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ABSTRACT

Complex diseases, such as cancer, have traditionally been studied using ge-

netic data, or images alone. To understand the biology of such diseases, joint

analysis of multiple data modalities could provide interesting insights. We

propose the use of canonical correlation analysis (CCA) as a preliminary dis-

covery tool for identifying connections across modalities, specifically between

gene expression and features describing cell and nucleus shape, texture, and

stain intensity in histopathological images.

It is also important to capture the interaction between different types of

cells, an important indicator of disease status. To that end, it is crucial to

quantify and utilize the spatial distribution of various cell types within the

examined tissue at different scales. We employ Ripley’s K-statistic, a tradi-

tional feature employed in geographical information systems, which captures

spatial distribution patterns of individual point sets and interactions between

multiple point sets. We propose to improve the histopathology image fea-

tures by incorporating this descriptor to capture the spatial distribution of

the cells, and interactions between lymphocytes and epithelial cells.

Applied to 615 breast cancer samples from The Cancer Genome Atlas,

CCA revealed significant correlation of several image features with expression

of PAM50 genes, known to be linked to outcome. Sparse CCA, an extension

of CCA based on sparsity, revealed associations with enrichment of pathways

implicated in cancer without leveraging prior biological understanding. The

utility of the Ripley’s K-statistic on 710 TCGA breast invasive carcinoma

(BRCA) patients’ histopathology images in the context of imaging-genetics

is demonstrated by its superior correlations with gene expressions. These

findings affirm the utility of CCA for joint phenotype-genotype analysis of

cancer, and the importance of capturing spatial features at multiple scales.
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From ignorance, lead us to truth.

From darkness, lead us to light.
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Chapter 1

INTRODUCTION

1.1 Multimodal Datasets in Healthcare

In 2016, it was reported that the United States healthcare expense was over

3.2 trillion dollars, which is equivalent to the entire world’s expenses for

the same year on information technology. Providing effective healthcare at

reduced cost to the people is a challenge even today. In an NIH study in

2017, it was estimated that the number of cancer cases and deaths due to

cancer is expected to increase over 50% worldwide in less than two decades.

Thus, it is important to develop a better understanding of diseases such as

cancer, so as to provide accurate diagnosis and enable the development of

precision medicine.

With an increase in the availability of multimodal datasets, that is, datasets

which provide information about the same set of samples/patients from mul-

tiple views, there is an opportunity for better understanding and prediction.

The Cancer Genome Atlas (TCGA) [1] and The Cancer Imaging Archive

(TCIA) [2] are publicly available datasets comprising data of different can-

cer patients for a range of different cancers. Similar datasets have been

recently developed for other important diseases: Alzheimer’s Disease Neu-

roimaging Initiative (ADNI) [3] and Parkinson’s Progressive Markers Initia-

tive (PPMI) [4]. These multimodal datasets provide different sets of informa-

tion, as shown in Figure 1.1. For example, TCGA provides information about

genetics, which captures information of the internal state of cells and genes

and whole-slide images (WSI) of biopsy tissues which capture information

about the immediate micro-environment of the different cells. The accompa-

nying dataset TCIA provides radiology images of MRI and CT scans showing

the affected tissue with respect to a broader environment to understand the

spread of the tumor.

1



Figure 1.1: Different modalities of patient data.

Given the multimodal datasets which capture different viewpoints of the

same internal tissue, there is an inherent shared state of tissue being cap-

tured by the different views. In addition, each view will capture important

information specific to that view/modality. By leveraging the multimodal

datasets it is likely possible to improve the understanding of various diseases

by looking at the same affected region from multiple viewpoints and also de-

velop interesting genotype-phenotype associations. It could be possible that

we can point out which image properties are affected by which genes (while

working with genomics and WSI) or which particular physical regions are

affected by which genes (while merging radiology data and genomics).

1.2 Multimodal Data Integration

Simple concatenation of features obtained from each modality, to obtain a

long feature vector for every patient, fails to take into account the underlying

similarities and the contrasting differences between the viewpoints/modalities

or provide an insight on the shared information between the two modalities.

To integrate data from different modalities, different techniques have been

developed in the past. A comprehensive review on multimodal data fusion

for non-neural network techniques is provided by Lahat et al. [5], covering

data-driven and model-driven methods. A few important methods mentioned

for the fusion are independent component analysis (ICA) and its extension,

joint ICA, and tensor factorization to separate out r sources which are hid-

den. More details of these methods can be found in [6].

Another way to work with multimodal data is to identify the common

shared information between the different modalities, rather than fusing them.

Correlation analyses from statistics can be applied for this task. Standard
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correlation based analyses which look at correlation between individual fea-

tures have a limitation that they cannot aggregate information from multiple

features. A recent effort to incorporate the interactions between the genes

is the work by Cooper et al. [7], where each patient’s gene expression was

represented as a mixture of clustered gene signatures derived from the data.

However, this approach still considers individual image features.

Canonical correlation analysis (CCA) [8],[9], which also uses correlations,

allows for a linear combination of features of different views/modalities to be

correlated, rather than individual features alone. This is an important con-

sideration in the medical setting, because it is more plausible for collections

of genes to be related to collections of image features, rather than individu-

ally. CCA can be easily extended to incorporate non-linearity in the features

by incorporating kernels to obtain kernel CCA [8], [10],[11], non-linearity in

weights by using neural networks (Deep CCA) [12], as well as sparsity in its

weights [13].

Probabilistic relations between the genes and image features, with genes as

drivers for the resulting image features, have been explored by Batmanghe-

lich et al. [14] as a joint modelling problem. Techniques based entirely on

neural networks have also emerged recently. Multimodal Deep Boltzmann

machines (MDBM) [15] models the joint probability distribution of the ob-

served variables of both types of data with a hidden variable. By learning

this joint probability distribution, MDBM can sample the hidden represen-

tation and recover missing modalities. Another network is the Multimodal

Autoencoders [16] by Ngiam et al. which uses an autoencoder architecture

for capturing the shared information.

1.3 Spatial Distribution of Cells

While advanced deep learning based techniques have been employed to ac-

curately segment out cells, and obtain descriptors, approaches to capture

the spatial distribution of cells are still not fully developed. For complex

disease such as cancer, an important factor in disease diagnosis is the distri-

bution of cells in the tissue (Figure 1.2). A scenario where the lymphocytes

are well mixed with the cancerous epithelial cells (high lymphocyte infiltra-

tion) is significantly different from when the two are well-separated in space
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(a) (b) (c)

Figure 1.2: Examples of different distribution of cells from TCGA-BRCA.

(low lymphocyte infiltration) and has been shown to be linked to clinical

outcome [17].

Traditional methods to capture the distribution of cells in the tissue images

in cancer include plane partitioning techniques such as Delaunay triangula-

tion, which partitions based on circumcircles; Voronoi diagrams; and other

spatial tessellations [18],[19],[20]. Graph based constructions of cell graphs

have also been proposed [21]. These methods, however, only look at the local

neighborhood (of a few adjacent nuclei) and do not account for the overall

distribution of cells at different scales, or the interactions between different

types of cells.

A similar problem arises in the area of geography and ecology, where the

task is to quantify the distribution of a population across a region, for ex-

ample, or the distribution of trees in a forest. Classical tools to identify

the level of randomness of spatial point process include the nearest-neighbor

statistics, spectral analysis of point processes and location-based functions

including F-function, G-function, and Ripley’s K-function. These tools can

be readily applied to the tissue setting to describe spatial statistics of cells,

and even cells of differing types, as proposed recently by Heindl et al. [22]

and Chang et al. [23].

1.4 Main Contributions

As a first step in integrating information from multiple modalities, we look to

work with two different viewpoints. In particular, given two sets of features

X ∈ Rn×p and Y ∈ Rn×q of the same n patients, we would like to identify

the amount and type of information shared between X and Y. It is also

important to know if the component of X and Y not shared captures any
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biologically relevant or clinically relevant meaning, or if it is uninformative

noise. The goals of the information identification would be (1) to identify

important shared biological variables and discover novel relations and (2) to

utilize the biologically meaningful shared information in conjunction with

the information unique to each modality for better prediction of biological

and clinical variables.

This project aims to leverage existing techniques and develop improved

methods for these tasks. Our main contribution on this front is the appli-

cation of CCA to the multimodal medical setting of TCGA cancer patients

to understand the underlying shared information and the potential of CCA

in this task [24]. To capture information regarding the spatial distribution

of cells, we employ Ripley’s K-function [25],[26] to capture the second order

statistics of the point sets in the context of histopathology images in contrast

to first order techniques, which fail to accurately capture the spatial interac-

tions, and higher order statistics, which are computationally expensive.

We observe an increased correlation between the spatial-augmented image

feature and gene expressions, indicating a more informative image feature

vector. Further, identifying the highly correlated genes and their associated

pathways we find an increased association with pathways involved in spatial

interactions and cell cycle. Our findings indicate the importance of encoding

spatial aspects of the cell distributions in histopathology images and reveal

a promising direction for future research.
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Chapter 2

CORRELATION ANALYSIS

2.1 Canonical Correlation Analysis

Canonical correlation analysis (CCA) [9] is a linear method developed in

1936, by Hotelling, to identify the correlation between two sets of variables

X and Y containing data about the same n samples, by linearly combining

the different features of the samples to obtain meaningful hidden variables.

The idea is to combine multiple features linearly to obtain a hidden feature

for both X and Y, such that the resulting feature behaves similarly in both

the domains.

2.1.1 Formulation of Canonical Correlation Analysis

Mathematically, given X ∈ Rn×p and Y ∈ Rn×q normalized to zero mean

and unit variance with n > min(p, q), CCA looks for α ∈ Rp and β ∈ Rq

based on the optimization problem below, where ρ is an empirical estimate

of the Pearson’s correlation coefficient, cov(.) is the cross covariance between

X and Y, and σX , σY are the standard deviations of X and Y respectively:

α∗, β∗ = arg max
α,β

ρ(Xα,Yβ) such that ‖Xα‖ = ‖Yβ‖ = 1, (2.1)

ρ(U, V ) =
cov(U, V )

σUσV
. (2.2)

To obtain more than one linear combination (set of weights (α∗, β∗)), the

above process can be repeated, imposing orthogonality constraints. It can be

shown using the Cauchy-Schwarz inequality that the correlation coefficient ρ

always lies in [−1, 1]. The vectors α∗ and β∗ are referred to as the canonical

weights and Xα∗ and Yβ∗ are the canonical variates. The correlations of
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Figure 2.1: An illustration of canonical correlation analysis. CCA identifies
the directions α∗ and β∗ such that, upon transforming (X, Y) to (Xα∗,
Yβ∗), the resulting correlation between them is maximized.

each variable of each domain with its corresponding canonical variate are

called the canonical loadings. For example, for image feature f1 and the first

variate Yβ1, both in Rp, the loading L(f1,Yβ1) = ρ(f1,Yβ1).

To understand the intuition behind CCA, refer to Figure 2.1. We have two

sets of features/variables, X and Y. Consider three samples (represented by

the different shapes) for both X and Y. CCA identifies the directions α∗

and β∗ for each of the two sets of variables respectively. These directions are

chosen such that, upon transforming (X, Y) to (Xα∗, Yβ∗), the resulting

correlation between them is maximized. That is, we look for directions in

each of the spaces, such that the features are co-variant, or vary similarly,

along these directions.

It should be noted that CCA is different from obtaining the first dimension

of principal component analysis (PCA) for both the sets of variables and cor-

relating them. This difference is due to the fact that the CCA directions need

not be equal to the direction of maximum variance, and the PCA directions

need not be those of maximum correlation.

By identifying the directions α∗, β∗, we can firstly identify the amount of

information shared between the two sets of variables. Further, we have a way

to identify which features of X are well-related with which features of Y, if

the correlation is high. In the context of the medical setting in cancer, where

we look at gene expressions and image features, we can potentially identify

which genes (X = gene expressions) which are well-related with particular

image features (Y = image features). The hope is that we find biologically

meaningful linear combinations, which are informative of clinical variables,

such as subtype.
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2.1.2 Solving CCA

Given the data matrices X and Y, an empirical estimate of the covariance

matrices between variables in X and Y can be obtained:

C(X,Y) =

[
Cxx Cxy

Cyx Cyy

]
. (2.3)

It can be shown that in the original objective, the choice of scaling of α and

β does not affect the solution. Thus, we can enforce unit norm constraints

as αTCxxα = 1 and βTCyyβ = 1.

Using the method of Lagrange multipliers to enforce the constraints and

enforcing stationarity of the Lagrangian L(λ, α, β) as in [11], we get

L(λ, α, β) = αTCxyβ −
λx
2

(αTCxxα− 1)− λy
2

(βTCyyβ − 1) (2.4)

Cxyβ = λxCxxα =⇒ αTCxyβ = λx (2.5)

Cyxα = λyCyyβ =⇒ βTCyxα = λy, (2.6)

from which we get λx = λy = ρ, and the generalized eigenvalue problem[
0 Cxy

Cyx 0

][
α

β

]
= ρ

[
Cxx 0

0 Cyy

][
α

β

]
. (2.7)

There are multiple ways to solve this eigenvalue problem by simplifying

it to a standard eigenproblem. Using Cholesky decomposition, the problem

can be simplified as in [8] into a symmetric standard eigenproblem

CxyC−1yyCyxα =λ2Cxxα, with β =
C−1yyCyx

λ
α. (2.8)

2.2 Extensions to CCA

The linear CCA is elegant and easy to understand. However, its linearity

restricts the extraction of useful descriptors of the data. To overcome this,

non-linearities can be introduced in the features through kernels, as in Kernel

CCA [11], or through the use of non-linearities in weights through the use of
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deep neural networks [12].

2.2.1 Kernel CCA

Kernel CCA makes use of a high-dimensional mapping of features through

the use of kernels. In reproducing kernel Hilbert spaces, kernels can be used

to evaluate the inner product in the feature space, without actually projecting

the data into the higher dimensional space. This is commonly referred to as

the ‘kernel trick’.

Kernel CCA can be thought of as the linear CCA with the covariance

matrix as [
K2
x KxKy

KyKx K2
y

]
,

which can be solved as the generalized eigenvalue problem below, or reduced

further to a standard eigenvalue problem.[
0 KxKy

KyKx 0

][
α

β

]
= ρ

[
K2
x 0

0 K2
y

][
α

β

]
. (2.9)

As described in [11], the kernel CCA does not provide good estimates of

the canonical correlations in general. A regularization is used to overcome

the problem, penalizing the norms of f1 and f2 to modify the problem to

finding α and β through the generalized eigenvalue problem[
0 KxKy

KyKx 0

][
α

β

]
= ρ

[
(Kx + κI)2 0

0 (Ky + κI)2

][
α

β

]
. (2.10)

2.2.2 Deep CCA

While kernels enable non-linearities in the features, the weights are still lin-

ear. With the advent of neural networks in the past decade, non-linearities

can be introduced even on the weights, as shown in Figure 2.2. In this

method, weights for non-linearities are learned for both the views, so as to

maximize the resulting correlation after transformation.
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Figure 2.2: Deep canonical correlation analysis: a neural-network based
extension to incorporate non-linearity in weights for CCA.

2.2.3 Enforcing Sparsity

A limiting property of CCA is that it is suitable only when n ≥ max(p, q),

while most genomic data used today has n � max(p, q). An extension

of CCA to enable applying CCA to high-dimensional, low-sample data is

through sparsity in the weight α, β.

Many versions of penalized CCA have been proposed, which can work for

high-dimensional data, while preserving interpretability [13],[27],[28]. One

formulation, as proposed by Witten et al. [13], optimizes the same objective

function subject to the penalty constraints

‖α‖2 ≤ 1, ‖β‖2 ≤ 1, Px(α) ≤ cx, Py(β) ≤ cy, (2.11)

where Px and Py are convex penalty functions, often chosen to impose spar-

sity. For our applications, we will work with the L1 penalty function. For

multiple variates, the algorithm is iterated. An important point to be noted

is that, unlike CCA, explicit orthogonality between successive variates is not

enforced. This restricts the utility of the method. However, sparse CCA

enables us to work with the entire set of features, with the possibility of

revealing new connections.
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Chapter 3

SPATIAL DISTRIBUTION

3.1 Ripley’s K-function

To capture the spatial distribution information of individual cells, and in-

teraction between the two types of cells, Ripley’s K-function [25],[26] could

prove insightful. This conventional tool in geographic information systems

was recently proposed to be applied in the medical domain [23],[29].

3.1.1 Definition of K-function

We present the relevant definitions next.

Spatial Point Processes A spatial point process is a random pattern of

points in d-dimensional space, with d ≥ 2.

Poisson Point Process A Poisson point process (PPP), also known as

complete spatial randomness (CSR), is a point process with conditions:

• For any area A and the number of dots within it denoted by N(A),

N(A) ∼ Poisson(λ|A|).

• For any disjoint areas A, B, N(A) and N(B) are independent.

Then, given condition N(A) = n in an area A ∈ S, the dots within are

independently and uniformly distributed in A. This is an important method

to generate a PPP model in a rectangle window.

Spatial Functions Let Φ denote the point process and d(p, S) denote the

smallest distance between dot p and the dots in set or process S.
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For a PPP with intensity λ, the probability that no point lies in a circle

with radius r and center u is exp (−λπr2). The nearest neighbor distance

distribution is defined as

G(r) = P{d(u, φ{u}) ≤ r, u ∈ Φ}. (3.1)

For a PPP with intensity λ, we can derive that Gp(r) = 1−exp (−λπr2) Due

to the exponential calculation, it is hard to analyze this function because the

errors of estimations are too large. The K function raised by Ripley [25],[26]

is more useful.

Ripley’s K-function

K(r) =
1

λ
E{|φ ∩ b(u, r)− {u}|, u ∈ φ}. (3.2)

K function is the expectation of the number of dots in a ball b(u, r) with

center u randomly picked in φ and radius r, where u is excluded. We can get

Kp(r) = πr2. (3.3)

In simpler terms, for a spatial point process A with point density λ1, the

K-function is defined as

KA(r) =
1

λ1
E{fA(A, r)}. (3.4)

For an additional process B with λ2, the cross K-function is defined as

KA,B(r) =
1

2

( 1

λ1
E{fA(B, r)}+

1

λ2
E{fB(A, r)}

)
, (3.5)

where fP1(P2, r) is the number of events for process P2 within a distance r

of a randomly chosen event from P1, and E denotes expected value.

The self-K-function yields information regarding the density distribution

of a given point process. A larger value of K for a smaller radius implies the

presence of more dense regions. The cross-K-function provides information

on how far two processes are from each other. If they are far away, K will

be 0 for small radii. If the two processes are well mixed with each other, K

will be a significant nonzero value. By evaluating the closeness between the

12



Figure 3.1: Pictorial representation of the K-function evaluated at radius r
for the blue process. The circle will be placed at all blue points. For self
K-function, count other blue points; for cross K-function, count red stars.

different point sets at different scales, the K-function can capture statistics

about the spatial distribution of points at several scales. Therefore, the scale

of evaluation of the K-function becomes an important factor.

Note that by way of definition, K-function is an increasing curve with

respect to radius r, and the maximum meaningful radius is 1
2

min(h,w) where

h and w are the height and width respectively of the section of interest. A

pictorial representation of the evaluation is shown in Figure 3.1.

In practice, edge effects come into play, with points on the edges not having

certain segments of the radius r circle inside the region of interest, and an

unbiased estimator of the K-function is used. To estimate the K-function, the

average value is computed, in place of the expectation. The resulting spatial

feature is then combined with the previously obtained feature to obtain the

overall image feature for each patient.

3.2 Examples on Simulated Data

To understand the variation in K-functions, we first present self- and cross-

K-functions for four simulated point sets in Figures 3.2 and 3.3. These point

sets are generated using CSR in specific intervals. The point sets 1 and 2

are not very well mixed with each other, while point sets 3 and 4 are more

uniformly mixed.
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Figure 3.2: Point configuration 1: Point sets 1 and 2 are not well mixed.

Figure 3.3: Point configuration 2: Point sets 3 and 4 are well mixed.

Figure 3.4: K-functions of the two point patterns: their self-K-functions
(Kij, i = j) and cross-K-functions (Kij, i 6= j) plotted versus radius (t).
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The functions K11, K22, K33, K44 represent self-K-functions for the corre-

sponding point processes. It can be seen from Figure 3.4 that due to the

clustered nature of point set 1, the resulting self-K-function is significantly

different from those for the other point sets: K11 is high for small radii, and

does not increase as rapidly after the radius t = 0.25.

The cross-K-functions K12, K34 for the two configurations have large differ-

ences for large radii (t > 0.1). In particular, K12 is well below K34. Looking

back at the point sets it can be reasoned that the uniform mixing of the

two point sets 3 and 4 result in a higher value of the cross-K-function, in

contrast to the point sets 1 and 2, which results in the differing plots of the

cross-K-functions.

The differences in the K-functions for the two simulated configurations

highlight the ability of the K-function in capturing the spatial statistics of

different point configurations. In the cancer setting, the point configurations

would represent differing interactions between white blood cells and cancer

cells. By accurately capturing the spatial properties of the interactions, it

will be possible to better represent the nuclei and cell-based image features.
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Chapter 4

EXPERIMENTS AND RESULTS

In order to demonstrate the utility of CCA and Ripley’s K-function on real

data, we apply these techniques on real data. We first employ CCA on the

regular image features, through the workflow shown in Figure 4.1. Next, to

understand the effect of incorporating spatial features, we follow the workflow

in Figure 4.2 and determine the improvements in the correlations and variates

learned. Part of this work comes from our recent paper [24].

4.1 Data

We work with 615 breast invasive carcinoma (BRCA) patients from TCGA,

for whom the whole slide images (WSI), gene expressions, and clinical in-

formation are all available. For the gene features, we use gene expressions

retrieved from TCGA using cBioPortal.

BRCAs are tumors that start in the epithelial cells that line organs and tis-

sues throughout the body. Therefore, it is important to correctly segment out

the epithelial nuclei present in the WSIs. Following the work by Chidester et

al. [30], we segment the WSI using a convolutional neural network and obtain

features describing the area, shape and texture of the nuclei using the compu-

tational tool CellProfiler [31]. Since WSIs can be up to 35000×35000 pixels

Figure 4.1: Imaging-genomics workflow with nuclei descriptors.
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Figure 4.2: Imaging-genomics workflow with nuclei and spatial descriptors.

in dimension, in order to reduce the computational burden of image analysis

and to avoid contamination in the analysis by normal cells near the tumor,

we manually selected up to 15 representative patches of 1000×1000 pixels

from each WSI in the tumor region for segmentation and feature extraction.

The extracted nuclei descriptors form the image features.

One of the limitations of the above network is that it positively tags both

lymphocytes and epithelial nuclei. However, we turn this limitation to our

advantage: to distinguish the lymphocytes from the epithelial cells, a simple

thresholding based technique was developed. This yields nuclei of two dif-

ferent types: epithelial - potentially cancerous in nature, and lymphocytes -

white blood cells indicating immune activity.

4.2 CCA with Nuclei Descriptors

4.2.1 Features Used

In the setting where we use only nuclei descriptors, we have X as gene ex-

pression data, and Y as the set of nuclei-based image features. In order to

employ CCA, we need to select a subset of the 3000 features available for

both images and genes so that n > min(p, q). For the image features, we used

the mean and standard deviation of the shape, texture and color features,

which resulted in 84 image features per patient. As a meaningful subset

of genes to analyze, we chose the PAM50 set of 50 genes, which has been

shown to be discriminative of the general grouping of patients into molecular

subtypes [32]. With that, we have p = 50, q = 84 and n = 615.
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4.2.2 Results using CCA

Using CCA on these restricted sets of variables, we found four canonical

variates of statistical significance (p-value less than 0.05, computed using

Wilk’s lambda statistic) with strong correlation ({0.76, 0.64, 0.61, 0.59} re-

spectively), as shown in Figure 4.3(a). Beyond the first four variates, the

significance of the correlation quickly dropped. However, the high values of

the correlations inform us of the underlying overlap of information between

the two modalities. In order to contrast the results with noise, we simulate

random noise with the same dimensions as the data, and apply CCA. The

resulting correlations and p-values associated are shown in Figure 4.3(b).

It can be seen clearly that while random noise yields high correlations, the

resulting p-value is high, and therefore the resulting weights identified are

not significant. This highlights the importance of analyzing the correlations

obtained using CCA along with the associated p-values.

The standard approach to interpreting the canonical variates is to look at

the sign and magnitude of the weights. While the canonical weights define

the directions which are meaningful for correlating the two datasets, there

could be a potential information sharing between the different features of

X and Y. Therefore, interpreting these can be challenging, e.g., a feature

could have a low weight either because it is irrelevant to the covariate, or

because it has been shadowed out of the relationship because of a high degree

of collinearity with a collection of other features. Therefore, the canonical

loadings are preferred because they provide more interpretable values. A

variable that is highly correlated with a canonical variate is well explained

by that canonical variate. Thus, to interpret the learned canonical variates,

we obtained the canonical loadings of each image feature and gene with each

variate (Figure 4.4).

We observe that the first canonical variate is highly correlated with many

PAM50 genes, with correlations as high as 0.8, which implies that this vari-

ate is highly representative of PAM50 expression. The loadings of the image

features in Figure 4.4(b) are grouped by category of the feature represented.

The loadings reveal the strongest correlation for most variates is with several

texture features of the hematoxylin stain, area, and shape. The first variate

shows a strong positive correlation particularly with texture features describ-

ing the entropy and variance of the hematoxylin stain within the nucleus and
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(a) P-values and correlations obtained with data

(b) P-values and correlations obtained with random noise

Figure 4.3: Canonical correlation analysis: P-values and correlations
obtained with for the real data and simulated random noise.
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(a) Canonical loadings of genes

(b) Canonical loadings of image features

Figure 4.4: Canonical loadings of genes and image features for CCA with
red: negative correlation, blue: positive correlation, and intensity of color
representing the value.

shape features describing the nucleus. Shape features, in particular the form

factor of the nucleus, also showed strong positive correlation. Subsequent

variates showed much lower loadings, so while still significantly correlated

within their imaging counterpart, the interpretation is not as clear.

To further understand the first variate, the 615 patients are mapped into

the corresponding variate space. The scatter plot of the mappings (Xα,

Yβ on x and y axes, respectively) is shown in Figure 4.5, with the color

representing the true subtype of the cancer patient. Luminal A patients are

clustered towards the left, and Basal patients to the right, while HER2 and

Luminal B patients are spread out in between. This spread of the subtypes

is, interestingly, in accordance with the expected prognosis of the patients.

It is also noted that the range of values in the image variate is considerably

smaller than those of the genes, suggesting that we should consider a more

diverse set of image features. Another possibility is that since the subtypes of

cancer are based inherently on the gene and gene expressions of the patients,

it is not expected that image features will be able to capture this overlay

completely. Therefore, while the overlay plot provides as an interesting way
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Figure 4.5: Subtype overlaid on the first canonical variate, gene variate
along x-axis, image variate along y-axis.

to visualize the separation of the patients, subtypes might not be the best

clinical variable to overlay.

4.2.3 Results using Sparse CCA

In contrast to CCA, we were able to analyze all image features and genes

using sparse CCA, allowing the algorithm to discover which subset of each

is most correlated. We worked with all the 2400 available image features,

and the 3000 most variant gene expressions. Thus, for this setting, we have

n = 615, p = 2400 and q = 3000. Using an L1 penalty factor of 0.1 for

both image and genomic variables, we obtained sets of 45-60 genes and 30-45

image features with non-zero weights for each of the ten canonical variates,

respectively, with correlations in the range 0.35-0.47, with an overall p-value

of 0.001. It is noted that the range of correlations obtained for sparse CCA

is much lower than those obtained with the regular CCA, possibly due to the

algorithm for sparse CCA.

To interpret the learned canonical variates of sparse CCA, we make use of

the loadings as before, as shown in Figure 4.6. The category of ‘cell’ indicates

that the feature is of the cytoplasmic region surrounding the nucleus, which

mostly describes area and shape. All other features are extracted from the

nucleus only.

The correlation plot for gene expressions and the canonical variates reveals

a grouping of about 500 genes which have a strong correlation with at least
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(a) Canonical loadings of genes

(b) Canonical loadings of image features

Figure 4.6: Canonical loadings of genes and image features for sparse CCA
with red: negative correlation, blue: positive correlation, and intensity of
color representing the value.

one of the variates. We also note the highest weighted genes with the first

and second variates have values of correlation of ≈ 0.3, ignoring signs. This

could imply that the variate is capturing an aggregate of various genes, rather

than individual ones.

Since sparse CCA can consider all genes and image features, it can reveal

novel, unbiased phenotype-genotype associations. We selected genes whose

expression levels were highly correlated with the canonical variates discovered

by sparse CCA and investigated their collective function using the online

functional annotation tool DAVID [29], which can test for association of gene

sets with KEGG pathways. The KEGG pathways significantly associated

are shown in Fig 4.7. The associated pathways for the 1st variate are also

presented in Table 4.1.
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Figure 4.7: Plot of variates vs pathways defined by genes with
correlation > 0.35 based on sparse CCA. (Intensity of color represents the
-log(p-value), the number is the percentage of pathway genes overlapping
with 0 meaning not computed)

Table 4.1: Pathways represented by the top 50 correlated genes based on
canonical loadings for the 1st variate, percentage of pathways genes
overlapping, and the associated p-value.

Pathway Name % p-value

T cell receptor signaling pathway 7.7% 1.81e-09

Th1 and Th2 cell differentiation 7.6% 2.22e-08

Th17 cell differentiation 6.5% 6.36e-08

Primary immunodeficiency 13.9% 1.24e-07

Cytokine-cytokine receptor interaction 3.4% 2.05e-07

Inflammatory bowel disease (IBD) 7.7% 2.53e-06

Chemokine signaling pathway 3.7% 2.83e-06

Natural killer cell mediated cytotoxicity 4.5% 5.57e-06

Measles 4.4% 5.81e-06

Cell adhesion molecules (CAMs) 4.2% 8.10e-06

Hematopoietic cell lineage 4.2% 3.06e-04

Chagas disease (American trypanosomiasis) 3.8% 4.15e-04

HTLV-I infection 1.9% 1.73e-03

Rheumatoid arthritis 3.4% 3.39e-03

Leukocyte transendothelial migration 2.6% 7.09e-03

The first variate and others showed a similar correlation pattern with both

image features and gene expressions, which is likely a result of the lack of

enforcement of orthogonality by sparse CCA. DAVID revealed that, for the
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first variate, the highly correlated genes were strongly associated with path-

ways related to immune response, including primary immunodeficiency, nat-

ural killer cell mediated cytotoxicity, and to lymphocytes, including Th1 and

Th2 cell differentiation, T-cell and B-cell receptor signaling, and NF-kappa

B signaling. Figure 4.6 shows that the expression of these genes has a strong

correlation with area and shape features through the latent canonical vari-

ates. Given that lymphocytes are easily distinguished by their small size and

circular shape, we could hypothesize that these canonical variates are cap-

turing image and genomic descriptions of the presence of lymphocytes within

the tumor, which is indeed a biologically relevant association for cancer.

Variates five, six, and ten are not indicative of area or shape, but instead

capture texture and cell hematoxylin features, which are indicative of DNA

content, and intensity features of both stains. These variates were found to

be correlated with gene sets associated with the cell cycle and p53 signaling

pathways (related to DNA damage repair and apoptosis), as well as the cell

cycle, all of which have important implications for tumor development. The

second variate too could have implications for cancer, as it was associated

with pathways involved in cell processes such as cell maintenance (ECM-

receptor interaction), adhesion (focal adhesion), and proliferation (Wnt sig-

naling and proteoglycans in cancer), and the cycle (PI3K-Akt signaling),

though the lack of strong correlation with particular image features necessi-

tates further investigation for a clear interpretation.

4.3 CCA with Nuclei Descriptors and Spatial

Distribution Features

To incorporate the spatial features, we use Ripley’s K-function presented

earlier.

4.3.1 Ripley’s K-function on Real Data

To understand the variation in K-functions for real data, we first present self-

and cross-K-functions for a couple of point sets (Figure 4.8) obtained after

processing the TCGA-BRCA histopathology images.
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Figure 4.8c shows different K-functions, with dashed lines for configura-

tion 1, and solid lines for configuration 2. Firstly, all the identified nuclei

obtained from the segmentation algorithm are utilized together to obtain

the self-K-functions Kall,1 and Kall,2 shown in black. Note that the function

for configuration 1 lies slightly above that of configuration 2, though the

distinction is not prominent.

Next, the identified nuclei were classified using a simple thresholding on

the area, texture and shape, to obtain two different types of cells: epithelial

(in cyan), and lymphocytes (in red). We note that this naive thresholding

will provide a noisy classification of the cells. The self K-functions computed

for the resulting epithelial cells (Kepi,1, Kepi,2) are not very different, while

those of the lymphocytes (Klym,1, Klym,2) show considerable difference, with

that of configuration 1 lying below that of configuration 2 for smaller values

of radius r, capturing the clustered nature of lymphocytes in configuration

2.

Also, plotting the resulting cross-K-functions (Kcross,1, Kcross,2), it is seen

that the cross-K-function for configuration 2 lies well below that of configu-

ration 1, indicating the absence of considerable interaction between the two

point sets in configuration 2, which can be justified by looking at the defini-

tion.

4.3.2 CCA with Spatial-Augmented Features

Having demonstrated the variation in Ripley’s K-function with respect to

different configurations, we now show the improvement in the information

captured by image features upon the inclusion of spatial features by per-

forming correlation analyses using CCA and sparse CCA.

Effect of Spatial Features on CCA correlations To apply CCA to

the given setting, subsets of both features need to be chosen. For the nuclei-

based image features, those corresponding to the mean and standard devia-

tion of fundamental properties such as the color, texture and shape features

are chosen, which yields 84 features as earlier. For the spatial features,

the K-function is evaluated at 100 points with different maximum radii (in

{100, 200, 300, 400, 500}). The two are combined to yield an overall 184 ele-

ment features vector per patient. For the genes, the PAM50 subset of genes
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(a) Configuration 1 (b) Configuration 2

(c) Corresponding K-functions

Figure 4.8: The variation in self-K-function and cross-K-function (c) for
two configurations (a) and (b) where epithelial cells are shown in cyan, and
lymphocytes in red.

Table 4.2: Correlation (ρ) and p-value of spatial features with PAM50
genes using CCA.

Radii
1st variate 2nd variate 3rd variate
ρ P-value ρ P-value ρ P-value

None 0.740 <1e-15 0.628 4.6e-14 0.605 7.7e-09
r ≤ 100 0.792 1.9e-15 0.739 1.3e-08 0.712 1.1e-03
r ≤ 200 0.790 1.9e-11 0.738 4.0e-05 0.728 2.2e-02
r ≤ 300 0.793 7.6e-09 0.748 1.7e-03 0.714 1.9e-03
r ≤ 400 0.792 8.8e-08 0.737 6.2e-03 0.710 2.8e-01
r ≤ 500 0.787 9.4e-09 0.746 1.2e-03 0.727 1.5e-03
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Table 4.3: Correlation of spatial features with gene expression using sparse
CCA for different variates (1st to 5th).

Radii L1-penalty 1st 2nd 3rd 4th 5th
None 0.05 0.490 0.404 0.321 0.424 0.399
r ≤ 100 0.05 0.489 0.403 0.466 0.424 0.382
r ≤ 300 0.52 0.470 0.345 0.457 0.478 0.460
r ≤ 500 0.05 0.489 0.403 0.466 0.535 0.424

which have been shown to be informative in breast cancer subtyping is cho-

sen.

The results are presented in Table 4.2, which records the correlations and

p-values (computed using Wilk’s lambda statistic). It can be observed that

the augmentation of spatial features significantly improves the correlation for

the first 3 variates. The correlation achieved by the first variate increases by

a factor of 5%, while both second and third variates show an improvement in

correlation by a factor of 10%. Beyond the 3 variates, the combined spatial

image features did not yield statistically significant results.

4.3.3 Sparse CCA with Spatial-Augmented Features

In order to get a deeper understanding of the spatial features, we run Sparse

CCA to obtain 5 variates on the set of 3400 most variant genes, and 3400

image features comprising the 2400 dimensional nuclei features augmented

with the K-function evaluated at 1000 different radii, with different maximum

radii (in {100, 300, 500}). The penalty factor to be chosen was determined

by the algorithm to obtain the result with the highest statistical significance.

The results of the correlations obtained are shown in Table 4.3. We observe

that inclusion of the spatial features increases the correlation obtained for

variates 3 through 5, while having little effect on the first two variates.

Further, for the scenario leading to highest correlations (max radius =

500), we identify the image features and genes which are highly correlated

with the variates. For the image features, we observe that the 4th variate

is dominated by spatial features, while being uncorrelated with the nuclei-

based features (Figure 4.9). The presence of such a variate highlights the

importance of spatial features in correlations with genes, implying that the

features capture important properties of gene expression variation. Upon
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Figure 4.9: Canonical Loadings: Correlation of spatial-augmented image
features with variates (K-function’s maximum radius r = 500).

investigating the KEGG pathways of the correspondingly correlated genes,

we obtain the primary pathways (1) cell cycle, (2) oocyte meiosis, (3) p53

signaling pathway, (4) cytokine-cytokine receptor interaction and (5) cell

adhesion molecules. Of these, (1)-(3) belong to the category ‘cell growth and

death’, while (4),(5) fall under ‘signaling molecules and interaction’, all of

which is important information carried by the spatial distribution of cells in

the histopathology images.
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Chapter 5

CONCLUSIONS

We presented the application of a simple tool, canonical correlation analy-

sis, to multimodal data analysis on the TCGA breast cancer data set. We

observed a considerable amount of shared information between the image

features and gene expressions. We were also able to identify a subset of im-

age features closely related to the 50 chosen genes. While the resulting linear

combinations contained information relevant to subtyping in cancer, we saw

that we cannot predict subtype correctly as yet. However, these experiments

took us one step closer to answering questions about the shared information

between image features and genes.

We demonstrated the utility of CCA and sparse CCA in discovering con-

nections between cellular features and gene expressions for breast cancer. The

learned canonical variates represent latent spaces that link the two modalities

and provide insight into their joint variation. Their biological relevance was

shown through their association with diverse pathways with implications for

cancer, and could benefit from a more diverse range of image features. For

sparse CCA, imposing orthogonality in the variates and understanding the

sensitivity of the penalty factor for sparse CCA would be important for use

in a clinical setting. We envision that such a correlation analysis could be a

preliminary step in studies of phenotype and genomic traits, with follow-up

affirmation by biologists, toward new insights into genetic diseases.

We also demonstrated the use of Ripley’s K-function in the histopathology

setting to encode spatial information between epithelial cells and lympho-

cytes. We showed that incorporating spatial features increases correlation

with PAM50 gene expression by up to 10%. Further, employing sparse CCA,

we confirm that the spatial feature is able to capture important aspects of the

spatial interaction between the cells of different types. We thus highlighted

the importance of spatial information and revealed a promising direction for

future research.
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