithetic mean estimator by examining only the estimator constructed

from a single antithetic pair, {X(1), X(2)}. To quantify variance reduction of such estimators, one must first

characterize the evolution of the covariance of correlated paths, which can evolve in time in nonlinear,

recursive fashion, as shown below.

Theorem 3. If X(1), X(2) ∈ ZD × N are two realizations that satisfy (2.3) and are constructed using

Algorithm 1, then their mutual covariance satisfies

Cov(X(1)
t+1, X

(2)
t+1) =Cov(X(1)

t , X
(2)
t )

+
I∑

i=1

νi Cov(λi(t, X(1)
t ), X(2)

t ) +
I∑

i=1

Cov(X(1)
t , λi(t, X(2)

t ))νi>

+
I∑

i1=1

I∑
i2=1

νi1νi2>Cov(λi1(t, X(1)
t ), λi2(t, X(2)

t ))

+
I∑

i=1

νiνi>E
[(

S
i,(1)
t − λi(t, X(1)

t )
)
·
(
S

i,(2)
t − λi(t, X(2)

t )
)]

. (3.6)

Proof. First, consider the simplified case of a single event channel. In this case, the system dynamics are

given by

Xt+1 = Xt + Stν.

Draw any two anticorrelated sample paths X(1) and X(2), simulated as above, and consider their mutual

covariance which can be expanded using the system definition and bilinearity as

Cov(X(1)
t+1, X

(2)
t+1) = Cov(X(1)

t , X
(2)
t ) + ν Cov(S(1)

t , X
(2)
t ) + Cov(X(1)

t , S
(2)
t )ν> + νν>Cov(S(1)

t , S
(2)
t ).
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The treatment of the last term is informative for how to simplify the other terms.

Cov(S(1)
t , S

(2)
t ) = E

[
(S(1)

t − E[S(1)
t ]) · (S(2)

t − E[S(2)
t ])

]
= E

[(
S

(1)
t − λ(t, X(1)

t )
)
·
(
S

(2)
t − λ(t, X(2)

t )
)

+
(
S

(1)
t − λ(t, X(1)

t )
)
·
(
λ(t, X(2)

t )− E[S(2)
t ]
)

+
(
S

(2)
t − λ(t, X(2)

t )
)
·
(
λ(t, X(1)

t )− E[S(1)
t ]
)

+
(
λ(t, X(1)

t )− E[S(1)
t ]
)
·
(
λ(t, X(2)

t )− E[S(2)
t ]
)]

= E
[(

S
(1)
t − λ(t, X(1)

t )
)
·
(
S

(2)
t − λ(t, X(2)

t )
)]

+ E
[
E
[
S

(1)
t − λ(t, X(1)

t )|X(1)
t , X

(2)
t

](
λ(t, X(2)

t )− E[S(2)
t ]
)]

+ E
[
E
[
S

(2)
t − λ(t, X(2)

t )|X(1)
t , X

(2)
t

](
λ(t, X(1)

t )− E[S(1)
t ]
)]

+ Cov
(
λ(t, X(1)

t ), λ(t, X(2)
t )
)

= E
[(

S
(1)
t − λ(t, X(1)

t )
)
·
(
S

(2)
t − λ(t, X(2)

t )
)]

+ Cov
(
λ(t, X(1)

t ), λ(t, X(2)
t )
)
,

where the last equality follows since the conditional expectations in the middle two terms are zero. It is easy

to see, again using the law of total expectation, that the first term can only be non-zero when S
(1)
t and S

(2)
t

are associated with the same event channel. Indeed, suppose i1 6= i2. Then

E
[(

S
i1,(1)
t − λi1(t, X(1)

t )
)
·
(
S

i2,(2)
t − λi2(t, X(2)

t )
)]

= E
[
E
[(

S
i1,(1)
t − λi1(t, X(1)

t )
)
·
(
S

i2,(2)
t − λi2(t, X(2)

t )
)
|X(1)

t , X
(2)
t

]]
= E

[
E
[
S

i1,(1)
t − λi1(t, X(1)

t )|X(1)
t , X

(2)
t

]
· E
[
S

i2,(2)
t − λi2(t, X(2)

t )|X(1)
t , X

(2)
t

]]
= 0.

Thus (5.1) follows immediately for the multi event channel case.

The following result proves a useful connection between the properties of an anticorrelated Poisson

variable and the analogous lattice DTMC constructed using Algorithm 1. First, however, we require a

lemma regarding the antithetic Poisson sampling used in Algorithm 1.

Lemma 4. For any λ1, λ2 ∈ R+, if S(r) ∼ Pois(λr), r ∈ {1, 2} are simulated using the antithetic sampling

technique used in steps 3 and 4 of Algorithm 1, then Cov(S(1), S(2)) ≤ 0.
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Proof. By construction, for U ∼ Unif[0, 1],

Cov(S(1), S(2)) = Cov(F−1
λ1

(U), F−1
λ2

(1− U)) (3.7)

= −Cov(F−1
λ1

(U),−F−1
λ2

(1− U)) ≤ 0 (3.8)

due to a result proven in [39]. There, the crucial fact is that F−1
λ1

(U) and −F−1
λ2

(1 − U) are both non-

decreasing functions of U for any λ1, λ2 ≥ 0.

Using Lemma 4, we prove a result that guarantees the non-positivity of the final term of (5.1).

Theorem 5. Suppose that X(1), X(2) are two realizations simulated using Algorithm 1. Then, for any event

channel i and for each time t ≥ 0,

E
[(

S
i,(1)
t − λi(t, X(1)

t )
)
·
(
S

i,(2)
t − λi(t, X(2)

t )
)]
≤ 0. (3.9)

Proof. Suppose S(1)(t, x), S(2)(t, x) ∼ Pois(λ(t, x)) are simulated using such an anticorrelated technique. Fix

any x1, x2 ∈ RD, and, by Lemma 4,

0 ≥ Cov(S(1)(t, x1), S(2)(t, x2))

= E
[(

S(1)(t, x1)− λ(t, x1)
)
·
(
S(2)(t, x2)− λ(t, x2)

)]
.

Since this is true for any xi ∈ RD, it is necessarily true that

0 ≥ E
[(

S
i,(1)
t − λi(t, X(1)

t )
)
·
(
S

i,(2)
r2,t − λi(t, X(2)

t )
)
|X(1)

t , X
(2)
t

]
, (3.10)

almost surely, since this is exactly the same integral (in U) for given X
(1)
t , X

(2)
t random. Taking expectation

of both sides, we get (3.9).

We remark here that, as noted above, anticorrelated sampling schemes other than antithetic sampling

may be used in the framework of Algorithm 1, such as stratified or hybrid antithetic/stratified sampling [24].

To prove a result equivalent to Theorem 5 for these methods, we need only prove a corresponding version of

Lemma 4 for any X(r1), X(r2) for r1, r2 ∈ {1, . . . ,M}.

The following corollary refines the previous results when more is required of the intensity functions

λi(t, Xt) beyond nonnegativity, namely that they be affine in the state Xt. The first condition can be used

to greatly simplify (5.1).
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Corollary 1. Suppose that

λi(t, Xt) =
(
ai(t) + κi>Xt

)
τ. (3.11)

If the conditions of Theorem 3 are satisfied, then the following recursion is satisfied

Cov(X(1)
t+1, X

(2)
t+1) = Cov(X(1)

t , X
(2)
t )

+
I∑

i=1

τνiκi>Cov(X(1)
t , X

(2)
t ) +

I∑
i=1

τ Cov(X(1)
t , X

(2)
t )κiνi>

+
I∑

i1=1

I∑
i2=1

τ2νi1κi1>Cov(X(1)
t , X

(2)
t )κi2νi2>

+
I∑

i=1

νiνi>E
[(

S
i,(1)
t − λi(t, X(1)

t )
)
·
(
S

i,(2)
t − λi(t, X(2)

t )
)]

. (3.12)

This expression can be more compactly written as

Cov(X(1)
t+1, X

(2)
t+1) = L(Cov(X(1)

t , X
(2)
t )) +

I∑
i=1

ci
tν

iνi>,

where L is a time invariant linear operator on the space of symmetric matrices and

ci
t := E

[(
S

i,(1)
t − λi(t, X(1)

t )
)
·
(
S

i,(2)
t − λi(t, X(2)

t )
)]

, t ∈ {1, . . . , T}

are sequences of reals that depend on x0 and {λi}Ii=1. If, in addition, the conditions of Theorem 5 are

satistfied, then ci
t ≤ 0 for every i and t.

In the affine rates case, we can derive a sufficient, testable condition for ensemble variance reduction

of our algorithm. First, we require an algebraic proposition regarding matrix invariance in a half-space.

Consider the set SD of D × D symmetric matrices as a vector space together with the field R and the

Frobenius inner product 〈A,B〉 := tr AB>. Define the half-space H− := {A ∈ SD : 〈A, ID〉 ≤ 0}. Define the

cone R := {
∑I

i=1 ciνiνi> : ci ≤ 0 for each i} ⊂ H−, and consider the following sufficient condition.

Proposition 1. Suppose

(i) the sequence At ∈ SD evolves according to

At+1 = L(At) +
I∑

i=1

ci
tν

iνi>, (3.13)

where L, ci
t and νi are all defined as in Corollary 1, and A0 = 0;

17



(ii) that for any R ∈ R and for every t ≥ 1, Lt(R) ∈ H−.

Then At ∈ H− for every t ≥ 0.

Proof. Define Rt :=
∑I

i=1 ci
tν

iνi>. Then, for each t ≥ 0, Rt ∈ R. For each t ≥ 1, a solution to (3.12) is

given by

At :=
t−1∑
`=0

Lt−`−1(R`). (3.14)

Since Lt−`−1(R`) ∈ H− and since the half-space H− is closed under addition, At ∈ H− for every t ≥ 0.

The final corollary shows that the above conditions are sufficient to prove the dominance of the antithetic

estimator ΨM over the iid estimator Ψ̃M in this affine rates setting.

Corollary 2. Suppose that X(r) satsify the conditions of Corollary 1, that L satisfies the conditions of

Proposition 1, and that Cov(X(1)
0 , X

(2)
0 ) = 0. Then

MSE(ΨM ) ≤ MSE(Ψ̃M ). (3.15)

Proof. It is easy to see that trCov(ΨM
t ) ≤ trCov(Ψ̃M

t ) for each t ≥ 0 if tr Cov(X(r1)
t , X

(r2)
t ) ≤ 0 for each

r1 6= r2 ∈ {1, . . . ,M} and t ≥ 0. Since the evolution equation (3.12) of Cov(X(1)
t , X

(2)
t ) is identical to (3.13),

we have by Proposition 1 that Cov(X(1)
t , X

(2)
t ) ∈ H− for every t ≥ 0. That is, tr Cov(X(r1)

t , X
(r2)
t ) ≤ 0 for

every t ≥ 0. Thus tr Cov(ΨM
t ) ≤ trCov(Ψ̃M

t ) for each t ≥ 0, and the claim holds by (2.8).

3.3 Numerical results for lattice DTMC samplers

We now introduce three example stochastic systems for numerical study of Algorithm 1, that illustrate the

above analytical results and provide further intuition for its efficacy in more general cases. These systems are

drawn from the literature and have been specifically chosen to exhibit increasingly complex rate functions.

The first is a simple model of gene expression which appears in [8], modeling the production and decay of

mRNA and protein molecules. This system has rate functions which are affine in the state variables, and

thus corresponds to Corollary 1, and we prove that it satisfies the sufficient conditions of Corollary 2. The

second system is a simplified model of coagulation of water molecules via gravitational settling. As presented

in [36], the system is composed of two sizes of water molecules, large and small, where coagulations within

sizes are rare but between sizes are frequent and are specified by a nonlinear propensity function. Finally, we

present a seven-dimensional model of HIV infection with 19 reaction channels and nonlinear rate functions,

as found in [6]. The latter two systems are chosen because their complexity extends beyond the scope of
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our analytical results. While we cannot yet provide analytical guarantees of improved performance using

anticorrelated simulation for such models, the numerical results do demonstrate significant computational

savings for each system. Thus, we provide promising evidence of the wider applicability of variance-reduced

tau-leaping. First, we briefly introduce each of the three systems in Subsections 3.3.1, 3.3.2 and 3.3.3, then

we study the performance of Algorithm 1 in all three settings via a parametric study of the scale of each

system in Subsection 3.3.4.

3.3.1 Affine gene expression system

Consider a simple gene expression system, where mRNA is produced and decays, and it produces a protein

which also decays. This simple model is quite commonly studied, the specific formulation and parameter

values appear here as in [8], and are taken to be unitless. That is,

∅ kr→ mRNA

mRNA
γr→ ∅

mRNA
kp→ protein + mRNA

protein
γp→ ∅.

Define the state of the system to be number of mRNA and protein particles, respectively, as a vector X ∈ Z2,

with initial condition X0 = V · [1.0 0.5]> (where V is a system volume scaling parameter) with I = 4 reaction

channels, given by:

ν1 = [1 0]> a1(Xt) = krV

ν2 = [−1 0]> a2(Xt) = γrXt,1

ν3 = [0 1]> a3(Xt) = kpXt,1

ν4 = [0 − 1]> a4(Xt) = γpXt,2,

for kr, γr, kp, γp > 0, and where Xt,d denotes the dth component of the state vector at time t. The

corresponding discrete time approximation is simulated using the tau-leaping approximation (6.52) with

τ = 1 (i.e. λi = ai) and run from time t = 0 to time t = T = 100. A pair of antithetic sample trajectories

are shown in Figure 3.1. Our primary interest is the normalized estimator MSE for the gene expression

estimator, shown in Figure 3.3; this shows the degree of MSE reduction of antithetic simulation compared
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to iid simulation over a large range of system scales. This behavior will be discussed in detail in 3.3.4. As

mentioned above, the number of antithetic pairs used in the variance reduced mean estimator is irrelevant

for comparison to iid estimators using an equal number of sample paths, since both decay at the same rate

as proven in Lemma 2, so we consider mean estimators composed of a pair of antithetic paths.

Note that this system satisfies the conditions of Corollary 1 and Proposition 1. Indeed, the rate functions

are affine in the state variables, and, with respect to (3.11),

κ1 = [0 0]>

κ2 = [γr 0]>

κ3 = [kp 0]>

κ4 = [0 γp]>.

It is easy to verify then that, if we vectorize the 2 × 2 covariance matrix objects as vectors in R4, then we

may identify the linear operator L with left multiplication by a matrix L ∈ R4×4 given by

L =



(1− γrτ)2 0 0 0

kpτ(1− γrτ) (1− γrτ)(1− γpτ) 0 0

kpτ(1− γrτ) 0 (1− γrτ)(1− γpτ) 0

k2
pτ2 kpτ(1− γpτ) kpτ(1− γpτ) (1− γpτ)2


,

a lower triangular matrix. Furthermore, the negative cone R can be identified with the set

{(c1, 0, 0, c2)> : c1, c2 ≤ 0} ⊂ R4, (3.16)

so for any R ∈ R, and for any t ≥ 1, Lt(R) can be identified with Lt vec(R), which, if γrτ ≤ 1 and γpτ ≤ 1,

is the product of a lower triangular matrix with non-negative entries and the standard vectorization of an

element of R. Therefore, the first and fourth components of the product will have the form

(
Lt vec(R)

)
1

=
(
Lt
)
1,1

c1 ≤ 0(
Lt vec(R)

)
4

=
(
Lt
)
4,1

c1 +
(
Lt
)
4,4

c2 ≤ 0

for every t ≥ 1, where subscripts are used here to denote vector and matrix components. So Lt(R) ∈ H−

for every t ≥ 1, and thus trCov(X(1)
t , X

(2)
t ) ≤ 0 for every t ≥ 0, as long as γrτ, γpτ ≤ 1. Thus the antithetic
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Figure 3.1: Antithetic pair of sample path trajec-
tories of the gene expression system using timestep
τ = 1 and rate parameters (kr, γr, kp, γp) =
(0.01, 0.03, 0.06, 0.0066) and initial condition X0 =
[100 50]> (i.e. volume parameter V = 100) plotted
versus time.
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Figure 3.2: Mean trajectory of the lattice CTMC
gene expression system obtained by directly solv-
ing the master equation and the mean trajectory
of the lattice DTMC system obtained using Monte
Carlo simulation plotted versus time. Both systems
used parameters timestep τ = 1, rate parameters
(kr, γr, kp, γp) = (0.01, 0.03, 0.06, 0.0066) and initial
condition X0 = [100 50]> (i.e. volume parameter
V = 100).

mean estimator is a dominant mean estimator for the lattice DTMC distribution.

Because the propensity functions in this example are affine with respect to the state, the exact mean

evolution of the corresponding continuous-time system is obtainable. Following the approach used in [13],

the mean evolution of the lattice CTMC corresponding to the affine gene expression system is given by the

solution to:

ṁ(t) = νAm(t) + νB, m(0) = X0 (3.17)

where m(t) := E[X(t)], ν = [ν1 ν2 ν3 ν4] ∈ R2×4, and, using the propensities defined above, a(Xt) :=

[ai(Xt)]4i=1 = AXt +B for A ∈ R4×2 and A ∈ R4×1. The solution of the above ordinary differential equation

is

m(t) = eνAtm(0) +
∫ t

0

eνA(t−τ)νB dτ,

and it is plotted together with the mean of the discrete-time version obtained via Monte Carlo simulation in

Fig. 3.2. Our antithetic mean estimates are unbiased with respect to the discrete-time distribution, which in

turn is biased with respect to the continuous-time distribution due to the tau-leaping approximation, though

this bias is small for the values of τ and V shown in the plot.
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Figure 3.3: Normalized pathwise MSE(ΨM )M/V of an M = 4 sample estimator of the mean E[Xt] of the
gene expression system using the iid and antithetic sampling techniques plotted versus volume scale V , for
timestep τ = 1s, rate parameters (kr, γr, kp, γp) = (0.01, 0.03, 0.06, 0.0066), initial condition X0 = [V V/2]>

and timesteps from t = 0 to t = 100. Pathwise MSE calculated from 106 sample paths, error bars omitted.

3.3.2 Nonlinear coagulation via gravitational settling

Following the treatment in [36], Chapter 13, consider a system of water particles falling in the atmosphere

under the influence of gravity. The system falls in a control volume and is made up of two classes of

particles, large and small. The system evolves via the coagulation of a large particle and a small particle

(the coagulation rate is driven by differences in terminal settling velocity, so particles of similar size are

unlikely to coagulate) or by the emission of new small particles into the volume V . We may specify the state

of the system as (Ns,Ms, Nl,Ml), or the number of small particles, total mass of small particles, the number

of large particles, and the total mass of the large particles, respectively. The probability rate at which a

single small particle coagulates with a single large particle in volume V is given by (13.A.4) in [36]:

KGS
sl =

π

4
1
V

(Dl + Ds)2|vl − vs|

where Ds and Dl are the diameters of the small and large particles, respectively, and vs and vl are the

terminal settling velocities of the small and large particles, respectively. For simplicity, we take the collision

efficiency to be 1. By Stokes’ Law,

vs =
1
18

(ρp − ρf )
µ

gDs
2,

where ρp is the density of the particle, ρf is the density of the fluid, µ is the viscosity of the fluid, and g

is the acceleration due to gravity. A similar equation holds for the terminal settling velocity vl of the large

particles. For simplicity, we consider the case where the number of large particles, Nl scales directly with the
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for the nonlinear coagulation system with small parti-
cle mass m = 1, proportionality constant α = 5 ·10−4

into a control volume with V = 1, using timestep
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Figure 3.5: Normalized pathwise MSE(ΨM )M/V of
an M = 4 sample mean estimator for the nonlinear
coagulation system versus source area from V = 100

to V = 104. Computation of pathwise MSE from
106 simulations, where each simulation uses timestep
τ = 0.1 s, and timesteps from t = 0 to t = 100. Error
bars are small and are thus omitted.

volume V and where the mass of each small particle is uniformly fixed as m. The state of the system then

becomes (Ns,mNs, V, Ml), and we need only track the smaller state X = (Ns,Ml). Simplifying the master

equation (13.81) in [36], and using the fact that Ds ∝ 3
√

m and Dl ∝ 3

√
Ml

Nl
, we can specify the reaction

channels of this system by:

ν1 = [m 0]> a1(Xt) = V

ν2 = [−m m]> a2(Xt) = αKGS
sl V Xt,1

where α is a proportionality constant and, for simplicity

KGS
sl =

1
V

(
3

√
Xt,2/V + 3

√
m

)3(
3

√
Xt,2/V − 3

√
m

)
.

The state is initialized from X0 = V · [100, 10] and a corresponding lattice DTMC system is obtained via

the tau-leaping approximation (6.52) for τ = 0.1s, and is simulated for 10s from timestep t = 0 to timestep

T = 100. We take α = 5 · 10−4 and for simplicity we take m = 1 so that the state Xt ∈ Z2. Concentration

sample trajectories are shown in Figure 3.4. The estimator MSE of the coagulation system plotted versus

the system scale parameter V shown in Figure 3.5. This behavior will be discussed in in 3.3.4.
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Figure 3.6: Antithetic pair of sample trajectories of
cell concentration for the HIV infection system for
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timesteps from t = 0 to t = 10 000 plotted versus
time. All other parameter values taken from [6].
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Figure 3.7: Normalized pathwise MSE(ΨM )M/V of
an M = 4 sample mean estimator for the expected
path E[Xt] of the HIV infection system plotted versus
system volume V from 1 µL to 10 000 µL. Simula-
tions use a timestep τ = 0.005 days, and timestep
from t = 0 to t = 10 000. All other parameter values
taken from [6]. Pathwise MSE computed using 104

estimator samples, error bars omitted.

3.3.3 Nonlinear HIV infection system

Following [6], consider a model for HIV infection with state X ∈ R7 representing concentrations of uninfected

and infected activated CD4+ T-cells (Xt,1 and Xt,2, respectively), uninfected and infected resting CD4+ T-

cells (Xt,3 and Xt,4, respectively), infectious free virus (Xt,5), and HIV-specific effector and memory CD8+

T-cells (Xt,6 and Xt,7, respectively). The state is initialized from X0 = V · [5 1 1400 1 10 5 1]> with I = 19

reaction channels with nonlinear rates [6], save that we maintain the scaling parameter V , the volume of

the system. This system is discretized with the tau-leaping approximation (6.52) with τ = 0.005 days and

simulated from timestep t = 0 to time t = T = 10 000. Sample trajectories are shown in Figure 3.6 and

normalized estimator MSE is shown in Figure 3.7.

3.3.4 Parameter variations

Figures 3.3, 3.5 and 3.7 illustrate the dependence of estimator error on a parameter that governs the number

of particles of each system. Each figure plots a pathwise estimator’s MSE divided by a scaling parameter V

that governs the “volume” (number of computational “particles” in a typical simulation), versus the same

scaling parameter. This parameter controls the “speed” of the system, i.e., the number of reactions that

occur at each timestep; equivalently it governs the typical mean Poisson parameter sampled at each timestep.

Each mean estimator is constructed using M = 4 samples, either 4 iid samples or 2 antithetic pairs to ensure
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a fair comparison. It is easy to see that using this normalization removes from consideration any reduction

of MSE gained by generating more iid samples or pairs of samples for sufficiently large-scale systems, and

thus there is no need to draw any more samples than a small M for comparison.

The volume scale V is roughly proportional to the typical Poisson parameter used to generate random

samples, though in nonlinear cases such as the HIV system, this relationship will also tend to be nonlinear,

as we observe quite clearly for the small volume region of Figure 3.7. Since the variance of a mean estimator

scales with the variance of an individual sample path, the cost of iid Monte Carlo increases roughly linearly for

large V without bound (or remains constant if simulations are normalized as concentrations). So increasing

V corresponds to both increased resolution of simulations as well as increased cost. However, as V becomes

large and reactions occur more frequently, we expect greater relative gains in MSE for antithetic sampling

by analogy to the Poisson variable case [23]. Indeed, we observe antithetic MSE that is nearly constant

even for large V (or, in the particle concentration (normalized) setting, linearly inversely proportional to

V ), as opposed to linear growth for the iid estimator (or constant behavior when normalized). Thus when

many jumps are typically observed in each timestep, the gains produced via antithetic simulation are most

dramatic. It is worth noting that this is precisely the same operating regime that maximizes the desirability

of tau-leaping over exact continuous-time simulation, via say SSA [19].

Figures 3.3, 3.5 and 3.7, each show that the antithetic mean estimator has equal or lower MSE than the

iid mean estimator for all observed values of V . Note that the affine gene expression estimator satisfies the

sufficient conditions of Corollary 2 as shown above, and thus provably dominates the iid Monte Carlo mean

estimator. In this case, we also know that a study of any other parameter and range will show that MSE

is lower for the antithetic estimator. However, the nonlinear coagulation and HIV infection estimators also

produce greatly reduced MSE over observed values of V , despite having nonlinear state-dependent propensity

functions which make potential proof of dominance more difficult. These numerical results show that the

affine conditions, while sufficient, are certainly not necessary to produce non-increased pathwise MSE over

at least this parameter range. Thus we posit that these variance reduction techniques can be effective in a

much larger class of models, even if analytical proof is not yet available.
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Chapter 4

Continuous-time simulation

4.1 Anticorrelated unit-rate Poisson processes

We begin with the problem of simulating antithetic pairs of unit-rate Poisson processes. We will proceed

by introducing two algorithms to achieve this goal, and provide some theoretical and numerical analysis of

their behavior and performance. In Section 4.2, we will apply these algorithms to the problem of simulating

lattice CTMCs.

4.1.1 Endpoint method for simulating antithetic Poisson processes

The inspiration for the algorithms we have created to simulate antithetic Poisson process paths is the classical

technique to sample antithetic pairs of scalar random variables. This generates two Poisson-distributed

random samples (X1, X2) with

X1 := F−1
τ (U)

X2 := F−1
τ (1− U),

where U ∼ Unif[0, 1] is a uniform random variable and F−1
τ is the formal inverse of the Poisson CDF with

parameter τ . It’s easy to show that Cov (X1, X2) ≤ 0 for all τ [25]. We will denote an antithetic draw from

this distribution by (X1, X2)
anti∼ Pois(τ). Recall that the distribution of the increment N(s, t) of a unit-rate

Poisson process Y over an interval [s, t] is given by N(s, t) := Y (t)− Y (s) ∼ Pois(t− s), and is independent

of increments of the same Poisson process over other, disjoint intervals. Further, recall that its arrival times

conditioned on its value at the endpoints of any interval are uniformly distributed throughout that interval.

The first algorithm, the endpoint technique, produces an antithetic pair of Poisson process paths (Y 1, Y 2)

over an interval [0, τf ]. One way to specify a pair of continuous-time Poisson process trajectories is to simulate

the sequences
(
A1

τf
,A2

τf

)
of their arrival times. We achieve this as follows. For some step-increment τs > 0,

sample
(
Y 1(τs), Y 2(τs)

)
=
(
N1

E(0, τs), N2
E(0, τs)

) anti∼ Pois(τs), the state of the pair of Poisson processes at
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time τs as an antithetic pair of Poisson random variables. Here we denote the increments of process Y j

constructed using the endpoint technique from time s to time t with N j
E(s, t). Then, we can sample the

state of the processes at time 2τs by sampling the next process increment as an independent antithetic

pair,
(
N1

E(τs, 2τs), N2
E(τs, 2τs)

) anti∼ Pois(τs), and setting Y i(2τs) = N i
E(0, τs) + N i

E(τs, 2τs). We may proceed

until we have the sampled values {Y i(τs), Y i(2τs), . . . , Y i((N + 1)τs)}2i=1 of the state of the antithetic pair

of paths evaluated at multiples of τs, where N := bτf/τsc is the total number of full steps. We can then

finish simulating the paths by sampling the jump times, which are iid uniform random variables. That is,

within each interval (nτs, (n + 1)τs], we know that N i
E(nτs, (n+1)τs) jumps occurred, and that each jump is

uniformly distributed over the interval. More formally, tij,n
i.i.d.∼ Unif(nτs, (n+1)τs) for j = 1, . . . , N i

E(nτs, (n+

1)τs) and for n = 0, . . . , N . Finally, we re-index the jump times in j such that they are sorted in increasing

order and we discard any arrival times that lie outside [0, τf ]. The Endpoint technique is summarized in

Algorithm 2.

Algorithm 2 Endpoint Method: Antithetic Poisson process paths via concatenation of step size τs

Intialize: n← 0,
(
A1

τf
,A2

τf

)
← (∅, ∅)

while nτs < τf do
Sample antithetic Poisson random variables:

(
N1

E(0, τs), N2
E(0, τs)

) anti∼ Pois(τs)
for j = 1, . . . , N i

E(0, τs) do

Simulate iid jump times in the interval: tij,n
i.i.d.∼ Unif(0, τs), i ∈ {1, 2}

end for
Sort and append arrival times: Ai

τf
← Ai

τf
∪ sort

({
nτs + tij,n

}Ni
E

j=1

)
, i ∈ {1, 2}

n← n + 1
end while
Ai

τf
← Ai

τf
∩ [0, τf ], i ∈ {1, 2}

return
(
A1

τf
,A2

τf

)
The reason we apply antithetic sampling to the state values of Y (t) instead of the jump times themselves,

is that we are ultimately concerned with quantities like Cov
(
Y 1(t), Y 2(t)

)
, and producing anticorrelation in

the state space is significantly more effective than indirectly anticorrelating via the time dimension. While

the anticorrelation is only injected at sample points {τs, 2τs, . . . } and jump times are simulated iid, we will

show in 4.1.3 that negative correlation is felt throughout the time domain of the process, not just at the

antithetic sample points.

While a more complete and precise analysis is provided in Section 4.1.3, we attempt here to provide

some intuition regarding the performance and limitations of the endpoint method, in order to motivate the

development of the other algorithm we will present in this work, the binomial midpoint method.

First, we define a useful performance metric. Since all of the mean estimators we construct in this work
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are unbiased, we define the scaled mean square error (MSE) of a pathwise mean estimator δ at time t to be

MSE(t) := N Var (δ(t)) = N Var

(
1
N

N∑
i=1

Y i(t)

)
, (4.1)

where N is the number of sample paths used to produce the mean estimate. This quantity is of interest

both because it is invariant to the inclusion of additional iid paths (or pairs of antithetic paths, as the case

may be) and because it cleanly relates to other quantities of interest. For example, for any mean estimator

δ2M (t) =
1

2M

M∑
i=1

[
Y 1,i(t) + Y 2,i(t)

]
, (4.2)

where the pairs (Y 1,i, Y 2,i) are iid in i but their elements could be correlated. Then

MSEδ2M
(t) = 2M Var

(
1

2M

M∑
i=1

[
Y 1,i(t) + Y 2,i(t)

])

=
2
M

M∑
i=1

Var
(

Y 1,i(t) + Y 2,i(t)
2

)
= 2Var (δ2(t))

= MSEδ2(t)

= Var
(
Y 1(t)

)
+ Cov

(
Y 1(t), Y 2(t)

)
= t + Cov

(
Y 1(t), Y 2(t)

)
.

In particular, the scaled MSE at time t of a mean estimator constructed from any number of iid sample

paths is simply MSEeδM
(t) = t. For convenience, we will frequently denote MSEδ(t) as simply MSE(t).

As we will prove in the sequel, a mean estimator δ(t) constructed using the endpoint method has

MSE(τs) = τs + Cov
(
N1

E(0, τs), N2
E(0, τs)

)
≤ τs. That is, its MSE is that of the iid estimator plus the

negative covariance between the antithetically sampled Poisson random variables with parameter τs. Note

that this MSE is also strictly greater than 0, since the Poisson distribution is not symmetric. Due to iid

jump times, MSE(t) for this mean estimate is a piecewise concave quadratic function for t ∈ (0, τs). It is

determined by MSE(0) = 0, the value of MSE(τs) (which is fixed by the covariance between two antithetic

Poisson random variables), and the fact that d
dt MSE(t)|t=0+ = 1 (see Lemma 6). This is illustrated by the

red curve in Figure 4.1, for τs = 10 over an interval [0, τf = 10].

We may further reduce the MSE over most of this interval by reducing τs, and thus injecting negative

correlation more frequently in the interval. Compare the endpoint MSE (red) curve in Figure 4.1 (τs = 10)

28



0 2 4 6 8 10

Time t

0

2

4

6

8

10

M
S

E
(t

)

iid

endpt

bin midpt 2

bin midpt 4

bin midpt 8

Figure 4.1: The scaled MSE of 2-sample mean estimators, each produced from a pair of iid, endpoint, or
binomial midpoint antithetic Poisson process paths, all simulated for a single step of length τs = 10. For
comparison, we show binomial midpoint estimators constructed using 2, 4, and 8 substeps. Note that each
subsequent mean estimator dominates the previous one, meaning it has lower MSE(t) for all t.

to the same curve in Fig. 4.2 (τs ≈ 2.5) to observe this process. However, note that the gains here present a

tradeoff. Indeed, we can see that MSE(10) is increased by taking four steps instead of one. Using independent

increments of the endpoint method at τs step intervals:

MSE(4τs) = 4τs +
3∑

n=0

Cov
(
N1

E(nτs, (n + 1)τs), N2
E(nτs, (n + 1)τs)

)
= 4τs + 4 Cov

(
N1

E(0, τs), N2
E(0, τs)

)
≥ 4τs + Cov

(
N1

E(0, 4τs), N2
E(0, 4τs)

)
, (4.3)

since the covariance between antithetic Poisson variables is sub-linear in their parameter [23]. So each time

we step forward by τs, we accumulate MSE from the previous endpoint and this accumulation exceeds the

MSE at the endpoint of a single, larger step. This difference is small at first, and still reduces the overall

MSE in the interval, but as we let τs get even smaller, eventually the MSE not only becomes significantly

larger at the endpoint of the interval than before, it is also larger over the majority of the interval, as

shown in Fig. 4.3 (τs ≈ 0.0625). In fact, the expression we will prove in Theorem 7 shows that as τs → 0,

MSEδ(t)→ MSEeδ(t), the MSE of the iid estimator. So then, is there a way to reduce MSE more evenly for

t ∈ (0, τs)? The next algorithm we present does exactly that.
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Figure 4.2: The scaled MSE of iid, endpoint and binomial midpoint 2-sample mean estimators. Endpoint
technique uses τs ≈ 2.5. Binomial midpoint technique uses τs = 10.0 with 4 sub-steps, or sub-step size
2.5. Note that the endpoint estimator achieves similar performance to the binomial midpoint estimator, but
accumulates slightly more MSE with each step, as shown in (4.3). These two antithetic estimators require
an almost identical number of random variable draws to simulate on average.
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Figure 4.3: The scaled MSE of iid, endpoint and binomial midpoint 2-sample mean estimators. Endpoint
technique uses τs ≈ 0.63. Binomial midpoint technique uses τs = 10.0 with 16 sub-steps, for sub-step size of
10/16 = 0.625. When the step size of the endpoint technique becomes sufficiently small, its MSE accumulates
rapidly. For the binomial midpoint technique, MSE(10) is not affected by the number of sub-steps it takes
in [0, 10.0]. These two antithetic estimators require an almost identical number of random variable draws to
simulate on average.
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4.1.2 Binomial midpoint method for increased variance reduction

As motivated above, τs is the primary parameter that governs the reduction in MSE for antithetic simulation

of unit-rate Poisson processes using these techniques. There are limitations to what modifying τs alone can

do, however. Indeed, as we illustrated, with changing τs there is a tradeoff where near-time performance

(within a fixed time-window, say) competes with long-term performance (after compounding many small

steps, say). Instead of reducing τs to improve near-time performance, we may instead antithetically sub-

sample previous times (using the conditional binomial distribution) so that we improve local performance

in much the same way that, say, halving τs does, but without sacrificing endpoint performance. We refer to

this approach as the binomial midpoint method.

The binomial midpoint method injects more negative correlation into the Poisson process pair by anti-

thetically sampling values in the interior of a step after sampling its endpoint. Here we exploit the fact that,

conditioned on past and future values, the Poisson process has binomial distribution. First, we may simulate(
Y 1(τs), Y 2(τs)

)
, exactly as in the endpoint method using antithetic Poisson sampling. But then, instead of

merely sampling the iid jump times over [0, τs] as in the endpoint method, we first conditionally sample addi-

tional antithetic values of the process at interior time points. For example,
(
Y 1(τs/2), Y 2(τs/2)

)
, which, con-

ditioned on
(
Y 1(τs), Y 2(τs)

)
are binomially distributed, i.e., Y i(τs/2)|Y i(τs) ∼ Bin

(
Y i(τs), 1/2

)
for i = 1, 2,

may be sampled antithetically by inverting their respective binomial CDFs. Note that this antithetic pair

will no longer have identical conditional CDFs, since, for a particular pair of trajectories Y 1(τs) 6= Y 2(τs).

But we can still introduce additional negative correlation at this point since both distribution functions are

still non-decreasing. And, importantly, we haven’t increased MSE(τs) since it has already been sampled. We

find it best in practice to sub-sample at time points that bisect the interval formed by times where the Pois-

son process has already been sampled, since the binomial parameter p = 1/2 symmetrizes the binomial CDF,

enhancing the efficacy of antithetic sampling. Thus, additional negative correlation can be introduced at

subsequent dyadic intervals by conditioning on the nearest previous and future values that have already been

sampled. For instance N i(3τs/4) :=
(
Y i(3τs/4)− Y i(τs/2)

)
|Y i(τs/2), Y i(τs) ∼ Bin

(
Y i(τs)− Y i(τs/2), 1/2

)
for i = 1, 2. For the sake of compactness, we denote the conditional sub-increment of process Y i from time

s to time (s + t)/2 (i.e., from the beginning of the interval [s, t] to its midpoint) as

Qi(s, t) :=
(
Y i((s + t)/2)− Y i(s)

)
|Y i(s), Y i(t), (4.4)

where Qi(s, t) ∼ Bin
(
Y i(t)− Y i(s), 1/2

)
. The binomial midpoint technique is summarized in Algorithm 3.

Note that the binomial midpoint method with no partitions between steps (i.e., when the order L = 0,
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Algorithm 3 Binomial Midpoint Method: Conditional sub-sampling in τs-increment on 2L dyadic points
Intialize: n← 0,

(
A1

τf
,A2

τf

)
← (∅, ∅)

while nτs < τf do
Y i

B(0)← 0,Ai
B ← ∅, i ∈ {1, 2},

Sample antithetic Poisson random variables:
(
N1

B(0, τs), N2
B(0, τs)

) anti∼ Pois(τs)
Set state value at endpoint τs: Y i

B(τs)← N i
B(0, τs), i ∈ {1, 2}

for ` = 1 to L do
for k = 1, 3, 5, . . . , 2` − 1 do

Conditionally sample increments at midpoint as antithetic binomial variables (see Eq. (4.4)):
Qi
(

k−1
2` τs,

k+1
2` τs

) anti∼ Bin
(
Y i

B

(
k+1
2` τs

)
− Y i

B

(
k−1
2` τs

)
, 1

2

)
, i ∈ {1, 2}

Set state value at midpoint: Y i
B

(
k
2` τs

)
← Y i

B

(
k−1
2` τs

)
+ Qi

(
k−1
2` τs,

k+1
2` τs

)
, i ∈ {1, 2}

end for
end for
for k = 1 to 2L − 1 do

for j = 1 to Y i
B

(
k+1
2L τs

)
− Y i

B

(
k
2L τs

)
do

Simulate iid jump times: tij,k
i.i.d.∼ Unif

(
k
2L τs,

k+1
2L τs

)
, i ∈ {1, 2}

end for
Sort and append jump times: Ai

B ← sort
(
{nτs + tij,k}j

)
, i ∈ {1, 2}

end for
Ai

τf
← Ai

τf
∪ Ai

B, i ∈ {1, 2}
n← n + 1

end while
Ai

τf
← Ai

τf
∩ [0, τf ], i ∈ {1, 2}

return
(
A1

τf
,A2

τf

)
which can be interpreted as the number of times we halve the sub-interval length) is precisely the endpoint

method. Note also that we introduce additional cost (in the form of additional random variable samples)

to achieve this variance reduction. If we divide a particular step of length τs into 2L equal-length sub-

intervals, we require 2L−1 additional CDF inversions. As we will show in the sequel, this cost-error tradeoff

is profitable for a finite order L that depends on the operating parameters of the system and particular

simulation. Additionally, while MSE will always be reduced by increasing L, note that this reduction

decreases sharply for large L. As a result, it should not be thought of as an asymptotic parameter that

drives MSE toward zero for large values and fixed τs. Indeed, note that as τs/2L becomes small, the first

parameter of the corresponding binomial distributions will also be small, since the expected change in the

process will be small over this sub-interval. This limits the impact of antithetic sampling. In this case,

the corresponding reduction in MSE is small, and it would have been more efficient to partition into 2L−1

sub-intervals instead, incurring roughly half the computational cost. So L is best thought of as a finite

parameter that has significant benefit for small values and saturates quickly for large values. This saturation

point will largely be determined by the quantity τs/2L.
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4.1.3 Analysis of antithetic endpoint Poisson processes

We now provide some analysis of the antithetic algorithm above. In this section, we present two useful

metrics to quantify the expected error from mean-estimators constructed using the algorithms: the scaled

mean-square error and the integrated scaled mean-square error. Next, we define a special function related to

the antithetic simulation of Poisson random variables that will help us analyze the behavior of antithetically

simulated Poisson random processes. Finally, we present several results that explicitly and exactly quantify

the scaled MSE and integrated scaled MSE behavior of antithetic endpoint Poisson process simulation, which

in particular we then use to obtain asymptotic performance bounds.

Let
(
Ỹ 1, Ỹ 1

)
denote a pair of iid, unit-rate Poisson process, so that Cov

(
Ỹ 1(t), Ỹ 2(t)

)
= 0 for all t ≥ 0.

Let
(
Y 1, Y 2

)
denote the antithetic, unit-rate Poisson processes constructed using Algorithm 2 above, so that

Y 1 and Y 2 are correlated (indeed, we will show that Cov
(
Y 1(t), Y 2(t)

)
≤ 0 for all t ≥ 0). Let δ̃(t) and

δ(t) denote the 2-sample mean estimators obtained by averaging the iid and endpoint Poisson process pairs,

respectively. For brevity, we will refer to mean estimators by the method used to simulate their constituent

sample paths (e.g. iid estimator, endpoint estimator, binomial midpoint estimator). Recall the scaled MSE

defined in Eq. (4.1) given by

MSE(t) := N Var (δ(t)) = N Var

(
1
N

N∑
i=1

Y i(t)

)
,

where N is the number of sample paths used to construct the mean estimate.

Note that, as with any Monte Carlo scheme, we may produce more accurate mean estimates by increasing

the number of samples used to construct the estimator. Practitioners can simulate a sequence of many

antithetic pairs which are iid with respect to each other (each with 2 correlated components, of course) to

create mean estimates of sufficient accuracy for their particular application. This decrease in variance will

scale in the usual way (1/N , or 1/
√

N w.r.t. the standard deviation), so we restrict our analyses to mean

estimates constructed from a single antithetic pair of random paths. Further, all comparisons are made to

iid mean estimates constructed using two independent sample paths.

Recall that (X1, X2)
anti∼ Pois(τ) denotes the anticorrelated scalar Poisson variable pair, i.e.,

X1 := F−1
τ (U)

X2 := F−1
τ (1− U),

where U ∼ Unif[0, 1] is a uniform random variable and F−1
τ is the formal inverse of the Poisson CDF with
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Figure 4.4: The special function Γ(τ) = −Cov (X1, X2) (where (X1, X2)
anti∼ Pois(τ)) plotted versus Poisson

parameter τ . For reference, we also show the simple functions f(τ) = τ and g(τ) = τ2. Note that 0 ≤
Γ(τ) < τ for all τ and, for τ < ln 2, Γ(τ) = τ2.

parameter τ . For such an antithetic pair, define the special function

Γ(τ) := −Cov (X1, X2) = τ2 −
∫ 1

u=0

F−1
τ (u)F−1

τ (1− u) du ≥ 0, (4.5)

the negative covariance of a pair of antithetically sampled Poisson scalar random variables. This function

will appear frequently in the analysis of the variance properties of antithetically simulated Poisson process

paths. It has several useful properties. In particular, note that Γ(τ) ≤ τ = Var (X1) by definition and

Γ(τ) ≥ 0 for all τ [25]. Note that Γ(τ) = τ2 for all τ < ln 2 [23]. These relationships, as well as Γ itself,

are shown in Fig. 4.4. The scaled MSE of a mean estimator constructed from (X1, X2) is related to Γ by

MSE = 2 Var
(

X1+X2
2

)
= Var (X1)− Γ(τ) = τ − Γ(τ). This quantity is plotted in Fig. 4.5.

We proceed by exactly characterizing the variance properties of a mean estimator constructed from two

antithetic sample paths (Y 1, Y 2) of the unit-rate, Poisson process simulated using the endpoint technique

defined above. First, we provide an expression for the variance of the estimator at every time, then we moti-

vate and provide an expression for a more useful quantity, the integral of the estimator variance over a fixed

time window [0, τf ]. We begin with a lemma that characterizes how the covariance between two correlated

Poisson processes propagates from points of direct anticorrelation to times where direct anticorrelation is

not applied.

Lemma 6. For antithetic unit-rate Poisson processes Y 1, Y 2, and for 0 ≤ T1 < T2, denote by G(T1, T2) :=

σ
{
Y 1(T1), Y 1(T2), Y 2(T1), Y 2(T2)

}
, the sigma algebra generated by the 4 random variables obtained by eval-
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Figure 4.5: Scaled MSE of a mean estimate constructed using two Poisson random variables, sampled
either using iid or antithetic sampling, plotted versus Poisson parameter τ . Note that this variance remains
bounded below by a small positive constant, even for large τ . This suggests that Γ(τ) does not converge to
τ as τ →∞.

uating each process at each endpoint. Then, if Y 1(t) and Y 2(t) are conditionally independent given G(T1, T2)

for every t ∈ (T1, T2), then:

Cov
(
Y 1(t), Y 2(t)

)
= Cov

(
Y 1(T1), Y 2(T1)

)
+

(t− T1)2

(T2 − T1)2
Cov

(
N1(T1, T2), N2(T1, T2)

)
, (4.6)

for every t ∈ [T1, T2], where N i(T1, T2) := Y i(T2)− Y i(T1) is the increment of the process. .

Proof. We proceed using the Law of Total Expectation, the conditional independence hypothesis, and the

independent increments property as follows:

E
[
Y 1(t)Y 2(t)

]
= E

[
E
[
Y 1(t)Y 2(t)

∣∣∣G]]
= E

[
E
[
Y 1(t)

∣∣∣G]E
[
Y 2(t)

∣∣∣G]]
= E

[(
Y 1(T1) +

t− T1

T2 − T1
N1(T1, T2)

)
·
(

Y 2(T1) +
t− T1

T2 − T1
N2(T1, T2)

)]

= E
[
Y 1(T1)Y 2(T1)

]
+ 2T1(t− T1) +

(t− T1)2

(T2 − T1)2
E
[
N1(T1, T2)N2(T1, T2)

]
.

Note also that

t2 = T 2
1 + 2T1(t− T1) +

(t− T1)2

(T2 − T1)2
(T2 − T1)2, (4.7)
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so that

Cov(Y 1(t), Y 2(t)) = E
ˆ
Y 1(t)Y 2(t)

˜
− t2

= E
ˆ
Y 1(T1)Y

2(T1)
˜
− T 2

1 +
(t− T1)

2

(T2 − T1)2
`
E

ˆ
N1(T1, T2)N

2(T1, T2)
˜
− (T2 − T1)

2´
= Cov(Y 1(T1), Y

2(T1)) +
(t− T1)

2

(T2 − T1)2
Cov(N1(T1, T2), N

2(T1, T2)),

and the claim holds.

Lemma 6 allows us to express the scaled MSE of an endpoint estimator with step-size τs at any time t

in terms of the special function Γ evaluated at τs. This explicit expression is derived in Theorem 7.

Theorem 7. For anticorrelated unit-rate Poisson processes (Y 1, Y 2), sampled using the antithetic endpoint

technique with step size τs, the scaled MSE of the corresponding mean estimator is piecewise quadratic, and

is given exactly by:

MSE(t) = 2 Var
(

Y 1(t) + Y 2(t)
2

)
= t− nΓ(τs)−

(t− nτs)2

τs
2

Γ(τs), (4.8)

for every t ∈ [nτs, (n + 1)τs].

Proof. We proceed by first noting that the covariance between the Poisson increments Cov
(
N1(T1, T2), N2(T1, T2)

)
present in the last term of (4.6) is exactly equal to −Γ(T2−T1), since

(
N1(T1, T2), N2(T1, T2)

)
are just anti-

thetically sampled Poisson random variables with parameter T2 − T1. We proceed by induction on n. First,

note that the conditions of Lemma 6 are satisfied for T1 = 0 < T2 = τs since, conditioned on the σ-algebra

G(0, τs) = σ
{
Y 1(0) = 0, Y 2(0) = 0, Y 1(τs), Y 2(τs)

}
, the random variables Y 1(t), Y 2(t) are independent for

all t ∈ (0, τs). Thus

Cov
(
Y 1(t), Y 2(t)

)
= Cov

(
Y 1(0), Y 2(0)

)
+

t2

τs
2

Cov
(
N1(0, τs), N2(0, τs)

)
= − t2

τs
2
Γ(τs),

and

MSE(t) = Var
(
Y 1(t)

)
+ Cov

(
Y 1(t), Y 2(t)

)
= t− t2

τs
2
Γ(τs)

for all t ∈ [0, τs] (i.e., n = 0).
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Now, suppose that the claim holds for n− 1, namely that, for t ∈ [(n− 1)τs, nτs],

MSE(t) = 2 Var
(

Y 1(t) + Y 2(t)
2

)
= t− (n− 1)Γ(τs)−

(t− (n− 1)τs)2

τs
2

Γ(τs),

and in particular that

Var
(
Y 1(nτs)

)
+ Cov

(
Y 1(nτs), Y 2(nτs)

)
= nτs − (n− 1)Γ(τs)−

(nτs − (n− 1)τs)2

τs
2

Γ(τs)

=⇒ Cov
(
Y 1(nτs), Y 2(nτs)

)
= −(n− 1)Γ(τs)−

(τs)2

τs
2

Γ(τs)

= −nΓ(τs).

By construction, for t ∈ (nτs, (n + 1)τs), Y 1(t) and Y 2(t) are independent conditioned on G(nτs, (n + 1)τs),

since all random sampling inside the interval is iid uniform, given the endpoints. So the conditions of

Lemma 6 again hold, and

Cov
(
Y 1(t), Y 2(t)

)
= Cov

(
Y 1(nτs), Y 2(nτs)

)
+

(t− nτs)2

((n + 1)τs − nτs)2
Cov

(
N1(nτs, (n + 1)τs), N2(nτs, (n + 1)τs)

)
= −nΓ(τs)−

(t− nτs)2

τs
2

Γ(τs),

for all t ∈ [nτs, (n + 1)τs]. So then, for all t ∈ [nτs, (n + 1)τs],

MSE(t) = Var
(
Y 1(t)

)
+ Cov

(
Y 1(t), Y 2(t)

)
= t− nΓ(τs)−

(t− nτs)2

τs
2

Γ(τs)

and the claim holds for n.

The expression (4.8) proven in Theorem 7 combined with our intuition about the function Γ suggests

that the larger step size τs we take, the greater variance reduction we will observe over a long period of

time. In practice, however, stochastic simulation will often be performed over a relatively fixed finite time

window, dictated by the system parameters or problem of interest. Reductions in estimator variance beyond

that window of interest, which we will denote by [0, τf ], are of little benefit since they will never be observed,

and in particular they may adversely affect the performance of mean estimates in the window of simulation.

Thus, a better metric for comparison between techniques is the total MSE over a fixed finite time interval

[0, τf ]. For simplicity, we proceed using the L1-integral of MSE as our metric of choice.

Lemma 8. For the endpoint technique implemented with step-size τs over time interval [0, τf ], let N :=
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bτf/τsc be the number of incremental Poisson samples (i.e., full steps) taken in the interval. Then

∫ τf

0

MSE(t) dt =
∫ τf

0

2 Var
(

Y 1(t) + Y 2(t)
2

)
dt

=
N(N − 1)

2
τs (τs − Γ(τs)) +

N

6
τs (3τs − 2Γ(τs))

+ N (τs − Γ(τs)) (τf −Nτs) +
(τf −Nτs)

2

2
− (τf −Nτs)

3

3τ2
s

Γ(τs). (4.9)

The proof is lengthy but straightforward, and is omitted here for brevity. While this expression is exact,

it can be difficult to parse in the general case. For comparison, note that the integrated variance of the iid

mean estimator is given by

∫ τf

0

MSEeδ(t) dt =
∫ τf

0

2 Var

(
Ỹ 1(t) + Ỹ 2(t)

2

)
dt =

∫ τf

0

t dt =
1
2
τ2
f . (4.10)

As will be shown in Fig. 4.7, we can see that the integrated MSE of the endpoint estimator is always less

than the same quantity for the iid mean estimator. Two simple extremal cases are also illustrative. Consider

the case when τs > τf , i.e., when less than one step is used for simulation. In this case, N = 0 and (4.9)

reduces to ∫ τf

0

MSE(t) dt =
1
2
τ2
f −

Γ(τs)
3τ2

s

τ3
f . (4.11)

For fixed τf , as τs →∞, the performance of the antithetic estimator will degrade back to the iid estimator,

since Γ(τs) ≤ τs. Alternatively, for fixed τf , when τs → 0, i.e., many Poisson steps are being taken during

the course of a simulation, 0 ≤ τf −Nτs ≤ τs → 0 and Γ(τs) = τ2
s . Thus (4.9) becomes

∫ τf

0

MSE(t) dt ≈ 1
2
τ2
f −

(
τ2
f /2 + τf

)
τs +O(τ2

s ), (4.12)

and performance again degrades to the iid case. This suggests that the best performing τs is one that is

neither too large nor too small relative to the window of interest, a claim that is further supported by the

numerical results in Section 4.1.4.

4.1.4 Numerical results for antithetic Poisson processes

We now support the analytical results of the previous section with numerical experiments. In particular, we

are interested in examining the relationship between the choice of Poisson simulation step time τs and the

integrated scaled MSE over the time window [0, τf ]. For each of the Poisson process simulation algorithms,

iid, endpoint, and binomial midpoint, a pair of unit-rate Poisson processes are simulated from t = 0 to τf
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Figure 4.6: Exact analytical solution for the integrated scaled MSE of the endpoint estimator (4.9) versus
step size τs, compared to empirical observation of the same. The right lower bound is defined in (4.11)
and the left lower bound is given by (4.12). Empirical results obtained using Monte Carlo simulation using
ensemble sizes of 1 440 000 samples or more. Error bars are very small and are thus omitted.

using a step size of τs, and averaged to produce a single, 2-sample mean estimate of the Poisson process.

This sampling is repeated to form an ensemble of such mean estimators, and the ensemble is then used to

construct an estimate of the integrated MSE for each algorithm. This process is repeated for a wide range

of τs and the results are plotted as follows. First, we examine the endpoint mean estimator in order to verify

both the exact analytical expression proven in (4.9) and the asymptotic bounds given by (4.12) and (4.11).

The results are collected in Fig. 4.6. Next, we compare the performance of each of the proposed algorithms

with each other, and examine how they vary with τs for fixed τf . These results are collected in Fig. 4.7.

It is important to note here that the operating points of each of these methods and values of τs correspond

to different computational costs, which we will define in this work as the expected number of random variable

draws required to simulate a path. For example, suppose we are simulating unit-rate Poisson processes over

the interval [0, τf ] using the endpoint method (L = 0) with step size τs. On average, we will draw roughly

τf/τs antithetic pairs of Poisson random variables for each step we take in the interval. Then, we will sample

approximately τf random uniform jump times to simulate a path. The details of these costs are sensitive

to the many optimizations that are possible for a particular implementation of continuous-time antithetic

stochastic simulation. For the purpose of this work we focus on a crude implementation: steps of length

τs are taken until the final time τf is strictly exceeded. For each step taken, every corresponding uniform

jump time is simulated, including those lying outside [0, τf ]. Thus we will tend to incur significant overhead

relative to MSE reduction when τs � τf or when τs] � τf compared to existing methods such as SSA or

Next-Reaction.
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Figure 4.7: Integrated scaled variance versus step size τs for mean estimators produced using iid, endpoint
and binomial midpoint simulation. Results obtained using Monte Carlo simulation using ensemble sizes of
360 000 samples or more. Error bars are very small and are thus omitted.

For this particular implementation, we thus estimate the number of random draws necessary for an

antithetic method with order L using the expression 2L (dτf/τse ∨ 1) + dτf/τseτs ∨ τs, where ∨ denotes the

maximum operator. The lower limit for this cost is τf , achieved for example using various next-reaction

methods [15], so we will use this as our baseline for comparison. We will restrict our attention to τs values

that lie in the Pareto front, the region of values for which error and cost cannot be simultaneously improved.

To illustrate this region, consider Fig. 4.8, where we plot the MSE results for the antithetic endpoint method

that appear in Fig. 4.7 along with the estimated cost of simulation versus τs.

Restricting our attention only to Pareto values of τs, we may plot the error vs cost as shown in Fig. 4.9.

As discussed above, the antithetic endpoint (L = 0) or binomial midpoint (L = 1, 2, 3) methods can offer

significant performance improvement at relatively modest cost increases. These gains saturate relative to

cost for larger L values (e.g. L = 5). Thus we may conclude that, in practice, τs should be tuned to

the native speed of the process (relative to the time window τf that we are studying) and that significant

performance gains can be achieved using binomial midpoint sample with moderate order L.

4.2 Antithetic simulation of lattice CTMCs

We can employ negatively correlated pairs of unit-rate Poisson processes (as simulated using Algorithms 2

and 3 shown in Section 4.1) to simulate negatively correlated pairs of lattice continuous-time Markov chains

(CTMCs). We define this anticorrelated pair of stochastic processes (X(1), X(2)) as follows:

X(j)(t) = x0 +
I∑

i=1

Y i,j

(∫ t

0

ai(s,X(j)(s)) ds

)
νi, (4.13)
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Figure 4.8: Integrated scaled variance (error) and estimated number of random draws (cost), each plotted
versus step size τs for a mean estimator produced using endpoint simulation. The τs values shown in blue are
the Pareto front: the set of values for which error (integrated MSE) and cost (expected number of random
draws) cannot be simultaneously improved. In this case, the Pareto front is composed of two points. Results
obtained using Monte Carlo simulation using ensemble sizes of 360 000 samples or more. Error bars are very
small and are thus omitted.
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Figure 4.9: Integrated scaled variance (error) versus estimated number of random draws (cost), for various
estimators constructed using iid, endpoint and binomial midpoint Poisson process simulation. Only points
corresponding to τs values in the Pareto region are shown. The cost baseline for iid simulation is a next-
reaction algorithm that simulates trajectories using no excess random variable draws. For cost comparison,
we plot the unscaled, integrated MSE for the next-reaction estimator as the number of iid sample paths used
in the N-R estimate is repeatedly doubled. Results obtained using Monte Carlo simulation using ensemble
sizes of 360 000 samples or more. Error bars are very small and are thus omitted.

for j ∈ {1, 2}. In other words, to simulate a pair of trajectories of a lattice CTMC system with I reaction

channels, we simulate I antithetic pairs of unit-rate Poisson processes and assign one element of each pair

to a reaction channel in each path X(j).

Note that, to simulate these CTMCs, we use the fact that each trajectory is piecewise constant while

waiting for the next jump to occur. So for each reaction channel, we can use the value of the reaction rate

to compute the time until the next transition occurs for that Poisson process. The smallest of these times is

the one that will occur first, so we may move each process forward until this event occurs, update the state

of the system and repeat. Thus we can simulate a process trajectory using only the ordered jump-times A

of I unit-rate Poisson processes.

By construction, each stochastic process path is simulated using I iid, unit-rate Poisson processes, and the

exact marginal distribution of the system is preserved. The only difference is that the pair of lattice CTMC

paths are now negatively correlated, and will produce variance-reduced mean estimates δ = X(1)+X(2)

2 . To

quantify this reduction in variance, we define the scaled stochastic process MSE to be

MSE(t) = 2 trVar (δ(t)) . (4.14)

As discussed above, the scaled MSE is insensitive to the inclusion of additional anticorrelated pairs of paths,

so we need only consider estimators constructed from a single pair of stochastic processes for the subsequent

studies. As above, we use the integrated scaled MSE to quantify estimator performance. We use the iid

42



mean estimator as a baseline, as its MSE does not depend on the choice of τs. In both numerical studies,

we construct an ensemble of 2-sample mean estimators each built from a single pair of system trajectories

simulated using either iid, endpoint or binomial midpoint simulation for a given value of τs. We then use

this ensemble to estimate the integrated MSE of each of these estimators, and let τs vary over a large

range of values to examine the dependence of estimator MSE. In both systems, we will see that a similar

relationship between MSE and τs holds as in the Poisson process case, save that the artifact τf determining

the time-window of interest is now replaced by the interaction between T , the final time of simulation, and

the reaction rates and particular trajectory of the system.

We now introduce two example systems to illustrate the performance of the anticorrelated Monte Carlo

for stochastic process paths using the RTC (2.1), driven by the above algorithms for generating antithetic

Poisson process pairs. The first is a gene expression system with rates that are an affine function of the

system state, and the second is an aerosol coagulation system driven by rates that are a nonlinear function

of the system state. In both cases, the endpoint and binomial midpoint algorithms are used to generate the

unit-rate Poisson processes {(Y i,1, Y i,2)}Ii=1 that are the sole source of random input to the models.

4.2.1 Gene-expression

First, we examine a linear gene expression system. The system has two components: mRNA that is produced

and decays, and a protein it produces which also decays. This particular model appears in [8], and its

reactions are given by

∅ kr→ mRNA

mRNA
γr→ ∅

mRNA
kp→ protein + mRNA

protein
γp→ ∅.

The system state is a vector X ∈ Z2 whose components represent the number of mRNA and protein particles.

We set the initial condition x0 = V · [1.0 0.5]> (where V is a system volume scaling parameter, fixed here at

V = 100) with I = 4 reaction channels, given by:

ν1 = [1 0]> a1(X(t)) = krV

ν2 = [−1 0]> a2(X(t)) = γrX1(t)
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Figure 4.10: Integrated scaled MSE versus step size τs for mean estimators of the gene expression system
produced using iid, endpoint and binomial midpoint simulation of unit-rate Poisson processes. The system
is simulated with volume parameter V = 100, rate parameters (kr, γr, kp, γp) = (0.01, 0.03, 0.06, 0.0066), and
initial condition X0 = [V V/2]>. MSE estimates are obtained using Monte Carlo simulation using ensemble
sizes of 360 000 samples or more. Error bars are very small and are thus omitted.

ν3 = [0 1]> a3(X(t)) = kpX1(t)

ν4 = [0 − 1]> a4(X(t)) = γpX2(t),

for kr, γr, kp, γp > 0, and where Xd(t) denotes the dth component of the state vector at time t. The system

is simulated using the random time-change representation (2.1) run from time t = 0 to time t = T = 10.

Our primary interest is the dependence of the integrated scaled MSE for the gene expression estimator

on the choice of step size τs for the Poisson process trajectories. The results of this study are shown

in Figure 4.10. Again, it’s instructive to compare the different implementations on the basis of cost (as

measured by estimated number of random variable simulations). Restricting our attention to only Pareto-

optimal points, we obtain the error vs cost relationship shown in Fig. 4.11.

4.2.2 Nonlinear aerosol coagulation due to gravitational settling

Finally, we examine the MSE of a nonlinear lattice CTMC when we apply antithetic simulation to its driving

Poisson processes. We consider a water aerosol system subject to gravitational settling that undergoes

coagulation events as it falls. This system can be found in [36], Chapter 13, and the underlying assumptions

and construction of the model used here is discussed in some detail in [25]. For the sake of brevity, we omit

those details here. The system is composed of large and small water particles falling in a control volume.

These classes of particles have different terminal velocities and thus may experience collisions as they fall

leading to coagulation events. We fix the velocity of the control volume to be the same velocity as the large

particles, so that small particles may enter the system and also coagulate with large particles. The state of
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Figure 4.11: Integrated scaled variance (error) versus estimated number of random draws (cost), for vari-
ous estimators of the gene expression system constructed using iid, endpoint and binomial midpoint Pois-
son process simulation. The cost baseline for iid simulation is a next-reaction algorithm that simulates
trajectories using no excess random variable draws. For cost comparison, we plot the unscaled, inte-
grated MSE for the next-reaction estimator as the number of iid sample paths used in the N-R esti-
mate is repeatedly doubled. The system is simulated with volume parameter V = 100, rate parameters
(kr, γr, kp, γp) = (0.01, 0.03, 0.06, 0.0066), and initial condition X0 = [V V/2]>. Only points corresponding
to τs values in the Pareto region are shown. Results obtained using Monte Carlo simulation using ensemble
sizes of 360 000 samples or more. Error bars are very small and are thus omitted.

the system can be expressed as X = (Ns,Ml) ∈ R2, where Ns denotes the number of small particles and Ml

is the total mass of the large particles. For convenience, we set the mass of the small particles to be m = 1,

and the reaction channels and rates of the system are given by:

ν1 = [1 0]> a1(X(t)) = V

ν2 = [−1 1]> a2(X(t)) = αKGS
sl V X1(t)

where α = 5 · 10−4 is a proportionality constant and

KGS
sl =

1
V

(
3
√

X2(t)/V + 3
√

m
)3 (

3
√

X2(t)/V − 3
√

m
)

.

The state is initialized from X0 = V · [100, 10] and is simulated for 10s from t = 0 to T = 10. The integrated

scaled MSE of the coagulation system plotted versus the Poisson process step-size τs is shown in Figure 4.12.

As above, the cost-error tradeoff is visualized by restricting attention to Pareto-optimal points, and is shown

in Fig. 4.13.
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Figure 4.12: Integrated scaled MSE versus step size τs for mean estimators of the nonlinear aerosol coagula-
tion system produced using iid, endpoint and binomial midpoint simulation of unit-rate Poisson processes.
We take volume parameter V = 100, proportionality constant α = 5 · 10−4, and small particle mass m = 1.
Results obtained via Monte Carlo simulation using ensemble sizes of 360 000 samples or more. Error bars
are small and are thus omitted.
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Figure 4.13: Integrated scaled variance (error) versus estimated number of random draws (cost), for vari-
ous estimators of the nonlinear coagulation system constructed using iid, endpoint and binomial midpoint
Poisson process simulation. The cost baseline for iid simulation is a next-reaction algorithm that simulates
trajectories using no excess random variable draws. For cost comparison, we plot the unscaled, integrated
MSE for the next-reaction estimator as the number of iid sample paths used in the N-R estimate is repeat-
edly doubled. We take volume parameter V = 100, proportionality constant α = 5 · 10−4, and small particle
mass m = 1. Only points corresponding to τs values in the Pareto region are shown. Results obtained using
Monte Carlo simulation using ensemble sizes of 360 000 samples or more. Error bars are small and are thus
omitted.

46



Chapter 5

Conditional tau-leaping

We return now to the context of lattice DTMCs, specifically simulation using the tau-leaping technique. In

the first part of this dissertation, we show how, when a tau-leaping algorithm requests a Poisson random

variable to simulate the evolution of a tau-leaping trajectory, we may construct two paths simultaneously

by returning an antithetic pair of Poisson random variables and assigning one to each path. Recall that

the parameters of these Poisson random variables represent the expected number of system jumps to occur

during the discrete time-step, and they may vary at each time as the state and thus the reaction rates of the

path evolve. As shown in Section 3.3, when these parameters were typically large (say when the volume or

speed of the system were particularly high), the negative correlation between these sample paths, and thus

the corresponding reduction in estimator variance was also correspondingly large. Intuitively, this comes

from the enhanced symmetry of Poisson CDFs for large parameter values, as is shown in Figures 4.4 and 4.5

in Sec. 4.1.3.

The simplicity of this algorithm comes at a cost, however. By always returning a Poisson random

variable pair by inverting a Poisson CDF with the same parameter, we effectively couple the performance

of the algorithm to the natural scales of the system. When a system or a particular reaction channel is not

expected to experience many transitions, the Poisson parameters will be small and the negative correlation

between paths will be correspondingly weakened. This is particularly salient, for example, when consistency

and stability concerns [31] may restrict the maximum time-step size used in the tau-leaping algorithm,

restricting the number of jumps that are expected to occur in each step.

Another way to illustrate why this coupling might be undesirable is to consider the tau-leaping simulation

of a system with a single reaction channel. At each time step, a pair of antithetic Poisson random variables

is simulated, and each one is added to the state of their respective paths after being multiplied by the jump

vector. The pathwise MSE of an estimator constructed using these paths will depend on the sum of the

covariances between each of these pairs. This is analogous to the Poisson sampling performed in the endpoint

method for continuous-time simulation. The key distinction is that, instead of a fixed τs used as a step-size

(and thus Poisson parameter), here the Poisson parameter can vary with each step and for each path. For a
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process with a constant reaction rate, for example, the analogy becomes an equivalence, modulo some scaling

due to the jump vector. Consider then, the red curves in Figs. 4.2 and 4.3. Ignoring the absence of uniform

jump-time sampling, the performance of the above tau-leaping algorithm will be similar to the local minima

of the red curves of these plots. When τ -step sizes are large, as in Fig. 4.2, the sum of these quantities is

relatively small. As typical jump sizes get smaller as in Fig. 4.3, however, the MSE accumulates much more

quickly as the negative covariance term becomes small relative to the native variance of a Poisson random

variable. This is also clearly shown in Fig. 4.4, where for small parameter values, the negative covariance

Γ(τ) due to antithetic sampling becomes small relative to τ . In effect, this illustrates the mechanism by

which antithetic tau-leaping’s performance degrades as the system slows.

As we will show, this coupling can be broken. The key requirement of the tau-leaping algorithm from

a simulation perspective is that each trajectory receives a collection of (conditionally) Poisson-distributed

random variables at each time-step, one variable for each reaction channel in order to update its state. Recall

by construction in Sec. 2.2, for a given path, each of these Poisson variables were mutually independent

(their anticorrelated pair was given to another sample path for use in the corresponding reaction channel)

to ensure that the marginal distribution of the trajectory remain unchanged from the iid case. Thus we may

generalize Algorithm 1 which simulates lattice DTMC paths using antithetic Poisson variables to describe a

new Algorithm 4 that produces lattice DTMC paths using anticorrelated Poisson variables.

Algorithm 4 Constructing generalized anticorrelated paths for lattice DTMC systems (2.3)

Intialize: X
(j)
0 ← x0

for t = 0 to T do
for i = 1 to I do

sample pair
(
S

i,(1)
t , S

i,(2)
t

)
such that:

Cov
(
S

i,(1)
t , S

i,(2)
t

)
≤ 0,

S
i,(1)
t ∼ Pois(λi(t, X(1)

t )),
S

i,(2)
t ∼ Pois(λi(t, X(2)

t )),

and
{

S
i,(r)
t

}I

i=1
are independent, conditioned on X

(r)
t for each r ∈ {1, 2}.

end for
for r ∈ {1, 2} do

X
(r)
t+1 ← X

(r)
t +

∑I
i=1 S

i,(r)
t νi

end for
end for

Estimators constructed using Alg. 4 will satisfy all of the requirements of Lemma 1 and Theorem 3. That

is, they will be unbiased, consistent, and their covariance will evolve in time in a fashion similar to antithetic

tau-leaping. For convenience:
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Lemma 9. The mean estimator ΨNM constructed using Alg. 4 is unbiased with respect to the lattice DTMC

distribution (2.3) and, for fixed M , is consistent in N .

Theorem 10. If X(1), X(2) ∈ ZD × N are two realizations that satisfy (2.3) and are constructed using

Algorithm 4, then their mutual covariance satisfies

Cov(X(1)
t+1, X

(2)
t+1) =Cov(X(1)

t , X
(2)
t )

+
I∑

i=1

νi Cov(λi(t, X(1)
t ), X(2)

t ) +
I∑

i=1

Cov(X(1)
t , λi(t, X(2)

t ))νi>

+
I∑

i1=1

I∑
i2=1

νi1νi2>Cov(λi1(t, X(1)
t ), λi2(t, X(2)

t ))

+
I∑

i=1

νiνi>E
[(

S
i,(1)
t − λi(t, X(1)

t )
)
·
(
S

i,(2)
t − λi(t, X(2)

t )
)]

. (5.1)

The negative covariance between Poisson samples is thus embedded in whatever sampling technique

you use to generate negatively correlated Poisson random variables, as opposed to being derived as in say

Lemma 4 for the antithetic algorithm. The question then becomes, what alternative to CDF inversion should

we consider for anticorrelated Poisson random variable simulation?

5.1 Conditional Poisson sampling

Algorithm 4 allows us to generate Poisson variables using any method we desire that produces negative

correlation. The space of such methods is enormous, so to proceed, we return to the analogy we used above,

namely that of a single-channel process. We argued that antithetic tau-leaping is analogous to the endpoint

method, where the step sizes are variable and correspond to the Poisson parameters being requested by the

tau-leaping algorithm. Effectively, this analogy shows that we can use increments of a unit-rate Poisson

process to provide inputs to a tau-leaping algorithm. In particular, we will use increments from a pair

of negatively correlated unit-rate Poisson processes to produce an anticorrelated pair of Poisson random

variables. These Poisson random variables can be returned to a tau-leaping algorithm just as the antithetic

pairs obtained by CDF inversion in Alg. 1. In this way, we obtain a source of anticorrelated Poisson random

variables whose negative correlation properties are de-coupled from the rates of the system.

Again, there are many potential choices for how exactly to generate antithetic Poisson processes and

thus increments that will affect the degree to which samples are negatively correlated. Here, we present

one possibility as a jumping off point. Returning to our analogy, one way to improve upon endpoint

sampling with small tau-leaps is to take a large Poisson leap into the future, so that the negative covariance
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between samples is high. Then, as needed we may backfill in required missing process values using antithetic

binomial midpoint sampling. As long as we are careful to condition on the future Poisson process values

that we’ve sampled, we can draw from prior points in the process without biasing their distributions. In

effect, we consider an algorithm that performs antithetic binomial midpoint sampling (without simulating

uniform jump times) using, say, step size τs and exponential order L to pre-sample a few points on a pair

of negatively correlated Poisson processes. Then, when a tau-leaping algorithm request a pair of Poisson

samples of parameter
(
λ1, λ2

)
, we simply extract a Poisson process increment of length λj from process j

by antithetically sampling its value once again from a conditional binomial distribution. This algorithm to

sample lattice points of the Poisson process in order to sample anticorrelated Poisson process increments can

be interpreted as a discrete sub-sampling of Alg. 3 (since no continuous-time iid jump times are required),

is summarized in Alg. 5.

Algorithm 5 Binomial Midpoint Method: Conditional Poisson lattice sub-sampling in τs-increment on 2L

dyadic points
Y i

B(0)← 0, i ∈ {1, 2}
Sample antithetic Poisson random variables:

(
N1

B(0, τs), N2
B(0, τs)

) anti∼ Pois(τs)
Set state value at endpoint τs: Y i

B(τs)← N i
B(0, τs), i ∈ {1, 2}

for ` = 1 to L do
for k = 1, 3, 5, . . . , 2` − 1 do

Conditionally sample increments at midpoint as antithetic binomial variables (see Eq. (4.4)):
Qi
(

k−1
2` τs,

k+1
2` τs

) anti∼ Bin
(
Y i

B

(
k+1
2` τs

)
− Y i

B

(
k−1
2` τs

)
, 1

2

)
, i ∈ {1, 2}

Set state value at midpoint: Y i
B

(
k
2` τs

)
← Y i

B

(
k−1
2` τs

)
+ Qi

(
k−1
2` τs,

k+1
2` τs

)
, i ∈ {1, 2}

end for
end for
Return two (2L + 1)× 2-arrays A1 and A2, where the elements of the first column in each are the sample
times Ai[k, 0]← τsk/2L, k ∈ {0, . . . , 2L} and the second columns are the corresponding sample values
Ai[k, 1]← Y i

B

(
τs

k
2L

)
.

The final component of this discrete-time simulation algorithm is mapping sub-sampled Poisson process

increments to Poisson random variable samples. Algorithm 6 describes one possible implementation of

this scheme. Two negatively correlated arrays of future Poisson process sample values are maintained by

appending repeated samples of Alg. 5. When a Poisson random pair is requested with parameters (τ1, τ2),

each array is searched to find the nearest neighboring points in time that have already been sampled. These

nearest neighbors are then used as input into a binomial distribution in order to sample the exact value of

the Poisson process τi from the previous state. The difference between these values and the iniitial state can

be returned as the Poisson random variable S(i). Once both arrays have moved forward in time, values that

lie in the intersection of their past values can be discarded.
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Algorithm 6 Anticorrelated Poisson variable sampling for parameters (τ1, τ2) using pre-sampled Poisson
process increments from Alg. 5 with τs-increment on 2L dyadic points

if (H1,H2) == ∅ then
Initialize state:
(H1,H2)← (A1, A2) where (A1, A2) is the output of Alg. 5 for τs, L
τ curr
i ← 0, Y i(τ curr

i )← 0, i ∈ {1, 2}
τ last samp ← H[−1, 0] (where index 0 denotes the first array element and index −1 denotes the last
element)
Y i(τ last samp

i )← Hi[−1, 1]
τfinal ← τs

end if
Given input (τ1, τ2):
τnext
i ← τ curr

i + τi, i ∈ {1, 2}
while τnext

i ≥ τ last samp for some i do
Sample (A1, A2) using Alg. 5 with parameters τs, L
Ai[k, 0]← Ai[k, 0] + τfinal, τfinal ← τfinal + τs

Ai[k, 1]← Ai[k, 1] + Y i(τ last samp
i ), i ∈ {1, 2}

Append (A1, A2) to (H1,H2)
Y i(τ last samp

i )← Hi[−1, 1] i ∈ {1, 2}
end while
for i ∈ {1, 2} do

Find ki such that Hi[k, 0] < τnext
i < Hi[k + 1, 0]

Sample Bi ∼ Binom
(
Hi[ki + 1, 1]−Hi[ki, 1], τnext

i −Hi[ki,0]
Hi[ki+1,0]−Hi[ki,0]

)
Y i(τnext

i )← Hi[ki, 1] + Bi

Create vector Vi ∈ R2 such that V [0]← τnext
i , Vi[1]← Y i(τnext

i ).
Insert row Vi into Hi after row ki

S(i) ← Y i(τnext
i )− Y i(τ curr

i )
τ curr
i ← τnext

i , Y i(τ curr
i )← Y i(τnext

i ), i ∈ {1, 2}
end for
Remove all rows of Hi before index `, where Hi[`, 0] = min{τ curr

1 , τ curr
2 }

Return
(
S(1), S(2)

)
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Figure 5.1: Normalized pathwise MSE(ΨM )M/V of an M = 2 sample estimator of the mean E[Xt] of the
gene expression system using the iid, antithetic, and conditional tau-leaping sampling techniques plotted
versus volume scale V , for timestep τ = 1s, rate parameters (kr, γr, kp, γp) = (0.01, 0.03, 0.06, 0.0066), initial
condition X0 = [V V/2]> and timesteps from t = 0 to t = 100. The conditional Poisson sampling algorithm
is run with parameters τs = 100 and L = 6. Pathwise MSE calculated from 2.56× 105 sample paths, error
bars are small and are thus omitted.

5.2 Numerical results

First, we consider the same tau-leaping simulation of the gene expression system found in Section 3.3.1. In

this parameter sweep, we fix the conditional tau-leaping parameters as step-size τs = 100 and exponential

order L = 6. We then perform the same parameter sweep as appears in Fig. 3.3 for comparison to the iid

and antithetic tau leaping algorithms. The results are shown in Fig. 5.1. Note that, as predicted, for small

volume values, i.e., when relatively few transitions occur during each time step, the conditional algorithm

that takes large Poisson leaps then back-samples increments to produce Poisson sample values performs

significantly better. Note also that, as V becomes large, the typical Poisson parameter sampled by the

antithetic algorithm is larger on average than τs = 100. This suggests that, in practice, either the value

of τs should be selected adaptively based on the system parameters. Alternatively, for fixed τs, leaps that

exceed τs could be performed with a simple endpoint leap of length requested, i.e., antithetic tau-leaping as

in Chapter 3.

In Fig. 5.2, we present the same parameter study for the coagulation system of Sec. 3.3.2. In this case, the

system experiences more rapid transitions, so we increase the conditional tau-leaping parameter to τs = 1000

and keep L = 6. Again, the results demonstrate superior performance for small V .
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Figure 5.2: Normalized pathwise MSE(ΨM )M/V of an M = 2 sample mean estimator for the nonlinear
coagulation system using the iid, antithetic, and conditional tau-leaping sampling techniques plotted versus
source area from V = 100 to V = 104. Computation of pathwise MSE from 106 simulations, where each
simulation uses timestep τ = 0.1 s, and timesteps from t = 0 to t = 100. The conditional Poisson sampling
algorithm is run with parameters τs = 1000 and L = 6.Error bars are small and are thus omitted.
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Chapter 6

Extensions and Applications

6.1 Variance Reduced Stochastic MPC

Model predictive control (MPC) is a control strategy which seeks to approximate optimal, infinite time

horizon feedback control via optimal solution of open loop, finite time horizon problems [26]. The control at

time t takes in information about the current state and past control actions to simulate the cost of taking

a given set of control actions over a finite time window [t, t + H − 1]. From these simulations, an optimal

control action over this time window can be found, and the first of these actions is implemented as the

current control action. The state information is then updated, and a new optimal open loop solution is

found for the next window [t + 1, t + H] and so forth.

In this context, we will focus on control of a perfectly observed Markov process on a countable state space

where we attempt to minimize the cumulative sum of a cost function g(x, u). Suppose we have a Markov

decision process X described by

Xt+1 = f(Xt, ut) (6.1)

where ut is a particular control action at time t. Suppose we want to find an optimal policy ut = µ(xt) ∈ U

such that

µ ∈ argmin
m∈F(Rn,U)

E

[ ∞∑
t=0

βtg(Xt,m(Xt))

]
, (6.2)

where U is some admissible set of control actions, F(Rn, U) is the set of measurable functions from Rn to U ,

and β ∈ (0, 1) is a discount factor to ensure boundedness of the sum. This problem is of course challenging

for most Markov processes X, and often impossible to solve in closed form. We attempt, however to find an

approximate realization of this policy along a particular trajectory by implementing MPC. Specifically, at
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time t, suppose that our controlled process Xt = xt. We will obtain

ut,H ∈ argmin
ũ∈UH

t

E

[
t+H−1∑

s=t

g(Xs, ũs)|Xt = xt

]
, (6.3)

where ut,H is an H-vector of control actions over the finite horizon, and UH
t is the admissible set of such

sequences at time t, and we consider β close to 1. This optimization problem is over a much smaller space;

even naive optimization strategies will suffice for small problems. We then set our current control action to

be the first element of ut,H = (ut,H
t , . . . , ut,H

t+H−1):

ut = µMPC(xt) := ut,H
t , (6.4)

ignoring the rest of the finite horizon optimizer. Time can then be updated to t+1, and the control window

shifted to [t + 1, t + H] to solve for µMPC(xt+1). Note here that we never solve for an approximation of the

actual optimal policy µ for every state in our countable state space. Instead we solve for an approximation

µMPC(xt) of µ(xt), i.e. the evaluation of µ at a particular point on our controlled trajectory. In other words,

the algorithm approximately implements the optimal policy rather than solving for it in a closed form.

Regardless of the optimization routine used, some approximation of the expectation in (6.3) will be

required in order to find a minimizing control action over the finite horizon. Given that our selected control

action will depend on minimizing this expectation, errors in approximating it can result in selecting a less

optimal policy, producing worse performance in the model predictive controller. Typically this is done via

a Monte Carlo ensemble of a large number sample paths initialized at xt where we sum the cost for each

trajectory, and average these costs to accurately approximate the expectation. For complex, noisy or large

systems, this repeated simulation can become very costly for accurate estimates, and often actual run-time

requirements will impose strict constraints on the available number of Monte Carlo sample paths.

To mitigate this problem, we propose implementing anticorrelated stochastic simulation of the finite

horizon window to produce accurate estimates of the expected cost of a control sequence while using fewer

Monte Carlo sample paths than traditional iid Monte Carlo simulation. By simulating process paths using

Algorithm 1, we may immediately improve estimates of the desired expectation, and as we will show in the

next subsection, this results in improved expected cost incurred by the resulting MPC policy. Algorithm 7

summarizes this approach for available Monte Carlo resources of N sample paths.
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Algorithm 7 Variance Reduced MPC at time t

input: xt

for ũ ∈ UH
t do

for k = 1 to N/2 do
simulate {Xk

1,s, X
k
2,s} for s ∈ [t, t + H − 1], Xk

j,t = xt, and u = ũ using Algorithm 1
end for
compute sample mean: C(ũ)← 1

N

∑N/2
k=1

∑t+H−1
s=t [g(Xk

1,s, ũs) + g(Xk
2,s, ũs)]

end for
select ut,H that minimizes C(ũ)
µMPC

t (xt)← ut,H
t

6.1.1 Numerical Results

Consider the following simple, nonlinear chemical reaction system:

∅ ρA→ A

A + A
ρR→ B

B
ρB→ ∅

where the reaction rates ρR and ρB are given by mass action kinetics

ρR(x) =
1
2
κRxA(xA − 1)

ρB(x) = κBxB,

and ρA(u) = κAu is the control input. For simplicity, take U = {uLO = 10molecules/s, uHI = 100molecules/s}

to be binary. Let the state Xt = (XA
t , XB

t )> denote the number of particles of each species at time t. Con-

sider the τ -leaping simulation of this system

Xt+1 = Xt +
I∑

i=1

Si
tζ

i, (6.5)
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Figure 6.1: Two anticorrelated sample paths of the chemical reaction system with a constant input of uLO = 10 molecules/s.

where Si
t ∼ Pois(λi(Xt, ut)) and

ζ1 =

 1

0

 λ1(Xt, ut) = ρA(ut)τ

ζ2 =

 −2

1

 λ2(Xt, ut) = ρR(Xt)τ

ζ3 =

 0

−1

 λ3(Xt, ut) = ρB(Xt)τ. (6.6)

An antithetic pair of sample open loop trajectories are shown in Figure 6.1 for u ≡ uLO, κA = κR = κB = 0.1

and τ = 1.0 s.

We define the cost function so that closed-loop trajectories try to stabilize the number of molecules of

species B:

g(x, u) = |xB − xref | (6.7)

where xref = 30 molecules. Further, we take actions to be 5 second step functions, so that a decision is

made every 5 steps of simulation time. We take the length of the finite time horizon H = 15 seconds, so

that the optimization problem is over 3 actions and thus brute force search over the action space requires

only |U3| = 8 checks. The exhaustive search clearly scales poorly as the size of the admissible control set

or window length grow, but is used here for simplicity. Future work would include a more sophisticated

optimization technique. An example closed-loop trajectory computed using either 2 iid sample paths or one

antithetic pair of sample paths (i.e. N=2) is shown in Figure 6.2, and its corresponding action sequence is
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Figure 6.2: Two closed loop sample paths of the chemical reaction system with access to only 2 sample paths to estimate the
expected value in (6.3). To estimate the expected cost of a candidate control sequence while running MPC, iid MPC uses two
iid sample paths and the antithetic MPC uses two antithetically paired sample paths.

shown in Figure 6.3.

Because the closed loop trajectories, policies and costs are all stochastic, to compare the performance

of iid and antithetic MPC we must take a large ensemble of closed loop realizations for each fixed value

of N to compute the expected cost of each algorithm. Figure 6.4 plots a Monte Carlo estimate of this

cost (along with error bars corresponding to the standard error of the mean, an approximation of a single

standard deviation of the average cost) using 3.84e3 samples, versus the number of Monte Carlo sample

paths to which the model predictive controller has access. While these average cost estimates are somewhat

noisy due to high variance in cost incurred by a closed loop trajectory, we can see marked improvement

in the antithetic MPC, achieving roughly the same cost using only 2 Monte Carlo samples as the iid MPC

achieves using 4 samples. Note that since both the iid and antithetic estimates of the expectation in (6.3)

are consistent [23], the expected cost incurred by each should converge as the ensemble resources N become

large.

6.2 Particle filtering with anticorrelated predictions

We proceed by introducing notation used in Crisan and Doucet [12]. Suppose X = {Xt, t ∈ N} is a stochastic

signal process in Rnx and Y = {Yt, t ∈ N\{0}} is a corresponding observation process in Rny . Let the signal

process X be Markov with initial distribution X0 ∼ µ(dx0) and probability transition kernel K(dxt|xt−1)
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Figure 6.3: The implemented policies used by the closed loop paths in Fig. 6.2. To estimate the expected cost of a candidate
control sequence while running MPC, iid MPC uses two iid sample paths and the antithetic MPC uses two antithetically paired
sample paths.
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Figure 6.4: The estimated expected closed loop cost incurred by iid MPC and antithetic MPC versus the number of Monte
Carlo samples to which they have access for online estimation of expected cost. Average costs are computed using 38,400
sample closed loop paths. Note the antithetic technique requires approximately half the ensemble resources to achieve the same
average cost. The error bars show +/- standard error of the mean, which is approximately one standard deviation of the sample
average cost.
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so that

P(Xt ∈ A|Xt−1 = xt−1) =
∫

A

K(dxt|xt−1), A ∈ B(Rnx)

P(Yt ∈ B|Xt = xt) =
∫

B

g(dyt|xt), B ∈ B(Rny ),

where B(Rn) denotes the Borel σ-algebra on Rn. Consider a probability measure πs|t the solution of the

optimal filtering problem that denotes the law of Xs conditioned on Y1, . . . , Yt. We may obtain πt|t via a

standard, two-step recursive version of Bayes’ Theorem, given by:

Prediction:

πt|t−1(dxt)

=
∫

Rnx

πt−1|t−1(dxt−1)K(dxt|xt−1)

Update:

πt|t(dxt)

= g(yt|xt)πt|t−1(dxt)
[∫

Rnx

g(yt|xt)πt|t−1(dxt)
]−1

.

For ϕ a function, ν a measure, and Ξ a Markov transition kernel, define the standard notation:

(ν, ϕ) :=
∫

ϕ(x)ν(dx)

νΞ(A) :=
∫

ν(dx)Ξ(A|x)

Ξϕ(x) :=
∫

Ξ(dz|x)ϕ(z).

Thus we may more compactly characterize the optimal filtering recursion by:

(πt|t−1, ϕ) = (πt−1|t−1,Kϕ) Prediction

(πt|t, ϕ) = (πt|t−1, ϕg)(πt|t−1, g)−1 Update

where ϕ is any continuous, bounded, real-valued function on Rnx .

60



6.2.1 Particle Filtering

A particle filtering method approximates the optimal filter by maintaining a collection {x(i)
t }Ni=1 of N samples

of the state, known as particles, indexed by time. The empirical measure πN
t|t of this collection, given by:

πN
t|t(dxt) :=

1
N

N∑
i=1

δ
x
(i)
t

(dxt), (6.8)

is meant to approximate πt|t, the optimal filtering measure. Note here that δx denotes the Dirac delta

measure at x. Given this object at time t − 1, we may draw samples that are approximately distributed

according to πt|t−1 by drawing

x̃(i) i.i.d.∼ πN
t−1|t−1K(dxt) =

1
N

N∑
k=1

K(dxt|x(k)
t−1).

The update step is performed by computing normalized weights for each particles given the information

Yt = yt, and a resampling is performed to close the loop. One particle filtering algorithm is given by Crisan

and Doucet [12]:

At time t = 0.
Step 0: Initialization

For i = 1, . . . , N , sample x
(i)
0

i.i.d.∼ π0|0 and set t = 1.
At time t ≥ 1.
Step 1: Importance Sampling

For i = 1, . . . , N , sample x̃
(i)
t

i.i.d.∼ πN
t−1|t−1K.

For i = 1, . . . , N , calculate the normalized importance weights w
(i)
t :

w
(i)
t ∝ g(yt|x̃(i)

t ) such that
∑N

i=1 w
(i)
t = 1.

Step 2: Resampling
For i = 1, . . . , N , sample x

(i)
t

i.i.d.∼ π̃N
t|t := (1/N)

∑N
i=1 w

(i)
t δ

x̃
(i)
t

6.2.2 Anticorrelated Sampling

Beyond the antithetic random variable generation discussed above, several other examples of the larger class

of anticorrelated sampling techniques are introduced in [23]. In addition to antithetic sampling, stratified

sampling as well as a hybridization of stratified and antithetic sampling are examined. They are also defined

in terms of the simulation of random variables via inversion of their CDFs. In particular, one may simulate
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a sequence of i.i.d. random variables Xk with distribution function F and law ν by sampling:

Uk
i.i.d.∼ Unif(0, 1) (6.9)

Xk := F−1(Uk), (6.10)

where we formally invert the CDF by defining:

F−1(u) := inf{x : F (x) ≥ u}. (6.11)

An empirical estimate of ν is a random measure that approximates ν. It can be computed via:

νN,ω =
1
N

N∑
k=1

δXk(ω) ≈ ν, (6.12)

for N sufficiently large. For convenience we may suppress the explicit dependence on the outcome ω, but all

empirical measures constructed in this way are random. We may attempt to accelerate this convergence by

introducing localized correlation into the samples, say antithetically, by:

UA
k

i.i.d.∼ Unif(0, 1) (6.13)

XA
k,1 := F−1(UA

k ) (6.14)

XA
k,2 := F−1(1− UA

k ) (6.15)

νA,N =
1
N

N/2∑
k=1

(
δXA

k,1
+ δXA

k,2

)
, (6.16)

or via uniform stratification of the random variate sampled in [0, 1):

Aj :=
[

j−1
M , j

M

)
for j = 1, . . . ,M (6.17)

US
k,j

i.i.d.∼ Unif(Aj) for j = 1, . . . ,M (6.18)

XS
k,j := F−1(ŨS

k,j) for j = 1, . . . ,M (6.19)

ŨS
k,j := (ΠM ~US

k )j , (6.20)
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where ΠM is a random M ×M permutation matrix. The empirical measure constructed from these samples

is given by:

νS,Mn
M :=

1
Mn

n∑
k=1

M∑
j=1

δXS
k,j

. (6.21)

A hybridization of these techniques is easily constructed by

UH
k,j

i.i.d.∼ Unif(Aj) for j = 1, . . . , M
2 (6.22)

UH
k,j := 1− UH

k,M−j+1 for j = (M
2 + 1), . . . ,M (6.23)

XH
k,j := F−1(ŨH

k,j) for j = 1, . . . ,M (6.24)

where ŨH
k,j := (ΠM ~UH

k )j (6.25)

νH,Mn
M :=

1
Mn

n∑
k=1

M∑
j=1

δXH
k,j

, (6.26)

for ΠM a random permutation matrix. In order to make precise the concept of convergence of measures,

we introduce (weak) convergence of a sequence of measures {µN}∞N=1 to another measure µ if, for any

ϕ ∈ Cb(Rnx) the space of continuous, bounded functions:

lim
N→∞

(µN , ϕ) = (µ, ϕ). (6.27)

Further, one can choose a countable set A = {ϕi : i ∈ N} such that the above condition holds for every

ϕ ∈ A if and only if µN converges weakly to µ as N →∞. We may also define a metric d on the set P(Rnx)

of probability measures on Rnx which induces this weak topology, given by:

d(µ, ν) =
∞∑

i=1

|(µ, ϕi)− (ν, ϕi)|
2i‖ϕi‖

, (6.28)

where ‖ϕ‖ := supx∈Rnx |ϕ(x)|, the supremum norm on Cb(Rnx). That is, µN → µ weakly as N →∞ if and

only if limN→∞ d(µN , µ) = 0 (see Crisan and Doucet [12]).
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6.2.3 Anticorrelated particle filter in one dimension

We may express a version of the particle filter in terms of a composition of mappings from P(R) to itself.

First, we construct the two continuous maps used in the optimal filter. Define bt : P(R)→ P(R) to be

bt(ν)(dxt) := νK(dxt) =
∫

R
K(dxt|xt−1)ν(dxt−1), (6.29)

for any ν ∈ P(R). It is shown in [12] that this map is continuous in the sense of weak topology if the Markov

transition kernel K is Feller. Observe that for any ϕ ∈ Cb(R),

(bt(ν), ϕ) = (ν, Kϕ), (6.30)

and also that

πt|t−1 = bt(πt−1|t−1). (6.31)

Similarly, we may define another map on measures, at, by its pairing with an arbitrary continuous, bounded

function ϕ as:

(at(ν), ϕ) = (ν, g)−1(ν, ϕg), (6.32)

where a sufficient condition for the continuity of at is that g(yt|·) be bounded, continuous and strictly

positive. Here, it is also clear that

πt|t = at(πt|t−1) = at(bt(πt−1|t−1)). (6.33)

We may also further define the maps kt and k1:t to be

kt := at ◦ bt (6.34)

k1:t := kt ◦ kt−1 ◦ · · · ◦ k1, (6.35)

which are continuous if at and bt are for every t. Note then that for initial distribution µ, we may express

the optimal filter as

πt|t = kt(πt−1|t−1) = k1:t(µ). (6.36)
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Now, in order to express a class of particle filters in these terms, define the random mapping cN,ω from a

measure ν to its empirical measure by:

cN,ω(ν)(dxt) =
1
N

N∑
j=1

δVj(ω)(dxt), (6.37)

where Vj ∼ ν are i.i.d.. It is clear from the strong law of large numbers that cN,ω(ν)→ ν weakly as N →∞

for almost every ω by pairing with an arbitrary ϕ ∈ Cb(R). In terms of the above notation, νN,ω = cN,ω(ν).

The above particle filtering algorithm can thus be expressed as:

Prediction: πN
t|t−1 = cN ◦ bt(πN

t−1|t−1)

Update and Resampling: πN
t|t = cN ◦ at(πN

t|t−1),

initialized at µN := cN (µ). Similarly, define maps kN
t and kN

1:t to be

kN
t := cN ◦ at ◦ cN ◦ bt (6.38)

kN
1:t := kN

t ◦ kN
t−1 ◦ · · · ◦ kN

1 , (6.39)

so that

πN
t|t = kN

t (πN
t−1|t−1) = kN

1:t(µ
N ). (6.40)

It was shown in [12] that this version of the particle filter converges in the weak sense to the optimal filter

(almost surely in the random map cN,ω). We now propose an extension of this particle filter to methods

which use negative correlation in the prediction step. Instead of sampling the distributions in an i.i.d. way,

sample them according to the above algorithms. For example, construct the antithetic empirical map

cA,N (ν)(dxt) := νA,N =
1
N

N/2∑
k=1

(
δV A

k,1
+ δV A

k,2

)
, (6.41)
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where the samples (V A
k,1, V

A
k,2), k = 1, . . . , N/2 used are i.i.d. in k and V A

k,1 and V A
k,2 are pairwise antithetically

sampled as above. We may then define the antithetic particle filter πA,N
t|t

Initialization: πA,N
0|0 = µA,N := cA,N (µ)

Prediction: πA,N
t|t−1 = cA,N ◦ bt(π

A,N
t−1|t−1)

Update and Resampling: πA,N
t|t = cN ◦ at(π

A,N
t|t−1).

Similarly, we may define stratified and hybrid particle filters using M uniform strata of [0, 1) in terms of the

empirical map

cα,N (ν)(dxt) := να,N
M =

1
N

N/M∑
k=1

M∑
j=1

δV α
k,j

, (6.42)

for α ∈ {S,H}, that is, where V S
k,j ∼ ν and V H

k,j ∼ ν are sampled via stratification and the hybrid technique,

respectively. We construct the stratified and hybrid particle filters exactly as above with A replaced with S

and H, respectively. We now show convergence of these techniques in the weak sense almost surely, and we

expect these techniques to be MSE non-increasing by results proven in [25].

6.2.4 Almost Sure Convergence

We proceed by proving a strong property of the convergence of cα,N to identity, and then the desired result

follows immediately via a Lemma in [12].

Lemma 11. For cα,N,· as above and any sequence of measures {νN}∞N=1 such that νN → ν as N → ∞,

then cα,N,·(νN )→ ν almost surely for α ∈ {A,S,H}

Proof. Suppose {νN}∞N=1, ν ∈ P(R) are any such measures. For any ϕi ∈ A, any empirical map cα,N , α ∈

{A,S,H}, and any number M of correlated variables per i.i.d. sample (i.e. M = 2 for antithetic sampling,

and M is the number of strata for stratified or hybrid),

E
[(

(cα,N (νN ), ϕi)− (νN , ϕi)
)4]

= E


 1

N

N/M∑
k=1

M∑
j=1

[ϕi(V α
k,j)− (νN , ϕi)]

4
 . (6.43)

For compactness, define ai
k,j := ϕi(V α

k,j)− (νN , ϕi) and observe that ai
k,j , k ∈ {1, . . . , n/M}, j ∈ {1, . . . ,M}

are random, independent in k, correlated in j and E[ai
k,j ] = 0 since V α

k,j ∼ νN . Then we have, using these
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facts

E
[(

(cα,N (νN ), ϕi)− (νN , ϕi)
)4]

= E


 1

N

N/M∑
k=1

M∑
j=1

ai
k,j

4


=
1

N4
E

N/M∑
k=1

 M∑
j=1

ai
k,j

4


+
6

N4
E

 N/M∑
k1=1

k2=k1+1

 M∑
j1=1

ai
k,j

2 M∑
j2=1

ai
k,j

2


= 24‖ϕi‖4
M3 + 3NM2 − 3M3

N3

≤ 48M2‖ϕi‖4

N2
,

for sufficiently large N . Thus

E

[ ∞∑
N=1

(
(cα,N (νN ), ϕi)− (νN , ϕi)

)4] ≤ 48M2‖ϕi‖4
∞∑

N=1

1
N2

<∞.

Thus, with probability 1

∞∑
N=1

(
(cα,N (νN ), ϕi)− (νN , ϕi)

)4
<∞ (6.44)

=⇒ lim
N→∞

|(cα,N (νN ), ϕi)− (νN , ϕi)| = 0 (6.45)

for any i ∈ N. Thus limN→∞ d(cα,N (νN ), νn) = 0, almost surely, and by the triangle inequality

lim
N→∞

d(cN,ω(νN ), ν)

≤ lim
N→∞

d(cN,ω(νN ), νN ) + lim
N→∞

d(νN , ν) = 0,

and almost sure convergence follows.

Theorem 12. For transition kernel K Feller and likelihood function g bounded, continuous and strictly

positive, then limN→∞ πα,N
t|t = πt|t almost surely for α ∈ {A,S,H}

Proof. As was proven in [12], for at, bt continuous, cN , cα,N endowed with the property proven in Lemma 11,

67



for limN→∞ µα,N = limN→∞ cα,N (µ) = µ,

lim
N→∞

πα,N
t|t = lim

N→∞
kα,N
1:t (µα,N ) = k1:t(µ) = πt|t. (6.46)

6.2.5 Room Population Dynamics

As a concrete illustration of the proof above, consider Xt to be the population of a single, initially empty

room into which people enter at exponentially spaced times, and their arrivals are independent of each other.

This can be modeled as a Poisson process with, say, unit rate. Suppose that, at every time t, an observer

attempts to count the number of occupants but has some probability of over or undercounting. Let this

count be denoted Yt and suppose that we can model the accuracy of the observer by

Yt = Xt + Nt (6.47)

where Nt is an i.i.d. noise process with distribution with pmf

P(Nt = z) =


κ
z4 if z ∈ Z \ {0}

κ if z = 0,

(6.48)

where κ = (π4

45 + 1)−1. We will henceforward refer to this distribution as a quartic power law.

To accurately guess the state Xt, given all of the past measurements and knowledge of the system, we

must solve the optimal Bayesian filtering problem for the measure πt|t. However, this is in general a difficult

quantity to calculate, so we seek some computationally efficient method of approximation, the particle

filtering distribution πN t|t.

We initialize a population of particles {X(i)
t }Ni=1 at the point X

(i)
0 = 0. Now, given a particle population

at time t− 1, we use our knowledge of the process Xt to predict the next transition. This problem is simple

enough that we can efficiently determine the distribution function of the measure πN
t|tK ∈ P(R), which is

just a set of points which advance with independent Poisson distributions. In this case, it is given by

F (z) = P(X̃(i)
t ≤ z) =

1
N

N∑
k=1

Fλ(max{z −X
(k)
t−1, 0}), (6.49)

where Fλ(z) is the CDF of a Poisson distribution with rate λ. Given access to a CDF, implementation of the
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Figure 6.5: Plot of sample mean square error of the mean of the empirical particle distribution from an
ensemble of random sample paths of the Poisson process. Error bars shown are standard error of the mean.
Here, ensemble size is 100. Note the apparent convergence to the Bayesian limit.

antithetic or stratified filters is trivial, so we may correlate our predictions as above. Finally, we compute

likelihood weights for each of our samples, and resample to get a new population.

6.2.6 Numerical Results

Consider a single sample of this process, comprised of a sample trajectory Xe
t , a sample measurement process

Y e
t , and a particle filter of N particles, with corresponding mean estimator

X̂e,N
t =

1
N

N∑
j=1

X
e,(j)
t . (6.50)

If, for every e we compute the mean square error (MSE) |Xe − X̂e|2 and average over an ensemble {e}100e=1,

we will approximate the expected MSE of the particle filter estimator, E[|X − (πN , x)|2]. Further, as the

number of particles N becomes sufficiently large, this quantity should approach the optimal Bayesian limit

E[|X− (π, x)|2] = E[|X−E[X|Y ]|2] > 0 for a non-fully observed system. Fig. 6.5 collects the results of these

numerical experiments. Note that, relative to the Bayesian limit, the anticorrelated samplers can produce

more than an order of magnitude reduction MSE of the naive sampler.

6.2.7 Multidimensional anticorrelated particle filtering

One way to extend the variance reduced algorithms presented above to a multi-dimensional setting is via the

tau-leaping method of Gillespie [19] for simulating Markov processes with a finite number of event channels.

69



Consider the random time-change representation of a Markov process X(t) ∈ RD, t ∈ [0, T ], with I event

channels, each with propensity function ρi(t, X(t)), defined by

X(t) = X(0) +
I∑

i=1

Υi

 t∫
0

ρi(s,X(s)) ds

 ζi, (6.51)

where Υi is a unit-rate Poisson process and ζi ∈ RD are the state jump vectors, so that ζi = X(t+)−X(t−), if

the ith event channel experiences a transition at time t. The evolution of such a process can be approximated

in discrete time using the tau-leaping method. For time-step increment τ , let t` = `τ and X̃` ≈ X(t`) for

` ∈ {0, . . . , L}, where L := max{` : t` ≤ T}. Then X̃` evolves via

X̃`+1 = X̃` +
I∑

i=1

Si
`

(
ρi
(
t`, X̃`

)
τ
)

ζi, (6.52)

where Si
`(λ) ∼ Pois(λ). For compactness, define λi

` = ρi
(
t`, X̃`

)
τ and denote Si

`

(
λi

`

)
by Si

`. Thus (6.52)

becomes

X̃`+1 = X̃` +
I∑

i=1

Si
`ζ

i. (6.53)

If we couple this discrete time stochastic process with an observation process Yt, say

X̃t+1 = X̃t +
I∑

i=1

Si
tζ

i (6.54)

Yt = f(Xt, Nt), (6.55)

where Nt is some independent noise process, and X0 ∼ µ, then we have produced a whole class of mulitdi-

mensional filtering problems for finding πt|t, the law of Xt given the observations Y1, Y2, . . . , Yt. The particle

filtering approximation to the solution of this problem can be obtained exactly as above, though often practi-

tioners will implement a slightly modified algorithm known as the bootstrap particle filter [21]. The primary

difference between a bootstrap filter and the particle filter presented above is that, in the prediction step,

instead of drawing

x̃
(j)
t

i.i.d.∼ πN
t−1|t−1K(dxt) =

1
N

N∑
k=1

K(dxt|x(k)
t−1).

we merely simulate the particle x
(j)
t moving forward in time in isolation, that is

x̃
(j)
t ∼ K(dxt−1|x(j)

t−1).
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So in this case, given a particle population {x(j)
t }Nj=1 at time t, to perform the prediction step, for each

particle x
(j)
t we sample Si

t for each i ∈ {1, . . . , I} and compute

x̃
(j)
t+1 = x

(j)
t +

I∑
i=1

Si
tζ

i, (6.56)

and the rest of the algorithm follows as before. We can see now that the special structure of this model alows

us to reduce the stochastic simulation of a multidimensional process to the simulation of I random, real-

valued variables, corresponding with each reaction process. Thus the technique we propose for implementing

anticorrelated particle filtering is the application of the one dimensional techniques to each of these random

variables. Since the techniques as constructed produced fully realized (yet correlated) samples from their

respective distributions, transitions simulated this way are fair sample transitions of the process. To proceed

we first discuss the application of the stratified technique for M strata Aj constructed as before. For each

j ∈ {1, . . . ,M} and for any i ∈ {1, . . . , I} and any time step t, take US,i
j,t

ind.∼ Unif(Aj). For a uniformly

distributed random permutation ΠS,M
t , set ~V S,i

t = ΠS,M
t

~US,i
t . Now, for each r ∈ {1, . . . ,M} define

X̃S
r,t+1 = X̃S

r,t +
I∑

i=1

SS,i
r,t ζi, (6.57)

for given deterministic X̃S
r,0 = XS

r (0), where we sample SS,i
r,t via

SS,i
r,t := F−1

λα,i
r,t

(
V S,i

r,t

)
, (6.58)

and where λα,i
r,t := ρi

(
tt, X̃

S
r,t

)
τ and Fλ is the Poisson CDF with parameter λ.

The construction of the samples used for the other variance-reduced pathwise mean estimators follow a

similar development. Hybrid paths X̃H
r,t are simulated almost identically to the stratified case, save that

UH,i
j,t ∼ Unif(Aj) if 1 ≤ j ≤ M

2
(6.59)

UH,i
j,t = 1− UH,i

M+1−j,t otherwise. (6.60)

Then, for a uniformly distributed random permutation ΠH,M
t , ~V H,i

t := ΠH,M
t

~UH,i
t , and X̃H

r,t is constructed

as above.

Finally, in the case of the antithetic estimator, to generate an even number M of paths X̃A
r , simulate

V A,i
r,t

i.i.d.∼ Unif(0, 1) for each r ∈ {1, . . . , M
2 }, and for each event channel i and timestep t. We then simulate
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Figure 6.6: Six node graph of O’Hare International Airport’s domestic terminals (Source:
www.allairports.net/ chicago/chicago-airport-terminal-map.htm). State Xt ∈ R6 is the population of each
node. Measurements Yt are taken at nodes 1, 2, 3, and 5.

X̃A
r,t as above, save that we define

SA,i
r,t :=


F−1

λα,i
r,t

(
V A,i

r,t

)
if 1 ≤ r ≤ M

2

F−1

λα,i
r,t

(
1− V A,i

M+1−r,t

)
if M

2 + 1 ≤ r ≤M.

(6.61)

While the multidimensional extension of the technique presented here appears natural and well motivated,

extension of the proof of Theorem 12 to the multidimensional case may require a different mathematical

approach, and proof of such a theorem is reserved for future work.

6.2.8 Building Population Dynamics

Take as an example a simple model of the movement of people through departures side of the three domestic

terminals of O’Hare International airport. The airport is represented by a six node graph, with each terminal

comprised of a pre- and post-security node, connected as shown in Figure 6.6. The state Xt ∈ R6 represents

the population at each node at time t. There are source type event channels at nodes 1, 2 and 3 which

correspond to jump vectors ζi = ui the ith standard unit vector in R6 for i ∈ {1, 2, 3}. The corresponding

rates at which these transitions occur are simple time dependent, piecewise linear functions (though they

needn’t be, in general), ρi(t, Xt) = ρi(t)η, where η = 100 is a model scaling factor. There are sinks at nodes

4, 5 and 6, with corresponding jump vectors ζi = −ui for i ∈ {4, 5, 6}, and time dependent, linear rate

functions ρi(t, Xt) = ρi(t)(Xt)i, where (x)i denotes the ith component of x ∈ R6, and ρi(t) is also piecewise

72



linear. A jump transition i where a person moves from node ` to node m along an edge of the graph has

corresponding jump vector ζi = um − u`. Such transitions from node ` ∈ {1, 2, 3} to node m ∈ {4, 5, 6}

along an edge of the graph are taken to be linear in the state, with no explicit time dependence, of the form

ρi(t, Xt) = 3γ
2 (Xt)`, where γ = 0.12 is another scaling factor. Transitions in the opposite direction, that is

from m ∈ {4, 5, 6} to ` ∈ {1, 2, 3} are taken to have rate 0. Finally people are free to move in any direction

along a single edge from node ` to node m, where `,m ∈ {4, 5, 6}. Such a transition i is taken to have

nonlinear rate function

ρi(t, Xt) =
γ

2

(
(Xt)5 +

(Xt)25
2η

)
(6.62)

if the transition is leaving node 5 and

ρi(t, Xt) =
γ

3

(
(Xt)` +

(Xt)2`
2η

)
, ` ∈ {4, 6} (6.63)

if the transition is entering node 5. Noisy, low resolution measurements of part of the state are available at

nodes 1, 2, 3, and 5, and are given by

(Yt)` = χ

(⌈
(Xt)`

χ

⌉
+ Nt

)
, ` ∈ {1, 2, 3, 5} (6.64)

where χ is a scaling factor determining resolution as well as variance of the noise, and Nt is an i.i.d. noise

sequence drawn from a quartic power law.

6.2.9 Numerical Results

We see in Fig. 6.7 a single sample path of this process, along with the mean estimator produced by a 100

particle filter. We can repeat the experiment in the scalar case, save that we now compute MSE in terms

of norms squared ‖Xe − X̂e‖2 and approximate the expected MSE of the multidimensional particle filter

estimator, E[‖X − (πN , x)‖2]. Again, as the number of particles N becomes sufficiently large, this quantity

should converge to the optimal Bayesian limit E[‖X − (π, x)‖2] = E[‖X − E[X|Y ]‖2] > 0. Fig. 6.8 plots

these estimated MSEs versus number of particles for each of the techniques presented here. Observe that

the estimators appear to closely approximate the limit in a relatively small number of particles, and that the

MSEs of the anticorrelated particle filter mean estimators appear to be upper bounded by the naive particle

filter. Also note that relative MSE reductions do not appear to be as drastic as in the one dimensional case.
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Figure 6.7: Illustrative sample path Xt, shown with mean path estimator (dashed lines) of a corresponding
particle filter with 100 particles. Note that here the measurements have a resolution of only χ = 50 and
nodes 4 and 6 are not even observed directly.
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Figure 6.8: Plot of sample mean square error of the mean of the empirical particle distribution from an
ensemble of random sample paths of the airport model. Error bars shown are standard error of the mean.
Here, ensemble size is 16000. Note the apparent convergence to the Bayesian limit.
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Chapter 7

Conclusions

In this dissertation, we presented a number of algorithms, approaches and ideas to reduce the cost of Monte

Carlo simulation of a large collection of lattice Markov chains. While we considered distinct algorithms in

both discrete- and continuous-time, the overall approach was to modify the stochastic simulation algorithms

to relax the independence assumption of traditional Monte Carlo. By introducing strong, local (with respect

to ensemble) negative correlation between sample trajectories, we were able to demonstrate significant re-

ductions in estimator variance for both linear and nonlinear systems. Crucially, all algorithms we present

are both agnostic to the particular parameters of the lattice Markov chains of interest and none of them alter

the marginal distributions of sample trajectories from their iid counterparts. Thus the variance reduction

our algorithms produce comes with no additional sources of bias or approximation.

In the discrete-time case, we introduced an algorithm that requires only slight modification of the uni-

form random inputs to the system in order to produce strongly negatively correlated trajectories, effectively

extending the classical technique of antithetic variates to the pathwise stochastic simulation domain. Requir-

ing no additional computational overhead and remaining fully embarrassingly parallelizable, our antithetic

simulation algorithms produced multiple orders-of-magnitude variance reduction for Monte Carlo mean esti-

mators for affine (gene expression) and nonlinear (coagulation and HIV infection) simulations. Additionally,

we proved that these estimators are unbiased and consistent with respect to the discrete-time distribution

of interest such as tau-leaping, for example. We also derived a recurrence relation that governs the time

evolution of the negative covariance our algorithms introduce, and use this relation to prove a sufficient

condition for variance reduction in the affine rates case. We discuss possible further refinements of this

algorithm below.

In the continuous-time setting, we introduced a pair of algorithms, the endpoint method and the bino-

mial midpoint method, to simulate exact, negatively correlated sample trajectories of the unit-rate Poisson

process. For one of the algorithms, we derived closed form expressions for the evolution of the scaled MSE of

mean estimators constructed using these anticorrelated processes in terms of a special function related to an-

tithetic scalar Poisson variable generation. Further, we provided simple, asymptotic bounds for performance
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of this algorithm for both large and small parameter regimes. Using the random time-change represen-

tation of a lattice Markov chain, we showed how these anticorrelated Poisson processes could be used as

the random inputs to simulate any lattice Markov chain. Again using both affine and nonlinear systems,

we numerically demonstrated performance for a large parameter range, demonstrating order-of-magnitude

MSE reduction. Further, while these algorithms introduce some computational overhead relative to the

most efficient continuous-time simulation techniques, we provided error vs cost analysis that showed that

the gains in MSE were significant enough to make them cost competitive when operating in Pareto regimes

when compared with iid next reaction methods. Future work in this algorithm might include analysis to

determine the relationship between stochastic system parameters like rate functions and the Pareto optimal

parameters for the variance-reduction algorithm. Our experiments suggest that an adaptive anticorrelated

algorithm may be attainable.

Finally, we presented several extensions and applications of these anticorrelated simulation algorithms.

We extended antithetic tau-leaping to allow for any anticorrelated set of Poisson random variables to be

used as inputs in a modular fashion. To illustrate this new paradigm, we presented a conditional tau-

leaping algorithm that antithetically pre-sampled large sections of Poisson process trajectory in order to

return variance-reduced, conditionally Poisson random variables to a tau-leaping algorithm. The resulting

approach significantly improved the MSE performance of anticorrelated tau-leaping estimators in the regime

where their performance was weakest. While this particular implementation of anticorrelated stochastic

simulation introduced non-trivial computational overhead, future work could greatly improve the efficiency

of this technique. For example, since the variance-reduction algorithm parameters are now uncoupled from

the system dynamics, the parameters could be adaptively modified during simulation depending on the

system rates. We also showed how these anticorrelated techniques might extend beyond a pure Monte Carlo

simulation context into control and filtering of stochastic processes. We presented an algorithm to reduce the

cost of estimating the expected cost-to-go in a version of the stochastic model predictive control problem.

This approach could be particularly useful when online computational resources are constrained. Lastly,

we presented a way to simulate the prediction step in a particle filtering algorithm using anticorrelated

methods. In particular, we showed that the re-sampling methods typically used to implement the update

step of the particle filter are particularly inhospitable to maintaining persistent negative correlation between

trajectories over time. Consequently, we suggest that any future work in applying anticorrelated sampling

to particle filters focus on pairing it with an alternative update step.
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