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ABSTRACT

Working with missing or incomplete data is a universal problem in all sci-

ences. In meteorology, temperature data streams can contain missing values

due to sensor malfunctions. In geophysical remote sensing, missing data can

may be attributed to irregular global sampling by an orbiting spacecraft. In

a collaborative filtering application, like the Netflix Challenge, data is in-

complete since it is not possible for all users to provide a recommendation

on all items. Though we do not have access to complete data, it is still

quite possible to forecast weather, and to recommend good movies on Net-

flix. The development of estimation algorithms that properly handle missing

data make data imputation and forecasting possible.

The design of any estimation algorithm depends on the assumptions one

can make on a given set of data. This thesis addresses the problem of esti-

mating a noisy, incomplete time series of a dynamical system with unknown

state evolution. The technique presented is TSCC (Transformed Spiked Co-

variance Completion), a matrix completion algorithm for signal estimation

that leverages the spiked signal model, an assumption that holds true for

many high-dimensional datasets. The TSCC technique exploits this assump-

tion to develop an estimator that is resilient to noise and accurately fills in

missing data.

This thesis first addresses the specific estimation problem and the signal

model that it follows. It then presents a survey of both standard and the

state-of-the-art techniques in addition to an anlaysis of TSCC. These meth-

ods are used to solve the problem of estimating the state of dynamical system,

with partial, noisy observations. Standard textbook techniques are not re-

liable in state estimation due to their inability to handle missing data and

to generalize dynamical models. TSCC is an algorithm which addresses this

estimation problem and accounts for the deficiencies. Concluding this thesis,

several numerical experiments on both synthetic and real data demonstrate
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that TSCC outperforms these other techniques by forming a time-lagged

embedding and estimating the dynamical modes of the system.

TSCC has an advantage over other techniques as it does not require knowl-

edge of the state dynamics and that it leverages the asymptotic behavior of

noisy, low-rank matrices to perform imputation and denoising. The TSCC

technique assumes that a system can be represented by several dynamical

modes which is analgous to a matrix having a low rank. Overall, TSCC is

a state estimation algorithm that performs estimation on noisy and incom-

plete data without prior model assumptions. Numerical experiments show

that TSCC is an enhancement of the current, accepted techniques which

address the same estimation problem.
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CHAPTER 1

MISSING DATA IN DYNAMICAL
SYSTEMS

1.1 Missing Data: A Universal Problem

In all fields of the natural sciences, we rely upon data, whether acquired in-

situ or remotely, to draw conclusions about the world. For example, a typical

goal of meteorology is to forecast the temperature at a given location sev-

eral days in advance from an ensemble of in-situ temperature measurements.

Other examples include radar remote sensing, which typically involves track-

ing a moving target based on the backscattered radiation field collected by an

antenna, or space-based optical remote sensing, which is often used to yield

models of the geophysical environment from spectroscopic measurements of

its photochemical emissions.

A common challenging task in forecasting, tracking, or modeling is the

need to work with missing or incomplete data. For temperature forecasting,

it is impossible to measure temperature everywhere all the time, and sensor

malfunction can introduce data gaps that augment measurements associated

with distributed sensor placement. In radar applications, radio frequency in-

terference or ground clutter can introduce intermittent contamination of the

backscattered signal, while the often limited viewing geometry from satellites

precludes comprehensive spatial sampling of the radiation field. Despite the

common occurrence of sensor outages, data contamination, or incomplete

sampling in these and other data analysis applications, it is still possible to

forecast the weather, track a moving object, and model the geophysical en-

vironment. These tasks are enabled by algorithms that accurately estimate

the true state from partial observations of the system.
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1.2 Observing Dynamical Systems

Dynamic state estimation problems arise in many domains. In dynamic imag-

ing applications such as biomedical or solar tomography [1], the objective is

to image an object in motion by measuring the time-dependent projections

of that object on a sensor. Within the interval of measurement acquisition,

whether an individual image or the ensemble used for the analysis, the dy-

namics of the system must be properly taken into account. Climatological

data analysis of time-dependent geophysical signals, usually incompletely

sampled, likewise requires developing a reliable approach for dynamic signal

recovery in the presence of missing data.

1.3 Overview of Thesis

This thesis addresses the problem of estimating the state of a dynamical

system from noisy, incomplete observations. Though many state estimation

algorithms that already address this problem exist, many have shortcomings

in computational capability, data scaling, improper treatmeant of partial

data, and strong assumptions on parametric state evolution models. To ad-

dress these issues, this thesis will discuss the Transformed Spike Covariance

Completion (TSCC) algorithm, a new method that leverages the spiked sig-

nal model to develop an estimator that produces accurate imputation and

denoising with limited assumptions on state evolution models. Chapter 2

first discusses some mathemtical prerequistites that are fundamental to the

understanding of these estimation algorithms. Chapter 3 then discusses the

signal model used in the problem in addition to the current techniques that

address them. The deficiences of these current techniques are addressed by

this thesis’s main contribution, TSCC in Chapter 4. Chatper 5 conlcludes

this thesiswith several numerical experiments that show the performance of

TSCC over other standard and state-of-the-art algorithms on both synthetic

and real data.
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CHAPTER 2

SVD, MATRIX NORMS, AND THE
LOW-RANK APPROXIMATION

This chapter will serve as a primer for some concepts in linear algebra that

will be used throughout this thesis. These matrix methods are widely used

across all engineering fields as they are useful in linear inverse problems, data

reduction, and reduced order modeling to name a few specific application

domains. The same methods can be applied to time series analysis problems.

2.1 Singular Value Decomposition (SVD)

All matrices M have a Singular Value Decomposition (SVD). The SVD

breaks down a matrix M into its leftmost singular vectors U , rightmost sin-

gular vectors V , and a diagonal matrix containing the singular values ⌃. The

applications of the SVD will be clearly described in the sections describing

SSA, EBLP, PCA, and TSCC.

M = U⌃V T (2.1)

More explicitly if M is an m⇥ n marix this is

M =
h
u1 u2 u3 . . . u

m

i

2

66664

�1 0 0 . . . 0

0 �2 0 . . . 0

. . . . . . . . . . . . . . . . . . .

0 0 0 . . . �
m

3

77775

2

66664

vT1

vT2
...

vT
n

3

77775
(2.2)

U is a matrix 2 IRm⇥m, whose columns contain singular vectors u
i

. V is a

matrix 2 IRn⇥n, whose columns contain singular vectors v
i

. ⌃ is a diagonal

matrix 2 IRm⇥n which has diagonal values �
i

containing the singular values of

M . In addition, most numerical packages that perform SVD have the values

of �
i

arranged in decreasing order (e.g. �1 > �2 > �3... ). Other special
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properties, with regard to these matrices are that U and V are orthogonal,

meaning that UUT and V TV yield the identity I.

From college algebra, it is important to note the relationship between the

SVD and spectral decomposition of positive semidefinite matrices. Suppose

M has decompsoiton U⌃V T .

MMT = (U⌃V T )(U⌃V T )T

= (U⌃V TV ⌃TUT )

= U⌃⌃TUT

= U⇤UT

(2.3)

The diagonal of ⌃ is just the square root of the eigenvalues of MMT . In

addition, U contains the eigenvectors of MMT . By a similar exercise, V

contains the eigenvectors of MTM . Given these properties, one can define

several matrix norms in the next section. The previous results are common

in most linear algebra textbooks.

2.2 Matrix Norms

For many applications in image and signal processing, it is useful to quan-

titatively know the similarity between matrices and vectors. Norms are a

useful way to determine this similarity. Matrix norms are functions on ma-

trices that assign a positive length to the given matrix much like how vector

norms assign length. Many matrix norms exist and can be written but in the

context of matrix completion and time series analysis; however, this thesis

only discusses the Frobenius norm and the Schatten norm.

The Frobenius norm for a matrix M is written as

kMk
F

=

sX

i2I

X

j2J

|m
i,j

|2 =
p
trace(MTM) (2.4)

Simply stated, the Frobenius norm is the square root of the sum of the

square of the entries of the elements m
i,j

in matrix M over all rows and

columns. This calculation is also equivalent to the square root of the trace

of MTM . The trace is simply the sum of the diagonal elements of a matrix.
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The Frobenius norm is analogous to the assignment of a Euclidean length on

vectors.

Another commonly used norm in matrix completion algorithms is the

Schatten norm. This is defined as

kMk⇤p = (
minm,nX

i=1

�p

i

(M))
1
p (2.5)

Here �
i

is a function that returns the ith largest singular value of matrix

M . The operator essentially sums the pth power of each singular value. In

the case where p = 1, the Schatten norm reduces to the sum of the singular

values in M , namely

kMk⇤ = (
minm,nX

i=1

�
i

) (2.6)

For the p = 1 condition, the Schatten norm is sometimes then referred to

as the nuclear, trace, or Fan norm.

2.3 Low-Rank Models

One concept that is addressed in section 3.3 is that multivariate time se-

ries can be rewritten as a sum of lower-rank matrices. It is common to

approximate a given matrix with a simpler, low-rank version. Many of these

approximations come from the assumption that the class of data that one is

working with is low-rank. In dynamical systems theory, a common assump-

tion is that a system can be represented by a finite number of modes. Several

methods can be used to find this low-rank approximation, namely by some

minimization of norm error with regularization. In these cases, they are the

Frobenius norm and the nuclear norm with Tikhonov regularization. This

section will briefly describe these approximation methods.

The problem in low-rank approximation is the following. Given a matrix

M , one seeks to find an approximate matrix M̂ , that has low rank (a small

number of indepenedent columns in M̂). This problem can be formulated as

the minimization of the Frobenius norm error between M and M̂ under the

constraint that the rank of M̂ is less than some desired rank r, an integer.

The problem can then be written as the following optimization equation

5



involving a Frobenius norm error and a rank constraint

minimize
M̂

���M � M̂
���
2

F

subject to rank(M̂) < r

(2.7)

Typically, solving such optimization problem is di�cult as the minimiza-

tion of the Frobenius norm error is a non-convex problem. However, this rank

minization for this problem can be solved using a sum or rank-1 matrices.

Suppose a matrix M1 has rank R1 and suppose R1 > R2. Then M1 can be

written as

M1 = U⌃V T =
R1X

k=1

�
k

u
k

vT
k

(2.8)

The rank R2 approximation of the matrix is simply calculated as the sum

of the first R2 components.

M̂1 = Û⌃̂V̂ T =
R2X

k=1

�
k

u
k

vT
k

(2.9)

Here Û would be the first R2 columns U , ⌃̂ contains the first R2 columns

of ⌃ and V̂ contains the first R2 rows V .

The approximation in equation 2.9 can be used to solve the optimization

problem in equation 2.7 without more sophisticated non-convex programs.

The proof of this solution to the low-rank approximation problem is shown in

the well-known Ekhart-Young theorem. Approximation in this case is simply

just determing the first R2 left and right singular vectors, multipliying the left

singular vector with the transpose of the right singular vectors and scaling by

the associated singular value to form a rank 1 matrix. These rank 1 matrices

are summed over the top R2 singular values.

The problem in equation 2.7 can be varied by penalizing the rank through

some regularization instead of setting a hard number for the rank. This is

formulated in the following optimization problem:

minimize
M̂

���M � M̂
���
2

F

+ �⇥ rank(M)
(2.10)
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Here the rank() function computes the rank of some input matrix M and

� is a penalty factor on the rank. Unlike equation 2.9 where one e↵ectively

sets the singular values �
i

, for i > R2, to zero, the approach in equation 2.10

can be viewed as thresholding the singular values at some cuto↵ values. This

is known as a hard thresholding.

�̂
k

=

8
<

:
�
k

, if �
k

� �

0, �
k

< �
(2.11)

Here � is some set threshold. The approximation of M thus is

M̂ = U⌃̂V T (2.12)

where the diagonal matrix ⌃̂ has diagonal values �̂
k

as show in equation 2.11.

The last low-rank approximation technique that this thesis will address is a

soft thresholding algorithm. This is also known as singular value shrinkage.

Here, instead of setting a limit to the singular values to where they suddenly

become zero, this algorithm will gradually phase out the singular values.

This becomes

�̂
s

=

8
<

:
�
k

� �, if �
k

� �

0, �
k

< �
(2.13)

Here, the methods subtracts or shrinks out some strength from the largest

singular values; this also has the e↵ect of setting the weaker singular values

to zero. The approximation then becomes the same as equation 3.26 with

the exception that ⌃̂ has diagonal entries of �̂
s

instead of �̂
k

. This solution

presented in equation 2.13 solves the following optimization problem

minimize
M

���M � M̂
���
2

F

+ �⇥
���M̂

���
⇤ (2.14)

Here
���M̂

���
⇤
is the nuclear norm of M̂ which is the sum of the singular values

in M̂ . The process of determing a solution to equation 2.14 can be done

through a linear program as the cost function in equation 2.14 is convex.

This soft thresholding algorithm is detailed in [2].

The tools introduced in this section will be utilized in all the techniques de-

7



scribed in Chapter 3 for time series estimation. Essentially, one can reform a

time series estimation problem as a low-rank approximation problem. These

problems, as evident in this section, rely heavily on characterizing the error

through a careful choice of matrix norm. The means to find these approxi-

mate matrix solutions rely ultimately on proper treatment on the shrinkage

or the thresholding of the singular values.
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CHAPTER 3

TIME SERIES ESTIMATION TECHNIQUES

This chapter will lay out the standard and state-of-the-art techniques used

for time series estimation of dynamical systems. Given a series of measure-

ments or observations of a system, these technqiues estimate the system’s

true state. Section 3.1 will first state mathematically the signal model and

the problem that this research will address. Then, section 3.2 discusses the

standard methods used to solve this problem, namely the Kalman filter and

singular spectrum analysis. Section 3.3 presents more modern methods like

the total regularized matrix factorization (TRMF) algorithm and other ma-

trix completion algorithms. This chapter ends with a presentation of the

empirical best linear predictor, an estimation technique that leverages the

spiked signal model, a common characteristic in today’s large datasets.

3.1 Signal Model

Estimation of the state of a dynamical system usually begins by some process-

ing of measurements of that system from some sensor. These measurements

are some linear transformation of the true state. In a discrete setting, these

measurements are put into a time series indexed by some time sample index

set i. In this study, dynamics will be considered to be linear. This model is

summarized by the following:

X
i+1 = F

i

X
i

+ w
i

(3.1)

Y
i

= A
i

X
i

+ ✏
i

(3.2)

The dynamics of this system is described by equations 3.2 and 3.1. Here X
i

is a state vector in 2 IRN at time instance i. F
i

is the state transition operator

that models the next realization of the state X
i+1. wi

is a process noise that

9



accounts for errors in the state transition model. Y
i

is the measurement

vector collected by a sensor that also resides in IRN . A
i

is an observation

matrix that maps the true state X
i

to the measurement Y
i

. A
i

is a diagonal

matrix in IRN⇥N with entries either 0 or 1, accounting for whether or not

a vectoral component of the system was observed. Here ✏
i

is a measurment

noise. Both ✏
i

and w
i

are both additive white Guassian noises.

In this estimation problem, there is no prior knowledge on the state transi-

tion matrix F
i

. This problem assumes complete knowledge of the observation

matrix A
i

, which maps the true state to the measurement. The goal of this

problem is to estimate X
i

with this partial and missing data observation Y
i

.

In a sense, this problem, like most signal processing problems, is a denoising

and imputation problem. As this thesis is interested in estimation of high-

dimensional systems, the methods presented assume that the observations

follow a spike signal model that will be clearly defined in section 3.6.

By inspection of the above signal model, one can see that this is the state

space of linear dynamical system. Traditionally,the estimation problem this

thesis addresses has solutions with the classical Kalman filter discussed in

the next section.

3.2 Kalman Filter

The Kalman filter is an estimation algorithm which addresses the state space

model in equation 3.1. The KF estimates the true state of a system by consid-

ering a series of noisy measurements over time and predicting the probability

distribution of the state iteratively. The KF is commonly used in the controls

community in technologies like navigation, robotics, and econometrics.

The textbook state-space model usually is written as

X
i+1 = F

i

X
i

+B
i

U
i

+ w
i

(3.3)

Y
i

= A
i

X
i

+ ✏
i

(3.4)

The only di↵erence between equations 3.3 and 3.1 is that the state space

for the KF has the term B
i

U
i

which represents a control input U
i

. In this

case, U
i

is 0. In this sense, equation 3.3 becomes equation 3.1. The other

di↵erence between the state spaces is that F
i

is not usually known. The

10



traditional KF assumes known state transitions; however, extensions of the

KF like the switching KF can account for these de�ciencies by learning the

state transitions.

Using the KF or one of its many variants, one can forumulate an esti-

mation algorithm as the following. Suppose Q
i

and R
i

are the covariance

matrices of the process and observation noise. In addition X̂
i|i denotes the a

posteriori state estimate at time i with all observations before and at i taken

into account. In addition, P
i|i is the error covariance which is calculated to

be the Cov(X
i

� X̂
i|i). From these matrices, estimation can be split into

two parts, predicition and update. In prediction, the state X̂
i|i�1 and error

covariance P
i|i�1 is computed. In the update, the state estimate and the er-

ror covariance are updated based on the Kalman gain and the residual error

between measurement Y
i

and the predicted measurement Ŷ
i

.

Prediction contains the following computations:

X̂
i|i�1 = F

i

X̂
i�1|i�1 (3.5)

P
i|i�1 = F

i

P
i�1|i�1F

T

i

+Q
i

(3.6)

Equations 3.5 and 3.6 represent predictions of the state and error covariance

with measurements up to time i� 1.

Update contains the following computations:

e
i

= Y
i

� A
i

X̂
i|i�1 (3.7)

S
i

= R
i

+ A
i

P
i|i�1A

T

i

(3.8)

K
i

= P
i|i�1Ai

S�1
i

(3.9)

X̂
i|i = X̂

i|i�1 +K
i

e
i

(3.10)

P
i|i = (I �K

i

A
i

)P
i|i(I �K

i

A
i

)T +K
i

R
i

KT

i

(3.11)

e
i|i = Y

i

� A
i

X̂
i|i (3.12)

Equation 3.7 represents the residual error between the measurement and

the predicted measurment with observations up to i� 1. Equation 3.8 repre-

sents the covariance of the error residual. Equation 3.9 represents the Kalman

gain. Equation 3.10 represents the state estimate with observations up to and

including time i. Equation 3.11 represents the error covariance with obser-
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vations up to and including time i. Lastly, Equation 3.12 is a calculation

of the error between the measurement and the predicted measurement with

observations up to and including time i. Equations 3.5 to 3.12 represent the

totality of the prediction and update process for state estimation with the

KF. The derivation of these parameters are commonly found in most control

theory textbooks.

The KF as modeled in equations 3.3 to 3.12, proves robust in many ap-

plications where state transition is known. In estimation problems where F
i

is not known or understood well, improper treatment of the state transition

can propagate error in the estimation as the steps require F
i

to be known ac-

curately to perform updates to the Kalman gain. In addition, in applications

where the dimension of the state is moderate, computational constraints are

not a concern. When performing imaging applications where the state could

be an image of size 512 ⇥ 512, the dimension becomes 218. As a result, the

inversion of a 218 ⇥ 218 matrix must be considered as in equation 3.9 in the

update process.

Considering computational constraints and the large uncertainty with the

linear dynamics, the KF may not be a suitable choice in designing a robust

algorithm for this state estimation problem. Section 3.3 discusses Singular

Spectrum Analysis (SSA), a non-parametric estimation technique that does

not require knowledge of these state dynamics in performing estimation.

3.3 Singular Spectrum Analysis

Singular Spectrum Analysis (SSA), is a non-parametric time series estima-

tion technique. Unlike the Kalman filter, which is an iterative technique

that requires many parameters like covariance matrices, SSA performs esti-

mation by forming a time-lagged embedding. These embeddings are inspired

by the embedding work done in dynamical systems theory as shown in [3]

and [4]. The motivating theory behind SSA is that by forming a time-lagged

embedding of measurements, one can decompose the time series into several

dynamical modes. This is under the assumption that a system can be ac-

curately characterized by a few modes, decoupling modes that can represent

noise.

The algorithm for SSA begins by the following process. This subsection de-
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scribes a univariate time series, which can be easily extended to multivariate

time series. Here, the technique begins with a time series of measurements

Y
i

= [Y0, Y1, ...YT�1] where T represents the total number of measurements

one has access to. Each instance in Y
i

is a single scalar value. This technique

forms a time-lagged embedding of length L, Ŷ . This is done by forming a

matrix that has lagged instances of the signal measurements. This matrix is

shown below:

Ŷ =

2

66664

Y
L

Y
L+1 ... Y

L+T�1

Y
L�1 Y

L

... Y
L+T�2

... ... ... ...

Y1 Y2 ... Y
T

3

77775
(3.13)

Here Ŷ is an L⇥K matrix where K is an L⇥ T �L+1 matrix. One can

clearly see that this forms a Toeplitz structure. For the multivariate case,

this would be a block Toeplitz structure. Given this embedding, one can

decompose the structure to the principal modes via an SVD. Suppose now,

Ŷ = Ũ⌃̃Ṽ T . This method can then form several rank-1 matrices

D
i

= �̃
i

ũ
i

ṽT
i

(3.14)

Here i indexes the number of non-zero singular values in ⌃̂. A larger singu-

lar value �̃
i

indicates that the associated eigenvector represents a dominant

dynamical mode. Thus one can now approximate Ȳ with D̃ to create a new

trajectory matrix that is more represenative of the principal modes. D̃ is

calculated as the following:

D̃ = D1 +D2 +D3 + . . . D
R

(3.15)

This method then sums the first R principal modes. This process is known

in the literature as eigen-triple adding. To determine the final estimate of

the clean signal X
i

, this method then performs diagonal averaging on D̃.

Diagonal averaging is simply summing the values on the diagonals D̃ and

dividing by the number of occurences of the the lagged realizations D
i,j

.

This process is detailed in [5]

SSA is a common technique that is used in many time series applications

like climatology and geophysics. This method amounts to doing a truncated
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SVD on a time-lagged embedding. As a result, SSA is faster than KF as

it is not iterative. Though perhaps faster than iterative techniques, SSA

may not perform robustly in the face of missing data. If measurements are

missing, in which case the values imputed to the trajectory matrix would

be 0, the estimate of the singular vector and values may be inaccurate in

the face of missing values. In this sense, the characterization of the principal

eigenmodes may be skewed. Recent methods presented in [5] discuss how SSA

can be updated to better account for these missing values using a dictionary-

based matrix completion algorithm. Section 3.4 discusses how time series

estimation can be reformed into matrix completion problems.

3.4 Matrix Completion Methods

The signal model in equation 3.1 shows that the observations Y
i

are just

noisy, partially measured versions of the true state X
i

. In this case, the

measurement operator A
i

is just a diagonal matrix with either 1 or 0 on the

diagonal that signifies which state feature was observed. Y
i

is then multivari-

ate time series with missing and noisy values. One can then form a matrix of

measurements Y = [Y0, Y1, ...YT�1] forming a matrix of size N ⇥T � 1. From

Y , one can estimate the true time series X = [X0, X1, ...XT�1]. Estimating

the values in this matrix is at the core of matrix completion problems.

Matrix completion is a class of problems where measurements are put

into a matrix and the missing entries of the matrix are filled in according

to some desired structure of the matrix. For example, one may desire the

estimated matrix to have a low-rank structure or some minimum spectral

norm. Typically, these algorithms work by estimating the singular values

and the left/right singular vectors of a partially observed matrix and then

minimizing the Frobenius norm error between the estimated and the observed

entries. In general, matrix completion techniques assume that the columns

of the matrix are independently and identically distributed (iid) according

to some distribution. State-of-the-art techniques such as the ones used in [6,

7, 8] impute values into the matrix with these assumptions. Other methods,

e.g. [9], set the estimation of a partially observed matrix as the minimization

of the nuclear norm of its estimate.

Note that these matrix completion techniques di↵er slightly from low-rank
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approximation in the sense that error is defined over the set of observed en-

tries. Traditionally, low-rank methods do not assume missing entries. Matrix

completion methods assume low-rank structure which allow for modifications

of the low-rank approximation algorithms in Chapter 2. When the low-rank

assumption is properly leveraged, these techniques have high reconstruction

accuracy but do not incorporate any temporal dependencies in the columns of

matrices. In addition, these techniques are often employed in recommenda-

tion systems, where the measurement noise is either very low or non-existent.

For this applicaition, where one wants to estimate the state of a dynam-

ical times series, the temporal structure of the matrix should be taken into

account. For example, it is possible to reform previous algorithms like SSA

into a matrix completion algorithm by modifying the treatment of missing

entries. An extension of the SSA algorithm in [5] demonstrates that matrix

completion can be done with SSA via dictionary learning. In this algorithm

(SSA-MC), given a fully observed set of data Ȳ , a matrix, a dictionary D

is learned from the normal decomposition in the traditional SSA algorithm

described above. The dictionary D is taken to be the left singular vectors of

the SVD of Ȳ .

Learning D and accepting new input Y , then the SSA-MC algorithm tries

to best approximate and fill the entries of Y by approximating it as DL.

The problem is then reformed as trying to find a matrix L that best fits the

observed entries in Y . This is best interpretated in the following optimization

problem:

minimize
L

rank(L)

subject to P⌦(M) = P⌦(DL)
(3.16)

Here P⌦ is a sampling operator. This is e�ciently computed through the

use of Augmented Lagrangian Method (ALM) as detailed in [5]. Though this

method is considered a state-of-the-art method for matrix completion in the

context of time series, it has the disadvantage that a complete dataset must

be used for training. This is a luxury not found in many application such as

in space remote sensing, where it is nearly impossible to obtain a complete

dataset. The temporal regularized matrix factorization (TRMF) is another

matrix completion technique with time series but it does not require training

on previous data.
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3.5 Temporal Regularized Matrix Factorization

Matrix completion methods aim to impute values where data is unknown

in a matrix. Usually, this is done via some rank minimization of the matrix

or some nuclear norm minimization. TRMF is a matrix factorization that

imputes missing values by approximating an input data matrix as the prod-

uct of a feature and temporal matrix. Using the signal model described in

equation 3.1, suppose that one wishes to estimate the state X
i

where the

measurement, Y
i

is simply a noisy version of the true parameter, as in any

forecasting situation. In this case the observation matrix A
i

is a diagonal

matrix. A zero in the jth element of the diagonal indicates a missing value

in the measurement. Thus one can collect the measurement y
i

into a matrix

Y , where the ith measurement is just the column, y
i

.

In this framework, the columns of Y represent a time series of measure-

ments, which in this case are just a time series of the true signal y
i

, but

with noise. The TRMF algorithm assumes that the matrix Y is actually a

decomposition of FM , a feature matrix F 2 IRn⇥k and a temporal matrix

M 2 IRk⇥t, where n is the feature dimension, t is the number of samples, and

k is the latent dimension. M is commonly referred to as the latent embed-

ding. The jth measurement in Y is simply the matrix F operated on the jth

column of the latent embedding in M . In other words, this is y
j

= Fm
j

. The

measurements of Y changes in time as M changes; future measurement y
j

depends on m
j

. In [10], future embeddings are modeled in an autoregressive

fashion:

m
t

=
X

l2L

W lm
t�l

(3.17)

Here L is a lag set and W l is the lth weight applied on the l� lagged previous

value of m. With the knowledge that data matrix Y has such structure, the

following temporal regularization can be formulated to determine matrices

F and M which constitute our original data matrix Y .

argmin
F,M,W

X

i,t2⌦

(Y
it

� fT

i

m
t

)2 + �
f

R
f

(F ) +
kX

r=1

�
m

T
AR

(m̄
r

|L, w̄
r

, ⌘) + �
w

R
w

(W )

(3.18)

Examining equation 3.18, one should note that it is the sum of four terms

A,B,C,D. Term A simply takes the square error between the ithfeature at
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sample t and the ith row of F and the tth embedding. This optimization is

performed over all known values in ⌦. Terms B and C are simply a Frobenius

norm penalization on F and W respectively. Term C is temporal regular-

ization which penalizes error between future embedding x
i

and the sum of

W
i�1mi�1 + W

i�2mi�2 + W
i�3mi�3.... Minimization of this cost function is

alternated between minimizing F when M,W are fixed, X when F,W are

fixed, and W when F,M are fixed. The numerical methods used to solve

this cost function are detailed in [10]. In summation, the imputed values are

obtained when F and X are obtained by simply multiplying FM = Ŷ , where

Ŷ is an imputed approximation of X. It is important to note that weighting

matrices W obtained in minimizing 3.18 can be used to predict future values

of W .

Currently, in the high-dimensional time series community, TRMF serves as

the state-of-the-art estimation technique due to its high prediction accuracy

and its clever fitting of the autoregressive nature of the data. Though TRMF

performs well on estimation in datasets that have clear periodicities that can

be modeled well by an autoregressive process, this assumption can be very

limiting in dynamical systems that do not follow this model. Unlike SSA,

TRMF is a parametric model, meaning that there is a functional form for

the linear dynamics.

Instead of fitting to a functional form, one can also consider identification

of the dynamical modes embeddded within the set of observation. The follow-

ing section describes a recent discovery in the geometry of high-dimensional

datasets that will serve useful in developing a robust matrix completion algo-

rithm that performs this mode identification. This thesis will then leverage

this robust algorithm in the development of the main contribution of this the-

sis, Transformed Spiked Covariance Completion (TSCC), a non-parametric

time series estimation framework.

3.6 Spiked Signal Model and PCA

In modern estimation problems, where the dimension of the data can be

quite large, it is common to reduce the dimensionality of the dataset to a

lower-dimensional representation. This section describes the conditions in

the signal model in which this reduction can happen. This result will then
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be used in developing the estimator in the following section.

Principal Component Analysis (PCA) is a common data reduction tech-

nique that is used in many facets of signal processing and machine learning.

With the ever increasing demands of data processing, PCA is a robust al-

gorithm that reduces a dataset to a possibly more meaningful, lower dimen-

sional space. PCA works on the principle that a dataset can be projected

onto a small set of eigenvectors that represent the largest variance within the

data.

Suppose, there is some data matrix X = [X1, X2, ...Xp

] which lives in

IRN⇥P . Data reduction with PCA can be done by first estimating the mean

of X as

µ̂ =
1

N

NX

n=1

X
n

(3.19)

One then can estimate the covariance ⌃
n

to be

⌃
n

=
1

N

NX

n=1

(X
n

� µ̂)(X
n

� µ̂)T (3.20)

One way to find the principal eigenvectors or the principal components, one

can take an SVD of ⌃
n

= U⌃UT and project the first R columns of U onto

X. In other words if U = [u1, ...., uN

]. One can then write U
r

= [u1, ...uR

].

The reduced data X̂ = UT

r

X. This is one method of implmenting PCA.

PCA works in the sense that as the number of samples go to infinty, the

population covariance ⌃
n

and the population mean µ̂ converge to the true

covariance ⌃ and true mean µ. It is important to note that when examining

the distribution of the eigenvalues of ⌃
n

, the largest eigenvalues represent the

weight on the eigenvectors in the direction of greatest variance. In this case,

the largest eigenvalues associated with the strongest eigenvectors do represent

the true principal components. The data then lends itself as having some

low-dimensional structure.

Suppose now there is the situation where n represents the dimensionality

of some data and p represents the number of samples. As both p, n ! 1 with

a fixed ratio p/n = �  1, the strongest eigenvalue may not necessarily be

associated with the true principal component. There are simply not enough

samples to correctly obtain the variance in the dataset. In this case, strong
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eigenvalues can be deceiving; these eigenvalues may not correspond to the

true principal component.

Suppose X is an M ⇥ N iid random matrix. In random matrix theory

the distribution of eigenvalues in S
n

= 1
P

XXT follows the Marčenko Pastur

distribution shown in [11]:

dF
�

(�) =
1

2⇡

p
((�+ � �)(�� ��))

��
1[��,�+](�)d� (3.21)

This measure enables analysis of the distribution of eigenvalues within

some dataset. In the case, where the dataset is some signal contaminated by

white noise, it may not be possible to identify a principal component in the

data or find the strongest eigenvalue in the dataset. In the right-hand graph

in figure 3.1, in the case of very low signal to noise, it is deceiving to see

that there are a few strong eigenvalues. These eigenvalues are eigenvalues

associated with noise. This behavior di↵ers from the case of high signal

to noise (left-hand graph of figure 3.1). Here, it is less di�cult to identify

the true principal component. In the case of the high SNR regime, given a

distribution of the eigenvalues, there is a popout of the largest eigenvalue

from the bulk of the distribution. This popout of the eigenvalue from bulk

is seen in the left-hand graph in figure 3.1.

Given a randomly generated rank-1 matrix (one principal component),

with two noise levels, one can plot the distribution of the eigenvalues. It

is shown in the SNR = 10 case, there is a popout of the largest eigenvalue

from the distribution, meaning that a principal component can be easily

identified. In the SNR = 0.01 case, one cannot see this spike e↵ect and

should be cautious in suggesting that the largest eigenvalue represents a true

principal component from the original data.

19



Figure 3.1: Left: In a high SNR regime, there is a popout of the largest
eigenvalue from the bulk. Right: In a low SNR regime, there is no popout
phenomenon and all eigenvalues are contained within the bulk.

These plots of the eigenvalues allow one to capture the principal compo-

nents of the data. This phenomenon is described in [11]. As this problem

works with a transformation of a high-dimensional signal with noise, one can

use knowledge of the noise model and the Marčenko Pastur distribution to

aid in developing a signal estimation algorithm.

3.7 Empirical Best Linear Predictor

This thesis now discusses a solution to the problem Y
i

= A
i

X
i

+ ✏
i

. The

work in Emperical Best Linear Prediction (EBLP) provides a framework

for creating an estimator that is resilient to noise, handles missing data,

and is computationally e�cient. EBLP is an estimator based on the Best

Linear Unbiased Predictor (BLUP). In signal processing, BLUP is know as

the Wiener filter for denoising.

EBLP is an asymptotic estimator of BLUP. This technique uses the spiked

signal model. In notation within the statistics community, suppose the time

series has X
i

as a p�dimensional vector and that there are n measurements.

EBLP is BLUP in the limit that both n, p ! 1 and that the ratio p

n

! �.

This is in the same spirit of the spike model in section 3.6. In addition, this

framework treats X
i

as random vectors lying in a low-dimensional space,

namely:
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X
i

=
rX

k=1

l
1
2
k

z
ik

u
k

(3.22)

Here u
k

is a unit vector where l
k

is a scale and z
ik

is a mean zero random

variable.

3.7.1 From BLUP to EBLP

The di↵erence between BLUP and EBLP is clarified in this section. Recall

that BLUP is a parameter estimation technique which comes from the setting

of a random e↵ects model, where the samples are drawn from populations

with di↵ering variances. It is shown in the literature that the best estimator

of X
i

from the measurement Y
i

is given as X̂BLP

i

. This is the best estimate

in the mean squared error sense (i. e. IE
���X̂BLP

i

�X
i

���
2

)

X̂BLP

i

= ⌃
x

AT

i

(A
i

⌃
x

AT

i

+ ⌃
✏

)�1Y
i

(3.23)

This technique defines ⌃
X

to be the covariance matrix of X
i

and ⌃
✏

to be

the covariance matrix of the noise ✏
i

. One can write ⌃
X

as

⌃
X

=
rX

k=1

l
k

u
k

uT

k

(3.24)

Both parameters ⌃
✏

and ⌃
X

must be estimated. Since this thesis is inter-

ested in the high-dimensional case of this predictor, it is di�cult to exactly

estimate the true population covariance of ⌃
X

. In addition, this estimator

requires the use of a matrix inverse, which can be slow computationally in

high-dimensional signals. In the limit that the number of samples tend to

infinity, the estimator asymptotically converges to a new predictor that does

not involve a matrix inverse. This convergence is expressed as:

X̂0
i

=
rX

k=1

⌘0
k

hAT

i

Y
i

, µ
k

iµ
k

(3.25)

In writing this estimator, the left singular vectors are unknown and must

be estimated from the population covariance which in this case is
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⌃
p

=
nX

k=1

(AT

i

Y
i

)(AT

i

Y
i

)T ⇥ 1

n
(3.26)

This process is also equivalent to taking the left singular vectors from the

SVD of the matrix [AT

1 Y1, ....A
T

N

Y
N

]. One can now write the estimator in a

similar fashion to equation 3.25.

X̂⌘

i

=
rX

k=1

⌘
k

hAT

i

Y
i

, µ̂
k

iµ̂
k

(3.27)

One should note that now ⌘
k

is di↵erent from ⌘0
k

due to the angle between

the correlation of the true singular vector with the population singular vector.

Suppose one can work with the backprojected data B
i

= AT

i

Y
i

. The esti-

mator in equation 3.27 becomes

X̂⌘

i

=
rX

k=1

⌘
k

hB
i

, µ̂
k

iµ̂
k

(3.28)

This methods writes the data matrix estimate to be X̂⌘ = [X̂⌘

1 ...X̂
⌘

n

]. This

estimate can also be expressed as X̂⌘ =
P

r

k=1 ⌘kµ̂k

µ̂T

k

B. From this result,

B and X⌘ have the same singular vectors. One can then argue that X̂⌘

i

is

a random variable with A
i

and ✏
i

. Thus, the error in predicting X̂⌘

i

is the

same as the error in estimating the matrix X̂⌘. Thus, one can conclude that

estimating X
i

is equivalent to a matrix completion or a low-rank approxi-

mation on B, where approximation can be accomplished by singular value

shrinkage.

3.7.2 EBLP Theoretical Development

This section will provide the derivation of the EBLP algorithm and then

discuss the step-by-step implentation of EBLP. First, this method shall define

the backprojected sample B̃
i

= M�1AT

i

Y
i

and the diagonal normalization

operator M = IEAT

i

A
i

. For this derivation, this method considers A
i

as a

random variable which samples the true stateX
i

. In addition, it is convenient

to define A
i

AT

i

as equal to M +E
i

where E
i

is a mean zero diagonal matrix.

It can be show that the operator norm of E
i

tends to zero in the high-

dimensional limit. Beginning again with the signal model:
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Y
i

= A
i

X
i

+ ✏
i

(3.29)

One can then backproject the data and use A
i

AT

i

= M + E
i

B
i

= AT

i

Y
i

= AT

i

A
i

X
i

+ AT

i

✏
i

B
i

= (M + E
i

)X
i

+ AT

i

✏
i

B
i

= MX
i

+ E
i

X
i

+ AT

i

✏
i

(3.30)

In the high-dimensional limit E
i

X
i

! 0:

B
i

⇠ MX
i

+ AT

i

✏
i

(3.31)

Finally, the distribution of B̃
i

is determined to be

B̃
i

= M�1AT

i

Y
i

+M�1AT

i

✏
i

(3.32)

The observation of the back rojected data is just the true signal with

some linear transformation of the noise. Based on this result, the proce-

dure determine X
i

is a singular value shrinkage scheme that would denoise

the backprojected to perform the estimation. The step-by-step scheme is

decribed in the following section.

3.7.3 EBLP Algorithm

The EBLP algorithm shown in [12] can be performed using the folllowing

steps:

1. As input, this algorithm has the observations Y
i

, which are just linearly

transformed versions of the true state with additive noise. In addition, there

is an input which is the estimated rank of the data matrix r and the mea-

surement matrices A
i

.

2. Form a backprojected data matrix B from the observations. This can

be written as [AT

1 Y1...A
T

n

Y
n

]T . In additon calculate the diagonal normal-

ization matrix M̂ = n� 1
2
P

n

i=1 A
T

i

A
i

. Following this step, normalize B by

B̃ = BM�1.
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3. From step(2), one uses the SVD to calculate singular values �
k

and the

top r singular vectors û
k

and v̂
k

of the matrix B̃.

4. This algorithm then computes the estimated true data matrix X̂ =

[X̂1...X̂n

]. This is equal to
P

r

k=1 �̂k

û
k

v̂
k

where �̂
k

is calculated by l̂
1
2
k

ĉ
k

ˆ̃c
k

.

This is done by the following:

l̂
k

=
1

D̂(�
k

)2

ĉ2
k

=
m̂(�2

k

)

D̂0(�2
k

)l̂
k

ˆ̃
c2
k

=
ˆ̄m(�2

k

)

D̂0(�2
k

)l̂
k

(3.33)

Here D̂ and D̂0 are the D transforms and m̂ and ˆ̄m are the Stieltjes-

transform-like functionals defined in [12]. Given an approximate noise level

and rank estimate, these transforms allow for estimation of optimal singular

values that will phase out principal components that are associated with

noise.

As this algorithm generates an estimator in a high-dimensional space, this

thesis willl leverage the result and the algorithm in constructing the trans-

formed spike covariance completion algorithm.

3.8 Overview

This section explores several options that solve the signal model above. Tra-

ditional methods like KF and SSA can perform robust estimation; however,

they may prove ine↵ective in the face of high-dimensional estimation, model

uncertainty, and partial data. This section then looks at other algorithms

that involve the notion of matrix completion like TRMF and EBLP to per-

form denoising and imputation. Chapter 4 discusses TSCC, an algorithm

that is motivated by some of the facets of each of the previous methods

explained.
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CHAPTER 4

TRANSFORMED SPIKED COVARIANCE
COMPLETION

This chapter describes a new algorithm for high-dimensional signal estima-

tion. This algorithm is non-parametric in the sense that it does not assume

any functional form for the state transition of the time series. The signal

model used is that of the state space model shown in equation 3.1. In addi-

tion, the signal also follows a spiked covariance model like that in the EBLP.

4.1 Algorithm Overview

Given Y
i

, a series of observations, which are a noisy, transfomed version of

the true state X
i

, the goal is to find an estimate X̂
i

from Y
i

. This is framed

as a matrix completion problem.

4.1.1 Trajectory Matrix Formation

Each measurement Y
i

is concatenated vertically to form a time-lag embedding

of length L to form a trajectory matrix Z. E↵ectively, each measurement Y
i

is concatenated with the previous L� 1 measurements and stacked into the

columns of Z:

Z =

2

66664

Y
L

Y
L+1 ... Y

J

Y
L�1 Y

L

... Y
J�1

... ... ... ...

Y1 Y2 ... ...

3

77775
(4.1)

The trajectory matrix Z follows a block Toeplitz structure where the mea-

surement vector Y
i

is repeated along the diagonal. Z is an NL⇥ (T �L+1)

matrix where N is the dimension of the measurement, L is the number of

lagged versions of Y
i

, and T denotes the number of measurements. Now,

one can define Q to be a matrix, with columns Q
i

, to be the true trajectory
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matrix of X. The formation of trajectory matrices here are one of many

examples of time-lagged embeddings found in dyamical systems theory. By

creating a structure that represents lagged versions of itself, the embedding

can capture the various modes of the system being observed as shown in

Taken’s embedding theorem [3].

If in the case where the Y
i

is a full observation, that is A
i

, the sampling

operator, is an identity matrix, then one can just use the traditional SSA

technique to obtain a low rank approximation of Z with some shrinkage on

the singular values. This can be written as

Q̂ =
rX

k=1

⌘(�
k

)u
k

v>
k

(4.2)

Here ⌘ denotes a shrinking operation on the singular values. One should

note that Q̂ follows a block Toeplitz structure. In order to get a final estimate

on X, this algorithm performs diagonal averaging on the diagonals of the

matrix.

X̂
i

=
1

L

X

j,k

Q̂
j,k

where k � j = i (4.3)

Here, we take the sum over the jth lagged vector at time k for 0  j  L� 1

and 0  k  T � L.

Thus far, this describes a multivariate SSA method for estimation. In the

signal model of interest in this thesis, A
i

, the sampling operator, may not

be an identity. In this technique, A
i

is taken as a diagonal matrix of ones

or zeros for whether or not the ith feature of the state was observed. If one

uses the above technique, SSA will not provide a good estimate of X due to

the missing entries. The following section describes the statistcal aspect to

TSCC that will handle the missing entries.

4.1.2 Linear Estimation with Spiked Covariance Model

This technique utilizes a signal model in which the observation Y
i

is a linear

transformation of the true state A
i

X
i

with additive white Gaussian noise ✏
i

.

Given this model, one can write an estimator like the EBLP in [12] to denoise

and fill in the entries of trajectory matrix Z.
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E↵ectively, this method would perform imputation on the missing entries

of Z. First, for notation, Ã
i

is the truncation matrix for each column of Z.

Ã
i

is of dimension NL⇥NL with diagonal values of either one or zero. The

additive white Gaussian noise for each column Z
i

is denoted by ✏̃
i

. In the

same spirit as the proof in section 3.7, this algorithm defines the diagonal

normalization matrix as

M =
1

T � L+ 1

T�L+1X

i=1

Ã
i

Ã>
i

(4.4)

Essentially, the signal model can be rewritten as:

Z
i

= Ã
i

Q
i

+ ✏̃
i

(4.5)

Similar to the derivation of the EBLP, one can work with the backprojected

data Ã
i

Z
i

.

B
i

= Ã>
i

Z
i

= ÃT

i

Ã
i

Q
i

+ ÃT

i

✏̃
i

(4.6)

This method writes Ã
i

ÃT

i

= M+E
i

. Here E
i

is the deviation of Ã
i

ÃT

i

from

the ensemble mean from M . In the high-dimensional limit, i.e., NL ! 1,

T �L+1 ! 1, and NL

T�L+1 ! �, the operator norm of the matrix with rows
EiQip
T�L+1

vanishes. The backprojected data B
i

becomes

B
i

= Ã>
i

Z
i

= MQ
i

+ E
i

Q
i

+ Ã>
i

✏̃
i

⇠ MQ
i

+ Ã>
i

✏̃
i

(4.7)

Because M is full rank with high probability, M has inverse M�1. It

naturally follows that

B̃
i

= M�1B
i

⇠ Q
i

+M�1Ã>
i

✏̃
i

(4.8)

It is now clear that the backprojected data is just the true signal con-

taminated by colored noise M�1ÃT

i

✏̃
i

. One uses the empircal best linear

estimatior in [12] to estimate Q
i

from B̃
i

. This linear prediction is known

in signal processing as the Wiener filter. This algorithm then estimates the

singular vectors u
k

and v
k

and singular values �
k

by taking an SVD of B̃.

Following SVD, �
k

is shrunk using the plug-in equations 3.33 to find the

optimal singular values �̂
k

from singular value shrinkage using the Marčenko

Pastur distribution and random matrix theory.

Finally, this algorithm truncates and shrinks the singular values of B̃ using
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random matrix theory and generalized Marčenko Pastur distribution [11].

The singular values after shrinkage are denoted by �
k

and the estimated Q

is

Q̂ =
rX

k=1

�
k

u
k

v>
k

(4.9)

This algorithm obtains an estimate of X
i

by diagonal averaging Q̂. This

process is summarized in the following pseudocode.

Result: X̂

Input : Y 2 IRN⇥T , Measurements;

Input : Lag parameter L;

Input: Rank Estimate R;

Input: Noise Level ✏;

Input: Measurment Indicator Ī 2 IRN⇥T

Allocate Z 2 IRLN⇥T+L�1;

Allocate Î 2 IRLN⇥T+L�1;

for t in T+L-1 do

LaggedMeasurement = vec(Y
t:t+L�1);

Z
t

= LaggedMeasurement;

LaggedIndicator = vec(Ī
t:t+L�1);

Î
t

= LaggedIndicator
end

Allocate M̂
i

2 IRLN⇥LN

for t in T+L-1 do

LaggedI = vec(Ī
t:t+L�1);

M̂
i

= M̂
i

+ diag(LaggedI) ;

end

M̂
i

= M̂
i

/(T + L� 1);

Z̄ = M�1
i

Z //Back project data;

Estimate Q from Z̄ using EBLP ;

Estimate X̂ by Diagonally Averaging Q;
Algorithm 1: TSCC
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4.2 Computational Complexity

In addition to higher accuracy, the TSCC technique can be a faster algorithm

when compared to TRMF. The complexity for TSCC is O(min(LN, T �L+

1)2 ⇥max(LN, T � L+ 1)). Like in the signal model, N is the dimension of

the state vector, T is the number of measurements, and L is lag parameter

for the trajectory matrix. This complexity comes mainly from the fact that

EBLP performs an SVD with other O(NT ) calculations in generating the

shrinkage coe�cients.

TRMF is an iterative algorithm whose single update complexity for each

iteration is O(NTk2+L(T �L+1)k2+(L3+TL2)). Here the variables k and

L respectively represent the latent dimension and the lag parameter (of the

autoregressive model). Note that the complexity is the sum of three terms.

TRMF decomposes a data matrix to two matrices that are constrained by

an optimization problem that minimizes the Frobenius norm error between

the observations and the approximation and the model error [10]. It is im-

portant to note that as the dimensions of the matrix increases, the number

of iterations increases.

Since TRMF assumes a model for the dynamical system, to properly find

its factorization, one would need to search through various model parame-

ters, namely k and L to best fit the observations. TSCC, a non-iterative

algorithm, can potentially have a better complexity compared to TRMF.

The TSCC complexity is dominated by a SVD operation; new algorithms

like the one presented in [13] show that a randomized SVD for the low-rank

approximation is linear with O(lMN) where l is slightly larger than rank r of

the matrix. Potentially, the incorporation of this algorithm into the current

TSCC framework can lead to a complexity that is faster than TRMF.

4.3 Advantages

The design of this algorithm was based on several constraints involving sig-

nal dimensionality, robustness to high noise levels, and ability to handle

missing data. Traditonally the Kalman filter or ensemble Kalman filter

would have been the algorithm of choice; however, this would have required

an accurate knowledge of the state transition, a luxury unknown in many
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applications. SSA is another alternative traditional technique that is non-

parametric, meaning there is no model for the state dynamics. SSA simply

embeds time-lagged samples and performs a low-rank approximation to es-

timate the signal. This technique can be expensive in high dimensions as

performing an SVD is an O(min(M,N))2 operation. This algorithm may do

a poor job in gap filling if the singular values and vectors are inaccurately

estimated. TRMF is another method that is considered the state-of-the-art

for the high-dimensional time series estimation problem; however, TRMF

may not be suitable in applications where the dynamics can be captured well

by an AR model.

TSCC is an algorithm that fixes many of the shortcomings in the algo-

rithms presented in Chapter 3. TSCC does not rely on any specific para-

metric model. TSCC does not require any priors on the state dynamics.

The algorithm essentially captures the dynamics in an embedding, such that

the resulting representation still has the qualities of the spiked covariance

model, allowing the use of the EBLP to estimate the signal. TSCC di↵ers

from direct usage of EBLP, as that method does not assume any prior struc-

ture on the estimated matrix nor does it assume that the signal is a time

series. As shown in the section 4.2, the TSCC algorithm can be made more

computationally e�cient with methods like randomized SVD.
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CHAPTER 5

NUMERICAL EXPERIMENTS

5.1 Experimental Overview

This chapter presents three experiments that demonstrate the performance

of TSCC over the other algorithms described previously, namely the stan-

dard SSA, TRMF, and EBLP. Each of the described algorithms produces

an output, the estimated state of the system, given noisy, partially observed

data. The input in each experiment is a dataset that is noisy and has miss-

ing values. The resulting output of each algorithm is evaluated on either the

accuracy of the estimate or by examining the physicality of the result.

Experiment I uses synthetic data generated by using an autoregrressive

model with a control of the noise level and the number of missing values.

Experiment II uses tra�c sensor data collected in San Francisco. In this

case, there is no control on the noise but a control on the number of missing

values. Both experiments I and II have a ground truth in which the results

of each estimation method can be compared against numerically. Accuracy

is evaluated by using the normalized Frobenius norm error or the Root Mean

Square Error (RMSE) between the estimate and the ground truth given by

Err =
||X � X̂||

F

||X||
F

(5.1)

Experiment III uses data from NASA’s Sounding of the Atmosphere using

Boradband Emission Radiometery (SABER). The quantity that this exper-

iment examines is the derived hydrogen density derived from measurements

taken from the Thermosphere Ionosphere Mesophere Energetics and Dynam-

ics (TIMED) spacecraft. This experiment will evaluate the physicality of the

data imputation results across the algorithms described.
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5.2 Experiment I: Synthetic Data

Experiment I compares four methods. The first method is TRMF as seen in

[10]. TRMF performs time series estimation via matrix completion under the

autoregressive assumption. The second method is direct estimation of matrix

M with EBLP only. The third technique is the TSCC technique detailed in

Chapter 4. The fourth technique is the standard SSA technique [5].

The input to each technique is a noisy data matrix Y generated from the

autoregression in equation 3.17. For TRMF, the number of iterations is set

to 10, the point where the algorithm converges. The simulated data has 50

state features and 250 time samples for N and T respectively. The input

data is created by first generating 100 clean data matrices (no noise). To

test various levels of noise, Gaussian noise vectors with mean 0 and standard

deviations of 0.1, 0.3, 0.5, 0.8 and 1.0 are added to the clean matrix. In

total, with 100 unique clean matrices with six noise levels (noise deviations),

there are a total of 600 input matrices tagged by a unique level of noise and

a unique clean matrix. To simulate missing data, 20% of the entries of each

column of Y are randomly set to zero. Each of the mentioned algorithms

evaluates all 600 matrices.

Figure 5.1 displays the algorithm output with the unique clean matrix 0

at the six levels of noise deviation. Each column represents (excluding the

Clean Data column) the output of each algorithm at a given noise level.

In each panel, the output contains two dimensions, a horizontal dimension

representing time samples and a vertical dimension representing features.

The error is calculated for each method by averaging the RMSE error

of each of the mentioned methods at each given noise deviation over each

unique clean data matrix. Figure 5.2 displays the average error as a function

of the input noise level. As expected, error increases with increasing noise.

The TSCC method error curve is below each of the error curves for all noise

levels.
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Figure 5.1: Experiment I - The output of each algorithm for the synthetic
data at each level of noise deviation. Each column represents (excluding the
Clean Data column) the output of each algorithm at a given noise level. For
all cases, TSCC accurately reconstructs the original dataset in comparision
to SSA, EBLP and TRMF as they all contain vertical striations
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Figure 5.2: average error over all noise levels - The RMSE between estimate
and ground truth are averaged over all 100 unique clean data matrices at a
given noise level.

The TRMF and the TSCC methods capture the decaying oscillatory be-

havior of the clean data. The EBLP method by itself is not robust to missing

data for this example as shown with the striation through feature dimenions

of the matrix. These striations are also seen in the vertical direction of the

TRMF subplots in figure 5.1. TSCC performs better than EBLP by reform-

ing Y as a trajectory matrix. TSCC then has increased estimation accuracy

due the mode capture capability of the embedding.

In these experiments, the average compute time was calculated by dividing

the time taken to estimate the matrices over the number of data matrices.

The average compute time was 294 ms for TRMF, 56 ms for EBLP, and

64 ms for TSCC on a 3.3 GHz Intel i7 processor. Experimentally, TSCC

performs faster than the state-of-the-art TRMF.
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5.3 Experiment II: San Francisco Tra�c Data

The San Francisco Tra�c Data set taken from the experiments in [10] consists

of the averaged hourly wait time of a car idling at stoplights at 50 di↵erent

(dispersed) sensors in the greater San Francisco area. A partition of the

original dataset is seen in figure 5.3. This shows a matrix with the vertical

and horizontal axes representing the spatial position of sensors and time

sample index respectively. Each pixel in the matrix is a normalized wait

time; brighter colors represent a longer wait time and darker colors represent

short wait times. The periodic nature of weekday tra�c is captured in hourly

time samples 125 to 250 where there is an alternation between bright and

dark pixels indicating rush hour and nighttime tra�c. Hourly time samples

250 to 300 show relatively lighter pixel intensities indicating the lighter tra�c

during the weekend.

Experiment II tests the imputation capability of each algorithm. Data

is removed by simulating a sensor blackout where 20% of the data in each

column is set to 0 at a single hourly time sample index. For simplicity of

data removal, there is also an additional constraint that the removal of data

must be continguous (i.e. sensors 1, 2, 3, 4, 5 are removed from a total

of 50 sensors). The removal of data is seen in figure 5.4. The inputs into

each algorithm are the artificially incomplete dataset and masking matrix,

a matrix indicating where and when a sensor blackout (data removal) took

place. The accuracy output of each estimation algorithm is evaluated by the

Root Mean Square Error (RMSE) defined in equation 5.1.

TSCC has the highest reconstruction among all four algorithms. The in-

crease in accuracy between TSCC and EBLP is due to EBLP not accounting

for spatiotemporal correlations in the data. The baseline SSA output in

figure 5.5 does inpute data at a high fidelity due to improper estimation

of singular vectors as discussed in section 3.8. TRMF recovers the general

temporal structure of the tra�c pattern as shown in figure 5.6. There is a

significant mismatch in relative intensity values at time samples 0 through 30

due to poor initial condition estimation. TSCC outperforms TRMF due to

this initialization failure in addition to the poor model assumption as TRMF

assumes the dynamics are autoregressive. TSCC also outperforms EBLP as

shown in figure 5.7 as TSCC incoprorates a time-lagged embedding. Fig-

ure 5.8 shows that TSCC has the smallest reconstruction error, performing
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slightly better than EBLP.

Figure 5.3: Original tra�c data [10] - vertical axis shows spatial position of
sensors. The horizontal axis represents hourly time sample indices. The
pixel intensities indicate the level of tra�c intensity, brighter color showing
greater tra�c and darker colors meaning lighter tra�c

Figure 5.4: 20% of all tra�c data is randomly removed at each hourly time
sample by setting continguous sensor locations to 0. This is seen in the
dark vertical stripes.
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Figure 5.5: The output of the baseline SSA method has an RMSE of 0.604.
The vertical striations are artifacts of the missing data.

Figure 5.6: The output of TRMF has an RMSE of 1.138. The result
captures the general periodicity of the tra�c. The pixel intensities are
much brighter at samples 0 through 30 when compared to the true data.
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Figure 5.7: The output of EBLP has an RMSE of 0.478. The periodicity of
the tra�c pattern and relative intensity visually matches the original tra�c
data.

Figure 5.8: The output of TSCC has an RMSE of 0.469. The performance
of TSCC is slightly better than EBLP most likely due to the incorporation
of a time-lagged embedding.
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5.4 Experiment III: SABER H-Density

The Sounding of Atmsophere using Broadband Emission Radiometry (SABER)

is an imaging system onboard NASA’s Thermosphere Ionosphere Mesosphere

Energetic and Dynamics (TIMED) spacecraft. This instrument collects the

infrared emission from Earth’s troposphere and stratosphere. The infrared

emissions are used to derive atomic hydrogen density in Earth’s mesosphere

near the 85 Km altitude. This dataset examines hydrogen densities taken

over 60 latitudinal bins. This data is taken over 20 days or 300 orbits, where

each orbit is approximately 90 minutes long. Similar to the tra�c data in

experiment II, the vertical dimension of this SABER dataset as shown in fig-

ure 5.9 encodes spatial information while the horizontal dimension represents

time.

Figure 5.9: SABER hydrogen density is depicted as a matrix which has
vertical dimensions representing latitudinal position and the horizontal
dimension showing time sample indices. The intensity of each pixel
represents hydrogen density in atoms per cubic centimeter. Black pixels
represent time and latitudinal positions where there is missing data

In this case, time represent hourly samples the hydrogen density at a 85

Km latitude. The missing values in this dataset represents instances in time

where no data is available due to the sampling periodicity of the spacecraft.
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The other missing values are due to sensor non-idealities such as having a star

in the line of sight. Unlike the tra�c data, this atmospheric density dataset

does not have a ground truth so evaluation of accuracy cannot be evaluated

as shown in the RMSE equation 5.1. This experiment evaluates the fidelity

of each algorithm’s estimate by the physicality of the output (non-negative

values, no growing oscillatory behavior, etc.)

The algorithms that are applied to this dataset are interpolation, autore-

gressive model (AR), autoregressive moving average (ARMA) model, and

TSCC. In this experiment, the interpolation, AR, and ARMA methods are

used instead SSA, EBLP, and TRMF as the former methods are generally ac-

cepted techniques used in data imputation in the remote sensing community.

The interpolation, AR, and ARMA methods are all applied on the rows in

matrix shown in figure 5.9; their implementations are a standard commonly

found in statistical signal processing textbooks. The input into each of these

algorithms is the dataset shown in figure 5.9.

Figure 5.10: Application of the interpolation method fills in the data gaps
but induces blurring within the image. This blurring may suggest a time
localized disturbance that may not actually be occur.
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Figure 5.11: Application of an autoregressive model creates an output that
has growing oscillatory behavior in the horizontal. The exponential growth
of the hydrogen density through time is not physical.

Figure 5.12: Similar to the AR model case, the ARMA output also has this
growing oscillatory behavior which is not physical.
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Figure 5.13: The output of TSCC fills in all missing values completely with
hydrogen densities on the order of 109 atoms per cubic centimeters which is
expected at 85 Km.

Applying interpolation on the rows of the matrix in figure 5.9 is equivalent

to applying a low-pass filter on the rows in the matrix. This results in the

blurring e↵ect seen in the interpolation SABER H density results in figure

5.10. Though this result produces a physical density value, the density is

smeared across time. This smearing contradicts the observed data in figure

5.9 and may suggest some localized disturbance which may not actually be

occuring. In both the AR and ARMA cases, the polynomial order was set

to 30 and the forecast (extrapolation) was executed from the first input 30

samples of figure 5.9. In both cases, the autoregressive coe�cients learned

lead to the models that produce unphysical hydrogen densities as seen in the

AR and ARMA model outputs. In both figures 5.11 and 5.12 , oscillatory

behavior occurs growing to density values that are not physically realizable.

The unphysical reconstruction of both models stem from the learning of

the AR and ARMA coe�cients. The AR and ARMA models learn from

sequences with large gaps of missing data which leads to learning coe�cients

that induce exponential growth. In the TSCC result, the inputed data values

are within the same range as the values of the observed hydrogen densities in

figure 5.9. Unlike interpolation, the TSCC result does not have a smearing
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of the densities in time. The low-rank approximation in TSCC suggests

that the data encodes certain dynamical modes. The output in figure 5.13

shows these repeated modes in the columns of the output matrix. Based

on the results of each algorithm, TSCC produces an output which does not

produce unphysical features or extreme behavior in the estimate. These

results demonstrate that TSCC produces an output that seems natural when

compared against the original input dataset.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

For the problem of estimating the true, underlying signal from observations of

a dynamical system, this thesis presents TSCC, a method that reconstructs

a dynamical time series from noisy, partial measurements. This method is

evaluated against standard and state-of-the-art techniques through three nu-

merical experiments. The results demonstrate that TSCC is more robust to

noise and missing data in comparision to the accepted algorithms that ad-

dress the same problem. In addition, runtime analysis shows that TSCC also

has better computational tractability in comparison to the other mentioned

methods. The main advantage of this technique is that multivariate time

series can be represented as an embedding whose noise covariance follows a

spiked covariance model, allowing usage of a low-rank linear estimator that

is e↵ective at both denoising and matrix completion.

6.1 TSCC Performance and Limitations

The design of TSCC was based on two limiting factors in the estimation

problem. The first factor is the size of the state dimension, and the second

factor is the lack of prior knowledge of a system’s dynamical model. Be-

cause of the large size of datasets in application domains such space-based

imaging, traditional methods like SSA and the Kalman filter are not com-

putationally tractable due to the storage and inversion of large matrices.

Further, when a dynamical model is not known, the traditional methods like

the textbook Kalman filter and TRMF, cannot be used because the methods

require strong assumptions on the dynamical model. TSCC generalizes the

dynamics by converting the time series estimation problem to a matrix com-

pletion problem and leverages recent results in the spiked covariance model

to perform matrix imputation and estimation. TSCC accounts for the model
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uncertainities by using a time-lagged embedding to characterize the modes

of the system instead of following strict parametric model assumptions such

as in TRMF.

This method is evaluated on several datasets that are both synthetic and

real. These results show that TSCC outperforms the accepted time series

estimation frameworks in terms of reconstruction accuracy. As shown in

experiment I, the generated synthetic data follows an autoregressive model.

In this case, TSCC still outperforms TRMF and all other methods though

these methods were designed with the assumptions that the dynamics fol-

low an autoregressive model. This experiment demonstrates that TSCC is

able to generalize linear dynamical models. In addition, for experiments II

and III where real datasets representing the dynamics in vehicle tra�c and

exospheric hydrogen are used, TSCC shows that the values it imputes are

physically reasonable and do not induce unnatural blurring or exponential

oscillatory behavior in comparison to other methods.

6.2 Future Work

The TSCC algorithm can be extended in several ways to improve perfor-

mance both in computation and in flexibility for a greater range of dynamical

systems. Currently, in the estimation of the true trajectory matrix, empir-

ical best linear prediction is applied to a partially observed trajectory ma-

trix. Note that the true trajectory matrix has a Toeplitz structure. For the

implementation of TSCC in this thesis, the estimated trajectory does not

necessarily hold the Toeplitz structure. Regularization technqiues can be

added in a future implementation of TSCC to mantain this Toeplitz struc-

ture. In addition, another possible extension of TSCC lies in the treatment

of the structure of the latent embedding. Currently, the embedding is just

a time-lagged embedding. It is possible to apply kernel functions on these

embeddings to better account for non-linear dynamical systems. The current

implmentation of TSCC is based on linear models. Future work can gener-

alize this linear assumption.
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