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Abstract

This dissertation consists of three interrelated essays on firm-level decision

problems when the exterior environment (e.g. product quality or market

prospect) is uncertain and there are strategic interactions with other firms

(e.g. competitors).

The first essay (Chapter 2) studies a buyers decision to improve its suppliers

quality when the focal supplier is shared by another buyer who competes

in the same market. Each buyers investment is a way to outperform the

other buyer. However, the investment opportunity comes with spillover risk

via the shared supplier. Given this risk-benefit tradeoff, we characterize the

conditions under which the optimal timing of the first investment in shared

suppliers is earlier (or later) than in sole suppliers. Also, we find that learning

moderates the impact of competition and spillover on investment decisions,

which suggests that the interplay between learning, spillover, and competition

should be carefully examined to build sound investment strategies.

The second essay (Chapter 3) also examines buyers investment decisions

in a buyer-supplier-buyer triad. However, we consider the case when market

competition is not an integral part of the problem so that a buyer strives to

free-ride on the other buyers investment in the shared supplier. Moreover, be-

cause the improved quality deteriorates over time by organizational forgetting,

buyers should make such an investment decision repeatedly. This problem is

thus a repeated free-rider problem. The main finding of this essay is that each

buyer delays its investment in the hope of free-riding on the other only if the

game is repeated and there is a unique equilibrium entailing inefficient delays.

Due to this uniqueness of the equilibrium, we are able to construct the well-

defined measure for the inefficiency from free-riding incentives and estimate

this inefficiency by using primary data from a field study of an automotive

manufacturer. The results from this estimation indicate that the inefficiency
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can be substantial although it greatly varies depending on the supplier sectors.

The third essay (Chapter 4) investigates firms exit decision problems under

uncertainty by employing the similar mathematical framework used in the

second essay: The first firm to exit the market concedes the monopolists profit

to the remaining firm. The extant literature in economics has predicted that

the firms stay in the market longer than necessary. We revisit this problem

with two realistic perturbations firms are asymmetric in their exit barriers and

the market evolves stochastically. In contrast to the findings of the previous

literature, we find that this perturbed model does not admit an MPE (Markov

perfect equilibrium) resulting in inefficient (i.e. longer than necessary) stays.

Therefore, this asserts the instability of an equilibrium with inefficient stays,

which provides a novel rationale for selecting an equilibrium over the others.
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Chapter 1

Introduction

1.1 Supplier Quality Improvement:

Investment in Shared Suppliers

Investment acquisition, capital investment, capacity expansion, market entry,

or product development is one of the major corporate decisions to develop

or sustain a firm’s competitive advantage in the market. As the firms keep

expanding the boundary of their supply chain network in the contemporary

business environment, the success of investment in new products or quality

improvements increasingly relies on other firms in the supply chain network.

Both scholars and practitioners thus have paid growing attentions to the

examination of investment decisions in the context of supply chains. One

stream of work has studied how a buyer firm can work with its supplier(s)

to increase (or maximize) the values generated by the investment in product

development, quality improvement, or market entry. This line of literature

thus focuses on the vertical relationship in the supply chain. In another stream

of research, on the other hand, scholars have examined how the interactions

between the buyer firms in the same tier of the supply chain can influence

their investment decisions. Hence, the second line of literature concerns about

the horizontal relationships in the supply chain. In the two interrelated essays

of this dissertation, we study the latter decision problem in a buyer-supplier-

buyer triad, in order to investigate the effect of strategic interactions between

the buyer firms on their supplier development strategies.

In Chapter 2, we investigate firms’ optimal strategies to invest in their sup-

pliers when (i) the benefits of such investments spillovers to other competing

firms who source from the same suppliers and (ii) the firms are uncertain about

the improvement potential of the supplier’s quality. We formulate this prob-
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lem as the investment game of two Bayesian firms who consider investment

in the quality of their shared supplier; the firms have incomplete information

on the quality improvement potential of the supplier, and each firm updates

their beliefs based on the suppliers quality performance. Assuming that the

firms’ strategies depending only on their posterior belief, we first obtain pure

strategy Markov perfect equilibria characterized by the investment thresholds

of both firms. In particular, the equilibrium investment strategies are charac-

terized by a region of preemption and a region of war of attrition. We then

identify the conditions under which the optimal timing of the first investment

in shared suppliers is earlier (or later) than in sole suppliers. Moreover, we

examine how the interplay between spillover, competition, and learning rate

affect the first investment time.

In Chapter 3, we consider the case when market competition between the

buyer firms is not an integral part of this decision problem. More importantly,

each buyer firm is facing a continued deterioration in the suppliers quality due

to organizational forgetting, which requires each firm to decide when to invest

in the suppliers quality repeatedly. The resulting game is thus a repeated

stochastic war of attrition. After establishing that a pure strategy equilibrium

always exists, we find that the repetitive nature of the investment opportunities

induces a unique mixed strategy equilibrium leading to inefficient delays in

investment. We also argue that pure strategy equilibrium is unstable relative

to this unique mixed strategy equilibrium in the presence of the repetitive

nature of the game. We then compare the inefficient equilibrium to the first-

best solution and illustrate the resulting efficiency loss by using primary data

collected from a field study. We conclude that coordination among the firms

or divisions can potentially save substantial amount of money.

1.2 Exit in Duopoly: Selection of

Equilibrium

The second part of this dissertation focuses on firms’ strategic exit problems in

a saturated and contracting market such as chemical, automobile, or magazine

industry. Although these shrinking industries may have been given not as

much attention as fast growing markets, it is indeed a primary concern to
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policy makers because they are major contributors to GDP of the country.

Management and economics scholars have studied firms’ strategic exit deci-

sions in declining markets by formulating it as a duopoly (sometimes oligopoly)

game of exits. In a conventional duopoly game theoretic model of exit, the

first firm to exit the market concedes the monopolist’s profit to his opponent

firm. In fact, this is one of the common applications of war of attrition models.

Wars of attrition have been of primary interest in the management and eco-

nomics literature since its introduction to the field by Maynard Smith (1974).

Its prominent presence in this literature is its pervasiveness in managerial and

economic problems. The fierce competition between Borders and Barnes &

Noble after the appearance of Amazon is one of the examples.

In Chapter 4, we revisit this problem with two realistic perturbations

asymmetric exit barriers and stochastic market evolution. While it is well

known that war of attrition under complete information admits both pure

strategy and mixed strategy equilibria (Tirole, 1988, Fudenberg and Tirole,

1986, Levin, 2004), raising the issue of equilibrium selection, we show that if

the players payoffs are stochastic and the players exit payoffs are heteroge-

neous, then the game admits Markov perfect equilibria in pure strategies only.

In other words, we find that the mixed strategy equilibria, which much of the

extant literature has focused on, is unstable to realistic perturbations of the

model. This thus indicates that when using such models to draw economic

or managerial insights, it may be more prudent to focus on the pure strategy

equilibria, which are efficient in the sense that no resources are wasted fighting

over the winners payoff.
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Chapter 2

Investment in Shared Suppliers:
Effect of Learning, Spillover,

and Competition

2.1 Introduction

Many manufacturing firms invest significant time, effort, expertise, and cap-

ital to improve their suppliers’ cost, technical, and quality capabilities. Two

key challenges often govern such investment decisions. The first challenge is

around the uncertainty regarding the ability of suppliers to develop their ca-

pabilities. The second challenge is whether other firms, that source products

from these suppliers, would benefit from the firm’s investments because of

spillover. A priori it is not clear how these challenges can impact the optimal

investment strategies of a firm. This essay aims to shed light on these issues

by investigating two research questions: First, when is it optimal for a firm

to invest in quality improvement at a shared supplier if the gains from such

investments can spill over to benefit other firms who also source from the same

supplier? Second, how does spillover impact the timing of the first (leader’s)

investment?

When a firm invests to improve quality at shared suppliers, the improved

quality performance can spill over to benefit other firms because the shared

suppliers may serve as informal channels for knowledge transfer (Alcácer and

Chung, 2007). For example, Spekman and Gibbons (2008) highlight that Pratt

and Whitney was wary that their competitor Rolls Royce would also benefit

when they worked with their shared supplier Dynamic Gunver Technologies.

In addition, the uncertainty in the quality improvement potential of a shared

supplier gets compounded by the fact that the quality performance observed

by the buyers is noisy because of random variability (Oakland, 2007), which

makes it difficult to ascertain the true quality of the supplier. Indeed, there

are many instances where firms have failed to develop their supplier’s capa-

bilities despite significant investments. For instance, Boeing partnered with
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Vought to develop the fuselage of the 787 Dreamliner aircraft. However, de-

spite significant investments from Boeing, Vought was unable to develop the

fuselage (Tang and Zimmerman, 2009) and Boeing had to takeover Vought’s

manufacturing facilities (Sanders, 2009).

These uncertainties lead to the natural question: Should a firm expedite

or delay investment in shared suppliers? To examine the optimal investment

strategy, we construct a game theoretical model that incorporates the spillover

of quality, the uncertainty in the quality improvement potential of the shared

supplier, and the noise in the quality performance observed by the buyers. In

our model, two firms consider investing in their shared supplier. The firms

do not know the true quality improvement potential of the supplier initially,

but they share a common belief regarding the true type of the supplier. The

performance of the supplier is noisy, so the firms cannot immediately detect

the quality improvement potential of the supplier, but they can update their

posterior beliefs based on the observed quality performance of the supplier.

Each firm can invest in the supplier once at any point in time, and the im-

provement in the supplier quality benefits both firms at the same time due

to spillover effects. Because the investment strategies of the firms affect each

other’s profits, we formulate the problem as a game.

This essay contributes two main results to the literature. First, we obtain

a complete characterization of the Markov perfect equilibria (MPE) of the

problem. In particular, we obtain two distinct types of equilibria. Second,

we also investigate the impact of the presence of a competing firm on the

thresholds and the timing of the investment in a shared supplier, and identify

the conditions under which the leader’s time to investment is hastened (or

delayed) by competition.

2.2 Related Literature

This work draws on and contributes to several streams of the literature in-

cluding that on buyer-supplier relations, on spillover in supply chains, and on

optimal investment strategies in supply chains. In this section, we discuss the

literature most relevant to our work, and highlight the key differences in our

work.

There is a large body of work in the supply chain literature that exam-
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ines buyer supplier relations using game theoretic models. Several papers

have examined how contracts impact buyer supplier relations (e.g., Lim, 2001;

Baiman et al., 2000; Corbett et al., 2005; Balachandran and Radhakrishnan,

2005; Tunca and Zenios, 2006). Scholars have also used game theoretic mod-

els to examine how the structure of buyer supplier relations affects innovation,

capacity creation and risk sharing within supply chains (e.g., Plambeck and

Taylor 2005 and lk et al. 2005, 2007). Our study adds to this literature as

we examine buyers’ strategy to improve the value within supply chains by

investing in the supplier capabilities. Furthermore, our work differs from this

broad body of work as we consider both competition and spillover in our game

theoretic model.

The supply chain literature has also examined how competition moderates

investment in suppliers and how spillover affects supply chains. For instance

in the context of competition, scholars have shown that when buyers compete

with each other, their preferences for contracting with the suppliers may differ

(Feng and Lu, 2012) and that their investment strategies may be different

for shared suppliers as compared to that for exclusive suppliers (Feng and Lu,

2013). Along similar lines, in the context of spillovers, scholars have shown that

firms can benefit from other firms’ investment in cost efficiency (e.g., Knott

et al. 2009), inventory management (e.g., Yao et al. 2012), and establishing

robust processes (Andritsos and Tang 2014). Within supply chains, spillovers

have been studied in the context of a supplier investing in downstream buyers’

product improvements (Harhoff 1996), and in the context of buyers investing in

suppliers to manage capacity (Qi et al. 2015), increase reliability (Wang et al.

2014) or generate knowledge and reputational spillovers (Kang et al. 2009).

In this essay, we integrate these streams and simultaneously explore the effect

of competition and spillover on buyer investments at shared suppliers, with

a focus on quality improvement. Hence, our study is also aligned with the

work of scholars who have explored mechanisms to elicit improved quality

performance from suppliers (e.g., Babich and Tang, 2012).

This essay also extends and complements the results in the body of work

that focuses on duopoly investment games. Nielsen (2002) studies a case

wherein two firms can make an entry in a market at any point in time, and the

return to investment increases in the number of firms in the same market (due

to some positive externalities). Thijssen et al. (2006) also study a duopoly
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model, but there is no dynamics of the posterior after the first investment

because the follower learns the true profitability immediately.

In a closely related model, Kwon et al. (2016) study a three-stage game of

entry into an uncertain market with positive or negative externalities. Their

paper focuses on the impact of the follower’s learning; in the first stage of

their model, there is no dynamic signal, because of which the leader has no

chance to learn and hence the first-stage equilibrium is simply static. In con-

trast, this essay studies the impact of the leader’s learning on the subgame

perfect (dynamic) equilibrium in the first stage because our model also in-

corporates a dynamic signal in the first stage. As a result, we obtain two

distinct classes of equilibria with dynamic strategy profiles in the first stage.

In Kwon et al. (2016), the first-stage equilibrium is simply characterized by

a static equilibrium; consequently the two distinct classes of equilibria do not

arise. Hence, the characterization of the dynamic equilibrium of the first stage

and the leader’s dynamic strategy of investment cannot be reproduced by the

model of Kwon et al. (2016). Lastly, even though Kwon et al. (2016) also study

the time to the first investment in the first stage, it is only in the context of

a mixed strategy equilibrium of a static war of attrition game; in the pure

strategy equilibria, the time to the first investment is zero. In our paper, the

time to the first (leader’s) investment is studied in the context of the dynamic

learning of the leader in a pure strategy equilibrium. Thus, the meaning of

the time to the first investment in the two papers is qualitatively different.

2.3 The Model

We consider a model of two identical manufacturing firms dealing with a shared

(or common) supplier. The quality improvement potential of the supplier is

measured by the return on investment in improving the quality of sourced

goods, and is unknown to the two firms. Initially, the two firms place a mod-

erate amount of investment in the supplier which may be considered as initial

efforts of the firms to evaluate testing lots or developmental orders from the

supplier. The return on investment is in the form of the improved profit earned

on account of the improved quality of the sourced goods. For instance, the

quality of the sourced goods may be measured by the defect level of the sourced

components.
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We assume that the quality improvement potential of the supplier can be

one of two states: high or low. We call a supplier with the high improvement

potential an H-type, and one with the low improvement potential an L-type.

Neither firm knows the true type of the supplier, but they both share a common

prior belief, i.e., the initial probability that the supplier is of H-type. The firms

update their posterior beliefs based on the return to initial investment. Each

firm can observe the other firm’s profit, so they also share their posterior

beliefs.1

Beyond the initial exploratory investment, both firms consider making fol-

lowup investments to improve the quality of supplied goods. Without loss

of generality, assume that firm 1 is the leader (L) that makes the first in-

vestment at time T1, and firm 2 is the follower (F ) that makes the second

investment at time T2. We model the profit process Xi,t for firm i ∈ {1, 2} as

a Brownian motion that satisfies dXi,t = µ(j)dt + σdBi,t. Here σ > 0 is the

constant volatility of the cumulative profit, and the drift µ(j) ∈ {h(j), `(j)}
is the average profit per unit time for an index j ∈ {0, L, F, 2} where we let

j denote the number of investments made if j = 0 or 2, or the receiver of the

return to investment after the first investment if j = L or F . If no one has

invested yet, then both firms’ average profit per unit time is µ(0). If one firm

has invested, then the leader receives µ(L) while the follower receives µ(F ). If

both firms have invested, then both receive µ(2). Note that µ(j) = h(j) for

all j if the supplier is of H-type, and µ(j) = `(j) if the supplier is of L-type.

The process Bi,t is a white noise (Wiener process) in the profit stream for firm

i ∈ {1, 2}. The true value of µ(j) is unknown, but it is publicly known to be

either h(j), if the supplier has a high improvement potential (supplier is of H

type), or `(j), if the supplier has a low improvement potential (supplier is of

1This is a reasonable assumption in many manufacturing environments because suppliers
often use visual control systems in their facilities, and when buyers from the firm visit
the suppliers’ facilities, they can easily infer the quality of components supplied to other
firms. For instance, in our multiple visits to TMV (an automotive firm that manufactures
cars and commercial vehicles) and its suppliers, we found that buyer engineers engaged in
quality improvement at suppliers. These suppliers not only supplied to other divisions of
TMV, but also supplied to other automotive firms. During our visits to these suppliers,
such buyer-driven improvements were visible, and suppliers openly discussed improvements
done by firms other than TMV with us and TMV engineers. Therefore it is possible to
make informed judgments about the investments by other buyers and the benefit in quality
supplied to other buyers. Further, third party surveys such as JD Power help firms to
gauge the quality performance of other firms and also help them to infer the performance
of suppliers.
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L type). We assume that both firms share the same prior belief about µ(j).

At any point in time, either firm can invest in the supplier to improve the

drift. Each investment, irrespective of when it is made, costs k, and each firm

can make exactly one investment to improve the quality of the sourced goods.

We assume that both firms are risk-neutral and have a common discount rate

r > 0.

We can formulate the model in three stages. In the first stage (when

t < T1), no firm has invested yet. In the second stage (when t ∈ [T1, T2)), the

leader earns µ(L) per unit time on average while the follower earns µ(F ) per

unit time. In the third stage when t ≥ T2, both firms have invested, and each

firm earns µ(2) per unit time on average. For each stage, µ(j) is either h(j)

for an H-type or `(j) for an L-type supplier (h(j) > `(j)). Then each firm i’s

profit processes Xi,t, i = 1, 2, are given as follows:

Xi,t =
´ t

0
[µ(0)ds+ σdBi,s] , for t < T1 ,

X1,t = X1,T1 +
´ t
T1

[µ(L)ds+ σdB1,s] , for t ∈ [T1, T2) ,

X2,t = X2,T1 +
´ t
T1

[µ(F )ds+ σdB2,s] , for t ∈ [T1, T2) ,

Xi,t = Xi,T2 +
´ t
T2

[µ(2)ds+ σdBi,s] , for t ≥ T2 .

We assume that the processes B1,t and B2,t are mutually independent. Note

that due to the unobservable noise terms σBi,t, neither firm can determine

µ(j). Finally, we assume that the type (quality improvement potential) of the

supplier does not change even after investments.

Let (Ω,G,P) be the probability space with which Xi,t, µ(j), and Bi,t are

measurable. We let {Ft : t ≥ 0} denote the natural filtration with respect to

the observable cumulative profit processes {Xi,t : t ≥ 0}. The two firms have

a common prior p ≡ P({µ(0) = h(0)}), the probability that the supplier is of

H-type.

Next, we construct the posterior updating process. Consider the first stage

when both firms earn µ(0) per unit time on average. Both firms observe Xi,t, so

they update their posterior beliefs by incorporating X1 and X2 simultaneously.

To construct posterior beliefs, we define the following: the reduced volatility

σ̃ ≡ σ/
√

2; a new one-dimensional standard Brownian motion Wt ≡ (B1,t +

B2,t)/
√

2; and a new process X̃t ≡ (X1,t +X2,t)/2. The new Brownian motion

W is unobservable, but the process X̃ is observable because it is constructed

9



entirely from X1 and X2.

The updated posterior beliefs can be constructed from X̃ and t alone. Let

Pt = P({µ(0) = h(0)}|Ft) denote the posterior probability at time t. From

Bayes rule (Peskir and Shiryaev 2006, pp. 288-289), we derive the following

expression for Pt in terms of the observable process X̃t:

Pt =

(
1 +

1− P0

P0

exp

{
−h(0)− `(0)

σ̃2
·
[
X̃t −

h(0) + `(0)

2
t

]})−1

for t < T1 .

(2.1)

Next, we consider the second stage. In this stage, firm 1 earns µ(L) while

firm 2 earns µ(F ) per unit time on average. For notational convenience, let Λ =√
2
√

[h(L)− `(L)]2 + [h(F )− `(F )]2 and define the following for the second

stage:

X̂t ≡
[h(L)− `(L)]X1,t + [h(F )− `(F )]X2,t

Λ
,

ĥ ≡ [h(L)− `(L)]h(L) + [h(F )− `(F )]h(F )

Λ
,

ˆ̀≡ [h(L)− `(L)]`(L) + [h(F )− `(F )]`(F )

Λ
.

Finally, we remark that the posterior process for t ∈ (T1, T2) (in the second

stage) is given by

Pt =

(
1 +

1− PT1

PT1

exp

{
− ĥ−

ˆ̀

σ̃2
·
[

(X̂t − X̂T1)− ĥ+ ˆ̀

2
(t− T1)

]})−1

.

(2.2)

It is straightforward to derive (2.2) from the strong Markov property of Pt and

the Bayes rule as in (2.1).

Before we proceed, we list the assumptions for our analysis.

Assumption 2.1 µ(0) < µ(2) < µ(L) and µ(F ) < µ(2).

After the leader invests at time T1, the leader earns an improved profit

stream because the supplier’s quality improves, so µ(L) > µ(0). The prod-

uct supplied to the other firm (follower) does not improve as much since

the spillover is not perfect, so µ(F ) < µ(L). The follower’s profit stream

would additionally improve if he invests as well, so we assume that in stage 2,

10



µ(F ) < µ(2). Finally, if both firms improved their products due to investment

in the shared supplier in stage 3, then the leader’s profit stream would be

somewhat reduced due to competition, therefore we specify µ(2) < µ(L).

The next two assumptions regard hF ≡ h(2) − h(F ), `F ≡ `(2) − `(F ),

hL1 ≡ h(L)− h(0), `L1 ≡ `(L)− `(0), and `(L)− `(F ):

Assumption 2.2 hF/r > k > `F/r and hL1/r > k > `L1/r.

Assumption 2.3 (`(L)− `(F ))/r − k < 0.

Assumption 2.3 implies that the difference between the leader’s profit

stream and the follower’s profit stream is not extraordinarily large, and this

allows us to focus on the parameter regimes that are analytically tractable.

Assumption 2.4 ĥ− ˆ̀> h(0)− `(0).

Assumption 2.4 is automatically satisfied if a slightly stronger pair of as-

sumptions h(L) − `(L) > h(0) − `(0) and h(F ) − `(F ) > h(0) − `(0) are

simultaneously satisfied. These assumptions imply that the difference in qual-

ity increases after the first investment and that the signal-to-noise ratio (the

rate of learning) increases with the investment, i.e., from [h(0) − `(0)]/σ̃ to

(ĥ − ˆ̀)/σ̃. Intuitively, this is justified because with additional investment in

a given project the signal about the true quality gets strengthened and the

investor learns faster about the project.

2.4 Game of Investment

In this section, we analyze the game-theoretic model proposed in Sec. 2.3. In

Secs. 2.4.1 and 2.4.2, we first assume an asymmetric MPE in which one of the

firms invests first and the other follows suit. Later in Sec. 2.4.3, we obtain

MPEs and find that there are two qualitatively distinct types of pure strategy

equilibria.

2.4.1 The Follower’s Investment Policy

Following backward induction, consider the second stage, i.e., suppose that

an investment has already been made by firm 1. Then firm 2’s cumulative

11



profit process satisfies dX2,t = µ(F )dt+σdB2,t before investment, and dX2,t =

µ(2)dt+ σdB2,t after investment. It follows that the second firm’s objective is

to maximize:

VF,τ (p) = Ep[
´ τ

0
e−rtdX2,t +

´∞
τ
e−rtdX2,t − e−rτk]

= 1
r
[ph(F ) + (1− p)`(F )] + Ep[gF (Pτ )e

−rτ ] ,

where gF (x) = 1
r
[xhF +(1−x)`F ]−k and hF ≡ h(2)−h(F ), `F ≡ `(2)− `(F ).

The function gF (x) is the payoff from immediate investment net of the payoff

from investment at t = ∞. As per Assumption 2.2, we assume that hF/r >

k > `F/r, i.e., investment is profitable for the follower only if the supplier is

of H-type.

The follower’s investment policy is determined by the optimal stopping

time τ that maximizes VF,τ (p). In order to develop the representation for τ ,

we lay some preliminaries. The posterior process Pt in the second stage evolves

as in Eq. (2.2). Define a function

ψF (x) ≡ x(1+γF )/2(1− x)(1−γF )/2 , where γF ≡
√

1 +
8rσ̃2

(ĥ− ˆ̀)2
. (2.3)

Here ψF (x) is an increasing fundamental solution to the differential equation

AFψF (p) = 0 where

AF ≡ −r +
1

2

(
ĥ− ˆ̀

σ̃

)2

p2(1− p)2∂2
p (2.4)

is the characteristic differential operator (Oksendal, 2003, Chapter 7) for the

process Pt of the second stage given by (2.2). The function ψF (x) is introduced

because the optimal solution V ∗F (p) ≡ supτ VF,τ (p) satisfies the differential

equation AFV ∗F (p) = −Ep[µ(F )] as per Oksendal (2003, Chapter 10).

Proposition 2.1 The follower’s optimal policy is to invest at the stopping

time τF = inf{t ≥ 0 : Pt ≥ θF} where

θF =
(γF + 1)(k − `F/r)

(γF + 1)(k − `F/r) + (γF − 1)(hF/r − k)
, (2.5)
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and the optimal payoff V ∗F (p) ≡ supτ VF,τ (p) is given by

V ∗F (p) =

{
1
r
[ph(F ) + (1− p)`(F )] + gF (θF )

ψF (θF )
ψF (p) if p < θF ,

1
r
[ph(F ) + (1− p)`(F )] + gF (p) otherwise .

(2.6)

Here V ∗F (p) represents the optimal value function for the follower. For p <

θF , the value function gives the payoff for waiting until Pt hits the threshold

θF , while for p ≥ θF , it gives the payoff for immediate investment. Proposition

2.1 asserts that the follower’s optimal policy is to invest as soon as Pt hits the

optimal upper threshold θF .

2.4.2 The Leader’s Investment

We now consider the leader’s investment problem in the first stage. Before the

investment at time T1, the firm 1’s (leader) cumulative profit process satisfies

dX1,t = µ(0)dt + σdB1,t, and the posterior process Pt is given by Eq. (2.1).

After the investment, the firms 1’s cumulative profit process satisfies dX1,t =

µ(L)dt+σdB1,t. In this section, we only consider instances when the leader and

the follower do not invest simultaneously. We explore the case of simultaneous

investment in Sec. 2.4.3. Hence, we only consider values of posterior beliefs

within the interval (0, θF ). Let us define

hL1 = h(L)− h(0) > 0, `L1 = `(L)− `(0) > 0 ,

hL2 = h(2)− h(L) < 0, `L2 = `(2)− `(L) < 0 , (2.7)

and establish the form of the firm 1’s (leader) value function as follows.

Lemma 2.1 Under the constraint that the follower invests at τF = inf{t ≥ 0 :

Pt ≥ θF} and the leader invests before τF , the leader’s return from investment

at time τ is given by

VL,τ (p) =
1

r
[ph(0) + (1− p)`(0)] + Ep[gL(Pτ )e

−rτ ] , (2.8)

where gL(x) is a function defined in the interval [0, θF ] given by

gL(x) ≡ 1

r
[xhL1 + (1− x)`L1]− k +

1

r
[θFhL2 + (1− θF )`L2]

ψF (x)

ψF (θF )
. (2.9)
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Here gL(x) is the payoff from immediate investment net of the payoff from

investment at t = ∞. As per Assumption 2.2, we assume that hL1/r > k >

`L1/r. We also define

ψL(x) ≡ x(1+γL)/2(1− x)(1−γL)/2 , and γL ≡
√

1 +
8rσ̃2

(h(0)− `(0))2
,

where ψL(x) is an increasing fundamental solution to the differential equation

ALψL(p) = 0, and

AL ≡ −r +
1

2

(
h(0)− `(0)

σ̃

)2

p2(1− p)2∂2
p (2.10)

is the characteristic differential operator (Oksendal, 2003, Chapter 7) for the

process Pt of the first stage given by (2.1).

Now we can obtain the leader’s optimal policy conditional on the follower’s

policy.

Proposition 2.2 Assume µ(F ) > µ(0) and that the follower invests at time

τF . Then the leader’s optimal policy is to invest at the stopping time τL =

inf{t ≥ 0 : Pt ≥ θL} for some θL ∈ (0, θF ], and the leader’s optimal value

function is given by

V ∗L (p) ≡ sup
τ
V1,τ (p) =

{
1
r
[ph(0) + (1− p)`(0)] + gL(θL)

ψL(θL)
ψL(p) for p < θL ,

1
r
[ph(0) + (1− p)`(0)] + gL(p) for p ∈ [θL, θF ] .

(2.11)

As per Oksendal (2003, Chapter 10), the optimal solution V ∗L (p) satisfies

ALV ∗L (p) = −Ep[µ(0)], which is the reason we needed to define the fundamental

solution ψL(p) that satisfies ALψL(p) = 0.

Here V ∗L (p) represents the optimal value function for the leader. For p <

θL, the value function gives the payoff for waiting until Pt hits the threshold

θL, while for p ≥ θL, it gives the payoff for immediate investment. This

optimal policy can be understood as the intuitive notion that a leader invests

immediately when the profit prospect is sufficiently high, i.e., higher than the

threshold value θL. If P0 is below θL, the leader waits until the posterior Pt

hits θL and invests after then.
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In addition, note that we assume µ(F ) > µ(0) in Proposition 2.2. When

µ(F ) < µ(0), then there could exist a θ′L > θL such that the optimal contin-

uation for the leader is (0, θL) ∪ (θ′L, θF ), i.e., it is optimal for the leader to

wait whenever Pt is within either (0, θL) or (θ′L, θF ) and to invest otherwise.2

Note that at θL, the smooth-pasting (continuity of the first derivative) condi-

tion g′L(θL)/gL(θL) = ψ′L(θL)/ψL(θL) still holds as in the case of µ(F ) > µ(0).

However, in all numerical examples of the case µ(F ) < µ(0) that we studied,

the interval (θL, θF ) is subsumed by the preemption region defined in Propo-

sition 2.3, in which both firms try to preemptively invest before the other,

so the existence the two disconnected continuation region for the leader is

inconsequential.

Intuitively, the condition µ(F ) < µ(0) implies that, despite the spillover

effect, competition diminishes the follower’s profit when the leader’s product

quality improves. When the leader invests, then the quality of the shared

supplier improves, and because of spillover at the shared supplier, quality of

components supplied to the follower also improves. However, the leader’s in-

vestment improves its own product quality more than it improves the follower’s

product quality, since the spillover is not perfect. The leader’s superior prod-

uct quality attracts more customers while the follower loses its own customers

due to competition. Thus, even though both firms source and sell better prod-

ucts after the leader’s investment, yet there is a possibility that the profit of

the follower is lower than what it would have been had the leader not invested.

2.4.3 Markov Perfect Equilibria

In this subsection, we obtain the pure strategy MPE. As a preliminary step,

we compare VL,0(·) and V ∗F (·). The function VL,0(p) is the leader’s expected

return from immediate investment when the current posterior is p while V ∗F (p)

is the follower’s optimal expected return when the leader has already invested.

If VL,0(p) > V ∗F (p), then both firms would have an incentive to invest before

the other firm does when the current posterior is p since the leader’s return

is greater. On the other hand, if VL,0(p) < V ∗F (p), then both firms would be

discouraged from being the leader. Thus, the relative magnitudes of VL,0(p)

and V ∗F (p) determine whether a given region of p is of preemption type or a

2The proof of this statement can be made available upon request.
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war of attrition type in equilibrium.

Proposition 2.3 There exists a unique θc ∈ (0, θF ) such that VL,0(p) < V ∗F (p)

for p ∈ (0, θc) and VL,0(p) > V ∗F (p) for p ∈ (θc, θF ).

This proposition asserts that a critical θc always exists such that when

p ∈ (0, θc) then the value of the leader from immediate investment is less than

the value that can be obtained by the follower, and as a result neither firm

would be willing to invest before the other. In contrast, when p ∈ (θc, θF ),

then the value of the leader from immediate investment is higher than that

can be obtained by the follower, and as a result each firm has the incentive

to preemptively invest before the other. Thus, we characterize (θc, θF ) as the

preemption region. If both firms concurrently play a preemption policy, under

which a firm invests immediately unless the other has invested, then there

is ambiguity regarding which firm actually invests first and whether simul-

taneous investment occurs. For convenience, we assume that a simultaneous

preemption strategy profile does not lead to simultaneous investment, which

is a Pareto-dominated outcome. Instead, we assume that even if both take the

preemption policies, they avoid simultaneous investment, and one of the firms

ends up successfully preempting the other with a 50% chance, while the other

one, upon being preempted, immediately switches to a follower’s strategy of

investing at time τF . This modeling assumption permits us to study pure

strategy equilibria.

Theorem 2.1 Assume µ(F ) > µ(0).

(i) Suppose that θL ≥ θc. Then there is a pure strategy MPE in which

(0, θc) is the continuation region for both firms, [θc, θF ) is the region in which

both firms take the preemption policy, and for Pt ∈ [θF , 1), both firms invest

immediately.

(ii) Suppose that θL < θc. Then there exist two pure strategy MPEs with

the following characteristics: for Pt ∈ (0, θc), one firm (the leader) invests at

τL = inf{t ≥ 0 : Pt ≥ θL} and the other (follower) invests at τF = inf{t ≥
0 : Pt ≥ θF}; for Pt ∈ [θc, θF ), both firms take the preemption policy; for

Pt ∈ [θF , 1), both firms invest immediately.

Note that the equilibria have qualitatively different characteristics for θL ≥
θc and θL < θc. If θL ≥ θc, type 1 equilibria occur: For any initial value of
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p < θc, both firms wait until Pt reaches θc, at which time both firms execute

the preemption policy. If θL < θc, type 2 equilibria occur: For any initial value

of p < θL, no firm invests until Pt reaches θL, and when Pt = θL for the first

time, the leader invests. Note that in type 2 equilibria, the interval (θc, θF ) is

still the preemption region, but it is not reached in case the initial probability

p is less than θc because the leader invests earlier than the time when Pt = θc.

Finally, the interval (θL, θc) is characterized as a war of attrition region in the

sense that the follower is better off than the leader although a leader’s optimal

policy is to invest immediately. Figure 2.1 illustrates these differences, where

we show V ∗F (p), VL,0(p), and V ∗L (p) for Type 2 equilibria in Figure 2.1(a) and

Type 1 equilibria in Figure 2.1(b). The parameter values used are r = 0.9,

k = 2.5, σ = 1, h(L) = 6, l(L) = 3, h(2) = 5, `(2) = 2.4 for both (a) and (b).

For the case of Type 2 equilibria, we used h(F ) = 2.5, `(F ) = 1.5, h(0) = 1.6,

`(0) = 0.8, for the case of Type 1 equilibria, we used h(F ) = 1.5, `(F ) = 0.8,

h(0) = 2, `(0) = 1.8.

Although our paper limits its scope to pure strategy equilibria, mixed strat-

egy equilibria are also possible when VL,0(p) < V ∗F (p) as shown by Thijssen

et al. (2006). However, in realistic scenarios, one firm is often known to be

more aggressive at investment than the rival firm, in which case the outcome

should be a pure strategy equilibrium. In this essay, we focus on the charac-

terization of pure strategy equilibria in the war of attrition regime.

Note that Theorem 2.1 applies only to the case of µ(F ) > µ(0). When,

µ(F ) < µ(0), the characterization of equilibria is more complex because the

leader’s optimal value function V ∗L (p) may have two disconnected continuation

regions (0, θL) and (θ′L, θF ) with θ′L > θL. However, our extensive numerical

experiments suggest that when µ(F ) < µ(0), we only obtain θL > θc, which

gives us the equilibria of type 1. On the other hand, when µ(F ) > µ(0), our

numerical experiments suggest that the equilibria are only of type 2. There-

fore, we conjecture that the equilibria is characterized based on the relative

magnitudes of µ(F ) and µ(0).

Due to the complexity of the model, we could not obtain general conditions

for type 1 or type 2 equilibria. However, we can obtain useful analytical

insights in special cases of large values of σ̃.3 In the limit σ̃ → ∞, we obtain

3It is difficult to obtain meaningful analytical insights in the limit σ̃ → 0 because
limσ̃→0 θc = limσ̃→0 θL = limσ̃→0 θF = 1.
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Figure 2.1: V ∗F (p), VL,0(p), and V ∗L (p). (a) is for Type 2 equilibria and (b) is
for Type 1 equilibria

Leader versus Follower
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Figure: (a) µ(F ) > µ(0) and (b) µ(F ) < µ(0)

the following from the definitions of θF , θc, and θL:

lim
σ̃→∞

θF =
kr − `(2) + `(F )

h(2)− h(F )− `(2) + `(F )
, (2.12)

lim
σ̃→∞

θc =
kr − `(L) + `(F )

h(L)− h(F )− `(L) + `(F )
, (2.13)

lim
σ̃→∞

θL = min

{
kr − `(L) + `(0)

h(L)− h(0)− `(L) + `(0)
, lim
σ̃→∞

θF

}
. (2.14)

From these expressions, the following statements follow (after some alge-

bra): If µ(F ) > µ(0), then θc > θL (type 2 equilibria occur) for sufficiently

large values of σ̃. Likewise, if µ(F ) < µ(0), then θc < θL (type 1 equilibria

occur) for sufficiently large values of σ̃.

The intuition for the statements above is as follows. If µ(F ) is larger than

µ(0), then the benefit for the follower is large, so θc is relatively higher. On

the other hand, if µ(F ) is smaller than µ(0), then there is greater disadvantage

to becoming the follower, so there is higher incentive for preemption, which

pushes θc to a level lower than θL. This intuition is explored in Figure 2.2,

which illustrates θc and θL for µ(F ) > µ(0) and µ(F ) < µ(0). We observe that

θc ≥ θL for µ(F ) > µ(0), and θc ≤ θL for µ(F ) < µ(0) even for small values of

σ̃. (We used the same parameter values as in Figure 2.1 except for the values

of σ.)

Lastly, in Figure 2.3, we illustrate a sample evolution of the posterior belief

process Pt under a type 1 equilibrium for the same set of parameter values as
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Figure 2.2: θc and θL as a function of σ̃. (a) is for µ(F ) > µ(0) and (b) is for
µ(F ) < µ(0).
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Figure: (a) µ(F ) > µ(0) and (b) µ(F ) < µ(0)

Figure 2.3: A sample path of Pt.
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θc
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in Figure 2.1(b) except σ = 0.2. In this example, we set the initial prior P0

at 0.25. In the time interval (0, 1.116), none of the firms invests in the sup-

plier, but they observe the supplier’s performance and update the posterior

dynamically. The posterior Pt hits θc at time t = 1.116, at which time the

leader invests. In the time interval (1.116, 1.252), the posterior process fluctu-

ates more widely because of the higher rate of learning (Assumption 2.4), and

quickly reaches θF at t = 1.252, at which time the follower also invests.
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2.5 Impact of Competition on the Leader’s

Investment

In this section, we examine the impact of competition on the time to the first

(leader’s) investment at a shared supplier. In Section 2.5.1, we consider a

benchmark model in which only one firm has the option of investment. In

Section 2.5.2, we compare the benchmark result to the game-theoretic model

regarding the conditional expected time to the first investment.

2.5.1 Benchmark Model

In the model considered in Section 2.4, suppose that only one firm is capable

of investing in the supplier. Then the investing firm’s value function from

investing at time τ is given by

VB,τ (p) =
1

r
[ph(0) + (1− p)`(0)] + Ep[gB(Pτ )e

−rτ ] ,

where gB(x) ≡ 1
r
[xhL1 + (1− x)`L1]− k. The only difference from the leader’s

value function in Section 2.4.2 is that there is no follow-up investment by an-

other firm. Thus, the posterior process for t < τ is exactly given by (2.1).

Since this is a single decision-maker problem, the solution is provided by a

slight modification of Proposition 2.1. The optimal stopping time of invest-

ment is given by τB = inf{t > 0 : Pt ≥ θB} where

θB =
(γL + 1)(k − `L1/r)

(γL + 1)(k − `L1/r) + (γL − 1)(hL1/r − k)
(2.15)

is the optimal threshold of investment. Finally, the optimal value function is

given by

V ∗B(p) =
1

r
[ph(0) + (1− p)`(0)] +

gB(θB)

ψL(θB)
ψL(p) for p < θB ,

=
1

r
[ph(0) + (1− p)`(0)] + gB(p) otherwise.
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2.5.2 Impact of Competition

Our primary interest is on the time to the first investment in the first stage.

We first establish the following:

Proposition 2.4 Let τθ = inf{t > 0 : Pt ≥ θ} for some θ ∈ (0, 1). Then the

probability of τθ <∞ is given by

Pp[τθ <∞] =

{
p/θ if p < θ ,

1 otherwise
,

and the expectation of τθ conditional on τθ <∞ for p < θ is given by

Ep[τθ|τθ <∞] =
2σ̃2

[h(0)− `(0)]2
ln

[
θ(1− p)
(1− θ)p

]
. (2.16)

Note that Ep[τθ] =∞ for p < θ since Pp[τθ =∞] > 0 for any p < θ.

In the equilibria that we studied in Section 2.4, the first investment takes

place at τθm where θm ≡ min{θc, θL} is the threshold for the first investment.

Hence, we are interested in comparing Ep[τθB |τθB <∞] with Ep[τθm|τθm <∞].

From (2.16), we have Ep[τθB |τθB < ∞] ≥ Ep[τθm|τθm < ∞] whenever θB ≥ θm

and vice versa. Therefore we only need to compare θB to θm.

In order to gain meaningful analytical insights, we first examine the case

of large values of σ̃. From (2.15), the large-σ̃ limit is given by

lim
σ̃→∞

θB =
kr − `L1

hL1 − `L1

.

Note that limσ̃→∞ θB = limσ̃→∞ θL if limσ̃→∞ θL < limσ̃→∞ θF .

We first examine the case of θL < θc so that θm = θL. In this case, the

leader can invest in the supplier at his own pace without being concerned

about preemption from the competitor because the leader’s optimal threshold

is lower than that in the preemption region. Furthermore, we can intuitively

argue that θB < θL as follows: The existence of a competitor decreases the

profit for the leader as compared to the benchmark case, and consequently,

the leader’s incentive to invest is lower, which delays the investment. In fact,

we can have the following result.
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Figure 2.4: θB and θm as a function of σ̃. (a) is for µ(F ) > µ(0) and (b) is for
µ(F ) < µ(0).
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Figure: (a) µ(F ) > µ(0) and (b) µ(F ) < µ(0)

Proposition 2.5 Suppose µ(F ) > µ(0). Then, µ(L) > µ(2) if and only if

θB < θL.

Figure 2.4(a) also confirms this result for general values of σ̃. (We used the

same parameter values as in Figure 2.1 except for the values of σ.)

Next, from the results of Section 2.4.3, if µ(F ) < µ(0), then θm = θc < θB

for large values of σ̃. In other words, if the follower’s profit is sufficiently

low, then the boundary θc of the preemption region is low because each firm

would have a strong incentive to preempt the other. In this case, therefore, the

preemptive threat is stronger than the loss in profit from the competitor, and

we can conclude that the existence of a competitor hastens the first investment.

Figure 2.4(b) illustrates this intuition.

In summary, our analytical results show that, in the large-σ̃ limit, the first

investment is delayed by competition for sufficiently high profit (a high degree

of spillover) for the follower, but it is hastened by competition for sufficiently

low profit (a low degree of spillover) for the follower. These results are driven

by the threat of preemption and the diminished profit of the leader due to the

investment of the follower. Thus, we find that the impact of the interplay of

competition and spillover on firm’s investment strategy in shared supplier is

non-trivial.

Lastly, we examine the impact of h(L). At first glance, an increase of

h(L) would decrease both θB and θL because it would increase both VB,τ (·)
and VL,τ (·). It might also hasten the preemption (decrease θc) because the

leader’s value function increases with h(L) while the follower’s value function
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Figure 2.5: θB and θm as a function of h(L). (a) is for µ(F ) > µ(0) and (b) is
for µ(F ) < µ(0).
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would not be affected by h(L). Indeed, from (2.15), it is easy to verify that

limh(L)→∞ θB = 0. However, for sufficiently large values of h(L), we find that

θm = min{θL, θc} does not converge to 0. This is because a large value of

h(L) allows the follower to learn the true type of the supplier very quickly due

to a large value of the signal-to-noise ratio ĥ−ˆ̀

σ̃
(which represents the rate at

which the follower learns about the true type of the supplier). If ĥ−ˆ̀

σ̃
is very

large, then the follower can quickly invest in the supplier in case the supplier

is of H-type, and consequently, the leader’s advantage (stage 2) lasts for a very

short time. Therefore, the leader’s threshold θL or the preemption threshold

θc are not as low as θB for large values of h(L). We conclude that competition

delays the first investment for sufficiently high values of h(L). For small values

of h(L), however, θB > θm can happen, depending on whether µ(F ) > µ(0)

or µ(F ) < µ(0). Figure 2.5 illustrates numerical examples of θB and θm as a

function of h(L). (We used the same parameter values as in Figure 2.1 except

that σ = 0.5.)

Recall that h(L) is the leader’s return from investing in a supplier when

the supplier is of the H-type. Our analysis and numerical experiments show

that when this return is very high, then competition always delays the first

investment. At lower values of h(L), the interplay of competition and quality

spillover comes into play. When µ(F ) > µ(0), then, the follower’s benefit is

high due to spillover effect, so the firms’ incentive to preempt is weak; therefore

the first investment is delayed compared to the benchmark case. However,

when µ(F ) < µ(0), then the follower’s benefit is low due to severe competition
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effect, so the firms’ incentive to preempt is strong. Hence, first investment is

hastened compared to the benchmark case.

2.6 Discussions

In this section, we discuss the robustness of our assumptions and the relation-

ship between our paper with the idea of strategic substitutes/complements of

investments.4

2.6.1 Asymmetric Costs of Investment

If the investment costs (k) are asymmetric, then the equilibrium will be asym-

metric, and each firm would have different values of θc and θL in equilibrium.

In this subsection, we discuss the equilibrium resulting from asymmetric costs.

Suppose firm i’s cost of investment is ki. Let V
∗(i)
F be firm i’s payoff as a

follower, and let V
(i)
L,0 be firm i’s payoff as a leader. For each i = 1, 2, let θ

(i)
c

be the value of p at which V
∗(i)
F (p) and V

(i)
L,0(p) cross each other. Then we have

θ
(1)
c 6= θ

(2)
c in general. In particular, for sufficiently small differences between

k1 and k2, one can prove that θ
(1)
c > θ

(2)
c if k1 > k2. The asymmetric thresholds

θ
(1)
c > θ

(2)
c can result in a qualitatively different equilibrium behavior for type

1 equilibria.

We consider a case of type 1 equilibrium in which k1 − k2 is a very small

positive number. Due to θ
(1)
c > θ

(2)
c , we have V

(1)
L,0 (p) < V

∗(1)
F (p) and V

(2)
L,0 (p) >

V
∗(2)
F (p) for p ∈ (θ

(2)
c , θ

(1)
c ). In this case, the region p > θ

(1)
c remains as the mu-

tual preemption regime. For the initial prior p < θ
(1)
c , however, the equilibrium

behavior is different.

If p ∈ (θ
(2)
c , θ

(1)
c ), then firm 2 would prefer to be the leader than the follower.

However, firm 2’s payoff is maximized if it invests at a point infinitesimally

close to θ
(1)
c . (If p = θ

(1)
c , then firm 1 would also have incentive to preempt

firm 2, so firm 2’s payoff is greater if it preempts firm 1 at a value slightly less

than θ
(1)
c .) On the other hand, firm 1 would not want to preempt firm 2 until p

reaches θ
(1)
c . Therefore, we conclude that firm 2 becomes the leader whenever

the initial prior satisfies p < θ
(1)
c , and the equilibrium strategy for firm 2 is to

invest at θ
(1)−
c .

4The detailed analyses of this section are available upon request.
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In the case of a type 2 equilibrium, the asymmetry in k would only shift

the values of θ
(1)
L for firm 1 and θ

(2)
L for firm 2, but the behavior of the firms

remains qualitatively the same, i.e., the leader (firm i) will wait until Pt hits

θ
(i)
L before investment, and the follower (firm j) will wait until θ

(j)
F .

2.6.2 Absence of Uncertainty

Note that the impact of uncertainty in the supplier’s improvement potential is

core to the buyer firms’ investment decisions in our model. If there is no un-

certainty in the quality improvement potential of the supplier, then the buyer

firms invest immediately if the (discounted) quality increase from the invest-

ment is larger than the associated cost, and they never invest otherwise. In

other words, the problem reduces to a static model if the quality improvement

potential is fully known to the investing firms.

2.6.3 Large Spillover

When the quality improvement by spillover from the other firm’s investment is

much higher than the competition effect (e.g. market stealing effect) between

the two firms, we can have µ(2) > µ(L). In this case, we have hL2, `L2 > 0

as opposed to (2.7), and based on our analysis, we find that V ∗F (p) > VL,0(p)

for all p ≤ θF , which indicates that the preemption regime does not exist. It

follows that type 1 equilibria are not possible, and all equilibria are of type 2,

where (θL, θF ) is the war of attrition regime for some θL ∈ (0, θF ] and (θF , 1) is

the symmetric investment regime. The intuition underlying this result is that

if µ(2) > µ(L), then the firms do not have an incentive to preempt the rival

firm because the leader’s profit stream µ(L) is less than the profit stream after

the follower has invested. In addition, we also find from Proposition 2.5 as well

as numerical analyses that θB > θm for both µ(F ) > µ(0) and µ(F ) < µ(0),

which means that the presence of the competitor hastens the investment.

2.6.4 Investments as Strategic Substitute or

Complement

Although the concept of strategic substitutes and complements was originally

defined for static investments, we extend it by considering the expected time to
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investment. Specifically, we consider the conditional expected time Ep[T1|T1 <

∞] to investment of firm 1 under two scenarios: (1) firm 2 has not invested,

and firm 1 takes on the leader’s role, and (2) firm 2 has already invested and

firm 1 is the follower.

Based on our analysis, we find that Ep[T1|T1 < ∞] is shorter for Scenario

1 for sufficiently high p, by contrast Ep[T1|T1 < ∞] is shorter for Scenario 2

for sufficiently low p. This implies that firm 1 invests earlier when the other

firm has not invested if p is sufficiently high, and invests earlier when the other

firm has invested if p is sufficiently low.

Lastly, we discuss the intuitive explanations for these results. If p is suf-

ficiently small, then the profit prospect is not very high, so there is no first

mover advantage, and hence it is crucial for firm 1 to learn about the profitabil-

ity of investment. Due to the inequality ĥ− ˆ̀> h(0)− `(0), firm 1 can learn

faster under Scenario 2 than under Scenario 1, which means it can quickly

learn that the profitability of the investment is high under Scenario 2, so the

expected time to investment is shorter as compared to that under Scenario 1.

If p is sufficiently large, then firm 1 expects higher first mover advantage, so

it has incentive to invest quickly under Scenario 1. On the other hand, under

Scenario 2, the rival firm has already taken the leading role, so firm 1’s reward

from investment is smaller, and it does not have incentive to invest quickly.

2.7 Conclusion

Suppliers often cater to the requirements of multiple firms, and some of these

firms may compete with one another. When firms consider investments to

improve the quality performance of such shared suppliers they should account

for two issues. First, there is uncertainty in the returns from the investment

in quality improvement at the supplier. Second, improvements from the in-

vestments can spillover and benefit other firms that source from the shared

suppliers. In this essay, we investigate how spillover, uncertainty, and com-

petition affect the investment strategies of two Bayesian firms that can invest

in quality improvement at the shared supplier. Our analyses reveal that the

interplay of competition and spillover has differing impact on the investment

strategies. We find two distinct types of equilibria depending on the relative ef-

fects of competition and spillover. Additionally, we find that a firm’s expected

26



time to investment in a shared supplier is delayed or hastened by competition

depending on the leader’s return from investing in a high quality supplier, i.e.

h(L). When h(L) is high, then the presence of a competing investor always

prompts the leader to delay its investment. In contrast when h(L) is low then

the interplay of competition and spillover has a more nuanced impact on the

leader’s investment decision: When spillover is high then the presence of a

competing investor delays the leader’s investment whereas when spillover is

low, it hastens the leader’s investment. Therefore, our results indicate that

the leader’s optimal investment strategy for the shared suppliers may vary

depending on the interplay of (i) spillover (ii) competition and (iii) supplier

capabilities.

This essay contributes by providing insights that can help firms craft ap-

propriate strategies for improving quality at shared suppliers and by exploring

the nature of spillover from investments at these suppliers. Our results suggest

that the interplay of spillover and competition can be important for a signifi-

cant range of parameters, and that manufacturing firms should take these into

account to determine appropriate investment strategies at shared suppliers.
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Chapter 3

Strategic Investment in Shared
Suppliers with Quality

Deterioration

3.1 Introduction

Firms increasingly consider outsourcing as a key business enabler rather than

a simple cost-cutting measure (Plotkin, 2016). As the emphasis on outsourc-

ing is increasing, firms are relying more on their suppliers for their product

requirements, and their performance is affected by the quality of their sourc-

ing. Many a time, firms work with their suppliers to address quality issues

or develop new product development capabilities by investing in improvement

initiatives that aim to address specific quality or capability issues. Such invest-

ments directly benefit the buyer firms due to the suppliers’ improved perfor-

mance. Supply chain practitioners call such investments supplier development,

which is defined as “any activity initiated by a buying organization to improve

the performance of its suppliers” (Krause et al., 2007). However, suppliers are

often not exclusive. They may also cater to the needs of other buyers, some

of whom may be competitors, while others may be non-competing.

When buyers share suppliers, the quality and capability related knowledge

resident with suppliers due to a specific buyer’s investments can spill over to

other buyers. For example, Aune et al. (2013) analyze a triadic relationship

between an electronics subcontractor Electra and its two important buyers,

Ramo and Sensoil. The authors note that each of the two buyers recognized

substantial benefits from improving safety-related qualifications of Electra’s

products. Moreover, because these firms belong to the same industrial cluster

(but they do not directly compete in the market), both Ramo and Sensoil were

conscious of the other’s interests in such developments. However, while Ramo

actively helped Electra develop these capabilities, Sensoil did not make any

efforts to do the same. Indeed, Sensoil attempted to gain from Ramo’s efforts

by explicitly expressing to Electra its strong interest in such capabilities. This
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case demonstrates how a manufacturer can strategically aim to capitalize on

capabilities that are developed elsewhere without investing in this develop-

ment. Therefore, a buyer’s investment decision on supplier development may

need to take into account the impact on other manufacturers or even the in-

vestment strategies of other manufacturers. More specifically, strategic yet

potentially inefficient delays in investment, as illustrated in Sensoil’s tactics,

may arise from the free-rider effect due to spillover of investment.

In a similar vein, Agrawal and Muthulingam (2015) examine an auto man-

ufacturer with two independently controlled divisions that share many of their

suppliers. Concerned about suppliers’ quality, one of the divisions deployed

quality improvement initiatives at its suppliers while the other division did

not. Interestingly, one of the main findings of this study is that improvements

in the shared suppliers’ quality deteriorate over time due to depreciation of

organizational learning, which is likely to yield another compounding factor

in supplier development. To counter this effect, manufacturers need to make

recurrent investments in their suppliers, and the investment game between

manufacturers should be considered a repeated game.

In this paper, we examine supplier development investment strategies in

the presence of spillover and quality deterioration as well as in the face of other

strategic manufacturers. To this end, we formulate a continuous-time game of

investment timing between two firms with a shared supplier. At each point in

time, each firm decides whether to make a costly investment in the supplier

for quality improvements or to wait for the other firm to do so. Firms are

asymmetric in their investment costs. We take the supplier’s quality as the

state variable common to both firms, and the profit flow for both firms is a

function of the state variable. To incorporate the quality deterioration over

time as well as the inherent stochasticity of the quality, we model the state

variable as a diffusion process with a negative drift. If an investment is made

by either firm, the state variable is restored to an exogenously determined

high value. However, the quality deteriorates over time again, and the same

investment cycle begins. Thus, the game is infinitely repeated.

We detail equilibria both in pure and mixed strategies. First, we find that

a pure strategy Markov perfect equilibrium (MPE) always exists. Next, as a

preliminary step to characterizing mixed strategy equilibria, we examine the

case where the stochasticity of the quality is ignored. In this special case, we
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find that a mixed strategy MPE exists under a moderate degree of asymmetry

between the firms, and more importantly, we identify the characteristics of

mixed strategy MPEs. Motivated by these characteristics, we propose a non-

Markovian but subgame perfect extension of the equilibrium concept – named

two-phase subgame perfect equilibria (SPE). We find that a two-phase mixed

strategy SPE exists only if the game is repeated; there is no two-phase mixed

strategy SPE if there is only one investment opportunity. This implies that the

repetitive nature of the game induces a mixed strategy SPE, which results in

inefficient delays in investment. We compare this inefficient equilibrium to the

first-best solution in a field study on supplier development of an automobile

manufacturer, and find that the efficiency loss from investment delays can be

substantial.

Our paper makes two contributions to the literature. First, to the best of

our knowledge, our work is the first to characterize the equilibria of a repeated

stochastic war of attrition and establish that the repetitive nature of the game

drives a mixed strategy equilibrium, which results in an uncoordinated out-

come. Note that the equilibrium outcomes of our game-theoretic model are

classified into the coordinated and uncoordinated categories: In a coordinated

outcome, one of the firms invests as soon as the supplier’s quality falls below

its own optimal threshold, thereby eliminating the inefficiency from incentives

to free-ride. In an uncoordinated outcome, which results only from a mixed

strategy equilibrium, each firm delays the investment in the hope that the

other firm will invest soon, thus yielding inefficiency.

Second, we find that a mixed strategy equilibrium is uniquely determined

within a class of equilibria named two-phase SPE, in which the first phase is

characterized by a stationary strategy and the second phase is characterized

as an MPE. This finding is a novel result because attrition games generally

admit a continuum of mixed strategy equilibria as shown by Hendricks et al.

(1988). Moreover, the uniqueness of the mixed strategy equilibrium in an at-

trition game implies the uniqueness of the uncoordinated outcome, from which

we are able to define the unique efficiency loss from the free-rider effect rela-

tive to the first-best solution. The unique estimate of the inefficiency can be

highly practical and informative to supply chain managers whose priority is

cost savings. For instance, a manufacturer considering supplier development

can unambiguously determine the cost savings that can be achieved by coor-
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dinating its investment with other manufacturers sharing the same supplier.

3.2 Related Domains of Literature

In the context of supply chain operations, there is a stream of work on invest-

ment in shared suppliers. Muthlingam and Agrawal (2016) is the first doc-

umented field study that sheds light on the conditions under which spillover

through shared suppliers happen between two manufacturing divisions of a

firm. Wang et al. (2014) examine a two-stage model of two manufactur-

ers investing in their shared supplier’s reliability while competing with each

other. They focus on characterizing the market competition in the presence

of knowledge spillover. Qi et al. (2015) examine capacity investments in sup-

pliers shared with competitors when the realized capacity is stochastic. The

spillover effect that they consider is the spillover of production capacity rather

than spillover of knowledge. They focus on how capacity contract structures

mitigate the problem of competition. Wang et al. (2014) and Qi et al. (2015)

focus on models of two manufacturers who directly compete with each other

whereas our paper focuses on the issue of coordinated investment between two

manufacturers who do not necessarily compete in the same market. Further-

more, our work incorporates the dynamics of the improvement and the timing

of investment as essential constituents so that we can address the impact of

quality deterioration and the time value of money. In a similar vein, Agrawal

et al. (2016) examine investment timing strategies in the presence of spillover,

but their focus is on the uncertainty of the supplier’s quality improvement

potential.

Attrition games are first examined by Maynard Smith (1974) in the con-

text of biological evolution, but have since been applied to many economic

problems of concession under uncertainty. For example, they have been ap-

plied to a continuous-time stochastic game of duopoly exit by Murto (2004)

who examines the impact of uncertainty on the multiplicity of pure strategy

MPEs. Decamps and Mariotti (2004) study an investment game under uncer-

tain profitability, in which a second mover advantage arises due to the ben-

efits of learning from the first mover. Obtaining a unique symmetric perfect

Bayesian equilibrium, they investigate how an incentive to delay investment

is affected by the cost and information structures. Thijssen et al. (2006) also
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examine a duopoly investment game under uncertainty of the profitability, al-

beit in the presence of both first and second mover advantages. Kwon et al.

(2016) examine a related game of investment but with negative or positive

externalities between the players and show that the mixed strategy equilibria

exhibit nuanced comparative statics with respect to externalities.

A specific arena of interest in economics literature is the characterization of

mixed strategy equilibria of attrition games. Hendricks et al. (1988) examine a

continuous-time deterministic game of concession and completely characterize

the equilibria. In particular, they show that there is a continuum of mixed

strategy equilibria. In a stochastic timing game, Touzi and Vieille (2002) es-

tablish the formulation of mixed strategy of stopping times. Extending this

stream of literature, Steg (2015) formulates the concept of subgame perfection

in a stochastic game and obtains a symmetric mixed strategy SPE of a sym-

metric war of attrition. Kim et al. (2017) study two-player attrition games

with a stochastic state variable and find that there is no mixed strategy MPE

in the presence of stochasticity and asymmetry between the two players. Over-

all, while most of the extant literature focuses on one-shot symmetric games

of attrition, our work contributes by examining repeated stochastic games of

attrition in the presence of asymmetry between two players.

Lastly, our work addresses a problem of horizontal coordination in sup-

ply chains. Lower acquisition cost, enhanced bargaining power, and exclusive

purchasing rights are often perceived as key motivations for horizontal coordi-

nation between the buyers. For instance, Snyder (1998) and Inderst and Wey

(2007) argue that buyer alliances can enhance the buyers’ bargaining power.

Chipty and Snyder (1999) examine, in addition, the effects of buyer merger on

market efficiency. Dana (2012) finds that buyer groups can benefit from the

fiercer price competition among suppliers by committing to purchasing from

a single supplier. Chen and Roma (2011) examine the impact of competition

on the effectiveness of group purchasing. Other papers on buyer bargaining

and alliances include Horn and Wolinsky (1988), Chipty (1995), and Stole and

Zwiebel (1996). Agrawal (2014) models a raw material supply game between

two competing buyers and shows that competing buyers can earn more profits

if they cooperate than if they were operating as a hands-off monopoly; this

effect increases as raw material becomes more dominant in sourcing. While

these prior studies examine horizontal coordination under various contexts,
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our paper addresses the horizontal coordination problem between manufac-

turers in the context of supplier development and demonstrates the value of

such a coordination by applying a game-theoretic model to a field study.

3.3 Model

In this section, we formulate the model and define the feasible strategies as well

as the payoffs for the game. Suppose that two manufacturing firms, labeled

by an index i = 1, 2 procure components from a shared supplier. The quality

(e.g., how low the defect rate is) of the shared supplier is modeled as a diffusion

process X = {Xt; t ≥ 0}, which is defined on an interval I ⊂ R and is a

solution to the following stochastic differential equation:

dXt = µ(Xt)dt+ σ(Xt)dWt . (3.1)

Here W = {Wt; t ≥ 0} is the Wiener process, and the initial condition of X

is denoted by X0 = x. The drift and volatility functions µ : I → R and

σ : I → R are continuous on I . Because there always exists a random

variability in the quality performance (Oakland, 2007)1, we assume σ(·) > 0

throughout the paper unless otherwise specified. We also assume µ(·) < 0

on I to capture deterioration in the supplier’s quality because of employee

turnover, product changes, or equipment wear (Agrawal and Muthulingam,

2015). Whenever necessary, we express the quality of the shared supplier as

Xx
t to indicate its initial value x. In the remainder of the paper, we set I = R

for simplicity although our main results hold for any interval I .

The firms’ payoffs are given by the expected value of the cumulative dis-

counted cash flows. The time rate of profit flow is given by a continuous

increasing function π : I → R of the state variable X, which satisfies the

absolute integrability condition (Alvarez, 2001)

Ex
[ˆ ∞

0

|π(Xt)|e−rtdt
]
<∞ , (3.2)

where Ex[·] is the expectation conditional on the initial value X0 = x. Here

r > 0 is the discount rate common to both firms.

1See also the literature in the statistical process control (SPC) for more information.
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Firm i can invest (e.g., send its engineers to supplier plant to identify

quality improvement opportunities or offer training sessions to workers) in

the shared supplier and instantaneously2 reset the quality X to a given level

ζ ∈ I (e.g., six sigma level) at the lump-sum cost of ki > 0. Without loss of

generality, we assume that firm 2 is strictly more cost-efficient than firm 1 by

setting k1 > k2. Each firm has an opportunity to make an indefinite number

of investments at their discretionary times. As a convention, we say that the

game is in stage n if n − 1 investments have been already made. Note that

because the quality X is restored to ζ immediately after any investment, the

value of X is ζ at the beginning of each stage.

3.3.1 Strategy

In this subsection, we specify the strategy space of the game. We first pay

particular attention to Markov strategies (which we formally define below)

under which a player’s action at time t only depends on the current value Xt

of the state variable. The concept of Markov strategies is essential not only for

characterizing MPEs in Section 3.4, but also for examining SPEs in Section

3.5.

A firm’s strategy is the timing of investment, which can be formally rep-

resented as a stopping time measurable with respect to the natural filtration

FX generated by the process X. Because we are interested in mixed strat-

egy equilibria in which a strategy is a randomized stopping time (Touzi and

Vieille, 2002), we represent a strategy as a cumulative distribution function

(CDF) of investment timing. Here a CDF is an FX-adpated, right-continuous,

and non-decreasing process that ranges in the interval [0, 1]. Then firm i’s

strategy for each stage n is defined as a collection G
(n)
i := (G

(n,x)
i )x∈I of

CDFs. In fact, a CDF G
(n,x)
i (t) is the probability that firm i will invest

by time t in the nth stage given the initial condition X0 = x. Note that

G
(n,x)
i must conform to Bayes’ rule (Steg, 2015): for any t ≥ s ≥ 0, we have

G
(n,x)
i (t) = G

(n,x)
i (s−) + [1 − G

(n,x)
i (s−)]G

(n,Xx
s )

i (t − s). The complete spec-

ification of firm i’s strategy is an infinite sequence of stage-wise strategies

Gi = {G(n)
i }∞n=1. Similar notations and conventions for CDFs are also used by

Steg (2015).

2We relax this assumption in Section 3.6.1.
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Following the canonical definition of a Markov strategy (Maskin and Ti-

role, 2001), which stipulates that the actions of the firms depend solely on the

current value of the state variable, we require that the probability of a firm’s

future investment depends only on the current value of X. This stipulation

further characterizes the evolution of the CDFs as follows. First, a disconti-

nuity of a firm’s CDF takes place at a hitting time τA = inf{t ≥ 0 : Xt ∈ A}
for some subset A of R, and the probability of a firm’s investment at time τA

depends only on the current value XτA . Second, whenever the CDFs contin-

uously evolve, the hazard rate of investment of a firm depends only on the

current value of X. We take these two conditions as the formal definition of

Markov strategies.

A technical challenge in the game of infinite investment opportunities is

that the strategy space is vast. Hence, we elect to limit our scope of strategies

to the set S∞ of all strategies Gi = {G(n)
i }∞n=1 such that G

(n)
i ’s are identical

for all n ≥ 1. Note that the set S∞ has the following convenient property:

Lemma 3.1 For any Gj ∈ S∞, firm i’s best response Gi ∈ S∞ exists.

Lemma 3.1 establishes the following intuition: if firm j employs the same policy

for every stage, then there exists a best response of firm i having identical

policies for all stages. Lemma 3.1 justifies our focus on equilibria with strategy

profiles of the form S∞×S∞. This restriction not only simplifies our search for

equilibria, but it also provides the simplest and most practical prescription of

investment strategies for a firm to execute. Under this simplification, firm i’s

strategy Gi can be simply represented by a single-stage strategy Gi without the

stage index n. For the remainder of the paper, we use this simplified notation

unless otherwise specified.

A notable special case of a strategy Gi is one with a hitting time τi of

some set A ⊂ R at which the CDF Gx
i jumps from 0 to 1 for all x. We call

a strategy of this form a pure Markov strategy and denote it by H(τi) where

Gx
i (t) = Hx(t; τi) := 1{t≥τi}(t). In contrast, if a Markov strategy Gi cannot be

represented as H(τi) for any hitting time τi, then Gi is called a mixed Markov

strategy.

Lastly, we introduce the notion of support of a mixed Markov strategy Gi as

the subset of the state space I in which firm i invests with a positive probabil-

ity, i.e., Gi(·) strictly increases in time either continuously or discontinuously.
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Formally, we define the support of Gi as follows:

supp(Gi) :=

{
x ∈ I :

dGy
i (t)

dt

∣∣∣∣
t=τ

> 0 or ∆Gy
i (τ) ∈ (0, 1)

for any y ∈ I wheneverXy
τ = x

}
(3.3)

where ∆Gy
i (τ) := Gy

i (τ)−Gy
i (τ
−) denotes a jump at time τ .

3.3.2 Payoff

Following the terminology used by Hendricks et al. (1988), if firm i invests

earlier than firm j in stage n, then we call firm i a leader and firm j a follower

for stage n. We express firm i’s payoff given a strategy profile G = (Gi, Gj) ∈
S∞ × S∞ as the following recursive equation:

Vi(x;G) =Ex
[¨ ∞

0

{ˆ s∧u

0

π(Xt)e
−rtdt

+ e−r(s∧u)[1{s<u}l
G
i + 1{s>u}f

G
i + 1{s=u}m

G
i ]
}
dGi(s)dGj(u)

]
,

(3.4)

where

lGi := Vi(ζ;G)− ki and fGi := Vi(ζ;G)

are the rewards to the leader and the follower respectively. If both firms decide

to invest at the same time, the reward to each firm is mGi := (lGi + fGi )/2 by

following the convention from the literature (e.g. Dutta et al., 1995) that each

firm has an equal chance to be the leader and the follower.

Note that the rewards from investment (lGi , fGi , and mGi ) depend on the

subsequent payoff Vi(ζ;G) which also depends on G. If there exists only one

opportunity to invest in the shared supplier, however, the rewards to the leader

and the follower do not depend on G and are given by

li := (Rrπ)(ζ)− ki and fi := (Rrπ)(ζ) , (3.5)

respectively, where (Rrπ)(x) := Ex[
´∞

0
π(Xt)e

−rtdt] is the payoff from a per-

petual stream of π(Xt). The function (Rrπ)(·) is well-defined due to the abso-
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lute integrability condition (3.2). In sum, the key feature in games of infinite

investment opportunities is that the rewards from investment are recursively

determined by the strategy profile G. This feature leads to the emergence of a

mixed strategy equilibrium for the game of infinite investment opportunities

in Section 3.5, a result different from that of the game of a single investment

opportunity.

3.4 Characterization of MPE

The primary goal of this section is to characterize pure and mixed strategy

MPEs. A strategy profile (G∗i , G
∗
j) is said to be an equilibrium if Vi(x;G∗i , G

∗
j) ≥

Vi(x;Gi, G
∗
j) for any x ∈ I and Gi. We first obtain pure strategy MPE in

Section 3.4.1, and then we examine the mixed strategy MPE of deterministic

games (i.e. σ(·) = 0 in (3.1)) in Section 3.4.2. Mixed strategy equilibria of

stochastic games (σ(·) > 0) are discussed in Section 3.5 because they require

a slightly extended solution concept of MPE.

3.4.1 Pure Strategy Equilibria

In this subsection, we construct pure strategy MPEs in which one firm never

invests. We first obtain firm i’s best response when firm j never invests, i.e.,

Gj = H(∞). Let V ∗i (·) denote the optimal value function for firm i given

that firm j’s strategy is H(∞). Then V ∗i (·) satisfies the following optimality

equation:

V ∗i (x) = sup
τi≥0

Ex
[ˆ τi

0

π(Xt)e
−rtdt+ [V ∗i (ζ)− ki]e−rτi

]
. (3.6)

The equation can be solved as an optimal stopping problem, and hence, we

introduce a function φ : I → R that denotes a decreasing fundamental solu-

tion to the differential equation Aφ(x) = 0 where A := 1
2
σ2(x)∂xx+µ(x)∂x−r

is the r-excessive characteristic operator (Oksendal, 2003) for the process X.

In addition, we make the following assumption:
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Assumption 3.1 The function

βi(x) :=
li − (Rrπ)(x)

φ(x)− φ(ζ)
(3.7)

has a unique maximizer θi < ζ, where li is defined in (3.5). Furthermore,

β
′
i(x) > 0 for x < θi and β

′
i(x) < 0 for θi < x < ζ.

This assumption3 ensures that there exists a unique optimal solution to the

optimal stopping problem (3.6). By the well-established theory of optimal

stopping (Oksendal, 2003; Alvarez 2001, p.322), the value function for firm i

is given by βi(θi)φ(x) + (Rrπ)(x) for all x ≥ θi if firm i’s policy is to invest at

the stopping time τ ∗i := inf{t ≥ 0 : Xt ≤ θi} with threshold θi. Note that βi(θi)

is the coefficient of φ(·) in firm i’s value function associated with the policy of

investing at the threshold θi. Therefore, Assumption 3.1 ensures the unique

optimal threshold θi, which we formally state in the following proposition:

Proposition 3.1 The optimal stopping time τ ∗i that solves (3.6) is given by

τ ∗i := inf{t ≥ 0 : Xt ≤ θi} . (3.8)

Proposition 3.1 establishes the optimal stopping time to invest as the first

moment that the state Xt hits the lower threshold θi. Intuitively, a costly

investment is worth making only if the quality X falls sufficiently low.

We now establish a pure strategy MPE of the form (H(∞), H(τ ∗2 )). By

virtue of Proposition 3.1, it suffices to show that H(∞) is a best response to

H(τ ∗2 ). Towards this end, we first establish the following lemma:

Lemma 3.2 k1 > k2 implies that θ1 < θ2.

Intuitively, a firm with a lower investment cost has a higher incentive to invest.

Thus, one may anticipate that firm 2, with lower investment cost, is the natural

one to be the leader. The following proposition establishes that this is indeed

always an MPE.

Proposition 3.2 The strategy profile (H(∞), H(τ ∗2 )) is an MPE.

3Alvarez (2001, p.325) made an assumption similar to Assumption 3.1 to characterize
the optimal stopping times.
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On the other hand, if firm 2 can expect to be the follower in the not too distant

future, it is willing to wait beyond τ ∗2 until firm 1 invests at τ ∗1 ≥ τ ∗2 . The

following proposition establishes that (H(τ ∗1 ), H(∞)) is also a pure strategy

MPE as long as the asymmetry k1 − k2 is not too large.

Proposition 3.3 There exists κp(k2) > 0 such that (H(τ ∗1 ), H(∞)) is an

MPE if k1 − k2 < κp(k2).

Notice that in either of the above pure strategy equilibria, it is always

the case in every stage that only one of the firms invests and the other one

free-rides. In this sense, each firm’s role is coordinated in equilibrium as an

investor or a free-rider so that the investor firm invests as if there were no other

firms, thus eliminating costly delays in investment arising from incentives to

free-ride.

3.4.2 Mixed Strategy Equilibria: Deterministic Game

We next provide the complete characterization of mixed strategy SPEs of the

deterministic game. As shown by Kim et al. (2017), a mixed strategy MPE

does not exist in an asymmetric stochastic attrition game; this raises the ques-

tion of whether there exists a mixed strategy equilibrium that is not an MPE.

As a preliminary step to addressing this question, we consider SPE yet limit

our attention to the deterministic game in this subsection. In fact, because

the state variable X of the deterministic game strictly decreases in time, the

state variable is equivalent to the calendar time itself within each stage. In

this special case, therefore, the concept of SPEs is completely equivalent to that

of MPE s.

We first provide the complete form of the mixed strategy SPEs in the

deterministic game; we later establish that this is indeed the only form of

mixed strategy SPEs in Proposition 3.5. In a mixed strategy SPE, each stage

begins with the initial value X0 = ζ in the peace phase (phase 1) during which

none of the firms invest until X hits a threshold θ ∈ {θ1, θ2}. Once X hits

θ, the war phase (phase 2) begins, during which each firm invests with non-

zero probability. In particular, one of the firms (firm i) strategically assigns a

non-zero probability (qi) that it will invest as soon as X hits θ = θi at time

τ ∗i = inf{t ≥ 0 : Xt ∈ (−∞, θ)}. If no firm invests at τθ, then for all t > τθ,
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firm i invests with an arrival rate

λi(Xt) =
r(Vj(ζ;G)− kj)− π(Xs)

kj
. (3.9)

Here, by the conventional definition of an arrival rate, the probability that

firm i invests within an infinitesimal time dt is λdt + o(dt). Therefore, based

on the definition of the support in (3.3), supp(G1) = supp(G2) = (−∞, θ) in

phase 2.

The form of λi(·) can be intuitively explained by a heuristic argument.

If both firms employ a mixed strategy in an equilibrium, each firm must be

indifferent between immediate investment and investment in time dt. This

indifference condition can be satisfied if the opponent firm invests with the

right level of the arrival rate. To see this, note that the indifference condition

at time t for firm j can be written as

lGj = π(Xt)dt+ fGj λi(Xt)dt+ [1− λi(Xt)dt]e
−rdtlGj + o(dt) . (3.10)

Here the left-hand-side is the reward lGj = Vj(ζ;G) − kj from immediate in-

vestment. The right-hand-side is the reward from investing in an infinitesimal

time dt, which consists of the profit flow π(Xt)dt, the reward fGj = Vj(ζ;G)

from firm i’s investment with probability λi(Xt)dt, and the discounted reward

e−rdtlGj from investment in time dt with probability 1 − λi(Xt)dt. Then it is

straightforward to show that (3.10) leads to (3.9).

From the description of the strategy profile above, we construct the corre-

sponding CDFs as follows:

Gx
i (t) = 1{Xx

t ≤θi}(t)

{
1− (1− qi) exp

[
−
ˆ t

τ∗i

λi(X
x
s )ds

]}
, (3.11)

Gx
j (t) = 1{Xx

t ≤θi}(t)

{
1− exp

[
−
ˆ t

τ∗i

λj(X
x
s )ds

]}
, (3.12)

where qi ∈ (0, 1). Here, Vi(ζ;G) = (Rrπ)(ζ) + βi(θi)φ(ζ) and Vj(ζ;G) =

(Rrπ)(ζ)+βj(θi; qi)φ(ζ) where βi(·) is defined by (3.7), and βj(x; q) := [Vj(ζ;G)−
(1− q)kj − (Rrπ)(x)]/φ(x).

The following proposition establishes the sufficient conditions under which

these CDFs constitute a mixed strategy SPE.
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Proposition 3.4 Suppose that G = (G1, G2) is a mixed strategy profile given

by (3.11) and (3.12).

(a) There exists κ(k2) > 0 such that if k1− k2 < κ(k2), then G = (G1, G2) is

an equilibrium with supp(Gi) = (−∞, θ2), i ∈ {1, 2} for sufficiently high

values of q2.

(b) There exists κp(k2) > 0 such that if k1 − k2 < κp(k2), then G = (G1, G2)

is an equilibrium with supp(Gi) = (−∞, θ1), i ∈ {1, 2} for sufficiently

high values of q1.

Proposition 3.4 asserts that the deterministic game can admit a continuum of

mixed strategy SPEs, in which each stage is decomposed precisely into two

distinct phases with the common support between the two firms. Indeed,

we can prove that there is no other form of SPEs in the deterministic game,

thus establishing that the equilibria depicted in (3.11) and (3.12) are the only

possible forms of mixed strategy SPEs in this case.

Proposition 3.5 Any SPE of the deterministic game belongs to the class of

equilibria given in (3.11) and (3.12).

Motivated by this complete characterization of mixed strategy SPEs, we ex-

amine whether a stochastic game can also admit a mixed strategy SPE having

this characteristics in the next section.

3.5 Mixed Strategy SPE: Stochastic Game

In this section, we investigate mixed strategy SPEs of stochastic games. In

Section 3.5.1, we first introduce a concept of two-phase mixed strategy SPE,

which is slightly extended beyond MPE. We then construct a mixed strategy

equilibrium, which is unique within this class of SPEs. In fact, this class of

SPEs are the stochastic analog of mixed strategy SPEs obtained in Section

3.4.2. In Section 3.5.2, we discuss the stability of pure strategy equilibria.

Particularly, we demonstrate that pure strategy MPEs are not stable in a

repeated investment model, thus yielding that a mixed strategy equilibrium is

the most likely outcome of the game in the long run.
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3.5.1 Two-phase Mixed Strategy SPE

We begin this section by introducing the notion of two-phase mixed strat-

egy SPEs. To this end, it is instructive to recall the salient characteristics

of mixed strategy SPEs of the deterministic game given in Section 3.4.2. In

mixed strategy SPEs of the deterministic game, there is the common support

(−∞, θ) within which the CDFs evolve continuously at an arrival rate λi(·) de-

pendent on the state variable X. Moreover, at the hitting time of the common

support, one of the firms immediately invests with a non-zero probability q.

This is also a typical form of a mixed strategy equilibrium in a continuous-time

deterministic game (Hendricks et al., 1988).

We can generalize this form of SPEs to stochastic games. As in the deter-

ministic game, a mixed strategy equilibrium of the stochastic game can be also

parameterized by a probability q ∈ (0, 1) with which one of the firms invests at

the hitting time τΓ of the common support Γ = (−∞, θ) for some threshold θ;

for time t > τΓ, the CDFs are continuous in time until the end of the current

stage. Thus, each stage of the game comprises of two phases: phase 1, the

period before the hitting time τΓ of Γ, and phase 2, the period after τΓ.

In such a mixed strategy equilibrium of stochastic games, however, we show

below that the firms’ payoffs depend not only on the state variable but also on

the phase of the game, so it is not an MPE. Hence, it is imperative to extend

the space of mixed strategy equilibria to the set of equilibria represented by

G = (Gi, Gj) that satisfy the following three conditions: (1) G is subgame

perfect. (2) Gi and Gj share the same support Γ in phase 2. (3) One of the

firms invests at time τΓ with a probability q ∈ (0, 1); the CDFs in the second

phase are continuous in time. We call this set of equilibria two-phase mixed

strategy SPE and denote it by E .

These three conditions constitute an argument for the claim that two-phase

mixed strategy SPE is a simple yet natural extension of MPE: Condition (1)

is a usual refinement of an equilibrium in dynamic games. Condition (2),

which stipulates a common support Γ of mixed strategies, is also an easily

justifiable condition. This is because mixed strategies should be employed

by both firms contemporaneously in an equilibrium. Intuitively, in a mixed

strategy equilibrium, each firm randomizes a set of investment timings with a

probability distribution chosen in such a way that the opponent is indifferent
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among its own set of investment timings, thus incentivized to randomly mix

the set of timings. Condition (3) is equivalent to the following statement: (3)’

One of the firms invests at time τΓ with a probability q ∈ (0, 1); the subsequent

strategy profile in phase 2 is MPE. The equivalence between conditions (3)

and (3)’ holds because all SPEs with continuous CDFs are MPE4. Moreover,

because phase 1 is terminated at a hitting time τΓ of X, each firm’s strategy

is Markov in phase 1 as well. It thus follows that both firms’ strategies are

Markov in each phase5.

Now, we provide the form of the two-phase mixed strategy SPE denoted

by G∗ and establish later that it is indeed a unique equilibrium of the class E
in Theorem 3.1. The strategy profile G∗ is characterized by a common support

Γ = (−∞, θ2) where θ2 is defined in Assumption 3.1. In the first phase, both

firms simply wait until τΓ = inf{t ≥ 0 : Xt ∈ Γ} without investing. At time

τΓ, firm 2 invests in the shared supplier with probability q∗2 given in (3.17).

Hence, firm 2’s CDF has a discontinuity at time τΓ while firm 1’s CDF does

not. If firm 2 does invest at time τΓ, then the current stage of the game ends,

and the game moves forward to the next stage. On the other hand, if firm 2

does not invest at time τΓ, which happens with probability 1 − q∗2, then the

second phase commences at τΓ, and both firms’ CDFs are continuous in time.

More specifically, at each point in time t, firm i takes a strategy to invest

with probability 1{Xt∈Γ}
rlG
∗
j −π(Xt)

kj
dt for the next time time interval (t, t+ dt).

Because the probability of investment depends only on X under this strategy,

the second phase can be characterized as an MPE until the current stage ends.

The form of the arrival rate 1{Xt∈Γ}
rlG
∗
j −π(Xt)

kj
can be intuitively derived from

the same argument as that for the arrival rate (3.9) in the deterministic game.

There are two notable characteristics of this equilibrium: (i) The threshold

of the common support is given by θ2, and (ii) only firm 2 has a non-zero

probability q∗2 of investment at the time of entry into Γ. Because firm 2 has

a stronger incentive to invest, it is understandable that it has some non-zero

probability q of investment at time τΓ. Generally, firm 2’s investment proba-

bility q increases the likelihood that firm 1 will be the follower in subsequent

4This can be easily established by the arguments used in Kim et al. (2017).
5It can be proved that the mixed strategy equilibrium in Theorem 3.1 is unique within

a class of SPE in which the first phase ends at some hitting time and the firms’ strategies
are Markov within each of the two phases. However, we do not provide the proof here as it
is beyond the scope of this paper.
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stages, thus boosting firm 1’s reward to be the leader in the current stage.

For sufficiently high value of q, therefore, firm 1’s reward to be the leader

coincides with that of firm 2. In fact, q = q∗2 is exactly the value that aligns

the two firms’ rewards from investment, thereby rendering a common support

Γ = (−∞, θ2).

Formally, the mixed strategy profile G∗ can be described as below. Because

each stage of the game consists of two phases, we let V I
i (·;G∗) and V II

i (·;G∗)
denote the payoff functions in phases 1 and 2 respectively. Similarly, we let

GI
i and GII

i denote firm i’s CDFs in phases 1 and 2 respectively. Then we can

first express the CDF of firm 2 as follows:

GI,x
2 (t) = 1{t≥τΓ}(t)

[
q∗2 + (1− q∗2)GII,x

2 (t− τΓ)
]

for x ≥ θ2 , (3.13)

GII,x
2 (t) = 1− exp

[
−
ˆ t

0

1{Xx
s ∈Γ}(s)[rl

G∗
1 − π(Xx

s )]

k1

ds

]
. (3.14)

Here lG
∗

1 = V I
1 (ζ;G∗) − k1 is firm 1’s expected reward from investment and

GI,x
2 (t) = GII,x

2 (t) for x < θ2 because x < θ2 means that the game is in phase

2. Note that firm 2’s CDF is discontinuous at t = τΓ between the two phases.

In contrast, the CDF of firm 1 is always continuous in time, and thus, it can

be written without a phase index as follows:

Gx
1(t) = 1− exp

[
−
ˆ t

0

1{Xx
s ∈Γ}(s)[rl

G∗
2 − π(Xx

s )]

k2

ds

]
, (3.15)

where lG
∗

2 = V I
2 (ζ;G∗)−k2. By the well-established theory of optimal stopping

(Oksendal, 2003; Alvarez 2001, p.322), the corresponding payoff functions are

given as

V I,II
2 (x;G∗) =

{
(Rrπ)(x) + β2(θ2)φ(x) for x > θ2

lG
∗

2 otherwise .

V I
1 (x;G∗) = (Rrπ)(x) + βI

1(θ2; q∗2)φ(x) ,

V II
1 (x;G∗) =

{
(Rrπ)(x) + β1(θ2)φ(x) for x > θ2

lG
∗

1 otherwise .

where βi(θ2) is defined by (3.7), and βI
1(x; q) := [V I

1 (ζ;G∗) − (1 − q)k1 −
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(Rrπ)(x)]/φ(x). Note that firm 1’s payoff depends on the phase. In phase

1, if firm 1 anticipates that firm 2 will invest at time τΓ with probability q∗2,

then firm 1’s payoff depends on q∗2, which appears in the expression for the

coefficient βI
1(θ2; q∗2).

We now establish the necessary and sufficient conditions for this equilib-

rium:

Theorem 3.1 The strategy profile G∗ is an equilibrium which exists if and

only if

k1 − k2 < κ(k2) :=
k2φ(ζ)

φ(θ2)− φ(ζ)
, (3.16)

and

q∗2 =
(k1 − k2)φ(θ2)

k1φ(ζ)
. (3.17)

Furthermore, G∗ is the only equilibrium in E.

We remark that q∗2 is uniquely given by (3.17), and hence, G∗ is the unique

mixed strategy equilibrium that belongs to E . Our extensive numerical exper-

iments indicate that G∗ exists for a wide range of model parameter values. For

illustration, see Figure 3.1 where the profit flow is of the form π(x) = x with

µ(x) = µ < 0 and σ(x) = σ > 0. The two-phase mixed strategy SPE exists

only if the cost differential k1 − k2 of the two firms is below κ(k2). This is be-

cause if the cost asymmetry is sufficiently large, then the more efficient firm is

strongly compelled to take the leading role in investment so that the outcome

is easily coordinated, which leads to a pure strategy equilibrium. In contrast,

if the cost asymmetry is moderate, then the two firms are more or less similar

to each other so that neither firm is strongly compelled to take the investor’s

role, which leads to an uncoordinated outcome; either firm can be an investor

or a free-rider depending on the realization of the mixed strategy profile. This

failure of coordination can yield substantial inefficiency as demonstrated by

the field study in Section 3.6.

We next discuss the impact of the repetitive nature of the game for the

existence of a two-phase mixed strategy SPE. In stark contrast to Theorem

3.1, it turns out that the game of a single investment opportunity does not

admit a two-phase mixed strategy SPE, thus identifying the repetitive nature

as a key determinant of the equilibrium characterization of our game.
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Figure 3.1: Existence of mixed strategy SPE with respect to k1 − k2 and
σ(x) = σ. We set π(x) = x with r = 0.5 µ(x) = µ = −0.5, k2 = 0.15, and
ζ = 2.5.

To understand these contrasting results, we first recall that the CDFs of

a two-phase mixed strategy SPE must be continuous in time in phase 2. Un-

der such a strategy profile, it can be readily verified that each firm’s payoff

function in phase 2 is the same as the optimal payoff function given the other

firm’s strategy of never investing; this is because the payoff function under a

mixed strategy equilibrium is equal to the reward from immediate investment

when the state variable X is within the support of the equilibrium strategies.

Next, note that in the single-investment model, the reward from investment

(Rrπ)(ζ)− ki depends only on ki. Thus, k1 > k2 must always lead to θ1 < θ2,

i.e., the asymmetry in optimal thresholds of becoming the leader. Because

of this asymmetric rewards to be the leader, the incentives for investment

are asymmetric between the two firms so that the two firms cannot have a

common support for a mixed strategy. In contrast, in the infinite-investment

model, even if k1 > k2, the rewards to be the leader can be equalized, i.e.,

V I
1 (ζ;G) − k1 = V I

2 (ζ;G) − k2 because firm 2 can allocate sufficiently high

probability q∗2 of investment at τΓ in subsequent stages to increase firm 1’s

payoff V I
1 (ζ;G). Thus, a common support of a mixed strategy is possible for
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an infinite-investment model even if k1 > k2.

Lastly, a question may arise as to whether there are n-phase SPEs with

n > 2. Let us consider an n-phase strategy of a firm that stipulates a non-

zero probability qm > 0 of investment at the m-th entry of X into Γ where

1 ≤ m ≤ n for some n > 2. Because X is a diffusion process, it crosses the

boundary of Γ many times within an infinitesimal amount of time (Morters

and Peres, 2010, Remark 8.2). It implies that the n entries into Γ will take

place almost at the same time. Hence, the total probability that the firm will

invest at τΓ is

qT = q1 + (1− q1)q2 + (1− q1)(1− q2)q3 + ...+ qn

n−1∏
m=1

(1− qm) .

Thus, any n-phase strategy effectively reduces to a two-phase strategy with

probability qT of investment at τΓ.

3.5.2 Instability of Pure Strategy Equilibria

Although we have found that a two–phase mixed strategy SPE uniquely ex-

ists in a game of infinite investment opportunities, the outcome of the game

appears to be ambiguous because pure strategy equilibria also exist as estab-

lished in Section 3.4.1. In this section, we address this issue and examine the

stability of equilibria that we have obtained. In particular, we argue that pure

strategy equilibria are unstable relative to the unique mixed strategy SPE G∗,
especially because our game is infinitely repeated.

To see this, recall first that in either of the pure strategy equilibria, one

of the firms is designated as the investor while the other is the free-rider.

This outcome is possible if there is only one investment opportunity. Because

our game is infinitely repeated, however, the firm designated as the investor

can view it as an extremely unfair outcome. Therefore, the designated firm i

might rather want to employ a mixed strategy Gi in G∗, especially if it brings

in a higher payoff. Once firm i begins employing a mixed strategy for a few

stages, then firm j will realize that the pure strategy profile is not being played

anymore, and it will also shift to a mixed strategy Gj.

In fact, we can verify that the designated investor of a pure strategy equi-

librium is not worse off by initiating the shift to the mixed strategy equilib-
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rium. Consider first H1 = (H(τ ∗1 ), H(∞)) in which firm 1 is the designated

investor. Regarding βi(·) in Assumption 3.1 as the objective function βi(x; k)

where x is a decision variable and k is a parameter, we can use Envelope

Theorem to βi(x; k) to prove that k1 > k2 implies β2(θ2) > β1(θ1). It thus

follows that V I
1 (ζ;G∗) = V I

2 (ζ;G∗) + (k1 − k2) > V I
2 (ζ;G∗) > V I

1 (ζ;H1) where

the last inequality follows from Lemma B.6. On the other hand, if firm 2 is

the designated investor in the pure strategy MPE H2 = (H(∞), H(τ ∗1 )), it is

straightforward to verify from Lemma B.6 that V I
2 (ζ;G∗) = V I

2 (ζ;H2), which

implies that firm 2 is indifferent between the two equilibria. However, even in

the MPE H2, if firm 2 forgoes investment at time τ2 = inf{t ≥ 0 : Xt < θ2} by

mistake, then firm 1 may misconstrue this as a signal that firm 2 has begun

to play a mixed strategy. Due to the possibility of such mistakes or errors

combined with the existence of the mixed strategy equilibrium G∗, the pure

strategy equilibrium is not stable in the long run. In sum, we argue that if a

mixed strategy equilibrium exists, then pure strategy equilibria are unstable

in the infinitely repeated game and the unique mixed strategy equilibrium is

the more likely outcome.

3.6 Field Study

In this section, we apply our model to a field study of a large automotive

manufacturer, which we call AMC, to demonstrate the efficiency loss from the

mixed strategy equilibrium relative to the first-best solution. The field data

contains longitudinal quality performance of suppliers shared by two distinct

business units: “the car business” (hereafter Car) and “the commercial vehicles

business” (hereafter Commercial). These two business units are managed by

separate unit leaders with distinct organizational hierarchies and distant man-

ufacturing factories. Moreover, these two business units do not compete with

each other in the end product markets. Car and Commercial procure many

components from the same suppliers, and assess the quality performance of

their suppliers using a variety of evaluation methods. In 2006, Car initiated

a supplier quality improvement program by assigning a team of engineers to

this program. The engineers in this team were responsible for working with

the suppliers of Car; however, 65 percent of Car suppliers use the same man-

ufacturing facilities to supply similar components to Commercial. For three
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years since 2006, approximately 2,000 quality improvement initiatives were

implemented at about 200 suppliers. During this period, only Car engineers

were involved in the program and Commercial did not take any efforts towards

improving its suppliers’ quality. The shared suppliers can be classified into 12

different categories based on the industry sector they belong to. In order to

impute our model parameters for each industry sector, we select a representa-

tive supplier on which we have collected the most accurate information based

on multiple personal on-site visits. Our quality data comprises the time series

data on these suppliers’ quality (defect rate) around this period.

One notable observation of this supplier development initiative is that the

supplier quality does not improve instantaneously, but instead it improves

gradually over time. To incorporate this feature into our model, we now assume

that each investment takes place over a certain time period during which the

supplier’s quality gradually albeit stochastically improves. As our numerical

study will show, this modification does not alter the main insights discussed

in Section 3.5 obtained from the simplified model in Section 3.3.

3.6.1 Model with Gradual Improvement

In this subsection, we first present the model with gradual quality improve-

ment. Because this model is a close variant of the one presented in Section

3.3, we only highlight the salient differences between the two models.

When no investment is being made, the quality X of the shared supplier

follows (3.1) with a negative drift µ(·) = µ < 0 and positive volatility σ(·) =

σ > 0. Unlike the model in Section 3.3, however, the investment in the shared

supplier by either firm takes time. During the period of investment by either

firm, the quality of the supplier increases on average. Hence, we model the

quality Y during the investment period as a stochastic process satisfying the

following stochastic differential equation:

dYt = µ̄dt+ σ̄dWt , (3.18)

where µ̄ = µ + ū > 0 indicates that (i) the quality is expected to improve

gradually over time, and (ii) the increment in average rate of quality change is

the unit-time effort level ū. The duration of investment ends when Yt reaches

49



the satisfactory level ζ, at which time the next stage of the game commences.

Therefore, each stage consists of a non-investment period which ends at the

time τI of investment and an investment period which is terminated when Yt

reaches ζ. Each firm’s strategy is characterized by the timing τI of investment.

Each investment by firm i entails an upfront cost ki > 0 and a running cost

c > 0 per unit-time effort level. For simplicity of the model, we assume that

contemporaneous investment by both firms does not happen. This assumption

is justified especially in case it is inefficient and suboptimal for at least one of

the firms whenever both firms invest contemporaneously.

Given a strategy profile G, the rewards to the leader and the follower now

depend on the value of the state variable XτI at which the improvement project

is initiated. More specifically, if the investment is initiated when XτI = y, then

the rewards lGi (y) and fGi (y) are given by

lGi (y) := fGi (y)− Ey
[ˆ τζ

0

cūe−rtdt

]
− ki

fGi (y) := Ey
[ˆ τζ

0

π(Yt)e
−rtdt+ e−rτζVi(ζ;G)

]
,

where τζ := inf{t ≥ 0 : Y y
t ≥ ζ} is the first hitting time of [ζ,∞). We can then

express firm i’s expected payoff Vi(x;G) under a strategy profile G = (Gi, Gj)

as

Ex
[¨ ∞

0

{ˆ s∧u

0

π(Xt)e
−rtdt

+ e−r(s∧u)[1{s<u}l
G
i (Xs) + 1{s>u}f

G
i (Xu) + 1{s=u}m

G
i (Xs)]

}
dGi(s)dGj(u)

]
.

Utilizing the standard theory of optimal stopping (Oksendal, 2003, Chap-

ter 10), we can obtain the optimal stopping time τ ∗i = inf{t ≥ 0 : Xx
t ≤ θi} to

V ∗i (x) = supτi≥0 Ex[
´ τi

0
π(Xt)e

−rtdt + l
(H(τi),H(∞))
i (Xτi)e

−rτi ] for an optimally

chosen threshold θi. Then it can be verified that all the results we have ob-

tained up to Section 3.5 remain true with the newly defined threshold θi and

the reward functions lGi (y) and fGi (y).

Next, we describe the methods that we use to impute the model parameters

from our field data.

Quality X, Y : The quality performance data Pt is given as parts per
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million (ppm) defects for each month t. Note that the higher the Pt, the

poorer is the quality. In order to make this data fit to our model, therefore,

we set Xt and Yt as −Pt so that Xt (or Yt) increases with the quality. Also,

from the time series data during the non-investment and investment periods,

we estimate the drifts µ, µ̄ and the volatilities σ, σ̄ of X and Y as the slope

of the trend line of this time series data and the standard deviation of the

monthly changes of the time series data, respectively.

Investment costs ki and c: The investment cost to the manufacturers

consists of the one-time upfront cost ki and the operating cost c per each month

for the duration of an improvement project. These costs are obtained from

internal data of AMC, and we find some variations of these costs across the

industry sectors of the target supplier. The investment costs arise due to a va-

riety of factors - some quality issues need investment in process improvements

(such as poka-yoke or new machines), while others may need changing the en-

gineering designs or may need improvement in quality assurance routines. To

accommodate the asymmetry in investment costs between the manufacturers,

we use the calculated cost to estimate the more efficient manufacturer’s invest-

ment cost (k2), and assume that the less efficient manufacturer’s investment

cost (k1) is 20% higher than k2.

Satisfactory level of quality ζ: The supplier development project aims

to improve the quality to a sufficiently high reset level ζ. According to the

data obtained from AMC, ζ is 10 ppm for most supplier sectors. In three

supplier sectors out of twelve, ζ is set as six sigma (i.e., 3.4 ppm).

Profit Rate π(·): It is not easy to estimate how a manufacturer’s profit

rate is affected by a particular supplier’s quality level because (1) there can

be various channels through which defects have an effect on the profit rate

and (2) some of defects (especially as getting closer to the market on the value

chain) happen so rarely that it is difficult to measure their impact on the profit

rate. Hence, we use the cost incurred from processing one defective product of

a supplier as the proxy for the profit rate as a function of the quality so that

we set π(x) = xd where d is the cost incurred from each instance of defective

unit in the inspection or product assembly stage (i.e., before the product is

sold in the market). Note that this is a conservative estimate for the cost

incurred from quality issues because it does not include the quality-related

costs that can be incurred in other stages of the value chain (for instance,

51



warranty expenses can be incurred to manufacturers after their products are

sold in the market). We find from the data obtained from AMC that these

costs d of defects substantially vary across the supplier industry sectors.

Discount Rate r: We use the weighted average cost of capital (WACC)

for the automotive industry in the country where our field data was collected.

Using the public financial data, we calculate WACC for this focal industry as

1.11% per month in US dollars (i.e., r = 0.011).

3.6.2 Comparison to First-Best Solution

Unless the two firms are able to collaborate on the joint investment, they are

likely to end up in a mixed strategy equilibrium because the pure strategy

equilibria are likely to be unstable due to the repetitive nature of our game

as argued in Section 3.5.2. Recall that in a mixed strategy equilibrium, both

firms wait for the other firm to invest until their own randomly chosen time.

The resulting delays in investment typically yield low system efficiency. Note

that the first-best solution can be achieved by a collaborative investment to

maximize the joint payoff and share the surplus, and such cooperative develop-

ment efforts towards the shared supplier are occasionally observed in practice

(Aune et al., 2013, p.101). Moreover, such a collaboration is especially feasible

in the context of our field study because the two firms are in fact two divi-

sions of a single firm. Hence, exploiting the uniqueness of the mixed strategy

equilibrium we have established, it is a legitimate empirical question to exam-

ine the loss of efficiency resulting from incentives to free-ride compared to the

first-best solution.

In the first-best solution, the two firms cooperate to maximize the joint

payoff. We let V ∗B(·) denote the optimal joint payoff from the collaborative

investment that satisfies

V ∗B(x) = sup
τ>0

Ex
[ˆ τ

0

2π(Xt)e
−rtdt+ lB(Xτ )e

−rτ
]

= Ex
[ˆ τ∗

0

2π(Xt)e
−rtdt+ lB(Xτ∗)e

−rτ∗
]
,

where

lB(y) := Ey
[ˆ τζ

0

[π(Yt)− cū]e−rtdt+ e−rτζV ∗B(ζ)

]
− k2,
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and τ ∗ is the optimal time of joint investment. It can be straightforwardly ver-

ified (Oksendal, 2003; Alvarez, 2001) that there exists some optimal threshold

θB such that τ ∗ is of the form τ ∗ = inf{t ≥ 0 : Xt ≤ θB}. Here we assume

that the efficiency of the joint investment is as high as that of the more effi-

cient firm, and thus, the cost of investment is k2, which is the lesser cost of

investment between the two firms.

In the numerical study below, we evaluate the efficiency gaps between the

first-best solution and the mixed strategy equilibrium obtained in Section 3.5.

Towards that end, we compute the absolute and relative gaps

eabs := V ∗B(ζ)− [V1(ζ;G∗) + V2(ζ;G∗)] and erel := eabs/[−V ∗B(ζ)]

between V ∗B(ζ) and V1(ζ;G∗)+V2(ζ;G∗), by which we can measure cost savings

from the collaborative investment. Note that the value functions V ∗B(·) and

Vi(·;G∗) are negative numbers because they only include costs. Table 3.1

summarizes the imputed parameter values as well as the efficiency results from

our numerical analysis for each supplier sector.

It is immediately clear from Table 3.1 that the imputed parameter values,

especially µ and d, greatly vary across the industry sector of the target sup-

pliers. For instance, the average rate of quality deterioration (|µ|) in Precision

Plastic Molding sector is nearly 30 times greater than that in Forgings sector.

Similarly, the average rate of quality improvements (µ̄) in Plastics industry

is nearly 20 times as high as that in Glass industry. Moreover, Glass sector

has the highest cost of defects (d), which is $374 per each instance of defect,

while it is only $12 in Plastics sector. There also exist some variations in the

upfront cost (k2) and the satisfactory quality level (ζ).

Interestingly, these differences in parameter values generate substantial

variations in the inefficiency of the mixed strategy equilibrium across the sup-

plier sector. For example, the relative efficiency gap (erel) for Glass sector is

estimated as less than 1% whereas the one for Rubber Tubes sector is nearly

25%. These figures indicate not only that the efficiency loss can be indeed

quite severe, but also that the characteristics of the target supplier industry

can make significant differences in these efficiency losses. In particular, all

the three supplier sectors related to Precision (Machining, Plastic Molding,

and Rubber Molding) exhibit high efficiency loss, which may suggest that the
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inherent characteristics of the supplier sectors can be a useful indicator for

the efficiency loss. Moreover, although the absolute efficiency gap (eabs) is

marginal in some supplier sectors, the total amount of monetary values which

can be saved from collaboration can be still substantial, ranging in millions of

dollars, if we add other quality-related costs such as warranty claim expenses6.

Towards a deeper understanding of where this loss of efficiency comes from,

we further examine the relative efficiency gap (eprel) between the first-best

solution and the pure strategy equilibrium (H(∞), H(τ ∗2 )). Note that the

system efficiency of the pure strategy equilibrium (H(∞), H(τ ∗2 )) is higher

than that of the mixed strategy equilibrium because the firms coordinate the

investment. (But it is still lower than that of the first-best solution because

each of them is self-interested.) We find that the efficiency loss in a pure

strategy equilibrium is at most 1% across all the supplier sectors, which is

arguably negligible. This finding has two notable implications. First, the lack

of coordination in the mixed strategy equilibrium is the main driving force

behind its significant efficiency loss. Hence, if no mixed strategy equilibrium

exists, then the firms have no choice but to coordinate the investment, in

which case substantial efficiency loss does not take place. Second, because the

mixed strategy equilibrium is induced by the repetitive nature of our game, the

repetition of investment opportunities is the key factor inducing inefficiency,

which underscores the needs to consider the repetitive nature of investment

opportunities.

In addition, we investigate the impact of imputed model parameter values

on the efficiency loss. Generally speaking, the absolute efficiency gap (eabs)

increases in the cost d per defect, which is quite intuitive. Comparing the

efficiency gaps of Precision Plastic Molding and Sheet-Metal sectors, which

have almost the same values of d, we observe that the efficiency losses (both

eabs and erel) increase in |µ|. This can be explained by the fact that a greater

value of |µ| translates into a higher rate of the quality deterioration, which

implies a higher inefficiency of the mixed strategy equilibrium. Examining

Plastics and Precision Rubber Molding sectors side by side, however, they

exhibit almost the same efficiency gaps although their quality deterioration

rates are quite different. This indicates that there exist several moving parts

6Each year, U.S. auto makers spend a half billion dollars of warranty costs on average
(WarrantyWeek, 2016).
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driving these results, and thus, our analysis can serve as a starting point for

further explorations on the determinants of the cost savings from collaboration.

Last but not least, we examine the impact of asymmetry k1/k2 on the

efficiency loss from a mixed strategy equilibrium. In Figure 3.2, note that a

mixed strategy equilibrium exists even when k1 is 10 times bigger than k2. This

confirms our finding in Section 3.5 that a mixed strategy equilibrium exists in a

wide range of parameter values. Furthermore, as we increase k1 while holding

k2 constant, the efficiency loss from a mixed strategy equilibrium decreases.

Intuitively, as the asymmetry increases, the coordination between the firms

becomes easier, and the efficiency loss from the mixed strategy equilibrium

becomes smaller. Formally speaking, greater asymmetry forces firm 2 to place

a higher value of q∗2 in equilibrium, which results in a higher equilibrium payoff

to firm 1 because of a higher chance q∗2 of becoming the free-rider.

Figure 3.2: Impact of asymmetry on efficiency loss erel and firm 2’s jump q∗2
in Precision Machining Sector
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3.7 Extensions and Discussions

3.7.1 Game of N > 2 Firms

In this subsection, we extend our model to the case when there are more than

two manufacturing firms who source from a shared supplier and consider mak-

ing an investment in the supplier. Although the key results in this subsection

can be extended to the model with any N > 2, we will describe our model in

the case of N = 3 below for a simpler exposition and discuss how this can be

generalized to the game of any N > 2 firms wherever relevant.

Suppose now that three manufacturing firms, labeled by an index i = 1, 2, 3

procure components from a shared supplier. Other features of the model –

the quality of the shared supplier as a diffusion process (3.1), the profit rate

satisfying (3.2), and firm i spending the lump-sum cost ki > 0 for an investment

in the supplier – remain the same.

Note that, for each stage, firm i becomes a leader if it invests earlier than

any other firms −i whereas it becomes a follower otherwise7. Therefore, what

matters from the point of view of firm i is just the minimum of investment

timings of all the other firms −i. It is thus useful to consider a CDF G−i(t),

which is the probability that at least one firm j 6= i other than firm i will

invest by time t. In fact, G−i can be written as

1−G−i(t) =
∏
j 6=i

(1−Gj(t)) . (3.19)

We can then write each firm i’s payoff given a strategy profile G = (G1, G2, G3)

as the following recursive equation:

Vi(x;G) = Ex
[¨ ∞

0

{ˆ s∧t

0

π(Xt)e
−rtdt+ e−r(s∧t)[1{s<t}l

G
i +

1{s>t}f
G
i + 1{s=t}m

G
i ]
}
dGi(s)dG−i(t)

]
, (3.20)

where lGi = Vi(ζ;G) − ki and fGi = Vi(ζ;G) are the rewards to the leader and

the follower respectively. If G specifies that any of the three firms invest at

7Following an usual convention in game theory, we use the notation −i to denote any
other players than player i.
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the same time, the reward to each (investing) firm is either mGi = (lGi + fGi )/2

or mGi = (lGi + fGi )/3 depending on the number of simultaneous investors.

Recall from Section 3.5 that the CDF G of the equilibrium strategy profile

is of the form Gx(t) = 1− exp[−
´ t

0
λ(Xx

s )ds] where λ(Xs)ds is the investment

probability for the next time interval (s, s + ds). Now, if the CDFs of each

firm j 6= i is of this form with the corresponding investment rate λj(·), then

we can obtain from (3.19) that

1−G−i(t) =
∏
j 6=i

(1−Gj(t))

=
∏
j 6=i

exp

[
−
ˆ t

0

λj(X
x
s )ds

]
= exp

[
−
ˆ t

0

∑
j 6=i

λj(X
x
s )ds

]
.

It thus follows that if each firm j 6= i invests with the rate of λj(·), then it

is as if all the other firms −i jointly invests with the rate of
∑

j 6=i λj(·). This

argument will be frequently used throughout this subsection when we establish

the equilibrium strategy profiles.

We now examine the characterization of mixed strategy equilibria by using

the concept of two-phase mixed strategy SPE, which was introduced in Section

3.5, with natural modification of its definition to accommodate the feasible

equilibrium structures in the game of N > 2 firms. More specifically, we

define the set of two-phase mixed strategy SPEs is the set E of equilibrium

strategy profile G = (G1, G2, G3) satisfying the three conditions: (1) G is

subgame perfect. (2) At least two Gi’s share the same support in phase 2. (3)

One of the firms invests at time τΓ with a probability q ∈ (0, 1); the CDFs in

phase 2 are continuous in time.

Case 1: Symmetric Firms (k1 = k2 = k3)

As an initial step to examining a game of N > 2 firms, we first consider the

case when all the three firms are equally cost-efficient, i.e., k := k1 = k2 = k3.

In this symmetric case, we can prove the unique existence of a two-phase mixed

strategy SPE G0
N = (G1, G2, G3). Towards an intuitive illustration of this

analytical result as in Section 3.5.1, we first provide the form of this equilibrium

strategy profile G0
N , and formally establish later that it is an equilibrium in

Proposition 3.6. The strategy profile G0
N is characterized by a common support

ΓN = (−∞, θi) where θi is given in Assumption 3.1, which is exactly the same
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among the three firms (i.e. θ := θ1 = θ2 = θ3) because of the symmetry in

their costs. In addition, there are two phases under the strategy profile G0
N .

In phase 1, all the firms wait until τΓN = inf{t ≥ 0 : Xt ∈ ΓN}. In phase 2,

which begins at the hitting time τΓN , each firm i invests with some probability

λi(Xt)dt for the time interval (t, t + dt). More precisely, the investment rate

λi(·) for each firm i can be expressed as

λ1(x) = 1{x∈ΓN}
1

2
[ν2(x) + ν3(x)− ν1(x)] (3.21)

λ2(x) = 1{x∈ΓN}
1

2
[ν1(x) + ν3(x)− ν2(x)] (3.22)

λ3(x) = 1{x∈ΓN}
1

2
[ν1(x) + ν2(x)− ν3(x)] (3.23)

where νi(x) = [rl
G0
N
i − π(x)]/ki for i = 1, 2, 3. Note that

∑
j 6=i λj(x) = νi(x)

whenever x ∈ ΓN so as to make firm i indifferent between immediate invest-

ment and investment in time dt whenever Xt ∈ ΓN . Indeed, because the strat-

egy profile G0
N stipulates lG

0
N := l

G0
N

1 = l
G0
N

2 = l
G0
N

3 , the symmetric cost-efficiency

implies that νi(·)’s are all the same, and thus, so are λi(·)’s for i = 1, 2, 3.

In other words, each firm i’s strategy Gi of the equilibrium strategy profile

G0
N = (G1, G2, G3) is identical to each other and can be expressed as follows:

Gx
i (t) = 1− exp

[
−
ˆ t

0

λi(X
x
s )ds

]
,

where λi(x) = 1{x∈ΓN}[rl
G0
N − π(x)]/2k for i = 1, 2, 3. Moreover, the corre-

sponding payoff functions are written as

Vi(x;G0
N) =

{
(Rrπ)(x) + β(θ)φ(x) for x > θ

lG
0
N otherwise

,

where β(·) is defined by (3.7), which is identical among the three firms.

We now show that the strategy profile G0
N is always a unique equilibrium

in E when the firms are equally cost-efficient.

Proposition 3.6 Suppose that k1 = k2 = k3. Then the strategy profile G0
N is

a unique equilibrium in E.

Intuitively, a game of symmetric players should admit a symmetric equilibrium.
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What may not be straightforward is, however, its uniqueness in the equilibrium

class E . In fact, because the strategy profile G0
N is an MPE and the equilibrium

class E includes all the MPE, G0
N is indeed a unique mixed strategy MPE of

this game. This result is driven by the fact that if any of the firms invests with

some probability q > 0 at the hitting time of ΓN , then the other firms would

be strictly better off from investing outside ΓN , which thus leads to failing to

satisfy the indifference condition – one of the necessary condition for a mixed

strategy equilibrium.

It is straightforward to see that the results in the game of three manu-

facturing firms above can be carrying over into the game of any number of

firms. In general, if there are N firms who are equally cost-efficient at invest-

ing in the shared supplier, then the strategy profile G0
N described above, with

λi(x) = 1{x∈ΓN}[rl
G0
N−π(x)]/(N−1)k for any firm i, constitutes a unique equi-

librium in E . Note that we have
∑

j 6=i λj(x) = νi(x) by this choice of λ−i(·)’s
so that firm i is indifferent between immediate investment and investment in

time dt whenever Xt ∈ ΓN .

Case 2: A Single Firm with the Lowest Cost (k1 = k2 > k3)

Next, we depart from a game of symmetric players and investigate more

realistic cases when some of the firms are more cost-efficient than the others.

We begin with the case of k1 = k2 > k3, i.e., when there is a single cost leader

– firm 3 in this case – and the other firms are equally cost-efficient. Let us first

define k̄ := k1 = k2 for notational simplicity. As will be shown below, we can

obtain a unique two-phase mixed strategy SPE G∗N = (G1, G2, G3), which has

a similar structure to the strategy profile G∗ obtained in Theorem 3.1. To be

more specific, the strategy profile G∗N is characterized by a common support

ΓN = (−∞, θ3) where θ3 is the optimal threshold for the most cost-efficient firm

(firm 3), given in Assumption 3.1. Moreover, in the first phase of each stage

of the game, all the three firms just wait until τΓN = inf{t ≥ 0 : Xt ∈ ΓN}, at

which time firm 3 invests with probability q∗3 = (k̄−k3)/k̄ ·φ(θ3)/φ(ζ). In case

firm 3 does not invest at time τΓN , which occurs with probability 1 − q∗3, the

second phase begins immediately and all the firms’ CDFs are continuous in

time. In particular, at each point in time t, each firm i invests with probability

λi(Xt)dt for the time interval (t, t+dt) where λi(·)’s are given in (3.21) - (3.23)

and νi(x) = [rl
G∗N
i − π(x)]/ki for i = 1, 2, 3.

Note that, similarly to the case of symmetric firms, G∗N stipulates that
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l
G∗N
i ’s are the same for all i; however, because only firm 1 and firm 2 have the

same investment cost (higher than firm 3), we have ν1(x) = ν2(x) < ν3(x) so

that λ1(x) = λ2(x) = 1{x∈ΓN}ν3(x)/2 and λ3(x) = 1{x∈ΓN}[2ν1(x) − ν3(x)]/2.

Therefore, each firm i’s strategy Gi of the equilibrium strategy profile G∗N =

(G1, G2, G3) can be written as follows:

G
(I,II),x
i (t) = 1− exp

[
−
ˆ t

0

1{Xx
s ∈ΓN}

ν3(Xx
s )

2
ds

]
, i = 1, 2

GI,x
3 (t) =

{
1{t≥τΓN }(t)

[
q∗3 + (1− q∗3)GII,x

2 (t− τΓN )
]

for x ≥ θ3 ,

GII,x
3 (t) otherwise .

GII,x
3 (t) = 1− exp

[
−
ˆ t

0

1{Xx
s ∈ΓN}

[2ν1(Xx
s )− ν3(Xx

s )]

2
ds

]
,

which are of the same form as (3.13) - (3.15) with the adjusted investment rates

λi(·) for each firm i. Similarly, the corresponding payoff functions Vi(·;G∗N) are

of the same form as the ones for the game of two firms in Section 3.5.1.

We now establish the conditions under which the strategy profile G∗N is an

equilibrium in E .

Proposition 3.7 Suppose that k̄ = k1 = k2 > k3. Then the strategy profile

G∗N is an equilibrium, which exists if and only if

k̄ − k3 < min{κ(k3) :=
k3φ(ζ)

φ(θ3)− φ(ζ)
, k3} ,

where q∗3 = (k̄ − k3)/k̄ · φ(θ3)/φ(ζ). Also, G∗N is the only equilibrium in E.

Similarly as in the game of two asymmetric firms discussed in Section 3.5.1,

the two-phase mixed strategy SPE exists only if the cost differential k̄ − k3

between the three firms is moderate, i.e., below a certain threshold κ(k3); the

higher the cost asymmetry is, the easier the firms’ roles can be coordinated as

explained in Theorem 3.1.

In the game of three firms, however, there is an additional condition for

the existence of the two-phase mixed strategy SPE, which is k̄ < 2k3. This

constraint comes from the fact that firm 3’s investment rate λ3(·) must be

non-negative because G3 is not a non-decreasing process (thus not a CDF)

otherwise. In addition, our numerical experiments suggest that this additional
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condition (k̄ < 2k3) can sometimes further limit the existence of a mixed

strategy equilibrium. See Figure 3.3. In other words, there are some parameter

regimes where we have κ(k3) > k3 so that a two-phase mixed strategy SPE,

which could have existed if there were only one firm other than firm 3, does

not exist because there are two equally cost-efficient firms other than the cost

leader (firm 3).

Figure 3.3: Existence of mixed strategy SPE with respect to k̄−k3 and σ(x) =

σ when there are three firms with k̄ = k1 = k2 > k3. We set π(x) = x with

r = 0.9 µ(x) = µ = −0.5, k2 = 0.3, and ζ = 2.5.

Indeed, it is not difficult to obtain this additional condition in the game

of any N > 2 firms. Suppose that there are N > 2 manufacturing firms who

consider an investment in their shared supplier and that firm N is the cost

leader, i.e., k̄ > kN where k̄ is the investment cost of all the other firms (firm

i, i = 1, ..., N − 1). In order for a mixed strategy profile of the form G∗N to be

an equilibrium, the indifference condition for each firm i within the common

support ΓN requires that the investment rate λi(·) of firm i must be given as

λi(x) = 1{x∈ΓN}
1

N − 1

[∑
j 6=i

νj(x)− (N − 2)νi(x)

]
,
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where νi(x) = [rl
G∗N
i − π(x)]/ki for 1 ≤ i ≤ N . Then because l

G∗N
i ’s and ki’s are

all the same for 1 ≤ i ≤ N − 1, we can obtain

λi(x) = 1{x∈ΓN}
1

N − 1
νN(x) , i = 1, ..., N − 1

λN(x) = 1{x∈ΓN}
1

N − 1

[
(N − 1)ν1(x)− (N − 2)νN(x)

]
.

Using the fact that l
G∗N
i ’s are all the same for all i, therefore, the requirement

λN(·) ≥ 0 implies that the additional condition for the existence of mixed

strategy equilibrium in the game of N > 2 firms is given by k̄ < (N −1)/(N −
2) · kN , or equivalently,

k̄ − kN <
1

N − 2
kN .

Because the right hand side of this inequality condition decreases in N , it

follows that, ceteris paribus, the two-phase mixed strategy SPE of the form

G∗N is less likely to exist as the number of equally cost-inferior firms (firm i,

i = 1, ..., N − 1) increases.

Case 3: Multiple Firms with the Lowest Cost (k1 > k2 = k3)

Now, we examine the case of k1 > k2 = k3, i.e., when there are multiple

cost leaders – firm 2 and firm 3 in this case. We define k := k2 = k3 for

notational simplicity. Note that, so far in the two-phase mixed strategy SPE

of the games of asymmetric firms (in Section 3.5.1 or Case 2 above), the most

cost-efficient firm invests with a non-zero probability q > 0 at the boundary

of the common support of all the firms’ CDFs. In this case when there are

more than two firms who are the most cost-efficient, however, the strategy

profile of this form cannot constitute an equilibrium. This is because any

two non-zero probability masses cannot be put at the same point in the state

space in equilibrium. In addition, any mixed strategy profile, in which only

one of the cost leaders invests with a non-zero probability mass, cannot be an

equilibrium either because this would make the other cost leader be better off

from investing before the state X hits the supposedly common support.

Hence, the only possible form of a two-phase mixed strategy SPE must be

atom-free, i.e., all the firms’ CDFs are continuous in time everywhere. The

characterization of mixed strategy equilibrium in this case, therefore, boils
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down to determining each firm’s investment rate λi(·). Thus, we will now

consider a candidate G∗N = (G1, G2, G3) for the equilibrium strategy profile

and discuss the conditions under which the given strategy profile can be indeed

an equilibrium.

First of all, it is straightforward to see that G2 and G3 must share the

support ΓN = (−∞, θ) where θ = θ2 = θ3 is the common threshold given

in Assumption 3.1; all the firms’ CDFs are continuous in time and these two

firms (firm 2 and firm 3) have the identical investment cost. The support of

firm 1’s CDF G1, however, should be strictly included in ΓN ; if the support

of G1 is ΓN and it is a part of an equilibrium, then it must be optimal for

firm 1 to invest whenever Xt ≤ θ as a best response to G−1. But this leads

to a contradiction because the support of G−1 is ΓN = (−∞, θ) and firm 1’s

single-decision-maker optimal threshold is θ1 < θ. Hence, the support of G1

should be of the form ΓN := (−∞, η1) where θ1 < η1 < θ3 so that only firm

2 and firm 3 invest at the continuous rates for Xt ∈ ΓN := (η1, θ) while all

the three firms randomize an immediate investment and investment in time dt

for Xt ∈ ΓN . Hence, τ1 := inf{t ≥ 0 : Xt ≤ η1} is a solution to the optimal

stopping problem supτ≥0 Ex[
´ τ

0
π(Xt)e

−rtdt + l
G∗N
1 e−rτ ]. In other words, the

investment rate λi(·) for each firm i is expressed as

λ1(x) = 1{x∈ΓN}
1

2
[2ν3(x)− ν1(x)]

λ2(x) = 1{x∈ΓN}
1

2
ν1(x) + 1{x∈ΓN}ν3(x)

λ3(x) = 1{x∈ΓN}
1

2
ν1(x) + 1{x∈ΓN}ν2(x)

where νi(x) = [rl
G∗N
i − π(x)]/ki for i = 1, 2, 3. Here we use the fact that l

G∗N
2 =

l
G∗N
3 and k2 = k3. Hence, each firm i’s strategy Gi of the equilibrium strategy

profile G∗N = (G1, G2, G3) can be expressed as Gx
i (t) = 1− exp[−

´ t
0
λi(X

x
s )ds].

Note that because l
G∗N
1 < l

G∗N
2 = l

G∗N
3 and k1 > k2 = k3, we always have ν3(x) >

ν1(x) so that the existence of mixed strategy equilibrium is not bounded by

the non-negativity constraint of λ1(·) as in the case of k1 = k2 > k3. We now

state the conditions under which the strategy profile G∗N is a two-phase mixed

strategy SPE.

Proposition 3.8 Suppose that k1 > k2 = k3 and τ1 := inf{t ≥ 0 : Xt ≤ η1}
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with θ1 < η1 < θ is a solution to the problem supτ≥0 Ex[
´ τ

0
π(Xt)e

−rtdt +

l
G∗N
1 e−rτ ]. Then the strategy profile G∗N is a two-phase mixed strategy SPE.

The explicit form of the threshold η1 cannot be obtained due to its technical

difficulties. However, it can be intuitively understood that a solution to the

given optimal stopping problem in the statement of Proposition 3.8 must be

characterized by a single threshold η1 with θ1 < η1 < θ. As firm 2 and firm 3

expands its boundary of the region where they invest at the rate of ν3(x) and

ν2(x) respectively, firm 1’s value function (particularly l
G∗N
1 ) should increase.

And there can be a certain “matching point” η1 with which τ1 becomes the

solution to the given optimal stopping problem associated with l
G∗N
1 .

Case 4: Asymmetric Firms (k1 > k2 > k3)

Lastly, we discuss the case of k1 > k2 > k3, i.e, when all the three firms are

asymmetric. In fact, we can regard this case as a combination of case 2 and

case 3 above.

First of all, the candidate for a two-phase mixed strategy SPE G∗N =

(G1, G2, G3) must be characterized by a common support ΓN = (−∞, θ3)

where θ3 is the optimal threshold for the most cost-efficient firm (firm 3),

given in Assumption 3.1. Moreover, in the first phase of each stage of the

game, all of the firms wait until τΓN = inf{t ≥ 0 : Xt ∈ ΓN}, at which time

firm 3 invests with probability q∗3 = (k2 − k3)/k2 · φ(θ3)/φ(ζ). The structure

of the strategy profile G∗N is thus of the same form as the one obtained in case

2 (k1 = k2 > k3).

In addition, if firm 3 does not invest at time τΓN , which occurs with prob-

ability 1 − q∗3, the second phase begins immediately and all the firms’ CDFs

are continuous in time. In particular, both firm 2 and firm 3 invest with some

positive probability during Xt < θ3 (i.e., the supports of G2 and G3 are both

ΓN) whereas the support of firm 1’s CDF G1 is of the form ΓN = (−∞, η1)

where θ1 < η1 < θ3, which is of similar kind as the one obtained in case 3

(k1 > k2 = k3). Here τ1 = inf{t ≥ 0 : Xt ≤ η1} is a solution to the op-

timal stopping problem supτ≥0 Ex[
´ τ

0
π(Xt)e

−rtdt + l
G∗N
1 e−rτ ]. Therefore, the
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investment rate λi(·) for each firm i is expressed as

λ1(x) = 1{x∈ΓN}
1

2
[ν2(x) + ν3(x)− ν1(x)]

λ2(x) = 1{x∈ΓN}
1

2
[ν1(x) + ν3(x)− ν2(x)] + 1{x∈ΓN}ν3(x)

λ3(x) = 1{x∈ΓN}
1

2
[ν1(x) + ν2(x)− ν3(x)] + 1{x∈ΓN}ν2(x)

where νi(x) = [rl
G∗N
i − π(x)]/ki for i = 1, 2, 3 and ΓN := (η1, θ3). In other

words, each firm’s strategy Gi can be expressed as follows:

G
(I,II),x
i (t) = 1− exp

[
−
ˆ t

0

λi(X
x
s )ds

]
, i = 1, 2,

GI,x
3 (t) =

{
1{t≥τΓN }(t)

[
q∗3 + (1− q∗3)GII,x

2 (t− τΓN )
]

for x ≥ θ3 ,

GII,x
3 (t) otherwise .

GII,x
3 (t) = 1− exp

[
−
ˆ t

0

λ3(Xx
s )ds

]
,

Note that we will obtain a similar condition as case 2 for the existence of a

two-phase mixed strategy SPE of this form. This is because k1 > k2 > k3 and

l
G∗N
1 < l

G∗N
2 = l

G∗N
3 , which makes ν1(x) < ν2(x) < ν3(x). Hence, λ3(x) > 0 for

x ∈ ΓN if and only if k1 and k2 are close enough to k3, similarly as discussed

in case 2 above. Although the precise condition analogous to case 2 cannot

be obtained explicitly because of its analytical intractability, it is easy to see

from k1 > k2 that there is a certain threshold κ2(k1, k3) < k3 such that λ3(·)
can be non-negative whenever needed if k2 − k3 < κ2(k1, k3).

We now state our discussions in the following proposition.

Proposition 3.9 Suppose that k1 > k2 > k3 and τ1 := inf{t ≥ 0 : Xt ≤ η1}
with θ1 < η1 < θ is a solution to the problem supτ≥0 Ex[

´ τ
0
π(Xt)e

−rtdt +

l
G∗N
1 e−rτ ]. Then the strategy profile G∗N is an equilibrium, which exists if and

only if

k2 − k3 < min{κ1(k3) :=
k3φ(ζ)

φ(θ3)− φ(ζ)
, κ2(k1, k3)} ,

where q∗3 = (k2 − k3)/k2 · φ(θ3)/φ(ζ).

To summarize the findings of this subsection where we discuss the game
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of N > 2 firms, we first find that the two-phase mixed strategy SPE exists

in the investment game of more than two firms. However, it turns out that

there is additional condition for the existence of a mixed strategy equilibrium

if more than two firms consider an investment in the shared suppliers, and the

parameter regime under which a two-phase mixed strategy SPE exists can be

cut out because of this additional condition as shown in Figure 3.3. Because

this additional condition gets stricter as the number of the firms increases

(as argued in our discussion in case 2), we can conclude that the two-phase

mixed strategy SPE is less likely to exist as there are more number of firms

considering an investment in the shared suppliers.

3.7.2 Game of Finite (M > 1) Investment

Opportunities

In this subsection, we examine the model where two manufacturing firms are

allowed to make an investment only up to a finite number M > 1 of times.

We will first describe our model in the case of M = 2 below for a simpler

exposition and discuss how this can be generalized to the game of any M > 2

investment opportunities later.

Special Case: Game of M = 2 Investment Opportunities

Suppose that two manufacturing firms are given two opportunities to invest

in their shared supplier. Unlike the game of infinite investment opportunities,

we do not have to (and it is natural not to) restrict our attention to the set S∞
of all strategies such that each stage-wise strategy must be identical. We thus

write firm i’s strategy as Gi = (G
(1)
i , G

(2)
i ) to accommodate the possibilities

that G
(1)
i and G

(2)
i , CDFs for stage 1 and stage 2 respectively, are distinct.

We also express a strategy profile for each stage as G(1) = (G
(1)
1 , G

(1)
2 ) and

G(2) = (G
(2)
1 , G

(2)
2 ). Given stage-wise strategy profiles G(1) and G(2), therefore,

67



we can define firm i’s payoffs V
(1)
i (·) and V

(2)
i (·) for each stage as follows:

V
(1)
i (x;G(1),G(2)) = Ex

[¨ ∞

0

{ˆ s∧u

0

π(Xt)e
−rtdt

+ e−r(s∧u)[1{s<u}(V
(2)
i (ζ;G(2))− ki)

+ 1{s>u}V
(2)
i (ζ;G(2))]

}
dG

(1)
i (s)dG

(1)
j (u)

]
, (3.24)

V
(2)
i (x;G(2)) = Ex

[¨ ∞

0

{ˆ s∧u

0

π(Xt)e
−rtdt+ e−r(s∧u)[1{s<u}((Rrπ)(ζ)− ki)

+ 1{s>u}(Rrπ)(ζ)]
}
dG

(2)
i (s)dG

(2)
j (u)

]
, (3.25)

where we ignore the case of simultaneous investments because it is an in-

nocuous simplification (in the sense that simultaneous investments can never

happen in equilibrium).

Assuming k1 > k2 as in the game of infinite investment opportunities, we

now discuss the characterization of mixed strategy equilibria in the game of

two investment opportunities by using the concept of two-phase mixed strategy

SPE. Note that if the game enters stage 2, firms have only one investment

opportunity left, which implies that it is as if they are in the game of single

investment opportunity. Because it was already showed in Section 3.5.1 that

only pure strategy MPEs exist in the game of single investment opportunity

with the cost asymmetry (k1 > k2), the possible equilibrium strategy profile

G(2) in stage 2 must be in pure strategies, i.e., G(2) = (H(∞), H(τ
(2)
2 )) or

G(2) = (H(τ
(2)
1 ), H(∞)) where τ

(2)
i := inf{t ≥ 0 : Xt ≤ θ

(2)
i } is a solution to

the optimal stopping time problem

sup
τ

Ex
[ˆ τ

0

π(Xt)e
−rtdt+ e−rτ [(Rrπ)(ζ)− ki]

]
.

Therefore, it only remains to examine if there can exist a two-phase mixed

strategy SPE in stage 1.

Recall that the CDFs of a two-phase mixed strategy SPE is continuous in

time in phase 2, and under such a strategy profile, each firm’s payoff function

in phase 2 is identical to the optimal payoff function given the other firm never

investing. It thus follows that a two-phase mixed strategy SPE exists in stage

1 if and only if the rewards from investment V
(2)
i (ζ;G(2)) − ki (i = 1, 2) in
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stage 1 are identical between the two firms. Because we assume k1 > k2,

however, these rewards from investment in stage 1 can be identical if and only

if V
(2)

1 (ζ;G(2)) > V
(2)

2 (ζ;G(2)), which requires G(2) = (H(∞), H(τ
(2)
2 )) 8.

Given the choice G(2) = (H(∞), H(τ
(2)
2 )) of the equilibrium strategy profile

in stage 2, we can now prove that there exists a two-phase mixed strategy

SPE in the game of two investment opportunities if and only if k1 and k2

(with k1 > k2 as before) satisfy the specific equation. In particular, a strategy

profile G(1) = (G
(1)
1 , G

(1)
2 ) with a common support Γ(1) = (−∞, θ(1)

2 ) and firm

2’s investment probability q2 ∈ [0, 1) at τ
(2)
2 is a mixed strategy equilibrium in

stage 1 if and only if

k1 =

(
1 +

φ(ζ)

φ(θ
(2)
2 )

)
k2 . (3.26)

Here θ
(1)
2 is the threshold for the stopping time τ

(1)
2 := inf{t ≥ 0 : Xt ≤ θ

(1)
2 },

which is a solution to the optimal stopping time problem

sup
τ

Ex
[ˆ τ

0

π(Xt)e
−rtdt+ e−rτ [V (2)

2 (ζ;G(2))− k2]

]
.

The condition (3.26) can be obtained by deriving the following relation from

a simple algebra with (3.25) and G(2) = (H(∞), H(τ
(2)
2 )):

[V
(2)

2 (ζ;G(2))− k2]− [V
(2)

1 (ζ;G(2))− k1] = k1 − k2 −
φ(ζ)

φ(θ
(2)
2 )

k2 .

In other words, the choice of k1 in (3.26) is made so as to make the rewards

from investment in stage 1 are equal between the two firms. Note also that

firm 2’s investment probability mass q2 can take on any values smaller than 1,

which implies that a two-phase mixed strategy SPE in stage 1 is not uniquely

determined in contrast to the game of infinite investment opportunities.

General Analysis: Game of M ≥ 2 Investment Opportunities

Next, we will construct a generalized (sufficient) condition for the existence

8In other words, we cannot obtain a two-phase mixed strategy SPE in stage 1 if the two

firms are in the equilibrium G(2) = (H(τ
(2)
1 ), H(∞)) in stage 2; as will be shown later, how-

ever, if the number M of investment opportunities is more than two, we can obtain a mixed

strategy equilibrium in stage 1 with the equilibrium strategy profile being (H(τ
(M)
1 ), H(∞))

in the last stage M .
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of a two-phase mixed strategy SPE in the game of any M ≥ 2 investment

opportunities. Suppose that there are M ≥ 2 opportunities to invest in their

shared supplier. Similarly as above, we can express a strategy profile for each

stage m ≤M as G(m) = (G
(m)
1 , G

(m)
2 ) and write firm i’s payoffs V

(m)
i (·) for each

stage m ≤M as follows:

V
(m)
i (x;G(m)+) = Ex

[¨ ∞

0

{ˆ s∧u

0

π(Xt)e
−rtdt

+ e−r(s∧u)[1{s<u}(V
(m+1)
i (ζ;G(m+1)+)− ki)

+ 1{s>u}V
(m+1)
i (ζ;G(m+1)+)]

}
dG

(1)
i (s)dG

(1)
j (u)

]
, (3.27)

where G(m)+ := (G(m),G(m+1), ...,G(M)), m ≤M , is a simplifying notation that

indicates the collection of strategy profiles for stages n ranging from m to

M . We also let G(M+1) = G(M+1)+ = φ and V
(M+1)
i (ζ;G(M+1)+) = (Rrπ)(ζ)

for notational consistency and completeness. By using these mathematical

notions, we can then (backward recursively) define τ
(m)
i := inf{t ≥ 0 : Xt ≤

θ
(m)
i }, m ≤M , as a solution to the following optimal stopping time problem

sup
τ

Ex
[ˆ τ

0

π(Xt)e
−rtdt+ e−rτ [V (m+1)

i (ζ;G(m+1)+)− ki]
]
, (3.28)

where G(n) = (H(τ
(n)
i ), H(∞)), n ≥ m + 1. Note that τ

(m)
i is firm i’s optimal

time to invest in stage m given the other firm never investing and these stop-

ping times will be a building block for constructing mixed strategy equilibria

as in the game of infinite investment opportunities.

One of the main goals of this subsection is to investigate the impact of an

increase in M (the number of investment opportunities) on the equilibrium

characterization. Hence, we particularly focus on the conditions under which

there is a mixed strategy equilibrium in the first stage (stage 1) because the

first stage shows up in the game of any M ≥ 2 investment opportunities. More

specifically, we will prove the following two statements as a generalization of

what we established in the game of two investment opportunities: (i) In the

game of any M ≥ 2 investment opportunities, if k1 = [1 + φ(ζ)/φ(θ
(M)
2 )]k2,

then there is a mixed strategy equilibrium in stage 1. (ii) The game of M ≥ 2

investment opportunities admits at least M − 1 different values of k1, holding
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k2 constant, with which we can obtain a mixed strategy equilibrium in stage 1.

Towards this end, we illustrate an intuitive reasoning behind this generalized

result in the case of M = 3, followed by the formal statement and discussion

of the generalized result in the game of any M > 1 investment opportunities

later.

Given M = 3, our first claim is that we can obtain a mixed strategy

equilibrium in stage 1 if k1 = [1 + φ(ζ)/φ(θ
(3)
2 )]k2. To see this, set k1 =

[1+φ(ζ)/φ(θ
(3)
2 )]k2 and observe from (3.27) that we can have V

(3)
1 (ζ;G(3))−k1 =

V
(3)

2 (ζ;G(3)) − k2 with this choice of k1 and G(3) = (H(∞), H(τ
(3)
2 )). It thus

follows from the arguments in the game of two investment opportunities above

that we can construct a two-phase mixed strategy SPE G(2) = (G
(2)
1 , G

(2)
2 ) in

stage 2 (= M − 1). Recall also that G(2) = (G
(2)
1 , G

(2)
2 ) is characterized by a

common support Γ(2) = (−∞, θ(2)
2 ) and firm 2’s investment probability mass

q2 where q2 can be any non-negative values less than 1 (i.e., q2 ∈ [0, 1)).

By putting this strategy profile G(2) = (G
(2)
1 , G

(2)
2 ) with the choice of q2 =

(k1 − k2)/k1 · φ(θ
(2)
2 )/φ(ζ) into (3.27), therefore, we can obtain

V
(2)

1 (ζ;G(2)+)− k1 = V
(2)

2 (ζ;G(2)+)− k2 ,

which is a necessary and sufficient condition for the existence of a two-phase

mixed strategy SPE G(1) = (G
(1)
1 , G

(1)
2 ) with a common support Γ(1) = (−∞, θ(1)

2 )

in the first stage. We lastly note that k1 = [1 + φ(ζ)/φ(θ
(3)
2 )]k2 implies

k1 − k2 =
φ(ζ)

φ(θ
(3)
2 )

k2 <
φ(ζ)

φ(θ
(2)
2 )

k2 <
φ(ζ)

φ(θ
(2)
2 )− φ(ζ)

k2 ,

which makes sure that q2 = (k1 − k2)/k1 · φ(θ
(2)
2 )/φ(ζ) < 1. Here we use the

fact θ
(3)
2 < θ

(2)
2 and φ(·) is a strictly decreasing function.

The second claim, given M = 3, is that there is another value of k1 with

which we can obtain a mixed strategy equilibrium in the first stage. This

additional choice of k1 is given as

k1 =

(
1 +

φ(ζ)

φ(θ
(2)
2 )

+
φ2(ζ)

φ(θ
(2)
2 )φ(θ

(3)
2 )

)
k2 . (3.29)

The condition (3.29) can be obtained by deriving the following relation from a

71



simple algebra with (3.27), G(2) = (H(∞), H(τ
(2)
2 )), and G(3) = (H(∞), H(τ

(3)
2 )):

[V
(2)

2 (ζ;G(2)+)− k2]− [V
(2)

1 (ζ;G(2)+)− k1]

= k1 − k2 −
(

φ(ζ)

φ(θ
(2)
2 )

+
φ2(ζ)

φ(θ
(2)
2 )φ(θ

(3)
2 )

)
k2 .

In other words, the choice of k1 in (3.29) is made so as to make the rewards from

investment in stage 1 are equal between the two firms, given that firm 2 invests

with probability 1 in stages 2 and 3. In addition, because V
(2)

2 (ζ;G(2)+) − k2

is the same between two cases – when G(2) = (G
(2)
1 , G

(2)
2 ) obtained in our first

claim above and when G(2) = (H(∞), H(τ
(2)
2 )) as given here, we can conclude

that we can obtain a two-phase mixed strategy SPE G(1) = (G
(1)
1 , G

(1)
2 ) with

a common support Γ(1) = (−∞, θ(1)
2 ) in stage 1, which is of the same form as

that obtained in our first claim above.

We now formally state the generalized version of these two claims in the

game of any M ≥ 2 investment opportunities:

Proposition 3.10 Suppose that two firms with investment costs k1 > k2 are

given M ≥ 2 investment opportunities and define

k
(m)
1 :=

[
1 +

M∑
k=m

( k∏
l=m

φ(ζ)

φ(θ
(l)
2 )

)]
k2 , 2 ≤ m ≤M . (3.30)

Then if k1 = k
(m)
1 , it follows that

(a) We can have a two-phase mixed strategy SPE G(1) = (G
(1)
1 , G

(1)
2 ) with the

support Γ(1) = (−∞, θ(1)
2 ) and q

(1)
2 ∈ [0, 1) in the first stage of the game.

(b) The equilibrium strategy profiles G(n) = (G
(n)
1 , G

(n)
2 ), n ≥ 2, in all the

subsequent stages n ≥ 2 are uniquely determined as

(G
(n)
1 , G

(n)
2 ) =

{
(G

(n)
1 (θ

(n)
2 ), G

(n)
2 (θ

(n)
2 ; q

(n)
2 )) for n < m

(H(∞), H(τ
(n)
2 )) otherwise ,

where q
(n)
2 = (k1 − k2)/k1 · φ(θ

(n)
2 )/φ(ζ) < 1.

Moreover, we have k
(2)
1 − k2 ↑ κ(k2) and q

(2)
2 ↑ q∗2 as M →∞ where κ(k2) and

q∗2 are given in Theorem 3.1.
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Proposition 3.10 has a couple of implications worth discussing. First of

all, it asserts that we can obtain a two-phase mixed strategy SPE for a larger

number of k1’s (holding k2 constant) as the number M of investment oppor-

tunities increases. In other words, a two-phase mixed strategy SPE is more

likely to exist as there are more number of opportunities to invest in the shared

suppliers. This thus corroborates the impact of the repetitive nature on the

equilibrium characterization – repeated investment opportunities inducing a

mixed strategy equilibrium – which is one of our major findings in Section

3.5.1.

Second, k
(2)
1 – the newly added value of k1 as a result of one additional

investment opportunity – is a strictly increasing function of the number M of

investment opportunities, which implies that the higher repetition of invest-

ments induces a mixed strategy equilibrium in the larger level of cost asymme-

try between the two firms. See Figure 3.4. Hence, this point complements our

finding in Section 3.5.1 on the inducement of a mixed strategy equilibrium by

the repetitive nature in the sense that it illustrates how the repeated invest-

ment opportunities can increase the likelihood of a mixed strategy equilibrium.

Figure 3.4: k
(2)
1 −k2 as a function of the number M of investment opportunities.

We set π(x) = 1− e−px with r = 0.5, µ(x) = µ = −0.5, σ(x) = σ = 1, k2 = 1,

p = 0.5, and ζ = 2.5.
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Lastly, the game of M ≥ 2 investment opportunities admits at least M − 1

different values of k1, holding k2 constant, with which we can obtain a two-

phase mixed strategy SPE. In fact, it is not difficult to see that the number of

k1’s, which allows a mixed strategy equilibrium, is strictly larger than M − 1

in the game of M > 2 investment opportunities. In the game of M = 3

investment opportunities, for instance, if k1 and k2 satisfy

k1 =

(
1 + φ(ζ)/φ(θ

(2)
2 )

1 + φ2(ζ)/(φ(θ
(2)
2 )φ(θ

(3)
1 ))

)
k2 , (3.31)

then we can obtain a mixed strategy equilibrium G(1) = (G
(1)
1 , G

(1)
2 ) in stage

1 with G(2) = (H(∞), H(τ
(2)
2 )) and G(3) = (H(τ

(3)
1 ), H(∞)). Note here that

k1 > k2 because φ(ζ)/φ(θ
(3)
1 ) < 1. Similarly as before, this condition can be

obtained by deriving the following relation from a simple algebra with (3.27),

G(2) = (H(∞), H(τ
(2)
2 )), and G(3) = (H(τ

(3)
1 ), H(∞)):

[V
(2)

2 (ζ;G(2)+)− k2]− [V
(2)

1 (ζ;G(2)+)− k1]

= k1 − k2 −
φ(ζ)

φ(θ
(2)
2 )

k2 +
φ2(ζ)

φ(θ
(2)
2 )φ(θ

(3)
1 )

k1 ,

where θ
(2)
2 is the threshold for a solution to the optimal stopping problem (3.28)

with G(3) = (H(τ
(3)
1 ), H(∞)). Because it can be clearly seen that the choice of

k1 given in (3.31) is different from any of k
(m)
1 in (3.30), we can conclude that

the number of k1’s, with which we can obtain a mixed strategy equilibrium,

is strictly bigger than M − 1 in the game of M > 2 investment opportunities.

Moreover, as the number M of investment opportunities grows, the number of

possible combinations of pure strategy MPEs in stages n ≥ 2 increases. This

thus suggests that the number of k1’s allowing a mixed strategy equilibrium

increases at the faster rate as the number M of investment opportunities grows.

Overall, we can summarize our discussions on Proposition 3.10 that our

findings on the game of infinite investment opportunities (Theorem 3.1) can

be seen as an approximated result for the game of finite (M ≥ 2) investment

opportunities when M is large enough.

We close this subsection by discussing the characterization of pure strategy

MPEs in the game of finite investment opportunities. In the game of finite

investment opportunities, stage-dependent equilibrium strategies are some-
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times more natural. Note that a lower investment cost does not always mean

a higher incentive to invest in any stage n < M of the game of M invest-

ment opportunities. This is because the rewards from investment are de-

termined not only by the cost efficiency (k) but also by the value from in-

vestment (V (ζ; ·)), which is a function of strategy profiles in the subsequent

stages (G(m), n < m ≤ M). In the game of two investment opportunities,

for instance, although k1 > k2 makes firm 2 have a higher incentive to in-

vest than firm 1 in stage 2, it could be the other way around in stage 1

(i.e. firm 1 could be more incentivized to invest than firm 2 in stage 1) if

[V
(2)

1 (ζ;G(2))− k1]− [V
(2)

2 (ζ;G(2))− k2] > 0, which can happen when k1 and k2

are close enough; more precisely, k1 − k2 < φ(ζ)/φ(θ2) · k2 in the game of two

investment opportunities.

In fact, this observation is related to our result in Section 3.5.1 about

the existence condition for the two-phase mixed strategy SPE in the game of

infinite investment opportunities. Note that, in the game of M = 2 investment

opportunities, firm 2 keeps a higher incentive to invest than firm 1 in both stage

1 and stage 2 if and only if k1− k2 >
φ(ζ)
φ(θ2)

k2. Similarly, in the game of M = 3

investment opportunities, it can be seen from calculating V
(2)

1 (ζ;G(2),G(3)) and

V
(2)

2 (ζ;G(2),G(3)) by using V
(2)

1 (ζ;G(3)) and V
(2)

2 (ζ;G(3)) where G(2) = G(3) =

(H(∞), H(τ ∗2 )) that firm 2 is more incentivized to invest than firm 1 in all the

stages m ≤ M = 3 if and only if k1 − k2 >
(
φ(ζ)
φ(θ2)

+ φ2(ζ)
φ2(θ2)

)
k2. In the game

of M ≥ 2 investment opportunities, therefore, it can be easily seen that firm

2 has a higher incentive to invest than firm 1 in all the stages m ≤ M if and

only if

k1 − k2 >

M−1∑
m=1

(
φ(ζ)

φ(θ2)

)m
k2 → κ(k2) as M →∞

where κ(k2) = φ(ζ)
φ(θ2)−φ(ζ)

k2 is given in (3.16). Therefore, the condition under

which firm 2 has a higher incentive to invest than firm 1 in all the stages

m ≤ M converges to the condition for the non-existence of the two-phase

mixed strategy SPE in the game of infinite investment opportunities as M

goes to infinity. Moreover, this implies that if k1 − k2 < κ(k2), then a pure

strategy MPE (H(∞), H(τ ∗2 )), in which firm 2 is a designated investor for all

stages, is not a natural choice of equilibrium in the game of M investment
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opportunities as the number M of opportunities increases; this is because firm

1’s reward from investment in stage 1 increases as firm 2 becomes an investor

more number of times in the subsequent stages, and eventually, the reward

from investment for firm 1 exceeds that for firm 2 if the number of investment

opportunities is large enough.

3.8 Summary and Conclusions

In this paper, we examine a two-player stochastic game of investment. Our

study is motivated by real industry scenarios, in which two manufacturers con-

sider investment in their shared suppliers. Our model captures three salient

features of this game of investment: spillover of investments via the shared

supplier, stochasticity of the supplier’s quality, and the need for continued

investment in the supplier’s quality. In the model that we examine, an in-

vestment by either firm spills over to the other, the quality of the supplier is

modeled as a (stochastic) diffusion process, and each firm has an indefinite

number of opportunities to invest in the quality of the supplier. Formulat-

ing the problem as a repeated stochastic war of attrition, we characterize the

equilibria in both pure and mixed strategies.

Our first key finding is that there always exists a pure strategy equilibrium

where each firm’s role is coordinated, either as an investor or a free-rider, so

that any costly delays in investment are curtailed. In characterizing mixed

strategy equilibria, we also find that the repetitive nature of the investment

opportunities induces a mixed strategy equilibrium, which results in inefficient

delays in investment because of the coordination failure. More specifically, the

stochastic game admits a unique two-phase mixed strategy SPE in a wide-

range of model parameters if there are multiple investment opportunities.

This result is in stark contrast with (i) the single investment game in which

there is no two-phase mixed strategy SPE and (ii) the deterministic game

where there is a continuum of two-phase mixed strategy SPE.

Based on the uniqueness of the mixed strategy equilibrium, we are able

to estimate the inefficiency resulting from the free-riding incentives. Using

primary data collected from a field study, we demonstrate that the efficiency

gap between the mixed strategy equilibrium and its associated first-best so-

lution can be substantial although this gap varies across industry sectors to
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some degree. Moreover, we find that the efficiency loss in the mixed strategy

equilibrium is mostly driven by the coordination failure: If the game consists

only of a single stage or the cost asymmetry is sufficiently high, then the

mixed strategy equilibrium disappears and only a pure strategy equilibrium

is possible, in which case the efficiency loss will be negligible, as illustrated

in the efficiency gap between the pure strategy equilibrium and the first-best

solution.

We also examine the extended model in which more than two manufactur-

ing firms consider an investment in their shared suppliers. We find that the

mixed strategy equilibrium exists in a wide range of parameter values as in

our base model although we additionally discover that the parameter regime

where the mixed strategy equilibrium exists is shrinking as the number of the

firms increases.

Overall, our work shows that when independent firms consider investing in

shared suppliers, it is important to recognize that the loss of efficiency arising

from a mixed strategy equilibrium can be very high, in which case the financial

gains from the coordinated investment will be worth the effort. Therefore, a

firm considering supplier development should attempt to coordinate or collab-

orate on its investments with other firms sharing the same supplier: If the

firms are divisions of one company, then they should make a collaborative

investment; if the firms are not within the boundary of one company, then

they might be able to converge on a more efficient pure strategy equilibrium

through prior communication or exchange of resources.
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Chapter 4

Equilibrium Selection in the
War of Attrition under
Complete Information

4.1 Introduction

In the classic war of attrition, the first player to quit concedes a prize to his

opponent. Each player trades off the cost associated with fighting against

the value of the prize. These features are common in many managerial and

economic problems. Oligopolists in a declining industry may bear losses in an-

ticipation of profitability following a competitor’s exit (Ghemawat and Nale-

buff, 1985). For example, the rise of Amazon in the mid-1990s made the

business model of Barnes & Noble and Borders obsolete, turning traditional

bookselling into a declining market. As the demand shrank sharply, these two

major players at the time had to cut down slack in their capacities, but each

would prefer its competitors to carry the painful burden of closing stores or

exiting the market altogether (Newman, 2011). Similarly, the presently low

price of crude oil is often attributed to a war of attrition among Saudi Arabia,

its Persian Gulf OPEC allies, and non-OPEC rivals such as Russia and the

many shale-oil producers in the United States (Reed, 2016). Other examples

of wars of attrition include the provision of public goods (Bliss and Nalebuff,

1984), lobbying (Becker, 1983), labor disputes (Greenhouse, 1999), court of

law battles (McAfee, 2009), races to dominate a market (Ghemawat, 1997),

technology standard races (Bulow and Klemperer, 1999), all-pay auctions (Kr-

ishna and Morgan, 1997), and bargaining games (Abreu and Gul, 2000).

It is well known that the canonical model of war of attrition admits equi-

libria in both pure and mixed strategies (Tirole (1988), Fudenberg and Tirole

(1996), Levin (2004), and others). Naturally then, this raises the issue of equi-

librium selection. To select an equilibrium, the extant literature has focused

on three perturbations of the model: First, by assuming that with a small

probability, each player behaves irrationally by never quitting. Second, by
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considering hybrid all-pay auctions, in which the winner’s costs are a convex

combination of his own planned exit time and the loser’s exit time. Third, by

imposing a time limit, after which the prize is awarded at random. For details,

see Myatt (2005) and the references therein. In this paper, we show that in

a canonical war of attrition under complete information, if the players’ flow

payoffs whilst fighting for the prize vary stochastically and their exit payoffs

are heterogeneous, then the game admits only pure-strategy Markov Perfect

equilibria (hereafter MPE). If the players are sufficiently heterogeneous, then

the game admits a unique pure-strategy MPE. This result shows that the

mixed-strategy equilibria are unstable to a natural perturbation of the model,

and thus it provides a rationale for focusing on the pure-strategy equilibria in

wars of attrition.

In our model, two competing oligopolists contemplate exiting a market.

While both firms remain in the market, each receives a flow payoff that depends

on the stochastically fluctuating market conditions (e.g., the price of a relevant

commodity); hereafter the state. At every moment, each firm can exit the

market, in which case, it collects its outside option. Its rival then obtains

a (larger) winner’s payoff, which depends on the state at the time of exit;

e.g., the net present discounted monopoly profit in that market. We assume

that all payoff-relevant parameters are common knowledge, so this is a game

with complete information. As the state follows a Markov process, we restrict

attention to Markov Perfect strategies, wherein at every moment, each firm

conditions its probability of exit on the current state.

We begin by characterizing the best response of a firm who anticipates that

its rival will never exit the market. We show that a firm will optimally exit

at the first moment that the state drifts below a threshold. Moreover, this

myopically optimal threshold increases in the firm’s outside option. This is

intuitive: the better is a firm’s outside option, the less it is willing to endure

poor market conditions before exiting the market. Proposition 1 shows that

there exists a pure-strategy MPE in which the firm with the larger outside

option exits the market at its myopically optimal threshold and its rival never

exits. If the heterogeneity in outside options is not too large, then there exists

another pure-strategy MPE in which the firm with the lower outside option

exits the market at its own myopically optimal threshold and its rival never

exits.
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Towards our main result, we establish two lemmas. The first shows that in

any mixed-strategy MPE, even if the state evolves deterministically, (a) both

firms must be randomizing between remaining in the market and exiting on a

common set of states (i.e., their strategies must have common support), and

(b) strategies must be continuous in the interior of their support (i.e., during

any interval (t, t + dt), the probability that a firm exits the market must be

of order dt). The second lemma shows that if the state evolves stochastically,

then each firm’s strategy must be continuous everywhere, including at the

boundary of its support, and its support must be equal to the half-line below

the myopically optimal exit threshold.

The main result follows immediately: If the market conditions are stochas-

tic and the firms have heterogeneous outside options, in which case their my-

opically optimal exit thresholds differ, then the game admits no mixed-strategy

MPE. These ingredients are necessary for the game to admit only pure-strategy

MPE: if the firms have identical outside options or the market conditions are

deterministic, then there exists a mixed-strategy MPE which we characterize.

4.2 Related Literature

First and foremost, this paper contributes to the literature on wars of attrition,

which has received widespread attention since the seminal work of Maynard

Smith (1974). Our model is closest related to Hendricks et al. (1988) and

Murto (2004). The former provides a complete characterization of the equi-

libria (in both pure and mixed strategies) in a war of attrition under complete

information, in which the players’ payoffs vary deterministically over time.

The latter considers stochastic payoffs, but restricts attention to pure-strategy

Markov Perfect equilibria. In contrast, we allow payoffs to vary stochastically,

and we show that if players are heterogeneous, then the game admits MPE in

pure strategies only.

Our paper also contributes to a strand of literature that contemplates equi-

librium selection in the war of attrition. Fudenberg and Tirole (1996) consider

a game of exit in a duopoly, in which players are uncertain about their rivals’

cost of remaining in the market. In the unique equilibrium, each firm exits at a

deterministic time that decreases in its cost. In Kornhauser et al. (1989), with

a small probability, each player irrational and never quits. They show that
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this approach selects a unique equilibrium in which the weaker player quits

immediately. Kambe (1999), and Abreu and Gul (2000) analyze a bargaining

game in which two players seek to divide some surplus, and each player is

behavioral with some probability. They show that this gives rise to a unique

equilibrium that entails delay. This is in contrast to our model, where players

are rational and possess complete information about the parameters of the

game.

Touzi and Vieille (2002) introduces the concept of mixed strategies in

continuous-time Dynkin games (a class of stopping games), and proves that the

game admits minimax solutions in mixed strategies. Steg (2015) characterizes

equilibria in both pure and mixed strategies in a family of continuous-time

stochastic timing games. Whereas these papers consider games with identi-

cal players, we focus on games with non-homogeneous players and show that

the set of equilibria differ drastically from the case with homogenous players.

Riedel and Steg (2017) examines mixed-strategy equilibria in continuous-time

stopping games with heterogeneous players, but they restrict attention to pre-

emption games, whereas our model is one of a war of attrition.

Finally, our paper is also related to the literature in real option games in

the context of timing decisions with externalities under uncertainty. Dixit and

Pindyck (1994) establishes the fundamental framework for analyzing real op-

tions and real option games. Grenadier (2002), Decamps and Mariotti (2004),

and Mason and Weeds (2010) examine the interplay between the option value

of waiting and externalities due to competition, learning, and network effects.

However, these papers focus on the role of a preemptive threat in real option

games while our work is focused on a free-riding incentive.

4.3 Model

We consider a war of attrition with complete information between two oligopolis-

tic firms. Time is continuous, and both firms discount time at rate r > 0. At

every moment, each firm decides whether to remain or exit the market.

While both firms remain in the market, each firm earns a flow profit π(Xt),

where π : R → R is continuous and strictly increasing, while Xt is a scalar

that captures the market conditions that the firms operate in (e.g., the size of
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the market, or the price of raw materials).1 The market conditions fluctuate

over time according to

dXx
t = µ(Xx

t )dt+ σ(Xx
t )dBt , (4.1)

where Xx
t is defined on I := (a, b) ⊂ R, Xx

0 = x, the functions µ : I → R
and σ : I → R+ are continuous, and Bt is a Wiener process.2,3,4

If firm i chooses to exit at time t, then it receives its outside option li, and

firm j 6= i receives w(Xx
t ), where w : I → R is the expected discounted payoff

of a monopoly flow profit πM(·) > π(·). We say that firm j is the winner, and

firm i is the loser. We set the convention that l1 ≤ l2; i.e., firm 2 has a larger

outside option than firm 1. We assume that w(x) > l2 for all x ∈ I so that

the winner’s reward is always larger than that of the loser. The game ends as

soon as a firm exits the market. If both firms exit at the same moment, then

each firm obtains the outside option li or w(Xx
t ) with probability 1/2 each.

Finally, we make the following technical assumptions (see also Alvarez,

2001).

1. π(·) satisfies the absolute integrability condition Ex
[´∞

0
|e−rtπ(Xx

t )| dt
]
<

∞ .

2. For each i, there exists some xci ∈ I such that π(xci) = rli.

The first assumption ensures that each firm’s payoff is well-defined, whereas

the second guarantees the existence of an internal optimal exit threshold.

4.3.1 Markov Strategies

At every moment t, each firm chooses the probability with which to remain in

the market to maximize its expected discounted payoff. We assume that both

1For simplicity, we assume that the firms earn identical flow profits. Our results are
generalizable to allow heterogeneous flow profits.

2We use the superscript in Xx
t to denote its dependence on the initial value x at time 0.

3Special cases in which σ(·) = 0 have been analyzed extensively (Ghemawat and Nalebuff
(1985), Hendricks et al. (1988), and others). Therefore, we restrict attention to σ(·) > 0 in
the main body of this paper, and for completeness, we revisit the case in which σ(·) = 0 in
Appendix A.

4The boundary points a and b are assumed to be natural (Borodin and Salminen, 1996,
p.18-20); i.e., neither a, nor b can be reached by Xx

t in finite time. For example, if Xt

is a standard diffusion process, then I = R. If Xt is a geometric diffusion process, then
I = (0,∞).
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firms employ Markov strategies, so for any x, their decision at time t depends

only on the current state Xx
t . We make the definition of a Markov strat-

egy mathematically precise below. Each firm i’s strategy can be defined as a

family of cumulative distribution functions (hereafter CDF) Gi := (Gx
i )x∈I

of stopping times with respect to FX for each x ∈ I .5 We say that a

pair (G1, G2) is a strategy profile. For each i, Gi must be time-consistent,

or equivalently, conform to Bayes’ rule; i.e., for any t ≥ s ≥ 0, Gx
i (t) =

Gx
i (s
−) + [1−Gx

i (s
−)]G

Xx
s

i (t− s).
For example, suppose that Xt = x and neither firm has yet exited by time

t. Then firm i employs the strategy Gx
i , and if neither firm exits, then at

t + dt, the state evolves to x + dXt, at which moment firm i employs the

strategy Gx+dXt
i . This definition extends the concept of randomized stopping

times (Touzi and Vieille, 2002) and subgames (Steg, 2015) to a continuous-time

stochastic game.

Note that firm i exits at time t with positive probability when Gx
i either

has an (upward) jump at t, or it is continuously (strictly) increasing at t.

The Markov property requires that any jump in Gx
i occurs at a hitting time

τE = inf{t ≥ 0 : Xt ∈ E} for some set E ⊂ (a, b), and that the probability of

exit at τE depends only on Xx
τE

. If Gx
i is continuously (strictly) increasing at

t, then the hazard rate of exit is a function of Xx
t alone.

A special case of a strategy Gi is one in which there exists a stopping time

(a hitting time of a set E) τi at which Gx
i jumps from 0 to 1. We call a

strategy of this form a pure Markov strategy and denote it by H(τi), where

Gx
i (t) = Hx(t; τi) := 1{t≥τi}(t). In contrast, if a Markov strategy Gi cannot be

represented by H(τi) for any stopping time τi, then we refer to it as a mixed

Markov strategy.

Lastly, we define the support of a mixed-strategy as a subset of the state

space in which firm i randomizes between remaining in the market and exiting;

5By a CDF of stopping times, we refer to an FX -adapted, right-continuous, and non-
decreasing process that ranges in the interval [0, 1], where FX := {Ft}t≥0 is the natural
filtration generated by X.
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i.e.,

supp(Gi) :=

{
x ∈ I :

dGy
i (t)

dt

∣∣∣∣
t=τ

> 0 or ∆Gy
i (τ) ∈ (0, 1)

for any y ∈ I wheneverXy
τ = x

}
,

where ∆Gy
i (τ) = Gy

i (τ)−Gy
i (τ
−) denotes a jump at time τ .

4.4 Preliminaries

In this section, we introduce notation and establish a Lemma that will be

helpful for the subsequent analysis. In particular, in Section 4.4.1, we char-

acterize each firm’s expected discounted payoff given an arbitrary strategy

profile. Then in Section 4.4.2, we characterize the best response of a firm

which anticipates that its rival will never exit the market.

4.4.1 Payoffs

We begin by defining the conditional expected payoff of firm i, given the history

Ft of X starting at Xx
0 = x and its rival exiting the market at t, at which time

it becomes the winner :

W x
i (t) =

ˆ t

0

π(Xx
s )e−rsds+ w(Xx

t )e−rt . (4.2)

Firm i receives the flow payoff π(Xx
s ) during [0, t), whereas at time t, its rival,

firm −i exits and firm i receives the winner’s payoff w(Xx
t ). Similarly, we

define the conditional expected payoff of firm i, given the history Ft of X

starting at Xx
0 = x and it exiting the market at t, at which time it becomes

the loser :

Lxi (t) =

ˆ t

0

π(Xx
s )e−rsds+ lie

−rt , (4.3)

If both firms exit at t, then we assume that either firm becomes the winner with

equal probability, so each firm obtains conditional expected payoff Mx
i (t) =
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(Lxi (t) +W x
i (t))/2. We define

Sxi (t;G−i) =

t−ˆ

0

W x
i (s)dGx

−i(s) +Mx
i (t)∆Gx

−i(t) + Lxi (t)[1−Gx
−i(t)] . (4.4)

Note that Sxi (t;G−i) denotes the expected payoff of firm i conditional on the

history Ft of X starting at Xx
0 = x, exiting at t, and its rival employing

strategy G−i. The first term captures the payoff associated with becoming the

winner at any time before t. The second term captures the payoff associated

with both firms exiting simultaneously at t, and the last term captures the

payoff associated with becoming the loser at t.

Finally, define firm i’s expected payoff under an arbitrary strategy profile

(Gi, G−i) starting at Xx
0 = x by

Vi(x;Gi, G−i) = Ex
[ˆ ∞

0

Si(t;G−i)dG
x
i (t)

]
. (4.5)

We say that a strategy profile (G∗1, G
∗
2) is an MPE if for each i, Vi(x;G∗i , G

∗
−i) ≥

Vi(x;Gi, G
∗
−i) for all x ∈ I and any Gi.

4.4.2 Best Response to H(∞)

As a building block towards characterizing the MPE of the game, we begin

by characterizing firm i’s best response to H(∞); i.e., the best response of

firm i when its opponent’s strategy is to never exit the market. In this case,

Gx
−i(t) = 0 for any x ∈ I and t < ∞, so firm i’s best response can be

determined by solving the following optimal stopping problem:

sup
τi

Vi(x;H(τi), H(∞)) = sup
τi

Ex[Li(τi)] = sup
τi

Ex
[ˆ τi

0

π(Xt)e
−rtdt+ lie

−rτi
]
.

(4.6)

We use Proposition 2 in Alvarez (2001, p.334) to establish the following lemma.

Lemma 4.1 For each i ∈ {1, 2}, there exists a unique threshold θ∗i such that

firm i optimally exits at

τ ∗i = inf {t ≥ 0 : Xx
t ≤ θ∗i } ; (4.7)
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i.e., at the first time such that Xx
t ≤ θ∗i . If l1 < l2, then θ∗1 < θ∗2.

This is intuitive: the firm’s value of remaining in the market decreases as

the market conditions deteriorate, and once they become sufficiently poor, the

firm is better off exiting and collecting its outside option. As the firms earn

identical flow payoffs while they remain in the market, the firm with the higher

outside option optimally exits at a higher threshold.

4.5 Markov Perfect Equilibria

In this section, we characterize the MPE of this game. We begin by character-

izing the pure-strategy MPE in Section 4.5.1. In Section 4.5.2, we establish our

main result: if the market conditions fluctuate stochastically (i.e., σ(·) > 0)

and the firms are heterogeneous (i.e., l1 < l2), then this game has no mixed-

strategy MPE.

4.5.1 Pure-strategy MPE

The following result shows that the strategy profile (H(∞), H(τ ∗2 )) constitutes

an MPE, and under certain conditions, (H(τ ∗1 ), H(∞)) also constitutes an

MPE, where τ ∗1 , τ
∗
2 are defined in Lemma 4.1.

Proposition 4.1 The strategy profile (G1, G2) = (H(∞), H(τ ∗2 )) is a pure-

strategy MPE. Moreover, there exists a threshold κ > 0 that is independent of l1

such that (G1, G2) = (H(τ ∗1 ), H(∞)) is also a pure-strategy MPE if l2 < l1 +κ.

If firm i expects its rival to never exit the market, then by Lemma 4.1, it

will optimally exit at the first time such that Xx
t ≤ θ∗i . Therefore, it suffices

to show that if firm i employs the strategy H(τ ∗i ), then its opponent’s best

response is to never exit.

Suppose that firm 1 expects its rival to exit at the first moment that Xx
t ≤

θ∗2. Recall from Lemma 4.1 that θ∗1 ≤ θ∗2, and so firm 1 has no incentive to

exit until at least Xx
t ≤ θ∗1. Therefore, firm 1 expects that the game will

end before the state drifts below θ∗1, and hence the strategy G1 = H(∞) is

incentive compatible. If instead firm 2 anticipates that its rival employs the

strategy H(τ ∗1 ), then it can sustain the strategy H(∞) as long as it does not
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need to wait too long in the time interval (τ ∗2 , τ
∗
1 ) until firm 1 exits, and so

H(∞) is a best response for firm 2 as long as l2 − l1 is not too large.

Note that we restrict attention to single-threshold strategies, so (H(τ ∗1 ), H(∞))

and (H(∞), H(τ ∗2 )) are the sole candidates for pure-strategy MPE. As shown

in Murto (2004), there may also exist pure-strategy equilibria with multiple

exit thresholds.6 However, these pure-strategy MPE with multiple thresholds

do not affect our characterization of mixed-strategy MPE, and so we do not

consider them in this paper.

4.5.2 Mixed-strategy MPE

We begin by establishing two Lemmas, which outline a set of necessary condi-

tions that any mixed-strategy MPE must satisfy. Below we let Γo denote the

interior of Γ, and Γo denote the closure of Γo.7

Lemma 4.2 Suppose that (G1, G2) constitutes a mixed-strategy MPE. Then:

(a) The supports of G1 and G2 have common interior Γo.

(b) If x ∈ Γo, then both Gx
1(t) and Gx

2(t) are continuous at any t = τ such

that Pr(Xx
τ ∈ Γo) > 0.

It is helpful to convey the intuition with a heuristic derivation. (The formal

arguments are relegated to Appendix B.) In the interior of the support of Gi,

firm i must be indifferent between exiting immediately and remaining in the

market; i.e.,

li =
dGx
−i(t)

1−Gx
−i(t)

w(Xx
t ) +

(
1− dGx

−i(t)

1−Gx
−i(t)

)
[π(Xx

t )dt+ (1− rdt)li] . (4.8)

6In particular, Murto (2004) shows that there may exist an equilibrium in which each
firm i exits at the first moment such that Xx

t ∈ (−∞, ai]∪ [bi, θ
∗
i ] for some ai < bi; i.e., firm

i does not exit within some interval (ai, bi) below the threshold θ∗i . Intuitively, if x ∈ (a1, b1)
and b1 − x is sufficiently small, then firm 2 can be better off waiting until Xx

t hits a1 or b1
and becoming the winner rather than exiting immediately. Finally, note that if the initial
state x ≥ max{θ∗1 , θ∗2}, then the outcome of this equilibrium coincides with the outcome of
the equilibrium characterized in Proposition 4.1.

7Clearly, Γo is always a subset of Γ. Note also that it can be a proper subset; i.e., Γo ( Γ,
if and only if there are some point components of Γ that are not in in Γo. A point component
of a set A is defined as a singleton point set {a} such that a ∈ A but disconnected from
A\{a}.
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where dGx−i(t)/[1−Gx−i(t)] represents the probability that firm −i will exit during

(t, t+ dt), conditional on not having exited until t. The left-hand-side of (4.8)

represents firm i’s payoff in case it exits at t. If it remains in the market,

then with probability dGx−i(t)/[1−Gx−i(t)] it receives the winner’s payoff w(Xx
t ),

whereas with the complementary probability, it earns the flow payoff π(Xx
t )

during (t, t+dt), and its (discounted) continuation profit li at t+dt.8 It follows

from (4.8) that firm −i’s probability of exit during (t, t + dt), where dt ' 0

must equal
dGx
−i(t)

1−Gx
−i(t)

=
rli − π(Xx

t )

w(Xx
t )− li

dt . (4.9)

Notice that if π(Xx
t ) > rli, then the right-hand-side of (4.8) is strictly larger

than li, and so firm i strictly prefers to remain in the market regardless of its

rival’s strategy.

Suppose that there exists a non-empty interval that is in the interior of the

support of Gi but not of G−i. Then for at least some x in that interval, we

must have π(x) < rli and dGx
−i(0) = 0. This implies that the right-hand-side

of (4.8) is strictly smaller than li, so firm i strictly prefers to exit. However,

this contradicts that x is in the interior of the support of Gi, so we conclude

that the supports of G1 and G2 share the same interior.

Second, observe from (4.9) that in the interior of the common support

of G1 and G2, dGxi (t)/dt is finite for each i, which implies that strategies are

continuous. This is intuitive: if a firm’s strategy were discontinuous at some

state in the interior of its support, then its rival would strictly prefer to remain

in the market when that state is reached in order to increase the probability

of obtaining the winner’s payoff.

Lemma 4.2 holds irrespective of whether the market conditions fluctuate

stochastically (i.e., σ(·) > 0), or deterministically. The following lemma es-

tablishes two additional necessary conditions that any mixed-strategy MPE

must satisfy when σ(·) > 0.

Lemma 4.3 Suppose that σ(·) > 0, and (Gi, Gj) constitutes a mixed-strategy

MPE. Then:

(a) Gx
1(t) and Gx

2(t) are continuous in t for all x ∈ I , i.e., they have no

mass points (discontinuities of the CDFs).

8We ignore the event that both firms exit the market simultaneously. As the proof shows,
this is an innocuous simplification.
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(b) The support Γ = (a, θ∗1) = (a, θ∗2), where θ∗i is given in Lemma 4.1.

Lemma 4.3(a) establishes that if σ(·) > 0, then CDFs of an MPE must be

continuous even if the initial value x is not in Γo. To see why, we first recall

that a discontinuity of a CDF must be a hitting time τE = inf{t ≥ 0 : Xx
t ∈ E}

for some set E ⊂ R and for all x such that Pr(τE < ∞) > 0. Then because

X is irreducible if σ(·) > 0, Lemma 4.2(b) implies that if σ(·) > 0, then a

discontinuity of a CDF cannot take place while X is within Γo for ∀x ∈ I , i.e.,

irrespective of the initial value x. Hence, a mass point can exist only outside

Γo, in which case Γ must have a point component. However, we can further

show that Γ cannot have a point component. Suppose to the contrary that

{y} is a point component of Γ. Then both firms assign a non-zero probability

of exit when X hits y. However, in that case, one firm may decide never to

exit when X = y thereby increasing the probability of being the winner. Thus,

an equilibrium does not allow a point component of Γ, and so Γ = Γo. Thus,

we obtain the result that the CDFs of an MPE are continuous in time.

Next, recall that even if firm i anticipates that its rival will never exit

the market, it is not willing to exit before X goes below θ∗i . Hence, if firm

i expects its rival to exit in finite time with positive probability, then this

would, ceteris paribus, only decrease firm i’s incentive to exit. Consequently,

firm i always strictly prefers to remain in the market whenever X > θ∗i , which

implies Γ ⊆ (a, θ∗i ). To see that this inclusion is indeed an equality, suppose

that, for some θ < θ∗i , firm −i (and hence firm i) exits with positive probability

on (a, θ). Then because firm −i does not exit at any X > θ and its strategy

has no mass points, starting at θ∗i , firm i’s expected payoff from exiting at the

first time that X
θ∗i
t ≤ θ is strictly less than li by Lemma 4.1. Therefore, firm

i strictly prefers to exit at θ∗i , which contradicts the premise that Γ = (a, θ)

where θ < θ∗i .

Recall from Lemma 4.1 that if l1 < l2, then θ∗1 < θ∗2. Therefore, we have

the following immediate implication.

Theorem 4.1 Suppose that σ(·) > 0 and l1 < l2. Then this game admits no

mixed-strategy MPE.

While the assumptions that payoffs are deterministic and firms are sym-

metric may be a good approximation of a particular setting, in reality, payoffs
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are not set in stone and no firms are exactly alike. This theorem, together

with Proposition 4.1, shows that in this case, the game admits at most two

MPE, both in pure strategies.

Because the result holds irrespective of the degree of uncertainty (and

heterogeneity), it shows that mixed-strategy MPE are unstable to a natural

perturbation of the canonical model, and provides an equilibrium selection

argument for wars of attrition under complete information.

Finally, we point out that both ingredients are necessary to eliminate

mixed-strategy MPE. To highlight this point, in the following section and

in Appendix A, we characterize a mixed-strategy MPE for the case in which

firms are homogeneous and payoffs are deterministic, respectively.

Special Case: Homogeneous Firms (l1 = l2)

In this section, we consider the case in which the firms are homogeneous (i.e.,

l1 = l2), and we characterize the unique mixed-strategy MPE. It follows from

Lemmas 4.2 and 4.3 that if (G1, G2) constitutes a mixed-strategy MPE, then

each Gi must satisfy (4.8) on Γ = (a, θ∗1), where θ∗1 = θ∗2 is given in Lemma

4.1. Solving (4.8) subject to the boundary condition Gx
i (0) = 0 for every i and

x ∈ Γ yields

Gx
i (t) = 1− exp

[
−
ˆ t

0

1{Xx
s ∈Γ}(s)[rlj − π(Xx

s )]

w(Xx
s )− lj

ds

]
. (4.10)

Observe that Gx
i (t) is a CDF of stopping times because it is right-continuous

with left limits and non-decreasing in t. Moreover, its hazard rate depends

only on the state Xx
t , confirming that it is a Markov strategy. The following

Proposition shows that the strategy profile (G1, G2) = (Gx
1 , G

x
2)x∈I indeed

constitutes the unique mixed-strategy MPE.

Proposition 4.2 Suppose that σ(·) > 0 and l1 = l2. Then (G1, G2) =

(Gx
1 , G

x
2)x∈I , where Γ = (a, θ∗) and θ∗ = θ∗1 = θ∗2 constitutes a mixed-strategy

MPE.
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4.6 Concluding Remarks

It is well known that canonical war of attrition games under complete in-

formation admit equilibria in pure strategies, as well as in mixed strategies

(e.g., Tirole (1988), Levin (2004), and others). We study such a two-player

model and we show that if (i) the players’ payoffs during the “war phase” are

stochastic, and (ii) their exit payoffs are heterogeneous, then the game admits

only pure-strategy MPE. That is, any degree of Brownian uncertainty in the

players’ in-war payoffs, and any amount of heterogeneity in their exit payoffs

is sufficient to destabilize the mixed-strategy MPE. The main implication of

this result is that in contrast to much of the extant literature, it may be more

prudent to focus on the pure-strategy MPE of the game.

This paper opens several avenues for future research. First, the result

on non-existence of mixed-strategy MPE in conjunction with the fact that

the pure-strategy MPE are asymmetric, raises the question of equilibrium

selection. Second, the recent literature on wars of attrition has focused on

games with private information, such as Abreu and Gul (2000) who show

that in such a setting, there exists a unique Bayesian Nash equilibrium, which

entails costly fighting between the players. It is of interest to explore the

stability of that equilibrium.
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Appendix A

Appendix of Chapter 2

A.1 Mathematical Proofs

Proof of Proposition 2.1: We employ Theorem 3(A) of Alvarez (2001) to

prove this proposition. For convenience, we follow the convention of Alvarez

(2001) and define a function Π(p) = gF (p)/ψF (p). Our goal is to prove that

τF = inf{t > 0 : Pt ≥ θF} is the optimal stopping time. In order to prove it,

by virtue of Theorem 3(A) of Alvarez (2001), we only need to prove that gF (·)
is non-decreasing, that Π(·) attains a unique global interior maximum at θF ,

and that Π(·) is non-increasing for p > θF .

First, gF (·) is obviously an increasing function. Second, we can prove that

Π(·) attains a unique global interior maximum at θF . The first-order necessary

condition is given by

dΠ(p)

dp
=
ψF (p)g′F (p)− ψ′F (p)gF (p)

ψ2
F (p)

= 0 ,

which has a unique solution at p = θF , which can be shown after some algebra.

Furthermore,

d

dp
[ψF (p)g′F (p)− ψ′F (p)gF (p)] = ψF (p)g′′F (p)− ψ′′F (p)gF (p) = −ψ′′F (p)gF (p) .

Note that ψ′′F (p) > 0 for all p and that gF (θF ) = ψF (θF )g′F (θF )/ψ′F (θF ) > 0

from the first-order condition. Thus, −ψ′′F (θF )gF (θF ) < 0, which implies that

Π(·) attains a unique global interior maximum at θF . Lastly, we infer that

Π(·) is non-increasing for p > θF because −ψ′′F (p)gF (p) < 0 for all p > θF

which implies that dΠ(p)/dp < 0 for all p > θF .
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Proof of Lemma 2.1: The leader’s value function is

VL,τ (p) = Ep[

ˆ τ

0

µ(0)e−rtdt+

ˆ τ

0

σe−rtdB1
t + (R1(Pτ )− k)e−rτ ] ,

with the constraint τ ≤ τF . Here R1(·) denotes the expected return immedi-

ately after the first investment:

R1(p) = Ep[

ˆ τF

0

µ(L)e−rtdt+

ˆ τF

0

σe−rtdB1
t +

ˆ ∞
τF

µ(2)e−rtdt+

ˆ ∞
τF

σe−rtdB1
t ]

= Ep[µ(L) + e−rτFµL2]/r .

Here τF is the stopping time at which the follower invests. From the fact that

PτF = θF ,

Ep[e−rτFµL2] = Ep[Ep[e−rτFµL2|FτF ]] = [θFhL2 + (1− θF )`L2]Ep[e−rτF ] .

Let f(p) ≡ Ep[e−rτF ]. Then f(p) must satisfy AFf(p) = 0 for p ≤ θF and

the boundary condition f(θF ) = 1 (Oksendal (2003)). It is easy to verify that

f(p) = ψF (p)/ψF (θF ) for p ≤ θF .

Proof of Proposition 2.2: We first note that gL(θF ) > gF (θF ) > 0 due to

µ(F ) > µ(0), limp→0 gL(p) < 0 by Assumption 2.2, and gL(·) is strictly concave

on (0, θF ) by Assumption 2.1. Thus, there exists a unique pL ∈ (0, θF ) such

that gL(p) > 0 if and only if p > pL. Thus, we have

ALgL(p) = −rgL(p)

+
1

2rψF (θF )
[θFhL2 + (1− θF )`L2]

(
h(0)− `(0)

σ̃

)2

p2(1− p)2∂2
pψF (p) < 0

for p ∈ (pL, θF ) by the convexity of ψF (·) and Assumption 2.1. Moreover,

by using AFψF (p) = 0, we can obtain

ALgL(p) = −[phL1 + (1− p)`L1 − kr]

− [θFhL2 + (1− θF )`L2]
ψF (p)

ψF (θF )

[
1−

(
h(0)− `(0)

ĥ− ˆ̀

)2
]
,

from which we can see that ALgL(·) is convex on (0, θF ) by Assumption

2.4. Combining this with the fact limp→0ALgL(p) > 0, there must exist a
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unique pc ∈ (0, pL) such that ALgL(p) > 0 if and only if p < pc. By the

argument given in Chapter 10, Oksendal (2003) and Theorem 2 of Alvarez

(2001), the continuation region for this optimal stopping problem must be of

the form (0, θL) for some θL ∈ (pc, θF ]. Similarly in the proof of Proposition

2.1, we define Π(p) = gL(p)/ψL(p) and Π1(p) = ψL(p)g′L(p) − ψ′L(p)gL(p)

with Π′(p) = Π1(p)/ψ2
L(p), and apply Theorem 3(A) of Alvarez (2001) in the

following three possibilities:

(i) Suppose limp→θF g
′
L(p) ≥ 0 and Π1(θF ) < 0. Then, the strict concavity

of gL(·) implies that g′L(p) > 0 for all p ∈ (0, θF ) from which the first condition

of Theorem 3(A) of Alvarez (2001) is satisfied. In addition, gL(pL) = 0 implies

that Π1(pL) = ψL(pL)g′L(pL) > 0 and Π′1(p) = ψL(p)g′′L(p) − ψ′′L(p)gL(p) < 0

for all p ∈ (pL, θF ) because ψL(·) is convex on (0, θF ) and gL(p) > 0 if and

only if p > pL. Therefore, from Π1(θF ) < 0, we can see that there exists a

unique θL ∈ (pL, θF ) at which Π(·) attains its global maximum with Π′(θL) =

Π1(θL) = 0 and the second condition of Theorem 3(A) holds. Furthermore,

Π′1(p) < 0 for all p ∈ (pL, θF ) implies that Π′1(p) < 0 for all p ∈ (θL, θF ), which

completes the sufficiency of the optimality of θL by Alvarez (2001).

(ii) Suppose limp→θF g
′
L(p) ≥ 0 and Π1(θF ) ≥ 0. The only difference is

Π1(p) > 0 for all p ∈ (pL, θF ) because of Π1(pL) > 0 and Π′1(p) < 0 for

all p ∈ (pL, θF ). It follows that Π(·) is strictly increasing within the interval

(pL, θF ), and its maximum is attained at the boundary θF . This implies that

the value function VL,τθ(p; θ) is maximized with θ = θF , and thus, we can

conclude that the optimal policy is to invest at τL = inf{t > 0 : Pt ≥ θF}.
(iii) Suppose limx↑θF g

′
L(x) < 0. Then, from the strict concavity of gL(·),

there exists a unique pb < θF at which gL(·) is maximized with g′L(pb) = 0,

and hence, gL(·) is increasing if and only if p < pb. This implies that Π(p) =

gL(p)/ψL(p) is decreasing for all p > pb, and thus, the maximum of Π(·) on

(0, pb) is its global maximum on (0, θF ). Moreover, Π1(pb) = ψL(pb)g
′
L(pb) −

ψ′L(pb)gL(pb) = −ψ′L(pb)gL(pb) < 0 because gL(pb) ≥ gL(θF ) > 0. Therefore,

we can apply the arguments used in the case (i) to the sub-interval (0, pb)

instead of (0, θF ), and we can show the existence of the optimal threshold

θL < pb < θF with Π1(θL) = 0, which completes the proof.

Proof of Proposition 2.3: We first define D(p) ≡ VL,0(p) − V ∗F (p). From

(2.6), (2.8), and (2.9), we find that D(p) is either convex or concave within

the interval (0, θF ). Furthermore, we find D(0) = (`(L)− `(F ))/r − k < 0 by
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Assumption 2.3, and D(θF ) = 0. We also obtain

D′(p) =
1

r
[h(L)− h(F )− `(L) + `(F )]

+
ψ′F (p)

ψF (θF )
{k − 1

r
[θF (h(L)− h(F )) + (1− θF )(`(L)− `(F ))]} . (A.1)

Under Assumptions 2.1 and 2.2, we can prove that limp↑θF D
′(p) < 0 always

holds. From (A.1) and (2.3),

lim
p↑θF

D′(p) = − γF − 1

2(1− θF )

[
h(L)− h(F )

r
− k
]

+
γF + 1

2θF

[
k − `(L)− `(F )

r

]
,

(A.2)

can be derived. In addition, from (2.5), we find that (A.2) is negative if and

only if the following value is negative:

−h(L)− h(F )− kr
h(2)− h(F )− kr +

kr − `(L) + `(F )

kr − `(2) + `(F )
(A.3)

By Assumptions 2.1 and 2.2, we have h(L)−h(F )−kr > h(2)−h(F )−kr > 0,

and thus, the first term of (A.3) is always negative, and its absolute value is

larger than one. By Assumption 2.2, on the other hand, we have kr − `(2) +

`(F ) > 0. Hence, if kr − `(L) + `(F ) < 0, then the second term in (A.3)

is negative in which case (A.3) is negative. If kr − `(L) + `(F ) ≥ 0, then

by µ(F ) < µ(2) < µ(L) from Assumption 2.1, we find kr − `(2) + `(F ) >

kr − `(L) + `(F ) ≥ 0,which implies that the second term in (A.3) is less than

one. Since the first term of (A.3) is less than−1, we can have limp↑θF D
′(p) < 0.

Next, we prove that, if limp↑θF D
′(p) < 0, then there exists θc ∈ (0, θF )

such that D(p) < 0 for p < θc and D(p) > 0 for p ∈ (θc, θF ). Suppose first

that k− 1
r
[θF (h(L)−h(F )) + (1− θF )(`(L)− `(F ))] ≥ 0. Then D(p) is convex

on (0, θF ). The convexity of D(·) with D(0) < 0 and D(θF ) = 0 implies

that limp↑θF D
′(p) > 0 must be satisfied, which contradicts our finding above.

Therefore, we should have k− 1
r
[θF (h(L)−h(F )) + (1− θF )(`(L)− `(F ))] < 0

so that D(p) is strictly concave on (0, θF ). Then, from the concavity of D(·)
with D(0) < 0 and D(θF ) = 0, it follows that D(p) changes its sign exactly

once at some θc ∈ (0, θF ).

Proof of Theorem 2.1: First, note that [θF , 1) is the region of simultane-

ous investment in the sense that the best response is to invest immediately
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whenever Pt ∈ [θF , 1) if the opponent’s strategy is to invest immediately.

Second, we consider the region [θc, θF ). Suppose firm 2’s strategy is to

preemptively invest whenever Pt ∈ [θc, θF ), which means firm 2 invests imme-

diately if firm 1 has not invested yet. If the current posterior is p ∈ [θc, θF ),

firm 1 can either wait or take a preemption policy. If firm 1 waits, firm 2

will preemptively invest, in which case firm 1 receives VF (p). If firm 1 takes

a preemption policy, then there is 50% chance that it will be the leader or

the follower, so its value function is [VL,0(p) + VF (p)]/2 > VF (p). Thus, firm

1’s best response is to take a preemption policy in [θc, θF ). We conclude that

there are pure strategy MPEs in which [θc, θF ) is the preemption region and

[θF , 1) is the simultaneous investment region.

(i) Suppose that θL ≥ θc. We fix firm 2’s strategy as prescribed in (i) of the

Proposition. From the proof of Proposition 2.2, note that limp→0ALgL(p) > 0

and that there exists a pc such that ALgL(p) > 0 for p ∈ (0, pc) and ALgL(p) <

0 for p ∈ (pc, θF ). Thus, by Theorem 2 of Alvarez (2001), we find that firm

1’s best response is to have the continuation region of the form (0, θ) for some

θ ≤ θc and invest immediately for [θ, θc]. Let Vθ(p) be firm 1’s value function

associated with the continuation region (0, θ). From the fact that θL ≥ θc, it

is straightforward to show that ∂Vθ(p)/∂θ > 0 for all θ ≤ θc, so the optimal

choice of θ is θc.

(ii) Suppose that θL < θc. We fix firm 2’s strategy as the follower’s strat-

egy prescribed in (ii) of the Proposition. By Proposition 2.2, firm 1’s best

response is to take (0, θL) as the continuation region, and [θL, θc] as the region

of immediate investment.

Proof of Proposition 2.4: If p ≥ θ, then the proposition trivially follows.

Suppose p < θ. We note that

Pp[τθ <∞] = lim
r→0

Ep[e−rτθ ] = lim
r→0

ψL(p)

ψL(θ)
=
p

θ
,

from the dependence of ψL(·) on r through γL.

Ep[τθ1{τθ<∞}] = lim
r→0

∂

∂r
Ep[e−rτθ ] =

2σ̃2p

[h(0)− `(0)]2θ
ln

[
θ(1− p)
(1− θ)p

]
.

Finally, Ep[τθ|τθ <∞] = Ep[τθ1{τθ<∞}]/Pp[τθ <∞].
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Proof of Proposition 2.5: Recall from the proof of Proposition 2.2 that

Π1(p) = ψL(p)g′L(p)− ψ′L(p)gL(p)

= − 1

2r

ψL(p)

p(1− p)
[
(γL − 1)(hL1 − rk)p+ (γL + 1)(`L1 − rk)(1− p)

+ (γL − γF )(θFhL2 + (1− θF )`L2)
ψF (p)

ψF (θF )

]
.

We can also obtain a similar algebraic expression for Π′1(·) and find a

function B(p) with B(0) < 0 such that Π′1(p) < 0 if and only if B(p) > 0. In

addition, if µ(L) > µ(2), B(·) is concave with B(θF ) > 0, and if µ(L) < µ(2),

then B(·) is increasing in (0, θF ). Thus, there must exist a unique ps ∈ (0, θF )

such that Π′1(p) > 0 if and only if p < ps for either µ(L) > µ(2) or µ(L) < µ(2).

Define Q(p) ≡ (γL − 1)(hL1 − rk)p + (γL + 1)(`L1 − rk)(1 − p) + (γL −
γF )(θFhL2 + (1− θF )`L2)ψF (p)/ψF (θF ). Then, Π1(p) < 0 if and only if Q(p) >

0. However,

Q(θB) = (γL − 1)(hL1 − rk)θB + (γL + 1)(`L1 − rk)(1− θB)

+ (γL − γF )(θFhL2 + (1− θF )`L2)
ψF (θB)

ψF (θF )

= (γL − γF )(θFhL2 + (1− θF )`L2)
ψF (θB)

ψF (θF )
,

which means Q(θB) > 0 if and only if µ(2) > µ(L). Thus, Q(θL) = Π1(θL) = 0

completes the proof.
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Appendix B

Appendix of Chapter 3

B.1 Mathematical Preliminaries

In this Appendix, we develop some preliminary facts necessary for analyzing

the game of infinite investment opportunities. Consider a pure strategy profile

(Ti,Tj) where the strategy for stage n is represented by H(τ
(n)
i ), i.e., G

(n)
i

jumps at τ
(n)
i from 0 to 11. We then express firm i’s expected payoff under

(Ti,Tj) as

Ui(x; Ti,Tj) = Φi(x;H(τ
(1)
i ), H(τ

(1)
j ))

+
∞∑
n=2

Ex
[(n−1∏

m=1

e−r(τ
(m)
i ∧τ (m)

j )
)

Φi(ζ;H(τ
(n)
i ), H(τ

(n)
j ))

]
, (B.1)

where, for any z ∈ I ,

Φi(z;H(τ
(n)
i ), H(τ

(n)
j )) := Ez

[ˆ τ
(n)
i ∧τ

(n)
j

0

π(Xt)e
−rtdt

− (1{τ (n)
i <τ

(n)
j }

ki + 1{τ (n)
i =τ

(n)
j }

1

2
ki)e

−r(τ (n)
i ∧τ

(n)
j )

]
.

(B.2)

Note that Ui(x; Ti,Tj) is well-defined due to the absolute integrability condi-

tion (3.2). The function Φi(·; ·, ·) is firm i’s expected cumulative discounted

profit accrued during the given stage.

We first establish Lemmas B.1 and B.2, which directly lead to Lemma 3.1.

For some Tj ∈ S∞, we define U∗i (x; Tj) := supTi
Ui(x; Ti,Tj).

1Although we develop Lemmas B.1 – B.3 only with pure strategy profiles for the sake of
expositions, the same results straightforwardly generalize to mixed strategy profiles as well.
See Lemma B.5 for details.
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Lemma B.1 U∗i (x; Tj) satisfies

U∗i (x; Tj) = sup
τ

{
Φi(x;H(τ), H(τ

(1)
j )) + Ex[e−r(τ∧τ

(1)
j )U∗i (ζ; Tj)]

}
. (B.3)

Equation (B.3) is called the optimality equation (Ross, 1995).

Proof of Lemma B.1: First, note that the opponent’s strategy Tj can be

seen as another state variable on which firm i’s strategy depends. Because Tj ∈
S∞, each H(τ

(n)
j ) has an identical distribution for each stage n. Therefore,

given Tj ∈ S∞, the problem of finding firm i’s best response reduces to one of

finding the optimal policy for a single decision maker. Hence, equation (B.3)

holds by the arguments provided by Ross (1995, p.31).

Lemma B.2 For Tj ∈ S∞, we define T∗i = {H(τ
∗(n)
i )}∞n=1 ∈ S∞ where τ

∗(n)
i

solves the right-hand-side of (B.3). Then

Ui(x; T∗i ,Tj) = sup
Ti

Ui(x; Ti,Tj) = U∗i (x; Tj) .

Proof of Lemma B.2: For notational convenience, we denote τ̂ (n) := τ
∗(n)
i

for all n ≥ 1. Because (T∗i ,Tj) ∈ S∞ × S∞, we have

Ui(x; T∗i ,Tj) = Φi(x;H(τ̂ (1)), H(τ
(1)
j )) + Ex

[
e−r(τ̂

(1)∧τ (1)
j )Ui(ζ; T∗i ,Tj)

]
.

(B.4)

Moreover, we know from Lemma B.1 that

U∗i (x; Tj) = Φi(x;H(τ̂ (1)), H(τ
(1)
j )) + Ex

[
e−r(τ̂

(1)∧τ (1)
j )U∗i (ζ; Tj)

]
. (B.5)

Subtracting (B.5) from (B.4), we obtain

Ui(x; T∗i ,Tj)− U∗i (x; Tj) = Ex[e−r(τ̂ (1)∧τ (1)
j )][Ui(ζ; T∗i ,Tj)− U∗i (ζ; Tj)] ,

(B.6)

for all x ∈ I . Particularly, this equation holds for x = ζ, and hence we have

Ui(ζ; T∗i ,Tj)− U∗i (ζ; Tj) = Eζ [e−r(τ̂ (1)∧τ (1)
j )][Ui(ζ; T∗i ,Tj)− U∗i (ζ; Tj)] .

(B.7)
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Since τ̂ (1)∧τ (1)
j > 0 (a.s.) if the current state value is ζ, we have Eζ [e−r(τ̂ (1)∧τ (1)

j )] <

1 in (B.7), which implies Ui(ζ; T∗i ,Tj) − U∗i (ζ; Tj) = 0. Inserting this result

in (B.6) completes the proof.

Lemmas B.1 and B.2 assert that there is a best response in S∞ to the

opponent’s strategy in S∞. The following two lemmas establish the method

of obtaining the best response payoff functions.

Lemma B.3 U∗i (x; Tj) is the unique solution to the optimality equation (B.3).

Proof of Lemma B.3: Suppose that Ũi(·) is a function on I that satisfies the

optimality equation (B.3). We let τ̃ denote the stopping time with which the

corresponding supremum is attained. Because U∗i (x; Tj) also satisfies (B.3),

by using similar arguments to Ross (1995, p.34), we obtain

Ũi(x)− U∗i (x; Tj) = Ex[e−r(τ̃∧τ
(1)
j )][Ũi(ζ)− U∗i (ζ; Tj)] , (B.8)

for all x ∈ I . Setting x = ζ in (B.8) and reversing the roles of Ũi(·) and

U∗i (·; Tj), the desired result follows from the same arguments as in the proof

of Lemma B.2 and Ross (1995, p.34).

Lemma B.4 For any Tj ∈ S∞, a strategy Ti ∈ S∞ is a best response to Tj

if

Φi(x;H(τ
(1)
i ), H(τ

(1)
j )) + Ex[e−r(τ

(1)
i ∧τ

(1)
j )Ui(ζ; Ti,Tj)]

= sup
τ

{
Φi(x;H(τ), H(τ

(1)
j )) + Ex[e−r(τ∧τ

(1)
j )Ui(ζ; Ti,Tj)]

}
.

Proof of Lemma B.4: For (Ti,Tj) ∈ S∞ × S∞, we have Ui(x; Ti,Tj) =

Φi(x;H(τ
(1)
i ), H(τ

(1)
j )) + Ex[e−r(τ

(1)
i ∧τ

(1)
j )Ui(ζ; Ti,Tj)]. Thus, this lemma is a

direct consequence of Lemma B.3.

The following lemma establishes that the statements of Lemmas B.1 – B.3

carry over to any mixed strategy profile (Gi,Gj).

Lemma B.5 Firm i’s expected payoff associated Ui(x; Gi,Gj) with (Gi,Gj)
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is given by

Φ̃i(x;G
(1)
i , G

(1)
j )

+
∞∑
n=2

Ex
[˙ ∞

0

{(n−1∏
m=1

e−r(s
(m)
i ∧s(m)

j )
)
Φ̃i(ζ;G

(n)
i , G

(n)
j )
}

n−1∏
m=1

(
dG

(m)
i (s

(m)
i )dG

(m)
j (s

(m)
j )

)]
,

where, for any z ∈ I and k ≥ 1, Φ̃i(z;G
(n)
i , G

(n)
j ) is defined as

Ez
[¨ ∞

0

{ˆ s
(n)
i ∧s

(n)
j

0

π(Xt)e
−rtdt

− (1{s(n)
i <s

(n)
j }

ki + 1{s(n)
i =s

(n)
j }

1

2
ki)e

−r(s(n)
i ∧s

(n)
j )
}
dG

(n)
i (s

(n)
i )dG

(n)
j (s

(n)
j )

]
.

Note that Ui(x; Gi,Gj) and Φ̃i(z;G
(n)
i , G

(n)
j ) are mixed strategy profile analogs

of (B.1) and (B.2).

Proof of Lemma B.5: It directly follows from the definition of Ui(x; Gi,Gj)

and a series of algebra.

For any strategy profile (Gi,Gj) ∈ S∞ × S∞, we have Vi(x;Gi, Gj) =

Ui(x; Gi,Gj) where Vi(·; ·, ·) is given in (3.4). For the remainder of the Ap-

pendices, therefore, we write the arguments with Vi(·; ·, ·) and (Gi, Gj) unless

otherwise specified. The following lemma can be used to obtain the optimal

stopping time τ ∗i in Proposition 3.1.

Lemma B.6 Consider a pure strategy H(τ θ) where τ θ := inf{t ≥ 0 : Xt ≤ θ}
for some θ < ζ and ∀n ≥ 1. Then firm i’s expected payoff under the strategy

profile (Gi, Gj) = (H(τ θ), H(∞)) is given by

Vi(x;H(τ θ), H(∞)) = Ex
[ˆ τθ

0

π(Xt)e
−rtdt+ [Vi(ζ;H(τ θ), H(∞))− ki]e−rτ

θ

]
=

{
(Rrπ)(x) + βi(θ)φ(x) for x ≥ θ ,

Vi(ζ;H(τ θ), H(∞))− ki for x < θ ,

where βi(·) is defined in (3.7).

Proof of Lemma B.6: First, we obtain the following from the definition in
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(B.1):

Vi(x;H(τ θ), H(∞))

= Φi(x;H(τ θ), H(∞)) +
∞∑
n=2

Ex
[(n−1∏

m=1

e−rτ
θ
)

Φi(ζ;H(τ θ), H(∞))

]

= Ex
[ˆ τθ

0

π(Xt)e
−rtdt+ [Vi(ζ;H(τ θ), H(∞))− ki]e−rτ

θ

]
, (B.9)

for all x ∈ I . Using Ex[e−rτθ ] = φ(x)/φ(θ) for x > θ, we can solve (B.9) for

x = ζ to obtain the relation Vi(ζ;H(τ θ), H(∞))−ki = [φ(θ)li−φ(ζ)(Rrπ)(θ)]/[φ(θ)−
φ(ζ)]. Substituting this back in (B.9) completes the proof.

When examining a mixed strategy profile G = (Gi, Gj), it is useful to define

the following stochastic process:

SGi (t;Gj) :=

ˆ t−

0

F Gi (s)dGj(s) +MG
i (t)∆Gj(t) + LGi (t)[1−Gj(t)] , (B.10)

where

LGi (t) : =

ˆ t

0

π(Xs)e
−rsds+ lGi e

−rt, F Gi (t) :=

ˆ t

0

π(Xs)e
−rsds+ fGi e

−rt,

(B.11)

andMG
i (t) :=

1

2
[LGi (t) + F Gi (t)].

Here, Ex[LGi (t)] and Ex[F Gi (t)] are respectively firm i’s expected payoffs associ-

ated with becoming the leader and the follower at time t for the current stage,

given that G is employed for every subsequent stage. Thus, Ex[SGi (t;Gj)] is

firm i’s expected payoff associated with investing at time t given Gj for the

current stage and given that G is the strategy profile employed by the firms for

every subsequent stage. Observe that Vi(·;G) = Vi(·;Gi, Gj), given in (3.4),

can be alternatively written as

Vi(x;Gi, Gj) = Ex
[ˆ ∞

0

SGi (t;Gj)dGi(t)

]
. (B.12)

The following lemma will be used to characterize best responses in mixed

strategies. Here we use the convention that A denotes the closure of a set A.
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Lemma B.7 Given a strategy profile G = (Gi, Gj), Gi is a best response to

Gj if and only if

Ex[SGi (τ̄ ;Gj)] = sup
τ

Ex[SGi (τ ;Gj)] , (B.13)

for all x ∈ I , whenever Xx
τ̄ ∈ supp(Gi).

Proof of Lemma B.7: This lemma is a direct consequence of the inequality

Vi(x;Gi, Gj) ≤ supτ Ex[SGi (τ ;Gj)] obtained from Lemma 3.1. in Steg (2015).

B.2 Mathematical Proofs

Proof of Lemma 3.1: It directly follows from Lemmas B.1 and B.2.

Proof of Proposition 3.1: It directly follows from Theorem 3 of Alvarez

(2001) and Lemma B.6.

Proof of Lemma 3.2: Note first that, for each i ∈ {1, 2}, θi is defined as a

unique maximizer of βi(·) given in (3.7) with (i) β
′
i(θi) = 0, and (ii) β

′
i(x) > 0

for x < θi and β
′
i(x) < 0 for x > θi. Recalling li = (Rrπ)(ζ) − ki and

differentiating (3.7) yields β
′
1(x) − β ′2(x) = φ

′
(x)[k1 − k2]/[φ(x) − φ(ζ)]2 < 0

where the inequality follows from φ
′
(·) < 0 and k1 > k2. Thus, we have

β
′
1(θ2) < β

′
2(θ2) = 0, which implies that θ2 > θ1 from the property (ii) of β1(·)

described above.

Proof of Proposition 3.2: By the definition of τ ∗2 , it is straightforward to

verify that H(τ ∗2 ) is firm 2’s best response to H(∞). Thus, it only remains

to prove that H(∞) is firm 1’s best response to H(τ ∗2 ). From Lemma B.4, we

only need to show the following:

Φ1(x;H(∞), H(τ ∗2 )) + Ex[e−rτ∗2 V1(ζ;H(∞), H(τ ∗2 ))]

= sup
τ

{
Φ1(x;H(τ), H(τ ∗2 )) + Ex[e−r(τ∧τ∗2 )V1(ζ;H(∞), H(τ ∗2 ))]

}
.

where τ ∗i is given in (3.8). Then the goal is to find τ that solves the maximiza-

tion problem

sup
τ

{
Φ1(x;H(τ), H(τ ∗2 )) + Ex[e−r(τ∧τ∗2 )V1(ζ;H(∞), H(τ ∗2 ))]

}
. (B.14)
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First, consider τθ := inf{t ≥ 0 : Xt ≤ θ} for some θ > θ2. Then we have

V1(ζ;H(∞), H(τ ∗2 )) > V1(ζ;H(τ ∗2 ), H(∞))

> V1(ζ;H(τθ), H(∞)) = V1(ζ;H(τθ), H(τ ∗2 )) . (B.15)

The first inequality holds because the value of becoming the follower is always

greater than that of becoming the leader. The second inequality comes from

Lemma B.6, Assumption 3.1, and θ > θ2 > θ1. The equality holds because

of θ > θ2. We now claim that τθ cannot be a solution to (B.14). Towards a

contradiction, suppose that τθ is a solution. Then it implies that employing

H(τθ) for all the stages n must be at least not worse than employing H(∞)

for all stages, which means that V1(ζ;H(τθ), H(τ ∗2 )) ≥ V1(ζ;H(∞), H(τ ∗2 )).

However, this contradicts the inequality (B.15).

Next, we show that any τθ with θ ≤ θ2 cannot be a solution to (B.14),

either. For x ≤ θ2, it is always better to wait for an instant to invest than to

invest immediately because fGi > mGi . Therefore, ∞ is the solution to (B.14)

as desired.

Proof of Proposition 3.3: First, we define κp ≡ κp(k2) > 0 as the solution

to

βF2(θ2 − κp) = β2(θ2) , (B.16)

where β2(·) is given in (3.7) and βF2(θ) := [f2 − (Rrπ)(θ)]/[φ(θ)− φ(ζ)].

We claim that κp is unique if it exists for two reasons: (1) βF2(θ) > β2(θ)

for ∀θ ∈ I because f2 > l2. (2) β
′
F2(θ) > β

′
2(θ) for ∀θ < θ2 because

β
′

F2(θ) =

{
−(Rrπ)

′
(θ)[φ(θ)− φ(ζ)]− φ′(θ)[f2 − (Rrπ)(θ)]

}
/[φ(θ)− φ(ζ)]2

>

{
−(Rrπ)

′
(θ)[φ(θ)− φ(ζ)]− φ′(θ)[l2 − (Rrπ)(θ)]

}
/[φ(θ)− φ(ζ)]2

= β
′

2(θ) > 0 .

Here the first inequality follows because f2 > l2, and the last inequality follows

from Assumption 3.1. If κp that satisfies (B.16) does not exist, we set κp =∞
as a convention.

We now show that if θ2−θ1 < κp, then V2(ζ;H(τ ∗1 ), H(∞)) > V2(ζ;H(∞), H(τ ∗2 )).
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Note that θ1 > θ2 − κp implies that βF2(θ1) > βF2(θ2 − κp) = β2(θ2) because

β
′
F2(θ) > 0 for ∀θ < θ2 and (B.16). Thus, we obtain

V2(ζ;H(τ ∗1 ), H(∞)) = (Rrπ)(ζ) + φ(ζ)βF2(θ1)

> (Rrπ)(ζ) + φ(ζ)β2(θ2) = V2(ζ;H(∞), H(τ ∗2 )) ,

where the equalities follow from Lemma B.6.

Lastly, we only need to prove that H(∞) is firm 2’s best response to H(τ ∗1 )

if V2(ζ;H(τ ∗1 ), H(∞)) > V2(ζ;H(∞), H(τ ∗2 )). The rest of the proof proceeds

just as the proof of Proposition 3.2, and it will be omitted.

Proof of Proposition 3.4(a): First, we prove that G = (G1, G2) with

supp(Gi) = (−∞, θ2] is an equilibrium with q2 = q∗2. Note that if k1 − k2 <

κ(k2) := k2φ(ζ)/[φ(θ2)− φ(ζ)], then we have q∗2 < 1 so that G is a valid mixed

strategy profile. Also, solving the equation V1(ζ;G) = (Rrπ)(ζ)+β1(θ2; q2)φ(ζ)

for V1(ζ;G)− k1 yields

V1(ζ;G)− k1 =
φ(θ2)[(Rrπ)(ζ)− k1]− φ(ζ)[(Rrπ)(θ2)− k1q

∗
2]

φ(θ2)− φ(ζ)

=
φ(θ2)[(Rrπ)(ζ)− k2]− φ(ζ)(Rrπ)(θ2)

φ(θ2)− φ(ζ)
= V2(ζ;G)− k2 .

Then because x2 = θ2 where xi is given by π(xi) = r[Vi(ζ;G)− ki], i ∈ {1, 2},
it follows from the strict monotonicity of π(·) that x1 = θ2. Moreover, for any

time t with Xt < θ2, Gj(·) is given as

dGj(t)

[1−Gj(t)]
=

[rlGi − π(Xt)]dt

ki
=

−dLGi (t)

[F Gi (t)− LGi (t)]
,

where we use the definitions of LGi (t) and F Gi (t) in (B.11) for the last equality.

Then because Gj(t) and LGi (t) are both monotone and continuous for any

Xt < θ2, we can use the arguments in the proof of Lemma 3 in Hendricks

et al. (1988) to obtain SGi (u;Gj) − SGi (v;Gj) = 0 whenever Xu < Xv < θ2.

Now, because xi = θ2 implies that arg sup{τ : LGi (τ)} = τ ∗2 for i ∈ {1, 2}, we

obtain SGi (t;Gj) = LGi (t) < LGi (τ ∗2 ) < q∗2F
G
i (τ ∗2 )+(1−q∗2)LGi (τ ∗2 ) for any Xt > θ2

where we use the facts F Gi (·) > LGi (·) and limt↑τ∗2 Gj(t) = 0. Hence, using the

facts that SG1 (τ ∗+2 ;G2) = q∗2F
G
1 (τ ∗2 )+(1−q∗2)LG1 (τ ∗2 ) and SG2 (τ ∗+2 ;G1) = LG2 (τ ∗2 ),

we obtain SGi (t;Gj) = supτ S
G
i (τ ;Gj), i ∈ {1, 2} if and only if Xt < θ2, which
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proves that the given strategy profile is an equilibrium.

Next, we show that G = (G1, G2) with supp(Gi) = (−∞, θ2) is an equi-

librium with q2(≥ q∗2) close to 1. Note once again that if k1 − k2 < κ(k2),

then we have q∗2 < 1 so that high enough q2 implies x1 > θ2. Hence, it

is sufficient to prove that SG1 (t1;G2) < SG1 (τ ∗+2 ;G2) where t1 := inf{t ≥
0 : Xt ≤ x1}. Towards a contradiction, set X0 = ζ and suppose that

SG1 (t1;G2) ≥ SG1 (τ ∗+2 ;G2). Then because V1(ζ;G) = SG1 (τ ∗+2 ;G2), we can

obtain V1(ζ;H(∞), H(τ ∗2 )) − V1(ζ;G) = (1 − q2)k1e
−rτ∗2 /(1 − e−rτ

∗
2 ). Thus,

for any given ε > 0, we can find δ > 0 such that 1 − q2 < δ implies

V1(ζ;H(∞), H(τ ∗2 )) − V1(ζ;G) < ε. Also, because x1 > θ2, we should have

SG1 (t1;G2) = LG1 (t1). Thus, our assumption SG1 (t1;G2) ≥ SG1 (τ ∗+2 ;G2) implies

that firm 1 would be no worse by employing H(t1) in every stage than playing

G1. Combining all, we obtain

V1(ζ;H(t1), H(∞)) = V1(ζ;H(t1), G2) ≥ V1(ζ;G) = V1(ζ;H(∞), H(τ ∗2 ))− ε .

Letting ε→ 0 yields a contradiction to (B.15). This completes the proof.

Proof of Proposition 3.4(b): Set κp(k2) as the solution to (B.16) in

the proof of Proposition 3.3 and assume that k1 − k2 < κp(k2). First, define

t2 := inf{t ≥ 0 : Xt ≤ x2} where x2 satisfies π(x2) = r[V2(ζ;G) − k2], and

observe that

V2(ζ;H(∞), H(t2)) = (Rrπ)(ζ) + β2(x2)φ(ζ)

< (Rrπ)(ζ) + β2(θ2)φ(ζ)

< (Rrπ)(ζ) + βF2(θ1)φ(ζ) = V2(ζ;H(τ ∗1 ), H(∞)) .

(B.17)

Here the first inequality follows from Assumption 3.1, and the second in-

equality holds because k1 − k2 < κp(k2). Now we show that SG2 (t2;G1) <

SG2 (τ ∗+1 ;G1). Towards a contradiction, setX0 = ζ and suppose that SG2 (t2;G1) ≥
SG2 (τ ∗+1 ;G1). Then because V2(ζ;G) = SG2 (τ ∗+1 ;G2), we can obtain

V2(ζ;H(τ ∗1 ), H(∞))− V2(ζ;G) = (1− q1)k2e
−rτ∗1 /(1− e−rτ∗1 ) .

Thus, for any given ε > 0, we can find δ > 0 such that 1 − q1 < δ implies

V2(ζ;H(τ ∗1 ), H(∞))− V2(ζ;G) < ε. Also, because x2(≥ θ2) increases in q1 and
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θ2 > θ1, we have x2 > θ1, i.e., t2 < τ ∗1 , and thus it follows that SG2 (t2;G1) =

LG2 (t2). Then because our assumption SG2 (t2;G1) ≥ SG2 (τ ∗+1 ;G1) implies that

firm 2 would be no worse by employing H(t2) in every stage than playing G2,

we must obtain

V2(ζ;H(∞), H(t2)) = V2(ζ;G1, H(t2)) ≥ V2(ζ;G) = V2(ζ;H(τ ∗1 ), H(∞))− ε ,

where letting ε → 0 results in a contradiction to (B.17). This completes the

proof.

Proof of Proposition 3.5: Assume that G is a properly mixed strategy

equilibrium. We define θ̃i as the unique solution to the equation

π(θ̃i) = rlGi ,

and define θ = min{θ̃1, θ̃2}. We also let τθ denote the hitting time of (−∞, θ).
Without loss of generality, we assume that θ = θ̃1 ≤ θ̃2. (The case of θ =

θ̃2 ≤ θ̃1 can be proved in exactly the same way.) We prove the proposition

by proving the following three claims: (i) Firm i never invests when Xt > θ̃i

in equilibrium. (ii) For all t > τθ such that Xt < θ, each firm i invests with

an arrival rate of λi(Xt). (iii) When Xt ∈ (θ̃1, θ̃2], firm 2 never invests. In

particular, q2 = 0.

(i) At some time t such that Xt > θ̃i, suppose that the set of firm i’s best

responses (one of the constituents of the mixed strategy) includes immediate

investment so that its equilibrium payoff is Vi(Xt;G) = lGi . Below we prove that

firm i can improve its payoff by investing at time t + dt, i.e., an infinitesimal

time dt later.

First, suppose that firm j’s strategy is to invest in the time interval (t, t+dt)

with probability pj ∈ (0, 1] such as when firm j’s CDF is discontinuous within

the time interval (t, t+ dt). Then firm i’s payoff from investing at t+ dt is

pjf
G
i + (1− pj)lGi +O(dt) > lGi .

Thus, it contradicts the assumption that immediate investment is a constituent

of the mixed strategy for firm i.

Second, suppose that firm j’s strategy is to invest in the time interval

(t, t+ dt) with probability λjdt+O(dt2) for some positive constant λj such as
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when firm j’s CDF is continuously increasing within the time interval (t, t+dt).

Then firm i’s payoff from investing at t+ dt is

π(Xt)dt+ fGi λjdt+ (1− λjdt)(1− rdt)Vi(Xt;G) +O(dt2)

= lGi + (π(Xt)− rlGi )dt+ (fGi − lGi )λjdt+O(dt2) .

Because π(Xt) > rlGi and fGi > lGi , the expression above is larger than lGi . This

contradicts the assumption that immediate investment is a constituent of the

mixed strategy for firm i. We conclude that firm i’s best response is to never

invest whenever Xt > θ̃i (or equivalently, when t < τθ.)

(ii) Recall that we assume that the game begins with the initial condition

X0 = ζ. Suppose t0 > τθ so that X0 < θ. At time t0, we define for t > t0

Li(t) = ert0LGi (t) , Fi(t) = ert0F Gi (t) ,

where LGi (·) and F Gi (·) are defined in (B.11). Note that Li(t) and Fi(t) are the

payoffs to the leader and the follower at time t0 when investment is anticipated

to be made at time t. Note also that Fi(t) > Li(t). Furthermore, Li(t) is

decreasing in t for all t > t0 because π(Xt) < lGi . Hence, we can apply Theorem

3 of Hendricks et al. (1988) and conclude that the only possible mixed strategy

equilibria are the ones in which each firm i invests with an arrival rate of λi(Xt)

given by (3.9).

(iii) From claim (i), we already know that firm 1 does not invest at all when

Xt ∈ (θ̃1, θ̃2]. Firm 2’s payoff V2(x;G) obviously always satisfies V2(x;G) ≥ lG2 ;

furthermore,

AV2(x;G) = µ(x)∂xV2(x;G)− rV2(x;G) + π(x) = 0

whenever V2(x;G) > lG2 and x ∈ (θ̃1, θ̃2] because it is suboptimal to invest when

V2(Xt;G) > lG2 . We note that rV2(x;G)− π(x) ≥ rlG2 − π(x) > 0 for all x < θ̃2,

so ∂xV2(x;G) < 0 whenever V2(Xt;G) > lG2 .

Suppose that one of firm 2’s best responses (one of the constituents of the

mixed strategy) under the equilibrium G is to wait until the hitting time of

some point y < θ̃2 and invest when Xt = y. By the argument above, we have

V2(x;G) ≤ lG2 for all x < y; since V2(x;G) < lG2 contradicts the assumption

that G is an equilibrium, we conclude that V2(x;G) = lG2 for all x < y. It
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also means that V2(x;G) can be achieved by investing at the stopping time

τy = inf{t ≥ 0 : Xt ≤ y}. However, because π(x) < rlG2 for all x < θ̃2, we

have LGi (τθ̃2) > LGi (τy) where τθ̃2 = inf{t ≥ 0 : Xt ≤ θ̃2} is the hitting time of

(−∞, θ̃2]; this can be verified because dLGi (t) = [π(Xt)−rlGi ]e−rtdt. Therefore,

we conclude that firm 2 never invests when Xt ∈ (θ̃1, θ̃2].

From (i), (ii), and (iii), we conclude that the only possible forms of mixed

strategy SPE are the ones given in Proposition 3.4.

Proof of Theorem 3.1: We prove this theorem in two steps: (i) Prove

that G∗ is an equilibrium, and (ii) prove that G∗ is the only equilibrium in E .

(i) For notational simplicity, we write G∗ = G = (G1, G2) and drop the

asterisk for part (i) of the proof. We first prove that G1 is a best response

to G2 if the condition (3.16) is satisfied. Note that, if condition (3.16) holds,

then we have q∗2 = (1 − k2/k1)φ(θ2)/φ(ζ) < 1. We let E{I,II},x[·] denote the

expectation conditional on phase (I or II) and X0 = x ∈ I . Then because

supp(G1) is chosen as (−∞, θ2), it suffices to establish the following relations

by the virtue of Lemma B.7:

E{I,II},x[SG1 (u;G2)] = E{I,II},x[SG1 (v;G2)] for any Xx
u , X

x
v < θ2 , (B.18)

EI,x[SG1 (t;G2)] < EI,x[SG1 (u;G2)] for any Xx
t ≥ θ2 > Xx

u , (B.19)

EII,x[SG1 (t;G2)] < EII,x[SG1 (u;G2)] for any Xx
t > θ2 ≥ Xx

u , (B.20)

where τ2 := inf{t ≥ 0 : Xt < θ2}.
To prove (B.18), we first use limt↑τ2 G

I,x
2 (t) = 0 and GI,x

2 (τ2) = q∗2 to obtain

V I
1 (ζ;G) = EI,ζ [SG1 (τ+

2 ;G2)] = EI,ζ [q∗2F
G
2 (τ+

2 ) + (1− q∗2)LG2 (τ+
2 )]

= (Rrπ)(ζ) +
[V I

1 (ζ;G)− (1− q∗2)k1]− (Rrπ)(θ2)

φ(θ2)
φ(ζ) ,

which we can solve for V I
1 (ζ;G)− k1, after which we have

V I
1 (ζ;G)− k1 =

φ(θ2)[(Rrπ)(ζ)− k1]− φ(ζ)[(Rrπ)(θ2)− k1q
∗
2]

φ(θ2)− φ(ζ)

=
φ(θ2)[(Rrπ)(ζ)− k2]− φ(ζ)(Rrπ)(θ2)

φ(θ2)− φ(ζ)
= V I

2 (ζ;G)− k2 ,
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where we use the expression of q∗2 in (3.17). Now, observe that if x < θ2, then

EI,x[·] = EII,x[·]; if x ≥ θ2, then

EI,x[SG1 (u;G2)] = EI,x

[ˆ τ2

0

π(Xt)e
−rtdt

+ e−rτ2 [q∗2V
I

1 (ζ;G) + (1− q∗2)EII,θ[SG1 (u− τ2;G2)]

]
,

for any Xx
u < θ2. Hence, it is sufficient to establish (B.18) for phase II only.

Then because G2(·) has no discontinuity in phase II and V I
1 (ζ;G) − k1 =

V I
2 (ζ;G) − k2, it follows that supτ EII,x[LG1 (τ)] = EII,x[LG1 (u)] for any Xx

u <

θ2. From this result, we establish EII,x[SG1 (u;G2)] = EII,x[SG1 (v;G2)] for any

Xx
u , X

x
v < θ2 by using the arguments in Theorem 5.1 of Steg (2015).

To prove (B.19) and (B.20), observe that, for any Xx
t > θ2, we have

E{I,II},x[SG1 (t;G2)] = E{I,II},x[LG1 (t)] ≤ sup
τ

E{I,II},x[LG1 (τ)] = E{I,II},x[LG1 (τ2)] .

Here the first equality follows from limt↑τ2 G
I,x
2 (t) = 0, and the last equality

follows from V I
1 (ζ;G) − k1 = V I

2 (ζ;G) − k2. To prove (B.19), therefore, it

is sufficient to use (1) EI,x[SG1 (τ+
2 ;G2)] = EI,x[q∗2F

G
1 (τ2) + (1 − q∗2)LG1 (τ2)] and

(B.18), (2) EI,x[SG1 (τ2;G2)] = EI,x[q∗2M
G
1 (τ2) + (1− q∗2)LG1 (τ2)], and (3) F G1 (·) >

MG
1 (·) > LG1 (·). To prove (B.20), use EII,x[SG1 (τ2;G2)] = EII,x[LG1 (τ2)] and

(B.18).

Conversely, it can be proven in a similar fashion that G2 is also a best

response to G1; the only difference in this case is that G1 has no discontinuity

in either phase I or II, which only makes the arguments simpler. This completes

the proof of the if-and-only-if statement of the theorem.

(ii) In this part, we establish that the common support must be given by

Γ = (−∞, θ2) in phase 2 of SPE G ∈ E . As a first step, we prove that the

support for firm i must be of the form (−∞, θ∗i ) where θ∗i is the threshold of

investment timing τi = inf{t ≥ 0 : Xt < θ∗i } that solves the stopping problem

EII,x

[ˆ τi

0

π(Xt)e
−rtdt+ [V I

i (ζ;G)− ki]e−rτi
]

= sup
τ≥0

EII,x

[ˆ τ

0

π(Xt)e
−rtdt+ [V I

i (ζ;G)− ki]e−rτ
]
= V ∗i (x) .
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(By Alvarez (2001), the optimal stopping time τi is characterized by a single

threshold θ∗i .) This also implies that θ∗1 = θ∗2 must hold if the two firms must

share the same support.

As a preliminary step, we list necessary conditions satisfied by G and Γ.

We let ΓC denote the complement of Γ; because Γ is closed, ΓC is an open set.

Note that V II
i (x;G) ≥ lGi for all x and that V II

i (x;G) = lGi for all x ∈ Γ because

the firms employ a mixed strategy whenever Xt ∈ Γ. Furthermore, because

the CDFs are continuous in time in phase 2, the following Hamilton-Jacobi-

Bellman (HJB) equations are satisfied:

AV II
i (x;G) + π(x) = 0 for x ∈ ΓC

AV II
i (x;G) + π(x) + λj(x)[fGi − V II

i (x;G)] = 0 for x ∈ Γ , (B.21)

where λj(x) is the rate of arrival of firm j’s investment when x ∈ Γ. Equation

(B.21) is derived from the fact that for Xt ∈ Γ and within the time interval

(t, t+ dt) there is probability of λj(Xt)dt that firm j would invest, leading to

firm i’s payoff of fGi , and probability of 1 − λj(Xt)dt that firm i’s payoff is

V II
i (Xt+dt;G) at the end of the time interval. Note also that V II

i (x;G) = lGi
whenever x ∈ Γ by the property of a mixed strategy equilibrium. Hence,

(B.21) can be re-written as −rlGi + π(x) + λj(x)(fGi − lGi ), which leads to

λj(x) = k−1
i (rlGi − π(x)). (From the constraint that λj(x) ≥ 0, we can also

derive the fact that rlGi − π(x) ≥ 0 must be satisfied for all x ∈ Γ.)Lastly, we

note that V II
i (x;G) must be continuously differentiable for all x ∈ Γ ∪ ΓC by

the property of diffusive processes and non-singularity of λj(·). In particular,

V II
i (x;G) is continuously differentiable at the boundary of Γ.

In sum, V II
i (x;G) satisfies the HJB equation AV II

i (x;G) + π(x) = 0 for an

open set ΓC , AV II
i (x;G)+π(x) ≤ 0 for all x ∈ Γ because λj(x)[fGi −V II

i (x;G)] ≥
0, the inequality V II

i (x;G) ≥ lGi for x ∈ ΓC , and the equality V II
i (x;G) = lGi for

all x ∈ Γ. In addition, V II
i (x;G) is continuously differentiable at the boundary

of Γ. By the verification theorem for optimal stopping problems (Oksendal,

2003), these are exactly the sufficient conditions under which τΓ = inf{t ≥ 0 :

Xt ∈ Γ} (the hitting time of Γ) is the optimal stopping time that maximizes

the following:

sup
τ≥0

EII,x

[ˆ τ

0

π(Xt)e
−rtdt+ [V I

i (ζ;G)− ki]e−rτ
]
= V ∗i (x) .
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Since V ∗i (x) is a unique function of x, we conclude that V II
i (x;G) = V ∗i (x) and

furthermore that Γ = (−∞, θ∗i ] by the functional form of V ∗i (x). We can apply

the same logic to firm j, so that θ∗i = θ∗j must be satisfied.

In phase 1, if firm i’s strategy is to invest with probability qi at time τΓ,

then firm i’s payoff function is given by V I
i (x; Γ) = V ∗i (x) so that θ∗i = θi,

which implies that θ∗1 = θ∗2 = θ2 if q2 > 0 but θ∗1 = θ∗2 = θ1 if q1 > 0. We note

that q∗2 is uniquely given by ((3.17)) from the condition that θ∗1 = θ∗2. (See part

(i) of this proof). Hence, no other values of q∗2 is possible in a mixed strategy

SPE in E . Furthermore, it is straight forward to verify that qiqj = 0, i.e., only

one firm has non-zero probability of investment at the end of phase 1; if q1 > 0

and q2 > 0, then each firm can improve its payoff by not investing at at time

τΓ. In order to complete the proof, therefore, it is sufficient to prove that q1

cannot be non-zero.

Set X0 = x > θ2 and τ1 := inf{t ≥ 0 : Xt ≤ θ1}, and suppose that

Gq := (G1, G2) is an equilibrium where firm 1 places probability q1 ∈ [0, 1)

of investment at the end of phase 1. Then by Lemma B.7, we must have

EII,x[SG
q

2 (τ1;G1)] = supτ EII,x[SG
q

2 (τ ;G1)] in Phase II of the game. By using

limt↑τ1 G
I,x
1 (t) = 0 and GI,x

1 (τ1) = q, we can have

V I
2 (ζ;Gq) = EI,x[SG

q

2 (τ+
1 ;G1)] = EI,x[qF G

q

2 (τ1) + (1− q)LGq2 (τ1)]

= (Rrπ)(ζ) +
[
{V I

2 (ζ;Gq)− (1− q)k2} − (Rrπ)(θ1)
]
φ(ζ)/φ(θ1) ,

from which it can be seen that LG
q

2 = V I
2 (ζ;Gq) − k2 increases in q. Because

supτ EII,x[LG
q

2 (τ)] = EII,x[LG
q

2 (τ2)] when q = 0, we must have supτ EII,x[LG
q

2 (τ)] =

EII,x[LG
q

2 (τ q2 )] with some τ q2 < τ2 for any q > 0. However, GII,x
1 (τ1) = 0 and

τ2 < τ1 imply that

EII,x[SG
q

2 (τ1;G1)] = EII,x[LG
q

2 (τ ∗1 )] < EII,x[LG
q

2 (τ q2 )] = EII,x[SG
q

2 (τ q2 ;G1)] ,

which is a contradiction. Therefore, Gq cannot be an equilibrium for any

q ∈ [0, 1).

Proof of Proposition 3.6: We prove this theorem in two steps: (i) Prove

that G0
N is an equilibrium, and (ii) prove that G0

N is the only equilibrium in E .

(i) For notational simplicity, we write G0
N = G = (G1, G2, G3). By the

symmetry between the firms, it is then enough to prove that G1 is a best
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response to G−1 where G−i is defined in (3.19). Because supp(G1) is chosen as

(−∞, θ), where θ = θ1 = θ2 = θ3 is the common threshold given in Assumption

3.1, it suffices to establish the following relations by the virtue of Lemma B.7:

Ex[SG
0
N

1 (u;G−1)] = Ex[SG
0
N

1 (v;G−1)] for any Xx
u , X

x
v < θ ,

Ex[SG
0
N

1 (t;G−1)] < Ex[SG
0
N

1 (u;G−1)] for any Xx
t ≥ θ > Xx

u .

Then the rest of the proof proceeds as in the proof of Proposition 4.2 where

we are using the arguments in Theorem 5.1 of Steg (2015).

(ii) This part of the proof can be done by using the same arguments in the

part (ii) of the proof of Theorem 3.1.

Proof of Proposition 3.7: The proof of this proposition is similar to

Theorem 3.1. To see why, we first note that both firm 1 and firm 2 have the

same investment cost k̄ = k1 = k2, which is higher than that (k3) of firm 3.

Therefore, the equilibrium strategies and payoffs of firm 1 and firm 2 are of

the same structure as that of firm 1 in Theorem 3.1 while firm 3’s equilibrium

strategy and payoff is of the same form as that of firm 2 in Theorem 3.1.

Then by proceeding similarly in the proof of Theorem 3.1, we can first show

that the choice of q∗3 = (1 − k3/k̄)φ(θ3)/φ(ζ) < 1 will make V I
i (ζ;G∗N) − ki =

V I
3 (ζ;G∗N)− k3 for i = 1, 2, which establishes

EI,x[S
G∗N
i (u;G−i)] = EI,x[S

G∗N
i (v;G−i)] for any Xx

u , X
x
v < θ ,

where i = 1, 2. In the second phase, because G−i(·) has no discontinuity

and V I
i (ζ;G∗N) − ki = V I

3 (ζ;G∗N) − k3, it must follow that supτ EII,x[LGi (τ)] =

EII,x[LGi (u)] for any Xx
u < θ3. Combining this result with our choices of λi(·) to

be
∑

j 6=i λj(x) = vi(x) whenever x < θ3, we can establish EII,x[S
G∗N
i (u;G−i)] =

EII,x[S
G∗N
i (v;G−i)] for any Xx

u , X
x
v < θ3 by using the arguments in Theorem 5.1

of Steg (2015). Note that the condition k̄ − k3 < k3 is satisfied if and only if

λ3(x) > 0 whenever x < θ3.

The rest part of the proof can be done similarly as in the proof of Theorem

3.1.

Proof of Proposition 3.8: Note that under the suggested equilibrium
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strategy profile G∗N = (G1, G2, G3), all the CDFs Gi’s are continuous in time in

both phases. Let us put θ = θ2 = θ3 where these θi’s are defined in Assumption

3.1. Then because
∑

j 6=i λj(x) = vi(x) for i = 2, 3 whenever x < θ, we can

establish from the arguments of Theorem 5.1 of Steg (2015) that

Ex[SG
∗
N

i (u;G−i)] = Ex[SG
∗
N

i (v;G−i)] for any Xx
u , X

x
v < θ , (B.22)

Ex[SG
∗
N

i (t;G−i)] < Ex[SG
∗
N

i (u;G−i)] for any Xx
t ≥ θ > Xx

u , (B.23)

where i = 2, 3.

Also, we can understand the condition that τ1 = inf{t ≥ 0 : Xt ≤ η1} with

θ1 < η1 < θ is a solution to the problem supτ≥0 Ex[
´ τ

0
π(Xt)e

−rtdt+ l
G∗N
1 e−rτ ] as

follows: Suppose for a moment that the support of G2 and G3 is (−∞, θ1), i.e.,

both firm 2 and firm 3 invest if and only if Xt ∈ (−∞, θ1). Then the solution

to the optimal stopping problem supτ≥0 Ex[
´ τ

0
π(Xt)e

−rtdt+ l
G∗N
1 e−rτ ] is simply

given as τ ∗1 = inf{t ≥ 0 : Xt ≤ θ1} and firm 1 invests with some probability

if and only if Xt ∈ (−∞, θ1). Suppose now that firm 2 and firm 3 employs

strategies where they invest with the rate of v3(x) and v2(x) respectively above

θ1, specifically, whenever Xt ∈ (η̄, θ) with some η̄ > θ1. Then this will increase

l
G∗N
1 because firm 1 expects a higher probability to become a free-rider in all

the subsequent stages, which implies that the solution to the given optimal

stopping problem supτ≥0 Ex[
´ τ

0
π(Xt)e

−rtdt + l
G∗N
1 e−rτ ] can be given as τ 1 =

inf{t ≥ 0 : Xt ≤ η} with θ1 < η < η̄ < θ. Therefore, as firm 2 and firm 3

expands its boundary of the region where they invest at the rate of ν3(x) and

ν2(x) respectively, i.e., as η̄ goes down, there can exist a fixed (or matching)

point η1 with θ1 < η1 < θ such that τ1 = inf{t ≥ 0 : Xt ≤ η1} becomes the

solution to the optimal stopping problem supτ≥0 Ex[
´ τ

0
π(Xt)e

−rtdt+ l
G∗N
1 e−rτ ].

Hence, from firm 1’s point of view, G−1(·) is continuous in time in both

phases and it is assumed that τ1 = inf{t ≥ 0 : Xt ≤ η1} is a solution to

the optimal stopping problem supτ≥0 Ex[
´ τ

0
π(Xt)e

−rtdt+ l
G∗N
1 e−rτ ] where θ1 <

η1 < θ. Note that the existence of Then because
∑

j 6=1 λj(x) = v1(x) whenever

x < η1, we can establish from the arguments of Theorem 5.1 of Steg (2015)

that (B.22) and (B.23) for i = 1. This completes the proof.

Proof of Proposition 3.9: As explained in the body of the paper, the sug-

gested strategy profile G∗N = (G1, G2, G3) is a combination of the equilibrium
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strategy profiles obtained in case 2 (k1 = k2 > k3) and case 3 (k1 > k2 = k3).

Therefore, the proof of this proposition can be obtained by applying the ar-

guments used in the proofs of Proposition 3.7 and Proposition 3.8. More

specifically, the easiest step is to establish that G2 is a best response to

G−2. First, by using the arguments used in the proof of Proposition 3.7,

it is easy to see that the choice of q∗3 = (1 − k3/k2)φ(θ3)/φ(ζ) < 1 will make

V I
2 (ζ;G∗N)− k2 = V I

3 (ζ;G∗N)− k3 for i = 1, 2, which establishes

EI,x[S
G∗N
2 (u;G−2)] = EI,x[S

G∗N
2 (v;G−2)] for any Xx

u , X
x
v < θ3 .

In the second phase, because G−2(·) is continuous and V I
2 (ζ;G∗N) − k2 =

V I
3 (ζ;G∗N) − k3, we have supτ EII,x[L

G∗N
2 (τ)] = EII,x[L

G∗N
2 (u)] for any Xx

u < θ3.

Combining this result with
∑

j 6=2 λj(x) = v2(x) whenever x < θ3, we can es-

tablish EII,x[S
G∗N
2 (u;G−2)] = EII,x[S

G∗N
2 (v;G−2)] for any Xx

u , X
x
v < θ3 by using

the arguments in Theorem 5.1 of Steg (2015).

In addition, it is straightforward to show that G3 is a best response to G−3

because G−3(·) is always continuous in time and supp(G3) = supp(G−3), which

means that we can here use the arguments in Theorem 5.1 of Steg (2015) once

again.

Lastly, the existence of η1 with τ1 = inf{t ≥ 0 : Xt ≤ η1} becoming the

solution to the optimal stopping problem supτ≥0 Ex[
´ τ

0
π(Xt)e

−rtdt+ l
G∗N
1 e−rτ ]

can be understood in the same way as that in the proof of Proposition 3.8.

Then the rest of the proof for showing that G1 is a best response to G−1 can

be proceeded in a similar way as that in the proof of Proposition 3.8.

Proof of Proposition 3.10: Fix M ≥ 2 and choose any m with 2 ≤ m ≤
M . Let k1 = k

(m)
1 where k

(m)
1 is given in (3.30). It is then enough to show that

the strategy profile (G(n))n≥1 described in the statement of the proposition

constitutes an equilibrium.

First, we can easily see that if k1 = k
(m)
1 and G(n) = (H(∞), H(τ

(n)
2 )),

n ≥ m, then we have V
(m)

1 (ζ;G(m)+) − k1 = V
(m)

2 (ζ;G(m)+) − k2 by go-

ing through a serious of algebra with the definition (3.27) and G(n)’s, n ≥
m. It thus follows that we can construct a two-phase mixed strategy SPE

G(m−1) = (G
(m−1)
1 , G

(m−1)
2 ) with a common support Γ(m−1) = (−∞, θ(m−1)

2 )

and any choice of q
(m−1)
2 ∈ [0, 1).
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In addition, by putting this mixed strategy equilibrium G(m−1) with the

described choice of q2 = q
(m−1)
2 = (k1 − k2)/k1 · φ(θ

(m−1)
2 )/φ(ζ) into (3.27),

we can also verify that V
(m−1)

1 (ζ;G(m−1)+) − k1 = V
(m−1)

2 (ζ;G(m−1)+) − k2,

which implies again that we can obtain a two-phase mixed strategy SPE

G(m−2) = (G
(m−2)
1 , G

(m−2)
2 ) with a common support Γ(m−2) = (−∞, θ(m−2)

2 )

and any choice of q
(m−2)
2 ∈ [0, 1).

Therefore, for any n with 2 ≤ n < m, we can construct a two-phase

mixed strategy SPE G(n) = (G
(n)
1 , G

(n)
2 ) with the support Γ(n) = (−∞, θ(m−1)

2 )

and q2 = q
(n)
2 , from which we can eventually obtain V

(2)
1 (ζ;G(2)+) − k1 =

V
(2)

2 (ζ;G(2)+)− k2. Because this is a necessary and sufficient condition for the

existence of a mixed strategy equilibrium in the first stage, it follows that the

specified strategy profile is indeed an equilibrium involving mixed strategies

as desired.

Also, it is easy to see that we have q
(n)
2 < 1 where n < m if and only if

k1 − k2 <
φ(ζ)

φ(θ
(n)
2 )− φ(ζ)

k2 .

Note that if k1 = k
(m)
1 , then we obtain

k1 − k2 =
M∑
k=m

( k∏
l=m

φ(ζ)

φ(θ
(l)
2 )

)
k2 <

M∑
k=m

(
φ(ζ)

φ(θ
(m)
2 )

)k−m+1

k2

<
∞∑
k=1

(
φ(ζ)

φ(θ
(m)
2 )

)k
k2 =

φ(ζ)

φ(θ
(m)
2 )− φ(ζ)

k2 <
φ(ζ)

φ(θ
(n)
2 )− φ(ζ)

k2 ,

where we use the fact that θ
(k)
2 is an increasing sequence and φ(·) is a strictly

decreasing function. This simply implies that q
(n)
2 is always well defined by

any choices of k1 = k
(m)
1 with m > n, as desired.

Lastly, it can be seen from (3.30) that (k
(2)
1 −k2)/k2 converges to a geometric

series with a constant ratio φ(ζ)/φ(θ2) as M → ∞ because θ
(2)
2 → θ2 as

M →∞. This thus completes the proof.
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Appendix C

Appendix of Chapter 4

C.1 Mixed-strategy MPE when σ(·) = 0

In this section, we consider the case in which σ(·) = 0. This case was previ-

ously analyzed by Hendricks et al. (1988) using a similar model. We present

it here for completeness, and to highlight that the non-existence of mixed-

strategy MPE requires two ingredients: first, that the firms’ flow payoffs while

they remain in the market are stochastic, and second, that the firms have het-

erogeneous outside options. To facilitate the analysis and following Hendricks

et al. (1988), we will assume in this section that µ(·) ≤ 0; i.e., the market

conditions deteriorate over time.

We shall construct a mixed-strategy MPE in which both firms remain in

the market whenever Xx
t > θ∗1, and they randomize on the set Γ = (α, θ∗1).

Lemma 2 holds, and because µ(·) ≤ 0, the set Γ is absorbing; i.e., if Xx
t ∈ Γ,

then Xx
s ∈ Γ for all s > t with probability 1. Therefore, for every x ∈ Γ,

each firm i’s strategy Gx
i (t) must satisfy (4.10). If x /∈ Γ, then each firm i’s

strategy may have a discontinuity of size 1 − pi at τΓ = inf{t ≥ 0 : Xx
t ∈ Γ},

and solving (4.8) subject to the boundary condition Gx
i (τΓ) = 1 − pi where

pi ∈ [0, 1] yields that each firm i’s strategy must satisfy

Gx
i (t) = 1{Xx

t ∈Γ}(t)

{
1− pi exp

[
−
ˆ t

0

1{Xx
s ∈Γ}(s)[rlj − π(Xx

s )]

w(Xx
s )− lj

ds

]}
. (C.1)

Observe that the strategy profile (Gx
1 , G

x
2)x∈I |p1,p2

is Markov, and the following

proposition shows that for an appropriate choice of p1 and p2, it constitutes a

mixed-strategy MPE.

Proposition C.1 Suppose that σ(·) = 0. Then there exists κ(l2) > 0 such

that (Gx
1 , G

x
2)x∈I |p1,p2=1 is a mixed-strategy MPE with 0 < p1 < p̄(l1, l2) as

124



long as l2 − l1 < κ(l2).

Recall from Proposition 4.1 that whenever Xx
t ∈ (θ∗1, θ

∗
2], firm 1 strictly

prefers to remain in the market, whereas firm 2 strictly prefers to exit im-

mediately. In order for firm 2 to wait until Xx
t enters the randomization set

Γ, in equilibrium, firm 1 must exit at the moment such that Xx
t = θ∗1 with

sufficiently high probability. When Xx
t ∈ Γo, it follows from Lemma (4.2) that

both firms must exit at the rate given by ((4.9)).

C.2 Mathematical Preliminaries

We first define the following functions that will be used in Appendices C.2 and

C.3.

R(x) := Ex
[ˆ ∞

0

π(Xt)e
−rtdt

]
, (C.2)

βi(x) :=
li −R(x)

φ(x)
, (C.3)

where φ : I → R satisfies the differential equation1 1
2
σ2(x)φ

′′
(x)+µ(x)φ

′
(x)−

rφ(x) = 0 with the properties of φ(·) > 0 and φ
′
(·) < 0. The function R(·)

is well-defined because we assume that π(·) satisfies the absolute integrability

condition in Section 3.3.

Lemma C.1 The function βi(x) has a unique interior maximum at θ∗i ≤ xci

where π(xci) = rli. Furthermore, β
′
i(x) > 0 for x < θ∗i and β

′
i(x) < 0 for

x > θ∗i .

Proof of Lemma C.1: To prove this lemma, it is enough to examine the

behavior of the first derivative of βi(x) = [li −R(x)]/φ(x).

According to the theory of diffusive processes (Alvarez, 2001, p.319), the

1This second-order linear ordinary differential equation (ODE) always has two linearly
independent fundamental solutions, one of which is monotonically decreasing (see Alvarez,
2001, p.319). Note that if f(·) solves this equation, then so does cf(·) for any constant c ∈ R
because it is a homogeneous equation. Hence, we can always find the one which is always
positive.
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function R(·), given in (C.2), can be expressed as

R(x) =
φ(x)

B

ˆ x

a

ψ(y)π(y)m
′
(y)dy +

ψ(x)

B

ˆ b

x

φ(y)π(y)m
′
(y)dy . (C.4)

Here, a and b are the two boundaries of the state space I , ψ(·) and φ(·) are

the increasing and decreasing fundamental solutions to the differential equation
1
2
σ2(x)f

′′
(x)+µ(x)f

′
(x)−rf(x) = 0, B = [ψ

′
(x)φ(x)−ψ(x)φ

′
(x)]/S

′
(x) is the

constant Wronskian determinant of ψ(·) and φ(·), S ′(x) = exp(−
´

2µ(x)/σ2(x)dx)

is the density of the scale function of X, and m
′
(y) = 2/[σ2(y)S

′
(y)] is the

density of the speed measure of X.

By using (C.4), differentiation of R(x) with respect to x leads to

R
′
(x)φ(x)−R(x)φ

′
(x) = S

′
(x)

ˆ b

x

φ(y)π(y)m
′
(y)dy . (C.5)

Moreover, because li = Ex[
´∞

0
rlie

−rtdt], we can write

R(x)− li = Ex
[ˆ ∞

0

[π(Xt)− rli]e−rtdt
]
, (C.6)

which implies that we can treat the functional R(x) − li as the expected cu-

mulative present value of a flow payoff π(·)− rli. Combining (C.5) and (C.6),

therefore, we obtain

β
′

i(x) = −R
′
(x)φ(x)− [R(x)− li]φ′(x)

φ2(x)
= −S

′
(x)

φ2(x)

ˆ b

x

φ(y)[π(y)− rli]m
′
(y)dy .

(C.7)

Now, because π(·) is strictly increasing and π(xci) = rli, it must be the

case that π(x) < rli for x < xci and π(x) > rli for x > xci. Thus, β
′
i(x) < 0

for all x > xci. Note also that if x < K < xci, then

ˆ b

x

φ(y)[π(y)− rli]m
′
(y)dy

=

ˆ K

x

φ(y)[π(y)− rli]m
′
(y)dy +

ˆ b

K

φ(y)[π(y)− rli]m
′
(y)dy

≤ [π(K)− rli]
r

(
φ
′
(K)

S ′(K)
− φ

′
(x)

S ′(x)

)
+

ˆ b

K

φ(y)[π(y)− rli]m
′
(y)dy → −∞ ,
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as x ↓ a because a is a natural boundary, which implies that limx↓a β
′
i(x) =

∞. Here we use φ
′
(x) < 0 and π(x) < π(K) < rli for x < K. It thus

follows that β
′
i(θ
∗
i ) = 0 for some θ∗i ≤ xci, which implies that

´ b
θ∗i
φ(y)[π(y) −

rli]m
′
(y)dy = 0 because S

′
(x) > 0 and φ(x) > 0 in (C.7). Moreover, note

that
´ b
x
φ(y)[π(y)− rli]m′(y)dy is increasing in x < xci because π(y) < rli for

∀y < xci, thus yielding
´ b
x
φ(y)[π(y) − rli]m

′
(y)dy < 0 if x < θ∗i ≤ xci and´ b

x
φ(y)[π(y) − rli]m

′
(y)dy > 0 if θ∗i < x ≤ xci. Combining this with (C.7),

we obtain the unique existence of θ∗i such that β
′
i(x) > 0 for ∀x < θ∗i and

β
′
i(x) < 0 for ∀x > θ∗i , which completes the proof.

Lemma C.2 A mixed-strategy Gi is a best response to a mixed-strategy Gj if

and only if, for each x ∈ I ,

Ex[Si(τ̂ ;Gj)] = sup
τ

Ex[Si(τ ;Gj)] , (C.8)

whenever Xx
τ̂ ∈ supp(Gi) almost surely.

Lemma C.2 implies that each pure-strategy, which is involved in a mixed-

strategy best response, must itself be a best response.

Proof of Lemma C.2: This lemma follows from Lemma 3.1. in Steg (2015).

Define the right-continuous inverse of Gx
i as

τG,xi (z) := inf{s ≥ 0 : Gx
i (s) > z} ,∀z ∈ [0, 1] , (C.9)

which satisfies τG,xi (z) ≤ t if and only if Gx
i (t) ≥ z. Then we can obtain the

change-of-variable formula between Gx
i and τG,xi (z) as the following:

Ex
[ˆ ∞

0

Si(t;Gj)dG
x
i (t)

]
= Ex

[ˆ 1

0

Si(τ
G,x
i (z);Gj)dz

]
.
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By using this change-of-variable, we have

Vi(x;Gi, Gj) = Ex
[ˆ ∞

0

Si(t;Gj)dG
x
i (t)

]
= Ex

[ˆ 1

0

Si(τ
G,x
i (z);Gj)dz

]
=

ˆ 1

0

Ex[Si(τG,xi (z);Gj)]dz

≤
ˆ 1

0

sup
τ

Ex[Si(τ ;Gj)]dz = sup
τ

Ex[Si(τ ;Gj)] , (C.10)

where the first equality follows from (3.4) and the first inequality follows be-

cause τG,xi (z) is a stopping time with respect to the state X for each z. Note

that the relation holds for any pair of mixed strategies (Gi, Gj).

Now, suppose that Ex[Sxi (τ̂ ;Gj)] = supτ Ex[Sxi (τ ;Gj)] whenever Xx
τ̂ ∈

supp(Gi) almost surely. Observe that τG,xi (z) is in the support of Gx
i for

any z; this is because t > τG,xi (z) implies that Gx
i (t) > z = Gx

i (τ
G,x
i (z)) if

Gx
i (·) has no jump at τG,xi (z), or ∆Gx

i (τ
G,x
i (z)) > 0 if Gx

i (·) has a jump at

τG,xi (z). Hence, Ex[Sxi (τG,xi (z);Gj)] = supτ Ex[Sxi (τ ;Gj)] for any z ∈ [0, 1] by

our assumption, which implies that, for any mixed-strategy G̃i,

Vi(x;Gi, Gj) = Ex
[ˆ ∞

0

Si(t;Gj)dG
x
i (t)

]
= Ex

[ˆ 1

0

Si(τ
G,x
i (z);Gj)dz

]
=

ˆ 1

0

Ex[Si(τG,xi (z);Gj)]dz

=

ˆ 1

0

sup
τ

Ex[Si(τ ;Gj)]dz = sup
τ

Ex[Si(τ ;Gj)] ≥ Vi(x; G̃i, Gj) ,

where the last inequality follows from (C.10). Thus, Gi is a best response

to Gj. Conversely, if Gi is a best response to Gj and Xx
τ̂ ∈ supp(Gi), then

we must have Ex[Si(τ̂ ;Gj)] = supτ Ex[Si(τ ;Gj)]; otherwise firm i could earn

higher payoff by taking Xx
τ̂ out of the support of Gi. This completes the proof.
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Lemma C.3 Define the process

Ji(t) := sup
τ≥t

Ex[Li(τ)|Ft] =

ˆ t

0

π(Xx
s )e−rsds+ V ∗i (Xx

t )e−rt , (C.11)

where V ∗i (·) is defined in (4.6). Then we have the following results:

(a) Ji(t) ≥ Li(t) for all t ≥ 0, and the equality holds if t ≥ τ ∗i where τ ∗i is

given in (4.7). Moreover, Ji(·) can be expressed as Ji(t) = Ni(t)−Dθ∗i
i (t) where

Ni(·) is a uniformly integrable martingale, and Dy
i (·) is a non-decreasing and

predictable process given by

dDy
i (t) := 1{Xx

t ≤y}[rli − π(Xx
t )]e−rtdt with Dy

2(0) = 0 . (C.12)

(b) For any stopping times τa, τb with τa ≤ τb and a mixed-strategy Gj,

Ex
[ˆ τb

τa

Ni(t)dG
x
j (t)|Fτa

]
= −Ex

[
Ni(τb)[1−Gx

j (τb)]|Fτa
]

+Ni(τa)[1−Gx
j (τa)] ,

(C.13)

where Ft is the natural filtration generated by the state X (Oksendal, 2003).

Proof of Lemma C.3(a): Comparing (4.3) and (C.11), it can be clearly seen

that Ji(t) ≥ Li(t) for all t ≥ 0. Also, Ji(t) = Li(t) if t ≥ τ ∗i by the definition

of V ∗i (·). According to the theory of optimal stopping, it is well-known that

the process Ji(·) is the Snell envelope of the process Li(·) and it is of Class

D (Steg, 2015). Hence, we can apply Doob-Meyer decomposition theorem to

Ji(·), which implies that Ji(·) can be decomposed into a uniformly integrable

martingale and a unique, non decreasing, predictable process. Because Ji(t)

(more precisely, V ∗i (Xx
t )) is a twice differentiable function of X, the exact form

of Ni(·) and D
θ∗i
i (·) can be obtained by applying Ito formula to Ji(·).

Proof of Lemma C.3(b): For a mixed-strategy Gj, consider the right-
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continuous inverse τG,xj (z) given in (C.9). Observe that

Ex
[ˆ τb

τa

Ni(t)dG
x
j (t)|Fτa

]
= Ex

[ˆ 1

0

Ni(τ
G,x
j (z))1[τa,τb](τ

G,x
j (z))dz|Fτa

]
=

ˆ 1

0

Ex
[
Ni(τ

G,x
j (z))1[τa,τb](τ

G,x
j (z))|Fτa

]
dz

=

ˆ 1

0

Ex
[
Ex
[
Ni(τb)|FτG,xj (z)

]
1[τa,τb](τ

G,x
j (z))|Fτa

]
dz

=

ˆ 1

0

Ex
[
Ex
[
Ni(τb)1[τa,τb](τ

G,x
j (z))|FτG,xj (z)

]
|Fτa

]
dz

=

ˆ 1

0

Ex
[
Ni(τb)1[τa,τb](τ

G,x
j (z))|Fτa

]
dz

= Ex
[
Ni(τb)

ˆ 1

0

1[τa,τb](τ
G,x
j (z))dz|Fτa

]
= Ex

[
Ni(τb)[Gj(τb)−Gj(τa)]|Fτa

]
= Ex

[
−Ni(τb)[1−Gj(τb)] +Ni(τb)[1−Gj(τa)]|Fτa

]
= −Ex

[
Ni(τb)[1−Gj(τb)]|Fτa

]
+Ni(τa)[1−Gj(τa)] ,

where the first equality holds from the change-of-variable from Gj(t) to τG,xj (z),

the third equality follows from the fact Ex
[
Ni(τb)|FτG,xj (z)

]
= Ni(τ

G,x
j (z)) be-

cause Ni(·) is a martingale, the fourth equality holds because 1[τa,τb](τ
G,x
j (z))

is measurable with respect to the filtration FτG,xj (z), the fifth equality follows

from the smoothing law of the conditional expectation because Fτa ⊆ FτG,xj (z),

the seventh equality follows from
´ 1

0
1[τa,τb](τ

G,x
j (z))dz = Gj(τb)−Gj(τa) by the

definition of τG,xj (z), and the last equality follows because Ex
[
Ni(τb)|Fτa

]
=

Ni(τa) (Ni(·) is a martingale) and Gj(τa) is measurable with respect to Fτa .
Thus, the desired relation is established.

C.3 Mathematical Proofs

Proof of Lemma 4.1: The proof of this lemma is available in Alvarez (2001),

but here, we provide an alternative argument for an intuitive understanding
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of the results of this lemma. To that end, we will use the optimality condi-

tions, which are known as “value matching” and “smooth pasting” conditions

(Samuelson, 1965; McKean, 1965; Merton, 1973).

First, the state space I must be the union of C := {x ∈ I : V ∗i (x) > li}
and Γ := {x ∈ I : V ∗i (x) = li}, which are mutually exclusive: This is because

(1) X is a stationary process and the time horizon is infinite, and (2) the

value function V ∗i (·) from an optimal stopping policy must be always no less

than the reward li from stopping immediately. Hence, the problem to find an

optimal stopping policy can be reduced to identify C or Γ.

Next, we find the differential equation that V ∗i (x) must satisfy if x ∈ C.

Note that the optimal value function V ∗i (x) is the maximum of the reward

from waiting an instant and the reward from stopping immediately. For any

x ∈ C, therefore, the optimal stopping policy is to wait an instant dt, and

hence, the optimal value function must satisfy the following equation:

V ∗i (x) = π(x)dt+ (1− rdt)Ex[V ∗i (x) + dV ∗i (Xt)] . (C.14)

Then applying Ito formula to V ∗i (Xt) and using Ex[dBt] = 0 yields

Ex[dV ∗i (Xt)] = [µ(x)V ∗
′

i (x) +
1

2
σ2(x)V ∗

′′

i (x)]dt . (C.15)

By plugging (C.15) into (C.14) and ignoring the term smaller than dt, we have

V ∗i (x) = π(x)dt+ V ∗i (x) + [−rV ∗i (x) + µ(x)V ∗
′

i (x) +
1

2
σ2(x)V ∗

′′

i (x)]dt ,

from which we obtain the following second-order linear differential equation:

1

2
σ2(x)V ∗

′′

i (x) + µ(x)V ∗
′

i (x)− rV ∗i (x) = −π(x) . (C.16)

Thus, V ∗i (·) can be obtained by solving the differential equation (C.16). In

fact, it can be seen from a series of algebra with the relation (C.4) that the

function R(·) + Aφ(·) with some constant A ∈ R is a solution to (C.16), and

hence, we can guess V ∗i (x) = R(x) + Aφ(x) with some constant A.

Intuitively, firm i must find it optimal to exit and receive his outside option

li as soon as the state X hits some lower threshold θi. Hence, assume at the

moment that the optimal stopping policy is given as τ ∗ := inf{t ≥ 0 : Xx
t ≤
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θi}, which implies that θi is the boundary point of the region C. Now, we state

the value matching condition and the smooth pasting condition, which results

in two boundary conditions to the boundary value problem (C.16) with the

free boundary θi:

V ∗i (θi) = R(θi) + Aφ(θi) = li (C.17)

V ∗
′

i (θi) = R′(θi) + Aφ′(θi) = 0 . (C.18)

The value matching condition (C.17) and the smooth pasting condition

(C.18) are the conditions that V ∗i (·) must satisfy at the boundary θi of C. We

can first obtain A = [li−R(θi)]/φ(θi) = βi(θi) from (C.17). Then the condition

(C.18) is equivalent to

0 = R
′
(θi) +

li −R(θi)

φ(θi)
φ
′
(θi)

=
R
′
(θi)φ(θi) + [li −R(θi)]φ

′
(θi)

φ(θi)
= −φ(θi)β

′

i(θi) .

Because φ(·) > 0, it can be seen from Lemma C.1 that this condition is satisfied

if and only if θi = θ∗i , which implies that A = βi(θ
∗
i ).

Lastly, it can be easily checked that R(x)+βi(θ
∗
i )φ(x) ≥ li for ∀x ≥ θ∗i and

π(x) < rli for ∀x ≤ θ∗i < xci. By using the verification theorem (Oksendal,

2003, Theorem 10.4.1), therefore, the proposed value function R(·)+βi(θ
∗
i )φ(·)

is, in fact, the optimal value function V ∗i (·), as desired.

Proof of Proposition 4.1(a): Because it is shown in Lemma 4.1 that G2 =

H(τ ∗2 ), where τ ∗2 = inf{t ≥ 0 : Xx
t ≤ θ∗2} is given in (4.7), is firm 2’s best

response to G1 = H(∞), it only remains to prove that G1 = H(∞) is also

firm 1’s best response to G2 = H(τ ∗2 ).

Let H(τ1) be firm 1’s best response to H(τ ∗2 ). Also, define V ∗W1(x) :=

supτ V1(x;H(τ), H(τ ∗2 )) = V1(x;H(τ1), H(τ ∗2 )) be the corresponding payoff to

firm 1. We denote the continuation region associated with τ1 by C1, i.e.,

τ1 = inf{t ≥ 0 : Xx
t 66∈ C1}, and its complement by Γ1 = I \C1.

First, we show that Γ1∩ (θ∗2,∞) = ∅. Toward a contradiction, suppose this

is not the case. Then pick some x ∈ Γ1∩ (θ∗2,∞) and observe that V ∗W1(x) = l1

132



due to x ∈ Γ1. However,

V ∗W1(x) ≥ V1(x;H(∞), H(τ ∗2 )) = Ex
[ˆ τ∗2

0

π(Xt)e
−rtdt+ w(Xx

τ∗2
)e−rτ

∗
2

]
= R(x) +

[
w(θ∗2)−R(θ∗2)

φ(θ∗2)

]
φ(x)

> R(x) +

[
l1 −R(θ∗2)

φ(θ∗2)

]
φ(x)

= R(x) + β1(θ∗2)φ(x)

> R(x) + β1(x)φ(x) = l1 ,

where the first inequality follows because w(Xx
τ∗2

) = w(θ∗2) > l1 and Ex[e−rτ∗2 ] =

φ(x)/φ(θ∗2) for x > θ∗2, and the second inequality holds because x > θ∗2 > θ∗1
and β

′
1(x) < 0 for x > θ∗1 by Lemma C.1. This establishes the contradiction.

Second, we also prove that Γ1 ∩ (−∞, θ∗2] = ∅. Towards a contradiction,

suppose this is not the case. Then we can pick some x ∈ Γ1 ∩ (−∞, θ∗2] such

that V ∗W1(x) = m1(x) because τ ∗2 = inf{t ≥ 0 : Xx
t ≤ θ∗2}. However,

V ∗W1(x) ≥ V1(x;H(∞), H(τ ∗2 ))

= Ex
[ˆ τ∗2

0

π(Xt)e
−rtdt+ w(Xx

τ∗2
)e−rτ

∗
2

]
= w(x) > m1(x) ,

where the second equality uses that τ ∗2 = 0 when X0 = x ≤ θ∗2. This establishes

the contradiction. Hence, we can conclude that Γ1 = ∅ and C1 = I , which

implies that τ1 =∞.

Proof of Proposition 4.1(b): Consider the following condition:

V2(x;H(τ ∗1 ), H(∞)) = Ex
[ˆ τ∗1

0

π(Xt)e
−rtdt+ w(Xx

τ∗1
)e−rτ

∗
1

]
> l2 ∀x ∈ (θ∗1, θ

∗
2] .

(C.19)

First, we prove that (C.19) is sufficient for (G1, G2) = (H(τ ∗1 ), H(∞)) to

be an MPE. Let H(τ2) be firm 2’s best response to H(τ ∗1 ), i.e., V ∗W2(x) :=

supτ V2(x;H(τ ∗1 ), H(τ)) = V2(x;H(τ ∗1 ), H(τ2)) be the corresponding payoff.

We denote the continuation region associated with τ2 by C2, i.e., τ2 = inf{t ≥
0 : Xx

t 66∈ C2}, and its complement by Γ2 = I \C2.

We now claim that Γ2 ∩ (θ∗2,∞) = ∅. Towards a contradiction, suppose
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not. Then we can pick some x ∈ Γ2∩ (θ∗2,∞), which implies that V ∗W2(x) = l2.

However, because τ ∗1 > τ ∗2 when X0 = x, Lemma 4.1 implies that firm 2 could

obtain a strictly higher payoff by exiting at τ ∗2 > 0 instead, i.e.,

V ∗W2(x) ≥ V2(x;H(τ ∗1 ), H(τ ∗2 )) = Ex
[ˆ τ∗2

0

π(Xt)e
−rtdt+ l2e

−rτ∗2
]
> l2 ,

which is a contradiction. We next claim that Γ2 ∩ (θ∗1, θ
∗
2] = ∅. Towards a

contradiction, suppose not. Then we can pick x ∈ Γ2 ∩ (θ∗1, θ
∗
2], which implies

that V ∗W2(x) = l2. However, we have

V ∗W2(x) ≥ V2(x;H(τ ∗1 ), H(∞)) = Ex
[ˆ τ∗1

0

π(Xt)e
−rtdt+ w(Xx

τ∗1
)e−rτ

∗
1

]
> l2 ,

where the last inequality follows from (C.19). This establishes the contra-

diction. We further claim that Γ2 ∩ (−∞, θ∗1] = ∅. If not, then there exists

x ∈ Γ2 ∩ (−∞, θ∗1], which implies that both firms exit simultaneously when

Xy
t = x, and hence, V ∗W2(x) = m2(x). Because τ ∗1 = 0 when X0 = x ≤ θ∗1, we

have

V ∗W2(x) ≥ V2(x;H(τ ∗1 ), H(∞)) = Ex
[ˆ τ∗1

0

π(Xt)e
−rtdt+ w(Xx

τ∗1
)e−rτ

∗
1

]
= w(x) > m2(x) ,

which is a contradiction. Combining the three claims above, therefore, we

conclude that Γ2 = ∅, which implies that C2 = I , and hence, τ2 =∞.

Second, define w := inf{w(x) : x ∈ I } and βW (θ) := [w − R(θ)]/φ(θ).

Note that βW (θ) > β2(θ) for ∀θ ∈ I because w > l2. Also, observe that for

∀θ < θ∗2, we have

β
′

W (θ) =
{
−R′(θ)φ(θ)− φ′(θ)[w −R(θ)]

}
/φ2(θ)

>
{
−R′(θ)φ(θ)− φ′(θ)[l2 −R(θ)]

}
/φ2(θ) = β

′

2(θ) > 0

where the first inequality follows because φ
′
(θ) < 0, and the last inequality

holds because β
′
2(θ) > 0 for θ < θ∗2 from Lemma C.1. Next, pick κθ > 0 such
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that

βW (θ∗2 − κθ) = β2(θ∗2) , (C.20)

where β2(·) is defined in (C.3). If such κθ exists, it must be unique because

β
′
W (θ) > 0 for θ < θ∗2. If there does not exist κθ which satisfies C.20, then we

let κθ =∞.

Finally, we show that (C.19) is satisfied if θ∗2−θ∗1 < κθ, which will complete

the proof; this is because we can always find the unique κl > 0 for any given

κθ > 0 such that θ∗2 − θ∗1 < κθ if and only if l2 − l1 < κl from the fact that θ∗i
given in (4.7) strictly increases in li. Suppose now that θ∗2 − θ∗1 < κθ, i.e., θ∗1 >

θ∗2 − κθ. Note that β
′
W (θ) > 0 for ∀θ < θ∗2, and recall that θ∗1 < θ∗2. Therefore,

βW (θ∗1) > βW (θ∗2 − κθ) = β2(θ∗2) by (C.20). Thus, for any x ∈ (θ∗1, θ
∗
2],

Ex
[ˆ τ∗1

0

π(Xx
t )e−rtdt+ w(θ∗1)e−rτ

∗
1

]
≥ Ex

[ˆ τ∗1

0

π(Xx
t )e−rtdt+ we−rτ

∗
1

]
= R(x) + φ(x)βW (θ∗1)

> R(x) + φ(x)β2(θ∗2)

≥ R(x) + φ(x)β2(x) = l2 ,

where the first inequality holds from the definition of w, the first equality

holds because Ex[e−rτ∗1 ] = φ(x)/φ(θ∗1) for x > θ∗1, the second inequality follows

because βW (θ∗1) > β2(θ∗2), the last inequality holds because β2(·) achieves its

maximum at θ∗2 by Lemma C.1, and the last equality follows by the definition

of β2(·). Hence, (C.19) is satisfied, which establishes the desired result for

κθ > 0.

Proof of Lemma 4.2(a): Suppose that (G1, G2) is a mixed-strategy MPE.

First, let us define Di := {x ∈ I : π(x) > rli}. We will show that Di is a

subset of the continuation region for firm i, i.e., supp(Gi) ∩Di = ∅. Towards

a contradiction, suppose there exists some x ∈ supp(Gi)∩Di. Because π(·) is

continuous, for ε > 0 sufficiently small, π(y) > rli for all y ∈ (x − ε, x + ε).

Then using
´ t

0
−rlie−rsds = li(e

−rt − 1), we have

Li(t) = li +

ˆ t

0

[π(Xx
s )− rli]e−rsds > li , ∀t ∈ (0, τε] , (C.21)
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where τε := inf{t ≥ 0 : Xx
t 6∈ (x− ε, x+ ε)}, and the inequality follows because

πi(X
x
s ) > rli for ∀s < τε. Note that

Ex[Si(τε;Gj)] = Ex
[ˆ τε

0

Wi(t)dGj(t) +Mi(τε)∆Gj(τε) + Li(τε)[1−Gj(τε)]

]
> Ex

[ˆ τε

0

Li(t)dGj(t) + Li(τε)∆Gj(τε) + Li(τε)[1−Gj(τε)]

]
> Ex

[ˆ τε

0

lidGj(t) + li∆Gj(τε) + li[1−Gj(τε)]

]
= li = Ex[Si(0;Gj)] ,

where the first inequality follows because Wi(t) > Mi(t) > Li(t), the sec-

ond inequality follows from (C.21). This contradicts the supposition that

x ∈ supp(Gi) because firm i can obtain a strictly greater expected payoff by

adopting the strategy τε. Therefore, it must be the case that supp(Gi)∩Di = ∅.
Next, we prove that the interiors of supp(G1) and supp(G2) must coin-

cide, which establishes the statement of this lemma. Towards a contradiction,

suppose that there exists an open interval E ⊆ supp(Gi) but E * supp(Gj).

Consider an exit strategy τE := inf{t > 0 : Xx
t 6∈ E} for firm i, where x ∈ E.

Then τE > 0 a.s. because E is an open set. Fix some τ ∈ (0, τE), and note

that Lemma C.2 implies that Ex[Si(τ ;Gj)] = Ex[Si(0;Gj)]. Moreover, because

x ∈ E * supp(Gj), it must be the case that Gx
j (τ) = 0.

Recall that supp(Gi)∩Di = ∅, so E ∩Di = ∅, which implies that π(Xx
s ) <

rli for all s ∈ [0, τ) because E is an open set and π(·) strictly increases. Hence,

we have

Ex[Si(τ ;Gj)] = Ex[Li(τ)] = li+Ex
[ˆ τ

0

[π(Xt)−rli]e−rtdt
]
< li = Ex[Si(0;Gj)],

where the first equality follows because Gx
j (τ) = 0, and hence, Gx

j (t) =

∆Gx
j (t) = 0 for all t ≤ τ , the second equality follows from the definition

of Li(·), and the inequality follows from π(Xx
s ) < rli for all s ∈ [0, τ). There-

fore, firm i can obtain a strictly greater payoff by exiting immediately, which

contradicts the supposition that E is in the support of Gi. This completes the

proof.

Proof of Lemma 4.2(b): Suppose that (G1, G2) is a mixed-strategy MPE,

and let Γo be the closure of the common interior of supp(G1) and supp(G2).

Note that Γo comprises of all the (open) component intervals of supp(G1) and
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supp(G2); it thus excludes all the point components, if any, of either supp(G1)

or supp(G2). (A point component of supp(Gi) is a singleton subset {c} of

supp(Gi) that is disconnected from the rest of supp(Gi).) Γo is simply aug-

mented by the boundary points of all the component intervals of Γo.

Towards a contradiction, pick some x ∈ Γo, some i ∈ {1, 2}, j ∈ {1, 2}\{i},
and suppose that Gx

j (·) has a jump of size qτ > 0 at some τ such that P(Xx
τ ∈

Γo) > 0. Defining τ ′ := min{τ, τE} where τE := inf{t ≥ 0 : Xt 6∈ Γo} is the

exit time from Γo, this supposition implies that Gx
j (·) has a jump of size qτ ′ > 0

at time τ ′ such that P(Xx
τ ′ ∈ Γo) = 1. (Here we allow for the possibility that

Gx
j (·) has an additional jump at time τE as well.) It must then follow from

Lemma C.2 that Ex[Si(τ ′;Gj)] ≥ Ex[Si(τ ′+;Gj)].

Now, we compare Ex[Si(τ ′;Gj)] and Ex[Si(τ ′+;Gj)]. First, observe that

Ex[Si(τ ′;Gj)] = Ex
[ˆ τ ′−

0

Wi(t)dG
x
j (t) +Mi(τ

′)∆Gx
j (τ
′) + Li(τ

′)[1−Gx
j (τ
′)]

]
,

where ∆Gx
j (τ
′) = [1−Gx

j (τ
′−)]qτ ′ because we assume Gx

j (·) has a jump at τ ′.

On the other hand, we can similarly express Ex[Si(τ ′+;Gj)] as

Ex
[ˆ τ ′

0

Wi(t)dG
x
j (t) + Li(τ

′)[1−Gx
j (τ
′)]

]
= Ex

[ˆ τ ′−

0

Wi(t)dG
x
j (t) +Wi(τ

′)∆Gx
j (τ
′) + Li(τ

′)[1−Gx
j (τ
′)]

]
,

where the equality follows by breaking down the integral over [0, τ ′−] and

(τ ′−, τ ′]. Then becauseWi(·) > Mi(·) and Ex[∆Gx
j (τ
′)] = Ex[[1−Gx

j (τ
′−)]qτ ′ ] >

0, we conclude Ex[Si(τ ′;Gj)] < Ex[Si(τ ′+;Gj)], which is a contradiction. Hence,

if x ∈ Γo, then Gx
j (t) must be continuous as long as Xt ∈ Γo.

Proof of Lemma 4.3(a): Suppose that G := (Gi, Gj) is a mixed-strategy

MPE. First, we claim that there is no point component c ∈ I of supp(Gi)

such that c /∈ supp(Gj). Note that this claim combined with Lemma 4.2(a)

establishes that supp(Gi) = supp(Gj), thus yielding supp(Gi) = supp(Gj).

To prove this claim, observe first that there is no singleton set {c′} that

is a point component of both supp(Gi) and supp(Gj). This is because exit

simultaneously with the opponent yields lower expected payoff compared to

exit in an infinitesimal time. Now, consider a component interval (d, θ) of the
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common interior Γo for some d ∈ [α, θ) and θ < ∞, and suppose that there

is a point component c ∈ I of supp(Gi) such that c /∈ supp(Gj). We further

suppose that the interval (θ, c) does not contain any other point component

of supp(Gi) or supp(Gj).

It follows from the proof of Lemma 4.2(a) that c 6∈ Di where Di := {x :

π(x) > rli}, which implies that (θ, c) does not intersect with Di because π(·)
strictly increases. Also, because our assumption c /∈ supp(Gj) and Lemma

4.2(b) imply that Gc
j(0) = Gθ

j(0) = 0, we obtain Vi(c;G) = Vi(θ;G) = li;

otherwise c and θ do not belong to supp(Gi) by definition of a mixed-strategy

equilibrium. Then because π(x) < rli for ∀x ∈ (θ, c), it is straightforward to

verify that Vi(x;G) < li for ∀x ∈ (θ, c) (Oksendal, 2003). However, firm i can

always achieve a higher payoff li from an immediate exit at any point x ∈ (θ, c),

which contradicts the assumption that G is an equilibrium. Hence, such a point

component c of supp(Gi) cannot exist above a component interval (d, θ) of Γo.

Lastly, because the exactly same procedure can be used to prove that there

is no such point component c of supp(Gi) below a component interval (θ, d)

of Γo, we can conclude that there is no point component c ∈ I of supp(Gi)

such that c /∈ supp(Gj). This has proved that supp(Gi) = supp(Gj) = Γ and

Γ = Γo.

Finally, we prove the statement of this lemma. Suppose that Gx
i is dis-

continuous in time. Because we have proved above that no point component

can exist outside Γ in equilibrium, the discontinuity cannot take place when

Xt 6∈ Γ, thus implying a discontinuity can only happen inside Γ. Also, by

definition of the Markov strategy, the discontinuity happens at τE = inf{t ≥
0 : Xt ∈ E} for some E ⊂ Γ irrespective of the initial point x. Note that

because X is an irreducible Markov chain if σ(·) > 0, we have τE < ∞ with

positive probability irrespective of the initial point x. However, Lemma 4.2(b)

stipulates that such a set E cannot intersect Γo if the initial point x is within

Γo. Because Γ = Γo, and because a Markov strategy does not depend on the

initial value of the state variable, these two statements contradict each other

unless E = ∅. Therefore, Gx
i must be continuous in time irrespective of x.

Proof of Lemma 4.3(b): Suppose that (G1, G2) is a mixed-strategy MPE.

We have shown in Lemma 4.3(a) that if σ(·) > 0, then Gx
1(·) and Gx

2(·) are

continuous for all x ∈ I . Let Γ := supp(G1)=supp(G2) and define C := I \Γ.

Recall from the proof of Lemma 4.2(a) that {x : π(x) > rli} ⊂ C for each
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i ∈ {1, 2}.
First, we show that Γ is of the form (α, θ). Towards a contradiction, sup-

pose that there exists an interval (a, b) such that (a, b) ⊆ C and a, b ∈ Γ.

This implies that (a, b) is disconnected from {x : π(x) > rli} for each i. Pick

x ∈ (a, b) and define τ(a,b) := inf{t ≥ 0 : Xx
t /∈ (a, b)}.

It follows from Lemma C.2 that Ex[Si(τ(a,b);Gj)] = supτ Ex[Si(τ ;Gj)]. Ob-

serve that

Ex[Si(τ(a,b);Gj)] = Ex[Li(τ(a,b))] = li + Ex
[ˆ τ(a,b)

0

[π(Xt)− rli]e−rtdt
]

< li = Ex[Si(0;Gj)] ,

where the first equality follows from Gx
j (τ(a,b)) = 0, the second equality follows

from the definition of Li(·), and the inequality follows because π(Xx
s ) < rli

for all s ≤ τ(a,b). This is a contradiction, which implies that Γ = (−∞, θ) for

some θ ≤ xci ∧ xcj.
Second, pick some x > θ, and define the strategy τ := inf{t ≥ 0 : Xx

t ≤ θ}.
We show that it must be the case θ = θ∗i for each i where θ∗i is given in Lemma

4.1.

Towards a contradiction, suppose that θ < θ∗2 and recall that θ∗1 ≤ θ∗2 be-

cause l1 ≥ l2 by convention. Let τ ∗2 = inf{t ≥ 0 : Xx
t ≤ θ∗2} and note that

G1(τ ∗2 ) ≤ G1(τ) = 0 because θ < θ∗2. Therefore, we have Ex[S2(τ ;G1)] =

Ex[L2(τ)] < Ex[L2(τ ∗2 )] = Ex[S2(τ ∗2 ;G1)] where the equalities follow from

G1(τ ∗2 ) = G1(τ) = 0, and the inequality follows from Lemma 4.1. However,

this contradicts that Ex[S2(τ ;G1)] = supτ̃ Ex[S2(τ̃ ;G1)].

On the other hand, suppose that θ > θ∗2, which implies that τ ≤ τ ∗2 . We

first note that W2(·) is a supermartingale because

Ex
[
W2(t)|Fs

]
= Ex

[ˆ t

0

π(Xv)e
−rvdv + e−rtw(Xt) | Fs

]
=

ˆ s

0

π(Xv)e
−rvdv

+ Ex
[ˆ t

s

π(Xv)e
−rvdv + Ex

[ˆ ∞
t

πM(Xv)e
−rvdv | Ft

]
| Fs

]
<

ˆ s

0

π(Xv)e
−rvdv + Ex

[ˆ ∞
s

πM(Xv)e
−rvdv | Fs

]
= W2(s) .
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Here, we use the definition of w(·) and πM(·) > π(·). We next establish that

Ex
[ˆ τ∗2

τ

W2(t)dG1(t) | Fτ
]

=

ˆ 1

0

Ex
[
W2(τG,x1 (z))1[τ,τ∗2 ](τ

G,x
1 (z))|Fτ

]
dz

≥
ˆ 1

0

Ex
[
Ex
[
W2(τ ∗2 )|FτG,x1 (z)

]
1[τ,τ∗2 ](τ

G,x
1 (z))|Fτ

]
dz

=

ˆ 1

0

Ex
[
Ex
[
W2(τ ∗2 )1[τ,τ∗2 ](τ

G,x
1 (z))|FτG,x1 (z)

]
|Fτ
]
dz

= Ex
[
W2(τ ∗2 )

ˆ 1

0

1[τ,τ∗2 ](τ
G,x
1 (z))dz|Fτ

]
= Ex

[
W2(τ ∗2 )[G1(τ ∗2 )−G1(τ)]|Fτ

]
> Ex

[
L2(τ ∗2 )G1(τ ∗2 )|Fτ

]
, (C.22)

where the first equality holds from the change-of-variable from G1(t) to τG,x1 (z)

given in (C.9), the inequality holds because W2(·) is a supermartingale, the

second equality holds because 1[τ,τ∗2 ](τ
G,x
1 (z)) is measurable with respect to

the filtration FτG,x1 (z), the third equality follows from the tower rule of the

conditional expectation because Fτ ⊆ FτG,x1 (z), the fourth equality follows

from
´ 1

0
1[τ,τ∗2 ](τ

G,x
1 (z))dz = G1(τ ∗2 ) − G1(τ) by the definition of τG,x1 (z), and

the last inequality follows because W2(·) > L2(·) and G1(τ) = 0 (recall that

supp(G1) = (α, θ)).

Using (C.22), therefore, we obtain

Ex[S2(τ ∗2 ;G1)]− Ex[S2(τ ;G1)]

= Ex
[
Ex
[ˆ τ∗2

τ

W2(t)dG1(t) + L2(τ ∗2 )[1−G1(τ ∗2 )]− L2(τ) | Fτ
]]

> Ex
[
Ex
[
L2(τ ∗2 )G1(τ ∗2 ) + L2(τ ∗2 )[1−G1(τ ∗2 )]− L2(τ) | Fτ

]]
= Ex

[
Ex
[
L2(τ ∗2 )− L2(τ) | Fτ

]]
= Ex

[
L2(τ ∗2 )− L2(τ)

]
> 0 ,

where the last equality follows from the tower rule of the conditional expecta-

tion and the last inequality follows from Lemma 4.1.

Therefore, it must be the case that θ = θ∗2. By a symmetric argument, one

can show that it must be the case that θ = θ∗1.
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Proof of Theorem 4.1: By noting that θ∗1 = θ∗2 if and only if l1 = l2, it is

straightforward to see from Lemma 4.3(b) that if l1 6= l2, then the game does

not admit any mixed-strategy MPE, which completes the proof.

Proof of Proposition 4.2: Because l1 = l2, we must have θ∗ := θ∗1 = θ∗2.

Define τ ∗ := inf{t ≥ 0 : Xx
t ≤ θ∗} and it is enough to show that Gi is a best

response to Gj by symmetry.

To that end, we will use Lemma C.2. More precisely, since it can be seen

from (4.10) that the closure of the support of Gx
i is (−∞, θ∗], we only need to

prove the following two relations:

Ex[Si(u1;Gj)] = Ex[Si(u2;Gj)] for any u, v ≥ τ ∗ , (C.23)

Ex[Si(τ ;Gj)] < Ex[Si(τ ∗;Gj)] for any τ < τ ∗ . (C.24)

To show (C.23), choose any stopping times u, v > τ ∗ with v > u, and

observe that

Ex[Si(v;Gj)]− Ex[Si(u;Gj)]

= Ex
[ vˆ

u

Fi(s)dG
x
j (s) + Li(v)[1−Gx

j (v)]− Li(u)[1−Gx
j (u)]

]
. (C.25)

Then it is enough to prove that the right side of (C.25) is equal to 0. By

differentiating (4.10) with respect to time, we obtain

dGx
j (s) = [1−Gx

j (s)]
dDθ∗

i (s)

Fi(s)− Li(s)
, (C.26)

where Dθ∗
i (·) is defined in (C.12). By applying integration by parts to (C.26),

we have

vˆ

u

[Fi(s)− Li(s)]dGx
j (s) = −

vˆ

u

[1−Gx
j (s)]dD

θ∗

i (s)

= −
vˆ

u

Dθ∗

i (s)dGx
j (s)−Dθ∗

i (v)[1−Gx
j (v)] +Dθ∗

i (u)[1−Gx
j (u)] .
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Then it follows from (C.25) that

Si(v;Gj)− Si(u;Gj) =

vˆ

u

Fi(s)dG
x
j (s) + Li(v)[1−Gx

j (v)]− Li(u)[1−Gx
j (u)] .

=

ˆ v

u

[Dθ∗

i (s) + Li(s)]dG
x
j (s) + [1−Gx

j (v)][Dθ∗

i (v) + Li(v)]

− [1−Gx
j (u)][Dθ∗

i (u) + Li(u)] .

By Lemma C.3(b), we now obtain

Ex[Si(v;Gj)− Si(u;Gj)] = Ex
[ˆ v

u

[Dθ∗

i (s) + Li(s)−Ni(s)]dG
x
j (s)

+ [1−Gx
j (v)][Dθ∗

i (v) + Li(v)−Ni(v)]

− [1−Gx
j (u)][Dθ∗

i (u) + Li(u)−Ni(u)]

]
.

Lemma C.3(a) implies that Li(s) = Ji(s) = Ni(s)−Dθ∗
i (s) for any s ≥ τ ∗ and

u, v > τ ∗, from which (C.23) follows.

To show (C.24), because Gx
j (s) = 0 for all s ≤ τ ∗, we obtain, for any

τ < τ ∗,

Ex[Si(τ ;Gj)] = Ex[Li(τ)] < Ex[Li(τ ∗)] = Ex[Si(τ ∗;Gj)] ,

where the inequality follows from Lemma 4.1. This establishes (C.24), which

completes the proof.

Proof of Proposition C.1: Note that we do not need the expectation

notation throughout the proof of this proposition because there is no uncer-

tainty when σ(·) = 0 in (3.1). However, Lemma 4.1 and Lemma C.2 are still

valid when σ(·) = 0 so that we use those lemmas without expectation notation

for notational simplicity.

First, we show that G2 is also a best response to G1 if θ∗2 − θ∗1 < κθ where

κθ is given in (C.20). We will use Lemma C.2 and will prove the following

relations:

S2(u;G1) = S2(v;G1) for any u, v > τ ∗1 , (C.27)

S2(t;G1) < S2(u;G1) for any t ≤ τ ∗1 < u . (C.28)
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To prove (C.27), choose any u, v > τ ∗ with v > u, and observe that

S2(v;G1)− S2(u;G1) =

vˆ

u

F2(s)dGx
1(s) + L2(v)[1−Gx

1(v)]− L2(u)[1−Gx
1(v)] .

(C.29)

Then it is enough to prove that the right side of (C.29) is equal to 0. For any

s > τ ∗1 , observe from (4.10) and (C.1) that

Gx
1(s) =

{
(1− p1) + p1G

θ∗1
1 (s− τ ∗1 ) for x > θ∗1 ,

Gx
1(s) for x ≤ θ∗1 .

(C.30)

In addition, we can obtain from differentiating (4.10) that for any s > τ ∗1 ,

dGx
1(s) = [1−Gx

1(s)]
[rl2 − π(Xx

s )]

w(Xx
s )− l2

ds = [1−Gx
1(s)]

[rl2 − π(Xx
s )]e−rsds

W (s)− L2(s)

= [1−Gx
1(s)]

−dL2(s)

W (s)− L2(s)
, (C.31)

where 1{s≥τ∗1 } disappears because σ(·) = 0. Hence, we can use integration by

parts and obtain

vˆ

u

[F2(s)− L2(s)]dGx
1(s) = −

vˆ

u

[1−Gx
1(s)]dL2(s) (C.32)

= −
vˆ

u

L2(s)dGx
1(s)− L2(v)[1−Gx

1(v)] + L2(u)[1−Gx
1(u)] . (C.33)

After
´ v
u
L2(s)dGx

1(s) is cancelled out on the left side of (C.32) and the right

side of (C.33), the resulting equation implies that the equation (C.29) is equal

to 0, which establishes (C.27).

To show (C.28), we will use limt↑τ∗1 G
x
1(t) = 0 and Gx

1(τ ∗1 ) = (1−p1). These

imply that S2(t;G1) = L2(t) for all t < τ ∗1 , and that, for any u > τ ∗1

S2(τ ∗1 ;G1) = (1− p1)M2(τ ∗1 ) + p1L2(τ ∗1 ) < (1− p1)W2(τ ∗1 ) + p1L2(τ ∗1 ) = S2(u;G1) ,
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because p1 < 1 and (C.27). Thus, (C.28) holds if

sup
τ
L2(τ) = L2(τ ∗2 ) < (1− p1)W2(τ ∗1 ) + p1L2(τ ∗1 )

=

ˆ τ∗1

0

π(Xs)e
−rsds+ [(1− p1)w(Xx

τ∗1
) + p1l2]e−rτ

∗
1 .

(C.34)

It can be then seen that (C.34) holds if, for any x ∈ (θ∗1, θ
∗
2], we have

l2 < Ex
[ˆ τ∗1

0

π(Xx
s )e−rsds+ [(1− p1)w + p1l2]e−rτ

∗
1

]
= R(x) + βp2(θ∗1)φ(x) ,

(C.35)

where βp2(θ) := {[(1− p1)w+ p1l2]−R(θ)}/φ(θ) and w = inf{W (x) : x ∈ I }.
However, because βp2(θ) < βW (θ) for all p1 < 1 and θ ∈ I where βW (θ) =

[w − R(θ)]/φ(θ) was used in the proof of Proposition 4.1(b), (C.35) holds if

(C.19) does. Because we already proved in the proof of Proposition 4.1(b)

that (C.19) is implied by the condition θ∗2− θ∗1 < κθ, we can conclude that the

desired result follows.

Conversely, we show that G1 is a best response to G2. Since the closure

of the support of Gx
1 is (α, θ∗1], by the virtue of Lemma C.2, it is enough to

establish the following relations:

S1(u;G2) = S1(v;G2) for any u, v ≥ τ ∗1 , (C.36)

S1(t;G2) < S1(u;G2) for any t < τ ∗1 ≤ u . (C.37)

To show (C.36), can be shown by using the arguments for (C.36) above

with p2 = 0.

To prove (C.37), because Gx
2(τ ∗1 ) = 0, (C.36) implies that S1(u;G2) =

S1(τ ∗1 ;G2) = L1(τ ∗1 ) for any u > τ ∗1 , and that S1(t;G2) = L1(t) for any t < τ ∗1 .

Hence, for any t < τ ∗1 ≤ u, we have S1(t;G2) = L1(t) < L1(τ ∗1 ) = S1(u;G2)

where the inequality is due to Proposition 4.1.
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