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ABSTRACT
Facility location decisions lie at the center of planning many infrastructure systems. In many

practice, public agencies (e.g., governments) and private companies (e.g., retailers) need to locate

facilities to serve spatially distributed demands. For example, governments locate public facilities,

e.g., hospitals, schools, fire stations, to provide public services; retail companies determine the

locations of their warehouses and stores to provide business. The design of such facility systems

involves considerations of investment of facility construction and transportation cost of serving

demands, so as to maximize the system operational efficiency and profit.

Recently, devastating infrastructure damages observed in real world show that infrastructure

facilities may be subject to disruptions that compromise individual facility functionality as well

as overall system performance. This emphasizes the necessity of taking facility disruptions into

consideration during planning to balance between system efficiency and reliability. Furthermore,

facility systems often exhibit complex interdependence when: (1) facilities are spatially correlated

due to physical connections/interrelations, and (2) facilities provide combinatorial service under

cooperation, competition and/or restrictions. These further complicate the facility location design.

Therefore, facility location models need to be extended to tackle all these challenges and design a

reliable interdependent facility system.

This dissertation aims at investigating several important and challenging topics in the reliable fa-

cility location context, including facility correlations, facility combinations, and facility districting.

The main work of this PhD research consist of: (1) establishing a new systematic methodological

framework based on supporting stations and quasi-probabilities to describe and decompose facil-

ity correlations into succinct mathematical representations, which allows compact mathematical

formulations to be developed for planning facility locations under correlated facility disruptions;

(2) expanding the modeling framework to allow facilities to provide combinatorial service; e.g.,

in the context of sensor deployment problems, where sensors work in combinations to provide

positioning/surveillance service via trilateration procedure; and (3) incorporating the concepts of

spatial districting into the reliable facility location context, with the criteria of spatial contiguity,

compactness, and demand balance being ensured.

First, in many real-world facility systems, facility disruptions exhibit spatial correlations, which
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have strong impacts on the system performance, but are difficult to be described with succinct

mathematical models. We first investigate facility systems with correlations caused by facilities’

share of network access points (e.g., bridges, railway crossings), which are required to be passed

through by customers to visit facilities. We incorporate these network access points and their

probabilistic failures into a joint optimization framework. A layer of supporting stations are added

to represent the network access points, and are connected to facilities to indicate their real-world

relationships. We then develop a compact mixed-integer mathematical model to optimize the

facility location and customer assignment decisions. Lagrangian relaxation based algorithms are

designed to effectively solve the model. Multiple case studies are constructed to test the model and

algorithm, and to demonstrate their performance and applicability.

Next, when there exists no real access points, facilities could also be correlated if they are ex-

posed to shared hazards. We develop a virtual station structure framework to decompose these

types of facility correlations. First, we define three probabilistic representations of correlated facility

disruptions (i.e., with scenario, marginal, and conditional probabilities), derive pairwise transforma-

tions between them, and theoretically prove their equivalence. We then provide detailed formulas

to transform these probabilistic representations into an equivalent virtual station structure, which

enables the decomposition of any correlated facility disruptions into a compact network structure

with only independent failures, and helps avoid enumerating an exponential number of disruption

scenarios. Based on the augmented system, we propose a compact mixed-integer optimization

program, and design several customized solution approaches based on lagrangian relaxation to

efficiently solve the model. We demonstrate our methodology on a series of numerical examples

involving different correlation patterns and varying network and parameter settings.

We then apply the reliable location modeling framework to sensor deployment problems, where

multiple sensors work in combinations to provide combinatorial coverage service to customers via

trilateration procedure. Since various sensor combinations may share common sensors, one combi-

nation is typically interrelated with some other combinations, which leads to internal correlations

among the functionality of sensors and sensor combinations. We address the problem of where to

deploy sensors, which sensor combinations are selected to use, and in what sequence and prob-

ability to use these combinations in case of disruptions. A compact mixed-integer mathematical

model is developed to formulate the problem, by combining and extending the ideas of assigning
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back-up sensors and correlation decomposition via supporting stations. A customized solution al-

gorithm based on Lagrangian relaxation and branch-and-bound is developed, together with several

embedded approximation subroutines for solving subproblems. A series of numerical examples are

investigated to illustrate the performance of the proposed methodology and to draw managerial

insights.

Finally, we develop an innovative reliable network districting framework to incorporate dis-

tricting concepts into the reliable facility location context. Districting criteria including spatial

contiguity, compactness, and demand balance are enforced for location design and extended in

considerations of facility disruptions. The problem is modeled into a reliable network districting

problem, in the form of a location-assignment based model. We develop customized solution ap-

proaches, including heuristics (i.e., constructive heuristic and neighborhood search) and set-cover

based algorithms (e.g., district generation, lower bound estimation) to provide near-optimum solu-

tion with optimality gap. A series of hypothetical cases and an empirical full-scale application are

presented to demonstrate the performance of our methodology for different network and parameter

settings.
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CHAPTER 1:

INTRODUCTION

1.1 Motivation

Facility location decisions lie at the center of planning many infrastructure systems. In many

practice, public agencies (e.g., governments) and private companies (e.g., retailers) both need to

locate their facilities to serve spatially distributed demands/customers. For example, governments

locate various public facilities, such as hospitals, schools, fire stations, to provide public services;

retail companies determine the locations of their facilities including warehouses, assembly plants,

stores, etc, to sell goods and provide business. The design of all such facility systems generally

involves considerations of fixed investment of facility construction and transportation cost of serving

demands, so as to maximize the operational efficiency and service profit of the system.

Recently, observations of uncertainties in many real-world infrastructure systems have further

complicated the facility location planning. There are two basic sources of uncertainties. First,

demands could be stochastic and thus cannot be accurately identified beforehand, which intro-

duces additional modeling difficulty compared to the case with deterministic demands. Plenty of

researches has been done to study demand uncertainties in the past few decades. The second source

of uncertainties is facility disruptions, revealed by recent devastating infrastructure damages and

catastrophic system failures observed in natural and anthropogenic disasters. Facilities may be-

come unavailable from time to time due to either exogenous or endogenous factors. When a facility

is disrupted, its customers have to seek service from some other functioning alternatives or even

completely give up their services. Therefore, ignoring the possibilities of facility disruptions often

yields a suboptimal system design that is vulnerable to even infrequent facility disruptions. This

emphasizes the necessity of taking real-world facility disruptions into consideration when planning
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a facility system (Snyder and Daskin, 2005).

Under probabilistic facility disruptions, one has to deal with a huge number of disruption

scenarios, each of which is a unique combination of realized functioning states of the facilities.

If each facility can be at one of two possible states (i.e., operating or disrupted) at any time, it

is easy to see that the total number of disruption scenarios is two to the power of the facility

count, and thus it grows exponentially with the system size. A reliable design needs to evaluate

(and then optimize) the expected system performance across all these disruption scenarios, which

is apparently a very tedious task. To get around this issue, many studies assume that facility

disruptions occur independently (Snyder and Daskin, 2005; Chen et al., 2011). This assumption

enables each individual facility’s performance to be evaluated separately in a small polynomial time,

which results in a much less complexity of evaluating the expected system performance and further

leads to fruitful developments of compact mathematical models and efficient solution algorithms

for reliable facility location design (Cui et al., 2010; Daskin, 2011; Li and Ouyang, 2010).

However, in many real-world systems, facility disruptions exhibit spatial correlations (e.g., due

to shared supporting infrastructure or simultaneous exposition to hazards). Disruption correlations

tend to have a strong impact on the performance of a reliable facility location design. Consider

a simple network where two facilities 𝐴 and 𝐵 jointly serve one unit of demand from a customer.

The costs for serving the demand from these two facilities are 10 and 20 units, respectively, and

the penalty for not serving the demand is 100 units. When both facilities are perfectly reliable, the

demand will obviously be served by 𝐴 with a total cost of 10 units. When the facilities are subject

to disruption, the demand will be served by 𝐴 as long as 𝐴 is functioning (i.e., event 𝐴), or by 𝐵 if

𝐴 is disrupted but 𝐵 is functioning (i.e., event 𝐴𝐵), or the customer will bear the penalty if both 𝐴

and 𝐵 fail (i.e., event 𝐴𝐵). In the case where 𝐴 and 𝐵 fail independently with an equal probability

of 0.5, the expected service cost is 10 × (0.5) + 20 × (0.5 × 0.5) + 100 × (0.5 × 0.5) = 35 units. If the

facility disruptions are positively correlated, say 𝑃(𝐴𝐵) = 𝑃(𝐴𝐵) = 0.4, 𝑃(𝐴𝐵) = 𝑃(𝐴𝐵) = 0.1, the

expected service cost becomes 10×(0.1+0.4)+20×0.1+100×0.4 = 47 units. If the facility disruptions

are negatively correlated, say 𝑃(𝐴𝐵) = 𝑃(𝐴𝐵) = 0.1, 𝑃(𝐴𝐵) = 𝑃(𝐴𝐵) = 0.4, the expected service

cost becomes 10×(0.1+0.4)+20×0.4+100×0.1 = 23 units. Although the disruption probability of

each facility remains 0.5 in all the three cases, we can see that the presence of disruption correlations

(both positive and negative) significantly affects the expected system service cost, and thus such
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factors should be carefully considered and incorporated.

In traditional facility location problems, each facility functions individually to serve customers.

In some recent applications, however, facilities work in combinations to provide integrated combi-

natorial services/supplies. For example, in the supply chain context, downstream processes/services

are typically in need of various types of products/materials from its upstream facilities, thus down-

stream customers seek services from multiple upstream facilities simultaneously. In the sensor

deployment context, sensors (which are facilities) are working in combinations to provide sensory

coverage, and the effectiveness of the sensor system highly depends on the quality (working range

and precision level) and quantity of sensors installed in the area. For the sensor deployment prob-

lems, if we further consider the possibility of sensor disruptions, since various sensor combinations

may share common sensors, disruption of one sensor combination could be directly related to that of

another combination. This leads to internal correlation among the functionality of multiple sensors

and sensor combinations. Therefore, where to deploy sensors, how to form sensor combinations,

which sensor combinations to use, and in what sequence and probability to use them in case of

sensor disruptions, are nontrivial questions, and should be carefully investigated.

Another challenging extension of reliable facility location problem is to incorporate the net-

work districting concepts. Specifically, the systems/networks are first partitioned into multiple

geographical districts following various operational criteria including spatial contiguity, compact-

ness, and demand balance, then the customers within each partitioned district are assigned to a

supplier/facility for service. An example is the call center design problem, which aims at efficiently

handling the incoming calls by assigning the calls from different spatial regions to the best call

responders. A good design typically has good characteristics such as (1) the expected workload is

well balanced across call responders; and (2) the spatial district served by a responder is contiguous

and compact in shape so as to satisfy some practical operational requirements. In the integrated

framework with both districting and reliable location considerations, interrelations among facili-

ties are introduced from the restrictions enforced on the demand assignment, which complicates

the location-assignment decisions. In addition, new/adapted customized methods are needed to

address the various districting criteria and to combine the reliable facility location and network

districting modules.
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1.2 Contributions

This Ph.D. research aims at investigating several important and challenging extended topics in the

reliable facility location context, including: (i) facility correlations; (ii) facility combinations; and

(iii) facility districting. All these extensions are widely recognized to be extremely complicated and

challenging to tackle, due to the additional complexity associated with the new ingredients added

to the traditional reliable facility location problems. The main contributions of this PhD research

consist of: (1) establishing a new systematic methodology framework based on quasi-probabilities

and supporting stations to describe and decompose facility correlations into succinct mathematical

representations, which allows compact mathematical formulations to be developed for planning

facility locations under correlated facility disruptions; (2) expanding the reliable facility location

modeling framework to allow facilities to provide combinatorial service; e.g., in the context of sensor

deployment problems, sensors work in combinations to provide positioning/surveillance service via

trilateration procedure; and (3) incorporating reliability concepts into the spatial districting context

(e.g., for political, school, service systems), where spatial contiguity, compactness, and demand

balance must be ensured, and developing various types of new customized model formulations and

solution approaches.

First, the dissertation relaxes the assumption on independent facility disruptions by planning

facility systems in which facilities share external network access points and failures of the shared

access points introduce complex facility correlation patterns. An additional layer of supporting

stations representing the network access points are added to the orginal customer-facility system,

and are connected to the facilities to indicate the real-world relationships between the facilities and

access points. A compact mixed-integer mathematical model is built upon the stations to address

the joint optimization of facility location and customer assignment decisions. Customized solution

approaches based on Lagrangian relaxation are designed to solve the model efficiently.

Next, the dissertation develops a systematic station structure framework to decompose more

general correlated facility disruptions. First, we define three probabilistic representations of cor-

related facility disruptions (i.e., with scenario probabilities, marginal probabilities and conditional

probabilities), derive pairwise transformations between them, and theoretically prove their equiv-

alence. We then provide detailed formulas to transform these probabilistic representations into an
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equivalent adapted virtual station structure, which enables us to decompose any correlated facility

disruptions into a compact network structure (consisting of customers, facilities, and stations) that

can be efficiently modeled with only independent station failures. This in turn allows us to avoid

enumerating an exponential number of disruption scenarios in the system performance evaluation.

Based on the augmented customer-facility-station system, we extend the mixed-integer program

proposed in the previous chapter, and design several new customized solution approaches to more

efficiently solve the model. We demonstrate our methodology on a series of numerical examples

involving different correlation patterns and varying network and parameter settings.

We then apply the reliable location modeling framework to sensor deployment problems, where

multiple sensors work in combinations to provide combinatorial coverage service to customers via

trilateration procedure. Since various sensor combinations may share common sensors, one combi-

nation is typically interrelated with some other combinations, which leads to internal correlations

among the functionality of sensors and sensor combinations. We address the problem of where to

deploy sensors, which sensor combinations are selected to use, and in what sequence and probability

to use these combinations in case of disruptions. A compact mixed-integer mathematical model is

developed to formulate the problem, by combining and extending the ideas of back-up assignments

and correlation decomposition via supporting stations. A customized solution algorithm based on

Lagrangian relaxation and branch-and-bound is developed, together with several embedded ap-

proximation subroutines for solving subproblems. A series of numerical examples are investigated

to illustrate the performance of the proposed methodology and to draw managerial insights.

Finally, we develop an innovative reliable network districting framework to incorporate dis-

tricting concepts into the reliable facility location context. The system/network is partitioned into

multiple districts following various districting criteria including spatial contiguity, compactness,

and demand balance, and the demands in each district are assigned to a particular facility. The

districting criteria are further extended in considerations of facility reliability issues. The problem

is modeled into a reliable network districting problem, in the form of a location-assignment based

model. We develop customized solution approaches, including heuristics (i.e., constructive heuristic

and neighborhood search) and set-cover based algorithms (e.g., district generation, error estima-

tion) to provide near-optimum solutions and corresponding optimality gaps. A series of hypothetical

test cases and an empirical full-scale application are presented to demonstrate the performance and
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effectiveness of our methodology for different network sizes and parameter settings.

1.3 Outline

This dissertation is organized as follows. Chapter 2 first summarizes literatures in the reliable

facility location context. Mixed-integer programming models are normally used to formulate the

reliable location problems under probabilistic facility disruptions. The models are typically solved

by solvers or implementing customized algorithms to obtain optimal or near-optimum solutions.

We also review the literatures and methodologies in each of the three studied topics: facility

correlations, sensor deployment, and network districting, and present the various models that have

been proposed.

Established on previous work in reliable facility location context, Chpater 3 relaxes the assump-

tion on independent facility disruptions and investigates facility systems with correlations caused

by the influence from shared network access points. A layer of supporting stations are constructed

to represent the real network access points, and a compact mixed-integer mathematical model is

built upon the stations to optimize the location and assignment decisions for such facility sys-

tems. Customized solution approaches based on Lagrangian relaxation and branch and bound are

designed to efficiently solve the model.

Facility correlations may be caused by facilities’ simultaneous exposion to hazards even when

there is no physical shared access points. Chapter 4 develops a systematic methodological frame-

work to describe and analyze any type of correlated facility disruptions in succinct mathematical

models. A decomposition scheme is designed to capture the effects of facility correlations by adding

virtual supporting stations. We also discussed analytical properties of the decomposition scheme

and the resulting station structure.

Based on the station structure provided by the decomposition scheme, Chapters 5 extends the

optimization formulation in Chapter 3 to model any type of correlated facility disruptions. Addi-

tional constraints, and new customized algorithms with more accurate approximation subroutines

are developed to improve the solution quality and efficiency. Multiple numerical case studies with

various types of correlated facility disruptions are carried out for the purpose of demonstration.

Chapter 6 applies the reliable facility location modeling framework to sensor deployment con-

text, in which sensors work in combinations to provide combinatorial service. The ideas of support-

6



ing stations are adopted with adjustment to represent the combinations of sensors. A mixed-integer

mathematical model is formulated to determine the optimal sensor locations, the sensor combina-

tion plans, and the backup assignment decisions. Several approximation subroutines are carefully

designed inside a Lagrangian relaxation framework to solve the model.

Next, Chapter 7 studies a reliable network districting problem to integrate both the reliable

facility location and the network districting modules. A series of modeling techniques are adopted

to address multiple districting criteria as well as the facility reliability considerations. Formula-

tion based on location-assignment modeling techniques is proposed, with customized algorithms

designed. The approaches are applied to solve several numerical examples including an empirical

full-scale application, to demonstrate their performance and to draw managerial insights.

Finally, Chapter 8 concludes the dissertation and discusses future research directions.
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CHAPTER 2:

LITERATURE REVIEW

This chapter reviews work in reliable facility location literature, as well as its several extensions.

There have been a lot of studies done on the reliable facility location problems, and most of

them formulated the problems into discrete integer linear programs. The ideas of probabilistic

disruptions, backup facility assignments, and expected system evaluation are widely adopted in

these programs and models. However, to the best of our knowledge, only a few efforts have been

made to study the extensions/topics of reliable interdependent facility system design that are

investigated in this research.

2.1 Reliable Facility Location

Facility location problems have been intensively studied in the past several decades, with the

most original formulation dated back to 1909, since when there have been numerous studies and

a large number of related models on facility location problems. (Drezner, 1995) reviewed a series

of classic mathematical models for deterministic location problems including covering problems,

center problems, median problems, etc. Most of these traditional studies considered deterministic

infrastructure service where each built facility is assumed functioning and available for service all the

time (Drezner, 1995; Daskin, 2011). Recently, researchers began to recognize that facilities may lose

functionalities due to various external/internal factors such as natural disasters, adverse weather,

human factors, etc. And a series of new reliable facility location models have been proposed

to furnish a facility system with proper redundancy to take real-world facility disruptions into

consideration (Snyder and Daskin, 2005; Li and Ouyang, 2010; Cui et al., 2010).

In the reliable facility location literature, one stream of studies focused on design-related facility
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disruptions that can be prevented by fortification. Interdiction models were often used to iden-

tify critical components in an infrastructure system, and cost-effective fortification strategies were

sought during facility location design (Church et al., 2004; Scaparra and Church, 2008a; Liberatore

et al., 2011; Scaparra and Church, 2008b). Another stream of research focused on modeling the

expected consequences of location-specific facility disruptions (Snyder and Daskin, 2005; Li and

Ouyang, 2010). A comprehensive review can be found in Snyder (2006). Among a rich variety of

efforts, Snyder and Daskin (2005) and Berman et al. (2009) formulated discrete models where facil-

ities are subject to site-independent disruptions with identical failure probabilities. More recently,

a series of reliable location models were proposed to allow site-dependent disruption probabilities.

Berman et al. (2007) provided a nonlinear mixed-integer programming formulation as well as an ef-

ficient heuristic solution approach. Cui et al. (2010) developed two distinct sets of models (discrete

and continuous) and corresponding solution algorithms to allow the disruption probabilities to be

site-dependent. Li and Ouyang (2012) proposed a reliable sensor location model to optimize traffic

system surveillance effectiveness where sensors are subject to site-dependent probabilistic failures.

Atamtürk et al. (2012) further presented reliable location-inventory models (which allowed facilities

to be subject to failures due to inventory shortage) as well as an innovative conic programming

solution approach. All these studies assumed independent facility disruptions and furnish a facil-

ity system with proper redundancy so as to balance its efficiency in the normal scenario and its

reliability when disruptions happen.

2.1.1 Facility Correlations

Most reliable location models hold the assumption that facility disruptions are independent. How-

ever, in many real-world facility systems, the disruptions of facilities often exhibit complex correla-

tions, and a straightforward modeling approach would need to enumerate or simulate an exponential

number of scenarios; this makes it computationally difficult to even just evaluate the system per-

formance under a given design. To the best of our knowledge, only a few efforts have been made

to address correlated facility disruptions, either exactly or approximately (e.g., Liberatore et al.

(2012); Li and Ouyang (2010); Lu et al. (2015)). Liberatore et al. (2012) considered the problem

of optimally protecting a capacitated median system with a limited amount of protective resources

subject to disruptions, a tri-level formulation of the problem and an exact solution algorithm
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based on a tree-search procedure were proposed. Li and Ouyang (2010) developed a continuum

approximation model for the reliable uncapacitated fixed charge location problem where facilities

are subject to spatially correlated disruptions that occur with site-dependent probabilities. Lu

et al. (2015) allowed facility disruptions to be correlated with an uncertain joint distribution, and

applied distributionally robust optimization to minimize the expected cost under the worst-case

distribution. In addition, Huang et al. (2010) addressed a variant of the p-center model in case of

large-scale emergencies, where correlated disruption was introduced by allowing many facilities to

become functionless simultaneously. Gueye and Menezes (2015) considered a two-stage stochastic

program model for a median problem under correlated facility disruptions, and asymptotic re-

sults were presented based on a scenario-based model formulation. Berman and Krass (2011) and

Berman et al. (2013) introduced analytical approaches to help understand the effects of correlated

failures in simpler spatial settings, e.g., along a line segment. Li et al. (2013) proposed a virtual

station structure that transforms a facility network with correlated disruptions into an equivalent

one with added virtual supporting stations, and the virtual stations were assumed to be subject to

independent disruptions. An optimization model was developed to handle cases where facilities are

positively correlated and the station disruption probabilities are all identical.

2.1.2 Sensor Deployment

Sensor deployement problems are natural applications where facilities work in combinations to pro-

vide services. Extensive researches have been conducted to study the sensor deployment problems.

Gentili and Mirchandani (2012) provided a comprehensive literature review on existing sensor lo-

cation models in traffic networks. Many of those studies aim at maximizing sensor coverage or

minimizing the error/cost of estimation. Mirchandani et al. (2010) addressed the problem of locat-

ing surveillance infrastructure to cover a target surface; possible barriers that may block sensing

signals were considered. Erdemir et al. (2008) developed models to study a location covering prob-

lem with consideration of both nodal and path-specific demand. Geetla et al. (2014) studied the

deployment of omni-directional audio sensors that can detect vehicle crashes on a roadway. Eisen-

man et al. (2006) proposed a sensor location problem based on a simulation-based real-time network

traffic estimation and prediction system. Fei and Mahmassani (2011) presented a multi-objective

model that deploys a minimal number of passive point sensors in a roadway network considering
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link information gains and origin-destination demand coverage. Danczyk et al. (2016) developed

a sensor location model to minimize the error of monitoring freeway traffic condition. Various

customized solution methods for sensor location problems have also been developed. Among them,

Wang et al. (2005) partitioned the sensing field into smaller sub-regions and deployed sensors in

these sub-regions when the working range of a sensor forms an arbitrarily shaped region (i.e., poly-

gon). Clouqueur et al. (2003) developed a sequential decision-making approach to maximize the

exposure of network travel paths to a set of sensors. The overall goal was to minimize the system

cost needed to achieve a desired exposure rate. Zou and Chakrabarty (2004) proposed a virtual

force strategy for sensor deployment and a probabilistic target localization algorithm to enhance

sensor coverage. He (2013) presented a graphical approach to find the smallest set of network links

to locate sensors, so as to infer the traffic flow on all other links. Ouyang et al. (2009) and Peng

et al. (2011) investigated ways to deploy wayside sensors in a railroad network to monitor railcar

traffic. Studies on optimal sensor placement, especially those in the context of trilateration, are

quite limited. While deploying directional sensors that collectively form regular convex polygons,

Xie and Dai (2014) optimized the number of edges and length of these polygons so as to maximize

coverage accuracy. As sensor deployment on a regular lattice is usually not optimal for trilater-

ation, Roa et al. (2007) proposed a diversified local Tabu search method where omni-directional

sensors can follow a non-regular configuration. De Stefano et al. (2015) investigated the place-

ment of sensors on an engineering structure to detect the existence, location and extent of internal

damage. These studies, however, assumed that the sensing targets are homogeneously distributed

in a 2-dimensional plane; this is often unrealistic in the real world. Indeed, sensor locations are

critical to the overall performance of the surveillance system. For example, Ahmed et al. (2014)

demonstrated the significance of sensor location in influencing real-time traffic state prediction after

traffic crashes.

2.1.3 Network Districting

Districting is a well-known problem in the operations research literature. It aims at partitioning

a geographical space into sub-districts under various criteria and constraints. Depending on the

specific application context, operational criteria may include the district contiguity, district com-

pactness, workload balance, socio-economic homogeneity, etc. In the literature, probably the most
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intensively studied problem is regarding political districting, which divides a jurisdiction area (e.g.,

a state or a region) into electoral constituencies such that the political candidates from each area are

elected to a parliamentary assembly. The “one man-one vote” principle requires that all districts

contain approximately the same number of candidates/voters to avoid benefiting a certain party

or candidate. Hess et al. (1965) is among the first several that used mathematical programming

techniques to model the political districting problem. An assignment formulation with additional

planning constraints was developed and an iterative heuristic algorithm was proposed. But the con-

vergence of the algorithm or the contiguity of districts is not guaranteed. Garfinkel and Nemhauser

(1970), on the other hand, considered selecting districts from a set of predefined feasible ones.

The various constraints (e.g., contiguity, compactness) were implemented while defining the set of

feasible districts (before implementing the optimization model). Mehrotra et al. (1998) adopted a

column generation method to solve a similar problem as the one in Garfinkel and Nemhauser (1970).

Bozkaya et al. (2003) considered more operational criteria, which were evaluated and incorporated

as soft constraints. Health services districting is another application context that aims at partition-

ing a health service territory into districts and assign a certain amount of medical resources to each

district. Blais et al. (2003) studied the districting for a public health clinic where five districting

criteria were sought under a tabu search algorithm. School districting problem assigns residential

neighborhoods to existing schools, as different important criteria for planning must be taken into

account, e.g., the capacity, the accessibility, and the racial balance of each school. Notably, Ferland

and Guénette (1990) proposed a decision support system to solve the school districting problem; the

system included a network-based mathematical model and used several heuristic procedures to as-

sign network edges (with students located on it) to schools. Other examples of districting problems

include sales/market districting (Hess and Samuels, 1971), police districting (Camacho-Collados

et al., 2015), waste/garbage collection districting (Muyldermans et al., 2002), etc.

2.2 Classic Models

2.2.1 Reliable Facility Location

Snyder and Daskin (2005) formulated discrete mathematical models for facility location design in

which facilities are subject to site-independent disruptions with identical failure probabilities. Let

12



ℐ be the set of customers, indexed by 𝑖, and 𝒥 be the set of candidate facility locations, indexed

by 𝑗. Each customer has 𝜇𝑖 units of demand, and the cost for serving per unit demand of customer

𝑖 by facility 𝑗 is denoted as 𝑑𝑖𝑗. In addition, we associate with each customer 𝑖 a cost 𝜋𝑖 that

represents the penalty cost of not serving its demand (per unit). To model the penalty cost, we

add an “emergency” facility indexed by 0 that has transportation cost 𝑑𝑖0 = 𝜋𝑖, ∀𝑖 ∈ ℐ . Normally,

a customer 𝑖 visits its nearest facility for service. Once the facility is disrupted, the customer

seeks service from the next nearest functioning facility, until no functioning facility can provide

service at a cost less than 𝜋𝑖, and the penalty cost is incurred. Let 𝑋𝑗 denote whether a facility is

open at location 𝑗 and 𝑌𝑖𝑗𝑟 represent whether customer 𝑖 visits facility 𝑗 as its 𝑟th backup option.

The mathematical model formulation for the reliable facility location problem with i.i.d. facility

disruptions can be written as

(RFL-IID) min ∑
𝑗∈𝒥

𝑓𝑗𝑋𝑗 + ∑
𝑖∈ℐ

∑
𝑗∈𝒥∪{0}

𝑅+1
∑
𝑟=1

𝜇𝑖𝑑𝑖𝑗(1 − 𝑞)𝑞𝑟𝑌𝑖𝑗𝑟 (2.1a)

s.t.
𝑅

∑
𝑟=1

𝑌𝑖𝑗𝑟 ≤ 𝑋𝑗, ∀𝑖 ∈ ℐ, 𝑗 ∈ 𝒥, (2.1b)

∑
𝑗∈𝒥

𝑌𝑖𝑗𝑟 +
𝑟

∑
𝑠=1

𝑌𝑖0𝑠 = 1, ∀𝑖 ∈ ℐ, 𝑟 = 1, 2, ⋯ , 𝑅 + 1, (2.1c)

𝑅+1
∑
𝑟=1

𝑌𝑖0𝑟 = 1, ∀𝑖 ∈ ℐ, (2.1d)

𝑋𝑗, 𝑌𝑖𝑗𝑟 ∈ {0, 1}, ∀𝑖 ∈ ℐ, 𝑗 ∈ 𝒥 ∪ {0}, 𝑟 = 1, 2, ⋯ , 𝑅 + 1. (2.1e)

The objective function (2.1a) is the summation of fixed facility open cost and expected system

transportation cost. Constraints (2.1b) ensure that customers only visit open facilities. Constraints

(2.1c) enforce that each customer 𝑖 either visits a regular facility 𝑗 as its 𝑟th option or has chosen

to pay the penalty cost as its 𝑠th option, 𝑠 ≤ 𝑟. Constraint (2.1d) indicate that each customer has

to pay the penalty cost at some point.

When facility disruptions are heterogeneous, i.e., their disruption probabilities are site-dependent,

Cui et al. (2010) extends the above formulation (RFL-IID) into the following formulation

(RFL-HETER) min ∑
𝑗∈𝒥

𝑓𝑗𝑋𝑗 + ∑
𝑖∈ℐ

∑
𝑗∈𝒥∪{0}

𝑅+1
∑
𝑟=1

𝜇𝑖𝑑𝑖𝑗𝑍𝑖𝑗𝑟𝑌𝑖𝑗𝑟 (2.2a)
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s.t.
𝑅

∑
𝑟=1

𝑌𝑖𝑗𝑟 ≤ 𝑋𝑗, ∀𝑖 ∈ ℐ, 𝑗 ∈ 𝒥, (2.2b)

∑
𝑗∈𝒥

𝑌𝑖𝑗𝑟 +
𝑟

∑
𝑠=1

𝑌𝑖0𝑠 = 1, ∀𝑖 ∈ ℐ, 𝑟 = 1, 2, ⋯ , 𝑅 + 1, (2.2c)

𝑅+1
∑
𝑟=1

𝑌𝑖0𝑟 = 1, ∀𝑖 ∈ ℐ, (2.2d)

𝑍𝑖𝑗1 = 1 − 𝑞𝑗, ∀𝑖 ∈ ℐ, 𝑗 ∈ 𝒥 ∪ {0}, (2.2e)

𝑍𝑖𝑗𝑟 = (1 − 𝑞𝑘) ⋅ ∑
𝑗′∈𝐽

𝑞𝑗′

1 − 𝑞𝑗′
𝑍𝑖𝑗′(𝑟−1)𝑌𝑖𝑗′(𝑟−1),

∀𝑖 ∈ ℐ, 𝑗 ∈ 𝒥 ∪ {0}, 𝑟 = 2, 3, ⋯ , 𝑅 + 1, (2.2f)

𝑋𝑗, 𝑌𝑖𝑗𝑟 ∈ {0, 1}, ∀𝑖 ∈ ℐ, 𝑗 ∈ 𝒥 ∪ {0}, 𝑟 = 1, 2, ⋯ , 𝑅 + 1. (2.2g)

(2.2a)–(2.2d) are similar to the corresponding constraints in (RFL-IID). Given the site-dependent

facility disruption probabilities, Constraints (2.2e)–(2.2f) iteratively calculate the probability that

facility 𝑗 served customer 𝑖 at level 𝑟. Note that this formulation (RFL-HETER) is nonlinear due

to the existence of terms 𝑍𝑖𝑗𝑟𝑌𝑖𝑗𝑟.

2.2.2 Network Districting

Districting problems are typically modeled as a graph partitioning problem, which aims at providing

a partitioning of the nodes in a graph (the nodes in each partition induce a connected subgraph)

as a districting plan solution. Let 𝒢 = (ℐ, ℰ) denote a graph with node set ℐ and edge set ℰ.

Let ℳ be the set of all possible subgraph of a graph, and 𝑎𝑖𝑚 indicate whether node 𝑖 ∈ ℐ is

contained in subgraph 𝑚 ∈ ℳ or not. If 𝑍𝑚 represent whether subgraph 𝑚 is selected or not in

the districting plan, the network districting problem can be formulated as the following set-cover

based formulation

(ND) min ∑
𝑚∈ℳ

𝐹 (𝑧𝑚) (2.3a)

s.t. ∑
𝑚∈ℳ

𝑧𝑚 = 𝑀, (2.3b)

∑
𝑚∈ℳ

𝑎𝑖𝑚𝑧𝑚 = 1, ∀𝑖 ∈ ℐ, (2.3c)

𝑧𝑚 ∈ {0, 1}, ∀𝑚 ∈ ℳ, (2.3d)
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The objective (2.3a) is formulated as a function of {𝑧𝑚}𝑚∈ℳ , with details customized in different

applications. Constraints (2.3b) enforce that 𝑀 districts are selected, and constraints (2.3c) ensure

that each node 𝑖 is contained in exactly one district.
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CHAPTER 3:

RELIABLE FACILITY LOCATION UNDER THE RISK

OF NETWORK ACCESS FAILURES

Most traditional studies on reliable facility location problems hold the assumption on independent

facility disruptions. However, in many real-world facility systems, the facilities exhibit complex

correlations due to various types of interdependence and connections among them. Specifically,

in service systems with natural or anthropogenic barriers (e.g., rivers, railroads), customers who

intend to visit facilities for service must first pass through certain network access points (e.g.,

bridges, railway crossings). Possible blockage or disruptions of these access points could change

the customer-facility assignments or even affect reachability of various facilities, and thus introduce

facility correlation issues.a

In this chapter, we incorporate network access points and their probabilistic failures into a

joint optimization framework by generalizing the supporting station structure approach from Li

et al. (2013). A layer of network access points (we call them stations in the remainder of this

chapter) are added and connected to facilities to imply the real-world connections between facilities

and access points. The stations are assumed to be subject to disruptions with site-dependent

probabilities. We then develop a compact mixed-integer mathematical model to optimize the

facility location and customer assignment decisions for the facility systems design. Lagrangian

relaxation based algorithms are designed to effectively solve the proposed model. Multiple case

studies are constructed to test the model and the algorithm, and to demonstrate their performance

and applicability.
aThis chapter is based on a submitted paper, Xie and Ouyang (2018).
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3.1 Introduction

In many real-world facility systems, customers have to pass through certain network access points

to visit facilities for service, and the access points are subject to possible blockage or disruptions.

If an access point is blocked/disrupted, some customers may have to change their paths to the

assigned facilities, or they may even change their facility choices – some facilities may become

unreachable if all associated access points are blocked or disrupted. The unreachability of a facility

can be interpreted as the facility’s failure to provide service, although the facility itself may always

be functioning. For example, in coastal areas or cities where rivers or lakes exist and partition

the area into sub-regions, bridges, as the possible only access points to enter/leave the sub-regions,

link the partitioned regions as an interconnected network (one distinct example would be the city

of Venice, Italy). In such a network, if a bridge is blocked or disrupted due to external factors

(e.g., structure or material damages, traffic accidents, congestions), customers originally intend to

go through the bridge to visit service facilities like hospitals have to make a detour with a longer

transportation distance and/or time, which may lead to significant deterioration of the service

quality.

Similar situations could happen in many other contexts. For example, in a ground transporta-

tion network consisting of intersecting highway and railway corridors, the highway paths between

customers (e.g., residential neighborhoods) and facilities (e.g., fire stations) may cross by railways

tracks. If railroad incidents happen and cause railroad blockage, the paths between customers and

facilities may be cut off as well. The customers are no longer able to receive service (e.g., emer-

gency response) from its preferable facility in time, which could lead to catastrophic losses (e.g.,

imagine the fire trucks are blocked at railroad crossings). Recent years have witnessed a series of

rail crashes and derailments that have led to major oil spills, tanker fire or explosions. The train

carriages are forced to stop at rail track, blocking all crossings to enter or leave the affected region

by the explosions. Examples include the recent catastrophic railroad incidents in Casselton, N.D.,

and in Quebec, Canada (Crummy, 2013; NBC News, 2013). In the U.S. Midwest, the State of

Minnesota also expressed strong concerns over the close proximity of hazardous material trains to

densely-populated urban areasb, and the long blockage of rail crossing by high train traffic volumes
bSee http://www.dot.state.mn.us/newsrels/15/03/19oiltrains.html
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which may disrupt emergency response effortsc. As a result, the U.S. federal and local regulators

have issued a number of orders on railroad incidents prevention and emergency responses deploy-

ment so as to enhance rail crossing safety and reliability (Xie et al., 2018b; Gold and Stevens, 2014).

This calls for careful design of emergency service facility locations (e.g., fire stations, hospitals) as

well as the adjacent network characteristics such that critical resources can be delivered and the

customers can be serviced efficiently even under emergency situations.

The planning of such systems under the risk of network access disruptions involves facility

location decisions and customer path design under different realizations of the functioning states

of access points. As the disruptions to the systems occur at the network access points, which lead

to the unreachability/unfunctionality of multiple facilities, there is no existing literature explicitly

capturing these types of facility disruptions. Therefore, incorporating network access points with

site-dependent failures into the facility system design calls for a new methodological framework. In

light of these challenges, we extend the concept of station structure in Li et al. (2013) to address the

real-world situations with unreliable network access points. Network acces points are represented

as supporting stations, and are connected to candidate facility locations based on their real-world

relationships/connections. A customer who intends to visit a facility must first pass through one

of the facility’s connected stations. The facilities are functioning all the time, but the stations are

subject to probabilistic disruptions. In particular, we allow the disruption probabilities of access

points to be site-dependent. With the augmented structure with additional supporting stations,

we develop a compact mixed-integer mathematical model to address the joint optimization for

both facility location and customer access/assignment decisions. This model is considerably very

complex, hence we develop several customized solution approaches based on Lagrangian relaxation

algorithm to effectively solve it. Multiple case studies are presented to not only test the model and

algorithm but also to draw managerial insights.

The remainder of this chapter is organized as follows. Section 3.2 introduces the support-

ing station structure and presents the mixed-integer mathematical model. Section 3.3 shows the

customized lagrangian relaxation based solution approaches. In Section 3.4, several case studies

involving various problem and parameter settings are presented.
cSee http://www.startribune.com/politics/statelocal/286633141.html
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3.2 Model Formulation

In this section, we propose a new mixed-integer model formulation for the reliable facility location

problem under the risk of network access failures.

3.2.1 Augmented Facility-Station Structure

In some facility systems, customers visit facilities by passing through certain network access points.

For example, in Figure 3.1(a), to visit facility 𝑗1, a customer may pass through one of the three

access points 𝑘1, 𝑘2, 𝑘4 located in the boundaries. We introduce a set 𝐾 of supporting stations to

represent the network access points, and denote 𝐼 and 𝐽 as the sets of customers and candidate

facility locations, respectively. As shown in Figure 3.1(b), the stations are connected to facilities

to imply the real-world relationships between the facilities and the corresponding access points,

i.e., a facility is connected to a station if the facility can be reached by customers through the

corresponding access point. For example, in Figure 3.1(b), station 𝑘1 is connected to facilities 𝑗1
and 𝑗2 as both 𝑗1 and 𝑗2 can be reached by passing through 𝑘1. As such, a station 𝑘 ∈ 𝐾 could

be connected to multiple facilities, and a facility 𝑗 ∈ 𝐽 could be connected to multiple stations

as well. The original facility system is consequently augmented into an integrated facility-station

structure. We use a binary parameter 𝑙𝑘𝑗 = 1 to indicate that facility 𝑗 is connected to station

𝑘, or 𝑙𝑘𝑗 = 0 otherwise. Since the network access points are subject to possible disruptions, we

further assume that each 𝑘 ∈ 𝐾 is associated with a site-dependent failure probability 𝑞𝑘. The

basic mechanism of the augmented structure is defined as follows: a facility remains operational

if and only if at least one of its connected stations is functioning (i.e., at least one access point is

available to be passed through to reach the facility). Hence, the operating states of the facilities

are determined collectively by the states of all stations. For example, in Figure 3.1(b), 𝑗1, 𝑗2, 𝑗3 are

unreachable while 𝑗4, 𝑗5 are available if and only if stations 𝑘1, 𝑘2, 𝑘3, 𝑘4, 𝑘5, 𝑘6 are all disrupted while

𝑘7 is functioning.

In the facility system, each customer 𝑖 ∈ 𝐼 has a demand 𝜇𝑖 and each candidate location 𝑗 ∈ 𝐽

is associated with a fixed setup cost 𝑓𝑗. Normally, each customer 𝑖 visits its most preferred facility

𝑗 for service by passing through station 𝑘 (defined as an station-facility pair (𝑘, 𝑗) in the rest of the

paper). The transportation cost for station-facility pair (𝑘, 𝑗) to serve one unit of demand from
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Figure 3.1: Conceptual illustration of the augmented facility-station structure.

customer 𝑖 is denoted as 𝑑𝑖𝑘𝑗. Moreover, a penalty cost 𝜋𝑖 per unit demand will be incurred if

customer 𝑖 do not receive any service. This situation occurs if no facility is reachable/available, or

if the cost of serving customer 𝑖 by the nearest available facility already exceeds 𝜋𝑖.

Since the access points are possible to be disrupted, each customer may choose multiple station-

facility pairs as backups in case her preferable choices are unavailable, whereas each station-facility

pair corresponds to one unique backup level. As such, we assume that each customer can select

at most a number 𝑅 of station-facility pairs and pass through the associated access points to visit

the corresponding facilities for service, and a customer will pass through its level-𝑟 station if all

its level-1, ⋯, level-(𝑟 − 1) stations have been disrupted. Note that a customer passes through

a station at no more than one backup level, but may visit a facility through different stations

at multiple backup levels. We further add a dummy emergency station-facility pair with indices

𝑘 = 0, 𝑗 = 0 to allow the “penalty assignment”, i.e., when a customer losses service. Note that

𝑙00 = 1 and 𝑞0 = 0, and the corresponding transportation cost is set to be the penalty cost, i.e.,

𝑑𝑖𝑘𝑗|𝑘=0,𝑗=0 = 𝜋𝑖, ∀𝑖 ∈ 𝐼. Typically, a customer shall be assigned to the pair (0, 0) at level 𝑅 + 1 as

long as regular station-facility pairs are available for backup levels 1, 2, ⋯ , 𝑅. However, as long as

customer 𝑖 can no longer receive service from any station-facility pair (𝑘, 𝑗) at a unit cost less than

𝜋𝑖 at any backup level 𝑠 ∈ {1, 2, ⋯ , 𝑅}, it will choose the emergency pair at level 𝑠.
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3.2.2 Notation and Formulation

We first define several sets of decision variables. First, variables X ∶= {𝑋𝑗}𝑗∈𝐽 determine the facility

locations as follows

𝑋𝑗 =
⎧{{
⎨{{⎩

1 if a facility is build at 𝑗;

0 otherwise.

Next, the assignment of customers to station-facility pairs at multiple backup levels is specified by

Y ∶= {𝑌𝑖𝑘𝑗𝑟}𝑖∈𝐼,𝑘∈𝐾∪{0},𝑗∈𝐽∪{0},𝑟∈{1,2,⋯,𝑅+1} where

𝑌𝑖𝑘𝑗𝑟 =
⎧{{
⎨{{⎩

1 if customer 𝑖 visits facility 𝑗 through station 𝑘 at backup level 𝑟;

0 otherwise.

Finally, we define Z ∶= {𝑍𝑖𝑘𝑗𝑟}𝑖∈𝐼,𝑘∈𝐾∪{0},𝑗∈𝐽∪{0},𝑟∈{1,2,⋯,𝑅+1}, where 𝑍𝑖𝑘𝑗𝑟 ∈ [0, 1] denotes the

probability for customer 𝑖 to visit facility 𝑗 through station 𝑘 at backup level 𝑟. The reliable facility

location problem (RFL) under the risk of network access failures is formulated into the following

mixed-integer mathematical program:

(RFL) min ∑
𝑗∈𝐽

𝑓𝑗𝑋𝑗 + ∑
𝑖∈𝐼

∑
𝑘∈𝐾∪{0}

∑
𝑗∈𝐽∪{0}

𝑅+1
∑
𝑟=1

𝜇𝑖𝑑𝑖𝑘𝑗𝑍𝑖𝑘𝑗𝑟𝑌𝑖𝑘𝑗𝑟 (3.1a)

s.t.
𝑅

∑
𝑟=1

𝑌𝑖𝑘𝑗𝑟 ≤ 𝑋𝑗, ∀𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾, 𝑗 ∈ 𝐽, (3.1b)

𝑌𝑖𝑘𝑗𝑟 ≤ 𝑙𝑘𝑗, ∀𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾 ∪ {0}, 𝑗 ∈ 𝐽 ∪ {0}, 𝑟 = 1, 2, ⋯ , 𝑅 + 1, (3.1c)

∑
𝑗∈𝐽

𝑅
∑
𝑟=1

𝑌𝑖𝑘𝑗𝑟 ≤ 1, ∀𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾, (3.1d)

∑
𝑘∈𝐾

∑
𝑗∈𝐽

𝑌𝑖𝑘𝑗𝑟 +
𝑟

∑
𝑠=1

𝑌𝑖00𝑠 = 1, ∀𝑖 ∈ 𝐼, 𝑟 = 1, 2, ⋯ , 𝑅 + 1, (3.1e)

𝑅+1
∑
𝑟=1

𝑌𝑖00𝑟 = 1, ∀𝑖 ∈ 𝐼, (3.1f)

𝑍𝑖𝑘𝑗1 = 𝑙𝑘𝑗 (1 − 𝑞𝑘) , ∀𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾 ∪ {0}, 𝑗 ∈ 𝐽 ∪ {0}, (3.1g)

𝑍𝑖𝑘𝑗𝑟 = 𝑙𝑘𝑗 (1 − 𝑞𝑘) ∑
𝑘′ ∈𝐾

∑
𝑗′ ∈𝐽

𝑞𝑘′

1 − 𝑞𝑘′
𝑍𝑖𝑘′ 𝑗′ (𝑟−1)𝑌𝑖𝑘′ 𝑗′ (𝑟−1),

∀𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾 ∪ {0}, 𝑗 ∈ 𝐽 ∪ {0}, 𝑟 = 2, 3, ⋯ , 𝑅 + 1, (3.1h)
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𝑋𝑗, 𝑌𝑖𝑘𝑗𝑟 ∈ {0, 1}, ∀𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾 ∪ {0}, 𝑗 ∈ 𝐽 ∪ {0}, 𝑟 = 1, 2, ⋯ , 𝑅 + 1. (3.1i)

The objective function (3.1a) presents the expected system cost as the summation of the fixed

facility cost, the expected total transportation cost, and the expected penalty cost. Constraints

(3.1b) and (3.1c) require that customers can only visit open facilities through stations that are

connected to the facilities. Constraints (3.1d) ensure that for each customer, any station is selected

to be passed through at no more than one backup level. Constraints (3.1e) enforce that at each

level 𝑟, any customer 𝑖 ∈ 𝐼 is either assigned to a regular station-facility pair, or assigned to the

dummy station-facility pair at an earlier level 𝑠 ≤ 𝑟, while constraints (3.1f) postulate that each

customer is assigned to the dummy station-facility pair at a certain backup level 𝑟 ∈ {1, 2, ⋯ , 𝑅+1}.

Constraints (3.1g)–(3.1h) recursively define the assignment probabilities 𝑍𝑖𝑘𝑗𝑟: at level 𝑟 = 1, the

probability 𝑍𝑖𝑘𝑗𝑟 is simply the probability for station 𝑘 to function; at level 𝑟 > 1, the probability

𝑍𝑖𝑘𝑗𝑟 equals (1 − 𝑞𝑘)𝑞𝑘′ /(1 − 𝑞𝑘′ )𝑍𝑖𝑘′ 𝑗′ 𝑟−1 if that customer 𝑖 is assigned to 𝑗′ through 𝑘′ at level 𝑟 − 1.

Constraints (3.1i) are integrality constraints.

The above formulation is nonlinear because of the nonlinear terms {𝑍𝑖𝑘𝑗𝑟𝑌𝑖𝑘𝑗𝑟} contained in the

objective function and constraints (3.1h). Therefore, we linearize each 𝑍𝑖𝑘𝑗𝑟𝑌𝑖𝑘𝑗𝑟, which is a product

of a bounded continuous variable and a binary variable, by applying the technique introduced by

Sherali and Alameddine (1992). Specifically, a new continuous variable 𝑊𝑖𝑘𝑗𝑟 is introduced to

equivalently replace 𝑍𝑖𝑘𝑗𝑟𝑌𝑖𝑘𝑗𝑟 by enforcing four additional sets of constraints (i.e., (3.2d)-(3.2g)),

and to transform (RFL) into the following mixed-integer linear program

(LRFL) min ∑
𝑗∈𝐽

𝑓𝑗𝑋𝑗 + ∑
𝑖∈𝐼

∑
𝑘∈𝐾∪{0}

∑
𝑗∈𝐽∪{0}

𝑅+1
∑
𝑟=1

𝜇𝑖𝑑𝑖𝑗𝑘𝑊𝑖𝑘𝑗𝑟 (3.2a)

s.t. (3.1b) − (3.1g), (3.2b)

𝑍𝑖𝑘𝑗𝑟 = (1 − 𝑞𝑘) ⋅ ∑
𝑘′ ∈𝐾

∑
𝑗′ ∈𝐽

𝑞𝑘′

1 − 𝑞𝑘′
𝑊𝑖𝑘′ 𝑗′ (𝑟−1),

∀𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾 ∪ {0}, 𝑗 ∈ 𝐽 ∪ {0}, 𝑟 = 2, 3, ⋯ , 𝑅 + 1, (3.2c)

𝑊𝑖𝑘𝑗𝑟 ≤ 𝑍𝑖𝑘𝑗𝑟 + 1 − 𝑌𝑖𝑘𝑗𝑟, ∀𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾 ∪ {0}, 𝑗 ∈ 𝐽 ∪ {0}, 𝑟 = 1, 2, ⋯ , 𝑅 + 1,

(3.2d)
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𝑊𝑖𝑘𝑗𝑟 ≥ 𝑍𝑖𝑘𝑗𝑟 + 𝑌𝑖𝑘𝑗𝑟 − 1, ∀𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾 ∪ {0}, 𝑗 ∈ 𝐽 ∪ {0}, 𝑟 = 1, 2, ⋯ , 𝑅 + 1,

(3.2e)

𝑊𝑖𝑘𝑗𝑟 ≤ 𝑌𝑖𝑘𝑗𝑟, ∀𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾 ∪ {0}, 𝑗 ∈ 𝐽 ∪ {0}, 𝑟 = 1, 2, ⋯ , 𝑅 + 1, (3.2f)

𝑊𝑖𝑘𝑗𝑟 ≥ −𝑌𝑖𝑘𝑗𝑟, ∀𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾 ∪ {0}, 𝑗 ∈ 𝐽 ∪ {0}, 𝑟 = 1, 2, ⋯ , 𝑅 + 1, (3.2g)

𝑋𝑗, 𝑌𝑖𝑘𝑗𝑟 ∈ {0, 1}, ∀𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾 ∪ {0}, 𝑗 ∈ 𝐽 ∪ {0}, 𝑟 = 1, 2, ⋯ , 𝑅 + 1, (3.2h)

0 ≤ 𝑊𝑖𝑘𝑗𝑟 ≤ 1, ∀𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾 ∪ {0}, 𝑗 ∈ 𝐽 ∪ {0}, 𝑟 = 1, 2, ⋯ , 𝑅 + 1. (3.2i)

In theory, this mixed-integer linear program (LRFL) is compact and polynomial in size (which

is much smaller compared to the exponential size of the scenario-based model), and thus could

potentially be solved by commercial solvers such as CPLEX and Gurobi. However, considering the

combinatorial nature of the problem as well as the difficulty associated with site-dependent prob-

abilities, existing solvers generally take an excessively long computation time for even moderately

sized instances, as we will show with numerical examples in Section 3.4. Therefore, in the next

section, we develop customized solution approaches to efficiently solve (LRFL).

3.3 Solution Approach

3.3.1 Lagrangian Relaxation

We relax constraints (3.1b) in (LRFL) with Lagrangian multipliers {𝜆𝑖𝑘𝑗}∀𝑖∈𝐼,∀𝑘∈𝐾,∀𝑗∈𝐽 and move

them as penalty terms, which yields the following objective function

∑
𝑗∈𝐽

⎛⎜⎜
⎝

𝑓𝑗 − ∑
𝑖∈𝐼

∑
𝑘∈𝐾

𝜆𝑖𝑘𝑗
⎞⎟⎟
⎠

𝑋𝑗 + ∑
𝑖∈𝐼

∑
𝑘∈𝐾∪{0}

∑
𝑗∈𝐽∪{0}

𝑅+1
∑
𝑟=1

𝜇𝑖𝑑𝑖𝑘𝑗𝑊𝑖𝑘𝑗𝑟 + ∑
𝑖∈𝐼

∑
𝑘∈𝐾

∑
𝑗∈𝐽

𝜆𝑖𝑘𝑗
𝑅

∑
𝑟=1

𝑌𝑖𝑘𝑗𝑟.

With this relaxation, the original model (LRFL) is decomposed into two unrelated parts, involving

the location and assignment variables X and Y, respectively. The part involving X,

min
𝑋𝑗∈{0,1},∀𝑗

∑
𝑗∈𝐽

⎛⎜⎜
⎝

𝑓𝑗 − ∑
𝑖∈𝐼

∑
𝑘∈𝐾

𝜆𝑖𝑘𝑗
⎞⎟⎟
⎠

𝑋𝑗,
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can be solved easily by simple inspection; i.e., given any {𝜆𝑖𝑘𝑗},

𝑋𝑗 =

⎧{{
⎨{{⎩

1 if 𝑓𝑗 − ∑𝑖∈𝐼 ∑𝑘∈𝐾 𝜆𝑖𝑘𝑗 < 0;

0 otherwise.

For the part involving Y, we observe that it can be further separated into individual sub-

problems, one for each customer. The subproblem (RFL-SP𝑖) with respect to customer 𝑖 ∈ 𝐼 is

(RFL-SP𝑖) min ∑
𝑘∈𝐾∪{0}

∑
𝑗∈𝐽∪{0}

𝑅+1
∑
𝑟=1

𝜇𝑖𝑑𝑖𝑘𝑗𝑊𝑘𝑗𝑟 + ∑
𝑘∈𝐾

∑
𝑗∈𝐽

𝜆𝑘𝑗
𝑅

∑
𝑟=1

𝑌𝑘𝑗𝑟 (3.3a)

s.t. 𝑌𝑘𝑗𝑟 ≤ 𝑙𝑘𝑗, ∀𝑘 ∈ 𝐾 ∪ {0}, 𝑗 ∈ 𝐽 ∪ {0}, 𝑟 = 1, 2, ⋯ , 𝑅 + 1, (3.3b)

∑
𝑗∈𝐽

𝑅
∑
𝑟=1

𝑌𝑘𝑗𝑟 ≤ 1, ∀𝑘 ∈ 𝐾, (3.3c)

∑
𝑘∈𝐾

∑
𝑗∈𝐽

𝑌𝑘𝑗𝑟 +
𝑟

∑
𝑠=1

𝑌00𝑠 = 1, ∀𝑟 = 1, 2, ⋯ , 𝑅 + 1, (3.3d)

𝑅+1
∑
𝑟=1

𝑌00𝑟 = 1, (3.3e)

𝑍𝑘𝑗1 = 𝑙𝑘𝑗 (1 − 𝑞𝑘) , ∀𝑘 ∈ 𝐾 ∪ {0}, 𝑗 ∈ 𝐽 ∪ {0}, (3.3f)

𝑍𝑘𝑗𝑟 = 𝑙𝑘𝑗 (1 − 𝑞𝑘) ∑
𝑘′ ∈𝐾

∑
𝑗′ ∈𝐽

𝑞𝑘′

1 − 𝑞𝑘′
𝑊𝑘′ 𝑗′ (𝑟−1),

∀𝑘 ∈ 𝐾 ∪ {0}, 𝑗 ∈ 𝐽 ∪ {0}, 𝑟 = 2, 3, ⋯ , 𝑅 + 1, (3.3g)

(3.2d) − (3.2g), (3.3h)

𝑌𝑘𝑗𝑟 ∈ {0, 1}, ∀𝑘 ∈ 𝐾 ∪ {0}, 𝑗 ∈ 𝐽 ∪ {0}, 𝑟 = 1, 2, ⋯ , 𝑅 + 1, (3.3i)

0 ≤ 𝑊𝑘𝑗𝑟 ≤ 1, ∀𝑘 ∈ 𝐾 ∪ {0}, 𝑗 ∈ 𝐽 ∪ {0}, 𝑟 = 1, 2, ⋯ , 𝑅 + 1. (3.3j)

(RFL-SP𝑖) does not involve the relationships between customers, and is much smaller in size

compared to the original (LRFL). Hence, it can be more efficiently handled by commercial solvers.

However, since in the Lagrangian relaxation framework, each subproblem (RFL-SP𝑖) will be solved

repeatedly across multiple iterations, we may still encounter heavy computational burden if relying

on solvers. Thus, section 3.3.2 further develops an optional efficient approximate algorithm for the
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subproblems.

The summation of the optimal objective values from the above two relaxed parts (which involve

X and Y respectively) provides a lower bound to the original problem (LRFL). Further, based on

the solutions to the relaxed subproblems, we use a simple heuristic to perturb them to obtain a

feasible solution to the original problem, which provides an upper bound to (LRFL). Specifically, we

fix the optimal facility location decisions from the first relaxed subproblem involving X. Then for

each customer 𝑖, we sort all built and connected access-facility pairs (i.e., {(𝑘, 𝑗) ∶ 𝑋𝑗 = 1, 𝑙𝑘𝑗 = 1}) in

ascending order of 𝑑𝑖𝑘𝑗. With the sorted sequence for each customer 𝑖, at every level 𝑟, we assign 𝑖 to

pair (𝑘, 𝑗) with the smallest 𝑑𝑖𝑘𝑗 as long as 𝑖 has never been assigned to 𝑘 at earlier levels 1, 2, ⋯ , 𝑟−1.

The following proposition indicates that the feasible solution from this simple approach is likely to

be near-optimum.

Proposition 1. If 𝑅 = |𝐾|, then in any optimal solution (X,Y,Z), a customer will be assigned to

backup access-facility pairs based on the transportation costs; i.e., if 𝑌𝑖𝑘1𝑗1𝑟 = 1 and 𝑌𝑖𝑘2𝑗2(𝑟+1) = 1

for some 𝑖, 𝑟, then 𝑑𝑖𝑘1𝑗1 ≤ 𝑑𝑖𝑘2𝑗2.

Proof. Suppose, for a contradiction, that (X,Y,Z) is optimal to (RFL) but there exist 𝑖, (𝑘1, 𝑗1), (𝑘2, 𝑗2)

and 𝑟 such that 𝑌𝑖𝑘1𝑗1𝑟 = 1, 𝑌𝑖𝑘2𝑗2(𝑟+1) = 1 and 𝑑𝑖𝑘1𝑗1 > 𝑑𝑖𝑘2𝑗2 . We will show that by swapping (𝑘1, 𝑗1)

and (𝑘2, 𝑗2) the objective of (RFL) will decrease. We construct a different solution (X′,Y′,Z′) as

follows:

(i) 𝑋′
𝑗 = 𝑋𝑗;

(ii) 𝑌′
ℎ𝑙𝑚𝑠 =

⎧{{{{
⎨{{{{⎩

1, if (ℎ, 𝑙, 𝑚, 𝑠) = (𝑖, 𝑘1, 𝑗1, 𝑟 + 1) or (𝑖, 𝑘2, 𝑗2, 𝑟);

0, if (ℎ, 𝑙, 𝑚, 𝑠) = (𝑖, 𝑘1, 𝑗1, 𝑟) or (𝑖, 𝑘2, 𝑗2, 𝑟 + 1);

𝑌ℎ𝑙𝑚𝑠, otherwise;

(iii) 𝑍′
ℎ𝑙𝑚𝑠 =

⎧{{{{{{{
⎨{{{{{{{⎩

1−𝑞𝑘2
1−𝑞𝑘1

𝑍𝑖𝑘1𝑗1𝑟, if (ℎ, 𝑙, 𝑚, 𝑠) = (𝑖, 𝑘2, 𝑗2, 𝑟);

𝑞𝑘2
𝑍𝑖𝑘1𝑗1𝑟, if (ℎ, 𝑙, 𝑚, 𝑠) = (𝑖, 𝑘1, 𝑗1, 𝑟 + 1);

0, if (ℎ, 𝑙, 𝑚, 𝑠) = (𝑖, 𝑘1, 𝑗1, 𝑟) or (𝑖, 𝑘2, 𝑗2, 𝑟 + 1);

𝑍ℎ𝑙𝑚𝑠, otherwise.
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By construction, (X′,Y′,Z′) is a feasible solution to (RFL). We use Φ(X,Y,Z) to denote the

objective value of (RFL) associated with (X,Y,Z), it follows that

Φ(X,Y,Z) − Φ(X′,Y′,Z′) = 𝜇𝑖 [𝑑𝑖𝑘1𝑗1𝑍𝑖𝑘1𝑗1𝑟 + 𝑑𝑖𝑘2𝑗2𝑍𝑖𝑘2𝑗2(𝑟+1) − (𝑑𝑖𝑘1𝑗1𝑍′
𝑖𝑘1𝑗1(𝑟+1) + 𝑑𝑖𝑘2𝑗2𝑍′

𝑖𝑘2𝑗2𝑟)]

= 𝜇𝑖
⎡⎢
⎣
𝑑𝑖𝑘1𝑗1𝑍𝑖𝑘1𝑗1𝑟 + 𝑑𝑖𝑘2𝑗2

𝑞𝑘1
(1 − 𝑞𝑘2

)
1 − 𝑞𝑘1

𝑍𝑖𝑘1𝑗1𝑟

−𝑑𝑖𝑘1𝑗1𝑞𝑘2
𝑍𝑖𝑘1𝑗1𝑟 − 𝑑𝑖𝑘2𝑗2

1 − 𝑞𝑘2

1 − 𝑞𝑘1

𝑍𝑖𝑘1𝑗1𝑟]

= 𝜇𝑖𝑍𝑖𝑘1𝑗1𝑟 (1 − 𝑞𝑘2
) (𝑑𝑖𝑘1𝑗1 − 𝑑𝑖𝑘2𝑗2)

Since 𝜇𝑖𝑍𝑖𝑘1𝑗1𝑟(1−𝑞𝑘2
) ≥ 0, 𝑑𝑖𝑘1𝑗1 > 𝑑𝑖𝑘2𝑗2 , we have Φ(X,Y,Z) ≥ Φ(X′,Y′,Z′), which implies that

Φ(X,Y,Z) is not optimal. This completes the proof.

Hence, when 𝑅 = |𝐾|, given the facility location decisions, this heuristic yields an optimal

customer assignment plan and a tight upper bound. In case 𝑅 < |𝐾|, it can only guarantee a

feasible but not necessarily optimal assignment decisions. However, since the probabilities for large

back-up levels to occur, i.e., the product of disruption probabilities of multiple access points, are

often smaller by orders of magnitudes, the solution given by this sorting/greedy heuristic shall be

quite close to the optimal solution.

In the remainder of the Lagrangian solution framework, we use standard subgradient techniques

(Fisher, 2004) to update the multipliers 𝜆; i.e.,

𝜆𝑛+1
𝑖𝑘𝑗 = 𝜆𝑛

𝑖𝑘𝑗 + 𝑡𝑛
𝑗 (∑

𝑟
𝑌𝑛

𝑖𝑘𝑗𝑟 − 𝑋𝑛
𝑗 ) , (3.4)

𝑡𝑛
𝑗 = 𝜉𝑛 (𝑍∗ − 𝑍𝐷(𝜆𝑛))

‖ ∑𝑟 𝑌𝑛
𝑖𝑘𝑗𝑟 − 𝑋𝑛

𝑗 ‖2 , (3.5)

where 𝜆𝑛
𝑖𝑘𝑗, 𝑡𝑛 represent the lagrangian multiplier and step size in the 𝑛th iteration, respectively. 𝜉𝑛

is a scalar, and 𝑍∗ and 𝑍𝐷(𝜆𝑛) are the best upper bound and the current lower bound, respectively.

Upon completing the lagrangian relaxation procedure, the above two bounds, especially the

lower bound, may still not be close to optimum. If the Lagrangian relaxation algorithm fails to

converge to a small enough gap in a certain number of iterations, we embed it into a branch-and-

bound (B&B) framework to further reduce the gap. We construct a binary tree by branching on X.

26



Specifically, among all unbranched variables, we select and branch on the one whose construction

yields the least system cost. After building the branching tree, we run the Lagrangian relaxation

algorithm at each node to determine the corresponding feasible solution and lower bound, and

update them after finishing both child branches. While traversing the binary tree, depth-first

search is found to perform slightly better than breadth-first or least-cost-first searches for small or

moderate-sized instances (which are likely to be solved to optimality). However, if the instances

are large, it is difficult to traverse the entire tree and completely close the gap. In such cases,

least-cost-first search is preferable since it tends to yield a reasonably good lower bound before

completely traversing the entire tree.

3.3.2 Approximate Solution to Subproblem

As we stated before, each (RFL-SP𝑖) is still a combinatorial problem with exponential complexity

in the worst case. Furthermore, considering the large number of nodes we need to explore during

the branch-and-bound process, even if we solve each subproblem (e.g., using commercial solvers)

relatively quickly (e.g., 1-10s), it may take an excessively long time to complete the entire algorithm

and find a good near-optimal solution. Therefore, in this section we develop an approximate

algorithm which helps quickly find lower bounds to the relaxed subproblems.

Equations (3.3g) show the connections between 𝑍𝑘𝑗𝑟 and 𝑍𝑘𝑗(𝑟−1), 𝑌𝑘𝑗(𝑟−1), which brings difficulty

in solving subproblem (RFL-SP𝑖). Therefore, instead of having 𝑍𝑘𝑗𝑟 directly in the formulation,

we approximate them with fixed numbers. Let 𝑘1, 𝑘2, ⋯ , 𝑘|𝐾|+1 be an ordering of the access points

such that 𝑞𝑘1
≤ 𝑞𝑘2

≤ ⋯ ≤ 𝑞𝑘|𝐾|+1
, note that 𝑞0 = 1 and 𝑘|𝐾|+1 = 0. We define two additional sets of

numbers {𝛼𝑘𝑟}∀𝑘∈𝐾,𝑟∈{1,2,⋯,𝑅+1}, {𝛽𝑟}∀𝑟∈{1,2,⋯,𝑅+1}, such that

𝛼𝑘𝑟 = (1 − 𝑞𝑘)
𝑟−1
∏
𝑙=1

𝑞𝑘𝑙
, 𝛽𝑟 =

𝑟−1
∏
𝑙=1

𝑞𝑘𝑙
.

We next replace 𝑍𝑘𝑗𝑟 and 𝑍00𝑟 by their estimates 𝛼𝑘𝑟 and 𝛽𝑟, respectively. The relaxed sub-

problem (RFL-SP𝑖) is further relaxed into

(RFL-RSP𝑖) min ∑
𝑘∈𝐾

∑
𝑗∈𝐽

𝑅+1
∑
𝑟=1

(𝜇𝑖𝑑𝑖𝑘𝑗𝛼𝑘𝑟 + 𝜆𝑘𝑗𝑟) 𝑌𝑘𝑗𝑟 +
𝑅+1
∑
𝑟=1

𝜇𝑖𝑑𝑖00𝛽𝑟𝑌00𝑟 (3.6a)

s.t. 𝑌𝑘𝑗𝑟 ≤ 𝑙𝑘𝑗, ∀𝑘 ∈ 𝐾 ∪ {0}, 𝑗 ∈ 𝐽 ∪ {0}, 𝑟 = 1, 2, ⋯ , 𝑅 + 1, (3.6b)
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∑
𝑗∈𝐽

𝑅
∑
𝑟=1

𝑌𝑘𝑗𝑟 ≤ 1, ∀𝑘 ∈ 𝐾, (3.6c)

𝑅+1
∑
𝑟=1

𝑌00𝑟 = 1, (3.6d)

∑
𝑘∈𝐾

∑
𝑗∈𝐽

𝑌𝑘𝑗𝑟 +
𝑟

∑
𝑠=1

𝑌00𝑠 = 1, ∀𝑟 = 1, 2, ⋯ , 𝑅 + 1, (3.6e)

𝑌𝑘𝑗𝑟 ∈ {0, 1}, ∀𝑘 ∈ 𝐾 ∪ {0}, 𝑗 ∈ 𝐽 ∪ {0}, 𝑟 = 1, 2, ⋯ , 𝑅 + 1. (3.6f)

We observe that (RFL-RSP𝑖) is a combinatorial assignment problem, which can be solved by

the Hungarian algorithm (as in Cui et al. (2010)). The following proposition states that the solution

to (RFL-RSP𝑖) provides a lower bound to the relaxed subproblem (RFL-SP𝑖), and hence it can be

embedded into the Lagrangian relaxation framework to facilitate computation speed, yet without

affecting the validity of the resulted lower and upper bounds.

Proposition 2. The solution to (RFL-RSP𝑖) provides a lower bound to the relaxed subproblem

(RFL-SP𝑖).

Proof. Let Y∗,Z∗ and W∗ be the optimal solution to (RFL-SP𝑖). (RFL-RSP𝑖) can be built from

(RFL-SP𝑖) by replacing 𝑍∗
𝑘𝑗𝑟 and 𝑍∗

00𝑟 with 𝛼∗
𝑘𝑟 and 𝛽∗

𝑟 , respectively, and removing constraints

(3.3f)–(3.3h) and (3.3j). Since we are relaxing contraints, the solution Y∗,Z∗ and W∗ should still

be feasible to (RFL-RSP𝑖), and based on the construction of 𝛼𝑘𝑟 and 𝛽𝑟, we know that 𝛼𝑘𝑟𝑌𝑘𝑗𝑟 and

𝛽𝑟𝑌00𝑟 are lower bounds of 𝑊𝑘𝑗𝑟 and 𝑊00𝑟, respectively. Therefore, the optimal objective value of

(RFL-RSP𝑖) is a lower bound to the optimal objective of (RFL-SP𝑖). This completes the proof.

3.4 Numerical Examples

We apply the proposed model and solution algorithms to two examples so as to demonstrate their

applicability and performance under different problem and parameter settings. The first example

includes a series of hypothetical square grid networks with varying sizes. The second case focuses on

planning railroad emergency response facility locations in the Chicago metropolitan area. The main

purpose of this example is to illustrate the impacts of various system settings (e.g., heterogeneity)

on the optimal design.d

dAll input data for these case studies will be available at my webpage http://www.siyangxie.com.
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The proposed solution algorithms are programmed in C++ and run on a 64-bit Intel i7-3770

computer with 3.40 GHz CPU and 8G RAM. The mixed-integer linear programs (LRFL) and

(RFL-SP𝑖), if solved directly, are tackled by commercial solver CPLEX 12.4 using up to 4 threads.

The reformulated problem (RFL-RSP𝑖) is solved by the Hungarian algorithm.

3.4.1 Hypothetical Grid Networks

For 𝑛 ∈ {4, 5, 6, 7, 8, 10}, an 𝑛×𝑛 square grid network is generated to represent a hypothetical study

region (e.g., a city like Venice) with 𝑛2 cells (e.g., islands) and 2𝑛(𝑛 − 1) blockage segments (e.g.,

canal branches), as shown in Figure 3.2. We assume that the network corresponds to a coordinate

system (𝑛1, 𝑛2) ∈ [1, 2, ⋯ , 𝑛] × [1, 2, ⋯ , 𝑛], where 𝑛1 increases from left to right, and 𝑛2 increases

from bottom to top; the bottom-left and top-right cells have coordinates (1, 1) and (𝑛, 𝑛), respec-

tively. We further label the cell at location (𝑛1, 𝑛2) with index 𝑛1 + 𝑛 × (𝑛2 − 1). The edge length

between any two adjacent cells is set to 1, and each cell is considered to be both an individual cus-

tomer and a candidate facility location. For cell 𝑖 = (𝑛1, 𝑛2), the demand is �̄�(1 + 𝜏𝜇 cos(𝜋 𝑛1−1
𝑛−1 ))

and the fixed facility cost is ̄𝑓 (1 + 𝜏𝑓 cos(𝜋 𝑛2−1
𝑛−1 )). The values of parameters 𝜏𝜇 and 𝜏𝑓 determine

the extent of heterogeneity of demand and facility cost distribution over the network, such that

the customer demand density varies from �̄�(1 + |𝜏𝜇|) on the left side to �̄�(1 − |𝜏𝜇|) on the right

side, and the facility cost varies from ̄𝑓 (1 + |𝜏𝑓 |) on the bottom to ̄𝑓 (1 − |𝜏𝑓 |) on the top. In these

hypothetical test cases, we set their values to be �̄� = 10.0, ̄𝑓 = 100.0, 𝜏𝜇 = 𝜏𝑓 = 0.25. The middle

point of each edge represents the access point (e.g., bridge) through which customers may travel

to service facilities. The site-dependent failure probability of the edge between cells 𝑖 and 𝑗 are

“randomly” generated as 0.015 + 0.005(mod(𝑖 + 𝑗, 5) + 1). The maximum assignment level is 𝑅 = 3

for all cases.

To solve the reliable facility location problems in these networks, we use three solution ap-

proaches: (i) CPLEX directly applied to the linearized original problem (LRFL); (ii) Lagrangian

relaxation based algorithm embedded in a branch-and-bound framework with each subproblem

(RFL-SP𝑖) solved by CPLEX (LR+B&B+CPLEX); and (iii) Lagrangian relaxation based algo-

rithm embedded in a branch-and-bound framework with each subproblem (RFL-RSP𝑖) solved by

the approximate algorithm (LR+B&B+Approx.). The solution time limit is set to be 3600 seconds.

Table 3.1 summarizes and compares the results obtained by the three approaches for a range of

29



1 2 3 n−2 n−1 n

n+1 n+2 n+3 2n−2 2n−1 2n

2n+1 2n+2 2n+3 3n−2 3n−1 3n

n2−n+1 n2−n+2 n2−n+3 n2−2 n2−1 n2

n2−2n+1 n2−2n+2 n2−2n+3 n2−n−2 n2−n−1 n2−n

n2−3n+1 n2−3n+2 n2−3n+3 n2−2n−2 n2−2n−1 n2−2n

Figure 3.2: 𝑛 × 𝑛 hypothetical grid network.

test instances.

Table 3.1: Algorithm performance comparison.
Network Number of Opt. facility Final Final Final CPU

size facilities locations UB LB gap (%) time (s)

CPLEX

4×4 1 10 402.09 398.89 0.80 3600
5×5 3 7, 20, 22 635.32 629.22 0.96 3600
6×6 3 8, 23, 26 889.87 880.80 1.02 3600
7×7 – – – – fail 3600
8×8 – – – – fail 3600

10×10 – – – – fail 3600

4×4 1 10 402.09 402.09 0.0 2371
5×5 2 7, 18 638.24 494.32 22.55 3600

LR+B&B 6×6 4 3, 23, 25, 34 934.74 598.01 36.02 3600
+CPLEX 7×7 5 2, 13, 32, 36, 42 1282.54 728.36 43.21 3600

8×8 – – – – fail 3600
10×10 – – – – fail 3600

4×4 1 10 402.09 402.09 0.0 1
5×5 3 7, 20, 22 635.32 635.32 0.0 11
6×6 3 8, 23, 26 889.87 889.87 0.0 65

LR+B&B 7×7 4 13, 16, 37, 40 1215.84 1215.84 0.0 2624
+Approx. 8×8 6 4, 23, 26, 44, 50, 54 1603.98 1474.38 8.08 3600

10×10 9 17,22,45,59,61,77,82,89,94 2524.32 2133.35 15.49 3600
10×10 9 12,16,39,42,55,67,72,89,93 2506.72 2179.06 13.07 43200

Overall, it can be observed that the solution time and solution quality deteriorate with the

network size, owing probably to the significant increase in the number of integer variables Y.

CPLEX cannot close the optimality gaps for the first three cases despite the relatively small network

sizes. For the three larger networks, CPLEX ran out of memory and failed to provide even a
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feasible solution. The LR+B&B+CPLEX approach can provide a feasible solution within one hour

for the first 4 cases, however, the optimality gaps are relatively large except for the smallest 4 × 4

network. This is because when network size is large, it takes CPLEX a long time to solve even

one instance of subproblem (RFL-SP𝑖), and thus the overall algorithm can only branch on a very

limited number of nodes within the time limit. For the 10 × 10 network, the LR+B&B+CPLEX

approach failed to give a feasible solution. In contrast, the LR+B&B+Approx. solution approach

can obtain exact optimal solutions within 1 hour for the first 4 cases. For 𝑛 ∈ {8, 10}, the optimality

gaps after 1 hour of computation are 8.08%, and 15.49%, respectively. As such, the proposed

LR+B&B+Approx. approach clearly outperforms the other two methods in terms of both solution

quality and computation time.

To further check the quality of the solutions and explore the effectiveness of our solution ap-

proach, we run the case with network size 10 × 10 for another 11 hours. The final gap reduces

from 15.49% (after 1 hour) to 13.07% (after 12 hours), and the objective value of the best known

solution decreases slightly by 0.7%, from 2524.32 to 2506.72. We suspect that the best known

feasible solution after 1 hour of computation is already of a reasonably good quality.

3.4.2 Railroad Emergency Response

We now consider the Chicago area, a region with strong railroad network presence as shown in

Figure 3.3(a). Target areas (e.g., towns and districts) are partitioned and surrounded by railroad

segments. We assume there is one major access point (at-grade crossing)e on each railroad segment

that allow first-responders to reach the regions. A limited number of emergency resource facilities

are to be deployed among these regions in anticipation of random emergencies (e.g., fire, incidents).

However, the rail crossings are subject to blockages, and hence the emergency resources of a facility

might not be accessible if all of its surrounding rail crossings are blocked. The railroad network in

Chicago contains |𝐽| = 23 candidate facility locations, |𝐼| = 23 customers (e.g., cities and towns), and

|𝐾| = 38 railway-highway crossings. In Figure 3.3(b), each line represents a railway segment, each

dot represents a railway crossing (access point), and each square (surrounded by multiple railway
eEach segment may actually include multiple access points. Since a segment cannot be passed through if and only

if all access points on it are disrupted, we can approximately consolidate these access points into one “representative”
with the “composite” disruption probability 𝑞 = ∏𝑘∈𝐿 𝑞𝑘, where 𝐿 is the set of all actual access points on this
segment. Note that when a segment is long, the distances of passing through these different access points will likely
be different. This issue is not addressed in this paper but deserves further study.
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segments) represents a target demand area as well as a candidate facility location. The demand and

fixed cost of each area are set to be proportional to its population and housing price, respectively.

The railway crossings serve as access points to built facilities, and they are categorized into three

groups, each having a high, median, or low risk of being blocked based on their annual train traffic

volumes (denoted by 𝒦ℎ, 𝒦𝑚, 𝒦𝑙, respectively). We further assume that blockage probability of

each group can be specified as follows:

𝑞𝑘 =

⎧{{{{
⎨{{{{⎩

̄𝑞 + ̂𝑞 if 𝑘 ∈ 𝒦ℎ

̄𝑞 if 𝑘 ∈ 𝒦𝑚

̄𝑞 − ̂𝑞 if 𝑘 ∈ 𝒦𝑙

where ̄𝑞 is the average probability and ̂𝑞 marks the level of spatial variation. A simplified graph of

the network is shown in Figure 3.3(c), where each node is a candidate facility location and each link

is a railway crossing. The distance 𝑑𝑖𝑘𝑗 is calculated as the shortest path distance between node 𝑖

and 𝑗 through link 𝑘 based on Figure 3.3(c). We assume that a customer receiving service from a

facility elsewhere must pass through one of the railway crossings surrounding the facility.

(a) The Chicago map
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(c) The abstract representation

Figure 3.3: The railroads network setup in Chicago area.

We test our model with a range of ̄𝑞, ̂𝑞, and 𝑅, so as to examine their impacts on the optimal

facility location design and algorithm performances. Case 10 (i.e., ̄𝑞 = ̂𝑞 = 0) represents the

degenerated situation where crossings never get blocked, and hence backup assignments are not
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necessary (i.e. 𝑅 = 1). For other cases, we assume that ̄𝑞 = 0.2, and ̂𝑞 ∈ {0, 0.1, 0.2} for identical

probability, slight site-dependent probabilities, and high site-dependent probabilities, respectively.

The value of 𝑅 varies from 2 to 4.

Solutions from our approximate algorithm (LR+B&B+Approx.) are presented in Table 3.2.

The relatively large values of access point failure probabilities have led to longer computation

times, i.e., not all cases can be solved to optimality within 2 hours. As 𝑅 increases, the total

cost decreases, due to a slightly lower likelihood for the customers to receive the penalty of losing

service. In addition, the value of 𝑅 does have observable impacts on the computation time and the

optimal facility location design. These observations are consistent with those in earlier studies by

Cui et al. (2010); Li and Ouyang (2012). Existence of access point failures generally has a noticeable

impact on the optimal facility locations, total cost (including transportation cost), and the required

computation time, if we use the no-failure counterpart (case 10) as the benchmark. Moreover, the

spatial heterogeneity (as reflected by the value of ̂𝑞) is possible to affect the optimal design, e.g.,

solutions to case 3 (with ̂𝑞 = 0.2), case 6 (with ̂𝑞 = 0.1), and case 9 (with ̂𝑞 = 0) are all quite

different. It is worth noting that failing to consider site-dependent probabilities may lead to a cost

increase, especially for transportation. For example, if we hold the failure probabilities of case 3 as

the ground truth (where ̂𝑞 = 0.2), but solve the problem as if ̂𝑞 = 0. The corresponding solution

(the one for case 9) will yield an actual total cost of 68596.4 and a transportation cost of 45636.4

under the assumed ground truth, which are 8.91% and 33.03% larger than the corresponding total

cost of 62896.0 and transportation cost of 34566.0 obtained for case 3 (with ̂𝑞 = 0.2), respectively.

It shall be also noted, however, that for many other cases, the cost “error” from ignoring access

point failure heterogeneity is not as high as those observed in other studies (which directly consider

facility failure heterogeneity). This result is somewhat intuitive because the presence of shared

access points among the facilities tends to serve as another layer of “buffer” that averages out the

spatial heterogeneity.

Figure 3.4 presents the location decisions and assignment path of each customer to access the

facilities at each backup level (i.e., 1st and 2nd) for cases 3 and 9 (with 𝑅 = 2). Generally, five

facilities {5, 6, 12, 14, 20} are built in case 3, as marked by the solid red squares, while another 4

facilities {5, 8, 14, 22} are built in case 9. For both cases, the built facilities are located at regions

with a higher concentration of demands. Specifically, in the southern half of the metropolitan area,
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Table 3.2: Algorithm performance comparison.
Index Prob. R Opt. facility Root Root Final Total Cost Trans. cost Final Time

̄𝑞 ̂𝑞 locations UB gap (%) Obj. difference difference gap (%) (s)

1 0.2 0.2 4 5, 6, 10, 14, 22 61376.0 46.0 60282.3 0.81% 3.57% 0 7054
2 0.2 0.2 3 5, 6, 10, 14, 22 61594.4 46.2 60881.2 1.33% 4.50% 2.91 7200
3 0.2 0.2 2 5, 6, 12, 14, 20 64719.2 48.0 62986.0 8.91% 33.03% 6.56 6936
4 0.2 0.1 4 5, 6, 10, 14, 22 61906.3 45.9 61377.6 0.16% 2.26% 0 7200
5 0.2 0.1 3 5, 6, 10, 14, 22 64663.3 48.2 62629.9 0.51% 2.83% 2.50 7200
6 0.2 0.1 2 5, 6, 12, 19, 20 70293.7 51.8 70115.3 3.54% 18.76% 13.07 7200
7 0.2 0 4 3, 7, 10, 14, 22 62690.3 46.5 62355.2 – – 4.84 7200
8 0.2 0 3 3, 7, 10, 14, 22 65100.8 48.5 64454.7 – – 8.40 7200
9 0.2 0 2 5, 8, 14, 22 76727.2 55.8 75635.2 – – 22.35 7200
10 0 0 1 6, 14, 21 57120.0 36.2 57120.0 – – 0 89

due to low demand, only one candidate location (e.g., 20 in case 3 and 22 in case 9) is selected. In

contrast, the densely populated northern half always has two or even more built facilities. Moreover,

regions/nodes with more access points (e.g., location 14) are more likely to be chosen since they can

provide more backup access points/opportunities. As for the customer assignments, the 1st-level

assignments can be segregated into multiple groups, with each group clustered around one facility,

while the 2nd-level assignments are more intertwined with each other. In addition, a customer may

visit the same facility or two different facilities through two different crossings at the two backup

levels. For example, in the solution for case 3, customer 4 is first assigned to facility 5 through

crossing 4 at level 1, then to facility 6 through crossing 5 at level 2; while customer 1 is first assigned

to facility 6 through crossing 6 at level 1, then to facility 6 again through crossing 5 at level 2.

(a) 1st level assignment
for case 3

(b) 2nd level assignment
for case 3

(c) 1st level assignment for
case 9

(d) 2nd level assignment
for case 9

Figure 3.4: Facility locations and customer assignments at different backup levels of cases 3 and 9.
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CHAPTER 4:

DECOMPOSITION OF FACILITY CORRELATIONS

VIA AUGMENTATION OF VIRTUAL SUPPORTING

STATIONS

In the previous chapter, the correlations of facility disruptions are caused by the failures of shared

network access points, which can be intuitively represented as additional supporting stations (Sec-

tion 3.2). However, facility disruptions could also be correlated when facilities are exposed to

shared hazards. For example, facilities in a local geographical region are prone to simultaneous

damage by a natural disaster (e.g., earthquake, hurricane, flooding). If one facility is known to

have been disrupted, its neighboring facilities will bear a higher likelihood of being disrupted as

well. To describe the correlations caused by shared hazards, since there exists no physical station,

a straightforward modeling approach would need to enumerate or simulate an exponential number

of scenarios, which is extremely computationally challenging.a

In this chapter, we develop a systematic methodological framework to describe and analyze cor-

related facility disruptions in succinct mathematical models. The framework proposes probabilistic

representations of correlated facility disruptions, develops a decomposition scheme to augment the

original customer-facility system into a customer-facility-station system with supporting stations

(which are virtual) that experience only independent failures to capture the correlations among

facilities. The added virtual supporting stations enable us to apply the optimization scheme devel-

oped in Chapter 3 to the new customer-facility-station system, which will be presented in Chapter

5. It is also proved that the decomposition scheme largely reduces the complexity associated with
aThis chapter is based on a published paper, Xie et al. (2015).
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system evaluation. We prove analytical properties of the decomposition scheme, and illustrate the

proposed methodological framework using a set of numerical case studies and sensitivity analyses.

4.1 Introduction

Facility disruptions could be correlated when facilities are exposed to shared hazards or mutual

interactions. For example, facilities in a local geographical region are prone to simultaneous damage

by a natural disaster (e.g., earthquake, hurricane, flooding). If one facility is known to have been

disrupted by an earthquake, its neighboring facilities will bear a higher likelihood of being disrupted

as well – this shows a positive correlation pattern. In another context, suppose multiple facilities

along a river are all threatened by flooding. If one facility is known to have been disrupted by

flooding, then its downstream peers become less likely to be disrupted due to the release of water

pressure. Similar correlations may also exist when facilities compete for scarce resources.

When facility disruptions exhibit correlations caused by the shared hazards, there exists no

physical station, and thus a straightforward modeling approach would need to enumerate or sim-

ulate an exponential number of scenarios; this makes it computationally difficult to even just

evaluate the system performance. To the best of our knowledge, in the supply chain context, only

very limited efforts have been made to address certain special types of disruption correlations in

facility location design (Li and Ouyang, 2010; Liberatore et al., 2012; Li et al., 2013). In other

contexts such as computer networks (Bakkaloglu et al., 2002) and biometrics (Griffiths, 1973),

researchers have attempted to use beta-binomial models to describe correlated disruptions. Such

models however are only applicable to positive correlated disruptions that are spatially symmetric

and homogeneous. Further, these models may not be capable of explicitly capturing the underlying

disruption causalities or interdependencies among facilities. There remains a lack of a systematic

methodology framework that can model general facility disruption correlations (i.e., including both

positive and general correlations) in a computationally-tractable way.

Therefore, in this chapter, we develop a systematic station structure methodology to decompose

facility disruption correlations, and make the following unique methodological contributions. First,

we define three commonly-used representations of generally correlated facility disruption profiles

(i.e., with scenario probabilities, marginal probabilities and conditional probabilities) and derive

transformations between them. These transformations unify different representations that have
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appeared in past studies (Liu et al., 2009; Lu et al., 2015; Li and Ouyang, 2010) and theoretically

prove their equivalence. Second, we provide detailed formulas to transform these probabilistic

correlation profiles into an adapted supporting station structure. This enables us to essentially de-

compose any correlated facility disruptions into a compact network structure that can be efficiently

modeled with only independent failures, which in turn allows us to avoid enumerating an expo-

nential number of disruption scenarios in evaluating system performance. Third, the number of

needed supporting stations in this new framework is drastically reduced, and so is the formulation

complexity, by allowing site-dependent station failure probabilities. It is shown in next chapter

that the new station structure can be efficiently integrated into a design framework for optimal

location decisions.

The remainder of this chapter is organized as follows. Section 4.2 introduces three probabilistic

representations of facility disruption profile as well as the station structure representation, Section

4.3 presents the main decomposition scheme from a probabilistic disruption profile to the supporting

station structure representation. Section 4.4 discusses some properties and miscellaneous issues

associated with the decomposition framework. Section 4.5 presents several illustrative numerical

experiments and sensitivity analyses, and draws managerial insights.

4.2 Facility Disruption Representations

This section proposes various succinct representations of correlated facility disruptions. Section

4.2.1 describes three commonly used probabilistic representations of a general facility disruption

profile, and the pairwise transformations between them. Section 4.2.2 introduces a new supporting

station structure representation, and its operational rules and properties.

4.2.1 Probabilistic Representations

For a given set of candidate facility locations 𝒥 , the state of each facility built at 𝑗 ∈ 𝒥 can be either

functioning or disrupted, and the state of the entire facility set 𝒥 is specified by the functioning

states of all facilities. We call a specific underlying disruption pattern of all facilities 𝒥 a disruption

profile, which can be described in three equivalent ways as follows.

We define each unique realization of facilities’ functioning states as a disruption scenario 𝜔. A

scenario 𝜔 occurs with probability 𝑝𝜔, and a parameter 𝛿𝑗𝜔 is used to indicate whether facility 𝑗
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is functioning in scenario 𝜔, 𝛿𝑗𝜔 = 1 if 𝑗 is functioning, or 0 otherwise. Moreover, each scenario

can be equivalently specified by the set of all disrupted facilities 𝐽. Let 𝑝𝑆
𝐽 = 𝑝𝜔 if 𝜔 satisfies

𝛿𝑗𝜔 = 0, ∀𝑗 ∈ 𝐽, 𝛿𝑗𝜔 = 1, ∀𝑗 ∈ 𝒥\𝐽, which denotes the probability for all locations in 𝐽 to be

disrupted while all others are functioning. Any arbitrary disruption profile can be specified by

the set 𝒮 = {𝑝𝑆
𝐽 }∀𝐽⊆𝒥 , where 𝑝𝑆

𝐽 ≥ 0, ∀𝐽 ⊆ 𝒥 and ∑𝐽⊆𝒥 𝑝𝑆
𝐽 = 1. We call set {𝑝𝑆

𝐽 }∀𝐽⊆𝒥 a scenario

representation, of the underlying disruption profile for convenience, which apparently includes a

total of 2|𝒥| elements.

A disruption profile can also be specified by marginal probabilities for facilities in set 𝐽 to be

disrupted, regardless of the states of all other facilities; i.e., 𝑝𝑀
𝐽 = ∑𝜔∶𝛿𝑗𝜔=0,∀𝑗∈𝒥 𝑝𝜔. Then set

ℳ = {𝑝𝑀
𝐽 }𝐽⊆𝒥 , where 𝑝𝑀

∅ = 1 and 𝑝𝑀
𝐽1

≥ 𝑝𝑀
𝐽2

, ∀𝐽1 ⊆ 𝐽2 ⊆ 𝒥 , specifies an arbitrary disruption profile,

which we call a marginal representation. Note that it also includes 2|𝒥 | elements.

Similarly, a disruption profile can be also represented by conditional disruption probabilities;

i.e., 𝑝𝐶
𝑗|𝐽 = 𝑝𝑀

{𝑗}∪𝐽/𝑝𝑀
𝐽 , which is the probability for facility 𝑗 ∈ 𝒥 to be disrupted given that all facilities

in set 𝐽 ⊆ 𝒥\{𝑗} have been disrupted. We call the collection of all conditional probabilities, i.e.,

𝒞 = {𝑝𝐶
𝑗|𝐽}∀𝐽⊆𝒥,𝑗∉𝐽, a conditional representation. Note that it includes |𝒥 | ⋅ 2|𝒥|−1 elements.

It is well-known that these three disruption profile representations can be transformed equiva-

lently from one another. Obviously, by definition,

𝑝𝑀
𝐽 = ∑

𝐽1∶𝐽⊆𝐽1

𝑝𝑆
𝐽1

, ∀𝐽 ⊆ 𝒥, (4.1)

𝑝𝐶
𝑗|𝐽 =

𝑝𝑀
𝑗∪𝐽

𝑝𝑀
𝐽

=
∑𝐽1∶𝐽∪{𝑗}⊆𝐽1

𝑝𝑆
𝐽1

∑𝐽2∶𝐽⊆𝐽2
𝑝𝑆

𝐽2

, ∀𝑗 ∉ 𝐽 ⊆ 𝒥. (4.2)

Next, from the Chain Rule of conditional probability (Russell and Norvig, 2009), we have,

𝑝𝑀
𝐽 =

|𝐽|
∏
𝑖=1

𝑝𝐶
𝑗𝑖|{𝑗1,⋯,𝑗𝑖−1}, ∀𝐽 ∶= {𝑗1, ⋯ , 𝑗|𝐽|} ⊆ 𝒥. (4.3)

Finally, based on the Inclusion-Exclusion Principle Brualdi (2004), we conclude that,

𝑝𝑆
𝐽 = ∑

𝐽1∶𝐽⊆𝐽1

(−1)|𝐽1|−|𝐽|𝑝𝑀
𝐽1

, ∀𝐽 ⊆ 𝒥. (4.4)

Proof. Let 𝒫(𝒥) be the set of all subsets of 𝒥 , and (𝒫(𝒥), ⊆) be a partially ordered set of all
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subsets of 𝒥 that is partially ordered by containment with the smallest element ∅. The Möbius

function 𝜇 of (𝒫(𝒥, ⊆)) is defined as

𝜇(𝐽1, 𝐽2) = (−1)|𝐽2|−|𝐽1|, ∀𝐽1 ⊆ 𝐽2 ⊆ 𝒥.

We define function 𝐹 ∶ 𝒫(𝒥) → ℝ as 𝐹(𝐽) = 𝑝𝑆
̄𝐽 , ∀𝐽 ⊆ 𝒥 , and 𝐺 ∶ 𝒫(𝒥) → ℝ as 𝐺(𝐽) =

𝑝𝑀
̄𝐽 , ∀𝐽 ⊆ 𝒥 . Based on the transformation equation (4.1), 𝐺 can be expressed in terms of 𝐹 as

𝐺(𝐽) = ∑𝐽1∶𝐽1⊆𝐽 𝐹(𝐽1), ∀𝐽 ⊆ 𝒥. Theorem 6.6.1 in Brualdi (2004) directly implies that the above

formula can be inverted to recover 𝐹 from 𝐺 as 𝐹(𝐽) = ∑𝐽1∶𝐽1⊆𝐽 𝜇(𝐽1, 𝐽)𝐺(𝐽1), ∀𝐽 ⊆ 𝒥 and further

substituting 𝐹(𝐽) = 𝑝𝑆
̄𝐽 and 𝐺(𝐽) = 𝑝𝑀

̄𝐽 yields the following transformation

𝑝𝑆
𝐽 = ∑

𝐽1∶𝐽⊆𝐽1

(−1)|𝐽1|−|𝐽|𝑝𝑀
𝐽1

, ∀𝐽 ⊆ 𝒥,

which completes the proof.

4.2.2 Station Structure Representation

The idea of virtual supporting station is first introduced in Li et al. (2013). A set of virtual stations,

𝒦, are added and connected to facilities in 𝒥 , as shown in Figure 4.1(b). A station 𝑘 ∈ 𝒦 could

be connected to multiple facilities, and we use a binary parameter 𝑙𝑘𝑗 = 1 to indicate that facility

𝑗 is connected to station 𝑘, 0 𝑙𝑘𝑗 = 0 otherwise. We further assume that each station 𝑘 ∈ 𝒦

is associated with a non-negative site-dependent disruption quasi-probability 𝑞𝑘 ∈ [0, ∞)b. The

larger this quasi-probability value, the more damaging that station is to its connected facilities.

Each sta- tion itself is also in a binary state: functioning or disrupted. By augmenting the original

facility system with the additional virtual supporting stations, a station can be specified by the set

of facilities connected to it; i.e., let 𝑘𝐽 denote the station connected to all facilities in 𝐽 but no other

facilities, i.e., 𝑙𝑘𝐽𝑗 = 1, ∀𝑗 ∈ 𝐽 and 𝑙𝑘𝐽𝑗 = 0, ∀𝑗 ∉ 𝐽.

With the additional layer of virtual supporting stations, correlations among facilities could be

equivalently captured by the stations 𝒦 with purely independent failures. The basic mechanism
bIn theoretical physics and especially quantum mechanics, a similar concept is sometimes called “quasi-

probability” (e.g., Dirac (1942); Feynman (1987)), where “conditional probabilities and probabilities of imagined
intermediary states may be negative in a calculation of probabilities of physical events or states. ... The other
possibility is that the situation for which the probability appears to be negative is not one that can be verified
directly”(Feynman, 1987).
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Facility J

Customer I i1 i2

j1 j2 j3

(a) Correlated facility disruption

Station K

Facility J j1 j2 j3

k{1} k{1,2} k{2,3} k{3}k{2} k{1,3}

Customer I i1 i2

k{1,2,3}

(b) Augmented customer-facility-station structure

Figure 4.1: Conceptual illustration of the station structure.

of the augmented facility-station system is defined as follows: a facility remains operational if and

only if at least one of its connected stations is functioning. Hence the operating state of the facility

system is determined collectively by the states of all stations. For example, in Figure 4.1(b), 𝑗1 and

𝑗2 are disrupted and 𝑗3 is functioning if and only if stations 𝑘{1}, 𝑘{2}, 𝑘{1,2}, 𝑘{1,3}, 𝑘{2,3}, 𝑘{1,2,3} are all

disrupted and 𝑘{3} is functioning. Following this mechanism, we can ensure that the probability of

a disruption scenario is equal to the product of 𝑞𝑘 for each disrupted station 𝑘, and (1−𝑞𝑘) for each

functioning station 𝑘. For example, in Figure 4.1(b), 𝑝𝑆
{1,2} = 𝑞𝑘{1}

𝑞𝑘{2}
𝑞𝑘{1,2}

𝑞𝑘{1,3}
𝑞𝑘{2,3}

𝑞𝑘{1,2,3}
(1 −

𝑞𝑘{3}
).

For the set of all possible supporting stations 𝒦, the corresponding probability formulation is

{𝑞𝑘}∀𝑘∈𝒦 , which we now call a station representation. In the worst case, the maximum number

of supporting stations can be up to |{𝑞𝑘}∀𝑘∈𝒦 | = |𝒦| = 2|𝒥|. However, as we will show in Section

4.4.1, in most real-world cases, the number of necessary supporting stations in practice is likely to

be quite small.

4.3 Decomposition of Correlations

4.3.1 Independent and Correlated Disruptions

We say that a disruption profile is independent if any subset of facilities 𝐽 ⊆ 𝒥 are independent;

i.e., 𝑝𝑀
𝐽 = 𝑝𝑀

𝐽1
⋅ 𝑝𝑀

𝐽\𝐽1
, ∀𝐽1 ⊂ 𝐽. In this case, the three probabilistic representations can be simply

expressed in terms of individual facility disruption probabilities {𝑝𝑗}∀𝑗∈𝒥 , i.e.,

𝑝𝑆
𝐽 = ∏

𝑗∈𝐽
𝑝𝑗 ∏

𝑗∉ ̄𝐽
(1 − 𝑝𝑗), 𝑝𝑀

𝐽 = ∏
𝑗∈𝐽

𝑝𝑗, 𝑝𝐶
𝑗|𝐽 =

∏𝑗∈𝑗∪𝐽 𝑝𝑗

∏𝑗∈𝐽 𝑝𝑗
, ∀𝐽 ⊆ 𝒥, 𝑗 ∉ 𝐽. (4.5)
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More generally, a disruption profile may be correlated. Next, we define positive correlation for

a disruption profile, {𝑝𝑀
𝐽 }∀𝐽⊆𝒥 . We first define a set of cue fractions 𝑝𝑀

𝐽
𝑝𝑀

𝐽\{𝑗}
≤ 1, ∀𝑗 ∈ 𝐽 ⊆ 𝒥 , and then

consider a series of iterative operations. In the first iteration, we construct a new fraction with each

of the cue fraction 𝑝𝑀
𝐽

𝑝𝑀
𝐽\{𝑗}

as the denominator and
𝑝𝑀

𝐽\{𝑗′ }

𝑝𝑀
𝐽\{𝑗,𝑗′ }

as the numerator. The numerator is simply

obtained by removing an arbitrary common subscript element 𝑗′ ∈ 𝐽, 𝑗′ ≠ 𝑗 from every item in the

original cue fraction. In each of the following iterations, we just take the resulting fractions from

the previous iteration as cue fractions and repeat the same operation until the numerator of every

resulting fraction contains an item of 𝑝𝑀
∅ . If every resulting fraction throughout the iterations is no

greater than one we call the disruption profile positively correlated. Obviously, the disruptions are

independent only if all of the resulting fractions at all iterations are equal to one. This definition

is formally stated below.

Definition 1. A set of facilities 𝐽 ⊆ 𝒥 are positively correlated if

𝑄(𝐽, 𝐽1, 𝑗) ∶=

∏
𝐽1\{𝑗}⊆𝐿⊆𝐽\{𝑗}

(𝑝𝑀
𝐿 )(−1)|𝐿|−|𝐽1|

∏
𝐽1⊆𝐿⊆𝐽

(𝑝𝑀
𝐿 )(−1)|𝐿|−|𝐽1|+1 ≤ 1, ∀𝑗 ∈ 𝐽1 ⊆ 𝐽 ⊆ 𝒥, (4.6)

and ∃𝑗 ∈ 𝐽1 ⊆ 𝐽 ⊆ 𝒥 such that 𝑄(𝐽, 𝐽1, 𝑗) < 1. If facilities are correlated but not positively correlated,

we say they are generally correlated. If all facilities in 𝒥 are positively (or generally) correlated,

we say the disruption profile is positively (or generally) correlated.

As a specific example, when 𝒥 only has two facilities, say 𝒥 ∶= {𝑗1, 𝑗2}, then the above conditions

are equivalent to
𝑝𝑀

{𝑗1}/𝑝𝑀
∅

𝑝𝑀
𝒥 /𝑝𝑀

{𝑗2}
≤ 1. This is obviously consistent with the classic definition of positively

correlated disruptions
𝑝𝐶

𝑗1|∅

𝑝𝐶
𝑗1|𝑗2

=
𝑝𝑀

{𝑗1}𝑝𝑀
{𝑗2}

𝑝𝑀
𝒥

< 1, since 𝑝𝑀
𝒥 /𝑝𝑀

{𝑗2} ≤ 1 by definition.

When facility disruptions are correlated, specifying any of the three probabilistic representations

would typically require enumerating an exponential number of the representation elements. To

circumvent this complexity, the following section describes how an arbitrary probabilistic disruption

representation can be transformed into an equivalent station representation with only independent

station failures.
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4.3.2 Decomposition Scheme

Station structure with only independent station failures are much easier for analysis and design

(Snyder, 2006; Chen et al., 2011). This section presents recipes for decomposing a facility system

with an arbitrary correlated disruption profile (probabilistic representation) into an equivalent

network with additional supporting stations (i.e., station representation).

Proposition 3. For a given station representation {𝑞𝑘𝐽
}∀𝐽⊆𝒥 , the equivalent probabilistic disruption

profile representations are formulated as:

𝑝𝑆
𝐽 = ∑

𝐽1∶𝐽⊆𝐽1

(−1)|𝐽1|−|𝐽| ⎡⎢
⎣

∏
𝐽2∶𝐽2∩𝐽1≠∅

𝑞𝑘𝐽2

⎤
⎥
⎦

, ∀𝐽 ⊆ 𝒥, (4.7)

𝑝𝑀
𝐽 = ∏

𝐽1∶𝐽1∩𝐽≠∅
𝑞𝑘𝐽1

, ∀𝐽 ⊆ 𝒥, (4.8)

𝑝𝐶
𝑗|𝐽 = ∏

𝐽1∋𝑗,𝐽1⊆ ̄𝐽
𝑞𝑘𝐽1

, ∀𝐽 ⊆ 𝒥, 𝑗 ∉ 𝐽. (4.9)

Conversely, given a probabilistic disruption representations, we can construct an equivalent sta-

tion representation by solving equations (4.7), (4.8) or (4.9). We prove in the following proposition

that the station representation satisfying (4.7), (4.8) or (4.9) exists and is unique.

Proposition 4. For any probabilistic disruption profile representation, there exists one and only

one station representation {𝑞𝑘𝐽
}∀𝐽⊆𝒥 that satisfies (4.7), (4.8) or (4.9).

Proof. See section 4.6.1.

Next, the following two propositions show how to construct a supporting station structure (sta-

tion representation) from a probabilistic disruption profile representation {𝑝𝐶
𝑗|𝐽}∀𝐽⊆𝒥,𝑗∉𝐽, {𝑝𝑀

𝐽 }∀𝐽⊆𝒥 ,

or {𝑝𝑆
𝐽 }∀𝐽⊆𝒥 .

Proposition 5. An arbitrary conditional representation {𝑝𝐶
𝑗|𝐽}∀𝐽⊆𝒥,𝑗∉𝐽 of a correlated disruption

profile can be represented by a station representation {𝑞𝑘𝐽
}∀𝐽⊆𝒥 , where:

𝑞𝑘𝐽
=

|𝐽|−1
∏
𝑖=0

⎡⎢⎢⎢
⎣

∏
𝐿∶𝐿⊆𝐽\{𝑗}

|𝐿|=𝑖

𝑝𝐶
𝑗|( ̄𝐽∪𝐿)

⎤⎥⎥⎥
⎦

(−1)𝑖

= ∏
𝐿∶𝐿⊆𝐽\{𝑗}

[𝑝𝐶
𝑗|( ̄𝐽∪𝐿)]

(−1)|𝐿|

, 𝑗 ∈ 𝐽, ∀𝐽 ⊆ 𝒥. (4.10)
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Proof. See section 4.6.2.

Proposition 6. An arbitrary marginal representation {𝑀𝐽}∀𝐽⊆𝒥 or scenario representation {𝑆𝐽}∀𝐽⊆𝒥

of a correlated disruption profile can be transformed into a station representation {𝑃(𝐾𝐽)}∀𝐽⊆𝒥 ,

where:

𝑞𝑘𝐽
=

|𝐽|
∏
𝑖=0

⎡
⎢
⎢
⎢
⎣

∏
𝐿∶ ̄𝐽⊆𝐿

|𝐿|=| ̄𝐽|+𝑖

𝑝𝑀
𝐿

⎤
⎥
⎥
⎥
⎦

(−1)𝑖−1

= ∏
𝐿∶ ̄𝐽⊆𝐿⊆𝒥

[𝑝𝑀
𝐿 ](−1)|𝐿|−| ̄𝐽|+1

(4.11)

= ∏
𝐿∶ ̄𝐽⊆𝐿⊆𝒥

⎡⎢
⎣

∑
𝐽1∶𝐿⊆𝐽1

𝑝𝑆
𝐽1

⎤⎥
⎦

(−1)|𝐿|−| ̄𝐽|+1

, ∀𝐽 ⊆ 𝒥. (4.12)

Proof. See section 4.6.3.

This decomposition scheme could be illustrated using the simple three-facility system in Figure

4.1. Suppose the scenario-based facility disruption probabilities are given as input shown in Table

4.1. Following (4.1) and (4.11), the marginal disruption probability for facility 1, 𝑝𝑀
{1}, and disrup-

tion quasi-probability for a station solely connected to this facility, 𝑞𝑘{1}
, are computed respectively

as

𝑝𝑀
{1} = 𝑝𝑆

{1} + 𝑝𝑆
{1,2} + 𝑝𝑆

{1,3} + 𝑝𝑆
{1,2,3} = 0.60,

𝑞𝑘{1}
=

𝑝𝑀
{1,2,3}

𝑝𝑀
{2,3}

= 0.30
0.35 = 0.86.

In so doing, the entire marginal representation and associated station structure can be computed,

and the results are summarized in Table 4.1.

Table 4.1: Different representations of the correlated disruption example.
Scenario 𝑝𝑆

{1} 𝑝𝑆
{2} 𝑝𝑆

{3} 𝑝𝑆
{1,2} 𝑝𝑆

{1,3} 𝑝𝑆
{2,3} 𝑝𝑆

{1,2,3}
representation 0.05 0.05 0.05 0.15 0.10 0.05 0.30

Marginal 𝑝𝑀
{1} 𝑝𝑀

{2} 𝑝𝑀
{3} 𝑝𝑀

{1,2} 𝑝𝑀
{1,3} 𝑝𝑀

{2,3} 𝑝𝑀
{1,2,3}

representation 0.60 0.55 0.50 0.45 0.40 0.35 0.30

Station 𝑞𝑘{1}
𝑞𝑘{2}

𝑞𝑘{3}
𝑞𝑘{1,2}

𝑞𝑘{1,3}
𝑞𝑘{2,3}

𝑞𝑘{1,2,3}
structure 0.86 0.75 0.67 0.93 0.95 1.00 0.79

Finally, we claim in the next proposition a property that validates the values of {𝑞𝑘} as proba-
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bilities under positive correlation.

Proposition 7. The values of 𝑞𝑘 in a station structure representation satisfies 𝑞𝑘 ∈ [0, 1], ∀𝑘 ∈ 𝒦

if and only if the disruption profile is positively correlated.

Proof. See section 4.6.4.

4.4 Discussions

This section illustrates some important properties and miscellaneous issues assoicated with the

proposed supporting station structure.

4.4.1 Compactness of the Station Structure

One may wonder how many stations will be needed to represent a complex correlation profile. Recall

that 𝑞𝑘𝐽
= 1 indicates that the station corresponding to 𝑘𝐽 fails surely and is unnecessary. Hence,

we only focus on the subset of necessary stations that must be included in the station structure.

Correspondingly, in the scenario representation 𝒮 = {𝑝𝑆
𝐽 }∀𝐽⊆𝒥 , useful information is contained only

in the subset of scenarios with positive probabilities, i.e., 𝒥 = {𝐽 ∶ 𝑝𝑆
𝐽 > 0, ∀𝐽 ⊆ 𝒥}. This section

analyzes the size of 𝒦 and 𝒮 and shows that |𝒦| is very likely to be comparable to |𝒮| (|𝒮| = |𝒥|)

in realistic settings.

First, we present a property of the supporting station structure in the following lemma.

Lemma 1. For any facility subset 𝐽 ⊆ 𝒥 , if ∃𝑗 ∈ 𝐽 such that 𝑝𝑀
̄𝐽 = 𝑝𝑀

̄𝐽∪{𝑗}, then 𝑞𝑘𝐽
= 1.

Proof. See section 4.6.5.

Lemma 1 leads to the following lemma that connects |𝒦| to |𝒮|.

Lemma 2. In a supporting station structure, 𝑞𝑘𝐽
≠ 1 only if ∃ ̃𝐽 ⊆ 𝒥 such that ̄𝐽 = ⋂𝐽1∈ ̃𝐽 𝐽1.

Proof. See section 4.6.6.

Lemma 2 indicates that if the station connected to 𝐽 is necessary (i.e., 𝑞𝑘𝐽
≠ 1), then there must

be some effective scenarios in 𝒥 whose intersection is exactly the complement of 𝐽. Lemmas 1 and

2 show the condition under which a station set is necessary – this helps determine the total number

of necessary stations |𝒦|. We denote {⋂𝐽∈ ̃𝐽 𝐽}
∀ ̃𝐽⊆𝒥

as the set of distinct intersections across any

arbitrary subset of 𝒥 , and develop the following theorem to further relate |𝒮| to |𝒦|.
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Theorem 1. In a facility system with facility set 𝒥 and effective disruption scenario set 𝒥 , the

maximum number of necessary supporting stations |𝒦| is min {2|𝒥 |, ∣{⋂𝐽∈ ̃𝐽 𝐽}
∀ ̃𝐽⊆𝒥

∣}. Specially,

|𝒦| ≤ |𝒮| + 1 if {⋂𝐽∈ ̃𝐽 𝐽}
∀ ̃𝐽⊆𝒥

= 𝒥 ⋃ ∅.

Proof. Given facility set 𝒥 , on one hand, since a station can either be connected to a facility

or not, the maximum possible number of distinct stations equals the number of subsets of 𝒥

which is 2|𝒥|. On the other hand, Lemma 2 tells us that a station is effective (i.e., its failure

propensity is unequal to 1) only if the complement of its connected facility set corresponds to

an intersection of some effective scenarios in 𝒥 , so the maximum number of stations is no more

than ∣{⋂𝐽∈ ̃𝐽 𝐽}
∀ ̃𝐽⊆𝒥

∣. Consequently, the number of necessary supporting stations is bounded as

min {2|𝒥|, ∣{⋂𝐽∈ ̃𝐽 𝐽}
∀ ̃𝐽⊆𝒥

∣}.

Remark: Theorem 1 implies that when the facility system is globally correlated, the number of

necessary stations is usually comparable to the number of scenario/marginal/conditional probabil-

ities that are needed to describe the correlation and thus the station structure is compact from a

modeling point of view. In real world cases, most intersections of effective scenarios in 𝒥 is likely

to be contained within 𝒥 ⋃ ∅ as well. Then the maximum number of distinct intersections of any

effective scenarios is around |𝒥 | + 1. So according to theorem 1, the size of the resulting station

structure, |𝒦|, is very likely to be compact.

When the facility disruptions are “locally” correlated, the number of stations |𝒦| (generally

larger than the number of facilities |𝒥|) shall be far smaller than the number of scenarios |𝒮|, and

the difference between |𝒦| and |𝒮| grows sharply with the level of localness of the correlations (i.e.,

correlations being confined within a local area). In particular, if the facility system 𝒥 could be

partitioned into 𝑁 mutually exclusive subsets {𝐽𝑛}𝑛=1,2,⋯,𝑁, such that the facilities within each

subset 𝐽𝑖 are correlated with one other, while facilities in different subsets are independent, the

maximum number of needed stations is |𝒦| ≤ ∑𝑁
𝑛=1 2|𝐽𝑛|, which is typically much smaller compared

to the maximum number of scenarios that are used/needed to describe the correlation, 𝒮 = 2|𝒥 |.

We state this obvious result in the following proposition without proof.

Proposition 8. If 𝒥 = ∪𝑛=1,2,⋯,𝑁𝐽𝑛 for some 𝑁 > 1, such that for all 𝑖 = 1, 2, ⋯ , 𝑁, the disruptions

of all facilities in 𝐽𝑖 are independent of those in 𝒥\𝐽𝑖, then the maximum number of needed stations
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|𝒦| and the number of scenarios |𝒮| satisfy |𝒦| ≤ ∑𝑁
𝑛=1 2|𝐽𝑛| and |𝒮| = 2∑𝑁

𝑛=1 |𝐽𝑛|, respectively, which

further yields

|𝒦|
|𝒮| ≤

∑𝑁
𝑛=1 2|𝐽𝑛|

2∑𝑁
𝑛=1 |𝐽𝑛|

≤

⎧{{
⎨{{⎩

1, if 𝑁 = 1 (globally correlated);

∑𝑁
𝑛=1 2|𝐽𝑛|

2|𝒥 | , if 2 ≤ 𝑁 ≤ |𝒥|/2 (locally correlated).

As an example, we consider a facility system 𝒥 = ∪𝑛=1,2,⋯,𝑁𝐽𝑛 where 𝐽𝑖 = {3𝑖 − 2, 3𝑖 − 1, 3𝑖},

and the disruptions of 𝐽𝑖 and 𝒥\𝐽𝑖 are independent. Each 𝐽𝑖 has a system structure as shown in

Figure 4.1(a), and is subject to the scenario disruption profile in Table 4.1. For this particular

system 𝒥 , the total number of scenarios is |𝒮| = (23)𝑁 = 8𝑁, while the number of stations is

only |𝒦| = 6𝑁, which is much smaller than |𝒮|. As such, the formulations we will present in

the next chapter indicate that when 𝑁 = 4, a scenario-based formulation would require at least

3𝑁 + 3𝑁(3𝑁 + 1) ⋅ 8𝑁 = 638988 binary variables to describe the scenarios, while our proposed

formulation will only need at most 3𝑁 + 3𝑁(3𝑁 + 1)(6𝑁 + 1)6𝑁 = 93612 binary variables.

Although Proposition 8 addresses the very special case where correlation among facilities can

be divided into disjoint groups, similar relationships between |𝒮| and |𝒦| can be obtained for other

cases. The following proposition, for example, shows that when the disruptions are positively

correlated, no station is needed to connect any two independent facilities.

Proposition 9. If the facility disruptions are positively correlated per Definition 1; i.e.,

∏
𝐿∶𝐽1\{𝑗}⊆𝐿⊆𝐽\{𝑗}

(𝑝𝑀
𝐿 )(−1)|𝐿|−|𝐽1| ≤ ∏

𝐿∶𝐽1⊆𝐿⊆𝐽
(𝑝𝑀

𝐿 )(−1)|𝐿|−|𝐽1|+1 , ∀𝑗 ∈ 𝐽1 ⊆ 𝐽 ⊆ 𝒥,

then for any two facilities 𝑗1 and 𝑗2 that are independent of each other; i.e., 𝑝𝑀
{𝑗1} ⋅ 𝑝𝑀

{𝑗2} = 𝑝𝑀
{𝑗1,𝑗2}, we

have 𝑞𝑘𝐽
= 1 for any facility set 𝐽 that contains both 𝑗1 and 𝑗2. That is, no station is connected to

both 𝑗1 and 𝑗2.

Proof. See section 4.6.7.

Proposition 9 is quite revealing; it implies that the number of stations shall be limited if the

correlations are local and positive (which often occurs in the real world). For example, consider

a chain of 𝑁 facilities located sequentially in a line, such that any two adjacent facilities are
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positively correlated while any non-adjacent facilities are mutually independent. In such a system,

the maximum number of scenarios is |𝒮| = 2𝑁, while the maximum number of stations needed to

express the correlation is only |𝒦| = 2𝑁 − 1, which is far smaller than |𝒮| for all 𝑁 > 2.

4.4.2 Identical Station Failure Quasi-Probability

Our framework allows supporting stations to have site-dependent failure quasi-probabilities so as

to reduce the size of the station structure. This is very appealing. However, for location design

models, it is sometimes convenient to have identical quasi-probabilities across stations (Snyder and

Daskin, 2005). A station structure with identical quasi-probabilities can be constructed based on

the following lemma.

Lemma 3. Li et al. (2013) Given a station structure with site-dependent failure quasi-probabilities,

all elements can be equivalently represented by powers of an identical constant 𝑝 > 0, i.e.,

𝑞𝑘𝐽
= 𝑝𝐼𝑘𝐽 , 𝐼𝑘𝐽

∈ ℝ. (4.13)

Where 𝐼𝑘𝐽
is the corresponding exponent of 𝑞𝑘𝐽

. If we further limit the powers to be integers,

these quasi-probabilities can be approximated arbitrarily accurately within error 𝜖 > 0, i.e.,

𝑞𝑘𝐽
∈ [𝑝𝑁𝑘𝐽 − 𝜖, 𝑝𝑁𝑘𝐽 + 𝜖] , 𝑁𝑘𝐽

∈ ℤ. (4.14)

Where 𝑁𝑘𝐽
is the corresponding integer exponent of 𝑞𝑘𝐽

under error 𝜖.

The basic idea behind Lemma 3 is to split each original station into one or multiple new ones

with identical failure quasi-probabilities. Hence, this transformation will undesirably increase the

number of the necessary stations and introduce certain approximation errors.

The following example illustrates the effects of enforcing identical station failure probabilities.

We consider a facility system 𝒥 = {1, 2, 3}, and arbitrarily generate facility disruption scenario

representation as 𝑝𝑆
{1} = 0.16, 𝑝𝑆

{2} = 𝑝𝑆
{3} = 0.12, 𝑝𝑆

{1,2} = 𝑝𝑆
{1,3} = 0.08, 𝑝𝑆

{2,3} = 0.07, 𝑝𝑆
{1,2,3} = 0.05.

After computing the station failure quasi-probabilities, we expand each station by introducing some

identical stations with equal failure quasi-probabilities which are grouped together as a substitute of

the orignal station. We further ensure that the difference between the approximated failure quasi-

probability(multiplication of the quasi-probabilities of all grouped stations) and the accurate failure
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probability of each station is no larger than a pre-set approximation error. The station structure

with site-dependent station failure quasi-probabilities and no approximation (corresponds to the

last row), and the ones with identical failure quasi-probabilities under different approximation error

tolerances are presented in Table 4.2. The values 0.1, 0.01, and 0.001 in this table are different

required approximation error tolerances (i.e., 𝜖 in (4.14)), and the associated rows list the results

of the corresponding cases.

Table 4.2: Size and accuracy of station structures with identical failure quasi-probability.
𝜖 𝑘{1} 𝑘{2} 𝑘{3} 𝑘{1,2} 𝑘{1,3} 𝑘{2,3} 𝑘{1,2,3}

Number of stations
0.1 25 25 25 3 3 5 4
0.01 30 33 33 1 1 3 2
0.001 653 712 712 19 19 68 51

Approx failure prob.
0.1 0.4167 0.4167 0.4167 0.9003 0.9003 0.8394 0.8693
0.01 0.4167 0.3817 0.3817 0.9712 0.9712 0.9162 0.9433
0.001 0.4167 0.3849 0.3849 0.9748 0.9748 0.9129 0.9339

Accurate failure prob. 0.4167 0.3846 0.3846 0.9750 0.9750 0.9135 0.9341

It can be seen that as the approximation becomes more accurate, the number of necessary sta-

tions increases dramatically. Therefore, cautions shall be taken when one decides which supporting

station structure to use.

4.4.3 Computational Treatment

Consider a facility system 𝒥 where all facilities are possible to be disrupted (otherwise we can

simply ignore those which are always functioning). In a positively correlated disruption profile

regarding this system, ∀𝑗 ∉ 𝐽 ⊆ 𝒥 , we shall have

𝑝𝐶
𝑗|𝐽 =

𝑝𝑀
{𝑗}∪𝐽

𝑝𝑀
𝐽

≥ 𝑝𝑀
{𝑗}, ∀𝑗 ∉ 𝐽 ⊆ 𝒥. (4.15)

In such a case, 𝑝𝑆
𝒥 > 0 must hold; otherwise if 𝑝𝑆

𝒥 = 0, there must exist 𝑗 ∉ 𝐽 such that

𝑝𝑀
{𝑗} > 0, 𝑝𝑀

𝐽 > 0, 𝑝𝑀
{𝑗}∪𝐽 = 0, which violates (4.15). Hence, according to the transformations from

scenario reprentation to marginal and conditional representations, any element in both the marginal

representation {𝑝𝑀
𝐽 }∀𝐽⊆𝒥 and the conditional representation {𝑝𝐶

𝑗|𝐽}∀𝑗∈𝒥,𝐽⊆𝒥\{𝑗} must have a positive

value, and it is always feasible to use (4.10)-(4.11) to construct a supporting station representation.

However, when facility disruptions are not positively correlated, or if observed data is incom-
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plete, the probability for all facilities to simultaneously disrupt may be 0 (𝑝𝑆
𝒥 = 0), and our

decomposition equations (4.10)-(4.11) for station construction would divide a positive value by 0.

To avoid such a mathematical artifact, we introduce a sufficient small value 𝜖 > 0 to replace 𝑝𝑆
𝒥 if

𝑝𝑆
𝒥 = 0. In this way, the original 𝐶

0 and 0
𝐶 expressions in equations (4.10)-(4.11) become 𝐶

𝜖 and 𝜖
𝐶 ,

respectively, and consequently our decomposition approach can continue to be applied. From the

proof of Proposition 6, this simple treatment will preserve the equivalence of the disruption profile

representations and the station structure, except that only the original probability 𝑝𝑆
𝒥 will bear a

small approximation error 𝜖. By setting 𝜖 sufficiently small, we can limit the approximation error

within an acceptable tolerance.

4.5 Numerical Examples

4.5.1 Hypothetical Examples

This section illustrates application of the proposed methodological framework to two examples of

disaster patterns as shown in Figure 4.2(a) and 4.3(a). We also conduct sensitivity analysis to

study how the station structure is dependent on various parameter settings in the next section.

Example 1: Earthquake

Figure 4.2(a) illustrates sixteen evenly distributed facility locations in an 4×4 square area. We

assume that the epicenter of a potential earthquake hazard is at location 1, since earthquake

intensity drops with distance, facilities closer to the epicenter are more likely to be disrupted. We

thus divide the city region into 10 rings centered at location 1. The facilities in each ring will fail

together, and if that happens, all other facilities closer to the epicenter are already disrupted. Such

a correlated disruption pattern can be described by a scenario representation as listed in Table 4.3.

Table 4.3: Scenario facility disruption probabilities under the earthquake hazard.
𝐽 𝑝𝑆

𝐽 𝐽 𝑝𝑆
𝐽

1 0.10 1,2,3,5,6,7,9,10,11 0.05
1,2,5 0.09 1,2,3,4,5,6,7,9,10,11,13 0.04
1,2,5,6 0.08 1,2,3,4,5,6,7,8,9,10,11,13,14 0.03
1,2,3,5,6,9 0.07 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 0.02
1,2,3,5,6,7,9,10 0.06 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16 0.01

Marginal and conditional representations are first computed from (4.1) and (4.2), respectively,

and part of the results are illustrated in Tables 4.4 and 4.5. It is observed that only positive
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13 14 15 16

(a) Input network.

0.55 0.81 0.80 0.78 0.75 0.71 0.67 0.60 0.50 0.33

station

candidate
location

(b) Station structure.

Figure 4.2: Illustrations of the network and station structure for the earthquake hazard.

correlation exists among the facility disruptions (and we can verify from Definition 1 that the

disruption profile is positively correlated).

Table 4.4: Marginal facility disruption probabilities under the earthquake hazard.
𝐽 𝑝𝑀

𝐽 𝐽 𝑝𝑀
𝐽 𝐽 𝑝𝑀

𝐽 𝐽 𝑝𝑀
𝐽 𝐽 𝑝𝑀

𝐽 𝐽 𝑝𝑀
𝐽

1 0.55 5 0.45 9 0.28 13 0.10 1,2 0.45 1,6 0.36
2 0.45 6 0.36 10 0.21 14 0.06 2,6 0.36 1,2,3 0.28
3 0.28 7 0.21 11 0.15 15 0.03 1,2,6 0.36 2,3,6 0.28
4 0.10 8 0.06 12 0.03 16 0.01 2,5,6 0.36 1,2,5,6 0.36

Table 4.5: Conditional facility disruption probabilities under the earthquake hazard.
𝑗 𝐽 𝑝𝐶

𝑗|𝐽 𝑗 𝐽 𝑝𝐶
𝑗|𝐽 𝑗 𝐽 𝑝𝐶

𝑗|𝐽 𝑗 𝐽 𝑝𝐶
𝑗|𝐽

1 2 1.0000 1 2,6 1.0000 3 2 0.6222 3 1,2 0.6222
2 1 0.8182 2 1,3 1.0000 3 6 0.7778 3 2,6 0.7778
2 5 1.0000 2 1,5 1.0000 6 1 0.6545 6 1,2,3 1.0000
2 6 1.0000 2 1,5,6 1.0000 6 2 0.8000 6 1,2,5 0.8000

The supporting station structure from equation (4.11) includes 10 supporting stations, each

with a site-dependent failure quasi-probability. Note that the number of stations is equal to the

total number of input scenarios, indicating the compactness of the station structure. The detailed

connections between the constructed stations and the facilities and the failure quasi-probabilities

of each station are presented in Table 4.6 (𝐽𝑘 is denoted as the set of facilities connected to station

𝑘) and shown in Figure 4.2(b). All stations have a failure quasi-probability between 0 and 1, which

verifies that the disruption profile is positively correlated.
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Table 4.6: Station failure quasi-probabilities under the earthquake hazard.
𝑘 𝐽𝑘 𝑞𝑘 𝑘 𝐽𝑘 𝑞𝑘

1 16 0.3333 6 4,7,8,10,11,12,13,14,15,16 0.7500
2 12,15,16 0.5000 7 3,4,7,8,9,10,11,12,13,14,15,16 0.7778
3 8,12,14,15,16 0.6000 8 3,4,6,7,8,9,10,11,12,13,14,15,16 0.8000
4 4,8,12,13,14,15,16 0.6667 9 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16 0.8182
5 4,8,11,12,13,14,15,16 0.7143 10 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16 0.5500

Example 2: Flooding

Now we consider a different type of hazard, flooding, for the same square area. Figure 4.3(a)

illustrates a river passing diagonally through locations 1, 6, 11, 16, as illustrated by the red line.

Flooding may start randomly at any point along the river, i.e. locations 1, 6, 11, 16, and once it

happens, water will spread in all directions and may disrupt nearby facilities. On the other hand,

releasing flood water at one point could release the pressure and reduce the risk of flooding at other

points. Hence, the facility disruptions exhibit both positive (e.g., along the lateral direction) and

negative correlations (e.g., along the longitudinal direction). For this example, a total of 16 input

scenarios are listed in Table 4.7.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

(a) Input network.

1.821.181.181.171.171.431.431.330.730.730.820.440.200.440.250.25

station

candidate
location

(b) Station structure.

Figure 4.3: Illustrations of the network and station structure for the flooding hazard.

Table 4.7: Scenario facility disruption probabilities under the flooding hazard.
𝐽 𝑝𝑆

𝐽 𝐽 𝑝𝑆
𝐽 𝐽 𝑝𝑆

𝐽

1 0.10 6,11 0.08 1,2,5,6 0.05
6 0.10 11,16 0.08 6,7,10,11 0.05
11 0.10 1,6,11 0.06 11,12,15,16 0.05
16 0.10 6,11,16 0.06 1,2,3,5,6,7,9,10,11 0.03
1,6 0.08 1,6,11,16 0.04 6,7,8,10,11,12,14,15,16 0.03

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16 0.01
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Similar to Example 1, we first transform the scenario representation into marginal and condi-

tional representations (the tables showing these transformation results are omitted to save space).

Then the supporting station structure is constructed from (4.11). Again, the station structure is

compact with only 16 effective supporting stations (i.e., identical to the number of input scenar-

ios). The station-facility connections and the station quasi-probabilities are presented in Table

4.8 and Figure 4.3(b). The first subset of stations (#1 - 8) have disruption quasi-probabilities

less than 1 (i.e., providing positive support), while the other stations (#9 - 16) have disruption

quasi-probabilities larger than 1 (i.e., providing negative support). It can be also seen from the

disruption profile representations that this disruption profile is generally correlated. For instance,

the results of conditional and marginal representations show that 𝑝𝐶
6|{11,16} = 0.5185 < 𝑝𝑀

{6} = 0.59,

which implies that disruption of facility 6 is generally correlated with disruptions of facilities 11

and 16. Meanwhile, 𝑝𝐶
1|{6} = 0.4576 > 𝑝𝑀

{1} = 0.37 shows that disruption of facility 1 is positively

correlated with disruption of facility 6.

Table 4.8: Station failure quasi-probabilities under the flooding hazard.
𝑘 𝐽𝑘 𝑞𝑘 𝑘 𝐽𝑘 𝑞𝑘

1 1,2,3,4,5,9,13 0.2500 9 1,2,3,4,5,8,9,12,13,14,15,16 1.3333
2 4,8,12,13,14,15,16 0.2500 10 1,2,3,4,5,7,8,9,10,12,13,14,15 1.4286
3 1,2,3,4,5,6,7,8,9,10,13,14 0.4444 11 2,3,4,5,7,8,9,10,12,13,14,15,16 1.4286
4 2,3,4,5,7,8,9,10,12,13,14,15 0.2000 12 1,2,3,4,5,6,7,8,9,10,12,13,14,15 1.1667
5 3,4,7,8,9,10,11,12,13,14,15,16 0.4444 13 2,3,4,5,7,8,9,10,11,12,13,14,15,16 1.1667
6 1,2,3,4,5,7,8,9,10,12,13,14,15,16 0.8167 14 1,2,3,4,5,6,7,8,9,10,12,13,14,15,16 1.1768
7 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 0.7297 15 1,2,3,4,5,7,8,9,10,11,12,13,14,15,16 1.1768
8 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16 0.7297 16 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16 1.8158

4.5.2 Sensitivity Analysis

In this section, we introduce more variations to the earthquake and flooding cases to study the

impacts of various system parameters on the size of the station structure. We now focus on a

square grid network in a 2-dimensional Euclidean space, {1, 2, ⋯ , 𝑛} × {1, 2, ⋯ , 𝑛}, in which each of

the 𝑛2 nodes is indexed by its coordinates (𝑖, 𝑗), 1 ≤ 𝑖, 𝑗 ≤ 𝑛. We consider four disaster cases and

set up the relevant parameters as follows.

(1) Earthquake I: Again, we assume the epicenter is at the most bottom left location (1,1), and

the distance from the epicenter to every node (𝑖, 𝑗) is 𝑑𝑖,𝑗. We first set the individual failure

probability of location (𝑖, 𝑗), 𝑝𝑖,𝑗, to be approximately inversely proportional to distance 𝑑𝑖,𝑗;
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i.e., 𝑝𝑖,𝑗 = (𝛼𝑑𝑖,𝑗 + 1)−1, where 𝛼 = 9/𝑑𝑛,𝑛, so that 𝑝1,1 = 1 and 𝑝𝑛,𝑛 = 0.1. Then we generate

all 2𝑛2 possible scenarios, each corresponding to a combination of independent disruptions at

these 𝑛2 locations. The probability of a scenario is calculated as the product of individual

location’s disruption or survival probability (i.e., either 𝑝𝑖,𝑗 or 1 − 𝑝𝑖,𝑗) across all locations.

After generating the complete set of scenarios, we conduct a random draw (based on each

scenario’s probability) to select a subset of these scenarios to form the scenario representation

of the disruption profile. The probabilities for unselected scenarios are all set to zero. Then,

based on the above scenario profile, we apply our model to calculate the number of stations

needed in the station structure.

(2) Earthquake II: Now we assume a more realistic case where the affected areas form contour

layers around the epicenter. Each layer consists of a subset of nodes that approximately have

similar distance to the epicenter; i.e., 𝐿𝑘 = {(𝑖, 𝑗) ∶ max{𝑖, 𝑗} = 𝑘}, and |𝐿𝑘 | = 2𝑘 − 1, for all

𝑘 = 1, 2, ⋯ , 𝑛. The probability for layer 𝑘 to be affected by the earthquake is approximately

inversely proportional to the distance of (𝑘, 𝑘) to the epicenter, and if layer 𝑘 is affected, then

all 2|𝐿𝑘 | possible combinations of location failures inside this layer are equally likely to occur.

Therefore, if (𝑖, 𝑗) ∈ 𝐿𝑘, then 𝑝𝑖,𝑗 = 21−2𝑘(𝛼𝑑𝑘,𝑘 + 1)−1, where 𝛼 = 9/𝑑𝑛,𝑛. Furthermore, while

generating scenarios, we enforce the additional rule that if any location in layer 𝑘+1 is disrupted,

then all facilities in layers 1, ⋯ , 𝑘 must have been disrupted. The remainder of the process is

similar to that for Earthquake I.

(3) Flooding I: Again, we assume that a river passes the area diagonally from (1, 1) to (𝑛, 𝑛).

Distance 𝑑𝑖,𝑗 now measures the minimum distance from location (𝑖, 𝑗) to the river, and the

individual failure probability 𝑝𝑖,𝑗 = (𝛼𝑑𝑖,𝑗 + 2)−1, where 𝛼 = 8/𝑑𝑛,1 so that 𝑝1,1 = 0.5 and

𝑝𝑛,1 = 0.1. Then, we generate all possible scenarios, each corresponds to a combination of at

least one but at most two failures along the river and arbitrary disruptions at the remaining

𝑛2 − 𝑛 locations. By forcing the number of failures along the river to be no more than 2, we

have introduced negative correlation into the disruption profile. The scenario probability is

then computed as the product of the corresponding location probabilities. The remainder of

the process is similar to that for Earthquake I.

(4) Flooding II: Similar to Earthquake II, we now introduce contour layers, each of which consists
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of a subset of nodes that approximately have similar distance to the river; i.e., 𝐿𝑘 = {(𝑖, 𝑗) ∶

|𝑖 − 𝑗| = 𝑘}, and 𝐿0 = 𝑛, |𝐿𝑘 | = 2(𝑛 − 𝑘), for 𝑘 ≤ 𝑛 − 1. The probability for layer 𝑘 to be affected

by flooding is now approximately inversely proportional to the distance of this layer to the river

(i.e., all locations in a layer have equal distance to the river), and if layer 𝑘 is affected, then

all 2|𝐿𝑘 | possible combinations of location failures inside this layer are equally likely to occur.

Therefore, if (𝑖, 𝑗) ∈ 𝐿𝑘, 𝑘 > 0, then 𝑝𝑖,𝑗 = 22𝑘−2𝑛(𝛼𝑑𝑘,𝑘 + 2)−1, where 𝛼 takes the same value as

that in Flooding I. Furthermore, while generating scenarios, we enforce an additional rule: if

a location (𝑖, 𝑗) in layer 𝑘 is disrupted, then its two neighboring locations in layers 𝑘 − 1 must

have both been disrupted. The rest of the process is the same as that for Flooding I.

The setup of the above cases introduces two types of correlations: those due to omission of

scenarios in the representation, and those due to generation of each scenario. For Earthquake I and

Flooding I, although the disruptions of individual locations in each scenario are independent, only

a subset of these scenarios are selected into the profile representation for station computation. The

omission of unselected scenarios reflects on the possibility that while studying real-world data, only

a subset of disaster scenarios may have ever been observed or documented in a limited period of

time. For Earthquake II and Flooding II, we further enforce for each scenario that the impacts of

the disaster spread out spatially from its source. This is similar to what happens in the real world,

and also introduces correlation inside each of the selected scenarios. In summary, the failures in

Earthquake II and Flooding II tend to be more positively correlated than those in Earthquake I

and Flooding I, respectively. This is because of the distance-based spatial spreading pattern we

enforce for each scenario. The failures in Earthquake I/II is more positively correlated than those

in Flooding I/II, respectively, because of the way we generate the scenarios (e.g., for flooding we

introduce negative correlation along the river direction).

In our computational experiments, we vary the number of locations 𝑛2, and the number of

scenarios selected for the profile representation. For each of the above four cases, we randomly

generate scenario representations and compute the station structure based on our proposed model.

In particular, we are interested in the number of supporting stations needed to equivalently represent

the correlation profile. This simulation-computation process is repeated 50 times for each case, and

the statistics of results are summarized in Table 4.9.
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Table 4.9: Statistics on # of stations with various parameters and disaster patterns.
Case setup parameters Statistics on # of stations

# of locations # of scenarios mean st.d. max min

Earthquake I

9 10 12.5 1.43 16 10
9 15 17.9 1.57 22 15
9 20 23.3 1.69 27 19
16 10 16.8 2.83 24 11
16 15 27.4 4.03 37 18
16 20 35.2 4.54 46 25

Earthquake II

9 10 11.6 1.23 14 8
9 15 16.8 4.25 24 9
9 20 22.3 8.79 33 9
16 10 13.3 1.53 16 10
16 15 20.9 2.68 28 15
16 20 29.5 3.98 36 18

Flooding I

9 10 16.1 2.48 23 12
9 15 24.3 3.83 34 18
9 20 31.7 2.45 38 27
16 10 23.1 4.08 34 17
16 15 37.4 5.53 49 24
16 20 51.8 7.54 69 35

Flooding II

9 10 13.7 1.93 19 10
9 15 20.7 3.50 26 16
9 20 27.0 2.92 32 22
16 10 18.8 2.96 25 12
16 15 30.6 6.34 45 20
16 20 44.3 7.21 59 29

We observe that for each of the four cases, the number of needed stations is comparable to,

sometimes even smaller than, the number of input scenarios in the profile representation. This

supports our earlier analysis that the number of needed stations does not grow exponentially with

the number of input scenarios. Furthermore, by comparing across these four cases, we find that

the number of stations needed in Earthquake I (or Flooding I) is generally larger than that in

Earthquake II (or Flooding II). Also, the number of needed stations in Flooding I/II is generally

larger than its counterpart in Earthquake I/II. These observations imply that the station structure

is usually more compact when the disruptions involve more positive correlations. Those involving

more negative correlations, in contrast, would require more stations. Although these results obvi-

ously depend on the choices of system parameters (e.g., disruption probabilities, scenario generation

rules), we find consistent patterns and trends across these different cases. This suggests that our

results are quite representative.
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4.5.3 U.S. Network

We further test our methodology on the U.S. map, with data derived from 1990 census data: (i) a 49-

node network with locations as the state capitals of the continental United States plus Washington,

D.C.; and (ii) a 88-node network with the 49-node locations and other 39 largest cities in the United

States. The data set is available from Professor L. Snyder’s website http://www.lehigh.edu/l̃vs2.

The two networks are shown in Figures 4.4(a) and 4.4(b), with 49 and 88 nodes, respectively.

(a) 49-node network. (b) 88-node network.

Figure 4.4: Input networks of the U.S. map with locations from 1990 census data.

49-node

As shown in Figure 4.4(a), Local disruption correlations are observed among the locations in each of

the 8 local areas in the 49-node network. Facility disruptions across these local areas, however, are

assumed to be independent. The scenario-based correlation profile (as if obtained from historical

observations) for each local area is presented in Table 4.10, in which the column with header “𝐽”

lists the facility locations disrupted in each scenario, and the column with header “𝑝𝑆
𝐽 ” presents the

corresponding scenario probabilities.

The resulting station structure, including the set of facilities 𝐽𝑘 connected to each station 𝑘 as

well as its disruption quasi-probability 𝑞𝑘, is listed in Table 4.11. The total number of stations is 75,

which is much smaller than the total number of scenarios 12×7×10×7×13×11×4×8×214 = 4.41×1011.

88-node

Similarly, the 88-node network as shown in Figure 4.4(b) includes 13 local areas. The scenario-

based disruption correlation profile for each local area is presented in Table 4.12, and the resulting
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Table 4.10: Scenario representation of disruption profile for the 49-node network.
𝐽 𝑝𝑆

𝐽 𝐽 𝑝𝑆
𝐽 𝐽 𝑝𝑆

𝐽 𝐽 𝑝𝑆
𝐽

Local I Local III Local V Local VI
2 0.008 15 0.010 28 0.010 33 0.010
3 0.008 15,16 0.008 29 0.008 34 0.008
2,3 0.006 15,17 0.008 30 0.006 35 0.006
2,3,4 0.005 15,16,17 0.008 28,29 0.008 36 0.005
2,3,4,5 0.004 15,16,18 0.006 29,30 0.006 33,34 0.008
2,3,6 0.005 15,17,19 0.006 30,31 0.005 34,35 0.006
2,3,6,7 0.004 15,16,17,18 0.005 28,29,30 0.006 35,36 0.005
2,3,4,6 0.005 15,16,17,19 0.005 29,30,31 0.005 33,34,35 0.006
2,3,4,5,6 0.003 15,16,17,18,19 0.005 30,31,32 0.004 34,35,36 0.005
2,3,4,6,7 0.003 Local IV 28,29,30,31 0.005 33,34,35,36 0.004
2,3,4,5,6,7 0.002 20 0.010 29,30,31,32 0.003 Local VIII

Local II 23 0.012 28,29,30,31,32 0.005 47 0.010
12 0.010 20,23 0.008 Local VII 48 0.005
11,12 0.010 20,21,23 0.006 39 0.010 49 0.005
10,11,12 0.008 20,22,23 0.005 40 0.010 46,47 0.010
9,11,12 0.008 20,21,22,23 0.004 39,40 0.010 48,49 0.010
9,10,11,12 0.008 47,48,49 0.005
8,9,10,11,12 0.006 46,47,48,49 0.005

Table 4.11: Station failure quasi-probabilities for the 49-node network.
𝑘 𝐽𝑘 𝑞𝑘 𝑘 𝐽𝑘 𝑞𝑘 𝑘 𝐽𝑘 𝑞𝑘 𝑘 𝐽𝑘 𝑞𝑘

1 7 0.4000 20 18,19 0.8696 39 28,31,32 0.9600 58 48,49 0.3333
2 6,7 0.5556 21 17,19 0.6250 40 28,30,31,32 0.9783 59 46,47,48 0.8000
3 5 0.4000 22 17,18,19 0.9946 41 28,29 0.6667 60 46,47,49 0.8000
4 5,7 0.9615 23 16,18 0.6350 42 28,29,30,31,32 0.0978 61 46,47,48,49 0.0938
5 5,6,7 1.0636 24 16,18,19 0.9946 43 36 0.4000 62 1 0.0200
6 4,5 0.5556 25 16,17,18,19 0.9758 44 35,36 0.5556 63 13 0.0200
7 4,5,7 1.0636 26 15,16,17,18,19 0.0610 45 34,35,36 0.6429 64 14 0.0200
8 4,5,6,7 1.0062 27 22 0.4000 46 33 0.4444 65 24 0.0200
9 3,4,5,6,7 0.8222 28 21 0.4444 47 33,36 1.0714 66 25 0.0200
10 2,4,5,6,7 0.8222 29 21,22 0.9783 48 33,35,36 1.0216 67 26 0.0200
11 2,3,4,5,6,7 0.0547 30 21,22,23 0.6970 49 33,34 0.6429 68 27 0.0200
12 8 0.4286 31 20,21,22 0.6571 50 33,34,36 1.0208 69 37 0.0200
13 8,10 0.6364 32 20,21,22,23 0.0502 51 33,34,35 0.7368 70 38 0.0200
14 8,9 0.6364 33 32 0.5000 52 33,34,35,36 0.1190 71 41 0.0200
15 8,9,10 0.8643 34 31,32 0.6250 53 39 0.5000 72 42 0.0200
16 8,9,10,11 0.8000 35 30,31,32 0.6667 54 40 0.5000 73 43 0.0200
17 8,9,10,11 0.0500 36 29,30,31,32 0.7059 55 39,40 0.0400 74 44 0.0200
18 18 0.5000 37 28 0.6250 56 46 0.5000 75 45 0.0200
19 19 0.5000 38 28,32 0.8889 57 46,47 0.5000

station structure is listed in Table 4.13. Again, the total number of stations is only 129, while the

total number of scenarios is 4.4 × 1018.
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Table 4.12: Scenario representation of disruption profile for the 88-node network.
𝐽 𝑝𝑆

𝐽 𝐽 𝑝𝑆
𝐽 𝐽 𝑝𝑆

𝐽 𝐽 𝑝𝑆
𝐽

Local I Local III Local IV Local VII
2 0.008 22 0.012 29 0.010 52 0.010
3 0.008 21,22 0.010 31 0.010 53 0.008
2,3 0.006 22,23 0.010 29,31 0.008 54,55 0.006
2,3,4 0.005 21,22,23 0.008 29,30,31 0.007 56,57 0.006
2,3,4,5 0.004 20,21,22,23 0.006 29,30,31,32 0.006 52,53 0.008
2,3,6 0.005 21,22,23,24 0.006 29,30,31,32,33 0.004 53,54,55 0.006
2,3,6,7 0.004 21,22,23,25 0.006 29,30,31,32,34 0.005 54,55,56,57 0.005
2,3,4,6 0.005 21,22,23,24,25 0.005 29,30,31,32,36 0.005 52,53,54,55 0.005
2,3,4,5,6 0.003 20,21,22,23,24,25 0.004 29,30,31,32,34,36 0.004 53,54,55,56,57 0.004
2,3,4,6,7 0.003 Local VI 29,30,31,32,33,34 0.003 52,53,54,55,56,57 0.003
2,3,4,5,6,7 0.002 45,46 0.010 29,30,31,32,33,34,36 0.003 Local VIII

Local II 47 0.008 29,30,31,32,34,35,36 0.003 61 0.010
8 0.008 48 0.006 29,30,31,32,33,34,35,36 0.002 62 0.008
9,10 0.008 49 0.005 Local X 63 0.008
11 0.008 50,51 0.004 68 0.010 64,65 0.008
8,9,10 0.006 45,46,47 0.008 69 0.010 62,63 0.006
9,10,11 0.006 47,48 0.006 68,69 0.020 61,62,63 0.005
8,9,10,11 0.005 48,49 0.005 Local XI 61,64,65 0.005
8,9,10,11,12 0.004 49,50,51 0.004 76 0.010 62,63,64,65 0.005
8,9,10,11,15 0.004 45,46,47,48 0.006 77,78 0.010 61,62,63,64,65 0.003
8,9,10,11,12,13,14 0.004 47,48,49 0.005 76,77,78 0.005 Local XII
8,9,10,11,12,13,14,15 0.003 48,49,50,51 0.004 Local XIII 79,80 0.008

Local V 45,46,47,48,49 0.005 85 0.005 81 0.008
38 0.010 47,48,49,50,51 0.004 86 0.005 79,80,81 0.010
39 0.010 45,46,47,48,49,50,51 0.003 87 0.005 79,80,81,82 0.006
40 0.010 Local IX 88 0.005 79,80,81,83 0.005
38,39 0.008 66 0.010 85,86 0.010 79,80,81,82,83 0.004
39.40 0.008 67 0.010 87,88 0.010 79,80,81,82,84 0.004
38,39,40 0.005 66,67 0.010 85,86,87,88 0.005 79,80,81,82,83,84 0.003

4.6 Proof of Propositions

4.6.1 Proof of Proposition 3

Proof. First, equations (4.8) can be converted into

log 𝑝𝑀
𝐽 = ∑

𝐽1∶𝐽1∩𝐽≠∅
log 𝑞𝑘𝐽1

, ∀𝐽 ⊆ 𝒥, (4.16)

which turn to be a system of linear equations with (2|𝒥| − 1) equations and variables. Rewrite is as

M = A ⋅ P, (4.17)

where M ∶= [log 𝑝𝑀
𝐽 ]T

𝐽⊆𝒥 , P ∶= [log 𝑞𝑘𝐽
]T
𝐽⊆𝒥 , and A is the (2|𝒥 | − 1) × (2|𝒥 | − 1) coefficient matrix.

To show that the station structure constructed from (4.16) is unique, we just need to prove that

the solution to (4.17) is unique, i.e., A is not singular (or is invertible).
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Table 4.13: Station failure quasi-probabilities for the 88-node network.
𝑘 𝐽𝑘 𝑞𝑘 𝑘 𝐽𝑘 𝑞𝑘 𝑘 𝐽𝑘 𝑞𝑘

1 7 0.4000 45 40 0.3846 89 68,69 0.0450
2 6,7 0.5556 46 38,39 0.5652 90 76 0.3333
3 5 0.4000 47 38,40 1.0903 91 77,78 0.3333
4 5,7 0.9615 48 39,40 0.5652 92 76,77,78 0.0450
5 5,6,7 1.0636 49 38,39,40 0.0970 93 84 0.4286
6 4,5 0.5556 50 50,51 0.3750 94 83 0.4286
7 4,5,7 1.0636 51 49,50,51 0.5714 95 83,84 0.9608
8 4,5,6,7 1.0062 52 48,49,50,51 0.6364 96 82,84 0.5833
9 3,4,5,6,7 0.8222 53 47,48,49,50,51 0.6875 97 82,83,84 0.9107
10 2,4,5,6,7 0.8222 54 45,46 0.4286 98 81,82,83,84 0.8000
11 2,3,4,5,6,7 0.0547 55 45,46,50,51 1.0980 99 79,80,82,83,84 0.8000
12 15 0.4286 56 45,46,49,50,51 1.0259 100 79,80,81,82,83,84 0.0500
13 13,14,15 0.6364 57 45,46,48,49,50,51 1.0127 101 87,88 0.3333
14 12,13,14 0.4286 58 45,46,47 0.6364 102 86,87,88 0.7500
15 12,13,14,15 1.2833 59 45,46,47,50,51 1.0275 103 85,87,88 0.7500
16 11,12,13,14,15 0.7692 60 45,46,47,49,50,51 1.0080 104 85,86 0.3333
17 9,10,11,12,13,14,15 0.7647 61 45,46,47,48 0.7333 105 85,86,88 0.7500
18 8,12,13,14,15 0.7692 62 45,46,47,48,50,51 1.0130 106 85,86,87 0.7500
19 8,11,12,13,14,15 0.8450 63 45,46,47,48,49 0.7895 107 85,86,87,88 0.1422
20 8,9,10,12,13,14,15 0.7647 64 45,46,47,48,49,50,51 0.1693 108 1 0.0200
21 8,9,10,11,12,13,14,15 0.0684 65 56,57 0.3750 109 16 0.0200
22 24,25 0.4000 66 54,55,56,57 0.5000 110 17 0.0200
23 20 0.4444 67 53,54,55,56,57 0.6154 111 18 0.0200
24 20,25 0.6000 68 52 0.4286 112 19 0.0200
25 20,24 0.6000 69 52,56,57 1.0370 113 26 0.0200
26 20,24,25 1.7857 70 52,54,55,56,57 1.0588 114 27 0.0200
27 20,23,24,25 0.7778 71 52,53 0.5844 115 28 0.0200
28 20,21,24,25 0.7778 72 52,53,56,57 1.0640 116 37 0.0200
29 20,21,23,24,25 0.8635 73 52,53,54,55 0.6667 117 41 0.0200
30 20,21,22,23,24,25 0.0670 74 52,53,54,55,56,57 0.1335 118 42 0.0200
31 35 0.4000 75 64,65 0.3750 119 43 0.0200
32 35,36 0.6250 76 62,63 0.3750 120 44 0.0200
33 34,35,36 0.6667 77 62,63,64,65 0.9275 121 58 0.0200
34 33 0.4000 78 61 0.3750 122 59 0.0200
35 33,35 1.0417 79 61,64,65 1.1228 123 60 0.0200
36 33,35,36 0.9600 80 61,63,64,65 0.7037 124 70 0.0200
37 33,34,35 0.7059 81 61,62,64,65 0.7037 125 71 0.0200
38 33,34,35,36 1.2143 82 61,62,63 1.0159 126 72 0.0200
39 32,33,34,35,36 0.8333 83 61,62,63,64,65 0.1086 127 73 0.0200
40 30,32,33,34,35,36 0.8400 84 66 0.5000 128 74 0.0200
41 30,31,32,33,34,35,36 0.8333 85 67 0.5000 129 75 0.0200
42 29,30,32,33,34,35,36 0.8333 86 66,67 0.0400
43 29,30,31,32,33,34,35,36 0.0720 87 68 0.6667
44 38 0.3846 88 69 0.6667

We first order all non-empty subsets in 𝒥 into a sequence S1 ∶= [𝐽1, 𝐽2, ⋯ , 𝐽2|𝒥 |−1] according to

the partial order such that 𝐽𝑗 ⊈ 𝐽𝑖, ∀1 ≤ 𝑖 < 𝑗 ≤ 2|𝒥| − 1. Apparently, in sequence S1, 𝐽2|𝒥 |−1 = 𝒥

and 𝐽𝑖 ⊂ 𝒥, , ∀1 ≤ 𝑖 < 2|𝒥 | − 1. Base on sequence S1, we construct another sequence S2 ∶=

[𝒥, ̄𝐽1, ̄𝐽2, ⋯ , ̄𝐽2|𝒥 |−2]. Apparently, S1 contains every non-empty subset in 𝒥 exactly once. Then we

order equations (4.16) such that column indices {𝐽1} follows sequence S1 and row indices {𝐽} follow
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sequence S2. Then the corresponding coefficient matrix A should be in the following form

A =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 … 1 1 1

0 1 1 … 1 1 1

∗ 0 1 … 1 1 1

⋮ ⋱ ⋱ ⋱ ⋮ ⋮ ⋮

⋮ ⋱ ⋱ 1 1 1

⋮ ⋱ 0 1 1

∗ … … … ∗ 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= B + uvT,

where ∗ denotes an entry of either 0 or 1, u = [1, 1, 1, ⋯ , 1, 1]T, v = [1, 1, 1, ⋯ , 1, 2]T, and

B =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 … 0 0 −1

−1 0 0 … 0 0 −1

∗ −1 0 … 0 0 −1

⋮ ⋱ ⋱ ⋱ ⋮ ⋮ ⋮

⋮ ⋱ ⋱ 0 0 −1

⋮ ⋱ −1 0 −1

∗ … … … ∗ −1 −1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

It is obvious that |B| = (−1)2|𝒥 | ≠ 0. We denote the (𝑚, 𝑛) element of B−1 as 𝑏′
𝑚,𝑛. Since the

inner product of the last column of B and the last row of B−1 should be 1, we obtain and have the

following observations
2|𝒥 |−1
∑
𝑛=1

𝑏′

2|𝒥|−1,𝑛
= −1. (4.18)

Further, since the inner product of the last column of B and any other row (but the last row) of

B−1 should be zero, we obtain
2|𝒥 |−2
∑
𝑚=1

2|𝒥 |−1
∑
𝑛=1

𝑏′
𝑚,𝑛 = 0. (4.19)
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Based on (4.18) and (4.19), we calculate the value of vTB−1u as

vTB−1u = [1, 1, ⋯ , 1, 2] B−1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1

1

⋮

1

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

= 2
2|𝒥 |−1
∑
𝑛=1

𝑏′

2|𝒥 |−1,𝑛
+

2|𝒥 |−2
∑
𝑚=1

2|𝒥 |−1
∑
𝑛=1

𝑏′
𝑚,𝑛 = −2.

Since B is an invertible square matrix, and 1 + vTB−1u ≠ 0, the Sherman-Morrison formula

(Sherman and Morrison, 1950) tells us that A = B + uvT is also invertible, implying that the

solution to (4.8) is unique.

Since there is a one-to-one correspondence between marginal representation and conditional

representation (or scenario representation), we can infer that the solution to (4.7) (or (4.9)) should

also exist and be unique, which completes the proof.

4.6.2 Proof of Proposition 5

Proof. First, the second equality is straightforward. Since (4.9) expresses conditional representation

{𝑝𝐶
𝑗|𝐽}∀𝐽⊆𝒥,𝑗∉𝐽 in terms of station representation {𝑞𝑘𝐽

}∀𝐽⊆𝒥 , the right-hand side of (4.10) can be

equivalently written as

∏
𝐿∶𝐿⊆𝐽\{𝑗}

[𝑝𝐶
𝑗|( ̄𝐽∪𝐿)]

(−1)|𝐿|

= ∏
𝐿∶𝐿⊆𝐽\{𝑗}

⎡
⎢⎢⎢
⎣

∏
𝐽1∶𝑗∈𝐽1
𝐽1⊆𝐽\𝐿

𝑞𝑘𝐽1

⎤
⎥⎥⎥
⎦

(−1)|𝐿|

, 𝑗 ∈ 𝐽, ∀𝐽 ⊆ 𝒥. (4.20)

Consider all 𝐿 in (4.20) with cardinality |𝐿| = 𝑖 ∈ [0, |𝐽| − 1], there are (|𝐽|−|𝐽1|
𝑖 ) such 𝐿 that satisfies

𝑗 ∈ 𝐽1 and 𝐽1 ⊆ 𝐽\𝐿. So the exponent of 𝑞𝑘𝐽1
is

|𝐽|−|𝐽1|
∑
𝑖=0

(−1)𝑖(|𝐽| − |𝐽1|
𝑖 ) =

⎧{{
⎨{{⎩

1, if 𝑗 ∈ 𝐽1 = 𝐽,

0, if 𝑗 ∈ 𝐽1 ⊂ 𝐽.

Hence we conclude that the right-hand side of (4.20) is 𝑞𝑘𝐽
, which is equal to the left-hand side of

(4.10). This completes the proof.
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4.6.3 Proof of Proposition 6

Proof. First, the second equality in (4.11) is straightforward, and equation (4.1) directly implies

(4.12). Next, we express 𝑝𝑀
𝐿 in terms of the station representation {𝑞𝑘𝐽

}∀𝐽∈𝒥 as

𝑝𝑀
𝐿 = ∏

𝐽∶𝐽∩𝐿≠∅
𝑞𝑘𝐽

=
∏𝐽⊆𝒥 𝑞𝑘𝐽

∏𝐽⊆�̄� 𝑞𝑘𝐽

. (4.21)

Substituting (4.21) and (4.1) into the right-hand side of (4.11) yields

∏
𝐿∶ ̄𝐽⊆𝐿⊆𝒥

[𝑝𝑀
𝐿 ](−1)|𝐿|−| ̄𝐽|+1

=
∏𝐿∶ ̄𝐽⊆𝐿⊆𝒥 [∏𝐽1⊆𝒥 𝑞𝑘𝐽1 )]

(−1)|𝐿|−| ̄𝐽|+1

∏𝐿∶ ̄𝐽⊆𝐿⊆𝒥 [∏𝐽1⊆�̄� 𝑞𝑘𝐽1
]

(−1)|𝐿|−| ̄𝐽|+1 , ∀𝐽 ⊆ 𝒥. (4.22)

The numerator in (4.22) is the product of [∏𝐽1⊆𝒥 𝑞𝑘𝐽1
]

(−1)|𝐿|−| ̄𝐽|+1

over all elements in {𝐿 ∶ ̄𝐽 ⊆ 𝐿 ⊆ 𝒥},

which equals 1. To compute the denominator in (4.22), for any facility set 𝐽1 ⊆ 𝐽, the number of 𝐿

that satisfies |𝐿| − | ̄𝐽| = 𝑖 ∈ [0, |𝐽|] and 𝐽1 ⊆ �̄� ⊆ 𝐽 is (|𝐽|−|𝐽1|
𝑖 ). Therefore the exponent of 𝑞𝑘𝐽1

is

|𝐽|−|𝐽1|
∑
𝑖=0

(−1)𝑖+1(|𝐽| − |𝐽1|
𝑖 ) =

⎧{{
⎨{{⎩

−1, if 𝐽1 = 𝐽,

0, if 𝐽1 ⊂ 𝐽.
(4.23)

Finally, we substitute (4.23) into the right-hand side of (4.22) and obtain

∏
𝐿∶ ̄𝐽⊆𝐿⊆𝒥

[𝑝𝑀
𝐿 ](−1)|𝐿|−| ̄𝐽|+1

= 1
𝑞−1

𝑘𝐽

= 𝑞𝑘𝐽
.

This completes the proof.

4.6.4 Proof of Proposition 7

Proof. We prove this proposition using the marginal representation. The proofs with other repre-

sentations can be similarly deduced with their transformation equations (4.1) - (4.4).

We first prove sufficiency. Recall the expression of 𝑞𝑘𝐽
in terms of marginal representation
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{𝑝𝑀
𝐽 }∀𝐽⊆𝒥 as (4.11), we pick an arbitrary 𝑗 from 𝐽, and rewrite it as

𝑞𝑘𝐽
= ⎡⎢⎢

⎣
∏

𝐿∶ ̄𝐽⊆𝐿⊆𝒥\{𝑗}
(𝑝𝑀

𝐿 )(−1)|𝐿|−| ̄𝐽|+1⎤⎥⎥
⎦

⋅ ⎡⎢⎢
⎣

∏
𝐿∶ ̄𝐽∪{𝑗}⊆𝐿⊆𝒥

(𝑝𝑀
𝐿 )(−1)|𝐿|−| ̄𝐽|+1⎤⎥⎥

⎦
, (4.24)

which is exactly 𝑄(𝒥, ̄𝐽 ∪ {𝑗}, 𝑗) (see equation (4.6)). Since the disruption profile is positively

correlated, we can conclude that 𝑞𝑘𝐽
= 𝑄(𝒥, ̄𝐽 ∪ {𝑗}, 𝑗) ≤ 1, ∀𝑗 ∈ 𝐽 ⊆ 𝒥 according to Definition 1.

Then we prove necessity. In this case, we are given that 𝑄(𝒥, ̄𝐽 ∪ {𝑗}, 𝑗) = 𝑞𝑘𝐽
≤ 1, ∀𝑗 ∈ 𝐽 ⊆ 𝒥 .

We further can obtain

𝑄(𝐽, 𝐽1, 𝑗) =
∏𝐽\{𝑗}⊇𝐿⊇𝐽1\{𝑗}(𝑝𝑀

𝐿 )(−1)|𝐿|−|𝐽1|

∏𝐽⊇𝐿⊇𝐽1
(𝑝𝑀

𝐿 )(−1)|𝐿|−|𝐽1|+1

=
∏𝐽∪{𝑗′ }\{𝑗}⊇𝐿⊇𝐽1\{𝑗}(𝑝𝑀

𝐿 )(−1)|𝐿|−|𝐽1| ⋅ ∏𝐽∪{𝑗′ }\{𝑗}⊇𝐿⊇𝐽1∪{𝑗′ }\{𝑗}(𝑝𝑀
𝐿 )(−1)|𝐿|−|𝐽1|+1

∏𝐽∪{𝑗′ }⊇𝐿⊇𝐽1
(𝑝𝑀

𝐿 )(−1)|𝐿|−|𝐽1|+1 ⋅ ∏𝐽∪{𝑗′ }⊇𝐿⊇𝐽1∪{𝑗′ }(𝑝𝑀
𝐿 )(−1)|𝐿|−|𝐽1|

= 𝑄(𝐽 ∪ {𝑗′}, 𝐽1, 𝑗) ⋅ 𝑄(𝐽 ∪ {𝑗′}, 𝐽1 ∪ {𝑗′}, 𝑗), ∀𝑗 ∈ 𝐽1 ⊇ 𝐽 ⊆ 𝒥, 𝑗′ ∉ 𝐽.

The above equation can be further expanded so we can obtain that

𝑄(𝐽, 𝐽1, 𝑗) = ∏
𝐽1⊆𝐿⊆𝐽1∪𝒥\ ̄𝐽

𝑄(𝒥, 𝐿, 𝑗) = ∏
𝐽1⊆𝐿⊆𝐽1∪𝒥\ ̄𝐽

𝑞𝑘𝐿\{𝑗}
) ≤ 1, ∀𝑗 ∈ 𝐽1 ⊇ 𝐽 ⊆ 𝒥.

This completes the proof.

4.6.5 Proof of Lemma 1

Proof. Assume that 𝐽 = 𝐽1 ∪ {𝑗} such that 𝑝𝑀
̄𝐽 = 𝑝𝑀

̄𝐽1
, we have the following equation

𝑝𝑀
̄𝐽 = 𝑝𝑀

̄𝐽1
+ ∑

𝐿∶𝐿⊆𝐽1

𝑝𝑆
̄𝐽∪𝐿. (4.25)

Then 𝑝𝑀
̄𝐽 = 𝑝𝑀

̄𝐽1
implies that

𝑝𝑆
̄𝐽∪𝐿 = 0, ∀𝐿 ⊆ 𝐽1.
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So for any 𝐽2 ⊆ 𝐽1, similar to (4.25) we have the following equation

𝑝𝑀
̄𝐽∪𝐽2

= 𝑝𝑀
̄𝐽1∪𝐽2

+ ∑
𝐽3∶𝐽3⊆𝐽1\𝐽2

𝑝𝑆
̄𝐽1∪𝐽2∪𝐽3

= 𝑝𝑀
̄𝐽1∪𝐽2

= 𝑝𝑀
̄𝐽∪𝐽2∪{𝑗}, ∀𝐽2 ⊆ 𝐽1. (4.26)

Given (4.24), for any 𝐿1 ∈ {𝐿 ∶ ̄𝐽 ⊆ 𝐿 ⊆ 𝒥\{𝑗}}, (4.26) indicates that there exists 𝐿2 = 𝐿1 ∪ {𝑗}

such that 𝑝𝑀
𝐿1

= 𝑝𝑀
𝐿2

and |𝐿1| = |𝐿2| − 1, which implies that

𝑞𝑘𝐽
=

∏𝐿∶ ̄𝐽⊆𝐿⊆𝒥\{𝑗}(𝑝𝑀
𝐿 )(−1)|𝐿|−| ̄𝐽|+1

∏ ̄𝐽∪{𝑗}⊆𝐿⊆𝒥(𝑝𝑀
𝐿 )(−1)|𝐿|−| ̄𝐽| = 1.

This completes the proof.

4.6.6 Proof of Lemma 2

Proof. According to Lemma 1, if 𝑞𝑘𝐽
≠ 1, then 𝑝𝑀

̄𝐽 ≠ 𝑝𝑀
̄𝐽∪{𝑗}, ∀𝑗 ∈ 𝐽, based on which we conclude

that

∑
𝐽1⊆𝐽\{𝑗}

𝑝𝑆
̄𝐽∪𝐽1

≠ 0, ∀𝑗 ∈ 𝐽. (4.27)

That is, for any 𝑗 ∈ 𝐽, at least one of the scenario probabilities {𝑝𝑆
̄𝐽∪𝐽1

}∀𝐽1⊆𝐽\{𝑗} is larger than 0. Let

𝐽 = {𝑗1, 𝑗2, ⋯ , 𝑗|𝐽|}, we assume that

𝑝𝑆
̄𝐽∪𝐽𝑘

≠ 0, 𝐽𝑘 ⊆ 𝐽\{𝑗𝑘}, ∀𝑘 = 1, 2, ⋯ , |𝐽|.

If we denote 𝐽′

𝑘 = ̄𝐽 ∪ 𝐽𝑘, ∀𝑘 = 1, 2, ⋯ , |𝐽|, then each 𝐽′

𝑘 is an input scenario with probability 𝑝𝑆
𝐽′
𝑘

≠ 0,

implying the following

|𝐽|
⋂
𝑘=1

𝐽′

𝑘 =
|𝐽|
⋂
𝑘=1

̄𝐽 ∪ 𝐽𝑘 = ̄𝐽.
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Denote the set formed by all distinct 𝐽′

𝑘 as ̃𝐽, then there must exist a scenario subset ̃𝐽 ⊆ 𝒥 such

that

̄𝐽 = ⋂
𝐽1∈ ̃𝐽

𝐽1, ̃𝐽 ⊆ 𝒥.

This completes the proof.

4.6.7 Proof of Proposition 9

Proof. For any two facilities 𝑗1 and 𝑗2 that are independent of each other, (4.8) implies

𝑝𝑀
{𝑗1} = ∏

𝐽∶𝑗1∈𝐽
𝑞𝑘𝐽

, 𝑝𝑀
{𝑗2} = ∏

𝐽∶𝑗2∈𝐽
𝑞𝑘𝐽

, 𝑝𝑀
{𝑗1,𝑗2} = ∏

𝐽∶𝐽∩{𝑗1,𝑗2}≠∅
𝑞𝑘𝐽

.

Substituting these equations into 𝑝𝑀
{𝑗1} ⋅ 𝑝𝑀

{𝑗2} = 𝑝𝑀
{𝑗1,𝑗2} yields

∏
𝐽∶𝑗1∈𝐽,𝑗2∈𝐽

𝑞𝑘𝐽
= 1.

Proposition 7 shows that, when facility disruptions are positively correlated, the disruption quasi-

probability for any station 𝑘 ∈ 𝒦 satisfies 𝑞𝑘 ∈ [0, 1]. Then, ∏𝐽∶𝑗1∈𝐽,𝑗2∈𝐽 𝑞𝑘𝐽
= 1 implies that

𝑞𝑘𝐽
= 1 for any facility set 𝐽 containing both 𝑗1 and 𝑗2. This completes the proof.
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CHAPTER 5:

RELIABLE FACILITY LOCATION UNDER CORRE-

LATED FACILITY DISRUPTIONS WITH VIRTUAL

SUPPORTING STATIONS

The previous chapter develops a recipe for transforming facility disruption correlations (e.g., those

caused by shared hazards) into an augmented network with additional virtual supporting stations.

It was proven that the augmented facility-station system with independent station failures can

equivalently represent the facility system with correlated facility disruptions. How to optimally

design the reliable locations of service facilities, however, remains an open nontrivial question.

Therefore, a more complete systematic methodology framework including optimization module is

needed to design reliable facility locations under correlated facility disruptions.a

In this chapter, we extend and combine the optimization and decomposition frameworks in the

previous two chapters to develop a compact mixed-integer mathematical model. The facility loca-

tion and customer assignment decisions are optimized to strike a balance between system reliability

and cost efficiency. Additional virtual stations are derived using methods in Chapter 4 and can

capture the effect of shared hazards. Extenstions are added to the optimization model proposed

in Chapter 3. To hedge against the complexity associated with the new optimization model, new

customized algorithms based on Lagrangian relaxation and approximation subroutines are further

developed. Multiple numerical case studies with various types of correlated facility disruptions are

carried out to demonstrate the performance and applicability of our models and algorithms.
aThis chapter is based on a submitted paper, Xie et al. (2018a).
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5.1 Motivation

Facility disruption correlations tend to have a strong impact on the performance of a reliable facility

location design. Cui et al. (2010) proves that site-dependent failure probabilities do have impacts.

Here we illustrate how correlated facility disruptions could further affect the facility location design.

Based on the statement in Cui et al. (2010), when facilities located in the Gulf coast area (TX,

LA, MS, AL, and FL) have a higher 10% chance of disruption, while other potential sites have a

much lower failure probability of 5%, it is preferrable to locate facilities in the capitals of CA, PA,

IL, GA, and OK in the 49-node U.S. network. However, if we further assume that GA and IL are

perfectly positively correlated (i.e., they are disrupted simultaneously), it is even more cost efficient

to hedge against the positive correlation by locating facilities in the capitals of PA, MI, GA, IA,

OK, and CA. Specifically, we choose not to build facilities in both GA and IL. The expected system

cost of this solution is $952214, compared to $955506 in Cui’s solution, as shown in Table 5.1.

Table 5.1: System costs of independent and correlated disruptions.
Pattern Item Disrupted Facility Disruption cost Probability Expected cost

Independent

Disruption cases

Harrisburg PA 908672 0.0429 38954
Oklahoma City OK 660985 0.0429 28336
Sacramento CA 1058226 0.0429 45365
Atlanta GA 861292 0.0429 36923Springfield IL

Normal case 549509 0.8145 446764
Fixed cost 339500 1.0000 339500
Total cost 955506

Correlated

Disruption cases

Harrisburg PA 748126 0.0387 28946
Lansing MI 580746 0.0387 22469
Atlanta GA 679479 0.0387 26288
Des Moines IA 566169 0.0387 21905
Oklahoma City OK 621288 0.0387 24037
Sacramento CA 1023910 0.0387 39614

Normal case 517239 0.7351 380218
Fixed cost 378200 1.0000 378200
Total cost 952214

From this example, we can see that the presence of correlation significantly affects the ex-

pected service cost. Such factors should be carefully considered and incorporated. When facility

disruptions exhibit correlations, a straightforward modeling approach would involve some type of

enumeration (or simulation and sampling), which may incur an exponential number of random

scenarios; this makes it computationally difficult to even just evaluate the performance of a given
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design. To the best of our knowledge, only a few efforts have been made to address correlated

facility disruptions, either exactly or approximately (e.g., Liberatore et al. (2011); Li and Ouyang

(2010); Lu et al. (2015)).

In light of these challenges, we build upon the idea of supporting station structure in the

previous chapter, to address the reliable facility location problem with any patterns of facility

disruption correlations. The additional layer of independent yet heterogeneous supporting stations

are incorporated into the optimization framework to capture the effect of correlated disruptions.b

As a result, the optimization model developed in this chapter, which transfers correlated facility

disruptions to independent disruptions of such stations, is capable of addressing the facility location

problem equivalently. A compact mixed-integer mathematical model is proposed to determine the

optimal facility location and customer assignment plans. Several customized solution approaches

based on Lagrangian relaxation are also developed. Case studies involving multiple patterns of

correlations are conducted to demonstrate the performance and applicability of our methodology.

The remainder of this chapter is organized as follows. Section 5.2 introduces the mixed-integer

mathematical models for the reliable facility location problem under facility disruption correlations.

Section 5.3 presents the customized solution approaches to efficiently solve the optimization model.

In Section 5.4, a range of case studies involving multiple patterns of correlations are shown.

5.2 Model Formulation

This section first presents the traditional scenario-based formulation of the reliable facility location

problem under correlated facility disruptions. Then, the scenario-based reliable facility location

model is transformed into an equivalent station-based model using the decomposition scheme pre-

sented in the previous chapter.

5.2.1 Scenario-based Formulation

We denote ℐ as the set of discrete customers, and each customer 𝑖 ∈ ℐ has a demand 𝜇𝑖. We define

𝒥 to be the set of discrete candidate facility locations, and associate each location 𝑗 ∈ 𝒥 with a

fixed facility cost 𝑓𝑗. The cost for a facility at location 𝑗 to satisfy one unit of demand from customer

𝑖 is denoted by 𝑑𝑖𝑗.

Customers can go to candidate location 𝑗 ∈ 𝒥 for service if a facility is built and no disruption
bThese stations are representations of real supporting infrastructures (instead of being virtual) in Chapter 3.
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has occurred there. Under any realization of the facility states, each customer 𝑖 seeks service by

visiting the available and functioning facility that has the smallest transportation cost. Moreover,

a penalty cost 𝜋𝑖 per unit demand will be imposed if customer 𝑖 does not receive any service. This

situation occurs if no facility is reachable, or if the cost of serving customer 𝑖 by the nearest available

facility already exceeds 𝜋𝑖. We model this possibility by adding an “emergency” facility index by

𝑗 = 0 with fixed cost 𝑓0 = 0 and transportation costs 𝑑𝑖0 = 𝜋𝑖, ∀𝑖 ∈ ℐ .

Let Ω = {0, 1}|𝒥 | be the set of all possible disruption scenarios/realizations if facilities were built

at all candidate locations (including the “emergency” facility). For each 𝜔 ∈ Ω, which occurs with

probability 𝑝𝜔, we use parameter 𝛿𝑗𝜔 = 1 to indicate that the facility at 𝑗 (if built) is functioning

in scenario 𝜔, or 0 otherwise. The emergency facility is assumed to be always functioning, i.e.,

𝛿0𝜔 = 1, ∀𝜔 ∈ Ω.

We denote 𝑋𝑗 and 𝑌𝑖𝑗𝜔 as binary variables indicating whether a facility is built at location 𝑗,

and whether customer 𝑖 visits facility 𝑗 in scenario 𝜔, respectively. Specifically,

𝑋𝑗 =
⎧{{
⎨{{⎩

1 if a facility is built at location 𝑗;

0 otherwise.

𝑌𝑖𝑗𝜔 =
⎧{{
⎨{{⎩

1 if customer 𝑖 visits facility 𝑗 in scenario 𝜔;

0 otherwise.

Then it is straightforward to see that the reliable facility location problem could be formulated

as the following scenario-based formulation (RFL-SCE):

(RFL-SCE) min ∑
𝑗∈𝒥

𝑓𝑗𝑋𝑗 + ∑
𝑖∈ℐ

∑
𝑗∈𝒥∪{0}

∑
𝜔∈Ω

𝜇𝑖𝑑𝑖𝑗𝑌𝑖𝑗𝜔𝑝𝜔 (5.1a)

s.t. ∑
𝑗∈𝒥∪{0}

𝑌𝑖𝑗𝜔 = 1, ∀𝑖 ∈ ℐ, 𝜔 ∈ Ω, (5.1b)

𝑌𝑖𝑗𝜔 ≤ 𝛿𝑗𝜔𝑋𝑗, ∀𝑖 ∈ ℐ, 𝑗 ∈ 𝒥, 𝜔 ∈ Ω, (5.1c)

𝑋𝑗, 𝑌𝑖𝑗𝜔 ∈ {0, 1}, ∀𝑖 ∈ ℐ, 𝑗 ∈ 𝒥 ∪ {0}, 𝜔 ∈ Ω. (5.1d)

The objective (5.1a) is the summation of the fixed facility costs and the expected transportation

costs (including the penalty costs) across all possible facility disruption scenarios. Constraints
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(5.1b) enforce that in any disruption scenario 𝜔 ∈ Ω, each customer 𝑖 is either assigned to a

regular facility or assigned to the emergency facility. Constraints (5.1c) require each customer to

be assigned to only a functioning open facility. Given a problem with correlated disruptions at |𝒥 |

candidate locations, the total number of possible scenarios that need to be enumerated is 2|𝒥|. This

implies that formulation (RFL-SCE), which is an integer program, requires an exponential number

of variables and constraints; thus it is extremely difficult to solve, if not impossible. So in the

next sections, we introduce a supporting station structure as well as an alternative station-based

formulation that is more compact in size and can be solved more efficiently.

5.2.2 Station-based Formulation

In this section, we take advantage of the station representation developed in Section 4.2.2 and

the optimization model (RFL-SIF) proposed in Section 3.2 to propose a new formulation for the

reliable facility location problem under any correlated facility disruptions. Each customer 𝑖 ∈ ℐ is

assigned to one most preferred station-facility pair (𝑘, 𝑗) plus a set of (𝑅 − 1) backup pairs as part

of the service plan. Again, we enforce that a station will appear at no more than one of the backup

pairs assigned to a customer. The transportation cost for station-facility pair (𝑘, 𝑗) to satisfy one

unit of demand from customer 𝑖 is now denoted by 𝑑𝑖𝑘𝑗 = 𝑑𝑖𝑗 since no physical station exists. For

all 𝑖 ∈ ℐ, 𝑗1, 𝑗2 ∈ 𝒥 , we let 𝑐𝑖𝑗1𝑗2 = 1 if 𝑑𝑖𝑗1 ≤ 𝑑𝑖𝑗2 , or 0 otherwise.

We inherit the sets of decision variables from Section 3.2: variables {𝑋𝑗}𝑗∈𝒥 denote the location

decisions, {𝑌𝑖𝑘𝑗𝑟}𝑖∈ℐ,𝑘∈𝒦∪{0},𝑗∈𝒥∪{0},𝑟∈{1,2,⋯,𝑅+1} specify the assignment of customers to station-

facility pairs at different backup levels, and {𝑍𝑖𝑘𝑗𝑟}𝑖∈ℐ,𝑘∈𝒦∪{0},𝑗∈𝒥∪{0},𝑟∈{1,2,⋯,𝑅+1} where 𝑍𝑖𝑘𝑗𝑟 ∈ ℝ

denote the quasi-probabilities for customer 𝑖 to be assigned to station-facility pair (𝑘, 𝑗) at level 𝑟.

The station-based reliable facility location problem (RFL-STA) under correlated facility disruptions

is formulated as the following mixed-integer programming model:

(RFL-STA) min ∑
𝑗∈𝒥

𝑓𝑗𝑋𝑗 + ∑
𝑖∈ℐ

∑
𝑘∈𝒦∪{0}

∑
𝑗∈𝒥∪{0}

𝑅+1
∑
𝑟=1

𝜇𝑖𝑑𝑖𝑗𝑍𝑖𝑘𝑗𝑟𝑌𝑖𝑘𝑗𝑟 (5.2a)

s.t.
𝑅

∑
𝑟=1

𝑌𝑖𝑘𝑗𝑟 ≤ 𝑋𝑗, ∀𝑖 ∈ ℐ, 𝑗 ∈ 𝒥, 𝑘 ∈ 𝒦, (5.2b)

𝑌𝑖𝑘𝑗𝑟 ≤ 𝑙𝑘𝑗, ∀𝑖 ∈ ℐ, 𝑗 ∈ 𝒥 ∪ {0}, 𝑘 ∈ 𝒦 ∪ {0}, 𝑟 = 1, 2, ⋯ , 𝑅 + 1, (5.2c)
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∑
𝑗∈𝒥

𝑅
∑
𝑟=1

𝑌𝑖𝑘𝑗𝑟 ≤ 1, ∀𝑖 ∈ ℐ, 𝑘 ∈ 𝒦, (5.2d)

𝑅+1
∑
𝑟=1

𝑌𝑖00𝑟 = 1, ∀𝑖 ∈ ℐ, (5.2e)

∑
𝑘∈𝒦

∑
𝑗∈𝒥

𝑌𝑖𝑘𝑗𝑟 +
𝑟

∑
𝑠=1

𝑌𝑖00𝑠 = 1, ∀𝑖 ∈ ℐ, 𝑟 = 1, 2, ⋯ , 𝑅 + 1, (5.2f)

𝑌𝑖𝑘1𝑗1𝑟 ≤
𝑟−1
∑
𝑠=1

𝑌𝑖𝑘2𝑗2𝑠 + 𝑐𝑖𝑗1𝑗2 + 2 − 𝑙𝑘2𝑗2 − ⎡⎢
⎣

∑ℎ∈ℐ ∑𝑘∈𝒦 ∑𝑅
𝑠=1 𝑌ℎ𝑘𝑗2𝑠

|ℐ ||𝒦|𝑅
⎤⎥
⎦

,

∀𝑖 ∈ ℐ, 𝑗1, 𝑗2 ∈ 𝒥, 𝑘1, 𝑘2 ∈ 𝒦, 2 ≤ 𝑟 ≤ 𝑅, (5.2g)

𝑍𝑖𝑘𝑗1 = 𝑙𝑘𝑗 (1 − 𝑞𝑘) , ∀𝑖 ∈ ℐ, 𝑗 ∈ 𝒥 ∪ {0}, 𝑘 ∈ 𝒦 ∪ {0}, (5.2h)

𝑍𝑖𝑘𝑗𝑟 = 𝑙𝑘𝑗 (1 − 𝑞𝑘) ⋅ ∑
𝑘′∈𝒦

∑
𝑗′∈𝒥

𝑞𝑘′

1 − 𝑞𝑘′
𝑍𝑖𝑘′𝑗′(𝑟−1)𝑌𝑖𝑘′𝑗′(𝑟−1),

∀𝑖 ∈ ℐ, 𝑗 ∈ 𝒥 ∪ {0}, 𝑘 ∈ 𝒦 ∪ {0}, 𝑟 = 2, 3, ⋯ , 𝑅 + 1, (5.2i)

𝑋𝑗, 𝑌𝑖𝑘𝑗𝑟 ∈ {0, 1}, ∀𝑖 ∈ ℐ, 𝑗 ∈ 𝒥 ∪ {0}, 𝑘 ∈ 𝒦 ∪ {0}, 𝑟 = 1, 2, ⋯ , 𝑅 + 1. (5.2j)

The objective function (5.2a) and constraints (5.2b)-(5.2f), (5.2h)–(5.2j) are exactly the same

as those in (RFL). Constraints (5.2g) enforce that a customer is always assigned to the closest

functioning station-facility pair for service; i.e., for any 1 ≤ 𝑟 ≤ 𝑅 and two arbitrary station-facility

pairs (𝑘1, 𝑗1), (𝑘2, 𝑗2) with 𝑑𝑖𝑗2 < 𝑑𝑖𝑗1 , if facility 𝑗2 is built, and a customer 𝑖 is assigned to (𝑘1, 𝑗1) at

level 𝑟, then 𝑖 should have been assigned to (𝑘2, 𝑗2) at some level 𝑠 < 𝑟. Constraints (5.2g) ensure

equivalence between (RFL-STA) and (RFL-SCE), as we will prove in 10.

We then show in Proposition 10 below that the above formulation (RFL-STA) correctly captures

the effect of correlated facility disruptions: with sufficiently large 𝑅, the station-based formulation

(RFL-STA) is equivalent to the scenario-based formulation (RFL-SCE).

Proposition 10. When 𝑅 = |𝒦|, the station-based formulation (RFL-STA) with station structure

is guaranteed to yield exactly the same optimal objective value and optimal solutions as the scenario-

based formulation (RFL-SCE).

Proof. See section 5.5.1.

If 𝑅 < |𝒦|, the two formulations are not necessarily equivalent. However, when only a limited

number of facilities are built in the optimal solution, if 𝑅 is as large as the total number of all
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stations connected to the open facilities, the two formulations are equivalent. Furthermore, as the

value of 𝑅 only influences very high order terms in the formulation, even choosing an 𝑅 value smaller

than |𝒦| would have only a small impact on the optimal location decisions.c More discussion on

this choice can be found in Cui et al. (2010) and Section 5.4.2.

Formulation (RFL-STA) is nonlinear because the objective and constraints (5.2i) contain non-

linear terms 𝑍𝑖𝑘𝑗𝑟𝑌𝑖𝑘𝑗𝑟. However, since each 𝑍𝑖𝑘𝑗𝑟𝑌𝑖𝑘𝑗𝑟 is a product of a bounded continuous variable

and a binary variable, we can linearize it by applying a variant of the technique introduced by

Sherali and Alameddine (1992). First, since quasi-probability 𝑞𝑘 can take any nonnegative value in

[0, ∞), 𝑍𝑖𝑘𝑗𝑟 can take any real value in [𝑀𝑘, 𝑀𝑘], where

𝑀𝑘 = min
∀𝐿⊆𝒦\{𝑘}

⎡⎢
⎣
(1 − 𝑞𝑘) ∏

𝑙∈𝐿
𝑞𝑙

⎤⎥
⎦

, ∀𝑘 ∈ 𝒦,

𝑀𝑘 = max
∀𝐿⊆𝒦\{𝑘}

⎡⎢
⎣
(1 − 𝑞𝑘) ∏

𝑙∈𝐿
𝑞𝑙

⎤⎥
⎦

, ∀𝑘 ∈ 𝒦.

We then can replace each 𝑍𝑖𝑘𝑗𝑟𝑌𝑖𝑘𝑗𝑟 by a new continuous variable 𝑊𝑖𝑘𝑗𝑟 and enforce their equivalence

by adding the following four sets of constraints

𝑊𝑖𝑘𝑗𝑟 ≤ 𝑍𝑖𝑘𝑗𝑟 + 𝑀𝑘(𝑌𝑖𝑘𝑗𝑟 − 1), (5.3a)

𝑊𝑖𝑘𝑗𝑟 ≥ 𝑍𝑖𝑘𝑗𝑟 + 𝑀𝑘(𝑌𝑖𝑘𝑗𝑟 − 1), (5.3b)

𝑊𝑖𝑘𝑗𝑟 ≤ 𝑀𝑘𝑌𝑖𝑘𝑗𝑟, (5.3c)

𝑊𝑖𝑘𝑗𝑟 ≥ 𝑀𝑘𝑌𝑖𝑘𝑗𝑟. (5.3d)

The model formulation is now transformed into the following:

(LRFL-STA) min ∑
𝑗∈𝒥

𝑓𝑗𝑋𝑗 + ∑
𝑖∈ℐ

∑
𝑘∈𝒦∪{0}

∑
𝑗∈𝒥∪{0}

𝑅+1
∑
𝑟=1

𝜇𝑖𝑑𝑖𝑗𝑊𝑖𝑘𝑗𝑟 (5.4a)

s.t. (5.2b) − (5.2h), (5.4b)

𝑍𝑖𝑘𝑗𝑟 = (1 − 𝑞𝑘) ∑
𝑘′ ∈𝒦

∑
𝑗′ ∈𝒥

𝑞𝑘′

1 − 𝑞𝑘′
𝑊𝑖𝑘′ 𝑗′ (𝑟−1),

cOne of the side-effects of the approximate model formulation (with a small R) is that the customers do not
necessarily go to the nearest operational facility, but rather they may, at least theoretically, go to a more reliable yet
farther one so as to lower the risk of losing service completely.
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∀𝑖 ∈ ℐ, 𝑗 ∈ 𝒥 ∪ {0}, 𝑘 ∈ 𝒦 ∪ {0}, 𝑟 = 2, 3, ⋯ , 𝑅 + 1, (5.4c)

(5.3a) − (5.3d), ∀𝑖 ∈ ℐ, 𝑗 ∈ 𝒥 ∪ {0}, 𝑘 ∈ 𝒦 ∪ {0}, 𝑟 = 1, 2, ⋯ , 𝑅 + 1, (5.4d)

𝑋𝑗, 𝑌𝑖𝑘𝑗𝑟 ∈ {0, 1}, ∀𝑖 ∈ ℐ, 𝑗 ∈ 𝒥 ∪ {0}, 𝑘 ∈ 𝒦 ∪ {0}, 𝑟 = 1, 2, ⋯ , 𝑅 + 1.

(5.4e)

This mixed-integer linear program (LRFL-STA) could in theory be solved by commercial solvers

such as CPLEX and Gurobi. However, the existence of station-facility pairs as well as their as-

sociated site-dependent disruption quasi-probability exacerbates the model complexity. In light of

this, we develop customized solution approaches in the next section.

5.3 Solution Approach

In this section, we extend the solution algorithm designed in Section 3.3 to provide a more accurate

and efficient approach for (LRFL-STA) with virtual stations.

5.3.1 Lagrangian Relaxation

We choose to relax constraints (5.2b) in (LRFL-STA) with Lagrangian multipliers {𝜆𝑖𝑘𝑗}∀𝑖∈ℐ,∀𝑘∈𝒦,∀𝑗∈𝒥

and move them as penalty terms to the objective function. The objective function becomes

min ∑
𝑗∈𝒥

⎛⎜⎜
⎝

𝑓𝑗 − ∑
𝑖∈ℐ

∑
𝑘∈𝒦

𝜆𝑖𝑘𝑗
⎞⎟⎟
⎠

𝑋𝑗 + ∑
𝑖∈ℐ

∑
𝑘∈𝒦∪{0}

∑
𝑗∈𝒥∪{0}

𝑅+1
∑
𝑟=1

𝜇𝑖𝑑𝑖𝑗𝑊𝑖𝑘𝑗𝑟 + ∑
𝑖∈ℐ

∑
𝑘∈𝒦

∑
𝑗∈𝒥

𝜆𝑖𝑘𝑗
𝑅

∑
𝑟=1

𝑌𝑖𝑘𝑗𝑟.

The above relaxation of the set of constraints (5.2b) essentially decouples the location and

assignment variables X and Y. The remaining model can be decomposed into multiple disjoint

parts. The part involving X,

min
𝑋𝑗∈{0,1},∀𝑗

∑
𝑗∈𝒥

⎛⎜⎜
⎝

𝑓𝑗 − ∑
𝑖∈ℐ

∑
𝑘∈𝒦

𝜆𝑖𝑘𝑗
⎞⎟⎟
⎠

𝑋𝑗,

can be solved by simple inspection; i.e., given any {𝜆𝑖𝑘𝑗}, we can easily find the optimal X as follows:

𝑋𝑗 =

⎧{{
⎨{{⎩

1 if 𝑓𝑗 − ∑𝑖∈ℐ ∑𝑘∈𝒦 𝜆𝑖𝑘𝑗 < 0;

0 otherwise.
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We further notice that the remaining problem can be further separated into individual sub-

problems, one for each customer, as long as we relax the term ∑ℎ∈ℐ ∑𝑘∈𝒦 ∑𝑅
𝑠=1 𝑌ℎ𝑘𝑗2𝑠 in (5.2g) by

∑𝑘∈𝒦 ∑𝑅
𝑠=1 𝑌𝑖𝑘𝑗2𝑠. The relaxed subproblem (RFL-STA-SP𝑖) with respect to customer 𝑖 is

(RFL-STA-SP𝑖) min ∑
𝑘∈𝒦∪{0}

∑
𝑗∈𝒥∪{0}

𝑅+1
∑
𝑟=1

𝜇𝑖𝑑𝑖𝑗𝑊𝑘𝑗𝑟 + ∑
𝑘∈𝒦

∑
𝑗∈𝒥

𝜆𝑘𝑗
𝑅

∑
𝑟=1

𝑌𝑘𝑗𝑟 (5.5a)

s.t. 𝑌𝑘𝑗𝑟 ≤ 𝑙𝑘𝑗, ∀𝑗 ∈ 𝒥 ∪ {0}, 𝑘 ∈ 𝒦 ∪ {0}, 𝑟 = 1, 2, ⋯ , 𝑅 + 1, (5.5b)

∑
𝑗∈𝒥

𝑅
∑
𝑟=1

𝑌𝑘𝑗𝑟 ≤ 1, ∀𝑘 ∈ 𝒦, (5.5c)

𝑅+1
∑
𝑟=1

𝑌00𝑟 = 1, (5.5d)

∑
𝑘∈𝒦

∑
𝑗∈𝒥

𝑌𝑘𝑗𝑟 +
𝑟

∑
𝑠=1

𝑌00𝑠 = 1, ∀𝑟 = 1, 2, ⋯ , 𝑅 + 1, (5.5e)

𝑌𝑘1𝑗1𝑟 ≤
𝑟−1
∑
𝑠=1

𝑌𝑘2𝑗2𝑠 + 𝑐𝑖𝑗1𝑗2 + 2 − 𝑙𝑘2𝑗2 −
∑𝑘∈𝒦 ∑𝑅

𝑠=1 𝑌𝑘𝑗2𝑠

|ℐ ||𝒦|𝑅
,

∀𝑖 ∈ ℐ, 𝑗1, 𝑗2 ∈ 𝒥, 𝑘1, 𝑘2 ∈ 𝒦, 2 ≤ 𝑟 ≤ 𝑅, (5.5f)

𝑍𝑘𝑗1 = 1 − 𝑞𝑘, ∀𝑗 ∈ 𝒥, 𝑘 ∈ 𝒦, (5.5g)

𝑍𝑘𝑗𝑟 = (1 − 𝑞𝑘) ∑
𝑘′ ∈𝒦

∑
𝑗′ ∈𝒥

𝑞𝑘′

1 − 𝑞𝑘′
𝑊𝑗′ 𝑘′ (𝑟−1),

∀𝑗 ∈ 𝒥, 𝑘 ∈ 𝒦, 𝑟 = 2, 3, ⋯ , 𝑅 + 1, (5.5h)

(5.3a) − (5.3d), (5.5i)

𝑌𝑘𝑗𝑟 ∈ {0, 1}, ∀𝑗 ∈ 𝒥, 𝑘 ∈ 𝒦, 𝑟 = 1, 2, ⋯ , 𝑅 + 1. (5.5j)

Note that (RFL-STA-SP𝑖), although still a mixed-integer linear program, is much smaller in size

than the original (LRFL-STA), and hence it can often be efficiently handled by commercial solvers

like CPLEX. However, solving this subproblem repeatedly (for each customer, and across La-

grangian relaxation iterations) could pose as a computational burden. Thus, section 5.3.3 further

proposes an optional customized algorithm to solve (RFL-STA-SP𝑖).

The optimal objective values from the relaxed subproblems provide a lower bound to the original

problem. Section 5.3.2 describes a heuristic to perturb the subproblem solutions in order to obtain

a feasible solution to the original problem (which provides an upper bound). With the upper bound

74



and lower bound, we use standard subgradient techniques (Fisher, 2004) to update the multipliers

𝜆 in the Lagrangian procedure; i.e.,

𝜆𝑛+1
𝑖𝑘𝑗 = 𝜆𝑛

𝑖𝑘𝑗 + 𝑡𝑛
𝑗 (∑

𝑟
𝑌𝑛

𝑖𝑘𝑗𝑟 − 𝑋𝑛
𝑗 ) , (5.6)

𝑡𝑛
𝑗 = 𝜉𝑛 (𝑍∗ − 𝑍𝐷(𝜆𝑛))

‖ ∑𝑟 𝑌𝑛
𝑖𝑘𝑗𝑟 − 𝑋𝑛

𝑗 ‖2 , (5.7)

where 𝜆𝑛
𝑖𝑘𝑗 represents a generic multiplier in the 𝑛th iteration, 𝑡𝑛 is the step size, 𝜉𝑛 is a scalar, and

𝑍∗ and 𝑍𝐷(𝜆𝑛) are the best upper bound and the current lower bound, respectively.

The above bounds, especially the lower bound, may be far from optimum (e.g., due to dual-

ity gaps from the relaxed constraints). If the Lagrangian relaxation algorithm fails to obtain a

small enough gap in a certain number of iterations, we embed it into a branch-and-bound (B&B)

framework to further reduce the gap. We construct a binary tree by branching on X. Specifically,

among all unbranched variables, we select and branch on the one whose construction yields the

least system cost. After building the branching tree, we run the Lagrangian relaxation algorithm

at each node to determine the corresponding feasible solution and lower bound, and update them

after finishing both child branches. While traversing the binary tree, depth-first search is found

to perform slightly better than breadth-first or least-cost-first searches for small or moderate-sized

instances (which are likely to be solved to optimality). However, if the instances are large, it is dif-

ficult to traverse the entire tree and completely close the gap. In such cases, least-cost-first search

is preferable since it tends to yield a reasonably good lower bound before completely traversing the

entire tree.

5.3.2 Upper Bound

To obtain a good upper bound to the original model (RFL-STA), we first fix the facility location

decisions from the relaxed subproblem. Then for each customer 𝑖, we sort all station-facility pairs

associated with open facilities (i.e., pair (𝑘, 𝑗) is considered if 𝑋𝑗 = 1, 𝑙𝑘𝑗 = 1) in ascending order of

(𝑑𝑖𝑗, 𝑝𝑘); (𝑘1, 𝑗1) comes before (𝑘2, 𝑗2) if 𝑑𝑖𝑗1 < 𝑑𝑖𝑗2 or 𝑑𝑖𝑗1 = 𝑑𝑖𝑗2 , 𝑞𝑘1
< 𝑞𝑘2

. Then at every level 𝑟, we

assign customer 𝑖 to pair (𝑘, 𝑗) with the smallest (𝑑𝑖𝑗, 𝑞𝑘) as long as 𝑖 has never been assigned to any

pair (𝑘, 𝑗′), ∀𝑗′ at levels 1, 2, ⋯ , 𝑟 − 1 before. The following two propositions state two properties

of the optimal solution to (RFL-STA) and indicate that the feasible solution constructed from this

75



heuristic approach is likely to be near optimum.

First, constraints (5.2g) ensure the following property, which we state without proof:

Proposition 11. (Property I) In any optimal solution (X,Y,Z) to (RFL-STA), a customer will

be assigned to backup station-facility pairs based on the corresponding distances; i.e., if 𝑌𝑖𝑘𝑗𝑟 = 1

for some 𝑖, 𝑘, 𝑗, 𝑟, then 𝑋𝑗′ = 0 or 𝑙𝑘′𝑗′ = 0 or ∃𝑟′ < 𝑟 s.t. 𝑌𝑖𝑘′𝑗′𝑟′ = 1, ∀𝑘′, 𝑗′ with 𝑑𝑖𝑗′ < 𝑑𝑖𝑗.

Next, the following proposition reveals the relationship between assignment decisions and station

disruption quasi-probabilities:

Proposition 12. (Property II) In any optimal solution (X,Y,Z) to (RFL-STA), a customer will

be assigned to backup station-facility pairs that involve the same facility based on the corresponding

disruption quasi-probabilities of the associated stations; i.e., if 𝑌𝑖𝑘𝑗𝑟 = 1 for some 𝑖, 𝑘, 𝑗, 𝑟, then

𝑙𝑘′𝑗 = 0 or ∃𝑗′, 𝑟′ < 𝑟 s.t. 𝑌𝑖𝑘′𝑗′𝑟′ = 1, ∀𝑘′ with 𝑞𝑘′ ≤ 𝑞𝑘.

Proof. See section 5.5.2.

Based on these two properties, given location decisions from the relaxed subproblem solutions,

if 𝑅 is sufficiently large, this heuristic yields the optimal customer assignments; otherwise, it can

only guarantee feasible but not necessarily optimal assignments. Nevertheless, since the quasi-

probabilities for using high-level back-ups (i.e., the product of multiple station disruption quasi-

probabilities, which is equivalently the product of multiple facility disruption scenario probabilities)

are often smaller by orders of magnitude, the solution given by this sorting/greedy heuristic shall

be quite close to the optimal one.

5.3.3 Lower Bound

As mentioned before, although the relaxed problem is separable by customer 𝑖, each subproblem

is still combinatorial and the worst-case complexity is exponential. Therefore, in this section, we

develop an algorithm which helps quickly find lower bounds to the relaxed subproblems (RFL-STA-

SP𝑖).

Equations (5.5h) show that 𝑍𝑘𝑗𝑟 depends on 𝑍𝑘𝑗(𝑟−1) and 𝑌𝑘𝑗(𝑟−1), which builds connections

across the decision variables and brings difficulty in solving subproblem (RFL-STA-SP𝑖). Instead

of having 𝑍𝑘𝑗𝑟 directly in the formulation, we approximate them with fixed numbers.
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Similar properties as those stated in Propositions 11 and 12 apply to (RFL-STA-SP𝑖), which

suggest that certain customer-station-facility assignments would never appear in the optimal solu-

tion to (RFL-STA-SP𝑖). We summarize them into the following rules:

Rule 1 If customer 𝑖 is assigned to two different facilities at some levels, then it will always be

assigned to the closer facility at a lower level; i.e., 𝑌𝑖𝑘1𝑗1𝑟1
= 𝑌𝑖𝑘2𝑗2𝑟2

= 1, and 𝑑𝑖𝑗1 < 𝑑𝑖𝑗2 ⇒

𝑟1 < 𝑟2;

Rule 2 If customer 𝑖 is assigned to a facility 𝑗, then it will be assigned to all station-facility pairs

associated with 𝑗, {(𝑘, 𝑗)}∀𝑘∶𝑙𝑘𝑗=1 at consecutive backup levels as long as 𝑘 has never been

used at a lower level; i.e., let 𝐾𝑗 = {𝑘 ∶ 𝑙𝑘𝑗 = 1, 𝑌𝑖𝑘𝑙𝑠 = 0, ∀𝑙 ∈ 𝒥, 𝑙 ≠ 𝑗, 𝑠 < 𝑟}, then

𝑌𝑖𝑘𝑗𝑟 = 1 for some 𝑘, 𝑟 ⇒ 𝑌𝑖𝑘1𝑗𝑠 = 𝑌𝑖𝑘2𝑗(𝑠+1) = ⋯ = 𝑌𝑖𝑘𝑛𝑗(𝑠+𝑛−1) = 1 for some permutation

𝑘1, 𝑘2, ⋯ , 𝑘𝑛 of 𝐾𝑗 and some 𝑠;

Rule 3 If customer 𝑖 is assigned to multiple station-facility pairs (𝑘1, 𝑗), (𝑘2, 𝑗), ⋯ , (𝑘𝑛, 𝑗) that in-

volve the same facility 𝑗, then these pairs should be used in ascending order of the involved

station disruption quasi-probabilities; i.e., 𝑌𝑖𝑘1𝑗𝑟 = 𝑌𝑖𝑘2𝑗(𝑟+1) = ⋯ = 𝑌𝑖𝑘𝑛𝑗(𝑟+𝑛−1) = 1 ⇒

𝑞𝑘1
≤ 𝑞𝑘2

≤ ⋯ ≤ 𝑞𝑘𝑛
;

Based on these rules, we can set 𝑌𝑘𝑗𝑟 = 𝑍𝑘𝑗𝑟 = 0 for some (𝑘, 𝑗, 𝑟) without affecting the optimal

solution. For example, in the system shown in Figure 4.1(b), if we assume that 𝑑𝑖1𝑗1 < 𝑑𝑖1𝑗2 , 𝑞𝑘{1}
<

𝑞𝑘{1,2}
< 𝑞𝑘{2}

< 𝑞𝑘{1,2,3}
< 𝑞𝑘{1,3}

< 𝑞𝑘{2,3}
, then we have: (i) 𝑌𝑖1𝑘{1,2}𝑗11 = 𝑌𝑖1𝑘{1,2}𝑗13 = 0 because 𝑗1

should be used first if it is built, and 𝑘{1,2} should be used after 𝑘{1} and before 𝑘{1,3}, 𝑘{1,2,3}; (ii)

𝑌𝑖1𝑘{2}𝑗21 = 𝑌𝑖1𝑘{2}𝑗23 = 𝑌𝑖1𝑘{2}𝑗24 = 𝑌𝑖2𝑘{2}𝑗26 = 0 because 𝑘{2} should always be used after 𝑘{1,2}, and

also after 𝑘{1}, 𝑘{1,2,3}, 𝑘{1,3} if 𝑗1 is used. After setting these 𝑌𝑘𝑗𝑟 and 𝑍𝑘𝑗𝑟 to be zero, we can use

algorithm LowerBound(𝑖), for each customer 𝑖, to construct lower bounds to 𝑍𝑘𝑗𝑟 and 𝑍00𝑟 as 𝛼𝑘𝑗𝑟

and 𝛽𝑟, respectively, and relax (RFL-STA-SP𝑖) into the following (RFL-STA-RSP𝑖):

We replace 𝑍𝑘𝑗𝑟 and 𝑍00𝑟 respectively by their estimates 𝛼𝑘𝑗𝑟 and 𝛽𝑟, and relax (RFL-STA-SP𝑖)

into the following (RFL-STA-RSP𝑖):

(RFL-STA-RSP𝑖) min ∑
𝑘∈𝒦

∑
𝑗∈𝒥

𝑅+1
∑
𝑟=1

(𝜇𝑖𝑑𝑖𝑗𝛼𝑘𝑗𝑟 + 𝜆𝑘𝑗𝑟) 𝑌𝑘𝑗𝑟 +
𝑅+1
∑
𝑟=1

𝜇𝑖𝑑𝑖0𝛽𝑟𝑌00𝑟 (5.8a)

s.t. 𝑌𝑘𝑗𝑟 ≤ 𝑙𝑘𝑗, ∀𝑗 ∈ 𝒥 ∪ {0}, 𝑘 ∈ 𝒦 ∪ {0}, 𝑟 = 1, 2, ⋯ , 𝑅 + 1, (5.8b)
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Algorithm 1 Construct 𝛼𝑘𝑗𝑟 and 𝛽𝑟 as lower bounds to 𝑍𝑘𝑗𝑟 and 𝑍00𝑟, respectively, ∀𝑖 ∈ ℐ

LowerBound(𝑖)
1. for 𝑟 do
2. for (𝑘, 𝑗) do
3. 𝛼𝑘𝑗𝑟 = 0
4. if 𝑙𝑘𝑗 = 1 then
5. 𝐾𝑟

𝑘 = 0, prob = 1.0
6. for 𝑘′ do
7. if 𝑘′ ≠ 𝑘, 𝑙𝑘′𝑗 = 1, 𝑞𝑘′ < 𝑞𝑘 then
8. 𝐾𝑟

𝑘 = 𝐾𝑟
𝑘 + 1, prob = prob ⋅ 𝑞𝑘′

9. end if
10. end for
11. if 𝐾𝑟

𝑘 < 𝑟 then
12. minProduct = 1.0
13. if 𝐾𝑟

𝑘 < 𝑟 − 1 then
14. for (𝑘′, 𝑗′) do
15. if 𝑗′ ≠ 𝑗, 𝑘′ ≠ 𝑘, 𝑑𝑖𝑗′ < 𝑑𝑖𝑗, 𝛼𝑘′𝑗′,𝑟−1−𝐾𝑟

𝑘
∈ (0, minProduct) then

16. minProduct = 𝛼𝑘′𝑗′,𝑟−1−𝐾𝑟
𝑘

17. end if
18. end for
19. end if
20. 𝛼𝑘𝑗𝑟 = 𝑞𝑘⋅ prob ⋅ minProduct
21. end if
22. end if
23. end for
24. end for
25. for 𝑟 do
26. 𝛽𝑟 = 1.0, minProduct = 1.0
27. for (𝑘, 𝑗) do
28. if 𝑙𝑘𝑗 = 1, 𝛼𝑘𝑗𝑟 ∈ (0, minProduct) then
29. minProduct= 𝛼𝑘𝑗𝑟
30. end if
31. end for
32. 𝛽𝑟 = minProduct
33. for (𝑘, 𝑗) do
34. 𝛼𝑘𝑗𝑟 = 𝛼𝑘𝑗𝑟 ⋅ (1 − 𝑞𝑘)/𝑞𝑘
35. if 𝛼𝑘𝑗𝑟 = 0 then
36. 𝛼𝑘𝑗𝑟 = ∞
37. end if
38. end for
39. end for
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∑
𝑗∈𝒥

𝑅
∑
𝑟=1

𝑌𝑘𝑗𝑟 ≤ 1, ∀𝑘 ∈ 𝒦, (5.8c)

𝑅+1
∑
𝑟=1

𝑌00𝑟 = 1, (5.8d)

∑
𝑘∈𝒦

∑
𝑗∈𝒥

𝑌𝑘𝑗𝑟 +
𝑟

∑
𝑠=1

𝑌00𝑠 = 1, ∀𝑟 = 1, 2, ⋯ , 𝑅 + 1, (5.8e)

𝑌𝑘𝑗𝑟 ∈ {0, 1}, ∀𝑗 ∈ 𝒥, 𝑘 ∈ 𝒦, 𝑟 = 1, 2, ⋯ , 𝑅 + 1. (5.8f)

Proposition 13. The optimal objective of (RFL-STA-RSP𝑖) provides a lower bound to the optimal

objective of (RFL-STA-SP𝑖).

Proof. Let Y∗,Z∗ and W∗ be the optimal solution to (RFL-STA-SP𝑖). We can construct (RFL-

STA-RSP𝑖) from (RFL-STA-SP𝑖) in three sequential steps: (i) replace 𝑍𝑘𝑗𝑟 and 𝑍00𝑟 by 𝛼𝑘𝑗𝑟 and

𝛽𝑟, respectively, and add constraints to set 𝑌𝑘𝑗𝑟 = 0 for some (𝑘, 𝑗, 𝑟) pairs; (ii) remove constraints

(5.5f)–(5.5i); and (iii) remove those constraints 𝑌𝑘𝑗𝑟 = 0 that were added in step (i), and instead, set

the corresponding 𝛼𝑘𝑗𝑟 to be sufficiently large. In step (i), we know that adding those 𝑌𝑖𝑘𝑗 = 0 does

not change the optimal solution to (RFL-STA-SP𝑖), and based on the construction of 𝛼𝑘𝑗𝑟 and 𝛽𝑟,

we know 𝛼𝑘𝑗𝑟𝑌∗
𝑘𝑗𝑟 and 𝛽𝑟𝑌∗

00𝑟 are lower bounds to 𝑍∗
𝑘𝑗𝑟 and 𝑍∗

00𝑟, respectively. In step (ii), removing

constraints obviously never increases the objective value of a minimization problem. Step (iii) just

uses an alternative way to enforce the 𝑌𝑘𝑗𝑟 = 0 constraints; i.e., when the coefficients of those 𝑌𝑘𝑗𝑟

are set to be infinity, these variables cannot equal 1 at optimality (because a finite feasible solution

is known to exist). Therefore, each of the three steps provides a lower bound to the model built in

the previous step, hence the optimal objective value of (RFL-STA-RSP𝑖) is a lower bound to the

optimal objective value of (RFL-STA-SP𝑖). This completes the proof.

We observe that (RFL-STA-RSP𝑖) is a combinatorial generalized assignment problem, which

can be solved by an adapted Hungarian algorithm as in Cui et al. (2010). (RFL-STA-RSP𝑖) aims

at assigning one station-facility pair to each level (up to 𝑅 + 1) based on the updated coefficients

associated with each 𝑌𝑘𝑗𝑟, so as to minimize the total expected system cost. However, the actual

maximum assignment level 𝑅max (i.e., the largest 𝑟 such that 𝑌𝑘𝑗𝑟 = 1 for some (𝑘, 𝑗) pair) may

be smaller than 𝑅 due to lower cost associated with the emergency station-facility pair than all

other remaining pairs at some level 𝑟 < 𝑅. The main challenge is to identify the level that the
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emergency station-facility pair should be assigned to. As such, we enumerate 𝑅max from 0 to 𝑅 and

for each 𝑅max, we fix 𝑌00,𝑅max+1 = 1 and 𝑌𝑘𝑗𝑟 = 0, 𝑟 > 𝑅max + 1. In this way, the (RFL-STA-RSP𝑖)

is simplified into a standard assignment problem that can be solved by conventional Hungarian

algorithm. We solve (RFL-STA-RSP𝑖) and calculate the associated total cost for each enumeration

of 𝑅max. By comparison, the value of 𝑅max corresponding to the lowest total cost is the actual

maximum assignment level 𝑅max. After fixing 𝑅max, It is worth noting that in the enumeration

process, the assignment solutions to model with 𝑅max = 𝑟 can be used as a warm start to the

model with 𝑅max = 𝑟 + 1, which helps expedite the computation. Specifically, if the penalty cost

𝑑𝑖0 (or say 𝜋𝑖) is sufficiently large, we only need to solve (RFL-STA-RSP𝑖) for one iteration, i.e.,

𝑅max = 𝑅.

5.4 Numerical Examples

We apply the proposed model and solution algorithms to three sets of examples under different

correlation patterns and parameter settings. The first set investigates the optimal facility loca-

tion design for the hypothetical examples presented in section 4.5.1. The second set of examples

demonstrate reliable facility system planning for the U.S. networks with 49 and 88 nodes under

given correlation patterns; see Figure 4.4.d. The third set of examples are used to compare the

results and computational performance of the scenario-based and station-based formulations.

The proposed solution algorithms are programmed in C++ and run on a 64-bit Intel i7-3770

computer with 3.40 GHz CPU and 8G RAM. The reformulated problem (RFL-STA-RSP𝑖) is solved

by the Hungarian algorithm.

5.4.1 Hypothetical Examples

We first illustrate our optimization methodology on the two hypothetical cases with Earthquake

and Flooding disaster patterns from Section 4.5.1.

Example 1: Earthquake

We consider the square urban area in Figure 4.2(a), which is subject to earthquake risks. The

area is evenly divided into 16 indexed square cells, and the centroid of each represents a candidate

facility location as well as a population center, i.e. |𝒥 | = |ℐ| = 16. Each point generates an
dThe location data set is from Snyder and Daskin (2005) and can be accessed at http://www.lehigh.edu/~lvs2, all

input data, including the correlation profile, will be available for download at my website http://www.siyangxie.com.

80

http://www.lehigh.edu/~lvs2
http://www.siyangxie.com


equal demand of 𝜇𝑖 = 1.25, ∀𝑖 ∈ ℐ , and this adds up to a city-wide total demand of 20. The

construction cost of each facility is 𝑓𝑗 = 30, ∀𝑗 ∈ 𝒥 . Euclidean distance between customer 𝑖 and

facility 𝑗 (regardless of virtual supporting station 𝑘) is used to measure 𝑑𝑖𝑗. Penalty for loss of unit

demand is 𝜋𝑖 = 60, ∀𝑖. The maximum assignment level is 𝑅 = 10, which is equal to the number

of added virtual stations. For comparison, we also study other cases when there is no correlation,

and when customer demand displays heterogeneity. When there is no correlation, we assume that

facility disruptions are independent but maintain the same marginal probabilities; the optimization

model degrades to the one in Cui et al. (2010). For the heterogeneous cases, we assume that

𝜇𝑖 = 3.0 − 0.5𝑑𝑖 (such that ∑𝑖 𝜇𝑖 = 20), where 𝑑𝑖 is the Euclidean distance from location 𝑖 to the

city center. The computational time for every case is within 1.5 minutes. Figures 5.1(a)-5.1(d)

depict the optimal facility location design for each of the four cases (correlated vs. uncorrelated

disruption, homogeneous vs. heterogeneous demand).

It can be seen that disruption correlations and demand heterogeneity both have significant

impacts on the optimal facility locations. In the first case (with correlated disruption and homoge-

neous demand), the four built facilities are quite spatially dispersed so as to minimize the positive

correlations among these facilities. For example, at most one facility is selected in each ring, be-

cause those in the same ring will suffer simultaneous disruptions and will not be able to back up

each other. In Figure 5.1(b), facilities are more clustered toward the city center when there is no

disruption correlation. Facilities at locations 7 and 12 (which are closest to the city center) in this

case are obviously geographically more advantageous over those at corner locations 4 and 16 in

Figure 5.1(a). Meanwhile, we also observe that the existence of disruption correlation pushes the

facilities away from the epicenter: the facility at location 4 is two rings farther than that at location

7, and the one at 16 is one ring farther than the one at 12. The same impact of disruption correla-

tion can be found under heterogeneous demands. To study the impact of demand heterogeneity, we

now compare Figure 5.1(a) with 5.1(c), and also Figure 5.1(b) with 5.1(d). Intuitively, candidate

locations with high customer demand are more favorable, and hence the facilities in Figure 5.1(b)

and 5.1(d) are somewhat more clustered toward the city center than their respective counterparts.

The facility number is also reduced by 1 due to the economic benefits of demand concentration.

Table 5.2 summarizes the computational results. For each case, we list the optimal objective

value from the respective model (e.g., ignoring correlation), as well as the evaluated system-wide
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(a) correlation & homoge-
neous demand

(b) no correlation & homo-
geneous demand

(c) correlation & heteroge-
neous demand

(d) no correlation & hetero-
geneous demand

Figure 5.1: Optimal facility locations for the four earthquake cases.

cost assuming the ground-truth that disruption correlation does exist. It can be seen that the

model without considering correlation results in a sub-optimal facility design (i.e., with higher

system costs) for both homogeneous and heterogeneous demand. Heterogeneity in demand further

exacerbates the cost difference to up to 28.6%.

Table 5.2: Solution statistics for the earthquake cases.
Case Facility Objective Evaluated cost Cost Comp.

Corr Homo location under correlation difference (%) time (s)

Yes Yes 4,6,14,16 339 339 – 83
No Yes 6,7,12,14 315 349 2.9 70
Yes No 8,10,15 325 325 – 69
No No 10,11 302 418 28.6 2

Example 2: Flooding

We then consider the flooding case in Figure 4.3(a), in which the same city area is threatened by

flooding from a river passing diagonally. A station structure with 16 additional virtual stations

are built from Section 4.5.1. Other system parameters are similar to those in the earthquake case,

except that the maximum customer assignment level is now 𝑅 = 16, and we also examine four cases

(correlated vs. uncorrelated disruption, homogeneous vs. heterogeneous demand). The optimal

facility location designs are shown in Figure 5.2.

Again, disruption correlation and demand heterogeneity are observed to influence the optimal

facility locations to some extent. Under homogeneous demand, our model determines that at opti-

mality four facilities should be built somewhat evenly along the river, each at a different distance to

the river. It shall be noted that the facility layouts in Figures 5.2(a) and 5.2(b) are actually iden-
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(a) correlation & homoge-
neous demand

(b) no correlation & homo-
geneous demand

(c) correlation & heteroge-
neous demand

(d) no correlation & hetero-
geneous demand

Figure 5.2: Optimal facility locations for the four flooding cases.

tical since the failure disruption scenarios are set to be symmetric along the river. It indicates that

correlation does not affect the facility locations under homogeneous demand, probably because (i)

facilities at locations 3, 5, 12, 14 or 2, 8, 9, 15 have relative low individual failure probabilities, and

(ii) there are only very weak correlation among them (due to co-existence of positive and negative

correlations). Under heterogeneous demand, three facilities are clustered toward the concentrated

demand near the city center. Particularly, facilities in Figure 5.2(d) (with no correlation) are more

clustered than those in Figure 5.2(c). The expected system cost and the cost difference for the

four cases are summarized in Table 5.3. Similar to those for the earthquake cases, heterogeneous

demand could reduce the system cost, and ignoring negative correlation leads to sub-optimal solu-

tions. The computation time is a little larger as a result of having more virtual stations, but our

proposed algorithm still solves the problem quite effectively.

Table 5.3: Solution statistics for the flooding cases.
Case Facility Objective Evaluated cost Cost Comp.

Corr Homo location under correlation difference (%) time (s)

Yes Yes 2,8,9,15 294 294 – 189
No Yes 3,5,12,14 284 294 0.0 4
Yes No 7,9,15 291 291 – 155
No No 7,9,10 278 320 10.0 12

5.4.2 U.S. Network

We next test our methodology on the U.S. map: (i) a 49-node network with locations as the state

capitals of the continental United States plus Washington, D.C.; and (ii) a 88-node network with

the 49-node locations and 39 other largest cities in the United States. The correlated facility
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disruption profiles are as those specified in Section 4.5.3.

We first test our model and algorithm for 𝑅 = 10, 15, 20, 75 = |𝒦| using the 49-node dataset

with the original system parameter values from Snyder and Daskin (2005)(case 49-I), and 𝑅 =

10, 20, 30, 129 = |𝒦| using the 88-node dataset. In addition, we run another set of instances (case

49-II) using the 49-node network but reducing the fixed facility costs to 1/3 of their original values

in Snyder and Daskin (2005). The Lagrangian relaxation/B&B procedure is executed to a tolerance

of 0.5%, or up to 3600 seconds in CPU time. The algorithm performance is summarized in Table

5.4, and the optimal facility locations and initial customer assignments are shown in Figure 5.3.

Table 5.4: Algorithm performance for the U.S. networks with 49 and 88 nodes.
Nodes Pattern 𝑅e Facility

Root Root Root Overall Overall Overall CPU
UB LB gap (%) UB LB gap (%) time

49-I

Indp 5 9,22,26,38,46 891150 860404 3.450 887868 883507 0.491 96

Corr

10 9,22,26,38,46 893049 834126 6.598 887881 883451 0.499 1557
15 9,22,26,38,46 888855 835584 5.993 887868 883493 0.493 2373
20 9,22,26,38,46 891150 834113 6.400 887868 883486 0.494 2568
75 9,22,26,38,46 891150 834741 6.330 887868 879537 0.938 3600

49-II

Indp 5 7,9,16,22,26,36,38,47,48 586886 572538 2.445 586194 583291 0.495 654

Corr

10 9,13,15,23,26,29,38,47,48 597735 554304 7.266 595102 570308 4.166 3600
15 7,9,16,22,26,29,38,42,47,48 589864 554304 6.029 587996 569597 3.129 3600
20 7,9,16,22,26,29,38,42,47,48 589657 554304 5.996 587794 568639 3.259 3600
75 7,9,16,22,26,29,38,42,47,48 589122 554229 5.923 587793 3600

88

Indp 5 10,25,29,39,57,61,71,83,87 1242190 1200420 3.363 1242200 1221060 1.702 3600

Corr

10 10,25,29,39,57,61,71,83,87 1254600 1112030 11.364 1254600 1150340 8.310 3600
20 10,25,29,39,57,61,71,83,87 1242200 1115950 10.163 1242200 1150620 7.372 3600
30 10,25,29,39,57,61,71,83,87 1244970 1107200 11.066 1242200 1150830 7.355 3600

129 10,25,29,39,57,61,71,83,87 1244970 1102360 11.455 1242200 1140060 8.223 3600

From Table 5.4 and Figure 5.3, we observe the following: First, our model and algorithm perform

very well, especially on the 49-node cases, solving the first set (i.e., case 49 -I) to less than 1% gap

and the second set (i.e., 49-II) to less than 5% gap within 1 hour. For the larger 88-node cases,

we can still obtain 7%-8% gap within 1 hour computation time. Second, the maximum back-up

level 𝑅 does affect the location decision and optimal system cost when 𝑅 is small; however, when 𝑅

becomes large, the optimal facility locations are insensitive to it. This implies that we can set an

arbitrary yet reasonably large value of 𝑅 for many applications. Third, even with a sufficiently large

𝑅, i.e., 𝑅 = |𝒦|, such that the station-based formulation is exactly equivalent to the scenario-based

formulation, our algorithm still works quite effectively, as it is capable of providing solutions with

a small optimality gap within a short amount of time. Finally, by comparing the second 49-node

case set (i.e., 49-II) with independent and correlated facility disruptions, we can see that ignoring

correlations in facility location models may lead to very sub-optimal system design.
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(a) 49 nodes with input 1 (49-I) (b) 49 nodes with input 2 (49-II)

(c) 88 nodes

Figure 5.3: Facility location solutions for U.S. networks with 49 and 88 nodes.

5.4.3 Model Comparison

To better demonstrate the advantage of the proposed modeling framework, we further test both

the scenario-based formulation (RFL-SCE) and station-based formulation (RFL-STA) on four net-

works, with 14, 17, 19, and 25 nodes, respectively. As shown in Figure 5.4, each of the four networks

is part of the 49-node network in Figure 4.4, with the corresponding local correlation profiles pre-

sented in Table 4.10. For example, the three local areas in Figure 5.4(a) correspond to Local 2,

Local 3, and Local 4 in Table 4.10, respectively, with the location indices adjusted accordingly.

Independent stations (those not appearing in Table 4.10) each fail independently with probability

0.02.

Table 5.5 compares the results from (RFL-SCE) and (RFL-STA). It can be observed that

for each case, the solutions (i.e., the final UB and location decisions) from the two formulations

are exactly the same. However, our station-based formulation can be solved to optimality much
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(a) 14-node network. (b) 17-node network.

(c) 19-node network. (d) 25-node network.

Figure 5.4: Network setup and correlation pattern for the four cases.
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Table 5.5: Performance comparison between (RFL-SCE) and (RFL-STA).

Pattern
# of Scenario-based (RFL-SCE) Station-based (RFL-STA)

nodes UB Facilities Time (s) UB Facilities Time (s)

No disruption

14 257581 PA-2,MI-6,FL-14 0.1 257581 PA-2,MI-6,FL-14 0.1
17 304372 PA-2,MI-8,AL-15 0.2 304372 PA-2,MI-8,AL-15 0.3
19 338555 PA-2,MI-6,AL-13 0.4 338555 PA-2,MI-6,AL-13 0.5
25 426942 PA-2,IN-10,AL-15 0.5 426942 PA-2,IN-10,AL-15 0.9

Correlation

14 266412 PA-2,MI-6,AL-13 0.5 266412 PA-2,MI-6,AL-13 0.8
17 313426 PA-2,MI-8,AL-15 35.8 313426 PA-2,MI-8,AL-15 1.6
19 348426 PA-2,IN-8,AL-13 252.2 348426 PA-2,IN-8,AL-13 3.2
25 – – – 436833 PA-2,AL-15,IL-19 6.7

more quickly than the scenario-based formulation, especially when correlations are present. In

particular, the scenario-based formulation cannot even provide a feasible solution to the 25-node

network due to exhaustion of computer memory (by the excessive number of scenarios). This

comparison verifies the correctness and effectiveness of our station-based formulation (RFL-STA),

as well as its clear superiority over the traditional scenario-based formulation (RFL-SCE), even for

moderate-sized problem instances. We can easily project that the advantage will be even bigger for

larger applications.

5.5 Proof of Propositions

5.5.1 Proof of Proposition 10

Proof. We first map an optimal solution to (RFL-STA) to a feasible solution to (RFL-SCE). Let

(X,Y,Z) be an optimal solution to (RFL-STA). We let 𝑗(𝑖, 𝑟) = 𝑗 ∶ 𝑌𝑖𝑘𝑗𝑟 = 1, 𝑘(𝑖, 𝑟) = 𝑘 ∶ 𝑌𝑖𝑘𝑗𝑟 =

1, 𝐽(𝑖, 𝑟) = {𝑗 ∈ 𝒥 ∪ {0} ∶ 𝑗 ≠ 𝑗(𝑖, 𝑟), ∃𝑘, 𝑙 ≤ 𝑟 − 1, 𝑌𝑖𝑘𝑗𝑙 = 1}, ℛ𝑖 = {1} ∪ {𝑟 > 1 ∶ ∃𝑗 ≠ 𝑗′, 𝑘 ≠

𝑘′, s.t. 𝑌𝑖𝑘𝑗𝑟 = 𝑌𝑖𝑘′𝑗′𝑟−1 = 1}, and for each 𝑟 ∈ ℛ, we let 𝑟𝑖(𝑟) ∈ {𝑟′ ∶ 𝑟′ ∈ ℛ𝑖, 𝑟′ > 𝑟, 𝑟′ ≤ 𝑟″, ∀𝑟″ >

𝑟}. We construct a solution (X′,Y′) as follows

(i) 𝑋′
𝑗 = 𝑋𝑗;

(ii) 𝑌′
𝑖𝑗𝜔 =

⎧{{
⎨{{⎩

1, if 𝑗 = 𝑗(𝑖, 𝑟) for some 𝑟, 𝛿𝑗𝜔 = 1, 𝛿𝑗′𝜔 = 0, ∀𝑗′ ∈ 𝐽(𝑖, 𝑟);

0, otherwise.

By construction, (X′,Y′) is a feasible solution to (RFL-SCE). In particular, for any cus-

tomer 𝑖 ∈ ℐ and any scenario 𝜔 ∈ Ω, either there exists exactly one 𝑗 ∈ 𝒥 such that 𝑗 =

𝑗(𝑖, 𝑟) for some 𝑟, and 𝛿𝑗𝜔 = 1, 𝛿𝑗′𝜔 = 0, ∀𝑗′ ∈ 𝐽(𝑖, 𝑟), or there exists no 𝑗 ∈ 𝒥 such that 𝑗 =
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𝑗(𝑖, 𝑟) for some 𝑟, 𝛿𝑗𝜔 = 1. Hence, there exists exactly one 𝑗 ∈ 𝒥 ∪ {0} such that 𝑌𝑖𝑗𝜔 = 1, ∀𝑖 ∈

ℐ, 𝜔 ∈ Ω, which implies that (5.1b) hold.

We next show that (X′,Y′) achieves the same objective value as (X,Y,Z). We denote Φ(X,Y,Z)

and Ψ(X′,Y′) as the objectives of (RFL-STA) and (RFL-SCE), respectively, and Ω(𝑖, 𝑟) = {𝜔 ∈

Ω ∶ 𝑌′
𝑖𝑗(𝑖,𝑟)𝜔 = 1}. We have the following result

Ψ(X′,Y′) = ∑
𝑗∈𝒥

𝑓𝑗𝑋′
𝑗 + ∑

𝑖∈ℐ
∑

𝑗∈𝒥∪{0}
∑

𝜔∈Ω
𝜇𝑖𝑑𝑖𝑗𝑌′

𝑖𝑗𝜔𝑝𝜔

= ∑
𝑗∈𝒥

𝑓𝑗𝑋𝑗 + ∑
𝑖∈ℐ

∑
𝑟∈ℛ𝑖

𝜇𝑖𝑑𝑖𝑗(𝑖,𝑟) ∑
𝜔∈Ω(𝑖,𝑟)

𝑝𝜔

= ∑
𝑗∈𝒥

𝑓𝑗𝑋𝑗 + ∑
𝑖∈ℐ

∑
𝑟∈ℛ𝑖

𝜇𝑖𝑑𝑖𝑗(𝑖,𝑟) ∑
𝐽∶𝐽(𝑖,𝑟)⊆𝐽,𝑗(𝑖,𝑟)∉𝐽

𝑝𝑆
𝐽 .

Applying Equations (4.7) yields

∑
𝐽∶𝐽(𝑖,𝑟)⊆𝐽,𝑗(𝑖,𝑟)∉𝐽

𝑝𝑆
𝐽 = ∑

𝐽∶𝐽(𝑖,𝑟)⊆𝐽,𝑗(𝑖,𝑟)∉𝐽
∑

𝐽1∶𝐽⊆𝐽1

(−1)|𝐽1|−|𝐽| ⎡⎢
⎣

∏
𝐽2∶𝐽2∩𝐽1≠∅

𝑞𝑘𝐽2

⎤
⎥
⎦

= ∑
𝐽∶𝐽(𝑖,𝑟)⊆𝐽,𝑗(𝑖,𝑟)∉𝐽

∑
𝐽1∶𝐽⊆𝐽1

(−1)|𝐽1|−|𝐽|𝒜(𝐽1)

= ∑
𝐽∶𝐽(𝑖,𝑟)⊆𝐽

𝐶𝐽𝒜(𝐽),

where 𝒜(𝐽) = ∏𝐽2∶𝐽1∩𝐽≠∅ 𝑞𝑘𝐽1
and 𝐶𝐽 is the ultimate coefficient of 𝒜(𝐽), which are

𝐶𝐽 =

⎧{{{{
⎨{{{{⎩

1, if 𝐽 = 𝐽(𝑖, 𝑟);

−1, if 𝐽 = 𝐽(𝑖, 𝑟) ∪ {𝑗(𝑖, 𝑟)};

∑𝐽′⊆𝐽\𝐽(𝑖,𝑟)(−1)|𝐽\𝐽(𝑖,𝑟)|−|𝐽′| = ∑|𝐽\𝐽(𝑖,𝑟)|
𝑛=0 (−1)𝑛(|𝐽\𝐽(𝑖,𝑟)|

𝑛 ) = 0, otherwise .

Therefore, we have

Ψ(X′,Y′) = ∑
𝑗∈𝒥

𝑓𝑗𝑋𝑗 + ∑
𝑖∈ℐ

∑
𝑟∈ℛ𝑖

𝜇𝑖𝑑𝑖𝑗(𝑖,𝑟) ∑
𝐽∶𝐽(𝑖,𝑟)⊆𝐽,𝑗(𝑖,𝑟)∉𝐽

𝑝𝑆
𝐽

= ∑
𝑗∈𝒥

𝑓𝑗𝑋𝑗 + ∑
𝑖∈ℐ

∑
𝑟∈ℛ𝑖

𝜇𝑖𝑑𝑖𝑗(𝑖,𝑟) [𝒜(𝐽(𝑖, 𝑟)) − 𝒜(𝐽(𝑖, 𝑟) ∪ {𝑗(𝑖, 𝑟)})]
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= ∑
𝑗∈𝒥

𝑓𝑗𝑋𝑗 + ∑
𝑖∈ℐ

∑
𝑟∈ℛ𝑖

𝜇𝑖𝑑𝑖𝑗(𝑖,𝑟)
⎡⎢⎢
⎣

∏
𝐽∶𝐽∩𝐽(𝑖,𝑟)≠∅

𝑞𝑘𝐽
− ∏

𝐽∶𝐽∩(𝐽(𝑖,𝑟)∪{𝑗(𝑖,𝑟)})≠∅
𝑞𝑘𝐽

⎤⎥⎥
⎦

= ∑
𝑗∈𝒥

𝑓𝑗𝑋𝑗 + ∑
𝑖∈ℐ

∑
𝑟∈ℛ𝑖

𝜇𝑖𝑑𝑖𝑗(𝑖,𝑟)

𝑟𝑖(𝑟)−1
∑
𝑙=𝑟

𝑙−1
∏
𝑙′=1

𝑞𝑘(𝑖,𝑙′) (1 − 𝑞𝑘(𝑖,𝑙))

= ∑
𝑗∈𝒥

𝑓𝑗𝑋𝑗 + ∑
𝑖∈ℐ

𝑅+1
∑
𝑟=1

𝜇𝑖𝑑𝑖𝑗(𝑖,𝑟)
𝑟−1
∏
𝑙=1

𝑞𝑘(𝑖,𝑙) (1 − 𝑞𝑘(𝑖,𝑟))

= ∑
𝑗∈𝒥

𝑓𝑗𝑋𝑗 + ∑
𝑖∈ℐ

∑
𝑗∈𝒥∪{0}

∑
𝑘∈𝒦∪{0}

𝑅+1
∑
𝑟=1

𝜇𝑖𝑑𝑖𝑗𝑌𝑖𝑘𝑗𝑟𝑍𝑖𝑘𝑗𝑟

= Φ(X,Y,Z),

which implies that the optimal solution to (RFL-SCE) is a lower bound to (RFL-STA).

Conversely, we map an optimal solution to (RFL-SCE) to a feasible solution to (RFL-STA).

Given an optimal solution (X,Y) to (RFL-SCE), without loss of generality, we assume that each

customer always visits its closest open facility for service, and if there exist more than one facility

with equal distance, we break the tie by choosing the facility based on index: let 𝐽∗ = {𝑗 ∈ 𝒥 ∶ 𝑋𝑗 =

1}, for each customer 𝑖, let 𝑗𝑖1, 𝑗𝑖2, ⋯ , 𝑗𝑖|𝐽∗|+1 be an ordering of the facilities in 𝐽∗ ∪ {0} such that for all

2 ≤ 𝑟 ≤ |𝐽∗| + 1, 𝑑𝑖𝑗𝑖
𝑟−1

≤ 𝑑𝑖𝑗𝑖𝑟
and if 𝑑𝑖𝑗𝑖

𝑟−1
= 𝑑𝑖𝑗𝑖𝑟

, 𝑗𝑖𝑟−1 < 𝑗𝑖𝑟. Since a facility is functioning if and only

if at least one of its connected stations is operating, we let 𝐾∗ = {𝑘 ∈ 𝒦 ∶ ∃𝑗 ∈ 𝐽∗, 𝑙𝑗𝑘 = 1}, and

𝑟𝑖
𝑛 = |{𝑘 ∈ 𝐾∗ ∶ ∃𝑛1 < 𝑛, 𝑙𝑗𝑖𝑛1

= 1}| be the total number of stations that are connected to at least one

facility in {𝑗𝑖1, ⋯ , 𝑗𝑖𝑛−1}, we know that facility 𝑗𝑖𝑛 is visited by 𝑖 if only if all facilities in {𝑗𝑖1, ⋯ , 𝑗𝑖𝑛−1}

are unavailable (i.e, all the 𝑟𝑖
𝑛 stations are disrupted). Then we define two sequences of facilities

and stations respectively as: (i) 𝑗(𝑖, 1), 𝑗(𝑖, 2), ⋯ , 𝑗(𝑖, |𝐾∗| + 1) such that 𝑗(𝑖, 𝑟) ∈ {𝑗 ∶ 𝑟𝑗 < 𝑟 ≤ 𝑟𝑗+1};

and (ii) 𝑘(𝑖, 1), 𝑘(𝑖, 2), ⋯ , 𝑘(𝑖, |𝐾∗| + 1) such that 𝑘(𝑖, 𝑟) ∈ 𝐾(𝑖, 𝑟) = {𝑘 ∶ 𝑙𝑗(𝑖,𝑟)𝑘 = 1, 𝑙𝑗(𝑖,𝑙)𝑘 = 0, ∀𝑙 <

𝑟, 𝑗(𝑖, 𝑙) ≠ 𝑗(𝑖, 𝑟)}, and if 𝐾(𝑖, 𝑟 −1) = 𝐾(𝑖, 𝑟), 𝑘(𝑖, 𝑟 −1) < 𝑘(𝑖, 𝑟). We construct a solution (X′,Y′,Z′)

as follows

(i) 𝑋′
𝑗 = 𝑋𝑗;

(ii) 𝑌′
𝑖𝑘𝑗𝑟 =

⎧{{
⎨{{⎩

1, if 𝑗 = 𝑗(𝑖, 𝑟), 𝑘 = 𝑘(𝑖, 𝑟), 𝑑𝑖𝑗 ≤ 𝑑𝑖0;

0, otherwise;
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(iii) 𝑍′
𝑖𝑘𝑗𝑟 =

⎧{{
⎨{{⎩

(1 − 𝑞𝑘(𝑖,𝑟)) ∏𝑟−1
𝑙=1 𝑞𝑘(𝑖,𝑙), if 𝑗 = 𝑗(𝑖, 𝑟), 𝑘 = 𝑘(𝑖, 𝑟), 𝑑𝑖𝑗 ≤ 𝑑𝑖0;

0, otherwise.

By examining the constraint sets in (RFL-STA), we observe that (X′,Y′,Z′) is a feasible

solution to (RFL-STA). We next show that (X′,Y′,Z′) achieves the same objective value as (X,Y).

We let ℛ𝑖 = {𝑟𝑖
1 + 1, 𝑟𝑖

2 + 1, ⋯ , 𝑟𝑖
|𝐽∗|+1 + 1}, for each 𝑟 ∈ ℛ𝑖, we let 𝑟𝑖(𝑟) ∈ {𝑟′ ∶ 𝑟′ ∈ ℛ𝑖, 𝑟′ > 𝑟, 𝑟′ ≤

𝑟″, ∀𝑟″ > 𝑟}, and Ω(𝑖, 𝑟) = {𝜔 ∈ Ω ∶ 𝛿𝑗(𝑖,𝑟)𝜔 = 1, 𝛿𝑗(𝑖,𝑙)𝜔 = 0, ∀𝑙 < 𝑟, 𝑗(𝑖, 𝑙) ≠ 𝑗(𝑖, 𝑟)}

Φ(X′,Y′,Z′) = ∑
𝑗∈𝒥

𝑓𝑗𝑋′
𝑗 + ∑

𝑖∈ℐ
∑

𝑗∈𝒥∪{0}
∑

𝑘∈𝒦∪{0}

𝑅+1
∑
𝑟=1

𝜇𝑖𝑑𝑖𝑗𝑌′
𝑖𝑘𝑗𝑟𝑍′

𝑖𝑘𝑗𝑟

= ∑
𝑗∈𝒥

𝑓𝑗𝑋𝑗 + ∑
𝑖∈ℐ

𝑅+1
∑
𝑟=1

𝜇𝑖𝑑𝑖𝑗(𝑖,𝑟)
𝑟−1
∏
𝑙=1

𝑞𝑘(𝑖,𝑙) (1 − 𝑞𝑘(𝑖,𝑟))

= ∑
𝑗∈𝒥

𝑓𝑗𝑋𝑗 + ∑
𝑖∈ℐ

∑
𝑟∈ℛ𝑖

𝜇𝑖𝑑𝑖𝑗(𝑖,𝑟)

𝑟𝑖(𝑟)−1
∑
𝑙=𝑟

𝑙−1
∏
𝑙′=1

𝑞𝑘(𝑖,𝑙′) (1 − 𝑞𝑘(𝑖,𝑙))

= ∑
𝑗∈𝒥

𝑓𝑗𝑋𝑗 + ∑
𝑖∈ℐ

∑
𝑟∈ℛ𝑖

𝜇𝑖𝑑𝑖𝑗(𝑖,𝑟) ∑
𝐽∶𝐽(𝑖,𝑟)⊆𝐽,𝑗(𝑖,𝑟)∉𝐽

𝑝𝑆
𝐽

= ∑
𝑗∈𝒥

𝑓𝑗𝑋𝑗 + ∑
𝑖∈ℐ

∑
𝑟∈ℛ𝑖

𝜇𝑖𝑑𝑖𝑗(𝑖,𝑟) ∑
𝜔∈Ω(𝑖,𝑟)

𝑝𝜔

= ∑
𝑗∈𝒥

𝑓𝑗𝑋𝑗 + ∑
𝑖∈ℐ

∑
𝑗∈𝒥∪{0}

∑
𝜔∈Ω

𝜇𝑖𝑑𝑖𝑗𝑌𝑖𝑗𝜔𝑝𝜔

= Ψ(X,Y).

Therefore, the optimal solution to (RFL-STA) is also a lower bound to (RFL-SCE), implying

that the optimal solutions to (RFL-STA) and (RFL-SCE) are exactly the same. This completes

our proof.

5.5.2 Proof of Proposition 12

Proof. Suppose, for a contradiction, that (X,Y,Z) is optimal to (RFL-STA) but violates Property

II, i.e., there exist 𝑖, 𝑗, 𝑘1, 𝑘2, 𝑟 such that 𝑋𝑗 = 1, 𝑙𝑘1𝑗 = 𝑙𝑘2𝑗 = 1, 𝑞𝑘1
≤ 𝑞𝑘2

, 𝑌𝑖𝑘2𝑗𝑟 = 1, 𝑌𝑖𝑘1𝑗𝑟′ = 0, ∀𝑟′ <

𝑟. We will show that by replacing 𝑘2 with 𝑘1 the objective of (RFL-STA) will decrease. We simply

construct a different solution (X′,Y′,Z′) as follows:

(i) 𝑋′
𝑗 = 𝑋𝑗;
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(ii) 𝑌′
ℎ𝑘𝑙𝑠 =

⎧{{{{
⎨{{{{⎩

1, if (ℎ, 𝑘, 𝑙, 𝑠) = (𝑖, 𝑘1, 𝑗, 𝑟);

0, if (ℎ, 𝑘, 𝑙, 𝑠) = (𝑖, 𝑘2, 𝑗, 𝑟);

𝑌ℎ𝑘𝑙𝑠, otherwise;

(iii) 𝑍′
ℎ𝑘𝑙𝑠 =

⎧{{{{{{{
⎨{{{{{{{⎩

1−𝑞𝑘1
1−𝑞𝑘2

𝑍ℎ𝑘2𝑙𝑠, if (ℎ, 𝑘, 𝑙, 𝑠) = (𝑖, 𝑘1, 𝑗, 𝑟);

0, if (ℎ, 𝑘, 𝑙, 𝑠) = (𝑖, 𝑘2, 𝑗, 𝑟);
𝑞𝑘1
𝑞𝑘2

𝑍ℎ𝑘𝑙𝑠, if 𝑠 > 𝑟;

𝑍ℎ𝑘𝑙𝑠, otherwise.

By construction, (X′,Y′,Z′) is a feasible solution to (RFL-STA). We use Φ(X,Y,Z) to denote

the objective value of (RFL-STA) associated with (X,Y,Z), assume that 𝑌𝑖𝑘𝑖𝑟𝑗𝑖𝑟𝑟 = 𝑌𝑖00𝑅𝑖 = 1, it

follows that

Φ(X,Y,Z) − Φ(X′,Y′,Z′) = 𝜇𝑖𝑑𝑖𝑗𝑍𝑘2𝑗𝑟 +
𝑅𝑖

∑
𝑠=𝑟+1

𝜇𝑖𝑑𝑖𝑙𝑖𝑠𝑍𝑘𝑖𝑠𝑙𝑖𝑠𝑠 − (𝜇𝑖𝑑𝑖𝑗𝑍′
𝑘1𝑗𝑟 +

𝑅𝑖

∑
𝑠=𝑟+1

𝜇𝑖𝑑𝑖𝑙𝑖𝑠𝑍′
𝑘𝑖𝑠𝑙𝑖𝑠𝑠)

=
𝜇𝑖𝑍𝑘2𝑗𝑟
1 − 𝑞𝑘2

⎡⎢
⎣
𝑑𝑖𝑗(1 − 𝑞𝑘2

) + 𝑞𝑘2

𝑅𝑖

∑
𝑠=𝑟+1

𝑑𝑖𝑙𝑖𝑠
𝑠−1
∏

𝑠′=𝑟+1
𝑞𝑘𝑖𝑠′ (1 − 𝑞𝑘𝑖𝑠)

− ⎛⎜⎜
⎝

𝑑𝑖𝑗(1 − 𝑞𝑘1
) + 𝑞𝑘1

𝑅𝑖

∑
𝑠=𝑟+1

𝑑𝑖𝑙𝑖𝑠
𝑠−1
∏

𝑠′=𝑟+1
𝑞𝑘𝑖𝑠′ (1 − 𝑞𝑘𝑖𝑠)⎞⎟⎟

⎠
⎤⎥
⎦

=
𝜇𝑖𝑍𝑘2𝑗𝑟
1 − 𝑞𝑘2

(𝑞𝑘2
− 𝑞𝑘1

) ⎛⎜⎜
⎝

−𝑑𝑖𝑗 +
𝑅𝑖

∑
𝑠=𝑟+1

𝑑𝑖𝑙𝑖𝑠
𝑠−1
∏

𝑠′=𝑟+1
𝑞𝑘𝑖𝑠′ (1 − 𝑞𝑘𝑖𝑠)⎞⎟⎟

⎠

As 𝑞𝑘𝑖𝑅𝑖 = 0, and 𝑑𝑖𝑙𝑖𝑠 ≤ 𝑑𝑖𝑙𝑖,𝑠+1 from Proposition 11, we have

𝑅𝑖

∑
𝑠=𝑅𝑖−1

𝑑𝑖𝑙𝑖𝑠
𝑠−1
∏

𝑠′=𝑟+1
𝑞𝑘𝑖𝑠′ (1 − 𝑞𝑘𝑖𝑠) ≥ 𝑑𝑖𝑙𝑖𝑅𝑖−1

𝑅𝑖−2
∏

𝑠′=𝑟+1
𝑞𝑘𝑖𝑠′ (1 − 𝑞𝑘𝑖𝑅𝑖−1) + 𝑑𝑖𝑙𝑖𝑅𝑖−1

𝑅𝑖−1
∏

𝑠′=𝑟+1
𝑞𝑘𝑖𝑠′

= 𝑑𝑖𝑙𝑖𝑅𝑖−1

𝑅𝑖−2
∏

𝑠′=𝑟+1
𝑞𝑘𝑖𝑠′

By induction, we can conclude that

−𝑑𝑖𝑗 +
𝑅𝑖

∑
𝑠=𝑟+1

𝑑𝑖𝑙𝑖𝑠
𝑠−1
∏

𝑠′=𝑟+1
𝑞𝑘𝑖𝑠′ (1 − 𝑞𝑘𝑖𝑠) ≥ −𝑑𝑖𝑗 + 𝑑𝑖𝑙𝑖𝑟+1 ≥ 0.
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Since 𝜇𝑖𝑍𝑘2𝑗𝑟
1−𝑞𝑘2

≥ 0, 𝑞𝑘2
−𝑞𝑘1

≥ 0, we have Φ(X,Y,Z) ≥ Φ(X′,Y′,Z′), which implies that Φ(X,Y,Z)

is not optimal. This completes the proof.
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CHAPTER 6:

RELIABLE SENSOR DEPLOYMENT FOR POSITION-

ING AND SURVEILLANCE VIA TRILATERATION

High-accuracy object positioning has been playing a critical role in various application contexts

such as vehicle navigation, activity tracking, regional surveillance, search/rescue missions, etc.

In recent years, massive availability of mobile devices has stimulated demand for many location-

aware applications. In a typical such system, multiple sensors are installed to provide coverage

jointly, and trilateration is one of the most popular mathematical techniques used by the system

to geographically positioning or surveil objects. The effectiveness of the system highly depends on

the quality (working range and precision level) and quantity of sensor coverage in the local area.a

Installed sensors work in combinations to provide sensory converage. Considering possible

sensor disruptions, functionality of a sensor combination could be interrelated to that of another

combination, which leads to internal correlations among different sensor combinations. In this case,

where to deploy sensors, which sensor combinations to use, and in what sequence and probability

to use sensor combinations in case of sensor disruptions, are nontrivial questions.

In this chapter, we incorporate the impacts of sensor disruptions into a reliable sensor deploy-

ment framework by extending the ideas of assigning backup sensors as well as correlation decom-

position via supporting stations. Specifically, we formulate the reliable sensor deployment problem

as a compact mixed-integer linear program and develop a customized Lagrangian relaxation based

algorithm with several embedded approximation subroutines.
aThis chapter is based on a published paper, An et al. (2017).
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6.1 Introduction

High-accuracy object positioning has been playing a critical role in various application contexts

such as: (i) civilian uses, including vehicle navigation, driver guidance, activity tracking; (ii) in-

dustrial uses, such as aircraft tracking, regional surveillance, extrasolar planets detection; and

(iii) military uses, such as search/rescue missions, missile and projectile guidance. In recent several

decades, many object positioning systems with different infrastructures and architectures have been

developed. Examples include the Global Positioning System (GPS), cellular phone based systems,

computer vision systems (Krumm et al., 2000) – each has its own property, configuration, and

reliability. Among them, GPS is the most popular and widely-used system. However, location

detection is generally less accurate by GPS inside a blocked space (e.g., inside a building or an

underground area) due to attenuation or blockage of satellite or phone signals. In recent years,

massive availability of mobile devices has stimulated demand for indoor location-aware applications,

including in-building guidance and location-based advertising in shopping malls, elderly navigation

in nursing homes, hazardous materials detection in airports, and on-site workforce tracking (po-

licemen, firefighters). In many of these applications, object positioning and tracking are used for

surveillance purposes such that situations in all neighborhoods can be covered by tracking some of

the objects (people, packages, etc) in those neighborhoods. In some other contexts, the tracking of

objects require that all neighborhoods be covered at all times (e.g., there cannot be blind spots).

To enable indoor positioning or surveillance, most mobile devices are equipped with sensors, signal

transmitters and receivers in order to collect various types of sensing signals via short-range radio

waves, Wi-Fi, Bluetooth, or magnetic fields. These signals/data are then used to compute the

location of the target objects. For example, Filonenko et al. (2013) presented an accurate indoor

positioning approach that combines ultrasound from mobile phones with time-difference-of-arrival

asynchronous trilateration methods.

Trilateration is one of the most popular mathematical techniques used by many systems to

geographically determine the position of an object. Based on simultaneous distance measurements

from three known sites, it essentially solves a geometry problem of finding the intersection of

three spheres (Thomas and Ros, 2005; Doukhnitch et al., 2008). For example, in an indoor Wi-Fi

positioning system, received signal strengths from all existing Wi-Fi access points are gathered and
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converted to distance measurements using existing signal propagation models (each positioning

system may have its own distance calculation method). Then, a trilateration algorithm is used to

pinpoint the object’s location, typically based on distances data from three different sensors, as

shown in Fig. 6.1(a). In effect, as shown in Fig. 6.1(b), due to signal scattering and blockage, the

collected or calculated distance information may be inaccurate, and the error (illustrated by the size

of the shaded area) normally increases with the distance between the sensor and the object. In such

cases, a location cannot be precisely identified from three distance measures. Navidi et al. (1998)

used statistical methods to quantify the uncertainty in trilateration results from the potential

error of distance measurements. It is worth noting that the positioning error can be reduced if

accurate information from additional sensors is used, as indicated by the smaller green area in Fig.

6.1(c). Therefore, the effectiveness of an indoor positioning system highly depends on the quality

(working range and precision level) and quantity of sensor coverage in the local area. Nevertheless,

the number and location of sensors should be carefully determined, because high-precision sensors

could be expensive to deploy, the system architecture becomes more complex, and the trilateration

algorithm requires more computation time when more sensors are used. We would like to achieve

the best positioning accuracy with a reasonable investment in sensor installations.

(a) ideal case (b) three sensors (c) multiple sensors

object

functioning
sensor

disrupted
sensor

(d) disruption scenario

Figure 6.1: Position error illustration in trilateration.

In reality, installed sensors are subject to operational disruptions from time to time due to

technological defects, adverse environmental conditions, deliberate sabotages, etc. If a sensor is

disrupted, no useful information can be collected, and the effectiveness of object positioning may

be affected. This is illustrated in Fig. 6.1(d): if three sensors are needed to “cover” an object or

an area via trilateration, when a first-choice sensor is disrupted, a more remote sensor will be used

and yet this may yield a larger error (as compared to the scenario in Fig. 6.1(b)). Therefore, the
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impacts of sensor disruptions should be considered in a reliable sensor deployment framework such

that the overall expected error across the normal non-failure scenario and various sensor failure

scenarios is minimized. There have been several research efforts on reliable facility location in

the context of logistics networks (Snyder, 2006; Cui et al., 2010; Li and Ouyang, 2010; Xie et al.,

2018a). More recently, Li and Ouyang (2011, 2012) investigated reliable traffic sensor deployment

in a discrete transportation network to estimate OD flow volume, congestion state, and path travel

time. Adjacent sensors along each flow path pair up to monitor the road segment in between, and

yet sensors could be disrupted with site-dependent probabilities. Existing studies, therefore, have

considered reliable facility/sensor deployment when sensors work either independently or in pairs.

To the best of our knowledge, no studies have considered reliable sensor location problem in the

context of trilateration, where at least three sensors are required to work together to position a

target (or to cover an area).

This paper aims to fill this gap by incorporating the impacts of sensor disruptions into a reliable

sensor deployment framework for positioning or surveillance via trilateration. An object is posi-

tioned based on distance measurements received from a combination of at least three sensors. Since

various sensor combinations could share some common unreliable sensors, failure of a combination

could be directly related to that of another combination. This leads to internal correlation among

the functionality of sensor combinations. In this case, where to deploy sensors, which combina-

tions of sensors to use, and in what sequence and probability to use backup combinations in case

of disruptions, are nontrivial questions. It remains an open challenge to optimize sensor deploy-

ment locations that maximize the overall system-wide surveillance or positioning benefits under

the risk of site-dependent sensor failures. In this paper, we address the problem by combining

and extending the ideas of assigning back-up sensors (Li and Ouyang, 2010, 2011, 2012) as well

as correlation decomposition via supporting stations (Li et al., 2013; Xie et al., 2015, 2018a). A

compact mixed-integer mathematical model is developed to determine the optimal sensor location,

sensor level assignment and combination selection plans. A customized solution algorithm based on

Lagrangian relaxation and branch-and-bound is developed, together with an embedded approxima-

tion subroutine for sub-problems. A series of hypothetical and empirical case studies are conducted

to illustrate the applicability and performance of the proposed methodology.

The remainder of this chapter is organized as follows. Section 6.2 introduces the methodology
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we develop for the reliable sensor deployment problem, including the effectiveness measurements

and the model formulation. Section 6.3 presents the solution algorithm. Section 6.4 demonstrates

the applicability of the model and solution algorithm on a series of examples.

6.2 Model Formulation

We consider an area (e.g., airport, shopping mall) which contains a set of spatial neighborhoods

𝐼 ∶= {𝑖} that need surveillance coverage. In airports, such neighborhoods can be security check

gates, boarding gates and restaurants where accidents are more likely to occur due to crowds’

gathering. Each point 𝑖 ∈ 𝐼 attracts 𝑣𝑖 customers per day. Let 𝐽 be the set of candidate locations

for potential sensor installations. At most one sensor can be installed at each location 𝑗 ∈ 𝐽 at a

construction cost 𝑓𝑗. Let 𝑑𝑖𝑗 denote the distance from surveillance neighborhood 𝑖 to sensor location

𝑗. A sensor located at 𝑗 could be disrupted with a probability of 𝑝𝑗. For a neighborhood 𝑖 ∈ 𝐼,

the sensors are assigned with different backup levels. We assume the receiver (can be the mobile

device/object itself) always uses 𝑁, where 𝑁 ≥ 3, sensors with the lowest backup levels to calculate

the position of the object. Without loss of generality, for modeling convenience, 𝑁 dummy sensors

(located at |𝐽| + 1, ⋯ , |𝐽| + 𝑁) are added to the system to ensure there are always at least 𝑁 sensors

available even under the worst case scenario in which all sensors are disrupted. Let ̃𝐽 be the set of

dummy sensors and 𝒥 = 𝐽 ∪ ̃𝐽 be the set of all sensors. The dummy sensors incur 0 installation

cost and are not subject to failure, but make no contribution to object positioning. Let 𝐾 be

the set of candidate sensor combinations to locate customers. Each combination 𝑘 ∈ 𝐾 contains

exactly 𝑁 sensors (including the dummy ones) and could monitor 𝑖 with accuracy 𝑒𝑖𝑘. Let 𝛼 be the

monetary value of sensing accuracy. We introduce incidence matrix {𝑎𝑘𝑗} to represent the mapping

relationships between combinations and sensors, where 𝑎𝑘𝑗 = 1 if combination 𝑘 contains sensor 𝑗,

or 0 otherwise. The maximum number of combinations is ∑𝑁
𝑡=0 (|𝐽|

𝑡 ), where 𝑡 indicates that 𝑡 regular

sensors and 𝑁 − 𝑡 dummy sensors are used in the combination.

As such, the receiver/object will search from the sensor with the lowest backup level until 𝑁

sensors have been found. The key decision variables X ∶= {𝑋𝑗} determine sensor locations, where

𝑋𝑗 = 1 if a sensor is installed at location 𝑗 or 𝑋𝑗 = 0 otherwise. For each surveillance neighborhood,

the installed sensors are assigned to it at different levels. Variables Z ∶= {𝑍𝑖𝑗𝑟} determine the

relative sensor levels, where binary variable 𝑍𝑖𝑗𝑟 = 1 if sensor 𝑗 is installed and is assigned with level
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𝑟 to neighborhood 𝑖, or 0 otherwise; Y ∶= {𝑌𝑖𝑘𝑟} denote the sensor combination assignment to the

customers, where 𝑌𝑖𝑘𝑟 = 1 if neighborhood 𝑖 uses combination 𝑘 whose highest level element sensor

has level 𝑟, or 0 otherwise. Note that a combination 𝑘 corresponds to only one level 𝑟, while there

may exist multiple combinations corresponding to the same level 𝑟. The backup levels are initially

assigned to the sensors. A level 𝑟, if associated with a sensor combination 𝑘, indicates the highest

level of any sensor contained in 𝑘; it can be uniquely determined from the backup levels of sensors

that are assigned to an object, i.e., {𝑍𝑖𝑗𝑟}. P ∶= {𝑃𝑖𝑘𝑟} are quasi-probability variables where 𝑃𝑖𝑘𝑟

defines the probability to use combination 𝑘 to monitor neighborhood 𝑖 if 𝑌𝑖𝑘𝑟 = 1, and is a state

variable if 𝑌𝑖𝑘𝑟 = 0.

This sensor location problem (SLP) can now be formulated as the following mixed-integer non-

linear program:

(SLP) min
X,Y,Z,P

∑
𝑗∈𝐽

𝑓𝑗𝑋𝑗 − 𝛼 ∑
𝑖∈𝐼

∑
𝑘∈𝐾

|𝒥|

∑
𝑟=1

𝑣𝑖𝑒𝑖𝑘𝑃𝑖𝑘𝑟𝑌𝑖𝑘𝑟 (6.1a)

s.t.
|𝒥|

∑
𝑟=1

𝑍𝑖𝑗𝑟 ≤ 𝑋𝑗, ∀𝑗 ∈ 𝐽, 𝑖 ∈ 𝐼, (6.1b)

|𝒥|

∑
𝑟=1

𝑍𝑖𝑗𝑟 ≤ 1, ∀𝑗 ∈ 𝐽, 𝑖 ∈ 𝐼, (6.1c)

|𝒥|

∑
𝑟=1

𝑍𝑖𝑗𝑟 = 1, ∀𝑗 ∈ ̃𝐽, 𝑖 ∈ 𝐼, (6.1d)

𝑍𝑖𝑗𝑟 = 𝑍𝑖,𝑗+1,𝑟+1, ∀𝑟 = 1, 2, ⋯ , |𝒥| − 1, 𝑗 ∈ ̃𝐽\(|𝐽| + 𝑁), 𝑖 ∈ 𝐼, (6.1e)

∑
𝑗∈𝐽

𝑍𝑖𝑗𝑟 +
𝑟

∑
𝑠=1

𝑍𝑖,|𝐽|+1,𝑠 = 1, ∀𝑟 = 1, ⋯ , |𝒥|, 𝑖 ∈ 𝐼, (6.1f)

𝑌𝑖𝑘𝑟 ≤ 1
𝑁 ∑

𝑗∈𝒥

𝑟
∑
𝑠=1

𝑎𝑘𝑗𝑍𝑖𝑗𝑠, ∀𝑘 ∈ 𝐾, 𝑟 = 1, ⋯ , |𝒥|, 𝑖 ∈ 𝐼, (6.1g)

𝑌𝑖𝑘𝑟 ≤ ∑
𝑗∈𝒥

𝑎𝑘𝑗𝑍𝑖𝑗𝑟, ∀𝑘 ∈ 𝐾, 𝑟 = 1, ⋯ , |𝒥|, 𝑖 ∈ 𝐼, (6.1h)

𝑃𝑖𝑘𝑟 = ∑
𝑗∈𝒥

(𝑝𝑗)
1[𝑗∈𝐽] 𝑍𝑖𝑗𝑟𝑃𝑖𝑘,𝑟−1, ∀𝑘 ∈ 𝐾, 𝑟 = 1, ⋯ , |𝒥|, 𝑖 ∈ 𝐼, (6.1i)

𝑃𝑖𝑘0 = ∏
𝑗∈𝐽

(1 − 𝑝𝑗)
𝑎𝑘𝑗 (𝑝𝑗)

−𝑎𝑘𝑗 , ∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼, (6.1j)

𝑋𝑗, 𝑍𝑖𝑗𝑟, 𝑌𝑖𝑘𝑟 ∈ {0, 1}, ∀𝑘 ∈ 𝐾, 𝑗 ∈ 𝒥, 𝑟 = 1, ⋯ , |𝒥|, 𝑖 ∈ 𝐼. (6.1k)
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The objective function (6.1a) presents the expected system cost including the sensor installation

cost and the expected total inaccuracy penalty, where 𝑃𝑖𝑘𝑟𝑌𝑖𝑘𝑟 is the probability that combination

𝑘 is used by neighborhood 𝑖 at the 𝑟-th level. Constraints (6.1b) enforce that customers can only

use installed sensors. Constraints (6.1c) indicate that for a certain surveillance neighborhood, each

regular sensor can only be assigned to at most one level. Constraints (6.1d) ensure for a certain

surveillance neighborhood, each dummy sensor must be assigned to it at a certain backup level.

The same dummy sensor could be assigned to other surveillance neighborhoods at different levels.

Constraints (6.1e) postulate that if a dummy sensor 𝑗 ∈ ̃𝐽 is assigned to surveillance neighborhood

𝑖 at level 𝑟, then dummy sensor 𝑗 + 1 must be assigned to 𝑖 at level 𝑟 + 1. Constraints (6.1f) require

that at each level 𝑟, a surveillance neighborhood 𝑖 either uses a regular sensor, or it has used the

first dummy sensor at level 𝑠 ≤ 𝑟. Constraints (6.1g) enforce that combination 𝑘 is available to

surveillance neighborhood 𝑖 only if the 𝑁 sensors in 𝑘 are all installed. Constraints (6.1h) require

that combination 𝑘 is available to surveillance neighborhood 𝑖 when its highest level element serves

at level 𝑟. Constraints (6.1i) and (6.1j) recursively define the assignment probability 𝑃𝑖𝑘𝑟 for 𝑌𝑖𝑘𝑟 = 1

to happen, where the indicator function 1[⋅] = 1 when condition [⋅] holds, or 0 otherwise. Please

note that 𝑃𝑖𝑘𝑟 does not have physical meaning when 𝑌𝑖𝑘𝑟 = 0 and its value will not affect the value

of the objective function. Given that the lower level sensors are used earlier, a combination 𝑘 is

used if and only if its element sensors are all functioning, and the other constructed sensors which

has level lower than the highest level in 𝑘 are all disrupted. The derivation of 𝑃𝑖𝑘𝑟 is shown as

follows.

Proposition 14. The assignment probability 𝑃𝑖𝑘𝑟 (for 𝑌𝑖𝑘𝑟 = 1 to happen) can be calculated

recursively by (6.1i), given its initial state value defined by (6.1j).

Proof. We substitute 𝑃𝑖𝑘𝑟−1 in the right hand side of (6.1i) by a function of 𝑃𝑖𝑘𝑟−2 and repeat this

procedure for the new right hand side value until 𝑟 = 0. The quasi-probability of neighborhood 𝑖

using combination 𝑘 at level 𝑟 can be written as

𝑃𝑖𝑘𝑟 =
∏𝑗∈𝐽 (1 − 𝑝𝑗)

𝑎𝑘𝑗

∏𝑗∈𝐽 𝑝𝑎𝑘𝑗
𝑗

∏
𝑠≤𝑟

⎡⎢⎢
⎣

∑
𝑗∈𝒥

𝑍𝑖𝑗𝑠 (𝑝𝑗)
1[𝑗∈𝐽]⎤⎥⎥

⎦
. (6.2)

When combination 𝑘 contains a dummy sensor, the indicator function excludes the dummy sen-
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sor from the 𝑃𝑖𝑘𝑟 calculation so as to prevent the case 𝑃𝑖𝑘𝑟 = 0, ∀𝑟, from happening. If 𝑌𝑖𝑘𝑟 = 1, the

element sensors in combination 𝑘 must be all functioning and the other constructed sensors which

has a backup level lower than 𝑟 are all disrupted. In this case, the probability that combination 𝑘 is

used by neighborhood 𝑖 can thus be written as ∏𝑗∈𝐽(1−𝑝𝑗)
𝑎𝑘𝑗 ∏𝑠≤𝑟 [∑𝑗∈𝒥 𝑍𝑖𝑗𝑠(𝑝𝑗)

1−𝑎𝑘𝑗], which can

be shown to equal (6.2) after some simple algebraic calculation. Namely, the quasi-probability cal-

culated by (6.2) is equivalent to the assignment probability that neighborhood 𝑖 uses combination

𝑘 (i.e., when 𝑌𝑖𝑘𝑟 = 1).

Since 𝑌𝑖𝑘 ̄𝑟 = 0, ∀ ̄𝑟 ≠ 𝑟 must hold if 𝑌𝑖𝑘𝑟 = 1, the corresponding 𝑃𝑖𝑘 ̄𝑟 only serves as a state variable

(not a real probability), which will facilitate the calculation of the actual assignment probability

𝑃𝑖𝑘𝑟 given that 𝑌𝑖𝑘𝑟 = 1. However, the value of the non-probability variable 𝑃𝑖𝑘 ̄𝑟 will not affect SLP

as 𝑌𝑖𝑘 ̄𝑟𝑃𝑖𝑘 ̄𝑟 = 0 when 𝑌𝑖𝑘 ̄𝑟 = 0 in the objective function (6.1a).

This recursive formula (6.1i), together with the initial value 𝑃𝑖𝑘0 specified by (6.1j) jointly define

the quasi-probability in (6.2), which is also equivalent to the actual assignment probability 𝑃𝑖𝑘𝑟 for

𝑌𝑖𝑘𝑟 = 1 to happen.

In (SLP), the surveillance neighbourhood 𝑖 can choose any installed sensors and assign them

to various levels flexibly to minimize the inaccuracy penalty. However, at optimality, each neigh-

bourhood 𝑖 will use all installed sensors, and the backup level of each sensor solely depends on its

relative distance to the neighbourhood (i.e., irrelevant to its failure probability), as proved in the

following proposition.

Proposition 15. In any optimal solution {X,Z,Y}, for each surveillance neighborhood 𝑖, an

installed sensor must be assigned to a backup level, and a nearer sensor must be assigned to an

earlier level; i.e. the following two properties must hold (i) if 𝑋𝑗 = 1, then ∑|𝒥 |
𝑟=1 𝑍𝑖𝑗𝑟 = 1; (ii) if

𝑍𝑖𝑗1𝑟 = 𝑍𝑖𝑗2𝑟+1 = 1 for some 𝑖, 𝑟, then 𝑑𝑖𝑗1 ≤ 𝑑𝑖𝑗2.

Proof. We first prove property (i): suppose sensors 𝐽′ are installed and are used to monitor neigh-

bourhood 𝑖 with an accuracy contribution of 𝐶1. Suppose the newly installed sensor 𝑗 where 𝑗 ∉ 𝐽′

is assigned to the last level |𝐽′| + 1 (i.e., 𝑍𝑖𝑗,|𝐽′|+1 = 1) and 𝑗 together with 𝐽′ provide a total accuracy

contribution of 𝐶2. By doing so, all combinations generated by 𝐽′ and their probabilities to happen

are unchanged in the new system 𝑗 ∪ 𝐽′. The sensor 𝑗 brings new combinations and thus additional

accuracy contribution. (i.e., 𝑌𝑖𝑘,|𝐽′|+1 ≠ 0 for some 𝑘). Hence we have 𝐶2 ≥ 𝐶1. Since assigning
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sensor 𝑗 to the last level |𝐽′|+1 is only a feasible solution to the level assignment problem for sensors

𝑗 ∪ 𝐽′, 𝐶2 is a lower bound to the maximum accuracy 𝐶3 provided by sensors 𝑗 ∪ 𝐽′. Hence we have

𝐶3 ≥ 𝐶2 ≥ 𝐶1. As such, a sensor must be assigned at a certain level to monitor the neighbourhoods

once it is installed.

We now prove the second property (ii) by contradiction. Suppose there exist 𝑖, 𝑗1, 𝑗2 and 𝑟 such

that 𝑍𝑖𝑗1𝑟 = 𝑍𝑖𝑗2𝑟+1 = 1 and 𝑑𝑖𝑗1 > 𝑑𝑖𝑗2 . We consider a combination 𝑘𝐴𝑗1 where 𝑗1 is its highest

level element sensor (𝑗1 has level 𝑟) and 𝐴 represent the other element sensors in combination

𝑘. Assume that the probability for sensors 𝐴 to be functioning and all the remaining sensors

assigned at levels 1 to 𝑟 − 1 to be disrupted is 𝑃𝑟−1. The expected accuracy contribution by

𝑘𝐴𝑗1 can be written as 𝑒𝑖𝑘𝐴𝑗1
𝑃𝑟−1(1 − 𝑝𝑗1). We consider another combination 𝑘𝐴𝑗2 constituted by

sensors 𝐴 ∪ 𝑗2. Given that 𝑗2 is assigned to level 𝑟 + 1, the expected accuracy contribution by

𝑘𝐴𝑗2 is 𝑒𝑖𝑘𝐴𝑗2
𝑃𝑟−1𝑝𝑗1(1 − 𝑝𝑗2). Then the expected accuracy contribution associated with these two

backup levels 𝑟 and 𝑟 + 1 is 𝐶4 = ∑𝐴 𝑒𝑖𝑘𝐴𝑗1
𝑃𝑟−1(1 − 𝑝𝑗1) + 𝑒𝑖𝑘𝐴𝑗2

𝑃𝑟−1𝑝𝑗1(1 − 𝑝𝑗2). Consider another

solution {X,Z′,Y′} where 𝑍′
𝑖𝑗2𝑟 = 𝑍′

𝑖𝑗1𝑟+1 = 1. The associated expected accuracy contribution is

𝐶5 = ∑𝐴 𝑒𝑖𝑘𝐴𝑗2
𝑃𝑟−1(1−𝑝𝑗2)+𝑒𝑖𝑘𝐴𝑗1

𝑃𝑟−1𝑝𝑗2(1−𝑝𝑗1). Since 𝑒𝑖𝑘𝐴𝑗1
< 𝑒𝑖𝑘𝐴𝑗2

holds according to 𝑑𝑖𝑗1 > 𝑑𝑖𝑗2 ,

simple algebra shows that 𝐶5 > 𝐶4 and the expected accuracy contribution for assignments Y at

other levels are exactly the same in these two solutions. As such, the latter solution {X,Z′,Y′} is

better than {X,Z,Y}, which poses a contradiction. This completes the proof.

The current model is nonlinear due to the existence of nonlinear terms 𝑃𝑖𝑘𝑟𝑌𝑖𝑘𝑟 in (6.1a) and

𝑍𝑖𝑗𝑟𝑃𝑖𝑘𝑟−1 in (6.1i). Linearization techniques introduced by Sherali and Alameddine (1992) (similar

to those in Li and Ouyang (2012)) can be applied: i.e., we replace each 𝑃𝑖𝑘𝑟𝑌𝑖𝑘𝑟 and 𝑍𝑖𝑗𝑟𝑃𝑖𝑘𝑟−1 by

new continuous variables 𝑊𝑖𝑘𝑟 and 𝑉𝑖𝑘𝑗𝑟, respectively, and enforce their equivalence by adding the

following sets of constraints where 𝑀𝑘 is the maximum value of Pikr with 𝑀𝑘 = ∏𝑗∈𝐽(1−𝑝𝑗)
𝑎𝑘𝑗𝑝−𝑎𝑘𝑗

𝑗 .

𝑊𝑖𝑘𝑟 ≤ 𝑃𝑖𝑘𝑟 + 𝑀𝑘 (1 − 𝑌𝑖𝑘𝑟) , ∀𝑘 ∈ 𝐾, 𝑟 = 1, ⋯ , |𝒥|, 𝑖 ∈ 𝐼, (6.3a)

𝑊𝑖𝑘𝑟 ≥ 𝑃𝑖𝑘𝑟 + 𝑀𝑘 (𝑌𝑖𝑘𝑟 − 1) , ∀𝑘 ∈ 𝐾, 𝑟 = 1, ⋯ , |𝒥|, 𝑖 ∈ 𝐼, (6.3b)

𝑊𝑖𝑘𝑟 ≤ 𝑀𝑘𝑌𝑖𝑘𝑟, ∀𝑘 ∈ 𝐾, 𝑟 = 1, ⋯ , |𝒥|, 𝑖 ∈ 𝐼, (6.3c)

𝑊𝑖𝑘𝑟 ≥ −𝑀𝑘𝑌𝑖𝑘𝑟, ∀𝑘 ∈ 𝐾, 𝑟 = 1, ⋯ , |𝒥|, 𝑖 ∈ 𝐼, (6.3d)
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𝑉𝑖𝑘𝑗𝑟 ≤ 𝑃𝑖𝑘𝑟−1 + 𝑀𝑘 (1 − 𝑍𝑖𝑗𝑟) , ∀𝑘 ∈ 𝐾, 𝑗 ∈ 𝒥, 𝑟 = 1, ⋯ , |𝒥|, 𝑖 ∈ 𝐼, (6.3e)

𝑉𝑖𝑘𝑗𝑟 ≥ 𝑃𝑖𝑘𝑟−1 + 𝑀𝑘 (𝑍𝑖𝑗𝑟 − 1) , ∀𝑘 ∈ 𝐾, 𝑗 ∈ 𝒥, 𝑟 = 1, ⋯ , |𝒥|, 𝑖 ∈ 𝐼, (6.3f)

𝑉𝑖𝑘𝑗𝑟 ≤ 𝑀𝑘𝑍𝑖𝑗𝑟, ∀𝑘 ∈ 𝐾, 𝑗 ∈ 𝒥, 𝑟 = 1, ⋯ , |𝒥|, 𝑖 ∈ 𝐼, (6.3g)

𝑉𝑖𝑘𝑗𝑟 ≥ −𝑀𝑘𝑍𝑖𝑗𝑟, ∀𝑘 ∈ 𝐾, 𝑗 ∈ 𝒥, 𝑟 = 1, ⋯ , |𝒥|, 𝑖 ∈ 𝐼. (6.3h)

The original (SLP) is then transformed into the following mixed integer linear program, which

we call the linearized sensor location problem (LSLP). It remains an NP hard problem, but small

instances can be readily solved by existing solvers (such as CPLEX).

(LSLP) min
X,Y,Z,P,W,V

∑
𝑗∈𝐽

𝑓𝑗𝑋𝑗 − 𝛼 ∑
𝑖∈𝐼

∑
𝑘∈𝐾

|𝒥|

∑
𝑟=𝑁

𝑣𝑖𝑒𝑖𝑘𝑊𝑖𝑘𝑟 (6.4a)

s.t. (6.1b) − (6.1h), (6.1j) − (6.1k), (6.3a) − (6.3h),

𝑃𝑖𝑘𝑟 = ∑
𝑗∈𝒥

𝑝1[𝑗∈𝐽]
𝑗 𝑉𝑖𝑘𝑗𝑟, ∀𝑘 ∈ 𝐾, 𝑟 = 1, ⋯ , |𝒥|, 𝑖 ∈ 𝐼, (6.4b)

𝑊𝑖𝑘𝑟 ≥ 0, 𝑉𝑖𝑘𝑗𝑟 ≥ 0, ∀𝑘 ∈ 𝐾, 𝑗 ∈ 𝒥, 𝑟 = 1, ⋯ , |𝒥|, 𝑖 ∈ 𝐼. (6.4c)

Owning to the formidable size of variables in the model, solving (LSLP) by commercial solvers

is still not an easy job. CPLEX fails to obtain a feasible solution for a small size network even after

several hours of computation. In the following section, more sophisticated solution approaches are

developed to overcome such computational difficulties.

6.3 Solution Algorithm

6.3.1 Lagrangian Relaxation

In (LSLP), the sensor location variables X are correlated with the sensor level assignment vari-

ables Z by constraints (6.1b), which is further correlated with the sensor combination assignment

variables Y through constraints (6.1g) and (6.1h). Such correlation complicates the model and

makes the computation challenging. Moreover, a great amount of continuous variables are intro-

duced for linearization, which adds to the computation burden significantly. In the following, we

will work with the original (SLP) directly to tackle the problems through various relaxation and

approximation techniques. To decouple the correlation between X and Z, we relax constraints
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(6.1b) in (SLP) and add them to objective function (6.1a) with nonnegative Lagrangian multipliers

𝜇 = {𝜇𝑖𝑗, ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽}. The relaxed problem becomes:

(RSLP) min
X,Y,Z,P

∑
𝑗∈𝐽

(𝑓𝑗 − ∑
𝑖∈𝐼

𝜇𝑖𝑗)𝑋𝑗 − 𝛼 ∑
𝑖∈𝐼

∑
𝑘∈𝐾

|𝒥|

∑
𝑟=𝑁

𝑣𝑖𝑒𝑖𝑘𝑃𝑖𝑘𝑟𝑌𝑖𝑘𝑟 + ∑
𝑖∈𝐼

∑
𝑗∈𝐽

𝜇𝑖𝑗

|𝒥|

∑
𝑟=1

𝑍𝑖𝑗𝑟 (6.5a)

s.t. (6.1c) − (6.1k).

Given 𝜇, the optimal solution of (6.5a) provides a lower bound to the original (SLP) problem.

After the above relaxation, the (RSLP) reduces to two parts, which can be solved separately. The

part involving X,

min
𝑋𝑗∈{0,1}

∑
𝑗∈𝐽

⎛⎜
⎝

𝑓𝑗 − ∑
𝑖∈𝐼

𝜇𝑖𝑗
⎞⎟
⎠

𝑋𝑗,

can be solved by simple inspection; i.e., given any {𝜇𝑖𝑗}, we can easily find the optimal X as follows:

𝑋𝑗 =

⎧{{
⎨{{⎩

1 if 𝑓𝑗 − ∑𝑖∈𝐼 𝜇𝑖𝑗 < 0,

0 otherwise.

The part involving Z and Y can be further separated into individual sub-problems, one for

each neighborhood 𝑖. For ease of notation, we omit the subscripts 𝑖 in 𝑍𝑖𝑗𝑟, 𝑌𝑖𝑘𝑟 and 𝑃𝑖𝑘𝑟. The

sub-problem (RSLP𝑖) with respect to neighborhood 𝑖 is:

(RSLP𝑖) min −𝛼 ∑
𝑘∈𝐾

|𝒥|

∑
𝑟=𝑁

𝑣𝑖𝑒𝑖𝑘𝑃𝑘𝑟𝑌𝑘𝑟 + ∑
𝑗∈𝐽

𝜇𝑖𝑗

|𝐽|
∑
𝑟=1

𝑍𝑗𝑟 (6.6a)

s.t.
|𝒥 |

∑
𝑟=1

𝑍𝑗𝑟 ≤ 1, ∀𝑗 ∈ 𝐽, (6.6b)

|𝒥 |

∑
𝑟=1

𝑍𝑗𝑟 = 1, ∀𝑗 ∈ ̃𝐽, (6.6c)

𝑍𝑗𝑟 = 𝑍𝑗+1,𝑟+1, ∀𝑟 = 1, ⋯ , |𝒥| − 1, 𝑗 ∈ ̃𝐽\|𝐽| + 𝑁, (6.6d)

∑
𝑗∈𝐽

𝑍𝑗𝑟 +
𝑟

∑
𝑠=1

𝑍|𝐽|+1,𝑠 = 1, ∀𝑟 = 1, ⋯ , |𝒥|, (6.6e)
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𝑌𝑘𝑟 ≤ 1
𝑁 ∑

𝑗∈𝒥

𝑟
∑
𝑠=1

𝑎𝑘𝑗𝑍𝑗𝑠, ∀𝑘 ∈ 𝐾, 𝑟 = 1, ⋯ , |𝒥|, (6.6f)

𝑌𝑘𝑟 ≤ ∑
𝑗∈𝒥

𝑎𝑘𝑗𝑍𝑗𝑟, ∀𝑘 ∈ 𝐾, 𝑟 = 1, ⋯ , |𝒥|, (6.6g)

𝑃𝑘𝑟 ≤ ∑
𝑗∈𝒥

𝑝𝑗𝑍𝑗𝑟𝑃𝑘𝑟−1, ∀𝑘 ∈ 𝐾, 𝑟 = 1, ⋯ , |𝒥|, (6.6h)

𝑃𝑘0 = ∏
𝑗∈𝐽

(1 − 𝑝𝑗)
𝑎𝑘𝑗(𝑝𝑗)

−𝑎𝑘𝑗 , ∀𝑘 ∈ 𝐾, (6.6i)

𝑍𝑗𝑟, 𝑌𝑘𝑟 ∈ {0, 1}, ∀𝑘 ∈ 𝐾, 𝑗 ∈ 𝒥, 𝑟 = 1, ⋯ , |𝒥|. (6.6j)

(RSLP𝑖) can be linearized the same way as (SLP) by adding (6.3a)-(6.3h). It is well-known

that the optimal objective value of the above (RSLP) for any given 𝜇 provides a lower bound to

the original (SLP) problem. According to Proposition 15, a nearer sensor must be assigned to

an earlier level at optimum. Based on this property, we can find an upper bound to the original

(SLP) quickly through fixing the optimal sensor location decisions X obtained from the relaxed

problem (RSLP) and assigning neighbourhoods accordingly. For each neighbourhood 𝑖, we sort

all constructed sensors (i.e., 𝑋𝑗 = 1) in ascending order of 𝑑𝑖𝑗 and assign each sensor with a level

𝑟 equal to its rank in distance (i.e., 𝑍𝑖𝑗𝑟 = 1 if sensor 𝑗 is installed to be the 𝑟th nearest sensor

to neighborhood 𝑖). Based on the level assignment of the installed sensors (the value of Z), we

enumerate all possible combinations Y to get their total accuracy contribution.

In the remainder of the Lagrangian relaxation solution framework, we use standard sub-gradient

technique (Fisher, 2004) to update the multipliers ; i.e.,

𝜇𝑛+1
𝑖𝑗 = 𝜇𝑛

𝑖𝑗 + 𝑠𝑛
𝑗

⎛⎜⎜⎜
⎝

|𝒥 |

∑
𝑟=1

𝑍𝑛
𝑖𝑗𝑟 ≤ 𝑋𝑛

𝑗
⎞⎟⎟⎟
⎠

, (6.7)

𝑠𝑛
𝑗 = 𝜉𝑛 (𝑔∗ − 𝑔𝐷(𝜇𝑛))

∥∑|𝒥|
𝑟=1 𝑍𝑛

𝑖𝑗𝑟 − 𝑋𝑛
𝑗 ∥

2 , (6.8)

where 𝜇𝑛
𝑖𝑗 represents a multiplier in the 𝑛th iteration, 𝑠𝑛

𝑗 is the step size, 𝜉𝑛 is a scalar and 𝑔∗

and 𝑔𝐷(𝜇𝑛) are the best upper bound and the current lower bound, respectively. If the Lagrangian

relaxation algorithm fails to find a solution with small enough gap in a certain number of iterations,

we embed it into a branch-and-bound (B&B) framework to further close the gap.
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However, solving the mixed integer program (RSLP𝑖) repeatedly for each neighborhood and

across Lagrangian relaxation iterations could still be time-consuming. As such, an approximation

approach is developed to quickly identify lower bounds to the relaxed sub-problems (RSLP𝑖).

6.3.2 Approximation of 𝑃𝑘𝑟

Equations (6.6h) show that 𝑃𝑘𝑟 depends on 𝑃𝑘𝑟−1 and 𝑍𝑗𝑟, which builds connections across the

decision variables and brings difficulties in solving the sub-problem. Similar to Cui et al. (2010),

we approximate the variable probability 𝑃𝑘𝑟 with fixed numbers. For each combination 𝑘 with its

highest level element sensor assigned at level 𝑟, we select the regular sensors which are not in 𝑘

and are closer to the monitored neighborhood than its most remote sensor in 𝑘. Let the number of

qualified regular sensors be 𝜅, where 𝜅 < |𝐽|. We rank those 𝜅 regular sensors based on their failure

probabilities and let 𝑗1, 𝑗2, ⋯ , 𝑗𝜅 be an ordering of the sensors such that 𝑝𝑗1 ≥ 𝑝𝑗2 ≥ ⋯ ≥ 𝑝𝑗𝜅 . For

𝑁 ≤ 𝑟 ≤ 𝑁 + 𝜅, we define one set of variables 𝛽𝑘𝑟 = ∏𝑗′∈𝐽(1 − 𝑝𝑗′)𝑎𝑘𝑗′ ∏𝑟−𝑁
𝑙=1 𝑝𝑗𝑙 . While for 𝑟 < 𝑁 or

𝑟 > 𝑁 + 𝜅, we set 𝛽𝑘𝑟 = 0. Replacing 𝑃𝑘𝑟 with 𝛽𝑘𝑟, we can modify the (RSLP𝑖) as:

(DRSLP𝑖) min −𝛼 ∑
𝑘∈𝐾

|𝒥|

∑
𝑟=𝑁

𝑣𝑖𝑒𝑖𝑘𝛽𝑘𝑟𝑌𝑘𝑟 + ∑
𝑗∈𝐽

𝜇𝑖𝑗

|𝐽|
∑
𝑟=1

𝑍𝑗𝑟 (6.9a)

s.t. (6.6b) − (6.6g), (6.6j).

Proposition 16. The solution to (DRSLP𝑖) provides a lower bound to the relaxed subproblem

(RSLP𝑖).

Proof. (DRSLP𝑖) is constructed through replacing 𝑃𝑘𝑟 with 𝛽𝑘𝑟 and removing constraints (6.6h)-

(6.6i). As removing constraints enlarges the feasible region of (RSLP𝑖), it will never increase the

objective value of this minimization problem. The effect of replacing 𝑃𝑘𝑟 with 𝛽𝑘𝑟 in the objective

function is studied under two scenarios where 𝑌𝑘𝑟 = 1 or 𝑌𝑘𝑟 = 0. If 𝑌𝑘𝑟 = 0, the value of

𝛽𝑘𝑟 won’t affect the optimal objective value as 𝛽𝑘𝑟𝑌𝑘𝑟 = 𝑃𝑘𝑟𝑌𝑘𝑟 = 0. When 𝑟 < 𝑁, 𝑌𝑘𝑟 = 0

must hold since the most remote sensor in 𝑘 must be assigned at a higher level than 𝑁. When

𝑟 > 𝑁 + 𝜅, we also have 𝑌𝑘𝑟 = 0 since a sensor can’t be assigned to a level higher than the total

number of sensors who are closer than it. When 𝑌𝑘𝑟 = 1, the probability of using combination

𝑘 is 𝑃𝑘𝑟 = ∏𝑗∈𝐽(1 − 𝑝𝑗)
𝑎𝑘𝑗 ∏𝑠≤𝑟 [∑𝑗∈𝒥 𝑍𝑖𝑗𝑠(𝑝𝑗)

1−𝑎𝑘𝑗] according to the proof to Proposition 1. 𝑃𝑘𝑟
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calculates the probability to have the 𝑁 sensors in 𝑘 working and 𝑟 − 𝑁 regular sensors disrupted.

Based on the construction of 𝛽𝑘𝑟 where 𝑁 ≤ 𝑟 ≤ 𝑁 + 𝜅, 𝛽𝑘𝑟 provides an upper bound to 𝑃𝑘𝑟 if

𝑌𝑘𝑟 = 1. Therefore, 𝛽𝑘𝑟𝑌𝑘𝑟 must be an upper bound to 𝑃𝑘𝑟𝑌𝑘𝑟 for any 𝑘 ∈ 𝐾, 𝑟 = 𝑁, ⋯ , |𝒥| and the

optimal objective value of (DRSLP𝑖) is a lower bound to the optimal objective value of (RSLP𝑖).

6.3.3 Approximation of 𝑌𝑘𝑟

In this section, constraints (6.6f) and (6.6g) are replaced by a simple equality formula to decouple

the connection between 𝑍𝑗𝑟 and 𝑌𝑘𝑟. For a neighborhood 𝑖, the Lagrangian multiplier 𝜇𝑖𝑗 in (6.9a)

can be interpreted as an extra installation cost of sensor 𝑗 and the first term ∑𝑘∈𝐾 ∑|𝒥 |
𝑟=𝑁 𝑣𝑖𝑒𝑖𝑘𝛽𝑘𝑟𝑌𝑘𝑟

represents the total accuracy contribution of the installed sensors to the system. Given that the 𝑁

dummy sensors are always installed and assigned to the highest levels, we let the regular sensors be

installed sequentially from level 1 to level |𝐽|. Let binary variables {𝑦𝑘𝑟𝑡 ∶ ∀𝑘, 𝑟} be the combination

assignments when 𝑡 regular sensors are installed. 𝑦𝑘𝑟𝑡 = 1 if combination 𝑘 is used (𝑌𝑘𝑟 = 1) given

𝑡 regular sensors are installed. As such, the total accuracy can be decomposed into |𝐽| portions,

one for each level 𝑡. The 𝑡th portion calculates the additional benefits contributed by installing a

sensor 𝑗 at level 𝑡.

The accuracy contribution of all sensors, i.e. the first term in (6.9a) omitting the constant 𝑣𝑖,

can be reformulated as:

𝐴𝐶 = ∑
𝑘∈𝐾

|𝒥|

∑
𝑟=𝑁

𝑒𝑖𝑘𝛽𝑘𝑟𝑌𝑘𝑟 =
𝑁

∑
𝑟=𝑁

∑
𝑘∈𝐾

𝑒𝑖𝑘𝛽𝑘𝑟𝑦𝑘𝑟0 +
|𝐽|

∑
𝑡=1

⎡⎢
⎣

𝑁+𝑡
∑
𝑟=𝑁

∑
𝑘∈𝐾

𝑒𝑖𝑘𝛽𝑘𝑟𝑦𝑘𝑟𝑡 −
𝑁+𝑡−1

∑
𝑟=𝑁

∑
𝑘∈𝐾

𝑒𝑖𝑘𝛽𝑘𝑟𝑦𝑘𝑟,𝑡−1
⎤⎥
⎦

,

(6.10)

where ∑𝑁
𝑟=𝑁 ∑𝑘∈𝐾 𝑒𝑖𝑘𝛽𝑘𝑟𝑦𝑘𝑟0 represents the accuracy contribution of the 𝑁 dummy sensors, which

is 0 by definition; ∑𝑁+𝑡
𝑟=𝑁 ∑𝑘∈𝐾 𝑒𝑖𝑘𝛽𝑘𝑟𝑦𝑘𝑟𝑡 states the accuracy level of the system with 𝑁 dummy

sensors and 𝑡 regular sensors; difference of the two terms in the parentheses represents the ac-

curacy improvement by adding one regular sensor at level 𝑡 given that 𝑡 − 1 regular sensors are

already installed. If we expand the summation terms in (6.10), the intermediate accuracy level

∑𝑁+𝑡
𝑟=𝑁 ∑𝑘∈𝐾 𝑒𝑖𝑘𝛽𝑘𝑟𝑦𝑘𝑟𝑡 for any 𝑡 where 𝑡 < |𝐽| will be cancelled out. As such, 𝐴𝐶 will be simplified

as 𝐴𝐶 = ∑𝑁+|𝐽|
𝑟=𝑁 ∑𝑘∈𝐾 𝑒𝑖𝑘𝛽𝑘𝑟𝑦𝑘𝑟𝑡 = ∑𝑘∈𝐾 ∑|𝒥 |

𝑟=𝑁 𝑒𝑖𝑘𝛽𝑘𝑟𝑌𝑘𝑟, which mathematically proves the second

equivalence in (6.10).
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Adding one regular sensor 𝑗 at level 𝑡 is equivalent to replacing the dummy sensor |𝐽| + 1 with

𝑗 and moving all the dummy sensors upward by one level. The resultant accuracy difference for

the two systems with 𝑡 or 𝑡 − 1 regular sensors can be calculated by updating the accuracy level of

every combination relating to sensor 𝑗. The total system accuracy is reformulated as:

𝐴𝐶 =
|𝐽|

∑
𝑡=1

𝑁+𝑡
∑

𝑟=max{𝑡,𝑁}
∑
𝑘∈𝐾

(𝑒𝑖𝑘𝛽𝑘𝑟 − (1 − 𝑝𝑗)𝑒𝑖𝑘′𝛽𝑘′𝑟) 1[𝐽𝑘\𝐽𝑘′ =𝑗&&𝑏𝑘𝑗=1]𝑦𝑘𝑟𝑡, (6.11)

where 𝐽𝑘 represents the set of regular sensors in combination 𝑘 and parameter 𝑏𝑘𝑗 = 1 if 𝑗 is the

most remote regular sensor in 𝑘 and is 0 otherwise. In the indicator function 1[⋅], 𝐽𝑘\𝐽𝑘′ = 𝑗

identifies the updated combination 𝑘 who has one additional regular sensor 𝑗 comparing with an

existing combination 𝑘′; 𝑏𝑘𝑗 = 1 forces this sensor 𝑗 to be the most remote regular sensor in 𝑘.

Inserting 𝑗 at level 𝑡 brings new combinations – the term 𝑒𝑖𝑘𝛽𝑘𝑟1[𝐽𝑘\𝐽𝑘′ =𝑗&&𝑏𝑘𝑗=1] calculates the

accuracy contribution of a new combination 𝑘 which uses 𝑗 as its most remote regular sensor.

Moreover, inserting 𝑗 at level 𝑡 changes the assignment level of all dummy sensors. An existing

combination 𝑘′ who contains dummy sensors in the old system (with 𝑡 − 1 regular sensors) will

be used in the new system (with 𝑡 regular sensors) only when sensor 𝑗 is disrupted – the term

(1−𝑝𝑗)𝑒𝑖𝑘′𝛽𝑘′𝑟1[𝐽𝑘\𝐽𝑘′ =𝑗&&𝑏𝑘𝑗=1] in (6.11) calculates the contribution deduction due to the probability

decrease of using combination 𝑘′.

Fig. 6.2 illustrates the decomposition process in order to calculate the total accuracy level of

the system with 3 dummy sensors and |𝐽| regular sensors. Sensors 𝑎, 𝑏, 𝑐, ⋯ , 𝑗 are sequentially added

to the system to calculate their contribution. For example, contribution of sensor 𝑐 is equal to the

difference in system accuracy when 𝑡 = 3 or 𝑡 = 2. Let the element sensors-combination index be

defined as: abc-1, abD1-2, acD1-3, bcD1-4, aD1D2-5, bD1D2-6, cD1D2-7, D1D2D3-8. The system

accuracy when 𝑡 = 3 and 𝑡 = 2 respectively are

𝐴𝐶|𝑡=3 =
𝑁+3
∑
𝑟=𝑁

∑
𝑘∈𝐾

𝑒𝑖𝑘𝛽𝑘𝑟𝑦𝑘𝑟3 = 𝑒1𝛽13 + 𝑒2𝛽24 + 𝑒3𝛽34 + 𝑒4𝛽44 + 𝑒5𝛽55 + 𝑒6𝛽65 + 𝑒7𝛽75 + 𝑒8𝛽86,

𝐴𝐶|𝑡=2 =
𝑁+2
∑
𝑟=𝑁

∑
𝑘∈𝐾

𝑒𝑖𝑘𝛽𝑘𝑟𝑦𝑘𝑟2 = 𝑒2𝛽23 + 𝑒5𝛽54 + 𝑒6𝛽64 + 𝑒8𝛽85.
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The contribution of inserting sensor 𝑐 at level 𝑡 = 3 is

𝐴𝐶|𝑡=3 − 𝐴𝐶|𝑡=2 = [𝑒1𝛽13 − 𝑒2(𝛽23 − 𝛽24)] + [𝑒3𝛽34 − 𝑒5(𝛽54 − 𝛽55)]

+ [𝑒4𝛽44 − 𝑒6(𝛽64 − 𝛽65)] + [𝑒7𝛽75 − 𝑒8(𝛽85 − 𝛽86)] , (6.12)

where each combination 𝑘, 𝑘 = 1, 3, 4 or 7, has element sensor 𝑐 as its most remote regular sensor,

namely 𝑏𝑘𝑐 = 1; the combinations paired up in brackets (1 and 2; 3 and 5; 4 and 6; 7 and 8) have

the same regular sensors except for sensor 𝑐, namely 𝐽𝑘\𝐽𝑘′ = 𝑐. According to the construction of

𝛽𝑘𝑟, the paired probabilities in the parentheses satisfy 𝛽24 = 𝑝𝑐𝛽23, 𝛽55 = 𝑝𝑐𝛽54, 𝛽65 = 𝑝𝑐𝛽64 and

𝛽86 = 𝑝𝑐𝛽85. Substituting 𝛽𝑘′𝑟+1 by 𝑝𝑐𝛽𝑘′𝑟 in the parentheses, we can simplify (6.12) as follows:

𝐴𝐶|𝑡=3 − 𝐴𝐶|𝑡=2 = [𝑒1𝛽13 − 𝑒2𝛽23(1 − 𝑝𝑐)] + [𝑒3𝛽34 − 𝑒5𝛽54(1 − 𝑝𝑐)]

+ [𝑒4𝛽44 − 𝑒6𝛽64(1 − 𝑝𝑐)] + [𝑒7𝛽75 − 𝑒8𝛽85(1 − 𝑝𝑐)] . (6.13)

· · ·

t = 0

t = 1

t = 2

t = 3

t = |J |

r = 1 r = 2 r = 3 r = 4 r = 5 r = |J | r = |J |+ 3· · · · · ·

a

a

a

a

b

b

b

c

c d

D1 D2 D3

D1 D2 D3

D1 D2 D3

D1 D2 D3

D1 D2 D3j

existing sensor

newly installed
sensor

dummy sensor

Figure 6.2: Sensor contribution decomposition.

For any 𝑡 and 𝑟 satisfying 1 ≤ 𝑡 ≤ |𝐽|, max{𝑡, 𝑁} ≤ 𝑟 ≤ 𝑁 + 𝑡, a combination 𝑘 fulfilling

1[𝐽𝑘\𝐽𝑘′ =𝑗&&𝑏𝑘𝑗=1]𝑦𝑘𝑟𝑡 = 1 must have 𝑗 as its most remote regular sensor, have its most remote

sensor assigned at level 𝑟 and thus have 𝑟 − 𝑡 dummy sensors. Hence we only need to choose

𝑁 − 1 − (𝑟 − 𝑡) regular sensors from the 𝑡 − 1 alternatives to get a qualified 𝑘. We denote

the maximum number of such updated combinations by 𝑛𝑡𝑟 = ( 𝑡−1
𝑁−1−𝑟+𝑡). We also let 𝐶𝑖𝑗𝑟𝑘 =
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(𝑒𝑖𝑘𝛽𝑘𝑟 − (1 − 𝑝𝑗)𝑒𝑖𝑘′𝛽𝑘′𝑟) 1[𝐽𝑘\𝐽𝑘′ =𝑗&&𝑏𝑘𝑗=1]. For each 1 ≤ 𝑡 ≤ |𝐽|, max{𝑡, 𝑁} ≤ 𝑟 ≤ 𝑁 + 𝑡, 1 ≤ 𝑗 ≤ |𝐽|,

let 𝑘1, 𝑘2, ⋯ , 𝑘|𝐾| be an ordering of the coefficients 𝐶𝑖𝑗𝑟𝑘 such that 𝐶𝑖𝑗𝑟𝑘1
≥ 𝐶𝑖𝑗𝑟𝑘2

≥ ⋯ ≥ 𝐶𝑖𝑗𝑟𝑘|𝐾|
. We

define 𝛾𝑖𝑗𝑡 = ∑𝑁+𝑡
𝑟=max{𝑡,𝑁} ∑𝑛𝑡𝑟

𝑙=1 𝐶𝑖𝑗𝑟𝑘1
. Based on the construction of 𝛾𝑖𝑗𝑡, 𝛾𝑖𝑗𝑡𝑍𝑗𝑡 provides an upper

bound to the accuracy improvement from inserting sensor 𝑗 at level 𝑡. Replacing 𝐴𝐶 by its upper

bound ∑|𝐽|
𝑡=1 ∑𝑗∈𝐽 𝛾𝑖𝑗𝑡𝑍𝑗𝑡, (DRSLP𝑖) further reduces to the following simple assignment problem

(TRSLP𝑖), which can be solved by the Hungarian algorithm.

(TRSLP𝑖) min −
|𝐽|

∑
𝑡=1

∑
𝑗∈𝒥

𝑣𝑖𝛾𝑖𝑗𝑡𝑍𝑗𝑡 +
|𝐽|

∑
𝑟=1

∑
𝑗∈𝒥

𝜇𝑖𝑗𝑍𝑗𝑟 (6.14a)

s.t. (6.6b) − (6.6e),

𝑍𝑗𝑟 ∈ {0, 1}, ∀𝑗 ∈ 𝒥, 𝑟 = 1, ⋯ , |𝒥|. (6.14b)

Proposition 17. The solution to (TRSLP𝑖) provides a lower bound to the relaxed sub-problem

(RSLP𝑖).

Proof. (DRSLP𝑖) is constructed through replacing ∑𝑘∈𝐾 ∑|𝒥 |
𝑟=𝑁 𝑣𝑖𝑒𝑖𝑘𝛽𝑘𝑟𝑌𝑘𝑟 with the approxima-

tion ∑|𝐽|
𝑟=1 ∑𝑗∈𝒥 𝑣𝑖𝛾𝑖𝑗𝑟𝑍𝑗𝑟 and removing constraints (6.6f)-(6.6g). As removing constraints enlarges

the feasible region of (DRSLP𝑖), it will never increase the objective value of this minimization

problem. Based on the construction of 𝛾𝑖𝑗𝑟, ∑|𝐽|
𝑟=1 ∑𝑗∈𝒥 𝑣𝑖𝛾𝑖𝑗𝑟𝑍𝑗𝑟 provides an upper bound to

∑𝑘∈𝐾 ∑|𝒥|
𝑟=𝑁 𝑣𝑖𝑒𝑖𝑘𝛽𝑘𝑟𝑌𝑘𝑟. Therefore, the optimal objective value of (TRSLP𝑖) is a lower bound to

the optimal objective value of (DRSLP𝑖). Together with the result in Proposition 16, the solution

of (TRSLP𝑖) is a lower bound to the relaxed sub-problem (RSLP𝑖).

6.4 Numerical Examples

To demonstrate the applicability of the proposed models and algorithms, we apply them to a

series of hypothetical grid networks as well as a more realistic Wi-Fi Access Point (AP) network in

Terminal 5 of the Chicago O’Hare Airport. The proposed solution algorithms are programmed in

C++ and run on a 64-bit Intel i7-3770 computer with 3.40 GHz CPU and 8G RAM. The linearized

LSLP are tackled by commercial solver CPLEX 12.4 using up to 4 threads. We set the overall

solution time limit to be 3600 seconds.
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6.4.1 Hypothetical Grid Networks

A 2×3 rectangle grid network and six 𝑛×𝑛 square grid networks for 𝑛 ∈ {3, 4, 5, 6, 7, 8} are generated

to represent various hypothetical study regions. In the square grid networks, each network contains

(𝑛 − 1)2 cells. The four corners of each cell represent the candidate sensor locations, adding to

a total number of 𝑛2 candidate sensor locations. The centroid of each cell is constructed to be a

surveillance neighborhood, adding to (𝑛 − 1)2 neighborhoods. The network layouts are shown in

Fig. 6.3. We omit the surveillance neighborhoods in some of the larger networks (i.e., from 5×5

to 8×8) for cleaner figure presentation. The edge length of each cell is set to 1. The customer

demand of each neighborhood 𝑖 is 𝑣𝑖 = 10, the value of 𝛼 is 1, and the fixed sensor installment

cost is 10. The value of coverage is 1. The site-dependent failure probability of sensor location 𝑗 is

assumed to vary from 0.1 to 0.2 based on its Euclidean distance to the center of the study region.

The sensor(s) located nearest to the center have the highest failure probability of 0.2, the sensor(s)

located farthest away have the lowest probability of 0.1. The failure probability of a sensor in the

middle linearly decreases with the distance to the center. Each combination uses 𝑁 = 3 sensors.

Combination accuracy is computed based on 𝑒𝑖𝑘 = ∑𝑗∈𝐽
𝑎𝑘𝑗

(𝑑𝑖𝑗)2+𝜖 , ∀𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾, where 𝑑𝑖𝑗 is the

Euclidean distance and 𝜖 is a small positive number. The reliable sensor location problems are

solved by two approaches: (i) CPLEX directly applied to the mixed-integer linear program LSLP

and (ii) Lagrangian relaxation based branch-and-bound method with approximation algorithm

(LR+B&B+Approx.). Table 6.1 summarizes and compares the results from the two approaches.

As one can observe from the table, the solution time and solution quality rapidly deteriorate

with the network size, due to the significant increase in the number of integer variables Y and Z.

CPLEX could only find the optimal solution to the specifically constructed small rectangle network.

In the second case, CPLEX identified a feasible solution but failed to find a lower bound, despite

its rather small network size. For the other larger networks, CPLEX ran out of memory and could

not provide a feasible solution or a lower bound. In contrast, optimal solutions to the first 6 cases

were obtained by the LR+B&B+Approx. approach within 3 minutes. For the 8×8 network, there

is a residue gap of 2.32% after 1 hour of computation.

In Fig. 6.3, the installed sensors in the best solutions from the LR+B&B+Approx. approach

are marked green. We can observe that more sensors are installed in order to monitor a larger

110



Table 6.1: Algorithm performance comparison for the 7 hypothetical cases.
Sensor Neighborhood No. of Final Final Final CPU

network network sensors UB LB gap (%) time (s)

CPLEX

2 × 3 1 × 2 2 -1.31 -1.30 0 1.6
3 × 3 2 × 2 4 -14.01 fail 100 3600
4 × 4 3 × 3 - - - fail 3600

⋯ ⋯ - - - fail 3600
8 × 8 7 × 7 - - - fail 3600

LR+B&B

2 × 3 1 × 2 2 -1.31 -1.31 0 0.1
3 × 3 2 × 2 4 -24.28 -24.28 0 0.1
4 × 4 3 × 3 5 -77.38 -77.38 0 0.4
5 × 5 4 × 4 8 -150.78 -150.78 0 0.8
6 × 6 5 × 5 14 -243.48 -243.48 0 38
7 × 7 6 × 6 21 -360.99 -360.99 0 181
8 × 8 7 × 7 29 -489.07 -500.41 2.32 3600

region. In the first three cases, the installed sensors are clustered in the center of the study region

mainly owning to their short distances to all the surveillance neighborhoods, which provides better

accuracy with a limited number of sensors. In the four larger cases, it is interesting to observe that

the sensors are installed symmetrically along the diagonal lines. Moreover, no sensor is installed

immediately next to the boundary, while all nearby candidate locations (e.g., slightly closer to the

region center) are selected. Those properties indicate the possibility to decompose a larger yet

symmetrical network into several smaller ones to obtain the sensor deployment effectively. Take

the 8×8 network for example, if the sensor at coordinate (1, 1) is installed (assuming the bottom

left sensor is located at the origin (0, 0)), then we can automatically install the sensor at (6, 6),

which could significantly speed up solution process. As such, the proposed algorithm could possibly

handle an even larger symmetrical network efficiently.

Fig. 6.4 illustrates how the sensor combinations are used by the customers in neighborhood

𝑖 = 1 (i.e., indicated by the dark star in Fig. 6.3) in the 3-by-3 case. The installed sensors 4, 5,

6, 8 are assigned to levels 1 - 4 based on distance, while the dummy sensors are assigned at levels

5 - 7. Some representative combinations are illustrated in this figure. For example, the shaded

combination (𝑘 = 𝑢) will be used to monitor this neighborhood if and only if sensors 5, 6 and 8

are functioning and sensor 4 has been disrupted. The most remote sensor in this combination is 8,

which is ranked at level 𝑟 = 4. Hence combination 𝑢 corresponds to backup level 𝑟 = 4 and it will

be used with a probability of 𝑃1𝑢4 = 𝑝4(1 − 𝑝5)(1 − 𝑝6)(1 − 𝑝8) = 0.15 × 0.8 × 0.75 × 0.75 = 0.0675

based on the sensor failure probability settings.
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Figure 6.3: Optimal sensor deployment for the 7 hypothetical cases.

Figure 6.4: Detailed assignment plan of sensor combinations to neighborhood 𝑖 = 1.

6.4.2 Wi-Fi Point Network for O’Hare Terminal 5

The Chicago O’Hare International Airport is one of the busiest airports in the world. In June

2016 alone, a total of 7,329,084 travelers passed through the airport (CDA, 2016). Boingo, the

O’Hare Airport’s Wi-Fi provider, has pioneered a new “S.M.A.R.T” network design (Secure, Multi-

platform, Analytics-Driver, Responsive and Tiered) which allows increased access point density for

location-based services like queue management, advertising, and passenger guidance. Such a system

is expected to deliver valuable business intelligence and actionable insights to enable high-quality

passenger service.

In this case study, we select the departure level of Terminal 5 to investigate Wi-Fi Access
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Point deployment for better location-based services. Terminal 5 contains Concourse M, which is

used for all international arrivals and part of the international departures (those of most non-US

carriers). We select 52 heavy-traffic venues inside the terminal, including 21 gates, 10 restaurants,

13 shops, 6 airline lounges and 1 security check point, as key surveillance neighborhoods; see Fig.

6.5. Average hourly surveillance demand at each neighborhood is assumed to be proportional to

the local passenger flow per the monthly statistics report of the Chicago Department of Aviation

(CDA, 2016). The terminal is further divided into square cells with an edge length of 10 metersb.

The corners of every square cell are considered candidate sensor/AP locations. There are 222

candidate locations in total. Boingo uses Cisco’s AP systems with chipsets featuring 802.11ac

standard, with an installation cost of about US$200 each (maintenance cost or other capital cost

is not considered). The received signal strength (RSS) follows a logarithm function of distance

(Shchekotov, 2014), and hence we assume a combination of sensors will yield an accuracy measure

of 𝑒𝑖𝑘 = ∑𝑗∈𝐽 22𝑎𝑘𝑗 log10 ( 40
𝑑𝑖𝑗+𝜖 ) , ∀𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾, where 𝑑𝑖𝑗 is the Euclidean distance in meters, and

40 (meters) is the effective range of a Cisco AP. Each combination uses 𝑁 = 3 sensors.

Figure 6.5: O’Hare terminal 5 map (Source: http://www.flychicago.com/OHare/EN/AtAirport/
map).

We consider site-independent, yet low, median and high levels of sensor disruption probabilities;
bGenerally, access points should be separated by at least 10 feet in order to reduce adjacent channel interference,

and it is recommended that APs are mounted at 30-40 feet (or approximately 10 meters) from one another (https:
//supportforums.adtran.com/docs/DOC-7257).
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i.e., 𝑝𝑗 = 𝑝 ∈ {0.01, 0.2, 0.5}, ∀𝑗. The system performance measures under these scenarios are

presented in Table 6.2. All results are obtained from the proposed LR+B&B+Approx algorithm

within 3600 seconds. Overall, a higher sensor failure probability leads to a fewer number of installed

sensors as well as a significant deterioration in the best objective value (i.e., the final UB). The

residue gap also increases slightly with the failure probability. The value of 𝛼 reflects the tradeoff

between the positioning accuracy 𝑒𝑖𝑘 and the unit sensor installation cost 𝑓𝑗. Very often the value

of 𝛼 may be subject to speculation and interpretation. We thus conduct sensitivity analysis over 𝛼

while keeping the same formula for 𝑒𝑖𝑘, and when 𝑓𝑗 = 200, 𝑝𝑗 = 0.01. When 𝛼 increases from 0.025 to

0.4, the number of installed sensors increases drastically from 17 to 111, and the objective function

drops by about two orders of magnitude. These results indicate that the benefits of deploying more

sensors far outweigh the installation costs in the O’hare case study.

Table 6.2: Performance measures for the O’Hare Airport case.
Failure No. of No. of No. of Final Final Final CPU
prob 𝛼 candidate neighbor installed UB LB gap(%) time(s)

sensors -hoods sensors

0.01 0.1 222 52 61 -32306.5 -33795.4 4.6 3600
0.2 0.1 222 52 58 -27720.0 -29147.4 5.1 3600
0.5 0.1 222 52 56 -18761.6 -19786.5 5.5 3600

0.01 0.025 222 52 17 -3417.3 -3739.3 8.5 3600
0.01 0.050 222 52 34 -11732.2 -12355.9 5.0 3600
0.01 0.2 222 52 92 -79741.0 -82682.9 3.6 3600
0.01 0.4 222 52 111 -180132.0 -186298.0 3.3 3600

The optimal sensor locations for the three cases are shown in Fig. 6.6. The solid-line circles rep-

resent the surveillance neighborhoods, and their size indicates the volume of surveillance demand.

The installed sensors are marked by shaded squares. They can be roughly clustered into groups,

as shown by the dotted ellipses, in which the distances between any adjacent sensors do not exceed

15 meters – i.e., these sensors are likely to provide effective backups to each other. Under a low

failure probability, the installed sensors can be clustered into 16 groups, and the sensor nearest to

every surveillance neighborhood is always installed. This forms a rather dispersed sensor network

overall. In the two wings of the airport, 5 isolated sensors are installed in order to monitor their

most adjacent neighborhoods, although these sensors only make marginal contributions to other

neighborhoods.

When the sensor disruption probability increases to 0.2 and 0.5, the number of sensor groups
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(a) 𝑝 = 0.01

(b) 𝑝 = 0.2

(c) 𝑝 = 0.5

Figure 6.6: Optimal sensor locations under (a) low, (b) median, and (c) high sensor disruption
probabilities.
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drops to 12 and 10, respectively, and fewer isolated sensors are installed. Sensors within a group

tend to become more clustered so as to better back each other up. This is clearly illustrated, for

example, by the highlighted group (see the bold ellipse). Meanwhile, sensors also tend to cluster

around the center of the concourse where demand is the heaviest. For example, 10 sensors are

clustered within 20 meters from at the security checkpoint when 𝑝 = 0.5, while there are only 7

when 𝑝 = 0.2 and 5 when 𝑝 = 0.01. In summary, under higher failure probability, the model tends

to yield a higher degree of sensor clustering especially around the heavy-demand neighborhoods,

while at the same time a smaller total number of sensors would be installed especially around the

less crowded neighborhoods.

A closer look at the sensor deployment in the highlighted group (bold ellipse) reveals some

interesting points. When 𝑝 increases from 0.01 to 0.2, sensor #29 is removed from the low demand

neighborhood while sensor #34 is added to the high demand neighborhood. Such changes can be

explained by the marginal costs and marginal benefits of these sensors. In the case of 𝑝 = 0.2, if we

add sensor #29 back, the marginal coverage benefit is $185.7, which is lower than its installation

cost $200. On the other hand, if we remove sensor #34, the coverage accuracy loss is $252.1 when

𝑝 = 0.2, which is higher than $200. This result can be generalized. When the disruption probability

increases, the sensors become less reliable, and more sensors will be needed to maintain the same

coverage accuracy. In high-demand neighborhoods, the net marginal benefit of installing an extra

“back-up” sensor (e.g., to maintain the accuracy) may be high enough to outweigh the installation

cost. We hence may observe an increase in the sensor number near those neighborhoods. In low-

demand neighborhoods, however, the net marginal benefit of adding a sensor may not justify its cost,

and we will therefore expect reduction of sensors. In other words, the spatial distribution of sensors

tends to be more clustered near high-demand neighborhoods under high disruption probabilities,

but at the same time more sparse near low-demand neighborhoods. The total number of sensors

across all neighborhoods may not exhibit a monotonic relationship with the value of 𝑝.
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CHAPTER 7:

RELIABLE NETWORK DISTRICTING WITH CON-

TIGUITY, BALANCE, AND COMPACTNESS CON-

SIDERATIONS

Another important extension of the relible facility location research is reliable network districting

problems, which aim at partitioning a network into districts under some operational considerations,

and assign the demands in the partitioned districts to suppliers/facilities for actual service. In the

reliable network districting problems, various operational criteria for districting (e.g., contiguity,

balance, compactness) and the reliability of service providers (caused by internal or external factors)

are simultaneously considered.a

In this chapter, we formulate the reliable network districting problem as mixed-integer opti-

mization models using the location-assignment based modeling approaches. A series of modeling

techniques are adopted to address multiple districting criteria: (i) contiguity: each district must be

contiguous; (ii) balance: total nodal weights are balanced across districts; (iii) compactness: each

district is compact in shape;. The reliability of facilities is incorporated by introducing district

demand re-assignments. Customized solution approaches including constructive and neighborhood

search heuristics, set-cover based lower bound estimation are designed to efficiently solve the math-

ematical models.

We apply the proposed methodology to an empirical railroad call center design problem. Rail-

road companies rely on good call centers to reliably handle incoming crew/resource call demands

so as to maintain efficient operations and customer services in their networks. The full-scale case
aThis chapter is based on a published paper, Xie and Ouyang (2016).
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study demonstrates the performance and applicability of our methodology, and helps draw various

managerial insights.

7.1 Introduction

Districting is a well-known problem in the operations research literature. It aims at partitioning

a geographical space into sub-districts under various criteria and constraints. Depending on the

specific application context, operational criteria may include the district contiguity, district com-

pactness, workload balance, socio-economic homogeneity, etc. In the literature, probably the most

intensively studied problem is regarding political districting, which divides a jurisdiction area (e.g.,

a state or a region) into electoral constituencies such that the political candidates from each area

are elected to a parliamentary assembly. The “one man-one vote” principle requires that all dis-

tricts contain approximately the same number of candidates/voters to avoid benefiting a certain

party or candidate. There are several other applications of districting problems, which include: (i)

service districting, referring to the design of districts for social facilities like schools, hospitals, fire

stations; (ii) sales market districting, which subdivides the market areas of companies into multiple

regions of responsibility; and (iii) distribution districting, which designs the pickup and delivery

districts in logisitics context.

All the traditional districting problems simply focus on partitioning a network/area into districts

under some operational considerations (Hess et al., 1965; Garfinkel and Nemhauser, 1970; Blais et

al., 2003; Ferland and Guénette, 1990; Hess and Samuels, 1971). However, most of these studies

ignore the fact that in many real-world districting applications, each of the partitioned district

is associated with a supplier/facility. For example, in the school districting problem, all students

in a district should be assigned to the corresponding school in that particular district. In the

postal service districting problem, pickup/delivery locations in one district are typically visited

sequentially by some specific postman/vehicle. Hence, many of the districting applications also

involve facility location and demand assignment decisions. To the best of our knowledge, only

very limited work has been done to combine the facility location and districting considerations.

Moreover, the fact that facilities are subject to possible disruptions due to technical and personnel

reasons emphasizes the necessity of further incorporating the reliability issues into the facility

districting framework. Therefore, we aim at developing an innovative reliable facility districting
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framework to incorporate the districting considerations into the reliable facility location models. It

is worth noting that with reliability issues considered, many of the traditional modeling methods

for addressing various operational districting criteria (e.g., district contiguity, workload balancing)

would no longer work, or at least require modifications. Hence, we need to design new/adpated

customized methods/techniques to address these various criteria.

In light of these challenges, in this chapter, we formulate the reliable network districting problem

as mixed-integer optimization models using the location-assignment based modeling approaches.

A series of modeling techniques (e.g., network flow constraints) are adopted to address multiple

districting criteria: (i) contiguity: each district must be contiguous; (ii) compactness: each district

is compact in shape; (iii) balance: demand is balanced across districts. The reliability of facilities

is incorporated by introducing district re-assignments. Note that when facilities are subject to

disruptions, the expected demand assigned to each facility across all possible facility failure scenarios

should be considered. Customized solution approaches including constructive and neighborhood

search heuristics, set-cover based lower bound estimation are developed to efficiently solve the

mathematical models. Several numerical examples including a series of hypothetical test cases

and an empirical full-scale railroad application are conducted to demonstrate the performance and

applicability of our methodology. Various managerial insights are also drawn.

The remainder of this chapter is organized as follows. Section 7.2 introduces various operational

districting criteria. Section 7.3 formulates the reliable districting problem into a mixed-integer opti-

mization model using location-assignment based modeling approach. Section 7.4 designs customized

heuristics to efficiently solve the model, and Section 7.5 presents a set-cover based estimation for the

lower bound to provide optimality information. In Section 7.6, results for a series of hypothetical

numerical examples and a full-scale railroad applications are presented.

7.2 Districting Criteria

As that defined in Mehrotra et al. (1998), a districting plan is a partitioning of a given graph/network

(consisting of nodes and links) into a predetermined number of partitions such that the nodes in

each parition induce a subgraph, which we call a district. Typically, districting problems involve the

consideration of various operational criteria and constraints, including district contiguity, weight

balance, and district compactness.
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(a) Plan I (b) Plan II (c) Plan III (d) Plan IV

Figure 7.1: Graphical illustration for various districting criteria.

7.2.1 Contiguity

A district is contiguous if it is possible to travel between any two points in the same district without

traversing any other district. In graphical terms, the subgraph corresponding to the district must

be connected, i.e., there exists a path between any two nodes in the subgraph. Many districting

applications require that each district in the plan is contiguous. For example, in the railroad

call center design problem, the spatial district served by each caller desk should be contiguous

so as to satisfy a number of practical operational requirements, e.g., administrative autonomy for

resource/crew reallocation and train traffic management.

Figure 7.1(a) shows a districting plan (Plan I) in which all districts are contiguous, while in the

Plan II represented by Figure 7.1(b), the districts colored with red and blue are apparently not

contiguous as traveling from node 1 to node 2 (or from node 3 to node 4) requires going through

the district in brown color.

7.2.2 Balance

In the given graph/network, each node is typically associated with a certain amount of weight,

which can be either demand, workload, or population of the corresponding unit the node represents.

Many districting plans are optimized to balance the total nodal weights across all districts. For

example, in the political districting applications, the districts should have nearly equal populations

to adhere to the one-person, one-vote principle. In the railroad call center design problems, the

expected workload should be well balanced across caller desks, so that no desks are too much more

occupied than others and bear excessive work pressure.
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Comparing the districting plans shown in Figure 7.1(a) and Figure 7.1(c), we can easily observe

that Plan I is more balanced than Plan III with respect to the number of nodes falling inside them.

Specifically, in Plan I, all four districts have the same number of nodes, while in Plan III, the

number of nodes in the four districts vary (i.e., 3,4,5,8).

7.2.3 Compactness

The compactness of districts is posed to prevent the formation of oddly-shaped districts. Intuitively,

a compact district is supposed to have circular or square shape rather than being long and thin

or snakelike. In districting problems, various forms of compactness standards have been imposed

to achieve certain geographic configurations. For example, in political districting, measure of

compactness is essentially enforced so as to disallow plans that were deemed to be gerrymandered.

While in the railroad call center design applications, each spatial district is expected to be compact

in shape so as to avoid high crew operating and transportation/logistics costs inside odd-shaped

districts.

Figure 7.1(d) shows a plan IV with districts of elongated or curved shapes. To visit all nodes

within each district, the traveling routes in Plan IV could be very awkward and may induce high

transportation costs.

7.3 Location-Assignment Model Formulation

In this section, we formulate the reliable districting problem into a mixed-integer linear optimization

program using the location-assignment based modeling approach. A series of modeling techniques

(e.g., network flow constraints) are adopted to address the required practical criteria and to incor-

porate the reliability consideration. Customized algorithms consisting of a constructive heuristic

and a neighborhood search procedure are developed to efficiently solve the mathematical model.

The districting problem is aiming at partitioning a given undirected network 𝒢 = (ℐ, ℰ) (with

node set ℐ and edge set ℰ) into a fixed number 𝑀 of districts that jointly cover all the nodes in

ℐ , and to assign these districts to 𝑀 facilities for service. Binary parameter 𝛿𝑖1𝑖2 indicates whether

two nodes 𝑖1 ∈ ℐ and 𝑖2 ∈ ℐ are adjacent in network 𝒢; i.e., 𝛿𝑖1𝑖2 = 1 if edge (𝑖1, 𝑖2) ∈ ℰ, or 𝛿𝑖1𝑖2 = 0

otherwise. Each node in the graph, 𝑖 ∈ ℐ , generates a certain quantity of demand 𝐷𝑖 (e.g., crew

dispatch and emergency calls in the call center design problem). Let ℳ = {1, 2, ⋯ , 𝑀} be the set
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of district indices. The nodes in each district, 𝐼𝑚, 𝑚 ∈ ℳ , must be assigned to one facility so that

the facility is primarily serving the demand from that district.

With the location-assignment based modeling approach, each node is included in one district,

and then assigned to one facility. The corresponding formulation is presented as follows:

(Location-Assignment) min ∑
𝑚∈ℳ

𝑓 (𝑦𝑖𝑚) (7.1a)

s.t. ∑
𝑚∈ℳ

𝑦𝑖𝑚 = 1, ∀𝑖 ∈ ℐ, (7.1b)

constraints for contiguity, (7.1c)

constraints for balance, (7.1d)

constraints for compactness, (7.1e)

constraints for reliable assignment, (7.1f)

where binary variables 𝑦𝑖𝑚 represent whether node 𝑖 ∈ ℐ is assigned to district 𝑚 ∈ ℳ . The

objective can be expressed as a function of the assignment variables 𝑦𝑖𝑚, and by solving the model

(Location-Assignment), we can obtain each district 𝑚 ∈ ℳ as the subgraph induced by nodes

ℐ𝑚 = {𝑖 ∶ 𝑦𝑖𝑚 = 1}. Constraints (7.1c)–(7.1f) formulate the various districting criteria, with details

stated as follows.

Contiguity

In many real-world scenarios, each district is required to be contiguous, i.e., it is possible to travel

between any two points in the same district without having to traverse any other district. For

a given graph 𝒢 = (ℐ, ℰ), there exist an exponential number 2|ℐ | of possible districts. To avoid

enumerating all feasible districts, we develop a network-flow based technique to ensure the district

contiguity criterion.

For each of the 𝑀 facilities corresponding to the districts ℳ , we imagine that the network 𝒢

contains a corresponding “proxy” sink node that each can absorb any amount of incoming flow. We

also assume that one unit of virtual flow is generated at each node 𝑖 ∈ ℐ , and it will flow through

the network to finally reach one of the 𝑀 sink nodes. If each district contains exactly one sink

node to receive all the virtual flow that has originated within the district, and if we can force that
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no flow is allowed between different districts, then we have successfully partitioned 𝒢 into several

mutually disjoint but connected districts. Figure 7.2(a) illustrates a feasible network partition with

four districts, and an associated virtual flow pattern. In the figure, each arrow indicates the virtual

flow between nodes, and the number near the arrow gives the flow volume. The nodes in each

partitioned district have the same shape (e.g., circle, square), while the sink node of this district

is hollow. As shown, a partition is feasible if all virtual flow from a district could be collected and

routed to its sink without passing any nodes outside of the district. Figure 7.2(b), in contrast,

illustrates an infeasible partition, because there is no way to collect and route virtual flow from all

“circle” nodes to a single sink node in this district, i.e., the district is not contiguous.

(a) Feasible partition (b) Infeasible partition

Figure 7.2: Network-flow based technique to model contiguity criterion.

For any 𝑖 ∈ ℐ, 𝑚 ∈ ℳ , we let variable 𝑦𝑖𝑚 = 1 if node 𝑖 is in district 𝑚, or 𝑦𝑖𝑚 = 0 otherwise. In

addition, we let 𝑥𝑖𝑚 = 1 if node 𝑖 is the sink node of district 𝑚, or 𝑥𝑖𝑚 = 0 otherwise. We further let

𝑧𝑚
𝑖1𝑖2 = 1 if nodes 𝑖1 and 𝑖2 are adjacent in network 𝐺 and both of them are in district 𝑚, or 𝑧𝑚

𝑖1𝑖2 = 0

otherwise. The virtual link flow from any node 𝑖1 to any node 𝑖2 is denoted as 𝑓 𝑚
𝑖1𝑖2 , ∀𝑖1, 𝑖2 ∈ ℐ .

The contiguity of district 𝑚 ∈ ℳ is then ensured by the following constraints:

∑
𝑚∈ℳ

𝑦𝑖𝑚 = 1, ∀𝑖 ∈ ℐ, (7.2a)

∑
𝑖∈ℐ

𝑥𝑖𝑚 = 1, ∀𝑚 ∈ ℳ, (7.2b)

𝑥𝑖𝑚 ≤ 𝑦𝑖𝑚, ∀𝑖 ∈ ℐ, 𝑚 ∈ ℳ, (7.2c)
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𝑧𝑚
𝑖1𝑖2 ≤ 𝛿𝑖1𝑖2 ⋅

𝑦𝑖1𝑚 + 𝑦𝑖2𝑚
2 , ∀𝑖1, 𝑖2 ∈ ℐ, 𝑚 ∈ ℳ, (7.2d)

𝑓 𝑚
𝑖1𝑖2 ≤ (|ℐ| − |ℳ|) 𝑧𝑚

𝑖1𝑖2 , ∀𝑖1, 𝑖2 ∈ ℐ, 𝑚 ∈ ℳ, (7.2e)

𝑦𝑖1𝑚 + ∑
𝑖2∈ℐ

𝑓 𝑚
𝑖2𝑖1 ≥ ∑

𝑖2∈ℐ
𝑓 𝑚
𝑖1𝑖2 , ∀𝑖1 ∈ ℐ, 𝑚 ∈ ℳ, (7.2f)

𝑦𝑖1𝑚 + ∑
𝑖2∈ℐ

𝑓 𝑚
𝑖2𝑖1 ≤ ∑

𝑖2∈ℐ
𝑓 𝑚
𝑖1𝑖2 + (|ℐ| − |ℳ|) 𝑥𝑖1𝑚, ∀𝑖1 ∈ ℐ, 𝑚 ∈ ℳ. (7.2g)

Constraints (7.2a) enforce that each node 𝑖 ∈ ℐ belongs to exactly one district. Constraints

(7.2b) make sure that each district has exactly one sink node. Constraints (7.2c) ensure that the sink

node of each district should be inside the district due to the contiguity requirement. Constraints

(7.2d) and (7.2e), together with integrality of the respective decision variables, require that virtual

flow only exists on links within each district, while |ℐ | − |ℳ| is the maximum possible flow volume

on a link. Constraints (7.2f) and (7.2g) stipulate flow conservation at nodes in the network, except

for those sink nodes (i.e., any node 𝑖 ∈ ℐ with 𝑥𝑖𝑚 = 1).

Reliable Assignment

Due to exogenous reasons (such as adverse weather, power outage, etc.), each facility is subject to

independent disruptions with an identical probability 𝑞, which could be defined as the fraction of

time in a relatively long horizon (e.g., a year) during which a facility is in a disrupted state (e.g.,

due to adverse weather or labor issues). Once a facility fails, all the demands originally assigned to

it are either served by another functioning backup facility, or the service is lost. For each district

𝑚 ∈ ℳ , we plan a series of backup plans that involve up to 𝑅 ≥ 1 other facilities. We call its

𝑟th choice of facility as its level-𝑟 choice, while the level-0 choice is its original associated facility

𝑚. The district receives service from its level-𝑟 facility if its level-0, ⋯, level-(𝑟 − 1) choices have

all become unavailable, which occurs with a corresponding probability of (1 − 𝑞)𝑞𝑟. To the very

extreme, if all of the district’s 𝑅 + 1 assigned facilities (including the level-0 choice) have failed,

which occurs with a probability of 𝑞𝑅+1, every unit of demand in the district will incur a penalty

of 𝑊missing. Without loss of generality, we construct a dummy facility and assign all “lost” demand

to this dummy facility.

We let variable 𝑌𝑟
𝑚𝑛 = 1 if district 𝑚 ∈ ℳ is assigned to facility 𝑛 ∈ ℳ at level 𝑟, or 𝑌𝑟

𝑚𝑛 = 0

otherwise. Similarly, let 𝑌𝑟
𝑚0 = 1 if district 𝑚 ∈ 𝑀 is assigned to the dummy facility at level 𝑟, or
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𝑌𝑟
𝑚0 = 0 otherwise. The following constraints enforce such back-up assignments to facilities:

∑
𝑛∈ℳ,𝑛≠𝑚

𝑌𝑟
𝑚𝑛 + 𝑌𝑟

𝑚0 = 1, ∀𝑚 ∈ ℳ, 𝑟 = 1, 2, ⋯ , 𝑅, (7.3a)

𝑌𝑟
𝑚0 ≤ 𝑌𝑟+1

𝑗0 , ∀𝑚 ∈ ℳ, 𝑟 = 1, 2, ⋯ , 𝑅, (7.3b)

𝑌𝑅+1
𝑚0 = 1, ∀𝑚 ∈ ℳ. (7.3c)

Here, constraints (7.3a) ensure that at each backup level, each district is assigned to either a

regular facility or the dummy facility. Constraints (7.3b) enforce that if a district is assigned to the

dummy facility at some level 𝑟, it is assigned to the dummy facility at all higher levels 𝑟+1, ⋯ , 𝑅+1.

Constraints (7.3c) guarantee that all districts are assigned to the dummy facility at level 𝑅 + 1.

Even in a facility failure scenario, the continuity requirement mandates that any districts (re-

)assigned to a functioning facility should still be a connected graph. To ensure this, we enforce

a strong requirement that if district 𝑚1 can be re-assigned to a backup facility corresponding to

district 𝑚2, then districts of indices 𝑚1 and 𝑚2 must be adjacent to each other, i.e., there exist two

nodes 𝑖1 ∈ ℐ𝑚1
and 𝑖2 ∈ ℐ𝑚2

such that 𝛿𝑖1𝑖2 = 1. With this restriction, if a district has a limited

number of neighbors, we may not be able to assign a district 𝑚 ∈ ℳ to a regular facility at some level

𝑟 ≤ 𝑅; instead, the district will be re-assigned to the dummy facility with probability 𝑞𝑟. As such,

the probability that 𝑗 is assigned to the dummy facility is calculated as ∑𝑅
𝑠=𝑟(1 − 𝑞)𝑞𝑠 + 𝑞𝑅+1 = 𝑞𝑟,

which equals to the true probability for service loss. We define 𝑤𝑚1𝑚2
𝑖1𝑖2 = 1 if nodes 𝑖1 and 𝑖2 belong

respectively to districts 𝑚1 and 𝑚2, or 𝑤𝑚1𝑚2
𝑖1𝑖2 = 0 otherwise. Furthermore, we define 𝑙𝑚1𝑚2

= 1 if

districts 𝑚1 and 𝑚2 are connected, and 0 otherwise. Then, the contiguity requirement can still be

enforced under facility disruption and district reassignment scenarios by the following additional

constraints and the respective integralities of decision variables:

𝑤𝑚1𝑚2
𝑖1𝑖2 ≤ 𝛿𝑖1𝑖2 ⋅

𝑦𝑖1𝑚1
+ 𝑦𝑖2𝑚2

2 , ∀𝑖1, 𝑖2 ∈ ℐ, 𝑚1, 𝑚2 ∈ ℳ, (7.4a)

𝑙𝑚1𝑚2
≤ ∑

𝑖1∈𝐼
∑
𝑖2∈𝐼

𝑤𝑚1𝑚2
𝑖1𝑖2 , ∀𝑚1, 𝑚2 ∈ ℳ, (7.4b)

𝑅
∑
𝑟=1

𝑌𝑟
𝑚1𝑚2

≤ 𝑙𝑚1𝑚2
, ∀𝑚1, 𝑚2 ∈ ℳ. (7.4c)

Constraints (7.4a) and (7.4b) determine whether two districts 𝑚1 ∈ ℳ and 𝑚2 ∈ ℳ are adjacent
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to each other. Constraints (7.4c) enforce that a district can only be re-assigned to another facility

corresponding to an adjacent district.

Workload Balance

We aim at balancing the expected total demands assigned to each facility across all normal and

disruption scenarios. It is easy to see that such expected demand for a regular facility 𝑚 ∈ ℳ , 𝑋𝑚,

can be derived as follows:

𝑋𝑚 = ∑
𝑖∈ℐ

𝑦𝑖𝑚𝐷𝑖(1 − 𝑞) + ∑
𝑛∈ℳ

𝑅
∑
𝑟=1

𝑌𝑟
𝑛𝑚 ∑

𝑖∈ℐ
𝑦𝑖𝑚𝐷𝑖(1 − 𝑞)𝑞𝑟, ∀𝑚 ∈ ℳ. (7.5)

The first and second terms are respectively the expected cost of serving the demand in district

𝑚 via facility 𝑚 and all possible re-assignments. Similarly, the expected demand assigned to the

dummy facility can be expressed as follows:

𝑋0 = ∑
𝑚∈ℳ

𝑌𝑅+1
𝑚0 ∑

𝑖∈ℐ
𝑦𝑖𝑚𝐷𝑖𝑞𝑅+1 + ∑

𝑚∈ℳ

𝑅
∑
𝑟=1

𝑌𝑟
𝑚0 ∑

𝑖∈ℐ
𝑦𝑖𝑚𝐷𝑖(1 − 𝑞)𝑞𝑟. (7.6)

A simple way to balance the workload is to minimize the maximum value of {𝑋𝑚}𝑚∈ℳ , i.e.,

𝑋max ∶= max𝑚∈ℳ 𝑋𝑚. Note that the following constraints hold:

𝑋max ≥ 𝑋𝑚, ∀𝑚 ∈ ℳ. (7.7)

Compactness

The compactness of districts prevents the formation of oddly-shaped districts, and high compactness

indicates that any district should be circular or square in shape rather than being elongated. In

our reliable network districting problem, due to possible disruptions of facilities, a demand may

be serviced by different facilities at different distances/costs. Therefore, we define the “expected”

compactness of a district 𝑚 based on two levels of spatial hierarchy: (i) the “median”-type total

weighted distance for all nodal demand within district 𝑚 to its choice-0 desk (i.e., the sink within

the district), and (ii) the expected distance from the “own” sink node of district 𝑚 to all other

“backup” sink nodes at different choice levels. For a district 𝑚 ∈ ℳ , we define 𝑣𝑚
𝑖1𝑖2 = 1 if 𝑖1 ∈ ℐ𝑚

and 𝑖2 is the sink node of district 𝑗, or 𝑣𝑚
𝑖1𝑖2 = 0 otherwise. We also denote the network shortest

126



path distance between nodes 𝑖1 and 𝑖2 as 𝑑𝑖1𝑖2 . The shortest path distance between the sink nodes

of two districts 𝑚1 and 𝑚2, which is a decision variable that depends on the corresponding sink

locations, is denoted as ̂𝑑𝑚1𝑚2
. We know the following must hold:

𝑣𝑚
𝑖1𝑖2 ≥ 𝑦𝑖1𝑚 + 𝑥𝑖2𝑚 − 1, ∀𝑖1, 𝑖2 ∈ ℐ, (7.8a)

̂𝑑𝑚1𝑚2
≥ 𝑑𝑖1𝑖2 (𝑥𝑖1𝑚1

+ 𝑥𝑖2𝑚2
− 1) , ∀𝑖1, 𝑖2 ∈ ℐ, 𝑚1, 𝑚2 ∈ ℳ. (7.8b)

Constraints (7.8a) determine whether a node 𝑖1 ∈ ℐ and a sink 𝑖2 ∈ ℐ are in the same district.

Constraints (7.8b) compute the distance between the sink nodes of two districts 𝑚 and 𝑛. Then

the compactness measure for district 𝑚 is calculated as

𝐶𝑚 = ∑
𝑖1∈ℐ

∑
𝑖2∈ℐ

𝑑𝑖1𝑖2𝑣𝑚
𝑖1𝑖2 + 𝛼 ∑

𝑛∈ℳ

𝑅
∑
𝑟=1

(1 − 𝑞)𝑞𝑟𝑌𝑟
𝑚𝑛 ̂𝑑𝑚𝑛, ∀𝑚 ∈ ℳ, (7.9)

where 𝛼 is a weight parameter. A larger value of 𝐶𝑚 indicates a less compact district 𝑚.

Model formulation

Now, the reliable network districting problem (RND) can be formulated as the following mixed-

integer programming model:

(RND) min 𝑊balance ⋅ 𝑋max + 𝑊missing ⋅ 𝑋0 + 𝑊compact ⋅ ∑
𝑚∈ℳ

𝐶𝑚 (7.10a)

s.t. (7.2a) − (7.2g), (7.3a) − (7.3c), (7.4a) − (7.4c),

(7.5), (7.6), (7.7), (7.8a) − (7.8b), (7.9),

𝑦𝑖𝑚, 𝑥𝑖𝑚, 𝑧𝑚
𝑖1𝑖2 , 𝑤𝑚1𝑚2

𝑖1𝑖2 , 𝑙𝑚1𝑚2
, 𝑣𝑚

𝑖1𝑖2 , 𝑌𝑟
𝑚1𝑚2

, 𝑌𝑟
𝑚0 ∈ {0, 1}, 𝑓 𝑚

𝑖1𝑖2 , ̂𝑑𝑚1𝑚2
≥ 0,

∀𝑖, 𝑖1, 𝑖2 ∈ ℐ, 𝑚, 𝑚1, 𝑚2 ∈ ℳ, 𝑟 = 1, 2, ⋯ , 𝑅, (7.10b)

where 𝑊balance, 𝑊compact and 𝑊missing are the relative weight coefficients for the maximum facility

workload 𝑋max, the compactness measure 𝐶𝑚, and the dummy facility workload 𝑋0, respectively.

The objective function (7.10a) presents the expected system cost including the “cost” for workload

balancing, the “cost” for compactness, and the penalty for demand loss. We assume that 𝑊missing >

𝑊balance, otherwise the problem becomes trivial such that all districts will be assigned to the dummy
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desk at level 1 and no further backup plan is needed. In addition to Constraints (7.2a) – (7.9),

Constraints (7.10b) enforce the integrity and non-negativity of all decision variables.

The formulation (RND) contains several nonlinear terms 𝑌𝑟
𝑚𝑛𝑦𝑖𝑚, 𝑌𝑟

𝑚0𝑦𝑖𝑚 and 𝑌𝑟
𝑚𝑛 ̂𝑑𝑚𝑛 in several

sets of constraints. We linearize them by applying a variant of the technique introduced by Sherali

and Alameddine (1992), whereas 𝑌𝑟
𝑚𝑛𝑦𝑖𝑚, 𝑌𝑟

𝑚0𝑦𝑖𝑚 and 𝑌𝑟
𝑚𝑛 ̂𝑑𝑚𝑛 are replaced by new continuous

variables 𝑈𝑖𝑟
𝑚𝑛, 𝑈𝑖𝑟

𝑚0 and 𝑈𝑟
𝑚𝑛, respectively. Their equivalence is enforced by adding the following

new constraints.

𝑈𝑖𝑟
𝑚𝑛 ≥ 𝑌𝑟

𝑚𝑛 + 𝑦𝑖𝑚 − 1, ∀𝑚, 𝑛 ∈ ℳ, 𝑖 ∈ ℐ, 𝑟 = 1, 2, ⋯ , 𝑅, (7.11a)

𝑈𝑖𝑟
𝑚𝑛 ≤ 𝑌𝑟

𝑚𝑛, ∀𝑚, 𝑛 ∈ ℳ, 𝑖 ∈ ℐ, 𝑟 = 1, 2, ⋯ , 𝑅, (7.11b)

𝑈𝑖𝑟
𝑚𝑛 ≤ 𝑦𝑖𝑚, ∀𝑚, 𝑛 ∈ ℳ, 𝑖 ∈ ℐ, 𝑟 = 1, 2, ⋯ , 𝑅, (7.11c)

𝑈𝑖𝑟
𝑚0 ≥ 𝑌𝑟

𝑚0 + 𝑦𝑖𝑚 − 1, ∀𝑚 ∈ ℳ, 𝑖 ∈ ℐ, 𝑟 = 1, 2, ⋯ , 𝑅 + 1, (7.11d)

𝑈𝑖𝑟
𝑚0 ≤ 𝑌𝑟

𝑚0, ∀𝑚 ∈ ℳ, 𝑖 ∈ ℐ, 𝑟 = 1, 2, ⋯ , 𝑅 + 1, (7.11e)

𝑈𝑖𝑟
𝑚0 ≤ 𝑦𝑖𝑚, ∀𝑚 ∈ ℳ, 𝑖 ∈ ℐ, 𝑟 = 1, 2, ⋯ , 𝑅 + 1, (7.11f)

𝑈𝑟
𝑚𝑛 ≥ ̂𝑑𝑚𝑛 + 𝑑max (𝑌𝑟

𝑚𝑛 − 1) , ∀𝑚, 𝑛 ∈ ℳ, 𝑟 = 1, 2, ⋯ , 𝑅, (7.11g)

𝑈𝑟
𝑚𝑛 ≤ ̂𝑑𝑚𝑛, ∀𝑚, 𝑛 ∈ ℳ, 𝑟 = 1, 2, ⋯ , 𝑅, (7.11h)

𝑈𝑟
𝑚𝑛 ≤ 𝑑max𝑌𝑟

𝑚𝑛, ∀𝑚, 𝑛 ∈ ℳ, 𝑟 = 1, 2, ⋯ , 𝑅, (7.11i)

𝑈𝑖𝑟1𝑚𝑛, 𝑈𝑖𝑟2
𝑚0, 𝑈𝑟1𝑚𝑛 ≥ 0, ∀𝑚, 𝑛 ∈ ℳ, 𝑖 ∈ ℐ, 𝑟1 = 1, 2, ⋯ , 𝑅, 𝑟2 = 1, 2, ⋯ , 𝑅 + 1, (7.11j)

where 𝑑max is the maximum distance between any two nodes in network 𝒢. Note from (7.11a)-

(7.11c) that 𝑈𝑖𝑟
𝑚𝑛 = 1 if and only if 𝑌𝑟

𝑚𝑛 = 𝑦𝑖𝑚 = 1; if either 𝑌𝑟
𝑚𝑛 or 𝑦𝑖𝑚 equals 0, then 𝑈𝑖𝑟

𝑚𝑛 = 0 as

well. Hence, these constraints ensure that 𝑈𝑖𝑟
𝑚𝑛 = 𝑌𝑟

𝑚𝑛𝑦𝑖𝑚 exactly. Similarly, (7.11d)-(7.11f) ensure

𝑈𝑖𝑟
𝑚0 = 𝑌𝑟

𝑚0𝑦𝑖𝑚. From (7.11g)-(7.11i), and the fact that ̂𝑑𝑚𝑛 − 𝑑max ≤ 0 ≤ ̂𝑑𝑚𝑛 ≤ 𝑑max, we know

that 𝑈𝑟
𝑚𝑛 = ̂𝑑𝑚𝑛 if 𝑌𝑟

𝑚𝑛 = 1, or 0 otherwise. These constraints exactly function in the same way as

𝑈𝑟
𝑚𝑛 = ̂𝑑𝑚𝑛𝑌𝑟

𝑚𝑛. The model formulation (RND) is then transformed into the following linearized

reliable network districting problem (LRND):

(LRND) min 𝑊balance ⋅ 𝑋max + 𝑊missing ⋅ 𝑋0 + 𝑊compact ⋅ ∑
𝑚∈ℳ

𝐶𝑚 (7.12a)
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s.t. (7.2a) − (7.2g), (7.3a) − (7.3c), (7.4a) − (7.4c),

(7.7), (7.8a) − (7.8b), (7.9), (7.11a) − (7.11j),

𝑋𝑚 = ∑
𝑛∈ℳ

𝑅
∑
𝑟=1

∑
𝑖∈ℐ

𝑈𝑖𝑟
𝑛𝑚𝐷𝑖(1 − 𝑞)𝑞𝑟 + ∑

𝑖∈ℐ
𝑦𝑖𝑚𝐷𝑖(1 − 𝑞), ∀𝑚 ∈ ℳ, (7.12b)

𝑋0 = ∑
𝑚∈ℳ

𝑅
∑
𝑟=1

∑
𝑖∈ℐ

𝑈𝑖𝑟
𝑚0𝐷𝑖(1 − 𝑞)𝑞𝑟 + ∑

𝑚∈ℳ
∑
𝑖∈ℐ

𝑈𝑖𝑅+1
𝑚0 𝐷𝑖𝑞𝑅+1, (7.12c)

𝐶𝑚 = ∑
𝑖1∈ℐ

∑
𝑖2∈ℐ

𝐷𝑖1𝑖2𝑣𝑚
𝑖1𝑖2 + ∑

𝑛∈ℳ

𝑅
∑
𝑟=1

𝑈𝑟
𝑚𝑛(1 − 𝑞)𝑞𝑟, ∀𝑚 ∈ ℳ. (7.12d)

7.4 Solution Algorithm

The mixed-integer linear program (LRND) could be potentially solved by commercial solvers such

as CPLEX or Gurobi. However, as we will show in the case studies in Section 7.6, the computational

burden is greatly exacerbated by the network-flow based constraints and the reliable assignment

strategy, especially when the network size is relatively large. It takes a large amount of computation

time for the solvers to obtain even a feasible solution (usually with a quite poor quality). In light

of this challenge, in this section, we develop a customized heuristic algorithm to obtain solutions

in a reasonable amount of time. The algorithm contains two parts: (i) a constructive heuristic to

obtain an initial solution, and (ii) a neighborhood search procedure to improve the solution.

7.4.1 Constructive Heuristic

We first propose a constructive heuristic to obtain an initial solution to (LRND). We define the

deterministic version (built facilities are always functioning) of the linearized network districting

problem as follows:

(DLRND) min 𝑊balance ⋅ 𝑋max + 𝑊compact ⋅ ∑
𝑚∈ℳ

𝐶𝑚 (7.13a)

s.t. (7.2a) − (7.2g),

𝑋𝑚 = ∑
𝑖∈ℐ

𝑦𝑖𝑚𝐷𝑖, ∀𝑛 ∈ ℳ, (7.13b)

𝑋max ≥ 𝑋𝑚, ∀𝑚 ∈ ℳ, (7.13c)

𝑣𝑚
𝑖1𝑖2 ≥ 𝑦𝑖1𝑚 + 𝑥𝑖2𝑚 − 1, ∀𝑖1, 𝑖2 ∈ ℐ, 𝑚 ∈ ℳ, (7.13d)
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𝐶𝑚 = ∑
𝑖1∈ℐ

∑
𝑖2∈ℐ

𝑑𝑖1𝑖2𝑣𝑚
𝑖1𝑖2 , ∀𝑚 ∈ ℳ. (7.13e)

In this problem, the operational criteria/requirements including district contiguity, workload

balance, and district compactness are all considered, so it is likely to generate an initial solution

with a reasonably good quality. The detailed steps of the constructive heuristic to solve (DLRND)

are described as follows:

Step 1. Solve a median problem where 𝑀 sinks are initially located at selected nodes in the network

𝒢. Note that the districts in the solution of the median problem are not necessarily

contiguous due to workload balancing.

Step 2. Starting with the 𝑀 initial sink nodes, we expand them into a set ℳ of contiguous districts

as follows:

(i) Compute the average demand of each district as �̄� = ∑𝑖∈ℐ 𝐷𝑖/𝑀, and set a demand

threshold �̂� as a function of �̄�, e.g., �̂� = 𝛽�̄�, or �̂� = �̄� + Constant;

(ii) For each district 𝑚 ∈ ℳ with demand ∑𝑖∈ℐ𝑚
𝐷𝑖, if there exists one node 𝑖 such that

𝑖 is adjacent to 𝑚 and ∑𝑖′∈ℐ𝑚
𝐷𝑖′ + 𝐷𝑖 ≤ �̂�, we expand district 𝑚 by attaching node

𝑖 and the associated links to it;

(iii) If no district can be further expanded without violating the workload limit, but there

remain some nodes that have not been included in any district, do the following. For

each remaining node 𝑖, we try to attach it to each of its adjacent districts and evaluate

the resulting workload balance; select the attachment that yields the least workload

balance violation.

Step 3. Given the set ℳ of districts generated in Step 2, we check for any pair of districts 𝑚1

and 𝑚2, if they are adjacent and the difference between their demands exceeds a specified

threshold �̃� (e.g., �̃� = 𝛾�̄�), we run (DLRND) to re-partition the network with districts

other than 𝑚1 and 𝑚2 fixed.

This process continues until there exists no such pair of districts, or when some other

termination criteria are met, e.g., the maximum number of iterations is reached.
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7.4.2 Neighborhood Search

The solution obtained by the constructive heuristic does not consider the possible facility disrup-

tions. To incorporate the reliability issue into the solution, we develop a neighborhood search

heuristic. In the solution space, a neighborhood of a districting solution (i.e., the partition) is

defined as another partition with two of the adjacent districts redesigned (i.e., the nodes in the two

districts are reassigned to yield two new districts) while all other districts remain the same.

Specifically, given the set ℳ of districts, if districts 𝑚1 and 𝑚2 are to be redesigned, we let

𝐿 = ℳ\{𝑚1, 𝑚2}, fix the following variables, and solve (LRND) again to re-partition the network:

(i) 𝑥𝑖𝑚, 𝑦𝑖𝑚, 𝑧𝑚
𝑖1𝑖2 , 𝑓 𝑚

𝑖1𝑖2 , 𝑣𝑚
𝑖1𝑖2 , ∀𝑖, 𝑖1, 𝑖2 ∈ ℐ, 𝑚 ∈ ℒ;

(ii) 𝑤𝑚1𝑚2
𝑖1𝑖2 , ∀𝑚1, 𝑚2 ∈ ℳ ;

(iii) 𝑙𝑚1𝑚2
, ̂𝑑𝑚1𝑚2

, ∀𝑚1, 𝑚2 ∈ ℳ ;

After solving the (LRND) model, if the new solution is feasible and yields an improvement

to the objective, it will be accepted and the partition solution will be updated. Then the set of

possible neighborhood moves is updated and the neighborhood search process starts again. The

searching procedure continues until some stopping criteria are met, or if all possible neighborhood

moves have been enumerated without yielding any improvements.

The above algorithm re-designs two neighboring districts at a time. In general, any number

of districts can be redesigned together in one search move. Since the assignment of demand in

each district is interrelated with decisions in many other districts, re-partitioning multiple districts

in one move may lead to a better solution or help avoid a local optimum. However, in so doing,

the corresponding (LRND) in each move takes a longer time to solve. So we set a max time for

each move, taking into account the tradeoff between the improvement of solution quality and the

computation time in each move.

7.5 Error Estimation

The customized heuristic algorithm provides a feasible solution to (LRND). In this section, we use

set-cover based modeling techniques to construct a lower bound to (LRND), so as to obtain the

optimality of the heuristic solution and demonstrate its good quality.
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7.5.1 Initial Lower Bound

We split the objective of (LRND) into three components and calculate the lower bound to each

component, which in total give an initial integrated lower bound.

(i) Since 𝑊balance < 𝑊missing, if a district 𝑚 has an adjacent district 𝑛, we can prove that the

corresponding facility 𝑛 is always chosen by demands in district 𝑚 at a lower level than the

emergency facility. Since each district has at least one adjacent district, then we can obtain

a lower bound to 𝑋max as

𝑋max ≥
∑𝑖∈ℐ 𝐷𝑖(1 − 𝑞2)

𝑀 . (7.14)

(ii) Each district 𝑚 ∈ ℳ is forced to be assigned to the dummy facility at one level 𝑟 ∈ [1, 2, ⋯ , 𝑅+

1], and contribute ∑𝑖∈ℐ𝑚
𝐷𝑖𝑞𝑟 to 𝑋0. So the minimum value of 𝑋0 can be expressed as

𝑋0 ≥ ∑
𝑖∈ℐ

𝐷𝑖𝑞𝑅+1. (7.15)

(iii) Given the compactness measure (7.9), since each district 𝑚 ∈ ℳ has at least one adjacent

district, we have ∑𝑅
𝑟=1(1 − 𝑞)𝑞𝑟𝑌𝑟

𝑚𝑛 ̂𝑑𝑚𝑛 ≥ (1 − 𝑞)𝑞𝑟 ̂𝑑𝑚𝑛𝑚
where 𝑛𝑚 is the district with sink

node closest to the sink node of district 𝑚. Therefore, we can calculate the lower bound of

∑𝑚∈ℳ 𝐶𝑚 as

∑̂
𝑚∈ℳ

𝐶𝑚 = min ∑
𝑚∈ℳ

∑
𝑖1∈ℐ

∑
𝑖2∈ℐ

𝐷𝑖1𝑖2𝑣𝑚
𝑖1𝑖2 + 𝛼 ∑

𝑚∈ℳ

̂𝑑𝑚(1 − 𝑞)𝑞 (7.16)

s.t. (7.2a) − (7.2g), (7.8a) − (7.8b),

̂𝑑𝑚 = ∑
𝑛∈ℳ

̂𝑑𝑚𝑛𝑢𝑚𝑛, ∀𝑚 ∈ ℳ,

∑
𝑛∈ℳ

𝑢𝑚𝑛 = 1, ∀𝑚 ∈ ℳ,

where ̂𝑑𝑚 is the minimum distance between the sink node of district 𝑚 ∈ ℳ and any other

district 𝑛 ≠ 𝑚, and 𝑢𝑚𝑛 indicates whether the sink of district 𝑛 is closest to the sink of district

𝑚, 𝑢𝑚𝑛 = 1 if it is, 0 otherwise.
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Combining (i) (ii) and (iii) gives the overall lower bound to (LRND) and the corresponding

error/gap estimation as

LB-INIT(LRND) = 𝑊balance ⋅ 𝑋max + 𝑊missing ⋅ 𝑋0 + 𝑊compact ⋅ ∑̂
𝑚∈ℳ

𝐶𝑚. (7.17)

Error(LRND) =
UB(LRND) − LB(LRND)

UB(LRND)
× 100% (7.18)

Note that since the lower bounds to the three cost components are not necessarily achieved

simultaneously, the initial lower bound LB-INIT(LRND) may not be tight. In the next two sections,

we will use a set-cover based modeling techniques to further improve it.

7.5.2 District Filtering

To apply set-cover based modeling approaches, we have to first generate a set of possible district

options. Given network 𝒢 = (ℐ, ℰ), the maximum number of all possible districts can be as large

as 𝑂(2|ℐ |), which is exponentially large. Therefore, it is extremely difficult, if not impossible, to

enumerate all of the possible districts. We instead filter districts on a “possible to be optimal”

basis by excluding those districts that are impossible to be in the optimal solution. The algorithm

to generate the set of feasible district options can be summarized as the following steps.

Step 1 We use the heuristic algorithm proposed in Section 7.4 to obtain the upper bound UBLRND,

which is no less than the optimal objective value.

Step 2 For any district 𝑚 ∈ ℳ , assume that its demand is 𝐷𝑚 and minimum compactness measure

is 𝐶𝑚 (which can be calculated beforehand), we can compute the lower bound to the

compactness of the other 𝑀 − 1 districts easily as 𝐶others
𝑚 .

Step 3 If the lower bound to the corresponding objective gives

𝑊balance ⋅ 𝐷𝑚(1 − 𝑞) + 𝑊compact ⋅ (𝐶𝑚 + 𝐶others
𝑚 ) + 𝑊missing ⋅ 𝑋0 > UBLRND,

we claim that district 𝑚 is impossible to be in the optimal solution, and thus exclude it

from the set of possible districts.

In this way, a very large portion of the district options is eliminated from the initial set. The
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pseudo-code for filtering the district options is summarized as Algorithm 2.

7.5.3 Improved Lower Bound

After filtering the district options, we obtain a set 𝒥 of districts which is of limited size. Further,

by observing that the cost components with 𝑋0 and 𝐶𝑚 are typically restricting each other, i.e.,

when 𝑋0 is small, each district tends to have more neighbors and thus is less compact in shape

with larger value of 𝐶𝑚. Therefore, we use a set-cover model to integrate these two components

and improve the initial lower bound. The model formulation is presented as follows

(LRND-LB-IMPR) min 𝑊missing ⋅ 𝑋0 + 𝑊compact ⋅ ∑
𝑗∈𝒥

𝐶𝑗𝑍𝑗

s.t. ∑
𝑗∈𝒥

𝑍𝑗 = 𝑀 (7.19a)

∑
𝑗∈𝒥

𝑎𝑖𝑗𝑍𝑗 = 1, ∀𝑖 ∈ ℐ (7.19b)

𝑅
∑
𝑟=1

𝑌𝑟
𝑗 ≤ ∑

𝑘∈𝒥
𝑙𝑗𝑘𝑍𝑘, ∀𝑗 ∈ 𝒥 (7.19c)

𝑌𝑗 +
𝑟

∑
𝑠=1

𝑌𝑠
𝑗0 = 𝑍𝑗, ∀𝑗 ∈ 𝒥, 𝑟 ≤ 𝑅 (7.19d)

𝑅+1
∑
𝑟=1

𝑌𝑟
𝑗0 = 𝑍𝑗, ∀𝑗 ∈ 𝒥, (7.19e)

𝑋0 = ∑
𝑗∈𝒥

𝑅+1
∑
𝑟=1

𝑌𝑟
𝑗0𝑑𝑗𝑞𝑟, (7.19f)

𝑍𝑗, 𝑌𝑟
𝑗 , 𝑌𝑟

𝑗0 ∈ {0, 1}, ∀𝑗 ∈ 𝒥, 𝑟 = 1, 2, ⋯ , 𝑅 + 1. (7.19g)

Constraints (7.19a) enforce that exactly 𝑀 districts are selected from all the district options. Con-

straints (7.19b) ensure that each customer is contained in exactly one district, i.e., selected districts

are non-overlapping and cover the entire network. Constraints (7.19c) indicate that customers can

only be assigned to facilities corresponding to those selected districts. Constraints (7.19d)–(7.19e)

pose requirements on district assignments, ensuring that customers are first assigned to regular fa-

cilities, then to the emergency facility at the highest level. Constraints (7.19f) calculate the value of

𝑋0. Given the optimal value of (LRND-LB-IMPR) as OPT(LRND-LB-IMPR), we have the improved
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Algorithm 2 Generate the set of feasible district options

DistrictGeneration()
1. for 𝑖 ∈ ℐ do
2. sourceHeap← createHeap(𝑖), stack← ∅, districts← ∅
3. stack.push(DFSNode(𝑖, sourceHeap, districts))
4. while stack is not empty do
5. node ← stack.pop()
6. if 𝑊weight⋅ node.demand ⋅(1 − 𝑞) + 𝑊compact⋅ node.compact ≤ 𝑊 then
7. if node.hash is in districts.hashList then
8. districts.setList.add(node.set), district.hashList.add(node.hash)
9. end if

10. if node.unvisited is not empty then
11. nextNode = node.unvisited.extractmin()
12. if node.unvisited is not empty then
13. stack.push(node)
14. nextHeap ← updateHeap(node, next, 𝑖,)
15. else
16. nextHeap ← createHeap(node, next, 𝑖,)
17. end if
18. newNode
19. stack.push(newNode)
20. end if
21. end if
22. end while
23. remove 𝑖 from 𝒢
24. end for

createHeap(𝑖, visitedNodes)
1. newHeap ← ∅
2. for 𝑛 ∈ ℰ(𝑖) do
3. if 𝑛 is not in visitedNodes then
4. newHeap.insert(𝑛)
5. end if
6. end for
7. return newHeap

updateHeap(𝑖, heap, visitedNodes)
1. newHeap ← heap
2. for 𝑛 ∈ ℰ(𝑖) do
3. if 𝑛 is not in newHeap or visitedNodes then
4. newHeap.insert(𝑛)
5. end if
6. end for
7. return newHeap
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lower bound to (LRND) as

LB-IMPR(LRND) = 𝑊balance ⋅ 𝑋max + OPT(LRND-LB-IMPR). (7.20)

7.6 Numerical Examples

We apply the mathematical model and solution approaches to two sets of examples so as to demon-

strate their applicability and performance. In the first example, we partition a series of hypothetical

square grid networks of various sizes (as shown in Figure 7.3), and compare the performance of

different solution approaches with different parameter settings. The second numerical example, on

the other hand, involves a full-scale call center design problem for a U.S. Class I railroad company.

The proposed model and solution algorithms are programmed in C# and run on a 64-bit Intel

i7-3770 computer with 3.40 GHz CPU and 8G RAM. The mixed-integer linear programs, if solved

directly, are tackled by commercial solver Gurobi.

7.6.1 Hypothetical Grid Networks

For each value 𝑛 ∈ {4, 5, 6, 7, 8}, an 𝑛×𝑛 grid network is generated to represent a hypothetical study

region with 𝑛2 nodes and 2𝑛(𝑛−1) links. The 𝑛2 nodes are indexed as 1, 2, ⋯ , 𝑛2 from left to right,

and from bottom to top, as shown in Figure 7.3. The length of every edge between two adjacent

nodes is set to 1. For node 𝑖, the demand is set to 30+20(mod(𝑖, 10)⋅10𝜋/13). The failure probability

of each location is assumed to be 0.1. We allow the number of districts 𝑀 ∈ {5, 7}, and the

maximum assignment level 𝑅 ∈ {3, 4}. The penalty values are set as 𝑊balance = 1.0, 𝑊compact = 2.0,

and 𝑊missing = 500.0, respectively.

We use two different solution approaches to solve the reliable districting problems for these grid

networks. The first approach directly applies Gurobi to solve the linearized programming models

(7.12a) – (7.12d), while the computation time limit is set to 7200s. The second approach uses the

proposed heuristic algorithm (i.e., construction and neighborhood search), the max time limit for

each search move is set to 60s. Table 7.1 summarizes and compares the results obtained by the two

approaches.

Overall, as the network size, the number of partitions, and/or the maximum number of backup

levels 𝑅 increase, the problem becomes more challenging to solve. Gurobi seems to have difficulty
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Figure 7.3: 𝑛 × 𝑛 square grid network.

closing the reported optimality gap for all the test cases within the 7200s computation time limit,

while for all 8 × 8 cases, Gurobi even could not find a feasible solution. In contrast, our proposed

heuristic approach is able to obtain reasonable solutions in a relatively short amount of computation

time. By comparing the results obtained by the two approaches, we observe that their solutions

are comparable only for moderate size problems (e.g., 𝑛 = 4, 5 partitions, and 𝑅 =3 or 4). When

the problem size is large, the quality of the Gurobi solution is quite poor, i.e., its reported gap is

very large and its best feasible solution has an objective value far exceeding that from the heuristic

algorithm. As such, the proposed heuristic algorithm outperforms the Gurobi method in terms of

both solution quality and computation time, especially for large-scale problem instances.

For cases with the same network size and 𝑅 value, as the number of partitions |𝐽| increases, the

computation time of our algorithm increases due to the larger number of variables and constraints.

The objective value, however, reduces because with a larger number of partitions, the expected

workload of each caller desk becomes smaller, and the probability of losing service due to insufficient

adjacent districts is smaller. Similarly, a bigger value of 𝑅 results in a longer computation time

(also because of the increase in problem size) and a smaller solution objective, probably due to the

lower chance for any demand to lose service.

A closer look at some solutions is provided in Table 7.2, where the solution details for the cases

with 𝑛 = 8 network, 7 partitions, and 𝑅 = 3 or 4 are presented. Column 3 lists the nodes in each
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Table 7.1: Algorithm performance comparison for different test cases.
Network 𝑀 𝑅 Lower Heuristic Heuristic Heuristic Gurobi Gurobi Gurobi

size bound objective gap (%) time (s) objective gap time (s)

4 × 4

5 3 141.882 147.601 3.9% 304 147.601 16.2% 7200
5 4 137.336 144.067 4.7% 374 144.067 21.7% 7200
7 3 112.588 115.163 2.2% 319 115.278 26.7% 7200
7 4 99.114 102.642 3.4% 505 119.778 31.9% 7200

5 × 5

5 3 242.855 250.891 3.2% 277 253.079 28.0% 7200
5 4 227.425 241.708 5.9% 630 260.021 34.6% 7200
7 3 187.202 194.268 3.6% 412 214.327 50.6% 7200
7 4 167.342 174.914 4.3% 856 223.066 66.1% 7200

6 × 6

5 3 364.477 372.739 2.6% 597 388.893 41.8% 7200
5 4 332.461 362.608 8.3% 1891 546.601 143.3% 7200
7 3 285.383 297.416 4.0% 1041 366.211 81.2% 7200
7 4 247.965 266.872 7.1% 2518 589.741 287.6% 7200

7 × 7

5 3 522.309 528.513 1.2% 3189 593.627 68.4% 7200
5 4 454.154 515.274 11.9% 4567 770.790 171.0% 7200
7 3 412.809 422.193 2.2% 3867 2311.332 740.3% 7200
7 4 344.654 372.789 7.5% 5845 2097.163 920.4% 7200

8 × 8

5 3 713.427 727.619 2.0% 3963 – – –
5 4 623.922 714.946 12.7% 4327 – – –
7 3 568.722 575.618 1.2% 4131 – – –
7 4 479.217 521.694 8.1% 4697 – – –

Table 7.2: Detailed results of the 8 × 8 network partitioned into 7 districts.

District Nodes Nodal 𝑋𝑚 𝐶𝑚 1 2 3 4Demand

𝑅 = 3

1 44, 45, 51, 52, 53, 59, 60, 61 259.16 287.06 10.30 4 6 7 –
2 25, 26, 33, 34, 41, 42, 43, 49, 50, 57, 58 320.01 288.53 18.31 1 6 5 –
3 8, 15, 16, 22, 23, 24, 31, 32, 40 265.14 288.38 13.50 4 6 7 –
4 3, 4, 5, 6, 7, 13, 14, 21 237.83 269.17 11.49 3 6 5 –
5 1, 2, 9, 10, 11, 12, 17, 18, 19 319.90 288.41 12.40 4 6 2 –
6 20, 27, 28, 29, 30, 35, 36, 37, 38 274.79 283.73 13.31 1 4 3 –
7 39, 46, 47, 48, 54, 55, 56, 62, 63, 64 312.25 283.59 14.51 3 6 1 –

𝑅 = 4

1 32, 40, 46, 48, 53, 54, 55, 56, 62, 63, 64 312.45 289.14 20.32 5 2 4 7
2 4, 5, 6, 7, 8, 14, 15, 16, 23, 24 301.36 274.36 17.41 5 1 6 3
3 1, 2, 3, 9, 10, 17, 18, 25, 26, 33, 41 303.55 275.89 21.31 6 4 2 7
4 27, 34, 35, 36, 42, 44, 45 256.02 284.03 10.30 6 5 3 1
5 22, 30, 31, 37, 38, 39, 47 256.04 288.20 9.39 6 1 4 2
6 11, 12, 13, 19, 20, 21, 28, 29 238.08 287.95 10.30 4 3 5 2
7 43, 49, 50, 51, 52, 57, 58, 59, 60, 61 321.57 289.47 16.22 4 1 3 –
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district, Column 4 shows the total demand from all nodes in each district, and Column 5 gives the

expected workload 𝑋𝑚 (re-)assigned to each facility 𝑚 in normal and disruption scenarios. Column

6 presents compactness metric 𝐶𝑚 for each district. Columns 7–10 are the backup desk assignment

decisions for each district at various backup levels. We observe that our proposed algorithm is able

to achieve all partitioning objectives satisfactorily. Even though the original nodal demand from

the districts are not quite even, the expected workloads (re-)assigned to all the desks are very well

balanced. Figure 7.4 graphically illustrates the spatial partitions, where each connected subgraph

represents one district. In general all the districts have reasonable compactness. Moreover, we

observe that when 𝑅 = 4, districts in the partition results are slightly more elongated in shape

than those when 𝑅 = 3, so as to have more adjacent districts (and hence, caller desks) as backup

options. Specifically, when 𝑅 = 3, all districts but one have exactly 3 adjacent districts, while in

the case when 𝑅 = 4, 6 out of the 7 districts have at least 4 adjacent districts.

(a) 𝑅 = 3 (b) 𝑅 = 4

Figure 7.4: The partition results of the 8 × 8 network under different values of 𝑅.

7.6.2 Full-scale Railroad Call Center Design

Next, we apply our methodology to an empirical call center design problem for a U.S. Class I railroad

company. Railroad companies regularly receive a large number of calls from their customers and

business partners (normally via telephone, intercom, computer or other devices) regarding real-time

train operation, service scheduling, and resource/crew arrangements in the field. Such calls have

significant implications on the operational efficiency of the railroad system and hence are important
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for the success of the railroad companies. The call center serves as the information and decision hub

for a railroad company’s production and maintenance activities. The planning of the call center

plays a critical role in the allocation and utilization of the railroad’s manpower, equipment, and

other resources. This is particularly the case when railroads are facing operational uncertainties and

the risk of disruptions (e.g., due to adverse weather, train accidents, power outage, labor issues).

In case of unexpected emergencies, effective communication and efficient resource (re-)allocation

across the railroad network must be ensured via the call center such that backup plans for train

timetabling, rolling stock and crew scheduling can be carried out in time – The call center itself must

be functioning reliably so as to be responsible for real-time emergency management and disaster

response. Therefore, a good call center design that can reliably and efficiently handle incoming

calls across the railroad system is very critical.

Usually a call center for a railroad company consists of multiple crew caller desks, each of which

is responsible for the calls from a particular predefined spatial region (i.e., district). A good call

center design should have the following characteristics: (i) all incoming call demand can be handled

by a properly assigned caller desk under any circumstance, otherwise significant penalty will occur

due to disruption to railroad operations; (ii) the expected workload is well balanced across caller

desks, so that no desks are too much more occupied than others; (iii) the spatial district served by

a caller desk should be contiguous so as to satisfy a number of practical operational requirements,

e.g., administrative autonomy for resource/crew reallocation and train traffic management; and

(iv) the spatial district corresponding to one caller desk is compact in shape so as to avoid high

transportation/logistics costs inside odd-shaped districts.

As shown in Figure 7.5, the railroad network consists of 157 nodes (the rail yards/supply points

of the company), each with a specified demand of crew calls. The detailed data are confidential,

but the maximum, minimum, and average of the nodal demand are 3219, 6, and 76, respectively,

representing a huge disparity in demand quantity across nodes. The distance between two adjacent

nodes is measured along the shortest path in the actual rail track network. The company’s call

center contains 12 caller desks. Thus the company wants the network to be partitioned into

𝑀 = 12 corresponding districts and assigned to these desks. The maximum number of back

levels is 𝑅 = 3, the probability for each desk to fail is 𝑞 = 0.1, and the penalty values are set as

𝑊balance = 1.0, 𝑊compact = 2.0, 𝑊missing = 500.0, respectively.
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(a) Districting plan with no disruption (b) Districting plan when desks 1, 2, and 3 fail

Figure 7.5: Results for the full-scale railroad call center design problem.

Table 7.3: The demand, workload, and backup assignments of each district.
Index 1 2 3 4 5 6 7 8 9 10 11 12

Demand 9320 10240 9862 10239 10734 10970 8593 9747 9855 9635 10386 10261
Workload 10199 10160 9961 10182 9847 9995 9478 10012 9988 9639 10195 10175
Level 1 11 12 1 9 4 8 10 7 3 7 2 1
Level 2 5 10 9 3 3 9 8 6 8 8 5 10
Level 3 12 3 6 5 11 10 6 9 6 6 12 2

The commercial solvers cannot solve a problem of this size without running into memory issues.

Results from the proposed heuristic algorithm is presented in Figure 7.5(a) and Table 7.3. In Figure

7.5(a), each color (or shape) of nodes corresponds to one district, which is contiguous and compact

in shape in the company’s network (although the detailed network is not shown). Table 7.3 shows

the total nodal demand from each district and the expected workload (re-)assigned to each desk.

The expected workloads of the desks are very well balanced, i.e., the biggest and smallest workloads

are 10199 and 9478, respectively, with a mere 7.6% difference. Also, the 𝑅 = 3 choices of backup

desks of each district are summarized in Table 7.3. For example, nodal demands in district 1 are

assigned to desks 11, 5, and 12 at backup levels 1, 2, and 3, respectively. Figure 7.5(b) then shows

the assignments of nodal demands to desks when desks 1, 2, and 3 fail. We observe that nodes

in the original districts 1, 2, and 3 are reassigned to desks 11 (1st backup of district 1), 12 (1st

backup of district 2), and 9 (2nd backup of district 3 since its 1st backup is disrupted already),

respectively. The company considers such a result far superior than their current practice, and our
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model solution has since been implemented.

Table 7.4: Sensitivity analysis on system parameters 𝑀 and 𝑞.
Number of partitions 𝑀 Time (s) Heuristic objective 𝑋max 𝑋0 ∑𝑚∈ℳ 𝐶𝑚

8 2381 27335 15075 11.984 3134
10 5117 23271 12065 11.984 2607
12 7200 20883 10199 11.984 2346
14 7200 19019 8703 11.984 2162
16 7200 17709 7595 11.984 2061

Probability 𝑞 Time (s) Heuristic objective 𝑋max 𝑋0 ∑𝑚∈ℳ 𝐶𝑚

0.025 6983 15019 10065 0.047 2465
0.05 6454 15354 10137 0.749 2421
0.1 7200 20883 10199 11.984 2346
0.2 7045 111044 10048 191.747 2561

Finally, we conduct sensitivity analysis on two key system parameters: the number of partitions

𝑀 and the disruption probability 𝑞. The results are shown in Table 7.4. In terms of algorithm

performance, as the number of partitions 𝑀 increases, the size of the problem becomes larger,

and a longer computation time (i.e., up to 7200 seconds) is needed. As for each component of

the objective, the maximum desk workload 𝑋max and the compactness measure ∑𝑚∈ℳ 𝐶𝑚 both

decrease with 𝑀, while 𝑋0 remains the same. This is intuitive. When 𝑀 is larger, the area size

and average demand of each district are smaller, implying too that the districts are more compact.

However, since the penalty for missing demand is high, the demand of every district will always

be assigned to the dummy desk (pay the penalty) at the highest possible level 𝑅 + 1 = 4 with

the smallest possible probability 𝑞4 = 0.0001. This contributes to the same value of 𝑋0 under

different values of 𝑀. On the other hand, as the probability value 𝑞 increases, the computational

time does not change much due to the invariant problem size. The values of 𝑋max and ∑𝑚∈ℳ 𝐶𝑚

also almost remain the same under the same number of partitions 𝑀. However, the value of 𝑋0

increases significantly because a larger value of 𝑞 leads to a higher probability for the demand to

lose service (and hence, bear the penalty).
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CHAPTER 8:

CONCLUSIONS AND FUTURE RESEARCH DIREC-

TIONS

8.1 Conclusions

Facility location decisions lie at the center of planning many infrastructure systems to serve spa-

tially distributed customers and maximize service efficiency. Recently, devastating infrastructure

damages observed in real world show that infrastructure facilities may be subject to disruptions that

compromise system performance, which emphasizes the necessity of taking facility disruptions into

consideration during the planning. Furthermore, facility systems often exhibit complex interdepen-

dence when: (1) facilities are spatially correlated due to physical connections/interrelations, and

(2) facilities provide combinatorial service under cooperation, competition or restrictions. These

further complicate the facility location design. Therefore, this dissertation aims at extending the

reliable facility location models to tackle all these challenges in designing a reliable interdependent

facility system. Specifically, several important and challenging extended topics in the reliable fa-

cility location context are investigated, including facility correlations, facility combinations, and

facility districting.

First, we study the reliable service systems design problem with considerations of possible

network access failures. In many faclity systems where customers pass through certain network

access points to visit facilities for service, failures of the network access points could potentially

affect the functionality of service facilities, and consequently introduce reliability and correlation

issues to the system. We add a layer of stations to represent the network access points, and connect

them to facilities to indicate their real-world relationships. With the additional layer of stations, the
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original fa- cility system is augmented into an integrated facility-station structure, based on which

we develop a compact mixed-integer mathematical model to formulate the reliable system design

problem. Customized Lagrangian relaxation based algorithm is designed, and multiple case studies

are conducted to test the applicability and performance of the proposed model and algorithm.

Numerical results provide a range of managerial insights. For example, site-dependent access point

failure probabilities generally lead to higher levels of facility concentration so as to provide more

back-up options to the customers.

Next, when there exist no physical stations and facilities are exposed to shared hazards, we de-

velop a systematic methodological framework to model generally correlated facility disruptions. We

define three probabilistic representations of a correlated disruption profile (i.e., scenario representa-

tion, marginal repre- sentation and conditional representation), show their equivalence, and unify

them by pairwise transformations. Then we transform these probabilistic disruption profiles into an

equivalent supporting station structure consisting of a compact set of additional virtual supporting

stations. Each station fails independently, and by proper connections to the original facilities, such

an augmented system can capture any correlations among original facilities. Yet, the independent

failures of the stations enable us to reduce the computational complexity for system evaluation

and optimization. Several favorable properties of the framework were analytically proven, three

numerical case studies with different settings (e.g., disaster patterns, correlation types, input dis-

ruption profiles) and a series of sensitivity analyses were conducted to illustrate the methodology

implementation, and to draw managerial insights.

Based on the virtual supporting station structure, to optimize facility location design, we fur-

ther show that the reliable facility location problem under correlated facility disruptions can be

formulated into a compact mixed-integer mathematical model, which is equivalent to the traditional

scenario-based formulation and is much more compact in size. The proposed model can be solved

by customized Lagrangian relaxation algorithms (with customized modules for obtaining upper

and lower bounds). Multiple case studies with various network settings and correlation patterns

were conducted to test the performance and applicability of the methodology. Superiority of the

proposed station structure has also been clearly demonstrated via numerical experiments.

We then extend our research focus to the area of sensor deployment, and propose a reliable sen-

sor location model to maximize the accuracy and effectiveness of object positioning and surveillance.
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The model allows sensor failures to occur with site-dependent probabilities. We first formulate the

reliable sensor deployment problem as a mixed-integer linear program. We then develop a cus-

tomized Lagrangian relaxation and branch-and-bound algorithm (with approximation subroutine

designed for subproblems) to effectively solve the mathematical model. A series of computational

experiments with grid networks of varying sizes demon- strate that the proposed algorithm far out-

performs CPLEX in terms of solution quality and computation time. In particular, the Lagrangian

relaxation and branch-and-bound algorithm is able to solve median-size networks with up to 64 can-

didate sensor locations and 49 surveillance neighborhoods within 1 hour. A real-world application

for the AP network design for Chicago O’Hare Airport Terminal 5 is presented to demonstrate the

applicability of the model, the efficiency of the proposed algorithms, and draw practical insights.

Finally, we study a reliable network districting problem, which aims to partition an undirected

network into a fixed number of districts and assign their demands to different facilities. Several

operational criteria including district contiguity and compactness, facility service reliability, and de-

mand balance are explicitly addressed in a mixed-integer programming model. Customized solution

approaches including constructive and neighborhood search heuristics, set-cover based lower bound

estimation are developed to efficiently solve the mathematical models to obtain near-optimum so-

lutions. We conduct several numerical examples (including an empirical case study) with different

network sizes and parameter settings to demonstrate the applicability and performance of our

methodology. Results of the examples show that the proposed heuristic algorithm outperforms

commercial solver Gurobi in terms of providing good quality solutions in a shorter amount of com-

putation time. In addition, managerial insights are drawn from the various numerical examples.

As a summary, the main contributions of this PhD research consist of: (1) establishing a new

systematic methodological framework based on quasi-probabilities and supporting stations to de-

scribe and decompose facility correlations into succinct mathematical representations, which allow

compact mathematical formulations to be developed for planning facility locations under correlated

facility disruptions; (2) expanding the reliable facility location modeling framework to allow facil-

ities to provide combinatorial service; e.g., in the context of sensor deployment problems, sensors

work in combinations to provide positioning/surveillance service via trilateration procedure; and

(3) incorporating reliability concepts into the spatial districting context (e.g., for political, school,

service systems), where spatial contiguity, compactness, and demand balance must be ensured, and
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developing various types of new customized model formulations and solution approaches. For all

these studies, we develop specific mathematical derivations, modeling techniques, optimization for-

mulations, and customized exact/heuristic algorithms. Numerous hypothetical numerical studies

are presented to illustrate the performance of our methodologies, and a series of empirical/industrial

applications are also conducted to demonstrate the applicability of our research, and to draw man-

agerial insights. The findings and outcomes in the dissertation will serve as the basis for reliable

facility location planning in many engineering contexts.

8.2 Future Directions

Further research can be conducted in the following directions.

First, there are many other ways to express correlations among facility disruptions. Sometimes

the correlations follow explicit physical laws. For example, under natural disasters, the correla-

tion between any two candidate locations could be specified by a decaying probability of failure

“contagion” (e.g., 𝑒𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒) that depends on their relative distance, or be expressed by correlation

coefficient between two Bernoulli random variables that indicate whether the two locations are

disrupted. Specific model structure and insights might be available at those correlation patterns,

and deserve further investigation.

Second, as we intensively adopt the concept of independent supporting stations to capture the

effects of facility correlations, it will be interesting as well as important to consider correlated

disruptions of the supporting stations. This is because that in many real world contexts (e.g.,

correlated bridge failures or roadway blockages due to shared hazards), the supporting stations

are actually not correlated with each other. Similarly, in chapter 6, sensors that are assumed

to be functioning independently, are also possible to be correlated. Therefore, it is important to

extend the methodologies developed in this dissertation to incorporate these additional types of

correlations.

Additionally, in this dissertation, all studies focus on problems with discrete settings and for-

mulate discrete mathematical models. However, similar problems are frequently formulated in

the continuous metric space where system parameters are described by continuous functions. For

example, in chapter 6, the distributed demand and sensor installation cost might be described by

continuous density functions; similarly, in chapter 7, discrete network could be replaced with a con-
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tinuous plane, which calls for general partitioning rules with the consideration of reliability issues

in continuous settings. To this end, we leave these challenging possibilities for future research.

Finally, it will also be interesting to apply our methodology to more real-world cases, so as

to help policy makers develop engineering and planning guidelines that will lead to more reliable

and resilient systems. For example, studies in chapter 3 could provide further guidances on the

positioning and utilizing of emergency response resources in many practical contexts; while models

and algorithms in chapter 6 can be applied to similar resource allocation and positioning application

contexts such as the seismic sensor network configuration for earthquake epicenter calculations, and

complex structure health monitoring for bridges and tunnels.
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