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ABSTRACT

Online recommendation systems have been widely used by retailers, digital marketing, and

especially in e-commerce applications. Popular sites such as Netflix and Amazon suggest

movies or general merchandise to their clients based on recommendations from peers. At core

of recommendation systems resides a prediction algorithm, which based on recommendations

received from a set of experts (users), recommends objects to other users. After a user

“consumes” an object, his feedback provided to the system is used to assess the performance

of experts at that round and adjust the predictions of the recommendation system for the

future rounds. This so-called “learning from expert advice” framework has been extensively

studied in the literature. In this dissertation, we investigate various settings and applications

ranging from partial information, adversarial scenarios, to limited resources. We propose

provable algorithms for such systems, along with theoretical and experimental results.

In the first part of the thesis, we focus our attention to a generalized model of learning

from expert advice in which experts could abstain from participating at some rounds. Our

proposed online algorithm falls into the class of weighted average predictors and uses a time

varying multiplicative weight update rule. This update rule changes the weight of an expert

based on his relative performance compared to the average performance of available experts

at the current round. We prove the convergence of our algorithm to the best expert, defined

in terms of both availability and accuracy, in the stochastic setting.

Next, we study the optimal adversarial strategies against the weighted average prediction

algorithm. All but one expert are honest and the malicious expert’s goal is to sabotage the

performance of the algorithm by strategically providing dishonest recommendations. We

formulate the problem as a Markov decision process (MDP) and apply policy iteration to

solve it. For the logarithmic loss, we prove that the optimal strategy for the adversary is

the greedy policy, whereas for the absolute loss, in the 2-experts, discounted cost setting, we

prove that the optimal strategy is a threshold policy. We extend the results to the infinite

horizon problem and find the exact thresholds for the stationary optimal policy. As an effort

to investigate the extended problem, we use a mean field approach in the N -experts setting

to find the optimal strategy when the predictions of the honest experts are i.i.d.
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In addition to designing an effective weight update rule and investigating optimal strategies

of malicious experts, we also consider active learning applications for learning with expert

advice framework. In this application, the target is to reduce the number of labeling while

still keeping the regret bound as small as possible. We proposed two algorithms, EPSL and

EPAL, which are able to efficiently request label for each object. In essence, the idea of two

algorithms is to examine the opinion ranges of experts, and decide to acquire labels based

on the maximum difference of those opinion using a randomized policy. Both algorithms

obtain nearly optimal regret bound up to some constant depending on the characteristics of

experts’ predictions.

Last but not least, we turn our attention to the generalized “best arm identification”

problem in which, at each time, there is a subset of products whose rewards or profits are

unknown (but follow some fixed distributions), and the goal is to select the best product

to recommend to users after trying on a number of sampling. We propose UCB based

(Upper Confidence Bound) algorithms that provide flexible parameter tuning based on the

availability of each arm in the collection. We also propose a simple, yet efficient, uniform

sampling algorithm for this problem. We proved that, for these algorithms, the error of

selecting the incorrect arm decays exponentially over time.
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CHAPTER 1

INTRODUCTION

1.1 Introduction and motivations

Online recommendation systems have been widely used by retailers, digital marketing, and

especially in e-commerce applications. Popular sites such as Netflix and Amazon suggest

movies or general merchandise to their clients based on recommendations from peers. At core

of recommendation systems resides a prediction algorithm, which based on recommendations

received from a set of experts (users), recommends objects to other users. After a user

“consumes” an object, his feedback provided to the system is used to assess the performance

of experts at that round and adjust the predictions of the recommendation system for the

future rounds.

We consider a specific recommendation algorithm that combines weighted opinions of the

experts. The system initially assigns uniform weights to experts, and changes the weights

from time to time based on the performance of the experts evaluated through user’s feedback.

This general framework of learning from expert advice was introduced by Littlestone and

Warmuth [1] and Vovk [2]. Beside online recommendation systems, this framework has been

applied to various other learning problems such as the shortest path problem [3], [4], [5],

metrical task system [6], and online paging [7]. In this dissertation, we address the issues of

missing information, adversarial behaviors and limited resources of the framework. We aim

to answer these questions: (i) how the system deals with the difficulty of missing experts

at some time instances; (ii) can we investigate the effect of malicious experts in the system;

(iii) how the system reduces the cost of object labeling; (iv) how the system selects the best

object given partial information and limited sampling budget. In particular, our motivations

are as follows.

Missing expert predictions

In the aforementioned applications, it is often assumed that all experts are present at all

rounds of voting. This assumption is reasonable in scenarios where a dedicated set of users,

say movie critics, watch and rate majority of movies. However, such an assumption does
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not hold true for recommending merchandise on a website such as Amazon where the set

of users who have rated various objects may not even intersect. We consider the scenario

where experts vote in a safe way (intentionally) in order to earn credit (high weight) from

the system. In other words, they only vote for the famous items and avoid voting for the

difficult ones. If these voting behavior are governed by an adversary, it will degrade the per-

formance of the recommendation systems. In fact, the effect of such predictions in practical

applications is even more pronounced as it is described in the following examples:

• Movies recommendation: People have been recently living in smart homes where

they are recommended to a set of good movies whenever their televisions are turned

on. A movie is recommended if it obtains high ratings from those users (experts) who

are trustable to the recommendation system. Consider the case when an adversary

attempts to drive local residence in a specific area to watch some specific movie in

order to increase audience attentions, sell more ads, or for a certain political incentive.

This adversary can indirectly influence the recommendations of the experts through

social media such as Twitter [8], text review of movie critics [9], or news analysis [10].

The adversary’s goal is to manipulate the expert’s voting in such a way that they can

get high trust from the system on a few objects, then mispredict on the target movies.

• Commute routes recommendation: With the fast development of smart car,

drivers get updated routes information for their commute using GPS or other applica-

tion devices in their car (see e.g., [11] for a real-time route recommendation system).

Consider an adversary who attempts to cause traffic at a specific area. By manipulat-

ing the received signals of a set of designated GPS applications (experts in our setting),

the adversary can deceitfully recommend the drivers to commute on the same road at

a certain time of the day. Such attack was foreseen from [12] where the authors used

the term ‘imperfect information’.

• Byzantine attack on wireless sensor network: Nowadays, smart buildings (or tree

houses) have been equipped with a set of sensors (experts) to collect the temperature of

the surrounding environment in order to intelligently adjust it toward comforting their

residence. Those sensors send the information back to a centralized system which, after

calculating the average temperature, makes a decision on how the temperature must

change. Now if an adversary attempts to intrude those sensors, it can significantly

change the temperature of the building, hence affecting people (trees) inside the smart

building (tree house). One example of this kind of attack is Byzantine attack whose

effects have been investigated by [13], [14], [15].
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With exception of a few works ( [16], [17], [18]), recommendation system with “sleeping

experts”, a term coined by Freund et al. [19], remains largely understudied in the literature.

As recommendation systems are designed to perform not much worse than the best expert,

identifying such an expert is crucial. When all experts are present at each voting round,

the best expert is simply defined as the one with the smallest loss over the decision horizon.

However, it is not clear who the best expert is when “sleeping” is allowed (i.e., an expert

does not necessarily vote on all instances). We will present a definition for the best expert

in this scenario.

Adversarial scenarios for malicious experts

In the classical setting of the learning-with-expert-advice framework, all experts are pre-

sumed to be honest. Very little work is done on analyzing whether the algorithm is robust

to adversarial experts who aim to throw of the predictions. In this part of the dissertation,

we consider an adversarial setting in which a malicious expert, who wants to sabotage the

system, provides strategically dishonest recommendations. Learning with expert advice has

been extensively studied in the literature [1, 2, 20, 21], in which the algorithm’s goal is to

minimize the system’s overall regret with respect to all experts.

Here, we address the problem from the perspective of the malicious expert who attempts

to maximize the overall loss of the system by playing his best dynamic policy. Some real

world examples of such adversarial settings are recommendation and sensor fusion systems:

• Recommendation Systems Recommendation systems are vulnerable to the mali-

cious identities who intentionally cast misleading votes to confuse the systems. Those

identities can directly act or hack to the system users’ accounts and give false rec-

ommendations [22]. The longer these malicious identities stay unidentified, the more

damage they can cause to the reputation of the recommendation systems. Such behav-

ior surprisingly can even occur without malicious intention. The following two quotes

are from two different reviewers for the movie “Interstellar” on IMDB official website

(rating range is from 1 to 10, 1 for the worst and 10 for the best):

– “...I give 1 star to bring balance to the current rating, in reality this movie is of

course not that bad.”

– “My honest rating would be 6 for that movie but I rated it 1 to balance the

‘emotional’ ratings.”

Such experts cast their rates to manipulate the outcome of the system rather than hon-

estly reporting their actual ratings. Understanding the best strategy for such experts,

and hence the amount of damage they can do, is the main goal of this paper.
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• Sensor Fusion In this application, a central decision maker receives reading from a

set of sensors, and combines them to make a decision. One or a subset of the sensors in

the system could be malicious and attempts to ruin the quality of the central decision

making. In scenarios where the reading from the sensors is costly, if the malicious

sensor is successful at making the center confused several times, the damage it causes

to the system is significant.

Adaptive labeling with expert advice

We consider applications of learning with expert advice framework on active learning, which

has drawn much interest recently. In this framework, the challenging problem is that the

labeling procedure is expensive or time-consuming, and thus the goal is to find the good

examples to query for the true labels. This has a wide range of applications, from medical

diagnosis to recommendation systems [23], [24] to natural language processing [25]. We

consider applications of learning with expert advice framework where the labels are retrieved

with expensive cost or through a time consuming procedure. Our motivation is from the

following examples:

• In the moving rating systems, the true opinion or ground truth from a specific user for

each of movie is required in order to update the losses, which then update the weights

for experts. However, it is very time-consuming to watch the whole movie so that the

user can give the exact feedback on that movie.

• For text classification and information retrieval tasks, it is required to get labels of

documents (relevant or non-relevant), detailed annotations such as name entities and

word relations to update features’ weights. Those procedures usually take a lot of

time so that users can read through the documents, and sometimes restrict users from

uncommon domain knowledge.

The purpose is then to reduce the number of requests for labeling while keeping the regret

rate as small as possible.

Simple regret in multiarmed bandit problems

All above settings focuses on full-information scenarios where predictions of all experts are

revealed at any time. In this final part, we turn our attention to the partial-information

setting and our goal is to minimize a single recommendation error instead of accumulated

error. Specifically, we consider the product recommendation problem in which there is a

collection of products whose rewards or profits are unknown, and the goal is to select the

best product to recommend to users after a number of sampling. This problem has various
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applications in telecommunications, e-commerce and advertising. As an example, a cellu-

lar system needs to select the best wireless channel for a specific customer, an e-commerce

website needs to recommend the best product to their customers, and an advertiser tends

to show an advertisement piece to the web users to maximize the profit. The problem is

widely explored by a large proportion or work in the literature. Most of the work focused

on the full setting where all products are available for pick up at all time. In this paper,

we consider a more general setting where we allow some products to be unavailable at some

time. This brings practical use case for the aforementioned applications: at one time, some

communication channels are noisy, then cannot be the good candidate for user; the set of

products and advertisements may not be the same every time. Specifically, we assume that

at each time, there is a subset of arms available, each of them has a reward that follows from

some fixed, but unknown distribution. The ultimate goal is to recommend the best arm in

the collection with a limited number of sampling.

1.2 Our Contribution

In Chapter 2, we study the sleeping expert setting. We propose a weighted average recom-

mendation algorithm that changes the weight of an expert based on his relative performance

compared to the average performance of the available experts at that round. This update

rule ensures that informative predictions (ones differing from the average recommendation)

are rewarded as opposed to merely accurate predictions. Our algorithm allows continuous

value predictions, but the feedback of the user is assumed to be binary. We consider the

stochastic setting for this problem where the availability and accuracy of experts are as-

sumed to be stationary, and follow some unknown joint distribution. We prove that the

proposed algorithm converges to the best expert, defined as the one with the highest average

performance based on his availability and accuracy. The experimental results show that

our algorithm outperforms other recent algorithms such as Dsybil [26] and SBayes [19] for

the absolute loss and binary prediction values in both stochastic and adversarial settings.

Moreover, we consider a modified version of our algorithm which assigns a constant loss to

sleeping experts in the stochastic setting and show that it also outperforms several existing

algorithms for appropriate choices of the constant loss.

In Chapter 3, we study the adversarial setting where there exist some experts who in-

tentionally give dishonest predictions to ruin the system. This work differs from most of

the aforementioned literature in the sense that we formulate the adversarial learning sys-
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tem as a more realistic Markov decision process (MDP) 1 rather than a typical min-max

regret game between an algorithm and an adversary who attempts to maximize the regret

by manipulating the sequence of losses of all the experts. In our setting the adversary plays

against the algorithm and the random predictions of other experts. Since the problem we

are considering can be cast as an MDP (for single malicious expert) or stochastic game (for

multiple malicious experts), there are general methods such as reinforcement learning or

policy iteration to analyze it. Such approaches even though may not provide closed form

solutions, they still provide tractable analytical tools to approximate the optimal policies.

Indeed, this is one of the significant advantages of our model compared to the existing ones

in the literature such as [29] whose analysis for more than 3 experts remains open. On the

other hand, our results generalize those in [30] which was only given for the case of N = 2

experts and the logarithmic loss function.

We formulate the problem as an MDP and find the optimal strategy for the malicious

expert for some specific class of loss functions. More specifically, we consider binary predic-

tions and two types of losses: logarithmic and absolute. For the logarithmic loss, somewhat

surprisingly, we prove that the greedy policy is optimal. For the absolute loss and two ex-

perts with discounted factor, we prove the optimality of a threshold type policy and extend

our result to the infinite horizon setting by characterizing the optimal threshold in a closed

form. Finally, for large number of experts we propose a mean field approximation approach

to find the solutions for the setting where all the honest experts have the same behaviors.

In Chapter 4, we study the efficient labeling in learning with expert advice. We define

the regret based on the total number of requests as opposed to the whole time horizon from

which the standard regret notion is defined. In fact, this definition is a natural definition in

this setting since the algorithm does not suffer loss if it decides not to acquire the label. We

proposed an efficient algorithm to determine whether to ask for label of each object. Based on

experts’ opinion on each round, a random variable, following a Bernoulli distribution whose

parameter is the maximal difference of experts’ predictions, is drawn to decide whether the

labeling is necessary. The main idea is that when most experts roughly agree on one object,

it is not needed to ask for its label. On another hand, if experts tend to disagree with

each other, then the request for label is significant. We proposed two algorithms, EPSL and

EPAL, both of them aim to reduce the number of queries by exploring the characteristic of

expert predictions in each round, without the knowledge of the number of queries. However,

while EPSL yields the better performance than EPAL, it requires the prior knowledge of

1MDP is a stochastic control process in which the decision maker chooses an action at each time based
on the current state. That action incurs a current loss and moves the state to the next one. The decision
maker’s goal is to select a sequence of actions to optimize his total loss. We refer the reader to Bellman [27]
and Howard [28] for more details on MDP.
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the ranges of experts predictions for the whole horizon. EPAL relaxes that requirement by

using a time-varying learning rate, which is updated on the run of the algorithm. We proved

that both algorithms obtain the optimal upper bound of the regret up to some constant that

depends on the characteristic of experts predictions. While EPAL relax the requirement of

the access to the prior information from EPSL, its performance is slightly worse than EPSL,

by a constant of
√

2. In the experimental results, we compare EPAL with other algorithms

in this setting and show that our algorithm outperforms the others on the regret rate, on

both synthetic datasets and various real datasets.

In Chapter 5, we study the simple regret framework where the goal is to identify the best

arms in a multiarmed bandit problem with a limited sampling budget. Our main results are

the following two folds. We propose UCB based (Upper Confidence Bound) algorithms that

can provide different ways to tune the parameters based on the availability of each arm in

the collection. We also propose a simple, yet efficient, uniform sampling algorithm for this

problem. We proved that all above algorithms end up with recommend the best arm in the

sense that the error of selecting the incorrect arm converges exponentially by time. Although

there exist some limitations on the parameter tuning, we prove in the experimental results

that by applying the approximate algorithms, we still get performance nearly as good as

those algorithms without spending too much effort on parameters selection.

1.3 Literature Review

Learning from Expert Advice

Learning from expert advice has a long development history dating back to the sequen-

tial predictions, first introduced in the framework of repeated game by Blackwell [31] and

Hannan [32]. Later, Warmuth and Littlestone [1] and Vovk [2] formally introduced the

framework, notations, and established seminal results with weighted majority algorithm and

aggregating forecaster, respectively. Since then, the framework has drawn great attention

in the literature. Kivinen [33] developed further the weighted average algorithms. Kivinen

and Warmuth proposed the exponential weighted average algorithm [34]. The regret bounds

from those algorithms have been improved further using doubling trick and time-varying

learning rate by Cesa-Bianchi et al. [20] and later on by Yaroshinsky et al. [35], van Erven

et al. [36], Auer et al. [37], and Grünwald [38]. In the same vein, Even-Dar et al. [39],

Adamskiy et al. [40], Gofer and Mansour [41], Moroshko and Crammer [42], Adamskiy et

al. [40], Moroshko et al. [42], György and Szepesväri [43] proposed different regret-based

approaches. Foster [44] conducted the analysis on worst-case scenarios. Herbster and War-
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muth investigated the situations where the best experts may change over time [45]. Vovk [46]

introduced another type of forecaster called defensive forecaster which was later compared

to his first algorithm by Chernov [47]. Chernov and Vovk [48] introduced an algorithm with

unknowned number of experts. Gyorgy et al. [49] considered the setting with large number

of experts. Chernov and Zhdanov [50] considered the framework with discounted loss. Other

online learning algorithms were introduced in [51–61]. Related algorithms for online ranking

were mentioned in [62–67]. Enthusiastic readers can refer to Cesa-Bianchi and Lugosi [21]

who provided an excellent source for this framework, summarized most of above results and

proposed a perspective applying potential functions for regret analysis on such system. The

usage of potential function was also introduced by Hart and Mas-Colell [68].

Since first introduced, learning with expert advice has been adopted to a wide range of

applications ranging back from information theory (Cover [29], Ziv [69]), data compression

(Ziv and Lempel [70], Ziv [71]), data sequences (Merhav and Feder [72]) to competitive anal-

ysis (Borodin and El-Yaniv [73], Vovk [46]), Kozat and Singer [74]. Recently, this framework

has been applied to various other learning problems such as multitask learning [75], stock

prediction [76], sport games and market prediction [77], the shortest path problem [3], [4], [5],

metrical task system [6], online paging [7], calendar scheduling [78] and text classification [79].

Sleeping experts setting

Cesa-Bianchi et al. [20] showed that a weighted average prediction algorithm which is orig-

inally designed to guarantee sublinear regret for adversarial (non-stochastic) experts can

asymptotically perform as good as the best expert in the hindsight. Recently, there have

been several works for both adversarial setting [80], and stochastic setting [81], or the com-

bination of two [82]. However, all the above works have not dealt with the sleeping expert

scenario where some experts might abstain from giving predictions at some time instances.

Sleeping experts were not considered until recently with the presence of the two following

research directions in the literature.

In the adversarial setting, Freund et al. [19] considered predictions of available experts

at each time and combined them using an exponentially weighted averaging rule. In their

algorithm, while the weight of an available expert is updated by his performance, the weight

of a sleeping expert remains unchanged. Blum and Mansour [16] presented a time selection

function to indicate the availability of experts. Their proposed external regret of one expert,

defined by the difference of algorithm’s loss and the loss of that expert, is calculated on the

rounds that expert was available. Our algorithm with the constant step size is somewhat

similar to the “multilinear forecaster” proposed by Bianchi and Lugosi [21]. However, their

algorithm does not use the time-varying step size as in ours, and their algorithm does not
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apply to the case of sleeping experts, neither it does incorporate the informativeness of a

prediction in the weight update rule. Moreover, in our proof of the main results, we use the

stochastic approximation approach which is, to the best of our knowledge, first introduced

in this framework and potentially extensible for stochastic settings. Interested readers can

refer to Robbins [83], Chung [84], Polyak and Juditsky [85] for more details on stochastic

approximation.

On the other hand, in the stochastic setting, Kleinberg et al. [17] proposed a so-called

“Follow the Awake Leader” strategy in which, the algorithm chooses at one round, the best

expert among available ones to follow. At each round, the best expert is defined by the

one obtaining the best average performance over his votes until that round. They obtained

a nearly optimal bound up to a logarithmic factor. Compared to our algorithm, theirs

does not directly address the adversarial settings mentioned in the introduction. Truong

et al. proved that the algorithm in [19] asymptotically converges to the best expert (if

there exists only one such expert) defined by product of his accuracy and availability [86].

However, the algorithm in [86] assumes symmetric availability for the experts, which may

not hold true in some practical applications. Kanade et al. [18] proposed an exponential

weighted algorithm (EWSA) for the full-information setting, and Bandit Sleeping Follow the

Perturbed Leader (BSFPL) algorithm for the bandit setting when availability of the experts

is stochastic but their predictions are adversarial. Their algorithm obtains an upper bound

on regret comparable to [19]. However, the setting in their work is differently defined from

ours.

Recently, Yu et al. proposed a multiplicative update rule using constant multipliers for

available experts [26]. They considered an adversarial scenario and imposed strong assump-

tions on the proportion of good objects and the number of experts with the same taste as

the user in order for their algorithm to converge. In our setting, that assumption is no longer

needed, and we also allow negative voting as opposed to [26]. Moreover, under the same

research thrust, [30] and [87] studied the structure of optimal strategies for malicious experts

aiming to degrade the performance of a recommendation system.

Adversarial strategies in learning with expert advice

In this part of the dissertation, we consider an attacking model against the weighted average

algorithm introduced by Littlestone and Warmuth [1] and Freund and Schapire [80]. The

attacking model considered here falls into the causative attack from the taxonomy of ad-

versarial machine learning [88–90], where the attacker can modify the data in the training

set in order to degrade the performance of machine learning algorithms. The attack against

recommendation systems that we mentioned in the example above is Sybil attack [22] where
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the adversary forges multiple identities to subvert these systems. The effect of this attack has

been investigated recently on other systems: online social networks [91], rating systems [92],

and mobile adhoc networks [93]. While there have been some works to diminish such ef-

fects, especially on recommendation systems [26, 94], they mostly need strong assumptions

on the learning system such as ordering of voting or percentage of good movies. We refer

the readers to [95], and [96] for other examples of adversarial attacks in signature genera-

tion system and email spam system, respectively. The readers can also refer to security risk

related to adversarial machine learning in [97–108]. Beside machine learning systems, other

systems are also vulnerable to attacks: multimedia [109,110], network scheduling [111–115],

fingerprinting [116–119], message encryption and recovery [120], information leak in covert

channels [121] or time channel [122–125], traffic analysis [126], secure network cloud [127],

attacks on telephone network [128], network flow [129–133], user privacy [134], covert chan-

nel [135–137], website attacks [138,139].

Perhaps, the most related works to ours are the ones by Cover [29] and Gravin et al. [140].

Cover studied the adversarial sequential prediction of binary sequences in the 2-experts

setting and found the optimal strategy for the adversary [29]. A related adversarial setting

was recently introduced by Abernethy et al. [141] and Gravin et al. [140]. Abernethy et

al. [141] proposed optimal strategies for both adversary and algorithm for the Gambler-

Casino game in which the Gambler has some budgeted loss constraints and aims to minimize

the accumulated loss on his bets. Gravin et al. [140] also investigated the same adversarial

setting but without constraints. They attempted to find the optimal strategy for an adversary

who controls the sequence of experts’ losses, for all the N experts. They were able to find

the optimal strategy for the adversary when N = 2, 3, but were not able to extend their

results for general N .

In our work, we applied policy iteration to find the optimal solutions for our problem

formalized as an MDP. The readers can refer to [142], [143], [144] and [145], [146] for general

dynamic programming approaches to solve an MDP. Policy iteration has been used to solve

an MDP given the predictable structures of optimal value functions Lin and Kumar [147],

Walrand [148], Koole [149], Larsen [150], Puterman and Shin [151], vanNunen [152]. How-

ever, in their settings, the cost functions are either in linear or quadratic forms which provides

strong support for their analysis.

In one of our main results, mean-field approach is used to reduce the complexity of

the experts system. We refer the readers to Lasry and Lions [153], Guéant et al. [154],

Kadanoff [155] for more details on this method.

Selective labeling
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Active learning has been extensively studied recently [156], [157], [158]. Settles [159] intro-

duced an excellent literature survey of framework overview and practical applications. Two

approaches have been researched in this framework. In the first direction, the focus is on

exploitation of decision boundary, for example uncertainty sampling [160], minimization er-

ror reduction [161] and variance reduction [162]. Recently, in the other direction, Baram et

al. [163], Osugi et al. [164], and Bouneffouf [165] proposed the random exploration method

in order to discover potentially good data points for querying. Their setting is different from

ours in the sense that they attempt to select which examples for labeling from a pool of

options while we tackle the online active learning problem where all examples are not given

at the decision time. For more details on online active learning, we refer the readers to

Sculley [166], Dasgupta et al. [167], Helmbold and Panizza [168], Freund et al. [169], Ols-

son [170]. Moreover, our main concentration is to efficiently label examples on the framework

of learning from expert advice.

Recently, there has been a large amount of work in limited information setting for this

framework. Auer et al. [171] proposed the so-called ‘partial information setting’ where only

prediction of the selected expert is revealed in each round. Kale [172] and Seldin et al. [173]

considered the limited experts advice in the multiarmed bandit setting. Lugosi considered

the setting with limited feedback [174]. In this part of the dissertation, we consider the prob-

lem of label efficient, first termed by Cesa-Bianchi et al. [175], where the number of labeled

examples is limited. Perhaps, the most relevant work for this setting is [175] and the work

of Zhao et al. [176]. Cesa-Bianchi et al. [175] proposed a randomized seleting mechanism

to select an object for labelling with a budget limit on the number of queries. Specifically,

they did a simple flip-a-coin algorithm based on the limited query rate and obtained the

upper bound of the regret depending on that rate. However, their algorithm depends on

the number of queries which must be known in advance as a parameter. On another hand,

Zhao et al. [176] proposed a so-called confidence condition to check when an object should

be labeled. In particular, given a threshold, a sample is selected if the maximal difference of

experts’ predictions is beyond the threshold, meaning that the disagreement between experts

is large enough to make a query on that object. However, the choice of threshold in their

setting is not obvious and the proposed regret bound of the performance is between the loss

of algorithm over the requested time with the loss of the best expert over the whole horizon,

which is not widely applicable for this setting. Moreover, their regret upper bound increases

when the number of queries increases which is intuitively unexpected. In our setting, we use

the maximal difference of experts’ predictions as the parameter in each round to decide if

the query is necessary. Moreover, we also derive an upper bound for the expected regret de-

fined by the difference of the algorithm’s loss and that of the best expert on the same horizon.
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Simple regret in sleeping multiarmed bandit

Multiarmed bandit problem has been widely studied in the literature, [177–182]. The prob-

lem of selecting one object among a set, also known as trial design, was first mentioned

by Paulson [183] and Bechhofer [184]. Robbins [185] and Gittins [186] later considered the

renowned multiarmed bandit settings for this problem. Recently, the “best arm selection”

problem was formally introduced in Bubeck et al. [187] with the so-called “pure exploration”

framework. In this work, they proposed many variants of UCB based algoithms (which

chooses the arm with highest index defined by the summation of emperical mean of the arm

and the confidence interval) and uniform algorithms, and prove that the recommendation

errors decay to zero when time is very large. The UCB algorithms had been proposed by

Auer et al. [188], and later on Kleinberg et al. [17], but their purpose is to minimize the

accumulated loss of the whole procedure. On another the hand, the work in [187] attempts

to minimize the simple regret defined by how good the algorithm can recommend an arm

at the end of the process. Audibert et al. [189] improved the error rate in [187] by using an

appropriate choice of the parameter. Those algorithms concentrate on one of the settings of

the best arm selection problem where the number of samplings is limited. In another setting,

Gabillon et al. [190], Maron and Moore [191], Mnih et al. [192] proposed algorithms for the

fixed confidence setting where the purpose is to minimize the number of samplings given a

certain error rate. Jamieson et al. [193] later applied a stopping time algorithm to avoid the

union bound in the error encountered by most of the previous work. There have been other

works on this setting including successive elimination algorithms Audibert et al. [189], Man-

nor and Tsitsiklis [194], Even-Dar et al. [195] and selecting m-best arms Bubeck et al. [196],

Kalyanakrishnan and Stone [197], Kalyanakrishnan [198]. Thus far, there has not been work

addressing the situations when there is only a subset of arms available at a time. We will

focus on this setting.

1.4 Problem notations and definitions

We introduce herein definitions and notations that will come handy later in the analysis.

1.4.1 Experts setting

Let E = {1, 2, ..., N} be the set of all experts. We denote the set of available experts at

round t by Et, where Et ⊆ E. Note that, round, time instance, object are interchangeably
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used in this thesis. For example, when we say “given an object”, we mean the round at

which the object occurs. At round t, expert i’s weight is pit. Often used later in this thesis

are the notations of normalized weight, p̃it =
pit∑

i∈E

pit
, and weight vector, ~pt = (p1

t , p
2
t , ..., p

N
t ).

This weight vector are updated through an update rule, based on how well experts have

performed. The higher the weight of an expert, the more influence he can affect on the

prediction of the algorithm.

Definition 1. The true outcome (or outcome, ground truth) of an object is the true feedback

from a specific user to an object.

The outcome is sometimes referred as the label, and is denoted by yt ∈ Y . For example,

the outcome of a movie in the binary setting is either Good or Bad. Examples of an object

include a movie, a story or a book.

Definition 2. The prediction value of a system (expert) is the value that the system (expert)

predicts on a given object.

The prediction of the system and expert i at time t is denoted by ŷt ∈ Y and xit ∈ X ,

respectively. After all experts provide their predictions on an object, the algorithm computes

the averaged prediction on that object. Upon receiving the outcome for that object, the

algorithm updates the losses of the experts and the algorithm.

Definition 3. The loss function is a function that measures the difference between the pre-

diction value and the outcome, i.e., l(., .) : X × Y → R+.

The loss of the algorithm and expert i is denoted as l(ŷt, yt) and l(xit, yt), respectively. In

Chapter 3, we focus on two kinds of losses:

• Logarithmic Loss: l(yt, ŷt) := −I{yt = 1} ln(ŷt)− I{yt = 0} ln(1− ŷt).

• Absolute Loss: l(yt, ŷt) = |yt − ŷt|.

Above, I{} is the indicator function.

Definition 4. The best expert over a time horizon T is the one who incurs the least loss

over horizon T , i.e.,

i∗ = arg min
i∈E

T∑
t=1

l(xit, yt).

In the learning with expert advice framework, we would like to see how close the perfor-

mance of the algorithm to that of the best expert. Regret is a commonly used term in this

setting.
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Definition 5. Regret of the algorithm, with respect to the best expert, is the difference of

total loss of the algorithm and the total loss of the best expert over a horizon T .

RT =
T∑
t=1

l(ŷt, yt)−min
i∈E

T∑
t=1

l(xit, yt)

Similarly, regret of the algorithm, with respect to the expert i, is the difference of total loss

of the algorithm and the total loss of the best expert i over a horizon T .

Ri
T =

T∑
t=1

l(ŷt, yt)−
T∑
t=1

l(xit, yt)

1.4.2 Multiarmed bandit setting

In this setting, we denote S = {1, 2, ..., K} as the set of K arms, and St ⊆ S as the set of

available arms at time t. For the stochastic setting, we have the following assumptions.

Assumption 1. The set of available arms, St, is drawn from a fixed, but unknown distri-

bution. The reward of each arm i is drawn from a fixed, but unknown, distribution with the

mean µi.

For simplicity, we assume that all rewards are bounded in [0, 1]. Without loss of generality,

we assume that µ1 ≥ µ2 ≥ ... ≥ µK , i.e., the set of arms have been already sorted in the

descending order of their mean. At time t, denote µ∗t = max
i∈St

µi as the current best arm.

Definition 6. Mean gap of two arms i and j is the difference of mean values between the

two arms,

∆i,j := µi − µj.

This term takes a crucial role in conducting our simple regret analysis in the sequel.

To simplify the analysis later, we introduce the following notations. Denote Si = {S :

i ∈ S and i ≤ j ∀j ∈ S} as the collection of subsets which have i as the best arm, and

Ti = {t : i ∈ St and St ∈ Si} as the collection of times that arm i is the best available arm.

We also denote ti, tij as the final time in Ti and the final time within Ti that arm j is chosen

instead of i, respectively. Define Ki as the total number of available arms in the set Ti. We

note that |Ti| = Tqi, where qi is the probability that arm i is the leading arm of any subset.

We abuse the notation a bit by denoting T ij (t) as total number of times the arm j is chosen

up to time t whenever the arm i is the best available arm.
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CHAPTER 2

LEARNING FROM SLEEPING EXPERTS

We consider a generalized model of learning from expert advice in which experts could

abstain from participating at some rounds. Our proposed online algorithm falls into the

class of weighted average predictors and uses a time varying multiplicative weight update

rule. This update rule changes the weight of an expert based on his relative performance

compared to the average performance of available experts at the current round. We prove

the convergence of our algorithm to the best expert, defined in terms of both availability and

accuracy, in the stochastic setting, and justify by experimental results the out-performance

of our proposed algorithms compared to the existing ones in the literature.

2.1 Preliminaries and Proposed Algorithm

In this section, we introduce the problem setup and notations which will be used in subse-

quent sections. Let E = {1, 2, ..., N} be the set of all experts. We denote the set of available

experts at round t = 0, 1, 2, . . . by Et, where Et ⊆ E. At round t, expert i’s weight is

pit ∈ [0, 1], and his prediction on a given object is xit ∈ [0, 1]. The true outcome, or user’s

feedback, of the given object is denoted as yt, which is an adversarial binary {0, 1} sequence.

Our proposed algorithm to aggregate experts’ opinion is given in Algorithm 1. It computes

a weighted average of the predictions of the available experts at each round, as shown in

(2.1). Once the outcome is revealed, weights of experts are updated as in (2.2). This update

rule can be rewritten as:

pit = pit−1 + a(t)pit−1

[
I{i ∈ Et}(rit − 1/2)−

∑
j∈E

I{j ∈ Et}pjt−1(rjt − 1/2)

]
, (2.4)

where rit is defined by (2.3), and I{i ∈ Et} is the indicator function for availability of expert

i, i.e., I{i ∈ Et} = 1 if i ∈ Et, and I{i ∈ Et} = 0, otherwise. rit may be interpreted as

the accuracy of expert i in the sense that, a high value of rit corresponds to an accurate

prediction, i.e., one that is close to the outcome, for expert i. a(t) is a decreasing step
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Algorithm 1

Input: Set of expert E = {1, ..., N}
Initialize: pi0 = 1/N for i = 1,...,N.
for each round t = 1, 2, ... do

Nature chooses an object.
Prediction:
Each expert i predicts xit, for i ∈ Et.
Algorithm predicts ŷt,

ŷt =

∑
i∈Et

pit−1x
i
t∑

i∈Et

pit−1

. (2.1)

Nature reveals the outcome yt.
Update:
Algorithm updates weights of all experts. Each weight is updated by

pit =


pit−1 + a(t)pit−1

[
(rit − 1/2)−

∑
j∈Et

pjt−1(rjt − 1/2)

]
if i ∈ Et,

pit−1 − a(t)pit−1

∑
j∈Et

pjt−1(rjt − 1/2) if i /∈ Et,
(2.2)

where rit is defined by

rit := I{yt = 1}xit + I{yt = 0}(1− xit). (2.3)

end for

size such that
∑∞

t=0 a(t) = ∞, and
∑∞

t=0 a
2(t) < ∞ (more details in Section 2.2.1), e.g.,

a(t) = 1
1+t

. We denote the term between brackets of (2.4),

I{i ∈ Et}(rit − 1/2)−
∑
j∈E

I{j ∈ Et}pjt−1(rjt − 1/2)

as the information innovation. It captures the informative value of expert i’s prediction at

the current time. Therefore, the update rule of (2.4) rewards not only an accurate prediction

(high value of rit) but also the information value of such a prediction in terms of its deviation

from the average prediction of available experts at each time. This captures the fact that

if an instance is hard to predict, a correct expert must be rewarded more than when the

instant is easy to predict (as everyone in an easy instance may predict correctly).
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2.2 Convergence Analysis of the Algorithm

Let us define the availability and the accuracy of expert i at instant t by I{i ∈ Et} and rit,

respectively. To have a precise definition of best expert, we consider the following assumption

throughout the paper.

Assumption 2. We assume that the process {I{i ∈ Et}(rit − 1
2
), t = 0, 1, . . .} is weakly

stationary for each expert i meaning that E[I{i ∈ Et}(rit − 1/2)] does not depend on time t.

Intuitively, Assumption 2 implies that the expected chance that an expert votes on an

instance and predicts correctly is a constant. Based on this definition, we now define the

best expert as follows:

Definition 7. The best expert is defined as

i∗ = arg max
i∈E

E[I{i ∈ Et}(rit − 1/2)], (2.5)

where the expectation is taken over the randomization of experts’ accuracy and availability.

Essentially, Definition 7 states that the best expert is the one achieving the highest ex-

pected performance in terms of both availability and accuracy over the decision horizon.

Note that Algorithm 1 penalizes reliable experts who do not vote frequently in order to

prevent them from earning high weights by employing a safe voting strategy (i.e., voting

only on easy instances or the instances which already have enough votes to determine their

quality). For instance, in the case of movie recommendation, a critic should not be rewarded

with a high weight just because he voted favorably for well-known excellent movies or he

voted against all-time flops. Also note that the algorithm does not solely applaud the ex-

perts aiming to be present but with very low accuracy (at the level of random guess). One

of our immediate goals is to show that Algorithm 1 converges to the best expert defined as

in Definition 7.

2.2.1 Convergence Analysis

Herein, we address the question of whether the algorithm can asymptotically recognize the

best expert and follow him. To answer this, let us examine the evolution of weights of all

experts to see if the best expert’s weight indeed dominates the other weights in the long run.

Let us denote ~pt−1 as the vector of weights for all experts at time t−1, i.e., ~pt−1 = {pit−1}Ni=1,

and ~ξt as ~ξt = {I{i ∈ Et}rit}Ni=1, which is a collection of the products of availability and
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accuracy of the experts. Rewrite the weight update rule of (2.4) as

pit = pit−1 + a(t)fi(~pt−1, ~ξt), (2.6)

where

fi(~pt−1, ~ξt) := pit−1

[
I{i ∈ Et}(rit − 1/2)−

∑
j∈E

I{j ∈ Et}pjt−1(rjt − 1/2)

]
.

Let Ft−1 denote the history of predictions and presence of all experts up to time t− 1, i.e.,

Ft−1 := {{xiτ}Ni=1, {I{i ∈ Eτ}}Ni=1, for τ = 1, . . . , t− 1}.

Define hi(~pt−1) as,

hi(~pt−1) := E[fi(~pt−1, ~ξt)|Ft−1],

where E[·|Ft−1] is the conditional expectation given the past history. Note that by Assump-

tion 2, E[fi(~pt−1, ~ξt)|Ft−1] is only a function of ~pt−1. We also define M i
t as

M i
t := fi(~pt−1, ~ξt)− E[fi(~pt−1, ~ξt)|Ft−1].

Then we can rewrite equation (2.6) as

pit = pit−1 + a(t)[hi(~pt−1) +M i
t ], (2.7)

where {M i
t} is a martingale difference sequence. In particular, since it is uncorrelated with

the history of predictions and availabilities of experts, we can consider it as a noise. Stacking

all the equations of (2.7) for i = 1, . . . , N in a vector form, we get

~pt = ~pt−1 + a(t)[h(~pt−1) +Mt], t = 0, 1, . . . (2.8)

where h(·) = (h1(·), . . . , hN(·)), and Mt = (M1
t , . . . ,M

N
t ). Equation (2.8) is commonly

used to define the state update in a dynamical system. In this formulation, the state is

incremented by a function of past states and an exogenous noise multiplied by a decreasing

step size. It is shown in [199, Theorem 2] that under appropriate conditions, the solution

to the difference equation of (2.8) asymptotically approaches the solution to an ordinary

differential equation (ODE) given by ρ̇(s) = h(ρ(s)), s ∈ RN , with identical initial condition

ρ(0) = ~p0. The required conditions are:

• (A1) Function h(·) is Lipschitz, i.e., there exists a positive constant L such that
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‖h(~p)− h(~p′)‖ ≤ L‖~p− ~p′‖, for any ~p and ~p′.

• (A2) Step size a(t) is not summable but squared summable, i.e.,

∞∑
t=0

a(t) =∞ and
∞∑
t=0

a(t)2 <∞.

• (A3) {Mt} is a martingale difference sequence1 such that E [M2
t |Ft−1] ≤ K(1+‖~pt−1‖2)

for some positive constant K.

• (A4) supt ‖~pt‖ <∞, almost surely.

Theorem 1. [199, Theorem 2] Almost surely, the sequence {~pt} generated by ~pt+1 = ~pt +

a(t)[h(~pt) +Mt+1] converges to a compact connected internally chain transitive invariant set

of ρ̇(s) = h(ρ(s)), where ρ(0) = ~p0.2

The key idea in establishing Theorem 1 is the fact that the discretization error and the

effect of noise tend to be zero asymptotically. Specifically, since the step size a(t) tends to

zero when t goes to infinity, the discretization error is negligible. Also, the effect of noise is

asymptotically reduced since {Mt} is bounded and the series
n∑
t=0

a(t)Mt converges. Applying

Theorem 1, the following lemma is immediate.

Lemma 1. For i = 1, . . . , N , almost surely the sequence pit given by (2.7) tracks the trajectory

of the following ODE:

ρ̇i(s) = hi(ρ(s)) = ρi(s)

(
ci −

∑
j∈E

cjρ
j(s)

)
, ρ(0) = ~p0, (2.9)

where ρ(s) = (ρ1(s), . . . , ρN(s)), and ci := E[I{i ∈ Et}(rit − 1/2)], i = 1, . . . , N .

Proof. See Appendix A.1.1.

We now are ready to state our main convergence result.

Theorem 2. If there exists only one best expert defined by Definition 7, then Algorithm 1

will converge to him. If there is more than one expert satisfying Definition 7, then Algorithm

1 will alternate between them.

Proof. See Appendix A.1.2.
1That is E[Mt|Ft−1] = 0, a.s., for t ≥ 0.
2A closed set A is said internally chain transitive if for any pair x and y in A, there exist a set of points

in A such that the trajectory given by the solution to the ODE starts from x, passes through those points
to y after some certain amount of time.

19



2.3 Alternative algorithm in sleeping-expert setting

In this section we consider a slight variant of Algorithm 1 for the sleeping expert problem. So

far, an expert incurs some loss when he is not available. In this section, we assign a constant

loss for a sleeping expert and see how it changes the performance of our algorithm under the

stochastic setting assumptions given in Section 2.2. Since in the adversarial settings such

as the ones mentioned in Section 2.1, experts might be intentionally absent from voting, we

penalize non-voting experts at one round by assigning them a constant vote and hence a

loss. Specifically, when an expert i does not vote in one round, we assume that his vote was

a constant value c ∈ [0, 1], i.e.,

zit =

{
xit if i ∈ Et,
c if i /∈ Et.

(2.10)

Now we can compare all experts based on their expected losses since they have recommen-

dations at each round regardless of their presence. Denote l(.) as a bounded loss function.

From (2.10), the loss of expert i at time t is given by

l(zit) = I{i ∈ Et}l(xit) + I{i /∈ Et}l(c).

The expected loss of expert i is then computed by

E(l(zit)) = E
[
I{i ∈ Et}l(xit) + I{i /∈ Et}l(c)

]
. (2.11)

Note that the expectation is taken over the randomization of availability and accuracy of

experts.

Definition 8. The best expert is defined as the one who has the least expected loss over all

experts, i.e.,

i∗ = arg min
i∈E

E(l(zit)),

= arg min
i∈E

E
[
I{i ∈ Et}l(xit) + I{i /∈ Et}l(c)

]
. (2.12)

Algorithm 2 describes a prediction framework where a missing vote is treated as in (2.10).

Note that Algorithm 2 essentially differs from Algorithm 1 only in the weight update rule

given by (2.13) and (2.14). In the following, we show that for the absolute loss function, the

Definition 7 of the best expert coincides with that of Definition 8 (which is a more natural

definition under this ‘all-awake-experts’ setting). To see that, define the absolute loss of
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Algorithm 2

Input: Set of expert E = {1, ..., N}
Initialize: pi0 = 1/N for i = 1,...,N.
for each round t = 1, 2, ... do

Nature chooses an object.
Prediction:
Each expert i predicts xit, for i ∈ Et.
Algorithm predicts ŷt,

ŷt =

∑
i∈E

pit−1x
i
t∑

i∈E

pit−1

.

Nature reveals the outcome yt.
Update:
Algorithm updates weights of all experts. Each weight is updated by

pit = pit−1 + a(t)pit−1

[
uit −

∑
j∈E

pjt−1u
j
t

]
, (2.13)

where uit is defined by

uit =

{
I{yt = 1}xit + I{yt = 0}(1− xit) if i ∈ Et,
I{yt = 1}c+ I{yt = 0}(1− c) if i /∈ Et.

(2.14)

end for

expert i at time t as l(xit) = |yt − xit|. By the definition of uit in (2.14), we observe that

uit =

{
1− l(xit) if i ∈ Et,
1− l(c) if i /∈ Et.

(2.15)

Therefore, we will have the following corollary:

Corollary 1. Algorithm 2 converges to the best expert defined by Definition 8.

Proof. See Appendix A.1.3.

The value of constant c is chosen based on the degree that the algorithm wants to penalize

the absent experts. For example, for a “non-strict” algorithm, c is chosen to minimize the

expected losses of the experts. As we shall see soon through experimental results, with some

appropriate choice of c, the algorithm can obtain high performance compared to the other

existing algorithms for expert advice problem.
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Table 2.1: Availability and accuracy of experts.

Expert Availability Accuracy

1 0.95 0.95
2 0.9 0.9
3 0.8 0.8
4 0.7 0.7
5 0.6 0.7
6 0.5 0.9
7 0.4 0.6
8 0.3 0.5
9 0.2 0.6
10 0.1 1

2.4 Experimental Results

In this experiment, we compare the performance of our proposed algorithms to other algo-

rithms in this sleeping expert setting. We run algorithms on both synthetic dataset and real

dataset (Netflix) to prove that our algorithms not only works in the stochastic setting but

also in a more general case without any stochastic assumption. First, we consider a synthetic

data set consisting of recommendations for objects from 10 experts in 1000 rounds, during

which some experts could abstain from voting. The predictions of experts take values in

[0, 1], while the outcomes (objects) are binary {0, 1} generated from a Bernoulli distribu-

tion with parameter 0.5. Each expert votes only when he is present, frequency of which

depends on his availability. The prediction of an available expert depends on his accuracy.

We simulate over the set of availability and accuracy given in table 2.1.

To define the accuracy of an expert, we define a tolerance ρ as follows. Expert i is

considered to have a correct prediction if his prediction lies within a distance ρ from the

outcome, i.e., |xit − yt| ≤ ρ. The accuracy of expert i is then defined by the percentage of

time that his recommendations are correct, and is denoted by µi. For example, if an expert

i votes in a system with ρ = 0.3 for 100 rounds and his accuracy µi = 80%, it implies that

80 of his reccommendations satisfy |xit − yt| ≤ 0.3. The value of ρ was chosen to be 0.3 in

this simulation.

Let A1 and A2 represent our proposed Algorithm 1 and Algorithm 2, respectively, with

decreasing step size, 1
1+t

. We also investigated performance of Algorithm 1 for a fixed step

size. Specifically, A1 001 and A1 05 are two other versions of Algorithm 1 when the step

size is set equal to 0.01 and 0.5, respectively.

We first compare the loss of the proposed algorithms with those of other algorithms:
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Dsybil [26] and SBayes [19].

In Dsybil, there are two classes of objects: overwhelming and non-overwhelming. An object

is identified as overwhelming if sum of the weights of experts voting for it exceeds a threshold

th, otherwise, the object is non-overwhelming. Experts only vote for an object if they believe

it is good. If expert i’s prediction for a non-overwhelming object is correct, his weight is

increased by wit = wit−1α, where α > 1. Correct votes for an overwhelming object do not

result in weight change since the votes are not important. Whenever an expert i votes for

a bad object, his weight is decreased by wit = wit−1β, where β < 1. In this simulation, we

chose α = 5, β = 0.1, th = 11 to optimize Dsybil′s performance.

SBayes [19] is the weight update rule which keeps the weights of sleeping experts unchanged.

One difficulty in comparing these algorithms is that the loss definition of each algorithm

differs from the others. Therefore, we use a unified common definition of loss which is

defined as the total number of mistakes the algorithm makes. In other words, the prediction

of the algorithm is quantized to a binary value and is compared with the outcome.

Since SBayes uses the logarithmic loss function, for a more fair comparison, we also

add another algorithm, SBayes abs which is an adaptation of SBayes when the loss is an

absolute function.

Figure 2.1 depicts losses incurred by the above algorithms when the constant c of A2 is

chosen as 0.2. It is shown that A1 and A1 001 suffers the least loss while Dsybil incurs the

most loss and SBayes, SBayes abs are in between. In our simulations, we assumed that

a given object to be rated is equally likely to be good or bad, i.e., outcomes 0 and 1 are

equiprobable. Since in Dsybil, good experts only vote for good objects, this algorithm must

rely on experts that have not performed well when a bad object is considered. Consequently,

it might suffer much loss due to these non-performing experts’ predictions. This is an inherent

flaw of the algorithm Dsybil.

Compared to SBayes and SBayes abs, A1 converges slower to the best expert since it

uses a decreasing step size in the update rule. This slowness in convergence is deliberate.

In SBayes and SBayes abs, the quick convergence to the best expert means that weights

of other experts are decreased quickly. Therefore, when the best expert is not available to

vote (is sleeping), the algorithm has to choose among experts that all have small weights.

The same is not true for A1. When the best expert goes to sleep alternative “nearly best

experts”, which have higher weights than the corresponding SBayes′ experts, are available

to vote and help the performance of the algorithm.

The fixed step size versions of Algorithm 1 act differently depending on the value of step

size. As expected, these algorithms converge faster than A1 which uses a decreasing step

size. In fact, for the experimental setup of table 2.1, A1 001 behaves approximately the same
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Figure 2.1: Comparison of loss of Dsybil, SBayes, SBayes abs, A1, A2, A1 001, and
A1 05 when c = 0.2.

as A1 when the constant step size is set small ,0.01, while A1 05 behaves approximately the

same as SBayes abs and SBayes when the step size is increased to 0.5. The performance of

A2 varies with the choice of value c. In particular, when c is chosen to be 0.2, its performance

is not comparable to A1, as showed in Figure 2.1. We change the constant c to find the value

at which A2 can improve its performance. Figure 2.2 illustrates such a case when c = 0.5,

in which A2 outperforms all other algorithms.

Also in this setting, the weights evolutions of algorithms are investigated. Figure 2.3

shows the weights evolutions of all experts. Since Dsybil use multiplier α = 5 and threshold

th = 11, an expert’s weight of this algorithm could go up to 55 if that expert has been

rewarded from the weight roughly the threshold. Therefore, we normalize weights of Dsybil

to obtain the fair comparison with other algorithms. It can be observed that while weights of

Dsybil still fluctuate after long time, weights of SBayes converge much faster. As mentioned

above, A1 converges more slowly than SBayes. However, the fixed step size algorithms can

increase the convergence rate. Specifically, A 05 converges faster than A1 001 which is faster
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Figure 2.2: Comparison of loss of Dsybil, SBayes, SBayes abs, A1, A2, A1 001, and
A1 05 when c = 0.5.

than A1.

In the second part of the simulation, we compare the performance of algorithms on the

Netflix dataset. For the purpose of comparing the algorithms’ performance and reduce the

running time, we only use a subset of this dataset, including 3153 experts, 14 movies and the

voting period is within 2180 days. The predictions of experts are given in the normalized five-

star scale {0.2, 0.4, 0.6, 0.8, 1}. The outcomes are obtained from feedback of an experienced

movie consumer. Figure 2.4 shows the loss comparisons when the constant c of A2 is set

equal to 0.2. In this figure, Dsybil again gets the poor performance while A1 and A1 001

still outperform the rest (A1 is slightly better than A1 001). In the experiment with this

dataset, SBayes and SBayes abs algorithms perform slightly worse than A1 and A1 001

but still better than A1 05. Note that the number of movies noticeably increases in the time

period 1100 to 1500. Therefore, it is more likely that the best expert misses on voting for

some of the movies during this time. Algorithms do not solely rely on the best expert in that

case such that our algorithms do more favorably in this scenario due to the higher weights
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Figure 2.3: Experts’ weights evolution of algorithms when c = 0.5.

for other good experts. Since for this dataset, there is no obvious way (at least after some

runs with different values of c) to choose c the performance of A2 is not good as opposed to

its performance on the synthetic data. It is slightly better than Dsybil, but not better than

A1 05 even when c is changed to a better chosen value, e.g., 0.8, as illustrated in Figure 2.5.

It has been observed that while A2 achieves superior performance in stochastic settings with

an appropriate choice of constant c, it does not practically seem to guarantee such a good

performance in an adversarial setting, e.g., in Netflix dataset. In two cases, A1 and A1 001

always outperform others.
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Figure 2.4: Comparison of loss of Dsybil, SBayes, SBayes abs, A1, A2, A1 001, and
A1 05 when c = 0.2 and Netflix dataset is in used.
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Figure 2.5: Comparison of loss of Dsybil, SBayes, SBayes abs, A1, A2, A1 001, and
A1 05 when c = 0.8 and Netflix dataset is in used.
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CHAPTER 3

ADVERSARIAL ATTACKING STRATEGIES

In this chapter, we analyze optimal adversarial strategies against the weighted average pre-

diction algorithm in the learning with expert advice framework. All but one expert are honest

and the malicious expert’s goal is to sabotage the performance of the algorithm by strategi-

cally providing dishonest recommendations. We formulate the problem as a Markov decision

process (MDP) and analyze it under various settings with two kinds of losses: logarithmic

loss and absolute loss.

3.1 Notations and Problem Formulation

Let E = {1, 2, ..., N} be the set of experts. At round k, each expert i has a weight pik−1 ∈
[0, 1]. The prediction of expert i is denoted by xik ∈ {0, 1}. Upon receiving the expert

predictions, the algorithm calculates a weighted average prediction, ŷk. After the prediction

is made, the outcome, denoted by yk, is revealed. We assume the outcome is in {0, 1}.
After the outcome is revealed, the algorithm incurs a loss l(ŷk, yk) and expert i incurs a loss

l(xik, yk). The algorithm updates the weights of experts based on the losses they incurred

using a multiplicative update rule. The learning process is summarized by Algorithm 3.

In this paper, we only focus on two kinds of losses:

• Logarithmic Loss:

l(yk, ŷk) := −I{yk = 1} ln(ŷk)− I{yk = 0} ln(1− ŷk).

• Absolute Loss: l(yk, ŷk) = |yk − ŷk|.

Note that we can rewrite the logarithmic loss as l(yk, ŷk) = − ln(1−|yk−ŷk|), that will be con-

venient for later use. In this case, to avoid the loss function going to infinity, we slightly mod-

ify the binary predictions to {ε, 1− ε}, where ε is a small number. We let ~pk = (p1
k, p

2
k, ..., p

N
k )

be the state or weight vector of all experts at round k, and ~̃pk = (p̃1
k, . . . , p̃

N
k ) be the corre-
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Algorithm 3 The weighted average learning algorithm

Initialize: pi0 = 1 for i = 1,2,...,N.
for each round k = 1, 2, ... do

Nature chooses an outcome.
Prediction:
Each expert i predicts xik ∈ {0, 1}. Algorithm predicts ŷk,

ŷk =

∑
i∈E p

i
k−1x

i
k∑

i∈E p
i
k−1

. (3.1)

Nature reveals the outcome yk ∈ {0, 1}.
Update:
Each expert’s weight is updated as:

pik = pik−1e
−l(xik,yk). (3.2)

end for

sponding normalized weight vector where

p̃ik =
pik∑
i∈E p

i
k

, i = 1, 2, . . . , N (3.3)

is the normalized weight of expert i. Note that we always have
∑

i∈E p̃
i
k = 1,∀k.

Throughout this paper, we assume that expert i (i 6= 1) makes a correct prediction, i.e.,

one that agrees with the outcome, with probability µi (the accuracy of expert i). That is,

xik =

{
yk w.p µi,

1− yk w.p 1− µi.
(3.4)

Without loss of generality assume that the malicious expert is expert 1 and recall that all

the other experts are honest. We assume expert 1 knows the prediction distribution of

each expert i (this can be learned empirically from the history of predictions, for example).

Furthermore, at round k, expert 1 knows the true outcome yk and the whole history of

predictions up to round k − 1. Thus, at round k, the information set given to expert 1 is

{yk, y`, xi`, ~̃p`, ` = 1, ..., k − 1, i ∈ E}. Based on this information set, this expert selects an

action (prediction) x1
k ∈ {T, L}, standing for “truth” or “lie”, where T := yk, and L := 1−yk.

After the predictions of all the experts (honest and malicious) are revealed, their weights

will be updated according to (3.2). The malicious expert’s program is cast as an MDP1, in

1Here, the malicious expert’s action at time k is x1k which incurs the loss l(ŷk, yk), and change the state
~pk = (p1k, p

2
k, ..., p

N
k ) to the next state ~pk+1 = (p1k+1, p

2
k+1, ..., p

N
k+1).
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which, he aims to maximize the expected accumulated loss of the algorithm over the horizon

K, i.e.,

max
x11,...,x

1
K

K∑
k=1

Ex2k,...,xNk (l(ŷk, yk)), (3.5)

where the expectation is taken over the randomization of x2
k, ..., x

N
k , i.e., predictions of honest

experts.

Algorithm 4 summarizes the adversary’s optimal policy for the problem defined by (3.5). In

Algorithm 4 Adversary’s optimal strategy (DP)

Initialize: VK(.) = cK(.) = 0
for each step k = K − 1 downto 1 do

Find the optimal action,

u∗k(yk, ~pk−1)=arg max
x1k

[
cx1k(yk, ~pk−1)+EV ∗k+1(yk+1, φx1k(~pk−1))

]
,

and the corresponding value function,

V ∗k (yk, ~pk−1)=max
x1k

[
cx1k(yk, ~pk−1)+EV ∗k+1(yk+1, φx1k(~pk−1))

]
. (3.6)

end for
Output: sequence u∗K−1(.), V ∗K−1(.), ..., u∗1(.), V ∗1 (.).

this algorithm, cx1k(yk, ~pk−1) denotes the current cost that the adversary can impose on the

system by taking action x1
k and is defined as the expected loss of the algorithm at round k

with respect to actions of the honest experts:

cx1k(yk, ~pk−1) = E(l(ŷk, yk)). (3.7)

For further analysis, we denote the value function at stage k by Vk(·),

Vk(yk, ~pk−1, x
1
k) = cx1k(~pk−1, yk) + EV ∗k+1(yk+1, φx1k(~pk−1)), (3.8)

where V ∗k+1(·) denotes the optimal value function, i.e., the optimally accumulated loss from

time step k + 1 onward and φx1k(~pk) denotes the state transition associated with this MDP,

i.e.,

φx1k(~pk) =
(
p1
k+1, . . . , p

N
k+1

)
, (3.9)

where pik+1 = pike
−l(xik,yk). For simplicity, we denote φT (~pk) and φL(~pk) as the next state from
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~pk when x1
k = T and x1

k = L, respectively.

3.2 Preliminary Results

In this section we review some salient properties of the learning algorithm given in Algorithm

3 and establish some relevant results for later use. With a slight abuse of notation, from

now on, we use the notation E[·] to denote the expectation of an event with respect to its

ambient space.

Next, we state a useful lemma, which allows us to remove the dependency of the value

function and the optimal policy from the actual values of yk, k = 1, . . . , K.

Lemma 2. For any loss function of the form l(ŷ, y) := Q(|ŷ − y|), where Q(·) : [0, 1] → R
is an arbitrary function, the expected loss given in (3.5) is fully determined by the weight

vector ~pk, the horizon length K, and the adversary’s policy π := (x1
1, . . . , x

1
K) ∈ {T, L}K.

Proof. See Appendix A.2.1.

Therefore, using the above lemma and from now on we remove the dependency of the

current costs and value functions from the actual values of yk. In particular, for a policy π of

the adversary we simply define V π
K(~p) :=

∑K
k=1 Ex2k,...xNk [l(ŷk, yk)], where ~p denotes the weight

vector and K is the total number of stages. For simplicity of notation, we may suppress the

dependency on the policy π whenever there is no ambiguity, and we simply write VK(~p).

Since calculating the value functions is in general a difficult task and somehow intractable

for exponentially many states, we attempt to find the structural properties of the optimal

actions. In the next section, we derive key properties of the current costs and value functions

for the two types of loss functions that we consider in this paper.

3.2.1 Current costs and value functions

Logarithmic loss From the definition and relations (3.1), (3.4), and (3.9), we can write

the current cost given in (3.7) for two different choices of the adversary’s action in {L, T} at

some generic time by

cL(~p) = −ER

[
ln
(εp1+(1−ε)

∑
i∈R p

i+ε
∑
j∈Rc pj

~p1

)]
,

cT (~p) = −ER

[
ln
( (1−ε)p1+(1−ε)

∑
i∈R p

i+ε
∑
j∈Rc pj

~p1

)]
, (3.10)
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where R and Rc denote the (random) set of honest experts which are correct and incorrect at

that generic time, respectively, and 1 denotes a column vector of all ones of proper dimension.

An immediate consequence of the above relations is the following two properties of the

current cost,

• (P1): cL(~q) < cL(~p), if q1 < p1, and qi = pi for i 6= 1.

• (P2): cL(~p) ≥ cT (~p),∀~p.

Absolute loss The absolute loss is defined as l(ŷk, yk) = |yk− ŷk|. Similar to the logarith-

mic loss, one can see that

cL(~p) = ER
[p1 +

∑
j∈Rc p

j

~p1

]
,

cT (~p) = ER
[∑

j∈Rc p
j

~p1

]
. (3.11)

Again we note that for absolute loss, the current costs satisfy properties (P1) and (P2).

Finally, in the following proposition we state one of the properties of the value function

defined by (3.8), namely, monotonicity for both logarithmic and absolute loss function.

Proposition 1. Given two weight vectors ~pk−1 and ~qk−1 with q1
k−1 ≤ p1

k−1 and qik−1 = pik−1

for i 6= 1, V ∗k (~qk−1) ≤ V ∗k (~pk−1) for both logarithmic and absolute losses.

Proof. See Appendix A.2.2.

Proposition 1 states that given an arbitrary but fixed vector of weights for honest experts,

the value function is a nonincreasing function of the adversary’s weight.

3.3 Finite Horizon-Logarithmic Loss

In this section, we describe the optimal strategy for the malicious expert in the general N -

expert setting when the loss function is logarithmic. Based on the evolution of normalized

weights given in (3.3), it is not hard to see that the normalized weight of the adversary,

i.e., p̃1
k will not decrease when he tells the truth. Thus, property (P2) of current costs and

Proposition 1 imply a trade-off between the current costs and the value function. More

precisely, while adversary (expert 1) can cause the system to incur a higher current cost

by telling a lie, his weight would decrease at the next round as does his value function

(Proposition 1). This suggests that perhaps the optimal strategy might be to tell the truth
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until “enough” weight is gained and only begin to lie after that. We will see in the following

that surprisingly this intuition is not true for the logarithmic loss.

Theorem 3. For the logarithmic loss function in the setting of Algorithm 3, the optimal

policy for the malicious expert is the greedy policy of telling a lie at every step.

Proof. See Appendix A.2.3.

Note that here our goal is to characterize the optimal policy for the malicious expert

rather than to evaluate the value of the maximum loss on the system. The structure of the

optimal policy of course may be used to compute or approximate the maximum expected

loss of the system. To provide a concrete example, consider the case of N = 2 experts with

identical initial weights ~p0 = (1, 1), and the logarithmic loss function. Based on Theorem 3,

the optimal policy for the malicious expert is to lie at all stages. This allows us to compute

the maximum expected loss of the system as

V ∗K = K(1− µ) ln(
1

ε
) +

K∑
j=0

P(Z > j) ln(1 + ej),

where Z ∼ Bin(K,µ) is a binomial distribution with mean µ, and ε is the small constant

in the definition of the logarithmic loss function. To see why this relation holds, let us fix

the adversary’s strategy to the false policy, and we look at all the possible sample paths

which can be realized by predictions of the honest expert. Any sample path in which the

honest expert predicts correctly k times and makes mistakes K − k times will occur with

the probability of µk(1 − µ)K−k. There are exactly
(
K
k

)
such sample paths, and for any of

them, independent of what instances the honest agent predicts correctly or wrongly, the loss

incurred with respect to the adversary’s false policy equals to (K−k) ln(1
ε
)+
∑k−1

j=0 ln(1+ej).

This is because for any of K−k false predictions of the honest agent on the sample path the

system incurs a loss of ln(1
ε
), and for the remaining k correct predictions, independent of the

order of them, the system incurs a loss of
∑k−1

j=0 ln(1 + ej). Therefore, by taking expectation

over all possible sample paths we get
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V ∗K =
K∑
k=0

(
K

k

)
µk(1− µ)K−k

(
(K − k) ln(

1

ε
) +

k−1∑
j=0

ln(1 + ej)
)

= K(1− µ) ln(
1

ε
) +

K∑
k=0

k−1∑
j=0

(
K

k

)
µk(1− µ)K−k ln(1 + ej)

= K(1− µ) ln(
1

ε
) +

K−1∑
j=0

 K∑
k=j+1

(
K

k

)
µk(1− µ)K−k

 ln(1 + ej)

= K(1− µ) ln(
1

ε
) +

K∑
j=0

P(Z > j) ln(1 + ej),

where in the last equality we used the fact that Z ∼ Bin(K,µ) and P(Z > K) = 0.

In general, the structure of optimal policy heavily depends on the choice of the loss func-

tion. In the remainder of the paper our goal is to characterize such optimal policy for absolute

loss function.

3.4 Optimal Policy for the Absolute Loss with Discounted Factor

In this section we turn our attention to the problem of adversary’s optimal policy for the

case of absolute loss function. Unlike the logarithmic loss function, the structure of optimal

policy for the absolute loss function in finite horizon even for the case of two experts could

be very chaotic. This is because the absolute loss function grows much faster than the

logarithmic loss, resulting in strong coupling trade off between the growth of value function

and the instantaneous costs, which in turn makes the analysis of the absolute loss function

in finite horizon much more complicated. Therefore, in this section we focus on the finite

and infinite horizon discounted problem when there are only two experts. Although some of

our analysis can be extended to the case where there are more than two exerts, however, as

we will see, even for the case of two experts finding the optimal policy is a nontrivial and

challenging task.

To begin, we note that for the case of two experts (one adversary and one honest expert),

knowing the relative weight of the adversary p̃1
k−1 at step k suffices to make a decision. This

is because using p̃1
k−1 + p̃2

k−1 = 1, the adversary can always infer the relative weight of the

honest expert from his own relative weight. Therefore, in this section we find it easier to

work with the adversary’s relative weight p̃1
k as the state rather than the actual weights

p1
k, p

2
k.
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Specializing the general law of the relative weight given in (3.3) for the case of two experts,

one can easily see that the relative weight of adversary can be written as:

φx1k(p̃
1
k−1) =


1

1+
(

1

p̃1
k−1

−1
)
e

if x1
k = L, x2

k = T,

1

1+
(

1

p̃1
k−1

−1
)
e−1

if x1
k = T, x2

k = L,

p̃1
k−1 if x1

k = x2
k.

(3.12)

It is clear from (3.12) that when two experts make the same prediction at a time, their next

(updated) normalized weights do not change. On the other hand, adversary’s normalized

weight increases if he makes the right recommendation while the honest expert makes a

wrong one, and his normalized weight decreases if the opposite is true. Finally, using (3.11)

specialized for the case of 2-experts, and for a relative weight of the adversary p̃, one can

write the current costs explicitly as

cL(p̃) = µ2p̃+ (1− µ2),

cT (p̃) = (1− µ2)(1− p̃). (3.13)

Before stating our main results for the absolute loss function, we first provide some simu-

lation results in order to illustrate some of the optimal patterns for the adversary. This will

be very helpful to establish our main results later.

3.4.1 Experimental Results for Finite Horizon Problem

We run the dynamic programming (Algorithm 4) for the setting of 2 experts, absolute

loss. The honest expert (expert 2) predicts correctly with probabilities µ2 = 0.7. Figure

3.1 illustrates the optimal actions of the malicious expert (expert 1) as a function of its

normalized weight p̃1 at each time k ∈ {1, 2, ..., 18}.
Blue colored points encode the weights p̃1 at which the optimal action is to tell the truth

while red points indicate the weights p̃1 at which lying is optimal. Figure 3.1 clearly shows

that a threshold policy is optimal. It can be observed from these figures that the threshold

value of the first expert decreases as time passes by. Motivated by this numerical result, we

prove that the threshold policy is optimal under the discounted problem.
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Figure 3.1: Optimal action of expert 1 in the 2-experts, absolute loss setting with
a horizon of length 18. Stages are numbered left-to-right, top-to-bottom, i.e., the
first stage is depicted in the top-left plot. p1 is the normalized weight of expert 1.
‘*’ represents the point at which expert 1 tells the truth, and ‘o’ represents the
point at which expert 1 lies.
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3.4.2 Finite Horizon Discounted Problem

In this section, we consider the discounted problem for the absolute loss function in finite

horizon. For this problem, the adversary’s goal is to take optimal actions at each stage in

order to maximize the expected discounted loss function given by

max
x11,...,x

1
K

K∑
k=1

βkcx1k(p̃k−1). (3.14)

Note that from Lemma 2, the value of yk is dropped from the notation of the cost function.

Next we consider the following definition:

Definition 9. A policy for the adversary is a threshold policy if there exists a threshold τ

such that the adversary tells the truth whenever his relative weight is below τ and lies as soon

as his relative weight passes the threshold.

Based on this definition, in the following theorem we show that for the finite horizon

discounted problem, the optimal policy is a threshold one. That is, to impose the most

loss on the system, the adversary must start lying once his relative weight exceeds a certain

threshold.

Theorem 4. For the absolute loss function, the optimal policy for the adversary in the case

of 2-experts finite horizon problem with the discounted factor β < 1
e

is a threshold policy.

Proof. See Appendix A.2.4.

As we mentioned earlier, when the adversary lies, it inflicts a loss on the system at the cost

of loosing its relative weight. When β < 1
e
, as shown in Theorem 4, the adversary should tell

the truth up to some stage and then keep lying. When β > 1
e
, the weight v.s. loss trade-off

becomes more complicated and the backward induction of Theorem 4 is not sufficient for

analyzing the problem.

Finally, we mention here that although we have established our results for a fixed learning

rate of 1 (learning rate, in this framework, is a parameter used to adjust the update rate

of experts’ weights, in order to optimize the regret of the algorithm), they can be naturally

extended to any fixed learning rate η. See Appendix A.2.6 for more details.
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3.4.3 Infinite Horizon Discounted Problem

Next we consider the infinite horizon discounted factor problem in the case of 2-experts with

absolute loss function defined by

max
x11,x

1
2,...

∞∑
k=1

βkcx1k(p̃k−1). (3.15)

In fact, the optimal threshold policy established in Theorem 4 can be extended naturally to

the infinite horizon case using the one stage deviation principle2, defined in Definition 10,

provided that the expected value function satisfies the following continuity assumption:

Assumption 3. Given two sequences of actions of expert 1, s := {u1
t}∞t=1 and s′ := {v1

t }∞t=1,

let us define the expected value function corresponding to the sequence s with initial weight

~p0 as follows,

Vs(~p0) :=

∞∑
t=1

βtcu1t (p̃t−1).

The continuity assumption states that for any ε > 0, there exists a number Kε such that

∀k ≥ Kε, and when two sequences s and s′ share the first k actions, i.e., u1
t = v1

t , ∀t ≤ k,

then |Vs(~p0)− Vs′(~p0)| < ε.

Remark 1. One can easily check that the infinite horizon problem (3.15) satisfies the above

assumption because of the bounded current costs and discounted factor β < 1.

Definition 10. One stage deviation from a strategy is another strategy that differs from that

strategy at only one stage. One stage deviation principle states that a strategy is optimal if

there is no better one-stage-deviation strategy from that strategy.

Using Theorem 4 and the continuity assumption given above, a standard application of

one stage deviation principle shows that the optimal policy for the infinite horizon discounted

problem is also a threshold policy. This has been stated in the following proposition:

Proposition 2. The optimal policy for the adversary for the infinite horizon discounted

problem with β < 1
e

is a threshold policy.

Proof. See Appendix A.2.5.

An important feature of the infinite horizon problem is that one can explicitly characterize

the threshold function at each stage based on the parameters of the problem. More specif-

ically, due to the symmetry of the problem, the threshold for the infinite horizon problem

2One stage deviation was originally introduced by Blackwell [200]
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denoted by τ is unique and does not change from one stage to the other. This is because

the optimal cost from stage k onward is exactly βk times of that when we start from the

initial stage with the same adversary’s relative weight. Therefore, the optimal threshold at

the initial stage must be the same as the optimal threshold for the kth stage, which implies

that the optimal threshold τ is independent of the stage for the infinite horizon problem.

Next, in the following theorem, we characterize the optimal threshold for the infinite horizon

problem based on the parameters of the problem.

Theorem 5. The adversary’s optimal threshold for the discounted infinite horizon problem

and absolute loss function is given by

τ :=
1

2

(
1 + θ −

√
(1 + θ)2 − 4

(1 + e2)θ − e
(1− e)2

)
,

where θ = βµ2(1−µ2)

1−β(µ22+(1−µ2)2)
.

Proof. See Appendix A.2.5.

3.5 Mean-Field Approach

In this section, we investigate the general case of absolute loss with N experts in finite horizon

K by assuming that all experts except the malicious one have the same prediction accuracy,

i.e., µ2 = µ3 = ... = µN , and their predictions are independent. To do so, we approximate

this system with a system of two experts, one malicious and one honest expert, and first show

that the best strategy for the malicious expert in the approximated system is to lie at each

stage. Next, we showed that the performance of the optimal strategy in the approximated

system converges to that of the optimal strategy in the original system when the number of

experts goes to infinity.

For simplicity, we denote µ as the accuracy of prediction of those experts. We also let

yt = 1 in our analysis. The analysis for the case yt = 0 is conducted similarly.

Let us rewrite the updated weight (3.3) of an expert i at step k as

p̃ik =
p̃ik−1e

xik−1

p̃1
k−1e

xik−1 + p̄k−1

∑
j 6=1

qjk−1e
xjk−1

,

=
p̃ik−1e

xik

p̃1
k−1e

xik + p̄k−1x̄k
. (3.16)
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where p̄k−1 =
∑
j 6=1

p̃jk−1, and qjk−1 =
p̃jk−1

p̄k−1
and x̄k =

∑
j 6=1

qjk−1e
xjk . The system now can be

viewed as the one with two experts, one of which is malicious and another one is virtual

expert whose weight is p̄ and prediction is x̄. We will approximate x̄k as follows

x̄k ≈
∑
j 6=1

qjk−1E(ex
j
k),

= µe+ (1− µ).

Denote φ̂T (p), φ̂L(p) as the approximated versions of φT (p), φL(p) when we apply x̄ into the

transitions at the state p̃1 = p. In particular, we have

φ̂T (p) =
pe

pe+ (1− p)(µe+ (1− µ))

=
1

1 + (1/p− 1)(µ+ (1− µ)e−1)
, (3.17)

and

φ̂L(p) =
p

p+ (1− p)(µe+ (1− µ))

=
1

1 + (1/p− 1)(µe+ (1− µ))
. (3.18)

Note that, derived from the definition of absolute loss, when yt = 1, the current costs are

given as

cL(p) = p+ (1− p)(1−
∑
i 6=1

qit−1x
i
t),

and

cT (p) = (1− p)(1−
∑
i 6=1

qit−1x
i
t)).

We approximate these costs, using
∑
i 6=1

qit−1x
i
t ≈ µ as

ĉL(p) = p+ (1− p)(1− µ), (3.19)

ĉT (p) = (1− p)(1− µ). (3.20)

The proof of next results are given in Appendix A.2.7.
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Lemma 3. For any relative weight p of expert 1,

p− φ̂L(p)− µ(φ̂T (p)− φ̂L(p)) > 0.

Lemma 4. The approximated transition satisfies transitive property, i.e., φ̂L(φ̂T (k)(p)) =

φ̂T (k)(φ̂L(p)) ∀k ∈ N.

Instead of considering the adversarial setting with one malicious expert and N −1 experts

whose accuracy are the same, we consider the setting with 2 experts in which the approx-

imated state transitions are given in (3.17) and (3.18), and the approximated current cost

functions are given in (3.19) and (3.20). We call this setting “approximated setting”.

Theorem 6. For the adversarial approximated setting, it is optimal to always tell a lie, i.e.,

DV̂k(p̂) > 0 ∀p̂,∀k, where DV̂k(p̂) = V̂k(p̂, L)− V̂k(p̂, T ).

Proof. See Appendix A.2.7.

Now, we prove that the optimal strategy for approximated setting is nearly optimal in

the sense that it gains the performance close to that of the optimal strategy in the original

setting. The following lemma is crucial for the proof.

Lemma 5. At any stage k ≤ K, ∀εk > 0, there exists δk > 0 such that, if |p − p̂| < δk, we

have |Vk(p) − V̂k(p̂)| < εk with probability 1 − ξk, where ξk = exp(−ckN), and the constant

ck depends on δk and εk.

Proof. See Appendix A.2.7.

Theorem 7. For the setting of N experts, absolute loss, finite horizon K, the optimal

strategy for the approximated setting incurs asymptotically (when N → ∞) the total loss

of the optimal strategy for the original setting, given that the two algorithms start from the

same initial weight of the malicious expert.

Proof. See Appendix A.2.7.

Remark 2. One can expect that the malicious expert affects the system less and less when

the number of honest experts increases. This is illustrated in Figure 3.2, in which the total

losses inflicted on the system by the malicious expert are compared using two policies. Each

algorithm is run with the number of honest experts varying from 2 to 20, all with horizon 20.

The ‘lying’ policy outperforms the random policy where the malicious expert just simply picks

up a random prediction at any time. The difference between the losses of the two algorithm

decreases when the number of honest experts increases. In this experiment, we assigned the

values µ = 0.5 for all the honest experts. Then, since the horizon is 20, the loss of the

algorithms will converge to 10 eventually.
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Figure 3.2: Loss comparison of lying policy and random policy. Number of experts varies
from 2 to 20, all with horizon 20. Accuracy of all honest experts is µ = 0.5.
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CHAPTER 4

ADAPTIVE LABELING WITH EXPERT ADVICE

Active learning addresses the problems where the labels are either costly or obtained through

a time-consuming procedure. In this chapter, we consider an application of active learning

on learning from expert advice framework where the target is to reduce the number of label

requests while still keep the regret bound (regret is the difference of the total loss of the

algorithm and total loss of the best expert) as small as possible. We proposed two efficient

algorithms, Experts-Predictions-based-Selective-Labeling (EPSL) and Experts-Predictions-

based-Adaptive-Labeling (EPAL), to determine, for each example, whether it is necessary to

require its label. Both algorithms obtain nearly optimal regret bound up to some constant

depending on the characteristics of experts’ predictions. Experimental results show that our

algorithms outperform the others in this setting.

4.1 Problem Setting and Notations

Denote E = {1, 2, ..., N} as the set of experts. At each time t, each expert i provides a

prediction xit ∈ [0, 1] for the given object. Our first proposed algorithm, EPSL, is depicted

as in Algorithm 5.

In Algorithm 5, the weighted average value ŷt is predicted by (4.1), where we denote pit

as the weight of expert i at time t. At each time t, given experts predictions, the algorithm

calculates the prediction range, γt, defined by the maximum difference of predictions of any

pair of experts. The algorithm then decides whether to request for labeling by drawing a

Bernoulli random variable with the prediction range, γt, as the parameter. Intuitively, if

experts tend to agree on a certain item, i.e., xit are more or less similar and close to each

other, that item seems easy (or at least very popular) to predict. It implies that it is not

necessary to require label for that object. If the outcome of Bernoulli random variable is 1,

the algorithm requests the label for that object. Denote l(xit, yt) as the loss of expert i at

time t given the true label yt, where we assume l(xit, yt) ∈ [0, 1]. The weights of experts are

then updated by (4.3), where l̂(xit, yt) is the estimated loss, defined by (4.4).
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Algorithm 5 EPSL - Experts Predictions based Selective Labeling

Input: Set of experts E = {1, ..., N}, learning rate η
Initialize: pi0 = 1 for i = 1,...,N.
for each round t = 1, 2, ..., T do

Each expert gives his prediction xit
Algorithm calculates the maximal difference of experts’ predictions max

i,j
|xit − x

j
t |

Prediction:
Algorithm predicts the value of the object based on the weighted average,

ŷt =

∑
i∈E

pitx
i
t∑

i∈E

pit
, (4.1)

Selection:
Algorithm draws a Bernoulli random variable with parameter γt := max

i,j
|xit− x

j
t |. If its

value is 1, request the label yt.
Update:
Algorithm updates weights of all experts. Each weight is updated by

pit = pit−1e
−ηl̂(xit,yt), (4.2)

where

l̂(xit, yt) =

{
l(xit, yt)/γt w.p γt,
0 otherwise ,

(4.3)

end for

We denote the expected accumulated regret of the algorithm up to time T as RT ,

RT = E

(
T∑
t=1

l(ŷt, yt)

)
− E

(
min
i∈E

T∑
t=1

l(xit, yt)

)
, (4.4)

where the expectation is taken over the randomization of selecting sample to be labeled. In

the next sections, we derive the upper bound for the regret for our two proposed algorithms.

4.2 Selective labeling based on the experts predictions

In this section, we introduce our first algorithm, EPSL. This algorithm sets a constant learn-

ing rate which is calculated using a prior information from the ranges of experts predictions

during the horizon. The whole procedure is given in Algorithm 5.
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Theorem 8. The regret of EPSL (Algorithm 5) satisfies

RT ≤ 2

√√√√lnN
T∑
t=1

1

2γt
with η =

√√√√√√
lnN

T∑
t=1

1/(2γt)

, γt = max
i,j
|xit − x

j
t |.

Proof. From the weight update rule (4.2) and the inequality e−x ≤ 1− x+ x2/2, x ≥ 0,

pit ≤ pit−1

(
1− ηl̂(xit, yt) +

η2

2
l̂(xit, yt)

2
)
.

It follows that ∑
i∈E

pit∑
i∈E

pit−1

≤ 1−
∑
i∈E

ηp̃itl̂(x
i
t, yt) +

∑
i∈E

η2

2
p̃itl̂(x

i
t, yt)

2,

where p̃it is the normalized weight of expert i, given by p̃it =
pit∑

i∈E

pit
. Taking ln of two sides,

applying the inequality ln(1 + x) ≤ x, and summing over t=1,...,T, we obtain

ln
∑
i∈E

piT − lnN ≤ −
T∑
t=1

∑
i∈E

ηp̃itl̂(x
i
t, yt) +

T∑
t=1

∑
i∈E

η2

2
p̃itl̂(x

i
t, yt)

2. (4.5)

Denote Et(.) := E(.|Ft−1) as the conditional expectation on the previous predictions and la-

bel selections, where Ft−1 =< ŷs, us >, s = 1, ..., t−1, where us is the outcome of the Bernoulli

random variable at step s. From (4.3), it is observed that Et(l̂(xit)) := E(l̂(xit)|Ft−1) = l(xit).

Also note that

ln
∑
i∈E

piT ≥ ln piT = ln
(
exp(

T∑
t=1

−ηl̂(xit, yt))
)

=
T∑
t=1

−ηl̂(xit, yt).

Plug this into (4.5) and take the expectation on two side, we get

E

(
T∑
t=1

∑
i∈E

p̃itl(x
i
t, yt)

)
− E

(
T∑
t=1

l̂(xit, yt)

)
≤ lnN

η
+ ηE

T∑
t=1

∑
i∈E

p̃it
2
l̂(xit, yt)

2. (4.6)
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Let A = E
T∑
t=1

∑
i∈E

p̃it
2
l̂(xit, yt)

2. Since l̂(xit, yt) ≤ 1
γt
, we have

A ≤ E
T∑
t=1

∑
i∈E

p̃it
2γt

l̂(xit, yt),

= E
T∑
t=1

1

2γt

∑
i∈E

p̃itl(x
i
t, yt),

≤ E
T∑
t=1

1

2γt

∑
i∈E

p̃it,

= E
T∑
t=1

1

2γt
,

where we have used the fact that l(xit, yt) ≤ 1 in the last inequality and
∑
i∈E

p̃it = 1. Thus,

from (4.6), we obtain

E

(
T∑
t=1

∑
i∈E

p̃itl(x
i
t, yt)

)
− E

(
T∑
t=1

l̂(xit, yt)

)
≤ lnN

η
+ η

T∑
t=1

1

2γt
.

Finally, since E

(
T∑
t=1

l̂(xit, yt)

)
= E

(
Et

(
T∑
t=1

l̂(xit, yt)

))
= E

(
T∑
t=1

l(xit, yt)

)
,

E

(
T∑
t=1

∑
i∈E

p̃itl(x
i
t, yt)

)
− E

(
T∑
t=1

l(xit, yt)

)
≤ lnN

η
+ η

T∑
t=1

1

2γt
.

Applying the convexity of the loss function,
T∑
t=1

l(ŷt) ≤
T∑
t=1

∑
i∈E

p̃itl(x
i
t, yt) and choosing η =√√√√√ lnN

T∑
t=1

1/(2γt)

, the result follows.

Note that from Algorithm 5, the expected number of request is
T∑
t=1

γt which depends on the

characteristic of the sequence of experts’ predictions. It follows that the number of requests

tends to be large if the experts predictions differ on most rounds (in this case, we can get

good regret bound in the expense of much labeling cost). On the other hand, if experts agree

on a large proportion of objects, the number of requests is significantly reduced. We will see
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that more in the experimental results.

4.2.1 Remarks on the regret bound

In this subsection, we would like to make some comparisons of our regret bound with the

bound in [175] through several scenarios. For convenience, the regret bound in [175] is shown

here as

R′T ≤ n

√
2 lnN

m
,

where m,n is the number of queries and the horizon, respectively. Denote α as the request

ratio, i.e, m
n

, their regret bound can be written as

R′T ≤
1

α

√
2m lnN. (4.7)

1. In the first example, we assume that the prediction ranges of experts always exceed a

constant, i.e., γt ≥ γ∀ t. This implies for our regret that

RT ≤
1
√
γ

√
2m lnN.

Comparing to (4.7), one can draw the following two observations:

• If the two algorithms use the same request rate, our algorithm obtains the better

regret bound of
√
γ.

• Our algorithm needs
√
γn number of queries to obtain the same regret bound as

in (4.7) while [175] needs more queries, γn.

2. Assume that predictions of experts follow some Bernoulli distributions and they are

all independent of each other. In particular, prediction of expert i is given by

xit =

{
1 w.p qi,

0 w.p 1− qi,

Above, qi can be represented as the accuracy of expert i when the outcome yt = 1∀ t.
Denote zij = |xi − xj|, we obtain

zij =

{
1 w.p qi(1− qj) + qj(1− qi),
0 w.p qiqj + (1− qi)(1− qj),
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Since γt = max
i,j
|zij|, it is obvious that

γt =

{
1 w.p q′,

0 w.p 1− q′,
(4.8)

where q′ is some certain probability. Now, let us rewrite our regret bound as

RT ≤

√√√√2m lnN(
1

m

m∑
t=1

1

γt
).

We will approximate the term 1
m

m∑
t=1

1

γt
as E( 1

γt
). Since labels are always requested

when γt 6= 0,

RT ≤
√

2m lnN.

In this case, one can see that our bound is better than that in [175] by a factor of 1
α
.

3. Assume that predictions of expert i follow a uniform distribution on [0, 1] denoted by

U(0, 1). As above, we aim to find the upper bound of E( 1
γt

). To that end, let us start

finding the distribution of zij = |xi − xj|.

P (|xi − xj| ≤ u) = 1− 2(
1

2
(1− u2)) = 2u− u2,

where the first equality follows from the fact that the probability is equal to area in

between two lines y = u + x and y = −u + x in a box [0, 1]2. It implies that the pdf

of Zij is given by fZij(u) = 2 − 2u. As in the example above, let us denote πk as a

matching of bN
2
c values of zij such that ∀(i, j) and (i′, j′), we have i 6= i′, j 6= j′. It is

obvious that γt ≥ πk, and therefore, E( 1
γt

) ≤ E( 1
πk

).

The distribution of πk is derived from

P (πk ≤ u) =
∏

(i,j)∈πk
P (zij ≤ u) =

∏
(i,j)∈πk

(2u− u2) = (2u− u2)b
N
2
c,

and then

fπk(u) = bN
2
c(2− 2u)(2u− u2)b

N
2
c−1.
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Expectation of 1
πk

is calculated as

E(
1

γt
) =

∫ 1

0

1

u
bN

2
c(2− 2u)(2u− u2)b

N
2
c−1du

= bN
2
c
∫ 1

0

(2− 2u)(2− u)(2u− u2)b
N
2
c−2du

Using integration by part and the fact that (1− u)2 ≥ 0,

E(
1

πk
) =

bN
2
c

bN
2
c − 1

+
bN

2
c

bN
2
c − 1

∫ 1

0

(2u− u2)b
N
2
c−1du

≤
bN

2
c

bN
2
c − 1

+
bN

2
c

bN
2
c − 1

≤ 2
bN

2
c

bN
2
c − 1

.

It implies that our regret bound is approximated by

√
2m lnN

2bN
2
c

bN
2
c−1

which is less than

that of [175] if α <

√
bN

2
c−1

2bN
2
c . When the number of experts is large enough and the

budget for labeling is limited so that α < 0.7, our regret bound is better than that

of [175].

4.3 Adaptive labeling using time-varying learning parameter

Although the bound in Theorem 8 guarantees the vanishing regret, it has been implied

that the learner knows the experts’ predictions in advance or at least knows some prior

information to choose parameter η appropriately. We will overcome this now by proposing

an algorithm that chooses η properly on the fly without the access to those information.

Algorithm 6 follows the same procedure as Algorithm 5 except that the constant learning

rate is replaced by a time-varying rate, which is updated on the run based on the predictions

of experts. The following lemma is important for the proof of the main results.

Lemma 6.

Et(p̃itl̂(xit, yt)) = witl(x
i
t, yt),

where wit =
pit−1e

−ηtl(x
i
t,yt)/γt∑

i∈E

pit−1e
−ηtl(xit,yt)/γt

.
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Algorithm 6 EPAL - Experts Predictions based Adaptive Labeling

Input: Set of experts E = {1, ..., N}.
Initialize: pi0 = 1 for i = 1,...,N.
for each round t = 1, 2, ..., T do

Each expert gives his prediction xit
Algorithm calculates the maximal difference of experts’ predictions γt := max

i,j
|xit − x

j
t |

Prediction:
Algorithm predicts the value of the object based on the weighted average,

ŷt =

∑
i∈E

pitx
i
t∑

i∈E

pit
, (4.9)

Selection:
Algorithm draws a Bernoulli random variable with parameter γt. If its value is 1, request
the label yt.
Update:

Algorithm updates the learning rate: ηt =
√√√√√ lnN

t∑
s=1

1/γs

Algorithm updates weights of all experts. Each weight is updated by

pit = pit−1e
−ηt l̂(xit,yt), (4.10)

where

l̂(xit, yt) =

{
l(xit, yt)/γt w.p γt,
0 otherwise ,

(4.11)

end for

Proof. From the definition of Et(.), p̃it and weight update rule (4.10), we have

Et(p̃itl̂(xit, yt)) = Et

 pit−1e
−ηt l̂(xit,yt)∑

i∈E

pit−1e
−ηt l̂(xit,yt)

l̂(xit, yt)

 ,

= γt

 pit−1e
−ηtl(xit,yt)/γt∑

i∈E

pit−1e
−ηtl(xit,yt)/γt

l(xit, yt)/γt

 ,

= witl(x
i
t, yt).
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Theorem 9. The regret of EPAL (Algorithm 6) with time-varying parameter ηt =
√√√√√ lnN

t∑
s=1

1/γs

has the following upper bound

RT ≤ 2

√√√√ T∑
t=1

1

γt
lnN.

It is worthy noting here that, by choosing a non-increasing sequence of ηt, we still get the

nearly optimal bound as obtained in Theorem 8, up to a constant factor of
√

2.

Proof. We use the following result (which is analyzed in [172], [173], [201]) that, given a

non-increasing sequence (ηt)t,

T∑
t=1

∑
i∈E

p̃itl̂(x
i
t, yt)−min

i∈E

( T∑
t=1

l̂(xit, yt)
)
≤

T∑
t=1

ηt
2

∑
i∈E

p̃it(l̂(x
i
t, yt))

2 +
lnN

ηT
. (4.12)

Using the same argument as in Theorem 8,

Et(l̂(xit, yt)) = l(xit, yt),

Also, from Lemma 6, we obtain

Et(p̃itl̂(xit, yt)) = witl(x
i
t, yt).

Therefore,

Et
(∑
i∈E

p̃it(l̂(x
i
t, yt))

2
)
≤ 1

γt

∑
i∈E

Et(p̃itl̂(xit, yt)) =
1

γt

∑
i∈E

witl(x
i
t, yt) ≤

1

γt

∑
i∈E

wit =
1

γt
,

where the last inequality follows from the fact that l(xit, yt) ≤ 1. Taking the expectation of

two sides of (4.12), we obtain

E
( T∑
t=1

∑
i∈E

p̃itl(x
i
t, yt)

)
−min

i∈E
E
( T∑
t=1

l(xit, yt)
)
≤

T∑
t=1

ηt
2γt

+
lnN

ηT
. (4.13)

Choosing ηt =
√√√√√ lnN

t∑
s=1

1/γs

and applying the inequality
T∑
t=1

1/γt√√√√ t∑
s=1

1/γs

≤ 2

√√√√ T∑
s=1

1/γt from
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[173], [37],

lnN

ηT
=

√√√√lnN
T∑
t=1

1/γt,

T∑
t=1

ηt
2γt
≤

√√√√lnN
T∑
t=1

1/γt,

the proof is completed.

4.4 Experimental Results

In this section, we run the experiments on both synthetic and real datasets. For each

dataset, three algorithms are run to compare the performance: the random algorithm in

[175], denoted by R, Adaptive Exponentially Weighted Average in [176], denoted by AEWA,

and our Experts Predictions based Adaptive Labeling, denoted by EPAL. For performance

comparison, three criteria are measured: accumulated regret, number of requests and regret

rate. Accumulated regret is the total regret over all times that the label is required, and

the regret rate is the ratio of accumulated regret and the number of requests. These three

values together indicate the performance of each algorithm. We consider 5 experts for each

dataset. Each expert is a learning algorithm which, based on the features of each example,

gives the prediction for that example. The followings are algorithms used as experts in this

experiment: Linear Discriminant Analysis (LDA), Random Forest, AdaBoost, Quadratic

Discriminant Analysis (QDA) and Naive Bayes.

On the first part of the experiment, we show the results on the synthetic datasets. In order to

provide a wide-range comparison of the algorithms, we generate datasets with different sizes

ranging from 5000 to 50000. Figure 4.1, Figure 4.2, and Figure 4.3 show the accumulated

regret, number of requests, and regret rate of the three algorithms, respectively.

From Figure 4.1, one can observe that the randomized algorithm picks up examples with-

out caring whether that might be good or not. As a consequence, if the request rate is high,

its accumulated regret is high. AEWA, on another hand, can obtain different request rates

by controlling the threshold value. In this experiment, we assign this value as 0.5 since we

assume no prior information for each dataset. Figure 4.2 shows that AEWA obtains the

best request rate comparing to the others. However, its accumulated regret is worse than

EPAL. This can be seen, first, from the fact that EPAL uses the adaptive learning rate

which is updated on the run to keep track of the trends of experts predictions. Secondly,

since EPAL also uses random selection based on a criteria, it explores some potential ex-
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Figure 4.1: Accumulated regrets of R, AEWA, and EPAL on synthetic datasets.

amples that experts might make mistake. As the result, EPAL gets better regret rate than

AEWA. Comparing to R, EPAL also gets better regret rate since, even R learns from more

examples than EPAL, it cannot take advantage from learning easy examples while most of

the time, EPAL only learns from the hard examples.

On the second part of the experiment, we run the algorithms on different real datasets ob-

tained from the UCI datasets (https://archive.ics.uci.edu/ml/datasets.html). Those datasets

names and sizes are shown on the first comlumn of Table 4.1. Note that the size displayed is

the size of the test set of each original dataset. Using the same logic with the synthetic sim-

ulation, we chooses the datasets with different size and the results reflect roughly the same

with the synthetic results. There are only two datasets that R and AEWA can perform

better than EPAL, but the regret rate is slightly different between the algorithms.
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Figure 4.2: Number of requests of R, AEWA, and EPAL on synthetic datasets.

Table 4.1: Comparison of R, AEWA and EPAL on real datasets.

Dataset Total Regret Number of Requests Regret Rate
R AEWA EPAL R AEWA EPAL R AEWA EPAL

eighthr-2027 36.8539 20.7603 38.3192 1653 585 1075 0.0223 0.0355 0.0357
EEG Eye State-3809 50.5502 27.9945 7.025 3105 1454 2162 0.0163 0.0193 0.0032

mushroom-6499 65.4576 36.5184 18.1883 5304 757 2661 0.0123 0.0482 0.0068
room occupancy-7802 71.6991 39.6892 23.354 6358 305 3346 0.0113 0.1301 0.007

skin segmentation-11831 88.2592 46.878 33.7681 9646 462 5706 0.0092 0.1015 0.0059
magic04-15216 100.109 56.4695 41.458 12410 4480 8332 0.0081 0.0126 0.005

skin segmentation-22774 122.4099 68.2069 46.8976 18554 1851 11331 0.0066 0.0368 0.0041
adult-26048 131.5644 73.1807 135.874 21236 20950 21172 0.0062 0.0035 0.0064
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Figure 4.3: Regret rate of R, AEWA, and EPAL on synthetic datasets.
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CHAPTER 5

SIMPLE REGRET IN SLEEPING MULTIARMED
BANDIT

In this chapter, we consider the product recommendation problem in which there is a col-

lection of products whose rewards or profits are unknown, and the goal is to select the best

product to recommend to users after a number of sampling. We investigate a general setting

where we assume that at each time, there is a subset of arms available, each of them has

a reward that follows from some fixed, but unknown distribution. We propose UCB based

(Upper Confidence Bound) algorithms that can provide different ways to tune the parame-

ters based on the availability of each arm in the collection. We also propose a simple, yet

efficient, uniform sampling algorithm for this problem. We proved that all above algorithms

end up with recommend the best arm in the sense that the error of selecting the incorrect

arm converges exponentially by time.

5.1 Notations and Problem Formulation

Denote S = {1, 2, ..., K} as the set of K arms, and St ⊆ S as the set of available arms at

time t. In this paper, we consider the stochastic availability, i.e., we assume that St is drawn

from a fixed, but unknown distribution. Assume also that the reward of each arm i is drawn

from a fixed, but unknown, distribution with the mean µi. For simplicity, we assume that all

rewards are bounded in [0, 1]. Without loss of generality, we assume that µ1 ≥ µ2 ≥ ... ≥ µK ,

i.e., the set of arms have been already sorted in the descending order of their mean. At time

t, denote µ∗t = max
i∈St

µi as the current best arm. Define the advantage (or difference) of arm

i over arm j as ∆i,j := µi − µj. This term takes an important role in deriving our simple

regret in the sequel.

To simplify further analysis, we introduce the following notations. Denote Si = {S :

i ∈ S and i ≤ j ∀j ∈ S} as the collection of subsets which have i as the best arm, and

Ti = {t : i ∈ St and St ∈ Si} as the collection of times that arm i is the best available arm.

We also denote ti, tij as the final time in Ti and the final time within Ti that arm j is chosen

instead of i, respectively. Define Ki as the total number of available arms in the set Ti. We

note that |Ti| = Tqi, where qi is the probability that arm i is the leading arm of any subset.
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We abuse the notation a little bit by denoting T ij (t) as total number of times the arm j is

chosen up to time t whenever the arm i is the best available arm.

The arm recommendation procedure is conducted as follows. First, the adversary chooses

a set St of available arms based on the distribution mentioned above. Upon updating the

indices of arms from previous rounds, the algorithm selects an arm and observes the cor-

responding reward. Note that the rewards of other arms are not given in this multiarm

bandit setting. Finally, the algorithm recommends an arm (or product) to the users. In our

problem, we aim to minimize the regret of the recommendation of the algorithm with the

best possible ordering of arms.

5.2 UCB Algorithms

In this section, we introduce two types of algorithms adapted from UCB. Those algorithms

utilize different ways to set the parameters in upper confidence bound.

5.2.1 Available set based parameter selection

The algorithm is given in Algorithm 7.

This is a generalized version of UCB-E algorithm in [189] where there is a subset St ⊆ S
of arms available for choosing. The algorithm chooses an arm with the highest index at any

time. If an arm has never been played before the algorithm selects that arm first. After an

arm is chosen, its reward is observed by the algorithm, which then is applied to update the

emperical mean for that arm. At the end of the procedure, the algorithm recommends the

best emperical arm which is available. In this algorithm, the selection of constant bSti relies

on the knowledge of available arms distribution. Specifically, denote pS as the probability

that the subset S is available, the constants are chosen such that bSi ≤
pS(T−K/pS)

(1+c)2

(1−c)2
HS
i

, where

H i
S =

∑
j∈S

1

∆2
i,j

.

Theorem 10. SRSB-AS algorithm provides the upper bound of probability of error at:
K∑
i=1

∑
S∈Si

p(S)2(TpS)|S|exp

(
−2c2TpS −K

(1+c)2

(1−c)2H

)

Proof. Define the event ξ = {∀i ∈ [K],∀u ∈ [T ],∀S ∈ Si,∀j ∈ S, |µ̂u,j − µj| < c

√
bSj
u
}

We need to prove that from the event ξ, we are able to select the best arm after T . Equiva-
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Algorithm 7 SRSB-AS: Simple-Regret minimization in Sleeping Bandits - Available Set
based

Input: Set of arms S = {1, ..., K}.
Parameters: Exploration constant bSti .
Initialize: Bi,0 = +∞ and Ti(0) = 0 for i = 1,...,K.
for each round t = 1, 2, ..., T do

Adversary draws an available subset St from a certain distribution
Algorithm calculates the indices of all arms i ∈ St,

Bi,t =

 µ̂i,Ti(t−1) +

√
b
St
i

Ti(t−1)
if Ti(t− 1) > 0,

+∞ otherwise ,
(5.1)

Select the arm: It = arg max
i∈St

Bi,t.

Update 
TIt(t) = TIt(t− 1) + 1,

µ̂It,TIt (t) = 1
TIt (t)

TIt (t)∑
s=1

XIt,s.
(5.2)

end for
Recommend an arm JT = arg max

i∈ST
µ̂i,Ti(T )

lently, our goal is to prove

Tj(T ) ≥ 4bSj c
2 1

∆2
i,j

∀i ∈ [K],∀S ∈ Si,∀j ∈ S.

At time t, we consider a subset S ∈ Si, and ∀j ∈ S. Consider two following cases:

• If the suboptimal arm is chosen, i.e., It = j. This implies that µ̂j,Tj(t−1) +

√
bSj

Tj(t−1)
≥

µ̂i,Ti(t−1) +
√

bSi
Ti(t−1)

. Since the event ξ holds true, we have µj + (1 + c)

√
bSj

Tj(t−1)
≥

µi + (1− c)
√

bSi
Ti(t−1)

, then (1 + c)

√
bSj

Tj(t−1)
≥ ∆i,j + (1− c)

√
bSi

Ti(t−1)
≥ ∆i,j.

Since j is chosen, we obtain

Tj(t) ≤ (1 + c)2
bSj

∆2
i,j

+ 1. (5.3)

• If the best arm i is chosen in S, it implies µi + (1 + c)
√

bSi
Ti(t−1)

≥ µj + (1− c)
√

bSj
Tj(t−1)

,
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It follows that

Tj(t− 1) ≥
bSj (1− c)2

4
min{ 1

∆2
i,j

,
Ti(t)− 1

bSi (1 + c)2
}. (5.4)

Note that for the subset S ∈ Si, the total number of arm selections is TpS, we obtain

T Si (T )− 1 = TpS − 1−
∑

j∈S,j 6=i

∑
t∈Ti
{It = j},

≥ TpS − 1−
∑

j∈S,j 6=i

Tj(tij),

≥ TpS − 1− (|S| − 1)− (1 + c)2
∑

j∈S,j 6=i

bSj
∆2
i,j

,

≥ TpS − |S| −
pS(T −K/pS)

H i
S

(
∑
j∈S

1

∆2
i,j

− 1

(∆∗i )
2

)
,

≥ TpS − |S| −
pS(T −K/pS)

H i
S

(H i
S −

1

(∆∗i )
2

)
,

=
pS(T −K/pS)

H i
S(∆∗i )

2
,

≥ bSi (1 + c)2

(∆∗i )
2
∀S ∈ Si, (5.5)

where in the first inequality, we use the definition of Tj(tij), the second inequality follows

from (5.3), the next inequalities follow from the choice of constant bSj . Now, denote tSi as

the final time that the arm i is available as the best arm in S and arm i is chosen at that

time. From (5.4),

Tj(t
S
i − 1) ≥

bSj (1− c)2

4
min{ 1

∆2
i,j

,
Ti(t

S
i )− 1

bSi (1 + c)2
},

≥
bSj (1− c)2

4
min{ 1

∆2
i,j

,
T Si (T )− 1

bSi (1 + c)2
},

≥
bSj (1− c)2

4

1

∆2
i,j

,

≥
4bSj c

2

∆2
i,j

,

where the second last inequality follows from (5.5). It follows that Tj(T ) ≥ 4bSj c
2

∆2
i,j
∀S ∈
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Si,∀j ∈ S. The probability of error is then derived as

P (error) =
K∑
i=1

∑
S∈Si

p(S)P (µπS 6= µ∗S),

≤
K∑
i=1

∑
S∈Si

p(S)2(TpS)|S|exp

(
−2c2TpS −K

(1+c)2

(1−c)2H

)
.

5.2.2 Leading arm based parameter selection

From the previous subsection, one can observe from the error bound analysis that by in-

creasing the constant bSi , we can to obtain a better upper bound for the UCB algorithm.

Motivated by this, we change the constant as follows: for a subset S, and i is the best arm

in S, bSj ≤
Tqi−|Si|
(1+c)2

(1−c)2
HSi
∀j ∈ S, where HSi =

∑
j∈Si

1

∆2
i,j

. We name the algorithms using this

constant as SRSB-LA.

Theorem 11. SRSB-LA algorithm provides the upper bound of probability of error at:
K∑
i=1

∑
S∈Si

p(S)2(TpS)|S|exp

(
−2c2Tqi − |Si|

(1+c)2

(1−c)2HSi

)

Proof. Using the same derivation as in the proof of Theorem 13, we obtain the followings

for every arm i and every subset S ∈ Si,

T ii (T )− 1 ≥ Tqi − 1−
∑

j∈Si,j 6=i

Tj(tij),

≥ Tqi − 1− (|Si| − 1)− (1 + c)2
∑

j∈Si,j 6=i

bSj
∆2
i,j

,

≥ Tqi − |Si| −
∑

j∈Si,j 6=i

Tqi − |Si|
HSi

1

∆2
i,j

,

= Tqi − |Si| −
Tqi − |Si|

HSi
(HSi −

1

(∆∗S)2
),

≥ Tqi − |Si|
HSi

1

(∆∗S)2
,

≥ (1 + c)2bSi
(∆∗S)2

, forall S ∈ Si. (5.6)

61



Now, denote ti as the final time that the arm i is available as the best arm and arm i is

chosen at that time. From (5.4),

Tj(ti − 1) ≥
bSj (1− c)2

4
min{ 1

∆2
i,j

,
Ti(ti)− 1

bSi (1 + c)2
},

≥
bSj (1− c)2

4
min{ 1

∆2
i,j

,
T ii (T )− 1

bSi (1 + c)2
},

≥
bSj (1− c)2

4

1

∆2
i,j

,

≥
4bSj c

2

∆2
i,j

.

It follows that Tj(T ) ≥ 4bSj c
2

∆2
i,j
∀S ∈ Si,∀j ∈ S. Upper bound of probability of error:

P (error) =
K∑
i=1

∑
S∈Si

p(S)P (µπS 6= µ∗S),

≤
K∑
i=1

∑
S∈Si

p(S)2(TpS)|S|exp

(
−2c2Tqi − |Si|

(1+c)2

(1−c)2HSi

)
.

5.3 Uniform sampling

In this section, we consider a simple algorithm which chooses arms evenly within every

subset. Specifically, for an available subset S, the algorithm selects each arm in S equal

number of times. The algorithm is given in Algorithm 8.

Theorem 12. The SRSB-U obtain the following probability of error:
K∑
i=1

∑
S∈Si

p(S)
∑
j 6=i

exp
(
−

∆2
i,j

2

∑
S:i∈S

⌊
TpS
|S|

⌋ )
+ exp

(
−

∆2
i,j

2

∑
S:j∈S

⌊
TpS
|S|

⌋ )
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Algorithm 8 SRSB-U : SRSB - Uniform Sampking

Input: Set of arms S = {1, ..., K}.
Initialize: Ti(0) = 0 for i = 1,...,K, and TS(0) = 0 for S ∈ {1, ..., K}.
for each round t = 1, 2, ..., T do

Adversary draws in available subset S
Algorithm selects the arm It = (TS(t)mod|S|)
Update 

TIt(t) = TIt(t− 1) + 1,
TS(t) = TS(t− 1) + 1,

µ̂It,TIt (t) = 1
TIt (t)

TIt (t)∑
s=1

XIt,s.

(5.7)

end for
Recommend an arm JT = arg max

i∈ST
µ̂i,Ti(T )

Proof. The error of this algorithm is derived as follows,

P (err) =
K∑
i=1

∑
S∈Si

p(S)
∑
j 6=i

P (IT = j),

=
K∑
i=1

∑
S∈Si

p(S)
∑
j 6=i

P (µ̂j ≥ µ̂i),

=
K∑
i=1

∑
S∈Si

p(S)
∑
j 6=i

P
( 1

Tj(T )

( Tj(T )∑
s=1

Xj,s − Tj(T )µj
)
− 1

Ti(T )

( Ti(T )∑
s=1

Xi,s − Ti(T )µi
)
≥ ∆i,j

)
,

≤
K∑
i=1

∑
S∈Si

p(S)
∑
j 6=i

P
( 1

Tj(T )

( Tj(T )∑
s=1

Xj,s − Tj(T )µj
)

+
1

Ti(T )

( Ti(T )∑
s=1

Xi,s − Ti(T )µi
)
≥ ∆i,j

)
,

≤
K∑
i=1

∑
S∈Si

p(S)
∑
j 6=i

P
( 1

Tj(T )

( Tj(T )∑
s=1

Xj,s − Tj(T )µj
)
≥ ∆i,j

2

)
+ P

( 1

Ti(T )

( Ti(T )∑
s=1

Xi,s − Ti(T )µi
)
≥ ∆i,j

2

)
,

≤
K∑
i=1

∑
S∈Si

p(S)
∑
j 6=i

exp
(
−
Tj(T )∆2

i,j

2

)
+ exp

(
−
Ti(T )∆2

i,j

2

)
,

≤
K∑
i=1

∑
S∈Si

p(S)
∑
j 6=i

exp
(
−

∆2
i,j

2

∑
S:i∈S

⌊
TpS
|S|

⌋ )
+ exp

(
−

∆2
i,j

2

∑
S:j∈S

⌊
TpS
|S|

⌋ )
.

where the second last inequality follows from the Hoeffding’s inequality, and the last inequal-
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ity follows from the uniform sampling algorithm.

5.4 Adversarial availability

In this section, we relax the stochastic assumption on the availability of the arms. To define

the regret for this setting, let us denote Ii,j as the indicator function of choosing the arm j

when some arm 1, .., i could have been selected. The simple regret is defined as follow:

rn = E

[
K∑
j=2

j−1∑
i=1

(Ii,j − Ii−1,j)∆i,j

]
.

By regrouping terms inside the sum, we get,

rn = E

[
K∑
j=2

j−1∑
i=1

Ii,j(∆i,j −∆i+1,j)

]
,

= E

[
K∑
j=2

j−1∑
i=1

Ii,j∆i,i+1

]
. (5.8)

The following lemma is important in our proof of the main theorem.

Lemma 7. For any distribution (a1, a2, ..., aK) over K arms, and any l > 0,

P (Ti(t− 1) ≥ l, It = i) ≤ 2te−2b,

where l ≥ 4b
∆2
i−1,i

.

Proof. The proof is a slight modification from [?]. Since the arm i is chosen at t only if its

index is better than the current best arm,

P (Ti(t− 1) ≥ l, It = i) ≤ P

(
µ̂i,t +

√
b

Ti(t− 1)
≥ µ̂i∗t ,t +

√
b

Ti∗t (t− 1)
, Ti(t− 1) ≥ l

)
,

≤ P

(
max
l≤u≤t

µ̂i,u +

√
b

u
≥ min

1≤s≤t
µ̂i∗s ,s +

√
b

s

)
. (5.9)

We observe that µ̂i,u +
√

b
u
≥ µ̂i∗s ,s +

√
b
s

when one of these events happens,

µ̂i,u ≥ µi +
√

b
u
,

µi ≥ µi∗s − 2
√

b
u
,
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µi∗s ≥ µ̂i∗s ,s +
√

b
s
.

From the choice of l, u > 4b
∆2
i∗s,i

. It follows that
√

b
u
< 1

2
∆i∗s ,i, and then P (µi ≥ µi∗s−2

√
b
u
) = 0.

Therefore, from (5.9) and apply the Chernoff-Hoeffding bound, we obtain

P (Ti(t− 1) ≥ l, It = i) ≤
t∑
u=l

P

(
µ̂i,u ≥ µi +

√
b

u

)
+

t∑
s=1

P

(
µi∗s ≥ µ̂i∗s ,s +

√
b

s

)
,

≤ 2te−2b.

Theorem 13. For any distribution (a1, a2, ..., aK) over K arms,

rn ≤ Kn2(
K∑
j=2

∆1,j)e
−2b,

where n is large enough such that daine − 1 ≥ 4b
∆2
i−1,i

.

Proof. We start the proof with an observation that if an arm is recommended at n, there must

be at least one arm i satisfying Ti(n) ≥ ain. We will bound the probability of recommending

arm j using this fact.

Pi,j ≤
K∑
i=1

P (Ti(n) ≥ ain),

≤
K∑
i=1

P (Ti(n) ≥ daine),

≤
K∑
i=1

n∑
t=dai(n)e

P (Ti(t− 1) ≥ daine − 1, It = i), (5.10)

≤
K∑
i=1

n∑
t=dai(n)e

2te−2b, (5.11)

≤
K∑
i=1

n∫
t=dai(n)e

2te−2bdt,

≤ Kn2e−2b. (5.12)

where (5.10) follows from the union bound, (5.11) follows from Lemma 7. From (5.8) and
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(5.12), we obtain

rn ≤
K∑
j=2

j−1∑
i=1

Kn2e−2b∆i,i+1,

= Kn2
( K∑
j=2

∆1,j

)
e−2b.

5.5 Experimental Results

In this section, we conduct a simulation running different algorithms in the general setting

of sleeping bandit. A synthetic dataset is generated which includes 7 arms whose frequency

of availability is 0.5, from that, we generate the distribution of available set of arms at each

time. Six following algorithms are run to compare the performance.

• SRSB-AS: UCB algorithm with the parameter selection based on the available set.

• SRSB-AS-apprx: SRSB-AS algorithm, but relaxes the knowledge of the sampling bud-

get by choosing the constant bSj ≤
tpS

(1+c)2

(1−c)2
HSi
∀j ∈ S

• SRSB-LA: UCB algorithm with the parameter selection based on the leading arm

• SRSB-AA: UCB algorithm with the parameter selection based on the available arm.

In this algorithm, the constant is selected such that bSj ≤
Tpi−|Si|
(1+c)2

(1−c)2
HSi
∀j ∈ S. Note that

with this algorithm, the selection of parameter does not depends on the knowledge of

pS.

• SRSB-AA-apprx: SRSB-AA algorithm, but relaxes the knowledge of the sampling

budget by choosing bSj ≤
tpi

(1+c)2

(1−c)2
HSi
∀j ∈ S

• SRSB-U: Uniform algorithm

We run the algorithms in a range of T , from 50000 to 54500, where the mean of arms are

given as [0.7, 0.63, 0.55, 0.5, 0.45, 0.39, 0.3]. Figure 5.1 shows the comparison of error among

the algorithms.

One can observe from Figure 5.1 that SRSB-AA, SRSB-AS, and SRSB-U outperform

the others. This is expected since these algorithms incorporate full information from the
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Figure 5.1: Comparison of error among algorithms

sampling budget into the learning procedure. On the other hand, SRSB-AA-apprx, SRSB-

AS-apprx, and SRSB-LA perform slight worse than the above algorithms, but they are very

flexible in terms of relaxing the required knowledge about the sampling budget. They can

be widely used for the applications that needs the so-call “any time” algorithms.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

We proposed algorithms for the framework of learning with expert advice under various

settings and applications. In the scenarios when not all experts are available at all time, we

provided weight update rules, from that experts are not only rewarded by correct predictions

but also encouraged to vote frequently. The proposed algorithms are proved to converge to

the best experts defined in terms of their accuracy and availability. In the adversarial settings

where malicious experts might intentionally ruin the system, we found the optimal attacking

strategies for those experts with two kinds of losses, absolute loss and logarithmic loss, under

finite discounted and infinite horizon settings. We also extend the results with more experts

using mean-field theory. In the active learning application using expert advice, we proposed

two algorithms to efficiently select objects to be labeled based on the ranges of experts’

predictions, and found nearly optimal regret bounds for those algorithms. In the last setting,

we consider the simple recommendation scenario where after a number of trials, a product

is suggested to a user. We proposed two algorithms, UCB-extended algorithms and uniform

algorithms, for the general setting where not all products are available to pick up at all time.

Those algorithms are proved to decay exponentially over the number of samplings. In the

next section, we propose some potential furure directions to develop further our results.

6.2 Future Directions

• Sleeping experts setting: We believe that using the stochastic approximation is one

of the interesting directions for the analysis of learning with expert advice framework,

especially for the stochastic setting. Further usage of this approach in other settings

should be our next steps.

• Adversarial setting: As a future direction, one could generalize our result to the N -

68



expert setting for the absolute loss, with or without discounting factor. For example,

relaxing the condition on the discounted factor in Theorem 4, establishing results in

the presence of a time-varying learning rate of the exponentially weighted averaging

algorithm in light of what has been discussed in [82], and applying the neural network

to reduce the complexity and improve the convergence rate of the policy iteration are

other interesting problems. Another potential direction is to consider the setting as

a game-theoretic problem where players are algorithms and malicious experts (may

collude with each other). Finding solutions for such a problem with multiple experts

is still an open problem.

• Simple regret setting: There are still opportunities to improve the performance of rec-

ommendation algorithms, either by tuning the parameters for UCB-typed algorithms,

or by applying different set of algorithms, e.g., the ones given in [190].
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APPENDIX A

PROOFS OF THEOREMS

A.1 Proofs of Chapter 2

A.1.1 Proof of Lemma 1

Proof. Based on Theorem 1, we only need to show that all the conditions (A1-4) are satisfied

for dynamics (2.8). For an appropriately selected step size, e.g., a(t) = 1
1+t

, assumption (A2)

clearly holds. Moreover, (A4) also holds as each weight pit, i = 1, . . . , N is nonnegative and

never exceeds 1. To check Lipschitz condition (A1), we show a sufficient condition by

showing that sup~p∈Rn ‖∇~ph(~p)‖ < L, for some constant L. From the definition of h(·), we

have hi(~p) = pi(ci −
∑
j∈E

cjpj). Since for any i, k ∈ {1, . . . , N}, we have

∣∣∣∣∂hi∂pk

∣∣∣∣ =

 |ci −
∑
j

cjpj − cipi| if i = k,

|ckpi| if i 6= k,

we get
∣∣∣ ∂hi∂pk

∣∣∣ ≤ N + 2 (note that we always have rit, p
i
t ∈ [0, 1],∀t, i, and so ci ∈ [0, 1],∀i).

Now, we can write

‖∇~ph(~p)‖ ≤
N∑
i=1

‖∇~phi(~p)‖ ≤
N∑
i=1

N∑
k=1

∣∣∣∣∂hi∂pk

∣∣∣∣ ≤ N2(N + 2).

This shows that h(·) is Lipschitz with a constant L ≤ N2(N + 2).
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Finally to check (A3), one can show that

E
[
(M i

t )
2|Ft−1

]
= (pit−1)2

[
E((I{i ∈ Et}(rit − 1/2))2) +

∑
j

E((rjt − 1/2)2)(pjt−1)2

]

+ (pit−1)2

[
2
∑
j 6=k

E[I{j ∈ Et}(rjt − 1/2)]E(I{k ∈ Et}(rkt − 1/2))pjt−1p
k
t−1

]

− (pit−1)2

(∑
j

E[I{j ∈ Et}(rjt − 1/2)]pjt−1

)2


− (pit−1)2
[(
E[I{i ∈ Et}(rit − 1/2)]

)2
]

≤ (pit−1)2
(
1 +N +N(N − 1) +N2 + 1

)
,

where the last inequality again uses the unity bound on rit, and pit−1. Assumption (A3) is

satisfied immediately following this inequality.

A.1.2 Proof of Theorem 2

Proof. First, note that if we initially set the weights as 1/N for all experts, then
∑
i∈E

pit = 1

for all t. To see this, let us expand the sum as follows,

∑
i∈E

pit =
∑
i∈E

pit−1 + a(t)
∑
i∈Et

pit−1

[
(rit − 1/2)−

∑
j∈Et

pjt−1(rjt − 1/2)

]

+a(t)
∑
i/∈Et

pit−1

[
−
∑
j∈Et

pjt−1(rjt − 1/2)

]
,

=
∑
i∈E

pit−1 + a(t)

[∑
j∈Et

pjt−1(rjt − 1/2)

][
1−

∑
i∈E

pit−1

]
=

∑
i∈E

pit−1.

Using induction on t, the result is immediate. Next, we consider the two following cases:

1. There is only one best expert which we denote it by i = arg max
j∈E

cj where we recall that

cj := E[I{j ∈ Et}(rjt − 1/2)]. In this case, since
∑
i∈E

ρi(s) = 1, we must have
∑
i∈E

ρ̇i(s) =

0. Moreover, initially we have ρ̇i(0) > 0. This is because for initial weights ρ(0) =
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( 1
N
, . . . , 1

N
), the right-hand side of equation (2.9) given by ρi(s)

(
ci −

∑
j∈E

cjρ
j(s)

)
is

strictly positive. Therefore, as time goes by, it always remains positive, i.e., ρ̇i(s) > 0.

This in turn implies that
∑
j 6=i

ρ̇j(s) < 0. In other words, ρi(s) increases to a constant

K ≤ 1, while
∑
j 6=i

ρj(s) decreases to 1 − K. To reach a contradiction, let us assume

that K 6= 1. Then, the right-hand side of (2.9) is always positive. Consequently,

ρ̇i(s) > 0 for all subsequent time which implies ρi(s) will be unbounded, which is

a contradiction. This shows that lims→∞ ρ
i(s) = 1 a.s. In other words, the system

asymptotically follows only the best expert i.

2. If the best expert in Definition 7 is not unique, say at least two best experts i and

k exist such that ci = ck > cj, j 6= i, k, then by the same argument as above, these

two experts have weights satisfying: ρi(s) + ρk(s)→ 1 while ρj(s)→ 0 for all j 6= i, k.

Thus, the system alternates between these two experts (probability of the case where

both two weights are the same is zero).

A.1.3 Proof of Corollary 1

Proof. By the same argument as in the proof Theorem 2, one can show that Algorithm 2

converges to the following expert:

i∗ = arg max
i∈E

E(uit).

Moreover, from (2.15) we have E(uit) = E [I{i ∈ Et}(1− l(xit)) + I{i /∈ Et}(1− l(c))]. It

follows that

i∗ = arg max
i∈E

E
[
1− I{i ∈ Et}l(xit)− I{i /∈ Et}l(c)

]
,

= arg min
i∈E

E
[
I{i ∈ Et}l(xit) + I{i /∈ Et}l(c)

]
.
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A.2 Proofs of Chapter 3

A.2.1 Proof of Lemma 2

Proof. By induction on k we show that the expected loss function defined in (3.5) is only

a function of weight vector ~p, the horizon length K, and the strategy of the adversary

π := (x1
1, . . . , x

1
K) ∈ {T, L}K . For k = K, the statement becomes trivial. Let us assume

that at the stage s + 1 the statement is correct and denote the expected loss of the system

for a policy π of the adversary by V π
s+1(x) :=

∑K
k=s+1 Ex2k,...,xNk [l(ŷk, yk)]. Now depending on

whether the adversary lies or tells the truth in the first stage we can write

K∑
k=s

E[l(ŷk, yk)] =

=

E[l(ŷ1, y1)|x1
1 = L] + E[V π

s+1(φL(~p))] if x1
1 = L,

E[l(ŷ1, y1)|x1
1 = T ] + E[V π

s+1(φT (~p))] if, x1
1 = T.

(A.1)

We consider two cases:

• Case I: x1
1 = L. In this case if we have y1 = 1, then it implies that x1

1 = 0. Moreover,

since xi1 = y1 with probability µi, we have xi1 = Ber(µi), i = 2, . . . , N . Thus

E[l(ŷ1, y1)|x1
1 = L] = E[l(ŷ1, 1)|x1

1 = 0]

= E[Q(|ŷ1 − 1|)|x1
1 = 0]

= Exi1

[
Q

(∣∣∣∣p1
1 × 0 + p2

1x
2
1 + . . .+ pN1 x

N
1

p1
1 + p2

1 + . . .+ pN1
− 1

∣∣∣∣)]
= Exi1

[
Q

(∣∣∣∣p1
1 + p2

1(1− x2
1) + . . .+ pN1 (1− xN1 )

p1
1 + p2

1 + . . .+ pN1

∣∣∣∣)]
:= f(~p),

where f(~p) is some function which only depends on ~p. On the other hand, if y1 = 0,

then x1
1 = 1. In this case denoting the prediction of honest experts by z2

1 , . . . , z
N
1 , we

have zi1 = Ber(1 − µi), i = 2, . . . , N due to the fact that zi1 = y1 with probability µi.
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Now we can write

E[l(ŷ1, y1)|x1
1 = L] = E[l(ŷ1, 0)|x1

1 = 1]

= E[Q(|ŷ1 − 0|)|x1
1 = 1]

= Ezi1 [Q(|p
1
1 × 1 + p2

1z
2
1 + . . .+ pN1 z

N
1

p1
1 + p2

1 + . . .+ pN1
− 0|)]

= Exi1 [Q(|p
1
1 + p2

1(1− x2
1) + . . .+ pN1 (1− xN1 )

p1
1 + p2

1 + . . .+ pN1
|)]

= f(~p),

where the second last equality is due to the fact that zi1 = 1− xi1, i = 2, . . . , N .

• Case II: x1
1 = T . In this case, similar to the Case I by considering two possibilities for

y1 = 0 or y1 = 1, one can show that E[l(ŷ1, y1)|x1
1 = T ] = g(~p) for some function g(·).

Therefore, independent of the actual value of y1 and using (A.1) we can write

K∑
k=s

Ex2k [l(ŷk, yk)] =

f(~p) + E[V π
s+1(φL(~p))] if x1

1 = L,

g(~p) + E[V π
s+1(φT (~p))] if, x1

1 = T

The above relation shows that indeed
∑K

k=s Ex2k [l(ŷk, yk)] is independent of actual values of

yk, k ∈ [K], and is only a function of ~p, π and K.

A.2.2 Proof of Proposition 1

Proof. We prove the nontrivial case (q1
k−1 < p1

k−1) by induction. The base case: at the final

step, i.e., k = K − 1, the result follows by properties (P1) and (P2), and the fact that the

terminal cost is zero. Next, we show if the result holds for step k + 1, it also holds for step

k.

First, note that when the adversary takes the same action (lies or tells the truth) at

both states ~pk−1 and ~qk−1 at time k, the updated weights (Algorithm 3) at time k + 1

will still satisfy q1
k ≤ p1

k. In this case, property (P1) and the induction hypothesis imply

Vk(~qk−1, L) ≤ Vk(~pk−1, L) ≤ max{Vk(~pk−1, L), Vk(~pk−1, T )}. It remains to show

Vk(yk, ~qk−1, T ) ≤ max{Vk(yk, ~pk−1, L), Vk(yk, ~pk−1, T )}. Note that, from the weight update

rule in Algorithm 3, if q1
k−1 < p1

k−1, we must have q1
k−1 ≤ p1

k−1ε for the case of logarithmic

loss, and q1
k−1 ≤ p1

k−1e
−1 for the case of absolute loss. This observation along with properties

(P1) and (P2), and the induction hypothesis suffices to show Vk(~qk−1, T ) ≤ Vk(~pk−1, L).
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A.2.3 Proof of Theorem 3

Proof. We will show by induction that telling lie at each stage is optimal. For the base case,

i.e., when t = K − 1 the claim trivially holds due to the fact that the terminal cost is zero

and the current cost satisfies property (P1). Now suppose that telling lie is the optimal

strategy for every ~p at step t ≥ k + 1. In particular, using the dynamic program recursion

(3.8) we must have

V ∗k+1(~p) = cL(~p) + EV ∗k+2(φL(~p)), ∀~p. (A.2)

We want to show that telling lie at stage t = k is also optimal for any ~p, i.e., Vk(~p, L) >

Vk(~p, T ), ∀~p. Using (3.8), this is equivalent to show that ∆V ∗k+1(~p) < ∆c(~p),∀~p, where

∆c(~p) := cL(~p)− cT (~p),

∆V ∗k+1(~p) := EV ∗k+1(φT (~p))− EV ∗k+1(φL(~p)). (A.3)

Now let R and R′ be two random subsets of {2, 3, . . . , n} denoting the set of indices of honest

experts which are correct at instances k and k + 1, respectively. Starting from (A.3) we can

write

∆V ∗k+1(~p) = E
[
V ∗k+1(φT (~p))− V ∗k+1(φL(~p))

]
(a)
= E

[
cL(φT (~p))+EV ∗k+2(φLT (~p))−cL(φL(~p))−EV ∗k+2(φLL(~p))

]
(b)
= E

[
cL(φT (~p))− cL(φL(~p)) + ∆V ∗k+2(φL(~p))

]
(c)
< E

[
cL(φT (~p))− cL(φL(~p)) + ∆c(φL(~p))

]
(d)
= E

[
cL(φT (~p))− cT (φL(~p))

]
(e)
= ER′

[
cL
(
(1− ε)p1, ~pR′

)
− cT

(
εp1, ~pR′

)]
, (A.4)

where (a) follows from the induction hypothesis given in (A.2), in which φLT (~p) is the random

weight vector (state) when the adversary first tells the truth at stage k, and lies after that in

stage k+1. (b) is obtained using the definition (A.3) for stage k+2 and the observation that

the weight of expert 1 in φLT (~p) are the same as in φTL(~p) and the other weights of honest

experts are kept the same in two cases, (c) holds by the induction hypothesis, and (d) is

valid by replacing the definition of ∆c(φL(~p)) given in (A.3). Finally, (e) is obtained by using

the state update formula given in (3.9) over random subset realization of correct experts R′,

where we denote ~pR′ = (p2
R′ , . . . , p

N
R′) is a random vector of size N − 1 associated with the

honest experts such that piR′ = (1− ε)pi if i ∈ R′, and piR′ = εpi, otherwise. Continuing with
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(A.4) we can write

∆V ∗k+1(~p) < ER′
[
cL
(
(1− ε)p1, ~pR′

)
− cT

(
εp1, ~pR′

)]
(g)
= −ER′,R

ln

ε(1−ε)p
1+(1−ε)

∑
i∈R

piR′+ε
∑
j∈Rc

pjR′

εp1 + ~pR′1




+ ER′,R

ln

ε(1−ε)p
1+(1−ε)

∑
i∈R

piR′+ε
∑
j∈Rc

pjR′

(1− ε)p1 + ~pR′1




(h)
= ER′,R

[
ln

(
εp1 + ~pR′1

(1− ε)p1 + ~pR′1

)]
(i)
= ER′

[
ln

(
εp1 + ~pR′1

(1− ε)p1 + ~pR′1

)]
(j)
= cL(~p)− cT (~p) = ∆c(~p), (A.5)

where (g) is obtained using (3.10), (h) follows by linearity of expectation and the fact that

both the logarithmic terms have the same numerator, and (i) holds since the expression

inside the expectation does not depend on the random set R. Finally, (j) is obtained by

substituting the expressions of cT (·) and cL(·) given in (3.10). This completes the induction

proof.

A.2.4 Proof of Theorem 4

We first prove the following lemma which is important for Theorem 4.

Lemma 8. For the discounted factor β < 1
e
, and any adversary’s relative weight p we have

cL(p)− cT (p) + βE[cT (φL(p))− cL(φT (p))] > 0.

Proof. Let x = 1
1+( 1

p
−1)e

and y = 1
1+( 1

p
−1)e−1 . Note that in particular x < p < y. Starting
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from the left hand side we can write

LHS = p+ β
(
µ2cT (x) + (1− µ2)cT (p)

)
− β

(
µ2cL(p) + (1− µ2)cL(y)

)
≥ p+ β

(
µ2cT (p) + (1− µ2)cT (p)

)
− β

(
µ2cL(y) + (1− µ2)cL(y)

)
= p− β

(
cL(y)− cT (p)

)
= (1− β + βµ2)p− βµ2y,

> (1− β)(1− µ2)p > 0,

where in the first inequality we have used the fact that cT (x) > cT (p) and cL(y) > cL(p).

Finally, the second last inequality follows from the fact that y < ep < p
β
.

Proof. First, let us introduce some notations, which will be handy in our proof. Let pm

denote a realization of p̃1
k−1, and let A = {..., pm−1, pm, pm+1, ...} denote the state space of

normalized weights of expert 1 in ascending order, i.e., for instance pm−1 < pm < pm+1.

Define DV ∗k (pm) := Vk(pm, L)− Vk(pm, T ), where we have denoted Vk(pm, L) and Vk(pm, T )

as the value function that the adversary imposes on the system at the weight pm and stage k,

provided that he lies or tells the truth at that stage, respectively. We will show that for any

pm and k ∈ N there exists a positive constant αk > 0 (note that αk in general can depend

on pm and k) such that

DV ∗k (pm+1) ≥ αkDV
∗
k (pm). (A.6)

To see why (A.6) is sufficient to establish the threshold policy at stage k, we note that if

DV ∗k (pth) ≥ 0 for some pth, by repeatedly using (A.6) one can see that DV ∗k (pm) ≥ 0,∀pm ≥
pth. In other words, if at stage k, the optimal policy is to lie at the weight pth, then for any

pm ≥ pth the optimal policy is to lie as well. Similarly, if DV ∗k (pth) < 0 for some pth, using

(A.6) one can see that DV ∗k (pm) < 0,∀pm ≤ pth, which means that if telling the truth at

stage k with relative weight pth is optimal, then for any pm ≤ pth telling the truth will be

optimal as well.

Next, we proceed to establish (A.6) using induction on k. For k = K, and using (3.13)

we have DV ∗1 (pm+1) = pm+1 ≥ pm = DV ∗1 (pm). Therefore, in this case we can easily set

αK = 1. Now let us assume that (A.6) holds for all stages t when t ≥ k + 1, and denote the

threshold weight at stage k+ 1 by pth that is at stage k+ 1 for any p < pth the best strategy
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for the adversary is telling the truth. We will show that (A.6) holds at stage k. We consider

two cases for pm at stage k:

Case I: pm < pth

DV ∗k (pm+1)− αkDV ∗k (pm)

= cL(pm+1)− cT (pm+1)− αk[cL(pm)− cT (pm)]

+ β
(
EVk+1(φL(pm+1))− EVk+1(φT (pm+1))

)
− αkβ

(
EVk+1(φL(pm))− EVk+1(φT (pm))

)
= cL(pm+1)− cT (pm+1)− αk[cL(pm)− cT (pm)]

+ βE
[
cT (φL(pm+1))− cT (φT (pm+1))

]
− αkβE

[
cT (φL(pm))− cT (φT (pm))

]
+ β2E

[
Vk+2(φTL(pm+1))− Vk+2(φTT (pm+1))

]
− αkβ2E

[
Vk+2(φTL(pm))− Vk+1(φTT (pm)))

]
.

Herein, we used the induction hypothesis and the fact that pm is less than the threshold
pth. By continuing the same procedure, we obtain

DV ∗k (pm+1)− αkDV ∗k (pm)

= cL(pm+1)− cT (pm+1)− αk[cL(pm)− cT (pm)]

+ βE
[
cT (φL(pm+1))− cT (φT (pm+1))

]
− αkβE

[
cT (φL(pm))− cT (φT (pm))

]
+ β2E

[
cT (φTL(pm+1))− cT (φTT (pm+1))

]
− αkβ2E

[
cT (φTL(pm))− cT (φTT (pm))

]
+ ...

+ βJ−1E
[
cT

(
φT (J−2)L(pm+1)

)
− cL

(
φT (J−1)(pm+1)

)]
− αkβJ−1E

[
Vk+J−1

(
φT (J−2)L(pm)

)
− Vk+J−1

(
φT (J−1)(pm)

)]
:= A(αk) + αkB, (A.7)

where J is the number of times that adversary tells the truth before he lies. Finally, in the
last relation, we have defined

B := −βJ−1E
[
Vk+J−1

(
φT (J−2)L(pm)

)
− Vk+J−1

(
φT (J−1)(pm)

)]
and A(αk) to be the remaining terms. Using Proposition 1, we know that B > 0 (note that
φT (J−2)L(pm) ≤ φT (J−1)(pm)) and by letting

αk = min
`=0,...,J−2

βE[cT (φT `L(pm+1))− cT (φT `+1(pm+1))]

E[cL(φT `−1L(pm))− cT (φT `(pm))]
,

78



one can see that not only αk > 0 (by Lemma 8, in the appendix), but also A(αk) > 0.

Overall, by the above choice of αk we have A(αk) +αkB > 0, which completes the induction

proof for Case I. Note that in the definition of αk, we assumed φT−1L(pm) = φT 0(pm) = pm.

Case II If pm ≥ pth. In this case we can write

DV ∗k (pm+1)− αkDV ∗k (pm) =

= cL(pm+1)−cT (pm+1)−αk (cL(pm)−cT (pm))

+ βE[Vk+1(φL(pm+1))− Vk+1(φT (pm+1))]

− αkβE[Vk+1(φL(pm))− Vk+1(φT (pm))] ≥

pm+1−αkpm+βE[Vk+1(φL(pm+1))−Vk+1(φT (pm+1))] :=G−αkH,

where the first inequality follows from Proposition 1, and we have defined

G := pm+1 + βE[Vk+1(φL(pm+1))− Vk+1(φT (pm+1))],

H := pm.

In particular, by expanding the terms in G we can write

G = pm+1 − βE[cL(φT (pm+1))− cL(φL(pm+1))]

− β2E[Vk+2(φLT (pm+1))− Vk+2(φLL(pm+1))]

= pm+1 − βE[cL(φT (pm+1))− cL(φL(pm+1))]

− β2E[Vk+2(φT (φL(pm+1))− Vk+2(φL(φL(pm+1))]

≥ pm+1 − E
[
β(cL(φT (pm+1))− cL(φL(pm+1)))

+ β(cL(φL(pm+1))− cT (φL(pm+1)))
]

= pm+1 − βE (cL(φT (pm+1))− cT (φL(pm+1)))

> pm+1 − βER′
(
cL(p1, p2R′)− cT (p1e−1, p2R′)

)
= pm+1 − βµ2

(
p1

p1 + p2

)
− β(1− µ2)

(
p1 + p2

p1 + p2
− p2

p1e−1 + p2

)
> pm+1 − βE

(
p1

p1 + p2

)
= pm+1 − βpm+1 > 0,

where the first inequality follows from the induction hypothesis. In the second inequality, we

denote p1, p2 as weights of 2 experts such that p̃1 = pm+1, and update weights of two experts

over the randomization of R′ such that p2
R′ = p2 if expert 2 tells the truth and p2

R′ = p2e−1,

otherwise. The next equality follows from the definition of the current cost function. Then,

the proof is complete with the choice of αk < G/H.
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A.2.5 Proof for Infinite Horizon Discounted Problem

Proof of Proposition 2. Let us formulate the dynamic programming solutions as a decision

tree whose each node represents a state (here, relative weight of the adversary), and each

path is a sequence of nodes visited by following a sequence of the adversary’s actions. Two

paths are said to diverge at a node if they go through the same nodes up to that node and

diverge afterwards.

Consider a strategy π and another strategy π′ such that π′ deviates from π at only one

stage. The strategy π is called ”unimprovable” if there is no such other strategy π′ such

that V π′

s′ (~p0) > V π
s (~p0), where ~p0 is the initial weight vector, s and s′ are sequences of actions

obtained from the policy π and π′, respectively. From the previous section, we have proved

that the threshold policy is an improvable strategy using induction argument. Using one

stage deviation principle (Tirole an Fudenberg [202], Osborne and Rubinstein [203]), and due

to the fact that the infinite horizon discounted problem satisfies the continuity assumption

(Assumption 3), we conclude that the threshold policy is an optimal policy for the infinite

horizon problem.

Proof of Theorem 5. Given an adversary’s relative weight p ∈ (0, 1), let us define

g(p) :=
1

1 +
(

1
p
− 1
)
e
, f(p) =

1

1 +
(

1
p
− 1
)
e−1

.

Note that g(·) and f(·) are inverse of each other, i.e., g(f(p)) = p. Now suppose that

the adversary’s relative weight is right at f(τ), where τ is the optimal threshold which we

know its existence by Proposition 2. Since f(τ) > τ , based on the threshold optimal policy

the optimal action is to lie at state f(τ). On the other hand, since lying can only change

the relative weight of the adversary to either τ or f(τ) with probabilities µ2 and 1 − µ2,

respectively, we can write

V ∗(f(τ)) =
(
µ2f(τ) + µ2βV

∗(τ)
)

+
(

(1− µ2) + (1− µ2)βV ∗(f(τ))
)
.

This implies

V ∗(f(τ)) =
1− µ2 + µ2f(τ)

1− (1− µ2)β
+

µ2βV
∗(τ)

1− (1− µ2)β
(A.8)

Similarly, given that the adversary’s relative weight is right at g(τ), and since g(τ) < τ , the
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optimal action for the adversary is to tell the truth at state g(τ). Therefore, we have

V ∗(g(τ)) =
(

(1− µ2)(1− g(τ)) + (1− µ2)βV ∗(τ)
)

+
(
µ2 × 0 + µ2βV

∗(g(τ))
)
,

which implies

V ∗(g(τ)) =
(1− µ2)(1− g(τ))

1− µ2β
+

(1− µ2)βV ∗(τ)

1− µ2β
. (A.9)

Furthermore, starting the adversary’s relative weight right at the threshold τ will make the

adversary indifferent between lying and telling the truth. Using similar derivations as in

(A.8) and (A.9), we get

V ∗(τ) =
1− µ2 + µ2τ

1− (1− µ2)β
+

µ2βV
∗(g(τ))

1− (1− µ2)β

=
(1− µ2)(1− τ)

1− µ2β
+

(1− µ2)βV ∗(f(τ))

1− µ2β
. (A.10)

Solving (A.8), (A.9), and (A.10) together (note that there are exactly four equations and

four unknowns V ∗(f(τ)), V ∗(g(τ)), V ∗(τ), and τ , which can be uniquely determined) we

obtain the threshold τ as the solution of the following equation

τ =
βµ2(1− µ2)

1− β(µ2
2 + (1− µ2)2)

(f(τ) + g(τ)).

Finally, substituting the expressions of f(τ) and g(τ) into the above relation and solving for

τ , we get

τ =
1

2

(
1 + θ −

√
(1 + θ)2 − 4

(1 + e2)θ − e
(1− e)2

)
,

where θ := βµ2(1−µ2)

1−β(µ22+(1−µ2)2)
.

A.2.6 Extended results of optimal policy with learning rate η

Logarithmic loss

By some modifications on the proof of Theorem 3, we will prove that the optimal policy

of the malicious expert when the algorithm uses a learning rate η > 0 is the same as in

Theorem 3. Indeed, by using a learning rate η, the weight update rule in (3.2) is replaced

81



by

pik = pik−1e
−ηl(xik,yk). (A.11)

Note that the current cost functions of logarithmic loss, defined in (3.10), do not change and

so does Proposition 1. The proof of Theorem 3 is modified to adapt with the learning rate η

as follows. In (A.4), the updated weight of the malicious expert is changed from (1−ε)p1 and

εp1 to (1− ε)ηp1 and εηp1, respectively. Expression on the right-hand-side of (g) in equation

(A.5) becomes

−ER′,R

[
ln

(
ε(1−ε)ηp1+(1−ε)

∑
i∈R

pi
R′+ε

∑
j∈Rc

pj
R′

εp1+~pR′1

)]
+ ER′,R

[
ln

(
εη(1−ε)p1+(1−ε)

∑
i∈R

pi
R′+ε

∑
j∈Rc

pj
R′

(1−ε)p1+~pR′1

)]
.

Due to the monotonicity of the log function, (h) is changed to the inequality and the proof

follows.

Absolute loss

As noted above, the current cost functions of absolute loss, defined in (3.11) and Proposi-

tion 1 remain unchanged while the weight update rule is changed as given in (A.11) and

consequently, the weight transition in (3.12) becomes

φx1k(p̃
1
k−1) =


1

1+
(

1

p̃1
k−1

−1
)
eη

if x1
k = L, x2

k = T,

1

1+
(

1

p̃1
k−1

−1
)
e−η

if x1
k = T, x2

k = L,

p̃1
k−1 if x1

k = x2
k.

(A.12)

In this setting, it is straightforward to check that the condition in Lemma 8, and hence in

Theorem 4 will change to β < 1
eη

.

A.2.7 Proof of mean-field results

Proof of Lemma 3. p− φ̂L(p)− µ(φ̂T (p)− φ̂L(p))

= p− 1

1 + (1/p− 1)(µe+ (1− µ))
,

− µ (1/p− 1)(µe+ (1− µ))(1− e−1)(
1 + (1/p− 1)(µ+ (1− µ)e−1)

)(
1 + (1/p− 1)(µe+ (1− µ))

) ,
=

µ(1− µ)(1− p)(e− 1)(1− e−1)(
1 + (1/p− 1)(µ+ (1− µ)e−1)

)(
1 + (1/p− 1)(µe+ (1− µ))

) ,
> 0.

Proof of Lemma 4. We prove this using induction. For the base case when k = 1, the claim
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holds true since

φ̂L(φ̂T (p)) =
1

1 + (1/φ̂T (p)− 1)(µ+ (1− µ))

=
1

1 + (1/p− 1)(µ+ (1− µ)e−1)2e
, (A.13)

and

φ̂T (φ̂L(p)) =
1

1 + (1/φ̂L(p)− 1)(µ+ (1− µ))e−1
,

=
1

1 + (1/p− 1)(µ+ (1− µ)e−1)2e
. (A.14)

Assume now that the claim holds at k, we prove it is true for k + 1. Indeed,

φ̂L(φ̂T (k+1)(p)) = φ̂L(φ̂T (k)(φ̂T (p))),

= φ̂T (k)(φ̂L(φ̂T (p))),

= φ̂T (k)(φ̂T (φ̂L(p))),

= φ̂T (k+1)(φ̂L(p)),

where the second equality follows from the induction hypothesis, and the third one follows

from the base case.

Proof of Theorem 6. We again apply the induction technique. At the final step, the claim
is immediate from the fact that ∆ĉK(p̂) = ĉL(p̂)− ĉT (p̂) = p̂ > 0.
Induction step: suppose the claim holds true at the step k + 1, we consider the step k,

DV̂k(p̂) = ĉL(p̂)− ĉT (p̂) + V̂k+1(φ̂L(p̂), L)− V̂k+1(φ̂T (p̂), L),

> ĉL(p̂)− ĉT (p̂) + V̂k+1(φ̂L(p̂), T )− V̂k+1(φ̂T (p̂), L),

> ĉL(p̂)− ĉT (p̂) + ĉT (φ̂L(p̂))− ĉL(φ̂T (p̂)),

= p̂− φ̂T (p̂) + (1− µ)(φ̂T (p̂)− φ̂L(p̂)),

= p̂− φ̂L(p̂)− µ(φ̂T (p̂)− φ̂L(p̂)),

> 0.

where the first inequality follows from the induction hypothesis, the second inequality follows

from Lemma 4, and the last inequality follows from Lemma 3.

Proof of Lemma 5. The idea of the proof is to bound the difference of the optimal and
approximate value functions based on the dynamic programming algorithm. To do this, at
each step, we compare the true value functions with the approximate value functions when
the malicious expert tells a lie and the truth, respectively. We prove this by induction.
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At step K,

|cL(p)− ĉL(p̂)| ≤ |cL(p)− ĉL(p)|+ |ĉL(p)− ĉL(p̂)|,

= (1− p̄)

∣∣∣∣∣∣
∑
i 6=1

qiK−1x
i
K − µ

∣∣∣∣∣∣+ µ|p− p̂|.

Define the function

f(x2
K , ..., x

N
K) = (1− p̄K−1)

∑
i 6=1

qiK−1x
i
K ,

we observe that

∣∣f(x2K , ..., x
i
K , ..., x

N
K)− f(x2K , ..., (x

i
K)′, ..., xNK)

∣∣
= |piKxiK − (piK)′(xiK)′| ≤ piK + (piK)′.

Note that since the updated weight of an expert is increased if that expert tells the truth,

piK ≤
piK−1e

piK−1e+ (1− piK−1)(µe+ (1− µ))
≤ piK−1e.

Therefore, we obtain piK ≤ pi0e
K = eK

N
, and thus the function f(.) has the bounded difference

of 2eK

N
. Using McDiarmird’s inequality, ∀ νK > 0

P

(1− p̄K−1)

∣∣∣∣∣∣
∑
i6=1

qiK−1x
i
K − µ

∣∣∣∣∣∣ ≥ νK


≤ exp

 −2ν2K∑
i6=1

(2eK

N

)2
 = exp

(
−ν2K
2e2K

N2

N − 1

)
.

Thus,
|Vk(p)− V̂k(p̂)| = |cL(p)− ĉL(p̂)| ≤ νK + µδK := εK ,

with probability at least 1− exp
(
−(εK−µδK)2

2e2K
N2

N−1

)
.

Suppose that the claim holds true at step k + 1, we consider at step k two states p and p̂
such that |p − p̂| < δk. Similar to the proof for the base case, we obtain the difference of
current costs

|cL(p)− ĉL(p̂)| ≤ ν̃k + µδk,

with probability at least 1− exp
(
−(ν̃k)2
2e2k

N2

N−1

)
.

Next, we bound the difference of two value functions after telling a lie at the step k. We
first observe that,
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|φL(p)− φ̂L(p̂)|

=
∣∣∣ p

p+ (1− p)
∑
i6=1

qik−1e
xi
k

− p̂

p̂+ (1− p̂)(µe+ (1− µ))

∣∣∣,

=

∣∣∣∣∣∣∣∣
p(1− p̂)(µe+ (1− µ))− p̂(1− p)(

∑
i 6=1

qik−1e
xi
k)

(p+ (1− p)
∑
i 6=1

qik−1e
xi
k)(p̂+ (1− p̂)(µe+ (1− µ)))

∣∣∣∣∣∣∣∣ ,

=

∣∣∣∣∣∣∣∣
p̂(1− p)(µe+ (1− µ)−

∑
i 6=1

qik−1e
xi
k) + (p− p̂)(µe+ (1− µ))

(p+ (1− p)
∑
i6=1

qik−1e
xi
k)(p̂+ (1− p̂)(µe+ (1− µ)))

∣∣∣∣∣∣∣∣ ,
≤
∣∣∣p̂(1− p)(µe+ 1− µ−

∑
i 6=1

qik−1e
xi
k)
∣∣∣+ |p− p̂|(µe+ 1− µ),

≤ ak + δke, (A.15)

with probability at least 1−exp
(
−a2k

2e2(k+1)
N2

N−1

)
, where ak =

∣∣∣p̂(1−p)(µe+1−µ−
∑
i 6=1

qik−1e
xik)
∣∣∣

which is bounded since xik ∈ {0, 1} and
∑
i 6=1

qik−1 = 1. The second last inequality follows from

the triangle inequality and the fact that the denominator is greater than 1, and the last

expression follows from McDiarmird’s inequality.

Using induction hypothesis, ∀ εk+1 > 0, if |cL(p) − ĉL(p̂)| < δk, we have |Vk+1(φL(p)) −
V̂k+1(φ̂L(p̂))| ≤ εk+1 with probability ξk+1 = exp(−ck+1N). Now, from (A.15) and the union

bound, we infer

|Vk+1(φL(p))− V̂k+1(φ̂L(p̂))| ≤ εk+1,

with probability at least 1− exp
(
−a2k

2e2(k+1)
N2

N−1

)
− ξk+1.

Then, using the triangle inequality, we obtain
|Vk(p, L)− V̂k(p̂, L)|

≤ |cL(p)− ĉL(p̂)|+ |Vk+1(φL(p))− V̂k+1(φ̂L(p̂))|,

≤ εk := ν̃k + µδk + εk+1,

with probability 1− exp
(
−a2k

2e2(k+1)
N2

N−1

)
− ξk+1 − exp

(
−(ν̃k)2

2ek
N2

N−1

)
.

We apply exactly the same technique to bound the difference of |Vk(p, T )− V̂k(p̂, T )|:

|cT (p)− ĉT (p̂)| ≤ ν̃k + (1− µ)δk

with probability at least 1 − exp
(
−(ν̃k)2

2e2K
N2

N−1

)
. Next, we bound the difference of two value

functions after telling the truth at the step k. We first observe that
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|φT (p)− φ̂T (p̂)|

=

∣∣∣∣∣∣∣∣∣
pe

pe+ (1− p)
∑
i 6=1

qik−1e
xik
− p̂e

p̂e+ (1− p̂)(µe+ (1− µ))

∣∣∣∣∣∣∣∣∣ ,

≤

∣∣∣∣∣∣p̂e(1− p)(µe+ (1− µ)−
∑
i 6=1

qik−1e
xik)

∣∣∣∣∣∣+ e|p− p̂|(µe+ (1− µ)),

≤ eak + δke
2, (A.16)

with probability at least 1− exp
(
−a2k

2e2(k+1)
N2

N−1

)
.

From the induction hypothesis and (A.16), we infer

|Vk+1(φT (p))− V̂k+1(φ̂T (p̂))| ≤ εk+1,

with probability at least 1− exp
(
−a2k

2e2(k+1)
N2

N−1

)
− ξk+1.

Then, using the triangle inequality, we obtain

|Vk(p, T )− V̂k(p̂, T )|

≤ |cT (p)− ĉT (p̂)|+ |Vk+1(φT (p))− V̂k+1(φ̂T (p̂))|,

≤ εk := ν̃k + (1− µ)δk + εk+1,

with probability 1− exp
(
−a2k

2e2(k+1)
N2

N−1

)
− ξk+1 − exp

(
−(ν̃k)2

2ek
N2

N−1

)
.

From the optimality principle, the claim holds true with probability of at least 1− ξk where

ξk = exp
(
−a2k

2e2(k+1)
N2

N−1

)
+ ξk+1 + exp

(
−(ν̃k)2

2ek
N2

N−1

)
= exp(−ckN).

Proof of Theorem 7. From the above lemma, if the optimal strategy of the approximated

setting and the optimal setting of the original setting start from the same initial weight of

the malicious expert, i.e., p̃1
0 = p̂1

0, their value functions are close, which implies that the

updated weight p̃1
1, p̂

1
1 are close to each other as well. To see this, let us consider the step 1.

From theorem 6, V̂0(p̂, L) > V̂0(p̂, T ). Based on the proof of Lemma 5, V0(p, L) > V0(p, T )

with high probability. This implies that p̃1
1 = φL(p̃1

0) and p̂1
1 = φL(p̂1

0). From the analysis

similar to (A.15), we can see that the difference of states at step 1 is small with high

probability. The process is conducted similarly for the next steps.
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[154] O. Guéant, J.-M. Lasry, and P.-L. Lions, Mean Field Games and Applications.
Springer Berlin Heidelberg, 2011.

[155] L. P. Kadanoff, “More is the same; phase transitions and mean field theories,” Journal
of Statistical Physics, vol. 137, pp. 777–797, Sep. 2009.

[156] S. Dasgupta and J. Langford, “Tutorial summary: Active learning,” in Proceedings of
the 26th Annual International Conference on Machine Learning, ICML 2009, Mon-
treal, Quebec, Canada, 2009.

[157] S. Tong and D. Koller, “Support vector machine active learning with applications to
text classification,” Journal of Machine Learning Research, vol. 2, pp. 45–66, 2002.

98



[158] N. Roy and A. McCallum, “Toward optimal active learning through sampling estima-
tion of error reduction,” in Proceedings of the Eighteenth International Conference on
Machine Learning, San Francisco, CA, USA, 2001, pp. 441–448.

[159] B. Settles, “Active learning literature survey,” University of Wisconsin, Madison, Tech.
Rep., 07 2010.

[160] D. D. Lewis and W. A. Gale, “A sequential algorithm for training text classifiers,” in
Proceedings of the 17th annual international ACM SIGIR conference on Research and
development in information retrieval, Dublin, Ireland, July 1994, pp. 3–12.

[161] X. Zhu, J. Lafferty, and Z. Ghahramani, “Combining active learning and semi-
supervised learning using gaussian fields and harmonic functions,” in ICML 2003
workshop on The Continuum from Labeled to Unlabeled Data in Machine Learning
and Data Mining, 2003, pp. 58–65.

[162] T. Zhang and F. J. Oles, “A probability analysis on the value of unlabeled data for clas-
sification problems,” in Proceedings of the 17th International Conference on Machine
Learning, 2000, pp. 1191–1198.

[163] Y. Baram, R. El-Yaniv, and K. Luz, “Online choice of active learning algorithms,”
The Journal of Machine Learning Research, vol. 5, pp. 255–291, Dec. 2004.

[164] T. Osugi, D. Kim, and S. Scott, “Balancing exploration and exploitation: a new
algorithm for active machine learning,” in Proceedings of Fifth IEEE International
Conference on Data Mining, (ICDM), Washington, DC, USA, Nov. 2005.

[165] D. Bouneffouf, “Exponentiated gradient exploration for active learning,” Computers,
2016.

[166] D. Sculley, “Online active learning methods for fast label-efficient spam filtering,” in
Proceedings of the Fourth Conference on Email and Anti-Spam, Berlin, Germany, 2007.

[167] S. Dasgupta, A. T. Kalai, and C. Monteleoni, “Analysis of perceptron-based active
learning,” The Journal of Machine Learning Research, vol. 10, pp. 281–299, June
2009.

[168] D. Helmbold and S. Panizza, “Some label efficient learning results,” in Proceedings
of the Tenth Annual Conference on Computational Learning Theory, Nashville, Ten-
nessee, USA, July 1997, pp. 218–230.

[169] Y. Freund, H. S. Seung, E. Shamir, and N. Tishby, “Selective sampling using the query
by committee algorithm,” Machine Learning, vol. 28, pp. 133–168, 1997.

[170] F. Olsson, “A literature survey of active machine learning in the context of natural
language processing,” Swedish Institute of Computer Science, Tech. Rep., 2009.

[171] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the multiarmed
bandit problem,” Machine Learning, vol. 47, pp. 235–256, May 2002.

99



[172] S. Kale, “Multiarmed bandits with limited expert advice,” CoRR, 2013.

[173] Y. Seldin, P. Bartlett, K. Crammer, and Y. Abbasi-yadkori, “Prediction with limited
advice and multiarmed bandits with paid observations,” in Proceedings of the 31st
International Conference on Machine Learning (ICML-14), Beijing, China, 2014, pp.
280–287.

[174] G. Lugosi, “Sequential prediction under incomplete feedback,” in Proceedings of the
2007 Conference on Artificial Intelligence Research and Development, Amsterdam, The
Netherlands, The Netherlands, 2007, pp. 3–5.

[175] N. Cesa-Bianchi, C. Gentile, and L. Zaniboni, “Worst-case analysis of selective sam-
pling for linear-threshold algorithms,” in Proceedings of Advances in Neural Informa-
tion Processing Systems 17 (NIPS 2005), Cambridge, MA, USA, 2005, p. 241248.

[176] P. Zhao, S. C. H. Hoi, and J. Zhuang, “Active learning with expert advice,” in
Proceedings of the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence
(UAI2013), Bellevue, Washington, USA, July 2013.

[177] J. Belluz, M. Gaudesi, G. Squillero, and A. Tonda, “Operator selection using improved
dynamic multi-armed bandit,” in Proceedings of the 2015 Annual Conference on Ge-
netic and Evolutionary Computation, 2015, pp. 1311–1317.

[178] H. Valizadegan, R. Jin, and S. Wang, “Learning to trade off between exploration and
exploitation in multiclass bandit prediction,” in Proceedings of the 17th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, 2011, pp. 204–
212.

[179] S. M. Kakade, S. Shalev-Shwartz, and A. Tewari, “Efficient bandit algorithms for
online multiclass prediction,” in Proceedings of the 25th International Conference on
Machine Learning, 2008, pp. 440–447.

[180] W. Li, X. Wang, R. Zhang, Y. Cui, J. Mao, and R. Jin, “Exploitation and exploration
in a performance based contextual advertising system,” in Proceedings of the 16th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, 2010,
pp. 27–36.

[181] B. Szörényi, R. Busa-Fekete, I. Hegedüs, R. Ormándi, M. Jelasity, and B. Kégl,
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