
c© 2018 Farah Hariri

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/161953211?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

EXPLORING DESIGN DECISIONS FOR MUTATION TESTING

BY

FARAH HARIRI

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2018

Urbana, Illinois

Doctoral Committee:

Professor Darko Marinov, Chair
Assistant Professor Sasa Misailovic
Professor Tao Xie
Professor Sarfraz Khurshid, The University of Texas at Austin

ABSTRACT

Software testing is by far the most popular technique used in industry for quality assurance.

One key challenge of software testing is how to evaluate the quality of test suites in terms

of their bug-finding capability. A test suite with a large number of tests, or that achieves a

high statement or branch coverage, does not necessarily have a high bug-finding capability.

Mutation testing is widely used in research to evaluate the quality of test suites, and it

is often considered the most powerful approach for this purpose. Mutation testing proceeds

in two steps. The first step is mutant generation. A mutant is a modified version of the

original program obtained by applying a mutation operator. A mutation operator is a

program transformation that introduces a small syntactic change to the original program.

The second step of mutation testing is to run the test suite and determine which mutants

are killed, i.e., which mutants lead to tests having a different output when run on them

compared against running on the original program. Mutation testing produces a measure

of quality of the test suite called mutation score. The mutation score of a given test suite

is the percentage of mutants killed by that test suite out of the total number of generated

mutants.

In this dissertation, we explore three design decisions related to mutation testing and

provide recommendations to researchers in those regards. First, we look into mutation op-

erators. To provide insights about how to improve the test suites, mutation testing requires

both high quality and diverse mutation operators that lead to different program behaviors.

We propose the use of approximate transformations as mutation operators. Approximate

transformations were introduced in the emerging area of approximate computing for chang-

ing program semantics to trade the accuracy of results for improved energy efficiency or

performance. We compared three approximate transformations with a set of conventional

mutation operators from the literature, on nine open-source Java subjects. The results

showed that approximate transformations change program behavior differently from con-

ventional mutation operators. Our analysis uncovered code patterns in which approximate

mutants survived (i.e., were not killed) and showed the practical value of approximate trans-

formations both for understanding code amenable to approximations and for discovering bad

tests. We submitted 11 pull requests to fix bad tests. Seven have already been integrated

by the developers.

Second, we explore the effect of compiler optimizations on mutation testing. Multiple mu-

tation testing tools were developed that perform mutation at different levels. More recently

mutation testing has been performed at the level of compiler intermediate representation

ii

(IR), e.g., for the LLVM IR and Java bytecode/IR. Compiler optimizations are automatic

program transformations applied at the IR level with the goal of improving a measure of

program performance, while preserving program semantics. Applying mutations at the IR

level means that mutation testing becomes more susceptible to the effects of compiler opti-

mizations. We investigate a new perspective on mutation testing: evaluating how standard

compiler optimizations affect the cost and results of mutation testing performed at the IR

level. Our study targets LLVM, a popular compiler infrastructure that supports multiple

source and target languages. Our evaluation on 16 Coreutils programs discovers several

interesting relations between the numbers of mutants (including the numbers on equivalent

and duplicated mutants) and mutation scores on unoptimized and optimized programs.

Third, we perform an empirical study to compare mutation testing at the source (SRC) and

IR levels. Applying mutation at different levels offers different advantages and disadvantages,

and the relation between mutants at the different levels is not clear. In our study, we compare

mutation testing at the SRC and IR levels, specifically in the C programming language and

the LLVM compiler IR. To make the comparison fair, we develop two mutation tools that

implement conceptually the same operators at both levels. We also employ automated

techniques to account for equivalent and duplicated mutants, and to determine hard-to-

kill mutants. We carry out our study on 16 programs from the Coreutils library, using a

total of 948 tests. Our results show interesting characteristics that can help researchers

better understand the relationship between mutation testing at both levels. Overall, we

find mutation testing to be better at the SRC level than at the IR level: the SRC level

produces much fewer (non-equivalent) mutants and is thus less expensive, but the SRC level

still generates a similar number of hard-to-kill mutants.

iii

To Saadeddine and Maha,

for a lifetime of sacrifices and unwavering support...

iv

ACKNOWLEDGMENTS

I would like to start by expressing my gratitude to my advisor Darko Marinov. Darko was

the driving force behind every research activity I have undertaken during my Ph.D. His zeal

and passion for what he does are exciting and it rubs off on everyone who works with him.

Darko is an exceptional character and builds unforgettable memories with his students; from

the jokes and the time we spend reading random Wikipedia pages, to the discussions about

billion dollar ideas no less, and of course the nights in the office during paper submission

deadlines. His role as an advisor extends to even showing up at your door past midnight

to comfort you and help you deal with the aftermath of a stranger trying to break in to

your apartment. I don’t think a student can graduate from Darko’s group without carrying

part of Darko in their personality. I am forever tainted by his academic curiosity, passion

for programming, logical approach (filled with tautologies) towards decision making, and

preference of Emacs over Vim.

The content of this thesis has been shaped by the feedback from my committee members

Sarfraz Khurshid, Sasa Misailovic, and Tao Xie. Tao’s constructive criticism and engaging

discussions were especially helpful. I am also lucky to have collaborated with Sasa and

Sarfraz on multiple occasions.

During my five years of Ph.D., I have been partially supported by the US National Science

Foundation under Grants Nos. CCF-1012759, CCF-1319688, CCF-1409423, CCF-1421503,

CCF-1434590, CCF-1438982, CCF-1439957, CCF-1566363, CCF-1566589, CCF-1629431,

CCF-1652517, CCF-1703637, CCF-1704790, CNS-0958199, CNS-1239498, and the DARPA

grant FA8750-12-C-0284. I was also supported by the Saburo Muroga Endowed Fellowship

during my first year.

Research is only fun and interesting when it is done in group with collaborators. Thank

you to Babak Behzad, Hayes Converse, Hoang-Vu Dang, Lamyaa Eloussi, Vimuth Fernando,

Milos Gligoric, Alex Gyori, Milica Hadži-Tanović, Sarfraz Khurshid, Owolabi Legunsen,

Yu Lin, Yafeng Lu, Qingzhou Luo, Muhammad Suleman Mahmood, Sasa Misailovic, Karl

Palmskog, August Shi, Marc Snir, Lingming Zhang, and Weizhe Zhang. I have learned a lot

from working with them. Thank you to my internship mentors Petr Hosek and Chuan Sun.

They have made my time at Google fun and rewarding.

Alex, August, Lamyaa, and Owolabi are more than collaborators; they are also my lab

mates. We joined Darko’s group at the same time and hopped on the journey of grad school

together. August has been a wonderful office mate, I appreciate his kindness, big heart,

and clandestine sense of humor. I especially like how he consistently succeeds at hitting the

v

absolute minimum in the number of syllables needed to answer a question. I am thankful for

all the times I spent with everyone doing research, having late dinners on deadline nights,

our trip to Santa Cruz, and more.

The staff at the computer science department are remarkable. The lovely smiles of Kathy

Runck, Maggie Metzger Chappell, Elaine Wilson, Kara MacGregor, and Viveka Perera Ku-

daligama used to light my day! They are the knights behind the scenes who make sure

everything is smooth and flowing.

Thank you to my undergraduate advisor Fadi Zaraket for being an amazing mentor and

support. He introduced me to research and opened for me opportunities to pursue graduate

studies.

Being far from family during these five years of Ph.D. has been made lighter by the

exceptionally warm Muslim community of Urbana-Champaign. The list of names is way too

long to include here, but I would like to send a personal thank you to every member of the

community, especially the families. The beautiful memories that I have shared with them

made the corn fields feel like a home away from home.

I am especially thankful to the Taha family. Thinking about Dr. Ahmed Taha and Khadiga

Abdel Wahab’s love and support through thick and thin brings tears to my eyes. Wherever

I go, I will always carry them in my heart. Some of the nicest memories are ones I had

with their children; events that we all organized together, sleep overs with Aliaa and Gehad,

and traveling on road trips just to name a few. I will never forget Gehad showing up with

soup on a cold night, carrying me to my apartment after having my wisdom teeth removed,

and sharing many first time experiences together. A special thanks filled with love to Aliaa

for our deep conversations and for her help and support on multiple occasions, especially

organizing my wedding dinner in Urbana.

Thank you to ma homie Mariam Saadah. I met Mariam in my first year of Ph.D., and ever

since we developed bonds that only grew stronger with time. Our late night calls, extended

road trip from California to Illinois, random sleep overs, and consistent weekly routines for

achieving personal growth goals are only a few of the many memories we painted throughout

the years. You know someone is a good friend when she makes sure you never run out of

bananas while you are working in your office. My gratitude extends to the entire Saadah

family; Dr. Abdul Karim, Dr. Eman, Malaak, Raneem, and Baraa.

Thank you to Hanan Jaber for five years of incomparable friendship. You have been my

teacher, my role model, and my close friend. The time we spend, even if so little, always

counts a lot. My gratitude extends to the entire Jaber family; Dr. Hazem, Eman, Haneen,

Mona, Aya, and Ayaat.

The spring of my fourth year of Ph.D. was special, thanks to Bushra Hamad. We laughed

vi

and we cried, we wrestled and we comforted each other, we just connected on a unique

level. I am particularly a fan of the one night we spent working on our definition of the

Weltanschauung.

Lots of love and gratitude to Lubna Boozeyah, Ghada Hassaan, Faten Mahayri, Mona

Saleh, Humna Shahid, Faria Kalim, Safa Messaoud, Huda Ibeid, and Betül Ozkaldi . You

entered joy to my heart and supported me even without me asking on multiple occasions.

I am thankful to Izzat El Hajj, Ihab Nahlous, Marc Ghossoub, Laurence Rustom, Hus-

sein Sibai, and all the students in the Lebanese group of Urbana-Champaign for our times

together.

Keeping in shape is important, especially with a career of sitting behind the screen. I

enjoyed playing basketball with Laila Bardan. Laila brings back the child in me (sometimes

embarrassingly). I love our late night masjid meetings around coding exercises. Thank you

to Dr. Hany Youssef for the Taekwondo classes, they taught me discipline.

I am grateful for having my sisters Faten and Aya in my life. They are the best friends

that I will never lose. I am also blessed to have met Yasser Shalabi during my time at

UIUC. The progression from being my next door office neighbor at Siebel to my fiance and

now husband was a colorful experience. I am grateful to Yasser for his big big love (the

repetition is not a typo). He is an amazing partner in every aspect. Our discussions on

various technical and philosophical topics are precious.

Saving best for last; words and sentences fail when it comes to my parents. There is no

good enough tool to express my deepest gratitude to my mom Maha, and my dad Saadeddine.

After the grace of God, all the thanks goes to them for what I have become today. Their

love and involvement in my life are unmatchable. To mama: you are my hero with super

human powers. From sacrifices that left physical scars, to prayers you send my way, you are

always watching over me. Your impact on my life is something that I keep discovering and

will never be able to contain or draw boundaries around. My dad is the one who implanted

in me the first seed of loving knowledge. If it wasn’t for him, I would have never thought of

pursuing a Ph.D. He is the one who set me on a quest for knowledge, and I hope to continue

on that path even after Ph.D. I hope one day I will be as good of a teacher and mentor as

he has been for his students and as good of an asset to my country as he has been.

vii

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1
1.1 Thesis Statement and Contributions . 3
1.2 Approximate Transformations as Mutation Operators 3
1.3 Effects of Compiler Optimizations . 5
1.4 Comparing the SRC and IR Levels . 8
1.5 Dissertation Organization . 10

CHAPTER 2 APPROXIMATE TRANSFORMATIONS AS MUTATORS 11
2.1 Example . 11
2.2 Study Methodology . 14
2.3 Quantitative Analysis Results . 18
2.4 Code Patterns . 21
2.5 Impact on Software Testing Practices . 26
2.6 Threats to Validity . 29

CHAPTER 3 EFFECTS OF COMPILER OPTIMIZATIONS 32
3.1 Illustrative Overview . 32
3.2 Experimental Setup . 37
3.3 Experimental Results . 39
3.4 Threats to Validity . 46

CHAPTER 4 COMPARING THE SRC AND IR LEVELS 48
4.1 Mutation Tools Implementation . 48
4.2 Experimental Setup . 50
4.3 Results and Analysis . 53
4.4 Case Study with Real Faults . 62
4.5 Threats to Validity . 63

CHAPTER 5 RELATED WORK . 64
5.1 Approximate Computing . 64
5.2 Mutation Testing . 64

CHAPTER 6 CONCLUSIONS AND FUTURE WORK 69
6.1 Conclusions . 69
6.2 Future Work . 70

REFERENCES . 72

viii

CHAPTER 1: INTRODUCTION

Software’s role in our lives is becoming increasingly important. Automation is entering

into almost every facet of everyday life, e.g. self-driving cars, transportation, trading, cryp-

tocurrency, online shopping, personal assistants, home security, medical devices, and smart

things, just to list a few. Consequently, ensuring software quality is critical to safeguard

what software has power over, including our privacy, wellbeing, and even physical safety.

Software testing is by far the most popular technique used in industry for quality assur-

ance. Tests are either written manually by developers or generated by test generation tools.

Conceptually, testing is simple: the code under test is run against a test suite that consists

of multiple tests; each test provides some input and checks the actual output against the

expected output. However, testing has several challenges in practice. One key challenge is to

evaluate the quality of test suites. A test suite that has a large number of tests, or achieves

a high statement or branch coverage, does not necessarily have a high bug-finding capability.

A test suite can achieve a high coverage without exercising some particular bug-finding paths

in the code under test, and even if the test suite exercises the buggy paths of interest, it may

still not find the bugs if the test oracle does not capture the intended behavior. Therefore,

we need a better way to measure the quality of the test suite, and this is where mutation

testing comes into play.

Mutation testing is widely used in research to evaluate the quality of test suites, and it is

often considered the most powerful approach for this purpose [16,56]. The intuition behind

mutation testing is the following: we assess the quality of test suites by their capability to

find seeded changes. Because we do not have access to the possible bugs a priori, mutation

testing introduces small syntactic changes to the code under test and relies on the idea that

a test suite’s ability to kill these small changes is a proxy of its ability to detect actual bugs

in the real world.

Mutation testing proceeds in two phases. First, a number of mutants are generated by

applying mutation operators, which are program transformations that introduce small syn-

tactic changes, to the original code under test. Second, the test suite is run against the

mutants to determine which mutants are killed, i.e., which mutants lead to tests having a

different output when run on them compared against running on the original program. (More

precisely, we are interested in strong mutant killing, based on the observable output, rather

than weak mutant killing, based on the intermediate state of a test’s execution [16].) Finally,

the mutation score is computed as the ratio of the number of killed mutants to the number

of all generated mutants. Mutation operators aim to produce semantically non-equivalent

1

programs. Some mutants cannot be killed by any test; these mutants are semantically equiv-

alent to (albeit being syntactically different from) the original code under test. Duplicated

mutants [88] are defined as definitely equivalent to one another but not definitely equivalent

to the original code. Ideally, one would want to avoid the problem of equivalent and du-

plicated mutants, and perform mutation testing only on non-equivalent and non-duplicated

(NEND) mutants. Determining which mutants are equivalent/duplicated is undecidable in

general [16,22].

In this dissertation, we look into three design decisions related to mutation testing and pro-

vide recommendations to researchers in those regards. First, we look into mutation operators.

To provide insights about how to improve the test suites, mutation testing requires both high

quality and diverse mutation operators that lead to different program behaviors. We propose

the use of approximate transformations as mutation operators. Approximate transforma-

tions were introduced in the emerging area of approximate computing for changing program

semantics to trade the accuracy of results for improved energy efficiency or performance.

Researchers proposed various approximate transformations at the level of programming lan-

guages, compilers, and computer systems [32, 38, 44, 45, 76, 77, 92, 93, 95, 104, 109, 115]. For

example, loop perforation [76,104] is a compiler-level approximate transformation that causes

amenable loops to execute only a subset of iterations. Degrading floating-point precision is

another common language-level [93] and system-level approximate transformation [95, 115].

In our research, we establish the novelty of the proposed operators based on approximate

transformations and provide, based on our study, valuable findings related to the practice

of mutation testing.

Second, we study the effect of compiler optimizations on performing mutation testing.

Multiple mutation tools were developed that perform mutation at different levels, including

traditional mutation testing at the level of source code (SRC), e.g., for the C language [17,18,

29,30,41,54,55] and Java [57,70] and more recently mutation testing at the level of compiler

intermediate representation (IR), e.g., for the LLVM IR [98,99,107], and Java bytecode/IR [6,

96]. Compiler optimizations are automatic program transformations applied at the IR level

with the goal of improving a measure of program performance, while preserving program

semantics. Applying mutations at the IR level means that mutation testing becomes more

susceptible to the effects of compiler optimizations. We investigate whether mutation testing

should be applied with or without compiler optimizations, and provide insights about the

interplay between mutations and compiler optimizations.

Third, we perform an empirical study to compare mutation testing at the SRC and IR

levels. Applying mutation at different levels offers different advantages and disadvantages,

and the relation between mutants at the different levels is not clear. We inform the practice

2

about how mutants of the SRC and IR level relate to each other, and which of the two levels

is more cost effective to perform mutation testing at.

1.1 THESIS STATEMENT AND CONTRIBUTIONS

Our thesis is that exploring new design decisions in mutation testing can lead to making

more informed and efficient choices about mutation testing. This dissertation makes three

contributions. First, we find approximate transformations to be effective mutation operators.

Second, we recommend enabling compiler optimizations while performing mutation testing

as it is more cost beneficial. Third, we recommend performing mutation testing at the SRC

level as opposed to at the IR level for efficiency. In the following sections of this chapter, we

elaborate on these three contributions.

1.2 APPROXIMATE TRANSFORMATIONS AS MUTATION OPERATORS

Mutation testing is a well-established approach for evaluating the quality of a test suite [56].

It produces modified versions of the code, called mutants, using a set of syntactic transfor-

mations, called mutation operators, that aim to change program semantics. It then runs the

test suite on the mutants to quantify how well the suite detects the program modifications.

To provide insights about how to improve the test suites, mutation testing requires both

high-quality and diverse mutation operators that lead to different program behaviors.

We propose approximate transformations as a new class of mutation operators that lead to

different program behaviors from those produced by conventional mutation operators. Mu-

tation operators and approximate transformations both aim to change program semantics.

Hence, approximate transformations are an attractive choice for new mutation operators

that can provide novel insights about tested code and test suites. Our analysis of three

approximate transformations—loop perforation, integer-to-short precision degradation, and

double-to-float precision degradation—shows that they often complement conventional mu-

tation operators.

We perform our evaluation on nine open-source Java subjects. To evaluate the effectiveness

of approximate transformations as mutation operators, we use a combination of techniques

established in prior work on mutation testing:

Mutation Score: We compare mutation scores [16, 56] of three approximate transforma-

tions with the mutation scores of 14 conventional mutation operators from the popular

PIT mutation testing framework for Java [6]. Mutation scores are percentages of mutants

3

detected, or killed, by the test suite [56].

Minimal Mutants: We check whether approximate transformations generate mutants that

are in the minimal mutants set, computed across mutants from both approximate transfor-

mations and conventional mutation operators. Minimal mutants dynamically subsume all

other mutants, and they are considered harder to kill than all other mutants [15,41].

Sufficient Mutation Operators: We check whether approximate transformations are in

the set of sufficient mutation operators, computed using selective mutation analysis [83,86].

Tests that kill mutants generated by sufficient mutation operators also kill mutants generated

by all other operators.

The results show that approximate transformations are effective mutation operators. Loop

perforation has similar mutation scores as conventional mutation operators. However, we

observe that mutation score alone is not sufficient for evaluating the effectiveness of ap-

proximate transformations. While precision degradation operators have significantly lower

mutation scores, our analysis shows that their low mutation scores are not due to the mu-

tants being semantically equivalent to the original code. Rather, the operators expose bad

tests that do not exercise the code with boundary values. Approximate transformations also

generate mutants in the minimal mutant sets.

To better understand the pattern of computations affected by approximate transforma-

tions, we manually inspected a sample of mutants from the approximate transformations.

For loop perforation, we identify four code patterns, e.g., reductions and conditional com-

putation on elements. For precision degradation, we identify three code patterns, e.g., when

computed results are within a specified error bound. Further, the identified patterns allow

us to draw more general comparisons with a broader set of mutation operators from recent

literature [57,69,96]. Our analysis shows that approximate transformations complement the

conventional mutation operators.

Based on our inspection, we propose a new way of reasoning about surviving (i.e., not

killed) mutants generated by approximate transformations. In traditional mutation testing,

a mutant can survive either because it is semantically equivalent to the original code, or

because of bad (buggy, inadequate, or missing) tests. We discover that, with approximate

transformations, there is a third option—a surviving mutant can indicate the presence of

approximable code. Code is approximable if it can be transformed to produce results different

from the original code, but such results still meet the specification. (Note that this third

way of interpreting a surviving mutant may apply to other mutants as well.) Our inspection

shows that for loop perforation, 63.83% of surviving mutants indicate bad tests, and 19.15%

indicate approximable code. We find no equivalent mutants, but the remaining 17.02% are

hard to inspect. For precision degradation, 53.13% of surviving mutants indicate bad tests,

4

14.58% indicate equivalent mutants, and 11.46% indicate approximable code. The remaining

20.83% are hard to inspect.

We identify common testing practices that can help improving bad tests: (i) achieving

greater loop coverage, (ii) exercising loop conditions, (iii) exercising boundary values, and

(iv) checking correctness of all output elements. We identify the instances of bad tests in

all nine subjects. Even though these insights are not new to the testing community, the

real value lies in the fact that the approximate transformations help detect those problems

and bring them to the attention of the developer who might not have such considerations

in mind. We created 11 pull requests to improve the bad tests. The developers already

integrated seven of our pull requests in their code.

The contributions of our study are:

• Concept: We are the first to study the interplay between approximate transformations

and mutation testing operators.

• Framework: We developed ApproxiMate, an extension to the PIT framework. It sup-

ports approximate transformations as mutation operators and integrates analyses from

studies on mutation testing.

• Evaluation: Our results show that approximate transformations complement conven-

tional mutation operators: they generate mutants in the minimal mutants set and are

often in the sufficient mutation operators set.

• Insights: We present code patterns revealed by approximate transformations. We discuss

how to interpret the results of mutation testing with approximate transformations and

how to improve bad tests. Developers already accepted seven out of 11 pull requests that

we submitted for fixing bad tests.

1.3 EFFECTS OF COMPILER OPTIMIZATIONS

As previously explained, mutation testing proceeds in two steps; the first step is mutant

generation, and the second step is running the test suite for each generated mutant to

determine which mutants are killed and to compute the mutation score. While the number

of killed mutants depends on the test suite, the number of generated mutants depends

on the mutation operators and the level at which the operators are applied. Mutation

operators have been proposed for many programming languages, including Ada, C, Cobol,

C#, Fortran, Java, and SQL [16]. Mutation testing was also recently applied at the level of

compiler intermediate representation (IR) [98, 99, 107] using LLVM [63,79]. One IR usually

supports multiple source and target languages. For example, LLVM is a widely used compiler

5

infrastructure that supports multiple source languages (including C/C++ via the Clang

front-end [78]) and multiple target languages (X86-32, X86-64, and ARM). When mutation

testing is implemented once at the IR level, it enables mutation testing effectively “for free”

for all source languages supported by the IR, without having to implement a special tool

for every one of them. However, applying mutations at the IR level means that mutation

testing becomes more susceptible to the effects of compiler optimizations.

Compiler optimizations have to preserve the behavior of the code and produce seman-

tically equivalent programs; in contrast, mutation operators aim to produce semantically

non-equivalent programs. Some mutants cannot be killed by any test; these mutants are

semantically equivalent to the original code under test. Researchers have proposed several

heuristics [9,20,43,48,50,82,84,85,96,97] that help in determining which mutants are more

likely equivalent or non-equivalent to the original code. Most recently, Papadakis et al. [88]

proposed a technique for finding mutants that are definitely equivalent to the original code

by comparing the compiled versions of the original code and its mutants; their experiments

applied the mutation operators on the source code, specifically in the C programming lan-

guage. They also use the same technique to determine what they call duplicated mutants

that are definitely equivalent to one another but not definitely equivalent to the original

code.

We present an empirical study of the effects of compiler optimizations on mutation testing

at the compiler IR level. Our study aims to investigate whether mutation testing should

be applied with or without compiler optimizations, providing the user with insights about

the interplay between mutations and compiler optimizations. We evaluate several tradi-

tional classes of mutation operators (proposed by Offutt et al. [83] for selective mutation).

Specifically, we implemented for LLVM the following four classes of mutation operators:

• AOR replaces every arithmetic operator with another arithmetic operator;

• LCR replaces every logical connector with another logical connector;

• ROR replaces every relational operator with another relational operator;

• ICR replaces every integer constant c with a different value from the set {−1, 0, 1, c−
1, c+ 1}.

A similar set of mutation operators is often used in mutation tools for the C language,

e.g., by Andrews et al. [17] or Jia et al. [55]. For our evaluation, we used programs from

Coreutils [36]. Coreutils are the basic command-line utilities used in Unix, e.g., mkdir, mv,

or rm. Coreutils are frequently used as experimental objects in studies involving C programs

or LLVM [24,34,62,72].

6

We compiled Coreutils using two opposite optimization levels: -O0 is the basic level that

aims at fast compilation and only applies minimal optimizations, and -O3 is one of the

most aggressive optimization levels that applies advanced compiler optimizations. We also

mutated each program using each of our mutation operators, applying the compiler opti-

mizations both before and after mutation. We identified equivalent and duplicated mutants

by comparing the resulting binaries as done by Papadakis et al. [88]. We determined the

mutation score by running the mutants against the companion test suites for their programs.

For evaluation, we compared the resulting number of mutants and the mutation scores of

the test suites across the two levels of compiler optimizations.

Our findings can be summarized as follows:

• The total number of generated mutants is higher (11.7% overall) at the -O3 level than

at the -O0 level. This is surprising because the overall number of instructions is lower

at the -O3 level than at the -O0 level.

• The percentage of equivalent and duplicated mutants is higher (15.9pp1 on average)

at the -O3 level than at the -O0 level. This is expected and matches prior work [88],

because -O3 applies more optimizations after applying the mutation operators. Sur-

prisingly, after removing equivalent and duplicated mutants, the number of remaining

(non-equivalent, non-duplicated) mutants is lower at the -O3 level than at the -O0

level. This points to the importance of properly controlling for equivalent and dupli-

cated mutants, especially at high optimization levels.

• The mutation score is persistently lower at the -O3 level than at the -O0 level, even

when removing equivalent and duplicated mutants. This points to the importance of

properly using the mutation score to interpret the results of mutation testing, especially

at high optimization levels.

• The results are fairly similar across different mutation operators, indicating that the

general conclusions are more likely due to the compiler optimizations than due to the

specific operators.

In brief, our study shows that, if one intends to apply mutation testing at the LLVM IR

level, it is advisable to use a very high optimization level, but it is necessary to properly

control for equivalent and duplicated mutants and to carefully interpret the overall mutation

score.

1The unit pp, from “percentage point”, represents the difference of values that are already expressed in
percentages.

7

1.4 COMPARING THE SRC AND IR LEVELS

Mutation testing has traditionally been applied at the SRC level and more recently at the

IR level. Applying mutation at different levels offers different advantages and disadvantages.

First, the mutation testing time is dominated by the time to run the test suite on each

mutant. Depending on the number of generated mutants, a given level can be more efficient

than the other. Second, the quality of the mutation score is related to the quality of the

generated mutants; if a level generates many easy to kill mutants, the mutation score could

be misleadingly high. Third, while mutation testing is most commonly used to evaluate

test suites through mutation scores, sometimes one would reason about individual mutants

when augmenting test suites for higher mutation scores. At the SRC level, the mutants are

changes in the source code, making it easier to reason which (if any) tests could kill the

mutant [116]. However, the mutants at the IR level are much harder to reason about; it is

hard to map the mutations from one level to another, so understanding the relation between

mutations at the two levels and determining which is better to use requires an empirical

study. Lastly, mutating at the SRC level requires implementing a mutation tool for each

programming language. In contrast, the IR level enables implementing one tool that can

apply to multiple source languages that compile to the same compiler IR. For example, as

already mentioned in Section 1.3, the LLVM IR [79] is a popular IR that supports multiple

languages, including C, C++, Objective-C, Objective-C++, OpenMP, OpenCL, and CUDA.

We present an extensive comparison of mutation testing at the SRC and IR levels for the C

language and the LLVM compiler IR. To make the comparison fair, we use two mutation tools

that implement conceptually the same operators at both levels, specifically the operators

listed in Section 1.3.

Although we make a best effort to use the same operators at both SRC and IR levels,

mutant generation can still lead to different mutants at the two levels. This difference is

inherent in the nature of the two levels, SRC and IR, and in their interplay with compiler

optimizations: SRC applies mutations before optimizations, and IR applies mutations after

optimizations. For example, consider the simple addition statement z = x + y;. At the

SRC level, mutant generation using AOR would replace ‘+’ with other arithmetic operators.

In contrast, at the IR level, the compiler may find that x and y have constant values,

and the optimizations (constant propagation and constant folding) would eliminate the add

operation, so no AOR mutation would apply. On the other hand, if this statement was in a

loop, then loop unrolling could make two copies of this statement, so mutating any one of

the two copies at the IR level would not generate the same mutant as at the SRC level (that

effectively mutates both copies at once). Our goal is not to generate exactly the same set of

8

mutants at both levels; while in principle one could engineer tools to do exactly that, there

would be nothing to compare among the resulting set of mutants. Our goal is to compare

the two levels with conceptually the same mutation operators applied in a natural manner

at each level.

We implement both tools in LLVM, a language-agnostic compiler infrastructure. We also

employ automated techniques to account for equivalent and duplicated mutants, and to de-

termine hard-to-kill mutants. We statically determine which mutants must be equivalent and

duplicated using the trivial compiler equivalence (TCE) technique proposed by Papadakis

et al. [88]. We dynamically determine which mutants may be equivalent using a relatively

large test pool for each program. We also determine which mutants are hard-to-kill using

both minimal mutant sets [15] and surface mutant sets [40].

We perform our study on 16 Coreutils programs. Coreutils is a library of command-line

Unix utilities written in C. The source distribution includes a regression test suite for many

of those programs. Most testing is done through Bash scripts, each of which runs multiple

tests (that invoke the utility binary). For this study, we break those scripts into smaller

scripts that have only individual tests, which allows us to study the effect of various test

suites on mutation testing at the SRC and IR levels. In total, we carry out our study on

948 tests.

The summary of our findings is as follows. First, the total number of generated mutants

and the number of non-equivalent and non-duplicated mutants is lower at the SRC level than

at the IR level. Second, removing equivalent and duplicated mutants, using techniques such

as TCE [88], is essential to ensure faster mutation testing and to avoid skewing mutation

results. Third, the mutation scores at the SRC and IR levels are highly correlated and can

be used as good proxies of each other. Fourth, the summary conclusions comparing SRC

and IR for all operators combined apply to individual mutation operators. Fifth, the SRC

and IR levels generate a similar number of hard-to-kill mutants.

Overall we find that mutation testing at the SRC and IR levels is more similar than

dissimilar, but with the SRC level proving to be often better than the IR level. As a result,

we recommend that researchers apply mutation testing at the SRC level rather than at the

IR level, although the SRC level requires implementing a mutation tool for each source

programming language. In retrospect, our effort on building a tool at the IR level did not

produce a tool that we recommend others to use, but it did allow us to compare the two

levels.

9

1.5 DISSERTATION ORGANIZATION

The rest of the dissertation is organized as follows:

• Chapter 2 presents our study on using approximate transformations as mutation

operators [47].

• Chapter 3 presents the details of our empirical study of the effects of compiler opti-

mizations on mutation testing at the compiler IR level [46].

• Chapter 4 presents an extensive study comparing mutation testing at the SRC and

IR levels for our Coreutils subjects.

• Chapter 5 presents work in the literature on the different areas related to our research.

• Chapter 6 summarizes the contributions of the dissertation and potential future work

that can build on top of these contributions.

10

CHAPTER 2: APPROXIMATE TRANSFORMATIONS AS MUTATORS

In this chapter we present our study on using approximate transformations as mutation

operators. Our evaluation on nine open-source Java subjects focuses on the following three

research questions:

RQ2.1: How effective are approximate transformations as mutation operators, compared

to conventional mutation operators?

RQ2.2: What code patterns do approximate transformations as mutation operators re-

veal?

RQ2.3: How can approximate transformations as mutation operators help software test-

ing practice?

2.1 EXAMPLE

This section illustrates mutation testing and approximate transformations and shows a

surviving approximate transformation mutant that resulted in an accepted pull request.

2.1.1 Code and Test

The snippet in Figure 2.1 is from vectorz [8] (SHA: 9c688f1), one of the subjects in our

study. The snippet shows the instance method Matrix#swapRows; the class Matrix repre-

sents m×n matrices of type double. swapRows takes integers i and j, and then it changes

the Matrix instance by swapping rows i and j. A parametrized test that directly invokes

swapRows is doSwapTest. It operates on instances of AMatrix, a superclass of Matrix (Fig-

ure 2.3). doSwapTest first makes a copy, m2, of the input m (when m is of type Matrix, so is

m2), swaps the first two rows in m2, and asserts that m and m2 are not equal. Then, it swaps

the first two rows in m2 again and asserts that m2 is now equal to m.

2.1.2 Mutation Testing

Mutation testing proceeds in two steps; it first generates mutants and then runs the tests

on each mutant. Generating mutants. Mutation testing generates mutants—code that

differ from the original by small syntactic changes, specified by mutation operators, e.g.,

replacing multiplication with division as in Figure 2.2a (dark background).

11

1 public void swapRows(int i, int j) {
2 if (i == j) return;
3 int a = i ∗ cols;
4 int b = j ∗ cols;
5 int cc = columnCount();
6 for (int k = 0; k < cc; k++) {
7 int i1 = a + k;
8 int i2 = b + k;
9 double t = data[i1];

10 data[i1] = data[i2];
11 data[i2] = t;
12 }
13 }

Figure 2.1: Code from vectorz [8]

public void swapRows(int i, int j) {
if (i == j) return;
int a = i ∗ cols;

int b = j / cols ;

int cc = columnCount();
for (int k = 0; k < cc; k++) {

int i1 = a + k;
int i2 = b + k;
double t = data[i1];
data[i1] = data[i2];
data[i2] = t;

}
}

(a) Killed mutant changes * to /.

public void swapRows(int i, int j) {
if (i == j) return;
int a = i ∗ cols;
int b = j ∗ cols;
int cc = columnCount();

for (int k = 0; k < cc; k+=2) {
int i1 = a + k;
int i2 = b + k;
double t = data[i1];
data[i1] = data[i2];
data[i2] = t;

}
}

(b) Surviving LPM mutant skips iterations.

Figure 2.2: A mutation by a conventional mutation operator and a mutation by LPM of
the code in Figure 2.1

Executing mutants. Mutation testing executes the test suite on each mutant. If a test

exhibits different behavior when running on a mutant than when running on the original

code, that mutant is considered killed. Typically, tests pass on the original code, so a mutant

is killed when a test fails on the mutant. For instance, when doSwapTest is run on the mutant

in Figure 2.2a, the mutant computes the index of the second row in the swap as 0 (instead

of cols). The first row to swap is also 0, so no swap happens. The non-equality assertion

on m2 and m fails when run on this mutant, suggesting that the test suite is good enough to

kill this semantically different mutant.

Mutation score. Mutation testing produces a mutation score—the percentage of killed

mutants. Higher mutation scores imply higher-quality test suites; a test suite that is strong

enough to kill a larger percentage of mutants is likely strong enough to detect more faults

12

private void doSwapTest(AMatrix m) {
if ((m.rowCount()<2)||(m.columnCount()<2)) return;
m=m.clone();
AMatrix m2=m.clone();
m2.swapRows(0, 1);
assert(!m2.equals(m));
m2.swapRows(0, 1);
assert(m2.equals(m));
...
}

Figure 2.3: Test of the swapRows method in Figure 2.1

in the code under test [17,58].

2.1.3 Approximate Transformations

Loop perforation. Loop perforation is an approximate transformation [76,104], that trans-

forms loops like for (int i = 0; i < len; i++) {...} to execute only a subset of its it-

erations. In general, perforation can change the value in the initialization expression, the

termination condition, or the increment. We consider loop perforations that skip every other

loop iteration. Figure 2.2b shows an LPM (Loop Perforation Mutator) mutant that changes

the loop increment, k++, to k+=2 (light background). With this perforation, doSwapTest

executing on the mutant will only swap every other element (at even-numbered indices) in

the specified rows.

Precision degradation. Precision degradation is an approximate transformation that

changes the type of a numerical expression or a variable. Specifically, we downcast results

of int or double arithmetic expressions.

The int-to-short (ITS) transformation changes result of the expression to be of type

short (values in the range −32, 768 to 32, 767). An example ITS mutant is replacing a + k

on line 7 of Figure 2.1 with (short)(a + k). ITS drops higher-order bits, which may result

in a large error magnitude.

If ‘a’ is instead a double-precision variable, the double-to-float (DTF) transformation

changes the expression a + k (where the type of k is automatically cast to double) to

(double)((float)(a + k)). The cast back to double here is necessary in Java to preserve

the type. The resulting computation produces imprecise results, usually with a small error

magnitude, because it drops lower mantissa bits. Note that our ITS and DTF transfor-

mations are finer-grained variants of the actual approximate transformations; we only cast

computations as opposed to types as performed in some prior work [93].

13

2.1.4 Analysis of Approximate Transformation for Mutation

For the LPM mutant in Figure 2.2b, doSwapTest swaps only elements at even-numbered

indices in the specified rows. Since the assertions only check that m1 and m2 are not equal

after the first swap, and equal after the second swap, doSwapTest passes. Because doSwapTest

is the only test that covers this mutant, the mutant survives, i.e., it is not killed. The survival

of this LPM mutant suggests that there is some weakness in the test suite, i.e., some tests

are “bad” (buggy, inadequate, or missing). Specifically, this surviving mutant indicates that

the assertions are not strong enough to detect the skipping of every other element during

the swap. We submitted a pull request to check whether elements in the swapped rows are

as expected; our pull request was accepted by the vectorz developers.

For the ITS mutant on line 7, doSwapTest is invoked only with small integers (matrices

with small dimensions), so the mutant survives. To kill the mutant, one would write a test

with large matrices where the column count exceeds the range of short.

2.2 STUDY METHODOLOGY

ApproxiMate is our framework for evaluating approximate transformations as mutation

operators. In this section, we describe ApproxiMate’s implementation and analyses, the

mutation operators studied, and our evaluation subjects.

2.2.1 The ApproxiMate Framework

The ApproxiMate framework extends PIT [6], implements approximate transformations

as mutation operators, and can compute the full mapping from tests to killed mutants of

tests to killed mutants, as has been done in previous studies [11, 100, 102]. We implement

the approximate transformations as follows:

• We implement the loop perforation mutator (LPM) to skip every other iteration of loops,

because other patterns of skipped iterations have similar power to identify approximable

code [74]. We use Spoon [108] to find code locations of for loops that have increment (i++)

or decrement (i--) statements. These locations are passed to our modified PIT extended

with LPM, which uses the ASM library [19] to change the iinc bytecode instruction so

that increments become i+=2 and decrements become i-=2.

• We implement precision degradation, DTF and ITS, using casting. Recall (Section 2.1.3)

that ITS is the int-to-short precision degradation operator; it casts results of int arith-

14

Table 2.1: PIT mutation operators

Type Name Acronym

Conditionals Boundary Mutator CBM
Increments Mutator IM
Invert Negatives Mutator INM

Default Math Mutator MM
Negate Conditionals Mutator NCM
Return Values Mutator RVM
Void Method Calls Mutator VMCM

Constructor Calls Mutator CCM
Inline Constant Mutator ICM
Member Variable Mutator MVM

Non-Default Non Void Method Calls Mutator NVMCM
Remove Conditionals Mutator RCM
Remove Increments Mutator RIM
Switch Mutator SM

metic expressions to short. DTF is the double-to-float precision degradation operator; it

casts results of double arithmetic expressions to float and then back to double to preserve

the type. The ITS and DTF implementations perform casting at the bytecode level.

ApproxiMate uses all other mutation operators available in PIT: seven active-by-default

operators and seven non-default operators (Table 2.1), which we enabled to increase the

variety of mutation operators in our experiments. ApproxiMate computes mutation scores

using only mutants that are covered by the tests. The comparative analyses require the

exact mapping from tests to mutants killed. Because PIT cannot capture the test that

killed a mutant because of memory or other runtime errors, we exclude such mutants from

the mutation score computations and the comparative analyses.

2.2.2 Comparative Analyses in ApproxiMate

In mutation testing, it is desirable to use as few mutants as possible while still resulting

in the same confidence of the mutation testing results. Prior research investigated means

to identify the subset of mutants that are harder to kill and representative of the other

mutants [15, 41, 83, 116]. If approximate transformations generate mutants that are harder

to kill than mutants generated by conventional mutation operators, it suggests that they

are relatively effective as mutation operators. We use two techniques from the literature

15

to compare the mutants from approximate transformations with those from conventional

mutation operators: minimal mutants analysis [15,41] and selective mutation analysis [73,86].

Minimal mutants analysis. Minimal mutants [15, 41] are used as proxies for finding

what mutants are harder to kill compared with the all other mutants [13]. We use minimal

mutants, which are based on dynamic subsumption:

• Definition: A mutant m dynamically subsumes another mutant m′ if the set of tests

that kill m is a subset of the set of tests that kill m′. Intuitively, m is harder to kill than

m′ because only some tests that kill m′ can kill m.

• Condition: If mutants generated from approximate transformations are in the set of

minimal mutants, then they subsume (and are therefore harder to kill than) mutants from

some conventional mutation operators.

• Computation: We apply the algorithm proposed by Gopinath et al. [41] to compute the

set of minimal mutants.1

Selective mutation analysis. Selective mutation analysis is a heuristic technique for

reducing the number of mutants to be run [73,83,86]. The general idea in selective mutation

analysis is to find a set of sufficient mutation operators:

• Definition: Sufficient mutation operators are a subset of all mutation operators, such

that tests which kill mutants generated by the sufficient mutation operators also kill all

mutants generated by the operators that are in the complement of the sufficient set.

• Condition: If approximate transformations are in the set of sufficient mutation opera-

tors, it indicates that they are part of operators that are representative of all mutation

operators.

• Computation: We analyze only the mutants killed by the existing tests, assuming that

all other mutants cannot be killed [39]. Our algorithm for selecting sufficient operators

is close to what was done in prior work using existing test suites [39], but there are two

main differences. First, we do not restrict the number of iterations for removing mutation

operators. Second, we apply test-suite reduction in each iteration to create a tailored test

suite which is sufficient to kill only mutants generated by the currently-selected operators.

This is close to previous studies on selective mutation testing [83, 86] where, on each

1Gopinath et al. refer to minimal mutants as surface mutants in their work.

16

Table 2.2: Subjects used in our study

Subject SLOC Tests Short Description

commons-imaging 31377 169 Imaging library
commons-io 9957 1098 IO library
HikariCP 4256 96 Database connectivity pool
imglib2 31839 337 Image processing library
vectorz 44009 453 Vector and matrix library
jblas 10356 39 Matrix library
OpenTripPlanner 64202 356 Trip planner
la4j 9368 801 Linear algebra library
meka 36512 306 Machine learning library

iteration, a test suite is generated to kill only mutants from the selected operators, and

the generated tests are checked to see that they kill all mutants.

Each iteration of the algorithm starts by finding and removing the operator that gener-

ates the most number of mutants. The second step in each iteration is to apply test-suite

reduction [117] to construct a reduced test suite which kills only mutants generated from

the remaining operators. If the reduced test suite kills all mutants (not just mutants

generated from the remaining operators), the algorithm continues to the next iteration

by greedily removing the operator that generates the next highest number of mutants.

If a reduced test suite that kills all mutants cannot be generated, we continue the same

iteration by putting the removed operator back in the set and removing the next highest

mutant-generating operator. The algorithm halts when we cannot remove any more oper-

ators and still kill all mutants. The operators that remain after the algorithm halts form

the set of sufficient mutation operators.

2.2.3 Evaluation Subjects

We use nine open-source Java subjects in our evaluation of the approximate transforma-

tions as mutation operators. Table 2.2 shows for each subject the source lines of code (SLOC)

it has, the total number of test methods, and a description. The subjects vary widely in size

and come from different domains: image processing, machine learning, linear algebra, and

databases applications. The subjects are from GitHub and are a mix of (1) subjects used

in previous software testing papers [64,67], and (2) computationally-intensive subjects that

may have more opportunities for applying approximate transformations because they come

from domains (e.g., linear algebra, image processing, machine learning) that may benefit

17

Table 2.3: Number of mutants per operator

Project Conv. Avg LPM ITS DTF

commons-imaging 1577.43 275 1097 362
commons-io 653.31 37 191 0
HikariCP 192.69 6 17 1
imglib2 646.54 264 296 245
vectorz 2426.93 1009 1991 1466
jblas 323.79 155 147 29
OpenTripPlanner 2265.71 160 623 478
la4j 644.93 311 569 487
meka 593.85 266 192 153

Average 1036.13 275.89 569.22 357.89

CB
M

CC
M ICM IM INM MM MV

M
NC
M

NV
MC
M
RC
M RIM RV

M SM
VM
CM LP

M ITS DT
F

0

20

40

60

80

100

M
ut
at
io
n
Sc
or
e
(%

)

Figure 2.4: Mutation scores per operator

more from approximate computing techniques [27,104].

2.3 QUANTITATIVE ANALYSIS RESULTS

This section contains answers to RQ2.1: how effective are approximate transformations

as mutation operators, compared to conventional mutation operators, in terms of mutation

scores, minimal mutants analysis, and selective mutation analysis.

18

2.3.1 Effectiveness by Mutation Scores

Table 2.3 shows the number of mutants generated and covered by tests per mutation

operator for all subjects. The “Conv. Avg” column shows the average number of mutants

generated by conventional mutation operators for each subject. Columns “LPM”, “ITS” and

“DTF” show the number of mutants generated by the approximate transformations. Fig-

ure 2.4 shows the average mutation score per operator across all subjects. Each bar represents

a mutation operator; the rightmost three bars are for approximate transformations—LPM,

ITS, and DTF. The y-axis shows average mutation score per operator across all subjects.

The red horizontal line is the average mutation score of all conventional mutation operators

across all subjects. The error margin on each bar shows the standard deviation.

Loop perforation. On average, LPM generates only 275.89 mutants, compared with

1036.13 for conventional mutation operators. This is because there are much fewer loops (the

only locations that LPM can mutate) relative to the number of locations that conventional

mutation operators can mutate. The average mutation score for LPM (72.78%) is slightly

lower than that of conventional mutation operators (79.65%) but it is not a low outlier,

compared to other operators.

Precision degradation. The number of mutants generated by ITS and DTF are 569.22

and 357.89, respectively. These are significantly fewer than the average number of mutants

generated by conventional mutation operators (1036.13). The average mutation scores for

ITS and DTF are 15.49% and 27.39%, respectively (Figure 2.4). These are significantly

lower than the average score of 79.65% for conventional mutation operators. In fact, ITS

and DTF scores are the lowest among all operators (including LPM).

Discussion. The LPM mutation scores are closer to the mutation scores of conventional

mutation operators, suggesting that LPM mutants are as easy/hard to kill as mutants gen-

erated from conventional mutation operators. The mutation scores for ITS and DTF are

very low compared to the scores for conventional mutation operators. A further analysis of

survived mutants in Section 2.5 shows that this is not due to a high number of equivalent

mutants, but rather to bad tests that do not exercise the code with large values crossing the

precision boundaries. We perform a more detailed qualitative analysis on LPM, ITS, and

DTF mutants in Section 2.4.

2.3.2 Effectiveness by Minimal Sets of Mutants

We compute minimal mutant sets, as described in Section 2.2.2, to see if mutants gener-

ated by approximate transformations are in the minimal mutant set, meaning they are not

19

Table 2.4: Minimal mutants per operator

Project Conv. Avg LPM ITS DTF

commons-imaging 6.79 1 0 0
commons-io 37.07 1 1 0
HikariCP 4.57 1 0 0
imglib2 13.79 4 5 3
vectorz 18.36 14 1 9
jblas 2.21 2 0 1
OpenTripPlanner 15.29 2 0 1
la4j 13.57 17 3 17
meka 7.00 2 2 2

Average 13.18 4.89 1.33 3.67

subsumed by other mutants. Table 2.4 shows, for each subject, the breakdown of the counts

of the minimal mutants. The column “Conv. Avg” shows the average number of minimal

mutants generated from conventional mutation operators; the remaining columns show the

number of minimal mutants for each approximate transformation. Approximate transforma-

tions show up in the minimal set of mutants—at least one of the last three columns, LPM,

ITS, and DTF, is not 0—for all subjects. The average numbers of mutants contributed by

LPM, ITS, and DTF to the set of minimal mutants are 4.89, 1.33, and 3.67, respectively.

We conclude that, when used as mutation operators, approximate transformations can gen-

erate mutants that are not subsumed by mutants generated from conventional mutation

operators.

2.3.3 Effectiveness by Selective Mutation Analysis

Table 2.5 presents the sets of sufficient mutation operators computed using the greedy

selective mutation analysis algorithm presented in Section 2.2.2. For each subject, we show

the number of conventional mutation operators (“# Conv. Operators”) and the selected

approximate transformations (“Approx. Operators”) that are in the sufficient mutation

operator set.

Approximate transformations appear among the sufficient mutation operators in six of the

nine subjects (commons-io, imglib2, vectorz, jblas, la4j, and meka). The fact that approx-

imate transformations end up in the sufficient mutation operator sets shows that they are

important, because sufficient mutation operators are meant to be representative of all opera-

tors; tests good enough to kill these mutants are good enough to kill the mutants from all the

other operators (Section 2.2.2). Furthermore, when we perform selective mutation analysis

20

Table 2.5: Selective mutation operator analysis

Project # Conv. Approx.
Operators Operators

commons-imaging 7 n/a
commons-io 9 ITS
HikariCP 8 n/a
imglib2 9 LPM,DTF
vectorz 10 LPM,ITS,DTF
jblas 4 DTF
OpenTripPlanner 8 n/a
la4j 9 LPM,ITS,DTF
meka 5 LPM,DTF

with only conventional mutation operators, we find that the sufficient mutation operators for

most subjects are the same as those corresponding to the number of conventional mutation

operators from the “# Conv. Operators” column in Table 2.5; the only exception was meka.

From these subjects where approximate transformations are in the set of sufficient mutation

operators, it seems approximate transformations are necessary to represent themselves, as

the conventional mutation operators do not subsume the approximate transformations.

2.4 CODE PATTERNS

This section provides answers to RQ2.2, on code patterns that approximate transforma-

tions reveal. We describe the results of our qualitative analysis to answer these subquestions:

RQ2.2.1: What code patterns do LPM mutants reveal?

RQ2.2.2: What code patterns do ITS/DTF mutants reveal?

RQ2.2.3: How are approximate transformations different from conventional mutation

operators and how can they help mutation testing?

Answers to these questions help with understanding the type of computations affected by the

proposed operators. Moreover, these answers guide the analysis in Section 2.5 on practical

impact.

Methodology. For LPM, we randomly sampled and inspected 5% of killed mutants and 5%

of surviving mutants for each subject. ITS and DTF generate significantly higher numbers of

mutants than LPM in some subjects, so we sampled and inspected only 1% (121 mutants) of

21

Table 2.6: Code patterns for killed and survived loop perforation and precision degradation
mutants

Approximate
Transformation

Code Patterns #Surviving #Killed

Loop Perforation

Initialization loop 3 2
Conditional computation on elements 14 22
Computation on all elements 17 56
Reduction 2 9

Precision Degradation

Result is within a precision range 95 0
Result is outside a precision range 0 15
Computing large values 1 8
Indexing beyond the size of short 0 2

Total 132 114

their killed and surviving mutants. Table 2.6 shows code patterns we found during inspection.

Sections 2.4.1 and 2.4.2 further explain these patterns.

2.4.1 Code patterns for LPM mutants

Initialization loop. When a loop is used to initialize elements in a data structure, an

LPM mutant that skips loop iterations may leave some elements uninitialized. Mutants of

this pattern are killed by tests that rely on all elements to be initialized. However, we also

find cases where such mutants survived, e.g., in method Index#toSet() of vectorz, shown

in Figure 2.5. LPM skips some iterations in the loop that initializes elements of set ss. The

only test for this method, testSetCreate, passes when LPM skips an iteration that adds

a duplicated value to ss. The mutant produces the same result as the original code and

reasoning about its survival can help improve the test suite with tests that kill this mutant

by not having duplicated data.

Conditional computation on elements. As a loop iterates over all elements in a data

structure, the loop body checks whether a property holds before performing some computa-

tion. We find examples of this pattern in commons-imaging, vectorz, and jblas. Consider

the example in class DoubleMatrix of jblas shown in Figure 2.6. The LPM mutant is not

killed by testArgMinMax(), because the index with the minimum element is not skipped.

The test suite can be improved by adding more tests with input data where the minimum

element(s) are in a variety of different indices. In general, mutants that involve checking

22

Set<Integer> toSet() {
TreeSet<Integer> ss=new TreeSet<Integer>();
for (int i=0; i<data.length; i++) {

ss.add(data[i]);
}
return ss;
}

@Test
void testSetCreate() {

Index ind=Index.of(1,3,3,3,5);
Set<Integer> s=ind.toSet();
assertEquals(3,s.size());
assertEquals(Index.createSorted(ind.toSet()), Index.of(1).includeSorted(s));
}

Figure 2.5: Initialization Loop LPM code pattern from vectorz [8] and its corresponding
test

public int argmin() {
if (isEmpty()) { return −1; }
double v = Double.POSITIVE INFINITY;
int a = −1;
for (int i = 0; i < length; i++) {

if (!Double.isNaN(get(i)) && get(i) < v) {
v = get(i); a = i;
}
}
return a;
}

@Test
public void testArgMinMax() {

A = new DoubleMatrix(4, 3, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0);
assertEquals(0, A.argmin(), eps);
assertEquals(11, A.argmax(), eps);
}

Figure 2.6: Conditional Computation on Elements LPM code pattern from jblas [3] and
its corresponding test

23

public double reduce(double init, double[] data, int offset, int length) {
double result=init;
for (int i=0; i<length; i++) {

result=apply(result,data[offset+i]);
}
return result;
}

Figure 2.7: Reduction LPM code pattern from vectorz [8]

a property (or searching for a value) and potentially exiting the loop early tend to survive

when tests do not check for both the cases when the property holds and when it does not

(e.g., they only assertTrue but do not have some assertFalse for a different input). We find

such surviving mutants in vectorz, jblas, meka, and OpenTripPlanner. Killed mutants of

this pattern often modify data structures where most elements satisfy the property; skipping

iterations misses important computations that affect test outcomes.

Computation on all elements. As a loop iterates over the elements in a data structure, its

body performs an independent computation on each element. For example, the computation

may involve setting values at corresponding indices in another array, or modifying the current

element in the input array. Tests tend to kill LPM mutants for this code pattern when the

test assertion iterates over all elements in the resulting array to check that the value at each

index is correct. We observe loops of this pattern often in image-processing applications,

which process matrices of pixels (e.g., commons-imaging and imglib2). In math applications

with vector and matrix operations (e.g., jblas, la4j, and vectorz), these LPM mutants are

commonly killed because the assertions check that every element has the expected value.

Reduction. As a loop iterates over all elements in a data structure, the loop body applies a

reduction operation, aggregating all values in the data structure to one representation. This

pattern commonly occurs in math applications (e.g., vectorz and jblas). An example in

class Op2 of vectorz is shown Figure 2.7. The reduce method applies an operation apply to

each element in a subarray of the data array. Tests typically kill such LPM mutants because

the final result is a single value and the tests assert that the resulting value is equal to an

expected value. It is also uncommon that the input array is such that the elements skipped

are all identity elements with respect to the applied operation. Most mutants of this pattern

are killed; the few that survived are such that test inputs exercise only one loop iteration;

therefore applying LPM is of no effect. To kill these mutants, developers need to add tests

that execute the loop with more than one iteration.

24

2.4.2 Code patterns for ITS and DTF mutants

Result is within/outside a precision range. When the specification of the operation

is such that, for all allowed inputs, the result is always going to be within the degraded

precision range, then such mutants should always survive. An example of a surviving DTF

mutant is in ColorConversions#convertHSLtoRGB in commons-imaging, which converts HSL

to RGB pixels by multiplying each pixel (a double between 0.0 and 1.0) by 255. Degrading

precision only slightly changes the accuracy of the result, within the tolerance bound of

the test. On the other hand, when the test execution leads to values that go outside the

precision range, such mutants are killed. We find surviving mutants of this pattern for DTF

in vectorz, OpenTripPlanner, and la4j. We find instances where mutants of this pattern

are killed in meka, la4j, OpenTripPlanner, jblas, and imglib2.

Computing large values. When computations involve large numbers, degrading the pre-

cision easily leads to different results, e.g., due to overflow. Hence, ITS mutants involving

such computations tend to be killed by tests that expect a much larger value than the mutant

returns. However, in OpenTripPlanner, we find an ITS mutant of this pattern that survived

because the tests do not check that computed hash code values are correct, and there is no

collision in the hash codes computed at lower precision.

Indexing beyond the size of short. ITS mutants get killed when they cause the indices

of data structures to exceed their bounds when large int values are cast to short values

that overflow. For instance, class CRSMatrix in la4j has a method set. The test that kills

the ITS mutant creates a matrix with dimensions greater than Short.MAX VALUE. When the

ITS mutant is run on the input matrix, the int to short precision degradation causes over-

flow, leading to an ArrayOutOfBoundsException (AOOBE). Also, in class CellRandomAccess of

imglib2, an overflow occurs when an int value used to walk through all positions in a large

matrix is cast to a short, causing an AOOBE.

2.4.3 Comparing approximate transformations with conventional mutation operators

LPM vs. conventional mutation operators. We check whether mutants generated

by conventional mutation operators apply to each loop header on which an LPM mutant

was generated. In total, seven conventional mutation operators (CBM, ICM, IM, NCM,

NVMCM, RIM, RCM) can be applied on the same lines as LPM. Only two of these seven

conventional mutation operators generate mutants that behave somewhat similarly to LPM

mutants: Inline Constant Mutator (ICM) and Negate Conditionals Mutator (NCM). ICM

changes the constant of the loop initialization to skip only the first iteration. NCM changes

25

the loop condition to skip the entire loop body. LPM falls between the ICM and NCM in

terms of the number of skipped iterations.

We conclude that LPM is complementary to conventional mutation operators; reasoning

about their killed/surviving mutants helps developers generate new tests that exercise the

code in new ways, improving their test suites (Section 2.5). Our conclusion holds for mutation

operators in three other Java mutation tools: MuJava [69], Javalanche [96], and Major [57].

Replace Constant from Javalanche and Constant Value Replacement from Major produce

similar effects as PIT’s ICM; Negate Jump, and Unary Operator from Javalanche, and Unary

Operator Replacement, and Branch Condition Manipulation from Major have similar effects

as PIT’s NCM. Our understanding of code patterns exercised by LPM mutants enable us to

perform such an analysis on mutation operators from other frameworks. If one of these tools

had an operator such as that would replace the constant for every iinc bytecode instruction,

it would produce the mutants that LPM produces (but also more mutants, as LPM applies

this operator only for loop increments)

ITS/DTF vs. conventional mutation operators. We do not compare the precision

degradation operators with the conventional mutation operators because the mutants they

generate are not matched by any of the conventional mutation operators that modify arith-

metic expressions. As our inspection in Section 2.5 shows, these mutants provide guidance

towards writing better tests that exercise boundary values.

Patterns for approximate transformations and tailored mutation. The patterns we

identified open up a research opportunity to achieve additional savings in mutation testing.

Our findings related to code patterns can enable performing tailored mutation testing [14] or

specialized selective mutation [60] to find (parts of) applications where approximate trans-

formations can be effective as mutation operators.

2.5 IMPACT ON SOFTWARE TESTING PRACTICES

This section answers RQ2.3, on the practical impact on software testing of approximate

transformations as mutation operators. We describe the results of our qualitative analysis

to answer these subquestions:

RQ2.3.1: How often do surviving mutants from approximate transformations indicate

that tests are bad, mutant is equivalent, or code is approximable?

RQ2.3.2: Do insights from inspecting surviving mutants from approximate transforma-

tions help developers?

26

2.5.1 Bad test, equivalent mutant, or approximable code?

Surviving mutants are traditionally regarded as either (1) signaling buggy, inadequate,

or missing tests (BadTest) or (2) semantically equivalent to the original code, i.e., equiv-

alent mutants. However, inspecting mutants generated from approximate transformations,

we discovered a third possibility: the mutant survived because the original code is approx-

imable (ApproxCode). That is, the mutant is semantically different from the original code

but produces acceptable outcomes that are within a tolerable range. This third interpre-

tation applies to mutants from all operators, not just the ones generated by approximate

transformations, changing the way mutation testing results should be interpreted in general.

Of our inspected LPM mutants, 63.83% indicate bad tests (BadTest) and 19.15% indicate

approximable code (ApproxCode); we find no equivalent mutants, and the remaining 17.02%

are hard to inspect. Of our inspected ITS and DTF mutants, 53.13% indicate bad tests,

14.58% are equivalent, 11.46% indicate approximable code, and the remaining 20.83% are

hard to inspect. Section 2.4 discussed the patterns that approximate transformations reveal,

explaining the contexts in which those patterns signal approximable code. Section 2.5.2

describes how BadTests inspired better testing and describes some pull requests we made to

fix BadTests.

We find mutants indicating ApproxCode in vectorz, la4j, jblas, and meka. An exam-

ple from la4j is method Matrix#shuffle(), which makes a copy of an input matrix and

uses a loop to randomly shuffle elements in the copy. Applying LPM to the shuffling

loop is practically not observable, because the specification of the expected output is non-

deterministic [101]. For ITS the surviving mutants for ApproxCode are equivalent, while

for DTF the surviving ApproxCode mutants are within the precision range defined in the

application.

Determining whether code is approximable is not an easy task. It is highly dependent on

the quality of the oracles in the test suites that determine the ranges of acceptable output.

Approximate computing often relies on the usage context (i.e., specific applications and

application-level requirements) to determine if code is approximable. Such usage context

is not available for the developers of general-purpose libraries (like most of our subjects)

that can be used in a myriad of contexts. Therefore, the tests for these libraries are written

in a conservative way, and consequently, our set of identified approximable patterns are

necessarily conservative as well.

27

2.5.2 Do insights from surviving mutants help improve testing practice?

We find that surviving mutants of the BadTest category can be killed by adding tests

that (1) achieve better loop coverage, (2) achieve better coverage of the loop condition,

(3) exercise the code with larger inputs that cross the precision boundaries, or (4) check all

output elements. Even though these insights are not new to the testing community, the real

value lies in the fact that the approximate transformations are able to detect those problems,

bringing them to the attention of the developer who might not have such considerations in

mind. We also submitted pull requests that fix bad (buggy, inadequate, or missing) tests,

to evaluate whether these insights can help developers improve their test suites. Seven of

the 11 pull requests that we submitted were already integrated by developers into vectorz,

HikariCP, commons-imaging, imglib2, and commons-io. We next discuss the categories and

the pull requests.

Achieve better loop coverage. 11 out of 30 LPM BadTest cases have tests that do not

achieve full loop coverage, i.e., they do not have tests that exercise zero, one, and more than

one loop iterations [16]. As Table 2.7 shows, the tests frequently cover either zero or one

iteration. We discover the lack of full loop coverage while inspecting surviving LPM mutants

in vectorz, jblas, OpenTripPlanner, and commons-io. The causes of low loop coverage that

we observed are when (1) a test exercises the code with small inputs (e.g., one dimensional

matrices) and (2) a test searches for a value that always happens to be the first element in

the input data, so that the loop iterates only once before exiting. For example, in jblas,

the method argmin() returns the index of the minimum element in a matrix. All tests that

cover argmin() use input that is sorted in ascending order, so argmin() always returns 0.

Achieve better coverage of loop condition. While inspecting the 14 surviving LPM

mutants for the code pattern “Conditional computation on elements” (Section 2.4.1), we

find 12 of them are cases of BadTest in two categories: either the conditional check on the

elements is never performed, or the conditional check is only performed on even-numbered

iterations. In several cases the tests exercise the loop with only valid inputs, so the condi-

tional check for errors that happen in the loop body is never performed. LPM helps direct

the developer’s attention into those critical parts of the code. An example from commons-io

(SHA:733dc26) is shown in Figure 2.8. The method resolveProxyClass() from the class

ClassLoaderObjectInputStream is only exercised by the test testResolveProxyClass. The

test passes only one interface (Comparable.class) to the loop in resolveProxyClass. Thus,

applying LPM to that loop will not cause testResolveProxyClass to fail, i.e., the resulting

mutant survives, unless more than one interface is passed to resolveProxyClass(). Our pull

request containing such a test was accepted by the commons-io developers.

28

Table 2.7: Lessons pearned dfor better testing practices from LPM BadTest cases

Bad Testing Pattern #Cases Learned Testing Practice

Zero iterations 7 Better loop coverage
One iteration 4 Better loop coverage
Loop condition (LC) Not Taken 8 Better coverage of LC
LC taken on even iterations 4 Better coverage of LC
Weak or no assertion 6 Check all output elements
Small Inputs 51 Exercise boundary values
Other2 1 -

Total 81

Exercise boundary values. All BadTest cases for ITS and DTF are due to tests using

small inputs. This means that the current tests do not use values that exceed the precision

bounds of short for ITS and float for DTF, and we can write a test that can kill the mutant.

A DTF example from vectorz is in the class Quaternions, which represents numbers from

the quaternions number system using double precision. The method mul() computes the

product of two quaternions. Mutants casting any of the arithmetic operations involved in

the computation survive because the numerical values are very small.

Check all output elements. Multiple mutants are not killed because of the weakness or

absence of assertions in the tests. For example, meka is a machine learning library. The tests

cover the mutants, but most of the tests do not have assertions, and coming up with strong

assertions is non-trivial. Another example is in vectorz (shown in Figure 2.1). The only test

that covers the method Matrix#swapRows() does not check that all elements in the swapped

rows are as expected (detailed discussion is in Section 2.1). We submitted a pull request to

add assertions and it has been accepted.

2.6 THREATS TO VALIDITY

Internal. In our implementation, the tools and scripts that we use may contain bugs. To

mitigate this, we use PIT [6] and Spoon [108], which are well-tested tools commonly used

by researchers. We tested our implementations of approximate transformations on many

small examples, and multiple collaborators reviewed the scripts that we used for running

2This is a case in meka; a setter method resets the values in a matrix, but the new values are almost
equal to the old values, so the effect of skipping iterations is not observable. A better test would exercise
the function such that the difference between the new and old values is observable.

29

protected Class<?> resolveProxyClass(final String[] ints) {
final Class<?>[] iClasses = new Class[ints.length];
for (int i = 0; i < ints.length; i++) {

iClasses[i] = Class.forName(ints[i], false, loader);
}
try {

return Proxy.getProxyClass(loader, iClasses);
}
catch (final IllegalArgumentException e) {

return super.resolveProxyClass(ints);
}
}

@Test
public void testResolveProxyClass() throws Exception {

...
ClassLoaderObjectInputStream c =

new ClassLoaderObjectInputStream(...);
String[] i = new String[]{Comparable.class.getName()};
Class<?> r = c.resolveProxyClass(i);
assertTrue(”...”, Comparable.class.isAssignableFrom(r));
c.close();
}

Figure 2.8: Bad test example from commons-io [2]

experiments. For the qualitative analysis, the classifications we assign to killed and surviving

mutants may be erroneous, and there could be bias in selecting mutants to inspect. To

mitigate errors in the classifying mutants, each person wrote detailed notes during inspection,

based on a pre-defined format and up to two other collaborators (different from the one who

did the original inspection) double-checked the notes. To reduce bias in the mutants that we

selected to inspect, we randomly sampled the killed and surviving mutants in each project.

External. We analyze only Java subjects, which may not be representative of all software.

To mitigate that, we choose the subjects in our study from different domains (databases,

I/O, machine learning, imaging, linear algebra, etc.).

Construct. The conventional mutation operators we use in comparison may not be rep-

resentative of all mutation operators. Since ours is an initial study of the effectiveness of

approximate transformations as mutation operators, we have used the set of conventional

mutation operators that are available in PIT, which are used in both research and practice.

Furthermore, in our qualitative analysis we examine mutation operators from three other

popular mutation frameworks [57,69,96] and find our conclusions to still hold for those.

The approximate transformations that we evaluated are a subset of all approximate trans-

formations and they may not be representative. To mitigate that, we model popular trans-

formations that have been widely used in the approximate computing literature. Each

30

transformation that we implement models some key properties of the original approximate

transformations, i.e., dropping parts of computation (LPM), large magnitude errors (ITS),

and small magnitude errors (DTF).

31

CHAPTER 3: EFFECTS OF COMPILER OPTIMIZATIONS

In this chapter we present an empirical study of the effects of compiler optimizations on

mutation testing at the compiler IR level. Our study aims to investigate whether mutation

testing should be applied with or without compiler optimizations, providing the user with

insights about the interplay between mutations and compiler optimizations. To that end,

we ask the following research questions:

RQ3.1: How do compiler optimizations affect the number of generated mutants?

RQ3.2: How do compiler optimizations affect the number of equivalent and duplicated

mutants?

RQ3.3: How do compiler optimizations affect the mutation score?

RQ3.4: How do these effects vary with the class of mutation operators applied?

3.1 ILLUSTRATIVE OVERVIEW

We use the program cut from Coreutils to illustrate our evaluation on a concrete example

and to introduce some background material. The cut program is a standard Unix command-

line utility that selects columns or fields from the input and writes them to the standard

output. The Coreutils source distribution comes with the source code (src/cut.c) and 65

tests specifically written for this program. Each test runs cut for some given input (provided

as the command-line arguments and the content of an input file), and checks that the actual

output (in terms of both the content of stdout and the return exit code of the program

run) matches the expected output. For example, one test gives as input the command-line

argument “-c4” (to select the 4th character) and the input file with the content “123” (with

no newline byte before the end of the file). The expected result is an empty string with a

new line appended, conforming with cut’s spec. All 65 tests can be run with one shell script.

We want to evaluate the effects of compiler optimizations on mutation testing for cut.

3.1.1 Clang and LLVM

Our mutation tool-set first uses the Clang [78] compiler front-end to translate src/cut.c

into LLVM intermediate representation (IR), known as bitcode. LLVM IR also encapsulates

assembly instructions and accompanying comprehensive metadata. The LLVM framework

32

provides a rich API for alterations of the bitcode and the LLVM compiler tool-set already

implements a large set of compiler optimizations. We modify the Makefile build config-

uration for Coreutils such that the compiler produces LLVM bitcode files using a specific

optimization level, -O0 or -O3. Note that this step applies optimizations before applying

the mutations (and a later step will additionally apply optimizations after applying the

mutations).

3.1.2 Compiler Optimizations

Compiler optimizations are semantics-preserving transformations applied to a program

with the intention of improving the program’s performance. Each optimization is gener-

ally intended to make the program smaller or faster. The optimizations are typically applied

together to synergistically combine the benefits of each optimization to provide superior per-

formance. While the -O0 level aims for fast compilation and applies almost no optimizations,

the -O3 level aims to produce very efficient code and applies a large number of optimizations,

including loop unrolling, constant propagation, and instruction combining [79]. Specifically,

for the cut program, the -O0 level produces LLVM bitcode with 1274 instructions, while the

-O3 level produces 1110 instructions.

For example, Figure 3.1 shows a snippet of the cut bitcode before and after applying

optimizations. It shows the basic block in the usage function that returns the status code

and then exits. In the unoptimized bitcode, a load instruction retrieves the status code before

using it as an argument to the call to exit. However, in the optimized bitcode, the tail-call

optimization [81] replaces the original call instruction with a tail call, allowing to remove

the load instruction, thereby reducing the overall number of instructions and improving the

program performance. For cut, the total number of call instructions at the -O0 level is 133,

of which none is a tail call. At the -O3 level, the total number of call instructions is 120, of

which 108 are tail calls. Also, the number of load instructions is reduced from 330 at -O0 to

166 at -O3.

3.1.3 Mutant Generation

We implemented the mutation operators as manipulations of the LLVM IR. Specifically,

we implemented two LLVM passes. The first pass takes as input an LLVM bitcode file and

some class of mutation operators (e.g., AOR or ICR). It then finds all bitcode instructions

that can be mutated (for AOR, all LLVM instructions that use arithmetic operators such as

add; and for ICR, all LLVM instructions that have an integer constant), and outputs a set

33

Listing 3.1: Unoptimized bitcode (-O0 level)

if.end:

%14 = load i32, i32* %status.addr, align 4

call void @exit(i32 %14) #8

unreachable

Listing 3.2: Optimized bitcode (-O3 level)

if.end:

tail call void @exit(i32 %status) #13

unreachable

Figure 3.1: Example from cut showing instruction count reduction

of possible mutations (e.g., replacing a specific add instruction with sub, mul, and div; or

replacing an integer constant with another integer value). The second pass takes as input

an LLVM bitcode file and a specific mutation to apply (as computed by the first pass) and

outputs a modified LLVM bitcode file with that mutation applied. Our tool-set invokes

the second pass for each and every mutation found by the first pass. Each mutated LLVM

bitcode file is then compiled (and linked) into an actual executable, using the LLVM back-

end at the same optimization level, either -O0 or -O3, that was used initially by Clang, thus

applying optimizations also after applying the mutations.

3.1.4 Number of Generated Mutants

For cut, we obtained a total of 1958 mutants at the -O0 level and 2547 mutants at the -O3

level. There were more mutants at the -O3 level although it had fewer instructions overall

than the -O0 level (1110 vs. 1274), because the -O3 level had more mutation opportunities;

we define a mutation opportunity as a part of an instruction that can be mutated, e.g., the

opcode or one of the operands. Across the various classes of mutation operators, we obtained

the following numbers of mutants: 100 AOR, 14 LCR, 864 ROR, and 980 ICR at the -O0

level; and 116 AOR, 102 LCR, 1215 ROR, and 1114 ICR at the -O3 level.

3.1.5 Mutation Score

We next ran the cut test suite on each of the mutants, accounting for cases of “rogue”

mutants that could affect the entire testing and experimental process. Such cases include

mutants that encounter infinite loops (and could block all experiments) or mutants that

34

%12 = and i8 %dash_found.0.ph430.i, 1

%tobool134.i = icmp eq i8 %12, 0

br i1 %tobool134.i, label %L1, label %L2

Figure 3.2: Example from cut for duplicated mutants (-O3 level)

excessively write to disk. Our tool-set includes a sophisticated runner to handle these cases.

If a mutant causes any test in the suite to fail, the mutant is killed. Higher-quality test

suites kill more mutants, and the percentage of mutants killed is called the mutation score.

The actual value depends on the generated mutants, which in turn depend on the compiler

optimization level. Specifically, for cut, we find that the test suite kills a total of 1091 and

1402 of the mutants generated at the -O0 and -O3 levels, respectively. The corresponding

mutation scores are 55.7% and 55.0%, respectively. The same test suite thus appears seem-

ingly better when evaluated with the mutants generated at the -O0 level than at the -O3

level.

3.1.6 Equivalent and Duplicated Mutants

Some of the mutants that are generated, while syntactically different in the mutated

LLVM, may end up being semantically equivalent to the original cut program. No test

can kill any equivalent mutant, so ideally all equivalent mutants should be removed from

the set of generated mutants. However, determining mutant equivalence is undecidable in

general [16, 22]. Our tool-set uses the recently proposed trivial compiler equivalence [88]

to perform a bit-by-bit equality comparison between the compiled binaries for the original

code and the mutants. If a mutant binary is exactly the same as the original binary, then

the mutant is definitely equivalent; if the binaries differ, then we cannot be sure. In the

case of cut, this technique finds 66 and 111 equivalent mutants at the -O0 and -O3 levels,

respectively.

Moreover, even if we cannot establish that some mutants are definitely equivalent to

the original code, we can find that these mutants are equivalent to one another—following

Papadakis et al. [88], we call such mutants duplicated. We use the same technique that

compares compiled binaries of mutants to find the mutants that are definitely duplicated

but may not be equivalent to the original code. For cut, this technique finds 11 duplicated

mutants (0.5% of all generated mutants) at the -O0 level and 360 (14.1% of all generated

mutants) at the -O3 level.

Figure 3.2 shows a snippet from cut that leads to duplicated mutants. The second in-

struction compares whether the boolean from the register %12 is equal to zero and saves the

35

result in the register %tobool134.i which is checked in the next branch instruction. The

comparison instruction presents two mutation opportunities: one for ROR (replacing the

relational operator eq with one of {ne,ugt,uge,ult,ule,sgt,sge,slt,sle}) and the other

for ICR (replacing 0 with one of {1,-1}). Four duplicated mutants are generated from this

instruction: replacing eq with one of {ne,ugt,sgt} or replacing 0 with 1. (Note that these

four mutants are not equivalent to the original code but are equivalent to one another.)

Basically, checking whether a boolean is not equal or greater than 0 (i.e., the boolean is

not false) is semantically the same as checking whether the boolean is equal to 1 (i.e., the

boolean is true).

Identifying equivalent and duplicated mutants allows us to remove some mutants from

mutation testing, which makes mutation testing faster (because we need not run tests on

those removed mutants) and provides a more accurate mutation score (because we can use a

more precise number of generated and killed mutants). More specifically, we should remove

all equivalent mutants, and from each equivalence class of duplicated mutants, we should

remove all mutants but one to act as a representative of the equivalence class. We call the set

of mutants resulting from this removal the non-equivalent, non-duplicated (NEND) mutants.

Applying this to cut, we end up with 1881 and 2076 NEND mutants at the -O0 and -O3

levels, respectively.

3.1.7 Revisiting Mutation Score

Revisiting mutation score when considering only NEND mutants, it turns out that the

cut test suite kills 1085 and 1148 NEND mutants at the -O0 and -O3 levels, respectively.

The absolute numbers of mutants killed among NEND mutants are lower than the absolute

numbers of mutants killed among all generated mutants. The reason is that some equivalence

classes of duplicated mutants were killed, and thus removing those duplicated mutants also

reduces the number of killed mutants. (Note that removing equivalent mutants never reduces

the number of killed mutants, because equivalent mutants cannot be killed.) As a result, we

find that the mutation scores are 57.6% and 55.3% for the NEND mutants at the -O0 and

-O3 levels, respectively. Both of these values are higher than the corresponding values for

all generated mutants. We conclude that using only NEND mutants gives a more accurate

evaluation of the test suite; users should prefer the -O3 level, but they should carefully

interpret the mutation score obtained at the -O3 level. We will see that most relationships

we have mentioned in this section are not specific to cut but actually hold for (almost) all

16 Coreutils programs that we evaluate.

36

3.2 EXPERIMENTAL SETUP

We describe the programs we use in our evaluation, the mutation tool-set we built for

the evaluation, and the comparison strategy we used to identify equivalent and duplicated

mutants.

3.2.1 Object Programs

Our evaluation uses programs from Coreutils, a well-studied set of programs frequently

used as benchmarks for research in testing [24,34,62,72]. Specifically, we use Coreutils version

6.11; while not the most recent, this version is often used in research, including studies on

compiler optimizations [34]. We selected 16 programs for our evaluation. We focused on the

programs with test directories that explicitly label these programs as test targets (to avoid

accidentally killing mutants by tests that do not target the specific program). Out of 27 such

programs, our infrastructure had problems with 9, e.g., they had tests with non-deterministic

results (known as flaky tests [68]). In the case of a flaky test, the output is dependent on

the testing environment in addition to the test inputs, so both the original code and its

equivalent mutants can pass or fail regardless of the chosen test. We made certain that for

all 16 selected programs, (1) all tests pass on the original code, (2) all equivalent mutants

produce the same output as the original code, and (3) all duplicated mutants from the same

equivalence class return the same result. Each of these 16 programs comes with a number

of tests, typically one or more shell scripts that invoke the program multiple times.

3.2.2 Compiler Optimizations

In these experiments, we use LLVM 3.8.1. We selected two opposite optimization levels

for our experiments. The -O0 level provides fast compilation and serves as the baseline for

comparison. The -O3 level is one of highest optimization levels in LLVM 3.8.1, enabling

some of the most time-intensive optimizations.

3.2.3 Mutation Tool-Set

We implemented both mutant generation and mutant execution. For mutant generation,

we wrote LLVM passes that first identify the points where mutation operators could be

applied and then systematically apply these operators to modify the LLVM bitcode files

(as described in Section 3.1). We implemented four classes of mutation operators: AOR,

37

Table 3.1: Total number of LLVM instructions and the number of mutation opportunities
(per operator class and total), at both -O0 and -O3 levels

Program -O0 -O3
Total Mutation Opportunities Total Mutation Opportunities
Inst AOR LCR ROR ICR Sum Inst AOR LCR ROR ICR Sum

chmod 675 7 15 38 256 316 403 8 15 36 227 286
chown 292 3 1 16 126 146 233 3 3 16 110 132
cut 1274 25 7 96 357 485 1110 29 51 135 417 632
dd 2436 93 74 196 684 1047 2080 91 100 234 705 1130
du 1199 11 6 62 470 549 835 22 15 76 389 502
head 1744 59 7 100 604 770 994 55 17 106 477 655
join 2088 50 6 117 791 964 1958 71 33 208 749 1061
mkdir 251 1 7 12 101 121 159 1 7 9 53 70
mv 604 5 4 31 257 297 372 3 9 28 216 256
readlink 140 1 0 6 44 51 95 1 0 5 35 41
rm 322 2 1 16 162 181 200 2 4 17 113 136
rmdir 349 2 1 21 100 124 199 2 6 23 71 102
tac 871 31 1 54 205 291 581 26 8 60 180 274
tail 3030 74 27 192 1126 1419 2175 87 47 262 997 1393
test 1895 64 24 144 529 761 1711 102 43 237 642 1024
touch 606 5 9 45 242 301 413 5 16 41 219 281
tr 3116 107 25 144 1108 1384 2219 99 104 205 854 1262
wc 1172 43 20 74 346 483 842 47 28 73 319 467
Overall 22064 583 235 1364 7508 9690 16579 654 506 1771 6773 9704

LCR, ROR, and ICR (described briefly in Section 1.3). Note that some of the mutation

operators for the source language do not apply at the LLVM level. For example, “replace an

arithmetic-assignment operator by another operator” replaces C-level assignment operators

“+=”, “-=”, “*=”, and “/=” with one another, but such assignment operators are de-sugared

at the LLVM level. Each of our mutation operators is applied to generate syntactically

distinct mutants. We integrated our LLVM passes into the Makefile build configuration

such that it can generate all the mutants at the specified optimization level. Each of the

16 programs was compiled using each of the two selected optimization levels, producing two

original LLVM bitcode files of each program. Each LLVM bitcode file was then subjected to

all the mutation operators, generating our set of mutants.

For mutant execution, we created a framework that sandboxes and parallelizes runs of each

program’s companion test suite against its set of mutants. The framework automatically

determines which mutants are killed. When a test terminates, it is easy to determine if a

mutant is killed (test failed) or not (test passed). However, in some cases, mutants can exhibit

unexpected behavior. First, mutations can massively increase the number of iterations of a

loop by altering the guard condition, to the point where mutants can have infinite loops. Our

framework handles such cases by time-limiting each test to 30 seconds; mutants that ran out

of time are considered killed. Second, a mutant could write arbitrary data to the file system

38

(and Coreutils programs and their tests already perform many file-system operations, which

makes this case harder to detect). Our framework handles these cases by limiting the size

of the files that a process could write. Finally, the entire mutation testing process was very

time intensive, as dozens or hundreds of tests needed to be run on hundreds or thousands of

mutants per program, so our framework parallelized these runs. We ran our experiments on

three 24-core machines with Scientific Linux. When all the tests completed, we were able to

assign each test suite a mutation score for each relevant set of mutants.

3.2.4 Mutant Comparison

It is important to remove equivalent and duplicated mutants, because they can artificially

inflate or deflate the mutation score. We compared the mutants by computing checksums,

specifically using md5sum, of the final binaries. We then compared the checksums for each

mutant to those of the progenitor programs to identify which files have the same content;

collisions are highly unlikely using md5sum.

To establish a firm baseline for comparison, the original programs had to be compiled

using the same process as the mutants but without the application of mutation operators.

Initially, we compiled the original programs without creating an intermediate LLVM file,

going directly from the source code to the object file that was linked into the final executable.

However, LLVM adds debug information during its compilation process, which was present

in the mutants but not in the original executables. This provided enough differentiation to

make it seem as if no mutant was equivalent to the original program. Even using strip to

remove some symbols from the object files did not make their content match exactly. We

changed the Makefile to add the original program to the compilation pipeline, making sure

not to mutate it.

3.3 EXPERIMENTAL RESULTS

We next discuss the results obtained in our experiments. Table 3.1 shows some statistics

for the 16 Coreutils programs, specifically the total number of the LLVM bitcode instruc-

tions and the number of mutation opportunities for various mutation operators at different

compiler optimization levels. The number of mutation opportunities is equal to the num-

ber of instructions mutated by the corresponding operator for all operators except for ICR,

where it reflects the number of integer constant occurrences (and one instruction may have

more than one integer constant operand). The last row shows the sum of the values for each

column. Overall, there are fewer LLVM instructions at the -O3 level than at the -O0 level

39

Table 3.2: The number of generated mutants (#M), the number (#E) and percentage
(E%) of equivalent mutants, the number (#D) and percentage (D%) of duplicated
mutants, and the number of NEND mutants, at both -O0 and -O3 levels

Program -O0 -O3
#M #E E% #D D% #NEND #M #E E% #D D% #NEND

chmod 1069 41 3.8 9 0.8 1019 952 90 9.4 131 13.7 731
chown 467 15 3.2 0 0.0 452 453 67 14.7 41 9.0 345
cut 1958 66 3.3 11 0.5 1881 2547 111 4.3 360 14.1 2076
dd 4208 131 3.1 22 0.5 4055 4721 297 6.2 797 16.8 3627
du 1723 74 4.2 11 0.6 1638 1682 146 8.6 178 10.5 1358
head 2699 110 4.0 27 1.0 2562 2513 250 9.9 306 12.1 1957
join 2902 112 3.8 24 0.8 2766 3980 340 8.5 496 12.4 3144
mkdir 368 23 6.2 3 0.8 342 253 15 5.9 15 5.9 223
mv 907 32 3.5 5 0.5 870 792 82 10.3 98 12.3 612
readlink 192 7 3.6 0 0.0 185 140 5 3.5 12 8.5 123
rm 543 12 2.2 0 0.0 531 458 28 6.1 42 9.1 388
rmdir 479 25 5.2 11 2.3 443 417 16 3.8 48 11.5 353
tac 1151 58 5.0 12 1.0 1081 1120 67 5.9 111 9.9 942
tail 4673 158 3.3 35 0.7 4480 5409 501 9.2 677 12.5 4231
test 3077 75 2.4 66 2.1 2936 4717 248 5.2 710 15.0 3759
touch 1083 52 4.8 17 1.5 1014 983 125 12.7 101 10.2 757
tr 4280 161 3.7 44 1.0 4075 4624 212 4.5 610 13.1 3802
wc 1780 68 3.8 18 1.0 1694 1729 108 6.2 237 13.7 1384
Overall 33559 1220 3.6 315 0.9 32024 37490 2708 7.2 4970 13.2 29812

(16579 vs. 22064). This reduction is expected, as the unoptimized code often simply moves

data using instructions like alloca, load, and store, while the optimized code removes such

instructions (e.g., Figure 3.1 discussed in Section 3.1.2). However, there is overall a similar

number of mutation opportunities at the -O3 and -O0 levels (9704 vs. 9690). The optimized

and unoptimized versions of the code have a similar number of instructions that perform the

actual computations (or operate on constant values) and to which our operators thus apply.

3.3.1 Number of Mutants

Table 3.2 shows the total number of mutants generated for each program, the number

and percentage of equivalent and duplicated mutants, and the number of NEND mutants at

both the -O0 and -O3 levels. The last row shows the overall values, which are (1) the sums

of the numbers of respective mutants in a given column and (2) the overall percentages of

equivalent and duplicated mutants (computed as the weighted average across all programs).

From Table 3.2, we see that the overall number of all generated mutants is 11.7% higher

at the -O3 level (37490 mutants) than at the -O0 level (33559 mutants). However, this

relationship between the number of mutants does not follow for most of the individual

40

programs. In fact, the relationship is the opposite for all programs except for six (cut, dd,

join, tail, test, and tr); these six programs generate a far larger number of mutants at

the -O3 level, thus raising the average and leading to the overall conclusion. The Wilcoxon

paired rank test for the numbers of all generated mutants has a p-value of 0.76, indicating

that the difference between -O0 and -O3 levels is not statistically significant.

In brief, we obtain the following answer for RQ3.1: The overall number of generated

mutants is lower at the -O0 level than at the -O3 level, but the opposite holds for most

programs and difference is not statistically significant.

3.3.2 Equivalent and Duplicated Mutants

We next analyze the number of equivalent and duplicated mutants in more detail. Table 3.2

shows a detailed breakdown for such mutants at both optimization levels. We can see that

the overall percentages of both equivalent and duplicated mutants are higher at the -O3

level (7.2% and 13.2%, respectively) than at the -O0 level (3.6% and 0.9%, respectively).

The comparison between these percentages is similar overall as for almost every individual

program.

The overall number of NEND mutants is 6.9% lower at the -O3 level (29812 mutants)

than at the -O0 level (32024 mutants). Moreover, the number of NEND mutants is lower

at the -O3 level than at the -O0 level for almost every program. Only three programs (cut,

join, and test) have more NEND mutants at the -O3 level than at the -O0 level. The

Wilcoxon paired rank test shows statistically significant difference between the numbers of

NEND mutants (p < 0.05). This suggests that mutation testing can be faster at the -O3

level than at the -O0 level because there are fewer NEND mutants to run at the -O3 level,

and the more optimized programs likely run faster as well.

In brief, we obtain the following answer for RQ3.2: The relative number of both equivalent

and duplicated mutants is higher at the -O3 level than at the -O0 level; as a result, the overall

absolute number of NEND mutants is lower at the -O3 level than at the -O0 level (despite

the overall absolute number of all generated mutants being higher at the -O3 level than at the

-O0 level).

3.3.3 Mutation Score

We next consider the mutation score, arguably the most important metric in mutation

testing. The number of mutants is an important internal metric because it determines the

time needed to perform mutation testing, but the mutation score is an external metric used

41

Table 3.3: The mutation score for all generated mutants and for only NEND mutants, at
both -O0 and -O3 levels

Program -O0 -O3

All NEND All NEND
chmod 35.7 36.9 33.7 35.7
chown 32.7 33.8 29.8 33.3
cut 55.7 57.6 55.0 55.3
dd 32.8 33.9 31.4 31.5
du 41.6 43.4 36.2 38.0
head 17.8 18.7 15.7 17.6
join 54.5 56.6 40.0 42.1
mkdir 52.9 56.4 55.3 57.8
mv 53.8 55.5 50.6 51.4
readlink 39.5 41.0 40.7 39.8
rm 42.7 43.6 35.3 37.1
rmdir 29.4 31.3 28.3 29.7
tac 41.3 43.5 37.0 38.4
tail 31.3 32.4 24.5 26.5
test 37.6 38.7 37.3 38.8
touch 39.4 41.6 38.2 41.0
tr 59.2 61.5 59.2 59.8
wc 32.4 33.8 26.7 26.0
Overall 40.4 41.9 37.0 38.5

to compare the quality of test suites. Table 3.3 shows the mutation score values. We note

two interesting comparisons.

First, between the optimization levels, the corresponding overall mutation score values are

lower at the -O3 level than at the -O0 level, both for all mutants and for only NEND mutants.

Moreover, this holds not only for the overall values but for most individual programs, again

not only for all mutants but also for only NEND mutants. The Wilcoxon paired rank test

shows statistically significant differences between the mutation score values at -O0 and -O3

levels (p < 0.005 for all mutants, and p < 0.001 for only NEND mutants).

In brief, we obtain the following answer for RQ3.3: The mutation score values are lower

at the -O3 level than at the -O0 level both for all mutants and for only NEND mutants.

Second, between all mutants and only NEND mutants, the mutation score value for almost

every program is lower for all mutants than the corresponding mutation score value for only

NEND mutants (Table 3.3). For example, consider dd: at -O0, the mutation score value for

all mutants (32.8%) is lower than the value for only NEND mutants (33.9%); and similarly,

at -O3, the value for all mutants (31.4%) is lower than the value for only NEND mutants

42

Table 3.4: The number of generated mutants (#M), the percentages of equivalent (E%)
and duplicated (D%) mutants, and the number of NEND mutants, split across mutation
operators classes at the -O0 level

Program -O0
AOR LCR ROR ICR

#M E% D% NEND #M E% D% NEND #M E% D% NEND #M E% D% NEND
chmod 28 0.0 0.0 28 30 0.0 0.0 30 342 0.0 0.0 342 669 6.1 1.3 619
chown 12 0.0 0.0 12 2 0.0 0.0 2 144 0.0 0.0 144 309 4.8 0.0 294
cut 100 0.0 0.0 100 14 0.0 0.0 14 864 1.0 0.0 855 980 5.8 1.1 912
dd 370 0.0 0.0 370 148 0.0 0.0 148 1764 0.0 0.0 1764 1926 6.8 1.1 1773
du 44 0.0 0.0 44 12 0.0 0.0 12 558 0.0 0.0 558 1109 6.6 0.9 1024
head 236 0.0 0.0 236 14 0.0 0.0 14 900 0.0 0.0 900 1549 7.1 1.7 1412
join 200 0.0 0.0 200 12 0.0 0.0 12 1053 0.0 0.0 1051 1637 6.7 1.4 1503
mkdir 4 0.0 0.0 4 14 0.0 0.0 14 108 0.0 0.0 108 242 9.5 1.2 216
mv 20 0.0 0.0 20 8 0.0 0.0 8 279 0.0 0.0 279 600 5.3 0.8 563
readlink 4 0.0 0.0 4 0 N/A N/A 0 54 0.0 0.0 54 134 5.2 0.0 127
rm 8 0.0 0.0 8 2 0.0 0.0 2 144 0.0 0.0 144 389 3.0 0.0 377
rmdir 8 0.0 0.0 8 2 0.0 0.0 2 189 0.0 0.0 189 280 8.9 3.9 244
tac 124 0.0 0.0 124 2 0.0 0.0 2 486 0.0 0.0 486 539 10.7 2.2 469
tail 296 0.0 0.0 296 54 0.0 0.0 54 1728 0.0 0.0 1728 2595 6.0 1.3 2403
test 256 0.0 0.0 256 48 0.0 0.0 48 1296 0.0 0.0 1296 1477 5.0 4.4 1336
touch 20 0.0 0.0 20 18 0.0 0.0 18 405 0.0 0.0 405 640 8.1 2.6 571
tr 428 0.0 0.4 426 50 0.0 0.0 50 1296 0.0 0.0 1296 2506 6.4 1.6 2305
wc 172 0.0 1.1 170 40 0.0 0.0 40 666 0.0 0.0 666 902 7.5 1.5 820
Overall 2330 0.0 0.1 2326 470 0.0 0.0 470 12276 0.0 0.0 12265 18483 6.5 1.6 16968

(31.5%). We do not compare here the value at -O0 for all mutants and at -O3 for only NEND

mutants because those are not corresponding values.

There is no general relationship between the mutation score values for all mutants and

only NEND mutants. Consider some mutation score value k
m

, where m is the number of

all generated mutants and k is the number of mutants killed among those m. If we remove

(only) e > 0 equivalent mutants, we must get a higher k
m−e . If we remove (only) d > 0

duplicated mutants, and none of them are killed, we must get a higher k
m−d . If all the

duplicated mutants are killed, we must get a lower k−d
m−d . In general, we remove e equivalent

and d duplicated mutants, and the number of killed duplicated mutants d′ is between 0 and

d, so the resulting k−d′
m−e−d must be between k

m−e−d and k−d
m−e−d ; the resulting mutation score

can be higher or lower than the original mutation score.

3.3.4 Analysis Across Mutation Operators

We have discovered several relationships between the numbers of all mutants, equivalent

and duplicated mutants, NEND mutants, and mutation score values, compared across differ-

ent compiler optimization levels. However, the analysis so far has been across the mutants

generated by all mutation operators. Do these relationships vary when considering mutants

of each mutation operator individually? We revisit the initial questions while breaking down

the numbers for each operator classes.

43

Table 3.5: The number of generated mutants (#M), the percentages of equivalent (E%)
and duplicated (D%) mutants, and the number of NEND mutants, split across mutation
operators classes at the -O3 level

Program -O3
AOR LCR ROR ICR

#M E% D% NEND #M E% D% NEND #M E% D% NEND #M E% D% NEND
chmod 32 0.0 25.0 24 30 0.0 0.0 30 324 8.9 17.2 239 566 10.7 6.3 469
chown 12 0.0 25.0 9 6 0.0 0.0 6 144 6.9 16.6 110 291 19.5 1.3 230
cut 116 0.0 26.7 85 102 0.0 1.9 100 1215 7.5 13.4 960 1114 1.7 3.1 1060
dd 362 0.0 23.2 278 200 7.5 3.0 179 2106 7.3 17.2 1588 2053 6.2 4.8 1825
du 88 0.0 17.0 73 30 0.0 0.0 30 684 5.7 11.7 565 880 12.1 3.7 740
head 220 0.0 12.7 192 34 0.0 0.0 34 954 5.8 12.2 781 1305 14.8 5.5 1038
join 284 2.4 30.9 189 66 0.0 0.0 66 1872 7.2 10.1 1546 1758 11.2 3.4 1500
mkdir 4 0.0 0.0 4 14 0.0 0.0 14 81 9.8 8.6 66 154 4.5 1.9 144
mv 12 0.0 25.0 9 18 0.0 5.5 17 252 5.1 19.0 191 510 13.5 4.3 419
readlink 4 0.0 50.0 2 0 N/A N/A 0 45 6.6 11.1 37 91 2.2 3.3 86
rm 8 0.0 25.0 6 8 0.0 0.0 8 153 5.2 15.6 121 289 6.9 1.7 264
rmdir 8 0.0 37.5 5 12 0.0 0.0 12 207 5.8 8.7 177 190 2.1 8.9 169
tac 104 0.0 5.7 98 16 12.5 0.0 14 540 5.5 10.5 453 460 7.6 4.5 404
tail 348 0.0 12.6 304 94 0.0 1.0 93 2358 5.8 13.0 1912 2609 13.9 5.2 2109
test 408 0.0 19.1 330 86 0.0 0.0 86 2133 5.7 10.2 1792 2090 5.9 9.9 1758
touch 20 0.0 30.0 14 32 0.0 0.0 32 369 7.5 11.6 298 562 17.2 3.9 443
tr 396 0.0 24.4 299 208 0.4 0.0 207 1845 5.5 15.4 1457 2175 4.9 2.4 2014
wc 188 0.0 17.5 155 56 0.0 1.7 55 657 6.0 14.3 523 828 8.2 4.5 722
Overall 2614 0.2 20.3 2076 1012 1.7 1.0 983 15939 6.4 13.1 12816 17925 9.2 4.8 15394

Table 3.6: The mutation score split across mutation operator classes for all generated
mutants and only NEND mutants

Program -O0 -O3
AOR LCR ROR ICR AOR LCR ROR ICR

All NEND All NEND All NEND All NEND All NEND All NEND All NEND All NEND
chmod 39.2 39.2 66.6 66.6 36.8 36.8 33.6 35.3 53.1 54.1 73.3 73.3 36.1 37.6 29.1 32.6
chown 50.0 50.0 50.0 50.0 31.9 31.9 32.3 34.0 50.0 44.4 50.0 50.0 35.4 35.4 25.7 32.1
cut 70.0 70.0 57.1 57.1 59.4 60.1 50.9 54.0 68.1 68.2 72.5 72.0 54.3 55.6 52.8 54.0
dd 35.4 35.4 48.6 48.6 35.5 35.5 28.7 30.7 33.9 29.8 38.0 39.1 36.3 37.4 25.2 27.2
du 72.7 72.7 58.3 58.3 46.5 46.5 37.6 40.2 61.3 56.1 73.3 73.3 34.0 34.8 34.0 38.7
head 14.4 14.4 7.1 7.1 21.2 21.2 16.5 17.9 13.1 11.4 14.7 14.7 16.3 17.8 15.7 18.7
join 65.5 65.5 100.0 100.0 54.4 54.5 53.0 56.6 44.7 45.5 46.9 46.9 40.3 41.9 38.7 42.6
mkdir 100.0 100.0 71.4 71.4 51.8 51.8 51.6 56.9 100.0 100.0 71.4 71.4 54.3 57.5 53.2 55.5
mv 100.0 100.0 87.5 87.5 59.5 59.5 49.1 51.5 100.0 100.0 83.3 82.3 63.1 62.3 42.1 46.3
readlink 100.0 100.0 N/A N/A 57.4 57.4 30.6 32.2 100.0 100.0 N/A N/A 53.3 54.0 31.8 33.7
rm 50.0 50.0 0.0 0.0 37.5 37.5 44.7 46.1 50.0 66.6 50.0 50.0 33.3 34.7 35.6 37.5
rmdir 50.0 50.0 50.0 50.0 32.8 32.8 26.4 29.5 50.0 40.0 50.0 50.0 24.6 27.1 30.0 30.7
tac 46.7 46.7 50.0 50.0 46.5 46.5 35.4 39.6 66.3 66.3 31.2 35.7 38.5 38.8 28.9 31.1
tail 53.7 53.7 11.1 11.1 30.7 30.7 29.6 31.5 45.6 46.3 23.4 22.5 24.2 24.0 22.0 25.7
test 38.2 38.2 45.8 45.8 41.2 41.2 34.0 36.1 40.6 40.3 41.8 41.8 33.4 34.7 40.4 43.3
touch 60.0 60.0 11.1 11.1 46.1 46.1 35.3 38.7 60.0 57.1 31.2 31.2 44.1 44.9 33.9 39.5
tr 80.1 80.0 52.0 52.0 60.1 60.1 55.3 59.0 85.3 83.6 37.9 38.1 59.0 60.1 56.7 59.3
wc 44.7 45.2 40.0 40.0 28.3 28.3 32.8 35.6 42.0 40.0 41.0 40.0 21.9 21.4 26.0 26.8
Overall 51.4 51.4 45.1 45.1 41.9 42.0 37.8 40.5 49.2 47.5 43.7 43.9 37.3 38.1 34.6 38.1

Tables 3.4 and 3.5 show a detailed breakdown, per operator class, of the left side of

Table 3.2 and the right side of Table 3.2, respectively. Table 3.6 shows the detailed breakdown

per operator class of Table 3.3. When considering the breakdown into individual operator

classes, it is important to note how to treat duplicated mutants, because mutants can be

duplicated across different operator classes (e.g., a mutant generated using the AOR operator

can be a duplicate of a mutant generated using the ICR operator). In these tables, we

compute duplicated mutants for each operator as if the only mutants that exist are the

mutants generated by that operator. For example, if two mutants Ma and Mi are duplicates

44

Table 3.7: Relationships for mutants generated by all operators together vs. mutants
generated by each operator individually

Relationship Operators
All AOR LCR ROR ICR

for all generated mutants, overall #M at -O3 > #M at -O0 yes yes yes yes no
for only NEND mutants, overall #NEND at -O3 < #NEND at -O0 yes yes no no yes
overall E% at -O3 ≥ E% at -O0 yes yes yes yes yes
overall D% at -O3 ≥ D% at -O0 yes yes yes yes yes
for all generated mutants, overall mutation score at -O3 < mutation score at -O0 yes yes yes yes yes
for only NEND mutants, overall mutation score at -O3 < mutation score at -O0 yes yes yes yes yes

of each other, but Ma is generated by the AOR operator and Mi by the ICR operator, when

considering mutants from AOR, Ma is counted as NEND and not counted as a duplicated

mutant; likewise, when considering mutants from ICR, Mi is counted as NEND. The sum

of all the duplicated mutants we report for each operator is lower than the number we

report overall in Table 3.2, because many duplicated mutants when considering all operators

together may not be duplicated when considering only one operator.

Table 3.7 summarizes the relationships across all operators and per each operator. Most

relationships that hold for the mutants generated by all operators together also hold when

considering only the mutants generated by each operator individually. One exception con-

cerns the overall number of all generated mutants for the ICR operator: the overall number

of all generated mutants at the -O3 level is higher than the overall number of all generated

mutants at the -O0 level for all operators except ICR. Though there are a few programs

where the number of generated mutants at -O3 for ICR is higher than at -O0 (cut, dd, join,

tail, and test), for the majority of programs this is not the case, and these exceptions

do not have many more generated mutants at the -O3 level. The other exceptions concern

the number of NEND mutants for the LCR operator and the ROR operator. Concerning

the LCR operator, it does not generate many equivalent nor duplicated mutants at either

optimization level. As such, because the LCR operator generates more mutants overall at

the -O3 level, it continues to have more NEND mutants at the -O3 level as well. Concerning

the ROR operator, the difference between the number of NEND mutants at the different

optimization levels is relatively small (12265 at -O0 vs. 12816 at -O3), and we see that there

are actually only six programs that have more NEND mutants at the -O3 level than at the

-O0 level (cut, du, join, tail, test, and tr).

In brief, we obtain the following answer for RQ3.4: The effects of -O0 and -O3 levels

on mutation testing are most likely due to compiler optimizations and not due to specific

mutation operators.

45

Figure 3.3: The overall number of instructions, mutation opportunities, generated mutants
(all and NEND), and mutation score (all and NEND)

#Inst #Opportunities #M #NEND MS NEND MS
0

5000

10000

15000

20000

25000

30000

35000

40000

 2
20

64

 9
69

0

 3
35

59

 3
20

24

 1
65

79

 9
70

4

 3
74

90

 2
98

12
0

5

10

15

20

25

30

35

40

45

 4
0 4

1

 3
7 3

8

O0
O3

3.3.5 Visual Summary

As an overall visual summary of all our high-level results, Figure 3.3 compares the num-

ber of instructions, mutation opportunities, generated mutants (both all and NEND), and

mutation score (both all and NEND) between optimization levels -O0, shown in (dark) blue,

and -O3, shown in (light) red. To summarize, although there are fewer instructions in the

programs compiled at the -O3 level than at the -O0 level, there are actually slightly more

mutation opportunities at the -O3 level, which in turn leads to more mutants generated.

However, when we keep only NEND mutants, there are fewer NEND mutants at the -O3

level. For both all mutants and only NEND mutants, the mutation score values are lower at

the -O3 level.

3.4 THREATS TO VALIDITY

Internal. Our implementation of mutation testing and the scripts for running the exper-

iments may contain bugs. To reduce the risks, we used the well-known framework LLVM

and reviewed our code and scripts to check basic functionality. We built our own scripts to

run the experiments, collect results, and analyze them. We performed sanity checks on the

numbers that the scripts generated, e.g., we checked that equivalent and duplicated mutants

give the same results, as they should (Section 3.2.1). We also manually inspected some

46

outliers to confirm that the results were correct.

External. The programs and tests that we used for our empirical study are a subset of all

available software and may not be representative. Thus, our findings may not generalize to

all software. To address this threat, we selected a total of 16 open-source programs from the

widely used Coreutils distribution. We used all of the regression tests that come with each

Coreutils program and specifically target it.

Construct. We use the technique proposed by Papadakis et al. to identify equivalent and

duplicated mutants [88]. The technique is a heuristic and provides only a lower bound on

the number of such mutants; we cannot claim we identified all equivalent and duplicated

mutants. We also chose the basic -O0 optimization level in LLVM as our baseline and

compared it with one of the most advanced levels, -O3. The results could differ for other

combinations of compiler optimizations, but we hypothesize that the general result holds:

using higher optimization levels is beneficial, as long as equivalent and duplicated mutants

are removed, and the mutation score is properly interpreted. In particular, we do not know

which of the two mutation scores may better correspond to finding real faults, but the

mutation scores at the -O0 and -O3 levels are similar, so we expect that both equally well

(or equally poorly!) correspond to real faults.

47

CHAPTER 4: COMPARING THE SRC AND IR LEVELS

In this chapter we present an extensive comparison of mutation testing at the SRC and IR

levels in the C programming language and the LLVM compiler IR. To make the comparison

fair, we develop two mutation tools that implement conceptually the same operators at

both levels. We also employ automated techniques to account for equivalent and duplicated

mutants, and to determine hard-to-kill mutants. We carry out our study on 16 programs

from the Coreutils library, using a total of 948 tests. We also perform a case study on the

widely studied Space program. Space is developed by the European Space Agency and is

publicly available in the Software Infrastructure Repository (SIR) [33].

In our study, we address the following research questions:

RQ4.1: How does the number of generated mutants differ between the SRC and IR

levels?

RQ4.2: How does the number of equivalent and duplicated mutants differ between

the SRC and IR levels?

RQ4.3: How does the mutation score differ between the SRC and IR levels?

RQ4.4: How do the mutation score and the number of equivalent and duplicated

mutants of different mutation operator classes differ between the SRC and IR levels?

RQ4.5: Which of the two levels (SRC or IR) generates more hard-to-kill mutants?

RQ4.6: How do mutation scores at the SRC and IR levels compare with the actual

bug-finding capability of test suites?

4.1 MUTATION TOOLS IMPLEMENTATION

We use two mutation tools: one tool generates mutants for C source code, based on Clang,

and the other tool generates mutants for the code’s intermediate representation (IR), based

on LLVM. The following two subsections discuss the details of the implementation of each of

the tools and how they get invoked by our runner to execute tests on the generated mutants.

4.1.1 Source-level Mutant Generation Tool

We implement our source (SRC)-level mutant generation tool as a source-to-source trans-

formation tool based on Clang (version 3.8.1). Clang parses the input files and builds an

48

abstract syntax tree (AST). We use the LibTooling [4] and LibASTMatchers [5] libraries

that together enable modifying the Clang AST to perform source-to-source transformations.

The mutant generation tool operates in three steps. First, we use the llvm-cov tool [80]

to collect the code coverage achieved by the test suite; we build the code under test using

Clang with the flags -O0 -g --coverage enabled, run the tests, and collect the coverage

data. Second, we invoke our mutation tool (instead of the regular compiler) to search for

candidate mutation locations in the AST that correspond to the covered lines. Then, for

each of these candidates, we apply all the mutation operators that are applicable, generating

one mutated source file for each mutation. Lastly, for each of the mutated source files, we

compile it as usual to produce mutated executable(s) and libraries. We perform on-the-fly

trivial compiler equivalence (TCE) [88] (details in Section 4.2.3) to determine if the mutant

is equivalent or duplicated. If it is not, we run the tests and collect the results.

Our tool-set supports mutating multiple files. This is an essential characteristic of a

mutation tool, as code is generally organized in multiple files and directories according to

its functionality. For example, a significant part of the functionality used by Coreutils tools

is defined in a utility directory that gets into a shared library libcoreutils.a that is linked

to the executable. Missing on mutating code coming from libcoreutils.a decreases the

confidence in the value of the mutation testing results we get.

4.1.2 IR-level Mutant Generation Tool

For IR-level mutant generation, we build on top of the LLVM tool we used in our study in

Chapter 3. The original tool uses transformation passes in the LLVM compiler infrastructure

(LLVM version 3.8.1) to generate mutants. It consists of two LLVM passes. The first pass

takes as input a file containing the LLVM IR (also known as bitcode) and generates as output

the locations that can be mutated and the mutations to apply to each location. The second

pass takes as input a file with an IR and the mutation to apply, and then actually applies it.

We extend the implementation of the tool with an LLVM pass that instruments the code and

collects coverage at the IR instruction level, as done by some another tool for LLVM [98].

Our extended IR mutation tool mirrors the source-level mutation tool in its three steps

of operation. First, we instrument the code and collect coverage per LLVM instruction.

Second, we use the LLVM pass described above to generate a list of possible mutants and

intersect it with the coverage info. Lastly, for each of the mutants in the list, we generate the

mutated executable(s) and libraries, and perform on-the-fly TCE. If the generated mutant

is not equivalent or duplicated, we run the tests and collect the results.

49

4.2 EXPERIMENTAL SETUP

In this section, we describe our experimental setup for comparing mutation testing at the

SRC level and at the IR level. We first describe the programs and their tests we used for the

evaluation, along with how we sampled the tests for smaller test suites. We then describe

how we determine equivalent and duplicated mutants. We finally describe how we run the

two different mutation testing tools (one for each level).

4.2.1 Evaluation Programs

For our evaluation, we use the programs from Coreutils (described in detail in Sec-

tion 3.2.1). The selected subset of tools from Coreutils in this chapter is, however, different

as we make more effort towards separating individual test cases. We selected 16 programs

for our evaluation. We eliminated the other programs because they had too few tests, or

because they had flaky tests [68].

The tests for most programs in Coreutils are manually written scripts that invoke the

program multiple times, where each invocation conceptually represents a different test. Such

scripts are not ideal for evaluating mutation testing. For example, the program cut has a

test script file that contains 186 tests. If we were to execute such a test script directly on

the original and mutated versions of the program, it would execute all 186 tests and report

a failure if any of the 186 tests fails. Therefore, we would just know if a mutant is killed

or not, but we would not get the full test-mutant matrix, i.e., we would not know for each

test-mutant pair whether that test kills that mutant. If one were to use a mutation testing

tool to evaluate the quality of a test suite, it is enough to know what mutants are killed by

any test in the test suite. However, we want to obtain the full test-mutant matrix because

it can facilitate a further analysis of mutants, e.g., computation of minimal mutant sets [15].

To get the full matrix for the programs, we manually analyzed all the test script files for the

Coreutils programs used in our evaluation, and we split each long script into several shorter

scripts that each runs an individual test.

We split long test scripts into shorter test scripts through a combination of automated

transformations (whenever it was possible) and manual changes. To ensure that our process

for splitting the test scripts does not affect the validity of the results, we executed all shorter

test scripts on their respective programs to verify that each of them gives the excepted result

on the original code. More precisely, executing a test on a program in Coreutils can give one

of the three possible results: PASS, FAIL, or SKIP. The tests are skipped during execution

when their precondition state is not established, which can happen for a number of reasons.

50

One reason that we commonly found for skipped tests was that they required to be run

with the root privilege level. Another reason was that a few tests required the presence

of more than one disk partition mounted on the file system. These tests report the SKIP

result for the original program as well as for any mutant generated for the program. We did

not attempt to execute tests with elevated privileges because failing mutants with a higher

privilege could substantially affect the system (e.g., consider a mutant for rm that deletes

the entire disk). Further, we inspected all tests that were getting skipped after our splitting

of long test scripts into shorter test scripts. For most cases, the test was also originally

skipped in the longer script due to unavailable privileges or resources, which is the correct

behavior. For a few cases, the test started being skipped after our splitting. We carefully

inspected the latter cases and found out that some tests were getting skipped because their

setup was getting skipped—this setup usually sets some test environment variables and is

performed when all tests are run by invoking make check from the top-most test directory;

our shorter scripts do not invoke tests that way. However, the most important aspect is that

the same tests are skipped consistently, and thus they do not affect our comparison of SRC-

and IR-level mutation testing.

The number of tests found for each program also affects our selection of programs for

evaluation. About half the programs have literally no tests or very few tests once skipped

tests are ignored. We ignored those programs from our evaluation because the design of our

experiments requires sampling from the entire test pool to form smaller test suites for each

program (as described later in this section). We cannot reasonably sample from a test pool

if it is already small.

4.2.2 Sampling Test Suites

When evaluating mutation testing at the SRC level and the IR level, we obtain just one

mutation score for the entire test pool of a single program. However, it is difficult to compare

the two different levels based solely on just one mutation score. As such, we also sample test

suites from the overall test pool for each program, creating a number of smaller test suites.

Specifically, from each program’s test pool, we sample four different sizes of test suites: 1/2,

1/4, 1/8, and 1/16 of the test pool size. As our smallest size is 1/16 of the test pool size, our

criterion then for the number of tests in the test pool for any of the programs we evaluate

on is a minimum of 16, to ensure at least one test in a sampled test suite. For each size, we

randomly sample the appropriate number of tests from the entire test pool to create a test

suite, and we sample ten such test suites per size (with replacement across test suites). We

also ensure that no two test suites are equal to each other (although they can have overlaps

51

in tests). We use the same smaller test suites for both SRC level and IR level mutation

testing. With the multiple test suites, we can draw correlations between the mutation scores

at the SRC and IR levels.

4.2.3 Mutant Comparison

After generating all the mutants, we determine which mutants are equivalent and dupli-

cated. As shown in Chapter 3, it is important to properly handle equivalent and duplicated

mutants when computing mutation scores.

Once the NEND mutants are determined, one could run the entire mutation analysis only

on those mutants if all the tests are deterministic. However, in our evaluation, we run all

tests on all generated mutants as a means to find flaky tests. Flaky test results are unreliable

(unless the same test is explored via expensive, multiple runs on the same code [37]), so we

cannot easily determine if a mutant is killed or not when the test does not give deterministic

results. However, we can determine that we have flaky tests by examining the results of

running tests on equivalent and duplicated mutants. If a test kills an equivalent mutant,

then the test must be a flaky test. Similarly, if a test kills a mutant from an equivalence

class of duplicated mutants but does not kill another mutant from the same equivalence

class, then the test is also flaky. By comparing the test results on equivalent and duplicated

mutants, we found that tests from some programs (e.g., join and uniq) have tests that can

seemingly kill equivalent mutants, while tests from some other programs (e.g., ln) have tests

that seemingly do not equally kill all the mutants in the same class of duplicated mutants.

As such, we removed several programs from our evaluation.

4.2.4 Sampling Mutants and Parallelizing Runs

We apply the two mutant-generation tools on the 16 programs we use in our evaluation. In

Chapter 3, we studied mutant generation at the IR level using different optimization levels,

and we found that the -O3 optimization level is preferred. In this study, we configure both

mutant-generation tools to generate mutants using the same optimization level, -O3.

The number of generated mutants for the Coreutils subjects is very large, exceeding 15,000

mutants in some cases, which is prohibitive to run and necessitates sampling. These num-

bers are much larger than those in Chapter 3 because the enhances tools mutates multiple

files. Previous research [119] has shown that selective mutation based on operator selection

gives similar results to random sampling. Therefore, we perform random mutant selection

sampling 10% of the generated mutants. We then run the tests on the sampled mutants.

52

Table 4.1: Number of tests, generation time, number of generated, equivalent, and
duplicated mutants at both levels for each program

Program Tests SRC IR
Gen. Gen.

Time (s) #M #E E% #D D% #NEND Time (s) #M #E E% #D D% #NEND
chmod 51 15132 562 8 1.4 24 4.3 530 20173 1598 33 2.1 96 6.0 1499
dd 16 1180 276 6 2.2 20 7.2 250 21332 1250 45 3.6 23 1.8 1182
du 36 28184 718 13 1.8 26 3.6 679 8034 1693 84 5.0 47 2.8 1564
expr 86 82 53 2 3.8 1 1.9 50 13701 1357 22 1.6 71 5.2 1264
factor 31 85 36 1 2.8 1 2.8 34 251 60 6 10.0 2 3.3 52
head 85 10159 94 1 1.1 2 2.1 91 899 364 25 6.9 4 1.1 335
mkdir 36 2119 260 9 3.5 7 2.7 244 7771 889 27 3.0 23 2.6 839
readlink 159 612 294 3 1.0 16 5.4 275 6432 1082 34 3.1 36 3.3 1012
rm 60 6179 511 4 0.8 25 4.9 482 24463 1057 25 2.4 38 3.6 995
seq 37 205 98 1 1.0 6 6.1 91 3025 456 27 5.9 17 3.7 412
stat 68 445 183 5 2.7 11 6.0 167 3752 715 30 4.2 18 2.5 667
tac 52 1364 209 5 2.4 8 3.8 196 26290 535 24 4.5 2 0.4 509
tail 125 11972 303 6 2.0 10 3.3 287 5163 649 39 6.0 0 0.0 610
touch 28 2477 490 5 1.0 25 5.1 460 23435 1197 28 2.3 39 3.3 1132
unexpand 38 42 34 1 2.9 1 2.9 32 206 118 2 1.7 0 0.0 116
wc 40 1986 277 4 1.4 16 5.8 257 59190 1161 33 2.8 23 2.0 1105
Overall 948 82223 4398 74 1.7 199 4.5 4125 224117 14181 484 3.4 439 3.1 13293

The entire mutation testing process is rather time intensive, because there can be hundreds

of tests running on thousands of mutants per program. Therefore, we parallelize our exper-

iments across 16 Ubuntu 16.04.4 LTS virtual machines. For each of our two tools, we run

the entire mutation testing process for a single Coreutils program on one virtual machine at

a time.

4.3 RESULTS AND ANALYSIS

Table 4.1 tabulates the programs we use in our evaluation and the number of tests they

have.

4.3.1 Number of Generated Mutants

Table 4.1 also shows the total number of mutants generated, the time to generate those

mutants, and the number of equivalent and duplicated mutants, at each level. We can see

that the total number of generated mutants at the IR level is about three times higher than

at the SRC level. The number is also higher for the individual programs, as well as for

the NEND mutants (after removing the equivalent and duplicated mutants). Looking at

tables 4.2 and 4.3, we see that the overall numbers of generated mutants for AOR and LCR

are similar between SRC and IR. However, the major difference comes from ROR (2335 vs.

5343 overall for NEND) and especially ICR (943 vs. 6858 overall for NEND). We perform a

53

detailed analysis of those differences in Section 4.3.4.

We next discuss several example mutants from the function main of mkdir to illustrate

cases with a one-to-one mapping between SRC and IR mutants, and other cases where one

SRC mutant corresponds to multiple IR mutants, and vice versa.

One-to-one mapping between SRC and IR mutants: A mutation applied at the SRC level

can in some cases be mapped directly to a mutation at the IR level. For example, in the

conditional ‘if (optind == argc)’, ROR at the SRC level replaces the operator ‘==’ with ‘>’.

Looking at the IR bitcode, we find the same mutant obtained by replacing the instruction

‘icmp eq’ with ‘icmp sgt’ also using ROR.

IR presents more mutation opportunities: It is intuitive to expect that IR can present more

mutation opportunities than SRC knowing that one SRC statement translates into multiple

IR instructions. However, that is not the only reason, and we show here an example not due

to the increase in the number of instructions, but due to the more freedom an IR instruction

can present in manipulating the functionality. Applying ROR on the line ‘if (!change)’

negates the condition of the if statement, namely replaces it with ‘if (!(!change))’. At the

IR level, the if statement translates into multiple instructions, including the following integer

comparison instruction that checks for equality ‘%tobool25 = icmp eq %r* %call24, null’.

The application of ROR replaces ‘icmp eq’ with ‘icmp neq’ and ‘icmp ugt’, generating two

mutants at the IR level that are semantically similar to the mutant generated at the SRC

level negating the if condition. Therefore, the type of the instruction at the IR level enabled

more mutants to be generated.

SRC presents more mutation opportunities: In some cases, a SRC statement can present

more mutation opportunities than the corresponding IR code. For example, a line in the

source of mkdir includes the following: ‘(0400|0200|0100) | ((0400|0200|0100) >> 3) |

(((0400|0200|0100) >> 3) >> 3)’. Applying ICR at the SRC level generates multiple mu-

tants, e.g., replacing the first occurrence of the constant ’3’ with ’-3’. Note that there

are multiple constants that ICR can mutate. Going to the corresponding IR bitcode, the

constant folding compiler optimization leads to replacing the entire expression containing

multiple constants with just the value ‘511’. Now there is only one constant that ICR can

mutate at the IR level, so there are fewer mutants generated.

Looking at the time to generate mutants in Table 4.1, it is approximately 23 hours for

SRC which is about 2.7 times lower than that of IR (62.35 hours). This is expected as the

number of SRC mutants is about three times lower than the number of IR mutants.

Answering RQ4.1, the number of generated mutants is much higher at the IR level than

at the SRC level both before and after taking into consideration equivalent and duplicated

mutants. This difference suggests that mutation testing at the SRC level is much faster to

54

0 10 20 30 40 50 60 70 80
Mutation Score

IR

SRC

M
ut
at
io
n
Le

ve
l

Figure 4.1: Distribution of NEND mutation score for the entire test pool at SRC and IR
levels

run than mutation testing at the IR level.

4.3.2 Equivalent and Duplicated Mutants

Our experiments show that, on average, the percentage of equivalent mutants is 1.7% at

the SRC level, and 3.4% at the IR level. For duplicated mutants, the percentage is 4.5% at

the SRC level and 3.1% at the IR level. Note that due to sampling, those percentages can

diverge from the actual numbers of equivalent and duplicated mutants. For example, if the

sampling mostly chooses mutants from different equivalent classes, we end up with a low

percentage of duplicated mutants. However, because our sampling is random, the variance

of those numbers is not large.

Answering RQ4.2, the ratios of equivalent and duplicated mutants are similar at both the

SRC and IR levels.

4.3.3 Mutation Score

The mutation score is the main metric in mutation testing, so we compare a variety of

mutation scores at the SRC and IR levels. We first compare the mutation scores for only

NEND mutants for the entire test pool. Second, we sample test suites from the test pool,

as detailed in Section 4.2.2. For these sampled test suites, we compare the mutation score

for both the set of all NEND mutants and the refined mutant set [40], also sometimes called

removing dynamically equivalent mutants. A refined mutant set is a subset of all NEND

mutants that are killed by at least one test. Similarly to previous studies [40,103,119], we use

refined mutant sets to remove the mutants that may be equivalent to the original program.

55

0 20 40 60 80 100
IR

0

20

40

60

80

100

SR
C

Figure 4.2: NEND mutation score for sampled test suites from seq at both levels

Entire Test Pool

Focusing on comparing SRC and IR levels, Figure 4.1 shows in boxplot form the dis-

tribution of the NEND mutation scores of all programs for both SRC and IR levels. The

median (red line) and (unweighted) mean (white dot) mutation scores for the SRC level are

similar (with SRC having slightly higher median and slightly lower mean than IR) to their

respective values for the IR level. The weighted mean mutation score at the SRC level is

similar to the one at the IR level, 28.6% vs. 28.4%. Examining individual values and from

Figure 4.1, we can see that the mutation score for both the SRC level and the IR level

are fairly similar. Indeed, the Wilcoxon paired rank test for the mutation score has a high

p-value (0.74), indicating the difference of mutation scores at both levels is not statistically

significant.

Sampled Test Suites

We compute the mutation score of sampled test suites of different sizes, considering both

all NEND mutants and the refined NEND mutants. Our key goal here is to compare the

mutation scores that the sampled test suites obtain at the SRC and IR levels: because most

uses of mutation testing in research are to compare test suites, we want to know whether

the SRC and IR levels agree on the quality of test suites. If the two levels largely agree,

we can simply use the level that is better by other metrics (e.g., runs faster or is easier to

implement). If the two levels greatly disagree, then we need to establish which one is closer

to the real quality of test suites.

We use two measures of correlation to compare the SRC and IR levels: Kendall’s τb and

56

Table 4.2: Number of generated, equivalent, and duplicated mutants across operator
classes at the SRC level

Program SRC
AOR LCR ROR ICR

#M E% D% NEND #M E% D% NEND #M E% D% NEND #M E% D% NEND
chmod 77 0.0 1.3 76 48 2.1 8.3 43 299 1.0 3.3 286 138 2.9 2.2 131
dd 46 0.0 0.0 46 41 9.8 0.0 37 132 1.5 11.4 115 57 0.0 3.5 55
du 89 0.0 0.0 89 58 1.7 1.7 56 425 2.4 4.2 397 146 1.4 1.4 142
expr 4 0.0 0.0 4 1 0.0 0.0 1 36 2.8 2.8 34 12 8.3 0.0 11
factor 3 0.0 0.0 3 1 0.0 0.0 1 22 4.5 0.0 21 10 0.0 0.0 10
head 11 0.0 0.0 11 5 20.0 0.0 4 54 0.0 1.9 53 24 0.0 0.0 24
mkdir 18 0.0 0.0 18 25 4.0 0.0 24 162 2.5 2.5 154 55 7.3 1.8 50
readlink 40 0.0 2.5 39 19 0.0 0.0 19 182 0.5 5.5 171 53 3.8 3.8 49
rm 45 0.0 0.0 45 57 0.0 1.8 56 287 1.0 4.9 270 122 0.8 2.5 118
seq 18 0.0 5.6 17 9 0.0 0.0 9 57 0.0 7.0 53 14 7.1 0.0 13
stat 16 0.0 0.0 16 15 0.0 0.0 15 111 3.6 7.2 99 41 2.4 0.0 40
tac 34 0.0 0.0 34 14 14.3 0.0 12 112 1.8 6.2 103 49 2.0 0.0 48
tail 33 0.0 0.0 33 27 3.7 0.0 26 177 1.1 4.5 167 66 4.5 0.0 63
touch 54 0.0 0.0 54 50 6.0 6.0 44 257 0.8 5.8 240 129 0.0 2.3 126
unexpand 2 0.0 0.0 2 1 0.0 0.0 1 20 5.0 0.0 19 11 0.0 0.0 11
wc 34 0.0 2.9 33 26 0.0 3.8 25 164 2.4 4.3 153 53 0.0 1.9 52
Overall 524 0.0 0.8 520 397 3.5 2.5 373 2497 1.6 4.9 2335 980 2.0 1.7 943

Pearson’s R2. Intuitively, τb checks for monotonicity: a high value would show that SRC and

IR’s mutation scores change in the same direction, i.e., if one increases, the other increases

as well, and vice versa. Intuitively, R2 checks for a linear relationship: a high value would

show that the mutation scores at the SRC and IR levels change by a linearly proportional

amount (irrespective of the direction). Using both measures together can tell us if SRC and

IR mutation scores are correlated.

To visualize the correlation we want to compute between SRC and IR level mutation scores,

we show Figure 4.2, a scatter plot of mutation scores computed on all NEND mutants for

one sample program, seq. We show this scatter plot for only seq as most of the other

programs demonstrate a similar trend. Each point in the scatter plot corresponds to a

sampled test suite from seq. The darker the point color, the bigger the test suite is (the

darkest corresponding to the entire test pool and the lightest corresponding to the size 1/16th

of the test pool). The x-coordinate is the IR level mutation score, and the y-coordinate is

the SRC level mutation score. The linear correlation can be seen from the figure. From

this figure, we can see that for seq, the SRC and IR level mutation scores are very strongly

correlated with one another, meaning seq has a high τb value. Furthermore, there is a strong

linear correlation as well, so seq has a high R2 value as well.

We compute the τb and R2 values for each program for the set of all NEND mutants

and the set of refined NEND mutants. The average values of τb (excluding readlink whose

τb is undefined) and R2 across all programs are 0.75 and 0.73, respectively, for all NEND

57

Table 4.3: Number of generated, equivalent, and duplicated mutants across operator
classes at the IR level

Program IR
AOR LCR ROR ICR

#M E% D% NEND #M E% D% NEND #M E% D% NEND #M E% D% NEND
chmod 71 0.0 0.0 71 43 0.0 0.0 43 599 3.3 6.7 554 885 1.5 6.1 834
dd 54 0.0 0.0 54 57 0.0 0.0 57 522 3.3 1.9 495 617 4.5 1.9 577
du 70 0.0 0.0 70 62 0.0 0.0 62 691 3.9 2.6 648 870 6.6 3.1 786
expr 57 0.0 0.0 57 41 0.0 0.0 41 578 1.7 6.4 531 681 1.8 4.7 637
factor 5 0.0 0.0 5 2 0.0 0.0 2 26 11.5 7.7 21 27 11.1 0.0 24
head 21 0.0 0.0 21 7 0.0 0.0 7 157 4.5 1.3 148 179 10.1 0.6 160
mkdir 47 0.0 0.0 47 20 0.0 0.0 20 346 3.2 1.7 329 476 3.4 3.2 445
readlink 46 0.0 0.0 46 32 0.0 0.0 32 450 2.9 3.6 421 554 3.8 3.4 514
rm 40 0.0 0.0 40 43 0.0 0.0 43 415 1.4 4.1 393 559 3.4 3.4 521
seq 22 0.0 0.0 22 5 0.0 0.0 5 167 1.8 1.8 161 262 9.2 5.0 225
stat 29 0.0 0.0 29 22 0.0 0.0 22 301 5.6 3.0 275 363 3.6 2.2 342
tac 31 0.0 0.0 31 23 0.0 0.0 23 221 5.9 0.0 208 260 4.2 0.0 249
tail 41 0.0 0.0 41 15 0.0 0.0 15 284 5.3 0.0 269 309 7.8 0.0 285
touch 52 0.0 0.0 52 41 0.0 0.0 41 467 2.8 4.7 433 637 2.4 2.4 608
unexpand 7 0.0 0.0 7 6 0.0 0.0 6 59 3.4 0.0 57 46 0.0 0.0 46
wc 66 0.0 0.0 66 35 0.0 0.0 35 425 2.8 3.1 400 635 3.3 1.4 605
Overall 659 0.0 0.0 659 454 0.0 0.0 454 5708 3.3 3.4 5343 7360 4.0 3.0 6858

mutants, and 0.75 and 0.73, respectively, for refined NEND mutants. We also inspected the

individual values per program and noticed that there is a strong positive correlation between

the mutation scores at the SRC and IR levels for most programs, with almost all of them

having both a τb and R2 value greater than 0.65 for both types of mutants. The exception

is factor, which has a lower τb and R2 value than all the other programs (0.54 and 0.53,

respectively). We inspected factor and found out that factor has individual tests that kill

a very high percentage of mutants at the SRC level, much higher than at the IR level.

Answering RQ4.3, mutation scores at the SRC and IR levels are correlated and can be

used as a good proxy of each other.

4.3.4 Analysis Across Mutation Operators

So far we have analyzed mutation testing by examining the number of generated mutants,

the number of NEND mutants, and the mutation score for all four classes of the mutation

operators combined. To better understand how mutation testing at the SRC and IR levels

compare to each other, we perform our analysis for each operator class separately, which is

a finer granularity that sheds the light on whether the results are generalizable or due to a

specific mutation operator.

58

Number of Mutants

Tables 4.2 and 4.3 show the number of mutants generated across different operator classes

at the SRC and IR level, respectively. Note that the sum of NEND mutants for a given

program in these tables do not add up to the total NEND shown in table 4.1 because

duplicates can be across operators. Therefore, when we compute the number of NEND

mutants per operator, we can end up with a larger number.

The numbers are different for IR from Chapter 3 because of the different generation

process; in this chapter, we account for coverage, and we generate mutants for all covered

code (not just the tool.c file for a given tool). In addition, we carry the analysis in this

Chapter and show the results for a randomly sampled 10% subset of the total generated

mutants. The total number of mutants at the SRC level is lower than at the IR level for

every single operator class (524 vs. 659 for AOR, 2497 vs. 5708 for ROR, 397 vs. 454 for

LCR, and 980 vs. 7360 for ICR). Similarly, the number of NEND mutants is lower at the

SRC level than at the IR level (520 vs. 659 for AOR, 2335 vs. 5343 for ROR, 373 vs. 454 for

LCR, and 943 vs. 6858 for ICR). For ROR, the SRC level would generate five (likely NEND)

mutants replacing each relational operator by a different one from the set {>, >=, <, <=, ==,

!=}, whereas IR would generate nine (likely NEND) mutants replacing each operator by a

different one from the set {eq,ne,ugt,uge,ult,ule,sgt,sge,slt,sle}. The difference of five

vs. nine leads to having about twice as many ROR mutants at the IR level than at the SRC

level. Inspecting the ICR mutants, IR has almost 7 times more mutants due to the large

number of getelemptr instructions (which contributes the majority of the ICR mutants) in

LLVM used to compute offsets (such as replacing array indexing a[i] with a+4*i).

Equivalent and Duplicated Mutants

The percentages of equivalent and duplicated mutants at the SRC level are similar to the

corresponding ones at the IR level for each and every operator class. They are generally

low, and the numbers show that both levels are similar in terms of generating mutants that

are not trivially equivalent to the original program, or to one another. Note that the ratios

of equivalent and duplicated mutants are affected by sampling only 10% of the mutants;

in particular, the ratio of duplicated mutants is expected to be higher for all 100% of the

mutants.

59

Table 4.4: NEND mutation score across mutation operator classes

Program SRC IR
AOR LCR ROR ICR AOR LCR ROR ICR

chmod 23.7 44.2 27.3 27.5 25.4 25.6 21.1 20.1
dd 26.1 21.6 14.8 21.8 25.9 15.8 17.6 12.3
du 33.7 19.6 32.2 25.4 27.1 16.1 25.8 23.5
expr 75.0 0.0 32.4 72.7 78.9 34.1 44.4 52.7
factor 66.7 0.0 38.1 60.0 80.0 100.0 47.6 62.5
head 36.4 25.0 45.3 37.5 42.9 0.0 26.4 25.6
mkdir 55.6 12.5 34.4 32.0 48.9 40.0 27.7 24.3
readlink 28.2 10.5 25.1 16.3 21.7 18.8 14.3 9.5
rm 42.2 19.6 43.0 22.9 72.5 67.4 67.9 80.6
seq 70.6 33.3 45.3 46.2 86.4 60.0 49.1 34.2
stat 25.0 6.7 8.1 20.0 10.3 4.5 8.7 4.4
tac 38.2 8.3 19.4 20.8 19.4 4.3 19.7 7.6
tail 15.2 19.2 16.8 27.0 22.0 6.7 17.5 12.6
touch 35.2 18.2 29.6 25.4 26.9 17.1 29.6 45.4
unexpand 50.0 100.0 26.3 63.6 71.4 83.3 45.6 39.1
wc 30.3 20.0 26.1 38.5 30.3 8.6 19.8 15.0
Overall 33.3 21.2 28.9 27.4 37.5 24.2 28.0 28.1

Mutation Score

Table 4.4 shows the mutation scores of the NEND mutants across mutation operators.

The overall mutation scores for all operators are similar at both the SRC and IR levels.

Answering RQ4.4, the summary conclusions comparing SRC and IR for all operators

combined apply to every single mutation operator and therefore are generalizable.

4.3.5 Hard-to-Kill Mutants

So far the SRC level mutation looks better than the IR level mutation, because SRC

level generates fewer NEND mutants but has similar mutation scores. However, these scores

could be affected by redundant mutants [15] that do not add any value to the evaluation of

test suites. These mutants can misleadingly inflate the mutation score, e.g., some mutants

may be easy to kill by any test. To address this issue, we compare hard-to-kill mutants

at the SRC and IR levels. Following Gopinath et al. [40], we compute two sets of mutants

that can approximate hard-to-kill mutants: the minimal set of mutants and the surface set

of mutants1. Both sets are defined using dynamically subsuming mutants: a mutant m

1There is some terminology mismatch: what Gopinath et al. [41] define as “surface” mutants is what
Ammann et al. [15] define as “minimal” mutants, so what Gopinath et al. [41] call “minimal” should have

60

Table 4.5: Number of minimal mutants and surface mutants

Program #Minimal #Surface
SRC IR SRC IR

chmod 9 8 10 11
dd 4 6 4 7
du 13 14 14 15
expr 7 29 8 33
factor 2 2 2 2
head 6 9 9 13
mkdir 5 7 6 11
readlink 2 5 6 9
rm 12 6 13 7
seq 6 14 7 16
stat 4 3 4 4
tac 3 5 5 9
tail 9 8 12 9
touch 12 9 12 10
unexpand 3 5 5 6
wc 7 9 8 9
Overall 104 139 125 171

subsumes another mutant m′ for a test pool T if every test from T that kills m also kills

m′; the subsuming mutant m is a higher quality mutant that is harder to kill. Given a set

of mutants, a surface mutant set is a maximal subset that has no subsuming mutants, with

subsumption computed over the entire test pool. Further, a minimal mutant set is computed

the same as the surface mutant set, except subsumption is computed over a minimal test

suite (i.e., a test suite that is a subset of the test pool, has the same mutation score as the

entire test pool, and if one test is removed, the mutation score drops).

Table 4.5 shows the number of minimal and surface mutants computed for each program.

As expected, the number of minimal mutants is never greater than the number of surface

mutants. However, the difference is very small; the number of minimal mutants is similar to

the number of surface mutants.

Comparing SRC and IR, we see that the numbers of minimal mutants are similar. The

same applies for surface mutants. We can compute τb and R2 values for minimal and surface

mutants between SRC and IR similarly to how we computed for mutation scores between the

two levels, but with minimal/surface mutant counts instead. The values of τb are 0.32 and

0.36 and those of R2 are 0.01 and 0.00 for the minimal and surface sets of NEND mutants,

been called differently, e.g., “doubly minimal”. We follow the terminology from Gopinath et al. [40] as it is
a more recent paper.

61

respectively. The values of τb are moderate, showing a correlation between SRC and IR.

However the values of R2 are low.

Answering RQ4.5, the SRC and IR levels generate a similar number of hard-to-kill mu-

tants.

4.4 CASE STUDY WITH REAL FAULTS

So far we have found that SRC and IR are good proxies for each other, with the mutation

score of SRC being lower than that of IR on average. Naturally, the next question that arises

is this: which of the two levels has a mutation score that is closer to the actual bug-finding

capability of the test suite?

To answer this question, we conduct a case study on Space, an interpreter of an array

definition language (ADL) developed by the European Space Agency [1]. We use the version

2.0, most recent available version in SIR [7] at the time. It comes with a test suite of 13496

test cases and with 33 documented real faults. (The total number of versions documenting

real faults that come with Space is 38, but only 33 of them are not equivalent to the original

program for the given test suite i.e., they are not detected by the given test suite.)

4.4.1 Setup

We generate SRC and IR mutants for Space, and we run the entire test suite for the SRC

mutants, the IR mutants, and the faulty versions. Then, we compare the output (standard

output and standard error) of each test case to that we obtain when executing the test case

on the original program (we compute the checksum of the outputs to compare them). If the

output is the same, we consider the test to be passing for the corresponding mutant/fault;

otherwise we count it as failing. A test failing for a given mutant/fault means that the test

was able to detect it.

Following Andrews et al. [17], we generate 5000 test suites of randomly selected test

suites of size 100 each. We then calculate for each test suite S the mutation detection ratio

Am(S) defined as the number of mutants killed by S divided by the total number of mutants

generated, and Af(S) as the number of faults detected by S divided by the total number of

faults we have (33 faults). Then for each test suite S, we compare Am(S) of SRC and Am(S)

of IR to Af(S).

62

4.4.2 Results

We generate a total of 9319 SRC NEND mutants and 23935 IR NEND mutants. The

average of Af(S) - Am(S) for SRC is 0.013497, which is smaller, in absolute value, than the

average Af(S) - Am(S) for IR (-0.057248). The average of Af(S) - Am(S) for SRC we obtain

is similar to the one reported in [17], which increases our confidence in our results; despite

the difference in our tool implementation and the operators used, we still obtain similar

results on Space as those reported in the literature.

Answering RQ4.6, mutation scores at the SRC level are somewhat closer to the actual

bug-finding capability of the test suites than the mutation scores at the IR level.

4.5 THREATS TO VALIDITY

Our results may not generalize to all software because the programs we chose for our

evaluation may not be representative. Our programs are a subset of all available software.

To address this threat, we used Coreutils, which is commonly used in previous research. We

chose a total of 16 programs from Coreutils, i.e., all programs that had a non-trivial number

of tests and had tests that were not flaky. For each program, we used all its tests.

In our evaluation, we use four classes of mutation operators at each level. The general

results obtained could be specific to those operators and may not generalize to other classes

of operators. In fact, repeating our analysis by each class of the mutation operators already

shows that the general conclusions can be influenced by some class and need not be similar

for each and every class. To determine equivalent and duplicated mutants, we use the trivial

compiler equivalence (TCE) [88] and comparison of results for refined mutants. While TCE

finds mutants that are definitely equivalent and duplicated, it only gives a lower bound on

the actual number of equivalent mutants; in contrast, refined mutants give only an upper

bound on the actual number of equivalent mutants. The true number of equivalent mutants

is in between these bounds and could affect our findings of the mutation score. However,

detecting all equivalent mutants is an undecidable problem [22], so we use both NEND and

refined mutants to compare SRC and IR level mutation.

The results of our case study may not be generalizable as we use only one subject. To

mitigate that, we conduct our experiments on the widely used and well documented Space

program. Previous research [17] has built their key conclusion solely on Space, and we follow

the same methodology.

63

CHAPTER 5: RELATED WORK

The work presented in this dissertation is related to several topics in approximate com-

puting and mutation testing.

5.1 APPROXIMATE COMPUTING

Approximate computing is an emerging area of research focusing on trading off inaccu-

rate results for performance gains (e.g., for time reduction or less energy usage). Some

approximate computing techniques involve approximate hardware [65, 75], data types [94],

sampling [10,66], or code perforation [76,104], all of which obtained significant performance

with tolerable errors in specific domains. However, most of the existing work in approxi-

mate computing does not make explicit connections to software testing research. While a

recent position paper argues in favor of using approximate computing to improve various

software testing tasks [38], the work presented in this dissertation shows that approximate

transformations are indeed useful in mutation testing.

Researchers also proposed sensitivity profilers [25,75,76,92,111,114], which transform code,

run it using representative input/output pairs, compare any differences, and suggest which

parts of computations are approximable. Like sensitivity profiling, our approach transforms

code and runs them on a set of tests, but our goal is different in several ways: (1) we study

approximate transformations for mutation testing and compare with conventional mutation

operators, (2) we execute programs on finer-grained unit tests, not coarse-grained integration

tests, and (3) our results provide hints for improving tests, not just code.

5.2 MUTATION TESTING

Mutation testing has been widely-studied for decades [31,120]; Jia and Harman [56] provide

a thorough survey. Multiple techniques were developed for mutation testing at different

levels and for different languages [6, 17, 41, 46, 55, 96, 98]. Many tools were also introduced

for multiple programming languages, e.g., including C [30, 55], C++ [61], Java [59, 70, 71, 96],

and others [23,26,51].

64

5.2.1 Approximate transformations

Many optimizations have been developed to speed up mutation testing, including mutant

schemata [112], weak mutation [89], and higher-order mutation [55]. Researchers have also

proposed new mutation operators for different domains and use cases, such as for GUI-based

applications [12,87], embedded systems [110], class diagrams [42], Android applications [113],

or fault-localization tasks [52]. We are the first to study approximate transformations in the

context of mutation testing [47].

Researchers have studied how to improve the efficiency of mutation testing by techniques to

only use the mutants that are hard-to-kill and representative of all mutants. Some heuristics

for finding hard-to-kill mutants include minimal mutant analysis [15,41], static analysis [90],

or use of historical data [53]. Offutt et al. [83, 86] empirically found the set of sufficient

operators, operators whose generated mutants are representative of mutants generated by

the other operators, and others have extended this idea to various languages and paradigms,

like concurrent code [39].

While these projects have the goal to improve the efficiency of mutation testing, that is

not the goal of our research on introducing approximate transformations as mutation opera-

tors. We are focused on improving the quality of mutation testing by utilizing new mutation

operators that give different insights into improving the test suite. We do, however, use the

established existing techniques to evaluate how effective approximate transformations are

compared against conventional mutation operators. We show, using minimal mutant analy-

sis, that approximate transformations generate mutants that end up in the minimal mutants

set, suggesting that they are harder to kill than other mutants. Through selective muta-

tion analysis, we find that approximate transformations are not subsumed by conventional

mutation operators.

5.2.2 Compiler optimizations

Substantial progress has been made toward turning mutation testing into a broadly ap-

plicable and fully automated approach; several tools have been created explicitly for this

purpose. The most related to our work are two tools that operate on the LLVM IR, namely

Sen and Sousa’s testing framework for automated mutant generation for transaction level

modeling [107] and Schulte’s llvm-mutate tool (which uses a different set of mutation oper-

ators than what we use) [98, 99]. However, their previous work did not study the effect of

the LLVM’s compiler optimizations on mutation testing (including the number of generated

mutants, duplicated and equivalent mutants, and the mutation score).

65

Rajan et al. studied the effect of program transformations on code coverage, specifically

MC/DC [49, 91]. In their study, Rajan et al. used mutation testing as an enabling method

but did so without regard for compiler optimization levels.

To the best of our knowledge, no prior work to ours [46] examined the impact of the

compiler optimization level on mutation testing (including the impact on equivalent and du-

plicated mutants and especially the impact on mutation score) as our study does. However,

ours is not the first study to examine the effects of compiler optimizations and other transfor-

mations on advanced testing and verification tools. Most recently, Dong et al. investigated

the interactions between compiler optimizations and symbolic execution [34]. They found

that the same transformations that speed up concrete execution can negatively impact sym-

bolic execution, especially in combination. In contrast, we find that compiler optimizations

at the highest level not only can speed up program execution but also can substantially help

in mutation testing.

5.2.3 The problem of equivalent mutants

Despite the progress made on increasing the applicability of mutation testing, the approach

still suffers from a number of issues. One key issue is the mutant equivalence problem, i.e.,

determining which mutants are semantically equivalent to the original program. (There

are variations in the definition based on the scope of testing, e.g., Ellims et al. suggested

a “resource-aware” view of mutants that encompasses memory and time usage as well as

functional output [35].) Budd and Angluin first noted that determining mutant equivalence

automatically is generally undecidable [22]. However, a number of heuristics have been

developed for identifying equivalent and duplicated mutants in some cases.

The foundational work was done by Baldwin and Sayward in their study on the use of

compiler optimizations to determine mutant equivalences [20]. Using established compiler

optimization techniques, they attempted to identify equivalent mutants by either “optimiz-

ing” or “de-optimizing” the produced programs and comparing them to the original. Offutt

and Pan created a new approach to the problem by formulating the question of equivalence

as a constraint satisfaction problem [84, 85]. In their approach, constraints are generated

through analysis of the mutant’s path conditions, and empirical evaluations showed that this

approach tended to be more powerful than the compiler optimization technique [82].

Papadakis et al. presented trivial compiler equivalence, a technique that compares a mu-

tant’s machine code to that of its progenitor program to determine whether or not it is

equivalent [88]. This technique was already broadly used in the field of compiler optimiza-

tions to determine where optimizations had yielded no improvement or other change.

66

In contrast to the technique proposed by Papadakis et al. that aims to find definitely

equivalent mutants, several studies have proposed heuristics to help identify mutants that

are likely (non-)equivalent. Schuler et al. proposed two such techniques for ranking mutants

based on code coverage and dynamically inferred invariants [96, 97]. Grün et al. defined an

impact function characterizing the difference between a mutant’s execution and the original

program’s execution [43]; they reported that mutants with lower impact were more likely to

be equivalent.

In a similar spirit to these heuristics, Harman et al. developed a technique for equiva-

lence detection using program slicing [48, 50]. Their method does not automatically detect

equivalent mutants after generation but does reduce their number during generation, and it

also assists in the manual process of equivalence analysis by simplifying the program to a

minimal state representing at least a partial answer to the equivalence question. Adamopou-

los et al. proposed a different approach that uses genetic algorithms wherein mutants are

evaluated using a fitness function that has a much lower value for equivalent mutants [9].

Their approach allows mutants to evolve alongside the test suites that support the program

while reducing the number of equivalent mutants generated.

5.2.4 Comparing SRC and IR

The focus of Chapter 4 is on the comparison of two mutation testing tools for programs

that start from a single programming language. Multiple studies [28, 40, 105] compared

different mutation testing tools for Java programs. Our work is most similar to the work

by Gopinath et al. [40]. In their work, they compared three mutation testing tools that

work on Java applications. Two of the tools used in the study generated mutants on the

Java byte-code (effectively the IR for Java) while the remaining tool generated mutants on

the Java source code. As such, the authors were able to evaluate the effects of generating

mutants at different levels, SRC vs. IR, and they found that the level at which mutants

are generated does not significantly affect the mutation score. However, they used the tools

out-of-the-box and did not control for mutation operators. In our study, we build mutant

generation tools that use the same operators at both levels, allowing for a fairer comparison

of the effects of mutants generated at different levels. Furthermore, our evaluation is on the

C programming language. Our findings are similar to theirs in terms of mutation score, but

we also study the number of equivalent and duplicate mutants, the breakdown per operator,

and multiple types of mutation scores at more depth.

Selective mutation, where only a subset of mutation operators are used for evaluation, is

another area of research for mutation testing. Most selection methods work by comparing

67

the mutants generated by different mutation operators to identify a subset of the operators

that produce high quality mutants [21,39,83,106]. Offutt et al. [83] introduced the concept

of sufficient mutation operators where they showed that using only a small number of muta-

tion operators is sufficient to access the quality of a test suite. They performed their study

for Fortran programs. Barbosa et al. [21] conducted a similar study for C programs. In

both cases, the identified sufficient set of operators was similar. Gligoric et al. [39] addressed

the same issue for concurrent programs where a test may have to be executed on multiple

thread schedules for each mutant. For concurrent mutation operators, operator-based se-

lection produced slightly better results compared to random mutant selection. Smith and

Williams [106] evaluated the mutation operators in MuJava and concluded that the best

choice of mutation operators may depend on the type of application being tested. Zhang

et al. [119] compared selective mutation based on operators with random mutant selection

and concluded that random mutant selection can also give similar results. A more previous

study [118] combined operator-based mutant selection with random selection by sampling

mutants from selected operators and reported that the combination is also effective. We

compare mutation testing at the two different levels while breaking down the results based

on mutation operator to see if any specific operator has a bigger effect on one level or the

other. We find that for the comparison of SRC vs. IR, the results for different operators

somewhat differ but are largely similar.

68

CHAPTER 6: CONCLUSIONS AND FUTURE WORK

6.1 CONCLUSIONS

In Chapter 2, we propose approximate transformations as mutation operators, and we

compare them with conventional mutation operators. Specifically, we integrated loop perfo-

ration and precision degradation—common approximate transformations by the approximate

computing community—into an existing mutation testing framework, and we compared and

analyzed the quality of those transformations when used as mutation operators. Our results

show that approximate transformations generate mutants that are not subsumed by mu-

tants generated by conventional mutation operators. Our qualitative analysis of a number

of killed and surviving approximate transformations uncovered several code patterns that

developers could use to enhance their test suites. The surviving mutants inspired proposing

better testing practices and helped us submit 11 pull requests to fix bad tests.

In Chapter 3, we present a study of the effects of compiler optimizations, which are widely

used semantics-preserving transformations aimed at improving program performance, on

mutation testing. While mutation testing and compiler optimizations are two well-studied

approaches, they are seldom used together. Our study aims to find new opportunities

that enhance the effectiveness and application of mutation testing by leveraging modern

compiler infrastructures. Specifically, we target LLVM, a popular compiler infrastructure

that supports multiple programming languages. Our evaluation uses 16 Coreutils programs.

Some of the findings about the number of mutants and the mutation scores on optimized and

unoptimized programs surprised us. The overall conclusion is that mutation testing can use

very high optimization levels, but one should remove equivalent and duplicated mutants, and

one should carefully interpret the overall mutation score. Note that our conclusion about

the mutation score views mutation testing only as a means to evaluate test suites and does

not necessarily aim to provide guidance for how to generate new tests to kill more mutants;

indeed, it would be hard for a human to reason about the changes made to the optimized

program and successfully construct test inputs that could kill the mutant.

In Chapter 4, we present an extensive study that compares mutation testing at the SRC

and IR levels. While mutation testing has been performed before at the IR level, no study has

been performed to compare the performance and quality of mutation testing at both levels.

We perform our study on 16 applications from Coreutils programs with 948 tests. To ensure

a fair comparison between the two levels, we implement our own mutation tools for SRC and

IR using the same mutation operators. Yet, we find that the number of mutants generated

69

and the mutation score can differ between the two levels. This difference highlights the

fact that the mutations cannot be simply mapped between the two levels. Our results show

that it is more economical to perform mutation at the SRC level. It generates fewer NEND

mutants, allowing mutation testing at the SRC level to run faster as there are fewer mutants

to run on. We also find that mutants generated at both levels are of similar quality. They

also produce similar mutation scores that are highly correlated. Moreover, the mutation

score of a given test suite at the SRC level is closer to the bug-finding capability of the test

suite than the mutation score at the IR level. We believe that the better performance, the

better reflection of real bug-finding capability, and the ability to reason about the generated

mutants make mutation testing at the SRC level more attractive, especially considering that

the results of mutation testing seem to be quite similar between the two levels.

6.2 FUTURE WORK

In this section, we outline a number of potential lines for future work that can be built as

a follow up on our findings in this dissertation.

In Chapter 2, we have proposed and evaluated the use of approximate transformations as

mutation operators. An idea that can be explored in the future is the dual direction. Namely,

how can mutation operators benefit approximate computing? Can we use mutation operators

to identify approximable code sections? Specifically, one could use the surviving mutants

from performing mutation testing to target the application of approximate transformations

to specific portions of the code that we find potentially approximable. One of our main

findings in Chapter 2 is discovering a new way of interpreting mutation testing results; the

reason for getting surviving mutants may be approximable code. So far in our research,

we have relied on manual efforts to identify approximable code cases. Future work could

automate this task. Such a technique would be very valuable for filtering out the surviving

mutants due to approximable code and adjusting the mutation score accordingly.

In Chapter 3, we studied the effects of compiler optimizations on mutation testing at

the LLVM IR level. It would be interesting in the future to look into the Java world, and

study how the different optimizations applied by the (JIT) compiler affect mutation testing.

We hypothesize in Chapter 3 that many mutants at the -O3 level are harder to kill, but

evaluating this hypothesis would require a very large number of tests, likely automatically

generated, and is out of scope for this dissertation. We leave it as future work to inspect

why the mutation score values are lower at the -O3 level.

In Chapter 4, we compared mutation testing at the SRC and IR level, and we find that

SRC is more efficient. This result is based on our current tool for performing IR mutations.

70

We think that a more sophisticated mutation tool for IR can have the potential to match or

outperform the SRC tool and hence open the door for having only one mutation tool that

supports multiple source languages. For example, implementing a custom mutation for the

getelemptr LLVM bitcode instruction that ignores certain types of mutations can be one of

the ways to decrease the large number of mutants generated at IR.

In sum, mutation testing has been studied for several decades and is widely used in software

testing research. This dissertation explores several design decisions about mutation testing

and shows that the community can still learn new lessons about mutation testing and how to

improve it. We hope that the work in this dissertation is a step closer to bringing mutation

testing into practice.

71

REFERENCES

[1] C object biographies. http://sir.unl.edu/portal/bios/space.php.

[2] Commons-io. https://github.com/apache/commons-io.

[3] Jblas. https://github.com/mikiobraun/jblas.

[4] Libtooling. http://clang.llvm.org/docs/LibTooling.html.

[5] Matching the Clang AST. http://clang.llvm.org/docs/LibASTMatchers.html.

[6] Real world mutation testing. http://pitest.org.

[7] Software-artifact infrastructure repository. http://sir.unl.edu/portal/index.php.

[8] Vectorz. https://github.com/mikera/vectorz.

[9] Adamopoulos, K., Harman, M., and Hierons, R. M. How to overcome the
equivalent mutant problem and achieve tailored selective mutation using co-evolution.
In GECCO (2004), pp. 1338–1349.

[10] Agarwal, S., Mozafari, B., Panda, A., Milner, H., Madden, S., and Sto-
ica, I. BlinkDB: Queries with bounded errors and bounded response times on very
large data. In EuroSys (2013), pp. 29–42.

[11] Ahmed, I., Gopinath, R., Brindescu, C., Groce, A., and Jensen, C. Can
testedness be effectively measured. In FSE (2016), pp. 547–558.

[12] Alegroth, E., Gao, Z., Oliveira, R., and Memon, A. Conceptualization and
evaluation of component-based testing unified with visual GUI testing: An empirical
study. In ICST (2015), pp. 1–10.

[13] Alipour, M. A., Shi, A., Gopinath, R., Marinov, D., and Groce, A. Eval-
uating non-adequate test-case reduction. In ASE (2016), pp. 16–26.

[14] Allamanis, M., Barr, E. T., Just, R., and Sutton, C. Tailored mutants fit
bugs better. arXiv preprint arXiv:1611.02516 (2016).

[15] Ammann, P., Delamaro, M. E., and Offutt, J. Establishing theoretical mini-
mal sets of mutants. In ICST (2014), pp. 21–30.

[16] Ammann, P., and Offutt, J. Introduction to Software Testing. Cambridge Uni-
versity Press, 2008.

[17] Andrews, J., Briand, L., and Labiche, Y. Is mutation an appropriate tool for
testing experiments? In ICSE (2005), pp. 402–411.

[18] Andrews, J. H., and Alipour, A. MutGen tool. https://github.com/alipourm/
cmutate.

72

[19] ASM. http://asm.ow2.org/.

[20] Baldwin, D., and Sayward, F. Heuristics for determining equivalence of program
mutations. Tech. rep., DTIC Document, 1979.

[21] Barbosa, E. F., Maldonado, J. C., and Vincenzi, A. M. R. Toward the
determination of sufficient mutant operators for C. STVR 11, 2 (2001), 113–136.

[22] Budd, T. A., and Angluin, D. Two notions of correctness and their relation to
testing. Acta Informatica 18, 1 (1982), 31–45.

[23] Budd, T. A., Lipton, R. J., DeMillo, R., and Sayward, F. The design of a
prototype mutation system for program testing. In AFIPS (1899), p. 623.

[24] Cadar, C., Dunbar, D., and Engler, D. R. KLEE: Unassisted and automatic
generation of high-coverage tests for complex systems programs. In OSDI (2008),
pp. 209–224.

[25] Carbin, M., and Rinard, M. C. Automatically identifying critical input regions
and code in applications. In ISSTA (2010), pp. 37–48.

[26] Chan, W., Cheung, S. C., and Tse, T. Fault-based testing of database application
programs with conceptual data model. In QSIC (2005), pp. 187–196.

[27] Chippa, V. K., Chakradhar, S. T., Roy, K., and Raghunathan, A. Analysis
and characterization of inherent application resilience for approximate computing. In
DAC (2013), p. 113.

[28] Delahaye, M., and Du Bousquet, L. A comparison of mutation analysis tools
for Java. In QSIC (2013), pp. 187–195.

[29] Delamaro, M. E., and Maldonado, J. C. Proteum tool for mutation testing of
C programs. https://github.com/magsilva/proteum.

[30] Delamaro, M. E., and Maldonado, J. C. Proteum—A tool for the assessment
of test adequacy for C programs. In PCS (1996), pp. 79–95.

[31] DeMillo, R. A., Lipton, R. J., and Sayward, F. G. Hints on test data selection:
Help for the practicing programmer. Computer 11, 4 (1978), 34–41.

[32] Ding, Y., Ansel, J., Veeramachaneni, K., Shen, X., OReilly, U.-M., and
Amarasinghe, S. Autotuning algorithmic choice for input sensitivity. In ACM
SIGPLAN Notices (2015), vol. 50, pp. 379–390.

[33] Do, H., Elbaum, S., and Rothermel, G. Supporting controlled experimentation
with testing techniques: An infrastructure and its potential impact. Empirical Software
Engineering 10, 4 (2005), 405–435.

[34] Dong, S., Olivo, O., Zhang, L., and Khurshid, S. Studying the influence of
standard compiler optimizations on symbolic execution. In ISSRE (2015), pp. 205–215.

73

[35] Ellims, M., Ince, D., and Petre, M. The Csaw C mutation tool: Initial results.
In TAIC PART (2007), pp. 185–192.

[36] Foundation, F. S. Coreutils – GNU core utilities. http://www.gnu.org/software/
coreutils/coreutils.html.

[37] Gligoric, M., Jagannath, V., and Marinov, D. MuTMuT: Efficient exploration
for mutation testing of multithreaded code. In ICST (2010), pp. 55–64.

[38] Gligoric, M., Khurshid, S., Misailovic, S., and Shi, A. Mutation testing
meets approximate computing. In ICSE NIER (2017), pp. 3–6.

[39] Gligoric, M., Zhang, L., Pereira, C., and Pokam, G. Selective mutation
testing for concurrent code. In ISSTA (2013), pp. 224–234.

[40] Gopinath, R., Ahmed, I., Alipour, M. A., Jensen, C., and Groce, A. Does
choice of mutation tool matter? SQJ (2016), 1–50.

[41] Gopinath, R., Alipour, A., Ahmed, I., Jensen, C., and Groce, A. Measuring
effectiveness of mutant sets. In Mutation (2016), pp. 132–141.

[42] Granda, M. F., Condori-Fernández, N., Vos, T. E. J., and Pastor, O.
Mutation operators for UML class diagrams. In CAiSE (2016), pp. 325–341.

[43] Grün, B. J., Schuler, D., and Zeller, A. The impact of equivalent mutants.
In Mutation (2009), pp. 192–199.

[44] Gupta, V., Mohapatra, D., Park, S. P., Raghunathan, A., and Roy, K.
Impact: imprecise adders for low-power approximate computing. In ISLPED (2011),
pp. 409–414.

[45] Han, J., and Orshansky, M. Approximate computing: An emerging paradigm for
energy-efficient design. In ETS (2013), pp. 1–6.

[46] Hariri, F., Shi, A., Converse, H., Khurshid, S., and Marinov, D. Evaluating
the effects of compiler optimizations on mutation testing at the compiler IR level. In
ISSRE (2016), pp. 105–115.

[47] Hariri, F., Shi, A., Legunsen, O., Gligoric, M., Khurshid, S., and Mis-
ailovic, S. Approximate transformations as mutation operators. In ICST (2018).

[48] Harman, M., Hierons, R., and Danicic, S. Mutation Testing for the New Cen-
tury. Kluwer Academic Publishers, 2001.

[49] Heimdahl, M. P., Whalen, M. W., Rajan, A., and Staats, M. On MC/DC
and implementation structure: An empirical study. In DASC (2008), pp. 5.B.3–1–
5.B.3–13.

[50] Hierons, R., Harman, M., and Danicic, S. Using program slicing to assist in
the detection of equivalent mutants. STVR 9, 4 (1999), 233–262.

74

[51] Hong, S., Kwak, T., Lee, B., Jeon, Y., Ko, B., Kim, Y., and Kim, M.
MUSEUM: debugging real-world multilingual programs using mutation analysis. IST
82 (2017), 80–95.

[52] Hong, S., Lee, B., Kwak, T., Jeon, Y., Ko, B., Kim, Y., and Kim, M.
Mutation-based fault localization for real-world multilingual programs (t). In ASE
(2015), pp. 464–475.

[53] Inozemtseva, L., Hemmati, H., and Holmes, R. Using fault history to improve
mutation reduction. In ESEC/FSE (2013), pp. 639–642.

[54] Jia, Y. Milu: A higher order mutation testing tool. https://github.com/yuejia/Milu.

[55] Jia, Y., and Harman, M. MILU: A customizable, runtime-optimized higher order
mutation testing tool for the full C language. In TAIC PART (2008), pp. 94–98.

[56] Jia, Y., and Harman, M. An analysis and survey of the development of mutation
testing. TSE 37, 5 (2011), 649–678.

[57] Just, R. The major mutation framework: Efficient and scalable mutation analysis
for Java. In ISSTA (2014), pp. 433–436.

[58] Just, R., Jalali, D., Inozemtseva, L., Ernst, M. D., Holmes, R., and
Fraser, G. Are mutants a valid substitute for real faults in software testing? In
FSE (2014), pp. 654–665.

[59] Just, R., Schweiggert, F., and Kapfhammer, G. M. MAJOR: An efficient and
extensible tool for mutation analysis in a Java compiler. In ASE (2011), pp. 612–615.

[60] Kurtz, B., Ammann, P., Offutt, J., Delamaro, M. E., Kurtz, M., and
Gökçe, N. Analyzing the validity of selective mutation with dominator mutants. In
FSE 2016 (2016), pp. 571–582.

[61] Kusano, M., and Wang, C. CCmutator: A mutation generator for concurrency
constructs in multithreaded C/C++ applications. In ASE (2013), pp. 722–725.

[62] Kuznetsov, V., Kinder, J., Bucur, S., and Candea, G. Efficient state merging
in symbolic execution. In PLDI (2012), pp. 193–204.

[63] Lattner, C., and Adve, V. LLVM: A compilation framework for lifelong program
analysis & transformation. In CGO (2004), pp. 75–86.

[64] Legunsen, O., Hariri, F., Shi, A., Lu, Y., Zhang, L., and Marinov, D. An
extensive study of static regression test selection in modern software evolution. In FSE
(2016), pp. 583–594.

[65] Liu, S., Pattabiraman, K., Moscibroda, T., and Zorn, B. G. Flikker: Saving
DRAM refresh-power through critical data partitioning. In ASPLOS (2011), pp. 213–
224.

75

[66] Lou, L., Nguyen, P., Lawrence, J., and Barnes, C. Image perforation: Auto-
matically accelerating image pipelines by intelligently skipping samples. SIGGRAPH
35, 5 (2016), 153:1–153:14.

[67] Lu, Y., Lou, Y., Cheng, S., Zhang, L., Hao, D., Zhou, Y., and Zhang, L.
How does regression test prioritization perform in real-world software evolution? In
ICSE (2016), pp. 535–546.

[68] Luo, Q., Hariri, F., Eloussi, L., and Marinov, D. An empirical analysis of
flaky tests. In FSE (2014), pp. 643–653.

[69] Ma, Y.-S., Offutt, J., and Kwon, Y. R. MuJava: An automated class mutation
system. STVR 15, 2 (2005), 97–133.

[70] Ma, Y.-S., Offutt, J., and Kwon, Y.-R. MuJava: a mutation system for Java.
In ICSE (2006), pp. 827–830.

[71] Madeyski, L., and Radyk, N. Judy-A mutation testing tool for Java. IET software
4, 1 (2010), 32–42.

[72] Marinescu, P. D., and Cadar, C. Make test-zesti: A symbolic execution solution
for improving regression testing. In ICSE (2012), pp. 716–726.

[73] Mathur, A. P. Performance, effectiveness, and reliability issues in software testing.
In COMPSAC (1991), pp. 604–605.

[74] Misailovic, S. Exploring the Effectiveness of Loop Perforation for Quality of Service
Profiling. Tech. rep., MIT, 2010.

[75] Misailovic, S., Carbin, M., Achour, S., Qi, Z., and Rinard, M. Chisel:
Reliability- and accuracy-aware optimization of approximate computational kernels.
In OOPSLA (2014), pp. 309–328.

[76] Misailovic, S., Sidiroglou, S., Hoffmann, H., and Rinard, M. Quality of
service profiling. In ICSE (2010), pp. 25–34.

[77] Mitra, S., Gupta, M. K., Misailovic, S., and Bagchi, S. Phase-aware opti-
mization in approximate computing. In CGO (2017).

[78] of Illinois, U. Clang: A C family language frontend for LLVM. http://clang.

llvm.org/.

[79] of Illinois, U. The LLVM compilation infrastructure. http://llvm.org/.

[80] of Illinois, U. llvm-cov - emit coverage information. https://llvm.org/docs/

CommandGuide/llvm-cov.html.

[81] of Illinois, U. Tail call optimization. http://llvm.org/docs/CodeGenerator.

html#tail-call-optimization.

76

[82] Offutt, A. J., and Craft, W. M. Using compiler optimization techniques to
detect equivalent mutants. STVR 4, 3 (1994), 131–154.

[83] Offutt, A. J., Lee, A., Rothermel, G., Untch, R. H., and Zapf, C. An
experimental determination of sufficient mutant operators. TOSEM 5, 2 (1996), 99–
118.

[84] Offutt, A. J., and Pan, J. Detecting equivalent mutants and the feasible path
problem. In COMPASS (1996), pp. 224–236.

[85] Offutt, A. J., and Pan, J. Automatically detecting equivalent mutants and in-
feasible paths. STVR 7, 3 (1997), 165–192.

[86] Offutt, A. J., Rothermel, G., and Zapf, C. An experimental evaluation of
selective mutation. In ICSE (1993), pp. 100–107.

[87] Oliveira, R. A. P., Algroth, E., Gao, Z., and Memon, A. Definition and
evaluation of mutation operators for GUI-level mutation analysis. In Mutation (2015),
pp. 1–10.

[88] Papadakis, M., Jia, Y., Harman, M., and Le Traon, Y. Trivial compiler
equivalence: A large scale empirical study of a simple, fast and effective equivalent
mutant detection technique. In ICSE (2015), pp. 936–946.

[89] Papadakis, M., and Malevris, N. Automatically performing weak mutation with
the aid of symbolic execution, concolic testing and search-based testing. Software
Quality Control 19, 4 (2011), 691–723.

[90] Patrick, M., Oriol, M., and Clark, J. A. Messi: Mutant evaluation by static
semantic interpretation. In ICST (2012), pp. 711–719.

[91] Rajan, A., Whalen, M. W., and Heimdahl, M. P. The effect of program and
model structure on MC/DC test adequacy coverage. In ICSE (2008), pp. 161–170.

[92] Roy, P., Ray, R., Wang, C., and Wong, W. F. Asac: Automatic sensitivity
analysis for approximate computing. In LCTES (2014), vol. 49, pp. 95–104.

[93] Rubio-González, C., Nguyen, C., Nguyen, H. D., Demmel, J., Kahan, W.,
Sen, K., Bailey, D. H., Iancu, C., and Hough, D. Precimonious: Tuning
assistant for floating-point precision. In SC (2013), p. 27.

[94] Sampson, A., Dietl, W., Fortuna, E., and Gnanapragasam, D. EnerJ:
Approximate data types for safe and general low-power computation. In PLDI (2011),
pp. 164–174.

[95] Schkufza, E., Sharma, R., and Aiken, A. Stochastic optimization of floating-
point programs with tunable precision. ACM SIGPLAN Notices 49, 6 (2014), 53–64.

77

[96] Schuler, D., and Zeller, A. Javalanche: Efficient mutation testing for Java. In
ESEC/FSE (2009), pp. 297–298.

[97] Schuler, D., and Zeller, A. (Un-) Covering equivalent mutants. In ICST (2010),
pp. 45–54.

[98] Schulte, E. llvm-mutate. http://eschulte.github.io/llvm-mutate/.

[99] Schulte, E. Neutral Networks of Real-World Programs and their Application to
Automated Software Evolution. PhD thesis, University of New Mexico, 2014.

[100] Shi, A., Gyori, A., Gligoric, M., Zaytsev, A., and Marinov, D. Balancing
trade-offs in test-suite reduction. In FSE (2014), pp. 246–256.

[101] Shi, A., Gyori, A., Legunsen, O., and Marinov, D. Detecting assumptions on
deterministic implementations of non-deterministic specifications. In ICST (2016).

[102] Shi, A., Yung, T., Gyori, A., and Marinov, D. Comparing and combining
test-suite reduction and regression test selection. In FSE (2015), pp. 237–247.

[103] Siami Namin, A., Andrews, J. H., and Murdoch, D. J. Sufficient mutation
operators for measuring test effectiveness. In ICSE (2008), pp. 351–360.

[104] Sidiroglou, S., Misailovic, S., Hoffmann, H., and Rinard, M. Managing
performance vs. accuracy trade-offs with loop perforation. In FSE (2011), pp. 124–
135.

[105] Singh, P. K., Sangwan, O. P., and Sharma, A. A study and review on the
development of mutation testing tools for Java and Aspect-J programs. International
Journal of Modern Education and Computer Science 6, 11 (2014), 1.

[106] Smith, B. H., and Williams, L. An empirical evaluation of the MuJava mutation
operators. In TAICPART-MUTATION (2007), pp. 193–202.

[107] Sousa, M., and Sen, A. Generation of TLM testbenches using mutation testing.
In CODES+ISSS (2012), pp. 323–332.

[108] Spoon. http://spoon.gforge.inria.fr/.

[109] Sui, X., Lenharth, A., Fussell, D. S., and Pingali, K. Proactive control of
approximate programs. In ASPLOS (2016).

[110] Sung, A., Choi, B., Wong, W. E., and Debroy, V. Mutant generation for
embedded systems using kernel-based software and hardware fault simulation. IST 53,
10 (2011), 1153–1164.

[111] Thomas, A., and Pattabiraman, K. LLFI: An intermediate code level fault
injector for soft computing applications. In SELSE (2013).

78

[112] Untch, R. H., Offutt, A. J., and Harrold, M. J. Mutation analysis using
mutant schemata. In ISSTA (1993), pp. 139–148.

[113] Vásquez, M. L., Bavota, G., Tufano, M., Moran, K., Penta, M. D., Ven-
dome, C., Bernal-Cárdenas, C., and Poshyvanyk, D. Enabling mutation
testing for Android apps. In ESEC/FSE (2017), pp. 233–244.

[114] Venkatagiri, R., Mahmoud, A., Hari, S. K. S., and Adve, S. V. Approxilyzer:
Towards a systematic framework for instruction-level approximate computing and its
application to hardware resiliency. In MICRO (2016), pp. 1–14.

[115] Venkataramani, S., Chippa, V. K., Chakradhar, S. T., Roy, K., and
Raghunathan, A. Quality programmable vector processors for approximate com-
puting. In MICRO (2013), pp. 1–12.

[116] Yao, X., Harman, M., and Jia, Y. A study of equivalent and stubborn mutation
operators using human analysis of equivalence. In ICSE (2014), pp. 919–930.

[117] Yoo, S., and Harman, M. Regression testing minimization, selection and prioriti-
zation: A survey. STVR 22, 2 (2012), 67–120.

[118] Zhang, L., Gligoric, M., Marinov, D., and Khurshid, S. Operator-based and
random mutant selection: Better together. In ASE (2013), pp. 92–102.

[119] Zhang, L., Hou, S.-S., Hu, J.-J., Xie, T., and Mei, H. Is operator-based mutant
selection superior to random mutant selection? In ICSE (2010), pp. 435–444.

[120] Zhu, H., Hall, P. A. V., and May, J. H. R. Software unit test coverage and
adequacy. ACM Comput. Surv. 29, 4 (1997), 366–427.

79

