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ABSTRACT

Magnetic resonance spectroscopic imaging (MRSI) enables in-vivo analysis

of the spatial distribution of chemicals within the human body. Through

MRSI, one can infer the concentration of various metabolites in different

regions throughout the body. While the medical implications of such an

imaging paradigm are remarkable, a poor trade-off between imaging speed

and image resolution has stunted development of MRSI applications.

A combination of many technological advancements is necessary to bring

MRSI to its full potential; one advancement is an accelerated imaging tech-

nique known as parallel imaging. Parallel imaging exploits differences in

receiver sensitivities in phased array coils to recover additional location infor-

mation. Accurate estimation of the sensitivity profiles is necessary to prevent

parallel imaging induced artifacts. However, accurate sensitivity profile esti-

mations require fully sampled high-resolution images which adds an excessive

data acquisition burden.

A novel sensitivity profile estimation strategy which relies on deep learning

is presented. It is shown how prior information in the form of learned image

feature representations may be combined with noisy imaging data to pro-

duce high-resolution, artifact-free sensitivity profiles. An in-vivo experiment

demonstrates the effectiveness of the proposed method. The relative SENSE

reconstruction error for the proposed method is 1.96% compared to a signal

processing baseline of 2.52%.
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CHAPTER 1

INTRODUCTION

1.1 Background

1.1.1 Magnetic Resonance Spectroscopic Imaging

In-vivo applications of Nuclear Magnetic Resonance (NMR) spectroscopy

roughly consist of Magnetic Resonance Imaging (MRI) and Magnetic Reso-

nance Spectroscopy (MRS). In both settings the interaction of atomic spins

with an external magnetic field is observed in order to infer properties about

the subject in a non-invasive way. Both MRI and MRS rely on proton res-

onant frequency which is proportional to the strength of the magnetic field

in which it resides, although they exploit this information in different ways.

MRI employs spatially varying magnetic fields known as gradients which en-

code location information in the frequency (or phase) of each nuclear spin.

MRS infers the molecular structure in which the protons reside by relying on

a phenomenon known as chemical shielding.

MRI and MRS can be combined into what is known as Magnetic Reso-

nance Spectroscopic Imaging or MRSI. In an MRSI image, a spectrum is

acquired for every pixel. These data are particularly interesting to neurolo-

gists, for example, because they enable the determination of concentrations

of various metabolites in different regions throughout the brain. However,

the inclusion of spectroscopy to MRI adds another dimension to the acquired
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data. Unfortunately, the time to acquire the data scales exponentially with

the dimensionality of the data to acquire. This problem is known as the

curse of dimensionality, and explains why many otherwise promising MRSI

applications have been considered infeasible over the last four decades.

Much effort has been spent in attempt to reduce data acquisition time with

the goal of realizing the full potential of MRSI. High field scanners and fast

pulse sequences have each contributed to faster scans. A breakthrough in the

1990s called parallel imaging has been widely applied to accelerate scans in

both clinical and research settings. These speedups, however, come with a

cost. Parallel imaging requires a sensitivity profile which adds an additional

data acquisition burden [1].

1.1.2 Machine Learning

Machine learning has a long history originating with the invention of the

perceptron by Frank Rosenblatt [2] in the 1950s. Machine learning can be

roughly divided into two tasks: classification and regression. In classifica-

tion tasks data points are given in some geometric space with accompanying

labels. The objective of the classifier is to determine a suitable separatrix

which can divide the data according to the labels. Regression tasks are sim-

ilar; however, the objective is to predict a numerical rather than categorical

value.

Deep learning is a class of machine learning techniques which is capable

of performing both regression and classification. Recently deep learning has

been widely popularized due to astounding success in image classification

and segmentation as well as voice recognition and machine translation tasks.

2



1.2 Problem Formulation

In this thesis we propose the use of a deep learning framework to alleviate

some of the acquisition burden required to produce a sensitivity profile. We

assume that the sensitivity profile generated from a set of anatomical images

is equivalent to that which is derived from MRSI data. We leverage high-

resolution MR image data generated from a flash sequence to generate the

sensitivity profile. These images are acquired in a very short time, and are

very noisy. We propose the use of deep learning to denoise the anatomical

images prior to the generation of the sensitivity profile.

1.3 Motivation

This work addresses the challenge of long acquisition time; however, the focus

of this thesis is placed on an MRSI imaging framework known as SPICE. The

SPICE framework has been used to produce high-resolution, high-SNR 3D

metabolite maps in about 25 minutes [3] - a significant advancement over

state-of-the-art MRSI. Much of the speedup enjoyed by SPICE comes from a

novel subspace imaging approach which is implemented using custom pulse

sequences and a hybrid sparse sampling strategy. Further, SPICE employs a

number of well-known accelerated imaging strategies such as parallel imaging.

Prior studies suggest that the SPICE framework could further increase

imaging acceleration, while maintaining image integrity, through the use of

parallel imaging. However, this finding comes with a caveat. Accurate, high-

resolution sensitivity profiles are necessary to ensure that image quality is

not jeopardized by increased acceleration.

The two most common methods for estimating sensitivity profiles were

given in the original paper [1]. They are:
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• Sum-of-squares normalization of full-fov image

• Prior image of uniform phantom

The first method produces very accurate estimations of the sensitivity pro-

file, however it requires the acquisition of a full-FOV (field of view) image for

every scan, which adds an imaging burden that negates the use of parallel

imaging. The second method eliminates the additional scan time, but pro-

duces inaccurate results. This is because the sensitivity profile is altered by

loading effects which change with every new subject in the scanner. While

it is theoretically possible to calculate the sensitivity profile, it is not practi-

cal because it requires detailed knowledge of loading effects and receiver coil

calibrations.

1.4 Summary of Results

An in-vivo experiment demonstrates the effectiveness of the proposed method

of sensitivity profile estimation. Three cases were compared in this experi-

ment.

• Deep denoised SENSE

• Total variation denoised SENSE

• No denoising

This thesis considers the deep denoised SENSE method, and compares it

to the total variation method which exploits sparsity in the MR images as

a method of denoising. In terms of visual quality and relative error, the

deep denoised SENSE method outperforms the total variation as well as no

denoising methods.
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1.5 Thesis Outline

Chapter 2 provides the necessary literature review. A brief overview of the

fundamentals of MRSI are presented. Parallel imaging is introduced with

an emphasis on the SENSE algorithm given in [1]. A review of the history

of machine learning is given, justifying the use of deep convolutional neural

networks.

Chapter 3 gives the details of the problem formulation as well as the pro-

posed solution. The methods used to accomplish the stated solution are

presented. A detailed description of the modifications made to the training

procedure is discussed.

Chapter 4 presents the experiment results and contains a quantitative anal-

ysis of the predicted sensitivity profile. For comparison, SENSE reconstruc-

tions are given using total variation denoised and noisy sensitivity profiles.

Finally, results from suboptimal deep learning strategies are shown which

reinforce the methods as set forth in chapter 3.

Chapter 5 concludes the thesis with a summary of findings and direction

for future work.
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CHAPTER 2

LITERATURE REVIEW

2.1 Magnetic Resonance Spectroscopic Imaging

2.1.1 MRI Fundamentals

Upon placement in a high magnetic field (denoted
→
B0) nuclei with spin 1

2
will

split into two energy states according to the theory of quantum mechanics.

These states can be interpreted as parallel and anti-parallel with the main

magnetic field. Since the observable signal comes from a collection of many

spins, a classical framework may be used to describe the dynamics of the

vector sum of magnetic moments known as the bulk magnetization. Using

the Boltzmann relationship, the magnitude of the bulk magnetization in

equilibrium is derived in [4] and is given as

M0
z =

γ2h̄2B0N

4KTs
(2.1)

where N is the total number of nuclei, γ is the gyromagnetic ratio, h̄ is

the plank constant, K is the Boltzmann constant and Ts is the absolute

temperature.

In equilibrium the bulk magnetization is directly aligned with the main

external magnetic field, conventionally known as the
→
z direction. A properly

tuned RF field called
→
B1(t) can be used to excite the spin population which

induces a coherent spin known as precession. The spin population precesses
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at a frequency known as the Larmor frequency which is given by

ω0 = γB0 (2.2)

This excitation as well as a subsequent relaxation is described by a phe-

nomenological equation known as the Bloch equation.

d
→
M

dt
= γ

→
M ×

→
B −

→
M⊥

T2

− (Mz −M0
z )
→
z

T1

(2.3)

Here
→
M represents the bulk magnetization vector,

→
B represents

→
B0 +

→
B1(t),

→
z represents the longitudinal direction vector, and

→
M⊥ represents the trans-

verse component of the bulk magnetization. The second two terms on the

right-hand side of the equation describe the relaxation process and include

relaxation constants T1 and T2 which are material specific.

Using the Faraday law of induction as well as the reciprocity principle [5]

the emf at a receive coil can be derived as

emf = − d

dt

∫
sample

→
M(

→
r , t) ·

→
Breceive(

→
r )d

→
r (2.4)

In this derivation
→
M(

→
r , t) represents the 3D bulk magnetization which varies

both spatially (over
→
r ) and temporally (over t), and

→
Breceive(

→
r ) represents

the sensitivity profile of the receive coil, which is given as
→
B(
→
r ) for brevity.

This thesis considers the problem of estimating the sensitivity profile for each

receive coil in the phased array. Accurate estimation of the sense profile is

a vital step toward achieving imaging acceleration through parallel imaging

while maintaining image quality. Note that as the data are collected in the

complex domain, the sensitivity profile contains a magnitude and a phase

component. The terms sensitivity map, magnitude map and phase map all
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refer to the sensitivity profile or its complex components.

Modern MRI scanners typically employ quadrature detection, and the com-

mon mathematical signal model uses the complex C1 domain to represent the

two-dimensional transverse plane. In this model, the received signal is given

as

s(t) = ω0

∫
sample

B∗xy(
→
r )Mxy(r)e

− t
T2(r) e−iγ

∫ t
0 ∆B(

→
r ,τ)dτd

→
r (2.5)

where

Bxy(
→
r ) = Bx(

→
r ) + iBy(

→
r )

Mxy(
→
r ) = Mx(

→
r ) + iMy(

→
r )

Mxy(
→
r ) = Mxy(

→
r , 0)

In equation 2.5 B∗xy(
→
r ) refers to the complex conjugate of Bxy(

→
r ) and ∆B(

→
r , t)

refers to field inhomogeneities. The signal received immediately following ex-

citation is called a free induction decay (FID) and is characterized by Larmor

frequency oscillations inside a decaying exponential envelope.

2.1.2 Spatial Encoding

MRI employs gradients, which are spatially varying magnetic fields, to encode

location into the magnetic spins. More specifically, we will consider a linear

gradient
→
G(t) = Gx

→
x + Gy

→
y + Gz

→
z which induces a shift in magnetic field

given by

∆B(
→
r , t) =

→
G(t) · →r (2.6)
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With the inclusion of linear gradients, and ignoring relaxation terms and

constants for simplicity, the signal model becomes

s(t) =

∫
sample

B∗xy(
→
r )Mxy(r)e

−iγ
∫ t
0

→
G(τ)·→r dτd

→
r (2.7)

Take

→
k =

γ

2π

∫ t

0

→
G(τ)dτ

Equation 2.7 can be rewritten as

s(t) =

∫
sample

B∗xy(
→
r )Mxy(r)e

−i2π
→
k (t)·→r d

→
r (2.8)

It is common to replace B∗xy(
→
r )Mxy(r) with ρ(

→
r ) which is the spin density,

defined as the concentration of nuclei precessing at the Larmor frequency.

The final form of the equation is given as

s(
→
k ) =

∫
sample

ρ(
→
r )e−i2π

→
k ·→r d

→
r (2.9)

Equation 2.9 gives the Fourier transform as the relation between the un-

derlying image ρ(
→
r ) and the k-space measurements s(

→
k ). Consequently a

simple inverse Fourier transform is all that is required to recover an image

from the acquired data.

2.1.3 Spectral Encoding

NMR spectroscopy exploits a property known as chemical shift to infer prop-

erties about the chemical structure in which nuclei reside. This method has

been successfully employed as a non-destructive chemical analysis tool for

several decades. Chemical shielding refers to local perturbations of magnetic
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Figure 2.1: Illustration of the chemical shielding effect. The arrows indicate
that the local magnetic field perturbation from the electron cloud opposes
the main magnetic field B1 causing the proton to ‘feel’ a smaller B0.

field, which are caused by electron cloud currents as seen in figure 2.1. These

local perturbations cause slight shifts in the resonant frequency of neigh-

boring nuclei. The chemical shielding effect is dependent on the geometric

distribution of the electron cloud, meaning the effect of chemical shift varies

across different molecules. Therefore, every chemical structure has its own

spectral marker from which it can be identified.

A spectrum can be acquired simply by sampling the FID and performing a

Fourier transform on the acquired data. Unfortunately, with regard to in-vivo

studies, a single spectrum is often insufficient to meet the desired application

objective. This is because the human body does not have a homogeneous

distribution of metabolites, and the spatial distribution of metabolites is

lost without spatial encoding as described in section 2.1.2. The solution

is to combine MRI and MRS into what is known as Magnetic Resonance

Spectroscopic Imaging (MRSI).

In MRSI a spectrum is acquired for every pixel (or voxel) location. This

is given as a simple modification to equation 2.9, namely

s(
→
k, t) =

∫
sample

ρ(
→
r , t)e−i2π

→
k ·→r e−i2πt∆f0(

→
r )d
→
r (2.10)
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Figure 2.2: Example 2D-imaging pulse sequence. The Gy gradient phase
encodes the signal and the Gx gradient is applied during readout and
frequency encodes the signal.

Here ∆f0 refers to field inhomogeneities in B0. The acquired data resides

in a space which includes a temporal dimension commonly referred to as kt

space. The desired spectrograms can be recovered using a Fourier transform.

2.1.4 Data Acquisition

RF and gradient activation are controlled through pulse sequence. Figure

2.2 shows an example pulse sequence. The RF pulse in conjunction with

the Gz gradient excites a two-dimensional slice. The Gy gradient phase

encodes the signal over n excitation cycles. The Gx, or readout gradient,

frequency encodes the signal. Sub-sampling in the phase encode direction

directly translates into fewer excitation cycles which can significantly reduce

scan time.

2.2 Parallel Imaging

Parallel imaging provides one opportunity to reduce scan times without sac-

rificing image quality. Parallel imaging techniques are designed with algo-

11



Figure 2.3: Aliasing artifact produced by subsampling in the phase
encoding direction. The top image comes from fully sampled k-space data.
In the bottom image, one in four lines is acquired which is considered a
reduction factor of four (R = 4). The result in image space is four shifted
identical copies which are superimposed.
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Figure 2.4: Example sensitivity profiles. Each coil has its own unique
profile. For maximum parallel imaging acceleration profiles should be
designed to be as orthogonal as possible.

rithms that operate in either k-space or the image domain. Examples of

k-space-based parallel imaging algorithms are Generalized Autocalibrating

Partially Parallel Acquisitions (GRAPPA) [6] and iterative self-consistent

parallel imaging reconstruction from arbitrary k-space (SPIRiT) [7]. On the

other hand, sensitivity encoding for fast MRI (SENSE) [1] is an image do-

main parallel imaging technique. See figure 2.3 for an example of how SENSE

operates.

Like all parallel imaging algorithms, SENSE exploits sensitivity profile

variations across receiver coils, such as those seen in figure 2.4, to recover

additional spatial information to resolve spatial ambiguity. SENSE relies on

high-quality sensitivity profile maps which must be obtained in addition to

the routine data acquisition. Because the sensitivity profile is dependent on

loading effects which change with every subject scanned, it is not possible

to obtain a satisfactory sensitivity profile using a homogeneous phantom.

Accurate sensitivity maps may be acquired by obtaining high-SNR, fully

sampled MR data for every coil and normalizing by the sum-of-squares of

13



all coils. The acquisition of such high-SNR, fully sampled data, however,

is a time-consuming process which negates the benefit of applying parallel

imaging in the first place.

SENSE provides a general method for accelerating 2D and 3D Cartesian

image scans, with well-understood SNR trade off. For this reason, SENSE has

been widely adopted in research as well as clinical settings. SENSE resolves

spatial ambiguity which is caused by aliasing in the image domain according

to the Poisson summation formula. Consider the following example of a

2D imaging sequence with an acceleration factor of 2 and two independent

receive coils.

s1(x, y) = w1(x, y)ρ(x, y) + w1

(
x, y +

1

2
FOV

)
ρ
(
x, y +

1

2
FOV

)
(2.11)

s2(x, y) = w2(x, y)ρ(x, y) + w2

(
x, y +

1

2
FOV

)
ρ
(
x, y +

1

2
FOV

)

Here w1 and w2 refer to the sensitivity profiles of coils 1 and 2, respectively.

The acquired signals s1 and s2 are given as linear combinations of spin density

ρ from two locations. Equation 2.11 can be written in matrix form as follows:

→
s = Wρ (2.12)

W is a sensitivity matrix with a row for each coil and a column for each

superimposed pixel. An unfolding matrix can be created which optimally

separates superimposed pixels in a least squares sense and is given by

U = (WHΨ−1W )−1WHΨ−1 (2.13)

In equation 2.13 WH denotes the transposed complex conjugate of W and Ψ

14



represents the receiver noise matrix which gives noise levels and correlations

for each of the coils. Note that in the absence of noise the unfolding matrix

is simply the Moore-Penrose pseudo-inverse of W . Assuming i.i.d. Gaussian

noise, this method produces the maximum likelihood estimation of the true

image. The separated pixels can be recovered through the following:

ρ̂ = U
→
s (2.14)

Here ρ̂ represents the separated pixels, and
→
s represents the measurements.

This process can be repeated for all pixels in the image. Note that to cor-

rectly solve a system of linear equations there must be more equations than

unknowns. This means that the acceleration factor cannot exceed the num-

ber of coils. In practice, the acceleration factor is often several factors lower

than the number of coils due to sub-optimal, non-orthogonal coil sensitivities.

2.2.1 Condition Number

SENSE seeks an inverse solution of a linear system of equations, such as

Ax = b. An important property of any such systems of equations is called

the condition number (κ) which is defined in the following way:

κ(A) = ||A||2||A+||2 (2.15)

where || · ||2 denotes the spectral norm which is equal to the largest singular

value of A, and A+ denotes the pseudo-inverse of A. The condition number

is the ratio of the relative error in the solution (A+b) to the relative error in

the input (b). It is used to provide a bound on output errors provided that

a bound on the input errors is known.

Linear systems of equations with high condition number are described as
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ill-conditioned. The inverse solution of such a system suffers from magnified

errors. Such errors enforce a strict limit on the amount of acceleration which

can be achieved through SENSE, because the condition number increases as

the acceleration factor increases. Errors in the sensitivity profile are similarly

magnified by a large condition number, therefore the quality of the sensitivity

profile is one determining factor for the amount of acceleration which can be

achieved.

2.3 Machine Learning

Most machine learning formulations pose learning as an optimization prob-

lem, over a set of model parameters, whose objective is a task-dependent loss

function. Empirical risk minimization is the process by which the objective

function is minimized over a training set which is carefully constructed to

represent the real world. A well-crafted model trained on a sufficient training

dataset will avoid the problem of over fitting; in other words it will generalize

to new data.

An artificial neural network (ANN) is a type of parametric machine learn-

ing model which bears resemblance to the original perceptron and has been

compared to the biological brain. The parameters of an ANN are a set of

weights and biases. Each layer in a neural network is made up of many nodes

called neurons. An example neuron is shown in figure 2.5a. To enable the

network to learn arbitrary, nonlinear mappings every neuron ends in a pos-

sibly nonlinear function known as an activation function. Neural networks

can have an arbitrary number of layers. The intermediate layers are trained

to discover the latent structure in the data and are therefore named hidden

layers. A graphical representation of a neural network is shown in figure

16



(a) Single Neuron.

(b) Example neural network.

Figure 2.5: Graphical representation of an ANN. Each neuron contains a
set of weights which connect with the previous layer and a bias. Layers are
composed of an arbitrary number of neurons.

2.5b. A neural network with a single hidden layer can approximate contin-

uous functions on compact subsets of Rn using a finite number of neurons

[8, 9].

While single-layer ANNs can approximate arbitrary functions, Mhaskar

et al. [10] showed that deep neural networks can accurately represent a

class of compositional functions using exponentially fewer parameters than

their shallow counterparts, and similar findings were reported in [11, 12].

Neural networks are commonly trained using gradient descent. Gradients
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are propagated through deep neural networks according to the calculus chain

rule in a process known as backpropagation. The use of deep neural networks,

or deep learning, has recently advanced many areas of research such as image

classification, segmentation, speech recognition and machine translation. For

a review of modern deep learning, see [13].

2.3.1 Convolutional Neural Networks

A fully connected neural network layer refers to a layer in which the input

of all of the neurons is connected to all previous neuron outputs. A net-

work consisting of only fully connected layers is highly suboptimal for image

processing tasks for two reasons:

• Lack of shift invariance

• Unscalable to even moderate image sizes

A convolutional neural network (CNN) addresses these two problems by

modifying the standard neural network architecture through massive weight

pruning and weight sharing. The effect is that hidden layer representations,

called feature maps, are produced by convolving prior feature maps with a

small kernel whose entries are the parameters of the network. Figure 2.6

demonstrates the main concept of a CNN.

2.4 Related Work

To the best of our knowledge deep learning has not been applied to the

problem of estimating sensitivity maps for improved parallel imaging. Deep

learning has been applied to MRI image reconstruction, see [14, 15, 16, 17].

However, these works have given deep neural networks the task of directly
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Figure 2.6: Base unit CNN. Data is represented by feature maps which are
essentially images with an arbitrary number of channels which encode
latent information.

predicting the final image reconstruction given under-sampled data. While

some positive results have emerged, little theory or justification is given to

demonstrate that deep learning reconstruction can work in a general case.

Furthermore, a general deep learning reconstruction strategy would replace

a well-understood reconstruction pipeline with a black box.

In the context of producing denoised sensitivity maps, learning is justified.

The image denoising task uses only low-level image features and thereby does

not require a large training dataset. Furthermore, SENSE reconstruction is a

simple linear operation. This has a number of advantageous properties such

as the Gaussian-noise in Gaussian-noise out relationship.
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CHAPTER 3

METHODS

3.1 Formulation

It is assumed that a sensitivity profile derived from anatomical MR data is

equivalent to a sensitivity profile derived from MRSI data. Therefore, the

goal of the thesis is to generate high-resolution denoised sensitivity profiles

from noisy MR images. More precisely, the objective is to find a function

f : x 7→ ŷ which maps noisy MR images (x) to denoised MR images (ŷ). It is

assumed that the training images contain iid white Gaussian, additive noise.

Under this assumption, an appropriate learning objective which maps noisy

images to denoised images takes the form:

woptimal = argmin
w

N∑
n=1

||fw(xn)− yn||2 (3.1)

Inspired by residual CNN networks [18] and based on empirical findings, it

was determined that the residual error provided a better target for training.

If xn = yn+v, where v is iid-Gaussian noise, then a residual learning network

is trained to approximate f̂(x) = v. Therefore, the objective to optimize is

woptimal = argmin
w

N∑
n=1

||f̂w(xn)− (xn − yn)||2 (3.2)

It is proposed that a deep neural network learn the mapping from corrupted

images to residual error. However, the stated problem is ill-posed which
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Figure 3.1: DnCNN architecture. Each hidden layer consists of a
convolution batch-normalization and ReLU nonlinearity. The input and
output images contain two channels, and the hidden layers each have 64
feature maps.

means is impossible to find a solution without relying on prior knowledge.

Prior knowledge comes in the form of image feature representations which

are learned from a training set. It is assumed that high-dimensional MR

images reside on a low-dimensional manifold, which means that each image

can be represented using fewer parameters than those necessary to specify

all pixel intensities.

3.2 Approach

3.2.1 DnCNN

The Deep Denoising Convolutional Neural Network (DnCNN) architecture

[19] was developed for the task of Gaussian noise removal. The DnCNN ar-

chitecture is shown in figure 3.1. The DnCNN is capable of outperforming

standard signal processing methods because it utilizes image features in the

denoising processes rather than simple signal characteristics such as spar-

sity. The DnCNN excels at learning good representations of image features

because it is a deep, convolutional neural network with a large receptive field.

The depth of the network is a crucial feature, as it was shown indepen-
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dently by Mhaskar and Telgarsky [12, 11] that deep neural networks have

more representational power than a similarly sized shallow counterpart. The

DnCNN is convolutional, which means that many small kernels, size 3 x 3,

are applied at every layer to produce the next layer or set of feature maps.

Convolutional layers have far fewer parameters than fully connected layers

which gives the network scalability and reduces the likelihood of overfitting.

The receptive field refers to the spatial connectivity extent within a network.

A large receptive field is important for neural networks because input val-

ues which fall outside of a receptive field cannot influence the corresponding

output. The receptive field in a CNN grows exponentially with the num-

ber of pooling layers in the network [20] and linearly with the number of

convolutional layers. The DnCNN was designed without pooling layers to

mitigate blurring effects, and contains a large number of convolutional layers

to produce a large receptive field.

3.2.2 Residual Learning and Batch Normalization

Inspired by residual CNNs [18] the DnCNN is trained to predict the resid-

ual error rather than predicting the denoised image directly. In this way,

the denoised image can be obtained by simply subtracting the output of

the network from the input. This has many advantages in practice such as

faster training, and mitigated effects of the vanishing gradient problem which

enables effective training of very deep networks.

The DnCNN network follows the batch normalization principle from Ioffe

and Szegedy [21] which accelerates training by reducing internal covariate

shift. Batch normalization is applied on every hidden layer which means that

all feature maps are normalized by the means and variances computed across
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the batch. It was demonstrated by [19] that residual learning and batch

normalization have complimentary effects, and that the best performance

and fastest training times come when both methods are applied.

3.2.3 Proposed Solution

The proposed solution is given in graphical form in figure 3.2. A DnCNN

is trained to predict high-resolution, denoised MR images given the high-

resolution noisy images. As the input images are very noisy, it was desired

that the network employ a large receptive field, therefore the depth of the

network was set as 20 layers. The sensitivity profile is created by simple

sum-of-squares normalization across images from all coils according to the

following equation

wj =
sj√∑

k∈numCoils s
2
k

(3.3)

where wj refers to the sensitivity profile of coil j and sj refers to the image

of coil j. Following the sum-of-squares normalization, the phase of each coil

is computed relative to that of the first coil as follows

wj = wj ∗ exp(−i ∗ 6 w1) (3.4)

where 6 w1 is the phase of the sensitivity of the first coil.

As usual for the SENSE algorithm, imaging data is sub-sampled by acquir-

ing only one in n lines in k-space, where n is the acceleration factor. Upon

prediction of sensitivity profiles, the SENSE algorithm proceeds as normal

to reconstruct the desired images.
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Figure 3.2: Graphical representation of the solution outline.
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3.3 Implementation

3.3.1 Architecture

The DnCNN architecture is designed according to the guidelines in [19]. As

discussed in section 2.3, MSE loss is statistically optimal when dealing with

Gaussian noise.

The ground truth training images are created by acquiring and averaging

eight flash images. The noisy images simply include additive Gaussian noise

with a fixed noise variance. The test set is generated in a similar manner;

however, it is derived from scans of a different subject in order to eliminate

the effect of overfitting.

Care must be taken to ensure that phase wrapping does not harm the learn-

ing procedure. Phase wrapping causes the mean squared error loss function

to be highly suboptimal in the presence of Gaussian noise. Consider the fol-

lowing: Let Y be a true image with values π + Nij. Nij is drawn iid from a

zero mean Gaussian with variance ε for every pixel in the phase map. When-

ever Nij > 0, the value of Yij wraps to −π, therefore any pixel Yij will be

close to π with probability 1
2

and close to −π with probability 1
2
. Under these

conditions the predicted output Ŷ that minimizes MSE is 0, which is exactly

out of phase from π.

A simple way to correct for this type of wrapping is to train a network to

predict the real and imaginary components of the signal simultaneously. In

this training setup, the network does not predict circular outputs.
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3.3.2 Training Procedure

In contrast to the original DnCNN paper [19], this work denoises entire im-

ages (180 x 180) simultaneously rather than in patches (40 x 40). This

simplifies the testing process, and eliminates the possibility of boundary ar-

tifacts between patches. Due to memory constraints, the batch size used in

this project was 16 as compared to 128 in [19]. However, due to the larger

size of the inputs, the amount of information processed in a single batch is

actually larger, thereby providing stable gradients for training.

The proposed DnCNN was developed in Tensorflow 1.3.0. Code was taken

from [22] and is used to generate training batches. Data augmentation was

done in the form of random flips in the horizontal and vertical directions

as well as random rotations. Input preprocessing consists of scale and shift

normalization. Batch normalization (batch size 16) is employed at every

layer, and the network is trained to predict the residual image function. The

network is trained using stochastic gradient descent (SGD) with an Adam

optimizer initialized with the following parameters: learning rate = 0.005,

beta1 = 0.9, beta = 0.999, epsilon = 1e-08. Training requires approximately

7 hours on an Nvidia Titan Xp GPU with a memory clock rate of 1.582

(GHz).

3.4 Evaluation

3.4.1 Comparison of Methods

The various methods are compared by separate SENSE reconstructions.

High-SNR data was retrospectively undersampled according to the given

acceleration factors and used as input to the SENSE reconstructions. Sen-
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sitivity profiles were obtained from anatomical images using the following

sum-of-squares approach given in equation 3.4.

3.4.2 Simulation

A simulation was run which shows the effects of sensitivity profile errors

in SENSE reconstructions with the following acceleration factors: 4, 6, 8.

Three cases were studied: no errors, added Gaussian noise, Gibbs ring-

ing. High-resolution sensitivity maps were constructed using fully sampled

k-space data. These maps were corrupted with zero-mean, Gaussian noise

and under-sampled in the Fourier domain in a way that simulates the acqui-

sition of only 28 ACS lines. Fully sampled imaging data were acquired and

used as ground truth for comparison with the reconstruction. The imaging

data were retrospectively sub-sampled according to the specified acceleration

factors with the inclusion of 28 ACS lines.

Figures 3.3a, 3.3b, and 3.3c display the results of the SENSE reconstruc-

tion using the error-free, Gaussian noise, and Gibbs ringing sensitivity profiles

respectively. The first, second and third columns refer to SENSE reconstruc-

tions with acceleration factors of 4, 6 and 8 respectively. Similarly, figures

3.4a, 3.4b, and 3.4c show the difference images with ground truth. To im-

prove visualization, the difference images were scaled by 5.

Table 3.1 gives the relative error for each of the SENSE reconstruction

which is calculated using equation 3.5:

error =
||(y − ŷ) ·m||2
||y ·m||2

(3.5)

Here y refers to the ground truth image and ŷ refers to the predicted image.

The binary mask used in the weighted MSE calculation is given as m.
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(a) R = 4 R = 6 R = 8

(b)

(c)

Figure 3.1: SENSE reconstruction simulation using (a) error-free sensitivity
profile, (b) Gaussian noise sensitivity profile, and (c) Gibbs ringing
sensitivity profile. Acceleration factors R = 4, 6, 8. Notice, SENSE
reconstructions are exact given an error free sensitivity profile.

25

Figure 3.3: SENSE simulation - reconstruction using (a) error-free
sensitivity profile, (b) Gaussian noise sensitivity profile, and (c) Gibbs
ringing sensitivity profile. Acceleration factors R = 4, 6, 8. Notice, SENSE
reconstructions are exact given an error free sensitivity profile.
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(a) R = 4 R = 6 R = 8

(b)

(c)

Figure 3.2: SENSE reconstruction difference from ground truth.
Reconstructions use (a) error-free sensitivity profile, (b) Gaussian noise
sensitivity profile, and (c) Gibbs ringing sensitivity profile. Acceleration
factors R = 4, 6, 8.

26

Figure 3.4: SENSE simulation - difference from ground truth.
Reconstructions use (a) error-free sensitivity profile, (b) Gaussian noise
sensitivity profile, and (c) Gibbs ringing sensitivity profile. Acceleration
factors R = 4, 6, 8.
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Table 3.1: SENSE reconstruction percent errors using (1) error-free
sensitivity profile, (2) sensitivity profile with Gaussian noise, (3) sensitivity
profile with Gibbs ringing. Final column shows percent error of sensitivity
profile.

Acceleration Factor: 4 6 8 Percent Error Map
Error-Free Sensitivity 6.2e-4% 4.8e-3% .44% 0
Added Gaussian Noise 11% 15% 27% 17%
Gibbs Ringing 20% 39% 44% 33%

3.5 Experiments

To assess the effectiveness of the proposed solution an in-vivo experiment

was conducted. Data were acquired on a 3T Siemens Trio scanner with a

16-channel head coil receiver. A 3D image volume of size 160 x 160 x 36

was acquired using a 3D flash sequence. As this project considers the task

of two-dimensional image denoising, the 3D volume was separated into 16 x

36 = 576 separate, complex images which were each considered independent

training samples. This is a reasonable sized training dataset for the low-level

task of denoising, as it was demonstrated by [19] that only marginal gains

are achieved by increasing the training set size above 400.

A training set was created which consists of 576 noisy images. During

training random noise was added to the images in both the real and imaginary

domains. The DnCNN was trained for 1500 Epochs. A single slice was

selected as the test set. As a comparative benchmark, a total variation

denoising algorithm was implemented to denoise the MR images prior to the

generation of the SENSE map. The test slice comes from a subject that was

not included in the training set. Identical noisy versions of the test slice were

used to test both the total variation and the DnCNN.

The results which are given show the final images after SENSE recon-

struction. Fully sampled, average images were taken as ground truth. Ret-
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rospectively under-sampled images were taken as the input to the SENSE

reconstruction with an acceleration factor of 2 in the x direction and accel-

erations of 2, 3, and 4 in the y direction.

Results from this thesis are given in two forms. In each case, sensitivity

profiles generated from a variety of method are compared through SENSE

simulations. In the first case, a comparison of the deep denoising method

with baselines is given, comparing the following sensitivity profiles:

• DnCNN deep denoised

• Total variation denoised

• Noisy

The second case compares sensitivity profiles which were generated using

deep learning in a non-ideal network configuration such as:

• No batch normalization or residual learning

• U-Net structure

• Direct estimation of sensitivity profiles

• Joint estimation of magnitude and phase

3.5.1 Other Learning Configurations

U-Net

The U-Net neural network architecture was developed for the purpose of

biomedical segmentation [23], however it is a very general image-to-image

architecture which has been applied to the tasks of MRI super-resolution

[24] as well as image denoising [25]. The key features of a U-Net are five

pooling layers which produce small but semantically rich feature maps.
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Direct SENSE map predictions

For best results, learning is applied in the image domain rather than in

predicting SENSE maps directly. This is because magnitude and phase sen-

sitivity maps have sporadic values in regions of low signal intensity. These

sporadic values must not be included in the training of the network. When

training on sensitivity profiles directly, a simply way to account for sporadic

values is to use weighted MSE and take the weights to be a binary mask

function created by thresholding the original high-resolution images.

As the network was trained to make accurate predictions only where the

binary mask is equal to one, network predictions in zero regions of the mask

are unusable. This leads to aliasing artifacts on the image boundaries. This

trade-off between training accuracy and boundary artifacts does not exist

when training the network to directly predict images.

Magnitude and phase

In the magnitude and phase network, the DnCNN outputs the magnitude and

phase of the MR images as separate channels. In like manner the input to

the network was in magnitude-phase form. Appropriate scaling was used in

preprocessing to ensure that each channel was given equal weight in training.
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CHAPTER 4

RESULTS

4.1 Result Description

Table 4.1 gives the relative error of SENSE reconstructions using (1) the pro-

posed DnCNN method, (2) a total variation denoising approach and (3) no

denoising. In addition, deep denoised results with sub-optimal learning con-

figurations are given using (4) no batch normalization or residual learning,

(5) U-Net neural network architecture, (6) direct sensitivity profile learning

and (7) magnitude and phase estimates. The relative error was calculated

using equation 3.6 with an averaged, fully sampled image taken as ground

truth. In addition, the last column of table 4.1 shows the relative error of

the predicted SENSE maps. It can be seen that the DnCNN method signifi-

cantly outperforms the case where no denoising is applied. Additionally, the

DnCNN method outperforms the total variation method across all accelera-

tion factors with error reductions up to 28%.

Figures 4.1a, 4.1b and 4.1c show SENSE reconstructions generated using

(a) the proposed DnCNN method, (b) a total variation denoising approach

and (c) no denoising. Similary, figures 4.2a, 4.2b and 4.2c show ground-truth

difference images from (a) the proposed DnCNN method, (b) a total variation

denoising approach and (c) no denoising. It can be seen that the DnCNN

method is less noisy and contains diminished aliasing artifact when compared

to the total variation denoised reconstruction. SENSE reconstructions taken
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Table 4.1: SENSE reconstruction percent errors using (1) deep denoised
sensitivity profile, (2) total variation denoised sensitivity profile, (3) noisy
sensitivity profile, (4) deep denoised sensitivty profile without batch
normalization or residual learning, (5) deep denoised profile using pooling
layers, (6) deep denoised profile with direct profile estimation and (7)
magnitude and phase estimated image data. The final column shows the
percent error of sensitivity profile.

Acceleration Factor: Rx2 Ry2 Rx2 Ry3 Rx2 Ry4 Percent Error Map
Deep Denoised 1.96% 3.58% 6.4% 20%
TV Denoised 2.52% 4.55% 8.3% 24%
Noisy 11.1% 17.5% 22.5% 52%
No Batch No Res 2.13% 3.78% 7.14% 21%
U-Net Denoised 2.27% 4.09% 7.53% 24%
Direct Sensitivity 4.17% 5.41% 8.63% 19%
Magnitude and Phase 8.40% 13.03% 22.33% 37%

from unaltered sensitivity profiles show severe aliasing artifact even at low

accelerations.
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(a) Ry = 2 Ry = 3 Ry = 4

(b)

(c)

Figure 4.1: SENSE reconstruction results using (a) deep denoised
sensitivity profiles, (b) total variation denoised sensitivity profiles, (c) noisy
sensitivity profiles. Acceleration factors Rx = 2 on all images Ry = 2, 3, 4
across each of the columns.
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(a) Ry = 2 Ry = 3 Ry = 4

(b)

(c)

Figure 4.2: SENSE reconstruction difference images using (a) deep denoised
sensitivity profiles, (b) total variation denoised sensitivity profiles, (c) noisy
sensitivity profiles. Acceleration factors Rx = 2 on all images Ry = 2, 3, 4
across each of the columns.

Figures 4.3a, 4.3b and 4.3c show suboptimal deep denoised SENSE re-

constructions generated using (a) direct sensitivity profile learning, (b) deep

learning without batch normalization or residual learning and (c) deep learn-

36



ing with U-Net architecture. Similary, figures 4.4a, 4.4b and 4.4c show

ground-truth difference images using (a) direct sensitivity profile learning,

(b) deep learning without batch normalization or residual learning and (c)

deep learning with U-Net architecture. It can be seen that SENSE maps

which were directly learned by the neural network contain significant errors

on the boarders of the subject. In like manner, the U-Net architecture or

removal of residual learning leads to suboptimal results. Figure 4.5 shows

the reconstructions and difference images from the denoised SENSE maps

from the network trained to jointly predict the magnitude and phase of the

noisy image data.
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(a) Ry = 2 Ry = 3 Ry = 4

(b)

(c)

Figure 4.3: SENSE reconstruction results using (a) deep directly learned
sensitivity profiles, (b) deep profiles without batch normalization or
residual learning, (c) deep profiles using U-Net architecture. Acceleration
factors Rx = 2 on all images Ry = 2, 3, 4 across each of the columns.
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Figure 4.3: SENSE reconstruction results using (a) deep directly learned
sensitivity profiles, (b) deep profiles without batch normalization or
residual learning, (c) deep profiles using U-Net architecture. Acceleration
factors Rx = 2 on all images Ry = 2, 3, 4 across each of the columns.
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(a) Ry = 2 Ry = 3 Ry = 4

(b)

(c)

Figure 4.4: SENSE reconstruction difference images using (a) deep directly
learned sensitivity profiles, (b) deep sensitivity profiles without batch
normalization or residual learning, (c) deep sensitivity profiles using U-Net
architecture. Acceleration factors Rx = 2 on all images Ry = 2, 3, 4 across
each of the columns.
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Figure 4.4: SENSE reconstruction difference images using (a) deep directly
learned sensitivity profiles, (b) deep sensitivity profiles without batch
normalization or residual learning, (c) deep sensitivity profiles using U-Net
architecture. Acceleration factors Rx = 2 on all images Ry = 2, 3, 4 across
each of the columns.
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(a) Ry = 2 Ry = 3 Ry = 4

(b)

Figure 4.5: SENSE reconstructions (a) and difference images (b) using
network predictions where magnitude and phase are predicted. Acceleration
factors Rx = 2 on all images Ry = 2, 3, 4 across each of the columns.
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CHAPTER 5

CONCLUSION

5.1 Direction for Future Work

As sensitivity profiles are three-dimensional, there is additional information

that can be exploited by making three-dimensional estimations. This can

easily be achieved by modifying the network architecture to allow three-

dimensional inputs and outputs. Due to memory constraints on the hardware

used in this work, a 3D network would be trained on patches no greater than

80 x 80 x 80, however this is satisfactory for the task of denoising.

Transfer learning and prior information can be included in the learning

process in many ways, such as:

• Baseline sensitivity profiles taken from a uniform phantom previously

may serve as prior information.

• Low-resolution, high-SNR images can be rapidly acquired and used to

solve a joint image-denoising and super-resolution problem.

• Images from different coils can be jointly estimated to enable transfer

learning.

While this project estimated the MR data which was subsequently normal-

ized, it is possible for the network to directly estimate the sensitivity profile

that optimizes SENSE reconstructions. Work would need to be done to im-
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plement the SENSE reconstruction in Tensorflow in a manner that allows

efficient backpropagation of gradients.

5.2 Summary of Findings

It has been shown that deep convolutional neural networks outperform to-

tal variation on the task of denoising MRI images. Furthmore, these gains

directly lead to improved SENSE reconstructions. Improvements in image

reconstruction come in the form of reduced aliasing artifact and reduced ran-

dom noise. Sensitivity estimation with deep-denoising enables a factor-of-two

increase in image acceleration with image quality improvements as compared

to the case of no noise removal.

5.2.1 Network Characteristics

Pooling layers

The success of deep neural networks is heavily dependent of the neural net-

work architecture which is chosen. In the task of denoising MR images, it can

be seen that the DnCNN architecture outperforms the U-Net architecture.

This is likely because the U-Net has a significant number of pooling layers

which shrink the intermediate feature map sizes and cause blurring in the

final output. The removal of pooling layers does not have a significant neg-

ative impact on training, because only low-level image features are required

for the denoising task.
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SAME convolutions

This network utilizes “SAME” convolutions which means that feature maps

are zero padded prior to convolution layers to avoid a change in feature map

size. It has been supposed that such zero padding can lead to boundary

artifacts; however, no such artifacts were discovered in the results.

Phase wrapping

While some authors have had success in directly learning images corrupted

by phase wrapping [14], the results show that the combination of noisy im-

ages, phase wrapping and MSE loss causes significant errors. This problem

is exacerbated by noise in the training image which causes the network to

predict smooth transitions from -pi to pi rather than a sharp discontinuity.

This causes severe artifacts in the location of the discontinuity.

Direct sensitivity estimation

The neural network which directly predicts sensitivity profiles shows severe

boundary artifacts. This is due to the masks which are used in the weighted

MSE function. While it is possible to train the network without masks,

the high-variance background noise of the sensitivity profile dominates the

training error and prevents convergence.

Residual learning

This network uses residual learning and batch normalization. As can be

seen from the results, this combination leads to improved image reconstruc-

tions. Furthermore, convergence happens faster when batch normalization

and residual learning are used.
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