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Abstract

This is a study of a small selection of problems from various areas of Combinatorics and Graph Theory,

a fast developing field that provides a diverse spectrum of powerful tools with numerous applications to

computer science, optimization theory and economics. In this thesis, we focus on extremal, probabilistic and

enumerative problems in this field.

A central theorem in combinatorics is Sperner’s Theorem, which determines the maximum size of a family

F ⊆ P(n) that does not contain a 2-chain F1 ( F2. Erdős later extended this result and determined the

largest family not containing a k-chain F1 ( . . . ( Fk. Erdős and Katona and later Kleitman asked how

many such chains must appear in families whose size is larger than the corresponding extremal result. In

Chapter 2 we answer their question for all families of size at most (1− ε)2n, provided n is sufficiently larger

compared to k and ε.

The result of Chapter 2 is an example of a supersaturation, or Erdős–Rademacher type result, which

seeks to answer how many forbidden objects must appear in a set whose size is larger than the corresponding

result. These supersaturation results are a key ingredient to a very recently discovered proof method, called

the Container method. Chapters 3 and 4 show various examples of this method in action. In Chapter 3 we,

among others, give tight bounds on the logarithm of the number of t-error correcting codes and illustrate

how the Container method can be used to prove random analoges of classical extremal results. In Chapter 4

we solve a conjecture of Burosch–Demetrovics–Katona–Kleitman–Sapozhenko about estimating the number

of families in {0, 1}n which do not contain two sets and their union.

In Chapter 5 we improve an old result of Erdős and Spencer. Folkman’s theorem asserts that for each

k ∈ N, there exists a natural number n = F (k) such that whenever the elements of [n] are two-colored,

there exists a set A ⊂ [n] of size k with the property that all the sums of the form
∑
x∈B x, where B is a

nonempty subset of A, are contained in [n] and have the same color. In 1989, Erdős and Spencer showed

that F (k) ≥ 2ck
2/ log k, where c > 0 is an absolute constant; here, we improve this bound significantly by

showing that F (k) ≥ 22k−1/k for all k ∈ N.
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Fox–Grinshpun–Pach showed that every 3-coloring of the complete graph on n vertices without a rainbow

triangle contains a clique of size Ω
(
n1/3 log2 n

)
which uses at most two colors, and this bound is tight up to

the constant factor. We show that if instead of looking for large cliques one only tries to find subgraphs of

large chromatic number, one can do much better. In Chapter 6 we show, amongst others, that every such

coloring contains a 2-colored subgraph with chromatic number at least n2/3, and this is best possible. As a

direct corollary of our result we obtain a generalisation of the celebrated theorem of Erdős-Szekeres, which

states that any sequence of n numbers contains a monotone subsequence of length at least
√
n.
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Chapter 1

Introduction

Given an object H and a finite set S, it is natural to ask the following questions:

1. How large is the largest subset of S that does not contain (an isomorphic copy of) H?

2. If the size of a subset is slightly larger than the above extremal threshold, at least how many copies

of H must it contain? Given an integer M , amongst all subsets of S of size M , which subsets contain

the fewest copies of H?

3. How many subsets of S do not contain a copy of H?

Answering Question 1 is the main goal of extremal combinatorics and extremal graph theory. Chapters 5

and 6 deal with two problems of this kind. Question 2 is often referred to as a supersaturation or Erdős–

Rademacher type problem. It is often the case that as soon as the size of the set ever so slightly exceeds the

extremal threshold for containing H, it suddenly must contain many copies of the forbidden object H. We

address examples of this phenomenon in Chapters 2, 3, 4. Question 3 is the main question in enumerative

combinatorics. The main tool we will explore in this thesis is the recently discovered powerful Container

method, see Chapters 3 and 4.

1.1 Extremal problems in graph theory and combinatorics

1.1.1 Families without long chains

One of the cornerstone results of extremal combinatorics is Sperner’s theorem [101]. The Boolean lattice

is the poset P(n) = 2[n] with the relation A ≤ B if A ⊆ B. Throughout the thesis we will often identify

2[n] with {0, 1}n by mapping every set to its characteristic vector. In a poset P we say that two elements

a, b ∈ P are comparable if either a ≤ b or b ≤ a. An antichain in a poset P is a subset C ⊂ P so that no

two elements of C are comparable.
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Theorem 1.1.1 (Sperner). The largest antichain in P(n) has size
(

n
bn/2c

)
.

Given a poset P , a set C ⊂ P is a chain if any two of its elements are comparable. We call C a k-chain if

|C| = k. So an antichain is a set that does not contain a 2-chain. Erdős showed [34] that Sperner’s theorem

can be generalized to bound the size of families without a k-chain.

Theorem 1.1.2 (Erdős). Let k, n ∈ N+. The size of the largest k-chain free family in P(n) is equal to the

sum of the k − 1 largest binomical coefficients of the form
(
n
i

)
.

1.1.2 Ramsey theory

Ramsey theory is a branch of extremal combinatorics, that studies the conditions under which order must

appear in disorder. Problems in Ramsey theory typically ask a question of the form: how large an ordered

structure can we find in a large chaotic object? It begins with the innocuous looking observation that no

matter how the edges of the complete graph on six vertices, denoted by K6, are colored red and blue with

each edge receiving one color, the resulting coloring must contain a monochromatic triangle. Ramsey’s theo-

rem [92], for two colors, states that instead of triangles we can hope to find arbitrarily large monochromatic

cliques, provided the complete graph whose edges we color is large enough.

Theorem 1.1.3 (Ramsey). For every n ∈ N there exists an N ∈ N such that whenever the edges of KN are

two-colored, there exists a monochromatic Kn.

We denote by R(n) the smallest N for which Theorem 1.1.3 holds. The upper bound

R(n) ≤
(

2n− 2

n− 1

)
≤ 4n

follows from a short pigeonhole argument due to Erdős and Szekeres [42]. The lower bound

√
2
n
≤ R(n)

is due to Erdős [35] and was instrumental in his introduction of the probabilistic method. Despite a consid-

erable effort in the past seven decades, the two constants
√

2 and 4 in the lower and upper bounds were not

improved. The current best bounds are due to Spencer [100] and Conlon [28].

Another classical theorem in the area is Van der Waerden’s theorem [107], which states that whenever

[N ] is r-colored, there is a monochromatic arithmetic progression of length k, provided N is sufficiently large

compared to k and r.

2



Theorem 1.1.4 (Van der Waerden). For every r, k ∈ N there exists an N ∈ N such that the following holds.

Whenever [N ] is r-colored, there is a monochromatic arithmetic progression of length k.

We will talk more about the different structures one can find in colorings of graphs and integers, and the

bounds on the corresponding numbers, in Chapter 5.

1.2 The Container Method

The Container Method is a recently-developed powerful technique for bounding the number (and control-

ling the typical structure) of finite objects with forbidden substructures. This technique exploits a subtle

clustering phenomenon exhibited by the independent sets of uniform hypergraphs, provided their edges are

sufficiently evenly distributed. It provides a relatively small family of ‘containers’ for the independent sets,

each of which contains few edges and hence are themselves close to being an independent set. This method

was developed by Balogh–Morris–Samotij [8] and by Saxton–Thomason [98]. We defer the discussion of the

graph container algorithm and the statement of (a version of) the hypergraph container lemma for 3-uniform

hypergraphs to Chapters 3 and 4. We will not attempt to cover the extensive literature on this topic, instead

we will cherry-pick some easy applications to illustrate the importance of the method and refer the reader

to the excellent recent survey [9] for more details.

Dedekind suggested [31] the following problem:

Question 1.2.1 (Dedekind). Let S = {F ⊂ P(n) : F is an antichain}. How big is |F|?

The largest antichain in P(n) has size
(

n
bn/2c

)
and every subset of an antichain is itself an antichain. It

follows that the number of antichains is at least 2( n
bn/2c). Kleitman [70] showed that this is not too far from

the truth, by proving that the number of antichains is 2(1+o(1))( n
n/2). The precise asymptotics were later

found by Korshunov [75].

Obtaining Kleitman’s result using the method of containers is an easy exercise. We first create a graph

G on vertex set P(n) by connecting two sets by an edge if they form a comparable pair. Then Dedekind’s

problem is equivalent to counting the number of independent sets in G. Sperner’s theorem implies that the

largest independent set has size
(

n
bn/2c

)
, hence the total number of independent sets is at least 2( n

bn/2c).

The next key ingredient is a supersaturation-, or Erdős–Rademacher type statement showing that any

subset of V (G) of size at least (1 + ε)
(

n
bn/2c

)
contains many more than ε

(
n
bn/2c

)
comparable pairs (which is

the trivial lower bound). Fortunately we can apply another result of Kleitman [70] that essentially states

that every such set contains at least n times more comparable pairs than the trivial bound.

3



The final step is to apply the Container Lemma to obtain a collection of containers C1, . . . , Cm ⊂ V (G)

such that each independent set is a subset of some container, the containers have size at most (1+o(1))
(

n
bn/2c

)
and the number of containers is at most 2o((

n
bn/2c)). Putting everything together, the number of antichains

in P(n) is at most the number of containers times the number of subsets of each container, which gives us

the upper bound of 2(1+o(1))( n
bn/2c). For more details, we refer the reader to Chapter 3.

In order to give further motivation for the method, we present one more easy application. Let H be

the hypergraph that encodes triangles in Kn. That is, the vertex set of H is
(

[n]
2

)
, i.e. the edge set of Kn.

The edge set of H corresponds to triangles in Kn. So H is a 3-uniform hypergraph with
(
n
3

)
edges and(

n
2

)
vertices. Directly applying the Hypergraph Container Lemma to H produces the following theorem, see

e.g. [9].

Theorem 1.2.2. For each ε > 0 there exists C > 0 such that the following holds. For each n ∈ N there

exists a collection G of graphs on n vertices, with

|G| ≤ nCn
3/2

,

such that

(a) each G ∈ G contains fewer than εn3 triangles, and

(b) each triangle-free graph on n vertices is contained in some G ∈ G.

In order to translate this container result to an enumerative result, we again need a supersaturation

statement. An averaging argument shows that a graph with fewer than εn3 triangles cannot have more than

(1 + ε′)n2/4 edges, for some ε′ depending on ε. Hence the number N of triangle-free graphs on n vertices is

at most

N ≤ nO(n3/2) · 2(1+o(1))n2/4 = 2(1+o(1))n2/4.

This result is sharp up to the o(1) factor, as any subset of a complete balanced bipartite graph is

triangle-free. While this result is certainly not new (see [37]), it illustrates the versatility of this method.

The survey [9] contains many more striking applications, in this introduction, and even in the later chapters

of this thesis, we will only scratch the very surface of these results.
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1.3 Supersaturation

A closely related problem to the ones studied is determining the minimum number of copies of a particular

substructure in a combinatorial object of given size. These so-called supersaturation problems can be traced

back to a result of Rademacher (see [36]) who showed that if a graph has more than n2/4 edges (the maximum

possible number of edges a triangle-free graph on n vertices can have) then it contains at least bn/2c triangles.

For many more examples of supersaturations results and their applications in combinatorics we refer the

reader to [91] and the references therein.

Many extremal results can be turned into counting results using the method of containers, we explore

several examples of this in Chapters 3 and 4. The key intermediate step in all these proofs is a supersaturation

result, which makes the study of these problems interesting in their own right. In Chapter 2 we investigate

one particularly challenging supersaturation problem. It was Erdős and Katona, and later Kleitman, who

asked at least how many k-chains must appear in a subset of P(n) of prescriped size. This problem was

resolved by Kleitman in 1966 (see [70]), but in general the problem remained open until very recently Samotij

provided [96] a full solution to the problem. We describe the history and our contribution to Kleitman’s

conjecture, which states that the optimal families are those which are obtained by taking sets as close as

possible to the middle layer, in Chapter 2.

In Chapter 3 we explore supersaturation problems related to error-correcting codes, analoges of Kleit-

man’s theorem, Katona’s t-intersection theorem and related problems. We explore how to combine these

supersaturation results with the container method to obtain enumerative and sparse random analoges of

classical extremal results.

1.4 Organization of this thesis

Chapter 2 focusses on a supersaturation problem of Erdős, Katona and Kleitman. Chapter 3 focusses on

some applications of the graph container method, where the difficulty in the proofs lies in the supersaturation

lemma, and the application of the container method is fairly straightforward. Chapter 4 discusses a result

where the main hurdle was formulating a new version of the container lemma. Chapters 5 and 6 discuss two

results in Ramsey theory.
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Chapter 2

Kleitman’s conjecture and k-chains in
the Boolean lattice

The results of this chapter are joint work with József Balogh [16].

A central theorem in combinatorics is Sperner’s Theorem, which determines the maximum size of a family

F ⊆ P(n) that does not contain a 2-chain F1 ( F2. Erdős later extended this result and determined the

largest family not containing a k-chain F1 ( . . . ( Fk. Erdős and Katona and later Kleitman asked how

many such chains must appear in families whose size is larger than the corresponding extremal result.

This question was resolved for 2-chains by Kleitman in 1966, who showed that amongst families of size

M in P(n), the number of 2-chains is minimized by a family whose sets are taken as close to the middle layer

as possible. He also conjectured that the same conclusion should hold for all k, not just 2. The best result

on this question is due to Das, Gan and Sudakov who showed that Kleitman’s conjecture holds for families

whose size is at most the size of the k + 1 middle layers of P(n), provided k ≤ n − 6. Our main result is

that for every fixed k and ε > 0, if n is sufficiently large then Kleitman’s conjecture holds for families of size

at most (1− ε)2n, thereby establishing Kleitman’s conjecture asymptotically. Our proof is based on ideas of

Kleitman and Das, Gan and Sudakov. Several open problems are also given.

2.1 Introduction

Denote by Σ(n, r) the size of the r largest layers in P(n), that is, Σ(n, r) =
∑dn+r−1

2 e
i=dn−r+1

2 e

(
n
i

)
. Sperner’s

Theorem [101], a cornerstone result in extremal combinatorics from 1928, states that the size of the largest

family F ⊆ P(n) that does not contain two sets F1, F2 ∈ F with F1 ( F2 is
(

n
bn/2c

)
. This result was extended

by Erdős [34], who showed that the size of the largest family without a k-chain, that is, k sets F1 ( . . . ( Fk,

is the sum of the k − 1 largest binomial coefficients, Σ(n, k − 1).

The following natural question was first posed by Erdős and Katona and then extended by Kleitman

some fifty years ago. Given a family F of s subsets of [n], how many k-chains must F contain? We denote

this minimum by ck(n, s), and determine it for a wide range of values of k and s. For k = 2 this question
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was completely resolved by Kleitman [70]. We say that a family F ⊆ P(n) is centered if for any two sets

A,B ⊆ [n] with A ∈ F and B /∈ F we have that |n/2 − |A|| ≤ |n/2 − |B||, and if |n/2 − |A|| = |n/2 − |B||

then we have |A| ≥ |B|. That is, if F is constructed by “taking sets whose size is as close to n/2 as possible”

(and if two layers have the same size we fill up the top one first). Equipped with this definition, Kleitman’s

theorem is as follows.

Theorem 2.1.1 (Kleitman [70]). Let n,M > 0 be integers. Amongst families F ⊆ P(n) of size M , the

number of 2-chains in F is minimized by a centered family.

Note that Theorem 2.1.1 does not claim that centered families are the only families achieving the min-

imum, which is not quite true (but close!). The families achieving minimum in Theorem 2.1.1 have been

completely characterized by Das–Gan–Sudakov [30].

In the present chapter we are interested in what happens for k > 2. Kleitman conjectured that the

conclusion of Theorem 2.1.1 should hold for k > 2 as well, that is, the number of k-chains in F is minimized

if F is obtained by taking sets whose size is as close to n/2 as possible.

Conjecture 2.1.2 (Kleitman, [39, 70]). Let n,M > 0 and k ≥ 2 be integers. Amongst families F ⊆ P(n)

of size M , the number of k-chains in F is minimized by a centered family.

Dove–Griggs–Kang–Sereni [32] and independently Das–Gan–Sudakov [30] proved that Kleitman’s con-

jecture is true for families whose size is at most the size of the k middle layers. For a family F ⊆ P(n), write

ck(F) for the number of k-chains contained in F .

Theorem 2.1.3 (Das–Gan–Sudakov [30], Dove–Griggs–Kang–Sereni [32]). Let k,M, n > 0 with M ≤

Σ(n, k). Amongst families F ⊆ P(n) of size M , the function ck(F) is minimized by centered families.

The first set of authors obtained stability versions of the above theorem as well. The best result on

Kleitman’s conjecture prior to our result was due to Das–Gan-Sudakov [30], who showed that Kleitman’s

conjecture holds for family sizes at most the middle k + 1 layers, provided k ≤ n− 6.

Theorem 2.1.4 (Das–Gan–Sudakov). Let n ≥ 15, M ≤ Σ(n, k + 1) and k ≤ n − 6. Amongst families

F ⊆ P(n) of size M , the function ck(F) is minimized by centered families.

Once again they actually obtained slightly stronger results, providing stability results for families for

which ck(F) is close to the minimum. For more on the history and motivation of this problem we refer the

reader to the very well-written introduction of [30].
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Our main result can be viewed as an asymptotic solution to Kleitman’s conjecture. We show that

Kleitman’s conjecture is true for all M ≤ (1− ε)2n, provided n is sufficiently large compared to ε and k.

Theorem 2.1.5. For every k and ε > 0 there exists an n0 = n0(k, ε) such that if n ≥ n0 and M ≤ (1−ε)2n

then amongst families F ⊂ P(n) of size M , the function ck(F) is minimized by centered families.

Our proof consists of two main parts. First we show that amongst families that are contained in the

middle roughly
√
n log n layers, centered families are the best (i.e. they have the smallest ck(F)). This part

is based on the symmetric chain decomposition construction of de Bruijn–Tengbergen–Kruyswijk [21] and

ideas of Kleitman [69] and contains most of the new ideas of this chapter. The second part of the proof

is then showing that an optimal family cannot contain sets that are too small or too large. Our method

of proving this is mostly based on ideas of Das–Gan–Sudakov [30]. Throughout this chapter we make no

effort to optimize the value of n0(k, ε). For the corresponding maximization question, i.e. determining the

maximum possible number of comparable pairs amongst families of size M in P(n) we refer the reader to [3].

We note that very recently Samotij [96] used different methods to prove Conjecture 2.1.2 in its full

generality:

Theorem 2.1.6 (Samotij [96]). Kleitman’s conjecture is true for all n,M, k.

2.2 Set-up

Our main goal in this chapter is to prove Theorem 2.1.5. Hence throughout the chapter we consider k and

ε > 0 to be fixed. We set n0 to be sufficiently large so that all following inequalities hold and want to show

that for any n ≥ n0 the conclusion of Theorem 2.1.5 holds. For that we fix an arbitrary M ≤ (1− ε)2n. By

Theorem 2.1.4 we know that the conclusion of Theorem 2.1.5 holds if M ≤ Σ(n, k+ 1) hence we will always

assume

M > Σ(n, k + 1), (2.2.1)

recalling that Σ(n, s) is the total size of the s biggest layers in P(n). Let r be defined as the unique integer

such that

Σ(n, r − 1) < M ≤ Σ(n, r).
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That is, we wish to show that one of the optimal families will fully contain the r−1 middle layers, and some

elements from a neighboring layer. We observe that since for n large enough

Σ(n,
√
n log1/20 n) >

(
1− ε

2

)
2n,

we have

r ≤
√
n log1/10 n. (2.2.2)

(We note that the conditions ensure that in fact r ≤ Cε
√
n. We found it preferable to introduce the

polylogarithmic term to avoid introducing constants depending on ε.) Moreover we will assume that

k ≤ log1/100 n. (2.2.3)

Throughout the chapter most propositions will aim to show that given certain conditions, centered

families minimize the number of k-chains. Note that every centered family F ⊂ P(n) of size M contains

the same number of k-chains. It will be convenient for us to pick for each positive integer Q one specific

centered family of size Q, that we will call GQ, and show that GM minimizes the number of k-chains. Note

that if F is centered then there exists at most one j ∈ [n] such that ∅ 6= F ∩
(

[n]
j

)
6=
(

[n]
j

)
, and we call this j

the partial layer of F if it exists. Moreover if Q > 0 is a fixed integer then every centered family F of size

Q in P(n) has the same partial layer j and the same intersection sizes with all layers. Given Q,n the only

free choice one has when specifying a centered family of size Q in P(n) is what to do on the partial layer.

A natural choice for GQ is to choose an initial segment of the partial layer according to some total order on

the elements of P(n). What ordering we pick makes absolutely no difference in the proof - but we believe it

could be helpful for the reader to pick a specific total order. The lexicographic order <lex on P(n) is defined

as follows. If |A| < |B| then A <lex B. Otherwise if |A| = |B| then if the smallest element of A∆B is in A

then A <lex B, otherwise B ≤lex A. For any positive integer Q let GQ be the centered family of size Q in

P(n) whose intersection with its partial layer j is an initial segment of the lexicographic ordering of
(

[n]
j

)
.

We will need to deal with families which are contained in a subset of P(n), for these it will be useful

to extend the above definitions in a natural way. Given a family P ′ ⊆ P(n), say that a family F ⊆ P ′ is

centered in P ′ if for any two sets A,B ∈ P ′ with A ∈ F and B /∈ F we have that |n/2− |A|| ≤ |n/2− |B||,

and if |n/2− |A|| = |n/2− |B|| then we have |A| ≥ |B|. That is, if F is constructed by “taking sets whose

size is as close to n/2 as possible in P ′” (and if two layers have the same size we fill up the top one first). A
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different way to say the same definition is as follows: a family F ⊆ P ′ is centered in P ′ if it is an intersection

of a centered family (in P(n)) with P ′.

For a positive integer Q define GP′,Q to be the family of size Q which is centered in P ′ and whose

intersection with its partial layer is an initial segment of the restriction of <lex to P ′. So the family GQ

defined above equals GP(n),Q.

A family A = {A1, . . . , A`} ⊂ P(n) is a chain if A1 ( . . . ( A`. We say A is a chain with step sizes

a1, . . . , a`−1 if |Ai+1 \Ai| = ai for all i ∈ [`−1]. For a family F ⊆ P(n) and integers a1, . . . , ak−1 ≥ 1, define

Φ∗(F , a1, . . . , ak−1) := {(A1, . . . , Ak) ∈ Fk : A1 ( . . . ( Ak, and |Ai+1 \Ai| = ai for all i ∈ [k − 1]},

the set of k-chains with precisely these step sizes in F . Given a k-chainA = {A1, . . . , Ak} with A1 ( . . . ( Ak,

define

d(A) := max{||Ak| − n/2|, ||A1| − n/2|}.

For every fixed a = (a1, . . . , ak−1) we fix a total order <∗F,a on Φ∗(F ,a) that satisfies the following

property:

For every positive integer Q the family Φ∗(GF,Q,a) is an initial segment of the order <∗F,a.

Note that such an ordering <∗F,a exists because GF,Q ( GF,Q+1 for all 0 ≤ Q ≤ |F| − 1.

Notation. Wherever possible we use standard notation and for the variable names we aim to follow the

notation of [30]. There are two notational oddities that we feel we should mention. Firstly, for chains we use

cursive capital letters, e.g. A,B, etc. - however, later in the chapter we will deal with hypergraphs on vertex

set P(n) with edges corresponding to some chains, whence we will refer to the edges as e, f , etc. Several

times we will, without mentioning this explicitly, make use of the natural correspondence between such

edges and chains and hence occasionally label chains as e, f , etc. wherever this does not create confusion.

Secondly, since we often consider the step sizes a1, . . . , ak−1 of a chain, for sake of brevity and cleanliness

we will sometimes abbreviate this list as a, with the understanding that a = (a1, . . . , ak−1). We will always

assume without mentioning it explicitly that the variable a refers to a list (a1, . . . , ak−1) of positive integers

corresponding to the step sizes of some chain. Moreover, whenever the variable a and the list a1, . . . , ak−1

or {ai}k−1
i=1 are used in the same context they will refer to the same thing.
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2.3 Families close to being centered

Set

d = b10k
√
n log nc

and write Pn,d for the union of the d middle layers in P(n), that is, for the family of sets A ∈ P(n) with

dn−d+1
2 e ≤ |A| ≤ dn+d−1

2 e. Recall that we fixed an M at the very beginning of Section 2.2, which denotes

the size of the families we will ultimately be interested in. Our goal in this section is to show the following

proposition:

Proposition 2.3.1. Amongst all families F ⊆ Pn,d of size M , the number of k-chains in F is minimized

when F = GM .

Once again we do not claim that GM is the only family minimizing the number of k-chains. Once we

have shown this proposition the only remaining step is to show that an optimal family cannot contain sets

that are very far from the middle layer. This will be done later, in Section 2.4.

The proof of Proposition 2.3.1 uses the standard technique of compressions. Given a suboptimal family

we show that we can apply some operations to it to make it better (in a sense defined later). One of the main

ideas of the proof is that instead of moving the sets in the family (as in standard compression techniques),

we view the family as a collection of chains and apply compression to the chains instead of directly to the

family. One interesting aspect of this compression is that if we apply it to a family F we get an object

that does not usually correspond to a family F ′ ⊂ P(n) - instead the object we obtain after compressing

a family will be a subgraph (equipped with a measure) of a weighted hypergraph, whose edges correspond

to chains in P(n). In this hypergraph the induced subhypergraphs correspond to our usual families, but in

order to make our compression methods work we have to leave the world of standard families and enter the

realm of these more general objects (which we will refer to as measured subhypergraphs). Hence in order to

prove Proposition 3.1 we will in fact show that amongst all such objects that have the same ’size’ as our

family F , the ones corresponding to centered families cannot be improved by compressions and then deduce

Proposition 2.3.1 from this.

2.3.1 Definitions

We say A = {A1, . . . , A`} is a chain with step sizes a1, . . . , a`−1 if |Ai+1 \ Ai| = ai for every i ∈ [` − 1]. It

has step sizes at least a1, . . . , a`−1 if |Ai+1 \Ai| ≥ ai for all i ∈ [`− 1]. The height of the chain A is defined

as h(A) := |A` \ A1|. It is called a downward chain if ||A`| − n/2| ≥ ||A1| − n/2|, otherwise we call it an
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upward chain. We call A a skipless chain if it is a chain and |Ai+1 \ Ai| = 1 for all i ∈ [`− 1]. Moreover A

is a symmetric chain if it is a skipless chain and n/2− |A1| = |A`| − n/2. That is, a symmetric chain starts

at some level s, ends at level n− s and contains precisely one set from each level in between. A symmetric

chain decomposition (SCD in short) of P(n) is a partition of P(n) into disjoint symmetric chains, whose

union is the entire P(n). It is not a priori obvious that an SCD of P(n) should exist for all n - this was

showed by de Bruijn–Tengbergen–Kruyswijk [21]. Note that as every symmetric chain intersects the middle

layer in precisely one element, every SCD of P(n) consists of precisely N :=
(

n
bn/2c

)
chains.

Let A ⊂ P(n) be a chain and X = {X1, . . . , XN} be an SCD of P(n). We say X contains A if there

exists an i ∈ [N ] such that every set in A is contained in the chain Xi. Note that whenever π ∈ Sn is a

permutation of [n] then π induces a permutation on the subsets of [n] and if X is an SCD then so is π(X ).

For a chain A ⊂ P(n) we define its weight ω(A) to be the probability that A is contained in π(X ) where π

is chosen uniformly at random from Sn, the set of permutations of [n]. This weight is independent of the

choice of the SCD X and it can be calculated easily, as shown by the following proposition.

Proposition 2.3.2. Let ` be an arbitrary positive integer and let A = {A1, . . . , A`} ⊂ P(n) be a chain with

A1 ( . . . ( A`. If A is a downward chain then

ω(A) =

`−1∏
i=1

(
|Ai+1|
|Ai|

)−1

=
|A1|!
|A`|!

`−1∏
i=1

|Ai+1 \Ai|!.

If A is an upward chain then

ω(A) =

`−1∏
i=1

(
n− |Ai|
n− |Ai+1|

)−1

=
(n− |A`|)!
(n− |A1|)!

`−1∏
i=1

|Ai+1 \Ai|!.

We note that this weight function could have also been defined as follows. The weight of a chain A ⊂ P(n)

is the probability that it is contained in the SCD X , where X has been chosen uniformly at random from

the set of all SCDs of P(n) (rather than the set of permutations of one fixed X ). Both definitions work

equally well for the purposes of this chapter, we chose to use the definition from the previous paragraph for

it is easier to see why the explicit formula in Proposition 2.3.2 holds.

2.3.2 Properties of the weight function

There are two reasons for why we chose this probability for the weight ω(A) of a set. The first one is that

it will imply that, under suitable conditions, if A,B are two chains with h(A) < h(B) then we will have

12



ω(A)� ω(B). The second reason is that it will allow us to formulate a natural and best possible weighted

supersaturation statement, essentially showing that centered families minimize the total weight of k-chains

that they contain. The hard part will be to show that this implies that they also minimize the number of

k-chains.

We start by proving the formulae claimed in the previous subsection.

Proof of Proposition 2.3.2. Let A = {A1, . . . , A`} ⊂ P(n) be a downward chain with A1 ( . . . ( A`, the

proof of the upward case is identical. Let X be a fixed SCD of P(n), let π ∈ Sn be a permutation chosen

uniformly at random from Sn and let X be the chain in π(X ) that contains A`. Since X is a symmetric

chain and A is downward we have that for each i ∈ [`], the chain X contains precisely one element of size

|Ai| (and possibly some others). Let Ei be the event that Ai ∈ X. Then

P (E1 ∩ . . . ∩ E`) = P (E`)P (E1 ∩ . . . ∩ E`−1|E`)

= P (E`)P (E`−1|E`)P (E1 ∩ . . . ∩ E`−2|E`−1 ∩ E`)

= P (E`)P (E`−1|E`)P (E1 ∩ . . . ∩ E`−2|E`−1)

= . . .

= P (E`) · P (E`−1|E`) · P (E`−2|E`−1) · . . . · P (E1|E2)

= 1 ·
(
|A`|
|A`−1|

)−1

·
(
|A`−1|
|A`−2|

)−1

· . . . ·
(
|A2|
|A1|

)−1

.

Note that if A,B are two downward `-chains with |A`| = |B`| and they have the same step sizes (but

possibly in a different order) then they have the same weight. Let us continue with the next claimed property

of the weight function. Let A and B be two `-chains with h(A) < h(B), recalling the definition that if A is

an `-chain then h(A) = |A` \ A1|. Note that it is not always the case that ω(A) > ω(B) - for instance the

chain {∅, [n]} has maximal weight (= 1) and maximal height. But if we avoid wandering too far off from the

middle layer then our claim will hold. We emphasize that all the following propositions and lemmata are

only valid if n is sufficiently large, as explained in Section 2.2.

Proposition 2.3.3. Let a1, . . . , ak−1 and b1, . . . , bk−1 be positive integers such that ai ≤ bi for all i ∈ [k]

and strict inequality holds for at least one i. Suppose that
∑
i ai ≤

√
n log2/5 n and let A,B be k-chains in

Pn,d with step sizes {ai}k−1
i=1 and {bi}k−1

i=1 respectively. Then ω(A) ≥ ω(B)n(h(B)−h(A))/3.
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Proof. Without loss of generality we may assume that both chains A,B are downward, the proof is similar

if one (or both) of them is upward. Then by Proposition 2.3.2 we have

ω(A) =
|A1|!

∏
i ai!

|Ak|!
, ω(B) =

|B1|!
∏
i bi!

|Bk|!
.

Then we get (using the falling factorial notation s(t) = s(s− 1) · . . . · (s− t+ 1))

ω(B)

ω(A)
=

∏
i bi!∏
j aj !

|Ak|(h(A))

|Bk|(h(B))
≤ dh(B)−h(A)

(
|Ak|
n
2 − d

)h(A)(
1

n/3

)h(B)−h(A)

≤ n−0.49(h(B)−h(A))

(
1 +

30k
√
n log n

n/2

)√n log2/5 n

≤ n−0.49(h(B)−h(A))e60 log0.91 n ≤ n−(h(B)−h(A))/3,

where in the first line we used that bi ≤ d for all i and that |B1| ≥ n
2 − d ≥ n/3, in the second line we used

that |Ak| ≤ n
2 + d, (2.2.3) and that d = b10k

√
n log nc, and in the last line we used (2.2.3).

We further show that if two chains have the same step sizes then their weight decreases with their distance

from the middle layer. Given a k-chain A = {A1, . . . , Ak} with A1 ( . . . ( Ak, recall the definition

d(A) := max{||Ak| − n/2|, ||A1| − n/2|}.

Lemma 2.3.4. Given positive integers a1, . . . , ak−1, let A,B be two k-chains in P(n) with step sizes

a1, . . . , ak−1, satisfying d(A) > d(B). Then ω(A) < ω(B) and in fact ω(B)/ω(A) ≥ 1 + h(A)/n.

Proof. We assume that both chains are downward, the other cases are handled similarly. The weight of a

chain A is given by

ω(A) =

∏
ai!

|Ak|(h(A))

which, if the ai’s and hence h(A) are fixed, is a decreasing function of |Ak|. The ratio ω(B)/ω(A) is bounded

below by

ω(B)

ω(A)
≥
(
|Ak|
|Bk|

)h(A)

≥
(
|Bk|+ 1

|Bk|

)h(A)

≥ 1 +
h(A)

n
.

Lemma 2.3.5. Let a1, . . . , ak−1 and b1, . . . , bk−1 be positive integers such that ai = bi for all but one i ∈ [k],

and if j is the index where the two sequences differ then bj = aj + 1. Suppose that A,B are k-chains in Pn,d
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with step sizes {ai}k−1
i=1 and {bi}k−1

i=1 respectively such that d(A) ≤ d(h(A) + 1)/2e. Then ω(A) ≥ ω(B)n1/3.

Proof. Without loss of generality we may assume that both chains A,B are downward, the proof is similar if

one (or both) of them is upward. Note that the condition d(A) ≤ d(h(A) + 1)/2e implies that d(B) ≥ d(A)

and so |Bk| ≥ |Ak|. Then by Proposition 2.3.2 we have

ω(A) =
|A1|!

∏
i ai!

|Ak|!
, ω(B) =

|B1|!bj
∏
i ai!

|Bk|!
.

Then, using that bj ≤ d = b10k
√
n log nc, we have

ω(B)

ω(A)
=
|Ak|(h(A))bj

|Bk|(h(A)+1)
≤ bj
|Bk| − h(A)

(
|Ak|
|Bk|

)h(A)

≤ 20k
√
n log n

n/4
· 1 ≤ n−1/3.

Finally we prove in this subsection a weighted supersaturation result for families whose size exceeds

Σ(n, k − 1). For a family F ⊆ P(n) and integers a1, . . . , ak−1 ≥ 1, define

Φ(F , a1, . . . , ak−1) := {(A1, . . . , Ak) ∈ Fk : A1 ( . . . ( Ak, and |Ai+1 \Ai| ≥ ai for all i ∈ [k − 1]}.

Now let

Wa1,...,ak−1
(F) :=

∑
(A1,...,Ak)∈Φ(F,a1,...,ak−1)

ω(A1, . . . , Ak).

Using these definitions we can state the promised supersaturation lemma.

Lemma 2.3.6. Let Q, a1, . . . , ak−1 be positive integers and let F ⊂ P(n) be a family of size Q. Then

Wa1,...,ak−1
(F) ≥ Wa1,...,ak−1

(GQ).

Proof. Let X1,X2 be two arbitrary SCDs with chains A1, . . . , AN and B1, . . . , BN respectively, where N =(
n
bn/2c

)
, and consider the two multisets of integers A = {|Ai ∩ GQ| : i ∈ [N ]} and B = {|Bi ∩ GQ| : i ∈ [N ]}.

Then the two multisets are the same. Indeed, let A be an element of GQ of maximum size and B of minimum

size and assume that |A|−n/2 > n/2−|B| (other cases are similar). Then the number |A|− |B|+ 1 appears

|GQ ∩
(

[n]
|A|
)
| times in A, the number |A| − |B| appears

(
n

|A|−1

)
− |GQ ∩

(
[n]
|A|
)
| times, etc.

Let f(p) be the least possible number of k-chains with step sizes at least a1, . . . , ak−1 contained in a

chain of length p. Then f(p) is exactly equal to the number of k-chains with step sizes at least a1, . . . , ak−1
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contained in a skipless chain of length p. Note that then f(p+ 1)− f(p) counts the number of k-chains with

step sizes at least a1, . . . , ak−1 contained in a skipless chain of length p+ 1 that contain the bottom element

of the skipless chain. Hence f(p + 1) − f(p) ≥ f(p) − f(p − 1) for all p and thus f(p) is a convex function

of p. Hence every SCD contains at least as many k-chains with step sizes at least a1, . . . , ak−1 from F as it

does from GQ where the intersection sizes with the chains are distributed as evenly as possible amongst the(
n
n/2

)
chains of the SCD, and all intersections are skipless chains. Here “as evenly as possible” means that

there exists an integer ` such that if Ai is a chain in the SCD with |Ai| < ` then Ai ⊂ GQ and if |Ai| ≥ `

then |Ai ∩ GQ| ∈ {`− 1, `}.

Take a random SCD X and count the number of k-chains with step sizes at least a1, . . . , ak−1 in F that

are contained in X , call this number x(F ,X ) and similarly define x(GQ,X ). Then by the above argument

we had for every X that x(F ,X ) ≥ x(GQ,X ). Every k-chain is contained in X with probability equal to its

weight. Taking expectations we have

Wa1,...,ak−1
(F) = IE(x(F ,X )) ≥ IE(x(GQ,X )) =Wa1,...,ak−1

(GQ).

To conclude this subsection we briefly indicate how Lemma 2.3.6 implies for example a special case

of Theorem 2.1.1, stating that if a family F has
(

n
bn/2c

)
+ x ≤ Σ(n, 2) elements then it contains at least

xb1 + n/2c comparable pairs. Indeed if we set Q =
(

n
bn/2c

)
+ x then Lemma 2.3.6 states that W1(F) ≥ x.

But every comparable pair except for the pair {∅, [n]} has weight at most b1 + n/2c−1. Moreover the only

comparable pairs of such maximum weight are the ones centered on the two middle layers, hence it is best

to take such pairs greedily (i.e. take those pairs first which have the largest weight). Hence the result follows

if we can show that e.g. an optimal family cannot contain the empty set.

The above paragraph illustrates some of the main ideas of the proof of the main result. We start with a

collection of inequalities given to us by Lemma 2.3.6. We will claim that satisfying these inequalities greedily

is the best one can do, assuming the optimal family cannot contain any small sets. The last step is then to

show that this is indeed the case, i.e. if a family contains very small sets then it is bound to contain many

more k-chains than GM .
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2.3.3 Solving Kleitman’s conjecture in Pn,d

We are now ready to prove Proposition 2.3.1, in fact we will prove something more. We define the weighted

hypergraph H = Hn,d,k to be the k-uniform hypergraph on vertex set V (H) = Pn,d, edges corresponding to

k-chains in Pn,d and the weight of an edge is given by the weight of the k-chain. A function f : E(H)→ [0, 1]

is called a measured subhypergraph of H and for an edge e we call f(e) the measure of e.

Note that every family F corresponds to a measured subhypergraph fF given by f(e) = 1 if the k-chain

e is contained in F , and f(e) = 0 otherwise. That is, fF is the characteristic function corresponding to the

k-chains in the family F . We say that a measured subhypergraph f is Q-good if it satisfies the conclusion of

Lemma 2.3.6, that is, if for all positive integers a1, . . . , ak−1 we have

∑
(A1,...,Ak)∈Φ(Pn,d,a1,...,ak−1)

ω(A1, . . . , Ak)f(A1, . . . , Ak) ≥ Wa1,...,ak−1
(GQ).

Note that by Lemma 2.3.6 if F is a family of size at least M in Pn,d then the corresponding characteristic

function fF is M -good. The size of a measured subhypergraph f is defined as

|f | =
∑

e∈E(H)

f(e).

Recall the definition of Φ∗(F ,a) and <∗F,a from Section 2.2. For a family F ⊆ Pn,d, a measured subhy-

pergraph f and a vector of positive integers a = (a1, . . . , ak−1) denote by fF,a the restriction of f to the

subhypergraph of Hn,d,k whose edges are the elements of Φ∗(F ,a). We say that f is (F ,a)-compressed if

there is a chain A ∈ Φ∗(F ,a) such that if B <∗F,a A then f(B) = 1 and if A <∗F,a B then f(B) = 0.

Similarly define for a family F ⊆ Pn,d, a measured subhypergraph f and vector a = (a1, . . . , ak−1) the

(F ,a)-compression of f , which is also a measured subhypergraph, denoted by c[f,F ,a], as follows.

• If e /∈ Φ∗(F ,a) then c[f,F ,a](e) = f(e).

• c[f,F ,a] is (F ,a)-compressed.

• |c[f,F ,a]F,a| = |fF,a|.

Observe that we always have |f | = |c[f,F ,a]|, i.e. compression does not change the size of f . We say f is

completely compressed if f is (Pn,d,a)-compressed for every vector of positive integers a = (a1, . . . , ak−1).

Example. Let n = 10 and k = 2. Define the families F1 =
(

[n]
4

)
∪
(

[n]
6

)
, F2 = F1∪

(
[n]
7

)
and F3 = F2∪

(
[n]
8

)
.

Let a = (2), i.e. we consider comparable pairs with set difference 2. Let fF1
, fF2

, fF3
be the corresponding
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characteristic functions. Then fF1 is (P(n),a)-compressed, as the only comparable pairs with set difference

2 in F1 are those pairs closest possible to the middle layer, hence of largest weight. Moreover since all

comparable pairs in F1 have set difference 2, we conclude that fF1
is completely compressed. Since in F2

there are no new comparable pairs of set difference exactly 2, fF2 is also (P(n),a)-compressed. For b = (1)

however, fF2
is not (P(n),b)-compressed, as fF2

({123456, 1234567}) = 1 but e.g. fF2
({1234, 12345}) = 0.

Similarly fF3
is not (P(n),a)-compressed as fF3

({123456, 12345678}) = 1 but fF3
(12345, 1234567) = 0. Note

also that for every Q we have that the function fGQ corresponding to the centered family GQ is completely

compressed.

In the next proposition we will make use of the rearrangement inequality (see e.g. [62], Section 10.2,

Theorem 368).

Proposition 2.3.7 (Rearrangement inequality). Given numbers 0 ≤ x1 ≤ . . . ≤ xm and 0 ≤ y1 ≤ . . . ≤ ym

and a permutation π ∈ Sm we have that

∑
i

xiyi ≥
∑
i

xiyπ(i).

Proposition 2.3.8. Let Q > 0 be an integer, a = (a1, . . . , ak−1) be a vector of positive integers, f a Q-good

measured subhypergraph and F ⊂ Pn,d. Then c[f,F ,a] is Q-good.

Proof. We only need to prove that if we denote X := Φ∗(F ,a) then

∑
e∈X

c[f,F ,a](e) · ω(e) ≥
∑
e∈X

f(e)ω(e).

This follows from a simple property of the ordering <∗F,a: note that by the definition of <∗F,a and Lemma 2.3.4

we have that ifA,B are two chains in X with d(A) > d(B) then B <∗F,a A. Hence by Lemma 2.3.4 c[f,F ,a]F,a

greedily assigns measure 1 to the edges in X of largest weight until it has allocated a total measure equal

to |fF,a|. Since the summation goes over X both functions in the above inequality can be replaced by their

restrictions to X and then the claim follows from the rearrangement inequality (Proposition 2.3.7).

Instead of proving Proposition 2.3.1 directly we will show the following stronger statement. As is often

the case, the stronger statement will be easier and more natural to prove.

Proposition 2.3.9. Amongst all M -good measured subhypergraphs, fGM has the smallest size.

Proof. The collection ofM -good measured subhypergraphs forms a closed subset of the compact set [0, 1]E(H),

so the restriction of | · | to this subset attains its minimum. Hence it suffices to show that for any M -good f
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we have either |f | = |fGM | or we can find an M -good f ′ with |f ′| < |f |. Recall that Φ∗(Pn,d, a1, . . . , ak−1)

is defined to be the collection of all k-chains with step sizes precisely a1, . . . , ak−1 contained in Pn,d. By

Proposition 2.3.8 it suffices to consider those measured subhypergraphs which are completely compressed.

Let g be an M -good measured subhypergraph. For a list of positive integers a = (a1, . . . , ak−1) write ga

for the restriction of g to the set Φ∗(Pn,d,a), and similarly let fa be the restriction of fGM to the same set.

Let p be the smallest positive integer for which there exist positive integers a1, . . . , ak−1 with
∑
i ai = p such

that |ga| > |fa|. We split into two cases according to whether such a p exists or not.

Case 1: If such a p exists then pick a1, . . . , ak−1 with
∑
i ai = p and |ga| > |fa|. Note that both ga and fa

are (Pn,d,a)-compressed: ga is because as said before, by Proposition 2.3.8 it suffices to consider completely

compressed measured subhypergraphs, and fa is because of how we defined <∗Pn,d,a. Note that this implies

that ga(e) ≥ fa(e) for all e ∈ E(H), and there exists at least one e∗ ∈ E(H) such that ga(e∗) > fa(e∗). Let

ε′ := g(e∗)− f(e∗).

Define the following collection of (k − 1)-sequences obtained from a1, . . . , ak−1 by decreasing one of the

ai’s by one, assuming ai 6= 1:

Aa := {(a1, a2, . . . , ai−1, ai − 1, ai+1, . . . , ak−1) : i ∈ [k − 1], ai ≥ 2}.

Observe that by the choice of p, for every b = (b1, . . . , bk−1) ∈ Aa and for every e ∈ E(H) that corresponds

to a k-chain with step sizes exactly b1, . . . , bk−1 we have g(e) ≤ fGM (e). This is because |gb| ≤ |fb| and both

gb and fb are (Pn,d,a)-compressed. Now for every b ∈ Aa pick an eb ∈ E(H) of largest possible weight

that corresponds to a k-chain with step sizes exactly b1, . . . , bk−1 and g(eb) = 0 and denote the collection of

these at most k − 1 edges by F . Choosing such edges is possible since GM is contained in Pn,r and r � d.

Define a measured subhypergraph g′ as follows.

g′(e) =


ε′

2k : e ∈ F,

g(e)− ε′ : e = e∗,

g(e) otherwise.

Observe that

|g′| = |g| − ε′ + |F | ε
′

2k
≤ |g| − ε′/2 < |g|,

hence (recalling the first paragraph of this proof) it suffices to show that g′ is M -good. Pick any positive
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integers b1, . . . , bk−1, and we will show that

∑
(A1,...,Ak)∈Φ(Pn,d,b1,...,bk−1)

ω(A1, . . . , Ak)g′(A1, . . . , Ak) ≥ Wb1,...,bk−1
(GM ). (2.3.1)

If for some i we have bi > ai then the changes we have made to g did not affect this inequality, and since g

was M -good, (2.3.1) still holds for g′. If bi = ai for all i ∈ [k − 1] then (2.3.1) holds by choice of ε′. Now

suppose that there exists some j ∈ [k − 1] such that bj ≤ aj − 1. Let ej ∈ F be the edge defined for the

sequence (a1, . . . , aj−1, aj − 1, aj+1, . . . , ak−1) above. If h(e∗) ≤
√
n log1/5 n then by Proposition 2.3.3 we

have ω(e∗)n1/3 ≤ ω(ej). If h(e∗) ≥
√
n log1/5 n then by (2.2.2) we may take the ej ’s to have as small d(ej)

as possible (and hence maximising their weight by Lemma 2.3.4) since none of the chains of height at least

√
n log1/5 n are present in GM , and by Lemma 2.3.5 we also have ω(e∗)n1/3 ≤ ω(ej). So

∑
(A1,...,Ak)∈Φ(Pn,d,b1,...,bk−1)

ω(A1, . . . , Ak) (g′(A1, . . . , Ak)− g(A1, . . . , Ak)) ≥ ε′

2k
ω(ej)− ε′ω(e∗) > 0.

Since g was M -good we conclude that g′ also satisfies (2.3.1) and so is M -good. This completes the proof of

the first case.

Case 2: For the second case we suppose such a p does not exist, i.e. for every list of positive integers

a = (a1, . . . , ak−1) we have |ga| ≤ |fa|. We claim that then |ga| = |fa| for all sequences a1, . . . , ak−1 and this

will finish the proof as then |g| = |fGM |. Suppose this is not true and let q be the largest positive integer

such that there exists a list of integers a = (a1, . . . , ak−1) with
∑
i ai = q and |ga| < |fa|. Pick such an a.

Note that by the choice of q and since g is completely compressed we have that if b = (b1, . . . , bk−1) is a list

such that ai ≤ bi for all i ∈ [k − 1] and e is any edge then gb(e) = fb(e). Moreover since |ga| < |fa| there

exists an edge e∗ ∈ Φ∗(Pn,d,a) such that ga(e∗) < fa(e∗). We have

∑
A∈Φ(Pn,d,a)

ω(A)g(A) =
∑

A∈Φ∗(Pn,d,a)

ω(A)g(A) +
∑

b:b>a

∑
A∈Φ∗(Pn,d,b)

ω(A)g(A)

=
∑

A∈Φ∗(Pn,d,a)

ω(A)g(A) +
∑

b:b>a

∑
A∈Φ∗(Pn,d,b)

ω(A)fGM (A)

<
∑

A∈Φ∗(Pn,d,a)

ω(A)fGM (A) +
∑

b:b>a

∑
A∈Φ∗(Pn,d,b)

ω(A)fGM (A)

=
∑

A∈Φ(Pn,d,a)

ω(A)fGM (A) =
∑

A∈Φ(GM ,a)

ω(A) =Wa(GM ).

Hence by Lemma 2.3.6 the measured subhypergraph g is not M -good, contradicting our assumptions. This
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completes the proof of Proposition 2.3.9.

Proof of Proposition 2.3.1. Let F ⊆ Pn,d be a family of size M . Then fF is M -good by Lemma 2.3.6, hence

by Proposition 2.3.9 we have |fGM | ≤ |fF |, implying by definition that F contains at least as many k-chains

as GM .

2.3.4 Non-centered families in Pn,d

In the previous subsections we have shown that amongst families contained in Pn,d, centered families are the

best (i.e. given the size they minimize the number of k-chains). In the next section our goal will be to show

that an optimal family cannot contain sets from outside of Pn,d. For that we will make use of a proposition

stating that if a family of size M is contained in Pn,d, but misses some number of elements from the middle

layers (and hence it is not centered) then this family contains significantly more k-chains than GM . This

technique was used by Das–Gan–Sudakov [30] to prove Theorem 2.1.4.

Let C ⊂ Pn,r−1 be a family of size at most
(

n
b(n+r)/2c

)
. Write P ′ := Pn,d \ C and say that a measured

subhypergraph f is contained in P ′ if it assigns zero to every k-chain that intersects C. Define the measured

hypergraph f̂C,M , contained in P ′, as follows.

•
∑
e∈Φ∗(P′,a) f̂C,M (e)ω(e) =

∑
e∈Φ∗(Pn,d,a) fGM (e)ω(e) for all a, and

• f̂C,M is (P ′,a)-compressed for all a.

That is, f̂C,M is obtained by greedily taking edges of largest possible weights, avoiding C, to satisfy the

definition of being M -good. Note that the first equality in the above definition of f̂C,M can be satisfied

because r � d, and that f̂C,M is M -good by definition.

Proposition 2.3.10. Let 0 ≤ t ≤
(

n
b(n+r)/2c

)
and let C be a family of size t contained in Pn,d. If g is an

M -good measured subhypergraph contained in P ′ = Pn,d \ C then |g| ≥ |f̂C,M |.

Proof. The proof of this proposition will be essentially the same as the proof of Proposition 2.3.9, therefore

we only give a sketch. By Proposition 2.3.8 we may assume that g is (P ′,a)-compressed for every list

a = (a1, . . . , ak−1). For ease of notation, write f := f̂C,M and as before, for a list of positive integers

a = (a1, . . . , ak−1) write ga for the restriction of g to the set Φ∗(P ′,a), and similarly let fa be the restriction

of f to the same set. Let p be the smallest positive integer for which there exist positive integers a1, . . . , ak−1

with
∑
i ai = p such that |ga| > |fa|. We split into two cases according to whether such a p exists or not.

If such a p exists then we can find an M -good measured subhypergraph g′ contained in P ′ with |g′| < |g|
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the same way as we did in the proof of Proposition 2.3.9. If such a p does not exist then we may choose

the largest positive integer q such that there exists a list of integers a = (a1, . . . , ak−1) with
∑
i ai = q and

|ga| < |fa|. The existence of such q would show that g is not M -good and also result in a contradiction in

the same fashion as in Proposition 2.3.9, hence we conclude that |ga| = |fa| for all a and hence |g| = |f |.

2.4 Excluding very small and very large sets

In this section we show that an optimal family cannot contain sets from P(n) \ Pn,d. The main ideas in

this section are similar to ideas in the work of Das–Gan–Sudakov [30]. For any j let Hj,` be the `-uniform

hypergraph with vertex set V (Hj,`) = Pn,j , and edges corresponding to `-chains. Denote ∆j,` the maximum

degree of Hj,`.

We continue our train of thought from the previous section with the following proposition:

Proposition 2.4.1. Let 0 ≤ t ≤
(

n
dn+d−1

2 e
)

and let C be a family of t elements contained in Pn,r−2. Let

s =
∑
v∈C d(v,Hr−2,k) be the sum of the degrees of vertices in C in Hr−2,k. If F ⊂ Pn,d \ C is a family of

size M then ck(F) ≥ ck(GM ) + s
kn .

Proof. By Proposition 2.3.10 we have that ck(F) ≥ |f̂C,M |. Since ck(GM ) = |fGM | it suffices to show that

|f̂C,M | − |fGM | ≥ s
kn . Let E be the collection of k-chains contained in Pn,r−2 that intersect C. Note that

every element e ∈ E is present in GM but missing from F , and in fact we have f̂C,M (e) = 0 and fGM (e) = 1.

The idea of the proof is that since Pn,r−1 ⊆ GM , every e ∈ E had to be replaced by edges of strictly smaller

weight in f̂C,M . By Lemma 2.3.4 we will then have that

|f̂C,M | ≥ |fGM |+
1

n
· |E|. (2.4.1)

Since |E| ≥ s/k this will give the required result. To see why (2.4.1) holds, for a list a = (a1, . . . , ak−1) let

f̂a be the restriction of f̂C,M to the set Φ∗(Pn,d \ C,a), let fa be the restriction of fGM to the set Φ∗(Pn,d,a)

and denote by Ea the set E ∩ Φ∗(Pn,r−2,a). Using the first point of the definition of f̂C,M together with

Lemma 2.3.4 gives

|f̂a| ≥ |fa|+
1

n
|Ea|.

Summing up over all a gives (2.4.1).

Let A be a set in Pn,j for some j ≥ k, and let v be the vertex corresponding to A in Hj,k. We wish to

estimate the degree d(v,Hj,k) of v in Hj,k. Denote the smallest and largest elements’ sizes of Pn,j by p−

22



and p+, thats is, p− = dn−j+1
2 e and p+ = dn+j−1

2 e. For q ∈ [k] let

Sq = {a = (a1, . . . , ak−1) : a1 + . . .+ aq−1 ≤ |A| − p−, aq + . . .+ ak−1 ≤ p+ − |A|}.

Then

d(v,Hj,k) =

k∑
q=1

∑
a∈Sq

|A|(a1+...+aq−1)(n− |A|)(aq+...+ak−1)∏
ai!

.

The largest term in the second sum occurs when the numerator has j terms and the denominator is as small

as possible, i.e. when a is such that all ai ∈ {b(j − 1)/(k − 1)c, d(j − 1)/(k − 1)e} and
∑
ai = j − 1. Let

a∗ = (a∗1, . . . , a
∗
k−1) be such an a. Since |Sq| ≤ nk−1 we get

d(v,Hj,k) ≤ knk−1 |A|(|A|−p−)(n− |A|)(p+−|A|)∏
a∗i !

.

This implies that

dn+j−1
2 e(j−1)∏
a∗i !

≤ ∆j,k ≤ nk
dn+j−1

2 e(j−1)∏
a∗i !

,

where the lower bound comes from simply counting the number of chains with step sizes precisely a∗ con-

taining a fixed set of size p+. Suppose A is such that there exists an a and a q ∈ [k − 1] such that

a1 + . . . + aq−1 = |A| − p− and
∑
ai = j − 1 and all ai ∈ {b(j − 1)/(k − 1)c, d(j − 1)/(k − 1)e}. Then for

j ≤ r we get for the corresponding v that

d(v,Hj,k) ≥
(n/2)(n/2−p−)(n/2)(p+−n/2)∏

a∗i !
≥ ∆j,kn

−k
(
p−
p+

)r/2
≥ ∆j,kn

−k
(

1− r

n/3

)r
≥ ∆j,kn

−k−1.

(2.4.2)

We now show that a small change in j does not change the degrees by much. Let a∗∗ be such that all

a∗∗i ∈ {bj/(k − 1)c, dj/(k − 1)e} and
∑
a∗∗i = j. Then

∆j,k ≥
dn+j−1

2 e(j−1)∏
a∗i !

≥
dn+j+1

2 e(j)∏
a∗∗i !

n−1 ≥ ∆j+1,kn
−k−1. (2.4.3)

Equipped with these bounds we are now ready to tackle the main result of this section.

Proposition 2.4.2. If F ⊂ P(n) is a family of size M with F \ Pn,d 6= ∅ then ck(F) > ck(GM ).

Proof. Let M ′ := |F ∩ Pn,d| and define r′ such that Σ(n, r′ − 1) < M ′ ≤ Σ(n, r′). Set

b+ =

⌈
n+ r′ − 1

2

⌉
, b− =

⌈
n− r′ + 1

2

⌉
, c+ =

⌈
n+ d+ 1

2

⌉
, c− =

⌈
n− d− 1

2

⌉
.
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Note that Pn,r′ = {A ∈ P(n) : b− ≤ |A| ≤ b+} and P(n) \ P(n, d) = {A ∈ P(n) : |A| ≤ c− or |A| ≥ c+}. As

(
n

≤ c−

)
+

(
n

≥ c+

)
�
(
n

b+

)
,

we have r′ ∈ {r−1, r}. Recall that by (2.2.1) we have r ≥ k+2 and so r′ ≥ k+1. We will assume throughout

the first half of the proof that r′ ≥ k + 2. The proof for the case r′ = k + 1 is very similar (in fact easier),

but needs to be handled separately - we will do so later.

Let S be the family of those sets A ∈ Pn,r′−2 for which there exists an a = (a1, . . . , ak−1) satisfying∑
ai = r′ − 3 with ai ≥ 1 for all i, and there exists a q ∈ [k] with b− + a1 + . . .+ aq−1 = |A| and moreover

ai ∈ {b(r′ − 3)/(k − 1)c, d(r′ − 3)/(k − 1)e}. Note that S consists of at least k complete layers in Pn,r′−2

(corresponding to splitting up the distance between b− and b+ into k − 1 roughly equal pieces). Observe

that we used the fact that r′ ≥ k + 2 here.

Let A := Pn,r′−2 \ F . For j ∈ I = {0, . . . , c−} ∪ {c+ . . . , n} let Rj = F ∩
(

[n]
j

)
and let hj denote the

number of k-chains in F which contain an element of Rj and k − 1 elements from Pn,r′−2. Hence we have

by Proposition 2.4.1 that

ck(F) ≥ ck(GM ′) +

∑
v∈A d(v,Hr′−2,k)

kn
+
∑
j∈I

hj .

Note that ck(GM )− ck(GM ′) ≤ (M −M ′) ∆r,k, so it suffices to show that

∑
v∈A d(v,Hr′−2,k)

kn
+
∑
j∈I

hj > (M −M ′)∆r,k =
∑
j∈I
|Rj |∆r,k. (2.4.4)

W.l.o.g. we assume that
∑
j≤c− |Rj | ≥

∑
j≥c+ |Rj |, the proof otherwise is identical. From now on we always

assume j ∈ [c−], the extra factor of 2 will be dominated by larger terms in our inequalities. Define β by

β

(
n

≤ c−

)
=
∑
j≤c−

|Rj |.

Now we split into two cases. For the first case assume that |S \ F| ≥ β
(

n
b−+1

)
/n5. Then by (2.4.2) and

(2.4.3) we get

∑
v∈A d(v,Hr′−2,k)

kn
≥ β

(
n

b− + 1

)
∆r′−2,kn

−k−10 ≥ β
(

n

b− + 1

)
∆r,kn

−10k.

24



Now note that (
n

≤ c−

)
≤ n−10k2

(
n

b− + 1

)
,

and hence (2.4.4) holds in this case.

Henceforth we assume |S \ F| ≤ β
(

n
b−+1

)
/n5. Let T be the family of those sets in

(
[n]
b−+1

)
which are not

contained in any (k − 1)-chains in F ∩ Pn,r′−2. In other words, if A ∈ T then every (k − 1)-chain in S

containing A intersects S \F . Recall that S contains at least k complete layers and let S ′ denote the bottom

k − 1 layers from S, so that S ′ contains all sets of sizes b− + 1 = s1 < s2 < . . . < sk−1 ≤ b+ − 1. For all

i ∈ [k− 1], write Qi := (S ′ \F)∩
(

[n]
si

)
. Let T1 := T \Q1 and for i ∈ [k− 1] \ {1} define Ti := ∂(Ti−1, si) \Qi,

where ∂(Ti−1, si) denotes the family of sets A ∈
(

[n]
si

)
for which there exists a set B ∈ Ti−1 such that B ⊂ A

(i.e. the upper shadow of Ti−1 on level si). Since every (k− 1)-chain in S ′ that intersects T has to intersect

S ′ \ F , we conclude that Tk−1 = ∅. For all i ∈ [k − 1] define qi := |Qi|
(
n
si

)−1
and similarly ti := |Ti|

(
n
si

)−1
.

By the normalized matching property1 of the Boolean lattice we have the following inequalities:

• ti ≤ qi+1 + ti+1 for all i ∈ [k − 3], and

• tk−2 ≤ qk−1.

By summing up all these inequalities we conclude that t1 +q1 ≤ q1 +q2 + . . .+qk−1, which since sk−1 ≤ b+−1

implies that |T | ≤ 3 (|Q1|+ |Q2|+ . . .+ |Qk−1|) = 3|S ′ \ F| ≤ 3|S \ F| ≤ β
(

n
b−+1

)
/n4.

Using the definition of T we now have the bound

hj ≥ |Rj |
(

n− j
b− + 1− j

)
− |T |

(
b− + 1

j

)
. (2.4.5)

For j ∈ [c−] define βj by |Rj | = βj
(
n
j

)
. Using

(
n

b−+1

)(
b−+1
j

)
=
(
n
j

)(
n−j

b−+1−j
)

and that hj ≥ 0 we get

hj ≥ max

{
0, βj

(
n

j

)(
n− j

b− + 1− j

)
− β

n4

(
n

j

)(
n− j

b− + 1− j

)}
≥ max

{
0, βj

(
n

j

)(
n− c−

b− + 1− c−

)
− β

n4

(
n

j

)(
n− c−

b− + 1− c−

)}
.

Since
∑
j≤c− βj

(
n
j

)
= β

(
n
≤c−

)
we have

∑
j≤c−

hj ≥
(

n− c−
b− + 1− c−

)∑
j≤c−

(
n

j

)
βj −

∑
j≤c−

(
n

j

)
β

n4

 ≥ 1

4

(
n− c−

b− + 1− c−

)
β

(
n

≤ c−

)
.

1In our context this means that (for all p), whenever C ⊆
([n]

p

)
and C∗ is the subset of

( [n]
p+1

)
consisting of the elements of( [n]

p+1

)
covering elements of C, it holds that |C|

(n
p

)−1 ≤ |C∗|
( n
p+1

)−1
.

25



To complete the proof it only remains to show that
(

n−c−
b−+1−c−

)
� ∆r,k, as then (2.4.4) holds. Note that

∆r,k ≤ nk+r - indeed, there are at most nk ways to choose the sizes of the k sets in a k-chain, and there are

at most nr distinct r-chains through a fixed set in Pn,r. Moreover we have

(
n− c−

b− + 1− c−

)
≥
(

n/2

4k
√
n log n

)
≥ nk

√
n logn ≥ n2(k+r),

and the proof of the case r′ ≥ k + 2 is complete.

All that is missing now is the case r′ = k + 1 – fortunately when r′ = k + 1 we can directly apply the

results of Das–Gan–Sudakov [30]. Recall that M ′ = |F ′|.

Theorem 2.4.3 (Corollary of Theorem 4.2 of [30]). Let F ′ ⊂ Pn,d be a family of size Σ(n, k) ≤ |F ′| ≤

Σ(n, k + 1) with at least t sets missing from the middle k − 1 levels. Then

ck(F ′) ≥ ck(GM ′) +
t

n
∆k+1,k.

Now we continue with the proof of Proposition 2.4.2 for the case r′ = k + 1. We follow the notation of

the first half of the proof of Proposition 2.4.2. W.l.o.g. assume that
∑
j≤c− |Rj | ≤

∑
j≥c+ |Rj |, the proof

otherwise is identical to the proof of the case r′ ≥ k+2. As before, define hj to be the number of k-chains in F

which contain an element of Rj and k−1 elements from Pn,k−1. Setting F ′ := F∩Pn,d and t := |Pn,k−1\F ′|

and applying Theorem 2.4.3 we get that

ck(F) ≥ ck(GM ′) +
t

n
∆k+1,k +

∑
j≥c+

hj ,

and hence as before it suffices to show that

t

n
∆k+1,k +

∑
j≥c+

hj ≥ (M −M ′) ∆k+1,k.

If t ≥ n (M −M ′) then this inequality holds as each hj is non-negative, hence we may assume t ≤

n (M −M ′) ≤ 2n
∑
j≥c+ |Rj |. In this case we will in fact show that

∑
j≥c+

hj ≥ (M −M ′) ∆k+1,k.

Following the notation of [30], let a = dn+k
2 e so that the k − 1 middle levels are those sets of sizes between
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a− k + 1 and a− 1. As before in (2.4.5), for j ≥ c+ we have the lower bound

hj ≥ max

{
|Rj |

(
j

a− 1

)
− t
(
n− a+ 1

j − a+ 1

)
, 0

}(
a− 1

k − 2

)
(k − 2)!.

Now observe that for j ≥ c+ we have

(
j

a− 1

)(
n− a+ 1

j − a+ 1

)−1

=
j!(n− j)!

(a− 1)!(n− (a− 1))!
≥
(

1 +
10k
√
n log n

n

)4k
√
n logn

≥ n20k2

.

Hence it suffices to show

∑
j≥c+

max

{
|Rj | −

∑
i≥c+ |Ri|
n19k2 , 0

}(
j

a− 1

)(
a− 1

k − 2

)
(k − 2)! ≥ 2∆k+1,k

∑
j≥c+

|Rj |.

Now since

∆k+1,k =

((
a

k − 1

)
+

(
a

k

)(
k

2

))
(k − 1)! ≤ n5

(
a− 1

k − 2

)
(k − 2)!,

and since for every j ≥ c+ we have
(
j

a−1

)
≥ n10, it is enough to show

n4
∑
j≥c+

(
|Rj | −

∑
i≥c+ |Ri|
n19k2

)
≥
∑
j≥c+

|Rj |.

However the left hand side is at least

n4
∑
j≥c+

(
|Rj | −

∑
i≥c+ |Ri|
n19k2

)
≥ n4

∑
j≥c+

|Rj | −
n5

n19k2

∑
j≥c+

|Rj | �
∑
j≥c+

|Rj |,

and the proof is complete.

2.5 Proof of Theorem 2.1.5

Let F be a family of size M . If F 6⊂ Pn,d then by Proposition 2.4.2 we have ck(F) > ck(GM ). If on the

other hand F ⊆ Pn,d then by Proposition 2.3.1 we have ck(F) ≥ ck(GM ). Hence GM minimizes the number

of contained k-chains amongst families of size M in P(n), and the proof is complete.
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2.6 Open problems

One direction that might be of interest is to extend the question of minimizing the number of k-chains to

other posets, hence generalizing Kleitman’s question. Instead of considering families in P(n) = {0, 1}n one

could ask the same questions for [m]2 or even [m]d. A k-chain in [m]d is a set of k distinct points satisfying

a1 ≤ . . . ≤ ak (where b ≤ c means bi ≤ ci for all i ∈ [d]). Solving the following problem in full generality

seems hopeless, but partial results for larger m would be of much interest. Is a similar phenomenon as in

Kleitman’s conjecture likely to hold for these posets as well? For related results, see [11, 91].

Problem 2.6.1. Given d,m,M, k, which sets F ⊆ [m]d of size |F| = M minimize the number of k-chains?

Consider the following definition of an m-centered set: a set F ⊆ [m]d is m-centered if for all a,b ∈ [m]d

with a ∈ F and b /∈ F we have that

∣∣∣∣∣
d∑
i=1

ai −
dm

2

∣∣∣∣∣ ≤
∣∣∣∣∣
d∑
i=1

bi −
dm

2

∣∣∣∣∣ ,
and in case of equality we have

∑
ai ≥

∑
bi. Note that taking m = 2 we get our usual definition of centered

families. Once again we do not make the (false) claim that m-centered sets are the only ones minimizing

the number of k-chains. One might be tempted to conjecture the following: given m there exists a number

d0(m) such that if d ≥ d0(m) then the answer to Problem 2.6.1 is given by m-centered sets. Note that if we

do not assume d to be large enough then this natural conjecture might fail. One small counterexample is

given by the case m = 16, d = 2, k = 2 where the family F := {(a1, a2) ∈ [16]2 : |a1 + a2 − 16| ≤ 5} can be

improved by letting F ′ := F \ {(5, 6)} ∪ {(10, 0)}. As it turns out this conjecture is false for large values of

d as well, see [11].

Instead of the poset {0, 1}n we can consider the poset [0, 1]n. Given a subset F ⊆ [0, 1]n let C(F , k) be

the collection of k-chains in F (where a k-chain, as before, is a set of k points satisfying a1 ≤ . . . ≤ ak).

Then C(F , k) can be regarded as a subset of ([0, 1]n)
k
. This leads to the following natural question. By the

measure of a set A ⊂ Rn we always refer to the Lebesgue measure (or n-volume) of A and denote it by λ(A).

Problem 2.6.2. Given n,M, k, which measurable A ⊆ [0, 1]n of measure M minimizes the volume of k-

chains, i.e. λ (C(F , k))?

Consider the first non-trivial case, i.e. n = k = 2. For x ∈ [0, 1]2 define M(x) := {y ∈ A : x ≤ y}.

Let S(A) := {x ∈ A : @y ∈ A : y ≤ x}. Then it seems that in one of the optimal sets A the function

f(x) := λ(M(x)) should be constant on S. Giving a nice description of the optimal set A in Problem 2.6.2
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may well turn out to be difficult. It may be possible to determine the limiting structure of the solution as

n,M remain fixed and k grows to infinity. Alternatively, estimates on the minimal volume of k-chains might

be of interest and easier to obtain. Let f(n,M, k) := inf{λ(C(A, k)) : A ⊆ [0, 1]n, λ(A) = M}, where the

infimum is taken over all measurable subsets A.

Problem 2.6.3. Determine the value of f
(
2, 1

2 , 2
)
.

29



Chapter 3

Applications of graph containers in
the Boolean lattice

The results in this chapter are joint work with József Balogh and Andrew Treglown [13].

We apply the graph container method to prove a number of counting results for the Boolean lattice P(n).

In particular, we:

(i) Give a partial answer to a question of Sapozhenko estimating the number of t error correcting codes

in P(n), and we also give an upper bound on the number of transportation codes;

(ii) Provide an alternative proof of Kleitman’s theorem on the number of antichains in P(n) and give a

two-coloured analogue;

(iii) Give an asymptotic formula for the number of (p, q)-tilted Sperner families in P(n);

(iv) Prove a random version of Katona’s t-intersection theorem.

In each case, to apply the container method, we first prove corresponding supersaturation results. We also

give a construction which disproves two conjectures of Ilinca and Kahn on maximal independent sets and

antichains in the Boolean lattice. A number of open questions are also given.

3.1 Introduction

Many problems in combinatorics and other areas can be rephrased into questions about independent sets in

(hyper)graphs. For example, Sperner’s theorem [101] states that the largest antichain in the power set of

[n], P(n) has size
(

n
bn/2c

)
. (P(n) is also refered to as the Boolean lattice.) Let G be the graph with vertex

set P(n) and where A and B are adjacent if A ⊂ B or B ⊂ A. Then equivalently, Sperner’s theorem states

that the largest independent set in G has size
(

n
bn/2c

)
.

So-called container results have emerged as powerful tools for attacking problems which reduce to counting

independent sets in (hyper)graphs. Roughly speaking, container results typically state that the independent

sets of a given (hyper)graph H lie only in a ‘small’ number of subsets of the vertex set of H (referred to
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as containers), where each of these containers is an ‘almost independent set’. The graph container method

dates back to work of Kleitman and Winston [73, 74] from more than 30 years ago. Indeed, they constructed

a relatively simple algorithm that can be used to produce graph container results. This algorithm will be

the starting point for proving the container results of this chapter; we give a more detailed overview of the

method in Section 3.3. An excellent recent survey of Samotij [95] gives several applications of this method

to a range of problems in combinatorics and number theory.

The container method has also been recently generalised to hypergraphs of higher uniformity. Perhaps

the first applications of the hypergraph container method appeared in [12]. Balogh, Morris and Samotij [8]

and independently Saxton and Thomason [98] developed general container theorems for hypergraphs whose

edge distribution satisfies certain boundedness conditions. These results have been used to tackle a range of

important problems including questions arising in combinatorial number theory, Ramsey theory, positional

games, list colourings of graphs and H-free graphs.

In this chapter we provide several new short applications of the graph container method to counting

problems in the Boolean lattice. In Section 3.4 we asymptotically determine the number of (p, q)-tilted

Sperner families in P(n). In Section 3.5 we give an upper bound on the number of t error correcting codes,

thereby giving a partial answer to a question of Sapozhenko [97], and an upper bound on the number of

so-called 2-(n, k, d)-codes. Katona’s intersection theorem [66] determines the largest t-intersecting family

in P(n). In Section 3.6 we prove a random analogue of this result. We also prove counting versions of

generalisations of Sperner’s theorem: we give an alternative proof of a famous result of Kleitman [71] that

gives an asymptotic formula for the number of antichains in P(n) (see Section 3.7.1). We then prove a

two-coloured generalisation of this result in Section 3.7.2. Finally, in Section 3.8 we give a construction

which disproves two conjectures of Ilinca and Kahn [64] on maximal independent sets and antichains in the

Boolean lattice.

Section 3.3 describes the general algorithm used for producing our graph container results. After this,

each of the sections are self-contained and so can be read separately. However, there are two important

themes which run throughout the chapter and which we are keen to publicise. Firstly, for the proof of each

of our container theorems, the key step is to apply various supersaturation results. Roughly speaking, such

results state that if a vertex set S in some auxiliary graph G is significantly bigger than the size of the largest

independent set, then G[S] contains many edges. Secondly, in some cases we need to apply a multi-stage

version of the Kleitman–Winston algorithm (and apply more than one supersaturation result). We explain

this in more detail in Section 3.3.
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3.2 Notation and preliminaries

For a given n ∈ N, write [n] := {1, . . . , n}. Denote Sn the set of all permutations of [n]. Given a set

X we write P(X) for the set of all subsets of X. Given k ∈ N, we write
(
X
≤k
)

to denote the set of all

subsets of X of size at most k and define
(
X
k

)
and

(
X
≥k
)

analogously. Given n ∈ N, we write, for example,(
n
≥k
)

:=
(
n
k

)
+
(
n
k+1

)
+ · · ·+

(
n
n

)
. We say two sets A, B are comparable if A ⊂ B or B ⊂ A.

Given a graph G we write NG(x) for the neighbourhood of a vertex x ∈ V (G) and set degG(x) := |NG(x)|.

We write ∆(G) for the maximum degree of G.

Throughout the chapter we omit floors and ceilings where the argument is unaffected. We write 0 <

α � β � γ to mean that we can choose the constants α, β, γ from right to left. More precisely, there are

increasing functions f and g such that, given γ, whenever we choose β ≤ f(γ) and α ≤ g(β), all calculations

needed in our proof are valid. Hierarchies of other lengths are defined in the obvious way.

The following well known bounds for binomial coefficients will be useful later on.

Fact 3.2.1. (
n

n/2

)
∼
√

2

πn
2n.

Fact 3.2.2. If k = (n+ c
√
n)/2 where c = o(n1/6) then

(
n

k

)
∼
(
n

n/2

)
e−(c2/2).

Fact 3.2.3. For any n, k ∈ N, (
n

k

)
≤
(e · n

k

)k
.

3.3 The graph container algorithm

For each of our problems, we will prove and then apply a container result. We will first introduce some

auxiliary graph G. For example, to prove Kleitman’s theorem on antichains in the Boolean lattice, we

will define G to have vertex set P(n) where distinct A and B are adjacent if they are comparable. Most

of our container results then take the following general structure: Let Imax denote the size of the largest

independent set in G. Then there is a collection F of subsets of V (G) such that:

(i) |F| = 2o(|Imax|);

(ii) Every independent set I in G lies in some F ∈ F ;
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(iii) |F | ≤ (1 + o(1))|Imax| for each F ∈ F .

We refer to the elements of F as containers. In some cases, when we only have an upper bound D on |Imax|,

we in fact have D instead of |Imax| in (i) and (iii). Typically the container result will then immediately

imply our desired counting theorem. For example, in the case of Kleitman’s theorem, since independent sets

in G correspond to antichains in P(n), we have that |Imax| =
(

n
bn/2c

)
. Thus, (i)–(iii) imply that there are

2(1+o(1))( n
bn/2c) antichains in P(n), as desired.

To prove each of our container results we will apply the following algorithm of Kleitman and Winston [73,

74].

The graph container algorithm. Let V := V (G), n := |V | and fix an arbitrary total order v1, . . . , vn of

V and some ∆ > 0. Let I be an independent set in G. Set G0 := G and S := ∅. In Step i of the algorithm

we do the following:

(a) Let u be the vertex of maximum degree in Gi−1 (ties are broken here by our fixed total ordering);

(b) If u /∈ I then define Gi := Gi−1 \ {u} and move to Step i+ 1;

(c) If u ∈ I and degGi−1
(u) ≥ ∆ then add u to S; define Gi := Gi−1\({u}∪NG(u)) and move to Step i+1;

(d) If u ∈ I and degGi−1
(u) < ∆ then define f(S) := V (Gi) and terminate.

Note that I ⊆ S ∪ f(S). We sometimes refer to ∆ as the parameter of the algorithm.

The algorithm produces a function f :
(

V
≤|V |/∆

)
→ P(V ). Indeed, the algorithm ensures that |S| ≤ |V |/∆

and that f is well-defined.

Let F denote the collection of sets S∪f(S) for each S ∈
(

V
≤|V |/∆

)
. By construction (ii) is satisfied. There

are
(

V
≤|V |/∆

)
containers in F . Thus, if one chooses ∆ sufficiently large we can ensure that (i) is satisfied. At

the end of the algorithm, Gi has maximum degree less than ∆, so is ‘sparse’. In a standard application of

the algorithm, we then apply a supersaturation result to ensure that (iii) holds: roughly speaking, since Gi

is sparse it cannot be too much bigger than the largest independent set in G. Hence, Gi and so S ∪ f(S) is

not too big.

In some cases though, the value of ∆ required to ensure that (i) holds is not small enough to immediately

ensure (iii) also holds. That is, ∆(Gi) ≤ ∆ may not imply that (iii) holds. In this case we have to analyse

the algorithm more carefully. Roughly speaking, the idea is to first apply the algorithm with some relatively

large parameter ∆′. This will ensure (i) holds and by applying a supersaturation result the graph Gi is

not too big (though perhaps much bigger than (1 + o(1))|Imax|). We then continue the algorithm with a
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new, much smaller parameter ∆ to ensure at the end of this process Gi is much sparser and so (via another

supersaturation result) (iii) is satisfied. We will use this multi-stage approach in Section 3.5. This idea

was first used only very recently in [10] to prove a random analogue of Sperner’s theorem. We remark that

when applying this approach in Section 3.5, we will not explicitly state it in this way (we only state the

parameter ∆ explicitly and then split the analysis of the algorithm in two), but the method described above

is (implicitly) precisely what is happening.

3.4 Tilted Sperner families

Let P(n) denote the power set of [n], ordered by inclusion. A subset A ⊆ P(n) is an antichain if for any

A,B ∈ A with A ⊆ B we have A = B. So
(

[n]
k

)
is an antichain for any 0 ≤ k ≤ n. A celebrated theorem of

Sperner [101] states that in fact no antichain in P(n) has size larger than
(

n
bn/2c

)
.

Given A,B ⊆ [n] the subcube of P(n) spanned by A and B consists of all subsets of A ∪ B that contain

A ∩ B. Kalai (see [80]) observed that A is an antichain precisely if it does not contain A and B such that,

in the subcube of P(n) spanned by A and B, A is the top point and B is the bottom point. He asked what

happens if one ‘tilts’ this condition. That is, for some p, q ∈ N we forbid A to be p/(p + q) of the way up

this subcube and B to be q/(p + q) of the way up this subcube. More precisely, we say that A ⊆ P(n) is

a (p, q)-tilted Sperner family if A does not contain distinct A,B such that q|A \ B| = p|B \ A|. So the case

when p 6= 0, q = 0 corresponds to antichains.

Let p, q ∈ N be coprime with p < q. Leader and Long [80] proved that the largest (p, q)-tilted Sperner

family in P(n) has size (q − p + o(1))
(
n
n/2

)
, where the lower bound is obtained by considering the union of

the q − p middle layers of the Boolean lattice (see [80] for an explanation of this).

In 1897, Dedekind [31] raised the question of how many antichains there are in P(n). This was famously

resolved asymptotically by Kleitman [71] who proved that there are in fact 2(1+o(1))( n
n/2) antichains. In this

section we prove an analogue of this result for (p, q)-tilted Sperner families.

Theorem 3.4.1. Let p, q ∈ N be coprime with p < q. Then there are

2(q−p+o(1))( n
n/2)

(p, q)-tilted Sperner families in P(n).

To prove Theorem 3.4.1 we will apply the following supersaturation version of the Leader–Long theo-
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rem [80]. The proof applies the same averaging argument strategy used in [80].

Lemma 3.4.2. Let p, q ∈ N be coprime with p < q. Given any ε > 0, there exist δ > 0 and n0 ∈ N such

that the following holds. Suppose that n ≥ n0 and A ⊆ P(n) such that |A| ≥ (q − p + ε)
(
n
n/2

)
. Then there

are at least δ
(
n
n/2

)
np+q pairs A,B ∈ A such that q|A \B| = p|B \A|.

We remark that the conclusion of Lemma 3.4.2 is actually somewhat stronger than what is needed in

the application to the proof of Theorem 3.4.1. Indeed, for our application instead of δ
(
n
n/2

)
np+q such pairs,

having only δn2n would be sufficient.

Proof. Given ε > 0, define δ > 0 and C, n0 ∈ N such that

0 < 1/n0 < δ � 1/C � ε, 1/p, 1/q.

Let n ≥ n0 and A ⊆ P(n) such that |A| ≥ (q − p+ ε)
(
n
n/2

)
.

Let Ai denote the set of A ∈ A with |A| = i. Since 1/n0 � 1/C � ε,

∑
i≥n/2+C

√
n

(
n

i

)
+

∑
i≤n/2−C

√
n

(
n

i

)
≤ ε

2

(
n

n/2

)
.

Thus, we may assume that |A| ≥ (q−p+ε/2)
(
n
n/2

)
and every A ∈ A satisfies n/2−C

√
n ≤ |A| ≤ n/2+C

√
n.

For simplicity we may assume that n = (p + q)m for some m ∈ N (the other cases follow identically).

Clearly there exists k ∈ [0, q − p− 1] such that

∑
i≡k mod (q−p)

|Ai| ≥
(

1 +
ε

2(q − p)

)(
n

n/2

)
. (3.4.1)

Define k′ ∈ [0, q − p− 1] so that k′ ≡ k − pm mod (q − p).

Pick a random ordering of [n] that we denote by (a1, . . . , aqm, b1, . . . , bpm) (this can be viewed as a

permutation of [n]). Given this ordering, define Ci := {aj : j ∈ [qi + k′]} ∪ {bj′ : j′ ∈ [pi + 1, pm]} and set

C := {Ci : i ∈ [0,m− 1]}. Notice that for every i < j we have |Ci| = pm+ k′+ (q− p)i ≡ k mod (q− p) and

p|Cj\Ci| = q|Ci\Cj |. Further, for each i ≡ k mod (q− p) where pm+ k′ ≤ n/2−C
√
n ≤ i ≤ n/2 +C

√
n ≤

qm+ k′, there is precisely one set Ci′ in C of size i.

Consider the random variable X := |A∩C|. Let i ≡ k mod (q− p) where n/2−C
√
n ≤ i ≤ n/2 +C

√
n,

and set i′ so that i = pm+ k′ + (q − p)i′. Note that each set B ∈
(

[n]
i

)
is equally likely to be Ci′ , therefore
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P[B ∈ C] = 1

(ni)
. So

EX =
∑

i≡k mod (q−p)

|Ai|(
n
i

) ≥ ∑
i≡k mod (q−p)

|Ai|(
n
n/2

) (3.4.1)

≥ 1 +
ε

2(q − p)
. (3.4.2)

Consider any permutation π ∈ Sn. Write π as (a′1, . . . , a
′
qm, b

′
1, . . . , b

′
pm). Define Cπ,i := {a′j : j ∈

[qi + k′]} ∪ {b′j′ : j′ ∈ [pi + 1, pm]} and set Cπ := {Cπ,i : i ∈ [0,m − 1]}. So the set C is simply Cπ for a

randomly selected permutation π. Set α(π) := |A ∩ Cπ|. Thus,

EX =
1

n!

∑
π∈Sn

α(π).

Together with (3.4.2) this implies that

∑
π∈Sn

(
α(π)

2

)
≥
∑
π∈Sn

(α(π)− 1) ≥ εn!

2(q − p)
. (3.4.3)

We say a pair A,B ∈ A is good if there is some permutation π such that A,B ∈ Cπ. That is, A = Cπ,i

and B = Cπ,j for some i, j and π ∈ Sn. In this case, since A,B ∈ A, we have n/2− C
√
n ≤ |Cπ,i|, |Cπ,j | ≤

n/2 + C
√
n. Further, by definition of Cπ:

(i) |A ∩B| ≥ n/2− (2p+ 1)C
√
n;

(ii) q|A \B| = p|B \A| or p|A \B| = q|B \A|.

(By relabeling A,B we may assume that q|A \ B| = p|B \ A|.) Moreover, if A,B is good, the definition of

the Cπ implies that there are precisely

|A ∩B|!|A \B|!|B \A|!|A ∪B|! (3.4.4)

permutations π such that A,B ∈ Cπ. Additionally, the following conditions hold:

• |A ∩B|, |A ∪B| ≤ n/2 + C
√
n;

• p ≤ |A \B|
(i)

≤ (2p+ 2)C
√
n;

• q ≤ |B \A|
(i)

≤ (2p+ 2)C
√
n.
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Under these constraints, an upper bound on (3.4.4) is

p!q!(n/2 + C
√
n)!(n/2− C

√
n− p− q)!.

Together with (3.4.3) this implies that there are at least

εn!

2(q − p)
× 1

p!q!(n/2 + C
√
n)!(n/2− C

√
n− p− q)!

≥ εn!

2(q − p)
× δ1/2np+q

(n/2)!(n/2!)
≥ δ
(
n

n/2

)
np+q

good pairs A,B ∈ A. (In the last inequality we apply Fact 3.2.2.) Since each such pair satisfies (ii), this

completes the proof.

Lemma 3.4.2 can now be applied to prove the following container lemma which immediately implies

Theorem 3.4.1.

Lemma 3.4.3. Let p, q ∈ N be coprime with p < q. There is a collection F ⊆ P(n) with the following

properties:

(i) |F| = 2o(1)( n
n/2);

(ii) If A ⊆ P(n) is a (p, q)-tilted Sperner family, then A is contained in some member of F ;

(iii) |F | ≤ (q − p+ o(1))
(
n
n/2

)
for every F ∈ F .

Proof. Let ε > 0 and let δ, n0 be as in Lemma 3.4.2. Let n ≥ n0. Define G to be the graph with vertex set

P(n) in which distinct sets A and B are adjacent if and only if p|A \ B| = q|B \ A| or q|A \ B| = p|B \ A|.

Thus a (p, q)-tilted Sperner family in P(n) is precisely an independent set in G.

Claim 3.4.4. There exists a function f :
(
V (G)
≤2n/δn

)
→
( V (G)

≤(q−p+ε)( n
n/2)

)
such that, for any independent set I

in G, there is a subset S ⊆ I where S ∈
(
V (G)
≤2n/δn

)
and I ⊆ S ∪ f(S).

To prove the claim, fix an arbitrary total order v1, . . . , v2n on the vertices of V (G). Given any independent

set I in G, define G0 := G, and take S to be initially empty. We add vertices to S through the following

iterative process: At Step i, let u be the maximum degree vertex of Gi−1 (with ties broken by our fixed

total order). If u /∈ I then define Gi := Gi−1 \ {u}, and proceed to Step i + 1. Alternatively, if u ∈ I and

degGi−1
(u) ≥ δn then add u to S, define Gi := Gi−1 \ ({u} ∪NG(u)), and proceed to Step i+ 1. Finally, if

u ∈ I and degGi−1
(u) < δn, then set f(S) := V (Gi) and terminate.
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Observe that for any independent set I in G the process defined ensures that S ⊆ I where |S| ≤ 2n/δn and

I ⊆ S∪f(S). Further, at the end of the process we know that ∆(Gi) < δn and so e(Gi) < δn2n < δ
(
n
n/2

)
np+q.

Hence, Lemma 3.4.2 implies that |f(S)| = |V (Gi)| ≤ (q − p+ ε)
(
n
n/2

)
.

To complete the claim we must show that f is well-defined. That is, we must check that if the process

described above yields the same set S when applied to independent sets I and I ′, then it should also yield

the same set f(S). However, this is a consequence of the fact that we always chose u to be the vertex of I

of maximum degree in Gi−1. Thus, the claim is proven.

Define F to be the collection of all the sets S ∪ f(S) for every S ∈
(
V (G)
≤2n/δn

)
. Then (i) and (ii) hold and

|F | ≤ (q − p+ ε)
(
n
n/2

)
+ 2n/δn ≤ (q − p+ 2ε)

(
n
n/2

)
for every F ∈ F , as desired.

3.5 The number of t error correcting codes and 2-(n, k, d)-codes

3.5.1 Counting t error correcting codes: Sapozhenko’s question

The Hamming distance d(A,B) between two sets A,B ⊆ [n] is defined as

d(A,B) := |A\B|+ |B\A|.

In this section we will view a subset A of [n] as a string of length n over the alphabet {0, 1} where the ith

entry of the string is 1 precisely when i ∈ A. In this setting, the Hamming distance between A and B can

be rewritten as

d(A,B) = |{1 ≤ i ≤ n : Ai 6= Bi}|,

where for example, Ai denotes the ith term in the string A. The Hamming ball of radius r around a set

A ⊆ [n] is defined as

B(A, r) := {X ⊆ [n] : d(A,X) ≤ r}.

Given a family C ⊂ P(n), we say C is a distance d code if the Hamming distance between any two distinct

members of C is at least d. Moreover C is said to be a t error correcting code if there exists a decoding function

Dec : {0, 1}n → C such that for every X ∈ {0, 1}n and A ∈ C with d(X,A) ≤ t we have Dec(X) = A. Recall

that C is t error correcting if and only if for every pair A,B ∈ C we have d(A,B) ≥ 2t + 1. So t error

correcting codes are precisely distance 2t + 1 codes, i.e. codes where the Hamming balls {B(A, t) : A ∈ C}
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are disjoint. Since most communication channels are subject to channel noise, which can cause errors in the

transmission of messages, the additional redundancy given by error correcting codes plays a crucial role in

ensuring that the receiver can recover the original message. Given the widespread usage of such codes in

digital communications, natural question to ask is how many t error correcting codes there are in total, i.e.

estimate the size of

|{C ⊆ P(n) : C is t error correcting}|.

This problem was first raised by Sapozhenko [97]. We wish to bound the number of t error correcting

codes of length n and alphabet {0, 1}. An upper bound for the size of such a code is given by the Hamming

bound, which gives an important limitation on the efficiency of error correcting codes. Let V (n, t) be the

volume of a Hamming ball of radius t in [n], so V (n, t) =
∑t
k=0

(
n
k

)
. Then the Hamming bound states that if

C is t error correcting, since the Hamming balls of radius t centered at the members of C have to be disjoint,

we have

|C| ≤ 2n

V (n, t)
.

If C attains equality in the Hamming bound, we say C is a perfect code. Perfect codes are precisely those

for which the Hamming balls centered at the codewords fill up the entire space {0, 1}n without overlap. The

trivial perfect codes are codes consisting of a single codeword (when t = n), or the whole of {0, 1}n (when

t = 0), and repetition codes where the same substring is repeated an odd number of times. The non-trivial

perfect codes over prime-power alphabets must have the same parameters as the so-called Hamming codes

or the Golay codes (see [104]).

Let H(n, t) := 2n

V (n,t) . Since every subset of a t error correcting code is also t error correcting, if C is t

error correcting then the number of t error correcting codes is at least 2|C|. In particular, if the parameters

n, t are such that a perfect code exists, then the number of t error correcting codes is at least 2H(n,t). Our

first goal is to prove a corresponding upper bound:

Theorem 3.5.1. Let t = t(n) � 3

√
n

log2 n
. Then the number of t error correcting codes is at most

2H(n,t)(1+o(1)).

The range of t given in Theorem 3.5.1 is probably not optimal - indeed our guess is that the conclusion

of Theorem 3.5.1 should hold whenever t � n
logn . However, a heuristic argument suggests that if t � n

logn

the conclusion of Theorem 3.5.1 may fail. Indeed, suppose one could partition {0, 1}n into disjoint copies

of balls of radius t + 1, obtaining roughly t
nH(n, t) balls. From each ball we can pick one element, that is

either the centre of the ball or an element at distance one from the centre, giving n+ 1 choices for each ball.
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Every family we obtain like this is a t error correcting code, and we have roughly n
t
nH(n,t) � 2H(n,t) such

families.

Our overarching proof strategy is similar to the one used in the previous section. However, now we will

employ a two phase strategy to construct our containers and as such we require two different supersaturation

results. The first states that if |C| is slightly bigger than H(n, t) then it contains many bad pairs, i.e. pairs

at distance less than 2t+ 1. Let W (t, d) be the size of the intersection of two Hamming balls of radius t in n,

the centers being distance d apart. So W (t, 1) ≥ W (t, d) for all d ≥ 2, and W (t, 1) = 2V (n− 1, t− 1). The

key observation is that the volume of the intersection of two balls is significantly smaller than the volume of

a single ball.

Lemma 3.5.2. Let C ⊂ P(n). If |C| ≥ H(n, t) + x then there are at least x n2t pairs A,B ∈ C that have

Hamming distance at most 2t.

Proof. For X ∈ {0, 1}n, let KX := {A ∈ C : d(A,X) ≤ t}. For k ∈ N set Sk := {X ∈ {0, 1}n : |KX | = k}.

Then
∑
k k|Sk| = |C|V (n, t) ≥ 2n + xV (n, t). So the number of pairs in C of distance at most 2t is at least

1

W (t, 1)

∑
k

|Sk|
(
k

2

)
≥ 1

W (t, 1)

∑
k

|Sk|(k − 1) ≥ x · V (n, t)

W (t, 1)
= x · V (n, t)

2V (n− 1, t− 1)
≥ x n

2t
.

Our next supersaturation lemma considers sets of size at least 2H(n, t). Consider the graph G with

V (G) = P(n), where two distinct vertices A,B are connected by an edge of colour d(A,B) if they form a

bad pair, i.e. their Hamming distance is at most 2t. Define

α :=
n

10tH(n, t)
.

Lemma 3.5.3. Let C ⊂ P(n). If |C| ≥ 2H(n, t), then there is an A ∈ C such that its degree in G[C] is at

least α|C|.

Proof. Let Ei denote the number of pairs of vertices connected by an edge of colour i in G[C] for all

i = 1, . . . , 2t, and let E :=
∑
iEi. Define KX as in the proof of Lemma 3.5.2. Note that

2t∑
k=1

W (t, k)Ek =
∑

X∈{0,1}n

(
|KX |

2

)
(3.5.1)
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since both terms count the number of pairs (X, (A,B)) where X ∈ {0, 1}n, A,B ∈ C and d(X,A), d(X,B) ≤

t. The average value of KX over all X ∈ {0, 1}n is |C|V (n, t)/2n. Thus,

∑
X∈{0,1}n

(
|KX |

2

)
≥ 2n

(
|C|V (n, t)/2n

2

)
. (3.5.2)

Combining (3.5.1) and (3.5.2), since |C|V (n, t)/2n ≥ 2, we have that

2t∑
k=1

W (t, k)Ek ≥
|C|2V (n, t)2

10 · 2n
.

As W (t, k) ≤W (t, 1) = 2V (n− 1, t− 1) ≤ 2t
n V (n, t), we have that

E ≥ |C|
2V (n, t)n

20t2n

and the result follows.

Given these two supersaturation results, we are now ready to prove the following container lemma which

immediately implies Theorem 3.5.1.

Lemma 3.5.4. Let t = t(n)� 3

√
n

log2 n
. There is a collection F ⊆ P(n) with the following properties:

(i) |F| = 2o(H(n,t));

(ii) If C ⊆ P(n) is a t error correcting code, then C is contained in some member of F ;

(iii) |F | ≤ (1 + o(1))H(n, t) for every F ∈ F .

Proof. Let 0 < ε < 1 and let n be sufficiently large. Let G be the graph with vertex set P(n) in which

distinct sets A and B are adjacent if and only if their Hamming distance is at most 2t. Thus a t error

correcting code in P(n) is precisely an independent set in G.

Claim 3.5.5. There exists a function f :
( V (G)

≤εH(n,t)
t logn

)
→
(

V (G)
≤(1+ε)H(n,t)

)
such that, for any independent set I

in G, there is a subset S ⊆ I where S ∈
( V (G)

≤εH(n,t)
t logn

)
and I ⊆ S ∪ f(S).

To prove the claim, fix an arbitrary total order v1, . . . , v2n on the vertices of V (G). Given any independent

set I in G, define G0 := G, and take S to be initially empty. We add vertices to S through the following

iterative process: At Step i, let u be the maximum degree vertex of Gi−1 (with ties broken by our fixed

total order). If u /∈ I then define Gi := Gi−1 \ {u}, and proceed to Step i + 1. Alternatively, if u ∈ I and
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degGi−1
(u) ≥ εn/4t then add u to S, define Gi := Gi−1 \ ({u} ∪NG(u)), and proceed to Step i+ 1. Finally,

if u ∈ I and degGi−1
(u) < εn/4t, then set f(S) := V (Gi) and terminate.

Observe that for any independent set I in G the process defined ensures that S ⊆ I and I ⊆ S ∪ f(S).

Further, at the end of the process we know that ∆(Gi) < εn/4t and so e(Gi) < |V (Gi)|εn/4t. Hence,

Lemma 3.5.2 implies that |f(S)| = |V (Gi)| ≤ (1+ε)H(n, t). Moreover it is easy to see that f is well-defined.

To complete the proof of the claim, it remains to prove that |S| ≤ εH(n, t)/(t log n). We will distinguish

two stages in the above algorithm, according to the size of V (Gi). Let S1 denote the set of vertices u ∈ S

that were added to S in some Step i of the algorithm where |V (Gi−1)| ≥ 2H(n, t). Set S2 := S \ S1. So

there is some k such that, up to and including Step k, every vertex added to S lies in S1, and every vertex

added to S after Step k lies in S2.

By Lemma 3.5.3, for every i ≤ k, at Step i we remove at least an α proportion of the vertices from Gi−1

to obtain Gi. Thus, |S1| = k and (1− α)k2n ≤ 2H(n, t). Note that α→ 0 as n→∞, so as n is sufficiently

large we have that α ≤ 10 log(1/(1− α)). Therefore,

|S1| ≤
log
(

2n

2H(n,t)

)
log
(

1
1−α

) ≤ 10
log V (n, t)

α
≤ 5000

tH(n, t)

n
t log(n/t) ≤ ε

2

H(n, t)

t log n
.

Note that in the last inequality we use that t� 3

√
n

log2 n
.

After Step k we remove at least εn/4t vertices at each step, so we have

|S2| ≤
8tH(n, t)

εn
≤ ε

2

H(n, t)

t log n
.

Hence,

|S| = |S1|+ |S2| ≤ ε
H(n, t)

t log n
,

as required. This finishes the proof of the claim.

Define F to be the collection of all the sets S ∪ f(S) for every S ∈
( V (G)

≤εH(n,t)
t logn

)
. Then (ii) clearly holds.

Further,

|F| ≤
(

2n

≤ εH(n,t)
t logn

)
≤ 22ε

H(n,t)
t logn log(tV (n,t) log(n)/ε) ≤ 22ε

H(n,t)
t logn (2t logn+log t+log logn+log 1

ε ) ≤ 25εH(n,t)

and |F | ≤ (1 + 2ε)H(n, t) for all F ∈ F . Since 0 < ε < 1 was arbitrary, this proves the lemma.
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3.5.2 Counting 2-(n, k, d)-codes

In this subsection, all pairs of sets considered are unordered. Let us now turn our attention to the space Y

of pairs of disjoint k-subsets of [n] (for some fixed 0 < k ≤ n/2). Given two pairs (A1, A2), (B1, B2) ∈ Y,

the transportation distance, or Enomoto–Katona distance is defined by

d((A1, A2), (B1, B2)) := min{|A1 \B1|+ |A2 \B2|, |A1 \B2|+ |A2 \B1|}.

For convenience, throughout this subsection we will write distance when we mean transportation distance.

The notion of transportation distance has been widely studied (also in a more general setting for metric

spaces). See for example [108] and the introduction of [19] for background on the topic.

We say that a collection C ⊆ Y is a 2-(n, k, d)-code if the distance between any two elements of C is at

least d. Write C(n, k, d) for the maximum size of a 2-(n, k, d)-code. Brightwell and Katona [20] proved that

C(n, k, d) ≤ 1

2

n(n− 1) · . . . · (n− 2k + d)(
k(k − 1) · . . . · dd+1

2 e
) (
k(k − 1) · . . . · bd+1

2 c
) =: H(n, k, d). (3.5.3)

Recently the value of C(n, k, d) has been determined for many values of (n, k, d) (see [19, 24]). As an

example, we have equality or are ‘close’ to equality in (3.5.3) when k ≥ 2, d = 2k − 1 and for certain

(congruency) classes of n (see [24]). Further, the bound in (3.5.3) is asymptotically sharp for fixed k, d

and n → ∞ (see [19]). Our goal in this subsection is to prove the following upper bound on the number of

2-(n, k, d)-codes.

Theorem 3.5.6. Suppose that k = k(n) ≤ n/2 and t = t(n)� 3

√
k

log2 n
then the number of 2-(n, k, 2t+ 1)-

codes is at most 2H(n,k,2t+1)(1+o(1)).

Similarly to Theorem 3.5.1, we believe that the correct range of t in Theorem 3.5.6 should be t� k
logn .

Given a pair (A,B) ∈ Y, let P ((A,B), u) denote the family of pairs (U, V ) where |U | = |V | = u and

U ⊆ A, V ⊆ B or vice versa. Then |P ((A,B), u)| =
(
k
u

)2
. Let Z(u) be the space of pairs of disjoint sets

of size u in [n]. So |Z(u)| = 1
2

(
n
u

)(
n−u
u

)
and note that Y = Z(k). We will refer to P ((A,B), k − t) as

the ball of radius t around (A,B). In particular, for any (A1, B1), (A2, B2) in Y, if P ((A1, B1), k − t) and

P ((A2, B2), k − t) intersect, then d((A1, A2), (B1, B2)) ≤ 2t.

The proof strategy for Theorem 3.5.6 is extremely close to that of Theorem 3.5.1. The following super-

saturation lemma is an analogue of Lemma 3.5.2.
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Lemma 3.5.7. Let C ⊆ Y. If |C| ≥ H(n, k, 2t+1)+x then there are at least xk/t pairs (A1, B1), (A2, B2) ∈ C

at distance at most 2t.

Proof. Note that

∑
(A,B)∈C

|P ((A,B), k − t)| ≥
(

k

k − t

)2

(H(n, k, 2t+ 1) + x) =
1

2

(
n

k − t

)(
n− k + t

k − t

)
+ x

(
k

k − t

)2

= |Z(k − t)|+ x

(
k

k − t

)2

. (3.5.4)

Let W (k− t, d) denote the largest possible intersection of two balls P ((A1, B1), k− t) and P ((A2, B2), k− t),

amongst all (A1, B1), (A2, B2) ∈ Y with d((A1, B1), (A2, B2)) = d. This is maximised when A1 = A2 and

|B1∩B2| = k−1, so W (k−t, d) ≤W (k−t, 1) for all d ≥ 2. Now W (k−t, 1) =
(
k
k−t
)(
k−1
k−t
)

=
(
k
k−t
)2(k−1

t−1

)
/
(
k
t

)
.

Combining this with (3.5.4) we see that there are at least

x

(
k

t

)
/

(
k − 1

t− 1

)
= xk/t

pairs (A1, B1), (A2, B2) ∈ C such that P ((A1, B1), k − t) and P ((A2, B2), k − t) intersect. Note that each

such pair (A1, B1), (A2, B2) ∈ C have distance at most 2t, as desired.

Consider the graph G with V (G) = Y, two vertices (A1, B1), (A2, B2) being connected by an edge of

colour d((A1, B1), (A2, B2)) if they form a bad pair, i.e. their transportation distance is at most 2t. Define

the constant α by

α :=
k

10tH(n, k, 2t+ 1)
.

Lemma 3.5.8. Let C ⊂ Y. If |C| ≥ 2H(n, k, 2t+ 1), then there is a vertex (A1, B1) ∈ C such that its degree

in G[C] is at least α|C|.

Proof. One can prove the lemma by arguing in a similar way to the proof of Lemma 3.5.3. Now though

given X ∈ Z(k− t) we take KX := {(A,B) ∈ C : X ∈ P ((A,B), k− t)} and Si := {X ∈ Z(k− t) : |KX | = i}.

By arguing as in Lemma 3.5.3 and using that |Z(k− t)| = H(n, k, 2t+ 1)
(
k
k−t
)2

we have that the number E

of edges in G[C] satisfies

E ≥ |Z(k − t)|
W (k − t, 1)

(
|C|/H(n, k, 2t+ 1)

2

)
≥ |C|2 k

20tH(n, k, 2t+ 1)

and the result follows. (In the last inequality we use that W (k − t, 1) =
(
k
k−t
)2(k−1

t−1

)
/
(
k
t

)
.)
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The following container lemma immediately implies Theorem 3.5.6; its proof follows the same approach

used in the proof of Lemma 3.5.4.

Lemma 3.5.9. Let k = k(n) ≤ n/2 and t = t(n) � 3

√
k

log2 n
. There is a collection F of subsets of Y with

the following properties:

(i) |F| = 2o(H(n,k,2t+1));

(ii) If C ⊆ Y is a 2-(n, k, 2t+ 1)-code, then C is contained in some member of F ;

(iii) |F | ≤ (1 + o(1))H(n, k, 2t+ 1) for every F ∈ F .

Proof. Let 0 < ε < 1 and let n be sufficiently large. Let G be the graph defined before Lemma 3.5.8.

Claim 3.5.10. There exists a function f :
( V (G)

≤ εH(n,k,2t+1)
t logn

)
→
(

V (G)
≤(1+ε)H(n,k,2t+1)

)
such that, for any indepen-

dent set I in G, there is a subset S ⊆ I where S ∈
( V (G)

≤ εH(n,k,2t+1)
t logn

)
and I ⊆ S ∪ f(S).

To prove the claim we argue as in Claim 3.5.5 except that we now apply the graph container algorithm

with parameter εk/2t instead of εn/4t. That is, at Step i if u /∈ I then set Gi = Gi−1 \ {u}; if u ∈ I and

degGi−1
(u) ≥ εk/2t we add u to S, define Gi := Gi−1 \ ({u} ∪NG(u)); if u ∈ I and degGi−1

(u) < εk/2t, set

f(S) := V (Gi) and terminate.

As before we have that for any independent set I in G the process defined ensures that S ⊆ I and

I ⊆ S ∪ f(S). Further, at the end of the process we know that ∆(Gi) < εk/2t and so e(Gi) < |V (Gi)|εk/2t.

Hence, Lemma 3.5.7 implies that |f(S)| = |V (Gi)| ≤ (1 + ε)H(n, k, 2t+ 1). Moreover f is well-defined.

To complete the proof of the claim, it remains to prove that |S| ≤ εH(n, k, 2t+ 1)/(t log n). As in

Claim 3.5.5 we distinguish two stages in the above algorithm, according to the size of V (Gi). Let S1 denote the

set of vertices u ∈ S that were added to S in some Step i of the algorithm where |V (Gi−1)| ≥ 2H(n, k, 2t+1).

Set S2 := S \ S1. So there is some k such that, up to and including Step k, every vertex added to S lies in

S1, and every vertex added to S after Step k lies in S2.

By Lemma 3.5.8, for every i ≤ k, at Step i we remove at least an α proportion of the vertices from Gi−1

to obtain Gi. Thus, |S1| = k and (1 − α)k|Y| ≤ 2H(n, k, 2t + 1). Note that α → 0 as n → ∞, so as n is

sufficiently large we have that α ≤ 10 log(1/(1− α)). Therefore,

|S1| ≤
log
(

|Y|
2H(n,k,2t+1)

)
log
(

1
1−α

) ≤ 10
log
(

(n−2k+2t)...(n−2k+1)
2(t!)2

)
α

≤ 5000
tH(n, k, 2t+ 1) log

(
n
t

)
k

≤ 10000
t2 log n

k
H(n, k, 2t+ 1) <

ε

2

H(n, k, 2t+ 1)

t log n
.
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In the first inequality we used that |Y| =
(
n
k

)(
n−k
k

)
/2 and in the last inequality we use that t� 3

√
k

log2 n
.

After Step k we remove at least εk/2t vertices at each step, so we have

|S2| ≤
2H(n, k, 2t+ 1)

εk
2t

=
4t

εk
H(n, k, 2t+ 1) ≤ ε

2

H(n, k, 2t+ 1)

t log n
.

Hence,

|S| = |S1|+ |S2| ≤ ε
H(n, k, 2t+ 1)

t log n
,

as required. This finishes the proof of the claim.

Define F to be the collection of all the sets S ∪f(S) for every S ∈
( V (G)

≤εH(n,k,2t+1)
t logn

)
. Then (ii) clearly holds.

Further,

|F| ≤
( 1

2

(
n
k

)(
n−k
k

)
≤ εH(n,k,2t+1)

t logn

)
≤ 2

2ε
H(n,k,2t+1)

t logn log
(
(nt)

2
t log(n)/ε

)
≤ 210ε

H(n,k,2t+1)
t logn (t logn+log t+log logn+log 1

ε )

≤ 220εH(n,k,2t+1),

and |F | ≤ (1 + 2ε)H(n, k, 2t+ 1) for all F ∈ F . Since 0 < ε < 1 was arbitrary, this proves the lemma.

3.6 A random version of Katona’s intersection theorem

A family A ⊆ P(n) is t-intersecting if |A ∩ B| ≥ t for all A,B ∈ A. In the case when t = 1 we simply say

that A is intersecting. Two of the most fundamental results in extremal set theory concern t-intersecting

sets. The cornerstone theorem of Erdős–Ko–Rado states that for every k, t there exists an n0 = n0(k, t) such

that if n ≥ n0 then the largest t-intersecting k-uniform family is the trivial family, i.e., there is a t-element

set which is contained in each of the sets. The other fundamental theorem is Katona’s intersection theorem

[66], which determines the size K(n, t) of the largest t-intersecting (not necessarily uniform) family in P(n):

it states that

K(n, t) =


(

n
≥(n+t)/2

)
if 2|(n+ t);

2
(

n−1
≥(n+t−1)/2

)
otherwise.

In the case when n + t is even,
(

[n]
≥(n+t)/2

)
is a t-intersecting set of size K(n, t). When n + t is odd,(

[n]
≥(n+t+1)/2

)
∪
(

[n−1]
(n+t−1)/2

)
is a t-intersecting set of size K(n, t). Notice that if t = o(

√
n) then K(n, t) ∼ 2n−1.

Beginning with the work of Balogh, Bohman and Mubayi [5], the problem of developing a ‘random’

version of the Erdős–Ko–Rado theorem has received significant attention (see [5, 6, 51, 60, 61]). In this
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section, we raise the analogous question for Katona’s intersection theorem. More precisely, let P(n, p) be

the set obtained from P(n) by selecting elements randomly with probability p and independently of all other

choices.

Question 3.6.1. Suppose that n ∈ N, t = t(n) ∈ N and write K := K(n, t). For which values of p do we

have that, with high probability, the largest t-intersecting family in P(n, p) has size (1 + o(1))pK?

The model P(n, p) was first investigated by Rényi [93] who determined the probability threshold for

the property that P(n, p) is not itself an antichain, thereby answering a question of Erdős. More recently,

a random version of Sperner’s theorem for P(n, p) was obtained independently by Balogh, Mycroft and

Treglown [10] and by Collares Neto and Morris [27].

In this section we give a precise answer to Question 3.6.1 in the case when t = o(
√
n). For intersecting

families (i.e. for the t = 1 case), this question has also been resolved independently by Mubayi and Wang [89].

Clearly the conclusion of Question 3.6.1 is not satisfied if p < C/2n for any constant C > 0. The next result

implies that the conclusion of Question 3.6.1 is not satisfied for p = 2−Ω(
√
n logn) and t = o(

√
n).

Theorem 3.6.2. Let p = 2−Ω(
√
n logn) where p ≥ ω(n)/2n for some function ω(n) → ∞ as n → ∞, and

let t = o(
√
n). Then there exists a constant ε > 0 such that, with high probability, the largest t-intersecting

family in P(n, p) has size at least ( 1
2 + ε)2np.

Proof. The choice of p and t implies that there exists a constant a > 0 such that p < 2−a
√
n logn and

t < a
100

√
n for n sufficiently large. Define ε so that 0 < ε� a.

Let A denote the set of elements A of P(n) that satisfy n/2 − a
√
n/2 ≤ |A| ≤ n/2 − a

√
n/4 and

|A ∩ [n/2]| ≥ n/4 + t/2. The latter condition implies that A is a t-intersecting family.

Claim 3.6.3. |A| ≥ 4ε2n.

The claim holds since

|A| =
a
√
n/2∑

s=a
√
n/4

n/4−t/2−s∑
k=0

(
n/2

n/4 + t/2 + k

)(
n/2

n/4− t/2− s− k

)

≥ a
√
n

4

a
√
n∑

k=0

(
n/2

n/4 + t/2 + k

)(
n/2

n/4− t/2− a
√
n/2− k

)
≥ a
√
n

4
· a
√
n

(
n/2

n/4 + 2a
√
n

)(
n/2

n/4− 2a
√
n

)
≥ 4ε2n,

where the last inequality follows by applying Facts 3.2.1 and 3.2.2 and since ε� a.
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Write Aex :=
(

[n]
≥n/2+t/2

)
. So Aex is a t-intersecting set. Since t = o(

√
n) note that |Aex| ≥ (1/2− ε/2)2n.

As p ≥ ω(n)/2n, by the Chernoff bound for the binomial distribution, we have that, with high probability,

P(n, p) contains at least (1/2− ε)p2n elements from Aex. Denote this set by Aex,p. We will show that, with

high probability, we can add a significant number of elements from A to Aex,p to obtain a t-intersecting set

in P(n, p) of size at least ( 1
2 + ε)2np.

Consider any A ∈ A. The number of elements B ∈
(

[n]
≥n/2

)
with |A ∩B| < t is

t−1∑
k=0

(
|A|
k

)(
n− |A|
≥ n/2− k

)
≤
(
|A|
t− 1

) t−1∑
k=0

(
n− |A|
≥ n/2− k

)
≤
(
n/2− a

√
n/4

t− 1

) t−1∑
k=0

(
n/2 + a

√
n/2

≥ n/2− k

)

=

(
n/2− a

√
n/4

t− 1

) t−1∑
k=0

(
n/2 + a

√
n/2

≤ a
√
n/2 + k

)
≤ 2

(
n/2− a

√
n/4

t− 1

)(
n/2 + a

√
n/2

a
√
n/2 + t

)
.

Further,

2

(
n/2− a

√
n/4

t− 1

)(
n/2 + a

√
n/2

a
√
n/2 + t

)
≤ nt

(
3
√
n

a

)0.55a
√
n

≤ 20.6a
√
n logn,

where in the first inequality we use that t < a
√
n/100 and apply Fact 3.2.3.

Let Ap denote the set of elements A ∈ A that lie in P(n, p) and where Aex,p ∪{A} is a t-intersecting set.

Thus, the probability that A ∈ A lies in Ap is at least

p(1− p)20.6a
√
n logn

.

By X denote the size of the family Ap. By Claim 3.6.3,

E(X) ≥ 4ε2np(1− p)20.6a
√
n logn

≥ 4εp2n(1− p20.6a
√
n logn) ≥ 4εp2n(1− 2−0.4a

√
n logn) ≥ 3εp2n,

where the last inequality follows since n is sufficiently large.

Write A = {A1, . . . , Am} and X =
∑m
i=1Xi where Xi = 1 if Ai ∈ Ap and Xi = 0 otherwise. Note

that the random variables Xi, Xj are not independent if and only if there is some B ∈ Aex such that

|B ∩ Ai|, |B ∩ Aj | < t. In this case, |B| ≥ n/2 and so |Ai ∪ Aj | ≤ n/2 + 2t ≤ n/2 + a
√
n/50. Further,

|Ai|, |Aj | ≥ n/2− a
√
n/2 and thus |Ai \Aj |, |Aj \Ai| ≤ a

√
n. So given a fixed i, the number of Xjs that are
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not independent with Xi is at most

(
n

≤ a
√
n

)(
|Ai|
≤ a
√
n

)
≤ 2

(
n

a
√
n

)2

≤ 2

(
e
√
n

a

)2a
√
n

< 210a
√
n logn.

Write i ∼ j to mean that Xi and Xj are not independent. By abusing notation let us also write Ai to denote

the event that Ai ∈ Ap. Consider

∆ :=
∑
i∼j

P(Ai∩Aj).

For Ai, Aj ∈ Ap we require that Ai, Aj ∈ P(n, p) and so P(Ai∩Aj) ≤ p2. Therefore,

∆ ≤
m∑
i=1

210a
√
n lognp2 ≤ 2n210a

√
n lognp2.

In particular, ∆ = o(E(X)2). Thus, by applying Corollary 4.3.4 from [4] (Chebyshev’s inequality) we have

that, with high probability, X ≥ 2εp2n.

Note that Ap ∪ Aex,p is a t-intersecting set in P(n, p) and, with high probability, it has size at least

(1/2 + ε)p2n, as required.

By arguing precisely as in the proof of Theorem 3.6.2 we in fact obtain the following result for t = O(
√
n).

Theorem 3.6.4. Given any constant C > 0, there is a constant ε > 0 such that the following holds. Let

p < 2−100C
√
n logn where p ≥ ω(n)/2n for some function ω(n) → ∞ as n → ∞, and let t ≤ C

√
n. Write

K := K(n, t). Then there exists a constant ε > 0 such that, with high probability, the largest t-intersecting

family in P(n, p) has size at least (1 + ε)pK.

The following result together with Theorem 3.6.2 resolves Question 3.6.1 for t = o(
√
n).

Theorem 3.6.5. If p = 2−o(
√
n logn) and t = o(

√
n) then with high probability the largest t-intersecting

family in P(n, p) has size ( 1
2 + o(1))2np.

Proof. Note that for this range of t, with high probability, the size of the largest t-intersecting family in

P(n, p) is at least ( 1
2 + o(1))2np. Hence to prove the theorem, it suffices to show that the largest intersecting

family in P(n, p) has size at most ( 1
2 +o(1))2np. That is, it suffices to prove the upper bound in the theorem

for t = 1, since for any t ≥ 2 any t-intersecting family is also 1-intersecting (i.e. intersecting).

Fix any δ > 0 and define 0 < ε� γ � δ. We will show that with high probability the largest intersecting

family in P(n, p) has size at most ( 1
2 + δ)2np.
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The first step in the proof is to create a collection of containers that house all intersecting families. Define

the graph G on vertex set P(n) where distinct A,B are adjacent in G precisely if A ∩ B = ∅. In order to

bound the size of the containers, we require a supersaturation result.

Claim 3.6.6. If F ⊆ P(n) where |F| ≥
∑n
k=n

2−C
√
n

(
n
k

)
for some constant C > 0, then e(G[F ]) ≥

2n+ C
20

√
n logn and so ∆(G[F ]) ≥ 2

C
20

√
n logn.

A result of Frankl [44] and Ahlswede [1] implies that, given |F|, the number of edges in G[F ] is minimised

if F consists of the top layers of P(n), and possibly one partial layer. That is, there are no A,B ⊆ [n] with

|A| < |B| and A ∈ F but B /∈ F .

Hence we may assume that F consists of the top n
2 + C

√
n + 1 layers of P(n). We will estimate the

degrees of vertices in the lowest C
√
n/2 layers of F . The total number of vertices in these layers is at least

δ12n, where δ1 > 0 is a constant dependent only on C. The degree of each vertex v in these layers is bounded

below by

degG[F ](v) ≥
(
n/2 + (C/2)

√
n

n/2− (C/2)
√
n

)
≥ 2(C

√
n logn)/10.

Thus, the number of edges in G[F ] is at least δ12n2(C
√
n logn)/10/2 ≥ 2n+ C

20

√
n logn, thereby proving the

claim.

By applying the graph container algorithm to G with parameter 2ε
√
n logn, Claim 3.6.6 implies that there

is a function f :
( V (G)

≤2n−ε
√
n logn

)
→
(

V (G)
≤(1/2+γ)2n

)
such that, for any independent set I in G, there is a subset

S ⊆ I where S ∈
( V (G)

≤2n−ε
√
n logn

)
and I ⊆ S ∪ f(S). Note here we used that

n∑
k=n

2−20ε
√
n

(
n

k

)
≤
(

1

2
+ γ

)
2n.

Let F be the collection of all sets S ∪ f(S) for all S ∈
( V (G)

≤2n−ε
√
n logn

)
. So |F | ≤ (1/2 + 2γ)2n for every F ∈ F .

Further, Fact 3.2.3 implies that

log |F| ≤ log

 ∑
a≤2n−ε

√
n logn

(
2n

a

) ≤ log

2

(
e2n

2n−ε
√
n logn

)2n−ε
√
n logn


≤ n2n−ε

√
n logn ≤ 2n−

ε
2

√
n logn. (3.6.1)
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Given any F ∈ F , by the Chernoff bound for the binomial distribution we have that

P
(
|F ∩ P(n, p)| ≥ (1/2 + 4γ)2np

)
≤ 2e−γ

22np/2. (3.6.2)

Thus, (3.6.1), (3.6.2) and the choice of p imply that with high probability |F ∩ P(n, p)| ≤ (1/2 + δ)2np for

all F ∈ F . Since every intersecting family in P(n) lies in some F ∈ F , the theorem now follows.

3.7 Sperner’s theorem revisited

3.7.1 Counting antichains in P(n)

Sperner’s theorem [101] states that the largest antichain in P(n) has size
(

n
bn/2c

)
. It was Dedekind [31] in

1897 who first attempted to find the total number A(n) of distinct antichains in P(n).

Since every subset of an antichain is an antichain itself, it follows that 2( n
bn/2c) ≤ A(n). The following

result of Kleitman determines A(n) up to an error term in the exponent.

Theorem 3.7.1 (Kleitman [71]). The number of antichains in P(n) is 2( n
bn/2c)(1+o(1)).

For further details on the history of this, and similar questions, we refer the reader to the brilliant survey

by Saks [94]. Our first goal in this section is to give an alternative proof of Theorem 3.7.1 using the container

method. We will apply the following supersaturation result of Kleitman [70].

Theorem 3.7.2 (Kleitman [70]). Let A ⊆ P(n) with |A| ≥
(

n
bn/2c

)
+ x. Then A contains at least

(bn/2c+ 1)x pairs A,B with A ⊂ B.

For x ≤
(

n
bn/2c+1

)
, Theorem 3.7.2 is easily seen to be optimal, by taking a full middle layer and any x sets

on the layer above. Our proof of this supersaturation theorem will make use of the existence of a symmetric

chain decomposition (or SCD) of P(n), given first by de Bruijn, Tengbergen and Kruyswijk [21]. An SCD

X is a partition of P(n) into symmetric chains, i.e. chains that for some k ≤ n/2 consist of precisely one set

of each size i between k and n − k. The proof we give is very similar to the proof of a more general result

from [32].

Proof of Theorem 3.7.2. Without loss of generality we may assume that ∅, [n] /∈ A. Given any SCD Z we

say that Z contains a bad pair A,B if A,B ∈ A and there exists a chain X ∈ Z such that A,B ∈ X. Note

that Z is a partition of P(n) into
(

n
bn/2c

)
chains, hence by the pigeonhole principle Z contains at least x bad

pairs.
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Fix some SCD X . Each permutation π ∈ Sn induces a permutation on the subsets of [n] and hence on

collections of subsets of [n]. In particular, π(X ) is a SCD. We will pick a random permutation π ∈ Sn and

estimate the number of bad pairs contained in π(X ).

Let P denote the set of ordered pairs A,B ∈ A where A ⊂ B. Consider any (A,B) ∈ P. If |B| ≥ bn/2c+1

define δA(B) := {S ⊂ [n] : S ⊂ B, |S| = |A|}. Otherwise define δA(B) := {S ⊂ [n] : A ⊂ S, |S| = |B|}. Since

A,B /∈ {∅, [n]}, in both cases we have |δA(B)| ≥
(bn/2c+1
bn/2c

)
.

If |B| ≥ bn/2c + 1, the probability that there is a chain X ∈ π(X ) with S,B ∈ X is the same for all

S ∈ δA(B). So the probability that there is a chain X ∈ π(X ) with A,B ∈ X is at most 1
bn/2c+1 . Similarly

if |B| ≤ bn/2c, the probability that there is a chain X ∈ π(X ) with A,B ∈ X is at most 1
bn/2c+1 . Thus, the

expected number of bad pairs in π(X ) is at most |P|/(bn/2c + 1). On the other hand, as π(X ) is a SCD

there are at least x bad pairs in π(X ). Hence, |P| ≥ (bn/2c+ 1)x, as desired.

Now Theorem 3.7.1 follows from an easy application of the container method.

Proof of Theorem 3.7.1. Let ε > 0 and let G be the graph with vertex set P(n) where A and B are adjacent

precisely if A ⊂ B or B ⊂ A. By applying the graph container algorithm to G with parameter εn/10, Theo-

rem 3.7.2 implies that we obtain a function f :
(

V (G)
≤10·2n/εn

)
→
( V (G)

≤(1+ε)( n
bn/2c)

)
such that, for any independent

set I in G, there is a subset S ⊆ I where S ∈
(

V (G)
≤10·2n/εn

)
and I ⊆ S ∪ f(S).

Let F be the collection of all sets S ∪ f(S) for all S ∈
(

V (G)
≤10·2n/εn

)
. Then

|F| ≤
(

2n

≤ 10 2n

εn

)
≤ 220 2n

εn logn = 2o((
n

bn/2c)).

Further, every antichain is an independent set in G and therefore lies in some element of F and |F | ≤

(1 + 2ε)
(

n
bn/2c

)
for every F ∈ F . The existence of F immediately proves the theorem.

Let F ⊆ P(n), and for i ∈ [n], let Bi denote the number of comparable pairs A,B ∈ F with |B\A| = i

and let B≥i := Bi +Bi+1 + . . .+Bn. Then by arguing as in the proof of Theorem 3.7.2 we get the following

innocent-looking proposition, that eventually led us to the proof of the main results of Chapter 2.

Proposition 3.7.3. Let n,N, x ∈ N. Suppose F ⊆ P(n) where |F| =
(
n
n/2

)
+ x and for all A ∈ F we have

N ≤ |A| ≤ n−N . Then

B≥N(bn/2c+dN/2e
N

) +

N−1∑
k=1

Bk(bn/2c+dk/2e
k

) ≥ x.
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3.7.2 A two-coloured generalisation of Theorem 3.7.1

Now we turn our attention to a two-coloured generalisation of Sperner’s theorem, which was discovered

independently by Katona [68] and Kleitman [67]. Given a (two-)colouring of [n], we say that a pair of sets

A,B ∈ P(n) is comparable with monochromatic difference if A ⊂ B, and the difference B\A is monochro-

matic.

Theorem 3.7.4 (Katona [68], Kleitman [67]). Let A ⊆ P(n), and let R ∪W be a partition of [n] (i.e. a

two-colouring of [n] using colours Red and White). If A does not contain a pair of sets which are comparable

with monochromatic difference then |A| ≤
(

n
bn/2c

)
.

Note that setting R = ∅ in Theorem 3.7.4 gives the classical Sperner theorem. We will consider the

following question: given the partition R ∪W , how many families are there without two comparable sets

whose difference is monochromatic? Alternatively, how many families are there for which there exists a

partition R ∪W such that there are no comparable pairs with monochromatic difference? (The answers to

these two questions are at most a factor of 2n apart.) To answer this question using the container method,

first we need a supersaturation result.

Lemma 3.7.5. Let ε > 0 and n be sufficiently large. Given a partition R∪W = [n] and a family F ⊂ P(n)

of size |F| ≥ (1 + ε)
(
n
n/2

)
, there are at least ε

(
n
n/2

)
n3/4

4 comparable pairs A,B ∈ F with monochromatic

difference.

We note that the factor n3/4/4 is far from optimal and indeed the proof below can easily be strengthened

to some function of the form n1−o(1) instead of the n3/4. The number of such pairs is probably at least

ε
(
n
n/2

) (
bn2 c+ 1

)
(if n > 5). We could not prove this, but fortunately this weaker result suffices to prove

the counting theorem later (in fact one could replace the n3/4 by anything bigger than c
√
n log n and the

calculations would still go through, with a worse o(1) error term in the final result).

Proof of Lemma 3.7.5. Suppose first that |R| ≤ n3/4. For each S ⊆ R, let FS := {A ⊆ W : A ∪ S ∈ F}.

Given any pair of sets A,B with A ⊂ B and A,B ∈ FS we can find a comparable pair A ∪ S,B ∪ S in F

with monochromatic difference. Thus, Theorem 3.7.2 implies that the number of comparable pairs in F with

monochromatic difference is at least

∑
S⊆R

(
|FS | −

(
n− |R|

(n− |R|)/2

))(
n− |R|

2
+ 1

)
≥
(

(1 + ε)

(
n

n/2

)
− 2|R|

(
n− |R|

(n− |R|)/2

))
n

3

≥
(

(1 + ε)

(
n

n/2

)
−
(

1 +
ε

2

)( n

n/2

))
n

3
= ε

(
n

n/2

)
n

6
,
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as required. Note that in the penultimate inequality we used Fact 3.2.1 and that |R| = o(n).

We may therefore assume that |R| ≥ n3/4 and |W | ≥ n3/4. Remove all monochromatic elements of F ,

and all those elements of F that contain the entire set R or the entire set W as subsets. The number of

such sets is at most ε
2

(
n
n/2

)
. Following the original proof of Theorem 3.7.4, let BW and BR be SCDs of P(W )

and P(R). Let the group G = S|W | × S|R| act on R ∪W in the natural way, permuting the elements in the

two sets. From now on for simplicity we shall refer to comparable pairs in F with monochromatic difference

simply as bad pairs. We say that the pair of SCDs BR, BW contains the bad pair (A,B) if there exist chains

X ∈ BR and Y ∈ BW such that Y contains (A ∩W,B ∩W ) and X contains (A ∩R,B ∩R).

Let x := ε
2

(
n
n/2

)
. We first show that every pair of SCDs contains at least x bad pairs. This follows

instantly from the original proof of Theorem 3.7.4: suppose on the contrary, we could find a pair of SCDs

BR and BW and a family A ⊂ F of size |A| =
(
n
n/2

)
+ 1 such that the pair BR,BW does not contain any bad

pairs from A. If a pair of chains (X,Y ) ∈ BR×BW does not contain any bad pairs, then the number of sets

A such that Y contains A∩W and X contains A∩R is at most min{|X|, |Y |}. So if X1 ⊂ . . . ⊂ Xt is a chain

in BR and Y1 ⊂ . . . ⊂ Ys is a chain in BW then A contains at most min{s, t} sets of the form Xi ∪ Yj , which

is also the number of sets of this form having size exactly bn/2c. Hence
∑
X∈BR,Y ∈BW min{|X|, |Y |} =

(
n
n/2

)
because both sides count the number of subsets of [n] of size bn/2c. Thus for every subfamily A ⊆ F with

|A| =
(
n
n/2

)
+ 1 there exists a pair of chains X ∈ BR, Y ∈ BW containing a bad pair from A, and the claim

follows.

Choose a random element π ∈ G. We claim the probability that π(BR,BW ) contains a given bad pair is

at most 2/n3/4. To see this, let (A,B) be a bad pair. Without loss of generality we may assume A ⊂ B and

B\A ⊆ R. This implies that B ∩W = A ∩W , and since A 6= B we have A ∩ R 6= B ∩ R. The probability

that (A,B) is contained in the pair π(BR,BW ) of SCDs is equal to the probability that (A ∩ R,B ∩ R) is

contained in πR(BR) (where πR denotes the restriction of π to the set R). We removed the monochromatic

elements of F and those that contain R, hence A ∩R,B ∩R /∈ {∅, R}. Hence, defining δA(B) and applying

the shadow argument as in the proof of Theorem 3.7.2, we get that the probability that π(BR,BW ) contains

(A,B) is at most max{2/|R|, 2/|W |} ≤ 2/n3/4, as claimed. Putting the last two paragraphs together, we

obtain that there are at least ε
(
n
n/2

)
n3/4

4 bad pairs, as required.

Now a simple application of the container method, exactly as in the proof of Theorem 3.7.1, yields a

counting version of Theorem 3.7.4.

Theorem 3.7.6. The number of families F for which there exists a colouring R ∪W = [n] such that there

is no comparable pair A,B ∈ F with monochromatic difference is 2( n
n/2)(1+o(1)).
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Proof. Fix a colouring R,W with R ∪W = [n], and define a graph G on vertex set P(n) where two compa-

rable sets are adjacent if their difference is monochromatic. Hence families without comparable pairs with

monochromatic difference correspond to independent sets in G. Arguing precisely as in the proof of Theorem

3.7.1, we find that the number of independent sets, and hence the number of families without comparable

sets with monochromatic difference, is 2( n
n/2)(1+o(1)). There are 2n possible colourings to start with, hence

the number of families for which there exists a colouring avoiding comparable sets with monochromatic

difference is 2n · 2( n
n/2)(1+o(1)) = 2( n

n/2)(1+o(1)) as required.

3.8 Counting maximal independent sets and antichains in the

Boolean lattice

Most of this chapter dealt with finding α(n), the number of families in P(n) satisfying some given property.

We applied different variations of the container method to obtain asymptotics for logα(n). The reader might

be curious whether it is possible to obtain precise asymptotics for α(n) using these (or different) methods.

In general though this seems to be a much more difficult task. For example, in the problem we consider

below, it is difficult to even make a firm guess on the asymptotics.

For a graph G, we say an independent set I of G is maximal if for any v ∈ V (G) \ I, we have that

I ∪ {v} is not independent. Let mis(G) denote the number of maximal independent sets in G. Most of the

problems discussed below have their origins in [33]. Let Bn,k be the graph on vertex set
(

[n]
k

)
∪
(

[n]
k+1

)
, and

edges given by inclusion. Ilinca and Kahn [64] proved that log2 mis(Bn,k) = (1+o(1))
(
n−1
k

)
. They also made

the following sharp conjecture.

Conjecture 3.8.1 (Ilinca and Kahn [64]).

mis(Bn,k) = (1 + o(1))n2(n−1
k ),

where the o(1) term goes to 0 as n→∞.

The natural lower bound in Conjecture 3.8.1 follows by defining for each i ∈ [n] an induced matching Mi

in Bn,k of size
(
n−1
k

)
where the edges of the matching are of the form (B,B∪ i) for B ∈

(
[n]\{i}
k

)
. Each of the

2|Mi| sets containing precisely one vertex from each edge in Mi extends to a maximal independent set, and

each extension is different. This produces 2(n−1
k ) distinct maximal independent sets. By considering each

Mi for i ∈ [n] we obtain a list of n2(n−1
k ) maximal independent sets, containing not too many repetitions.
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It turns out however, that this construction can be tweaked to obtain significantly more maximal inde-

pendent sets.

Proposition 3.8.2. If |k − n/2| ≤
√
n then

mis(Bn,k) = Ω
(
n3/22(n−1

k )
)
.

Proof strategy: We say a triple T = (B, r, s) is good if r, s ∈ [n], B ∈
(

[n]
k

)
, 1, r /∈ B, r 6= 1 and s ∈ B. For

each good triple T we will construct a collection f(T ) of independent sets in Bn,k with

|f(T )| = 2(n−1
k )−n+1.

For each good triple T we will extend all elements of f(T ) to a maximal independent set in an arbitrary

way. We will show that every maximal independent set in Bn,k is obtained at most twice in this way. The

number of good triples is Ω
((
n−1
k

)
n2
)
, hence a simple calculation will complete the proof.

Proof. For a set C with i /∈ C and j ∈ C, let Ci := C ∪ {i} and Cj := C \ {j}. We define, for example, Ci,kj

analogously (assuming i, k /∈ C and j ∈ C). Let M be the induced matching in Bn,k of size
(
n−1
k−1

)
given by

M := {(C,C1) : 1 /∈ C, |C| = k}.

Given a good triple T = (B, r, s), let U(T ) := {C : |C| = k+ 1, B1
s ⊂ C} and D(T ) := {C : |C| = k,C ⊂

Br}. Let e := (B,B1) and f := (Brs , B
1,r
s ); notice these are two edges of M . Note that |U(T )| = n− k and

|D(T )| = k + 1. Every vertex of D(T ) ∪ U(T ) is incident to precisely one edge of M . Moreover the only

two edges that are simultaneously incident to one vertex in D(T ) and one vertex in U(T ) are e and f . The

collection of independent sets f(T ) is defined as follows.

• Let Br and B1
s be elements of the independent set.

• If an edge of M is not incident to any vertex in D(T ) ∪ U(T ) then put exactly one endpoint of that

edge into the independent set.

• If an edge of M is incident to precisely one vertex of D(T ) ∪ U(T ), choose the other vertex of this

edge.

Note that this gives us
(
n−1
k−1

)
− (n − k) − k + 1 free choices, hence |f(T )| = 2(n−1

k )−n+1 as claimed. Every

such set constructed is independent. Indeed, this follows since M is an induced matching, there is no edge
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between Br and B1
s , and there is no edge between Br or B1

s and another vertex in the set. Let F be the

union of the f(T )s over all good triples.

Every such constructed independent set contains precisely one vertex from each edge in M except for

precisely two edges (e, f from above). These two edges lie in a unique 6-cycle in Bn,k (e, f together with B1
s

and Br), hence given any I ∈ F , there are precisely two good triples giving rise to this I. Specifically, if

I ∈ F arises from a good triple T = (B, r, s), the only other good triple that ‘produces’ I is T ′ = (Brs , s, r).

Moreover, if I, I ′ ∈ F where I 6= I ′ then I and I ′ lie in different maximal independent sets in Bn,k. Hence

a maximal independent set of Bn,k is counted twice by |F| if it intersects M in |M | − 2 vertices, and not

counted otherwise.

The number of good triples is

(
n− 1

k

)
k(n− k − 1) = Ω

(
2n√
n
n2

)
= Ω

(
n3/22n

)
,

and the result follows.

In the above argument we started with a good triple and modified the independent sets from the Ilinca–

Kahn construction along a 6-cycle determined by the triple. But we can get a better lower bound by starting

out with a collection S of N > 1 good triples, as long as the sets in the triples are sufficiently far apart

(Hamming distance at least 20, say) so that the modifications do not interfere with each other. Each maximal

independent set is then counted at most 2N times, and as long as N is not too large the number of choices

for the N triples is at least

( n
10

)2N
((n−1

k−1

)
N

)
≥
( n

10

)2N
(

2n

C1N
√
n

)N
≥ 2nN

(
n3/2N−1C2

)N
,

for some absolute constants C1, C2 > 0. Each good triple decreases the number of free choices on edges of

M by at most n, hence costing us a factor of 2n. So by setting N = n3/2C2/2 we conclude the following

result, which is an exponential improvement over Proposition 3.8.2:

Proposition 3.8.3. There exists an absolute constant C > 0 such that whenever k, n are such that |k−n/2| ≤
√
n then

mis(Bn,k) ≥ 2(n−1
k−1)+Cn3/2

.
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We do not have any reason to believe that Proposition 3.8.3 gives the correct order of magnitude of

mis(Bn,k); It would be extremely interesting to determine this. However, we suspect this may be very

difficult.

Finally we note that the above result also disproves another conjecture from [64]. Write ma(P(n)) for the

number of maximal antichains in P(n). Ilinca and Kahn [64] conjectured that ma(P(n)) = Θ
(
n2( n−1

bn/2c)
)

.

However, since ma(P(n)) ≥ mis(Bn,k) for all k, Proposition 3.8.3 disproves this conjecture.

3.9 The number of metric spaces

The results of this section are based on [14]. The following result is an application of hypergraph containers,

but the main difficulty of the proof is the set-up and the formulation of the right tsupersaturation statement.

Hence this section can be regarded as a warm-up for the next chapter, where we delve deeper into the topic

of hypergraph containers.

Our goal is to estimate the number of metric spaces on n points, where the distance between any two

points lies in {1, . . . , r} for some r = r(n). This problem was considered first by Kozma–Meyerovitch–Peled–

Samotij [78], who, using the regularity lemma gave an asymptotic bound on the number of such metric spaces

for a fixed constant r. Recently, Mubayi–Terry [88] provided a characterisation of the typical structure of

such metric spaces for a fixed constant r, while n→∞. We will be more interested in what happens if r is

allowed to grow as a function of n. Our main result is the following:

Theorem 3.9.1. Fix an arbitrary small constant ε > 0. If

r = O

(
n1/3

log
4
3 +ε n

)
,

then the number |Mr
n|of such metric spaces is

|Mr
n| =

⌈
r + 1

2

⌉(n2)+o(n2)

.

Kozma–Meyerovitch–Peled–Samotij [78] pointed out that the discrete and the continuous problems are

related. They considered the same question in the continuous case with distances in [0, 1]. Their entropy

based approach yields Theorem 3.9.1 for r < n1/8. The same set of authors have recently announced [78] an
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almost optimal estimate, showing that the number of such metric spaces satisfies

|Mr
n| ≤

((
1

2
+

2

r
+

C√
n

)
r

)(n2)
.

At the end of this section we show how our results translate to the continuous setting.

For a positive integer r define m(r) = d r+1
2 e. We will use an easy corollary of Mubayi–Terry ([88] Lemma

4.9):

Lemma 3.9.2. Let A,B,C ⊂ [r], all non-empty. Suppose the triple {A,B,C} does not contain a non-metric

triangle – that is, every triple {a, b, c : a ∈ A, b ∈ B, c ∈ C} satisfies the triangle-inequality. Then if r is even

we have |A|+ |B|+ |C| ≤ 3m(r), and if r is odd we have |A|+ |B|+ |C| ≤ 3m(r) + 1.

Let H be the 3-uniform hypergraph with vertex set r rows, one for each color, and
(
n
2

)
columns, one

for each edge of Kn. A vertex (i, f) of H corresponds to the event that the graph edge f has color i.

Three vertices of H form a hyperedge when the graph edge coordinates of the vertices form a triangle in

Kn while the ‘colors’ do not satisfy the triangle inequality. With other words, the hyperedges correspond to

non-metric triangles, and independent sets having exactly one vertex from each column correspond to points

of the metric polytope. Our plan is to prove a supersaturation statement, but first we need two lemmas.

The first lemma we use is due to Füredi [47]. For a graph G, write G2 for the “proper square” of G, i.e.,

where xy is an edge if and only if there is a z such that xz and zy are edges in G. Write e(G) for the number

of edges in G.

Lemma 3.9.3. For any graph G with n vertices, we have

e(G2) ≥ e(G)− bn/2c.

The second lemma bounds the size of the largest independent set in H.

Lemma 3.9.4. Let S ⊂ V (H) have no empty columns and contain no edges in H. Then if r is even we

have |S| ≤ m(r)
(
n
2

)
, and if r is odd we have |S| ≤ m(r)

(
n
2

)
+ rn.

Proof. The even case follows directly from Lemma 3.9.2, and we note that this bound is tight – let S contain

the interval [r/2, r] from each column. The bound in the odd case is slightly more difficult, and we make no

effort to establish a tight bound, which should probably be |S| ≤ m(r)
(
n
2

)
+ n/2.
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Let r be odd, and let A,B,C be three columns that form a triangle of S. Note that if for some k ≥ 1

we have |A| ≥ m(r) + k and |B| ≥ m(r) + k then |C| ≤ m(r) − 2k + 1 ≤ m(r) − k by Lemma 3.9.2. Write

Bk for the set of columns in S of order at least m(r) + k and write Sk for the set of columns in S of order

at most m(r)− k. Let Gk be the graph on [n] with edges Bk. Then by Lemma 3.9.3 we get

|Sk| ≥ e(G2
k) ≥ e(Gk)− bn/2c ≥ |Bk| − n.

Hence

|S| −m(r)

(
n

2

)
=

r∑
k=1

k(|Bk| − |Bk+1|)−
r∑

k=1

k(|Sk| − |Sk+1|) =

r∑
k=1

(|Bk| − |Sk|) ≤ nr,

and the result follows.

Now we are ready to prove a supersaturation-like result.

Lemma 3.9.5. Let ε > 0 and let S ⊂ V (H) with no empty columns.

1. If r is even and |S| ≥ (1 + ε)
(
n
2

)
m(r), then S contains at least ε

10

(
n
3

)
hyperedges.

2. If r is odd, n > nε sufficiently large and |S| ≥ (1 + ε)
(
n
2

)
m(r), then S contains at least ε4

40000

(
n
3

)
hyperedges.

Proof. Suppose first that r is even. Then there are at least ε
10

(
n
3

)
triangles in G such that the corresponding

columns contain at least (1 + ε/10)3m(r) vertices from S. Indeed, if this was not the case, then

ε
10

(
n
3

)
3r +

(
n
3

)
3m(r)(1 + ε/10)

n− 2
=

(
n

2

)(
m(r) +

ε(r +m(r))

10

)
> |S|,

which is a contradiction. Hence part 1 of the lemma follows from Lemma 3.9.2.

Now suppose r is odd. Given T ⊂ [n], write fS(T ) for the set of vertices of S contained in the
(|T |

2

)
columns of H corresponding to the edges spanned by T . Set n0 = 20/ε, so that by Lemma 3.9.4, whenever

T ⊂ [n] with |T | = n0 and |fS(T )| ≥ m(r)
(
n0

2

)
(1 + ε

3 ) then H[fS(T )] contains a hyperedge.

First, we claim that there are at least ε
4

(
n
n0

)
choices of T ⊂ [n] with |T | = n0 and |fS(T )| ≥ m(r)

(
n0

2

)
(1 +

ε
3 ).
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Indeed, if this was not the case, then we would have

|S| ≤
ε
4

(
n
n0

)(
n0

2

)
r +

(
n
n0

)
m(r)

(
n0

2

)
(1 + ε

3 )(
n−2
n0−2

) =

(
n

2

)(
m(r) +

εr

4
+
εm(r)

3

)
<

(
n

2

)
m(r)(1 + ε),

(3.9.1)

which is not possible. So the number of hyperedges contained in S is at least

e(H[S]) ≥ ε

4

(
n

n0

)
/

(
n− 3

n0 − 3

)
≥ ε

4

ε3

203

(
n

3

)
,

and the result follows.

Write d̄ for the average degree of H, and for j ∈ [3] define the j-th maximum co-degree

∆j = max{|{e ∈ E(H) : σ ⊂ e}| : σ ⊂ V (H) and |σ| = j}.

Below, we will make use of a version of the container theorem of [8, 98], the way it was formulated by

Mousset–Nenadov–Steger [87].

Theorem 3.9.6. There exists a positive integer c such that the following holds for every positive integer

N . Let H be a 3-uniform hypergraph of order N . Let 0 ≤ p ≤ 1/(36c) and 0 < α < 1 be such that

∆(H, p) ≤ α/(27c), where

∆(H, p) =
4∆2

d̄p
+

2∆3

d̄p2
.

Then there exists a collection of containers C ⊂ P(V (H)) such that

(i) every independent set in H is contained in some C ∈ C,

(ii) for all C ∈ C we have e(H[C]) ≤ αe(H), and

(iii) the number of containers satisfies

log |C| ≤ 39c(1 + log(1/α))Np log(1/p).

Proof of Theorem 3.9.1. Let H be the hypergraph defined earlier, i.e., the 3-uniform hypergraph with vertex

set formed by pairs of the r colors and the
(
n
2

)
edges of Kn, with 3-edges corresponding to non-metric

triangles. Let ε, δ > 0 be arbitrarily small constants and set p = 1
r log2+δ n

and α = 1010c log4+2δ n
n . In H we
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have ∆1 ≤ nr2, ∆2 ≤ r, ∆3 = 1, d̄ ≥ r2n/64 and

∆(H, p) ≤ 4

(
64r2 log2+δ n

r2n
+

64r2 log4+2δ n

2r2n

)
≤ α

27c
.

Then Theorem 3.9.6 provides containers with

e(H[C]) ≤ αe(H) ≤ 104cr3n2 log4+2δ n,

and the number of containers is

log |C| ≤ c310rn2 · log n · log r · log log n

r log2+δ n
= o(n2).

Now assume

r = o

(
n1/3

log(4+2δ)/3 n

)
.

Then the maximum number of edges in a container is o(n3), hence by Lemma 3.9.5, and the fact that a

useful container does not have an empty column, we have for n large enough,

|V (C)| < (1 + ε)m(r)

(
n

2

)
.

Hence, the number of colourings in a container is at most (1 + ε)(
n
2)m(r)(

n
2) = m(r)(

n
2)+o(n2). The logarithm

of the number of containers is o(n2). The total number of good colourings is at most the number of containers

times the maximum number of colourings in a container. Hence the total number of good colourings is

m(r)(
n
2)+o(n2),

as required.

Now we turn our attention to the continuous setting. The set-up in [78] is as follows. Given a metric

space with n points and all distances being in [0, 1], we regard the set of distances as a vector in [0, 1](
n
2). We

will call the union of all such n points in [0, 1](
n
2) for all finite metric spaces the metric polytope Mn. More

precisely, the metric polytope Mn is the convex polytope in R(n2) defined by the inequalities 0 < dij ≤ 1 and

dij ≤ dik + djk.
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Note that if a+ b ≥ c then

dae+ dbe ≥ dce. (3.9.2)

Theorem 3.9.7. Fix δ > 0 constant. Then for n > nδ sufficiently large, we have

(vol(Mn))1/(n2) ≤ 1

2
+

1

n
1
6−δ

.

Proof. First consider the discrete setting, colouring with r colours, where r is the even integer closest to

n
1
6−

δ
2 . W.l.o.g. δ < 1/4 and set

1/p = n
1
3−

δ
4 , α = 300cnδ−

2
3 ,

where c is the constant from Theorem 3.9.6. Then

∆(H, p) < 300

(
1

rnp
+

1

p2r2n

)
≤ 300

(
n1/3−δ/4

n7/6−δ/2 +
n2/3−δ/2

n4/3−δ

)
≤ α,

and we get containers with

e(H[C]) ≤ αn3r3 ≤ n3−1/6−δ/4,

where the number of containers satisfies

log |C| ≤ n2rp log3 n ≤ n2−1/6−δ/5.

Hence, by Lemma 3.9.5, the number of vertices in a container is at most

|V (C)| ≤ (1 + n−1/6−δ/6)

(
n

2

)
m(r).

This implies that the number of colourings contained in a container is at most

col(C) ≤

(
V (C)(
n
2

) )(n2)

≤
(

(1 + n−1/6−δ/6)m(r)
)(n2) ≤ m(r)(

n
2)en

2−1/6−δ/7

.

That is, the total number X of colourings is at most

X ≤ m(r)(
n
2)en

2−1/6−δ/7

en
2−1/6−δ/5

≤ m(r)(
n
2)en

2−1/6−δ/8

.

Now consider colourings in the continuous setting. Cut up each edge of the cube into r pieces. We get by
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(3.9.2) that

(vol(Mn))1/(n2) ≤

(
(m(r) + 1)(

n
2)en

2−1/6−δ/8

r(
n
2)

)1/(n2)

≤

(
2−(n2)

(
1 +

4

r

)(n2)
)1/(n2)(

1 +
1

n1/6+δ/9

)
≤ 1

2
+

1

n
1
6−δ

,

as required.
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Chapter 4

The number of union-free families

The results in this chapter are joint work with József Balogh [15].

A family of sets is union-free if there are no three distinct sets in the family such that the union of

two of the sets is equal to the third set. Kleitman proved that every union-free family has size at most

(1 + o(1))
(
n
n/2

)
. Later, Burosch–Demetrovics–Katona–Kleitman–Sapozhenko asked for the number α(n) of

such families, and they proved that 2( n
n/2) ≤ α(n) ≤ 22

√
2( n
n/2)(1+o(1)). They conjectured that the constant

2
√

2 can be removed in the exponent of the right hand side. We prove their conjecture by formulating a new

container-type theorem for rooted hypergraphs.

4.1 Introduction

Let P(n) denote the family consisting of all subsets of [n]. Given a family F ⊆ P(n), we say that F is union-

free if there are no three distinct sets A,B,C ∈ F such that A∪B = C. Kleitman was a young professor at

Brandeis in the early 1960s when he stumbled across a book of open mathematical problems by Ulam [105].

The problem of determining the largest union-free family, originally raised by Erdős, appeared in this book.

Erdős conjectured that no union-free family could have size larger than O
((

n
bn/2c

))
. Kleitman [72] proved

this conjecture by establishing an upper bound of 2
√

2
(

n
bn/2c

)
, which he later improved to (1 + o(1))

(
n
bn/2c

)
.

Theorem 4.1.1 (Kleitman). If F ⊆ P(n) is a union-free family, then |F| ≤ (1 + o(1))
(

n
bn/2c

)
.

Later, Burosch–Demetrovics–Katona–Kleitman–Sapozhenko raised [22] the problem of enumerating all

union-free families in P(n). Let α(n) = |{F ⊆ P(n) : F is union-free}|. Since the collection of all bn/2c-

sets gives rise to a union-free family, and every subfamily of a union-free family is also union-free, we have

α(n) ≥ 2( n
bn/2c). They proved the following upper bound on α(n):

Theorem 4.1.2 (Burosch–Demetrovics–Katona–Kleitman–Sapozhenko). The function α(n) satisfies

2( n
bn/2c) ≤ α(n) ≤ 22

√
2( n
bn/2c)(1+o(1)).
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They conjectured that the constant 2
√

2 in the exponent of the right hand side can be removed. The

main result of this chapter is that their conjecture was correct:

Theorem 4.1.3. The function α(n) satisfies

α(n) = 2( n
bn/2c)(1+o(1)).

Our main tool in proving Theorem 4.1.3 is the Hypergraph Container Method, pioneered by Balogh–

Morris–Samotij [8] and independently by Saxton–Thomason [98]. We create a 3-uniform hypergraph H with

vertex set P(n), and sets A,B,C forming an edge if A ∪ B = C. Now every union-free family corresponds

to an independent set in H. Hence to prove Theorem 4.1.3 we will use the Container Method to bound

the number of independent sets in this hypergraph H. The idea behind the method is that there exists a

small family of vertex sets, called containers, which consists of sets spanning only few hyperedges, and each

independent set is contained in one of them.

The main difficulty in this problem compared to the main results in [8, 98] is that here H does not satisfy

any of the necessary co-degree conditions – it has large subgraphs where the co-degrees are comparable

to the total number of edges – hence straightforward applications of the available container theorems are

doomed to fail. To get around this difficulty we need a new version of the container theorem, that works

well for rooted hypergraphs. For this theorem to be applicable one needs to prove a nonstandard version of

a supersaturation theorem. The proof of the supersaturation theorem makes use of the Expander Mixing

Lemma of Alon–Chung [2]. Note that in general for the container method to work one needs some type

of supersaturation, which means that if vertex set U is a somewhat larger than the independence number

of the hypergraph, then U contains many hyperedges. Here we need a little bit more, we need some even

distribution of these hyperedges, a similar obstacle (which was handled differently) showed up in [86].

This chapter is organised as follows. In Section 4.2 we prove a new version of the Container Theorem for

3-uniform hypergraphs. In Section 4.3 we prove a supersaturated version of Theorem 4.1.1 and in Section

4.4 we combine it with our container theorem to prove Theorem 4.1.3.

4.2 Constructing containers in rooted hypergraphs

Definition 4.2.1. A 3-uniform hypergraph H is rooted if there exists a function f : E(H) → V (H) such

that
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• for every edge e ∈ E(H) we have f(e) ∈ e, and

• for any two vertices u, v there is at most one edge e ∈ E(H) with u, v ∈ e and f(e) /∈ {u, v}.

If H is a rooted hypergraph and f is specified then we call f a rooting function for H and for every edge

e we call f(e) the head of e. The head-degree of a vertex v is hd(v) = |{e ∈ E(H) : f(e) = v}|. The

head link-graph of a vertex v is the graph HLv(H) with vertex set V (H) and edge set {{u1u2} : {vu1u2} ∈

E(H), f ({vu1u2}) = v}.

Definition 4.2.2. Given a 3-uniform hypergraph H, a subset of its vertex set X ⊆ V (H) and two positive

numbers s, t, we say that a vertex v ∈ X is (X , s, t)-eligible if there is a subgraph Gv of its head link graph

HLv(H ∩ X ) with ∆(Gv) ≤ s and e(Gv) ≥ t. We say that X is an (s, t)-core if it does not contain an

(X , s, t)-eligible vertex.

Given ε > 0 and N > 0 we say that the hypergraph H is (ε,N, s, t)-nice if for every X ⊆ V (H) with

|X | ≥ (1 + ε)N , the set X contains an (X , s, t)-eligible vertex.

Some explanation might come in handy. Throughout this chapter we will mostly work with the hyper-

graph H which has vertex set P(n) and edge set {(A,B,C) : A ∪ B = C}. We prove a container theorem

for general hypergraphs, but it does no harm for the reader to think of this H throughout the proof. This

hypergraph is rooted, since whenever A∪B = C we can let f(A,B,C) = C. The crucial observation is that

given A,C there may be many choices for B such that A∪B = C holds (so the codegrees of the hypergraph

can be very large), but given A,B there is only one C such that A ∪ B = C (hence in this direction, all

codegrees are one). All our approaches using existing container lemmas broke down because H has such

large codegrees - but breaking the symmetry and proving an oriented- (or rooted) version of the container

lemma fixes the problem.

There is another difficulty that arises when one tries to prove a rooted container lemma - during the

proof it is much harder to keep control over the degrees of the link graphs, when we reduce from 3-uniform

to 2-uniform. To overcome this difficulty we need a stronger, balanced supersaturation result. A simple

supersaturation result (that is not good enough for us) states that if a family has size slightly larger than the

largest independent set, then it contains many edges, and hence it contains a vertex of large degree within

the family. In the present chapter we will show that such a family contains a vertex that not only has large

degree, but in fact one can find a dense subgraph of its link graph that is nicely distributed. Using the terms

defined above, our stronger supersaturation result will show that H is nice (with some parameters), i.e. that

if a family is slightly larger than the largest independent set then it is not a core, so it contains an eligible

67



vertex (again, parameters specified later). For more details, we direct the reader to Section 4.3.

The main goal of this section is to prove the following Container Theorem. Let H : [0, 1] → R be the

binary entropy function defined as

H(p) = −p log p− (1− p) log(1− p).

Theorem 4.2.3. [Container theorem for rooted 3-uniform hypergraphs] Let ε, s, t,N,M > 0 be parameters

satisfying

ε ≤ 1/10, 8s ≤ εt, 1

ε2
≤ s and M ≥ (1 + 100ε)N.

Let H be a 3-uniform rooted M -vertex hypergraph H such that there exists a rooting function f for H so that

H is (ε,N, s, t)-nice. Then there exists a family C ⊆ P (V (H)) satisfying the following:

1. For every independent set I ⊆ V (H), there exists a CI ∈ C such that I ⊆ CI .

2. log2 |C| ≤ 2M
ε (H(2s/t) +H(1/4εs)).

3. Every C ∈ C satisfies |C| ≤ (1 + 100ε)N .

Remark. 1. If H is (ε,N, s, t)-nice where s < (8t/ε)1/2, then H is (ε,N, (8t/ε)1/2, t)-nice as well, and

the theorem yields a smaller family C if s is replaced by (8t/ε)1/2.

2. Even though we will not need it in the present chapter, we remark that condition (2) can be replaced

by the following, stronger condition, typical for container type lemmas. Define p to be the least integer such

that (1− ε/2)pM ≤ N .

2.’ For every independent set I ⊆ V (H), there exist sets QI = (Q1, Q2, . . . , Qp) and RI = (R1, R2, . . . , Rp)

with Qi, Ri ⊆ I for all i, and sizes |Qi| ≤ 2sM(1− ε/2)i/t and |Ri| ≤M(1− ε/2)i/4εs. Moreover, the

container CI depends only on the pair (QI , RI). (Note: these sets are usually referred to as fingerprints

(or certificates, tokens) in the literature).

The following algorithm, which is useful when the codegrees can be high but the hypergraph is rooted,

will be used to produce the containers:

Container algorithm
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Input: Parameters ε, s, t,N, τ, z > 0 satisfying

τ ≥ 2s

t
, ε ≤ 1

10
, 4εs ≥ z, and τ +

1

z
≤ ε

2
,

a 3-uniform rooted hypergraph H on at least (1 + 100ε)N vertices, a rooting function f such that H is

(ε,N, s, t)-nice, and an independent set I ⊆ V (H).

Output: A set C such that I ⊆ C ⊆ V (H), and two sets T, T ′ ⊆ I.

Phase I:

1. Fix an arbitrary ordering of the vertices, and another arbitrary ordering of all graphs on vertex set

V (H). These will be used to break ties.

2. Set A = V (H) (the set of available vertices), T = ∅ be the first fingerprint (or token) of I, and let L

be the empty graph on vertex set V (H) (the link graph we build). The set C will only depend on T

and T ′.

3. If |A| ≤ (1− ε)|V (H)| then set C := A∪ T and STOP. Otherwise, set S := {u ∈ A : |NL(u)∩A| ≥ s}.

4. If A \ S is an (s, t)-core then go to Phase II.

5. Let v ∈ V (H[A\S]) be the largest degree vertex among (A\S, s, t)-eligible vertices (break ties according

to the ordering fixed in Step 1). If v /∈ I then replace A by A \ {v}, replace L by L \ {v} and return

to Step 3.

6. We have v ∈ I and v is (A\S, s, t)-eligible. Let Gv be a subgraph of its head link graph HLv(H)∩A\S

with ∆(Gv) ≤ s and e(Gv) ≥ t (break ties according to the ordering fixed in Step 1).

(a) Set T := T ∪ {v}.

(b) Set A := A \ {v}.

(c) Let L := (L ∪Gv) \ {v}. Note that since the input graph H was rooted, every pair of vertices

forms an edge in the head link graph of at most one other vertex, hence L is always a simple

graph.

(d) Return to Step 3.

Phase II:
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1. Initiate T ′ = ∅, the second fingerprint.

2. Let v be the largest degree vertex in L (break ties according to the ordering fixed in Step I.1). If

dL(v) < z then set C := A ∪ T ∪ T ′ and STOP.

3. If v /∈ I then replace A by A \ {v} and replace L by L \ {v} and go to Step 2.

4. We have v ∈ I and dL(v) ≥ z. Set T ′ := T ′ ∪ {v}, replace A by A \ (NL(v) ∪ {v}) and replace L by

L \ (NL(v) ∪ {v}). Go to Step 2.

End of algorithm.

Observation 4.2.4. The containers only depend on the fingerprints T, T ′.

Proof. Person A runs the algorithm with input I and gets output C, T, T ′. He then tells Person B the values

of T , T ′ and all other input parameters (including the orderings specified in Step 1), but not I. We claim

that B can find the value of C. Indeed, all he has to do is to try to follow the algorithm exactly as A did.

In Phase I, the only critical points are in Steps 5 and 6 where B seems to need knowledge of I to make the

same decisions as A did. But actually all B needs to know is whether the vertex v is in I or not. But for

this v we know that v ∈ T iff v ∈ I, hence B can run Phase I the same way as A did (and hence at every

point in Phase I B will know the values of L, S,A, etc.).

The same argument applies to Phase II. The largest degree vertex v that we consider in the algorithm is

in I precisely if it gets put into the fingerprint T ′, hence B can recover C.

Observation 4.2.5. At every point in the algorithm, ∆(L) ≤ 2s.

Proof. Every time we change L, we add to it a graph of maximum degree at most s. But as soon as some

vertex gets degree at least s we put it in S and do not touch it until its degree goes below s again. Hence

in L, the maximum possible degree is at most s+ s = 2s.

Observation 4.2.6. [Small fingerprints.] After the algorithm stops we have |T | ≤ τ |V (H)| and |T ′| ≤

|V (H)|/z.

Proof. Suppose we have |T | > τ |V (H)| at some point in the algorithm. Stop the algorithm when this

happens (in step 6(d)) and count the edges in L. Every time we increase T we add at least t edges to L. The

only times we delete edges from L is when we remove some vertices from A \ S. But these vertices had by

definition at most s neighbours in L. Hence in total we remove at most |V (H)|s edges from L, and so e(L) >
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τ |V (H)|t − |V (H)|s. By Observation 4.2.5, we have ∆(L) ≤ 2s, so s|V (L)| ≥ e(L) > τ |V (H)|t − |V (H)|s

whence it follows that 2s/t > τ (since L ⊆ H). As in the input we took τ ≥ 2s/t we conclude that

|T | < τ |V (H)| at every point in the algorithm.

If the algorithm stopped in Phase I then T ′ = ∅ and the claim follows. Otherwise, every time we put a

vertex into T ′ we removed at least z vertices from A. Hence |T ′| ≤ |V (H)|/z and the claim follows.

Observation 4.2.7. After the algorithm stops we have |A| ≤ (1− ε)|V (H)|.

Proof. If the algorithm terminated in Phase I then the claim follows. Now assume the algorithm entered

Phase II. Denote A1, S, L the sets A,S and graph L right before entering Phase II of the algorithm, and let

A2 be the set A at the end of the algorithm (noting that A2 ⊆ A1). Since we did not terminate after Phase

I, we know that |A1| ≥ (1− ε)|V (H)|. It was specified in the input that |V (H)| ≥ (1 + 100ε)N and ε ≤ 1/10,

hence we conclude that

|A1| ≥ (1 + 89ε)N. (4.2.1)

Since H is (ε,N, s, t)-nice, we have

|A1 \ S| ≤ (1 + ε)N, (4.2.2)

otherwise A1 \ S would not be an (s, t)-core. Since ε ≤ 1/10 we also have

|S|
|A1|

(4.2.2)

≥ 1− (1 + ε)N

|A1|
(4.2.1)

≥ 1− 1 + ε

1 + 89ε
> 8ε. (4.2.3)

Since |A1| ≤ |V (H)|, if it is the case that |A2| ≤ (1 − ε)|A1| then we are done. Hence in what follows, we

assume for contradiction that |A2| > (1− ε)|A1|, implying

|A1 \A2| < ε|A1|. (4.2.4)

As in L[A2] every vertex has degree at most z, we get

e(L[A2]) ≤ |A2|z
2
≤ |A1|z

2
. (4.2.5)

Recall that in L, every vertex has degree at most 2s. Hence, counting those edges in L which have at least

one endpoint in A1 \A2 we get

e(L[A1])− e(L[A2]) ≤ |A1 \A2|2s
(4.2.4)
< ε|A1|2s. (4.2.6)
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Note also that in L, every vertex in S has degree at least s. As e(L) = e(L[A1]), we have

e(L) ≥ |S|s
2
. (4.2.7)

Putting the relations (4.2.5), (4.2.6) and (4.2.7) together we get

|S|s
2
≤ e(L) = e(L(A1)) ≤ e(L(A2)) + ε|A1|2s <

|A1|z
2

+ ε|A1|2s
(4.2.3)

≤ |A1|z
2

+
|S|s

4
. (4.2.8)

Hence

8ε
(4.2.3)
<

|S|
|A1|

(4.2.8)
<

2z

s
,

which contradicts the restriction 4εs ≥ z on the input parameters. This completes the proof.

Observation 4.2.8. [Small containers.] After the algorithm stops we have |C| ≤
(
1− ε

2

)
|V (H)|.

Proof. If the algorithm stopped after Phase I then |C| ≤ |A|+ |T |, and if the algorithm stopped after Phase

II we get |C| ≤ |A| + |T | + |T ′|. In both cases, we have |C| ≤ (1 − ε)|V (H)| + τ |V (H)| + |V (H)|/z by

Observations 4.2.6 and 4.2.7. Since τ + 1/z ≤ ε/2 we have |C| ≤
(
1− ε

2

)
|V (H)| as required.

Putting all these observations together, we get the following container lemma. We use the notation(
M
≤m
)

=
∑m
i=0

(
M
i

)
.

Lemma 4.2.9. [Container lemma for rooted 3-uniform hypergraphs] Let ε, s, t,N,M > 0 be parameters

satisfying

ε ≤ 1/10, 8s ≤ εt, 1

ε2
≤ s and M ≥ (1 + 100ε)N.

Let H be a 3-uniform rooted M -vertex hypergraph H such that there exists a rooting function f for H so that

H is (ε,N, s, t)-nice. Then there exists a family C ⊆ P (V (H)) satisfying the following:

1. For every independent set I ⊆ V (H), there exists a C ∈ C such that I ⊆ C.

2. |C| ≤
(

M
≤2sM/t

)(
M

≤M/4εs

)
.

3. Every C ∈ C satisfies |C| ≤ (1− ε/2)n.

Proof. Setting τ = 2s/t and z = 4εs, the claim follows from Observations 4.2.4 - 4.2.8.
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We will obtain our main container theorem by iterating Lemma 4.2.9. Recall the following standard

bound on the sum of binomial coefficients that for ζ ≤ 1/2 and M

(
M

≤ ζM

)
≤ 2H(ζ)M . (4.2.9)

Proof of Theorem 4.2.3. The key observation that makes this proof work is that if H is (ε,N, s, t)-nice then

for any S ⊆ V (H) we have that H[S] is (ε,N, s, t)-nice. Hence we can iterate Lemma 4.2.9 to obtain a family

C, all of whose members have sizes less than (1 + 100ε)N .

Set

τ = 2s/t, β = 1/(4εs) and γ = 1− ε/2.

The size of C satisfies, for some N ′ with N < N ′ < N(1 + 100ε)

|C| ≤
(

M

≤ τM

)(
M

≤ βM

)
·
(

Mγ

≤ τMγ

)(
Mγ

≤ βMγ

)
·
(

Mγ2

≤ τMγ2

)(
Mγ2

≤ βMγ2

)
· . . . ·

(
N ′

≤ τN ′

)(
N ′

≤ βN ′

)
(4.2.9)

≤ 2(H(τ)+H(β))(M+Mγ+Mγ2+...+N ′) ≤ 22M(H(τ)+H(β))/ε,

and the result follows.

4.3 A supersaturated version of Theorem 4.1.1

In this section we will consider a family F of size slightly larger than the maximum size of a union-free

family, say |F| = (1 + ε)
(

n
bn/2c

)
. Then by Theorem 4.1.1 we know that F contains a triple A,B,C with

A ∪ B = C. With more work one can prove that F contains at least ε′n2
(
n
n/2

)
such triples, where ε′ is a

constant depending on ε. Note also that the factor n2 cannot be improved to n2+α for some constant α > 0,

as if F is contained in the middle two layers of P(n) then every element in F has at most n subsets in F ,

and hence for fixed C the equation A ∪B = C has at most n2 solutions.

Unfortunately this supersaturation is not quite strong enough for us - we not only want to find many

triples in F , but we want to find a large subset of such triples that is nicely distributed. Let H be the

3-uniform hypergraph on vertex set P(n), three sets A,B,C forming an edge with head C if C = A∪B. We

want to prove that H[F ] contains at least one (F , n, ε′n2)-eligible vertex. (Note that it is then an immediate

corollary that H[F ] contains at least ε′′n2
(
n
n/2

)
edges for some ε′′ > 0.)

Theorem 4.3.1. Let 0 < ε < 1/200 be a small constant and n sufficiently large. If |F| ≥
(

n
bn/2c

)
(1 + ε)
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then H[F ] contains at least one (F , n, ε2

1040n
2)-eligible vertex.

The first ingredient in the proof is the Expander Mixing Lemma, due to Alon and Chung [2]:

Theorem 4.3.2 (Expander Mixing Lemma). Let G be a D-regular graph on N vertices, and let λ be its

minimum eigenvalue. Then for all S ⊆ V (G),

e(G[S]) ≥ D

2N
|S|2 +

λ

2N
|S|(N − |S|).

Denote KG(m, k) the Kneser graph with vertex set
(

[m]
k

)
, two k-sets being connected by an edge if the

sets are disjoint. Then KG(m, k) is D-regular with D =
(
m−k
k

)
and its minimum eigenvalue λ = − k

m−kD

(see [84]). Let N =
(
m
k

)
= |V (KG(m, k))|. The following is a corollary of the Expander Mixing Lemma.

Lemma 4.3.3. Given β > 0, any set S of at least (1 + β)
(
m−1
k−1

)
vertices in KG(m, k) induces at least(

1− 1
1+β

)
Dm

N(m−k)

(|S|
2

)
edges.

We will need the following easy lemma to take care of families which are densely packed on the middle

layers of P(n). Families which are more spread out will be much harder to handle. Recall that H is the

3-uniform hypergraph with vertex set P(n), and sets A,B,C forming an edge if A ∪B = C. If for two sets

A,B we have A ⊆ B or B ⊆ A then we call (A,B) a comparable pair. If F is a fixed family in P(n) and

A ∈ F is any element of F , then for all i ∈ [n] we write Bi(A) = {B ∈ F : B ⊆ A, |A\B| = i}.

Lemma 4.3.4. Let 0 < δ < 1/10, n > n0(δ) sufficiently large, F ⊆ P(n), k ∈ {1, 2, . . . , 10} and A ∈ F

with n−
√
n log n < 2|A| < n+

√
n log n. Suppose |Bk(A)| ≥ δnk. Then A is

(
F , n, δ2n2

)
-eligible.

Proof. If k = 1 then any two sets C1, C2 ∈ B1(A) satisfy C1 ∪ C2 = A. As |B1(A)| ≤ |A| < n, the claim

follows. So now assume k ≥ 2.

Let G be the graph on vertex set V (G) = Bk(A), two sets C1, C2 being connected by an edge in G

if C1 ∪ C2 = A. Note that C1 and C2 are connected by an edge in G iff (A \ C1) ∩ (A \ C2) = ∅. We

want to estimate the number of edges in G using Lemma 4.3.3, hence we define the graph G′ on vertex set

V (G′) = {A \B : B ∈ F , B ⊆ A, |A \B| = k}, with edges connecting two sets precisely if they are disjoint.

Note that by the above remark, the graphs G and G′ are isomorphic.

Let δ′ be defined by δnk = δ′
(|A|
k

)
, hence δ′ ≥ δ. Define β by

1 + β =
|V (G′)|(|A|−1
k−1

) ≥ δ′ |A|
k
≥ δ |A|

k
.
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Now we can apply Lemma 4.3.3 to conclude that the number of edges in G′ is at least

e(G′) ≥
(

1− k

δ|A|

) (|A|−k
k

)
|A|(|A|

k

)
(|A| − k)

(
|V (G′)|

2

)
.

Choosing n � δ−1 we get that k
δ|A| < 1/2,

(|A|−k
k

)
/
(|A|
k

)
≥ 1/2 and |A|/(|A| − k) ≥ 1/2. Hence if n is

sufficiently large we get

e(G′) ≥ 1

8

(
|V (G′)|

2

)
.

Now let X be a random n-vertex subgraph of G′. The expected number of edges in G′[X] is at least
(
n
2

)
/8,

hence there exists a subgraph G′′ of G′ with |V (G′′)| = n and e(G′′) ≥
(
n
2

)
/8, and the claim follows.

At the very end of the supersaturation proof, we will make use of the following embedding lemma.

Lemma 4.3.5. Let m be a positive integer and let G be a graph with |V (G)| ≥ m. Let S ⊆ G be the set of

the m largest degree vertices in G. Suppose e(G \ S) ≥ m2. Then there exists a subgraph H ⊆ G such that

∆(H) ≤ m and e(H) ≥ m2/2.

Proof. If ∆(G \ S) ≤ m then H = G \ S will satisfy the claim. Now assume ∆(G \ S) ≥ m. Then for each

v ∈ S we have dG(v) ≥ m, as S was the collection of the largest degree vertices. We will build H in m steps.

Initially, let H be the empty graph on vertex set V (H) = V (G) and let S = {s1, s2, . . . , sm}. In step i, let

Ni = N(si) \ {s1, s2, . . . , si−1} and let N ′i ⊂ Ni be any subset with |N ′i | = m − i + 1. For each v ∈ N ′i add

the edge (siv) to H.

The algorithm finishes in m steps, and we have added a total of m(m+ 1)/2 edges to H. Each vertex not

in S receives at most one edge each step, hence their degree never goes above m. A vertex si ∈ S receives at

most one edge in steps 1, 2, . . . , i− 1, it receives m− i+ 1 edges in step i, and none after. Hence the graph

H constructed this way satisfies all conditions.

Now we are ready to prove a supersaturated version of Theorem 4.1.1. The beginning of the proof follows

Kleitman’s proof [72] of Theorem 4.1.1. At the point where he used the Erdős–Ko–Rado Theorem to give

an upper bound on some intersecting family (that we shall define later) we will instead use the Expander

Mixing Lemma to show that in our family, that is too large to be intersecting, there are many disjoint pairs.

However, we will observe that solutions to the equation A = B ∪ C correspond to many such disjoint pairs,

hence in the second half of the proof we have to show that despite overcounting we can still find many

different solutions to the equation. The constant 10 in the statement of Lemma 4.3.4 and in the proof of

Theorem 4.3.1 is simply a sufficiently large constant for all our estimates to work.
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Proof of Theorem 4.3.1. Let ∆ = n
2 −
√
n log n, ∆1 = n

2 −
1
2

√
n log n and ∆2 = n

2 + 1
2

√
n log n. Note that

|{A ∈ P(n) : |A| ≥ ∆2 or |A| ≤ ∆1}| = o

((
n

bn/2c

))
,

hence setting F1 = {A ∈ F : ∆1 ≤ |A| ≤ ∆2}, for n sufficiently large we have

|F1| ≥ (1 + ε/2)

(
n

bn/2c

)
.

Replace F by a subset of F1 of size (1 + ε/2)
(

n
bn/2c

)
, and so from now on we will work with a family of size

(1 + ε/2)
(

n
bn/2c

)
with all members having size between ∆1 and ∆2, that we still call F .

Given a permutation Π ∈ Sn and a set A ∈ F , we say the pair (Π, A) is good if

(i) The elements of A form the first |A| elements of Π;

(ii) For every B ⊂ A, if B is an initial segment of Π then B /∈ F .

We say a pair (Π, A) is bad if condition (i) above holds, but (ii) does not. We say a bad pair (Π, A) is

horrible if there is a B ∈ F with B ⊂ A, B is an initial segment of Π and |A\B| ≥ 11.

Now fix a set A ∈ F . We will say that Π is bad/horrible if (Π, A) is a bad/horrible pair. Let

HA = {C ∈ P(n) : |C| = ∆, C is the set of the first ∆ elements in a horrible permutation Π}.

So although C does not lie in F , we have that C ⊆ B ( A for some B ∈ F , with |A\B| ≥ 11. Define αA by

the equation

|HA| =
(
|A|
∆

)
αA. (4.3.1)

Note that αA ≥ 0 for all A ∈ F . Note that if for any k ∈ {1, 2, . . . , 10} we have |Bk(A)| ≥ ε
1020n

k then

we are done by Lemma 4.3.4, hence we may assume this is not the case.

Claim 4.3.6. There exists an A∗ ∈ F such that αA∗ ≥ ε/20.

Proof of claim. Let SA be the number of bad permutations for the set A. Then we have

SA
(n− |A|)!

≤ εn

1020

(
(|A| − 1)! + n(|A| − 2)! · 2! + . . .+ n9(|A| − 10)! · 10!

)
+ |HA|∆!(|A| −∆)!

≤ ε

100
|A|! + |HA|∆!(|A| −∆)!.

(4.3.2)
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Since every permutation is in at most one good pair, we get that

∑
A∈F

(|A|!(n− |A|)!− SA) ≤ n!.

Dividing by n! and using (4.3.1) and (4.3.2) we have

∑
A∈F

1− ε
100 − αA(
n
|A|
) ≤ 1.

Now use that
(
n
|A|
)
≤
(

n
bn/2c

)
and that |F| = (1 + ε/2)

(
n
bn/2c

)
to get that

ε

10

(
n

bn/2c

)
≤
∑
A∈F

αA,

and the claim follows.

Claim 4.3.7. If a set A∗ ∈ F satisfies αA∗ ≥ ε/20 then A∗ is (F , n, n2/2)-eligible.

Proof of claim. Let A∗ ∈ F be such that αA∗ ≥ ε/20. Note that by definition of αA∗ we have

|HA∗ | ≥
ε

20

(
|A∗|
∆

)
.

Consider the graph G with vertex set V (G) = {B ∈ F : B ( A∗, |A∗ \B| ≥ 11} and an edge connecting

B1, B2 if B1 ∪B2 = A∗. Let S be the set of the n largest degree vertices in G. Then

|S∆| := |{C ∈ P(n) : |C| = ∆, ∃B ∈ S : C ⊂ B}| ≤ n
(
|A∗| − 11

∆

)
≤
(
|A∗|
∆

)(
|A∗| −∆

|A∗| − 10

)11

≤
(
|A∗|
∆

)(
2
√
n log n

n
2 − 2

√
n log n

)11

≤ 1

n

(
|A∗|
∆

)
.

Let H′A∗ = HA∗ \ S∆, G′ = G \ S and note that

|H′A∗ | = |HA∗ | − |S∆| ≥
ε

100

(
|A∗|
∆

)
.

Let us now count the number P of pairs C1, C2 ∈ H′A∗ satisfying C1 ∪C2 = A∗. Note that C1 ∪C2 = A∗ iff

(A∗ \ C1) ∩ (A∗ \ C2) = ∅. Define β by

1 + β =
|H′A∗ |( |A∗|−1
|A∗|−∆−1

) > 2,
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hence we get by Lemma 4.3.3 with N =
( |A∗|
|A∗|−∆

)
, D =

(
∆

|A∗|−∆

)
, m = |A∗| and k = |A∗| −∆ that

P ≥

1−

( |A∗|−1
|A∗|−∆−1

)
ε

100

(|A∗|
∆

)
 ( ∆

|A∗|−∆

)
|A∗|( |A∗|

|A∗|−∆

)
∆

(
|H′A∗ |

2

)
.

Note that as n−
√
n log n ≤ 2|A∗| ≤ n+

√
n log n and ∆ = n/2−

√
n log n we get

(
∆

|A∗|−∆

)( |A∗|
|A∗|−∆

) ≥ ( ∆− (|A∗| −∆)

|A∗| − (|A∗| −∆)

)|A∗|−∆

=

(
1− |A

∗| −∆

∆

) ∆
|A∗|−∆

(|A∗|−∆)2

∆

≥ e−1.01
(3
√
n logn/2)2

n/2.01 ≥ e− 19
4 logn =

1

n19/4
.

Hence we have

P ≥ 1

n5

(
|H′A∗ |

2

)
.

Since every vertex in G′ corresponds to at most
(|A∗|−11

∆

)
vertices in H′A∗ , the number of edges in G′ is at

least

e(G′) ≥ 1

10n5

(
|HA∗ |(|A∗|−11

∆

))2

≥ ε2

106n5

(
|A∗|

|A∗| −∆

)22

≥ ε2

1020n5

(
n√

n log n

)22

≥ ε2n6

1020 log11 n
≥ n2.

(Note that this last line would not have worked if we replaced the constant 10 throughout the proof by

e.g. 7.) Hence in G the n largest degree vertices are in S ⊂ V (G) and after removing S from G we still

have e(G \ S) = e(G′) ≥ n2 edges. By Lemma 4.3.5 there is a subgraph G∗ ⊆ G with ∆(G∗) ≤ n and

e(G∗) ≥ n2/2. So A∗ is (F , n, n2/2)-eligible and the proof is completed.

Theorem 4.3.1 follows from claims 4.3.6 and 4.3.7.

4.4 Proof of the main result

Proof of Theorem 4.1.3. Define the 3-uniform hypergraph H on vertex set P(n) and edge set E(H) =

{(A,B,C) : A ∪ B = C}. For an edge (A,B,C) with A ∪ B = C set f(A,B,C) = C. Hence H is

rooted under f . Fix a constant ε with 0 < ε < 1/200 and let n be sufficiently large. By Theorem 4.3.1, H is(
ε,
(

n
bn/2c

)
, n, ε2

1040n
2
)

-nice. Apply Theorem 4.2.9 with parameters s = n, t = ε2

1040n
2, N =

(
n
bn/2c

)
to obtain

78



a family C of containers. Each container C ∈ C satisfies

|C| ≤ (1 + 100ε)

(
n

bn/2c

)
,

and the size of the family of containers satisfies

log2 |C| ≤
2 · 2n

ε

(
H
(
2 · 1040/ε2n

)
+H (1/4εn)

)
.

Since H(x) ≤ 2x log(x−1) for x < 1/2, we get

log2 |C| ≤ 1042 2n

ε

(
log
(
ε2n
)

ε2n
+

log(4εn)

4εn

)
≤ 1044ε−3 2n

n
log n ≤ ε

(
n

bn/2c

)
.

The number of independent sets in H, and hence the number α(n) of union-free families is bounded by

α(n) ≤ 2ε(
n

bn/2c)2(1+100ε)( n
bn/2c) ≤ 2(1+101ε)( n

bn/2c).

This completes the proof of Theorem 4.1.3.

4.5 Concluding remarks

Instead of the definition of a rooted hypergraph we could have defined more generally an r-rooted hyper-

graph. A 3-uniform hypergraph H is r-rooted if there exists a function f : E(H)→ V (H) such that

• for every edge e ∈ E(H) we have f(e) ∈ e, and

• for any pair of vertices u, v there exist at most r edges e ∈ E(H) with u, v ∈ e and f(e) /∈ {u, v}.

Similarly as before, if H is an r-rooted hypergraph and f is specified then we call f a rooting function for

H. Given this definition, essentially the same proof gives the following container theorem:

Theorem 4.5.1. [Container theorem for r-rooted 3-uniform hypergraphs] Let ε, s, t, r,N,M > 0 be param-

eters satisfying

ε ≤ 1/10,
4s

t
+

r

2εs
≤ ε and M ≥ (1 + 100ε)N.

Let H be a 3-uniform r-rooted M -vertex hypergraph H such that there exists a rooting function f for H so

that H is (ε,N, s, t)-nice. Then there exists a family C ⊆ P (V (H)) satisfying the following:
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1. For every independent set I ⊆ V (H), there exists a CI ∈ C such that I ⊆ CI .

2. log2 |C| ≤ 2M
ε (H(2s/t) +H(r/4εs)).

3. Every C ∈ C satisfies |C| ≤ (1 + 100ε)N .

We note that Theorem 4.5.1 can be generalised to k-uniform hypergraphs, but due to lack of applications

we chose not to do so here. It is a natural question to ask how Theorem 4.5.1 compares to the vast number of

container lemmas in the literature. The primary difference is that our lemma works very well if the codegrees

of a hypergraph are high, but the edges can be oriented in such a way that in one direction all codegrees are

small, as is the hypergraph H considered throughout this chapter (indeed the reason why we proved Theorem

4.5.1 in the first place was that we were not able to prove Theorem 4.1.3 using any of the already existing

container lemmas). Other than this difference, the proof of Theorem 4.5.1 resembles the main theorems of

[8, 98], but we put more effort into calculating the actual dependence of the various constants.
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Chapter 5

An improved lower bound for
Folkman’s theorem

The results in this chapter are joint work with József Balogh, Sean Eberhard, Bhargav Narayanan and

Andrew Treglown [7].

Folkman’s theorem asserts that for each k ∈ N, there exists a natural number n = F (k) such that

whenever the elements of [n] are two-coloured, there exists a set A ⊂ [n] of size k with the property that all

the sums of the form
∑
x∈B x, where B is a nonempty subset of A, are contained in [n] and have the same

colour. In 1989, Erdős and Spencer showed that F (k) ≥ 2ck
2/ log k, where c > 0 is an absolute constant; here,

we improve this bound significantly by showing that F (k) ≥ 22k−1/k for all k ∈ N.

5.1 Introduction

Recall that Ramsey’s theorem [92], for two colors, states that instead of triangles we can hope to find

arbitrarily large monochromatic cliques, provided the complete graph whose edges we color is large enough.

Theorem 5.1.1 (Ramsey). For every n ∈ N there exists an N ∈ N such that whenever the edges of KN are

two-colored, there exists a monochromatic Kn.

We denote by R(n) the smallest N for which Theorem 5.1.1 holds. The upper bound

R(n) ≤
(

2n− 2

n− 1

)
≤ 4n

follows from a short pigeonhole argument due to Erdős and Szekeres [42]. The lower bound

√
2
n
≤ R(n)

is due to Erdős [35] and was instrumental in his introduction of the probabilistic method. Despite a consid-

erable effort in the past seven decades, the two constants
√

2 and 4 in the lower and upper bounds were not
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improved. The current best bounds are due to Spencer [100] and Conlon [28].

Another classical theorem in the area is Van der Waerden’s theorem [107], which states that whenever

[N ] is r-colored, there is a monochromatic arithmetic progression of length k, provided N is sufficiently large

compared to k and r.

Theorem 5.1.2 (Van der Waerden). For every r, k ∈ N there exists an N ∈ N such that the following holds.

Whenever [N ] is r-colored, there is a monochromatic arithmetic progression of length k.

Writing W (k, r) for the smallest N satisfying Theorem 5.1.2, Berlekamp [17] showed that for p prime,

p · 2p ≤W (p+ 1, 2).

A recent breakthrough due to Gowers [52] is the upper bound

W (k, r) ≤ 22r
22k+9

.

Graham conjectured [54] that W (k, 2) < 2k
2

and offered $1000 for a resolution of this conjecture.

Schur showed [99] that in an r-coloring of [n], one of the color classes must contain a small additive

structure. Given an equation on k variables and a coloring of [n], we say the equation has a monochromatic

solution if there exists a solution to the equation with all k variables having the same color.

Theorem 5.1.3 (Schur). For every r ∈ N there exists an integer S(r) ∈ N such that whenever [S(r)] is

r-colored, there exists a monochromatic solution to the equation x+ y = z.

Another example of a structure one can find in an r-coloring of the natural numbers is a Hilbert cube, or

affine cube. For some a, d1, . . . , dk the k-dimensional affine cube is

H(a; d1, . . . , dk) :=

{
a+

k∑
i=1

ci · di : ci ∈ {0, 1}

}
.

Hilbert showed [63] that no matter how we r-color the integers, there always exists a monochromatic Hilbert

cube. His famous Cube Lemma was perhaps the very first result in Ramsey theory.

Theorem 5.1.4 (Hilbert’s Cube Lemma). For every k, r ∈ N there exists an integer H(k, r) such that

whenever [H(k, r)] is r-colored, there is a monochromatic Hilbert cube of dimension k.
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Hilbert’s upper bound H(k) ≤ r2.6k was improved by Gunderson–Rödl [56] who used a lemma due to

Szemerédi [102] to show

r(1−o(1))(2k−1)/k ≤ H(k, r) ≤ (2r)2k−1

.

Their lower bound was recently improved by Conlon–Fox–Sudakov [29] to 2ck
2 ≤ H(k, 2). As every arithmetic

progression of length ≈ k2/2 is a k-dimensional Hilbert cube, any further improvement on this lower bound

would improve Berlekamp’s bound on the Van der Waerden numbers as well.

About fifty years ago, a wide generalisation of Schur’s theorem was obtained independently by Folkman,

Rado and Sanders, and this generalisation is now commonly referred to as Folkman’s theorem (see [55], for

example). To state Folkman’s theorem, it will be convenient to have some notation. For n ∈ N, we write [n]

for the set {1, 2, . . . , n}, and for a finite set A ⊂ N, let

S(A) =

{∑
x∈B

x : B ⊂ A and B 6= ∅

}

denote the set of all finite sums of A. In this language, Folkman’s theorem states that for all k, r ∈ N, there

exists a natural number n = F (k, r) such that whenever the elements of [n] are r-coloured, there exists a set

A ⊂ [n] of size k such that S(A) is a monochromatic subset of [n]; of course, it is easy to see that Folkman’s

theorem, in the case where k = 2, implies Schur’s theorem.

Taylor [103] showed that F (r, k) is upper bounded by a tower of height 2r(k − 1). Erdős–Spencer

showed [41] that 2k
2/ log k ≤ F (k, 2). Since H(k, r) ≤ F (k, r) the result of Conlon–Fox–Sudakov on Hilbert

cubes implies that 2ck
2 ≤ F (k, 2). The purpose of this chapter is to improve this lower bound.

5.2 A new lower bound on Folkman’s theorem

In this chapter, we shall be concerned with lower bounds for the two-colour Folkman numbers, i.e., for the

quantity F (k) = F (k, 2).Recall that In 1989, Erdős and Spencer [41] proved that

F (k) ≥ 2ck
2/ log k (5.2.1)

for all k ∈ N, where c > 0 is an absolute constant; here, and in what follows, all logarithms are to the base

2. Our primary aim in this chapter is to improve (5.2.1).

Before we state and prove our main result, let us say a few words about the proof of (5.2.1). Erdős and

Spencer establish (5.2.1) by considering uniformly random two-colourings. In particular, they show that if
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[n] is two-coloured uniformly at random and additionally n ≤ 2ck
2/ log k for some suitably small absolute

constant c > 0, then with high probability, there is no k-set A ⊂ [n] for which S(A) is monochromatic. On

the other hand, it is not hard to check that if n ≥ 2Ck
2

for some suitably large absolute constant C > 0,

then a two-colouring of [n] chosen uniformly at random is such that, with high probability, there exists a set

A ⊂ [n] of size k for which S(A) is monochromatic; indeed, to see this, it is sufficient to restrict our attention

to sets of the form {p, 2p, . . . , kp}, where p is a prime in the interval [n/ log2 n, 2n/ log2 n], and notice that

the sets of finite sums of such sets all have size k(k + 1)/2 and are pairwise disjoint. With perhaps this fact

in mind, in their paper, Erdős and Spencer also describe some of their attempts at removing the factor of

log k in the exponent in (5.2.1); nevertheless, their bound has not been improved upon since.

Our main contribution is a new, doubly exponential, lower bound for F (k), significantly strengthening

the bound due to Erdős and Spencer.

Theorem 5.2.1. For all k ∈ N, we have

F (k) ≥ 22k−1/k. (5.2.2)

5.3 Proof of the main result

In this section, we give the proof of Theorem 5.2.1.

Proof of Theorem 5.2.1. The result is easily verified when k ≤ 3, so suppose that k ≥ 4 and let n =

b22k−1/kc. In the light of our earlier remarks, a uniformly random colouring of [n] is a poor candidate for

establishing (5.2.2). Instead, we generate a (random) red-blue colouring of [n] as follows: we first red-blue

colour the odd elements of [n] uniformly at random, and then extend this colouring uniquely to all of [n] by

insisting that the colour of 2x be different from the colour of x for each x ∈ [n]; hence, for example, if 5 is

initially coloured blue, then 10 gets coloured red, 20 gets coloured blue, and so on.

Fix a set A ⊂ [n] of size k with S(A) ⊂ [n]. We have the following estimate for the probability that S(A)

is monochromatic in our colouring.

Claim 5.3.1. P(S(A) is monochromatic) ≤ 21−2k−1

.

Proof. First, if |S(A)| ≤ 2k − 2, then it is easy to see from the pigeonhole principle that there exist two

subsets B1, B2 ⊂ A such that
∑
x∈B1

x =
∑
x∈B2

x, and by removing B1 ∩ B2 from both B1 and B2 if

necessary, these sets may further be assumed to be disjoint; in particular, this implies that S(A) contains
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two elements one of which is twice the other. It therefore follows from the definition of our colouring that

S(A) cannot be monochromatic unless |S(A)| = 2k − 1.

Next, suppose that |S(A)| = 2k− 1. For each odd integer m ∈ N, we define Gm = {m, 2m, 4m, . . . }∩ [n],

and note that these geometric progressions partition [n]. Observe that S(A) intersects at least 2k−1 of these

progressions. Indeed, if there is an odd integer r ∈ A for example, then S(A) contains exactly 2k−1 distinct

odd elements and these elements must lie in different progressions. More generally, if each element of A is

divisible by 2s and s is maximal, then there exists an element r of A with r = 2st, where t is odd; it is

then clear that precisely 2k−1 elements of S(A) are divisible by 2s but not by 2s+1 and these elements must

necessarily lie in different progressions. With this in mind, we define BA to be a maximal subset of S(A)

with the property |BA ∩Gm| ≤ 1 for each m; for example, we may take BA to consist of the least elements

(where they exist) of the sets S(A) ∩ Gm. Clearly, our red-blue colouring restricted to BA is a uniformly

random colouring, so the probability that BA is monochromatic is 21−|BA|; it follows that the probability

that S(A) is monochromatic is at most 21−|BA| ≤ 21−2k−1

.

It is now easy to see that if X is the number of sets A ⊂ [n] of size k for which S(A) is a monochromatic

subset of [n] in our colouring, then

E[X] ≤
(
n

k

)
21−2k−1

≤
(en
k

)k
21−2k−1

≤

(
e22k−1/k

k

)k (
21−2k−1

)
= 2

( e
k

)k
< 1,

where the last inequality holds for all k ≥ 4. Hence, there exists a red-blue colouring of [n] without any set

A of size k for which S(A) is a monochromatic subset of [n], proving the result.
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Chapter 6

Large subgraphs in rainbow-triangle
free colorings

This chapter is based on [106].

Fox–Grinshpun–Pach showed that every 3-coloring of the complete graph on n vertices without a rainbow

triangle contains a clique of size Ω
(
n1/3 log2 n

)
which uses at most two colors, and this bound is tight up

to the constant factor. We show that if instead of looking for large cliques one only tries to find subgraphs

of large chromatic number, one can do much better. We show that every such coloring contains a 2-colored

subgraph with chromatic number at least n2/3, and this is best possible. We further show that for fixed

positive integers s, r with s ≤ r, every r-coloring of the edges of the complete graph on n vertices without

a rainbow triangle contains a subgraph that uses at most s colors and has chromatic number at least ns/r,

and this is best possible. Fox–Grinshpun–Pach previously showed a clique version of this result.

As a direct corollary of our result we obtain a generalisation of the celebrated theorem of Erdős-Szekeres,

which states that any sequence of n numbers contains a monotone subsequence of length at least
√
n. We

prove that if an r-coloring of the edges of an n-vertex tournament does not contain a rainbow triangle then

there is an s-colored directed path on ns/r vertices, which is best possible. This gives a partial answer to a

question of Loh.

6.1 Introduction

A Gallai-coloring of a complete graph is an edge coloring such that no triangle is colored with three distinct

colors. Such colorings arise naturally in several areas including in information theory [79], in the study of

partially ordered sets, as in Gallai’s original paper [50], and in the study of perfect graphs [23]. Several

Ramsey-type results in Gallai-colored graphs have also emerged in the literature (see e.g. [26], [46], [57],

[58]), but they mostly focus on finding large monochromatic structures in such colorings. Our main result

is the observation that certain proof techniques used by Fox–Grinshpun–Pach [43] for solving the multicolor

Erdős–Hajnal conjecture for rainbow triangles also give a partial answer for Loh’s question [82], that asks
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the following: what is the value of f(n, r, s), the maximum number such that every r-coloring of the edges of

the transitive tournament on n vertices contains a directed path with at least f(n, r, s) vertices whose edges

have at most s colors?

6.1.1 Erdős–Hajnal for rainbow triangles

Erdős showed [34] that a random graph on n vertices almost surely contains no clique or independent set

of order 2 log n. On the other hand, the Erdős–Hajnal conjecture [38] states that for each fixed graph H

there is an ε = ε(H) > 0 such that every graph G on n vertices which does not contain a fixed induced

subgraph H has a clique or independent set of order nε, much larger than in the case of general graphs. The

Erdős–Hajnal conjecture is still open, but there are now several partial results on it - we refer the reader

to the introduction of [43] and the recent survey [25]. In the present chapter we will be only interested in

a special case of the multicolor generalisation of the Erdős–Hajnal conjecture. Hajnal [59] conjectured that

there is an ε > 0 such that every 3-coloring of the edges of the complete graph on n vertices without a

rainbow triangle (that is, a triangle with all its edges different colors) contains a set of order nε which uses

at most two colors. Fox–Grinshpun–Pach proved Hajnal’s conjecture and further determined a tight bound

on the order of the largest guaranteed 2-colored set in any such coloring. A Gallai r-coloring is a coloring

of the edges of a complete graph using r colors without rainbow triangles.

Theorem 6.1.1 (Fox–Grinshpun–Pach, [43]). Every Gallai-3-coloring on n vertices contains a set of order

Ω
(
n1/3 log2 n

)
which uses at most two colors, and this bound is tight up to a constant factor.

Instead of looking for large complete subgraphs, it is also natural to try to find 2-colored subgraphs

with large chromatic number. It is easy to show that every 3-edge-colored complete graph on n vertices

contains a 2-colored subgraph with chromatic number at least
√
n. Indeed, the complement of the graph

Gg consisting of green edges is the graph Grb consisting of red and blue edges, and every graph G satisfies

χ(G) ·χ(Gc) ≥ |V (G)|. It is not hard to construct an infinite set of examples on n2 vertices for some integer

n where all three 2-colored subgraphs have chromatic number precisely n, hence this is best possible. Our

first result is that in the case of Gallai-colorings, we can do much better.

Theorem 6.1.2. Every Gallai-3-coloring on n vertices contains a 2-colored subgraph that has chromatic

number at least n2/3.

Fox–Grinshpun–Pach further obtained a generalisation of Theorem 6.1.1 to more colors.
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Theorem 6.1.3 (Fox–Grinshpun–Pach, [43]). Let r and s be fixed positive integers with s ≤ r. Every

Gallai-r-coloring on n vertices contains a set of order Ω
(
n(s2)/(

r
2) logcr,s n

)
which uses at most s colors, and

this bound is tight up to a constant factor. Here cr,s is a constant depending only on r and s.

Moreover, the value of cr,s was exactly determined in [43]. We prove a corresponding theorem about

subgraphs with few colors and large chromatic number.

Theorem 6.1.4. Let r and s be fixed positive integers with s ≤ r. Every Gallai-r-coloring on n vertices

contains an s-colored subgraph that has chromatic number at least ns/r.

Both Theorems 6.1.2 and 6.1.4 are sharp, as seen in Construction 6.2.2. The motivation of Fox–

Grinshpun–Pach for proving Theorem 6.1.3 was to get one step closer towards proving the Erdős–Hajnal

conjecture. On the other hand, our main motivation for proving Theorem 6.1.4 came from a completely

different direction - we tried to give an answer to Loh’s question (see Section 6.1.2) - in fact, when proving

our main results we were not even aware of the Fox–Grinshpun–Pach paper. As it happens, we were only

able to give a partial answer to Loh’s question, and quite surprisingly, our proof of Theorem 6.1.4 was very

similar to their proof of a weaker version of Theorem 6.1.3: we use Gallai’s structure theorem for Gallai-

colored complete graphs to obtain a nice block partition of the vertex set, and then the theorem follows by

induction with some more work.

6.1.2 Long subchromatic paths in tournaments and Loh’s question

A celebrated theorem of Erdős and Szekeres [42] states that for any two positive integers r, s, every sequence

of rs+ 1 (not necessarily distinct) numbers contains a monotone increasing subsequence of length r+ 1 or a

monotone decreasing subsequence of length s+ 1. A short proof of this theorem is given by the pigeonhole

principle. Assign to each number in the sequence an ordered pair (x, y) where x is the length of the longest

increasing subsequence ending at this number, and y is the decreasing analogue. It is then easy to see that

all these ordered pairs have to be distinct, and therefore there is an ordered pair with first element at least

r + 1 or second element at least s+ 1.

The exact same proof also gives the following extension. Consider the n-vertex transitive tournament Tn,

where the edge between i < j is oriented in the direction
−→
ij . Then every 2-coloring of the edges of Tn has

a monochromatic directed path of length at least
√
n (throughout this chapter the length of a path means

vertex-length, i.e. the number of vertices in the path). Moreover if we consider r-colored tournaments then

88



the same proof shows that there exists a monochromatic tournament of length n1/r. In fact, all the above

results are sharp for infinitely many n, and they are also true for non-transitive tournaments.

Loh [82] asked about the following beautiful generalisation of the above. Determine f(n, r, s), the max-

imum number such that every r-coloring of the edges of the transitive tournament on n vertices contains a

directed path with at least f(n, r, s) vertices whose edges have at most s colors. By grouping together sets

of s colors, a similar argument as the above shows that

n1/dr/se ≤ f(n, r, s),

and a standard construction shows that the upper bound

f(n, r, s) ≤ ns/r

holds whenever n is a perfect r-th power. However, already the r = 3, s = 2 case is non-trivial, since the

above bounds only give
√
n ≤ f(n, 3, 2) ≤ n2/3(1 + o(1)). Loh proved that the correct answer in this case is

not
√
n. Here, log∗ is the iterated logarithm, or the inverse of the tower function T (n) = 2T (n−1), T (0) = 1.

Theorem 6.1.5 (Loh, [82] ). There exists a constant C > 0 such that

C
√
n · elog∗ n ≤ f(n, 3, 2),

that is, every 3-coloring of the edges of the transitive n-vertex tournament contains a directed path of length

at least C
√
n · elog∗ n whose edges use at most 2 colors.

Recently Gowers–Long [53] improved Theorem 6.1.5 by showing that there exists ε > 0 such that

n0.5+ε ≤ f(n, 3, 2).

The question of determining the order of magnitude of f(n, 3, 2), and in general that of f(n, r, s), is still

wide open. A direct corollary of Theorem 6.1.4 is a partial answer to Loh’s question, which was the main

motivation of this chapter. Recall that a rainbow triangle is a triangle whose edges are all different colors.

A Gallai -r-coloring of Kn is an r-coloring of the edges of Kn without rainbow triangles.

Theorem 6.1.6. Let r, s, n be positive integers with s ≤ r. Every Gallai-r-coloring of an n-vertex tourna-

ment contains a directed path on at least ns/r vertices, whose edges use at most s colors.
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Note that every 2-coloring is rainbow-triangle free, hence Theorem 6.1.6 is a generalisation of the Erdős–

Szekeres Theorem. We emphasize that our result holds for non-transitive tournaments as well, but our proof

methods completely break down for colorings that contain rainbow triangles.

Nevertheless, our guess is that f(n, r, s) = ns/r holds whenever n is a perfect r-th power. A reason for

this is as follows. Suppose r = 3 and s = 2, and u, v, w are vertices of the tournament such that −→uv is red, −→vw

is blue and −→uw is green. Consider what happens if we recolor the −→uw edge to become, say, color red. Then

the lengths of the red-green paths do not change, as the set of red-green edges did not change. The length

of the longest red-blue paths did not change, as any path that contained the −→uw edge could have instead

contained the −→uv and −→vw edges, giving a longer path. Finally, the length of the longest blue-green paths did

not increase, as the set of blue-green edges descreased by the −→uw edge. Hence, in some sense, destroying this

uvw rainbow triangle gave us a better coloring, with shorter two-colored paths. Unfortunately, it is not the

case that by repeating moves like the above one can always transform the coloring into a Gallai-coloring,

hence this paragraph is nothing more than a (more or less) convincing heuristic argument.

6.2 The proof of Theorem 6.1.6

We will deduce Theorem 6.1.6 from Theorem 6.1.4. The connection between chromatic number and longest

paths in orientations of graphs is given by the Gallai-Hasse-Roy-Vitaver Theorem.

Theorem 6.2.1 (Gallai-Hasse-Roy-Vitaver, [49]). Every orientation of the edges of a graph G has a directed

path on at least χ(G) vertices.

Proof of Theorem 6.1.6. We are given a Gallai-r-coloring of an n-vertex tournament. By Theorem 6.1.4 we

can find an s-colored subgraph G that has chromatic number at least ns/r. By Theorem 6.2.1 we can find

a directed path P in G on at least ns/r vertices. As the edges of G use at most s colors, and P is in G, we

conclude that the edges of P use at most s colors and the proof is complete.

A folklore construction shows that Theorems 6.1.6 and 6.1.4 are sharp whenever n is a perfect r-th power.

Construction 6.2.2. Consider the nr numbers {0, 1, . . . , nr − 1} which will be the vertices of the graph.

Write every such number as a r-digit base-n number (by adding trailing zeros if necessary). Color edge i < j

according to the leftmost digit in which they differ and orient them as
−→
ij This r-colored transitive tournament

has the property that the length of any s-colored path is at most ns, and hence the chromatic number of the

corresponding subgraph is at most ns.
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6.3 Proof of Theorem 6.1.4

We will deduce Theorem 6.1.4 from the following stronger statement.

Theorem 6.3.1. Let r, s, n ∈ Z+ with s ≤ r. Given a Gallai-r-coloring of Kn using colors [r] and given

S ⊂ [r] write GS for the subgraph whose edges are colored by elements of S. Then

n(r−1
s−1) ≤

∏
|S|=s

χ(GS),

where the product goes over all S ⊂ [r] with |S| = s.

The proof of Theorem 6.3.1 shows a lot of similarities to the proof of Theorem 7.2. in [43], the main

new idea is in Claim 6.3.5. Recall that Theorem 6.3.1 is false for general colorings. Theorem 6.1.4 is an

immediate consequence of Theorem 6.3.1.

Proof of Theorem 6.1.4. Given a Gallai-r-coloring on n vertices, Theorem 6.3.1 states that the geometric

mean of the χ(GS)-s is at least ns/r. Hence in particular there exists an S ⊂ [r] with |S| = s such that

χ(GS) ≥ ns/r, as claimed.

To prove Theorem 6.3.1 we will need another theorem by Gallai:

Lemma 6.3.2 (Gallai, [50]). An edge-coloring F of a complete graph on a vertex set V with |V | ≥ 2 is a

Gallai coloring if and only if V may be partitioned into nonempty sets V1, . . . , Vt with t ≥ 2 so that each

Vi has no rainbow triangles under F , at most two colors are used on the edges not internal to any Vi, and

the edges between any fixed pair (Vi, Vj) use only one color. Furthermore, any such substitution of Gallai

colorings for vertices of a 2-edge-coloring of a complete graph Kt yields a Gallai coloring.

For some recent progress on generalising Lemma 6.3.2, we direct the reader to the beautiful paper of

Leader–Tan [81]. We will also make use of the following observation.

Observation 6.3.3. Let G be a graph on vertex set V (G) and let V1 ∪ V2 ∪ . . .∪ Vm be a partition of V (G)

such that for each pair of distinct i, j ∈ [m], either all edges of the form {uv : u ∈ Vi, v ∈ Vj} are present in

G, or none of them. For each i ∈ [m], let G′i be an arbitrary graph with chromatic number χ(G′i) = χ(G[Vi]).

Let H be the graph obtained from G by replacing G[Vi] by G′i for each i ∈ [m]. Then χ(G) = χ(H).

The following is a common generalisation of Hölder’s inequality that we will find useful.
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Lemma 6.3.4. If F is a finite set of indices and for each S ∈ F we have that aS is a function mapping [m]

to the non-negative reals, then

∏
S∈F

∑
i

aS(i) ≥

(∑
i

∏
S∈F

aS(i)1/|F|

)|F|
.

Proof of Theorem 6.3.1. We prove the theorem by induction on n. If n = 1 then every χ(GS) is equal to

1, and n(r−1
s−1) is also equal to 1. If n > 1, we can find a pair of colors Q and some non-trivial partition of

the vertices V1, . . . , Vm such that for each pair of distinct i, j in [m], there is a q ∈ Q so that all of the edges

between Vi and Vj have color q. For each S ⊂ [r] and i ∈ [m] let GS,i be the subgraph of the complete

graph on Vi consisting of edges colored by colors in S. Write χ(S, i) := χ(GS,i) and χ(S) = χ(GS). Let

Q = {q1, q2}. If q1 ∈ S and q2 /∈ S then let S∗ := S ∪ {q2} \ {q1}.

Claim 6.3.5. If S ⊂ [k] with q1 ∈ S and q2 /∈ S, then

χ(S)χ(S∗) ≥
m∑
i=1

χ(S, i)χ(S∗, i).

Proof of claim: For each i ∈ [m], let G′i be the 2-colored complete graph on χ(S, i)χ(S∗, i) vertices, obtained

by taking χ(S, i) disjoint copies of Kχ(S∗,i), coloring all edges inside the cliques by color q2, and edges

between the cliques by color q1. For each i, replace G[Vi] by G′i, to obtain a 2-colored complete graph

G′ on
∑m
i=1 χ(S, i)χ(S∗, i) vertices - let H1 and H2 be the subgraphs induced by edges of color q1 and

q2 respectively. Note that χ(H1) = χ(S) and χ(H2) = χ(S∗) by Observation 6.3.3, and since H2 is the

complement of H1 we also have χ(S)χ(S∗) = χ(H1)χ(H2) ≥ |V (G′)| =
∑m
i=1 χ(S, i)χ(S∗, i).

In what follows we will always omit writing |S| = s in the subscripts of products for clearer presentation.

By induction, for all i we have

|Vi|(
r−1
s−1) ≤

∏
S

χ(S, i). (6.3.1)

Note that

• if Q ∩ S = ∅ then χ(S) = maxi{χ(S, i)},

• If Q ⊆ S then χ(S) =
∑
i(χ(S, i)) where the sum is over all i ∈ [m].
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Hence we have, using Claim 6.3.5, that

∏
S

χ(S) ≥

 ∏
S:Q∩S=∅

χ(S)

 ∏
S:q1∈S,q2 /∈S

(
m∑
i=1

χ(S, i)χ(S∗, i)

) ∏
S:Q⊆S

m∑
i=1

χ(S, i)

 . (6.3.2)

To simplify notation, if q1 ∈ S and q2 /∈ S then write α(S, i) := χ(S, i)χ(S∗, i), and if Q ⊆ S then write

α(S, i) := χ(S, i). Let F = {S ⊂ [r] : |S| = s, q1 ∈ S}. So

∏
S

χ(S) ≥

(∏
S∈F

m∑
i=1

α(S, i)

) ∏
S:Q∩S=∅

χ(S) ≥

(
m∑
i=1

(∏
S∈F

α(S, i)1/|F|

))|F| ∏
S:Q∩S=∅

χ(S) =

 m∑
i=1

 ∏
S:Q∩S=∅

χ(S)
∏
S∈F

α(S, i)

1/|F|

|F|

≥

(
m∑
i=1

(∏
S

χ(S, i)1/|F|

))|F|
≥

(
m∑
i=1

|Vi|

)|F|
= n(r−1

s−1),

where the first inequality is by rewriting (6.3.2), the second inequality is by Lemma 6.3.4, the third inequality

is by χ(S) ≥ χ(S, i), and the fourth inequality is by (6.3.1), using that |F| =
(
r−1
s−1

)
. This completes the

proof.
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[61] A. Hamm and J. Kahn, On Erdős–Ko–Rado for random hypergraphs II, submitted.
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[83] L. Lovász, Flats in matroids and geometric graphs, Combinatorial surveys (Proc. Sixth British Combi-
natorial Conf., Royal Holloway Coll., Egham, 1977), pages 45–86, Academic Press London, 1977.

[84] L. Lovász, On the Shannon capacity of a graph, IEEE T. Inform. Theory 25.1 (1979), 1–7.

[85] F. Maffray and M. Preissmann, A translation of Gallai’s paper: ’Transitiv Orientierbare Graphen’, In:
Perfect Graphs (J. L. Ramirez-Alfonsin and B. A. Reed, Eds.), Wiley, New York, 2001, pp. 2566

[86] R. Morris and D. Saxton, The number of C2k-free graphs, to appear in Advances in Math.

[87] F. Mousset, R. Nenadov and A. Steger, On the number of graphs without large cliques, SIAM Journal
on Discrete Mathematics 28.4 (2014): 1980–1986.

[88] D. Mubayi and C. Terry, Discrete metric spaces: structure, enumeration, and 0-1 laws, arXiv preprint
arXiv:1502.01212 (2015).

[89] D. Mubayi and L. Wang, personal communication.

[90] H. Nguyen and V. Vu, Optimal inverse Littlewood-Offord theorems, Adv. Math. 226 (2011), 5298–5319.

[91] J. A. Noel, A. Scott and B. Sudakov, Supersaturation in posets and applications involving the container
method, arXiv preprint arXiv:1610.01521 (2016).

[92] F. P. Ramsey, On a problem in formal logic, Proceedings of the London Mathematical Society, vol. 30
(1930), pp. 264–286.
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