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ABSTRACT

This thesis investigates cases when solutions to a mean field game (MFG) are non-unique.

The symmetric Markov perfect information N -player game is considered and restricted

to finite states and continuous time. The players’ transitions are random with a parame-

ter determined by their control. There is a unique joint distribution of the players for the

symmetric Markov perfect equilibrium, but there can be multiple solutions to the MFG

equations. This thesis focuses on understanding the behaviors of the many MFG solu-

tions for the 2-state case. This thesis explores methods to determine which MFG solution

represents the fluid limit trajectories of the N -player system for large populations.

This thesis investigates the MFG map which acts on the MFG distributions and outputs

a prediction of the population’s distribution based on the expected response of any given

player. The MFG solutions are exactly the fixed points of the MFG map. The MFG so-

lution that approximates large population trajectories is conjectured to be the only stable

point for the MFG map. There is a second concept investigated, social cost, which is the av-

erage accumulated cost per player. But as is shown, the social cost is not a good indicator

of which MFG solution approximates large population trajectories.

A set, called the bifurcation set, is defined by there being some possibility of multiple

trajectories of a large population. Another important set is the indifference set, which in-

dicates when the transition rate of the players to a state is positively reinforced by an

increase of the empirical distribution of that state. However, numerical results are given,

indicating that the fluid limit trajectory may relate to stability of the MFG map. It appears

the MFG map is difficult to handle in many ways; stability of the mapping is difficult to

show, even in a simple example and there are numerical anomalies such that non-fixed

points appear to be numerically stable under rigorous tests.
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ABBREVIATIONS AND TERMS

• Let ∆i : Rd → Rd be the difference operator on i ∈ N, given by ∆iz =


z1 − zi
z2 − zi

...

zd − zi


• N0 = N ∪ {0}

• R+ = {x ∈ R : x > 0}

• R+
0 = {x ∈ R : x ≥ 0}

• t ∨ s = max{t, s}

• t ∧ s = min{t, s}

• MFG means "mean field games"

• ITVP means "initial-terminal value problem"

• IVP means "initial value problem"

• TVP means "terminal value problem"

• IC means "initial condition"

• TC means "terminal condition"

• ITC means "initial-terminal condition"

• CTCS means "continuous time continuous states"

• CTDS means "continuous time discrete states"

vi



1 INTRODUCTION

Mean field game (MFG) theory is the study of decision-making policies for a large num-

ber of rational players, each with relatively small influence on the population’s distribu-

tion over the states of a game. The MFG was discovered in 2006 by Huang, Malhame,

and Caines [1], and independently by Lasry and P. L. Lions in 2007 [2]. In Huang et

al. [1] and Lasry et al. [2] continuous state continuous time (CSCT) models are considered,

and the analysis is based on the Hamilton-Jacobi-Bellman (HJB) and the Fokker-Planck-

Kolmogorov equations. The MFG model has applications in optimal control theory, eco-

nomics, engineering, and social planning [3], [4], [5], [6].

The purpose of MFGs is to approximate the trajectory of a large population’s distribu-

tion over the states in the game. The symmetric Markov perfect equilibrium for the N -

player game requires that each player considers the options of the other players, the num-

ber of considerations is combinatorially explosive. This can be rectified for large popula-

tions by instead working with the mean field game system, which does not depend on the

number of players. There has been much work examining under what conditions the limit

trajectories converge to a unique solution of the MFG system, see [1], [2], [7], [8], [9], [10]

and especially [3]. In this thesis, the primary interest is for non-unique solutions to the

MFG, in particular contrasting the different solutions to determine the approximate tra-

jectory of a large population. In the work of Yin, Mehta, Meyn, and Shanbhag [11] in 2012,

an MFG (oscillator) model is shown to have non-unique solutions.

Chapter 2 adopts the discrete state continuous time (DSCT) MFG model given by Gomes,

Mohr, and Souza in 2013 [7]. This system also includes the Hamilton-Jacobi (HJ) and the

Kolmogorov equations. Also, in this chapter, the objective of this research is given, which

(in short) is to analyze methods of parsing through multiple solutions of the MFG system
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to find which one models large populations. This thesis restricts attention to the 2-state

case with costs of a particular form. In Chapter 3, one tractable example of follow the

crowd type cost which has multiple solutions is thoroughly analyzed, and traits of the

different solutions are observed. Early on in this chapter, another tractable example of

avoid the crowd type cost is shown to have a unique solution despite that it fails the suf-

ficient conditions laid out in Gomes et al. [7] for uniqueness. In Chapter 4, methods are

tested against different examples, illustrating the difficulties in numerically searching for

the limit trajectory when multiple solutions of the MFG exist. Early on in this chapter,

stability of the MFG solution is discussed for a particular case.
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2 MEAN FIELD GAME OVERVIEW

The discrete state continuous time (DSCT) mean field game model, as given in Gomes

et al. [7], is adopted. This system includes Hamilton-Jacobi (HJ) equations and the Kol-

mogorov equation. Theorem 2.1.1 in Gomes et al. [7] gives a method to solve for the

common equilibrium policies. The reduced 2-state model is given and refined, see (2.18),

and is used throughout this document. The objective of this research is to discover a

method for finding which of the multiple solutions of the MFG system models large pop-

ulations. In the final section of this chapter, Section 2.3, a proposed method for finding

the population’s trajectory is based on stability of the MFG map, and this is explored more

carefully in Chapter 4. A second viable method is described as the lowest social cost of

the MFG solutions, but is shown to fail.

2.1 Model

Consider a symmetric MarkovN -player game with perfect information, where each player

is in a state from a finite set of states Id = {1, ..., d} in continuous time and players adjust

their control in order to minimize their cost. The paper Gomes et al. [7], considers such

games, and analyzes the corresponding MFG. The setting of the MFG in Gomes et al. [7]

is paraphrased in this section.

Given a reference player, the set of probability distributions of other players among

the states is given by Sd. The control for a reference player is given by α ∈ (R+
0 )d×d, it

describes the rate at which the player tries to move from one state to any other state. The

control function is α : [0, T ] → (R+
0 )d×d. For convenience, define αj(i, t) := αij(t); this is

the control for the reference player to go from state i to state j.
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Consider the running cost c : Id×Sd×(R+
0 )d → R given in Gomes et al. [7]. It is assumed

that c(i, θ, α) does not depend on αi, else a player may accumulate cost for trying to stay

in their current state. Both c and ∂c
∂α

are assumed to be Lipschitz continuous with respect

to θ. It is assumed that c(i, θ, α) is strongly convex in α, that is, for some γ > 0

c(i, θ, α′)− c(i, θ, α) ≥ ∇αc(i, θ, α) · (α′ − α) + γ‖α′ − α‖2.

The running cost is superlinear in αj , that is limαj→∞
c(i,θ,α)
‖α‖ → ∞ for j 6= i. There is a

terminal cost denoted as ψi(θ(T )) which is Lipschitz continuous with respect to θ(T ).

Before seeing how the N player game transpires, the game is reduced to a single ref-

erence player assuming that all other players’ trajectories are known. To a great extent

this simplifies the problem. The solution for the reference player is dependent only on

the variable distribution of all players over time. Suppose the empirical distribution of

the other players (not including the reference player) as a function of time is given by

θ : [0, T ] → Sd to the reference player. Thus the reference player’s control response de-

pends on future values of θ and hence the system is non-causal. Finally assume i is the

state of the reference player at time t. The cost-to-go for the reference player using a

control policy α = (α(t) : 0 ≤ t ≤ T ) is given by

uθi (t, α) = Eα
[∫ T

t

c(is, θ(s), α(s))ds+ ψiT (θ(T ))

∣∣∣∣ it = i

]
, (2.1)

and transition rate of the reference player’s state is determined by the control α according

to the continuous time discrete state (CTDS) Markov process

P[it+h = j|it = i] = αij(t)h+ o(h). (2.2)

The value function or the minimal cost-to-go is

uθi (t) = min
α

{
uθi (t, α)

}
. (2.3)
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The control associated to the minimal cost-to-go is the rational player’s choice. Consider

the Legendre transform of the running cost

h(i, θ,∆iz) = min
α∈(R+

0 )d
{c(i, θ, α) + α ·∆iz}. (2.4)

By convexity and superlinearity of the running cost, argmin
α∈(R+

0 )d
{c(i, θ, α) + α · ∆iz} is well

defined at each coordinate except the ith coordinate, where there is no constraint at all

because c(i, θ, α) +α ·∆iz is independent of the αi coordinate. Hence the following is well

defined 
α∗(i, θ,∆iz) ∈ argmin

α∈(R+
0 )d
{c(i, θ, α) + α ·∆iz}

α∗i,i(θ,∆iz) = −
∑

j 6=i α
∗
i,j(θ, z).

(2.5)

Given a single reference player and the distribution of the other players, θ, for all time,

consider the Hamilton-Jacobi (HJ) ordinary differential equations (ODE) with terminal

condition (TC) for the game


− d

dt
ui = h(i, θ,∆iu)

ui(T ) = ψi(θ(T )).

(2.6)

Suppose the distribution of the other players is not given, although at any given time

of the game all players can observe each of the N players’ current state. Suppose that the

non-reference players choose some strategy, and the reference player has the same objec-

tive as before, to minimize cost. Suppose that each player’s cost function is dependent

on the distribution of the other players and the player’s state. Since all players know that

they are playing against a rational population they will take into consideration the other

players’ strategies, causing the problem to be intractable. The relationships between the

N + 1 rational players are complex, because each player has to account for the other play-

ers’ expected behavior, but this prediction is recursive as the players know that the others
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are making such an account. To model these N + 1 rational players a more complicated

system than (2.6) is required.

Suppose that there are N + 1 players. The reference player knows the other players’

strategy β. Suppose that i is the reference player’s state and n is the number of the other

N players in each state, that is n
N
∈ SdN = { n

N
∈ Zd :

∑
i∈Id ni = N} is the distribution of

the other N players. The reference player wants to minimize cost-to-go, given by

uni (t, α, β) = Eα,β
[∫ T

t

c
(
is,

ns
N
,α
(
s, is,

ns
N

))
ds+ ψiT

(nT
N

)∣∣∣∣ it = i,nt = n

]
, (2.7)

where α is the reference player’s strategy.

Suppose that eij = ei − ej and ei is the i-th vector of the canonical basis of Rd. Let n be

so that n
N
∈ SdN where ni is the number of players in state i, not including the reference

player. The following determines the cost-to-go functions for the N + 1 rational players,

as given in Gomes et al. [7]


− d

dt
uni = h

(
i,
n

N
,∆iu

n
)

+
∑
k,j

nkβkj

(
n+ eik
N

, un+eiki

)(
u
n+ejk
i − uni

)
uni (T ) = ψi

( n
N

)
.

(2.8)

The transition rate of the reference player’s state for the N + 1 player game is determined

by the control α according to the continuous time discrete state (CTDS) Markov process

P[it+h = j|nt = n, it = i] = αij

( n
N
, un
)
h+ o(h), (2.9)

and the transition rates of the other N players are given by

P[nt+h = n+ ejk|nt = n, it = i] = nkβkj

(
n+ eik
N

, un+eik
)
h+ o(h). (2.10)

The control profile (α, α, ..., α) is a Nash equilibrium if α minimizes the quantity on the
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right-hand side of (2.7) for β = α. In Gomes et al. [7] it is shown that a Markov perfect

equilibrium exists, and (α∗, α∗, ..., α∗) is a Markov perfect equilibrium.

For large populations, given a marginal distribution of their actions and a small time

interval, the fraction of players who move from one state to another is approximated by

its expectation–by the law of large numbers. The motivation for MFG is, for large enough

populations, to predict the force of the masses on the individual. It is impossible to know

what any individual is doing, but the control for each individual is deterministic, given

the flow of the masses. The MFG model is such that each player has a cost-to-go given by

the HJ (or Hamilton-Jacobi-Bellman) equation which depends on the populations’ trajec-

tory given in (2.6), while the entire populations’ trajectory adheres to the Fokker-Planck-

Kolmogorov equation determined by their cost-to-go. The MFG model given in Gomes

et al. [7] is 
− d

dt
ui = h(i, θ,∆iu), ui(T ) = ψi(θ(T ))

d

dt
θi =

∑
j

θjα
∗
j,i(θ,∆ju), θ(0) = θ̄ ∈ [0, 1]d, with

N∑
i=1

θ̄i = 1.
(2.11)

2.1.1 2-State Model

In this section (2.6), (2.8), and (2.11) are specialized to the 2-state case. The case of 2-states

allows for a one-dimensional representation of the population’s distribution. In general,

the 2-state case is equipped with the state space {0, 1} instead of {1, 2} (for convenience).

For θ ∈ [0, 1]2 and θ1 = 1− θ0, the vector θ is determined by either of its coordinates. Thus

in the 2-state case the distribution can be denoted by

 θ

1− θ

, where θ is the fraction of

players in state 0.

The running cost for a given player depends on the state, i, that the player is in, the

fraction, θ, of players in state 0, and the control, αi,1−i, from state i to state 1 − i. Assume

throughout this section that the form of the running cost is c(i, θ, α) = f(i, θ) + α2
i,1−i/2.

7



Equation (2.5) reduces to
α∗i,1−i(θ, z) = argmin

α∈(R+
0 )2
{c(i, θ, α) + α ·∆iz}

α∗i,i(θ, z) = −α∗i,1−i(θ, z).

(2.12)

In Gomes et al. [7] a "verification theorem" was given for both cases of one reference

player against deterministic population and for N + 1 rational players. The proof uses

Dynkin’s formula. The result for one player given a deterministic population states that

given a solution u to (2.6), the α∗(·, u) which minimizes the Legendre transform of the

running cost is also the strategy used to minimize the cost-to-go.

Theorem 2.1.1 gives the optimal control α∗ for the 2-state case where the running cost

has the form c(i, θ, α) = f(i, θ) + α2
i,1−i/2. This particular form of the running cost is used

throughout Chapters 3 and 4.

Theorem 2.1.1. Suppose that the running cost is of the form c(i, θ, α) = f(i, θ) + α2
i,1−i/2, for

some fixed θ := θ[0,T ]. Then α∗(θ, u) minimizes uθi defined in (2.1). Moreover α∗ defined in (2.5)

is given by α∗i,1−i(θ, z) = (zi − z1−i)+.

Proof. See Gomes et al. [7] for proof that α∗(θ, u) minimizes the right-hand side of (2.1).

By definition

α∗i,1−i(θ, z) = argmin
α≥0

{c(i, θ, α) + αi,1−i(z1−i − zi)}

= argmin
α≥0

f(i, θ) +
α2
i,1−i

2
+ αi,1−i(z1−i − zi)

= argmin
α≥0

(
1

2
α2
i,1−i + (z1−i − zi)αi,1−i

)
= (zi − z1−i)+. (2.13)

When using the tractable form of running cost c(i, θ, α) = f(i, θ) + α2
i,1−i/2; both (2.6)

8



and (2.8) simplify. Given a distribution θ(t) for t ∈ [0, T ], (2.6) becomes


− d

dt
ui = f(i, θ)− 1

2
(ui − u1−i)2+

ui(T ) = ψi(θ(T )),

(2.14)

and hence the Markov transition probabilities are

P[it+h = 1− i|it = i] = (ui(t)− u1−i(t))+h+ o(h). (2.15)

System (2.8) is now

− d

dt
uni = f

(
i,
n

N

)
− 1

2
(uni − un1−i)2++

+ nα∗0,1

(
n− i
N

, un
)

[un+1
i − uni ] + (N − n)α∗1,0

(
n+ 1− i

N
, un
)

[un−1i − uni ]

uni (T ) = ψi

( n
N

)
,

(2.16)

hence the transition rates are

P[it+h = 1− i|nt = n, it = i] = α∗i,1−i

( n
N
, un
)
h+ o(h),

P[nt+h = n− 1|nt = n, it = i] = nα∗0,1

(
n− i
N

, un−i
)
h+ o(h) and

P[nt+h = n+ 1|nt = n, it = i] = (N − n)α∗1,0

(
n+ 1− i

N
, un+1−i

)
h+ o(h). (2.17)

The MFG model given by (2.11) becomes



−u̇0 = f(0, θ)− 1

2
(u0 − u1)2+

−u̇1 = f(1, θ)− 1

2
(u1 − u0)2+

θ̇ = −θ(u0 − u1)+ + (1− θ)(u1 − u0)+

ui(T ) = ψi(θ(T )), θ(0) = θ̄ ∈ [0, 1].

(2.18)
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2.2 Objective of Study

In this section the objective of the study is outlined. A definition of fluid limit trajectory

is presented. The fluid limit trajectories are the trajectories this thesis considers most

meaningful. The bifurcation set, is a set where the number of fluid limit trajectories coming

from a single initial distribution is not one.

Definition 2.2.1. Consider the symmetric Markov perfect equilibrium for the N + 1 rational

player game given by (2.8)-(2.10), with all players using the strategy α∗ minimizing the average

cost in (2.7). Suppose that nN is the distribution of the N non-reference players with transition

rates (2.10). Suppose that θ : [0, T ]→ SdN .

Then θ is a fluid limit trajectory if for some {xN}∞N=1 with limN→∞
xN

N
→ θ(0), the following

holds for any ε > 0,

lim
N→∞

P
[∥∥∥∥nNN − θ

∥∥∥∥
∞
< ε

∣∣∣∣nN(0) = xN
]

= 1. (2.19)

Consider the MFG model given by (2.11). Since this system is an ITVP, even Lipschitz

conditions are not enough to guarantee unique solutions. Indeed, solutions to mean field

games are not necessarily unique. Figure 2.1 gives an example of non-unique solutions

for the 2-state MFG given by (2.18). This example is thoroughly analyzed in Chapter 3.

When presented with multiple solutions there are two immediate questions.

1. Does one of the solutions to the MFG model given by (2.11) represent the fluid limit

trajectory determined by the transition rates given by (2.10)?

2. If so, how can it be determined which solutions of the MFG model given by (2.11)

represent the fluid limit trajectories given by (2.10), without directly computing the

fluid limit trajectory?

Both are open problems. In view of these questions, there is a relevant set of points that

dictate which MFG solutions are fluid limit trajectories over all times to play. If this set

10



Figure 2.1: Consider (2.18) with f(i, θ) = |θ − (1− i)| in the running cost, with initial terminal
conditions (ITC) θ(0) = 1/2 and ψi ≡ 0, and the time to play T = 3. On the left are two solutions
of θ, the fraction in state 0. On the right are the corresponding cost-to-go differences y := u1 − u0.
The solid lines in both graphs represent the fluid limit trajectory which is also an MFG solution.
Note that not all solutions of the MFG system are plotted.

was known, then any MFG solution can be determined to be a fluid limit trajectory based

on whether it crosses the set.

Definition 2.2.2. Consider the symmetric Markov perfect equilibrium for the N + 1 rational

player game given by (2.8). The bifurcation set is the set of points (T, µ) so that T > 0 is the

time to play and there is not exactly one fluid limit trajectories with initial distribution µ.

Conjecture 2.2.3. For any initial distribution there is at least one fluid limit trajectory, and all

fluid limit trajectories solve the MFG model given by (2.11). The fluid limit trajectories do not

cross the bifurcation set.

In Cardaliaguet et al. [3] it is proven that under certain conditions, for the continuous

state case, the trajectories of the N rational players to the solution of the MFG converge

in expectation. Unfortunately, uniqueness of the solution was one of the conditions as-

sumed.
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2.3 Methods for Fluid Limit Trajectories and MFG Solutions

In this section two analytic methods are discussed for the purpose of determining whether

a MFG solution for a given time to play is a fluid limit trajectory. The first is determining

the stable points of a particular mapping of population trajectories, the MFG map. The

question is whether the fluid limit trajectories are exactly the stable fixed points of the

MFG map. This is examined in more depth in Chapter 4, but an introduction to it is given

in Section 2.3.1. The second method is determining the MFG solution with the minimum

social cost which is covered in Section 2.3.2 where a conjectured method to find the fluid

limit trajectory is given and shown to fail.

2.3.1 Stability of the MFG Map

Suppose a politician were to give the future distribution, θ. Suppose that each player be-

lieved this politician. Then all players will develop the same policy which optimizes their

performance based on this assumed behavior. Each player’s policy is determined by (2.6),

and their trajectory flows according to (2.2). The MFG map is derived by using the Kol-

mogorov equation to determine the resulting flow of the population’s distribution. The

MFG map is discussed in Gomes et al. [7], with notation ξ, to show existence of MFG so-

lutions. The purpose was not to look at properties of stability nor to distinguish between

multiple MFG solutions for the fluid limit trajectory. The following is the definition of the

MFG map.

Definition 2.3.1. Consider the MFG model given by (2.11) given a time to play T and running

cost c. Suppose that a predicted fractional population trajectory θ := (θ(t) : 0 ≤ t ≤ T ) is given.

Define the MFG map, denoted Φ, on θ as the solution to


d

dt
θ̃i =

∑
j

θ̃jα
∗
j,i(θ̃,∆ju),

θ̃(0) = θ(0),

(2.20)
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where the vector function u := (uc,T,θ(t) : 0 ≤ t ≤ T ) is the solution to
− d

dt
ui = h(i, θ,∆iu)

ui(T ) = ψi(θ(T )).

(2.21)

That is Φ(θ) = θ̃.

The functions (θ, u) solve the MFG if and only if Φ(θ) = θ. In other words, the MFG

solutions are exactly the fixed points of the MFG map. The following conjecture is inves-

tigated in Chapter 4.

Conjecture 2.3.2. The stable fixed points of the MFG map Φ are exactly the fluid limit trajectories.

Given a prediction θ there is no guarantee that limn→∞Φn(θ) exists (Φn is the n-fold

composition of Φ). In fact, there are examples where Φn(θ) oscillates between two func-

tions, and a prediction θ can be above the bifurcation set while the map Φ(θ) is below the

set. One such example, shown in Fig. 2.2, is for the MFG model given by (2.18) where

f(i, θ) = |1− i− θ|+ 8(θ − 0.75)1{θ>0.75} + 8(0.25− θ)1{θ<0.25}.

Recall the MFG map Φ. Define ΦM : θ 7→ M−1
M

θ + 1
M

Φ(θ), for any M ∈ N, and define

ΨM ≡ ΦM
M . Suppose instead of applying Φn to the initial prediction θ, the map Ψn

M is

applied for some M ∈ N, (Ψn is the n-fold compositions of Ψ). Because the steps are

smaller, the operation ΨM takes longer to compute than Φ, but it will not jump as far and

so is more likely to converge.

Recall the running cost function c(i, θ, α) = |1 − i − θ| + 8(θ − 0.75)1{θ>0.75} + 8(0.25 −

θ)1{θ<0.25} + α2
i,1−i/2 from Section 2.3.1, and Fig. 2.2. The map ΨM is used instead of Φ to

illustrate stability of the MFG map Φ, see Fig. 2.3. It is conceivable that under sufficient

conditions Ψ := limM→∞ΨM exists, and has a form where stability of Ψ is more simple to

show than that of Φ. But no further analysis of ΨM is given here.

Examples exist (see Chapter 4 for details) with MFG solutions that are not fluid limit

13



Figure 2.2: Each plot contains multiple iterations of the MFG map applied to Φ to the same initial
distribution. In both plots the MFG has no terminal cost. To the left the running cost is
c(i, θ, α) = |1− i− θ|+ α2

i,1−i/2. To the right the running cost is
c(i, θ, α) = |1− i− θ|+ 8(θ − 0.75)1{θ>0.75} + 8(0.25− θ)1{θ<0.25} + α2

i,1−i/2.
There is non-negative initial prediction θ(t) = 0.5 + 0.25 sin2(2πt) given, plotted, in green. Then
the first 200 iterations of Φ are applied to the initial prediction and plotted, in blue. In red, on the
left is the limit of the converging sequence of functions; and also in red, on the right an additional
twenty iterations of Φ are plotted to illustrate that Φ2n(θ) and Φ2n+1(θ) appear to converge.

Figure 2.3: Illustration of improved convergence properties of Ψ vs Φ. The costs and initial
prediction are the same as in as in the second plot of Fig. 2.2. In blue are Ψn

10(θ) for
n ∈ {1, 2, ..., 100}. In orange are Ψn

10(θ) for n ∈ {101, 102, ..., 200}, which are oscillating. In red are
Ψn

100Ψ
200
10 (θ) for n ∈ {1, 2, ..., 100}.
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trajectories but appear numerically stable. This behavior may be attributed to a numer-

ical phenomenon. Even worse examples exist attributed to this numerical phenomenon

where a non-fixed point of the MFG map is numerically stable, this appears to be very

common. Thus, finding MFG solutions that are not fluid limit trajectories, but which ap-

pear to be numerically stable, does not refute Conjecture 2.3.2 because the solutions could

be pseudo stable only. Due to examples like these, even if Conjecture 2.3.2 were proven

to be true, it is not immediately obvious how to find the fluid limit trajectories. This is all

discussed in Chapter 4, and moreover the Gâteaux derivative of Φ is exploited to analyze

stability of the mapping at an MFG solution in Chapter 4.

2.3.2 Social Cost of MFG Solution

The social cost of a MFG solution is the total cost per player averaged over all players. It

is well known that in a perfect information game there may be a Nash equilibrium which

is not optimal for the social cost, such as with the prisoners’ dilemma. One could ask the

less obvious question of whether or not a fluid limit trajectory has the lowest social cost

amongst all MFG solutions. It will be illustrated that the fluid limit trajectory does not

necessarily have smaller social cost than the MFG solutions.

Definition 2.3.3. Given a solution (θ, u) for the MFG model given by (2.11), the social cost is

given by
∑

i θi(0)ui(0).

Of course Nash equilibriums do not have to minimize social cost, and so one should

expect that there are population trajectories which have strictly smaller social cost than

all MFG solutions. But of the MFG solutions, all players are minimizing their expected

costs based on their knowledge of the other rational players. Hence it would not be too

surprising if the fluid limit trajectory was the MFG solution with the lowest social cost.

Suppose the number of players, N , is given and consider (2.18). Suppose the system

has time to play T = 3, running cost c(i, θ, α) = |1 − i − θ| + α2
i,1−i/2, and terminal cost
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ψ0(θ) = 0 and ψ1(θ) = 0.3; see Fig. 2.4. Consider the set of points

UN = {(t, θ) ∈ [0, T ]× [0, 1] : un1 (t, θ)− un0 (t, θ) > 0}.

The largest value of θ for points in the complement of UN is about 0.3458, so giving the

players’ a strictly larger initial distribution say, θ = 0.375, guarantees that the trajectories

of the players are monotonically increasing. The fluid limit trajectory with this initial

distribution has the social cost of 1.10057 while one MFG solution has a lower social cost

of 1.04352.

The three MFG solutions for IC θ(0) = 69.5
201
≈ 0.3458 are shown in the top right plot of

Fig. 2.4, with their social costs. The top left plot is an illustration of UN where N = 200.

The set of points UN are in black and its complement in white. On the bottom the solid

line indicates the fluid limit trajectory, the dashed lines indicate the other MFG solutions.

The plot in the bottom left shows 20 trajectories with IC θ(0) = 70
201

and 20 trajectories

with IC θ(0) = 69
201

for the 201 rational player game. The bottom right shows plots of the

three MFG solutions overlaid with 50 trajectories given IC θ(0) = 75
201

of the 201 rational

players. The plot on the bottom right is thus a counterexample to the conjecture that the

MFG solution with smallest social cost is a fluid limit trajectory. The highest white point

is attained when the fraction of players in state 0 is about 0.3458. Observe that the fluid

limit trajectory does not have lowest social cost among the MFG solutions.
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Figure 2.4: Counterexample, showing that a fluid limit trajectory is not necessarily an MFG
solution with minimum social cost.

17



3 ANALYSIS OF AN MFG WITH NON-UNIQUE
SOLUTIONS

This chapter focuses on the MFG model given by (2.18) for two tractable examples. In

both cases the form of the running cost is c(i, θ, α) = f(i, θ)+α2
i,1−i/2 and there is no termi-

nal cost. Neither example satisfies the monotonicity conditions which guarantee unique-

ness shown in Gomes et al. [7]. Section 3.1 gives a model of a population which desires

to avoid the crowd. This example has a unique solution despite failing the aforemen-

tioned monotonicity condition. The avoid the crowd model acts as a contrasting model

to the follow the crowd model introduced in Section 3.2 which is the primary model of

this chapter. Section 3.3 is devoted to identifying the number of solutions to (3.5) and is

summarized in Theorem 3.3.1.

3.1 2-State Avoid the Crowd Case

The first case study is of the avoid the crowd kind, where the players try to avoid highly

congested areas. This will serve as a contrasting example to our later follow the crowd

populations. Taking a passage from Cardaliaguet et al. [3], "The interpretation of the

monotonicity condition is that the players dislike congested areas and favor configura-

tions in which they are more scattered." However, Cardaliaguet et al. [3] worked with

continuous states and their monotonicity conditions are different than in Gomes et al. [7].

Nevertheless, the previous quote may serve as an indication of what might be expected

in the discrete state case.

In this section assume the running cost function is given by c(i, θ, α) = |i− θ|+α2
i,1−i/2.
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Figure 3.1: Symmetric avoid the crowd solutions. Given an initial condition (IC) and time to play
T , a solution to (3.1) would simply follow the contour. Uniqueness is indicated in the picture, as
the contours do not cross.

With this cost, (2.18) becomes
−u̇0 = θ − 1

2
(u0 − u1)2+, u0(T ) = 0

−u̇1 = 1− θ − 1

2
(u1 − u0)2+, u1(T ) = 0

θ̇ = −θ(u0 − u1)+ + (1− θ)(u1 − u0)+, θ(0) = θ̄.

(3.1)

One of the monotonicity conditions outlined in Gomes et al. [7] is not satisfied by (3.1),

despite its avoid the crowd type running cost. Still, the tractable (3.1) has a unique solu-

tion; see Fig. 3.1.

Assumption 1: The first assumption is simply

∑
i

(θi − θ̃i)(ψi(θ)− ψi(θ̃)) ≥ 0.

This assumption is trivially satisfied by (3.1) because ψ ≡ 0.

Assumption 2: Consider the orthogonal projection, P , which projects onto the comple-

ment of the one dimensional vector space containing 1. The assumption is that for any
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M > 0 there exists a γi > 0 so that if ‖Pz‖ ≤M then

h(i, θ,∆iz)− h(i, θ,∆iw)− α∗(i, θ, w) · (∆iz −∆iw) ≤ −γi‖∆iz −∆iw‖2.

For (3.2), if (zi − z1−i), (wi − w1−i) < 0 then

h(i, θ,∆iz)− h(i, θ,∆iw)− α∗(i, θ, w) · (∆iz −∆iw)

= −
(zi − z1−i)2+

2
+

(wi − w1−i)
2
+

2
− (wi − w1−i)+((z1−i − zi)− (w1−i − wi))

= 0

> −γi((z1−i − zi)− (w1−i − wi))2.

Hence this condition fails.

Assumption 3: Define

h(θ, z) :=

h(0, θ,∆0z)

h(1, θ,∆1z)

 =

 θ − 1
2
(z0 − z1)2+

1− θ − 1
2
(z1 − z0)2+

 .

There exists γ > 0 so that for θ, θ̃ ∈ [0, 1]

 θ

1− θ

 · (h(θ̃, z)− h(θ, z)) +

 θ̃

1− θ̃

 · (h(θ, z̃)− h(θ̃, z̃)) ≤ −γ

∥∥∥∥∥∥
 θ

1− θ

−
 θ̃

1− θ̃

∥∥∥∥∥∥
2

.
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The cost passes this condition for γ = 1 because

 θ

1− θ

 · (h(θ̃, z)− h(θ, z)) +

 θ̃

1− θ̃

 · (h(θ, z̃)− h(θ̃, z̃)) =

=

 θ

1− θ

 ·
θ̃ − θ
θ − θ̃

+

 θ̃

1− θ̃

 ·
θ − θ̃
θ̃ − θ


= −2(θ − θ̃)2

= −

∥∥∥∥∥∥
 θ

1− θ

−
 θ̃

1− θ̃

∥∥∥∥∥∥
2

.

Since Assumption 2 above fails, the result of Gomes et al. [7] giving uniqueness does not

apply. Nevertheless, solutions to the initial-terminal value problem (ITVP) given by (3.1)

are unique as will be shown. As the goal is to understand θ not u, a simplification of (3.1)

can be used. Let y = u1 − u0. Then by (3.1)

−ẏ = −u̇1 + u̇0

= 1− 2θ − 1

2
y2+ +

1

2
(−y)2+

= 1− 2θ − 1

2
y|y|.

Also let x = 2θ − 1 and so x0 = 2θ̄ − 1. Then

ẋ = 2θ̇

= 2(1− θ)y+ − 2θ(−y)+

= −(x− 1)y+ − (x+ 1)(−y)+

= y − x|y|.
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The following system is analyzed in place of (3.1), where θ = 1+x
2

−ẏ = −x− 1

2
y|y|, y(T ) = 0

ẋ = y − x|y|, x(0) = x0 ∈ [−1, 1].

(3.2)

The associated TVP allows for finding solutions which guarantee that y(T ) = 0, which

must always be true. For convenience look at time in reverse from T , that is to map

t 7→ T − t. Moving backwards and with initial conditions and forgetting the condition x0,

then (3.2) becomes 
ẏ = −x− 1

2
y|y|, y(0) = 0

ẋ = −y + x|y|, x(0) = ε ∈ [−1, 1].

(3.3)

If (x, y) solved (3.3) then ÿ = −ẋ − ẏ|y| = y − x|y| + x|y| + 1
2
y3 = y + 1

2
y3. So y solves the

following with ẏ(0) = x(0) 
ẏ = v, y(0) = 0

v̇ = y +
1

2
y3, v(0) = ε ∈ [0, 1].

(3.4)

Local Lipschitz continuity of the right-hand side of (3.3) implies uniqueness, given a

time interval where solutions are bounded. Time intervals so that solutions to (3.3) blow

up are not considered, because in (3.2) the only interest is for solutions (x, y) such that

x ∈ [−1, 1], and y cannot blow up while x is bounded.

Lemma 3.1.1. Suppose (x1, y1) and (x2, y2) solve (3.3) with x1(0) > x2(0) ∈ [−1, 1]. Suppose

that neither solution blows up on [0, τ ]. Then x1 > x2 on [0, τ ].

Proof. Assume (x1, y1) and (x2, y2) solve (3.3) with x1(0) > x2(0) ∈ [−1, 1], and that neither

solution blows up on [0, τ ]. Then (yi, ẏi) solves (3.4), where ẏi(0) = −xi(0) for i = 1, 2. It

will be shown that y1(t) < y2(t) for t ∈ [0, τ ] first, then that x1 > x2.

First note that ẏ2(0) = x2(0) > x1(0) = ẏ1(0). Suppose there exists a t∗ ∈ [0, τ ] so
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that y2(t∗) = y1(t
∗) and y2(t) > y1(t) for any t ∈ (0, t∗). Then by (3.4), ÿ2(t) > ÿ1(t)

for any t ∈ (0, t∗), and thus ẏ2(t) − ẏ1(t) > ẏ2(0) − ẏ1(0) > 0 for any t ∈ (0, t∗). Then

y2(t
∗) − y1(t

∗) > y2(0) − y1(0) = 0, a contradiction. Therefore y2(t) > y1(t), and hence

ẏ2(t) > ẏ1(t) for t ∈ [0, τ ].

Since y|y| is an increasing function, y1|y1| < y2|y2|. By (3.3), −xi = ẏi + 1
2
yi|yi|. Therefore

one has −x1 = ẏ1 + 1
2
y1|y1| < ẏ2 + 1

2
y2|y2| = −x2, hence x1 > x2 for t ∈ [0, τ ] (see Fig. 3.1

for intuition).

The following theorem immediately follows.

Theorem 3.1.2. System (3.2) with x0 ∈ [−1, 1] for a given time to play T > 0 has a unique

solution.

Proof. Suppose that (x1, y1) and (x2, y2) solve (3.2) with x1(0) = x2(0) ∈ [−1, 1] and are

bounded on [0, T ]. Suppose that x1(T ) > x2(T ), then by Lemma 3.1.1 x1(t) > x2(t) for

t ∈ [0, T ], but this contradicts that x1(0) = x2(0). Same for x1(T ) < x2(T ).

Suppose that x1(T ) = x2(T ). Since (3.2) is locally Lipschitz and y1(T ) = y2(T ), x1 ≡ x2

on [0, T ]. Hence the conclusion.

3.2 Introduction to 2-State Follow the Crowd Case

In this section a case of follow the crowd for two states is introduced and some basic

properties are discussed. In particular, uniqueness of solutions to this MFG model does

not hold; see Fig. 2.1. Assume that the running cost is c(i, θ, α) = |1− i− θ|+α2
i,1−i/2. For

this running cost function, (2.18) becomes



−u̇0 = 1− θ − 1

2
(u0 − u1)2+

−u̇1 = θ − 1

2
(u1 − u0)2+

θ̇ = −θ(u0 − u1)+ + (1− θ)(u1 − u0)+

ui(T ) = 0, θ(0) = θ̄.

(3.5)
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As in the previous section, the goal is to understand θ, and (as with the avoid the crowd

cost) (3.5) is simplified by assuming y = u1 − u0 and x = 2θ − 1. System (3.5) yields

−ẏ = −u̇1 + u̇0

= 2θ − 1− 1

2
y2+ +

1

2
(−y)2+

= x− 1

2
y|y|,

and

ẋ = 2θ̇

= 2(1− θ)y+ − 2θ(−y)+

= −(x− 1)y+ − (x+ 1)(−y)+

= y − x|y|.

Thus (3.5) simplifies to 
−ẏ = x− 1

2
y|y|, y(T ) = 0

ẋ = y − x|y|, x(0) = x0 ∈ [−1, 1].

(3.6)

Suppose that y(t) ≥ 0 on t ∈ [0, T ]. Then

dx

dt
(t) = y(1− x)(t)

=⇒ d[− ln(1− x)](t) = y(t)dt

=⇒ − ln(1− x(t)) + ln(1− x(0)) =

∫ t

0

y(r)dr

=⇒ 1− x(t)

1− x(0)
= e−

∫ t
0 y(r)dr. (3.7)

Likewise 1+x(t)
1+x(0)

= e
∫ t
0 y(r)dr if y(t) ≤ 0 on t ∈ [0, T ].
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The conditions in Gomes et al. [7] for uniqueness of solutions to (3.6) again are con-

sidered. In addition to Assumption 2 failing as before, Assumption 3 also fails. Recall

that

h(θ, z) =

1− θ − 1
2
(z0 − z1)2+

θ − 1
2
(z1 − z0)2+

 ,

and that Assumption 3 of the monotonicity conditions required that for θ, θ̃ ∈ [0, 1] and

γ > 0

 θ

1− θ

 · (h(θ̃, z)− h(θ, z)) +

 θ̃

1− θ̃

 · (h(θ, z̃)− h(θ̃, z̃)) ≤ −γ

∥∥∥∥∥∥
 θ

1− θ

−
 θ̃

1− θ̃

∥∥∥∥∥∥
2

.

System (3.6) fails that condition because

 θ

1− θ

 · (h(θ̃, z)− h(θ, z)) +

 θ̃

1− θ̃

 · (h(θ, z̃)− h(θ̃, z̃)) =

=

 θ

1− θ

 ·
θ − θ̃
θ̃ − θ

+

 θ̃

1− θ̃

 ·
θ̃ − θ
θ − θ̃


= 2(θ − θ̃)2

> −γ2(θ − θ̃)2

= −γ

∥∥∥∥∥∥
 θ

1− θ

−
 θ̃

1− θ̃

∥∥∥∥∥∥
2

.

In Chapter 2 the plot in Fig. 2.1 showed two solutions to the (3.5) with the same boundary

conditions. Understanding of the non-unique solutions x to (3.6) will be covered in the

next section.
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3.3 Non-Uniqueness Analysis of Follow the Crowd via TVP

The goal in this section is the proof of Theorem 3.3.1 below, which gives the number of

solutions to (3.5) given θ̄ = 1
2

and time to play T . The interest of θ̄ = 1
2

is due to the

fact that all non-constant solutions to (3.3) always eventually pass through 1
2
; see Lemma

3.3.7.

Theorem 3.3.1. System (3.5) with θ(0) = 1
2

and positive time to play T ∈ (π
2

+ (k−1)π, π
2

+kπ]

for k ∈ N0, has exactly 1 + 2k solutions.

This section contains lemmas leading up to the proof of Theorem 3.3.1. Along the way

it is shown the solutions are periodic, after being analytically extended from [0, T ] to R.

There are monotonicity results of the solutions to (3.6) which are used in showing the

number of solutions to (3.5) is increasing (given θ(0) = 1/2) in T . There is a further

continuity result which ensures that the number of solutions to (3.5) are increasing in a

predictable way. However, the most important result leading to Theorem 3.3.1, is Lemma

3.3.16 which gives an asymptotic of a solution to (3.5) on a set.

The initial-terminal conditions given for (3.6) make it difficult to solve. Instead the con-

dition x(0) = x0 is dropped and a value for x(T ) is chosen, running the ODE backwards

in time. By symmetry of the cost functions over the states, it may be assumed that x(T )

is non-negative, and since x(T ) ∈ {0, 1} gives that x is constant, it may be assumed that

x(T ) ∈ (0, 1). To simplify the ODE substitute t 7→ T − t. Then (3.6) becomes
ẋ = −y + x|y|, x(0) ∈ [0, 1]

ẏ = x− 1

2
y|y|, y(0) = 0.

(3.8)

Definition 3.3.2. Consider the family of solution pairs (xε, yε) which solves (3.8) given initial

condition xε(0) = ε. Define the function τX : (0, 1)→ R+ so that τX(ε) = inf{t ≥ 0 : xε(t) = 0}

for any ε ∈ (0, 1). Define the function τY : (0, 1) → R+ so that τY (ε) = inf{t > 0 : yε(t) = 0}

for any ε ∈ (0, 1).
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Figure 3.2: On the left are many solutions with various IC to (3.8). The solutions overlap,
indicating that there are non-unique solutions to (3.6). On the right the periodicity is illustrated
for one such solution, for T = 20.

It is not immediately obvious that τX , τY are finite (hence well-defined), but this is

shown in Lemmas 3.3.8 and 3.3.9. Over the course of this section the following theorem

is shown.

Theorem 3.3.3. The functions τX , τY : (0, 1) → R+ are continuous and monotonically increas-

ing. They are bijective onto (π
2
,∞) and (π,∞) respectively.

Figure 3.2 indicates the periodicity of (3.8) and that the solutions can cross each other

indicating non-uniqueness of the ITVP. Analysis of (3.8) will shed light on the nature of

solutions to (3.5). Nevertheless, even (3.8) is not trivial to analyze.

An important observation is that y, where (x, y) solves (3.8), can be solved indepen-

dently of x. Consider the second derivative of y from (3.8),

ÿ = ẋ− |y|ẏ

= −y + x|y| − |y|
(
x− 1

2
y|y|
)

= −y +
1

2
y3 and ẏ(0) = x(0).
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Figure 3.3: The phase plane for (3.9).

Then a solution (x, y) to (3.8) is such that y solves the following ODE with ẏ(0) = x(0),
ÿ = −y +

1

2
y3

y(0) = 0, ẏ(0) = ε ∈ [0, 1].

(3.9)

The ODE given by (3.9) is well understood, see Fig. 3.3 for the phase plane, and may

be posed as a first-order system
ẏ = v, y(0) = 0

v̇ = −y +
1

2
y3, v(0) = ε ∈ [0, 1].

(3.10)

Let

H(y, v) =
1

2
y2 − 1

8
y4 +

1

2
v2. (3.11)

Then H is the Hamiltonian for the dynamics given by (3.10). In other words, ẏ = Hv and

v̇ = −Hy. It follows that H is constant along solutions of the ODE.

Lemma 3.3.4. If (y, v) solves (3.10) then |y| ≤
√

2 and |v| ≤ ε.

Proof. Let v(0) = ε ∈ [0, 1]. Consider the level set of the Hamiltonian which contains the

point (0, ε). The value of the Hamiltonian on this level set is H(0, ε) = 1
2
ε2. Then the level

28



set is given by

1

2
ε2 = H(y, v) =

1

2
y2 − 1

8
y4 +

1

2
v2

or y2(y2 − 4) = 4(v2 − ε2). (3.12)

Recall that y(0) = 0 and v(0) = ε. Suppose that there exists t > 0 so that y(t) =
√

2.

Then the left-hand side of (3.12) is −4, but then −4 = 4(v2 − ε2) or v2 = −1 + ε2 which

is a contradiction because |ε| < 1. Thus y(t) 6=
√

2 for all t. Likewise y(t) 6= −
√

2 for all

t. Therefore |y| <
√

2 for all t > 0 because of the IC y(0) = 0. Moreover, this means the

left-hand side of (3.12) is always non-positive hence |v| ≤ ε.

Lemma 3.3.5. If (y, v) solves (3.10) with v(0) = ε ∈ [0, 1], then |y| =
√

2(1−
√
v2 + 1− ε2).

Proof. Since the Hamiltonian is constant along the solution

H(y, v) =
1

2
ε2 =

1

2
y2 − 1

8
y4 +

1

2
v2

⇐⇒ 4v2 = y4 − 4y2 + 4ε2 =
(
y2 − 2

)2 − (2
√

1− ε2
)2

=⇒ 2− y2 =

√
4v2 +

(
2
√

1− ε2
)2

= 2
√
v2 + 1− ε2 because |y| <

√
2 by Lemma 3.3.4.

⇐⇒ |y| =
√

2(1−
√
v2 + 1− ε2).

Remark 3.3.6. Assume that (x, y) solves (3.8). Then y solves (3.9) and (y, ẏ) solves (3.10). A

point is a fixed point of (3.10) if and only if (ẏ, v̇) = (0, 0). The zeros of−y+ 1
2
y3 are y = 0,±

√
2.

Thus there are three fixed points {(±
√

2, 0), (0, 0)}. The Jacobian of the right-hand side of (3.10)

at a point (y, v) is

J(y,v) =

 0 1

3
2
y2 − 1 0


so its eigenvalues satisfy λ2 − (3

2
y2 − 1) = 0. For the fixed points (±

√
2, 0) are saddles because
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the Jacobian has eigenvalues λ = ±
√

2. For the fixed point (0, 0) the Jacobian has eigenvalues

λ = ±i, thus the origin being stable of concentric orbits.

3.3.1 Prerequisite Properties of τX and τY

Throughout this section basic properties of the functions x, y, τX and τY are discovered

where (x, y) solves (3.8). The following lemma is given to classify the end point cases as

well as the majority case, for the IC.

Lemma 3.3.7. Suppose that y solves (3.9). If ẏ(0) = 0 then y ≡ 0. If ẏ(0) = 1 then y is

monotonic. If ẏ(0) = ε ∈ (0, 1) then y has a local max.

Proof. Assume y solves (3.9) with ẏ(0) = ε ∈ [0, 1]. Let v = ẏ.

If ε = 0 then by uniqueness y ≡ 0.

If ε = 1, then v(0) = 1 and by Lemma 3.3.5 y2 = 2 − 2|v|, which contains the fixed

points (±
√

2, 0), see Remark 3.3.6. Thus y converges to either ±
√

2. In the first quadrant

of the phase plane y increases, and by Lemma 3.3.4 y <
√

2 so v decreases. Thus y is

monotonically increasing and y →
√

2 as t→∞.

Suppose that ε ∈ (0, 1). Then by Lemma 3.3.5, |y| =
√

2(1−
√
v2 + 1− ε2). Whenever

v = 0, |y| =
√

2(1−
√

1− ε2) <
√

2. Thus y has no fixed point, and so y does not converge.

But since y is bounded it must not be monotone and hence must have a local max.

There are many straightforward properties of a solution y, such as periodicity, multiple

symmetries, and their signed regions. These are covered in the following lemma.

Lemma 3.3.8. Suppose that y solves (3.9) with IC ẏ(0) = ε ∈ (0, 1). Then y attains its first local

max at τY (ε)
2

. Furthermore y
(
τY (ε)
2

+ t
)

= y
(
τY (ε)
2
− t
)

for t ∈
[
0, τY (ε)

2

]
, y(t) = −y (τY (ε) + t)

for t ≥ 0, and y has period 2τY (ε). Finally, y(t) > 0 for t ∈ (0, τY (ε)) and y(t) < 0 for

t ∈ (τY (ε), 2τY (ε)).

Proof. Let T > 0 be the first time that y attains a local max. It will eventually be shown

that T = τY (ε)
2

, but first the properties of y will be shown using time T . By Lemma 3.3.7,
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T <∞. Note that solutions to (3.9) are unique, because y is bounded by Lemma 3.3.4 and

hence Lipschitz conditions apply. Define w+, w− for t ∈ [0, T ] so that w+(t) = y(T + t) and

w−(t) = y(T − t). Then

ẅ+(t) = ÿ(T + t) ẅ−(t) = ÿ(T − t)

w+(0) = y(T ) and w−(0) = y(T )

ẇ+(0) = ẏ(T ) = 0 ẇ−(0) = −ẏ(T ) = 0.

Since solutions to (3.9) are unique and w+ − w− solves (3.9) with ε = 0, w+ ≡ w−. Thus

y(T + t) = y(T − t) for t ∈ [0, T ]. This implies that y(2T ) = y(0) = 0, or that τY (ε) ≤ 2T .

Define z for t ∈ [0, 2T ] so that z(t) = −y(2T + t). Then

z̈(t) = −ÿ(2T + t) = −
(
−y(2T + t) +

1

2
y(2T + t)3

)
= −z(t) +

1

2
z(t)3,

z(0) = −y(2T ) = 0 and ż(0) = −ẏ(2T ) = −ẇ+(T ) = −ẇ−(T ) = ẏ(0). Thus y ≡ z, or

y(t) = −y(2T + t). Furthermore, y(t) = −y(2T + t) = y(4T + t) for t ≥ 0, so y has period

4T .

Since ẏ(0) > 0 and by definition of T , ẏ(t) ≥ 0 for t ∈ [0, T ]. So y(t) ≥ 0 for t ∈ [0, T ].

But since y(T + t) = y(T − t) for t ∈ [0, T ], it is in fact the case that y(t) > 0 for t ∈ (0, 2T ).

Thus T = τY (ε)
2

. Hence the conclusion, because y(t) < 0 for t ∈ (τY (ε), 2τY (ε)) since

y(t) = −y(2T + t) for t ≥ 0.

Note that the Lemma 3.3.8 is obvious by the symmetries of the Hamiltonian given by

(3.11), and the proof above is simply an elaboration of this fact. Likewise the coordinate

x of (3.8) has properties of periodicity, symmetry, and regions of monotonicity.

Lemma 3.3.9. Suppose that (x, y) solves (3.8) with x(0) = ε ∈ (0, 1). Then x(t) = −x(t+τY (ε)),

τX < τY and x and y have the same period 2τY (ε). Finally, x is strictly decreasing on (0, τY (ε))

and strictly increasing on (τY (ε), 2τY (ε)).
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Proof. Lemma 3.3.8 applies and so y is periodic, with period 2τY (ε). Also by Lemma 3.3.8

x(t) = ẏ(t) +
1

2
y(t)|y(t)| = −ẏ(t+ τY (ε))− 1

2
y(t+ τY (ε))|y(t+ τY (ε))| = −x(t+ τY (ε)).

(3.13)

Thus x(t) = −x(t+ τY (ε)) = x(t+ 2τY (ε)) and so x is periodic with period at most 2τY (ε).

Also τX(ε) < τY (ε) since x(0) = −x(τY (ε)).

By Lemma 3.3.8, y is positive on (0, τY (ε)). Since ẋ = −y + x|y| = −y(1 − x) < 0 on

(0, τY (ε)). Also ẋ > 0 on (τY (ε), 2τY (ε)) since x(t) = −x(t + τY (ε)). Thus x is strictly

decreasing on (0, τY (ε)) and x is strictly increasing on (τY (ε), 2τY (ε)). Therefore x has

period 2τY (ε).

The following remark shows convexity of the Hamiltonian’s contours, and gives an

implication.

Remark 3.3.10. Consider a solution to (3.9) with IC ε ∈ (0, 1). Suppose that t ∈
(

0, τY (ε)
2

)
, then

by Lemma 3.3.8 both y(t), ẏ(t) ≥ 0 and by Lemma 3.3.4 |y| <
√

2, so the slope of the curve in the

phase plane is

dẏ

dy
=
ÿ

ẏ
=
−y + 1

2
y3

ẏ
, (3.14)

which is negative and decreasing as y increases and as ẏ decreases, hence the concavity of the curve

in the phase plane for t ∈
(

0, τY (ε)
2

)
. That is by (3.14), if t1, t2 ∈ (0, τY (ε)) with t1 < t2 then

dẏ

dy
(t1) >

dẏ

dy
(t2)

or

0 >
dẏ

dy
(t1) ≥

ẏ(t2)− ẏ(t1)

y(t2)− y(t1)
. (3.15)

Equation (3.15) is eventually used to find the upper bound limε→0+ τY (ε) ≤ π. The lower
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bound of τY is found in the following lemma.

Lemma 3.3.11. For any ε, τY (ε) > π.

Proof. Consider a solution y to (3.9) with IC ε ∈ (0, 1). Suppose that t ∈ (0, τY (ε)), then by

Lemma 3.3.8, y(t), ẏ(t) ≥ 0. The angle at (y, ẏ) as a function of time defined by

θ := arctan

(
ẏ

y

)
,

satisfies

θ̇ =
1

1 + ( ẏ
y
)2
ÿy − ẏẏ
y2

=

(
−y + 1

2
y3
)
y − ẏẏ

ẏ2 + y2
= −1 +

1

2

y4

ẏ2 + y2
. (3.16)

Thus θ(t) ≥ θ(0) +
∫ t
0
−1ds = π

2
− t, and so θ(t) ≥ 0 for t ∈ [0, π/2]. This means that the

first local max happens for some t ≥ π
2
. Thus by Lemma 3.3.8, τY (ε) > π.

The next result gives a monotonicity of the solutions (x, y) to (3.8) with respect to the

IC, see Fig. 3.4.

Theorem 3.3.12. Let (x1, y1) and (x2, y2) be solutions to (3.8) with IC x1(0) = ε1 and x2(0) = ε2

in (0, 1) with x1(0) < x2(0). Then y1(t) < y2(t) for t ∈ (0, τY (ε1)). Moreover x1(t) < x2(t) for

t ∈ [0, τX(ε1)].

Proof. Recall that y1(t), ẏ1(t) > 0 for t ∈ (0, τY (ε1)/2), by Lemma 3.3.8. Define the functions

θ1 = arctan( ẏ1
y1

) and θ2 = arctan( ẏ2
y2

).

Then θ̇1 = −1+1
2

y21

1+
(
ẏ1
y1

)2 , θ̇2 = −1+1
2

y22

1+
(
ẏ2
y2

)2 ; see (3.16). Taking a limit gives θ̇1(0) < θ̇2(0).

Suppose that θ1(t∗) = θ2(t
∗) and θ1(t) < θ2(t) for t ∈ (0, t∗) for some t∗ ∈

(
0, τY (ε1)

2

]
, then

θ̇1(t
∗) ≥ θ̇2(t

∗). Proceed by contradiction. By definition θ1 = θ2 implies that ẏ1
y1

= ẏ2
y2

. Since

θ1 = θ2, at t∗, the distance from the origin of these points are such that y21+ẏ21 < y22+ẏ22 , else

the Hamiltonian level sets would be crossing. Those facts together give y2 > y1 (similar
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Figure 3.4: Many instances of x with different TC.

triangles). So

θ̇1(t
∗) = −1+

1

2

y21

1 +
(
ẏ1
y1

)2 = −1+
1

2

y21

1 +
(
ẏ2
y2

)2 < −1+
1

2

y22

1 +
(
ẏ2
y2

)2 = θ̇2(t
∗), a contradiction.

Thus θ1(t) < θ2(t) for t ∈
(

0, τY (ε1)
2

]
and hence y1(t) < y2(t) for t ∈

(
0, τY (ε1)

2

]
. Moreover

by Lemma 3.3.8 yi(t) = yi(τY (εi) − t), hence y1(t) = y1(τY (ε1) − t) < y2(τY (ε1) − t) <

y2(τY (ε2)− t) = y2(t) for t ∈
[
τY (ε1)

2
, τY (ε1)

)
. Thus y1(t) < y2(t) for t ∈ (0, τY (ε1)).

It was shown that 0 ≤ y1 < y2, so the inequality ẋ2 = y2(x2 − 1) > y1(x2 − 1) holds for

t ∈ (0, τY (ε)). Since τX(ε) < τY (ε), if x1 = x2 then ẋ2 > y1(x2 − 1) = ẋ1 for ∀t ∈ [0, τX(ε1)].

Hence x2 > x1 for ∀t ∈ [0, τX(ε1)] (see Fig. 3.4 for the intuition).

The following is immediate, but is stated separately for convenience.

Corollary 3.3.13. The functions τX , τY are monotonically increasing.

Proof. Immediate from the conclusion of Theorem 3.3.12.

Since the solutions (x, y) to (3.8) for x(0) = ε ∈ (0, 1) cross the horizontal axis non-

tangentially, as opposed to touching it at a point and then retreating (or "kissing the axis"),

the functions τX , τY are continuous.

Lemma 3.3.14. The functions τX , τY are continuous.
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Proof. Suppose there is a sequence of solutions (xn, yn) to (3.8) and some solution (x, y) to

that system, so that the sequence of initial values xn(0) ∈ [0, 1] converges from above to

some initial value x(0) ∈ [0, 1]. By Lemmas 3.3.8 and 3.3.9 ẋ(τX(x(0))), ẏ(τY (x(0))) < 0.

Fix δ > 0. For simplicity let τ = τX(x(0)). The proof will show that τX is continuous; the

argument for τY is similar. Since ẋ(τ) < 0 and x(τ) = 0, for δ sufficiently small x(τ+δ) < 0.

Then by the Lipschitz conditions xn converges to x, thus there exists an N ∈ N so that

∀n > N , xn(τ + δ) < 0, because x(τ + δ) < 0. Therefore for n > N , τX(xn(0)) < τ + δ and

by Corollary 3.3.13 τ < τX(xn(0)). Since δ was arbitrary, limn→∞ τX(xn(0)) = τ . The same

holds for sequences xn(0) converges from below to x(0). Thus τX is continuous.

The remainder of the proof of Theorem 3.3.3 is shown in Section 3.3.3. The next section

relates to bounding x and y for a short time. Theorem 3.3.1 is proved in Section 3.3.4.

3.3.2 Bounding Asymptotic Solutions

In this section bounds for the solution (x, y) to (3.8) for x(0) = ε are derived on subsets

of their domain. Having such bounds for our solutions will allow for an argument of

asymptotic solution for small choices of ε. These results will assist in finding the ranges

of τX , τY in the next section. The following remark gives intuition about the solutions y

for small ε.

Remark 3.3.15. Recall (3.8), 
ẋ = −y + x|y|, x(0) = ε ∈ [0, 1]

ẏ = x− 1

2
y|y|, y(0) = 0.

Letting x̃ = x/ε and ỹ = y/ε, the above equation becomes
˙̃x = −ỹ + εx̃|ỹ|, x̃(0) = 1,

˙̃y = x̃− ε

2
ỹ|ỹ|, ỹ(0) = 0.
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In the limit ε → 0, the solution is ỹ(t) = sin(t). Thus y(t) = ε sin(t) + o(ε), but this is not

enough to determine the lower bound of τY . Theorem 3.3.1 can not be proven without knowing the

codomains of τX and τY .

In consideration of Remark 3.3.15, suppose y solves (3.9) for a particular ε ∈ (0, 1). Let

z(t) := y(t)− ε sin(t). Then 
z̈ = −z +

1

2
(z + ε sin(t))3

z(0) = 0, ż(0) = 0.

(3.17)

Bounds for z give bounds for y, and bounds for z will be found.

Lemma 3.3.16. Let z be a solution to (3.17). Then 0 ≤ z(t) < .3ε3 sin(t) for t ∈ [0, π/2].

Proof. Let τ be the first strictly positive time such that z̈(τ) = 0. First a bound for z(t)

on t ∈ [0, τ ] is found, then τ > π/2 is shown. Since z(0) = 0, by (3.17) z̈(0) = 0. Since

ż(0) = 0 there is a time t ∈ (0, τ) so that ε sin(t) > |z(t)|. Suppose that z̈(t) < 0 then

z(t) > 1
2
(z(t) + ε sin(t))3 > 0 a contradiction. Thus z̈(t) > 0 for t ∈ (0, τ).

Suppose that z(t) ≤ .3ε sin(t) for some t ≤ min{τ, π/2}. Call β = 1
2
(1 + .3)3. Then

ż(t) =

∫ t

0

z̈(s)ds ≤
∫ t

0

1

2
(.3ε sin(t) + ε sin(t))3ds

= βε3[1− cos(t)− 1

3
(1− cos(t)3)].

Thus

z(t) ≤ βε3
∫ t

0

[1− cos(s)− 1

3
(1− cos(s)3)]ds

= βε3
[

2

3
t− 2

3
sin(t)− 1

9
sin(t)3

]
(3.18)

< βε3(.27)
2

π
t, by convexity,

< βε3(.27) sin(t), again by convexity,

< .3ε3 sin(t).
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Figure 3.5: Graphs of z in green and 0.3ε3 sin(t) in black. The vertical gray line is at π/2. On the
left ε = 0.1 and on the right ε = 1.

Which implies that z(t) ≤ .3ε sin(t) for all t ≤ min{τ, π/2}. To show that τ > π
2

notice that

(9 + 2β) sin(t)3 + 12β sin(t) ≥ (9 + 2)
2

π
t+ 12

2

π
t

> 12(1.1)t > 12βt,

which implies that 9 sin(t)3 > 12βt− 2β sin(t)3− 12β sin(t), and multiplying both sides by
ε3

18
gives that

1

2
ε3 sin(t)3 > βε3

[
2

3
t− 2

3
sin(t)− 1

9
sin(t)3

]
≥ z(t)

for t ≤ min{τ, π/2} by (3.18). On the other hand by the definition of τ

z(τ) =
1

2
(z(τ) + ε sin(t))3 >

1

2
ε3 sin(τ)3.

Thus τ > π
2
.

Therefore 0 ≤ z(t) < .3ε3 sin(t) on t ∈ [0, π/2]; see Fig. 3.5.

Corollary 3.3.17. Suppose y solves (3.9) for a particular ε ∈ (0, 1), then

ε sin(t) ≤ y(t) ≤ ε sin(t) + .3ε3 sin(t),∀t ∈ [0, π/2]. (3.19)
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Proof. Apply Lemma 3.3.16 to the fact that y(t) = z(t) + ε sin(t).

The bounds for y are used to find bounds for xwhich solve (3.8) in terms of x(0) ∈ (0, 1).

Corollary 3.3.18. Suppose (x, y) solves (3.8) with x(0) = ε ∈ (0, 1), then for any t ∈
[
0, π

2

]
,

ε cos(t)− .3ε3(1− cos(t)) ≤ x(t) ≤ ε cos(t) + (ε2 − .3ε3 + .3ε4)(1− cos(t)) +
1

2
.3ε3t2. (3.20)

Proof. Let x(0) = ε ∈ (0, 1). Begin with the lower bound. Notice that y(t) > 0 on t ∈ (0, π
2
],

hence ẋ = (x− 1)y > −y. By the bound for y given in (3.19) gives that

x(t) ≥ (ε+ .3ε3) cos(t)− .3ε3.

To find an upper bound consider the second derivative of x for t ∈
[
0, π

2

]
ẍ = −x+ x2 − 1

2
y2 +

1

2
xy2

= (x− 1)

(
x+

1

2
y2
)

≤ (x− 1)x

≤ (ε− 1)x.

Integrating twice reveals an upper bound. The bound of the first derivative is

ẋ(t) =

∫ t

0

ẍ(s)ds

≤
∫ t

0

(ε− 1)x(s)ds

≤
∫ t

0

(ε− 1)((ε+ .3ε3) cos(s)− .3ε3)ds

= (ε− 1)
((
ε+ .3ε3

)
sin(t)− .3ε3t

)
≤ (ε− 1)

(
ε+ .3ε3

)
sin(t) + .3ε3t

38



and hence the bound for x is

x(t) =

∫ t

0

ẋ(s)ds

≤
∫ t

0

(ε− 1)(ε+ .3ε3) sin(s) + .3ε3sds

= (1− ε)
(
ε+ .3ε3

)
(cos(t)− 1) + .15ε3t2

= ε cos(t) +
(
ε2 − .3ε3 + .3ε4

)
(1− cos(t)) + 0.15ε3t2.

Thus for any t ∈
[
0, π

2

]
,

ε cos(t)− .3ε3(1− cos(t)) ≤ x(t) ≤ ε cos(t) +
(
ε2 − .3ε3 + .3ε4

)
(1− cos(t)) +

1

2
.3ε3t2.

3.3.3 Range of τX and τY

This section is dedicated to finding the ranges of τX , τY . First the range of τY is computed,

using the bounds of y found in Corollary 3.3.17.

Theorem 3.3.19. The following hold

lim
ε→0+

τY (ε) = π and lim
ε→1−

τY (ε) =∞.

Proof. Let {yε} be the family of solutions to (3.9) with IC ε ∈ [0, 1]. By Lemma 3.3.7 y1 is

monotonically increasing. By Corollary 3.3.13 τY increases in ε. Suppose that limε→1− τY (ε) =

t∗ <∞, and proceed by contradiction. By Lemma 3.3.14, τY is continuous and by the Lip-

schitz condition of the ODE,

y1(t
∗) = lim

ε→1−
yε(t

∗) = lim
ε→1−

yε(τY (ε)) = 0.
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But y1(t∗) 6= 0, a contradiction, hence

lim
ε→1−

τY (ε) =∞.

For the first limit, fix ε ∈ (0, 1). Let y be the solution to (3.9). Let θ(t) = arctan( ẏ
y
). Notice

y
(
τY (ε)
2

)
− y

(
π
2

)
0− ẏ

(
π
2

) ≥ 1

dẏ/dy

∣∣∣∣
t=π

2

, by (3.15).

So by Corollary 3.3.17, ε ≤ y
(
π
2

)
≤ ε+ .3ε3 for t = π/2

y

(
τY (ε)

2

)
≤ y

(π
2

)
− ẏ

(π
2

) 1

dẏ/dy

∣∣∣∣
t=π

2

, by (3.15),

= y
(π

2

)
+ ẏ

(π
2

) ẏ
(
π
2

)
y
(
π
2

)
− 1

2
y
(
π
2

)3 , by ÿ,

≤ y
(π

2

)
+

ẏ(0)2

y
(
π
2

)
− 1

2
y
(
π
2

)3 , since ẏ decreases,

≤ ε+ .3ε3 +
ε2

ε
, applying bounds,

< 2.3ε.

By (3.16)

θ(t) = θ(0) +

∫ t

0

−1 +
1

2

y(s)4

ẏ(s)2 + y(s)2
ds, for t ∈

(
0,
π

2

]
≤ π

2
− t+

1

2

∫ t

0

y(s)2ds

≤ π

2
− t+

1

2

∫ t

0

y

(
τY (ε)

2

)2

ds

<
π

2
+ (6ε2 − 1)t.

So if ε <
√

6 and t = π/2
1−6ε2 then θ(t) < 0 and hence τY (ε) < π

1−6ε2 . Recall Lemma 3.3.11,

which showed that τY (ε) > π.
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Thus

lim
ε→0+

τY (ε) = π.

The range of τX is computed, using the bounds of x found in Corollary 3.3.18.

Theorem 3.3.20. The following hold

lim
ε→0+

τX(ε) =
π

2
and lim

ε→1−
τX(ε) =∞.

Proof. Fix ε ∈ (0, 1). Let (x, y) be the solution to (3.8) with IC x(0) = ε. By (3.20) x
(
π
2

)
< 2ε2

for sufficiently small ε. Since ẍ = (x−1)
(
x+ 1

2
y2
)
< 0 for t ∈ [0, τY (ε)], x is concave down

on this interval. Thus by concavity, secant slopes decay and so

2ε2 − ε
π/2− 0

>
x
(
π
2

)
− x(0)

π/2− 0
≥ x(τX(ε))− x(0)

τX(ε)− 0
=
−ε
τX(ε)

,

which implies that τX(ε) < π
2

+ 2ε.

Since ẏ
(
τY (ε)
2

)
= 0, y

(
τY (ε)
2

)
> 0 and ẏ = x − 1

2
y|y| means that x

(
τY (ε)
2

)
> 0. Thus

τX(ε) > τY (ε)/2 because x
(
τY (ε)
2

)
> 0 = x(τX(ε)) and x decreases on [0, τY (ε)]. Thus

lim
ε→1−

τX(ε) ≥ lim
ε→1−

1

2
τY (ε) =∞.

Moreover, τY (ε)/2 < τX(ε) < π
2

+ 2ε. Thus

lim
ε→0+

τX(ε) =
π

2
.

This completes Theorem 3.3.3.
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3.3.4 Number of Solutions for Symmetric 2-State Follow the Crowd
MFG Given Time to Play

It will be shown that the number of different solutions (x, y), over variable IC x(0), of

(3.8) constrained by x(T ) = 0, given T , is a function of the zeros of x. Due to the nature of

the zeros of x, the number of solutions depends on the time to play and the behavior of

the functions τX , τY . Because τX , τY are bijective and continuous it can be shown that the

number of solutions constrained by x(T ) = 0 is determined by the ranges of τX , τY , see

Lemma 3.3.21 and Theorem 3.3.1.

Theorem 3.3.1 gives the number of solutions (θ, u) of the follow the crowd MFG system

given by (3.5) with θ(0) = 1
2
, with time to play T . Using the properties of solutions

(x, y) to (3.8), and properties of continuous bijective functions τX : (0, 1) � (π
2
,∞) and

τY : (0, 1) � (π,∞), the number of solutions constrained to x(T ) = 0 can be found given

time to play T .

To that end, a lemma discussing the nature of the zeros of x is explored first.

Lemma 3.3.21. Suppose that (x, y) is a solution to (3.8) with IC x(0) = ε ∈ (0, 1). Then x(t) = 0

if and only if t = τX(ε) + kτY (ε) for k ∈ N0.

Proof. Fix k ∈ N0. By Lemma 3.3.9 x(t) = −x(t+ τY (ε)) for t ≥ 0. Therefore

|x(τX(ε) + kτY (ε))| = |x(τX(ε))| = 0.

Suppose that t ∈ (0, τY (ε)) then |x(τX(ε)+kτY (ε))+t| = |x(τX(ε)+t)|. Hence it suffices to

show that the function x(τX(ε)+ t) has no zeros for t ∈ (0, τY (ε)). The function x(τX(ε)+ t)

has no zeros for t ∈ (0, τY (ε)) because x(τX(ε)) = x(τX(ε) + τY (ε)) = 0 and by Lemma

3.3.9, x is strictly decreasing on (0, τY (ε)) and strictly increasing on (τY (ε), 2τY (ε)). Hence

the conclusion.

The proof of Theorem 3.3.1 follows from Theorem 3.3.3, or rather the individual con-

clusions leading up to Theorem 3.3.3.
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Proof of Theorem 3.3.1. It suffices to count the solutions (x, y) of (3.8), over all initial condi-

tions x(0) = ε ∈ [0, 1] such that x(T ) = 0, given T > 0.

Fix k ∈ N and T ∈
(
π
2

+ (k − 1)π, π
2

+ kπ
]
. By Theorems 3.3.19 and 3.3.20, for any

n ∈ N0, limε→0+ τX(ε) + nτY (ε) = π
2

+ nπ. If ε ∈ (0, 1) is given then by Lemma 3.3.21,

x(T ) = 0 if and only if there exists n such that τX(ε) + nτY (ε) = T .

Suppose n ≥ k. Then limε→0+ τX(ε) + nτY (ε) = π
2

+ nπ ≥ π
2

+ kπ > T . Since τX , τY

are strictly monotonically increasing functions, τX(ε) + nτY (ε) > T for ε ∈ (0, 1). Instead,

suppose n was a negative integer. Then τX(ε) + nτY (ε) < 0 < T for all ε ∈ (0, 1) because

τX < τY . Thus if n < 0 or n ≥ k then x(T ) 6= 0 for any ε ∈ (0, 1).

Suppose that n is an integer so that 0 ≤ n < k. Then

lim
ε→0+

τX(ε) + nτY (ε) =
π

2
+ nπ ≤ π

2
+ (k − 1)π < T < lim

ε→1−
τX(ε) + nτY (ε) =∞.

By Lemma 3.3.14, τX + nτY is continuous, so an εn exists such that τX(εn) + nτY (εn) = T .

By Corollary 3.3.13, τX + nτY is monotonic, so the value εn where τX(εn) + nτY (εn) = T is

unique.

By symmetry x(0) = −εn for 0 ≤ n < k give the only solutions so that x(T ) = 0 and

x(0) < 0. Finally, for any T > 0, x, y ≡ 0 is a solution of the IVP, this gives one solution,

so x(0) = 0 gives that x(T ) = 0.

Thus there are a total of 1 + 2k solutions.

The solutions of the ITVP initiate as functions identically equal to 1/2, and increase in

magnitude as T increases. Figure 3.6 illustrates all 4 solutions (x, y) such that y(0) > 0

with time to play T = π(3 + 1
2
) + 0.1. The x and y are plotted together for comparison.

Figure 3.7 indicates which MFG solutions are probably fluid limit trajectories by compar-

ing a realization. Figure 3.8 illustrates the increasing number of solutions described in

Section 3.3, and Fig. 3.6 demonstrates the solutions plotted with their controls.
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Figure 3.6: Consider (3.6) with T = π(3 + 1
2) + 0.1 and x(0) = 0 where x = 2θ − 1. For this

amount of running time there are exactly 4 solutions to equation where y(0) > 0. The solutions x
are plotted (in blue) along with the value y := u1 − u0 (in red).

Figure 3.7: On the left, is a set of realizations of the N + 1-player game given by (4.3) with 400
players and various time to play. On the right, are the MFG solutions believed to be the fluid
limit trajectories. By the symmetries the bifurcation set is identically 1/2.

44



Figure 3.8: Given are all the solutions to (3.6) with θ(0) = 1/2, given various times to play T , in
consideration of Theorem 3.3.1. Notice the times before and after an increase of the number of
solutions occur.
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4 THE MFG MAP AND STABILITY
ILLUSTRATIONS

In this chapter, various cost functions will be given in order to illustrate different types

of behavior attained by the 2-state MFG model. Stability of the MFG map for the sym-

metric follow the crowd model from Section 3.3 is analyzed, showing some consistency

with Conjecture 2.3.2. The rest of this chapter after that is dedicated to numerical stability,

including examples of a phenomenon of false positives which are difficult to rectify. Also

see Section 2.3.1 for a version of the MFG map which takes smaller iterations to try to im-

prove convergence, especially when given situations where the MFG map maps between

multiple functions; see Figs. 2.2 and 2.3.

The assumption of 2-states and of the form of the running cost from Section 2.1.1 are

made. Recall the various systems and equations of transition rates.


− d

dt
ui = f(i, θ)− 1

2
(ui − u1−i)2+

ui(T ) = ψi(θ(T )),

(4.1)

with Markov transition probabilities

P[it+h = 1− i|it = i] = (ui(t)− u1−i(t))+h+ o(h). (4.2)

The cost-to-go functions for the system with N + 1 rational players are determined by

− d

dt
uni = f

(
i,
n

N

)
− 1

2
(uni − un1−i)2++

+ nα∗0,1

(
n− i
N

, u

)
[un+1
i − uni ] + (N − n)α∗1,0

(
n+ 1− i

N
, u

)
[un−1i − uni ]

uni (T ) = ψi

( n
N

)
,

(4.3)
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and the transition rates of the N + 1 players are given by

P[it+h = 1− i|nt = n, it = i] = α∗i,1−i

( n
N
, un
)
h+ o(h),

P[nt+h = n− 1|nt = n, it = i] = nα∗0,1

(
n− i
N

, un−i
)
h+ o(h) and

P[nt+h = n+ 1|nt = n, it = i] = (N − n)α∗1,0

(
n+ 1− i

N
, un+1−i

)
h+ o(h). (4.4)

Last, the MFG model is

−u̇0 = f(0, θ)− 1

2
(u0 − u1)2+

−u̇1 = f(1, θ)− 1

2
(u1 − u0)2+

θ̇ = −θ(u0 − u1)+ + (1− θ)(u1 − u0)+

ui(T ) = ψi(θ(T )), θ(0) = θ̄ ∈ [0, 1].

(4.5)

The rest of this chapter focuses on stability and numerical results.

4.1 Stability of MFG Map for Follow the Crowd Case

Recall the MFG map from Section 2.3, Φ. The MFG map for the case of the follow the

crowd running cost, from Section 3.3, is analyzed. The Gâteaux derivative of the MFG

map is evaluated at the MFG solutions, in order to explore the stability of the solutions.

Consider, from Chapter 3, the follow the crowd MFG model given by (3.5) with some

time to play T . The MFG map can be expressed in terms of the simplified systems. Con-

sider a continuous function x : [0, T ] → [−1, 1] which is considered a prediction to the

fluid limit trajectory and let y be the solution to
−ẏ = x− 1

2
y|y|

y(T ) = 0,

(4.6)
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and given this y let x̃ be the solution to

 ˙̃x = y − x̃|y|

x̃(0) = x(0).
(4.7)

Define ΦX to be the map which takes x to x̃. Then ΦX(2θ − 1) = 2Φ(θ) − 1, for any

prediction θ.

The Gâteaux derivative for ΦX will be analyzed instead of for Φ. Suppose (x, y) is a

solution to (3.6). Fix t̂ ∈ (0, T ) and ε > 0 sufficiently small. Suppose h(t) = δ(t − t̂). Let

xε := x + εh. Let y, yε be the solution to (4.6) with the x, xε : [0, T ] → [−1, 1] respectively.

Let kε = 1
ε
(yε − y). Then

εk̇ε = ẏε − ẏ

= −xε +
1

2
yε|yε|+ x− 1

2
y|y|

= −εh+
1

2
(y + εkε)|y + εkε| −

1

2
y|y|

= −εh+
1

2
(y + εkε)(|y|+ sgn(y)εkε)−

1

2
y|y|+ o(ε2), since yε − y = o(ε)

= −εh+ εkε|y|+ o(ε2) so

k̇ε = −h+ kε|y|+ o(ε), with kε(T ) = 0.

Hence kε(t) = e
∫ t
T |y|dr

∫ t
T

(−h(s) + o(ε))e−
∫ s
T |y|drds = e−

∫ t̂
t |y|ds1{t̂>t} + o(ε). Let x̃ε be the

solution to (4.7) with yε in place of y, that is x̃ε = ΦX(xε). Let gε = 1
ε
(ΦX(xε) − ΦX(x)).

Define the limit functions

k := lim
ε→0

1

ε
(yε − y) and g := lim

ε→0

1

ε
(ΦX(x+ εh)− ΦX(x)).
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Then k(t) = 1{t̂>t}e
−
∫ t̂
t |y|ds and

˙̃xε − ẋ = yε − y − x̃ε|yε|+ x|y|

= εkε − (x+ εgε)|y + εkε|+ x|y|

= εk − ε(xksgn(y) + gε|y|) + o(ε2) so

ġε = k(1− sgn(y)x)− gε|y|+ o(ε), with gε(0) = 0.

Thus g(t) = e−
∫ t
0 |y|ds

∫ t
0
k(s)e

∫ s
0 |y|dr(1 − sgn(y)x)ds for the impulse h and given t̂. The

impulse response is

K(t, t̂) = e−
∫ t
0 |y|dr

∫ t

0

1{t̂>s}e
−
∫ t̂
s |y|dre

∫ s
0 |y|dr(1− sgn(y)x)ds

=

∫ t∧t̂

0

e−
∫ t
0 |y|dre−

∫ t̂
s |y|dre

∫ s
0 |y|dr(1− sgn(y)x)ds

=

∫ t∧t̂

0

e−
∫ t
0 |y|dre−

∫ t̂
0 |y|dre2

∫ s
0 |y|dr(1− sgn(y)x)ds. (4.8)

Therefore for general solutions (x, y), time to play T , and direction h : [0, T ] → R, the

Gâteaux derivative of ΦX is given by the following integral operator:

Lx,y(t) =

∫ T

0

K(t, t̂)h(t̂)dt̂

=

∫ T

0

h(t̂)

∫ t∧t̂

0

e−
∫ t
0 |y|dre−

∫ t̂
0 |y|dre2

∫ s
0 |y|dr(1− sgn(y)x)dsdt̂. (4.9)

Suppose that x is a strictly monotonic solution, then (1 − sgn(y(t))x(t)) = e−
∫ t
0 |y|ds by

(3.7) and Lemma 3.3.7. Thus K(t, t̂) =
∫ t∧t̂
0

e−
∫ t
0 |y|dre−

∫ t̂
0 |y|dre

∫ s
0 |y|drds which is symmetric

and

Lx,y(t) =

∫ T

0

h(t̂)

∫ t∧t̂

0

e−
∫ t
0 |y|dre−

∫ t̂
0 |y|dre

∫ s
0 |y|drdsdt̂. (4.10)

The form of (4.10) is relatively simple, and its eigenvalues and eigenfunctions can be
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explicitly found in the following special case. Suppose that x, y ≡ 0 and T > 0. Then

K(t, t̂) =
∫ t∧t̂
0

1ds = min{t, t̂}. So K(t, t̂) = K(t̂, t) and K is positive semidefinite because

it is the autocorrelation function for Brownian motion.

Fix integer n ≥ 0. Suppose that hn(t) = sin( (2n+1)πt
2T

). Then

Lx,y(t) =

∫ T

0

min{t, t̂} sin

(
(2n+ 1)πt̂

2T

)
dt̂

=

∫ t

0

t̂ sin

(
(2n+ 1)πt̂

2T

)
dt̂+

∫ T

t

t sin

(
(2n+ 1)πt̂

2T

)
dt̂

=

[(
2T

(2n+ 1)π

)2

sin

(
(2n+ 1)πt̂

2T

)
− 2T

(2n+ 1)π
t̂ cos

(
(2n+ 1)πt̂

+
2T

)]t
t̂=0

+

+

[
− 2T

(2n+ 1)π
t cos

(
(2n+ 1)πt̂

2T

)]T
t̂=t

=

(
2T

(2n+ 1)π

)2

sin

(
(2n+ 1)πt

2T

)
.

Thus by Mercer’s theorem K(t, s) =
∑∞

n=0

(
2T

(2n+1)π

)2√
2
T
hn(t)

√
2
T
hn(s). The functions√

T
2
hn(t), form an orthonormal basis of functions with the corresponding eigenvalues

λn =
(

2T
(2n+1)π

)2
. Notice that λ0 ≥ λi for integer i ≥ 0. If T > π

2
then λ0 =

(
2
π
T
)2
> 1, hence

ΦX is unstable. If T < π
2

then λ0 =
(
2
π
T
)2
< 1, hence ΦX is stable.

Recall in Section 3.3 it was shown that θ ≡ 1
2

is the unique MFG solution until time to

play exceeds T = π
2
. In the corresponding N + 1 game if one state contains more players

than the other then every player attempts to move to that state, so the fluid limit trajectory

must be monotone; see Fig. 3.7. That is, the stable points for the MFG map are exactly

the fluid limit trajectory at least for T ∈ (0, 3π/2]. This is good evidence in support of

Conjecture 2.3.2.

One may agree based on the previous computations that it is difficult to show if the

MFG map is stable at a given MFG solution. But at least Conjecture 2.3.2 is consistent

with the analysis for the case of x ≡ 0.
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4.2 Stability and Fluid Limit Trajectory

This section is devoted to numerical results for the MFG map Φ for the MFG given by

(4.5), with no terminal cost and f(i, θ) = |θ − (1− i)|. That is the system from Section 3.3

where y = u1 − u0, 
−ẏ = 2θ − 1− 1

2
y|y|, y(T ) = 0

θ̇ = (1− θ)y+ − θ(−y)+, θ(0) = θ̄ ∈ [0, 1].

(4.11)

To illustrate Conjecture 2.3.2, the MFG map Φ of (4.11) will be put to the test. Consider

the time to play T = π
2

+ 0.01, then Φ1000[1
2

+ 1
1000000

sin(t)](T ) ≈ 0.5105, so clearly Φn is not

approaching 1
2
. On the other hand, if T = π

2
+0.01, then Φ1000[1

2
+ 1

1000000
sin(t)](T ) ≈ 0.5 up

to 16 decimal places. This is consistent with Conjecture 2.3.2 and the eigenvalues of the

map ΦX about x ≡ 0 found in Section 4.1, because λ0 =
(
2T
π

)2. Recall that for T = π
2

+0.01,

λ0 > 1 and hence Φ is unstable about 1
2
; and for T = π

2
+ 0.01, λ0 < 1 and hence Φ is stable

about 1
2
.

Consider a large time to play, say T = 20, so that multiple MFG solutions exist. The

aforementioned conjecture implies that only the monotone solution may be stable, be-

cause as discussed the fluid limit trajectories are monotone. Consider two MFG solutions

(θ1, y1) and (θ2, y2) to (4.11), as shown in Fig. 4.1. Conjecture 2.3.2 indicates that the MFG

map Φ is stable about θ1 and unstable about θ2. The following norms were computed nu-

merically ‖θ2 − Φ1000(θ2 + 0.0001)‖2 = 5.8 ∗ 10−07, ‖θ2 − Φ2000(θ2 + 0.0001)‖2 = 2.9 ∗ 10−10

and ‖θ2 − Φ3000(θ2 + 0.0001)‖2 < 1 ∗ 10−16; indicating stability. This does not bode well for

Conjecture 2.3.2.

Let us consider adding noise between iterations, to test stability of Φ at θ2 another way.

Let W n be independent Wiener processes for each n ∈ N, and define the process Mn
t :=

W n
0.05t so that the variance of Mn

t −Mn
s is 0.05(t−s). Then define θn+1

2 := Φ(θn2 +Mn), with

θ12 := θ2. Figure 4.2 is a visual aid showing the extent of stability Φ even in the presence

of noise. The plots are of the first 100 iterations showing the before and after affects of the
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Figure 4.1: The MFG solution on the left is most likely a fluid limit trajectory, and hence by
Conjecture 2.3.2 is stable. The MFG solution on the right passes through the value 1/2, thus by
Conjecture 2.3.2 is unstable.

Figure 4.2: On the left are the predictions with noise θn2 +Mn. On the right are the plots of θn+1
2

(i.e. Φ(θn2 +Mn)). This is done for n ∈ {1, 2, ..., 100}.

map Φ. The functions plotted are θn2 + Mn and θn+1
2 , and the thick line indicates the last

iteration, for the purpose of perspective.

Consider the last iteration, θ1012 and let θ∗ := Φ5000(θ1012 ). Numerical computations give

that ‖θ∗ − Φ1000(θ∗)‖2 < 1 ∗ 10−16 indicating stability, and yet ‖θ2 − θ∗‖2 = 1.734. The plots

of θ2 and θ∗ are given in Fig. 4.3. Since θ∗ 6= θ2 and crosses the value 1/2 only once, it

cannot be a MFG and hence it cannot be a fixed point, yet it appears to be not only a

fixed point but a stable one. This would mean that Φ is stable at a non-fixed point, which

is absurd, and thus is nothing more than a numerical anomaly. Thus the local stability
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Figure 4.3: In orange is θ2 and in blue θ∗ := Φ5000(θ1012 ) for given some realization.

Figure 4.4: On the left are the predictions with noise θn2 +Mn. On the right are the plots of θn+1
2

(i.e. Φ(θn2 +Mn)). This is done for n ∈ {1, 2, ..., 1000} and some realization. Opacity is added to
illustrate the number of overlaying trajectories.

indicated numerically at θ2 before may be a result of this same numerical phenomenon,

and Conjecture 2.3.2 may indeed hold. For no other reason but to give an intuition, lets

evaluate θn2 for more values of n; see Fig. 4.4. Figure 4.5 gives two different realizations of

θ3012 and then, showing each iteration, finds the limit of Φn(θ3012 ) to be ±θ1, the other fluid

limit trajectories. This figure indicates that the domain of attraction due to the numerical

phenomenon is quite small.

To illustrate stability for the monotone increasing solution significantly more noise is

added between the iterations of Φ. Recall the independent Wiener processes W n and

define the processes Nn
t := W n

0.2t so that the variance of Nn
t −Nn

s is 0.2(t− s). Then define
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Figure 4.5: The two plots are two different realizations. In thick blue is θ3012 , the rest are Φn(θ3012 ),
this is done for n ∈ {1, 2, ..., 10000}. The plot on the left shows Φn(θ3012 ) approaching −θ1 and the
plot on the right shows Φn(θ3012 ) approaching θ1 Opacity is added to illustrate time spent.

θn+1
1 := Φ(θn1 + Nn), with θ11 := θ1. Figure 4.6 shows θn1 + Nn for n ∈ {1, 2, ..., 200}, and it

can be seen that even with higher variance the functions θn1 are relatively close. Moreover,

the value ‖θ1 − Φ1000(θ2001 )‖2 < 1 ∗ 10−16 based on numerics, giving a strong indication of

stability. Figures 4.4, 4.5 and 4.6, indicate that the fluid limit trajectory may be stable with

a wide domain of attraction.

Consider solutions to (4.11) with time to play T = 50. For time to play being this large,

pseudo-stable fixed points exist which appear to be numerically close to a piece-wise

combination of two different MFG solutions. Call the dashed green curve in Fig. 4.7, θ.

The function Φ1000(θ), which is plotted in dark green on the right, appears to be a fixed

point as ‖Φ2000(θ)− Φ1000(θ)‖ < 1∗ 10−16. These examples indicate some of the difficulties

which will arise in MFGs when uniqueness is not guaranteed.
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Figure 4.6: In thick blue θ2001 +N200. The rest are θn1 +Nn. This is done for n ∈ {1, 2, ..., 199}.
Opacity is added to illustrate the number of overlaying trajectories.

Figure 4.7: The plot to the left has three functions. In blue and orange are two solutions to (4.11).
In green, θ, is a curve that starts off following the orange curve somewhat closely and then
follows the blue curve. The plot to the left in dark green is Φ1000(θ).
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4.3 Indifference Sets and Heat Maps

This section gives examples of the 2-state MFG given by (4.5) with various running and

terminal costs. With each example are heat maps associated with the cost-to-go function

given by the N + 1 player game described by (4.3). These examples give a visual of the

cost-to-go functions, which gives an idea of what the fluid limit trajectories may look like.

Consider (4.3) with time to play T > 0. Also consider the map

t 7→ {n : un1 (t)− un0 (t) > 0 and un+1
1 (t)− un+1

0 (t) < 0}/(N + 1),

denoted ηNT . Recall that there is a dependency for un0 and un1 on N , which is dropped from

the notation. Suppose that limN→∞ η
N
T converges to say ηT . Then the indifference set is

exactly the set of points (T − t, ηT (t)) for 0 ≤ t ≤ T and for any T > 0.

Below are figures of many examples, with different running and terminal costs. In the

first two examples, the fluid limit trajectories are plotted over the heat map of un1 (t) −

un0 (t) starting at the indifference curve to illustrate how the two relate; see Figs. 4.8 and

4.10. The next example is of a prisoners’ dilemma with social pressure running cost, this

example is interesting because the indifference curve crosses 1/2; see Fig. 4.11. Also

illustrated is a sequence of indifference curves converging, ηNT , converges pointwise; see

Fig. 4.12.

Figures 4.13 and 4.14 show two examples with follow the crowd running cost but also

with the same non-constant terminal cost added to both states. Certainly the MFG solu-

tions are the same as if no terminal costs were added because the difference of the terminal

costs over the states is zero. What is interesting about these figures is how the fluid limit

trajectories follow the level sets of the heat map of un0 fairly well. The last heat maps cor-

respond with the example given in Section 2.3.1. In each figure N = 400 except in Fig.

4.12. The red/blue plots below, the line where the red meets the blue from above (red

over blue in the red and blue plots) is the indifference curve.
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Figure 4.8: The fluid limit trajectories which are MFG solutions overlaid on the cost-to-go
difference un1 − un0 . Notice the relationship between the colors from the heat map and the
derivative of the curves.

Figure 4.9: Cost-to-go heat maps for follow the crowd example. No terminal costs, and
f(i, θ) = |θ − (1− i)|. Cost-to-go values for both states are shown in the top two plots
respectively. Bottom left is the difference, and bottom right is the sign of the difference.
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Figure 4.10: Cost-to-go heat maps for follow the crowd example with terminal cost on one state.
Terminal cost of 0.3 for all players in state 1 and no terminal cost for players in state 0. Running
cost has f(i, θ) = |θ − (1− i)|. Note how only the existence of a terminal cost explains why the
curve of the graph in sgn(un1 − un0 ) drops so quickly, for small time to go.
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Figure 4.11: Cost-to-go heat maps for an example with follow the crowd tendency with a
prisoners’ dilemma cost added in. The prisoners’ dilemma associated cost is such that state 0 is
the cooperative state and state 1 is the greedy state. No terminal cost exists. The social pressure
cost is given by |1− i− θ|, the cooperative cost is given by 0.6θ, and the individual incentive cost
is given by 0.31i=0. Running cost has f(i, θ) = |1− i− θ| − 0.6θ + 0.31i=0.

Figure 4.12: Illustration of the pointwise convergence of the indifference set shown in Fig. 4.11.
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Figure 4.13: Cost-to-go heat maps for follow the crowd example with terminal cost for each state
given by 3 cos(4π n

N )2. Running cost has f(i, θ) = |θ − (1− i)|.
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Figure 4.14: Cost-to-go heat maps for follow the crowd example with terminal cost for each state
given by 3 sin(4π n

N )2. Running cost has f(i, θ) = |θ − (1− i)|.
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Figure 4.15: Cost-to-go heat maps for an example with follow the crowd tendency with a
congestion cost for extreme imbalance. No terminal cost exists. Running cost has
f(i, θ) = |1− i− θ|+ 8(θ − 0.75)1{θ>0.75} + 8(0.25− θ)1{θ<0.25}.
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5 CONCLUSION

In Chapter 3 two tractable examples of 2-state MFGs are investigated, one having unique

solutions and the other having non-unique solutions. When dealing with non-unique

solutions they begin as the fluid limit trajectory for short enough time to play, but as the

time to play increases these solutions continued past the bifurcation curve and lose their

relevance to the original game.

Analysis of an example in Sections 3.3 and 4.1 was given which showed that Conjecture

2.3.2 holds for T ∈ (0, 3π/2] in this example. The numerical phenomenon investigated in

Chapter 4 displays numerical stability for points which are not analytically fixed points.

This makes Conjecture 2.3.2 difficult to dismiss based on numerics alone.

In Section 4.2, however, an example is thoroughly explored indicating that even if Con-

jecture 2.3.2 were true, numerical methods based on it have limited practical value. A

better numerical method for finding the fluid limit trajectories may be to discretize the

derivative of the MFG map and check its eigenvalues; this was not investigated in this

thesis.

63



REFERENCES

[1] M. Huang, R. P. Malhamé, P. E. Caines et al., “Large population stochastic dynamic
games: Closed-loop Mckean-Vlasov systems and the Nash certainty equivalence
principle,” Communications in Information & Systems, vol. 6, no. 3, pp. 221–252, 2006.

[2] J.-M. Lasry and P.-L. Lions, “Mean field games,” Japanese Journal of Mathematics,
vol. 2, no. 1, pp. 229–260, 2007.

[3] P. Cardaliaguet, F. Delarue, J.-M. Lasry, and P.-L. Lions, “The master equation and the
convergence problem in mean field games,” arXiv preprint arXiv:1509.02505, 2015.

[4] P.-L. Lions and J.-M. Lasry, “Large investor trading impacts on volatility,” in Paris-
Princeton Lectures on Mathematical Finance 2004. Springer, 2007, pp. 173–190.

[5] M. Huang, P. E. Caines, and R. P. Malhamé, “Large-population cost-coupled LQG
problems with nonuniform agents: Individual-mass behavior and decentralized ε-
Nash equilibria,” IEEE Transactions on Automatic Control, vol. 52, no. 9, pp. 1560–1571,
2007.

[6] Y. Achdou, F. J. Buera, J.-M. Lasry, P.-L. Lions, and B. Moll, “Partial differential equa-
tion models in macroeconomics,” Phil. Trans. R. Soc. A, vol. 372, no. 2028, p. 20130397,
2014.

[7] D. A. Gomes, J. Mohr, and R. R. Souza, “Continuous time finite state mean field
games,” Applied Mathematics & Optimization, vol. 68, no. 1, pp. 99–143, 2013.

[8] R. Carmona and F. Delarue, “The master equation for large population equilibri-
ums,” in Stochastic Analysis and Applications 2014. Springer, 2014, pp. 77–128.

[9] A. Bensoussan, J. Frehse, and S. C. P. Yam, “The master equation in mean field the-
ory,” Journal de Mathématiques Pures et Appliquées, vol. 103, no. 6, pp. 1441–1474, 2015.

[10] V. N. Kolokoltsov, M. Troeva, and W. Yang, “On the rate of convergence for the mean-
field approximation of controlled diffusions with large number of players,” Dynamic
Games and Applications, vol. 4, no. 2, pp. 208–230, 2014.

[11] H. Yin, P. G. Mehta, S. P. Meyn, and U. V. Shanbhag, “Synchronization of coupled
oscillators is a game,” IEEE Transactions on Automatic Control, vol. 57, no. 4, pp. 920–
935, 2012.

64


