
c© 2018 Ge Yu

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/161953133?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

DYNAMIC ONLINE RESOURCE ALLOCATION PROBLEMS

BY

GE YU

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2018

Urbana, Illinois

Doctoral Committee:

Professor Sheldon H. Jacobson, Chair
Professor Rayadurgam Srikant
Professor Chandra Chekuri
Professor Bruce Hajek

ABSTRACT

Online resource allocation problems consider assigning a limited number of

available resources to sequentially arriving requests with the objective to

maximize rewards. With the emergence of e-business, applications such as

online order fulfilment and customer service require real-time resource al-

location decisions to guarantee high service quality and customer satisfac-

tion. Other typical applications include operation room scheduling, organ

transplant, and passenger screening in aviation security. This dissertation

approaches the dynamic online resource allocation problem by considering

two models: multi-objective sequential stochastic assignment problems and

online interval scheduling problems.

Multi-objective sequential stochastic assignment problems are a class of

matching problems. A fixed number of jobs arrive sequentially to be assigned

to one of the available workers, with an n-dimensional value vector revealed

upon each arrival. The objective is to maximize the reward vector given by

the product of the job value vector and worker’s success rate. We conduct

a complete asymptotic analysis for three classes of Pareto optimal policies,

with convergence rates and asymptotic objective values provided.

Online interval scheduling problems consider reusable resources, where an

adversarial sequence of jobs with fixed lengths are to be assigned on available

machines. The objective is to maximize the total reward for completed jobs

given by the product of the job value and the machine weight. For homoge-

neous machines, we propose a Pairing-m algorithm, which is 2-competitive for

even m and (2 + 2/m)-competitive for odd m. For heterogeneous machines,

two classes of approximation algorithms, Cooperative Greedy algorithms and

Prioritized Greedy algorithms, are compared using competitive ratios with

respect to varying machine weight ratios. We also provide lower bounds for

competitive ratios of deterministic online scheduling algorithms in various

scenarios.

ii

Stochastic online interval scheduling problems consider a sequence of jobs

drawn from a given distribution. For identically and independently dis-

tributed jobs with a known distribution, we propose 2-competitive online

algorithms for both equal-length and memoryless-length jobs. For job se-

quences with a random order of arrivals, we propose e-competitive and e2/(e−
1)-competitive online algorithms for both equal-length and memoryless-length

jobs. We further extend these results to jobs with a random order of arrivals

and geometric arrivals with parameter p.

We propose a primal-dual analysis framework for online interval scheduling

algorithms for both adversarial and stochastic job sequences. We formulate

the online interval scheduling as a linear program with a corresponding dual

program. For stochastic job sequences, we use complementary slackness con-

ditions and weak duality to derive optimal algorithms and upper bounds for

the optimal reward, respectively. For adversarial sequences, we use weak

duality to compute the competitive ratios of scheduling algorithms.

iii

To my family, for their love and support.

iv

ACKNOWLEDGMENTS

First, I would like to thank my advisor, Prof. Sheldon H Jacobson, for his

wise advice and patient mentoring throughout my PhD. His deep insights,

broad knowledge, rigorous research style and great writing fashion have not

only benefited me tremendously during my pursuit for PhD, but will also

shape my research and work style in the future. I indeed enjoy working with

him and sincerely appreciate all his guidance.

I would like to thank my committee members, Prof. Chandra Chekuri,

Prof. Bruce Hajek, and Prof. Rayadurgam Srikant, for their valuable feed-

back and helpful suggestions. I thank Prof. Chandra Chekuri for introducing

me to the broad research area of online interval scheduling problems and ap-

proximation algorithms. I thank Prof. Bruce Hajek for teaching me random

processes and all the insightful discussions on game theory. I have taken

three courses with Prof. Rayadurgam Srikant, and I thank him for the great

teaching and showing me the beautiful diversity in electrical and computer

engineering.

I would like to thank Prof. Negar Kiyavash for leading me through my

master’s degree. I am thankful for all the scientific training and kind help

she has offered me.

Life in graduate school can be tough sometimes, and I am grateful to

have supportive teammates whenever I need them. I would like to thank my

group members Arash Khatibi and Hee Youn Kwon for sharing their intel-

ligence and offering their friendship. I would like to thank Shaileshh Bojja

Venkatakrishnan for all the discussions on homework and research ideas. I

would like to thank all my labmates for their selfless help and creating a

stimulating environment to work in.

I am thankful to all my friends and relatives, who have helped me settle

down into my new life in a foreign country and make me feel not alone.

Last but not least, I would like to thank my amazing parents for their

v

unconditional love and support. Looking back at the path I have come

through, I realize how much they have sacrificed to make my PhD journey

possible. I owe all I have earned to their believing in me, encouraging me and

being there for me. I would like to thank Mr. Matthew Potok, for his love,

support and patience. I have lost count of how many times he proofread my

paper drafts, rehearsed as the first audience for my presentations, and offered

constructive suggestions. I am blessed to have him by my side through my

most difficult times in graduate school.

This research has been supported in part by the Air Force Office of Scien-

tific Research under Grant No. FA9550-15-1-0100. Any opinions, findings,

and conclusions or recommendations expressed in this material are those of

the authors and do not necessarily reflect the views of the United States

Government, or the Air Force Office of Scientific Research.

vi

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1
1.1 Multi-objective Sequential Stochastic Assignment Problems . . 3
1.2 Online Interval Scheduling Problems 5

CHAPTER 2 ASYMPTOTIC ANALYSIS FOR MOSSAP 12
2.1 Formulation . 12
2.2 Pareto Optimal Policies for MOSSAP 14
2.3 Asymptotic Analysis under the SSAP Optimal Policy 18
2.4 An SSAP Mixed Policy . 22
2.5 A Single-Threshold Mixed Policy 23
2.6 Convergence Rate Analysis . 23
2.7 Trade-off Analysis and Generalization 27

CHAPTER 3 SCHEDULING C-BENEVOLENT JOBS ON UN-
WEIGHTED MACHINES . 32
3.1 Formulation . 32
3.2 Cooperative Greedy Algorithm for Two Machines 34
3.3 Greedy-2 Algorithm for Multiple Machines 35
3.4 Pairing-m Algorithm for Multiple Machines 40
3.5 Lower Bounds for Competitive Ratios 45

CHAPTER 4 SCHEDULING C-BENEVOLENT JOBS ON WEIGHTED
MACHINES . 50
4.1 Cooperative Greedy Algorithms 50
4.2 Prioritized Greedy Algorithms 55
4.3 Lower Bounds for Competitive Ratios of Deterministic Al-

gorithms . 63
4.4 Discussion . 70

CHAPTER 5 STOCHASTIC ONLINE INTERVAL SCHEDUL-
ING PROBLEMS . 72
5.1 Formulation . 72
5.2 Approximation Algorithms for IID Job Arrivals 74
5.3 Approximation Algorithms for RSSAP with a Random Or-

der of Arrivals . 95

vii

CHAPTER 6 PRIMAL-DUAL APPROACH TO ONLINE IN-
TERVAL SCHEDULING . 109
6.1 Formulation and primal-dual techniques 109
6.2 Stochastic Online Interval Scheduling Problems 113
6.3 Approximation Algorithms for Adversarial Online Interval

Scheduling Problems . 126

CHAPTER 7 CONCLUSION . 141

APPENDIX A PROOFS FOR CHAPTER 2 143
A.1 Useful Lemmas . 143
A.2 Proof of Theorem 2 . 143
A.3 Proof of Corollary 2 . 147
A.4 Proof of Lemma 1 . 148
A.5 Proof of Theorem 3 . 152
A.6 Proof of Theorem 4 . 155
A.7 Proof of Theorem 5 . 158
A.8 Proof of Theorem 6 . 160
A.9 Proof of Theorem 7 . 163
A.10 Proof of Lemma 2 . 163
A.11 Proof of Theorem 8 . 165
A.12 Proof of Theorem 9 . 168
A.13 Proof of Theorem 10 . 170
A.14 Proof of Lemma 4 . 173
A.15 Proof of Theorem 11 . 175

APPENDIX B PROOFS FOR CHAPTER 5 178
B.1 Proof for Lemma 6 . 178
B.2 Proof for Proposition 5 . 178
B.3 Proof for Lemma 8 . 179
B.4 Proof for Corollary 5 . 180
B.5 Proof for Proposition 7 . 182
B.6 Proof for Theorem 33 . 183
B.7 BOM Algorithm . 185

REFERENCES . 186

viii

CHAPTER 1

INTRODUCTION

Online resource allocation problems have been studied in operations research,

which covers a wide variety of applications, such as asset selling in eco-

nomics [1], organ transplant in medical research [2], Adwords bidding in

online auctions [3], and aviation screening in homeland security [4]. With

different assumptions and objective functions, the resource allocation prob-

lem can be formulated into different mathematical models. For example, if

the objective is to minimize the span time and balance machine loads, the

resulting model becomes a job shop scheduling problem; if the objective is

to maximize the number of matched one-to-one pairs, the resulting model

becomes a bipartite matching problem; if the objective is to maximize the

profit from assigning resources to requests, the resulting model becomes a

sequential stochastic assignment problem.

Our research is motivated by the aviation security screening problem. The

Transportation Security Administration (TSA) is promoting a risk-based

screening strategy to improve both air travel security and passenger experi-

ence [5]. Under the risk-based screening strategy, passengers are assigned to

different levels of screening procedures based on their risk values. Different

levels of screening procedures employ different devices and security person-

nel, and hence have different rates of true alarm (a higher screening level

employs devices with more enhanced imaging and detecting technologies and

has a higher rate of true alarm). Therefore, the capacity of screening de-

vices in each level can be seen as a kind of heterogeneous resource, where

each screening level possesses a weight, with a natural interpretation as the

conditional probability of sending out a warning signal if a passenger with

a threat is assigned to this level. How to allocate the limited resources of

screening devices to arriving passengers in a most efficient way has been the

main concern for policy-makers.

Besides this normal security screening procedure, the airport screening

1

system is also challenged by more complicated tasks. Take the enhanced entry

screening for the 2014 Ebola Hemorrhagic Fever (or simply, Ebola) outbreak

as an example. Under this enhanced screening, all passengers coming from

or transferring through three West African countries (Guinea, Liberia, and

Sierra Leone) are required to be routed to one of five main airports to undergo

risk assessment, and may be subject to a 21-day quarantine requirement

based on their risk factors [6]. An effective screening assignment policy that

uses the available resources efficiently is an essential component to prevent

the spread of Ebola.

These two screening problems have been studied in the literature. [4] for-

mulates the aviation security problem as a sequential stochastic assignment

problem with the objective of maximizing the total security reward. However,

a single objective is generally not enough. For example, the policy-maker

may prefer a policy that maximizes expected security and expected confi-

dence value at the same time. [7] formulates the Ebola screening problem

as a multi-objective sequential stochastic assignment problem (MOSSAP)

to improve the process for managing screening and monitoring assignments.

The objective function components consist of maximizing the expected num-

ber of passengers correctly assigned to each category and minimizing the

expected number of social contacts to be covered for mistakenly assigned

passengers. Their results are based on experimental study and hence do

not provide any theoretical guarantee. Moreover, these models may be too

limiting since they are built on the assumption of indefinite occupation of a

service capacity (resource) and hence do not take the real-time reusability of

resources into consideration.

Our research focuses on two mathematical models that fall into the cate-

gory of online resource allocation problems: multi-objective sequential stochas-

tic assignment problems (MOSSAP) and interval scheduling problems. For

MOSSAP, we provide a complete asymptotic analysis to help policy-makers

compare different Pareto optimal policies. For the interval scheduling model,

we consider reusable resources and take the dynamic changes of resources

into consideration. We study online interval scheduling problems for both

adversarial and stochastic job sequences, with a primal-dual analysis frame-

work provided. Our results can be applied to applications ranging from call

management in customer service centers to resource management in cloud

computing platforms.

2

1.1 Multi-objective Sequential Stochastic Assignment

Problems

Multi-objective sequential stochastic assignment problems combine two re-

search topics: multi-objective optimization problems and sequential stochas-

tic assignment problems. Typical applications include: (a) Airport security

screening assignments, where a policy-maker prefers a policy that maximizes

the total expected security and confidence level simultaneously. (b) Cus-

tomer service management, where a coordinator prefers an algorithm that

maximizes the number of served customers and the satisfaction of customers

simultaneously. (c) Online investment decisions, where an investor prefers a

strategy that maximizes the expected profit and minimizes the expected cost

simultaneously.

[8] introduces the sequential stochastic assignment problem (SSAP), where

T workers with known success rates p1 ≤ p2 ≤ . . . ≤ pT are to be assigned

to T sequentially arriving tasks. Each task value C̄t (random variables) is

revealed upon arrival, for t = 1, 2, . . . , T . The objective is to maximize the

total expected reward E[
∑T

t=1 pjtC̄t], where jt is the index of the worker as-

signed to perform the tth task with value C̄t. The task values are assumed

to be independent and identically distributed (IID) random variables with

a known cumulative distribution function (cdf). An optimal policy is ob-

tained based on recursive equations to compute threshold values for each

task assignment.

Variations of SSAP have been widely studied. [9] studies the SSAP with

random arrival times and discounted rewards under different arrival distribu-

tions and discount functions. [10] studies the SSAP with a random number

of arriving tasks in two cases: the distribution of the number of tasks has

finite or infinite support. [11] studies SSAP with task value distributions not

necessarily independent. [12] studies the SSAP with the distributions of two

successive task values governed by a known Markov chain. [13] relaxes the

assumptions in [12] and studies the SSAP in a partially observable Markov

chain. SSAP with multi-item assignments and vector offers has been dis-

cussed in [14–16]. The SSAP application in aviation security screening has

appeared in [4, 5, 17, 18]. The SSAP application in organ transplant has ap-

peared in [2,19]. These above mentioned works all focus on the SSAP with a

single objective function, while we consider a more general and complicated

3

class of SSAP with multiple objectives.

Another research topic related to SSAP is the generalized online assign-

ment problem in the uniform arrival model (i.e., the arrival order is com-

pletely random). Adwords problems [20], resource allocation problems [21,22]

and online matching problems [23,24] fall into this category. In such a setting,

a sequence of requests arrive online, with a profit that can only be gained if

fulfilled. Resources have certain capacities, and the objective is to maximize

the total expected profits from fulfilled requests subject to resource capaci-

ties. Requests are not assumed to follow any distribution, but are assumed

to be picked by an adversary beforehand and have a uniform arrival order.

No optimal algorithm is known for this uniform arrival model in literature,

but approximation algorithms that guarantee a fraction of the underlying

optimal reward have been widely studied. MOSSAP uses a stronger assump-

tion that task arrivals are IID with given distributions to obtain an optimal

policy.

Asymptotic analysis for SSAP with a single objective has also attracted

research interest. [25] studies the limiting performance of the SSAP optimal

policy and computes the asymptotic expected reward per task as the num-

ber of tasks approaches infinity. [26], [27] study the limiting performance

of the SSAP optimal policy with multiple assignment categories and pro-

pose asymptotically optimal policies with a fixed number of thresholds for

the two following scenarios: (a) task value distribution is known and is IID,

(b) task value distributions are unknown but governed by a known ergodic

Markov chain. All the previous asymptotic analyses focus on the asymptotic

expected reward value, and none of them has provided a convergence rate.

Moreover, the task values are assumed to follow continuous distributions in

the above-mentioned literature. The asymptotic analysis for MOSSAP uses

techniques similar to those in [25] and [26], but relaxes the continuity restric-

tion on the cdf of the task value. We provide asymptotic expected rewards

and convergence rates for multiple objective functions for trade-off analysis

between different Pareto optimal policies.

Several methods have been proposed to solve multi-criteria optimization

problems, for both the on-line and off-line settings. For recent progress in this

area, see [28] and [29]. A well-known approach for solving multi-criteria prob-

lems is the weighted sum method [30], where multiple objective functions are

summed up into a single objective function weighted by a vector. Although

4

this method is simple and works for the on-line optimization setting, there are

pitfalls to consider before using it: (a) the weighted sum method usually does

not guarantee the generation of the complete set of Pareto optimal solutions;

(b) the weight vector may not be easily specified beforehand by the decision

maker. Another widely applied method is the ε-constrained method, where

only one objective is kept as the main optimization objective at a time while

the others are transformed into constraints specified by the ε-vector [31].

Though the ε-constrained method works as well as the weighted sum method

in terms of generating Pareto optimal policies in the off-line setting, it is diffi-

cult to introduce this method into the online optimization setting and obtain

closed-form expressions for multiple objective function values. Moreover, the

values of the ε-vector remain hard to specify beforehand.

1.1.1 Our results

Our primary contribution is a complete asymptotic analysis for the general

class of MOSSAP with product-form vector rewards and discrete task value

distributions. The objective of MOSSAP is to maximize each component of

the n-dimensional vector of the expected reward per task. We start from the

case where all workers are homogeneous and focus on Pareto optimal policies

for MOSSAP. The set of Pareto optimal policies for MOSSAP is generated

by the weighted sum method and the SSAP optimal policy. The asymptotic

expected reward per task for each component of the reward vector under

Pareto optimal policies is provided. Three different classes of policies are

considered and proved to be asymptotically Pareto optimal, with conver-

gence rates provided for comparison. We also show how to extend results for

homogeneous workers to heterogeneous workers.

1.2 Online Interval Scheduling Problems

For online interval scheduling problems, there are sequentially arriving jobs

to be scheduled on a single machine or multiple machines. Each job has the

following characteristics: (a) an arrival time; (b) a length, the amount of

time required to completer a job; (c) a deadline; and (d) a value, the reward

for completing a job. We consider the case where the deadline of a job is

5

equal to the sum of the arrival time and the length of the job, and hence

each job can be represented by an interval along the time axis and must be

scheduled immediately upon arrival.

The offline interval scheduling problem on non-identical machines is NP-

complete [32]. Other results for the offline interval scheduling problem can

be found in [33], [34], [35], [36], and [37]. For the online scheduling problem

for equal-value jobs, [38] proposes a optimal Greedy algorithm, GOL. The

general online interval scheduling problem for arbitrary-value jobs does not

have any approximation algorithms with finite worst case guarantees [39].

Additional assumptions are needed to obtain algorithms with finite compet-

itive ratios. Such assumptions include job sequences with equal lengths and

arbitrary values [40], job sequences with values uniformly proportional to

lengths [41], job sequences with monotone deadlines and values [42], and job

sequences with a deterministic relationship between values and lengths [39].

For a detailed summary and comparison of these results, see [43].

Another widely used technique to construct online scheduling algorithms

is randomization. [44] first proposes a randomized (2+
√

3)-competitive algo-

rithm for scheduling C-benevolent jobs on a single machine. [42] proposes a

3-competitive algorithm on a single machine for monotone instances, where

the order of right points of job intervals coincides with the order of left points

of jobs and job values are non-decreasing. [45] proposes 2-competitive barely

random algorithms for equal-length and C-benevolent job sequences, respec-

tively.

The problem of scheduling on multiple machines has been extensively

studied over the years. [41] proposes a cooperative 2-competitive algorithm

on two identical machines for jobs with values uniformly proportional to

lengths. [40] proposes a 3.5822-competitive algorithm on two machines for

jobs with equal lengths and arbitrary values. They provide a lower bound

of 4/3 (2) for scheduling C-benevolent jobs on multiple (two) machines. As

for scheduling on more than two machines, [46] proposes a 4-competitive

Greedy algorithm, ALG, for scheduling C-benevolent jobs on multiple uni-

formly related machines (i.e., each machine has a service speed). [47] proposes

a 2(2+2/(2m-1))-competitive algorithm for scheduling equal-length jobs on

even (odd) number of machines.

All variations of the online interval scheduling problem reported in the

literature focus on the objective of maximizing the total value of completed

6

jobs, where machines have no weights; hence, these approaches are homoge-

neous in terms of rewards [34, 37, 46, 48, 49]. This problem formulation fails

to capture some real-life applications, such as assigning jobs to workers with

different success rates, where success rate is defined as the probability of

completing an assigned job. The expected reward for an assignment is hence

the product of the job value and the worker’s success rate. For example, in

the aviation screening problem, each passenger with a risk value is treated as

a job with a value and a length (the amount of time needed for screening).

Each screening level is treated as a machine for executing jobs with differ-

ent weights (different levels of screening procedures employ different devices

and security personnel, and hence, have different rates of true alarms). The

weights of screening levels have a natural interpretation as the conditional

probability of sending out a warning signal if a passenger with a threat is

assigned to this level. The objective of maximizing the total reward of com-

pleted job assignments (passenger screening assignments) is hence given by

the product of the value of jobs and the weight of their assigned machines.

Existing results for online interval scheduling problems focus on the worst-

case analysis, which considers adversarial job arrivals and is known to be

overly pessimistic. We consider stochastic online interval scheduling prob-

lems, RSSAP, where sequentially arriving jobs are drawn from a given distri-

bution. We evaluate the average performance of an algorithm with respect

to all possible job sequences, and hence our approach differs from existing

works on online interval scheduling problems. RSSAP has similarities with

M/M/s/N queuing systems, where s servers (machines) and a finite buffer

of size N − s are available for arriving jobs [50]. The job arrivals in this

queuing system are assumed to follow a Poisson process, with IID exponen-

tial inter-arrival times. The service times of servers are assumed to follow

an exponential distribution. The objective of an optimization problem for

a queuing system may be to minimize the steady-state sojourn time (i.e.,

service and waiting time) of jobs, maximize the throughput within a fixed

time interval, or minimize the probability of losing jobs. There are significant

differences between the general M/M/s/N queuing system and RSSAP: (1)

there is no queuing space in RSSAP, and assignments are made immediately

upon each arrival; (2) the time required to complete a job in RSSAP is given

and fixed; (3) the objective of RSSAP is to maximize the total reward of

completed jobs, given by the product of job values and machine weights.

7

Online bipartite matching problems and online budgeted bidding problems

with IID arrivals are related to RSSAP. [23,51] consider an online stochastic

matching problem with IID arrivals. They propose approximation algorithms

using disjoint optimal offline matchings. [52] considers an online bipartite

matching problem with unknown IID arrivals and shows that the RANK-

ING algorithm achieves a competitive ratio of 1.532. [24,53] consider an on-

line stochastic matching problem in the random arrival order setting, which

is more general than the IID setting. [53] proposes an e-competitive algorithm

for edge-weighted matching problems. [24] uses a family of factor-revealing

linear programs to show the RANKING algorithm is 1.437-competitive for

unweighted matching. However, these results are not trivially generalizable

to the stochastic interval scheduling problem since bipartite matching prob-

lems assume indefinite occupation of resources. That is, once a resource and

a request are matched, the matched resource will not be available anymore.

The online budgeted bidding problem allows multiple matchings to a single

resource, yet they do not consider the real-time reusability of resources. That

is, a resource can be allocated to subsequent requests as long as the budget

allows, which is not feasible for the online interval scheduling problem. The

most relevant work to RSSAP is [54], which considers a generalization of the

secretary problem with equal-length temporary employment. They assume

the value of the secretary follows a random arrival order and the arrival time

of the secretary follows a known distribution, which is different from our

settings.

Primal-dual techniques are commonly used for deriving approximation al-

gorithms for online resource allocation problems [55]. [56] uses primal-dual

analysis to formulate an online learning algorithm for discounted Markov

decision processes (MDP) with unknown transition probabilities and tran-

sition costs. [57] applies the primal-dual analysis in solving weighted online

paging problems. [58] proposes near-optimal algorithms for online resource

allocation problems under a random order of arrivals, where the constraint

matrix as well as the corresponding objective coefficient is revealed column

by column.

Primal-dual techniques can also be used for analyzing algorithms. [59] uses

the primal-dual technique to give a simpler proof for the e-competitiveness

of the optimal threshold policy for secretary problems. [60] uses similar tech-

niques to analyze the RANKING algorithm [61] for online bipartite matching

8

problems, and provides a simpler proof for the (1−1/e)-competitiveness. [62]

studies the Bellman equation of a MDP, concluding that the dual value of the

policy function is the optimal value for both infinite-horizon with discounted

reward and finite-horizon MDPs. [63] considers the JISPk scheduling prob-

lem, where the algorithm has to choose an interval from a tuple of k feasible

intervals for each job to maximize the total number of scheduled jobs. They

evaluate the approximability of the LP relaxation for the original problem

using weak duality. None of these papers use primal-dual techniques to de-

velop or analyze the performance of an algorithm for online interval schedul-

ing problems. We introduce an approach using the primal-dual technique to

solve both stochastic and adversarial online interval scheduling problems.

1.2.1 Our results

We study a few variations of the online interval scheduling problem and

provide different analysis techniques. Specifically, we consider equal-length

jobs and C-benevolent jobs, which capture many applications (see [39], [46]

and [45]).

Chapter 3 considers scheduling a sequence of C-benevolent jobs on multiple

homogeneous machines, generalizing the problem proposed by [39] on a single

machine. For two machines, we propose a 2-competitive Cooperative Greedy

algorithm. We further generalize the algorithm to multiple machines and

propose a Pairing-m algorithm, which is deterministic 2-competitive for even

number of machines and randomized (2+2/m)-competitive for odd number

of machines. The Pairing-m algorithm improves the 4-competitive algorithm

given by [46]. We provide lower bounds of 2 and 1.436 for the competitive

ratio of any deterministic online scheduling algorithms on two and three ma-

chines, respectively. Therefore, the Cooperative Greedy algorithm achieves

the best possible competitive ratio for scheduling C-benevolent jobs on two

machines.

Chapter 4 extends results in Chapter 3 to multiple weighted machines and

focuses on two classes of online algorithms: Cooperative Greedy algorithms

and Prioritized Greedy algorithms, with competitive ratios provided. We

show that when the weight ratios between machines are small, the Cooper-

ative Greedy algorithm outperforms the Prioritized Greedy algorithm. As

9

the weight ratios increase, the Prioritized Greedy algorithm outperforms the

Cooperative Greedy algorithm. Moreover, as the weight ratios approach in-

finity, the competitive ratio of the Prioritized Greedy algorithm approaches

four. We also provide lower bounds of 3/2 and 9/7 for the competitive ratio

of any deterministic online scheduling algorithm on two and three weighted

machines, respectively, which hold for arbitrary machine weights.

Chapter 5 introduces and analyzes stochastic online interval scheduling

problems, where workers are assigned to perform a job for a certain amount

of time and then return to be reassigned for future arriving jobs. The job

assignment is assumed to be irrevocable and non-preemptive, which means

once a job is assigned, the job must be completed by the worker without

any suspension or change. The objective is to maximize the total expected

reward for completed jobs, which is given by the product of the job value

and the success rate of the assigned worker. We consider three kinds of

job arrivals: (1) IID job arrivals with a given job value distribution, (2) job

arrivals following a random order, and (3) job arrivals following a random

order and a geometric arrival with parameter p. Approximation algorithms

for both cases are proposed, with competitive ratios provided. For each

case, we consider two classes of job sequences: (a) equal-length jobs and (b)

memoryless-length jobs.

Chapter 6 provides a primal-dual approach for analyzing algorithms for

both stochastic and adversarial online interval scheduling problems. We for-

mulate the online interval scheduling problem as a general linear program and

then give the corresponding dual program for each specific case. The linear

program for the online interval scheduling problem is different from exist-

ing works, since the constraints for the primal linear program are constantly

changing due to the scheduling and completing of jobs, and the coefficient for

the objective function is not given a priori. Therefore, feasible solutions to

the primal and dual programs have to dynamically adapt to these changes.

For stochastic online interval scheduling problems, we propose an optimal

randomized algorithm for scheduling equal-length arbitrary-value jobs on a

single machine using strong duality. We also provide an upper bound for the

optimal reward for scheduling equal-length arbitrary-value jobs on multiple

machines using weak duality. For adversarial online interval scheduling prob-

lems, we consider scheduling special kinds of jobs, C-benevolent jobs, on a

single machine using three different algorithms. We use weak duality to ana-

10

lyze each algorithm by constructing a feasible solution to the dual program,

matching known competitive ratios.

11

CHAPTER 2

ASYMPTOTIC ANALYSIS FOR MOSSAP

This chapter provides an asymptotic analysis of multi-objective sequential

stochastic assignment problems (MOSSAP). In MOSSAP, a fixed number of

tasks arrive sequentially, with an n-dimensional value vector revealed upon

arrival. Each task is assigned to one of a group of known workers immediately

upon arrival, with the reward given by an n-dimensional product-form vector.

The objective is to maximize each component of the expected reward vector.

We provide expressions for the asymptotic expected reward per task for each

component of the reward vector, under all Pareto optimal policies. We pro-

pose another two classes of asymptotically Pareto optimal policies, with one

class preserving the optimal convergence rate and the other requiring little

computational effort. We also study the convergence rates of these three

classes of Pareto optimal policies for MOSSAP. These convergence rates also

apply to the classic single-objective sequential stochastic assignment problem

with discrete task value distributions.

2.1 Formulation

Consider T tasks to be sequentially assigned to η ≤ T workers irrevoca-

bly with η ∈ Z+. For each task, an n-dimensional value vector is revealed

upon arrival. Denote the value vector for the tth task by the vector of ran-

dom variables A(t) , (A1(t), . . . ,An(t)), with the random variable Aj(t)

defined as the jth component of the task value vector, for j = 1, 2, . . . , n

and t = 1, 2, . . . , T . We do not assume that the components of A(t) are

independent of each other. However, we assume Aj(t) to be discrete and

A(t) to be IID across tasks. Denote the marginal probability mass functions

(pmf) for Aj(t) by pAj(αj) for j = 1, 2, . . . , n, and the joint pmf by pA(α)

(i.e., the pmf of A(t)). Denote the realized value vector of the tth task by

12

α(t) , (α1(t), . . . , αn(t)). We assume η homogeneous workers. Denote the

success rates of T workers by {τi}Ti=1, and set τi = 1 for i = 1, 2, . . . , η and

τi = 0 for i = η+ 1, η+ 2, . . . , T , where we create T − η virtual workers with

success rate zero for simplicity in description (without specific explanation,

“worker” refers to the original worker). Let it denote the index of the worker

assigned to the tth task. The number of workers is referred to as the capac-

ity. Define the complementary capacity ratio as one minus the ratio of the

capacity to the total number of tasks, denoted by ζ = 1− η
T

.

A policy for MOSSAP defines a sequence of task assignments. Let the

binary random variable XΦ
t ∈ {0, 1} denote the tth task assignment under

policy Φ: XΦ
t = 1(0) denotes assigning the tth task to a worker (τit = 1(0)).

Policy Φ may be pure or mixed. A mixed policy Φ consists of a sequence of

random variables, denoted by PΦ , {XΦ
t }Tt=1, with XΦ

t defined as the condi-

tional probability of assigning the tth task to a worker, given the task value

vectors that have been revealed. If a policy is pure, then task assignments

are deterministic given a sequence of task value vectors.

The objectives are to maximize the expected reward per task for each com-

ponent of the reward vector. The expectations are taken with respect to the

distributions of the sequence of task value vectors and the randomness of the

policy assignments (for mixed policies only). Denote the expected reward per

task for the jth component of the reward vector under policy Φ by rj(Φ), for

j = 1, 2, . . . , n, and let r(Φ) = (r1(Φ), r2(Φ), . . . , rn(Φ)). Since MOSSAP has

n objective functions that typically do not admit the same optimal policy, we

aim to generate Pareto optimal policies for MOSSAP. Denote the set of ad-

missible policies for MOSSAP by Ψη, referred to as the feasible region. More

precisely, the on-line policy Φ ∈ Ψη attempts to optimize, for j = 1, 2, . . . , n,

rj(Φ) ,
1

T
E[

T∑
t=1

XΦ
t Aj(t)], (2.1)

where

Ψη , {Φ :
T∑
t=1

XΦ
t = η}.

Definition 1 gives the formal definition of Pareto optimal policies for MOSSAP.

Definition 1. A policy Φ ∈ Ψη is said to be Pareto optimal for MOSSAP if

there does not exist another policy Φ′ ∈ Ψη such that rj(Φ) ≤ rj(Φ
′) for all

13

j = 1, 2, . . . , n, with at least one strict inequality.

For multi-objective optimization problems, Pareto optimal policies are typ-

ically not unique.

2.2 Pareto Optimal Policies for MOSSAP

The set of Pareto optimal policies for MOSSAP can be obtained using the

weighted sum method. Let w = (w1, w2, . . . , wn) denote the non-negative

weight vector for the objective functions of MOSSAP, with wj ≥ 0 for j =

1, . . . , n and
∑n

j=1wj > 0 (with abuse of notation, denote this by w ≥ 0).

Using the weighted sum method, rj(Φ), j = 1, . . . , n are combined into a

single weighted objective function, denoted by Rw(Φ):

Rw(Φ) =
n∑
j=1

wjrj(Φ) =
1

T
E

[
T∑
t=1

XΦ
t

(
n∑
j=1

wjAj(t)

)]

=
1

T
E

[
T∑
t=1

XΦ
t

(
n∑
j=1

G(t)

)]
, (2.2)

where the random variable G(t) denotes the one-dimensional combined value

for the tth task,

G(t) ≡
n∑
j=1

wjAj(t). (2.3)

The maximization of Rw(Φ) over the feasible region Ψη is referred to as

the weighted objective sequential assignment problem (WOSA) indexed by w

(or simply, WOSA-w). If only one of the weight vector components is non-

zero (i.e., wj > 0 and wj′ = 0 for j′ 6= j), then maxΦ∈Ψη Rw(Φ) reduces to

maxΦ∈Ψη rj(Φ). If there exists some w ≥ 0 such that policy Φ ∈ Ψη max-

imizes the objective function Rw(Φ) defined in (2.2), then Φ is said to be

optimal for WOSA.

Note that the weighted sum method in general does not guarantee a bijec-

tion between Pareto optimal policies for MOSSAP and optimal policies for

WOSA. Since neither redundant nor omitted policies are desired, if we are to

benefit from the single objective optimization using WOSA, an extra pruning

step is needed to exclude redundant policies from the set of optimal policies

for WOSA. Moreover, convexity of the feasible region Ψη and affinity of rj(Φ)

14

for j = 1, . . . , n guarantee that no Pareto optimal policies are omitted using

the weighted sum method.

If policy Φ ∈ Ψη maximizes the objective function Rw(Φ) (2.2) for some

w > 0 (i.e., wj > 0 for all j), then Φ is Pareto optimal for MOSSAP from

Theorem 3.1.2 [64, p. 78]. Therefore, the pruning for Pareto optimal poli-

cies is only needed if policy Φ ∈ Ψη maximizes Rw(Φ) for some w with

zero-components. [65] discusses a straightforward pruning method using a

definition of M-optimal policies for WOSA when there are only two objec-

tive functions (i.e., n = 2). For the general case with n > 2, that definition

cannot be directly applied. Instead, we propose a brute-force pruning algo-

rithm using the asymptotic results provided in Section 2.3. For brute-force

pruning, values of the n objective functions under all optimal policies for

WOSA are enumerated for comparison. This is further discussed in Sec-

tion 2.7.

To obtain the property of convexity, consider the set of mixed policies in

the feasible region Ψη (pure policies are considered as a special kind of mixed

policy, and hence, included in the set of mixed policies). We extend the fea-

sible region to Ψη+ , {Φ : E[
∑T

t=1X
Φ
t] = η}, where the expectation is taken

with respect to XΦ
t (i.e., E[

∑T
t=1X

Φ
t] = η holds for any sequence of task

value vectors). We only use Ψη+ given its convexity. Since optimal policies

for WOSA are all pure policies and {Φp : Φp is pure and Φp ∈ Ψη} = {Φp :

Φp is pure and Φp ∈ Ψη+} [65], maximizing each rj(Φ) over Ψη and Ψη+ are

equivalent. Moreover, all admissible mixed policies in Ψη+ define a convex

set [65], denoted by

Ξη ,
{
PΦ = {XΦ

t }Tt=1 :
T∑
t=1

XΦ
t = η, for XΦ

t ∈ [0, 1]
}
.

Proposition 1 generalizes Proposition 3 in [65], and its proof is similar so

is omitted.

Proposition 1. The objective functions rj(Φ) for j = 1, 2, . . . , n of MOSSAP

are all affine functions of Φ ∈ Ψη+.

Given convexity of Ψη+ and Proposition 1, all Pareto optimal policies for

MOSSAP can be generated using the weighted sum method for all w ≥ 0

from Theorem 3.1.4 [64, p. 79].

15

2.2.1 Optimal policies for WOSA

The optimal policy for WOSA-w can be generated by applying Theorem

1 [8], trimmed especially for discrete task value distributions. The objective

of WOSA-w is to maximize the expected weighted reward per task for T task

assignments, and the reward for assigning a task to a worker is G(t).

Denote the cdf for G(t) by FG(γ), where γ is the realized combined value

defined as γt ≡
∑n

j=1 wjαj(t). Since Aj(t) are discrete for all j, G(t) is also

discrete. Denote these discrete values by 0 < G1 < G2 < . . . < GL (G0 = 0

and FG(GL) = 1). Applying the law of total probability, the pmf pG(γ) for

G(t) is

pG(γ) =
∑

{α:
∑n
j=1 wjαj=γ}

pA(α). (2.4)

Let η(t) denote the remaining capacity before the tth task assignment for

t = 0, 1, 2, . . . , T , with η(0) = η(1) = η (t = 0 has no task arrival and

describes the initial stage with T tasks to be assigned). For the tth task

assignment, there exist threshold values

−∞ = a0,t ≤ a1,t ≤ . . . ≤ aT−t+1,t = +∞, (2.5)

obtained using the recursive equations given by [8] with the integral substi-

tuted by a summation,

ai,t =

 gli,t+1∑
γ=gui−1,t+1

γpG(γ)

+ ai−1,t+1FG(ai−1,t+1) + ai,t+1 (1− FG(ai,t+1)) ,

(2.6)

where

gui−1,t+1 ≡ min
Gl′∈{G1,G2,...,GL}

Gl′ > ai−1,t+1, gli,t+1 ≡ max
Gl′∈{G1,G2,...,GL}

Gl′ ≤ ai,t+1,

(2.7)

for i = 1, 2, . . . , T − t and t = 0, 1, 2, . . . , T . If G(t) ∈ (ai−1,t, ai,t] for some

i ≥ T − t − η(t) + 2, then the tth task is assigned to a worker. Specifically,

16

this policy (Φ1), referred to as the SSAP optimal policy, is given by

XΦ1
t =

1, if G(t) > aT−t−η(t)+1,t,

0 otherwise,
(Φ1)

η(t+ 1) = η(t)−XΦ1
t , t = 1, 2, . . . , T.

Theorem 1 is given without proof. For proof, refer to proofs of Theorem 1 [8]

or Theorem 6 [65].

Theorem 1. Policy (Φ1) with threshold values defined by (2.6) is optimal for

WOSA-w, when T tasks are to be assigned. Moreover, the threshold values in

the initial stage, {ai,0}Ti=1, are the expected combined values for the T tasks.

To see the computational effort for policy (Φ1), note that since Aj(t) are

discrete random variables for j = 1, 2, . . . , n, A(t) can only take on a value

from a finite set, {A1
1, A

2
1, . . . , A

K1
1 } × . . .× {A1

n, A
2
n, . . . , A

Kn
n }, with the car-

dinality bounded above by Πn
j=1Kj. Since the combined value of each task

can only assume one of the L values {G1, G2, . . . , GL} (L ≤ Πn
j=1Kj), the

time complexity to compute each threshold value in (2.6) for policy (Φ1) is

O(L) = O(Πn
j=1Kj). For the tth passenger out of T passengers, T − t thresh-

old values are required. Therefore, the total time complexity is O(T 2Πn
j=1Kj)

and the space requirement is O(T 2).

Next, we compute the objective function values for WOSA-w and MOSSAP

under policy (Φ1). First, we introduce some notations and definitions. De-

note the ith smallest combined value of T tasks to be assigned by the random

variable Ĝ
(i)
T . Then, E[Ĝ

(i)
T] = ai,0, for i = 1, 2, . . . , T with {ai,0}Ti=1 defined by

(2.6). Denote the jth component of the task value vector that results in the

ith smallest combined value of T tasks (Ĝ
(i)
T), by the random variable Â

(j)(i)
T ,

with the subscript indicating the total number of tasks to be assigned. Define

bji,t , E[Â
(j)(i)
T−t], for i = 1, 2, . . . , T − t and t = 0, 1, . . . , T −1. Therefore, bji,t is

the expected value of the jth component of the task value vector that results

in the ith smallest combined value of T − t tasks. Specifically, if t = 0, then

bji,0 = E[Â
(j)(i)
T] = E

[
E[Â

(j)(i)
T |Ĝ(i)

T]
]
, (2.8)

and {bji,0}Ti=1 are the expected values of the jth component of the task value

vector of T tasks to be assigned.

17

Corollary 1 provides the objective function values for WOSA-w and MOSSAP

under policy (Φ1) without proof. For proof, refer to proofs of Corollaries 1

and 2 [65].

Corollary 1. The objective function values for WOSA-w and MOSSAP un-

der policy (Φ1) are

Rw(Φ1) = max
Φ∈Ψη

1

T
E[

T∑
t=1

XΦ
t G(t)] =

1

T

T∑
i=T−η+1

ai,0, (2.9)

and

rj(Φ1) =
1

T
E[

T∑
t=1

XΦ1
t Aj(t)] =

1

T

T∑
i=T−η+1

bji,0, (2.10)

for j = 1, 2, . . . , n. Here, {ai,t} are defined by (2.6) and {bji,t} defined by

(2.8) are given by the recursive equations

bji,t = (

gli,t+1∑
γ′=gui−1,t+1

E[Aj(t)|G(t) = γ′]pG(γ′))+bji−1,t+1FG(ai−1,t+1)+bji,t+1(1−FG(ai,t+1)),

for i = 1, 2, . . . , T − t and t = 0, 1, 2, . . . , T , with bj0,t = 0, bjT−t+1,t = A
Kj
j ,

and gui−1,t+1, g
l
i,t+1 defined by (2.7).

2.3 Asymptotic Analysis under the SSAP Optimal

Policy

In this section, we present the asymptotic expected rewards per task for

WOSA-w and MOSSAP under the SSAP optimal policy as the total number

of tasks T approaches infinity. Moreover, we compute the limits of threshold

values for the SSAP optimal policy (Φ1) and show that successive threshold

values collapse to the jump points of the cdf of the combined task value,

FG(γ). The threshold collapse occurs in SSAP with discrete task value dis-

tributions, which results in reduction of computational effort for the SSAP

optimal policy when T is sufficiently large, as discussed in Section 2.4.

We assume the complementary capacity ratio ζ to be fixed as T ap-

proaches infinity, which means that η increases proportionally with T (i.e.,

η = bT (1−ζ)c, where b·c denoting the floor function, bxc = maxN∈ZN ≤ x).

18

In the following, first, we present the asymptotic expected weighted reward

per task for WOSA-w. Then, these asymptotic analysis results are used to

compute the asymptotic expected reward per task for each component of the

reward vector for MOSSAP.

2.3.1 Asymptotic analysis for WOSA-w

Denote the optimal asymptotic expected weighted reward per task for Rw(Φ)

(2.2) by ρζw(w). Then, ρζw(w) is achieved under the SSAP optimal policy (Φ1)

from Theorem 1. Theorem 2 provides a closed-form expression for ρζw(w).

Theorem 2. The optimal asymptotic expected weighted reward per task for

WOSA-w is

ρζw(w) =

(
L∑

k=l+2

GkpG(Gk)

)
+ qGl+1pG(Gl+1), (2.11)

where

q =
FG(Gl+1)− ζ
pG(Gl+1)

, (2.12)

and FG(Gl) ≤ ζ < FG(Gl+1) for some l ∈ {0, 1, . . . , L− 1}.

Proof: See Appendix A.

From Theorem 2, both the weight vector w and the complementary ca-

pacity ratio ζ influence the optimal asymptotic expected weighted reward

per task ρζw(w). To see this, the distribution of G(t) depends on the weight

vector w (by (2.4)), and q is determined by the distribution of G(t) and the

complementary capacity ratio ζ.

Next, we show the threshold values in the initial stage collapse on the

jump points of the cdf FG(γ) using Theorem 2 (see Figure 2.1). This is a

special property for SSAP with discrete task value distributions, which leads

to further discussions on reducing computational efforts for the SSAP opti-

mal policy. Moreover, the limit values of these thresholds are essential to the

asymptotic analysis for MOSSAP. Corollary 2 provides the limit of threshold

value in the initial stage, adTθe,0, for a fixed 0 < θ < 1 as T → +∞, which is

interpreted as the dTθeth smallest expected combined value of T tasks to be

assigned (with d·e denoting the ceiling function, dxe = minN∈ZN ≥ x).

19

𝐺𝑙 𝐺𝑙+1

Ϛ2
Ϛ
Ϛ1

𝛾

𝑎 𝑇Ϛ 1 ,1 𝑎 𝑇Ϛ 2 ,1 𝑎 𝑇Ϛ ,1

𝑇
↓
∞

−∞ ∞ 𝑎1,1 𝑎𝑇,1

… …

…

…

0

(a) (b)

−∞ ∞

Finite 𝑇

Infinite 𝑇

𝐺1 𝐺𝑙+1 𝐺𝐿

∅ ∅ ∅ ∅

…

Figure 2.1: Convergence collapse of threshold values for the SSAP optimal
policy with the discrete distribution FG(γ) as T → +∞.

Corollary 2. The limit of the threshold value in the initial stage defined by

(2.6) is

lim
T→+∞

adTθe,0 = Gl+1,

for FG(Gl) < θ < FG(Gl+1) and l = 0, 1, . . . , L− 1.

Proof: See Appendix A.

Corollary 2 cannot be applied if θ = FG(Gl) for l = 1, . . . , L − 1. This

can be seen by following the proof of Corollary 2, where the limits of the

lower and upper bounds, Gl ≤ limT→+∞ inf adTθe,0 and limT→+∞ sup adTθe,0 ≤
Gl+1, will not be equal. However, since the values of {adTFG(Gl)e,0}Ll=1 are

uniformly bounded above by GL (by definition (2.6)), their exact values will

not influence the following asymptotic analysis for MOSSAP.

2.3.2 Asymptotic analysis for MOSSAP

Theorem 2 provided a closed-form expression for the asymptotic expected

weighted reward per task for the objective function Rw(Φ) of WOSA-w un-

der the SSAP optimal policy (Φ1). Recall that MOSSAP has n objective

functions. Moreover, an optimal policy that maximizes the weighted objec-

tive function Rw(Φ) does not necessarily maximize rj(Φ) for all j = 1, 2, . . . , n

at the same time. Therefore, ρζw(w) alone is not sufficient to evaluate the

performance of a policy for MOSSAP. We provide expressions for asymptotic

20

expected rewards per task for the n objective functions of MOSSAP under

policy (Φ1), which capture how weight vectors influence the n-dimensional

reward vector.

Consider the jth component of the expected reward per task under the

SSAP optimal policy (Φ1), rj(Φ1) (2.1), for j = 1, 2, . . . , n. First, we show

the uniform convergence of {bji,0}Ti=1 as T → +∞, which follows from the uni-

form convergence of {ai,0}Ti=1 as T → +∞. Then, the limit value of rj(Φ1)

(not necessarily optimal for rj(Φ)) is computed using (2.10) by summing up

{bji,0}Ti=dTζe+1 and taking the limit as T → +∞ (an interchange of summation

and limit is needed).

Lemma 1 states the uniform convergence of bjdTθe,0 for θ in a compact in-

terval. This guarantees the interchangeability of summation and limit as

T → +∞ in (2.10).

Lemma 1. For any ε1 > 0, ε2 > 0, and any l = 0, 1, . . . , T − 1, define the

compact interval I lε1,ε2 , [FG(Gl) + ε1, FG(Gl+1)− ε2]. Then, bjdTθe,0 defined by

(2.8) converges uniformly as

lim
T→+∞

bjdTθe,0 = E[Aj(t)|G(t) = Gl+1],

for θ ∈ I lε1,ε2 as T → +∞, for j = 1, 2, . . . , n.

Proof: See Appendix A.

Theorem 3 provides expressions for the asymptotic expected rewards per

task for MOSSAP under policy (Φ1).

Theorem 3. The asymptotic expected reward per task for rj(Φ1) (2.1) of

MOSSAP is

lim
T→+∞

rj(Φ1) = E[Aj(t)|G(t) > Gl+1]PG(G(t) > Gl+1)+qE[Aj(t)|G(t) = Gl+1]pG(Gl+1),

(2.13)

with q defined by (2.12), where FG(Gl) ≤ ζ < FG(Gl+1) for some l ∈
{0, 1, . . . , L− 1} and j = 1, 2, . . . , n.

Proof: See Appendix A.

Let ρζj(w) denote the asymptotic expected reward per task for rj(Φ1) under

the policy (Φ1), for j = 1, 2, . . . , n. Therefore,

ρζj(w) , lim
T→+∞

rj(Φ1), for j = 1, 2, . . . , n. (2.14)

21

2.4 An SSAP Mixed Policy

In this section, we propose an SSAP mixed policy, which achieves asymp-

totic optimality for WOSA-w, motivated by the threshold value collapse for

policy (Φ1) from Corollary 2. The SSAP mixed policy improves by constant

in computational effort compared with policy (Φ1), without impairing the

convergence rate (see Section 2.6). We show that each component of the

asymptotic expected reward per task for MOSSAP is the same under the

SSAP mixed policy and policy (Φ1).

If FG(Gl) < ζ < FG(Gl+1) for some l ∈ {0, 1, . . . , L− 1}, define

νζ , min(
ζ − FG(Gl)

1− FG(Gl)
,
FG(Gl+1)− ζ
FG(Gl+1)

). (2.15)

Theorem 4 provides an SSAP mixed policy, which is based on the threshold

values defined in (2.6) and makes the first νζ fraction of task assignments

based on the same single threshold.

Theorem 4. Suppose policy (Φ2) assigns the T tasks as follows:

XΦ2
t =


1, if G(t) > Gl+1,

1, with probability q if G(t) = Gl+1,

0, otherwise, for t = 1, 2, . . . , bνζT c,

(Φ2)

XΦ2
t = XΦ1

t , for t = bνζT c+ 1, bνζT c+ 2, . . . , T,

with q defined by (2.12). Then, policy (Φ2) achieves the optimal asymptotic

expected reward per task for WOSA-w, where FG(Gl) ≤ ζ < FG(Gl+1) for

some l ∈ {0, 1, . . . , L− 1}.

Proof: See Appendix A.

The computational effort for policy (Φ2) is the same as the computational

effort for policy (Φ1) with T−bνζT c tasks and hence is O((1−νζ)2T 2Πn
j=1Kj)

in time and O((1− νζ)2T 2) in space.

Theorem 5. The asymptotic value for rj(Φ2) (2.1) of MOSSAP is

lim
T→+∞

rj(Φ2) = ρζj(w),

for j = 1, 2, . . . , n, with ρζj(w) given by (2.13) and (2.14).

22

Proof: See Appendix A.

2.5 A Single-Threshold Mixed Policy

In this section, we propose a single-threshold mixed policy, which achieves

asymptotic optimality for WOSA-w. This policy requires little computa-

tional effort but has a slower convergence rate (see Section 2.6). We show that

each component of the asymptotic expected reward per task for MOSSAP is

the same under the single-threshold mixed policy and policy (Φ1).

Theorem 6. Suppose a single-threshold mixed policy (Φ3) assigns tasks as

follows:

XΦ3
t =


1, if G(t) > Gl+1, η(t) > 0,

1, with probability q if G(t) = Gl+1, η(t) > 0,

0, otherwise,

(Φ3)

η(t+ 1) = η(t)−XΦ3
t and η(1) = bT (1− ζ)c, (2.16)

for t = 1, 2, . . . , T with q given by (2.12). Then, policy (Φ3) achieves the

optimal asymptotic expected reward per task for WOSA-w, where FG(Gl) ≤
ζ < FG(Gl+1) for some l ∈ {0, 1, . . . , L− 1}.

Proof: See Appendix A.

Theorem 7. The asymptotic value for rj(Φ3) (2.1) of MOSSAP is

lim
T→+∞

rj(Φ3) = ρζj(w),

for j = 1, 2, . . . , n, with ρζj(w) given by (2.13) and (2.14).

Proof: See Appendix A.

2.6 Convergence Rate Analysis

This section provides convergence rates for the three aforementioned poli-

cies, i.e., the SSAP optimal policy (Φ1), the SSAP mixed policy (Φ2), and

23

the single-threshold mixed policy (Φ3). For the SSAP optimal policy, we

show that threshold values defined by (2.6) converge to their limits with an

exponential rate using properties of order statistics. Then we prove the con-

vergence rate of the expected weighted reward per task Rw(Φ1) as O(1/
√
T)

using these exponential convergence rates. This convergence rate, referred

to as the optimal convergence rate, applies to a general class of SSAP with a

single objective function, as long as the task value has finite discrete support

and the assignment rewards are of the product-form. Moreover, we prove the

convergence rate of each component of the expected reward per task rj(Φ1)

is O(1/
√
T) for j = 1, 2 . . . , n, the same as that of the weighted objective

function of WOSA-w. For the SSAP mixed policy, we prove the expected

rewards per task Rw(Φ2) and rj(Φ2) for j = 1, 2 . . . , n, have the same con-

vergence rate as those under policy (Φ1). For the single-threshold mixed

policy, although it requires little computational effort, the expected rewards

per task Rw(Φ3) and rj(Φ3) for j = 1, 2 . . . , n, have a slower convergence

rate than those under policy (Φ1), which is O(
√

lnT/
√
T).

2.6.1 Convergence rates under the SSAP optimal policy

First, we provide the convergence rate of threshold values for the SSAP

optimal policy defined by (2.6). The key technique is applying the properties

of order statistics, since the threshold value adTθe,0 is the expected value of

the dTθeth smallest combined value of T tasks, for some θ with 0 < θ < 1.

Lemma 2. The threshold value adTθe,0 defined by (2.6) converges to Gl+1

with an exponential rate as T → +∞, i.e.,

|adTθe,0 −Gl+1| ≤ 2GL exp(−2T∆2
θ),

where

∆θ , min{FG(Gl+1)− θ, θ − FG(Gl)}, (2.17)

for FG(Gl) < θ < FG(Gl+1) and l = 0, 1, . . . , L− 1.

Proof: See Appendix A.

Theorem 8 provides the convergence rate of the expected weighted reward

per task Rw(Φ1) as T → +∞.

24

Theorem 8. The expected weighted reward per task Rw(Φ1) (2.2) of WOSA-

w converges to ρζw(w) with rate O(1/
√
T) as T → +∞, i.e.,

|Rw(Φ1)− ρζw(w)| = O(
1√
T

).

Proof: See Appendix A.

Next, we derive convergence rates for the expected rewards per task of

the n objective functions of MOSSAP. Lemma 3 provides the convergence

rate of bji,0, the expected value of the jth component of the task value vector

that results in the ith smallest combined value. This rate will be used in the

convergence rate analysis for rj(Φ1).

Lemma 3. The value of bjdTθe,0 defined by (2.8) converges to E[Aj(t)|G(t) =

Gl+1] with an exponential rate as T → +∞, i.e.,

|bjdTθe,0 − E[Aj(t)|G(t) = Gl+1]| ≤ 4AM exp(−2T∆2
θ),

where AM , maxj A
Kj
j and ∆θ is given by (2.17), for FG(Gl) < θ < FG(Gl+1),

l = 0, 1, . . . , L− 1 and j = 1, 2, . . . , n.

Proof: From the definition of bjdTθe,0 in (2.8),

|bjdTθe,0 − E[Aj(t)|G(t) = Gl+1]|
(2.8)
= |E[Â

(j)(dTθe)
T |Ĝ(dTθe)

T 6= Gl+1]− E[Aj(t)|G(t) = Gl+1]|P(Ĝ
(dTθe)
T 6= Gl+1)

≤2A
Kj
j P(Ĝ

(dTθe)
T 6= Gl+1)

≤4AM exp(−2T∆2
θ),

where AM = maxj A
Kj
j and the last inequality follows from Lemma 2 with

∆θ given by (2.17).

Theorem 9 provides the convergence rates of the expected rewards per task

for each component of the reward vector of MOSSAP.

Theorem 9. The expected reward per task rj(Φ1) (2.1) of MOSSAP con-

verges to ρζj(w) with rate O(1/
√
T) as T → +∞, i.e.,

|rj(Φ1)− ρζj(w)| = O(
1√
T

), for j = 1, 2, . . . , n.

Proof: See Appendix A.

25

2.6.2 Convergence rates under the SSAP mixed policy

Theorem 10 shows that the expected rewards per task under the SSAP mixed

policy, Rw(Φ2) and rj(Φ2) for j = 1, 2, . . . , n, have the same convergence

rates as those under the SSAP optimal policy, which are all O(1/
√
T).

Theorem 10. The expected rewards per task Rw(Φ2) (2.2) of WOSA-w and

rj(Φ2) (2.1) of MOSSAP converge to ρζw(w) and ρζj(w) with rate O(1/
√
T)

as T → +∞, respectively, i.e.,

|Rw(Φ2)− ρζw(w)| = O(
1√
T

),

|rj(Φ2)− ρζj(w)| = O(
1√
T

), for j = 1, 2, . . . , n.

Proof: See Appendix A.

2.6.3 Convergence rates under the single-threshold mixed
policy

First, Lemma 4 provides a critical property under the single-threshold mixed

policy, which is essential to the convergence rate analysis for policy (Φ3).

Lemma 4. For a fixed T and η = bT (1 − ζ)c, define Us , min{k ∈ Z :∑k
t=1X

Φ3
t = η} and Uns , min{k ∈ Z :

∑k
t=1(1−XΦ3

t) = T − η}, with XΦ3
t

given by (Φ3). Let Umin = min{Us, Uns}. Then for any ε > 0,

P
(
Umin
T

< 1− ε
)
→ 0

with an exponential rate as T → +∞. Specifically, for ε > 0 small,

P
(
Umin
T

< 1− ε
)
< (1 + e) exp(−T∆2

U),

where

∆U ,

√
min{(ε

2
)2

1− ζ
ζ

, ε2
ζ

1− ζ
} = ε

√
min{1− ζ

4ζ
,

ζ

1− ζ
}. (2.18)

Proof: See Appendix A.

26

Theorem 11 provides the convergence rates of the expected rewards per

task under the single-threshold mixed policy, Rw(Φ3) and rj(Φ3) for j =

1, 2, . . . , n, which are all O(
√

lnT/
√
T).

Theorem 11. The expected rewards per task Rw(Φ3) (2.2) of WOSA-w and

rj(Φ3) (2.1) of MOSSAP converge to ρζw(w) and ρζj(w) with rate O(
√

lnT/
√
T)

as T → +∞, respectively, i.e.,

|Rw(Φ3)− ρζw(w)| = O(

√
lnT√
T

),

|rj(Φ3)− ρζj(w)| = O(

√
lnT√
T

), for j = 1, 2, . . . , n.

Proof: See Appendix A.

2.7 Trade-off Analysis and Generalization

In this section, we discuss the asymptotic results obtained in Sections 2.3,

2.4, 2.5 and 2.6 and their generalizations. First, we show the asymptotic

expected reward per task for each component of the reward vector of Pareto

optimal policies for MOSSAP captures the trade-off between the n objective

functions defined by (2.1). Then we generalize these asymptotic results to

MOSSAP with heterogeneous workers.

2.7.1 Trade-off analysis using asymptotic results of MOSSAP

Since the SSAP optimal policy, the SSAP mixed policy and the single-

threshold mixed policy for WOSA-w achieve the same asymptotic expected

reward per task for each component of the reward vector, we only discuss

the trade-off under the SSAP optimal policies for different weight vector

w ≥ 0. Note that each component of the task value vector is discrete with

finite support, and hence the number of different values for ρζj(w) under all

optimal policies for WOSA with all w ≥ 0 is finite for j = 1, 2, . . . , n (see

the expression given by (2.13)). This implies enumerating the asymptotic

expected rewards per task under all such policies is feasible. [65] proves that

when wj is fixed for all j = 1, 2, . . . , k− 1, k+ 1, . . . , n, ρζk(w) increases when

27

wk increases. Therefore, the range for obtainable asymptotic expected re-

wards per task can be obtained by choosing such weight vectors that wj′ is

set to be very large (zero) and {wj}j 6=j′ is set to be zero (very large), for

j′ = 1, 2, . . . , n.

Recall that from the definition of Rw(Φ) (2.2), if w has only one non-zero

component wj 6= 0, denoted by w(j), then maxΦ∈Ψη Rw(Φ) = maxΦ∈Ψη rj(Φ)

and the resulting ρζw(w(j)) given by (2.11) is the optimal asymptotic expected

reward per task for rj(Φ). Define the achievement ratio for rj(Φ) under an

SSAP optimal policy for WOSA-w (denoted by Φw) as

δζj (w) , lim
T→+∞

rj(Φw)

maxΦ∈ΨbT (1−ζ)c rj(Φ)
=

limT→+∞ rj(Φw)

limT→+∞maxΦ∈ΨbT (1−ζ)c rj(Φ)
=

ρζj(w)

ρζw(w(j))
,

(2.19)

for j = 1, 2, . . . , n, where ρζw(w) and ρζj(w) are given by (2.11) and (2.14),

respectively. Therefore, for policy Φw, δζj (w) is the ratio of the asymptotic

expected reward for rj(Φw) under this policy to the optimal asymptotic ex-

pected reward for rj(Φ). Clearly, δζj (w) is a function of the weight vector

w, with 0 ≤ δζj (w) ≤ 1. In general, the magnitude of δζj (w) measures the

closeness of rj(Φw) under an SSAP optimal policy Φw for WOSA-w to the

optima (the larger the closer). Therefore, the vector of (δζ1(w), . . . , δζn(w))

shows the trade-off between the n objective functions of MOSSAP under the

SSAP optimal policies with different weight vectors.

2.7.2 Generalization of asymptotic results of MOSSAP

First we show that MOSSAP defined in Section 2.1 can be generalized to

MOSSAP with multiple classes of workers (i.e., heterogeneous workers). Sup-

pose there are M ∈ Z+ classes of workers. Each worker in class m has

a success rate of τm, for m = 1, 2, . . . ,M . We assume τm > τm+1 for

m = 1, 2, . . . ,M − 1. Let Nm denote the number of workers in class m,

and hence
∑M

m=1Nm = T . Let ζm =
∑M

j=m+1Nj/T denote the fraction of

workers with a success rate strictly less than τm for m = 1, 2, . . . ,M (set

ζM = 0). Then the objective function (2.1) becomes

rj(Φ) ,
1

T
E[

T∑
t=1

M∑
m=1

XΦ
t,mτ

mAj(t)], for j = 1, 2, . . . , n, (2.20)

28

where XΦ
t,m is the binary assignment variable for the tth task under policy Φ:

if XΦ
t,m = 1, then the tth task is assigned to a worker in class m. The feasible

region Ψη
M becomes

Ψη
M , {Φ :

T∑
t=1

XΦ
t,m = Nm, for all m = 1, 2, . . . ,M, and

T∑
m=1

XΦ
t,m ≤ 1, for all t}.

Similarly, the objective function of WOSA-w becomes

Rw(Φ) =
n∑
j=1

wjrj(Φ) =
1

T
E

[
T∑
t=1

M∑
m=1

XΦ
t,mτ

m

(
n∑
j=1

wjAj(t)

)]
, (2.21)

for w ≥ 0.

The generalized results given in this section can be proven by following the

proof of the corresponding theorem for MOSSAP with homogeneous workers,

and hence we omit the proofs. The reason for these generalizations is that

MOSSAP with homogeneous workers has essentially two classes of workers:

original workers with a success rate of one and virtual workers with a success

rate of zero. It has been proven that the difference between success rates of

two classes of workers will not influence the optimal policy [4]. Therefore,

for M classes of workers, the assignment for each task can be viewed as a

(M − 1)-stage assignment problem: at the m-th stage, the policy decides

whether to assign the job to an available worker in class m or pass the job

to the next stage (i.e., assigned to a worker with a lower success rate), for

m = 1, 2, . . . ,M − 1.

Pareto optimal policies for MOSSAP with multiple classes of workers can

be generated using the weighted sum method by solving a sequence of WOSA-

w problems, with the objective function given by (2.21). The optimal policy

for WOSA-w is still a threshold-based policy with threshold values given by

(2.6). However, M−1 threshold values are needed since there are M different

worker classes. Specifically, this policy Φ1M is given by

XΦ1M
t,m =

1, if aT−t−ηm(t)+1,t < G(t) ≤ aT−t−ηm−1(t)+1,t,

0 otherwise,
(Φ1M)

ηm(t+ 1) = ηm(t)−XΦ1M
t,m , m = 1, 2, . . . ,M and t = 1, 2, . . . , T,

29

where ηm(t) denote the number of available workers in class one to class m

when the tth task arrives, with η0(t) = 0 for all t. Then Theorem 1 can be

generalized to show that policy Φ1M is optimal for WOSA-w with multiple

classes of workers (2.21) and {ai,0}Ti=1 are the expected combined values for

the T tasks. Similarly, Corollary 1 can be generalized as

Rw(Φ1M) = max
Φ∈ΨηM

1

T
E[

T∑
t=1

M∑
m=1

XΦ
t,mτ

mG(t)] =
1

T

M∑
m=1

τm

T−
∑m−1
j=1 Nj∑

i=T−
∑m
j=1Nj+1

ai,0,

and

rj(Φ1M) =
1

T
E[

T∑
t=1

M∑
m=1

XΦ1M
t,m τmAj(t)] =

1

T

M∑
m=1

τm

T−
∑m−1
j=1 Nj∑

i=T−
∑m
j=1Nj+1

bji,0,

for j = 1, 2, . . . , n, where {ai,t} are defined by (2.6) and {bji,t} are defined by

(2.8). We define that the summation
∑imax

i=imin
ni , 0 if imin > imax for any

{ni}.
The asymptotic results for MOSSAP with homogeneous workers in Sec-

tions 2.3, 2.5 and 2.6 can also be generalized to MOSSAP with heterogeneous

workers. We assume the fraction of workers in each class is fixed as T ap-

proaches infinity (i.e., ζm remains the same for all m). Therefore, the optimal

asymptotic expected weighted reward per task for WOSA-w is given by gen-

eralizing Theorem 2 as

ρMw (w) =
M∑
m=1

τm
((lm−1∑

k=lm+2

GkpG(Gk)
)

+ qmGlm+1pG(Glm+1)

+ (1− qm−1)Glm−1+1pG(Glm−1+1)

)
,

where

qm =
FG(Glm+1)− ζm
pG(Glm+1)

, for m = 1, 2, . . . ,M, (2.22)

and FG(Glm) ≤ ζm < FG(Glm+1) for some lm ∈ {0, 1, . . . , L − 1} with q0 = 1

and l0 = L. The asymptotic expected reward per task for each component

30

of the reward vector of MOSSAP is hence

ρMj (w) =
M∑
m=1

τm
(
E[Aj(t)|Glm+1 < G(t) < Glm−1+1]PG(Glm+1 < G(t) < Glm−1+1)

+ qmE[Aj(t)|G(t) = Glm+1]pG(Glm+1)

+ (1− qm−1)E[Aj(t)|G(t) = Glm−1+1]pG(Glm−1+1)
)
,

which is obtained by generalizing Theorem 3. Corollary 2 and Lemma 1 can

be generalized to MOSSAP with heterogeneous workers without any change.

There is no direct or simple way to generalize the SSAP mixed policy

to MOSSAP with heterogeneous workers. However, generalizing the single-

threshold mixed policy is direct and simple. The only change is that we need

M − 1 threshold values rather than a single one as in the case of MOSSAP

with homogeneous workers. This policy, Φ3M , is given as follows, which

achieves the optimal asymptotic expected reward per task for WOSA-w and

the same asymptotic expected reward per task for MOSSAP as policy Φ1M .

XΦ3M
t,m =



1, if Glm+1 < G(t) < Glm−1+1, ηm(t) > 0,

1, with probability qm if G(t) = Glm+1, ηm(t) > 0,

1, with probability (1− qm−1) if G(t) = Glm−1+1, ηm(t) > 0,

0, otherwise,

(Φ3M)

ηm(t+ 1) = ηm(t)−XΦ3M
t,m , (2.23)

for t = 1, 2, . . . , T and m = 1, 2, . . . ,M with {qm} given by (2.22).

Convergence rates for policies Φ1 and Φ3 can be directly generalized to

policies Φ1M and Φ3M , respectively, without any change.

31

CHAPTER 3

SCHEDULING C-BENEVOLENT JOBS ON
UNWEIGHTED MACHINES

This chapter considers scheduling a sequence of C-benevolent jobs on multi-

ple homogeneous machines. For two machines, we propose a 2-competitive

Cooperative Greedy algorithm and provide a lower bound of 2 for the compet-

itive ratio of any deterministic online scheduling algorithms on two machines.

For multiple machines, we propose a Pairing-m algorithm, which is determin-

istic 2-competitive for even number of machines and randomized (2+2/m)-

competitive for odd number of machines. We provide a lower bound of 1.436

for the competitive ratio of any deterministic online scheduling algorithms on

three machines, which is the best known lower bound for competitive ratios

of deterministic scheduling algorithms on three machines.

3.1 Formulation

This section provides variable definitions and clarifies notations for the on-

line interval scheduling problem considered in the online interval scheduling

problem for both cases of unweighted and weighted machines.

Consider a fixed set of machines. Let m denote the total number of

machines. Each machine Mi has a positive weight, denoted by wi, for

i = 1, 2, . . . ,m. For the case of unweighted machines, set wi = 1 for

i = 1, 2, . . . ,m, without loss of generality. An instance is a sequence of

N (not known a priori) arriving jobs, one after another, to be scheduled on

one of the available machines. Let I = {J1, J2, . . . , JN} denote the list of ar-

riving jobs, where Jj is a vector (defined in the following) of the jth arriving

job. One machine can execute at most one job at a time and one job can be

assigned to at most one machine. The scheduling assignment is preemptive,

and hence a scheduling assignment may be terminated before completion in

favor of a later arriving job and is a temporary assignment. The terminated

32

job is said to be aborted.

A job vector Jj = (aj, lj, vj) is revealed upon the jth job arrival, for

j = 1, 2, . . . , N . For each job vector, aj denotes the arrival time of the

jth job, lj denotes the length of the jth job, and vj denotes the value of the

jth job. Therefore, if a job is assigned to a machine, the completion time is

defined as fj , aj + lj. Moreover, we refer to the interval [ai, fi) as the job

interval. We assume that no two jobs share the same arrival time. If two

jobs Jj1 and Jj2 satisfy [aj1 , fj1)
⋂

[aj2 , fj2) 6= ∅, then jobs Jj1 and Jj2 are said

to conflict with each other.

The objective of this online scheduling problem is to maximize the total

reward of completed jobs, subject to the constraint of the number of available

machines. If a job Jj is assigned to the machine Mi, then the reward of this

assignment is given by ri,j = vjwi, which is gained only after completing the

job. Therefore, the reward of any assignment terminated before execution

is completed will be zero, and the job will be considered lost, since the ter-

mination of an assignment is irrevocable. We use this simple product form

reward function in this chapter. Section 4.4 discusses the generalization of

our results to other reward functions.

Let OPT (I) denote the optimal reward for a job instance I, which is ob-

tained with the complete knowledge of I and hence is the optimal off-line

reward. Let RA(I) denote the reward obtained by algorithm A for a job in-

stance I. We employ the standard definition for competitive ratios, given in

Definition 2.

Definition 2. An online algorithm A is said to have a competitive ratio

of γ if RA(I) ≥ OPT (I)/γ for any job instance I generated by an adapted

adversary.

By Definition 2, γ ≥ 1. It is already known that if the relationship between

the length and the job value is arbitrary, no finite competitive ratio can be

guaranteed [39]. Therefore, we focus on a special class of jobs, referred

to as C-benevolent jobs, as introduced by [39]. For C-benevolent jobs, job

values are a function of lengths (i.e., vi = g(li)). Moreover, the function

g(l) is C-benevolent (see Definition 3). Note that this class of jobs fits the

application for the aviation security screening problem. Although the exact

relationship between the risk value and the screening time is indefinite, we

have the following observations based on experience: (a) the risk value is an

33

increasing function of the screening time (i.e., a passenger with a higher risk

value requires a longer screening time); (b) the risk value is a convex function

of the screening time (i.e., screening a highly suspected passenger will gain

a larger risk value than screening several low-risk passengers using the same

amount of time). Therefore, the relationship between the risk value and the

screening time satisfies C-benevolent conditions.

Definition 3. A function g(l) is said to be C-benevolent if g(l) is a positive,

convex, strictly increasing and continuous function of l. In other words, the

convexity property of C-benevolent function g(l) implies that

g(a+ ε) + g(b− ε) ≤ g(a) + g(b),

for 0 < ε ≤ a ≤ b.

Note that C-benevolent jobs include jobs with values linearly proportional

to lengths but do not include jobs with equal length and arbitrary values.

However, our results can be applied to jobs with equal length and arbitrary

values, as discussed in Section 4.4.

3.2 Cooperative Greedy Algorithm for Two Machines

This section considers two machines, which is the basic case for multiple

machines. The analysis method used here provides insights for multiple ma-

chines, and this algorithm is later generalized to multiple machines in Sec-

tion 3.4.

We propose a deterministic algorithm for two machines, referred to as

the Cooperative Greedy algorithm. This algorithm is inspired by the 2-

competitive algorithm given by [41], which is designed for jobs with values

proportional to lengths (a special class of C-benevolent functions). Inde-

pendent from our work, [45] uses the same idea in proposing a randomized

2-competitive algorithm for scheduling C-benevolent jobs on a single ma-

chine. The proof of Theorem 12 follows from the proof of Theorem 3.3 [45]

and hence is omitted here.

Theorem 12. The Cooperative Greedy algorithm is 2-competitive for schedul-

ing C-benevolent jobs on two machines.

34

Algorithm 1 Cooperative Greedy Algorithm

Arbitrarily pick one machine as the primary machine (PM) and the other
one as the secondary machine (SM).
for all job intervals Ji in an instance I do

if PM has just completed executing some job then
Switch the role of PM and SM.
if PM is not executing any job then

Assign Ji to PM, and let Ji be executed till it is completed.
else

Assign Ji to SM temporarily.
end if

else if PM is executing some job while SM is not executing any job
then

Assign Ji to SM temporarily.
else if PM is executing some job and SM is also executing some job Jj

then
Abort and assign Ji to SM only if vi > vj.

end if
end for

3.3 Greedy-2 Algorithm for Multiple Machines

This section considers a Greedy-2 algorithm for scheduling on multiple ma-

chines and proves that it is 4-competitive. An example is provided to show

that the analysis for the Greedy-2 algorithm is tight. We provide a different

proof than the one in [46].

3.3.1 A 4-competitive approximation algorithm

This section provides an approximation algorithm for multiple machines, the

Multiple Greedy-2 algorithm, described as follows. We prove that the Mul-

tiple Greedy-2 algorithm is 4-competitive for C-benevolent job sequences by

extending the deterministic results of [39] to scheduling algorithms on mul-

tiple machines.

We first clarify some notations, which follow those from [39], as shown

in Figure 3.1. Consider a job J completed under the Greedy-2 algorithm

on a single machine. Then, all jobs that are temporarily assigned by the

Greedy-2 algorithm but later aborted directly or indirectly in favor of J are

35

Algorithm 2 Greedy-2 Algorithm

Let Sk(t) denote the job being executed on machine Mk at time t, for
k = 1, 2, . . . ,m.
for all job intervals Ji in an instance I do

if vi ≥ 2 mink v(Sk(ai)) then
k′ = arg mink v(Sk(ai))
Abort Sk′(t) and assign Ji to machine Mk′ .
Update Sk′(t), i.e., Sk′(t) = Ji, for t ∈ [ai, ai + li).

else
Discard Ji.

end if
end for

called predecessors of J . The job not assigned by the Greedy-2 algorithm

that arrives during the execution of J and has the largest completion time is

called the successor of J . The set of jobs consisting of all predecessors of J ,

J , and the successor of J is referred to as the segment of J . Let G(J) denote

the segment of J under the Greedy-2 algorithm. Then, from Observation

3.1 in [39], a job instance can be divided into non-overlapping segments of

all completed jobs under the Greedy-2 algorithm (i.e., no job arrives during

the gap between subsequent segments, if such a gap exists). Next, we mark

the arrival times of all predecessors of J , the arrival time and completion

time of J , and the completion time of the successor of J . These time points

are referred to as the marked time points of a segment. Number these time

points starting from the very last time point of a segment to the beginning

of the segment, namely backwards in time (b0, b1, . . . and c0, c1, . . . as shown

in the Figure 3.1). A job K that arrives during the interval defined by G(J),

which starts from the arrival time of the very first processor and ends at the

completion time of J , is called belonging to G(J). Let H(J) denote the set

of jobs belonging to the segment of J .

Before analyzing the Greedy-2 algorithm, we first give Proposition 2 for

the Greedy-2 algorithm on a single machine, which is an important property

of Greedy algorithms for C-benevolent job sequences. Note that Proposi-

tion 2 is stronger than Theorem 3.2 in [39] since it includes infeasible sched-

ules, while Theorem 3.2 in [39] only considers feasible schedules.

Proposition 2. Let {bi}ni=0 denote the marked time points of the segment of

a completed job J . Then for any set of jobs I ⊂ H(J), the sum of values

36

M1

M2

𝑐0 𝑐1 𝑐2 𝑐3 𝑐4

𝑏0 𝑏1 𝑏2 𝑏3 𝑏4

t

K

predecessors successor

J

Figure 3.1: Segments of completed jobs under the Greedy-2 algorithm.

of the jobs in I is no greater than 4v(J), as long as the following conditions

are satisfied: (a) no overlapping interval exists within a job (i.e., for any

job Ji1 ∈ I, there is no job Ji2 ∈ I such that [ai1 , fi1) ⊂ [ai2 , fi2)); (b) for

any interval defined by two marked time points [bi+1, bi), only one job that

arrives during this interval and completes after bi can be selected in I, for

i = 1, 2 . . . , n− 1.

Proof: Since C-benevolent functions are increasing, we assume that jobs

in I cover the entire interval of [bn, b0] (this only increases the sum of values

of the jobs in I, since C-benevolent functions are convex and increasing).

First consider those jobs in I that cover a marked time point. Note that a

job can cover at most one marked time point. Then, for any job K ∈ I and

K /∈ G(J), if K covers some marked time point bi, then v(K) ≤ 22−iv(J),

for i = 1, 2, . . . , n − 1. If K ∈ G(J) such that K arrives at some marked

time point bi′ , pick bi′ as the marked time point that K covers, and we still

have v(K) ≤ 22−i′v(J), for i′ = 1, 2, . . . , n. For those jobs in I that cover no

marked time point, since overlapping is not permitted within any job in I

(by condition (a)), then the jobs covering no marked point only exist in the

gap between those jobs in I that cover some marked time point. Therefore,

since C-benevolent functions are increasing, the sum of values of the jobs in

37

I is ∑
K∈I

v(K) ≤
n−1∑
i=1

22−iv(J) ≤ 4v(J).

�

Let Gk denote the set of jobs assigned to machine Mk by the Greedy-2 al-

gorithm, including both aborted jobs and completed jobs, for k = 1, 2, . . . ,m.

Let OPTk denote the set of jobs scheduled on Mk in the optimal schedule

for m machines, for k = 1, 2, . . . ,m. The competitive ratio of the Greedy-2

algorithm is given in Theorem 13.

Theorem 13. The Greedy-2 algorithm is 4-competitive for C-benevolent job

sequences on multiple machines.

Proof: First, we process all the jobs in {OPTk}mk=1 by checking and grouping

as follows. For any job J in OPTk, for k = 1, 2, . . . ,m, if J ∈ Gk′ for some

k′ = 1, 2, . . . ,m, we say job J in Gk′ is checked for the whole interval of

J . Let GC denote the set of all the checked jobs in
⋃
k Gk. Next, consider

a job J ∈
⋃
k OPTk \ GC . Since J /∈

⋃
k Gk, all the machines must be

executing some other job when J arrives. Let Kk(J) denote the job being

executed on machine Mk when J arrives, for k = 1, 2, . . . ,m. Therefore,

v(J) < 2v(Kk(J)), for k = 1, 2, . . . ,m. We want to group J with one of the

segments that Kk(J) belongs to. The grouping option is different for the two

cases: (a) there is some job Kk̄(J) that is completed before the completion

time of J ; (b) no Kk(J) is completed before the completion time of J . For

case (a), group J with the segment that Kk̄(J) belongs to. If there are more

than one such Kk̄(J), choose one segment arbitrarily and group J with it.

For case (b), then there must exist at least one machine Mk̂ such that one of

the following conditions holds: (a) the completion time of J is earlier than

that of Kk̂(J), and Kk̂(J) is not checked for the interval of [a(J), a(J)+l(J));

(b) the completion time of J is later than that of Kk̂(J), and both Kk̂(J)

and the subsequent job that aborts Kk̂(J) are not checked for the interval of

[a(J), a(J) + l(J)). The existence of these conditions is due to the feasibility

of J on one of the machines (i.e., J ∈
⋃
k OPTk). If condition (a) holds, group

J with the segment that Kk̂(J) belongs to and check Kk̂(J) for the interval

of [a(J), a(J) + l(J)). If condition (b) holds, group J with the segment that

Kk̂(J) belongs to and check Kk̂(J) and the subsequent job that aborts Kk̂(J)

for the interval of [a(J), a(J) + l(J)) (if there is more than one machine that

38

fulfills condition (a) or (b), choose one arbitrarily). In this way, each job in⋃
k OPTk is grouped to one segment, either by checking or grouping.

Then, we consider each grouped segment S on any machine. According to

our checking and grouping strategy, a job in the segment S is either checked

for the whole interval or checked partially. Moreover, no partial interval

within a job can be checked more than once, which satisfies condition (a) in

Proposition 2. In addition, the grouped jobs in a segment satisfy condition

(b) in Proposition 2. Therefore, from Proposition 2, the sum of values of the

jobs in
⋃
k OPTk grouped to each segment is no greater than four times the

value of the job completed by the Greedy-2 algorithm in that segment on the

particular machine. That is, the 4-competitive ratio holds for any grouped

segment. Since a job instance can be divided into non-overlapping segments,

the Greedy-2 algorithm is 4-competitive for C-benevolent job sequences.

�

3.3.2 Tightness of analysis for the Greedy-2 algorithm

We provide a small example of a job instance that drives the competitive

ratio of the Greedy-2 algorithm arbitrarily close to 4 and hence shows that

our analysis for the Greedy-2 algorithm is tight.

Example 1. Suppose a job instance is constituted of m identical pairs of

geometric-sets of stage-N and main-sets of stage-(N + 1). A geometric-set

of stage-N is a sequence of N jobs, where the arrival time of the subsequent

job is immediately before the completion time of the previous job with a small

overlapping, and values of subsequent jobs increase by a factor of two. More

precisely, let {(ai, li, vi)}Ni=1 be a geometric-set of stage-N . Then the follow-

ing conditions are satisfied: (a) vi+1 = 2vi, for i = 1, 2, . . . , N − 1; (b)

ai+1 = ai + li − ε, for i = 1, 2, . . . , N − 1, where ε is chosen to be sufficiently

small. Therefore, only the last job can be completed in a geometric-set un-

der the Greedy-2 algorithm. A main-set of stage-(N + 1) is a sequence of

N + 1 jobs paired with the geometric-set, which is feasible on a machine

but is neglected due to the existence of the corresponding geometric-set. For

the geometric-set of stage-N {(ai, li, vi)}Ni=1, the main-set may be constructed

as {(a′i, l′i, v′i)}N+1
i=1 satisfying the following conditions: (a) a′i = ai + ε, for

i = 1, 2, . . . , N − 1, and aN+1 = aN + lN − ε; (b)a′i + l′i = ai + li, for

39

i = 1, 2, . . . , N − 1, and a′N + l′N = aN + lN − ε; (c) v′i = vi − δ, for

i = 1, 2, . . . , N , and vN+1 = 2vN − δ. Note that δ is determined by ε

through the C-benevolent functions, and ε can be selected to be sufficiently

small such that δ is sufficiently small. We set subsequent pairs of the m

pairs of geometric-sets and main-sets to have a slight difference τ in ar-

rival times such that mτ < ε, and hence τ is negligible. Therefore, un-

der the Greedy-2 algorithm, each machine will only select intervals from the

geometric-sets and neglect jobs in the main-sets. Moreover, only the last job

in each geometric-set is completed, and hence the reward for the Greedy-2

algorithm is mvN . However, the optimal schedule should be scheduling all

the jobs in the m main-sets, and hence the optimal reward is m
∑N+1

i=1 v′i =

m
(∑N

i=1 vi + 2vN − (N + 1)δ
)

= m
(
(4− 2−(N−1))vN − (N + 1)δ

)
. There-

fore, by setting N large and (N + 1)δ � vN , the competitive ratio of the

Greedy-2 algorithm can be made arbitrarily close to 4.

3.4 Pairing-m Algorithm for Multiple Machines

This section considers scheduling C-benevolent jobs on multiple machines

(i.e., m ≥ 3). We generalize the Cooperative Greedy algorithm for two ma-

chines to even and odd number of machines, respectively. The algorithm is

referred to as the Pairing-m algorithm. We show that the Pairing-m algo-

rithm is 2-competitive for even number of machines and (2+2/m)-competitive

for odd number of machines. For even number of machines, the Pairing-m

algorithm is deterministic. For odd number of machines, the Pairing-m al-

gorithm is randomized.

3.4.1 Pairing-m algorithm for even number of machines

Let m = 2k, where k ∈ Z+. The Pairing-m algorithm works similarly to the

Cooperative Greedy algorithm. It dynamically pairs up m machines, 2k as

the primary machines (PM) and the other as the secondary machines (SM).

The pairing between machines is not fixed and changed at the completion

of jobs assigned on PMs. First, we divide the time axis into sections : the

time interval starts from one of PMs gets assigned a job till the first time

all machines are available. Therefore, the time axis can be divided into non-

40

overlapping sections with no job arriving between two successive sections.

We describe how the Pairing-m algorithm assigns jobs in each section in the

following.

Consider any section. In the beginning, we pick k machines as PMs and

the other k machines as SMs arbitrarily. Suppose M1 to Mk are PMs and

Mk+1 to M2k are SMs. The Pairing-m algorithm starts by assigning arriving

jobs to an available PM until all PMs are busy. If this never happens, then

the Pairing-m algorithm completes all arrived jobs in this section and hence

is the same as the optimal schedule. Otherwise, let J1, J2, . . . denote the jobs

completed by the Pairing-m algorithm, indexed in the increasing order of

completion times.

We further divide the section into non-overlapping segments based on the

completion times of jobs assigned to PMs: the first segment is defined as the

time interval between the start of the section and the completion time of the

J1; successive segments are defined as the time interval between two subse-

quent completion times of jobs assigned on PMs. Therefore, for instance,

[f(Ji), f(Ji+1)) is a segment for i = 1, 2, In each segment, jobs assigned

on the k PMs will be guaranteed completion (remain un-preempted). If

there is at least one available PM in the segment, then assign jobs arriv-

ing in this segment to these available PMs until all PMs are busy. If there

is no available PM in the segment, then the k SMs greedily schedule jobs

arriving in this segment: a newly arrived job J ′j is only scheduled on some

SM if v(J ′j) > min v(JSM), where min v(JSM) is the minimum value of jobs

executed on SMs when J ′j arrives (if a machine has no job assigned to it, we

consider it as executing a virtual job of value zero and length zero). In this

way, the k SMs will be assigned jobs the with the top k values out of all

the jobs arriving in the segment (if there are k′ < k jobs arriving in the seg-

ment, we consider another k− k′ virtual jobs with value zero and lengh zero

arriving in this segment). At the beginning of each segment, two machines

(one PM and one SM) switch their roles: the PM which just completes its

assigned job becomes an available SM, and the SM assigned the largest-value

job among all jobs currently executed on SMs becomes an PM. Therefore,

the Pairing-m algorithm keeps k PMs and k SMs in each time segment. This

process continues till all 2k machines are available again, which is the end of

a section. When the next job arrives, a new section begins in the same way.

41

Theorem 14. The Pairing-m algorithm is 2-competitive for scheduling C-

benevolent jobs on even number of machines.

Proof: Since a job sequence can be divided into non-overlapping sections,

we compute the competitive ratio of the Pairing-m algorithm in any section,

which is the same as the competitive ratio of the Pairing-m algorithm for the

job sequence.

Let OPT (Mi, n) denote the optimal schedule on machine Mi (with abuse

of notation, OPT (Mi, n) also denotes the value for the optimal schedule de-

pending on the context) when the Pairing-m algorithm completes n jobs in a

section, for i = 1, 2, . . . ,m and n ≥ 1. Let {OPTi(n)} denote the order statis-

tics of {OPT (Mi, n)} such that OPTi(n) ≤ OPTi−1(n) for i = 2, 3, . . . ,m.

Let {J1, J2, . . . , Jn} denote jobs completed by the Pairing-m algorithm, in-

dexed in the increasing order of completion times with f(J1) ≤ f(J2) ≤ . . . ≤
f(Jn). Note that the index of these jobs may not coincide with their arrival

orders. Therefore, the completion time of the last job in the optimal schedule

OPT (Mi, n) is less than f(Jn) for i = 1, 2, . . . , n.

We prove
∑k

i=1 OPTi(n) ≤
∑n

j=1 v(Jj) by induction on the total number

of jobs completed by the Pairing-m algorithm in a section. Consider the base

case of n ≤ k. Then, there are only k jobs arriving in this section, and all

jobs are completed by PMs. Therefore,
∑k

i=1OPTi(n) ≤
∑n

j=1 v(Jj) holds

trivially.

Assume
∑k

i=1 OPTi(n) ≤
∑n

j=1 v(Jj) holds for some n. We want to show

that
∑k

i=1 OPTi(n + 1) ≤
∑n+1

j=1 v(Jj) holds. Consider the last completed

job Jn+1 by the Pairing-m algorithm. We compare the set of jobs arriving

in this section In+1 with {J1, J2, . . . , Jn+1} completed by the Pairing-m al-

gorithm and another set of jobs arriving in this section In constructed as

follows, with In ⊂ In+1. Let Sn+1 denote the segment where Jn+1 arrives

and Is denote the set of jobs that arrive in segment Sn+1. Note that no jobs

arrive after segment Sn+1. Then define In , In+1 \ Is. The Pairing-m algo-

rithm will complete at most n jobs for the set of jobs In in this section. Let

{J ′1, J ′2, . . . , J ′n} denote the set of jobs (indexed in increasing order of com-

pletion times) completed by the Pairing-m algorithm for In (if the number

of completed jobs is smaller than n, append virtual jobs with value zero and

length zero to the end).

If Is = {Jn+1}, then Ji = J ′i for i = 1, 2, . . . , n. By the induction assump-

42

tion,
k∑
i=1

OPTi(n+ 1) ≤
k∑
i=1

OPTi(n) + v(Jn+1) ≤
n+1∑
j=1

v(Jj).

Otherwise, Is contains more than one job. Let {K ′1, K ′2, . . . , K ′k} ⊂ {J ′1, J ′2, . . . , J ′n}
denote the k jobs assigned to the k SMs at the end of segment Sn+1 for In (if

some SM is available during this segment, then we consider this SM as exe-

cuting a virtual job with value zero and length zero). Then {K ′1, K ′2, . . . , K ′k}
will be completed by the Pairing-m algorithm for In since no more jobs ar-

rive. However, for In+1, these k SMs will be updated with jobs with the

top k values out of Is
⋃
{K ′1, K ′2, . . . , K ′k}. Let {K1, K2, . . . , Kk} denote the

k jobs being executed on the k SMs at the end of segment Sn+1 for In+1.

Then Jn+1 ∈ {K1, K2, . . . , Kk}. Consider OPTi(n + 1), for i = 1, 2, . . . , k.

If there exists Kj such that Kj ∈ OPTi(n + 1), then define OPT ′i (n + 1) ,

OPTi(n+ 1) \Kj. Otherwise, if OPTi(n+ 1) does not contain any Kj, then

if OPTi(n + 1) does not schedule any job that conflicts with any Kj, then

OPT ′i (n + 1) , OPTi(n + 1). Otherwise, suppose OPTi(n + 1) schedules

a set of jobs {H i
j}
lj
i=1 (indexed by i in the increasing order of completion

times), which conflict with some Kj. Then, the completion time of H
lj−1
j

is within the segment Sn+1, since H
lj
j arrives in the segment of Sn+1. By

the scheduling policy of the Pairing-m algorithm, v(H i
j) < v(Kj) for any i.

Define OPT ′i (n + 1) , OPTi(n + 1) \ H lj
j . Consider the set of schedules

{OPT ′i (n + 1)}ki=1. Then the largest completion time of jobs in schedules

{OPT ′i (n+ 1)}ki=1 is within Sn+1. Therefore, from the induction assumption,

k∑
i=1

OPT ′i (n+ 1) ≤
n∑
j=1

v(J ′j)−
k∑
j=1

v(K ′j),

which follows from the fact that the largest completion time of jobs in sched-

ules {OPT ′i (n+ 1)}ki=1 is already covered by the job completed at the end of

segment Sn+1, and the completion times of {K ′1, K ′2, . . . , K ′k} are all beyond

43

Sn+1. Therefore,

k∑
i=1

OPTi(n+ 1) ≤
k∑
i=1

OPT ′i (n+ 1) +
k∑
j=1

v(Kj)

≤
n∑
j=1

v(J ′j)−
k∑
j=1

v(K ′j) +
k∑
j=1

v(Kj) ≤
n+1∑
j=1

v(Jj),

where: the first inequality follows from the construction of {OPT ′i (n+1)}ki=1;

the last inequality follows from
∑k

j=1 v(K ′j) ≤
∑k

j=1 v(Kj) and {Jj}nj=1 \
{Ki}ki=1 = {J ′j}nj=1 \ {K ′i}ki=1 from the construction of In. �

3.4.2 Pairing-m algorithm for odd number of machines

When the number of machines is odd, the Pairing-m algorithm for even

number of machines cannot be directly applied. To overcome this difficulty,

we introduce randomization and generalize the Pairing-m algorithm for even

number of machines to odd number of machines.

Let m = 2k+1 for k ∈ Z+. We create a virtual machine, add it to the pool

of real machines and treat this virtual machine the same as real machines.

Then the Pairing-m algorithm can be applied to these m+ 1 machines. Let

OPT (Mi, I) and P (Mi, I) denote the optimal schedule and the schedule us-

ing the Pairing-(m+1) algorithm on machine Mi for instance I, respectively,

for i = 1, 2, . . . ,m + 1 (machine Mm+1 is the virtual machine). Then ar-

bitrarily pick m schedules out of {P (Mi, I)}m+1
i=1 with equal probability, and

schedule jobs to the m real machines according to these m selected schedules.

This algorithm is referred to as the Pairing-m algorithm for odd-number of

machines.

Theorem 15. The Pairing-m algorithm is 2+2/m-competitive for scheduling

C-benevolent jobs on odd number of machines.

Proof: Let {OPTi(I)} denote the order statistics of {OPT (Mi, I)},
with OPTi(I) ≥ OPTi+1(I) for i = 1, 2, . . . ,m (with abuse of notation,

{OPT (Mi, I)} also denotes the value of the schedule depending on the con-

44

text). Then from Theorem 14,

k+1∑
i=1

OPTi(I) ≤
m+1∑
i=1

v(P (Mi, I)),

where v(P (Mi, I)) denotes the total value of completed jobs by schedule

P (Mi, I). Since the Pairing-m algorithm randomly selects m schedules from

{P (Mi, I)}m+1
i=1 with equal probability, then the expected reward using the

Pairing-m algorithm, denoted by Rm(I), is lower bounded by

Rm(I) =
m

m+ 1

m+1∑
i=1

v(P (Mi, I)) ≥ m

m+ 1

k+1∑
i=1

OPTi(I).

The optimal reward on m machines for instance I, denoted by Om(I), is

upper bounded by

Om(I) ≤
m+1∑
i=1

OPTi(I) ≤ 2
k+1∑
i=1

OPTi(I).

Therefore, the competitive ratio for the Pairing-m algorithm on odd number

machines is given by 2(m+ 1)/m = 2 + 2/m. �

3.5 Lower Bounds for Competitive Ratios

This section gives lower bounds of 2 and 1.436 for the competitive ratio of any

deterministic algorithm for scheduling C-benevolent jobs on two and three

machines, respectively. Since Cooperative Greedy algorithm is 2-competitive

for two machines, it is the best obtainable deterministic algorithm for schedul-

ing C-benevolent jobs on two machines. From Theorem 15, the competitive

ratio of the Pairing-m algorithm on three machines is 2 + 2/3 = 2.67. Al-

though there is still a gap between the competitive ratio of our proposed

algorithm and the lower bound for three machines, the Pairing-m algorithm

is the first-known 2.67-competitive randomized algorithm for scheduling C-

benevolent jobs on three machines.

Theorem 16 gives a lower bound for any deterministic algorithms on two

machines. The proof of Theorem 16 uses the same technique as the proof of

Theorem 6 [40], and hence, is omitted here.

45

Theorem 16. No deterministic algorithm for C-benevolent jobs on two ma-

chines can achieve a competitive ratio lower than 2.

Theorem 17 provides a lower bound for any deterministic algorithm for

scheduling C-benevolent job sequences on three machines. We use an ap-

proach similar to that in [40], but we handle more complicated cases for

three machines.

We use the W-set, the job set originally defined in [39], to prove this upper

bound. A W-set of jobs is defined as a sequence of jobs that satisfy the fol-

lowing conditions: (a) jobs arrive in sequence but conflict with one another

within the set; (b) the value of the first arriving job is set to be one; (c) the

values of subsequent jobs differ from each other by a small amount δ > 0

(monotonically increasing); (d) the arrival times of subsequent jobs differ

from each other by a small time ε > 0. Let v̄ denote the value of the last job

in a W-set (also the largest job value in this W-set by construction). Note

that by setting the values of ε and δ, then v̄ can be made to be arbitrarily

large for C-benevolent job sequences.

Theorem 17. No deterministic algorithm for C-benevolent job sequences on

three machines can achieve a competitive ratio lower than 1.436.

Proof: We prove this lower bound by considering a sequential game between

a deterministic algorithm and an adaptive adversary. We will show that there

exists a strategy for the adversary to drive the inverse of the competitive ratio

of any deterministic algorithm to 0.696 + ζ, where ζ > 0 can be arbitrarily

small.

First, the adversary generates three identical W-sets, with sets arriving

as one slightly after another by a delay of ε′ � ε. We make this difference

between these three sets only to conform to the assumption that no two jobs

share the same arrival time; we will ignore this ε′ difference in the arrival

times of two jobs in the following. Now a deterministic algorithm, denoted

by A, has several choices of which jobs to assign to each machine. Let Jx(x),

Jy(y), and Jz(z) denote the jobs (job values) that A assigns to M1, M2, and

M3, respectively. Let OPT denote the optimal reward and r(A) denote the

reward for algorithm A. Then the inverse of the competitive ratio of A is

γA = r(A)/OPT . The adversary will react adaptively to different choices

46

made by A, as discussed case by case.

Note that if at least one machine does not have any job that has been

scheduled by A, then γA should be no greater than 2/3 < 17/24. Moreover,

each machine can have at most one job from the three W-sets since jobs in

these W-sets conflict with each other. Therefore, we assume that all three

machines have one job from the three W-sets scheduled by A in the following.

Case 1 All of the scheduled jobs have a value of one. That is, x = y = z = 1. In

this case, the adversary generates no more jobs. Therefore, OPT = 3v̄,

r(A) = 3, and hence, γA = 1/v̄ ≤ 1/2, for v̄ ≥ 2.

Case 2 Two of the scheduled jobs have a value of one. Suppose x = y = 1 and

z > 1. In this case, the adversary generates no more jobs. Therefore,

OPT = 3v̄, r(A) = 2+z, and hence γA = (2+z)/(3v̄) ≤ 1/3+2/(3v̄) ≤
2/3, for v̄ ≥ 2.

Case 3 One of the scheduled jobs has a value of one. Suppose x = 1. Then

we have two sub-cases for the other two scheduled jobs : (a) y = z and

(b) the value of one job is strictly smaller than the other. For sub-case

(b), without loss of generality, suppose y < z. If y ≤ v̄/2 and z ≤ v̄/2,

then γA ≤ 1/2. Therefore, we consider y = z > v̄/2 for case (a) and

z > v̄/2 for case (b).

For Case 3 (a), the adversary generates three additional identical jobs

that arrive right before the completion time of Jy and Jz but after

the completion time of the preceding job in the W-set (jobs that that

arrive right before the completion time of some job J but after the

completion time of the job preceding J in the W-set are referred to as

the challenger jobs for J). The values of these three new jobs are all

equal to y. Then, the reward for A is at most r(A) = 1+3y (since job Jx

does not conflict with the new arrivals). However, the optimal reward

is OPT = 3(2y − δ). Therefore, γA = (1 + 3y)/ (3(2y − δ)) ≤ 2/3 + ζ,

for δ sufficiently small and v̄ sufficiently large.

For Case 3 (b), if y > z/2, then the adversary generates three additional

challenger jobs with value z for Jy. Then, the reward for A is at most

r(A) = 1 + 3z. However, the optimal reward is OPT = 3(y + z − δ).
Therefore, γA = (1 + 3z)/ (3(y + z − δ)) ≤ 2/3 + ζ, for δ sufficiently

small and v̄ sufficiently large. Otherwise, if y ≤ z/2, then the adversary

47

generates three additional challenger jobs with value z for Jz. Then, the

reward for A is at most r(A) = 1+y+3z. However, the optimal reward

is OPT = 3(z + z − δ). Therefore, γA = (1 + y + 3z)/ (3(z + z − δ)) ≤
7/12 + ζ, for δ sufficiently small and v̄ sufficiently large.

Case 4 None of the scheduled jobs has a value of one. That is, x, y, z > 1.

In this case, we have four sub-cases: (a) All the scheduled jobs have

the same value, x = y = z. (b) Two of the scheduled jobs have the

same value, and this value is greater than the other job value; suppose

x < y = z. (c) Two of the scheduled jobs have the same value, and

this value is smaller than the other job value; suppose x = y < z. (d)

None of the scheduled jobs has the same value; suppose x < y < z. We

provide an upper bound for inverse of the competitive ratio γA for each

sub-case separately.

For Case 4 (a), the adversary generates three additional challenger

jobs with value x for Jx. Then, the reward for A is at most r(A) = 3x.

However, the optimal reward is OPT = 3(2x − δ). Therefore, γA =

3x/ (3(2x− δ)) ≤ 1/2 + ζ, for δ sufficiently small.

For Case 4 (b), if x > y/2, then the adversary generates three additional

challenger jobs with value y for Jx. Then, the reward for A is at most

r(A) = 3y. However, the optimal reward is OPT = 3(x + y − δ).

Therefore, γA = 3y/ (3(x+ y − δ)) ≤ 2/3 + ζ, for δ sufficiently small

and v̄ sufficiently large. Otherwise, if x ≤ y/2, then the adversary

generates three additional challenger jobs with value y for Jy. Then,

the reward for A is at most r(A) = x+3y. However, the optimal reward

is OPT = 3(2y− δ). Therefore, γA = (x+ 3y)/ (3(2y − δ)) ≤ 7/12 + ζ,

for δ sufficiently small and v̄ sufficiently large.

For Case 4 (c), if x > z/2, then the adversary generates three additional

challenger jobs with value z for Jx. Then, the reward for A is at most

r(A) = 3z. However, the optimal reward is OPT = 3(x + z − δ).

Therefore, γA = 3z/ (3(x+ z − δ)) ≤ 2/3 + ζ, for δ sufficiently small

and v̄ sufficiently large. Otherwise, if x ≤ z/2, then the adversary

generates three additional challenger jobs with value z for Jz. Then, the

reward for A is at most r(A) = 2x+ 3z. However, the optimal reward

is OPT = 3(2z− δ). Therefore, γA = (2x+ 3z)/ (3(2z − δ)) ≤ 2/3 + ζ,

for δ sufficiently small and v̄ sufficiently large.

48

For Case 4 (d), if x > z/2, then the adversary generates three additional

challenger jobs with value z for Jx. Then, the reward for A is at most

r(A) = 3z. However, the optimal reward is OPT = 3(x + z − δ).

Therefore, γA = 3z/ (3(x+ z − δ)) ≤ 2/3 + ζ, for δ sufficiently small

and v̄ sufficiently large. Otherwise, if x ≤ z/2 and y > 0.676z, then

the adversary generates three additional challenger jobs with value z

for Jy. Then, the reward for A is at most r(A) = x + 3z. However,

the optimal reward is OPT = 3(y + z − δ). Therefore, γA = (x +

3z)/ (3(y + z − δ)) ≤ 0.697+ζ, for δ sufficiently small and v̄ sufficiently

large. Otherwise, if x ≤ z/2 and y ≤ 0.676z, then the adversary

generates three additional challenger jobs with value z for Jz. Then,

the reward for A is at most r(A) = x + y + 3z. However, the optimal

reward is OPT = 3(2z−δ). Therefore, γA = (x+y+3z)/ (3(2z − δ)) ≤
0.696 + ζ, for δ sufficiently small and v̄ sufficiently large.

Summarizing all the possible cases, since ζ can be arbitrarily small, no deter-

ministic algorithm can achieve a competitive ratio lower than 1/0.696 = 1.436

on three machines for C-benevolent job sequences versus adaptive adver-

saries. �

49

CHAPTER 4

SCHEDULING C-BENEVOLENT JOBS ON
WEIGHTED MACHINES

This chapter considers scheduling C-benevolent jobs on multiple heteroge-

neous machines with different positive weights. The reward for completing a

job assigned to a machine is given by the product of the job value and the

machine weight. The objective of this scheduling problem is to maximize the

total reward for completed jobs. Two classes of approximation algorithms

are analyzed, Cooperative Greedy algorithms and Prioritized Greedy algo-

rithms, with competitive ratios provided. We show that when the weight

ratios between machines are small, the Cooperative Greedy algorithm out-

performs the Prioritized Greedy algorithm. As the weight ratios increase,

the Prioritized Greedy algorithm outperforms the Cooperative Greedy algo-

rithm. Moreover, as the weight ratios approach infinity, the competitive ratio

of the Prioritized Greedy algorithm approaches four. We also provide lower

bounds of 2 and 9/7 for the competitive ratio of any deterministic algorithm

for scheduling C-benevolent jobs on two and three machines with arbitrary

weights, respectively.

4.1 Cooperative Greedy Algorithms

This section considers the Cooperative Greedy algorithms, proposed in Chap-

ter 3. First, we show that the performance of the Cooperative Greedy algo-

rithm for two unweighted machines deteriorates significantly as the ratio of

the two machine weights (referred to as the weight ratio) increases. Then,

we extend this analysis to the Pairing-m algorithm on m machines (an ex-

tension of the Cooperative Greedy algorithm to multiple machines) and show

that the competitive ratio increases as the largest weight ratio increases for

even number of machines and is infinite for odd number of machines.

50

4.1.1 The Cooperative Greedy algorithm on two weighted
machines

Without loss of generality, suppose w1 ≥ w2. The Cooperative Greedy algo-

rithm is 2-competitive for scheduling C-benevolent jobs on two unweighted

machines. Theorem 18 shows that the competitive ratio of the Cooperative

Greedy algorithm on two weighted machines increases as the weight ratio

increases. Denote the weight ratio by β = w1/w2, and hence β ≥ 1.

Theorem 18. The Cooperative Greedy algorithm achieves a competitive ratio

of (β + 1) for scheduling C-benevolent jobs on two weighted machines, where

β is the weight ratio between the two machines.

Proof: We prove this by computing the lower and upper bounds for the

competitive ratio of the Cooperative Greedy algorithm, which turn out to be

the same value. The lower bound is given by considering a sequential game

between an adaptive adversary and the algorithm. The upper bound is given

by considering the performance of the Cooperative Greedy on two unweighted

machines.

First, we consider the lower bound. Note that it is straightforward for the

adversary to observe which machine is the primary machine (PM) using the

following strategy. The adversary can send out two jobs {J ′1, J ′2} of identical

value, J ′2 immediately following J ′1, and the algorithm will schedule them

both. Then, the adversary sends out another job J ′3 immediately following

the arrival of job J ′2, with v(J ′3) > v(J ′2). The secondary machine (SM) will

abort the previously assigned job in favor of job J ′3, and hence the adversary

will learn which machine is the primary machine. This is referred to as the

learning phase. Since the values of these three jobs can be made arbitrarily

small, we ignore the rewards from such a learning phase and assume the

adversary knows which machine is the primary machine at the beginning of

the sequential game.

The adversary’s strategy depends on two cases: (a) M1 is the primary

machine, and (b) M2 is the primary machine. For case (a), the adversary

generates three jobs, I1 = {J1 = (0, δv), J2 = (ε, v), J3 = (2ε, v)} (in the

following, we use a vector of two elements to represent a job Ji = (ai, vi)

and skip the dimension of the length, since the length and the job value are

subject to some fixed C-benevolent function). In this case, δv is chosen to be

sufficiently small compared to v, and ε is chosen to be sufficiently small such

51

that all the three jobs conflict with each other. Then, the Cooperative Greedy

algorithm will schedule J1 on M1 and J2 on M2, with the reward obtained

given by R(I1) = w1δv + w2v. However, the optimal schedule should be

scheduling J2 on M1 and J3 on M2, and hence the optimal reward is given

by OPT (I1) = (w1 + w2)v. Therefore, the competitive ratio can be made

arbitrarily close to (β + 1) by setting δv arbitrarily small and v arbitrarily

large. For case (b), the adversary generates two jobs, I2 = {J1 = (0, v), J2 =

(ε, δv)}. The choices of ε and δv are the same as in case (a). In this case, the

Cooperative Greedy algorithm will schedule J1 on M2 and J2 on M1, with the

reward obtained given by R(I2) = w1δv+w2v. However, the optimal schedule

should be scheduling J1 on M1 and J2 on M2, and hence the optimal reward

is given by OPT (I2) = w1v + w2δv. Therefore, the competitive ratio can be

made arbitrarily close to β by setting δv arbitrarily small and v arbitrarily

large. Therefore, the lower bound for the competitive ratio is (β + 1).

Next, we consider the upper bound. Let OPT1 denote the reward for the

optimal schedule on a single machine. Let OPTw1 and OPTw2 denote the

reward for the optimal schedule on two weighted machines, with OPT1 ≥
OPT2. Therefore, OPT1 ≥ OPTw1 ≥ OPTw2 . Let ALG1 and ALG2 denote

the reward for the schedule on machine M1 and M2 under the Cooperative

Greedy algorithm, respectively. Then ALG1 +ALG2 ≥ OPT1. Let γ denote

the competitive ratio of the Cooperative Greedy algorithm. Therefore,

γ =
w1OPT

w
1 + w2OPT

w
2

w1ALG1 + w2ALG2

≤ (w1 + w2)OPT1

w2OPT1

= β + 1.

Since the lower bound and the upper bound assume the same value, then

the competitive ratio for the Cooperative Greedy algorithm is (β + 1) on two

weighted machines. �

4.1.2 The Pairing-m algorithm on multiple weighted
machines

This section considers the Pairing-m algorithm for scheduling C-benevolent

jobs on multiple weighted machines. The Pairing-m algorithm is a general-

ization from the Cooperative Greedy algorithm on two machines and hence

is classified as a Cooperative Greedy algorithm for multiple machines.

We restate the Pairing-m algorithm. The Pairing-m algorithm is deter-

52

ministic for an even number of machines and randomized for an odd number

of machines. For an even number of machines, m/2 of the m machines are

arbitrarily selected as the PMs and the other machines are SMs initially.

Jobs scheduled on PMs are always guaranteed to be completed, while jobs

scheduled on SMs will be aborted if a new job arrives with a larger value.

Whenever a job arrives, if there is some PM that is available, then the job is

assigned to the PM. Otherwise, the job will be assigned to the SM with the

job that has the smallest value among jobs on SMs if and only if the job value

is greater than the smallest job value on SMs. Moreover, whenever a job on

some PM is completed, the PM becomes a SM and the SM that is executing

the job with the largest value among all SMs at that time becomes a PM.

This role-switching (PM→SM and SM→PM) is repeated until all jobs are

assigned. For an odd number of jobs, one virtual machine is added to make

the total number of machines even (m + 1 real and virtual machines), and

hence the Pairing-(m+1) algorithm for an even number of machines can be

applied. However, since there are only m real machines, the schedule on each

machine is arbitrarily selected with equal probability from schedules under

the Pairing-(m+1) algorithm for (m+ 1) machines.

Without loss of generality, suppose that there are a total of m machines

(M1, M2, . . ., Mm), with w1 ≥ w2 ≥ . . . ≥ wm. Let βi = wi/wi+1 denote the

weight ratios for i = 1, 2, . . . ,m−1. Therefore, βi ≥ 1 for i = 1, 2, . . . ,m−1.

Theorem 19 shows that the competitive ratio of the Pairing-m algorithm

increases as the largest weight ratio increases, and hence the algorithm is not

desirable when weight ratios are large.

Theorem 19. The Pairing-m algorithm achieves a competitive ratio of

O(w1/wm) = O(Πm−1
i=1 βi) for scheduling C-benevolent jobs on an even number

of weighted machines with weight ratios {βi}m−1
i=1 . However, no finite compet-

itive ratio can be achieved for scheduling C-benevolent jobs on an odd number

of machines.

Proof: We prove this by considering the even and odd number of machine

cases separately. Consider an even number of machines first. We will provide

an upper bound 2w1/wm and a lower bound w1/wm for the competitive ratio

of the Pairing-m algorithm.

Let OPTwi and OPTi denote the reward for the optimal schedule on ma-

chine Mi for scheduling on weighted and unweighted machines, respectively,

53

for i = 1, 2, . . . ,m. Let OPTw(i) (OPT(i)) denote the ordering statistics for

{OPTwi } ({OPTi}), indexed in decreasing order of rewards. Therefore, by

the feasibility and optimality of these two optimal schedules,

m∑
i=1

OPTwi ≤
m∑
i=1

OPTi,

and

w1

m∑
i=1

OPTi ≥
m∑
i=1

wiOPT
w
i ≥

m∑
i=1

wiOPTi.

Let Ai denote the reward on machine Mi under the Pairing-m algorithm, for

i = 1, 2, . . . ,m. Then, from Theorem 14 in Chapter 3,

m∑
i=1

Ai ≥
m/2∑
i=1

OPT(i) ≥ 1/2
m∑
i=1

OPTi.

Therefore,

m∑
i=1

wiAi ≥ wm

m∑
i=1

Ai

≥ wm/2
m∑
i=1

OPTi

=
wm
2w1

(w1

m∑
i=1

OPTi)

≥ wm
2w1

(
m∑
i=1

wiOPT
w
i).

Therefore, the upper bound for the competitive ratio of the Pairing-m algo-

rithm is 2w1/wm.

Now consider an adversary playing against the Pairing-m algorithm by

generating the sequence of jobs adaptively and trying to drive the compet-

itive ratio of the algorithm as high as possible. We assume the adversary

knows the strategy of the Pairing-m algorithm and so can straightforwardly

tell which machines are the PMs at any time (the same as the learning phase

in the proof of Theorem 18). Then the adversary follows a strategy that

consists of only two kinds of jobs: (1) job J1 with value δv and (2) job J2

54

with value v, with δv � v. If machine Mm is the only available SM, the

adversary generates a job J2; otherwise, the adversary keeps generating job

J1 until all the other machines (M1 to Mm−1) are busy with assigned jobs.

Let n1 and n2 denote the total number of J1 and J2 jobs generated by the

adversary. The adversary stops when machine Mm completes the first job

J2. Therefore, n2 = 1 and n1 ≤ m − 1. Since the adversary only generates

jobs when there is an available machine, all jobs generated by the adversary

can be completed by the Pairing-m algorithm. Therefore, the reward for

the Pairing-m algorithm is at most n1w1δv + n2wmv. However, the optimal

schedule assigns all J2 jobs to machine M1, and hence the optimal reward is

at least n1wmδv + n2w1v. Therefore, the competitive ratio of the Pairing-m

algorithm can be driven arbitrarily close to w1/wm, with δv arbitrary small.

Therefore, the lower bound for the competitive ratio of the Pairing-m algo-

rithm is w1/wm.

Combining the upper and lower bound together, the competitive ratio of

the Pairing-m algorithm is O(w1/wm) for an even number of machines.

As for odd number of machines, the adversary follows the same strategy

as above for (m+ 1) (even number) machines and treats the virtual machine

as a machine with weight zero (the lowest weight). Therefore, job J2 will

be assigned to the virtual machine, and hence, its value will be lost. The

reward for the Pairing-m algorithm is at most n1w1δv. However, the optimal

schedule assigns job J2 to machine M1, and hence the optimal reward is at

least n2w1v. Therefore, no finite competitive ratio can be achieved for an

odd number of machines. �

4.2 Prioritized Greedy Algorithms

Competitive ratios of the Cooperative Greedy algorithm and the Pairing-m

algorithm increase as the weight ratios increase, and hence the algorithms

are not desirable when weight ratios are large. We study a Prioritized Greedy

algorithm that uses a Greedy algorithm on each machine to achieve a better

competitive ratio for large weight ratios. A Greedy algorithm with abortion

ratio α (referred to as the Greedy-α algorithm) aborts a job J that is being

executed in favor of a newly arrived job J ′ if and only if v(J ′) > αv(J), where

α > 1 (when a machine is not executing any job, we treat it as executing

55

a virtual job with value zero and length zero, which is compatible with C-

benevolent jobs).

4.2.1 Two weighted machines

We consider the Prioritized Greedy-α1, α2 algorithm on two weighted ma-

chines as the base case, with α1/(1−α−1
1) ≤ α2/(1−α−1

2). We do not specify

the values of the two parameters, α1 and α2, at this point, which will be

determined by optimizing the competitive ratio of the algorithm.

The Prioritized Greedy-α1, α2 algorithm is similar to employing a Greedy-

Algorithm 3 Prioritized Greedy-α1, α2 Algorithm

Let S1(t) and S2(t) denote the jobs being executed on machine M1 and M2

at time t, respectively.
for all job intervals Ji in an instance I do

if vi > α1v(S1(ai)) then
Abort S1(t) and assign Ji to machine M1.
Update S1(t), i.e., S1(t) = Ji, for t ∈ [ai, ai + li).

else if vi > α2v(S2(ai)) then
Abort S2(t) and assign Ji to machine M2.
Update S2(t), i.e., S2(t) = Ji, for t ∈ [ai, ai + li).

else
Discard Ji.

end if
end for

α1 algorithm on machine M1 and a Greedy-α2 algorithm on machine M2.

However, the analysis is more complicated than simply combining these two

Greedy algorithms due to the priorities of the machines. Consider a job Ji

such that both vi > α1v(S1(ai)) and vi > α2v(S2(ai)) hold. Then according

to the Prioritized Greedy-α1, α2 algorithm, Ji will be assigned to M1 rather

than M2. Therefore, those jobs assigned to M1 (including both those com-

pleted on M1 or temporarily assigned and later aborted on M1) cannot go to

M2, and hence the Greedy-α2 algorithm on M2 is only influencing a subset

of the job instance I. These issues need to be addressed in the analysis of

the competitive ratio of the Prioritized Greedy-α1, α2 algorithm.

We will use a result for scheduling C-benevolent jobs on a single machine

using Greedy-α algorithm given by [39]. We restate this result in Proposi-

tion 3.

56

Proposition 3. [39, Remark 3.3] The Greedy-α algorithm achieves a com-

petitive ratio of α/(1 − α−1) on a single machine for C-benevolent jobs, for

α > 1. Therefore, the Greedy-2 algorithm achieves a competitive ratio of

4 on a single machine for C-benevolent jobs, which is the best achievable

competitive ratio for deterministic algorithms on a single machine.

We refer to jobs that arrive during the execution of job J as testing jobs for

J . For the Greedy-α algorithm, a job that is being executed will be aborted

by the first testing job for it with a value greater than α times its value; a

job that is being executed will be completed if none of the testing jobs for it

has a value greater than α times its value. Therefore, values of subsequent

jobs where successors abort previous jobs form a geometric sequence, and we

will compute an upper bound for the optimal reward using this property of

Greedy algorithms. A geometric subsequence is a sequence of jobs where: (1)

each job (except the last two jobs) is aborted by its successive job; (2) the

second to last job is the only completed job in the subsequence; (3) the last

job is not assigned by the Greedy-α algorithm but has the largest completion

time among all the testing jobs for the completed job. Observation 1 gives

a lower bound for the reward for Greedy algorithms and an upper bound

for the optimal reward, which is due to the convexity of C-benevolent jobs

and is important in the analysis of Prioritized Greedy algorithms on multiple

weighted machines. The proof of Observation 1 is identical to the proof of

Proposition 3 and hence omitted here.

Observation 1. For jobs arriving during the execution of a geometric sub-

sequence, the Greedy-α algorithm achieves a (1−α−1)/α fraction of the total

value of all jobs in this geometric subsequence. In other words, the total value

of all jobs in this subsequence is an upper bound for the optimal reward for

jobs arriving during the execution of the subsequence.

Let O1 and O2 denote the optimal schedule on machine M1 and M2 for an

instance I, respectively. Let Õ1 denote the single-machine optimal schedule

on M1 for instance I. Let A1 denote the set of jobs assigned to M1 under the

Greedy-α1 algorithm on M1, either completed or aborted. Let G1 denote the

set of geometric subsequences generated by A1 (by including the last testing

job with the largest completion time for each geometric subsequence). Let

Õ2 denote the single-machine optimal schedule on M2 for the residual jobs

57

Ir = I \ A1. Let G2 denote the set of geometric subsequences generated

by jobs assigned on M2. For any set of jobs S, let v(S) denote the value

of jobs contained in set S. Then from Observation 1, v(G1) ≥ v(Õ1) and

v(G2) ≥ v(Õ2). Theorem 20 gives the competitive ratio of the Prioritized

Greedy-α1, α2 algorithm.

Theorem 20. The Prioritized Greedy-α1, α2 algorithm achieves a compet-

itive ratio of 4(1 + 1
β+1

) for scheduling C-benevolent jobs on two weighted

machines, where α1 = 2, α2 = 2 and β = w1/w2 ≥ 1.

Proof: From the definitions of {O1, O2} and {Õ1, Õ2},

v(O1) ≤ v(Õ1) and v(O2) ≥ v(Õ2),

which are due to the optimality of {O1, O2} and the sequential optimality of

Õ1 and Õ2. From Observation 1 and Proposition 1, the Greedy algorithm on

M1 will achieve at least a (1−α−1
1)/α1 fraction of v(G1) and a (1−α−1

2)/α2

fraction of v(G2). We want to show w1v(G1) + 2w2v(G2) ≥ w1v(O1) +

w2v(O2).

We consider the difference between O2 and Õ2. If A1

⋂
O2 = ∅, then

v(O2) ≤ v(Õ2) since O2 is a feasible schedule on M2. Therefore, v(O2) =

v(Õ2) and

w1v(O1) + w2v(O2) ≤ w1v(Õ1) + w2v(Õ2) ≤ w1v(G1) + w2v(G2).

If A1

⋂
O2 6= ∅, then for any job Ji ∈ A1

⋂
O2, there exists a set of jobs

{J ij}hj=1 ⊂ O1 that conflict with Ji. Otherwise, Ji should be added to O1 to

obtain a larger reward for w1v(O1) + w2v(O2) (since w1 ≥ w2), which con-

tradicts the optimality of {O1, O2}. First, we assume {J ij}hj=1 do not conflict

with other jobs in A1

⋂
O2. We will discuss the case where {J ij}hj=1 conflict

with other jobs in A1

⋂
O2 later.

Since Ji is assigned to M1 under the Greedy-α1 algorithm, all jobs {J ij}hj=1

can no longer be completed on M1. However, since the Greedy-α1 is a pre-

emptive algorithm, then (a) the very first job, J i1, may be aborted by Ji on

M1, and (b) the very last job, J ih, may abort Ji on M1. If both (a) and (b)

occur, then {J ij}h−1
j=2 will be available to machine M2. Note that {J ij}h−1

j=2 all

arrive after Ji and can be completed before the completion time of job Ji,

with
∑h−1

j=2 v(J ij) ≤ v(Ji). Therefore, they can be added to O2 \ Ji with no

58

conflict, and hence

w1v(G1({J i1, Ji, J ih})) + w2v(G2({J ij}h−1
j=2))

≥w1(v(Ji) + v(J i1) + v(J ih)) + w2

h−1∑
j=2

v(J ij)

≥w1

h∑
j=1

v(J ij) + w2v(Ji),

where G1(S) and G2(S) denote jobs in G1 and G2 that conflict with jobs in

set S, respectively, with G1({J i1, Ji, J ih}) = {J i1, Ji, J ih}.
If (a) occurs and (b) does not occur, then {J ij}hj=2 will be available to ma-

chineM2. Then,
∑h

j=1 v(J ij) ≤ v(G1({J ij}hj=1)) and
∑h

j=2 v(J ij) ≤ v(G2({J ij}hj=2)).

Note that J i1 ∈ G1({J ij}hj=1) and Ji ∈ G1({J ij}hj=1). If there is no job in O2

conflicting with {J ij}hj=2, then {J ij}hj=2 can be added O2 \ Ji with no conflict:

(a) if
∑h

j=2 v(J ij) ≥ v(Ji), then

w1v(G1({J ij}hj=1)) + w2v(G2({J ij}hj=2)) ≥ w1

h∑
j=1

v(J ij) + w2v(Ji);

(b) if
∑h

j=2 v(J ij) ≤ v(Ji), then

w1v(J i1) + w1v(Ji) + w2

h∑
j=2

v(J ij) ≥ w1

h∑
j=1

v(J ij) + w2v(Ji),

which follows from Hardy’s lemma, and hence

w1v(G1({J ij}hj=1)) + w2v(G2({J ij}hj=2)) ≥ w1

h∑
j=1

v(J ij) + w2v(Ji).

If there are jobs in O2 conflicting with {J ij}hj=2, denote this set of jobs by

{Jn}. From our assumption, then {Jn} 6⊂ A1. Then

h∑
j=2

v(J ij) +
∑
n

v(Jn) ≤ 2v(G2({J ij}hj=2

⋃
{Jn})),

59

which follows from Observation 1. Therefore,

w1v(G1({J ij}hj=1)) + 2w2v(G2({J ij}hj=2

⋃
Jn))

≥w1

h∑
j=1

v(J ij) + w2(v(Ji) + v(Jn)).

If (a) does not occur and (b) occurs, then {J ij}h−1
j=1 will be available to

machine M2. The arguments are identical as those for the case of (a) occurs

and (b) does not occur by substituting {J ij}hj=2 with {J ij}h−1
j=1 .

If neither (a) nor (b) occurs, then {J ij}hj=1 will be available to machine M2.

The arguments are identical to those for the case of (a) occurs and (b) does

not occur by substituting {J ij}hj=2 with {J ij}hj=1.

If {J ij}hj=1 conflict with other jobs in A1

⋂
O2, then we use the same ar-

guments to analyze these jobs together. That is, consider a segment of O2,

denoted by Qi, with Qi

⋂
A1 6= ∅ and O1(Qi)

⋂
(O2 \Qi) = ∅, where O1(Qi)

denote the set of jobs in O1 that conflict with Qi. Identical arguments can

be applied by substituting Ji with Qi.

Therefore, we have shown that w1v(G1)+2w2v(G2) ≥ w1v(O1)+w2v(O2).

Let D1 and D2 denote the set of jobs completed by M1 and M2, respectively.

Setting α1 = 2 (to maximize the value of v(D1)) leads to

v(D1) ≥ α1 − 1

α2
1

v(G1) ≥ 1

4
v(O1),

v(D2) ≥ α2 − 1

α2
2

v(G2), (4.1)

Therefore, the reward for the Prioritized Greedy-2, α2 algorithm is

w1v(D1) + w2v(D2) ≥ 1

4
w1v(G1) +

α2 − 1

α2
2

w2v(G2).

Let γ denote the competitive ratio of the Prioritized Greedy-2, 2 algorithm.

Then

γ =
w1v(O1) + w2v(O2)

w1v(D1) + w2v(D2)
≤ w1v(G1) + 2w2v(G2)

1
4
w1v(G1) + α2−1

α2
2
w2v(G2)

≤ β + 2
1
4
β + α2−1

α2
2

,

60

which is minimized by taking α2 = 2, and hence γ = 4(1 + 1
β+1

). �

From Theorem 20, the competitive ratio of the Prioritized Greedy-2, 2 ap-

proaches a constant 4 as the weight ratio β approaches infinity. Therefore,

when β is small (i.e., β ≤ 3.828), the Cooperative Greedy algorithm has a

smaller competitive ratio than the Prioritized Greedy-2, 2 algorithm. How-

ever, as β becomes larger (i.e., β > 3.828), the Prioritized Greedy-2, 2 algo-

rithm becomes better than the Cooperative Greedy algorithm.

4.2.2 Multiple weighted machines

This section derives the competitive ratio of the Prioritized Greedy algorithm

on m weighted machines (M1, M2, . . ., Mm), with w1 ≥ w2 ≥ . . . ≥ wm.

Each machine employs a Greedy algorithm, and the priorities for machines

M1, M2, . . ., Mm go from the highest to the lowest. Whenever a job arrives,

it goes to the machine with the highest priority to be assigned; if it is not

assigned on this machine, then it goes to the machine with the next highest

priority; if it is not assigned on the machine with the lowest priority, then

the job is discarded.

We provide the competitive ratio of the Prioritized Greedy algorithm on

multiple machines by considering the relationship between the optimal sched-

ule and the sequentially achievable optimal schedule. Let Oi denote the op-

timal schedule on machine Mi for job instance I, for i = 1, 2, . . . ,m. Let Ai

denote the set of jobs assigned to machine Mi, either completed or aborted,

for i = 1, 2, . . . ,m. Therefore, {Ai}mi=1 are non-overlapping from each other.

LetGi denote the set of geometric subsequences generated by jobs assigned on

machine Mi, for for i = 1, 2, . . . ,m. Let Õi denote the sequentially achievable

optimal schedule on machine Mi, which is defined as the optimal schedule

for jobs Ii , I \
⋃i−1
k=1 Ak with

⋃0
k=1Ak , ∅, for i = 1, 2, . . . ,m. Then from

Observation 1, v(Gi) ≥ v(Õi) by definition. Theorem 21 shows the relation-

ship between the reward for the optimal schedule and the upper bound for

the sequentially achievable optimal schedule.

Theorem 21. Let {Oi}mi=1 denote the optimal schedule on the m weighted

machines. Then for C-benevolent jobs:

m∑
i=1

wiv(Oi) ≤ (1 +
1

mini βi
)

m∑
i=1

wiv(Gi),

61

where βi = wi/wi+1 for i = 1, 2, . . . ,m− 1, with w1 ≥ w2 . . . ≥ wm.

Proof: We prove this by induction on m. First, consider the base case,

m = 2. Then

w1v(O1) + w2v(O2) ≤ (w1 + w2)v(O1)

≤ w1(1 + 1/β)v(Õ1)

≤ w1(1 + 1/β)v(G1),

where v(G1) ≥ v(Õ1) ≥ v(O1), and hence Theorem 21 holds trivially for

m = 2.

Suppose Theorem 21 holds for (m − 1) machines, where m ≥ 3. We

prove it holds for m machines. If Õm = Om, then the result follows from

v(Gm) ≥ v(Õm) and the induction assumption. Otherwise, consider the set

of jobs Or
m = {J : J ∈ Om, J /∈

⋃m−1
i=1 Ai}. Then v(Or

m) ≤ v(Õm) ≤ v(Gm)

due to the sequential optimality of Õm.

Consider a job J1 ∈ Ai∗
⋂
Om for some i∗ = 1, 2, . . . ,m−1. Then J1 /∈ Õm

and J1 ∈ Gi∗. Therefore,

wmv(J1) =
1

β∗
wi∗v(J1) ≤ 1

mink βk
wi∗v(J1),

where β∗ = wi∗/wm. In this case, J1 is said to be charged. Whenever

a job Jj ∈ Gi is charged for i = 1, 2, . . . ,m − 1, an additional reward of

1/mink βkwiv(Jj) will be added to the total reward of
∑m

i=1wiv(Gi). Note

that J1 can be charged by any job belonging to optimal schedules on ma-

chines with lower priorities at most once (since {Oi}mi=1 are non-overlapping).

Therefore, Theorem 21 holds for m machines, which completes the proof.

�

Theorem 22 provides the competitive ratio of the Prioritized Greedy algo-

rithm for m weighted machines, with the abortion ratios for all machines set

to be two.

Theorem 22. The competitive ratio of the Prioritized Greedy algorithm is

4(1 + 1
mini βi

) when all the Greedy algorithms on m machines set the abortion

ratio to be αi = 2 for i = 1, 2, . . . ,m.

Proof: Let Di denote the set of jobs completed on machine Mi under the

62

Prioritized Greedy algorithm, for i = 1, 2, . . . ,m. Then from Observation 1,

m∑
i=1

wiv(Di) ≥
1

4

m∑
i=1

w1v(Gi),

where all the Greedy algorithms set the abortion ratio as α = 2. Let γm

denote the competitive ratio of the Prioritized Greedy algorithm for m ma-

chines. Then from Theorem 21,

γ =

∑m
i=1 wiv(Oi)∑m
i=1wiv(Di)

≤ 4
(1 + 1

mini βi
)
∑m

i=1wiv(Õi)∑m
i=1 wiv(Õi)

= 4(1 +
1

mini βi
).

�

From Theorem 22, the competitive ratio for two weighted machines is 4(1+

1/β), where β is the weight ratio. This is a weaker result than Theorem 20,

which gives a competitive ratio of 4(1 + 1/(β + 1)).

4.3 Lower Bounds for Competitive Ratios of

Deterministic Algorithms

This section provides lower bounds for the competitive ratio of any determin-

istic algorithm for scheduling C-benevolent job sequences on two and three

weighted machines, respectively. These two constant lower bounds hold for

arbitrary machine weights. We use an approach similar to that presented

in [40] for the unweighted machine case. We use the W-set defined in Sec-

tion 3.5. An example of W-sets can be found in Figure 4.1.

Theorem 23 provides a lower bound for the competitive ratio of any

deterministic algorithm for scheduling C-benevolent jobs on two weighted

machines.

Theorem 23. No deterministic algorithm for scheduling C-benevolent jobs

on two weighted machines can achieve a competitive ratio less than 2.

Proof: We prove this lower bound by considering a sequential game be-

tween a deterministic algorithm and an adaptive adversary. We will show

that there is a strategy for the adversary to drive the competitive ratio of

63

Strategy 1 Strategy 2

M1

M2

M3

W-set

Strategy 3

Figure 4.1: Adversary’s strategy for three weighted machines using W-sets.

any deterministic algorithm to a value greater than 3/2− ζ, where ζ > 0 can

be arbitrarily small.

First, the adversary generates two identical W-sets, with one set arriving

slightly after the other with a delay of ε′ � ε. We make this difference be-

tween these two sets only to conform to the assumption that no two jobs

share the same arrival time. Since the delay between the two sets is suffi-

ciently small compared to the difference between arrival times of subsequent

jobs within each set, we will ignore this ε′. Now a deterministic algorithm,

denoted by A, has several choices of how to assign these jobs to each machine.

Let Jx(x) and Jy(y) denote the jobs (job values) that A assigns to M1 and

M2, respectively. Let OPT denote the optimal reward and r(A) denote the

reward for algorithm A. Then the competitive ratio of A is γA = OPT/r(A).

The adversary will react adaptively to different choices made by A. We di-

vide the situation into different cases based on the values of x and y, as listed

in Table 4.1.

1. Case 1 x = y = 1. In this case, the adversary generates no more

jobs. Therefore, OPT = v̄(w1 + w2), r(A) = w1 + w2, and hence

1/γA = 1/v̄ ≤ 1/2, for v̄ ≥ 2.

64

Table 4.1: All Cases for Two Weighted Machines

Case 1 Case 2 Case
3(a)

Case
3(b)

Case
4(a)

Case
4(b)

x 1 > 1 1 > 1 > 1 > 1
y 1 x > x 1 > x < x

2. Case 2 x = y > 1. In this case, the adversary generates two additional

jobs that arrive right before the completion time of Jx and Jy but

after the completion time of their preceding job in the W-set (jobs that

arrive right before the completion time of some job J but after the

completion time of the job preceding J in the W-set are referred to as

the challenger jobs for J). The values of these two new jobs are both

equal to x. Then, no matter whether A aborts x and y in favor of the

new arrivals or not, the reward for A is at most r(A) = x(w1 + w2).

However, the optimal reward is OPT = (2x− δ)(w1 + w2). Therefore,

1/γA = x/(2x− δ) ≤ 1/2 + ζ, for δ sufficiently small.

3. Case 3 (a) 1 = x < y. In this case, the adversary will generate no

more jobs. Therefore, OPT = v̄(w1 +w2), r(A) = w1 + yw2, and hence

1/γA = (w1 + yw2)/(v̄(w1 + w2))

≤ (w1 + v̄w2)/(v̄(w1 + w2))

≤ 1/2 + 1/(v̄ + 1) ≤ 1/2 + ζ,

for v̄ sufficiently large.

4. Case 3 (b) 1 = y < x. In this case, the adversary takes one of two

possible strategies depending on the value of x. If x ≤ v̄/2, then the

adversary generates no more jobs. Therefore, OPT = v̄(w1 + w2),

r(A) = xw1 + w2, and hence 1/γA = (xw1 + w2)/(v̄(w1 + w2)) ≤ 1/2,

for v̄ ≥ 2. If x > v̄/2, then the adversary generates two challenger jobs

for Jx with value x. Then, no matter whether A aborts x in favor of the

newly arrival or not, the reward for A is at most r(A) = xw1+(1+x)w2.

However, the optimal reward is OPT = (2x− δ)(w1 + w2). Therefore,

1/γA = (xw1 + (1 + x)w2)/((2x− δ)(w1 + w2))

≤ 1/2 + (1 + δ)/(2x+ 1) ≤ 1/2 + ζ,

65

for v̄ sufficiently large.

5. Case 4 (a) 1 < x < y. In this case, the adversary takes a two-step

strategy depending on the actions of A. Note that if x < y ≤ v̄/2,

then the adversary takes no more actions, and 1/γA ≤ 1/2. There-

fore, suppose y > v̄/2. In the first step, the adversary generates two

challenger jobs for Jx with value y. If A does not abort Jx on M1 in

favor of the new arrival, the adversary takes no second step. There-

fore, OPT ≥ (x − δ + y)(w1 + w2) and r(A) = xw1 + yw2, and hence

1/γA ≤ (xw1 +yw2)/((x−δ+y)(w1 +w2)) ≤ 1/2+δ/(x+y) ≤ 1/2+ζ,

for δ sufficiently small or v̄ sufficiently large. Otherwise, Jx is aborted

by A in favor of the new arrival, and the adversary takes the second

step, where the adversary generates two challenger jobs for Jy with

value y. Therefore, OPT ≥ (y − δ + y)(w1 + w2), r(A) ≤ yw1 + yw2,

and hence, 1/γA ≤ 1/2 + δ/y ≤ 1/2 + ζ, for δ small enough or v̄ large

enough.

6. Case 4 (b) 1 < y < x. In this case, the adversary takes one of two

possible strategies depending on the relationship between x and y. If

y > x/2, then the adversary generates two challenger jobs for Jy with

value x. Therefore, OPT ≥ (x+y− δ)(w1 +w2) ≥ 3/2(x− δ)(w1 +w2)

and r(A) ≤ x(w1 + w2), and hence, 1/γ ≤ 2/3 + ζ. Alternatively, if

y ≤ x/2, then the adversary generates two challenger jobs for Jx with

value x. Therefore, OPT ≥ (2x−δ)(w1 +w2) and r(A) ≤ x(w1 +w2)+

yw2 ≤ x(w1 + 3w2/2), and hence, 1/γ ≤ 2/3 + ζ.

Summarizing all the possible cases, since ζ can be arbitrarily small, no de-

terministic algorithm for C-benevolent jobs can achieve a competitive ratio

less than 3/2 on two weighted machines. This upper bound does not depend

on the weight ratio β.

Using similar techniques, Theorem 24 provides a lower bound for the com-

petitive ratio of any deterministic algorithm for scheduling C-benevolent jobs

on three weighted machines.

Theorem 24. No deterministic algorithm for scheduling C-benevolent jobs

on three weighted machines can achieve a competitive ratio less than 9/7.

Proof: We establish this lower bound by considering a sequential game

between a deterministic algorithm and an adaptive adversary. We will show

66

that there is a strategy for the adversary to drive the competitive ratio of

any deterministic algorithm to 9/7− ζ, where ζ > 0 can be arbitrarily small.

First, the adversary generates three identical W-sets, with sets arriving

one set slightly after another by a delay of ε′ � ε. This ε′ is chosen to

be sufficiently small such that any two jobs with identical values and only

a difference of ε′ in arrival times can be treated as identical jobs, same as

in the Proof of Theorem 23. Now a deterministic algorithm, denoted by

A, has several choices of what jobs to assign. Let Jx(x), Jy(y), and Jz(z)

denote the job (value) that A assigns to M1, M2, and M3, respectively. Let

OPT denote the optimal reward and r(A) denote the reward for algorithm

A. Then the competitive ratio of A is γA = OPT/r(A). The adversary will

react adaptively to different choices made by A.

First, if some machine does not have any job assigned to it by A, then the

adversary treats that machine as being assigned the first job of the W-sets

(the job with value one). This manipulation will only increase the reward for

A. Moreover, it allows us to classify actions by the adversary into different

scenarios to simplify the proof, which can be tedious when enumerating all

cases. Therefore, we assume that all three machines have been assigned one

job from the W-sets by A in the following.

For three weighted machines, there are 16 cases in total considering the

relationship between x, y, z and the number of value-one jobs in {x, y, z} given

w1 ≥ w2 ≥ w3 (see Table 4.2). However, since strategies for the adversary

are the same in some cases, we classify these cases into one scenario and

provide a lower bound for each scenario. More precisely, we divide all cases

into different scenarios based on the number of scheduled jobs with value one,

as listed in Table 4.2. To avoid repeated statement, we set v̄ > 2 sufficiently

large and ε sufficiently small.

1. Scenario 1 All of the three scheduled jobs have a value of one. That

is, x = y = z = 1. Then it is straightforward that 1/γA = 1/v̄ < 1/2,

for v̄ > 2.

2. Scenario 2 Two of the scheduled jobs have a value of one. Consider

the case x > 1 and y = z = 1. Then, if x ≤ v̄/2, the adversary

generates no more jobs. Therefore, r(A) = xw1 + w2 + w3, OPT =

v̄(w1 + w2 + w3), and hence 1/γA ≤ 1/2. Otherwise, the adversary

generates three challenger jobs for Jx with value x. Therefore, r(A) ≤

67

Table 4.2: All Cases for Three Weighted Machines

Scenario Cases
1 x = y = z = 1

2
(x > 1, y = z = 1),
(y > 1, x = z = 1),
(z > 1, x = y = 1)

3
(x = 1, y ≥ z), (x = 1, y < z),
(y = 1, x ≥ z), (y = 1, x < z),
(z = 1, x ≥ y), (z = 1, x < y)

4
(x ≥ y ≥ z > 1), (x ≥ z ≥ y > 1),
(y ≥ x ≥ z > 1), (y ≥ z ≥ x > 1),
(z ≥ x ≥ y > 1), (z ≥ y ≥ x > 1)

xw1 + (w2 + w3)(1 + x), OPT = (2x − δ)(w1 + w2 + w3), and hence

1/γA ≤ 1/2 + ζ. The cases y 6= 1 and z 6= 1 follow the same strategy

with x(Jx) substituted by y(Jy) and z(Jz), respectively.

3. Scenario 3 One of the scheduled jobs has a value of one. Consider

the case x ≥ y > 1 and z = 1. If x ≤ v̄/2, then the adversary

generates no additional jobs, and γA ≤ 1/2. Otherwise, if x > v̄/2

and y ≤ x/2, then the adversary generates three challenger jobs for

Jx with value x. Therefore, r(A) ≤ xw1 + w2(y + x) + w3(1 + x),

OPT = (2x−δ)(w1+w2+w3), and hence 1/γA ≤ 3/4+ζ. Alternatively,

if x > v̄/2 and y > x/2, then the adversary generates three challenger

jobs for Jy with value x. Therefore, r(A) ≤ xw1 + w2x + w3(1 + x),

OPT = (x + y − δ)(w1 + w2 + w3), and hence 1/γA ≤ 2/3 + ζ. For

other cases in Scenario 3, the same strategy can be applied.

4. Scenario 4 None of the scheduled jobs has a value of one. In this

scenario, the adversary’s strategy depends on which machine has been

assigned the job with the largest value among all the three scheduled

jobs, denoted by Jmax. We provide lower bounds for the resulting three

sub-scenarios: (a) Jmax is assigned to machine M1; (b) Jmax is assigned

to machine M2; and (c) Jmax is assigned to machine M3.

First, consider sub-scenario (a). Then, if x ≤ v̄/2, the adversary gen-

erates no additional jobs, and the competitive ratio is greater than 2.

If x > v̄/2, then there are two cases to be considered regarding the

relationship between y and z: (1) y ≥ z and (2) y ≤ z.

68

Consider case x ≥ y ≥ z. If z > x/3, then the adversary generates three

challenger jobs for Jz with value x. Therefore, r(A) ≤ x(w1 +w2 +w3),

OPT = (x+z−δ)(w1+w2+w3), and hence 1/γA ≤ 3/4+ζ. Otherwise,

if z ≤ x/3 and y ≥ x/2, then the adversary generates three challenger

jobs for Jy with value x. Therefore, r(A) ≤ x(w1 + w2 + w3) + zw3 ≤
x(w1 + w2 + 4w3/3), OPT = (x + y − δ)(w1 + w2 + w3), and hence

1/γA ≤ 7/9 + ζ. Alternatively, if z ≤ x/3 and y ≤ x/2, then the

adversary generates three challenger jobs for Jx with value x. There-

fore, r(A) ≤ x(w1 + w2 + w3) + yw2 + zw3 ≤ x(w1 + 3w2/2 + 4w3/3),

OPT = (2x− δ)(w1 + w2 + w3), and hence 1/γA ≤ 3/4 + ζ.

Consider case x ≥ z ≥ y. If y > x/3, then the adversary generates three

challenger jobs for Jy with value x. Therefore, r(A) ≤ x(w1 +w2 +w3),

OPT = (x+y−δ)(w1+w2+w3), and hence 1/γA ≤ 3/4+ζ. Otherwise,

if y ≤ x/3 and z ≥ x/2, then the adversary generates three challenger

jobs for Jz with value x. Therefore, r(A) ≤ x(w1 + w2 + w3) + yw2 ≤
x(w1 + 4w2/3 + w3), OPT = (x + z − δ)(w1 + w2 + w3), and hence

1/γA ≤ 7/9 + ζ. Alternatively, if y ≤ x/3 and z ≤ x/2, then the

adversary generates three challenger jobs for Jx with value x. There-

fore, r(A) ≤ x(w1 + w2 + w3) + yw2 + zw3 ≤ x(w1 + 4w2/3 + 3w3/2),

OPT = (2x− δ)(w1 + w2 + w3), and hence 1/γA ≤ 3/4 + ζ.

Consider sub-scenario (b) case y ≥ z ≥ x. If x > y/3, then the

adversary generates three challenger jobs for Jx with value y. There-

fore, r(A) ≤ y(w1 + w2 + w3), OPT = (x + y − δ)(w1 + w2 + w3),

and hence 1/γA ≤ 3/4 + ζ. Otherwise, if x ≤ y/3 and z ≥ 5y/7,

then the adversary generates three challenger jobs for Jz with value

y. Therefore, r(A) ≤ y(w1 + w2 + w3) + xw1 ≤ x(4w1/3 + w2 + w3),

OPT = (z + y − δ)(w1 + w2 + w3), and hence 1/γA ≤ 7/9 + ζ. Alter-

natively, if x ≤ y/3 and z ≤ 5y/7, then the adversary generates three

challenger jobs for Jy with value y. Therefore, r(A) ≤ y(w1+w2+w3)+

xw1 + zw3 ≤ y(4w1/3 +w2 + 12w3/7), OPT = (2y− δ)(w1 +w2 +w3),

and hence 1/γA ≤ 7/9. For case y ≥ x ≥ z, the strategy of the adver-

sary is identical to case x ≥ y ≥ z with x(Jx) and y(Jy) interchanged.

Consider sub-scenario (c). For case z ≥ x ≥ y, the strategy of the

adversary is identical to case y ≥ x ≥ z with z(Jz) and y(Jy) inter-

changed. For case z ≥ y ≥ x, the strategy of the adversary is identical

to case y ≥ z ≥ x with z(Jz) and y(Jy) interchanged.

69

Summarizing all the possible scenarios, since ζ can be arbitrarily small, no

deterministic algorithm can achieve a competitive ratio less than 9/7 on three

weighted machines for C-benevolent jobs. �

4.4 Discussion

We compare our analysis results with the existing results for scheduling C-

benevolent jobs on unweighted machines. From Chapter 3, the Greedy-2

algorithm is 4-competitive for scheduling C-benevolent jobs on multiple un-

weighted jobs. The Pairing-m algorithm achieves competitive ratios of 2 and

2 + 2/m for an even and odd number of machines, respectively. Note that

the unweighted machine case is a special case of the weighted machine case

with w1 = 1 for all i = 1, 2, . . . ,m. From Theorems 18 and 19, the Cooper-

ative Greedy algorithm achieves a competitive ratio of 2 for two unweighted

machines and the Pairing-m algorithm achieves a competitive ratio of O(1)

for an even number of unweighted machines, which are consistent with the

results given in Chapter 3. As for the Prioritized Greedy algorithm, the Pri-

oritized Greedy-2,2 algorithm achieves competitive ratios of 6 and 8 for two

and multiple unweighted machines, respectively, which are weaker than the

Greedy-2 algorithm. This is because: (1) the Greedy-2 algorithm can be seen

as treating the m machines as a single machine with capacity m, and hence

the competitive ratio of the Greedy-2 algorithm in [39] can be generalized to

the Greedy-2 algorithm for multiple machines; (2) we are dealing with the

case of weighted machines with arbitrary weights and the expression for the

competitive ratio given in this chapter holds for any machine weights, and

hence the analysis is not necessarily tight for each weight ratio.

The results in this chapter focus on C-benevolent jobs. However, these

results can be generalized to equal-length jobs. [47] proposes a 2-competitive

algorithm for scheduling equal-length jobs on even number of unweighted

machines, an idea similar to the Cooperative Greedy algorithm analyzed in

this chapter. Our analysis techniques in Section 4.1 can be applied directly to

show the competitive ratio of the Cooperative Greedy algorithm is O(w1/wm)

for even number of weighted machines and infinite for odd number of ma-

chines (if the randomization technique for odd number of machines proposed

in Chapter 3 is used). For the Prioritized Greedy algorithm, the competitive

70

ratio analysis applies without any change. Similarly, the upper bounds of 2

and 9/7 for two and three weighted machines still hold for equal-length jobs.

The reward for some machine to complete an assigned job is assumed in

this chapter to be the product of the machine weight and the job value.

However, our results are not limited to this specific reward function. It is

straightforward to see that our results can be generalized to any reward func-

tion with the form as the product of the machine weight and a nondecreasing

convex function of the job value (since the C-benevolent function v = g(l) is

convex, then g1 ◦ g is also convex if g1(x) is a nondecreasing convex function

of x). Developing approximation algorithms for online interval scheduling

problems with other reward functions is a future research direction.

The interval scheduling model assumes the length of a job to be the same

no matter which machine it is assigned to. This assumption needs to be re-

laxed by introducing machine speeds, since machines with different weights

usually have different speeds (higher screening levels have higher true alarm

rates and typically take longer to screen a passenger). Therefore, the com-

pletion time of a job depends on the machine it is assigned to (the sum of

the arrival time and the ratio of the length to the machine rate). There have

been many research results on the interval scheduling problem on uniformly

related machines [46] or unrelated machines [66]. Scheduling jobs on uni-

formly related weighted machines is a direction of current investigation.

71

CHAPTER 5

STOCHASTIC ONLINE INTERVAL
SCHEDULING PROBLEMS

This chapter considers stochastic online interval scheduling problems, where

a set of sequentially arriving jobs are to be matched to a group of work-

ers. The objective is to maximize the total expected reward, defined as the

sum of the rewards of each completed job. Each worker can be assigned

to multiple jobs subject to the constraint that previously assigned jobs are

completed. We provide 2-competitive online algorithms for independent and

identically distributed equal-length and memoryless-length jobs. We also

provide e-competitive and e2/(e − 1)-competitive online algorithms for jobs

with a random order of arrivals for equal-length and memoryless-length jobs,

respectively. We further show ep-competitive and ep+1/(e − 1)-competitive

online algorithms for equal-length and memoryless-length jobs, respectively,

for both geometric with parameter p and a random order of arrivals.

5.1 Formulation

This section formulates the stochastic online interval scheduling problem as

a sequential stochastic assignment problem with reusable workers (RSSAP).

The model is described using the classic SSAP setting with workers and

jobs, which may be extended to other scenarios including interval scheduling

problems and online bidding problems.

Let m0 denote the total number of workers and {wm} denote the success

rate for each worker, with w1 ≤ w2 ≤ . . . ≤ wm0 . A worker who is assigned to

a job and has not completed that job is said to be busy ; otherwise, the worker

is said to be available. Each arriving job has a three-dimensional vector

revealed upon arrival, with the first component representing the arrival time,

the second component representing the job value and the third component

representing the job length. For example, if a job length is 2 and a worker is

72

assigned to the job at time t = 1, the worker becomes available again at time

t = 3. Let Jn = (an, vn, ln) denote the three-dimensional vector for the nth

job arrival, n = 1, 2, Let a(J), v(J) an l(J) to represent the arrival time,

value and length of job J , respectively. We study two classes of independent

and identically distributed (IID) job sequences:

Equal-length job sequences: lengths of jobs are the same, independent

of values of jobs;

Memoryless-length job sequences:lengths of jobs follow a geometric dis-

tribution with parameter q, independent of values of jobs.

Let Fv(v) denote the cdf for job values.

In RSSAP, the time axis is divided into slots, indexed by t = 1, 2, . . . , T .

Jobs are assumed to arrive at the beginning of the time slot, and are assigned

to one of the available workers or discarded immediately. Moreover, we as-

sume that jobs will be completed at the end of time slots. Note that the

assumption of jobs being completed at the end of time slots is superfluous,

since workers who complete a job in the middle of a slot cannot be assigned

to any job until the beginning of the next time slot. A job arrives at the

beginning of each time slot with probability p. This job arrival process is

defined as geometric arrivals, since the inter-arrival times are IID geometric

random variables. The geometric arrival process is the discrete-time coun-

terpart for a Poisson process. If a time slot has no job arrival, we assume

that there is a virtual job with value zero arriving at the beginning of this

slot [4]. Therefore, each job keeps the assigned worker busy over the time

period [an, an + ln) (an ∈ Z+ and ln ∈ Z+
⋃
{0} for all n).

We consider a sequence of jobs that arrives during the time interval [1, T].

Define a sequence of assignment variables, Xn,m ∈ {0, 1}, as an indicator

of the nth job assigned to worker wm (we use the success rate to refer to a

worker). Job assignments are assumed to be irrevocable and non-preemptive.

Moreover, a job can be assigned to at most one worker, and a worker can be

assigned to at most one job at a time. An algorithm A defines a sequence of

assignment variables, {XA
n,m} for n = 1, 2, . . . , T and m = 1, 2, . . . ,m0.

The objective of RSSAP is to maximize the expected reward for assigning

all the jobs using available workers, where the expectation is with respect

to the distribution of job sequences and the randomization of the algorithm

73

(for randomized algorithm only). The reward for assigning job Jn using

algorithm A, denoted by RA(Jn), is given by the product of the job values

and the assigned workers’ success rates,

RA(Jn) =

m0∑
m=1

XA
n,mvnwm.

Dynamic programming can be applied to obtain the optimal offline algo-

rithm for a given job sequence. However, dynamic programming is intractable

due to the dimension of states [67]. Therefore, we seek approximation algo-

rithms and use competitive ratio to evaluate the resulting online algorithms.

Definition 4. Let OPT denote the optimal (maximal) expected reward for

assigning job sequences in RSSAP. Let R(A) denote the reward for assigning

such job sequences using algorithm A. Then algorithm A is said to be γA-

competitive where

γA , OPT/E[R(A)],

and the expectation is taken with respect to the distribution of job sequences

and the randomization of A (for randomized algorithm only).

5.2 Approximation Algorithms for IID Job Arrivals

This section provides approximation algorithms for RSSAP with IID job

arrivals. Two cases are considered: (a) all jobs have the same fixed length

and IID values with distribution Fv(v); (b) all jobs have IID memoryless

length and IID values with distribution Fv(v). The proposed approximation

algorithms for both cases are Greedy SSAP optimal policies.

5.2.1 Preliminary: classic SSAP optimal policy

[8] introduces the sequential stochastic assignment problem (SSAP), where

T workers with success rates τ1 ≤ τ2 ≤ . . . ≤ τT are assigned to T sequentially

arriving jobs with values {Ct}Tt=1 (random variables) revealed upon arrival.

This problem is referred to as the T -depth SSAP problem. The objective is

to maximize the total expected reward E[
∑T

t=1 τjtCt], where jt is the index

of the worker assigned to the tth job with value Ct. The optimal policy uses

74

recursive equations to compute threshold values for each job assignment,

which motivates our proposed approximation algorithms for RSSAP.

Theorem 25 ([8]). For the tth job arrival with job value Ct, there are T−t+1

workers available, t = 1, 2, . . . , T . The thresholds for Ct are given by −∞ =

aT−t+1
0 ≤ aT−t+1

1 ≤ . . . ≤ aT−t+1
T−t+1 = +∞, where

aT−t+1
i =

∫ aT−ti

aT−ti−1

xdFC(x)+aT−ti−1 FC(aT−ti−1)+aT−ti (1−FC(aT−ti)), i = 1, 2, . . . , T−t.

(5.1)

If Ct ∈ (aT−ti−1 , a
T−t
i], then the worker with the ith smallest success rate among

the T−t+1 available workers is assigned to the tth job under the optimal policy

(referred to as the SSAP optimal policy). Moreover, aT−ti is the expected job

value that is assigned to the worker with ith smallest success rate among the

T − t available workers for i = 1, 2, . . . , T − t.

One important property of the SSAP optimal policy is related to order

statistics of IID job values: ati given by (5.1) is the expectation of the ith

smallest job value out of t IID job values, which follows from Hardy’s lemma

[68].

[4] considers a Generalized SSAP problem (GSSAP), where at each time t

a job arrives with some probability 0 < p ≤ 1. Therefore, the total number of

arriving jobs is a random variable. They show that this GSSAP is equivalent

to an SSAP with cdf given by

FG(x) = (1− p) + pFC(x). (5.2)

That is, no job arrival is treated as an arriving job with value zero. The

optimal policy for the GSSAP is given by Theorem 25 with FG(x) substituted

for FC(x). FG(x) is referred to the refined value distribution.

5.2.2 Equal-length job sequences

This section considers equal-length job sequences. Let l0 ∈ Z+
⋃
{0} denote

the length of each job. If l0 ≤ 1, then the optimal solution is to assign

every arriving job to the worker with the largest success rate, who is able to

complete all jobs. We assume l0 ≥ 2 in the following analysis. Sections 5.2.2.1

75

and 5.2.2.2 consider a single available worker while Section 5.2.2.3 discusses

the case of multiple workers.

Several definitions are needed. The time interval starting from the arrival

time (included) of an assigned job until its completion time (not included) is

referred to as the blocking window of the assigned job. Jobs arriving after the

assigned job and during this blocking window are blocked by this assigned

job (the assigned job is in its own blocking window) since assignments are

irrevocable and non-preemptive. Therefore, only one job can be assigned

within each blocking window. In the case of IID arrivals, all blocking windows

have the same distribution, given the same size of l0.

5.2.2.1 A single worker

Since only one worker is available, we assume that w1 = 1. We divide the

time axis into stages, which are time intervals of length 2l0 and are numbered

sequentially. For example, the time interval starting from t = 1 and lasting

until t = 2l0 (including both ends, i.e., [1, 2l0]) is referred to as stage one,

the time interval from t = 2l0 + 1 to t = 4l0 is referred to as stage two, and

so forth. We propose the Greedy Threshold algorithm, which is a threshold

algorithm based on the optimal policy for SSAP.

The intuition behind the Greedy Threshold algorithm is two-fold: (1) the

worker should be used as many times as possible, and (2) the worker should

be assigned to a job with the highest value (in expectation) whenever the

worker is available. According to the Greedy Threshold algorithm, the worker

is used at least once every 2l0 time slots and assigned to the job with the

highest value among blocked jobs, in expectation.

To compute the competitive ratio of the Greedy Threshold algorithm, we

first derive an upper bound for the optimal expected reward. Then we give a

lower bound for the expected reward using the Greedy Threshold algorithm.

Note that the Greedy Threshold algorithm is a deterministic algorithm, and

hence the expectation is taken over the distribution of the job sequence.

Lemma 5. An upper bound for the optimal expected reward for assigning

equal-length jobs to a single reusable worker, R∗E, is

R∗E ≤ (bT/l0c+ 1)al0l0 ,

76

Algorithm 4 Greedy Threshold Algorithm

Compute the refined cdf FG(v) for job values using (5.2).
Compute the threshold values in a l0-depth SSAP problem with job value
distribution FG(v), {aji}. Then aji is the expected value of the ith smallest
job value among j IID jobs with cdf FG(v), for i = 1, 2, . . . , j and j =
1, 2, . . . , l0.
Beginning at stage one (i.e., from t = 1 to t = 2l0).
while t ≤ T do

Re-index the time slots in each stage as t′ = 1 to t′ = 2l0.
If a job J arrives at time t′, then J will be assigned to worker w1 if and

only if
v(J) ≥ al0−t

′

l0−t′ , (5.3)

for t′ = 1, 2, . . . , l0 with a0
0 = 0.

If worker w1 is assigned a job, let t∗ denote the arrival time of the job.
Then the job will be completed at t = t∗ + l0. Therefore, the next stage
is defined as starting from t = t∗ + l0 until t = t∗ + 3l0 − 1. Otherwise,
let t∗ denote the re-indexed time t′ = l0, and the next stage is defined as
starting from t = t∗ + 1 until t = t∗ + 2l0.
end while

where T is the arrival time of the last job, l0 is the job length, and al0l0, defined

by (5.1), is the expectation of the largest job value for l0 IID job values.

Proof: The proof uses properties of the IID arrivals of the job sequence. We

provide upper bounds for two elements: (1) the total number of completed

job assignments; (2) the expected job value for each job assignment. The

product of upper bounds for these two elements provides an upper bound for

the optimal expected reward.

Consider the total number of job assignments the worker is able to com-

plete. Since each job will take l0 time slots to complete, the total number of

completed assignments is at most (bT/l0c+1), which is achieved by assigning

jobs to the worker back-to-back (the last assignment may be completed after

T).

Consider the expected job value assigned to the worker. Each time a job

is assigned to the worker, the job will incur a blocking window of length

l0. Therefore, the expected job value assigned to the worker has an upper

bound given by the expectation of the largest job value out of l0 IID jobs

with cdf FG(v), which is al0l0 from Theorem 25. Since job arrivals in the

entire job sequence are IID, each blocking window of length l0 has the same

77

distribution, and hence each expected job value assigned to the worker has

an upper bound given by al0l0 .

The product of these two upper bounds gives an upper bound for the

optimal expected reward. �

Proposition 4 provides a lower bound for the expected reward using the

Greedy Threshold algorithm.

Proposition 4. A lower bound for the expected reward using the Greedy

Threshold algorithm, E[RGT], is

E[RGT] ≥ (
1

2
bT
l0
c − 1

2l0
)al0l0 ,

where the expectation is taken over the distribution of the job sequence.

Proof: Since the Greedy Threshold algorithm treats each stage the same

way and job arrivals are IID, the expected reward using the Greedy Threshold

algorithm is the product of the number of stages and the expected reward in

each stage.

First, we consider the number of stages. From the Greedy Threshold

algorithm, the worker is assigned once in each stage. Therefore, the total

number of stages is the total number of jobs completed by the worker, denoted

by N(S). Note that the actual size of a stage is less than or equal to 2l0, and

hence N(S) has a lower bound given by

N(S) ≥ b T
2l0
c ≥ T − 1

2l0
≥ 1

2
bT
l0
c − 1

2l0
. (5.4)

Next, we consider the expected reward for the Greedy Threshold algorithm

in each stage. Since the threshold values for the l0-depth SSAP problem are

used for assigning jobs to the worker, then from Theorem 25, the expected

reward for each stage is al0l0 .

Combining the number of stages and the expected reward in each stage

together leads to the desired result. �

Theorem 26 provides the competitive ratio of the Greedy Threshold algo-

rithm on equal-length job sequences.

Theorem 26. The Greedy Threshold algorithm is 2-competitive for IID equal-

length job sequences.

78

Proof: The result follows directly from Lemma 5 and Proposition 4. In

particular, let γGT denote the competitive ratio of the Greedy Threshold

algorithm. Then,

γGT =
R∗E

E[RGT]
≤

(bT/l0c+ 1)al0l0
(1

2
b T
l0
c − 1

2l0
)al0l0
→ 2,

as T → +∞. �

Theorem 26 holds for any job value distribution Fv(v)(FG(v)) with finite

mean. Moreover, Theorem 26 holds for jobs with non-integer (continuous)

lengths, as long as job arrivals only happen at the beginning of time slots.

A stronger competitive ratio can be obtained for specific distributions. As

an example, we consider two continuous distributions: the uniform distribu-

tion and the exponential distribution. Since the arrival process is geometric

with probability p, we consider the refined job value distribution FG(v) as

a uniform distribution or an exponential distribution and provide the corre-

sponding FC(v).

If FG(v) is a uniform distribution, the original value distribution FC(v)

can either be a uniform distribution on the half-open interval (0, B] with a

geometric arrival process p = B/(B+1) for B > 0 or any uniform distribution

with a geometric arrival process p = 1. Corollary 3 provides a competitive

ratio of 3/2 using the Greedy Threshold algorithm.

Corollary 3. The Greedy Threshold algorithm is 3/2-competitive for IID

equal-length job sequences, when the refined value distribution is a uniform

distribution on [c, d], c, d ∈ R+.

Proof: We derive a lower bound for the expected reward using the Greedy

Threshold algorithm. Let aji denote the ith smallest threshold value for a

j-depth SSAP problem, for i = 1, 2, . . . , j and j = 1, 2, . . . , n, for an n-depth

SSAP problem with this uniform distribution. Then aji = c+ i
j+1

(d− c) from

(5.1).

Consider the expected length of each stage using the Greedy Threshold

algorithm. Let t∗ (re-indexed within the stage) denote the time slot that the

79

worker gets assigned. Then,

E[t∗] =1× P(v(J1) > al0−1
l0−1)

+

l0∑
k=2

kP(v(Jk) > al0−kl0−k, v(Jk−1) ≤ al0−k+1
l0−k+1, . . . , v(J1) ≤ al0−1

l0−1)

=1
1

l0 + 1
+ 2

l0
l0 + 1

1

l0
+ . . .+ l0

1

l0 + 1

=
l0
2
,

where v(Jk) is the job value that arrives at the kth (re-indexed) time slot

in the stage. Note that after each assignment, the worker needs l0 slots to

complete the assigned job. Therefore, the expected length of each stage is

l0/2− 1 + l0 = 3l0/2− 1 ≤ 3l0/2.

Let LUi denote the length of stage i for i = 1, 2, . . . , NL, where NU
L (a

random variable) denotes the total number of stages that have occurred by

time T (the last stage may be completed after T). Then {LUi } are IID random

variables with mean 3l0/2−1. Since the number of stages that have occurred

by any time t is a renewal process, NU
L is a stopping rule for {LUi }. By the

definition of NU
L and Wald’s identity,

E[

NU
L∑

i=1

Li] = E[LUi]E[NU
L] ≥ T ⇒ E[NU

L] ≥ T/E[LUi] =
2T

3l0
.

Let RU
i denote the reward for stage i. Then from Theorem 25, {Ri} are IID

random variables with expectation al0l0 . The expected reward for assigning

all jobs using the Greedy Threshold algorithm, denoted by RU
GT , has a lower

bound given by

E[RU
GT] = E[

NU
L∑

i=1

RU
i] = E[NU

L]E[RU
i] = E[NU

L]al0l0 ≥
2T

3l0
al0l0 ,

where the second equality follows from Wald’s identity. From the upper

bound for the optimal expected reward given by Lemma 5, the competitive

ratio of the Greedy Threshold algorithm is

γUGT =
R∗E

E[RU
GT]
≤

(bT/l0c+ 1)al0l0
2T
3l0
al0l0

→ 3/2,

80

as T → +∞. �

If FG(v) is an exponential distribution, then the original distribution FC(v)

and the refined distribution FG(v) have the following relationship:

FG(v) = 1− p+ pFC(v) = 1− p+ p(1− exp(−λv))

= 1− p exp(λv) = 1− exp

(
−λ(v − ln p

λ
)

)
,

where FC(v) is assumed to be an exponential distribution with parameter

λ and FG(v) is an exponential distribution with parameter λ and a shift of

ln p/λ to the left with respect to v. We provide a method to compute a

tighter competitive ratio for exponentially distributed job values as follows.

Consider the expected length of each stage. Let LEi denote the length of

stage i under the Greedy Threshold algorithm for equal-length jobs with ex-

ponential value distribution, i = 1, 2, . . . , NE
L , where NE

L denotes the total

number of stages that have occurred by time T (the last stage may be com-

pleted after T). Then {LEi } are IID random variables by definition. We use

the following theorem for order statistics to compute the threshold values for

the l0-depth SSAP problem:

Theorem 27 (Theorem 6.5, [69]). Let Y1, Y2, . . . , Yn be n IID exponential

random variables with parameter λ. Let Y(1) ≤ Y(2) ≤ . . . ≤ Y(n) denote their

order statistics. Define W0 , Y(1) and Wi , Y(i+1) − Y(i), i = 1, 2, . . . , n −
1. Then {Wi} are independent and exponentially distributed with parameter

λ(n− i), i = 0, 1, . . . , n− 1. Moreover,

E[Y(n)] = E[
n−1∑
j=0

Wj] =
n−1∑
j=0

E[Wj] =
n−1∑
j=0

1

λ(n− j)
=
Hn

λ
,

where Hn is the nth harmonic number.

For the l0-depth SSAP problem with exponential job value distribution,

from Theorem 27, the threshold values in each stage are

aii =
Hi

λ
+

ln p

λ
, (5.5)

81

for i = 1, 2 . . . , l0 − 1. Therefore,

P1 , P(v(J1) > al0−1
l0−1) = exp(−Hl0−1),

Pi , P(v(J) > al0−il0−i, v(J1) ≤ al0−1
l0−1, . . . , v(Ji−1) ≤ al0−i+1

l0−i+1)

=
(
Πl0−1
j=l0−i+1(1− exp(−Hj))

)
exp(−Hl0−i), for i = 2, 3, . . . , l0. (5.6)

Then the expected length of each stage is

E[LEi] = l0 +

l0−1∑
j=0

jPj+1.

Let RE
GT denote the reward for assigning equal-length jobs with exponen-

tially distributed values. Note that the expected reward for each stage is al0l0 .

Then from Wald’s identity,

E[RE
GT] = E[NE

L]al0l0 ≥
T

E[LEi]
al0l0 =

T

l0 +
∑l0−1

j=0 jPj+1

(
Hl0

λ
+

ln p

λ

)
, (5.7)

where the inequality follows since the last stage may be completed after T .

Let γeGT denote the competitive ratio of the Greedy Threshold algorithm

for equal-length jobs with exponentially distributed values. Combining the

lower bound provided in (5.7) and the upper bound for the optimal expected

reward provided in Lemma 5 leads to

γEGT =
R∗E

E[RE
GT]
≤

(bT/l0c+ 1)al0l0
T/(l0 +

∑l0−1
j=0 jPj+1)al0l0

→ 1 +

∑l0−1
j=0 jPj+1

l0
. (5.8)

Note that (
∑l0−1

j=0 jPj+1)/l0 ≤ 1 (from the definition for SSAP optimal pol-

icy), and hence the competitive ratio given by (5.8) is less than or equal to

2, which is a stronger result than Theorem 26.

5.2.2.2 Fixed-threshold algorithm for a single worker

This section considers a class of Greedy algorithms using a single fixed thresh-

old, as a comparison with the Greedy Threshold algorithm proposed in Sec-

tion 5.2.2.1. For general distributions of job values, the competitive ratio

of the Greedy algorithm with a fixed threshold (referred to as the Fixed-

82

threshold algorithm) does not have a simple closed-form expression. How-

ever, if the job value follows a uniform distribution, the expression for the

competitive ratio of the Fixed-threshold algorithm can be obtained.

Let v̂ denote the threshold for the job value under the Fixed-threshold

algorithm: if v(J) ≥ v̂ and the worker is available, assign job J to the

worker; otherwise, discard the job. We will determine the value of v̂ later.

To analyze the Fixed-threshold algorithm, divide the time axis into stages,

each spanning the interval between the time slot when the worker is first

available after completing a previous job and the time slot when the worker

completes one job assignment. For example, the first stage extends from

time t = 1 until the time, denoted by t1, when the worker completes the first

job assignment. Then the second stage extends from t1 + 1 until the time

when the worker completes the second job assignment. That is, one job is

completed in each stage.

Let Li denote the length of stage i, for i = 1, 2, . . . , NS, where NS denotes

the total number of stages that have occurred by time T (the last stage may

be completed after T). Let Ri denote the reward achieved by the Fixed-

threshold algorithm in stage i. Then, {Li} and {Ri} are both IID random

variables, since the Fixed-threshold algorithm uses the same threshold value

for all job assignments. Moreover, each stage consists of two parts: (1) the

worker waits to be assigned in the first part, whose length is a geometrically

distributed random variable with parameter pL given by

pL = P(the worker is assigned at a time slot t)

= P (job J is assigned to the worker | job J arrives)P (job J arrives)

= pP(v(J) ≥ v̂);

and (2) the worker completes the assigned job in the second part, whose

length is a constant l0. Therefore,

E[Li] =
1

pP(v(J) ≥ v̂)
+ l0 − 1, (5.9)

where the minus one is because the geometric distribution of the first part

starts from zero. The expectation of Ri is given by E[Ri] = E[v(J) | v(J) ≥
v̂], where the expectation is taken with respect to the original value distri-

bution Fv(v).

83

Since the number of stages that have occurred by any time t is a renewal

process, NS is a stopping rule for both {Li} and {Ri}. Let RFT denote the

reward using the Fixed-threshold algorithm for equal-length jobs. By Wald’s

identity,

E[

NS∑
i=1

Li] = E[NS]E[Li] ≥ T ⇒ E[NS] ≥ T

E[Li]
,

E[RFT] = E[

NS∑
i=1

Ri] = E[NS]E[Ri] ≥ T
E[ri]

E[Li]
. (5.10)

Therefore, maximizing the lower bound for E[RFT] is the same as maximizing

the ratio E[ri]/E[Li]. Substituting (5.9) into (5.10) leads to the following

optimization problem:

max
v̂∈[vmin,vmax]

E[v(J) | v(J) ≥ v̂]
1

pP(v(J)≥v̂)
+ l0 − 1

, (5.11)

where [vmin, vmax] is the support for the job value. To obtain the optimal

threshold v̂, take the derivative of (5.11) with respect to v̂ and set the deriva-

tive to zero,
v̂

(v̂ − E[v|v ≥ v̂])P(v ≥ v̂)
= p(l0 − 1). (5.12)

In general, there is no closed-form solution to (5.12), and hence the spe-

cific choice of a threshold for job values v̂ depends on parameters of the

distribution. We take uniform distributions and exponential distributions as

examples.

If the job value is uniformly distributed on [A,B] (i.e., Fv(v) = (v −
A)/(B − A) for v ∈ [A,B]), then for A ≤ v̂ ≤ B, (5.11) becomes

max
A≤v̂≤B

(v̂ +B)/2

(B − A)/(p(B − v̂)) + l0 − 1
= max

A≤v̂≤B

p

2

B2 − v̂2

B − A+ (l0 − 1)p(B − v̂)
.

(5.13)

To obtain the solution to (5.13), change the variable by x = B − v̂. Then

2B − x = B + v̂ and 0 ≤ x ≤ B − A. Substituting x for v̂ and taking the

84

derivative of (5.13) with respect to x lead to

(2B − 2x)(B − A+ (l0 − 1)px)− (2B − x)x(l0 − 1)p

(B − A+ (l0 − 1)px)2

=
−(l0 − 1)p(x2 + 2 B−A

(l0−1)p
x) + 2B(B − A)

(B − A+ (l0 − 1)px)2
. (5.14)

Then the optimal value for x is given by setting (5.14) to zero as g(x) ,

−(l0− 1)p(x2 + 2 B−A
(l0−1)p

x) + 2B(B−A) = 0. Let x∗ denote the optimal value

for x, which depends on the value of A, B, l0 and p. If 2B/(B − A) ≥
(l0 − 1)p + 2, then g(x) ≥ 0 for all 0 ≤ x ≤ B − A, and hence (5.13)

is a monotonically increasing function of x and a monotonically decreasing

function of v̂. Therefore, the maximum of (5.13) is achieved by setting v̂ = A.

Let RU
FT denote the reward using the Fixed-threshold algorithm for equal-

length jobs with values following a uniform distribution. A lower bound for

the expected reward using the threshold v̂ = A is given by substituting A for

v̂ in (5.13), which gives

E[RU
FT] ≥ T

p

2

B + A

1 + (l0 − 1)p
. (5.15)

From Lemma 5, the optimal expected reward for jobs with values uniformly

distributed on [A,B] has an upper bound given by

R∗E ≤ bT/l0c(B −
B − A
l0 + 1

) ≤ T

l0

l0B + A

l0 + 1
. (5.16)

Let γUFT denote the competitive ratio of the Fixed-threshold algorithm. Then

combining (5.15) and (5.16) leads to

γUFT =
R∗E

E[RFT]
≤ l0B + A

l0(l0 + 1)

2(1 + (l0 − 1)p)

p(B + A)
≤ 2

1 + (l0 − 1)p

(l0 + 1)p
.

Note that 1 + (l0 − 1)p ≤ (l0 + 1)p for p ≥ 1/2. Therefore, the competitive

ratio of the Fixed-threshold algorithm is less than 2 for p ≥ 1/2.

If the job value is exponentially distributed with parameter λ (i.e., Fv(v) =

1− exp(−λv) for v ≥ 0), then (5.11) becomes

max
v̂≥0

p

∫ +∞
v̂

vλ exp(−λv)dv

1 + (l0 − 1)p exp(−λv̂)
= max

v̂≥0

p

λ

λv̂ + 1

(l0 − 1)p+ exp(λv̂)
. (5.17)

85

Taking the derivative of (5.17) with respect to v̂ and setting the derivative

to zero lead to

λv̂ exp(λv̂) = (l0 − 1)p. (5.18)

Let v̂∗ denote the solution to (5.18). Then λv̂∗ < (l0−1)p. LetRE
FT denote the

reward using the Fixed-threshold algorithm for equal-length jobs with values

following an exponential distribution. Substituting the value of exp(λv̂∗)

from (5.18) back into (5.17) leads to

E[RE
FT] ≥ T

v̂∗

l0 − 1
.

From Lemma 5 and (5.5), an upper bound for the optimal expected reward

for jobs with values following an exponential distribution is

R∗E ≤ bT/l0c(
l0(l0 + 1)

2λ
+

ln p

λ
) ≤ T (

l0 + 1

2λ
+

ln p

l0λ
).

Let γEFT denote the competitive ratio of the Fixed-threshold algorithm for

jobs with values following an exponential distribution. Then,

γEFT =
R∗E

E[RE
FT]
≤ (

l0 + 1

2λ
+

ln p

l0λ
)
l0 − 1

v̂∗
. (5.19)

5.2.2.3 Multiple workers

This section extends the results in Section 5.2.2.1 to the case of multiple

workers. Suppose that there are m0 workers available, with success rates

w1 ≤ w2 ≤ . . . ≤ wm0 . Similar to the case of a single worker, the time axis is

divided into stages of length 2l0.

If m0 < l0, these workers may not be able to complete all jobs in a sequence.

On the other hand, if m0 ≥ l0, there will always be redundant workers, and

workers with the m0 largest success rates are able to complete all the jobs

in a job sequence. Lemma 6 gives an upper bound for the optimal expected

reward using multiple workers.

Lemma 6. An upper bound for the optimal expected reward for assigning

86

equal-length job sequences to multiple workers, denoted by R∗m0
, is

R∗m0
≤ (bT/l0c+ 1)

l0∑
i=l0−min{m0,l0}+1

al0i wm0−l0+i, (5.20)

where m0 is the number of workers with success rates w1 ≤ w2 ≤ . . . ≤ wm0,

T is the arrival time of the last job, l0 is the common job length, and {al0i },
defined by (5.1), are the expectations of the order statistics of l0 IID job values

with cdf FG(v), for i = 1, 2, . . . , l0.

Proof: See Appendix B. �

The algorithm for RSSAP with multiple workers, the Greedy SSAP-stage

algorithm, is similar to the Greedy Threshold algorithm. The time axis

is divided into 2l0-length stages, and each worker (if m0 > l0, then only

workers with the l0 largest success rates are used) is assigned to one job in

each stage. At the beginning of each stage, all workers complete previously

assigned jobs and become available. The only difference is that workers have

their own threshold values, which is a result of the heterogeneity of workers

and Hardy’s lemma [68]. The l0-depth SSAP optimal policy is applied in the

first half of each stage: the worker with the largest success rate is assigned

to the job with the largest value (in expectation) out of l0 IID jobs (i.e., jobs

in a blocking window); the worker with the second largest success rate is

assigned to the job with the second largest value (in expectation) out of l0

IID jobs; and so on. For simplicity, if l0 > m0, add l0 −m0 virtual workers

with success rates zero and refer the virtual and original workers together as

workers with success rates w′1 ≤ w′2 ≤ . . . w′l0 . Otherwise, if l0 ≤ m0, only use

workers with the l0 largest success rates and refer to them as workers with

success rates w′1 ≤ w′2 ≤ . . . ≤ w′l0 .

Proposition 5. A lower bound for the expected reward using the Greedy

SSAP-stage algorithm, denoted by E[RGSS], is

E[RGSS] ≥ 1/2bT/l0c
l0∑

i=l0−min{l0,m0}+1

al0i wm0−l0+i, (5.22)

where the expectation is taken over the distribution of the job sequence.

Proof: See Appendix B. �

87

Algorithm 5 Greedy SSAP-stage Algorithm

Compute the refined cdf FG(v) for job values using (5.2).
Compute the threshold values in a l0-depth SSAP problem with job value
distribution FG(v), {aji}. Then aji is the expected value of the ith smallest
job value among j IID jobs with cdf FG(v), for i = 1, 2, . . . , j and j =
1, 2, . . . , l0.
Beginning at stage one (i.e., from t = 1 to t = 2l0).
while t ≤ T do

Reindex the time slots in each stage as t′ = 1 to t′ = 2l0.
At time t′, there are workers wt

′
1 ≤ wt

′
2 ≤ . . . ≤ wt

′

l0−t′+1 available. If a

job J arrives, then J is assigned to worker wt
′
j if and only if

al0−t
′

j−1 ≤ v(J) < al0−t
′

j , (5.21)

for t′ = 1, . . . , l0 with ak0 = 0 for k = 1, 2, . . . , l0 − 1.
At time tc = 2l0 + 1, all workers are available again. Therefore, the

next stage is defined as starting from t = tc till t = tc + 2l0.
end while

Theorem 28. The Greedy SSAP-stage algorithm is 2-competitive for IID

equal-length job sequences using multiple workers.

Proof: The result follows directly from Lemma 6 and Proposition 5. Let

γGSS denote the competitive ratio of the Greedy SSAP-stage algorithm.

Then,

γGSS =
R∗M

E[RGSS]
≤

(bT/l0c+ 1)
∑l0

i=l0−min{m0,l0}+1 a
l0
i wm0−l0+i

1/2bT/l0c
∑l0

i=l0−min{l0,m0}+1 a
l0
i wm0−l0+i

→ 2,

as T → +∞. �

5.2.3 Memoryless-length job sequences

This section considers memoryless-length job sequences. Values of memoryless-

length jobs are independent of their lengths and follow a distribution Fv(v).

Lengths of memoryless-length jobs follow a geometric distribution with pa-

rameter q (i.e., the probability of a worker completing an assigned job in the

time slot). Assigning memoryless-length jobs to workers is the discrete-time

counterpart for assigning jobs to servers with exponentially distributed ser-

vice time in a continuous-time queuing system. The objective is to maximize

88

the total reward for completed jobs.

Consider m0 workers with success rates w1 ≤ w2 ≤ . . . wm0 . We apply the

Greedy SSAP-stage algorithm for memoryless-length jobs as follows: set the

length of each stage as 2d1/qe, and use the threshold values computed from

an d1/qe-depth SSAP problem in each stage. Note that the expected job

length is E[l] = d1/qe (the ceiling is due to discrete-time arrivals), and hence

the expected size of the blocking window of any assigned job is d1/qe.
To analyze the Greedy SSAP-stage algorithm for memoryless-length jobs,

Proposition 6 provides an upper bound for the optimal expected reward

and Proposition 7 provides a lower bound for the expected reward for the

Greedy SSAP-stage algorithm. The intuition behind the upper bound for

the optimal expected reward for memoryless-length jobs is that the time

interval [1, T] can be divided into bT/lc back-to-back non-overlapping stages

with length l, during which each worker is assigned at most one job. Then

the SSAP optimal policy for an l-depth SSAP problem can be applied to

maximize the expected reward for each stage. Note that this upper bound

is not tight, since workers cannot all be available at the beginning of each

stage (due to the different thresholds used by different workers in the SSAP

optimal policy from Theorem 25). For each feasible stage length l, there is

a corresponding upper bound for the optimal expected reward. We want to

pick an appropriate l to compute an upper bound for the maximal obtainable

expected reward.

We prove Lemma 7 first, which is required for deriving an upper bound

for the optimal expected reward. Lemma 7 shows the concavity of the sum

of the expected value of the largest order statistics in two groups.

Lemma 7. For l1, l2 ∈ Z and 1 ≤ l1 < l2, the following inequality holds

al1l1 + al2l2 ≥ al1−1
l1−1 + al2+1

l2+1, (5.23)

where all, defined in (5.1), is the expected value of the largest order statistics

of l IID job values (a0
0 , 0).

Proof: From the definition of all (see (5.1)), the following recursive equations

89

hold:

al2+1
l2+1 = al2l2P(v ≤ al2l2) + E[v | v > al2l2]P(v > al2l2),

al1l1 = al1−1
l1−1P(v ≤ al1−1

l1−1) + E[v | v > al1−1
l1−1]P(v > al1−1

l1−1).

Let Pdx , dFv(x) denote the differential probability. Therefore,

al2+1
l2+1 − a

l2
l2

=

∫ +∞

a
l2
l2

(x− al2l2)Pdx, (5.24)

al1l1 − a
l1−1
l1−1 =

∫ +∞

a
l1−1
l1−1

(x− al1−1
l1−1)Pdx

=

∫ +∞

a
l2
l2

(x− al1−1
l1−1)Pdx+

∫ a
l2
l2

a
l1−1
l1−1

(x− al1−1
l1−1)Pdx

≥
∫ +∞

a
l2
l2

(x− al2l2)Pdx,

where the inequality follows from al2l2 ≥ al1l1 ≥ al1−1
l1−1, since the expected value

of the largest order statistics increases with respect to the total number of

samples. Therefore,

al1l1 − a
l1−1
l1−1 ≥ al2+1

l2+1 − a
l2
l2
,

which completes the proof. �

Lemma 7 indicates that when the total number of IID samples and the

number of divided groups are fixed, the sum of the expected value of the

largest order statistics in each group is maximized by dividing samples into

equal-size groups. Corollary 4 indicates that when the numbers of IID sam-

ples and equal-size divided groups are fixed, smaller sizes of the divided

groups result in a larger sum of the expected value of the largest order statis-

tics in each group.

Corollary 4. For h1, h2 ∈ Z+ and h1 > h2,

h1a
bT/h1c
bT/h1c ≥ h2a

bT/h2c
bT/h2c,

where ahh, defined in (5.1), is the expected value of the largest order statistics

of h IID job values.

Proof: We first prove h1a
bT/h1c
bT/h1c ≥ (h1 − 1)a

bT/(h1−1)c
bT/(h1−1)c for any h1 > 1. Con-

90

struct h1 groups of IID job values (samples) as follows: h1 − 2 groups with

bT/(h1 − 1)c job values, one group with (bT/(h1 − 1)c − 1) job values, and

one group with one job value. Therefore, from Lemma 7,

h1a
bT/h1c
bT/h1c ≥ (h1 − 2)a

bT/(h1−1)c
bT/(h1−1)c + a

bT/(h1−1)c−1
bT/(h1−1)c−1 + a1

1

≥ (h1 − 2)a
bT/(h1−1)c
bT/(h1−1)c + a

bT/(h1−1)c
bT/(h1−1)c

= (h1 − 1)a
bT/(h1−1)c
bT/(h1−1)c,

where (1) the first inequality is an application of Lemma 7: when the numbers

of samples and groups are fixed, the sum of the expected value of the largest

order statistics in each group is maximized by dividing the samples into

equal-size groups; (2) the second inequality follows from Lemma 7 by taking

l1 = 1 and l2 = bT/(h1 − 1)c − 1.

Since h1, h2 ∈ Z+ and h1 > h2, then from h1a
bT/h1c
bT/h1c ≥ (h1 − 1)a

bT/(h1−1)c
bT/(h1−1)c

for any h1 > 1,

h1a
bT/h1c
bT/h1c ≥ (h1 − 1)a

bT/(h1−1)c
bT/(h1−1)c ≥ . . . ≥ h2a

bT/h2c
bT/h2c.

�

Lemma 8 generalizes Lemma 7 to the sum of a fixed number of the largest

order statistics in each group. Therefore, when the numbers of IID samples

and divided groups are fixed, the sum of the expected value of a fixed number

of the largest order statistics in each group is maximized by dividing the

samples into equal-size groups.

Lemma 8. For l, l1 and l2 ∈ Z+ with 1 ≤ l < l1 < l2,

l1∑
i=l1−l+1

al1i +

l2∑
i=l2−l+1

al2i ≥
l1−1∑
i=l1−l

al1−1
i +

l2+1∑
i=l2−l+2

al2+1
i , (5.25)

where {aji}, defined in (5.1), is the expected value of the order statistics of j

IID job values.

Proof: See Appendix B. �

Corollary 5 is a direct application of Lemma 8 and generalizes Corollary 4

to the sum of a fixed number of the largest order statistics in each group.

Therefore, when the numbers of IID samples and divided groups are fixed,

smaller sizes of the divided groups result in a larger sum of the expected

91

value of a fixed number of the largest order statistics in each group. The

proof follows similar arguments as that of Corollary 4.

Corollary 5. For h1, h2 ∈ Z+, h1 > h2 and l ≤ T/(2h1),

h1

bT/h1c∑
i=bT/h1c−l+1

a
bT/h1c
i ≥ h2

bT/h2c∑
i=bT/h2c−l+1

a
bT/h2c
i ,

where {ahi }, defined in (5.1), is the expected value of the order statistics of h

IID job values.

Proof: See Appendix B. �

Proposition 6 provides an upper bound for the optimal expected reward

for assigning memoryless-length jobs to multiple workers.

Proposition 6. An upper bound for the optimal expected reward for assign-

ing memoryless-length job sequences to multiple workers, denoted by R∗MLL,

is

R∗MLL ≤ (T/d1/qe+ 1)

d1/qe∑
i=d1/qe−min{m0,d1/qe}+1

a
d1/qe
i wm0−d1/qe+i, (5.26)

where {ad1/qei }, i = 1, 2, . . . , d1/qe, defined by (5.1), is the expected value of

the order statistics of d1/qe IID job values.

Proof: We provide upper bounds for the total number of jobs completed by

each worker and the expected reward for each completed job.

Let Lk,m and Vk,m denote the length and value of the kth job assigned to

worker wm, k = 1, 2, . . . , Nm and m = 1, 2, . . . ,m0, where Nm is the total

number of jobs completed by worker wm. Since jobs have IID memoryless

lengths independent of values, then {Lk,m} are IID random variables with

expectation d1/qe. For any fixed m, using Wald’s identity,

Nm∑
k=1

Lk,m ≤ T + Lk,Nm ⇒ E[
Nm∑
k=1

Lk,m] ≤ T + d1/qe

⇒ E[Nm]d1/qe ≤ T + d1/qe,

and hence E[Nm] ≤ T/d1/qe+ 1 for m = 1, 2, . . . ,m0.

92

Consider the expected reward for each job completed by the worker with

the largest success rate wm0 . Since the kth assigned job has a blocking win-

dow of size Lk,m0 (including the job itself), an upper bound for the expected

value of each assigned job is the expected value of the largest order statis-

tics out of Lk,m0 IID job values. That is, E[Vk,m0] ≤ a
Lk,m0
Lk,m0

, with a
Lk,m0
Lk,m0

defined by Theorem 25 (5.1). Therefore, an upper bound for the opti-

mal expected reward for worker wm0 is
∑NM

k=1 a
Lk,m0
Lk,m0

. Note that {Lk,m0}
are IID random variables and

∑NM−1
k=1 Lk,m0 ≤ T . From Lemma 7, an

upper bound
∑NM

k=1 a
L0
L0

for
∑NM

k=1 a
Lk,m0
Lk,m0

is obtained when Lk,m0 = L0 for

all k = 1, 2, . . . , NM (i.e., equal-size divided groups for a fixed number of

IID samples). Since E[Lk,m0] = d1/qe, then the feasible region for L0 is

L0 ≥ d1/qe. Then from Corollary 4, the largest upper bound
∑NM

k=1 a
L0
L0

is

obtained by setting L0 = d1/qe. Therefore,

E[

NM∑
k=1

a
Lk,m0
Lk,m0

] ≤ E[

NM∑
k=1

a
d1/qe
d1/qe] ≤ E[NM]a

d1/qe
d1/qe ≤ (T/d1/qe+ 1)a

d1/qe
d1/qe. (5.27)

An upper bound for the expected reward using multiple workers is ob-

tained using similar arguments as for using only the worker with the largest

success rate. During the execution of the kth job assigned to the worker with

the largest success rate wm0 , an upper bound for the expected reward of as-

signing jobs arriving during this blocking window to workers w1, w2, . . . , wm0

is
∑Lk,m0

i=Lk,m0
−min{m0,Lk,m0

}+1 a
Lk,m0
i wm0−Lk,m0

l+i from Theorem 25. Then an up-

per bound for the expected reward of assigning all jobs to workers is

NM∑
k=1

Lk,m0∑
i=Lk,m0

−min{m0,Lk,m0
}+1

a
Lk,m0
i wm0−Lk,m0

+i.

From Lemma 8,

NM∑
k=1

Lk,m0∑
i=Lk,m0

−min{m0,Lk,m0
}+1

a
Lk,m0
i wm0−Lk,m0

+i ≤
NM∑
k=1

L0∑
i=L0−min{m0,L0}+1

aL0
i wm0−L0+i,

(5.28)

where the upper bound is obtained when Lk,m0 = L0 for all k = 1, 2, . . . , NM

(i.e., equal-size divided groups for a fixed number of IID samples). Since

E[Lk,m0] = d1/qe, then the feasible region for L0 is L0 ≥ d1/qe. Then from

93

Corollary 5, the largest upper bound on the right-hand side of (5.28) is

obtained by setting L0 = d1/qe. Therefore, the upper bound for the reward

using multiple workers is

R∗MLL ≤ (T/d1/qe+ 1)

d1/qe∑
i=d1/qe−min{m0,d1/qe}+1

a
d1/qe
i wm0−d1/qe+i.

�

Proposition 7 provides a lower bound for the expected reward using the

Greedy-SSAP stage algorithm for assigning memoryless-length jobs.

Proposition 7. A lower bound for the expected reward using the Greedy

SSAP-stage algorithm for assigning memoryless-length jobs, denoted by E[RMLL],

is

E[RMLL] ≥ T/(2d1/qe)
d1/qe∑

i=d1/qe−min{d1/qe,m0}+1

a
d1/qe
i wm0−d1/qe+i, (5.29)

where the expectation is taken over the distribution of the job sequence.

Proof: See Appendix B. �

Theorem 29 gives the competitive ratio of the Greedy-SSAP stage algo-

rithm.

Theorem 29. The Greedy SSAP-stage algorithm achieves a competitive ratio

of 2 for memoryless-length job sequences using multiple workers.

Proof: The result follows directly from Propositions 6 and 7. Let γMLL de-

note the competitive ratio of the Greedy SSAP-stage algorithm for assigning

memoryless-length jobs. Then,

γMLL =
R∗MLL

E[RMLL]
≤

(T/d1/qe+ 1)
∑d1/qe

i=d1/qe−min{m0,d1/qe}+1 a
d1/qe
i wm0−d1/qe+i

T/(2d1/qe)
∑d1/qe

i=d1/qe−min{d1/qe,m0}+1 a
d1/qe
i wm0−d1/qe+i

→ 2,

as T → +∞. �

94

5.3 Approximation Algorithms for RSSAP with a

Random Order of Arrivals

This section assumes that jobs have a random order of arrivals, relaxing the

assumption that job values are drawn from a given distribution. Therefore,

jobs are randomly ordered such that the ith arriving job is equally likely to

have the jth largest value for all i, j = 1, 2, ..., T , where T denotes the given

total number of jobs. We provide e-competitive and e2/(e − 1)-competitive

approximation algorithms for equal-length and memoryless-length jobs, re-

spectively. We further extend these results to equal-length and memoryless-

length jobs and provide ep-competitive and ep+1/(e− 1)-competitive approx-

imation algorithms, respectively, for both geometric with parameter p and a

random order of arrivals.

5.3.1 Preliminary: Bipartite online matching

[53] proposes an online algorithm, referred to as BOM, for the weighted

bipartite online matching problem. In the weighted bipartite online match-

ing problem, right-side vertices R of an edge-weighted bipartite graph G =

(R
⋃
L,E) are given in advance. Left-side vertices arrive one at a time

with their edges e and weights of edges w(e) revealed upon each arrival. A

matching algorithm decides either to match an arriving left-side vertex to an

unmatched right-side vertex or discard the left-side vertex upon each arrival.

The objective is to maximize the expected total weight of edges between the

matched vertices in a bipartite graph. The left-side vertices are assumed to

arrive in a random order. Note that each right(left) vertex can be matched

to at most one left(right) vertex.

The BOM algorithm uses the first bT/ec arriving vertices for training,

where T is the given total number of right-side vertices (also the number

of left-side vertices). Beginning from the (bT/ec + 1)th arriving vertex, the

BOM algorithm matches vertices based on the optimal (offline) matching for

the set of vertices observed to date: if the newly arrived left-side vertex is in

the optimal matching for the set of all right-side vertices and the set of left-

side vertices observed so far and its matched right-side vertex is available,

then the BOM algorithm matches the two vertices; otherwise, the BOM

algorithm discards the left-side vertex. [53] proves that the BOM algorithm

95

is e-competitive for the weighted bipartite online matching problem. The

BOM algorithm matches each vertex at most once and hence is not directly

applicable to RSSAP. However, the BOM algorithm motivates the proposed

algorithms for RSSAP with a random order of arrivals and is given in the

Appendix B.

5.3.2 Equal-length job sequences

This section considers equal-length job sequences. Let l0 denote the length of

each job and assume l0 ≥ 2 as in Section 5.2.2. Let T denote the given total

number of jobs. We first consider a special class of geometric arrivals with

p = 1 (i.e., a job arrives at the beginning of each time slot with probability

1). General geometric arrivals will be discussed in Section 5.3.4. Suppose

that there are m0 available workers, with success rates w1 ≤ w2 ≤ . . . ≤ wm0 .

We further assume m0 = l0 (if m0 ≥ l0, we use workers with the l0 largest

success rates; otherwise, m0 < l0, add l0 −m0 virtual workers with success

rate zero).

We propose the rolling window algorithm for scheduling equal-length job

sequences with a random order of arrivals. The rolling window algorithm

uses a rolling window (a time interval) of size l0, where the optimal weighted

matching between workers and jobs is applied: when a job Jt arrives at time

t, the algorithm computes the optimal weighted matching between workers

{w1, w2, . . . , wm0} and jobs that have arrived during rolling window Wt =

[max{1, t− l0 + 1}, t] (for example, using Hardy’s lemma), where weights of

edges between workers and jobs are given by products of worker’s success

rates and job values. If job Jt is assigned to worker wmt in the optimal

matching for Wt, and worker wmt is available, then assign job Jt to worker

wmt ; otherwise, discard job Jt. The intuition behind the rolling window

algorithm is two-fold: (1) since every job has a fixed length l0, then the

assignment of a job arriving at time t can only be influenced by jobs that

arrive in the rolling window Wt = [max{1, t− l0 + 1}, t]; (2) since jobs follow

a random order of arrivals, jobs arriving in each rolling window of size l0

can be modeled as l0 jobs uniformly and randomly selected from T jobs,

with a uniformly random order among themselves. These two properties are

essential in our analysis of the rolling window algorithm.

96

Algorithm 6 Rolling Window Algorithm

for each time t ≥ l0 do
Let Jt denote the job arriving at time t.
Update the rolling window Wt = [max{1, t− l0 + 1}, t].
SWt , optimal weighted matching for jobs arriving during Wt and all

workers (for example, using Hardy’s lemma).
Let wmt denote the worker assigned to job Jt according to SWt .
if worker wmt is available then assign job Jt to wmt .
else discard Jt.
end if

end for

Theorem 30. The rolling window algorithm is e-competitive for equal-length

job sequences with a random order of arrivals.

Proof:

The proof has the same structure as the proof of e-competitiveness for the

BOM Algorithm given by [53]. We prove the e-competitiveness by consid-

ering the expected reward for an assignment given by the optimal weighted

matching at time t for t ≥ l0 and the probability of such an assignment using

the rolling window algorithm being feasible.

Let OPT denote the optimal offline reward for scheduling T jobs. Con-

sider the rolling window used at time t ≥ l0, denoted by Wt = [t− l0 + 1, t].

Let OPT (Wt) denote the optimal reward for scheduling jobs arriving in the

rolling windowWt, assuming all workers are available. Since jobs follow a ran-

dom arrival order, jobs arriving in Wt, denoted by {Jt−l0+1, Jt−l0+2, . . . , Jt},
can be modeled as l0 jobs uniformly and randomly selected from T jobs.

Therefore,

E[OPT (Wt)] ≥
l0
T
OPT,

where the expectation is taken over the random arrival order of T jobs.

Since the arrival order of these l0 jobs in rolling window Wt is a random

permutation of the l0 jobs, then the expected reward for assignment at any

time slot within Wt is equal. That is, E[R(t′)] = E[OPT (Wt)]/l0, where R(t′)

denotes the reward at time t′ ∈ [t− l0 + 1, t]. Therefore, the expected reward

for the assignment at time t has a lower bound

E[R(t)] ≥ 1

T
OPT, (5.30)

97

where all workers are assumed to be available. However, not all workers may

be available at the beginning of a rolling window. We provide a lower bound

for the probability that the worker assigned to job Jt under the optimal

matching for rolling window Wt, denoted by wmt , is available at time t.

Since each job has length l0, assignments before Wt will not influence the

availability of worker wmt . Therefore, worker wmt is available at time t if no

job is assigned to this worker in rolling window Wt. Consider the probability

of worker wmt getting assigned to some job at time t′ ∈ [t−l0+1, t]. According

to the rolling window algorithm, this happens if: (1) the assignment of job Jt′

and worker wmt is included in the optimal matching for the rolling window

Wt′ = [t′ − l0 + 1, t′], and (2) worker wmt is available at time t′. Since the

order of job arrivals in the rolling window Wt′ follows a random permutation,

the probability that the assignment of job Jt′ and worker wmt is included in

the optimal matching for the rolling window Wt′ is 1/l0. Then

P(worker wmt is assigned at time t′)

=P(worker wmt is matched to job Jt′)P(worker wmt is available at t′)

≤P(worker wmt is matched to job Jt′) =
1

l0
. (5.31)

Note that the event that worker wmt is assigned at time t′ ∈ [t− l0 + 1, t− 1]

is determined by the relative order of job Jt′ among jobs arriving during

Wt′ = [t′ − l0 + 1, t′], which is independent from the relative order of jobs

arriving during [t′− l0 +1, t′−1] among themselves. Therefore, the respective

events that worker wmt is assigned at t′ ∈ [t− l0 + 1, t− 1] are independent.

Then

P(worker wmt is available at t)

=P(worker wmt is not assigned in [t− l0 + 1, t− 1])

≥Πt−1
t′=t−l0+1P(worker wmt is not assigned at t′) (5.32)

=Πt−1
t′=t−l0+1 (1− P(worker wmt is assigned at t′))

(5.31)

≥ Πt−1
t′=t−l0+1

(
1− 1

l0

)
= (1− 1

l0
)l0−1 ≥ 1

e
, (5.33)

where inequality (5.32) follows since the respective events that worker wmt

is assigned at t′ ∈ [t− l0 + 1, t− 1] are independent.

98

Let RE
RW denote the reward for the rolling window algorithm for equal-

length job sequences with a random order of arrivals. Combining (5.30) and

(5.33) leads to

E[RE
RW] =

T∑
t=1

E[R(t)]P(worker wmt is available at t)

≥
T∑
t=l0

E[R(t)]P(worker wmt is available at t)

(5.30),(5.33)

≥
T∑
t=l0

1

T
OPT

1

e

→ 1

e
OPT,

as T → +∞, which completes the proof. �

In RSSAP, the reward for assigning a job to a worker is given by the

product of the worker’s success rate and the job value. However, the rolling

window algorithm can be generalized to cases where rewards for assigning

a job J to a work wm is given by any function r(J, wm) = f(J, wm), and

Theorem 30 still holds.

5.3.3 Memoryless-length job sequences

This section considers memoryless-length job sequences: job lengths follow a

geometric distribution with parameter q, independent of their values. Once

a job is assigned to a worker, the worker becomes available at the beginning

of the next time slot with probability q. Therefore, the expected length of

a memoryless-length job is d1/qe (the ceiling is due to the discretized time

axis). As in Section 5.3.2, we assume m0 = d1/qe (if m0 ≥ d1/qe, we use

workers with the d1/qe largest success rates; otherwise, m0 < d1/qe, add

d1/qe −m0 virtual workers with success rate zero).

We use the rolling window algorithm for memoryless-length jobs as follows:

(1) job assignments start from time d1/qe; (2) the length of each rolling

window is d1/qe, and hence the rolling window for job Jt arriving at time

t is Wt = [t − d1/qe + 1, t], t ≥ d1/qe. Therefore, when a job Jt arrives at

time t ≥ d1/qe, the rolling window algorithm computes the optimal weighted

matching between jobs arriving in the rolling window Wt = [t− d1/qe+ 1, t]

99

and all workers {w1, w2, . . . , wm0}. If the optimal weighted matching for Wt

assigns job Jt to worker wmt , and worker wmt is available at time t, then the

rolling window algorithm assigns job Jt to worker wmt ; otherwise, discard job

Jt. The length of each rolling window is the expected length of memoryless-

length jobs, since each worker can complete at most one job in expectation

within a rolling window, and hence the optimal matching (in expectation)

between jobs arriving in this rolling window and workers is the same as the

optimal schedule (in expectation) for these jobs on workers.

Theorem 31. The rolling window algorithm is e2/(e − 1)-competitive for

memoryless-length job sequences with a random order of arrivals.

Proof: The proof follows an argument similar to that of Theorem 30. We

consider the expected reward for an assignment given by the optimal weighted

matching at each time t ≥ d1/qe and the probability of such an assignment

being feasible.

Let OPT denote the optimal offline reward for scheduling T jobs. (5.30)

still holds for the expected reward for an assignment at time t ≥ d1/qe.
Suppose that the optimal weighted matching between jobs arriving during

rolling window Wt = [t−d1/qe+1, t] and all workers assigns job Jt to worker

wmt . We compute the probability of worker wmt being available at time t.

Similar to (5.31), the probability that worker wmt is assigned at some time

t′ ∈ [t− d1/qe+ 1, t− 1] has an upper bound

P(worker wmt is assigned at time t′)

=P(worker wmt is matched to job Jt′)P(worker wmt is available at t′)

≤P(worker wmt is matched to job Jt′) =
1

d1/qe
. (5.34)

Since the job length follows a geometric distribution with parameter q, if

worker wmt is not assigned in [t−d1/qe+ 1, t− 1] but assigned before rolling

window Wt, there is still a probability that worker wmt has not completed

the assigned job. Since the rolling window has length d1/qe, then define

P1 , P (worker wmt is available before t|worker wmt is assigned before Wt)

≥ 1− (1− q)d1/qe ≥ 1− (1− q)1/q. (5.35)

Let EventWt denote the event that worker wmt is assigned before rolling

100

window Wt. Then

P(worker wmt is available at t)

≥P(worker wmt is not assigned in [t− d1/qe+ 1, t− 1])

×
(
P(not EventWt)

+ P(worker wmt is available before t|EventWt)P(EventWt)
)

(5.36)

≥P(worker wmt is not assigned in [t− d1/qe+ 1, t− 1])P1

≥
(

Πt−1
t′=t−d1/qe+1P(worker wmt is not assigned at t′)

)
P1 (5.37)

=
(

Πt−1
t′=t−d1/qe+1 (1− P(worker wmt is assigned at t′))

)
P1

≥
(

Πt−1
t′=t−d1/qe+1

(
1− 1

d1/qe

))
(1− (1− q)d1/qe) (5.38)

≥1

e
(1− 1

e
), (5.39)

where: (a) inequality (5.36) follows from the law of total probability; (b) in-

equality (5.37) follows since the respective events that worker wmt is assigned

at t′ ∈ [t−d1/qe+1, t−1] are independent; (c) inequality (5.38) follows from

(5.34) and (5.35); (d) inequality (5.39) follows since (1−q)d1/qe ≤ (1−q)1/q ≤
1/e for 0 < q ≤ 1.

LetRm0
RW denote the reward for the rolling window algorithm for memoryless-

length job sequences with a random order of arrivals. Combining (5.30) and

(5.39) leads to

E[Rm0
RW] =

T∑
t=1

E[reward in time slot t]P(worker wmt is available at t)

≥
T∑

t=d1/qe

E[reward in time slot t]P(worker wmt is available at t)

(5.30),(5.39)

≥
T∑

t=d1/qe

1

T
OPT

1

e
(1− 1

e
)

→ e− 1

e2
OPT,

as T → +∞, which completes the proof. �

Note that Theorem 31 holds for all memoryless-length jobs with 0 < q ≤ 1.

For a specific value of q, a stronger competitive ratio e/(1 − (1 − q)d1/qe)

101

can be computed from (5.38). When q = 0, the scheduling problem for

memoryless-length jobs reduces to the weighted bipartite online matching

problem. Note that P(EventWt) → 0 as d1/qe → +∞, and the competitive

ratio computed from (5.36) to (5.39) becomes e, which is consistent with the

e-competitiveness given by [53].

5.3.4 General geometric and random order of arrivals

This section considers jobs with arrivals that are both geometric with 0 <

p ≤ 1 and randomly ordered. Recall that for geometric arrivals, jobs arrive at

the beginning of each time slot with probability 0 < p ≤ 1. The total number

of jobs, T , is fixed and given. Sections 5.3.2 and 5.3.3 discuss the special case

of geometric arrivals with p = 1 for equal-length and memoryless-length jobs,

respectively. We extend those results to the more general geometric arrivals.

If there is no job arriving at the beginning of a time slot, we say a virtual

job with value zero arrives. However, simply treating zero-value virtual jobs

the same as real jobs will result in nonuniform order of job arrivals, illustrated

by the following example.

Example 2. Consider a sequence of equal-length jobs with l0 = 6 and p = 1/2

for geometric arrivals. Consider the arrival order of real jobs and virtual jobs

in a time interval W = [1, 6]. Then

P(2 real jobs arrive during W) =

(
6

2

)
p2(1− p)4 =

6!

2!4!
p2(1− p)4.

Therefore, the probability for each arrival order of the two real jobs and four

virtual jobs in this time interval W is

P(each arrival order for 2 real jobs in W) =
P(2 real jobs arrive during W)

number of permutations

=
6!

2!4!
p2(1− p)4

6!
=

1

4!27
. (5.40)

Similarly,

P(1 real job arrives during W) =

(
6

1

)
p(1− p)5 =

6!

5!
p(1− p)5.

Therefore, the probability for each arrival order of the one real job and five

102

virtual jobs in this time interval W is

P(each arrival order for 1 real job in W) =
P(1 real job arrives during W)

number of permutations

=
6!
5!
p(1− p)5

6!
=

1

5!26
. (5.41)

The probability of an arrival order with two real jobs and four virtual jobs

arriving during W , (5.40), is not equal to the probability of an arrival order

with one real job and five virtual jobs arriving during W , (5.41). �

Consider a time interval W of length l. Then the number of arrivals of real

jobs in W follows a binomial distribution with parameter l and p, and hence

the expected number of arrivals of real jobs in the interval is E[NW] = lp.

When the number of real job arrivals during a time interval is given, these

real jobs can be modeled as uniformly and randomly selected from T real

jobs.

We use the rolling window algorithm for equal-length jobs with general

geometric and a random order of arrivals, where the size of rolling windows

is l0. As in Section 5.3.2, we further assume the number of workers is m0 = l0.

Theorem 32 provides the competitive ratio of the rolling window algorithm

for equal-length job sequences.

Theorem 32. The rolling window algorithm is ep-competitive for equal-

length jobs with geometric and a random order of arrivals, where p is the

parameter for geometric arrivals.

Proof: The proof has the same structure as the proof of Theorem 30. We

prove the ep-competitiveness by considering the expected reward for an as-

signment given by the optimal weighted matching at time t ≥ l0 and the

probability of such an assignment being feasible, conditioning on the event

that a real job arrives at time t. Note that for geometric arrivals, a real job

arrives at each time slot with probability p, and a virtual job with value zero

arrives with probability 1− p.
Let OPT denote the optimal offline reward for scheduling T real jobs.

Suppose that there is a real job Jt arriving at time t. Let Wt = [t − l0 +

1, t] denote the rolling window for assigning job Jt using the rolling window

algorithm. Let NW denote the number of real jobs arriving during Ŵt =

103

[t − l0 + 1, t − 1]. Then NW is a binomial random variable with parameter

(l0 − 1) and p, and P(NW = x) =
(
l0−1
x

)
px(1− p)l0−x−1, x = 0, 1, . . . , l0 − 1.

Let Eventx,t denote the event that a real job arrives at time t and x real

jobs arrive during the rolling window Wt, x = 1, 2, . . . , l0. Then conditioning

on the event that there are x real jobs arriving during Wt (including job Jt

arriving at time t), these x jobs can be modeled as uniformly and randomly

selected from T jobs due to the random order of arrivals, x = 1, 2, . . . , l0.

Therefore, the conditional expected reward for scheduling jobs arriving dur-

ing Wt given Eventx,t has a lower bound

E[R(Wt)|Eventx,t] ≥
x

T
OPT. (5.42)

Moreover, the conditional expected reward for the assignment at time t is

E[R(Wt)|Eventx,t]/x, since the arrival order of these x jobs is a random per-

mutation among themselves. Let R(t) denote the reward for the assignment

at time t. Then

E[R(t)|a job arrives at time t]

=

∑l0
x=1 E[R(t)|Eventx,t]P(Eventx,t)

P(a job arrives at time t)

=

∑l0
x=1 E[R(Wt)|Eventx,t] 1

x

(
l0−1
x−1

)
px(1− p)(l0−x)

p

≥OPT
T

. (5.43)

Consider the conditional probability of the assignment at time t being

feasible, given that a real job Jt arrives at time t. Let wmt denote the worker

assigned to job Jt under the optimal offline matching for rolling window Wt.

Then the conditional probability of this assignment being feasible is the same

as the conditional probability that worker wmt is available at time t. Since

all jobs have the same length l0, worker wmt is available at time t if the

worker is not assigned to any other job during time interval [t− l0 + 1, t− 1].

Note that given the total number of real job arrivals in a rolling window, the

arrival order of these real jobs is a random permutation among themselves.

Then, following a similar argument as that for (5.31), an upper bound for

the conditional probability that worker wmt is assigned to a real job at time

104

t′ ∈ [t− l0 + 1, t− 1] is

P(worker wmt is assigned to a real job at t′|a job arrives at t)

=P(worker wmt is assigned to a real job at t′)

≤P(worker wmt is assigned to a real or virtual job at t′)

=P(worker wmt is matched to a real or virtual job Jt′)

× P(worker wmt is available at t′)

≤P(worker wmt is matched to real or virtual job Jt′)

=
1

l0
, (5.44)

where the first equality follows since the optimal weighted matching for

rolling window Wt′ = [t′ − l0 + 1, t′] is independent of the job arrival at

105

time t > t′. Then

P(worker wmt is available at t|a job arrives at t)

=P(worker wmt is not assigned in [t− l0 + 1, t− 1]|a job arrives at t)

=

l0∑
x=1

P(worker wmt is not assigned in [t− l0 + 1, t− 1]|Eventx,t)

× P((x− 1) jobs arrive during [t− l0 + 1, t− 1]|a job arrives at t)

(5.45)

=

l0∑
x=1

P(worker wmt is not assigned in [t− l0 + 1, t− 1]|Eventx,t)

× P((x− 1) jobs arrive during [t− l0 + 1, t− 1]) (5.46)

=

l0∑
x=1

P(worker wmt is not assigned in [t− l0 + 1, t− 1]|Eventx,t)

×
(
l0 − 1

x− 1

)
px−1(1− p)l0−x (5.47)

≥
l0∑
x=1

(
Πt−1
t′=t−l0+1P(worker wmt is not assigned at t′|Eventx,t)

)
×
(
l0 − 1

x− 1

)
px−1(1− p)l0−x

=

l0∑
x=1

(
Πt−1
t′=t−l0+1 (1− P(worker wmt is assigned at t′|Eventx,t))

)
×
(
l0 − 1

x− 1

)
px−1(1− p)l0−x

≥
l0∑
x=1

(1− 1

l0
)x−1

(
l0 − 1

x− 1

)
px−1(1− p)l0−x (5.48)

=(1− p+ p(1− 1

l0
))l0−1

=(1− 1

l0/p
)
(l0/p−1)(p

l0−1
l0−p

)

≥e−p, (5.49)

where: (a) equality (5.45) follows from the law of total probability; (b)

equality (5.46) follows since the events of (x − 1) real jobs arriving during

[t− l0 + 1, t− 1] and a job arriving at time t are independent for geometric

arrivals (given that there are more jobs left to arrive); (c) equality (5.47) fol-

106

lows from the fact that the number of real job arrivals during [t− l0 +1, t−1]

is a binomial random variable with parameters (l0 − 1) and p; (d) inequality

(5.48) follows from (5.44) and worker wmt has (x−1) opportunities to be as-

signed to one of the (x−1) jobs arriving during [t−l0 +1, t−1]; (e) inequality

(5.49) follows since f(y) = (1 − 1/y)y−1 ≥ e−1 for y ≥ 2 and p l0−1
l0−p ≤ p for

0 < p ≤ 1.

Let REp
RW denote the reward for the rolling window algorithm for equal-

length jobs following geometric with parameter p and a random order of

arrivals. Let Tp denote the time slot when the last real job arrives. Since

the inter-arrival time between subsequent real jobs is a geometric random

variable with parameter p, Tp is a random variable with E[Tp] = T d1/pe.
Combining (5.43) and (5.49) leads to

E[REp
RW]

=E
[Tp∑
t=1

E[R(t)|a job arrives at t]

× P(worker wmt is available at t|a job arrives at t)

× P(a job arrives at t)

]
≥E
[Tp∑
t=l0

E[R(t)|a job arrives at t]

× P(worker wmt is available at t|a job arrives at time t)

× P(a job arrives at t)

]
(5.43),(5.49)

≥ E

[
Tp∑
t=l0

OPT

T
e−pp

]

=
OPT

T
e−pp(E[Tp]− l0 + 1)

→OPT

ep
,

as T → +∞, which completes the proof. �

For memoryless-length jobs, we use the rolling window algorithm with

rolling windows of size d1/qe. As in Section 5.3.3, we further assume the

number of workers is m0 = d1/qe. Theorem 33 provides the competitive

ratio of the rolling window algorithm for memoryless-length jobs following

107

geometric and a random order of arrivals.

Theorem 33. The rolling window algorithm is ep+1/(e− 1)-competitive for

memoryless-length jobs following geometric and a random order of arrivals,

where p is the parameter for geometric arrivals.

Proof: See Appendix B. �

108

CHAPTER 6

PRIMAL-DUAL APPROACH TO ONLINE
INTERVAL SCHEDULING

This chapter provides a primal-dual approach to analyze algorithms for on-

line interval scheduling problems. This primal-dual technique can be used

for both stochastic and adversarial job sequences, and hence is universally

and generally applicable. We use strong duality and complementary slack-

ness conditions to derive optimal algorithms for scheduling stochastic job

sequences on a single machine. We use weak duality to obtain upper bounds

for the optimal reward for scheduling stochastic job sequences on multiple

machines. We use the primal-dual technique to compute competitive ratios

of an approximation algorithm for adversarial job sequences.

6.1 Formulation and primal-dual techniques

This section formulates online interval scheduling problems as a linear pro-

gram and provides the primal-dual analysis framework.

Consider a sequence of N jobs I = {J1, J2, . . . , JN} to be scheduled on

m machines, denoted by M1,M2, . . . ,Mm. A sequence of jobs is referred to

as a job instance, denoted by I. The scheduling of a job on a machine is

referred to as an assignment. Each machine can process at most one job at a

time and each job can be scheduled on at most one machine. Each machine

has a given weight, denoted by {w1, w2, . . . , wm}. Without loss of generality,

we assume w1 ≤ w2 ≤ . . . ≤ wm. The complete job instance is not known

beforehand (the total number of jobs N is not known as well), and jobs are

revealed only at each arrival. Each assignment is made online upon each

arrival.

Each job is featured by a job vector, revealed upon arrival. Let Jj =

(aj, lj, vj) denote the job vector of the jth job arrival, for j = 1, 2, . . . , N ,

where aj denotes the job arrival time, lj denotes the job length, and vj denotes

109

the job value. Furthermore, we assume that the time axis is discretized into

slots, indexed by t = 1, 2, . . . , T , such that job arrivals and completions only

occur at the beginning and the end of time slots, respectively. Therefore,

aj, lj ∈ Z+ for j = 1, 2, . . . , N . Moreover, we assume that no jobs share the

same arrival time. The completion time of job Jj is defined as fj ≡ aj + lj.

We refer to the half-open interval [aj, fj) as the job interval. If two jobs Jj1

and Jj2 satisfy [aj1 , fj1)
⋂

[aj2 , fj2) 6= ∅, then Jj1 and Jj2 are said to conflict

with each other.

We consider two cases of online interval scheduling problems:

SE: stochastic equal-length arbitrary-value jobs on multiple machines. There

is one job arriving at the beginning of each time slot (since the case of

no jobs arriving at a time slot can be seen as a job with value zero arriv-

ing at the slot). Jobs in an instance share the same length with values

following a given distribution. Machines have different weights and the

reward for completing a job Jj on machine Mi is given by vj ×wi. Job

assignments are assumed to be non-preemptive, which requires a job

scheduled on a machine to be completed without interruption.

AC: adversarial C-benevolent jobs on a single machine. There is not nec-

essarily one job arriving at the beginning of each time slot. Jobs in

an instance have different lengths with values as a function of lengths

v = v(l) (with a slight abuse of notation, we use v to denote both

the job value and the job value as a function of the job length), where

v : R+ → R+ is nondecreasing, positive, and convex. The weight for

the single machine is set as w1 = 1, and hence the reward for completing

a job is the job value. Job assignments are assumed to be preemptive,

and hence a job assigned to a machine can be terminated before com-

pletion in favor of a later arriving job. However, the terminated job

cannot be reassigned and its value is lost. We refer to such assignments

as temporary assignments and terminated jobs as aborted jobs.

Let the binary variable Xi,j denote the assignment of job Jj on machine

Mi, for i = 1, 2, . . . ,m and j = 1, 2, . . . , N : if job Jj is assigned to machine

Mi, Xi,j = 1; otherwise, Xi,j = 0. The objective of online interval scheduling

problems is to maximize the total reward for completed jobs, subject to the

constraint determined by the number of available machines. We formulate

110

both SE and AC as linear programs. Note that the constraints for the linear

program are dynamic, and hence we consider the constraint for each time

slot t = 1, 2, . . . , T , where T (random variable) denotes the completion time

of the last job in a job instance.

max E[
m∑
i=1

N∑
j=1

vjwiXi,j], (6.1)

s.t.
∑

j:t∈[aj ,fj)

Xi,j ≤ 1, for i = 1, 2 . . . ,m and for all t = 1, 2, . . . , T,

(6.2)
m∑
i=1

Xi,j ≤ 1, for j = 1, 2, . . . , N, (6.3)

Xi,j ∈ {0, 1}, for i = 1, 2, . . . ,m and j = 1, 2, . . . , N. (6.4)

Constraint (6.2) means that each machine can be assigned at most one job

at any time slot t. Constraint (6.3) means that each job can be assigned

to at most one machine. Constraint (6.4) means that each assignment is

binary valued. The expectation is taken with respect to the distribution of

job values (for stochastic online interval scheduling problems only) and the

random assignments of the algorithm (for randomized algorithms only). The

corresponding dual programs are given in Sections 6.2 and 6.3.

6.1.1 Primal-dual techniques

The primal-dual analysis framework for both SE and AC uses strong and

weak duality. However, there are differences between the analysis approaches

for these two cases since SE and AC consider the expected and the worst-case

performance of an algorithm, respectively.

For SE, we construct a feasible dual solution and give the corresponding

primal solution (if obtainable). The objective value of the dual program (re-

ferred to as the value of the dual program) based on the feasible dual solution

provides an upper bound for the objective value of the primal program (re-

ferred to as the value of the primal program), which is the optimal reward for

the scheduling problem. When the feasible solution to the dual program and

the corresponding solution to the primal program satisfy the complementary

111

slackness conditions, we can prove that the corresponding solution to the

primal program is an optimal algorithm to the scheduling problem.

For AC, since the adversarial job sequence is considered, we use competitive

ratios to evaluate the worst-case performance of algorithms, as defined in

Definition 5. Let RA(I) and OPT (I) denote the reward for algorithm A and

the optimal reward for a job instance I, respectively.

Definition 5. A deterministic (randomized) algorithm A is said to have a

competitive ratio γ if RA(I) ≥ OPT (I)/γ (E[RA(I)] ≥ OPT (I)/γ, where the

expectation is taken with respect to the random assignments made by A) for

any job instance I.

Job assignments are preemptive, and hence a previously assigned job may

be terminated before completion in favor of a later arriving job. To prove an

algorithm to be γ-competitive, we show the reward of the algorithm is at least

1/γ of the optimal reward for all possible job instances. A feasible scheduling

algorithm always results in a feasible solution to the primal program, and the

corresponding value of the primal program is the same as the reward for the

algorithm. We construct a feasible solution to the dual program, with the

value of the dual program no greater than γ times the value of the primal

program. From weak duality, the optimal reward has an upper bound given

by the value of the dual program. Therefore, the algorithm has a competitive

ratio of γ.

The construction of a feasible solution to the dual program for AC depends

on the specific job instance, and hence there is no general dual solution that

is feasible for all possible job instances. We turn to constructing a dual

solution that is feasible for the worst-case job instance, which is sufficient

for computing the competitive ratio. For randomized algorithms, we follow

the same framework described above for deterministic algorithms. The only

differences are that: (1) we compare the expected reward of a randomized

algorithm to the optimal reward; (2) we construct a solution to the dual

program, which is feasible in expectation. Our techniques for randomized

algorithms are motivated by [60].

112

6.2 Stochastic Online Interval Scheduling Problems

This section uses primal-dual techniques to solve stochastic online interval

scheduling problems, where jobs have equal lengths with values following

a given distribution (referred to as equal-length jobs). We provide a ran-

domized optimal algorithm on a single machine using strong duality and

complementary slackness conditions. We also provide an upper bound for

the optimal expected reward on multiple machines using weak duality. For

stochastic C-benevolent jobs, we provide an upper bound for the optimal ex-

pected reward on a single machine, which is tight when values of C-benevolent

jobs are linearly proportional to their lengths.

Note that the value of (6.1) needs to be finite for strong duality to hold.

Therefore, we consider the stationary expected reward for an algorithm, which

is the expected reward per job as the total number of jobs N goes to infinity,

computed by

1

N
E[

m∑
i=1

N∑
j=1

vjwiXi,j], (6.5)

with the job value distribution satisfying E[v] < +∞. We assume that the

job values are discrete with support 0 ≤ V1 < V2 < . . . < VL < +∞. Let hv

denote the probability mass at job value v, for v = V1, V2, . . . , VL. We further

assume the total number of jobs is unknown but fixed and sufficiently large.

6.2.1 SE on a single machine

This section considers SE on a single machine, i.e., m = 1. To simplify

notations, we eliminate the subscript of i in all our variables and assume

113

w1 = 1. Therefore, the objective function (6.5) reduces to

1

N
E[

N∑
j=1

vjXj]

=
1

N

N∑
j=1

E[vjXj]

=
1

N

N∑
j=1

VL∑
v=V1

vP(vj = v)P(Xj = 1|vj = v) (6.6)

≡ 1

N

N∑
j=1

VL∑
v=V1

vhvpj|v,

where (6.6) follows from the law of total probability. The probability pj|v ≡
P(Xj = 1|vj = v) is the assignment variable for a randomized algorithm:

given vj = v, the algorithm schedules job Jj with probability pj|v.

We simplify constraints (6.2) to (6.4) for scheduling stochastic equal-length

jobs on a single machine. For SE, we assume that there is a job arriving at

each time slot t. Therefore, the arrival time of the jth job is in time slot j with

aj = j, and hence, t and j are equivalent notations. We can then simplify

the notations by using j for both the arrival order and the arrival time of the

jth job. Let qj,v ≡ hvpj|v and hence qj,v ≤ hv. Let l0 > 1 denote the length of

all equal-length jobs. We generalize constraint (6.2) of the primal program

for randomized algorithms by taking expectations on both sides,

E[
∑

j:t∈[aj ,fj)

Xj] = E[
∑

j:j′∈[aj ,fj)

Xj] = E[
∑

j:j′∈[j,j+l0)

Xj] (6.7)

= E[

j′∑
j=j′−l0+1

Xj]

=

j′∑
j=j′−l0+1

E[Xj] (6.8)

=

j′∑
j=j′−l0+1

VL∑
v=V1

hvP(Xj = 1|vj = v)

=

j′∑
j=j′−l0+1

VL∑
v=V1

qj,v ≤ 1,

114

for j′ = 1, 2, . . . , N , where (6.7) follows from aj = j and fj = j + l0 for

all j, and t and j are equivalent notations; (6.8) follows from the linearity

of expectations and no randomness in the total number of terms contained

in the summation of
∑j′

j=j′−l0+1Xj. Constraint (6.3) is not necessary for a

single machine since m = 1. For randomized algorithms, constraint (6.4) is

given in the form of pj|v ≤ 1, and hence qj,v ≤ hv. Therefore, the primal

linear program for SE on a single machine is

max
1

N

N∑
j=1

VL∑
v=V1

vqj,v, (P1)

s.t.

j′∑
j=j′−l0+1

VL∑
v=V1

qj,v ≤ 1, for j′ = 1, 2, . . . , N, (6.9)

qj,v ≤ hv, for j = 1, 2, . . . , N and v = V1, V2, . . . , VL.

(6.10)

The corresponding dual linear program is

min
N∑
j=1

αj +
N∑
j=1

VL∑
v=V1

βj,vhv, (D1)

s.t.

j+l0−1∑
j′=j

αj′ + βj,v ≥
v

N
, for j = 1, 2, . . . , N, and v = V1, V2, . . . , VL.

(6.11)

The dual variables {αj} and {βj,v} correspond to constraints (6.9) and (6.10),

respectively. The variable αj denotes the basic cost for time slot j. The

variable βj,v denotes the additional cost for a job arriving in time slot j with

value v. The complementary slackness conditions for the optimal solutions

115

to the primal and dual programs are given by

αj′(

j′∑
j=j′−l0+1

VL∑
v=V1

qj,v − 1) = 0, for j′ = 1, 2, . . . , N, (6.12)

βj,v(qj,v − hv) = 0, for j = 1, 2, . . . , N and v = V1, V2, . . . , VL,

(6.13)

qj,v(

j+l0−1∑
j′=j

αj′ + βj,v −
v

N
) = 0, for j = 1, 2, . . . , N and v = V1, V2, . . . , VL.

(6.14)

Theorem 34 provides an upper bound for the optimal expected reward for

scheduling stochastic equal-length jobs on a single machine.

Theorem 34. An upper bound for the optimal expected reward for scheduling

IID equal-length jobs on a single machine is(
1

l0
− P(v ≥ Vs−1)

)
Vs−1 + E[v|v ≥ Vs−1]P(V ≥ Vs−1).

This upper bound is achieved under an optimal randomized policy, which is

feasible in expectation, given by

qj,v =


hv, for v ≥ Vs,

1
l0
−
∑VL

v′=Vs
hv′ , for v = Vs−1,

0, for v < Vs−1,

(6.15)

for all j = 1, 2, . . . , N , where Vs ∈ {V2, V3, . . . , VL} satisfies P(v > Vs) ≤
1/l0 < P(v > Vs−1).

Proof: We first construct feasible solutions {q∗j,v} and {α∗j}, {β∗j,v} for (P1)

and (D1), respectively. Then we show that they satisfy the complementary

slackness conditions (6.12) to (6.14), which proves that they are optimal

solutions to the corresponding linear optimization problems (P1) and (D1),

respectively.

There exists Vs ∈ {V2, V3, . . . , VL} such that P(v > Vs) ≤ 1/l0 < P(v >

Vs−1). We construct a dual solution as follows:

αj = α =
Vs−1

Nl0
, for all j = 1, 2, . . . , N, (6.16)

116

and

βj,v = βv =

(v − Vs−1)/N, for V ≥ Vs−1,

0, for V < Vs−1,
(6.17)

for all j = 1, 2, . . . , N . To see that the solution given by (6.16) and (6.17) is

feasible,

j+l0−1∑
j′=j

αj′ + βj,v = l0α + βv =


Vs−1

N
+ (v − Vs−1)/N = v

N
, for V ≥ Vs−1,

Vs−1

N
, for V < Vs−1,

and hence constraint (6.11) is satisfied. Therefore, the dual solution given

by (6.16) and (6.17) is a feasible dual solution.

The value of the dual program (D1) becomes

Nα +N

VL∑
v=V1

βvhv

(6.16),(6.17)
= N

Vs−1

Nl0
+N

VL∑
v=Vs−1

v − Vs−1

N
hv

=

(
1

l0
− P(v ≥ Vs−1)

)
Vs−1 + E[v|v ≥ Vs−1]P(V ≥ Vs−1). (6.18)

We are left to show that the dual solution (6.16) and (6.17) and the pri-

mal solution (6.15) satisfy the complementary slackness conditions (6.12) to

(6.14). For (6.12), since αj = α > 0 for all j, then

αj′(

j′∑
j=j′−l0+1

VL∑
v=V1

qj,v − 1)
(6.15)
= αj′(l0(

VL∑
v=Vs

hv +
1

l0
−

VL∑
v=Vs

hv)) = 0,

for j′ = 1, 2, . . . , N . For (6.13), note that βj,v = 0 for v ≤ Vs−1 and j =

1, 2, . . . , N ; qj,v = hv for v ≥ Vs and j = 1, 2, . . . , N , and hence

βj,v(qj,v − hv) = 0.

For (6.14), note that qj,v = 0 for v < Vs−1 and j = 1, 2, . . . , N ; for v ≥ Vs−1

117

and j = 1, 2, . . . , N ,

qj,v(

j+l0−1∑
j′=j

αj′ + βj,v −
v

N
)

(6.16),(6.17)
= qj,v(

Vs−1

N
+
v − Vs−1

N
− v

N
) = 0.

�

6.2.2 C-benevolent jobs on a single machine

This section considers C-benevolent jobs, whose values are subject to a

function of job lengths, v = v(l). The function v : R+ → R+ is non-

decreasing, positive and convex. As in Section 6.2.1, we assume that the

job values are discrete and let hv denote the probability mass for job value

v = V1, V2, . . . , VL. Let lv and lj denote the length of a job with value

v = V1, V2, . . . , VL, and the length of the job arriving at time j = 1, 2, . . . , N

(i.e., the jth arrived job).

For C-benevolent jobs, the objective functions of the primal and the dual

programs remain the same as (D1) and (P1). However, the constraint (6.2)

for the primal program changes to

E[
∑

j:t∈[aj ,fj)

Xj] = E[
∑

j:j′∈[aj ,fj)

Xj] = E[
∑

j:j′∈[j,j+lj)

Xj] (6.19)

=

VL∑
v=V1

j′∑
j=j′−lv+1

hvP(Xj = 1|vj = v) (6.20)

=

VL∑
v=V1

j′∑
j=j′−lv+1

qj,v ≤ 1, (6.21)

for all j′ = 1, 2, . . . , N , where (6.19) follows from aj = j and fj = aj + lj,

and t and j are equivalent notations; (6.20) follows from the law of total

probability and lj is a random variable with probability mass hv for job

length lv, v = V1, V2, . . . , VL. The constraint for the corresponding dual

program is

j+lv−1∑
j′=j

αj′ + βj,v ≥
v

N
, for j = 1, 2, . . . , N, and v = V1, V2, . . . , VL. (6.22)

118

Then the complementary slackness conditions are

αj′(

VL∑
v=V1

j′∑
j=j′−lv+1

qj,v − 1) = 0, for j′ = 1, 2, . . . , N, (6.23)

βj,v(qj,v − hv) = 0, for j = 1, 2, . . . , N and v = V1, V2, . . . , VL,

(6.24)

qj,v(

j+lv−1∑
j′=j

αj′ + βj,v −
v

N
) = 0, for j = 1, 2, . . . , N and v = V1, V2, . . . , VL.

(6.25)

We construct a feasible dual solution, which gives an upper bound for the

optimal expected reward. When the C-benevolent function is linearly pro-

portional (i.e., v = γl, where γ is a positive constant), the dual solution has a

corresponding primal solution, and the complementary slackness conditions

are satisfied. Therefore, the primal solution is the optimal solution to the

primal program.

Theorem 35 provides an upper bound for the optimal expected reward for

scheduling stochastic C-benevolent jobs on a single machine.

Theorem 35. An upper bound for the optimal expected reward for scheduling

IID C-benevolent jobs on a single machine is

Vs−1

lVs−1

(1− E[l|v ≥ Vs]P(v ≥ Vs)) + E[v|v ≥ Vs]P(v ≥ Vs), (6.26)

where Vs ∈ {V2, V3, . . . , VL} satisfies E[l|v ≥ Vs]P(v ≥ Vs) < 1 ≤ E[l|v ≥
Vs−1]P(v ≥ Vs−1).

Proof:

Note that E[l|v ≥ Vth]P(v ≥ Vth) =
∑VL

v=Vth
lvhv is a decreasing function

of Vth, and E[l|v ≥ 0]P(v ≥ 0) = E[l] > 1. Then there exists a Vs ∈
{V2, V3, . . . , VL} such that E[l|v ≥ Vs]P(v ≥ Vs) < 1 ≤ E[l|v ≥ Vs−1]P(v ≥
Vs−1). We construct a dual solution as

αj = α =
Vs−1

NlVs−1

, (6.27)

119

and

βj,v = βv =

0, for V ≤ Vs−1,

v
N
− lv Vs−1

NlVs−1
, for V ≥ Vs,

(6.28)

for all j = 1, 2, . . . , N . To see the dual solution given by (6.27) and (6.28) is

feasible solution, we show constraint (6.22) is satisfied,

j+lv−1∑
j′=j

αj′ + βj,v =


Vs−1

NlVs−1
lv ≥ v

N
, for V ≤ Vs−1,

Vs−1

NlVs−1
lv + v

N
− lv Vs−1

NlVs−1
≥ v

N
, for V ≥ Vs,

which follows from the property of C-benevolent jobs: lv is an increasing

function of v and v/lv is an increasing function of v.

The value of the dual program has an upper bound given by the feasible

dual solution (6.27) and (6.28)

N
Vs−1

NlVs−1

+N

VL∑
v=Vs

(
v

N
− Vs−1

NlVs−1

lv)hv

=
Vs−1

lVs−1

+

VL∑
v=Vs

vhv −
Vs−1

lVs−1

VL∑
v=Vs

lvhv

=
Vs−1

lVs−1

(1− E[l|v ≥ Vs]P(v ≥ Vs)) + E[v|v ≥ Vs]P(v ≥ Vs),

which gives an upper bound for the optimal expected reward for scheduling

C-benevolent jobs, from weak duality. �

For special cases of C-benevolent jobs, stronger results can be obtained.

Corollary 6 provides the optimal solution for scheduling proportional-value

C-benevolent jobs on a single machine, which is a randomized algorithm that

is feasible in expectation.

Corollary 6. When the C-benevolent jobs satisfy v = v(l) = γl, where γ > 0

is a constant, the optimal solution (feasible in expectation) for scheduling IID

C-benevolent jobs on a single machine is given by

qj,v =
hv
lv
, for all j = 1, 2, . . . N, and v = V1, V2, . . . , VL. (6.29)

Proof:

When the C-benevolent jobs satisfy v = v(l) = γl, where γ > 0 is a

120

constant, a solution to the dual program is as follows:

αj =
γ

N
, for all j = 1, 2, . . . , N,

βv = 0, for all v = V1, V2, . . . , VL. (6.30)

To see the solution given by (6.30) is a feasible solution to the dual program,

we show constraint (6.22) is satisfied

j+lv−1∑
j′=j

αj′ + βj,v =
γlv
N

=
v

N
,

for j = 1, 2, . . . , N and v = V1, V2, . . . , VL.

We prove that the solutions given by (6.29) and (6.30) satisfy the comple-

mentary slackness conditions (6.23) to (6.25), and hence that they are the

optimal solutions to the primal and dual programs. To see this,

αj′

(
VL∑
v=V1

j′∑
j=j′−lv+1

qj,v − 1

)
=

γ

N

(
VL∑
v=V1

j′∑
j=j′−lv+1

hv
lv
− 1

)

=
γ

N

(
VL∑
v=V1

hv − 1

)
= 0,

for j′ = 1, 2, . . . , N .

βj,v(qj,v − hv) = 0,

for j = 1, 2, . . . , N and v = V1, V2, . . . , VL.

qj,v

(
j+lv−1∑
j′=j

αj′ + βj,v −
v

N

)
= qj,v

(
lγ

N
− v

N

)
= 0,

for j = 1, 2, . . . , N and v = V1, V2, . . . , VL. �

6.2.3 SE on multiple machines

This section extends the results in Section 6.2.1 to multiple machines with

different weights. Suppose that the weights of m machines satisfy w1 ≤ w2 ≤
. . . ≤ wm. The objective function of the primal program is to maximize the

121

expected reward per job:

1

N
E[

m∑
i=1

N∑
j=1

Xi,jwivj]

=
1

N

m∑
i=1

N∑
j=1

E[Xi,jwivj]

=
1

N

m∑
i=1

N∑
j=1

VL∑
v=V1

wivhvP(Xi,j = 1|vj = v)

≡ 1

N

m∑
i=1

N∑
j=1

VL∑
v=V1

wivhvpi,j,v,

where hv denotes the probability mass at job value v = V1, V2, . . . , VL, and

pi,j|v ≡ P(Xi,j = 1|vj = v) is the assignment variable for a randomized

algorithm: given vj = v, the algorithm assigns job Jj to machine Mi with

probability pi,j|v. Similarly, we can write constraint (6.2) for randomized

algorithms as

E[
∑

j:t∈[aj ,fj)

Xi,j] = E[
∑

j:j′∈[aj ,fj)

Xi,j] = E[
∑

j:j′∈[j,j+l0)

Xi,j]

=

j′∑
j=j′−l0+1

E[Xi,j]

=

j′∑
j=j′−l0+1

VL∑
v=V1

hvP(Xi,j = 1|vj = v)

=

j′∑
j=j′−l0+1

VL∑
v=V1

hvpi,j|v ≤ 1,

for all j′ = 1, 2, . . . , N . Moreover,

m∑
i=1

P(Xi,j = 1, vj = v) =
m∑
i=1

P(Xi,j = 1|vj = v)hv =
m∑
i=1

pi,j|vhv ≤ hv,

for v = V1, V2, . . . , VL.

122

Let qi,j,v ≡ pi,j|vhv. Then the primal program is

max
1

N

m∑
i=1

N∑
j=1

VL∑
v=V1

wivqi,j,v, (P2)

s.t.

j′∑
j=j′−l0+1

VL∑
v=V1

qi,j,v ≤ 1, for i = 1, 2, . . . ,m, and j′ = 1, 2, . . . , N,

(6.31)
m∑
i=1

qi,j,v ≤ hv, for j = 1, 2, . . . , N, and v = V1, V2, . . . , VL.

(6.32)

The corresponding dual program is

min
m∑
i=1

N∑
j=1

αi,j +
N∑
j=1

VL∑
v=V1

βj,vhv, (D2)

s.t.

j+l0−1∑
j′=j

αi,j′ + βj,v ≥
1

N
vwi,

for i = 1, 2, . . . ,m, and j = 1, 2, . . . , N, and v = V1, V2, . . . , VL, (6.33)

where αi,j and βj,v are the variables corresponding to constraints (6.31) and

(6.32), respectively. The complementary slackness conditions for the primal

123

program (P2) and the dual program (D2) are

αi,j′

(
j′∑

j=j′−l0+1

VL∑
v=V1

qi,j,v − 1

)
= 0,

for i = 1, 2, . . . ,m and j′ = 1, 2, . . . , N,

(6.34)

βj,v

(
m∑
i=1

qi,j,v − hv

)
= 0,

for j = 1, 2, . . . , N, and v = V1, V2, . . . , VL,

(6.35)

qi,j,v

(
j+l0−1∑
j′=j

αi,j′ + βj,v −
vwi
N

)
= 0,

for i = 1, 2, . . . ,m and j = 1, 2, . . . , N,

and v = V1, V2, . . . , VL. (6.36)

Theorem 36 provides an upper bound for the optimal expected reward for

scheduling IID equal-length jobs on multiple weighted machines. We define

the quantile x = F−1(y) for a discrete cumulative distribution function y =

F (x) as

x = F−1(y) =

Xi, if y = F (Xi),

Xi−1, if F (Xi−1) < y < F (Xi),

for i = 1, 2, . . . , n, where 0 = X0 < X1 < X2 < . . . < Xn is the discrete

support for x.

Theorem 36. An upper bound for scheduling IID equal-length jobs on mul-

tiple weighted machines is

Ṽm−1

l0

m∑
i=1

wi + wm

VL∑
v=Ṽm−1

(v − Ṽm−1)hv, (6.37)

where Ṽm−1 ≡ F−1(1− 1
l0

) is the quantile of the cumulative distribution func-

tion of job values.

Proof:

We construct a solution to the dual program (D2) first, and show that the

solution is feasible for the dual program. We then establish an upper bound

124

for the value of the primal program using the value of the dual program based

on this solution.

Set Ṽm−1 = F−1(1− 1
l0

). We construct a dual solution as follows:

βj,v = βv =

0, for v < Ṽm−1,

1
N

(v − Ṽm−1)wm, for Ṽm−1 ≤ v ≤ VL,
(6.38)

for j = 1, 2, . . . , N and v ∈ {V1, V2, . . . , VL}. The values of αi,j are

αi,j = αi =
1

N

wiṼm−1

l0
, (6.39)

for j = 1, 2, . . . , N and i = 1, 2, . . . ,m.

To see that the dual solution given by (6.38) and (6.39) is a feasible solution

to (D2), we need to show that constraint (6.33) is satisfied. For Ṽm−1 ≤ v ≤
VL and i = 1, 2, . . . ,m and j = 1, 2, . . . , N ,

j+l0−1∑
j′=j

αi,j′ + βj,v = lαi + βv

=
1

N
wiṼm−1 +

1

N
(v − Ṽm−1)wm

≥ 1

N
wiv,

where the first two equalities follow by substituting the variables of αi,j and

βj,v with the values given by (6.39) and (6.38); the last inequality can be

verified by rearranging terms on both sides. For v < Ṽm−1 and i = 1, 2, . . . ,m

and j = 1, 2, . . . , N ,

j+l0−1∑
j′=j

αi,j′ + βj,v = lαi =
1

N
wiṼm−1 ≥

1

N
wiv.

Therefore, the dual solution given by (6.39) and (6.38) is a feasible solution

to (D2).

From weak duality, an upper bound for the value of the primal program

is the value of the dual program based on the solution given by (6.38) and

125

(6.39), and hence

m∑
i=1

N∑
j=1

1

N

wiṼm−1

l0
+

N∑
j=1

VL∑
v=Ṽm−1

1

N
(v − Ṽm−1)wmhv

=
Ṽm−1

l0

m∑
i=1

wi + wm

VL∑
v=Ṽm−1

(v − Ṽm−1)hv.

�

6.3 Approximation Algorithms for Adversarial Online

Interval Scheduling Problems

This section uses the primal-dual technique to analyze approximation al-

gorithms for scheduling adversarial C-benevolent job sequences on a single

machine. To simplify notations, we eliminate the subscript i in all our vari-

ables and assume w1 = 1. Note that for adversarial job sequences, it is not

guaranteed that one job arrives at the beginning of each time slot. We for-

mulate the scheduling problem for C-benevolent jobs on a single machine as

a primal program as follows, with the corresponding dual program:

Primal program:

max
N∑
j=1

Xjvj, (P3)

s.t.
∑

j:t∈[aj ,fj)

Xj ≤ 1, for t = 1, 2, . . . , T, (6.40)

Xj ≤ 1, for j = 1, 2, . . . , N, (6.41)

where constraint (6.41) is a linear relaxation for binary assignment variables

{Xj ∈ {0, 1}}.

126

Dual program:

min
T∑
t=1

ut +
N∑
j=1

sj, (D3)

s.t.
∑

t:t∈[aj ,fj)

ut + sj ≥ vj, for j = 1, 2, . . . , N, (6.42)

ut ≥ 0, for t = 1, 2, . . . , T, (6.43)

sj ≥ 0, for j = 1, 2, . . . , N, (6.44)

where {ut} and {sj} correspond to constraints (6.40) and (6.41), respectively.

The dual variables {ut} and {sj} denote the basic cost for each time slot t

and the additional cost for the jth arrived job, respectively.

The construction of a feasible solution to the dual program (D3) depends

on the specific job instance, and hence there is no general dual solution

that is feasible for all possible job instance. We turn to constructing a dual

solution that is feasible for the subset of jobs that are completed by the

optimal schedule for a job instance I, denoted by Iopt ⊂ I, and show that

weak duality still holds. Specifically, we consider the following restricted dual

program:

Restricted Dual program:

min
T∑
t=1

ut +
N∑
j=1

sj, (D4)

s.t. sj +
∑

t:t∈[aj ,fj)

ut ≥ vj, for Jj ∈ Iopt, (6.45)

ut ≥ 0, for t = 1, 2, . . . , T, (6.46)

sj ≥ 0, for Jj ∈ Iopt. (6.47)

Proposition 8 gives a modified weak duality, which reduces the problem of

constructing a feasible solution to the dual program (D3) to constructing a

feasible solution to the restricted dual program (D4) without modifying the

upper bound for the optimal reward.

Proposition 8.

OPT (I) ≤ D4(Iopt),

for all job instances I, where OPT (I) denotes the reward for the optimal

127

schedule for job instance I and D4(Iopt) denotes the optimal value of the

restricted dual program (D4) for job instance Iopt.

Proof: Since Iopt denotes the subset of jobs that are assigned by the optimal

algorithm, then

OPT (I) = OPT (Iopt) ≤ D4(Iopt),

where OPT (I) and OPT (Iopt) denote the reward for the optimal schedule for

jobs in I and Iopt, respectively, and the inequality follows from weak duality.

�

Note that Iopt depends on the specific job instance I. Since the competitive

ratio of an algorithm considers the worst-case performance, we characterize

the worst-case Iopt, which has the largest reward, for a job instance I for each

algorithm, and then apply primal-dual technique on this specific instance,

which is sufficient for computing the competitive ratio of an algorithm.

6.3.1 Deterministic algorithm

This section considers a deterministic Greedy-α algorithm: whenever a new

job Jnew arrives, if the machine is idle, then assign job Jnew; otherwise, the

machine must be executing some job Jcur, in which case terminate Jcur and

assign Jnew if and only if v(Jnew) > αv(Jcur), where v(J) denotes the value

of job J and α ≥ 1 is the abortion ratio. We use the primal-dual techniques

to compute the competitive ratio of the Greedy-α algorithm and show that

when α = 2, the Greedy-α algorithm has the smallest competitive ratio of 4,

which is consistent with [39].

We first clarify some definitions needed for the analysis. Consider a job J

completed under the Greedy-α algorithm on a single machine. Then all jobs

that are previously assigned by the Greedy-α algorithm but later aborted

in favor of J are labelled predecessors of J . The job that has the largest

completion time among jobs arriving during the execution of J but not as-

signed by the Greedy-α algorithm is labelled the successor of J . The subset

of jobs consisting of all predecessors of J , job J , and the successor of J is

referred to as the segment of J (see Figure 6.1). Then, from Observation 3.1

in [39], a job sequence can be divided into non-overlapping segments of all

completed jobs under the Greedy-α algorithm (i.e., no jobs arrive during the

gap between subsequent segments, if such a gap exists). We compute the

128

time

J3

J4

J2

J1

predecessors of J3

successor of J3

a1 a2 a3 f3-1 marked
time points

Iopt
3

time span of J3

Figure 6.1: An example for a segment of Jk, with k = 3. {J1, J2} are the
predecessors of J3, and J4 is the successor of J3. {a1, a2, a3, f3 − 1} are the

marked time points of the segment of J3. [a1, f4) is the time span of the
segment of J3. I3

opt is the set of jobs in the optimal schedule covered by the
span of the segment of J3.

competitive ratio of the Greedy-α algorithm for any segment, which is the

same as the competitive ratio of the Greedy-α algorithm for the whole job

sequence.

Let {Jj}k+1
j=1 denote the segment of Jk, where Jk is the job completed by the

Greedy-α algorithm, {Jj}k−1
j=1 is the set of predecessors of Jk, and Jk+1 is the

successor of Jk. Then the time interval, which starts from the arrival time of

J1 (closed) and ends at the completion time of Jk+1 (open), is referred to as

the time span of the segment of Jk. The time points a1 < a2 . . . < ak < fk−1

are referred to as the marked time points of the segment of Jk, where {aj}kj=1

denote the arrival times of {Jj}kj=1 and fk denote the completion times of Jk.

Let Ikopt denote the set of jobs in the optimal schedule covered by the span

of the segment of Jk (i.e., for any job in Ikopt, its interval is within the time

span of the segment of Jk, see Figure 6.1). Assumption 1 characterizes the

worst-case Ikopt for a job instance for the Greedy-α algorithm.

Assumption 1. (a) Any job J̃ ∈ Ikopt contains at least one marked time point

(except the first job).

(b) The union of job intervals in Ikopt covers the entire time interval of [a1 +

1, fk+1).

129

This assumption may only increase the reward for the optimal schedule

due to the convexity of C-benevolent value-length function [39, 44]: if there

is some job in the optimal schedule (except the first job) that does not contain

any marked time point, we can change lengths of some jobs in the optimal

schedule such that resulting jobs all contain at least one marked time point

and have a larger reward.

From Proposition 8, we construct a feasible solution to the restricted dual

program (D4) to obtain an upper bound for the optimal reward. We start by

setting all the dual variables to zero. Therefore, ut = 0 for all t and sj = 0 for

all j. Moreover, we keep sj = 0 for all j unchanged throughout the scheduling

of the whole job instance. We increase the value of the corresponding ut

when a job is assigned by the Greedy-α algorithm (i.e., when the value of

(P3) increases). Note that the assignment of J1 results in an increase of v(J1)

for the value of (P3). When J2 is assigned and J1 is aborted, the assignment

of J2 results in an increase of ∆v2 = v(J2) − v(J1) for the value of (P3).

Similarly, every subsequent job Jj in the segment will result in an increase of

∆vj = v(Jj)−v(Jj−1) for the value of (P3), for j = 2, 3, . . . , k. We construct

the dual solution as follows:

ua1+1 = α−1v(J1)× γ,

uaj = ∆vj−1 × γ, for j = 2, 3, . . . , k,

ufk−1 = ∆vk × γ, (6.48)

where ∆vj = v(Jj) − v(Jj−1) with v(J0) ≡ α−1v(J1) and γ > 1 is the com-

petitive ratio of the algorithm to be determined later.

We are left to show that the dual solution given by (6.48) is feasible for the

restricted dual program (D4). Consider any job J̃z ∈ Iopt whose interval satis-

fies [az, fz) ⊂ [a1 + 1, fk+1). We consider two cases: (a) J̃z ∈ {J1, J2, . . . , Jk},
and (b) J̃z 6∈ {J1, J2, . . . , Jk}. Consider case (a) first.

For J̃z = J1, ∑
t:t∈[az ,fz)

ut = ua1+1 + ua2

= α−1v(J1)× γ + ∆v1 × γ

= v(J1)× γ. (6.49)

130

For J̃z = Jj, j = 2, 3, . . . , k − 1,∑
t:t∈[az ,fz)

ut = uaj + uaj+1

= (∆vj−1 + ∆vj)× γ

= (v(Jj)− v(Jj−2))× γ

≥ (1− α−2)v(Jj)× γ. (6.50)

For J̃z = Jk, ∑
t:t∈[az ,fz)

ut = uak + ufk−1

= (∆vk−1 + ∆vk)× γ

= (v(Jk)− v(Jk−2))× γ

≥ (1− α−2)v(Jk)× γ, (6.51)

where inequalities (6.50) and (6.51) follow from the abortion rule of the

Greedy-α algorithm: v(Jj) > αv(Jj−1), for j = 2, 3, . . . , k. Therefore, for

(6.49) to (6.51) to satisfy constraint (6.45) of the restricted dual program

requires

min{γ, (1− α−2)γ} ≥ 1 ⇔ γ ≥ 1

1− α−2
. (6.52)

For case (b), if J̃z is the first job in Ikopt and does not contain any marked

time point, then fz < a2 < f1, and hence v(J̃z) < v(J1). From Assumption 1,

since Ikopt covers the entire time interval [a1 + 1, fk+1), J̃z must contain a1 + 1

(i.e., a1 + 1 ∈ [az, fz)); therefore,∑
t:t∈[az ,fz)

ut = ua1+1 = α−1v(J1)× γ ≥ α−1v(J̃z)× γ. (6.53)

Otherwise, there exists some marked time point contained in [az, fz), the

interval of J̃z. Since job J̃z is not assigned by the Greedy-α algorithm, then

v(J̃z) ≤ αv(Jkz) for some kz ∈ {1, 2, . . . , k}, where Jkz is the job assigned by

the Greedy-α algorithm when job J̃z arrives.

131

For kz = 1, 2, . . . , k − 1,∑
t:t∈[az ,fz)

ut ≥ uakz+1

= ∆vkz × γ

= (v(Jkz)− v(Jkz−1))× γ

≥ (1− α−1)v(Jkz)× γ (6.54)

≥ (1− α−1)α−1v(J̃z)× γ. (6.55)

For kz = k, ∑
t:t∈[az ,fz)

ut ≥ ufk−1

= ∆vk × γ

= (v(Jk)− v(Jk−1))× γ

≥ (1− α−1)v(Jk)× γ (6.56)

≥ (1− α−1)α−1v(J̃z)× γ, (6.57)

where inequalities (6.54) and (6.56) follow from the abortion rule of the

Greedy-α algorithm: v(Jj) > αv(Jj−1), for j = 2, 3, . . . , k. Therefore, for

(6.53) to (6.57) to satisfy constraint (6.45) of the restricted dual program

requires

min{α−1γ, (1− α−1)α−1γ} ≥ 1 ⇔ γ ≥ α

1− α−1
. (6.58)

Since α
1−α−1 ≥ 1

1−α−2 , then the lower bound for γ given by (6.58) dominates

the lower bound given by (6.52). Minimizing the lower bound for γ given by

(6.58) over the value of α gives the optimal value for the abortion ratio as

α∗ = 2, and the competitive ratio for the Greedy-2 algorithm is γ∗ = 4.

6.3.2 Randomized algorithm

This section considers a randomized Greedy algorithm, BIT, proposed by [44]

for scheduling C-benevolent jobs on a single machine. With probability 0 <

p < 1, the algorithm assigns every job according to the Greedy-α algorithm.

We divide the whole job sequence into non-overlapping segments of completed

132

jobs by the Greedy-α algorithm, as described in Section 6.3.1. Consider the

segment of Jk, {J1, J2, . . . , Jk+1}, where job Jk is the only completed job

under the Greedy-α algorithm. With probability 1−p, the algorithm assigns

every other job in a segment according to the Greedy-α algorithm. For

example, the algorithm assigns jobs with odd arrival orders in the segment

of Jk, {J1, J3, . . . , J2b(k−1)/2c+1}, with probability (1 − p)/2 and jobs with

even arrival orders in the segment of Jk, {J2, J4, . . . , J2bk/2c}, with probability

(1−p)/2. We refer to this algorithm as the p-Greedy-α algorithm. [44] proves

a competitive ratio of 2+
√

3 when α = 1+1/
√

3 and p = 1/
√

3 using analysis

techniques similar to [39]. We provide a matching competitive ratio using

the primal-dual technique.

When the p-Greedy-α algorithm is assigning every job in a segment, we

say the algorithm is in normal mode; when the algorithm is assigning every

job with odd (even) arrival orders in a segment, we say the algorithm is

in random odd (even) mode. For the segment of Jk, {J1, J2, . . . , Jk+1}, let

{a1, a2, . . . , ak} denote the arrival times of jobs {J1, J2, . . . , Jk} and fk denote

the completion time of jobs Jk. Then {a1, a2, . . . , ak, fk − 1} is the set of

the marked times points of the segment of Jk. Note that the p-Greedy-α

algorithm can complete job Jk with at least probability p.

Since a job sequence can be divided into non-overlapping segments of com-

pleted jobs, we compute the competitive ratio of the p-Greedy-α algorithm

for any segment, which is the same as the competitive ratio of the p-Greedy-α

algorithm for the entire job sequence. Note that we only need to consider the

worst-case job instance to compute the competitive ratio. The worst-case job

instance for the p-Greedy-α algorithm is given by Lemma 3.5 [44], which is

rephrased in Lemma 9.

Lemma 9. When the competitive ratio γ and the parameters of the p-Greedy-

α algorithm satisfy

γ(1− p) ≤ α, (6.59)

the worst-case job instance for the p-Greedy-α algorithm satisfies fj−2 ≤ aj,

for j = 3, 4, . . . , k+1 and k ≥ 3, where {a1, a2, . . . , ak+1} and {f1, f2, . . . , fk+1}
are the arrival and completion times of jobs in a segment, {J1, J2, . . . , Jk+1}.

We now consider the segment of Jk in the worst-case job instance given

by Lemma 9 and construct a solution to the restricted dual program (D4).

Let Ikopt denote the set of jobs in the optimal schedule covered by the span

133

of the segment of Jk. We make Assumption 1 for Ikopt, since this assumption

only increases the reward for the optimal schedule due to the convexity of

C-benevolent jobs.

We initialize the dual variables as ut = 0 for all t and sj = 0 for all

j. The values of {sj} remain zero throughout the scheduling of the entire

job sequence. Each time an assignment is made (either some previously

assigned job is aborted or not), we increase the value of the corresponding

ut. Since the algorithm has three different modes, we describe the rules for

increasing the values of ut separately. In the normal mode, the values of

ut are set in the same way as for the deterministic Greedy-α algorithm (see

(6.48)). In the random odd (even) mode, only jobs with odd (even) arrival

orders in a segment can be assigned or aborted. For the worst-case job

instance given by Lemma 9, fj−2 ≤ aj for j = 3, 4, . . . , k + 1, and hence jobs

{J1, J3, . . . , J2b(k−1)/2c+1} ({J2, J4, . . . , J2bk/2c}) are completed in the random

odd (even) mode. In the random odd mode, for 1 ≤ j ≤ k and mod(j, 2) = 1,

set ut as follows:

ufj−1 = v(Jj)× γ. (6.60)

In the random even mode, for 1 ≤ j ≤ k and mod(j, 2) = 0, set ut as follows:

ufj−1 = v(Jj)× γ. (6.61)

For the dual solution given by (6.48), (6.60) and (6.61), the increase in the

value of the primal program (P3) is no less than 1/γ of the increase in the

value of the dual program (D4). Therefore, we are left to show that the

constructed dual solution is feasible for the restricted dual program (D4) to

prove that the competitive ratio of the p-Greedy-α algorithm is γ.

We consider two cases for a job J̃z in the optimal schedule Ikopt: (a) job

J̃z ∈ {J1, J2, . . . , Jk} and hence is assigned in the normal mode (either later

aborted or completed); (b) job J̃z /∈ {J1, J2, . . . , Jk} and hence is not assigned

in the normal mode.

Consider case (a). Then J̃z = Jj, for some 1 ≤ j ≤ k. If j = 1, then

E[
∑

t:t∈[a1,f1)

ut] ≥ E[ua1+1 + uf1−1] = pv(J1)γ +
1− p

2
v(J1)γ =

1 + p

2
γv(J1).

(6.62)

134

If 2 ≤ j ≤ k, then

E[
∑

t:t∈[aj ,fj)

ut]

≥E[uaj + uaj+1
+ ufj−1]

≥p(v(Jj)− v(Jj−1))γ + p(v(Jj−1)− v(Jj−2))γ +
1− p

2
(v(Jj) + v(Jj−1))γ

≥
(
p(1− α−2) +

1− p
2

(1 + α−1)

)
γv(Jj). (6.63)

For (6.62) and (6.63) to satisfy constraint (6.45) of the restricted dual pro-

gram requires

min{1 + p

2
, p(1− α−2) +

1− p
2

(1 + α−1)}γ ≥ 1. (6.64)

Next we consider case (b). If J̃z is the first job in Ikopt and does not contain

any marked time point, then fz < a2 < f1, and hence, v(J̃z) < v(J1). From

Assumption 1, since Ikopt covers the entire time interval [a1 +1, fk+1), J̃z must

contain a1 + 1 (i.e., a1 + 1 ∈ [az, fz)); therefore,

E[
∑

t:t∈[az ,fz)

ut] ≥ E[ua1+1] = pα−1γv(J1) ≥ pα−1γv(J̃z). (6.65)

Otherwise, there exists a marked time point contained in [az, fz), the interval

of job J̃z. Therefore, if the marked time point is akz for kz = 2, 3, . . . , k, then

E[
∑

t:t∈[az ,fz)

ut] ≥ E[uakz + ufkz−1−1]

= p(v(Jkz−1)− v(Jkz−2))γ +
1− p

2
v(Jkz−1)γ

≥
(
p(1− α−1) +

1− p
2

)
γv(Jkz−1), (6.66)

135

where v(J̃z) ≤ αv(Jkz−1). If the marked time point is fk − 1, then

E[
∑

t:t∈[az ,fz)

ut] ≥ E[ufk−1]

= p(v(Jk)− v(Jk−1))γ +
1− p

2
v(Jk)γ

≥
(
p(1− α−1) +

1− p
2

)
γv(Jk), (6.67)

where v(J̃z) < αv(Jk).

For (6.65) to (6.67) to satisfy constraint (6.45) requires

p

α
γ ≥ 1,(

p(1− α−1) +
1− p

2

)
γ ≥ α. (6.68)

Since

α−1

(
p(1− α−1) +

1− p
2

)
≤ p(1− α−2) +

1− p
2

(1 + α−1),

and

α−1

(
p(1− α−1) +

1− p
2

)
= α−1

(
1 + p

2
− p

α

)
≤ 1 + p

2
,

for α ≥ 1, then combining the conditions given by (6.59), (6.64) and (6.68)

leads to

max{α
p
, (

1 + p

2
− p

α
)−1α} ≤ γ ≤ α

1− p
. (6.69)

Substituting the values of parameters p and α with the values α = 1 + 1/
√

3

and p = 1/
√

3, the competitive ratio of the p-Greedy-α algorithm can be

computed as γ = 2 +
√

3 from (6.69), which matches the competitive ratio

given by [44].

6.3.3 Cooperative Greedy algorithm

This section considers a randomized Cooperative Greedy algorithm for schedul-

ing C-benevolent jobs on a single machine. The Cooperative Greedy algo-

rithm was originally proposed by [45] for scheduling C-benevolent jobs on a

single machine and [70] for scheduling C-benevolent jobs on two machines.

136

time

J1

J2

J3

J4

J5

J6

Mode
A

Mode
B

f1-1 f2-1 f3-1 f4-1 f5-1

Iopt
6

marked
time points

Figure 6.2: An example for a segment {J1, J2, J3, J4, J5, J6} for the
Cooperative Greedy algorithm. {f1 − 1, f2 − 1, f3 − 1, f4 − 1, f5 − 1} are the

marked time points of the segment. I6
opt is the set of jobs in the optimal

schedule covered by the span of the segment, [a1, f6).

The Cooperative Greedy algorithm initially chooses one of two modes, A

and B, with equal probability and sticks to that mode thereafter. Let J1

denote the first arriving job when the machine is available. Mode A assigns

and completes job J1; mode B does not assign job J1 and uses the Greedy-1

algorithm for jobs arriving during [a1+1, f1). At time f1, if mode B schedules

no job on the machine, we say a segment (i.e., {J1}) ends. Otherwise, let J2

denote the job scheduled on the machine by mode B at time f1. Then during

[f1, f2), mode A uses the Greedy-1 algorithm to schedule jobs; mode B com-

pletes job J2. At time f2, if mode A schedules no job on the machine, we say

a segment (i.e.,{J1, J2}) ends. Otherwise, let J3 denote the job scheduled on

the machine by mode A at time f2. Then during [f2, f3), mode A completes

job J3; mode B uses the Greedy-1 algorithm to schedule jobs. This process

continues until no job is scheduled on the machine in either mode A or B,

and we say a segment ends (see Figure 6.2). When the next job arrives, a

new segment starts and the algorithm continues this process until the end of

a job instance.

Let {J1, J2, . . . , Jk} denote a segment with k completed jobs in either

mode under the Cooperative Greedy algorithm. Then each job Jj is com-

pleted with probability 1/2, for j = 1, 2, . . . , k. Time points {f1 − 1, f2 −

137

1, . . . , fk−1 − 1} are defined as the marked time points for the the segment,

where {f1, f2, . . . , fk−1} denote the completion times of jobs {J1, J2, . . . , Jk−1}.
Since a job sequence can be divided into non-overlapping segments, we com-

pute the competitive ratio of the Cooperative Greedy algorithm for any seg-

ment, which is the same as the competitive ratio of the Cooperative Greedy

algorithm for the entire job sequence.

We first characterize the worst-case job instance for the Cooperative Greedy

algorithm, which is sufficient to consider for computing the competitive ratio.

Lemma 10 gives a criterion to simplify jobs in the optimal schedule without

reducing the total reward.

Lemma 10. For any segment {J1, J2, . . . , Jk} (k ≥ 2) in a job instance I,

the reward of any feasible schedule covered by the time interval [a1, fk) can

be increased by reallocating job lengths if there is some job (except the first

job) in the schedule that does not contain any marked time point, where a1

is the arrival time of J1 and fk is the completion time of Jk.

Proof:

The proof is by induction on k.

Consider the base case of k = 2. Let {J̃j}hj=1 denote a feasible schedule

covered by the time span [a1, f2) of segment {J1, J2}, where J̃j is reordered

increasingly with respect to the lengths (i.e., a(J̃j) < a(J̃j+1) and l(J̃j) <

l(J̃j+1), for j = 1, 2, , . . . , h− 1). Then,

h∑
j=1

l(J̃j) ≤ f(J̃h)− a(J̃1) ≤ f2 − a1, (6.70)

where a(J) and f(J) denote the arrival and completion times of job J . If

J̃h does not contain the marked time point f1 − 1, then we construct two

new jobs J̄1 and J̄2, with a(J̄1) = a(J̃1), l(J̄1) = a2 − a(J̃1) and a(J̄2) = a2,

l(J̄2) = f(J̃h)−a2, where a2 is the arrival time of job J2 and l(J) denotes the

length of job J . Then {J̄1, J̄2} is a new feasible schedule covered by [a1, f2).

Moreover, l(J̄1) + l(J̄2) = f(J̃h) − a(J̃1) ≥
∑h

j=1 l(J̃j) and l(J̄2) > l(J̃h).

Therefore, from the property of C-benevolent jobs,

v(J̄1) + v(J̄2) ≥
h∑
j=1

v(J̃j).

138

Assume that Lemma 10 holds for k = k0 − 1. To prove that it holds for

k = k0, let {J̃j}h
′
j=1 denote a feasible schedule for the time span [a1, fk0) of

segment {J1, J2, . . . , Jk0}, where J̃j is reordered increasingly with respect to

their lengths. If J̃h′ contains the marked time point fk0−1 − 1, f(J̃h′−1) ≤
a(J̃h′) < fk0−1, and hence {J̃j}h

′−1
j=1 is a feasible schedule covered by interval

[a1, fk0−1). Then the case k = k0 follows from induction assumption for

case k = k0 − 1. Otherwise, if J̃h′ does not contain the marked time point

fk0−1 − 1, let J̃h0 denote the last job in the feasible schedule whose arrival

time is before the arrival time of Jk0 in the segment. We then construct

two new jobs, J̄1 and J̄2, with a(J̄1) = a(J̃h0), l(J̄1) = ak0 − a(J̃h0) and

a(J̄2) = ak0 , l(J̄2) = f(J̃h′) − ak0 , where ak0 is the arrival time of job Jk0 .

Then {J̃1, J̃2, . . . , J̃h0−1, J̄1, J̄2} is a new feasible schedule covered by [a1, fk0).

Moreover, since l(J̄1) + l(J̄2) = f(J̃h′) − a(J̃h0) ≥
∑h′

j=h0
l(J̃j) and l(J̄2) ≥

maxh0+1≤j≤h′ l(J̃j),

v(J̄1) + v(J̄2) ≥
h′∑

j=h0

v(J̃j),

which follows from the convexity of C-benevolent jobs. Note that f(J̄1) =

a(J̄1) + l(J̄1) = ak0 ≤ fk0−1. Therefore, {J̃1, J̃2, . . . , J̃h0−1, J̄1} is a feasible

schedule for the time span [a1, fk0−1), and hence the case k = k0 follows from

the induction assumption for case k = k0, which completes the proof. �

Let Ikopt denote the set of jobs in the optimal schedule covered by the time

span of segment [a1, fk). From Lemma 10, we make Assumption 1 for Ikopt,

which only increases the reward for the optimal schedule.

We construct a feasible solution to the restricted dual program (D4) by

initializing ut = 0 and sj = 0 for all t and all j. As the Cooperative Greedy

algorithm schedules jobs, we increase the values of the corresponding ut and

leave the values of {sj} unchanged. More specifically,

ua1+1 = v(J1)× γ,

ufj−1 = v(Jj+1)× γ, for j = 1, 2, . . . , k. (6.71)

We will now show that the dual solution given by (6.71) is feasible for the

restricted dual program for the worst-case job instance satisfying Assump-

tion 1. We consider two cases for job J̃z ∈ Iopt: (a) job J̃z ∈ Ikopt is the

first job in Ikopt; (b) job J̃z ∈ Iopt is not the first job in Ikopt. For case (a),

139

by Assumption 1, a1 + 1 ∈ [az, fz). If the marked time point f1 − 1 is not

contained in [az, fz), then

E[
∑

t:t∈[az ,fz)

ut] ≥
1

2
ua1+1 ≥

1

2
v(J1)× γ, (6.72)

where v(J1) ≥ v(J̃z) since l(J1) ≥ l(J̃z). If the marked time point f1 − 1 ∈
[az, fz), then

E[
∑

t:t∈[az ,fz)

ut] ≥
1

2
ua1+1 +

1

2
uf1−1 ≥

1

2
(v(J1) + v(J2))× γ, (6.73)

where v(J̃z) ≤ v(J2).

For case (b), let fkz − 1 denote the marked time point contained in job

J̃z ∈ Iopt, for kz = 1, 2, . . . , k − 1, then

E[
∑

t:t∈[az ,fz)

ut] ≥
1

2
ufkz−1 ≥

1

2
v(Jz+1)× γ, (6.74)

where v(Jkz+1) ≥ v(J̃z). For (6.72), (6.73) and (6.74) to satisfy constraint

(6.45) requires
1

2
γ ≥ 1 ⇔ γ ≥ 2.

Therefore, the competitive ratio for the Cooperative Greedy algorithm is 2.

140

CHAPTER 7

CONCLUSION

This dissertation considers two problems in the broad category of dynamic

online resource allocation problems: multi-objective sequential stochastic

assignment problems and online interval scheduling problems. For multi-

objective sequential stochastic assignment problems, we provide a complete

asymptotic analysis for Pareto optimal policies. We consider three classes of

Pareto optimal policies and prove that they all achieve the same asymptotic

objective values. Convergence rates of these three classes of Pareto opti-

mal policies are also provided for comparison. For online interval scheduling

problems, we consider both adversarial and stochastic job sequences. For

adversarial online interval scheduling problems, we provide two classes of

Greedy algorithms and compute their competitive ratios for scheduling C-

benevolent jobs on multiple weighted and unweighted machines. For stochas-

tic online interval scheduling problems, we provide approximation algorithms

based on the SSAP optimal policy and the stochastic matching algorithm for

both IID and random arrival order job sequences. We also propose a primal-

dual framework for analyzing algorithms for both adversarial and stochastic

interval scheduling problems. We use strong and weak duality to propose

an optimal algorithm for stochastic online interval scheduling problems and

compute the competitive ratio of approximation algorithms for adversarial

online interval scheduling problems, respectively.

There are several open problems for future research. The online inter-

val scheduling problem in this dissertation considers three classes of job se-

quences: (a) equal-length jobs, (b) C-benevolent jobs, and (c) memoryless-

length jobs. How to extend the approximation algorithms proposed in this

dissertation to other classes of job sequences remains an open problem.

The online interval scheduling problem in this dissertation assumes that

all machines have the same speed for executing jobs, and hence, job lengths

are indifferent with respect to the machine assigned. However, this is not

141

always the case. One related research topic is interval scheduling on related

machines. Generalizing results in this dissertation to the case of taking the

speed of machines into consideration is another open problem.

Another interesting research topic is multi-objective online interval schedul-

ing problems. For multi-objective online interval scheduling problems with

stochastic job sequences, simply combining results in Chapters 2 and 5 pro-

vides a straightforward and naive solution. Other potential approaches in-

clude game theory approaches, where each objective can be considered as

a player and the online interval scheduling problem can be formulated as a

stochastic game. The feasibility of game theory approaches and the rela-

tionship between Nash equilibria and Pareto optimal policies remain open

problems.

142

APPENDIX A

PROOFS FOR CHAPTER 2

A.1 Useful Lemmas

Wald’s equation [71]: Let X1, X2, . . . be IID random variables and N be a

stopping time with respect to Xi, i = 1, 2 If E[Xi] < +∞ and E[N] <

+∞, then

E[
N∑
i=1

Xi] = E[Xi]E[N].

Lemma 1 [25]: For a sequence of IID Bernoulli trials (Xt)1≤t≤n with the

success probability of p1, let Ur be the stopping time with respect to (Xt)1≤t≤n

for the event of obtaining r successes. Let Nr = min(Ur, n), then for 0 <

p2 < p1 < 1,

lim
n→+∞

E[Nbnp2c]

n
=
p2

p1

.

A.2 Proof of Theorem 2

First, we provide a lower bound for the optimal asymptotic expected weighted

reward per task using a feasible policy. Then, we provide an upper bound

for this optimal asymptotic expected weighted reward per task using order

statistics, which is shown to be the same as the lower bound.

Let S∗T denote the optimal expected weighted reward per task with T

tasks to be assigned and a selectee capacity of η = bT (1− ζ)c, then ρζw(w) =

limT→+∞ S
∗
T . By Corollary 1, S∗T = 1

T

∑T
i=T−η+1 ai,0. Define random variables

143

Yt and Zt for ε ≥ 0,

Yt =


G(t), if G(t) > Gl+1,

G(t), with probability (q + ε) if G(t) = Gl+1,

0, otherwise,

t = 1, 2, . . . , T,

(A.1)

Zt =

1, if Yt > 0,

0, otherwise,
t = 1, 2, . . . , T. (A.2)

Define Uη , min{k ∈ Z :
∑k

t=1 Zt = η} (min∅ = +∞) andNη , min(Uη, T).

Therefore, Nη is a stopping time with respect to {Zt}Tt=1 (or {Yt}Tt=1).

Consider a feasible policy ΦLB (not necessarily optimal) that assigns a

task with a combined value G(t) as follows: the task is assigned to a worker

if G(t) > Gl+1 and rejected if G(t) ≤ Gl. If G(t) = Gl+1, the task is assigned

to a worker with probability q + ε1 for ε1 > 0 small (ε1 is strictly greater

than zero as opposed to ε ≥ 0 defined in (A.1) and (A.2)) and q given by

(2.12). This policy continues to assign tasks in this manner until the number

of remaining workers is equal to the number of remaining tasks. At this time,

every arriving task is assigned to a worker who has a success rate of one. Let

S1 denote the weighted reward per task under policy ΦLB. Since ΦLB may

not be optimal, E[S1] ≤ S∗T .

Consider another policy Φ′LB (not necessarily optimal) making assignments

such that X
Φ′LB
t = Zt, for t = 1, 2, . . . , Nη with ε = ε1 > 0 in (A.1) and (A.2),

and if Nη < T , X
Φ′LB
t = 0, for t = Nη + 1, . . . , T . Let S2 denote the weighted

reward per task under policy Φ′LB, then S2 = 1
T

∑Nη
t=1 Yt. The probability for

a task (among the first Nη tasks) being assigned to a worker under policy

Φ′LB is P2 =
∑L

k=l+2 pG(Gk) + (q + ε1)pG(Gl+1), and the tasks assigned to a

worker all have a realized combined value greater than or equal to Gl+1. Note

that {Yt}Tt=1 are IID. Since Nη is a stopping time with respect to {Yt}Tt=1,

144

using Wald’s equation and Lemma 1 (see Appendix A.1),

lim
T→+∞

E[S2] = lim
T→+∞

E[Nη]

T
E[Yt]

=
1− ζ
P2

E[Yt]

=
1− ζ
P2

((
L∑

k=l+2

GkpG(Gk)

)
+ (q + ε1)Gl+1pG(Gl+1)

)
. (A.3)

Next, we show the difference between S1 and S2 (denoted by D = S1 − S2)

converges to zero in expectation as T → +∞. By the definition of D,

D =

0, if Uη ≤ T,

1
T

∑η−
∑T
t=1 Zt

k=1 G(tk), if Uη > T,
(A.4)

where {tk} index those tasks assigned to a worker who has a success rate of

one under policy ΦLB but not under policy Φ′LB, and hence G(tk) ≤ Gl+1 for

all 1 ≤ k ≤ η−
∑T

t=1 Zt. By the definition of q, P2 = 1−ζ+ε1pG(Gl+1) > 1−ζ.

Since {Zt}Tt=1 are IID with E[Zt] = P2, by the weak law of large numbers,

lim
T→+∞

P(Uη > T) = lim
T→+∞

P

(
1

T

T∑
t=1

Zt <
η

T

)

≤ lim
T→+∞

P

(
1

T

T∑
t=1

Zt < 1− ζ

)

= lim
T→+∞

P

(
1

T

T∑
t=1

Zt < P2 − ε1pG(Gl+1)

)
= 0.

Therefore, the expectation of D defined by (A.4) is

lim
T→+∞

E[D] = lim
T→+∞

1

T
E[

η−
∑T
t=1 Zt∑

k=1

G(tk)]P(Uη > T)

≤ lim
T→+∞

ηGl+1

T
P(Uη > T)

≤ (1− ζ)Gl+1 lim
T→+∞

P(Uη > T) = 0,

where the first inequality follows from η −
∑T

t=1 Zt ≤ η and G(tk) ≤ Gl+1.

Therefore, limT→+∞ E[S1] = limT→+∞ E[S2] = (1 − ζ)E[Yt]/P2. Moreover,

145

taking the limit of (A.3) as ε1 → 0,

lim
ε1→0

lim
T→+∞

E[S1] = lim
ε1→0

1− ζ
P2

E[Yt]

= E[Yt]

=

(
L∑

k=l+2

GkpG(Gk)

)
+ qGl+1pG(Gl+1)

≤ lim
T→+∞

S∗T = ρζw(w), (A.5)

which provides a lower bound for the optimal asymptotic expected weighted

reward per task.

Second, we establish an upper bound for the optimal asymptotic expected

weighted reward per task. Since the order statistics for the sequence of

combined values {G(t)}Tt=1 are denoted by Ĝ
(1)
T ≤ . . . ≤ Ĝ

(T)
T , then S∗T ≤

1
T
E[
∑T

t=T−η+1 Ĝ
(t)
T]. Let ε = 0 in (A.1) and (A.2), and define NT ,

∑T
t=1 Zt.

Then, NT is the number of ones in the sequence of {Zt}Tt=1 and E[NT] =

T (1 − FG(Gl+1) + qpG(Gl+1)) = T (1 − ζ), bE[NT]c = η. We show that
1
T
E[
∑T

t=T−η+1 Ĝ
(t)
T −

∑T
t=1 Yt] ≤ 0. Then,

1

T
E[

T∑
t=T−η+1

Ĝ
(t)
T −

T∑
t=1

Yt]

(a)
=

1

T

(∑
NT≤η

(
T∑

t=T−η+1

Ĝ
(t)
T −

T∑
t=1

Yt)Pγ +
∑
NT>η

(
T∑

t=T−η+1

Ĝ
(t)
T −

T∑
t=1

Yt)Pγ

)
(b)
=

1

T

(∑
NT≤η

(Ĝ
(T−η+1)
T + . . .+ Ĝ

(T−NT)
T)Pγ −

∑
NT>η

(Ĝ
(T−NT+1)
T + . . .+ Ĝ

(T−η)
T)Pγ

)
(A.6)

(c)

≤Gl+1

T

(∑
NT≤η

(η −NT)Pγ −
∑
NT>η

−(η −NT)Pγ

)

=
Gl+1

T
E[η −NT] ≤ 0.

Here, equality (a) follows from expanding the expectation by conditioning

on whether NT ≤ η, with Pγ denoting the pmf for the sequence {G(t)}Tt=1;

equality (b) follows from the definition of {Yt}Tt=1 (A.1), and hence, when

NT ≤ η, there are η −NT more terms in
∑T

t=T−η+1 Ĝ
(t)
T than in

∑T
t=1 Yt and

146

when NT > η, there are NT −η more terms in
∑T

t=1 Yt than in
∑T

t=T−η+1 Ĝ
(t)
T ;

inequality (c) follows from (b), and in (A.6) each remaining term in the first

sum is less than or equal to Gl+1 while each remaining term in the second

sum is greater than or equal to Gl+1. Therefore,

S∗T ≤
1

T
E[

T∑
t=T−η+1

Ĝ
(t)
T] ≤ 1

T
E[

T∑
t=1

Yt] = E[Yt] =

(
L∑

k=l+2

GkpG(Gk)

)
+qGl+1pG(Gl+1).

(A.7)

Since the lower bound in (A.5) and the upper bound in (A.7) are the same,

we have

ρζw(w) = lim
T→+∞

S∗T =

(
L∑

k=l+2

GkpG(Gk)

)
+ qGl+1pG(Gl+1), (A.8)

which completes the proof. �

A.3 Proof of Corollary 2

From Corollary 1 and Theorem 2, the asymptotic expected weighted reward

per task under policy (Φ1) is optimal and given by

lim
T→+∞

Rw(Φ1) = lim
T→+∞

1

T

T∑
i=dTζe+1

ai,0 =

(
L∑

k=l+2

GkpG(Gk)

)
+ qGl+1pG(Gl+1).

(A.9)

Choose FG(Gl) < θ′ < θ < FG(Gl+1). We substitute ζ with θ and θ′, respec-

tively. From (A.9),

lim
T→+∞

1

T

T∑
i=dTθe+1

ai,0 =

(
L∑

k=l+2

GkpG(Gk)

)
+ qθGl+1pG(Gl+1), (A.10)

and

lim
T→+∞

1

T

T∑
i=dTθ′e+1

ai,0 =

(
L∑

k=l+2

GkpG(Gk)

)
+ q′θGl+1pG(Gl+1), (A.11)

147

where qθ = FG(Gl+1)−θ
pG(Gl+1)

and q′θ = FG(Gl+1)−θ′
pG(Gl+1)

. Taking the difference between

(A.10) and (A.11) leads to

lim
T→+∞

1

T

dTθe∑
i=dTθ′e+1

ai,0 = (q′θ − qθ)Gl+1pG(Gl+1) = (θ − θ′)Gl+1. (A.12)

For T sufficiently large, dTθe > dTθ′e+ 1. Since the threshold values ai,0 are

monotonically increasing with respect to i (from (2.5)), then

1

T

dTθe∑
i=dTθ′e+1

ai,0 ≤
dTθe − dTθ′e

T
adTθe,0, (A.13)

which follows by substituting the largest threshold adTθe,0 for each {ai,0}dTθei=dTθ′e+1

on the left-hand side of (A.13). Dividing both sides by (θ − θ′) > 0, taking

the limit of (A.13) as T → +∞, and using the result in (A.12) lead to

Gl+1 ≤ lim
T→+∞

inf adTθe,0. (A.14)

For the reverse direction, following the same argument, it can be shown the

upper bound of the limit of the threshold value is

lim
T→+∞

sup adTθe,0 ≤ Gl+1. (A.15)

Combining (A.14) and (A.15), the result is immediate. �

A.4 Proof of Lemma 1

Before we prove Lemma 1, we first compute the limit of bjdTθe,0 as T → +∞
for a fixed FG(Gl) < θ < FG(Gl+1), l = 0, 1, . . . , L − 1, and j = 1, 2 . . . , n.

These limit values will be used to prove the uniform convergence of bjdTθe,0 in

the compact interval I lε1,ε2 . By Corollary 2, the sequence of random variables

Ĝ
(dTθe)
T (indexed by T) converges as

lim
T→+∞

E[Ĝ
(dTθe)
T] = lim

T→+∞
adTθe,0 = Gl+1, (A.16)

148

for FG(Gl) < θ < FG(Gl+1) and l = 0, 1, . . . , L − 1. Lemma 11 provides the

convergence type of Ĝ
(dTθe)
T for a fixed θ.

Lemma 11. The sequence of random variables Ĝ
(dTθe)
T converges to Gl+1 as

T → +∞ both in mean square and in probability, for FG(Gl) < θ < FG(Gl+1)

and l = 0, 1, . . . , L− 1.

Proof: First we prove

lim
T→+∞

E[(Ĝ
(dTθe)
T)2] = G2

l+1. (A.17)

Then combining (A.16) and (A.17), convergence in mean square can be es-

tablished, which implies convergence in probability.

To prove (A.17), consider an auxiliary SSAP instance for WOSA-w dis-

cussed in Theorem 2, with T tasks to be assigned to homogeneous workers.

There are bT (1 − ζ)c workers (without loss of generality, set their success

rates as one); we assume T − bT (1− ζ)c virtual workers with a success rate

of zero. For this auxiliary SSAP instance, each task has a combined value

Ḡ(t) = G(t)2 (random variable), with realized value γ̄t = γ2
t . Note that Ḡ(t)

preserves the order of G(t) (i.e., Ḡ(t1) > Ḡ(t2) if and only if G(t1) > G(t2)).

Then, Ḡ(t) is discrete and takes values 0 < G2
1 < G2

2 < . . . < G2
L, with cdf

and pmf given by FḠ(γ̄) = FG(
√
γ̄) and pḠ(γ̄) = pG(

√
γ̄), respectively. Let

Φ̄ denote the SSAP optimal policy for this instance. Then from Theorem 1,

policy Φ̄ is determined by the threshold values a′i,0, i = 1, 2, . . . , T defined by

(2.6), which are the expected value of the ith smallest value of Ḡ(t), i.e.,

a′i,0 = E[(Ĝ
(i)
T)2]. (A.18)

Now we consider the optimal asymptotic expected reward per task for this

auxiliary SSAP instance as T → +∞. From Theorem 2,

lim
T→+∞

1

T

T∑
i=dTζe+1

a′i,0 =

(
L∑

k=l+2

G2
kpG(Gk)

)
+ qG2

l+1pG(Gl+1),

with q defined by (2.12). Applying Corollary 2 and using (A.18),

lim
T→+∞

E[(Ĝ
(dTθe)
T)2] = lim

T→+∞
a′dTθe,0 = G2

l+1,

149

which proves (A.17). Using (A.16) and (A.17), the limit of the mean square

difference is given by

lim
T→+∞

E[(Ĝ
(dTθe)
T −Gl+1)2] = lim

T→+∞
E[(Ĝ

(dTθe)
T)2 − 2Gl+1Ĝ

(dTθe)
T +G2

l+1]

= G2
l+1 − 2G2

l+1 +G2
l+1 = 0. (A.19)

Therefore, Ĝ
(dTθe)
T converges to Gl+1 in mean square, which implies conver-

gence in probability.

Lemma 12. The limit of bjdTθe,0 defined by (2.8) is

lim
T→+∞

bjdTθe,0 = E[Aj(t)|G(t) = Gl+1],

for FG(Gl) < θ < FG(Gl+1), l = 0, 1, . . . , L− 1, and j = 1, 2, . . . , n.

Proof: From Lemma 11, Ĝ
(dTθe)
T converges in probability to Gl+1. Then for

any ε > 0,

lim
T→+∞

P(|Ĝ(dTθe)
T −Gl+1| ≥ ε) = 0

⇒ lim
T→+∞

P(Ĝ
(dTθe)
T ≥ Gl+1 + ε, or Ĝ

(dTθe)
T ≤ Gl+1 − ε) = 0

⇒ lim
T→+∞

P(Ĝ
(dTθe)
T 6= Gl+1) = 0 and lim

T→+∞
P(Ĝ

(dTθe)
T = Gl+1) = 1, (A.20)

where the last line follows from Ĝ
(dTθe)
T being a discrete random variable and

ε arbitrarily small. Since Aj(t) is bounded above by AM < +∞, then from

the definition of bjdTθe,0 (2.8),

lim
T→+∞

bjdTθe,0 = lim
T→+∞

E
[
E[Â

(j)(dTθe)
T |Ĝ(dTθe)

T]
]

= lim
T→+∞

E[Â
(j)(dTθe)
T |Ĝ(dTθe)

T = Gl+1]P(Ĝ
(dTθe)
T = Gl+1)

+ lim
T→+∞

E[Â
(j)(dTθe)
T |Ĝ(dTθe)

T 6= Gl+1]P(Ĝ
(dTθe)
T 6= Gl+1) (A.21)

(A.20)
= E[Â

(j)(dTθe)
T |Ĝ(dTθe)

T = Gl+1]

=E[Aj(t)|G(t) = Gl+1],

where the last equality follows from that Aj(t) and G(t) are both IID.

150

Proof: First we show adTθe,0 converges uniformly to Gl+1 as T → +∞
for θ ∈ I lε1,ε2 . From (2.6), ai,0 are uniformly bounded above by GL for i =

1, 2, . . . , T . Define the following sequence of functions for 0 < θ ≤ 1 indexed

by T ,

gT (θ) , adTθe,0 = ai,0, for
i− 1

T
< θ ≤ i

T
, i = 1, 2, . . . , T. (A.22)

From this definition, gT (θ) is a left-continuous step function and gT (θ) is non-

decreasing since {ai,0} are monotonically increasing in i. Now consider gT (θ)

over the compact interval I lε1,ε2 , for any ε1 > 0, ε2 > 0. From Corollary 2,

gT (θ) converge pointwise to Gl+1 as T → +∞ over I lε1,ε2 . Moreover,

lim
T→+∞

sup
θ∈Ilε1,ε2

|gT (θ)−Gl+1|

= lim
T→+∞

(max (|gT (FG(Gl) + ε1)−Gl+1|, |gT (FG(Gl+1)− ε2)−Gl+1|))

= max(lim
T→+∞

|gT (FG(Gl) + ε1)−Gl+1|, lim
T→+∞

|gT (FG(Gl+1)− ε2)−Gl+1|)

=0,

where the first equality follows from gT (θ) being non-decreasing over the

compact interval I lε1,ε2 . Therefore, gT (θ) converges uniformly to Gl+1 in I lε1,ε2 .

Then, adTθe,0 converges uniformly to Gl+1 as T → +∞ over the interval I lε1,ε2 .

Applying the same arguments to the auxiliary SSAP instance defined in

the proof of Lemma 11, then a′dTθe,0 (A.18) converges uniformly to G2
l+1 for

θ ∈ I lε1,ε2 . Moreover, from (A.19), Ĝ
(dTθe)
T converges uniformly to Gl+1 in

mean square as T → +∞ for θ ∈ I lε1,ε2 . Moreover, uniform convergence in

mean square implies uniform convergence in probability. Therefore, for any

ε > 0, there exists an Nε ∈ Z+ (depending only on ε) such that for T > Nε

and any θ ∈ I lε1,ε2 ,

P(Ĝ
(dTθe)
T 6= Gl+1) < ε, (A.23)

151

which follows from (A.20). Since Aj(t) is bounded above by AM < +∞, then

for T > Nε

sup
θ∈Ilε1,ε2

|bjdTθe,0 − E[Aj(t)|G(t) = Gl+1]|

(2.8)
= sup

θ∈Ilε1,ε2

|E[Â
(j)(dTθe)
T |Ĝ(dTθe)

T 6= Gl+1]− E[Aj(t)|G(t) = Gl+1]|P(Ĝ
(dTθe)
T 6= Gl+1)

≤2AMP(Ĝ
(dTθe)
T 6= Gl+1) < 2AMε→ 0,

and hence bjdTθe,0 converges uniformly to E[Aj(t)|G(t) = GL+1] for θ ∈ I lε1,ε2 .

�

A.5 Proof of Theorem 3

For j = 1, 2, . . . , n, from (2.10),

ρζj(w) = lim
T→+∞

rj(Φ1) = lim
T→+∞

1

T

T∑
i=dTζe+1

bji,0.

In the following, we compute ρζj(w) by summing up the limit of bji,0, for

i = dTζe + 1, . . . , T . First, we need to use the uniform convergence of bji,0
provided in Lemma 1 to interchange the order of summation and limit.

For any ε1 > 0, ε2 > 0, define compact intervals

I , [dTζe+ 1, T] ⊂ Z+,

Il+1(ε1, ε2) , [bT (ζ + ε1)c+ 1, dT (FG(Gl+1)− ε2)e] ⊂ Z+,

Im(ε1, ε2) , [bT (FG(Gm−1) + ε1)c+ 1, dT (FG(Gm)− ε2)e] ⊂ Z+, (A.24)

for m = l + 2, l + 3, . . . , L. Then,

Ie , I \
⋃

m=l+1,...,L

Im(ε1, ε2), (A.25)

where Ie is the difference between I and
⋃
m=l+1,...,L Im(ε1, ε2). From Lemma 1,

bjdTθe,0 converges uniformly to E[Aj(t)|G(t) = Gm] as T → +∞, for dTθe ∈
Im(ε1, ε2), m = l + 1, . . . , L. Therefore, the summation and limit in (2.10)

are interchangeable over I \ Ie.

152

The limits of the counting measure (µ([a, b]) , bbc − dae + 1) of these

compact intervals normalized by T are

lim
T→+∞

1

T
µ(Il+1(ε1, ε2)) = FG(Gl+1)− ε2 − ζ − ε1

(2.12)
= qpG(Gl+1)− (ε1 + ε2),

(A.26)

lim
T→+∞

1

T
µ(Im(ε1, ε2)) = FG(Gm)− ε2 − FG(Gm−1)− ε1 = pG(Gm)− (ε1 + ε2),

(A.27)

for m = l + 2, . . . , L, and

lim
T→+∞

1

T
µ(Ie) = lim

T→+∞

1

T
µ(I \

⋃
m=l+1,...,L

Im(ε1, ε2)) = (L− l)(ε1 + ε2). (A.28)

Then (2.10) can be written as

lim
T→+∞

1

T

T∑
i=dTζe+1

bji,0 = lim
T→+∞

1

T

T∑
i=dTζe+1

((
L∑

m=l+1

1i∈Im(ε1,ε2)

)
+ 1i∈Ie

)
bji,0

=

 lim
T→+∞

1

T

L∑
m=l+1

T∑
i=dTζe+1

1i∈Im(ε1,ε2)b
j
i,0


+ lim

T→+∞

1

T

T∑
i=dTζe+1

1i∈Ieb
j
i,0, (A.29)

where 1i∈Im(ε1,ε2) is the indicator function and the first equality follows from

the mutually exclusive and exhaustive partition I =
(⋃

m=l+1,...,L Im(ε1, ε2)
)⋃

Ie.

153

For the first term of (A.29),

lim
T→+∞

1

T

L∑
m=l+1

T∑
i=dTζe+1

1i∈Im(ε1,ε2)b
j
i,0

=
L∑

m=l+1

lim
T→+∞

1

T

T∑
i=dTζe+1

1i∈Im(ε1,ε2)b
j
i,0

(a)
=

L∑
m=l+1

(
lim

T→+∞
bji,0

)(
lim

T→+∞

1

T
µ(Im(ε1, ε2))

)
(A.26),(A.27)

=

(
L∑

m=l+2

(pG(Gm)− (ε2 + ε1))E[Aj(t)|G(t) = Gm]

)
+
(
qpG(Gl+1)− (ε1 + ε2)

)
E[Aj(t)|G(t) = Gl+1]

=E[Aj(t)|G(t) > Gl+1]PG(G(t) > Gl+1) + qE[Aj(t)|G(t) = Gl+1]pG(Gl+1)

+ (ε1 + ε2)
L∑

m=l+1

E[Aj(t)|G(t) = Gm], (A.30)

where equality (a) follows from the uniform convergence of bji,0 over i ∈
Im(ε1, ε2) for each m = l + 1, . . . , L and the product law of limit [72]. For

simplicity, let ρ∗j = E[Aj(t)|G(t) > Gl+1]PG(G(t) > Gl+1) + qE[Aj(t)|G(t) =

Gl+1]pG(Gl+1).

For the second term of (A.29),

lim
T→+∞

1

T

T∑
i=dTζe+1

1i∈Ieb
j
i,0 ≤ lim

T→+∞

1

T
µ(Ie)AM

(A.28)
= (ε1 + ε2)(L− l)AM ,

(A.31)

where the inequality follows from bjdTθe,0 uniformly bounded above by AM <

+∞ for 0 ≤ θ ≤ 1 (since Aj(t) is bounded above by AM < +∞).

From (A.30), for any ε > 0, there exists N1
ε ∈ Z+, such that for T > N1

ε ,

| 1
T

L∑
m=l+1

T∑
i=dTζe+1

1i∈Im(ε1,ε2)b
j
i,0 − ρ∗j − (ε1 + ε2)

L∑
m=l+1

E[Aj(t)|G(t) = Gm]| < ε

154

⇒ | 1
T

L∑
m=l+1

T∑
i=dTζe+1

1i∈Im(ε1,ε2)b
j
i,0 − ρ∗j | < (ε1 + ε2)

(
L∑

m=l+1

E[Aj(t)|G(t) = Gm]

)
+ ε

< (ε1 + ε2)(L− l)AM + ε. (A.32)

From (A.31), there exists N2
ε ∈ Z+, such that for T > N2

ε ,

| 1
T

T∑
i=dTζe+1

1i∈Ieb
j
i,0| < (ε1 + ε2)(L− l)AM + ε. (A.33)

Therefore, for T > max(N1
ε , N

2
ε), from (A.32) and (A.33),

| 1
T

T∑
i=dTζe+1

bji,0 − ρ∗j | ≤ |
1

T

L∑
m=l+1

T∑
i=dTζe+1

1i∈Im(ε1,ε2)b
j
i,0 − ρ∗j |+ |

1

T

T∑
i=dTζe+1

1i∈Ieb
j
i,0|

< 2(ε1 + ε2)(L− l)AM + 2ε, (A.34)

which holds for any ε1 > 0, ε2 > 0. Taking ε1 = ε2 = ε/2, then (A.34) be-

comes (2(L− l)AM + 2) ε, with 2(L−l)AM+2 finite and constant. Therefore,

ρζj(w) = limT→+∞
1
T

∑T
i=dTζe+1 b

j
i,0 = ρ∗j . �

A.6 Proof of Theorem 4

Let fΦ2(ζ) denote the asymptotic expected weighted reward per task for

WOSA-w under policy (Φ2) (not necessarily optimal). Let ζ(n) denote the

non-selectee ratio after n task assignments, given by

ζ(n) = 1− b(1− ζ)T c −
∑n

t=1 X
Φ2
t

T − n
, n = 1, 2, . . . , T. (A.35)

First, we show that FG(Gl) ≤ ζ(bνπT c) ≤ FG(Gl+1) hold regardless of the

first bνζT c assignments. From the definition of νζ (2.15), we have νζ ≤ ζ.

Since 0 ≤
∑bνζT c

t=1 XΦ2
t ≤ bνζT c ≤ νζT for any T ∈ Z+, then

1− b(1− ζ)T c
T − bνζT c

≤ ζ(bνζT c) ≤ 1− b(1− ζ)T c − bνζT c
T − bνζT c

.

155

Moreover, since x− 1 ≤ bxc ≤ x for all x > 0, then

νζ <
FG(Gl+1)− ζ
FG(Gl+1)

⇒ 1− b(1− ζ)T c − bνζT c
T − bνζT c

≤ FG(Gl+1), (A.36)

and

νζ ≤
ζ − FG(Gl)

1− FG(Gl)
⇒ 1− b(1− ζ)T c

T − bνζT c
≥ FG(Gl). (A.37)

Therefore, FG(Gl) ≤ ζ(bνζT c) ≤ FG(Gl+1) always hold. This condition to-

gether with Theorem 2 guarantees the asymptotic expected weighted reward

per task for WOSA-w under policy (Φ1) after the first bνζT c task assign-

ments is linear with respect to the non-selectee ratio ζ(bνζT c).
Since WOSA-w can be formulated as a MDP (see Section 4.1 by [65]),

the expected weighted reward per task can be broken up into two parts: the

expected weighted reward per task for assigning the first bνζT c tasks, and

the expected weighted reward per task for assigning the remaining T −bνζT c
tasks. These two parts are independent conditional on the non-selectee ratio

ζ(bνζT c), which leads to

fΦ2(ζ) = lim
T→+∞

1

T
E[

bνζT c∑
t=1

XΦ2
t G(t) +

T∑
t=bνζT c+1

XΦ2
t G(t)]

= lim
T→+∞

1

T
E[

bνζT c∑
t=1

XΦ2
t G(t)] + lim

T→+∞

1

T
E[

T∑
t=bνζT c+1

XΦ1
t G(t)]

= lim
T→+∞

1

T
E[

bνζT c∑
t=1

XΦ2
t G(t)] + (1− νζ)E[ρ

ζ(bνζT c)
w (w)], (A.38)

where the last equality follows from Theorem 2 and the expectation of the

second term in (A.38) is taken with respect to ζ(bνζT c), which depends on

the first bνζT c task assignments.

Next, we consider the first term in (A.38). Since the first bνζT c tasks have

all been assigned in the same manner, {XΦ2
t G(t)} and {XΦ2

t } are both IID

for t = 1, 2, . . . , bνζT c, with E[XΦ2
t G(t)] =

∑L
k=l+2 GkpG(Gk)+qGl+1pG(Gl+1)

and E[XΦ2
t] =

∑L
k=l+2 pG(Gk) + qpG(Gl+1). Since bνζT c → +∞ as T →

+∞, then from the weak law of large numbers, (1/bνζT c)
∑bνζT c

t=1 XΦ2
t G(t)

and (1/bνζT c)
∑bνζT c

t=1 XΦ2
t converge to their corresponding expectation in

156

probability, respectively. Moreover, since XΦ2
t G(t) ≤ GL and XΦ2

t ≤ 1 for t =

1, 2, . . . , bνζT c are both bounded above, convergence in probability implies

convergence in the mean square sense and in mean. Therefore,

lim
T→+∞

1

T
E[

bνζT c∑
t=1

XΦ2
t G(t)] = νζE[XΦ2

t G(t)]

= νζ

((
L∑

k=l+2

GkpG(Gk)

)
+ qGl+1pG(Gl+1)

)
,

(A.39)

lim
T→+∞

1

T
E[

bνζT c∑
t=1

XΦ2
t] = νζE[XΦ2

t]

= νζ

((
L∑

k=l+2

pG(Gk)

)
+ qpG(Gl+1)

)
= νζ(1− ζ), (A.40)

and

lim
T→+∞

E[ζ(bνζT c)] = lim
T→+∞

1− b(1− ζ)T c − E[
∑bνζT c

t=1 XΦ2
t]

T − bνζT c

= 1− (1− ζ)− ε(1− ζ)

(1− νζ)
= ζ. (A.41)

For the second term in (A.38), since (A.36) and (A.37) hold, ρ
ζ(bνζT c)
w (w) is

an affine function of ζ(bνζT c). Then from Theorem 2,

lim
T→+∞

(1− νζ)E[ρ
ζ(bνζT c)
w (w)]

= lim
T→+∞

(1− νζ)E[

(
L∑

k=l+2

GkpG(Gk)

)
+
(
FG(Gl+1)− ζ(bνζT c)

)
Gl+1]

= lim
T→+∞

(1− νζ)

((
L∑

k=l+2

GkpG(Gk)

)
+
(
FG(Gl+1)− E[ζ(bνζT c)]

)
Gl+1

)

= (1− νζ)

((
L∑

k=l+2

GkpG(Gk)

)
+ (FG(Gl+1)− ζ)Gl+1

)
. (A.42)

157

Substituting (A.39) and (A.42) into (A.38) leads to the asymptotic expected

weighted reward per task under policy (Φ2),

fΦ2(ζ) =

(
L∑

k=l+2

GkpG(Gk)

)
+ (FG(Gl+1)− ζ)Gl+1,

which matches the optimal asymptotic expected weighted reward per task

(given in Theorem 2). �

A.7 Proof of Theorem 5

Let hj(ζ) denote the asymptotic expected reward per task for rj(Φ2) (not

necessarily optimal) under the SSAP mixed policy (Φ2), for j = 1, 2, . . . , n.

Since WOSA-w can be formulated as an MDP (see Section 4.1 by [65]), hj(ζ)

can be broken up into two parts: the expected reward per task for assigning

the first bνζT c tasks and the expected reward per task for assigning the

remaining T − bνζT c tasks. These two parts are independent conditional on

the non-selectee ratio ζ(bνζT c), which is defined by (A.35) as the non-selectee

ratio after the first bνζT c task assignments. Therefore,

hj(ζ) = lim
T→+∞

1

T
E[

bνζT c∑
t=1

XΦ2
t Aj(t) +

T∑
t=bνζT c+1

XΦ2
t Aj(t)]

= lim
T→+∞

1

T
E[

bνζT c∑
t=1

XΦ2
t Aj(t)] + lim

T→+∞

1

T
E[

T∑
t=bνζT c+1

XΦ1
t Aj(t)]

= lim
T→+∞

1

T
E[

bνζT c∑
t=1

XΦ2
t Aj(t)] + lim

T→+∞
(1− νζ)E[ρ

ζ(bνζT c)
j (w)], (A.43)

where the last equality follows from Theorem 3 and the expectation of the

second term is taken with respect to ζ(bνζT c), which depends on the first

bνζT c assignments. By (A.36) and (A.37), FG(Gl) ≤ ζ(bνζT c) ≤ FG(Gl+1),

which together with Theorem 3 guarantees that ρ
ζ(bνζT c)
j (w) is an affine func-

tion of ζ(bνζT c).
Next, we consider the first term in (A.43). Consider L−l random variables

defined by the indicator function Γ
(k)
t , 1G(t)=Gk,X

Φ
t =1, for k = l + 1, . . . , L

and t = 1, 2, . . . , bνζT c. From these definitions, XΦ2
t =

∑L
k=l+1 Γ

(k)
t for

158

t = 1, 2, . . . , bνζT c. Since the first bνζT c tasks have all been assigned in

the same manner, then for each fixed k, {Γ(k)
t } and {Γ(k)

t Aj(t)} are both IID

for t = 1, 2, . . . , bνζT c, with expectations given by

E[Γ
(l+1)
t] = qpG(Gl+1), E[Γ

(l+1)
t Aj(t)] = qE[Aj(t)|G(t) = Gl+1]pG(Gl+1),

E[Γ
(k)
t] = pG(Gk), E[Γ

(k)
t Aj(t)] = E[Aj(t)|G(t) = Gk]pG(Gk), (A.44)

for k = l + 2, . . . , L. Since bνζT c → +∞ as T → +∞, then from the weak

law of large numbers, (1/bνζT c)
∑bνζT c

t=1 Γ
(k)
t and (1/bνζT c)

∑bνζT c
t=1 Γ

(k)
t Aj(t)

converge to the corresponding expectation in probability, respectively. More-

over, since Γ
(k)
t ≤ 1 and Γ

(k)
t Aj(t) ≤ AM are both bounded above for

t = 1, 2, . . . , bνζT c, convergence in probability implies convergence in the

mean square sense and in mean. Therefore,

lim
T→+∞

1

T
E[

bνζT c∑
t=1

XΦ2
t Aj(t)] = lim

T→+∞

1

T
E[

bνζT c∑
t=1

L∑
k=l+1

Γ
(k)
t Aj(t)]

=
L∑

k=l+1

lim
T→+∞

1

T
E[

bνζT c∑
t=1

Γ
(k)
t Aj(t)]

= νζ

L∑
k=l+1

E[Γ
(k)
t Aj(t)]

= νζ

((L∑
k=l+2

E[Aj(t)|G(t) = Gk]pG(Gk)
)

+ qE[Aj(t)|G(t) = Gl+1]pG(Gl+1)

)
, (A.45)

lim
T→+∞

1

T
E[

bνζT c∑
t=1

XΦ2
t] = lim

T→+∞

1

T
E[

bνζT c∑
t=1

L∑
k=l+1

Γ
(k)
t]

= νζ

L∑
k=l+1

E[Γ
(k)
t]

= νζ

((L∑
k=l+2

pG(Gk)
)

+ qpG(Gl+1)

)
= νζ(1− ζ).

(A.46)

159

For the second term in (A.43), since (A.36) holds, ρ
ζ(bνζT c)
j (w) is an affine

function of ζ(bνζT c). Then from Theorem 3,

lim
T→+∞

(1− νζ)E[ρ
ζ(bνζT c)
j (w)]

= lim
T→+∞

(1− νζ)E
[(L∑

k=l+2

E[Aj(t)|G(t) = Gk]pG(Gk)

)

+
(
FG(Gl+1)− ζ(bνζT c)

)
E[Aj(t)|G(t) = Gl+1]

]
= lim

T→+∞
(1− νζ)

((L∑
k=l+2

E[Aj(t)|G(t) = Gk]pG(Gk)
)

+
(
FG(Gl+1)− E[ζ(bνζT c)]

)
E[Aj(t)|G(t) = Gl+1]

)
=(1− νζ)

((L∑
k=l+2

E[Aj(t)|G(t) = Gk]pG(Gk)
)

+ (FG(Gl+1)− ζ)E[A(t)|G(t) = Gl+1]

)
. (A.47)

Substituting (A.45) and (A.47) into (A.43) leads to the asymptotic ex-

pected reward per task for rj(Φ2),

hj(ζ) =

(
L∑

k=l+2

E[Aj(t)|G(t) = Gk]pG(Gk)

)
+ qE[Aj(t)|G(t) = Gl+1]pG(Gl+1)

= E[Aj(t)|G(t) > Gl+1]PG(G(t) > Gl+1) + qE[Aj(t)|G(t) = Gl+1]pG(Gl+1),

which is the same as ρζj(w) given by (2.13). �

A.8 Proof of Theorem 6

Let η = bT (1− ζ)c. Consider the following auxiliary policy Φ3′:

XΦ3′

t =



XΦ3
t , if η(t) > 0,

1, if η(t) = 0, G(t) > Gl+1,

1, with probability q if η(t) = 0, G(t) = Gl+1,

0, otherwise,

(A.48)

160

for t = 1, 2, . . . , T . Policy Φ3′ may not be feasible since it continues to assign

tasks to workers even when there are no such workers left. Note that {XΦ3
t }

are not IID while {XΦ3′
t } are IID, for t = 1, 2, . . . , T .

For a fixed T , define Us , min{k ∈ Z :
∑k

t=1 X
Φ3′
t = η} and Uns ,

min{k ∈ Z :
∑k

t=1(1 − XΦ3′
t) = T − η}. Since {XΦ3′

t } are IID for t =

1, 2, . . . , T with E[XΦ3′
t] = P(XΦ3′

t = 1) =
∑L

k=l+2 pG(Gk) + qpG(Gl+1) =

1 − ζ,E[1 − XΦ3′
t] = P(XΦ3′

t = 0) = ζ, Us is the sum of η IID geometric

random variables with mean 1/(1 − ζ) and Uns is the sum of T − η IID

geometric random variables with mean 1/ζ. Since η = bT (1 − ζ)c → +∞
and T − η = dTζe → +∞ as T → +∞, then from the weak law of large

numbers, Us/η → 1/(1−ζ) and Uns/(T−η)→ 1/ζ in probability. Therefore,

for any ε > 0,

lim
T→+∞

P
(
Us
T
< 1− ε

)
= lim

T→+∞
P
(
Us
η
<

1− ε
bT (1− ζ)c/T

)
≤ lim

T→+∞
P
(
Us
η
<

1− ε
1− ζ

+
1/T

(1− ζ)(1− ζ − 1/T)

)
= 0,

lim
T→+∞

P
(
Uns
T

< 1− ε
)

= lim
T→+∞

P
(

Uns
T − η

<
1− ε
dTζe/T

)
≤ lim

T→+∞
P
(

Uns
T − η

<
1− ε
ζ

)
= 0.

Define Umin , min{Us, Uns}. By definition, Umin/T ≤ 1 and

lim
T→+∞

P
(
Umin
T

< 1− ε
)
≤ lim

T→+∞
P
(
Us
T
< 1− ε

)
+ lim
T→+∞

P
(
Uns
T

< 1− ε
)

= 0.

(A.49)

Therefore, Umin/T converges to 1 in probability. Since Umin/T is bounded

above by 1 and Umin/T converges to 1 in probability, Umin/T converges to 1

in mean (i.e., limT→+∞ E[Umin]/T = 1).

The asymptotic expected weighted reward per task for WOSA-w under

161

policy Φ3′ is given by

lim
T→+∞

1

T
E[

T∑
t=1

XΦ3
t G(t)]

= lim
T→+∞

1

T
E[

Umin∑
t=1

XΦ3
t G(t) + 1Umin<T

T∑
t=Umin+1

XΦ3
t G(t)],

= lim
T→+∞

1

T
E[

Umin∑
t=1

XΦ3
t G(t)] + lim

T→+∞

1

T
E[1Umin<T

T∑
t=Umin+1

XΦ3
t G(t)], (A.50)

where 1Umin<T is the indicator function and when Umin = T the second

term in (A.50) becomes zero. Since Umin is a stopping time with respect to

{XΦ3′
t } and XΦ3

t = XΦ3′
t for t = 1, 2, . . . , Umin, then by Wald’s equation (See

Appendix A.1), the first term in (A.50) is

lim
T→+∞

1

T
E[

Umin∑
t=1

XΦ3
t G(t)] = lim

T→+∞

1

T
E[

Umin∑
t=1

XΦ3′

t G(t)]

= lim
T→+∞

E[Umin]

T
E[XΦ3′

t G(t)] = E[XΦ3′

t G(t)].

(A.51)

Consider the second term in (A.50): if Umin < T , then XΦ3
t ≤ XΦ3′

t for

t = Umin + 1, . . . , T , and hence

lim
T→+∞

1

T
E[1Umin<T

T∑
t=Umin+1

XΦ3
t G(t)]

≤ lim
T→+∞

1

T
E[1Umin<T

T∑
t=Umin+1

XΦ3′

t G(t)]

= lim
T→+∞

1

T
E[

T∑
t=1

XΦ3′

t G(t)−
Umin∑
t=1

XΦ3′

t G(t)]

(A.51)
= lim

T→+∞

(
1− E[Umin]

T

)
E[XΦ3′

t G(t)] = 0. (A.52)

Substituting (A.51) and (A.52) into (A.50),

lim
T→+∞

1

T
E[

T∑
t=1

XΦ3
t G(t)] = E[XΦ3′

t G(t)] =

(
L∑

k=l+2

GkpG(Gk)

)
+qGl+1pG(Gl+1).

162

�

A.9 Proof of Theorem 7

Following the same arguments as in the proof of Theorem 6,

lim
T→+∞

rj(Φ3)

= lim
T→+∞

1

T
E[

Umin∑
t=1

XΦ3
t Aj(t) + 1Umin<T

T∑
t=Umin+1

XΦ3
t Aj(t)],

(a)
=E[XΦ3′

t Aj(t)]

=E[Aj(t)|G(t) > Gl+1]PG(G(t) > Gl+1) + qE[Aj(t)|G(t) = Gl+1]pG(Gl+1),

where q is given by (2.12) and equality (a) follows from the same arguments as

(A.50), (A.51) and (A.52) with G(t) substituted by Aj(t) (see Appendix A.8).

This expression is the same as ρζj(w) given by (2.13). �

A.10 Proof of Lemma 2

From Theorem 1, E[Ĝ
(dTθe)
T] = adTθe,0. Therefore,

|adTθe,0 −Gl+1| = |E[Ĝ
(dTθe)
T]−Gl+1|

=|E[Ĝ
(dTθe)
T |Ĝ(dTθe)

T = Gl+1]P(Ĝ
(dTθe)
T = Gl+1)

+ E[Ĝ
(dTθe)
T |Ĝ(dTθe)

T 6= Gl+1]P(Ĝ
(dTθe)
T 6= Gl+1)−Gl+1|

=|E[Ĝ
(dTθe)
T |Ĝ(dTθe)

T 6= Gl+1]−Gl+1|P(Ĝ
(dTθe)
T 6= Gl+1)

≤GLP(Ĝ
(dTθe)
T 6= Gl+1). (A.53)

We need to show P(Ĝ
(dTθe)
T 6= Gl+1)→ 0 with an exponential rate.

Since Ĝ
(dTθe)
T assumes discrete values, there exists ε > 0 small such that

P(Ĝ
(dTθe)
T 6= Gl+1) = P(Ĝ

(dTθe)
T > Gl+1 + ε) + P(Ĝ

(dTθe)
T < Gl+1 − ε).

Since Ĝ
(dTθe)
T is monotonically increasing with respect to θ, if Ĝ

(dTθe)
T > Gl+1 +

ε, then Ĝ
(dTθ′e)
T > Gl+1 + ε, for any θ ≤ θ′ < 1. Define Y G

t , 1G(t)>Gl+1+ε

163

(indicator function), with E[Y G
t] = P(G(t) > Gl+1 +ε) = 1−FG(Gl+1). Then,

P(Ĝ
(dTθe)
T > Gl+1 + ε) = P

(
T∑
t=1

1G(t)>Gl+1+ε > T − dTθe+ 1

)

≤ P

(
T∑
t=1

Y G
t > T − Tθ

)

= P

(
T∑
t=1

Y G
t −

T∑
t=1

E[Y G
t] > T (FG(Gl+1)− θ)

)
≤ exp(−2T (FG(Gl+1)− θ)2), (A.54)

where the last inequality follows from Hoeffding inequality [73].

Similarly, if Ĝ
(dTθe)
T < Gl+1− ε, then Ĝ

(dTθ′e)
T < Gl+1− ε, for any 0 < θ′ ≤ θ.

Define ZG
t , 1G(t)<Gl+1−ε, with E[ZG

t] = P(G(t) < Gl+1 − ε) = FG(Gl), and

hence

P(Ĝ
(dTθe)
T < Gl+1 − ε) = P

(
T∑
t=1

1G(t)<Gl+1−ε > dTθe

)

≤ P

(
T∑
t=1

ZG
t > Tθ

)

= P

(
T∑
t=1

ZG
t −

T∑
t=1

E[ZG
t] > T (θ − FG(Gl))

)
≤ exp(−2T (θ − FG(Gl))

2), (A.55)

where the last inequality follows from Hoeffding inequality [73].

Substituting (A.54) and (A.55) into (A.53),

|adTθe,0 −Gl+1| ≤ 2GL exp(−2T∆2
θ),

where

∆θ = min{FG(Gl+1)− θ, θ − FG(Gl)}. �

164

A.11 Proof of Theorem 8

From Corollary 1,

|Rw(Φ1)− ρζw(w)| = | 1
T
E[

T∑
t=1

XΦ1
t G(t)]− ρζw(w)| = | 1

T

T∑
i=dTζe+1

ai,0 − ρζw(w)|.

(A.56)

For any ε > 0 small, use the partition defined in the proof of Theorem 3, i.e.,

I , [dTζe+ 1, T] = Ie
⋃(⋃

m=l+1,...,L

Im(2ε, 2ε)

)
,

where Im(2ε, 2ε) for m = l+1, . . . , L and Ie are defined by (A.24) and (A.25)

with ε1 = ε2 = 2ε. Then,

ρζw(w) =

(
L∑

m=l+2

GmpG(Gm)

)
+ qGl+1pG(Gl+1)

=
1

T

((
L∑

m=l+2

GmTpG(Gm)

)
+ qGl+1TpG(Gl+1)

)

=
1

T

T∑
i=1

L∑
m=l+1

(
Gm1i∈Im(2ε,2ε) +Gmi1i∈Ie

)
,

where Gmi = arg minGm, m=1,2,...,L FG(Gm) ≥ i/T . Therefore,

| 1
T

T∑
i=dTζe+1

ai,0 − ρζw(w)|

=
1

T
|

T∑
i=dTζe+1

ai,0 −
T∑
i=1

L∑
m=l+1

(
Gm1i∈Im(2ε,2ε) +Gmi1i∈Ie

)
|

=
1

T
|

T∑
i=dTζe+1

L∑
m=l+1

(ai,0 −Gm)1i∈Im(2ε,2ε) +
T∑

i=dTζe+1

(ai,0 −Gmi)1i∈Ie|

≤ 1

T

T∑
i=dTζe+1

L∑
m=l+1

|ai,0 −Gm|1i∈Im(2ε,2ε) +
µ(Ie)

T
GL. (A.57)

165

Moreover, from the definition of Ie in (A.25),

µ(Ie) =
L−1∑
m=l+1

(bT (FG(Gm) + 2ε)c − dT (FG(Gm)− 2ε)e)

+ (bT (ζ + 2ε)c − dTζe) + (T − dT (FG(GL)− 2ε)e)

≤4(L− l)Tε, (A.58)

and hence the second term in (A.57) becomes

µ(Ie)

T
GL ≤ 4(L− l)GLε. (A.59)

For the first term in (A.57), note that for any T > d2/εe,

bT (FG(Gm) + 2ε)c ≥ T (FG(Gm) + 2ε)− 1 ≥ T (FG(Gm) + ε),

dT (FG(Gm)− 2ε)e+ 1 ≤ T (FG(Gm)− 2ε) + 2 ≤ T (FG(Gm)− ε),

for m = l + 1, . . . , L. Then for any T > d2/εe, from Lemma 2,

|ai,0 −Gm| ≤ 2GL exp(−2T∆2
i/T),

where ∆i/T = min{FG(Gm) − i/T, i/T − FG(Gm−1)} for i ∈ Im(2ε, 2ε) and

m = l + 1, . . . , L. Therefore,

1

T

T∑
i=dTζe+1

L∑
m=l+1

|ai,0 −Gm|1i∈Im(2ε,2ε)

≤ 1

T

L∑
m=l+1

2GL

T∑
i=dTζe+1

exp(−2T∆2
i/T)1i∈Im(2ε,2ε)

≤2GL

T

L∑
m=l+1

dT (FG(Gm)−2ε)e∑
i=bT (FG(Gm−1)+2ε)c+1

exp(−2T∆2
i/T). (A.60)

166

For each m = l + 1, . . . , L, we have

dT (FG(Gm)−2ε)e∑
i=bT (FG(Gm−1)+2ε)c+1

exp(−2T∆2
i/T)

=2

dT (FG(Gm)−2ε)e∑
i=dT

2
(FG(Gm−1)+FG(Gm))e

exp(−2T∆2
i/T)

=2

dT (FG(Gm)−2ε)e∑
i=dT

2
(FG(Gm−1)+FG(Gm))e

exp(−2T (FG(Gm)− i

T
)2)

(a)

≤2

∫ dT (FG(Gm)−2ε)e+1

dT
2

(FG(Gm−1)+FG(Gm))e
exp

(
−2T (FG(Gm)− i

T
)2

)
di

≤2

∫ T (FG(Gm)−ε)

T
2

(FG(Gm−1)+FG(Gm))

exp

(
−2T (FG(Gm)− i

T
)2

)
di

(b)
=
√
T

∫ √T (FG(Gm)−FG(Gm−1)

2
√
Tε

exp(−y
2

2
)dy

=

√
T√
2π

(
Q(2
√
Tε)−Q(

√
T (FG(Gm)− FG(Gm−1)))

)
,

≤
√
T

2
√

2π
, (A.61)

where Q is the tail probability of the standard normal distribution. Inequal-

ity (a) follows from the fact that exp
(
−2T (FG(Gm)− i

T
)2
)

is an increasing

function of i ∈
[
dT

2
(FG(Gm−1) + FG(Gm))e, dT (FG(Gm)− 2ε)e+ 1

]
, and in-

equality (b) follows from a change of variable y = 2
√
T (FG(Gm)− i

T
). More-

over, since T > d2/εe, setting ε = 3/T = O(1/T), then substituting (A.61)

into (A.60), we have

1

T

T∑
i=dTζe+1

L∑
m=l+1

|ai,0−Gm|1i∈Im(2ε,2ε) ≤
2GL

T
(L−l)

√
T

2
√

2π
= O(

1√
T

). (A.62)

Substituting (A.59) and (A.62) into (A.57),

| 1
T

T∑
i=dTζe+1

ai,0 − ρζw(w)| ≤ O(
1√
T

) +O(
1

T
) = O(

1√
T

).

Therefore, Rw(Φ1) converges to ρζw(w) with rate O(1/
√
T). �

167

A.12 Proof of Theorem 9

For j = 1, 2, . . . , n, from (2.10),

|rj(Φ1)− ρζj(w)| = | 1
T
E[

T∑
t=1

XΦ1
t Aj(t)]− ρζj(w)| = | 1

T

T∑
i=dTζe+1

bji,0 − ρ
ζ
j(w)|.

(A.63)

The proof of the convergence rate of rj(Φ1) follows the same arguments as

in the proof of Theorem 8. Here, we mainly provide the key steps. Use the

same partition as in the proof of Theorem 8, i.e.,

I , [dTζe+ 1, T] = Ie
⋃(⋃

m=l+1,...,L

Im(2ε, 2ε)

)
.

Note that

ρζj(w) =
1

T

T∑
i=1

L∑
m=l+1

(
E[Aj(t)|G(t) = Gm]1i∈Im(2ε,2ε) + E[Aj(t)|G(t) = Gmi]1i∈Ie

)
,

where Gmi = arg minGm, m=1,2,...,L FG(Gm) ≥ i/T . Therefore,

| 1
T

T∑
i=dTζe+1

bji,0 − ρ
ζ
j(w)|

=
1

T
|

T∑
i=dTζe+1

bji,0

−
T∑
i=1

L∑
m=l+1

(
E[Aj(t)|G(t) = Gm]1i∈Im(2ε,2ε) + E[Aj(t)vertG(t) = Gmi]1i∈Ie

)
|

≤ 1

T

T∑
i=dTζe+1

L∑
m=l+1

|bji,0 − E[Aj(t)|G(t) = Gm]|1i∈Im(2ε,2ε) +
µ(Ie)

T
AM . (A.64)

Similarly, from (A.58) the second term in (A.64) becomes

µ(Ie)

T
AM ≤ 4(L− l)AMε. (A.65)

For the first term in (A.64), for any T > d2/εe from Lemma 3,

|bji,0 − E[Aj(t)|G(t) = Gm]| ≤ 4AM exp(−2T∆2
i/T),

168

where ∆i/T = min{FG(Gm) − i/T, i/T − FG(Gm−1)} for i ∈ Im(2ε, 2ε) and

m = l + 1, . . . , L. Therefore,

1

T

T∑
i=dTζe+1

L∑
m=l+1

|bji,0 − E[Aj(t)|G(t) = Gm]|1i∈Im(2ε,2ε)

≤ 1

T

L∑
m=l+1

4AM

T∑
i=dTζe+1

exp(−2T∆2
i/T)1i∈Im(2ε,2ε)

≤4AM
T

L∑
m=l+1

dT (FG(Gm)−2ε)e∑
i=bT (FG(Gm−1)+2ε)c+1

exp(−2T∆2
i/T). (A.66)

Moreover, since T > d2/εe, set ε = 3/T = O(1/T), then substituting (A.61)

into (A.66),

1

T

T∑
i=dTζe+1

L∑
m=l+1

|bji,0−E[Aj(t)|G(t) = Gm]|1i∈Im(2ε,2ε) ≤
4AM
T

(L−l)
√
T

2
√

2π
= O(

1√
T

).

(A.67)

Substituting (A.65) and (A.67) into (A.64),

| 1
T

T∑
i=dTζe+1

bji,0 − ρ
ζ
j(w)| ≤ O(

1√
T

) +O(
1

T
) = O(

1√
T

).

Therefore, rj(Φ1) converges to ρζj(w) with rate O(1/
√
T). �

169

A.13 Proof of Theorem 10

Following the same arguments as in the proof of Theorem 4, we break Rw(Φ2)

into two parts as follows:

Rw(Φ2) =
1

T
E[

bνζT c∑
t=1

XΦ2
t G(t) +

T∑
t=bνζT c+1

XΦ2
t G(t)]

=
1

T
E[

bνζT c∑
t=1

XΦ2
t G(t)] +

1

T
E[

T∑
t=bνζT c+1

XΦ1
t G(t)]

=
1

T
bνζT cρζw(w) +

1

T
E

E[
T∑

t=bνζT c+1

XΦ1
t G(t)|ζ(bνζT c)]

 , (A.68)

where the last line follows from {XΦ2
t G(t)} being IID for t = 1, 2, . . . , bνζT c

and ζ(bνζT c) given by (A.35) is a random variable. For the second term in

(A.68), the outer and inner expectations are taken with respect to ζ(bνζT c)
and {G(t)}Tt=bνζT c+1, respectively. Therefore,

|Rw(Φ2)− ρζw(w)|

=
T − bνζT c

T
| 1

T − bνζT c
E

E[
T∑

t=bνζT c+1

XΦ1
t G(t)|ζ(bνζT c)]

− ρζw(w)|

≤|E

 1

T − bνζT c
E[

T∑
t=bνζT c+1

XΦ1
t G(t)|ζ(bνζT c)]− ρ

ζ(bνζT c)
w (w)

|
+ |E[ρ

ζ(bνζT c)
w (w)]− ρζw(w)|. (A.69)

From (A.36) and (A.37), FG(Gl) ≤ ζ(bνζT c) ≤ FG(Gl+1) holds. Therefore,

from Theorem 8,

| 1

T − bνζT c
E[

T∑
t=bνζT c+1

XΦ1
t G(t)|ζ(bνζT c)]− ρ

ζ(bνζT c)
w (w)| = O(

1√
T

), (A.70)

for any ζ(bνζT c). Therefore, the first term in (A.69) is O(1/
√
T). For the

second term in (A.69), since ρ
ζ(bνζT c)
w (w) is an affine function of ζ(bνζT c),

170

then from Theorem 2,

|E[ρ
ζ(bνζT c)
w (w)]− ρζw(w)| = |E[ζ(bνζT c)]− ζ|pG(Gl+1)Gl+1.

Recall that from(A.41),

E[ζ(bνζT c)] = 1−b(1− ζ)T c − E[
∑bνζT c

t=1 XΦ2
t]

T − bνζT c
= 1−b(1− ζ)T c − (1− ζ)bνζT c

T − bνζT c
,

where the last equality follows from XΦ2
t being IID for t = 1, 2, . . . , bνζT c,

with E[XΦ2
t] = 1− ζ. Therefore,

|E[ζ(bνζT c)]− ζ| =
(1− ζ)T − b(1− ζ)T c

T − bνζT c
= O(

1

T
). (A.71)

Substituting (A.70) and (A.71) into (A.69), we have

|Rw(Φ2)− ρζw(w)| ≤ O(
1√
T

) +O(
1

T
) = O(

1√
T

).

For rj(Φ2), we use the same technique:

rj(Φ2) =
1

T
E[

bνζT c∑
t=1

XΦ2
t Aj(t) +

T∑
t=bνζT c+1

XΦ2
t Aj(t)]

=
1

T
E[

bνζT c∑
t=1

XΦ2
t Aj(t)] +

1

T
E[

T∑
t=bνζT c+1

XΦ1
t Aj(t)]

=
1

T

L∑
k=l+1

E[

bνζT c∑
t=1

Γ
(k)
t Aj(t)] +

1

T
E

E[
T∑

t=bνζT c+1

XΦ1
t Aj(t)|ζ(bνζT c)]

 ,
(A.72)

where {Γ(k)
t Aj(t)} for each fixed k = l + 1, . . . , L and j = 1, 2, . . . , n are IID

for t = 1, 2, . . . , bνζT c, with mean values given by (A.44) and ζ(bνζT c) given

by (A.35) is a random variable. For the second term in (A.72), the outer and

inner expectations are taken with respect to ζ(bνζT c) and {Aj(t)}Tt=bνζT c+1,

respectively. Therefore,

1

T

L∑
k=l+1

E[

bνζT c∑
t=1

Γ
(k)
t Aj(t)] =

bνζT c
T

L∑
k=l+1

E[Γ
(k)
t Aj(t)] =

bνζT c
T

ρζj(w),

171

and

|rj(Φ2)− ρζj(w)|

=
T − bνζT c

T
| 1

T − bνζT c
E

E[
T∑

t=bνζT c+1

XΦ1
t Aj(t)|ζ(bνζT c)]

− ρζj(w)|

≤|E

 1

T − bνζT c
E[

T∑
t=bνζT c+1

XΦ1
t Aj(t)|ζ(bνζT c)]− ρ

ζ(bνζT c)
j (w)

|
+ |E[ρ

ζ(bνζT c)
j (w)]− ρζj(w)|. (A.73)

From (A.36) and (A.37), FG(Gl) ≤ ζ(bνζT c) ≤ FG(Gl+1) holds. Therefore,

from Theorem 9,

| 1

T − bνζT c
E[

T∑
t=bνζT c+1

XΦ1
t Aj(t)|ζ(bνζT c)]−ρ

ζ(bνζT c)
j (w)| = O(

1√
T

), (A.74)

for any ζ(bνζT c). Therefore, the first term in (A.73) is O(1/
√
T). For the

second term in (A.73), since ρ
ζ(bνζT c)
j (w) is an affine function of ζ(bνζT c),

then from Theorem 3,

|E[ρ
ζ(bνζT c)
j (w)]− ρζj(w)| = |E[ζ(bνζT c)]− ζ|pG(Gl+1)E[Aj(t)|G(t) = Gl+1].

Therefore, from (A.71),

|E[ρ
ζ(bνζT c)
j (w)]− ρζj(w)| = pG(Gl+1)E[Aj(t)|G(t) = Gl+1]

(1− ζ)T − b(1− ζ)T c
T − bνζT c

= O(
1

T
). (A.75)

Substituting (A.74) and (A.75) into (A.73), we have

|rj(Φ2)− ρζj(w)| ≤ O(
1√
T

) +O(
1

T
) = O(

1√
T

).

�

172

A.14 Proof of Lemma 4

We use the fact that Us is the sum of η IID geometric random variables with

mean 1/(1− ζ) and Uns is the sum of T − η IID geometric random variables

with mean 1/ζ. Moreover, for any ε > 0,

P
(
Umin
T

< 1− ε
)
≤ P

(
Us
T
< 1− ε

)
+ P

(
Uns
T

< 1− ε
)
.

Therefore, we prove Lemma 4 by showing P
(
Us
T
< 1− ε

)
and P

(
Uns
T
< 1− ε

)
converge to 0 with exponential rates as T → +∞ using the large deviation

theory.

Consider Us/T first. Then

P
(
Us
T
< 1− ε

)
= P

(
Us
η
<

1− ε
η/T

)
≤ P

(
Us
η
<

1− ε
1− ζ

+
1/T

(1− ζ)(1− ζ − 1/T)

)
.

There exists TN = d2/ε+1
1−ζ e ∈ Z+ such that 1/T

1−ζ−1/T
< ε/2 for T > TN .

Therefore, for T > TN ,

P
(
Us
T
< 1− ε

)
≤ P

(
Us
η
<

1− ε/2
1− ζ

)
≤ exp(−ηl(ε1)), (A.76)

where ε1 = (1− ε/2)/(1− ζ) and the rate function is given by

l(y) = sup
ϑ>0

(
ϑy − lnE[exp(ϑŶ)]

)
, (A.77)

with Ŷ being the geometric random variable with mean 1/(1−ζ). Therefore,

substituting the moment generating function of geometric random variables

into (A.77), we have

l(ε1) = sup
ϑ>0

(
ϑε1 − (ln(1− ζ) + ϑ− ln(1− ζeϑ))

)
=

1

1− ζ

(
(ζ − ε/2) ln(1− ε

2ζ
)− (1− ε/2) ln(1− ε/2)

)
> 0. (A.78)

173

Since η = bT (1 − ζ)c ≥ T (1 − ζ) − 1, then substituting (A.78) into (A.76)

we have

P
(
Us
T
< 1− ε

)
≤ exp

(
−(T − 1

1− ζ
)

(
(ζ − ε/2) ln(1− ε

2ζ
)− (1− ε/2) ln(1− ε/2)

))
.

(A.79)

For ε small, we use Taylor expansion to approximate the rate function. Since

ln(1− x) ≈ −x,

P
(
Us
T
< 1− ε

)
≤ exp

(
−(T − 1

1− ζ
)

(
(
ε

2
)2 1− ζ

ζ

))
≤ e exp

(
−T

(
(
ε

2
)2 1− ζ

ζ

))
,

for ε ≤ 2
√
ζ. Similarly, for Uns/T we have

P
(
Uns
T

< 1− ε
)

= P
(

Uns
T − η

<
1− ε
T − η

)
≤ P

(
Uns
T − η

<
1− ε
ζ

)
≤ exp (−(T − η)l′(ε)) ,

with the rate function given by

l′(y) = sup
ϑ>0

(
ϑy − lnE[exp(ϑŶ ′)]

)
,

with Ŷ ′ being the geometric random variable with mean 1/ζ. Following the

same arguments, since T − η = dTζe ≥ Tζ, we have

P
(
Uns
T

< 1− ε
)
≤ exp

(
−T

(
(1− ζ − ε) ln(1− ε

1− ζ
)− (1− ε) ln(1− ε)

))
,

(A.80)

with (1−ζ−ε) ln(1−ε/(1−ζ))−(1−ε) ln(1−ε) > 0. Using Taylor expansion

to approximate rate function for ε small, we have

P
(
Uns
T

< 1− ε
)
≤ exp

(
−T

(
ε2

ζ

1− ζ

))
.

174

Combining (A.79) and (A.80) together, for T > TN and ε ≤ 2
√
ζ,

P
(
Umin
T

< 1− ε
)
< (1 + e) exp(−T∆2

U),

where

∆U =

√
min{(ε

2
)2

1− ζ
ζ

, ε2
ζ

1− ζ
} = ε

√
min{1− ζ

4ζ
,

ζ

1− ζ
},

which completes the proof. �

A.15 Proof of Theorem 11

Following the arguments for (A.50),

| 1
T
E[

T∑
t=1

XΦ3
t G(t)]− ρζw(w)| ≤| 1

T
E[

Umin∑
t=1

XΦ3
t G(t)]− ρζw(w)|

+
1

T
E[1Umin<T

T∑
t=Umin+1

XΦ3
t G(t)]. (A.81)

Note that {XΦ3
t G(t)} are IID for t = 1, 2, . . . , Umin, with E[XΦ3

t G(t)|t ≤
Umin] = ρζw(w). Therefore,

| 1
T
E[

Umin∑
t=1

XΦ3
t G(t)]− ρζw(w)| = | 1

T
E[Umin]E[XΦ3

t G(t)]− ρζw(w)|

=

(
1− E[Umin]

T

)
ρζw(w), (A.82)

175

where the first equality follows from Wald’s equation (See Appendix A.1).

Following the arguments for (A.52),

1

T
E[1Umin<T

T∑
t=Umin+1

XΦ3
t G(t)] ≤ 1

T
E[1Umin<T

T∑
t=Umin+1

XΦ3′

t G(t)]

=
1

T
E[

T∑
t=1

XΦ3′

t G(t)−
Umin∑
t=1

XΦ3′

t G(t)]

=

(
1− E[Umin]

T

)
ρζw(w), (A.83)

with XΦ3′
t given by (A.48). Substituting (A.82) and (A.83) into (A.81), we

have

| 1
T
E[

T∑
t=1

XΦ3
t G(t)]− ρζw(w)| ≤ 2

(
1− E[Umin]

T

)
ρζw(w).

To see the convergence rate of E[Umin]/T to 1 as T → +∞, for any ε > 0

small,

1− E[Umin]

T
≤ P(

Umin
T

< 1− ε) + ε ≤ (1 + e) exp(−T∆2
U) + ε, (A.84)

for T > TN from Lemma 4, with ∆U given by (2.18). We want to compute

the optimal achievable convergence rate given by (A.84). Denote ∆U = Dζε,

where Dζ is a constant determined by ζ from (2.18). To compute the optimal

upper bound of (A.84), set exp(−T∆2
U) = ∆U . The solution is characterized

by the Lambert W function as

∆∗U =
1

exp(W̃0(2T)/2)
, (A.85)

where W̃0(2T) is the upper branch of the Lambert W function W̃0 ≥ −1.

Next, we use the asymptotic approximation of W̃0(2T) for large T . [74] show

that W̃0(2T) = ln(2T) − ln ln(2T) + o(1) holds for large T , then (A.85)

becomes

∆∗U u
1

exp
(

1
2

ln(2T)− 1
2

ln ln(2T)
) = O(

√
lnT√
T

).

176

Recall that TN = d2/ε+1
1−ζ e = O(1/ε) and T > TN leads to ε > 1

T
. Therefore,

taking ε = 1
Dζ

√
lnT
T

, (A.84) becomes

1− E[Umin]

T
≤ (1 + e) exp(− lnT) +

1

Dζ

√
lnT√
T

= O(

√
lnT√
T

).

Therefore, Rw(Φ3) converges to ρζw(w) with rate O(
√

lnT/
√
T) as T → +∞.

For rj(Φ3), we use the same arguments as above with G(t) substituted by

Aj(t). Specifically,

| 1
T
E[

T∑
t=1

XΦ3
t Aj(t)]− ρζj(w)| ≤| 1

T
E[

Umin∑
t=1

XΦ3
t Aj(t)]− ρζj(w)|

+
1

T
E[1Umin<T

T∑
t=Umin+1

XΦ3
t Aj(t)]

≤2

(
1− E[Umin]

T

)
ρζj(w).

Therefore, the convergence rate of expected reward per task for rj(Φ3) follows

from Lemma 4. �

177

APPENDIX B

PROOFS FOR CHAPTER 5

B.1 Proof for Lemma 6

The proof is similar to the proof of Lemma 5. We prove the upper bound by

providing upper bounds for two elements: (1) the number of job assignments

each worker can complete, and (2) the expected job value that is assigned to

each worker in a stage.

Since each job requires l0 time slots to complete, an upper bound for the

number of jobs each worker can complete is (bT/l0c + 1). Note that jobs

have IID values, so each time interval of length l0 has the same distribution.

Since only M workers are available, the optimal expected reward obtainable

during any time interval of length l0 has an upper bound given by the optimal

reward for assigning the l0 jobs to min{M, l0} workers with the largest success

rates. Therefore, from Theorem 25, an upper bound for the optimal expected

reward during any time interval of length l0 is
∑l0

i=l0−min{l0,M}+1 a
l0
i wM−l0+i,

which is achieved by assigning the job with the ith largest value out of l0 jobs

to the worker with the ith largest success rate (in expectation). Combining

these two upper bounds leads to the desired result. �

B.2 Proof for Proposition 5

The proof is similar to the proof of Proposition 4. Since job values are IID and

the Greedy SSAP-stage algorithm assigns jobs arriving in each stage using the

same rule, by Wald’s identity, the expected reward using the Greedy SSAP-

stage algorithm is the product of the expected number of stages and the ex-

pected reward in each stage. The lower bound for the total number of stages

still holds (see (5.4)). Since the optimal policy for an l0-depth SSAP problem

178

is used by the Greedy SSAP-stage algorithm in each stage, then from The-

orem 25, the expected reward in each stage is
∑l0

i=l0−min{l0,M}+1 a
l0
i wM−l0+i.

Combining the lower bound for the expected number of stages and the ex-

pected reward in each stage completes the proof. �

B.3 Proof for Lemma 8

First we show

l1∑
i=l1−l+1

al1i −
l1−1∑
i=l1−l

al1−1
i =

∫ +∞

a
l1−1
l1−l

(x− al1−1
l1−l)Pdx. (B.1)

We prove (B.1) by induction on l. If l = 1, then (B.1) is the same as (5.24)

and hence holds from Lemma 7.

Suppose (B.1) holds for l = k ≥ 1. Consider l = k + 1. Then from the

recursive definitions of aji in (5.1),

al1l1−k − a
l1−1
l1−k−1

=

∫ a
l1−1
l1−k

a
l1−1
l1−k−1

xPdx+ al1−1
l1−k−1P(v < al1−1

l1−k−1) + al1−1
l1−kP(v > al1−1

l1−k)− a
l1−1
l1−k−1

=

∫ a
l1−1
l1−k

a
l1−1
l1−k−1

(x− al1−1
l1−k−1)Pdx+

∫ +∞

a
l1−1
l1−k

(al1−1
l1−k − a

l1−1
l1−k−1)Pdx. (B.2)

179

Therefore,

l1∑
i=l1−k

al1i −
l1−1∑

i=l1−k−1

al1−1
i

=al1l1−k − a
l1−1
l1−k−1 +

l1∑
i=l1−k+1

al1i −
l1−1∑
i=l1−k

al1−1
i

(B.2)
=

∫ a
l1−1
l1−k

a
l1−1
l1−k−1

(x− al1−1
l1−k−1)Pdx+

∫ +∞

a
l1−1
l1−k

(al1−1
l1−k − a

l1−1
l1−k−1)Pdx

+

l1∑
i=l1−k+1

al1i −
l1−1∑
i=l1−k

al1−1
i

=

∫ a
l1−1
l1−k

a
l1−1
l1−k−1

(x− al1−1
l1−k−1)Pdx+

∫ +∞

a
l1−1
l1−k

(al1−1
l1−k − a

l1−1
l1−k−1)Pdx+

∫ +∞

a
l1−1
l1−k

(x− al1−1
l1−k)Pdx

=

∫ +∞

a
l1−1
l1−k−1

(x− al1−1
l1−k−1)Pdx,

where the second to last equality follows from induction assumption, and

hence (B.1) holds.

Substituting l1 with (l2 + 1) in (B.1) leads to

l2+1∑
i=l2−l+2

al2+1
i −

l2∑
i=l2−l+1

al2i =

∫ +∞

a
l2
l2−l+1

(x− al2l2−l+1)Pdx. (B.3)

Since l2 − (l2 − l + 1) = (l1 − 1) − (l1 − l) = l − 1 and l2 > l1 − 1, then

al2l2−l+1 ≥ al1−1
l1−l (since al2l2−l+1(al1−1

l1−l) is the expected value of the lth largest

order statistics of l2(l1 − 1) IID samples). Combining (B.1) and (B.3) leads

to
l1∑

i=l1−l+1

al1i −
l1−1∑
i=l1−l

al1−1
i ≥

l2+1∑
i=l2−l+2

al2+1
i −

l2∑
i=l2−l+1

al2i ,

which completes the proof. �

B.4 Proof for Corollary 5

We first prove h1

∑bT/h1c
i=bT/h1c−l+1 a

bT/h1c
i ≥ (h1−1)

∑bT/(h1−1)c
i=bT/(h1−1)c−l+1 a

bT/(h1−1)c
i

for any h1 > 1 and l ≤ T/(2h1). Construct h1 groups of IID job values

180

(samples) as follows: (h1−2) groups with bT/(h1−1)c job values, one group

with (bT/(h1−1)c−l) job values, and one group with l job values. Therefore,

h1

bT/h1c∑
i=bT/h1c−l+1

a
bT/h1c
i

≥(h1 − 2)

bT/(h1−1)c∑
i=bT/(h1−1)c−l+1

a
bT/(h1−1)c
i +

bT/(h1−1)c−l∑
i=bT/(h1−1)c−2l+1

a
bT/(h1−1)c−l
i +

l∑
i=1

ali

(B.4)

≥(h1 − 2)

bT/(h1−1)c∑
i=bT/(h1−1)c−l+1

a
bT/(h1−1)c
i +

bT/(h1−1)c∑
i=bT/(h1−1)c−l+1

a
bT/(h1−1)c
i

≥(h1 − 1)

bT/(h1−1)c∑
i=bT/(h1−1)c−l+1

a
bT/(h1−1)c
i ,

where (a) the first inequality is an application of Lemma 8: when the numbers

of samples and divided groups are fixed, the sum of the expected value of the

l largest order statistics in each group is maximized by dividing the samples

into equal-size groups. We assume l ≤ T/(2h1) and hence bT/(h1− 1)c ≥ 2l,

which only increases the right-hand side of the (B.4) without influencing the

direction of the inequality of (B.4). (b) The second inequality follows from

the definition of order statistics, and hence the sum of the expected value

of the l largest order statistics of bT/(h1 − 1)c IID job value samples is no

greater than the sum of the expected value of the l largest order statistics of

bT/(h1 − 1)c − l IID job value samples and the l largest order statistics of l

IID job value samples. That is,

bT/(h1−1)c∑
i=bT/(h1−1)c−l+1

a
bT/(h1−1)c
i ≤

bT/(h1−1)c−l∑
i=bT/(h1−1)c−2l+1

a
bT/(h1−1)c−l
i +

l∑
i=1

ali.

181

Since h1, h2 ∈ Z+, h1 > h2 and l ≤ T/(2h1), then

h1

bT/h1c∑
i=bT/h1c−l+1

a
bT/h1c
i ≥ (h1 − 1)

bT/(h1−1)c∑
i=bT/(h1−1)c−l+1

a
bT/(h1−1)c
i

≥ . . .

≥ h2

bT/h2c∑
i=bT/h2c−l+1

a
bT/h2c
i .

�

B.5 Proof for Proposition 7

Since jobs have IID values and memoryless lengths, we compute the expected

reward using the Greedy SSAP-stage algorithm by considering the expected

total number of stages and the expected reward in each stage.

Let NL denote the number of stages. Let Li denote the length of stage i,

i = 1, 2, . . . , NL. Then the {Li} are IID random variables with expectation

E[Li] = d1/qe+d1/qe = 2d1/qe, which is the sum of a constant (length of the

first-half stage when workers wait to be assigned jobs) and the expectation of

a geometrically distributed random variable (length of the second-half stage

when workers complete assigned jobs). Note that the number of stages by

any time t > 0 is a renewal process, and hence by definition NL is a stopping

rule for {Li}. Using Wald’s identity leads to

NL∑
i=1

Li ≥ T ⇒ E[

NL∑
i=1

Li] ≥ T ⇒ E[NL]E[Li] ≥ T,

and hence E[NL] ≥ T/(2d1/qe).
Let Ri denote the reward for stage i, i = 1, 2, . . . , NL. Then the {Ri}

are IID random variables. Since the optimal policy for a d1/qe-depth SSAP

problem is used, then from Theorem 25,

E[Ri] =

d1/qe∑
i=d1/qe−min{d1/qe,M}+1

a
d1/qe
i wM−d1/qe+i.

182

Then using Wald’s identity,

E[RMLL] = E[

NL∑
i=1

Ri] = E[NL]E[Ri]

≥ T/(2d1/qe)
d1/qe∑

i=d1/qe−min{d1/qe,M}+1

a
d1/qe
i wM−d1/qe+i.

�

B.6 Proof for Theorem 33

Similarly to the proof of Theorem 32, we consider the conditional expected

reward for an assignment given by the optimal weighted matching at time

t ≥ d1/qe and the probability of such an assignment being feasible for

memoryless-length jobs, on the condition that a real job arrives at time t.

Let OPT denote the optimal offline reward for scheduling T real jobs.

Suppose that a real job Jt arrives at time t. Let Wt = [t−d1/qe+1, t] denote

the rolling window used by the rolling window algorithm for assigning Jt. Let

NW denote the number of real job arrivals during Ŵt = [t−d1/qe+ 1, t− 1].

Then NW is a binomial random variable with parameter (d1/qe − 1) and p,

with P(NW = x) =
(d1/qe−1

x

)
px(1− p)d1/qe−x−1, x = 0, 1, . . . , d1/qe− 1. (5.43)

still holds for the conditional expected reward for the assignment at time t

given a real job arrives at time t (substituting the length of rolling windows

with d1/qe).
Suppose the optimal weighted matching on workers and jobs arriving dur-

ing rolling window Wt = [t − d1/qe + 1, t] assigns job Jt to worker wmt .

We compute the conditional probability of this assignment at time t being

feasible given that a real job Jt arrives at time t, that is, the conditional

probability that worker wmt is available at time t, given a real job arrives at

time t.

Note that the upper bound (5.34) for the probability that worker wmt is

assigned at some time t′ ∈ [t−d1/qe+1, t−1] still holds. Then, substituting l0

for d1/qe and following the same argument (5.45) to (5.49) lead to the upper

bound for the conditional probability that worker wmt is available given that

183

wmt is not assigned before Wt and a job arrives at time t

P(worker wmt is aviable at t|a job arrives at t) ≥ e−p, (B.5)

for d1/qe ≥ 2p. Since the job length follows a geometric distribution with

parameter q, if worker wmt is not assigned in [t − d1/qe + 1, t] but assigned

before rolling window Wt, there is still a probability that worker wmt has

not completed the assigned job. The lower bound (5.35) for the conditional

probability that worker wmt is available before time t given that wmt is as-

signed before Wt still holds. Let Eventt and EventWt denote the event of a

job arriving at time t and the worker wmt assigned before rolling window Wt,

respectively. Then,

P(worker wmt is available at t|Eventt)

≥P(worker wmt is not assigned in [t− d1/qe+ 1, t− 1]|Eventt)

×
(
P(not EventWt |Eventt)

+ P(worker wmt is available before t|EventWt , Eventt)P(EventWt |Eventt)
)

≥P(worker wmt is not assigned in [t− d1/qe+ 1, t− 1]|Eventt)

× P(worker wmt is available before time t|EventWt , Eventt)

=P(worker wmt is not assigned in [t− d1/qe+ 1, t− 1]|Eventt)

× P(worker wmt is available before time t|EventWt) (B.6)

(B.5),(5.35)

≥ e−p(1− (1− q)d1/qe)

≥e− 1

ep+1
, (B.7)

where equality (B.6) follows since Eventt and EventWt are independent.

LetRMp
RW denote the reward for the rolling window algorithm for memoryless-

length jobs with arrivals that are geometric with parameter p and randomly

ordered. Let Tp denote the time slot when the last real job arrives. Since

the inter-arrival time between subsequent real jobs is a geometric random

variable with parameter p, Tp is a random variable with E[Tp] = T d1/pe.

184

Combining (5.43) and (B.7) leads to

E[RMp
RW]

=E
[Tp∑
t=1

E[R(t)|Eventt]× P(worker wmt is available at t|Eventt)

× P(Eventt)

]
≥E
[Tp∑
t=d1/qe

E[R(t)|Eventt]× P(worker wmt is available at t|Eventt)

× P(Eventt)

]
(5.43),(B.7)

≥ E

 Tp∑
t=d1/qe

OPT

T

e− 1

ep+1
p


=
OPT

T

e− 1

ep+1
p(E[Tp]− d1/qe+ 1) (B.8)

→(e− 1)OPT

ep+1
,

as T → +∞, which completes the proof. �

B.7 BOM Algorithm

Algorithm 7 BOM Algorithm (Kesselheim et al. 2013)

Let L′ denote the first bT/ec vertices of L.
Let M = ∅.
for each subsequent vertex l ∈ L \ L′ do

L′ = l
⋃
L′.

M (l) = optimal matching on G(L′
⋃
R).

Let e(l) denote the edge assigned to l in M (l).
if M

⋃
e(l) is a valid matching then match l as M = M

⋃
e(l).

end if
end for

185

REFERENCES

[1] I. David, “A sequential assignment match process with general renewal
arrival times,” Probability in the Engineering and Informational Sci-
ences, vol. 9, no. 03, pp. 475–492, 1995.

[2] X. Su and S. A. Zenios, “Patient choice in kidney allocation: A sequen-
tial stochastic assignment model,” Operations Research, vol. 53, no. 3,
pp. 443–455, 2005.

[3] R. Kleinberg, “A multiple-choice secretary algorithm with applications
to online auctions,” in Proceedings of the Sixteenth Annual ACM-SIAM
Symposium on Discrete Algorithms. Society for Industrial and Applied
Mathematics, 2005, pp. 630–631.

[4] L. McLay, S. Jacobson, and A. Nikolaev, “A sequential stochastic
passenger screening problem for aviation security,” IIE Transactions,
vol. 41, no. 6, pp. 575–591, 2009.

[5] L. McLay, A. Lee, and S. Jacobson, “Risk-based policies for airport
security checkpoint screening,” Transportation Science, vol. 44, no. 3,
pp. 333–349, 2010.

[6] “Fact sheet: Screening and monitoring travelers to prevent
the spread of Ebola,” http://www.cdc.gov/vhf/ebola/travelers/
ebola-screening-factsheet.html, Jun 2015d, retrieved Aug. 27, 2015.

[7] S. H. Jacobson, G. Yu, and J. A. Jokela, “A double-risk monitoring and
movement restriction policy for Ebola entry screening at airports in the
United States,” Preventive Medicine, vol. 88, pp. 33–38, 2016.

[8] C. Derman, G. Lieberman, and S. Ross, “A sequential stochastic as-
signment problem,” Management Science, vol. 18, no. 7, pp. 349–355,
1972.

[9] S. Albright, “Optimal sequential assignments with random arrival
times,” Management Science, vol. 21, no. 1, pp. 60–67, 1974.

[10] A. Nikolaev and S. Jacobson, “Technical note — Stochastic sequential
decision-making with a random number of jobs,” Operations Research,
vol. 58, no. 4-part-1, pp. 1023–1027, 2010.

186

[11] D. Kennedy, “Optimal sequential assignment,” Mathematics of Opera-
tions Research, vol. 11, no. 4, pp. 619–626, 1986.

[12] S. Albright, “A Markov chain version of the secretary problem,” Naval
Research Logistics Quarterly, vol. 23, no. 1, pp. 151–159, 1976.

[13] T. Nakai, “A sequential stochastic assignment problem in a partially
observable markov chain,” Mathematics of Operations Research, vol. 11,
no. 2, pp. 230–240, 1986.

[14] F. T. Bruss and T. S. Ferguson, “Multiple buying or selling with vector
offers,” Journal of Applied Probability, vol. 34, no. 4, pp. 959–973, 1997.

[15] S. M. Ross and D. T. Wu, “A generalized coupon collecting model as a
parsimonious optimal stochastic assignment model,” Annals of Opera-
tions Research, vol. 208, no. 1, pp. 133–146, 2013.

[16] D. T. Wu and S. M. Ross, “A stochastic assignment problem,” Naval
Research Logistics (NRL), vol. 62, no. 1, pp. 23–31, 2015.

[17] A. Lee, L. McLay, and S. Jacobson, “Designing aviation security pas-
senger screening systems using nonlinear control,” SIAM Journal on
Control and Optimization, vol. 48, no. 4, pp. 2085–2105, 2009.

[18] A. Nikolaev, A. Lee, and S. Jacobson, “Optimal aviation security screen-
ing strategies with dynamic passenger risk updates,” Intelligent Trans-
portation Systems, IEEE Transactions on, vol. 13, no. 1, pp. 203–212,
2012.

[19] S. A. Zenios, G. M. Chertow, and L. M. Wein, “Dynamic allocation of
kidneys to candidates on the transplant waiting list,” Operations Re-
search, vol. 48, no. 4, pp. 549–569, 2000.

[20] A. Mehta, A. Saberi, U. Vazirani, and V. Vazirani, “Adwords and gen-
eralized online matching,” Journal of the ACM (JACM), vol. 54, no. 5,
p. 22, 2007.

[21] N. R. Devanur, K. Jain, B. Sivan, and C. A. Wilkens, “Near optimal
online algorithms and fast approximation algorithms for resource alloca-
tion problems,” in Proceedings of the 12th ACM conference on Electronic
commerce. ACM, 2011, pp. 29–38.

[22] T. Kesselheim, A. Tönnis, K. Radke, and B. Vöcking, “Primal beats
dual on online packing lps in the random-order model,” in Proceedings
of the 46th Annual ACM Symposium on Theory of Computing. ACM,
2014, pp. 303–312.

187

[23] J. Feldman, A. Mehta, V. Mirrokni, and S. Muthukrishnan, “Online
stochastic matching: Beating 1-1/e,” in Foundations of Computer Sci-
ence, 2009. FOCS’09. 50th Annual IEEE Symposium on. IEEE, 2009,
pp. 117–126.

[24] M. Mahdian and Q. Yan, “Online bipartite matching with random ar-
rivals: an approach based on strongly factor-revealing lps,” in Proceed-
ings of the Forty-Third Annual ACM Symposium on Theory of Comput-
ing. ACM, 2011, pp. 597–606.

[25] C. Albright and C. Derman, “Asymptotic optimal policies for
the stochastic sequential assignment problem,” Management Science,
vol. 19, no. 1, pp. 46–51, 1972.

[26] G. Baharian and S. Jacobson, “Limiting behavior of the stochastic se-
quential assignment problem,” Naval Research Logistics (NRL), vol. 60,
no. 4, pp. 321–330, 2013.

[27] G. Baharian and S. Jacobson, “Limiting behavior of the target-
dependent stochastic sequential assignment problem,” Journal of Ap-
plied Probability, vol. 51, no. 4, pp. 943–953, 2014.

[28] F. B. Abdelaziz, “Solution approaches for the multiobjective stochas-
tic programming,” European Journal of Operational Research, vol. 216,
no. 1, pp. 1–16, 2012.

[29] D. M. Roijers, P. Vamplew, S. Whiteson, and R. Dazeley, “A survey of
multi-objective sequential decision-making,” Journal of Artificial Intel-
ligence Research, 2013.

[30] M. Ehrgott, Multicriteria Optimization. Berlin, Heidelberg, Germany:
Springer Science & Business Media, 2006.

[31] J.-F. Bérubé, M. Gendreau, and J. Potvin, “An exact epsilon-constraint
method for bi-objective combinatorial optimization problems: Applica-
tion to the traveling salesman problem with profits,” European Journal
of Operational Research, vol. 194, no. 1, pp. 39–50, 2009.

[32] E. M. Arkin and E. B. Silverberg, “Scheduling jobs with fixed start and
end times,” Discrete Applied Mathematics, vol. 18, no. 1, pp. 1–8, 1987.

[33] E. L. Lawler, “A dynamic programming algorithm for preemptive
scheduling of a single machine to minimize the number of late jobs,”
Annals of Operations Research, vol. 26, no. 1, pp. 125–133, 1990.

[34] A. Bar-Noy, S. Guha, J. Naor, and B. Schieber, “Approximating the
throughput of multiple machines in real-time scheduling,” SIAM Journal
on Computing, vol. 31, no. 2, pp. 331–352, 2001.

188

[35] T. Erlebach and F. C. Spieksma, “Simple algorithms for a weighted
interval selection problem,” in International Symposium on Algorithms
and Computation. Springer, 2000, pp. 228–240.

[36] L. Epstein, J. Sgall et al., “Approximation schemes for scheduling on
uniformly related and identical parallel machines,” Algorithmica, vol. 39,
no. 1, pp. 43–57, 2004.

[37] S. O. Krumke, C. Thielen, and S. Westphal, “Interval scheduling on
related machines,” Computers & Operations Research, vol. 38, no. 12,
pp. 1836–1844, 2011.

[38] U. Faigle and W. M. Nawijn, “Note on scheduling intervals on-line,”
Discrete Applied Mathematics, vol. 58, no. 1, pp. 13–17, 1995.

[39] G. J. Woeginger, “On-line scheduling of jobs with fixed start and end
times,” Theoretical Computer Science, vol. 130, no. 1, pp. 5–16, 1994.

[40] S. P. Fung, C. K. Poon, and F. Zheng, “Online interval scheduling:
randomized and multiprocessor cases,” Journal of Combinatorial Opti-
mization, vol. 16, no. 3, pp. 248–262, 2008.

[41] S. Baruah, G. Koren, D. Mao, B. Mishra, A. Raghunathan, L. Rosier,
D. Shasha, and F. Wang, “On the competitiveness of on-line real-time
task scheduling,” Real-Time Systems, vol. 4, no. 2, pp. 125–144, 1992.

[42] H. Miyazawa and T. Erlebach, “An improved randomized on-line algo-
rithm for a weighted interval selection problem,” Journal of Scheduling,
vol. 7, no. 4, pp. 293–311, 2004.

[43] M. Y. Kovalyov, C. Ng, and T. E. Cheng, “Fixed interval scheduling:
Models, applications, computational complexity and algorithms,” Eu-
ropean Journal of Operational Research, vol. 178, no. 2, pp. 331–342,
2007.

[44] S. S. Seiden, “Randomized online interval scheduling,” Operations Re-
search Letters, vol. 22, no. 4, pp. 171–177, 1998.

[45] S. P. Fung, C. K. Poon, and F. Zheng, “Improved randomized online
scheduling of intervals and jobs,” Theory of Computing Systems, vol. 55,
no. 1, pp. 202–228, 2014.

[46] L. Epstein, L. Jeż, J. Sgall, and R. van Stee, “Online scheduling of jobs
with fixed start times on related machines,” Algorithmica, vol. 74, no. 1,
pp. 156–176, 2016.

[47] S. P. Fung, C. K. Poon, and D. K. Yung, “On-line scheduling of equal-
length intervals on parallel machines,” Information Processing Letters,
vol. 112, no. 10, pp. 376–379, 2012.

189

[48] U. Faigle, W. Kern, and W. M. Nawijn, “A greedy on-line algorithm for
thek-track assignment problem,” Journal of Algorithms, vol. 31, no. 1,
pp. 196–210, 1999.

[49] B. DasGupta and M. A. Palis, “Online real-time preemptive scheduling
of jobs with deadlines on multiple machines,” Journal of Scheduling,
vol. 4, no. 6, pp. 297–312, 2001.

[50] D. Gross, Fundamentals of Queueing Theory. Hoboken, New Jersey:
John Wiley & Sons, 2008.

[51] B. Bahmani and M. Kapralov, “Improved bounds for online stochastic
matching,” Algorithms–ESA 2010, pp. 170–181, 2010.

[52] C. Karande, A. Mehta, and P. Tripathi, “Online bipartite matching with
unknown distributions,” in Proceedings of the Forty-Third Annual ACM
Symposium on Theory of Computing. ACM, 2011, pp. 587–596.

[53] T. Kesselheim, K. Radke, A. Tönnis, and B. Vöcking, “An optimal on-
line algorithm for weighted bipartite matching and extensions to com-
binatorial auctions,” in European Symposium on Algorithms. Springer,
2013, pp. 589–600.

[54] A. Fiat, I. Gorelik, H. Kaplan, and S. Novgorodov, “The temp secretary
problem,” in Algorithms-ESA 2015. Springer, 2015, pp. 631–642.

[55] N. Buchbinder, J. S. Naor et al., “The design of competitive online
algorithms via a primal–dual approach,” Foundations and Trends in
Theoretical Computer Science, vol. 3, no. 2–3, pp. 93–263, 2009.

[56] M. Wang and Y. Chen, “An online primal-dual method for discounted
markov decision processes,” in Decision and Control (CDC), 2016 IEEE
55th Conference on. IEEE, 2016, pp. 4516–4521.

[57] N. Bansal, N. Buchbinder, and J. S. Naor, “A primal-dual randomized
algorithm for weighted paging,” Journal of the ACM (JACM), vol. 59,
no. 4, p. 19, 2012.

[58] S. Agrawal, Z. Wang, and Y. Ye, “A dynamic near-optimal algorithm
for online linear programming,” Operations Research, vol. 62, no. 4, pp.
876–890, 2014.

[59] N. Buchbinder, K. Jain, and M. Singh, “Secretary problems via lin-
ear programming,” in International Conference on Integer Programming
and Combinatorial Optimization. Springer, 2010, pp. 163–176.

190

[60] N. R. Devanur, K. Jain, and R. D. Kleinberg, “Randomized primal-dual
analysis of ranking for online bipartite matching,” in Proceedings of the
Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms.
SIAM, 2013, pp. 101–107.

[61] R. M. Karp, U. V. Vazirani, and V. V. Vazirani, “An optimal algorithm
for on-line bipartite matching,” in Proceedings of the Twenty-Second
Annual ACM Symposium on Theory of Computing. ACM, 1990, pp.
352–358.

[62] Y. Chen and M. Wang, “Stochastic primal-dual methods and sample
complexity of reinforcement learning,” arXiv:1612.02516, 2016.

[63] F. C. Spieksma, “On the approximability of an interval scheduling prob-
lem,” Journal of Scheduling, vol. 2, no. 5, pp. 215–227, 1999.

[64] K. Miettinen, Nonlinear Multiobjective Optimization. New York:
Springer Science & Business Media, 1999.

[65] G. Yu, S. H. Jacobson, and N. Kiyavash, A bi-criteria multiple-choice
secretary problem. Technical Report, University of Illinois at Urbana-
Champaign, 2016.

[66] A. S. Schulz and M. Skutella, “Scheduling unrelated machines by ran-
domized rounding,” SIAM Journal on Discrete Mathematics, vol. 15,
no. 4, pp. 450–469, 2002.

[67] D. P. Bertsekas, Dynamic Programming and Optimal Control. Athena
Scientific Belmont, MA, 1995.

[68] G. Hardy, J. Littlewood, and G. Pólya, Inequalities. Cambridge Uni-
versity Press, 1952.

[69] A. DasGupta, “Finite sample theory of order statistics and extremes,”
in Probability for Statistics and Machine Learning. Springer, 2011, pp.
221–248.

[70] G. Yu and S. H. Jacobson, “Online c-benevolent job scheduling on mul-
tiple machines,” Optimization Letters, vol. 12, no. 2, pp. 251–263, 2018.

[71] D. Blackwell, “On an equation of Wald,” The Annals of Mathematical
Statistics, pp. 84–87, 1946.

[72] H. Anton, I. Bivens, S. Davis, and T. Polaski, Calculus. Wiley, 2002.

[73] W. Hoeffding, “Probability inequalities for sums of bounded random
variables,” Journal of the American Statistical Association, vol. 58, no.
301, pp. 13–30, 1963.

191

[74] R. Corless, G. Gonnet, D. Hare, D. Jeffrey, and D. Knuth, “On the
LambertW function,” Advances in Computational Mathematics, vol. 5,
no. 1, pp. 329–359, 1996.

192

