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Abstract

We use “°K atoms trapped in a cubic optical lattice to simulate the Fermi-Hubbard model. The work in
this thesis focuses on investigating dynamics in the Fermi-Hubbard model and developing techniques for
engineering Hamiltonians beyond the minimal Hubbard model.

We discussed three experiments. In the first, we investigated the transport properties of a Fermi lattice
gas by directly measuring the transport lifetime at various interaction strengths and temperatures. The
resistivity is inferred from the measured transport lifetime. We observe anomalous transport behavior,
which is analogous to bad-metal behavior in strongly correlated electronic materials.

The second experiment presents the first realization of correlated, density-dependent tunneling in a
Fermi-Hubbard optical lattice model by applied Raman laser fields. This correlated tunneling involves spin-
flips and the generation of doublons, which have been observed experimentally. We also confirmed that the
amplitude of correlated tunneling is suppressed when neighboring lattice sites are unoccupied.

The last experiment explores the possibility to introduce long-range interactions for fermions trapped in
optical lattices via Rydberg-dressed states. We developed a novel velocity-selective spectroscopy method to
measure the transition between the 5P/ and Rydberg states via electromagnetically induced transparency.

This measurement is a first step toward inducing Rydberg-dressed interactions in optical lattices.
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Chapter 1

Introduction

Many challenges in condensed matter physics involve complicated materials with interconnected degrees of
freedom appearing like a “black box” to us. To reveal the mysteries inside this “black box,” scientists study
its response to an external perturbation. Hopefully, this response carries information about the hidden
characteristics. A simple example is applying voltage to a material and measuring the response as an
electrical current to study the behavior of conductivity, which contains information regarding the scattering
mechanisms and the symmetries of the system.

After investigating the relationship between the external perturbation and the response, we hope to
replace this “black box” with a simplified model that reproduces the output for the same input. This
strategy often works well. For example, Fermi liquid theory successfully explains the resistivity of electrons
in simple metals. However, sometimes it is challenging to find a theoretical model that fully accommodates
the properties of this “black box.” One famous example is high-temperature superconductivity. Moreover,
although the candidate model has been simplified, there might be no analytical solution, and numerical
simulations may exceed the ability of classical computers. From the experimental prospective in condensed
matter physics, difficulty in controlling individual material parameters and the unavoidable imperfections
create more challenges for understanding the necessary ingredients for a successful model. Therefore, either
validating or disapproving a candidate model for a given problem or a class of problems can be difficult.

Ultracold quantum gases trapped in optical lattices are a promising approach to solving the mysteries
of the “black box” in condensed matter physics. Precise controllability and wide tunability of ultracold
quantum gases allow the engineering of exactly the model Hamiltonian that we wish to explore. Instead
of solving the model analytically or numerically on a classical computer, we explore the behavior of the
ultracold quantum gases under well-known conditions. In this way, we investigate the candidate model with
an analog quantum emulator and carry out model testing.

Our apparatus uses potassium *°K atoms trapped in a cubic optical lattice, which (at low enough tempera-
ture) realizes a single-band Fermi-Hubbard model. As a minimal paradigm for describing strongly-correlated

electronic systems, the Fermi-Hubbard model is a candidate model for high-temperature superconductors [1].



For more than one dimension and away from half-filling, the Fermi-Hubbard model is challenging to solve
because of the fermion sign problem [2]. This problem motivates us to perform quantum simulation using
ultracold atoms trapped in optical lattices. An additional advantage of quantum simulation using ultra-
cold atoms is that many ingredients beyond the minimal Fermi-Hubbard model, such as artificial gauge
fields (see [3] for a review), spin-orbit coupling [4-7], and long-range interactions [8-10], can be added, which
opens the possibility to study novel quantum phases and even phenomena without counterparts in condensed
matter systems.

My work for this thesis has focused on the dynamic properties of the Fermi-Hubbard model. In solids,
typical timescales for the decay of electronic excitations is at the order of 1 — 100fs. State-of-the-art pump-
and-probe techniques can barely achieve this time resolution (see Ref. [11], for example). On the other hand,
for atoms in optical lattices, the timescale of dynamical process is often on the order of milliseconds, which
can be easily resolved.

The differences between conventional solid state systems and ultracold atomic systems are myriad. One
of the most important constrains is the typical temperature range we explore. For metals, the temperature
in unit of Fermi temperature Tr is usually below 0.017/Tp, since Tr is around 50000K. On the other
hand, T/Tr for ultracold quantum gases in optical lattice is much higher, larger than 0.17/Tr% in most
experiments. Therefore, the energy scales involved in dynamical process are different.

Also, the response to external forces in solids is usually measured after the system has reached a quasi-
steady state by continuously exchanging particles and energy with an external reservoir. However, ultracold
quantum gases in optical lattices are isolated systems, and an external force can drive the system far from
equilibrium. Oscillatory or more complicated behavior can emerge instead of a quasi-steady state [12].
Therefore, an appropriate interpretation of measurements is crucial, and whether the measured dynamical
properties can be directly compared to their counterparts in condensed matter systems requires justification.

An outline of this thesis follows:

Chapter 2

This chapter briefly reviews how we produce ultracold, degenerate Fermi gases composed of 4°K atoms
using our apparatus. I focus on the new features that have been added to the apparatus during my
thesis work, including the Raman lasers that drive transitions between different spin components and

the upgraded hardware for accessing a Feshbach resonance.

Chapter 3

This chapter discusses the basic concepts and tools for performing quantum simulation using ultracold



atoms trapped in optical lattices. The properties of optical lattices and how the Fermi-Hubbard model
is realized are introduced. The semiclassical approach to describing the kinetic properties of Fermi
lattice gases and response to external forces is discussed. I also discusses the methods we use to
infer the thermodynamic properties of lattice quantum gases. The last section of this chapter gives a
brief introduction to Green’s functions, which are a useful theoretical formalism in condensed matter

physics.

Chapter 4

We report measurements of the transport lifetime for gases trapped in optical lattices, the behavior of
which is consistent with the properties of a “bad metal.” A bad metal presents anomalous transport
properties such as linear dependence of resistivity on temperature and the lack of a maximum resistivity.
In this work, from the decay rate of a mass current created via stimulated Raman transitions, the
dependence of the transport lifetime on interaction strengths and temperatures has been investigated.
The qualitative failure of theoretical predictions based on Fermi’s golden rule suggests behavior beyond
the quasiparticle framework. We infer the effective resistivity from the measured transport lifetime.
The dependence of the resistivity on temperature presents a linear scaling, which is a signature of
bad-metal behavior. Moreover, with increasing temperature, the value of resistivity approaches the
Mott-Toffe-Regal limit. In addition, a comparison to dynamical mean-field theory simulations suggests
that the reduction of quasiparticle weight from strong interactions is directly related to anomalous

resistivity scaling.

Chapter 5

Periodic driving forces combined with optical lattices have enabled experiments to achieve physics
beyond the minimal Hubbard model. In this chapter, we report the realization of correlated, density-
dependent tunneling by appropriately tunning the frequency difference between a pair of Raman beams
applied to a spin-polarized gas. Spin transitions and tunneling are induced that depend on the relative
occupation of neighboring lattice sites. This correlated spin-flip tunneling is spectroscopically resolved,
and the accompanying generation of doubly-occupied sites is measured via number loss induced by light-
assisted collisions. Furthermore, by controllably introducing vacancies to a lattice gas, we demonstrate
that correlated tunneling is suppressed when neighboring lattice sites are unoccupied. This work is

the first time that correlated spin-flip tunneling effect has been observed in the Fermi-Hubbard model.
Chapter 6
This chapter focuses on the possibility to introduce long-range interactions in optical lattice via

3



Rydberg-dressed states. I discuss introducing Rydberg-dressed interactions by mixing a small amount
of a Rydberg state into the ground state. For experimentally feasible parameters, it is promising to
observe Rydberg-dressing in optical lattices. The second part of this chapter reports a measurement.
As a first step towards realizing Rydberg-dressed states in optical lattices for “°K atoms, we perform
novel velocity-selective spectroscopy measurements of the transition between 5P/, and Rydberg states

via electromagnetically induced transparency.
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Chapter 2

Apparatus

Our apparatus for producing degenerate Fermi gases composed of 4° K atoms was in operation when I joined
the group. Standard cooling techniques are used: atoms are collected in a magneto-optical trap (MOT) and
cooled to degeneracy using microwave and optical evaporation. The main apparatus was built by Stanimir
Kondov, Josh Zirbel and William McGehee. Many details can be found in Stan and William’s theses [13,14].
In this chapter, after a brief description on the preparation of Fermi gases, I will focus on new features that

we have added to the apparatus.

2.1 Preparing Fermi gases

The alkali atom used in our apparatus is °K. The energy levels relevant to cooling and trapping of the single
valence electron in the 45 orbital of °K structure are shown in Fig. 2.1. “°K has two hyperfine ground-state
manifolds: ' =9/2 and F = 7/2. In the presence of a magnetic field, each hyperfine state splits into 2F + 1
non-degenerate Zeeman levels. Fig. 2.1 shows the ordering of Zeeman energy levels for the F' = 9/2 manifold.
The primary trapping and cooling transitions we use are from the 4S5/, to the 4P;/ level, which is the
D2 transition. Evaporative colling requires high collision rates, which are necessary for the rethermalization
of gases to lower temperature after removing the highest energy atoms. S-wave collisions between identical
Fermions are forbidden by the Pauli exclusion principle, and at temperatures lower than 200uK, p-wave
scattering is energetically suppressed [15]. In our approach, atoms with mprp = 9/2 and mpr = 7/2, between
which the s-wave scattering length is a = 170aq (a¢ is the Bohr radius), are used for evaporative cooling and
to produce a thermalized Fermi gas.

Fig. 2.2 is a photo of the vacuum system we use to create degenerate Fermi gases. Potassium atoms,
generated from a resistively heated enriched potassium metal dispenser, are trapped in a dark spot MOT in
the collection cell. The MOT is a combination of a quadrupole magnetic field and three pairs of circular-
polarized trap and repump laser beams. The repump beam, which drives the transition between the ground

F = 7/2 and the excited F’ = 9/2 state, has a dark spot in its center. The purpose of this dark spot is to
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Figure 2.1: Electronic structure of °K (not to scale) [16]. The D2 transition is used for cooling and trapping.
With an external magnetic field, each hyperfine state splits into 2F + 1 energy levels via the Zeeman effect.
For the ground state F' = 9/2 manifold, the energy splitting between the adjacent mp states is about
0.31MHz/G at low magnetic field.



keep the atoms in the F' = 7/2 manifold and suppresses excitation from the trap laser. This suppression
reduces loses from inelastic collisions and enhances the trapped number of atoms. The disadvantage of this

scheme is a long MOT loading time of 30s.

Figure 2.2: Photo (by William McGehee) of the vacuum system. The source of potassium atoms is an
enriched potassium dispenser. Atoms are collected in a magneto-optic trap (MOT) in the collection cell
and transferred along the tube to the science cell by the magnetic quadrupole coils that are mounted on a
cart. In the science cell, forced evaporative cooling is performed in a modified QUIC trap (not shown in this
figure). Finally, the atoms are captured in an optical dipole trap and cooled to below the Fermi temperature.

After collecting atoms in the MOT, several stages are used to prepare atoms in the F = 9/2 manifold
(shown as (1) — (4) in Table. 2.1). Then the current in the quadrupole coils is ramped up to produce a
gradient of 240G /cm, and atoms are transferred to the science cell by mechanically moving the cart across the
optical table. The background pressure of the science cell is sufficiently low to guarantee a vacuum-limited
trapping lifetime of several hundred seconds.

After transferring atoms into the magnetic trap mounted around the science cell (not shown in Fig. 2.2),
the total number of atoms is on the order of 1.5 x 108, with a temperature lower than 10mK. Magnetic
evaporative cooling is performed in a modified QUIC magnetic trap [17], which creates a 3G magnetic field.
After driving high energy atoms to magnetically untrapped states via a microwave-frequency magnetic field,
the total atom number is about 1.5 x 10 with a temperature