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Abstract

We use 40K atoms trapped in a cubic optical lattice to simulate the Fermi-Hubbard model. The work in

this thesis focuses on investigating dynamics in the Fermi-Hubbard model and developing techniques for

engineering Hamiltonians beyond the minimal Hubbard model.

We discussed three experiments. In the first, we investigated the transport properties of a Fermi lattice

gas by directly measuring the transport lifetime at various interaction strengths and temperatures. The

resistivity is inferred from the measured transport lifetime. We observe anomalous transport behavior,

which is analogous to bad-metal behavior in strongly correlated electronic materials.

The second experiment presents the first realization of correlated, density-dependent tunneling in a

Fermi-Hubbard optical lattice model by applied Raman laser fields. This correlated tunneling involves spin-

flips and the generation of doublons, which have been observed experimentally. We also confirmed that the

amplitude of correlated tunneling is suppressed when neighboring lattice sites are unoccupied.

The last experiment explores the possibility to introduce long-range interactions for fermions trapped in

optical lattices via Rydberg-dressed states. We developed a novel velocity-selective spectroscopy method to

measure the transition between the 5P1/2 and Rydberg states via electromagnetically induced transparency.

This measurement is a first step toward inducing Rydberg-dressed interactions in optical lattices.
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Chapter 1

Introduction

Many challenges in condensed matter physics involve complicated materials with interconnected degrees of

freedom appearing like a “black box” to us. To reveal the mysteries inside this “black box,” scientists study

its response to an external perturbation. Hopefully, this response carries information about the hidden

characteristics. A simple example is applying voltage to a material and measuring the response as an

electrical current to study the behavior of conductivity, which contains information regarding the scattering

mechanisms and the symmetries of the system.

After investigating the relationship between the external perturbation and the response, we hope to

replace this “black box” with a simplified model that reproduces the output for the same input. This

strategy often works well. For example, Fermi liquid theory successfully explains the resistivity of electrons

in simple metals. However, sometimes it is challenging to find a theoretical model that fully accommodates

the properties of this “black box.” One famous example is high-temperature superconductivity. Moreover,

although the candidate model has been simplified, there might be no analytical solution, and numerical

simulations may exceed the ability of classical computers. From the experimental prospective in condensed

matter physics, difficulty in controlling individual material parameters and the unavoidable imperfections

create more challenges for understanding the necessary ingredients for a successful model. Therefore, either

validating or disapproving a candidate model for a given problem or a class of problems can be difficult.

Ultracold quantum gases trapped in optical lattices are a promising approach to solving the mysteries

of the “black box” in condensed matter physics. Precise controllability and wide tunability of ultracold

quantum gases allow the engineering of exactly the model Hamiltonian that we wish to explore. Instead

of solving the model analytically or numerically on a classical computer, we explore the behavior of the

ultracold quantum gases under well-known conditions. In this way, we investigate the candidate model with

an analog quantum emulator and carry out model testing.

Our apparatus uses potassium 40K atoms trapped in a cubic optical lattice, which (at low enough tempera-

ture) realizes a single-band Fermi-Hubbard model. As a minimal paradigm for describing strongly-correlated

electronic systems, the Fermi-Hubbard model is a candidate model for high-temperature superconductors [1].
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For more than one dimension and away from half-filling, the Fermi-Hubbard model is challenging to solve

because of the fermion sign problem [2]. This problem motivates us to perform quantum simulation using

ultracold atoms trapped in optical lattices. An additional advantage of quantum simulation using ultra-

cold atoms is that many ingredients beyond the minimal Fermi-Hubbard model, such as artificial gauge

fields (see [3] for a review), spin-orbit coupling [4–7], and long-range interactions [8–10], can be added, which

opens the possibility to study novel quantum phases and even phenomena without counterparts in condensed

matter systems.

My work for this thesis has focused on the dynamic properties of the Fermi-Hubbard model. In solids,

typical timescales for the decay of electronic excitations is at the order of 1− 100fs. State-of-the-art pump-

and-probe techniques can barely achieve this time resolution (see Ref. [11], for example). On the other hand,

for atoms in optical lattices, the timescale of dynamical process is often on the order of milliseconds, which

can be easily resolved.

The differences between conventional solid state systems and ultracold atomic systems are myriad. One

of the most important constrains is the typical temperature range we explore. For metals, the temperature

in unit of Fermi temperature TF is usually below 0.01T/TF , since TF is around 50000K. On the other

hand, T/TF for ultracold quantum gases in optical lattice is much higher, larger than 0.1T/TF in most

experiments. Therefore, the energy scales involved in dynamical process are different.

Also, the response to external forces in solids is usually measured after the system has reached a quasi-

steady state by continuously exchanging particles and energy with an external reservoir. However, ultracold

quantum gases in optical lattices are isolated systems, and an external force can drive the system far from

equilibrium. Oscillatory or more complicated behavior can emerge instead of a quasi-steady state [12].

Therefore, an appropriate interpretation of measurements is crucial, and whether the measured dynamical

properties can be directly compared to their counterparts in condensed matter systems requires justification.

An outline of this thesis follows:

Chapter 2

This chapter briefly reviews how we produce ultracold, degenerate Fermi gases composed of 40K atoms

using our apparatus. I focus on the new features that have been added to the apparatus during my

thesis work, including the Raman lasers that drive transitions between different spin components and

the upgraded hardware for accessing a Feshbach resonance.

Chapter 3

This chapter discusses the basic concepts and tools for performing quantum simulation using ultracold
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atoms trapped in optical lattices. The properties of optical lattices and how the Fermi-Hubbard model

is realized are introduced. The semiclassical approach to describing the kinetic properties of Fermi

lattice gases and response to external forces is discussed. I also discusses the methods we use to

infer the thermodynamic properties of lattice quantum gases. The last section of this chapter gives a

brief introduction to Green’s functions, which are a useful theoretical formalism in condensed matter

physics.

Chapter 4

We report measurements of the transport lifetime for gases trapped in optical lattices, the behavior of

which is consistent with the properties of a “bad metal.” A bad metal presents anomalous transport

properties such as linear dependence of resistivity on temperature and the lack of a maximum resistivity.

In this work, from the decay rate of a mass current created via stimulated Raman transitions, the

dependence of the transport lifetime on interaction strengths and temperatures has been investigated.

The qualitative failure of theoretical predictions based on Fermi’s golden rule suggests behavior beyond

the quasiparticle framework. We infer the effective resistivity from the measured transport lifetime.

The dependence of the resistivity on temperature presents a linear scaling, which is a signature of

bad-metal behavior. Moreover, with increasing temperature, the value of resistivity approaches the

Mott-Ioffe-Regal limit. In addition, a comparison to dynamical mean-field theory simulations suggests

that the reduction of quasiparticle weight from strong interactions is directly related to anomalous

resistivity scaling.

Chapter 5

Periodic driving forces combined with optical lattices have enabled experiments to achieve physics

beyond the minimal Hubbard model. In this chapter, we report the realization of correlated, density-

dependent tunneling by appropriately tunning the frequency difference between a pair of Raman beams

applied to a spin-polarized gas. Spin transitions and tunneling are induced that depend on the relative

occupation of neighboring lattice sites. This correlated spin-flip tunneling is spectroscopically resolved,

and the accompanying generation of doubly-occupied sites is measured via number loss induced by light-

assisted collisions. Furthermore, by controllably introducing vacancies to a lattice gas, we demonstrate

that correlated tunneling is suppressed when neighboring lattice sites are unoccupied. This work is

the first time that correlated spin-flip tunneling effect has been observed in the Fermi-Hubbard model.

Chapter 6

This chapter focuses on the possibility to introduce long-range interactions in optical lattice via
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Rydberg-dressed states. I discuss introducing Rydberg-dressed interactions by mixing a small amount

of a Rydberg state into the ground state. For experimentally feasible parameters, it is promising to

observe Rydberg-dressing in optical lattices. The second part of this chapter reports a measurement.

As a first step towards realizing Rydberg-dressed states in optical lattices for 40K atoms, we perform

novel velocity-selective spectroscopy measurements of the transition between 5P1/2 and Rydberg states

via electromagnetically induced transparency.

Publication list:

[1] W. R. McGehee, S. S. Kondov, W. Xu, J. J. Zirbel and B. DeMarco. Three-dimensional Anderson

localization in variable scale disorder. Physical Review Letters. 111(14):145303, 2013.

[2] S. S. Kondov, W. R. McGehee, W. Xu and B. DeMarco. Disorder-induced localization in a strongly

correlated atomic Hubbard gas. Physical Review Letters. 114(8):083002, 2015.

[3] W. Xu and B. DeMarco. Velocity-selective electromagnetically-induced-transparency measurements

of potassium Rydberg states. Physical Review A.(R) 93(1):011801, 2016

[4] Wenchao Xu, William McGehee, William Morong, Brian DeMarco. Bad Metal in a Fermi Lattice

Gas. arXiv preprint arXiv:1606.06669. Jun. 2016.

[5] Wenchao Xu, William Morong, Hoi-Yun Hui, Vito W Scarola, and Brian DeMarco. Correlated

Spin-Flip Tunneling in a Fermi Lattice Gas. arXiv preprint arXiv:1711.02061. Nov. 2017
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Chapter 2

Apparatus

Our apparatus for producing degenerate Fermi gases composed of 40K atoms was in operation when I joined

the group. Standard cooling techniques are used: atoms are collected in a magneto-optical trap (MOT) and

cooled to degeneracy using microwave and optical evaporation. The main apparatus was built by Stanimir

Kondov, Josh Zirbel and William McGehee. Many details can be found in Stan and William’s theses [13,14].

In this chapter, after a brief description on the preparation of Fermi gases, I will focus on new features that

we have added to the apparatus.

2.1 Preparing Fermi gases

The alkali atom used in our apparatus is 40K. The energy levels relevant to cooling and trapping of the single

valence electron in the 4S orbital of 40K structure are shown in Fig. 2.1. 40K has two hyperfine ground-state

manifolds: F = 9/2 and F = 7/2. In the presence of a magnetic field, each hyperfine state splits into 2F + 1

non-degenerate Zeeman levels. Fig. 2.1 shows the ordering of Zeeman energy levels for the F = 9/2 manifold.

The primary trapping and cooling transitions we use are from the 4S1/2 to the 4P3/2 level, which is the

D2 transition. Evaporative colling requires high collision rates, which are necessary for the rethermalization

of gases to lower temperature after removing the highest energy atoms. S-wave collisions between identical

Fermions are forbidden by the Pauli exclusion principle, and at temperatures lower than 200µK, p-wave

scattering is energetically suppressed [15]. In our approach, atoms with mF = 9/2 and mF = 7/2, between

which the s-wave scattering length is a = 170a0 (a0 is the Bohr radius), are used for evaporative cooling and

to produce a thermalized Fermi gas.

Fig. 2.2 is a photo of the vacuum system we use to create degenerate Fermi gases. Potassium atoms,

generated from a resistively heated enriched potassium metal dispenser, are trapped in a dark spot MOT in

the collection cell. The MOT is a combination of a quadrupole magnetic field and three pairs of circular-

polarized trap and repump laser beams. The repump beam, which drives the transition between the ground

F = 7/2 and the excited F ′ = 9/2 state, has a dark spot in its center. The purpose of this dark spot is to
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Repump

Trap

𝑚𝐹 = 9/2

𝑚𝐹 = 7/2

𝑚𝐹 = −9/2

.
.

.

766.7006747(2) nm

46.4
MHz

55.2MHz

31.0
MHz

2.3
MHz

714.3
MHz

-571.5
MHz

Zeeman splitting of 
𝐹 = 9/2 manifold

Figure 2.1: Electronic structure of 40K (not to scale) [16]. The D2 transition is used for cooling and trapping.
With an external magnetic field, each hyperfine state splits into 2F + 1 energy levels via the Zeeman effect.
For the ground state F = 9/2 manifold, the energy splitting between the adjacent mF states is about
0.31MHz/G at low magnetic field.
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keep the atoms in the F = 7/2 manifold and suppresses excitation from the trap laser. This suppression

reduces loses from inelastic collisions and enhances the trapped number of atoms. The disadvantage of this

scheme is a long MOT loading time of 30s.

Science cell

Collection cell

Dispenser

Figure 2.2: Photo (by William McGehee) of the vacuum system. The source of potassium atoms is an
enriched potassium dispenser. Atoms are collected in a magneto-optic trap (MOT) in the collection cell
and transferred along the tube to the science cell by the magnetic quadrupole coils that are mounted on a
cart. In the science cell, forced evaporative cooling is performed in a modified QUIC trap (not shown in this
figure). Finally, the atoms are captured in an optical dipole trap and cooled to below the Fermi temperature.

After collecting atoms in the MOT, several stages are used to prepare atoms in the F = 9/2 manifold

(shown as (1) − (4) in Table. 2.1). Then the current in the quadrupole coils is ramped up to produce a

gradient of 240G/cm, and atoms are transferred to the science cell by mechanically moving the cart across the

optical table. The background pressure of the science cell is sufficiently low to guarantee a vacuum-limited

trapping lifetime of several hundred seconds.

After transferring atoms into the magnetic trap mounted around the science cell (not shown in Fig. 2.2),

the total number of atoms is on the order of 1.5 × 108, with a temperature lower than 10mK. Magnetic

evaporative cooling is performed in a modified QUIC magnetic trap [17], which creates a 3G magnetic field.

After driving high energy atoms to magnetically untrapped states via a microwave-frequency magnetic field,

the total atom number is about 1.5× 106 with a temperature around 5µK. The loading efficiency from the

magnetic trap to the crossed optical dipole trap is about 50%. The waists of the dipole trap beams are
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wx ≈ 120µm, wy ≈ 98µm for the first pass, and wx ≈ 86µm, wy ≈ 96µm for the second pass. Further

evaporative cooling in the optical dipole trap achieves Fermi degeneracy. The coldest temperature achieved

on our apparatus is about T/TF ≈ 0.15, with total atom number around 30000. Fig. 2.3 plots the recent

evaporative cooling trajectories. Table. 2.1 summaries some primary stages of a complete experimental

sequence for preparing degenerate Fermi gas.

1 0 5 1 0 6 1 0 7 1 0 81 0 1

1 0 2

1 0 3

1 0 4

1 0 5

1 0 6

1 0 7

T (
nK

)

N

3 : 1

Figure 2.3: Evaporative cooling trajectory. Temperature vs. total number of atoms is plotted for the
magnetic evaporative cooling stage (red square) and the optical evaporative cooling stage (blue circle). The
blue line plots T = Nα, with α ≈ 3 in this plot. Larger α indicates better cooling efficiency. As an empirical
rule, α < 1 indicates poor cooling efficiency. At the final stage of evaporative cooling in the optical dipole
trap, the efficiency becomes poorer.

2.2 Stimulated Raman transitions

Stimulated Raman transitions are a coherent two-photon process: stimulated absorption and subsequent

stimulated emission of photons cause transitions between internal states. Tuning the frequency difference
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Step Time Trap laser Repump laser Purpose Other comments
1 Dark-spot

MOT
30s f t fr Loading atoms

into MOT
2 Bright MOT f t fr + 15MHz Hyperfine pump-

ing: |F = 7/2〉 to
|F = 9/2〉

Shutter open for
bright repump
beams

3 Optical mo-
lasses

5ms f t + 22MHz fr + 15MHz Laser cooling Quadrupole coils
off

4 Optical
pumping

0.5ms (f t − 3 +
65)MHz

fr − 45MHz Pumping to
mF = 9/2 and
mF = 7/2

σ+-polarized opti-
cal pumping beam
on

5 Cart trans-
fer

far detuned fr − 45MHz Transfer to sci-
ence cell

6 Magnetic
evaporative
cooling

∼ 50s far detuned fr − 45MHz Cooling to 5µK Microwave sweep
in QUIZ trap

7 Optical
evaporative
cooling

∼ 30s far detuned fr − 45MHz Cooling to de-
generacy

Reduce the depth
of optical dipole
trap

8 Imaging on reso-
nant (f t +
38.4MHz)

far detuned Absorption
image of atoms

25µs pulse of on-
resonant light

Table 2.1: A list of each experimental stage. Currently, f t (the frequency of the trap laser during MOT
loading) is ∼ 35MHz red-detuned from the F = 9/2→ F ′ = 11/2 transition, and fr is ∼ 20MHz red-detuned
from the F = 7/2 → F ′ = 9/2 transition. Steps (1)-(4) are done in the collection cell. The stability of
the trap and repump laser frequency is crucial for producing enough atoms for evaporative cooling. The
method for optimizing these parameters (such as the frequency detuning, light power, and timing) during
each step is to optimize the total number of atoms at the beginning of magnetic trap evaporative cooling
step. (5)-(6) are performed in the science cell. The parameters shown in this table are current settings for
our sequence. The resonant probe frequency for imaging given in this table is for the transition between the
|F = 9/2,mF = 9/2〉 → |F ′ = 11/2,mF = 11/2〉 state at B ≈ 3G magnetic field. More details about each
step can be found in Kondov’s and McGehee’s theses [13,14].
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between the two Raman beams provides access to an energy-selective transition. The change in momentum

or quasimomentum between the initial and final states can be controlled independently by varying the

wavevector difference between the two Raman beams.

Stimulated Raman transitions have been widely used in ultracold experiments. Raman sideband cooling

has been employed for cooling the motional and vibrational degrees of freedom of ions and atoms [18–21].

The first observation of quasimomentum cooling in an optical lattice has been observed [22]. Moreover,

stimulated Raman transitions can induce synthetic magnetic field [23], spin-orbit coupling [24], and artificial

gauge potentials [3, 25–27]. Two of the projects in this thesis used this technique (See Chapters. 4 and 5).

2.2.1 Experimental setup

The Raman beams in our experiment are derived from a single-frequency grating stabilized diode laser

(Vortex II TLB-6900), which is red-detuned 40 − 80GHz from the 4S1/2 → 4P1/2 D1 transition in 40K. A

schematic of the Raman beams optics is shown in Fig. 2.4. The laser beam is split into two paths, each of

which goes through an acousto-optic modulator (AOM, Gooch and Housego R23080-i-LTD) operating at a

nominal frequency of 80MHz. The diffracted light from the AOM is coupled into a single-mode polarization-

maintaining fiber. By tuning the difference between the radio-frequency drives applied to the AOMs, the

frequency difference ∆ω between the two Raman beams can be varied. The power of each Raman beam is

individually controlled by sampling a small fraction of the Raman light after the fiber on a photodetector

(PDA36A), and the voltage from the photodetecotor is servoed by comparing it to a computer signal. A

resonant electro-optic modulator (EOM, Newport 4421-01 @ 650MHz) can generate sidebands on the Raman

beams, which can be used to drive hyperfine transitions. This EOM is not used in the experiments discussed

in this thesis.

The two Raman beams are focused onto the atoms with a waist of 170µm, which provides approximately

uniform light intensity over the gas. Conservation of momentum requires the momentum change δ~k between

the initial and the final state to equal to the wavevector difference between the two Raman beams. In

our experiment, the angle between these two beams is about 30 degrees, and therefore, the amplitude

|δ~k| = 2|k| sin(15◦) = 0.518|k|, with the amplitude of the Raman beam wavevector |k| = 2π/770.1nm . For

our optical lattice with lattice spacing d = 391.1nm, |δ~k| is about half qB , where qB = ~π/d.

2.2.2 Hamiltonian for stimulated Raman transitions

The stimulated Raman transitions used in our work involve a Λ-type three-level system, as shown in Fig. 2.5

The two lower levels are states with different magnetic quantum numbers, labeled as |↑〉 and |↓〉 in the figure.
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AOM 
2

AOM 
1

EOM
Raman 
Laser

𝛿𝜔1

𝛿𝜔2

Raman 1

Raman 2

(a)
Vortex II TLB-6900

(b)

𝑦
𝑘1, 𝜔1

𝑘2, 𝜔2

PBS
30𝑜

Figure 2.4: Stimulated Raman optical system. Two Raman beams are derived from a light source which is
40 − 80GHz detuned from the D1 transition of 40K. A resonant EOM can generate sidebands on the laser
frequency that can be used to drive transitions between different hyperfine manifolds. This EOM is not used
for the work in this thesis. The frequency of each Raman beam is controlled by an AOM. The frequency
difference between the Raman beams determined by the difference in the AOM driving frequencies, the
difference ∆ω ≡ ω1 − ω2 = δω1 − δω2 can cover a range around 2π × (0 − 15)MHz. The Raman beams
are coupled into single-mode polarization-maintaining optical fibers to shorten the beam path and increase
the pointing stability. At the optical fiber output, a polarizing beam splitter cube is used to purify the
polarization. The polarization of the Raman beams points perpendicular to the plane of the paper. A
beam sampler picks off a small amount of light for actively servoing the power of the Raman beam. Both
beams are focused onto the position of the atoms with an angle of 30 degrees. The Raman vector difference
δ~k = ~k1 − ~k2 is along the y-direction (i.e., vertical).
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The upper level |3〉 is the excited 4P1/2 state. The energy splitting between the |↑〉 and |↓〉 states is from

the Zeeman effect.

δ

∆R

k2,ω2
k1,ω1

3

Figure 2.5: Schematic of energy levels of a 3-level Λ-system, consisting of two energy levels |↑〉 and |↓〉 and

an excited state |3〉. The two lasers couple |↑〉 → |3〉 and |↓〉 → |3〉 with frequencies and wavevectors ω1,~k1

and ω2,~k2.

We consider a classical electric field in the form of

~E(~r, t) = ~E1 cos(~k1 · ~r − ω1t) + ~E2 cos(~k2 · ~r − ω2t), (2.1)

where ~E1,2 is electric field of the Raman laser beam. The electric field interacts with the atoms via −e~r · ~E.

Therefore, the Raman-transition Hamiltonian in the basis of |↑〉 , |↓〉, and |3〉, is [28]:

H3-level
R =


ω↑↓ 0 Ω∗1 cos (~k1 · ~R− ω1t)

0 0 Ω∗2 cos (~k2 · ~R− ω2t)

Ω1 cos (~k1 · ~R− ω1t) Ω2 cos (~k2 · ~R− ω2t) ω0

 . (2.2)
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H3-level
R =


ω↑↓ 0

Ω∗1
2

[
ei(
~k1·~R−ω1t) + e−i(

~k1·~R−ω1t)
]

0 0
Ω∗2
2

[
ei(
~k2·~R−ω2t) + e−i(

~k2·~R−ω2t)
]

Ω1

2

[
ei(
~k1·~R−ω1t) + e−i(

~k1·~R−ω1t)
]

Ω2

2

[
ei(
~k2·~R−ω2t) + e−i(

~k2·~R−ω2t)
]

ω0

 .

(2.3)

Here ~R is the position of atom, ~ω0 is the energy difference between |↓〉 and |3〉, ~ω↑↓ is the energy difference

between |↓〉 and |↑〉, Ω1,2 = −e
~ 〈3| ~E1,2 · ~r |↑, ↓〉 are the Rabi rates of each Raman beam. The detuning

of Raman beam is defined as ∆R = ~ω0 − ~ω2. The frequency difference between two Raman beams is

∆ω = ω1−ω2 = δ+ω↑↓. We assume there is no coupling between the |↑〉 (|↓〉) and the |3〉 state by ~E2 ( ~E1)

(such coulping only causes an energy shift because of the AC stark effect).

In the interaction picture and with the rotating wave approximation (RWA), we have:

H3-level
R =


0 0

Ω∗1
2 e
−i(δ+∆R)t−i~k1·~R

0 0
Ω∗2
2 e
−i∆Rt−i~k2·~R

Ω1

2 e
i(δ+∆R)t+i~k1·~R Ω2

2 e
i∆Rt+i~k2·~R 0

 . (2.4)

Then under a unitary transformation

Û =


e−iδt 0 0

0 1 0

0 0 ei∆Rt

 , (2.5)

H3-level
R becomes U−1H3-level

R U − iU−1 ∂U
∂t :

H3-level
R =


δ 0

Ω∗1
2 e
−i~k1·~R

0 0
Ω∗2
2 e
−i~k2·~R

Ω1

2 e
i~k1·~R Ω2

2 e
i~k2·~R ∆R

 . (2.6)

If ∆R � Ω1,Ω2, the three-level system can be approximated as a two-level system. The 3×3 matrix can

be projected onto the subspace of {|↑〉 , |↓〉}, with the matrix element as 〈σ|H2-level
R |σ′〉 = 〈σ|H3-level

R |σ′〉 −
〈σ|H3-level

R |3〉〈3|H3-level
R |σ′〉

2 . This procedure gives:

H2-level
R =

 δ +
Ω2

1−Ω2
2

4(∆R+δ)
Ω∗1Ω∗2

8 ( 1
∆R

+ 1
∆R+δ )e−iδ

~k·~R

Ω∗1Ω∗2
8 ( 1

∆R
+ 1

∆R+δ )eiδ
~k·~R 0

 ≈
δ +

Ω2
1−Ω2

2

4∆R

Ω
2 e
−iδ~k·~R

Ω∗

2 e
iδ~k·~R 0

 , (2.7)
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where Ω = Ω1Ω2

2∆R
is the effective Rabi rate for this two-level system and δ~k = ~k1 − ~k2.

2.3 Feshbach resonances

Feshbach resonances have become a powerful tool in the field of AMO physics, because they can be used to

vary the effective interactions between atoms by tunning an external parameter such as the magnetic field.

It has been widely used for producing cold molecules and for investigating many-body physics (see Refs. [29]

and [30] for reviews). Important breakthroughs enabled by Feshbach resonances in the context of quantum

simulation with ultracold atoms include the numerous studies of the BEC-BCS crossover of trapped fermions

(see Ref. [31], for example), measurements of the properties of unitary bosons and fermions [32–34], and the

observation of superfluidity of ultracold fermions in optical lattice [35].

The capability to tune the on-site interactions via a Feshbach resonance makes ultracold fermionic atoms

trapped in optical lattices an ideal platform to study the attractive Fermi Hubbard model, which is difficult

to realize in solid-state systems. Compared with the extensively study on the repulsive Fermi-Hubbard

model from the cold atom community, there are much less experimental works on the attractive side [36–39].

Many properties of the attractive Fermi-Hubbard model are well-known, because there is no “sign problem.”

For example, see Ref. [40] for a quantum Monte Carlo study of the 3D attractive Hubbard model. Still, this

model provides a nice platform to study the Bose-Einstein condensation of local bound pairs and the BCS-

type superfluidity in optical lattices [41–43] . In addition, the effect of disorder, which can be introduced

experimentally via the speckle field in our experiment (see McGehee’s thesis for more details [14]), is of great

theoretical interest [44].

This motivates us to upgrade our apparatus to access a Feshbach resonance. Multiple Feshbach resonances

between different magnetic quantum states in 40K have been reported [45–48]. In our experiment, we plan

to use the Feshbach resonance between the |F = 9/2,mF = −9/2〉 and the |F = 9/2,mF = −7/2〉 states,

which occurs at magnetic field | ~B| = 202.1G [49]. In this section, after a brief introduction on the theoretical

background of Feshbach resonances, I will discuss the hardware upgrades to our apparatus.

2.3.1 A brief introduction to Feshbach resonances

To illustrate the principle of a Feshbach resonance, Fig. 2.6 plots a basic two-channel model, consisting of

two potential curves: Vo(R) (open channel) and Vc(R) (closed channel). The open channel potential Vo(R)

asymptotically connects to two free atoms at large interatomic distance R. The zero of energy is set to

be Vo(R) as R → ∞. This open channel cannot support a bound state for particles with incoming energy
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larger than zero. On the other hand, the closed channel can support a bound molecular state, with its

energy denoted as Ec. The amount of energy shift of Vc(R) as R → ∞ is determined by the sum of the

single-particle Zeeman energies associated with the closed-channel spin configuration of atom pairs [29]. If

two atoms collide at energy E in the open channel, with E matching the Ec in the closed channel, then a

strong mixing between these two channels occurs. This is the Feshbach resonance.

open channel

𝑉𝑜(𝑅)

Figure 2.6: Schematic two-channel model for a Feshbach resonance. Two potential curves Vc(R) and Vo(r)
are shown. If the energy of a molecular bound state Ec in the closed channel is close to the energy E of
atoms in the open channel, the these two channels couple together and introduce strong effective interactions
between atoms. This figure is adapted from Ref. [30].

The value of Ec depends on the magnetic field. Assuming that E − Ec vanishes for a given magnetic

field B0, we can express the s-wave scattering length a as a function of magnetic field B near B0 as [30]:

a = ao(1−
∆

B −B0
), (2.8)

where ao is the scattering length associated with the open channel, and ∆ is the resonance width. For

the collisions between the |F = 9/2,mF = −9/2〉 and |F = 9/2,mF = −7/2〉 atoms in potassium 40K, B0 =

202.1G and ∆ = 7.8 ± 0.1G. Fig. 2.7 plots the dependence of scattering length on the magnitude of the

external magnetic field. The s-wave scattering length diverges at B = B0 and can become negative. This

allows the study on the attractive Fermi-Hubbard model.
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Figure 2.7: Dependence of s-wave scattering length on the external magnetic field for collisions between
the |F = 9/2,mF = −9/2〉 and |F = 9/2,mF = −7/2〉 atoms. The scattering wavelength diverges at the
Feshbach resonance magnetic field.

2.3.2 Creating Feshbach field

Magnetic coils in Helmholtz configuration

To access the Feshbach resonance using our apparatus, we require a homogeneous magnetic field with a

magnitude up to 230G at the position of the atoms. We decided that the most feasible solution was to

modify our existing magnetic QUIC trap [13, 14, 50]. The field minimum of a QUIC trap has an non-zero

magnitude in order to avoid Majorana losses. Fig. 2.8(a) shows a drawing of our QUIC trap. It consists of

a pair of coils (TQ and BQ) in a quadrupole configuration mounted above and below the science cell. The

third Ioffe coil (IC) has its axis in a perpendicular plane. The three coils were connected in series through

copper welding cables and machined copper bars (Fig. 2.8(b) and (c)). The currents in the QUIC magnetic

coils are actively stabilized via standard PI servos (Fig. 2.8(c)) (details of the servo circuit diagram are

shown in Fig. 2.13).

In the QUIC trap configuration, the currents in the TQ and the BQ coils flow in opposite directions.

To generate a uniform magnetic field up to 230G, we modified the connections of the QUIC trap to allow

a Helmholtz configuration and to electronically disconnect the Ioffe coil. A series of mechanical relays (TE

Connectivity LEV200A4ANA) is used to switch between the QUIC trap configuration and the Feshbach

configuration, as shown by the schematic diagram in Fig. 2.9. The gray circles represent the mechanical

relays. P1 through P5 are copper plates used to mount the relays. Each connection consists of a pair of
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Bottom quadrupole (BQ) 
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Figure 2.8: (a): Drawing of the QUIC trap, consisting of a pair of top quadrupole coil (TQ), bottom
quadrupole (BQ) coil, and Ioffe coil (IC). (b) A photo showing the copper bars that connect the TQ,
BQ and IQ. The orange welding 4/0 cables carry a current up to 710A for the QUIC trap. The colored
arrows show the current direction. (c): A schematic drawing of the previous QUIC trap connection to the
power supply (Agilent 6680). By controlling the gate voltage on eight FETs (APT10M07JVFR) mounted
in parallel, the current flowing in the QUIC trap is servoed.
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relays in parallel, in order to reduce the resistance. The open and closed status of the mechanical relays

are denoted as X and ↓ in this figure. By changing the status of relays, the configuration can be switched

between the QUIC trap and the Feshbach configurations by a control circuit.

Fig. 2.10(a) shows the copper plates (P1-P5); the mechanical relays are hidden below. The connections

between the copper cables carry 710A and the plates are water cooled. Fig. 2.10(b) is a photo of the new

connections between copper cables and copper bars at the QUIC trap.

Control circuit for switching configurations

The mechanical relays are controlled by the control circuit shown in Fig. 2.11 . A digital control signal from

the computer is sent to a dual multivibrator (SN74LS221). Channel 1 (or 2) reacts to the rising (or falling)

edge of the input respectively, and the output is a square wave pulse on 1Q (or 2Q), as shown by the function

table in Fig. 2.11.

The system inside the dashed line is a protection circuit, that prevents switching coil configurations

when the current is on. It consisting of latch 1 (SN74HCT573) and a differential comparator (LM139). The

positive input to the LM139 comes from a Hall effect current sensor that monitors the current flowing in

the magnetic coils. A 20mV reference voltage is applied to the LM139 negative input. The output of the

comparator is sent to the latch-enable (LE) port of latch 1. If the current sensor voltage is higher than the

reference voltage, then the output of the LM139 is low. The output of the latch remains as the previous

value such that the magnetic coils’ configuration retains. If no current flows in the magnetic coils, then the

output of the comparator is high and the output of latch 1 equals the input voltage.

When latch 1 reacts to the voltage pulse from the multivibrator, depending on the input digital control

signal, FET 1 (for rising edge) or FET 2 (for falling edge) is activated and current can flow. This pulse

is sent to the set coils (or reset coils) in latch 2, which changes its contact mode, and therefore changes

the status of the mechanical relays. The output voltage of latch 2 is from a voltage regulator (MC7805).

Fig. 2.12 shows the logic diagram for the digital control circuit.

As another precaution, a uninterruptible power supply is used for the relay control box. This prevents

sudden changes in the circuit configuration in case of a power outage. Since the coils store a lot of magnetic

energy, this scenario could result in a large induced voltage that could cause damage. A Hall effect current

sensor monitors the current flowing in the UPS. If that current is non-zero, which occurs when the UPS is

on due to a power outage, then a signal will be sent to the interlock for the high-current power supply, which

ramps off the current in a safe way.
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feedback

feedback

Figure 2.9: Schematic of the mechanical relays and circuit configuration for (a) QUIC trap configuration
and (b) Helmholtz configuration. “X” denotes an open relay and “↓” denotes a closed relay.
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Figure 2.10: Photos for (a) the relays and copper plates and (b) the connection to copper bars. There is a
sheet of plastic for insulating the two copper bars from contacting each other.

Precision voltage control

A stable magnetic field is crucial, e.g, for performing spectroscopy measurements at high magnetic field.

The servo circuit we used before changing the coil configuration is shown in Fig. 2.13. The analog control

voltage is derived from an 8-channel 16-bit DAQ board (National Instrument, NI 6733). The ratio between

the magnetic field at the atoms from the Helmholtz coils and the control voltage is about 1G/4mV. The

precision of the analog voltage from the DAQ board is 20V/216 = 0.3mV . Therefore, the precision of

the magnetic field is 33mG. This uncertainty in the magnetic field corresponds to a 5kHz fluctuation in

the Zeeman energy splitting between different mF states. The fluctuation in the ambient magnetic field

in our lab is about 3mG, corresponding to a 0.5kHz change in Zeeman energy splittings. For performing

spectroscopy measurements, the fluctuation in magnetic field should be less than 10mG. Therefore, the poor

stability in magnetic field limited by the servo voltage needs to be improved.

To improve the magnetic stability and to have the ability to fine tune the magnetic field near the Feshbach

resonance, we designed a precision voltage reference circuit (Fig. 2.14). The source of the control voltage is

an ultra-low-noise, high-precision voltage reference (Maxim MAX6126). The control voltage for servoing is

derived from a four-resistor voltage divider (e.g., R1-R4). This series of resistors allows for precise adjustment

of the control voltage by changing the small resistors (R2 and R4). Varying the ratio (R1 +R2)/(R3 +R4)

changes the control voltage. A precision 8-channel multiplexer (Maxim MAX 308) is used to switch between

different settings for the control voltage. The analog output channel from the computer is connected to

channel 6 on this multiplexer, which is used as a coarse control voltage. Table. 2.2 lists the corresponding

currents for given settings of the digital lines.

The output of the multiplexer is sent to an inverting amplifier circuit. The output from this precision
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Figure 2.11: Circuit diagram of the digital circuit for controlling the mechanical relays.
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Figure 2.12: Timing diagram for the digital control circuit.

Table 2.2: Table for Feshbach coil current vs. multiplexer setting. Computer digital lines 45, 46, and 47 are
used to select the input line.

#45 #46 #47 Corresponding current(A)
1 1 0 Variable Coarse variable current control
1 0 0 36.5 Preparing mF = −9/2
0 1 1 199.75 Near Feshbach
0 0 1 208 Non-interacting
0 1 0 237 Far from resonance, for evaporation

22



−
+

−
+

G

D

S

150𝑘Ω

7
5
𝑘
Ω𝑉𝐻𝑎𝑙𝑙

150𝑘Ω 1𝑘Ω

2𝑘Ω
75𝑘Ω 1𝑘Ω

18.2Ω
2𝑘Ω

100𝑝𝐹

1
0
0
𝑝
𝐹

100𝑝𝐹

100𝑛𝐹

1𝜇𝐹

𝑉𝑐𝑜𝑛𝑡𝑟𝑜𝑙

200𝑘Ω

200𝑘Ω 20𝑘Ω
𝑉𝑓𝑖𝑛𝑒

FET

Figure 2.13: Circuit for servoing the current in the magnetic coils. The red dashed squares highlight the
changes we made to the originally installed circuit in the experiment. The control voltage Vcontrol was directly
from a computer output analog channel. Now it is taken from the output of the precision voltage reference
circuit (Fig. 2.14). Vfine, which is derived from the DAQ board, was added to fine tune the magnetic field
within a small range.
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Figure 2.14: Precision voltage control circuit designed for providing a stable magnetic field.

operational amplifier (AD711) is connected to the Vcontrol port, as labeled in Fig. 2.13. In addition, a fine

tunning channel is added to the servo circuit (labeled as Vfine in Fig. 2.13). Vfine is derived from a computer

analog output channel that is divided by a factor of 11 using resistors. It is used for precisely adjusting

the current in the Feshbach coils within a small range. After using this precise voltage control circuit, the

magnetic stability has been enhanced to approximately 8mG near the Feshbach resonance.

Realignment of OT and lattice beams

Before we changed the magnetic trap configuration, the center of the optical dipole trap was not aligned

with the center of the Helmholtz coils. In order to obtain a homogeneous magnetic field at the atoms, we

must find the position of the center of Helmholtz coils and realign the crossed optical dipole trap to it.

An approximate measurement of the center position of the Helmholtz coils can be done by loading atoms

into a quadrupole magnetic trap formed from the coils. By disconnecting P3 and P4 in Fig. 2.10 and moving

the P3 cable to P4, the coils can be connected in a quadrupole trap configuration. The center of this

quadrupole magnetic field can be measured by trapping atoms in it.

Fine alignment of the OT position to the center of the Helmholtz coils can be performed using two

methods. The first method is straightforward: by comparing the time-of-flight curves with and without

currents applied to the coils, the gradient due to the magnetic field can be obtained. The second method
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involves comparing the in-trap position of the atoms in a low power optical trap with and without currents

applied to the coils. If a magnetic gradient is present (because the OT is not aligned to the center of the

coils), the position of the potential minimum will shift. Using the optical trap frequencies and the measured

displacement of the in-trap position of the atoms, the gradient from the magnetic field can be calculated.

Fig. 2.15 plots the dependence of the magnetic gradient (at 200A) on the distance from the Helmholtz coil

center (based on our best knowledge of coils geometry). This figure provides guidance on which direction

the crossed optical trap should be moved to align the OT center.
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Figure 2.15: (a): Magnitude of the magnetic field generated by the Helmholtz coils in the y-z plane at 200A.
Gradients of the magnetic field are plotted in unit of G/mm (b): along the z-direction (north-south in the
lab), and (c): along the y-direction (up-down).
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2.3.3 Radio-frequency coil for preparing spin mixtures

The Feshbach resonance in 40K we use occurs between atoms with magnetic quantum numbers mF = −9/2

and mF = −7/2. Atoms with mF < 0 are not confined in a magnetic trap. Therefore, after evaporatively

cooling the atoms in the QUIC trap with mF = 9/2 and mF = 7/2 atoms and loading these two spin

components into the crossed optical dipole trap, we transfer them to the mF = −9/2 and mF = −7/2 states

by a radio-frequency sweep, in order to access the Feshbach resonance.

RF coil

Resistors

SMA RG316
coax cable

100 Ohm 1W 
Chip Resistor 2512

Magnetic coil

Figure 2.16: A photo showing how the radio-frequency coil is mounted. The inset shows a schematic of the
connection of the RF coil to an SMA coax cable.

A small RF coil, made with 4 turns of Kapton coated magnetic wires, is installed close to the science cell

(approximately 4cm) as shown in Fig. 2.16. A radio frequency signal is generated using a 300MHz direct

digital synthesizer (DDS, Analog Devices AD9854 with phase coherent frequency sweeps), and amplified by a

5W amplifier (ZHL-5W-1, Mini-Circuits). Two high power 100Ω resistors (chip resistor 2512), soldered back-

to-back in parallel, are used for termination. Fig. 2.17 plots the sample data for Rabi oscillations between

the |F = 9/2,mF = −9/2〉 and the |F = 9/2,mF = −7/2〉 states at | ~B| ≈ 110G. The RF power measured
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after the 5W amplifier for these data is 32dBm, and the π-time of this Rabi oscillation is ≈ 0.15ms.
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Figure 2.17: Rabi oscillations between the |F = 9/2,mF = −9/2〉 and the |F = 9/2,mF = −7/2〉 states at
approximately a 110G magnetic field. The red curve is a fit to a damped sinusoidal function.

In our experiment, this AD9854 DDS is needed for multiple purposes. In addition to driving the radio-

frequency transitions between different mF states, it also drives one of the Raman beam AOMs (the other

Raman AOM is driven by an AD9959 DDS, the frequency of which is usually fixed), and it serves as a

reference frequency for the voltage controlled oscillator (VCO, Mini circuits ZX95-2500W-5+) that drives

the hyperfine transitions between F = 9/2 and F = 7/2 manifolds. There is no time conflict between these

applications for our current sequence. Two RF switches (ZX80-DR230-S+) and an RF splitter (ZFSC-2-

1W+) are used to control the frequency chain used for these purposes (Fig. 2.18).

2.4 Beat-note locking

To have access to Feshbach-related physics, we need to take images at both high and low magnetic fields. The

difference between the frequencies for imaging at low and high magnetic field is larger than 300MHz, because

of the Zeeman shift (Fig. 2.19). In addition, we need a large tuning range for the probe beam in order to image

atoms with different mF at high magnetic field. To fulfill these requirements, we implement a frequency

beat-note locking scheme. The difference in frequency of two laser beams with the same polarization is

measured by overlapping them onto a fast photodetector. One of the laser beams (the “master laser”) has
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Figure 2.18: Schematic of the radio-frequency chain. A digital synthesizer (AD9854) is the radio-frequency
source. The three chains shown here are for (1) driving transitions between differentmF states, (2) controlling
one of the Raman AOMs, and (3) providing a reference for a PLL board that drives the hyperfine transition
between the F = 9/2 and the F = 7/2 manifolds.
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been frequency stabilized to an atomic transition. The comparison of the beat frequency to a reference is

used as an error signal for frequency locking the other laser.

2.4.1 Optics for beating two lasers

Fig. 2.20 shows the frequencies of the features for the D2-line spectroscopy of the three isotopes of potassium.

From 2009 to 2016, the trap laser was offset locked to the F = 1→ 4P3/2 transition (blue arrow in Fig. 2.20)

for 41K via modulation spectroscopy using a potassium vapor cell. The frequency offset was provided

by double-passing the pump beam through an acousto-optic modulator (AOM), which enabled an offset

frequency from 180MHz to 240MHz. The probe beam for imaging goes through another AOM, which shifts

the frequency by an additional 65MHz. The total frequency offset could cover the transition frequency

difference between F = 1→ 4P3/2 in 41K and F = 9/2→ 4P3/2 in 40K at low magnetic field. For this offset

locking scheme, the tuning range of the probe beam for imaging was limited to 60MHz.

Fig. 2.21 is a schematic for the beat-note locking system. Another external cavity diode laser was added

to our experiment (labeled as “Trap ECDL” in Fig. 2.21). This trap laser, which is an anti-reflection

coated laser diode (Eagleyard EYP-RWE-0780-02000-1300-SOT12-0000) mounted in a home-made external

cavity, is beat against the master laser (Vortex TLB-6900). Each is focused by a lens and overlapped on an

AC-coupled fast photodetector (ET2030-A).

To have a beat-note frequency around 1GHz (which a working frequency range preferred by commercial

RF electronics), we use the −1 diffracted order from the AOM. The master laser is locked to the F =

9/2 → 4P3/2 crossover in 39K (black arrow in Fig. 2.20), which has a high signal-to-noise ratio due to the

higher abundance of 39K. For the MOT loading stage, the beat-note frequency is 1.02GHz. Fig. 2.22 shows

a photo of the beat note power spectrum. The remaining light of the trap laser is sent to a tapered amplifier

(EYP-TPA-0765-01500-3006- CMT03-0000), and then split into two beams for the MOT and probe beam.

2.4.2 Locking electronics

The beat-note signal from the photodetector is sent to a commercial phase locked loop (PLL) circuit (Analog

Devices, ADF4007). Fig. 2.23 shows the electronics for producing the error signal, with the reference

frequency coming from a DDS (Analog devices, AD9959). An zero crossing appears in the error signal if

fref/8 = fRF/16 (where fRF is the beat note frequency from the fast photodetector, and fref is the reference

frequency from DDS), as shown in Fig. 2.23. This steep and step-like feature is a desirable signal for locking.

The error signal from the output of the PLL is sent to a locking circuit (designed by Philip Russ). Two

feedback loops are used to adjust the piezo voltage and current applied to the trap laser diode. The piezo
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|𝐹′ = 11/2, 𝑚𝐹= 11/2⟩

|𝐹′ = 11/2, 𝑚𝐹= −11/2⟩

4𝑆1/2

|𝐹 = 9/2, 𝑚𝐹= −9/2⟩

|𝐹 = 9/2, 𝑚𝐹= 9/2⟩

4𝑃3/2

𝐹 = 9/2

𝐹 = 7/2

(b)

(a)

𝐹′ = 11/2

𝐹′ = 5/2

𝐹′ = 7/2

𝐹′ = 9/2

Figure 2.19: Zeeman energy shifts as a function of magnetic field for (a) the 4S1/2 ground state and (b) the
4P3/2 state.
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Figure 2.20: Features of D2-line transitions in potassium. For each isotope, there exists three spectroscopic
features. Our previous offset locking scheme was locked to the F = 1 → 4P3/2 transition for 41K. For the
new beat-note locking scheme, the master laser is locked the crossover feature for 39K.
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Figure 2.21: Optical system for beat-note locking. The “master” laser is an ECDL (Vortex TLB-6900),
which is locked to the crossover feature of the D2 transition in 39K via standard frequency modulation
spectroscopy. The trap laser is a single-mode anti-reflection coated laser diode mounted in a home-made
external cavity. Some of its light is picked off to beat with the trap laser. The remaining light is sent to a
tapered amplifier to create the MOT trapping light and for the imaging probe beam.
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Figure 2.22: Beat note power spectrum.
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Figure 2.23: Circuit and divider setting for the PLL. The error signal is sent to a locking circuit.
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Figure 2.24: The beat-note error signal (top) with the voltage applied on piezo scanning, and the averaged
standard saturated spectroscopy signal (bottom, used for master laser frequency stabilization). The trap
laser frequency is stabilized to the falling edge of the error signal.
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feedback loop is designed to respond to slow drift in the error signal, while the current feedback loop is for

removing high frequency noise in the error signal. The values of resistors and capacitors in both feedback

loops were optimized to minimize the amplitude of error signal while the laser is locked.

2.4.3 Reducing laser frequency noise

Just after switching to using beat-note locking, the frequency stability of the trap laser was degraded:

the fluctuations on the MOT florescence lever was much higher (around 10%) and the fluctuation on the

measured total number of atoms at the end of magnetic evaporative cooling was more than 50%. Normally

the fluctuation should be around 1− 2% in MOT fluorescence level and the fluctuation in measured number

of atoms is around 5− 10%. We tracked down several issues and improved the laser frequency stability.

• Acoustic noise

We noticed that the trap laser was very sensitive to acoustic noise. The MOT fluorescence level would

fluctuate more than 50% when people spoke nearby the optical table. It turned out that the dimensions

of the sorbothane pads under the ECDL were not optimal. We changed their dimensions based on

Thorlabs’ “feet selection guide.”

• Optimizing gain settings of the feedback loops

We found the best benchmark to test the servo quality is to mix the beat-note frequency down to

approximately 10MHz and perform a fast Fourier transform (FFT) of this signal using an oscilloscope

(Agilent Technologies MSO7034B). The center of this FFT spectrum peak should be stable to approx-

imately 100kHz level and the full width at half maximum should be narrower than 3MHz (Fig. 2.25).

Fine tunning of the gain settings for the piezo and current feedback loops can be done by adjusting

the resistor values in the feedback loops while looking at this FFT spectrum. Fig. 2.25 shows the FFT

spectrum after optimization. In this case, the standard deviation in the total number of atoms after

magnetic evaporative cooling is less than 10%.

2.5 Imaging at high magnetic field

We use absorption imaging to obtain information such as the density or momentum distribution. The

attenuation of the intensity for the imaging beam in the presence of saturation effects and for a resonant

imaging light is [51]

dI(z)

dz
= −n(x, y, z) σa

I(z)

1 + I(z)/Isat
, (2.9)
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Figure 2.25: Fast Fourier transformation of beat-note frequency after mixing down to approximately 10MHz.
The width and the peak stability of this spectrum directly reflects the quality of beat-note locking, and guides
the optimization on gain settings for the locking circuit.
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where n(x, y, z) is the density of atoms, σa = 3λ2/2π is the resonant cross-section, and Isat = πhcΓ/3λ3 is

the saturation intensity, with Γ the natural linewidth of the transition and c the speed of light.

To minimize the non-linear dependence of the absorption on intensity, a small I/Isat is preferred. With

low-intensity absorption imaging, the probe light intensity becomes I = I0e
−OD after passing through the

gas, where I0 is the initial light intensity and OD = σa
∫
n(x, y, z)dz is the optical depth (assuming the

direction of the imaging beam is along z).

To obtain OD in our experiment, three images are taken at the end of each experiment sequence. For

the first image (atom image A), resonant light is applied and the shadow of the atoms is imaged onto a CCD

camera (Princeton Instruments Pixis 1024BR). The subsequent other two images are taken without atoms

(light image L) and without laser light (background image D). The optical depth OD is determined as:

OD = − ln(
A−D
L−D

). (2.10)

In practice, we compromise between increasing the signal-to-noise ratio at high I and minimizing the

non-linear effect by working at small I. For example, we take images at low I for temperature measurements,

where the results are sensitive to the density profile of atoms. Other images, such as measurements on trap

frequencies, may be taken at high probe power. The measured total number of atoms will be rescaled to

get the correct number based on the ratio of OD/ODm (where ODm is the measured optical depth). As an

example to obtain OD/ODm, Fig. 2.26 plots the number of counts measured by the CCD camera per pixel

for the imaging probe beam (which is proportional to the imaging light intensity) vs. the measured peak

OD of the gas (which is proportional to the measured total number of atoms). By fitting the data to the

expected form [52]:

I = Isat
OD −ODm

1− e−ODm
, (2.11)

we obtain OD/ODm at given imaging light intensity.

Until recently, we imaged exclusively at low magnetic field. The quantization coils, as shown in Fig. 2.29,

provide a magnetic field along the probe beam propagation direction. The polarization of the probe beam

is σ+, which drives the transition between the |F = 9/2,mF 〉 and the |F ′ = 11/2,mF ′ = mF + 1〉 states.

Now we image at high magnetic field to access Feshbach-related physics. The magnetic field produced

by our Feshbach coils is perpendicular to the propagation direction of the probe beam. Therefore, the

polarization of the probe beam used at low magnetic field becomes a combination of 1/2π light and 1/2

linear polarized light in the atomic frame at high field; therefore, it cannot be fully absorbed. This limits

the maximum OD to be ln(1/2) = 0.69 (Fig. 2.27).

37



0 . 6 0 . 7 0 . 8 0 . 9 1 . 0 1 . 1 1 . 2 1 . 30

5 0 0 0

1 0 0 0 0

1 5 0 0 0

2 0 0 0 0

 

 

co
un

ts 
pe

r p
ixe

l

O D m

Figure 2.26: The effect of I/Isat on the measured optical depth. The imaging light intensity, proportional
to the measured counts per pixel in the CCD camera, is plotted vs. the measured peak OD, which is
proportional to the measured number of atoms. A fit (solid line) to function Eq. 2.11 allows us to extract
the real number at a given imaging light intensity by rescaling the measured number by a factor of OD/ODm.
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Figure 2.27: Saturation of OD at high magnetic field imaging (| ~B| ≈ 180G) with probe beam parallel to the
magnetic field direction. (a): Maximum OD at different probe frequency. The saturation of maximum OD
and a non-zero background are evident. (b): A slice cut through the center of the time-of-flight imaging with
probe frequency at −275MHz. The red line marks the theoretical maximum OD, which is ln(1/2) = 0.69.
The inset shows the time-of-flight imaging of the atomic gas.
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We can eliminate this imaging problem by using linearly polarized light. When the propagation direction

of the probe beam is not parallel to the magnetic field, the usual convention for σ+ and σ− light should not

be applied. This basis is not the correct for describing the electric dipole oscillation in the atom if there

is an angle between the quantization axis and the light propagation direction. In the case that both the

polarization direction and the light propagation direction are perpendicular to the magnetic field, linearly

polarized light can be fully absorbed for a transition with ∆mF = ±1. In this case, the absorption cross

section is reduced by a factor of two.

An easy way to understand this is to consider a reverse process: atoms at position (x, y, z) = (0, 0, 0) go

through transitions with ∆mF = +1 and therefore radiate electric fields. The radiated electric field is [53]

~E ∝ [θ̂ cos θ − iφ̂e−iφ] cos(ωt), (2.12)

with spherical coordinates (r, θ, φ). The unit vectors (r̂, θ̂, φ̂) are a right-handed set. The polarization of

the electric dipole radiation depends on the angle of observation (Fig. 2.28). In the direction θ = 0, the

radiation field has a polarization as θ̂− iφ̂, which is right-circularly polarized. In the x-y plane, i.e., θ = π/2,

the radiation field is polarized along −iφ̂, which is horizontally polarized (within the x-y plane). The time

averaged intensity of | ~E|2 with θ = π/2 is half as for the θ = 0 case.

Therefore, in the case that the probe beam propagates perpendicular to the magnetic field, if its polar-

ization is linear and within the x− y plane, the light can be fully absorbed by atoms and drive transitions

between mF → mF + 1. The absorption cross section is a factor of two smaller compared with the case that

a σ+ probe beam propagates along ẑ.

In order to have the freedom to image different spin components at low and high magnetic field, we added

a half and quarter wave plate in the path of probe beam, as shown in Fig. 2.29. The angle between the fast

axis of these two wave-plates is fixed to be 45◦. By adjusting the rotation mount that holds this pair of wave

plates, the polarization of the probe beam can be σ+ or σ− (defined at low magnetic field, with ~B parallel to

light propagation direction); or linear polarized along x-direction, which is used for imaging at high magnetic

field. Fig. 2.29 gives the relation between the rotational mount angle setting and the polarization of light.
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Figure 2.28: A schematic of the polarization for electric dipole radiation with ∆mF = +1. The polarization
depends on the angle of observation. As θ changes from 0 to π/2, the polarization of the radiation field
changes from right-circularly polarized to elliptical polarized, and to a linear polarized field. The quantization
axis of the atoms is along the magnetic field direction ẑ.
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Rotation mount:

0°: 𝜎+ polarized light for imaging  𝑚𝐹 = +9/2,+7/2

90°: 𝜎− polarized light for imaging 𝑚𝐹 = −9/2,−7/2

45°: linear polarized light for imaging all spin components 
at high 𝐵𝐹

Probe light

Quantization coils
(for imaging at low B)

𝜆/2𝜆/4

𝑦

𝑥
𝑧

Atoms

Helmholtz  coils
(for imaging at high B)

PBS 𝜀

Figure 2.29: Schematic of the imaging system. The polarization of the probe beam after the polarizing
beam splitter (PBS) is along the vertical direction (black arrows). A combination of a half-wave plate and
a quarter-wave plate is placed after the PBS to adjust the polarization for imaging. The angle between the
fast axis of these two wave plates is fixed to be 45◦. This pair of wave-plates is mounted on a rotation mount,
and the fast principle axis of the half-wave plate is aligned to position “0” on the rotation mount. At low
magnetic field, by rotating the mount to be 90◦ or 0◦, the probe beam can become σ+ or σ− polarized, which
are used for imaging |F = 9/2,mF = 9/2〉 (coupling to |F ′ = 11/2,mF ′ = 11/2〉) or |F = 9/2,mF = −9/2〉
(coupling to |F ′ = 11/2,mF ′ = −11/2〉) respectively. At high magnetic field, the rotation mount is adjusted
to 45◦ to produce a probe beam that has a linear polarization, but rotated by 90◦ (i.e., pointing into the
paper).
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Chapter 3

Toolbox for quantum simulation

3.1 Introduction

The ambitious goal of quantum simulation is to simulate unsolved puzzles in quantum many-body problems

that exceed the capabilities of classical supercomputers. The simulator can be made from any quantum

elements that emulate the relevant Hamiltonian. A proper mapping between an experimental system to

an effective Hamiltonian is essential for understanding the “program” running on the quantum emulator.

For fermions trapped in an optical lattice, the corresponding Hamiltonian is the famous “Fermi-Hubbard

model,” as discussed in the first section of this chapter.

Moreover, we also need to develop experimental probes to “read out” a quantum emulator, and inter-

preting the results requires a theoretical framework. This chapter introduces the method we use to infer

thermodynamic properties of a lattice gas, and we develop a semiclassical kinetic theory for the motion of

atoms in an optical lattices.

The last part of this chapter gives a brief introduction to Green’s function, which is a widely used

theoretical method in condensed matter physics. The Green’s function contains information of how a system

responds to external perturbation. As experimentalists, knowledge of the Green’s function helps us to relate

experimental observables to the underlying microscopics. In Chapter 4, we discuss how dynamical mean-field

theory, which we use to infer resistivity from our measurements, uses Green’s functions.

3.2 Simulating the Fermi-Hubbard model using ultracold lattice

Fermi gases

3.2.1 Optical lattices

By counter-propagating two laser beams with the same frequency and polarization, a standing-wave with

period λ/2 is formed. The atoms experience a periodic potential proportional to the local intensity because
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of the AC Stark effect. In our apparatus, three-dimensional cubic optical lattices are created by three pairs

of counter-propagating laser beams, intersecting at the position of atoms (Fig. 3.1(a)). The lattice beams

are generated from a Tekhnoscan TIS-SF-07 Ti:Sapphire laser pumped with 532nm light generated by a

Coherent Verdi V18. Each beam passes through an acousto-optical modulator, which shifts its frequency

by −83MHz, +83MHz, and −80MHz. Different frequencies are necessary to prevent cross-dimensional

interference between lattice beams. A general form for the potential of this cubic optical lattice is

VL(x, y, z) = VLx cos2(kLLx) + VLy cos2(kLLy) + VLz cos2(kLLz). (3.1)

Here, VLi and Li (i = x, y, z) are the potential depth and the coordinates in the frame of the lattice,

kL = 2π/λ is the wave-vector of lattice beams, and λ = 782.2nm for our apparatus. The lattice beams are

red-detuned, and we work with VL1 = VL2 = VL3 ≡ −s, where s denotes lattice depth. The recoil energy

ER ≡ ~2k2
L/2m, with atomic mass m , is a natural energy scale used for optical lattices. For our apparatus,

ER/h = 8.15kHz.

The alignment of these three lattice beams are roughly, but not exactly orthogonal to each other in our

experiment. Our best estimates for the angles between L1 and L2, L2 and L3, L3 and L1 are 89◦, 88◦

and 84◦, respectively. The rotation matrix between the coordinates of the optical lattice (L1, L2, L3) and

coordinates (x, y, z) as defined in Fig. 3.1(a) is:


z

x

y

 =


0.50 −0.72 0.49

0.68 0 −0.65

0.50 −0.69 −0.58



L1

L2

L3


and 

L1

L2

L3

 =


0.50 0.68 −0.54

−0.72 0 −0.69

0.49 −0.65 −0.58



z

x

y

 .

Our lab convention is that x is along east-west, y is along up-down, and z is along north-south. Our main

imaging probe beam, which propagates along ẑ in the lab frame, is along (1,−
√

2, 1) in the lattice coordinate

system. Chapter 5.2 in McGehee’s thesis [14] discusses the alignment procedure of the lattice beams in detail.
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𝜆/2= 390 nm 
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Figure 3.1: (a): Schematic of the orientation of the lattice beams relative to the (x, y, z) coordinates. The
science cell and magnetic QUIC trap coils are also shown in this figure. The optical lattice beams are shown
in red and optical trap beams in gray. All the beams are aligned to the position of the atomic gas. The probe
beam for imaging (red arrow) travels along the z-direction. (b): A schematic of counter-propagating beams
that form the lattice. Red and blue circles represent atoms with different magnetic quantum numbers. t is
the tunneling energy and U is the on-site interaction energy. The ratio of U/t can be adjusted by tuning
the lattice depth s.

3.2.2 Bloch waves

Generally, the eigenstates of a periodic potential V (~r), according to Bloch’s theorem [54], have the form:

ψ(~r) = u~k(~r)ei
~k·~r, (3.2)

where u~k(~r) = u~k(~r + ~R), and ~R is a lattice vector. The crystal wavevoctor |~k| ≤ kB , where kB =

qB/~ = π/d is the edge of Brillouin zone (BZ). The periodic function u~k(~r) can be expanded as u~k(~r) =

1√
V

∑
~K a~k( ~K)ei

~K·~r, with V the volume of the system, and ~K a reciprocal lattice vector. Inserting this into

the Schrödinger equation, we have

[
~2

2m
(~k + ~K)2 − E(~k)

]
a(~k + ~K) +

∑
~K′ 6= ~K

VL( ~K − ~K ′)a(~k + ~K) = 0, (3.3)

with VL( ~K) = 1
V

∫
d3~rVL(~r)e−i

~K·~r. For a standing-wave potential, VL(~r) only has two frequency components

in reciprocal lattice space: VL(| ~K| = 2kL) = VL(| ~K| = −2kL) = − 1
4s (the zero frequency component, which

causes an overall energy shift, has been ignored). For a one-dimensional lattice, for given k, the elements in
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the Hamiltonian matrix for this eigenvalue problem are:

Hj,k =


~2

2m (2jkL + k)2 if j = k

−1/4s if j = k ± 1

0 otherwise

(3.4)

Band structure

By truncating the Hilbert space, the matrix in Eq. 3.4 can be diagonalized to give the energies and eigen-

vectors, from which we can obtain the band structure. The cubic lattices used in this thesis are separable,

and therefore the 3d band structure can be found via 1D band structure: E3d,n = Ex,nx + Ey,ny + Ez,nz ,

where ni (i = x, y, z) is the band index for the 1D band structure. Correctly labeling the 3D band structure

indices requires enumerating all possible combinations of (nx, ny, nz) and ordering them in energy.

To visualize the 3D bandstructure more straightforwardly, a matrix, similar to Eq. 3.4, can be constructed

for a cubic lattice. Matlab code can be found in the Appendix. Figs. 3.2 and 3.3 plot equipotential surfaces

for three-dimensional optical lattices at s = 4ER. The top row in both figures is viewed along the (1, 0, 0)

direction in reciprocal lattice space, while the bottom row is along (1, 1, 1). For small ~q, the equal-energy

surface is close to a sphere, similar to the free particle case. As ~q approaches the ~qB , an energy gap opens,

and the equal-energy surface is always perpendicular to the boundary of the BZ.

Brillouin zone

A Brillouin zone (BZ) is defined as a Wigner-Seitz primitive cell in the reciprocal lattice space [54]. The

atoms have a distribution of quasimomenta in the ground band of the first BZ, which is a cube with sides

of length 2qB in reciprocal space. Fig. 3.4 shows the projection of the BZ with band indices from n = 0− 9,

viewed along a lattice axis and along our imaging direction.

The quasimomentum distribution can be detected via the “band-mapping” technique [55–57]. By turn-

ing off the optical potential slowly enough with respect to the band gap (thereby avoiding excitation to

higher bands), but quickly with respect to the harmonic trapping potential (to avoid spatial redistribution),

quasimomentum is adiabatically mapped to momentum. In other words, a Bloch wave with quasimomen-

tum k and band index n is mapped to a free particle with momentum pi = sgn(ki)n × (~kL,i) + ~ki with

i = x, y, z and sgn(ki) the sign function. However, this band-mapping technique fails for atoms near the

edge of BZ [58]. An intuitive way to understand this failure is, as the lattice depth becomes shallow, the

band gap is smaller, such that the related timescale becomes longer compared to the harmonic trap period.

We implement band-mapping using a 200µs linear ramp of the lattice depth. For all temperatures
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Figure 3.2: Equal energy surface for the ground band of an s = 4ER cubic lattice viewed from different
angles: along (1, 0, 0) (top) and along (1, 1, 1) (bottom). From left to right, the corresponding energy for the
surface is (a) E = 0.15ER:, (b): E = 0.35ER (c): E = 0.55ER and (d)E = 0.75ER, respectively. The zero

energy reference is set to be E(~k = 0) on the ground band.
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Figure 3.3: Equal energy surface for the first excited band of an 4 = 4ER cubic lattice viewed from different
angles: along (1, 0, 0) (top) and along (1, 1, 1) (bottom). From left to right, the corresponding energy for
the surface is (a) E = 2.55ER:, (b): E = 2.75ER (c): E = 2.95ER, (d): E = 3.15ER and (e): E = 3.35ER,

respectively. The zero energy reference is set to be E(~k = 0) on the ground band.
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explored in this thesis, the atoms only occupy the ground band and populate the first BZ. A disadvantage

of our lattice geometry is that the imaging beam is not along any of the primary axes of the lattices, but

close to the (1,−
√

2, 1) direction in the lattice coordinate. The projection of the cubic first BZ onto our

image plane appears as hexagon (Fig. 3.4(b)). In addition, the projection of the BZ for higher energy bands

largely overlaps with the projection of the 1st BZ, which hinders the study of dynamics involving higher

band excitations.

𝑞𝐵 0 

 (b): along (1,- 2,1)  (a): along lattice axis 

0 

𝑞𝐵 
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Figure 3.4: The Brillouin Zone (BZ) of a cubic lattice viewed along (a) one of the lattice axis and (b)
the (1,−

√
2, 1) direction. Our imaging beam is roughly along the (1,−

√
2, 1) direction. Therefore, the

projection of the 1st BZ on the imaging plane has a hexagonal shape. The color bar shows the band index.
The Mathematica code used for generating the BZ is from http://library.wolfram.com/infocenter/

MathSource/8913/.

3.2.3 Tight-binding model

For a sufficiently deep lattices (s ≥ 4ER), a tight-binding model is favorable to describe the physics in optical

lattices. In this section, we use Wannier functions as a basis. Wannier functions, defined as

w(~R,~r) =
1√
N

∑
~k

e−i
~k·~Rψ~k(~r) =

1√
N

∑
~k

ei
~k·(~r−~Rl)u~k(~r − ~Rl),

are localized around r = ~Rl, with ~Rl the coordinates of the lattice sites.
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Inserting this into Schrödinger equation, we have:

∑
~Rl′

[
~2

2m
∇2 + V (~r)− E(~k)

]
1√
N
ei
~k·~Rl′w(~r − ~Rl′) = 0, (3.5)

where N is the total number of particles in the system. Multiplying the left handside by w∗m(~r − ~Rl) and

integrating over ~r gives:

E(~k) = −
∑
~Rl

t(~Rl)e
−i~k·~Rl , (3.6)

with

t(~Rl) =

∫
d~rw∗n(~r − ~Rl)

[
− ~2

2m
∇2 + V (~r)

]
w∗n(~r).

The overlap between Wannier states on ground band with separation larger than two lattice sites is

negligible for s ≥ 4ER, so only t(~Rl = ai) ≡ t (i = Lx, Ly, Lz) is kept. For a three-dimensional optical

lattices, we have the energy dispersion relationship as:

E(~k) = −
∑

i=x,y,z

t[e−ikxd + eikxd]

= −2t [cos(kxd) + cos(kyd) + cos(kzd)] . (3.7)

The bandwidth of ground band is E(~k = (qB/~, qB/~, qB/~))− E(~q = (0, 0, 0)) = 12t.

Fig. 3.5 and Fig. 3.6 plot the band structure, Bloch functions, and Wannier functions for lattice depths

s = 4ER and s = 8ER. As the lattice depth becomes larger, the band becomes flatter and the band gaps

increase. Panels (b) in Fig. 3.5 and Fig. 3.6 plot the amplitude and the real part of Bloch wavefunctions

for q = 0 (black), q = qB/4 (red) and q = qB/3 (blue) for n = 0. The Bloch functions are similar to

amplitude-modulated plane waves. For example, the dashed blue lines plot the real component of a plane

wave eiπ/3. The periodic potential of lattice modifies its amplitude.

Wannier functions with n = 0 (black), n = 1 (red) and n = 2 (blue) are plotted in panels (c). For the

n = 0 Wannier function, at s = 4ER, the side lobes of the Wannier function are visible. At s = 8ER, the side

lobes are very small. For n > 1, the linewidth of Wannier functions is broader. The profile of the Wannier

wavefunction becomes closer to the eigenstate of a harmonic trap potential as s increases.

The advantage of using Wannier functions is expressing the Hamiltonian in second quantizatized form

(in a site basis). With field operator Ψ(~r) =
∑
i wi(~r)ci, where ci is the annihilation operator for site i, the

49



𝑠 = 4𝐸𝑅

Band structure(a): 

(c): Wannier function

(b): Bloch function (n=0)

(𝐸
𝑅
)

(𝑞𝐵)

Figure 3.5: (a): Band structure at s = 4ER lattice. (b): The amplitude and the real part of Bloch functions
with n = 0, for q = 0 (black), q = qB/4 (red) and q = qB/3 (blue). The blue dashed line plots an envelope
of eiπ/3 (c): The amplitude and the real part of Wannier functions for n = 0 (black), n = 1 (red) and n = 2
(blue).
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𝑠 = 8𝐸𝑅

Band structure(a): 

(c): Wannier function

(b): Bloch function (n=0)

(𝐸
𝑅
)
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Figure 3.6: (a): Band structure at s = 8ER lattice. (b): The amplitude and the real part of Bloch functions
with n = 0, for q = 0 (black), q = qB/4 (red) and q = qB/3 (blue). The blue dashed line plots an envelope
of eiπ/3 (c): The amplitude and the real part of Wannier functions for n = 0 (black), n = 1 (red) and n = 2
(blue).
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Hamiltonian is:

H = −t
∑
〈i,j〉

(c†i cj + h.c.), (3.8)

where 〈〉 indicates a sum over neighboring sites. Eq. 3.8 is the so-called tight-binding Hamiltonian. Only

tunneling between neighboring lattice sites has been kept.

3.2.4 Fermi-Hubbard model

So far, we have discussed the non-interacting case. With more than one fermionic species present, interactions

between them due to collisions need to be taken into account. The temperature range we are working with

is lower than the centrifugal p-wave barrier [15], and s-wave scattering only happens between fermions with

different spin quantum numbers. The interaction potential between two atoms can be approximated as a

contact potential U(~r − ~r′) = δ(~r − ~r′) 4π~2a
m . Therefore, the interaction term is

Hint =

∫
d3~rd3~r′ Ψ†σ(~r)Ψ†σ′(

~r′)U(~r − ~r′)Ψσ′(~r
′)Ψσ(~r)

=
∑
i

4π~2a

m

[∫
d3~rwi(r)

4

]
c†i,σc

†
i,σ′ci,σ′ci,σ (3.9)

= U
∑
i

ni,σni,σ′ , (3.10)

with U ≡ 4π~2a
m

[∫
d3~rwi(~r)

4
]
, and ni,σ = ĉ†i,σ ĉi,σ is the number operator.

Therefore, for a two-component fermionic system, the Hamiltonian involving interactions becomes:

H = −t
∑
〈i,j〉,σ

(ĉ†jσ ĉiσ + h.c.) + U
∑
i

ni,↓ni,↑ +
∑
i,σ

1

2
mω̄2r2

i ni,σ, (3.11)

where i indexes the lattice sites, 〈〉 indicates a sum over neighboring sites, and σ = |↑〉 or |↓〉 labels spin.

The third term is added to take account the overall confining potential from the optical dipole trap. where

ω̄ is the geometric mean of the dipole trap frequencies, and ri is the distance from the site i to the trap

center.

Eq. 3.11 is the famous Fermi-Hubbard model. The first term of this Hamiltonian captures the kinetic en-

ergy and tunneling between neighboring sites, with t as the Hubbard tunneling energy; the second interaction

term indicates that occupying a lattice site with two atoms in opposite spin states casts an extra energy U

(Fig. 3.1). The last term, which is absent in conventional solid state systems, introduces an inhomogeneous

density distribution of atoms.

Experimentally, the calibration of lattice depth can be done by modulating the amplitude of lattice depth
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at a few percent level. This periodic driving drives transitions between the ground and the 2nd excited band,

if the modulation frequency matches the energy gap. This process adds energy to the gas, and manifests

itself as number loss and reduction in the peak OD. From the dependence of the peak OD on modulation

frequency, the energy gap between ground state and the 2nd excited state can be measured.The reduction

in OD provides cleaner signal for locating the interband transition frequency, compared to number loss

(Fig. 3.7). We calculate the lattice depth basd on a band structure calculation. The corresponding on-site

interaction U an tunneling term t in Fermi-Hubbard model can be straightforwardly calculated. Table. 3.1

gives the value of U and t at various lattice depths.
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Figure 3.7: Sample data showing lattice depth calbration via lattice modulation spectroscopy for L1. The
lattice intensity is modulated at a few percent level over a range of frequencies (fmod). The peak OD (black
circles) has a sharp reduction at fmod ≈ 134kHz (corresponding to the transition from the ground to the
second excited band at s = 24ER). The total number of atoms (blue circle) also drops below fmod ≈ 134kHz.
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Table 3.1: Table of tunneling energy t and on-site energy U at various lattice depths.

Lattice depth (ER) t (ER) t/h (kHz) U(ER) U/h (kHz) U/t
4 0.0862 0.703 0.1933 1.577 2.2
5 0.0661 0.539 0.2448 1.997 2.9
6 0.0509 0.415 0.2960 2.414 3.7
7 0.0395 0.322 0.3462 2.824 4.7
8 0.0308 0.251 0.3952 3.223 5.8
9 0.0242 0.197 0.4429 3.612 7.2
10 0.0192 0.157 0.4895 3.993 8.8
11 0.0153 0.125 0.5349 4.363 10.6
12 0.0123 0.100 0.5794 4.726 12.8
13 0.0099 0.081 0.6229 5.081 15.4
14 0.0080 0.065 0.6657 5.430 18.3

3.3 Semiclassical kinetics in optical lattices

This section gives a brief discussion of the semiclassical dynamics of particles, such as their response to

external field, in optical lattices. Instead of solving the Schrödinger equation, a semiclassical approach that

treats the external field classically, is appropriate for describing the motion of particles in certain cases. This

semiclassical approach is relevant to our study of transport phenomena in optical lattices.

3.3.1 Wavepackets

Unlike classical particles, which have a definite momentum and position, the Heisenberg uncertainty principle

forbids the simultaneous determination of momentum and position for quantum particles. The eigenfunctions

for particles in a periodic potential are Bloch waves, which are amplitude-modulated plane waves that have

no definite position. To produce time-dependent states, we form a superposition of several eigenstates:

ψk(~r, t) =
1

∆~k

∫ ~k0+ ∆~k
2

~k0−∆~k
2

uk(~r)ei(
~k·~r−E(~k)

~ t)d~k. (3.12)

If we assume u~k(~r) changes very slightly with ~k (which is true in the tight-binding limit), then we have

ψk(~r, t) ≈
u~k0(~r)

∆~k
ei(
~k0~r−E(~k0)

~ t)d~k

∫ ∆~k
2

−∆~k
2

uk(~r)eiδ
~k(~r−

∇~kE(~k0)

~ t)d( ~δk). (3.13)
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If we define the coordinates (ξ, η, ζ) as:

ξ = x− 1

~

(
∂E(~k)

∂kx

)
t, (3.14)

η = y − 1

~

(
∂E(~k)

∂ky

)
t, (3.15)

ζ = z − 1

~

(
∂E(~k)

∂kz

)
t, (3.16)

we have

ψ~k ≈ ψ~k0

sin(∆kxξ/2)

∆kxξ/2

sin(∆kyη/2)

∆kyη/2

sin(∆kzζ/2)

∆kzζ/2
. (3.17)

The probability to find the particle at position ~r is: |ψ~k|
2 = |u~k0

(~r)|2|A(~r, t)|2, with

A(~r, t) ≡ sin(∆kxξ/2)

∆kxξ/2

sin(∆kyη/2)

∆kyη/2

sin(∆kzζ/2)

∆kzζ/2
.

If ∆~k 6= 0, the amplitude of the wave-packet reaches its maximum value at ξ = η = ζ = 0, and decays

as ξ = η = ζ → ∞. The position of the particle can be defined as the center of this wavepacket, i.e.,

~r = 1
~∇~kE(~k)t. The velocity of wave-packet is

~v = d~r/dt =
1

~
∇~kE(~k), (3.18)

which is the mean velocity of a Bloch wave with momentum ~k and energy E.

The acceleration of a wave-packet under an external force ~F is:

d~v

dt
=

1

~
∇~kE(~k)

=
1

~
(
d~k

dt
· ∇~k)∇~kE(~k)

= (~F · 1

~2
∇~k)∇~kE(~k) (3.19)

The equation of motion for the wave-packet still has the same classical form as Newton equation, but with

an effective mass defined as

(
1

m
)α =

1

~2

∂2E(~k)

∂k2
α

. (3.20)

The time evolution of a wave-packet still follows the classical equations of motion, with its momentum and

position defined as the mean value of the momentum and position of this wave-packet. This approach is

semiclassical in the sense that we treat the external field as a classical field, and the response of the wave-
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packet to the external field has the form of Newton’s equation. However, the profile of the wave-packet itself,

which are determined by the periodic potential, has to be treated quantum mechanically.

The validity of this semiclassical picture requires ∆~k � π/d. A wave-packet with a wave vector that is

well defined on the scale of the BZ must be spread in real space over many sites [54]. If the length scale of

the spatial variation in the external field is much larger than the lattice spacing, then we can describe the

dynamics of this system using this semiclassical approach.

3.3.2 Two simple examples

Motion of a wavepacket with an external electric field

In the presence of an external electric field, we have ~d~kdt = −e ~E, the solution of which is ~k(t) = ~k(t = 0)− e ~E
~ t.

Without optical lattices, E(~k) = ~2k2/2m, and the relationship between the velocity of a wave-packet and

~k is simple: ~v(~k) = ~
m
~k. Therefore, the velocity of a wave-packet keeps increasing under a static external

field as

~v(~k) =
~
m
~k(0)− e ~E

m
t (3.21)

The behavior of particles in optical lattices is completely different. In this case, the velocity becomes

~v(~k) = − 2td
~ sin(kd), which is a periodic function. There exists a maximum velocity in the lattice, and the

evolution in k is periodic. This behavior is called Bloch oscillation. In real materials, there always exists

a scattering process that relaxes momentum, which is much faster than the Bloch frequency, and therefore

prevents the observation of Bloch oscillation. For ultracold atoms trapped in an optical lattice, because of

their long coherence length, Bloch oscillations have been observed [59–62].

Motion in an optical lattice combined with a harmonic trap

The semiclassical motion of atoms in an optical lattice, combined with a harmonic trap potential follows the

equations:

ẋ =
∂H

∂q
= 2t

d

~
sin(

q

~
d) (3.22)

q̇ = −∂H
∂x

= −mω2x. (3.23)

These equations can be solved numerically. Fig. 3.8(a) shows the evolution in phase space for different

initial q. Compared to the pure harmonic trap case (Fig. 3.8)(b), the trajectories deviate from a elliptical
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Figure 3.8: Evolution in phase space for (a) an optical lattice combined with a harmonic trap potential,
and (b) a pure harmonic trap potential. Dots with different gray color scales plot the phase trajectories for
constant energy contours. Time evolving Eq. 3.22 and Eq. 3.23 numerically gives the trajectories in phase
space. The lattice dispersion induces anharmonic behavior. As q approaches the edge of BZ, the deviation
from an elliptical trajectory is evident.

shape as q approaches the edge of BZ. Such deviation brings anharmonic behavior of atoms moving in an

optical lattice. Chapter 4 will discuss this anharmonicity in detail.

3.4 Thermodynamics in optical lattices

3.4.1 Measuring temperature in optical lattices

It may be surprise to physicists outside of AMO physics that a direct probe of temperature in optical

lattices is still a challenging task. For a weakly interacting gas in a harmonic trap, the temperature can be

directly measured by fitting the momentum distribution of gas to analytic expressions using the semiclassical

approximation [63,64]. However, for an atomic lattice gas, this approach fails because of the rapid variation

in the potential energy [64]. Directly probing of temperature of lattice gases is of great interest (see Ref. [65]

for a review).

Alternatively, as an indirect technique, the thermodynamic quantities of a lattice gas can be inferred

from a trapped gas. We estimate the temperature in the lattice by assuming that the optical lattice turns on

slowly enough such that this process is adiabatic. Adiabaticity is only satisfied if the lattice depth is ramped

57



up infinitely slowly. In practice, we must use a finite ramp time, which is assumed to be slow compared to

the timescales of the model. In principle, the matching in entropy and the conservation of total number of

atoms during lattice loading allows the inferring of other thermodynamic quantities, such as temperature

and the chemical potential, for a lattice gas. However, calculating the entropy of a lattice gas usually requires

some approximations.

For a non-interacting lattice gas (U = 0), entropy can be calculated as a function of temperature and

the chemical potential numerically (see Section.3.4.3 for details). In the case that U/t is small, mean-field

methods, such as Hartree-Fock approximation, have been successfully employed for a weakly-interacting

lattice gas [66]. At the limit of strong interaction (t/U → 0), thermodynamic functions have analytical

expressions in the atomic limit [67]. The dependence of entropy on temperature for the intermediate regime

of U/t remains elusive. For works in this thesis, we load single-component non-interacting fermions confined

in a harmonic trap into optical lattices. Therefore, we can numerically calculate the entropy as a function

of temperature and the chemical potential and infer the thermal quantities of a lattice Fermi gas (See

section.3.4.3).

3.4.2 Thermodynamics for a trapped Fermi gas

Without an optical lattice, thermodynamics quantities for a non-interacting Fermi gas confined in a harmonic

potential have analytical expressions, which have been derived in references such as [52,68]. Here I summaries

the expressions for frequently used quantities and how we measure them experimentally.

Semiclassically, the distribution in the phase space (~r, ~p) follows Fermi-Dirac statistics:

f(~r, ~p) =
1

eβ(p2/2m+ 1
2mω

2r2−µ) + 1
, (3.24)

where β = 1/kBT and µ is the chemical potential. The grand canonical partition function Ξ is:

ln Ξ =
1

h3

∫
d3~r

∫
d3~p

{
1 + e−β[p2/2m+ 1

2mω
2r2−µ)]

}
. (3.25)

Then the total number of particles is:

N =
1

h3

∫
d3~r

∫
d3~p f(~p, ~r), (3.26)
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Table 3.2: Analytical expressions for thermal quantities of a trapped non-interacting Fermi gas

Fermi energy EF = ~ω̄(6N)1/3

T/TF

[
1

6Li3[−z]

]1/3
Total number N = (kBT~ω3 )3Li3[−z]

Entropy per particle S/N = kB

{
Li4[−z]
Li3[−z] ]− ln[z]

}
Density distribution n(~r) = − 1

(2π)3/2~3 (mβ )3/2Li3/2[−ze−βV (~r)]

Momentum distribution n(~p) = − 1
(2π)3/2~3 ( 1

mω2 )3/2Li3/2[−ze−β
p2

2m ]

Column integrated density distribution n(x, y) = −
√

2πσ2

(2π)3/2~3 (mβ )3/2Li2[−ze−
x2

2σ2−
y2

2σ2 ]

Column integrated momentum distribution n(px, py) = −
√

2πmkBT
(2π)3/2~3 ( 1

mω2 )3/2Li2[−ze−
p2
x

2mkBT
−

p2
y

2mkBT ]

and the total entropy is

S = − ∂

∂T
(−kBT ln Ξ)

=
1

h3

∫
d3~r

∫
d3~p

{
ln(1 + e−β(Ei−µ)) +

β(Ei − µ)

1 + eβ(Ei−µ)

}
. (3.27)

Determining thermodynamic quantities requires integration over the spatial and momentum coordinates.

The mathematical technique for doing this integral involves the use of a special function Lis[z], which is the

polylogarithm function, defined as

Lis[z] =

∞∑
k=1

zk

ks
. (3.28)

The integral representation of Lis[z] is more useful for our purpose, which is:

Lis[−z] =
1

Γ[s]

∫ ∞
0

ts−1

et/z + 1
dt, (3.29)

where Γ[s] is the gamma function. Another useful relation is:

∫ ∞
0

Lis[−ze−x
2

]dx =

√
π

2
Lis+1/2[−z]. (3.30)

Table. 3.2 summaries analytical expressions for some commonly used thermal quantities, with σ2 = kBT
mω2 the

size of the gas.

The most widely used experimental technique to measure thermal quantities is time-of-flight imaging.

The gas is released from the harmonic trap potential and allowed to expand freely for some time tTOF.

Then an absorption image, as described in Chapter 2, is taken. In the absence of interactions, the motion of

the atoms is purely ballistic, and the position of atoms at tTOF reflects the momentum distribution at the
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Table 3.3: Inferring thermodynamic quantities from fitting parameters. λ is the wavelength of the imaging
probe beam, and M is the magnification of the imaging system.

Optical depth OD(x, y) = ALi2[−ze
− x

2

σ2
x
− y

2

σ2
y ]

Li2[−z]

Total number AσxσyM
2 2π

3λ2

2πLi3[−z]
Liz [−z]

Temperature kBT = mω2σ2

[1+(ωtTOF)2]

Entropy per particle S/N = kB

{
Li4[−z]
Li3[−z] ]− ln[z]

}

moment the atoms were released from the harmonic trap. It has been proven that this procedure does not

change the shape of gas for non-interacting atoms [69]. Therefore, after tTOF, the distribution of atoms in

space follows

n(~r′, tTOF) =

∫
d3~rf(~r,

m

t
(~r′ − ~r))

≈
∫
d3~r

1

e−βµ e
1
2mω

2r2β e
β m2

tTOF
~r′

2

+ 1

=

∫
d3~r

1

e−βµ e
− r2

2σ2
t + 1

(3.31)

with the assumption that tTOF is sufficiently long (i.e., σt=0 � σt=tTOF
). The parameter σ2

t = 1
mβ (t2TOF+ 1

ω2 )

characterises the size of the gas after time-of-flight.

The 2D absorption image corresponds to the column integrated momentum distribution. The expression

for the OD is

OD(x, y) = A

Li2

[
−ze−

(x−xc)2

2σ2
x e

− (y−yc)2

2σ2
y

]
Li2 [−z]

. (3.32)

We fit the measured OD to Eq. 3.32 with A, σx, σy, xc, yc, and z as free parameters. Here σx(σy) is the

size of the gas along x(y) , A is the peak OD, and z = eβµ is the fugacity. In the classical limit, Eq. 3.32

reduces to a Gaussian distribution. Table. 3.3 summaries the relationship between thermal quantities and

the fit parameters.

Combining Tables. 3.2 and 3.3 shows that there are two approaches to obtain T/TF . First, T/TF can be

inferred from the fugacity as T/TF = [6Li3[−z]]−1/3. Another method is to measuring σ at different tTOF,

and fit to σ(tTOF) =
√

kBT
m

√
1 + (ωt)2 to determine the absolute temperature T . Because TF = EF /kB

and EF = ~ω(6N)1/3, T/TF can be calculated with the knowledge of the trap frequencies and atom number

N .

In practice, we usually compare T/TF obtained from these two methods. The fugacity measured directly

from the profile of the TOF imaging is most reliable for T/TF ≈ 0.1 − 0.5. For T/TF > 0.5, the shape of
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the gas is close to a classical Gaussian distribution, and therefore the fugacity is not sensitive to T/TF . For

T/TF < 0.1, the fugacity diverges rapidly with T/TF , and small fluctuations on the density profile due to

noise dramatically change the fit results. Consistency between these two methods within T/TF ≈ 0.1− 0.5

should be verified to ensure that Fermi gas has reached equilibrium during evaporative cooling.

3.4.3 Thermodynamics for a non-interacting Fermi lattice gas

Semiclassically, the grand canonical partition function Ξ for describing a non-interacting Fermi gas in an

optical lattices is:

log Ξ =
1

(2π)3

∫ π

−π
d3~q

∫
d3~r log

[
1 + e−β(ε(~r,~q)−µ)

]
, (3.33)

with |q| ∈ [−qB , qB ] the quasimomentum, and ε(~r, ~q) the single-particle energy:

ε(~r, ~q) =
∑

i=x,y,z

[
2t

(
1− cos(π

qi
qB

)

)
+
mω2r2

i

2

]
. (3.34)

Here we assume the lattice depth is equal along each direction, and the harmonic trap potential is

isotropic with trap frequency ω. We also assume that the principal axes of the harmonic trap potential align

with the lattice axes, which is not true in the experiment. Fermi-Dirac statistics f(~r, ~q) = 1
eβ[ε(~r,~q)−µ]+1

gives:

N = − ∂

∂µ
(−kBT ln Ξ)

=
1

(2π)3

∫
d3~rd3~q

1

eβ[ε(~r,~q)−µ] + 1
(3.35)

S = − ∂

∂T
(−kBT ln Ξ)

=
1

(2π)3

∫
d3~rd3~q

{
ln(1 + e−β(ε(~r,~q)−µ)) +

β(ε(~r, ~q)− µ)

1 + eβ[ε(~r,~q)−µ]

}
. (3.36)

In practice, we numerically integrate Eq. 3.36 and 3.36 to obtain the total number of atoms N and

entropy per particle S/N , which are functions of the chemical potential and the temperature. Assuming

adiabaticity, we infer the T̃ and µ̃ in the lattice by numerically solving (simultaneously)

NL(µ̃, T̃ ) = NT (µ, T ), (3.37)

and

SL(µ̃, T̃ )/NL(µ̃, T̃ ) = ST (µ, T )/NT (µ, T ). (3.38)

NT (NL) is the total number of atoms in the harmonic trap (in the lattice); ST (SL) is the total entropy of
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atoms in the harmonic trap (in the lattice). NT and ST are functions of µ and T with analytical expressions.

µ and T can be experimentally determined from time-of-flight measurements as discussed in the previous

section.

With the knowledge of effective T̃ and µ̃ in the lattices, other quantities, such as the density and mo-

mentum distributions, can be easily calculated. For example, the column integrated density profile is

n(x, y) =

∫
dz

∫
d3~q

1

eβ[ε(~r,~q)−µ] + 1
, (3.39)

which can be measured experimentally by taking an in-situ absorption image (more details in Chapter 4).

Compared with solid crystals, a unique property of an optical lattice is that the periodic potential is

accompanied by a harmonic trap potential. Although the spatial variation in the harmonic potential is small

compared with the periodic potential of lattices, its effect on the properties of the system can be important.

For example, it breaks the translational symmetry and modifies the single particle spectrum [70,71].

In the work discussed in Chapter 4, we need to keep the Fermi energy EF /t of the system fixed. For a

uniform system, EF /t solely depends on the total number of particles. However, for the combined harmonic-

trap potential, this is not true. The dependence of the Fermi energy for the lattice gas on the total number

of atoms N can be found via:

N(EF ) =

∫ EF

0

1

(2π)3

∫
d3~q

∫
d3~rΘ(EF − E(~r, ~q)), (3.40)

where Θ(x) is the Heaviside step function.

Fig. 3.9(a) plots the the dependence of total number of atoms N on the tunneling energy t, for EF = 4t

(black), EF = 6t (red), and EF = 8t (blue), with ω = 2π × 81Hz. The dependence of N on t at given

EF /t is obvious when t is small. As t becomes larger, the single-particle energy is dominated by the lattice

dispersion, and therefore N is less sensitive to t.

Moreover, in our experiment, varying t is realized by changing the lattice depth s. Besides the confinement

from the crossed dipole trap, the lattice beams apply additional force on atoms. Therefore, with larger lattice

depth s, the trap frequencies (ω in Eq. 3.34) increases. The harmonic-lattice combined trap frequencies

are [72]:

ω2 = ω2
OT +

4E2
R

mwL

(
2
s

ER
−
√

s

ER

)
(3.41)

where ωOT is the trap frequency of the optical dipole trap, wL is the beam waist of the optical lattices, and

ER is the recoil energy. The dashed lines in Fig. 3.9(b) plot N vs t, with the dependence of ω on s being
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taken into consideration. The solid lines are with fix ω = 2π× 81Hz. It is evident that for high lattice depth

(i.e., small t), the change in overall trap frequencies has a significant effect on the relationship between N

and EF .
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Figure 3.9: Total number of atoms vs tunneling energy at EF = 4t (black), EF = 6t (red), and EF = 8t
(blue). (a): The trap frequencies are fixed to be 2π× 81Hz. (b): In our experiment, varying t is realized by
changing the lattice depth, which changes the trap frequencies. The dashed lines include the dependence of
ω on t. At small t, derivation from the fixed ω case (solid lines) is evident.

In the work discussed in Chapter 4, we control the total number of atoms, in order to have EF within

the range of 5t to 7t. Fig. 3.10 plots the dependence of EF (in unit of t) on N at different lattice depths.

Between the two dashed lines are the range of N we post-selected for the work discussed in Chapter 4.

3.5 Green’s function in a nutshell

As an important theoretical formalism for solving many-body problems, Green’s functions are widely used

in condensed matter theory. They are more than a mathematical method for solving differential equations.

Green’s functions have a direct physical interpretation that helps to reveal the microscopic underpinnings of

experimental measurements. This section introduces the basics of Green’s functions. Chapter 4 uses Green’s

functions to show the relationship between the Drude model and Kubo formula and to perform dynamical

mean-field theory calculations.
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N

E F  ( t )
Figure 3.10: Dependence of the Fermi energy on atom number at lattice depth of 4ER (black), 5ER (red),
6ER (blue), and 7ER (green). EF approximately scales as N1/3 at given lattice depth, the same scaling as
in a harmonic trap potential.

3.5.1 Single-particle Green’s function

Generally, the single-particle Green’s function is defined as

G(ν, tt′) = −i
〈
T (cν(t)c†ν(t′))

〉
. (3.42)

The quantum number ν can be anything (such as position ~r, or momentum ~p), depending on the problem

of interest. The operators cν(t), c†(t) are the creation and annihilation operators defined in the Heisenberg

representation. T is the time-ordering operator which arranges operators with earlier times to appear on

the right. For example, T (cν(t)c†ν(t′)) = cν(t)c†ν(t′) if t > t′, and T (cν(t)c†ν(t′)) = ±c†ν(t′)cν(t) if t < t′.

The + (−) sign is for bosons (fermions) to guarantee the correct commutation relations. The notation 〈X〉

represents the thermal average of X as

〈X〉 =
Tr[e−β(H−µN)X]

Tr[e−β(H−µN)]
.

As an example, let us consider the degenerate Fermi gas at zero temperature. In this case, it is easy to
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show that

G(~k, tt′) = −i [θ(t− t′)θ(k − kF )− θ(t′ − t)θ(kF − k)] e−i(εk−µ)(t−t′), (3.43)

where kF is the Fermi wave vector and εk is the free-particle energy. For t > t′ and k > kF , G(~k, tt′) =

−ie−i(εk−µ)(t−t′). This is the propagator for free-particles, i.e. ψk(t) = G(k, tt′)ψk(t′), representing the

probability that we can find a particle with momentum k at time t, if we add a particle with that momentum

at time t′. Of course, for the non-interacting case, this probability is unity. Similarly, for the t < t′ case, the

Green’s function gives the information about holes. In this case, we remove a particle from the system first

at time t, and then put it back later at time t′.

More generally, with interactions, a basis such as |k〉 may not be eigenstates of the system. The added

particle or hole can interact with other particles in the system during the time interval t − t′ and scatter

into other states.

To be more formal, for an N -particle system with ground-state |Ψ0〉, we want to probe excitations by

injecting a fermion at time t′. The state of the N + 1-particle system becomes

|Ψ(r′, t′ = 0)〉 ≡ ψ†(~r′, t′ = 0) |Ψ0〉 =
∑
~k

φ∗~k(~r′)c†~k
|Ψ0〉 , (3.44)

in the Schrödinger picture.

With interactions, the wavefunctions on the right-hand side are not the eigenstates of this new N + 1-

particle system. Hence, to get the time evolution, |Ψ(r′, 0)〉 must be expanded onto the exact eigenstates of

this N + 1-particle system:

∣∣∣Ψ(~r′, t′ = 0)
〉

=
∑
~k

φ∗~k(~r′)
∑
A

〈ΨA| c†~k |Ψ0〉 |ΨA〉 (3.45)

where A denotes the basis for the eigensates of the N + 1 system. Time evolution of this state gives

|Ψ(~r, t)〉 = e−
i
~ (Ĥ−µN̂)t |Ψ(~r, 0)〉. Here Ĥ is a many-body Hamiltonian for the whole system, and N̂ is the

number operator. We want to compare this state to another state, corresponding to the case that a fermion

is injected into this time at time t:

ψ†(~r, t) |Ψ0〉 → ψ†(~r)e−
i
~ (Ĥ−µN̂)t |Ψ0〉 (3.46)

in the Schrödinger picture.
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Computing the overlap between these two states yields:

〈Ψ0|ψ(~r, t)ψ†(~r′, 0) |Ψ0〉 =
∑
~k

φ~k(~r)φ∗~k(~r′)
∑
A

| 〈ΨA| c~k† |Ψ0〉 |2e−
i
~ [EA−(E0+µ)]t, (3.47)

where µ = ∂E0/∂N . For a gapless system, the ground state energy of the N + 1-particle system is E0 + µ,

therefore the right hand side of this equation contains information on the time evolution of an excited state

with excitation energy ~ω = EA − (E0 + µ). The effect of interactions appear in | 〈ΨA| c~k† |Ψ0〉 |2.

3.5.2 Correlation function

The one-particle Green’s function defined in Eq. 3.42 is seldom, if never, an experimental observable,

because it requires the creation and destruction of a particle. Instead, a two-particle Green’s function

−
〈
T
[
cν4

(t)cν3
(t)c†ν2

(t′)c†ν1
(t′)
]〉

is more useful from the experimental point of view, since it describes the

process that a particle changes its state by scattering with another particle. This kind of two-particle

Green’s function often manifests as a correlation function in linear response theory, as discussed in details

in Chapter 4.

Here we introduce the definition of the retarded correlation function as

CRAB(tt′) = −iθ(t− t′) 〈[A(t), B(t′)]〉 . (3.48)

Its importance comes from the fact that almost all experimental observables, such as conductivity, are

related to retarded correlation functions. This correlator contains the information about the response of a

measurable quantity at time t to an external perturbation that happened at time t′.

A convenient method for writing down a formal result for retarded correlation function is to use the

so-called “Lehmann representation,” which chooses a set of eigenstates of the full Hamiltonian as the basis

set. By using this representation, we have

〈[
Â(t), B̂(t′)

]〉
=

∑
n

e−βEn

Z
〈n|
[
Â(t), B̂(t′)

]
|n〉

=
∑
n,m

e−βEn

Z
{〈n| Â(t) |m〉 〈m| B̂(t′) |n〉 − 〈n| B̂(t′) |m〉 〈m| Â(t) |n〉}

=
∑
n,m

e−βEn

Z
{〈n| Â |m〉 〈m| B̂ |n〉 ei(En−Em)(t−t′) − 〈n| B̂ |m〉 〈m| Â |n〉 e−i(En−Em)(t−t′)},
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where Z =
∑
n e
−βEn . Therefore

CRAB(ω) =

∫
d(t− t′)eiω(t−t′)(−iθ(t− t′))

〈[
Â(t), B̂(t′)

]〉
=

∫ ∞
0

∑
n,m

(−iθ(t− t′)){e
−βEn

Z
〈n| Â |m〉 〈m| B̂ |n〉 ei(En−Em+ω)t

− e−βEn

Z
〈n| B̂ |m〉 〈m| Â |n〉 e−i(En−Em+ω)t}

=

∫ ∞
0

∑
n,m

(−iθ(t− t′))e
−βEn − e−βEm

Z
〈n| Â |m〉 〈m| B̂ |n〉 ei(En−Em+ω)t

=
∑
n,m

1

En − Em + ω − iη
〈n| Â |m〉 〈m| B̂ |n〉 e

−βEn − e−βEm
Z

.

In the last equation, a small positive η is added to make the integral over time well-defined.

3.5.3 Green’s function in imaginary time

At finite temperature, the thermal average over
〈
e−βHX̂

〉
is a tedious calculation. A mathematical trick

to work at finite temperature is introducing the so-called “imaginary time”. Although more subtle in its

conception, using imaginary time makes the calculation of Green’s functions much easier. The imaginary

time Green’s function is defined as: G(νν′, tt′) = −
〈
Tτ (cν(τ)c†ν′(τ

′))
〉

. The definition of correlation function

with imaginary time becomes:

CAB(τ, τ ′) = −
〈
Tτ (Â(τ)B̂(τ ′))

〉
(3.49)

where τ = it within domain −β 6 τ 6 β. An operator in the Heisenberg picture is Â(τ) = eHτ Âe−Hτ ,

which has the property CAB(τ) = ±CAB(τ + β) (with “+” for bosons and “−” for fermions).

The Fourier transformation from imaginary time to the frequency domain is:

CAB(iωn) =

∫ β

0

dτCAB(τ)eiωnτ , (3.50)

where ωn is the Matsubara frequency, with ωn = (2n+1)π
β for fermions and ωn = 2nπ

β for bosons.

Now we can check the correlation function with imaginary time in the Lehmann representation, with
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τ ′ = 0 and τ > 0

CAB(τ) = −
〈
Â(τ)B̂(0)

〉
= − 1

Z

∑
m,n

e−βεn 〈n| Â(τ) |m〉 〈m| B̂(0) |n〉

= − 1

Z

∑
m,n

e−βεn 〈n| eĤτ Âe−Ĥτ |m〉 〈m| B̂ |n〉

= − 1

Z

∑
m,n

e−βεne(εn−εm)τ 〈n| Â |m〉 〈m| B̂ |n〉 .

Transforming to the frequency domain, we have

CAB(iωn) =

∫ β

0

dτeiωnτ

[
− 1

Z

∑
m,n

e−βεne(εn−εm)τ 〈n| Â |m〉 〈m| B̂ |n〉

]

=
∑
m,n

1

iωn + εn − εm
e−βεn − e−βεm

Z
〈n| Â |m〉 〈m| B̂ |n〉 , (3.51)

where eiωnβ = ±1 has been used. If we take iωn approaches ω + iη, this correlator becomes the retarded

Green’s function with real time in Eq. 3.49.

The benefit of using imaginary time is its convenience for integrating over the coordinates in the Green’s

function. For example, calculating the correlation function often involves a summation over Matsubara

frequency ωn, such as 1
β

∑
iωn

g(iωn), where the g(iωn) usually has a form of Πj
1

iωn−zj (a product of Green’s

function), containing finite poles at z = zj in the complex plane.

Combining a contour integral and the residue theorem,

∮
C

dz

2πi
f(z)g(z) =

∑
iωn

Res
z=iωn

[f(z)]g(iωn) +
∑
j

Res
z=zj

[g(z)]f(zj)

= − 1

β

∑
iωn

g(ikn) +
∑
j

Res
z=zj

[g(z)]f(zj). (3.52)

where f(zj) = 1
eβz+1

is the Fermi distribution function, with poles at z = i(2n+ 1)π/β. If f(z)g(z)→ 0 as

|z| → ∞, then we have

1

β

∑
iωn

g(iωn) = −
∑
j

Res
z=zj

[g0(z)]f(zj). (3.53)

This mathematical trick is used for calculating resistivity in Chapter 4.
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Chapter 4

Bad Metal in a Fermi Lattice Gas

4.1 Introduction

One famous long-standing puzzle in physics is the vanishing of resistivity in high-temperature superconduc-

tors. In 1986, IBM researchers Georg Bednorz and Alex Müller discovered high-temperature superconduc-

tivity in copper oxide compounds. Unlike conventional metals, which become superconducting via the well

understood Bardeen-Cooper-Schrieffer (BCS) paradigm, the mechanism underlying high Tc superconductiv-

ity is not fully known.

One of the ambitious goals in the field of quantum simulation is using ultracold atoms or molecules in

optical lattices to provide insight into the mysteries of high-Tc superconductivity. As the schematic phase

diagram of high-Tc superconductivity (Fig. 4.1) shows, the material without doping is an insulator with

anti-ferromagnetic order below the Neel temperature. Recently, several groups have successfully observed

the anti-ferromagnetic phase in optical lattices in 3D [73] and 2D [74–77]. While these encouraging results

allow experiments to take a step further to approaching the high-Tc state, the coldest temperature achieved

so far is still not sufficiently low to observe the possible d-wave pairing phase in the Hubbard model.

However, there are also mysteries at relatively high temperature. Above the superconducting “dome,”

there exist three metallic phases depending on the doping: the pseudogap phase, the strange metal (also

known as the “bad metal”), and the Fermi liquid phase (i.e., a conventional metal). To some extent, the

pseudogap and strange metal phases are even less well understood compared with the superconducting state.

Numerous puzzles are debated, such as the relation between the pseudogap and superconducting phase [78]

and the lack of quasiparticles in the strange metal phase [79,80].

The strange metal presents abnormal electrical and thermal conductivity. For example, they show anoma-

lous scaling of resistivity with temperature and can appear as a quantum soup in which the electrons have

lost their individual character (see more details in Section 4.4). This “strange metal” phase continues to be

of theoretical interest. Theoretical approaches based on marginal Fermi liquid phenomenology [82], DMFT

(see Refs. [2,83], for example), and AdS-CFT holographic duality [84–86] have shown T-linear resistivity at
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Antiferromagnetic 
insulator

Figure 4.1: A schematic phase diagram of high-temperature superconductivity. Below the critical tempera-
ture Tc, the material becomes superconducting for doping. Above Tc, there are several metallic phases: the
pseudogap, the strange metal, and the conventional metal. The transition between the Fermi-liquid phase
and the strange metal phase is a crossover. This figure is reproduced from Ref. [81].

high temperature. A complete understanding of how these behaviors arise is debated.

Some people believe that understanding the origin of bad-metal behavior is crucial to resolve the mysteries

of high-Tc superconductivity. Although most physicists agree that the strong electron-electron interactions

are necessary for a bad metal, the importance of other ingredients such as electron-phonon interactions [87] is

debated. This uncertainty motivates us to perform transport measurements with ultracold fermions trapped

in optical lattices. For ultracold fermionic atoms trapped in optical lattices, which realize the Fermi-Hubbard

model, phonons are absent, and the interactions are short-ranged. Whether or not we observe anomalous

transport in our system will be helpful to understanding the origin of bad-metal behavior.

In previous ultracold gas experiments with fermionic atoms, the analog of photoemission spectroscopy

was used to probe the spectral function in the BEC-BCS crossover for a trapped gas, and a failure of Fermi

liquid theory was discovered [88]. Transport measurements such as diffusion in a 2D lattice gas [38], shear

viscosity in a unitary Fermi gas [89], and spin diffusion [90] have also explored the effect of strong interactions

on various relaxation processes.

In this chapter, I describe a method for measuring the decay rate of a mass current and inferring the

analog of electrical resistivity for a two-component fermionic gas composed of 40K atoms trapped in a cubic

optical lattice. A net current consisting of a flow of spin-polarized atoms shifted in quasimomentum is created

using stimulated Raman transitions. By fully resolving the decay dynamics of the current, we deduce the

transport lifetime induced by collisions with atoms in the other spin state. The analog of resistivity is
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inferred from the transport lifetime and the atomic density.

4.2 Theories for DC conductivity

Electrical current is the flow of charge carriers. Collisions between these particles can change their momentum

~p. For a perfectly translationally invariant system, the DC conductivity is infinite, because of the conservation

of momentum. In crystalline solid materials, there are three major sources that give rise to finite resistivity:

scattering with impurities, Umklapp scattering between electrons, and scattering with phonon modes. In

this section, I will discuss three theoretical approaches for understanding the DC conductivity: the Drude

model, the Boltzmann equation, and the Kubo formula.

The Drude model provides a simple physics picture that relates the origin of resistivity to momentum

relaxation. In Section. 4.5, we fit the decay of the mass current to the solution of the Boltzmann equation.

Furthermore, in Section. 4.8, we use dynamical mean-field theory, which evaluates resistivity from the

Kubo formula, to predict the scaling behavior of resistivity under our experimental conditions. Therefore,

discussion of these complimentary theoretical approaches is important.

4.2.1 Drude model: an intuitive picture to understand the origin of resistivity

𝑬 

𝜏 

𝑝  

Figure 4.2: In the Drude model, a charge carrier (blue circle) constantly scatters from other electrons (red
circle), impurities (green circle), or ions (spring), and loses momentum. τ is the average time between two
collisions.
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Without any external electric field, the velocity of the electrons in a material points toward each direction

randomly, and therefore the net momentum 〈~p〉 is zero. After applying an external field ~E, electrons start

to accelerate along the direction of ~E, and 〈~p(t)〉 = −e ~Et. After traveling for some time τ , the charge

carrier collides with another particle (which can be another electron, impurity, or phonon) and changes its

momentum. The equation describing this motion is:

d

dt
〈~p(t)〉 = −e ~E − 〈~p(t)〉

τ
, (4.1)

where τ is a characteristic timescale corresponding to the relaxation rate of momentum ~p.

A steady state solution requires d
dt 〈~p(t)〉 = 0, i.e., 〈~p〉 = −eτ ~E. The average velocity of electrons is

〈~v〉 = −eτ ~E/m, and the corresponding current density is
〈
~j
〉

= n(−e) 〈~v〉 = (ne
2τ
m ) ~E. Since ~j = σ ~E, the

conductivity is:

σ =
ne2τ

m
. (4.2)

The Drude model is very simple in terms of physics: interactions between electrons and ions or between

the electrons are neglected. This approach is appealing because by just assuming that there is a scattering

mechanism, instead of developing any specific microscopic formula to calculate τ , the Drude model can

successfully explain the Hall effect, and Wiedemann–Franz law [54].

4.2.2 A semiclassical approach: the Boltzmann equation

The Boltzmann equation provides a semiclssical approach for studying transport properties. It assumes that

there are particle-like excitations, and therefore we can use a phase space distribution function f(~r,~k, t) to

describe the system. The time-rate-of-change of this distribution function f(~r,~k, t) obeys

df

dt
=
∂f

∂t
+
∂~r

∂t
∇~rf +

∂~k

∂t
∇~kf. (4.3)

Because we express the distribution function in terms of position ~r and crystal wavevectors of the lattice

~k, Boltzmann equation is a semiclassical approach as it assumes that the position and the momentum of a

particle can be defined simultaneously.

For simplicity, we assume spatial homogeneity, i.e., ∇~rf = 0. With the appearance of an external

electric field ~F = −e ~E = ~∂~k∂t , and if there are no collisions between particles, ~̇k = −e ~E/~, which leads to

Bloch oscillations in a lattice 1. If there are collisions randomizing the momentum that balance the external

1It is interesting that the relaxation of momentum due to collisions is the origin of resistivity and conductivity at the same
time. Conductivity is an interplay between Bloch oscillations and relaxation processes.
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electrical field, then the distribution function f reaches a static state, i.e., ∂f
∂t = 0. Now we have

df

dt
= −e

~E

~
· ∇~kf(~k) = b− a, (4.4)

where a and b take collisions into account. The parameter a = 1
(2π)3

∫
d3~k f(~k)(1− f(~k′))θ(~k′,~k) is the rate

of scattering out of state ~k, and b = 1
(2π)3

∫
d3~k (1−f(~k))f(~k′)θ(~k, ~k′) is the rate for particles scattering into

~k from other states ~k′. The parameter θ(~k, ~k′) is the scattering rate between ~k and ~k′.

𝑘

𝑓(𝑘)

𝜋/𝑎−𝜋/𝑎

𝐸

Without collisions: Bloch oscillation

𝑘

𝑓(𝑘)

𝜋/𝑎−𝜋/𝑎

𝐸

With collisions: Steady-state of 𝑓(𝑘)(a): (b):

𝑡1 𝑡2 𝑡3 𝑡4

Figure 4.3: (a): Without collisions, the motion of electrons will be oscillatory (i.e., Bloch oscillations). (b):
With collisions, the distribution in momentum space can reach a steady state, i.e. ∂f

∂t = 0.

Assuming the steady state f(~k) is close to the equilibrium phase space distribution n(~k), then up to a

linear order in ~E, we expand f(~k) as n(~k) + δf(~k), where n(~k) is the Fermi-Dirac distribution 1

eβ[ε(~k)−µ]+1

(where β = 1/kBT , and µ is the chemical potential). With ∇~kf(~k) = ∇~kε(~k)∂f(~k)

∂ε(~k)
= ~~v(~k)∂f(~k)

∂ε(~k)
, up to

linear order in δf(~k), we have

−e ~E · ~v(~k)
∂n(~k)

∂ε(~k)
= b− a ≡ −δf(~k)

τ(~k)
, (4.5)

where we introduce the k-dependent relaxation timescale τ(~k). We assume that collisions between particles

act to return the system back to its equilibrium configuration. The rate of change in f(~k) is proportional to

its deviation from n(~k). The expression for current is therefore:

~j = − e

(2π)3

∫
d3~k ~v(~k)f(~k) = − e

(2π)3

∫
d3~k ~v(~k) δf(~k) (4.6)

= − e2

(2π)3

∫
d3~k ~v(~k)τ(~k)(~v(~k) · ~E)

∂n(~k)

∂ε(~k)
. (4.7)

The integral over d3~k can be rewritten as dSdk⊥, where dS is the equal energy surface, and dk⊥ is perpen-
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dicular to that surface. Moreover, since dk⊥ = dE dk⊥
dE = dE

~|~v(~k)|
, we have

~j =
e2

(2π)3

∫
dSdE

~|~v(~k)|
τ(~k)~v(~k)(~v(~k) · ~E)(−∂n(~k)

∂ε(~k)
). (4.8)

Then the conductivity tensor, defined by jα =
∑
β σαβEβ (α, β = x, y, z) is:

σαβ =
e2

(2π)3

∫
dSdE τ(~k)

~v(~k)α~v(~k)β

~|~v(~k)|
(−∂n(~k)

∂ε(~k)
). (4.9)

As temperature T → 0, −∂n(~k)

∂ε(~k)
= δ(ε(~k) − ε(kF )), and only ~k states near the Fermi surface contribute to

this integral. If we assume a spherical Fermi surface, and the off-diagonal elements of σα,β are zero, and

with σxx = σyy = σzz, we have:

σαα =
e2

(2π)3

1

3

vF
~

4πk2
F τ(kF ). (4.10)

With kF = (3π2n)1/3 and vF = ~kF /m, we have σ = ne2τ
m , which is the Drude formula. Surprisingly,

the conductivity depends on the density of all the carriers in the system through vF , even though only the

scattering near the Fermi surface contributes to the conductivity.

Next, we will discuss the calculation of τ . Recall that

−δf(~k)

τ(~k)
=

∫
d3~k′ θ(~k,~k′)f(~k′)(1− f(~k))−

∫
d3~k′ θ(~k,~k′)f(~k)(1− f(~k′)). (4.11)

Since at equilibrium

∫
d3~k′ θ(~k, ~k′)n(~k′)(1− n(~k)) =

∫
d3~k′ θ(~k, ~k′)n(~k)(1− n(~k′)),

we have

θ(~k, ~k′)eβ(ε(~k)−ε(~k′)) = θ(~k′,~k).

For elastic scattering, ε(~k) = ε(~k′), therefore θ(~k, ~k′) = θ(~k′,~k). Eq. 4.11 therefore becomes:

1

τ(~k)
=

1

(2π)3

∫
d3~k′ θ(~k, ~k′)

[
1− δf(~k′)

δf(~k)

]
δ
[
ε(~k)− ε(~k′)

]
. (4.12)

Under the assumption of a weak electrical field, δf(~k) is proportional to ~k · ~E. After doing some geometry,

we have:

1

τ(~k)
=

1

(2π)3

∫
d3~k′ θ(~k, ~k′)(1− cos η)δ

[
ε(~k)− ε(~k′)

]
, (4.13)
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where η is the angle between ~k and ~k′, and cos(η) = ~k · ~k′/|~k||~k′|. The weighting factor 1− cos(η) affects the

contribution to resistivity based on the change in angle after scattering. Small-angle scattering is relatively

unimportant. Due to this factor, the relaxation time in the transport equation is not identical to the average

scattering rate. The evaluation of θ(~k, ~k′) depends on the microscopic details of the scattering mechanism,

which may be very complicated.

Notice that this derivation of the Boltzmann equation does not require momentum conservation during

collisions. It assumes the electrons scatter with “pinned” impurities.

4.2.3 Kubo formula: linear response theory

Linear response theory is widely used theoretical concept. The basic idea is that the response of a system

to a weak external perturbation is proportional to that perturbation. This section discusses the derivation

of DC conductivity based on linear response theory.

Current operator in second quantization language

For particles with charge e in electromagnetic field, the kinetic energy operator is:

T̂ =
1

2m

∑
σ

∫
d~r Ψ†σ(~r)(

~
i
∇r − e ~A)2Ψσ(~r)

= T̂0 +
∑
σ

∫
d~r

e~
2mi

~A
[
(∇rΨ†σ(~r))Ψσ(~r)−Ψ†σ(~r)(∇rΨσ(~r))

]
+

e2

2m

∑
σ

∫
d~r ( ~A)2Ψ†σ(~r)Ψσ(~r), (4.14)

where Ψσ(~r) and Ψ†σ(~r) are the quantum field operators, and ~A is the vector potential.

Suppose the magnitude of ~A is small enough such that we are only interested in linear response. Then

the current operator can be written as:

ĵ = −δT̂ /δ ~A =
e~

2mi

[
Ψ†σ(~r)(∇Ψσ(~r))− (∇Ψ†σ(~r))Ψσ(~r)

]
. (4.15)

The momentum representation of the current operator is,

ĵ =
e~
mV

∑
~k~q

(~k +
1

2
~q)ei~q~rc†~kσ

c~k+~qσ, (4.16)

where V is volume of the system. For DC conductivity, we will assume the limits q → 0 and ω → 0.
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Kubo formula for DC conductivity

Now the goal is to study how a system responds to an external field. For a general Hamiltonian, H(t) =

Heq+θ(t−t0)H ′(t), where Heq is the Hamiltonian for the original equilibrium state, and H ′(t) is an external

field turned on at t = t0.

We derive to calculate how the observables in this system respond to H ′(t). It is convenient to go

to the interaction picture, where operators become time-dependent as Â(t) = eiHeqtÂe−iHeqt. Here, the

interaction representation with the presence of the external perturbation field is actually the Heisenberg

representation of the original equilibrium system. The unitary transformation is with the full Heq, which

can have interaction terms.

In interaction picture, to first order in Ĥ ′(t), we have

δÂ(t) ≡ 〈Â(t)〉 − 〈Â〉eq

= −i
∫ t

t0

dt′
〈[
Â(t), Ĥ ′(t′)

]〉
eq
. (4.17)

We can define a response correlation function as CRAH′ = −iθ(t− t′)
〈[
Â(t), Ĥ ′(t)

]〉
eq

, and rewrite the linear

response function as δÂ(t) =
∫∞
t0
dt′CRAH′(t, t

′).

Consider an external electrical field H ′(t) = B̂f(t) (in the Schrödinger picture). Notice that B̂ is

independent of time and f(t) is not an operator, and thus we expect CRAH′(t, t
′) to be dependent only on

the time difference t− t′. So

δÂ(t) =

∫ ∞
t0

dt′CRAB(t, t′)f(t′) =

∫ ∞
t0

dt′CRAB(t− t′)f(t′), (4.18)

which is a convolution of CRAB and f . After a Fourier transform, we have δÂ(ω) = CRAB(ω)f(ω). In the

Lehmann representation (Eq. 3.49),

CRAB(ω) =
∑
n,m

e−βEn

Z
{〈n| Â |m〉 〈m| B̂ |n〉 ei(En−Em)(t−t′) − 〈n| B̂ |m〉 〈m| Â |n〉 e−i(En−Em)(t−t′)},

where |n〉 is a set of eigenstates of the full Hamiltonian.

If an external electric field H ′(ω) = e
iω ĵEext(ω) is applied, with δ〈ĵ(t)〉 = e

iωC
R
jj(ω)E(ω), the conductivity
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is

σ(ω)αβ = Re[
e

iω
CRjj(ω)] =

e

ω
Im[CRjj(ω)]

=
∑
m,n

e

ω
πδ(En − Em + ω) 〈n| ĵα |m〉 〈m| ĵβ |n〉

e−βEn − e−βEm
Z

, (4.19)

where α(β) = x, y, z denote the spatial directions.

A comment on Kubo formula for conductivity: the effect of interactions on conductivity enters

via the equilibrium eigenstates. The states |m〉 in Eq. 4.19 should be the eigenstates for the Hamiltonian

including interactions. Some textbooks use the notation 〈...〉0 for Eq.(4.17), which may be misleading, since

the correlation function should not be evaluated for the non-interacting Hamiltonian. So here, I emphasize

this point by using the notation as 〈...〉eq.

4.2.4 Link between the Boltzmann equation, Kubo formula, and Drude model

How to link the Boltzmann equation to the Kubo formula is not easily understood. The form of these two

approaches look different. The Boltzmann equation, where the scattering rate among different states plays a

vital role, contains one-particle Green’s functions. In contrast, the Kubo formula involves the current-current

correlation and is similar to a two-particle (i.e., four-point) Green’s function.

It seems that Thouless was first to make a simple argument to demonstrate that the Boltzmann equation

and the Kubo formula are equivalent to each other under some assumptions [91].

In the following discussion, we consider a simple case: Ĥ = Ĥ0 + V̂ , where Ĥ0 =
∑
k εkc

†
kck, and

V =
∑
i V δ(r − ri) for the impurity potential. For DC conductivity, the current operator becomes ĵ =

e
∑
k ~v(k)c†kck = e

~
∑
k
∂ε(~k)

∂~k
c†kck. The key point is to evaluate 〈m| ĵ |n〉 〈n| ĵ |n〉 in Eq.(4.19). As emphasized

earlier, the state |m〉 is the eigenstate of H (and not of H0).

We can expand the eigenstates of Ĥ in the basis of eigenstates of Ĥ0:

|m〉 =
∑
k

a
(m)
k |k〉 , (4.20)

where |k〉 is a plane-wave state. It is assumed that the a
(m)
k are independent normally distributed random

variables, with a mean value of zero and a standard deviation σn =
[

1
V

π
lk2
m

1
(k−km)2+l2/4

]1/2
, where l is the

mean-free path, and V is the volume. The expected value of the product of two normally-distributed random

variables is:

a
(m)
k a

(n)
k′ = δkk′δmnσ

2
n. (4.21)
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The physical meaning becomes clear now. We assume that |m〉 spreads out as a wave-packet, with the

probability to have momentum k as 1
V

π
lk2
m

1
(k−km)2+l2/4 . Also, this assumption ensures 〈m|n〉 = δmn. The

basis states of Ĥ are therefore orthogonal to each other. We have justified that |m〉 form a complete

orthonormal basis. To evaluate current-current correlation, we calculate

|ĵmn|2 ≡ 〈m| ĵ |n〉 〈n| ĵ |m〉 =
∑
k,k′

〈m| k〉 〈k| ĵ |k〉 〈k |n〉 〈n| k′〉 〈k′| ĵ |k′〉 〈k′ |m〉

= e2
∑
k,k′

a
(m)
k a

(n)
k a

(n)
k′ a

(m)
k′ ~v(k)~v(k′). (4.22)

Only the terms with k = k′ contribute to Eq. 4.22, so the expectation value is

〈
|ĵmn|2

〉
=

e2

m2

π2

l2V 2k2
mk

2
n

∑
k

~2k2/3

[(k − km)2 + l2/4] [(k − kn)2 + l2/4]

≈ e2

m2

2~2πl

3V

1

1 + (km − kn)2l2
, (4.23)

for large k and l. Substitution of this expression into the Kubo formula gives the conductivity σ(ω) as:

σ(ω) =
1

4π4

2πe2

mω2
2~2πl/3

∫ kF

0

k2
mdkm

∫ ∞
kF

k2
ndkn

× 1

[1 + (km − kn)2l2]
δ(~2k2

m/2m− ~2k2
j/2m− ~ω)

=
e2k2

F l

3~π2

1

1 +m2ω2l2/~2k2
F

. (4.24)

With l = ~kF τ
m and kF = (3π2n)1/3, σ(ω) = 1

ne2τ
1

1+ω2τ2 , which is the Drude model result for AC conductiv-

ity!

A caveat: In this derivation, τ is the scattering rate between electrons and impurities, which is not

exactly the same τ used in the Boltzmann equation. In the Boltzmann equation, τ is weighted by the

angle change of momentum before and after a collision. A more sophisticated (and maybe more general)

derivation is given in Ref. [92]. Eqs.(23) and (24) in this reference give expressions for DC conductivity,

where 1/τ = 2π
∑′
k |Vkk′ |2δ(εk − ε′k)(1 − cos(η)), which matches the Boltzmann equation as derived in the

previous section.

4.2.5 Summary

The relaxation time τ in the Drude formula, the Boltzmann equation, and the Kubo formula are the same

quantity. The Boltzmann equation and the Kubo formula provide a microscopic picture to understand
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transport. As I will show later in this chapter, our measurements directly probe the relaxation rate for a

mass current consisting of |↓〉 atoms, due to the collisions between |↑〉 and |↓〉 atoms. Although we do not

have a static external force to maintain a DC current, the measured relaxation rate is still directly related

to resistivity.

To some extent, the condensed matter community uses a “top-down” approach to infer the transport

lifetime from resistivity measurements, and to obtain information about the microscopic scattering mech-

anism. In contrast, we use a “bottom-up” approach: we directly measure the transport lifetime and infer

resistivity to compare with phenomena in solids.

4.3 Fermi liquid theory

This section gives a brief introduction to Fermi liquid theory, which was developed by Landau. It successfully

describes the behavior of interacting fermionic particles for a wide range of materials, such as electrons

in conventional metals and liquid helium-3 [93]. The central conclusion of Fermi-liquid theory is that a

system consisting of interacting particles can be described using almost non-interacting quasiparticles. This

explains why the electrons in a metal can be regarded as a gas of almost non-interacting particles, in spite

of the Coulomb interaction. Fermi-liquid theory is the theoretical foundation for the semiclassical methods

discussed in the previous section.

The central assumption of Fermi liquid theory rests on the concept of “adiabatic continuity” [94]: al-

though the eigenstates may be changed significantly by a perturbation, the “good” quantum numbers as-

sociated with the eigenstates are more robust. Laudau proposed that if the interactions between particles

can be turned on slowly, there would be a one-to-one correspondence between the new eigenstates of an

interacting system with the original eigenstates for the non-interacting system.

In an interacting system, the counterpart of a free electron is called “quasiparticle.” Quasiparticles incor-

porate the influence of interactions on different properties, such as energy and effective mass. Quasiparticles

are not stationary states: they are excitations above the ground state of an interacting system. Therefore,

there exists a time window for the concept of a “quasiparticle” to make sense: short enough that quasiparti-

cle does not decay from scattering with other quasiparticles, but long enough to have a well-defined energy,

as illustrated in Fig. 4.4.

Fermi liquid theory and the concept of “quasiparticles” are suitable for describing electrons in con-

ventional metals. The associated good quantum numbers are spin and momentum. This paradigm has

successfully explained the transport property of conventional metals. In the remainder of this section, I will
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Figure 4.4: Generic time evolution of a wavefunction. The temporal oscillation of the wavefunction is
controlled by the energy Ek and lifetime τ . Left: For free particle, τ is infinite. Middle: For an interacting
system, when we say a quasiparticle is well-defined, it means that the wavefunction oscillates several times
before being damped by electron-electron interactions. This underdamped behavior enables the definition
of a corresponding excitation energy. Right: Fermi liquid theory fails if the damping is too fast. Such fast
decay forbids the association of a precise excitation energy with this state, which is no longer particle-like.
This figure is recreated from the ideas in Ref. [95].

discuss an approach to understanding the behavior of resistivity based on Fermi liquid theory.

4.3.1 Single-particle Green’s function in Fermi liquid theory

In Fermi liquid theory, the retarded Green’s function can generally be written as (see Chapter 3 for more

details regarding the Green’s function):

GR(~k, ω) =
1

ω − ξk − Σ(~k, ω)
, (4.25)

where ξk = εk − µ is the free-particle energy measured relative to the chemical potential, and Σ(~k, ω) is the

self-energy. The real part of the self-energy modifies the dispersion relationship. We define the normalized

Fermi wave number ~k∗F by the condition that ξ ~k∗F
+<Σ( ~k∗F , 0) = 0. The imaginary part of Σ(~k, ω) is non-zero

due to interactions that gives the quasiparticle a finite lifetime.

At low temperature and near the Fermi energy, we can expand GR(~k, ω) as

GR(~k, ω) =
1

ω − (εk + <Σ(~k, ω))− i=Σ(~k, ω)

≈ 1

ω − ω ∂(<ΣR)
∂ω |ω=0 − (k − k∗F )∂(ξk+<ΣR)

∂k |k=k∗F
− i=ΣR

≡ Z
ω − ξ∗k + i

2τ∗k (ω)

, (4.26)
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Background weight: 
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Figure 4.5: Schematic spectral functions for a free Fermi gas (left) and a quasiparticle in an interacting

system (right). In a free Fermi gas, A(k, ω) is a delta function 2πδ(ω− ~2k2

2m ). With interactions, the spectral
function has a finite width, which inversely proportional to the lifetime of the quasiparticles. The spectral
function consists of a Lorentzian function (corresponding to a quasiparticle) and a smooth background (i.e.,
the incoherent component).

where

Z =
1

1− ∂
∂ω<Σ(k∗F , ω)|ω=0

(4.27)

ξ∗k = (k − k∗F )Z ∂

∂k
(ξk + <Σ(k, 0))|k=k∗F

(4.28)

1

τ∗k (ω)
= −2Z=Σ(k, ω). (4.29)

Z is the quasiparticle spectral weight, ξ∗k is the effective energy near the Fermi surface, and τ∗k (ω) is the

lifetime of a quasiparticle. The corresponding spectral function is:

A(~k, ω) = −2=GR(k, ω) ≈ 2πZδ(ω − ξ∗k). (4.30)

The integral over ω gives
∫∞
−∞

dω
2πA(k, ω) = Z. However, the general sum rule requires

∫∞
−∞

dω
2πA(k, ω) = 1.

Therefore, there must exist another component of the spectral function, denoted as Aic, which satisfies∫∞
−∞

dω
2πAic = 1 − Z. This component cannot be treated as a particle-like peak, and contains complicated

many-body excitations. As shown by the schematic drawing in Fig. 4.5, the spectral function consists of a

distinct peak (corresponding to the quasiparticle) and a smooth background (corresponding to “incoherent
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excitations”).

4.3.2 Random phase approximation

Until now, we have not given any specific form for the self-energy Σ(k, ω). Exactly calculating the self-energy

for an interacting system is generally impossible (and not necessary in many cases). Some approximations

are usually required.

The most important (and simplest) approximation that gives a finite quasiparticle lifetime is the random

phase approximation (RPA). The basic diagram of RPA is the so-called pair-bubble diagram (Fig. 4.6(c)). Its

physical interpretation is that a particle with momentum k and ω excites another particle with momentum

k′, generating a particle–hole excitation.

To evaluate the pair-bubble diagram, it is convenient to use the imaginary-time Green’s function:

χ0(~q, iqn) =
1

β

∑
ik′n

∫
d3~k′

(2π)3
G0(~k′ + ~q, ik′n + iqn)G0(~k′, ik′n)

=
1

β

∑
ik′n

∫
d3~k′

(2π)3

1

ik′n + iqn − ξ~k′+~q
1

ik′n − ξ~k′

=

∫
d3~k′

(2π)3

nF (ξ~k′+~q)− nF (ξ~k′)

ξ~k′+~q − ξ~k′ − iqn
. (4.31)

The sum over ik′n is done using a contour integral.

As shown in Fig. 4.6(b), the self-energy under the RPA approximation includes a summation over a series

of pair-bubble diagrams:

Σ(~k, iωn) = − 1

β

∑
i

qn

∫
d3~q

(2π)3
G0(~k + ~q, iωn + iqn)χ(~q, iqn), (4.32)

with χ(~q, iqn) = V (~q)
1−V (~q)χ0(~q,iqn) . V (~q) =

∫
d~r V (~r) ei~q·~r , which is the Fourier transform of the interaction

V (~r).

For the on-site interaction in the Hubbard model, V (~q) = U . Up to the linear order in χ0(~q, iqn), we

have χ(~q, iqn) ≈ U + U2χ0(~q, iqn) + .... Since we only care about the component of Σ(~k, iωn) that has an
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imaginary part, denoted as 4Σ(~k, iωn), we have

4Σ(~k, iωn) = − 1

β
U2
∑
iqn

∫
d3~q

(2π)3
G0(~k + ~q, iωn + iqn)χ0(~q, iqn)

= − 1

β
U2
∑
iqn

∫
d3~q

(2π)3

∫
d3~k′

(2π)3

1

iωn + iqn − ξ~k+~q

n(ξ~k′+~q)− n(ξ~k′)

ξ~k′+~q − ξ~k′ − iqn

= U2

∫
d3~q

(2π)3

∫
d3~k′

(2π)3

α

iωn −
[
ξ~k+~q + ξ~k′ − ξ~k′+~q

] , (4.33)

where α = −n(ξ~k′)
[
1− n(ξ~k′+~q)

] [
1− n(ξ~k′−~q)

]
−
[
1− n(ξ~k′)

]
n(ξ~k′+~q)n(ξ~k′+~q). Again, a contour integral

has been used. By letting iωn → ξ~k + iη (i.e., analytical continuation), we obtain the imaginary part of the

self-energy 4Σ(~k, ξ~k) as:

∫
U2
{
−n(ξ~k′)

[
1− n(ξ~k′+~q)

] [
1− n(ξ~k′−~q)

]
−
[
1− n(ξ~k′)

]
n(ξ~k′+~q)n(ξ~k′+~q)

}
δ(ω − (ξ~k+~q + ξ~k′ − ξ~k′+~q)),

(4.34)

which is the scattering rate for Fermi’s golden rule! The first term in the bracket is for scattering out of

state
∣∣∣~k〉, and the second term corresponds to events scattering into

∣∣∣~k〉. The validity of Fermi liquid theory

justifies the Boltzmann equation.

4.3.3 Conductivity

An explicit calculation of Eq. 4.32 can been found in Refs. [96, 97]. Here I just give a simple argument

regarding the dependence of τ on the typical energy scale present in the system.

Consider the case with a particle above the Fermi sea, with energy ω > 0 and momentum ~k (where

EF = 0). This particle scatters with one particle below the Fermi sea with energy ω1 < 0 and momentum

~k′, and knock it out of the Fermi sea, thereby generating a particle-hole excitation. Constrained by energy

conservation, the possible energy for ξ(~k′) must be higher than −ω, and its final state cannot have an energy

higher than ω + ω1. The area of the allowed phase-space, therefore, is proportional to

∫ 0

−ω
dω1

∫ ω+ω1

0

dω2 =
1

2
ω2. (4.35)

In other words, the allowed phase-space for scattering events is proportional to the square of the typical

excitation energy in the system. If the temperature is above ω, then the typical excitation energy is kBT ,

and 1/τ ∝ T 2. Since resistivity is proportional to 1/τ , we have ρ ∝ max(ω2, T 2).
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Figure 4.6: (a): Dyson’s equation for a single-particle Green’s function with a self-energy correction. (b):
Feynman diagrams for the random-phase approximation. (c): Pair-bubble diagram, representing a particle-
hole excitation.
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4.3.4 Summary

We have discussed a microscopic picture of Fermi liquid theory. These arguments predict resistivity should

follow a T 2 scaling due to electron-electron interactions, which has been confirmed in conventional metals.

The origin of T 2 scaling arises from phase-space constraints related to momentum and energy conservation

for electron-electron scattering.

The RPA approximation is the minimal known correction to the single-particle Green’s function (beyond

the Hartree-Fock approximation) that gives a finite lifetime of quasiparticles. There are more complicated

diagrams that takes into account vertex corrections and higher orders of interactions. Nevertheless, the basic

concept of a Fermi liquid is still based on the existence of long-lived quasiparticles, which fails for strongly

correlated systems or near quantum critical points.

4.4 Anomalous transport phenomena beyond Fermi liquid theory

4.4.1 Good vs. bad metal

Despite its success in a wide range of materials, Fermi liquid theory fails when strong correlations or fluc-

tuations are present [98]. Bad metals, also known as strange metals, are a prime example that cannot be

accommodated by Fermi-liquid theory. Indeed, the origins of bad-metal behavior remain a puzzle.

The reason that we can explain the transport properties of conventional, or “good”, metals is because

scattering between electrons is rare, and therefore the electrons behave as a degenerate quantum gas. Al-

though some approximations are usually necessary for calculating scattering matrix elements, the fact that

electrons are still at least particle-like allows us to build up a microscopic picture for the scattering mecha-

nism.

However, for bad metals, which are strongly correlated materials such as the high–temperature super-

conductors and the Mott-insulator-metal transition system [99], scattering between electrons is so strong

that the electron starts to lose its individual identity. This section focuses on introducing the properties of

bad metals beyond the framework of Fermi-liquid theory, especially its anomalous transport behavior.

4.4.2 Absence of quasiparticles

Photoemission spectroscopy is a central experimental tool used to measure the single-particle spectral func-

tion. For conventional metals, the presence of quasiparticles and their small scattering rate have been

confirmed using photoemission experiments. However, for bad metals, although photoemission data show
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the existence of a Fermi surface, long-lived quasiparticles are no longer well defined (see the review paper

by A. Damascelli, et al. [81] and references within). As an example, Fig. 4.7 plots the spectral functions of

Bi2Sr2CaCu2O8+δ measured by angle-resolved photoemission spectroscopy (ARPES) for the strange-metal

and superconducting phases. The broadened feature and a long incoherent tail for the normal state around

optimal doping indicate the breakdown of Landau quasiparticles.

Figure 4.7: Momentum dependence of the spectral function of Bi2Sr2CaCu2O8+δ in the superconducting
(40K) and normal state (125K) along the (π, π) direction. The spectral function presents a sharp peak
near the Fermi surface (labeled as kf ) for the superconducting state. In contrast, the spectral function for
the normal state is much broader, with a width that can not be explained by thermal broadening alone.
Quasiparticles are no longer well-defined. This figure is reproduced from Ref. [79].

Experimental results have proven that strange metals still conduct electricity and heat like conventional

metals, but not via particle-like excitations. Electronic interactions in the strange metal are so strong that

electrons seem to lose their individual identity. The lack of quasiparticles demands a theory beyond Fermi

liquid theory.
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4.4.3 Abnormal temperature scaling of resistivity

Many strongly correlated materials exhibit an abnormal scaling of resistivity with temperature that does

not follow the Fermi liquid theory prediction. A linear temperature scaling has been observed in certain

doping regime for high-temperature superconductors and in some heavy fermion materials.

A summary of the “normal” temperature scaling of resistivity due to various scattering processes follows:

• Impurities (or defects) in crystals:

The scattering rate mainly depends on the density of impurities, and therefore is not sensitive to

temperature. Close to zero temperature, all the other scattering processes are strongly suppressed by

Pauli blocking, and the residual resistivity is due to impurities and/or defects in crystals.

• Electrons

As we have discussed, Fermi liquid theory predicts a low-temperature DC resistivity that scales as T 2

because of electron-electron interactions.

• Phonons:

In materials, oscillations of ions induce a time-dependent electric field that deviates from a perfect

periodic potential. This electric field distortion, or phonon, causes electrons to transition between

their eigenstates.

An analytical derivation can be found in many condensed matter textbooks (e.g., Ref. [54]). Here I

only present an intuitive picture of electron-phonon scattering: at high temperature (i.e., T � TD,

where TD is Debye temperature), all the phonon modes are populated and therefore contribute to

scattering. The scattering rate is roughly proportional to the density of phonon modes, which is

n(~qp) = 1
e~ω(~qp)−1

≈ kBT
β~ω(~qp) , where ~qp is the phonon wavevector. This is the reason that the resistivity

of Cu scales linearly with temperature at room temperature (as shown in Fig. 4.8). At low temperature,

only phonons with small wavevectors are populated, and they generate a resistivity that scales as T 5.

In the regime where the electron-photon process dominates, a linear dependence of scattering rate on

temperature is exhibited. However, many experiments have shown that the origin of T-linear resistivity in

bad metal is purely electronic in origin (for example, see Ref. [100]). Also, the scattering rate per kelvin

in the T-linear resistivity regime is similar in many different materials, in spite of the large differences in

the microscopic details [101]. This universal behavior cannot be explained by the electron-phonon scatter-

ing mechanism. A full understanding of the origin of T-linear resistivity remains elusive. Many different
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mechanisms have been proposed to explain the microscopic origin of linear-T resistivity behavior, including

quantum criticality [102,103] and AdS/CFT calculations [104–106].

4.4.4 Mott-Ioffe-Regel Limit

The saturation of resistivity with temperature has been observed for many metals. Fig. 4.8(a) shows several

experimental results suggesting saturation of resistivity.

Semi-classical transport theory provides an intuitive picture to understand saturation. Since collisions

between particles lead to the relaxation of momentum, the mean-free-path—the average distance one charge

carrier can travel between collisions—should not be shorter than the average interparticle spacing. This

restriction constrains the maximum value of resistivity. This argument was first proposed by Ioffe and

Regel [107] and later by Mott [108], and is often known as Mott-Ioffe-Regel (MIR) limit [107]. As Fig. 4.8(a)

shows, the measured resistivity for Nb is consistent with the MIR prediction, where the minimum mean-

free-path is assumed to be the separation between Nb atoms.

Nb3Sb-MIR

Nb-MIR

LaSrCuO-MIR

(a): (b): 

Bi2Sr2CuO6+y

Figure 4.8: (a): Resistivity of Cu, Nb, and Nb3Sb. The maximum resistivity corresponding to the Mott-
Ioffe-Regel limit is calculated by setting the mean free path equal to the distance between Nb atoms. The
MIR resistivity for Cu is about 260µΩcm, which falls outside this figure. (b): Lack of resistivity saturation
in some strongly correlated materials. The MIR resistivity for La1.93Sr0.07CuO4 is shown by a line. Note
the difference in vertical scales between (a) and (b). Both figures are adapted from [109].

However, violation of the MIR criterion has been found in a wide range of strongly correlated materials,

including unconventional high-temperature superconductors and the ruthenate family (see Ref. [110] for

more examples). Fig 4.8 shows the lack of resistivity saturation in some materials. There is no indication

that the slope of ρ vs. T will decrease within the experimental accessible temperature range for strongly

correlated materials (Fig. 4.8), and the MIR limit has been broken.
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4.5 Experimental measurements of transport lifetime

The transport lifetime τ plays an essential role, as shown in the different theoretical approaches for deter-

mining DC resistivity. Theoretically, predicting τ is challenging when strong interactions are involved, since,

generally, we do not know the eigenstates, and calculating all possible scattering processes is impossible. It

is difficult to measure τ directly in solids because the typical dynamical timescale is on the order of a few

to a hundred femtoseconds. Achieving the time resolution to resolve dynamics is at the frontier of ultrafast

laser techniques. In most cases, the transport lifetime in solids is inferred from other observables, such as

resistivity and spectroscopy.

One advantage in optical lattices is the accessibility of all dynamical timescales. For example, the

tunneling timescale is on the order of milliseconds. In addition, the absence of phonons in optical lattices

and the ability to track the motion of atoms with different spin components allows us to resolve the relaxation

mechanism due to the Hubbard on-site interaction term. In this section, I will show how we directly measure

the transport lifetime for a Fermi lattice gas.

4.5.1 Generating current via stimulated Raman transitions

To measure the transport lifetime, we prepare an initial state consisting of a spin-polarized gas trapped in

an optical dipole trap. All the atoms are in the |F = 9/2,mF = 9/2〉 ≡ |↑〉 state. After slowly turning on

the optical lattice, we apply a 25µs Raman pulse that transfers atoms from |↑〉 to |F = 9/2,mF = 7/2〉 ≡ |↓〉

state. More details regarding simulated Raman transitions can be found in Chapter 2.

The Raman pulse time is chosen to be 25µs, so that it is short enough to transfer atoms from the |↑〉 to

the |↓〉 state uniformly across the whole Brillouin zone. The width of the ground band ranges from 3.86kHz

to 8.44kHz for our measurements.

About 1/3 of the atoms flip their spin after the Raman pulse. Momentum conservation leads to a non-

zero average momentum ∆q↓ for the spin-down component. The spin-down atoms move in a bath of spin-up

atoms, as shown in Fig. 4.9(b). Via this stimulated Raman transition, we generate a flow of mass current

consisting of |↓〉 atoms in optical lattices. Collisions between |↑〉 and |↓〉 atoms lead to the relaxation of

momentum, and, therefore, we expect to observe ∆q↓ shrink as time progresses after the Raman pulse.

To track how the mass current decays with time, we measure the averaged quasimomentum of the

atoms in the |↓〉 state after various evolution times in the lattice. Fig. 4.9(d)-(f) schematically show the

quasimomentum distribution at different stages of the evolution to equilibrium. After releasing the gas by

turning off the optical dipole trap, a magnetic field with spatial gradient is applied during time-of-flight

(TOF), and therefore two spin-components are separated spatially during TOF. By using bandmapping [58]
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Initial state After Raman Final state (a) (b) (c) 

Figure 4.9: Schematic of the distribution of atoms in real space (top row) and in quasimomentum space
(bottom row) at three different stages of the experimental sequence. (a): The initial state is prepared as
a spin-polarized gas. All atoms are in spin-up state (blue) with no net momentum. (b): A pair of Raman
beams is used to transfer 1/3 of the atoms in |↑〉 to the |↓〉 state (red). Conservation of momentum induces
an non-zero average momentum, which is determined by the Raman wavevector difference, for the spin-down
atoms. Therefore, there exists a net relative velocity between the |↑〉 and |↓〉 atoms. The flow of |↓〉 atoms
is a mass current. (c): Collisions between |↑〉 and |↓〉 atoms randomize the velocity of |↓〉 atoms, such that
∆q↓ will relax to zero. (d)-(f): The corresponding quasimomentum distribution in the 3D Brilloun zone.
In our experiment, the imaging beam is along the (1,−

√
2, 1) direction of the cubic lattice. The projection

of the 1st BZ has a hexagonal shape in the imaging plane. The pair of Raman beams is aligned such that
∆q is roughly along the (−1,−1,−1) direction of the cubic lattice, therefore projecting equally on the three
principle axes of the lattices. Via band-mapping imaging, we obtain the quansimomentum distribution of
each spin component integrated along the imaging beam direction. The initial quasimomentum shift has
approximate magnitude 0.5qB , with qB = ~π/d (where d is the lattice spacing).

90



and spin-resolved TOF imaging, we acquire information on the quasimomentum distribution integrated along

the imaging direction for each spin component.
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Figure 4.10: Sample data showing momentum relaxation at s = 4ER and T/TF = 0.23 (measured before
loading into the lattice). (a): Quasimomentum distributions of the |↑〉 and |↓〉 components at various
evolution times after the Raman pulse. The black dashed lines mark the position for q = 0, and the hexagons
are the projection of the 1st Brillouin zone (BZ) onto the image plane. The color scale represents the measured
optical depth. (b): The momentum excitation for the |↓〉 atoms generated by Raman transitions. These
images are produced by subtracting the quasimomentum profile for the |↓〉 component from the equilibrium
profile measured at thold with a spin-mixture gas subjected to a Raman pulse far from resonance. The cross
indicates the center of the |↓〉 component for each thold, and the circle is for the center of the equilibrium
distribution. Red indicates higher occupation compared with the equilibrium momentum distribution (i.e.,
particle-like excitations), while blue indicates fewer atoms (i.e., hole-like excitations).

Fig. 4.10(a) shows sample images of the quasimomentum distribution for both spin components at dif-

ferent evolution times at s = 4ER and T/TF = 0.23. At 0.05ms after the Raman pulse, the |↓〉 atoms are

shifted in average momentum; q = 0 is marked as the black dashed line. The effect of the Raman pulse on

the momentum distribution of the |↑〉 atoms is negligible. The decay of the current caused by momentum-

changing collisions between atoms in |↓〉 and |↑〉 states is apparent, as shown by Fig. 4.10(a). The averaged

momentum of |↓〉 atoms has returned nearly back to 0 by thold = 20ms. Fig. 4.10(b) shows the excita-

tion in momentum space generated by the Raman transition, visible in images formed by subtracting the

equilibrium quasimomentum distribution of |↓〉 atoms. The excitation dissipates within a few milliseconds.
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4.5.2 Determination of the relaxation rate

To quantitatively analyze the relaxation of quasimomentum, we fit the quasimomentum distribution for each

spin component to a Gaussian function. The center of the Gaussian distribution determines the average

momentum. Fig. 4.11(a) shows the decay of ∆q↓ and ∆q↑ at a lattice depth s = 4ER and for T/TF = 0.23.

Slight non-zero drift of ∆q↑ at t = 0.05ms is caused by the AC Stark effect from the Raman laser beams.

Compared to the initial ∆q↓, ∆q↑ is negligible. Momentum changing collisions between atoms in |↑〉 and |↓〉

atoms lead to a rapid decay of ∆q↓ on a millisecond timescale. At long evolution times, both ∆q↑ and ∆q↓

have relaxed back to zero. The total momentum is not conserved because of Umkalpp scattering and the

trapping potential.

0 . 1 1 1 0
- 0 . 1
0 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5

)

H o l d  t i m e  ( m s )

Figure 4.11: The average quasimomentum for |↑〉 (blue) and |↓〉 (red) states at various evolution times
after the Raman pulse. The data points in this figure are obtained by fitting Guassian functions to images
such as those shown in Fig. 4.10(a). The x-axis is displayed using a log scale to show the dynamics at short
timescales. Compared to the change in momentum for |↓〉 atoms, ∆q↑ is negligible. Each point is the average
of 5-10 measurements, and the error bars show the standard error of the mean.

We extract the timescale for current decay by tracking the motion of ∆q↓ (Fig. 4.12) (We also did a

similar analysis by meaning ∆q↓ −∆q↑, and found no significant change in the relaxation time). The time
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evolution of q↓ can be described by Boltzmann equation [54]:

∂

∂t
q↓(t) = −mΩ2y↓(t)−

q↓(t)

τ
. (4.36)

The first term on the right-hand side accounts for the harmonic trap, where m is the atomic mass. The

parameter y↓ is the in-trap position relative to the trap center, and dy
dt = q↓/m. The second term on the

right-hand side is the damping force from collisions between atoms in different spin states, and τ is the

transport lifetime. The solution to this equation with initial condition y↓(t = 0) = 0 and q↓(t = 0) = q0 is:

q↓(t) =
q0

2
√

Ξ

[
(1 +

√
Ξ)e−

t
2τt

(1+
√

Ξ) + (−1 +
√

Ξ)e−
t

2τt
(1−
√

Ξ)
]
, (4.37)

where Ξ = 1 − 4τ2
t Ω2. The variables τt, Ω, q0, and an offset are free parameters in the fit (red curve in

Fig. 4.12) to the data.

We can apply the same procedure for a lattice gas at different lattice depths and loading temperatures to

determine the dependence of the relaxation rate on interaction strength and temperature (data are shown

in Fig. 4.25 and Fig. 4.27). Before discussing these data, there are several issues to clarify in order to justify

that we are investigating the transport lifetime for a strongly correlated Fermi gas.

4.5.3 Linear response

The momentum displacement generated by stimulated Raman transitions is qB/2
√

3 along each lattice

direction. One concern is whether we have driven the system too far from equilibrium such that the response

has become nonlinear. An ideal way to check for linearity would be to vary the angle between the Raman

beams. This procedure requires realignment of the optics and is time consuming.

Instead of changing the geometry of Raman beams to change the initial ∆q, we can obtain the transport

lifetime for a smaller momentum shift by masking data at the early stage of relaxation and fitting the

remaining points. Fig. 4.13(a) shows an example for this procedure. After dropping data points with

thold < t(nd), where t(nd) is the (nd + 1)-th shortest holdtime in our measurements, we fit the remaining

data points to obtain the transport lifetime. As shown in Fig. 4.13(b), the dependence of the transport

lifetime on the initial ∆q is minor. The response is in the linear regime.

4.5.4 Other possible effects besides interactions

Fig. 4.12 shows an obvious decay of current, and we have explained how we extracted the corresponding

relaxation timescale. An important issue is whether or not this rapid decay is mainly induced by the
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Figure 4.12: Sample data showing the decay of ∆q↓ at s = 4ER and T/TF = 0.23 (measured before loading
into the lattice) and the fit used to determine the transport lifetime. The momentum q↓(t) is fit to a solution
of the Boltzmann equation to determine the transport lifetime (red solid line). The relaxation timescale
determined from this fit is τ = 1.5± 0.1ms.
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Figure 4.13: Linear response to the Raman transition. (a): Sample figure showing the fit curves after the
first nd points are removed at s = 4ER and T/TF = 0.23. Fit curves are shown by red, green and blue lines,
with t(nd) = 0.25, 0.75, and 1.5ms, respectively. (b): The transport lifetime τ determined from fit at various
∆q0, where ∆q0 is the momentum shift at thold = t(nd), determined from the fit. The value of τ does not
change significantly as points are dropped. The error bars represent the fit uncertainty in fit.

interactions between the |↑〉 and |↓〉 components. Are there any other effects besides interactions involved

in this relaxation process?

Decoherence time of a superposition state

Indeed, there is one problem we should discuss before worrying about anything else: why can atoms collide

at all after the Raman transition? It seems the Raman transition should prepare a superposition of the |↑〉

and |↓〉 states, and if these spin-rotated states are still identical, then collisions are prevented by the Pauli

exclusion principle. Nevertheless, the observed momentum damping indicates that collisions do occur. To

resolve this puzzle, we compute the time evolution of the spin degree of freedoms component by using the

optical Bloch equations [111]. The density matrix in the basis of the |↑〉 and |↓〉 states is:

σ̂ =

 σ↑ σ↑↓

σ↓↑ σ↓

 .
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The corresponding Bloch vector (u, v, w) = (2<σ↑↓, 2=σ↑↓, σ↑ − σ↓). The Raman Hamiltonian (in the RWA

and rotating frame) is:

ĤR =

 0 ΩR/2

ΩR/2 ∆(~q)

 ,

where the detuning ∆(~q) = ε(~q+ ~∆~k)− ε(~q), and ε(~q) = 2t
[
3− cos( qx~ d)− cos(

qy
~ d)− cos( qz~ d)

]
. The time

evolution of σ̂ follows:

∂σ̂

∂t
= −i[Ĥ, σ̂],

with initial condition that Bloch vector points towards the north pole of the Bloch sphere, i.e., σ̂(t = 0) =1 0

0 0

.

Because of the momentum change δ~k induced by the Raman beams, the detuning is q-dependent. In other

words, the time evolution of the spin state depends on its initial quasimomentum. As shown in Fig. 4.14,

the final Bloch vectors for different ~q have different longitudes on the Bloch sphere, after evolution time

tΩR = π/3 (this time is chosen to match the observed 1/3 transferring of atoms to the |↓〉 state). The final

states are not identical to each other, and atoms can collide.

Another approach to check whether collisions can happen between two states is to check the overlap

between their wavefunctions. Consider two initial states ψ1(r1) = eik1r1 |↑〉1 and ψ2(r2) = eik2r2 |↑〉2. Af-

ter a Raman transition, they become ψ1(r1) = eik1r1 |↑〉1 + αk1e
i(k1+∆k)r1 |↓〉1 and ψ2(r2) = eik2r2 |↑〉2 +

αk2
ei(k2+∆k)r2 |↓〉2. The Slater determinant of this two-particle system gives the wavefunction as ψ(r1, r2) =

ψ1(r1)ψ2(r2)− ψ1(r2)ψ2(r1). To see whether or not two fermions can collide with each other, the straight-

forward way is to check the value of ψ(r1, r2) as r1 approaches r2.

With r1 = r2 = r, we have ψ(r, r) = ei(k1+k2+∆k)r [(αk2
− αk1

)(|↑1↓2〉 − |↓1↑2〉]. In our case, αk1 6= αk2,

so ψ(r, r) 6= 0. For a radio frequency transition, where the prefactor αk does not depend on k, then

ψ(r, r) = 0, and no collision is allowed.

To estimate the decoherence time for the superposition state, we perform a Ramsey interferometry

measurement. We start from polarized |↑〉 atoms, and apply two subsequent π/2 Raman pulses separated

by a variable time. The dependence of the visibility,
N↓−N↑
N↓+N↑

is plotted in Fig. 4.15 for various wait times

between these π/2 pulses. A fit to an exponential function gives a decoherence time of 75 ± 9µs, which is

much faster than the current decay process. This timescale seems to be determined by ~/U , which is 100µs

at s = 4ER.
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Figure 4.14: The dependence of the spherical coordinates θ and φ of the Bloch vector on initial quasimomen-
tum after the Raman pulse with pulse time t = π

3
1

ΩR
, where ΩR is the Rabi rate of the Raman transition.

While θ (black curve) is roughly independent of q, (i.e., the probability to find it the |↓〉 state is a constant),
φ (blue curve) covers a range of about 0.2π from q = −0.5qB to q = 0.5qB . For this plot, we assume the
Raman transition is resonant with the q = 0 state.
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Figure 4.15: Measurement of the decoherence time for the superposition state generated by stimulated
Raman transitions at s = 4ER. A π/2 Raman pulse is applied to |↑〉 atoms, creating a superposition state.
After a variable wait time, another π/2 pulse is applied. This plot shows the visibility (N↓−N↑)/(N↓+N↑)
at various wait times. We fit the measurements to an exponential decay function A0 + Ae−t/τd , as shown
by the solid curve. In this case, τd = 75± 9µs.
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Dephasing due to anharmonicity

Anharmonicity is also a source of dephasing of the atomic center-of-mass (COM) motion. For our measure-

ments, there are two sources of anharmonicity. One is from the Gaussian profile of the crossed optical dipole

trap beams. Another is from the lattice dispersion. We check the timescale related to these two dephasing

mechanism using a spin-polarized gas, which is not interacting because of the Pauli exclusion principle. In

this way, we isolate the anharmonicity-induced dephasing.

To measure the dephasing time, we apply an impulse to a spin-polarized gas trapped in the lattice. A

force generated via a magnetic field gradient is applied to the atoms along the same direction as the Raman

wavevector difference. The strength of the force is tuned to transfer approximately the same momentum to

the gas as the Raman excitation. Without the lattice, the COM of the gas can last up to 100ms, which is

much longer than the current decay time (Fig. 4.16).
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Figure 4.16: Damping of oscillations of a spin-polarized gas in the optical trap (without a lattice). Center-
of-mass motion is generated by applying a magnetic field gradient. The position of the COM is measured
at different hold times in optical dipole trap. The red curve is a fit to a damped sin function. The damping
time here is 107± 9ms, which is much slower than the current decay process in Fig. 4.12.

With optical lattices, the variation in effective mass 1/m∗ = 1
~2

∂2E(~k)
∂k2 from the tight-binding dispersion

means the oscillation frequency depends on momentum. Therefore, center-of-mass motion such as we excite

will decay as individual atomic trajectories dephase.

We can theoretically model this dephasing process semi-classically. The time evolution of the phase-space
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distributions can be simulated numerically. The equations of motion for a 1D lattice are:

q̇ = −∂H
∂ẋ

= −mω2x, (4.38)

ẋ =
∂H

∂q̇
=

2πt

qB
sin(π

q

qB
), (4.39)

with H = mω2x2/2 + 2t [1− cos(πq/qB)].

We perform numerical simulation to time evolve the equations of motion with initial conditions x(t =

0) = 0 and q(t = 0) = qi. Fig. 4.17 shows individual trajectories for different initial qi. For small initial

quasimomentum, the trajectories exhibit harmonic motion. As qi approaches the boundary of Brillouin zone

(BZ), anharmonic behavior with an amplitude-dependent period of oscillation becomes evident, and the

motion does not follow a simple oscillatory function.

To simulate the motion of the entire gas, we propagate classical trajectories for a thermal distribution

of initial quasimomenta subjected to the same impulse as in the experiment. For this simulation, we work

in 1D, use 3000 particles, and propagate the position and quasimomentum of each particle according to

Eq. 4.38 and 4.39. We weight the quasimomentum of the particles by a FD distribution and determine the

average quasimomentum for different propagation times. The results of a simulation for a range of µ̃ and T̃

(in the lattice) are shown in Fig. 4.18(a)-(c). We choose thermodynamic parameters a factor of three times

smaller than the corresponding experimental points to account for the three times smaller bandwidth in 1D

compared with 3D (i.e., the parameters T̃ and µ̃ match in units of the band width). With this adjustment,

the parameters used for Fig. 4.18(a)-(c) cover the experimental conditions that we have explored in this

work. For example, Fig. 4.18(a) corresponds to Fig. 4.12 in terms of T/t.

Sample measurements of the average quasimomentum of the gas for different hold times in the lattice

after the impulse is applied are shown in the right column of Fig. 4.18, for approximately the same conditions

as its simulated counterpart in the left column. We analyze the data in the same way as we did for Fig. 4.12:

a fit to Eq. 4.37 is used to determine a timescale τ .

A summary of the measured and simulated dephasing times is shown in Fig. 4.19 for different tem-

peratures in an s = 4ER lattice. For comparison, the corresponding measured relaxation rates are also

displayed. As expected, since a wider range of quasimomenta are present at higher temperature, the popu-

lation of atoms with q near the edge of BZ accelerates the dephasing due to anharmonicity. The agreement

between simulated and measured dephasing times for spin-polarized gases indicates that the simulation ac-

curately describes the dephasing dynamics. The simulated dephasing times have much smaller uncertainties

than the measurements and therefore are a useful benchmark for estimating the impact of dephasing on
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Figure 4.17: Oscillation of quasimomentum (top) and position (bottom) with time in optical lattices, with
different initial quasimomentum. In addition to a different oscillation frequency for different initial q, the
oscillation curve deviates from a purely sinusoidal function as q approaches the edge of the Brillouin zone.
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Figure 4.18: Simulation ((a)-(b)) and measurements ((c)-(d)) of damping of motion for non-interacting Fermi
gas in an optical lattice. The parameters used in the left column roughly match the experimental conditions in
the right column. Panels (a) and (b): Simulated average quasimomentum (black line) performed by averaging
individual trajectories over quasimomenta weighted by a Fermi-Dirac distribution in one-dimensional lattice.
The red curve is a fit to the simulated q. The deviation of the fit at long times is a result of the anharmonicity
induced by the optical lattices. Panels (c) and (d): Corresponding measurements of damping. The center-
of-mass motion is generated by applying a magnetic field gradient, which causes a quasimomentum shift
roughly equal to that generated via a Raman pulse. The red curve is a fit used to determine the dephasing
time.
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our measurements. The simulated dephasing time is at least 4 times longer than the measured relaxation

rate. Hence we conclude that dephasing has a minor impact on our measurements. The relaxation we

measure is dominated by interaction-induced scattering between quasimomentum states. We are measuring

the transport lifetime in a strongly-correlated lattice gas!
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Figure 4.19: Comparison of dephasing and transport lifetime τ at different temperatures in an s = 4ER
lattice. The dephasing times measured using a spin-polarized gas are shown using black squares, and the
measured relaxation rate for a spin-mixed gas is shown using blue triangles. The simulated dephasing time
is plotted using red circles. For the simulated time, the temperature is three times smaller than the value on
the abscissa. The chemical potentials used in the simulation are 4.5t/3, −4.5t/3, and −18.2t/3. The error
bars represent the uncertainty in the fit used to determine τ .
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4.6 Dependence of the transport lifetime on interactions and

temperature

In this section, we study the dependence of the transport lifetime on interaction strength and temperature.

To change the interaction strength, we adjust the lattice depth from s = 4ER to 7ER, and the corresponding

U/t varies from 2.3 to 9. To tune temperature, we change the final optical depth during the evaporation

cooling stage, such that T ≈ 0.2 − 1.2TF before turning on the lattice. The temperature of the gas is still

sufficiently low for the atoms to realize a single-band Hubbard model. To stay in the metallic phase of

Hubbard model, we tune the total number of atoms N so that EF ≈ 6t (i.e., half-filling at T = 0). The

relationship between EF and N at different lattice depths can be found in Chapter 3.

4.6.1 Effective temperature and chemical potential in optical lattices

Knowledge of the initial conditions of the lattice Fermi gas is necessary for interpreting our measurements.

In order to create a well characterized initial state, the gas is spin-polarized by removing the |↓〉 atoms

before turning on the lattice. Using a spin-polarized, non-interacting gas enables accurate knowledge of the

quasimomentum and density distributions before an excitation is generated, because this model has an exact

solution [58,71].

A caveat of this approach is loading a non-interacting atomic gas into lattices invalidates the thermody-

namic method as discussed in Chapter 3, because the system cannot equilibrate as the lattice is turned on.

Therefore, it is necessary to check for a lattice gas whether thermodynamics properties, such as temperature

and chemical potential, can still be defined. Here, we use the solution from Ref. [58, 71], measurements of

N and T , and a straightforward application of the adiabatic theorem of quantum mechanics to estimate an

effective chemical potential µ̃ and temperature T̃ of the initial metallic lattice gas. The method discussed

in this section was developed by Brian DeMarco.

Before turning on the optical lattice potential, the spin-polarized, non-interacting gas is trapped in a

parabolic potential. The distribution of atoms in the single-particle eigenstates, characterized by three

quantum numbers nx, ny, and nz, is therefore well described by a Fermi-Dirac distribution fnx,ny,nz =

1/
[
e(εnx,ny,nz−µ)/kBT + 1

]
, with x, y, and z correspond to the lattice axes. To determine the occupations

fnx,ny,nx in the eigenstates for ni = 1...300, we used the measured number N and temperature of the

gas obtained via time-of-flight imaging. The chemical potential µ is calculated by enforcing the constraint

N =
∑

nx,ny,nz

fnx,ny,nz . We have checked that including more states does not significantly affect our results.

We treat the trap as spherically symmetric, so that the energies are εnx,ny,nz = ~ω̃ (nx + ny + nz), where ω̃
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is the geometric mean of the trap frequencies. We have also verified that taking into account the different

trap frequencies does not affect the best estimate for µ̃ and T̃ .

The single-particle eigenstates in the combined lattice–trap potential are also characterized by three

quantum numbers [58, 71]. The lattice is turned on over 100 ms, which is much slower than all other

timescales: ~/t ≈ 0.5 ms, ~/U ≈ 55 µs, and ~/Ebg ≈ 4 µs (at lattice depth s = 7ER), where Ebg is

the bandgap. We therefore assume that the adiabatic theorem of quantum mechanics is satisfied, so that

the distribution of particles in the lattice–trap eigenstates is unchanged, i.e. f̃nx,ny,nz = fnx,ny,nz . The

corresponding eigenenergies are Ẽnx,ny,nz = Ẽnx + Ẽny + Ẽnz , with

Ẽi =


Ω̄
4 ai(α), i even

Ω̄
4 bi+1(α), i odd

(4.40)

in the lattice–trap potential, where Ω̄ = mω̄2d2/2, ω̄ is the geometric mean of the trap frequencies with

the lattice light present, d is the lattice spacing, α = 4tΩ̄, and ai(α) and bi+1(α) are the Mathieu char-

acteristic values [58, 71]. We group and order the populations by energy to form a distribution f̃ε̃j =∑
Ẽnx,ny,nz=ε̃j

f̃nx,ny,nz , where j indexes the ordered, unique energies. We fit the distribution of occupations

f̃ε̃j to a FD function 1/
[
e(ε̃j−µ̃)/kB T̃ + 1

]
with an effective chemical potential µ̃ and temperature T̃ as

free parameters. The fit minimizes the sum of the squared difference at each ε̃j between f̃ε̃j and the FD

distribution.

Fig. 4.20 shows calculated f̃ε̃j and fitted FD distributions for s = 4, N = 26, 400, and T/TF = 0.22, 0.44,

and 1.16, which spans the full range of temperatures we sampled. The agreement between the computed

f̃ε̃j and the fitted distributions are excellent, justifying using T̃ and µ̃ to describe the system, except for the

highest temperature points. At the highest temperatures, the procedure we use generates a distribution that

underestimates the occupancy for the lowest and highest energy states (Fig. 4.20c). As we will discuss, despite

this issue, we find that our procedure provides a density distribution that closely matches the experiment.

In Fig. 4.21, we show the predicted µ̃ and T̃ for the conditions of Fig. 4.27 for different values of T/TF

before the lattice is turned on. The effective degeneracy is approximately conserved as the lattice is turned

on (i.e., T̃ /T̃F ≈ T/TF ), and the effective chemical potential becomes negative for T/TF & 0.5, as for a

trapped gas.

With the knowledge of effective temperature T̃ and chemical potential µ̃, and assuming that the semi-
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Figure 4.20: Numerical data to determine effective chemical potentials and temperatures. The computed f̃ε̃j
is shown for s = 4 and T/TF = 0.22 (a), 0.44 (b), and 1.16 (c) as open circles, and the fitted FD distribution
is shown as a red line. A 20-point moving average filter is used to smooth the data, and approximately only
one out of every 300 points are shown. Note the difference in vertical and horizontal scales.

Figure 4.21: The effective chemical potential and temperature scaled to the tunneling energy are shown
as solid lines. The dashed line marks the condition for T/TF to remain unchanged when the lattice is
superimposed on the gas, where TF ≈ 6t/kB in the lattice (according to a non-interacting calculation).
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classical phase-space distribution in the lattice follows a FD distribution

ρ̃
(
~r, ~q, µ̃, T̃

)
= 1/

e
(
mω̄2r2/2−6t+2t

∑
j=x,y,z

cos(πqj/qB)−µ̃
)
/kB T̃

+ 1

 ,
any observable we are interested in can be evaluated as:

〈O〉 =

∫
d3~r

∫
d3~q

h3
ρ̃
(
~r, ~q, µ̃, T̃

)
O.

Next, we calculate several important quantities that are necessary for interpreting the measured transport

lifetime, and the comparison to experiments can justify the method applied here to determine T̃ and µ̃.

• Density profile

In the semi-classical approximation, the density profile n (~r) =
∫
d3~q ρ̃

(
~r, ~q, µ̃, T̃

)
/h3. The calculated

shape of density profile is shown as the black solid curve in Fig. 4.22. To verify our approach, we

compare predicted and measured density profiles for a spin-polarized gas in the lattice-trap potential.

Comparing measured quasimomentum profiles is complicated by the failure of bandmapping at the

edge of the Brilloun zone (BZ) [112]. To measure the density profile, we first transfer approximately

90% of the atoms to the F = 7/2 state using adiabatic rapid passage driven by a microwave-frequency

magnetic field. This step is necessary to reduce the optical depth (OD) of the gas. We then image the

gas in situ. The images are angularly averaged (along ellipses that match the aspect ratio of the image)

to produce a radial density profile. The measured radial profiles for s = 4 and T/TF = 0.25, 0.41, and

1.1 shown in Fig. 4.22 agree well with predicted profiles based on the estimated µ̃ and T̃ and the

semi-classical approximation.

• Kinetic energy:

To estimate the total energy added by the Raman excitation, we approximate the Raman pulse as

instantaneous, and use semiclassical distributions

ρ̃↑ (~r, ~q) = (1− γ) ρ̃
(
~r, ~q, µ̃, T̃

)
and

ρ̃↓ (~r, ~q) = γ ρ̃
(
~r, ~q − ~δq, µ̃, T̃

)
.

Here, γ ≈ 0.35 is the fraction of atoms transferred to the |↓〉 state by the Raman pulse and δ~q =
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Figure 4.22: Column-integrated radial density profiles for a spin-polarized gas at s = 4ER and T/TF = 0.25
(a), 0.41 (b), and 1.1 (c) shown as the measured optical depth (OD) in the trap. The measured profiles
(solid circles) are created from averages of 3–4 images, and the prediction (solid line) is based on µ̃ and T̃ .
The predicted profile is scaled to match the number of atoms for each case: N=16500 (a), 22600 (b), and
15700 (c). In this figure, r is a scaled radius that follows contours of constant OD.
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)qB . The shifted momentum ~q − ~δq of the |↓〉 particles is re-mapped to the first BZ by

subtracting reciprocal lattice vectors if it exceeds the first BZ boundary. Time-of-flight measurements

indicate that the Raman lasers do not transfer atoms out of the first BZ, which is expected since the

Raman Rabi rate is small compared with the bandgap. The increase in kinetic energy of the gas is:

〈∆EK〉 = 〈EK↑〉+ 〈EK↓〉 − 〈EK〉 (4.41)

where EK =
∫
d3~r

∫
d3~q
h3 ρ̃

(
~r, ~q, µ̃, T̃

)
ε(~q) is the total kinetic energy of the atoms before Raman tran-

sition; EK↓,↑ =
∫
d3~r

∫
d3~q
h3 ρ̃↓,↑ (~r, ~q) ε(~q) are the kinetic energy for |↓〉 or |↑〉 atoms after Raman

transition.

Fig. 4.23 shows 〈∆EK〉 / 〈EK〉 at various initial T̃ . Within the temperature range we sample, the

increase in kinetic energy is less than 10%. The increase in absolute temperature after the Raman

pulse depends on T̃ , which is about 20% for the lowest T̃ .

• Density-weighted density:

The density-weighted density is defined as ndwd =
∫
d3~r 1

N↓
n↓(~r)n↑(~r), which calculates the overlap

between the density distributions for |↑〉 and |↓〉 atoms confined in a harmonic trap potential. It
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Figure 4.23: The change in kinetic energy per atom due to the Raman transition. For our measurements,
kBT̃ /t = 1.2−8.6. The Raman excitation increases the total energy of the gas by less than 10%. The shaded
region shows the area of this plot relevant to the experiment.
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directly relates to the scattering rate between atoms. Fig. 4.24 plots the dependence of the calculated

ndwd on T̃ /t for the conditions of data in Fig. 4.27. Later I will discuss how to infer effective resistivity

from ndwd and the measured transport lifetime.
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Figure 4.24: Calculated density-weighted-density from semi-classical thermodynamics. The gray region
marks the temperature range we sampled in this work.

There are several potential problems with our approach to creating a phase-space distribution. First,

violations of adiabaticity and heating from scattering of lattice light will modify the distribution of atoms in

the energy eigenstates. Also, Eq. 4.40 assumes that the principal axes of the trap are aligned with the lattice

directions; a solution for the eigenstates without this constraint is unknown. In our experiment, these axes

are not aligned, however. Finally, we assume that the trapping potential is spherically symmetric. In our

experiment, the ratio of trap frequencies is 2.4:2.1:1. As the lattice is turned on, the overall trap potential

becomes more spherically symmetric. Because the gas is collisionless, cross-dimensional thermalization is
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not possible [15], and the aspect ratio of the gas remains unchanged as the lattice is superimposed on the

gas. We have verified this behavior for the images used to create Fig. 4.22. The two principal axes of the

trap with trap frequencies in a 2.4:1 ratio lie within the imaging plane. We observe that the density profile

of the gas before turning on the lattice has an aspect ratio of approximately 2 along these directions. This

aspect ratio remains unchanged at s = 4ER, even though the ratio of trap frequencies along the imaging

directions is 1.6:1. The good agreement apparent in Fig. 4.22 suggests that all of these complications are

minor effects.

4.6.2 Transport lifetime calculation using weak-scattering theory

Here we introduce the method we use to predict τ based on weak-scattering theory. The basic idea of this

approach is to calculate the scattering rate between particles based on Fermi’s golden rule, which treats

the interactions between particles as a perturbation. It has been used to accurately calculate the relaxation

times for trapped gas in the weakly interacting regime [15, 113, 114]. Although it may be expected to fail

for our experimental conditions (since our U/t > 2 is not a small parameter), it still provides a baseline for

understanding our measurements.

We use a standard technique to calculate the transport lifetime rate based on Fermi’s Golden Rule

(FGR) that closely follows the approach used in Refs. [112] and [115]. We allow for no free parameters in the

calculation of the relaxation rate—experimentally measured values are used for all quantities. We use FGR

to calculate the rate at which the Hubbard interaction term HI = U
∑
i

ni,↓ni,↑ scatters particles between

states of different quasimomentum. In this method, HI is treated as a perturbation to the tight binding

Hamiltonian −t
∑
〈ij〉,σ

(
ĉ†iσ ĉjσ + h.c.

)
. This approximation is only valid in the weakly interacting limit and

is not satisfied in the experiment.

For this calculation we treat the |↑〉 gas as stationary (i.e., possessing no net quasimomentum). We use

FGR to compute the time rate of change of the total quasimomentum of the |↓〉 component
〈
∂
(
~q↓ · δ̂k

)
/∂t
〉

along the direction of ~δk, where 〈〉 represents a thermodynamic sum over all possible scattering events, and

δ̂k is a unit vector along the Raman wavevector difference. We assume that the total quasimomentum〈
~q↓ · δ̂k

〉
=
∫
d3~r

∫
d3~q ρ̃↓

(
~r, ~q, µ̃, T̃

)
~q · δ̂q/h3 of the |↓〉 gas decays exponentially, so that the transport

lifetime is 1
τ = − 1

〈~q↓·δ̂k〉

〈
∂(~q↓·δ̂k)

∂t

〉
.

We use dimensionless spatial and quasimomentum coordinates ~R = ~r/d and ~Q = π~q/qB , respectively,

to carry out this calculation, such that 1
τ = − 1

〈 ~Q↓·δ̂k〉

〈
∂( ~Q↓·δ̂k)

∂t

〉
. FGR is used to calculate the time-rate-
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of-change of momentum as

〈
∂
(
~Q↓ · δ̂k

)
∂t

〉
=

1

2

2π

~
U2

2t

∫
d3 ~R

∫
d3 ~Q1↓

(2π)
3

∫
d3 ~Q2↑

(2π)
3

∫
d3 ~Q3↓

(2π)
3 ρ̃↓

(
~Q1↓, ~R

)
ρ̃↑

(
~Q2↑, ~R

)
×

[
1− ρ̃↓

(
~Q3↓, ~R

)] [
1− ρ̃↓

(
~Q4↑, ~R

)](
~Q3↓ − ~Q4↓

)
· δ̂k×

δ
[
ε̃
(
~Q1↓

)
+ ε̃
(
~Q2↑

)
− ε̃
(
~Q3↓

)
− ε̃
(
~Q4↑

)]
.

(4.42)

Eq. 4.42 integrates over scattering events between |↑〉 and |↓〉 atoms with initial momenta ~Q1↓ and ~Q2↑

and final momenta ~Q3↓ and ~Q4↑ = ~Q3↓ − ~Q1↓ − ~Q2↑. The value of ~Q4↑ is mapped into the first BZ by

subtracting reciprocal lattice vectors if it exceeds the first BZ boundary. The dimensionless tight-binding

energies are ε̃
(
~Q
)

= 2 (3− cosQx − cosQy − cosQz).

We evaluate Eq. 4.42 using Markov-chain Monte Carlo integration. The energy-conserving delta function

is represented as a decaying exponential proportional to e−|ε̃|/l. We make l sufficiently small such that the

error introduced by representing the delta function this way is smaller than the Monte Carlo integration

uncertainty, which is approximately 1%. In the following section, we use this method to calculate transport

lifetime under different experimental conditions.

4.6.3 Dependence of transport lifetime on interaction strength

Fig. 4.25(a) shows the measured transport lifetime at various lattice depths, together with the prediction

from weak scattering theory (solid black line). Although this simple calculation based on FGR gives the

correct trend, it is obvious that the dependence of transport lifetime on interaction strength cannot be

fully accommodated by weak-scattering theory. At the lowest interaction strength, the measured τ agrees

within 10% to the weak scattering theory. However, it does not decrease as rapidly as the theory predicts.

Across the interaction range we sample, τ given by weak scattering theory reduces by a factor of 10, while

our measurements change only by a factor 2. This deviation, to some extent, is expected: weak scattering

theory regards the ratio between U and t as a perturbation. This approximation becomes less and less

correct as the interaction strength gets stronger.

A typical dynamical timescale in optical lattices is the tunneling time ~/t, which is the time for one

atom to tunnel to its nearest neighbor site. Fig. 4.25(b) plots the measured τ normalized to tunneling time

vs. t2/U2 (which is determined by lattice depth s). The prediction from weak-scattering calculation is

approximately a line on this plot. As shown in Fig. 4.25, as the effective interaction strength increases, the

measured τ approaches the tunneling timescale. This is a signature of incoherent transport, which suggests
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Figure 4.25: Dependence of transport lifetime at varied interaction strength and fixed temperature (T/TF ≈
0.23 before loading into lattices). (a): Transport lifetime at different lattice depth s. τ are determined from
fits to data such as those shown in Fig, 4.12. (b): The transport lifetime normalized to the tunneling time.
In both plots, the vertical error bars show the uncertainty in the fit used to determine τ . The measurements
are compared with a weak-scattering calculation (black solid line).

that momentum is not a well-defined quantity. Incoherent transport refers to the regime in which the decay

rate of momentum is comparable to the characteristic single-particle timescale.

4.6.4 Dependence of transport lifetime on temperature

We can explore the dependence of τ on temperature. Because the relationship between temperature in the

lattice is not a linear function of T in the trap, we convert T/TF measured by time-of-flight imaging to

T̃ /t in the lattice using the method introduced in Section. 4.6.1. Fig. 4.26 gives a table with the conversion

between T/TF before loading into lattice and the effective T̃ /t and µ̃ in lattice for the conditions of Fig. 4.27.

The average value of atom number N for each temperature data set is used. The figure on right shows the

corresponding curves.

Astonishingly, the measured transport lifetime shows an opposite trend with temperature compared to the

prediction of weak scattering theory (Fig. 4.27). The measured τ decreases monotonically with a temperature

comparable to the Fermi temperature. The measured transport lifetime agrees with weak scattering theory

within 30% at the lowest temperatures. However, at the highest temperature, the measured τ decreases by

roughly a factor of two, while the weak scattering calculations predicts that τ increases by a factor of 6,

leading to a disagreement of over 60 standard errors at the highest temperature! This discrepancy cannot

be explained by an error in density or anharmonicity because of lattice dispersion—we have verified that the

density of the gas decreases across this range and is consistent with thermodynamic calculations via in–situ
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Figure 4.26: A table and a plot showing the relation between T̃ in optical lattices and the temperature
for a trapped Fermi gas before loading into lattice. The effective temeprature (black circles) and effective
chemical potential (blue circles) are calculated by assuming that the lattice turn-on satisfies the adiabatic
theorem of quantum mechanics.

imaging (Fig. 4.22). The simulated dephasing time is 6 times longer than the measured transport lifetime

(Fig. 4.19).

From the condensed matter perspective, an increasing value of resistivity with increasing temperature

is typical. Indeed, exhibiting a positive slope for resistivity vs. temperature is the very definition of a

metal. However, the temperature range sampled in solids is low in terms of T/TF . In solids, the reason why

resistivity increases as T increases is because Pauli blocking is suppressed. There are more allowed scattering

final states in momentum space as the Fermi surface is smeared out with increasing T . However, for the

temperature regime we sample, Pauli blocking is negligible. Furthermore, our weak scattering calculation

has taken the Fermi statistics into account (indicated by the 1− ρ̃ term in Eq. 4.42). In our experiment, τ

remains finite at T = 0 is because the Raman excitation creates unfilled quantum states; the collision rate

does not vanish completely at T = 0.

The dominant contribution to the increasing trend of the transport lifetime in the weak scattering calcu-

lation is the decrease in density as the size of the gas expands into a larger volume. This is a distinguishing

feature compared with solid state materials. For a trapped gas, a quantity proportional to the mean time

between collisions is expected to increase at high temperature.

To be more specific, in weak scattering theory, the scattering rate 1/τ can be written as:

1/τ = ndwdσsvrel (4.43)
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Figure 4.27: Dependence of transport lifetime on temperature at fixed interaction strength (s = 4ER,
U/t = 2.3). τ is determined from fits to data such as those shown in Fig, 4.12. The vertical error bars show
the uncertainty in the fit used to determine τ , and the uncertainty in T̃ is from time-of-flight measurements.
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Here ndwd is the density-weighted-density, σs is the collision cross section, and vrel is the mean relative speed

between colliding particles.

We consider few simple scenarios:

• Classical limit for trapped atoms

In the classical limit (i.e., T > TF ) for a trapped gas, the thermally averaged density ndwd ∝ T−3/2,

because the radius of the gas scales as T 1/2. The speed 〈vrel〉 ∝ T 1/2, and the collision cross section is

constant. The scattering time τ therefore increases linearly with temperature. The dependence of 1/τ

has been measured in Ref. [113], which shows nice agreement with theory.

• Classical limit for a lattice Fermi gas

The argument for a trapped gas is slightly modified for the single-band lattice Fermi gas in the classical

limit. Because of the band dispersion, the mean velocity 〈v〉 =
〈
|~∇ε|

〉
is nearly independent of

temperature when EF ≈ 6t. Therefore, τ scales as T 3/2.

• Fermi liquid

As discussed earlier, at low temperature, Fermi liquid theory predicts 1/τ scales as T 2, based on the

allowed phase-space area that satisfies momentum and energy conservation. This argument must be

modified in our case: the Raman excitation creates unfilled quantum states for both spin components,

and generates a momentum shift for the |↓〉 atoms. Therefore, even at zero temperature, τ remains

finite, and the restriction on the allowed phase-space for scattering is much less important. In addition,

ndwd is constant at very low temperature. Hence, 1/τ is not sensitive to temperature at very low T ,

as Fig. 4.27 shows.

In contrast to these three scenarios, the measured τ has a decreasing trend with increasing temperature,

even up to a temperature comparable to the Fermi temperature. Such behavior suggests the analog of

resistivity increases more rapidly than expected, just like what occurs in a bad metal. This quantitative

and qualitative failure of weak scattering theory suggests that we have observed some phenomena related to

strongly correlated physics.

4.7 Inferring resistivity from the transport lifetime

Our transport lifetime measurements indicate that the particles in this system cannot be described as

quasiparticles labeled by a well-defined quasimomentum. To achieve a more direct comparison to observables

in solids, we would like to link the measured transport lifetime to the analog of resistivity.
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As shown in Fig. 4.28, the existence of a harmonic trap potential in our experiment casts additional

complexities in converting the measured τ to resistivity. Two features absent in bulk solids appear: a

spatially inhomogeneous density profile and a temperature-dependent density. The influence from the change

in density on transport lifetime is simple, compared to the change in the underlying scattering mechanism.

The goal of this section is to explain how we infer a quantity that reflects the resistivity of a uniform system,

which is directly related to the scattering mechanism.

(a): (b): 

𝜏(𝑟)

𝑟

𝜏(𝑟)

𝑟

Figure 4.28: Schematic illustration showing the difference between (a) a bulk solid and (b) an atomic gas
in a harmonic trap. The density of electrons is uniform across the bulk system and the transport lifetime is
not position dependent. On the other hand, the harmonic trap in our experiment brings an inhomogeneous
density profile. The possibility that two particles can collide shrinks at the edge of the trap, and the transport
lifetime τ(r) depends on position.
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4.7.1 What we have actually measured

The method we applied to obtain the transport lifetime, as discussed in Section. 4.5, measures the decay of

the average momentum of |↓〉 atoms, which can be expressed as:

∂

∂t
〈~q↓〉 =

∂

∂t

{
1

N↓

∫
~q↓n↓(~r)d

3~r

}
=

1

N↓

∫
~q↓
∂n↓(~r)

∂t
d3~r +

1

N↓

∫
∂~q↓
∂t

n↓(~r)d
3~r

=
1

N↓

∫
~q↓
∂n↓(~r)

∂t
d3~r +

1

N↓

∫
(− ~q↓
τ(~r)

−mω2~r)n↓(~r)d
3~r

=
1

N↓

∫
~q↓
∂n↓(~r)

∂t
d3~r − ~q↓〈

1

τ(~r)
〉 −mω2〈~r〉, (4.44)

where
∂~q↓
∂t = − ~q↓

τ(~r) + ~F (~r) (which is the solution of the Boltzmann equation) has been used.

In addition, we also have:

∂

∂t
〈~q↓〉 =

∂

∂t

{
1

N↓

∫
∂~r

∂t
n↓(~r)d

3~r

}
=

1

N↓

∫
∂2~r

∂t2
n↓(~r)d

3~r +
1

N↓

∫
∂~r

∂t

∂n(~r)

∂t
d3~r

=
∂2

∂t2
〈~r〉+

1

N↓

∫
~q↓
∂n↓(~r)

∂t
d3~r (4.45)

Combining Eqs.4.44 and 4.45, we have

∂2

∂t2
〈~r〉 = −~q〈 1

τ(~r)
〉 −mω2〈~r〉, (4.46)

which is the equation we have used to fit the data as shown in Fig. 4.12. It is clear now that the reciprocal

of our measured transport lifetime is an average over the local 1/τ(~r) across the density profile. That is to

say:

1/τ = 〈1/τ(~r)〉 =
1

N↓

∫
1

τ(~r)
n↓(~r)d

3~r. (4.47)

For any process that generates resistivity through independent two-body scattering, without losing gen-

erality, we can write 1/τ = nsM , where M is an integral (over momenta) of scattering matrix elements

that contribute to the decay of current, and ns is the density of scatterers. The challenge in predicting

the transport behavior of a strongly-correlated materials lies in the calculation of M , which carries all the

information about scattering.
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In our case, ns = n↑(~r). So Eq.(4.47) becomes

τ =
1

N↓

∫
n↓(~r)n↑(~r)Md3~r

= ndwdM (4.48)

For a uniform system with fixed electron density, resistivity is proportional to the scattering matrix M/m∗,

where m∗ is the effective mass. In our case, m∗ ∝ t, where t is the tunneling term in Hubbard model. We

can define a dimensionless resistivity as

% =
1

τ
~/tndwdd3

, (4.49)

where d is the lattice spacing. ndwdd
3 indicates the averaged occupation number per lattice site.

Our analysis of % assumes that the thermally averaged relative speed between colliding partners is inde-

pendent of temperature. Variation in the thermally averaged speeds of the particles is suppressed because

EF ≈ 6t and there is a maximum allowed speed in this single-band system. As shown in Fig. 4.29, the

thermally averaged speeds are independent of temperature to an excellent approximation for our parameter

regime.

4.7.2 Saturation of resistivity

Fig. 4.30(b) and Fig. 4.31(b) plot the dependence of the inferred resistivity on interaction strength and

temperature, respectively. The data correspond to those shown in Fig. 4.25 and Fig. 4.27. The uncertainty

in % comes from two variables: the measured transport lifetime τ and the density-weighted density ndwd. A

fit to the raw data gives the uncertainty in τ directly (as shown in Fig. 4.12). The uncertainty in ndwd is

determined from the uncertainty in the measured T/TF and the fluctuation in total number of atoms.

To emphasize the failure of weak scattering theory, we show the resistivity corresponding to the weak

scattering calculation using dash-dot blue curves in both figures. As expected, weak scattering theory

predicts a temperature insensitive resistivity when T̃ > 0.5TF , because the collision rate is constant in this

temperature range.

As we have discussed, one of the key signatures of bad-metal behavior is the lack of resistivity saturation as

the Mott-Ioffe-Regel limit is approached. The MIR limit defines the regime in which semiclassical transport

theory is valid and current-carrying particles are a legitimate concept [4, 6]. In solids, the MIR limit is l ≈ d

[6], where l is the mean-free path and d is the atomic lattice spacing. This condition must be modified to

l ≈ n−1/3 for optical lattices, because the system is free from impurities and phonons, and the only scattering

is between particles with separation n−1/3.
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Figure 4.29: The thermally averaged speed between colliding partners and for the |↓〉 component. These
parameters are determined using T̃ and µ̃.
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We evaluate 〈~v↓〉 and
〈
n
−1/3
↑

〉
based on the calculated density profile at corresponding T̃ and U/t.

Fig. 4.30(a) and Fig. 4.31(a) show the mean velocity of |↓〉 atoms and the average distance between |↑〉

atoms. For the interaction-dependence data, the density is roughly constant, but the mean velocity decreases

as the effective mass 1/m∗ = 1
~2

∂2E
∂k2 increases. On the other hand, for the temperature-dependence data,〈

n
−1/3
↓

〉
drops significantly with increasing T as the size of the gas expands in the harmonic trap potential.

In contrast, 〈v↓〉 =
〈
|~∇~q ε|

〉
is independent of temperature (at constant s), because the lattice dispersion

puts bounds on the allowed maximum velocity.

We define the Mott-Ioffe-Regel-limited resistivity %MIR from τMIR =
〈
n
−1/3
↓

〉
/ 〈v↑〉. Comparison to %MIR

(red dashed curves in Fig. 4.30(b) and Fig. 4.31(b)) shows a steady escalation toward the MIR limit. At

the highest temperature, % has approached %MIR. Furthermore, there is no sign that the increasing trend

in % changes with increasing T . The ratio of %/%MIR shown in Fig. 4.31(c) is consistent with the absence of

resistivity saturation.

4.8 Anomalous scaling of resistivity and comparison to DMFT

The failure of weak scattering theory and the absence of resistivity saturation suggest that we have observed

anomalous transport in a Fermi lattice gas. To obtain deeper insight into these phenomena, I will introduce

a more advanced theoretical approach—dynamical mean field theory (DMFT)—to calculate the dependence

of resistivity on interactions and temperature for our experimental conditions. We compare the inferred

resistivity based on transport lifetime measurements to the DMFT predictions.

4.8.1 Dynamical mean field theory

Introduction to dynamical mean field theory

Dynamical mean filed theory (DMFT) maps a many-body lattice model to a local single-site problem [2].

The influence from adjacent sites is treated as an effective coupling between this local site and an external

bath. As depicted by the schematic diagram in Fig. 4.32, the hybridization Vν between a single site and

the external bath gives the probability that one electron may hop in or out of that site. Compared to

mean field theory, DMFT, as suggested by the word “dynamical” in its name, uses a frequency-dependent

hybridization function. Although DMFT does not incorporate spatial fluctuations (which may be important

for low-dimension systems), it becomes exact in the limit of infinite dimensions or infinite coordination

number (in which case the spatial fluctuation becomes negligible) [116].
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Figure 4.30: (a): The mean velocity of spin-down atoms 〈~v↓〉 and the mean separation between spin-up atoms〈
n
−1/3
↑

〉
at various interaction strengths for fixed T/TF ≈ 0.23.

〈
n
−1/3
↑

〉
is approximately constant, since

temperature and Fermi energy fixed for this data set. The mean velocity decreases because the effective mass
of the atoms becomes larger as the lattice depth increases. (b): Interaction dependence of dimensionless
resistivity %, inferred from the data points in Fig. 4.25. The blue dash-dot line is the resistivity corresponding
to the transport lifetime predicted by weak-scattering theory (black solid line in Fig. 4.25). The resistivity
corresponding to the Mott-Ioffe-Regel limit %MIR is shown by red dashed line. (c): The ratio between the
dimensionless resistivity and the MIR limit.
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Figure 4.31: (a): The mean velocity of spin-down atoms 〈~v↓〉 and the mean separation between spin-up

atoms
〈
n
−1/3
↑

〉
at various temperatures for fixed interaction strength. In this regime, the mean velocity

is independent of temperature, while n
−1/3
↑ measures significantly due to the expansion of the gas. (b):

Temperature dependence of dimensionless resistivity %, inferred from the data points in Fig. 4.27. The blue
dash-dot line is the resistivity corresponding to the transport lifetime predicted by weak scattering theory.
The resistivity corresponding to the Mott-Ioffe-Regel limit is shown by a red-dashed line. (c): The ratio
between the dimensionless resistivity and the MIR limit. The approach of the measurements toward the
MIR limit at high temperature suggests the lack of resistivity saturation.
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Figure 4.32: A cartoon showing the principle of dynamical mean-field theory (DMFT). The full lattice is
replaced with a single lattice site (orange) imagined to exist in a bath of electrons. In our case, there are four
possible configurations for this lattice site: |0〉 (empty), |↑〉, |↓〉 and |↑↓〉. The hybridization Vν specifies how
likely a state flips between different configurations by absorbing an electron from the reservoir or emitting
one into the reservoir. DMFT approximately captures the dynamics of electrons on this lattice site as it
fluctuates among these configurations. When the coupling between this lattice site and the bath is strong,
electrons are more like free particles; the other extreme case is when hybridization is very weak and electron
is localized on this lattice site. This figure is reproduced from Ref. [117]

The effective action for the single-site DMFT problem can be written as:

Seff = −
∫ β

0

dτ

∫ β

0

dτ ′
∑
σ

c†σ(τ)G−1
0 (τ − τ ′)cσ(τ ′) + U

∫ β

0

c†σ′(τ)cσ(τ), (4.50)

where G0(τ − τ ′) is the imaginary time Green’s function, which contains information about particles in the

external bath (whose degrees of freedom has been integrated out). G0(τ−τ ′) describes the following process:

at time τ one particle leaves and wanders into the external bath, and then later a particle returns to the

site at τ ′. The form of G0(τ − τ ′) depends on the original lattice model. This effective action does not

have a tunneling term, and therefore the corresponding Green’s function for this single-site model G(τ) is

k-independent.

The Green’s function for the original Hubbard model, which is momentum-dependent, is denoted as

GHubbard(~k, iωn) = 1
iωn+µ−εk−Σ(iωn) , where Σ(iωn) is the self-energy. The self-consistency condition requires

the summation over ~k for GHubbard(~k, iωn) yields G(iωn). This gives:

G(iωn) =

∫ ∞
∞

dε
D(ε)

iωn + µ− Σ(iωn)− ε
, (4.51)

where G(iωn) =
∫ β

0
dτG(τ)eiωnτ , and D(ε) is the density of states. The nature of the original Hubbard
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model enters this single-site model via D(ε). For a Bethe lattice, the density of states has the semi-circular

form D(ε) = 2
πW 2 (1 − ( ε

W )2)1/2Θ(W − ε), where W is half-bandwidth, and Θ(x) is the Heaviside step

function [118]. We use Bethe lattice geometry because of its convenience.

Since the on-site interaction term is the same for both the lattice Hubbard model and the single-site

problem, the self-energy in G(iωn) should equal the self-energy in original lattice Hubbard model. Therefore

we have G−1(iωn) = G−1
0 (iωn)− Σ(iωn).

The remaining difficulty is to find G0 that satisfies the self-consistency conditions. Many approximate

methods have been developed, such as numerical renormalization group and quantum Monte Carlo [2]. Here

we use iterated perturbation theory. It uses second-order perturbation theory in the Hubbard interaction U

to approximate the self-energy for the single-site model. For the half-filling case, it gives [119]

Σ(τ) = U2G3
0(τ). (4.52)

As a brief summary, iteration for solving the single-site problem works in the following way:

• Initialize G(iωn) with a guess value.

• Compute G0(iωn) = 1
iωn−t2G(iωn) (for a Bethe lattice at half filling).

• Perform a Fourier transform to obtain G0(τ) from G0(iωn).

• Calculate the self-energy Σ(iωn) = U2
∫ τ

0
dτeiωnτG3

0(τ).

• Update G(iωn) according to G(iωn) = 1
G−1

0 (iωn)−Σ(iωn)
.

A main success of DMFT is describing the phase transition from a metal to a Mott-insulator as the ratio

of the interaction strength U to the bandwidth increases. Fig. 4.33 shows a schematic phase diagram of the

Hubbard model based on DMFT [117]. At low temperature, where long-range order exists, the solutions

of DMFT are material- and model-dependent. At higher temperature—the regime where our experiments

are done—the phase diagram is more universal. Higher temperature (path 2) enables more quasiparticle

excitations, while stronger interactions (path 3) induces more scattering events. Both effects can lead to the

breakdown of Fermi liquid behavior and drive the system into the “bad metal” regime.
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Figure 4.33: DMFT schematic phase diagram of a strongly correlated material, with temperature and
strength of on-site interaction as axes. W is the half bandwidth. We are interested in the relatively high
temperature regime with U/W < 1. Along path 1, without any interactions, the system remains a Fermi
liquid. However, along path 2 and path 3, a cross-over from Fermi liquid to a bad metal occurs. The
reason that high temperature and/or strong interaction induce non-Fermi liquid bad metal behavior can be
attributed to more rapid scattering between particles, which reduces the coherence time. When itinerant
motion is hindered due to decoherence, localized behavior is enhanced, leading to the suppression of spectral
weight at the Fermi level. This figure is adapted from Ref. [117].
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Conductivity

DMFT uses the Kubo formula to calculate conductivity. We calculate conductivity σ(ω) via the bubble-pair

approximation, which gives [83]:

σ(ω) =
πe2

~

∫ ∞
−∞

dεΨ(ε)

∫ ∞
−∞

dω′(
f(ω′)− f(ω + ω′)

ω
)A(ω′, ε)A(ω′ + ω, ε), (4.53)

where e is the carrier charge, A(ω, ε) = −1/π=( 1
ω+µ−Σ(ω)−ε ) (notice that it is NOT the same as the local

spectral function!), f(ω) = 1
eβω+1

(with the Fermi energy set to zero), and Ψ(ε) =
∑
k(∂εk∂k )2δ(ε− εk) is the

transport density of states. For a Bethe lattice, Ψ(ε) = 1
3d (W 2 − ε2)D(ε).

The limit ω → 0 gives the DC conductivity, which is:

σDC =
πe2

~

∫ ∞
−∞

dεΨ(ε)

∫ ∞
−∞

dω(−∂f(ω)

∂ω
)A2(ω, ε). (4.54)

4.8.2 Results of DMFT

We adapted the code provided in the Toolbox for Research on Interacting Quantum Systems (TRIQS) [120,

121] to calculate spectral functions and conductivity for our experimental conditions. The code employs

iterated perturbation theory to obtain the Greens functions for the Hubbard model with a Bethe lattice

geometry and particle-hole symmetry. Despite the simplicity of this method, it is believed to give a qualita-

tively correct result and scalings for physical quantities [2,119]. The bandwidth of a Bethe lattice geometry

is 4t∗ (t∗ denotes the hopping term in Bethe lattice), while the bandwidth of a 3D Hubbard model is 12t. In

our DMFT calculation, the temperature and energies are all in unit of the half-bandwidth W . We therefore

scale the temperature and energy in units of t by a factor of 3.

Spectral function and self-energy

Fig. 4.34 and Fig. 4.35 plot the local spectral functions − 1
π=[G(ω)] and the imaginary part of the self-

energy −=[Σ(ω)]. In these plots, ω = 0 is the Fermi energy. With fixed temperature T/W = 0.248

(Fig. 4.34), the spectral function becomes broader as U/W increases, and the quasiparticle weight at the

Fermi energy decreases. The spectral function retains its single-peak feature, suggesting the existence of

quasiparticles. However, the imaginary part of the self-energy, proportional to 1/τQP (where τQP is the

quasiparticle lifetime), increases significantly. We therefore expect to observe stronger deviations from Fermi

liquid theory at high U , since the quasiparticles are not long-lived.

Fig. 4.35, with fixed U/W = 0.383, reveals more interesting features as the temperature increases. At
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low temperature, the spectral function is dominated by a peak centered at ω = 0, and the imaginary part of

self-energy is small. Fermi liquid theory is therefore valid. As the temperature increases, a broader spectral

function, lower quasiparticle weight, shorter lifetime, and a three-peak structure appear. The weight of the

quasiparticle peak at ω = 0 is transferred to the Hubbard bands located at ±U/2. The appearance of these

additional peaks indicates the breakdown of the quasiparticle picture.
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Figure 4.34: Local spectral function (black) and the imaginary part of self-energy (blue) at various interaction
strengths with kBT/W = 0.248. (a)-(d): U in units of the half-bandwidth W are 0.385, 0.637, 1 and 1.5,
respectively. Increasing temperature broadens the spectral function and reduces the quasiparticle weight.
The increasing value of =Σ(ω) at ω = 0 indicates a shorter quasiparticle lifetime, suggesting that Fermi
liquid theory may fail.

Scaling of resistivity

Fig. 4.36 shows the DMFT DC resistivity (in arbitrary units) dependence on the interaction strength at

T/W = 0.248, which corresponds to the conditions for Fig 4.25. Within the interaction range that our

measurements explored, the resistivity ρ follows a (U/W )2 scaling for U/W < 1. This dependence is

consistent with Fermi-liquid theory. At higher U , a slight deviation from quadratic scaling is observed.
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Figure 4.35: Local spectral function (black) and the imaginary part of self-energy (blue) at various temper-
atures, with U/W = 0.383. (a)-(f): Temperatures in unit of half-bandwidth W are: 0.033, 0.232, 0.407,
0.667, 1.33, and 1.67. In this plot, =Σ(ω) is scaled by a factor of 5 for a clearer view. The increase in tem-
perature not only broadens A(ω), but leads to multiple peaks. A three-peak structure, as shown in (d), is
characteristic of DMFT calculations. The other two peaks are precursors of the Hubbard bands, originating
from local “atomic” excitations.
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Figure 4.36: Dependence of resistivity on interaction strength with kBT/W = 0.248, corresponding to the
averaged temperature for the transport lifetime measurements shown in Fig. 4.25. The blue dashed line is
a fit to (U/W )2 for U/W < 1. The shaded region shows the area of this plot relevant to the experiment,
which samples U/W from 0.4− 1.5.
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Fig. 4.37 shows the dependence of resistivity on temeprature at U/W = 0.383, which corresponds to the

conditions for Fig. 4.27. At low enough T , the resistivity shows a quadratic scaling of T , which, as expected,

matches the prediction from Fermi-liquid theory. As temperature increases, a T-linear dependence appears,

indicating that the picture describing transport as coherent scattering among quasiparticles with well-defined

momentum is invalid. A linear dependence of ρ on temperature is a key signature of the bad metal behavior.
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Figure 4.37: Temperature dependence of resistivity at t/W = 0.383, which corresponds to a lattice depth
s = 4ER. At very low temperature (T/W < 0.1), the resistivity scales as T 2. This matches the Fermi-
liquid theory prediction, indicating coherent scattering between long-lived quasiparticles. As T increases,
the scaling behavior deviates from T 2, and instead presents a linear dependence on temperature. The blue
dashed line is a fit to a quadratic function for T/W < 0.1, and the red dashed line is a linear fit for
T/W > 0.1. The shaded region shows the area of this plot relevant to the experiment, which samples T/W
from 0.2− 1.3.

Our DMFT calculation assumes particle-hole symmetry and half-filling. The experiment, however, in-

volves an unequal number of |↑〉 and |↓〉 atoms and an inhomogeneous density profile. While the particle-hole

asymmetry is known to modify the spectral function A(ω) [122] and affect the absolute value of resistivity,

more sophisticated DMFT calculations indicate that T-linear resistivity still appears within the tempera-
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ture range we sample [123]. Other methods, such as quantum Monte Carlo calculations [124], also show the

existence of T-linear scaling within a wide range of filling factors.

4.8.3 Scaling behavior comparison

We compare our measurements with predictions from dynamical mean field theory (DMFT) simulations of

the Hubbard model for our lattice parameters and regime of temperature. The strategy applied here is to

fit the resistivity inferred from transport lifetime measurements to a power law function, with the exponent

fixed to be the value predicted by DMFT calculation. The reduced chi-squared χ2 is used in our goodness

of fit testing.

Fig. 4.38 shows the comparison for the interaction dependence of resistivity. The data fit well to the

DMFT scaling prediction % = bU + gU (U/t)2 (reduced χ2 = 0.99), with an offset gU and proportionality

constant gU as free parameters (black curve in Fig. 4.38). An offset is necessary because the Hubbard

approximation and the tight-binding limit fail in the s → 0 limit. The bottom of Fig. 4.38 shows the

spectral function A(ω) and the imaginary part of the self-energy predicted by DMFT calculation. At low

temperature and low interaction strength, A(ω) consists of a well-defined single peak centered at the Fermi

energy, which is broadened by interactions. The reduction of quasiparticle weight explains the derivation of

weak-scattering theory at higher U/t.

For the temperature dependence data, since our sampling of temperature is in the T-linear region, the

data are fit to a linear function (black curve in Fig. 4.39). In the T → 0 limit, the system is expected to

cross-over to the Fermi liquid T 2 scaling. An offset is therefore required here for fitting to T -linear behavior

at high T . Reduced χ2 = 1.76 of this fit indicates the scaling is consistent with T -linear, which is evident in

Fig. 4.39. This T-linear scaling is contradictory with Fermi liquid theory and is a signature of a bad metal.

The bottom panel of Fig. 4.39 plots the spectral function A(ω) and the imaginary part of the self-energy

=(Σ(ω)). The qualitative change in the spectral function A(ω) from a single-peak to a three-peak structure

provides insight into how bad metal behavior arise [117] and indicate the failure of weak scattering theory.

At relatively low temperature, the states are still quasiparticle-like and retain the character of free electrons,

but with a finite lifetime due to interactions. At high T , the transfer of spectral weight to peaks centered at

approximately ±U/2 is indicative of the breakdown of quasiparticles. The states become localized, giving

rise to a resistivity that increases more rapidly with temperature than the Fermi-liquid prediction. This

effect is responsible for the anomalous scaling of transport lifetime evident in Fig. 4.27. The breakdown of

quasiparticles is consistent with the qualitative failure of the weak scattering calculation, because the origin

of resistivity can no longer be treated as a result of collisions between particles with well-defined momenta.

132



2 3 4 5 6 7 8 9 10

4

8

12

16

U/t 

-4 -2 0 2 4

ω/w

U/t=2.3

-4 -2 0 2 4

ω/w

U/t=6 U/t=9

-4 -2 0 2 4

ω/w

Figure 4.38: Inferred dimensionless resistivity at various interaction strength for kBT̃ /t ≈ 1.4. The data
correspond to those shown in Fig. 4.25. Data are fit to a quadratic function as predicted by DMFT, with
reduced χ2 = 0.99. The bottom panel shows the spectral function and the imaginary part of the self-energy
at various interaction strengths.
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To our knowledge, our measurements of scaling consistent with T -linear is the first to sample temperature

above the Fermi temperature in any system and the first evidence for this behavior in an ultracold gas.
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Figure 4.39: Inferred dimensionless resistivity at various temperatures for U/t = 2.3. The data are fit to a
linear function as predicted by DMFT, with reduced χ2 = 1.76. Orthogonal distance regression is used to
accommodate the horizontal error bars. The bottom panel shows the spectral function and the imaginary
part of the self-energy at various temperatures. The appearance of a three-peak structure, indicative of the
breakdown of quasiparticles, explains the failure of the weak scattering calculation and provides insight into
the anomalous temperature scaling of resistivity from the microscopic level.

4.9 Conclusion

In this chapter, we discuss the discovery of phenomena consistent with bad-metal behaviour in the metallic

regime of an optical-lattice Hubbard model. We directly measure the transport lifetime induced by interpar-

ticle scattering for a mass current of atoms excited by stimulated Raman transitions. By exploring a range

of interaction strengths and a regime of temperature inaccessible to solids, we demonstrate incompatibility
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with a weak scattering theory. By inferring the analog of resistivity from transport lifetime, and comparing

our results to dynamical mean-field simulations, we identify three characteristics of bad metals:

• Absence of quasiparticles with a well-defined momentum:

Via comparison to dynamical mean-field theory (DMFT) simulations, we conclude that the reduction of

quasiparticle weight from strong intersections is directly related to the anomalous behavior of resistivity.

• Lack of resistivity saturation:

The resistivity does not saturate as the Mott-Ioffe-Regel (MIR) limit is approached.

• An abnormal temperature scaling of resistivity

In my opinion, having access to the transport behavior of strongly-correlated particles at a temperature

comparable to Fermi temperature is exciting. Solid state materials melt at a temperature well below

TF . Besides, as temperature increases, phonons start to dominate, and therefore it is hard to distinguish

phenomena solely due to electron-electron interactions. Although previous DMFT calculations predict

a T-lienar scaling of resistivity up to T ≈ TF /2, as far as I know, there have been no experimental

evidence in condensed matter system.

When I look back at this project, there are several improvements that we could have implemented. First,

for the temperature dependence data, we could perform measurements with a higher lattice depth. The

larger energy gap between the ground state and the first-excited state of the band structures allows us to

approach higher temperature without populating excited bands. Moreover, after finishing this project, we

updated our apparatus to have the ability to tune the interactions between atoms via a Feshbach resonance.

It will be interesting to perform similar measurements, but with non-interacting two-component fermionic

gas in optical lattices. A direct comparison should deliver a clearer picture for understanding the effect of

strong interactions on transport lifetime.

In the future, rf spectroscopy measurements in this system may reveal information about the spectral

function A(ω) directly [88]. A uniform overall confinement, like a box potential [125, 126], can be used to

remove the extra complexity due to the inhomogeneous density profile present in a harmonic trap potential.

Furthermore, additional effects present in solids can be added in a controllable fashion. The influence of

disorder can be investigated via, e.g., applying optical speckle [127], and the impact of phonons could be

explored using mixtures of different species [128].
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Chapter 5

Density-dependent hopping in a
Fermi-Hubbard model

5.1 Introduction

The single-band Fermi-Hubbard model, realized by loading a degenerate Fermi gas into an optical lattice, is

a minimal model for describing strongly correlated electronic systems. Periodic driving forces combined with

optical lattices have enabled experiments to achieve physics beyond this minimal paradigm (see Ref. [129]

for a recent review). For example, magnetic phase transitions have been probed [130, 131], synthetic gauge

fields have been realized [26, 27, 132], and non-trivial band structures [25] have been created using periodic

driving and external fields in lattices.

In this chapter, we use applied Raman laser fields to demonstrate correlated tunneling that depends

on density and spin for fermionic atoms. Correlated tunneling appears in a generalized Hubbard model in

crystalline solids [133]. Consider the Hamiltonian for the Coulomb interaction in a tight-binding model:

He−e =
1

2

∑
ijkl,σσ′

〈ij|Vee|kl〉 c†iσc
†
jσ′clσ′ckσ, (5.1)

with

〈ij|Vee|kl〉 =

∫
d3rd3r′w∗(r −Ri)w(r −Rk)

e2

|r − r′|
w∗(r′ −Rj)w(r′ −Rl),

where w(r −Ri) is Wannier function.

In the original argument of Hubbard [133], the interaction terms are categorized as:

U = 〈ii|1/r|ii〉 (5.2)

V = 〈ij|1/r|ij〉 (5.3)

X = 〈ij|1/r|ji〉 = 〈ii|1/r|jj〉 (5.4)

∆t = 〈ii|1/r|ij〉 . (5.5)

Now the indices i and j are for nearest-neighbor sites (in metals, interactions between more distant sites
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are exponentially suppressed because of screening.). Terms involving more than two sites are also neglected,

because they are at least one additional overlap factor smaller compared to these terms.

Hubbard gave an estimation for these four terms as U ≈ 20eV , V ≈ 6eV , ∆t ≈ 0.5eV , and X ≈ 1/40eV ,

so the dominant interaction is the U term representing on-site interactions. This is the original argument

that yields the famous Hubbard model. Later, after the discovery of the high temperature superconductors,

physicists started to seek a new mechanism that induces effective attractive interactions among electrons to

replace BCS theory. J.E. Hirsch proposed the ∆t term, which he called as “bond-charge” repulsion [134].

The Hamiltonian for this term is Hbc = ∆t
∑
〈ij〉,σ(c†iσcjσ + h.c.)(ni,σ +nj,−σ). In solids, the strength of this

term is determined by material parameters, and, physically, the ordering U > V > ∆t > X is always true.

It is desirable to manipulate this term in an independent and tunable way. The influence of correlated

tunneling on transport properties has been investigated in quantum dots, where it can be tuned by gate

voltages and applied electromagnetic fields [135]. Ultracold atoms in optical lattices generally realize a

minimal Hubbard model without correlated tunneling, since the interactions between atoms are point-like.

However, I will discuss in this chapter that periodic driving force can introduce effective correlated tunneling

into the Hamiltonian. This possibility has attracted theoretical interest for inducing occupation-dependent

gauge fields [136], obtaining novel phases such as holon and doublon superfluids [137], and realizing anyonic

Hubbard models [138]. Thus far, density dependent tunneling has been observed for bosonic atoms trapped in

optical lattices via lattice modulation [139,140]. Work discussed in the chapter is inspired by the theoretical

proposal in Ref. [141]. We implement a new experimental approach based on this proposal to generate spin

and density-dependent tunneling for fermionic atoms in optical lattices.

5.2 Correlated spin-flip tunneling via stimulated Raman

transitions

To generate spin and density-dependent tunneling for fermionic atoms, we apply a pair of Raman beams to

a spin-polarized gas. The conventional tunneling is forbidden for a spin-polarized gas by the Pauli exclusion

principle. This pair of Raman beams can flip the atomic spin and induce density-dependent tunneling.

The same Raman beams described in Chapter 2 are used to induce light-assisted tunneling. A degenerate

Fermi gas of 40K atoms is prepared in an optical dipole trap. After evaporative cooling, the optical trap

depth is increased to the same value for all the data presented in this chapter. The resulting dipole trap

frequencies are (47.9 ± 1)Hz, (98 ± 1)Hz and (114 ± 2)Hz. A microwave-frequency swept magnetic field

combined with a static magnetic field gradient are used to remove all atoms in one hyperfine state, thereby
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preparing a spin-polarized gas, either in the |↑〉 ≡ |F = 9/2,mF = 9/2〉 or in the |↓〉 ≡ |F = 9/2,mF = 7/2〉

state, before we ramp on the three pairs of lattice beams in 100ms.

(a)

k2,ω2

4P1/2

(b)

mF = 9/2

mF 
= 7/2

k1,ω1

U

Figure 5.1: Schematic diagram of Raman transitions. A pair of Raman beams with frequencies ω1,2 and

wavevectors ~k1,2 is applied to drive transitions between the |↑〉 (red) and |↓〉 (blue) states. The Raman

wavevector difference δ~k = ~k1 − ~k2 lies along the (−1,−1,−1) direction of the lattice. Selecting between
two distinct processes is achieved by fixing the laser beam frequency ω1 and tuning ω2. (a) If the frequency
difference matches the Zeeman energy (δω = ω1 − ω2 = ω↑↓), then atoms flip their spin and remain on
the same site. (b) When the laser frequency difference accommodates the Hubbard interaction energy U
(∆ω = ω↑↓ − U/~), then CSFT occurs and atoms tunnel to neighboring occupied sites and flip their spin.
For |↓〉 as an initial state, the condition for resonant CFST changes to ∆ω = ω↑↓ + U/~.

The Raman beams can drive two resonant precesses, depending on ∆ω. As shown in Fig. 5.1(a), if ∆ω

is tuned to the energy difference between spin states (i.e., ∆ω = ω↑↓), then on-site spin rotations occur

without induced tunneling and changes in site occupancies. We define this process as the carrier transition.

By tuning the frequency difference between the beams to include U (∆ω−ω↑↓ = ±U/~), density-dependent

tunneling accompanied by spin rotation is driven as a sideband to the carrier (Fig. 5.1(b)). We call this

process correlated spin-flip tunneling (CSFT). Working in the large U limit, we use perturbation theory

to find the effective CSFT Hamiltonian for this process (detailed theoretical derivations can be found in

Section. 5.7, which is the work of Prof. V. Scarola and H. Hui from Virginia Polytechnic Institute and State

University):

HCSFT =
∑
i,j

[
Kijni↑(1− nj↓)ĉ†j↑ĉi↓ +K∗ijni↑(1− nj↓)ĉ

†
i↓ĉj↑

]
. (5.6)
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Eq. 5.6 has been projected into the subspace connected to the initial spin-polarized |↑〉 state by resonant

CSFT. This model has been verified by Scarola and Hui via determining the dynamics of the full tight-binding

CSFT model by applying the time-evolving block decimation algorithm to 1D chains [142].

CSFT arises as a spin-flip transition to a virtual state offset by U , followed by a tunneling event. In

contrast to the conventional tunneling term −tĉ†i ĉj in the Fermi-Hubbard model, this light-induced correlated

spin-flip tunneling is density-dependent and accompanied by a spin-rotation. CSFT occurs only when

neighboring sites are occupied by atoms in the same spin state or when a doublon (a |↑↓〉-pair) on one lattice

site is next to an empty site. The magnitude of the CSFT matrix element

|Kij | ≈
t

2U
|Ω(1− eiδ~k·~d)|,

where t/U ≈ 0.04−0.08 (for the work in this thesis) is controlled by lattice potential depth s, and δ~k · ~d ≈ π
2
√

3

for all lattice directions in our experiment (where ~d is a lattice vector). Ω is the Rabi rate for the carrier

transition, which is controlled by the Raman laser intensity and can be measured via Rabi oscillations as

explained in Section 5.6. In this work, Ω ≈ 0.2U/~.

5.2.1 A two-site, two-fermion toy model

Unlike the spin-rotation driven by spatially homogeneous long-wavelength radio- or microwave-frequency

radiation, our approach with Raman beams introduces a site-dependent phase ei
~δk·~d , which is critical for

this CSFT event. Here, we deliver a simple two-site, two-fermion toy model to illustrate the importance of

this non-trivial Raman phase gradient.

Considering a two-site, two-fermion system, there are six possible configurations, which we label according

to the site and spin occupancy in each well: |↑, ↑〉W , |↓, ↓〉W , |↑↓, 0〉W , |0, ↑↓〉W , |↑, ↓〉W , and |↓, ↑〉W . In this

well-specific basis, |↓, ↑〉W means that a |↓〉 atom is in the left well (located at position ~R1) and an |↑〉 atom

is in the right well (located at position ~R2), for example.

Using a Slater determinant to explicitly write down properly symmetrized (un-normalized) two-atom
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wavefunctions, we have:

|↑, ↑〉W = (|LR〉 − |RL〉) |↑↑〉 (5.7)

|↓, ↓〉W = (|LR〉 − |RL〉) |↓↓〉 (5.8)

|↓↑, 0〉W = |LL〉 (|↑↓〉 − |↑↓〉) (5.9)

|0, ↓↑〉W = |RR〉 (|↑↓〉 − |↑↓〉) (5.10)

|↑, ↓〉W = (|LR〉 − |RL〉)(|↑↓〉+ |↓↑〉) + (|LR〉+ |RL〉)(|↑↓〉 − |↓↑〉) (5.11)

|↓, ↑〉W = (|LR〉 − |RL〉)(|↑↓〉+ |↓↑〉)− (|LR〉+ |RL〉)(|↑↓〉 − |↓↑〉), (5.12)

where the spatial part of the wavefunction is written in the basis of |L〉 and |R〉, which are single-particle

states on either the left or the right well, and the spin component is denoted as |↑〉 and |↓〉. For example, in

this basis, |LR〉 |↑↓〉 means that atom 1 is in the left well in the |↑〉 state, and atom 2 is in the right well in

the |↓〉 state. The key point for this discussion is that the |↑, ↓〉W and |↓, ↑〉W states consist of spin singlet

and triplet components. Furthermore, the relative sign between the spin and triplet components is opposite

for these two states.

We focus on resonant CSFT with ∆ω − ω↑↓ = U/~. An initially spin-polarized state |↑, ↑〉W (as in the

experiment) can transition to a virtual state |↑, ↓〉W or |↓, ↑〉W via a Raman transition (see Fig. 5.2). The

amplitude for this process is suppressed by a factor of 1/U because of the energy mismatch. The phase of

the virtual state depends on which atom undergoes a spin-flip, since ~δk 6= 0. Therefore, the Raman phase

enters as either e
~δk·~R1 or e

~δk·~R2 , where ~R1 and ~R2 differ by a lattice spacing ~d. After the virtual state is

occupied, tunneling completes the CSFT process, and a doublon is formed. Via tunneling, the sign difference

between equations 5.11 and 5.12 is converted into an overall sign difference between the wavefunctions for

each doublon-formation pathway. This π relative phase between the wavefunctions can be computed from

the tunneling matrix elements 〈↑↓, 0|W t(c†i ci+1 + h.c.) |↑, ↓〉W and 〈↑↓, 0|W t(c†i ci+1 + h.c.) |↓, ↑〉W .

The transition between the initial state |↑, ↑〉W and the final doublon–hole state happens via these

two possible channels simultaneously. The final state is a superposition of these two pathways, with a

wavefunction proportional to
(
e−i

~δk· ~R1 − e−i ~δk· ~R2

)
(|↑↓, 0〉+ |0, ↑↓〉). The probability to observe a doublon-

hole state is thus proportional to
[
1− cos( ~δk · ~d)

]
. Without the Raman phase gradient (i.e., ~δk = 0 or

~δk · ~d = 0), destructive interference prevents tunneling, and doublons will not be formed. The Raman phase

disrupts destructive interference between multiple tunneling pathways that is induced by antisymmetrization

of the wavefunction. Ultimately, this interference arises from the different signs between the triplet and

singlet components in equations 5.11 and 5.12—it is absent for bosons, for instance.
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Figure 5.2: A schematic diagram showing CSFT for a two-site two-fermion system. CSFT happens as a two-
step process via a virtual state. Two possible channels between the initial state |↑, ↑〉W and the final state
|↑↓, 0〉W + |0, ↑↓〉W happen simultaneously, but with amplitudes carrying opposite signs. The probability to
observe a doublon-hole pair is affected by interference between these channels.

5.2.2 Differences compared with previous approaches

δ
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δ

(b)

Figure 5.3: Λ three-level system involving a final state with (a): different mF and (b): same F and mF as the
initial state. A unitary transformation exists for case (a) such the Hamiltonian becomes time-independent,
while for (b), the final Hamiltonian is still time-dependent.

The spin-flip process distinguishes our approach from previous experiments [26, 140]. As have discussed
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in Chapter 2, in the rotating frame and after a unitary transformation Û with

Û =


e−iδt 0 0

0 1 0

0 0 ei∆Rt

 , (5.13)

the Hamiltonian for our system, which includes two ground states with different magnetic quantum numbers

(Fig. 5.3(a)), is:

H2-level
R =

 δ +
Ω2

1−Ω2
2

4(∆R+δ)
Ω∗1Ω∗2

8 ( 1
∆R

+ 1
∆R+δ )e−iδ

~k·~R

Ω∗1Ω∗2
8 ( 1

∆R
+ 1

∆R+δ )eiδ
~k·~R 0

 ≈
δ +

Ω2
1−Ω2

2

4∆R

Ω
2 e
−iδ~k·~R

Ω∗

2 e
iδ~k·~R 0

 (5.14)

which is time-independent. In other words, there exists a unitary transformation that eliminates the time

dependence.

In some previous experimental approaches (such as in Ref. [26]), stimulated Bragg transitions are used

to couple two states with the same F and mF , as shown in Fig. 5.3(b). In this case, the Hamiltonian is

HR = ~

 0 Ω∗1 cos( ~k1 · ~R− ω1t) + Ω∗2 cos( ~k2 · ~R− ω2t)

Ω1 cos( ~k1 · ~R− ω1t) + Ω2 cos( ~k2 · ~R− ω2t) ω0

 .

(5.15)

After a unitary transformation U =

1 0

0 ei~ω1t

, we have

HR = ~

 0
Ω∗1
2 e
−i ~k1·~R +

Ω∗2
2 e
−i ~k2·~R−itδ

Ω1

2 e
i ~k1·~R + Ω2

2 e
i ~k2·~R+itδ ∆R

 . (5.16)

This Hamiltonian is still time-dependent. By diagonalizing this Hamiltonian, we find that the energy of the

ground state is

Eg(r) = −Ω2
1 + Ω2

2

4∆R
− Ω1Ω∗2

2∆R
cos[δt+ ~R · δ~k], (5.17)

which contains a time-dependent term, and where
Ω1Ω∗2
2∆R

≡ Ω is the effective Rabi rate. In this case, the

effect of stimulated Bragg transitions can be treated as a moving lattice potential. Transforming to the

interacting picture with respect to U(t) = ei
∫ t
0
dt′HR(t′) causes a first kind Bessel function J0(~Ω/U) to

appear in operators like ci, because of the cosine term in the integral. Therefore, the effective correlated
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tunneling induced by this scheme is proportional to J0(~Ω/U), which is a non-linear function of Ω. For more

details regarding the theoretical derivation, see Ref. [141]. On the contrary, in our approach, the amplitude

of the effective tunneling depends linearly on Ω.

5.3 Spectroscopic proof for light-assisted tunneling

As illustrated in Fig. 5.1, one way to observe CSFT is to tune the frequency difference ∆ω = ω1−ω2 between

the Raman beams near to the |↑〉 → |↓〉 resonance. By measuring the number of atoms in each spin state

after a Raman pulse as ∆ω is scanned, CSFT events can be distinguished from on-site spin-flip event. We

had to overcome several technical challenge to use this approach to resolve CSFT.

5.3.1 Experimental and technical challenges

Degeneracy of Raman transitions

For our standard experimental sequence, the magnitude of the quantization magnetic field, provided by a

pair of coils (the imaging coils) can be up to 4.5G. The corresponding second-order Zeeman energy splitting

(EmF=9/2→7/2 − EmF=7/2→5/2) is approximately 3.1kHz, comparable to the Rabi rate of the Raman tran-

sitions. Therefore, after atoms are transferred to the mF = 7/2 state when ∆ω sweeps across ω↑↓, Raman

transitions to states with mF < 7/2 (Fig. 5.4) occur, which is not desirable.

Moreover, in this regime, the second-order Zeeman energy splitting is comparable to the on-site inter-

action U for a lattice depth of approximately 10ER. Raman transitions can drive multiple processes at the

same time because of this degeneracy. For example, the transition frequency for a singlon (i.e., one lattice

site occupied by one atom) with mF = 9/2 to mF = 7/2 is nearly degenerate with the transition between

a doublon pair consisting of an mF = 9/2 and an mF = 7/2 atom and two singlons with mF = 9/2 and

mF = 5/2 (inset of Fig. 5.5). Therefore, it is challenging to distinguish each process.

Since this Raman transition degeneracy hinders a clear signal, a larger magnetic field is required to lift

the degeneracy of Zeeman transitions between different mF states. Our imaging quantization coils cannot

operate high enough current. Instead, we use the anti-gravity coil mounted closer to the atoms, to create

a 13G magnetic field, thereby providing a 27kHz difference between the mF = 9/2 → mF = 7/2 and

mF = 7/2 → mF = 5/2 transitions (blue arrow in Fig. 5.4). Although the anti-gravity coil applies a force

to the atoms due to the magnetic gradient, the in-trap position of the atoms changes less than 10µm at our

operating current. Because the beam waist of the optical dipole trap, optical lattice, and Raman beams are

larger than 100µm, the 10µm position shift is acceptable for our measurements. With this 13G magnetic
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Figure 5.4: The energy difference between the EmF=9/2−EmF=7/2 and EmF=7/2−EmF=5/2 transition. The
magnetic field provided by the imaging coil can not be larger than 4.5G (black arrow). At this magnetic
field, the 3kHz energy difference is not big enough to lift the degeneracy of Raman transitions, and states
with smaller mF are populated. To avoid this, we worked at B = 13G (blue arrow).
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Figure 5.5: Raman spectroscopy at s = 13ER with a 4.5G magnetic field. Starting with a spin-polarized
|mF = 9/2〉 gas, the transfer fraction to |mF = 7/2〉 and |mF = 5/2〉 states is plotted as ∆ω is swept across
a range near ω↑↓. Because of the small second-order Zeeman energy shift, transfer to the mF = 5/2 state is
evident. In addition, CSFT and on-site spin-flip events can happen at the same time due to the degeneracy
(the inset shows an example), complicating interpretation of the data and hindering an unambiguous signal
of CSFT. The top panel shows the spin-resolved time-of-flight imaging as δω is scanned.
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field, no significant population of mF = 5/2 states after applying Raman pulses has been observed within

the frequency range we sample.

Magnetic field stability

The stability of the magnetic field produced by the anti-gravity coil is not as good as the imaging coil. To

measure the magnetic field stability, we apply a microwave-frequency magnetic field pulse, which transfers

atoms from the |F = 9/2,mF = 9/2〉 state to the F = 7/2 manifold. Using microwave transitions to calibrate

the ~B stability helped to isolate the magnetic field noise from possible Raman noise. Also, microwave

transitions between hyperfine states is more sensitive to magnetic noise. The lineshape of this transition

is measured via the transfer fraction to F = 7/2 state at various microwave frequencies. To determine

the magnetic field stability, we fix the microwave frequency away from the resonance, roughly to where the

transfer fraction is half of the peak value. The large slope of this frequency maximizes the sensitivity to

magnetic field. By repeating the same microwave pulse many times, we can estimate the magnetic fluctuation

from the standard deviation of the transfer fraction to the F = 7/2 state.

Comparison between Fig. 5.6(a) and (b) reveals the large fluctuations of the magnetic field generated by

the anti-gravity coil, which limits the frequency resolution for Raman spectroscopy to 4.7kHz. The on-site

interaction energy U for the lattice depths used in this work ranges from h×3.5kHz to h×5.4kHz. Therefore,

the magnetic field noise prevented spectroscopically resolving CSFT from on-site spin-flips.

To solve this problem, we changed the servo for the anti-gravity coil to the circuit described in Chapter 2.

Fig. 5.6(c) shows a factor of 5 improvement in magnetic field stability after using the new servo circuit. A

3mG fluctuation in magnetic field allows us to have a frequency resolution below 1kHz, which is sufficient

for detecting CSFT.

5.3.2 Number loss during Raman transitions

Number loss and heating have been observed to be caused by the Raman pulse. The red circles in Fig. 5.7(a)

plot the number of atoms remaining in the F = 9/2 manifold for different Raman pulse times. The number

loss is accompanied by heating. Fig. 5.7(b) shows the increase in the size of gas for longer Raman pulse

times. With the Raman beams on, spontaneous Raman transitions transfer atoms from the F = 9/2 to the

F = 7/2 manifold. The black circles in Fig. 5.7(a) plot the increasing number of atoms in the F = 7/2

state. Collisions between F = 7/2 and F = 9/2 atoms lead to heating and number loss. To fully avoid this

problem, we would have to further detune the Raman frequency from the D1 transition, which is beyond

the tunablity range of our diode laser.
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Figure 5.6: Calibration of the magnetic field stability by transferring atoms from |F = 9/2,mF = 9/2〉 to
the |F = 7/2〉 manifold by a microwave-frequency magnetic field pulse. The plots in the left column shows
the lineshape of the microwave transition, and the right column shows histograms for transferred number
of atoms at fixed microwave frequency. The fluctuation in magnetic field can be inferred via the standard
deviation of the number measured at fixed microwave frequency and the lineshape. (a): Without the anti-
gravity coil on and a 0.5ms microwave pulse, the linewidth of this transition is about 2.2kHz. This is
limited by the pulse time. From the standard deviation of number, the estimated magnetic fluctuation is
less than 1mG. (b): The old servo circuit had poor stability. The width of microwave transition lineshape is

broader than (a) by a factor of 50. The estimated | ~B| stability is about 15mG, corresponding to a frequency
resolution of 4.7kHz. (c): After modifying the current servo circuit for the anti-gravity coil, the magnetic
field stability is significantly improved. The hourly stability is about 3mG.
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(a) (b)

Figure 5.7: Number loss and heating during the Raman pulse. (a): The total number of atoms in the |↑〉
and |↓〉 states (red circle) decays with longer Raman pulse time. The red curve is a fit to an exponential
decay function, with a decay time 235± 30ms. The number of atoms in the F = 7/2 manifold (black circle)
increases with the Raman pulse time, and reaches a quasi-steady state after ∼ 150ms. (b): The size of the
gas at various Raman pulse times (red circle: σx; black circle: σy). The heating and the number loss are due
to the collisions between the F = 9/2 and F = 7/2 atoms. The frequency difference between the Raman
beams is fixed for this measurement.

5.3.3 Detecting CSFT with Raman spectroscopy

After lifting the second-order Zeeman degeneracy and using a higher performance current-servo circuit, we

spectroscopically resolved CSFT and distinguished it from on-site spin rotations by measuring the change

in spin fraction after a Raman pulse. In this work, the Raman beams are 80GHz detuned from the D1

transition. The frequency and power of each beam are controlled using an acousto-optic modulator.

Sample data are shown in Fig. 5.8(a) for the fraction f↓,↑ of atoms transferred between spin states at

varied ∆ω for s = 10ER (with t = 0.0192ER and U = 0.489ER). To observe the relative slowly CSFT

process, the Raman pulse is 50ms long. The carrier transition, with Rabi rate Ω = (2π)650Hz is therefore

over driven. This results in a broad feature that obscures CFST: when ∆ω − ω↑↓ ≈ ±U/~, atoms undergo

both detuned carrier spin-flip transitions and resonant CSFT. To overcome this complication and isolate

CSFT, we subtract the data taken at identical ∆ω with opposite initial spin configurations. Since the carrier

frequency does not depend on the initial state, the contribution from the broad carrier feature is cancelled

out by this procedure. In contrast, the frequency offset of the CSFT sideband changes sign with the initial

spin configuration and is not removed by the subtraction. The resulting lineshape for f↑ − f↓ shown in

Fig. 5.8(b) therefore reveals the CSFT sidebands as peaks offset at approximately ±U ≈ ±3.5kHz from the

carrier transition.
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Figure 5.8: CSFT Spectroscopy. (a): The fraction of atoms transferred between spin states by a 50ms Raman
pulse is shown for an initially |↑〉 (black squares, f↑) and |↓〉 (red circles, f↓) spin polarized state at s = 10ER
for varied ∆ω. For these measurements, N = 25400± 3900 atoms were cooled to T/TF = 0.24± 0.08 before
turning on the lattice. (b): The difference f↑ − f↓ for pairs of points in (a) reveals the CSFT sidebands at
approximately ±U . The black line shows a fit to a sum of two Gaussian functions; the individual Gaussians
are displayed as shaded regions. The peak at lower (higher) frequency corresponds to CSFT for an initially
|↑〉 (|↓〉) spin-polarized state. (c): The carrier feature inferred by subtracting CSFT sidebands from f↑+ f↓.
The width of this feature is 2.3KHz, which approximately equals to 12t.
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The predicted separation between the CSFT peaks equals to twice of the on-site interactions U . To

compare our measurements with this prediction, we fit the f↑ − f↓ lineshape to a sum of two Gaussian

functions with independent central frequencies and standard deviations as free parameters. The black and

red shaded regions in Fig. 5.8(b) show the individual fits to a CSFT event |↑, ↑〉 → |0, ↑↓〉 and |↓, ↓〉 → |0, ↑↓〉,

respectively. Fig. 5.8(c) plots the inferred carrier spectroscopy by subtracting the two fitted Gaussian

functions of CSFT sidebands from f↓+ f↑. The width of carrier feature is 2.3kHz, and peak value is 0.5 due

to decoherence caused by spontaneous Raman scattering.

The interaction energy U determined from this fit, which is half of the frequency separation of the peaks,

is shown in Fig. 5.9 for data taken at different lattice potential depths. The inferred U increases less rapidly

with s than the tight-binding prediction, which is shown as a dashed line. The slope for the measured U vs.

ER is (0.22± 0.1)kHz/ER, which is 40% smaller than the predicted slope 0.368kHz/ER. Renormalization of

U by the Raman process (Section. 5.7) and effects from higher bands [143] may contribute to this discrepancy.

5.3.4 A simple simulation

We perform a simple simulation for the dependence of f↑ and f↓ on ∆ω based on the Rabi formula. The

transfer fraction to the other spin component is calculated by integrating:

f↑(↓) =

∫
d3~q

∫
d3~r [0.5P (∆c,Ωc)f(~r, ~q) + 0.5P (∆CSFT,ΩCSFT)f(~r, ~q)] , (5.18)

with

∆c = ~ω↑↓ ∓
[
ε(~q + δ~k)− ε(~q)

]
− ~∆ω,

∆CSFT = ~ω↑↓ ∓
[
ε(~q + δ~k)− ε(~q)

]
∓ U − ~∆ω,

ε(~q) = 2t
[
3− cos(

qx
~
d)− cos(

qy
~
d)− cos(

qz
~
d)
]
,

f(~r, ~q) =
1

eβ(ε(~q)+V (~r)−µ) + 1
,

P (∆,Ω) =
Ω2

Ω2 + ∆2
.

∆c and ∆CSFT are the detunings for the carrier and CSFT transitions respectively. The change in energy

before and after the Raman transition because of the momentum shift is included in ε(~q+ δ~k)− ε(~q). In the

expressions for ∆c and ∆CSFT, the “−′′ sign is for f↑, and “+′′ is for f↓.

For s = 4ER (Fig. 5.10(a)), conventional on-site spin-flip event dominates, and the peak positions of

f↑ and f↓ are separated by ∼ 4t. This is because the distribution of ε(~q + δ~k) − ε(~q) centers around 2t.
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Figure 5.9: The interaction energy U inferred from fits to data such as those shown in Fig. 5.8 for varied s.
The error bars are derived from the fit uncertainty. The gray dashed line is the predicted U based on the
tight-binding model.
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Experimental measurements for s = 4ER also show this separation. With increasing lattice depth s, the rapid

decrease in t suppresses the separation between two carrier features, and ωc ≈ ω↑↓. Peaks corresponding to

CSFT events appear in Raman spectroscopy. Therefore, our procedure to infer CSFT event from f↓ − f↑ is

appropriate.
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Figure 5.10: Simulation of f↑ (black) and f↓ (red) at various ∆ω − ω↑↓ for (a) s = 4ER and (b) s = 10ER.
In this simulation, Ωc = 0.4 × U/~ and ΩCSFT = 0.08 × U/~, which are chosen to approximately match
the measured transfer fractions. At low lattice depth, the separation between f↑ and f↓ is related to the

momentum change during stimulated Raman transitions, and roughly equals to ε(δ~k) − ε(0) ≈ 2t. At high
lattice depth, t � U , such separation becomes negligible. Therefore, the difference between f↑ and f↓ is
dominated by CSFT event.

5.4 Direct doublon fraction measurements using light-assisted

collisions

5.4.1 Light-assisted collisions

Each CSFT event for a spin-polarized gas is accompanied by the creation of a doublon-hole pair. To directly

probe doublon generation, we measure the number loss induced by light-assisted collisions (LAC). LAC

has been applied to prepare unit filling in microscopic dipole traps [144], optical lattices [145], and optical

tweezers [146]. In addition, LAC provides the basis for parity imaging in quantum-gas microscopes [147].

The basic conception of LAC is shown in Fig. 5.11. The laser light used for LAC couples the electronic

ground state |S〉 to the |P 〉 state. An atom in an |S〉 state and an atom in a |P 〉 state can form a loosely

bound pair, with a long-range dipole-dipole interaction between them. If the LAC light is blue-detuned (left

figure of Fig. 5.11), then the |S + P 〉 state experiences a repulsive potential. If the associated kinetic energy
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given by LAC light during this transition is larger than the trap potential, this bound pair leaves the trap.

For the red-detuned case, |S + P 〉 experiences an attractive potential. This pair can gain a large kinetic

energy, leading to the loss of both atoms.

|4𝑆1/2 + 4𝑃3/2〉

|4𝑆1/2 + 4𝑆1/2〉
|4𝑆1/2 + 4𝑆1/2〉

|4𝑆1/2 + 4𝑃3/2〉

V(r) V(r)

𝑅𝑟 𝑅𝑟

Figure 5.11: A schematic diagram showing the conception of light-assisted collisions for the blue-detuned
light (left) and red-detuned light (right). At interatomic separations Rr, the ground state

∣∣S1/2 + S1/2

〉
becomes resonant with excitation to a loosely bound pair with one atom in the S state and another in the
P state. The pair of atoms can gain large kinetic energy during this transition and leave the trap, leading
to loss. This figure is adapted from Ref. [146].

If two atoms occupy the same lattice site, their wavefunctions are highly overlapped, and LAC causes

them to be lost from the trap. Therefore, by measuring the rapid number loss induced by LAC, we can

measure the fraction of doubly occupied sites. Although this procedure is conceptually simple, it seems

optimizing of relevant parameters for for the light such as detuning and intensity lacks a well developed

routine [148], and a patient search is required. The goal of the optimization is to separate the timescale of

the two-body loss due to LAC and the timescale of the one-body loss due to heating from light scattering.

However, changing the detuning and the intensity of the light change both simultaneously. It is important

to check the light parameters with a band insulator (with a high fraction of doubly occupied sites) and a

spin-polarized gas (with no doubly occupied site), to ensure these two timescales are well separated.

For measurements in this chapter, the LAC light is 50MHz blue-detuned from the |F = 9/2,mF = 9/2〉

to |F ′ = 11/2,mF = 11/2〉 transition. As a verification of the chosen parameters, we performed LAC mea-

surements for two-component fermions in the band insulator regime (Fig. 5.12(a)) and a spin-polarized gas

in the metallic regime (Fig. 5.12(b)). For the band insulator, the decay of the total atom number shows

two loss timescales. The lost on a fast timescale corresponds to LAC removing atoms from doubly occupied

sites, while the decay over a slower timescale results from single atoms ejected from the dipole trap via
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heating because of spontaneous scattering. In contrast, for the spin-polarized lattice gas, for which the Pauli

exclusion principle forbids the population of doubly occupied sites, only a slow decay process appears.
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Figure 5.12: Number of remaining atoms after various duration of a near-resonant light pulse. (a): Two-
component Fermi gas at s = 4ER. The decay curve shows two timescales: a fast initial loss (τ1 = 0.77 ±
0.34)ms due to LAC between atoms residing on the same lattice sites, and a slow decay due to heating
(τ2 = 14.5 ± 4.2)ms. The black line is a fit to A1e

−t/τ1 + A2e
−t/τ2 . (b): Spin-polarized Fermi gas at

s = 4ER. Since the Pauli exclusion principle forbids a lattice site from being occupied by two identical
fermions, the short-timescale decay is absent. A fit to A2e

−t/τ2 gives (τ2 = 5.9± 0.6)ms (black curve). The
difference in the slow decay timescale between (a) and (b) is due to the different final optical trap depth: to
access a band insulator state, a tighter confinement is required.

5.4.2 Experimental measurements of double occupancy

For measuring the population of doublons created by CSFT, we prepare a |↑〉 gas with N ≈ 64000 atoms

and T/TF ≈ 0.25 before adiabatically loading them into an s = 10ER lattice. The carrier frequency ω↑↓ is

located using Raman spectroscopy with a 0.7ms Raman pulse, which is too short to drive CSFT. A gaussian

fit to this Raman spectroscopy measurements gives ω↑↓ with only few experimental cycles. Fig. 5.13 shows

the procedure for double occupancy measurements. After the Raman pulse, the lattice depth is rapidly

enhanced to s = 29ER (with ~/t ≈ 50ms) to freeze any further dynamics. Also, the anti-gravity coil is

ramped off, such that the direction of the magnetic field is along the propagation direction of the LAC light

to guarantee a σ+ polarization for driving the |F = 9/2,mF = 9/2〉 → |F ′ = 11/2,mF = 11/2〉 transition.

The repump light is turned on during the LAC stage to bring atoms populated in the F = 7/2 state because

of spontaneous Raman scattering back to the F = 9/2 state.

Fig. 5.14 plots sample data for LAC measurements with Raman frequency (∆ω − ω↑↓)/2π = 3.5kHz,

which corresponds to the measured +U CSFT sideband. Two loss processes are evident as the duration of
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Figure 5.13: Sequence of the double occupancy measurements with light-assisted collisions. Magnetic field
(green line) increases to 13G before lattice loading. Lattice (red line) is ramping to 10ER in 100ms. A Raman
driving field is on for 50ms, during which CSFT event happens and creates doublon-hole pair. Lattice is
jumped to 29ER to arrest further dynamics, before the double-occupation measurements via an LAC light
pulse. Finally, a time-of-flight fluorescence imaging is taken to obtain the atom number.

the LAC pulse is changed. These data are fit to a double exponential decay function N(t) = NDe
−t/t1 +(N−

ND)e−t/t2 , with N , ND, t1, and t2 as free parameters. The fraction of doubly occupied sites is determined

as D = ND/N .

Repeating this procedure at different ∆ω gives the dependence of D on the Raman detuning. We find

that a resonance feature for doublon creation is centered near the CFST spectroscopy sideband peak at

∆ω − ω↑↓ = U
~ (Fig. 5.15). Although the Raman pulse remains on for a time period much longer than the

tunneling timescale, processes such as removing one atom from a doubly occupied site to a nearby empty

site due to the tight-binding t term are significantly suppressed due to the energy mismatch. Hence, it is

reasonable to conclude that the population of doubly occupied sites are all created via CSFT events. The

data in Fig. 5.15 are compared with the fit from Fig. 5.8 to |f↑−f↓|, which can be interpreted as the fraction

of atoms that flip their spin during CSFT. The close agreement between D and the fit imply that each

spin-flip is associated with the creation of a doubly occupied site.
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Figure 5.14: Sample data showing the LAC-induced number decay after a 50ms Raman pulse with (∆ω −
ω↑↓)/2π = 3.5kHz at s = 10ER. The data are fit to a double exponential decay function N(t) = NDe

−t/t1 +
(N − ND)e−t/t2 with t1 = 3.1 ± 0.77ms and t2 = 13.7 ± 2.5ms (black solid line). We attribute the faster
decay process to the collisional loss from lattice sites with double occupation. The amplitudes of these two
exponential decays give the fraction of double-occupied sites. The dashed line in this figure is a fit to single
exponential decay function; the deviation to measured data points is evident. The inset is the same plot but
with linear axes.
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Figure 5.15: Population of doubly occupied sites D due to density-dependent tunneling. D is inferred from
light-assisted collisions at various (∆ω−ωc)/2π. The vertical error bar comes from the uncertainty in the fit
to LAC data. The horizontal error bar is due to ambient magnetic field drift and is estimated from carrier
frequency measurements at the beginning and the end of LAC measurements. The black curve plots f↑− f↓
from the fitting function in Fig. 5.8(b).
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5.5 Effect of lattice filling fraction on CSFT

5.5.1 Technique to reduce filling

As a demonstration for the sensitivity of CSFT to site occupancy, we intentionally reduce atom number

after loading them into optical lattices and therefore controllably introduce more vacancies. The technique

involves three steps:

(i) (ii) (iii)

Figure 5.16: Technique used for increasing the vacancies in optical lattices by reducing number. After
loading atoms into the optical lattice, (ii): a fraction of atoms are transferred to the F = 7/2 manifold by
a microwave-frequency magnetic field sweep, (iii): a resonant probe light pulse is applied to remove atoms
remaining in the F = 9/2 manifold, and finally (iv) atoms in the F = 7/2 manifold are brought back to their
initial state by another magnetic field sweep. This whole procedure takes a few milliseconds; atoms will not
change their positions during these steps. The fraction of atoms remaining can be adjusted by varying the
power of the first microwave-frequency magnetic field sweep.

• After turning on the lattice, atoms are transferred from the |↓〉 state to the |F = 7/2,mF = 7/2〉 state

via adiabatic rapid passage (ARP) driven by a microwave-frequency magnetic field. The microwave

field is swept across 0.4MHz in 0.5ms, and its power is varied to control the probability of a transition

between these two hyperfine states. The fraction transfered to the F = 7/2 state after this microwave

sweep is denoted as δN (Fig. 5.16(ii)).

• A 0.5ms pulse of light, resonant with the |F = 9/2,mF = 9/2〉 → |F ′ = 11/2,mF = 11/2〉 transition

is applied. Atoms remaining in the |↑〉 state are removed from the lattice (Fig. 5.16(iii)).

• A second ARP sweep, swept across 0.8MHz in 1ms, brings all of the atoms shelved in the F = 7/2

manifold back to the |↓〉 state (Fig. 5.16(iv)).

With this strategy, the number of atoms being removed is 1− δN , which can be simply adjusted by varying

the power of the first microwave field sweep.
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5.5.2 Suppression of CSFT by vacancies

After this procedure described, unoccupied sites are randomly distributed through out the spin-polarized

atomic density distribution. The presence of holes suppresses CSFT, which can only occur when adjacent

sites are occupied. We probe this effect by measuring changes in |f↑− f↓| for a 40 ms Raman pulse with ∆ω

fixed on the ±U peaks of the CSFT sideband for a s = 8ER lattice gas (Fig. 5.17(a)). As the number of atoms

is reduced and the hole density increases, |f↑ − f↓| decreases, indicating that fewer atoms can participate in

CSFT. Panels (b) and (c) in Fig. 5.17 are sample data showing f↑−f↓ and the carrier feature for δN = 0.57.

It is evident that while the peak height for the on-site spin-flip event almost remains unchanged, the peak

heights for CSFT event reduce roughly by a factor of 2, compared with the case without removing atoms.

5.5.3 Simulation of CSFT sensitivity to vacancies

We developed a numerical simulation to determine the sensitivity of CSFT to vacancies in the lattice. We

compute a density distribution in the non-interacting limit, and determine the probability that neighboring

sites are occupied as atoms are randomly removed. The density distribution after turning on the lattice is

generated according to

n (rx, ry, rz) =

∫
d3~q

(2π)3

1

eβ[2t[3−cos(πqx/qB)−cos(πqy/qB)−cos(πqz/qB)]+V (rx,ry,rz)−µ̃] + 1
,

where V (rx, ry, rz) is the total harmonic potential imposed by the optical trap and lattice beams, µ̃ is the

chemical potential, β = 1/kBT̃ , and T̃ the effective temperature in the lattice. Both µ̃ and T̃ are solved by

matching the entropy and number of atoms N to the corresponding values in the dipole trap. Non-interacting

thermodynamics (including the tight-binding lattice dispersion and confining potential) are solved to relate

the entropy to N and T̃ . Each site in the simulated lattice is computed as occupied by a single atom or

empty based on comparing a random number in the interval [0, 1] to n (rx, ry, rz).

Atoms are randomly removed from the simulated density profile according to a probability δN , which

corresponds to the average fraction of atoms discarded. The number of pairs Np of adjacent occupied sites

remaining after this removal procedure is counted. As shown in an inset to Fig. 5.18, atoms are only counted

once if they participate in any nearest-neighbor pair. Results from this simulation for the fraction of atoms

Np/(NδN) are shown in Fig. 5.18 for N = 61000 and entropy per particle S/N = 2.89kB in the lattice.

This curve is also plotted in Fig. 5.17 as a comparison to experimental data points, which shows a good

agreement. Codes for this simulation can be found in the Appendix.
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Figure 5.17: Density dependence of CSFT. (a): The CSFT spectroscopy signal taken with fixed (∆ω −
∆ω↑↓) ≈ ±U/~ is shown for varied fraction δN of atoms randomly removed from an s = 8ER lattice gas.
For these data, the averaged number N = 61000, and the gas was cooled to T/TF ≈ 0.35 before turning
on the lattice. Data obtained with the +U sideband are shown as red circles and those for −U as black
squares. The sideband frequencies were determined using a double-gaussian fit to CSFT spectroscopy data,
as in Fig. 5.8. (b): f↑− f↓ for δN = 0.57. The peak height of the CSFT feature reduces roughly by a factor
of two. (c): The carrier feature for δN = 0.57, inferred with the same method as for Fig. 5.8(c). The peak
value roughly remains at 0.5, the same as in Fig. 5.8(c).
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Figure 5.18: The fraction of atoms with nearest neighbors at various removal fractions δN for N = 61000
and S/N = 2.89kB , which corresponds to kBT̃ = 9.7t and chemical potential µ̃ = 6.4t in the lattice. The
insets at the right show sample occupation profiles (with one black dot per atom) through a central slice of
the gas. The inset at bottom left schematically illustrates the procedure for counting pairs.
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5.6 Rabi rate of CSFT

5.6.1 Measuring the Rabi rate of the carrier

The Rabi rate of the carrier feature can be measured using standard resonant Rabi oscillations. The carrier

frequency ω↑↓ is determined using a fit of the spin transition probability vs. Raman detuning ∆ω with a

0.7ms Raman pulse, which is too short to drive CSFT.

Fig. 5.19(a) and (b) show the sample data for carrier Rabi oscillations at different Raman power. The data

are fit to a function e−t/τ sin2(
Ω↑↓

2 t) to obtain the carrier Rabi rate Ω↑↓. Fig. 5.19(c) plots the relationship

between Ωc and the Raman power. A linear fit gives Ω↑↓ = 2π(IR × 1.13)kHz, with IR the intensity of

Raman beams.

5.6.2 Measuring the Rabi rate of CSFT

Measuring the slower rate for CSFT requires a longer timescale. We eliminate the background contribution

from the broad carrier feature using the same procedure as for Fig. 5.8. After locating the carrier frequency

ω↑↓, we perform two measurements with the same Raman pulse time at ∆ω = ω↑↓+U/~, but with different

initial spin polarization (Fig. 5.20(a)). The difference between these two measurements f↑ − f↓ only reflects

the CSFT process. Fig. 5.20(b) plots the measured CSFT signal for different Raman pulse times at s = 8 ER

lattice depth.

The red curve in Fig. 5.20(b) is a fit to

fCSFT(t) = A
Ω2

CSFT

2γ2 + Ω2
CSFT

{
1−

[
cos(λt) +

3γ

2λ

]
e−

3γ
2 t

}
, (5.19)

with λ =
√

Ω2
CSFT + 1

2γ
2. This expression is the solution to optical Bloch equations with damping due to

spontaneous emissions in the case of resonant light [149]. With γ, A, and ΩCSFT as free parameters, a fit

gives ΩCSFT = (15± 1)rad/s for the sample data shown in Fig. 5.20(b).

A similar procedure is performed at different Raman powers. Combined with the relationship between

Ω↑↓ and the Raman power (Fig. 5.19(c)), we can plot the Rabi rate of CSFT vs. the carrier Rabi rate, as

shown in Fig. 5.21. A linear fit gives a slope of 0.011±0.001. As discussed later in Section.5.7, the predicted

ratio of |ΩCSFT/Ω↑↓| is:

t

U

2√
2

[
1− cos(δ~k · ~d)

]
≈ 0.047. (5.20)

Therefore, although the measured CSFT Rabi rate presents a linear dependence on Ω↑↓, its timescale is

roughly a factor of 5 slower than the theoretical prediction. The uncertainty in t and U from measurements
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Figure 5.19: Calibration of the carrier Rabi rate. Standard resonant Rabi oscillation of the carrier Ω↑↓ are
measured with the Raman beam power servoed at (a) 0.15V and (b)1.5V. The ratio between the power of
a single Raman beam to the servo voltage is 1.63 ± 0.01mW/V. A fit to a damped sin2 function is used to
obtain Ω↑↓. (c): Relation between Ω↑↓ and the Raman intensity.

163



Figure 5.20: Measurements of CSFT Rabi rate with carrier Rabi rate Ω↑↓ = 0.2U/~. (a): The fraction of
atoms transferred to the spin state is shown for an initially |↑〉 (black squares) and |↓〉 (red circles) spin-
polarized gas at s = 8ER, at various Raman pulse times. The frequency difference between two Raman
beams is fixed to be ∆ω−ω↑↓ = U/~. (b): Time evolution of |f↓− f↑|. The red curve is a fit to the solution
of the optical Bloch equations with spontaneous decay.

of the lattice potential depth are too small to explain this difference. Section. 5.7 will discuss the possible

source of this discrepancy in details.

5.7 Theoretical description of effective CSFT Hamiltonian

The theoretical derivation in this section is done by Vito Scarola and Hoi Hui at Virginia Polytechnic

Institute and State University.

5.7.1 Effective Hamiltonian for correlated spin-flip tunneling

As I have discussed, for the three-level system shown in Fig. 5.3(a), the single-particle Hamiltonian for the

Raman beams coupling the |↑〉 and |↓〉 states is:

HRaman ≈

 δ Ω
2 e
−i ~δk·~R

Ω∗

2 e
i ~δk ~R 0

 , (5.21)

with Ω = −Ω∗1Ω2

2∆R
as the effective Rabi rate, and ~δk is the difference in wavevectors between two Raman

beams. For our case, Ω1 ≈ Ω2 � ∆R, so the energy shift due to the AC Stark effect can be ignored.

We project this Hamiltonian onto the lowest band using localized Wannier functions as a basis, where
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Figure 5.21: Relationship between CSFT Rabi rate and carrier Rabi rate. A linear dependence of ΩCSFT

on Ω↑↓ (red curve), as expected by theoretical calculation, shows here. However, the slope is a factor of 5
smaller compared with theory. A possible source of this discrepancy is the phase-noise between the Raman
laser beams (more discussion on this can be found in the next section). The error bars are derived from fit
uncertainty.
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|iσ〉 denotes the localized Wannier function at the ith site of the lattice with spin σ. Then we have:

HRaman =
∑
i

{
Ω

2
|i ↑〉 〈i ↑| e−i ~δk·~R |i ↓〉 〈i ↓|+ Ω∗

2
|i ↓〉 〈i ↓| ei ~δk·~R |i ↑〉 〈i ↑|

}
+
∑
〈ij〉

{Ω

2
|i ↑〉 〈i ↑| e−i ~δk·~R |j ↓〉 〈j ↓|

+
Ω

2
|j ↑〉 〈j ↑| e−i ~δk·~R |i ↓〉 〈i ↓|+ Ω∗

2
|i ↓〉 〈i ↓| ei ~δk·~R |j ↑〉 〈j ↑|+ Ω∗

2
|j ↓〉 〈j ↓| ei ~δk·~R |i ↑〉 〈i ↑|},

(5.22)

where 〈ij〉 labels the indices of nearest neighbor sites. The second-quantized version of this Hamiltonian is:

HRaman =
∑
〈ij〉

(
Ω

2
Ψije

−i ~δk·
~Ri+

~Rj
2 c†i↑cj↓ +

Ω∗

2
Ψ∗ije

−i ~δk·
~Ri+

~Rj
2 c†i↓cj↑ + h.c.

)

+
∑
i

(
Ω

2
Ψ0e

−i ~δk· ~Ric†i↑ci↓ + h.c.

)
+
δ

2

∑
i

(
c†i↑ci↑ − c

†
i↓ci↓

)
(5.23)

where ~Ri is the position of the ith lattice site, Ψij =
∫
d~r w∗i e

i ~δk·(~Ri−~Rj)wj is a Debye-Waller factor, and

Ψ0 = Ψ00. The first term is spin-flip hopping term akin to spin-orbit coupling in the lattice. The second

term is an on-site spin-flip term, which can be understood as an effective Zeeman term in the x, y directions.

The fourth term is an effective Zeeman energy.

Therefore, the full Hamiltonian is

H = HHubbard +HRaman

= −t
∑
〈ij〉σ

(
c†jσciσ + h.c.

)
+ U

∑
i

ni↑ni↓ +
∑
〈ij〉

(
Ω

2
Ψije

−i ~δk·
~Ri+

~Rj
2 c†i↑cj↓ +

Ω∗

2
Ψ∗ije

−i ~δk·
~Ri+

~Rj
2 c†i↓cj↑ + h.c.

)

+
∑
i

(
Ω

2
Ψ0e

−i ~δk· ~Ric†i↑ci↓ + h.c.

)
+
δ

2

∑
i

(
c†i↑ci↑ − c

†
i↓ci↓

)
. (5.24)

Two-site, two-atom system

For simplicity, we consider a two-site system with two atoms (we will generalize to many-site system later).

This Hamiltonian can be separated into three parts:

H0 = U
∑
i=1,2

ni↑ni↓ +
δ

2

∑
i=1,2

(
c†i↑ci↑ − c

†
i↓ci↓

)
, (5.25)

H1 = −t
∑
σ

(
c†1σc2σ + c†2σc1σ

)
+
∑
i=1,2

(
Ω

2
Ψ0e

−i~δ·~Ric†i↑ci↓ +
Ω∗

2
Ψ∗0e

i ~δk·~Ric†i↓ci↑

)
, (5.26)

H2 =
Ω

2
Ψ1e

−i ~δk·
~R1+~R2

2 a†1↑a2↓ +
Ω∗

2
Ψ∗1e

i ~δk·
~R1+~R2

2 a†2↓a1↑ +
Ω

2
Ψ1e

−i ~δk·
~R1+~R2

2 a†2↑a1↓ +
Ω∗

2
Ψ∗1e

i ~δk·
~R1+~R2

2 a†1↓a2↑.

(5.27)
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When U ≈ δ, the subspace α = {|↑, ↑〉 , |↑↓, 0〉 , |0, ↑↓〉} have similar energies with respect to H0: Eα =

{δ, U, U}. It is connected to the subspace β = {|↑, ↓〉 , |↓, ↑〉} (which has energy Eβ = 0 with respect to H0)

by H1. H2 does not couple α with β, and thus we can ignore it for now and add it back later. In the basis

of the {|↓, ↓〉 , |↑↓, 0〉 , |0, ↑↓〉 , |↑, ↓, 〉 , |↓, ↑〉}, the matrix for H0 +H1 is:

H0 +H1 =



δ 0 0 Ω
2 Ψ0e

−i ~δk·~R1 Ω
2 Ψ0e

−i ~δk·~R2

0 U 0 −t t

0 0 U −t t

Ω∗

2 Ψ0e
i ~δk·~R1 −t −t 0 0

Ω∗

2 Ψ0e
i ~δk·~R2 t t 0 0


. (5.28)

Assuming δ ≈ U � 0, H1 can be treated as a perturbation to H0, so we project H0 +H1 into the subspace

α. The matrix element after projection is

〈i, α| P̂ (H0 +H1) |j, α〉 = 〈i, α|H0 +H1 |j, α〉 −
∑
k∈β

〈iα|H1 |kβ〉 〈kβ|H1 |jα〉
2

(
1

Ekβ − Eiα
+

1

Ekβ − Ejα
).

Then add H2 to obtain the effective Hamiltonian as:

H2-site
eff = H2+

δ +
2Ω2Ψ2

0

4δ −tΩΨ0
e−i

~δk·~R1−e−i ~δk·~R2

4 ( 1
δ + 1

U ) −tΩΨ0
e−i

~δk·~R1−e−i ~δk·~R2

4 ( 1
δ + 1

U )

−tΩ∗Ψ0
ei
~δk·~R1−ei ~δk·~R2

4 ( 1
δ + 1

U ) U + 2t2

U
2t2

U

−tΩ∗Ψ0
ei
~δk·~R1−ei ~δk·~R2

4 ( 1
δ + 1

U ) 2t2

U U + 2t2

U



167



We can write this effective Hamiltonian in second quantization as:

H2−site
eff =

(
δ +
|ΩΨ0|2

2δ

)
|↑, ↑〉 〈↑, ↑|+

(
U +

2t2

U

)
(|↑↓, 0〉 〈↑↓, 0|+ |0, ↑↓〉 〈0, ↑↓|)

−

(
tΨ0Ω

e−i
~δk·~R1 − e−i ~δk·~R2

4

(
1

U
+

1

δ

)
(|↑, ↑〉 〈↑↓, 0|+ |↑, ↑〉 〈0, ↑↓|) + h.c.

)

+
2t2

U
(|↑↓, 0〉 〈0, ↑↓|+ |0, ↑↓〉 〈↑↓, 0|) +H2

=

[(
δ

2
+
|ΩΨ0|2

4δ

) ∑
m=1,2

nm↑ +

(
U +

2t2

U
− δ

2
− |ΩΨ0|2

4δ

) ∑
m=1,2

nm↑nm↓ +
2t2

U

(
a†1↑a

†
1↓a2↑a2↓ + h.c.

)
−
(
tΩΨ0

e−iR1k − e−iR2k

4

(
1

U
+

1

δ

)(
n1↓a

†
2↓a1↑ + n2↓a

†
1↓a2↑

)
+ h.c.

)
+(

Ω∗

2
Ψ∗12e

iR1kR
(
n1↓a

†
2↓a1↑ + n2↓a

†
1↓a2↑

)
+ h.c.

)]
.

(5.29)

The last two terms in 5.29 can be viewed as tunneling accompanied with a spin-flip. The last term is

proportional to Ψ12, which is almost zero for the lattice depths used in this work. The second last term,

with prefactor

−tΩΨ0
e−iR1k − e−iR2k

4

(
1

U
+

1

δ

)
≡ K12,

corresponds to CSFT as observed in our measurements. The third term in this equation, proportional to

t2/U , exchanges a pair of doublons and holes at neighboring sites, e.g. |↑↓, 0〉 → |0, ↑↓〉.

Estimation of U using the resonance near δ = U

One way the value of the Hubbard U is estimated experimentally is via CSFT by finding the resonant δ

at which doublon creation is most effective. As shown in Fig. 5.9, this procedure appears to undervalue U

compared with the tight-binding prediction from independent measurements of the lattice potential depth.

To understand how higher order terms in Heff may explain this discrepancy, we consider a two-site system

with the three states | ↑, ↑〉, | ↑↓, 0〉, |0, ↑↓〉 and solve for the value of δ at which the doublon creation rate is
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maximized. Writing Heff in this basis,

H
(2)
eff =


δ +

2Ψ2
0|Ω|

2

δ K12 −K21

K∗12 U + 2J2

U
2J2

U

−K∗21
2J2

U U + 2J2

U



= U†


δ +

2Ψ2
0|Ω|

2

δ

√
2K12 0

√
2K∗12 U + 4J2

U 0

0 0 U

U
(5.30)

where U transforms the basis to
{
| ↑, ↑〉, |↑↓,0〉+|0,↑↓〉√

2
, |↑↓,0〉−|0,↑↓〉√

2

}
, and the equality Kij = −Kji has been

used. The first two states have the same energy (and hence doublon creation is most effective) when:

δ +
Ψ2

0 |Ω|
2

2δ
= U +

4t2

U

δ ≈ U +
4t2 − |Ω|2 Ψ2

0/2

U
+

2t2 |Ω|2 Ψ2
0

U3
(5.31)

Here we see that the resonant condition for maximal doublon creation is not exactly at δ = U , but instead

shows higher-order corrections. In the case that U � t, it gives δ = U − Ω2Ψ2
0

2U ≈ 0.02U . These corrections

contribute, but not fully accommodate, to the deviation between the measured and predicted U discussed

in the main text.

Generalization to many sites

To derive an general effective Hamiltonian for CSFT with many sites, we still work in the limit U, δ � t,Ω

and treat the first three terms in Eq. 5.24 as perturbations. We consider the case δ ≈ U and choose to require

exact energy conservation between final states and the initial spin-polarized state. Off-resonant processes

that can, for example, lead to sites occupied by a single spin-down atom are ignored. We therefore project

our Hamiltonian onto such states where all sites obey 〈ni↓(1− ni↑)〉 = 0. Let P be the projector onto this
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space. Second-order perturbation theory then gives

Heff =P

−t∑
〈ij〉σ

(
c†iσcjσ + hc

)
− tΨ0

4

(
1

U
+

1

δ

)∑
〈ij〉

(
Ω∗
(
ei
~δk·~Ri − ei ~δk·~Rj

)
c†i↓cj↑ + i↔ j + hc

)

+

(
δ

2
+
|Ω|2 Ψ2

0

4δ

)∑
i

(ni↑ − ni↓) + U
∑
i

ni↑ni↓

+
∑
〈ij〉

(
Ω

2
e−i

~δk·
~Ri+

~Rj
2 Ψijc

†
i↑cj↓ + i↔ j + hc

)
+

2t2

U

∑
〈ij〉

(
c†i↑c

†
i↓cj↓cj↑ + hc

)
+

2t2

U

∑
〈ij〉

(ni↑ni↓ (1− nj↑) (1− nj↓) + i↔ j) +
t2

U

∑
〈ij〉,〈ij′〉,j 6=j′

ni↑c
†
i↓cj′↓c

†
j↓ci↓

+
t2

U

∑
〈ij〉,〈ij′〉,j 6=j′

(1− ni↓) c†j↑ci↑c
†
i↑cj′↑ −

t2

U

∑
〈ij〉,〈ij′〉,j 6=j′

(
c†j↑c

†
j′↓ci↑ci↓ + hc

)P.

(5.32)

Noting that Ψij ≈ 0 for i 6= j, Ψ0 ≈ 1, and ignoring higher-order interactions, this can be written as

Heff =P

−t∑
〈ij〉σ

(
c†iσcjσ + hc

)
+
∑
〈ij〉

(
Kijc

†
j↑ci↓ +Kjic

†
i↑cj↓ + hc

)

+
δ∗

2

∑
i

(ni↑ − ni↓) + U
∑
i

ni↑ni↓

]
P +O

(
t2

U

)
,

(5.33)

where

Kij = −tΩΨ0
e−i

~δk·~Ri − e−i ~δk·~Rj
4

(
1

U
+

1

δ

)
(5.34)

δ∗ = δ +
|ΩΨ0|2

4δ
. (5.35)

Heff governs the dynamics of fully polarized initial states discussed in the main text. The first term

moves (but does not create) doublons and holes (e.g., |↑↓, ↓〉 → |↓, ↑↓〉). The second term is a spin-flip

tunneling, which due to the projectors P is effective only if no sites with spin-down are created. We can

therefore rewrite the second term by explicitly inserting the projectors: Kijni↑(1− nj↓)c†j↑ci↓ + i↔ j + h.c.

This term can create doublon-hole pairs out of the fully polarized initial state and dominates the dynamics

to leading order.

5.7.2 Validating the CSFT Effective Model

The effective model Heff is a perturbative result, in comparison to the full tight-binding Hamiltonian H0. To

test the validity of the dynamics predicted by Heff , we compare the time evolution of the double occupancy
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in both models.

The dynamics of H0 cannot be solved exactly in large systems with dimension higher than one. We

therefore consider doublon dynamics in one-dimension. We initialize a one-dimensional infinite system with

one spin-up fermion in each state, and evolve it with infinite time-evolving block decimation (iTEBD) [142].

The evolution of doublon fraction, defined as D = 〈ni↑ni↓〉/〈ni↑ + ni↓〉, is plotted in Fig. 5.22(a). The

simulations performed with H0 and Heff are both presented.

Here we see that the effective model captures the qualitative features of the full Hamiltonian. The

doublon creation rate at short times is essentially the same for both models. Furthermore, the long-time

steady-state reveals approximately the same doublon fraction. In both models the timescale of equilibration

is roughly set by ~/|K〈ij〉| = 14ms. We therefore see that the effective CSFT model Heff captures the

essential features of the full tight binding model as in in Eq. 5.24.

5.7.3 Theory–experiment comparison

CSFT timescale

Comparing the measured |f↓−f↑| (Fig. 5.20) and the theoretical prediction (Fig. 5.22), it is obvious that the

measured CSFT timescale is at least a factor of five larger than that of the numerical simulations, which use

the experimentally determined carrier Rabi rate. The uncertainty in t and U (which determine Kij and the

CSFT timescale) from measurements of the lattice potential depth are too small to support this difference.

A potential source of this discrepancy is phase-noise between the Raman laser beams, which translates

into fluctuations in the complex phase of Ω in Heff . Phase noise with a non-uniform frequency spectrum

is required to explain the discrepancy between the predicted and measured CSFT time dependence, since

the predicted CSFT time dependence shown in Fig. 5.22 is constrained by all the experimental parameters,

including the independent measurement of Ω using the carrier transition. In order to differentially affect the

carrier and CSFT transitions, the phase-noise spectral density must be frequency dependent.

To explore this, we carry out iTEBD numerical simulations with a time-dependent Ωeiφ(t). The result,

plotted as the solid line in Fig. 5.23, shows a much better agreement with the experimental result. Hoi and

Vito plan to write a separate paper with more detailed discussion.

Transfer fraction vs ∆ω

By time-evolving the full Hamiltonian (Eq. 5.24) until the system reaches its steady state at different δ, it

predicts the transfer fraction to the other spin-component as ∆ω varies. Fig. 5.24 shows the comparison

between experimental measurements and the spin-flip fraction predicted by simulation. While the center
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Figure 5.22: The evolution of doublon fraction 〈ni↑ni↓〉/〈ni↑+ni↓〉 from a numerical simulation with constant
Ω. The solid lines shows the simulation with the full Hamiltonian, while the dashed line shows that with
the effective Hamiltonian Heff derived from second-order perturbation theory. The states are initialized
with one spin-up fermion on every site, and the parameters are determined by experiment: t/h = 0.25kHz,

U/h = 3.22kHz, Ω = 0.2U , and ~δk · ~d = π/2
√

3. This figure was made by Vito Scarola and Hoi Hui.
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t i m e  ( m s )
Figure 5.23: CSFT signal for varied Raman pulse time. The Raman detuning for these measurements is fixed
to the +U CSFT sideband. The measurements are shown using black circles, and a theoretical simulation is
displayed as a red line. The simulation is performed with Ω in H0 replaced with Ωeiφ(t), where 〈φ(t)2〉=8, and
the characteristic timescale of the fluctuations in φ(t) is 2 ms. The dynamics has been averaged (indicated
by the notation 〈〉) over five realizations of φ(t). For these parameters, the carrier Rabi oscillations are not
strongly perturbed. Theoretical curve is from Vito Scarola and Hoi Hui.
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positions of carrier and CSFT feature match the experimental results, the predicted linewidth is much

narrower than measurements. Possible sources of such broadening may come from the phase noise on

Raman laser beams.
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Figure 5.24: Comparison between transfer fraction at different ∆ω of simulation (solid line) and experimental
measurements (round circles). (a): Numerical simulation presents a distinguishable and narrow peak of
CSFT event. (b): Peak positions in |f↑ − f↓| given by the simulation match the experimental results.

5.8 Conclusion and outlook

In this work, we realize correlated, density-dependent tunneling for fermionic 40K atoms trapped in an optical

lattice. By appropriately tunning the frequency difference between a pair of Raman beams applied to a spin-

polarized gas, simultaneous spin transitions and tunneling events are induced that depend on the relative

occupations of neighboring lattice sites. We spectroscopically resolve correlated spin-flip tunneling events,

and the corresponding increase in doubly occupied sites is measured using number loss from light-assisted

collisions. Furthermore, by controllably introducing vacancies to a spin-polarized lattice gas, we verify that

the magnitude of this correlated tunneling is suppressed when neighboring lattice sites are unoccupied. This

work is the first observation of density-dependent tunneling in an optical lattice Fermi-Hubbard model.

In the future, the technique we have developed may be used to observe exotic states such as bond-ordered

waves, triplet paring, and hole superconductivity [141]. In addition, with combination to spin-dependent

lattice [150, 151], this technique allows an arbitrary manipulation of tunneling for one spin component by

selectively tuning the lattice geometry for another spin component.
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Chapter 6

Rydberg Dressed States and EIT
measurement

6.1 Introduction

Interactions between atoms in optical lattices are normally short-ranged and on-site only. While this feature

is benefitial in terms of testing the most minimal Hubbard model, it limits the exploration on phenomena that

require long-range interactions. Introducing long-range interactions in optical lattices has attracted intense

interest because of the possibility to realize novel quantum phases of matter, such as quantum magnetism,

topological phases, and exotic superfluidity [152–156].

Several experimental approach have been pursued, including trapping polar molecules [8, 157, 158] and

atomic species with a large magnetic dipole moment [9, 159–162]. The interatomic potentials for these

appraoches have a long-range and anisotropic character. Another scheme is loading atoms into an optical

cavity, such that the cavity field mediates infinitely long-range interactions between all atoms [163,164].

Rydberg atoms, which have a valence electron excited to a state with high principle quantum number

n and therefore exhibit strong van der Waals interatomic interactions, are also potential candidates. The

early work on Rydberg atoms includes the interaction between Rydberg states and strong external fields and

dynamics of the valence electron [165]. Rydberg states are also useful for quantum information application

(see Ref. [166] for a review). Quantum gates [167] and collective qubit encoding [168] have been demonstrated.

Recently manipulating Rydberg atoms to study many-body physics has attracted intense interest. Interaction-

induced blockades [169] and self-assembled crystals of Rydberg atoms have been observed experimen-

tally [170]. Arrays of single Rydberg atoms trapped in microtraps have realized Ising-like models for the

study of quantum magnetism [171,172].

The disadvantage of using Rydberg excitations is their short lifetime, which can hinder exploring exotic

quantum phases. The lifetime of Rydberg atoms is on the order of tens of microseconds [173], while it takes

tens of milliseconds for a typical experimental system to reach equilibrium. Recent theoretical proposals

have suggested Rydberg-dressed states as a technique to avoid this problem. In this method, a small and

adjustable fraction f of a Rydberg state is coherently mixed into the ground state wave function to enhance
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the lifetime by a factor of 1/f2. In this scheme, the interaction length scale can be comparable to the lattice

spacing [174, 175]. Rydberg dressing enables the study of extended Hubbard models and novel quantum

phases such as charge-density waves [176]. By tuning the interaction range, the crossover from two-body

interactions to collective interactions may also be observable [177]. In addition, if nP states are mixed into

the ground state, it may allow simulating gauge field models [178].

Thus far, coherent interactions produced via Rydberg dressing of atoms in optical lattices has only been

observed for bosonic 87Rb atoms [179]. Dissipative effects have also been measured for trapped and lattice

gases composed of Rb and Sr atoms [180–185], and Rydberg dressing has been used to entangle two Cs

atoms confined in optical tweezers [186].

We plan to realize Rydberg-dressed interactions between fermionic 40K atoms trapped in an optical

lattice. Achieving this will be an exciting step toward resolving puzzles related to strongly correlated

electronic solids. Also, compared to previous work with bosons (in the absence of a Feshbach resonance),

Fermi statistics allows us to start from a non-interacting state. Therefore, the interactions induced by

Rydberg-dressing should be easier to resolve.

In this chapter, I will report our progress on realizing long-range interactions in an optical lattice us-

ing Rydberg-dressed atoms. First, I will discuss the theory relevant to Rydberg-dressed states in detail.

Calculations carried out with experimentally accessible parameters demonstrate the possibility to observe

Rydberg-dressed interaction in our experiments. As a first step toward realizing Rydberg-dressed states in

optical lattices, we developed a velocity-selective spectroscopy technique to measure the transition between

5P1/2 to Rydberg states via electromagnetically-induced transparency,

6.2 Properties of Rydberg-dressed atoms

6.2.1 Rydberg atoms

The potential energy from the van der Waals interaction between atoms is Uvdw(R) = C6/R
6, where C6 is

the van der Waals coefficient, and R is the interatomic separation. For ground-state alkali metal atoms, C6

is 103 − 104 in atomic units [187], which is only 10−6− 10−7(Hz ·µm6). Typical optical lattice spacings are

0.1µm ≈ 104a0, where a0 is the Bohr radius. Therefore, the Uvdw for particles on different lattice sites can

be ignored.

On the other hand, Rydberg atoms, which have a valence electron excited to an energy level with high
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principle quantum number n, have exaggerated atomic properties. The energy levels of Rydberg atoms are

E(n, j, l) = − R′

(n∗)2
, (6.1)

where R′ is the Rydberg constant, n∗ = n− δnlj is the effective quantum principle number, and δnlj is the

state-dependent quantum defect. The quantum defects are determined from spectroscopic measurements

and can be expressed as:

δnlj = δ0lj +
δ2lj

(n− δ0lj)2
+

δ4lj
(n− δ0lj)4

+ ... , (6.2)

where δ0lj , δ2lj ... are constants called quantum defects that depend on the orbital angular momentum

quantum number l and the total angular momentum quantum number j.

The wavefunction for the Rydberg valence electron is:

[
−(

∂2

∂r2
+

2

r

∂

∂r
− L̂2

r2
) + V (r)

]
Ψ(r, θ, φ) = EΨ(r, θ, φ), (6.3)

where V (r) is the core potential. The wavefunction can be separated to radial and angular parts as

Ψ(r, θ, φ) = R(r)Y mll (θ, φ). With knowledge of the binding energies (which can be measured experimen-

tally), for these excited states, one can solve the Schrödinger equation analytically or numerically to obtain

important properties such as the orbital radius and dipole matrix elements between different atomic levels.

Compared to expansive work on Rubidium, potassium Rydberg atoms are much less explored experimen-

tally. Here, following the numerical method in Ref. [188,189], we calculate the wavefunctions for potassium

Rydberg states, with the parameters for quantum defects from Ref. [190]. Fig. 6.1 plots the radial component

R(r) and the probability to find the valence electron at radius r. By comparing (c) and (d), the significant

broader distribution in space is obvious for Rybderg atoms (notice the difference in the scale of x-axis).

Since the orbital scale for the valence electron can reach hundreds of nanometers (Fig. 6.1(d)), the Van

der Waals interactions between Rydberg atoms are orders of magnitude stronger than those between ground

state atoms. Table. 6.1 summarizes the leading order in the scaling of important quantities on the effective

quantum principle number n∗.

For l = 0 state in potassium, δn,l=0,j=1/2 = 2.18 is roughly a constant for all n. Table 6.1 lists some

quantities for the ground 4S state and 30S state in potassium, either based on numerically calculated

wavefuntions or from polynomial functions provided by some theoretical references. Lifetime of potassium

nS state is calculated as: 11.5 + 0.256(n∗) − 0.055(n∗)2 + 1.14(n∗)3 in unit of ns [191]. The dispersion

coefficient C6 is calculated as:
[
1.827− 0.435n∗ + 0.002054(n∗)2

]
(n∗)11 in atomic units. Atomic units for
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Table 6.1: Properties of Rydberg levels in potassium.

Property Scaling [192] 4S 30S
Binding energy (n∗)−2 4.11eV 0.0176eV (4.25THz)
Orbital radius (n∗)2 4.94a0 1167a0

C6 (n∗)11 3.945 (a.u.) [193] −1.66× 1017 (a.u.) [194]
Level spacing for adjacent states (n∗)−3 5.78THz 290GHz

Lifetime (n∗)3 24.5µs (without BBR) [191]
Dipole matrix element between 4P1/2 and nS (n∗)−1.5 0.408ea0 0.059ea0

C6 are ≈ 1.445× 10−9Hz ·(µm)6. The effect of blackbody radiation (BBR) has not been taken into account

for the lifetimes. For high n∗, the correction to the lifetime from BBR can be 10%− 30% [191].

(a
.u
.)

(a
.u
.)

(a
.u
.)

(a
.u
.)

Figure 6.1: Radial wavefunction for (a): 4S and 5P and (b): Rydberg state nS1/2. Radial probability density for
(c): 4S and 5P and (b): Rydberg state nS1/2.

6.2.2 Rydberg-dressed state

Because of the large Van der Waals interactions between Rydberg atoms, a small admixture of Rydberg

character with ground states can produce atoms with interatomic interactions large enough to be observed
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Figure 6.2: Schematic illustration of a two-atom, two-level interacting system. Laser light with Rabi rate Ω and
detuning ∆ couples the ground state |g〉 to Rydberg state |r〉. The energies of states (i) |gg〉 and (ii) |gr〉 are
almost independent of interatomic separation due to the tiny Van der Waals interaction. However, the coupling from
|gr〉 → |rr〉 depends on the interatomic spacing R because the energy level is shifted by the strong Van der Waals
energy Uvdw (shown in (iii)). For a blue-detuned coupling light (blue arrow), there exists a interatomic separation
R0 satisfying Uvdw(R0) = −∆ that a two-photon resonance between |gg〉 and |rr〉 occurs.

in cold atom systems. Coherent coupling between the ground state and a Rydberg state by a laser field

produces a new eigenstate of an atom called a Rydberg-dressed state. Considering a two-atom, two-level

system, the ground states |g〉 are coupled to the Rydberg state |r〉 by laser light with detuning ∆ and Rabi

rate Ω. We choose the basis as |gg〉, 1√
2
(|gr〉+ |rg〉), and |rr〉. The Hamiltonian in the rotating frame is

H = ~


0 Ω√

2
0

Ω√
2

∆ Ω√
2

0 Ω√
2

2∆ + Uvdw(R)/~

 , (6.4)

where Uvdw(R) = C6/R
6 is the Van der Waals interaction energy for two Rydberg atoms separated by a

distance R. The antisymmetric state 1√
2
(|gr〉 − |rg〉) is ignored, because it cannot be coupled to the other

states by the laser field.

Rydberg-dressed interaction

It is straightforward to obtain the eigenenergies and eigenstates by diagonalizing this matrix. Because of the

interaction between atoms, the eigenenergies depend on the interatomic spacing. Figs. 6.3(a) and (c) show the

energy levels for a repulsive Rydberg-Rydberg interaction C6 = 2π×1000MHz with Rabi rate Ω = 2π×5MHz,
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for (a) red-detuned light (∆ = 2π × 50MHz) and (b) blue-detuned light (∆ = −2π × 50MHz). Figs. 6.3(b)

and (d) show the interaction energy V (~r) for the Rydberg-dressed state from the two-atom interaction by

subtracting the AC stark shift induced by the coupling laser.
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Figure 6.3: The eigenenergy levels and the interaction potential for a Rydberg-dressed state in a two-level, two-atom
system., with C6 = 2π × 1000MHz. The coupling light has Rabi rate 2π × 5MHz. Panels (a) and (b) are for the
red-detuned case, with ∆ = 2π× 50MHz. Panels (c) and (d) are for the blue-detuned case, with ∆ = −2π× 50MHz.
With the presence of the coupling light, the eigenstates are a mixture of |g〉 and |r〉. The property of the effective
interaction between Rydberg-dressed states depends on the sign of ∆. For ∆ < 0, V (R) has a repulsive soft-core
potential, while for ∆ > 0, V (R) becomes repulsive and diverges at R = (−C6/2∆)1/6.

With a repulsive Van der Waals force, the interaction potential is repulsive for red-detuning. As the

interatomic separation approaches zero, the interaction strength saturates and becomes independent of R.

This is a result of the Rydberg blockade effect [195,196], which involves the strong Van der Waals interaction

shifting the |rr〉 state such that exciting two Rydberg states within a small separation is strongly suppressed

(see (iii) in Fig. 6.2). This soft-core interaction can extend to a distance comparable to 2 − 3 lattice sites,

and the tail of this potential follows a 1/R6 scaling at large R.

On the blue-detuned side, the interaction potential becomes attractive, and an avoided crossing occurs at

2∆ = −C6/R
6, such that V (R) diverges at R = (−C6/2∆)1/6. This corresponds to a two-photon resonance

with the interaction-shifted |rr〉 state, as shown by the blue arrow in Fig. 6.8(iii). Inside this radius, V (R)

is almost independent of R.
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Because we are interested in the weak coupling region, where Ω/∆� 1, we can use perturbation theory

to expand the ground-state energy shift in terms of Ω/∆. Up to fourth order in Ω/∆, we have:

V (R) =
| 〈gg|H 1√

2
(|gr〉+ |rg〉)|2

∆
+
| 〈gg|H 1√

2
(|gr〉+ |rg〉) 1√

2
(〈gr|+ 〈rg|)H |rr〉 |2

(~∆)2(2~∆ + U(R)/~)

=
~2Ω2

2∆
+

~4Ω4/4

(~∆)2(2~∆ + U(R))

=
~2Ω2

2∆
+

Ω4

8∆3
· 1

1 + U(R)/2~∆
, (6.5)

Omitting the term independent of R, the leading order in Rydberg-dressed interaction is

V (R) =
Ω4

8∆3
· 1

1 + (R/Rc)6
, (6.6)

where Rc ≡ ( C6

2~∆ )1/6. The saturation of V (R) to Ω4

8∆3 as R→ 0 is evident from this expression.

Eq. 6.6 indicates that the characteristic length scale of the Rydberg-dressed interaction is Rc, which is

determined solely by the detuning ∆ and the quantum principle number n. By coupling to a Rydberg state

with n ≈ 50, Rc can be comparable to several lattice spacings with a few MHz detuning (Fig. 6.4).

3 4 5 6
0

2

4

n = 3 0

n = 4 0

( M H z )

R c
 (d

)

n = 5 0

Figure 6.4: Dependence of Rc ≡ ( C6
2~∆

)1/6 (in units of the lattice spacing d) at various detuning for n = 30 (black),
n = 40 (red) and n = 50 (blue).
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The Rydberg-dressed interaction energy, defined as Vm = V (R = 0)−V (R→∞), at various detuning ∆

with fixed Ω = 2π× 5MHz is plotted in Fig. 6.5. The solid line shows the result from exact diagonalization,

and the dashed line is the perturbative result, Vm = Ω4/8h∆3. The agreement is good for |∆| > 5|Ω|.
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Figure 6.5: Dependence of Rydberg dressing interaction energy on laser detuning, with Ω = 2π × 5MHz. The solid
line shows the results from exact diagonalization of Eq. 6.4. The dashed line corresponds to a perturbative result up
to fourth order in Ω/∆.

6.2.3 More than two atoms

Understanding more than two interacting atoms is a generally difficult problem. Here we only consider a

simple case, with three atoms fixed to the vertices of an equilateral triangle with sides of length R, as shown
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in the inset to Fig. 6.6(b). Due to the symmetry of the geometry, the Hamiltonian can be written as

H = ~



0
√

3
2 Ω 0 0

√
3

2 Ω ∆ Ω 0

0 Ω 2∆ + Uvdw(R)
√

3
2 Ω

0 0
√

3
2 Ω 3∆ + 3Uvdw(R)


, (6.7)

in the basis of |ggg〉,
√

1
3 {|rgg〉+ |grg〉+ |ggr〉},

√
1
3 {|grr〉+ |rgr〉+ |rrg〉}, and |rrr〉.
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Figure 6.6: The eigenenergies and interaction potential for Rydberg-dressed states in a two-level, three-atom system.
For simplicity, the geometry of the three atoms is fixed to an equilateral triangular. The same values of Ω and C6 are
used as for Fig. 6.3. For ∆ = 2π×50MHz, the behavior of eigenenergy levels and potential is similar to the two-atom
case ((a) and (b)), with a maximum interaction strength larger by a factor of two. However, for ∆ = −2π × 50,
another avoided crossing occurs at a radius where 3∆ = 3Uvdw(R)/~, corresponding to a three-photon resonant
process.

Fig. 6.6 plots the eigenenergies and the interaction potential V (R) between Rydberg-dressed states for

∆ = 2π×50MHz ((a) and (b)) and ∆ = −2π×50MHz ((c) and (d)). The blue detuned side has two avoided

crossings, occurring at 2∆ = −C6/R
6 and 3∆ = −C6/R

6. The behavior on the red-detuned side is similar

to the two-atom case, but the overall Rydberg-dressed interaction energy is roughly a factor of two larger.

This result here suggests that it is preferable to work in a red-detuned regime to avoid multiple energy level
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crossings and to magnify the energy shift due to Rydberg-dressed interactions.

6.3 Experimental approach to realize Rydberg-dressed states in

potassium

6.3.1 Two-photon excitation

Directly coupling the ground and Rydberg state has been realized experimentally in Rb [179], using 297nm

light generated by two-step frequency doubling. We prefer to work with a wavelength that can be generated

using diode lasers. For potassium, the energy separation between the 4S1/2 and 30S1/2 states corresponds

to a laser wavelength of about 300nm [197], which is not compatible with using diode lasers.

Therefore, we plan to implement Rydberg dressing using a three-level system. Instead of coupling to the

Rydberg state directly, we employ a two-photon transition with 5P1/2 as an intermediate state (Fig. 6.8(a)).

The transition wavelength for 4S1/2 → 5P1/2 is 404.8nm; laser diodes at that wavelength are commercially

available thanks to the development of BluRay. The transition wavelength from the intermediate 5P1/2

state to a high nS1/2 state with n ≈ 20 − 50 is approximately 1004-976nm, and high power diode laser

and tapered amplifier are available in that wavelength range. Using the 5P state as an intermediate level

enhances the Rydberg dressed lifetime compared with the D2 transition employed in experiments with Rb

so far, since its natural lifetime is approximately six times longer. Also, compared to the 4S1/2 → 4P1/2

D1 line in K, the electric dipole matrix element
〈
5P1/2

∣∣ er ∣∣nS1/2

〉
is more than a factor of two larger. As

I will discuss, the limited Rabi rate for the 5P1/2 → nS1/2 transition is one of the biggest challenges to

implementing this scheme.

6.3.2 Effect of the intermediate state

Although coupling to the Rydberg state using the 5P1/2 state as an intermediate state is experimentally

convenient, it has some deleterious effects.

Consider a three-level ladder system, as shown in the schematic energy diagram in Fig. 6.8. The Rabi

frequency and the detuning are Ω1 and ∆1 for the blue laser, and Ω2 and ∆2 for the near-infrared (NIR)

laser. The total detuning for this two-photon process is ∆ = ∆1 + ∆2. Similar to the analysis in the

previous section, with a basis |gg〉, (|gm〉+ |mg〉)/
√

2, |mm〉, (|mr〉+ |rm〉)/
√

2, |rr〉, and (|gr〉+ |rg〉)/
√

2,
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Figure 6.7: Electric dipole matrix element for
〈
4P1/2

∣∣ er ∣∣nS1/2

〉
(black) and

〈
5P1/2

∣∣ er ∣∣nS1/2

〉
(blue). We evaluate

dipole matrix elements using numerical integration as
∫
Rn=4,l=1(r)erRn,l=0(r)r2dr.
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Figure 6.8: We will use a two-photon transition to excite Rydberg states in potassium through the intermediate
state |m〉 =

∣∣5P1/2

〉
. The wavelength of light that couples these two transitions is 404.8nm and 980 − 1000nm.

The corresponding Rabi rates and detunings are defined as labelled in this figure. If ∆1 � Ω1 and ∆2 � Ω2, the
three-level system can be approximated as a two-level system, with effective Rabi frequency Ω = Ω1Ω2

2∆1
and detuning

∆ = ∆1 + ∆2 − Ω2
2−Ω2

1
4∆1

.
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the Hamiltonian in the rotating frame is written:

Ĥ3,2-atom = ~



0 Ω1/
√

2 0 0 0 0

Ω1/
√

2 ∆1 Ω1/
√

2 0 0 Ω2/2

0 Ω1/
√

2 2∆1 Ω2/
√

2 0 0

0 0 Ω2/
√

2 2∆1 + ∆2 Ω2/
√

2 Ω1/2

0 0 0 Ω2/
√

2 2(∆1 + ∆2) + Uvdw/~ 0

0 Ω2/2 0 Ω1/2 0 ∆1 + ∆2


. (6.8)

Antisymmetric states such as (|gm〉− |mg〉)/
√

2 cannot be coupled to the other states by the laser fields and

therefore are ignored.

Eigenenergies and interactions

Compared to a two-level two-atom, the situation here is more complicated. Whether the effective interaction

between Rydberg-dressed atoms is repulsive or attractive depends not only on the sign of ∆1 + ∆2, but also

the sign of Ω2
1 − Ω2

2, if Ω2
1 − Ω2

2 is comparable to ∆1. Also, the lifetime for the intermediate state is about

a factor of 20-30 shorter compared to the Rydberg state. To achieve a reasonable lifetime of the Rydberg-

dressed state, smaller population in |m〉 is preferred. Therefore we are only interested in the case where the

population in the intermediate state is very tiny, i.e., ∆1 � Ω1 and ∆1 � Ω2. In the following discussion,

we choose Ω1 = 2π × 40MHz, Ω2 = 2π × 200MHz, and ∆1 = 10GHz, which are experimentally achievable.

The lowest three eigenenergy levels and V (r) are plotted in Fig. 6.9, with ∆2 = −∆1 + 2π × 5MHz for

(a) and ∆2 = −∆1− 2π× 5MHz for (b). Both have the same qualitative behavior as the two-level two-atom

case.

Population in the intermediate state

With the presence of an intermediate state, the wavefunction of the Rydberg-dressed state involves three

components: |ψ〉 =
√

1− f ′2 − f2 |g〉 + f ′ |m〉 + f |r〉. Fig. 6.10 plots the population P in |g〉 (red line),

|m〉 (black line), and |r〉 (blue line), with an interatomic spacing R = 0.4µm, which is approximately the

lattice spacing. The inset shows the population in the |m〉 state, which has a tiny contribution to |ψ〉. The

minimum value of Pm occurs at ∆ = 0 (for a non-interacting system, this minimum value is exactly zero, i.e.,

the so-called “dark state”). The peak of Pr and Pg shift toward the red-detuned side due to the AC Stark

effect, which gives an energy shift (Ω2
2 − Ω2

1)/4∆1 = 2π × 0.96MHz. In addition, unlike a non-interacting
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Figure 6.9: Energy levels and the interaction potential for the Rydberg-dressed states in a three-level, two-atom
system. To suppress the population in the intermediate state, a large ∆1 is preferred. Here, ∆1 = 2π × 10GHz,
Ω1 = 2π×40MHz, Ω2 = 2π×200MHz and C6 = 2π×1000MHz. Because of the large detuning from the intermediate
state, this three-level system presents a qualitatively similar behavior as a two-level system.
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three-level system, the Rydberg-dressed interaction causes the maximum value of Pr to deviate from 0.5.

Indeed, due to the position-dependent Rydberg-Rydberg interactions Uvdw(R), f and f ′ both depend

on R, especially near resonance. Fig. 6.11 plots the case when ∆ = (Ω2
2 − Ω2

1)/4∆1 + 2π × 0.4MHz. The

population in the intermediate state Pm is enhanced roughly by 50% as R → ∞. The dependence of P on

R becomes less significant with increasing detuning. With ∆2 = −∆1 + 2π × 5MHz, the change in P (m) is

less than 0.2%.
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Figure 6.10: Population in ground state |g〉 (red), intermediate state |m〉 (black), and Rydberg state |r〉 (blue), for
a two-atom, three-level system at various total detunings ∆. The peak position for Pr shifts to ∆ = 2π × 0.96MHz
due to the AC Stark effect. The inset shows Pm, which is strongly suppressed due to the large detuning ∆1.

Lifetime

The most deleterious consequence of using an intermediate state |m〉 is its shorter lifetime. The total decay

rate from the 5P state is Γm = 7.5 × 106s−1. For a Rydberg-dressed eigenstate |ψ〉 =
√

1− f ′2 − f2 |g〉 +
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Figure 6.11: Dependence of Pg, Pm, and Pr on the interatomic spacing R, for ∆ = (Ω2
2 − Ω2

1)/4∆1 + 2π × 0.4MHz.
The inset shows an expanded view for Pm.
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f ′ |m〉 + f |r〉, the effective scattering rate becomes f ′2Γm + f2Γr, where Γm and Γr are the decay rates.

Fig. 6.12 shows the effective lifetime τeff of the Rydberg-dressed state, with τeff = 1/(f ′2Γm + f2Γr). At

∆ = 2π × 5MHz, the lifetime is 1.5ms, which is long enough to perform spectroscopy measurements of the

energy shift due to the Rydberg-dressing effect.
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Figure 6.12: Estimated lifetime of Rydberg dressed state resulting from the decay of |m〉 and |r〉, with a separation
between two atoms R = 0.4µm.

Approximation to a two-level system

As I have discussed, with a large detuning ∆1 and total detuning ∆ = 2π × 5MHz, the population in the

intermediate state is comparatively small. Therefore, it is reasonable to reduce this three-level model to a

two-level system. Ref. [198] gives a more general derivation for developing an effective two-level model for

a three-level system. When the total detuning ∆ = 0, the three-level system can be exactly mapped to a

two-level system. As discussed in Chapter 2, the Hamiltonian for the reduced two-level system is:

Ĥ ′eff =

−Ω2
1/4∆1 −Ω1Ω2

4∆1

−Ω1Ω2

4∆1
− Ω2

2

4∆1
+ ∆1 + ∆2


As a check of the validity of this approximation, we compare the Rydberg-dressing interaction Vm ob-

tained with the two-level approximation to exact diagonalization results of Eq. 6.8 (Fig. 6.13). The dashed

line is from two-level approximation, which approaches the exact result at large ∆. We have also compared
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the population in the |g〉 and |r〉 states and the time evolution of σgg and σrr. At our target detuning

∆ = 2π × 5MHz, there is no observable difference between the two-level and three-level models.
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Figure 6.13: Comparison between Rydberg-dressed energy Vm at different total detunings ∆ for a three-level system
(solid line) and an effective two-level system (dashed line). The red line marks Vz/h = 1kHz. Frequency shifts larger
than 1kHz are expected to be easily resolved experimentally. Inset: Sensitivity of Vz to ∆ assuming a 2π × 100kHz
change in ∆. δVm ≡ 2π100kHz ×dVm/d∆. The gray shaded region covers values of δVm/Vm less than 10%.

6.3.3 Experimental feasibility

Whether we can achieve a detectable Rydberg-dressing interaction and have access to interesting quantum

phases depends on three important inter-dependent parameters: the interaction range Rc = ( C6

2~∆ )1/6, the

interaction energy Vm, and the lifetime τeff of the Rydberg-dressed state.

Because C6 has the largest scaling exponent in (n∗)11, Rc is mainly determined by n∗ and is not sensitive

to small changes in ∆ (as shown in Fig. 6.4). For n = 30 − 50 and ∆ = 2π × 5MHz, Rc ≈ 2 − 3 lattice
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spacings for our experiment.

Optimizing Vm and τeff is trickier, because increasing Vm is at the cost of reducing τeff. Generally

speaking, large detuning ∆1 and Rabi rate Ω2 are preferred. Realistically, Ω2 is limited by the NIR laser

power and the minimum beam waist we choose to work with. To have a uniform Rydberg-dressing effect

covering at least tens of lattice spacing, the beam waist cannot be too small. For Ω2 = 2π × 200MHz, we

need about 1.5W NIR laser power for a 30µm beam waist (which is limited by the numerical aperture of the

lens).

Another experimental constraint is from the finite laser linewidth. The total detuning ∆ cannot be too

small, otherwise the variation in Vm induced by laser noise becomes too large. Assuming a 100kHz linewidth

in laser light frequency, the inset in Fig. 6.13 shows δVm/Vm, with δVm ≡ 2π100kHz ×dVm/d∆. In order

to reduce fluctuations in Vm less than 10%, ∆ must exceed 4MHz, with a corresponding Vm/h smaller than

100Hz.

Detecting energy shifts smaller than 100Hz is experimentally challenging. However, Vm as calculated

here only considers two-body effects. As discussed in the previous section, the energy shift is expected to

scale roughly linearly with the number of atoms within Rc. Therefore, with Rc ≈ 2−3 lattice spacing, Vm/h

can exceed several kHz.

6.4 Detecting Rydberg states in potassium

As a first step towards observing Rydberg-dressing in ultracold 40K gases, we need to locate the frequencies

for the 4S1/2 → 5P1/2 and 5P1/2 → nS1/2 transitions. The transition between 4S1/2 → 5P1/2 can be easily

measured by standard saturation spectroscopy [199], while the transition between 5P1/2 → nS1/2 has not

been directly measured yet. On the other hand, although the absolute frequencies of the 4S → nS transitions

are known with approximately ±10MHz uncertainty [200], the 4S → 5P frequency has a relatively large

reported ±150MHz uncertainty [201] and, to our knowledge, a measurement of the absolute frequency had

not been carried out prior to our work. Therefore, determining the 4S → 5P wavelength and developing a

method for spectroscopically resolving this transition is necessary step toward Rydberg dressing with 40K.

For this purpose, we used electromagnetically induced transparency (EIT) [202] to probe Rydberg tran-

sitions for 39K atoms contained in a heated vapor cell. The primary advantage of detecting Rydberg levels in

39K is its high natural abundance compared with 40K. The 235± 2 MHz isotope shift for the 4S1/2 → 5P1/2

transition is known with high accuracy [203], and the approximately 100 MHz isotope shifts for the nS states

with n > 9 are consistent with the Bohr mass shift within 1 MHz [204,205]. Therefore, once the transitions
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are identified using 39K, the laser frequencies can be straightforwardly shifted using acousto-optic modulators

to address 40K.

6.4.1 Electromagnetically induced transparency (EIT)

The method we used to detect 5P → nS transitions is based on electromagnetically induced transparency

(EIT). EIT spectroscopy of Rydberg states has been achieved for Rb in a vapor cell at room temperature

[206–208] and in cold gases [209,210].

The principle of EIT effect involves a three-level ladder system, as shown in Fig. 6.14(a). The probe beam

couples the ground state to the intermediate state with Rabi rate Ωp and detuning ∆p, while the coupling

beam drives the transition from the intermediate state to the excited state with Rabi rate Ωc and detuning

∆c. Under the rotating wave approximation, the Hamiltonian describing this system can be written as

H = ~


0

Ωp
2 0

Ωp
2 ∆p

Ωc
2

0 Ωc
2 ∆p + ∆c

 (6.9)

in the rotating frame. If we consider the case when ∆p+∆c = 0, the eigenstates for this Hamiltonian become

[202]

|+〉 = sin θ sinφ |g〉+ cosφ |m〉+ cos θ sinφ |r〉

|D〉 = cos θ|g〉 − sin θ|r〉

|−〉 = sin θ sinφ |g〉 − sinφ |m〉+ cos θ cosφ |r〉 ,

where θ and φ are the mixing angles, defined as tan θ =
Ωp
Ωc

and tan 2φ =

√
Ω2
p+Ω2

c

∆p
. While the |±〉 states are

a superposition of all of the bare atomic states, |D〉 has no component from the intermediate |m〉 state, and

is therefore a dark state. The probe beam can only couple to |m〉 through |±〉.

In the weak coupling limit (Ωp � Ωc), θ → 0, sin θ → 1, and cos θ → 0. If the probe beam is resonant

(∆p = 0), then it couples to the |±〉 states with equal amplitudes but opposite phases. Hence, destructive

interference results in no absorption for the probe beam, and a transparency window appears.

A more complete analysis must take spontaneous decay from the excited states into consideration. Again,

we use the Lindbald equation. In the weak coupling limit, we can assume σgg = 1, σmm = 0, and σrr = 0.
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For the steady state d
dtσ = 0, one obtains:

σgm =
iΩp/2

Γm/2 + i∆p +
Ω2
c/4

Γr/2+i(∆p+∆c)

(6.10)

for the solution to the Lindbald equation. The complex susceptibility for the probe beam is related to the

density matrix by χ = − 2ρ0d
2
gm

ε0~Ωp
σgm [211], where ρ0 is the atomic density, and dgm is the dipole matrix

element. Hence the absorption, which is the imaginary part of the complex susceptibility, is:

α = Im [χ] /χ̄ = Im

 Γm/2

Γm/2 + i∆p +
Ω2
c/4

Γr/2+i(∆p+∆c)

 , (6.11)

where χ̄ = 2ρ0d
2
gm/ ε0~Γm is the resonant susceptibility for the |g〉 to |m〉 transition.

Fig. 6.14.(a) and (b) show the absorption rate for the probe beam in two cases: (a) the coupling beam

is locked to the resonant frequency while the probe beam is scanned; (b) the reverse situation, in which the

probe beam is locked to the resonant frequency. In both cases, a transparency window appears near the

resonant condition ∆p + ∆c = 0. This means once we can lock either beam to resonance, we can obtain the

transition frequency for the other beam based on the EIT feature.
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Figure 6.14: (a): A schematic diagram for an EIT 3-level system, with ground state |g〉, intermediate state |m〉 and
Rydberg state |r〉. Probe light couples |g〉 and |m〉 with Rabi rate Ωp and detuning ∆p. The coupling light drives the
transition between |m〉 and |r〉 with Rabi rate Ωc and detuning ∆c. The states |m〉 and |r〉 have a finite lifetime due
to spontaneous emission. The decay rates are denoted as Γm and Γr respectively. The absorption for zero velocity
atoms is plotted in (b) for a resonant coupling beam (while the frequency of probe beam is scanned) and in (c)
for a resonant probe beam (while the frequency of coupling beam is scanned). A transparency window appears for
both cases, and the linewidth of the EIT feature is proportional to Ωc. Blue line: Ωc/2π = Γp = 1.2MHz, red line:
Ωc/2π = 2Γp = 2.4MHz, and the black dashed line is a reference with Ωc = 0.
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6.4.2 Dopper effect

For simplicity, we would like to carry out EIT spectroscopy in a room-temperature vapor cell. Hence,

Doppler broadening must be considered. We initially did not expect any trouble from Doppler broadening,

since counter-propagating coupling and probe beams are used to avoid Doppler effect for EIT measurements

in Rb vapor cells. However, it turns out that whether or not this strategy works depend on the wavelength

ordering for the coupling and probe beams. In our case, λp < λc, and the Doppler effect eliminates the EIT

signal (see Refs. [212] and [213] for a more general discussion of the Doppler effect for three-level systems).

To include the Doppler effect, Eq. 6.11 is rewritten as

α(β) =
Γm/2

Γm/2 + i(∆
(0)
p − fcβ) +

Ω2
c/4

i[∆(0)+(fc−fp)β]

=
Γm/2

Γm/2 + i∆
(0)
p +

Ω2
c/4

i∆(0) − ifpβ + (fc − fp)
βΩ2

p/4

i[∆(0)+(fc−fp)β])∆(0)

, (6.12)

where fc, fp denote the laser frequencies of the coupling and probe laser. The detuning for zero velocity

atoms are ∆
(0)
p and ∆(0) = ∆

(0)
p + ∆

(0)
c . The parameter β = v/c, where v is the velocity in the laboratory

frame, and c is the speed of light. The overall absorption is an average over the thermal distribution

αt =

∫ ∞
−∞

dβG(β)α(β), (6.13)

where G(β) = 1√
2πv̄

e
− β2

2(v̄/c)2 is a normalized Gaussian function for the velocity distribution, with v̄ =√
kBT/m as the mean speed.

Fig. 6.15 shows the result of thermal averaging. We compare two cases: the 4S1/2 → 4P1/2 → nS1/2

case, where fp < fc, and our case (4S1/2 → 5P1/2 → nS1/2), where fp > fc. The black dashed lines gives

a reference for the absorption without the coupling beam (Ωc = 0). The blue lines plot the absorption

with Ωc = Γm. For the 4S1/2 → 4P1/2 → nS1/2 case, although the thermal average suppresses EIT,

it is still detectable. On the other hand, the Doppler effect completely eliminates the EIT feature for

4S1/2 → 5P1/2 → nS1/2.

The sign of fc − fp is important because the Doppler shift for the first transition in this ladder system

is ∆p −∆
(0)
p = −fpβ, and the total detuning of the two-photon process is ∆−∆(0) = (fc − fp)β (assuming

counter-propagating probe and coupling beams). With positive fc − fp, these two shifts have the opposite

sign and therefore cancel to some extent. Co-propagating pump and probe beams do not mitigate the

Doppler effect for fc − fp < 0. In this case, the shift in total detuning is (−fc − fp)β, which always has the
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Figure 6.15: Absorption after averaging over a thermal velocity distribution. Panels (a) and (b) are for potassium
with intermediate state |m〉 = 5P1/2 (fp > fc); (c) and (d) are for K with |m〉 = 4P1/2 (fc > fp). Blue line:
Ωc/2π = Γm, which is 1.2MHz for the 4S1/2 → 5P1/2 transition, and 5.9MHz for the 4S1/2 → 4P1/2 transition. Black
dashed line: Ωc = 0. The influence of the Doppler effect on EIT depends on the sign of fc − fp. For |m〉 = 5P1/2,
EIT is absent, while for |m〉 = 4P1/2, though imperfect, the EIT feature is observable.
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same sign as ∆p −∆
(0)
p .

Fig. 6.16 provides a more intuitive picture for understanding why the sign of fp − fc matters. In this

plot, the frequency of the coupling light is fixed to be resonant with the transition between the interme-

diate state and the Rydberg state, for zero velocity atoms. From top to bottom, the velocity of the atom

increases, and the corresponding absorption for various probe frequencies is plotted. For the left column,

with fc = 0.5fp, as v increases, the lower frequency peak of absorption moves to higher frequency, eventually

intersecting the transparency window for zero velocity atoms. As a result, if we average over the velocity

distribution, the transparency window vanishes. For the right column, with fc = 1.5fp, the influence of

increasing v “squeezes” the lower frequency peak, but the position of the transparency window roughly

remains unchanged. Therefore, the EIT feature survives!

6.4.3 Velocity-selective strategy

To overcome this unexpected effect, we developed a novel velocity selection scheme, that allows us to detect

the EIT signal with a room-temperature vapor cell. Our idea is to ensure that the signal comes from atoms

with a velocity within a narrow range near zero. Fig. 6.17 outlines our proof-of-principle approach for 39K.

39K has two hyperfine ground states, F = 1 and F = 2, as shown in Fig. 6.17. The energy separation

between these two states is h× 462MHz, and they are equally populated at room temperature. Our velocity

selection scheme involves an optical pumping beam that couples the F = 2 ground state with the 5P1/2

state. This resonant pump beam burns a hole near v = 0 in the F = 2 velocity distribution (Fig. 6.17(a))

and transfers atoms to the 5P1/2 state. Atoms in the 5P1/2 state decay to the F = 1 and F = 2 ground

states through spontaneous emission at a rate 1.07× 106 s−1 [214]. Through standard optical pumping, an

excess of atoms near v = 0 will be created in the velocity distribution of the F = 1 state. If the intensity of

the optical pumping beam is chopped with a period much slower than the the time for inter-atomic collisions

to redistribute the population imbalance between hyperfine states, the population hole and peak near v = 0

(Fig. 6.17(a)) will be modulated at the chopping frequency. The signal from the v = 0 atoms is then

reconstructed by measuring the absorption of the probe beam synchronously with the chopping frequency

via a lock-in amplifier.

A more general analysis reveals that the demodulated signal arises from two distinct velocity classes.

In the rest frame of an atom with velocity v = βc, the Doppler-shifted frequency of the probe beam is

f̃p = (1 − β)fp, and f̃op = (1 + β)fop for the optical pumping beam (Fig. 6.17(b)). Since the demodulated

signal is only non-zero for changes in the transmission of the probe caused by the optical pumping beam,

the atom must be resonant with both beams. Hence, the demodulated signal is derived from atoms with
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Figure 6.16: From top to bottom, the absorption is plotted for atoms with increasing velocity. In these plots, the
absorption for single velocity atoms is shown, with a coupling light frequency fixed to be resonant for zero velocity
atoms, and the probe laser frequency fp is scanned. Left column (fc > fp): the lower frequency peak in the absorption
spectroscopy moves toward the direction where the transparency window is for lower velocity atoms. Therefore, after
averaging the absorption over the velocity distribution, the EIT feature vanishes. Right column (fc < fp): the
lower frequency peak shrinks its width as the velocity of atoms increases. The position of the transparency window
roughly stays at the same position, thereby robust to Doppler effect. As a result, an EIT feature exists even at room
temperature.
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velocities that satisfy

|(1 + β)fop − (1− β)fp| = fhp,

or

β = [±fhp − (fop − fp)] /(fop + fp).

Under the condition fp− fop = fhp (which is enforced in our experiment using an acousto-optic modulator),

the velocity classes that give rise to a signal are β = 0 and β = 2fhp/(fp + fop) ≈ fhp/fp. The latter

case corresponds to a velocity for which the optical pumping and probe beams in the atomic rest frame are

exchanged compared with the zero-velocity case (inset of Fig. 6.17(a)), and the probe beam is resonant with

the 4S, F = 2→ 5P1/2 transition.

EIT for the probe beam is achieved when the overall detuning vanishes in the atomic rest frame, i.e.,

when f̃c + f̃p is equal to the frequency difference f0 between the 4S1/2 and nS1/2 states, where f̃c is the

frequency of the coupling beam in the rest frame of the atom. This condition for β = 0 is

fc + fp = f0

and for β = fhp/fp is

fp(1− β) + fc(1 + β) = f0 − fhp.

With the probe beam stabilized to the 4S1/2, F = 1→ 5P1/2 transition, EIT will be observed for fc = f0−fp

(for the v = 0 atoms) and for fc = (f0−fp)/(1+fhp/fp) ≈ f0−fp−190 MHz (for the atoms with v = cfhp/fp).

Two EIT features should therefore appear, separated by 190 MHz.

We perform a simulation to check our velocity-selection strategy can recover the EIT signal for potassium

with fp > fc. In this simulation, only the atoms with velocity within a Lorentz distribution L(β) =

1
π

Γv/2
β2f2

p+(Γv/2)2 contribute to the EIT signal, where Γv is the linewidth of this Lorentz distribution. Fig. 6.18

plots the ratio of absorption with and without the coupling beam for Γv = Γe ; the EIT feature has become

detectable.

6.5 Experimental setup for detecting the EIT signal

6.5.1 Oven for potassium vapor cell

The effective cross section for a Doppler broadened gas is σeff = σr
√
π ln 2 Γ

∆ωd
[111], where σr is the resonant

absorption cross-section, Γ is the linewidth for the transition, and ωd is the frequency broadening due to
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Figure 6.17: (a): Energy-level diagram of 39K and corresponding transition wavelengths. The three-level ladder
system used to perform the EIT measurement includes ground state 4S1/2, intermediate state 5P1/2, and Rydberg
state nS1/2. EIT pump beam is added to create an unbalance in the number of atoms within a narrow range near a
certain velocity class. The Gaussian velocity distributions for the F = 1 and F = 2 states are shown. The peak and
hole on the velocity distribution appear and disappear as the EIT pump beam is turned on and off. (b): Frequencies
of pump beam f̃pp, probe beam f̃p, and coupling beam f̃c in the atomic frame, where β = v/c and v is velocity. The
inset shows the frequencies in the rest frame for atoms with velocity β = −fhp/fp, in which case the frequency of the
EIT pump and probe beams are exchanged.
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Figure 6.18: Numerical results of EIT signal with velocity-selection strategy. Assuming that the velocity of atoms is
within a Lorentz distribution (with linewidth Γv = Γe), the change in absorption with and without coupling beam
is plotted for (a): scanning probe frequency with fixed ∆c = 0 for zero velocity atoms, and (b): scanning coupling
frequency with fixed ∆p = 0 for zero velocity atoms. αr is the absorption for the probe transition.

Doppler effect. For the blue transition 4S1/2 → 5P1/2 in potassium, compared with the D1 transition

4S1/2 → 4P1/2, σr is a factor of 3.6 smaller, and the effective cross section is about a factor of 300 smaller

at the same temperature. To increase the signal size for saturation spectroscopy, we heat the vapor cell to

85◦C. The vapor pressure at 85◦C is about 4× 10−6mbar, which is more than a factor of 100 compared to

the vapor pressure at room temperature [16].

We constructed an oven to heat the cell (Fig. 6.19). The oven consists of a four-way cross (labeled as

A in Fig. 6.19, from Kurt J. Lesker Company. C-0337-133), two nipples (B in Fig. 6.19, Kurt J. Lesker

Company. FN-0337), two glass viewports (C in Fig. 6.19, Kurt J. Lesker Company. VPZL-337) for the main

flanges, and two glass viewports for the side windows (D in Fig. 6.19, Kurt J. Lesker Company. VPZL-133).

The side windows of the four-way cross are useful for monitoring spontaneous fluorescence light from the

probe laser.

A home-made mount is used to hold the vapor cell inside this oven. This mount consists of two rings and

four rods, as shown in Fig. 6.20(a) and (b). The outside dimension of the ring is roughly 0.1′′ smaller than

the tube dimension of the oven, and the inside dimension of the ring is roughly 0.1′′ larger than the vapor

cell dimension. The gaps between the mount, the vapor cell, and the oven are filled with aluminum foil.

Two flexible resistive heater are used to maintain the oven temperature, with three thermocouples inside

the oven to monitor the temperature. To avoid potassium condensation on the window of vapor cell, we

wrapped each heater tape close to the end of the 4-way cross. This allows us to heat the two ends of the vapor
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Figure 6.19: Drawings of the oven that heats up the potassium vapor cell. Oven consists of a four-way cross (labeled
as A), two nipples (B), and four glass viewports (C and D). Drawings are from the vendor’s website.
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Figure 6.20: Drawings and photos of the home-made mount that holds the vapor cell in the oven. (a) and (b): The
mount consists of two rings and four rods. The gap between the mount and the cell is filled with Al foil. (c): Photo
for the mount and vapor cell inside the oven. (d): Potassium vapor cell used in this work.
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cell hotter compared to its middle as the temperature is increased. Fiber glass insulation is wrapped around

the outside of the heaters and the oven. Fig. 6.21(a) shows the photos of the oven after being wrapped by

Al foil.

A constant heating of the vapor cell seems to lead to some absorption of potassium atoms by the glass.

Once I used a potassium vapor cell with very little material in it. After about 1-2 months, the vapor pressure

decreased and made the spectroscopy measurements become impossible. The current vapor cell in the oven

contains a lot of potassium in it and works at a temperature lower than 90◦C. It has been worked well for

more than five years.

Thermocouple wires fed 
through the slots on gaskets

(a)

(b)

Figure 6.21: (a): Photo of the potassium vapor cell oven. Variacs are used to power two heater tapes. Temperature
inside the oven is measured by three thermistors placed at different positions inside the oven. The temperature is
maintained at 85◦C to obtain a high vapor pressure of potassium for performing spectroscopy measurements. (b):
Photo shows the thermocouple wires gone through the slots on gaskets.

6.5.2 External cavity diode laser (ECDL)

The EIT measurement involves two diode lasers: a blue diode laser (ML320G2 from Mitsubishi, bought

from Thorlabs) for driving the 4S1/2 → 5P1/2 transition, and a near-infrared (NIR) diode laser (JDSU

6531-J1, bought from eBay) for coupling the 5P state to Rydberg states. Both laser diodes are mounted in
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a home-made tunable external cavity (Fig. 6.22). A Littrow configuration, containing a collimating lens and

a diffraction grating, is used to tune the laser wavelength and reduce its frequency linewidth.

Collimation tube

Figure 6.22: Left: Home-made external cavity housing for the blue laser diode. Right: Inside of the external cavity
housing. The blue laser diode is held in a collimation tube. The grating is mounted close to the laser diode. Such a
small cavity length is necessary for achieving a reasonable frequency tuning range for the blue laser diode. A piezo
transducer is used to sweep the laser frequency. The red arrows represents the laser diode beam.

The design of the ECDL is compact (Fig. 6.22). A protection circuit (Fig. 6.23) is used to avoid backward

voltage across the laser diode and electrical transients. The number of diodes (1N4148) used in this protection

circuit depends on the wavelength of the laser diode. The blue laser diode requires a higher operating voltage

(5.4V) compared to the NIR laser diodes (usually with operating voltage 1.8V-2.2V). Also, the polarity of

diodes depends on the type of the laser diode (anode ground or cathode ground). A 10kΩ thermistor

(Thorlabs TH10K) is mounted inside a hole on the laser diode cavity, which is near to the laser diode. A

thermoelectric cooler (Thorlabs TEC 3-6) is placed under the laser diode cavity. The thermistor and the

thermoelectric cooler are used for temperature servo. Table. 6.2 summaries the components used for the

ECDLs.

A short cavity length is important. Compared to the near-infrared laser light, the shorter wavelength

of blue light makes it harder to tune its wavelength. With a length of the home-made external cavity less

than 1cm, the maximum tunable range of the blue light wavelength is less than 1nm from its free-running

wavelength. To reach the desired frequency, we asked Thorlabs to do wavelength-selection for the blue laser
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Figure 6.23: Protection circuit for the NIR laser diode (anode ground). A series of diodes (IN4148) is used to prevent
transient backward voltage across the laser diode. A transient voltage suppressor (VC040205X150) provides protects
from voltage transients. The capacitor and inductor form a high frequency filter. For the blue laser diode, ten
1N4148s are used.

diodes. For the NIR diode lasers, with such short cavity length, it is easy to tune its wavelength 5nm away

from its free-running wavelength. By applying an AC voltage up to 200V to the piezo attached to the laser

grating, the laser frequency can be scanned smoothly without mode hopping within 800MHz for the blue

laser and across about 2GHz for the NIR laser diode.

6.5.3 Frequency modulation spectroscopy

To stabilize the frequency of the blue laser light to the
∣∣4S1/2, F = 2

〉
→
∣∣5P1/2

〉
transition, we apply a

standard frequency modulation spectroscopy technique [215]. The probe beam passes through an electro-

optic phase modulator (EO-PM-NR-C4 from Thorlabs). A 8MHz radio-frequency driving field is applied

on this EOM, which is generated via direct digital synthesis (DDS, AD9959 from Analog Devices) and then

amplified by a 2W amplifier (Mini circuits, ZHL-1-2W). The voltage applied on this non-resonant EOM is

much lower than EOM’s π voltage (Vπ ≈ 80V ). Only about 3% of the total power has been transferred

to the sidebands. Because the transfer fraction is low, it is hard to observe the sidebands directly on a

Fabry-Pérot interferometer. To measure the sidebands intensity, a better method is beating the light after

EOM to an unmodulated beam.

We choose 5P1/2 as the intermediate state instead of 5P3/2 because of its relative simple energy structures.

206



Table 6.2: List of components used in the ECDL.

Vendor Catalog No. Description
Lee Spring LE 034B 01 M Springs, 53.30 lb/in
Edmund Optics NT43-775 1800 Grooves/mm, VIS Holographic Gratin

NT43-774 1800 Grooves/mm, UV Holographic Grating
Ratermann manu-
facturing inc

KRY-GPL202-1/2OZ Krytox GPL-202 Grease

McMaster 98385A123 Pins
9464K351 O-ring
9464K79 O-ring
9452K38 O-ring

Newport 9341-K Tiny Hex Adjustment Screw, 2.0 mm Travel,
Ball Tip, 6-80

Thorlabs AE0203D08F Piezoelectric Actuator, Max Displacement 9.1
µm, 3.5× 4.5× 10 mm

F6SSN2P Threaded Bushing, 6-80, 0.375” Long
TEC3-6 TEC
C230TME-A Lens for blue laser diode
C230TME-B Lens for NIR laser diode
TH10K Thermistor

Digikey A132-100-ND Shielded Cable
HR1594-ND Connector
HR1586-ND Plug

Mouser Electron-
ics

565-5223-60 RF Cable Assemblies, Triaxial 3 Lug Male, 60”
Long

565-5219 RF Connectors, Triaxial Jack
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The laser cannot resolve the hyperfine states on the 5P manifolds [199], and therefore the exact locking

frequency of the blue laser light is unknown. The 5P3/2 level has four hyperfine states. The coherent

coupling between the ground state to the Rydberg state via these four different intermediate states carry

various phases, which may complicate the interpretation of data.

Fig. 6.24 shows a schematic of the frequency modulation spectroscopy setup. A photodetector (Thorlabs

PDA8A) with a 50MHz bandwidth is used to measure the transmitted light power after the vapor cell.

The demodulated signal is shown in Fig. 6.25, which is roughly the derivative of a standard saturated

spectroscopy. The zero-crossing corresponding to the F = 2 → F ′ transition is used for frequency locking.

The quality of the demodulated signal is not perfect. Slow drift in DC offset of the error signal makes

the laser become unlocked about every 30 minutes. It is possible that the probe beam polarization is not

pure. After the probe beam passes through the EOM, an amplitude modulation appears becuase of the

fluctuations in the temperature and beam pointing. Another possible reason for the small peak-to-peak

voltage of the error signal may be because the silicon-based photodetector does not have a good response at

this wavelength. Improvement of the locking will be necessary for future projects.

6.5.4 Setup for EIT measurement

A schematic of our EIT measurement apparatus is shown in Fig. 6.26. Both the EIT pump and probe beams

are coupled into a polarization maintaining fiber for spatial filtering. The coupling, optical pumping, and

probe beam are spatially overlapped and propagate through the potassium vapor cell in the oven. The probe

and optical pumping beams (with waists 190 µm and 120 µm and powers 70 µW and 300 µW, respectively)

are derived from the same ECDL. The probe beam is shifted by fhp ≈ 460 MHz from the optical pumping

beam, and the power of the optical pumping beam is chopped at 25 kHz using an acousto-optic modulator.

The NIR ECDL is used to generate the 15 mW near-infrared coupling beam, which is weakly focused to

a 260 µm waist in the cell. The power of the coupling beam is modulated at 1.27 kHz using a chopper

wheel. The transmitted probe power is measured using a photodetector (Thorlabs PDA8A), and the EIT

signal is derived from double-demodulation at 25 kHz and 1.27 kHz via a mixer and lock-in amplifier. This

demodulation scheme detects changes in the transmitted probe power induced by the coupling beam for

atomic velocities selected by the optical pumping beam.
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Figure 6.24: A schematic diagram of the standard frequency modulation locking setup for 4S1/2 → 5P1/2 transition.
The locking probe beam counter-propagates with the locking pump beam. An electro-optic phase modulator (EOM)
generates 8MHz side bands on the central carrier frequency of the probe beam. The transmitted probe power is
measured with a photodector (Thorlabs PDA8A). A four-channel 500 MSPS direct digital synthesize (DDS, Analog
devices AD9959) is used to drive the EOM and to provide a reference signal for the mixer to demodulate the
photodetector signal. The demodulated signal, after going through two low-pass filters, is used to lock the laser
frequency to the 4S1/2, F = 1→ 5P1/2 transition.
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Figure 6.25: Frequency modulation spectroscopy signal for the 4S1/2 → 5P1/2 transition. The blue laser is locked to
the zero-crossing corresponding to the F = 2→ F ′ transition in 39K.
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Figure 6.26: A schematic of the EIT measurement apparatus. The coupling beam counter-propagates with the probe
beam and co-propagates with the optical pumping beam through a vapor cell. An acousto-optic modulator (AOM)
shifts the frequency of the optical pumping beam such that the frequency difference with the probe beam matches
the ground-state hyperfine splitting. A 25 kHz square-wave generator and a radio-frequency (rf) switch is used to
modulate the signal generator that drives the AOM and chop the optical pumping beam. An optical chopping wheel
modulates the coupling beam at 1.27 kHz. This mechanical chopping wheel generates some acoustic vibrations.
To avoid the acoustic vibration coupling into the 980nm laser cavity, a cardboard box is used to cover the ECLD.
The transmitted power of the probe beam is measured using a photodetector (PDA8A). The PD signal is doubly
demodulated, first using a mixer followed by a low-pass (LP) filter, and then using a lock-in amplifier (Stanford
Research Systems SR830DSP).
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6.6 Results of EIT measurement

To measure EIT, we tune the near-infrared coupling laser close to the frequency resonant with the 5P1/2 →

nS1/2 transition predicted by previous measurements of the 4S → 5P1/2 [216] and 4S → nS transitions [197].

For EIT measurement in this work, the current and the resistance of the 10K thermistor are I = 74.93mA

and RT = 12.996kΩ (T ≈ 19◦C) for the blue diode laser , and I = 99.81mA and RT = 12.243kΩ (T ≈ 20◦C)

for the NIR diode laser.

The frequency of the coupling laser is scanned by a data acquisition device (DAQ, NI USB-6259 from

National Instrument). An analog output on the DAQ controls the voltage applied on the piezo attached

to the grating for the NIR ECDL. The voltage generated by this analog output is magnified by a factor of

17.5 with an amplifier circuit, which consists a 450V power operational amplifier (APEX Microtechnology

PA98). The scanning rate of the piezo voltage is 0.055V/s. Part of the NIR light is picked off by a beam

sampler before the chopping wheel and fiber coupled to the input of a high resolution wavemeter (Bristol

621A). The measured wavelength is recorded by an analog input to the DAQ device. Matlab code for the

NIR laser frequency scanning and wavelength recording via the DAQ device can be found in the Appendix.

The change in EIT probe light power is detected by a photodetector (PDA8A), and double-demodulated

by a mixer (ZAD-6A) and a lock-in amplifier (Stanford Research Systems SR830DSP). The signal from the

lock-in amplifier, which is proportional to changes in the transmitted probe power, is recorded by the DAQ

device. In our EIT measurements, the lock-in amplifier is set to have a 300ms time constant and a 500µV

sensitivity. Part of the NIR light after the chopping wheel is picked off by a beam sampler, and its intensity is

detected by a photodetector (Thorlabs PDA8A), which is used as a reference signal for the lock-in amplifier.

Typical data for n = 28 are shown in Fig. 6.27. The lock-in amplifier signal is shown vs. the difference in

frequency between the coupling laser and the predicted 5P1/2 → nS transition frequency based on Refs. [197]

and [216]. We assume that the wavelength measured in Ref. [216] corresponds to the frequency labeled f5P1/2

in Fig. 6.17(a). The lock-in signal vanishes on the scale shown in Fig. 6.27 if the optical pumping beam is

absent. The two pairs of peaks evident in Fig. 6.27 derive from the two velocity classes that contribute to

the EIT signal, whereas the doublet structure arises from EIT through the F ′ = 1 and F ′ = 2 hyperfine

states in the excited 5P1/2 electronic state.

The data are fit to a sum of four Gaussian functions, which, in this case, give center frequencies of

(−0.7600± 0.0003), (−0.737± 0.001), (−0.5711± 0.0003), and (−0.5510± 0.0005) GHz. For the 5P1/2, F
′ =

2→ nS transition, the absolute frequencies we measure are 303240.379, 303698.194, and 304102.870 GHz for

n = 26, 27, and 28. We estimate that drift in the laser lock for the 404.8 nm laser adds a 1 MHz uncertainty

to these frequencies; Zeeman and AC Stark shifts are negligible at this level. The 20 ± 2 MHz difference
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between the closely spaced peaks is consistent with the 18.1± 0.2 MHz 5P1/2 hyperfine splitting [217]. The

approximately 190 MHz difference between the pairs is consistent with the shift in the resonant EIT coupling

frequency between atoms with v = 0 and v = cfhp/fp.

- 0 . 8 5 - 0 . 7 5 - 0 . 6 5 - 0 . 5 5 - 0 . 4 5

v = - c  f h p  /  f p

v = 0

F  � = 1

F  � = 2
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F r e q u e n c y  ( G H z )

F  � = 2

Figure 6.27: EIT spectroscopy of the 28S state. The signal from the lock-in amplifier, which is proportional to
changes in the probe transmission, is shown as the frequency of the coupling laser is scanned. The maximum
signal corresponds to approximately a 0.2% change in the transmission of the probe beam synchronous
with the optical pumping and coupling beam. The abscissa is the frequency difference of the coupling laser
relative to the 5P1/2 → nS transition predicted by previous measurements of the 4S → 5P1/2 and 4S → nS
transitions [197,216]. Each point is an average of 5 measurements, and the error bars are the standard error
of the mean. The dotted line is a fit to the sum of four Gaussian functions. The approximately 20 MHz
FWHM of the peaks is consistent with broadening expected from the spread in velocities selected by the
optical pumping beam and noise from the repeatability of the wavemeter.

6.6.1 Improved accuracy for the 4S → 5P transition

We measure EIT spectra for n = 26, 27, and 28, which spans 0.86 THz in the coupling laser frequency.

Fig. 6.28 shows the center frequencies of the EIT peaks (as deviations from the frequency predicted by

Refs. [197] and [216]) for v = 0 obtained from Gaussian fits such as those shown in Fig. 6.27. The weighted

average for the frequency deviation of the transition to the 5P, F ′ = 1 and 5P, F ′ = 2 states is −0.573±0.005
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GHz and −0.552± 0.007 GHz, respectively. The individual measurements are consistent with these average

values within the specified 10 MHz repeatability of the wavemeter. The most significant contribution to the

overall measurement uncertainty is the 60 MHz accuracy of the wavemeter used to measure the absolute

frequency of the coupling laser. We have verified that the wavemeter is accurate at this level for the 87Rb

and 40K D2 transitions. We assign an additional 20 MHz uncertainty to account for the unresolved hyperfine

structure of the 5P1/2 state in the setup used to stabilize the wavelength of the 404.8 nm laser, making the

overall uncertainty 80 MHz.

Based on our measurement, the 4S1/2 → 5P1/2 transition frequency (as labeled f5P1/2
in Fig. 6.17(a))

should be shifted by 560±80 MHz from the currently accepted value [216,218], giving 740529.36±0.08 GHz

for the absolute frequency of this transition. Our measurement represents a factor of two improvement in

the present ±150 MHz reported uncertainty for this transition [216]. Our results are not consistent with

the currently accepted value of this transition, which was determined using a grating-based spectrometer

and hollow-cathode lamp [216], and was therefore not a measurement of the absolute frequency. Also, the

ground-state hyperfine structure was not accounted for in Ref. [216], potentially introducing large systematic

errors. Furthermore, the source of the ±150 MHz reported uncertainty and a justification of that value were

not explained in Ref. [216].

6.7 Conclusion and outlook

This project was started six years ago as my first independent research project in our group. Around that

time, introducing beyond on-site interactions in optical lattices via Rydberg-dressed states was a relatively

new idea. Several groups have started this Rydberg-dressed strategy and progress has been made during

the past few years, accompanied by many unexpected difficulties.

Theoretical calculations suggest that it is promising to observe Rydberg-dressing with potassium in

optical lattices. As a first step toward this goal, we developed a simple method to overcome the Doppler

effect and performed precision velocity-selective spectroscopy in a hot potassium vapor cell. From the EIT

spectra, we measured the transition frequencies for 5P1/2 to n = 26− 28, which in turn calibrate the energy

separation between the ground state and 5P1/2 state.

The next step in this project will focus on measuring the lifetime and interaction shift for Rydberg

dressing. The lifetime will be straightforwardly measured via atom loss, and the interaction shift by hyper-

fine microwave spectroscopy. For spectroscopy, we will prepare a spin-polarized non-interacting gas in the

|F = 9/2,mF = 9/2〉 state with unit filling in the center of lattice. The dressing lasers will be tuned to se-
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Figure 6.28: The measured frequency deviation for the 5P1/2 → nS1/2 transition with principal quantum
numbers n = 26, 27 and 28. The solid black (hollow red) points are for the transition to the 5P, F ′ = 1
(5P, F ′ = 2) state. The black solid and red dashed lines are the weighted average of each set of three
points for the transitions to the 5P, F ′ = 1 and 5P, F ′ = 2 states, respectively. The error bars show the
uncertainty from the fits to data such as those in Fig. 6.27. The 60 MHz uncertainty from the accuracy of
the wavemeter is not included in the error bars.
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lectively address the |F = 7/2〉 manifold. The interaction shift can be measured via microwave spectroscopy

on the |F = 9/2,mF = 9/2〉 → |F = 7/2,mF = 7/2〉 transition, which we routinely achieve with a 300 Hz

resolution.

216



References

[1] Patrick A Lee, Naoto Nagaosa, and Xiao-Gang Wen. Doping a Mott insulator: Physics of high-
temperature superconductivity. Reviews of Modern Physics, 78(1):17, 2006.

[2] Antoine Georges, Gabriel Kotliar, Werner Krauth, and Marcelo J Rozenberg. Dynamical mean-field
theory of strongly correlated fermion systems and the limit of infinite dimensions. Reviews of Modern
Physics, 68(1):13, 1996.

[3] Jean Dalibard, Fabrice Gerbier, Gediminas Juzeliūnas, and Patrik Öhberg. Colloquium: Artificial
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Appendix A

3D matrix for calculating band
structures

1 funct i on m=blochmatr ix3d 2 (qx , qy , qz ,Vx ,Vy , Vz)

2 g l oba l trunc

3

4 % s t ruc tu r e o f H matrix

5 % | k x =−1 | k x =0 | k x=1

6 % | k y=−1 | k y =0 | ky=−1 | . . . . . . . . . . . . . .

7 % | kz=−1,kz=0,kz=1|kz=−1,kz=0,kz=1|kz=−1,kz=0,kz=1| . . . . . . . . . . . . . .

8

9

10

11 m=zero s ( trunc ˆ3 , trunc ˆ3 ) ;

12

13

14 f o r l =1: trunc∗ trunc∗ trunc

15

16 % convert matrix i n d i c e s l a b e l i n g to quasimomentum l a b e l i n g along x , y and z .

17 i f f l o o r ( l /( trunc∗ trunc))== l /( trunc∗ trunc ) && l ˜=0

18 index x = f l o o r ( l /( trunc∗ trunc ))−1;

19 e l s e

20 index x = f l o o r ( l /( trunc∗ trunc ) ) ;

21 end

22

23 i f f l o o r ( ( l−index x∗ trunc∗ trunc )/ trunc )==.. .

24 ( l−index x∗ trunc∗ trunc )/ trunc && l ˜=0

25 index y = f l o o r ( ( l−index x∗ trunc∗ trunc )/ trunc )−1;

26 e l s e

27 index y = f l o o r ( ( l−index x∗ trunc∗ trunc )/ trunc ) ;

28 end

29

30 index z = l−index x∗ trunc∗ trunc−index y∗ trunc−1;

31

32 index x = index x−f l o o r ( trunc /2 ) ;

33 index y = index y−f l o o r ( trunc /2 ) ;

34 index z = index z−f l o o r ( trunc /2 ) ;

35

36 % const ruc t d iagona l terms in H

37 m( l , l ) = (2 .∗ ( index x)+qx )ˆ2+ . . .

38 ( 2 .∗ ( index y)+qy )ˆ2+ . . .

39 ( 2 .∗ ( index z )+qz )ˆ2 ;

40

41 % of f−diagona l terms along z

42 i f l<trunc∗ trunc∗ trunc && mod( l , trunc ) ˜= 0

43 m( l +1, l )=−Vz / 4 . ;

44 m( l , l+1)=−Vz / 4 . ;

45 end

46 end

47

48 % of f−diagona l terms along y

49 f o r l =1: trunc∗ trunc−1

50 f o r l l =1: trunc
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51 i f mod( l , trunc ) ˜= 0

52 m( l ∗ trunc+l l , ( l−1)∗ trunc+l l )=−Vy/4 ;

53 m(( l−1)∗ trunc+l l , l ∗ trunc+l l )= −Vy/4 ;

54 end

55

56 end

57 end

58

59 % of f−diagona l terms along x

60 f o r l =1: trunc−1

61 f o r l l =1: trunc∗ trunc

62 m( l ∗ trunc∗ trunc+l l , ( l−1)∗ trunc∗ trunc+l l )= −Vx/ 4 . ;

63 m(( l−1)∗ trunc∗ trunc+l l , l ∗ trunc∗ trunc+l l )= −Vx/ 4 . ;

64 end

65 end
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Appendix B

EIT measurement

1 format short

2 c l o s e a l l

3

4 % add analog output channel ( app l i ed on p iezo ) and d i g i t a l input channel ( reading out wavelength )

5 ao=analogoutput ( ’ nidaq ’ , ’Dev1 ’ ) ;

6 ochan=addchannel ( ao , 0 ) ;

7 a i=analog input ( ’ nidaq ’ , ’Dev1 ’ ) ;

8 ichan=addchannel ( ai , 0 ) ;

9

10 s e t ( ai , ’ SampleRate ’ , 10000) ;

11

12 libName=’ Br i s t o lL i b r a ry ’ ;

13

14 l ibLoaded = l i b i s l o a d e d ( libName ) ;

15 i f ( l ibLoaded )

16 un load l ib ra ry ( libName )

17 end

18

19 f0 =303240.44;

20

21 l o a d l i b r a r y ( ’ CLDevIface . d l l ’ , ’ c l d e v d l l . h ’ , ’ a l i a s ’ , libName ) ;

22 BristolDevHandle = c a l l l i b ( libName , ’ CLOpenUSBSerialDevice ’ , 8 ) ;

23 t e s t = c a l l l i b ( libName , ’ CLSetLambdaUnits ’ , BristolDevHandle , 1 ) ;

24 t e s t=c a l l l i b ( libName , ’CLSetMedium ’ , BristolDevHandle , 0 ) ;

25

26 f1=f i g u r e

27 hold on

28 f2=f i g u r e

29 hold on

30

31

32 aa=1;

33

34 inavg=zero s (1 , aa ) ;

35 lavg=ze ro s (1 , aa ) ;

36 bavg=zero s (1 , aa ) ;

37

38 vbegin =0.025; %0.073

39 vend =0.05; %0.3

40 vsteps =800; %10000

41

42 dv=(vend−vbegin )/ vsteps ;

43

44

45 vo l t=vbegin ;

46

47 nn=vsteps ;

48

49 idata=ze ro s (1 , nn ) ;

50 ldata=ze ro s (1 , nn ) ;
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51 ebar=ze ro s (1 , nn ) ;

52 lbar=ze ro s (1 , nn ) ;

53 base=ze ro s (1 , nn ) ;

54

55 % apply a vo l tage on p iezo

56 putsample ( ao , vo l t ) ;

57 pause ( 0 . 5 ) ;

58

59 i =1;

60 count =1;

61

62 basecounts =10;

63 % scan vo l tage o f p i ezo

64 whi le volt<vend

65

66 i f count==basecounts

67

68 t e s t=c a l l l i b ( libName , ’CLGetLambdaReading ’ , BristolDevHandle ) ;

69 tes t−f 0

70 ldata ( i−basecounts +1: i−1)=t e s t ;

71 count =1;

72

73

74 end

75

76 putsample ( ao , vo l t ) ;

77 vo l t=vo l t+dv ;

78 pause ( 0 . 0 1 0 ) ;

79

80 f o r j =1:aa

81

82 inavg ( j )=getsample ( a i ) ; % read the wavelength

83

84 end

85

86

87 idata ( i )=mean( inavg ) ;

88 ebar ( i )=std ( inavg ) ;

89

90

91 i=i +1;

92 count=count +1;

93

94 end

95

96 t e s t = c a l l l i b ( libName , ’ CLCloseDevice ’ , BristolDevHandle )

97 un load l ib ra ry ( libName )

98 de l e t e ( ao )

99 c l e a r ao

100 pr in t ( ’ done . ’ )

101

102 %% de l e t e the dev ice

103 t e s t = c a l l l i b ( libName , ’ CLCloseDevice ’ , BristolDevHandle )

104 un load l ib ra ry ( libName )

105 de l e t e ( ao )

106 c l e a r ao

107 pr in t ( ’ done . ’ )
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Appendix C

Simulating atom removal

1 % 2017/9/19 Wenchao Xu

2

3 % Code f o r counting the number o f doublon pa i r s a f t e r number removing

4 % procedure

5 % The f i r s t part used William R McGehee ’ s code to get the temperature and

6 % chemical p o t en t i a l in o p t i c a l l a t t i c e s . I added some comments to help

7 % understanding .

8

9

10 % load S/N as a funct i on o f T/T F data

11 load ( ’Z :\Pubs\William R. McGehee\wrm thes is\matlab\ t o t f t o s o n . mat ’ )

12 polyx=t o t f t o s o n ( : , 1 ) ;

13 polyy=t o t f t o s o n ( : , 2 ) ;

14 sn t o t f=s p l i n e ( polyx , polyy ) ;

15

16 % To get the entropy at konwn T/TF:

17 % ppval ( sntot f , 0 . 1 5 )

18

19 %% do non−i n t e r a c t i n g thermodynamics f o r l a t t i c e

20

21 %%%%%

22 % Sampling q space f o r i n t e g r a t i on over r e c i p r o c a l l a t t i c e space

23 npoints = 5000000;

24 cosq = 3−sum( cos ( p i∗(1−2∗ rand ( npoints , 3 ) ) ) , 2 ) ;

25 % cosq : sampling the momentum space , and ge t t i ng the d i s t r i b u t i o n o f energy

26 % the range o f cosq i s from [ 0 , 6 ]

27 nq = 100;

28 co sq va l s = l i n spa c e (0 ,6 , nq ) ;

29 % co sq va l s : i t dea l s with ENERGY, not momentum .

30 % I t should cover the SAME range as cosq , not from 0 to 2 pi !

31 cosq prob = h i s t ( cosq ( ) , c o s q va l s ) ;

32 % make a histgram . I t i s the dens i ty o f s t a t e s with l a t t i c e d i s p e r s i on

33 cosq prob = cosq prob / npoints ;

34 % cosq prob t r a n s f e r s the i n t e g r a l over q to dE \rho (E) , with

35 % \rho (E) as dens ity−of−s t a t e .

36 % I t needs to be renormal ized to 1 , because i n t e g r a t i n g over q :

37 % (1/\ pi )ˆ3 \ i n t \dˆ3 q , with q from −pi to pi , g i v e s 1

38

39 % Sampling x space f o r i n t e g r a t i n g over p o s i t i o n s

40 rmax = 60 ;

41 nr = 60+1;

42 x l i s t = l i n spa c e (0 , rmax , nr ) ;

43 rprob = 4∗ pi ∗( rmax/nr )∗ l i n s pa c e (0 , rmax , nr ) . ˆ 2 ;

44 % rprob i s 4 pi r ˆ2 dr

45

46 %

47 [ qprob , xprob ] = meshgrid ( cosq prob , rprob ) ;

48 [ qval , xval ] = meshgrid ( cosq va l s , x l i s t ) ;

49 % t h i s genera te s a ”phase space ” in k i n e t i c energy ( l a t t i c e ) and po s i t i on

50 % qprob : the p o s s i b i l i t y that k i n e t i c energy equa l s to c o sq va l s .
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51

52 %convert a l l to columns

53 qval = qval ( : ) ;

54 xval = xval ( : ) ;

55 qprob = qprob ( : ) ;

56 xprob = xprob ( : ) ;

57

58 %A t e s t f o r t h i s methor . Mathematica g i v e s 5605

59 %t = 0 .0395 ;

60 %gamma = 3.71 e−08 ∗ ( 1 1 2 . 8 ) ˆ 2 ;

61 %sum( qprob .∗ xprob . ∗ 1 . / ( . . .

62 % exp ((2∗ t∗qval+gamma∗xval .ˆ2−4.78∗ t ) . / ( 1 . 4 8∗ t ))+1))

63

64

65 %% do some thermodynamic ca l cu l a t o i n s , to get T and mu in l a t t i c e

66

67 % t = 0 .0862 ; %s = 4ER

68 %t = 0 .0395 ; %s= 7ER

69 t = 0 .0308 ; %s= 8ER

70 %t = 0 .01919 ; %s=10ER

71 gamma = 3.71 e−08 ∗ (118 )ˆ2 ; % in un i t s o f ER per l a t t i c e s i t e ˆ2 . 118HZ: 8ER

72 %gamma = 3.71 e−08 ∗ (100 )ˆ2 ; %100Hz , 4ER

73 g r i dpo in t s = 80 ;

74 [TT,mumu] = meshgrid ( l i n spa c e ( 0 , 0 . 3 , g r i dpo in t s ) , l i n s pa c e (0 . 01 , 1 , g r i dpo in t s ) ) ;

75 TT col = TT( : ) ;

76 mumu col = mumu( : ) ;

77

78 entropy mc = zero s ( s i z e ( TT col ) ) ;

79 number mc = zero s ( s i z e ( TT col ) ) ;

80 f o r i = 1 : numel (TT) ,

81 T = TT col ( i ) ;

82 mu = mumu col ( i ) ;

83 number mc ( i ) = sum( qprob .∗ xprob . ∗ 1 . / ( . . .

84 exp ((2∗ t∗qval+gamma∗xval .ˆ2−mu) . /T)+1)) ;

85 entropy mc ( i ) = sum( qprob .∗ xprob .∗ ( log (1+exp ( (mu−2∗t∗qval−gamma∗xval . ˆ 2 ) . /T ) ) . . .

86 −((mu−2∗t∗qval−gamma∗xval . ˆ 2 ) . /T ) . ∗ . . .

87 ( 1 . / ( exp(−1∗(mu−2∗t∗qval−gamma∗xval . ˆ 2 ) . /T)+1) ) ) ) ;

88 end

89 entropy mc = reshape ( entropy mc , s i z e (TT) ) ;

90 number mc = reshape (number mc , s i z e (TT) ) ;

91

92 %% number and entropy matching

93 number constra int = 61000;

94 en t ropy cons t r a in t = 2 . 8 9 ;

95

96 f r a c e r r o r = abs (number mc−number constra int )/ number constra int + . . .

97 abs ( ( ( entropy mc ./ number mc)− en t ropy cons t r a in t )/ en t ropy cons t r a in t ) ;

98 f r a c e r r o r = f r a c e r r o r ( : ) ;

99

100 [ x , indx ] = min( f r a c e r r o r ) ;

101 T = TT col ( indx ) ;

102 mu = mumu col ( indx ) ;

103 [T,mu, ent ropy cons t ra in t , number constra int /1000 ,T/t ,mu/ t ] ’

104

105 %% double check the number & entropy

106 % I f the matching i s poor , may try i n c r e a s e the g r i dpo in t s

107

108 num = sum( qprob .∗ xprob . ∗ 1 . / ( . . .

109 exp ((2∗ t∗qval+gamma∗xval .ˆ2−mu) . /T)+1))

110

111 entropy mc = sum( qprob .∗ xprob .∗ ( log (1+exp ( (mu−2∗t∗qval−gamma∗xval . ˆ 2 ) . /T ) ) . . .

112 −((mu−2∗t∗qval−gamma∗xval . ˆ 2 ) . /T ) . ∗ . . .

113 ( 1 . / ( exp(−1∗(mu−2∗t∗qval−gamma∗xval . ˆ 2 ) . /T)+1) ) ) ) ;

114
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115 entropy mc/num

116

117

118

119 %% generate the d i s t r i b u t i o n o f atoms in r e a l space

120 [ x , y , z ]=meshgrid (−50:1 :50 ,−50:1 :50 ,−50:1 :50) ;

121 nr = @(nx , ny , nz ) sum( cosq prob . ∗ 1 . / ( . . .

122 exp ((2∗ t∗ c o sq va l s+gamma∗(nx.ˆ2+ny.ˆ2+nz .ˆ2)−mu) . /T)+1)) ;

123

124 % generate d i s t r i b u t i o n in 3D r e a l space

125 a = zero s (101 ,101 ,101) ;

126 f o r i = 1 : 1 : 101

127 f o r j = 1 : 1 : 101

128 f o r k = 1 :1 : 101

129 a ( i , j , k)=nr ( i −50, j−50,k−50);

130 end

131 end

132 end

133

134 sum(sum(sum( a ) ) ) % number check

135 imagewrm( a ( : , : , 5 1 ) )

136 co l o rba r

137 cax i s ( [ 0 , 1 ] )

138 %% counting the number o f pa i r s at var ious removal f r a c t i o n

139 c l o s e a l l

140

141 % check i n i t i a l occupat ion

142 i n i = rand ( [ l ength (x ) , l ength (x ) , l ength (x ) ] ) ;

143 i n i = (a>i n i ) ;

144 imagewrm( double ( i n i ( : , : , 5 1 ) ) )

145 co l o rba r

146 co l o rba r ( ’ o f f ’ )

147 s e t ( gca , ’ XTick ’ , [ ] )

148 s e t ( gca , ’ YTick ’ , [ ] )

149 colormap ( [ 1 1 1 ; 0 .1 0 .1 0 . 1 ] )

150 cax i s ( [ 0 , 1 ] )

151

152 % make a p lo t f o r given mu,T, and vary p

153 data = [ ] ;

154 % fo r a l a r g e enough region , where no atom at the boundary , the

155 % length ( tar )−1 shouldn ’ t co s t underest imate counting o f pa i r s .

156 %tar = tar ;

157 f o r p =0 :0 . 05 : 1 . 0 % removal f r a c t i o n

158 count = 0 ;

159

160 %generate i n i t i a l occupat ion

161 i n i = rand ( [ l ength (x ) , l ength (x ) , l ength (x ) ] ) ;

162 i n i = (a>i n i ) ;

163

164 % remove some depends on the p r opob i l i t y

165 remove = rand ( [ l ength (x ) , l ength (x ) , l ength (x ) ] ) ;

166 f i n = i n i .∗ double ( remove>p ) ;

167 %f i n : d i s t r i b u t i o n o f atoms a f t e r number reduct ion

168 tar = f i n ;

169 f o r i = 1 : l ength ( tar )−1

170 f o r j = 1 : l ength ( tar )−1

171 f o r k = 1 : l ength ( tar )−1

172 i f ta r ( i , j , k)==1

173 i f ta r ( i , j , k+1)==1

174 tar ( i , j , k )=0;

175 tar ( i , j , k+1)=0;

176 count = count +1;

177 e l s e i f ta r ( i , j +1,k)==1

178 tar ( i , j , k )=0;
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179 tar ( i , j +1,k)=0;

180 count = count +1;

181 e l s e i f ta r ( i +1, j , k)==1

182 tar ( i , j , k )=0;

183 tar ( i +1, j , k )=0;

184 count = count +1;

185 end

186 end

187 end

188 end

189 end

190 % above loops : count number o f pa i r s . A pa i r i s removed a f t e r counting .

191 data = cat (1 , data , [ p , count/sum(sum(sum( f i n ) ) ) ] ) ;

192 % count/sum(sum(sum( f i n ) ) ) : max number o f p o s s i b l e doublons / t o t a l number

193 % of atoms a f t e r removal procedure .

194 end
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