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Abstract

Endovascular surgeries are highly preferred minimally invasive procedures

performed through blood vessels for diagnostic and therapeutic purposes. In

conventional open surgery, surgeons have complete control on the surgical

tool, but in the case of endovascular procedures, a highly flexible tool, which

is operated from distal end provides an indirect control. Moreover, the op-

erating end of these flexible tools inside a patient are controlled from distal

end, outside patient’s body, with an imperceptible force feedback from the

tool. Even though fluoroscopic images like X-rays provide a temporary solu-

tion, the perceptive of depth is not available in these visual feedback and the

prolonged hazardous radiations do not provide a safer working environment

for surgeons. A tele-operated robotic systems have enhanced the surgical

conditions nevertheless, it decline to provide a better system which can help

surgeons to use their intuitive surgical skills. Additionally, these robotic sys-

tem requires replacement of the low cost conventional surgical tools with ex-

pensive one, thus increasing the procedural cost. This thesis work addresses

these two issues in the endovascular robotic systems by 1. Developing an

intuitive user interface console to help ease of transfer of surgical skills for

surgeons, 2. Developing an in-built force feedback sensing mechanism in the

robot that is adaptable to conventional surgical tool. A new interventional

robotic system (IRS) with teleoperation control was developed to isolating

the surgeons from hazardous radiation. The master console of IRS is design

to capture surgeon’s conventional surgical gestures thus, eliminating the need

for learning new skills to manipulate surgical robots. IRS ensures patient’s

safety by providing haptic feedback to surgeons using reactive force experi-

enced by surgical tool. IRS also has the adaptability to use the conventional

surgical tool of wide range of dimensions. Finally, the force measurement

evaluation and performance assessment of the IRS were presented. The fu-

ture scopes of this research work are briefly discussed.
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CHAPTER 1

Introduction

Over the last decade medical robotic systems have revolutionized the sur-

gical procedures. Invasive open surgeries are reduced to minimally invasive

procedures. As a result, numerous challenges including duration, patient re-

covery, blood loss, precision, hand tremor, visibility, hazardous radiations,

etc. are greatly improved. Minimally invasive surgical procedures are often

preferred to open surgical procedures due to their minimal recovery time,

less discomfort to patient and less damage to healthy tissues. This chapter

provides an overview of minimally invasive surgery and a detail description

of endovascular surgery. This is followed by discussion of challenges involved

in endovascular surgery and the motivation of this research work.

1.1 Minimally Invasive Surgery

Surgical procedures performed with minimal incisions to accomplish a task

are commonly referred to as minimally invasive surgeries (MIS). Many med-

ical procedures such as endovascular, laparoscopic, endoscopy, arthroscopy,

microsurgery, keyhole, etc fall into this division. Due to small incision size,

direct view of the surgical area is limited to surgeons. To achieve visual

feedback, imaging systems such as endoscopes or radiological devices such as

X-Rays, MRI, CT-scan (as shown in Fig. 1.1) etc. are used.

To access the surgical area to perform procedure with high precision dexter-

ous tools were developed which have been manipulated directly by surgeons

or indirectly with the help of robots. Several robotic devices have assisted

various surgical procedures: PUMA 560 robotics surgical arm[25] was used

to perform neurosurgical biopsy, ROBODOC[26] in hip-replacement surgery,

da Vinci Surgical System [27] perform laparoscopic surgery. This list in-

cludes other systems (as shown in Fig. 1.2) like Zeus [28], Makoplasty [29],
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Figure 1.1: Imaging devices (a. Magnetic resonance imaging (image
courtesy [1]), b. Computed tomography (image courtesy [2]), c. X-ray
(image courtesy [3]))

NeuroArm [30], CorPath 200 robotic system [31], Magellan Robotic System

[32], etc. This rapid development of technology has enabled advancement in

surgical procedures with new techniques to diagnose, monitor and treat.

Figure 1.2: Medical robotics system (a. PUMA 560 (image courtesy [4]), b.
ROBODOC (image courtesy [5]), c. da Vinci Surgical System (image
courtesy [6]), d. Zeus (image courtesy [7]), e. Makoplasty (image courtesy
[8]), f. NeuroArm (image courtesy [9]))
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1.2 Endovascular Surgery

Medical procedures performed by navigating blood circulatory system are

commonly referred to as endovascular surgery. Endovascular surgery also

called interventional surgery, are minimally invasive procedures that are per-

formed for diagnostic and therapeutic purposes with the help of imaging sys-

tems. Various physicians in internal medicine, surgery and radiology perform

the endovascular surgery procedures. Specialists like cardiologists, neurolo-

gists and nephrologists are specialized to identify and treat abnormalities

of internal organs and blood vessels. According to the statistics report [33]

in 2008, approximately 3.6 million interventional procedures were performed

and it was expected to increase at a compound annual rate of 3.7%. The

number of patients preferring this procedure is also increasing rapidly be-

cause of advantages like reduced pain, blood loss, scars and recovery time.

Procedures performed near heart or on coronary arteries are called percu-

taneous coronary interventions (PCI) [34]. Procedures performed on blood

vessels near neck and brain are called neuro-interventional surgery. The en-

dovascular procedures are used for diagnosing abnormality conditions like

blood clots, plaque, aneurysms, stenosis etc as shown in Fig. 1.3.

Figure 1.3: Endovascular abnormality (a. Blood clots (image courtesy [10]),
b. Plaque (image courtesy [11]), c. Aneurysms (image courtesy [12]), d.
Stenosis (image courtesy [13]))
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Treatment options for the blood clot and plaque abnormalities are called

thrombectomy. In thrombectomy procedures, the blood clot is accessed via

blood vessels and are removed either using a suction device or a mechanical

device as shown in Fig. 1.4(a). Treatment options for aneurysms (weaken-

ing of artery) and stenosis (narrowing of artery) are commonly referred as

angioplasty. In this procedure, the arterial vessels are strengthened or recon-

structed using balloons or vessel scaffolding devices called stents as shown in

Fig. 1.4(b).

Figure 1.4: (a)Thrombectomy: mechanical and suction methods (image
courtesy [14]), (b)Angioplasty: balloon stenting (image courtesy [15])

An endovascular procedure commonly begins with cannulation, in which

an incision is made on the blood vessel. Most common insertion sites are on

the femoral artery, brachial artery and radial artery which are respectively

in the groin, arm and wrist regions as shown in Fig. 1.5. After this, a highly

flexible surgical tools such as guidewires or catheters (henceforth referred as

tools) are inserted into the body.

Navigation inside vasculature requires three components: path to navigate,

current position and orientation of the tools and safe navigation without

damaging tissues. To visualize the path for navigation, the anatomy of vas-

culature is obtained by injecting a radioactive contrast dye inside the blood

stream which is visible using imaging devices like X-rays, CT scan, etc. The

flow of fluoroscopic dye can also be recorded for detailed study after pro-

cedure. The surgical tools used are themselves visible in the fluoroscopic

images which provide approximate estimation of position and orientation

of the tool inside the vasculature. In addition to visual feedback from the
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Figure 1.5: Surgical insertion sites (image courtesy [16])

imaging devices, surgeons depend on force feedback via surgical tool for safe

navigation. The forces experienced by the tool from interaction with the

walls of vasculature and from obstacles are thus crucial parameters.

Guidewire as shown in Fig. 1.6 are flexible wire and catheters as shown

in Fig. 1.7 are hollows tubes which are used in pair sliding over each other

to navigate the vasculature. Guidewires apart from the navigation purpose

are also essential for tool exchanges which is required since the arteries’ cross

section varies in different parts of anatomy and surgeons use different size

of tools during a procedure. The guidewires are classified based on various

parameter like tip load capacity, stiffness, outer covering, tip type etc.

Figure 1.6: Different guidewire shapes (image courtesy [17])

Catheters are classified based on tip or head shapes. Annular structure of

catheter also acts as a delivery system to inject radioactive contrast dye inside
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blood vessel. This radioactive contrast dye provides visibility of vasculatures

under fluoroscopic imaging devices. The diameter of these tools ranges from

3F (French scale: 3F=1mm) to 34F. There are specialized tools with features

like balloons, stents etc. designed to meet the needs of surgeons.

Figure 1.7: Different catheters types (image courtesy [18])

In addition to these conventional tools, advanced active tools are also de-

veloped with built-in sensors and can be remotely controlled. These active

catheters as shown in Fig. 1.8 have reorientable tip which aids in navigation.

A sensor at the tip measures the contact force between the tool and the tis-

sues. There are various sensing methods adopted in these tools like micro

force sensor, fiber-optics pressure sensor, strain gauges etc. The actuators

with belt driven mechanism deflects the tip of the tool in the desired direc-

tion. This deflection action is used to choose the direction of movement of

the tool.

Figure 1.8: Active tip catheter (image courtesy left [19] right [20])

Navigating the tools involves two actions: translation and rotational as

shown in Fig. 1.9. The translation action performed on the tool will ad-

vance or retrieve the tool with in the vasculature. This translation motion is
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Figure 1.9: Tool manipulation (image courtesy left [21] right [22])

achieved by surgeon by push and pull actions on the surgical tool. The rota-

tional actions are performed to steer the surgical tool to the correct branch of

a bifurcation in vasculature. This rotational motion is achieved by twisting

or torqueing action on the tool in the desired direction. For the rotational

motion of the guidewire, conventionally surgeons use a torquer device as

shown in Fig. 1.10 which is clutched to the guidewire. The torquer provides

more grip to perform the rotational action on the guidewire.

Figure 1.10: Torquer (image courtesy [23])

During the procedure, the surgeon’s hand feels resistance from the tool.

This reactive force has three components: applied force(force applied by

user on the tool), resistive force (force between the tool tip and vasculature

structure) and frictional force (force between the vasculature and the entire

length of tool inside patient). Figure 1.11 shows the example of steering

performed inside the vasculature to navigate a lesion and branching in the

vasculature.

Figure 1.11: Steering of guidewire (image courtesy left [22] right [24])
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1.3 Motivation

Triaging the issues in health care systems and improving the conditions are

essential, to ensure patient’s safety and better working ambiance. Endovas-

cular procedures are intricate, since mistakes during a procedure could rup-

ture the blood vessel, complicating patient’s condition or even resulting in

fatalities. The following are few challenges identified in the endovascular

procedures.

� Potential occupational hazard to surgeons due to X radiations exposure

from imaging devices.

� Highly flexible surgical tool has unpredictable dynamics of motion

which makes precise steering difficult.

� Tortuous vasculature nature in human anatomy complicates simple pro-

cedure.

� Limited work volume and unknown tissue property demands precise

hand movement for performing procedure.

� Tool manipulation is complicated since hand tremors could get ampli-

fied at the distal ends.

� Motor skills required to perform precise procedure requires extensive

training.

� Imperceptible force feedback can result in administering unintended

force.

� Active catheters are available only for a limited range of cross sectional

dimensions making it unusable for smaller vasculature.

� Active catheters are expensive and thus increases the procedural cost.

� Error due to deviation of changing of intuitive skill between a manual

procedure and a robot assisted procedure.

� User interface control of robotic systems deviates from the conventional

manual tool handling skills.
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� Limited visibility to the site of operation and the available visual feed-

back are only 2D images or reconstructed 3D images.

Although a few of these issues have been solved in the current robotics

systems, there are still exist issues which require attention. The existing

robotic systems decline to provide a better solution which will help surgeons

to transfer their experience and intuitive surgical skills. In this thesis work,

the design and development of an Interventional Robotic System (IRS) for

the surgeons to perform the endovascular procedures with conventional hand

actions providing real-time haptic feedback using passive surgical tools is

discussed. The IRS augments the actions of surgeon unlike the existing

devices. Using the same tools, the surgeon can perform the same surgical

actions (translations and rotations) which will be captured by a sensing unit.

These captured actions are used to command a robot unit to navigate the tool

inside the vasculature. Although the control scheme is same as the master-

slave scheme employed in the existing devices, the device lets the surgeon to

perform the procedure in the same way as they perform in the conventional

way using the tools. As a result, surgeons does not have to learn new skills

to use the IRS and can use the procedural skills that they have acquired

by experience from conventional procedures. The main advantages of our

approach are: 1. no new skills have to be learned by surgeons, 2. eliminates

the use of active surgical tools, 3. facilitates tele-operation, 4. uninterrupted

continuous control, 5. passive reactive force sensing, 6. haptic feedback, 7.

easiness to assemble and disassemble for sterilization.
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CHAPTER 2

Literature Review

Numerous robotic systems have been developed by many companies and

research groups around the world. These are in various stages of studies

with phantom, animals and clinical trials. Robotic systems which are un-

der in clinical trials [35][36][37] have demonstrated notable advantages which

include reduced fluoroscopy content, lesser exposure to radiation for both

patients and surgeons [38] and improved precision [39]. In spite of these ad-

vances, introduction of robots has deprived the surgeons from transferring

their conventional and intuitive skills to perform procedures. One of the rea-

sons for this has been the interfaces that the practitioners use to control the

robot. Various control interfaces used are keypad, joystick, mouse, trackball,

touch screens and robotic manipulators. Use of these interfaces deviates from

the way surgeons performed conventionally. As a result, the interventional

practitioners need to learn a new set of skills to use the robotic devices for

interventional procedures. In this chapter, the existing robotic systems devel-

oped by companies and researchers are briefly discussed focusing on system

design, user interface and haptic feedback.

2.1 Commercial Robotic Systems

Some of the currently available commercial systems are Amigo� remote catheter

system [40], CorPath® 200 robotic system [31], Magellan� Robotic System

[32] and Stereotaxis Epoch® [41]. These systems are in various stages of

healthcare implementations. All these systems commonly consist of slave

robot mounted closer to the patient and a master console remotely located

for teleoperation. The surgeons perform the navigation action by command-

ing from the master console. The actions of the surgeons at the console are

guided by X-ray fluoroscopic images available at the console. Each of the

10



existing devices are discussed in detail as follows.

Amigo� remote catheter system [40] [36], uses an ablation catheter which

is manipulated by the robot arm and is controlled using a wired hand held

controller. The slave manipulator consists of a turret and sled assembly with

a docking station to mount the surgical tool. The translation motion of the

ablation catheter is achieved with the button control on the catheter handle

and the rotary motion is achieved by knob control which rotation of turret

on sled assembly thus rotating the catheter. The hand held controller has 4

control elements. They are (1) rotation, (2) catheter tip deflection, and (3)

advance and withdraw buttons. The inset shows the infrared safety beam

on the opposite side of the handle (4) that prevents inadvertent catheter

movement.

CorPath® 200 robotic system [31] [37], uses a guidewire and a balloon/stent.

These tools are mounted on a cassette which is placed on the slave manip-

ulator. The robotic drive mechanism is coupled to the single use cassette,

the translation motions are performed with friction rollers and rotational

motion is performed with the rotational drive inside the cassette. The tools

are remotely operated from the console using the joysticks or touch screen

buttons. The joystick on the right side controls the guidewire’s translation

motion with lever action and rotation motion with of twist of the joystick.

Similarly, the joystick on the left control the movement of the balloon/stent.

Magellan� system [32] [42], uses a guidewire and an active catheter which

are mounted on a robotic arm. The robotic manipulator has a friction roller

mechanism for translation motion and a set of friction slider mechanism for

rotation motion. Additionally, the active catheter has addition dexterity for

navigation. The robotic arm is controlled by surgeon from a console unit

with a selection panel, buttons and a robotic manipulator. The up and down

arrow on the control panel is used to control the translation motion of the

catheter. The course of movements are altered with multiple options like

buttons, knob, and 3D manipulator. A set of buttons rotate the guidewire,

another set of button is used to deflect the active catheter, knob is used to

achieve axial rotation of the catheter and the 3D manipulator is also used

to rotate the active catheter. The catheter contact force is measured and

communicated to the operator as haptic feedback.

Stereotaxis Epoch® [41] [43] [44], uses a custom built magnetic guidewire

and catheter which are oriented and steered in permanent magnetic field,
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and a mechanical drive is used to advance the tool. The tip orientation and

linear position control are achieved using a coordinated action of joystick,

the roller wheels and mouse control [45].

2.2 Researchers’ Robotic Systems

Researchers across the world have contributed numerous work in progressing

towards refining technology for interventional procedures. In this section,

robotic systems developed by researchers are reviewed to discuss the system

design, the user interface and the force measurement. Systems design focuses

on the actuation mechanism to achieve motion of the surgical tool, the user

interface focuses on the control features provided to navigate the surgical tool

and the force measurement discusses the different techniques of measurement.

2.2.1 System Design and User Interface

Zakaria et al [46] has developed a tele-operated catheter-guide system con-

sisting a slave robot and a hand-held master controller. The manipulator

has friction roller for linear motion and a gear assembly for rotary motion

of catheter. The controller has an encoder as well as a pulse counter to de-

tect the positional information of the control elements like translation and

rotation.

Guo et al [47], developed a master-slave tele-operation system which cap-

tures surgeon’s actions. The linear motion is achieved by a repositioning

mechanism installed on a sliding platform and the rotatory motion is per-

formed by assembly of grasper and belt driven mechanism. The surgeon’s

push and pull actions on the handle are sensed along with the applied force

by the master manipulator.

Payne et al [48] developed an integrated unit in which the master and

slave units are built as single unit. In this device, the surgeon’s actions are

captured using a master controller. The master controller is translated by

the surgeon and the slave platform replicates this motion with the help of

linear actuator. Positive feed of the catheter is achieved by repositioning

the master and slave platforms using a clutch mechanism. The repositioning

interrupts the actions of the surgeon which is contrary to the natural actions
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in conventional procedure. This device did not have the option for tele-

operation because of the integration of master and slave parts as single unit.

Arai et al [49], has built a system which drives the catheter with friction

roller mechanism. The master controller of this system has a fulcrum based

mechanism to capture the surgeon’s hand motion directly.

Yang et al [50] developed a guidewire feeding robot for conventional guidewire.

This system has three sets of fingers, fixed finger to guide the guidewire, pro-

moting finger for translational motion and rotating finger for rotational mo-

tion. The promoting finger has pressure sensors which measures the resistive

force.

Govindarajan et al [51], has developed a System for Endovascular Teleop-

erated Access (SETA) which has a friction roller mechanism for translation

motion and a spring loaded gripper mechanism for rotation motion. The fol-

lowing are the list of components mark in figure 1, Pulley for travelling cart

2: Mounting arm 3: Travelling cart 4: Linear drive for guidewire 5: Linear

drive for catheter 6: Steering stage for catheter 7: Entry point for guidewire,

8: Steering point for catheter and 9: Exit point of catheter into body.

Marcelli et al [52], developed a robotics system which operates with stan-

dard steerable electrophysiology catheter. The system facilitates transla-

tional and rotational motion along with the motions of the steerable catheter

tip. The control commands are provided by means of joystick.

2.2.2 Force Measurement

Measuring the reactive force is crucial for the endovascular procedure as ex-

cessive force applied on the surgical tool can dislodge a plaque, rupture an

aneurysm or the blood vessel itself. In conventional procedures, the reactive

force felt by an experienced surgeon through the surgical tool aids them to

judge the resistance offered by the vasculature. Considering the importance

of this haptic feedback from the surgical tool many developers have adapted

various ways to measure the forces encountered by the surgical tool. These

force measurement techniques have been integrated with most of the robotic

system to display the information to the user in real time. These techniques

are capable of measuring either the distal forces or the proximal forces. The

proximal forces are direct measurements of the contact forces between sur-
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gical tool and vasculature, which is measured by means of special active

catheters which are equipped with sensors at the tip of the devices. The

distal forces are indirect measurement of contact forces which is measured

closer to the region of actuation outside the human body by sensing devices

like load cell or pressure sensor. The distal force data measured represent

various components of forces like contact force between the surgical tool tip

and the vasculature, resistive force between the entire surgical tool and the

rest of the vasculature, the friction force at the contact surfaces of the robotic

device and the surgical tool.

A few examples of distal force measurement techniques adopted by the

researchers are as follows. Payne et al [48] has used strain measurement

mounted on the conventional passive catheter tips. The deflection of the

catheter in contact with the blood vessel walls introduces strain in the sensor

which in turn is converted to force values. Yang et al [50] guidewire feeding

robot which operates on conventional guidewire has a promoting finger with

pressure sensors which measures the resistive force. Guo et al [47], master-

slave tele-operation system used a load cell to measure the reactive force in

the catheter.

Alternatively, the proximal force measurement techniques have also been

explored by various researchers. The following are few example of implemen-

tation, Marcelli et al [52], in their robotic system uses an active catheter with

a force sensor at the tip, to monitor the proximal forces on the catheter. Tan-

imoto et al [53] and Polygerinos et al [54] developed active sensing methods

using micro-force sensor and fiber-optic pressure sensors respectively, which

are installed at the tip of catheter.

2.3 Summary of Literature Review

In most of the robotic systems, the actuation mechanism adapted for trans-

lation motion were either linear actuator or friction wheel. In case of the

linear actuator based mechanism, the advancing motion is constrained by

the length of the actuator stem due to which the system has to reposition

itself. This repositioning mechanism is capable of disrupting a continuous

feeding of surgical tool. On the other hand, friction wheel mechanism elim-

inates the repositioning movement and can operate on a continuously. The
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rotary motion is commonly achieved by a coupled action of gripping the sur-

gical tool and rotating it axially. Even though the development of steerable

catheter eliminates the need for such rotatory motion it is still debated as

the cost of active catheter is approx $2500 [55]. Using a steerable catheter

will increase the cost of the interventional procedure.

Mostly commonly used user interfaces are keypad, joystick, mouse, track-

ball, touch screens and robotic manipulators. Apart from these controls

options, few researchers have also custom built user interfaces to provide

intuitive experience with the user interface. Among these, interfaces built

with repositioning mechanism have the same issues as discussed above in the

system design summary.

The force measurement techniques integrated with robotic system to mea-

sure either the distal forces or the proximal forces is an essential feature.

These proximal force measurement techniques using active catheters are lim-

ited to few procedures because, the diameter of the active catheters are larger

in diameter than the vasculatures cross section making it inaccessible to all

organs. On the other hand, the distal force measurement techniques to de-

termine the reactive forces represent similar to reactive force as surgeons

experience on their hand during manual procedure.
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CHAPTER 3

Design and Methodology

The maneuverability of a passive surgical tool inside the vasculature has two

degrees of freedom; translational and rotational motions as shown in Fig. 1.9.

The surgeon’s intention to navigate the tool are reflected in his actions to

translate or rotate actions. Also, the surgeon’s response to reaction force from

obstacle (wall of the vessel or a plaque) and friction are essential for success

of procedure. These forces along with visual feedback aids the surgeon to

make necessary decisions in order to navigate the tool.

3.1 Design Requirements

The robotic system design requirements are formulated as follows

1. The system should facilitate tele-operation to avoid radiation from

imaging devices.

2. The system should not demand surgeons to learn new skills to operate

the user interface of the robotics system to perform the procedure.

3. The system should provide continuous drive for maneuvering the sur-

gical without interrupted actions.

4. The system should be capable of measuring distal forces thereby elim-

inating the need for active catheter.

5. The system should provide haptic feedback to the surgeons to alert the

measured reactive force beyond safe limit.

6. The system should operate with the passive surgical tool of wide range

of dimensions and also eliminate the need of active surgical tools.

7. The system should be easy to assemble and sterilize.
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3.2 Design and Development

The interventional robotic system is developed in two phases: the first phase

of development focuses on conceptual verification of distal force measurement

techniques and the second phase focuses on the design improvement to meet

the requirements. The tele-operation requirement is met by designing the

robotic system as two units: a sensing unit and a robot unit. The sensing

unit is the master controller and the robot unit is the slave manipulator. To

eliminate the demand on surgeon to learn new skills to operate the controller,

the conventional natural hand actions as shown in Fig. 10 are captured by

the sensing unit.

3.2.1 Phase-1 Development

The frames are built with acrylic material. Conventional surgical guidewire

is used for testing the device. To effect the translation motion, friction roller

mechanism is chosen. A pair of rubber cushioned friction rollers rollers are

used in robot unit and a set of plastic rollers are used in sensing unit.

3.2.1.1 Sensing Unit

The sensing unit as shown in Fig. 3.1 consist of a pair of friction rollers, hol-

low shafts to conduct the surgical tool, slip ring assembly, micro vibration

motor and two continuous potentiometers. The two plastic friction rollers are

placed at a fixed distance such that the distance between the roller’s outer

diameter is slightly lesser than guidewire diameter. This ensures constant

contact between the roller and guidewire. One of the rollers shaft is coupled

to a rotary potentiometer P1. With this assembly, when the guidewire is ad-

vanced or retrieved by the surgeon, the continuous translation motion of the

guidewire is captured by the P1. The tool passes through the annular shafts

which are coupled to another potentiometer P2 which inturn measures the

rotation of the shaft. This extension of the shaft is used by surgeons to effect

rotation, as the rollers hold the guidewire firmly. The slip-ring facilitates

the electrical connection between the potentiometer on the rotating parts to

the controller without wire entanglement. The measurement from both the

potentiometers are converted into command signal by the controller. These
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control signals are send are send to the robot unit to drive the actuators.

For the purpose of haptic feedback, the sensing unit is installed with a micro

vibration motor which is actuated when the distal force measured exceeds a

set limit.

Figure 3.1: Sensing unit phase-1

3.2.1.2 Robot Unit

Construction of robot unit as shown in Fig. 3.2 is similar to sensing unit

except that the potentiometers are replaced with motors. A pair of rubber

cushioned roller are placed at a fixed distance ensuring constant contact

between the guidewire and the rollers. One of the rollers (called active roller)

is coupled to a motor m2 and the other roller(called passive roller) is mounted

on a bearing. The rotation of motor m2, rotates the active rollers and thus

the passive roller, which is in contact. The guidewire passing in between these

rollers is positively driven because of the frictional contact. Thus the rotation

of the rollers results in translation of guidewire. The translation unit is

rotated about the axis by another motor m1 coupled via a gear train. Similar

to sensing unit, the slip ring facilitates the continuous electrical and data

communication. These actuators are driven by the controllers to replicate

the motion captured by sensor unit.
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Figure 3.2: Robot unit phase-1

3.2.1.3 Force Sensing Principle

The reaction force experienced by the surgical tool inside the vasculature is

transmitted to the distal end. Conventionally, surgeons experience this reac-

tive force on hand due to resultant force from the applied thrusting force (to

navigating the guidewire) and the opposing forces on the guidewire. Yang

et al [50] used this concept, where the promoting finger on the guidewire

feeding robot is equipped with pressure sensors to measure this distal force.

Similarly, in the developed robot unit, the driving friction rollers will experi-

ence the reaction force. This mechanical load on the actuator is reflected in

the current drawn by the actuator to drive the rollers. The current drawn is

directly proportional to the torque developed by the motor.

τ = KtI (3.1)

F = τ/R (3.2)

where τ is the torque developed by the motor, I is the current drawn by

the motor, Kt is the torque constant of the motor and R is the radius of

roller. Force applied by the motor is determined from the eqn. 3.2. With
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this principle, the resultant force experienced by the motor is determined

from the current drawn by the motor using the mathematical relationship as

shown above. This force Fs is a sum of two components:

Fs = Fn + Fo (3.3)

where Fo the nominal force which represents the operating current of the

motor for a particular velocity and Fn the reaction force which represents

the excess load on the shaft. The nominal force is predetermined from the

motor characteristics which could be subtracted from the resultant force to

estimate the reaction force.

3.2.1.4 Preliminary Observations

In order to demonstrate the ability to distinguish the actuator operating cur-

rent and load current while maneuvering the guidewire the following experi-

ment is conducted. To mimic the patient’s vasculature, a phantom model is

made out of transparent tubes and placed near the robotic device as shown in

Fig. 3.3. To measure the actuator current, current sensor was connected in se-

ries to the power supply. To observe characteristic of data while manuvering a

guidewire in different conditions three different experiments are performed 1.

nominal operating condition of actuator, 2. maneuvering straight vasculature

section and 3. maneuvering curved vasculature section. In order to observe

the operational current of the actuator, the guidewire was maneuvered in an

unconstrained conditioned outside phantom and the corresponding current

data were stored. In case of maneuvering inside vasculature, the guidewire

has to navigate a straight region and a curved region inside the vasculature.

A curved section offers more reaction force than straight section because of

change in direction. Observing this characteristic behavior in current mea-

surement is essential to distinguish the different loading conditions.

The following observations are made: 1. the actuator operating current is

minimal when the there is no resistance offered to the motion of guidewire,

2. The actuator current experienced more load while navigating a curved

region compared to a straight region.
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Figure 3.3: Setup distal force verification

3.2.1.5 Results of Phase-1 Prototype

The following are the results phase-1 development:

� The interventional robotic system are built with tele-operation capa-

bility facilitating isolation from hazardous radiation.

� The user interface provided with the sensing unit captures surgeon’s

conventional hand motions without demanding new skill to operate

the robot unit.

� A continuous uninterrupted translation motion control of surgical tool

are provided with friction roller mechanism.

� Distal force sensing principle from the actuation current is formulated.

� Force measurements are verified with a demonstration in different ma-

neuvering conditions.

� The device performed the maneuvering and sensing with conventional

surgical tools eliminate the need for an active catheters.

� Haptic feedback is provided to surgeons upon analyzing the reaction

forces to ensure patients’ safety.

The following are the issues identified in this phase-1:

21



� The sensing unit performance were affected due to the use of poten-

tiometer sensor which has low resolution of sensing. In addition physi-

cal contacts in potentiometers introduce frictions leading to poor signal

to noise ratio.

� Maneuvering of surgical tool were inconsistent due to slipping issues in

rubber cushioned friction rollers.

� Since low cost servo motor were used the system parameters like back-

lash were not consistent and were difficult to quantify. This let to large

variation in the current measurements.

3.2.2 Phase-2 Development

The interventional robotic system developed in phase-1 demonstrated the

capabilities of a tele-operated robotic system to perform endovascular proce-

dures using conventional guidewire and catheter. The issues identified in the

phase-1 development are addressed in the phase-2 development. The sensing

unit resolution issue is resolved by using high resolution optical encoders.

The slipping issue with the friction rollers is addressed by using knurled

roller.

3.2.2.1 Master Console

The master console consists of sensing unit and a display monitor. Surgical

tool passes through the sensing unit. Surgeon uses this tool to perform

the actions similar to a conventional endovascular procedure. The sensor

unit has a pair of knurled rollers. One of the rollers is moveable using a

spring-loaded slide to ensure constant gripping force on the tool and the

other roller is fixed to which an encoder (E2) is attached. This adjustable

spring-loaded mechanism with quick release plate facilitates the sensing unit

to accommodate wide range of surgical tools. These are housed within box

unit (BS1) as shown in the Fig. 3.4. BS1 is attached to hollow shafts radially

aligned with the contact line of the rollers. The shafts are made hollow so

that the tools can pass between the rollers. In order to effect the twisting

action using a torquer, the surgeon rotates torqueing shaft. To capture this

rotating action another encoder (E1) is mounted on the shaft. The design of
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friction wheel is different from the existing design because our design provides

area-contact and hence more friction for a positive drive. The existing design

is a lower pair mechanism with only a point-contact between the tool and the

friction wheel. This leads to slipping when the surgeons perform actions at a

faster rate. Knurled rollers are used which provides area-contact leading to

a nonholonomic constraint [56] for slip-free drive. Encoder (E2) attached to

the roller shaft measures the translation of the tool using the nonholonomic

velocity relationship which is given by

ωt =
4e
(

360
q

) (
π

180

)
4t

1000

(3.4)

vt = r/ωt (3.5)

where ωt is the angular velocity measured by the encoder, 4e is the change

in encoder value, q is the resolution of the encoder, 4t is the change in time

in milliseconds, vt is the translational velocity of the tool and r is the roller

radius.

Figure 3.4: Sensing unit phase-2 (left: CAD model, right: Actual model)

Similarly, for steering (rotational motion), a torquer (as shown in Fig. 1.10)

is used by the surgeon to twisting the surgical tool. The torquer provides

enough grip to twist the surgical tool. In this design similar torquer is pro-

vided (torqueing shaft) through which the surgical tool passes. The rota-

tions of the torqueing shaft are captured by encoder (E1). The encoder

measurements are converted to angular velocity, of the surgical tool using

the relationship,
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θ̇ = ωr (3.6)

where ωr is the angular velocity measured by the encoder. The torquer in

the conventional procedures has a collet that grips the tool. In our design,

this gripping is inherently achieved by the knurled rollers [57].

3.2.2.2 Slave Manipulator

Robot unit controls the surgical tool in order to navigate through the vascu-

lature as commanded by the surgeon using the sensor unit. The construction

of the robot unit is similar to sensor unit except for the rotary actuators

in place of encoders as shown in Fig. 3.5. Similar to BS1 of sensing unit,

robot unit has a box unit BS2 which houses rollers. The box units are de-

veloped with modular design concept to ease disassembling for sterilization.

The fixed roller is mounted on the shaft of actuator, m2, which in turn is

attached to BS2. The moveable roller is on a spring-loaded slide which fa-

cilitates surgeons to override the robot to manually move the tool in case

of emergency. The unbalanced weight of the motor and other components

within BS2 are balanced about the axis of BS2 using a counter-weight. BS2

is rotated about axis of the shaft by the actuator m1 coupled through a spur-

gear train. Actuation by m2 effects the translation motion and actuation by

m1 effects the rotation motion of the tool. The control signals to and the

encoder data from m1 is transferred to the controller using a slip-ring similar

to the sensor unit.

Figure 3.5: Robot unit phase-2 (left: CAD model, right: Actual model)
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Our robot has two degrees of freedom(DOF) and two degrees of actuation

making this a completely controllable system. The rotational motion of tool

is achieved by rotating the BS2 of mass M by angle θm1 driven by motor(m1)

with torque τm1 . The translational motion is achieved by angular rotation

θm2 of the pair of rollers by motor (m2) with torque τm2 within the box

unit (BS2). Euler-Lagrange formulation is used to develop the equations of

motion (EOM). The potential energy component of the EOM is contributed

by unbalanced rotating mass of BS2 and the torsional stiffness k [58] of the

surgical tool. EOM are,

Jm1 θ̈m1 + (C1 + C2 )θ̇m1 + Mgl sinθm1 + kθm1 = τm1 − rtFt (3.7)

Jm2 θ̈m2 + C3 θ̇m2 = τm2 − rr(µFr + Ft) (3.8)

where Jm1 is the combined rotational inertia of the box BS2 and motor m1,

Jm2 is the combined rotational inertia of the rollers and the motor m2. C1

and C3 is the damping coefficient of the motor m1 and m2 respectively and

C2 is the damping coefficient of slip ring, Fr is the roller spring force, Ft is

the friction force at the contact point of tool with tissue, µ is the coefficient

of friction on surgical tool surface, l is the length of BS2 from the axis of

rotation and rr and rt are the radius of friction wheel and radius of the

vasculature respectively.

3.3 Control Architecture

The control architecture includes the master sensing unit, slave robot unit

and the vasculature environment. The controller design requirements are:

1. surgical tool position tracking and 2. surgeon’s action replication and 3.

control scheme for safety mechanism. The control architecture as shown in

Fig. 3.7 consists of haptic feedback module and a cascade controller module.

The haptic feedback module encapsulates all subsystems between surgeon

and vasculature. This subsystem gets the surgeons actions [F, τ ] as input

and drives the tool inside the vasculature. The force sensed by the robot unit

from the vasculature is used to provide haptic feedback to surgeons to ensure
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patient’s safety. The cascade controller module has the sensing unit and robot

unit as subsystems. This module gets the surgical tool motion parameters

[x, θ]u in sensing unit as inputs and replicates the same using robot unit

ensuring the tool position tracking and for surgeon’s action replication.

3.3.1 Haptic Feedback Module

When the procedure begins, identical surgical tools are used into the sensing

unit and the robot unit. Surgeon applies a force F to perform the translation

and a torque τ for rotation of the surgical tool in the sensing unit. These con-

trol inputs from surgeon’s [F, τ ] result in surgical tool movements as [x, θ]u

which are captured by the sensing unit and transformed by the rotary sensors

as positions [θ1, θ2]d. The robot unit replicates these captured motions by

actuating the motors using commands f([θ1, θ2]a). By the virtue of the fric-

tion roller design of the robot, actuators responses [θ1, θ2]a are transformed

to motion [x, θ]g of surgical tool. The total force Fn acting on the tool while

maneuvering inside the vasculature is reflected in the current drawn by the

actuators. The measured current i is converted to force Fs by the impedance

relationship Z−1
h as given in eqn. 3.1 and 3.2. This resistive force is mon-

itored continuous by the dead-zone algorithm which triggers whenever the

value of resisitve force goes beyond the dead-zone limit. This signal opens a

normally closed switch to cease motor actuation providing a safety mecha-

nism. This also triggers the vibratory and audio systems in the sensing unit

to alert the surgeons.

3.3.2 Cascade Controller Module

In order to have simultaneous position and velocity controls to track the sur-

gical tool as well as to replicate surgeon’s actionss, a cascade controller[59]

is used. Abrupt changes in [θ1, θ2]d are observed due to three events: 1.

rapid movement of user interface, 2. rotating components revolves rapidly

for small change in motion and 3. loss of data during communication be-

tween controllers and computers. This results in either whipping action of

the tool or impulsive thrusting force or damage to the motor due to large

current drawn. This undesirable inputs must be modified such that the ve-
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locity gradient is small. this modification of input is achieved using shaping

[60]. Input shaping is a type of command generation scheme obtained by

convolving a sequence of impulses with input signal. In Fig. 3.6, the input

signal has a change in magnitude of L which is convoluted with a sequence

of impulses A1, A2, ...An and the corresponding shaped input is shown on the

right. this is expressed as

yk(t) = L
k∑
j=1

Aj where
n∑
i=1

Ai = 1 (3.9)

Figure 3.6: Input shaping process

In order replicate surgeon’s actions, velocity control is employed. To ensure

that commanded position [θ1, θ2]d is reached a position control is also used.

The two controllers are used is cascade mode in which an error in position is

also compensated by the velocity controller. From the control architecture as

shown in Fig. 3.7, the position loop is closed using a proportional-integral-

derivative(PID) controller and similarly, the velocity loop is closed using

another PID controller. The desired position parameter [θ1, θ2]d as measured

by sensor are constantly compared with the actual position of the robot unit

measurements [θ1, θ2]a. This position error is made as input to the position

controller to generate the control inputs that are added to desired velocity.

On the other hand, the desired velocities [θ̇1, θ̇2]d are provided to control the

motor via a normally closed switching unit. The switching unit algorithm

acts a safety mechanism to respond to an excessive force measured in the

system. It facilitates normal velocity control by default and ceases actuation

for safety upon receiving a trigger signal. In case of normal operation, this

velocity is provided as input to the PID velocity controller. The control

efforts from this controllers is saturated in order to eliminated undesirable

output control commands to the motor.
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CHAPTER 4

Experimental Validation of Force
Measurement

The reaction force experienced by the tool while navigating vasculatures is

an essential parameter to aid successful accomplishment of a procedure. The

capability to distinguish these forces is demonstrated with the interventional

robotic system developed in phase-1 as discussed in chapter 3. In phase-2

IRS, the in-built sensing feature of motor controller allows distal force mea-

surement experienced by the surgical tool. To cross-validate the force com-

putations from robot unit, standard load-cell sensor is used to measure and

record these forces simultaneously. This chapter describes the experimental

setup, force analysis and results.

4.1 Experimental Setup and Data Collection

The experimental setup as shown in Fig. 4.1 consists of the robot unit, a

standard load cell(Phidgets Micro Load cell # 3133) and guidewire as surgical

tool. The robot unit and the load cell sensor are mounted on a platform

such that the motion of the guidewire is opposed by the load cell. The

translational motion of the guidewire driven by actuator experiences the

resistive force from the vasculature. The motor experiences this force as load

against the desired motion commanded by the controller. To overcome this

excessive load in the system the motor draws additional current more than

the nominal operating current to drive the guidewire. The current drawn

by the motor is measured using an in-built sensor in the motor controller.

Load cell and current sensor data are recorded simultaneously. After starting

the motor from rest, it is operated at a constant velocity of 30 RPM to

drive the guidewire without resistive force and once the guidewire comes

in contact with the load cell the actuator experience opposing load. The

actuator continues to drive the guidewire applying more force on the load
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cell.

Figure 4.1: Force validation setup

Figure 4.2: Force validation setup: vasculature and load cell

As mentioned in chapter 3, the current drawn by the motor reflects force

from the vasculature. The current drawn by the armature contains two

components

i = iv + in (4.1)

where in is the nominal operating current of the motor which is a function

of motor velocity v which is given by

in = f(v)

and iv is the current drawn due to reaction force from the vasculature. The

total load on motor as a function of i is shown in Fig. 4.3. The blue curve
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between 7 to 11s represent load on the motor during nominal operation. The

excursion of the curve between 12-16s is due to the reaction load from the

vasculature. This is confirmed by the direct load cell measurement as shown

by the red curve. Reaction force is a sum of friction and other reaction

forces. Since friction cannot be directly measured, only a small section of the

phantom vasculature is used in which the friction is negligible. As a result

the total load on the motor is the reaction force provided by the load cell.

The measured force data from the load-cell and estimated data from the

current are shown in Fig. 4.3. Red line corresponds to the load-cell mea-

surement and the blue line corresponds to the motor force calculated as a

function of current. The blue line data represents the net force experienced

by the motor. The different sections of the graph (I),(II) and (III) represent

the various events of the experiments as described earlier.

Figure 4.3: Force measurement data

The (I) section of the graph which shows zero force measurement represent

the data recorded corresponding to motor at rest. The (II) and (III) sections

of the graph represent data corresponding to motor operating constantly at

30 RPM. In the section (II), the tool is advanced inside phantom vasculature

section without obstacle and the tool is not in contact with load cell at this

stage. The forces observed in this section in motor measurement corresponds
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to the normal operating current of motor at 30RPM and zero load is recorded

by the load-cell. This bias between the load cell measurement and force

estimation is explained in the next section. In the (III) section, the tools

is advanced to contact the load-cell as the motor continuous to drive the

tool against the load cell. The motor measurements in this section represent

combined data corresponding to motor operating current and reaction force

from load cell. The load cell measurements corresponds to the force applied

by the guidewire. This applied force measurement in the load cell is similarly

observed in the motor measurements.

4.2 Bias Estimation

To compute this biasing factor, relationship between the force component

corresponding to the motor operating current and velocity needs to be deter-

mined. For this, the guidewire is driven by the motor at different velocities

without phantom vasculature. The in corresponding to the nominal operat-

ing current are measured at each velocity and the corresponding forces are

calculated and recorded. The data is collected twice for each velocity and

the mean values of forces calculated for different rpm are shown in Fig. 4.4

Figure 4.4: Force corresponding to nominal motor operation vs velocity

From the data collected at different values of velocity, different trends are

observed for lower range and upper range of velocities as shown in Fig. 4.4.
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The lower velocity range has a negative slope and the trend in higher velocity

range has a positive slope. Assuming a separation point xp, for these ranges,

linear regression for each of the ranges are given by

For low velocity range v from 0.1 to xp rpm

Fb = m1v + c1 (4.2)

For high velocity range v from xp to 500 rpm

Fb = m2v + c2 (4.3)

where Fb is the force developed during normal motor operation, v is the

velocity in rpm, mi is the slope and ci is the y-intercept. A sample of linear

regression fit separated at 40 rpm is shown in Fig. 4.5. The corresponding

linear regressions are given by eqn. 4.4 and eqn. 4.5.

For low velocity range v from 0.1 to 40 rpm

Fb = −0.0058401v + 0.84709 (4.4)

For high velocity range v from 40 to 500 rpm

Fb = 6.933e−05v + 0.61235 (4.5)

Figure 4.5: Linear fitting

From the graph it is observed that at the separation point xp both the

linear regressions do not represent same nominal force data. The two linear

regressions must intersect at the same point at the separation line in-order to
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continuously estimate the bias force for all velocity values. This constraint

is expressed as

xpβ̄1 = xpβ̄2 where β̄i =
[
mi ci

]T
(4.6)

This problem is re-cast as a constrained optimization in which sum of

squares of the fitting error is minimized subjected to the constraint given by

4.6. This is given by

min e2 =
1

2
(ȳ− − x̄−β̄1)T(ȳ− − x̄−β̄1) +

1

2
(ȳ+ − x̄+β̄2)T(ȳ+ − x̄+β̄2)

subject to

xpβ̄1 = xpβ̄2 where β̄i =
[
mi ci

]T

(4.7)

where e represent discontinuity error between linear regressions, x̄−, ȳ− and

β̄1 represent the velocity, bias force and parameter respectively corresponding

to the data set in the left half of the xp and similarly x̄+, ȳ+ and β̄2 represent

data set in the right half of the xp. But the separation point xp, that separates

the two linear regions is not available. This is found out by minimizing

the fitting error at two regions given by the optimal solution to the above

optimization problem.

The two problems of identifying the optimal separation point xp and iden-

tifying the linear regression models parameters m1, m2, c1, c2 are together

formulated as a bilevel optimization problem [61]. A bilevel optimization, a

special class of hierarchical optimization problems, consists of a nested op-

timization task within the constraint of another optimization problem. The

outer optimization is called the upper level task and the inner problem is

called lower level task. The nested structure of overall problem requires that

a solution to the upper level may be feasible only if it is an optimal solution

to the lower level problem. As a result bilevel problems are hard to solve.

In this case, the analytical optimal solution to the upper problem is first

found, following which the optimal solution to the lower problem is found by

searching within the feasible region. This constrained optimization bilevel

problem is given by
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Upper level problem

min e2 =
1

2
(ȳ− − x̄−β̄1)T(ȳ− − x̄−β̄1) +

1

2
(ȳ+ − x̄+β̄2)T(ȳ+ − x̄+β̄2)

Lower level problem

subject to

xp ∈ argmin
xp

1

2
(ȳ− − x̄−β̄1)T(ȳ− − x̄−β̄1) +

1

2
(ȳ+ − x̄+β̄2)T(ȳ+ − x̄+β̄2)

xpβ̄1 = xpβ̄2 where β̄i =
[
mi ci

]T

(4.8)

The derivation to this problem is provided in the appendix and the math-

ematical solution for the upper level problem of identifying the parameter

are given by

m1 =
BD2 + A2D1

A1A2 −B2
(4.9)

m2 =
BD1 + A1D2

A1A2 −B2
(4.10)

c1 = c−m1xp (4.11)

c2 = c−m2xp (4.12)

where A1 =
∑
x̄2
−− 1

n

(∑
x̄−
)2

, A2 =
∑
x̄2

+− 1
n

(∑
x̄+

)2
, B = 1

n

∑
x̄−
∑
x̄+,

D1 = ȳT
−x̄−−µȳ

∑
x̄−, D2 = ȳT

+x̄+−µȳ
∑
x̄+ and c = µȳ−m1

n

∑
x̄−−m2

n

∑
x̄+

The solution to eqn. 4.9 to eqn. 4.12 is used to find the optimal solution to

the lower level problem. The solution is given by quadratic transcendental

equation as given below

F (xp) = xp − g(xp)
−1

[
h(xp)− f(xp)x

2
p

]
= 0 (4.13)

where

f(xp) =

(
m1

dm1

dxp
+m2

dm2

dxp

)
g(xp) = m2

1 +m2
2 + c1

dm1

dxp
+m1

dc1
dxp

+ c2
dm2

dxp
+m2

dc2
dxp
− yp

(
dm1

dxp
+ dm2

dxp

)
h(xp) =

∑p−1
i=1 (yi −m1xi − c1)

(
dm1

dxp
xi + dc1

dxp

)
+
∑n

i=p+1(yi −m2xi − c2)

(
dm2

dxp
xi + dc2

dxp

)
+yp

(
dc1
dxp
xi + dc2

dxp
+m1 +m2

)
−c1

(
m1 + dc1

dxp

)
−c2

(
m2 + dc2

dxp

)
35



The numerical methods cannot be used since data for the calculations of

parameter m1,m2, c1 and c2 for intermediate values are not available. Solving

quadratic transcendental equation graphically as shown in Fig. 4.6, the solu-

tion for the separation point is obtained as xp = 41.5586 and xp = 101.8051.

By choosing the nearest values from the collected data, xp = 40 and xp = 100

the associated error is computed as exp=40 = 0.003471 and exp=100 = 0.01684.

Therefore the separation point is xp = 40

Figure 4.6: Solution to transcendental equation

The parameters m1,m2, c1 and c2 obtained for the shifted data are used

to calculate the intercepts for original data set thus the relationship is given

by eqn. 4.14 and eqn. 4.15. Figure 4.7 shows the the data set and the two

linear fit relationship.

For low velocity range v from 0.1 to 40 rpm

Fb = −0.0059v + 0.8473 (4.14)

For high velocity range v from 40 to 500 rpm

Fb = 7.5767e−05v + 0.6101 (4.15)

Solution to the separation point xp is confirmed by variation of error as

shown in Fig. 4.8. the error is the least at 40 rpm.
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Figure 4.7: Linear fitting of nominal operational force

Figure 4.8: Optimal separation point selection

4.3 Validation Results and Summary

The linear regression models expressed in eqn. 4.14 and eqn. 4.15 are used to

estimate the bias force Fb for given operation velocity of the motor. The data

as shown in Fig. 4.3 is collected by operating the motor at a constant velocity

of 30 rpm. Using the linear regression models the corresponding bias force Fb

is computed as 0.6716. This bias is applied to the motor force measurement

data when the motor starts to operate. The result is shown in Fig. 4.9. The
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green line represents the biased force measurement, which is the estimated

reaction force sensed by the motor. The load-cell measurement which is the

load applied by the guidewire is similarly presented by biased force data.

Figure 4.9: Biased force representation

Thus, this linear regression model is used to compute the bias force in real

time while navigating guidewire inside vasculature and using this the reaction

forces are estimated. As discussed in Chapter 3, this estimated reaction force

is continuously monitored to provide haptic feedback to the surgeons.
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CHAPTER 5

Performance Evaluation Results

The interventional robotic system developed in phase 2 is evaluated for the

following: tele operations, position tracking of surgical tool motion and hap-

tic feedback safety system with force measurement. The setup is shown in

Fig. 5.1. The system consists of master console and slave manipulator which

are independently mounted with identical guidewires. The master console

consists of a display monitor, sensing unit and the surgical tool. The slave

manipulator consists of robot unit, controllers, computer, and the surgical

tool. Phantom vasculature is used to mimic patient vasculature and a high

definition camera is used to mimic the fluoroscopic image of the actual pro-

cedure. The master and slave units are isolated as independent modules thus

demonstrating the tele-operation capability of the interventional robotic sys-

tem.

Figure 5.1: Interventional robotic system
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5.1 Position Tracking

The developed system has 2 DOF, the control of these motions are inde-

pendently evaluated by providing actuation from the sensing unit and the

observing the corresponding motion of the surgical tool in the robotic unit.

The tool motion captured by sensing unit are recorded along with the corre-

sponding motions of the robot unit.

Figure 5.2: (a). Translation motion tracking, (b). Rotational motion
tracking

The translational motion data shown in Fig. 5.2(a) and the rotational

motion data shown in Fig. 5.2(b) demonstrate the position tracking capability

of the slave robotic system. The dynamics system behavior like unbalanced

mass and vibration contribute to the undesirable system response from the

proportional-integral-derivative(PID) controller.

5.2 Safety Mechanism Based on Force Measurement

The safety mechanism is demonstrated with navigation tasks performed on

a branched vasculature as shown in Fig. 5.1 in tele-operative mode. During

navigation, the force measurement from the actuators are continuously mon-

itored. Whenever the applied force exceeds this threshold limit as shown

in Fig. 5.3, the robot stops advancing the guidewire. In addition, haptic

feedback is provided by vibrations to alert the surgeons.

The phantom vasculature as shown in Fig. 5.4, the y-branching of vascula-

ture is close at 140mm. when the reactive force experienced by the guidewire
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Figure 5.3: Haptic feedback safety system

Figure 5.4: Phantom vasculature: Y-Branching

exceeds threshold force of 2.5N (set based on multiple observation) haptic

vibration were observed at the master console alerting the user.
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CHAPTER 6

Conclusion

The developed of a interventional robotic system that can augment surgeon’s

administration is successfully developed and demonstrated. The novel user

interface of the system operates with conventional surgeon’s gestures from

a remote console eliminates the need to learn new skill for surgeons. The

modular design of robotic unit enable ease system assembly and sterilization.

The device has demonstrated its capability as a safety mechanism in the

events of excessive reaction forces while interacting with vasculature. The

reaction force estimations are validated with the load cell measurements.

Constrained linear regression models are derived to compute the bias force.

A control system developed ensures the function of safety mechanism, hap-

tic feedback, surgical tool position tracking and surgeon’s action replication.

The performance of the cascade controller for position tracking of surgical

tool unit are confirmed with experiments. The performance of passive force

estimation in interventional robotic system is verified with real-time haptic

feedback during the known occurrences while navigating phantom vascula-

ture. This has eliminated the need for expensive active surgical tools for

endovascular robotic procedure.

Future work will provide dexterity with articulated arm for ease of mount-

ing and orienting near patients during procedure. A thorough assessment of

issues and impact of robotic assistance in endovascular procedures has to be

carried out before a complete in shift in procedures take place.
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APPENDIX A

Constrained Optimization Problem
for Linear Regression

The solution to this is formulated as constrained optimization problem as

follows

Upper level problem

min e2 =
1

2
(ȳ− − x̄−β̄1)T(ȳ− − x̄−β̄1) +

1

2
(ȳ+ − x̄+β̄2)T(ȳ+ − x̄+β̄2)

Lower level problem

subject to

xp ∈ argmin
xp

1

2
(ȳ− − x̄−β̄1)T(ȳ− − x̄−β̄1) +

1

2
(ȳ+ − x̄+β̄2)T(ȳ+ − x̄+β̄2)

xpβ̄1 = xpβ̄2 where β̄i =
[
mi ci

]T

(A.1)

where x̄−, ȳ− and β̄1 represent the velocity, bias force and parameter respec-

tively corresponding to the data set in the left half of the plane and similarly

x̄+, ȳ+ and β̄2 represent data set in the right half of the plane.

c1 = c2 = c (A.2)

therefore, the upper level optimization problem modified as,

min
e

1

2
(ȳT
−ȳ− − 2ȳT

−x̄−β̄1 + (x̄−β̄1)Tx̄−β̄1 + ȳT
+ȳ+ − 2ȳT

+x̄+β̄2 + (x̄+β̄2)Tx̄+β̄2)

subject to xp

[
0− 1

] [
m1 c

]T

=
[
0+ 1

] [
m2 c

]T

(A.3)
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=⇒ min
e

1

2

(
ȳT
−ȳ− − 2ȳT

−

[
x̄− 1̄

] [m1

c

]
+
( [
x̄− 1̄

] [m1

c

])T [
x̄− 1̄

] [m1

c

]

+ȳT
+ȳ+ − 2ȳT

+

[
x̄+ 1̄

] [m2

c

]
+
( [
x̄+ 1̄

] [m2

c

])T [
x̄− 1̄

] [m2

c

])
(A.4)

=⇒ min
e

1

2

(
ȳT
−ȳ− − 2ȳT

−(x̄−m1 + c̄) + (x̄−m1 + c̄)T(x̄−m1 + c̄) + ȳT
+ȳ+

−2ȳT
+(x̄+m2 + c̄) + (x̄+m2 + c̄)T(x̄+m2 + c̄)

)
(A.5)

=⇒ min
e

1

2

(
ȳT
−ȳ− − 2ȳT

−x̄−m1 − 2ȳT
−c̄+m2

1x̄
T
−x̄− + 2m1x̄

T
−c̄+ n1c

2 + ȳT
+ȳ+

−2ȳT
+x̄+m2 − 2ȳT

+c̄) +m2
2x̄

T
+x̄+ + 2m1x̄

T
−c̄+ n2c

2

(A.6)

differentiating with respect to m1,m2 and c̄, and equating to zero, we get

−ȳT
−x̄− +m1x̄

T
−x̄− + x̄T

−c̄ = 0 (A.7)

−ȳT
+x̄+ +m1x̄

T
+x̄+ + x̄T

+c̄ = 0 (A.8)

−ȳT
−1̄ +m1x̄

T
−1̄ + n1c− ȳT

+1̄ +m2x̄
T
+1̄ + n2c = 0 (A.9)

from eqn. A.9

c =
1

n

(∑
ȳ −m1

∑
x̄− −m2

∑
x̄+

)
(A.10)

but
1

n

∑
ȳ = µȳ

=⇒ c =

(
µȳ −

m1

n

∑
x̄− −

m2

n

∑
x̄+

)
(A.11)

therefore,

=⇒ c̄ =

(
µȳ −

m1

n

∑
x̄− −

m2

n

∑
x̄+

)
1̄ (A.12)

substituting A.12 in A.7 and A.8

−ȳT
−x̄− +m1

∑
x̄2
− +

∑
x̄−

(
µȳ −

m1

n

∑
x̄− −

m2

n

∑
x̄+

)
= 0 (A.13)
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−ȳT
+x̄+ +m2

∑
x̄2

+ +
∑

x̄+

(
µȳ −

m1

n

∑
x̄− −

m2

n

∑
x̄+

)
= 0 (A.14)

rearranging the terms,

−ȳT
−x̄− +m1

(∑
x̄2
− −

1

n

(∑
x̄−
)2
)

+µȳ
∑

x̄− −
m2

n

∑
x̄−
∑

x̄+ = 0

(A.15)

−ȳT
+x̄+ +m2

(∑
x̄2

+ −
1

n

(∑
x̄+

)2
)

+µȳ
∑

x̄+ −
m1

n

∑
x̄+

∑
x̄− = 0

(A.16)

=⇒ m1

(∑
x̄2
− −

1

n

(∑
x̄−
)2
)
−m2

n

∑
x̄−
∑

x̄+ = ȳT
−x̄− − µȳ

∑
x̄−

(A.17)

=⇒ m1

(∑
x̄2

+ −
1

n

(∑
x̄+

)2
)
−m1

n

∑
x̄+

∑
x̄− = ȳT

+x̄+ − µȳ
∑

x̄+

(A.18)

let A1 =
∑
x̄2
− − 1

n

(∑
x̄−
)2

, A2 =
∑
x̄2

+ − 1
n

(∑
x̄+

)2
, B = 1

n

∑
x̄−
∑
x̄+,

D1 = ȳT
−x̄− − µȳ

∑
x̄−, D2 = ȳT

+x̄+ − µȳ
∑
x̄+

=⇒ A1m1 −Bm2 = D1 (A.19)

=⇒ A2m2 −Bm1 = D2 (A.20)

solving A.19 and A.20 for the m1 and m2, we get

m1 =
BD2 + A2D1

A1A2 −B2
(A.21)

m2 =
BD1 + A1D2

A1A2 −B2
(A.22)

c1 = c−m1xp (A.23)

c2 = c−m2xp (A.24)

This is the solution to the upper level optimization problem. These param-

eter m1,m2, c1andc2 obtained for the shifted data are used to calculate the

intercepts for data set thus the relationship is given by A.25 and A.26.

For low velocity range v from 0.1 to xp rpm

Fb = m1v + C1 (A.25)
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For high velocity range v from xp to 500 rpm

Fb = m2v + C2 (A.26)

The lower level problem is rewritten as

argmin
xp

1

2
(ȳ− − x̄−β̄1)T(ȳ− − x̄−β̄1) +

1

2
(ȳ+ − x̄+β̄2)T(ȳ+ − x̄+β̄2) (A.27)

argmin
xp

1

2

p∑
i=1

(y− −m1x− − c1)2 +
1

2

n∑
i=p+1

(y+ −m2x+ − c2)2
(A.28)

Differentiating A.28 w.r.to, xp and equating to zero,

p−1∑
i=1

(yi −m1xi − c1)

(
−dm1

dxp
xi −

dc1

dxp

)
+ (yp −m1xp − c1)

(
−dm1

dxp
xp −m1 −

dc1

dxp

)
+ (yp −m2xp − c2)

(
−dm2

dxp
xp −m2 −

dc2

dxp

)
+

n∑
i=p+1

(yi −m2xi − c2)

(
−dm2

dxp
xi −

dc2

dxp

)
= 0

(A.29)

=⇒
p−1∑
i=1

(yi −m1xi − c1)

(
−dm1

dxp
xi −

dc1

dxp

)
+ (yp −m1xp − c1)(−m1)

+ (yp −m2xp − c2)(−m2)

+
n∑

i=p+1

(yi −m2xi − c2)

(
−dm2

dxp
xi −

dc2

dxp

)
= 0

(A.30)
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=⇒ −
p−1∑
i=1

(yi −m1xi − c1)

(
dm1

dxp
xi +

dc1

dxp

)
− (yp −m1xp − c1)

(
dm1

dxp
xi +

dc1

dxp

)
− yp(m1 +m2) + xp(m

2
1 +m2

2) + c1m1 + c2m2

− (yp −m2xp − c2)

(
−dm2

dxp
xi −

dc2

dxp

)
−

n∑
i=p+1

(yi −m2xi − c2)

(
−dm2

dxp
xi −

dc2

dxp

)
= 0

(A.31)

=⇒ −yp
dm1

dxp
xp +m1

dm1

dxp
x2
p + c1

dm1

dxp
xp − yp

dc1

dxp
+m1

dc1

dxp
xp + c1

dc1

dxp

− yp(m1 +m2) + xp(m
2
1 +m2

2) + c1m1 + c2m2

− yp
dm2

dxp
xp +m2

dm2

dxp
x2
p + c2

dm2

dxp
xp − yp

dc2

dxp
+m1

dc2

dxp
xp + c2

dc2

dxp

=

p−1∑
i=1

(yi −m1xi − c1)

(
dm1

dxp
xi +

dc1

dxp

)
+

n∑
i=p+1

(yi −m2xi − c2)

(
dm2

dxp
xi +

dc2

dxp

)
(A.32)

=⇒
(
m1

dm1

dxp
+m2

dm2

dxp

)
x2
p

+

[
m2

1 +m2
2 + c1

dm1

dxp
+m1

dc1

dxp
+ c2

dm2

dxp

+m2
dc2

dxp
− yp

(
dm1

dxp
+
dm2

dxp

)
h(xp)

=

p−1∑
i=1

(yi −m1xi − c1)

(
dm1

dxp
xi +

dc1

dxp

)
+

n∑
i=p+1

(yi −m2xi − c2)

(
dm2

dxp
xi +

dc2

dxp

]
xp

+ yp

(
dc1

dxp
xi +

dc2

dxp
+m1 +m2

)
−c1

(
m1 +

dc1

dxp

)
− c2

(
m2 +

dc2

dxp

)

(A.33)
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1. dm1

dxp
from eqn. A.21 m1 = BD2+A2D1

A1A2−B2 and thus dm1

dxp
is given by

dm1

dxp
= (A.34)

(A1A2−B2)

(
dB
dxp

D2+B
dD2
dxp

+
dA2
dxp

D1+A2
dD1
dxp

)
−

(
dA1
dxp

A2+A1
dA2
dxp
−2B dB

dxp

)
(BD2+A2D1)

(A1A2−B2)2

2. dm2

dxp
from eqn. A.22 m2 = BD1+A1D2

A1A2−B2 and thus dm2

dxp
is given by

dm2

dxp
= (A.35)

(A1A2−B2)

(
dB
dxp

D1+B
dD1
dxp

+
dA1
dxp

D2+A1
dD2
dxp

)
−

(
dA1
dxp

A2+A1
dA2
dxp
−2B dB

dxp

)
(BD2+A2D1)

(A1A2−B2)2

3. dc1
dxp

from eqn. A.23 c1 = c−m1xp

dc1

dxp
=

dc

dxp
− dm1

dxp
xp −m1 (A.36)

4. dc2
dxp

from eqn. A.24 c2 = c−m2xp

dc2

dxp
=

dc

dxp
− dm2

dxp
xp −m2 (A.37)

5. dc
dxp

from eqn. A.10

c =
1

n

(∑
ȳ −m1

∑
x̄− −m2

∑
x̄+

)

c =
1

n

(∑
ȳ −m1

∑
(x̄1−p − xp)−m2

∑
(x̄p−n − xp)

)
=⇒ dc

dxp
=

1

n

(
n1m1 + n2m2 −

dm1

dxp

∑
x̄− −

dm2

dxp

∑
x̄+

)
(A.38)

6. dB
dxp

from above,

B =
1

n

∑
x̄−
∑

x̄+

B =
1

n

∑
(x̄1−p − xp)

∑
(x̄p−n − xp)
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=⇒ dB

dxp
= − 1

n

(
n1

∑
x̄+ + n2

∑
x̄−

)
(A.39)

7. dA1

dxp
from above, A1 =

∑
x̄2
− − 1

n

(∑
x̄−
)2

,

A1 =
∑

(x̄1−p − xp)2 − 1

n

(∑
(x̄1−p − xp)

)2

dA1

dxp
= 2n1xp − 2

∑
x1−p +

2n1

n

∑
(x̄1−p − xp) (A.40)

=⇒ dA1

dxp
= 2n1xp − 2

∑
x1−p +

2

n

∑
x̄− (A.41)

8. dA2

dxp
from above, A2 =

∑
x̄2

+ − 1
n

(∑
x̄+

)2
,

A2 =
∑

(x̄p−n − xp)2 − 1

n

(∑
(x̄p−n − xp)

)2

=⇒ dA2

dxp
= 2n2xp − 2

∑
xp−n +

2

n

∑
x̄+ (A.42)

9. dD1

dxp
from above, D1 = ȳT

−x̄− − µȳ
∑
x̄−,

D1 = ȳT
−(x1−p − xp)− µȳ

∑
(x1−p − xp)

=⇒ dD1

dxp
= n1µȳ −

∑
ȳ− (A.43)

10. dD1

dxp
from above, D2 = ȳT

+x̄+ − µȳ
∑
x̄+

D2 = ȳT
+(xp−n − xp)− µȳ

∑
(xp−n − xp)

=⇒ dD2

dxp
= n2µȳ −

∑
ȳ+ (A.44)

Thus Equation A.33 is of the form

f(xp)x
2
p + g(xp)xp = h(xp) (A.45)

=⇒ F (xp) = xp − g(xp)
−1

[
h(xp)− f(xp)x

2
p

]
= 0 (A.46)

where
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f(xp) =

(
m1

dm1

dxp
+m2

dm2

dxp

)

g(xp) = m2
1 +m2

2 + c1
dm1

dxp
+m1

dc1

dxp
+ c2

dm2

dxp
+m2

dc2

dxp
− yp

(
dm1

dxp
+
dm2

dxp

)

h(xp) =
∑p−1

i=1 (yi −m1xi − c1)

(
dm1

dxp
xi + dc1

dxp

)
+
∑n

i=p+1(yi −m2xi − c2)

(
dm2

dxp
xi + dc2

dxp

)

+yp

(
dc1

dxp
xi +

dc2

dxp
+m1 +m2

)
−c1

(
m1 +

dc1

dxp

)
−c2

(
m2 +

dc2

dxp

)
The solution to transcendental equation is obtained numerically (fixed point

iteration, newton-raphson, bisecant genetic algorithm etc.)

56


