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ABSTRACT 

 

 In host-parasite systems, any given host species can be associated with multiple 

types of parasites, each of which can have a unique ecological relationship with the host. 

However, it remains unclear how these ecological differences link to evolutionary 

patterns. What shapes the dynamics of a host-parasite interaction over evolutionary time? 

An ideal approach for addressing this question is to compare multiple lineages of similar 

parasites that are associated with the same group of hosts but have distinct ecological 

differences – or “ecological replicates.” For my dissertation, I applied this strategy by 

focusing on the wing and body lice of doves. These two “ecomorphs” of lice are not 

closely related yet exclusively parasitize the same group of hosts. Notably, wing lice have 

a greater capability for dispersal than body lice. Dispersal is an important ecological 

component of host-parasite interactions and speciation in general.  

The first part of my dissertation examined broad cophylogenetic patterns across 

the dove-louse system. I found that wing and body lice did not have correlated patterns, 

and body lice showed more cospeciation with their hosts. This pattern agreed with 

previous studies, the results of which suggested that the increased cospeciation in body 

lice was due to differences in dispersal ability. In contrast with previous work, I also 

found that both wing and body louse phylogenies are statistically congruent with the host 

phylogeny. However, the previous studies had limited taxon sampling compared to my 

study, indicating that taxon sampling can have a significant impact on the results of 

cophylogenetic comparisons, and that there can be variable cophylogenetic patterns 
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within a host-parasite system. Cophylogenetic variation in dove lice was further 

highlighted by my study on lice from phabine doves, a clade native to Australia and 

Southeast Asia. In this system, wing lice have higher levels of cospeciation with their 

hosts than did body lice, which is the opposite pattern found in other dove louse systems.    

 The second part of my dissertation focused on the wing and body lice of New 

World ground-doves. All three groups (wing lice, body lice, and doves) are monophyletic 

and have relatively few species, which makes the system ideal for obtaining a 

comprehensive taxonomic sample. As a group that straddles the population-species 

boundary, ground-dove lice are also useful for gaining insight into host-parasite evolution 

at phylogenetic and population scales. I used Sanger or whole-genome sequencing data to 

estimate phylogenetic and/or population patterns of the ground-dove hosts and both 

groups of lice. For the louse genomes, I developed a novel pipeline to assemble nuclear 

genes for phylogenetic analysis and call SNPs for population analysis. My results 

indicate that dispersal is a key factor in shaping the evolution of this host-parasite system. 

Body lice had higher levels of cospeciation with their hosts, were more host-specific, and 

had higher rates of divergence than wing lice. At the population level, some body lice 

also showed host-specific structure, whereas wing lice did not. Body lice also had lower 

levels of heterozygosity than wing lice, suggesting higher levels of inbreeding. However, 

dispersal is likely not the only factor that shapes this host-parasite system. Host 

phylogeny appears to have a significant effect as well. Both wing and body louse 

phylogenies were statistically congruent with the host phylogeny, and the congruence 

metrics for individual associations were correlated between the two types of lice. 

Biogeography may also dictate host-parasite interactions. The wing louse phylogeny was 
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significantly structured according to biogeographic region, and both wing and body lice 

also showed some biogeographic structure at the population level. Together, these results 

show that host-parasite interactions can be dictated by many ecological factors over 

evolutionary time, even in the presence of a primary, dominant factor (e.g., parasite 

dispersal).  
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CHAPTER 1: INTRODUCTION 
 

 Comparative phylogenetic and population genetic analyses are powerful 

approaches for learning about the processes that govern living systems (Harvey and 

Pagel, 1991). This is particularly true for host-parasite systems, or host-symbiont systems 

more generally, which involve some level of dependent interactions between two or more 

groups of organisms. For example, comparing the phylogeny of a group of parasites to 

that of their hosts can indicate co-divergence (i.e., cospeciation) or host switching 

(Hafner and Nadler, 1988; Page, 1994; de Vienne et al., 2013). Likewise, comparing 

population structures of parasites and hosts can indicate what ecological factors (e.g., 

parasite dispersal, climate, host habitat use) are shaping the interaction at a 

microevolutionary scale (McCoy et al., 2005; Whiteman et al., 2007; Criscione, 2008). 

Integrating phylogenetic and population genetic approaches in a single system is 

particularly useful, because these approaches provide snapshots of different evolutionary 

timescales (Cutter, 2013). However, to connect phylogenetic and population patterns, and 

therefore establish a link between evolutionary pattern and ecological mechanisms, an 

effective approach would focus on “ecological replicates” – multiple groups of similar 

parasites/symbionts that are associated with a single group of hosts but have some 

ecological difference of interest (Clayton and Johnson, 2003; Johnson and Clayton, 

2003). For example, Weiblen and Bush (2002) compared Ficus figs to their associated 

mutualist and parasitic fig wasps. They found that mutualist wasps showed strong 

patterns of co-divergence with the figs, whereas the parasitic wasps had a history of 

frequent host switches between different fig species. These results clearly link the 

ecology of fig wasps (life history) to evolutionary patterns in the fig-fig wasp system. 



 2 

 Doves and their ectoparasitic lice are a well-studied ecological replicate system 

(Johnson and Clayton, 2003; Clayton et al., 2016). There are two types or “ecomorphs” 

of lice associated with doves – wing and body lice. The two ecomorphs primarily live on 

different niches of the host (wing and body feathers, respectively) and are not closely 

related (Cruiskshank et al., 2001; Johnson et al., 2007; Johnson et al., 2011). They also 

use different strategies to avoid host preening behavior (Clayton, 1991). Wing lice are 

elongate insects that insert themselves between feather barbs to avoid being removed by 

their host (Stenram, 1956). Translocation studies among different-sized hosts have shown 

that if a wing louse is too small or large to fit between the barbs, the louse is likely to be 

removed by preening or host movement (Bush and Clayton, 2006). In contrast, body lice 

have a rounded shape and avoid preening by burrowing into the host’s downy feathers (a 

“run and hide” strategy) (Clayton et al., 1999). The drastic morphological differences in 

wing and body lice are likely driven by a combination of selective pressure from preening 

and inter-louse competition (Clay, 1949; Bush and Malenke, 2008). Similar ecomorphs 

have arisen multiple times independently across avian lice (Johnson et al., 2012). Wing 

and body lice also have different capabilities of dispersing among host individuals. Both 

are primarily transmitted vertically between host parents and offspring, and horizontally 

by direct host contact (e.g., mating, shared roosts) (Rothschild and Clay, 1952; Clayton 

and Tompkins, 1994). However, wing lice are able to effectively use winged hippoboscid 

flies, generalist blood-feeding parasites, to move among hosts – a behavior known more 

generally as “phoresis” (Keirans, 1975; Harbison et al., 2008; Harbison et al., 2009; 

Bartlow et al., 2017). The lice use their mandibles and legs to grab hold of the fly, which 

allows them to remain attached as the fly moves to another host. Body lice are rarely 
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phoretic, likely because their short legs inhibit their ability to grasp to a fly (Harbison et 

al., 2011; but see Couch, 1962). 

 There are also notable similarities between dove wing and body lice. Like other 

avian lice, both ecomorphs are permanent and obligate parasites; they spend their entire 

lifecycle on the host and cannot survive for more than 2-3 days away from the host 

(Marshall, 1981; Tompkins and Clayton, 1999). Both are relatively host specific; neither 

parasitizes birds outside of the dove family (Columbidae), and many species are specific 

to genus or species of host (Price et al., 2003). Despite living primarily on separate parts 

of the host, both ecomorphs eat downy feathers on their host’s body (Nelson and Murray, 

1971). Wing lice will migrate to the body to feed, likely when the host is inactive or 

sleeping, and then return to the wing feathers when the host is active (Harbison and 

Boughton, 2014). 

 Because of this abundant ecological knowledge, dove lice are an excellent group 

for using a comparative approach to understand how ecological mechanisms shape 

evolutionary history in host-parasite systems. Clayton and Johnson (2003) used dove lice 

in this framework by comparing wing and body louse phylogenies to the phylogeny of 

some New World doves. They found that body lice had a highly congruent evolutionary 

relationship with their hosts, whereas wing lice did not have as much congruence with the 

hosts and showed evidence for rampant host switching. They hypothesized that the 

difference in dispersal ability accounted for the observed cophylogenetic patterns. 

Because wing lice can effectively use phoresis, this would promote host switching and 

uncouple the louse and host phylogenies over evolutionary time.  
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 My dissertation also concerns the evolutionary relationships between doves and 

their lice. Like Clayton and Johnson (2003), my primary objective is to link ecological 

(microevolutionary) mechanisms to macroevolutionary patterns, but I do so by 

integrating over multiple scales. In particular, I focus on three levels: family-wide 

phylogenetic patterns, phylogenetic patterns in subsets of taxa, and population-level 

patterns.  

 First, I expand upon Clayton and Johnson’s (2003) study by comparing a more 

globally-sampled dove phylogeny to the phylogenies of their associated wing and body 

lice (Chapter 2). The results from this study emphasize the importance of taxonomic 

sampling in a cophylogenetic study and suggest that focusing on smaller, monophyletic 

subsets of taxa (i.e., species that share a common ancestor) is the optimal approach. A 

focused approach allows for a more complete phylogenetic representation (Jackson et al., 

2008). In Chapter 3, I use the Australian phabine doves and their lice to show there can 

be incredible cophylogenetic variability within a broader (e.g., across a host family) host-

parasite system. This further highlights the utility of more taxonomically focused 

comparative studies. The remainder of my dissertation focuses on another subset of taxa: 

New World ground-doves and their lice. All three groups (the doves, wing lice, and body 

lice) are in monophyletic groups, and there are few enough taxa that near-complete 

sampling is possible. There are 17 known species of ground-doves (Gibbs et al., 2003), 

three species of wing lice (Columbicola), and three species of body lice 

(Physconelloides) (Price et al., 2003). Because there are few parasite species, and 

possible cryptic species in each ecotype, this is a good example of a system that straddles 

the population-species boundary and is therefore suitable for assessing both phylogenetic 
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and population-level patterns. In Chapter 4, I estimate the phylogenetic relationships of 

ground-doves, their divergence times, and their biogeographic history. Clarifying the 

evolutionary history of the hosts is a crucial first step in any comparative host-parasite 

cophylogenetic study. I then use Sanger sequencing data to estimate phylogenetic 

patterns in the wing lice and compare this phylogenetic hypothesis to the host phylogeny 

(Chapter 5). In this chapter, I also estimate population-level patterns among the most 

widespread (i.e., associated with the most host species) wing louse species. In Chapter 6, 

I use whole genome sequencing of body lice to estimate their phylogenetic and 

population genetic patterns. I also develop and describe a novel bioinformatic pipeline for 

assembling appropriate data to accomplish these goals. Chapter 7 is the culmination of 

my ground-dove wing and body louse comparison. Using the pipeline from Chapter 6, I 

obtain genomic-level data for both ecomorphs of lice and compare their phylogenomic 

and population genomic patterns.  

  Each chapter in this dissertation has standalone merit as a scientific effort, but the 

aggregate contribution of these studies provides considerable insights into host-parasite 

coevolutionary relationships. They tell a story about a single, albeit complex, host-

parasite system, but the findings have implications for host-parasite systems in general. In 

particular, I argue that parasite dispersal and host association are two ecological factors 

that can drive evolutionary patterns in a host-parasite system. As with many intensive 

studies, this dissertation also generates other questions which I could not address here. I 

hope my contribution encourages future work in this and other systems, and helps to 

further our understanding of how hosts and their parasites evolve together through time.   
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CHAPTER 2: COPHYLOGENETIC PATTERNS ARE UNCORRELATED 

BETWEEN TWO LINEAGES OF PARASITES ON THE SAME HOSTS1 

 

INTRODUCTION 

 Parasitic organisms are among the most abundant and diverse group of organisms 

on earth (Windsor, 1998; Poulin and Morand, 2000; Poulin and Morand, 2004; Dobson et 

al., 2008; Mora et al., 2011). One of the mechanisms that contributes to this diversity is 

cospeciation, the parallel speciation of two organisms with dependent life histories 

(Hafner and Nadler, 1990; Hafner et al., 1994; Hafner and Page, 1995; Page, 2003; de 

Vienne et al., 2013). Parasites that cospeciate with their hosts should exhibit congruent 

diversification patterns (Fahrenholz, 1913; Eichler, 1948). While this congruence has 

been found in some instances (Hafner and Nadler, 1988; Page et al., 2004; Hughes et al., 

2007), many host-parasite systems show discordant patterns. This indicates evolutionary 

processes that promote diversification in parasites independently of their hosts (Paterson 

et al., 2000; Johnson et al., 2002; Brudydonckx et al., 2009). For example, host switching 

                                                
1 This is a pre-copyedited, author-produced version of an article accepted for publication 

in Biological Journal of the Linnean Society following peer review. The version of 

record: Sweet, A.D., B.M. Boyd, and K.P. Johnson. 2016. Cophylogenetic patterns are 

uncorrelated between two lineages of parasites on the same hosts. Biological Journal of 

the Linnean Society. 118(4): 813-828 is available online at: 

https://doi.org/10.1111/bij.12771. 
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and parasite duplication (speciation within a host) may result in incongruent 

diversification patterns between hosts and their parasites (Page, 2003). Additionally, 

geography (Weckstein, 2004; Johnson et al., 2007), host preference (Johnson et al., 2005; 

Gorrell and Schulte-Hostedde, 2008), host-imposed selective pressures (Clayton et al., 

1999; Clayton and Walther, 2001; Waite et al., 2012), competition between parasites 

(Poulin, 2007; Bush and Malenke, 2008; Johnson et al., 2009), and opportunities for host 

switching may influence the parasite diversification. Here we generally refer to 

diversification patterns between hosts and their parasites, either congruent or incongruent, 

as “cophylogenetic patterns.”  

 Free-living organisms often host many lineages of closely related parasites 

(Poulin, 1997). Comparisons of phylogenies of multiple parasite lineages with those of 

their hosts can address fundamental questions in host-parasite coevolution. For example, 

it is important to understand how different parasite lineages respond to host speciation 

events. Additionally, host ecology may shape cophylogenetic patterns in different ways 

for different parasite lineages (Page, 1994; Johnson and Clayton, 2003). The ectoparasitic 

lice (Insecta: Phthiraptera) parasitizing pigeons and doves (Aves: Columbidae) are ideal 

subjects for addressing such questions. Pigeons and doves are parasitized by two groups 

of feather lice: wing and body lice (Johnson and Clayton, 2003; Johnson et al., 2012). 

While both feed on abdominal downy feathers, members of these two groups have 

different mechanisms for escaping host preening (Rothschild and Clay, 1952; Nelson and 

Murray, 1971; Clayton et al., 2005; Clayton et al., 2010). Wing lice are elongate and 

insert themselves between the barbs of the wing feathers to escape preening, whereas the 

rounder body lice burrow into feather down to escape preening (Clayton, 1991; Clayton 
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et al., 1999; Figure 1.1). Although both of these groups of lice are in the same family 

(Philopteridae), wing and body lice parasitized doves independently, being relatively 

distantly related to each other (Cruickshank et al., 2001). These two lineages can be 

treated as “ecological replicates” that have different environmental limitations (Johnson 

and Clayton, 2003). Additionally, pigeons and doves are distributed worldwide and 

occupy a variety of ecological niches. Some groups, such as ground-doves, exhibit 

terrestrial lifestyles and primarily feed on seeds. Other groups, such as the fruit doves, are 

primarily arboreal and feed on fruits (Goodwin, 1983; Gibbs et al., 2001). Since both 

groups of dove lice are found on most host species (Price et al., 2003), it is possible to 

obtain a geographically extensive sample across the range of host niches for both groups 

of lice.   

Despite both wing and body lice being distributed worldwide on many species of 

doves, wing lice appear to be more likely than body lice to switch between host species 

because of ecological differences in dispersal capability. While both are obligate 

parasites, wing lice are more mobile than the more host specific body lice (Johnson et al., 

2002; Price et al., 2003). Wing lice have been shown to “hitchhike” on hippoboscid flies, 

generalist ectoparasites that often target doves (Harbison et al., 2008; Harbison and 

Clayton, 2011). This hitchhiking behavior, known as phoresy, may allow wing lice to 

rapidly move between hosts that may not normally interact. Body lice do not appear to 

utilize phoresy, so they are unlikely to disperse between host individuals in this way 

(Harbison et al., 2009). However, body lice do show some evidence of host switching, 

which appears to be facilitated by host behaviors. For example, gregarious roosting and 

foraging bring different species of doves into contact and may facilitate exchange of both 
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wing and body lice (Harbison et al., 2008; Johnson et al., 2011a). Given this knowledge, 

we expect that wing lice will be more likely to show phylogenetic patterns incongruent 

with their hosts. Previous taxonomically or geographically limited cophylogenetic studies 

have shown this to be the case (Clayton and Johnson, 2003; Johnson and Clayton, 2004). 

A study with broader sampling is needed to more thoroughly evaluate these patterns. 

 Here we combined new and existing data from multiple studies to compare 

cophylogenetic patterns of wing and body lice on a worldwide scale. From this data set 

we estimated phylogenetic trees for the doves and their associated wing and body lice. 

We used the resulting trees in cophylogenetic analyses, under both topology-based and 

event-based approaches. 

 

MATERIALS AND METHODS 

Taxon and marker selection 

 We obtained sequence data from NCBI-GenBank deposited in previous studies. 

This includes pigeon and dove data from Johnson and Clayton (2000), Johnson (2004), 

Johnson and Weckstein (2011), Pereira et al. (2007), Sweet and Johnson (2015), and 

Johnson et al. (2001); wing louse data from Johnson et al. (2007) and Johnson and 

Clayton (2004); and body louse data from Johnson et al. (2011a, b), Johnson and Clayton 

(2004), and Johnson, Adams, and Clayton (2001) (Supplementary Table 2.1). In instances 

where no GenBank data were available, we sequenced samples according to methods 

outlined in Johnson and Clayton (2000), Johnson et al. (2007), and Johnson et al. 

(2011b). Wing lice in this study belong to the genus Columbicola, while body lice are 

spread across the genera Auricotes, Coloceras, Campanulotes, and Physconelloides. We 
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used Aerodramus salangana (swiflet) as the outgroup for the doves following the rooting 

of Johnson and Clayton (2000), Oxylipeurus chiniri (chachalaca louse) for wing lice 

following the rooting of Johnson et al. (2007), and Stronglyocotes orbicularis (tinamou 

louse), Goniocotes talegallae (brushturkey louse), and Goniodes assimilis (partridge 

louse) for body lice following the rooting of Johnson et al. (2011b).  

For the doves, we used the mitochondrial loci cytochrome oxidase subunit I 

(COI), ATP synthase F0 subunit 8 (ATP8), NADH dehydrogenase subunit 2 (ND2), and 

cytochrome b (Cytb), and nuclear locus beta-fibrinogen intron 7 (FIB7). For wing lice, 

we used mitochondrial loci COI and 12S ribosomal RNA (12S), and nuclear locus 

elongation factor 1-alpha (EF-1α). For body lice, we used mitochondrial loci COI and 

16S ribosomal RNA (16S), and nuclear locus EF-1α. These markers were chosen because 

the majority of our targeted taxa have this sequence information, therefore minimizing 

missing sequences in our final data matrix. We also excluded lice for which we did not 

have host DNA sequence data and vice-versa. Thus, each host taxon had data for at least 

one associated wing and body louse. 

Phylogenetic analysis 

 We aligned sequences for each locus and in each taxonomic group (doves, wing 

lice, and body lice) independently. All alignments were done using MUSCLE (Edgar, 

2004) and visualized alignments using Seaview v4 (Gouy et al., 2010).  After inspecting 

the alignments we concatenated the locus based alignments into a single alignment for 

each group (doves, wing lice, and body lice) in Seaview. Using the concatenated data sets 

for each group, we estimated maximum likelihood (ML) trees in RAxML v7.0.4 

(Stamatakis, 2006) using GTR + I + Γ model of sequence evolution and 500 bootstrap 
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replicates. We also estimated ultrametric Bayesian trees using BEAST v1.7.5 

(Drummond et al., 2012). For the BEAST analyses, we partitioned each concatenated 

alignment by locus and used jModelTest2 (Darriba et al., 2012) to estimate the best-

fitting substitution models for each locus according to the corrected Akaike Information 

Criterion (AICc; Sugiura, 1978). We treated all mitochondrial loci as a single locus in all 

three alignments. For wing lice and body lice, we applied a GTR + I + Γ model to the 

mitochondrial data, and a K80 + I + Γ model to EF-1α. For the doves, we applied 

separate GTR + I + Γ models to the mitochondrial data and FIB7. In BEAST we used a 

lognormal relaxed clock and a Yule speciation tree prior for all three partitioned data sets, 

and ran analyses for 20 million MCMC generations with sampling every 1,000. We 

checked resulting .log files in Tracer v1.4 (Rambaut and Drummond, 2007) and from the 

trace plots found each analysis reached stationarity and had Effective Sample Size (ESS) 

values >>200. Based on the trace files we discarded the first 2,000 trees (10%) as burnin.  

Cophylogenetic analysis 

 Preparing trees for analysis. For phylogenetic analysis, we included multiple 

louse samples of the same species but that are associated with different host species. 

However, because in some cases there was no evidence that these multi-host parasites 

were genetically distinct (Supplementary Figures 2.1A-C), we collapsed these down to a 

single terminal taxon for cophylogenetic analysis using Mesquite v2.75 (Maddison and 

Maddison, 2011). We did this to avoid bias due to taxon duplication in our data set. We 

also removed outgroup taxa since their inclusion was for rooting the phylogenetic trees 

and not for cophylogenetic analysis. We used these trimmed trees for all subsequent 
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analyses. In particular, we analyzed our data with both topology-based and event-based 

methods (de Vienne et al., 2013). 

 Topology-based approach to test for cophylogenetic signal. For a topology-

based comparison, we used ParaFit (Legendre et al., 2002) in the “ape” package of R 

(Paradis et al., 2004). ParaFit takes the host phylogeny, parasite phylogeny, and 

association matrix as input and tests for random association between the two groups of 

taxa by randomizing the association matrix. ParaFit also tests for the contribution of each 

host-parasite association to the global statistic through two individual link statistics: 

ParaFitLink1 (“F1”) and ParaFitLink2 (“F2”). F1 is a more conservative test and is 

generally preferred, however F2 has greater power in some cases (Legendrew et al., 

2002). We ran ParaFit comparing the wing louse tree to the host tree and comparing the 

body louse tree to the host tree, and also for both the ML trees from RAxML and the 

ultrametric trees from BEAST. We first converted our trees to patristic distance matrices 

using “ape,” and ran ParaFit for 100,000 random permutations using the “lingoes” 

correction for negative eigenvalues. We also used the alternative correction – “calliez” – 

but the results were nearly identical. Therefore, we used “lingoes” results in all 

subsequent analyses. In all ParaFit analyses, we computed the F1 and F2 statistics for 

individual links.  

 To test whether cophylogenetic patterns may be correlated between the wing lice 

and body lice, we used contingency tables to partition the results of the individual link 

(i.e. host-parasite association) tests for each ParaFit analysis. The contingency tables 

were 2 x 2 matrices, with wing lice results on the rows and body lice results on the 

columns. Each cell indicated whether a particular host had a significant linkage with its 
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parasite species (indicating this association contributes to topological similarity between 

the trees). In instances when the links for both the wing and body lice of a particular host 

were significant, we counted those associations as a single decision in the appropriate 

cell. If, on the other hand, the body louse had a significant linkage but the wing louse did 

not, we counted the associations as a single decision in a different cell. For instances 

where a host had multiple links for one louse type but did not have multiple links for the 

other louse type (e.g. one host species has multiple wing louse species but only one body 

louse species associated with it), we counted the single species host-parasite link to match 

the number of links in the corresponding louse type link. If a host species had one wing 

louse species but multiple body louse species associated with it (or vice versa), we 

counted the wing louse link twice to correspond to each of the body louse links.  

 ParaFit produces p-values for each individual link test to provide a level of 

support for the contribution of that host-parasite association to the global statistic testing 

for random association between a group of hosts and their parasites. To correct for false 

discovery with multiple tests, we used the Benjamini-Hochberg control of false discovery 

rate (Benjamini and Hochberg, 1995). We did corrections in R assuming α = 0.05. Using 

the corrected p-values, we tallied the individual test links in the cells of our contingency 

tables and used a Pearson’s chi-square test for independence for each contingency table 

to test for potentially correlated cophylogenetic patterns between the wing and body lice. 

A significant chi-square result would indicate that cophylogenetic patterns in wing and 

body lice are correlated. That is, we tested the null hypothesis of whether the significant 

linkages of wing lice were independent of those for body lice over the same group of 

hosts. Since ParaFit produces two individual link test statistics, we tallied the results and 
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used a chi-square test for both statistics. We also used a Fisher’s exact test for each 

contingency table to test whether small sample sizes may affect the chi-square results. 

We performed the chi-square tests and Fisher’s exact tests in R. 

Event-based approach to test for cophylogenetic signal. For an event-based 

approach, we used Jane v4.01 (Conow et al., 2010). Jane uses a priori event costs to 

reconcile host and parasite phylogenies by minimizing the overall cost. We used this 

method for both the wing and body louse data sets, using the ultrametric trees we 

generated from BEAST. We ran Jane with the Genetic Algorithm parameters set at 100 

generations and with a population size of 100, and set the costs as default: 0 for 

cospeciation, 1 for duplication, 2 for duplication and host switch, 1 for loss, and 1 for 

failure to diverge. To test whether the resulting reconstruction cost is significantly lower 

than by chance, we randomized the tip associations 999 times. A significant result from 

this statistical test would indicate some level of phylogenetic congruence between host 

and parasite. Finally, we tested for the correlation of recovered cospeciation events from 

their placement on the host tree using a contingency table (following the procedure 

outlined by Johnson and Clayton, 2003). 

 Testing for taxonomic bias. Since our sample has a high proportion (10/15 

representatives) of small New World ground-doves (Columbina, Claravis, Uropelia, and 

Metriopelia) relative to other clades, our cophylogenetic analyses could potentially be 

affected by a taxonomic/clade representative bias. To test this idea, we removed the small 

New World ground-dove links in “ape.” Using this reduced data set, we ran ParaFit for 

100,000 iterations for both the phylogram and ultrametric trees, and applied both the F1 

and F2 individual link tests. From the results of the individual link tests we tested for 
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correlated cophylogenetic patterns between wing and body lice using contingency tables 

and Pearson’s chi-square tests as described above.  

 

RESULTS 

Final data matrix 

Based on our criterion of only including host samples with both associated wing 

and body louse data, we had a finalized matrix of 52 different dove species, along with 43 

associated wing and 49 body louse taxa (Supplementary Table 2.1). NCBI data yielded 

complete or near-complete sampling of loci in the host, wing louse, and body louse data 

sets. For the loci Cytb, COI, ND2, and FIB7 in the birds, there were seven instances of 

missing data for a gene (4% of entire matrix). However, for the ATP8 locus there were 

eighteen instances of missing data (37%). There were four instances of missing data for 

the three loci in the wing louse data (~2%), and nine instances of missing data for the 

three loci in the body louse data (5%). Maximum likelihood and Bayesian phylogenetic 

analyses with RAxML and BEAST produced trees largely in agreement with previous 

studies using this data. However, several of the basal nodes for all dove and louse trees 

were not well supported. 

 Cophylogenetic analysis 

 The global ParaFit statistics were significant for both the wing and body lice data 

sets (p <0.001, Table 2.1). This was true for patristic distances from both the phylogram 

and ultrametric trees. Although each dataset indicated strong support for a global non-

random association between host and parasite trees, a subset of individual host-parasite 

links (i.e. host-parasite associations) contribute to this signal. Since ParaFit can also test 
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each link by recalculating the global ParaFit statistic with the link removed, we can get a 

better understanding of how certain links contribute to the global statistic. A significant 

individual link statistic means the global ParaFit statistic decreased in value when that 

particular linked was removed, and therefore indicates the link represents an important 

component of the overall host-parasite relationship (Legendre et al., 2002). ParaFit also 

produces two different individual link statistics (F1 and F2). Here we report results from 

both tests. The F1 phylogram results included 40 significant wing louse-host links and 33 

significant body louse-host links after correcting for multiple comparisons, while the F2 

phylogram results indicated 43 significant wing louse-host links and 55 significant body 

louse-host links after correction (Table 2.1). The F1 ultrametric results did not have any 

significant body or wing louse links after correction, while the F2 ultrametric results 

indicated 19 significant wing louse-host links after correction and no significant body 

louse-host links after correction (Table 2.1). Several links were significant before 

correction (α = 0.05), but were not significant after correction. The specific host-parasite 

links and associated p-values of both individual link statistics for the phylogram and 

ultrametric trees are listed in Table 2.2. 

Most of the chi-square tests of independence of significant linkages between wing 

and body lice performed on the contingency tables were not significant or were not 

applicable (Table 2.3). The only significant test was from the ParaFit phylogram F1 

results (p = 0.002). The p-values from the other chi-square tests were all > 0.3. Fisher’s 

exact tests yielded similar p-values.   

Our Jane analyses recovered 14 nodes of cospeciation among the wing lice and 

their hosts, and 22 nodes of cospeciation among the body lice and their hosts (Table 2.4). 
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The specific nodes recovered as cospeciation events in both data sets are indicated in 

Figures 2 and 3. The placement of these events on the host tree is not correlated between 

wing and body lice (Table 2.3), suggesting these two parasite lineages diversify 

independently in response to host diversification. The total reconstruction cost was 84 for 

the wing lice and 79 for the body lice. In both analyses, none of the costs from 999 

random tip associations were equal to or lower than these original reconstruction costs (p 

= 0.0). 

Reduced cophylogenetic analysis 

 In our ParaFit analyses with the small New World ground-dove tips and links 

removed, our global statistics were significant in all cases (p < 0.0001). However, the 

corrected individual link statistics differed from the full data set results (Table 2.1). For 

the phylogram trees, wing lice had 12 significant links for both the F1 and F2 statistics, 

while the body lice had 27 and 33, respectively. The ultrametric trees also had 12 

significant wing louse links for both the F1 and F2 statistics, while body lice had 30 and 

31 respectively. Pearson’s chi-square tests on the contingency tables were not significant 

(p > 0.45 in all cases, Table 2.3). The specific links and associated p-values from 

cophylogenetic analyses on the reduced data set are listed in Table 2.5. 

 

DISCUSSION 

The primary objective of this study was to determine if either or both wing and 

body lice have phylogenetic histories congruent with their dove hosts or with each other. 

If both types of lice are affected similarly by host speciation events, we might expect 

their cophylogenetic patterns to be similar. However, we failed to find significant 



 23 

evidence that wing and body lice have similar phylogenetic histories. Despite a lack of 

correlated patterns between wing and body lice of specific host-parasite links, both the 

wing and body louse data sets individually showed evidence of cospeciation with their 

hosts.  

The chi-square tests based on the contingency tables failed to reject the null 

hypothesis of independence of cophylogenetic patterns in wing and body lice in all but 

one case. These results indicate that dove wing and body lice have unique and 

independent evolutionary histories. This is consistent with previous smaller scale studies 

of both louse groups and can potentially be explained by differences in life history 

between wing and body lice (Clayton and Johnson, 2003; Johnson and Clayton, 2003; 

Johnson et al., 2003; Johnson and Clayton, 2004). 

 The ParaFit global statistic testing for random host-parasite association was 

significant for both wing and body louse phylogenies individually. Additionally, the Jane 

event reconstruction costs were significantly lower than by chance. This indicates that at 

some level both body and wing lice show congruent phylogenetic patterns with their 

hosts. Congruence between body lice and their dove hosts was expected. Previous studies 

based on event-based methods showed strong patterns of cospeciation between body lice 

and their hosts (Clayton and Johnson, 2003). However, the wing lice sampled in the 

present study also showed evidence for cospeciation with their hosts. While previous 

event-based results have recovered some cospeciation events within this group, the 

overall patterns pointed to a lack of cospeciation over larger time scales (Johnson et al., 

2003). However, when taking into account a broad geographic and taxonomic sample, 

both wing and body lice appear to have undergone some level of cospeciation with their 
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hosts. Having a more extensive sample, and therefore more branches on phylogenetic 

trees provides greater statistical power. We suspect this allowed us to detect 

cophylogenetic signal that was obscured in studies with limited samples, an issue also 

discussed in Hughes et al. (2007). This could be the case particularly if the smaller 

samples are biased towards a particular geographic region or host group (Jackson et al., 

2008). 

 Contrary to the global ParaFit statistics, which indicated overall host-parasite 

congruence in all cases, the individual link statistics of the lice differed among tree type 

(phylogram vs. ultrametric) and link statistic (F1 vs. F2). Neither wing nor body lice 

showed consistency in the number of significant links among the different analyses. For 

example, more wing louse links were significant in the phylogram F1 analysis, while 

more body louse links were significant in the phylogram F2 analysis. In the ultrametric 

F1 statistic, none of the links showed significance. Several links in this analysis initially 

showed significant p-values, but these became non-significant after we corrected for 

multiple tests (Table 2.2). The instances of more significant wing louse links than body 

louse links is somewhat surprising. As discussed above, past work has indicated that 

body lice have stronger phylogenetic congruence with their hosts, and so we might have 

expected them to have more significant individual links than wing lice.  

Poorly resolved backbones of the phylogenies (Supplementary Figures 2.1A-C) 

could be a possible explanation for the varying individual link statistic results. This could 

particularly be a primary cause of the discord between the phylogram and ultrametric 

results. Since ParaFit takes topology and branch lengths (patristic distances) into 
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consideration, differences between ultrametric and non-ultrametric trees in relative 

patristic distances could account for these differences.  

 Alternatively, clade representation biases could be driving cophylogenetic signals. 

Our data set includes 10/15 representatives of the small New World ground-dove clade 

and their lice, which is the most thorough sampling representation of a clade in our data 

set. The hosts, their wing lice, and their body lice have all been shown to be 

monophyletic (Cruickshank et al., 2001; Pereira et al., 2007; Johnson et al., 2007, 2011b). 

In both the F1 and F2 ParaFit analysis, every link from this clade contributed to the 

overall pattern of non-random associations. Since the hosts and their lice are in 

monophyletic clades, and we were able to include strong taxon sample representation of 

these groups, the results are perhaps due to congruence between whole clades rather than 

between specific links within each clade. If the relationships between the clades are 

contributing significantly to the global statistic, removing a single host-parasite link from 

a clade would alter the global statistic. Since this is how ParaFit calculates the individual 

link statistics, each link in the small New World ground-dove clade could potentially be 

significant.  

Our ParaFit analyses with the small New World ground-doves removed indicates 

some level of taxonomic bias may indeed be a reality in our data set. Although our 

ParaFit global statistics were once again significant in the reduced data set, results from 

the individual link tests were more consistent with previous studies. Body lice had at least 

twice as many significant links as wing lice in all scenarios (Table 2.1). Additionally, 

results were fairly consistent among tree types (phylogram and ultrametric) and test 

statistics (F1 and F2; Table 2.5). In general, the full data sets were not nearly as 
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consistent, which indicates the small New World ground-doves and associated lice were 

driving the results, perhaps due to a clade representation bias. 

 Signals of host-parasite cospeciation in a taxonomically biased sample may be 

primarily attributable to clade-limited host switching, where parasites utilizing a 

geographically, ecologically, and/or phylogenetically similar group of hosts preferentially 

switches within that particular host group. This can produce a false signal of host-parasite 

phylogenetic congruence (de Vienne et al., 2007). Similar effects have been observed in 

primate viruses (Charleston and Robertson, 2002) and brood parasitic finches (Sorenson 

et al., 2004). Small New World ground-doves are in a monophyletic group, are similar in 

size, and most forage for small seeds in brushy habitat (Gibbs et al., 2001; Sweet and 

Johnson, 2015). Because of these shared attributes, the wing and body lice of these doves 

may be able to switch within the host clade, but are limited in switching to hosts outside 

of the clade due to host body size or habitat proximity of the host species. Although these 

lice are switching hosts, the switching events are limited to the small New World ground-

dove clade, perhaps contributing to host-parasite congruence in the absence of strict 

cospeciation. 

 The results from Jane differed from the ParaFit results (Figures 2.2 and 2.3; 

Tables 2.3 and 2.4). However, Jane is an event-based method, so the ParaFit results are 

not completely analogous. Event-based analyses reconcile host and parasite phylogenies 

by reconstructing cospeciation and duplication events at nodes and sorting and host-

switching events along branches, rather than estimating the statistical significance of 

particular host-parasite associations. The Jane results are more consistent with previous 

research, with more cospeciation events recovered in the body louse analysis (22) than 
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the wing louse analysis (14). The Jane results are also more consistent with the ParaFit 

results from the analyses without small New World ground-doves and their lice. If the 

ground-dove/lice clades are indeed biasing ParaFit results, then the Jane (event-based) 

results might be giving a more accurate portrayal of the evolutionary history within these 

groups. It seems likely that event-based methods such as Jane are more resistant to clade 

representation biases, because Jane reconstructs events along every node and branch of 

the tree, even within clades.         

External factors driving cophylogenetic patterns 

Although we found no evidence of significantly correlated cophylogenetic 

patterns between dove wing and body lice, having worldwide sampling highlights 

external factors potentially associated with cophylogenetic patterns. For example, a 

stronger signal of cospeciation in most of the body louse data sets perhaps hints at 

phoresis behavior in wing lice, as has been described in previous work (Harbison et al., 

2008; Harbison et al., 2009; Harbison and Clayton, 2011). Our results show that his 

phenomenon could be operating at a worldwide scale.  

Many of the host species consistently showing evidence of cospeciation with both 

their wing and body lice are phabines native to Australia and/or New Guinea. The 

phabines are a clade that includes Geopelia doves, Geophaps pigeons, Petrophassa rock 

pigeons, Phaps (bronzewings), and Ocyphaps lophotes (crested pigeon). Although the 

hosts are native to the same region, geography alone does not explain these patterns, 

since some Australian species did not have evidence of cospeciation with their parasites 

(e.g. Lopholaimus antarcticus [topknot pigeon]). As with the small New World ground-

doves and their lice, clade-limited host switching may play a role in generating these 
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patterns of cospeciation. Like small New World ground-doves, Australian phabines are 

small terrestrial foraging birds that prefer open, scrubby habitat (Gibbs et al., 2001). The 

combination of their hosts’ small size and habitat preferences may limit opportunities for 

phabine lice to switch to hosts outside of the clade. However, in contrast to the small 

New World ground-doves and their lice, phabine body lice are not monophyletic. In 

addition, our event-based analyses recovered several nodes of cospeciation in the phabine 

clade, while only recovering a few nodes of cospeciation in the small New World 

ground-dove clade. Taken together, these two differences indicate that clade-limited host 

switching may be less of a factor in the phabine system, and that any signal of 

cospeciation comes from actual topological congruence between phabines and their lice.  

Conclusion   

 Based on our results from both topology-based and event-based cophylogenetic 

analysis, this study does not find evidence of correlated cophylogenetic patterns between 

the wing and body lice of pigeons and doves. Despite finding no overall correlation, we 

did find potentially interesting patterns within smaller groups. Since neither the wing lice 

nor body lice showed perfect patterns of cospeciation with their hosts, we would expect 

external factors to shape the observed patterns of parasitism. As proposed in previous 

studies, differences in the ability to switch hosts because of differences in the use of 

hippoboscid flies for phoresis may be driving differences between wing and body lice. 

However geography, host life history, and host phylogeny are all important factors for 

shaping the relationship between host and parasite.  

Unlike in previous studies, however, we found that both wing and body lice had 

evidence for cospeciation with their hosts and that body lice did not have substantially 
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more associations contributing to this signal than wing lice. However, when we removed 

the small New World ground-doves and their associated lice from the ParaFit analyses, 

the results seemed more in line with previous studies and predictions from ecological 

differences. The results were also more consistent across analyses, which was not the 

case with the ground-dove data included. These results highlight the importance of 

considering phylogenetic scale and taxa representation in cophylogenetic analysis. 

Results drawn from subsets of these taxa may show varying patterns dependent on the 

sampling level.  

 Host-parasite interactions are complex systems. Understanding how different 

factors influence the dynamics of host-parasite relationships may ultimately depend on 

the scale and density of taxonomic sampling. With a large and geographically extensive 

data set of pigeons and doves and their wing and body lice, we were able to reveal 

cophylogenetic patterns previously hidden by less representative sampling, and in doing 

so further our understanding of possible life history and geographic factors driving the 

patterns. In addition, we highlight possible pitfalls of cophylogenetic analyses and 

provide insight into the importance of identifying the proper level of taxon sampling and 

relative clade representation in such studies. 
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FIGURES 

 

Figure 2.1. Photographs of A) a body louse (Physconelloides emersoni) and B) a wing 

louse (Columbicola drowni) from a black-winged ground-dove (Metriopelia 

melanoptera). Scale indicated to the bottom right of each photograph. 
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Figure 2.2. Tanglegram showing the associations between dove wing lice (right) and their 

hosts (left). Phylogenies were generated using BEAST v1.7.5 (Drummond et al., 2012). 

Asterisks (*) indicate posterior probabilities (PP) ≥0.95. Circles at nodes indicate 

cospeciation events as recovered by Jane v4 (Conow et al., 2010). Cospeciation events 

are numbered starting from the top of the host phylogeny, with matching numbers on 

corresponding speciation events indicated on the wing louse phylogeny. Open circles 

indicate recovered cospeciation events shared by wing and body lice. Bold lines between 

host and parasite indicate a significant link as recovered by the ParaFit (Legendre et al., 

2002) F1 statistic using the phylogram topology.  
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Figure 2.3. Tanglegram showing the associations between dove body lice (right) and their 

hosts (left). Phylogenies were generated using BEAST v1.7.5 (Drummond et al., 2012). 

Asterisks (*) indicate posterior probabilities (PP) ≥0.95. Circles at nodes indicate 

cospeciation events as recovered by Jane v4 (Conow et al., 2010). Cospeciation events 

are numbered starting from the top of the host phylogeny, with matching numbers on 

corresponding speciation events indicated on the body louse phylogeny. Open circles 

indicate recovered cospeciation events shared by wing and body lice. Bold lines between 

host and parasite indicate a significant link as recovered by the ParaFit (Legendre et al., 

2002) F1 statistic using the phylogram topology.  
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TABLES 

Table 2.1. Summary of ParaFit results for the full wing and body louse data set and the 

partial (excluding small New World ground-doves) data set. The ParaFitGlobal statistic 

and associate p-value are indicated for the ParaFit results. F1 and F2 Links refer to the 

number of significant ParaFitLink1 and ParaFitLink2 statistics (respectively) after 

correcting for false discovery rate with the Benjamini-Hochberg correction. 
 

ParaFit Full 
  

 
Phylogram Ultrametric 

 
    

Wing ParaFitGlobal = 1.947 ParaFitGlobal = 6.043 
 

 
P = 0.00001 P = 0.00001 

 

F1 Links 40 0 
 

F2 Links 43 19 
 

    
    

Body ParaFitGlobal = 0.276 ParaFitGlobal = 6.138 
 

 
P = 0.00001 P = 0.00007 

 

F1 Links 33 0 
 

F2 Links 55 0 
 

    
    
 

ParaFit Partial 
  

 
Phylogram Ultrametric 

 

Wing 
   

 
ParaFitGlobal = 471.8 ParaFitGlobal = 4.219 

 
 

P = 0.00002 P = 0.00003 
 

F1 Links 12 12 
 

F2 Links 12 12 
 

    

Body 
   

 
ParaFitGlobal = 0.132 ParaFitGlobal = 5.134 

 
 

P = 0.00001 P = 0.00001 
 

F1 Links 27 30 
 

F2 Links 33 31 
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Table 2.2. ParaFit individual link statistic p-values for both the ParaFitLink1 (F1) and ParaFitLink2 (F2) statistics of the full data set. 

Values listed with asterisks indicate significance after correcting for false discovery rate (α = 0.05). Hosts are listed left of the p-

values. Hosts listed more than once indicate multiple species of lice associated with that particular host. 

Wing Lice 
    

Body Lice 
    

 
Phylogram 

 
Ultrametric 

 
Phylogram 

 
Ultrametric  

F1 F2 F1 F2 
 

F1 F2 F1 F2 
Claravis pretiosa 0.00008* 0.00007* 0.02570 0.02190 Claravis pretiosa 0.00011* 0.00001* 0.02856 0.02592 
Uropelia campestris 0.00001* 0.00001* 0.01579 0.01328* Uropelia campestris 0.00001* 0.00001* 0.01723 0.01527 
Metriopelia cecliae 0.00002* 0.00002* 0.02864 0.02461 Metriopelia cecliae 0.00001* 0.00001* 0.01943 0.01699 
Metriopelia melanoptera 0.00002* 0.00002* 0.02841 0.02421 Metriopelia melanoptera 0.00001* 0.00001* 0.01714 0.01495 
Columbina cruziana 0.00001* 0.00001* 0.04662 0.04067 Columbina cruziana 0.00001* 0.00001* 0.02524 0.02303 
Columbina picui 0.00001* 0.00001* 0.01189 0.01011* Columbina picui 0.00001* 0.00001* 0.02481 0.02277 
Columbina inca 0.00001* 0.00001* 0.01152 0.00987* Columbina inca 0.00001* 0.00001* 0.06328 0.05695 
Columbina passerina 0.00001* 0.00001* 0.01110 0.00958* Columbina passerina 0.00001* 0.00001* 0.02342 0.02106 
Columbina minuta 0.00001* 0.00001* 0.01074 0.00918* Columbina minuta 0.00001* 0.00001* 0.03633 0.03301 
Columbina buckleyi 0.00001* 0.00001* 0.08411 0.07502 Columbina buckleyi 0.00001* 0.00001* 0.02381 0.02178 
Geopelia placida 0.01956* 0.01421* 0.07200 0.06285 Geopelia placida 0.03328 0.00008* 0.51637 0.50952 
Geopelia humeralis 0.02365* 0.01787* 0.07796 0.06852 Geopelia humeralis 0.06950 0.00008* 0.52301 0.51534 
Geopelia cuneata 0.01475* 0.01006* 0.98455 0.98682 Geopelia humeralis 0.06891 0.00023* 0.56601 0.55829 
Ocyphaps lophotes 0.00108* 0.00053* 0.00502 0.00399* Geopelia cuneata 0.02827 0.00006* 0.38403 0.37433 
Geophaps plumifera 0.00056* 0.00030* 0.00223 0.00170* Ocyphaps lophotes 0.55195 0.17624 0.69007 0.68750 
Geophaps smithii 0.00022* 0.00007* 0.00231 0.00179* Geophaps plumifera 0.02017* 0.00001* 0.03660 0.03291 
Geophaps scripta 0.00028* 0.00015* 0.00324 0.00256* Geophaps smithii 0.01292* 0.00001* 0.03678 0.03353 
Phaps elegans 0.00003* 0.00002* 0.00569 0.00460* Geophaps smithii 0.01096* 0.00001* 0.29318 0.27887 
Phaps historionica 0.00205* 0.00114* 0.00566 0.00459* Geophaps scripta 0.03457 0.00001* 0.28342 0.27100 
Phaps chalcoptera 0.00013* 0.00008* 0.01099 0.00929* Phaps elegans 0.03434 0.00003* 0.33949 0.32789 
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Table 2.2. Continued. 
 

Petrophassa albipennis 0.00001* 0.00001* 0.09712 0.08609 Phaps historionica 0.36331 0.02395* 0.85158 0.85319 
Petrophassa rufipennis 0.00003* 0.00001* 0.47186 0.45759 Phaps chalcoptera 0.00771* 0.00001* 0.08144 0.07461 
Turtur tympanistria 0.11891 0.09854 0.28731 0.27249 Phaps chalcoptera 0.12494 0.00118* 0.62715 0.62295 
Turtur brehmeri 0.04250 0.02994* 0.35844 0.34415 Petrophassa albipennis 0.00020* 0.00001* 0.22198 0.21032 
Chalcophaps indica 0.06037 0.04672 0.20758 0.19174 Petrophassa rufipennis 0.00069* 0.00001* 0.20205 0.19010 
Chalcophaps stephani 0.06646 0.05275 0.21715 0.20112 Turtur tympanistria 0.17887 0.00470* 0.26607 0.25424 
Phapitreron leucotis 0.04800 0.03508* 0.08231 0.07290 Turtur brehmeri 0.13412 0.00330* 0.53348 0.52524 
Treron waalia 0.42768 0.38297 0.48008 0.47061 Chalcophaps indica 0.04962 0.00009* 0.20788 0.19813 
Lopholaimus antarcticus 0.11849 0.10004 0.04238 0.03614 Chalcophaps indica 0.12411 0.00203* 0.34677 0.33532 
Ducula rufigaster 0.08872 0.07267 0.04223 0.03619 Chalcophaps stephani 0.05824 0.00015* 0.20217 0.19201 
Ptilinopus rivoli 0.08741 0.07161 0.98733 0.98908 Chalcophaps stephani 0.14097 0.00300* 0.34242 0.33096 
Geotrygon montana 0.11946 0.10241 0.01893 0.01615 Phapitreron leucotis 0.17388 0.00436* 0.19630 0.18541 
Leptotila plumbiscens 0.01707* 0.01231* 0.11572 0.10485 Treron waalia 0.41405 0.05609 0.33430 0.32301 
Leptotila plumbiscens 0.09522 0.07936 0.01835 0.01564* Lopholaimus antarcticus 0.62149 0.04019* 0.17732 0.16627 
Leptotila jamaicensis 0.01413* 0.01003* 0.10823 0.09812 Ducula rufigaster 0.24254 0.00200* 0.24748 0.23622 
Leptotila verreauxi 0.01579* 0.01117* 0.14646 0.13503 Ptilinopus rivoli 0.25603 0.00314* 0.29547 0.28400 
Leptotila verreauxi 0.09957 0.08351 0.01861 0.01602* Geotrygon montana 0.06264 0.00040* 0.00711 0.00591 
Zenaida asiatica 0.09108 0.07665 0.05169 0.04492 Leptotila plumbiscens 0.00975* 0.00001* 0.00565 0.00479 
Zenaida macroura 0.03140 0.02398* 0.25981 0.24584 Leptotila jamaicensis 0.00930* 0.00001* 0.00580 0.00489 
Zenaida macroura 0.10867 0.09123 0.08665 0.07844 Leptotila verreauxi 0.01108* 0.00001* 0.00966 0.00855 
Zenaida auriculata 0.02731* 0.02027* 0.17294 0.15933 Zenaida asiatica 0.01177* 0.00001* 0.05639 0.05150 
Zenaida galapagoensis 0.09795 0.08200 0.07817 0.07110 Zenaida macroura 0.00088* 0.00001* 0.05379 0.04903 
Reinwardtoena reinwardtii 0.68163 0.63206 0.95386 0.95765 Zenaida auriculata 0.00087* 0.00001* 0.06820 0.06275 
Macropygia ruficeps 0.51641 0.45329 0.95706 0.96126 Zenaida galapagoensis 0.00097* 0.00001* 0.08349 0.07734 
Patagioenas fasciata 0.06957 0.05661 0.10090 0.09013 Reinwardtoena reinwardtii 0.39229 0.02314* 0.04714 0.04294 
Patagioenas speciosa 0.03658 0.02829* 0.01522 0.01241* Macropygia ruficeps 0.36144 0.02511* 0.04741 0.04286 
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Table 2.2. Continued. 
 

Patagioenas subvinacea 0.02743* 0.02096* 0.35100 0.33643 Patagioenas fasciata 0.04900 0.00009* 0.28717 0.27382 
Patagioenas plumbea 0.02122* 0.01559* 0.01519 0.01262* Patagioenas speciosa 0.02749 0.00002* 0.89469 0.89269 
Columba palumbus 0.01750* 0.01290* 0.00771 0.00584* Patagioenas subvinacea 0.01469* 0.00001* 0.95666 0.95928 
Columba livia 0.01276* 0.00883* 0.00718 0.00542* Patagioenas plumbea 0.01227* 0.00001* 0.95821 0.96038 
Columba guinea 0.01806* 0.01303* 0.16711 0.15326 Columba palumbus 0.50342 0.10344 0.18510 0.17503 
Streptopelia semitorquata 0.03015* 0.02086* 0.03887 0.03341 Columba livia 0.46886 0.10415 0.18246 0.17266 
Streptopelia decaocto 0.01284* 0.00881* 0.14090 0.12848 Columba guinea 0.07331 0.00052* 0.02042 0.01810 
Streptopelia vinacea 0.01850* 0.01367* 0.05554 0.04879 Streptopelia semitorquata 0.01911* 0.00002* 0.20881 0.19817 
Streptopelia capicola 0.01685* 0.01239* 0.05499 0.04831 Streptopelia decaocto 0.84719 0.83298 0.79868 0.79914      

Streptopelia decaocto 0.00641* 0.00001* 0.00549 0.00484      
Streptopelia vinacea 0.00368* 0.00001* 0.00556 0.00488      
Streptopelia capicola 0.00320* 0.00001* 0.00747 0.00656 
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Table 2.3. Summary of the contingency table results from ParaFit individual link 

statistics and cospeciation events recovered in Jane for the full data set and from ParaFit 

statistics for the partial (excluding small New World ground-doves) data set. Both 

ParaFitLink1 (F1) and ParaFitLink2 (F2) individual link statistics are reported for 

ParaFit. Values indicate total tallies for a particular cell of the contingency table. ParaFit 

values indicate the number of individual link statistics in that category after correcting for 

false discovery rate. Jane values indicate the number of cospeciation and/or non-

cospeciation events as recovered on the host phylogeny. Results from Pearson’s chi-

square tests for each contingency table are listed in the right column.  

Full 
     

wing/body no/no no/yes yes/no yes/yes Chi-square p-value 
Phylogram F1 14 5 12 28 0.002 
Phylogram F2 1 16 4 39 1 
Ultrametric F1 61 0 0 0 NA 
Ultrametric F2 42 0 19 0 NA 
Jane 25 14 6 8 0.286       

Partial 
     

wing/body no/no no/yes yes/no yes/yes 
 

Phylogram F1 20 19 4 8 0.4481 
Phylogram F2 14 25 4 8 1 
Ultrametric F1 17 22 4 8 0.767 
Ultrametric F2 16 23 4 8 0.8893 
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Table 2.4. Summary of Jane results for the wing and body louse data sets. Numbers listed are the number of events that resulted in the 

lowest reconstruction cost, based on the default cost parameters. Specific events are listed in the top row. 

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Cospeciations Duplications Duplications and host switches Losses Failures to diverge 

Wing 14 4 23 22 12       

Body 22 1 25 19 9 
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Table 2.5. ParaFit individual link statistic p-values for both the ParaFitLink1 (F1) and ParaFitLink2 (F2) statistics of the partial 

(excluding small New World ground-doves) data set. Values listed with asterisks indicate significance after correcting for false 

discovery rate (α = 0.05). Hosts are listed left of the p-values. Hosts listed more than once indicate multiple species of lice associated 

with that particular host. 

Wing Lice 
    

Body Lice 
    

 
Phylogram Ultrametric 

 
Phylogram Ultrametric  

F1 F2 F1 F2 
 

F1 F2 F1 F2 
Geopelia placida 0.00689* 0.00689* 0.00044* 0.00030* Geopelia placida 0.00159* 0.00014* 0.00017* 0.00010* 
Geopelia humeralis 0.00882* 0.00881* 0.00062* 0.00048* Geopelia humeralis 0.01493* 0.00296* 0.00038* 0.00025* 
Geopelia cuneata 0.00529* 0.00529* 0.97899 0.98119 Geopelia humeralis 0.00322* 0.00046* 0.00028* 0.00021* 
Ocyphaps lophotes 0.00806* 0.00805* 0.00069* 0.00057* Geopelia cuneata 0.00106* 0.00015* 0.00015* 0.00012* 
Geophaps plumifera 0.01338 0.01337 0.00033* 0.00025* Ocyphaps lophotes 0.98095 0.98148 0.00155* 0.00107* 
Geophaps smithii 0.00367* 0.00367* 0.00035* 0.00028* Geophaps plumifera 0.00993* 0.00162* 0.00078* 0.00059* 
Geophaps scripta 0.00321* 0.00321* 0.00056* 0.00049* Geophaps smithii 0.00548* 0.00088* 0.14195 0.11651 
Phaps elegans 0.00122* 0.00121* 0.00061* 0.00050* Geophaps smithii 0.00175* 0.00020* 0.00069* 0.00052* 
Phaps historionica 0.01011* 0.01011* 0.00068* 0.00058* Geophaps scripta 0.54828 0.39861 0.50612 0.49294 
Phaps chalcoptera 0.98669 0.98669 0.92363 0.92597 Phaps elegans 0.29108 0.14308 0.43060 0.41543 
Petrophassa albipennis 0.00036* 0.00036* 0.00091* 0.00073* Phaps historionica 0.90047 0.92751 0.73173 0.72954 
Petrophassa rufipennis 0.00083* 0.00083* 0.00653* 0.00547* Phaps chalcoptera 0.00020* 0.00004* 0.00212* 0.00145* 
Turtur tympanistria 0.10294 0.10293 0.76565 0.76732 Phaps chalcoptera 0.00240* 0.00033* 0.00147* 0.00106* 
Turtur brehmeri 0.11686 0.11684 0.28719 0.27598 Petrophassa albipennis 0.00001* 0.00001* 0.00158* 0.00131* 
Chalcophaps indica 0.03282 0.03280 0.06931 0.06326 Petrophassa rufipennis 0.00011* 0.00002* 0.00354* 0.00266* 
Chalcophaps stephani 0.03989 0.03989 0.06940 0.06321 Turtur tympanistria 0.37395 0.18811 0.01058* 0.00809* 
Phapitreron leucotis 0.10146 0.10144 0.16257 0.15303 Turtur brehmeri 0.05223 0.01466* 0.43786 0.41939 
Treron waalia 0.42496 0.42495 0.54868 0.54396 Chalcophaps indica 0.03481 0.00862* 0.16752 0.15235 
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Table 2.5. Continued. 
 

Lopholaimus antarcticus 0.21807 0.21805 0.09336 0.08558 Chalcophaps indica 0.26451 0.11194 0.89698 0.90062 
Ducula rufigaster 0.13632 0.13632 0.09364 0.08582 Chalcophaps stephani 0.04826 0.01226* 0.23149 0.21464 
Ptilinopus rivoli 0.13266 0.13265 0.17689 0.16746 Chalcophaps stephani 0.25180 0.11168 0.89360 0.89649 
Geotrygon montana 0.21255 0.21254 0.07552 0.06918 Phapitreron leucotis 0.12873 0.04992 0.59081 0.58004 
Leptotila plumbiscens 0.08902 0.08899 0.25736 0.24790 Treron waalia 0.78962 0.79540 0.99065 0.99206 
Leptotila plumbiscens 0.14086 0.14084 0.09413 0.08715 Lopholaimus antarcticus 0.70867 0.67833 0.50855 0.49539 
Leptotila jamaicensis 0.07381 0.07377 0.18292 0.17346 Ducula rufigaster 0.21583 0.10358 0.21074 0.19447 
Leptotila verreauxi 0.08507 0.08506 0.28267 0.27358 Ptilinopus rivoli 0.22241 0.10969 0.24347 0.22563 
Leptotila verreauxi 0.14746 0.14744 0.13489 0.12628 Geotrygon montana 0.05016 0.01240* 0.00953* 0.00706* 
Zenaida asiatica 0.94321 0.94321 0.22428 0.21358 Leptotila plumbiscens 0.00698* 0.00085* 0.00603* 0.00409* 
Zenaida macroura 0.18222 0.18221 0.37579 0.36634 Leptotila jamaicensis 0.00467* 0.00060* 0.00677* 0.00498* 
Zenaida macroura 0.13859 0.13857 0.03719 0.03284 Leptotila verreauxi 0.01772* 0.00285* 0.01842* 0.01434* 
Zenaida auriculata 0.14541 0.14541 0.32555 0.31615 Zenaida asiatica 0.06730 0.01925* 0.11565 0.10233 
Zenaida galapagoensis 0.12229 0.12228 0.03254 0.02892 Zenaida macroura 0.00106* 0.00007* 0.00699* 0.00537* 
Reinwardtoena reinwardtii 0.65526 0.65524 0.91886 0.92173 Zenaida auriculata 0.00095* 0.00009* 0.00712* 0.00560* 
Macropygia ruficeps 0.18765 0.18763 0.66010 0.65607 Zenaida galapagoensis 0.00641* 0.00080* 0.03422 0.02821* 
Patagioenas fasciata 0.15042 0.15042 0.07117 0.06465 Reinwardtoena reinwardtii 0.33631 0.19851 0.64246 0.63398 
Patagioenas speciosa 0.10359 0.10358 0.01453 0.01255 Macropygia ruficeps 0.33480 0.19545 0.85180 0.85395 
Patagioenas subvinacea 0.97986 0.97986 0.10580 0.09755 Patagioenas fasciata 0.02949 0.00717 0.00037* 0.00029* 
Patagioenas plumbea 0.07594 0.07594 0.02538 0.02205 Patagioenas speciosa 0.02108* 0.00382* 0.00046* 0.00028* 
Columba palumbus 0.14230 0.14227 0.08380 0.07309 Patagioenas subvinacea 0.00508* 0.00077* 0.00069* 0.00050* 
Columba livia 0.04722 0.04722 0.07566 0.06580 Patagioenas plumbea 0.00399* 0.00068* 0.00217* 0.00150* 
Columba guinea 0.05858 0.05855 0.52160 0.51535 Columba palumbus 0.78127 0.72592 0.19800 0.18036 
Streptopelia semitorquata 0.03934 0.03934 0.23935 0.22740 Columba livia 0.99839 0.99981 0.18988 0.17219 
Streptopelia decaocto 0.05605 0.05605 0.50478 0.49799 Columba guinea 0.12180 0.04572 0.00140* 0.00099* 
Streptopelia vinacea 0.03009 0.03009 0.13042 0.12199 Streptopelia semitorquata 0.07935 0.02283* 0.02707* 0.02190* 
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Table 2.5. Continued. 
 
Streptopelia	capicola	 0.02854	 0.02853	 0.13205	 0.12331	 Streptopelia	decaocto	 0.70843	 0.67464	 0.92208	 0.92600		 	 	 	 	

Streptopelia	decaocto	 0.00650*	 0.00100*	 0.00012*	 0.00007*		 	 	 	 	
Streptopelia	vinacea	 0.00387*	 0.00052*	 0.00010*	 0.00009*		 	 	 	 	
Streptopelia	capicola	 0.00307*	 0.00041*	 0.00011*	 0.00007*	
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CHAPTER 3: COMPARATIVE COPHYLOGENETICS OF AUSTRALIAN PHABINE 

PIGEONS AND DOVES (AVES: COLUMBIDAE) AND THEIR FEATHER LICE 

(INSECTA: PHTHIRAPTERA)2 

 

INTRODUCTION 

 Parasitic organisms are ubiquitous in most biological systems. Their ability to occupy a 

variety of niches has resulted in great diversity and many independent transitions from free-

living to parasitic lifestyles (Poulin and Morand, 2000; Poulin, 2011; Poulin and Randhawa, 

2015). Some organisms parasitize many different hosts throughout their life cycles, and may 

even have a free-living life stage (Gandon, 2004; Banks and Paterson, 2005; Belzile and 

Gosselin, 2015). Other parasites are more tightly associated with their hosts, spending their entire 

life cycle on a single host and being limited to a particular species or group of hosts (Rohde, 

1979; Hafner et al., 1994; Hafner and Page, 1995; Proctor, 2003). In cases in which parasite 

reproduction is heavily linked to the host, the diversification patterns (phylogenies) of these 

obligate parasites may mirror those of their hosts. In these cases, when a host undergoes 

speciation, its obligate parasites may also cospeciate, causing the parasite phylogeny to be 

congruent with the host phylogeny (Fahrenholz, 1913; Eichler, 1948). However, this expectation 

                                                
2 Reprinted, with permission, from: Sweet, A.D., R.T. Chesser, and K.P. Johnson. 2017. 

Comparative cophylogenetics of Australian phabine pigeons and doves (Aves: Columbidae) and 

their feather lice (Insecta: Phthiraptera). International Journal for Parasitology. 47: 347-356. 

https://doi.org/10.1016/j.ijpara.2016.12.003. 
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is rarely observed in nature. Although some obligate parasite groups exhibit patterns of 

congruence with their host’s phylogeny, most exhibit some level of incongruence generated by 

host switching, duplication or sorting events during their evolutionary history with their hosts 

(Page, 1994; Page and Charleston, 1998). The degree of incongruity can vary among different 

host groups, and even among different groups of parasites associated with the same group of 

hosts (Whiteman et al., 2007; Toon and Hughes, 2008; Bueter et al., 2009; Stefka et al., 2011). 

 The feather lice (Insecta: Phthiraptera: Philopteridae) of pigeons and doves (Aves: 

Columbidae) are an example of obligate parasites that have varying levels of congruence 

between host and parasite phylogenies. Pigeons and doves harbor two types (ecomorphs) of 

feather lice: wing and body lice (Johnson et al., 2012). These two groups are not closely related, 

and their morphologies differ dramatically (Cruikshank et al., 2001). Wing lice are long and 

slender, and insert themselves between wing and tail feather barbs to avoid removal by host 

preening. In contrast, body lice are round and escape preening by burrowing into the downy 

feathers close to their host body (Clayton, 1991; Clayton et al., 2005, 2010). However, both 

types of lice eat the downy feathers of their hosts (Nelson and Murray, 1971). Comparative 

cophylogenetic analysis of wing and body lice from New World pigeons and doves indicates that 

body lice have a fairly congruent evolutionary history with their hosts, whereas wing lice exhibit 

less congruence and do not show evidence for cospeciation (Clayton and Johnson, 2003; Johnson 

and Clayton, 2004). The body lice of pigeons and doves are also more host-specific than wing 

lice, meaning that wing louse species are more often associated with multiple host species 

(Johnson et al., 2002). This difference may be due, in part, to the greater ability and incidence of 

wing lice using hippoboscid flies for transport (phoresis) within and among host species 

(Keirans, 1975; Harbison et al., 2008; Harbison and Clayton, 2011). Experimental studies have 
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indicated that wing lice are much more likely than body lice to successfully switch hosts using 

this behavior (Harbison et al., 2009). Globally across Columbidae, both groups of lice do show 

significant congruence with the host phylogeny; however, it is unclear how much of this 

congruence is due to shared biogeographic patterns (Sweet et al., 2016). It is important, 

therefore, to examine congruence within additional biogeographic regions to determine whether 

patterns observed within New World taxa also hold for other regional host-parasite faunas. 

 In this study we focus on the wing and body lice of phabine pigeons and doves, a 

monophyletic group of birds from Australia and southeastern Asia (Johnson and Clayton, 2000b; 

Pereira et al., 2007). By exploring the cophylogenetic patterns of a distinct group of birds and 

their lice, we can test whether the patterns these taxa exhibit are similar to those exhibited by 

New World taxa. Phabines are a monophyletic group of 15 species in the genera Phaps, 

Geophaps, Ocyphaps, Petrophassa, Geopelia and Leucosarcia (Pereira et al., 2007). Most 

representatives are primarily terrestrial and prefer arid, open scrub, or dry forest habitats 

(Goodwin, 1983; Gibbs et al., 2001). However, some species (Leucosarcia melanoleuca and 

Geopelia humeralis) occupy more humid, wetter habitats. As with other terrestrial doves, 

phabines primarily forage on small seeds and fruits. All phabine wing lice belong to the genus 

Columbicola (Price et al., 2003) whereas phabine body lice are classified into three genera 

(Campanulotes, Coloceras and Physconelloides). 

 We sampled most representatives of phabines together with their wing and body lice, 

focusing particularly on species from continental Australia. From these samples we sequenced or 

used existing sequences of multiple molecular loci, and used these sequences to estimate 

molecular phylogenies for all three groups. We then performed several cophylogenetic analyses 
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to test for congruence between the phylogenies of phabine pigeons and doves, and those of their 

wing and body lice. 

 

MATERIALS AND METHODS 

Sampling and sequencing 

 We obtained samples for 12 species of Australian phabine pigeons and doves and their 

wing (12 samples) and body lice (15 samples). For outgroup taxa, we used available GenBank 

sequences of Columbina passerina, Zenaida macroura, Ptilinopus rivoli and Chalcophaps indica 

for hosts, Columbicola passerinae (ex. Inca dove (Columbina inca)) for wing lice, and 

Goniocotes talegallae (ex. black-billed brushturkey (Talegalla fuscirostris)) for body lice. 

Muscle tissue was extracted from birds collected in the field and stored at -80 °C. Lice were 

collected in the field with pyrethrin powder or fumigation protocols (Clayton and Drown, 2001) 

and stored in 95% ethanol at -80 °C. DNA was extracted from bird tissue using a Qiagen Blood 

and Tissue Kit (Qiagen, Valencia, CA, USA) with standard protocols. DNA was extracted from 

individual louse specimens using a modified Qiagen protocol, with louse specimens incubating 

in a proteinase K/buffer solution at 55 °C for ~48 h. PCR was used to target genes for Sanger 

sequencing, using a Promega taq kit (Promega, Madison, WI, USA) according to recommended 

protocols. PCR products were purified with a Qiagen PCR Purification Kit according to standard 

protocols. For birds, 381 bp of the mitochondrial gene cytochrome oxidase subunit 1 (Cox1), 

1,074 bp of NADH dehydrogenase subunit 2 (ND2), and 1,172 bp of the nuclear gene beta-

fibrinogen intron 7 and flanking exon regions (FIB7) were sequenced. For wing lice, 383 bp of 

Cox1, 379 bp of 12S rRNA (12S), and 360 bp of the nuclear gene elongation factor 1a (EF-1a) 

were sequenced. For body lice, 383 bp of Cox1, 362 bp of EF-1a, and 553 bp of 16S rRNA 
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(16S) were sequenced. Sequencing primers and amplification protocols were used as outlined in 

Johnson and Clayton (2000a, b), and Johnson et al. (2007, 2011b). Resulting PCR products were 

sequenced with an ABI Prism BigDye Terminator kit (Applied Biosystems, Foster City, CA, 

USA), and fragments were run on an AB 3730x capillary sequencer at the University of Illinois 

Roy J. Carver Biotechnology Center (Champaign, IL, USA). Resulting complementary 

chromatograms were manually resolved and primer sequences removed in Sequencher v5.0.1 

(Gene Codes, Ann Arbor, MI, USA) or Geneious v8.1.2 (Biomatters, Auckland, NZ). We 

submitted all resulting sequence files to GenBank (Supplementary Figure 3.1). 

Phylogenetic analysis 

 All genes were aligned using the default parameters of the MAFFT plugin in Geneious 

(Katoh et al., 2002) and each resulting alignment was checked manually. For protein coding loci, 

alignments were trimmed to be within reading frame. Maximum-likelihood (ML) phylogenies 

were estimated using RAxML v.8.1.17 (Stamatakis, 2014) for each gene alignment, using 200 

rapid bootstrap replicates (-f a) and GTR + Γ (GTRGAMMA) nucleotide substitution models. 

Finally, for each data set (doves, wing lice, and body lice) the gene alignments were 

concatenated in Geneious. PartitionFinder v1.1.1 (Lanfear et al., 2012) was used to test for 

appropriate partitioning schemes and substitution models for the concatenated alignments, 

setting up potential partition schemes according to genes and using the corrected Akaike 

Information Criterion (AICc) to test for the best fitting substitution models (Sugiura, 1978). 

PartitionFinder searched through all possible models, and again only through models available in 

MrBayes. Partition and model results are listed in Figure 3.1. 

Partitioned ML and Bayesian analyses were run for the concatenated alignments in all 

three data sets. ML estimations were run in Garli v2.0 (Zwickl, D.J., 2006. Genetic algorithm 
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approaches for the phylogenetic analysis of large biological sequence datasets under the 

maximum likelihood criterion. Ph.D. dissertation, The University of Texas at Austin, USA) with 

two searches of 500 bootstrap replicates, and summarizing the bootstrap trees using SumTrees in 

the DendroPy package (Sukumaran, J., Holder, M., 2008. SumTrees: Summarization of split 

support on phylogenetic trees v1.0.2). Best trees for each concatenated alignment were also 

estimated using Garli. Bayesian estimations were run in MrBayes v3.2 (Ronquist and 

Huelsenbeck, 2003). Two runs of four Markov chain Monte Carlo (MCMC) chains were run for 

20 million generations, sampling every 1,000 trees. Resulting .p files were viewed in Tracer v1.5 

(http://tree.bio.ed.ac.uk/software/tracer/) to assess parameter convergence, and .t files were 

analyzed in RWTY v1.0.0 (Warren, D., Geneva, A., Lanfear, R., 2016. rwty: R We There Yet? 

Visualizing MCMC convergence in phylogenetics. v1.0.0) to assess topological convergence. 

Based on these assessments the first 10% (2,000) trees were discarded as a burnin. 

Taxonomic assessment 

 Properly defining host and parasite taxonomic units is critical for cophylogenetic 

analysis. Because avian lice often harbor cryptic species, it was necessary to more objectively 

evaluate the number of species in the wing and body louse data sets. To this end we used 

distances values and the Automatic Barcode Gap Discovery (ABGD) method for wing and body 

louse Cox1 sequence data (Puillandre et al., 2012). Uncorrected pairwise distance matrices were 

generated from the wing and body louse Cox1 alignments using the “dist.dna” command in the R 

package ape (Paradis et al., 2004; R Development Core Team, 2016. R: A language and 

environment for statistical computing. R Foundation for Statistical Computing.). The Cox1 

alignment was then used as input for the web version of ABGD 

(http://wwwabi.snv.jussieu.fr/public/abgd/abgdweb.html), applying default Pmin, Pmax, and 
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Steps parameters and adjusting the relative gap width to 1.0. ABGD was run with both Jukes-

Cantor (JC) and Kimura80 (K80) models. Based on these taxonomic assessments, the louse trees 

were trimmed accordingly before using those as input for cophylogenetic analyses. 

Cophylogenetic analysis 

 We implemented both distance-based and event-based cophylogenetic methods. For 

distance-based analysis we used ParaFit (Legendre et al., 2002). This method takes host and 

parasite distances matrices and a host-parasite association matrix as input to test for congruence 

between the two trees. It also tests for the contribution of each individual link to the global 

patterns. For ParaFit, the best host and parasite trees from the Garli analyses were converted to 

patristic distance matrices using the “cophenetic” command in ape, and ordered the resulting 

distance matrices according to the association matrix. ParaFit was then run for 999 permutations 

with the Cailliez correction for negative eigenvalues and tested for the contribution of each 

individual link to the global metric with the ParaFitLink1 and ParaFitLink2 statistics. Because 

the individual link statistics are multiple tests, false discovery rate was corrected for using the 

Benjamini-Hochberg correction (Benjamini and Hochberg, 1995). To account for poorly 

supported relationships, ParaFit was also run as described above with 50% majority-rule host and 

parasite consensus trees. SumTrees generated consensus trees from the Garli bootstrap analyses.  

 For the event-based analysis, we used Jane v4 (Conow et al., 2010). Instead of testing for 

global congruence and individual link contributions, Jane is a genetic algorithm (GA) that seeks 

to reconstruct evolutionary events (e.g. cospeciation, host switches) at the nodes and branches of 

the host and parasite trees. Jane reconstructed events using the recommended GA parameters of 

population size twice the number of generations (number of generations = 500, population size = 

1,000) and default event costs (cospeciation = 0, duplication = 1, duplication and host switch = 2, 
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loss = 1, and failure to diverge = 1). Jane also randomized the tip mappings 999 times to test for 

the probability of obtaining our observed overall cost. An observed cost significantly lower than 

the randomized costs would indicate global host-parasite congruence.  

To test whether lice switch between hosts of similar size, we reconstructed ancestral host 

body size using the “ace” command in ape, implementing the ML method under the Brownian 

motion model for continuous traits. The best ML phabine phylogeny from Garli was used as the 

input tree. Body sizes were assigned to the tree tips as the average mass (g) from Gibbs et al. 

(2001). After running the state reconstruction, the absolute difference in average host size was 

calculated between two host nodes/tips involved in a host switch based on the Jane analyses. 

These values were then averaged separately for the wing and body louse switches. 

 

RESULTS 

 The body louse matrix was 88% complete, with three samples missing EF-1a and 16S 

sequences. There were no missing data for the wing lice or phabine hosts (Supplementary Figure 

3.1). Statistics on individual loci are indicated in Figure 3.2. The concatenated dove alignment 

was 2,627 bp, concatenated body louse alignment 1,298 bp, and concatenated wing louse 

alignment 1,122 bp. 

Phylogenetic analysis 

Likelihood and Bayesian analyses of the birds (Figure 3.1) provided strong support for 

monophyly of the phabines and of most genera (Geophaps, Petrophassa and Geopelia), and 

moderate support for monophyly of Phaps. Relationships among genera were weakly supported. 

The wing louse phylogenies (Figure 3.2) indicated, with the exception of Geophaps, that lice 

from the same host genus formed monophyletic groups, with support ranging from rather weak 
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(Phaps) to strong (Geopelia, Petrophassa). Relationships among these major groups of wing lice 

were generally poorly supported. In contrast to the phylogeny of wing lice, the phylogeny of 

body lice (Figure 3.3) did not contain any monophyletic groups of lice confined to a single host 

genus. In addition, even within clades, the phylogeny of body lice was relatively uncorrelated 

with host taxonomy. 

 All individual gene trees from each data set did not have any well-supported conflicting 

nodes (Supplementary Figures 3.1-3.3). For all three concatenated data sets, the partitioned ML 

and Bayesian analyses estimated similar tree topologies. In all cases, the MCMC chains from the 

Bayesian analyses had parameter effective sample size (ESS) values >200 and average S.D. of 

split frequencies <0.01, indicating that the analyses converged to stationarity. 

Cophylogenetic analysis 

 Analysis of the uncorrected p-distances of Cox1 and ABGD indicated in two cases that 

two body louse samples should be collapsed to a single taxon: Coloceras sp. from Geopelia 

placida and Coloceras sp. from Geopelia cuneata, and Physconelloides australiensis from 

Petrophasa albipennis and Geophaps smithii. The latter result agrees with current taxonomic 

treatment of these lice (Price et al., 2003; Johnson et al., 2011b). The Cox1 sequences within 

each pair were identical (Supplementary Figure 3.2), and the ABGD analysis likewise indicated 

that each pair should be considered a single taxon. We did not find any support for collapsing 

tips of the wing louse phylogeny. Mean uncorrected p-distance between all pairs of taxa was 

>12% (Supplementary Figure 3.3). Most species of wing lice in our dataset have been previously 

described (only two samples are undescribed species), in contrast to our body louse data set (11 

samples are undescribed species). 
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 Using the most likely host and parasite species phylogenies as input, ParaFit did not 

reject the null hypothesis of a random association between phabines and their body lice 

(ParaFitGlobal = 0.041, P = 0.069). The individual link tests (ParaFitLink1 and ParaFitLink2) 

did not recover any significant links after correcting for false discovery rate with the Benjamini-

Hochberg correction (Figure 3.3). ParaFit also indicated random association using the 50% 

majority rule consensus trees (ParaFitGlobal = 0.023, P = 0.081), and did not recover any 

significant links after correction (Supplementary Figure 3.4). The Jane event-based 

reconstruction recovered only three potential cospeciation events between phabines and their 

body lice: one cospeciation event at the Geopelia cuneata/Geopelia humeralis split, one at the 

Geophaps scripta/Geophaps smithii split, and a third at the Phaps/Geophaps split (Figure 3.4). 

Jane also recovered eight host-switching events, one duplication, four losses and two failures to 

diverge, for a total cost of 23 (Figure 3.4). Other reconstructions with an identical total cost 

recovered zero duplications, nine host switches, three losses and two failures to diverge. The 

Jane randomization test indicated the observed cost was not lower than by chance (P = 0.161), 

suggesting no congruence between the phylogenetic tree of phabine body lice and their hosts. 

From the ancestral state reconstruction of host size, the average absolute difference in host size 

between phabine nodes/tips involved in body louse host switches was 111.69 g.  

 Comparing the most likely phabine host and wing louse phylogenies, ParaFit indicated 

global phylogenetic congruence between the two groups. The ParaFitGlobal test indicated a non-

random host-parasite association (ParaFitGlobal = 0.322, P = 0.005), and the ParaFit individual 

link tests included three significant links after correction, all between Geopelia doves and their 

wing lice (Figure 3.5). ParaFit also indicated a significant global association between the 50% 

majority-rule consensus trees (ParaFitGlobal = 0.496, P = 0.004), and significant links between 
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Geopelia and their wing lice. In addition, the consensus analysis recovered a significant link 

between Ocyphaps lophotes and its wing louse (Supplementary Figure 3.5). Similarly, Jane 

recovered eight cospeciation events between phabines and their wing lice (Figure 3.5). The 

reconstruction recovered cospeciation events at both Geopelia splits, one at the Phaps 

chalcoptera/Phaps elegans split, at the Geophaps smithii/Geophaps scripta split, at the 

Petrophassa rufipennis/Petrophassa albipennis split, the Petrophassa/Ocyphaps split, and at the 

two deepest nodes. Jane also recovered three host-switching events and two losses between 

phabines and their wing lice, for a total cost of 8 (Figure 3.4). The average absolute difference in 

host size for phabine nodes/tips involved in wing louse host switches was 41.67 g. The Jane 

randomization test indicated that the observed cost was significantly lower than by chance (P < 

0.001), suggesting a history of repeated cospeciation in this group of lice. 

 

DISCUSSION 

 Comparisons of molecular phylogenies for Australian phabine pigeons and doves and 

their wing and body louse parasites revealed that the phylogeny of wing lice was highly 

congruent with that of their hosts, whereas the phylogeny of body lice was not. These results 

were consistent with both best and consensus trees, indicating the pattern is not an artifact of 

poor topology support. This result stands in dramatic contrast to patterns found for New World 

pigeons and doves and their lice (Clayton and Johnson, 2003; Johnson and Clayton, 2004), in 

which the phylogeny of body lice generally matched that of their hosts while the phylogeny of 

wing lice did not. However, in a study with a worldwide sample of pigeons and doves, both wing 

and body lice showed evidence of cophylogenetic congruence with their hosts (Sweet et al., 

2016). The differences between the New World and Australian studies suggest that 



 62 

biogeographic differences may exist in factors that promote congruence in wing and body lice. 

Thus, local congruence in some cases may be driving congruence at the global scale. Pigeons 

and doves are widespread birds, thriving in a variety of ecosystems in every continent other than 

Antarctica. Due to this geographical and ecological diversity, the evolutionary patterns exhibited 

by pigeons and doves, and their parasitic lice, may differ among different groups of hosts, 

especially because parasite diversification can be heavily affected by external factors (e.g., 

ecology or geography) (Paterson et al., 2000; Weckstein, 2004; Bush and Malenke, 2008; 

Bruyndonchx et al., 2009). 

 Regional differences in congruence may reflect regional differences in the abundance of 

hippoboscid flies, which wing lice can use to disperse between host species (Harbison et al., 

2008). Phabine pigeons and doves are a well-defined group within Columbidae, and most species 

live in arid scrub or forest on the Australian continent. A reduced abundance of hippoboscid flies 

in arid rather than humid regions could explain the congruence of the wing louse phylogeny with 

hosts in Australia compared with the incongruence with hosts in the New World. It is also 

possible that hippoboscid flies rarely parasitize phabines in arid Australia. Although hippoboscid 

flies have been recorded from other Australian birds and from phabine hosts in the Philippines, 

we are unaware of any published records of hippoboscid flies associated with Australian 

phabines, while there are many records from New World pigeons and doves (Maa, 1963, 1969, 

1980; Proctor and Jones, 2004; Toon and Hughes, 2008). This difference may be due to sampling 

effort, so it will be important to sample additional parasites on pigeons and doves in Australia.  

 In addition to ecological factors, geography may be an important factor governing 

diversification of phabine wing lice. In particular, there are several cases of clear allopatric 

codivergences of wing lice with their phabine hosts. For example, two pairs of sister species of 
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phabines (Geophaps smithii + Geophaps scripta and Petrophassa rufipennis + Petrophassa 

albipennis) are allopatric and appear to have speciated in response to biogeographic barriers. 

Their wing lice, which are host-specific, also cospeciated according to this allopatric divergence. 

Host specificity and the lack of dispersal to other host species in the same regions reinforces the 

pattern of cospeciation in this case. Biogeographic barriers are important for determining 

cophylogenetic structure, and can either promote congruence, as in phabine wing lice, or 

promote parasite diversification independent of host speciation. For example, the Andes 

mountains (Sweet and Johnson, 2016) and Amazonian rivers (Weckstein, 2004) can explain 

diversification patterns in various groups of bird lice, despite incongruent patterns between many 

of the host-parasite associations. 

 Host body size may also be an important factor in reinforcing cospeciation of wing lice 

with their hosts by limiting host-switching (Clayton et al., 2003, 2015). The body size of wing 

lice is closely correlated with that of their hosts, whereas the size of body lice is not (Johnson et 

al., 2005). Host preening defenses prevent wing lice from switching to hosts much larger or 

smaller than their usual host. In particular, wing lice must be of the appropriate size to fit 

between the feather barbs of the primary feathers to escape from host preening. This constraint 

may have been important in the codivergence of wing lice associated with the genus Geopelia. 

The three Geopelia doves represented in our data set have overlapping geographic distributions, 

yet vary in body size. The sister species Geopelia humeralis (110-160 g) and Geopelia cuneata 

(23-37 g) exhibit the greatest difference in size. Geopelia placida (36-60 g), which is sister to the 

other two species, is intermediate in body size (Gibbs et al., 2001). This variability in host size 

may reinforce phylogenetic congruence between Geopelia doves and their wing lice, as lice may 

not be able to switch to a related host even if the species co-occur.      
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While there is considerable evidence for cospeciation between phabines and their wing 

lice, there is also evidence for host-switching. Such events were likely facilitated by similarities 

in host size and by host geographic overlap, both of which can make it easier for lice to switch 

host species. For example, Jane recovered a host-switching event from Phaps chalcoptera to 

Phaps histrionica. Body sizes (Phaps chalcoptera: 230-390 g, Phaps histrionica: 260-320 g) and 

geographic ranges (P. chalcoptera widespread throughout Australia; P. histrionica primarily in 

the northern interior of Australia; Gibbs et al., 2001) of these two species overlap considerably. 

While ecological and geographic factors may be important for generating congruence 

between Australian phabines and their wing lice, the same is not true for these hosts and their 

body lice, which do not appear to have a congruent evolutionary history. Body lice are not 

known to switch host effectively using phoresy on hippoboscid flies (Harbison et al., 2009), and 

are more often shared among host species that forage on the ground than among those that forage 

in the canopy (Johnson et al., 2011a). It may be that dispersal among hosts on the ground is the 

primary mode of host-switching for phabine body lice, particularly since their hosts are primarily 

terrestrial. Two species of body lice were found on two different host species (Figure 3.4), 

suggesting that these lice are able to disperse in ecological time among different host species. 

Across species, there is much less of a match between the size of body lice and that of 

their hosts. For example, Jane recovered body lice from the small Geopelia cuneata switching to 

the considerably larger Phaps chalcoptera. This is consistent with previous research, which 

found that body louse size is not correlated with host size (Johnson et al., 2005). The average 

differences in host body size between pairs of hosts involved in host switches support this notion. 

Even when including inferred ancestral host sizes, hosts had a much higher absolute average 

difference in body size for body louse switches compared with wing louse switches. Unlike wing 
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lice, body lice burrow through the downy feathers to avoid preening, so their mechanism of 

escape is less tied to host body size. This may facilitate host-switching if there is a dispersal 

opportunity. A species of phabine can host multiple species of body lice that differ dramatically 

in size. As with wing lice, host distributional overlap may be an important factor for host-

switching by body lice. Jane recovered several host switches along the lineage of body lice from 

Geophaps smithii, which has a relatively small distribution in Australia. All of the host switches, 

however, involve other species of phabines (Petrophassa rufipennis, Ocyphaps lophotes, 

Geophaps plumifera and Geopelia humeralis) whose ranges overlap that of Geophaps smithii. If 

body lice are indeed switching hosts primarily via ground contact, geographic proximity is 

necessary for dispersal to a new host species. 

 Previous studies of the wing and body lice of pigeons and doves in the New World have 

indicated that body lice exhibit more congruent cophylogenetic patterns with their hosts than do 

wing lice. However, our study revealed the opposite pattern, with wing lice of Australian 

phabine pigeons and doves exhibiting more phylogenetic congruence with their hosts than 

phabine body lice. This result highlights the importance of focusing cophylogenetic analyses on 

specific groups and biogeographic regions. A broader taxonomic and geographic focus, such as 

the entire pigeon and dove family (Columbidae) and its lice, can provide insight into general 

patterns in a group, but will mask narrower patterns if sampling is limited.  

The drastic variation in cophylogenetic patterns between the New World dove and 

Australian phabine systems suggest regional differences in factors that shape these host-parasite 

interactions. For example, the lack of rampant host-switching in phabine wing lice may indicate 

that their hosts lack associated parasitic hippoboscid flies that wing lice of other species of 

pigeons and doves use as a means to switch hosts. This should be investigated with further 
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sampling. Other factors including climate, host body size and host distribution may also 

influence cophylogenetic patterns. Although phabines are only a moderately diverse group of 

Columbidae confined to a particular geographic region, comparisons of their phylogeny with 

those of their lice provide valuable insight into the processes of parasite diversification and host-

parasite coevolution.  
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FIGURES 

 

Figure 3.1. Best maximum likelihood (ML) phylogeny of phabine pigeons and doves. Values at 

nodes are bootstrap (BS) values from Garli and posterior probability (PP) values from MrBayes 

(BS/PP). Only values >50 BS/>0.50 PP are indicated. Branch lengths are nucleotide substitutions 

per site, as indicated by the scale bar.  
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Figure 3.2. Best maximum likelihood (ML) phylogeny of wing lice from phabine pigeons and 

doves (C. = Columbicola). Values at nodes are bootstrap (BS) values from Garli and posterior 

probability (PP) values from MrBayes (BS/PP). Only values >50 BS/>0.50 PP are indicated. 

Branch lengths are nucleotide substitutions per site, as indicated by the scale bar. 
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Figure 3.3. Best maximum likelihood (ML) phylogeny of body lice from phabine pigeons and 

doves. Values at nodes are bootstrap (BS) values from Garli and posterior probability (PP) 

values from MrBayes (BS/PP). Only values >50 BS/>0.50 PP are indicated. Branch lengths are 

nucleotide substitutions per site, as indicated by the scale bar. 
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Figure 3.4. Tanglegram between phabine pigeons and doves (left) and their body lice (right). 

Topologies are the best maximum likelihood (ML) trees from Garli. Branches with >75 BS/0.95 

PP support are indicated with asterisks (*). Circles over nodes indicate cospeciation events as 

recovered by Jane, with matching numbers indicating corresponding events in the host and 

parasite phylogenies.  
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Figure 3.5. Tanglegram between phabine pigeons and doves (left) and their wing lice (right). 

Topologies are the best maximum likelihood (ML) trees from Garli. Branches with >75 BS/0.95 

PP support are indicated with asterisks (*). Circles over nodes indicate cospeciation events as 

recovered by Jane, with matching numbers indicating corresponding events in the host and 

parasite phylogenies. 
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TABLES 

Table 3.1. Best fitting substitution models for each partition as estimated by PartitionFinder. 
 

ML  MrBayes  
Partition Model  Partition Model 

Phabine doves 
  

 
  

 
Cox1 GTR + I + Γ  Cox1 GTR + I + Γ  
ND2 GTR + I + Γ  ND2 GTR + I + Γ  
FIB7 HKY + I + Γ  FIB7 HKY + I + Γ 

Wing lice 
  

 
  

 
12S GTR + Γ  12S GTR + Γ  
Cox1 TrN + I + Γ  Cox1 GTR + I + Γ  
EF-1a K80 + Γ  EF-1a K80 + Γ 

Body lice 
  

 
  

 
16S GTR + Γ  16S GTR + Γ  
Cox1 TIM + I + Γ  Cox1 GTR + Γ  
EF-1a HKY + I  EF-1a HKY + I 

 
ML, maximum likelihood; Cox1, mitochondrial cytochrome oxidase subunit 1; ND2, NADH 

dehydrogenase subunit 2; FIB7, nuclear beta-fibrinogen intron 7; EF-1α, elongation factor 1α; 

12S, 12S rRNA; 16S, 16S rRNA. 
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Table 3.2. Summary statistics for each locus sequenced for phabine pigeons and doves, phabine 

wing lice, and phabine body lice. 

 Locus Length 
(bp) 

Variable sites Parsimony-informative sites 

Phabine doves      
Cox1 381 121 92  
ND2 1074 501 343  
FIB7 1172 248 56 

Wing lice 
    

 
12S 379 170 107  
Cox1 383 157 134  
EF-1a 360 84 39 

Body lice 
    

 
16S 553 221 144  
Cox1 383 142 117  
EF-1a 362 29 14 

 
Cox1, mitochondrial cytochrome oxidase subunit 1; ND2, NADH dehydrogenase subunit 2; 

FIB7, nuclear beta-fibrinogen intron 7; EF-1α, elongation factor 1α ; 12S, 12S rRNA; 16S, 16S 

rRNA. 
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Table 3.3. ParaFit individual link test statistics and P values for phabine pigeons and doves and their body lice.  

Host Body louse  ParaFitLink1 
Stat 

ParaFitLink1 
P value 

ParaFitLink2 
Stat 

ParaFitLink2 
P value 

Geopelia cuneata Coloceras sp. 0.0089 0.0185 0.0057 0.0186 
Geopelia humeralis Campanulotes sp. -0.0012 0.9443 -0.0008 0.9448 
Geopelia humeralis Coloceras sp. 0.0074 0.0397 0.0047 0.0396 
Geopelia placida Coloceras sp. 0.0086 0.0207 0.0055 0.0205 
Geophaps plumifera Coloceras sp. 0.0048 0.2435 0.0031 0.2398 
Geophaps scripta Campanulotes sp. 0.0009 0.2649 0.0006 0.2615 
Geophaps smithii Physconelloides 

australiensis 
<0.0001 0.7487 <0.0001 0.7487 

Geophaps smithii Campanulotes sp. 0.0030 0.2890 0.0019 0.2869 
Ocyphaps lophotes Coloceras sp. 0.0039 0.0398 0.0025 0.0381 
Petrophassa 
albipennis 

Physconelloides 
australiensis 

0.0067 0.0446 0.0043 0.0442 

Petrophassa 
rufipennis 

Physconelloides sp. 0.0059 0.1090 0.0038 0.1063 

Phaps chalcoptera Campanulotes elegans 0.0004 0.6990 0.0003 0.6983 
Phaps chalcoptera Coloceras grande -0.0019 0.9486 -0.0012 0.9493 
Phaps elegans Campanulotes sp. 0.0036 0.1527 0.0023 0.1503 
Phaps histrionica Campanulotes sp. 0.0015 0.6804 0.0010 0.6785 
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Table 3.4. Results from the Jane event-based cophylogenetic reconstruction between phabine pigeons and doves and their lice. 
 

Cospeciations Duplications Host Switches Losses Failures to Diverge Total Cost 
Body Lice 3 1 8 4 2 23  

3 0 9 3 2 23 
Wing Lice 8 0 3 2 0 8 
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Table 3.5. ParaFit individual link test statistics and P values for phabine pigeons and doves and their wing lice (Columbicola).  

Host Wing louse  
 

ParaFitLink1 
Stat 

ParaFitLink1 
P value 

ParaFitLink2 
Stat 

ParaFitLink2 
P value 

Geopelia cuneata C. mjoebergi 0.1074 0.0044a 0.0012 0.0044a 
Geopelia humeralis C. rodmani 0.1253 0.0095a 0.0014 0.0094a 
Geopelia placida C. sp. 0.0995 0.0096a 0.0011 0.0096a 
Geophaps plumifera C. wombeyi 0.0020 0.4710 <0.0001 0.4700 
Geophaps scripta C. koopae 0.0178 0.0444 0.0002 0.0442 
Geophaps smithii C. eowilsoni 0.0116 0.0551 0.0001 0.0544 
Ocyphaps lophotes C. mckeani 0.0232 0.0514 0.0003 0.0511 
Petrophassa 
albipennis 

C. sp. 0.0156 0.0453 0.0002 0.0447 

Petrophassa 
rufipennis 

C. masoni 0.0155 0.1072 0.0002 0.1064 

Phaps chalcoptera C. angustus 0.0388 0.1699 0.0004 0.1691 
Phaps elegans C. tasmaniensis 0.0352 0.0548 0.0004 0.0540 
Phaps histrionica C. harbisoni 0.0195 0.4623 0.0002 0.4611 

 
aStatistically significant after Benjamini-Hochberg correction (a = 0.05) 
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CHAPTER 4: PATTERNS OF DIVERSIFICATION IN SMALL NEW WORLD 

GROUND DOVES ARE CONSISTENT WITH MAJOR GEOLOGIC EVENTS3 

 

INTRODUCTION 

Since breaking off from the Gondwanan supercontinent 140-160 mya (Jokat et al., 

2003; Upchurch, 2008), South America has undergone several major geologic events that 

have helped define the diversity of the continent’s biota. Speciation and diversification 

patterns in New World birds have historically been the foci of many studies (Wallace, 

1889; Chapman, 1917; Chesser, 2004), which is largely attributable to the large 

concentration of species in the area (~35% of all bird species are endemic to the 

Neotropics). Because of their diversity and geographic range, birds are excellent 

organisms for studying how major New World geologic events influenced regional 

diversification patterns. Two events that have particularly impacted New World avian 

diversity are Andean uplift and the Panamanian Land Bridge formation. 

 Andean uplift had a dramatic impact on South American geology, climate, and 

biogeography. Uplift in the south and central Andes began >60 mya and continued a 

south-north elevation increase. By 25 mya the Western Cordillera of the central Andes 

were at 50% current elevation, but underwent a drastic increase in elevation (2000-3500 

                                                
3 Reprinted, with permission, from: Sweet, A.D. and K.P. Johnson. 2015. Patterns of 

diversification in small New World ground doves are consistent with major geologic 

events. The Auk. 132: 300-312. https://doi.org/10.1642/AUK-14-193.1. 
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m) between 6-10 mya (Gregory-Wodzicki, 2000; Garzione, 2008), although Garzione et 

al. (2014) presented evidence for a slightly earlier rapid uplift (13-16 mya and 9-13 mya). 

The Eastern Cordillera of the Northern Andes uplift occurred more recently, with 

evidence of a rapid elevation increase between 2.5-7 mya (Hoorn et al., 1995; Hoorn et 

al., 2010). These gradual and rapid uplift events coupled with resulting changes in 

weather, climate, and ecology most likely had an incredible impact on avian 

diversification patterns and rates throughout the continent (Fjeldsa, 1994). Many attribute 

Andean uplift as a key factor contributing to the patterns of speciation that underlay the 

current avifauna diversity of the region (Vuilleumier, 1969; Cracraft and Prum, 1988; 

Bates et al., 1998; Cheviron et al., 2005; Fjeldsa and Rahbek, 2006; Fjeldsa and Irestedt, 

2009; Quinetero et al., 2012).  

 The dry Puna grasslands of the Central Andes’ Altiplano plateau are an example 

of novel habitat formed as a direct result of Andean uplift. As the Andes gradually 

increased in elevation, the Altiplano plateau became separated from the surrounding 

lowlands and was probably isolated around 15 mya. The plateau was at 50% current 

elevation 10 mya, followed by a recent rapid uplift to its current elevation of 3200-3700 

m (Gregory-Wodzicki, 2000; Hoke and Garzione, 2008; Vandervoort et al., 1995). 

Between 10-15 mya, climate changes in the Central Andes resulted in a drier and cooler 

environment, which directly altered the biota of the Puna grasslands (Ehlers and Poulsen, 

2009; Simpson et al., 1975). High elevation and extreme climatic conditions created a 

unique, isolated environment to which specific flora and fauna adapted (Szumik et al., 

2012). Avian taxa in the region would have become particularly isolated from taxa in 

surrounding areas, perhaps specifically from the southern open lowlands (Fjeldsa et al., 



 87 

2012). This isolation probably contributed to the currently low species overlap between 

the Puna-Altiplano and adjacent lowland and cloud forest habitats (Lloyd and Marsden, 

2008; Lloyd et al., 2010). 

A second major geologic event greatly impacting New World biogeography was 

the Panamanian Land Bridge formation, which occurred around 2.5-3.2 mya (Keigwin, 

1978; Coates and Obando, 1996; Coates et al., 1992; Wegner et al., 2010; Leigh et al., 

2013), although an earlier formation has been proposed more recently (Farris et al., 2011; 

Montes et al., 2012; and Bacon et al., 2013). Before this terrestrial connection between 

North and South America, faunas endemic to these two continents were separated by 

water. With the formation of the land bridge, flora and fauna could freely move between 

continents, which some have dubbed the “Great American Interchange” (Simpson, 1950; 

1980; Stehli and Webb, 1985). Mammalian fossil records from both continents indicate 

dispersal events close to the time of land bridge formation, with species interchanging 

from both continents (Marshall, 1988; Stehli and Webb, 1985). Due to their flight ability, 

avian dispersal between continents was sometimes suggested to be uninhibited by the 

pre-land bridge water barrier (Voelker, 1999; Lomolino et al., 2006), and the sparse avian 

fossil record has made it difficult to prove otherwise (Vuilleumier, 1985). However, 

several historical biogeographic reconstructions of Neotropical and Nearctic birds based 

on molecular data have indicated that many species were hindered from dispersing 

between continents due to the water barrier (Barker, 2007; Burns and Racicot, 2009; 

Sedano and Burns, 2010; Johnson and Weckstein, 2011; Pulgarin-R et al., 2013). Instead 

the timing of dispersal events appears similar to that of mammals, soon after the land 

bridge formation (Smith and Klicka, 2010). Also, there are more instances of North 
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American species successfully dispersing into South America rather than vice versa, 

perhaps because a transition from Nearctic to Neotropical climate is easier than the 

reverse (Smith and Klicka, 2010). 

To understand the impact of these two major New World geologic events on 

avian evolutionary history, an ideal study group would be one having representatives in 

both North and South America, as well as lowland and Andean zones. One such group is 

the small New World ground dove clade (Aves: Columbidae). This group of 17 species 

and 45 subspecies contains the genera Metriopelia, Claravis, Uropelia, and Columbina. 

Two species have often been placed within a fifth genus, Scardafella (e.g. Goodwin, 

1983; Gibbs et al., 2001; del Hoyo et al., 1997), but are otherwise included within 

Columbina (American Ornithologists’ Union, 1998). Two of these 17 species have not 

been detected recently (Columbina cyanopis and Claravis godefrida) and may be extinct. 

The overall geographic ranges of this group covers the southern United States, through 

Central America (including the Caribbean Islands), and throughout most of South 

America (Figure 3). Several phylogenies have indicated this group forms a monophyletic 

clade, although the placement of the clade within Columbidae is still unclear. Some 

phylogenies placed the small New World ground doves as sister to the rest of the family 

(Johnson and Clayton, 2000; Johnson, 2004; Johnson et al., 2010), but other work has 

placed the group as nested within the family (Pereira et al., 2007; Shapiro et al., 2002; 

Gibb and Penny, 2010). Relationships among the species within this clade, however, have 

yet to be addressed in detail. Furthermore, given the widespread distribution of this clade 

throughout Central and South America, this group could also provide great insight into 

how past geologic events in this region has influenced current biological patterns of 
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distribution and speciation. Here we reconstruct the phylogeny of the small New World 

ground dove clade based on several gene regions. We then use this phylogeny in a 

molecular dating analysis to evaluate the effects of the Andean uplift and appearance of 

the Panamanian land bridge on the timing of divergence in this group. If Andean uplift 

events did not have a major effect on the speciation patterns of these clades, then our 

estimated timing of relevant speciation events are not expected to correlate with the 

timing of these events. In particular, we would not expect high-Andean species nor sister 

taxa currently separated by the Andean range to have divergence estimates correlated to 

Andean uplift events. Similarly, if the Isthmus formation did not have a significant effect 

on the speciation patterns of small New World ground doves, then we expect our results 

to indicate dispersal events not consistent with the timing of the land bridge formation. 

More specifically, we would expect the recovery of dispersal events occurring before the 

estimated age of the land bridge. 

 

MATERIALS AND METHODS 

DNA sequencing 

 We extracted DNA using a Qiagen Blood and Tissue Kit (Qiagen, Velencia, CA, 

cat. # 69506) from tissues and feather samples of 15 extant species of the small New 

World ground dove clade, including 16 subspecies from 10 species, for a total of 26 

ingroup samples (Table 4.1). The remaining 10 samples were either monotypic species or 

duplicate samples of a subspecies. Using PCR, we amplified portions of four 

mitochondrial loci – cytochrome (Cytb), NADH dehydrogenase subunit 2 (ND2), 

cytochrome oxidase subunit 1 (CO1), and ATP synthase 8 (ATP8) – and one nuclear 
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locus, beta-fibrinogen intron (FIB7), which have been used successfully in previous 

studies of the phylogeny of Columbiformes (Johnson and Clayton, 2000; Johnson et al., 

2001; Periera et al., 2007). For Cytb we used the primers L14841 and H4a to amplify the 

gene and primers with L15517 and H15299 as internal for sequencing (Kocher et al., 

1989; Harshman 1996). To amplify ND2 we used the primers L5215 and H6313 

(Johnson and Sorenson, 1998) and L5758s and H5766s (Price et al., 2004) internally for 

sequencing. To amplify and sequence CO1 we used the primers L6625 and H7005 

(Hafner et al., 1994). To amplify and sequence ATP8 we used the primers CO2GQL and 

A6MNH (Lovette et al., 1998). For the nuclear intron FIB7 we amplified using the 

primers FIBB17U and FIBB17L (Prychitko and Moore, 1997) with the internal 

sequencing primers FIBDOVEF and FIBDOVER (Johnson and Clayton, 2000). We 

amplified selected loci using PCR on a PTC 100 Thermal Cycler according to previously 

used protocols for each locus (Johnson, 2004; Pereira et al., 2007). Resulting amplified 

products were purified with a Qiagen PCR Purification kit (cat. # 28106) and sequenced 

using ABI Prism BigDye Terminators and Sanger DNA sequencing on an AB 3730xl 

DNA Analyzer (University of Illinois Roy J. Carver Biotechnology Center, Champaign, 

IL). We reconciled resulting complementary chromatograms and trimmed primer 

sequences by eye using Sequencher v. 5.0.1 (Gene Codes, Ann Arbor, MI). For 

outgroups, we selected representatives outside the New World ground dove clade from 

two genera from each of five monophyletic clades within Columbidae identified in 

Pereira et al. (2007), using previously published sequences (Table 4.1). In one case we 

were unable to amplify and sequence a gene for one extract, so this was coded as missing 

data. 
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Phylogenetic analysis 

 We aligned the edited sequences for each of the five loci using the default gap 

opening and gap extend parameters in MUSCLE (Edgar, 2004) and checked each 

alignment by eye using SeaView v4 (Gouy et al., 2010). To check for major discordance 

between individual gene trees, we created neighbor-joining and majority-rule maximum 

parsimony trees (100 random sampling replicates, TBR branch swapping, 100 bootstrap 

replicates) for each gene alignment in PAUP* (Swofford, 2003). Since these gene trees 

did not have any nodes that strongly conflicted in bootstrap support (>75%), we 

concatenated the data using SeaView. We also computed the pairwise distance values for 

the mitochondrial data using PAUP* (Supplementary Table 4.1). 

 Using the concatenated data set, we performed Bayesian and Maximum 

Likelihood (ML) analysis using mixed models. We determined the appropriate 

substitution model for each gene partition by calculating the AIC (Akaike Information 

Criterion) values for 88 different models in jModelTest2 (Akaike 1974, Darriba et al. 

2012). Based on the AIC results, we applied a GTR + I + G model to the mitochondrial 

loci (CO1, Cytb, ND2, ATP8), and a GTR + G model to the nuclear locus (FIB7).  

 We preformed our ML analysis on the concatenated dataset using Garli v2.0 

(Zwickl, 2006), applying the appropriate models for each gene partition and running 500 

bootstrap replicates. We obtained a 50% majority-rule consensus tree from the bootstrap 

reps using SumTrees (Sukumaran and Holder, 2008) and edited the resulting tree in 

FigTree v1.4 (Rambault, 2012).  We also created a concatenated dataset of the four 

mitochondrial loci in order to compare the resulting tree with the tree for the full dataset. 
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We generated the mitochondrial tree in Garli 2.0 using the same methods as in the full 

dataset.  

 For the Bayesian analysis, we used MrBayes v3.2 (Ronquist and Huelsenbeck, 

2003). As with the ML analysis, we used a mixed model analysis and assigned 

appropriate models to the gene partitions based on the AIC results. We ran 4 runs with 4 

chains for 20 million generations under MCMC sampling every 1000 trees, and viewed 

the trace files in Tracer v1.4 to ensure chain mixture and stationarity of the MCMC. 

(Rambaut and Drummond, 2007). Based on the trace files, we discarded the first 2 

million generations (10%) as burnin and edited the resulting 50% majority-rule consensus 

tree in FigTree v1.4 (Rambaut, 2012). 

Divergence time estimation 

 In order to estimate divergence times, we created a chronogram using BEAST 

v1.7.5 (Drummond et al., 2012). We partitioned the data into mitochondrial and nuclear 

loci, and applied a strict molecular clock estimate of 1.96 ± 0.1%/My divergence between 

two taxa (i.e. 0.0098 ± 0.0005 substitutions/site/lineage/My) under a normal distribution 

for the mitochondrial partition and a Yule speciation process model. This estimate is 

based on Weir and Schluter (2008), who showed that a molecular clock of 2%/My 

accumulated pairwise divergence between lineages could be used in dating avian 

phylogenies. Several avian phylogenetic studies have used this estimate to infer 

seemingly accurate divergence estimates (Milá et al., 2009; Qu et al., 2010; Sedano and 

Burns, 2010). In particular, Weir and Schluter (2008) determined an average rate of 

pairwise divergence between two taxa at 1.96 ± 0.10 %/My for Columbiformes. We ran 

our MCMC for 20 million generations in BEAST, sampling every 1000 trees, and 
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discarding the first 2 million (10%) generations as burnin based on the trace plot in 

Tracer.  

Biogeographic analysis 

 Since one of our main historical biogeographic questions centers on the formation 

of the Panamanian land bridge, we reconstructed ancestral geographic ranges with a 

focus on whether particular species in the clade are currently found in North or South 

America. We primarily used both parsimony reconstruction and likelihood character 

mapping over the BEAST tree since our focus was on the dispersal events between North 

and South America after the formation of the Panamanian land bridge, rather than 

vicariance events.  In this biogeographic scenario, methods such as dispersal-vicariance 

analysis (DIVA) that assume vicariance as the null model are inappropriate. Such models 

are biased toward vicariance events, and could therefore incorrectly attribute a speciation 

event to vicariance rather than to dispersal (see Johnson and Weckstein, 2011 and Bess et 

al., 2014 for further rationale). In this case, North America and South America came into 

contact rather than separating from each other, so scenarios that posit vicariance are not 

biogeographically plausible. For the parsimony analysis, we coded each species as one of 

two character states: having a primarily North American range or a primarily South 

American range. Species that are widespread in both continents were given a 

polymorphic character state. For the likelihood analysis, we coded species with ranges 

spanning both continents as having a third character state, rather than being polymorphic 

(because current implementations of these maximum likelihood reconstructions do not 

allow for more than two character states). We implemented the character reconstruction 

and mapping in Mesquite v2.75 (Maddison and Maddison, 2011). For the purpose of 
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comparison, we analyzed our data using methods in which vicariance is the null model 

such as S-DIVA (Yu et al., 2010) and Bayesian binary MCMC (BBM) as implemented in 

RASP v2.1b (Yu et al., 2013), as well as the dispersal-extinction-cladogenesis (DEC) 

model in Lagrange (Ree and Smith, 2008). All three analyses used the same geographic 

coding as described above in our parsimony reconstruction analysis. For the BBM model, 

we ran the MCMC for 5 million generations, sampling every 1000 trees, and discarding 

the first 500 trees (10%) as burnin.  

 

RESULTS 

Phylogenetic analysis 

 The final MUSCLE alignment of the concatenated dataset was 4,018 characters, 

with a >95% complete matrix (only ~5% gaps or missing data). Many of the gaps came 

as a result of a large (665 bp) indel in the FIB7 gene for both Claravis pretiosa 

specimens. Both the ML and Bayesian analyses generated similar trees (Figure 4.1), with 

support for the Bayesian analysis reaching stationarity and convergence based on the 

trace plots and Effective Sample Sizes >200 for all paramters. In addition, the ML 

mitochondrial tree generated in GARLI did not have any major conflicting nodes (<75% 

BS) with the fully concatenated tree. The concordant gene trees, mitochondrial/full trees, 

and ML/Bayesian trees support our decision to concatenate our data, and gives credence 

to the robustness of subsequent results. The majority of ingroup nodes (19/23) received 

high support (>90 bootstrap/>0.95 posterior probability) from both methods. There is 

modest support (67 BS, 0.92 PP) for the clade comprising Claravis mondetoura, 

Metriopelia, and Columbina. However, a clade comprising Claravis mondetoura, 
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Metriopelia, Columbina, and Uropelia, to the exclusion of Claravis pretiosa, is highly 

supported (100 BS, 1.0 PP). The BEAST tree places Claravis mondetoura sister to 

Metriopelia, but with low posterior probability (<0.7). These results indicate that the 

genus Claravis is paraphyletic. All trees place Claravis pretiosa as sister to all other 

small New World ground doves. The monotypic genus Uropelia also appears to be highly 

divergent from other taxa, being placed as sister to the rest of the group excluding 

Claravis pretiosa. This placement of Uropelia and Claravis pretiosa is consistent with 

past phylogenies constructed with fewer species represented (Johnson and Clayton, 2000; 

Pereira et al., 2007). 

Divergence time estimation 

 BEAST produced a chronogram consistent with the GARLI and MrBayes 

analyses, with support for convergence based on the trace files. The only major 

difference between the BEAST tree and the ML/Bayesian trees is the placement of 

Claravis mondetoura as sister to Metriopelia (Figure 4.2). Based on the 95% credibility 

intervals, the small New World ground dove clade diverged from other pigeons and 

doves between around 19-26 mya, and this clade began to radiate between around 13-18 

mya. Some species have diverged quite recently, for example, Columbina squammata 

and Columbina inca (<2.5 mya) and Columbina talpacoti, Columbina buckleyi, and 

Columbina minuta (<2 mya). Metriopelia and Columbina diverged from each other 

around 11-14 mya, with divergences within Metriopelia beginning around 9 mya and 

within Columbina beginning around 7.5 mya. The dates we estimate here are 

considerably younger than the estimates of Pereira et al. (2007), who recover a 

divergence time of >50 mya for the small New World ground dove clade, with 
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divergences within the clade beginning >30 mya. However, Pereira et al. (2007) used 

several external calibrations on deep and highly-divergent nodes, and an internal 

minimum age constraint based on the oldest Columbiformes fossil for divergence 

estimates. Using solely external calibrations on such deep nodes can be misleading (Ho et 

al., 2008). 

Biogeographic analysis 

Both parsimony and likelihood reconstruction of historical biogeographic regions 

indicate an ancestral origination in South America with multiple colonization events of 

North America (Figure 4.2). All of these colonization events are inferred to have 

occurred after around 2 mya. As expected, the ancestral area reconstructions 

implemented in S-DIVA and Lagrange seemed to be biased toward vicariance events and 

produced results that are unlikely. For example, while both analyses recovered a South 

American origin for the clade, both recovered the ancestor of C. inca and C. squammata 

as being widespread in both North and South America indicating a subsequent separation 

by vicariance. This is in contrast to the parsimony and likelihood character 

reconstruction, which recover the C. inca/C. squammata ancestor as present in South 

America with subsequent dispersal into North America. The BBM model recovers an 

identical scenario, as the results from the MCMC chain produced posterior probabilities 

nearly identical to the likelihood values at each node over the entire tree (likelihood 

values recorded as pie charts over each node in Figure 4.2). 
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DISCUSSION 

Phylogenetic relationships of small New World ground-doves 

Phylogenetic relationships among small New World ground doves based on 

nuclear and mitochondrial gene regions, with comprehensive species level sampling, are 

generally well resolved and supported. This tree is broadly in agreement with previous, 

less exhaustive phylogenetic analyses that included some members of this clade (Johnson 

et al. 2001, Shapiro et al. 2002, Pereira et al. 2007); however some important novel 

results emerged from our comprehensive analysis. Similar to prior results, we recovered 

Claravis pretiosa as sister to the rest of the clade, with Uropelia recovered as sister to 

Metriopelia plus Columbina (Table 4.1). Both Metriopelia and Columbina were 

recovered as monophyletic with high support (100 bootstrap, 1.0 PP). The molecular tree 

also places Columbina inca and C. squammata within Columbina. These two species are 

often placed in a separate genus (Goodwin, 1983; Gibbs et al., 2001; del Hoyo et al., 

1997), Scardafella, but the AOU recognizes them as members of Columbina (Lack, 2003, 

American Ornithologists’ Union, 1998). Since the clade is nested within Columbina 

based on comprehensive sampling, this provides further support for the inclusion of this 

clade within the genus. Recognizing these species as a separate genus (Scardafella) 

would render Columbina paraphyletic. 

We also find that some species are very recently diverged from each other. The 

divergence among C. talpacoti, C. buckleyi, and C. minuta is relatively recent (between 

1-2 mya). Although the ranges of C. buckleyi and C. minuta overlap to some degree, C. 

buckleyi and C. talpacoti do not tend to overlap. C. buckleyi has a limited range along 

coastal Ecuador and Peru, while C. talpacoti has a more widespread range, but is found 
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east of the Andes range and in Central America (IUCN). While the recovery of C. 

buckleyi and C. talpacoti as allopatric sister species is consistent with previous work 

(Gibbs et al., 2001), this very recent divergence seems inconsistent with theories on 

separation by the Andean uplift (see discussion below), and indicates a more recent 

separation event. 

Finally, and perhaps most surprisingly, our phylogeny indicates that the genus 

Claravis is paraphyletic. While the placement of Claravis pretiosa is consistent with 

previous work (as sister to the rest of the clade), Claravis mondetoura is recovered 

together in a clade with Uropelia, Metriopelia, and Columbina. While the exact 

placement of C. mondetoura within this clade is uncertain, the exclusion of Claravis 

pretiosa, and thus the paraphyly of the genus Claravis, is very highly supported (100 BS, 

1.0 PP). Members of the genus Claravis are unique among small New World ground 

doves in that males have mostly blue-gray plumage coloration. Females, however are 

brownish, similar to most other small New World ground doves. It may be that blue 

colored males was the ancestral condition in this clade and later was lost in other 

lineages, with males evolving a more similar plumage coloration to females. Another 

genus of New World doves, Geotrygon, was also shown to be paraphyletic despite strong 

morphological similarities (Johnson and Weckstein, 2011; Banks et al., 2013). Therefore, 

such a finding is not unprecedented among pigeons and doves. 

Divergence time estimation with respect to major geologic events 

Andean uplift. Since the small New World ground dove clade is wide spread 

throughout South America, the effect of the Andean uplift on the radiation of this group 

is expected to be pronounced. There are three clades that are of particular interest: the 
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genus Metriopelia, the Columbina cruziana/picui clade, and the Columbina talpacoti/C. 

buckleyi clade. Species in Metriopelia are found in the Puna grasslands of the high 

Andes. Columbina cruziana is found on the coasts of western Peru and Ecuador, while C. 

picui is primarily found in the lowland semi-arid scrub and grasslands east of the Andes, 

though it does occur in the lowlands of southern Chile. Columbina buckleyi and C. 

talpacoti show a similar geographic structure, with C. buckleyi found exclusively on the 

Ecuadorian and northern Peruvian coasts west of the Andes, and C. talpacoti found 

throughout the Amazonian lowlands and Central America.  

 Metriopelia is estimated to have diverged from its ground-dove ancestor around 

11-14 mya. This estimate is somewhat consistent with the timing of the uplift of the 

Central Andes – the current range of species within the genus – reaching >50% of current 

elevation (Gregory-Wodzicki, 2000). This divergence time estimation could also coincide 

with the ecological and geographical isolation of the Puna grasslands – the primary 

habitat for birds in this genus – due to geographic and climatic changes. Vandervoort et 

al. (1995) and Gregory-Wodziki (2000) present data indicating internal draining for the 

region was established around 15 mya, which indicates isolation from the surrounding 

lowlands. There is also indication of a climatic shift to a much drier environment. Most 

of the speciation events within Metriopelia do not appear to occur until much later, 

however. This diversification coincides with the traditional age estimate of rapid 

elevation increase in the Altiplano plateau and Eastern Cordillera within the last 10 my. 

Garzione et al. (2008) estimated that the central Andean plateau rose from ~2000 m to the 

current ~4000 m between 6.5-10 mya. Alternatively, the patterns seen in Metriopelia 

could be consistent with the more recent estimates of rapid elevational uplift in the Puna-
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Altiplano region of Garzione et al. (2014). In this scenario, the initial divergence of the 

group was perhaps initiated by a rapid uplift of ~1900 km and subsequent climatic 

changes between 13-16 mya rather than as a result of climatic changes over a more 

gradual uplift period. Similarly, the later increase in speciation events within the genus 

could be related to the second rapid uplift event of ~700 m between 9-13 mya. While it is 

difficult to form strong conclusions about the effect of Andean uplift on this genus – 

primarily because both the group’s diversification and the uplift events occurred over a 

long period of time – there are nonetheless indications that diversification in the genus 

coincided with a rapid increase (or increases) in Andean elevation. A similar pattern of 

increased diversification associated with rapid elevation increase has been documented in 

tanagers endemic to the Northern Andes (Sedano and Burns, 2010).  

Columbina cruziana and C. picui are recovered as sister species, but their 

geographic ranges are separated by the Andes. Thus, it might be expected that these 

species would have diverged around the time of the Andean uplift; however, divergence 

time estimation indicates these taxa diverged 3-7 mya, which is significantly more recent 

than the divergence estimate of Metriopelia and therefore the southern/central Andean 

uplift. In this case, however, C. cruziana and C. picui are separated by the northern range 

of the Andes, which is estimated to have formed 2.5-10 mya. By 2.5-7 mya, coastal Peru 

would have been cut off from the Amazonian lowlands to the east by the rise of the 

Eastern Cordillera of Colombia. This event coincides with the divergence estimate 

between C. cruziana and C. picui, and strongly suggests the northern Andean uplift as a 

cause of vicariance and subsequent divergence. The geographic range of C. picui does 

extend to the western side of the Andes in central Chile, but does not extend further north 
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than the Atacama Desert. A large body of research indicates that the Atacama underwent 

a rapid increase in aridity around 6 mya and subsequently developed towards its current 

extreme conditions (Hartley and Chong, 2002). The timing of this environmental change 

coincides with the development of the Northern Andes and rapid elevation increase in the 

Central Andes, probably due to the climatic changes associated with western South 

America being closed off to the rest of the continent by the entirety of the Andes 

mountain range (Hartley, 2003). The timing also coincides with the estimated C. 

cruziana-C. picui divergence time. This could indicate that the speciation event was the 

direct result of either a north-south divergence due to the formation of the Atacama, an 

east-west divergence due to the rapid elevation increase in the Northern Andes, or a 

combination of both geologic events. In other words, C. cruziana could have been 

isolated by both the Andes to the east and the Atacama Desert to the south. Other 

research has indicated that the Atacama formed much earlier, reaching a point of extreme 

aridity around 14 mya (Houston and Hartley, 2003; Dunai et al., 2005). If this is the case, 

the C. cruziana-C. picui ancestor would have already been hindered from spreading north 

along the Chilean Pacific coast by around 14 mya, and the subsequent speciation event 

could be more directly attributed to the rise of the Northern Andes. 

The sister species Columbina talpacoti and C. buckleyi show a similar 

distributional pattern to C. cruziana and C. picui, but are estimated to have diverged more 

recently (<1 mya, and probably <50 kya), which does not coincide with major Andean 

uplift events. The mitochondrial uncorrected pairwise distance between the two species is 

also relatively small (0.3-0.8%) consistent with a very recent speciation event. This 

pattern of closely related species on either side of the Andes has been documented in 
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several other cases in birds (Brumfield and Capparella, 1996; Miller et al., 2008; Weir 

and Price, 2011; Lougheed et al., 2013). Some of these instances were shown to be the 

probable result of trans-Andean gene flow (Miller et al., 2008), but this seems unlikely 

with ground doves given their poor long-distance flight ability. Dispersal of the ancestors 

of this group over the Andes seems unlikely. Another possibility is that the ancestor of C. 

talpacoti and C. buckleyi was distributed across the Northern Andes throughout forested 

glacial refugia (Haffer, 1969). These corridors would have provided suitable habitat for 

dispersing around the Northern Andes, therefore allowing for a continuous distribution 

across each side of the Andes. It seems plausible that, when these corridors disappeared 

with the glacial retreat of the Pleistocene, patches of habitat (and presumably 

representatives of the C. talpoacoti/C. buckleyi ancestor) remained isolated on either side 

of the range, leading to a speciation event. 

Panamanian Land Bridge Formation. In many cases the focus of biogeographic 

studies is on vicariance events, the separation of two previously connected areas (Phillips 

et al., 2013; Bauza-Ribot et al., 2012; Maderspacher, 2012). However, North and South 

America represent a case of two continents connecting after millennia of separation. We 

therefore modeled our biogeographic comparison under the assumption of dispersal 

(Christenhusz and Chase, 2013), and estimated the origin and direction of dispersal of 

small New World ground doves, which now occur on both continents. Our results 

indicate several dispersal events into North America from South America, and the timing 

of the colonization events appear to coincide with the Panamanian land bridge formation 

(Figure 4.2). Both the parsimony and maximum likelihood biogeographic reconstructions 

recover only South to North America dispersal events. Likewise, the posterior 
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probabilities at this node from the MCMC chain of the BBM model were very similar to 

the likelihood values from the ML character reconstruction. The BBM results indicate 

that the ML results are robust to our use of a third character state (present in both North 

and South America) rather than using a polymorphic character state (present in North 

America/present in South America). Using a third character state over a polymorphic 

state is not ideal, but is required in current implementations of likelihood ancestral 

character reconstructions. Nevertheless, our BBM results – an ancestral area 

reconstruction model that allows polymorphic states – indicate that our ML analysis 

produced consistent results. 

Based on all three analyses, all South to North American dispersal events occur 

after the formation of the land bridge. The lack of pre-land bridge dispersal is not 

surprising given the strong support of South American origin and the unlikely possibility 

of these ground doves flying across a significantly large water barrier. It is possible the 

doves could have dispersed into North America by “island hopping” on small land 

masses thought to have existed between the two continents (Stehli and Webb, 1985; 

DaCosta and Klicka, 2008), as C. passerina seems to have done in colonizing Caribbean 

islands, but our results strongly suggest otherwise. Of particular significance are the sister 

taxa Columbina squammata and C. inca. Although the geographic reconstruction 

recovers their ancestor as a South American species, C. inca’s current range is 

exclusively in North America while C. squammata is a South American species. Their 

estimated divergence time is around 2-2.5 mya, which indicates a dispersal and speciation 

event shortly after the land bridge formation. Species that currently have a distribution on 
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both continents are reconstructed as having originated in South America, with recent 

range expansion into North America.  

Conclusion 

 Through sampling representatives from each extant species of small New World 

ground doves, we were able to reconstruct a fairly well-resolved and well-supported 

phylogeny of this group. More importantly, we were able to use a dated phylogeny to 

understand the timing of diversification in this group as it relates to historic 

biogeographic events. Due to their range throughout the New World, we were able to test 

hypotheses regarding the Andean uplift and formation of the Panamanian land bridge. If 

neither Andean uplift nor land bridge formation had a major effect on New World ground 

dove speciation patterns, we would expect the estimated divergence times and ancestral 

area reconstructions among relevant species to not coincide with either of these geologic 

events. In particular, we would not expect the divergence estimates of relevant clades 

(e.g. sister taxa separated by the Andes) to coincide with Andean uplift events. 

Furthermore, we would not expect the timing of dispersal events between North and 

South America to coincide with the Isthmus closure. However, our results in this study 

support several divergence time estimates that are consistent with Andean uplift events, 

as well as biogeographic reconstructions consistent with dispersal events from South to 

North America occurring near or after the land bridge formation. These results suggest 

that Andean uplift and the Panamanian Land Bridge formation were important events in 

the evolutionary history of small New World ground doves, and provide further insight 

into how these events contributed to the diversification of New World birds. 
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FIGURES 

 

Figure 4.1. Maximum Likelihood and Bayesian tree. For the support values indicated at 

each node, bootstrap values appear first followed by posterior probability values. Dashes 

indicate that particular node was not recovered in the appropriate analysis. Letter code at 

the end of each taxon name indicates country origination of the sample. They are as 

follows: ARG: Argentina, BAH: Bahamas, BOL: Bolivia, BRA: Brazil, CAP: captive, 

CR: Costa Rica, ECU: Ecuador, GUY: Guyana, MEX: Mexico, PAR: Paraguay, PER: 

Peru, USA: United States, VEN: Venezuela.  
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Figure 4.2. Chronogram generated by BEAST. Time along the bottom axis is listed in 

millions of years before present, and blue error bars over each node indicates the 95% 

credibility intervals. Colored branches indicate results of the parsimony biogeographic  

reconstruction, and the pie charts over each node indicate the likelihood that a region is 

the ancestral area for that particular clade. Values to the upper-left of each pie chart are 

the marginal probabilities for the most likely ancestral area at each respective node. 

Marginal probabilities of >0.99 for a particular area at a node are not indicated. Color 

indication for each region are as follows: Green – South America, Blue – North America, 

Yellow – widespread in both continents. Columns indicate the approximate estimatin 

timing for three major geologic events. The blue column indicates the approximate 

timing of the rapid elevation increase in the central Andean plateau, the red column  
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(Figure 4.2. continued)  

indicates the approximate rapid elevation increase in the Northern Andes, and the green 

column indicates the approximate estimate for the Panamanian Land Bridge formation. 

Taxon names are as in Figure 4.1. 
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TABLES 
 
Table 4.1. Samples included in the study. GenBank accession numbers indicated. 
 

Ingroup 
         

Genus species Extract code Voucher Locality Cytb ND2 COI ATP8 FIB7 
Columbina passerina Copas.1.26.1998.1 KUMNH B1755 USA: Missouri KJ639102 KJ645745 KJ630887 KJ630861 KJ668695 
Columbina passerina CopasTX.9.8.1998.10 176 USA: Texas KJ639082 KJ645725 KJ630867 KJ630841 KJ668676 
Columbina passerina Copas1878.10.28.1998.1 KUMNH B1878 Mexico KJ639097 KJ645740 KJ630882 KJ630856 KJ668690 
Columbina passerina Copas8166.8.1.2006.9 ANSP8166 Ecuador KJ639095 KJ645738 KJ630880 KJ630854 KJ668688 
Columbina passerina Copas16864.8.1.2006.10 LSU B16864 Bahamas KJ639091 KJ645734 KJ630876 KJ630850 KJ668684 
Columbina minuta Comin.5.6.1998.3 DFS92-210 Brazil KJ639100 KJ645743 KJ630885 KJ630859 KJ668693 
Columbina buckleyi Cobuc956.6.8.2001.4 LSU RCF956 Peru KJ639079 KJ645722 KJ630864 KJ630838 KJ668673 
Columbina talpacoti Cotal1504.10.28.1998.8 FMNH SML86-107 Bolivia KJ639088 KJ645731 KJ630873 KJ630847 KJ668681 
Columbina talpacoti Cotal9763.10.6.1998.3 NMNH B09763 Guyana KJ639101 KJ645744 KJ630886 KJ630860 KJ668694 
Columbina picui Copic.1.26.1998.5 KUMNH B153 Paraguay KJ639094 KJ645737 KJ630879 KJ630853 KJ668687 
Columbina picui Copic458.8.1.2006.5 KGM458 Argentina KJ639080 KJ645723 KJ630865 KJ630839 KJ668674 
Columbina cruziana Cocru154.11.26.2003.5 REW154 Peru KJ639084 KJ645727 KJ630869 KJ630843 KJ668678 
Columbina cruziana Cocru85.8.1.2006.11 REW85 Peru KJ639089 KJ645732 KJ630874 KJ630848 KJ668682 
Claravis pretiosa Clpre.1.26.1998.3 KUMNH B85 Paraguay KJ639096 KJ645739 KJ630881 KJ630855 KJ668689 
Claravis pretiosa Clpre2154.10.28.1998.2 KUMNH B2154 Mexico KJ639087 KJ645730 KJ630872 KJ630846 KJ668680 
Claravis mondetoura Clmon16221.8.1.2006.4 LSU B16221 Costa Rica KJ639093 KJ645736 KJ630878 KJ630852 KJ668686 
Metriopelia ceciliae Mecec.4.23.1998.4 LSU B23851 captive KJ639085 KJ645728 KJ630870 KJ630844 KJ668679 
Metriopelia ceciliae Mecec382.6.8.2001.3 LSU CCW382 Bolivia KJ639081 KJ645724 KJ630866 KJ630840 KJ668675 
Meteriopelia morenoi Memor.10.6.1998.5 NMNH B05812 Argentina KJ639083 KJ645726 KJ630868 KJ630842 KJ668677 
Metriopelia melanoptera Memel273.5.15.2003.15 REW273 Peru KJ639086 KJ645729 KJ630871 KJ630845 - 
Metriopelia melanoptera Memel443.8.1.2006.6 KGM443 Argentina KJ639092 KJ645735 KJ630877 KJ630851 KJ668685 
Metriopelia aymara Meaym432.8.1.2006.12 KGM432 Argentina KJ639099 KJ645742 KJ630884 KJ630858 KJ668692 
Columbina inca Coinc1.9.16.1997.1 1 USA: Arizona KJ639103 KJ645746 KJ630888 KJ630862 KJ668696 
Columbina inca CoincTX.9.8.1998.8 123 USA: Texas KJ639090 KJ645733 KJ630875 KJ630849 KJ668683 
Columbina squammata Scsqu.5.6.1998.11 SML88-153 Venezuela KJ639104 KJ645747 KJ630889 KJ630863 KJ668697 
Uropelia campestris Urcam925.6.8.2001.5 LSU CCW925 Bolivia KJ639098 KJ645741 KJ630883 KJ630857 KJ668691 
Outgroups 

         

Columba livia Coliv423 UT 423 USA: Utah AF182694  AF353433  EF373367  EF373446  AF182661  
Chalcophaps stephani Chste NMNH B4013 Papua New Guinea AY443673  EF373328  EF373365  EF373439  EF373477  
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Table 4.1. Continued. 
 

Ducula  bicolor Dubic LSU B19214 captive AF182705 KF446740 KJ630891 AY443632 AF182672 
Geopelia  cuneata Gecun KUMNH B1586 captive  AF182711  KC484595 KJ630890 AY443645   AF182678 
Goura cristata Gocri KUMNH B1588 captive AF182709  EF373336  EF373374  EF373453  AF182676 
Leucosarcia melanoleuca Lemel LSU B20539 captive AF182712  EF373341  EF373379  EF373458  AF182679  
Oena capensis Oecap FMNH SMG-4180 Madagascar AF182707  EF373345  EF373383  EF373462  AF182674  
Phapitreron amethystinus Phame FMNH ATP92-109 Philippines AF182706  EF373349  EF373387  EF373466  AF182673  
Treron calva Trcal AMNH ALP80 Cent. Aft. Rep. AY443674  EF373354  EF373392  EF373471  AY443696  
Zenaida  macroura Zemac5 UT 5 USA: Arizona AF182703  EF373359  EF373397  EF373476  AF258321  
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CHAPTER 5: COPHYLOGENETIC ANALYSIS OF NEW WORLD GROUND-

DOVES (AVES: COLUMBIDAE) AND THEIR PARASITIC WING LICE 

(INSECTA: PHTHIRAPTERA: COLUMBICOLA)4 

 

INTRODUCTION 

 Parasites and their hosts form intricate and often complex evolutionary 

relationships. Untangling the narrative of how hosts and parasites interact and what 

factors are important for shaping their evolutionary patterns is a challenging task. Many 

parasites utilize multiple unrelated hosts, or are associated with different hosts during 

different life stages (Morand et al., 1995; Bartholomew et al., 1997; Parker et al., 2003). 

Hosts also often harbor multiple types of closely related parasites (Poulin, 1997; 

Bruydonckx et al., 2009; Prugnolle et al., 2010; Colinet et al., 2013). However, 

reconstructing the evolutionary history of these interactions can provide novel biological 

insight (Poulin, 2011). Comparing the evolutionary trees of hosts and associated parasites 

is a way to test for factors influencing joint patterns of host and parasite diversification 

(Page, 2003). Congruence between host and parasite trees indicates that cospeciation may 

be important, suggesting parasites are strongly associated with their hosts, whereas 

incongruence is a sign of host switching or other cophylogenetic events (e.g. parasite 

                                                
4 Reprinted, with permission, from: Sweet, A.D. and K.P. Johnson. 2016. Cophylogenetic 

analysis of New World ground-doves (Aves: Columbidae) and their parasitic wing lice 

(Insecta: Phthiraptera: Columbicola). Molecular Phylogenetics and Evolution. 103: 122-

132. https://doi.org/10.1016/j.ympev.2016.07.018. 
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duplication; Page, 1994). The cophylogenetic patterns revealed by these comparisons can 

also provide a starting point for testing hypotheses about what biotic and/or abiotic 

factors dictate the observed patterns of congruence. For example, host habitat (Krasnov et 

al., 1997), host/parasite behavior (Clayton et al., 2010), biogeography (Weckstein, 2004), 

and climate (Feder et al., 1993) could all play important roles in shaping an interaction.    

Targeting host-parasite systems where the parasites have permanent and obligate 

relationships to a group of hosts can simplify the “untangling” process (Fahrenholz, 

1913; Eichler, 1948; Hafner and Page, 1995). Ectoparasitic feather lice (Insecta: 

Ischnocera) of pigeons and doves (Aves: Columbidae) (hereafter referred to only as 

“doves”) are an ideal system for this purpose (Johnson and Clayton, 2004). Dove lice are 

widespread, fairly host specific (an average of 1.7 louse species per dove host taxon), and 

spend their entire life cycle on the host (Price et al., 2003; Marshall, 1981). Doves are 

host to two types of distantly related feather lice – wing lice and body lice. Dove wing 

lice are in a single genus (Columbicola), whereas dove body lice are in multiple genera 

(Auricotes, Coloceras, Campanulotes, Kodocephalon, and Physconelloides). Although 

both types of lice parasitize the same group of hosts and are often found together on a 

single individual, previous analysis indicates the two groups have different evolutionary 

histories with their hosts (Clayton and Johnson, 2003; Johnson and Clayton, 2004; 

Johnson et al., 2002). Body lice showed strong phylogenetic congruence with their hosts, 

which is expected for host-specific parasites and implies cospeciation between the two 

groups of organisms. Wing lice did not exhibit a similar pattern of congruence, instead 

showing evidence of multiple host-switches between dove hosts. More frequent host 

switching may be due to wing lice using phoresis (“hitchhiking”) behavior with generalist 
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parasitic hippoboscid flies to move between host species (Harbison et al., 2008; Harbison 

and Clayton, 2011). 

 However, these initial cophylogenetic studies had limited taxonomic and 

geographic sampling. A recent study with a more extensive taxonomic representation of 

both doves and their lice showed different patterns, with wing lice showing strong 

evidence for overall phylogenetic congruence with their hosts (Sweet et al., 2016). These 

results imply that taxonomic and geographic scale of sampling could greatly affect the 

results of a cophylogenetic study. Clade-limited host switching, when parasites 

preferentially switch among closely related hosts, can also mislead results by producing a 

false signal of phylogenetic congruence (Charleston and Robertson, 2002; Sorenson et 

al., 2004; de Vienne et al., 2007). In consideration of these issues, it is therefore 

important to study systems with as complete a taxonomic representation as possible. 

Since this may be less feasible for higher taxonomic groupings (e.g. the over 300 species 

of Columbidae), it is necessary to focus on cophylogenetic patterns in specific clades in 

order to obtain near complete taxonomic sampling. Targeting a specific clade of hosts 

and their parasites, with comprehensive sampling of multiple individuals per taxon, also 

provides the opportunity to sample from multiple host populations in different geographic 

locations.  

 To this end, we focus on the cophylogenetic patterns between small New World 

ground-doves and their wing lice (Columbicola). Small New World ground-doves are a 

clade of four genera (Claravis, Columbina, Metriopelia, and Uropelia) and 17 species 

within Columbidae (Johnson and Clayton, 2000; Shapiro et al., 2002; Pereira et al., 

2007). Representatives of the clade are small-bodied birds that primarily forage on grass 
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seeds and prefer open scrubby habitat, although species in the genus Claravis are found 

in forested areas (Goodwin, 1983; Gibbs et al., 2003). The group has a broad geographic 

distribution, extending throughout the southern United States, Central America, and most 

of South America, although many species have more localized ranges. Four species of 

Columbicola are known to parasitize small New World ground-doves (C. passerinae, C. 

altamimiae, C. drowni, and C. gymnopelia). These lice form a monophyletic group within 

Columbicola (Johnson et al., 2007). However, previous phylogenetic studies on 

Columbicola have detected additional lineages within the ground-dove wing lice clade, 

perhaps indicative of cryptic species (Johnson et al., 2002; Johnson et al., 2007). Parasites 

often have simplified morphological features, which make cryptic species a relatively 

common phenomenon (Poulin and Morand, 2000; Jousson et al., 2000; Lafferty and 

Kuris, 2002; Miura et al., 2005; Detwiler et al., 2010). For cophylogenetic analyses it is 

important to properly identify parasite species, as misrepresenting the number of tips on a 

parasite (or host) tree can alter the outcome of an analysis (Refrégier et al., 2008; de 

Vienne et al., 2013; Martinez-Aquino, 2016). 

 In this study, we use mitochondrial and nuclear data from multiple geographic 

representatives of each species of small New World ground-dove Columbicola to infer a 

robust phylogeny of the clade. Based on our phylogenetic analysis we identify potential 

cryptic lineages/species in this group, and use these results to aid us in providing an 

adequate parasite species tree for subsequent cophylogenetic analyses. We compare this 

tree to a published tree for their hosts. We also explore the phylogeographic patterns of 

ground-dove Columbicola, particularly focusing on the widespread species C. passerinae. 
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We use this as a basis to test whether the ground-dove Columbicola phylogeny is 

significantly structured according to host biogeography rather than to host phylogeny. 

 

METHODS 

Data collection 

 Louse specimens were collected from hosts using fumigation or pyrethrin 

powdering protocols (Clayton and Drown, 2001), then immediately placed in 95% 

ethanol and stored long-term at -80 C. We extracted DNA from individual lice using a 

Qiagen Blood and Tissue Kit (Qiagen, Valencia, CA, USA) according to standard 

protocol and modified according to Johnson et al. (2003), with lice incubating in 

digestion buffer at 55 °C for ~48 hours. After DNA extraction all lice exoskeletons were 

slide-mounted and saved as voucher specimens. Using polymerase chain reaction (PCR), 

we targeted the mitochondrial locus cytochrome oxidase subunit 1 (CO1) and the nuclear 

loci elongation factor 1α (EF-1α), transmembrane emp24 domain-containing protein 6 

(TMEDE6), and a hypothetical protein (HYP). For PCR reactions, we used NEB 5X 

Master Mix (New England Biolabs, Ipswich, MA, USA) and the manufacturer’s protocol 

for 25 µL reactions (5 µL 5X Master Mix, 0.2 µM forward and reverse primers). We used 

primers H7005 and L6625 for CO1 (Hafner et al., 1994), Ef1 and Cho-10 for EF-1α 

(Danforth and Ji, 1998), BR69-295L and BR69-429R for TMEDE6, and BR50-181L and 

BR50-621R for HYP (Sweet et al., 2014). Our thermal cycler protocols followed Johnson 

et al. (2001) and Sweet et al. (2014). We purified the resulting PCR products with 

ExoSAP-IT (Affymetrix, Inc., Santa Clara, CA, USA) according to standard protocol, 

and sequenced them using an ABI Prism BigDye Terminator kit (Applied Biosystems, 
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Foster City, CA, USA). Fragments were then run on an AB 3730x capillary sequencer 

(Applied Biosystems, Foster City, CA, USA) at the University of Illinois Roy J. Carver 

Biotechnology Center (Champaign, IL, USA). We used Geneious v8.1.2 (Biomatters) to 

manually resolve the resulting complementary chromatograms and remove primer 

sequences. We submitted all novel sequences to GenBank (Table 5.1). We also utilized 

existing GenBank data for COI and EF-1α generated in Johnson et al. (2007) and Johnson 

et al. (2002). For an outgroup taxon, we included sequence data from the rock pigeon 

wing louse C. columbae. In total, we sequenced 51 Columbicola samples from 13 host 

species. 

Phylogenetic analysis 

 We aligned each locus using default gap parameters in the Geneious MUSCLE 

plugin (Edgar, 2004), and checked each alignment by eye in Geneious. We concatenated 

all four alignments, and used PartitionFinder v1.1.1. (Lanfear, 2012) to search for the 

most appropriate gene partitions and substitution models under the corrected Akaike 

Information Criterion (AICc, Sugiura, 1978). We ran two PartitionFinder searches, one 

searching through all 56 models in PartitionFinder and another only searching through 

models applicable in MrBayes.  

 We then ran both maximum likelihood (ML) and Bayesian phylogenetic 

reconstruction methods. For ML, we ran a partitioned analysis in Garli v2.0. Based on 

our PartitionFinder results, we applied a TVM+G substitution model to COI, a TrN+I+G 

model to HYP, and a TrNef+G model to an EF-1α/TMEDE6 partition. We ran Garli 

using two searches of 500 bootstrap replicates, and summarized resulting bootstrap trees 

using Sumtrees v3.3.1 (Sukumaran and Holder, 2008). For the Bayesian analysis, we 
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used MrBayes v3.2 (Ronquist and Huelsenbeck, 2003). Based on our MrBayes-specific 

model search, we applied a GTR+G model to COI, a K80 model to EF-1α, and a 

GTR+I+G model to a HYP/TMEDE6 partition. We ran 20 million generations of Markov 

Chain Monte Carlo (MCMC) for 2 runs of 4 chains each, sampling every 1,000 trees. To 

assess parameter convergence we viewed trace files in Tracer v1.5 (Rambaut and 

Drummond, 2007), and ran .t files with the R package RWTY v1.0.0 (Warren et al., 

2016) to assess topological congruence. Based on these assessments, we discarded the 

first 10% (2,000 trees) as a burnin.  

OTU analysis 

 We used several methods for identifying potential cryptic lineages/species. First, 

we computed uncorrected pairwise distances for the COI sequences. We computed the 

distance matrix using the “dist.dna” command in the ape package (Paradis et al., 2004) in 

R (R Development Core Team 2015). Second, we used the COI sequences to infer a 

median-joining (MJ) network (Bandelt et al., 1999) in PopART v1.7 (Leigh and Bryant, 

2015). We set epsilon = 0 and only included sequence data for Columbicola passerinae, 

since previous studies have identified this species as potentially harboring multiple 

cryptic lineages (Johnson et al., 2007). Third, we used the online version of the 

Automatic Barcode Gap Discovery (ABGD) method 

(http://wwwabi.snv.jussieu.fr/public/abgd/abgdweb.html, Puillandre et al., 2012) to 

partition the number of possible groups in our data set. We ran the ABGD analysis with 

the COI alignment applying both K2P and Jukes-Cantor (JC) distance models, and used 

default Pmin, Pmax, gap width, and steps values. Finally, we used the Generalized Mixed 

Yule Coalescent (GMYC) approach to species delimitation (Fujisawa and Barraclough, 
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2013). Since this approach requires ultrametric and bifurcating gene trees, we estimated 

the gene tree phylogeny of COI using BEAST v1.8.2 (Drummond et al., 2012). We ran 

the MCMC analysis for 20 million generations using a GTR+G substitution model, an 

uncorrelated lognormal relaxed clock, and a Yule speciation processes tree prior. We 

sampled trees every 1,000 generations, and discarded the first 10% as a burn-in based on 

plots and ESS values from Tracer. From the post-burn-in tree samples we constructed a 

maximum clade credibility (MCC) tree using TreeAnnotator. With the MCC COI tree as 

an input, we implemented GMYC in the R package splits (Ezard et al., 2009) using the 

single threshold setting.   

Cophylogenetic analysis 

 Using our small New World ground-dove Columbicola phylogeny (see Figure 

5.1) and information from our species/lineage analyses, we conducted both event-based 

and distance-based cophylogenetic analyses. For all methods, we used the host phylogeny 

generated by Sweet and Johnson (2015). We also pruned the louse phylogeny so that 

each species was represented by a single tip, and removed the outgroup taxon. 

 For the distance-based cophylogenetic analyses, we used ParaFit (Legendre et al., 

2002) and PACo (Balbuena et al., 2013). Both methods assess overall congruence 

between the host and parasite phylogenies, as well as the relative contribution of 

individual host-parasite links (associations) to the overall congruence. However, ParaFit 

assesses whether or not parasites are randomly associated with their hosts, whereas PACo 

assess the dependence of the parasite phylogeny on the host phylogeny through a residual 

sum of square goodness-of-fit test. For both analyses, we converted the host and parasite 

phylogenies to patristic distance matrices using the “cophenetic” command in ape, and 
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sorted each distance matrix according to the host-parasite association matrix. We ran 

ParaFit for 100,000 permutations in the R package ape using the Cailliez correction for 

negative eigenvalues and testing for the contribution of each individual link using the 

ParaFitLink1 test. Since ParaFit runs multiple tests to calculate p-values for each 

individual link, it is necessary to correct the raw output. Using R, we corrected individual 

link p-values using the Benjamini-Hochberg correction for false discovery rate 

(Benjamini and Hochberg, 1995). We also ran PACo for 100,000 permutations with the R 

packages ape and vegan (Oksanen et al., 2016), and used the jackknife method to 

estimate the importance of each individual link to the overall sum of squares score. 

 For an event-based approach, we used Jane v4 (Conow et al., 2010). We used 

default settings for the Genetic Algorithm parameters (100 generations, population size of 

100) and event costs (0 cospeciation, 1 duplication, 2 duplication and host switch, 1 loss, 

and 1 failure to diverge). After solving for the most optimal solutions, we tested whether 

our best score was lower than expected by chance by randomizing the tip mappings 999 

times. If the randomization procedure indicates our best score from the data is lower than 

by chance, this would indicate some level of congruence between the host and parasite 

phylogenies. 

Testing for biogeographic structure 

To test if our inferred louse phylogeny is significantly structured according to host 

biogeography, we used the Maddison-Slatkin test (Maddison and Slatkin, 1991). We 

coded lice as being associated with hosts in one of the following regions: southern United 

States/northern Central America (north of the Isthmus of Tehuantepec), southern Central 

America (south of the Isthmus of Tehuantepec), Andes Mountains, South America west 
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of the Andes (trans-Andes), or South America east of the Andes (cis-Andes). We used the 

best ML tree as an input, but removed duplicate taxa to avoid biasing our test results. In 

this context, we considered two louse taxa as duplicate if they were from the same host 

species, geographic region (according to our coding), and were separated by short branch 

lengths (uncorrected CO1 distance values < 0.1%), being relatively genetically indistinct. 

We also removed the outgroup taxon. We implemented the Maddison-Slatkin procedure 

using an R script that randomly assigns character states (geographic regions) 999 times 

and calculates the parsimony score for each assignment (Bush et al., 2016, script from 

https://github.com/juliema/publications/tree/master/BrueeliaMS).  

  

RESULTS 

Phylogenetic analysis 

 We sequenced 378 bp of the CO1 locus (131 variable sites, 115 parsimony-

informative sites), 345 bp of EF-1α (32 variable sites, 15 parsimony-informative sites), 

407 bp of HYP (71 variable sites, 26 parsimony-informative sites), and 219 bp of 

TMEDE6 (28 variable sites, 4 parsimony-informative sites). The final concatenated 

alignment was 1,349 bp in length, with ~36% missing data (Table 5.1). The ML and 

Bayesian phylogenetic analyses inferred similar trees (Figure 5.1). After the 10% burn-in 

all parameters and topologies from the Bayesian analysis had ESS values <200 or 

average standard deviation of split frequencies <0.01, thus indicating the MCMC runs 

had converged to stationarity. Monophyly of all four Columbicola species were recovered 

with good support from both analyses (>80 bootstrap [BS] and >0.95 posterior 

probability [PP]).  
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OTU analyses 

 The OTU analyses indicated there are five taxa in this clade of Columbicola. This 

includes the three species found on Metriopelia ground-doves – C. altamimiae. C. 

drowni, and C. gymnopeliae. The uncorrected p-distances had an average distance of 

13.43% between samples of C. altamimiae and all other ingroup samples, 14.31% 

between samples of C. drowni and all other ingroup samples, and 13.88% between 

samples of C. gymnopeliae and all other ingroup samples (Supplementary Table 5.1). The 

ABGD analysis also recovered those three taxa as separate taxonomic units. The GMYC 

analysis did not recover these three taxa as separate units, instead grouping all three into a 

single taxonomic unit. However, GMYC separated them from the fourth species in the 

clade, C. passerinae. All OTU analyses indicated C. passerinae should be considered two 

taxa (here labeled C. passerinae 1 and C. passerinae 2). Both the ABGD (with both K2P 

and JC distance models) and GMYC analyses recovered two separate taxonomic units 

within C. passerinae, and those two groups had an average uncorrected p-distance of 

9.30% between them. In addition, the median-joining network indicated there are 23 

steps between the two C. passerinae groups (Figure 5.2). There was some genetic 

distinctiveness between the C. passerinae parasitizing Columbina passerina and Co. inca 

from the United States/Mexico and Co. talpacoti from Panama, which together differed 

by an average of 1.80% in COI. However, the ABGD and GMYC analyses did not 

recover this group as a distinct unit. Additionally, the MJ network placed lice from Co. 

talpacoti from Panama as embedded within C. passerinae 1 (Figure 5.2). 
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Cophylogenetic analysis 

 Our cophylogenetic analyses based on five Columbicola taxa indicated some level 

of congruence between the host and parasite phylogenies. Both distance-based tests were 

significant across the entire data set (PACo global P = 0.002, ParaFit global P = 0.003), 

thus rejecting the independence of the host and parasite phylogenies. The ParaFitLink1 

test recovered five host-parasite links as significantly contributing to the global score 

after correcting for multiple tests (a = 0.05) (Figure 5.3, Table 5.2). ParaFit also 

calculates a second individual link statistic (ParaFitLink2), but ParaFitLink1 is better 

suited for scenarios with widespread parasites (Legendre et al., 2002, Dhami et al., 2013, 

Perez-Escobar et al., 2015 [Supporting information]). The individual jackknife link test in 

PACo recovered three host-parasite links with the 95% confidence intervals of their 

squared residuals lower than the median global squared residual (Figure 5.4). All three 

links were between Metriopelia ground-doves and their lice.  

 The event-based method of Jane also recovered a global signal of congruence 

across the whole data set. The observed cost was 27, which was significantly lower than 

by chance (P = 0.049). The event reconstruction recovered one cospeciation event, 

between M. melanoptera and M. ceciliae and their lice, C. drowni and C. gymnopeliae 

(Figure 5.3). Jane also recovered three duplications, fifteen losses, nine failures to 

diverge, and no host switches (Table 5.3). 

Phylogeographic patterns and biogeographic structure 

 Lice from C. passerinae 1 group neatly according to biogeography in both the 

phylogeny and MJ network. There are distinct groups of lice from southern United 

States/northern Central America, southern Central America, and cis-Andean South 
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America (Figures 5.1 and 5.2). Lice from C. passerinae 2 also tend to group by 

biogeography, but the patterns are less well-defined than in C. passerinae 1. Lice from 

Co. cruziana and Co. buckleyi, both restricted to South America’s northwest coast, fall 

within C. passerinae 2. However, all lice from Cl. pretiosa are also within this lineage, 

including samples from Mexico and Brazil. Lice parasitzing Co. talpacoti sampled from 

Brazil also fall within the lineage. In total, three of our four host biogeographic regions 

are represented in C. passerinae 2. However, lice from C. passerinae 2 seem to primarily 

parasitize hosts from trans-Andean South America, given that all lice from this region 

group with the lineage (Figures 5.1 and 5.2). 

Randomization of biogeography over the Columbicola phylogeny with the 

Maddison-Slatkin test indicated significant phylogenetic conservation of biogeography. 

After trimming the louse phylogeny to remove duplicate samples, there were six 

observed character state transitions (Supplementary Figure 5.1). None of the 

randomizations resulted in equal or fewer state transitions than the observed value (P < 

0.001).  

 

DISCUSSION 

 Our phylogenetic analyses of ground-dove wing lice (Columbicola) revealed 

patterns of diversification concordant at some level with both host phylogeny and 

biogeography within this group. In particular, biogeographic distribution, separate from 

host phylogeny, appears to play a major role in patterns of louse diversification. More 

specifically, some lineages of lice are associated with multiple distantly related hosts, but 

these lice tend to occur together in the same biogeographic region.  
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 Some of our phylogenetic results agreed with previous, less extensively sampled 

studies (Clayton and Johnson, 2003; Johnson et al., 2007). In particular, we recovered 

two distinct clades within C. passerinae (C. passerinae 1 and C. passerinae 2), and C. 

gymnopeliae + C. drowni as sister to C. passerinae. We also recovered C. altamimiae as 

sister to the rest of the clade. Increased taxon sampling indicated even more structure 

within the clade. We found some evidence for genetic differentiation within C. 

passerinae 1, with lice from Co. passerina, Co. inca, and Co. talpacoti forming a distinct 

group. However, our OTU analyses and MJ network did not recover these lice as 

representing a distinct taxon, so this likely represents population level structuring. We 

recovered C. drowni as the sister species to C. gymnopeliae, although this relationship 

was not well supported (53 BS/0.75 PP). All three species of Metriopelia doves included 

in this study have unique species of lice previously described based on morphological 

data (Eichler, 1953; Clayton and Price, 1999). Each louse species is generally associated 

with one species of Metriopelia. Columbicola altamimiae has been recorded on both M. 

aymara (the primary host) and M. melanoptera (Price et al., 2003), but we were unable to 

document this by our sampling. Our study provides further evidence for the genetic 

distinctiveness of each species of Metriopelia wing louse. All three species (C. 

altamimiae, C. drowni, and C. gymnopeliae) are separated from the rest of the ground-

dove wing louse clade by long branches and have large CO1 uncorrected distances 

between them and other taxa (13.43% - 14.31%). 

The phylogenetic structure and host specificity of Metriopelia wing lice is 

perhaps reflective of their hosts’ life history. Metriopelia doves are high Andean species, 

living in paramo and puna grasslands generally above 2,000 meters. Due to the high 
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elevation and extreme conditions, these regions have different habitats compared to the 

neighboring lowlands and cloud forest (Szumik et al., 2012). Inhabitants of these regions 

are well-adapted to the environment, and have therefore become isolated from other taxa 

in adjacent regions (Lloyd et al., 2010). This lack of species overlap is especially evident 

in avian taxa (Fjeldsa et al., 2012). The isolation of Metriopelia from other genera of 

small New World ground-doves is reflected by the phylogenetic distinctiveness of their 

wing lice. While all other species of ground-doves share one or two species of wing lice 

with other lowland ground dove species, Metriopelia dove lice are in distinct lineages. 

Interestingly, we did not recover lice from Metriopelia as monophyletic, with lice from 

M. aymara coming out as sister to the rest of the ingroup. This indicates ground-dove 

Columbicola may have originated before major central Andean uplift (16-9 mya; 

Garzione et al., 2014), when Metriopelia likely became isolated from other ground-dove 

taxa (Sweet and Johnson, 2015). 

Our results also indicate significant host-specificity among Metriopelia wing lice, 

consistent with known association records (Price et al., 2003). Each species of 

Metriopelia dove included in this study has a unique species of Columbicola associated 

with it, which indicates the lice have been isolated on their hosts for a long period of 

time. If this was not the case, we might expect the three louse species to be separated by 

short branch lengths and smaller COI pairwise distances, or for individual species to 

occur on multiple host species (i.e. not have fully sorted). All three dove species have 

range overlap, but have some variation in altitudinal preference. M. aymara tends to live 

at higher altitudes (2,800 - >5,000 meters) than the other two species. This habitat 

difference could result in hosts rarely coming in contact, therefore isolating their 
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parasites. Host size differences may also be important for explaining the phylogenetic 

patterns in these lice, particularly in lice from M. melanoptera and M. ceciliae. 

Experimental work has indicated that host size differences can limit host switching in 

dove wing lice (Clayton et al., 2003; Johnson et al., 2005). If a new host is too small or 

large, wing lice are not able to effectively avoid preening behavior and are thus not able 

to establish viable populations. M. melanoptera (113-125 grams) are considerably larger 

than M. ceciliae (51-67 grams) (Gibbs et al., 2001).  

Cophylogenetic congruence  

 All three cophylogenetic analysis methods, including both topology-based and 

event-based methods, recovered a global signal of congruence between the host and 

parasite phylogenies. This indicates some level of cospeciation between the two groups 

of organisms, which might seem surprising given the general patterns of the phylogeny 

and host associations (Figure 5.3). These results also differ from earlier cophylogenetic 

studies on dove wing lice, which indicated a lack of congruence between the two groups 

(Clayton and Johnson, 2003). However, more recent studies with greater taxonomic 

representation also recovered evidence of cospeciation between doves and their wing lice 

(Sweet et al., 2016). 

 The signal of congruence is probably driven by the Metriopelia associations. The 

only cospeciation event recovered by Jane is between M. melanoptera + M. ceciliae and 

their lice, and ParaFit recovered both of those links as significantly contributing to the 

overall congruence. In the PACo analysis, the three Metriopelia host-parasite links had 

squared residual values that were lower than the other links and 95% confidence intervals 

below the median squared residual value, which indicates phylogenetic congruence 
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between those taxa. As discussed above, Metriopelia doves are generally isolated from 

other species in the ground-dove clade, and based on the one-to-one relationships with 

their wing lice are probably generally isolated from one another. Over evolutionary time, 

a lack of opportunity to switch hosts could not only result in distinct lineages of parasites, 

but also in cospeciation with their hosts. Interestingly, removing the Columbicola 

passerinae lineages from the louse phylogeny would result in a perfectly congruent 

relationship between Metriopelia and their wing lice. Furthermore, the basal lineages of 

the louse phylogeny (C. altamimiae) is associated with M. aymara, which is nested 

within the ground-dove phylogeny. This finding indicates ground-dove Columbicola 

possibly switched from ancestral Metriopelia doves to other ground-doves before Andean 

uplift isolated the groups, although Jane did not recover any host switching events. Since 

M. aymara is the basal lineage of Metriopelia and is usually found at higher elevations 

than other Metriopelia, it is possible this species first became isolated due to rapid uplift 

over several million years. This could explain why C. altamimiae is the earliest diverging 

species of ground-dove wing louse. 

 Conversely, the two lineages of Columbicola passerinae do not appear congruent 

with their hosts. We did not recover any cospeciation events between these lice and their 

hosts. Most of the individual links did not significantly contribute to the global ParaFit 

score and had high squared residuals from the PACo jackknife test. Taken together, these 

results suggest a lack of cospeciation between these two louse lineages and their hosts 

over evolutionary time. Both lineages are widespread, with C. passerinae 1 associated 

with seven ground-dove species and C. passerinae 2 associated with four. This 

distribution indicates recent host-switching or ongoing gene flow between the louse 
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populations on these different host species. Small New World ground-doves generally 

prefer open scrubby habitat, and many of the lowland species (non-Metriopelia) are 

known to forage in mixed flocks (Dias, 2006). Host proximity could allow for ongoing 

gene flow between louse populations on different host species that are geographically 

proximal.   

Phylogeographic structure of Columbicola passerinae 

 Although most of the ground-dove Columbicola phylogeny does not appear to be 

predicted by the hosts’ phylogeny, particularly within C. passerinae, there is still 

significant phylogenetic structure within the clade. Previous work in other host-parasite 

systems have found that host biogeography, rather than host phylogeny, can be a better 

predictor of parasite evolutionary patterns (Weckstein, 2004; Johnson et al., 2007; Bush 

et al., 2016). After assigning host biogeography to the tips of our parasite phylogeny and 

using the Maddison-Slatkin character randomization test, we found the louse phylogeny 

is significantly structured according to host biogeography. Given these results and the 

results of our cophylogenetic analysis, this indicates host biogeography is very important 

for shaping evolutionary patterns in ground-dove wing lice. A similar pattern was 

recovered in a broad phylogenetic study of the Columbicola genus, which indicates host 

biogeography is an important factor at both a global and local scale (Johnson et al., 

2007). If parasites are able to switch hosts but are limited to a group of similar hosts, as is 

the case with ground-dove wing lice, then the lice are likely to switch to hosts in close 

proximity. This could especially be the case in mixed foraging flocks. Since ground-

doves are non-migratory and generally do not travel long distances within their ranges, 
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over time the evolutionary patterns of their parasites would diverge according to 

geographic regions. 

 We see early indications of genetic divergence from our phylogenetic and 

network analyses. Ground-dove wing lice form distinct groups based on hosts primarily 

from southern United States/northern Central America, southern Central America, trans-

Andean South America, cis-Andean South America, or Andean highlands. Further 

evidence for this phylogeographic structure comes from lice that parasitize the same host 

species falling in different clades, but being grouped with lice from the same geographic 

region rather than host species. For example, C. passerinae from Co. talpacoti in Panama 

form a distinct group, whereas lice off of Co. talpacoti from Brazil group with lice from 

Cl. pretiosa also from Brazil. Also, lice from Co. passerina from Brazil group with lice 

from other cis-Andean South American hosts, and C. passerina lice sampled from hosts 

in Mexico/United States group with other lice from that region. Lice from these 

widespread host species that group according to geographic region are likely from 

different subspecies of host. Over time, these host subspecies may continue to diverge 

from each other and show similar conserved phylogeographic structure. Lice have much 

shorter generation times and faster substitution rates than their hosts, so geographic 

structure can potentially be more easily detected in lice than in their hosts (Johnson et al. 

2014). Future phylogeographic analysis of widespread ground-dove species is needed to 

explore these patterns.  

 Columbicola passerinae 2, however, does not conform as strictly to this 

phylogeographic pattern. Although there is some phylogeographic structure within the 

lineage, a louse from trans-Andean Peru (ex. Co. buckleyi) is imbedded within lice from 
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Brazil and Mexico (ex. Co. talpacoti and Cl. pretiosa), thus breaking up the conserved 

structure. The presence of both cis- and trans-Andean representatives within C. 

passerinae 2 indicates the lice are able to move around or across the Andes. Given the 

range restrictions of Co. buckleyi and Co. cruziana, perhaps the lice are using Cl. pretiosa 

as a “bridge species.” Claravis pretiosa has a range that extends to both sides of the 

Andes and can move considerably during certain seasons (Gibbs et al., 2001; Piratelli and 

Blake, 2006). Although they are more arboreal and tend to forage in pairs, they are also 

known to forage at forest edges in open scrub close to other ground-dove species, 

including Co. cruziana and Co. buckleyi (Skutch, 1959; Parker et al., 1995; pers. obs.). 

Claravis pretiosa are not present in the high Andes, so wing lice in the Co. passerinae 2 

clade are likely moving north around the Andes and into eastern South America via Cl. 

pretiosa. The lice are then able to switch to other hosts in that region of the continent. 

Interestingly, Co. talpacoti is the only other host species from east of the Andes with lice 

in Co. passerinae 2. It is possible that C. passerinae 2 is rare on eastern dove species, and 

that more thorough sampling will reveal other ground-dove species hosting this wing 

louse lineage. It is also possible that C. passerinae 2 are preferentially switching from Cl. 

pretiosa to Co. talpacoti. Alternatively, the existence of C. passerinae 2 on Co. talpacoti 

could be a reflection of the recent evolutionary history of this species. Co. talpacoti and 

Co. buckleyi are sister taxa that diverged very recently, with Co. buckleyi originally 

considered a subspecies of Co. talpacoti (Meyer de Schauensee, 1970). Columbina 

talpacoti likely shared lice with Co. buckleyi before the two species diverged, and could 

have retained this shared lineage until the present. Because wing lice from Co. buckleyi 

are so similar to lice from Co. talpacoti, this could be evidence that the two host species 
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still have some contact, which would explain why a louse from Co. buckleyi (a trans-

Andean species) is parasitized by a cis-Andean louse.  

 Despite less consistent phylogeographic patterns in C. passerinae 2, the fact that 

there is any conserved phylogeographic structure within C. passerinae indicates barriers 

for dispersal. If the primary mode of host-switching/dispersal is via phoresis using 

parasitic hippoboscid flies, it is also possible the flies have limited ranges due to 

geographical or ecological barriers. Hippoboscid flies have been recorded from small 

New World ground-doves throughout the doves’ range (Maa, 1969), but if the flies have 

a restricted range or limited gene flow this would also limit louse dispersal. Additional 

work focused on the phylogeography of hippoboscid flies is needed to test whether the 

flies exhibit similar patterns to the lice. 

Conclusions 

 By focusing on a small clade of doves and their associated wing lice (also in a 

monophyletic group), we were able to sample lice from most host species, including 

multiple louse samples per host species. This approach allowed us to uncover 

cophylogenetic and phylogeographic patterns that would be obscured in broader-scale 

studies, thereby further untangling some of the evolutionary history of this host-parasite 

system. In particular, the results of this study indicate that biogeography and host life-

history are important factors for shaping host-parasite evolutionary patterns, particularly 

for systems involving permanent parasites. Although permanent parasites are tightly tied 

to their hosts, host phylogeny is rarely the primary predictor of parasite diversification. 

Identifying what external factors are promoting parasite diversification is crucial for 

understanding host-parasite interactions.  
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FIGURES 

 

Figure 5.1. Maximum likelihood topology of New World ground-dove wing lice 

Columbicola, from a partitioned concatenated analysis of CO1, EF-1α, TMEDE6, and 

HYP sequences. Values at nodes indicate ML bootstrap (BS) support values followed by 

Bayesian posterior probabilities (PP). Support is only indicated on nodes with ≥50 

BS/≥0.50 PP values, and nodes with ≥95 BS/≥0.95 PP support are indicated with 

asterisks (*). Scale bar indicates nucleotide substitutions per site. Species as recovered by 

OTU analysis are indicated to the right of the figure. Individual samples are colored 

according to the geographic region where the sample was collected, as indicated on the 

map. 
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Figure 5.2. Median-joining (MJ) network estimated from CO1 sequences of Columbicola passerinae samples. The two distinct 

lineages within C. passerinae are indicated at the bottom of the figure. Nodes correspond to unique haplotypes, and are numbered 

according to Table 5.1. The size of each node indicates the relative number of individuals in each haplotype. Nodes are colored 

according to host species as indicated in the upper-left of the figure. Inferred ancestral nodes are colored black. Haplotypes are 

grouped with colored lines according to geographic region of sampling, and are colored as in Figure 5.1. 
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Figure 5.3. Tanglegram of small New World ground-doves and their associated Columbicola wing lice. Red circles indicate a 

cospeciation event as recovered by Jane. Red lines indicate significant host-parasite links estimated by the ParaFitLink1 test after 

correcting for multiple tests.
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Figure 5.4. Squared residuals from the PACo jackknife test for individual host-parasite 

links. Median squared residual value indicated with the horizontal dotted line. Host-

parasite associations that were significant according to the corrected ParaFitLink1 test 

results are indicated by asterisks (*).  
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TABLES 

Table 5.1. Columbicola samples used in this study. Sequence data indicated by the associated GenBank accession numbers. Dashes (-) 

indicate missing data. Haplotypes for C. passerinae samples refer to Figure 5.2.  

Number Columbicola  
species 

Haplotype Voucher Host Locality Host Voucher CO1 Ef1a HYP TMEDE6 

1 passerinae 2 1 Copsr.9.29.1998.3 Claravis pretiosa Mexico CO-23 KX528475 KX528509 - - 

2 passerinae 2 6 Cosp.Clpre.11.24.2014.10 Claravis pretiosa Brazil 6413 KX528476 - KX532199 - 

3 passerinae 2 4 Cosp.Clpre.11.24.2014.9 Claravis pretiosa Brazil 5178 KX528477 - KX532200 - 

4 passerinae 2 1 Cosp.Clpre.2.1.1999.2 Claravis pretiosa Mexico CO-14 AF4147331 - - - 

5 passerinae 2 1 Cosp.Clpre.2.1.1999.6 Claravis pretiosa Mexico CO-23 KX528478 KX528511 - - 
6 passerinae 2 2 Copas.Cobuc.9.4.2013.10 Columbina buckleyi Peru REW169 KX528479 - KX532192 KX532221 

7 passerinae 2 5 Copas.Cobuc.9.4.2013.9 Columbina buckleyi Peru REW187 KX528466 - KX532193 KX532222 

8 passerinae 2 2 Cosp.Cobuc.10.27.2003.4 Columbina buckleyi Peru REW169 KX528467 - KX532201 KX532228 

9 passerinae 2 2 Cosp.Cobuc.7.27.2004.7 Columbina buckleyi Peru REW187 KX528480 KX528512 - - 

10 passerinae 2 2 Cosp.Cocru.10.27.2003.3 Columbina cruziana Peru REW86 KX528481 - KX532202 - 

11 passerinae 2 2 Cosp.Cocru.4.9.2014.4 Columbina cruziana Peru REW85 KX528482 KX528513 - KX532229 

12 passerinae 2 2 Cosp.Cocru.4.9.2014.5 Columbina cruziana Peru REW86 KX528483 KX528514 KX532203 KX532230 

13 passerinae 2 2 Cosp.Cocru.7.27.2004.4 Columbina cruziana Peru REW87 KX528484 KX528515 - - 

14 passerinae 1 8 Copsr.9.21.1999.3 Columbina inca USA I136 AF4147271 - - - 

15 passerinae 1 8 Copsr.9.29.1998.6 Columbina inca USA 115 AF4147251 KX528510 - - 

16 passerinae 1 13 Copas.Comin.9.4.2013.1 Columbina minuta Peru JLK258 KX528468 - KX532194 - 

17 passerinae 1 15 Copas.Comin.9.4.2013.8 Columbina minuta Peru REW201 KX528469 - KX532195 KX532223 

18 passerinae 1 10 Copsr.11.24.2003.1 Columbina passerina USA 299 KX528473 KX528506 KX532198 KX532227 

19 passerinae 1 11 Copsr.2.1.1999.12 Columbina passerina USA 93, 101 AF4147291 - - - 

20 passerinae 1 10 Copsr.2.1.1999.3 Columbina passerina Mexico CO-9 AF4147271 - - - 
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Table 5.1 Continued. 
 

21 passerinae 1 8 Copsr.9.14.1999.7 Columbina passerina USA G181 KX528474 KX528507 - - 

22 passerinae 1 9 Copsr.9.21.1999.1 Columbina passerina USA G280 AF4147311 - - - 

23 passerinae 1 8 Copsr.9.29.1998.2 Columbina passerina Mexico CO-11 AF4147281 KX528508 - - 

24 passerinae 1 12 Cosp.Copas.11.24.2014.7 Columbina passerina Brazil 5049 KX528486 - KX532204 - 

25 passerinae 1 12 Cosp.Copas.11.24.2014.8 Columbina passerina Brazil 5051 KX528487 - - - 

26 passerinae 1 12 Copas.Copic.9.4.2013.4 Columbina picui Argentina KGM459 KX528470 - - KX532224 

27 passerinae 1 12 Cosp.Copic.1.20.2003.7 Columbina picui Argentina KGM292 KX528488 KX528516 - - 

28 passerinae 1 12 Cosp.Copic.1.8.2003.3 Columbina picui Argentina KGM459 KX528489 KX528517 - - 

29 passerinae 1 12 Cosp.Cosqu.11.24.2014.1 Columbina squammata Brazil 4073 KX528490 - KX532205 - 

30 passerinae 1 16 Cosp.Cosqu.11.24.2014.4 Columbina squammata Brazil 4781 KX528491 - - - 

31 passerinae 1 7 Copas.Cotal.4.9.2014.10 Columbina talpacoti Panama JMD732 KX528471 KX528504 KX532196 KX532225 

32 passerinae 1 7 Copas.Cotal.4.9.2014.9 Columbina talpacoti Panama GMS1870 KX528472 KX528505 KX532197 KX532226 

33 passerinae 2 3 Cosp.Cotal.11.24.2014.11 Columbina talpacoti Brazil 6471 KX528492 KX528518 KX532206 - 

34 passerinae 2 3 Cosp.Cotal.11.24.2014.12 Columbina talpacoti Brazil 6473 KX528493 - KX532207 - 

35 altamimiae 
 

Coalt.Meayr.9.4.2013.2 Metriopelia aymara Argentina KGM431 KX528463 KX528503 KX532188 KX532218 

36 altamimiae 
 

Cosp.Meaym.4.9.2014.12 Metriopelia aymara Argentina KGM1148 KX528494 KX528519 KX532208 KX532231 

37 altamimiae 
 

Cosp.Meaym.4.9.2014.7 Metriopelia aymara Peru REW291 KX528495 KX528520 KX532209 - 

38 gymnopeliae 
 

Cogym.10.5.1999.12 Metriopelia ceciliae Peru RCF952 AY1510091 AY1510211 - - 

39 gymnopeliae 
 

Cogym.Mecec.9.4.2013.12 Metriopelia ceciliae Peru REW150 KX528464 - KX532190 KX532219 

40 gymnopeliae 
 

Cogym.Mecec.9.4.2013.7 Metriopelia ceciliae Peru REW192 KX528465 - KX532191 KX532220 

41 gymnopeliae 
 

Cosp.Mecec.4.9.2014.3 Metriopelia ceciliae Peru REW153 KX528496 - KX532210 KX532232 

42 gymnopeliae 
 

Cosp.Mecec.7.27.2004.5 Metriopelia ceciliae Peru REW192 EF6790081 EF6791431 KX532211 - 

43 drowni 
 

Coalt.1.8.2003.4 Metriopelia melanoptera Argentina KGM511 EF6790181 EF6791531 KX532187 - 

44 drowni 
 

Cosp.Memel.1.8.2003.2 Metriopelia melanoptera Argentina KGM514 EF6790171 EF6791521 KX532212 - 

45 drowni 
 

Cosp.Memel.4.9.2014.6 Metriopelia melanoptera Peru REW282 KX528497 KX528521 KX532213 KX532233 
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Table 5.1. Continued. 
 

46 drowni 
 

Cosp.Memel.4.9.2014.8 Metriopelia melanoptera Peru REW319 KX528498 - KX532214 KX532234 

47 drowni 
 

Cosp.Memel.9.4.2013.3 Metriopelia melanoptera Argentina KGM444 KX528499 - KX532215 KX532235 

48 drowni 
 

Cosp.Memel.9.4.2013.6 Metriopelia melanoptera Bolivia KGM512 KX528500 - KX532216 KX532236 

49 passerinae 1 12 Cosp.Urcam.10.12.1999.5 Uropelia campestris Bolivia CCW925 KX528501 KX528522 KX532217 - 

50 passerinae 1 14 Cosp.Urcam.11.24.2014.5 Uropelia campestris Brazil 4789 KX528502 - - - 

51 columbae 
 

Cocol.6.29.1998.3 Columba livia 
 

4 Col EF6789621 EF6790971 KX532189 KX532237 

 

1 Previously published sequence 
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Table 5.2. Results from ParaFit analysis on ground-doves and their wing lice. The global 

test results and each individual link test results are indicated. For the individual link test, 

values with an asterisk (*) indicate significance after the Benjamini-Hochberg correction 

(a = 0.05). 

ParaFitGlobal = 20.663 P-value = 0.003 
 

Host Columbicola species  ParaFitLink1 P-values 
Claravis pretiosa C. passerinae 2 0.960 
Columbina buckeyi C. passerinae 2 0.057 
Columbina cruziana C. passerinae 2 0.200 
Columbina inca C. passerinae 1 0.024 
Columbina minuta C. passerinae 1 0.014* 
Columbina passerinae C. passerinae 1 0.016* 
Columbina picui C. passerinae 1 0.115 
Columbina squammata C. passerinae 1 0.024 
Columbina talpacoti C. passerinae 1 0.013* 
Columbina talpacoti C. passerinae 2 0.056 
Metriopelia aymara C. altamimiae 0.031 
Metriopelia ceciliae C. gymnopeliae 0.015* 
Metriopelia melanoptera C. drowni 0.011* 
Uropelia campestris C. passerinae 1 0.966 
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Table 5.3. Summary of the Jane v4 results for New World ground-doves and their wing lice. Cospeciation event indicated in Figure 

5.3.  

Cospeciations Duplications Duplications 
 and Host Switches 

Losses Failures to Diverge 

1 3 0 15 9 
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CHAPTER 6: INTEGRATING PHYLOGENOMIC AND POPULATION 

GENOMIC PATTERNS IN AVIAN LICE PROVIDES A MORE COMPLETE 

PICTURE OF PARASITE EVOLUTION5 

 

INTRODUCTION 

Understanding how host evolution and ecology shapes parasite diversity is a key 

question in evolutionary biology. Traditionally, these host influences were considered the 

primary drivers behind parasite evolutionary patterns, particularly for parasites that are 

closely associated with their hosts (Fahrenholz, 1913; Harrison, 1914; Eichler, 1948). 

However, other factors, such as biogeography and parasite ecology, have been shown to 

be important forces shaping parasite evolution and host-parasite interactions (Johnson 

and Clayton, 2003a; Weckstein, 2004; du Toit et al., 2013; Jirsová et al., 2017).  

A widely-used approach for addressing questions related to host-parasite 

evolutionary dynamics is cophylogenetic analysis, which compares the evolutionary trees 

of parasites to that of their hosts to test for congruence or cospeciation (Page, 1994; Page 

and Charleston, 1998; de Vienne et al., 2013; Clayton et al., 2016). In cases where a 

parasite phylogeny is highly congruent with the host phylogeny, host divergence (and 

                                                
5 Reprinted, with permission, from: Sweet, A.D., Boyd, B.M., Allen, J.M., Villa, S.M., 

Valim, M.P., Rivera-Parra, J.L., Wilson, R.E., and Johnson, K.P. 2018. Integrating 

phylogenomic and population genomic patterns in avian lice provides a more complete 

picture of parasite evolution. Evolution. 72(1): 95-112. http://doi:10.1111/evo.13386. 
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cospeciation) is thought to be the primary factor shaping parasite diversification. In cases 

where the parasite phylogeny is incongruent with the host phylogeny, other factors (e.g., 

host-switching) may drive parasite divergence (Page et al., 2004; Peterson et al., 2010; 

Sweet et al., 2016a). However, cophylogenetic approaches do not consider processes 

within a species (i.e., populations), and because divergence is typically initiated at the 

population level, it is important to consider population patterns for a group of parasites 

(Bush, 1975; Templeton, 1981; Criscione et al., 2005; Kochzius et al., 2009). Integrating 

both phylogenetic and population-level approaches can give valuable insight into host-

parasite evolution over multiple time scales, and ultimately help to link 

macroevolutionary patterns to ecological (i.e., microevolutionary) processes (Nadler, 

1995; Harrison, 1998; Clayton and Johnson, 2003; Huyse et al., 2005; Carling and 

Brumfield, 2008; Criscione, 2008). 

 To consider both phylogenetic and population patterns, it is important to first 

identify population-species boundaries by determining the number of Operational 

Taxonomic Units (OTUs) in a system (Refrégier et al., 2008; de Vienne et al., 2013; 

Martínez-Aquino, 2016). Comparing phylogenies at different taxonomic scales can bias 

the results. For example, over-splitting parasites relative to their hosts – effectively 

comparing parasite populations to host species – can incorrectly force phylogenetic 

congruence and increase estimates of cospeciation (de Vienne et al., 2013). Many types 

of parasites have reduced and cryptic morphologies, making species delimitation difficult 

(Nadler and De Leon, 2011). Genetic data, such as DNA barcoding, has been used to 

more objectively define parasite OTUs (Hebert and Gregory, 2005; Smith et al., 2006). 

This approach is useful, but using single short genetic fragments provides limited 
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phylogenetic or population level information or reflects bias of the evolutionary forces on 

that gene (Brower, 2006). Moving beyond simple barcoding, next generation sequencing 

facilitates the parallel collection of population (e.g., single nucleotide polymorphisms 

[SNPs]) and species (e.g., multiple nuclear or mitochondrial genes) level data. 

Additionally, the decrease in cost of NGS makes studies of non-model organisms 

available and cost effective (Yang and Rannala, 2010). For example, genome-wide SNPs 

can indicate structure within a species, perhaps evidence of overlooked cryptic speciation 

(Leaché et al., 2014). Likewise, species trees estimated from many gene trees under the 

coalescent model can provide evidence for population-species boundaries (Edwards, 

2009; Fujita et al., 2012). Using multiple mitochondrial genes can also provide 

significant information for identifying OTUs (Pons et al., 2006; Sloan et al., 2016). 

Together, these various data-types can corroborate each other to robustly assess parasite 

(or host) OTUs for downstream cophylogenetic analysis. 

 Discerning population-species boundaries is important for cophylogenetic 

analysis, but population-level patterns also provide insights into the processes driving 

parasite divergence and host-parasite relationships (McCoy et al., 2005; Criscione, 2008; 

Bruyndonckx et al., 2009). For example, many parasites exhibit phylogeographic 

structure (e.g., Whipps and Kent, 2006; Whiteman et al., 2007; Morand, 2012). Other 

parasites show population-level host-specificity, patterns that would not have been 

apparent with less dense sampling (i.e., species-level sampling; McCoy et al., 2001; 

Poulin et al., 2011). As with OTU analysis, population questions have been primarily 

addressed with short genetic fragments (e.g., COI mitochondrial locus) or microsatellite 

data, which are useful but contain limited information. NGS data, such as SNPs, can 
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reveal more fine-scale structure within populations (Luikart et al., 2003; Hohenlohe et al., 

2010). 

 When using NGS data to explore both species-level and population-level 

questions, there is an advantage to using full genome data from shotgun sequencing. 

Genome-reduction methods, such as Ultra-Conserved Elements (UCEs) or anchored 

hybrid enrichment, are useful for phylogenetic inference but data sets are restricted to the 

targeted loci (Faircloth et al., 2012; Lemmon et al., 2012). Methods useful for population-

level questions, such as restriction-site associate DNA sequencing (RAD-seq), are less 

useful for phylogenetic estimation, especially at deeper time scales (Rubin et al., 2012; 

Manthey et al., 2016). Full-genome shotgun sequencing produces appropriate data for 

both phylogenetic and population genetic questions, given that locus assembly and SNP 

calling protocols are available. For organisms with relatively small genomes (<1 GB), 

this approach can be extremely cost effective through multiplexing (Boyd et al., 2017). 

 In this study, we focus on the body lice (Insecta: Phthiraptera: Ischnocera) from 

small New World ground-doves (Aves: Columbidae: Claravinae). Dove lice are obligate 

and permanent ectoparasites that feed on their hosts’ downy feathers (Johnson and 

Clayton, 2003b). There are three recognized species of ground-dove body lice that form a 

monophyletic group within the genus Physconelloides (P. emersoni, P. eurysema, and P. 

robbinsi), although there are likely several additional cryptic species (Price et al., 2003, 

Clayton and Johnson, 2003; Johnson et al., 2011b). Past work has demonstrated 

significant phylogenetic congruence and cospeciation between doves and their body lice 

(Clayton and Johnson, 2003; Johnson and Clayton, 2003a, 2004). Patterns of congruence 

are perhaps reinforced by the inability of body lice to effectively disperse between 
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different host species using hippoboscid flies (phoresis), a behavior utilized by other 

types of avian lice (Harbison et al., 2008, 2009). However, past phylogenetic and 

cophylogeneitc studies were on broad taxonomic scales (across Columbidae) and had 

relatively sparse sampling. 

Ground-doves and their body lice are an advantageous system for understanding 

patterns of parasite diversification and host-parasite evolution using genomic data. These 

lice have relatively small genomes (~200 Mbp), and are associated with a moderately 

diverse, yet widespread host group (Johnson et al., 2011a,b; Sweet and Johnson, 2015). 

Small New World ground-doves are a monophyletic subfamily (Clarvinae) of four genera 

and 17 species within the dove family Columbidae (Johnson and Clayton, 2000; Pereira 

et al., 2007). They inhabit a wide geographic range extending from the southern United 

States to southern South America (Gibbs et al., 2001). Additionally, focusing on a 

relatively small monophyletic group of parasites is ideal for pursuing both phylogenetic 

and population-level questions, because it is feasible to obtain multiple samples from all 

species in the clade. Including multiple representatives of each species is also necessary 

for identifying cryptic species. Here we include samples spanning the geographic ranges 

of each of the three ground-dove body louse species.  

Whereas most studies of host-parasite evolution focus on either phylogenetic or 

population genetic patterns, here we integrate both scales by using full genome sequences 

of ground-dove body lice to identify species-population boundaries and assess the genetic 

structure within and between species. We accomplish this by developing a novel 

workflow to assemble genes and call SNPs from the same data source. In particular, we 

are interested in how the patterns in these lice relate to a) their hosts’ phylogenetic 
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structure and b) their geographic distributions. Do the lice exhibit similar patterns of host 

congruence and/or host specificity at both phylogenetic and population scales? Is there 

biogeographic/phylogeographic structure at both scales? Using our approach to address 

these questions will provide great insight into how parasites diversify over time and 

indicate which factors (e.g., host evolution or biogeography) might be driving parasite 

diversification at different points in time.  

 

MATERIALS AND METHODS 

DNA extraction 

 Louse samples were collected in the field from their hosts using either the ethyl 

acetate fumigation or pyrethrin powder dusting methods (Clayton and Drown, 2001) and 

were immediately submerged in 95% ethanol and stored at -80° C. Before DNA 

extraction, each specimen was photographed at the University of Utah as a voucher. 

Whole lice were ground up individually (34 individual specimens in total) in 1.5 ml tubes 

and genomic DNA was isolated using standard protocols and reagents of the Qiagen 

QIAamp DNA Micro Kit (Qiagen, Valencia, CA, USA). Our only modification of the 

Qiagen protocol was to incubate our specimens in ATL buffer and proteinase K at 55° C 

for 48 hours instead of the recommended 1-3 hours. This was done to ensure maximal 

yield of DNA from the louse remains. Following DNA extractions, we quantified each 

extraction with a Qubit 2.0 Fluorometer (Invitrogen, Carlsbad, CA, USA) using the 

manufacturer’s recommended protocols and reagents. 
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Library preparation and sequencing 

Total genomic DNA (gDNA) was fragmented on a Covaris M220 Focused-

ultrasonicator (Covaris, Woburn, MA, USA) targeting a mean fragment size of 400 nt. 

gDNA libraries for each louse specimen were constructed for paired-end Illumina 

sequencing using the recommended protocols and reagents of the Kapa Library 

Preparation Kits (Kapa Biosystems, Wilmington, MA, USA). 6 or 10 bp barcodes were 

added to each library sample so that 8-12 samples could be pooled and sequenced 

simultaneously on a single lane (Supplementary Table 6.1). Three additional samples 

were sequenced on a single lane to obtain high-coverage genomes for methods 

development and assessing error (sequencing pool 4, Supplementary Table 6.1). The 

pooled libraries were sequenced with 161 cycles on an Illumina HiSeq2500 instrument 

using the HiSeq SBS v4 sequencing kit, resulting in 160nt paired-end reads. Fastq files 

were generated from the sequence data using Casava v1.8.2 or bcltofastq v1.8.4 with 

Illumina 1.9 quality score encoding. All sequencing and fastq file generation was carried 

out at the W.M. Keck Center (University of Illinois, Urbana, IL, USA). Raw reads were 

deposited to the NCBI GenBank SRA database (SRP076185). We also obtained raw 

genomic reads from Campanulotes compar (NCBI BioProject PRJNA374052, ID 

374052) as an outgroup taxon.  

Sequence quality control 

 We analyzed raw Illumina sequence data using Fastqc v0.10.1 (Babraham 

Bioinformatics) to check for unusual sequence patterns or errors. For quality control 

measures, we first removed duplicated sequence read pairs using the fastqSplitDups.py 

script (https://github.com/McIntyre-Lab/mcscript and https://github.com/McIntyre-
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Lab/mclib). Second, we removed the 5’ and 3’ Illumina sequencing adapters using 

Fastx_clipper v.0.014 from the FASTX-Toolkit (http://hannonlab.cshl.edu/fastx_toolkit). 

We then removed the first 5 nt from the 5’ ends using Fastx_trimmer v.0.014 (“hard” 

trimming). Finally, we “soft” trimmed the 3’ end of reads by removing bases with phred 

scores less than 28 using Fastq_quality_trimmer v.0.014 and a trimming window = 1 nt. 

After these quality control steps, we removed any reads less than 75 nt from the fastq 

files. We then reanalyzed our cleaned libraries using Fastqc to check for errors not 

removed by quality control.  

Data assembly and mapping 

 To obtain orthologous sequences for downstream analysis, we developed a novel 

approach to assemble and map the cleaned genomic data. First, we used aTRAM (Allen 

et al., 2015) to assemble exons for the Physconelloides emersoni library sequenced at a 

higher depth. Of the three higher coverage libraries, this sample had the highest predicted 

depth after quality control (Sample 1, Supplementary Table 6.1). We prepared the P. 

emersoni reads into a BLAST-formatted database using the format_sra.pl script from the 

aTRAM package. We then ran aTRAM for three iterations with ABySS (Simpson et al., 

2009) for de novo assembly, using 1,107 protein coding genes from the human body 

louse genome (Pediculus humanus humanus; Kirkness et al., 2010) as target sequences. 

These genes were identified by Johnson et al. (2013) as being 1:1 orthologs across nine 

insect genomes using OrthoDB v5 (Waterhouse et al., 2011). We used the resulting best 

contigs from aTRAM in a post-processing pipeline from Allen et al. (2017) to identify 

exons. The pipeline uses Exonerate v2.2.0 (Slater and Birney, 2005) to identify 

exon/intron boundaries and custom scripts to stitch together the exon regions of each 
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locus assembled in aTRAM. We then performed BLAST searches with blastx (Altschul 

et al., 1997) between our assembled loci and the P. h. humanus translated proteins. If the 

best hit for an assembled locus was not the corresponding P. h. humanus gene we 

removed that locus from the assembly.  

Because aTRAM is most effective for assembling loci from high-coverage 

libraries and does not code heterozygous sites or call SNPs, we used Bowtie2 (Langmead 

and Salzberg, 2012) to map our lower-coverage libraries (avg. 13X) to the P. emersoni 

aTRAM-assembled loci. We also mapped all three higher-coverage genomes and the 

outgroup taxon to the reference loci. Before mapping, we created an index file using 

Samtools (Li et al., 2009) and a dictionary file using CreateSequenceDictionary in Picard 

v.2.0.1 (https://broadinstitute.github.io/picard/) for the reference sequence. After mapping 

with Bowtie2, we sorted the BAM files and created pileup files using Samtools. Bcftools 

then converted the pileup files to VCF files (Li et al., 2009). We then filtered sites with 

depth <5 or >150, or with Phred quality scores <28 using Samtools and the Genome 

Analysis Toolkit from GATK (McKenna et al., 2010). We converted filtered VCF files to 

consensus FASTQ files using vcf2fq in vcfutils.pl from Samtools. All analyses were 

carried out on a 4 AMD Opteron with 16 2.4 Ghz processors and 64 CPU cores, 

maintained by the UIUC Life Sciences Computing Services (University of Illinois, 

Urbana, IL, USA). Details about the mapping and filtering steps and all relevant scripts 

are available at https://github.com/adsweet/louse_genomes.git.  

Mitochondrial gene assembly 

 We also assembled mitochondrial protein coding genes using aTRAM. For target 

sequences, we used the translated sequences from the Campanulotes compar 
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mitochondrial genome (NCBI # PRJNA16411). We ran aTRAM with a single iteration. 

Because mitochondrial reads are likely present at a much greater depth than nuclear 

reads, we tested several library fractions for assembly (1.5%, 4.7%, 7.8%, 15.6%, 50%, 

and 100%). To determine which fraction to use for each library, we assembled BLAST 

reads from the aTRAM output against the C. compar reference in Geneious v8.1.2 

(Biomatters, Ltd.), and chose the minimum library fraction with uniform coverage ≥20X.  

Sample validation 

 To validate the species identity and identify any potential contamination in our 

assembled sequences, we used the NCBI BLAST web interface to search our CO1 

sequences assembled in aTRAM against the GenBank database. We determined a sample 

to be verified if the top BLAST result was within the same species as our query sequence 

(Supplementary Table 6.1). 

SNP calling 

We called SNPs for population-level analysis for Physconelloides eurysema using 

the GATK Genome Analysis Toolkit following the “Best Practices” guide from the 

Broad Institute (Van der Auwera et al., 2013). We focused on P. eurysema because this 

louse species is associated with nine host species in our study, and there is evidence from 

previous work that there are several cryptic species within this lineage. The other ground-

dove Physconelloides taxa (P. emersoni and P. robbinsi) are well defined from both 

morphological and molecular data. We called SNPs jointly for all P. eurysema samples, 

and filtered calls with QD (quality by depth) < 2.0, FS (Fisher strand test) > 60.0, MQ 

(mapping quality) < 40.0, and MQRankSum (mapping quality rank sum test) < -12.5.  
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Phylogenetic analysis 

 We aligned each gene using the --auto flag in MAFFT (Katoh et al., 2002). For 

each alignment, we removed columns only containing Ns, and masked sites containing 

≥90% gaps using trimAL v1.4 (Capella-Gutiérrez et al., 2009). For the aligned data, we 

used both concatenation and coalescent tree estimation methods. For concatenation 

estimation, we first concatenated all gene files in Geneious. We tested for the best 

partitioning schemes and models by searching through RAxML models with 

PartitionFinder v2.1.1 (Lanfear et al., 2017). We then used the rcluster search scheme 

with rcluster-max set to 1000 and rcluster-percent set to 10, and selected optimal 

partitions and models based on AIC (Akaike 1974; Lanfear et al., 2014). We used 

RAxML v8.1.3 (Stamatakis, 2006) to estimate the best likelihood tree from the 

partitioned concatenated alignment, using 10 different starting trees and a GTR + Γ 

model for each partition. We then ran 250 bootstrap replicates in RAxML and 

summarized support on the best tree. For the coalescent analysis, we estimate gene trees 

for each gene alignment file using 100 rapid bootstrap replicates in RAxML using a GTR 

+ Γ model for each gene. We summarized the gene trees using ASTRAL v4.10.6 

(Mirarab and Warnow, 2015; Sayyari and Mirarab, 2016) with quartet-based local 

posterior probability support for branches. We also summarized gene trees with ASTRID 

v1.4 (Vachaspati and Warnow, 2015). 

 We estimated a phylogeny from the mitochondrial data assembled with aTRAM. 

We aligned each protein coding gene using --auto in MAFFT. Because many of the 

assemblies had variable sequence lengths, we trimmed the alignments to the 

Campanulotes compar mitochondrial genome sequence from GenBank (also included as 
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an outgroup taxon). We did not include data for ATP8, ND3, or ND6, because aTRAM 

was unable to assemble contigs for those genes in most samples, presumably because 

they are extremely divergent from the reference sequence. Therefore, the final 

mitochondrial data set included 10 mitochondrial genes. We ran PartitionFinder on the 

concatenated alignment to test for optimal partition and model schemes using the AIC, 

and based on this analysis ran RAxML on the concatenated matrix with six partitions of 

GTR + I + Γ models. 

OTU analysis 

 To objectively assess the number of ground-dove Physconelloides Operation 

Taxonomic Units (OTUs), we used the automatic barcode discovery method (ABGD; 

Puillandre et al., 2012) and the Bayesian General Mixed Yule Coalescent Model 

(bGMYC; Reid and Carstens, 2012). ABGD requires an alignment of a barcode gene as 

input, and detects gaps in the distribution of pairwise differences. These gaps indicate 

interspecific boundaries. For our data set, we used the COI alignment as input into the 

web version of ABGD (http://wwwabi.snv.jussieu.fr/public/abgd/abgdweb.html). We 

used default parameters (Pmin = 0.001, Pmax = 0.1, Steps = 10, Relative gap width = 1.5, 

Bins = 20) and uncorrected (p-distances), Jukes-Cantor (JC) and Kimura (K80) models 

for the distance matrix. 

 The bGMYC method uses Markov Chain Monte Carlo (MCMC) to estimate the 

transition from speciation to coalescent (within-species) events, and can be implemented 

over a distribution of trees. However, the method requires ultrametric trees from a single 

locus. To accommodate this, we estimated ultrametric trees from our concatenated 

mitochondrial alignment using BEAST v2.4.4 (Bouckaert et al., 2014) on the CIPRES 
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Science Gateway (Miller et al., 2010). We partitioned the alignment and assigned 

substitution models as we did with the RAxML analysis, and ran the MCMC for 100 

million generations, sampling every 1,000 generations. We used a Yule tree prior, default 

substitution priors, and a strict clock model for branch length estimation. We used Tracer 

v1.5 (http://tree.bio.ed.ac.uk/software/tracer/) to assess whether the parameters reached 

convergence based on ESS values, and based on this assessment we discarded the first 

10% of MCMC samples as a burn-in. From the post-burn-in distribution of trees, we 

randomly selected 100 trees for bGMYC. We ran bGMYC on a single tree to assess 

MCMC and burn-in length, checking parameter convergence with likelihood plots. Based 

on this initial run we ran bGMYC for all 100 trees for 20,000 iterations with a burn-in of 

10,000 and thinning set to 10. We chose a conspecific probability cutoff of ≥0.05 to 

prevent over-splitting. R scripts for the bGMYC analysis are available at 

https://github.com/adsweet/OTU_analyses.      

Cophylogenetic analysis   

   We used both event-based and distance-based cophylogenetic methods. In all 

analyses, we used the Physconelloides RAxML tree trimmed to one representative for 

each OTU. We also removed the outgroup. For the host tree, we used the small New 

World ground-dove ML phylogeny modified from Sweet and Johnson (2015) 

For an event-based approach, we used Jane v4 (Conow et al., 2010), which uses a 

Genetic Algorithm (GA) to find optimal solutions of evolutionary events (cospeciation, 

host switching, etc.) that reconcile host and parasite trees. We set the GA parameters to 

500 generations and a population size of 1,000, and used default event costs (0 

cospeciation, 1 duplication, 2 duplication and host switch, 1 loss, and 1 failure to 
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diverge). We also forced host and parasite nodes to be in one of two time zones. After 

solving for the most optimal solutions, we randomized the tip associations 999 times to 

test for the statistical significance of our optimal score.  

 For distance-based approaches, we used both ParaFit (Legendre et al., 2002) and 

PACo (Balbuena et al., 2013). ParaFit tests for random association between host and 

parasite trees through a global statistic, and tests the relative contribution of each host-

parasite association (link) to the overall congruence. Before running ParaFit, we 

converted the host and parasite phylogenies to patristic distance matrices in APE and 

sorted each matrix to be consistent with the order of the association matrix. We then ran 

ParaFit for 100,000 iterations using the Cailliez correction for negative eigenvalues, and 

tested for the contribution of individual links with the ParaFitLink1 and ParaFitLink2 

tests. Because the ParaFitLink tests are multiple tests, we corrected resulting p-values 

with the Benjamini-Hochberg control for false discovery rate (Benjamini and Hochberg, 

1995). PACo also assess congruence between host and parasite phylogenies, but by 

testing the dependence of the parasite phylogeny on the host phylogeny through a 

Procrustes superimposition. We ran PACo for 1,000 iterations using the PACO R 

package (Hutchinson et al., 2017), and estimated the squared residuals for each 

association using the PACo jackknife method. A low value indicates congruence between 

a host and its associated parasite. We then tested whether the squared residual values for 

links from sister taxa with corresponding cospeciation events (from Jane) were 

significantly lower than the other links. We compared the two sets of values with a 

Welch’s t-test. We also compared the squared residual values of links that had significant 

ParaFitLink1 results to all other links (Pérez-Escobar et al., 2015).   
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Testing for biogeographic structure 

 To test for significant biogeographic structure in ground-dove body lice, we used 

the Maddison-Slatkin test on the concatenated alignment phylogeny (Maddison and 

Slatkin, 1991). The Maddison-Slatkin test randomizes character states over a topology to 

test for significant phylogenetic structure for the given character, in this case 

biogeographic region. We assigned tips to biogeographic regions similarly to Sweet and 

Johnson (2016) – Andean, eastern South America (cis-Andean), western South America 

(trans-Andean and Andean slopes), southern Central America (from the Isthmus of 

Tehuantepec to Panama), or southern United States/northern Mexico. Before running the 

test, we removed duplicate taxa by collapsing two tips if the lice were from the same host 

species, biogeographic region, and were separated by short branch lengths. Including all 

tips could bias the results toward significance. The trimmed full phylogeny had 18 tips. 

We also tested for biogeographic structure within P. eurysema 3, the most widespread 

and diverse clade within P. eurysema (19 total samples). Because this application of the 

Maddison-Slatkin test was at the within-species level, we did not remove any taxa from 

the P. eurysema 3 clade. We ran the Maddison-Slatkin tests with an R script (available at 

https://github.com/juliema/publications/tree/master/BrueeliaMS) randomizing the 

biogeographic states 999 times. 

Estimating population structure 

 For population-level analyses, we used the filtered SNPs called from GATK as 

input to STRUCTURE to assign individuals to clusters (Pritchard et al., 2000). However, 

linked SNPs can bias the STRUCTURE cluster estimates. To overcome this issue, we 

used a custom Python script to randomly select one SNP per locus from a VCF file 
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(available at https://github.com/adsweet/population_genomic_scripts). A similar 

approach is taken in popular RAD-seq processing software STACKS (Catchen et al., 

2011) and iPyrad (Eaton, 2014). We generated three subsets of random SNPs for separate 

STRUCTURE runs. We then ran STRUCTURE with 20 independent runs of 100,000 

MCMC iterations (after 100,000 burnin iterations) for K = 2-15. We determined the most 

likely value of K following the delta K method of Evanno et al. (2005) estimated across 

all runs in the web version of STRUCTURE Harvester v0.6.94 (Earl and VonHoldt, 

2012). We summarized the runs using the greedy algorithm in CLUMPP v1.1.2 

(Jakobsson and Rosenberg, 2007), and used the output from CLUMPP to construct 

STRUCTURE plots using distruct v1.1 (Rosenberg, 2004). 

 As an additional estimate of population structure, we used all P. eurysema SNPs 

to perform Discriminant Analysis of Principle Components (DAPC) in the R package 

ADEGENET (Jombart, 2008). We also conducted Principal Component Analysis (PCA) 

in ADEGENET for the P. eurysema 3. We subsampled the SNPs for P. eurysema 3, and 

also filtered out missing and monomorphic SNPs, with vcftools v0.1.14 (Danecek et al., 

2011). 

 Finally, we constructed a Median-Joining (MJ) network in PopART v1.7 (Leigh 

and Bryant, 2015) for P. eurysema 3 using the concatenated mtDNA alignment. PopART 

does not allow missing data, so columns with missing data or ambiguities were masked 

by the program. We set epsilon to 0. 
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RESULTS 

Genomic sequencing 

Each of the three samples sequenced at a high coverage (seq. pool 4 in 

Supplementary Table 6.1) produced an average of 34,986,920 reads per sample after 

cleanup steps, which amounts to an average predicted sequencing depth of 28X based on 

a 200 Mbp genome (Supplementary Table 6.1). The Physconelloides emersoni sample 

subsequently used as an assembly reference had 48,122,466 reads and an estimated 

sequencing depth of 38X after cleanup (Sample 1, Supplementary Table 6.1). Sequencing 

between 8 to 12 samples per Illumina lane produced an average of 16,302,251 reads and 

an average predicted depth of 13X per sample after cleanup steps (Supplementary Table 

6.1). BLAST searches on COI data assembled for each sample with aTRAM indicated all 

samples were not cross-contaminated. 

Data assembly and snp calling 

 aTRAM assembled 1,095 nuclear loci from the high coverage P. emersoni 

genome library using 1,107 Pediculus humanus humanus (human body louse) reference 

loci. For 46% of the assembled loci, aTRAM assembled greater than 90% of the target 

sequence length. 71% of the loci retained greater than 50% of the target length, and all 

loci retained more than 10% of the target length (Supplementary Table 6.1). Thirty-seven 

loci were removed from the reference set based on the reciprocal-best-BLAST test, 

leaving 1,058 assembled loci as a reference set for subsequent reference-based mapping. 

Using the 1,058 target loci as references, Bowtie2 assembled an average of 1,055 

orthologous loci for each high and low coverage sample (Supplementary Table 6.1). This 

value includes loci that were both successfully assembled and successfully passed 
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through the filtering pipeline. Some assemblies were involuntarily filtered out because of 

low coverage and/or low Phred scores. In total, however, 99.7% of the target loci were 

mapped and retained for subsequent analysis (only 0.3% missing data). 

 We used aTRAM to assemble 10 protein coding mitochondrial genes, using 

median library fraction of 6.25% for the assemblies. The ATP8, ND3, and ND6 genes 

only assembled for an average of six libraries, presumably because their sequences are 

highly diverged from the reference, even when using a full library. These genes were 

excluded from future analysis. The 10 successful genes assembled for an average of 33 

ingroup libraries. 

 The GATK software called 56,232 SNPs in the P. eurysema samples after 

filtering. However, we randomly selected three independent sets of a single SNP per 

locus for STRUCTURE analyses. This resulted in sets of 899, 908, and 880 SNPs. The 

number of SNPs did not equal the number of loci because some loci did not have had any 

SNPs. 

Phylogenetic analysis 

 The concatenated alignment of nuclear loci was 1,553,983 bp in length, and 

contained 7.8% gaps or ambiguous (N) characters (i.e., missing data). PartitionFinder 

indicated the concatenated alignment should be partitioned into 681 subsets. The 

partitioned ML phylogenetic analysis in RAxML estimated a well-supported tree, with 

most edges receiving 100% bootstrap support (BS). Only nine of 33 internal edges 

received BS support <100, and only two <75 BS (Figure 6.1). The ASTRAL and 

ASTRID trees generated from individual gene trees mostly agreed with the topology 

estimated from the concatenated alignment. The ASTRAL tree was very highly 
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supported, with most edges receiving local posterior probability support of 1.0. Any well-

supported conflicts among the concatenated and coalescent trees were at short branches 

near the tips of the phylogenies (Supplementary Figures 6.1- 6.2).  

The concatenated mitochondrial alignment was 9,121 bp long. The RAxML 

analysis on this alignment estimated a generally well-supported tree (Supplementary 

Figure 6.3), with most edges receiving >75 BS support. However, the mtDNA tree was 

not as well supported as the trees based on nuclear loci, particularly at the deepest edges 

of the tree (<50% BS). Importantly, the mitochondrial and nuclear trees did not have any 

well-supported differences at deeper nodes or long branches. There were well-supported 

relationship differences at shorter edges near the tips of the phylogenies (i.e., within 

OTUs, Supplementary Figure 6.3-6.4). 

OTU analysis 

 Formal OTU analysis with the mitochondrial data indicated several cryptic 

lineages within P. eurysema. The ABGD method, based on COI pairwise distances, 

suggested seven total OTUs in the group regardless of the distance model: the two 

species from Metriopelia doves (P. emersoni and P. robbinsi) and five OTUs within P. 

eurysema. The bGMYC analysis, based on the BEAST ultrametric tree from all the 

mitochondrial data, also estimated seven total OTUs (two Metriopelia lice OTUs and five 

P. eurysema OTUs) at the 5% conspecific posterior probability cutoff. At the 95% cutoff, 

the analysis estimated seven total P. eurysema OTUs (nine total). However, the 5% cutoff 

is a more conservative approach to splitting taxa and perhaps more appropriate in this 

case.  
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Biogeographic structure 

 The Maddison-Slatkin randomization test for biogeographic structure was not 

significant across the phylogeny (P = 0.154). There were nine observed transitions on the 

tree after collapsing identical taxa, and ten median transitions from the character state 

randomizations (Supplementary Figure 6.5). In contrast, the randomization test for P. 

eurysema 3 was significant (P = 0.004), indicating the phylogeny within this clade is 

significantly structured according to biogeography (Supplementary Figure 6.6). Analyses 

using nuclear data grouped P. eurysema 3 from west of the Andes in a very distinctive 

cluster (Figures 6.1 and 6.2). One oddity in this cluster is an individual louse from 

Columbina passerina sampled from a high elevation site (>2,000 m.) in the Andes. 

Nevertheless, this is likely a “western” P. eurysema 3 louse. It may be that C. passerina 

have recently dispersed into higher elevation sites with agricultural development, as has 

been documented in other ground-dove species (Pearson, 1975). P. eurysema 3 from east 

of the Andes and Central America also formed distinct clusters. The MJ network from 

mitochondrial data showed similar biogeographic structure for P. eurysema 3, except for 

lice from C. passerina sampled from eastern South America (Figure 6.3). These clustered 

separately from other lice sampled from the same region.  

Cophylogenetic analysis 

Jane recovered three cospeciation events between ground-doves and their body 

lice: at the Metriopelia split, at the Metriopelia/Columbina split, and at the Columbina 

squammata/C. inca split (Figure 6.4; Supplementary Figure 6.7). However, the latter 

cospeciation event had an equally parsimonious placement at the split of all Columbina 

minus C. cruziana. Jane also recovered two host switches: one from the common 
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ancestor of Columbina to Uropelia, and a second from C. squammata to the ancestor of 

C. minuta, C. buckleyi, C. talpacoti, and C. passerina. Finally, Jane recovered one 

duplication event (at the base of Columbina), five losses, and six failures to diverge with 

the hosts (Supplementary Figure 6.7). The randomization test indicated the best cost was 

lower than expected (P = 0.002), suggesting the host and parasite phylogenies are overall 

significantly congruent.  

Both the ParaFit (ParaFitGlobal = 9.86e-5, P = 0.002) and PACo (m2 = 0.06, P = 

0.005) global tests indicated significant congruence between the host and parasite 

phylogenies (Table 6.1). Two links were significant from the ParaFit individual link tests 

after correction for multiple tests (α = 0.05): Metriopelia melanoptera and P. emersoni (P 

= 0.007), and Metriopelia ceciliae and P. robbinsi (P = 0.006). The ParaFitLink1 and 

ParaFitLink2 statistics gave similar p-values. The PACo jackknife test for individual link 

contribution indicated the links for sister taxa with possible cospeciation events 

(Metriopelia and the C. squammata/C. inca split) had significantly lower squared 

residuals than the other links in the group (t = -3.32, P = 0.008; Supplementary Figure 

6.8). These four associations had the lowest squared residual values. The squared residual 

values for significant ParaFitLink1 links were also significantly lower than the other links 

(t = -2.27, P = 0.045; Supplementary Figure 6.9).  

Population structure 

   Population-level analysis of P. eurysema indicated significant structure from 

both nuclear and mitochondrial data. Based on SNP data, STRUCTURE estimated 

populations that largely corresponded to the major branches in the phylogenetic trees 

(Figure 6.1, Supplementary Figures 6.1- 6.3). For all three runs from randomly sampled 
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unlinked SNPs, STRUCTURE estimated an optimal K = 3 based on the Evanno method. 

However, despite having lower delta K values, higher levels of K showed more structure 

corresponding to major branches from the phylogenetic analyses (Figure 6.5A, 

Supplementary Figure 6.10-6.11). Using all 56,232 SNPs, ADEGENET also estimated an 

optimal K = 3. The DAPC scatterplot showed clear distinction among all three clusters 

(Figure 6.5B). DAPC for P. eurysema 3 estimated K = 2, and showed distinction between 

lice from Claravis pretiosa and lice from other host species (Supplementary Figure 6.12). 

PCA plots based on 18,912 SNPs showed further population-level differentiation within 

P eurysema 3, with several distinct clusters of taxa (Figure 6.2). The MJ network of the 

mitochondrial sequences also showed several well-delimited groups within P. eurysema 

3, including some differences with the nuclear data (Figure 6.3). For example, lice from 

C. pretiosa are in a well-supported clade in the nuclear phylogenies (both concatenated 

and coalescent) and cluster together in the PCA, but these samples do not group together 

in the MJ network. 

 

DISCUSSION 

Drivers of diversification at phylogenetic and population scales 

Incorporating both phylogenetic and population perspectives provides more 

information for assessments of the diversification process (Cutter, 2013). This is 

particularly important for studies focused on parasites, organisms with diversification 

patterns that can be heavily dependent on host and external (e.g., biogeography) factors. 

Thus, diversification of parasites can potentially differ between species and population 

scales (Bell et al., 2016). In this study, we integrated phylogenetic and population-scale 
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patterns estimated using genome-wide loci and SNPs from a group of parasitic lice. For 

this endeavor, we developed and applied a novel workflow to assemble orthologous loci 

and call SNPs for use in both phylogenetic and population genetic analyses. Because we 

had shotgun genome sequencing reads available for each individual louse, we were also 

able to assemble most mitochondrial genes. Other forms of genomic-level data (e.g., 

UCEs, RADseq, anchored-hybrid enrichment) are incredibly useful, but are restricted to 

specific regions of the genome, or are more appropriate for either phylogenetic or 

population genetic analysis. Our approach allowed us to obtain multiple types of 

molecular data sets from the same raw sequence data. This could be applied beyond host-

parasite or host-symbiont systems, and be used to uncover patterns of diversification in 

any group of organism. It will be particularly useful for groups with multiple individual 

samples of a few closely related species, as we have done here with dove body lice. 

These systems that straddle the population-species boundary are ideal for exploring 

diversification at multiple time scales (Russell et al., 2007). Another strength of this 

approach is the use of aTRAM to generate reference sequences, which is useful for 

groups that lack a closely-related reference genome.  

For this study on dove body lice (Physconelloides), our results suggest that host 

and biogeographic factors can have similar or varying effects on parasite diversification 

over time, patterns that would have been obscured using a traditional approach focusing 

on only phylogenetic or only population genetic patterns. Host associations do appear to 

dictate parasite divergence patterns at both phylogenetic and population genetic scales. 

Three (50%) of the nodes within the body louse phylogeny are inferred to be cospeciation 

events, and five (of seven) louse taxa are host specific. Within species, some louse 
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population clusters also appear to be confined to a single host species. For example, all 

lice from Claravis pretiosa cluster together, regardless of sampling location, in both full 

locus (Figure 6.1) and SNP-based (Figure 6.2B) analyses. Likely, this is because body 

lice are closely tied to their hosts and are not able to easily disperse among host species. 

Patterns of host-driven divergence have been observed in other host-parasite systems at 

both species (e.g. gopher lice, Hafner et al., 1994; teleost copepods, Paterson and Poulin, 

1999; avian malarial parasites, Ricklefs and Fallon, 2002; bat mites, Brudydonckx et al., 

2009) and population scales (e.g. snail trematodes, Dybdahl and Lively, 1996; Galapagos 

hawk lice, Whiteman et al., 2007; rodent mites, Engelbrecht et al., 2016). Here we show 

patterns occurring at both scales in the same system. In addition, this pattern of 

phylogenetic congruence has been observed in broader studies of dove body lice (Clayton 

and Johnson, 2003; Sweet et al., 2016a). However, worldwide, other groups of dove body 

lice do not show phylogenetic congruence with their hosts, so there is certainly variability 

within the dove body louse system (Sweet et al., 2016b). 

 Not all population-level patterns in the body louse system exhibit congruence and 

specificity with their hosts. In several host-parasite systems, including wing lice from the 

same group of ground-dove host species, biogeography is a good predictor of 

diversification and codiversification patterns (e.g., toucan lice, Weckstei,n 2004; southern 

beech fungus, Peterson et al., 2010; rodent lice, du Toit et al., 2013; digeneans of 

freshwater fish, Martínez-Aquino et al., 2014; ground-dove wing lice, Sweet and 

Johnson, 2016). At the phylogenetic timescale in ground-dove body lice, biogeography 

does not seem to dictate diversification. In contrast, ground-dove body lice are structured 

by biogeographic region within species. The structure within P. eurysema 3 was 
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significantly associated with biogeography. Together with the patterns of host-specificity 

in P. eurysema 3 (i.e., lice from C. pretiosa as the earliest diverging lineage), this 

suggests populations of ground-dove body lice are initially structured according to 

biogeography, but over time eventually sort according to host species. A similar pattern 

of initial instability with subsequent lineage sorting has also been discussed at the 

cophylogenetic level in the fig/fig-wasp system (Cruaud et al., 2012). The discrepancy 

between phylogenetic and population patterns in our system have important implications 

for understanding parasite diversification, particularly for parasites with limited dispersal 

ability. It may be that parasites have some limited ability to disperse between sympatric 

host species, but over evolutionary time continued low dispersal and differential selection 

among host species results in host-specificity. For example, local adaptation to a given 

host species may prohibit parasites from successfully reproducing on a wide variety of 

hosts species, selecting for increased host specialization over time (Kaltz and Shykoff, 

1998; Gandon, 2002; Clayton et al., 2003; Lively et al., 2004). 

Other ecological factors, such as host species proximity or host species 

interactions, could also limit or promote diversification of parasites, as has been proposed 

in other systems (Desdevises et al., 2002; Hoberg and Brooks, 2015; Bell et al., 2016). 

The doves associated with P. eurysema 1 and 3 are known to form mixed-species 

foraging flocks (Parker et al., 1995; Piratelli and Blake, 2006). Foraging in proximity or 

sharing dust baths would provide an opportunity for lice to disperse among host species 

(Hoyle, 1938; Martin and Mullens, 2012). However, other ground-dove species with 

host-specific lice, such as M. ceciliae and M. melanoptera, also co-occur in parts of their 

ranges and do not appear to share lice. Perhaps more intimate relationships such as 
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sharing nesting sites could also allow for louse dispersal (Clayton, 1990; Johnson et al., 

2002; Clayton et al., 2016). For example, Columbina talpacoti will build their nests on 

top of old nests from other bird species (Skutch, 1956). If an individual builds a nest on 

the old nest of another ground-dove species, this could facilitate a host-switch if body lice 

are still present in the old nesting material. Finally, although body lice are not likely to 

use phoresis, it is possible that a low amount of phoresis might occur in this group. 

Physconelloides body lice from mourning doves (Zenaida macroura) have been found 

attached to hippoboscid flies (Couch, 1962). If ground-dove body lice can disperse via 

phoresy, this could explain why some louse OTUs are more generalist.  

Diversification patterns among ground-dove body lice 

 Ground-dove body lice appear to be a much more diverse group than previously 

assumed, with evidence for seven different species (three species are currently described; 

Price et al., 2003). This agrees with previous molecular phylogenetic studies of dove 

body lice, which indicated at least two additional taxa within P. eurysema using limited 

ground-dove louse representatives (Clayton and Johnson, 2003; Johnson et al., 2011b). 

Because most host species and geographic regions are represented, the diversity 

recovered in this study is likely robust to sampling. However, we cannot completely rule 

out that the host-specific louse OTUs are present on other host species, but at much lower 

prevalence. 

The phylogenetic patterns also provide insight into the origin of this louse lineage. 

Lice from the Metriopelia doves (P. robbinsi and P. emersoni) are sister to the other 

ground-dove body lice. Metriopelia doves are high-Andean species, generally found 

>2,000 m. in open Paramo and Altiplano grasslands (Gibbs et al., 2001). These birds 
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diverged from other ground-doves and began diversifying ~11-14 mya, perhaps as a 

result of rapid elevational increases in the Andes (Sweet and Johnson, 2015). However, 

Metriopelia doves are nested within the ground-dove phylogeny, and, unlike their lice, 

are not the earliest diverging lineage. The cospeciation event between the Metriopelia-

Columbina split and the base of the body louse phylogeny suggests this parasite lineage 

diverged ~11-14 mya. At the very least, this is likely a minimum age for the group. 

Subsequent diversification into other ground-dove species then occurred after their 

divergence from the Metriopelia common ancestor. However, formal divergence time 

estimation for the lice is needed to confirm these hypotheses, which is challenging given 

the lack of fossil calibration points.  

 Phylogenetic hypotheses were highly consistent among different molecular data 

sets. However, there was limited contradiction between the mtDNA and nuclear data 

within OTUs. For example, lice from C. pretiosa did not group together in the 

mitochondrial MJ network, whereas analyses with nuclear data (both full loci and SNPs) 

clustered these lice together with high support (Figures 6.1, 6.2B, and 6.3). It may be that 

the mtDNA, a single locus, has not fully sorted among populations for lice from C. 

pretiosa, whereas the signal from nuclear data has spread across >1,000 loci and can 

detect limited current gene flow between louse populations on different host species 

(Pamilo and Nei, 1988; McGuire et al., 2007; McKay and Zink, 2010). Alternatively, this 

disparity between nuclear and mtDNA data may reflect dispersal differences between 

male and female lice. Lice from C. pretiosa are not randomly arranged in the MJ 

network, but show some phylogeographic structure. Lice sampled from Central America 

and western South America, two connected biogeographic regions, group with other lice 
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from western South America (# 6, 8, and 9 in Figure 6.3). Likewise, lice from eastern 

South America group with other lice from the same region (# 5 and 7 in Figure 6.3). If 

female lice from C. pretiosa are more able to disperse than males, this could result in 

mtDNA phylogeographic structure not evident in nuclear data. 

Conclusion 

 In this study, we used full genome sequence data to show that parasite 

diversification is shaped by multiple factors that have varying effects over time. In our 

system, ground-dove body lice, host association seems to be important at both deep and 

shallow time scales, whereas biogeography only explains patterns at shallow scales. 

Central to this result is the integration of phylogenetic and population genetic approaches 

using the same underlying data source. Excluding either approach would have masked 

patterns of host specificity or phylogeographic structure. We recommend that future 

studies interested in understanding host-parasite codiversification take a similar approach. 

Additionally, the utility and flexibility of whole genome sequencing made it possible to 

obtain various types of data sets (nuclear and mitochondrial loci, SNPs) from individual 

specimens, using a novel assembly workflow. Our approach has great promise for 

addressing questions in evolutionary biology with genomic data, particularly for groups 

of organisms along the population-species boundary or which do not have a closely-

related reference genome.   
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FIGURES 

 

Figure 6.1. Evolutionary history of New World ground-dove body lice (Physconelloides) 

presented as a maximum likelihood phylogeny based on a concatenated sequence 

alignment of 1,058 nuclear genes. Bootstrap support values are indicated at each node, 

and asterisks (*) indicate 100% bootstrap support. Branch lengths, as indicated by the 

scale bar below the phylogeny, are scaled to nucleotide substitutions per site. Vertical 

lines to the right of the tip labels indicate the taxa recovered from OTU analyses. Tip 

labels are colored according to biogeographic region, as indicated by the map in the 

upper-left. 
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Figure 6.2. Population structure of Physconelloides eurysema 3 lice with Principal Component Analysis (PCA) based on 18,912 SNPs. 

Points represent individual lice, and are colored according to a) biogeographic region or b) host species. Host species codes are as 

follows: CLPRE = Claravis pretiosa, COBUC = Columbina buckleyi, COCRU = Columbina cruziana, COMIN = Columbina minuta, 

COPAS = Columbina passerina, COTAL = Columbina talpacoti.
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Figure 6.3. Population structure of Physconeloides eurysema 3 presented as a median-

joining network generated from ten mitochondrial genes. Taxa are indicated with the red 

box on the phylogeny (from the concatenated nuclear data) in the upper-right. Node size 

is proportional to the number of individuals in a haplotype. Numbers adjacent to each 

node represent individuals as indicated in Supplementary Table 6.1. Tick marks indicate 

the number of steps between haplotypes. Nodes are colored according to a) host species 

and b) biogeographic region. 
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Figure 6.4. Tanglegram comparing the evolutionary histories of small New World 

ground-doves (left) and their Physconelloides body lice (right). The host phylogeny is 

adapted from Sweet and Johnson (2015). The louse phylogeny is the species tree 

recovered from OTU analyses. Relationships with significant support (>75 bootstrap) are 

indicated with asterisks (*). Host-parasite link thickness is inversely proportional to the 

PACo jackknifed squared residuals (i.e. thicker links indicate a higher contribution to 

congruence). Blue links indicate significant ParaFitLink tests after correction (α = 0.05). 

Circles above nodes indicate cospeciation events recovered from Jane. Numbers inside 

the circles indicate corresponding speciation events. Dove silhouette from Phylopic 

(http://phylopic.org/) courtesy of Luc Viatour and Andreas Plank. 
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Figure 6.5. Population structure of Physconelloides eurysema lice from small New World 

ground-doves based on genome-wide SNPs. a) STRUCTURE plot from 908 randomly 

sampled unlinked SNPs and b) Discriminant Analysis of Principal Components (DAPC)  

plot based on 56,232 SNPs. For the STRUCTURE plot, individual lice are grouped  
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(Figure 6.5. continued) 

according to host species, and colored according to the likelihood of being in a particular  

cluster. Phylogenies to the left of the STRUCTURE plots are modified from the 

Physconelloides concatenated phylogeny, and are colored according to the clusters from 

the STRUCTURE plot. Vertical lines to the right of the phylogenies indicate taxa  

recovered from the OTU analyses. K (number of clusters) values are indicated to the right 

of the STRUCTURE plots. The asterisk (*) indicates the most optimal K value. Points on 

the DAPC plot indicate individual lice. The colors and shapes indicate clusters, in 

accordance with the phylogeny in the upper-right. The phylogeny is the same as in a). 

PCA and discriminant functions used for the DAPC are indicated in the bottom-left of b). 
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TABLES 

Table 6.1. Results for the ParaFit analysis for small New World ground-doves and their body lice Physconelloides. PF1 and PF2 are 

the statistics and P-values for the ParaFitLink1 and ParaFitLink2 tests, respectively. Numbers next to the parasite species names 

indicate potentially cryptic species recovered from OTU analyses.  

Host Parasite PF1 Statistic PF1 P-value PF2 Statistic PF2 P-value 
Claravis pretiosa Physconelloides eurysema 3 -1.39E-05 0.964 -4.368E-03 0.966 
Uropelia campestris P. eurysema 5 1.85E-05 0.014 5.790E-03 0.013 
Metriopelia melanoptera P. emersoni 2.58E-05 0.007† 8.073E-03 0.006† 
Metriopelia ceciliae P. robbinsi 2.80E-05 0.006† 8.773E-03 0.006† 
Columbina cruziana P. eurysema 3 3.43E-06 0.309 1.074E-03 0.306 
Columbina squammata P. eurysema 2 8.46E-06 0.084 2.650E-03 0.081 
Columbina inca P. eurysema 4 8.11E-06 0.080 2.541E-03 0.076 
Columbina minuta P. eurysema 1 9.08E-06 0.078 2.845E-03 0.076 
Columbina minuta P. eurysema 3 1.35E-05 0.039 4.240E-03 0.037 
Columbina buckleyi P. eurysema 3 1.34E-05 0.046 4.205E-03 0.043 
Columbina talpacoti P. eurysema 3 1.35E-05 0.042 4.235E-03 0.039 
Columbina passerina P. eurysema 1 8.23E-06 0.099 2.578E-03 0.095 
Columbina passerina P. eurysema 3 1.16E-05 0.068 3.642E-03 0.065 

† Significant after the Benjamini-Hochberg correction (α = 0.05). 
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CHAPTER 7: THE ROLE OF PARASITE DISPERSAL IN SHAPING A HOST-

PARASITE SYSTEM AT MULTIPLE EVOLUTIONARY TIMESCALES  

 

INTRODUCTION 

Parasite dispersal is a key ecological mechanism that shapes host-parasite interactions 

and can cause effects at both population (micro) and species-level (macro) scales (Price, 1980; 

McCoy et al., 1999, 2003; Poulin, 2007, 2011; Criscione, 2008; Stefka et al., 2011). Parasites 

that are able to disperse effectively often have little population structure among different host 

species or populations (Dybdahl and Lively, 1996; McCoy et al., 2005; Kochzius et al., 2009). 

Dispersal can also result in parasite lineages switching between different host species (Page and 

Charleston, 1998; Clayton et al., 2004; Hoberg and Brooks, 2008). Despite its importance, 

dispersal is not the only factor that can shape a host-parasite system. For example, host 

diversification, host ecology, and biogeography can all potentially drive host-parasite evolution 

in some systems (Weckstein, 2004; Whiteman et al., 2007; Vinarski et al., 2007; Barrett et al., 

2008). Although there are many studies focused on these topics at either the microevolutionary 

or macroevolutionary scale (Criscione et al., 2005; de Vienne et al., 2013; Cruaud and Rasplus, 

2016), few studies have examined the effects of dispersal on both micro- and macroevolutionary 

patterns simultaneously in the same host-parasite system (Huyse et al., 2005; du Toit et al., 2013; 

Bell et al., 2016). Ideally, such an approach would compare “ecological replicate” parasites; i.e., 

different lineages of parasites with similar life histories that are associated with the same group 

of hosts, but have some ecological variable (e.g., dispersal ability) that differs among the 

parasites (Weiblen and Bush, 2002; Clayton and Johnson, 2003; Marussich and Machado, 2007). 

Because hosts commonly harbor multiple types of similar parasites, there are many potential 
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examples of ecologically replicate systems, including figs and fig-wasps (Weiblen and Bush, 

2002; Marussich and Machado, 2007), parasitoid wasps (Hackett-Jones et al., 2009), avian 

malarial parasites (Ricklefs et al., 2004), and helminth worms of mammals (Bordes and Morand, 

2009). The framework can also extend beyond host-parasite relationships to systems such as 

endosymbiotic bacteria of insects (Moran and Baumann, 2000) or plant-herbivore interactions 

(Ehrlich and Raven, 1964). 

One model ecological replicate system are the wing and body lice (Insecta: Phthiraptera) 

of doves (Aves: Columbidae) (Clayton and Johnson, 2003; Johnson and Clayton, 2004; Clayton 

et al., 2016). Both louse “ecomorphs” only parasitize doves, spend their entire lifecycles on the 

host, and consume downy feathers (Nelson and Murray, 1971). However, the two ecomorphs are 

not closely related (Johnson et al., 2007; Johnson et al., 2011; Johnson et al. 2012), and they use 

different strategies for avoiding host preening. Wing lice have evolved an elongated morphology 

that allows them to insert themselves between barbs in wing and tail feathers, whereas body lice 

burrow into the downy feathers close to the host’s body to avoid being removed (Clayton et al., 

1999). Importantly, the two ecomorphs of lice also differ in their dispersal abilities. Both are 

primarily transmitted vertically (from parent to offspring) or horizontally by direct contact (e.g., 

mating) (Rothschild and Clay, 1952; Clayton and Tompkins, 1994). However, wing lice can also 

use winged hippoboscid flies to disperse between host individuals or host species, a behavior 

known as phoresy (Keirans, 1975; Harbison et al., 2008; Harbison et al., 2009). Hippoboscid 

flies are generalist blood-feeding parasites, with many individual fly species recorded from 

multiple dove genera (Maa, 1969). Multiple wing lice can grasp to a single fly with their legs and 

mandibles and can then be transported by the fly to another host individual, perhaps resulting in 

the establishment of a new louse population. Although there is at least one record of body lice 
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attached to hippoboscid flies in the wild (Couch, 1962), phoresy appears to be extremely rare in 

this ecomorph. Body lice have short legs that inhibit them from grasping to the flies. In an 

experimental study comparing the phoretic ability of wing and body lice from captive pigeons, 

no body lice were found attached to hippoboscid flies, whereas wing lice were attached to 

several flies (Harbison et al., 2011).  

The difference in dispersal ability between wing and body lice appears to be reflected in 

their cophylogenetic and population genetic patterns. Clayton and Johnson (2003) showed that 

wing lice have little cospeciation with their hosts and high levels of host switching compared to 

body lice from the same host species. Focusing within a few louse species, Johnson et al. (2002) 

used a portion of the COI mitochondrial gene to show that body lice have more population 

structure and are more host-specific than wing lice. To build on this work, an ideal approach 

would integrate phylogenetic and population genetic patterns for the same louse taxa, thus 

simultaneously providing macro- and microevolutionary perspectives of the dove louse system. 

Additionally, such an approach should consider two data sampling issues. First, a phylogenetic 

comparison should utilize comprehensive taxonomic representation from a subset of taxa. A host 

or parasite phylogeny that is missing key lineages can result in misleading cophylogenetic 

patterns (Paterson et al., 2000; Sweet et al., 2016). Similarly, phenomena such as clade-limited 

host switching can produce seemingly congruent host and parasite phylogenies at broader (e.g., 

family-wide) taxonomic scales (Sorenson et al., 2004; Jackson et al., 2008; Demastes et al., 

2012). Second, using many genetic markers, rather than a single gene or set of a few genes, 

provides more power for phylogenetic and population genetic analyses (Luikart et al., 2003; 

Delsuc et al., 2005). Whole genomic sequence data can be particularly useful, as it is possible to 

obtain markers for both levels of analysis from the same underlying data source (Cutter, 2013).   
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 Here we focus on the wing and body lice of small New World ground-doves, a 

monophyletic group of 17 known dove species distributed from the southern United States to 

southern South America (Gibbs et al., 2003; Pereira et al., 2007; Sweet and Johnson, 2015). 

There are three described species of both wing (genus Columbicola) and body lice (genus 

Physconelloides), although there are likely additional cryptic species (Price et al., 2003; Sweet 

and Johnson, 2016; Sweet et al., 2018). Both types of lice also form monophyletic groups within 

their respective genera (Johnson et al., 2007; Johnson et al., 2011), which makes interpretation of 

evolutionary history straightforward. Obtaining genomic-level data is very feasible for these lice, 

as recently published genomic studies on avian lice have established pipelines for assembling 

data appropriate for both phylogenetic and population genetic analysis (Allen et al., 2017; Boyd 

et al., 2017; Sweet et al., 2018). 

 Over macroevolutionary timescales, we focus on two types of patterns in ground-dove 

lice: phylogenetic congruence and the relative timing of divergence between species. If dispersal 

is a major driver of host-parasite evolution, then we expect body lice to show more phylogenetic 

congruence and cospeciation with their hosts than do wing lice (Brooks and McClennan, 1991; 

Clayton and Johnson, 2003). Similarly, dispersal can influence the rate at which lineages of 

parasites diverge once two host lineages have speciated. If dispersal between host species is 

highly limited, as in the case for body lice, then we would expect these louse lineages to diverge 

and speciate at the same time as host lineages (Page, 1993; Hafner and Page, 1995). However, if 

dispersal between host species is less limited, then there may be a time lag between divergence 

and speciation of host lineages compared to their associated parasite lineages (Hafner et al., 

1994; Banks and Paterson, 2005; Light and Hafner, 2007). Although this might be difficult to 

detect directly, we can predict that for an equivalent divergence event (i.e., two daughter lineages 
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of wing and body lice on sister species of hosts), wing lice may show less overall genetic 

divergence than body lice, because their divergence is more likely to lag behind that of their 

hosts (Vogwill et al., 2008). It may also be the case that host speciation strongly influences 

diversification of both parasite ecomorphs, irrespective of dispersal differences. If measures of 

phylogenetic congruence are correlated between wing and body lice from the same host species, 

this could indicate that host diversification influences wing and body lice in similar ways.    

On an ecological (microevolutionary) timescale, comparative population structure and 

genetic diversity (heterozygosity) are informative for assessing the role of dispersal in host-

parasite evolution. Parasite populations could be structured across several scales – for example 

among host species or among biogeographic regions (McCoy et al., 2001; Nieberding et al., 

2008; Stefka et al., 2011; Sweet and Johnson, 2016). Because dispersal is local, we predict that 

differences in dispersal between wing and body lice should manifest themselves as population 

structure between host species but not necessarily as structure between biogeographic regions. 

Host dispersal itself is likely to be the strongest factor allowing lice to disperse between 

biogeographic regions, because lice are intimately tied to their hosts. In this case, host dispersal 

should affect parasite dispersal in similar ways between wing and body lice. In particular, we 

predict that body lice should show more population genetic structure among host species than 

wing lice (Johnson et al., 2002), but not necessarily more population structure among 

biogeographic regions.  

Dispersal may also contribute to genetic structure between louse populations 

(infrapopulations) on different host individuals of the same host species. In this case, because 

dispersal is likely to be more limited for body lice, their infrapopulations are more likely to be 

highly inbred (Nadler, 1995). Thus, we predict that body lice will show lower levels of 
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heterozygosity, because their more limited dispersal among host individuals should lead to 

higher inbreeding. 

 In this study, we address the question of whether the impacts of dispersal differences can 

be observed at both macro- and microevolutionary timescales by comparing phylogenomic and 

population genomic patterns between wing and body lice sampled from across the diversity of 

small New World ground-doves. To estimate these patterns, we use genome sequence data from 

multiple individuals of each wing and body louse species. These data include assemblies of over 

1,000 nuclear genes and tens of thousands of single-nucleotide polymorphisms (SNPs) called 

from these same genes. The results provide important insight into how dispersal affects host-

parasite interactions, and ultimately how ecological mechanisms link to evolutionary patterns. 

 

MATERIALS AND METHODS 

Sampling 

 Samples of lice were collected from ground-doves in the field using pyrethrin powder 

dusting or fumigation methods as outlined in Clayton and Drown (2001). All collected 

specimens were immediately place in 95% ethanol and stored long-term at -80 °C. A total of 31 

wing louse (Columbicola) and 34 body louse (Physconelloides) specimens were selected for 

whole genome sequencing. These represent all described ground-dove louse species, several 

potential cryptic species, and most host species and biogeographic areas (Supplementary Table 

7.1). Each louse was then photographed as a voucher. Individual lice were then ground up in a 

1.5 mL tube, and genomic DNA (gDNA) was extracted using reagents and a modified protocol 

of the Qiagen QIAamp DNA Micro Kit (Qiagen, Valencia, CA, USA). Our modification 

extended the duration of the incubation step to 48 hours, instead of the recommended 1-3 hours. 
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The extractions were then quantified with a Qubit 2.0 Fluorometer (Invitrogen, Carlsbad, CA, 

USA) using the manufacturer’s recommended protocols and reagents.  

Library preparation and sequencing 

 Total gDNA was fragmented on a Covaris M220 Focused-ultrasonicator (Covaris, 

Woburn, MA, USA) targeting a mean fragment size of 400 nt. The fragmented gDNA of each 

specimen was then constructed into a library for paired-end Illumina whole genome shotgun 

sequencing using a Hyper Library Preparation Kit (Kapa Biosystems, Wilmington, MA, USA). 

A 10-nt barcode was adapted to each library so that up to 16 individual libraries could be pooled 

and sequenced on a single Illumina lane (two lanes in total). The libraries were sequenced with 

the HiSeq4000 v1 sequencing kit for 151 cycles on an Illumina HiSeq4000 instrument. The 

sequencing resulted in 150 bp paired-end reads in fastq files generated in bcl2fastq v2.17.1.14. 

All library preparation and sequencing was carried out at the Roy J. Carver Biotechnology 

Center (University of Illinois, Urbana, IL, USA). For wing lice, we deposited the raw reads on 

the NCBI SRA database (accession SRP116697; BioProject PRJNA400795). We obtained 

additional raw genomic read data from NCBI’s SRA database for our ingroup (SRR3161921-

SRR3161923, SRR3161930- SRR3161931) and outgroup Columbicola taxa (C. columbae: 

SRR3161917, C. gracilicapitis: SRR3161913, C. macrourae: SRR3161953, C. veigasimoni: 

SRR3161919) (Boyd et al., 2017). Raw sequence reads for 34 body lice (Physconelloides) were 

deposited previously (Sweet et al., 2018; SRP076185). 

 We ran several quality control measures on the raw Illumina data. First, we removed 

duplicate read pairs using the fastqSplitDups script (https://github.com/McIntyre-Lab/mcscript 

and https://github.com/McIntyre-Lab/mclib). We then removed the Illumina sequencing adapters 

with Fastx_clipper v0.014 from the FASTX-Toolkit (http://hannonlab.cshl.edu/fastx_toolkit). 
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Finally, we removed the first 5 nt of the 5’ ends of reads using Fastx_trimmer v0.014 and 

removed 3’ ends of reads until reaching a base with a phred score ≥28 using 

Fastq_quality_trimmer v0.014. Following quality control, we removed any reads less than 75 nt 

and analyzed the cleaned libraries with Fastqc v0.11.5 (Babraham Bioinformatics) to check for 

additional errors.  

Sequence assembly 

To assemble nuclear loci from genomic reads, we used an approach similar to the one 

detailed in Sweet et al. (2018), which maps lower coverage, multiplexed genomic data to 

reference loci from a closely related taxon. For our reference set of nuclear loci for wing lice, we 

used 1,039 exons of Columbicola drowni generated in Boyd et al. (2017) (raw data: 

SRR3161922). This data set was assembled de novo in aTRAM (Allen et al., 2015) using 

orthologous protein-coding genes from the human body louse genome (Pediculus humanus 

humanus; Kirkness et al., 2010) as a set of target sequences. We mapped our newly generated 

Columbicola reads and the reads obtained from GenBank to the C. drowni references using 

Bowtie2 (Langmead and Salzberg, 2012). We then created VCF files for each sample using 

Samtools and Bcftools (Li et al., 2009), and filtered out sites according to sequencing depth (<5 

or >150) and quality (phred scores <28) using Samtools and the Genome Analysis Toolkit v3.7 

(GATK; McKenna et al., 2010). The entire read mapping pipeline is detailed at 

https://github.com/adsweet/louse_genomes.git. For body lice, nuclear data were obtained using 

the same pipeline and software parameters, except that 1,095 loci from P. emersoni were used as 

the references for mapping. 

 In addition to the nuclear exons, we used aTRAM to assemble mitochondrial genes for 

ground-dove lice. To generate a set of target genes for wing lice, we mapped cleaned Illumina 
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reads from C. passerinae (SRA accession SRR3161930) to annotated mitochondrial protein-

coding genes of Campanulotes compar (pigeon body louse; GenBank accession AY968672) in 

Geneious v8.1.2 (Biomatter, Ltd., Auckland, NZ). Our preliminary analyses indicated the 

Campanulotes compar mitochondrial genes were too divergent from Columbicola to be useful as 

target genes in aTRAM. Based on the mapping, we identified the Columbicola mitochondrial 

genes, extracted these regions, and translated the sequences to amino acids. We used these 

protein sequences as our target set in aTRAM. We ran aTRAM for a single iteration using 

ABySS (Simpson et al., 2009) for de novo assembly. We also used one of several library 

fractions (1.5%, 4.7%, 15.6%, 50%, or 100%), and for each library chose the minimum fraction 

that had uniform coverage above 20X. Because Campanulotes compar is more closely related to 

Physconelloides, we were able to obtain mitochondrial sequences of Physconelloides that were 

assembled in aTRAM using Campanulotes compar target sequences.   

Calling SNPs in widespread lice 

 To compare population structure between wing and body lice across multiple host 

species, we focused on the most widespread (i.e., least host-specific) species of wing and body 

lice. For wing lice, we called SNPs jointly for C. passerinae with GATK following the “Best 

Practices” guide (Van der Auwera et al., 2013; https://software.broadinstitute.org/gatk/best-

practices/). We used C. drowni loci as a reference and filtered out SNP calls with QD (quality by 

depth) < 2.0, FS (Fisher strand test) > 60.0, MQ (mapping quality) < 40.0, and MQRankSum 

(mapping quality rank sum test) < -12.5. SNPs were called for body lice with the same approach 

using P. emersoni as the reference.  
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Phylogenetic estimation 

 We applied similar approaches for estimating phylogenetic relationships in both wing and 

body lice. First, we aligned each nuclear locus in MAFFT (--auto; Katoh et al., 2002), and 

removed columns with only ambiguous sequences (“N”). We concatenated all alignments using 

SequenceMatrix (Vaidya et al., 2010) and tested for optimal partitioning schemes and 

substitution models with the rcluster search in PartitionFinder v2.1.1 (Lanfear et al., 2014, 2017). 

We selected optimal partitions based on the Akaike Information Criterion (AIC; Akaike, 1974). 

From the partitioned concatenated alignment, we estimated the best likelihood tree and 250 rapid 

bootstrap replicates in RAxML v8.1.3 (Stamatakis, 2006). We also estimated phylogenies using 

coalescent-based methods, which account for discrepancies between gene and species trees due 

to Incomplete Lineage Sorting. For these analyses, we first estimated gene trees in RAxML with 

a GTR + Γ substitution model for each gene alignment. We then summarize the gene trees in 

ASTRAL v4.10.6 with local posteriori probability branch support (Mirarab and Warnow, 2015; 

Sayyari and Mirarab, 2016). 

 We also estimated mitochondrial phylogenies from the assembled mitochondrial genes. 

As with the nuclear data, we aligned the mitochondrial genes in MAFFT, tested for optimal 

partitioning and model schemes based on the AIC in PartionFinder, and estimated a phylogeny 

from the concatenated alignment with 250 rapid bootstrap replicates in RAxML. 

 We also used the mitochondrial data to estimate the number of Operational Taxonomic 

Units (OTUs). First, we used the COI alignment in the web version of the automatic barcode 

discovery method (ABGD; http://wwwabi.snv.jussieu.fr/public/abgd/abgdweb.html; Puillandre 

et al., 2012), which tests for interspecific boundaries based on the distribution of genetic 

distances from a barcode gene. We used default parameters (Pmin – 0.001, Pmax = 0.1, Steps = 
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10, Relative gap width = 1.5, Bins = 20) and three distance models (uncorrected, Jukes-Cantor, 

and Kimura) for our ABGD analysis. We also tested for OTUs using the Bayesian General 

Mixed Yule Coalescent Model (bGMYC; Reid and Carstens, 2012). Because this method 

requires ultrametric trees, we estimated trees with our concatenated mitochondrial alignment in 

BEAST v2.4.4 (Bouckaert et al., 2014) on the CIPRES Science Gateway (Miller et al., 2010). 

We set the alignment partitions and substitution models in accordance with the RAxML analysis, 

used a Yule tree prior, default substitution priors, and a strict molecular clock. We ran the 

MCMC for 50 million generations, sampling every 10,000 generations and discarding the first 

10% of MCMC samples as a burnin based on ESS values viewed in Tracer v1.5 

(http://tree.bio.ed.ac.uk/software/tracer/). We then randomly selected 100 trees from the post-

burnin distribution of trees, and used these for our bGMYC analysis. For all 100 trees, we ran 

bGMYC for 20,000, with a burnin of 10,000, thinning = 10, and a conspecific probability cutoff 

≥ 0.05.  

Cophylogenetic patterns in ground-dove lice 

   We tested for phylogenetic congruence between the putative louse species trees 

(trimmed to one representative per OTU) and the small New World ground-dove phylogeny 

from Sweet and Johnson (2015). First, we used the distance-based methods ParaFit (Legendre et 

al., 2002) and PACo (Balbuena et al., 2013). We converted the host and parasite trees to patristic 

distance matrices and ran ParaFit for 100,000 iterations in the R package APE (Paradis et al., 

2004), using the Cailliez correction for negative eigenvalues and testing for the contribution of 

individual links with both ParaFit link tests (ParaFitLink1 [PF1] and ParaFitLink2 [PF2]). We 

corrected the resulting p-values for the individual link tests with the Benjamini-Hochberg 

correction (Benjamini and Hochberg, 1995). For PACo, we used the same patristic distance 
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matrices and ran 1,000 iterations in the PACo R package (Hutchinson et al., 2017). We also used 

the jackknife approach in PACo to calculate the squared residual values for each host-parasite 

association. Second, we tested for specific “coevolutionary events” between ground-doves and 

their wing lice using the event-based method Jane v4 (Conow et al., 2010). We set generations to 

500 and population size to 1,000 for the Genetic Algorithm, and randomized the tip associations 

999 times to test for the statistical significance of our optimal score. 

 To test for a correlation between the cophylogenetic patterns of ground-dove wing and 

body lice, we compared the PACo residuals, PF1, and PF2 values associated with each host 

species. We did not include information for wing lice from Metriopelia aymara or Columbina 

picui, because there were no body lice associated with those host species. We used average 

values for host species with multiple louse associations. For all three metrics, we used the 

Spearman’s Rank Coefficient in R to test for a correlation between wing and body lice. 

Comparing divergence rates 

 Two pairs of sister species, C. drowni and C. gymnopeliae (wing lice) and P. emersoni 

and P. robbinsi (body lice), are associated with the same two host species (M. ceciliae and M. 

melanoptera), and both pairs likely co-diverged with their hosts. This implies both louse species 

pairs diverged in response to the same host speciation event, and comparing their genetic 

distances can provide an estimate of relative divergence rates between the two groups of lice. For 

each aligned nuclear gene, we calculated the uncorrected genetic distances between each species 

pair in APE. We used data from one representative of each species: C. drowni and C. 

gymnopeliae sequenced by Boyd et al. (2017) and the higher-coverage P. emersoni and P. 

robbinsi from Sweet et al. (2018). We excluded genes not present in both wing and body louse 

data sets. Based on our initial assessment of the distribution of distances, we also removed 11 
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genes with outlier distances (higher than 5%) in either wing or body lice. After these filtering 

steps, we were able to calculate distances for 1,006 genes. We also used a χ2 test to compare the 

proportion of total differences across all aligned genes between the two pairs of wing and body 

louse sister species.    

We also calculated the uncorrected distances between mitochondrial sequences in each 

species pair. Although we treated the mitochondrial data as a single locus (i.e., we calculated 

distances from concatenated gene alignments), we used only the 6 mitochondrial genes available 

for both wing and body lice. However, rather than use single representatives of each species, we 

compared distances among all samples of each species pair (3 samples of C. drowni and C. 

gymnopeliae; 4 samples of P. emersoni and P. robbinsi). 

Population genomic analysis  

 We assessed the population structure of widespread louse species using STRUCTURE, 

Discriminant Analysis of Principal Components (DAPC), and Principal Component Analysis 

(PCA). Our approach followed the analysis of the body louse P. eurysema in Sweet et al. (2018). 

For STRUCTURE analyses we randomly selected one SNP per assembled gene, which ensures 

that individual SNPs are unlinked. For wing lice, we ran STRUCTURE 20 times on these subsets 

of SNPs with 50,000 MCMC iterations and 25,000 burnin iterations for K = 2-8. We then used 

the ΔK method (Evanno et al., 2005) in STRUCTURE Harvester v0.6.94 (Earl and VonHoldt, 

2012) to determine the optimal number of clusters. We summarized all STRUCTURE runs in 

CLUMPP v1.1.2 (Jakobsson and Rosenberg, 2007) and visualized the results by constructing 

plots with distruct v1.1 (Rosenberg 2004). We also ran STRUCTURE analyses for two possible 

cryptic wing louse taxa (C. passerinae 1 and C. passerinae 2) identified in previous phylogenetic 

studies of the genus (Johnson et al., 2007; Sweet et al., 2016). We once again randomly selected 
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SNPs and ran STRUCTURE as detailed above. We performed DAPC in the R package 

ADEGENET (Jombart, 2008) using all SNPs for C. passerinae. For PCA we subsampled SNPs 

for the cryptic taxa C. passerinae 1 and C. passerinae 2 using vcftools v0.1.14 (Danacek et al., 

2011) and analyzed them separately in ADEGENET. 

 Heterozygosity can be a useful measure of host specificity and the effect of ecological 

dynamics (e.g., dispersal) on parasite populations. We estimated heterozygosity for wing and 

body louse individuals using two approaches. First, we estimated the scaled population mutation 

rate (θ), an indicator of heterozygosity, for individuals using mlRho v2.9, which uses a 

maximum likelihood approach to estimate population parameters for diploid individuals 

(Haubold et al, 2010). We converted pileup files generated from Samtools to “profile” files and 

formatted these for mlRho using the auxiliary software for the program (available at 

http://guanine.evolbio.mpg.de/mlRho/). For each individual, we ran mlRho with maximum 

distance (-M) set to 0. Second, we calculated raw heterozygosity for individuals by dividing the 

number of heterozygous sites by the number of total sites. 

 

RESULTS 

Sequencing and assembly 

 Paired-end Illumina sequencing of 31 Columbicola specimens yielded an average ~44.9 

million raw reads per specimen (Supplementary Table 7.1). After cleanup steps, there were on 

average ~33.4 million reads per specimen, which translates to an average predicted sequencing 

depth of ~25X per specimen (based on a 200 Mbp genome size). Including the 9 additional 

samples from GenBank (5 outgroup taxa and 4 previously sequenced ingroup samples), an 

average of 1,036 genes per library mapped against the C. drowni reference (1,039 genes 
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targeted). For body lice, we obtained an average of 1,055 genes per library mapped against the P. 

emersoni reference. 

For wing lice, we assembled 7 mitochondrial protein-coding genes for most samples 

(CO1, CO2, CO3, Cytb, ND1, ND3, and ND5), using an average library fraction of 57.1%. The 

other targeted mitochondrial protein-coding genes (ATP6, ATP8, ND2, ND4, ND4L, and ND6) 

assembled for none or only a few samples, and so we excluded those genes from downstream 

analyses. For the 7 “successful” genes, aTRAM assembled data for all 40 samples in all but one 

gene (ND5), which assembled for 38 samples. By comparison, we obtained 10 body louse 

mitochondrial genes (all but ATP8, ND3, and ND6) assembled with aTRAM using an average 

library fraction of 15.7%. 

The GATK pipeline called 25,952 SNPs for C. passerinae after filtering. This included 

15,225 SNPs for C. passerinae 1 and 14,456 SNPs for C. passerinae 2. Selecting one random 

SNP per gene for STRUCTURE analyses resulted in 773 SNPs for C. passerinae, 635 SNPs for 

C. passerinae 1, and 636 SNPs for C. passerinae 2. We obtained 56,232 SNPs from P. 

eurysema, including 880-908 SNPs for STRUCTURE. 

Phylogenetic analysis 

 The concatenated nuclear alignment for wing lice was 1,104,066 bp long, 3.8% of which 

consisted of gaps or ambiguous characters (missing data). The best partitioning scheme of the 

concatenated alignment estimated in PartitionFinder consisted of 345 subsets. The resulting 

phylogeny from RAxML was very well supported. All OTUs received 100% bootstrap (BS) 

support, and many of the branches within OTUs received high support (>75 BS). The species-

level relationships agreed with other phylogenetic assessments of this group (Johnson et al., 

2007; Sweet and Johnson, 2016). Columbicola altamimiae (ex Metriopelia aymara) was sister to 



 230 

the rest of the ingroup, and C. gymnopeliae (ex M. ceciliae) and C. drowni (ex M. melanoptera) 

were sister to C. passerinae (Figure 7.1, Supplementary Figure 7.1). The coalescent phylogenies 

estimated from individual gene trees in ASTRAL were also well supported and largely agreed 

with the concatenated phylogeny (Supplementary Figures 7.2). In the ASTRAL phylogeny, all 

species-level relationships received 100% local posterior probability support. Finally, the 

concatenated mitochondrial alignment was 5,535 bp long and contained 13.4% missing data. The 

resulting mt phylogeny also exhibited well-supported species relationships in agreement with the 

nuclear phylogenies (Supplementary Figure 7.3). The only topological differences among the 

concatenated, coalescent, and mitochondrial phylogenies were all within species. Concatenated 

and coalescent phylogenetic estimates of body lice, based on 1,553,983 nuclear bp and 9,121 

mitochondrial bp, also produced consistent, well-supported hypotheses. Physconelloides 

emersoni and P. robbinsi were recovered as sister to P. eurysema. 

 The OTU assessments indicated there are five ingroup species of wing lice. In the ABGD 

analysis based on the COI alignment, all distances models supported five distinct taxa. Likewise, 

the bGMYC analysis based on 100 mitochondrial trees sampled from a posterior distribution 

supported five taxa at the 0.05 conspecific cutoff. The supported taxa include the three species 

that parasitize Metriopelia doves (C. altamimiae, C. drowni, and C. gymnopeliae) and two 

species within C. passerinae (“C. passerinae 1” and “C. passerinae 2”). The presence of two 

possible cryptic species within C. passerinae supports the results of previous work (Johnson et 

al., 2007). By comparison, assessments of body lice recovered 5 cryptic OTUs within P. 

eurysema (7 total OTUs). 
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Cophylogenetic analysis 

 Both ParaFit (ParaFitGlobal = 1.97, P = 0.005) and PACo (m2 = 0.078, P = 0.003) 

indicated the ground-dove and wing louse phylogenies were congruent overall. However, none 

of the individual links were significant in the ParaFit test (Supplementary Table 7.2). The Jane 

reconciliation recovered a single cospeciation event between ground-doves and their wing lice 

(between M. melanoptera/M. ceceiliae and their lice), along with 2 duplications, no host 

switches, 10 losses, and 8 failures to diverge (Figure 7.1, Supplementary Figure 7.4). This least-

costly solution was significantly lower than with randomized associations (observed cost = 27, 

mean randomized cost = 35.42, P = 0.03). Ground-doves and their body lice also had overall 

congruent phylogenies, but there were more cospeciation events (3) and significant individual 

associations (2) than in the wing louse system. 

Comparisons of cophylogenetic analyses in ground-dove wing and body lice produced 

varied results. When only considering host species present in both data sets (the wing louse data 

set includes two more host species than the body louse data set), PACo residual values between 

wing and body louse links were not significantly different (Mann-Whitney U = 57, P = 0.847; 

Table 7.1), but they were positively correlated (ρ = 0.71, P = 0.019; Figure 7.2). Notably, lice 

from Metriopelia had low residual values in both wing and body lice, whereas lice from Claravis 

pretiosa had high residual values in both groups of lice. Lower residuals indicate a greater 

contribution to phylogenetic congruence. Conversely, PF1 (ρ = 0.45, P = 0.17; Supplementary 

Figure 7.5A) and PF2 (ρ = 0.59, P = 0.057; Supplementary Figure 7.5B) values were not 

correlated between wing and body louse links. However, body louse links had significantly 

higher PF1 and PF2 values than wing louse links (PF1: Mann-Whitney U = 12, P = 0.001; PF2: 

Mann-Whitney U = 11, P-value = 0.001; Table 7.1). Contrary to PACo residuals, higher PF1 and 
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PF2 values indicate a greater contribution to overall congruence between host and parasite 

phylogenies. 

Comparative genetic distances between wing and body lice 

 Uncorrected distance values from the 1,007 nuclear genes were higher for P. emersoni 

and P. robbinsi (body lice; median = 0.007) than for C. drowni and C. gymnopeliae (wing lice; 

median = 0.005) (Mann-Whitney U = 1537100, P < 0.001) (Figure 7.3A). The body lice also had 

a higher proportion (0.008) of differences across all genes compared to the wing lice (0.006) (χ2 

= 249.49, P < 0.001). The opposite pattern was true of the mitochondrial distances: wing lice 

(median = 0.173) had higher distances than body lice (median = 0.146) (Mann-Whitney U = 0, P 

< 0.001; Figure 7.3B). 

Population genomic patterns 

 STRUCTURE and DAPC analyses for the wing louse C. passerinae indicated K = 2 as 

the optimal number of clusters. The patterns of these two subsets correspond with the two OTUs 

recovered from ABGD and bGMYC (Supplementary Figure 7.6). Further STRUCTURE analysis 

on the two OTUs recovered an optimal K = 2 for C. passerinae 1 and K = 5 for C. passerinae 2. 

However, neither of these results suggested significant patterns of structure within these two 

OTUs (Supplementary Figure 7.7). DAPC indicated there are two clusters within C. passerinae 1 

(Supplementary Figure 7.8). These patterns roughly correspond to biogeographic areas, which is 

further highlighted in the PCA (Figure 7.4A). DAPC did not recover any structure in C. 

passerinae 2, and although the PCA indicated there is some structure in the group, there are no 

clear patterns according to host species or biogeography as in other ground-dove louse taxa 

(Figure 7.4B). By comparison, the body louse species P. eurysema had an optimal K = 3, but 
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with more structure at higher values of K. Within the widespread OTU P. eurysema 3, some lice 

clustered according to host species and others according to biogeography (Figure 7.4C). 

 In assessments of heterozygosity in wing and body lice, estimates of raw heterozygosity 

(ratio of heterozygous sites to total sites) and θ (estimated from mlRho) were very comparable 

(Supplementary Table 7.3-7.4). Therefore, comparative tests using the two metrics gave similar 

results, and here we will report the results from the θ metric. Overall, wing lice had higher θ 

values than body lice (Mann-Whitney U = 275.5, P < 0.001; inset of Figure 7.5). However, this 

pattern is driven by differences between specialist lice (i.e., lice that are only associated with a 

single host species). Wing and body louse specialists have significantly different θ (Mann-

Whitney U = 0, P < 0.001), whereas wing and body louse generalists have θ values that are not 

significantly different (Mann-Whitney U = 235, P = 0.220; Figure 7.5). Separately, wing louse 

specialists had higher θ than wing louse generalists (Mann-Whitney U = 20, P < 0.001), whereas 

the opposite pattern was apparent in body lice; body louse generalists had higher θ than body 

louse specialists (Mann-Whitney U = 211.5, P = 0.004). 

 

DISCUSSION 

 Phylogenomic and population genomic comparisons of “ecological replicate” lice from 

ground-doves indicate that dispersal is a major force in shaping both micro- and 

macroevolutionary patterns in these parasites, providing a clear link between ecological 

mechanism and evolutionary patterns. As we predicted, wing lice, which have higher dispersal 

capability by using phoresis, showed less evidence of cospeciation with ground-doves and lower 

host-specificity than did body lice, which do not use phoresis. Wing lice also did not show any 

obvious population structure according to host species, whereas some body lice did show this 
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pattern. Finally, the most widespread wing louse species (C. passerinae) overall had less 

population structure than the most widespread body louse species (P. eurysema). Taken together, 

these findings suggest that parasite dispersal can be the primary driving force in host-parasite 

coevolution. Lice that cannot use hippoboscid flies for dispersal (i.e., body lice) can become 

isolated on a particular host species, leading to rapid population divergence and ultimately 

cospeciation with the host (Clayton and Johnson, 2003; Harbison et al., 2011). 

Nevertheless, dispersal alone cannot account for all cophylogenetic patterns. In ground-

doves, dispersal and host diversification interact to shape host-parasite interactions. Both wing 

and body louse phylogenies were significantly congruent with the host phylogeny, and both had 

at least one reconstructed cospeciation event. Although the lice can disperse to other host species 

– especially wing lice – both types of lice still have a strong association with the hosts and 

display some patterns of host-specificity. Lice cannot survive for long off the host, and they 

spend their entire lifecycle on the host (Marshall, 1981; Tompkins and Clayton, 1999). In theory, 

this type of host-parasite relationship should result in at least some phylogenetic congruence 

(Fahrenholtz, 1916; Eichler, 1948), which is what we observe here. It is also noteworthy that 

measures of congruence for individual host-parasite associations were positively correlated 

between wing and body lice (Figure 7.2). This further suggests host species are a key factor in 

promoting phylogenetic congruence, regardless of ecological differences between the two types 

of lice. Of course, neither louse system shows perfect phylogenetic congruence with hosts, and 

there is considerable variation between the two groups of lice. However, lice associated with 

Metriopelia ground-doves stand out as having consistent patterns of congruence. Both wing and 

body lice have a cospeciation event with these birds, and both are host-specific. Ecological 

barriers – notably the geographical and altitudinal differences among different species of 
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Metriopelia and between Metriopelia and lowland ground-dove species – could inhibit host 

switching and over time lead to phylogenetic congruence in both types of lice. 

We also predicted that for shared divergence events, wing lice may exhibit delayed 

divergence, as compared to body lice, because they can more readily disperse among host 

species during the early stages of their divergence. Because they cannot effectively use 

hippoboscid flies for dispersal, body louse populations are expected to become isolated rapidly 

among diverging host lineages, whereas wing lice would be better able to retain some level of 

gene flow after an initial split. We therefore expected to see a higher genetic divergence between 

body louse species pairs compared to a pair of wing louse species that diverged with the same 

pair of host species. In comparison between the shared cospeciation event among Metriopelia 

doves and wing and body lice (Figure 7.1), this is exactly the pattern we see in the nuclear genes, 

with body lice showing more genetic divergence than wing lice across all loci. Surprisingly, the 

mitochondrial data show the opposite pattern; wing lice have a higher divergence between the 

same pair of host taxa than do body lice. This pattern could be related to the different 

architectures of the mitochondrial genomes. Body lice have a single mitochondrial chromosome, 

whereas wing lice likely have several mitochondrial “mini-chromosomes” (Covacin et al., 2006; 

Cameron et al., 2011). This uncommon architecture in wing louse mitochondrial genomes might 

enable the lice to withstand higher mutation rates in the mitochondria (S. Cameron, pers. 

comm.). Alternatively, the mini-chromosomes may actually cause increases in mutation rates, 

because of increased speed or frequency of replication. It could also be that the mutation rate 

differs for nuclear loci in the opposite direction, but there would be no known mechanism for 

this. In either case, comparisons of relative nuclear and mitochondrial divergence rates across 

different groups of lice appears to be a potentially rich field for further investigation. 
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 Like host speciation, biogeography also plays an important role in shaping the 

phylogenetic and population divergence outcomes between lice and ground-doves, although it 

appears to affect wing and body lice differently. Wing lice show biogeographic structure at the 

phylogenetic level, but do not exhibit a similar structure within species. Conversely, body lice do 

not have biogeographic structure at the phylogenetic level, but they do within a widespread 

species (see also Sweet et al, 2018), a pattern that suggests body louse population structure can 

be shaped by biogeography, but the lineages sort according to host species over time. The 

underlying mechanism driving these patterns could still be dispersal differences (Weckstein, 

2004). Because wing lice can more readily switch among sympatric host species, speciation may 

thus be driven by geographic events rather than host speciation. However, it is also possible that 

host and/or hippoboscid fly dispersal is responsible for the biogeographic patterns. Further 

phylogeographic analysis of lice, flies, and doves is needed to rigorously address these 

hypotheses. 

 Finally, dispersal also appears to have consequences at the population level, particularly 

as it relates to genetic diversity and inbreeding. Measures of heterozygosity in wing and body 

lice generally reflect the difference in dispersal ability. Overall, wing lice had higher levels of 

heterozygosity than body lice, which suggests the wing lice are more outbred. The ability of 

wing lice to disperse between different host individuals provides an opportunity for multiple 

populations to maintain gene flow. Because body lice have more limited opportunities for 

dispersal, they can become isolated on a host population or individual, thus leading to lower 

heterozygosity and more inbred louse populations (Nadler, 1995). 

However, when examining patterns in heterozygosity in more detail, it is apparent that 

the overall pattern is driven by differences in heterozygosity for host specialists (i.e., species of 
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lice associated with a single host species). Whereas wing louse specialists had much higher 

heterozygosity than body louse specialists, heterozygosity levels of wing and body louse 

generalists were not significantly different. Not all body lice are strictly host-specific (i.e., there 

are some body louse species associated with multiple host species), and these body louse species 

appear to have gene flow on the same magnitude as some wing louse species, suggesting that 

body lice can disperse through modes other than phoresis. Many of the hosts parasitized by 

generalist body lice have overlapping geographic ranges and form mixed foraging flocks, so it is 

possible body lice are transferred through host contact or proximity (e.g., direct contact, shared 

dust baths, shared nest sites) (Clayton, 1991; Clayton and Tompkins, 1994; Clayton et al., 2016). 

Because wing and body lice generalists have similar levels of heterozygosity, perhaps 

interspecific dispersal via host contact occurs with similar frequency in both types of lice. 

A more puzzling result is the higher heterozygosity of specialist wing lice compared to 

generalist wing lice (Barrett et al., 2008). This pattern may exist because wing lice are more able 

to disperse among individuals of a single host species than they are among multiple host species. 

In cases where multiple host species co-occur, it may be that overall dispersal rate in wing lice is 

lower than in cases where a single host species occurs alone. Another similar possibility is 

related to the number of new louse infrapopulations founded by phoresis versus those founded by 

parent-offspring transmission. Infestation prevalence of lice on doves (i.e., the fraction of host 

individuals with parasites) is often much less than 50%, suggesting there are many opportunities 

for founding of new infrapopulations (i.e., establishment of a louse population on an individual 

bird that previously did not have lice) (Price et al., 2003; Clayton et al., 2004). In the case of host 

specialists, a high proportion of the new infrapopulations would be founded by direct contact 

between male and female birds or through parent-offspring transmission at the nest. These 
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transmission (dispersal) events would often involve greater numbers of founding individual lice 

than would those founder events initiated through phoresis, which typically involve a very small 

number of lice (Harbison et al., 2011). For host generalist wing lice, there would likely be many 

founder events originating from phoresis, resulting in more population bottlenecks and thus 

leading to lower heterozygosity compared to host specialists. 

Additional evidence for these explanations comes from examining the population genetic 

variation of the lice on Metriopelia doves, the most geographically isolated of all of the ground 

doves. All Metriopelia doves live at high elevations (usually >2,000 m.) in the Andes and are 

well-separated from closely related lowland ground-dove species (Gibbs et al., 2003). Some 

Metriopelia dove species are also separated from one another, by either geographical or 

altitudinal differences (e.g., some species are at higher elevations). The lice on these birds have 

large differences in estimates of θ, with wing lice having much larger values than body lice. It 

could be that without other host species in close proximity, wing lice avoid inbreeding by having 

a relatively high dispersal rate among conspecific host individuals, as compared to a mixed flock 

situation where some dispersal is within and some is between host species. 

Variation in host population size could explain the differences in heterozygosity between 

wing and body louse specialists, if the pattern of specialization varies between the two groups 

(Hesse and Buckling, 2016). If wing louse specialists are associated with dove species with high 

population size, whereas body lice are associated with host with relatively small populations, 

then higher heterozygosity could be maintained in wing lice as compared to body lice. However, 

some wing and body louse specialists share two host species (Metriopelia melanoptera and M. 

ceciliae) in common, so differences in host population size could not be a factor in this case. 

Overall heterozygosity could also be a reflection of louse population sizes (Nei et al., 1975). 
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Wing lice are often more prevalent and have higher abundance than body lice, which could 

explain the observed patterns of heterozygosity (Harbison et al., 2011; Clayton et al., 2016). 

However, wing and body louse generalists have similar estimates of heterozygosity, and any 

relative differences in population size should have a similar effect on the heterozygosity of those 

taxa. It also seems plausible that generalist lice should have higher heterozygosity than specialist 

lice just because they could have higher overall population sizes by occurring on more host 

species. Indeed, in body lice, generalists have significantly higher heterozygosity than 

specialists. However, wing lice show the opposite pattern: specialists have significantly higher 

heterozygosity than generalists, so overall population size does not appear to be the most likely 

explanation for the variation in heterozygosity among specialist and generalist wing and body 

lice. 

 In conclusion, this study highlights the importance of an ecological process (dispersal) in 

shaping host-parasite micro- and macro-evolutionary patterns. By comparing two lineages of 

parasites that have different dispersal abilities but are associated with the same group of hosts, 

we were able to demonstrate that the lice with greater dispersal ability (wing lice) had less 

cophylogenetic congruence and population structure than the more dispersal-limited lice (body 

lice). We also show that other measures of population and evolutionary patterns, heterozygosity 

and genetic divergence, provide evidence for the importance of these dispersal differences in 

shaping the outcomes of these interactions. However, we also show that entirely independent 

factors, in particular biogeography and host diversification, can influence the pattern in these 

ground-dove lice. Thus, more generally, host-parasite systems are likely shaped by multiple 

factors, but in this system and others like it, dispersal ability can be a major predictor. 
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FIGURES 

 

Figure 7.1. Tanglegrams comparing the phylogeny of New World ground-doves to the phylogenies of their A) body lice 

(Physconelloides) and B) wing lice (Columbicola). The ground-dove phylogeny is to the left and the louse phylogenies are to the right. 

The wing louse phylogeny is from this study, the body louse phylogeny is adapted from Sweet et al. (2018), and the ground-dove 

phylogeny is adapted from Sweet and Johnson (2015). Blue lines between the phylogenies indicate associated taxa. Asterisks indicate 

well-supported branches (>75% bootstrap support). In the louse phylogenies, all relationships have 100% bootstrap support. Circles 

over nodes indicate cospeciation events recovered from Jane4 reconciliation analyses. 

Claravis pretiosa

Metriopelia melanoptera

Metriopelia ceciliae

Columbina cruziana

Columbina passerina

Columbina buckleyi

Columbina talpacoti

Columbina minuta

Columbina squammata

Columbina inca

Uropelia campestris

P. emersoni

P. robbinsi

P. eurysema 3

P. eurysema 1

P. eurysema 2

P. eurysema 4

P. eurysema 5

*

*

*

*

*

*

*

*
*

*

*

*

*

C. gymnopeliae

C. altamimiae

C. passerinae 1

C. drowni

C. passerinae 2

Uropelia campestris

Columbina picui

Metriopelia ceciliae

Columbina minuta

Columbina passerina

Columbina talpacoti

Columbina cruziana

Metriopelia melanoptera

Columbina buckleyi

Columbina squammata

Claravis pretiosa

Metriopelia aymara

Columbina inca

*

*

*

*

*

*

*

*
*

*

*

*

*

A) B)



 241 

 

Figure 7.2. Correlation of New World ground-dove wing and body louse residuals from a PACo 

analysis. Red points indicate host species. For hosts with multiple wing or body louse 

associations, the points represent mean residual values. A regression line is provided to indicate 

trend.  
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Figure 7.3. Box plots of uncorrected genetic distances between lice from Metriopelia melanoptera and lice from M. ceciliae. For both 

wing and body lice, the distribution of nuclear distances (A) are comparisons of 1,006 genes from two individuals. The mitochondrial 

distances (B) were calculated from 5 genes comparing 3 wing louse and 4 body louse individuals.
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Figure 7.4. PCA plots from SNP data of the ground-dove louse taxa A) Columbicola passerinae 

1, B) C. passerinae 2, and C) Physconelloides eurysema 3 (adapted from Sweet et al., 2018). The 

points represent individual lice; they are colored according to biogeographic regions (see inset 

map) and shaped according to host species. The host species key shows the first two letters of the 

genus and first three letters of the species (e.g., Coinc = Columbina inca).  
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Figure 7.5. Box plots of θ estimated from individual New World ground-dove wing and body 

louse genomes. The inset plot (bottom right) shows the overall values of θ for wing (blue) and 

body (red) lice. The main figure shows the values of generalist (associated with multiple host 

species) and specialist (associated with a single host species) lice. Significantly different 

distributions are indicated with asterisks. 
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TABLES 

Table 7.1. Comparison of cophylogenetic measures for New World ground-dove wing and body lice. Included are the residuals from 

PACo, and the ParaFitLink1 and ParaFitLink2 statistics from ParaFit. Average values are reported for host species with multiple wing 

or body louse associations. 

Host Wing residuals Body residuals Wing PF1 Wing PF2 Body PF1 Body PF2 

Claravis pretiosa 0.138 0.147 -1.33E-06 -4.05E-04 -1.39E-05 -4.37E-03 

Columbina buckleyi 0.070 0.062 1.17E-06 3.57E-04 1.34E-05 4.21E-03 

Columbina cruziana 0.069 0.075 3.21E-07 9.78E-05 3.43E-06 1.07E-03 

Columbina inca 0.050 0.032 1.57E-06 4.78E-04 8.11E-06 2.54E-03 

Columbina minuta 0.046 0.061 1.81E-06 5.51E-04 1.13E-05 3.54E-03 

Columbina passerina 0.039 0.057 1.61E-06 4.90E-04 9.92E-06 3.11E-03 

Columbina squammata 0.049 0.034 1.56E-06 4.75E-04 8.46E-06 2.65E-03 

Columbina talpacoti 0.058 0.062 1.49E-06 4.54E-04 1.35E-05 4.23E-03 

Metriopelia ceciliae 0.014 0.042 3.49E-06 1.06E-03 2.80E-05 8.77E-03 

Metriopelia melanoptera 0.019 0.046 2.91E-06 8.88E-04 2.58E-05 8.07E-03 

Uropelia campestris 0.149 0.066 -2.04E-06 -6.22E-04 1.85E-05 5.79E-03 
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APPENDIX A: SUPPLEMENTARY FIGURES 

 
Supplementary Figures for Chapter 2 

 

Supplementary Figure 2.1. Maximum likelihood phylogeny of A) doves, B) dove wing lice, and 

C) dove body lice. All phylogenies were estimated from 500 boostrap (BS) replicates in RAxML 

v7.0.4 (Stamatakis, 2006). Asterisks (*) indicate BS values ≥70. Scale bars indicate nucleotide 

substitutions per site. 
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Supplementary Figure 2.1. Continued 

0.4

C. clayae ex .Treron waalia

Oxylipeurus chiniri ex. Ortalis vetula

C. guimaraesi ex. Chalcophaps stephani

C. columbae 1 ex. Columba livia

C. gymnopeliae ex. Metriopelia cecilae

C. sp. ex. Petrophassa albipennis

C. passerinae 1 ex. Columbina picui

C. drowni ex. Metriopelia melanoptera

C. passerinae 1 ex. Uropelia campestris

C. gracilicapitis ex. Leptotila verreauxi
C. gracilicapitis ex. Leptotila plumbeiceps

C. angustus ex. Phaps chalcoptera

C. mjoebergi 1 ex. Geopelia cuneata

C. gracilicapitis ex. Leptotila jamaicensis

C. exilicornis 3 ex. Macropygia ruficeps

C. triangularis ex. Zenaida auriculata

C. extinctus ex. Patagioenas fasciata
C. adamsi ex. Patagioenas speciosa

C. sp. ex. Geopelia placida

C. tasmaniensis ex. Phaps elegans

C. rodmani ex. Geopelia humeralis

C. meinertzhageni ex. Streptopelia semitorquata

C. claytoni ex. Ducula rufigaster

C. guimaraesi ex. Chalcophaps indica

C. therseae ex. Streptopelia vinacea

C. adamsi ex. Patagioenas plumbea

C. macrourae 1 ex. Leptotila verreauxi

C. baculoides ex. Zenaida macroura

C. smithae ex. Turtur brehmeri

C. passerinae 1 ex. Columbina inca

C. bacillus ex. Strepopelia decaocto

C. passerinae 2 ex. Columbina cruziana
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C. macrourae 2 ex. Zenaida asiatica
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C. harbisoni ex. Phaps histrionica
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Supplementary Figure 2.1. Continued. 
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Physconelloides sp ex. Uropelia campestris
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Figure S1.  Maximum likelihood phylogeny of A) doves, B) dove wing lice, and C) dove body lice.  All 
phylogenies were estimated from 500 bootstrap (BS) replicates in RAxML v7.0.4 (Stamatakis, 2006).  Asterisks 
(*) indicate BS values ≥70.  Scale bars indicate nucleotide substitutions per site. 
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Supplementary Figures for Chapter 3 
 

 
 

Supplementary Figure 3.1. Gene trees for phabine pigeons and doves estimated in RAxML for 

NADH dehydrogenase subunit 2 gene (ND2), mitochondrial cytochrome oxidase subunit 1 gene 

(Cox1), and gene for nuclear beta-fibrinogen intron 7 (FIB7). Bootstrap values ≥50 are indicated 

before nodes. Branch lengths are in nucleotide substitutions per site. 
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Supplementary Figure 3.2. Gene trees for phabine wing lice estimated in RAxML for 12S rRNA 

gene (12S), gene for elongation factor 1α (EF-1α), and mitochondrial cytochrome oxidase 

subunit 1 gene (Cox1). Bootstrap values ≥50 are indicated before nodes. Branch lengths are in 

nucleotide substitutions per site.  
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Supplementary Figure 3.3. Gene trees for phabine body lice estimated in RAxML for 16S rRNA 

gene (16S), gene for elongation factor 1α (EF-1α), and mitochondrial cytochrome oxidase 

subunit 1 gene (Cox1). Bootstrap values ≥50 are indicated before nodes. Branch lengths are in 

nucleotide substitutions per site. 
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Supplementary Figures for Chapter 5 

 

Supplementary Figure 5.1. Results from the Maddison-Slatkin procedure testing for significant 

biogeographic structure within the ground-dove Columbicola phylogeny. Character states on the 

phylogeny are colored according to host biogeography. The histogram indicates the number of 

character state transitions from 999 randomizations across the Columbicola phylogeny. The 

observed number of transitions is indicated with a red arrow. 
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Supplementary Figures for Chapter 6 

 

 
Supplementary Figure 6.1. ASTRAL phylogeny from gene trees of body lice from small New 

World ground-doves. Vertical lines to the right of the phylogeny indicate taxa recovered from 

OTU analyses. Local posterior probabilities are indicated at each node. 
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Supplementary Figure 6.2. ASTRID cladogram from gene trees of body lice from small New 

World ground-doves. Vertical lines to the right of the phylogeny indicate taxa recovered from 

OTU analyses. 
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Supplementary Figure 6.3. Maximum likelihood phylogeny from mitochondrial sequence data of 

body lice from small New World ground-doves. Bootstrap support values >50% are indicated at 

each node. Scale bar indicates nucleotide substitutions per site. Vertical lines to the right of the 

phylogeny indicate taxa recovered from OTU analyses. 
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Supplementary Figure 6.4. Summary of phylogenetic relationships among Physconelloides lice 

from small New World ground-doves. This is a strict consensus tree of 50% majority-rule 

consensus phylogenies from the concatenated, gene tree, and mitochondrial data sets for the lice. 

Vertical lines to the right of the tip labels indicate the taxa recovered from OTU analyses.  
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Supplementary Figure 6.5. Biogeographic states and Maddison-Slatkin randomization results of 

Physconelloides lice from small New World ground-doves. Tips are colored according to the 

map. The phylogeny is from the concatenated nuclear phylogeny, with identical tips collapsed. 

Individuals were considered identical if they were separated by short branch lengths, and were 

from the same host species and geographic region. The red line indicates the observed number of 

character state transitions. 
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Supplementary Figure 6.6. Biogeographic states and Maddison-Slatkin randomization results of 

Physconelloides eurysema 3 lice from small New World ground-doves. Tips are colored 

according to the map. The phylogeny is from the concatenated nuclear phylogeny. The red line 

indicates the observed number of character state transitions. 
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Supplementary Figure 6.7. Reconciliation of phylogenetic trees of small New World ground-doves and their parasitic body lice. 

Results are an optimal solution from Jane4, an event-based cophylogenetic method. The parasite tree is represented with blue lines, 

and the host tree with black lines. Coevolutionary “events” are represented on the figure as indicated in the Solution Key. Red circles 

indicate no equally optimal solution exits, whereas yellow circles indicate at least one other equally optimal solution exists. 
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Supplementary Figure 6.8. Box-and-whisker plot of jackknifed Procrustes squared 

residuals from individual links between small New World ground-doves and their 

Physconelloides body lice. Lower residual values suggest a greater contribution to 

phylogenetic congruence. Links associated with cospeciation events recovered from 

event-based analysis are represented by the left box (light blue). All other links are 

represented by the left box (dark blue). The two sets of links are significantly different (t 

= -3.32, P = 0.008). 
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Supplementary Figure 6.9. Box-and-whisker plot of jackknifed Procrustes squared 

residuals from individual links between small New World ground-doves and their 

Physconelloides body lice. Lower residual values suggest a greater contribution to 

phylogenetic congruence. Links that had significant ParaFitLink1 statistics are 

represented by the left box (light blue). All other links are represented by the left box 

(dark blue). The two sets of links are significantly different (t = -2.27, P = 0.045).
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Supplementary Figure 6.10. STRUCTURE plot from 889 randomly sampled unlinked 

SNPs called for Physconelloides body lice from small New World ground-doves. 

Individual lice are grouped according to host species, and colored according to the 

likelihood of being in a particular cluster. Phylogenies to the left of the STRUCTURE 

plots are modified from the concatenated Physconelloides phylogeny, and are colored 

according to the clusters from the STRUCTURE plot. Vertical lines to the right of the 

phylogenies indicate taxa recovered from the OTU analyses. K (number of clusters) 

values are indicated to the right of the STRUCTURE plots. The asterisk (*) indicates the 

most optimal K value. 
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Supplementary Figure 6.11. STRUCTURE plot from 880 randomly sampled unlinked 

SNPs called for Physconelloides body lice from small New World ground-doves. 

Individual lice are grouped according to host species, and colored according to the 

likelihood of being in a particular cluster. Phylogenies to the left of the STRUCTURE 

plots are modified from the concatenated Physconelloides phylogeny, and are colored 

according to the clusters from the STRUCTURE plot. Vertical lines to the right of the 

phylogenies indicate taxa recovered from the OTU analyses. K (number of clusters) 

values are indicated to the right of the STRUCTURE plots. The asterisk (*) indicates the 

most optimal K value.
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Supplementary Figure 6.12. DAPC density plot generated using SNPs from Physconelloides 

eurysema 3 (K = 2). Individual lice are indicated by vertical lines along the x-axis. Lice from 

Claravis pretiosa are red, and lice from all other host species are blue. 
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Supplementary Figures for Chapter 7 

 

Supplementary Figure 7.1. Maximum likelihood phylogeny of New World ground-dove wing 

lice (Columbicola) estimated from a concatenated alignment of 1,039 nuclear genes. Bootstrap 

support values ≥50% are indicated at each node. Branch lengths represent nucleotide 

substitutions per site, as indicated by the scale bar. OTUs are indicated to the right of the tip 

labels. Numbers in each tip label refer to Supplementary Table 7.1. 
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Supplementary Figure 7.2. Phylogeny of New World ground-dove lice (Columbicola) 

summarized from 1,039 gene trees using ASTRAL. Numbers at each node indicate local 

posterior probability. Internal branch lengths represent coalescent units, but tip branches are not 

meaningful. OTUs are indicated to the right of the tip labels. Numbers in each tip label refer to 

Supplementary Table 7.1.  
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Supplementary Figure 7.3. Maximum likelihood phylogeny of New World ground-dove wing 

lice (Columbicola) estimated from a concatenated alignment of 7 mitochondrial genes. Bootstrap 

support values ≥50% are indicated at each node. Branch lengths represent nucleotide 

substitutions per site, as indicated by the scale bar. OTUs are indicated to the right of the tip 

labels. Numbers in each tip label refer to Supplementary Table 7.1. 
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Supplementary Figure 7.4. Reconciliation of the New World ground-dove phylogeny with the phylogeny of their wing lice 

(Columbicola). Results are from an analysis with Jane4. The ground-dove phylogeny is represented with black lines, and the louse 

phylogeny with blue lines. 
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Supplementary Figure 7.5. Correlation of A) ParaFitLink1 (PF1) and B) ParaFitLink2 (PF2) values from a ParaFit analysis of New 

World ground-doves and their wing and body lice. Red dots indicate host species. For hosts with multiple wing or body louse 

associations, the points represent mean residual values. Regression lines are provided to indicate trends. 
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Supplementary Figure 7.6. A) STRUCTURE and B) DAPC plots for the ground-dove wing louse species Columbicola passerinae. 

Columns in the STRUCTURE plot and distributions in the DAPC plot are colored by OTU: blue = C. passerinae 1, red = C. 

passerinae 2. Columns in the STRUCTURE plot represent individual lice, with the host species indicated below the plot. 
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Supplementary Figure 7.7. STRUCTURE plot for the ground-dove wing louse taxa A) Columbicola passerinae 1 and B) C. 

passerinae 2, two potentially cryptic species. Columns in the STRUCTURE plot represent individual lice, with the host species 

indicated below the plots. 
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Supplementary Figure 7.8. DAPC plot for the ground-dove wing louse taxon Columbicola passerinae 1. Individual lice are indicated 

by red or blue lines along the x-axis and by individual points on the inset PCA plot. The two specific clusters identified in DAPC are 

indicated with corresponding shaded shapes on the PCA plot (blue and red). Points on the PCA plot are colored according to 

biogeographic regions and shaped according to host species.
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APPENDIX B: SUPPLEMENTARY TABLES 

 
Supplementary Tables for Chapter 2 

Supplementary Table 2.1 (Supp_table2.1.xlsx). Sampling matrices for doves and their A) 

wing lice and B) body lice. Hosts are listed to the left and associated louse samples to the 

right. The number of known recorded wing and body louse species associated with each 

host taxon is also listed. GenBank accession numbers are listed for all loci used in this 

study. Accession numbers for novel sequences are listed in bold. Missing data are 

indicated by dashes (-). Collecting locality for each host sample is also listed. 
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Supplementary Tables for Chapter 3 

Supplementary Table 3.1 (Supp_table3.1.xlsx). Sampling matrix of Australian phabine pigeons 

and doves and their wing and body lice. GenBank accession numbers are indicated for available 

sequence data.  

 

Supplementary Table 3.2 (Supp_table3.2.xlsx). Uncorrected COI pairwise distances for phabine 

body lice. 

 

Supplementary Table 3.3 (Supp_table3.3.xlsx). Uncorrected COI pairwise distances for phabine 

wing lice. 

 

Supplementary Table 3.4 (Supp_table3.4.xlsx). ParaFit individual link test statistics and P-values 

for phabine pigeons and doves and their body lice with 50% majority-rule consensus trees. 

 

Supplementary Table 3.5 (Supp_table3.5.xlsx). ParaFit individual link test statistics and P-values 

for phabine pigeons and doves and their wing lice (C. = Columbicola) with 50% majority-rule 

consensus.  
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Supplementary Tables for Chapter 4 

Supplementary Table 4.1 (Supp_table4.1.xlsx). Uncorrected mitochondrial pairwise distances of 

small New World ground-doves and their outgroups taxa. Numbers at the end of each ingroup 

taxon name refer to the collection voucher numbers as indicated in Table 4.1. Outgroup taxa are 

listed at the bottom of the table (#s 27-36), and do not have voucher numbers listed (see Table 

4.1 for voucher information). 
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Supplementary Tables for Chapter 5 

Supplementary Table 5.1 (Supp_table5.1.xlsx). Uncorrected distances of ground-dove 

Columbicola based on CO1. Taxa are colored according to Columbicola species. Yellow = C. 

drowni, Green = C. gymnopeliae, Purple = C. altamimiae, Red = C. passerinae 2, Blue = C. 

passerinae 1, Brown = C. columbae (outgroup). 
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Supplementary Tables for Chapter 6 

Supplementary Table 6.1 (Supp_table6.1.xlsx). Specimen information, extraction results, library 

preparation details, Illumina sequencing statistics, locus assembly, and raw sequence data 

deposition for Physconelloides body lice from small New World ground-doves. 
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Supplementary Tables for Chapter 7 

Supplementary Table 7.1 (Supp_table7.1.xlsx). Specimen information, extraction and library 

preparation details, Illumina sequencing statistics, locus assembly, and raw sequence data 

deposition for Columbicola wing lice from New World ground-doves.  

 

Supplementary Table 7.2 (Supp_table7.2.xlsx). Results from a ParaFit analysis of New World 

ground-doves and their wing lice. Each row is a host-parasite association, and includes 

ParaFitLink1 (PF1), ParaFitLink2 (PF2) results along with associated P-values generated from 

randomizations of the association matrix. 

 

Supplementary Table 7.3 (Supp_table7.3.xlsx). mlRho estimates of θ for New World ground-

dove wing and body lice. Average values of θ are listed along with the 95% confidence intervals. 

Numbers in the sample names refer to Supplementary Table 7.1 for wing lice, and 

Supplementary Table 6.1 for body lice. Several relevant characters of the lice and hosts are 

included in columns to the right.  

 

Supplementary Table 7.4 (Supp_table7.4.xlsx). Raw heterozygosity (ratio of heterozygous sites 

to total sites) for New World ground-dove wing and body lice. Numbers in the sample names 

refer to Supplementary Table 7.1 for wing lice, and Supplementary Table 6.1 for body lice. 

Several relevant characters of the lice and hosts are included in columns to the right. 

 

 


