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ABSTRACT

Digital forensics is the science involved in the discovery, preservation, and analysis of

evidence on digital devices. The end goal of digital forensics is to determine the events that

occurred, who performed them, and how were they performed. In order for an investigation

to lead to a sound conclusion, it must demonstrate that it is the product of sound scientific

methodology.

Digital forensics is inundated with many problems. These problems include an insufficient

number of capable examiners, without a standard for certification there is a lack of training

for examiners and current tools are unable to deal with the more complex cases, and lack

of intelligent automation. This work perpetuates the ability of computer science principles

to digital forensics creates a basis of acceptance for digital forensics in both the legal and

forensic science community.

This work focuses on three solutions. In terms of education, there is a lack of mandatory

standardization, certification, and accreditation. Currently, there is a lack of standards in

the interpretation of forensic evidence. The current techniques used by forensic investigators

during analysis generally involve ad-hoc methods based on the vague and untested under-

standing of the system. These forensic techniques are the root of the significant differences in

the testimony conducted by digital forensic expert witnesses. Lastly, digital forensic expert

witness testimony is under great scrutiny because of the lack of standards in both education

and investigative methods.

To remedy this situation, we developed multiple avenues to facilitate more effective in-

vestigations. To improve the availability and standardization of education, we developed

a multidisciplinary digital forensics curriculum. To improve the standards of forensic evi-

dence interpretation, we developed a methodology based on graph theory to develop a logical

view of low-level forensic data. To improve the admissibility of evidence, we developed a

methodology to assign a likelihood to the hypotheses determined by forensic investigators.

Together, these methods significantly improve the effectiveness of digital forensic investiga-

tions. Overall, this work calls the computer science community to join forces with the digital

forensics community in order to develop, test and implement established computer science

methodology in the application of digital forensics.
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Be Brave

Be Strong

Be Proud

And With That You Will Have The Mental Fortitude

To Face The Greatest Adversity

Life Has To Offer

∼ Stephen Anthony Palmer
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CHAPTER 1: INTRODUCTION

Thesis Statement: The application of computer science principles to digital forensics

creates a basis of acceptance for digital forenscs in legal and foresnic science community.

Forensic science is the term used to refer to a broad range of disciplines that use scientific

techniques to analyze physical, chemical, biological, and digital data. It is more commonly

known as the application of science to the enforcement of laws within both the criminal

and civil justice system. There are many forensic science disciplines including anthropology,

criminalistics, engineering sciences, odontology, pathology, psychiatry & behavioral science,

questions documents, toxicology, and digital & multimedia sciences.

The role of a forensic scientist is ever-evolving. They are responsible for analyzing the

evidence and presenting the results of the analysis in a court of law. The forensic scientist is

beholden to the existence of legal standards for the admissibility of forensic tests and expert

testimony. The admissibility of a forensic test is Frye v United States, which states that

the forensic technique in question must have general acceptance by the scientific community.

Rule 702 of the Federal Rules of Evidence regulates the admissibility of expert testimony in

regard to a test or discipline. Daubert v Merrell Dow Pharmaceutical, Inc states that the

decision about the admissibility of scientific evidence resides with the judge hearing the case.

Forensic science produces valuable evidence and contributes to the successful prosecution,

conviction, and exoneration. Advances in serology have demonstrated that certain areas of

forensic science have potential to aid law enforcement. However, substantive information

and testimony based on faulty practices demonstrates the potential danger of evidence and

testimony derived from imperfect testing and analysis. There are certain challenges facing

the forensic science community. The shortage in the availability of skilled and well-trained

personnel. This stems from a lack of standard education and accreditation process. This

dearth in standardized knowledge, leads to the inability to generalize about current practices

within the forensic community. This creates significant variations in the interpretation of

forensic evidence. Lastly, the need to measure performance and limits in the accuracy

of forensic analysis. As a result, the depth, reliability, and overall quality of substantive

information arising from the forensic examination of evidence available to the legal system

vary substantially across the country [1].

This work aims to solve the challenges in the forensic science subdiscipline digital forensics.

In order to increase the number of skilled professionals, the development of a self-contain

undergraduate digital forensic curriculum package. Next, in order to generalize current
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practices and limit variations in the interpretation of forensic evidence, we present a survey

of current digital forensic analysis techniques as well as build an extensible framework.

Finally, we implement our framework with multiple case studies and discuss our results. This

framework provides a likelihood of events from the provided evidence in order to demonstrate

the reliability and quality of the methods.

The rest of this thesis is organized as follows: first, we introduce digital forensics and

present a background in forensic science and digital forensics in Chapter 2. Chapter 3 shows

the related work of the projects presented in this paper. In Chapter 5 on the Digital Forensic

Education Initiative. Chapter 4 present a survey of current analysis techniques in digital

forensic analysis. Chapter 6 describes the conceptual design of our analysis methodology.

Chapter 8 evaluates the implementation of Sherlock with cause studies and discuss the effec-

tiveness of Sherlock. We further support this thesis with a discussion defined in Chapter 7

and conclude with future work in Chapter 9.
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CHAPTER 2: BACKGROUND

Forensic science is the application of science to criminal and civil investigations. The role

of the forensic scientist is to collect, to preserve, and to analyze scientific evidence. The

field of forensic science is a combination of many disciplines: anthropology, criminalistics,

engineering sciences, odontology, and pathology.

2.1 THE DIGITAL FORENSIC PROCESS

The U.S National Institute of Justice (NIJ) in the Electronic Crime Scene Investigation

Guide [2] published as workflow meant to guide to digital forensic examiners [3]. Their

workflow consists of the following steps:

• Preparation: Prepare the equipment and tools to perform the tasks required during

an investigation.

• Collection: Search, for document, and collect or make copies of the physical objects

that contain electronic evidence.

• Examination: Make the electronic evidence visible and document contents of the sys-

tem. Data reduction is performed to identify the evidence.

• Analysis: Analyze the evidence from the Examination phase to determine the signifi-

cance and probative value.

• Reporting: Create examination notes after each case.

Digital forensics is able to solve crimes committed with computers (e.g. phishing and

bank fraud), solve crimes against people where the evidence may reside digitally (e.g. money

laundering and child exploitation) and reconstruct the evidence left by cyber attacks. In

the beginning of digital forensics, many of the techniques were developed primarily for data

recovery. There was not a great need for digital forensics because the evidence on systems

could easily be recovered and with limited space on disks, most perpetrators relied on phys-

ical media such as printouts. In the late 1990s and early 2000s, digital forensics began to

blossom. The widespread use of Microsoft Windows limited the scope of knowledge required

of examiners. As well as the failure to implement encryption technology for data made it

easy to develop and sell forensic tools. This was the start of digital forensics research and

professionalization. In the last decade, progress in the field of digital forensics slowed and
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the field was struck by many challenges. Today, examiners find it difficult to obtain data in

a forensically sound manner and to process the data to provide results. The challenges only

grow as the ubiquity of devices [4].

The increased public awareness of digital evidence says nothing about the state of digital

forensics as a science. Indeed, the awareness of the need to collect and analyze digital evi-

dence does not necessarily translate to scientific theory, scientific process and scientifically

derived knowledge. The traditional forensic sciences (e.g., serology, toxicology, and ballistics)

emerged out of academic research, enabling science to precede forensic science applications,

as it should. Digital forensics, however, emerged out of the practitioner community - com-

puter crime investigators and digital forensic tool developers seeking solutions to real-world

problems. While these efforts have produced a great amount of factual knowledge and sev-

eral commonly accepted processes and hardware and software tools, many experts concede

that the scientific method did not underlie much of early digital forensic research [5].

2.2 THE HISTORY OF DIGITAL FORENSICS

The practice of digital forensics is relatively new. Digital forensics’ history starts in the

1970s with the first noted description of using digital information to investigate a crime

in Donn Parker’s book, Crime by Computer [6]. As new devices develop and become more

common, the practice of digital forensics continually expands. In the 1980s, there is a growth

in computer crime leading law enforcement agencies to begin establishing specialized groups,

i.e. FBI’s Computer Analysis and Response Team [7]. Cliff Stoll writes of his pursuit of

a hacker named Markus Hess, The Cuckooś Egg [8], one of the first forensic examinations.

In the 1990s, computer forensics begins to join both the academic and forensic science

world with the book, A Forensic Methodology for Countering Computer Crime [9]. As the

commercialization of computers increased the number of people using computers more and

more computer professionals who worked with law enforcement on a case-by-case basis. The

1990s marked the start of the Golden Age of digital forensics. Digital forensics became

a magic window that could see into the past as well as into the criminal mind, with the

dominance of the Windows platform it was easy to build forensic tools. Today digital

forensics is facing a crisis as the capabilities of previous generations of digital forensic tools

are diminished over the recent advances in digital devices [4].

Digital forensics faces many challenges:

• Growing size of storage devices is frequently insufficient time to create a forensic image
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Figure 2.1: A graphical portrayal of the history of digital forensics.

• Increasing prevalence of embedded flash storage & the proliferation of hardware inter-

faces means storage devices can no longer be readily removed or imaged

• Proliferation of operating systems and file formats is dramatically increasing the re-

quirements and complexity of data exploitation tools and the cost of tool development

• Cases require the analysis of multiple devices followed by the correlation of the found

evidence

• Pervasive encryptions means that data frequently cannot be processed

• Use of the cloud for remote processing and storage, and to split a single data structure

into elements, means that frequently data or code cannot be found

• Malware not written to persistent storage necessitates the need for expensive RAM

forensics

• Legal challenges increasingly limit the scope of forensic investigations

2.3 DIGITAL FORENSICS AND SCIENTIFIC RIGOR

Digital forensics is an established field of forensic science, however, there is no formal

theory on how to conduct an investigation. A digital forensic investigation is based on

the abilities of its practitioner. Many believe that digital forensics does not require theory.

Yet, many physical investigations rely on scientific rigor [10]. For example, DNA analysis

is instrumental in forensic investigations. DNA evidence identifies matching DNA of an
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individual or potential perpetrator with little probability of error. Currently, digital forensics

has matured without the identification of scientific standards [11].

Many forensic science disciplines have theories that are published, accepted, and tested.

However, digital forensics is directed by the technology investigated and the available tools [10].

The legal system fails to understand the significance of the digital evidence. Digital forensics

remains far behind other forensic disciplines [11]. The legal system relies on the scientific

method in order to ensure the admissibility of digital evidence in a court of law [12]. The

Daubert standard determines the necessary factors for the admissibility of evidence in legal

proceedings:

• Judge is the gatekeeper: The task of assuring the scientific expert testimony truly

proceeds from scientific knowledge rests on the trial judge

• Relevance and reliability: The trial judge ensures that the expert’s testimony is relevant

to the task at hand and rests on a reliable foundation

• Scientific methodology: The proponent can demonstrate that it is the product of sound

scientific methodology

• Illustrative factors: The process of formulating hypotheses and conducting experiments

to prove or falsify the hypothesis is provided by a set of illustrative factors are met

This standard provides a clear and concise judgment on the digital evidence in court

cases. In order to allow for the admissibility of digital evidence, we must be able to make

well-reason and concrete claims about the accuracy and validity of conclusions presented in

court [11].

Computer crime involves either a computer and/or a network [13]. Computer crimes

encompass a range of activities. When an individual is the target of a computer crime, the

computer is considered as a tool, these crimes include fraud and identity theft, information

warfare, phishing scams, spam and the propagation of illegal obscene or offensive content.

Computer crimes where the goal the computer is the target, the crimes include computer

viruses, denial-of-service attacks, and malware. Cyberwarfare is the battlespace use and

targeting of computers and networks in warfare and involves both offensive and defensive

operations pertaining to a threat of cyber attacks, espionage, and sabotage. Computer

crimes produce digital evidence that can be used to reconstruct events.

Digital evidence is ubiquitous and constantly evolving making it difficult to determine

its admissibility. Digital forensics is in need of a deterministic approach to obtain the most

judicious conclusions from evidence. To our knowledge, tools that aid in the scientific method
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of reasoning about digital evidence are nonexistent. Current digital forensic tools mainly

focus on evidence recovery. These tools have limited abilities to further analyze the data that

is recovered [14]. There are multiple investigative frameworks, however, none have risen as

a standard for the analysis phase. This framework will enable researchers and examiners to

apply various reasoning models to their cases. The application of these reasoning methods

would be automated in order to avoid discrepancies and provide reproducibility. As digital

forensic science advances it is important to be able to rigorously determine conclusions are

drawn from the electronic evidence. The ability to determine if these conclusions are drawn

in the most judicious manner will also be of critical importance.

2.4 DIGITAL FORENSICS CHALLENGES

Digital forensics is undergoing a great change. This change is stimulated mainly by tech-

nological advancement has generated a reliance on digital forensics in legal system [15]. A

digital forensic investigation occurs when digital evidence is collected and examined in ac-

cordance with the law [10]. Currently, the digital forensic investigative process has four main

stages: collection, preservation, analysis, and visualization. Each of these phases must be

performed in a judicious manner in order to allow the evidence found from the investigative

process to be admissible in court [16]. However, the efficacy of the investigative phases and

the extent to which the resultant evidence should be admissible is not clearly defined [11].

Presently, the analysis phase of the digital forensic investigative process is marred by

bias and inaccuracy. The analysis phase lacks proper scientific analysis, which has severely

impacted the reliability of investigative findings and the credibility of forensic analysts [17].

In order to overcome these obstacles, we must rely on the scientific method. Evidence

reasoning is a fundamental part of investigative efficacy; however, the digital forensic process

is currently deficient in the scientific rigor necessary to function in this capacity.

The examination of digital evidence requires a vast array knowledge. This knowledge

encompasses various types of computers, models, programs, and etc. Analysts have varying

educational backgrounds allowing for incompatible assumptions and differing conclusions

from the examination of the same evidence. These problems have arisen in numerous court

cases across the United States [11].

Starting in the 2000s, digital evidence has increasingly been used in court proceedings.

In the case of the State of Connecticut v. Amero, a elementary school substitute teacher

was convicted of contributing to the delinquency of minors because a school computer in

her class displayed pop-ups from a pornographic website. It was found that the school

computer was infected with spyware which contributed to the presentation of the pop-ups.
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Julie Amero was able to get the conviction overturned but not before her previous life was

in shambles [18].

In 2007, Michael Fiola returned his laptop to his employer. The laptop was passed to

his boss after someone noticed Fiola used an exorbitant amount of data in comparison with

his co-workers. After an investigation, child pornography was found in a folder that stores

images viewed online Fiola was fired and charged with the possession of child pornography.

The charges were eventually dropped after Fiola and his family spent thousands of dollars

fighting the case. Fiola‘s defense attorney was able to find that the laptop contained a virus

that was programmed to visit multiple children pornography websites [19].

More recently, Miller in the United States v. Miller [20], it was held held that even if it

is found that malicious software was responsible for downloading or storing illegal content

the defendant could still be convicted of knowingly possessing the illegal content. The legal

system relied on the examiner and digital evidence in order to achieve these convictions and

in many cases, the digital forensic tools were accurately being used however, the conclusions

drawn from the evidence were incorrect [11].

2.5 DIGITAL FORENSIC RESEARCH

To date, research questions largely centered on the archaeology of digital artifacts. Digital

forensic artifacts are the result of the physical media, operating system, file system and

user-level applications. Each impacts what digital evidence is created and left behind. Like

archaeologists who seek to understand past human behavior by studying artifacts, digital

forensic investigators seek to understand past behavior in the digital realm by studying

digital artifacts. Because digital forensic research during the past decade focused on the

identification, excavation, and examination of digital artifacts, there is now a relatively solid

understanding of what digital artifacts exist, where they exist, why they exist, and how to

recover them. To its credit, the digital forensic research community shares this knowledge

with other academic disciplines (e.g., computer science, information systems, engineering,

and criminal justice) as well as with the practitioner community (law enforcement, private-

sector practitioners, and e-discovery specialists) [5].

It is time to shift the focus towards developing methods towards retrieving understanding

from these digital artifacts. Much of this work requires the manual skills of the investigator,

given the minimal support from tools to allow the examiners to view the objects in the

system. Evidence uncovered as part of the analysis phase may require the examiner to go

back to the collection phase, and collect evidence, or to the examination phase in order to

enumerate types of objects on the forensic target which were not previously examined [21].
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There are several techniques that have been proposed to analyze programs to create higher-

levels of abstraction. Many of these are designed as tools to assist a developer and are not

fully automated. Some analyze the code and include lexical analysis to organize the source

code into units and provide links between them. Syntactic analysis can create a parse tree,

which allows control flow analysis to be performed to determine the order of instructions

within a procedure and the order of procedures within a program. Data flow analysis can also

be used to show dependence between instructions and variables or a program dependence

graph can be created to show both the control and data flow. A variation of data flow

analysis is slicing, which isolates the instructions that have an effect on a given variable.

Research is also exploring potential techniques to improve the analysis phase. The fidelity

of the hypotheses formulated and conclusions reached based on the evidence provided from

the examination phase. The current state of the Analysis phase is reliant on the ability of

examiners to sift through vast amounts of data to determine the significance of each piece.

There is a great need to research intelligent search, retrieval, and analytical algorithms to aid

this search process. Research in intelligent analytical approaches is relatively scant. Smarter

analytical algorithms would clearly reduce information retrieval overhead. They should help

investigators get relevant data quickly, reduce the noise investigators must wade through,

and help transform data into information and investigative knowledge [5].

In addition, to improving analytical efficiently, intelligent analytical approaches would

enhance analytical effectiveness. Research has shown that data mining algorithms can reveal

data trends and information otherwise undetectable by human observation and analysis.

Indeed, the increased application of artificial intelligence, information science, data mining

and information retrieval algorithms to digital forensics will enable investigators to obtain

unprecedented investigative knowledge [5].

Many researchers also pursue the use of likelihood ratio to express the subjectivity and un-

certainty associated with forensic science evidence. The likelihood ratio (LR) is a statement

which conveys the probability of the observations given each of the stated propositions or

hypotheses h. For example, the likelihood ratio communicates the probability of obtaining

the observed similarities between a fingerprint from a known origin and the fingerprint of

questioned origin under the hypothesis that the two samples have the same origin h1 versus

under the hypothesis that they have different origins h2 [22].

The accused has a constitutional right to have the fact-finder apply a presumption of

innocence to his case. The determination of the prior probability of a hypothesis in the face

of ignorance of information bearing on the truth of the hypotheses. We can make a tentative

assessment of how probable the hypothesis, however, we cannot be sure. A highly contested

topic is whether forensic scientists should try to specify prior probabilities. It is suggested
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that forensic scientists should assume equal prior probabilities based on the Principle of

Indifference [23]. Principle (Principle of Indifference). If there is the unknown reason for

predicting of our subject one rather than another of several alternatives, then relatively to

such knowledge the assertions of each of these alternatives have an equal probability.

Three concerns arise from the use of subjective probabilities. Human beliefs concerning

probabilities are vague, ambiguous, and inaccurate. The impact of this vagueness and ambi-

guity on the outcome of the probabilistic analysis is not fully understood. Lastly, outcome

stemming from the use of subjective probabilities is difficult to explain and validate, which is

crucial in legal applications. It is not unreasonable to question subjective probability values,

the reasons for variability in such values and its magnitude. To facilitate such questioning by

legal professionals, it is helpful to reduce subjective probability values and their variability

to under stable propositions that can be validated [24].

The assignment of likelihood to the hypothesis of digital forensic cases is a just first step

in the formalization of this field. It is impossible the implications of these likelihoods would

have a great impact on the legal system. First, the advantages could impact phases outside

analysis. We could test many hypotheses and if none of them rise above the acknowledge

50% this could mean we have not collected enough evidence and would need more evidence in

order generate a higher likelihood for a certain set of hypothesis. However, do we state that

for the preponderance of the evidence that a hypothesis with greater than 50% likelihood

is fit, if not how do we define that number? Is reasonable doubt assumed with anything

less than 50%? The application of probabilities to digital forensic analysis can provide great

benefit however, there is a need to examine their place in the legal system. This includes

how forensic reports would be written, and how to explain a greater knowledge of statistics

to a lay jury when the requirement of knowledge for merely the digital evidence is vast.

The contributions of this work include:

1. Implementation and evaluation of a multidisciplinary digital forensic education pro-

gram

2. An analysis of reasoning techniques to explore digital evidence

3. An extensible software framework for reasoning about digital evidence that conforms

to the scientific method and the Daubert Standard

4. An indepth discussion on potential techniques that are able to improve the digital

forensic process
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CHAPTER 3: RELATED WORKS

Members of the digital forensics community are concerned by the relative absence of digital

forensics practitioners training [25, 26, 27, 28]. There is a broad need for higher-education

standards and curricula. To address the need for a standardized high-quality digital forensics

education program, this project, in conjunction with the National Science Foundation (NSF),

is developing and piloting a curriculum package in digital forensics suitable for adoption by

other institutions. Research by Woods et al. [29], Ismand and Hamilton [30], Al Amro et

al. [31], describe a technical foundation for the development of digital forensics education

programs. Their scholarly findings provide a basis for this programs development, detailed

below.

3.1 DIGITAL FORENSIC EDUCATION

Research investigators discuss different approaches to introduce digital forensics in higher

education. Chi et al. [32] reported on the challenges of teaching computer forensics at

Florida A&M University to students without a strong technical background. To supplement

the students need for technical knowledge, Chi et al. created preparatory courses for students

to bolster their prerequisite knowledge of computer forensics before introducing the more

technical components of the field. In contrast, Srinivasan [33] described a course on computer

forensics at the University of Louisville available only to computer information systems

studets concentrating on information security. Bashir et al. [34] published research findings

on a more multidisciplinary approach.

Other research investigations focus on building a curriculum around industry needs and

fortifying the employability of their students in fields related to digital forensics. Lius bac-

calaureate program in digital forensics at Metropolitan State University adopted a prac-

titioners model, aimed to prepare students for their target industries [35]. This approach

failed to recruit the necessary qualified faculty for implementing the model. Wassenaar et

al. [36] discusses an approach by Cypress College that prepares students for professional

certification. The program required instructors that are digital forensics practitioners. The

programs credibility relied on instructors abilities to communicate their industry experience.

This projects design and development was influenced by challenges to digital forensics educa-

tion already identified, discussed, and published by Bashir [34], Lang et al. [37], Woods [29],

Walls et al. [38], Beebe [5], Kwan et al. [39], Bishop [40], Craiger et al. [41], Nance et al. [42],

and Barnett —citebarnett1996computer. Further, this project identified challenges faced by
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institutions involved with implementing digital forensics programs. These include: balancing

training and education [43, 44], lack of an adequate textbook on digital forensics [35], finding

qualified faculty [44, 35], lab setup [44, 35], selecting appropriate prerequisites [32, 35], and

absence of widely accepted curriculum standards [45, 46, 47, 48].

3.2 DIGITAL FORENSIC TOOLS

The analysis of digital evidence is performed by evaluating the data to identify digital

evidence that supports an existing theory, that which does not support an existing theory,

and that which shows tampering. Analyzing every bit of data is a daunting task when

confronted with the increasing size of storage systems. In digital forensics, the acquired data

is typically at the lowest and most raw format, which is often too difficult for humans to

understand. The skills required is great and is not efficient to require every forensic analyst

to be able to do so. Currently, we have solved this problem by using tools to translate

data through one or more layers of abstraction until it can be understood. For example, to

view the contents of a directory from a file system image, the file system structures must be

processed so that the appropriate data structures are displayed. The data that represents

the directory contents exists the acquired file system image file, but in a format that is too

low to identify. The directory is a layer of abstraction in the file system [49].

There are many tools that focus on the abstraction of evidence. Examples of these tools

include EnCase [50], SleuthKit [51], Caine [52], Scalpel [53], Forensic Toolkit [54], Registry

Recon [55], Libforensics [56], Cellebrite [57], XRY [58], PlainSight [59], P2 Explorer [60],

Mandiant Redline [61], Xplico [62], Bulk Extractor [63], Oxygen Forensic Suite [64], The

Coroner’s Toolkit [65], Windows Scope [66] and Volatility [67]. However, as the growing size

and proliferation of devices require not only analysis but a correlation of evidence. This has

lead to the development of many tools focused on timeline reconstruction [68].

Zeitline is an open-sourced graphical tool that allows forensic investigators to import

various events and then order and classify them into one or more timelines. Events may be

grouped into super-events, creating a hierarchy of events [14]. FACE [69] expands on this

work by adding automated analysis and correlation of disk images, memory images, network

captures, and configuration files, in order to provide a more coherent view of the state of the

target system and allowing investigators to quickly understand it. The reliance on time has

shown to be a problem. A study that measures and compares the accuracy and effectiveness

of various event reconstruction techniques show they have very high false-positive rates, up

to 96% [70].
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3.3 DIGITAL FORENSIC RESEARCH

A large amount of digital forensics research is being performed at universities and are

funded by organizations suchas the National Science Foundation (NSF), the National In-

stitute of Justice (NIJ) and the National Institute of Standards and Technology (NIST).

However, there are relatively few cases of academic research being successfully transitioned

to end users. The transition of technology from academia to end users is difficult but is

essential given the scale of the digital forensics problem [4].

Digital forensics research is focused in a few directions, these directions are scalability,

validity, and data abstraction. Most tools are developed and demonstrated on a relatively

small data sets and fail when they are scaled up to real-world sizes. Researchers are failing

to develop a range of techniques that perform well when running in a data-rich environ-

ment [4]. The application of establishing computer science performance paradigms such as

distributed processing [71], datamining-based search process [72], file classification to aid

analysis [73], self-organizing neural networks [74], evidence storage through network-based

architecture and virtualization and threading via graphical processing units (GPUs) [75].

Validity pertains to the ability of research and tools to hold themselves to a level of scientific

testing and reproducibility. New detection algorithms should be reported with a measurable

error rate. The ability of researchers to move up the abstraction ladder, in order to create

a new generation of forensic techniques, tools and procedures to help address the coming

digital forensic crisis these areas focus on identity management, visualization, visual analyt-

ics, collaboration, and autonomous operation [4]. The digital forensic research community

must challenge itself by raising the standards for rigor and relevance of research in digital

forensics [5].

More recently, the literature has begun to explore other methods in order to analyze ev-

idence. Self-Organizing Maps (SOM) is a type of artificial neural network which is used

to visualize low-dimensional views of high-dimensional data. This visualization reveals in-

teresting patterns from data. These patterns are able to aid in the investigator ‘s decision

making. The output of SOM provides excellent visualizations of the evidence. However,

input data to SOM requires data to be manually transformed, with a significant amount of

human labor overhead [76]. The use of Self-Organizing Maps also hasnt been fully explored

in investigator contexts and would need to be further examined.

There is work in automating the process of formulating predictions for hypotheses about

specific types of events. A basic example is chkrootkit [77]. This tool formulates predictions

for the hypothesis that a system has a rootkit installed. To test this hypothesis, the tool

searches for file and system signatures of specific rootkits. It uses incident and system
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characteristics and reconstruction to predict what evidence would exist if a rootkit were

installed.

The DERBI system test hypotheses about different intrusion scenarios [78]. The system

uses evidence schemas to describe what evidence may exist if a sequence of intrusion events

occurred. For example, access times on certain files or modifications to log files. In the

context of the process in this work, the DERBI system uses both system and incident

characteristics to formulate and test hypotheses about a system intrusion. The formalization

model proposed by Leigland and Krings is similar and it describes the components of a system

and the expected evidence that would exist after a specific type of attack [79].

Elsasesser and Tanner developed a system that uses planning to reconstruct events [80].

A computer network is described to the analysis system based on which computers are

connected to each other and what trust exists between them. Host configuration is also

defined in the analysis system. Next, different attack plans are considered and evaluated to

determine if they could have occurred. For example, the software or hardware is tested to

ensure that a specific attack could occur. A simulator can also be used from a known state to

determine if the events occurred. The logs and evidence from the simulated system are then

compared to the logs and evidence from the suspect system. In the context of the process in

this work, the Elsaesser and Tanner system requires that the investigator formulate and test

the system configuration hypotheses. The system then formulates and test different event

hypotheses.

Stallard and Levitt developed a program that formulates consistency-based predictions to

test if the redundant information was inconsistent [81]. These would test a hypothesis that

events occurred to remove evidence. For example, it could process the lastlog file on a Linux

system and determine when each user was logged in. Based on this information, searches

were conducted to identify files that were modified by users during times when, according

to the log file, they were not logged in. A file modified by a user when he was not supposed

to be logged in could be an indication that the lastlog file was modified.

Carney and Rogers used statistical tests to evaluate hypotheses about which program

created a file [82]. The motivation for this approach was to determine if a file was downloaded

by the user or planted there by an attacker. File creation times and references to the files

in question were used as metrics.

To help with general predictions, the Autopsy Forensic Browser tool was modified to make

suggestions for additional searches based on evidence that was found [83]. The investigator

would identify evidence to the tool and it would make suggestions to search for files in the

same directory, with similar temporal data, or similar file names. The goal of these searches

was to find files that were related to the evidence, which is a basic form of reconstruction.
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For example, searching for other files in the same directory or for files with the same creation

time may find files that were installed at the same time.

Spatial outlier analysis has also been used to make predictions for hypotheses about the

existence of files whose attributes were modified to hide the file [83]. The theory behind the

procedure was that some attributes of a file would be statistically different from the other

file attributes in the directory. For example, the times and name could be changed such that

they are consistent with other files in the directory, but the starting block could be much

larger. Predictions were made based on single and multiple attributes. Predictions were also

made to find directories with hidden files.

As the use and complexity of digital devices continues to rise, the field of digital forensics

remains in its infancy. The investigative process is currently faced with a variety of problems,

ranging from the limited number of skilled practitioners, to the difficulty of interpreting

different forms of evidence. Investigators are challenged with leveraging recovered evidence

to find a deterministic cause and effect. Without reliable scientific analysis, judgments made

by investigators can easily be biased, inaccurate and/or unprovable. Conclusions drawn

from digital evidence can vary largely due to differences in their respective forensic systems,

models, and terminology. This persistent incompatibility severely impacts the reliability of

investigative findings as well as the credibility of the forensic analysts. Evidence reasoning

is a fundamental part of investigative efficacy, however, the digital forensic process currently

lacks the scientific rigor necessary to function in this capacity.

The standard for the admissibility of evidence stems from the Daubert trilogy, which

establishes the requirements of relevancy and reliability [84]. NIST describes the general

phases of the forensic process as collection, examination, analysis, and reporting [85]. For-

malization is necessary to ensure consistent repeatability of all investigative scenarios. In

recent years, literature has addressed the need for formalization of the digital forensic pro-

cess, but primarily focused on evidence collection and preservation [81]. Ieong [86] highlights

the need for an explicit, unambiguous representation of knowledge and observations. While

a pedagogical investigative framework exists, there is yet to be a congruous system for digital

evidence reasoning within the examination and analysis phases. Currently, digital forensic

analysts use a variety of methods to develop conclusions about recovered evidence, yet the

results are often marred by conflicting bias or are shrouded in a veil of uncertainty.

There have been numerous proposed reasoning frameworks, typically relying on applied

mathematics, statistics & probabilities as well as, logic. However, before we can employ any

particular methodology, there is a need to examine, review and explore all options in order

to carry out the investigative process with the utmost precision.
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CHAPTER 4: A SYSTEMATIC REVIEW ON REASONING ABOUT
DIGITAL EVIDENCE

The forensic process relies on the scientific method to scrutinize recovered evidence that

either supports or negates an investigative hypothesis. Currently, analysis of digital evidence

remains highly subjective to the forensic practitioner. Digital forensics is in need of a de-

terministic approach to obtain the most judicious conclusions from evidence. The objective

of this paper is to examine current methods of digital evidence analysis. It describes the

mechanisms for which these processes may be carried out, and discusses the key obstacles

presented by each. Lastly, it concludes with suggestions for further improvement of the

digital forensic process as a whole.

4.1 DIFFERENTIAL ANALYSIS

Differential analysis is described as a method of data comparison used for reporting differ-

ences between two digital objects. Historically, it has been part of computer science for quite

some time. Unix ‘s diff command was implemented in the early 1970 ‘s, and is commonly

used for fast comparison of binary and text files [87]. Continued advancements in hashing

and metadata have since paved the way for more thorough differential analysis. It is flexible

and adaptable to nearly all types of digital objects; Windows Registry hives, binary files, and

disk images can all be compared for evidence of modification or tampering [88]. Nonforensic

applications include security procedures of operating systems, such as Windows use of file

signatures to verify integrity of downloaded driver packages [89].

Modern investigative tools such as EnCase [90], FTK [54] and SleuthKit [91] have incor-

porated modules for streamlining differential analysis of collected evidence, although each

require significant training to become competent with the software features. Garfinkel et

al. [87] formalize a model for differential analysis in the context of digital evidence; two

collected objects a baseline object and a final object are compared for evidence of modifi-

cation both before and after events of interest. Ideally, the process will highlight the most

significant changes made from baseline A to final B, assuming those transformations resulted

from actions taken by the suspect in question. In this context, differential analysis is often

used to detect malware, file and registry modifications [87].

While the strategy of differential analysis is fundamentally the same regardless of which

system level is being examined, each level possesses a certain degree of noise. In discussing

differential analysis, will define noise as information resulting from comparison between

baseline and final that is wholly irrelevant to the investigation.
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A potential form of noise presents itself as benign modifications made to digital objects

resulting from normal operation of a system. For example, an investigator may wish to

examine the presence of a suspicious binary on a particular system apart of an enterprise

network. The investigator selects a disk image of an identical, unmodified system from the

same enterprise network to serve as the baseline for comparison. Differential analysis may

reveal that the image of the system in question is incredibly anomalous compared to the

baseline. This could potentially lead to the injudicious assumption that the most anomalous

system is the most malicious [88], when in reality, it might have only been the result of benign

modifications arising from differences in installed software. While files at the kernel level

are generally protected from tampering, files in user directories are much more vulnerable

to modification.

Although noise is often assumed to be unintentional, it is very possible that it could be

inserted on purpose. When dealing with instances of steganography, differential analysis

compares objects that are known to be hiding information with those that do not. Fiore [92]

describes a framework by which selective redundancy removal can be used to prepare HTML

files for carrying out linguistic steganography. Since the information is being hidden through

the otherwise normal process of HTML file optimization, differential analysis will only appear

to reveal benign occurrences, such as differences in HTML tag styling.

Future research is needed to expand metrics for identifying and accounting for different

forms of noise in digital evidence. Mead [93] explains the National Software Reference

Librarys effort to create a library of hashes of commercial software packages. Through

combining hashing with differential analysis, investigators can drill-down the scope of inquiry

by cross-referencing evidence with a database of known hash values. Eliminating evidence

matching existing hashes can reduce the amount of noise arising from benign objects that

is commonly problematic when dealing with larger systems, and better isolates the few

remaining questionable objects. Further improvement of such databases, robust hashing

algorithms, and perhaps a formal technique would be of benefit to investigators.

4.2 PROBABILISTIC MODELS

Conventional forensic analysis has long included models of statistical inference to assess

the degree of certainty for which hypotheses and corresponding evidence can be causally

linked [94]. This casual linkage is expressed by the following: if a cause is responsible for

effect, and effect has been observed, then cause must have occurred [95]. For example,

researchers know that the probability of two identical DNA fingerprints belonging to two

different individuals is close to one in one billion [94]. If holding an item leaves finger-
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prints on it, and fingerprints found on the weapon at a murder scene match the suspect ‘s

own, then investigators can conclude there is over 99% certainty that the suspect held that

weapon. Because criminal investigations are ultimately abductive, probabilistic techniques

have become widely accepted in the forensic reasoning process [39] [95].

4.2.1 Classical Probability

Several recent criminal investigations have seen classical probability used to reason about

contradicting scenarios regarding the presence of incriminating digital evidence. Examining

two cases originating in Hong Kong, Overill et al. [96] reasoned the likelihood that the

respective defendants intentionally downloaded various forms of child pornography versus

accidentally downloading it among other benign content. In each case, the amount of child

pornography seized was very small compared to the total amount of miscellaneous benign

content, and in both instances were found to have been downloaded over a long period of

time. In each case, it was determined that the probability of unintentionally downloading a

small amount of child pornography is significantly below 10% [96].

While this method can indeed provide a quantitative assessment of the likelihood of guilt,

it is limited to investigations where only few characteristics of the evidential traces are

known. In both examples above, the defendants pleaded guilty, and thus metadata was

disregarded [96]. It was assumed that the incriminating files had been downloaded over

long periods of time, but had metadata been collected, the original hypothesis may have

changed entirely. An example would be the offending content timestamped to a one-hour

browsing period, thus invalidating the original hypothesis of accidental download. The

growing importance of preserving metadata creates the need for probabilistic models that

can integrate it into reasoning.

4.2.2 Bayesian Networks

In the last decade, Bayesian inference has gained popularity in the scientific community.

Unlike frequentist inference that reasons with frequencies of past events, Bayesian inference

reasons with subjective beliefs estimates, and allows room for new evidence to revise these

beliefs [95]. Kwan et al. [39] introduced the idea of reasoning about digital evidence in

the form of Bayesian networks: directed acyclic graphs whose leaf nodes represent observed

evidence and interior nodes represent unobserved causes. The root node represents the

central hypothesis to which all unobserved causes serve as sub-hypotheses. The model

uses Bayes ‘theorem to determine the conditional probability of evidence E resulting from

18



hypothesis H:

P (E|H) = P (E)P (H|E) (4.1)

P (E) is the prior probability of evidence E; P (H) is the prior probability of H when no

evidence exists; P (H|E) is the posterior probability such that H has occurred when E is

detected.

The construction of a Bayesian model begins with the defining of a root hypothesis. An

example would be The seized computer was used to send this malicious file. The possible

states of the hypothesis Yes, No, and Uncertain are assigned equal probabilities. As

more evidence is discovered, sub-hypotheses and their corresponding probabilities are added

beneath the root hypothesis. The process is repeated until refinement produces a most likely

hypothesis.

However, Bayesian networks are dependent on the assignment of prior probabilities to

posterior evidence [39]. In scenarios where uncertainty is present, fuzzy logic method-

ology is incorporated to quantify likelihood as a value between 1 (absolute truth) and 0

(false) [97]. The case study presented in [39] based its prior probabilities on results from

questionnaires sent to several law enforcement agencies. Since human-computer interactions

are non-deterministic, there is no systematic way to reason posterior evidential probabilities

with complete certainty; conditional probabilities inferred from demonstrably normal behav-

ior of one network might differ with those from another. Discrepancies in prior evidential

probabilities can significantly impact the overall outcome of the Bayesian network, and thus,

there is difficulty in soundly applying this method to digital forensic investigations.

4.2.3 Dempster-Shafer Theory

One of the limiting factors of using Bayesian analysis in security is that it requires the

assignment of prior and conditional probabilities for the nodes in the reasoning model. Often

times, the numbers are very hard to obtain. For example, how does one compute the prior

probability for a particular registry key being modified? As another example, how does one

compute the conditional probability of a particular registry key being modified given that

the malware did not gain privileged access? Bayesian analysis works very well when the

reasoning structure is well known and the probabilities are easy to obtain. In the real world,

it is very hard to obtain those numbers and there is a high degree of uncertainty in the

obtained evidence.

Dempster-Shafer theory (DST) is a reasoning technique that provides a way to encode
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uncertainty more naturally [98]. Contrasting with Bayesian analysis, DST does not require

one to provide a prior probability for the hypothesis of interest. DST also does not require

the use of conditional probabilities thus addressing the other major limitation of Bayesian

analysis techniques. The presence of certain evidence during forensic analysis does not

necessarily indicate a malicious activity. For example, a change in registry key could be

either due to a malware or by a benign application. There is always a degree of uncertainty

in the obtained evidence at any given stage of the forensic analysis process. DST enables one

to account for this uncertainty by assigning a number to a special state of the evidence don ‘t

know. For example, a sequence of registry key modifications might indicate that a malware

of specific family might have been downloaded. Based on empirical evidence, let us assume

one believes that with 10% confidence. A probabilistic interpretation would then mean that

one would believe that there is a 90% chance that the malware was not downloadedwhich is

not intuitive. When using DST one would assign 10% to the hypothesis that the malware

was downloaded and 90% to the hypothesis that I am not sure.

One can explain the difference between DST and probability theory using a coin toss

example. When tossing a coin with unknown bias probability theory will assign a probability

value of 0.5 to both the outcomes Head and Tail. This representation does not capture the

inherent uncertainty in the outcome. DST, on the other hand, will assign 0 to the outcomes

Head and Tail while assigning a value of 1 to the set Head, Tail. This exactly captures the

reasoning process of a human in that when you toss a coin (with unknown bias) the only

thing you are sure about the outcome is that it could be either Head or Tail. In general,

when calculating the likelihood of a hypothesis DST allows admittance of ignorance on the

confidence of evidence. DST provides rules for combining multiple evidences to calculate

the overall belief in the hypothesis. The challenge of using DST is analogous to Bayesian

analysis, though much better, in that no prior values have to be assigned to evidences.

4.3 EVENT RECONSTRUCTION MODELS

The ability to reconstruct events is of great importance to the digital forensic process.

AlKuwari and Wolthusen [99] proposed a general framework to reconstruct missing parts of

a target trace. This can be used for various areas of an investigation. This algorithm graphs

a multi-modal scenario, determining all of possible routes connecting the gaps of a specific

trace. Additional information may be included in the graph and marked appropriately. The

broadcast algorithm used to determine all possible routes may require exponential time,

suggesting that the search area should be bounded [99].

This approach relies on a specific target and would best be used to determine if an attack
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on a system occurred. However, this approach poses problems for the algorithm if a specific

target is not identified. Event reconstruction is not unique to digital forensics, and the ability

to apply existing techniques could yield effective results.

4.3.1 Finite State Machines

Modern computer systems are often modeled as a series of finite states, graphically pre-

sented as a Finite State Machine (FSM). It is expressed as the quintuple M = (Q,Σ, δ, s0, F ),

where:

• Q is the finite, non-empty set of machine states

• Σ is the finite, non-empty alphabet of event symbols

• δ: Q×Σ← Q is the transition function mapping events between machine states in Q

for each event symbol in Σ

• s0εQ is the starting state of the machine

• F ⊆ Q is the set of final machine states

• Nodes represent possible system states

• Arrows represent transitions between states [10] Gladyshev and Patel [100] introduced a

formalization of this model into digital forensics. By back-tracing event states, investigators

are presented with a reconstruction of events and can thus select the timeline most relevant

to the available evidence.

For finite state machine models to perform accurately comprehensive event reconstruction,

investigators must be able to account for all possible system states. Complex events, such

as those resulting from advanced persistent threats, are incredibly difficult to analyze. In

addition, changing factors such as software updates may affect the resulting machine states.

Carrier [10] proposes the development of a central repository for hosting information about

machine events. Likening it to existing forensic databases on gun cartridges, an exhaustive,

continuously updated library of system events would be of invaluable aide to investigators

performing event reconstruction. However, an investigator may wish to explore other char-

acteristics of events, such as the odds of a particular investigative hypothesis, or the real

time distributions of reconstructed events. To compute answers to such questions, the for-

malization of event reconstruction must be extended with additional attributes that describe

statistical and real-time properties of the system and incident [100].
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4.4 COMBINING PROBABILITY WITH EVENT RECONSTRUCTION

Attack graphs are typically used for intrusion analysis, where each path represents a unique

method of intrusion by a malicious actor. It is possible to use attack graph techniques in

the event reconstruction process. Attack graphs are directed graphs where nodes represent

pre and post conditions of machine events, and directed edges are conditions met between

these nodes; the root node represents the singular event of interest to which all other nodes

serve as precursors [101].

While attack graphs are helpful in identifying mechanisms of intrusion, their lacking of

any probabilistic inference hinders their usefulness in quantitative evidential reasoning. In-

vestigators presented with attack graphs must select the most probable attack scenarios,

but there are currently no clear metrics for assessing likelihood. To address this, Xie et

al. [102] combined attack graphs with Bayesian networks. By transferring attack graphs

into acyclic Bayesian networks, this method utilizes conditional probability tables for nodes

with parents, and prior probabilities for nodes without parents.

Like in regular Bayesian networks, this approach relies on the investigator supplying ac-

curate conditional and prior probabilities for each event. Estimating prior probabilities has

traditionally relied on feedback from the community in the form of surveys. This becomes

incredibly difficult as scale increases; a large attack graph would require that the investigator

survey and obtain probability information for every unique event, making analysis costly.

4.5 DISCUSSION

Evidence reasoning models are an important part of the forensic process. Unlike traditional

forensic sciences, digital forensics deals almost exclusively with objects of nondeterministic

nature; there is great difficulty in analyzing and scrutinizing digital evidence. Fundamen-

tal flaws hinder current evidence analysis models in their ability to assess accurately the

likelihood of crime occurrence. Furthermore, conclusions based on probabilities complicate

explanations in the courtroom, as demonstrated in the legal arguments surrounding Shon-

ubi I-V [103]. These flaws must be identified and understood to avoid the possibility of

injudicious assumptions resulting from the forensic process.

Differential analysis of digital evidence becomes difficult when the scope of investigation

is widened; unintentional noise in the form of benign modifications may lead to dubious

conclusions about system integrity. Furthermore, recent obfuscation techniques have suc-

cessfully averted detection by traditional methods. Event reconstruction models are limited

in their ability to provide investigators with clear attack scenarios, because they rely on the
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exhaustive identification of possible machine states; there is yet to be a resource providing

such information. Probabilistic reasoning models rely on prior probabilities known to the

investigator, which have so far mainly been determined from surveying others in the field.

Besides the obvious expenditure of time and effort in conducting such surveys, it is reckless

to underestimate the potential for entropy and reason that small samples of observed prob-

abilities hold true for all investigations. It can be concluded that each of these techniques is

only applicable to a small niche of forensic scenarios.

The increasing rate of software development places a burden on forensic examiners to

keep up with the latest software packages, both commercial and free. Each of the models

discussed in this paper lacks a comprehensive database of information to conduct analysis

with the highest accuracy. We highlight the need for a community-driven, updated catalogue

of file hashes, machine states, and probability metrics for use in forensic analysis. The

changing nature of technology and software necessitates that researchers and law enforcement

collaborate to ensure the digital forensic process is as reliable as possible.
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CHAPTER 5: DIGITAL FORENSIC EDUCATION INITIATIVE

The Information Trust Institute (ITI) at the University of Illinois at Urbana-Champaign

is developing an entirely new multidisiplinary undergraduate curriculum focused on digital

forensics. A preliminary plan for the introductory course was presented to a workshop of

digital forensic experts in May 2013 and received strong approval [34].

To help address the need for qualified digital forensics professionals, we developed an

adoptable curriculum. With the goal is to distribute it as a self-contained curriculum pack-

age. This includes an instructor handbook, a lab instructor handbook, lecture slides, and

question sets. This will be a significant contribution to the digital forensics education com-

munity [26]. When complete, the program will consist of an introductory, and advanced

course in digital forensics with accompanying hands-on laboratory sessions, and a special

topics course. The introductory course is accessible to a wide range of students from many

disciplines and valuable as a stand-alone offering. The second course is more technically

intensive, but it is intended to be accessible and valuable to students from non-technical

disciplines [104].

This DF program is not necessarily a job-track training program intended to prepare

students to directly enter the job market as digital forensic examiners and analysts. In-

stead, it provides a broadly applicable education in the field of digital forensics that will be

valuable for students going into many disciplines related to digital forensics, such as law,

in addition to forensic analysts. It is expected that these students will receive additional

education training specific to their career paths and some on-the-job training specific to

their eventual professional roles. At the time of writing, this project developed curriculum

for the introductory and advanced course. The pilot courses of both were taught and in

the process of curriculum revision for distribution to other institutions [26]. The content

includes modules developed collaboratively by faculty experts in multiple fields of computer

science, law, psychology, social sciences, and accountancy. The content of this program is

modeled on the NSA/DHS CAE Digital FOrensic Working Group proposal for a standard-

ized DF curriculum [105]. The core curriculum development team includes Illinois faculty

members Masooda Bashir (an expert on the psychology of cyber-crime); Roy H. Campbell

(a computer security expert); Syed Faisal Hasan (a networking expert); Jay P. Kesan (a las

professor with expertise in technology law); Anna-Maria Marshall (an expert on the civil

and criminal justice systems, from the Department of Sociology); Frank Nekrasz (an expert

on fraud invesitgation from the Department of Accountancy in the College of Business);

David M. Nicole and William H. Sanders (experts on secure and trustworthy computing
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and networking from the Department of Electricial and Computer Engineering); and Jana

Sebestik (a K-12 outreach expert from the College of Education).

5.1 METHODOLOGY

The vision and strategy for this standardized Digital Forensics education curriculum pro-

poses that digital forensics would be best suited as a specialization within a technical domain.

The curriculum design envisioned a three-course sequence. The hallmarks of the program in-

clude a multidisciplinary approach to digital forensics education. Also, domain experts from

multiple fields related to digital forensics develop and teach the curriculum. The course work

is modular and portable. Also, live evaluation feedback of the curriculum and teaching was

part of the entire design for this project from the beginning. The modules are combined to

form a coherent narrative and introduce students to the complex and multiple dynamics of

digital forensics. The laboratory assignments from the project ‘s introductory course solely

use open source content. Further, the modular course content is designed with the intention

of being easily adaptable and integrated at various educational institutions.

Digital Forensics is essentially multidisciplinary encompassing evidence collection, evi-

dence preservation, evidence presentation, forensic preparation [26] the research team for

this project is also multidisciplinary and includes computer science, electrical and computer

engineering, criminal justice, law, psychology, and educational assessment experts. The

proposed curriculum introduces students to various application areas of digital forensics, in-

cluding topics such as fraud investigation and digital archives, with the aim of demonstrating

the breadth of application for diverse knowledge in the field. The sections below will detail

the specifics for Digital Forensics 1, and Digital Forensics 2.

To satisfy the multidisciplinary aims of this two-course curriculum sequence, professors

and experts in digital forensics and related fields deliver subject-specific course material

during lectures. The fields of study mentioned above, including technical and non-technical

topics, were carefully chosen as the result of an extensive review of literature that outlined

relevant intersecting topics in the expansive field of digital forensics. Experts, who attended

the Digital Forensics Research Workshop (DFRWS 2011 2013), confirmed the accuracy of

structuring the course to include these specific fields.
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5.2 DIGITAL FORENSICS 1

Digital Forensics 1 is an introductory course designed to offer an initial overview of the field

to students from a broad range of disciplines. Designing a digital forensics curriculum that

is appropriate for a large target audience creates particular problems and challenges. It is

difficult for a single class to offer a comprehensive introduction to a field as complex as digital

forensics; however, the pilot course covered the major forensics related fields computer,

network, and mobile device precisely because its pedagogical strategy focuses on education

rather than training.

The introductory course was taught in 2013 and 2014. The classes consisted of two 75-

minute lecture sessions and an hour-long laboratory session each week for a 16-week term.

To create a multidisciplinary and modular-based curriculum to correspond with the multi-

disciplinary nature of the field, the project assembled a development team to include domain

experts in computer security, computer networks, law, civil and criminal justice, fraud inves-

tigation, and psychology. This approach allows the content developers to receive feedback

from student interactions and more efficiently revise their materials. Various modules were

combined to form a coherent narrative and introduce students to various perspectives of the

field.

The learning objectives that guided the curriculum development were that students should

understand:

• Common terminology, techniques, and investigative procedures of digital forensics, in-

cluding the related disciplines of computer forensics, network forensics, and mobile

device forensics

• Applications of the scientific method to digital forensics investigation and its importance

• Various types of digital forensics evidence acquired and the limitations of current tech-

niques

• Basic operations of the U.S. justice system and court proceedings

• Areas related to digital forensics, such as data recovery, psychology, cybercrime, and

fraud examination

5.3 DIGITAL FORENSICS 2

Digital Forensics 2 (DF2) is an advanced lecture and lab course designed to offer students

an in-depth look at particular multidisciplinary topics related to digital forensics. The class

consists of two 50-minute lecture sessions and two hour-long laboratory sessions each week
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for a 16-week term. The learning objectives that guided the curriculum development were

that students:

• Should be familiar with the known barriers and challenges in digital forensics research

• Should be able to use their investigative skills in real world scenarios

• Should be able to contribute research to the digital forensics community

DF2 includes greater focus on technical topics and more rigorous laboratory assignments than

the introductory course. It also requires students to complete a research project. Notably,

despite recent consumer trends, research continues to neglect the forensics of non-Windows

operating systems, file systems, and user applications. The course aims to encourage students

to research Linux, Mac, and iOS operating systems as they become increasingly prominent

in our daily lives. Students understanding of multiple operating systems contributes to their

ability to adapt the digital forensics investigative process for use in different systems.

Another design decision that is important to the curriculum and this advanced course is the

inclusion and option for students to learn in a virtual laboratory environment. The program

established a virtualized laboratory called ISLET. ISLET allows professors to demonstrate

various digital forensics tools and students to complete their laboratory exercises remotely.

ISLET is a container-based virtualization system for teaching Linux-based software with

minimal participation and configuration effort. The participation barrier is set very low,

and students need only a Secure Shell (SSH) client in order to participate [106].

Inspired by the extensive range of open research questions in the field of digital forensics,

this curriculum requires students to contribute to solutions rather than only learn about

the issues. To achieve this end students chose a topic for a semester-long research project.

Students were guided to design manageable and relevant research topics and were provided

with a list of research project ideas. Students formed groups and submitted a project

proposal. Each proposal was scrutinized to establish feasibility and likelihood of contributing

to digital forensics research and/or education community. The midterm progress report

indicates whether students are on-track for the semester. Significantly, the report reveals any

particular challenges experienced by the students at that point in the semester. This offers

an opportunity for instructors to help students develop strategies for addressing challenges as

they continue working on their projects. Near the end of the semester, students present their

research projects in the form of oral presentations to their peers and instructors. Ultimately,

they submit final project reports.
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5.4 EVALUATION METHODOLOGIES

The construction, modifications, and updates to the curriculum are based on workshops,

surveys, student evaluations and performance. The construction of the initial curriculum

vision is based on summaries of a series of workshops (the proceedings are now in press)

that included experts in the field of digital forensics. Findings and guidance gathered from

these workshops significantly added to the curriculum development process. An external

evaluation team was hired to conduct a formal evaluation of the initiative by providing:

1. Ongoing feedback to inform the implementation and delivery of the curriculum

2. Comprehensive assessment of program effectiveness and outcome attainment

Being responsive to the multiple groups of individuals involved with the initiative helps

to legitimize a diversity of perspectives and experiences and contribute to a comprehensive

understanding of the curriculum being developed. To that end, the evaluation design includes

both quantitative and qualitative methods developed in collaboration with the initiatives

leadership team.

Three student surveys were developed, which were distributed throughout the academic

semester. The initial paper-based survey is administered to registered students during the

first week of the course. Its purpose is to gather initial information about enrolled students,

including major, technical background, ethnicity, and gender. The second survey is admin-

istered mid-course and online after the midterm exam. This survey records how students

are experiencing the course. The third survey is an end course survey administered online

during the last week of class. Its aim is to gather information about students perspectives,

experiences, and suggestions. All surveys include multiple-choice questions whereby stu-

dents indicate their level of agreement with a statement on a scale from 1 to 5. Surveys also

included open-ended items, inviting students to include additional comments about specific

aspects of the course.

The evaluation team observed most of the lecture and lab sessions. The purpose of these

observations was to assess the delivery of the curriculum content, and students engagement

and experience with the course. Information related to the following categories was noted

during the observations:

1. Social or interpersonal setting: how groups and individuals were situated

2. Activities: a systematic description of activities and timeframes

3. Content: a description of resources and materials used and discussed

4. Interactions: a description of student-professor verbal and nonverbal interactions
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Group or individual interviews were conducted in the middle and at the end of the course

to explore students experiences, reactions to, and opinions on the course in detail. Each

group or individual interview involved a dialogue between students and one of the evaluators,

who prompted conversations about course-related topics. In an effort to maintain student

confidentiality and privacy, there were no members of the courses staff or instructors present

during the interviews.

5.5 RESULTS, OPPORTUNITIES, CHALLENGES

This project found Digital Forensics to be a complex curriculum to teach in a higher

education institution. This curriculum model and course outlines contribute to a stronger

basis for a standardized curriculum. The results are based on teaching the first course

twice and the second course once and the results are supplemented with evaluations, surveys

and exam results. Below is a summary of the projects findings so far, commenting on

opportunities to improve the curriculum, and outlining some challenges that remain.

5.5.1 Findings About Students

The program attracted students from various majors, including law, psychology, math,

computer engineering, and computer science. Perhaps unsurprisingly, a major problem with

designing a curriculum for multiple majors is that there was a wide difference in students

expectations. Students with a technical background desired to learn more about technical

topics, and typically they failed to understand the importance of non-technical topics. Stu-

dents with a non-technical background and interest tended to appreciate the course overall;

however, they struggled with the technical concepts and assignments of the course. The large

number of possible careers includes digital forensics analyst, examiner, practitioner, security

specialist, expert witness, security researcher, digital archivist, and fraud investigator added

to student expectations. We further display the findings of the students in Figures 5.1, 5.2.

5.5.2 Team Development of a Course

Lacking any individual with the full range of Digital Forensics expertise, the course se-

quence is team-taught. The project struggled to present a cohesive course and maintain

course integrity related to the differing approaches of the team. Multiple professors did

achieve the aim to provide students with a broader understanding of the topics presented.

However, many students failed to grasp all of the connections. The intention for the final
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Figure 5.1: Results from the End of the Year Survey for Digital Forensics 1 in Fall 2014

product is that one instructor will be able to teach all the materials. Part of this project

involves providing background material as a teaching aid.

5.5.3 Digital Forensics Theory and Practice

Approaching Digital Forensics education using a scientific approach requires evaluation

of methods and experimental results. However, scientifically evaluating Digital Forensics

methods and reasoning about that evidence using logic is immature in theory and in practice.

The project introduced a module in Digital Forensics 2 on Reasoning about Evidence with the

intention of promoting a more scientific approach to digital forensics research than was offered

in the introductory course. The following challenges resulted from this approach. First, the

time limitations of a 16-week course limited covering several topics in depth. Second, digital

forensics practitioners, educators, and researchers identified that a robust scientific basis for

the evaluative methods involved with digital forensics investigations was ongoing research.

The Scientific Working Group on Digital Evidence (SWGDE) [48], for instance, have released

several documents since 1999 concerning digital forensics standards, best practices, testing,

and validation processes, and these were considered in the development of our curriculum.
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Figure 5.2: Results from the End of the Year Survey for Digital Forensics 2 in Spring 2015

Additionally, in 2001, the U.S. National Institute of Standards and Technology (NIST) [107]

began the Computer Forensic Tool Testing (CFTT) Project. It subsequently established

and implemented validation test protocols for several digital forensics tools. Moreover, DF2

includes a module entitled tool validation but remains challenging because tool evaluation

technologies are unavailable.

The first Digital Forensics Research Workshop (DFRWS 2011) initiated a gathering of over

50 researchers, investigators, and analysts. It aimed to establish a research community that

would apply the scientific method in finding focused near-term solutions that were based on

practitioner requirements. The community addressed future aims for developing the field

of digital forensics. The related curriculum emphasizes the need to bring rigorous scientific

methodological approaches to evidence evaluation. One example is fuzzy logic, a particular

form of reasoning about digital evidence. Fuzzy logic allows elements to be identified as true

or false to some degree. A fuzzy engine provides a solution to human errors (such as word

misspellings) that might skew the results of analysis by selecting an acceptable degree of

fuzziness. A fuzzy expert system regards a misspelled or mistaken word as input and then

finds relationships for it with other similar words.
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5.5.4 Project Opportunities

The Digital Forensics 2 advanced course implements a semester-long research project. This

provided the students with opportunities to explore different concerns of Digital Forensics.

For example, several students decided to develop a case study as their research project

that will be available to other institutions to be used in future work and may also be

incorporated into the next iteration of the introductory course, Digital Forensics 1. A group

interested in social media investigated the amount of shared information by considering

application programming interfaces that could potentially be used to extract data about

individuals. The project involves the creation of a correlation engine that would be able

to demonstrate a connection between application programming interfaces and the ability

to extract information about an individual from an online environment. Another group

of students introduced digital forensics to high school students. Modeled on their own

abbreviated curriculum they also created challenge exercises for the high school students.

The goal of the students is to produce outcomes of their project that will contribute to

outreach programs that engage students of all ages in digital forensics education. Yet another

research group designed a lab for students to examine Mac operating system malware and

relevant legal aspects of an investigation.

5.5.5 The Laboratory Environment: Results and Challenges

ISLET is an orchestration tool for education and training built around Docker. It pro-

vides custom interactive command-line environments quickly to a user via a shell. It solves

a number of the problems associated with virtual machine and shared Unix system training,

including the deployment and distribution of large virtual machine files, scalability, mutabil-

ity of training materials, and account management. Its components include a user interface,

an account manager, a container maintenace process, and a deployment configuration. It

reduces the administrative burden of creating and distributing training images to a simple

process that involves creation of a Docker image and an ISLET configuration file.

Limitations of ISLET include the fact that is it bound to a system supporting Docker,

currently a 64-bit GNU/Linux machine, which means that software for other operating

systems is not supported. However, it is anticipated that future work will enable support

for FreeBSD using ZFS and jails, and other GNU/Linux-based userland container runtimes,

to avoid solely relying on Docker. Also, ISLET excels at training in which users are given

an interactive command-line shell or interface from which they can gain practical experience

with software. However, although it can support X11 applications and provider user-facing
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services such as web server training from containers, support is limited, and at this time

these features are experimental.

The collaborative virtual lab environment also led to some challenges. It requires students

to be knowledgeable about the Linux command-line, which is a challenge for many non-

technical students. This will hopefully be overcome in the future by designing a laboratory

assignment based on an introduction to the Linux command-line.

5.5.6 Evaluation Methodology Challenges

The evaluation progressed with some challenges. As the aim of the evaluation is to provide

ongoing feedback to the initiatives leadership team, a mid-course survey is administered to

students during each course. Much of the feedback provided by students is related to the

structural organization of the course, which is not feasible to change in the middle of the

semester. Another challenge is the variability in student participation. Encouraging students

to participate in surveys and interviews was difficult as students participation declines closer

to the end of the semester. Different strategies are being explored to maintain and encourage

student participation. Another challenge is that the data gathered are representative of the

perspectives and experiences of students enrolled at a particular university. As an alpha

version of the curriculum is in the process of being distributed, the goal is to also gather data

from institutions adopting the curriculum. Gathering a broad range of data will potentially

provide support for the initiatives goal of the curriculums acceptance as a national standard.

The course enrolls students from various majors, including law, psychology, math, com-

puter engineering, and computer science. Conducting course and lab session observations

yielded a significant amount of insight about the curriculum being implemented. First, these

observations offered an immediate impression of how the courses are progressing, which

informs and further enlightens data gathered from surveys and interviews. For instance,

during the evaluation of the introductory course in the fall of 2014, it was observed that

students struggled with answering and finishing lab assignments. Students were asked in an

open-ended question format about the pace and structure of the lab, especially if they were

dissatisfied with the lab section. Second, conducting observations allowed for the evaluation

team to further understand the curriculum because it was situated within a classroom en-

vironment. Observing the curriculums implementation and development progress revealed

how it was being structured, delivered and received by students. Third, classroom pres-

ence, for the purposes of observation, helped to build rapport between the evaluation team

and enrolled students. Conducting observations is time consuming, but it is an important

method as it helps to situate the program overall.
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This proposed project offers a standardized multidisciplinary curriculum model for digital

forensics education. It is being made available to institutions for adoption. This project

transformed the multidisciplinary undergraduate education at a Midwest university in the

United States by institutionalizing this program and the collaborations upon which it is

built. In accordance with the multidisciplinary nature of the field of digital forensics, the

curriculum development team included domain experts in computer security, computer net-

works, law, civil and criminal justice, fraud investigation, and psychology. The modular

approach to curriculum development is organized by a three-course digital forensics educa-

tion sequence, and the modules are combined to form a coherent narrative, thus exposing

students to multiple perspectives on digital forensics. The curriculum package provides a

strong theoretical foundation for the techniques learned by the students as well as an array

of studies in fields related to digital forensics. Hopefully this paper will initiate a con-

versation with the international community, note that standards need to continue to be

developed for digital forensics curriculum, and recognize the multidisciplinary need for this

field of study. This project, curriculum, and course outline are available on the website

http://publish.illinois.edu/digital-forensics/ and a content package containing

all of these materials have been to the schools listed in Table 5.1.
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Wilmington University Bellevue University
Mount Hood Community College Air Force Institute of Technology
Excelsing College San Bernardino Valley College
University of South Alabama University of Houston at Clear Lake
National Security Agency (NSA) Jackson State Community College
Liberty University Radford University
Saint Martin's University Fairleigh Dickinson University
University of Maryland University College Eastern Washington University
Ivy Tech Community College Mery College
Tulse Technology Center Fordham University
California University of Pennsylvania Iowa State University
Washington University in St. Louis Daytona State University
Rochester Institute of Technology Purdue University
Moraine Valley Commmunity College University of Central Florida
Champlain Community College University of Central Oklahoma
Oregon State University University of Nebraska at Omaha
Florida Institute of Technology Ivy Tech Community College of Indiana
University of Kansas University of Texas at San Antonio
Marshall University Roane State Community College
Delta College

Table 5.1: The different community colleges, colleges & universities in use of the digital
forensics curriculum.
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CHAPTER 6: THE SCIENTIFIC METHOD AND THE DIGITAL
FORENSIC PROCESS

There is great difficulty in analyzing digital evidence, this is only further complicated

by failures in the investigative mindset. Failures in the criminal investigative process can

lead to unsolved crimes, unsuccessful prosecutions, unpunished offenders, and wrongful

convictions[108]. There are common failures that lead to errors in the reasoning process.

We will identify key areas of potential error in the digital forensic process.

6.1 THE FORENSIC PROCESS MODEL

Computer forensic methodologies consist of these main components, also known as the

three As [109].

• Acquisition: The evidence while ensuring that the integrity is preserved

• Authentication: The validity of the extracted data, which involves making sure that it

is as valid as the original

• Analysis: The data while keeping its integrity

There are many process models that combine the three As [110] including the Forensics

Process Model [2], the Abstract Digital Forensics Model [111] and the Integrated Digital

Investigation Model [112].

6.2 INVESTIGATIVE FAILURES

Individuals view the world differently and these differences a creates mindsets. These

mindsets are quick to form and hard to change. These mindsets are dangerous in the

generating of a hypothesis. A hypothesis is generated based on mindset and not entirely

on the evidence. This bias can lead to serious investigative failures. Tunnel vision develops

from a narrow focus. Tunnel vision results in the elimination of hypothesis without thorough

vetting. Tunnel version can allow to go down a mistaken course. People estimate the

likelihood of an event by recalling a comparable incident and assuming the likelihood of the

two are similar. This heuristic is partly prompted by the urge to categorize everything. The

similarity in one aspect, however, does not imply similarity in others [108].

Perceptions of cause and effect are susceptible to several mental biases. Crime linkage

could be undermined if an investigator fails to differentiate internal (psychological) from ex-

ternal (situation) causes of behavior when examining offender modus operandi. The identity
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fallacy holds that big events must have big causes. Illusory correlations can prove misleading

on several levels. Events may appear correlated when, in fact, they are not. And, even, if

they are connected, correlation does not always equal causation. The relationship may be

spurious or caused by an intervening event. The relationship may be spurious or caused

by an intervening event. Confirmation bias constitutes a type of selective thinking whereby

individuals notice or search for evidence that confirms their theory while ignoring or refus-

ing to look for contradicting information. Efforts to only verify and not falsify a hypothesis

often fail. After all, a single item of refuting data (e.g., DNA exclusion) can outweigh a mass

of evidence against a suspect. The components of confirmation bias include failure to seek

evidence (e.g., a suspect’s alibi) that would disprove the theory, failure to use such infor-

mation if found, failure to consider alternative hypotheses, and failure to evaluate evidence

diagnostically. Investigators often fail to account for the absence of evidence, something that

can prove quite important under certain circumstances [108].

We hope to limit digital forensic investigative failures through the quantification of the

reasoning process. Reasoning begins with a hypothesis whose validity needs to be established.

The task then is to quantify the uncertainty in the hypothesis ascribed to corroborate and

collaborate multiple events that are relevant to the investigation. Give a list of hypotheses

sorted by confidence and annotated by digital evidential support for each hypothesis, it would

be very easy for a human analyst to decide which hypotheses deserve further investigation.

The key question then is how to calculate a hypothesis’ likelihood of being true based on

both the reasoning structure from which it is derived and the evidence that supports it.

There have been few attempts to achieve this goal specifically.

There exist fundamental flaws that currently hinder the development and establishment

of evidence analysis models. These flaws must be identified and understood to avoid the

possibility of injudicious assumptions resulting from the forensic process [17].

In graph theory, the degree of a vertex in a graph is the number of connections it has to

other vertices. The degree distribution is the probability distribution of the known degrees

over the entire graph. Centrality is an indicator of the most important vertices within a

graph. The concept of centrality aims to quantify the influence of a vertex in a graph.

We also rely on link analysis to aid in the examination process. Link analysis is a data

analysis technique used to evaluate relationships between vertices. Relationships may be

identified among various types of vertices, including organizations, people, and transaction.

Link analysis has been used for investigation of criminal activity, computer security analysis,

search engine optimization, market research, medical research, and art.

Previous digital forensic methods fail to find information that is anomalous or even slightly

altered [4]. Graph theory is able to determine possible correlations among the evidence. This
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is achieved through analysis of the graphs. As we analyze the graph, we are able to interpret

more from the evidence.

6.3 SCIENTIFIC METHOD

The scientific method is used as a process to formulate and test hypotheses. The general

process has four phases.

• Observation: information and resources relevant to the investigation are collected and

observed.

• Hypothesis formulation: based on the observations, hypotheses are formulated about

the system. Different levels of hypotheses will be formulated over the course of the

investigation.

• Evaluate Hypotheses: To support or refute a hypothesis, predictions about what evi-

dence will exist are made.

• Report Results: Based on the evidence predictions, tests and searches are conducted.

These phases can be see in Figure 6.1.

6.3.1 Observe Evidence

In the observation phase, an investigator, or program, makes observations about states

and events for the purpose of formulating a hypothesis. Sources of observations include data

defined in the inferred history and output from analysis tool. Some examples are given here:

The list of running processes is observed using the ps tool The list of files in a directory is

observed using a specialized investigation tool The contents of an e-mail are observed in an

e-mail client This phase is equivalent to an investigator looking at a physical crime scene.

In a digital crime scene, the investigator must rely on hardware and software to observe

data [10].

In both the physical and digital world, there are different types of observations. A direct

observation occurs when a component is aware of something based on its sense (i.e. it is the

observer). An indirect observation occurs when a component is aware of something based on

the observations of other components. A component can be software, hardware, or a person

and sense for hardware or software include any form of data input [10].

For example, an investigator can directly observe the state of a monitor because he can

see it, but he cannot directly observe the digital state of a hard disk sector. When a
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Figure 6.1: The Scientific Method

program displays the contents of a hard disk to the screen, the investigator is making a

direct observation of the monitor and an indirect observation of the hard disk sector. An

indirect observation would also occur if someone told the investigator about the contents of

the sector [10].

In general, the investigator trusts direct observations over indirect observations because

he trusts his sense more than other components or people. Trust is a belief in the accuracy

and reliability of a component. Because indirectly observed data are not fact, the accuracy

of the observed data should be tested when the data are used to formulate hypotheses. The

amount of testing will depend on how much trust has been placed in each component. If

the software and hardware being used to indirectly observe the state of a hard disk sector

have reliably produced accurate data in the past then the investigator may not test each

observation. If the software is new and has not been reliably used or if it is from an untrusted

system then the investigator will be more likely to test the observation.

39



In current systems, all important observations that an investigator makes of digital states

are indirect because the state of output controllers are not frequently of direct relevance to

him. This means that he must evaluate the accuracy of nearly every observation. Consider

if he used an automated analysis that formulates and test hypotheses about various states

and events. The program stores the data that have been defined in the inferred history and

displays the results [10].

A body of evidence can be graphically represented using a graph G = (V,E) where V is

a set of vertices E is a set of directed edges. Each component is a vertex and an edge exists

from vertex a to vertex b if information flows from a to b. Component b can directly observe

component a if a line exists from a to b. Component b can directly observe component a if

a line exists from a to b. Component c can indirectly observe component a if a path exists

from a to c and c cannot directly observe a [10].

Graph theory is the study of graphs. Graphs are a mathematical representation of a

network used to model pairwise relations between objects. A graph G consists of a set of

nodes V that are representative of objects, with certain pairs of these nodes connected by

edges E. The edges determine the relationship between the nodes. A graph may be either

directed or undirected. An undirected graph means there is no distinction between two

nodes associated with each edge. A directed graph means that its edges may be directed

from one node to another, this relationship is better defined and can represent many ideas

such as node A happened before node B, node A is parent of node B and etc. An example

of a directed graph is shown in Figure 6.2.

We rely on Hyperlink-Induced Topic Search (HITS) in order to determine which vertices

are important to other vertices. We believe that in determining these vertices will allow

inferring the high-level actions taken by the user [113].

HITS was originally designed as a method of filtering results from web page search engines

in order to identify results most relevant to a user query. The output of this algorithm is

two scores for each vertex. The authority value, which estimates the value of the vertex, and

its hub value, which estimates the value by the links to other vertices. We focus on the hub

value in order to understand the high-level actions occurring in the system. A high-level

action is an activity that either the system or user can partake. This includes the opening

of a web browser, a system update or using a specific application. These high-level actions

typically lead to other more specific actions such as sending an email, creating a file or

removing unnecessary memory [113].

PageRank is a link analysis algorithm that computes the ranking of the vertices in the

graph based on the structure of the incoming edges. PageRank was first developed as a

method for computing a ranking for every web page based on the graph of the web. The
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Figure 6.2: A Directed Graph

rank value indicates the importance of a particular page. We employ this concept to our

case study. We believe this ranking will identify key pieces of evidence from our memory

image that we should further examine [113].

6.4 FORMULATE HYPOTHESES

This phase is where the investigator or program interprets the data observed in the pre-

vious phase and formulates hypotheses. In the formal approach, the hypotheses are about

the variables in the inferred history, occurrence of events in the system [10].

Hypotheses that define variables in the model must be formulated in a specific order. For
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example, before hypotheses are made about the contents of a file, hypotheses about the

existence of the file must be formulated and tested [10].

In practice, hypotheses are not always about specific events and specific times. For ex-

ample, based on the observation of a file and the programs that are installed on the system,

a possible hypothesis is that either program X or Y was used to download the file from

the Internet. The investigator formulated this hypothesis based on knowledge that both

programs are capable of downloading files from the Internet, but he has not enumerated all

possible events for each program. Another general hypothesis is that the system is behaving

strangely because it was compromised. The tests for this hypothesis will require additional

hypotheses about specific types of attack events [10].

To be a scientific process, the hypotheses must be capable of being refuted. If a hypothesis

is supported and not refuted, then the relevant data are added to the inferred history. If a

hypothesis is neither supported or refuted, than an assumption can be made that it is true,

but the investigator must be capable of justifying the assumption [10].

If a hypothesis is refuted based on data in the inferred history, then it does not mean that

events and states in the hypothesis did not occur. It means only that they did not occur in

that inferred history, but that inferred history may not be correct.

In theory, hypotheses could be formulated and tested for the occurrence of every known

event at each time and every program on the system could be analyzed to determine which

complex events could occur. In practice, that would be impossible and instead hypothe-

ses and predictions are frequently made based on a combination of system and incident

characteristics [10].

Complex arguments ought to be separated in small ones. The synthesis is the composition

of the partial solutions of the decomposed problem. In the context of forensic investigations

solving a problem should be interpreted as collecting information to prove or disprove the

occurrence of an event in the real world. In other words, in order to be able to draw

conclusive assessment about a case, detectives need to find significant tests to evaluate

the simplest hypotheses. They have to analyze the scene of the crime in order to find

elements that may enable them to estimate their rational belief in hypotheses. In other

words, detectives perform tests aimed at collecting data that are relevant (i.e., provide

information about discrimination between a hypothesis and its negation) in the assessment

of a given hypotheses. We denote mapping between evidence set Ei and hypothesis H as

H → E1, E2, E3, ..., En [113].

Graph traversal is the process of visiting each vertex in a graph. There are multiple

algorithms to aid in graph traversal the shortest path problem. The shortest path problem

deals with the problem of finding a path between two nodes in a graph such that the sum
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of the weights of its constituent edges is minimized [113].

The problem of finding the shortest path between two intersections on a road map (the

graph’s nodes correspond to intersections and the edges correspond to road segments, each

weighted by the length of its road segments). The shortest problem can be defined for graphs

whether undirected or directed. We will now evaluate how each of these elements of graph

theory can contribute to a digital forensic investigation [113].

System characteristics are properties of hardware and software that make some states

events more common for some systems than others. These characteristics allow us to for-

mulate hypotheses based on only the type of software and hardware being investigated.

Frequently, these hypotheses are based on the assumption that the hardware and software

have not been modified to make them operate differently from similar hardware and soft-

ware. For example, based on the type of OS, hypotheses about the file system types can be

formulated [10].

Incident characteristics are the general properties of a crime or incident and are system

independent. These characteristics may allow the investigator to conduct searches for specific

types of evidence using only knowledge about the type of incident. Consider an investigation

where a computer is suspected of being used to formulated that a web browser was used to

download the files. Next, the system characteristics for the web browsers that are installed

are used to predict where evidence may exist. Other examples of incident characteristics are

keywords and hash databases. The one-way hash of files that are associated with a type of

incident can be calculated, saved, and searched for subsequent investigations [10].

6.5 EVALUATE & REEVALUATE HYPOTHESES

Each hypothesis must be tested and that if it identifies evidence that, if it exists, would

support or refute a hypothesis [10].

Based on the test results, new predictions may be made and hypotheses may be re-

vised [10].

If the test supports the hypothesis then the investigator, or automated analysis program,

can choose to define the relevant functions and sets in the inferred history. He may also

choose to conduct more tests and obtain more support before defining the sets and func-

tions [10].

If the test refutes a hypothesis then the data used in the test will dictate what actions

the investigator can perform next. If the test relied on data from the inferred history, then

the refuted hypothesis cannot be used to define sets and functions in that inferred history.

If the data used to refute the hypothesis was defined based on a direct observation, such as
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the state of the video card, then the hypothesis that was tested must be revised or no longer

considered because it conflicts with a direct observation, which the investigator will likely

have a high amount of trust in. If the data used to refute the hypothesis was defined based

on another hypothesis, then the investigator can choose to define a new inferred history [10].

If a hypothesis is refuted based on data that is not in the inferred history, then the relia-

bility and accuracy of the test data should also be considered before refuting the hypothesis.

For example, if a tool is executed on the system could have a rootkit or other malicious soft-

ware that will produce incorrect data. The tool may also be faulty and produce incorrect

data. The tool may also be faulty and produce inaccurate data [10].

6.6 REPORT RESULTS

In order to complete the scientific method, an investigator must communicate the results.

The resulting confidence score from our evaluation will provide as a baseline to present re-

sults. The likelihood ratio formulate represents an economic and intuitive way the hypotheses

about the probabilistic relations existing among the variables of interest [114].
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CHAPTER 7: DISCUSSION

This chapter focuses on applying my model to a hypothetical court case. This hypothet-

ical court case is based on State of Connecticut v. Julie Amero. State of Connecticut v.

Julie Amero exposes the potential impact of digital forensics on an individual’s life. Julie

Amero was a substitute teacher in a seventh grade classroom on October 19th, 2004. She

returned from the hallway when she found two students browsing a hair styling website [18].

Afterwards, the computer browser began continuously opening pop-ups with pornographic

content. She was told not to turn off the computer, and was unaware she could have turned

off the computer monitor. The students were exposed to the pornography [115]. Amero

was convicted on four charges of Risk of Injury to a Child, which carried up to a 40-year

sentence [116]. The primary evidence admitted by the court was the forensic duplicate of the

hard drive on the computer in question. While the forensic investigator did not use industry

standards to duplicate the hard drive, the information was used in the investigation [115].

The evidence showed Internet history of pornographic links that indicated the user delib-

erately went to those sites [117]. The defense evidence showed that anti-virus definitions

were not updated regularly and at the time were at least three months out-of-date. No

antispwayre or client firewall was installed and the school’s content filter expired [115].

The examination of State of Connecticut v. Julie Amero provides insight into how a

general lack of understanding of digital evidence can cause an Innocent defendant to be

wrongfully convicted. Amero was convicted on four charges of Risk of Injury to a Child.

Following delays in sentencing, a new trial was granted when the conviction was overturned

on appeal. Years later, Amero plead guilty to disorderly conduct, her teaching license was

revoked, and she paid a $100 fine [118].

There is a gap in the legal community’s understanding o digital evidence. The failure of

providing sufficient education in digital evidence results in serious miscarriages of Justice

and disruption of the legal system. The innocent wrongly convicted and incarcerated; those

deserving of punishment get away with crimes. Society as whole is better served by increasing

the understanding of digital evidence.

This section will serve as a platform for discussion on the usage of the technique in a

criminal court system. Where the prosecution and defense will both have an opportunity

to use my technique to present to the jury a story of the digital evidence. This section will

shine a light on he current problems of the digital forensic process, how the problems affect

the legal system, and the potential of the technique to resolve these problems.
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7.1 THE CASE STUDY

A substitute teacher returned from the hallway when she found two students browsing

the internet. When the teacher began to restart the lesson the computer screen she was

projecting to the students began to continuously opening pop-ups with pornographic content.

The substitute teacher was arrested on charges of Risk of Injury to a Child. The police called

in a digital forensic examiner. The digital forensic examiner is able to obtain a memory image

from the computer. The substitute teacher hires his own lawyer and digital forensic expert.

In the initial investigation the police will obtain the school’s computer and deliver to their

corresponding digital forensic examiner. The digital forensic examiner will obtain a memory

image from the school’s computer. The digital forensic examiner will apply Sherlock to

obtain a conclusion from this evidence.

In the observation of evidence the digital forensic examiner obtains an image shown in

Figure 7.1. This figure is overwhelmed with noise. They would find it difficult to further

understand what is occurring in this graph. In order to reduce this noise we rely on a method

of differential forensic analysis known as node edge coupling. Differential forensic analysis

compares any pair of digital artifacts and reports the differences between them. Focusing

on the changes allows the examiner to reduce the amount of information that needs to be

examined, while simultaneously focusing on the changes that are thought to be the result of

a subject’s activities. Differential analysis is widely practiced today [87]. The result of the

differential analysis is shown in Figure 7.2.

Node ID Hub Value
firefox.exe 0.8090
paint.exe 0.1909
explorer.exe 0.7.1993e-09
23.209.190.81 0.0
202.209.188.81 0.0
202.209.133.81 0.0
103.41.299.18 0.0
192.168.1.255 0.0
54.201.188.11 0.0

Table 7.1: The hub values of figure 7.2.

For further observation, we rely on our two link analysis algorithms. The HITs to de-

termine pieces of evidence that provides us with overall knowledge of what has occurred in

the system. Table 7.1 shows the results from the HITs algorithm. We are shown a number

of processes that have an integral part to the events in the system. There are three nodes
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with hub values paint.exe, firefox.exe and explorer.exe. The paint.exe process provides ac-

cess to the paint the application. The firefox.exe process represents the Mozilla Firefox web

browser and the explorer.exe process provides a graphical user interface used to interact with

the windows operating system. The next step is to look at the results from the PageRank

algorithm to determine if there are other pieces of evidence to investigate.

The PageRank algorithm leads us to nodes that are an important part of our evidence

graph. Showing us key pieces of evidence to investigate for this case. The results are shown

in Table 7.2.

Node ID PageRank Value
firefox.exe 0.1725
192.168.1.255 0.1076
103.41.299.18 0.1076
202.209.133.81 0.1076
paint.exe 0.1067
202.209.188.81 0.1067
23.209.190.81 0.1067
54.201.188.11 0.1067
explorer.exe 0.0774

Table 7.2: The page rank values of figure 7.2.

As shown in Table 7.2, firefox.exe is an important node. This makes sense from the

evidence provided by the examiner is able to show that a user used Mozilla Firefox to surf

the web. The next node 202.209.133.81 is a network connection made by paint.exe. This is

interesting as the case report does not report on the usage of the paint application. It is also

interesting to note that paint was making multiple network connections. This is abnormal

behavior for this application. Next, the examiner begins to formulate possible hypotheses.

The initial hypothesis is if the computer displayed any pornographic pop ups. This hy-

pothesis is also backed up by a set of evidence E.

Hypothesis H1: Computer displayed pornographic pop ups

Evidence 1 E1: explorer.exe

Evidence 2 E2: firefox.exe

Evidence 3 E3: 23.209.190.81

To note that the DNS resolution for the IP address 23.209.190.81 resolves to a pornographic
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webpage. Next in order to evaluate this hypothesis a Bayesian network. The result of the

evaluation is

Yes No Maybe
0.59 0.05 0.17

Table 7.3: The results of evaluation.

The examiner is presented with a high probability of 59% of the display of popups. This

evidence is presented to the defense and another forensic examiner. That is able to examine

the evidence for themselves. The defense’s digital forensic examiner examines the evidence

for himself and is able to see why the initial examiner concluded H1 from the evidence

E = E1, E2, E3. However, he observes that the paint application was also making connec-

tions to malicious popups. This is abnormal behavior for this application. This examiner

determines a different hypothesis from the evidence graph.

Hypothesis H2: Malware displayed pornographic pop ups

Sub hypothesis H1
2 : User went to a malicious web page

Evidence 1 E1: explorer.exe

Evidence 2 E2: firefox.exe

Evidence 3 E3: 23.209.190.81

Sub hypothesis H2
2 : Drive-by-Download of fake paint application

Evidence 2 E1: firefox.exe

Evidence 4 E4: paint.exe

Evidence 5 E5: 21.524.301.97

Evidence 6 E6: 103.41.299.18

Evidence 7 E7: 202.209.18.81

The defense’s examiner further corroborates the witness statement of students web surf-

ing. This allows the examiner to add the fact that a user was surfing the web. The defense

examiner also decides to look for corroboration that the paint.exe is create by malware. He

is able to find and dissect the malware to determine that it creates a paint.exe process to

access the malicious sites shown to the children and add this as a fact in the evaluation. The

results of the defense’s evaluation is shown in Table 7.4.
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Yes No Maybe
0.77 0.0 0.0

Table 7.4: The results of the evaluation.

The results from the separate evaluations are able to be detailed in front of the jury.

The graphical visualizations allow the evidence to exist in a narrative sequence to allow for

storytelling to affect comprehension of the evidence [119]. The jury is able to rely on the

confidence scores help them make assessments about the data. Previously the statistical

reasoning surrounding the evaluations of digital evidence is casual and intuitive, rather than

explicit and rigorous. This methods allows for the continual refinement and reexamination

of hypotheses. Bayes’ Theorem provides a means of updating prior probability estimates

in light of new information. Prior probabilities are contained in the prior odds ratio, while

the diagnostic or probative value of the new information is capture in the likelihood ratio.

The Bayesian approach not only can clarify one’s thinking about evidence. From the usage

of Bayes’ Theorem we can see what information about the evidence is needed, where the

absence of data is replaced by assumptions of witnesses or fact finders, and ultimately, what

impact the evidence should have on the established preexisting beliefs. The decision-maker

has helpful guide posts for updating beliefs, and avoids falling victim to many biases [120].

Without the usage of Bayesian analysis, the digital forensic examiner would be able to

testify about why their hypothesis is true and debate with the defense in front of the court.

However, it would be duty of jury to determine the validity of the facts, and the validity of

the testimony.

Bayes’ theorem approach identifies the accuracy of the tests in practice, combining the

inherent properties of the test with the imperfections of the humans and the tools performing

the tests. That, rather than the theoretical best performance, is what a fact finder needs

to know. The results in terms of the likelihood ratio associated with any particular test

or series of tests makes it difficult to confidently identify the likelihood of an error. The

testimony some analysts give is replete with invisible assumptions and guesswork. These

assumptions and guesses must be returned to the law’s control. If hard data does not exists,

then the expert may not be in a better position to guess than anyone else [120].

49



Figure 7.1: The initial graph obtain from the evidence.
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Figure 7.2: The resulting evidence graph after differential analysis.
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CHAPTER 8: CASE STUDY EVALUATIONS

We investigate several cases in order to explore the ability of this techniques to facilitate

digital forensic investigations. Each of these case studies vary in difficulty in terms of the

ability of investigation in order to show both the advantages and disadvantages of this

technique. We focus on a specific type of forensic analysis. Memory forensics is the forensic

analysis of a computer’s memory dump (RAM).

Memory forensics is the branch of digital forensics exploring the contents of a machines

volatile memory (typically DRAM and SRAM). There is a wealth of information in volatile

memory, ranging from modifications to kernel data structures, to network sockets, to encryp-

tion keys which could unlock otherwise useless disks. The analysis of a dump of physical

memory can be a daunting process [121]. Comprehensive and unique information about a

system’s state can be extracted from an image of its main memory. In addition to the current

state, it is possible to derive alot of information about a system’s past from the memory

dump. Among other things there is time stamped information about processes, threads and

network activity [122].

In order to analyze the contents of memory, first and foremost, one needs a source of

memory dumps. Obviously, we had quite a number of options available to use to capture

memory. To test and run our techniques, we created a variety of use case scenarios created

by myself as well as digital forensic challenges created by the digital forensics communities.

We chose the software VirtualBox [123] to virtualize our system and collect memory dumps.

Like most virtualization setups ti allows for a variety of useful functionalities, including

snapshots, memory y capture and more. VirtualBox was selected over a handful of other

virtualization options due to it compatibility, ease of memory capture and ease of use.

Volatility is an advanced memory forensic framework which analyzes RAM dumps from

32- and 64-bit windows, linux, mac and android systems. Volatility’s modular design design

allows it to easily support new operating systems and architectures. The extraction tech-

niques are performed completely independent of the system being investigated but offers

visibility into the runtime state of the system [67]. This technique focuses on exploring the

relationships of the data structures shown in memory.

8.1 CASE STUDY: DROPBOX PROBLEMS

We demonstrate the potential of this analysis with a case study. In our case study, a

company has requested forensic analysis on an employees computer. One of its employees
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found a PDF file on the company shared Dropbox account. Upon opening the file the

employee did not seem to notice anything, however, the IT department has verified that the

employee’s credentials have been stolen.

We first define the nodes and links of our graph. We are given a memory image from

the employees Windows 7 virtual machine. Memory images contain a great deal of volatile

evidence. We determine our nodes to be both processes and network connections. The links

are exemplified by processes that fork other processes or make network connections. This

forms a directed graph as a parent process initializes a child process or network connections.

The first step involved in the scientific method is the observation of the evidence. The

analyst must observe the evidence. In order to observe our evidence, in this case, we build

our graph. The graph-based representation of our evidence is shown in Figure A.1.

We are inundated with evidence, however, not all of the evidence is important to our

case. We rely on differential analysis to remove the noise from Figure A.1. We are able to

accomplish this by create a graph based on a clean Window 7 machine. Then, we perform

node-edge coupling in order to remove the nodes and edges from the graph that are routine

functions in Windows 7 machines, which leaves the user related activities that are important

to the case. We are presented with a new evidence graph shown in Figure A.2.

Next, we rely on our two previous link analysis algorithms to make more observations.

We use HITs to determine pieces of evidence that provide us with overall knowledge of

what has occurred in the system. Table A.1 shows our results from the HITS algorithm.

We are shown a number of processes that have integral parts of the routine operating of a

Windows 7 operating system. The services.exe correlates to the Services Control Manager,

which is responsible for running, ending, and interacting with the system services. The

svchost.exe is a system process that hosts multiple Windows services and is essential in the

implementation of shared service processes. The wininit.exe is the Windows Initialize is a

core system process that aids in the startup of the operating system. The System is a system

process that is responsible for the system memory and compressed memory. The lsass.exe

generates a users access token, which is used to launch the initial shell. The VboxService.exe

is required for the guest services of VirtualBox to work properly. The WmiPrvSE.exe is a

component that provides management information and control in an enterprise environment.

These processes are established hub operating within the system, they all are important in

starting up other processes and connections. We are also able to identify three other hubs

firefox.exe, explorer.exe, and AcroRd32.exe. The explorer.exe process provides a graphical

interface you use to interact with most of Windows. From here we infer that the user relied

on the graphical user interface in order to interact with the computer. The firefox.exe process

represents that the Mozilla Firefox web browser available for surfing the web. We are able
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to infer that there was an activity involving web surfing activity. Lastly, the AcroRd32.exe

process that runs the Adobe Reader, typically to use to view PDF files. We infer that the

user opens a PDF file. This is in line with information we received about the case. The next

step is we rely on the PageRank algorithm to determine if there are other pieces of evidence

we should investigate. TableA.2 shows our results from the PageRank algorithm.

As shown in Table A.2, we receive a ranking of pieces of evidence. Some pieces were all

also identified as a hub, explorer.exe, and firefox.exe. We then are shown another address

192.168.1.115. This address is unknown to us and warrants further investigation. When

we look at the graph and see that the AcroRd32.exe makes the connection to the unknown

address. This is interesting as this is not within the norm for the AcroRd32.exe process.

Now that we have made some observation about the evidence. Next, we begin to formulate

possible hypotheses.

In order to formulate valid hypotheses, we rely on graph traversal. Graph traversal is the

process of visiting each vertex in a graph. In order for a hypothesis to be valid, we rely on

a mapping between a set of evidence E, and hypothesis H as H → E1, E2, E3, ..., En. From

our case study, we identified an unknown address. This makes us suspicious that the user

had a malicious PDF file that made a network connection to another machine. The goal

would be then to find a path from explorer.exe to 192.168.1.115. The corresponding path is

explorer.exe - AcroRd32.exe - 192.168.1.115. From our prior knowledge of the case, we know

that the employee found the PDF on a company shared Dropbox folder. We can see that

the employee accesses firefox.exe and we can assume downloaded the PDF. After opening

the file with Adobe Reader, we determine a malicious course of action through the direct

access to a network connection by Adobe Reader. We have successfully used elements of

graph theory to provide a logical view of events from the evidence as well as determine a

valid hypothesis. The next step is to evaluate our hypothesis.

Stemming from our case study hypothesis H is the root node of the Bayesian network.

The root node does not have a parent node, its prior probabilities are unconditional. To

begin with, the probabilities of H are evenly distributed among its three states, i.e., P (H)

(0.333, 0.333, 0.333).

Hypothesis H: Employee downloaded a PDF from Dropbox, the PDF made an unwarranted

network connection and ran a keylogger.

Evidence 1 E1: explorer.exe

Evidence 2 E2: firefox.exe
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Evidence 3 E3: Dropbox

Evidence 4 E4: AcroRd32.exe

Evidence 5 E5: 192.168.1.115

Evidence 6 E6: notepad.exe

H1: Downloaded PDF from Dropbox: E1 → E2 → E3

H2: PDF made unwarranted network connection: E1 → E4 → E5

H3: PDF ran keylogger: E1 → E4 → E6

Items of digital evidence correspond to past digital events (or posterior evidence) that

can be used to support or refute the hypothesis H. One of the main challenges in ap-

plying a Bayesian network to evaluate evidence is assigning probability values of posterior

evidence. This is because the assignments are usually based on subjective personal beliefs.

Although the personal beliefs of a digital forensic analyst are assumed to arise from pro-

fessional knowledge and experience, there are no means to determine whether they truly

represent the accepted views of the digital forensic discipline, let alone whether the proba-

bility values assigned to posterior evidence are, in fact accurate.

To enhance the reliability and accuracy of the probability assignments for posterior evi-

dence, we attempted to use objective probability assignments obtained through the proba-

bility mass function. The probability mass function is a function that gives the probability

of a discrete random variable is exactly equal to some value. In the evidentiary context,

a higher probability is assigned to pieces of evidence which is better supported by other

pieces of evidence. We are able to determine the probability mass function with the degree

distribution of our evidence graph in Figure A.2. Table A.3 and Table A.4 shown both the

degree distribution and the results of the probabilistic mass function from the evidence chain

of our hypothesis.

In forensic cases, it is necessary to account for 0 or 1 facts of the case. This happens when

an entire file is found or the investigating the effects of malware on the system. This, as

shown above, leads to changes in our results of yes and no and only slightly affects the maybe

depending on the importance of the evidence. Now, that we have results, the next to report

them. In this case, we can apply 1 to the fact of the keylogger as after further evaluation

of the evidence the malware for the keylogger was found. The results of the evaluation are

shown in Table A.5.
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8.2 CASE STUDY: BANKING TROUBLES

In this case study, from Honeynet Project: Banking Troubles [124]. A company X has

contacted an digital examiner to perform forensics work on a recent incident that occurred.

One of their employees had received an email from a fellow co-worker that pointed to a PDF

file. Upon opening, the employee did not seem to notice anything, however, recently they

have had unusual activity in their bank account. Company X was able to obtain a memory

image of the employee’s virtual machine upon suspected infection. Company X wishes you

to analyze the virtual memory and report on any suspected activities found.

The EPROCESS structure is the kernel’s representation of a process object. This contains

information about both the parent process of each process object. The relationship between

a parent process and child process, is that the parent process forks a newly created process

known as the child process. The operating system kernel identifies each process by its

process identifier. We first define the vertices and edges of our graph. We are given a

memory image from a Windows XP SP2 x86 as our sole source of evidence. Memory images

contain a great deal of volatile evidence. We determine our vertices to be both processes and

network connections. The edges are exemplified by processes that fork other processes or

make network connections. This forms a directed graph as a parent process initializes a child

process or network connection. We begin by building the a graph focused on the relationships

between the parent process and child process. The pictorial representation of the process

structure in this memory image provides us with information shown in Figure B.1. We

are presented with two subgraphs. Our initial subgraph appears to show routine computer

activity as shown in Figure B.3. In Figure B.2 we see a variety of nodes that pertain to our

case. To further observe the evidence we rely on HITs in order to determine which vertices

are important to other nodes. The results of running this link analysis algorithm will allow

inferring the actions taken.

Because we decided that one subgraph was of the most importance to us based on the

nodes in that graph we run HITs on that subgraph. explorer.exe has the highest hub values.

explorer.exe is the user shell, which is represented as the the Windows taskbar, desktop,

and other user interface features. This indicates that a user of this system relied on the

graphical user interface. firefox.exe has the second highest hub value. This indicates that

the user opened the web browser known as Mozilla Firefox indicating the user intended to

access the internet. This information aligns with the case study. As the employee stated

they received an email, we can see they relied on web browser to access their email this is

shown in Table B.1.

Next, we look at the results of PageRank. The highest ranking value shown in Table B.2
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is AcroRd32.exe. AcroRd32.exe is the executable file that runs the Adobe Reader, a tool

to view, print and share files in portable document format (PDF). This also aligns with the

information given about the case as the co-worked downloaded a PDF.

Now, that we have observed the evidence, I begin to formulate a hypothesis about what

has occurred. It appears that the employee downloaded a PDF base.

Hypothesis H: X accessed firefox.exe and downloaded a PDF which made a connection

to 212.150.164.20

E1: explorer

E2: firefox.exe

E3: AcroRd32.exe

E4: 212.150.164.20

H1: X access Firefox: E1 → E2 H2: PDF is downloaded: E2 → E3 H3: PDF connects to

212.150.164.20: E3 → E4

We determine the prior probability for each piece of evidence based on the results of the

probability mass function with results shown in Table B.3 and Table B.4. The results of the

evaluation is shown in Table B.5.

In order to highlight the potential of this method, we should the reevaluation of the

evidence after new evidence obtained. As shown in Figure B.4. Evidence was found that

connected the ip address to the user’s bank server. This update extends to changes in the

prior probability of each piece of evidence shown in Table B.6 and Table B.7. The updated

results are shown in Table B.8.

8.3 CASE STUDY: W32.CRIDEX

W32.Cridex is a worm, a type of malware that replicates and circulates without human

intervention. W32.Cridex can replicate and spread not only inside of your computer, but

also to other computers connected to your network. The W32.Cridex is extremely dangerous

because of its ability to spread quickly [125].

W32.Cridex infects your computer, it tries to create a copy of itself as a Windows exe-

cutable file. After infecting your computer, W32.Cridex will attempt to use your network to

connect with its source computer. The primary goal is to update itself and download other

malware programs and files [125].
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W.32 Cridex also attempts to infect the Windows Registry of your computer. The purpose

is to remain undetectable, protect other malicious programs its downloads, start up when

the computer boots, and ultimately take full control over your computer [125].

We review the implementation of this method on W32.Cridex. The analyst must observe

the evidence. The graph-based representation of our evidence is shown in Figure C.1. We

are presented with two graphs show in Figure C.2 and Figure C.3. We focus on Figure C.2.

Next, we rely on our two previous link analysis algorithms to make more observations. We

use HITs to determine pieces of evidence that provide us with overall knowledge of what has

occurred in the system. Table C.1 shows our results from the HITS algorithm. Table C.2

shows the results from the PageRank algorithm.

We see that reader sl is a child process of explorer.exe. The parent process of explorer.exe

is 1463. reader sl.exe is process associated with Adobe Speed Launcher however, the launch

chain is interesting. We also see that explorer.exe is a parent node for an active connec-

tion to a remote IP address 41.165.5.140. This IP address is traced back to a corporation

Neotel Operations in Johannesburg, South Africa. It is interesting to note that 1484 made

a connection to the IP address 125.19.103.198. This IP address is traced back to Bharti

Tele-Ventures Limited in New Delhi, India.

We implement my methodology in order to obtain a better understanding of this malware.

Hypothesis H: Malware makes unwarranted network connections.

Evidence 1 E1: 1464

Evidence 2 E2: explorer.exe

Evidence 3 E3: 125.19.103.198

Evidence 4 E4: 41.168.5.140

H1: E1 → E3

H2: E1 → E2 → E3

The we shown the evaluation results in Table C.3, Table C.4 and Table C.5. In this case,

the result is not truly satisfying to us as we have a very high statistical likelihood for either

of our categories. This is due to the lack of evidence provided in the graph. With limited

supporting evidence for the root hypothesis, weakens the results of the evaluation. This

problem can be solved by looking at evidence from varied mediums. At the moment we only

look at memory, however, there is more information to be found in network traffic, files,
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documents, and the file system.

8.4 CASE STUDY: WEBSITE PROBLEMS

A company’s web server has been breached through their website. A team arrived just in

time to take a forensic image of the running system and its memory for further analysis [126].

In this case, we find that the cmdscan plugin searches the memory of csrss.exe on XP/Vista

and conhost.exe on Windows 7 for commands that attacker entered through a console

(cmd.exe). This is one of the most powerful commands you can use to gain visibility into an

attackers actions on a victim system, whether they opened cmd.exe through an RDP session

or proxied input/output to a command shell from a networked backdoor [67].

This plugin finds structures known as COMMAND HISTORY by looking for a known

constant value (MaxHistory) and applying sanity checks. The structures used by this plugin

are not public, thus they’re not available in WinDBG or any other forensic framework. They

were reverse engineered by Michael Ligh from the conhost.exe and winsrv.dll binaries [67].

In addition to the commands entered into a shell, this plugin shows:

• The name of the console host process (csrss.exe or conhost.exe)

• The name of the application using the console (whatever process is using cmd.exe)

• The location of the command history buffers, including current buffer count, last added

command, and displayed command

• The application process handle

Due to the scanning technique this plugin uses, it has the capability to find commands

from both active and closed consoles. Current memory forensics tools concentrate mainly

on system-related information like processes and sockets. The command history operating

system a prime source of evidence in many intrusions and other computer crimes, revealing

important details about an offender’s activities on the subject system [127].

The Microsoft Windows command prompt (cmd.exe) is often used by perpetrators of com-

puter crime, and being able to reconstruct what instructions were executed on the command

line can be important in a digital investigation. Computer intruders go so far as to place

their own copy of the command prompt executable on a compromised system to facilitate

their unauthorized activities. The command history maintained by the Windows command

prompt can contain valuable information such as what programs were executed with asso-

ciated arguments, files and folders that were accessed, and unique information such as IP

addresses, domain names and network shares [128].
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The first step involved in the scientific method is the observation of the evidence. The

analyst must observe the evidence. In order to observe our evidence, in this case, we build

our graph. The graph-based representation of our evidence is shown in Figure D.1. A table

to reference the commands found is shown in Table D.1.

We use HITs to determine pieces of evidence that provide us with overall knowledge of

what has occurred in the system. Table D.2 shows the results from the HITS algorithm.

There are a notable pieces of evidence from these results. We see that explorer.exe is a hub,

as well as services.exe, 192.168.56.1, mysqld.exe, and xampp-control.e. This information

lets us know that there is a web site hosted on this machine. services.exe is associated

with Services Control Manager which is responsible for running, ending, and interacting

with system services. mysqld.exe is associated with MySQL Server. xampp-control.e is

associated with XAMPP an open source web server.

The results of the PageRank algorithm is found Table D.3. From these results we see

other important pieces of evidence. httpd.exe is associated with Apache HTTP Server and

cmd.exe is associated with the Windows N/T command line interpreter. We take a further

look at the command performed using cmd.exe in Table D.1. ipconfig displays all current

TCP/IP network configuration values. net user /add adds a user to certain group and it

appears to add a user to the remote desktop users group.

Stemming from our case study hypothesis H is the root node of the Bayesian network.

Hypothesis H: Company’s website was hacked and gained access to the company’s machine.

Evidence 1 E1: explorer.exe

Evidence 2 E2: xampp-control.e

Evidence 3 E3: mysqld.exe

Evidence 4 E4: httpd.exe

Evidence 5 E5: FileZillaServer

Evidence 6 E7: 472

Evidence 7 E8: csrss.exe

Evidence 8 E9: cmd#

H1: Company is up Website: E1 → E5

H2: Hacker tries to gain access: E6 → E8

The evaluation and results are shown in Table D.4, Table D.5, and Table D.6. In forensic

60



cases, it is necessary to account for 0 or 1 facts of the case. This happens when an entire file

is found or the investigating the effects of malware on the system. This, as shown above,

leads to changes in our results of yes and no and only slightly affects the maybe depending

on the importance of the evidence. Now, that we have results, the next to report them.

We rely on the implementation of a likelihood ratio in order to estimate the credibility

of the analysis performed by the examiner and the strength of the evidence. The likelihood

ratio is a way of comparing probabilities conditioned a hypothesis. While the possibility of

using likelihood ratios are still being weighed in the legal system we believe it is a great tool

to contribute the scientific method during a digital forensic investigation. It would bring a

careful and balanced approach to expert evidence.

We rely on the implementation of a likelihood ratio in order to estimate the credibility

of the analysis performed by the examiner and the strength of the evidence. The likelihood

ratio is a way of comparing probabilities conditioned a hypothesis. While the possibility of

using likelihood ratios are still being weighed in the legal system we believe it is a great tool

to contribute the scientific method during a digital forensic investigation. It would bring a

careful and balanced approach to expert evidence.
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CHAPTER 9: CONCLUSION & FUTURE WORK

This dissertation explores the need to improve the field of the digital forensics and proposes

that the computer science and digital forensics community begin to work in tandem to reach

this goal. I presented multiple methods in order to accomplish this goal.

The Digital Forensic Education Initiative offers a standardized a multidisciplinary curricu-

lum model for digital forensics education. This project transformed the multidisciplinary

undergraduate education at the University of Illinois at Urbana-Champaign by institution-

alizing this program and the collaboration upon which it is built. In accordance with the

multidisciplinary nature of the field of digital forensics, the curriculum development team

included domain experts in computer security, computer networks, law, civil and criminal

justice, fraud investigation, and psychology. The modular approach to curriculum develop-

ment is organized by a three-course digital forensics education sequence and the modules are

combined to form a coherent narrative, thus exposing students to multiple perspectives on

digital forensics. The curriculum package provides a strong theoretical foundation for the

techniques learned by the students as well as an array of studies in fields related to digital

forensics. Hopefully this paper will initiate a conversation with the international community,

note that standards need to continue to be developed for digital forensics curriculum, and rec-

ognize the multidisciplinary need for this field of study. This project, curriculum, and course

outline are available on the website http://publish.illinois.edu/digital-forensics/

and a content package containing all of these materials will be posted there in the near

future.

I examined the methods used during the analysis phase of the digital forensic process.

Evidence reasoning models are an important part of the forensic process. Unlike traditional

forensic sciences, digital forensics deals almost exclusively with objects of non-deterministic

nature; there is great difficulty in analyzing and scrutinizing digital evidence. Fundamen-

tal flaws hinder current evidence analysis models in their ability to assess accurately the

likelihood of crime occurrence. Furthermore, conclusions based on probabilities complicate

explanations in the courtroom. These flaws must be identified and understood to avoid the

possibility of injudicious assumptions resulting from the forensic process.

Differential analysis of digital evidence becomes difficult when the scope of the investiga-

tion is widened; unintentional noise in the form of benign modifications may lead to dubious

conclusions about system integrity. Furthermore, recent obfuscation techniques have suc-

cessfully averted detection by traditional methods. Event reconstruction models are limited

in their ability to provide investigators with clear attack scenarios, because they rely on the
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exhaustive identification of possible machine states; there is yet to be a resource providing

such information. Probabilistic reasoning models rely on prior probabilities known to the

investigator, which have so far mainly been determined from surveying others in the field.

Besides the obvious expenditure of time and effort in conducting such surveys, it is reckless

to underestimate the potential for entropy and reason that small samples of observed prob-

abilities hold true for all investigations. It can be concluded that each of these techniques is

only applicable to a small niche of forensic scenarios.

The increasing rate of software development places a burden on forensic examiners to

keep up with the latest software packages, both commercial and free. Each of the models

discussed in this paper lacks a comprehensive database of information to conduct analysis

with the highest accuracy. We highlight the need for a community-driven, updated catalog

of file hashes, machine states, and probability metrics for use in forensic analysis. The

changing nature of technology and software necessitates that researchers and law enforcement

collaborate to ensure the digital forensic process is as reliable as possible.

I realized the potential of integrating computer science research in the field of digital

forensics. I rely on graph theory to serve as the basis for further analysis of data generated

from digital forensics tools. In particular, the graphical representation of evidence allows

an investigator to not only visualize but perform data analysis on evidence. This analysis

enables forensic investigators to locate information of interest efficiently.

Initial work with graph theory has identified several areas for future research. The first

area is an exploration of relationships among the evidence. This research has begun in

previous works however, it still needs to be continued alongside the exploration of time-

dependent graphs. Digital evidence has multiple relationships that are both dependent on

time and not. Exploring this area can lead to further insight and greater knowledge. The

second area of exploration is the potential to develop algorithms based on graph theory. In

digital forensics, outlier detection is not enough to detect everyday user actions. However,

through the exploration of link analysis, this might be possible to determine potentially

unique events. This area of exploration will require a lot of well-documented datasets open

to the public. The third area of exploration is the automation of this tool. The automation

of determining relationships among artifacts as well as the interpretation of them. This work

is also already in progress by many previous works.

I explored the potential benefits of using graph representation in digital forensics. It is

possible to get a high-level view of the system without requiring extensive knowledge of the

operating system and its applications. In this paper, we successfully showed the potential of

using graph representation in the analysis. We show this by exploring a case studies.In the

future, we believe that this work can be greatly improved by exploring more relationships.
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We plan to further these efforts by building a prototype and implementing more forms of

analysis.

I presented a structured method for implementing and maintaining the scientific method,

as well as, determining a likelihood of a hypothesis. The assignment of likelihoods provides

us with great a benefit. We can quantify the likelihood of a hypothesis in relation to digital

evidence, limiting examiner bias as well as being better able to test everything hypothesis.

However, we are still hindered by the common digital forensic practice problems, such as

the amount of data, varying data types and how the legal system view these computational

techniques. Yet, this method is necessary to begin a formalization.

Future work involves researching existing case law in order to assist in revamping curricu-

lum to improve digital evidence literacy among law students. It is excepted that a thorough

analysis of cases where digital evidence has been inappropriately handled will further refine

recommendations for curriculum content made above. Also, insights of thorough examina-

tion of case law will be disseminated broadly to the digital forensics community.

I also plan to research of evidence-based on techniques. In the case study scenarios, we

define evidence as memory artifacts and we limit our memory artifacts to a small set. This

worked for our case, however, may not work in all scenarios. Second, the development of

a Bayesian network for each hypothesis would be time-consuming to perform manually the

development of an automated system would ease this process greatly. Lastly, the ability

to identify all the possible hypotheses is crucial, however, they may not be evident. The

development of methods to examine evidence and identify key areas of interest will aid

examiners in the investigative process.

Overall this work shows the connection between computer science and digital forensics.

It is of uptmost importance to begin to further research in the field of digital forensics with

the support of the computer science community. Digital forensics is in need of objective

methodologies to obtain conclusions from evidence. We presented a method to regulate the

analysis process. We believe that after an implementation of this method we can use various

computational techniques and apply them to digital forensic analysis in order to determine

standards for current cases. We also plan to analyze already other potential analysis models

in order to compare their advantages and disadvantages.
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APPENDIX A: CASE STUDY: DROPBOX PROBLEMS

Node ID Hub Value
firefox.exe 0.9999

AcroRd32.exe 7.9396e-09
explorer.exe 7.9396e-09

WmiPrvSE.exe 1.1282e-22
notepad.exe 0.0

54.201.155.11 0.0
192.168.1.115 0.0
23.209.190.51 0.0

Dropbox 0.0

Table A.1: The hub value results from the hyperlinked-induced topic search from Figure A.2

Node ID PageRank Value
firefox.exe 0.1235

AcroRd32.exe 0.1235
notepad.exe 0.1216

192.168.1.115 0.1216
Dropbox 0.1041

23.209.190.51 0.1014
54.201.155.11 0.1014

WmiPrvSE.exe 0.0691

Table A.2: The PageRank value results from Figure A.2

Degree Degree Probability
1 0.6666
3 0.2222
4 0.1111

Table A.3: The results of the probability mass function for Figure A.2.
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Node Prior Probability Value
explorer.exe 0.2222
firefox.exe 0.1111
Dropbox 0.6666

AcroRd32.exe 0.2222
notepad.exe 0.6666

192.168.1.115 0.6666

Table A.4: The prior probability for each piece of evidence.

Yes No Uncertain
0.7722 0.33 0.5578

Table A.5: The results from the evaluation.
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Figure A.1: A graph-based representation of the evidence.
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Figure A.2: A graph-based representation of the evidence after differential analysis.
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APPENDIX B: CASE STUDY: BANKING TROUBLES

Node ID Hub Value
firefox.exe 0.9999

explorer.exe 1.0314e-08
AcrodRd32.exe 6.8715-e26

1660 6.8715e-26
VMwareUser.exe 0.0
VMwareTray.exe 0.0
212.159.164.203 0.0

127.0.0.1 0.0
66.249.91.103 0.0

212.150.164.203 0.0
66.249.90.104 0.0

Table B.1: The hub value results from the hyperlinked-induced topic search from Figure B.2.

Node ID PageRank
212.159.164.203 0.1311

explorer.exe 0.1171
firefox.exe 0.0965

VMwareUser.exe 0.0965
VMwareTray.exe 0.0965

AcroRd32.exe 0.0797
66.249.91.103 0.0797

127.0.0.1 0.0797
212.150.164.203 0.0797

1660 0.0633

Table B.2: The PageRank values for Figure B.2.

Degree Degree Probability
1 0.7272
2 0.0909
4 0.0909
6 0.0909

Table B.3: The results of the probability mass function for Figure B.2.
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Figure B.1: A graph-based representation of the evidence.
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Figure B.2: A subgraph of Figure B.1.

Node Prior Probability Value
explorer.exe 0.0909
firefox.exe 0.0909

AcroRd32.exe 0.0909
212.150.164.203 0.7272

Table B.4: The prior probability for each piece of evidence.

Yes No Uncertain
0.3305 0.4890 0.8404

Table B.5: The results from the evaluation.

Degree Degree Probability
1 0.7692
2 0.0769
3 0.0769
4 0.0769
6 0.0769

Table B.6: The updated results of the probability mass function.
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Figure B.3: A subgraph of Figure B.1.
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Figure B.4: An updated subgraph of Figure B.2.

Node ID Prior Probability Value
explorer.exe 0.0769
firefox.exe 0.0769

AcrodRd32.exe 0.0769
212.150.164.203 0.7692

Bank Server 0.7692

Table B.7: The prior probability of each piece of evidence.

Yes No Uncertain
0.6366 0.4662 0.5571

Table B.8: The updated results from the evaluation.
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APPENDIX C: CASE STUDY: W32.CRIDEX

Figure C.1: A graph-based representation of the evidence.
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Figure C.2: A subgraph of Figure C.1.

Node ID Hub Value
explorer.exe 0.9999

1464 2.5811e-09
41.168.5.140 0.0
reader sl.exe 0.0

125.19.103.198 0.0

Table C.1: The hub value results from the hyperlinked-induced topic search from Figure C.2.

Node ID PageRank Value
explorer.exe 0.2492

125.19.103.198 0.2053
41.168.5.140 0.2053
reader sl.exe 0.2053

1464 0.1347

Table C.2: The results from the pagerank algorithm from Figure C.2.

Degree Degree Probability
1 0.8
4 0.2

Table C.3: The results of the probability mass function for Figure C.2.
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Figure C.3: A subgraph of Figure C.1.

Node Prior Probability Value
explorer.exe 0.2
reader sl.exe 0.8
41.168.5.140 0.8

125.19.103.198 0.8
1464 0.8

Table C.4: The prior probability for each piece of evidence.
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Yes No Uncertain
0.027 0.0004 0.0004

Table C.5: The results from the evaluation.
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APPENDIX D: CASE STUDY: WEBSITE PROBLEMS

CMD ID Command
cmd1 ipconfig
cmd2 cls
cmd3 net user user1 user1 /add
cmd4 net user user1 user1 root@psut /add
cmd5 net user user1 Root@psut /add
cmd6 net /?
cmd7 net localgroup /?
cmd8 net localgroup “Remote Desktop Users” user1 /add
cmd9 netsh /?
cmd10 netsh firewall /?
cmd11 netsh firewall set service type = remotedesktop /?
cmd12 netsh firewall set service = remotedesktop enable
cmd13 netsh firewall set service type=remotedesktop mode=enable
cmd14 netsh firewall set service type=remotedesktop mode=enable scope=subnet
cmd15 netsh fireall set service type=remotedesktop mode=enable scope=subnet
cmd16 et.exe

Table D.1: The list of commands with their node identification labels shown in the Fig-
ures D.1.
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Node ID Hub Value Node ID Hub Value
explorer.exe 0.9999 services.exe 4.3789e-09
192.168.56.1 1.0253e-09 myslqd.exe 9.8977e-10

xampp-control.e 2.2989e-10 msdtc.exe 2.6843e-20
wininit.exe 2.6843e-20 472 2.6843e-20

516 2.6843e-20 svchost.exe 3.1498e-25
System 3.1498e-25 FTKImager.exe 3.1498e-25

676 3.1498e-25 0 0.0
taskeng.exe 0.0 lsm.exe 0.0

lsass.exe 0.0 SLsvc.exe 0.0
cmd.exe 0.0 httpd.exe 0.0

smsss.exe 0.0 csrss.exe 0.0
winlogon.exe 0.0 VBoxService.exe 0.0
spoolsv.exe 0.0 TrustedInstalle 0.0

FileZillaServer 0.0 cmd1 0.0
cmd2 0.0 cmd3 0.0
cmd4 0.0 cmd5 0.0
cmd6 0.0 cmd7 0.0
cmd8 0.0 cmd9 0.0
cmd10 0.0 cmd11 0.0
cmd12 0.0 cmd13 0.0
cmd14 0.0 cmd15 0.0
cmd16 0.0 0.0.0.0:0 0.0

:::0 0.0 *:* 0.0

Table D.2: The hub value results from the hyperlinked-induced topic search from Figure D.1.
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Figure D.1: A graph-based representation of the evidence.
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Node ID PageRank Value Node ID PageRank Value
explorer.exe 0.05468 0.0.0.0:0 0.0460
httpd.exe 0.0419 winlogon.exe 0.0378

xampp-control.e 0.0308 cmd.exe 0.0308
FTKImager.exe 0.307 csrss.exe 0.0284

System 0.0284 192.168.56.1 0.0274
smss.exe 0.0274 :::0 0.02653

mysqld.exe 0.0241 FileZillaServer 0.0241
*:* 0.0230 taskeng.exe 0.0230

wininit.exe 0.0219 lsass.exe 0.0215
services.exe 0.0215 lsm.exe 0.0215
spoolsv.exe 0.0179 msdtc.exe 0.0179
svchost.exe 0.0179 TrustedInstalle 0.0179
SLsvc.exe 0.0179 VBoxService.exe 0.0219

cmd1 0.0169 cmd2 0.0169
cmd3 0.0169 cmd4 0.0169
cmd5 0.0169 cmd6 0.0169
cmd7 0.0169 cmd8 0.0169
cmd9 0.0169 cmd10 0.0169
cmd11 0.0169 cmd12 0.0169
cmd13 0.0169 cmd14 0.0169
cmd15 0.0169 cmd16 0.0169

472 0.0153 516 0.0153
0 0.0153 676 0.0153

Table D.3: The results from the pagerank algorithm from Figure D.1.

Degree Degree Probability
1 0.7111
2 0.0666
3 0.0888
4 0.0666
5 0.0222
8 0.0222
17 0.0222

Table D.4: The results of the probability mass function for Figure D.1.
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Node Prior Probability Value
explorer.exe 0.0666

xampp-control.e 0.0666
mysqld.exe 0.0666
httpd.exe 0.0888

FileZillaServer 0.7111
472 0.0666

csrss.exe 0.0222
cmd# 0.7111

Table D.5: The prior probability for each piece of evidence.

Yes No Uncertain
7.5844e-10 0.0 0.3296

Table D.6: The results from the evaluation.
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