
c© 2018 Read Sprabery

CAPABILITIES FOR CROSS-LAYER MICRO-SERVICE SECURITY

BY

READ SPRABERY

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2018

Urbana, Illinois

Doctoral Committee:

Professor Roy Campbell, Chair
Professor Carl Gunter
Assistant Professor Adam Bates
Dr. Hamed Okhravi, MIT Lincoln Laboratory

Abstract

Shared infrastructure computing has become ubiquitous; from the smallest start-up de-

ploying on a multi-tenant cloud to the largest corporations whose separate branches all

deploy to a shared private cloud. In both cases, the security challenges are similar and

are unique from the legacy model of deploying monolithic applications on dedicated hard-

ware. In the case of a multi-tenant cloud deployment, attacks can stem from other tenants

who are not part of the same security domain, be that a different security-level within a

single organization, or distinct organizations on a public cloud. In addition to nearly ubiq-

uitous adoption of shared infrastructure, the rise of so called “micro-services” poses a set

of unique challenges and advantages to security. The micro-service moniker stems from the

idea of a Service Oriented Architecture (SOA) with a focus on having a small code base

for each component of an application. The SOA approach is complimented by the DevOps

movement in which software development practices are being applied to operations. These

development and deployment techniques are here to stay as they enable more thorough test-

ing, reliable deployment, and scalability that previous software architectures only supported

with extensive rewriting. In this dissertation, we focus on providing security to this new

paradigm of computing. These trends force us to face security challenges unique to cloud

computing such as passive cache-based side-channel attacks. In addition to new challenges,

this new paradigm also affords us better tools and services due to the well-defined behavior

of micro-services. Here, we focus on mitigating security risks by leveraging the Principle

of Least Privilege (PoLP) at every layer of the stack: the interface between the operating

system and the hardware, the system call interface, and within individual applications. We

implement the PoLP through layer specific capabilities by mapping the security challenges

present in cloud computing to a Take-Grant relational model between subjects. We concep-

tually extend the notion of “subject” to include subjects at every layer of the cloud stack.

ii

Additionally, we explore adding more trust guarantees to subject relationship monitoring.

Finally, we explore fine grained memory operations within a micro-service that can impact

a micro-service’s relationships with other subjects in the system.

iii

To my friends and family, for their love and support.

iv

Acknowledgments

I would like to begin by thanking my advisor, Roy Campbell, for his guidance and sup-

port. His advice guided my development as a researcher and was invaluable throughout my

graduate school career. These past five years have been filled with meetings which shaped

not only this dissertation, but also my overall approach to research. Thanks for being a

great mentor and friend, Roy!

I would also like to express my gratitude to my committee members, Carl Gunter, Adam

Bates, and Hamed Okhravi, whose comments and questions helped me to contextualize my

work. Their feedback and encouragement helped to shape this dissertation and I appreciate

the time and ideas they have contributed to this work.

Many thanks are owed Zak Estrada for his encouragement as I delved into operating

system development. Zak introduced me to the world of low-level development and provided

technical guidance throughout my graduate career. Without him, this work would not have

been realized.

I have also appreciated the insightful advice from Zbigniew Kalbarczyk. He encouraged

me to find the core contributions of my work which has helped me provide more clarity in

my writing and presentations. Thank you for your thorough reviews and the great advice.

Additionally, I would like to thank all of the wonderful people I worked with at MIT

Lincoln Laboratory: Thomas Moyer, Rick Skowyra, Nabil Schear, and Hamed Okhravi.

Their guidance on everything from low-level technical details to writing style has made the

final portions of my dissertation possible.

Thanks to Thomas Morris who hired me as an undergraduate researcher in his security lab.

Morris’ lab provided my first exposure to security research and scientific writing. Without

that first introduction to research, I might never have pursued graduate school. Thanks for

the opportunity.

My current and former colleagues in the Systems Research Group deserve special men-

tion. They have made my time here quite memorable and have been a constant source of

inspiration and entertainment. I want to thank Imani Palmer and Hadi Hashemi for their

honest feedback as I prepared various presentations. Sitting through an entire defense is

tedious at best - and they did it twice! I’d also like to thank the other Ph.D. students Faraz

Faghri, Mohammad Babaeizadeh, Shadi Noghabi, Xiao (Chris) Cai, and Hassan Eslami who

have all been very supportive. All of you have helped to provide a Ph.D. support group

of sorts - the program would have been a lot less fun without you! I’d also like to thank

the numerous other SRG members I’ve worked with over the years including: Arian Azin,

v

Mohammad Ahmad, Shayan Saeed, Chaitanya Datye, Jigar Rudani, Konstantin Evchenko,

Fangzhou Yao, Mayank Pundir, Kevin Larson, and John Bellessa. Each of you have made

an impact on me as we worked on compiler homework, database projects, and enjoyed meals

as varied as Thanksgiving dinner to traditional Russian meals.

Of course, no dissertation would be possible without tremendous help from the front

office. Mary Beth Kelley was an invaluable source of knowledge concerning the complex

landscape of academic approvals along with Maggie Metzger-Chappell, Holly Bagwell, and

Kathy Runck. Prof. Campbell’s admins including Laura Thurlwell, Andrea Whitesell, Tami

Fazio, and Alice Needham have made sure I always get time with him - a challenging task!

I would like to thank my family for their support over the years. First, to my grandparents,

Dale and Virginia Read, for their unconditional love and support. I’m grateful for all the

time we’ve had together and know I would not be who I am today without them. I would

also like to express my gratitude to my parents, Trev and Laurie Sprabery, for fostering a

love of electronics and science. Thank you for laying the foundation for this Ph.D. years ago

with ham radios and electronics kits.

Last, but certainly not least, I would like to thank my wife, Brittany Sprabery. She

has provided a tremendous amount of support and encouragement throughout the program.

She is always the first-cut on my presentations and is a great editor for papers - a skill she

probably never wanted! Thank you for being there during the paper reviews and presentation

practices and research conversations. Thanks for sharing this journey with me!

I gratefully acknowledge the funding sources that made my Ph.D. work possible. I was

funded by the Air Force Research Laboratory and the Air Force Office of Scientific Re-

search, under agreement number FA8750-11- 2-0084. My work was also supported by the

National Science Foundation Graduate Research Fellowship Program under Grant Number

DGE1144245. The views and opinions expressed in this article are the author’s own.

vi

Table of Contents

List of Tables . ix

List of Figures . x

LIST OF ABBREVIATIONS . xi

Chapter 1 Introduction . 1
1.1 Capabilities . 5

Chapter 2 Capabilities to Access Stateful Hardware 9
2.1 Cache Capabilities . 11
2.2 Background . 13
2.3 System Model . 19
2.4 Design of Capability Enforcement Mechanism 22
2.5 Implementation . 29
2.6 Performance Evaluation . 42
2.7 Cache Capability Enforcement Summary . 48

Chapter 3 Trustworthy Monitoring and Intrusion Detection 49
3.1 System Capabilities . 49
3.2 Goals of a Hypervisor-Based Trusted Log . 50
3.3 Background . 51
3.4 Attack Model Against the Logging System 55
3.5 Trustworthy Log Acquisition . 57
3.6 Logged Events . 61
3.7 Intrusion Detection for Micro-Services . 64
3.8 Evaluation . 67
3.9 Related Work . 73

Chapter 4 Intra-Application Capabilities for Micro-Services 75
4.1 Fine Grained Capabilities . 75
4.2 Background . 76
4.3 Threat Model . 78
4.4 System Overview . 79
4.5 Implementation . 81
4.6 Example Provenance Graphs . 93
4.7 Related Work . 95
4.8 Conclusion . 97

vii

Chapter 5 Summary . 98
5.1 Cross-Layer Take-Grant . 98
5.2 Conclusion . 100

References . 101

viii

List of Tables

1.1 Subject Security . 6

2.1 Cache Capability Definitions . 12
2.2 Cache Based Side Channel Attacks . 14
2.3 Per-Domain Thread Allocations . 30
2.4 Terms used in Scheduling Algorithm . 32

3.1 System Capability Definitions . 49

4.1 Fine-Grained Capabilities Definitions . 76
4.2 Terms used in Provenance Algorithms . 88

ix

List of Figures

1.1 A Functional Model of Take-Grant . 8

2.1 Defense Architecture . 23
2.2 Co-Scheduling Overview . 29
2.3 Limitations of Default Scheduling Policy . 30
2.4 Limitations of Default Scheduling Policy + Flushing 31
2.5 Under-Utilization . 33
2.6 Work Conserving . 34
2.7 Worst Case Under-Utilization . 34
2.8 Side-Effects of Work Conserving Properties 35
2.9 Limitations of Best-Effort Co-Scheduling Policy 36
2.10 Strict Co-Scheduling Protocol . 38
2.11 Strict Co-Scheduling Example . 39
2.12 Tenant Observable Loss in CPU Time . 43
2.13 Scalability of Isolation Mechanisms . 45
2.14 Full Sharing vs. Selective Sharing (Redis) 47
2.15 Full Sharing vs. Selective Sharing (Tomcat) 47

3.1 Invocation Process for a Specific System Call Handler 56
3.2 Timing Constraints for Interrupt Attack (A2) 56
3.3 Event Driven Probe Architecture . 58
3.4 Induced EPT Signature & Probe Insertion 60
3.5 Trustworthy-Log Driven IDS Architecture 65
3.6 Apache Bench and OpenSSL Overhead . 69
3.7 Redis Benchmark Overhead . 69

4.1 Provenance Across Fork Events . 90
4.2 Provenance Engine Memory Layout . 92

x

LIST OF ABBREVIATIONS

ACRONYMS

ASLR Address Space Layout Randomization

CFG Control-Flow-Graph

CFI Control Flow Integrity

CFS Completely-Fair-Scheduler

COTS Commodity-off-the-Shelf

DEP Data Execution Prevention

DFG Data Flow Graph

EPT Extended Page Tables

HAV Hardware Assisted Virtualization

IaaS Infrastructure-as-a-Service

CAT Cache Allocation Technology

IDS Intrusion Detection System

IPC Inter-Process-Communication

ISR Interrupt Service Routine

JOP Jump Oriented Programming

KSM Kernel-Same-Page-Merging

LLC Last-Level-Cache

MSR Model Specific Register

PaaS Platform-as-a-Service

PCI Payment Card Industry

PoLP Principle of Least Privilege

xi

ROP Return Oriented Programming

SCS Strict-Co-Scheduling

SMT Simultaneous Multithreading

SOA Service Oriented Architecture

TDP two-dimensional page tables

UFS Union File Systems

VA virtual appliance

VM Virtual Machine

VMI Virtual Machine Introspection

VMM Virtual Machine Monitor

WFQ Weighted-Fair-Queuing

xii

Chapter 1: Introduction

Current implementations of the cloud computing paradigm leave users vulnerable to at-

tack. Efforts have been made to make individual components more secure by patching

vulnerabilities [1] or modifying cloud management frameworks [2]. Despite individual efforts

to secure specific components, services deployed on cloud architectures remain exposed to

attack. We argue this is because the PoLP is not being applied holistically to the entire

stack. For cloud deployments to achieve their desired level of security, a capability based

implementation of the PoLP must be applied at every layer of the stack.

Cloud computing emerged to reduce the costs of running services through the use of

dynamic scaling and pay-per-use pricing models with per-hour billing, allowing a business

or business units within a organization to treat computing resources as a utility [3]. NIST

has defined on-demand self-service, rapid elasticity and measured service as 3 of 5 essential

characteristics of cloud computing [4]. We highlight these characteristics because we believe

they have played a major role in the adoption of cloud. These features make deploying

scalable services easier and more cost effective than was previously possible. On-demand

self-service allows a business or organizational unit to deploy new services without a lengthy

equipment acquisition process. Combining this with rapid elasticity enables organizational

units to deploy and scale their offerings without large amounts of management overhead.

Measured service allows businesses to only pay for the time they use. This means that

organizations can now iterate faster and with less risk without worrying about paying for

the possibility of scaling. Organizational units will be charged more only when necessary,

at a point when a service’s value is likely to exceed the costs of scaling. The economics of

scale afforded to shared-infrastructure cloud computing environments available today make

offering such features a viable business [5]. These scalability advantages have driven the

move to independently scalable components, or micro-services.

There are many shared infrastructure offerings for services targeting the public cloud,

1

private clouds, and hybrid clouds which leverage public clouds for scaling needs [4]. In

this context, we use public/private/hybrid-cloud to mean Infrastructure-as-a-Service (IaaS)

and Platform-as-a-Service (PaaS) built on top [4, 6]. IaaS is most often used to deploy and

scale Virtual Machines (VMs). Amazon’s Elastic-Compute-Cloud [7] and Google’s Compute

Engine [8] are both examples of public clouds, though there are numerous more from various

vendors [9–11]. More discussion on PaaS is in Section 2.2.4. In the context of a public cloud,

the shared-infrastructure is multi-tenant. A VM from one organization may be co-scheduled

on a single physical host as another organization’s VM.

Private clouds initially seem to solve the security risks with multi-tenant public clouds by

allowing an organization to host shared infrastructure for different business units company

wide. Large companies can host their internal cloud utilizing a variety of private cloud stacks

and make resources available to each business unit. OpenStack, co-developed by NASA

and Rackspace, is one of the leading examples of software being used to deploy private

clouds [12]. The same features are available in a private cloud: business units can spin-

up virtual resources without a separate acquisition process, can dynamically scale-out, and

fine grained measurements are still taken on “customer” resources usage. “Customer” here

refers to a business unit within the larger organization. This allows a company to track the

spending of various branches and possibly pass the costs through to different cost centers. In

a private cloud, only a single company’s VMs will run on the shared infrastructure. This does

not eliminate the security risks associated with shared-infrastructure as multi-tenancy has

been traded for multi-level clouds. Organizations divide their data and compute jobs based

on risk and compliance needs. One business unit may be processing Payment Card Industry

(PCI) data and thus need to meet or exceed PCI Data Security Standards [13]. Other

organizations may be serving the needs of competing clients who may have services deployed

on the shared-infrastructure of the firm. One could envision a situation in which one client

tried to disrupt the service of another by leveraging the shared nature of the service-providing

firm’s private cloud. Government units need to provide various classification levels to data

2

and resources. The Department of Defense’s Trusted Compute System Evaluation Criteria

(TCSEC) (i.e., the Orange Book) defines 4 such levels, each of which is further broken down

into categories. When utilizing shared-infrastructures, even in the form of private-clouds,

governments and organizations still need to be able to provide security isolation between

services running on the infrastructure.

The rise of cloud computing has been accompanied by a growth in SOA’s in the form of

so called “micro-services” - pieces of software intended to provide the smallest granularity of

functionality in the scope of a larger application goal. While no official definition of a micro-

service exists, we will use the community definition popularized on the web [14] and from

Sam Newman’s book on building micro-services [15]. Micro-services are developed in a way

that favors horizontal scaling and can be deployed independently of one-another regardless

of whether or not they depend on data from another micro-service. It is common to de-

ploy a micro-service oriented cloud application using containers or virtual appliances (VAs),

VMs tuned for a single service. Micro-services are being used by small organizations and

startups and large established companies such as Netflix [16]. The micro-service approach

compliments a new trend toward programmatic operations units in a movement known as

“DevOps”. The goal is to make deployment of services as repeatable as possible by utilizing

the same development and testing techniques used in software development. Micro-services

often follow what is known as the “12-factor” approach to software development [17]: they

tend to be side-effect free, rely on external configuration and scale horizontally. The DevOps

movement, the ability to treat computing as a utility through shared-infrastructures, and

micro-services are clearly here to stay and are driving the adoption of both VAs and con-

tainers to quickly deploy and scale isolated services. Security considerations must be made

that take into account the challenges and advantages afforded applications developed using

this new paradigm.

Computing on shared infrastructure poses numerous challenges to security. We separate

these security challenges into two categories: 1) Those stemming from stateful hardware (e.g.,

3

side-channels) and those stemming from active attacks on micro-services (e.g., an exploit for a

particular vulnerability). The latter category can be divided into coarse grained attacks and

fine grained attacks. Coarse grained attacks are those focused on execution of near-normal

behavior, such as opening a configuration file containing application secrets. On the other

hand, fine grained memory attacks allow Turing-complete execution within the compromised

binary. We explore capabilities for PoLP enforcement at every layer of the stack by adding

capabilities to access stateful hardware to mitigate passive attacks, adding more trust to

relationship monitoring for coarse grained attacks, and by producing instruction to memory

access capability lists for fine grained attacks.

For side-effect based attacks, we extend the concept of a capability for containers, a popular

deployment target for many of today’s micro-services, to include the shared cache used by

a given service. Direct attacks can be detected using a variety of methods. We begin by

exploring the limitations of existing dynamic probing mechanisms that can be used to probe

relationship creation functions inside of a guest-kernel on top of which a micro-service is

deployed. We add more trust to subject-relation monitoring systems. We then produce an

Intrusion Detection System (IDS) that leverages the minimized nature of micro-services to

enable manageable whitelists - enforcing capabilities based on observed behavior.

Despite being able to detect capability violations by leveraging probing mechanisms, there

are still a large number of attacks that stay intra-process that will go undetected. Consider a

micro-service that handles credit card data. Using a probing based approach, we could detect

that the service was maliciously writing customer information to a file to be transferred to

the attacker, a capability it was not granted. On the other hand, the attack would go

undetected if the attacker siphoned customer information out of the service by embedding

it into otherwise legitimate requests. This is more typical of what is known as an Advance

Persistent Threats a type of malware that resides in a system over a long period of time.

To combat these kinds of attacks, we build fine-grained capability lists through the use of a

novel provenance engine for type unsafe code bases.

4

We argue that all of these issues can be addressed by utilizing the PoLP, but that it must

be applied at every layer. In this dissertation we apply the PoLP at the hardware level,

the systems level, and at the application level to mitigate both direct and indirect attacks

through the use of capabilities. We enforce the PoLP to eliminate side channel attacks on the

cache at the hardware level through the novel use of hardware enforced spacing separation

and software enforced temporal separation of micro-services to provide a cache-access capa-

bility. We add additional trust for capability monitoring at the system level. The reduced

behavior of micro-services is utilized to improve the manageability of whitelists to enforce

the PoLP at the interface between applications and the operating system. This can stop cer-

tain attacker payloads and detect misconfigurations along with insider threats. The systems

boundary is coarse-grained. Advanced exploits require that the PoLP be applied within the

micro-service (intra-application). We build a provenance engine so that capabilities can be

produced for memory regions within an application.

1.1 CAPABILITIES

Capabilities were first introduced by Dennis et al. [18] and further refined by Jones [19].

Jones discusses only giving subjects the minimal rights required to accomplish a given pro-

grammed goal - today we call this concept the Principle of Least Privilege (PoLP). In dis-

cussing capabilities, Jones explores the notion of taking and granting capabilities for subjects

to access objects. Jones et al. go on to formalize this subject-object relationship in “A linear

time algoirhtm for deciding security” [20]. This model of security was refined by reducing the

entity types from subject-object’s to subjects by Lipton et al. [21] in what became known as

the Take-Grant model of security. Lipton et al. explore the notion of relationships between

subjects as highlighted by Table 1.1. Bishop et al. extended the notion of Take-Grant to

capture capabilities on de facto information transfer [22]. More recently, the Take-Grant

model of security has been used to formally verify the seL4 micro-kernel, demonstrating the

5

scalability and applicability of the approach to production quality code bases [23]. Recently,

there has been efforts to transition commodity operating systems to include stricter notions

of capabilities through sand-boxing techniques [24]. Instead of focusing on just capabilities

at the operating systems level, we focus on a cross-section of capabilities spanning the entire

stack leveraged in cloud-deployment of micro-services. We have modernized the notation

used in [21] and denote the group of subjects accessed by subject α as Sα. Note that our

usage of the word “accessed” is imprecise - the term in this context simply means there

exists a relationship between two subjects. The nature of that relationship is dependent on

the exact application at hand. It may mean reading a file, writing a file, executing a binary,

accessing a given memory region, memory page, or other operating system construct. In a

web application, “subjects” may be application level users and they may have relationships

with other application level constructs - all of which may be represented in an application

database. In this dissertation, we explore extending the concept of “subject” to simulta-

neously include stateful hardware, coarse grained system actions, and fine grained memory

accesses within an application.

Table 1.1: Subject Security

Definition of Term

Sα Subject Domain for process α

R A relation between two subjects

α R β Process α is related to β through relation R

To further clarify our usage of the term “subject-domain” consider two subjects α and β

related to one another through relation R as shown in Table 1.1. Afterwards, α ∈ Sβ and

β ∈ Sα. Capabilities are built around relationships; for example, a subject may have the

capability to use R to modify its security domain S.

We leverage a functional model of micro-services that treats the service as a function whose

execution produces side-effects on the function’s subject-domain. We model a micro-service

as a function g(x, y) on program arguments x and the environment in which it executes, y.

6

The side-effects on the subject-domain are relationships R1, R2, ..., Rn. Capabilities are

applied at the relationship level. To address passive attacks, we extend the notion of a subject

to include cache regions and grant the capability to access a given region to a single security

domain at a time. Mechanisms to monitor relationships stemming from system actions for

VAs already exist - we explore making these monitors more trustworthy. To conclude, we

address the limitations in coarse-grained subject-relationship monitoring by extending the

definition of subjects to include individual memory instructions and the memory regions

they access to produce fine grained capabilities lists to be applied within g(x, y). Figure 1.1

highlights our model. Relationships are made as a side-effect of execution of the micro-

service, leading to changes on the micro-service’s subject-domain. Capabilities are security

policies on these changes. If there exists a transition from a trusted subject-domain to one

containing subjects that violate a policy or information flow, then the transition should

not be allowed. For fine-grained attacks, we want to identify the memory regions that

can impact Sg, identify the instructions that should modify those regions, and then enforce

memory access capabilities guaranteeing those are the only instructions modifying those

regions.

To enforce security in cloud computing environments, we must consider stateful subjects

within the hardware (cache lines), add additional trust to relationship monitoring, and fi-

nally, explore tracking of memory that impacts the micro-service’s relationship with subjects

in the system. Having formally added stateful hardware and the relationship with it to our

security model, we can look at mechanisms within the operating system to add capabilities

to the relationship between micro-services and shared caches. The system call boundary is

the primary means a service has for relationships creation between subjects, and is a logical

monitoring point from within a Virtual Machine Monitor (VMM). Finally, the arguments

to these system calls are dependent on the capability of individual memory modification

instructions to modify memory being passed into system calls that impact a given service’s

security domain, and are the target of modern fine-grained attacks [25, 26]. Building capa-

7

bilities lists at the instruction granularity can address these attacks.

Memory Modification Instructions

()

arguments environment
Δ 𝑆𝑔

𝑅1

𝑔(𝑥, 𝑦)
Internal Memory

𝑅2 𝑅3 𝑅𝑛

Figure 1.1: A Function Model of Take-Grant: Micro-Service g(x, y) changing its subject
domain Sg as a side effect of execution through relationships R1 −Rn. Some relationships
are functions of internal state that is modified by fine-grained “subjects” (instructions)
within the service.

8

Chapter 2: Capabilities to Access Stateful Hardware

Cache-based side-channel attacks (e.g., [27–29]) are a threat to computing environments

where a diverse set of users share hardware resources and are a leading example of how state-

ful hardware can be leveraged for passive information flow. Such attacks take advantage of

observable hardware side-effects due to the execution of software programs. A number of

these attacks focus on differences in timing while accessing shared processor caches. Re-

cently, researchers have adapted these cache-based side-channel attacks to cloud computing

environments, especially IaaS clouds [30–33], and showed that secrets and sensitive infor-

mation can be extracted across co-located VMs. Container frameworks such as Docker [34]

are even more susceptible to such attacks since they share the underlying operating system

kernel [35].

Initial cache-based side-channel attacks focused on gaming schedulers at the OS and VMM

layers [28, 29, 31]. Such approaches focused on resource sharing of L1 and L2 caches within

a single processor core via Simultaneous Multithreading (SMT) [27]. Multicore processors

introduce cache-based side-channels via the Last-Level-Cache (LLC), thus making defenses

much harder [33,35].

Many defenses against cache-side-channel attacks in cloud environments have been pro-

posed [36–50]. Existing solutions are insufficient in the following ways. Shannon’s noisy-

channel coding theorem states that information can be transmitted regardless of the amount

of noise on the channel [51]. While probabilistic defenses (e.g., [36–38]) may decrease the

bit-rate of attacks, they cannot fully eliminate them. Defenses that eliminate such attacks,

rather than frustrate techniques employed by the attacker, are more desirable. SMT must

be disabled for some solutions [38], impacting performance and utilization. In addition to a

guaranteed defense, the solution must not severely impact (i) the performance of the appli-

cations or (ii) utilization of the machine. Defenses must minimize the performance impact

of enforcing hard isolation to remain practical. Disabling hyperthreading (e.g., SMT) can

9

have a significant impact on machine utilization. To the best of our knowledge, every cloud

provider enables hyperthreading. Costly application rewrites may be required for other

defenses [39–41].

Solutions must be easy to adopt. History has shown that solutions requiring additional de-

velopment time (or significant changes to existing applications) are less likely to be adopted

(as shown in the Return Oriented Programming (ROP) community [52]). Thus, solutions

that require developers make application level changes [40, 41] may be challenging to apply

to existing workloads. Hardware based approaches are plagued by similar problems – they

are difficult to deploy as they require vendor support and fabrication of new chips [42, 43].

Violating x86 semantics by modifying the resolution, accuracy, or availability of timing in-

structions can frustrate attacks, but consequently require changes to all applications running

on the machine [44–46]. Global compiler and page-coloring cache-partitioning [47–50, 53]

transformations introduce high overhead. JIT techniques allow for local optimization, but

performance remains problematic [54].

In this chapter, we present a hardware-software framework to add capabilities for cache-

access, mitigating side-channel attacks in cloud computing systems that use multicore pro-

cessors with a shared LLC. The proposed framework uses a combination of Commodity-

off-the-Shelf (COTS) hardware features along with novel scheduling techniques to enforce a

cache-access capability, defending against cache-based side-channel attacks. In particular,

we use Cache Allocation Technology (CAT) [55] which allows us to partition last-level caches

at runtime. CAT, coupled with state cleansing during capability transfer between security

domains and selective sharing of common libraries removes the source cache-timing-based

side-channel attacks between different domains. We implement a novel scheduling method

as an extension to the commonly-used Completely-Fair-Scheduler (CFS) in Linux to reduce

the overheads inherent due to any such cleansing operation and to enforce our cache-access

capability by limiting execution to only those processes holding the capability to access the

10

a given region. Our solution provides a transparent1 way to eliminate cache-side-channel

attacks while still working with hyperthreading enabled (SMT) systems. It works with con-

tainers, kernel-based virtual machines (vCPUs), and any other schedulable entity that relies

on the OS scheduler2. To the best of our knowledge, this work is the first to provide trans-

parent protection of applications without disabling hyperthreading.

In summary, we make the following combined contributions via a capability based ap-

proach that:

C1 Can eliminate cache-based side-channel attacks for schedulable units

C2 Allows providers to exploit hyperthreading,

C3 Requires no application level changes, and

C4 Imposes modest performance overheads

2.1 CACHE CAPABILITIES

Consider groups of processes belonging to a given security domain. These processes may

be threads in the same micro-service or many distinct micro-services being run by the same

parent entity or security domain. Each process has a capability list of resources it can access.

These terms are outlined in Table 2.1. Operating systems today have the ability to grant

individual schedulable entities the capability to access a given memory region mr through

the virtual memory subsystem. Operating system schedulers also have the ability to grant

a process the capability to access a limited set of CPU resources rc. We want to extend this

notion of capability to access a given hardware resource to include cache regions, cl.

1From the perspective of the application developer/user.
2For ease of exposition, in the rest of the chapter, we will describe our framework using containers.

11

Table 2.1: Cache Capability Definitions

Definition of Term

CP Set of Capabilities for process P

P Set of processes in an isolated region

PA Set of processes in security domain A

mr Memory Resource Capability for memory r

rc CPU Resource Capability for CPU c

cl Capability to access cache region l

D Set containing all security domains running on the system

Let P = PA ∩ PB, the union of processes from two security domains. Note that in

Table 2.1, we introduce the notion of an “isolated region”. This is necessary for cache-access

capability enforcement and is expounded upon in Section 2.4. Consider subject (process)

α ∈ PA and process β ∈ PB. Traditional capability mechanisms available in operating

systems allow for the creation of capability lists of the form: Cα = {mα, rα} and Cβ =

{mβ, rβ}. In this chapter, we extend these capability lists to include the capability to

access a given cache region, cl, that can only be held by a single security domain at a

time. The final capability list for a process β could then become: Cβ = {mβ, rβ, cl}. For

capability enforcement, we want to ensure that if a process within a security domain holds

the capability to access a given cache region, then no other process in any other security

domain can hold the same capability. Formally, ∀ λ ∈ PΛ; ∀ s ∈ D − Λ, ∀ δ ∈ Ps

then cl /∈ Cλ ∩ Cδ. The mechanisms presented in this chapter enforce this invariant

while allowing for capability transfer between security domains to ensure the machine can

still be shared between domains while balancing the performance impact. We use the word

“transfer” to mean revocation by the operating system followed by a subsequent grant of

the cache-access capability to another domain.

12

The capability approach presented here is the only defense that can defend against Prime&Probe

cache-based side channel attacks without modifications to the tenant application while also

enabling hyperthreading for the machine at hand. Every cloud provider today leaves hyper-

threading enabled to drive up machine utilization. We evaluate multiple workloads under

varying conditions to explore viability of a strict cache-access capability enforcement mech-

anism. Our changes are implemented on top of the Linux kernel.

2.2 BACKGROUND

In this section, we highlight existing attack mechanisms and defenses. We then review the

cloud systems we target due to current deployment trends. Finally, we provide background

on the scheduling mechanisms we extend for cache-capability enforcement.

2.2.1 Cache Side Channels

Cache side channel attacks take advantage of the shared nature of processor resources, in

particular the processor L1, L2, and Last-Level-Cache (LLC). Prime&Probe attacks were

first explored across VMs by Osvik et al. [27] and shown to be practical in cross-core attacks

via the LLC by Liu et al. [33]. Modern clouds are driving up machine utilization by offering

container based platforms. This both drives revenue [5] while providing more performance

to tenants [56, 57]. Cache side channel attacks are already emerging on container based

infrastructure [35]. Flush+Reload attacks [32] are a real threat to cloud computing security

and have been successfully deployed on public infrastructure [35]. We outline the attack

types in Table 2.2. All of the attacks fall under the broader class of access based side-

channels in which an attacker can tell whether or not a given resource has been accessed by

a victim in a given time period.

13

Table 2.2: Cache Based Side Channel Attacks

Cache Level Attack Type Placement

L1 & L2 Prime&Probe Single Physical Core

L1 & L2 Flush+Reload Single Physical Core

L1 & L2 Prime&Probe Single Physical Core, SMT

L1 & L2 Flush+Reload Single Physical Core, SMT

L3/LLC Prime&Probe Cross-Core

L3/LLC Flush+Reload Cross-Core

Prime&Probe Attacks: Originally designed in [27], Prime&Probe attacks derive their

namesake from a two phase approach of priming a cache line and then probing it after a

short period of time. The attack begins with the attacker priming a cache line and then

measuring the time to access the same line to establish a base line for the probe phase. The

attacker will then probe the same cache line and measure the access time. If the access time

is higher than the established base line, then it means that a victim process also accessed

the cache line causing the attacker’s data to be evicted. This probe phase also acts as a

subsequent prime. This measurement loop is repeated until the attacker has sufficient data

on the cache access patterns of a victim process. It is important to note that this technique

is highly dependent on victim code base and requires a cache access pattern be established

for the software package being run by a targeted victim. Methods such as Cache Template

Attacks [58] can be used to generated these patterns. This attack has been demonstrated

on L1 and L2 on a single physical core via hyperthreading [27]. Neve et al. show a very

similar attack that can be carried out on a single core without relying on hyperthreading

by taking advantage of the operating system scheduler [28]. Ristenpart et al. demonstrate

that a variant of Prime&Probe can be used to determine cache usage on a host VMM [30]

while Zhang et al. demonstrated that the Prime&Probe method could be used to extract

private keys across VMs [31]. It is important to note that the authors had to add extra

14

layers of processing to reduce the additional noise and scheduling impacts of the VMM.

When working with containers, these complications are eliminated, making the attack easier

to carry out. It was initially thought that simply scheduling processes on different cores

might eliminate the security risk because it would be too difficult to carry out the attack on

the LLC. Liu et al. were the first to show that the technique could be successfully executed

on the LLC [33]; their work was carried out in a VM environment. Again with this attack, it

will be easier to carry out in container environments as the noise and overheads associated

with the VMM are removed.

Flush+Reload Attacks: Flush+Reload attacks rely on shared memory between two

executing processes and were first used in [29] to derive an AES key from a victim pro-

cess, though not under the Flush+Reload name. The attack utilizes similar probing to the

Prime&Probe attack to determine if a given cache line was accessed with the requirement

that memory must be shared between the attacker and victim. The nature of shared memory

allows an attacker to determine which branch within a shared library was taken by a victim

process. Gullasch et al. show that clflush can be used on x86 platforms to flush cache lines

of libraries shared between processes on the same host on a single core [29] and then probes

can be used to produce an access based side-channel. While they do not show the attack

with hyperthreads, the single physical core case will be very similar. Flush+Reload works

by first flushing a piece of memory using clflush and then measuring the time to reload

the flushed memory location. If the reload phase takes the same amount of time as a previ-

ously established baseline measurement, then the victim process accessed the same piece of

memory. The Flush+Reload term was first used by Yarom et al. to attack RSA when the

authors extended the technique to multi-core, leveraging the LLC. The authors tuned the

attack to work with multiple VMs [59] sharing pages due to memory de-duplication processes

running within the VMMs. Shortly afterwards, Irazoqui et al. use Flush+Reload to success-

fully attack AES in a cross-VM scenario with the attack completing in under a minute [32].

Yarom et al. has also used Flush+Reload to attack the Elliptic Curve Digital Signature

15

Algorithm in OpenSSL on a single quad-core host [60]. This more closely represents the

container-like deployment in which processes all run on the same host kernel. With the rise

of containers and interest in PaaS clouds, focus has shifted to practical deployments of the

attack. Zhang et al. showed a Flush+Reload attack deployed on the public PaaS DotCloud

which uses container technology as the underlying deployment mechanism [35]. In container

deployments, shared memory stems from the fact that image base layers are shared and are

loaded from the same location on disk implying that they use the same page-cache. This is

similar to the way shared libraries work in a traditional computing environment.

2.2.2 Existing Solutions

Some solutions are probabilistic [36–38] which is insufficient as they cannot fully eliminate

the source of cache-based side-channel attacks. Existing approaches achieve single core iso-

lation by disabling hyperthreading [38]. Disabling hyperthreading reduces the throughput

of not only tenants requiring extra isolation, but the entire machine. Such approaches are

untenable as the economic model behind cloud computing dictates high per machine utiliza-

tion [5]. Cutting whole-machine utilization by even 20%, the impact of hyperthreading in

2005 [61], is too high for cloud computing. We argue that while for some tenants, a 20%

overhead may be a reasonable trade-off for increased security, there is little value in forcing

all tenants to pay that performance penalty. StealthMem is able to enable hyperthreading,

but the authors do not sufficiently address cross thread scheduling issues [40] and require

application developers to make code changes. CATalyst [41] follows a similar defense model

to StealthMem but uses Intel’s CAT technology to assign virtual pages to sensitive vari-

ables instead of software-based page coloring. Application rewrites are necessary for these

approaches [39–41], increasing the cost of adoption. Costly hardware changes [42, 43] face

similar adoption challenges. CHERI [53] takes a similar capability based approach to cache-

access, but at this time is not available to cloud providers in COTS systems as it requires

custom hardware. Some hardware approaches change timing instruction behavior which

16

changes the semantics of the architecture [44–46], again forcing application changes. Cache

coloring [47–49] approaches have impractically high overheads.

CACHEBAR [38] defends against Flush+Reload attacks by duplicating memory pages on

access from separate processes, a scheme it calls Copy-On-Read. Since Kernel-Same-Page-

Merging (KSM) does de-duplication of pages at regular intervals, it also modifies the behavior

of KSM to achieve Copy-On-Read. To defend against Prime&Probe attacks, CACHEBAR

modifies the memory allocation based on which memory regions are cacheable so that the

attacking process loses visibility into the victim process. This technique provides only prob-

abilistic guarantees for defense against a Prime&Probe attack while also disabling hyper-

threading. Other solutions that rely on the scheduler [62] focus on uniprocessor systems,

thus do not have to face the challenges faced by caches shared by multiple cores. The solution

presented by Godrey et al. [63] suggests scheduling patterns for VMs can decrease the cost

of cache-flushing. Their solution only works in hypervisors. Our work is more generic in that

it applies to any schedulable entity, be it a container or a vCPU supporting a KVM VM.

Other ideas in [63] are similar: they use cache coloring techniques while we use hardware

cache partitioning, but they rely on infrequent context switches between vCPUs and do not

content with the need for a form of “strict” co-scheduling.

Finally, solutions like Nomad [37], while probabilistic, complement our approach. Nomad

works in the cloud scheduler to reduce the co-residency of different security domains. Our so-

lution could be used in conjunction with Nomad to provide hard isolation when co-residency

is not possible.

2.2.3 Intel’s Cache Allocation Technology

We utilize Intel’s CAT to isolate a portion of the cache as a “secure partition” so that a

capability to access this isolated region can be produced. CAT allows a processor’s LLC to

be partitioned into 4 segments on our test machine (this number will likely increase in future

generations). The partitions are configured using a bitmask that is written into an Model

17

Specific Register (MSR) on Intel’s Broadwell and later CPUs. CAT provides isolation for

a given cache by not-allowing evictions on that partition from cores belonging to another

partition. It is important to note that cross-partition cache hits are still allowed even with

CAT enabled. A configured cache partition can be used by a select number of cores. Each

core has a core specific MSR dictating which “class-of-service” (the Intel nomenclature for

cache partitions) it is running in. When discussing an isolated region, we are referring to

both the cache partition and the set of CPUs assigned to that cache partition. The size of

the cache partition can be reduced to limit the cost of flushing the cache during capability

transfer. The reduced cache size has little impact on cloud based workloads [64]. Using this

feature alone as a defense would dictate that the capability to access a secure partition be

limited to a single core so that cross-thread, cross-domain Prime&Probe attacks would be

prevented, but would not prevent Flush+Reload attacks.

2.2.4 Platform-as-a-Service

Containers have been popularized by Docker [65] and have better performance when com-

pared to VMs [56, 57]. Containers are the main building block for PaaS as they allow for

fast, repeatable, and scalable deployments of the web-serving workloads that PaaS target.

Ristenpart et al. show that it is possible to maliciously collocate tenant workloads on VM

based cloud infrastructure [30]. Ristenpart’s collocation approach has been extended for

container based infrastructure in [35] for usage in deploying a side channel attack on Dot-

Cloud, a popular PaaS. Containers run as isolated processes running on top of the same

kernel, allowing for many more tenants per provider-machine. Original cache based side

channel attacks [27, 66] focused on the cross-process single-kernel environment - containers

exhibit the same properties. Single kernel side-channels attacks are well understood, thus

the risk to container based deployment is higher than for VMs. Existing VM based defenses

do not have to deal with the scale of the per-process isolation required to defend against

side-channel attacks in PaaS.

18

2.2.5 Scheduling

Because of the popularity of Docker [65] on Linux, we limit our discussion to Linux. Our

capability approach remains generic. Scheduling in Linux is motivated by Weighted-Fair-

Queuing (WFQ) [67] originally developed for improving the Quality of Service of packet

networks. Early attempts at scheduling in Linux focused on reducing the algorithmic com-

plexity of the scheduler’s decision making process. This lead to the so-called O(1) scheduler,

the namesake of which is also the algorithmic complexity of the algorithm. The O(1) sched-

uler performed poorly on I/O bound workloads on desktop systems as any latency sensitive

workload, like those suitable for scale-out cloud deployment, had to wait for proceeding

processes to exhaust their time-slice. To improve responsiveness, the community moved to

the WFQ-motivated CFS algorithm. This brought with it the introduction of per-thread

vruntime’s which track per-thread weighted time on the processor. Over a given stable

“epoch”, a time frame for which no threads are entering or leaving the system, CFS can

guarantee fairness and ensure that I/O bound processes are not starved. In our implemen-

tation, we leverage a co-scheduling algorithm to ensure proper capability transfer between

domains. The algorithm is implemented within the Linux CFS scheduler, but only operates

on cores which have been designated as being isolated. A detailed explanation of how this

is done in Section 2.4. For a complete discussion on scheduling in Linux, we refer the reader

to Love’s book [68].

2.3 SYSTEM MODEL

In this section, we outline the hardware requirements of our systems. We describe our

specific machine used for testing and evaluation. Finally, we introduce the threat model

which drives the design decisions behind cache-access capabilities.

19

2.3.1 Cloud Environments and Commodity Hardware

We assume cloud workloads like those presented in [64] are being run. We consider public

Platform-as-a-Service (PaaS) or Infrastructure-as-a-Service (IaaS) cloud environments. Such

environments allow for co-residency of multiple computational appliances such as containers

or VMs belonging to potentially different security domains. We assume that the cloud

computing infrastructure is built using commodity-off-the-shelf (COTS) components. In

particular, we assume that the servers have multi-core processors with multiple levels of

caches, some of which are shared. We also assume that the servers have a runtime mechanism

to partition the last-level shared cache as described in Section 2.2.3.

In this chapter, we use an Intel Haswell series processor that has a three-level cache

hierarchy: private level 1 (L1) and level 2 (L2) caches for each core (64KB and 256KB

respectively) and a last level (L3) cache (20MB) that is shared among all the cores. For

cache partitioning, we turned to Intel’s Cache Allocation Technology (CAT) [55] that allows

us to partition the shared L3 cache. The CAT mechanism is configured using MSRs. This can

be achieved at runtime dynamically using software mechanisms. On this specific processor

model the maximum number of partitions is limited to four but newer generations support

more [69]. Intel CAT technology has been available on select Haswell series processors since

late 2014 and continues to be available on select processor lines belonging to the Broadwell

and Skylake micro-architectures that succeeded the Haswell micro-architecture.

While our implementation and evaluation uses an Intel Haswell processor with Intel CAT

technology, the proposed approach is generally applicable to any multi-core processor with a

hierarchical cache, shared last-level cache, and a mechanism to partition the shared last-level

cache.

20

2.3.2 Adversary Model

We assume that the attacker can easily collocate a container next to a victim workload as

shown in literature [30, 35] with the goal of carrying out a cache-based side-channel attack.

We assume that container base layers are shared across tenants by default, introducing

the risk of Flush+Reload attacks. The attacker can sleep, allocate memory using memory

allocation system calls and otherwise try to game the scheduler or memory allocation policies.

We consider both cross-core (i.e., attacker and victim running on different cores on the

same processor) and same-core (i.e., attacker and victim running on the same core) side-

channel attacks. Same-core attacks, as the name indicates, require the attacker achieve

co-residency on the same core and be able to preempt the victim. They typically focus

on higher-level caches (L1 and L2) that are specific to the core. Cross-core attacks on the

other hand only require the attacker achieve co-residency on the same physical server. If

multi-socket systems are used, we assume the attacker can achieve co-residency on the same

socket as the victim. Their limitation is that they only allow the attacker to observe the

victim’s activities through the LLC which is shared by all cores on the chip and thus is noisy.

As discussed in Section 2.2.1, it has been shown that such limitations can be overcome [33].

We assume the attacker is capable of achieving co-residency with a victim, can allocate

an arbitrary number of resources, and game both the cloud level scheduler (placement) and

the operating system level scheduler (preemption). However, we assume that the cloud

infrastructure provider is trusted. That is, while the cloud scheduler may be gamed, we

assume that both the attacker and victim are authenticated with the cloud provider (e.g.,

for billing purposes). Additionally, we assume that the host kernel, running either KVM or

container frameworks, is trusted.

21

2.4 DESIGN OF CAPABILITY ENFORCEMENT MECHANISM

Our solution contains cross domain contamination through strict cache-access capability

enforcement. We implemented cache-access capabilities via software based flushing, hard-

ware based cache isolation, and per-domain duplication of container base layers. Flushing

costs are reduced through the novel use of hardware cache size reduction and software based

temporal partitioning through the use of a co-scheduling capability enforcement algorithm.

The solution allows schedulable entities to be grouped into security domains and ensures

there is no leakage across domains. Unlike existing approaches, we can enable hyperthread-

ing while also being completely transparent to guest applications. There is no need to

manually rebuild an application to indicate the parts most vulnerable to side channels as

was done in [41]. Additionally, there is no implied performance impact to tenants with less

strict security requirements outside of a reduced cache size.

Our Flush+Reload defense has little impact on CPU utilization, but will increase disk and

memory usage. Existing approaches for Flush+Reload such as the one produced by Zhou

et al. [38] rely on dynamic memory duplication. This not only drives up memory usage, but

may impact the performance of micro-services by making the shared memory portion of the

kernel more complex.

Intuitively, flushing the cache during a context switch between entities belonging to dif-

ferent security domains defends against any attack that uses cache based timing to derive

information from L1 and L2 caches. Flushing alone will not defend against LLC attacks as

the LLC is shared across cores, thus per-core cache partitions must be created. “Secure”

workloads then must be limited to a single core on either a software based partition (cache-

coloring) [40, 49] or hardware based cache partitioning, which until recently has not been

available on COTS hardware.

Our framework logically partitions a host server into an isolated region3 and a shared region

as illustrated in Figure 2.1. Tenants are required to indicate to the cloud provider whether or

3It can be easily extended to multiple isolated regions.

22

Scheduler

Cache	Management	
Mechanism

Isolated	Region

Shared	Cache	Partition

Shared	Region

CORES Core	3

Isolated	Cache	
Partition

Core	4 Core	nCore	1 Core	2

Figure 2.1: Defense Architecture

not their containers need isolated execution. Entities that require isolated execution will be

executed while their parent domain holds the capability to access a separate cache partition

on the host server; all other entities will be executed with a shared cache partition. The

“isolated execution” designation guarantees that processes within the designated containers

will not share cache resources with (i) processes from any container belonging to another

security domain or with (ii) processes belonging to any container that is not designated

for isolated execution irrespective of their security domain. Consider the cloud deployment

of a web service using a micro-service based architecture. We envision a system in which

the tenant indicates that the load-balancer (usually an HTTP reverse proxy) should run in

the isolated region. The load-balancer is the micro-service often responsible for encrypting

connections and thus may contain sensitive functions and data which could be the target of

a cache-based side-channel attack.

Our design leverages (i) Intel CAT, processor affinities, and selective page sharing to

provide spatial isolation and (ii) co-scheduling with state cleansing to provide temporal

isolation for designated containers, granting the capability to access the isolated cache region

to a single security domain at a time.

23

2.4.1 Hardware-Assisted Capability Enforcement for Spatial Isolation

Intel’s CAT [55], currently available in COTS hardware in Intel’s Xeon series processors,

is designed to improve the performance of latency sensitive workloads by allowing the LLC

to be partitioned into distinct regions. Each processor core is thus restricted to allocating

cache lines into a specified cache partition. Consequently, a processor can only evict cache

lines within its own assigned LLC partition, thus reducing the impact of processes running

on other cache regions and vice versa. In particular, note that the ability to allocate cache

lines, priming in Prime&Probe attacks, in a cache shared with the victim and the ability

to evict cache lines being used by the victim process, flushing in Flush+Reload attacks,

are key steps in cache-based side-channel attacks. Ensuring potential victim and attacker

processes run on cores associated with different LLC cache partitions defeats many cache-

side-channel attacks. Specifically, cross-core Prime&Probe attacks on a victim process are

eliminated between the isolated and shared regions since we use different cache partitions.

An additional source of side-channels, shared memory, is discussed in Section 2.4.2.

Cores in the system are associated with partitions such that each core is assigned to

one and only one LLC partition. We refer to these partition-core combinations as isolated

and shared regions. The maximum number of cache partitions available with Intel CAT is

fixed for a given micro-architecture. The machine used for our testing allows for up to 4

distinct partitions, but newer machines have 16. The configuration of size, number of active

partitions, and core to partition assignment occurs in software and can be adjusted based

on the demand for isolated execution and the needs of the expected workloads. If there

is no demand for shared execution then the host server could be partitioned into two (or

more) isolated partitions. In this chapter, we evaluate a single isolated region and a single

shared region, though the technique works equally well with multiple isolated regions. The

cache-access capability is a capability granted to a domain to access a single isolated region.

As previously discussed, hardware-assisted spatial partitioning protects the containers

running in the isolated partition against cross-core Prime&Probe style attacks from contain-

24

ers running in the shared partition. However, cross-core side-channel attacks across cache

partitions are not entirely eliminated. Intel CAT, primarily designed to improve fairness

of cache sharing and performance of latency sensitive workloads, allows cache hits across

partition boundaries to maximize the benefits of shared memory such as the libc shared

library. In particular, if the victim and the attacker processes share memory, because of

layered file systems used in container frameworks for example, an attacker can carry out

a Flush+Reload attack. Since the attacker previously flushed the cache lines, a cache hit

indicates that the victim executing in a different core (and LLC partition) has used or is

using the library. While CAT limits the granularity of information an attacker can glean

across partition boundaries, timing observations are still possible and hence the side-channel

is not entirely eliminated while using CAT. Furthermore, attacks within an isolated partition

continue to be viable. These will be addressed in the following sections.

The partial protection against cache-side-channel attacks obtained through spatial parti-

tioning comes at the cost of reduced LLC cache size and the associated potential reduction

in performance. Fortunately, reduction in cache size has been shown to have relatively little

impact on modern cloud workloads [64]. In particular, minimal performance sensitivity to

LLC size has been reported for cache sizes above 4− 6MB with modern scale-out and server

workloads (see Section 4.3 and Figure 4 in [64]) that are typical in cloud environments.

2.4.2 Selective Page Sharing

To ensure the cache-access capability is enforced properly, we must identify all sources of

cross-domain cache-access to enforce the invariant described in Section 2.1. As previously

discussed, hardware-assisted spatial partitioning does not eliminate cross-core Flush+Reload

style attacks when the attacker and the victim share memory pages. Modern container

deployments have one primary source of shared memory, causing cache-lines to be shared

across domains. We limit our discussion to Docker as it is one of the most popular choices

for building container images and running them on Linux platforms, but these concepts also

25

extend to other container frameworks. Docker uses storage drivers that are built on top of

Union File Systems (UFS) so that a process inside of a container can access a file system

composed of a stack of layers. Several different containers may use the same versions of

libraries and other base components, thus a way was needed to reduce disk and memory

usage of the common building blocks. Docker addressed the need to share base components

by uniquely identifying each layer by its cryptographic hash and sharing common layers

between all containers built using a given layer ID.

Often there are multiple containers running the same image which causes them to share

every layer except for the upper-most writable layer. For example, two Apache Tomcat

servers running on the same Docker host using the same image would share all binaries

including the Java Virtual Machine (JVM), Apache Tomcat, GnuPG, and OpenSSL among

others. Only the top most layer, containing writable elements such as the Tomcat log file,

differ between containers.

To enforce the cache-access capability in container deployments, we eliminate cross-domain

page sharing through selective layer duplication. That is, for containers requiring isolated

execution, our system allows sharing of layers only among containers belonging to the same

security domain but not otherwise. This is a reasonable trade-off as it enables isolation

between different tenants while limiting the increase in memory usage. In particular, the

increase in memory usage will be a function of the number of tenants running on the server

rather than the number of containers. We do not prevent traditional sharing of layers for

containers running in a shared partition.

For VMs, the kernel same-page merging (KSM) module in Linux, used for memory de-

duplication, is the main source of shared pages. However, KSM and memory de-duplication

in general come with their own security risks (e.g., [70–73]). For instance it has been shown

that KSM can be leveraged to break ASLR [70], enable Rowhammer [74] attacks across

VMs [72], and create a timing side-channel that can be used to detect the existence of

software across VMs [73], much like the Flush+Reload style attack discussed previously.

26

Given the serious security concerns surrounding the use of KSM, we leave it disabled. Same

page merging is disabled by default on commercial products from VMWare as well [75].

Note that selective page sharing, combined with hardware-assisted spatial partitioning,

eliminates cross-core cache-side-channel attacks across partitions by allowing cache-access

capabilities enforcement at the cache-partition boundary. Selective page sharing removes

the ability for an attacker to measure interference after flushing a given address and CAT

partitioning removes the ability for an attacker to prime a victim’s cache across partition

boundaries. Cache-side-channel attacks from within an isolated partition due to multi-core

and SMT continue to be a threat and will be discussed next. A way is needed to transfer the

capability to access a given cache-partition to another security domain to allow an isolated

region to be shared without leaking information.

2.4.3 State Cleansing During Capability Transfer

Even with containers running in isolated partitions, an attacker allocated to the same

isolated partition as the victim might be able to (i) observe the victim’s LLC usage if

scheduled to run on a different core than the victim but associated with the same partition

and (ii) even observe the victim’s L1 and L2 usage if running on the same physical core

as the victim [31]. In the latter case an attacker observes the cache usage of the victim by

managing to frequently alternate execution with the victim process, or via SMT.

To thwart these attacks we propose to cleanse the cache state when transferring the cache-

access capability between schedulable entities belonging to different security domains. That

is, if a process from one security domain, SD1, runs on a core, then processes belonging to

another domain, SD2, must either run on a core assigned to a separate partition or state-

cleansing of the shared caches must be performed on the partition during the transfer of the

cache-access capability from SD1 from SD2. There currently exists no hardware instruction

for per-partition cache invalidation. More detail on how state cleansing can be achieved is

in Section 2.5. However, state cleansing alone does not prevent attacks from an attacker

27

process that is running in parallel with the victim either on the same-core through SMT, or

running on a different core but in the same partition.

A näıve solution for capability transfer within a single isolated region would be to assign

a single core to the isolated partition, disable hyper-threading and perform state-cleansing

on every context-switch. The performance cost of such an approach is unattractive. A

mitigation would be to create multiple isolated partitions with a single-core assigned to

each one. However, the number of cache partitions is finite, 4 in our case, and such an

approach would further fragment the LLC and hamper performance for the shared partition.

Furthermore, many cloud workloads are multi-threaded and leverage additional cores when

available. Thus, a mechanism is needed to enforce cache-access capabilities while assigning

multiple logical-cores to an isolated region allowing for more scalability within an isolated

region.

2.4.4 Co-scheduling for Temporal Isolation

To address the aforementioned threat, we use a novel scheduling technique for temporal

separation of security domains. Co-scheduling container processes belonging to a given secu-

rity domain across multiple processors amortizes the cost of state cleansing during capability

transfer, but introduces additional complexity as discussed below.

Scale-out workloads with many threads, those commonly deployed on cloud infrastructure,

motivate this approach. As thread counts for a security domain increase, the number of

threads able to run per domain at any given time will be high. This allows us to drive up

utilization of cores assigned to a partition and only flush the partition when transferring

the cache-access capability to the next domain. The complexities stem from needing to

synchronize all isolated cores during capability transfer, thus any implementation of co-

scheduling has to guarantee an exclusion property. No task belonging to security domain

SDX can run on an isolated processor while a task from another domain, SDY , is running in

a processor associated with the same isolated partition to enforce the invariant in Section 2.1.

28

Additionally, before SDX can be granted the cache-access capability, a state cleansing event

must occur. As shown in Figure 2.2, multiple cores can be utilized at once within a security

domain. However, state-cleansing must be performed as every core assigned to a given

partition context switches to the security domain for which the cache-access capability has

been transferred. The next security domain cannot run on any isolated processor until this

process is complete.

Isolated

Core 0 Core 1 Core 3Core 2 Core 7 Core 8 Core 9

SD0 SD0 SD0 SD0

SD1 SD1 SD1 SD1

State Cleansing Event

t
i
m
e

= Schedulable UnitSD = Security Domain

Figure 2.2: Co-scheduling Overview - The isolated environment is on the left. It consists of
an isolated cache partition along with the processors assigned to that partition.
Co-scheduling is used to group tasks belonging to the same security domain and state
cleansing events occur when changing domains. Regular tasks are on the right in a
separate cache partition. Tasks on the right, those in the shared region, have no scheduling
restrictions.

2.5 IMPLEMENTATION

Partitioning the LLC and associating cores with each partition does not require changes

to the kernel or the operating system. It can be done by a system administrator as part of

the machine configuration. Here we focus on the implementation of our co-scheduling and

selective-sharing mechanisms.

29

2.5.1 Capability Enforcement through Strict Co-Scheduling

Shared Cache

Processor

CORES

Core 1

Core 2

ORG1: Thread1 ORG2: Thread1 ORG2: Thread3

t

Scheduling Policy

ORG1: Thread2 ORG2: Thread2 ORG1: Thread1

ORG2: Thread2

Figure 2.3: Limitations of Default Scheduling Policy

Default Scheduler: Consider containers from two security domains or organizations

with thread configurations as shown in Table 2.3 running on two cores. Simply executing on

the cores requires allowing the processes to access the L1, and L2 caches belonging to those

cores along with the entire LLC. The defining characteristic in our example is the shared

cache. For hyperthreaded cores, this is the L1, L2 and LLC. In the case of two physical

cores, the shared cache is only the LLC. The cores 1 and 2 in Figure 2.3 are not cores on

two separate sockets on the same motherboard. Figure 2.3 shows an example schedule that

might result from the default scheduler in Linux.

Table 2.3: Per-Domain Thread Allocations

Domain ID Thread Count

ORG1 2

ORG2 3

Even if the scheduler flushes between scheduling different containers, the other organiza-

tion has the ability to carry out a cache-base side-channel attack. This process is shown

in Figure 2.4. Consider the flushing events f1 on Core1 and f2 and f3 on Core2 as shown

in Figure 2.4. Despite the flushing event f1, attacks can be carried out across containers

belonging to different domains during ∆t1. This limitation is repeated at flushing event f3

for a period of ∆t2. It is clear that enabling hyperthreading or assigning multiple cores

30

to a single isolated region poses an additional set of challenges to cache-access capability

enforcement.

f3f2Cache Partition

Isolated Region

CORES

Core 1

Core 2

ORG1: Thread1 ORG2: Thread1 ORG2: Thread3

t

f1

Scheduling Policy

Δt1 Δt2

ORG1: Thread2 ORG2: Thread2 ORG1: Thread1

ORG2: Thread2

Figure 2.4: Limitations of Default Scheduling Policy + Flushing

Traditional CFS in Linux was born out of the need to reduce the impact to latency sensi-

tive jobs. We introduce a Strict-Co-Scheduling (SCS) algorithm for cache-access capability

enforcement. Our SCS implementation aims to reduce the cost of transferring the capability

to access a given cache region due to flushing while remaining favorable to latency sensitive

tasks by utilizing CFS within a security domain.

The terms outlined in Table 2.4 are used to describe the SCS algorithm we introduce.

Like the default Linux scheduler, if no work is available the processor will idle. There are

two main changes to the default scheduler class that are not shown here. When choosing

a process to run, the scheduler will always choose from PPrivilegedDomain. Additionally, the

default scheduler will not schedule a process for less than MinRuntime. To ensure our SCS

algorithm remains as work-conserving as possible, a thread may be preempted after only

running for a fraction of the MinRuntime where necessary. More discussion on this below.

Algorithm 2.1 highlights how the SCS nextDomain function is implemented in Linux.

Once the next next domain is chosen, cores schedule threads only from PPrivilegedDomain or

idle until work is available. This approach introduces little additional algorithm complexity.

Because the O(1) scheduler in Linux, which is round-robin, performs worse for latency

sensitive tasks, we would expect this to remain the case when using round-robin as a basis

31

for SCS. We mitigate this impact by only transferring the cache-access capability in a round

robin fashion, while utilizing the CFS scheduler when scheduling processes from the domain

holding the cache-access capability.

Table 2.4: Terms used in Scheduling Algorithm

Definition of Term

SDCList A circularly linked list of security domains.

i The index offset in to SDCList.

P The queue of runnable processes in the system sorted

from least to greatest vruntime

PDOMAIN The queue of runnable processes belonging to

DOMAIN sorted from least to greatest vruntime.

PrivilegedDomain The security domain currently holding the cache-

access capability.

MinRuntime The minimum runtime for which a thread should be

scheduled.

Algorithm 2.1 Strict-Co-Scheduling (SCS) Domain Selection

function nextDomain
i← i+ 1
i← i mod SDCList.size()
domain← SDCList[i]
while size(P) > 0 AND size(Pdomain) == 0 do

i← i+ 1
i← i mod SDCList.size()

end while

domain← SDCList[i]
return domain

end function

The downside with SCS stems from the system’s inability to remain work-conserving

under certain situations. In a work-conserving system, the processor never idles if there

32

ORG1: Thread1 ORG2: Thread1

ORG1:
Thread2 ORG2: Thread2

ORG1:
Thread1

ORG1: Thread2

ORG2: Thread3

ORG2: Thread1

t

f3f2f1

Scheduling Policy

Δu1 Δu2

Figure 2.5: Under-Utilization

is work that can be done by any process in the system. By very definition, we can not

consider all processes during the isolated run of a single group of tasks belonging to the

same security domain. We highlight three different cases which demonstrate an inability to

remain work-conserving using the configuration as outline by Table 2.3.

Figure 2.5 shows the situation in whichORG1 : THREAD2 finishes before the PrivilegedDomain’s

(ORG1) MinRuntime is up, leading to a ∆u1 underutilized time span The system must

idle until the next capability transfer occurs, assuming work is available for the next do-

main. Once ORG1 is scheduled again, ORG1 : THREAD1 may be waiting on input for

a period of ∆u2. Again, the system will remain underutilized for a period of time and

ORG1 : THREAD1 will not receive the full MinRuntime.

In order to mitigate situations of low utilization such as the one presented in Figure 2.5,

we choose to violate the MinRuntime guarantee provided to processes in Linux. Consider

the situations in which the number of processes for the PrivilegedDomain exceeds the

number of cores, as is the case for ORG2. As shown in Figure 2.6, we can schedule ORG2 :

THREAD3 if ORG2 : THREAD2 does not use its full MinRuntime. This means that

ORG2 : THREAD2 will not be scheduled for the full MinRuntime, potentially introducing

more context switching.

33

ORG1: Thread1 ORG2: Thread1

ORG1: Thread2
ORG2:

Thread2

ORG1: Thread1

ORG1: Thread2

ORG2: Thread3

ORG2: Thread1

t

f3f2f1

Scheduling Policy

ORG2:
Thread3

Figure 2.6: Work Conserving

ORG1: Thread1 ORG2: Thread1

ORG1: Thread2

ORG1: Thread1

ORG1: Thread2

ORG2: Thread3

ORG2: Thread1

t

f3f2f1

Scheduling Policy

Δu3

Figure 2.7: Worst Case Under-Utilization

Figure 2.7 demonstrates a worst case scenario upon granting ORG2 the cache-access

capability. If only one thread can do work, then one core will be underutilized for ∆u4

which will be equal to the full MinRuntime. The performance of interactive workloads

with long inter-arrival times of requests could lead to situations like this. Note that this

is the worst case because if there are no runnable tasks in a domain, we will not grant the

domain the cache-access capability.

The goal of violating the MinRuntime guarantee afforded to processes in Linux is to drive

up utilization. This can lead to unintended consequences depending on workload. Consider

34

the case presented in Figure 2.8. Our approach is to revoke ORG1’s cache-access capability

and then grant it to ORG2 if both threads for ORG1 finish before the MinRuntime is

reached. Upon switching to ORG2, consider an example in which work is only available for

a single thread. Partway through the execution of ORG2 : THREAD1 work may become

available for ORG2 : THREAD2, so it is scheduled. This processes might be repeated for

ORG2 : THREAD3, leading to three distinct times of under-utilization, ∆u6, ∆u7, ∆u8,

the sum of which is guaranteed to be strictly less than MinRuntime. This situation should

be rare in practice as long as the mean processing time for I/O bound processes is greater

than the MinRuntime, but can come into play when multiple threads have been scheduled

for many MinRuntime’s and are nearing the end their current workload. If this case were to

occur frequently in practice it may drive up the amount of time spent underutilized and for

which transferring the cache-access capability to another security domain might have been

more appropriate. This can be minimized if the proper number of threads are chosen for

a given workload. Correct thread allocation or dynamic optimization of thread count is a

separate research problem.

Δu4 Δu5

Minimum Runtime

ORG1:
Thread1

ORG2:
Thread1

ORG1:
Thread2

ORG1: Thread1

ORG1: Thread2

ORG2: Thread3

ORG2: Thread1

t

f3f2f1

Minimum Runtime

ORG2:
Thread2

ORG2:
Thread1

Δu6

Minimum Runtime

Scheduling Policy

Figure 2.8: Side-Effects of Work Conserving Properties

35

2.5.2 Linux Kernel Modifications

Co-scheduling can enforce proper capability transfer between security domains, but any

implementation must be precise. By precise, we mean that any form of “loose” or “lazy”

co-scheduling is unacceptable. Co-Scheduling attempts in Linux have been focused on VMs.

Existing patches are “best-effort” co-scheduling [76]. These “soft”-co-schedulers try to find

a thread to run that belongs to the same group of processes as the thread just scheduled. If

no thread is found, there is no guarantee that one from another security-domain will not be

scheduled. This leads to, at best, situations like the one presented in Figure 2.9.

Cache Partition

Isolated Region

CORES

Core 1

Core 2

ORG1: Thread1 ORG2: Thread1 ORG1: Thread1 ORG2: Thread3

t

f3f2f1

Scheduling Policy

Δt1 Δt2 Δt3

ORG1: Thread2 ORG2: Thread2 ORG1: Thread2 ORG2: Thread1

Figure 2.9: Limitations of Best-Effort Co-Scheduling Policy

Figure 2.9 is a schedule instance of the configuration as described in Table 2.3. The

example is a situation in which 2 cores are associated with an isolated partition and are

running containers belonging to two security domains. These cores may be two physical

cores or one physical core presented as two to the operating system as is the case with SMT.

The defining characteristic in our example is the shared cache. For hyperthreaded cores,

this is the L1, L2, and LLC. In the case of two physical cores, the shared cache is only the

LLC. The cores 1 and 2 in our example are cores on the same socket.

Consider a situation in which Core1 initiates capability transfer before scheduling a thread

from a conflicting domain, ORG2:THREAD1 in this example. Even if the scheduler invokes a

flushing event, f1, there remains a ∆t1 during which cross-core, cross-domain attacks could

be carried out. This is seen again after Core1 schedules ORG1:THREAD1 and ORG2:THREAD3

36

leading to durations ∆t2 and ∆t3 during which attacks remain feasible. While this situation

is still better than the one presented in Figure 2.3 it highlights the need to pay particular

attention to the implementation subtleties when implementing co-scheduling of processes

in the same security domain on modern operating systems. Effective elimination of side-

channels dictates that cross-core synchronization be performed before state cleansing occurs

and subsequent domain scheduling takes place.

Our SCS algorithm is implemented by modifying the default CFS scheduler in Linux. The

default Linux scheduler performs time accounting on a per group basis through the usage of

layers of red-black trees in place of a traditional run-queue [77]. At the lowest layer, there is

a red-black tree consisting of all the tasks in the system. The cgroup layer is directly above

the layer of task structs. A task group is a Linux kernel data structure used to group

“schedulable entities.” These entities may be other task group’s or individual task struct’s

representing a single thread. One node at this layer would hold all the task structs for a

single container for example. Above that is a layer of parent-cgroups - a layer that only

exists if the user specifically creates a cgroup holding other cgroups. In our system, one such

node is created by the Docker daemon anytime a new parent-cgroup option is used. A node

at this layer contains per-CPU run queues that can be traversed through the child-cgroup

layer to reach all the tasks belonging to a given domain.

The per-CPU data structures associated with nodes at each layer are stored in the

task group struct which also has a siblings field, a linked list pointing to other task group’s

at the same level. We hold a pointer to the head of this list (which is not associated with any

task group) and maintain a separate pointer to the PRIVILEGED DOMAIN. Transferring the

cache-access capability can be performed by simply setting the PRIVILEGED DOMAIN pointer

to the next item in the list that is not the head and pointing to a task group with runnable

tasks. This makes up the nextDomain function as outlined by Algorithm 2.1.

To ensure that no two schedulable units belonging to different security domains run on

an isolated cache partition simultaneously, we implement the core synchronization protocol

37

shown in Figure 2.10. The protocol works by making the first core in an isolated parti-

tion a leader core. The leader core is responsible for revoking the cache-access capability,

synchronizing cores, state cleansing via a cache flush, and finally, granting the cache-access

capability to another security domain. All isolated cores only schedule tasks belonging to the

PRIVILEGED DOMAIN, a global variable pointing to the task group for the security domain

holding the cache-access capability. We work at the third level of task group’s such that

all containers belonging to a security domain are contained within the task group pointed

to by PRIVILEGED DOMAIN. Note that while only 2 cores are shown in Figure 2.10, the ap-

proach works with any number of cores. In Section 3.8 we evaluate the protocol with 4 cores

assigned to an isolated partition.

ORG1: Thread1

Initiate Capability
Transfer

AckFlush Cache

Force Reschedule

ORG2: Thread1

Leader

ROUND_OVER = True

ROUND_OVER = False

ORG1: Thread2

TRUSTED PROC

TRUSTED PROC

ORG2: Thread2

Follower

Transfer Capability

Figure 2.10: Strict Co-Scheduling Protocol

To allow multiple cores to be assigned to the same cache partition, we use a follow-the-

leader approach to scheduling. A leader core is in charge of initializing capability transfers

and flushing the cache between revoking the capability and granting it to another domain.

38

Cache Partition

Isolated Region

CORES

Core 1

Core 2

ORG1: Thread1 ORG2: Thread1

ORG1: Thread2 ORG2: Thread2

ORG1: Thread1

ORG1: Thread2

ORG2: Thread3

ORG2: Thread1

t

f3f2f1

Scheduling Policy

Figure 2.11: Strict Co-Scheduling Example

This algorithm is invoked under two circumstances. The first is the result of a timer that

runs every MinRuntime milliseconds. The timer checks to see if work is available in another

domain and, if so, grants the capability to access this cache region to the next domain

with available work. If no other domain can be run, this process simply reschedules the

timer interrupt. On the other hand, if another domain is to run, the leader invokes a

synchronization routine in which each of the follower cores schedule an idle process and send

an acknowledgment to the leader core. Upon receiving acknowledgments from all follower

cores, the leader will flush the partition and force the follower cores to re-run their scheduler

functions in order to schedule tasks from domain now holding the cache-access capability.

Isolated cores rely on two pieces of shared state to achieve strict synchronization. The

leader core is the only core that can modify state. The ROUND OVER variable indicates to

follower cores that a capability transfer is about to occur. A timer on the leader core initiates

a domain change by modifying this variable and invoking the schedule function on the

leader core. The capability transfer event fires every sysctl sched min granularity, a

configurable parameter exposed to administrators on Linux based systems to control system

responsiveness. This is the variable exposed to allow administrators to control MinRuntime.

After setting the ROUND OVER variable to true, the leader core issues a reschedule command

via an Inter-Processor Interrupt to follower cores and waits for them to send back an ac-

knowledgment. The acknowledgment is performed within the schedule function on fol-

39

lower cores. When the ROUND OVER variable is set, partitioned cores can only run trusted

processes. These are only kernel tasks, including: ksoftirq, watchdog, and the idle task.

Ensuring such processes can run prevents deadlocks due to watchdog timeouts.

After receiving an acknowledgment back from all follower cores, indicating they are no

longer running tasks belonging to any security domain, the leader then flushes the cache and

updates the PRIVILEGED DOMAIN to point to the next security domain using Algorithm 2.1.

Our system uses a separate task group within the Linux kernel for each security domain.

Run-queue checking is performed to ensure a domain with runnable tasks is chosen.

Having chosen the next domain, the leader core sets ROUND OVER to false and again

issues a reschedule command to follower cores. The schedule function will eventually be

invoked on the follower cores, but we use the reschedule command to reduce the idle time

of follower cores. This protocol corrects the problem presented in Figure 2.9 resulting in

“strict” co-scheduling as seen in Figure 2.11.

As previously mentioned, to ensure that less idling occurs, we will initiate a capability

transfer if the PRIVILEGED DOMAIN has no more runnable tasks, as shown by the first run of

ORG1 tasks in Figure 2.8. This is accomplished by having a cpu mask, the bits of which

represent which cores in the partition are idling. If a core schedules an idle process, it sets

the corresponding bit to 1. That core then checks to see if all the other cores in the partition

are also idle. If so, it forces the timer described above to run on the leader core. This could

be extended further by making the transfer occur once a certain percentage of cores in the

partition are idle. For now, we focus on the capability-enforcement mechanism and leave

policy optimizations up to future work.

It is clear that this approach will impose overhead due to the synchronization costs between

cores assigned to a given partition. It is important to remember that these costs are only

paid by containers for which increased isolation is required. Regular containers will not pay

additional overheads and can be co-located on the same machines as containers utilizing

the above scheduling policies without incurring any penalty as we show in our evaluation

40

section. Despite the overhead, we feel that the trade-off is worth it for critical applications.

2.5.3 State Cleansing

The isolated cache partition must be cleaned or flushed before switching context to a

different security domain. For a processor cache, state cleansing or flushing equates to

invalidating the cache lines or evicting them, but no hardware mechanism exists to flush the

cache lines assigned to a single CAT partition. The WBINVD instruction invalidates the

entire shared cache, disrupting processes in all partitions.

One way to implement state cleansing is for the user process to invoke the CLFLUSH

instruction, which can evict cache lines corresponding to a linear virtual address and can

be invoked from user space. This can be done by the application process before being

switched out as in [78]. However, this requires changes to user applications which is not

desirable. Another possibility is for the kernel to invoke CLFLUSH on the entire virtual

address space. While this is guaranteed to work across processor generations, this approach

is too costly, taking up to 10x sysctl sched min granularity on applications we tested.

An optimization is to do it only on valid virtual addresses for the task being switched out

as was done in [79]. However, this can still be a large range compared to the size of a cache

partition (4− 6MB).

Another approach is to create an eviction set – a set of addresses which when loaded are

guaranteed to evict the entire cache partition. However, the memory-address to cache-line

mapping is proprietary and subject to change across processor generations. Cache-side-

channel attacks also have to contend with this challenge and have addressed it by reverse-

engineering the memory address to cache line mapping for a given micro-architecture [33].

Apart from the one-time cost of reverse engineering, the cost of this approach is equal to

loading memory the size of the cache partition from a linear address space. To evaluate the

performance of such an approach, we use the memory load method.

We perform this state cleansing anytime the security domain is changed, as shown by the

41

protocol in Figure 2.10 and the co-scheduling overview in Figure 2.2. To reduce performance

impact in the case of other domains lacking runnable threads (due to blocking on I/O,

etc.), flushing is only performed when PRIVILEGED DOMAIN changes. If only a single security

domain has runnable tasks, no flushing will occur.

2.5.4 Selective Page Sharing

Docker uses a UFS to present a unified view of the several different layers. Of the several

UFS that Docker supports like btrfs [80], overlayfs [81], and AUFS [82], AUFS is mature and

supports all of Docker’s storage feature set. In a UFS, multiple directories on the host are

unified in a single directory called a union mount, without replicating the actual contents

of individual layers. Contents of all the layers become visible at the union mount. Docker

keeps a single copy of each layer on the host file-system and AUFS mounts all the layers to

a single union mount point, which becomes the container’s root file system. Each layer can

be a part of multiple union mounts and thus can be shared across different containers.

Our implementation modifies Docker4, specifically the AUFS storage driver, to transpar-

ently allow selective sharing of file system layers. We modified the AUFS driver to have

separate copies of each layer for each security domain. In this way, no two containers be-

longing to different security domains share any common layers.

2.6 PERFORMANCE EVALUATION

In this section, we present an evaluation of the performance impact of our core-synchronization

algorithm used during capability transfer. We evaluate overheads in terms of machine-

utilization loss as observed by the cloud provider. We then explore the impact as observed

by cloud tenants. We also explore the memory growth impacts of our selective-sharing

mechanism.

4v1.14.0-dev, compiled from source code available on Github

42

2.6.1 Impact of Scheduler Changes

Our prototype implementation is evaluated using a CPU bound workload to determine

the impact on applications in a worst case scenario. Consider a batch workload such as

Hadoop or a web serving workload. The case in which all threads have work and are not

waiting for input is approximated.

0

2

4

6

8

10

12

2 4 8

R
ed

u
ct

io
n

 in
 C

P
U

 T
im

e
Pe

r
D

o
m

ai
n

 (
%

)

Number of Security Domains

Figure 2.12: Tenant observable loss in CPU time allocated to each security domain as a
function of the number of security domains. Note this performance degradation only
occurs in the isolated region. The performance impact when there is only a single security
domain is 0, thus is not shown.

The machine is configured as outlined in Section 2.3. We allocate 2 physical cores and 4

logical processors to an isolated cache region. The cache region is 4MB (4 cache ways out

of 20 available on the system). Each security domain is assigned 4 threads, and the number

of domains is varied from 2 to 8. Each domain consists of 4 CPU-bound tasks, 1 for each

logical processor. Measurements are taken using sar and pidstat at an interval of once per

second for 100 seconds. Figure 2.12 shows the overhead normalized to security domain for

the 4 security domain case. The reduction in time spent in userspace per domain is small.

Figure 2.13 shows the overhead of our system running while varying the number of security

domains assigned to an isolated region. System utilization when our system is disabled is

43

very near 100% in each case, thus is not shown. It is clear to see that the overheads for

a single logical processor are a function of the system and not of the number of security

domains assigned to a partition. Follower cores can be seen idling during domain changes,

but the overheads never exceed slightly above 20%, with the average case being slightly below

20% on follower processors. From our tests, we know that flushing significantly increases the

performance penalties. The leader core spends the most time executing in system space due

to its responsibility to manage capability transfer and synchronize cores, so this was to be

expected. In the future, we will investigate mechanisms to reduce system time on the leader

core and idle time on follower cores. Hardware based per-partition flushing mechanisms, such

as an enhanced WBINVD, would significantly reduce these overheads, though our approach

would still be needed to enable multiple logical processors in an isolated region. Because the

isolated region suffers ≈ 20% reduction in utilization as visible to the provider, the impact

to tenants within the isolated region will be strictly less. Cloud computing benefits from

over-subscription making these gains possible. Impacts to utilization are amortized across

the security domains assigned to a given isolated region. Figure 2.12 is indicative of tenant

observable application performance, while Figure 2.13 is indicative of the cost to the cloud

provider in terms of lost CPU utilization.

We have not shown the performance impact on schedulable units running outside of an

isolated region. The Linux scheduler runs on a per-core basis, so there is no interference

across core boundaries unless processes are being re-balanced, which we disable across iso-

lated and non-isolated regions. Thus, the only performance impact to schedulable units in

the non-isolated region is due to the reduction in cache sized from 20MB to 16MB. Reduced

cache sizes have little impact on cloud workloads [64].

Hardware based per-partition flushing mechanisms would significantly reduce these over-

heads if such instructions are added by Intel in the future. For example, an instruction like

WBINVD could be made that took a partition id and only flushed the relevant lines in that

partition. This would reduce the amount of system time our approach takes, but would not

44

1 2 3 4
Core #

0

20

40

60

80

100

C
P

U
 U

til
iz

at
io

n
P

er
ce

nt
ag

e

System
Idle

User

(a) 2 Security Domains

1 2 3 4
Core #

0

20

40

60

80

100

C
P

U
 U

til
iz

at
io

n
P

er
ce

nt
ag

e

System
Idle

User

(b) 4 Security Domains

1 2 3 4
Core #

0

20

40

60

80

100

C
P

U
 U

til
iz

at
io

n
P

er
ce

nt
ag

e

System
Idle

User

(c) 8 Security Domains

Figure 2.13: Scalability of Isolation Mechanisms with respect to Number of Security
Domains. 4 logical processors are in the isolated region. Per logical-core utilization is
shown for cores in the isolated region with co-scheduling and state cleansing enabled.

eliminate performance impact of strict co-scheduling. Our scheduling approach would still

be beneficial even in the case of hardware-accelerated partition flushing because it would

allow processing being scheduled during an epoch to gain maximal sharing of cache lines as

they all belong to the same security domain. Furthermore, co-scheduling is still necessary

to enable multiple cores within an isolated region regardless of the overhead of partition

flushing. Future research is necessary to determine an effective hardware implementation of

a per-partition flushing mechanism to reduce the system time.

2.6.2 Impact of Shared Memory Reduction

By enabling selective sharing of base layers in Docker, we expect an increase in the memory

footprint of containers as there are multiple copies of pages that would otherwise be shared.

To understand the memory growth vs. the number of security domains, we ran 2 experiments

each with a web server (Apache Tomcat) and an in-memory database (Redis). We used smem

to measure the proportional set size (PSS) per container as it represents realistic memory

usage by only measuring the fair share of the total shared memory. To better understand

PSS, consider two processes that share 50MB of memory and have 10MB of memory that

is unique to each process. PSS would report the memory usage to be the (shared memory

45

/ # of processes) + unique memory, thus would be 35 MB for the example given. PSS

is used to highlight the benefits of sharing in the non-modified cases and to show the gains

from selective-sharing within security domains. We also track Resident Set Size (RSS),

which is the total amount of memory used by a process. This allows us to show the cost

of a näıve solution that disables sharing entirely. To make sure that the code is resident in

memory before we take measurements, we send 100 requests to the Apache Tomcat servers

and added 1000 random key-value pairs to each Redis server. We designed our experiments

to be representative of real world deployments of micro-services where multiple containers

of a single type run in a distributed fashion.

We measure how the average memory usage of each container increases as we increase the

number of security domains from 1 to 4. Each security domain has 5 containers. The result

is compared against the same number of containers running without modifications on the

same host (i.e., all the containers share base layers). These measurements are also compared

against a näıve solution in which sharing is disabled all together. We measure the average

memory usage across 50 runs. Figures 2.14 and 2.15 show that memory usage for Redis

increases ≈ 0.45 MB per container in the worst case (4 security domains with 5 containers

each) and for Apache Tomcat only ≈ 1.71 MB per container in the worst case. When looking

at the overall memory consumption of these processes (≈ 7 and ≈ 230 respectively) it is clear

that the additional memory cost per container is marginal. Selective sharing that enables

layer sharing within a security domain provides substantial improvements over disabling

sharing entirely.

46

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4

M
em

o
ry

 U
sa

ge
 P

er
 C

o
nt

ai
n

er
 (

M
B

)

Number of Security Domains

Full Sharing Selective Sharing Naïve (No-Sharing)

Figure 2.14: Full Sharing vs. Selective Sharing (Redis)

0

50

100

150

200

250

300

1 2 3 4

M
em

o
ry

 U
sa

ge
 P

er
 C

o
n

ta
in

er
 (

M
B

)

Number of Security Domains

Full Sharing Selective Sharing Naïve (No-Sharing)

Figure 2.15: Full Sharing vs. Selective Sharing (Tomcat)

47

The results support our claim that the additional cost of selective sharing of memory

is negligible. The increase that we see arises from the duplicate copies of memory pages,

one per security domain, which were shared among all the containers within that domain.

Sharing still occurs between containers belonging to the same security domain which is why

memory growth remains manageable with our modifications.

2.7 CACHE CAPABILITY ENFORCEMENT SUMMARY

In this chapter, we have presented a hardware-software technique that can enforce a cache-

access capability for schedulable units belonging to separate security domains (C1). Unlike

many existing solutions, our solution allows SMT to remain enabled (C2) and does not

require application level changes (C3). We implement our system on top of the Linux CFS

scheduler and present an evaluation of the system under a CPU bound workload. In our

evaluations, we observed a worst case reduction in utilization in the case of 2 security domains

of 9.8% and only 2.97% and 1.68% decrease in utilization for the 4 and 8 security domain

configurations respectively (with 4 logical processors assigned to an isolated partition, as

shown in Figure 2.12) (C4). A user simply notifies the provider that a given workload should

be run in isolation. Our technique can eliminate an attacker’s ability to use the cache as

a noisy communication channel and does not rely on probabilistic methods to decrease the

granularity of information available on the channel (C1).

48

Chapter 3: Trustworthy Monitoring and Intrusion Detection

Numerous event-based probing methods exist for cloud computing environments allowing

a hypervisor to gain insight into guest activities. Such event-based probing has been shown

to be useful for detecting attacks, system hangs through watchdogs, and for inserting exploit

detectors before a system can be patched, among others. Here, we illustrate how to use such

probing for trustworthy relationship logging and highlight some of the challenges that exist-

ing event-based probing mechanisms do not address. Challenges include ensuring a probe

inserted at given address is trustworthy despite the lack of attestation available for probes

that have been inserted dynamically. We show how probes can be inserted to ensure proper

logging of every invocation of a probed instruction. When combined with attested boot of

the hypervisor and guest machines, we can ensure the output stream of monitored events

is trustworthy. Leveraging these probing mechanisms we can build trustworthy relationship

monitoring systems to perform capability violation detection.

3.1 SYSTEM CAPABILITIES

Relationship monitoring at the system layer can be used to define and detect violations

of system-level capabilities. These capabilities capture relationships between system-level

subjects such as processes and the files they are capable of accessing or executing. Table 3.1

defines the terms we use when discussing system level capabilities.

Table 3.1: System Capability Definitions

Definition of Term

CP Set of Capabilities for micro-service P

M Set of micro-services

Ccall
x,y,.. Capability to execute system call call with arguments x, y, ...

Capabilities at the system-level revolve around system calls as the system call interface

is how micro-services create relationships between system-level subjects. In this chapter,

49

we focus on monitoring two system calls, open and execve, but explore the overhead of

more thorough monitoring in Section 3.8.1. Accordingly, we introduce the notion of two

capabilities to be monitored from within the VMM. First, we denote Copen
f,p to mean the

capability to execute the open system call with filename f and permissions p. Then we

denote Cexec
f to mean the capability to execute the execve system call with binary named

f .

In this chapter, we focus on the ability to place trust in the monitoring of the set of

capabilities, C. We also build a mechanism to allow for easier building of capability lists for

every micro-service a tenant may be deploying, CP ∀ P ∈ M.

3.2 GOALS OF A HYPERVISOR-BASED TRUSTED LOG

We set forward five requirements that must be met to guarantee the integrity of a trusted

log meant to monitor guest VMs. Increasing the integrity and completeness of our trusted log

provides better guarantees for higher level services built using such a log. The requirements

are as follows:

R1 Information provided by the guest cannot alter the logging entity’s control flow. In-

formation is simply logged and higher level services can respond to logged data appro-

priately,

R2 Guests cannot modify or remove an event from the log after the fact,

R3 In-guest modifications to instrumented locations should be logged,

R4 Modifications to functions invoking the hooked instruction should similarly be logged,

R5 The event log must contain every event εT of type T if there exists any probe PT in

the set of probes which produces output corresponding to events of type T , up to and

including a malicious action within the guest.

50

We also have three design goals that drive the engineering choices behind the architecture

proposed here. These are:

D1 Minimize the performance impact on guests,

D2 Minimize additions to the trusted compute base,

D3 Require no modification of guests (i.e., remain transparent).

3.3 BACKGROUND

Below we describe the technologies being used to help meet the requirements listed above.

By utilizing and extending these existing techniques, we meet our design goals and increase

resilience against attacks.

3.3.1 Hardware Assisted Virtualization

The x86 architecture was not originally designed with virtualization in mind, but as VMs

became popular, hardware manufacturers looked at ways to improve their performance and

robustness. Both AMD and Intel have released support for Hardware Assisted Virtualization

(HAV) in the form of extensions to the x86 instruction set.

HAV allows a VM to execute instructions natively on the hypervisor’s CPU(s). However,

the hypervisor must maintain control of the VM’s execution. When the CPU is executing

a VM’s instructions, VMExit events are generated for any privileged operations that the

VM attempts. A VMExit transfers control from the VM to the hypervisor, allowing the

hypervisor to perform any necessary operations before returning control back to the VM.

While allowing for robust and simplified hypervisor software, VMExit’s do incur perfor-

mance overhead. Historically, one of the major causes of overhead in HAV was due to page

faults in the VM. In early HAV implementations, every page fault would result in a VMExit

since the guest could not control its own page tables. To alleviate this, vendors introduced

51

a technique called two-dimensional page tables (TDP). In this paper we utilize Intel’s TDP

implementation, known as Extended Page Tables (EPT). The techniques apply to AMD’s

equivalent Nested Page Tables.

EPT allows VMs to manage their own page tables by managing guest-physical to host-

physical address translations in hardware, effectively eliminating VMExit’s on page faults.

Similar to conventional x86 page tables, EPT also provides a set of access flags that can be

set at the page level: execute enable, write enable, and read enable. A VMExit is triggered on

accesses that violate the access flags due to an EPT violation. We later show how EPT access

flags can be used to guarantee that probing systems do not miss events of interest occurring

within the guest immediately after guest boot, helping to fulfill R5. For more information

on EPT we refer the reader to Volume 3 of the Intel Software Development Manuals [83]; for

AMD’s equivalent NPT the reader can refer to Volume 2 of AMD’s Programmer Manual [84].

3.3.2 Virtual Machine Monitor Based Probing

The research community has shown that timer based guest introspection (passive moni-

toring) can be circumvented by a malicious or compromised guest [85, 86]. We avoid this

issue by using event-based monitoring. Here, we highlight the mechanism used to enable

such logging. Event-based probing using debugging techniques has been proposed and ap-

plied in a number of different contexts [87–90]. Lengyel et al. use event-based probing for

dynamic analysis of malware with the goal of remaining undetected during monitoring [87].

Estrada et al. show the effectiveness of similar techniques for reliability and security mon-

itoring [89, 91]. XenProbes uses the technique for profiling performance inside guests [88]

and Spider uses it for stealthy debugging [90].

All of these approaches utilize HAV to invoke VMExits upon execution of int3 (0xCC)

instructions in the guest. The key feature of event-based probing is that an instruction

within an untrusted environment can be replaced by an instruction (int3 in this case)

that causes a hardware enforced trap (i.e., a VMExit) to transfer control flow to a trusted

52

environment. After guest inspection is done, the original instruction is executed within the

guest and the breakpoint is re-inserted before guest execution resumes. Because probes

cause a VMExit, which is an expensive operation, one must carefully design services built

on such probes to reduce the number of exit events while also ensuring enough information

is available to allow meaningful services be developed utilizing the logged data. We do not

consider the event-based approached used by LibVMI [92] as it invokes a VMExit on every

single instruction in the target page for the logged event. Such an approach causes high

overhead and is intractable due to our performance requirement D1. Our approach gives

users the flexibility to determine the overhead paid based on the level of protection deemed

necessary for a given application.

3.3.3 The Semantic Gap

Any Virtual Machine Introspection (VMI) application must cross the “Semantic Gap”

- the gap faced by developers of code running within the VMM that must inspect guest

memory with no knowledge of the kernel data structures or memory layout of the guest.

Much research has been done in this area, and we point the reader to the overview done

by Hebbal et al. for a more thorough discussion of the issue and many of the proposed

solutions [93]. For this work, we assume that the address of the sys exec and sys open

calls in Linux, along with the offset at which the Linux kernel .text addressing begins are

provided (this memory mapping is well documented [94]). The latter is needed in order to

identify the guest physical locations of the above functions, which are loaded into memory

before paging is enabled in the guest. In Section 3.5 we discuss in more detail why this is

necessary.

We favor the approach of querying System.Map for the location of relevant functions due

to ease of access; this approach has shown to be successful in the literature for providing a

low cost method for crossing the semantic gap [88,95,96]. We limit our discussion to Linux

guests as the open source nature of Linux lends itself to easier distribution of VAs, the focus

53

of our IDS, but a similar approach of querying the debug symbols for the Windows kernel

has also been met with success [87,96].

3.3.4 Virtual Appliances

VAs are a popular method for deploying micro-services. One can simply choose an appli-

ance from a list of images made available on a cloud provider’s marketplace and immediately

deploy services such as databases or web servers with minimal configuration. The tuned na-

ture of these appliances makes their behavior more predicable than a VM used for general

purpose computation. In this paper we present an IDS that leverages the “appliance” na-

ture of cloud based deployments of micro-services instantiated using VAs. The IDS is built

using guest-event driven hypervisor-level probes to deliver relevant information to the policy

compliance layer.

A typical deployment of a cloud based web application may have a reverse proxy routing

requests to an application processing layer, each of which communicate with a database

before returning a response. Each of these services would be a different VA. We envision

a system for which different policies protect each kind of VA. In our example, there there

would be three main policies, one for the reverse proxy VA, one for the database VA and one

for the VAs which serve as the application server(s). Policies can share rules if VAs are built

using the same base distribution as a single distribution will have the same cron binaries

running, for example. While policies are stackable, the main advantages reside in the policies

for each that differ, allowing for good coverage while limiting false positives. For example, a

database server running MySQL should never execute a shell outside of configuration events;

our monitoring system would detect such an operation as a violation. The event log can

then also be used as compliance monitoring during configuration periods, and could serve

as a method to detect insider threats attempting to re-configure applications in an attempt

to cause unstable behavior.

54

3.4 ATTACK MODEL AGAINST THE LOGGING SYSTEM

Keeping the above technologies in mind, we motivate our design choices using the attack

model and assumptions presented in this section to improve the resilience of the logging

system. We assume that the hypervisor is a trusted entity and that the hypervisor side of

the logging framework is secure. For the log file itself, a simple way to provide guarantees is

to use remote logging, or approaches used in literature [97]. Here, we focus on the elements

of logging that must be in place to facilitate proper logging of a guest that may become

malicious at some point after boot.

We assume that the hypervisor is using trusted boot, thus the integrity can be attested.

Additionally, we assume that guests running on the hypervisor are also using attested boot

mechanisms, such as those presented in [98] and [99], and that guest kernels are known,

non-malicious builds of Linux. This allows the hypervisor to guarantee the integrity of any

guest kernel before the guest boots. We assume that the guest kernel is not malicious until

after the first user-space program runs. This is a reasonable assumption as attempts to

exploit a kernel will come from software loaded after boot (either malicious software will be

loaded or vulnerable software exploited).

Attacks can include loading kernel modules, modification of the kernel in place, or attempts

to circumvent logging through process tampering (more details in Attack A2). An attacker

may try and copy the page of memory with the replaced instruction, fix said instruction,

and redirect system calls to this new page. Such a redirect would either require modification

of the Interrupt Descriptor Table in memory that is referenced by the general system call

handler or may come as a write to a hardware register in an effort to circumvent the code

block executed after an interrupt.

To protect the integrity of an event placed at a given location, we must protect the entire

stack trace leading up to the execution of that event. In this chapter, we are primarily

concerned with logging the specific handlers of select system calls. Our attack model against

55

Hardware Software

IDTR/MSRs sys_call_tableSYSTEM_CALL SYS_EXECVE
Hardware

Invocation

Figure 3.1: Invocation Process for a Specific System Call Handler

SYSTEM_CALL:
…
…

enable_interrupts()
…
…

SYS_EXECVE:

call *sys_call_table(,%rax,8)

Interrupts	Disabled

Risk	of	Timing	Attack

Event	Logged

12 Instructions

Figure 3.2: Timing Constraints for Interrupt Attack (A2)

the logging system concerns protecting against any modification of the steps leading up

to the invocation of the monitored system call handler as highlighted by Figure 3.1. The

figure shows the hardware invocation of the system call code block, the location of which

is designated by values stored in hardware registers. During execution of the general system

call handler, interrupts are re-enabled (shown in Figure 3.2). The general system call handler

transfers control to the specific handler through the sys call table. Our goal is to place

probes on the first instruction of the specific handler. With that in mind, consider the

following list of attacks that could circumvent logging:

A1 Write to either the IDTR register (for legacy int $80 based system calls) or various

MSRs for so called “fast” system calls to force the hardware to invoke a malicious code

block after interrupts. (See Section 3.6 for a more detailed discussion of the specific

registers).

A2 Coordinate an interrupt after a system call (that is being logged) is made and interrupts

56

have been re-enabled, but before the specific system call handler has been invoked.

Upon interruption, modify the thread struct of the system call invoking process to

point to a different system call handler upon being re-scheduled. The timing constraint

of this attack is highlighted by Figure 3.2.

A3 Rewrite the general system call handler to reference a new, attacker supplied, Interrupt

Descriptor Table.

A4 Rewrite the entry for the specific system call being hooked in the Interrupt Descriptor

Table to point to an attacker supplied handler for the system call.

A5 Rewrite replaced instruction(s) with the original instruction.

A6 Simulate a system call interface using an alternative means of communication between

userspace and a root-kit

In section 3.6 we highlight how attacks can be accounted for through hardware enforced

events. It is worth noting here that A2 has tight timing constraints (an interrupt would

have to occur within a 12 instruction window). We later discuss how removing the protection

guarantees for A2 greatly reduces the performance impact and we believe it has minimal

effects on the overall trustworthiness of our logging architecture. While we do not currently

defend against A6 style attacks, we believe our system greatly increases the cost of attack

while providing good detection coverage of many of the attacks that might try and circumvent

logging.

3.5 TRUSTWORTHY LOG ACQUISITION

With our attack model in place, we now discuss the specifics of the logging mechanism. In

particular, we discuss how and where probes are inserted. The algorithm for guaranteeing

a probe is inserted before the execution of the probed instruction is introduced and the

relationship between the implementation and design requirements is described.

57

3.5.1 Probing Mechanism

Monitored Guest

Guest Kernel Address Space

0xFFFFC08c|sys_exec|int3

0xFFFFC060|sys_open|int3

int3 probe forwarder

KVM Hypervisor

Host Linux Kernel

Monitored Guest

Guest Kernel Address Space

0xFFFFC08c|sys_exec|int3

0xFFFFC060|sys_open|int3

Unmonitored Guest

Guest Kernel Address Space

0xFFFFC08c|sys_exec

0xFFFFC060|sys_open

SysOpenProbeSysExecProbe

Host

Guests

Figure 3.3: Event Driven Probe Architecture

Figure 3.3 highlights the mechanism to probe the Linux kernel system calls sys exec and

sys open. An event-based probing mechanism is utilized to replace instructions in the guest

kernel [89], ensuring information is logged anytime the affected functions are called, fulfilling

R2.

To ensure that any attempt to modify a probe is logged (R3) we use EPTs to remove write

permissions for the affected page, register a callback to handle these EPT violations, and

within the callback handler only log attempts to modify the affected page if the violation

occurs for the guest virtual address on which we inserted the probe. While performance

monitoring within the guest might cause non-malicious writes to locations of logging probes,

an administrator would know the event is benign. Event classification is left to higher level

services; we guarantee only that modification events do appear in the log. Logging code

remains small, making formal verification more feasible. There are only 72 and 41 lines

of code for our sys exec logger and sys open logger respectively (not including the code

required to insert the probes), keeping in line with D2.

58

3.5.2 Log Completeness

We have defined log completeness to mean that our logging service guarantees that every

invocation of a probed event be present in the log. In order to ensure log completeness and

fulfill R5 we must place probes in their respective locations before the instructions at those

locations are executed. While we can guarantee this, it may be possible for an attacker

to perform system call like actions, all together bypassing probed instructions (A6). The

system calls being probed will be loaded at a predictable location within the guest physical

memory (as noted in Linux’s memory mapping documentation [94]). The knowledge of

these locations allows us to determine the page number indicating the page containing the

target instruction, which we use to watch for EPT violations of any guest physical address

that occurs on the same page as an instruction of interest during the guest boot sequence.

We are able to watch for such violations by utilizing a callback handler that gets invoked

after we have allowed KVM to perform any necessary actions to handle the violation. Upon

observing the first write violation for any address within the page of interest, we remove the

execute bit from that page, allowing our callback handler to be invoked if any instruction

on the page is executed. Subsequently, upon observation of any instruction execution on

the page of interest, we know that the remaining code for that page must be loaded and

can safely insert the probe. Having inserted the probe, we restore EPT permissions to allow

execution and remove our checks for EPT violations due to execution exceptions on the page

in which the probe is inserted as the checks are only required as the final step before probe

insertion. By inserting probes in this manner during boot of guests, we are able to ensure

log completeness and log every call to these two system calls, even while the first userspace

applications are being started. This process is shown in Figure 3.4.

59

RWX
110

Ensure eXecute bit
is disabled, enable

writes

Guest loads
kernel page

RWX
100

Initial write
violation during

guest boot

RWX
110

Execute violation
on any instruction

on page

RWX
101

Load probes on page,
disable writes, enable

execute

Figure 3.4: Induced EPT Signature & Probe Insertion

3.5.3 Implications of an Untrusted Guest

Finally, we must ensure that the actions taken within the probe do not place unwarranted

trust in data obtained from the guest (R1). For example, our sys exec logger logs two

variable length string arrays. While these strings are typically \0 terminated, the guest

could point the probe to a location with an arbitrarily large number of bytes before a \0

is encountered. To protect against copying strings from guest memory, we only copy 500

bytes and place a \0 at the 500th byte. While we may log garbage data in cases of an

intentionally malicious guest and may truncate binary names in the case of exceptionally

long, but legitimate, calls to sys exec, this is a necessary trade off to ensure the probing

interface remains resilient. Potential for truncating can be seen again when iterating through

variable length arrays, which should be NULL terminated. We only iterate over up to 50

entries and exit iteration if NULL is encountered (in a legitimate case) and stop at 50 in

the case of a malicious guest pointing the probe to a random memory location. Again,

this has the side effect of potentially truncating logged arguments. In our experiments, we

never truncated any legitimate data. The length decisions did not impact the ability to

log meaningful data. Regardless of whether or not arguments are truncated, we are able to

protect the logging facility from the attacks listed above.

60

3.6 LOGGED EVENTS

Choosing which events to log is critical to increasing resilience against the attacks listed

in Section 3.4 and detect capability violations. Here, we show which events should be logged

and how each event type can be used to improve resilience.

In addition to the information listed for each event type as defined below, all events also

include the hostname of the KVM hypervisor on which the event occurs, a timestamp for

the event, and the vmid (the qemu-kvm process id of the VM on the host on which the event

is logged).

The five event types currently in our system, and information collected unique to each

type, are as follows:

• Tmod - Address modification events containing:

– gva - A long integer indicating the guest virtual address being modified.

The next two events log activity of interest and are useful for facilitating detection of

abnormal actions.

• Tse - sys exec events containing:

– filename - a \0 delineated string.

– argv - a NULL delineated variable length array containing string pointers.

– envp - a NULL delineated variable length array containing string pointers.

• Tso - sys open events containing:

– filename - a \0 delineated string.

– flags - an integer flags variable indicating options for the file.

– mode - an integer indicating the mode for the file being opened.

61

The following two events are unique to logging system calls and increase the cost of

circumventing the logging mechanism. These require additional callbacks be provided by the

underlying probing framework. To prove viability, we have implemented the wrmsr event

for modern system calls. These two events are not currently provided by any event-based

monitoring framework discussed in the literature [87–89] as they only become necessary when

providing defenses for system call monitoring.

• Tlidt - lidt event. Triggered on execution of the lidt (Load interrupt descriptor table)

x86 instruction.

• Twrmsr - wrmsr event. Triggered on execution of the wrmsr (Write Model Specific

Register) x86 instruction.

These two events are hardware enforced; once the hypervisor has configured the processor

to trap these calls, their execution will always force a VMExit. The lidt trap can be

configured by setting bit 2 (Descriptor Table Exiting) of the IA32 VMX PROCBASED CTLS2

MSR to 1 within the hypervisor before VMs are started. Similarly, writes to MSRs within

the guests can be trapped by ensuring bit 28 of the same MSR is 1 and then configuring

the MSR bitmap field in the Virtual Machine Control Structure to only cause VMExits

on writes to the specific registers that need monitoring. This ensures that performance

overhead remains low by not inducing VMExits for writes to every MSR. For int $80 based

system calls, the lidt trap is sufficient. For sysenter invoked system calls, the three MSRs

IA32 SYSENTER {ES, EIP, ESP} must be monitored through the wrmsr trap. Finally, for

syscall invoked system calls, the MSR IA32 LSTAR must be monitored with the wrmsr trap.

The registers listed above are used to register Interrupt Service Routines (ISRs) with the

processor. In Linux, these point to the general system call handler. The performance impact

of these two events should be negligible under normal operation as these events occur only

during boot of the guest kernel and during configuration of MSRs.

62

3.6.1 Detection of Attacks on the Logging System

Let us now consider how these event types can facilitate detection of the attacks against

the logging facility listed above. We protect against attacks A5, A3, and A4 by properly

removing the write enable bits for the pages containing the instruction modified, the general

system call handler, and the interrupt descriptor table and listening to events of type Tmod.

The event Tmod is hardware enforced by EPT. Attempts to modify pages for which the write

enable bit has been removed will trigger a VMExit through an EPT violation. Attacks that

try to change the ISR for system calls (A1 above) can be logged with events of type Tlidt and

Twrmsr. Finally, careful placement of probes can ensure that logging occurs before interrupts

have been re-enabled by placing the probe on the general system call handler, mitigating

attack A2. Mitigating A2 does have high performance impact as we discuss in Section 3.7;

we believe placing the probe at the specific system call handlers is a reasonable trade-off

as attacks of this kind must meet a tight timing constraint. Finally, if an attacker can

compromise the guest kernel it would be possible to recreate a separate system call interface

(A6). Consider a root-kit that finds the task struct of the userspace process it is hiding.

It could poll the memory of the process for system call like arguments and then execute a

separate code block, performing the same actions as a system call. Such an attack may be

possible to detect by monitoring timing interrupts. Future work can explore ways to use

event-based probing to further protect the guest kernel against attacks of this kind.

Note that many more event types are possible as event-based probing provides a trusted

mechanism with which to hook any kernel function. But in keeping with D1 and D2, we

choose to keep this number small.

3.6.2 Event Logging Format

All probe output is placed into the VMM’s /var/log/kern.log. Output is processed by

a user-space application that builds and processes events. This design is shown in Figure

63

3.5. In order to allow for easier processing by higher level applications, we adhere to a JSON

like format when doing logging within the host kernel.

A log sample for a touch text.log event is shown in Listing 3.1.

Listing 3.1: Example sys open Probe Output

{”VMID” : 1884 , ”LOGGER” : ”SYS OPEN LOGGER” , ”KIND” : ”BEGIN”}

{”VMID” : 1884 , ”LOGGER” : ”SYS OPEN LOGGER” ,

”KIND” : ”ARG” ,”ARG NAME” : ” f i l ename ” , ”VALUE” : ” t e s t . t ex t ”}

{”VMID” : 1884 , ”LOGGER” : ”SYS OPEN LOGGER” ,

”KIND” : ”ARG” , ”ARG NAME” : ” f l a g s ” , ”VALUE” : ”0 x941 ”}

{”VMID” : 1884 , ”LOGGER” : ”SYS OPEN LOGGER” ,

”KIND” : ”ARG” , ”ARG NAME” : ”mode” , ”VALUE” : ”0x1b6”}

{”VMID” : 1884 , ”LOGGER” : ”SYS OPEN LOGGER” , ”KIND” : ”END”}

The TIMESTAMP, HOSTNAME and LOG ID are also included and are set by the printk function

within the hypervisor. We trust these fields to be accurate when read by higher level tools.

The accuracy of these fields is important as will be discussed in the next section on the

development of higher level tools.

For each event, we have a BEGIN statement and an END statement. Everything in between

those statements make up the body of the event and are used to log parameters read from

the guest.

3.7 INTRUSION DETECTION FOR MICRO-SERVICES

To highlight our approach to services built on top of an event based log, we have developed

an IDS which triggers alerts on violations of capability lists. The checks are performed on

filenames passed to guest sys exec and sys open calls to enforce the capabilities described

in Section 3.1. To enable ease of use, we have also built a policy recorder that translates

guest events to white-list capability sets during the recording or learning phase.

64

Output Log

TIME: VMID: X, …, LOGGER: SYS_EXEC, BEGIN

TIME: VMID: X, …, LOGGER: SYS_EXEC, ARG

TIME: VMID: X, …, LOGGER: SYS_EXEC, END

…

TIME: VMID: Y, …, LOGGER: SYS_EXEC, BEGIN

…

Event Parsing

Log Buffer

{B1,A1,…,E1} -> Event 𝜀1

Hypervisor Probes

SysExecProbe

SysOpenProbe
{Bn,An,…,En} -> Event 𝜀n

…

Policies

{exec: {filename:

/sbin/dhclient-

script}}

{open: {read,

filename:

/sbin/resolvconf}}

Alert System

Policy

Reader

Event

Monitor &

Policy

Alerts

Policy Recorder

Event 𝜀1 -> Policy P1

…

Event 𝜀2 -> Policy P2

Figure 3.5: Trustworthy-Log Driven IDS Architecture

3.7.1 IDS Architecture

The architecture of our intrusion detection system is shown in Figure 3.5. Raw probe logs

are transferred from kernel to user space using the /var/log/ kern.log interface. From

there, the logs are placed in a buffer as they are read from the file. An ioctl interface to

/var/log/kern.log is used to ensure updates are pushed to the user space application as

soon as probes write to the file. Within the user space event parser, buffers must be used to

ensure that output from a probe P 1
so into guest G1 do not become integrated into an event

ε2 from the output of the probe P 2
so placed into guest G2, as the arrival of such logs may be

intermingled within /var/log/kern.log. This is ensured by placing all logs from a given

probe into a unique buffer identified by the LOGGER TYPE,HOSTNAME,VMID sequence. Since

the buffer being used is determined by this sequence of values, these values must be set by

the hypervisor. No value read from the guest is used to identify a probed event or which

buffer in which to place a logged statement, ensuring the guest can not impact actions taken

by the logging system. For now, we do not consider multiple vCPU guests, thus only need

to worry about intermingling between guests. In the case of multiple vCPUs, the vCPU

65

id would also need to be used as a unique identifier as it would be possible that a probed

location be called from multiple vCPUs simultaneously. This limitation is partly due to the

chosen probing framework, other frameworks [87] would support multiple vCPU guests.

3.7.2 Policy Generation

After event parsing is complete, processed events are passed to either a policy recording

layer or an alert system for our IDS. The policy recording system allows an administrator

to build capability sets by recording standard behavior for a VA in terms of white-listing

the actions taken during policy recording. Listing 3.2 shows an example policy built us-

ing our policy recorder while executing the which command on a guest under inspection.

Currently, white-lists are separated from attackers executing in the guest by the VMM. Con-

tinuous integration test suites could be used to generate polices through this policy recording

mechanism.

66

Listing 3.2: Example which.policy file

{ ” p o l i c i e s ” : [

{” exec ” : {” type ” : ” w h i t e l i s t ” ,” f i l ename ” : ”/ usr / bin /which ”}} ,

{”open ” : {” type ” : ” w h i t e l i s t ” ,” a c c e s s t y p e ” :

” read ” , ” f i l ename ” : ”/ e t c / ld . so . cache ”}} ,

{”open ” : {” type ” : ” w h i t e l i s t ” ,” a c c e s s t y p e ” :

” read ” , ” f i l ename ” :

”/ l i b /x86 64−l inux−gnu/ l i b c . so . 6”}} ,

{”open ” : {” type ” : ” w h i t e l i s t ” ,” a c c e s s t y p e ” :

” read ” , ” f i l ename ” : ”/ usr / bin /which ”}}]}

3.7.3 Threat Analysis

We note that there are certain limitations to our approach that would allow an attacker to

commit a malicious action without being logged. Consider a vulnerable binary running on

a system that is compromised through a buffer overflow attack. Assuming the attacker does

not crash the binary, it would be possible to run code under the guise of an already executing

process. As long as the payload never opened a file or executed another binary, it would

go unlogged. While any such process hijacking will go unlogged, our approach substantially

reduces the actions that can be taken by an attacker. Adding a separate event for system calls

dealing with network access would further mitigate the possibility that a malicious payload

is able to do any useful work without being logged. Our approach is complimentary to

and can be combined with other defense-in-depth approaches such as ASLR, non-executable

heaps and other defenses to increase the cost of implementing a successful attack.

3.8 EVALUATION

In this section we evaluate both the impact of the probes on the performance of the guest

and on the ability of the IDS to detect attacks on applications running in VAs. The IDS is

evaluated against a real world attack on a popular cloud based web application.

67

3.8.1 Performance

To evaluate the overhead of our probing mechanisms driven by guest events, we run three

benchmarks that are representative of cloud workloads. These include:

• Apache Bench - a benchmark for the Apache web server [100],

• Redis Bench - a benchmark for the in memory data store [101],

• OpenSSL Profiling - used to understand the impact on encrypted communication

within guests.

These tests were chosen because they represent a disk-read heavy workload (Apache),

network heavy workload (Redis, Apache), and a CPU heavy workload (OpenSSL). Cloud

applications will often call in-memory caches before sending a response using Apache con-

figured with OpenSSL. All tests are configured using the Phoronix Test Suite and are run

90 times each. The first 30 runs are performed with our trusted probes loaded and then

run 30 times without. The last 30 runs are done while having probes loaded at the general

system call handler, before interrupts have been re-enabled in the guest to highlight the

performance penalty paid while protecting against A2. Figure 3.6 shows the results for

both Apache Bench and for OpenSSL. Apache bench results are in terms of requests served

per second and those for OpenSSL are in terms of signatures generated per second, but

here both have been normalized to highlight the percentage decrease in performance caused

by probing. Looking at the first two bars in Figure 3.6, it is easy to see the performance

implications of placing probes at the generic system call handler. In the case of the spe-

cific handler (the first bar), we see less than 10% overhead. But Apache has about a 55%

overhead when placing the probe at the general handlers. The next two bars highlight how

probing has little impact on the performance of OpenSSL, regardless of probe location. This

is because OpenSSL does not have to interact with the kernel as much as Apache and Redis

to complete its workload. OpenSSL works by loading a key in memory and then generates

68

signatures using that key. It is up to another process, Apache for example, to write out any

information to the network.

0%

10%

20%

30%

40%

50%

60%

Specific Handler Generic Handler Specific Handler Generic Handler

Apache OpenSSL

Pe
rfo

rm
an

ce
 S

lo
w

do
w

n
 w

ith

Pr
ob

es

Figure 3.6: Apache Bench and OpenSSL Overhead Relative to Running with no Probing.

Figure 3.7 is for the Redis benchmark, which runs five separate request types against the

in memory data store. As seen from the “B” bars in the figure, the performance overhead

of probing specific handlers when compared to no probing, the “A” bars, is negligible. The

“C” bars for each query type show the high performance impact of defending against A2,

which is about 75%.

0

100000

200000

300000

400000

500000

600000

A B C A B C A B C A B C A B C

SET GET LPUSH LPOP SADD

Re
qu

es
ts
	P
er
	Se

co
nd

	

Figure 3.7: Redis Benchmark Overhead for 5 Redis Operations. (A) without probing the
guest, (B) probing only the specific system call handlers, and (C) probing the general
system call handler.

69

In the case of hooking specific system call handlers, it is clear to see that overheads remain

tolerable (less than 10%), because we are only probing two guest kernel functions. The

overheads are large when protecting against A2 though, around 55% for Apache and 75%

for Redis. Apache and Redis are both opening sockets and sending data over the network,

which is why we see a much higher penalty being paid when hooking the generic system

call handler. We feel that the protections against A5, A3, A4, A1 (requirements D3 and

R4) go a long way in protecting the specific system call handler, substantially reducing the

unloggable attack space when hooking only the specific system call handlers.

3.8.2 IDS Evaluation

We evaluate the efficacy of the IDS built on top of our trusted logging platform by looking

at real world exploits for motivation. In a recent attack on the website for the Linux

distribution Linux Mint [102], attackers were able to gain shell access as the www-data user,

the user typically reserved for only running the httpd process [103]. The attack exploited a

vulnerability in the popular blogging framework, Wordpress. Wordpress is representative of

a typical cloud application as it can be deployed on many VAs to enable horizontal scalability.

To see how our system would have handled such an attack, we installed a copy of Wordpress

with a typical plugin and attacked the setup using Wordpress Vulnerability Database ID

#8209 [104].

We first setup a Wordpress application server and separate database server to act as our

VAs. Since our IDS supports policy stacking, we are able to record a separate policy for

Wordpress and use the dhcp.policy file common to all VAs built using the same base

Ubuntu 14.04 LTS distribution. The dhcp.policy file was auto-generated by running our

policy generation tool against the log output of a default Ubuntu install. Including that

policy is necessary as it removes the chance of false positives every time a dhcp lease renewal

is performed. It would not be necessary for VAs using static IP’s. An abridged version of the

Wordpress policy file is shown in Listing 3.3. Our policy recording utility auto-generated a

70

policy that served as a starting point and then we used knowledge about proper Wordpress

installs to fine tune the policy. For example, the policy recording utility produced many

single filename: /var/www/html/*.php entries. We removed these and converted it into

a single directory: /var/www/html entry as shown on the first line of the policy in the

listing.

71

Listing 3.3: Abridged wordpress.policy file

{”open ” : {” type ” : ” w h i t e l i s t ” ,” a c c e s s t y p e ” : ” read ” ,

” d i r e c t o r y ” : ”/ var /www/html ”}} ,

{”open ” : {” type ” : ” w h i t e l i s t ” ,” a c c e s s t y p e ” : ” c r e a t e ” ,

” d i r e c t o r y ” : ”/ var /www/html/wp−content / uploads ”}} ,

{”open ” : {” type ” : ” w h i t e l i s t ” ,” a c c e s s t y p e ” : ” mod i f i c a t i on ” ,

” d i r e c t o r y ” : ”/ var /www/html/wp−content / uploads ”}} ,

{”open ” : {” type ” : ” w h i t e l i s t ” ,” a c c e s s t y p e ” : ” read ” ,

” d i r e c t o r y ” : ”/ var /www/html/wp−content / uploads ”}} ,

{”open ” : {” type ” : ” w h i t e l i s t ” ,” a c c e s s t y p e ” : ” c r e a t e ” ,

” d i r e c t o r y ” : ”/ var /www/html/wp−content / p lug in s ”}} ,

We exploit the vulnerability using Metasploit [105] to determine if our alerting system is

able to capture capability lists violations. Because the exploit works by injecting arbitrary

PHP code, we can only detect attacks that use PHP to access other files on the system

(outside of the /var/www/html directory) or execute system binaries. We detect the exploit

after the attacker performs an action anomalous to the hijacked process. In this case, the

attack is detected upon attacker execution of a shell, as /bin/sh should never execute on

the system. We could detect the exploit sooner by adding an extra probe to sys socket.

While we have demonstrated the IDS on one example, it has shown the viability of our

technique. Our approach relies on the fact that many exploits require a binary to load and

execute on a system. If the exploit does not run in a separate process, as is the case in the

example given above, the attacker will likely either execute a system binary or open a file,

revealing malicious activity. For instance, the loading of kernel modules could be audited by

looking at events of type Tse with filename equal to insmod. This would potentially reveal

the loading of a root-kit by enforcing kernel module loading capabilities. Payloads executed

through process hijacking can explore the full system call interface and potentially exploit

the running kernel. Such an event would not be logged, though any attempt to remove our

probe using such an exploit would be noted in the log. This increases the burden of carrying

72

out successful attacks as malicious payloads will have to be carried out within a vulnerable

binary or the kernel to remain undetected. Future work could explore creating capabilities

and probes for the most vulnerable locations within the Linux kernel by evaluating past

exploits.

3.9 RELATED WORK

Huh et al. discuss a trusted logging architecture for grid computing using Xen [97].

Their approach relies on logging events as they are intercepted by Xen device drivers. Our

trusted logging is more flexible as any action within the guest can be logged on instruction

execution. Additionally, the authors propose an extensive architecture for guaranteeing the

log is not fabricated by the provider. We view this work as complementary. Thus far, we have

focused on trust related issues related to log generation and can utilize similar techniques

for improving trustworthiness.

Crawford et al. discuss a methodology for detecting insider threats that relies on scanning

the memory of running virtual machines every 30 minutes [106]. As we discussed earlier,

polling techniques such as this are limited in that they are easily circumvented, giving

attackers a 30 minute window in which to perform malicious activities. Kienzle et al. explore

using VMI techniques for endpoint configuration compliance, but require the compliance

audit package run in a separate VM, increasing the resources of the monitor [107]. Their

approach to compliance also relies on polling, thus can be circumvented. Our approach

provides a trusted log which is guaranteed to capture every event probed. Our work can

be extended to perform compliance checks of Mandatory Access Control systems running

within guests. Win et al. propose using VMI to provide additional layers of security for a

similar system, but rely on information from a trusted in-guest monitoring agent to report

relevant accesses to a trusted compliance layer VM [108]. Our approach places no trust in

the guest after the initial kernel is loaded using an attestation technique provided by a TPM.

73

KvmSec is a security extension for KVM, but relies on probes running in untrusted guests

[109]. Our approach places no trust in the guest. In “Space Traveling across VM” [110],

the authors cross the semantic gap by relying on an additional virtual machine from which

to run probes. This approach has a large overhead, thus would violate R6. Techniques like

“Virtuoso” are complimentary to our trusted log and could be used to inform future probes

of relevant locations within the guest for probing [111]. With regards to work related to

IDS, Kosoresow and Hofmeyr show the effectiveness of system call traces by using temporal

patterns of system calls to detect intrusions [112]. While the IDS presented here relies upon

white-listing, their technique could also be applied.

HIMA [113] provides run time integrity checking of userspace programs. The authors

monitor system calls to enable these integrity checks. Their approach used a much older

VMM that generated VMExits for every interrupt, thus the authors paid minimal overheads

during monitoring. Modern hardware does not exit on every interrupt, thus we utilize event-

based probing to monitor specific system calls.

74

Chapter 4: Intra-Application Capabilities for Micro-Services

As discussed in our chapter on IDS tuned for micro-services, detecting intra-service attacks

are difficult because abnormal behavior may never access data outside of the service. In this

chapter we address this limitation by exploring runtime integrity checking for applications

running in the cloud. Specifically, we explore runtime integrity violations of high value

assets such as databases and reverse proxies as these are cornerstones to scale out workloads

common to micro-service deployments.

While our IDS is effective at detecting common attack payloads, it is unable to detect

attacks that reside entirely within the vulnerable binary. The focus of the IDS is to detect

abnormal behavior of binaries, say reading /etc/shadow, at a system level. Attacks on

specific systems, such as a web server, may be able to access sensitive information without

ever leaving the binary. Consider username and passwords being sent to a web server. If an

attacker can divert control flow within the web server, these could be captured. These two

approaches complement each other. Any attempt at Control Flow Integrity (CFI) will not

detect system level changes which are still useful to check for improper configurations and

insider threats.

In this chapter, we build a provenance engine for the C abstract machine that can gen-

erate memory access capabilities for instruction flows. These instruction to memory access

capability lists can be used to augment CFI methods.

4.1 FINE GRAINED CAPABILITIES

A micro-service can modify its subject domain through the use of relationships as discussed

in Chapter 1. These relationships may be functions of internal state as shown by R3 in

Figure 1.1. The goal of this chapter is to produce instruction to memory region modification

capability lists for any memory region that can modify the micro-service’s subject domain.

Table 4.1 defines the terms we use when discussing fine-grained capabilities within a micro-

75

service.

Table 4.1: Fine-Grained Capabilities Definitions

Definition of Term

I Set of memory related instructions (allocation, modification)

CI Set of capabilities indicating the memory regions a given

instruction I is allowed to modify

U Set of sensitive usages

UM Sensitive use of memory buffer M

I Instruction I that allocates, writes to, or copies to an address

CM Capability to influence memory region M

Our goal is to identify “sensitive” memory regions that impact the relationships, discussed

in detail in Section 4.4.1, and then protect those regions by identifying which instructions

hold the capability to influence those select regions. We use the word “influence” because

an instruction may modify a given memory buffer that is then used as the source of a copy

function that writes into a sensitive buffer. We aim to capture these instructions and produce

capabilities for them as well as instructions that write directly to sensitive areas.

4.2 BACKGROUND

Memory protection in type unsafe languages is needed because application vulnerabilities,

such as buffer overflows, allow an attacker to craft an exploit that can overwrite function

pointers or return addresses, diverting control flow from the application writer’s original

intent. In recent years, this has become much more difficult with the rise of Data Execution

Prevention (DEP) [114] now accelerated by most hardware platforms by bit-permissions on

individual pages. DEP makes it impossible to use a buffer overflow to write shell-code into

memory and then direct control flow to the data region. In response, attackers began using

“code-reuse” attacks such as ROP [115] to redirect control flow after overwriting a return

address on the stack and Jump Oriented Programming (JOP) [116] by overwriting a function

76

pointer. Often, an attacker’s ROP payload simply disables DEP before directing control flow

to a larger payload. The payloads are built using what are known as “gadgets” that perform

some operation and end in either a return or jump to an attacker controlled pointer. DEP

has since been augmented by Address Space Layout Randomization (ASLR) [117] which

attempts to make it harder to divert control flow to valid functions by randomizing the

memory locations of functions and gadgets. This has numerous problems; a memory read

vulnerability, such as use after free, can be used to leak an address, the offset of which can

be used to calculate the addresses of gadgets important to attackers. Attacks on ASLR use

memory leaks and side-channels to enable ROP attacks [118–121]. Attacks have now become

probabilistic and depend on how well addresses can be predicted and attacks tuned to the

new information at runtime.

CFI attempts to mitigate the inherit security risks associated with type-unsafe languages

stemming from the lack of memory safety [122]. Transparent recompilation enabling full

memory safety remains impractical due to high overheads [123, 124]. The concept of CFI

was originally introduced by Abadi et al. [122] and focuses on enforcing a valid Control-

Flow-Graph (CFG) instead of enforcing full memory safety. Current approaches to CFI

attempt to apply a less-strict approximation of CFI by only ensuring that control flow can

be transferred to a list of approved locations [125], but these approaches continue to be

vulnerable [126]. Existing approaches rely on static analysis and instrumentation in an

effort to drive adoption at low performance impact. It has been suggested in literature

numerous times that some form of runtime checking be performed to increase the efficacy of

CFI approximations, and it is generally accepted that full CFG enforcement comes at too

high performance penalty [122,126].

CFI works by enforcing a given CFG, usually derived using a static points-to analysis

such as DSA [127], Andersen’s [128], or Steensgaards [129]. The flexibility of C/C++, such

as that provided by void pointer casting, causes inaccuracies in the CFG’s produced by

points-to analysis algorithms. These inaccuracies are due to the same language features that

77

cause the security challenges that CFI tries to protect against. Control Jujutsu shows that a

CFG produced by DSA, the most accurate point-to analysis algorithm, remains vulnerable

to attacks [26]. The authors of Control Flow Bending go a step further and evaluate attacks

under a hypothetical ideal CFG, one that contains only edges intended by the original

programmer and show that attacks are still possible [25].

The root cause of the attacks presented in Control Flow Bending and Control Jujutsu

is carefully crafted memory corruption such that an attacker can achieve control of the

system while remaining within the CFG. For example, if the buffer being passed into exeve’s

filename argument is allocated on the heap, then the attacker simply has to find a heap

overflow to setup an attack. The attacker can execute arbitrary programs on the host if

execve is being executed within a function that is called via a function pointer. The authors

call these types of functions “Argument Corruptible Indirect Call Sites”. The indirect call is

necessary for the attack to work - the sensitive function must be invoked through a function

pointer. In this way, the attacker can control both the function being executed, execve and

the data being passed into it, filename.

These two attacks highlight how memory corruption of select function arguments can

be used to achieve malicious behavior. It is clear that CFI techniques significantly raise

the bar for attackers, but remain insufficient. We explore a system in which select memory

safety can be combined with CFI for a more comprehensive defense through instruction level

capabilities. Our approach to CFI is to combine the literature on binary level provenance

tracking [130] to augment checks being performed by existing CFI solutions on calls, jumps,

and returns.

4.3 THREAT MODEL

We use the same threat model as works on CFI based defenses. That is, we assume the

attacker can read and write from arbitrary memory addresses. This can be achieved via

78

common exploits. We assume that a CFI mechanism based on DSA points-to analysis is

being used on the binary and that an efficient shadow-stack is being used. The enforcement

mechanism presented in CCFI [131] can be used to achieve efficient enforcement of a fine-

grained CFI policy and shadow-stack.

Our work focuses on generating capabilities for select memory buffers, not primitive types.

Specifically, attacks like those presented in Control Flow Bending [25] and Control Ju-

jutsu [26] can be eliminated using the capabilities produced by our system. We are not

considering DOP attacks like those presented in [132].

4.4 SYSTEM OVERVIEW

Our goal is to augment CFI with instruction level memory access capabilities to mitigate

Control Flow Bending and Control Jujutsu attacks. In this chapter, we explore creating

these capability lists for sensitive memory regions. We leverage a data provenance based

approach to produce instruction to memory access capability lists. Data provenance requires

tagging all memory writes, tracking memory access throughout program execution, and

finally, halting execution when an access deviates from a trusted data provenance graph for

a given buffer.

Direct application of data provenance for security poses a number of challenges. First,

tagging all memory writes imposes a large runtime overhead both on the CPU and in terms

of memory bandwidth. Second, on large code bases, the number of unique tags required to

build real world Data Flow Graphs (DFGs) explodes, either decreasing the accuracy of run

time enforcement through approximations or further increasing runtime overheads. Third,

in order to halt the program on a violation, the enforcement mechanism needs to be placed

at every memory write. Provenance enforcement requires full DFG traversal for every write,

further decreasing performance. Finally, a trusted source of provenance data is needed.

Our design addresses these challenges by making careful choices about which specific data

79

buffers are tagged and when checks are performed. Specifically, we classify certain buffers

as sensitive memory and suggest performing checks at a sensitive use.

4.4.1 Identifying Sensitive Memory

Identifying which memory buffers are left vulnerable when combined with CFI is necessary

to limit the overhead of a combined memory safety + CFI approach. We define sensitive

functions as those that can expand the micro-service’s subject domain. From Chapter 3 we

know that system calls are used to create relationships with other system subjects. This

implies that memory regions that can be used to influence the behavior of system calls

are high-value targets. In fact, these are the exact memory regions that are the target of

Control Flow Bending or Control Jujutsu attacks. “Sensitive usages” as defined in Table 4.1

are functions whose memory arguments, when corrupted, lead to policy violating subject-

domains. Based on the discussion on relationships in Chapter 1, these are libc functions

and “sensitive memory” consists of the arguments to these functions.

4.4.2 Building Provenance Graphs

Having identified sensitive memory regions, a trusted provenance graph is needed so that

we can build capability lists. We have a number of options we can use to generate a prove-

nance graph for a given buffer. We could use alias analysis to determine which data structures

can be accessed by which functions. In large code bases such as Nginx, even the best alias

analysis (DSA) leads to an explosion in the DFG, making this approach untenable. Alterna-

tively, we could use symbolic execution and taint tracking to determine a DFG for a given

memory region. Existing symbolic execution and taint tracking methods focus on tracking

user input and the flow of that input under normal application execution. We want to

track internal data structures that are often never modified by an end-user during a normal

application flow. We need a reliable method to determine a DFG for arguments to internal

program functions.

80

Instead, we rely on test suites and dynamic instrumentation to collect an accurate and

minimal DFG from which instruction level capabilities can be built. We instrument the

compiler to transparently inject a provenance engine to record this data during an offline

phase. This data collection phase only has to be run once and can leverage high coverage

test suites that are common in application development today.

4.5 IMPLEMENTATION

Our implementation leverages the LLVM compiler infrastructure [133] which provides a

rich Intermediate Representation (IR) that can be modified with custom passes. A pass

operates on a unit of compilation (module, function, or code block) taking IR as input and

producing modified IR as output. Our provenance pass inserts a provenance engine by in-

strumenting all memory writes (store instructions in LLVM-IR) and memory allocation and

free events. At a sensitive use, the provenance graphs for the sensitive memory being used

are logged. This pass produces a binary to be used in an offline data collection phase. To

ensure completeness of the provenance graphs, we also instrument “store-like” instructions

and functions. These include functions such as memcpy and memset that write to regions of

memory. In LLVM, setting a struct variable to the value of another struct is transformed

into a call to an LLVM implementation of memcpy, not a load + store combination. Ex-

tending tracking to include “store-like” operations captures this behavior. We also extend

the notion of store-like instructions to include system calls that write to userspace mem-

ory, the implementation of which is described in Section 4.5.4. We must also track free

operations to ensure that a sensitive use is not vulnerable to a Use-after-Free vulnerability.

Tracking free’s also allows us to prune provenance graphs to not include provenance from

other allocations at the same address, a problem that is particularly relevant when tracking

provenance of stack memory addresses as they have a high rate of reuse.

81

4.5.1 Trusted Provenance Graph Generation

We assume that the developer has access to a high coverage test suite for the application

being instrumented. For Nginx, a Selenium [134] test suite could be used for a functional test

of a Wordpress deployment, allowing an instrumented binary to collect trusted provenance

graphs for sensitive memory.

We target infrastructure software; these types of packages are often written in low level

languages and are vulnerable to issues stemming from the lack of memory safety. Appli-

cations like web servers such as Nginx and Apache and Key/Value Stores like Redis and

Memchached are the cornerstone of many public facing application deployments and high-

light the micro-service approach to deployment. Functional test suites of the applications

built on top of these services exercise the functionality required to run on top of these

platforms.

We define sensitive memory regions as the memory containing the arguments being passed

to sensitive functions. As discussed in Section 4.4.1, we choose these to be libc functions

for now as these functions are the target of both attacks able to circumvent state of the

art CFI techniques and impact the service’s relationship with out system-level subjects. We

could easily extend this definition to include arguments to more functions or variables being

modified within a loop.

To track memory operations for provenance collection, we leverage LLVM’s rich inter-

mediate representation, allowing us to distill distinct memory operations and instrument

them directly. In this way, we can leverage provenance as a method for trusted capability

generation while exploring efficient enforcement mechanisms of the capability sets.

4.5.2 Provenance Event Types

We define four types of provenance events that are collected for a given memory address

addr.

82

Events types are as follows:

• Use (U) - A use of an address addr. For our purposes, a use is defined as an invocation

of a sensitive function for which addr is an argument. Attributes: ID, addr, PID.

• Allocation (A) - An allocation returning an address addr. The program being instru-

mented may allocate memory on the heap or stack. The C runtime may also allocate

memory for program arguments and environment variables. Memory is also allocated

for literals in the .data region by the C runtime. Attributes: ID, addr, size, location

(HEAP, STACK or DATA), PID.

• Free (F) - A free event. Free events are explicit for Heap memory and implicit on

function returns for Stack memory. Attributes: ID, addr, PID.

• Store (W) - A store event during which there is a write to an address addr. Attributes:

ID, addr, PID, (source addr - optional).

Note that all events have an ID attribute. This ID must be unique for all event instances

logged to ensure the provenance building algorithm is complete as we discuss below.

4.5.3 Instruction & Function Tracking

Allocation and free events are tracked in a variety of ways. Stack allocations are tracked

by instrumenting all alloca instructions. When a function returns, we insert free events for

every address alloca’d during function execution into the provenance database. For heap

memory, we instrument the malloc and memalign instructions. We have not encountered

any sensitive memory regions lacking allocation events, but we can easily extend our method

to include other memory allocations such as anonymous mappings returned from the mmap

system call. Additionally, we have to consider allocations before a program’s main function

is invoked. Namely, the memory for the environ, argc, and argv symbols. The location and

initialization of the memory pointed to by these symbols is implementation dependent [135].

83

To ease adoption, we avoid tracking memory operations in the target system’s libc. Instead,

we create allocation and store events for these symbols, if defined, upon invocation of main.

Internal memory allocation functions being used for memory pools require additional effort

on the developer’s part. Using pool allocators is common in the infrastructure software

we aim to harden. To work around this, we allow the developer to provide signatures of

internal memory allocation and free functions; this is standard practice for instrumenting

applications that use more than system calls for memory management [136]. We do not

currently support hardening of JIT compilers or dynamically managed environments.

Memory writes can be tracked by instrumenting LLVM’s store instruction. The instruc-

tion has three arguments, a destination pointer, a source variable, and the size of the

memory being moved. The destination is always a pointer; the source can be a basic type

or a pointer. We log all pointer arguments and the size so that we can track the entire

provenance graph of a given buffer. When size is greater than the size of basic types,

LLVM lowers the store operation into an LLVM specific memcpy implementation. We ex-

tend our definition of store events to include store-like function calls to track these store

operations. We also extend our definition to include libc function calls that match the

destination, source, size signature, such as strcpy, and treat these function invocations

as store events as well. Just as we did with memory allocation and free events, we al-

low the developer to provide signatures of functions that re-implement memcpy/store-like

operations.

Every function or instruction type must be assigned an ID that is unique and consistent

across builds. For example, all alloca instructions are assigned unique ID’s. These ID’s

can be used during an enforcement pass to limit the amount of instrumentation required

to enforce a given memory modification capability set. This ID should not be confused

with the runtime event-ID assigned to each event. The event-ID is unique to all events in

the system and is used to provide ordering, but instruction-ID’s are used to identify the

exact instruction, I used to modify a sensitive memory region,M. This information allows

84

us to build the fine-grained capability lists discussed in Section 4.1. We build a pruned

list of capabilities that can be used for an Enforceable Provenance Graph as described in

Section 4.5.5.

4.5.4 Store-Like System Calls

We have defined store-like events to mean any instruction or function that can store data

in memory. This means that we must create store events for every system-call that writes to

userspace memory. Consider the system-call getsockopt in which the kernel writes socket-

options to a struct that lives in userspace. The read and recv system calls have similar

behavior. In every case, the kernel writes data to a buffer that has been allocated and

is manged by the userspace application. We want our provenance engine to be as widely-

applicable as possible. For this reason, we cannot require custom versions of libc or leverage

kernel modifications to track these store events that occur in code outside of the application.

To overcome this, we have integrated function signatures for store-like operations that occur

in the kernel or libc functions and they are logged immediately after the invocation of the

store-like function. In doing so, we had to handle additional layers of complexity stemming

from macro expansion that mangles libc function names. We must also gracefully handle

errors that the application developer may or may not have handled internally. For example,

a recv call may return −1 if the socket is interrupted during reading. In this case, we do

not create an entry in the provenance database.

System calls have a variety of ways of indicating the length of the userspace buffer being

passed into the kernel. Some calls leverage struct’s for which the size is known at compile

time. We have created an abstraction that allows us to easily handle system call cases as we

encounter them. Error handling using an abstraction to allow for easy addition of store-like

system calls as they are encountered has to contend with the fact that different system calls

use different basic types for error reporting. Developers must also specify a list of internal

functions that might match a given system call that should not be treated as such. For

85

example, the ngx enable accept events should not be treated as an accept system call.

On the other hand the function accept4 should be treated like an accept system call just

as llvm.memset.p0i8.i64 should be treated as a memset. We require the developer to

list functions not to be treated as system calls so that we can easily support the variety

of naming schemes used when creating system call wrappers in libc and LLVM. We have

eased this process by creating a tool showing the developer a list of functions that match

system calls.

4.5.5 Enforceable Provenance Graphs

The provenance graph for a given addr is represented as a tuple Prov(addr) = 〈Aaddr,Saddr, Faddr〉

where:

• Aaddr is the allocation event for the address.

• Saddr is an ordered list of tuples numbered from 0 to n of the form:

[〈W 0
addr, P rov(source addr0)〉...〈W n

addr, P rov(source addrn)〉]. For a given tuple x, addr

must be in the range [destinationx, destinationx + sizex) for every store operation

W x
addr where source addrx, destinationx, and sizex are elements in the W x

addr event

tuple as defined in Section 4.5.2. This tuple list contains every store event that wrote

to addr and the provenance of every source address in copy events. This recursive

definition provides the entire history of a single write event. The base case is a write

event that did not have a source address. More on this below.

• Faddr is the free event for the address.

An enforceable provenance graph must not include the final element in the tuple, namely

the free event Faddr. Verifying this constraint at runtime, during provenance logging, grantees

no Use-After-Free bugs in addresses pointing to sensitive memory.

86

The provenance engine is robust, even when instrumenting complex production ready

software packages. This requires overcoming challenges with multi-threaded applications,

shared-memory, and numerous types of memory allocators.

Existing literature on memory protection assumes singled threaded applications and a

simpler model of C than that used in practice [123, 124]. In particular, these works assume

that malloc is the only way in which memory can be allocated. In the programs we evaluated,

numerous system calls are being used including mmap, malloc, and memalign. Each of these

calls must be instrumented in order to ensure that an allocation event, Aaddr, is in the

database at the time of use, Uaddr. For now, we are tracking malloc and memalign as they

are the only allocators being used for sensitive memory, easily verified via the lack of missing

allocation events for sensitive addresses. For each new allocation event type, we must assign

a unique identifier to the instruction type so that the specific allocation invocation can be

instrumented during an enforcement phase. We discuss the challenges with multi-threaded

applications and our robust memory layout in Sections 4.5.6 and 4.5.7 respectively.

The algorithm for parsing provenance engine output and translating the raw event stream

into individual provenance graphs for each usage must ensure the invariants outlined above

hold. These invariants drive both the parsing algorithm and the decision about which instruc-

tions or function invocations need logging and where to place compile time instrumentation

during our provenance collection pass as defined in Section 4.5.3. The full algorithm for

querying the provenance database for enforceable provenance graphs while handling the full

complexity of possibilities allowed by C is show in the Breadth-First-Search Algorithm 4.1,

described using the terms in Table 4.2.

87

Table 4.2: Terms used in Provenance Algorithms

Definition of Term

forkEvents Fork Event Table, indexed by Event ID

freeEvents Free Event Table, indexed by Event ID

allocEvents Allocation Event Table, indexed by Event ID

storeEvents Store and Copy Event Table, indexed by Event ID

storeEventsRev Store and Copy Event Table, indexed by Starting Ad-

dress

The algorithm has five main parts: (i) Locating the allocation for the sensitive memory

region (this step additionally checks to ensure the address is not vulnerable to a Use-After-

Free vulnerability), (ii) searching for all possible store events for the given address that occur

after the allocation event, (iii) filtering out events that did not occur within the relevant

processes (a full description of why this is necessary is in Section 4.5.6), (iv) masking out

store(-like) events, and finally, recursively following source addresses in copy events. In step

(iv) we mention event masking. Consider an an event with ID y that writes 1 byte to an

address x. If another event occurs in the future with ID y + t writing 1 or more bytes to

address x, the second event “masks” the first because any change from the first event will not

be visible to the application. We only perform single-event masking, meaning only events

that write out the same number of bytes to the same addresses will mask out other events. In

our tests, this is sufficient to mask out events and reduce the overhead of recursing. Future

work can explore combining events to produce masks. Consider a memset event that stores to

an entire buffer. The event could be masked by two subsequent events each of which writes

to half of the buffer. Note that getForkEventIDs referenced in Algorithm 4.1 is described

in full detail in Section 4.5.6.

88

Algorithm 4.1 getProvFor

1: function getProvFor(address, event id, pid, size)
2: allocation← getAllocationFor(address, event id, pid)
3: forkEvents← getForkEvents(pid, event id)
4: possibleStores← storeEventsRev[address]
5: unfilteredStores← {}
6: for event in possibleStores do
7: startingAddr ← event.startingAddr
8: endAddr ← event.startingAddr + event.size
9: if startingAddr ≤ address then
10: if endAddr >= address then
11: unfilteredStores[event.id]← event
12: end if
13: end if
14: if startingAddr > address then
15: if startingAddr < endAddr then
16: unfilteredStores[event.id]← event
17: end if
18: end if
19: end for
20: filtered← filterPreAllocation(unfilteredStores, allocation)
21: forkAware← filterP ids(filtered, allocation, forkEvents)
22: events← maskEvents(forkAware)
23: for event in events do
24: if event.type ≡ COPY then
25: event.prov ← getProvFor(event.startingAddr, event id, pid,

size)
26: end if
27: end for
28: end function

4.5.6 Cross-Process Memory Events

We also have to consider challenges to provenance tracking across multiple processes. To

enable cross-PID provenance we must add an additional fork event to the list of events being

tracked as defined in Section 4.5.2:

• Fork (K) - A fork system call. A tuple containing an event ID, PID (the parent pid),

and child pid.

89

Additionally, the events defined in Section 4.5.2 must be augmented with the PID in

which the event was generated. Consider a simple multi-threaded program in which a parent

process allocates memory, writes to it, forks, and the child subsequently uses the memory.

Tracking fork events allows us to easily identify cross-PID allocation and store events for a

given address. This is common in production software. Consider the fork() + execve()

pattern in which the parent forks and the child process executes a new binary. The arguments

to execve are allocated and setup by the parent process.

PID 1

alloc x | 1

store x | 2

fork (ppid-1)| 3

PID 1

store x | 4

fork (ppid-1)| 6

PID 3

store x | 8

fork (ppid-3)| 9

PID 2

store x | 5

sensitive use |14

PID 1

store x | 7

PID 3

store x |10

sensitive use |15

PID 4

store x |11

sensitive use |13

Figure 4.1: Provenance Across Fork Events

Figure 4.1 shows the full complexity of cross-PID memory events. Each box in the figure

represents an instruction stream in a given process; on the left is the instruction type coupled

with an ever growing event-id on the right. Consider a single process that allocates an address

x, followed by various store(-like) events across processes after the original process has forked.

Sensitive usages of the address x at events 13 and 14 highlight challenges in querying for

cross-fork events. The enforceable provenance graph for sensitive use 14 is shown in red.

It is fairly easy to reason about the events making up the graph. The situation is more

90

complex when parsing the provenance data to produce the graph for address x and event 13,

shown in blue. Events span multiple processes and must filter out irrelevant event-ID’s. For

example, PID-3 has a store event with ID 10 and which is less than the ID of the sensitive

use, 13, and in a parent process. Despite being in a parent, event 10 should not be included

because it occurs after the fork event 9. Algorithm 4.2 is the algorithm for identifying the

list of fork event-ID’s that should be used as bounds when querying for store-events in each

parent-PID.

Algorithm 4.2 getForkEventIDs

1: function getForkEventIDs(pid, event id)
2: forkIds = {}
3: childP id← pid
4: childId← event id
5: for i = forkEvents.size()− 1, i >= 0, i−− do
6: event← forkEvents[i]
7: childP idi ← event.childP id
8: currId← event.eventId
9: if childP idi ≡ childP id && currId < childId then
10: childP id← childP idi
11: childId← currId
12: forkIds[childId]← childP id
13: end if
14: end for
15: return forkIds
16: end function

4.5.7 Runtime Provenance Engine Memory Layout

The runtime memory layout of our provenance engine is dictated by the need to handle

cross-PID tracking while allowing unique ID’s be generated for events as they occur. To

do this, we produce a transaction system based on shared-memory for writing into the

provenance database. The engine for writing into the database lives in shared memory, along

with a locking mechanism and enough memory to store event transaction data before it is

written to the provenance database. This design is shown in Figure 4.2. The instrumented

91

application interacts with the provenance engine through an Inter-Process-Communication

(IPC) mechanism leveraging a semaphore in shared-memory. The LLVM-pass inserts a

function invocation to allocate and initialize the shared-memory region before any other

application code runs. This ensures the shared-memory is allocated and the address is

accessible to any threads that the application may create throughout execution.

Provenance Engine Instrumented Threads

Shared
Memory

Provenance
Thread

Thread Local Heap
- Provenance Database

Shared Memory
- Provenance Engine
- Locking

Mechanisms
- Global Event ID
- Transaction Data

Application
Thread 1

Shared
Memory

Application
Thread 0

Shared
Memory

Figure 4.2: Provenance Engine Memory Layout

Event insertion into the provenance database at runtime occurs through a series of function

calls, one for every event type described in Section 4.5.2. Each function’s behavior is very

similar: (i) Get a handle to the shared-memory region, (ii) grab the global lock, (iii) write

data to transaction structs, (iv) signal the provenance thread via a semaphore. At this

point, the lock is held and no other event can be written to the provenance database until

the transaction is completed by the provenance thread.

The provenance thread waits on a semaphore in shared memory. Upon grabbing the

semaphore, the provenance thread is responsible for taking one of a few actions relating to the

provenance database. It can either write transaction data for an event or run Algorithm 4.1

92

to produce the enforceable provenance graph for a given sensitive use. The provenance

database itself lives on the heap in the provenance thread; all access to this database must

use IPC between application threads and the provenance thread. Once the action completes,

the provenance thread unlocks the lock that was grabbed at the beginning of the transaction,

allowing other events or actions to be taken.

4.6 EXAMPLE PROVENANCE GRAPHS

We have evaluated our provenance engine on the Nginx webserver. Nginx uses a master-

worker process model for handling requests. All requests are processed within a worker

thread while the master thread is responsible for reading the configuration file and spinning

up workers. This is only one threading model an application might use; others could use

threads that split work evenly across threads. In any case, the forking methods described

in Section 4.5.6 and the memory layout discussed in Section 4.5.7 provide an abstraction

that allows us to easily reason about provenance regardless of the design of the instrumented

application.

We have also provided signatures for the store-like copy operation in Nginx that re-

implements libc strncpy functionality, namely the ngx strncpy function. Doing this allows

the provenance graphs to track the relationship between source and destination addresses

passed to the function, information that would otherwise be lost. Additionally, in future work

we will leverage these provenance graphs to enforce instruction level capabilities. Treating

custom copy functions as store-like operations means that enforcement can be placed after

the function invocation instead of after the single store operation that occurs in a tight-loop

within the ngx strncpy function itself which can reduce overhead.

Nginx was started with the command nginx -c /etc/nginx/nginx.conf -g "daemon

off;". The provenance graph for sensitive use 96 with event-ID 11508 is show in Listing 4.1.

For each sensitive use, we log the provenance of any memory buffer arguments. In this case,

93

there is only a single memory buffer holding a \0 terminated C-string which is 22 bytes.

Each argument is given a number by the provenance engine, so this first and only argument

is numbered 0. A name may appear after the number identifier if a variable name is still

present within LLVM at compile time. We can see that this argument was allocated in the

middle (732 bytes in) of a large allocation from a memalign call. The memalign has been

assigned a unique ID, 512:1:1 indicating the function, block, and individual instruction at

which the memalign occurs in the LLVM IR. Future work can leverage this ID to enforce the

capability lists at runtime. The memory region was written to by a single copy instruction

of CUSTOM type, indicating that the store-like operation stems from a developer provided

function signature. Finally, the source of the copy event was allocated by the C-Runtime

before the invocation of main. Specifically, the source was the 3rd argument to the micro-

service, argv[2], which was the name of the configuration file used when starting Nginx. It

is clear to see that this is the open call running in the master thread to open the configuration

file as Nginx starts. This defines the proper data flow for sensitive use 96.

Listing 4.1: Example open Provenance Graph

Event id : 11508 <open64>: 96 PID : 506

Event id : 11509 0/ : <0x10c995c> / S i z e : 22 PID : 506

A l l o ca t i o n : Event ID => 9787 / S ta r t i ng Addr => 10 c9680 / S i z e => 16384 /

Pid => 506 / O f f s e t f o r Arg Addr => 732 / KIND => MEMALIGN / MEMALIGN ID =>

5 1 2 : 1 : 1

COPY: Event ID => 10070 / DST Address : 10 c995c / S i z e : 22 / SRC Addr :

7 f f e ea9b7e81 / Pid : 506 / Copy ID : 292 : 11 : 1/ Locat ion : HEAP / Kind : CUSTOM

A l l o c a t i on : Event ID => 3 / S ta r t i ng Addr => 7 f f e ea9b7e81 /

S i z e => 21 / Pid => 506 / O f f s e t f o r Arg Addr => 0 / KIND => CRT /

CRT ID => argv [2]

We have also listed another provenance graph from the sigsuspend sensitive use in List-

ing 4.2. This listing highlights the need to treat certain system calls that write to userspace

94

memory as store-like events. The final event in the provenance graph is a call to sigprocmask

that modifies the struct buffer that is then passed into sigsuspend.

Listing 4.2: Example sigsuspend Provenance Graph

Event id : 312400 <s igsuspend >: 206 PID : 477

Event id : 312401 0/ s e t : <0x7 f f f 074c9800> / S i z e : 128 PID : 477

A l l o ca t i o n : Event ID => 311417 / S ta r t i ng Addr => 7 f f f 0 7 4 c 9 8 0 0 / S i z e => 128 /

Pid => 477 / O f f s e t f o r Arg Addr => 0 / KIND => Al loca / Al loca ID => 6 0 9 : 1 : 8

STORE: Event ID => 311427 / DST Address : 7 f f f 0 7 4 c 9 8 0 0 / S i z e : 8 / SRC Addr : 0 /

Pid : 477 / Store ID : 6 0 9 : 1 : 1 / s igprocmask / Locat ion : STACK / Kind : SYS CALL

The examples listed in this section demonstrate our robust provenance engine. We are

able to track the source of memory modifications throughout program execution and log

them so they can be used as capability lists.

4.7 RELATED WORK

In this section we discuss the limitations of CFI methods which highlight the need for

instruction level capability lists. We also discuss work on runtime provenance engines that

have traditionally been used in audit systems.

4.7.1 Control Flow Integrity

CFI [122] attempts to mitigate ROP [115] and JOP [116] attacks by enforcing a CFG.

These approaches have two steps: 2) CFG generation and 2) CFG enforcement. Early CFI

approaches generated a coarse-grained CFG that categorized code pointers into only two

distinct categories: one for functions whose address is taken and another for return-address

locations (code addresses immediately following a call-site) [122]. Approaches to CFI have

been steadily adding more ways to classify code addresses. CCFIR [125] has up to 3 different

95

classifications. More recent approaches can support up to 280 unique classes [137], but the

authors do not discuss how an effective CFG could be built that supports such a high degree

of unique classification. The coarse grained approach to generating CFG’s is ineffective as

an attack deterrent as highlighted by numerous attacks [126, 138, 139]. Type based CFG

generation can be more effective at reducing the number of gadgets available to attackers.

Type based solutions require application level changes, thus fall back on function arity [140],

limiting the number of classifications available to call-sites and indirect branches.

The attacks on coarse-grained CFI [126, 138, 139] necessitated the development of more

fine-grained approaches. Fine-grained approaches must address two concerns: they should

be able to support a large number of classifications and should be based on more precise

static analysis; preferably, they should also incorporate dynamic run-time information to

augment enforcement decisions. Practical Context-Sensitive CFI [141] augments custom

static analysis performed on a binary with run-time information to reduce valid code-address

targets. The authors further evaluate a hypothetical deployment of ideal static analysis based

on DSA [127] for a further reduction in gadgets. Cryptographically Enforced Control Flow

Integrity [137] introduces a hardware accelerated enforcement mechanisms that supports up

to 280 different classifications/labels and works in run-time information such as the location

of the pointer holding the code-address, but only suggest leveraging existing CFG generation

methods.

4.7.2 Provenance

Traditionally, provenance has been used as a runtime audit system [130, 142, 143]. Bates

et al. focus on instrumenting the Linux kernel to produce W3C compliant provenance graphs,

capturing the relationships between system level subjects. Our provenance engine works at

a more fine grained level by determining provenance at the instruction level. CamFlow is

another provenance engine that works as a modification to the Linux kernel [143]. We see

these works as complimentary. Our system could be run along side these to augment their

96

logs with fine-grained provenance data. Spade is a generic system for storing provenance

from a variety of sources [130]. Again, our provenance engine for C applications could com-

pliment their work by providing an additional source of provenance data for their distributed

provenance engine.

4.8 CONCLUSION

In this chapter we have presented a provenance engine to be inserted into micro-services

via a modified compiler. This allows us to instrument and track provenance of memory that

will impact the relationships micro-services create with other subjects in cloud computing

systems as shown in Figure 1.1 in Chapter 1. Using our model of security, we are able to

limit the amount of memory that gets classified as being “security sensitive” to only the

memory that has the ability to influence the service’s subject-domain, namely, memory used

to modify the behavior of system calls.

To produce these fine-grained capabilities, our provenance engine must be able to track the

source of memory allocation, modification, and copy events. To support the complexities of

real world software, we must allow developers to extend the notion of individual event types

to include developer defined functions such as internal pool allocators or custom versions of

memcpy-like functions.

Furthermore, we must track memory modification events that occur outside of the appli-

cation itself. Specifically, memory can be modified by the kernel by passing userspace buffers

to system-calls. To support treating these calls as store events, we instrument the system

calls that write to userspace memory so that their writes appear in the provenance database.

Finally, we have to handle the complexity steaming from cross-fork allocation events.

Having handled these event types, we are able to produce the fine-grained capability lists

linking individual instructions to the relationships they are capable of influencing.

97

Chapter 5: Summary

In this dissertation, we have provided a novel approach to micro-service security by consid-

ering subjects and relationships from every layer of the stack. We apply Take-Grant across

every layer simultaneously, allowing us to consider passive information transfer stemming

from stateful hardware, trustworthy relationship monitoring at the system-call boundary,

and fine-grained relationship modification at the instruction level.

5.1 CROSS-LAYER TAKE-GRANT

We leverage a Take-Grant model of security that allows for straightforward reasoning of

capabilities. We apply this model to micro-services in a cloud environment and leverage it

in a variety of ways outlined below.

5.1.1 Passive Attacks

We start in Chapter 2 by extending the notion of a “subject” to include stateful hardware

resources that until recently have not been considered a point of information flow. In this

dissertation, we focus on information flow stemming from shared caches, but the technique

can be applied to other hardware resources. Having added the cache to our model of security,

we can begin to look for ways to apply capabilities to limit access to the shared resources.

We introduce the notion of security domains in which processes belonging to a single

organization or security-level within an organization can be grouped. We then introduce

a cache-access capability that can only be held by a single security domain at a time. To

reduce the impacts of of enforcing such a capability on a large shared cache, we leverage

Intel’s CAT to partition the LLC and then apply the capability within a single isolated

region consisting of an isolated cache region and any number of logical processors.

We enforce the cache-access capability through the use of strict-co-scheduling of processes

98

belonging to the security domain holding the capability in the isolated region. Transfer of the

capability to another domain requires revoking the cache-access capability, pausing execution

in the isolated region, then performing state cleansing to remove residual information before

granting the cache-access capability to another security domain.

Our approach to adding capabilities to access shared-caches highlights how capabilities

can be leveraged to eliminate information flow due to stateful hardware. Passive attacks will

continue to remain a threat to cloud computing until capabilities can be effectively applied

to all shared hardware. We encourage hardware vendors to expose other MSRs allowing

explicit operating system control over these stateful resources.

5.1.2 Active Attacks at the System Level

In Chapter 3 we extend active monitoring mechanisms to be more resilient when generating

logs of relationship events between micro-services and other system level subjects. Subjects

at this level include files being accessed and binaries being executed. Leveraging a novel

probe insertion mechanism, we are able to produce a trustworthy log.

Leveraging the trustworthy log of system level relationships, we are able to create both

a policy recording mechanism and IDS that determines when system-level capabilities have

been violated.

Monitoring relationships at the systems-level exposes a number of attacks, such as those

trying to read system files that could expose confidential user information. Even so, relation-

ship monitoring at this level dictates that attacks must first go outside of the micro-service

before it can be detected. For earlier detection of active attacks, we look toward fine grained

capability mechanism for cloud application.

5.1.3 Fine Grained Active Attacks

To address the limitations of coarse grained detection of active attacks, we look at how

relationships are influenced within an application in Chapter 4. Relationships are built using

99

system-calls; instructions that can modify the behavior or the specific subject the system-call

acts on become part of the security model.

We leverage a custom provenance engine to determine instruction level provenance of

memory that is being passed into system calls. These memory regions define the files that

are opened or executed along with the sockets that are opened. These are only examples

of the kind of behaviors that the arguments to these functions can control. It is clear that

system-level relationships are governed by these memory regions, thus the instructions that

modify these regions are a logical point at which to apply capabilities.

By tracking the provenance for these memory regions, we can produce instruction level

capabilities to limit an attackers ability to hijack control flow and create untrusted rela-

tionships between the micro-service and other subjects on the system. Chapter 4 highlights

the challenges with producing capability lists at such a fine granularity. It is clear that for

robust security, instruction level capabilities must be taken into account.

5.2 CONCLUSION

In order to have the best possible security in cloud environments, a model of security

must include subjects from every layer of the application stack. These include resources

as opaque as hardware caches, as coarse grained as system-level function calls, and as fine

grained as instruction level memory access capabilities. Having a robust model for security

allows researchers and practitioners to more easily reason about the relationships that are

created between subjects in the system. Having identified the source of these relationships,

capabilities can be defined to govern them. We have highlighted this method throughout

this dissertation. Moving forward, security must be holistic and consider a wide-range of

resources and the complex relationships between them.

100

References

[1] [Online]. Available: https://www.cvedetails.com/vulnerability-list.php?
vendor id=11727&product id=&version id=&page=1&hasexp=0&opdos=
0&opec=0&opov=0&opcsrf=0&opgpriv=0&opsqli=0&opxss=0&opdirt=0&
opmemc=0&ophttprs=0&opbyp=0&opfileinc=0&opginf=0&cvssscoremin=
7&cvssscoremax=0&year=0&month=0&cweid=0&order=1&trc=1&sha=
00b38130ead426f27e5c1e857a4d1327e3313481

[2] Y. Sun, G. Petracca, X. Ge, and T. Jaeger, “Pileus: Protecting user resources from
vulnerable cloud services,” in Proceedings of the 32nd Annual Conference on Computer
Security Applications. ACM, 2016, pp. 52–64.

[3] A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson, A. Rabkin,
and I. Stoica, “Above the clouds: A berkeley view of cloud computing,” Dept. Electrical
Eng. and Comput. Sciences, University of California, Berkeley, Rep. UCB/EECS,
vol. 28, no. 13, p. 2009, 2009.

[4] P. Mell, T. Grance et al., “The nist definition of cloud computing,” 2011.

[5] A. K. Talukder, L. Zimmerman et al., “Cloud economics: Principles, costs, and bene-
fits,” in Cloud computing. Springer, 2010, pp. 343–360.

[6] S. Bhardwaj, L. Jain, and S. Jain, “Cloud computing: A study of infrastructure as
a service (iaas),” International Journal of engineering and information Technology,
vol. 2, no. 1, pp. 60–63, 2010.

[7] [Online]. Available: https://aws.amazon.com/ec2/

[8] [Online]. Available: https://cloud.google.com/compute/

[9] [Online]. Available: https://azure.microsoft.com/en-us/services/virtual-machines/

[10] [Online]. Available: https://www.digitalocean.com/

[11] [Online]. Available: https://www.rackspace.com/openstack/public

[12] [Online]. Available: https://www.openstack.org/

[13] [Online]. Available: https://www.pcisecuritystandards.org/document library?
category=pcidss&document=pci dss

[14] M. Fowler and J. Lewis, “Microservices,” ThoughtWorks. http://martinfowler.
com/articles/microservices. html [last accessed on February 17, 2015], 2014.

[15] S. Newman, Building microservices. ” O’Reilly Media, Inc.”, 2015.

[16] [Online]. Available: https://www.nginx.com/blog/
microservices-at-netflix-architectural-best-practices/

101

https://www.cvedetails.com/vulnerability-list.php?vendor_id=11727&product_id=&version_id=&page=1&hasexp=0&opdos=0&opec=0&opov=0&opcsrf=0&opgpriv=0&opsqli=0&opxss=0&opdirt=0&opmemc=0&ophttprs=0&opbyp=0&opfileinc=0&opginf=0&cvssscoremin=7&cvssscoremax=0&year=0&month=0&cweid=0&order=1&trc=1&sha=00b38130ead426f27e5c1e857a4d1327e3313481
https://www.cvedetails.com/vulnerability-list.php?vendor_id=11727&product_id=&version_id=&page=1&hasexp=0&opdos=0&opec=0&opov=0&opcsrf=0&opgpriv=0&opsqli=0&opxss=0&opdirt=0&opmemc=0&ophttprs=0&opbyp=0&opfileinc=0&opginf=0&cvssscoremin=7&cvssscoremax=0&year=0&month=0&cweid=0&order=1&trc=1&sha=00b38130ead426f27e5c1e857a4d1327e3313481
https://www.cvedetails.com/vulnerability-list.php?vendor_id=11727&product_id=&version_id=&page=1&hasexp=0&opdos=0&opec=0&opov=0&opcsrf=0&opgpriv=0&opsqli=0&opxss=0&opdirt=0&opmemc=0&ophttprs=0&opbyp=0&opfileinc=0&opginf=0&cvssscoremin=7&cvssscoremax=0&year=0&month=0&cweid=0&order=1&trc=1&sha=00b38130ead426f27e5c1e857a4d1327e3313481
https://www.cvedetails.com/vulnerability-list.php?vendor_id=11727&product_id=&version_id=&page=1&hasexp=0&opdos=0&opec=0&opov=0&opcsrf=0&opgpriv=0&opsqli=0&opxss=0&opdirt=0&opmemc=0&ophttprs=0&opbyp=0&opfileinc=0&opginf=0&cvssscoremin=7&cvssscoremax=0&year=0&month=0&cweid=0&order=1&trc=1&sha=00b38130ead426f27e5c1e857a4d1327e3313481
https://www.cvedetails.com/vulnerability-list.php?vendor_id=11727&product_id=&version_id=&page=1&hasexp=0&opdos=0&opec=0&opov=0&opcsrf=0&opgpriv=0&opsqli=0&opxss=0&opdirt=0&opmemc=0&ophttprs=0&opbyp=0&opfileinc=0&opginf=0&cvssscoremin=7&cvssscoremax=0&year=0&month=0&cweid=0&order=1&trc=1&sha=00b38130ead426f27e5c1e857a4d1327e3313481
https://www.cvedetails.com/vulnerability-list.php?vendor_id=11727&product_id=&version_id=&page=1&hasexp=0&opdos=0&opec=0&opov=0&opcsrf=0&opgpriv=0&opsqli=0&opxss=0&opdirt=0&opmemc=0&ophttprs=0&opbyp=0&opfileinc=0&opginf=0&cvssscoremin=7&cvssscoremax=0&year=0&month=0&cweid=0&order=1&trc=1&sha=00b38130ead426f27e5c1e857a4d1327e3313481
https://aws.amazon.com/ec2/
https://cloud.google.com/compute/
https://azure.microsoft.com/en-us/services/virtual-machines/
https://www.digitalocean.com/
https://www.rackspace.com/openstack/public
https://www.openstack.org/
https://www.pcisecuritystandards.org/document_library?category=pcidss&document=pci_dss
https://www.pcisecuritystandards.org/document_library?category=pcidss&document=pci_dss
https://www.nginx.com/blog/microservices-at-netflix-architectural-best-practices/
https://www.nginx.com/blog/microservices-at-netflix-architectural-best-practices/

[17] [Online]. Available: https://12factor.net/

[18] J. B. Dennis and E. C. Van Horn, “Programming semantics for multiprogrammed
computations,” Communications of the ACM, vol. 9, no. 3, pp. 143–155, 1966.

[19] A. K. Jones, “Protection in programmed systems.” CARNEGIE-MELLON UNIV
PITTSBURGH PA DEPT OF COMPUTER SCIENCE, Tech. Rep., 1973.

[20] A. K. Jones, R. J. Lipton, and L. Snyder, “A linear time algorithm for deciding secu-
rity,” in Foundations of Computer Science, 1976., 17th Annual Symposium on. IEEE,
1976, pp. 33–41.

[21] R. J. Lipton and L. Snyder, “A linear time algorithm for deciding subject security,”
Journal of the ACM (JACM), vol. 24, no. 3, pp. 455–464, 1977.

[22] M. Bishop and L. Snyder, “The transfer of information and authority in a protec-
tion system,” in Proceedings of the seventh ACM symposium on Operating systems
principles. ACM, 1979, pp. 45–54.

[23] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe,
K. Engelhardt, R. Kolanski, M. Norrish et al., “sel4: Formal verification of an os
kernel,” in Proceedings of the ACM SIGOPS 22nd symposium on Operating systems
principles. ACM, 2009, pp. 207–220.

[24] R. N. Watson, J. Anderson, B. Laurie, and K. Kennaway, “Capsicum: Practical capa-
bilities for unix.” in USENIX Security Symposium, vol. 46, 2010, p. 2.

[25] N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R. Gross, “Control-flow bending:
On the effectiveness of control-flow integrity.” in USENIX Security, vol. 14, 2015, pp.
28–38.

[26] I. Evans, F. Long, U. Otgonbaatar, H. Shrobe, M. Rinard, H. Okhravi, and
S. Sidiroglou-Douskos, “Control jujutsu: On the weaknesses of fine-grained control
flow integrity,” in Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security. ACM, 2015, pp. 901–913.

[27] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and countermeasures: the
case of aes,” in Cryptographers Track at the RSA Conference. Springer, 2006, pp.
1–20.

[28] M. Neve and J.-P. Seifert, “Advances on access-driven cache attacks on aes,” in Inter-
national Workshop on Selected Areas in Cryptography. Springer, 2006, pp. 147–162.

[29] D. Gullasch, E. Bangerter, and S. Krenn, “Cache games–bringing access-based cache
attacks on aes to practice,” in Security and Privacy (SP), 2011 IEEE Symposium on.
IEEE, 2011, pp. 490–505.

102

https://12factor.net/

[30] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, you, get off of my cloud:
exploring information leakage in third-party compute clouds,” in Proceedings of the
16th ACM conference on Computer and communications security. ACM, 2009, pp.
199–212.

[31] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Cross-vm side channels and their
use to extract private keys,” in Proceedings of the 2012 ACM conference on Computer
and communications security. ACM, 2012, pp. 305–316.

[32] G. Irazoqui, M. S. Inci, T. Eisenbarth, and B. Sunar, “Wait a minute! a fast, cross-vm
attack on aes,” in International Workshop on Recent Advances in Intrusion Detection.
Springer, 2014, pp. 299–319.

[33] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache side-channel
attacks are practical,” in Security and Privacy (SP), 2015 IEEE Symposium on. IEEE,
2015, pp. 605–622.

[34] Docker. [Online]. Available: https://www.docker.com

[35] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Cross-tenant side-channel at-
tacks in paas clouds,” in Proceedings of the 2014 ACM SIGSAC Conference on Com-
puter and Communications Security. ACM, 2014, pp. 990–1003.

[36] V. Varadarajan, T. Ristenpart, and M. M. Swift, “Scheduler-based defenses against
cross-vm side-channels.” in Usenix Security, 2014, pp. 687–702.

[37] S.-J. Moon, V. Sekar, and M. K. Reiter, “Nomad: Mitigating arbitrary cloud side chan-
nels via provider-assisted migration,” in Proceedings of the 22nd acm sigsac conference
on computer and communications security. ACM, 2015, pp. 1595–1606.

[38] Z. Zhou, M. K. Reiter, and Y. Zhang, “A software approach to defeating side chan-
nels in last-level caches,” in Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2016, pp. 871–882.

[39] B. Rodrigues, F. M. Quintão Pereira, and D. F. Aranha, “Sparse representation of
implicit flows with applications to side-channel detection,” in Proc. of the 25th Int.
conf. on Compiler Construction. ACM, 2016, pp. 110–120.

[40] T. Kim, M. Peinado, and G. Mainar-Ruiz, “Stealthmem: System-level protection
against cache-based side channel attacks in the cloud.” in USENIX Security sym-
posium, 2012, pp. 189–204.

[41] F. Liu, Q. Ge, Y. Yarom, F. Mckeen, C. Rozas, G. Heiser, and R. B. Lee, “Cat-
alyst: Defeating last-level cache side channel attacks in cloud computing,” in High
Performance Computer Architecture (HPCA), 2016 IEEE International Symposium
on. IEEE, 2016, pp. 406–418.

103

https://www.docker.com

[42] Z. Wang and R. B. Lee, “New cache designs for thwarting software cache-based side
channel attacks,” in ACM SIGARCH Computer Architecture News, vol. 35, no. 2.
ACM, 2007, pp. 494–505.

[43] Z. Wang and R. B. Lee, “A novel cache architecture with enhanced performance and
security,” in Microarchitecture, 2008. MICRO-41. 2008 41st IEEE/ACM International
Symposium on. IEEE, 2008, pp. 83–93.

[44] R. Martin, J. Demme, and S. Sethumadhavan, “Timewarp: rethinking timekeep-
ing and performance monitoring mechanisms to mitigate side-channel attacks,” ACM
SIGARCH Computer Architecture News, vol. 40, no. 3, pp. 118–129, 2012.

[45] B. C. Vattikonda, S. Das, and H. Shacham, “Eliminating fine grained timers in xen,” in
Proceedings of the 3rd ACM workshop on Cloud computing security workshop. ACM,
2011, pp. 41–46.

[46] P. Li, D. Gao, and M. K. Reiter, “Mitigating access-driven timing channels in clouds
using stopwatch,” in Dependable systems and networks (DSN), 2013 43rd Annual
IEEE/IFIP international conference on. IEEE, 2013, pp. 1–12.

[47] H. Raj, R. Nathuji, A. Singh, and P. England, “Resource management for isolation en-
hanced cloud services,” in Proceedings of the 2009 ACM workshop on Cloud computing
security. ACM, 2009, pp. 77–84.

[48] J. Shi, X. Song, H. Chen, and B. Zang, “Limiting cache-based side-channel in multi-
tenant cloud using dynamic page coloring,” in Dependable Systems and Networks
Workshops (DSN-W), 2011 IEEE/IFIP 41st International Conference on. IEEE,
2011, pp. 194–199.

[49] Y. Ye, R. West, Z. Cheng, and Y. Li, “Coloris: a dynamic cache partitioning system
using page coloring,” in Proceedings of the 23rd international conference on Parallel
architectures and compilation. ACM, 2014, pp. 381–392.

[50] B. Coppens, I. Verbauwhede, K. De Bosschere, and B. De Sutter, “Practical mitiga-
tions for timing-based side-channel attacks on modern x86 processors,” in Security and
Privacy, 2009 30th IEEE Symposium on. IEEE, 2009, pp. 45–60.

[51] C. Shannon, “A Mathematical Theory of Communication,” Bell System Technical
Journal, 1948.

[52] L. Szekeres, M. Payer, T. Wei, and D. Song, “Sok: Eternal war in memory,” in Security
and Privacy (SP), 2013 IEEE Symposium on. IEEE, 2013, pp. 48–62.

[53] R. N. Watson, J. Woodruff, P. G. Neumann, S. W. Moore, J. Anderson, D. Chisnall,
N. Dave, B. Davis, K. Gudka, B. Laurie et al., “Cheri: A hybrid capability-system ar-
chitecture for scalable software compartmentalization,” in Security and Privacy (SP),
2015 IEEE Symposium on. IEEE, 2015, pp. 20–37.

104

[54] J. V. Cleemput, B. D. Sutter, and K. D. Bosschere, “Adaptive compiler strategies for
mitigating timing side channel attacks,” IEEE Transactions on Dependable and Secure
Computing, vol. PP, no. 99, pp. 1–1, 2017.

[55] Intel, “Cache monitoring technology and cache allocation tech-
nology,” https://www.intel.com/content/www/us/en/communications/
cache-monitoring-cache-allocation-technologies.html, 2017, (Accessed on 06/08/2017).

[56] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An updated performance com-
parison of virtual machines and linux containers,” in Performance Analysis of Systems
and Software (ISPASS), 2015 IEEE International Symposium on. IEEE, 2015, pp.
171–172.

[57] M. G. Xavier, M. V. Neves, F. D. Rossi, T. C. Ferreto, T. Lange, and C. A. De Rose,
“Performance evaluation of container-based virtualization for high performance com-
puting environments,” in Parallel, Distributed and Network-Based Processing (PDP),
2013 21st Euromicro International Conference on. IEEE, 2013, pp. 233–240.

[58] D. Gruss, R. Spreitzer, and S. Mangard, “Cache template attacks: Automating attacks
on inclusive last-level caches.” in USENIX Security Symposium, 2015, pp. 897–912.

[59] Y. Yarom and K. Falkner, “Flush+ reload: A high resolution, low noise, l3 cache
side-channel attack.” in USENIX Security, vol. 2014, 2014, pp. 719–732.

[60] Y. Yarom and N. Benger, “Recovering openssl ecdsa nonces using the flush+ reload
cache side-channel attack.” IACR Cryptology ePrint Archive, vol. 2014, p. 140, 2014.

[61] J. R. Bulpin and I. Pratt, “Hyper-threading aware process scheduling heuristics.” in
USENIX Annual Technical Conference, General Track, 2005, pp. 399–402.

[62] W. M. Hu, “Lattice scheduling and covert channels,” in Proc. 1992 IEEE Computer
Society Symp. on Research in Security and Privacy, May 1992, pp. 52–61.

[63] M. Godfrey and M. Zulkernine, “Preventing cache-based side-channel attacks in a cloud
environment,” IEEE Transactions on Cloud Computing, vol. 2, no. 4, pp. 395–408, Oct
2014.

[64] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevdjic, C. Kaynak,
A. D. Popescu, A. Ailamaki, and B. Falsafi, “Clearing the clouds: a study of emerging
scale-out workloads on modern hardware,” in ACM SIGPLAN Notices, vol. 47, no. 4.
ACM, 2012, pp. 37–48.

[65] D. Merkel, “Docker: lightweight linux containers for consistent development and de-
ployment,” Linux Journal, vol. 2014, no. 239, p. 2, 2014.

[66] C. Percival, “Cache missing for fun and profit.” BSDCan, 2005.

105

https://www.intel.com/content/www/us/en/communications/cache-monitoring-cache-allocation-technologies.html
https://www.intel.com/content/www/us/en/communications/cache-monitoring-cache-allocation-technologies.html

[67] J. C. Bennett and H. Zhang, “Wf/sup 2/q: worst-case fair weighted fair queueing,” in
INFOCOM’96. Fifteenth Annual Joint Conference of the IEEE Computer Societies.
Networking the Next Generation. Proceedings IEEE, vol. 1. IEEE, 1996, pp. 120–128.

[68] R. Love, Linux kernel development. Pearson Education, 2010.

[69] Intel, “Cache allocation technology,” https://01.org/cache-monitoring-technology?
page=1, 2017, (Accessed on 06/08/2017).

[70] A. Barresi, K. Razavi, M. Payer, and T. R. Gross, “Cain: Silently breaking aslr
in the cloud,” in Proc. of the 9th USENIX conf. on Offensive Technologies, ser.
WOOT’15. Berkeley, CA, USA: USENIX Association, 2015. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2831211.2831224 pp. 13–13.

[71] E. Bosman, K. Razavi, H. Bos, and C. Giuffrida, “Dedup est machina: Memory dedu-
plication as an advanced exploitation vector,” 2016 IEEE Symp. on Security and Pri-
vacy (SP), vol. 00, pp. 987–1004, 2016.

[72] K. Razavi, B. Gras, E. Bosman, B. Preneel, C. Giuffrida, and H. Bos, “Flip feng shui:
Hammering a needle in the software stack,” in Proc. of the 25th USENIX Security
Symp., 2016.

[73] K. Suzaki, K. Iijima, T. Yagi, and C. Artho, “Memory deduplication as a
threat to the guest os,” in Proc. of the Fourth European Workshop on System
Security, ser. EUROSEC ’11. New York, NY, USA: ACM, 2011. [Online]. Available:
http://doi.acm.org/10.1145/1972551.1972552 pp. 1:1–1:6.

[74] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson, K. Lai, and
O. Mutlu, “Flipping bits in memory without accessing them: An experimental study
of dram disturbance errors,” in Proc. of the 41st Annual Int. Symp. on Computer
Architecuture, ser. ISCA ’14. Piscataway, NJ, USA: IEEE Press, 2014. [Online].
Available: http://dl.acm.org/citation.cfm?id=2665671.2665726 pp. 361–372.

[75] VMWare, “Security considerations and disallowing inter-virtual machine transpar-
ent page sharing,” https://kb.vmware.com/s/article/2080735, May 2015, Accessed on
01/15/2018.

[76] N. A. Dadhania. [Online]. Available: https://lwn.net/Articles/472797/

[77] [Online]. Available: https://lwn.net/Articles/240474/

[78] Y. Zhang and M. K. Reiter, “Düppel: Retrofitting commodity operating systems to
mitigate cache side channels in the cloud,” in Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security. ACM, 2013, pp. 827–838.

[79] M. Xu, L. T. Phan, H.-Y. Choi, and I. Lee, “vcat: Dynamic cache management using
cat virtualization,” 2017.

106

https://01.org/cache-monitoring-technology?page=1
https://01.org/cache-monitoring-technology?page=1
http://dl.acm.org/citation.cfm?id=2831211.2831224
http://doi.acm.org/10.1145/1972551.1972552
http://dl.acm.org/citation.cfm?id=2665671.2665726
https://kb.vmware.com/s/article/2080735
https://lwn.net/Articles/472797/
https://lwn.net/Articles/240474/

[80] D. Documentation, “Btrfs storage driver — docker documentation,” https://
docs.docker.com/engine/userguide/storagedriver/btrfs-driver/, 2017, (Accessed on
06/08/2017).

[81] D. Documentation, “Overlayfs storage driver — docker documentation,” https:
//docs.docker.com/engine/userguide/storagedriver/overlayfs-driver/, 2017, (Accessed
on 06/08/2017).

[82] D. Documentation, “Aufs storage driver,” https://docs.docker.com/engine/userguide/
storagedriver/aufs-driver/#how-the-aufs-storage-driver-works, 2017, (Accessed on
06/08/2017).

[83] Intel, “Intel 64 and ia-32 architectures software developers manual vol-
ume 2 (2a, 2b, 2c & 2d): Instruction set reference, a-z,” https:
//www.intel.com/content/dam/www/public/us/en/documents/manuals/
64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.
pdf, 2017, (Accessed on 06/08/2017).

[84] A. Technology, “Amd64 architecture programmers’s manual,” http://support.amd.
com/TechDocs/24593.pdf, 2017, (Accessed on 06/08/2017).

[85] S. Bahram, X. Jiang, Z. Wang, M. Grace, J. Li, D. Srinivasan, J. Rhee, and D. Xu,
“DKSM: Subverting Virtual Machine Introspection for Fun and Profit,” in Reliable
Distributed Systems, 2010 29th IEEE Symposium on. IEEE, 2010, pp. 82–91.

[86] G. Wang, Z. J. Estrada, C. Pham, Z. Kalbarczyk, and R. K. Iyer,
“Hypervisor Introspection: A Technique for Evading Passive Virtual Machine
Monitoring,” in 9th USENIX Workshop on Offensive Technologies (WOOT
15). Washington, D.C.: USENIX Association, Aug. 2015. [Online]. Available:
https://www.usenix.org/conference/woot15/workshop-program/presentation/wang

[87] T. K. Lengyel, S. Maresca, B. D. Payne, G. D. Webster, S. Vogl, and A. Kiayias,
“Scalability, fidelity and stealth in the DRAKVUF dynamic malware analysis system,”
in 30th Annual Computer Security Applications Conference on (ACSAC), 2014.

[88] N. A. Quynh and K. Suzaki, “Xenprobes, a lightweight user-space probing framework
for xen virtual machine,” in USENIX Annual Technical Conference (ATC ’07), May
2007, pp. 1–14.

[89] Z. J. Estrada, C. Pham, F. Deng, L. Yan, Z. Kalbarczyk, and R. K. Iyer, “Dynamic
VM Dependability Monitoring Using Hypervisor Probes,” in Dependable Computing
Conference (EDCC), 2015 Eleventh European. IEEE, 2015, pp. 61–72.

[90] Z. Deng, X. Zhang, and D. Xu, “Spider: Stealthy binary program instrumentation and
debugging via hardware virtualization,” in Proceedings of the 29th Annual Computer
Security Applications Conference. ACM, 2013, pp. 289–298.

107

https://docs.docker.com/engine/userguide/storagedriver/btrfs-driver/
https://docs.docker.com/engine/userguide/storagedriver/btrfs-driver/
https://docs.docker.com/engine/userguide/storagedriver/overlayfs-driver/
https://docs.docker.com/engine/userguide/storagedriver/overlayfs-driver/
https://docs.docker.com/engine/userguide/storagedriver/aufs-driver/#how-the-aufs-storage-driver-works
https://docs.docker.com/engine/userguide/storagedriver/aufs-driver/#how-the-aufs-storage-driver-works
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
http://support.amd.com/TechDocs/24593.pdf
http://support.amd.com/TechDocs/24593.pdf
https://www.usenix.org/conference/woot15/workshop-program/presentation/wang

[91] C. Pham, Z. Estrada, P. Cao, Z. Kalbarczyk, and R. K. Iyer, “Reliability and security
monitoring of virtual machines using hardware architectural invariants,” in Dependable
Systems and Networks (DSN), 2014 44th Annual IEEE/IFIP International Conference
on. IEEE, 2014, pp. 13–24.

[92] B. D. Payne, M. D. P. de Carbone, and W. Lee, “Secure and Flexible Monitoring of
Virtual Machines,” in Annual Computer Security Applications Conf. (ACSAC ’07).

[93] Y. Hebbal, S. Laniepce, and J.-M. Menaud, “Virtual Machine Introspection: Tech-
niques and Applications,” 2015 10th International Conference on Availability, Relia-
bility and Security (ARES), pp. 676–685, 2015.

[94] L. K. Documentation, https://www.kernel.org/doc/Documentation/x86/x86 64/mm.
txt, 2017, (Accessed on 06/08/2017).

[95] X. Jiang, X. Wang, and D. Xu, “Stealthy Malware Detection Through VMM-based
Out-of-the-Box Semantic View Reconstruction,” in Proceedings of the 14th ACM con-
ference on Computer and communications security. ACM, 2007, pp. 128–138.

[96] A. S. Ibrahim, J. Hamlyn-Harris, J. Grundy, and M. Almorsy, “CloudSec: A security
monitoring appliance for Virtual Machines in the IaaS cloud model,” in Network and
System Security (NSS), 5th International Conference on, 2011, pp. 113–120.

[97] J. H. Huh and A. Martin, “Trusted logging for grid computing,” in Third Asia-Pacific
Trusted Infrastructure Technologies Conference (APTC ’08)., 2008.

[98] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh, “Terra: A virtual
machine-based platform for trusted computing,” in ACM SIGOPS Operating Systems
Review, vol. 37, no. 5. ACM, 2003, pp. 193–206.

[99] R. Perez, R. Sailer, L. van Doorn et al., “vTPM: virtualizing the trusted platform
module,” in Proc. 15th Conf. on USENIX Security Symposium, 2006, pp. 305–320.

[100] “ab - apache http server benchmarking tool,” https://httpd.apache.org/docs/2.4/
programs/ab.html, 2017, (Accessed on 06/08/2017).

[101] Redis, “Redis benchmark utitlity,” https://redis.io/topics/benchmarks, 2017,
(Accessed on 06/08/2017). [Online]. Available: http://redis.io/topics/benchmarks

[102] L. Mint, “Main page - linux mint,” https://linuxmint.com/, 2017, (Accessed on
06/08/2017).

[103] T. H. New, http://thehackernews.com/2016/02/linux-mint-hack.html, 2017, (Ac-
cessed on 06/08/2017).

[104] WPScan, https://wpvulndb.com/vulnerabilities/8209, 2017, (Accessed on
06/08/2017).

108

https://www.kernel.org/doc/Documentation/x86/x86_64/mm.txt
https://www.kernel.org/doc/Documentation/x86/x86_64/mm.txt
https://httpd.apache.org/docs/2.4/programs/ab.html
https://httpd.apache.org/docs/2.4/programs/ab.html
https://redis.io/topics/benchmarks
http://redis.io/topics/benchmarks
https://linuxmint.com/
http://thehackernews.com/2016/02/linux-mint-hack.html
https://wpvulndb.com/vulnerabilities/8209

[105] Rapid7, “Wordpress ajax load more php upload vulnerability,” https://www.
rapid7.com/db/modules/exploit/unix/webapp/wp ajax load more file upload, 2017,
(Accessed on 06/08/2017).

[106] M. Crawford and G. Peterson, “Insider Threat Detection using Virtual Machine In-
trospection,” in Hawaii International Conference on System Sciences (HICSS ’13).

[107] D. Kienzle, R. Persaud, and M. Elder, “Endpoint Configuration Compliance Monitor-
ing via Virtual Machine Introspection,” System Sciences (HICSS), 2010.

[108] T. Y. Win, H. Tianfield, and Q. Mair, “Virtualization security combining manda-
tory access control and virtual machine introspection,” IEEE/ACM 7th International
Conference on Utility and Cloud Computing (UCC ’14).

[109] F. Lombardi and R. Di Pietro, “KvmSec: a security extension for Linux kernel virtual
machines,” in Proceedings of the 2009 ACM symposium on Applied Computing. ACM,
2009, pp. 2029–2034.

[110] Y. Fu and Z. Lin, “Space Traveling across VM: Automatically Bridging the Seman-
tic Gap in Virtual Machine Introspection via Online Kernel Data Redirection,” in
Symposium on Security and Privacy. IEEE, 2012.

[111] B. Dolan-Gavitt, T. Leek, M. Zhivich, J. Giffin, and W. Lee, “Virtuoso: Narrowing the
semantic gap in virtual machine introspection,” in 2011 IEEE Symposium on Security
and Privacy. IEEE, 2011, pp. 297–312.

[112] A. P. Kosoresow and S. A. Hofmeyer, “Intrusion detection via system call traces,”
IEEE software, vol. 14, no. 5, pp. 35–42, Jan. 1997.

[113] A. M. Azab, P. Ning, E. C. Sezer, and X. Zhang, “Hima: A hypervisor-based in-
tegrity measurement agent,” in Computer Security Applications Conference, 2009.
ACSAC’09. Annual. IEEE, 2009, pp. 461–470.

[114] S. Andersen and V. Abella, “Data execution prevention. changes to functionality in
microsoft windows xp service pack 2, part 3: Memory protection technologies,” 2004.

[115] H. Shacham, “The geometry of innocent flesh on the bone: Return-into-libc without
function calls (on the x86),” in Proceedings of the 14th ACM conference on Computer
and communications security. ACM, 2007, pp. 552–561.

[116] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang, “Jump-oriented programming: a new
class of code-reuse attack,” in Proceedings of the 6th ACM Symposium on Information,
Computer and Communications Security. ACM, 2011, pp. 30–40.

[117] P. Team, “Pax address space layout randomization (aslr),” 2003. [Online]. Available:
https://pax.grsecurity.net/docs/aslr.txt

[118] T. Durden, “Bypassing pax aslr protection,” Phrack magazine, vol. 59, no. 9, p. 9,
2002. [Online]. Available: http://phrack.org/issues/59/9.html

109

https://www.rapid7.com/db/modules/exploit/unix/webapp/wp_ajax_load_more_file_upload
https://www.rapid7.com/db/modules/exploit/unix/webapp/wp_ajax_load_more_file_upload
https://pax.grsecurity.net/docs/aslr.txt
http://phrack.org/issues/59/9.html

[119] R. Hund, C. Willems, and T. Holz, “Practical timing side channel attacks against
kernel space aslr,” in Security and Privacy (SP), 2013 IEEE Symposium on. IEEE,
2013, pp. 191–205.

[120] Y. Jang, S. Lee, and T. Kim, “Breaking kernel address space layout randomization
with intel tsx,” in Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security. ACM, 2016, pp. 380–392.

[121] D. Gruss, C. Maurice, A. Fogh, M. Lipp, and S. Mangard, “Prefetch side-channel
attacks: Bypassing smap and kernel aslr,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2016, pp. 368–379.

[122] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow integrity,” in Proceed-
ings of the 12th ACM conference on Computer and communications security. ACM,
2005, pp. 340–353.

[123] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic, “Softbound: Highly com-
patible and complete spatial memory safety for c,” ACM Sigplan Notices, vol. 44, no. 6,
pp. 245–258, 2009.

[124] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic, “Cets: compiler enforced
temporal safety for c,” in ACM Sigplan Notices, vol. 45, no. 8. ACM, 2010, pp. 31–40.

[125] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant, D. Song, and W. Zou,
“Practical control flow integrity and randomization for binary executables,” in Security
and Privacy (SP), 2013 IEEE Symposium on. IEEE, 2013, pp. 559–573.

[126] E. Göktas, E. Athanasopoulos, H. Bos, and G. Portokalidis, “Out of control: Over-
coming control-flow integrity,” in Security and Privacy (SP), 2014 IEEE Symposium
on. IEEE, 2014, pp. 575–589.

[127] C. Lattner, A. Lenharth, and V. Adve, “Making context-sensitive points-to analysis
with heap cloning practical for the real world,” ACM SIGPLAN Notices, vol. 42, no. 6,
pp. 278–289, 2007.

[128] L. O. Andersen, “Program analysis and specialization for the c programming lan-
guage,” Ph.D. dissertation, University of Cophenhagen, 1994.

[129] B. Steensgaard, “Points-to analysis in almost linear time,” in Proceedings of the 23rd
ACM SIGPLAN-SIGACT symposium on Principles of programming languages. ACM,
1996, pp. 32–41.

[130] A. Gehani and D. Tariq, “Spade: support for provenance auditing in distributed envi-
ronments,” in Proceedings of the 13th International Middleware Conference. Springer-
Verlag New York, Inc., 2012, pp. 101–120.

[131] A. J. Mashtizadeh, A. Bittau, D. Boneh, and D. Mazières, “Ccfi: cryptographically
enforced control flow integrity,” in Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security. ACM, 2015, pp. 941–951.

110

[132] H. Hu, S. Shinde, S. Adrian, Z. L. Chua, P. Saxena, and Z. Liang, “Data-oriented
programming: On the expressiveness of non-control data attacks,” in Security and
Privacy (SP), 2016 IEEE Symposium on. IEEE, 2016, pp. 969–986.

[133] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong program analysis
& transformation,” in Proceedings of the international symposium on Code generation
and optimization: feedback-directed and runtime optimization. IEEE Computer Soci-
ety, 2004, p. 75.

[134] [Online]. Available: http://www.seleniumhq.org/

[135] ISO/IEC, “Iso international standard iso/iec 9899:2011 - programming language c.
[working draft],” Geneva, Switzerland: International Organization for Standardization
(ISO), 2011. [Online]. Available: http://www.open-std.org/jtc1/sc22/wg14/www/
docs/n1570.pdf

[136] D. Bigelow, T. Hobson, R. Rudd, W. Streilein, and H. Okhravi, “Timely
rerandomization for mitigating memory disclosures,” in Proceedings of the 22Nd
ACM SIGSAC Conference on Computer and Communications Security, ser.
CCS ’15. New York, NY, USA: ACM, 2015. [Online]. Available: http:
//doi.acm.org/10.1145/2810103.2813691 pp. 268–279.

[137] A. J. Mashtizadeh, A. Bittau, D. Boneh, and D. Mazières, “CCFI,” in Proceedings
of the 22nd ACM SIGSAC Conference on Computer and Communications Security -
(CCS) ’15. ACM Press, 2015.

[138] N. Carlini and D. Wagner, “Rop is still dangerous: Breaking modern defenses.” in
USENIX Security Symposium, 2014, pp. 385–399.

[139] L. Davi, A.-R. Sadeghi, D. Lehmann, and F. Monrose, “Stitching the gadgets: On the
ineffectiveness of coarse-grained control-flow integrity protection.” in USENIX Security
Symposium, vol. 2014, 2014.

[140] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, Ú. Erlingsson, L. Lozano, and
G. Pike, “Enforcing forward-edge control-flow integrity in gcc & llvm.” in USENIX
Security Symposium, 2014, pp. 941–955.

[141] V. van der Veen, D. Andriesse, E. Göktaş, B. Gras, L. Sambuc, A. Slowinska, H. Bos,
and C. Giuffrida, “Practical context-sensitive cfi,” in Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security. ACM, 2015, pp.
927–940.

[142] A. M. Bates, D. Tian, K. R. Butler, and T. Moyer, “Trustworthy whole-system prove-
nance for the linux kernel.” in USENIX Security Symposium, 2015, pp. 319–334.

[143] T. Pasquier, X. Han, M. Goldstein, T. Moyer, D. Eyers, M. Seltzer, and J. Bacon,
“Practical whole-system provenance capture,” in Proceedings of the 2017 Symposium
on Cloud Computing. ACM, 2017, pp. 405–418.

111

http://www.seleniumhq.org/
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf
http://doi.acm.org/10.1145/2810103.2813691
http://doi.acm.org/10.1145/2810103.2813691

	List of Tables
	List of Figures
	LIST OF ABBREVIATIONS
	Chapter 1 Introduction
	Capabilities

	Chapter 2 Capabilities to Access Stateful Hardware
	Cache Capabilities
	Background
	Cache Side Channels
	Existing Solutions
	Intel's Cache Allocation Technology
	Platform-as-a-Service
	Scheduling

	System Model
	Cloud Environments and Commodity Hardware
	Adversary Model

	Design of Capability Enforcement Mechanism
	Hardware-Assisted Capability Enforcement for Spatial Isolation
	Selective Page Sharing
	State Cleansing During Capability Transfer
	Co-scheduling for Temporal Isolation

	Implementation
	Capability Enforcement through Strict Co-Scheduling
	Linux Kernel Modifications
	State Cleansing
	Selective Page Sharing

	Performance Evaluation
	Impact of Scheduler Changes
	Impact of Shared Memory Reduction

	Cache Capability Enforcement Summary

	Chapter 3 Trustworthy Monitoring and Intrusion Detection
	System Capabilities
	Goals of a Hypervisor-Based Trusted Log
	Background
	Hardware Assisted Virtualization
	Virtual Machine Monitor Based Probing
	The Semantic Gap
	Virtual Appliances

	Attack Model Against the Logging System
	Trustworthy Log Acquisition
	Probing Mechanism
	Log Completeness
	Implications of an Untrusted Guest

	Logged Events
	Detection of Attacks on the Logging System
	Event Logging Format

	Intrusion Detection for Micro-Services
	IDS Architecture
	Policy Generation
	Threat Analysis

	Evaluation
	Performance
	IDS Evaluation

	Related Work

	Chapter 4 Intra-Application Capabilities for Micro-Services
	Fine Grained Capabilities
	Background
	Threat Model
	System Overview
	Identifying Sensitive Memory
	Building Provenance Graphs

	Implementation
	Trusted Provenance Graph Generation
	Provenance Event Types
	Instruction & Function Tracking
	Store-Like System Calls
	Enforceable Provenance Graphs
	Cross-Process Memory Events
	Runtime Provenance Engine Memory Layout

	Example Provenance Graphs
	Related Work
	Control Flow Integrity
	Provenance

	Conclusion

	Chapter 5 Summary
	Cross-Layer Take-Grant
	Passive Attacks
	Active Attacks at the System Level
	Fine Grained Active Attacks

	Conclusion

	References

