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ABSTRACT 

This work examines the role of the hippocampus and relational memory in organizing episodic memory 

during navigation and reconstruction. Navigation is a critical component in most organisms’ survival. 

Reconstruction, on the other hand, provides an incredibly rich method of evaluating the precise 

information remembered by an individual after attempting to learn and remember that information. 

Through validating the computational framework in this work on amnesic patients with hippocampal 

damage, an understanding of some of the specific types of relations which rely on the hippocampus can 

be established. Then, this framework can be applied to a much more complex, spatiotemporal 

navigation and reconstruction task in healthy individuals to gain a wider perspective on the organization 

of episodic memory, which is known to critically rely on the hippocampus. 

The first experiment and associated analysis framework presented in this document (Chapter 2) uses 

spatial reconstruction to establish that not all types of spatial relations are impaired in hippocampal 

damaged patients. In particular, the arbitrary, identity-location relations (i.e. those relationships where 

the element being bound could have just as easily been anything) are critically impaired in hippocampal 

damaged patients while location information, disregarding identity, is not. The use of reconstruction in 

this context allows for the establishment of a set of critical computational metrics which relate to 

hippocampal function in reconstruction which can then be applied to other reconstruction tasks in 

healthy individuals to learn more about the wider structure and organization of memory. 

In the second experiment (Chapters 3 and 4), the methodologies which were applied to hippocampal 

damaged patients in the first experiment are applied to a novel Spatiotemporal Navigation Task in 

healthy young adults. In this task, participants are not just asked to study and reconstruct items in space, 

but instead, participants are asked to, in Virtual Reality, navigate space and time (via normal movement 

and simulated Time Travel) and study, then reconstruct the locations of events in spacetime. The 

computational framework established in the previous chapter is then applied to show that relational 

memory errors in time are far more common in this task than in space, suggesting differences in 

representations between these two domains even when the navigation and exploration of the domains 

are put on a more equal footing. Additionally, in time, these relational memory errors are far more likely 

to occur within a shared contextual region than should occur by chance. In fact, this error (temporal 

relational memory error within a context) gets worse across the first 3 trials, suggesting a systematic 

bias due to context. Finally, a more traditional bias, the context boundary effect (i.e. a “squishing” of 
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within context temporal locations and “stretching” of across context temporal locations) is observed 

even though participants are allowed to reexplore the contexts arbitrarily, multiple times. This suggests 

that the context boundaries are having a profound impact on both the distance judgements and 

relational memory structure associated with events in spacetime. 

Finally, in the fourth chapter, the navigation component of the previous Spatiotemporal Navigation Task 

is examined to determine if changes in study time navigation and exploration relate to changes in the 

various test metrics discussed in the previous chapter. More rapid improvements in spatial and 

temporal navigation are shown to relate to more rapid improvements in memory in those domains, 

separably, suggesting that spatial and temporal representations may in some way be separable in this 

task in both the relational representations and the navigation strategies supporting those 

representations. Relational memory improvements are shown to be uniquely tied to changes in 

navigation complexity and systematicity, pointing to an interplay between in-the-moment, memory-

guided decision making and subsequent relational memory efficacy. Context boundaries are suggested 

to act as more of a discriminatory feature (at least in this task) than one used to strengthen within-

context relational memory organization accuracy as there is a significant relationship between changes 

in context boundary crossing and both the context boundary effect and across-context temporal 

relational memory errors. Finally, a preference towards exploring an otherwise temporally-flexible 

environment in the implied, forward order with increasing contiguity is suggested to be a critical 

element in improving temporal, relational, and contextual memory organization. 

Taken together, this work shows the richness of spatiotemporal navigation and reconstruction in 

observing the complex interplay between navigation in space, navigation in time and how these 

ultimately may relate to navigation in memory. Through embracing principled approaches to analysis of 

behavioral data, and the inclusion of complex behavioral mechanics (such as simulated time travel), this 

work extends our understanding of the role of hippocampal relational memory and overall memory 

organization.  
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Chapter 1: General Introduction 
There are numerous ways to quantify memory efficacy, but when it comes to recollective memory few 

methods are richer or more detailed than navigation (Eichenbaum, 2017b) and reconstruction tasks 

(Huttenlocher & Presson, 1979). Reconstruction tasks ask individuals to study some set of information 

and then, after a delay, recreate the information they observed. Traditionally, individuals are given a set 

of items which are to be reconstructed in space (Jeneson et al., 2010; Smith & Milner, 1981; Watson et 

al., 2013). The strength of these paradigms is that not only can one assess which aspects of the original 

information were or weren’t remembered, but also the degree to which they were remembered, as well 

as whether there are any systematic distortions in that memory. Ultimately, we are unable to know 

what precise thoughts, strategies, or information the participant did or did not have when performing 

the task just from the behavioral data, but by carefully picking the assumptions we are willing to make, 

we can strongly infer what was not done in the reconstruction (because if it were, the performance 

should have been different). Moreover, by systematically analyzing the performance in reconstruction, 

we can begin to hypothesize new models and test existing models of memory organization 

(Eichenbaum, 2016) and representation (Eichenbaum, 2004, 2017a; O’Reilly & Rudy, 2001; Schapiro et 

al., 2017) across many different domains of information (Konkel et al., 2008).  

In addition to a theoretical introduction to assumptions and perspectives on reconstruction tasks, the 

work presented in this document will show how performance on reconstruction tasks can be broken 

down into specific and sensitive metrics of performance to elucidate some aspects of memory in two 

particular domains, space and time. Relational memory theory posits that the hippocampus is critical for 

the binding of arbitrary relations into rich memory representations, as well as for the flexible usage of 

these representations, regardless of the domain from which the information originates (Cohen & 

Eichenbaum, 1993; Monti et al., 2015). Previous work has shown that binding of the identity of an item 

to a location in space (i.e. identity-location binding) may be one critical example of an arbitrary relation 

which is severely impaired in hippocampal damaged patients (Watson et al., 2013), with other accounts 

suggesting that not all relational information is impaired (Jeneson et al., 2010). Though these previous 

accounts hinted at specific aspects of information in reconstruction being impaired and spared, the 

analysis methods differed significantly, making it difficult to determine the precise nature of the deficits 

in reconstruction in hippocampal damaged patients. The work presented here attempts to reconcile 

these accounts with a novel methodological framework constructed from a principled approach to 

reconstruction data. The data show that certain (but not all) types of relational information are impaired 



2 
 

in hippocampal damaged individuals (Chapter 2), but, critically, arbitrary identity-location information is 

impaired (i.e. the information was not derivable from other relations or elements which may have been 

remembered) while the location information (i.e. the ability to reconstruct items in studied locations 

regardless of the identity of the item) is not.  

Hippocampal function is not exclusive to spatial information, however, with the identification of “time 

cells” in the hippocampus recently showing this via direct, electrophysiological evidence (Eichenbaum, 

2014; Kraus et al., 2013). Additional sources of information (such as contextual information) can also 

bias representations (Ezzyat & Davachi, 2014; Zacks et al., 2007), and these additional sources of 

information are critical in understanding the overall organization of memory and the hippocampal 

system, with most modern models of the region including cortical region interactions which involve the 

addition of these alternate sources of information (Kumaran et al., 2016; Sederberg et al., 2008; Wang 

et al., 2015). The reconstruction task presented in Chapter 3 embrace this complexity by allowing space 

and time to be explored simultaneously and asking participants to reconstruct events in space-time in 

the presence of temporal contexts. The data from this task show that in healthy adults, there may be 

differences in the representations of spatial and temporal information and systematic biases in different 

aspects of temporal representations due to contextual information.  

Finally, sampling behavior during study in reconstruction tasks is an equally critical element in overall 

performance. In previous work involving spatial sampling, eye movements, which are often thought of 

as “visual exploration” of an environment/scene (Voss et al., 2017), in hippocampal damaged individuals 

and healthy individuals indicated both memory for an entire previously viewed scene and relations 

among elements in the scene; however, when the relations between items were changed, only healthy 

individuals showed differences in eye movements relative to the change, while hippocampal damaged 

patients did not (Cohen & Banich, 2003). Similar sampling deficits in spatial navigation have been shown 

in rodents with hippocampal damage in the Morris Water Maze (Morris et al., 1982). However, more 

recent work in humans shows that this deficit in navigation may be exclusive to precise, high-resolution 

information as humans with hippocampal damage in a Virtual Morris Water Maze were able to navigate 

to the correct quadrant of the spatial area but were impaired in finding the precise location of the target 

(Kolarik et al., 2016; Kolarik et al., 2017). The hippocampus’ role in spatial navigation has been compared 

extensively across species (especially rodents and humans), and the subject is still hotly debated 

(Eichenbaum, 2017c). However, as stated in the previous paragraphs, hippocampal function is not 

exclusive to spatial processing and is critical for all domains of information. As such, this work (Chapter 
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4) examines exploration and navigation in a domain which has never been examined before, the 

temporal domain. Temporal navigation (aka Time Travel) may seem like a farfetched idea, but as many 

other authors all the way back to Tulving, 1989 (and more explicitly in Tulving, 2002a) have said, 

memory is time travel, with further evidence that MTL neurons “jump back in time” by replaying specific 

patterns of firing in response to repeated stimulus (Howard et al., 2012). The data in this chapter show 

that certain aspects of learning in navigation and exploration of both time and space relate significantly 

to learning of relational and contextual information, and ultimately, the systematicity and complexity of 

navigation may be one of the more critical components in determining which individuals will improve 

most significantly in their temporal relational memory. 

Domains Entities 

Finite vs. Infinite 

(i.e. there are boundaries or not) 

 

Precisely Located and Encapsulated/Finite 

(i.e. their position can be defined by one point) 

 

Continuous vs. Discrete 

(i.e. any location is valid or only some are) 

 

Distribution  

(i.e. entities are more likely in some areas) 

 

Dimensionality 

(i.e. there are multiple of the same domain type) 

 

Constraint  

(i.e. positions of entities are relative to others) 

 

Geometry/Topology 

(i.e. Euclidean, toroidal, hyperbolic) 

 

Identity  

(i.e. they are anonymous or labelled)  

 

 

Disjoint vs. Connected  

(i.e. can all space be reached from anywhere) 

 

Category  

(i.e. entities have distinct groupings)  

 

 

 

Table 1.1: Properties of Domains and Entities. This list is not necessarily exhaustive, but these 

properties represent some critical assumptions being made during any reconstruction task. 



4 
 

Before examining specific data on reconstruction and hippocampal function, several details regarding 

the theoretical prerequisites to analysis of this data should be explored. Information in reconstruction 

can be organized in a huge variety of ways, and it is useful to ensure that the analysis methods are 

capable of handling as many of these cases as possible. Also, by examining the assumptions made during 

task design, we can not only gain better insights into the nature of the task and analyses but we are also 

presented with an enormous variety of follow-up experiments and questions that future work outside of 

this dissertation may address. The next section breaks down properties of this task by examining the 

two critical elements of reconstruction, domains and entities, and enumerating properties and 

assumptions which warrant consideration in designing reconstruction tasks and analyses. 

1.1 Domains and Entities: Building Systematic Understanding of Reconstruction 
Reconstruction can be defined, in its most basic form, as containing two main components: a domain, 

i.e. an axis or set of axes into which entities (elements of a domain such as items, events, precise colors, 

pitches, etc.) can be embedded (see Table 1.1 for an enumeration of key properties of domains and 

entities). It is interesting to see the similarities between this classification and the dorsal and ventral 

“where” and “what” pathways of the perceptual system (Ungerleider & Mishkin, 1982), which converge 

in the hippocampal system (Insausti et al., 1987; Squire & Zola-Morgan, 1991; Van Hoesen et al., 1979) 

as well as in descriptions of processing in scene-selective visual areas such as the functionally defined 

Parahippocampal place area (see Epstein, 2014 for a detailed examination). While, of course, multiple 

types of domains and entities interact in memory, for the sake of our understanding of the memory 

representations which are involved in reconstruction, it is helpful to at first restrict our focus to 

instances in which only one domain and one type of entity are present, at least when developing our 

methodological and theoretical framework. 
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Let us take a specific example to which we can link the abstract terms defined in the previous paragraph 

to clarify their meaning. Imagine a 2D spatial domain in a space such as the Beckman Institute Café 

(pictured in Figure 1.1). Within this spatial domain exist items, i.e. discrete entities which have a 

precisely defined location (such as the lamp, humans, and kiosk) and locations relative to one-another 

(as defined by the three spatial axes). If we consider the number of restrictions we have already made, 

we can begin to understand how difficult the problem of a systematic breakdown of reconstruction is. 

First, the reader may have implicitly assumed (likely, rightfully so due to my example) that the 2D space 

in question is finite. However, this was never explicitly stated (i.e. the spaces adjacent to the café, 

outside of the Beckman Institute, outside of Urbana, IL, and outside of Earth’s atmosphere may be 

equally considered part of the space). An infinite space opens up a variety of new problems of scale and 

geometry which future studies should address. For example, space could be a toroidal ring like we see in 

video games such as the classic, Asteroids (Wolf, 2010), wrapped on a sphere like we experience on 

maps from day-to-day (i.e. the earth; Snyder, 1987), in a hyperbolic space (a la a Penrose diagram in 

theoretical physics; Hawking & Ellis, 1973) where distance becomes asymptotically large as boundaries 

are approached, or something more exotic (Coxeter, 2008; see Figure 1.2 for visualizations of some of 

these spaces). Although humans more typically navigate a flat, 2D, Euclidean space, we are nonetheless 

Figure 1.1. The Beckman Institute; an example of a 3D spatial domain populated by numerous 

entities which occupy specific points in space and have various identities. Red/dotted squares 

highlight entities which occupy the spatial domain. Some occupy fixed locations while others 

move at different time scales. The blue/dotted arrows illustrate the three spatial dimensions 

which comprise the spatial domain. 
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capable of understanding and utilizing these other spaces (as can be easily observed by anyone who has 

ever played Asteroids or navigated the globe).  

   

Entities, on the other hand are typically restricted to have a precisely defined location, so entities which 

occupy multiple locations simultaneously have been eliminated. Entities typically have identities (rather 

than being anonymous) and are assumed to be equally likely to be positioned anywhere in the space 

while not occupying the same location as another entity (though we will see in the next section how 

subtle violations of this assumption can warp reconstruction expectations). These systematic 

assumptions that both experimenter and participant make may seem unimportant as, if both parties 

make the same assumptions, it should not confound the results. However, participants who are unable 

to remember some information due to an impairment such as hippocampal damage may fall back to 

these core assumptions and perform the task via heuristic, guessing locations based on an 

understanding of task design rather than an explicit knowledge of locations. Minor changes in how the 

studied locations are chosen can have a large impact on the subsequent probability space of the items 

and, therefore, drastically change the efficacy of various heuristics in chosen locations (see Figure 1.3 for 

examples of various probably spaces from real reconstruction experiments). There is mounting evidence 

that hippocampal damage impairs precision in spatial memory (Kolarik et al., 2016, 2017; Yonelinas, 

2013), which could be explained, in part, by a heuristic approach to memory. Alternatively, patients 

might actually be able to maintain relational information of some sort via alternative methods. Patients 

might, for instance, remember Gestalten perceptual features, i.e. configural features which constitute 

parts of a unified whole, rather than specific types of relations in order to reconstruct (Corsi, 1972; 

Kessels et al., 2000; Uttal & Chiong, 2004). Although we might be tempted to call heuristic performance 

“random” (because on some level, patients are “guessing” locations without any precise knowledge), or 

perceptually based performance “imprecise”, by acknowledging when our own assumptions of our task 

Figure 1.2: Examples of spaces with different geometries. Euclidean, toroidal, and hyperbolic. 



7 
 

might become violated in a systematic way, we might gain insight into the sorts of information 

processing which are and are not impaired with damage to certain brain regions, and, by extension, we 

may better understand neural information processing as a whole.  

   

 

 

1.1.1 Illustratability Does Not Define Domains of Information 

Another critical assumption often made in reconstruction is the types of domains and entities which 

might be involved. Typically, reconstruction tasks have involved studying entities located in the spatial 

domain (as illustrated above). However, this is, once again, an arbitrary imposition on what 

reconstruction is, especially given the evidence that the hippocampus is critical for all domains of 

information (Konkel et al., 2008). Before enumerating examples of domains and entities which go 

beyond these examples, it’s useful to take a moment to consider why space (and sometimes time) may 

be so dominant. Reality, as we observe it, is intrinsically experienced in 3 spatial dimensions and 1 

temporal dimension. All information of any type which we observe will be embedded in these 4 

dimensions. This is often used as an argument as to why these must be the critical dimensions to neural 

systems, and perhaps, on some level, they are. However, it is incredibly restrictive to allow the 

definitions of domains which could be encoded to only be those which can be illustrated. Illustration 

requires, by its very nature, embedding whatever domain or idea is being observed into the observable 

4D world. However, the set of all possible representable information need not be bound to what can be 

illustrated. An analogous situation happens when we imagine the dimensionality of data. We cannot 

easily illustrate data beyond 3 dimensions (see Abbott, 1884 for a playful exploration of attempting to 

visualize alternate numbers of dimensions). We can add color, animation, shape, size, and all sorts of 

other illustrative methods, but we can always add more dimensions to the data. If we stopped accepting 

dimensions beyond those that can be illustrated as easily as we stop accepting domains of information, 

Figure 1.3: Examples of heatmaps of item placement with different constraints. From left to 

right: random placement, random placement with aspect ratio constraint, random placement 

avoiding boundaries, random placement with a distance constraint (i.e. items must be a 

certain distance apart). 
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much of the powerful mathematics used in the world today would be out of our reach. It is not a 

necessary precondition for a brain to represent information which can be illustrated. 

1.1.2 Domains Other than Space and Time 

Several domains other than space and time have been examined in the literature in recent years. Social 

space, as defined by the relative affiliation and power between individuals (Eichenbaum, 2015; Tavares 

et al., 2015), is another possible abstract space and has been investigated in the context of hippocampal 

function, finding that hippocampal fMRI activation located characters in a 2D power-affiliation “map”. 

Color can be thought of as an abstract domain where entities can be embedded in locations in a “color 

space” independently of locations in space and time (see Warren et al., 2015 for an example of a 

reconstruction task involving color as a domain of interest). Of course, it is tempting to fall back into old 

habits and think of color as being on a 1D line, with the x axis defined as hue, and social space being 

illustrated via a scatter plot in 2 dimensions. These are useful illustrations, but domains of information 

are only illustrated to help us understand them. Their illustration does not define them. Additionally, 

although time has been discussed as if it can be easily lumped in with space up until now, it obviously 

has its own interesting properties. Time is intrinsically unidirectional. Time is continuous, and motion 

through it is obligatory. Few other domains have this property, and as such, time may be of special 

interest. Moreover time cells have been identified in the hippocampus (Kraus et al., 2013) which act 

much like place cells but activate corresponding with particular moments in time. Although it is difficult 

to disentangle temporal firing from spatial or distance firing, via careful task design, cells which fire to 

time and distance in exclusion of one another (as well as cells which fire for both) have been identified 

(Kraus et al., 2015). Together these pieces begin to paint a picture of a hippocampus in which entities 

can be bound within and across a variety of domains. Indeed, previous work has shown the 

hippocampus is critical for all manner (i.e. domain) of relations (Konkel et al., 2008). As such, our 

methodological framework should attempt to be agnostic to domain as much as is possible so that 

domain representation differences can be identified using the same metrics.  

Relational memory theory (Cohen & Eichenbaum, 1993) captures the vast majority of phenomena 

described in the previous paragraphs, but several properties that have been described have, to my 

knowledge, never been tested. It is not the goal of this dissertation to systematically test all of these 

variations, but rather, by describing these variations, a better understanding of the simpler cases of 

reconstruction can be gained which can generalize to other domains with more complex properties. In 

this way, relational memory theory can be refined to determine the types of relationships which are 
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critical in different domains given different properties, and the organization of memory regardless of 

domain can become clearer. Although the complex cases described above of domains with toroidal 

geometry and disjoint features do exist in video games such as Asteroids or Portal and can be potentially 

addressed with the methods described in Chapter 2, a more fundamental understanding of 

reconstruction in the familiar domain of 2D Euclidean space should first be attained.  

1.1.3 2D Spatial Reconstruction – The Spatial Reconstruction Task 

In the parlance of the previous sections, the Spatial Reconstruction task is comprised of a finite, 

continuous, 2D, Euclidean, spatial, connected domain (i.e. a computer screen) populated with 6, 

precisely located, finite, randomly distributed pictures of real-world entities which will not 

overlap/appear on top of one another and are sampled from a finite set of possible entities. This 

scenario has been used in several publications at this point (Jeneson et al., 2010; Lucas et al., 2016; 

Monti et al., 2015; Schwarb et al., 2016, 2017; Watson et al., 2013) and has a proven track record of 

having hippocampal-dependent performance components. To break down this task, it is helpful to 

consider the information-theoretic content of the task. To determine the amount of information 

necessary to perfectly reconstruct a 6-item trial of the task, the simplest method is to assess how many 

numbers would be needed to describe 6 precise locations and the associated identity information. This 

question is intimately related to questions of information entropy (Cover, 2006; Shannon, 1948). A naïve 

approach to describing the location information would be to represent each of the 6 items with 2 

numbers (x and y) and, assuming we have a list of the possible objects (or at least an understanding of 

the objects which are currently present), 1 additional number is needed to define the identity of each 

entity. So, in our naïve case, we can represent all 6 items with 18 numbers. However, as we’ll see in a 

moment, this naïve representation may or may not represent the actual amount of information storage 

used by an individual in remembering the configuration in this task. 

 



10 
 

 

 

 

 

 

 

 

First, for location information, if the intent is to reconstruct an original configuration of these items, a 

precise reconstruction will require all 12 location numbers to be represented. However, for an 

approximate representation, a much more compressed option may be available. Suppose the positions 

of each element were encoded into a graph-like representation where the relations between a subset of 

the items was encoded instead of any explicit location. This is, in fact, a representational framework 

posited by relational memory theory (Cohen & Eichenbaum, 1993). Now, if the graph can be 

represented more efficiently, only one position need be remembered precisely (i.e. the overall position 

of the graph within the environment). Moreover, with this representation, the positions can now be 

transformed in ways which are not obvious given a set of 6 unassociated points. For instance, if the 

space were to be scaled up or down (as was done in Muller & Kubie, 1987 in rodents), the relative 

relations would simply be scaled up or down in accordance (and in fact, Muller & Kubie showed that 

place cell firing in an open field remapped with scaling, maintaining the relative shape of spatial firing). If 

the space were to be translated (i.e. moved in any direction a fixed distance), the graph itself need not 

change, only the global position would need to be adjusted. In fact, within a space like the one we’ve 

defined, scaling and translation are the fundamental transformations which do not require alteration of 

the graph of relative positions. Interestingly, some theories of temporal memory for order also share 

this property of scale and translation invariance in time (Howard et al., 2005; Howard & Kahana, 2002; 

Howard & Natu, 2005; Shankar et al., 2016). Rotation, sheering, or other more complex transformations 

can potentially result in the relative positions of items being changed, but with scaling and translation, 

Figure 1.4: Example Reconstruction Task: a finite, continuous, 2D, Euclidean, spatial, 

connected domain populated with 6, precisely located, finite, randomly distributed pictures of 

real-world objects which will not overlap/appear on top of one another and are sampled from 

a finite set of possible objects. Note that the study portion is timed, there is a short delay, then 

the test has unlimited time. These are constraints on sampling the environment and 

maintaining memory more than the information contained within the configuration. 
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any item to the left of another will remain to the left, and any item on top will remain on top (see Figure 

1.5 for a visualization of these phenomena). This idea parallels similar ideas from physics and 

mathematics, where certain quantities are conserved (or invariant) under certain transformations. 

Noether’s theorem (Noether, 1971), in fact, specifically states that for any transformation (specifically, 

those which are differential symmetries of an action), there is some corresponding conservation law 

(conservation of energy is equivalent to translational symmetry in time, conversation of moment is 

translational symmetry in space, conservation of angular momentum is rotational symmetry in space, 

etc.). If we believe memory for the location information which describes a set of points is encoded in 

such a relational graph, we should similarly believe that the representation should only be conserved 

under those transformations which have relational invariance (i.e. scaling and translation) but not those 

which lack such an invariance (i.e. rotation and sheering). Moreover, we might suspect that 

transformations which conserve parts of the relational information (like reflection, which conserves 

relations on all but the reflected axis) might have a graded effect on memory for the locations. However, 

in 1D domains (such as time) a reflection would have a more extreme effect as it is guaranteed to 

damage the relational information between every item pair that isn’t directly on top of each other. 

 

Figure 1.5: Relational Invariance in Affine Transformation Components in 2D: Note that via an 

item-item relational grid, we can observe the impact of different transforms on the relations 

present between items. Scaling and Translation have no impact on the relations between 

items (though scaling impacts distance between items. On the other hand, Rotation, 

Sheer/Skew, and Vertical/Horizontal Reflection all can modify relations in some systematic 

way. However, rotation uniquely can modify both dimensions relations. 



12 
 

Of course, the precision of the memory for the graph position and for the relational information may 

vary as well, but this can be treated as different types of noise which can be quantified in particular 

ways. The Precision and Binding Model (Yonelinas, 2013) suggests that the hippocampus is critical for 

binding precise, high resolution information, and the associated measures of precision used in testing 

this model (a variable sized accuracy window) are one example of a quantification method which shows 

promise in providing more interpretability when working with complex path data (Kolarik et al., 2016, 

2017). However, this model addresses precision in continuous domains, not precision for discrete 

information, and it does not address the specifics of how different binding configurations might 

influence memory. Moreover, it is unclear how the concept of precision should be generalized for 

several stimuli being bound to each other as well as elements of the environment. Relational memory 

theory (Cohen & Eichenbaum, 1993), on the other hand, very directly addresses how memory for 

arbitrary relations might form a flexible representation (in the graph-like manner discussed previously). 

However, even once we accept that a graph-like representation is at the core of memory for 

reconstruction, the problem is still far from solved. We don’t know, for instance, if a subset of items is 

being represented relationally, bound to each other, while a single item is being bound to some aspect 

of the environment in exclusion of the other items. Additionally, the presence of higher-order 

organizational information (such as contextual information) might bias the reconstruction in ways which 

are measurable in the change of position of the groups of entities which share that higher-order 

property. The exact definition of context, however, is a topic of heavy debate and will not be addressed 

in this work. 

Now, for identity information, we also have several possibilities. If the identity information is being 

convolved with some aspect of the spatial information, we would expect it to be subject to the same 

transformation and invariance rules outlined in the previous paragraph. If, however, the items are being 

bound to particular locations (as was suggested in Watson et al., 2013), these bindings might be subject 

to their own invariance rules. This situation is more likely if the items are arbitrary, i.e. they just as easily 

could have been any item. Arbitrary items cannot be as easily convolved with location, as no expectancy 

can be formed about what item should be associated with a given location (thus, arbitrary). In reality, 

arbitrary items may still end up with alternative associations by chance (for instance, if an image of a 

plane happens to appear over an image of a tree, this obviously has a location-identity association which 

is non-arbitrary as planes tend to fly over trees, but it may have occurred by chance), but if the items are 

arbitrary, we can imagine them, in some way, as a disjoint domain of their own which must be bound to 

the continuous, connected domain of space. This binding may not be damaged by transformation of the 
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space as it is being done via creating arbitrary relations from single points to identities. The various 

identities, however, could end up confused in some way if that information was not remembered but 

the location information was. In this way, particular identities might be assigned to the wrong location, 

or identities might switch places (see Figure 1.6 for a visual description of these representational 

differences). If the relations are arbitrary, these errors should be thought of as distinct from the sorts 

which might result from some failure to remember location.  

 

1.1.4 Sampling and Encoding During Study 

Finally, the discussion up until now has been exclusive to the representational portion of memory, but it 

largely neglects the learning aspect of reconstruction. When performing a reconstruction task, 

individuals are given some amount of time to study the information. During this time, there are 

numerous behaviors which might be performed in order to attempt to gather the information. The 

structure of human sensory systems is such that we generally sample specific aspects of information 

one-at-a-time, rather than assimilating the whole environment simultaneously (see Kveraga & Bar, 2015 

for a thorough treatment of the topic). This sampling behavior is of particular interest as it is often 

measurable. If the information being studied is all visual (such as a computer screen task), the eyes will 

be the only sampling medium and, as such, the movement of the eyes in some way determines the 

information which can be encoded. Eye movements have been successfully used to identify critical 

Figure 1.6: Examples of different identity binding methods. Item-Location Bindings to Known 

Locations assumes that item identities are being associated to particular locations and the 

locations are being remembered independently. Item-Location and Item-Item Binding to 

Partially Known Locations shows how, even in the absence of perfect location information, 

item-item relations can allow imprecise reconstruction of locations. Similarly, item-location 

binding can still be present, but identity can be misassigned even with perfect memory for 

location (i.e. the chair and the car are switched). Although we cannot easily know the 

particular representation being used by an individual on a particular trial, we can observe 

when these various errors occur and narrow down the possible representations and the 

information which is lacking. 
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differences between viewing patterns in hippocampal damaged individuals and comparison participants 

due to memory (Cohen & Banich, 2003; Hannula & Ranganath, 2009). In Virtual Reality or Real-World 

environments, navigation (the combination of body-movement and eye-movement) provides a more 

flexible form of sampling (and, in fact, eye movements can be a subset of this sampling as the 

technology to sample eye movement at the same time as head movement and environment position 

has been available for nearly 20 years; Duchowski et al., 2000). In either case, sampling comes down to a 

stream of information which is received by the system whose contents can be guided by in-the-moment 

demands; in fact the Covert, Rapid, Action-Memory Simulation (CRAMS) model specifically addresses 

this sort of rapid, in-the-moment, memory-guided decision making, suggesting that prefrontal-

hippocampal interactions provide rapid simulations of potential outcomes of decisions in order to guide 

behavior (Wang et al., 2015). If the task at hand has few demands, very little sampling will be required, 

however, in a demanding task, extensive sampling may be required to acquire the necessary 

information. Tasks are sometimes designed to require participants to sample particular aspects of an 

environment (via masking all but some small region of the environment, a la Yee, 2012, or by forcing the 

participant to acknowledge sampling of particular aspects of the environment before proceeding, for 

example), and these demands may also bias behavior in particular ways. Sampling is a complicated 

topic, and as such, it will only be examined in relation to the test performance and not in a more holistic, 

information rich manner. 

1.2 Overview of Chapters 
The remainder of this thesis will discuss algorithmic and mathematical formulations of domains and 

entities in reconstruction tasks, starting specifically with the aforementioned example of 2D space, 

validating the methods in hippocampal damaged patients. These methods will be used to show that 

hippocampal damage does uniquely impair some, but not all, measures of performance in 

reconstruction (Chapter 2). Later sections will show how these methods can be applied to a temporal 

domain and show how, despite its differences, temporal memory representations may be treated in 

much the same way as spatial memory representations (Chapter 3) under this theoretical framework. 

Temporal and spatial domains may share many similarities, but errors in each may be distinct in other 

ways which can be seen in reconstruction performance. In particular, contextual information may have a 

similar influence on memory in both space and time, when it comes to precise remembering of location 

information, but relational information may be in some way different in these two domains. Finally, we 

will examine aspects of sampling of a domain which might influence the ability to remember and 

reconstruct information (Chapter 4), and we will specifically demonstrate how changes in navigation and 
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exploration behavior relate to changes in various memory measures such that rapid changes in 

systematicity and complexity of navigation relate to faster improvement of subsequent relational 

memory performance, and faster increases in temporal-contiguity of navigation relates to faster 

improvements in several aspects of relational and contextual memory. 

1.2.1 Reconstructing Relational Information 

In the second Chapter, a computational framework based on the theories outlined so far in the 

introduction is established which attempts to approach the task of inferring information about spatial 

reconstruction performance in hippocampal damaged patients from a principled perspective, making as 

few assumptions as possible and carefully defining different types of spatial relational information which 

are quantifiable in a reconstruction. Previous work has identified misplacement (i.e. the sum of 

Euclidean distance of the reconstructed locations of items to their target locations) as an error which 

shows greater magnitude in hippocampal damaged patients than comparison participants (Huttenlocher 

& Presson, 1979), and more recent work has hypothesized that some of this may be due to swapping of 

item identities between otherwise remembered locations (Watson et al., 2013). The work here expands 

on these ideas with a far more precise mathematical formulation of errors involving misassignments of 

items, global transformations (i.e. translation, scaling, and rotation), and swaps/cycles of items which 

are misassigned as a group. Three hippocampal damaged patients are evaluated in a computer-based 

spatial reconstruction task with 6 unique items and 32 trials. Nine age, sex, and education matched 

comparison participants perform the same task. In agreement with previous theories of relational 

memory and hippocampal damage (Cohen & Eichenbaum, 1993; Eichenbaum & Cohen, 2001; Konkel & 

Cohen, 2009; Konkel et al., 2008), single-item misassignments (i.e. placing of an item in another item’s 

location without any presumption about where the item which should’ve occupied that location was 

placed) are significantly more common in hippocampal damaged individuals than comparisons. 

However, patients and comparisons do not show a difference in the number of overall locations which 

are correctly reconstructed with some item (though not necessarily the correct item identity). This 

suggests that hippocampal patients are able to maintain certain relational information (i.e. general 

studied locations), potentially via an alternate representation that leverages other brain regions and/or 

memory systems. 

Furthermore, despite previously identified differences in swapping between patient and comparison 

participants, with these more sensitive measures, we show that this difference is only present at low 

set-sizes (i.e. few items, <=4, in the reconstruction). At 5 items, comparison participants begin to commit 
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identity-location spatial relational errors and, at this point, we find that no difference is present 

between patients and comparisons in the number of compound errors (swaps and cycles of items). 

Additionally, although identity information does account for the majority of the difference between 

patient and comparison participants, a significant difference remains in their misplacement even after 

all corrections are made. This “local” misplacement may represent a deficit in precision as described by 

others (Kolarik et al., 2016, 2017; Yonelinas, 2013). 

This work serves two primary purposes: first, the paper establishes a methodological framework for 

making inferences about spatial reconstruction performance (and, in general, reconstruction 

performance in any domain) which makes minimal assumptions and approaches the issue from a 

principled perspective. Second, the work clarifies the previous theoretical accounts of relational memory 

and the hippocampus by showing that it is the arbitrary identity-location information (i.e. the 

information which “could have just as easily been anything”) which is impaired in hippocampal damaged 

patients, not the overall location information. This work speculates as to how such information might be 

maintained or represented, but future studies which are not part of this work will be necessary to clarify 

how some relational information might still be maintained via alternate mechanisms. 

1.2.2 Memory during Time Travel: Spatiotemporal Navigation, Contextual Boundaries, and Relational 

Memory Errors in Virtual Reality 

Beyond just the spatial domain, episodic memory (which is critically supported by the hippocampus; 

Tulving, 2002a) involves the temporal domain as well. There is an extensive literature studying the 

temporal domain showing that humans naturally segment events into discrete regions in time (Zacks et 

al., 2007), that contextual boundaries impact perceived distances across time (DuBrow & Davachi, 

2013), that order memory is impacted by recency, contiguity, and primacy effects (Howard et al., 2015; 

Murdock, 1962), and an enormous litany of other discoveries, all which make the same crucial 

assumption – that time need always be sampled unidirectionally and in isolation of space, despite the 

fact that space and time are being constantly sampled together and memory for temporal events may 

involve more flexible representations than just a unidirectional sampling allows us to examine. The work 

presented in this section shows that this assumption is not necessary and space and time can be put on 

a more equal footing, allowing free navigation of both domains simultaneously (known as a 

Spatiotemporal Navigation Task) in Virtual Reality (VR). Virtual Reality allows increased measurement 

and control capabilities over other methods, increasing a sense of presence, and providing greater 

ecological validity than more traditional methods (Kuliga et al., 2015; Schultheis et al., 2002). Many of 

the same effects seen in more traditional tasks can be seen in this Spatiotemporal Navigation Task 
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(context boundary effects – in which items which share context are remembered as closer together and 

items across contexts further apart; misassignments – where one event (i.e. an entity whose identity is 

associated with a specific spatiotemporal location) is placed in another event’s location; overall 

misplacement improvement (i.e. the sum of the Euclidean distances of all events to their targets) due to 

repeated study of the same events. While many of these effects are similar to previous tasks, despite 

the present study allowing for the ability to traverse the timeline freely, some unique differences can be 

found between space and time when comparing relational information in each domain. 

Leveraging the methodological work from Chapter 2, Chapter 3 shows that misassignments in time (i.e. 

placing an event in another event’s temporal location) is far more likely than misassignment in space 

(i.e. placing an event in another event’s spatial location) in healthy young adults even with the ability to 

freely explore both domains. This difference is persistent across trials, with spatial misassignment 

dropping to near perfect accuracy by the last trial while temporal misassignment remains significantly 

higher. However, a significant linear trend is present in the temporal misassignment across trial 

suggesting it might eventually plateau if more trials were utilized. The ability to improve an 

understanding of the relational information contained within the temporal component of the set of 

events is particularly interesting in light of work by Howard Eichenbaum and colleagues showing the 

existence of time cells in the hippocampus which fire in relation to specific points in time (Eichenbaum, 

2014; Kraus et al., 2013). It is unclear if these time cells are firing in accordance with any temporally 

task-relevant stimuli, relating to a topological representation of time (i.e. where the relative distances 

between events are represented independently of a grid-like representation), or firing exclusively in 

relation to some task start point (as is the experiments up until now), relating to a metric (i.e. grid-like) 

representation of time (see Ekstrom & Ranganath, 2017 for a discussion of the distinction between 

topological and metric representations). Based on what we know of other selective cells in the 

hippocampus (i.e. orientation selective), we would predict that time cells should exist which fire relative 

to task-relevant temporal stimuli, i.e. a topological representation of time. However, without the 

manipulation allowing for the re-exploration of temporal moments, it is difficult to dissociate the two 

possibilities as temporal relations always occur at precisely the same temporal distance from one 

another. This task presents a manipulation which might one day lead to a better understanding of these 

temporal representations, though this behavioral evidence, alone, will not be sufficient to disentangle 

these possibilities. 
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This task does not only address spatial and temporal reconstruction; it also contains temporal contextual 

information in the form of changing background colors in the environment at different moments in 

time. Using these temporal contexts, temporal context boundary effects can be assessed. Although 

these effects have been looked at for temporal order memory in previous experiments (DuBrow & 

Davachi, 2013; Ezzyat & Davachi, 2014), those experiments never allowed the participant to freely 

transition between contexts at will, to (re)explore contexts as much as they would like, or retested on 

the same information several times (to assess improvements to contextual vs. overall memory). In this 

task, participants repeated the same event sequence 4 times, and showed improvements to their overall 

memory on each subsequent trial. However, despite improvements in performance across nearly every 

other metric, temporal context boundary effects did not diminish across trials. This strongly suggests 

that this “error” in placement is, in fact, a bias created by an organizational principle which uses context 

to separate groups of events from one another. This suggestion is consistent with other computational 

models of the impact of temporal context on memory (Howard et al., 2014); however, these models do 

not generally allow for the assumption of free traversal of time. 

Interestingly, this contextual bias does not just impact memory for the relative distance between events, 

but contextual information also biases relational information in time (i.e. temporal misassignments, 

from earlier in this section). Across all trials, a significantly higher number of misassignments are to 

same-context locations that should occur by chance. Moreover, this effect actually increases across 

trials as the impact of context on distance judgements holds steady and the overall number of 

misassignments decreases, suggesting that this bias is not easily corrected with restudy and reflects an 

organizational principle which causes within-context items to be associated to each other but not 

necessarily with the same precision on an individual-item level.  

Together, this task and the mathematical framework from Chapter 2 serve as a critical first step in 

forming a more comprehensive understanding of episodic memory and relational memory in space and 

time, simultaneously, showing that, when we put space and time on a more equal footing (by allowing 

participants to freely sample both domains), we can study memory for events with more flexibility and 

fidelity to illuminate critical elements of memory organization. In particular, we show that relational 

memory in space and time may not be represented with precisely the same organization (as shown by 

drastically different relational memory errors in each domain) and that contextual information creates 

systematic biases in both distance judgements and relational memory errors which do not necessarily 

improve with restudy. 



19 
 

1.2.3 Spatiotemporal Navigation, Sampling, and Information Encoding in Virtual Reality 

Previous sections have primarily highlighted test results, while leaving study-time behavior largely 

unaddressed. Chapter 4 examines various measures of study-time performance in the most complex 

case of the tasks discussed in this work, the Spatiotemporal Navigation Task, and shows that changes in 

measures of complexity, systematicity, and contiguity of navigation relate to changes in relational and 

contextual memory performance. Previous work on eye tracking in hippocampally dependent tasks and 

hippocampal damaged populations has revealed a variety of visual sampling phenomena which are 

predictive of aspects of hippocampally dependent memory (Hannula, 2010; Hannula & Ranganath, 2009; 

Hannula et al., 2007). However, sampling in a 2D environment via eye movement is somewhat different 

from a computational perspective than navigation within a 4D environment. Basic navigation metrics 

such as the distance travelled in space and time have been evaluated, showing that performance on 

these metrics improves across trials in the Spatiotemporal Navigation Task and the rate of that 

improvement relates to the rate of improvement in the misplacement in each domain (i.e. faster 

reduction in distance relates to faster reduction in misplacement). Additional metrics of complexity of 

navigation from other work in spatial navigation (such as the Fractal Dimension measure; Daugherty et 

al., 2015) and novel metrics which relate to systematicity of navigation (i.e. Lacunarity) are specifically 

examined to observe relationships with relational memory and contextual biases at test. Additionally, an 

analysis of the order of navigation versus order of reconstruction and associated accuracies (more akin 

to the Recency and Contiguity effects explored in traditional temporal free recall tasks) is examined. 

In this task, individual improvements in spatial and temporal navigation are shown to relate to 

improvements in memory in those domains separably, suggesting that spatial and temporal 

representations may, in some way, be separable in this task; relational memory improvements are 

shown to be uniquely tied to changes in navigation complexity and systematicity, suggesting a critical 

and complex interplay between in-the-moment, memory-guided decision making and subsequent 

relational memory efficacy; context boundaries are suggested to act as more of a discriminatory feature 

(at least in this task) than one used to strengthen within-context relational memory organization 

accuracy as there is a significant relationship between changes in context boundary crossing and both 

the context boundary effect and across-context relational memory errors; and a preference towards 

exploring an otherwise temporally-flexible environment in the implied, forward order with increasing 

contiguity is suggested to be a critical element in improving temporal, relational, and contextual 

memory organization. 
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Chapter 2: Reconstructing Relational Information1 

2.1 Introduction 
Relational memory is critically supported by the hippocampus (Cohen & Eichenbaum, 1993; Eichenbaum 

& Cohen, 2001; Konkel & Cohen, 2009; Konkel et al., 2008). For example, memory for relationships of 

items to spatial locations is highly sensitive to hippocampal damage in humans (Hartley et al., 2007; 

Allen et al., 2014; Smith & Milner, 1981a; Watson et al., 2013). Moreover, it has been shown previously 

that the hippocampus is necessary for all “manner” of relational memory (Konkel et al., 2008); that is, it 

is critical for binding information regardless of the informational domain, be it spatial, temporal, 

sequential, associative, etc. However, while the hippocampus can be involved regardless of the domain 

of information, there are many possible relations between the constituent elements within a given 

domain, such as item identities (i.e. labels that distinguish items from one another, such as names), 

locations (i.e. positions in the domain in which an item was present during study), and environmental 

elements (i.e. the boundary of the environment or landmarks). It is possible that not all of the relational 

information among these elements critically relies on the hippocampus, and that some types of 

relational information may not be impaired by hippocampal damage.  

Importantly, we distinguish between a manner of relation and type of relation. Hippocampal 

involvement in all manner of relation means, more generally, that the hippocampus can be involved 

regardless of the informational domains (i.e. spatial, temporal, social, associative, etc.). However, within 

a given domain, particular types of relational information exist (and are enumerated here) which may 

not all be equivalent in terms of hippocampal involvement. It is possible that when comparing types of 

relations in two different domains, seemingly similar relations may have distinct representations with 

different amounts of reliance on specific memory systems. For instance, item-item relations within a 

spatial domain containing several items can be used to derive information about item locations even 

with an imperfect representation of each individual relation (this point will be elaborated upon later), 

while item-item relations in an arbitrary word pair cannot be easily used to derive additional 

information about other arbitrary word pairs. Similarly, item-environment relations in some spatial-

relational tasks may or may not be informationally equivalent to item-environment relations in others 

(such as studying the location of a single item in a scene vs. the locations of many items within an empty 

                                                           
1 This chapter is previous published work, included with permission of the copyright owner: 
 
Horecka, K. M., Dulas, M. R., Schwarb, H., Lucas, H. D., Duff, M., & Cohen, N. J. (2017). Reconstructing relational 
information. Hippocampus. 
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environment). A primary reason for this difficulty is in the diversity of uses of terms like ‘item’ and 

‘environment’ across different tasks.  

It is the aim of this work to precisely define types of relations within the spatial domain in such a way as 

to determine if memory for specific types of spatial relations are impaired (or not) by damage to the 

hippocampus. To this end, we propose a framework for systematically classifying types of relations in a 

spatial memory task. This framework allows us to: 1) distinguish multiple types of first-order (i.e. 

pairwise or one-to-one) and higher-order (i.e. group-wise or many-to-many) spatial relations, and 

2) determine if these various types of spatial relations are differentially impaired by hippocampal 

damage by inferring the presence or absence of relational information via observations of different 

types of errors in a reconstruction.  

Here we take advantage of the rich data generated by spatial reconstruction (SR) paradigms, in which 

multiple items are studied in various spatial locations before participants are asked to reconstruct (i.e. 

freely place) each item in its remembered location. There is a long tradition of using SR paradigms to 

study spatial memory (Huttenlocher & Presson, 1979) and its susceptibility to hippocampal damage 

(Jeneson et al., 2010; Smith & Milner, 1981; Watson et al., 2013). These experiments have historically 

used a general quantification of “misplacement error” in space by calculating the sum of the Euclidean 

distance between each placed item and its studied location. The typical finding of these experiments is 

that individuals with hippocampal damage show increased overall misplacement relative to comparison 

participants.  

One critique of the use of misplacement as the sole metric of performance on SR tasks has been that it 

provides relatively little information about the nature of spatial memory deficits following hippocampal 

damage (Watson et al, 2013). In other spatial paradigms, such as the virtual Morris Water Maze 

(vMWM), some theories of hippocampal function such as the Precision and Binding Model (PBM; 

Yonelinas, 2013) would predict the increased misplacement seen in SR tasks, with PBM, in particular, 

predicting poorer precision of spatial memory in hippocampal damaged patients (Kolarik et al., 2016, 

2017). This could be consistent with the explanation that high levels of misplacement could theoretically 

reflect an inability to remember coordinates on a “grid-like” mental representation of the display, with 

patients showing a deficit in the resolution of the grid. Alternatively, high misplacement could reflect a 

deficit in representing inter-object configural or relational information (among other possibilities, 

discussed below). Due to this resolution issue in using misplacement as a primary metric of 

performance, there have been recent attempts to develop additional metrics of spatial reconstruction 
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performance that help to disentangle these possibilities (Jeneson et al., 2010; Watson et al., 2013). In 

particular, Watson et al., (2013) focused on a very specific type of spatial relational error termed a 

“swap” error. “Swap” errors are errors in which the relative position on each x and y axis for a pair of 

items is flipped. Such errors appear to be strongly influenced by hippocampal damage. In fact, patients 

with hippocampal lesions even make “swap” errors in set sizes as small as two items and on surprisingly 

short time scales (Watson et al., 2013).  

These data suggest that when the hippocampus is impaired, relational binding errors occur regardless of 

the number of items to be remembered (e.g., in a set size invariant manner). Moreover, swap errors in 

Watson et al (2013) were found to be a significant contributor to the overall differences in 

misplacement rates between patients and healthy comparison participants. However, there are many 

additional potential relation-based explanations for increased misplacement in hippocampal patients. 

Patients could be making global errors of some sort (i.e. moving all items down, squishing items 

together, or rotating all the items), local or “noisy” errors (i.e. placing items pseudo-randomly based on 

a heuristic or limited memory for locations), or relational errors (i.e. placing items in the wrong location 

given their identity, but that location would have been valid for a different item). Thus, in the present 

study, rather than focus on one type of spatial relational error (e.g. swaps), we sought to identify the 

multiple types of relations in space, to organize them in a systematic framework, and to determine if all, 

or only some, types of relations are impacted by hippocampal damage.  

At the core of our proposed framework is the classification of three primary types of first-order spatial 

relations: item-environment relations (e.g., one item is in the upper left corner of the display), item-item 

relations (e.g., one item is below and to the left of another item), and identity-location relations (e.g., 

item A belongs in location A). Note that terminologically, the use of the word “item” here is specific to 

location information (with identity information being separated out as identity-location information). An 

analogy to help clarify the meaning of these different relations can be found in navigating a shopping 

mall. While navigating, it may be important to remember the locations of stores. This would require you 

to remember location information about where the stores of interest are in relation to the shopping 

mall layout (i.e. item-environment relations) or perhaps the locations relative to other stores (i.e. item-

item relations) as well as which store is in which particular location (i.e. identity-location relations). The 

hippocampus has been implicated for decades in item-environment relations. Indeed, animal models 

demonstrate hippocampal place cell firing tied to the distance and direction of item cues in an 

environment (Gothard et al., 1996; John O’Keefe et al., 1996). While humans with hippocampal damage 
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are able to retain some item-location information via maintenance in working memory, this 

maintenance is transient (Allen et al., 2014; Libby et al., 2014). In both humans and animals, arbitrary 

item-item association has been extensively studied. Memory for item-item relations is impaired 

following selective damage to the medial temporal lobe in rodents (Bunsey & Eichenbaum, 1993), 

monkeys (Murray et al., 1993), and humans (Giovanello et al., 2003). Furthermore, humans with 

hippocampal damage show item-item impairments for all manner of relations (e.g. spatial, temporal, 

associative, etc.; Konkel et al., 2008).  

In addition to these first order relations, we examine higher-order, compound relations (e.g., item A, B, 

and C form a group), which can contribute to compound spatial relational memory errors (e.g., the 

group is translated to the left, all of the items are squished towards the group’s center, or two items 

swap locations). Compound relational errors can be seen in two forms in our analysis. Firstly, swaps of 

items (i.e., when two items are placed in each other’s location) and cycles of items (i.e. when more than 

two items are placed in each other’s locations) are forms of compound error primarily involving multiple 

identity-location errors. Secondly, various transformation errors (translation, scaling, and rotation) are 

forms of compound errors involving multiple item-item and/or item-environment errors.  

In addition to first-order (i.e. pairwise) and higher-order (i.e. compound) relations, we can begin to 

consider the question of how general, Gestalten shape information, i.e., configural features which 

constitute parts of a unified whole, may be used independently of the hippocampus to maintain more 

global spatial information. While the current data cannot provide a definitive response to this proposal, 

the relevant data are suggestive and considered. 

Finally, given the evidence that hippocampal damage impairs reconstruction performance even at very 

small set sizes (Watson et al., 2013), the implication of varying set size on memory for these different 

types of spatial relational information was considered. To this end, we take advantage of an existing 

dataset (Watson et al., 2013) that recorded SR task performance from hippocampal patients across set 

sizes (i.e., from 2 items to 5 items) and reanalyze those data using the current analysis framework. We 

first evaluate the extent to which hippocampal patients and comparison participants committed 

relational memory errors of particular types even at small set sizes (e.g., 2 items). Second, we determine 

whether those error types change or remain consistent as set size increased. 

In summary, in the work presented here, we investigate the types of relations that are sensitive to 

hippocampal damage from a first principles approach by breaking down reconstruction errors in an SR 
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task into multiple error types, which can then be evaluated simultaneously. We consider three types of 

first-order relations (i.e., item-environment, item-item, and identity-location relations) as well as two 

types of higher-order compound relations (i.e., swaps and cycles). We evaluate the degree to which the 

overall difference in misplacement between hippocampal patients and matched comparisons can be 

explained by these distinct error types. Finally, we discuss the implications of these findings for theories 

of hippocampal function. 

2.2 Materials and Methods 

2.2.1 Participants 
Behavioral data were collected from 3 patients with hippocampal damaged and profound declarative 

memory impairment or amnesia (see Table 2.1 for details) and 9 healthy comparison participants. Three 

of the healthy comparison participants were matched to each hippocampal patient for sex, age (+/- 5 

years), and education (+/- 2 years).  

 
Table 2.1: Demographic, neuroanatomical, and neuropsychological characteristics of participants with 

hippocampal amnesia. Hand. = Handedness. Edu. = years of education. HSE = Herpes Simplex 

Encephalitis. HC = hippocampus. + MTL = damage extending into the greater medial temporal lobes. HC 

Volume = hippocampal volumetric z-scores as measured through high resolution volumetric MRI and 

compared to a matched healthy comparison group (Allen et al., 2006; Buchanan, 2005). WAIS-III FSIQ = 

Wechsler Adult Intelligence Scale–III Full Scale Intelligence Quotient. WMS-III GMI = Wechsler Memory 

Scale–III General Memory Index. BNT = Boston Naming Test. TT = Token Test. CFT = Complex Figure Test; 

WCT = Wisconsin Card Sorting Task; Cat = Number of categories achieved out of six. 

Two patients experienced anoxic/hypoxic episodes (1846, 2563) resulting in bilateral hippocampal 

damage and the third patient contracted herpes simplex encephalitis (1951) leading to more extensive 

bilateral MTL damage affecting the hippocampus, amygdala, and surrounding cortices (Figure 2.1). 

Structural MRI examinations completed on 2 of the 3 patients confirmed bilateral hippocampal damage 

and volumetric analyses revealed significantly reduced hippocampal volumes. Participant 2563 wears a 

pacemaker and was unable to undergo MRI examination and thus their damage was confirmed by 

computerized tomography; damage was confirmed to the hippocampus. 
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Figure 2.1: Magnetic resonance scans of hippocampal patients. Images are coronal slices through four 

points along the hippocampus from T1-weighed scans. Volume changes can be noted in the 

hippocampal region for patient 1846, and significant bilateral MTL damage including the hippocampus 

can be noted in patient 1951. A = anterior, P = posterior, NC = healthy comparison brain.” 

Neuropsychological examination confirmed severe declarative memory impairment in all hippocampal 

patients (M =63; Wechsler Memory Scale-III General Memory Index, more than 2 SDs below population 

norms) in the context of within normal performance of standardized measures of intelligence, language, 

visual perception, working memory, and executive functioning (see Table 2.1).  

2.2.2 Experimental Paradigm 
Participants completed a computerized spatial reconstruction task (Monti et al., 2015; see top of Figure 

2.2). Participants studied 6 items (gray scale, nameable objects; Brodeur et al., 2014) per trial, arranged 

pseudo-randomly in an 950 × 600 pixel area within a 1280 × 1024 pixel computer screen across 32 

total trials. During the study phase, participants viewed the 6 items for 16 seconds, followed by a 5 

second delay (blank screen). At test, which began immediately after the delay, items were randomly 

placed in a line at the top of the screen, and participants used a mouse to drag each item to its 

remembered location on the screen. Participants had unlimited time to reconstruct the studied display. 

When they were finished, participants pressed space bar to start the next study trial. Participants’ eye 
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movements were recorded throughout the experiment. Eye tracking data are not reported here and will 

be reported elsewhere (Lucas, Duff, & Cohen, in preparation). 

 
Figure 2.2: A sample trial from the spatial reconstruction task; A, B, and C show different interpretations 

of the same reconstruction where the objects are in the reconstructed locations and the dots are the 

target locations from the study phase. (A) shows item-item and item-environment relations (dotted lines), 

which might be used to determine the locations of the dots. (B) shows reconstructed item to target 

location relations where gray shaded circles indicate a failure in placement of items to those locations 

(note that identity is ignored as, for example, the bus is not in its target location). (C) shows compound 

relations where some items roughly swap locations (although not necessarily precisely, in this case being 

a "partial swap"), some show cycle relationships (i.e. BusBedBicycleBus), and some show single-

item placement in the correct target location. 

2.2.3 Analysis Methods 
To determine if item-environment, item-item, identity-location, and compound relations showed 

selective differences in performance between patients and comparison participants, a new set of tools 

for analyzing spatial reconstruction data were created. These methodologies were designed with the 

intention of making as few assumptions as possible about the nature of the reconstruction to separate 

the types of errors via more mathematically rigorous and interpretable metrics. This approach applies 

Point Set Registration methods (see Besi & Mckay, 1992 for an introduction to the topic), in which a set 

of points (often derived from key points in an image) are assigned to an independent set of points (often 

from a reference image) based on an inferred relationship between the two sets. The SR paradigm is 

analogous to the Point Set Registration process of understanding the relationship between 
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reconstructed points and their target (i.e., studied) counterparts, with two primary differences. Firstly, 

in the case of Point Set Registration, it is often not guaranteed that every point in the data set will 

correspond one-to-one with a point in the target. In the case of the SR task, we have a much stronger 

reason to assume that such a one-to-one correspondence should exist (though it may be interesting to 

consider the sorts of memory errors that might cause this assumption to be violated). Secondly, in Point 

Set Registration, it is often the case that there are many more points from which to define a model than 

exist in the SR task. For this second reason, especially, it is important that we proceed with caution in 

what models we apply to our data to avoid overfitting to a small set of points. 

The model for the comparison of the reconstructed and target (i.e., studied) points can be thought of as 

having four primary components: identity remapping (wherein the identity of each item is removed and 

the set of placed item locations is mapped onto the target locations in a way which minimizes error), 

global error correction (wherein global translation, scaling, and rotation errors are subtracted from the 

placed item locations), location placement evaluation (wherein a binary determination of accuracy is 

made for each location), and compound error evaluation (wherein “swaps,” in which two items are 

misassigned to each other’s locations, and “cycles,” in which more than two items are misassigned to 

each other’s locations, are identified).  

2.2.3.1 Identity Remapping 

For this first step, identity remapping, a one-to-one mapping between the reconstructed points and 

targets must be created. This mapping can be determined by a variety of methods, each with their own 

advantages and disadvantages (Burkard et al., 2012); however, for the sake of simplicity and 

interpretability, it is often preferable to find the mapping which globally minimizes the overall error in 

the reconstruction (effectively eliminating any effects of item identity-location misassociation in the 

reconstruction). This can be solved using the following Assignment Problem (Kuhn, 1956; Kuhn, 2010; 

Munkres, 1957) equation: 

min ∑ ∑ 𝐶𝑖𝑗𝑋𝑖𝑗

𝑗𝑖

 

where 𝐶𝑖𝑗 is the cost matrix associating each vertex in a graph and 𝑋𝑖𝑗  is the binary assignment of an 

undirected edge to the graph. Using the above equation, we find the set of 𝑋𝑖𝑗  associations (which we 

will call “the map”) which results in the smallest numerical value, forming a minimal one-to-one 

mapping of the placed item location to a target (studied) location.  
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2.2.3.2 Global Error Transformations 

Once a one-to-one mapping has been found, the next primary component to be determined is the 

global error transformation which finds shared error across all the items. This transform could be any 

function, and with enough parameters, the items could be mapped perfectly onto their assigned target 

locations. However, because our intention is to differentiate between global relational errors and item-

level errors, a simplified transformation is used such that only translation, scaling, and rotational errors 

are included in the model. Together, these transformation components describe a 4 parameter system 

(x translation, y translation, scale, and rotation), which can be used to model global error across all items 

in a trial (cf. Similarity Transform; Cederberg, 2001). One could speculate as to what might cause these 

different types of errors (i.e. translation being a misrepresentation of the entire stimulus space in the 

environment with an offset, scaling being a squishing or stretching of the stimulus space, and rotation 

being a misrepresentation of the directions in the environment). Regardless, by identifying this global 

error, we can subtract out its effects from each item’s location so as to get a more precise measure of 

individual item accuracy independent of shared, systematic, spatial errors. The similarity transform can 

be more precisely stated as a solution to the equation: 

𝑓(𝑥) = 𝑟𝑨𝑥 + 𝒕 

where 𝑟 is the ratio of similarity (or scaling factor), 𝑨 is an 𝑛 × 𝑛 orthogonal matrix and 𝒕 is a translation 

vector. 𝑨 can be decomposed into a single 𝜃 value which represents the magnitude of rotation around 

the point set center. This transformation can be computed using Umeyama’s algorithm (Umeyama, 

1991) which uses Singular Value Decomposition (Cline & Dhillon, 2006; Golub & Kahan, 1965) to obtain a 

transformation matrix. It is useful to note that it is not always possible to find a transformation given a 

set of points if they do not actually share any global error of the types we’ve specified (i.e. translation, 

scaling, and rotation). In our model, we allow rotation to fail independently of translation and scaling, as 

it is more difficult to find rotational components in small data sets. If all attempts to find a 

transformation fail, no global adjustments are made and the transformation data from those trials are 

excluded from the analysis. Singular Value Decomposition computes the transformation matrix by 

solving the following equation: 

𝑴 = 𝑼∑𝑽∗ 

where 𝑴 is the dot product of the reconstructed and target point locations divided by the number of 

points, 𝑼 and 𝑽∗ are unitary matrices, and ∑ is a diagonal matrix of non-negative, real numbers. 
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Umeyama’s algorithm allows the decomposition of the matrix 𝑴 into the translation, scaling, and 

rotation components.  

2.2.3.3 Location Placement Evaluation 

Now that associative and global errors have been subtracted from the point locations, a measure of 

reconstructed-to-target location placement accuracy can be evaluated in a manner that is not 

influenced by incorrect item-identity choices or global rearrangement. Previous studies have attempted 

to include accurate placement as an aspect of the analysis using an arbitrarily chosen distance value 

(Jeneson et al., 2010). However, an inflexible threshold imposes a very strict, nonlinear boundary on our 

evaluation of accuracy, which is difficult to handle without training participants to operate within this 

constraint (potentially influencing behavior in unintentional ways). It would be preferable for such a 

boundary decision to be made flexibly, based on the variability in local misplacement (i.e., misplacement 

that is not shared amongst the items nor due to item identity errors). To accomplish this goal, we 

determine accuracy based on the data by creating a statistical distribution of the misplacement after 

correcting for item-identity and global error and use the confidence intervals for the distribution (in this 

case, 95% confidence intervals) as the accuracy threshold. This distribution could be formed on a trial-

by-trial basis, but it is more stable to compute it across all trials for an individual as there are more 

sample points (192 points instead of 6). This trade-off means that the threshold will be slightly stricter 

than the data would suggest for earlier trials and slightly less strict for later trials due to the 

improvements in accuracy normally associated with learning the studied locations. The confidence 

interval equation: 

𝑑 <  �̅� + 𝓏∗
𝜎

√𝑛
 

is used to determine if an item is within the accuracy threshold, where 𝑑 is the distance of a given item 

to its target, �̅� is the mean distance of all items to their targets, 𝜎 is the standard deviation of all items 

to their targets, 𝑛 is the number of items, and 𝓏∗ is a chosen z-score (usually 1.96 for 95% confidence 

intervals). This choice trades a rigid, predetermined threshold condition for a new assumption: that the 

participant placement of items will generally be in the studied locations (to a degree specified by the 

confidence interval width). This assumption may not be correct for patients with hippocampal damage 

as overall misplacement for patients is greater than for matched comparisons (Huttenlocher & Presson, 

1979; Jeneson et al., 2010; Smith & Milner, 1981a). Therefore, we opt to use the accuracy thresholds 

computed from the comparisons as the measure of accuracy for the patients. This choice allows our 

definition of placement accuracy to be unified between the groups, with the matched comparisons 
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determining their associated patient’s placement accuracy threshold. This adjustment is necessary in 

deciding a threshold for patients because we are forming a statistical distribution based on individual 

item misplacement which incorporates all the individual item variability. This item variability is not 

necessarily matched between patients and comparisons given that the comparisons generally perform 

better. Thus, we use the stricter criteria, the comparison thresholds, for placement accuracy in patients. 

2.2.3.4 Compound Identity Error Evaluation 

Finally, once all item-location assignment and global errors have been subtracted from the data and 

placement location accuracies have been determined, item-to-location mapping can be examined for 

both accurate locations and inaccurate locations. Using the mapping from the first step of the analysis 

and the accuracy from the previous step, we can also find if there are any accurate or partially accurate 

location-cycles of items where items were potentially assigned to the wrong location (i.e., within the 

threshold we have defined for our binary location accuracy judgement but with a center on a different 

item’s studied location). The cycles are computed via a graph-theoretical connected-components 

analysis where closed loops in the graph of associations are treated as individual components (Hopcroft 

& Tarjan, 1973). If an item exists in a single-component system, it is assigned correctly with its target 

(studied) location. Otherwise, the items in the component system form a cycle, where the simplest cycle 

would be a 2-cycle, which can also be thought of as a swap, and higher order cycles can also be found 

(up to a 6-cycle, as 6 items are being tested). In the general case, an N-cycle is possible where N is the 

number of items under test. Note, this “swap” is computed differently than our previous version of 

“swaps” (Watson et al., 2013), as the metric described here includes location accuracy (with item 

identity ignored) as part of the requirement for being called a “swap”. We believe that this new metric is 

more consistent with the general item-location misbinding (in this case also called an identity-location 

misassignment) interpretation of a “swap” error. These error types are collectively called compound 

errors. 

In summary, this process produces a set of nine output metrics. The 1&2) translation (x and y), 3) 

scaling, and 4) rotation magnitudes from the transformation step, 5) the number of items within the 

location accuracy threshold after removing both the item identities and the number of compound errors 

of various types. For consistency with our previous work, we will consider 6) 2-cycles, aka swaps, in 

isolation of 7) >2-cycles in statistical analysis. Further, any system with one or more inaccurate items is 

treated as a 8&9) “partial” cycle (or swap), versus those in which all locations contain an accurately 

placed item.  
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Figure 2.3: The analysis procedure as defined in the above sections. (A) shows the correct locations (dots 

with shadowed identities) and the reconstructed locations (items) along with shadowded dotted lines 

showing the original misplacement. Note that large amounts of misplacement error is accumulated via 

improper assignment of identities to locations. (B) shows the global remapping (dark dots are targets 

and light dots are reconstructed points) wherein identity is stripped away and a minimal one-to-one 

mapping is formed. (C) shows the global transformation (in this case a slight rotation and scaling error) 

where dark dots are targets, medium dots are reconstructed points, and light dots are post-

transformation reconstructed points (i.e. points where the global error have been subtracted from the 

reconstructed points). (D) shows the binary accuracy evaluation on the post-transformed points (where 

the dark shaded circle signifies an inaccurate item). (E) shows the compound errors identified and 

labelled according to the previous steps (where shaded regions are considered “partial” groups where at 

least one item was inaccurately placed). 

2.2.3.5 Gestalten Shape-Like Information 

There are many ways to define “shape”, and this proposal evaluates only one such definition. Shape is 

defined here via the location vertices and their relative positions, such that the shape is altered with 

item placements in non-studied locations and unaltered with transformations such as translation and 

scaling. Under this definition of shape, shape can be thought of as the highest order of compound 

identity-location and item-item relational information which includes all pairwise relations amongst 

items without regard for item-environment relations. One way to dissociate identity-location and item-

item relations is to strip away the identity information and treat all items as if they were anonymous (i.e. 

unlabeled) in order to determine if the placement locations match up with any studied locations (see 

Identity Remapping above for details). The current study takes steps to evaluate and dissociate the 
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degree to which shape-like information may be maintained by hippocampal patients by comparing the 

number of correct location placements (disregarding item identity) and the magnitude of different types 

of global errors (i.e. error which is shared between multiple items in the reconstruction), such as 

translation (i.e. a fixed offset in x and/or y of all items), scaling (i.e. all items being closer to or farther 

from a central point without a change in angle between any item pair), and rotation (i.e. all items 

rotated some distance around a central point) between the groups which might suggest differences in 

shape memory. 

2.2.3.6 Statistical Analysis  

All t-tests shown were conducted via Welch’s t-test for unequal variance and unequal sample size (two-

tailed) unless otherwise indicated. An alpha level of 0.05 was used to determine significance. This means 

that the degrees of freedom for each t-test is the adjusted degrees of freedom given by the Welch-

Satterthwaite equation which corrects for unequal sample size and variance. Repeated measures 

ANOVA were used when comparing metric performances and set size data. All ANOVA used Huynh-Feldt 

correction for non-sphericity. 

2.2.3.7 Reanalysis of Watson et al. (2013) Set Size Data 

Previous work from our group showed that hippocampal patients committed swap-like relational 

memory errors even at set sizes as small as 2 items, whereas such errors were virtually non-existent in 

comparison participants even at size sizes of 5. These data suggest that hippocampal damage leads to a 

pervasive inability to retain relational information even in the most restrictive circumstances. To 

investigate whether all types of relations are set size invariant, we conducted a reanalysis of a previously 

acquired data set (Watson et al., 2013) to determine if the patterns seen in the new data set hold in the 

previous one. The data contained four patients and four matched comparisons. Because that data set 

contained variations in set size, a repeated measures ANOVA was run to determine if the average error 

magnitudes across set sizes differed for each type of error. There was an overlap of one patient in both 

studies, 1846, though the data were collected approximately 4 years apart. 

2.3 Results 

2.3.1 Differences in Misplacement Accounted for by Global Errors 
Consistent with previous work (Jeneson et al., 2010; Smith & Milner, 1981; Watson et al., 2013), the 

hippocampal patients show significantly more overall misplacement (difference between means is 109.2 

pixels; 𝑡(4.85) = 3.96, 𝑝 = 0.02) than the comparison participants (Figure 2.4 “Original”). However, our 

new analysis framework allows us to determine the degree to which this misplacement difference can 

be accounted for by the different types of spatial relational errors. The first step in our analysis process 
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was to remap the item-location relations to quantify the misplacement accounted for by identity-

location errors. This quantity is the sum of all of the misplacement accounted for by each identity-

location error (Figure 2.4A “Post-Remapped”) and, indeed, performing this procedure removes the 

majority of the difference in misplacement between the two groups (difference between means is 26.6 

pixels; 𝑡(9.33) = 2.59, 𝑝 = 0.03). This procedure also shows a significant difference in the magnitude of 

the reduction (Figure 2.4B “Remapped Error”) of overall misplacement between patients and 

comparison participants (𝑡(5.67) = 2.81, 𝑝 = 0.04) as would be expected given the relative magnitudes 

of the original misplacement. Note that the reduction in misplacement from remapping accounts for 

over 75% of the difference between the groups. In other words, the majority of the difference in 

performance between patients and comparison is due to identity-location errors. 

 

Figure 2.4: Comparisons of Patient (HC) vs Comparison Participant (NC) groups for A) Misplacement 

Across Analysis Steps, i.e. misplacement magnitudes at each step of analysis and B) Reduction in 

Misplacement by High-Order Error Type, i.e. differences in misplacement accounted for by each step 

(i.e. the subtraction of A). For Patients, individual symbols are shown such that: Square is 1951, Triangle 

is 1846, and Circle is 2563. (* means p<0.05) 

Regarding the transformation misplacement (Figure 2.4A “Post-Transformed”), a repeated measures 

ANOVA was performed (Huynh -Feldt corrected) with group by misplacement (original, post-remapped, 

and post-transformed). A main effect of both group (F(1, 10) = 8.097, p=0.02) and misplacement (F(1.34, 

13.41)=45.392, p<0.001) was found, as well as an interaction between group and misplacement (F(1.34, 

13.41) = 7.536, p=0.01). Follow up t-tests confirmed both patients and comparison participants show a 
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significant reduction in their misplacement via the transformation procedure (𝑡(3.82) = 4.18, 𝑝 = 0.03 

and 𝑡(13.41) = 2.36, 𝑝 = 0.03 respectively). However, the patients and comparison participants show 

no difference in the amount of misplacement accounted for by the global error amongst their items 

(𝑡(9.89) = 0.51, 𝑝 = 0.62). When the different transformation components (translation, scaling, and 

rotation; Figure 2.5) are observed independently, we see that only rotation has a significantly different 

magnitude, with patients having larger magnitude rotation errors than comparisons (𝑡(9.18) =

2.72, 𝑝 = 0.02).  

Once all global transformation procedures are performed, patients and comparisons still show 

differences in the remaining misplacement (difference between means is 33.0 pixels; 𝑡(9.54) =

4.57, 𝑝 = 0.001). This misplacement is “local” misplacement, which is not shared by all items nor 

accounted for by identity-location errors. Note (Figure 2.4A “Post-Transformed”) that because there is 

no significant difference between patients and comparisons in the amount of global misplacement error 

(Figure 2.4B “Transformed Error”), the final difference between the groups is still significant. 

 

Figure 2.5: Comparisons of Patient (HC) vs Comparison Participant (NC) in the magnitude of the three 

types of global transformation error; A) the Translation magnitude, B) the Scaling magnitude (where 1 

means no scaling, <1 means shrinking, and >1 means stretching), and C) the Rotation angle (in radians). 

For Patients, individual symbols are shown such that: Square is 1951, Triangle is 1846, and Circle is 2563. 

(* means p<0.05) 
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2.3.2 First-Order and Higher-Order Relational Errors 
When we evaluated the location placement accuracy of identities to their assigned locations, there were 

three primary first-order comparisons of interest. The first two comparisons addressed the question of 

whether patients could remember identity-location information as often as comparisons, evaluated by: 

1) the number of correct placements and 2) the number of items placed in another item’s location. The 

third comparison of interest addressed the question of whether the patients could remember just the 

location information as often as comparisons regardless of identity, which was evaluated by examining 

the number of items placed in any valid location (note that this is just the sum of 1 and 2). To examine 

group differences in these quantities (particularly 2 and 3), we performed a between groups repeated 

measure ANOVA on the identity-location errors (i.e. 2, above) and the total number of items placed in 

any valid location (i.e. 3, above, the sum of the identity-location errors and the correctly placed items). 

We found a significant interaction of group and these two quantities (F(1, 10) = 17.127, p=0.002). Follow 

up Welch’s t-tests showed that hippocampal patients made fewer accurate placements of the correct 

identity to the correct studied location (e.g., successful identity-location binding) than comparison 

participants (t(5.21)=5.45, p=0.003; Figure 2.6). Importantly, however, patients had more placements of 

items in another item’s studied location (i.e. correct item-location relations with incorrect identity-

location relation) than comparison participants (t(5.06)=2.83, p=0.04); Figure 2.6), even after subtracting 

the global errors. When we looked at memory for locations (regardless of identity; i.e. items placed in 

any valid location), we found no significant difference between patients and comparisons (t(4.71)=0.71, 

p=0.51)).  

In regard to compound errors (i.e. swaps or cycles), we saw no difference between patients and 

comparison participants (t(9.96)=0.39, p=0.71 for swaps and t(7.11)=1.75, p=0.12 for cycles, 

respectively) despite large differences in individual identity-location assignment.  

The fact that patients and healthy comparison participants had similar memory for locations (ignoring 

identity assignment) serves as the first piece of evidence suggesting the possibility that some shape-like 

information (albeit only in the form of a set of vertices) may be used by patients to reconstruct spatial 

location. In any case, it is clear that some aspects of relational information in the reconstruction (i.e. 

some combination of item-environment or item-item relations) was not impaired in hippocampal 

damaged patients. 
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Figure 2.6: Comparisons of Patient (HC) vs Comparison Participant (NC) in the number of items in which 

item-location and identity-location was correct and incorrect. Note that items which were not placed in 

any studied location are collapsed together as ‘Inaccurate Location’. For Patients, individual symbols are 

shown such that: Square is 1951, Triangle is 1846, and Circle is 2563. (* means p<0.05) 

2.3.3 Differences in Accuracy of Item-Location Associations across Set Sizes 
As our previous work showed that patients committed relational memory errors even at very low item 

set sizes, it is useful to ask if, given our new framework for analyzing various types of relational 

information, we see the same pattern of impairment across all set sizes. We took advantage of our 

previous data set from Watson et al 2013 to determine if the number of studied items impacts the 

different types of spatial-relational errors discussed here. In a 2 x 4 ANOVA with factors group (patients 

and comparisons) and set size (2, 3, 4, 5), hippocampal patients showed no main effect of set size 

(𝐹(3, 9) = 0.746, 𝑝 = 0.552) on accuracy of placing items in their target locations, placing roughly only 

a single item in its correct location (identity-location relation) regardless of set size (2 to 5). However, 

the main effect of set size was significant for comparisons (𝐹(2.64, 7.93) = 4.51, 𝑝 = 0.04). 

Importantly, as reported previously (Watson et al., 2013), only patients committed identity-location 

errors at small set sizes; comparisons did not. Furthermore, when considering performance at set size 5, 

in which both groups made identity-location errors, there were no significant group differences for 

other types of compound relational errors, namely swaps and cycles; swaps (𝑡(5.0) = 0.2597, 𝑝 =

0.8055) and cycles (𝑡(5) = 0.1800, 𝑝 = 0.8642). Taken together, these data show that across set sizes, 

patients show specific impairment to identity-location information without showing any significant 
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compound relational error differences once the set size is sufficiently high for comparisons to begin 

making identity-location errors. 

 

Figure 2.7: Comparisons of Patient (HC) vs Comparison Participant (NC) Item-location and identity-

location accuracy across set sizes for patients vs comparisons. Note that items which were not placed in 

any studied location are collapsed together as ‘Inaccurate Location’. 

2.4 Discussion 
The present study investigated the impact of hippocampal damage on various types of relations in a 

spatial memory task. While the role of hippocampus in spatial memory has an extensive history (Hayes 

et al., 2004; O’Keefe & Nadel, 1978; Ryan et al., 2009), the present data demonstrated that patients with 

hippocampal damage are not impaired relative to healthy comparison participants on all types of spatial 

errors; rather they demonstrate particular deficits in identity-location relational memory. 

There are many reasons why identity-location relationships, specifically, might be impaired with 

hippocampal damage. Consider a case where a single item is presented in a bounded spatial 

environment. Only one type of relational information, namely the item-environment relation, is 

necessary to remember where that item belongs. Remembering the identity of that item is not 

necessary to complete the task. However, if a second item is added to the display, each item has an 

item-environment relationship, but also item-item relations and identity-location relations. It is, of 

course, not necessary to encode all three relation types to represent the display because some relations 

provide redundant information (i.e. the item-item relations contain information which is redundant with 

the item-environment relations). However, for an accurate representation, the identity-location 

relationship is not redundant with other types of relations and must always be considered. Identity-
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location relations are entirely arbitrary (in the SR task) and are the critical component for successful 

memory performance; perhaps unsurprisingly then, arbitrary identity-location relationships are the type 

of relations that are most hippocampally dependent in a spatial memory task. As mentioned previously, 

it is important to note that item-item and item-environment information in this task and framework are 

not necessarily equivalent to seemingly similar relations in other domains (i.e. item-item where both are 

words or item-environment where it is the mapping of an object including its identity to a spatial 

location); this is due primarily to the specificity with which we have defined these terms (i.e. ‘items,’ in 

this case, have had their identity information removed and specifically reference spatial-only 

information).  

The assertion that the arbitrary type of relational information in this task is the type showing 

impairment is consistent with previous findings showing hippocampal damage impairs memory for 

arbitrary relations between words (Giovanello et al., 2003), spatial locations in a scene (Hannula et al., 

2006), and temporal relations, and, indeed, all manner of relations regardless of the informational 

domain (Konkel et al., 2008). The data bear out this conclusion by showing that if we remove the 

identity information from the patient data, we see the difference between the groups in overall 

misplacement reduced by over 75%. Furthermore, when stripped of identity information, patients and 

healthy comparison participants do not differ on the number of correctly chosen locations. This shows 

that although patients show impaired memory for arbitrary relations in all stimulus domains, including 

spatial relations, they are not impaired on all types of spatial relations (i.e. they are able to reconstruct 

some item-environment and item-item relations). Patients with hippocampal damage show a deficit in 

reconstructing the specific item identity to its specific studied location. 

The present data also demonstrated that hippocampal patients and comparison participants do not 

differ in compound spatial relational memory errors (e.g., translation, scaling, swapping, and cycles). 

And while rotation errors showed a statistical difference in magnitude between patients and 

comparison participants, the magnitude was quite small (0.86 degrees), accounting for very little overall 

misplacement difference between the groups. Moreover, because the very first step in the analysis is to 

remove identity information, the total amount of possible rotation is artificially restricted to no more 

than the half of the maximum angle between two items from the rotation center, making it more 

complicated to interpret global error type than scaling and translation that have no such restrictions. It 

is, of course, possible that the significant difference in rotation errors is due to additional memory 

deficits. Unlike scaling and translation, in which pairwise spatial relations are invariant (i.e. if item A is 
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above and to the right of item B and a translation or scaling transform is performed, item A will always 

still be above and to the right of item B), pairwise spatial relations are not invariant under rotation. This 

could point to further, more subtle deficits in particular types of relations, but further investigation into 

this error type is needed.  

It is interesting to note that some misplacement remains as local, “noisy” misplacement after the 

removal of identity and global errors, and this local misplacement was significantly greater in patients 

than comparison participants. This is consistent with other accounts of spatial memory and the 

hippocampus such as the Precision and Binding Model (Yonelinas, 2013) which posits that the 

hippocampus is critical for “high-resolution” binding in space, predicting that hippocampal patients 

should have poorer spatial memory precision. These accounts may not generalize to all domains of 

information, however, as some evidence shows hippocampal damage relating to impairment in the 

quantity of information which can be remembered, rather than the quality (or precision) of the 

information when testing hippocampal patients on color information (Warren et al., 2015). 

In regard to compound relations involving identity-location information (e.g., swaps and cycles), it has 

been proposed previously that a lack of memory for identity-identity and identity-location relations in 

hippocampal patients may result in more identity-identity swapping (Watson et al., 2013). However, the 

present data demonstrated no group difference in swaps or cycles after accounting for overall location 

accuracy. The reason for this discrepancy is likely a combination of: 1) a difference in mathematical 

formulation of swapping (i.e., not using accuracy as a prerequisite for a successful swap results in an 

over estimate of the number of swaps) and 2) the inability of hippocampal patients to represent a 

sufficient amount of relational information to commit compound-relational error such swaps (which 

requires memory for two locations and their positions relative to one another and/or the environment 

but no information about item-location relations) more than by chance. Specifically, on the second 

point, if hippocampal patients are not maintaining identity-location information, their ability to have 

group-wise reassignment errors will be limited because they do not have specific knowledge of the 

constituents of the group. These compound swap/cycle errors do occur in both patients and controls 

(although patients uniquely commit them at very small set sizes), but once the set size is sufficiently high 

(i.e. once the comparison group actually makes identity-location errors) the groups do not differ in the 

frequency of their occurrence. Said differently, just as identity-location errors seem to account for a 

substantial proportion of patients’ overall misplacement errors, the disproportionate occurrence of 
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swap and cycle errors at small set sizes in patients can also be attributed to their overall deficit in 

identity-location binding.  

What causes this sudden increase in identity-location errors in comparison participants at higher set 

sizes? One possibility requires consideration of accurate identity-location placements in isolation of 

other metrics. Across all set sizes, hippocampal patients make approximately one accurate identity-

location placement. This accuracy could be due, in part, to a maintenance of a single identity-location 

relation in working memory across the relatively short time span between study and test. Comparison 

participants, on the other hand, make accurate identity-location placements proportional to the set size.  

When we consider how hippocampal patients may be able to maintain item-environment and item-item 

spatial relational information, it is interesting to consider alternate representations which may be able 

to maintain those relations. Previous work suggests that hippocampal damage may not impair shape 

information in SR task performance, as hippocampal patients may be able to represent shapes via an 

alternative, “unitized” representation, which can be formed via Gestalten perceptual features, i.e. 

configural features which constitute parts of a unified whole, rather than relations (Corsi, 1972; Kessels 

et al., 2000; Uttal & Chiong, 2004). The present data provide a suggestive look at this assertion from a 

purely vertex-oriented definition of shape, as the patients and comparisons did not differ in the number 

of locations (i.e. vertices) in which they accurately placed an item (independent of item identity), nor did 

they differ in the amount of global misplacement (i.e. misplacement that is systematically shared by all 

items) of the entire item set. This suggests that, at least in this highly restrictive definition of shape 

being defined via vertices, a similar amount of shape-like information is present in both comparison 

participants’ and hippocampal patients’ reconstructions. That said, using global misplacement 

transformations as a measure of shape is not necessarily the optimal method for investigating this issue, 

even with shape being defined solely via vertices. Topological Data Analysis techniques may prove to be 

a better analysis framework for determining the degree to which high-level relational information is 

preserved in a reconstruction (Carlsson, 2009; Ghrist, 2007). In Topological Data Analysis (TDA), large 

groups of vertex relations can be evaluated and compared directly with minimal assumptions by forming 

a more mathematically rigorous definition of the high-order structure of these relations. A similar 

technique to TDA has been used previously in spatial memory by Kolarik et al. in analysis of data from 

hippocampal damaged patients using a virtual Morris Water Maze (Kolarik et al., 2016, 2017). It is 

unclear, however, if this technique scales well to a very small number of points, and, as such, these 
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analyses are not included in this work; future investigations better suited to the technique should be 

considered.  

There are alternate explanations for the ability to maintain item-environment and item-item spatial 

relations other than maintenance of shape-like information. It is possible individual relational 

information is being stored separately via a different brain region(s). For example, the parahippocampal 

place area has been shown to be involved in processing geometric information about scenes (Epstein, 

2014), and the occipital place area has been related to processing of boundary relations between items 

and visible scene boundaries (Julian et al., 2016). If shape information were being used, regions such as 

the inferior temporal cortex could be involved in providing preprocessed representations of shape via 

shape selective neurons identified in this region (Perrett & Oram, 1993). Alternatively, some heuristic 

approach to reconstruction could be used which takes advantage of hidden constraints in the task (i.e. it 

is unlikely for two items to appear on top of each other, which constrains the possible reconstructions). 

Should the hypothesis that shape-like information is being used to maintain these relations be 

investigated, different experimental paradigms could be used in which various levels of complexity of 

shape-like information are superimposed on a point set and presented to participants to be learned 

then reconstructed. In particular, edges between the locations could be drawn to avoid the need to infer 

some item-item relations which may contribute to a shape-like representation. We would predict that 

patients would perform similarly to comparisons for simple shapes and show deficits primarily in 

identity information for the vertices. Patients may also show performance deficits for more complex 

shapes, which are not as easily unitized (thus preventing a non-hippocampal representation from being 

as helpful). 

Taken together, the evidence presented here defines the various types of relations present in a spatial-

relational paradigm by applying a systematic framework that allows a more thorough investigation of 

the role of hippocampus in spatial-relational memory. Consistent with previous theories of the role of 

hippocampus in relational memory via the arbitrary binding of information (Cohen & Eichenbaum, 1993; 

Eichenbaum & Cohen, 2001), patients with hippocampal damage demonstrated specific deficits in 

arbitrary binding of identity-location relational information. Patients do not show a deficit in compound 

relational errors or location accuracy, suggesting that some types of relational information (in fact, the 

non-arbitrary relational information; i.e. information which has alternative derivations or redundancy) 

can be maintained by memory systems which are not hippocampally dependent. These results further 

clarify the role of the hippocampus in relational memory theory to be specifically in maintaining 
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arbitrary relations which cannot be derived from other information which might be remembered by the 

participant. We have also proposed several possible alternate means through which other, non-arbitrary 

information may be maintained (such as a shape-like representation), which can be investigated in 

future research. We would predict, however, that because one benefit of representing arbitrary 

relations is in the ability to flexibly use those relations with changing task demands, whatever 

alternative means is being used to maintain these relations may not permit the same amount of 

flexibility. 

SR tasks have proven enormously informative in that they provide sensitive measures of relational 

memory abilities that have been tied not only to hippocampal damage, but to more subtle hippocampal 

deficits such as subjective memory complaints (Lucas et al., 2016), spatial pattern separation (Clark et 

al., 2017), and medial temporal lobe viscoelasticity (Schwarb et al., 2017, 2016). Precision and specificity 

of the metrics and the ability to distinguish between several different types of spatial relational errors 

will undoubtedly serve these lines of investigation well as it will allow a far more resolute picture of the 

specific impairments that may be tied to particular behavioral, functional, and structural phenotypes.  
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Chapter 3: Memory during Time Travel: Spatiotemporal Navigation, 

Contextual Boundaries, and Relational Memory Errors in Virtual Reality 

3.1 Introduction 
Episodic memory involves memory for events, i.e. things which happen in time and space, organized 

according to relational and contextual information, and is often referred to as the “ability to jump back 

in time and relive events from the past” (Tulving, 2002). In humans, the hippocampus has been shown to 

be a critical brain region for episodic memory such that hippocampal damage in humans causes 

pervasive amnesia (for review, see Cohen & Eichenbaum, 1993). There has been considerable historical 

success in studying hippocampal function in the spatial domain, with early experiments identifying 

“place cells” in the hippocampus of rodents which fire in association with the location of an animal in a 

spatial environment (O’Keefe & Nadel, 1978). The temporal organization of memory has also received 

considerable attention, including the recent identification of “time cells” in the hippocampus which fire 

selectively for moments in time (Eichenbaum, 2014). However, experiences are not restricted to space 

or time in exclusion of each other, but consistently involve a mix of both. Despite this, most studies do 

not simultaneously examine behavior in both space and time, possibly because space, as an explorable 

domain that can be selectively sampled, and time, as unidirectional flow of experience that cannot be 

selectively sampled, seem to be too distinct for direct comparison. This work takes the first step towards 

resolving this asymmetry by allowing both space and time to be explored by participants using Virtual 

Reality (VR), a technology which allows for increased measurement and control fidelity as well as 

increased ecological validity when compared to other methods (Schultheis et al., 2002). This approach 

provides a new framework to investigate and understand the nature of episodic memory, extending 

beyond the limitations of typical experimental environments. 

Relational memory theory explores the relationship between different domains of information (such as, 

but not limited to, space and time) and their representation in the hippocampus. (Cohen & Eichenbaum, 

1993; Eichenbaum & Cohen, 2001; Konkel & Cohen, 2009; Konkel et al., 2008). According to relational 

memory theory, the hippocampal region critically supports episodic memory via relational memory, i.e. 

the learning of arbitrary relational information regardless of the domain (Konkel et al., 2008) – a 

function which is pervasively impaired in hippocampal damaged patients. To evaluate relational memory 

in humans, spatial reconstruction (SR) tasks have proven particularly effective in examining relational 

memory errors in space. This task can be used to infer an individual’s success in forming arbitrary 

associations between items and locations in space (Huttenlocher & Presson, 1979), and to determine 

the susceptibility of making relational memory errors due to hippocampal damage (Jeneson et al., 2010; 
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Smith & Milner, 1981; Watson et al., 2013). In an SR task, participants are asked to study the locations of 

items in space and, after a short delay during which the items are removed from the environment, place 

the items back where they were studied (i.e. reconstruct the study configuration). Hippocampal damage 

specifically impairs arbitrary identity-location binding, i.e. binding of the identity information for a 

specific item (i.e. the item was a boat, plane, boxing gloves, or flower) to a specific location (Horecka et 

al., 2017, under review). In healthy individuals, identity-location binding errors and compound memory 

errors (i.e. those in which groups of items are misbound to each other’s locations) can occur when the 

number of to-be-remembered items increases beyond approximately 4-5 items (Watson et al., 2013). SR 

tasks have been used successfully in examining the relationship between relational memory and 

subjective memory impairment (Lucas et al., 2016), medial temporal lobe viscoelasticity (Schwarb et al., 

2017, 2016), and spatial pattern separation (Clark et al., 2017), however, time has always been 

intentionally isolated into other tasks. In this work, we present the first Spatiotemporal Navigation Task 

in which the locations of events in both space and time are studied and reconstructed.  

There is substantial evidence that the hippocampus is critical for organizing information about the 

temporal order of events, and that in humans, hippocampal damage results in deficits in temporal-order 

memory for those events (Dede et al., 2016). Additionally, functional imaging studies have shown 

hippocampal activation during encoding and retrieval of event order information (see Eichenbaum, 2014 

for a review). In rodents, hippocampal lesions also impair temporal-order memory for non-spatial 

stimuli without impairing memory for the specific stimuli (Fortin et al., 2002; Kesner et al., 2002). 

However, in all of these examples, event series have been viewed unidirectionally, critically restricting 

the directionality of temporal relations and information. Although physical space-time may have the 

restriction of direction-of-flow in time, this restriction can be, at least in part, artificially overcome in 

simulation.  

Additionally, there is extensive evidence that contextual information influences temporal order memory 

in online processing of sequences (Ezzyat & Davachi, 2014). For example, Zacks et al. (2007) have 

suggested that an event model which is updated according to event boundaries can describe processing 

of events in time. In humans, context boundary effects (i.e., distance judgements of item pairs within vs 

across context boundaries are biased such that items which are separated by a context boundary are 

judged as further apart than those which are within a context) have been demonstrated (DuBrow & 

Davachi, 2013) and the hippocampus has been implicated in representing temporal order and distance 

in the presence of changes in context (Davachi & DuBrow, 2015). Taken together, these studies highlight 
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the importance of context in episodic memory representations; importantly, however, this evidence was 

bound to a unidirectional timeline of events and often discretized such that time is not allowed to flow 

normally in a continuum (with the exception of the Zacks work), but is instead broken up into discrete 

events. It is unclear if, given the ability to freely explore a series of events organized by context in a 

continuous timeline, these same effects would persist. In particular, the ability to cross contextual 

boundaries in both directions as often as desired (a feature of real-world navigation which is far more 

common than the restriction that each boundary may only be experience once and in the same 

direction) has never been explored.  

In this work, we introduce a powerful Spatiotemporal Navigation Task for examining relational memory 

errors and the impact of context on memory for event locations in space and time by allowing 

participants to freely explore an environment in both space and time using Virtual Reality. Critically, we 

provide participants with the ability to “time travel” (i.e. decide the direction of the flow of time), 

placing the ability to explore space and time on more equal footing so that errors in either domain can 

be examined simultaneously. This “time travel” ability is necessary to allow spatiotemporal navigation 

where participants can visit events in time as freely as they can the spatial locations of events. To our 

knowledge, this is the first Spatiotemporal Navigation Task. 

3.2 Methods 

3.2.1 Participants 
43 participants (ages 18-24; mean 20.0 years; 23 males; 13.8 mean years of education) from the 

University of Illinois Urbana-Champaign participated in the study. In addition to the 43 participants 

being analyzed, 4 participants were excluded due to not completing the task within the allotted 2.5 

hours. All participants signed informed consent prior to participation, approved by the University of 

Illinois Urbana-Champaign Institutional Review Board and were paid $8 per hour of their time. 

3.2.2 Design and Procedures 
In this task, participants were placed in a virtual environment measuring 40 meters by 40 meters, 

bounded by walls on the exterior (see Figure 3.1A). The environment resembles a small park with trees, 

rocks and plants. Participants used the Oculus Rift DK2 and a wireless Xbox controller to interact with 

the environment. Auditory cues were presented via a pair of over-ear, stereo headphones. Participants 

were given a single practice trial to learn the simulation mechanics as well as to gain competency in 

using the virtual reality hardware. Practice was not timed and participants were allowed as much time 

as they desired to become comfortable. The stimuli during practice were white boxes (0.5m x 0.5m x 
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0.5m) floating 0.25m above the ground with gray dots on each face. Five items were used in practice. In 

order to encourage exploration of the environment, an invisibility bubble 10m in diameter was placed 

around the participant such that any items beyond that distance away from the participant were not 

visible. A ring was visible on the ground to indicate to the participant the distance at which items were 

visible. In addition, some items were always present throughout the trial, while others underwent 

events (i.e., entered the display or were removed from the display) at specific time points during the 

simulation timeline (see Figure 3.1 for a description). Thus, there were three event types 1) items flew 

into the sky and left the environment at specific times (an “up” event, i.e. disappearing), 2) items fell 

from the sky and land in the environment at specific times (a “down” event, i.e. appearing), and 3) items 

were stationary and thus always present in the environment. During practice, there were two up events, 

two down events, and one stationary item. An auditory cue was given every time an event occurred 

regardless of whether or not the item was in view. Item positions were determined via random number 

generator; however, they were constrained in time to balance for within vs. across context boundary 

distance.  

Temporal context information was provided in the form of the simulation boundary walls changing 

colors at evenly spaced intervals throughout the simulation. Thus, context boundaries were defined as 

shifts from one color to the next. The colors yellow, red, green, and blue were used for the contextual 

information, which changed every 7.5 seconds during practice such that all contexts appeared within 30 

seconds. The order of the temporal contexts was counterbalanced across participants with half receiving 

yellow, red, green, and blue and the other half receiving blue, green, red, and yellow.  

 

 

Figure 3.1: The two types of events an item can undergo in time and a visualization of the 

environment. A) shows a “down” event, in which the item falls from the sky, B) shows an “up” 

event, in which the item flies into the sky, and C) shows the environment from a top-down view. 

Note that these two types of events are time-symmetric, in that they look identical when viewed 

from opposing directions (forward or backward) in time. 

A B C 
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Participants could both walk (via pressing “forward” on a joystick) around the environment (and turn 

their head to look in any desired direction). Temporal navigation was controlled via button press that 

could reverse the flow of time, at the same speed as the forward flow of time. To provide additional 

temporal information, ambient music was played for the entire timeline of the task, meaning reversing 

the flow of time reversed the music as well. This music, however, provided very little information 

beyond an auditory sensation of the passage of time as it did not contain any significant changes in style, 

tone, or mood through the one-minute timeline. Participants’ looking direction and location in space 

and time were logged at every time point in the simulation (~16ms intervals). If the participant reached 

the beginning or end of the simulation’s time course, time was paused but the participant was still 

allowed to freely move about the spatial axes in the environment. Participants were instructed to find 

the locations of each item in space and time, specifically when their events happened. To signify they 

had found the item at its event, there was a 0.5 second window during which participants could see the 

item’s event (if close enough) and press a button on the controller to acknowledge they witnessed the 

event. When the participants successfully click on the item during its event, the item would change to 

the background color during its event (with stationary items staying grayscale when clicked). 

Participants were given unlimited time to explore the environment, find each item, and acknowledge 

they had viewed each event.  

After the practice trial, there were four experimental trials each with a study and test phase. 

Experimental study trials were identical to the practice trial with three exceptions. First, the number of 

items was increased to ten. Therefor there were four up events, four down events, and two stationary 

items. Second, the gray dots on the sides of each white box were replaced with namable object images 

(see Figure 3.1B&C for example). Third, the context changed every 15 seconds such that all contexts 

appeared within 60 seconds. Each context had two item events during its duration. Finally, the 4 study-

test trials all used the same spatiotemporal item configuration, allowing learning across trials to be 

assessed. 

During test, participants were asked to reconstruct each item in its spatiotemporal location as well as to 

determine which event type (up, down, stationary) the item underwent. To do this, participants were 

given an inventory of the items (an overlay on the screen) allowing them to freely select any item and its 

event type. As with study, participants could navigate space in on the x/y plane, and could navigate time 

via the reverse-time button. Context continued to change as it did during the study phase. Participants 

were given unlimited time to perform the reconstruction.  
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3.2.3 Analysis Metrics 
Four primary analysis methods were used to evaluate reconstruction performance. First, a naïve 

misplacement distance error was computed across trials to confirm that participants were improving in 

all primary sources of information (spatial, temporal, and event type). Misplacement along continuous 

variables (space and time) was computed via the sum of the Euclidean distance between all placed items 

and their expected locations. The number of correct event types was determined by a simple 

comparison of the chosen event type to the expected (studied) event type for each item (i.e. summing 

the number they got wrong). Additionally, the participant navigation distance in space and time 

(separately) was observed across trials, during study to confirm that the study-time behavior was also 

improving. This spatial and temporal navigation distance was computed via the Euclidean distance 

between all points traversed by the participant in space (i.e. spatial distance in meters) and in time (i.e. 

temporal distance in seconds). 

Second, an evaluation of relational memory efficacy was performed for identity-location misassignment 

in space and in time (Horecka et al., 2017, under review). Identity-location accuracy was evaluated by 

first stripping away the identity of the items and determining if each was placed in any item’s location 

based on a 95% within-participant confidence interval of their misplacement. Then, identities were 

restored to determine if items were placed in their correctly associated locations (or in another item’s 

location). Identity-location misassignments are the number of instances in which an item was 

misassigned to another item’s location within a distance which was deemed “accurate” (see Horecka et 

al., 2017 for details). Identity-location misassignment has previously been identified as critically 

dependent on the hippocampus (Horecka et al. 2017). In order to isolate spatial and temporal 

information, two separate analyses were performed using these measures. The 1D temporal axis was 

analyzed (where location is defined as the position along the 1D axis), and the 2D spatial axes were 

analyzed (where location is defined in the traditional, spatial way). 

Third, the effects of context boundaries on temporal memory distances were evaluated by normalizing 

the pairwise distance between within and across context items (dividing their reconstructed distance by 

the expected distance) then mean-centering to make 0 represent a perfect placement (i.e. d>0 

represent items placed further than expected, and d<0 represent items placed closer than expected).  

Finally, the impact of context on relational memory errors was evaluated by determining the number of 

identity-location misassignments to another within-context item (i.e. the other item with which it 

shared a temporal context) or an across-context item. Chance level for within- and across-context 
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misassignments were computed by taking the number of identity-location permutations for within and 

across context identity-location pairs. The two items which had no temporal context were excluded 

from this part of the analysis, and, therefore, the chance levels were 8/8P2 and 1-8/8P2, or 0.143 and 

0.857, respectively, where nPr represents the number of r-length permutations of n items and the 

number 8 is due to the 4 contexts containing 2 possible within-context misassignments each (i.e. items a 

and b within a context can be misassigned ab’s location or ba’s location). 

3.2.4 Statistical Analysis 
All analyses which compare trial-by-trial performance use repeated measures analysis of variance using 

SPSS. Where appropriate, Huynh-Feldt correction was applied. Comparisons which involved collapsing 

performance across trials or comparing trial-over-trial performance used either paired-sample, two-

tailed t-tests or one-sample, two-tailed t-tests (for comparison to expected chance values). All tests used 

an alpha value of 0.05 to determine significance. 

3.3 Results 

3.3.1 Overall Accuracy and Navigation (Misplacement Measures and Navigation Distance) 
A 4 by 3 repeated measures ANOVAs (trial number by test domain; i.e. space, time, and event type) 

across trials (1-4) revealed that accuracy in both space and time as well as event type improved 

significantly across trials (main effect of trial F(2, 167)=252.86, p<0.001 and significant interaction 

between domain and trial F(6, 334)=14.56, p<0.001; see Figure 3.2). Follow-up t-tests between trials for 

space, time, and event type showed a significant decrease in misplacement in space between trials 1 

and 2 (t(42)=2.90, p=0.006) and trials 2 and 3 (t(42)=3.50, p=0.001) but not trials 3 and 4 (t(42)=1.51, 

p=0.138); misplacement in time decreased significant between all trials (t(42)=7.77, 3.97, and 3.99, 

p<0.001 for each trial pair); number of incorrect event types decreased significantly between trials 1 and 

2 (t(42)=4.61, p<0.001), between trials 2 and 3 (t(42)=5.36, p<0.001), and between trials 3 and 4 

(t(42)=2.35, p=0.024); Finally, the amount of distance travelled in space and time also improved across 

trials (main effect of measure, i.e. spatial or temporal distance, F(1, 168)=268.27, p<0.001 and 

interaction of trial and measure, F(3, 168)=19.10, p<0.001). Follow-up t-tests between trials for spatial 

and temporal distance travelled show that spatial distance travelled decreased between all trials 

(t(42)=5.22, 3.07, 2.34, p<0.025 for each trial pair); temporal distance travelled (i.e. number of seconds 

not paused at the beginning or end of the simulation) decreased across trials (t(42)=5.86, 4.12, 3.48, 

p<=0.001 for each trial pair). Together, these analyses show improved navigation efficacy in addition to 

test-time memory performance across trials in the task.  
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3.3.2 Relational Memory Errors 
Relational memory errors (identity-location misassignments) were evaluated in space and time 

separately (see Figure 3.3), showing that significantly more relational errors were committed in time 
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Figure 3.2: Overall errors along each of the three major information types in the task and 

navigation distances in space and time. Space misplacement and time misplacement are 

continuous variables computed via the sum of the Euclidean distance of all items in a trial to their 

expected locations in space and time. The number of incorrect event types is just a count of the 

number of items which were assigned the studied event type. Note that participants improved in 

all metrics between trials 1 and 4, showing the task was generally well understood. Moreover, 

navigation performance improved across trials in both space and time showing the improvement 

was not just in memory during test but also study performance. 
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than in space (t(171)=15.82, p<0.001). A 2x4 (domain, i.e. space and time, by trial number) repeated 

measures ANOVA was used to determine if a difference was present across trials. A main effect of 

domain F(1, 168)=250.62, p<0.001 was found; no significant interaction was present. In space, the 

number of relational errors decreased significantly between trials 1 and 2 (t(42)=2.75, p<0.01) but not 

between trials 2 and 3 or 3 and 4 (t(42)=1.86 and 1.36, p=0.07 and 0.18, respectively). In time, there was 

no significant difference between temporal relational errors between trials 1 and 2 (t(42)=1.3, p=0.20) 

but a significant difference was present between trials 2 and 4 and 3 and 4 (t(42)=2.70 and 2.32, p=0.010 

and 0.025 respectively.  

 

 

 

3.3.3 Temporal Context Boundary Effects 
To evaluate temporal context boundary effects, only items that had been placed in their correct context 

were considered. A context boundary effect is computed by normalizing the temporal distance of each 

item to its within-context and across-context item pair (i.e. the adjacent items in time) relative to the 

studied distance for each pair (i.e. if the original distance was 4.5 seconds, the distances would be 
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Figure 3.3: Relational memory errors were evaluated in both space and time independently by 

measuring the number of items which were assigned to another item’s location (i.e. a 

misassignment). The number of these errors in time was greater than the number in space. This 

difference did not change across trials, though both errors decreased as accuracy improved. 
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than normal, and less than 1 is less than normal); then, the normalized within-context pair distance is 

subtracted from the normalized across-context pair distance to obtain the context boundary effect. This 

context boundary effect number can either be greater than 0, reflecting a larger distance judgement 

than was studied, or less than zero, reflecting a smaller distance judgement than was studied. A strong, 

positive temporal context boundary effect (i.e., stretching of within and expanding of across context 

distance judgements; see Figure 3.4) was observed that when within-context items were placed closer 

together than across context items in time (paired sample t-test; t(109)=9.78, p<0.001). This effect was 

numerically larger for the across context distances, but both within and across differed significantly from 

0 (t(42)=16.02, p<0.001 and t(42)=10.61, p<0.001, respectively). A 2x4 (within and across by trial 

number) repeated measures ANOVA was used to compare within and across over trials. A significant 

main effect of within vs. across was found (F(1, 106)=80.84, p<0.001) but no interaction effect was 

present. No significant main effect of trial was present. As no spatial contexts were present, no spatial 

context boundary effect was assessed. 

 

 
 

 

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Within Across

N
o

rm
al

iz
ed

 D
is

ta
n

ce
 (

0
 is

 p
er

fe
ct

 a
cc

u
ra

cy
)

Temporal Context 
Boundary Effect

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4

N
o

rm
al

iz
ed

 D
is

ta
n

ce
 (

0
 is

 p
er

fe
ct

 a
cc

u
ra

cy
)

Trial

Trial-by-Trial Context Boundary 
Effects

Within Across

Figure 3.4: Context boundary effects (i.e. the misjudgment of distance of within context items as 

being closer together than expected and across context items as being further apart than 

expected) can be seen both in within and across context items. These effects are persistent 

regardless of the trial number. 
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3.3.4 Effect of Context on Relational Memory Errors 

Finally, when evaluating the identity-location misassignments (i.e. the number of items placed in 

another item’s location) within vs. across contexts, within-context items were misassigned to each 

other’s locations far more often than would be expected by chance (t(42)=14.63, p<0.001 for across and 

t(42)=8.76, p<0.001 for within), suggesting that the contexts biased the relational memory 

representation, causing confusion between within-context temporal item locations (see Figure 3.5). A 

2x4 repeated measures ANOVA (within and across by trial number) was performed to examine this 

effect trial-over-trial. An interaction effect of within and across context misassignment proportion and 

trial was found (F(3, 147)=12.12, p<0.001). Follow-up t-tests showed a significant increase in within-

context misassignments between trials 1 and 2 (t(38)=-2.81, p<0.01) and trials 2 and 3 (t(36)=-4.196, 

p<0.001) but not trials 3 and 4 (t(30)=0.53, p=0.60). An opposite pattern can be observed on the across-

context misassignment proportion as they are one minus each other. To determine if this effect is 

present in the absolute number of items being misassigned, another 2x4 repeated measures ANOVA 

was performed on the number of items to be misassigned within or across context. A main effect of 

within and across context measures was found (F(1, 168)=5.74, p=0.02) as well as an interaction 

between within and across context and trial (F(3, 168)=11.42, p<0.001). Follow-up t-tests show a 

significant increase in within-context misassignments between trials 1 and 2 (t(42)=-2.34, p=0.024) but 

no significant increase between trials 2 and 3 or 3 and 4 (t(42)=-1.11 and 1.50, p=0.27 and 0.14, 

respectively). A significant decrease in across context misassignment was seen between trials 1 and 2 

(t(42)=3.44, p=0.001) and trials 2 and 3 (t(42)=4.61, p<0.001) but not trials 3 and 4 (t(42)=1.40, p=0.17.  
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Figure 3.5: The proportion of items which have been assigned to another item’s location within 

vs. across context. Although the within context items should be misassigned to each other’s 

locations by chance at a rate of approximately 14%, we see a substantially higher occurrence of 

>40%. Interestingly, this effect only gets stronger across trials despite improved accuracy across 

all non-context based error metrics (including number of misbound items). Note that this same 

pattern is present when the number of items assigned within versus across are compared directly 

(rather than as a proportion of the overall errors). 
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3.4 Discussion 
In this work, we used a novel Spatiotemporal Navigation Task to determine if, when space and time are 

put on a more equal footing, spatial and temporal relational memory errors would be committed with 

equal frequency. Furthermore, this work examined if, when a timeline of events can be explored 

bidirectionally, the impact of context on distance judgements in time and the subsequent effect on 

order memory were consistent with previous findings on context boundary effects. This manipulation is 

critical for theories of the impact of contextual boundaries on memory as individuals can often re-

explore across real-world boundaries arbitrarily. We found that, in this task, relational memory errors in 

time occurred far more frequently than relational memory errors in space. Context boundary effects 

were found in time such that within context items were judged to be closer together in time than across 

context items. Finally, we found that relational memory errors in time were influenced by contextual 

information as items were misassigned to within context locations far more often than expected by 

chance. Together, this evidence points to a deep interplay between relational and contextual 

information in both a spatial and temporal domain, and this evidence suggests that temporal 

representations in memory may be somehow distinct from spatial representations given the huge 

disparity between memory in each domain even when they are both able to be explored and sampled 

similarly. This difference may depend on task demands, and, given that participant performance on 

temporal measures of relational memory were improving across each trial, it is possible that if more 

trials were provided, this difference would be eliminated.  

The hippocampus is critical for integrating information into relations representations to aid in flexible 

memory utilization (Cohen & Eichenbaum, 1993). Its role in episodic memory in humans has been 

established through work with hippocampal damaged patients who have a pervasive inability to create 

new episodic memories. Additionally, in humans, some evidence shows the flexibility of the 

hippocampus’ potential involvement in real-world representations of space and time, even across long 

distances (Nielson et al., 2015). In rodents, cells which fire in association with space (i.e. place cells; 

O’Keefe & Dostrovsky, 1971; O’Keefe & Nadel, 1978), time (i.e., time cells; Kraus et al., 2013), and 

distance (Kraus et al., 2015) have been identified in the hippocampus and its role in navigation (e.g., 

Eichenbaum, 2017) has been well established. In line with these observations, some have proposed that 

space and time make up a scaffolding upon which episodic memories are formed (Ekstrom & Ranganath, 

2017). It is not clear, however, if space and time are coded together, as a unified space-time manifold, 

or if information is bound to each independently of one another. The evidence here cannot completely 

disentangle these possibilities, however, when using a relational memory error metric which has been 
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shown to be particularly sensitive to hippocampal damage in human patients (Horecka et al. 2017) and 

the Spatiotemporal Navigation Task we present here, we do find differences in space and time relational 

memory in healthy individuals such that relational memory errors in time are substantially more 

common than in space. This suggestions that although these domains may be representable as a unified 

whole, they are not necessarily so in all circumstances. Task demands may play a large role in 

determining the degree of interplay between spatially bound and temporally bound information; 

however, the emphasized domain (time, in this case) may not always benefit from being in focus.  

There are several explanations for the phenomena we observe here beyond encoding differences 

between space and time. First, although both space and time could be explored freely in this task, time 

remained one dimensional while space had two explorable dimensions. The additional dimension adds 

more information which must be remembered in order to know spatial locations, but it also provides 

more information which relational representations may bind. Future tasks may attempt to disentangle 

these possibilities by restricting space to one dimension or expanding time to two dimensions. 

Additionally, because time can be explored in any order, it is possible that arbitrarily ordered sampling 

hurts order memory, increases the chances of misbinding items to other item’s temporal locations (i.e. a 

temporal misassignment error). A similar debate has occurred in the rodent literature in spatial 

navigation such that distinct hippocampal representations for overlapping routes in a maze are not 

observed when rats are trained to run in either direction of a Y-maze (Lenck-Santini et al., 2001). This 

raises an interesting question: can the relative position (i.e. order) of events in time in episodic memory 

be treated both allocentrically and egocentrically in the same way that spatial position can (see Ekstrom 

& Isham, 2017 for a discussion of this question)? In spatial navigation, Cognitive Map Theory says that 

allocentric representations depend on the hippocampus (O’Keefe & Nadel, 1978) with alternate 

strategies such as view-matching being used to overcome deficits in allocentric memory (Hartley et al., 

2004; Lavenex et al., 2014) . However, it is unclear what a view-matching strategy would be when 

exploring a temporal axis. Place cell firing is related specific to distal cues and is, therefore, seen as 

strong evidence for this allocentric perspective. Future examinations of temporal navigation should 

more directly interrogate the potential of allocentric and egocentric strategies in non-spatial domains. 

An additional potential explanation for the asymmetry between spatial and temporal relational memory 

errors is that the temporal axis in this task uniquely contained contextual information (i.e. the spatial 

axes did not), which may have caused confusion between within-context items (discussed more in 

future paragraphs). Tasks in which both spatial and temporal contextual information are present might 
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help to clarify this impact, however, it may not be sufficient to simply include additional types of context 

to completely disentangle the impacts they have in space and time if spatial and temporal 

representations are truly distinct. 

In addition to the interplay between spatial and temporal memory, this task also allows us to examine 

the impact of temporal contextual information on memory for a sequence of events. Similar to tasks 

which exclusively examine order memory, we find context boundary effects such that within context 

items are placed closer together in time than across context items, even when equidistant. However, 

this task shows these effects in a continuous timeline of events even when the timeline can be freely 

explored and the contexts can be restudied freely as often as the participant likes. Moreover, the effect 

does not diminish when the same short series of events is repeatedly studied. This provides strong 

evidence that the contextual information is biasing the reconstruction systematically. Critically, of all of 

the types of errors examined in this task, the context boundary effect is the only error which does not 

improve with repeated study of the event timeline. Some hierarchical models which attempt to describe 

how context might be used to organize memory representations suggest that context sits at the top of a 

hierarchy containing other information such as spatial, valence, and item information (McKenzie et al., 

2014). This may explain, in part, why restudy and free exploration don’t improve the context boundary 

effect as the contextual information is being used as a very high level organizing principle for other, 

more granular information. This may be consistent with high-level theories of the interplay of multiple 

brain regions involved in contextual and relational learning such as the Complementary Learning 

Systems model which would suggest that cortical regions which represent and utilize this higher-order 

information are potentially slower to update than hippocampally-dependent relational information 

(McClelland et al., 1995). However, recent updates to this view complicate the issue as the speed of 

acquisition of information in cortical versus hippocampal systems may not be so clear cut (Kumaran et 

al., 2016). Alternative models which posit a rapid interaction between prefrontal and hippocampal 

regions in service of decision making (Wang et al., 2015) might better fit behavior in this task as the 

utilization of the contextual information is necessarily happening in a continuous, real-time manner. 

However, it is important to note that real-world contextual information is not nearly as clear and 

discrete as the artificially imposed contexts in this task, and future work might use contextual 

boundaries (such as night/day boundaries) which are more consistent with real-life experiences. 

Finally, one of the most striking results in this work is the interplay between relational information and 

contextual information. Specifically, we see that the contextual information is related to poorer 
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performance in order memory even when temporal accuracy improves. This is evaluated by determining 

the relative proportion of misassignments (i.e., relational memory errors) where an item is placed in 

another item’s location within vs. across a context boundary. If this error were to occur by chance (via 

randomly ordering the items), we would expect approximately 14% of misassignments to be to a within-

context location. However, we find the error occurs more than twice as often as expected within-

context. Moreover, within-context misassignment errors become more common (as a proportion of the 

total number of misassignments) on repeated study both as a proportion of the number of 

misassignments and in absolute number. This result disagrees with previous accounts which show that 

context boundaries should impair order memory for across context items and enhance memory within 

contexts (Davachi & DuBrow, 2015), and shows that, at least when a series of events can be freely 

explored, context can be related to worse order memory for within context items. There are several 

explanations beyond the organization of memory due to context which could account for this result. 

Firstly, it could be that the ability to view a timeline of events in any order results in more confusion for 

within context items as the viewing order of the context can be different on each exploration. However, 

it is important to note that participants were not required to view the items in a particular order and 

could have biased their exploration to avoid this issue. Additionally, if this were the case, we might 

expect more overall misassignment errors, but this would not completely account for why these errors 

are so much more common within context than expected unless the context was being used to organize 

the representation on some level. Another explanation might be that with a limited number of items in 

the context, not enough information is present to form a reliable relational representation. This 

explanation may be consistent with the interpretation described earlier that spatial relational 

information, by having an additional axis within which to bind relations, is easier to reconstruct than 

temporal relational information. In other words, more information may improve relational memory, to a 

point. This question could be tested by increasing the number of within-context items to see if this 

improves within-context order memory. 

In summary, with the use of Virtual Reality to create a rich task environment, the importance of 

contextual information in organizing episodic memory representations can be seen with much more 

fidelity than previous experiments. Furthermore, contextual information is shown to bias relational 

memory errors, which were far more common in time than space, such that items were more likely to 

be misassigned to the temporal location of an item with which it shared contextual information than 

might be otherwise expected. Spatiotemporal navigation, as presented here, can hopefully serve as a 

first step in furthering our understanding of the flexibility and structure of relational memory 
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representations in space and time and clarify the influence of context on different domains of 

information without the need to treat time differently than we treat space.  
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Chapter 4: Spatiotemporal Navigation, Sampling, and Information 

Encoding in Virtual Reality 

4.1 Introduction 
Gallistel, (1990) said, “Navigation is the process of determining and maintaining a course or trajectory 

from one place to another.” This definition captures a surprising amount of cases which would be 

commonly considered navigation, and it has been echoed in recent reviews of navigation and 

hippocampal function in various species (e.g. Eichenbaum, 2017b). Interestingly, however, the word 

“place” in this context strongly implies that navigation is generally restricted to space, much like “place” 

is used as the term to describe cells which fire relative to distal cues in space, i.e. “place” cells; O’Keefe 

& Dostrovsky, 1971). Cognitive Map Theory was introduced by Tolman, (1948) and elaborated upon in 

the context of hippocampal function by O’Keefe & Nadel, (1978). The theory suggests that, at least in 

space, that the hippocampus is responsible for maintaining map-like representations, and this theory 

has been validated to various degrees across many human and rodent lesion studies (Asturet al., 2002; 

Bartsch et al., 2010; Morris et al., 1982; O’Keefe & Dostrovsky, 1971; O’Keefe, 1991). Tolman himself did 

not restrict this theory to space; however, later uses of the theory have tended to isolate space in 

exclusion of any other domains. Despite this isolation of navigation to space, “time” cells in the 

hippocampus have been identified, which fire relative to particular moments in time (Kraus et al., 2013), 

and extensive evidence suggests that the hippocampus is involved in mapping far more than just spatial 

information (Cohen & Eichenbaum, 1993; Eichenbaum et al., 1999; Howard Eichenbaum, 2015, 2017d; 

Howard et al., 2014; Konkel et al., 2008; Kraus et al., 2015; Ranganath & Hsieh, 2016; Schiller et al., 

2015; Warren et al., 2015). It is, therefore, interesting to expand the definition of navigation to include 

not just movement from place to place, but also from time to time (or, potentially movement between 

any discrete locations in any domain). The previous chapter introduced a task that can successfully 

interrogate relational and contextual memory for both time and space, simultaneously, but it did not 

examine how information sampling (via navigation) during study informed these memory measures. In 

this work, we demonstrate methods which are applied to the behavioral navigation data collected in the 

task described in Chapter 3 to examine the relationship between spatiotemporal navigation, learning of 

temporal sequences, and relational and contextual memory in space and time. 

Although temporal navigation is clearly a novel aspect of the spatiotemporal navigation task, spatial 

navigation is also a large part of the overall task demands. Spatial navigation is a critical capability of all 

creatures’ survival (Wolbers & Hegarty, 2010), and it has been extensively studied phenomenologically 

in humans (Dudchenko, 2010; Huth, 2013; Wolbers & Hegarty, 2010), animals (Poucet, 1993; Trullier, et 
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al., 1997), and even robotic navigation (Franz & Mallot, 2000; Levitt & Lawton, 1990) which has, more 

recently, become an extremely popular topic in machine learning research (Mirowski et al., 2016). 

Traditionally, in a laboratory setting, tasks such as the Morris Water Maze (MWM; Morris, 1981) have 

been used to study both rodent and human navigation behaviors (using a virtual Morris Water Maze; 

vMWM; Moffat & Resnick, 2002), showing that, in older adults, smaller hippocampal volumes relate to 

longer distance travelled and time taken in the task (Maguire et al., 1999; Moffat, 2009). Recently, more 

complex behavioral tasks have been attempted, such as observing hippocampal neurons in bats as they 

navigate in the real world (Geva-Sagiv et al., 2015; Sarel et al., 2017); however, this work is still in its 

infancy and should certainly be a target for additional investigation. Several models of hippocampal 

function in navigation have come out of simpler tasks such as the MWM. In rodents, theories of Pattern 

Separation/Pattern Completion (Rolls & Kesner, 2006; Wilson & Hulme, 1983) have suggested that 

hippocampal lesioned rodents’ deficits in spatial location accuracy are due to an inability to create 

precise representations of specific locations and differentiate them from other studied locations (i.e. a 

deficit in pattern separation; Gilbert et al., 1998). Other have expanded on this theory suggesting that 

after converging “what” and “where” streams reach the dentate gyrus (DG) and CA3 subregions of the 

hippocampus (Knierim & Neunuebel, 2016), DG specifically performs pattern separation (Leutgeb, 

Leutgeb et al., 2007; McHugh et al., 2007), orthogonalizing inputs from one another, while CA3 performs 

pattern completion (Leutgeb et al., 2007; Nakazawa et al., 2002; Neunuebel & Knierim, 2014), auto-

associating inputs with previously learned patterns. In humans, the Precision and Binding Model (PBM; 

Yonelinas, 2013), whose associated evidence shows hippocampal damaged patients are impaired on 

finding the precise location of a hidden platform but can find the general location (i.e. quadrant; Kolarik 

et al., 2016; Kolarik et al., 2017), says that the hippocampus is required for high-resolution information 

binding in spatial navigation. Some models suggest that the long axis of the hippocampus represents 

progressively more precise information when viewed from anterior to posterior (Fanselow & Dong, 

2010; Nadel et al., 2013). In addition to precision of recall, particular strategies of navigation are known 

to relate to hippocampal activity. View-matching strategies (i.e. those in which a particular perspective 

on a scene is used as the primary navigation cue) can help overcome deficits in allocentric memory of 

space via the subject finding an egocentric perspective which allows acquisition of the target (Pecchia & 

Vallortigara, 2010).  

In addition to spatial (and temporal) navigation, this task also critically involves the learning of temporal 

sequence information. Although temporal sequence memory has been studied extensively and is 

thought to critically rely on the hippocampus (see Ranganath & Hsieh, 2016 for a review), the ability to 
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selectively sample and navigate through a temporal sequence and the subsequent impact on memory 

for the sequence has never been examined. In addition to the hippocampus, other cortical regions such 

as perirhinal, parahippocampal, and prefrontal cortices may also be critically involved with certain 

aspects of sequence memory (Hsieh & Ranganath, 2015; Ranganath & Blumenfeld, 2008; Ranganath & 

Ritchey, 2012a). In particular, it has been hypothesized that the Posterior Medial (PM) network 

(consisting of parahippocampal cortex, retrosplenial cortex, precuneus, angular gyrus, and ventromedial 

prefrontal cortex) may play a more pronounced role when the temporal structure is well-learned and 

meaningful (Ranganath & Ritchey, 2012b). Therefore, it would be reasonable to predict that the PM 

network would also be involved in exploration of a temporal structure, in addition to the hippocampus. 

Hippocampal function has also been linked to the ability to use temporal context as an organizational 

element to allow the automatic retrieval of future elements in a sequence to aid in prediction of future 

events (Baker et al., 2014; Eichenbaum & Fortin, 2009; Lisman & Redish, 2009; Luft et al., 2015). It is 

unknown, however, whether or not this predictive functionality will bias behavior when the sequence 

can be viewed arbitrarily (i.e., with the option to repeatedly review elements on the sequence, 

maintaining relative order). To assess these behavioral differences, we observe the order of interaction 

with the items in the temporal sequence to determine if a particular organizational structure is present 

which might aid in overall learning and memory performance. One final critical finding in the temporal 

memory literature relevant to temporal sequence learning and retrieval can be found in a sequential 

retrieval task used by Hsieh et al. where participants were asked to learn the temporal order of objects 

with either consistent or random temporal positions. Individuals with larger hippocampal sequence 

representation effects (as measured by voxel pattern similarity analysis) were better able to use 

sequence knowledge to optimize decision making (Hsieh et al., 2014). Together, this evidence suggests 

that, similarly to the critical role the hippocampus can play in spatial navigation when arbitrary 

representations are required, it may play an equally critical role in temporal navigation and subsequent 

sequence memory under similar conditions. This work attempts to clarify this role through the 

examination of the relationship between changes in study-time navigation and relational and contextual 

memory performance. 

Several measures of behavior in navigation have been used historically to evaluate the relationship 

between navigation and memory function, including simple visual inspection of individual paths (Moffat 

& Resnick, 2002; Sei et al., 1992), heading error (i.e. the sum of the angular distance between the 

correct heading to the target and the actual heading to the target for a given path; Smith et al., 2013), 

distance and time to target (Morris et al., 1982), proximity to target (Kolarik et al., 2017; Morris, 1981), 
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path crossings (Buzsáki, 2005), and even search path classification via clustering (Davis et al., 2010). Each 

of these measures has advantages and disadvantages worth considering, especially if both spatial and 

temporal navigation are to be evaluated together. We consider them here as they relate to the Time 

Travel Task. First, heading error is complicated by the fact that participants could be proceeding to one 

of many targets in a particular direction. The decided upon event (i.e., the item the participant interacts 

with next) could be used as a target, but this only makes sense if we assume at least some memory for 

the event position (not a valid assumption in the first trial for much of the time); therefore, heading 

error will not be examined in this work. Secondly, path crossing has far less meaning in 3D (2 spatial and 

1 temporal axis) than traditional 2D as it is unlikely for a 3D line to cross its self, making it an ineffective 

measure in this task. Lastly, proximity to target, distance, and time are all potential methods of 

evaluation, however it is unclear which of these should be preferred for correlation with any particular 

output measure. Previous investigation into this issue has found that, with a high sampling rate, variable 

measure of target proximity can be very successful in differentiating hippocampal patient performance 

from controls (Kolarik et al., 2016, 2017), however, the nature of “proximity” in a spatiotemporal 

environment is not entirely clear. Future investigations using these measures should first evaluate their 

efficacy in situations with multiple targets before they are applied to non-spatial navigation tasks.  

If none of these traditional measures of path information are appropriate in this case, what measures 

should be considered? The use of measures of fractal geometry (Mandelbrot, 1967) has shown some 

success in measuring natural navigation patterns in migration and grazing (Garcia et al., 2005; 

Gautestad, 2011; Gautestad & Mysterud, 2010). One particular measure of fractal geometry which has 

shown significant promise is Fractal Dimension (FD), a measure of the complexity of a path (Daugherty 

et al., 2015). This measure has been related to improved trial-over-trial performance in the vMWM in 

humans independent of sex and age difference while sex and age tend to be related to more typical 

measures of navigation such as distance and time taken to perform the task (Daugherty et al., 2015). 

Moreover, FD has been shown to relate to hippocampal and parahippocampal gyrus volumes in healthy 

adults when distance and time did not. Finally, the process of computing FD also generates a second 

component which has not been analyzed in the past in the context of navigation. This second 

component, known as Lacunarity, can be thought of as a measure of systematicity or compactness of a 

path. Lacunarity has been applied to several domains involving texture analysis (Plotnick et al., 1996) 

including cellular morphology evaluation (Smith et al., 1996), lung tumor radiography (Al-kadi & Watson, 

2008), and microglia classification (Jelinek et al., 2011). This work intends to determine which, if any, of 

a subset of measures (enumerated in the Methods section) relate to test-time performance as 
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measured via the metrics of relational and contextual memory discussed in in Chapter 3. Because of the 

differentiability of spatial and temporal exploration and reconstruction in this task, we can apply these 

measures to space and time separately as well as together to determine if there may be differences in 

spatial and temporal phenomena when they are placed on a more equal footing. 

An additional advantage of this task design is the ability to examine learning across several trials of the 

same complex stimulus environment. Hierarchical Linear Models (HLMs; Gelman & Hill, 2007) are well 

structured for the analysis of learning in that they allow the comparison of changes in a study variable to 

changes in a test variable and are used as a primary method of statistical analysis in this work. It may be 

the case that particular variables relate directly to one another, but this comparison is complicated by 

two facts: first, on the first trial study, no information about the locations of the items is known by the 

participant, resulting in a potentially drastically different style of exploration and navigation than on 

later trials when some memory is present; second, although an overall relationship when collapsing 

across trials is expected as the trial-over-trial patterns of learning are similar across all study and test 

metrics, individuals may vary significantly in their relationships between different study and test 

variables such that a significant relationship is found on, say, trials 2 and 4 but not 1 and 3. The 

interpretability of these direct relationships is complex at best, and a more straightforward comparison 

exists in looking at changes in the variables across trials rather than their absolute magnitude.  

A final critical feature which will be examined in this task is the impact of contextual information 

(specifically, contextual boundaries) on subsequent memory. In traditional tasks which have examined 

so-called Context Boundary Effects (see Chapter 3 for a discussion of these effects), contexts are 

encountered serially, with no ability to either re-study the sequence and contexts or re-encounter the 

context boundaries within a given study period (DuBrow & Davachi, 2013; Ezzyat & Davachi, 2014; Polyn 

et al., 2009). The real world, however, allows ample opportunity for both re-study of contexts and re-

encountering of context boundaries, and evidence in event segmentation theory (EST; Zacks et al., 2007) 

suggests that humans automatically segment continuous streams of information using inferred 

boundaries (Horner et al., 2016; Sargent et al., 2013). Because this task allows for both re-study of 

contexts and re-encountering of context boundaries, one critical question addressed in this chapter is 

whether the number of context boundary crossing has any impact on the context related effects 

presented in Chapter 3 (namely, the Context Boundary Effect, Within-Context Misassignments, and 

Across-Context Misassignments).  
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In summary, this work aims to determine if aspects of spatiotemporal navigation relate to relational and 

contextual reconstruction memory measures, as well as to assess navigation of the order of events in 

space and time. This is accomplished by examining navigation data from a Spatiotemporal Navigation 

Task performed by human participants. Additionally, this work aims to examine how order of navigation 

of temporal sequences relate to subsequent memory for the sequence when, uniquely, a sequence can 

be studied in any arbitrary order. Together, this behavioral evidence seeks to establish a foundation 

upon which future investigation of hippocampal function, navigation, and memory organization can be 

evaluated together with far greater richness and fidelity than ever before.  

4.2 Methods 

4.2.1 Participants 
43 participants (ages 18-24; mean 20.0 years; 23 males; 13.8 mean years of education) from the 

University of Illinois Urbana-Champaign participated in the study. In addition to the 43 participants 

being analyzed, 4 participants were excluded due to not completing the task within the allotted 2.5 

hours. All participants signed informed consent prior to participation, approved by the University of 

Illinois Urbana-Champaign Institutional Review Board and were paid $8 an hour for their time. Note the 

Navigation data discussed in this Chapter was collected at the same time as the Reconstruction data 

collected in Chapter 3. 

4.2.2 Design and Procedures 
This task was identical to the task presented in Chapter 3, so only elements of the task which are critical 

to Navigation will be reiterated here for clarity. 

In this task, participants were placed in a virtual environment measuring 40 meters by 40 meters, 

bounded by walls on the exterior (see Figure 4.1 in Chapter 3 for a visualization). The environment 

resembles a small park with trees, rocks and plants. Participants used the Oculus Rift DK2 and a wireless 

Xbox controller to interact with the environment. Participants were given a practice to learn the 

simulation mechanics as well as to gain competency in using the virtual reality hardware. After the 

practice, 4 study-test trial pairs were given using the same environment as the practice but with new 

objects and spatiotemporal object-locations. In order to encourage exploration of the environment, an 

invisibility bubble 10m in diameter was placed around the participant such that any items beyond that 

distance away from the participant were not visible. An auditory cue was given every time an event 

happened regardless of whether the item was in view. Item positions were determined via random 

number generator; however, they were constrained in time to balance for within vs. across context 

boundary distance. Temporal context information was provided in the form of the simulation boundary 
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walls changing colors at evenly spaced intervals throughout the simulation. Thus, context boundaries 

were defined as shifts from one color to the next. The colors yellow, red, green, and blue were used for 

the contextual information, which changed every 7.5 seconds during the 30 second practice and 15 

seconds during the 60 second study and test. Each context had two item events during its duration. The 

order of the temporal contexts was counterbalanced across participants with half receiving yellow, red, 

green, and blue and the other half receiving blue, green, red, and yellow. Participants could both walk 

around the environment and turn their head to look in any desired direction. Temporal navigation was 

controlled via button press that could reverse the flow of time, at the same speed as the forward flow of 

time (see Figure 4.1 for a schematic of the task). 

Participants’ looking direction and location in space and time were logged at every time point in the 

simulation (~16ms intervals). If the participant reached the beginning or end of the simulation’s time 

course, time was paused but the participant was still allowed to freely move about the spatial axes in 

the environment. During practice and study, participants were instructed to find the locations of each 

item in space and time, specifically when their events happened. To signify they had found the item at 

its event, there was a 0.5 second window during which participants could see the item’s event (if close 

enough) and press a button on the controller to acknowledge they witnessed the event. Participants 

were given unlimited time to explore the environment, find each item, and acknowledge they had 

viewed each event.  

During test, participants were asked to reconstruction the spatiotemporal location and identity 

information associated with each event. See Chapter 3 for more description on test-time data and 

analyses. 

4.2.3 Navigation Analysis Metrics 
The study time navigation data are analyzed using several methods, leveraging previous work in spatial 

navigation but extending these analyses to spatiotemporal navigation and determining if study-time 

navigation relates to later test performance. Chapter 3 showed the most basic method of analysis, a 

measurement of the distance travelled in space and time. The analysis of the relationship between 

these high-level metrics and the various test metrics of interest is presented here, however, there are 

many measures of exploration and navigation which have been applied to spatial navigation in the past 

which should also be considered. Specifically, analysis methods of theoretical interest which have been 

previously linked to hippocampally dependent memory will be examined. 
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Figure 4.1: A schematic of spatiotemporal navigation and reconstruction results from an example 

participant’s trial 1 (top) and trial 4 (bottom). The 3D volume represents both axes of space 

(horizontal axes) and the axis of time (vertical axis). The vertical bars on the left indicate the 

temporal context at each vertical moment in time. The small circles denote the moments in time 

in which an event occurred and the line denotes if the item associated with the event would have 

been present at that moment in time. A thin, white navigation line represents forward temporal 

motion while purple/darker represents backwards. The vertical lines with no dot (purple lines) are 

objects with no temporal information (always present). The small white dots during study 

represent moments of interaction with items. The second set of event dots in test represent the 

reconstructed spatiotemporal locations of each event. Note the path in Trial 1 study is complex 

and inefficient while the path in trial 4 is substantially more efficient.  
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Path complexity, as an index of landmark mapping, has been used in ecological research for over a 

decade, and, more recently a specific measure of path complexity, fractal dimension (FD), has been 

linked to improved performance in navigation independent of the sex and age differences seen in typical 

measures such as distance traveled and time taken to perform the task (a virtual Morris Water Maze; 

Daugherty et al., 2015). Additionally, in the Daugherty study, both the hippocampus and 

parahippocampal gyrus volumes in healthy adults were related to FD, but not distance and time. As 

such, FD will be included in the current analysis as a study-time variable that might relate to later test-

time variables of relational memory such as misassignments. The FD measure, which up until this point 

has only been used in reference to spatial path complexity, will be applied to both spatial and temporal 

path complexity, and will be one of the critical analyses in this work.  

In the analysis of FD, the Box Counting Algorithm (see Figure 4.2) will be used to determine how changes 

in scale relate to changes in the measured complexity of the path. Ultimately, this algorithm involves 

performing a linear fit of the changes in the number of boxes which contain the path as the scale of the 

boxes change and extracting the slope (aka the Fractal Dimension). In previous studies of paths involving 

complexity measures, the intercept of this fit (aka Lacunarity) has been discarded, however, this 

measure is of unique interest as it abstractly represents the degree of systematicity or compactness of 

the path. A larger Lacunarity is associated with less systematicity, while a smaller one is associated with 

more. Note that unlike previous implementations of the Box Counting Algorithm, the implementation 

used here does not require the manual decision of scale parameters (i.e. the range of box scales to be 

used in the fit). Instead, the scale parameters were picked dynamically (see Figure 4.2) by examining a 

large, log-distributed range of scales and using the standard deviation of the box counting number to 

remove the asymptotic regions of the measurement (thus, isolating the linear region of interest). In the 

actual analysis of participant data, the scale range was determined dynamically first, then an identical 

scale parameter was used for all participants in the final measurement for consistency. 



69 
 

 

 

To see how these two measures (FD and Lacunarity) relate to each other and to the nature of a path, we 

can observe these measures in the context of filtered random walks. A random walk is one in which a 

path begins at a particular point (usually (0, 0) in 2D space) and iteratively decides a random direction, 

moving some distance in that direction. The resulting paths have a fractal-like appearance and are of 

significant mathematical interest, however by lowpass filtering these paths, we can generate artificial 

data with various spatial properties in order to examine example paths which have a range of Lacunarity 

and FD values. Figure 4.3 shows 4 groups of randomly generated paths of equal length (10,000 points) 

with various levels of filtering. Each began as a random walk, but were filtered with an order 6 

Butterworth Lowpass Filter with increasingly strict frequency cutoff parameters. Notice that for a given 

vertically-aligned pair of paths, the FD value is very nearly identical, while a large difference in 

Lacunarity is present (i.e. the path with the larger Lacunarity is less systematic/compact). Similarly, note 

that horizontally-aligned pairs of paths have similar Lacunarity values but very different FD (i.e. the path 

with a larger FD is more complex). 

Figure 4.2: Dynamic Computational of Scale Parameters for FD and Lacunarity. In order to avoid 

issues with determining the precise scale of a path, dynamic scale detection can be used. First, a 

sufficiently wide range of scales is computed (left). The result should form a sigmoid where the 

slope at the center represents FD and the intercept of the line fitted to the center is Lacunarity. 

To dynamically find scale parameters, the Standard Error is computed for the sigmoid and any 

values exceeding one Standard Error from the Mean are excluded. This shrinks the scale window 

(center), the linear region which is fit, extracting FD and Lacunarity from slope and intercept of 

the green line (right). 
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Beyond measures of path complexity and systematicity, a metric for evaluating the impact of the 

contextual information on subsequent memory, namely, context boundary crossings, is of particular 

interest. Most studies of context boundaries do not allow participants to arbitrarily cross boundaries 

and sample contexts freely (DuBrow & Davachi, 2013, 2016; Ezzyat & Davachi, 2014). As such, it is 

interesting to determine if additional context boundary crossings are associated with a larger context 

boundary effect and more relational memory errors due to context.  

Table 4.1 provides a summary of the analyses and their associated hypotheses. Note that these are still 

coarse metrics, collapsing all of the information contained within a spatiotemporal path into a single 

variable. Additional Order analyses (reviewed in the next section) will be necessary to understand the 

complex relational information contained within the data. 

Figure 4.3: Comparison of Lacunarity and Fractal Dimension (FD) of various lowpass-filtered 

random walks. The blue (top) dots represent fully random walks, while the Light, Medium and 

Heavy filtered paths were filtered with an Order 6 Butterworth Lowpass Filter with an assumed 

30S/s sampling rate and frequency cutoffs of 0.4, 0.2, 0.08. Example paths (blue lines) associated 

with the extreme points in each group are overlaid on the plot. Although low FD is often 

correlated with higher Lacunarity, they are not equivalent. Lower Lacunarity within a given filter 

group shows a more systematic filling of the space while higher FD shows an increase in path 

complexity. Note that all lines are identical in length.  
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Measure Comparison Support 

Spatial Distance Misplacement and Relational Memory Errors (Maguire et al., 1999; Moffat, 
2009; Moffat & Resnick, 2002) 

Temporal Distance Misplacement and Relational Memory Errors (B. J. J. Kraus et al., 2015) 
Fractal Dimension Misplacement and Relational Memory Errors (Daugherty et al., 2015) 
Lacunarity Misplacement and Relational Memory Errors None (novel metric) 
Context Boundary 
Crossings 

Context Boundary Effect and Relational Memory 
Errors 

(Ezzyat & Davachi, 2014; Zacks 
et al., 2007) 

 

4.2.4 Order Analyses  

In addition to the simple navigation metrics which evaluate the entire path simultaneously, it may be of 

particular interest to look at the interactions the participants have with the events (and associated 

navigation) as related to the order of navigation. Of particular note is if, even when provided with the 

ability to freely explore time, participants reliably converge towards navigation of the events in the 

implied “forward” direction of time in a contiguous manner. Previous work on computational models 

(Howard & Kahana, 2002; Sederberg et al., 2008) and behavioral evidence (Howard et al., 2015; Kahana 

& Howard, 2005) related to sequence memory would suggest that there is a strong forward bias in 

contiguity (i.e. a greater probability of remembering the next item in a sequence given an item was 

remembered), however these models do not allow for the list to be freely sampled (i.e. sampled 

omnidirectionally and as much as desired). Moreover, this contiguity effect does have a reverse bias of a 

smaller magnitude than the forward bias (i.e. the previous item in the list is also remembered better 

than baseline but worse than the next item). It is interesting, therefore, to ask if this bias is still present 

when participants can freely sample the sequence and if changes in this bias are related to changes in 

subsequent memory.  

Analyzing order to evaluate these biases can be a complex issue. Recency, contiguity, and primacy 

effects could lead to particular items receiving specialized treatment by chance or due to an overall bias 

towards certain patterns of reconstruction in time. One potentially robust way to compare 

reconstruction order is to develop a distance metric for the relative order of events. In other words, 

given two reconstructed orders. For instance, given ABDC and BDAC, which sequence is 

closer to the intended ABCD ordering and by how much? Considerable interest has been given to 

similar problems in comparing the similarity of sequences of DNA, word strings, and compressed data 

sequences (Birch et al., 2010; Bonham-Carter et al., 2014; Dinu & Ionescu, 2012; Giancarlo et al., 2009). 

However, many of these involve a much more general case in which no guarantee of uniqueness of 

Table 4.1: High-level navigation analyses. Many of these analyses can be run on space and time in 

isolation of one another as well as together. 
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elements in the sequences is provided. Because the task requires each item to be clicked precisely once, 

instead, the distance metric of interest should focus on three primary properties which might define the 

differences between two permutations. First, the elementwise-agreement of the lists can be used as a 

general distance metric. More specifically, the Kendall Tau distance metric is appropriate for this, and it 

has the added benefit of providing a positive or negative correlation value which, if positive, suggests a 

closer distance to the forward order and, if negative, suggests a closer distance to the reverse order. 

Unfortunately, Kendall Tau is incredibly unforgiving to contiguity effects. As such, a second distance 

metric, known as Contiguity distance, which measures the number of contiguous sublists, can be applied 

to generate a 2D space of potential distances between a hypothesized and observed order. This distance 

can be visualized and its probabilities for a fixed length permutation can be calculated explicitly (see 

Figure 4.4). Together these two metrics provide sufficient information to determine if navigation or 

reconstruction order converge to a particular hypothesized order (specifically, the “forward” order 

ABCDEFGH, but also potentially other orders of interest such as 

HGFEDCBA or BADCFEHG).  

In summary, this framework for evaluating order information will be used to observe changes in 

distance of navigation and reconstruction to the “forward”, contiguous order across trials, predicting 

that both study-time navigation order will trend towards “forward” order across trials (i.e. the low-

probability location of (1.0, 0.0) on Figure 4.4). 

4.2.5 Statistical Analysis 
All analyses present in this chapter which compare trial-by-trial performance use repeated measures 

analysis of variance (rANOVA) using R with Huynh-Feldt correction. For follow-up pairwise comparisons 

of levels of the rANOVA, Tukey’s Method for comparing a family of 4 estimates was applied to the p 

values. Hierarchical Linear Modeling (HLM; using the nlme package in R) is used in cases of changes in 

navigation metrics being compared to changes in test performance across trials. In each HLM, normality 

of the residuals is ensured using a D’Agostino and Pearson’s test for normality, and, in cases where 

required, correction (i.e. log correction) was applied to transform the residuals to normality. 

Comparisons which collapsed trials together used either paired-sample, two-tailed t-tests or one-

sample, two-tailed t-tests (for comparison to expected chance values). All tests used an alpha value of 

0.05 to determine significance. 
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4.3 Results 

4.3.1 Changes in Path Navigation Across Trials 
In the navigation analysis, 9 key path variables were used to collapse the entire navigation path into a 

single number. These metrics were: distance travelled in time and space, context boundary crossings, 

fractal dimension (FD) in time, space, and spacetime, and Lacunarity in time, space, and spacetime. For 

each variable, a similar shape of learning can be seen (see Figure 4.5). Repeated Measures ANOVA 

reveal a significant change in each variable (p<0.0001) for each metric across trials. Follow-up Tukey’s 

Method Contrasts between each pairwise trial combination reveal that for FD space, FD time, FD 

spacetime, Lacunarity space, and Lacunarity spacetime, all pairwise comparisons were significant 

(p’s<0.05). For time travelled, space travelled, context boundary crossings, and Lacunarity time, all 

pairwise comparisons were significant (p’s<0.05) except between trials 3 and 4.  

Figure 4.4: Discrete probability distribution for the 2D distance space with 8 items. The x and y 

axes are the distance metrics (Kendall Tau and Contiguity Distance) to analyze order, and the z 

(vertical) axis is the probability that that distance would be associated with random permutations. 

Note that near (0.0, 1.0), very high probability states represent extremely unordered lists (i.e. 

DHBAEGFC). On the other hand, four very low probability states exist, with two 

of primary interest. The point (1.0, 0.0), circled by a black dotted line, represents the order 

ABCDEFGH which is the only permutation associated with that point. Similarly, 

the point (-1.0, 1.0) uniquely represents HGFEDCBA. The other two unique points 

which balance the two metrics are (-
5

7
, 

3

7
; GHEFCDAB; associated with maximum 

contiguity with minimum element-wise distance) and (-
1

7
, 

1

7
, EFGHABCD). 
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4.3.2 Order Analyses 
A repeated measure ANOVA was used to analyze the Kendall Tau and Contiguity distances of the order 

of study of the population across trials (see Figure 4.6), and it showed that both distance measures 

changed significantly across trials (p<0.0001). Follow-up Tukey’s Method Contrasts between each 

pairwise trial combination reveal that all pairs at least 2 apart were significantly different from one 

another (i.e. trials 1 to 3, 2 to 4, and 1 to 4) while all adjacent trials were not significantly different from 

one another (p>0.05) in both metrics. Note that for Kendall Tau, a 0 value is associated with a 

completely random permutation while values closer to 1 are closer to the “forward” direction (i.e. 

ABCDEFGH in the implied temporal order of the simulation). Participants started near 

Figure 4.5: Navigation Path Metrics - Note the similarity of learning curves across all path metrics. 
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the random point (with a slight positive bias) and trended significantly towards the “forward” point. For 

contiguity distance, a value of 1 is associated with random permutations while a value of 0 is associated 

with the “forward” direction. Note that similarly to Kendall Tau, contiguity started slightly below the 

random point and trended towards the “forward” direction. It is possible that with additional trials, 

more individuals would have converged to the “forward” direction, but it may also be the case that 

some other nearby optimal order (or space of orders, perhaps related to the contextual organization of 

the sequence) would end up being preferred.  

 

Finally, it is interesting to observe these same findings in the context of the known, prior probabilities of 

each distance and observe the change in the population within that probability space. Figure 4.7 shows 

this comparison where the large blue dot and dotted lines represent the means presented in Figure 4.6, 

while the square markers are individual participants (with the opacity representing the number of 

participants associated with that point where darker means more participants). The height in this plot 

represents the probability that, given a random permutation, that particular combination of distance 

metrics would be present. As can be seen in this figure, not only is the population trending towards the 

hypothesized “forward” point, but the population is trending away from the high probability region 

associated with random permutations. Moreover, the proportion of participants who are navigating in 

precisely for “forward” order is increasing across each trial (up to ~25% by the fourth trial). However, 

individual differences remain, and some individual’s navigation order never deviates substantially from 

random. This variability in navigation order will be examined as a target for relating measures of study 

performance to test performance in the next section. 

Figure 4.6: Item Interaction Order Metrics - For Kendall Tau, 0 is associated with random order, 1 

is “forward” and -1 is “reverse”. For contiguity, 1 is associated with random order, 0 is “forward”. 

In both metrics, the trend is towards “forward” interactions with items. 
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4.3.3 Hierarchical Linear Modeling of Study vs. Test Variables 
In order to compare the changes in study variables to the changes in test variables, Hierarchical Linear 

Models are employed. A set of theoretically driven models was chosen which compare variable 

Figure 4.7: 

A) Order Metrics - The 4 plots represent performance on the order metrics on each of the 4 trials 

of the task. The x and y axes represent the distance metrics, and the large/blue dot/blue dotted 

lines represent the trial means for those metrics (see Figure 4.6 for just the means). The square 

markers represent individual participants on each trial. The darker red the square, the more 

participants were in that particular point. The dotted circles represent the hypothesized 

“forward” point (corresponding to B). Note that despite the group average trending towards the 

front dot (1.0, 0.0, associated with the “forward” navigation order), there is still significant 

variability in performance on these measures. 

B) The proportion of the participants who were on the “forward” directional point (i.e. 

ABCDEFGH) compared to the expected proportion given a random permutation 

(p=2.5×10-5, corresponding to less than 1 participant given n=43). 

A 

B 
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groupings based on their theoretical relationship to one another. In each case, the random effect 

component of the model is the trial given the subject, thus changes in a study metric for a particular 

subject are compared with changes in a test metric for that same subject. Table 4.2 contains an 

enumeration of the models under test. 

Model(s) Dependent Variable(s) Random Effect Fixed Effect 

Navigation vs. 
Misplacement 

Time Misplacement, 
Space Misplacement 

~Trial | Subject ~Time Travelled + Space Travelled + 
FD Time + FD Space + FD Spacetime 
+ Lacunarity Time + Lacunarity 
Space + Lacunarity Spacetime 

Navigation vs. 
Relational Memory 

Time Misassignment 
Errors, Space 
Misassignment Errors 

~Trial | Subject ~Time Travelled + Space Travelled + 
FD Time + FD Space + FD Spacetime 
+ Lacunarity Time + Lacunarity 
Space + Lacunarity Spacetime 

Context Boundary 
Crossings vs. 
Contextual Test 
Metrics 

Context Boundary 
Effect, Within Context 
Misassignment, Across 
Context Misassignment 

~Trial | Subject ~Context Boundary Crossings 

Order Metrics vs. 
All Test Metrics 

All Discussed Test 
Metrics 

~Trial | Subject ~Kendall Tau Distance + Contiguity 
Distance 

 

Note that no interactions were tested, as interactions between these variables are not thought to have a 

meaningful interpretation and in many cases the variables are known to be highly intercorrelated (which 

is not an issue in Hierarchical Linear Models in general, but it means including interactions can make the 

model less interpretable with little benefit). Additionally, note that no correction for multiple 

comparisons was made in these models, as is standard for Hierarchical Linear Models. 

4.3.3.1 Navigation vs. Misplacement 

When comparing changes in temporal and spatial misplacement in the aforementioned models, in both 

cases, changes in distance travelled in the domain of interest was the only significantly related variable. 

Thus, changes in temporal distance travelled across trials are related to changes in temporal 

misplacement across trials (p<0.05, β=0.36, Conditional, Fixed + Random Effect R2=0.75 and Marginal, 

Fixed Effect R2=0.42), and changes in spatial distance travelled across trials are related to changes in 

spatial misplacement across trials (p<0.05, β=-0.42, Conditional, Fixed + Random Effect R2=0.70 and 

Marginal, Fixed Effect R2=0.40). None of the other navigation-related variables (i.e. FD, Lacunarity, or 

boundary crossings) were significantly related to misplacement in either model. Note that the β value, 

Table 4.2: Hierarchical Linear Models under test for comparing changes in study performance to 

changes in test performance. Note that the Fixed Effects do not include interaction terms, and 

each model only includes a single dependent variable. Thus, 7 non-order models were tested and 

7 order models were tested. 
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which represents how a one standard deviation change in one variable relates to a change in the other 

variable, has opposite directionality for space and time. This means that while rapid reductions in 

temporal distance travelled are associated with rapid reductions in temporal misplacement, rapid 

reductions in spatial distance travelled are associated with slower reductions in spatial misplacement. 

4.3.3.2 Navigation vs. Relational Memory 

For relational memory errors (namely, spatial and temporal misassignments), the models showed no 

significant relationship between any study time variable and spatial relational memory errors. One 

possible reason for the lack of a relationship in the spatial components of test is because of how 

infrequently these errors occur. However, changes in temporal relational memory errors were 

significantly related to changes in FD in space (p=0.02, β=-0.46), Lacunarity in space (p=0.008, β=-0.94), 

and Lacunarity in spacetime (p=0.0003, β=1.91; Conditional, Fixed + Random Effect R2=0.58 and 

Marginal, Fixed Effect R2=0.29). Note that, once again, the β values for the spatial-only components are 

in the opposite direction from the spatiotemporal component. That is to say, faster reductions in 

temporal relational memory errors relate to slower reductions in spatial path complexity and 

systematicity, while faster reductions in temporal relational memory errors related to faster reductions 

in spatiotemporal systematicity. It is interesting to note that none of the measures of temporal-only 

navigation related to temporal relational memory. The lack of a relationship may reflect the inability to 

create expressive or complicated paths in time in the same way as space (either due to the difference in 

number of dimensions, the requirement that all temporal locations are eventually sampled, or some real 

difference between the nature of spatial and temporal navigation). 

4.3.3.3 Context Boundary Crossings vs. Context Effects 

In the context-related models, changes in context boundary crossings significantly related to changes in 

both the context boundary effect (p=0.02, β=0.24, Conditional, Fixed + Random Effect R2=0.30 and 

Marginal, Fixed Effect R2=0.04), and across-context relational memory errors (p<0.0001, β=0.28, 

Conditional, Fixed + Random Effect R2=0.57 and Marginal, Fixed Effect R2=0.08). However, it is important 

to note that no significant changes in context boundary effect were seen across trials, which likely 

explains the low Fixed Effect R2 for that model. However, this model is far more sensitive to changes in 

one variable relative to another, suggesting that changes in context boundary effect, when they occur, 

are significantly related to changes in context boundary crossings. Also note that within-context 

relational memory errors did not significantly relate to context boundary crossings. 
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4.3.3.4 Order Metrics vs. Test Metrics 

Finally, the order metrics were compared to all test time variables of interest. The significant 

relationships which were present were exclusive to contiguity. No significant relationships were present 

between Kendall Tau distance and any test measure. Contiguity significantly related to temporal 

misplacement (p=0.05, β=0.17, Conditional, Fixed + Random Effect R2=0.76 and Marginal, Fixed Effect 

R2=0.05), temporal relational memory errors (p=0.01, β=0.25, Conditional, Fixed + Random Effect 

R2=0.46 and Marginal, Fixed Effect R2=0.16), across-context relational memory errors (p=0.03, β=0.21, 

Conditional, Fixed + Random Effect R2=0.58 and Marginal, Fixed Effect R2=0.05), and the context 

boundary effect (p=0.02, β=0.31, Conditional, Fixed + Random Effect R2=0.26 and Marginal, Fixed Effect 

R2=0.12). Note that the directionality of all beta values in this list is the same. Thus, more rapid increases 

in contiguity across trials are related to more rapid improvements in temporal, relational, and 

contextual memory measures (specifically context memory errors involving across-context information). 

4.3.3.5 Summary of Model Results 

For a summary of the results discussed in this section, see Table 4.3. Several key findings are worth 

reiterating concisely. First, changes in navigation metrics at study did significantly relate to changes in 

measures of memory at test. In particular, some separability of the changes in navigation domains 

(space and time) and changes in memory within those domains can be seen in the misplacement vs. 

navigation analyses. Also, note that the overall findings are that spatial-only study metrics relate with 

measures of memory via a different pattern than spatiotemporal study metrics (with opposite directions 

of β values), consistent with this separability idea. Changes in relational memory errors seemed to relate 

more to changes in measures of complexity, systematicity, and contiguity of navigation than other 

metrics. Finally, changes in context boundary crossings were found to be related to both the changes in 

Context Boundary Effect and changes in across-context relational memory errors. 
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Dependent (Test) 
Variable 

Independent (Study) 
Variable 

β Value Condition (Fixed 
+ Random 
Effect) R2 

Marginal 
(Fixed) 
Effect R2 

Temporal Misplacement Temporal Distance Travelled 0.36 0.75 0.42 
Spatial Misplacement Spatial Distance Travelled -0.42 0.70 0.40 
Temporal Relational 
Memory Errors 

Spatial Fractal Dimension, 
Spatial Lacunarity, 
Spatiotemporal Lacunarity 

-0.46,  
-0.94, 

1.91 

0.58 0.29 

Context Boundary Effect Context Boundary Crossings 0.24 0.30 0.04 
Across-Context Relational 
Memory Errors 

Context Boundary Crossings 0.28 0.57 0.08 

Temporal Misplacement Contiguity 0.17 0.76 0.05 
Temporal Relational 
Memory Errors 

Contiguity 0.25 0.46 0.16 

Context Boundary Effect Contiguity 0.31 0.26 0.12 
Across-Context Relational 
Memory Errors 

Contiguity 0.21 0.58 0.05 

 

4.3.4 Within-Trial Direct Relationships 
Finally, linear regression was performed on a per-trial basis on the relationships of interest to determine 

if any of the relationships found in the HLMs hold directly, i.e. on a single trial between two variables. 

Interestingly, while most of the aforementioned significant relationships (i.e. space travelled vs. spatial 

misplacement, time travel vs. temporal misplacement, context boundary crossing vs. context boundary 

effect, context boundary crossing vs. across context relational memory errors, and temporal relational 

memory errors vs. spacetime Lacunarity), were directly significantly related on the fourth and final trial 

(see Figure 4.8; p<=0.01, r=0.43, 0.61, 0.49, 0.38, and 0.40, respectively), very few were significantly 

correlated on other trials. Across-context relational memory errors and context boundary crossings had 

a significant relationship on trial 3 (p=0.01, r=0.42), and time travel and temporal misplacements were 

significantly related on trials 2 and 3 (see Figure 4.9; p<0.05, r=0.42 and 0.36). All other relationships on 

other trials were non-significant (p>0.05), and, of note, spatial FD and spatial Lacunarity were not 

significantly related to temporal relational memory errors on any specific trial (p>0.05). 

Table 4.3: Summary of Hierarchical Linear Modeling Relationships between study and test 

variables. 
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Figure 4.8: Fourth trial relationships between study and test metrics. On the fourth and final trial, 

several of the relationships which come out in the changes in variables across trials are direct 

relationships. Here, Space Misplacement vs. Space Travelled, Accurate Misassignment Time (aka 

Temporal Relational Memory Errors) vs. Lacunarity Spacetime, Across Misassignments (aka 

Across-Context Relational Memory Errors) vs. Context Boundary Crossings, and Context Boundary 

Effect vs. Context Boundary Crossings. 

Figure 4.9: Time Travelled vs. Time Misplacement. This relationship holds directly on all but the 

first trial. 
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4.4 Discussion 
Navigation and exploration are critical aspects of the assimilation of information in our day-to-day 

interactions with our environment. The ability to quickly learn the locations of elements of our 

environment and flexibly re-encounter those elements at-will underpins a huge number of critical daily 

activities of both humans and animals. These interactions are often not limited to a static spatial 

environment, as environments can contain a complex mixture of spatiotemporal information, 

hierarchically organized with contextual information. In this task, we examine how changes in navigation 

of a complex, spatiotemporal environment, organized by context, relate to changes in various aspects of 

memory (spatial, temporal, relational, and contextual) as evaluated by reconstruction. In this way, 

several memory phenomena can be studied simultaneously, including the relationship between 

navigation complexity/systematicity and relational memory, the impact of context boundary crossings 

on contextual memory biases, and the influence of order of exploration and navigation on relational and 

contextual memory. In all measures of navigation, and most measures of reconstruction, the 

participants in this task significantly improved across trials. It is the nature of this improvement and the 

relationships between study and test improvements that are of special interest, as these relationships 

reveal interesting new details on how navigation and reconstruction relate in services of the 

organization of memory in general.  

Several critical relationships were observed in this chapter. First, the simplest relationships are those 

between changes in the overall navigation distance in each domain (space and time) and the changes in 

the overall misplacement (Euclidean reconstruction distance) in the respective domains. Note that in 

these models, all navigation variables of interest (i.e. FD in space, time, and spacetime, Lacunarity in 

space, time, and spacetime, and distance in both domains) were included, so it is fascinating to note 

that only the particular domain in study was related to the corresponding domain in test at the coarsest 

test analysis level. This suggests that improvements in navigation (or lack thereof) within each domain 

might be in some way independent such that it is possible to improve in spatial misplacement by 

focusing on spatial navigation optimization while neglecting time or vice versa at a coarse level. This 

evidence of some manner of separability or independence is made more compelling by the fact that the 

directionality of the relationship is opposite for space (slower changes in study behavior related to faster 

changes in test performance) as it is for time (faster changes in study behavior related to faster changes 

in test performance), and that this directionality is consistent across the all analyses of space and time 

which were statistically significant. This aligns with the evidence from Chapter 3 showing that measures 

of spatial and temporal relational memory (i.e. spatial and temporal misassignments) also had 
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significantly different magnitudes, suggesting some manner of separable representations of space or 

time in this task. Although alternative explanations exist (such as differences in the perceptibility of time 

vs. space, and the relative familiarity with spatial versus temporal navigation), these results converge 

with other findings (Dutta & Nairne, 1993; McKenzie et al., 2014; Rondina et al., 2016) that space and 

time my, under some circumstances, be represented separably. 

No relationships were found between any changes in navigation variables with spatial relational 

memory (likely due to the relative infrequency with which these errors occur in this task), but significant 

relationships were found between changes in spatial FD, spatial Lacunarity, and spacetime Lacunarity 

and changes in temporal relational memory, suggesting that changes in systematicity and complexity of 

exploration of the environment critically relate to temporal relational memory learning (i.e. changes in 

temporal relational memory accuracy on restudy). It is worth noting that there were differences in the 

directionality (as seen by the β values in Table 4.3) between spatial-only components and 

spatiotemporal components with temporal relational memory. In both the simple 

navigation/misplacement case and the relational memory case, changes in spatial-only components 

negatively relate to changes in misplacement and relational memory errors. Rephrased, this means that 

a more rapid change in spatial navigation complexity and systematicity relate to a slower change in 

misplacement and relational memory. However, critically, spatiotemporal Lacunarity (i.e. systematicity 

of spatiotemporal navigation) has a large, positive β value, suggesting that rapid changes in 

spatiotemporal systematicity relate to rapid improvements in temporal relational memory.  

In addition to spatial and temporal misplacement and temporal relational memory accuracy, the 

relationship between changes in context boundary crossings and changes in context-related memory 

phenomena can be directly examined in this task. The ability to reexplore temporal contexts is a unique 

contribution of this task, so examination of the relationship between interactions with context 

boundaries and subsequent test phenomena is of particular interest. Moreover, the ability to restudy 

the same context-dependent stimuli repeatedly allows examination of how changes in these 

interactions relate to changes in test performance. In these HLMs, we observe that changes in boundary 

crossings significantly relate to changes in the context boundary effect, as well as changes in across-

context relational memory errors. In other words, participants whose instances of boundary crossing 

decreases rapidly should also show a rapid decrease in context-related memory biases and errors. Note 

that this relationship is unique to the across-context relational memory errors, which may potentially be 

due to the unique way in which within-context errors actually increase in this task across trials. This 
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would suggest that the boundaries are acting more as a discriminatory influence on the relational and 

contextual memory in this task rather than directly aiding in (or harming) the within-context relational 

representations. This is consistent with the accounts of event segmentation theory (Sargent et al., 2013; 

Zacks et al., 2007) and computational models of contextual shift (Howard et al., 2005; Polyn et al., 2009), 

which posit that event boundaries act to segment sequence representations. However, this finding is 

not entirely consistent with evidence suggesting event boundaries may improve memory for within-

context sequence representations (Heusser et al., 2018). Future studies using the Spatiotemporal 

Navigation Task may seek to resolve this contradiction by including more items within each context, 

performing a binary decision test (instead of reconstruction) using a similar free-navigation paradigm for 

study, or increasing the numbers of contexts being sampled to determine if these factors are critical for 

improving within-context sequence memory. 

Finally, several HLMs were used to explore the relationship between order of study and all relevant test 

variables from Chapter 3. Changes in contiguity of interaction with items in time uniquely related to the 

changes in various temporal and contextual test variables (i.e. temporal relational memory errors, 

temporal misplacement, the context boundary effect, and across-context relational memory errors). In 

other words, participants who showed more rapid adoption of a forward-ordered study pattern showed 

a more rapid reduction in errors of all non-spatial types (with the except on within-context relational 

memory errors). Although many explanations of this relationship are possible, contiguity, in this case, 

may have been aiding in forming a more map-like, topological representation of the temporal and 

contextual structure of the environment. Previous work examining sequence retrieval has demonstrated 

that participants with larger hippocampal sequence representation effects were better able to use 

sequence knowledge to optimize decisions (Hsieh et al., 2014). It is possible a similar optimization (or 

simplification) of environment interaction is at play in this task such that participants use the inherent 

structure of the simulation (including the temporal contexts) to create an organized representation of 

spatiotemporal information. We know that temporal context can be a critical organizational element in 

sequence memory (Eichenbaum, 2013; Howard et al., 2005; Howard & Kahana, 2002; Howard & Natu, 

2005) and is also dependent upon the hippocampus (Davachi & DuBrow, 2015; DuBrow & Davachi, 

2016), therefore it is especially interesting that changes in the contiguity of navigation order relate to 

both the relational and contextual memory measures in this task. Although only a quarter of the 

participants ultimately explore in precisely the forward order, many more participants ended up in 

highly contiguous states, while a non-negligible proportion of the population never deviated from a 
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pseudo-random order. This individual variability in the use of task-specific temporal structure is a 

potentially interesting target for future investigation.  

It is interesting to note that, although previous paragraphs discussed the complexity of interpreting 

individual trial or direct relationships between study and test variables, many of the relationships 

discussed in prior paragraphs show significant direct correlations for the fourth, and only the fourth, trial 

of this experiment. This may reflect the fact that for many of these measures, once sufficient 

opportunities have been provided to participants to learn the reconstruction, the individual variability 

along the critical axis (and not on the orthogonal axis) reaches a point where the direct effects can be 

disentangled. That is, some individuals may not have been as successful in learning the reconstruction 

by the final trial, and know it is their last opportunity to attempt an accurate reconstruction, their final 

trial navigation represents a last-ditch attempt to assimilate the required information. While 

participants who learned the environment very successfully by the fourth trial need no such additional 

sampling and navigation attempts. If this were true, it would be expected that these effects might go 

away had more trials been given and the lower performers had a chance to catch up the higher 

performers. Of course, this is just one of a myriad of possible explanations, and future examinations of 

learning in similar paradigms will be necessary in order to determine the reason for these effects on the 

fourth trial. 

The current work seeks to extend and elaborate upon examinations of navigation by other researchers 

in a variety of ways, leveraging the rich, Spatiotemporal Navigation Task discussed throughout this and 

the previous chapter. Insights from this task relate to a huge variety of theoretical models of memory, 

including relational memory theory (Cohen & Eichenbaum, 1993), cognitive map theory (O’Keefe & 

Nadel, 1978), precision and binding model (Yonelinas, 2013), models of temporal context (Howard & 

Natu, 2005), and models of extrahippocampal contributions to navigation (Ekstrom et al., 2017), to 

name a few. Before examining the specific findings of this Chapter in the context of these models, it will 

be useful to consider perspectives on cell-level representations of information coding and how they 

might ultimately relate to a task in which navigation is performed in a domain other than space. 

Although it is widely accepted that place cell firing is related to allocentric information relative to distal 

cues in the environment, other cell types which fire related to a variety of other relations have been 

identified. These include grid cells which fire in accordance with periodic spatial location arrays, cells 

that fire in accordance with goal vectors (Sarel et al., 2017), head-direction cells (Ranck Jr, 1984; Taube 

et al., 1990), time cells (Kraus et al., 2013), distance cells (Kraus et al., 2015), time-distance cells (that 
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fire in relation to both variables), and cells that signal borders and speed (McNaughton et al., 1983; 

Hartley et al., 2013; Kropff et al., 2015). Some have theorized other, more generalizable cell models such 

as “context cells,” which are proposed to exist in the recurrent collaterals of CA3 cells and activate at 

different points in a sequence, underpinning sequence learning (Hasselmo & Eichenbaum, 2005; Levy, 

1996). A naïve view of these cells might say that various cell assemblies in the hippocampus are 

dynamically mapping to basic signals of navigation (and only navigation). However, substantial evidence 

links hippocampal function to far more than just navigation (see Cohen & Eichenbaum, 1991 for a 

review of these arguments). A much more robust perspective would suggest that the hippocampus 

performs arbitrary binding and does so with any and all relevant domains of information (or perhaps, as 

suggested by some, preferring space and time but utilizing task-relevant domains; Ekstrom & 

Ranganath, 2017). In this view, the hippocampus is considered one component in a much wider 

“navigation network” (perhaps centered on either the retrosplenial cortex or posterior parietal cortex 

depending on the degree of allocentric or egocentric information being utilized during the task; Ekstrom 

et al., 2017) while also being a region that critically supports non-navigatory processes (Coronel et al., 

2012; Eichenbaum, 2017d; Konkel et al., 2008; Kumaran et al., 2016; Tavares et al., 2015; Warren et al., 

2015). Electrophysiological evidence in rodents supports this as hippocampal networks have been 

shown to associated both spatial and nonspatial dimensions (McKenzie et al., 2014). Indeed, in rodents, 

humans, and monkeys, recording studies have shown hippocampal involvement in mapping the time 

course of events independent of space (Kraus et al., 2015; Kraus et al., 2013; Naya & Suzuki, 2011; 

Pastalkova et al., 2008; Paz et al., 2010; Spiers et al., 2001). Perhaps, then, in the spirit of “context cells”, 

a more generalized definition for many of these information-selective cell types might to call them 

“relational cells”, and then clarify what relation(s) are of specific interest to that cell at that moment. 

Within this framework, it then becomes critical to examine complex processes like navigation in a wider 

context, necessitating the use of a greater variety of metrics of performance in navigation. This work 

seeks to do just that, as well as to understand the relationship between these different measures of 

navigation and aspects of memory which are known to be hippocampally dependent.  

Unfortunately, coarse navigation metrics such as those in Table 4.1 miss an enormous amount of the 

fidelity in this task; however, much of the moment-to-moment decision making in this task is currently 

beyond the reach of our ability to make inferences. Even in the simplest cases (such as the order of 

study of events), the inference of the intention of the participant becomes a critical one. This work, 

however, will likely inform future studies and highlight two primary strategies for future investigation: 

First, careful task design can strengthen the power of the analyses by restricting some possible 
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strategies and intentions. For instance, restricting the spatial axis to 1D might help us determine if the 

differences in spatial and temporal memory are due to the spatial domain containing more information 

or due to the additional manipulations in the temporal domain. Secondly, as artificial intelligence via 

Deep Learning continues to advance, we are presented with the unique opportunity to use these 

systems as points of comparison to real neural systems. Deep Learning systems (such as Asynchronous 

Advantage Actor-Critic, A3C models; Juliani, 2016; Mirowski et al., 2017) can now perform astounding 

navigation tasks such as solving mazes using only visual input, motor output, and a simple reward signal 

(i.e. with no special knowledge of the environment or system beyond some sense of “good” and “bad” 

results of behavior). These systems may be modelled after biological systems, but they operate in very 

distinct ways. Nonetheless, they are now capable of performing many of the same complex navigation 

tasks that simple organisms can, and moreover, we can manipulate them in any way imaginable (and as 

often as we would like). This provides a fantastic test platform for theoretical approaches to navigation 

analysis which should not be ignored by cognitive science. Collaborations with deep learning researchers 

and cognitive scientists do exist (viz., Kumaran et al., 2016), but they are not nearly as common as one 

would hope given the power of these systems to make and test predictions about information 

processing and behavior. 

In summary, we believe this task and the associated methods shed light on the complex interactions of 

navigation and memory organization in multiple domains and in the presences of contextual 

information. Individual improvements in spatial and temporal navigation relate to improvements in 

memory in those domains separably, suggesting that spatial and temporal representations may in some 

way be separable in this task, at least at the coarsest level of test analysis. Temporal relational memory 

improvements, however, are uniquely tied to changes in navigation complexity and systematicity, 

suggesting a critical and complex interplay between in-the-moment, memory-guided decision making 

(potentially critically tied to hippocampal representations) and subsequent relational memory efficacy. 

Further, context boundaries may act as more of a discriminatory feature (at least in this task) than one 

used to strengthen within-context relational memory organization accuracy, even when allowed to be 

re-experienced freely. Lastly, a preference towards exploring an otherwise temporally-flexible 

environment in the implied, forward order with increasing contiguity may be a critical strategy in 

improving temporal, relational, and contextual memory organization. Taken together, this task 

establishes both an experimental and analytical framework upon which future investigations (such as 

imaging or patient work) may more directly probe the relationships between behavioral correlates of 

navigation and memory in specific brain regions, such as the hippocampus, prefrontal cortex, and 
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retrosplenial cortex. The evidence presented here show that changes in relational and contextual 

memory performance are critically tied to changes in navigation behavior, and biases due to different 

levels of systematicity, complexity, contiguity, and context boundary interactions all contribute to 

subsequent memory. Moreover, this novel framework can be applied to domains of information beyond 

just spatial navigation to elucidate the relationships between memory and navigation in many other 

domains. 
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Chapter 5: General Discussion 

5.1 Summary of Results 
The previous three chapters have shown a variety of data from both hippocampal damaged individuals 

as well as healthy adults, which together establish a methodological framework which can be used to 

analyze and understand behavior in reconstruction tasks in any domain. Critically, certain error metrics 

associated with the ability to retain arbitrary relational information were identified as being related to 

hippocampal function via observing differences in these metrics between hippocampal damaged 

patients and controls. These same errors were then evaluated in healthy individuals in other domains to 

determine if two, omnipresent domains, i.e. space and time, have any differences in the relative 

commonality of these errors, suggesting representational differences between these domains. In order 

to study space and time simultaneously and on a more equal footing, we allow sampling of both spatial 

and temporal information, via “time travel”, thus balancing the ability to control what spatial and 

temporal information to sample. Finally, because this manipulation provides a new axis upon which 

sampling can occur, sampling behavior can also be studied independently in each domain. Taken 

together, the methods and results here provide a foundational framework for studying memory 

organization and navigation across more domains than just space (i.e. temporal spaces, perceptual 

spaces, social spaces, and auditory spaces) and with contributions from types of information beyond 

spatial information (i.e. contextual and sequence information). In addition to finding that, within space, 

only certain types of relations are impaired in hippocampal damage, these same relational types can be 

found to show differences in spatial versus temporal domains and relative to contextual boundaries, 

suggesting representational differences between these domains in the hippocampus as well as a critical 

role for contextual information in the organization of these domains. Finally, changes in navigation 

behavior in both time and space relate to changes in measures of temporal relational and contextual 

memory, suggesting that hippocampally dependent relational memory may be critically related to in-

the-moment decision making in navigation when the task involves learning of arbitrary event 

information in multiple domains. All-together, we believe these results show that the role of the 

hippocampus in navigation and memory is in the binding of arbitrary information, specifically, regardless 

of the domain from which that information is derived, and that this binding is performed in service of 

both long-term, episodic memory and online processing.  

In order to examine these theories of hippocampal function, in the second chapter of this document, a 

framework for the analysis of reconstruction errors was introduced which attempted to assess many of 

the same informational metrics of previous work (Jeneson et al., 2010; Watson et al., 2013) but from a 
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first-principled approach with minimal assumptions. Within this framework, misplacement, i.e. the sum 

of the Euclidean error in space in reconstruction, is treated as a coarse but fundamental measure of 

error. Misplacement, under this assumption, can then be broken into different error metrics in 

accordance with aspects of information which were not present in the reconstruction. Most 

importantly, identity information (i.e. the information which allows items to be distinguished from one 

another) is removed from the reconstruction during the first step of analysis to determine aspects of the 

spatial relationships between items and environment which are impaired. This includes evaluating the 

overall amount of translation, scaling, and rotation shared by items as well as the remaining local 

misplacement and accuracy for each item’s location information. Once these spatial errors are 

determined, the identity-related errors can be reinstated within this informational framework to 

determine if item identity is being misrepresented in a systematic way. The key finding in this chapter 

showed that hippocampal damage impairs the ability to bind arbitrary identity information to locations, 

but it does not impair the ability to remember the locations themselves. Moreover, this impairment in 

identity information is fundamental, in that there is no evidence that it is due to compound identity 

errors in which multiple identities are systematically swapped/cycled amongst different positions. 

Although swaps and cycles do uniquely occur at low item set sizes in hippocampal damaged patients, 

once both patients and comparison participants began making the prerequisite error (i.e. any identity-

location misassignment), there was no difference in the number of compound errors between groups. 

This finding is distinct from previous work on spatial reconstruction which showed significant differences 

in swapping at all set sizes (though most significantly at low set sizes; Watson et al., 2013). The reason 

for this difference is in the increased sensitivity and specificity of the methods presented in this second 

chapter over those previous methods.  

In the third chapter, the methodology established in the second chapter was applied to a more complex 

task in which both space and time were navigable domains, simultaneously; this task is known as a 

Spatiotemporal Navigation Task. In this task, participants were asked to reconstruct events in space and 

time while being allowed to explore both domains, simultaneously. Although space was explored via 

joystick, time was also allowed to be explored via a “time travel” button, which allowed the reversal of 

the direction of the flow of time. Participants performed this task four times on the same timeline of 

events, and their performance on spatial, temporal, and item identity information improved across all 

trials. The identity-location misassignment metric introduced in the second chapter was used to assess 

difference between spatial and temporal relational memory across trials and found that significantly 

more temporal misassignments (i.e. events placed at the moment in time of another event) were 
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committed that spatial misassignments. Additionally, the task contained 4 distinct temporal contexts 

(denoted by a change in the background color of the environment every 15 seconds) which could be 

used to help organize memory for temporal location information. A Context Boundary Effect (DuBrow & 

Davachi, 2013) was observed which showed that items within the same temporal context were placed 

closer together than items which were in adjacent temporal contexts despite being equidistant. This 

effect did not diminish across trials, suggesting it reflects an underlying organizational principle for the 

temporal information. Moreover, this contextual information biased the misassignment information 

such that events were far more likely to be misassigned to the temporal location of the other within-

context event than would be expected by chance. Together, this evidence shows the critical interplay of 

contextual and relational information in the temporal domain and hints at differences in the ability to 

form relations in the temporal domain when compared to the spatial domain. Additionally, it shows that 

the influence of contextual information is likely not due to an error per se, but it reflects an 

organizational principle guiding memory. 

In the fourth chapter, the Spatiotemporal Navigation Task that was reexamined through the lens of 

navigation, rather than reconstruction, in order to determine the degree to which changes in navigation 

behavior relate to changes in test time performance. Leveraging previous work on spatial navigation 

(Daugherty et al., 2015; Eichenbaum, 2017c; Kolarik et al., 2017), this chapter provided several measures 

and models of spatiotemporal navigation of theoretical interest, and introduced a new metric, 

Lacunarity, reflecting the relative systematicity of navigation. A large number of findings were presented 

in this chapter, bringing together elements of spatial, temporal, relational, and contextual memory. 

Improvements in spatial and temporal navigation were shown to relate to improvements in memory in 

those domains separably, suggesting that spatial and temporal representations may in some way be 

separable in this task. Relational memory improvements were shown to be tied to changes in navigation 

complexity and systematicity, suggesting a critical interplay between in-the-moment, memory-guided 

decision making and subsequent relational memory performance. Evidence was presented suggesting 

that context boundaries may act as more of a discriminatory feature (at least in this task) than one used 

to strengthen within-context relational memory organization accuracy; Lastly, a preference towards 

exploring an otherwise temporally-flexible environment in the implied, forward order with increasing 

contiguity was shown to be a potentially critical behavior in rapidly improving temporal, relational, and 

contextual memory organization. Taken together, this chapter established a foundation for using 

changes in navigation performance to relate to changes in spatial, temporal, relational, and contextual 

memory organization. 
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5.2 Organization of Memory Representations 
Since the advent of multiple memory systems theory, we’ve understood that memory cannot be 

captured uniformly by a single representational abstraction, governed by a single brain region. Through 

the study of patients with hippocampal damage we have developed an understand that episodic 

memory (Cohen & Eichenbaum, 1993), navigation (Morris et al., 1982), creativity (Duff et al., 2013), and 

several other functions (Konkel et al., 2008; Tavares et al., 2015; Warren et al., 2015) are contributed to 

by hippocampally dependent memory. Relational memory theory (Cohen & Eichenbaum, 1993) has long 

held that the informational structure of hippocampally dependent memory is underpinned by the 

binding of relations between arbitrary elements so that these representations can be used flexibly as the 

environment, task goals, and perceptual cues change. Moreover, these relational representations are 

thought to be critical for encoding episodic memories (Tulving, 2002) which are characterized by their 

temporal distinctiveness from other information (i.e. you may park in the same parking garage every 

day, but today you parked in a particular spot that you must remember in isolation of other episodes 

related to the spatial location). Some descriptions of hippocampal function go further in specifying that 

certain subregions underpin particular pattern separation, pattern completion, and binding operations, 

while cortical interactions allow for the learning of heuristic and statistical information (see Kumaran et 

al., 2016 for an extensive review). Models of contextual drift (Healey & Kahana, 2016; Howard & 

Kahana, 2002; Polyn et al., 2009) also assert the criticality of interactions between hippocampal and 

cortical representations, potentially contributing to the automatic segmentation of events in the service 

of organizing temporal sequences described by event segmentation theory (Zacks et al., 2007). 

Additionally, the hippocampus is thought to be part of a complex network, linked with cortical regions, 

to enable navigation behaviors (Ekstrom et al., 2017) via precision binding (Kolarik et al., 2016, 2017; 

Yonelinas, 2013) as task demands require (Ekstrom & Ranganath, 2017). 

This work sits at the intersection of many of these models and theories by allowing navigation of spatial 

and temporal information (Chapter 4) and analyzing contextual and relational memory performance 

(Chapter 3) based on computational methods validated on hippocampally damaged patients (Chapter 2). 

In agreement with the core ideas of relational memory theory, we show that specific types of relations 

(arbitrary relations that could have just as easily been anything) are impaired with hippocampal damage 

while spatial locations are not (consistent with the idea that other brain regions may preferential 

encode spatial location independently of the hippocampus and the fact that place cells exist outside of 

the hippocampus; see Ekstrom et al., 2017 for a review). However, even once accounting for several 

types of errors, some residual precision deficits were still present in hippocampal patients, consistent 
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with the Precision and Binding Model (Yonelinas, 2013). The current work also suggests that, in healthy 

adults, differences between spatial and temporal information representations are present, consistent 

with suggestions by others that although the hippocampus is capable of binding information within and 

across many domains, it may preferentially separate information in spatial and temporal domains 

(Eichenbaum, 2017b). Future work using the computational frameworks established in this work, the 

Spatiotemporal Navigation Task, and related tasks allowing navigation of alternate domains (visual 

perceptual spaces, social spaces, auditory spaces) should examine whether this pattern of results is 

present in domains other than space in hippocampal damaged patients. 

5.3 Separable vs. Separate Hippocampal Representations 
There has been a great deal of debate in the literature over the separateness of different informational 

domains in the hippocampus (see Eichenbaum, 2017 for a review). A common perspective is that major 

domains such as space and time provide a scaffolding in which binding of information from and to other 

domains might be embedded (Ekstrom & Ranganath, 2017). Relatedly, tasks investigating hippocampal 

involvement in relations outside of the spatial or temporal domain (in, for instance, social or perceptual 

spaces) have recently shown that hippocampal representations may move beyond the constraints of this 

scaffolding if task demands require (Tavares et al., 2015; Warren et al., 2015). However, one crucial 

question has yet to be completely addressed: are different domains represented entirely separately in 

the hippocampus or in some sort of alternate, overlapping set of representations, or something else in-

between? The data here cannot completely disentangle these possibilities, but the techniques 

presented here, when combined with neuroimaging and patient behavior studies, may eventually 

elucidate the answer to this question. In the Spatiotemporal Navigation Task, differences in relational 

memory performance (identity-location misassignments) were seen in space and time, suggesting these 

domains may, in fact, be separate. They may be, for instance, multiplexed, with cells switching between 

representing spatial and temporal information (see Eichenbaum, 2017 for a review of evidence for this 

idea). Alternatively, the representations may overlap insofar as the task demands warrant it. However, 

when temporal or spatial information are biased in some way (via attention, task manipulation, reward, 

or some other method), the degree of overlap between the domain representations may change. This 

hypothesis, that representational separability is dependent on task demands, leads to a wider 

suggestion about domain representations in the hippocampus, namely, that hippocampal relational 

representations are separable but not necessarily separate across domains. This idea is consistent with 

relational memory theory (Cohen & Eichenbaum, 1993) but extends the prediction that all arbitrary 

relationships can be bound in the hippocampus, to say that the cell firing in association with a domain of 
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information will depend on demands related to that domain (for example, the goal-directed behavior 

being targeted by a task). The ability of hippocampal representations to adapt to task demands to 

optimize the degree of separability of encoding of different variables may be a critical component in 

memory representations, and as such, the distinction between hippocampal representations across 

domains being separable, rather than separate, may be of fundamental importance to understanding 

the structure of hippocampally dependent memory in general. 

5.4 Behavioral Inference, Sampling, and Task Richness 
Two key contributions of this work are worth reiterating. First, the methodological framework presented 

in Chapter 2 and utilized in Chapter 3 approaches the issue of understanding information present in a 

spatial reconstruction from a principled perspective. That is to say, an attempt was made to include as 

few assumptions as possible about the nature of the high-level structure of the performance and 

subsequent data in the task, treating it as an information-containing system with no other significant 

preconceptions. The assumptions are enumerated in that chapter, any of which imply a particular set of 

choices for analysis. This means that in cases like the comparison of hippocampal damaged patients to 

comparison participants, adjustments to the assumptions (i.e. the assumption that participants will 

generally be accurate at placing items back in roughly the right positions) have associated adjustments 

in the methodology (i.e. using the accuracy threshold from the comparisons, in which the assumption 

should be valid, as the threshold for the patients). Similarly, other aspects of the method assume certain 

transformations might be present within the item-item and item-environment relational information 

(i.e. translation, scaling, and rotation), but the method allows for different transformations to be tested 

together or in isolation of one-another. Most importantly, by keeping the methodology general, it can 

be easily applied to other domains (i.e. time), domains with even more dimensions (i.e. 3D space), or 

even domains with stranger properties (see the Introduction for more information on possible 

properties of domains). In this way, the tools used to study representations in reconstruction do not 

have to change even in future explorations that may employ a different set of domains. 

The second key contribution is the critical combination of navigation behavior with reconstruction in 

multiple domains, simultaneously. This allows for three important secondary impacts on the study of 

memory: 1) The ability to navigate domains other than space makes it possible to examine the impact of 

exploration and navigation in different domains on subsequent memory. 2) The ability to simultaneously 

navigate multiple domains means that exploration/navigation behaviors and preferences between 

domains can be examined (i.e. is there a “hierarchy” of domains and how flexible is such a domain 
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preference; McKenzie et al., 2014). 3) The overall richness of this task, as well as the resulting findings, 

shows that many of the effects observed in more restrictive behavioral tasks will still be present when 

the task is complex, rich, and challenging. This added richness also affords more information and control 

with which to make observations and predictions about the interplay of different behaviors (navigation 

and reconstruction) and the brain systems which may support different types of information (scene 

sampling, contextual information, relational information, and more). In summary, by embracing the rich, 

complex possibilities available with modern behavioral platforms such as Virtual Reality, we obtain an 

equal richness and complexity of data in service of enhancing our understanding of the organization of 

memory. 

5.5 Artificial Intelligence and Spatial Reconstructions 
One field which is intimately related to the work presented in this document which has yet to be 

addressed is Machine Learning and Artificial Intelligence. Relational memory theory and contextual 

organization of memory may become more critical to the development of artificially intelligent (AI) 

systems in the coming decades as advances in deep learning systems which go beyond reinforcement 

learning begin to emerge. Spatial reconstruction, as a task, is an incredibly difficult problem for AI 

systems to perform. In particular, the incredible degree of variability in environments makes navigation 

in general a challenge. To add on to this the requirement that specific, arbitrary information about 

elements of the environment need to be remembered and used flexibly at some unknown point in the 

future makes the task beyond the scope of what current AI can successfully do. Recent advances in deep 

learning have developed systems which can navigate environments in an end-to-end fashion (i.e. 

mapping visual input to motor output without any additional “cheating” information provided by the 

programmer; Mirowski et al., 2017). These systems, however, likely lack the flexible, relational memory 

representations necessary to perform reconstruction. Some recent work has shown networks which can 

be trained to understand spatial relational information (Santoro et al., 2017), however, it is unclear how 

related these representations are to real brain representations (despite the attempts of some authors 

often make to architect their systems similarly to biological systems at a coarse level). Spatial 

reconstruction tasks which also involve navigation may serve as a crucial test platform for future AI to 

determine the degree of flexibility of their representations. Moreover, spatial reconstruction in humans 

typically involve only one viewing of the information in question. Although so-called “one-shot” learning 

(Shaban et al., 2017; van der Spoel et al., 2015) is a topic of intense interest in AI, the ability for 

navigation systems to perform one-shot learning is still lacking. Representational systems which can 

perform computation similar to what is thought to occur in the hippocampus may serve as one of the 
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major improvements on deep learning AI in the coming decades, bridging the performance gap on 

general tasks (and potentially tasks which require creativity) between humans and AI. 

5.6 Conclusion 
Our understanding of hippocampally-dependent memory organization has come a long way in the past 

several decades, and with the advent of new technologies and theoretical frameworks, the pace of 

discovery does not seem to be abating. Here, using a new methodological framework, it has been shown 

that the hippocampus is necessary for some, but not all, relational information (critically, the arbitrary 

information but not the location information). These same methods were then applied to a novel task, 

the Spatiotemporal Navigation Task, which allows for spatial and temporal relational memory and the 

influence of context to be examined simultaneously. In this task, many more temporal relational 

memory errors than spatial relational memory errors were present despite the ability to freely navigate 

time and space, and these errors were heavily influenced by contextual information. The Context 

Boundary Effect, in which events in time are placed closer together within a context and further apart 

when separated by a boundary despite being equidistant, was observed in time despite the ability of 

participants to cross the boundaries in either direction and as often as desired and despite repeated 

restudy of the same events. Moreover, the relational memory errors were far more common within a 

context than would be expected by chance, suggesting that the contextual information does not just 

bias distance judgements but also orders information in a disadvantageous way. Finally, spatiotemporal 

navigation behavior was examined to determine if particular aspects of navigation in space and time 

relate to later performance and relational or contextual memory errors. Improvements in spatial and 

temporal navigation were shown to relate to improvements in memory in those domains separably, 

suggesting that spatial and temporal representations may in some way be separable in this task. 

Further, relational memory improvements were shown to be tied to changes in navigation complexity 

and systematicity, suggesting a critical interplay between in-the-moment, memory-guided decision 

making and subsequent relational memory efficacy. Additionally, context boundaries were shown to act 

as more of a discriminatory feature (at least in this task) than one used to strengthen within-context 

relational memory organization accuracy. Finally, data revealed a preference towards exploring an 

otherwise temporally-flexible environment in the implied, forward order with increasing contiguity and 

that exploration pattern was shown to be a potentially critical behavior in rapidly improving temporal, 

relational, and contextual memory organization.  
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Together, three main conclusions can be drawn from these data. First, the hippocampus is critical for 

certain types of relational memory information (specifically, the “arbitrary” identity-location information 

which would be difficult to derive via a heuristic approach), but even with hippocampal damage, 

memory for the spatial locations of items is not impaired, suggesting this information is being supported 

by a brain region other than the hippocampus, and critically, not all types of relational information 

require the hippocampus (i.e. some amount of item-item and item-environment information is present). 

Secondly, temporal and spatial relational memory show key differences in performance (with temporal 

relational memory errors being far more common than spatial relational memory errors) even when 

both the spatial location of events and the temporal sequence of events are allowed to be navigated 

freely, suggesting some degree of separability, perhaps strongly influenced by contextual information, 

may be present in the representations of different domains of information in hippocampal 

representations. Moreover, a proof of concept is provided for behavioral paradigms which can assess 

the behavior surrounding the concept of navigation in domains other than space. And thirdly, changes in 

navigation behavior in both time and space relate to changes in measures of temporal relational and 

contextual memory, suggesting that hippocampally dependent relational memory may be critically 

related to in-the-moment decision making in navigation when the task involves learning of arbitrary 

event information in multiple domains.  

The richness of Spatiotemporal Navigation and Reconstruction has provided (and will likely to continue 

to provide) interesting findings on the interplay between navigation in space, navigation in time, and 

how these ultimately may relate to navigation in memory. Through embracing principled approaches to 

analysis of behavioral data, and the inclusion of complex behavioral mechanics (such as simulated time 

travel), this work extends our understanding of the role of hippocampal relational memory in overall 

memory organization.  
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As a final aside, if any actual time travelers read this document, please feel free to attend my thesis 

defense at 40.115600°N, -88.227700°W, Friday, April 6th, 2018 CE, 2PM CST (8PM UTC). There will be 

snacks. 
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